
M A N N I N G

Mala Gupta

Prepare for the 1ZO-804 exam

OCP Java SE 7 Programmer II
Certification Guide

Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

OCP Java SE 7
Programmer II

Certification Guide
PREPARE FOR THE 1ZO-804 EXAM

MALA GUPTA

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical editor: George Zurowski
PO Box 761 Copyeditor: Jodie Allen
Shelter Island, NY 11964 Proofreader: Alyson Brener

Technical proofreaders: Roel De Nijs, Jean-François Morin
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291487
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com

 To Dheeraj, my pillar of strength
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

brief contents
Introduction 1

1 ■ Java class design 13

2 ■ Advanced class design 95

3 ■ Object-oriented design principles 172

4 ■ Generics and collections 242

5 ■ String processing 348

6 ■ Exceptions and assertions 396

7 ■ Java I/O fundamentals 463

8 ■ Java file I/O (NIO.2) 512

9 ■ Building database applications with JDBC 577

10 ■ Threads 627

11 ■ Concurrency 679

12 ■ Localization 719
vii

Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

contents
preface xxi
acknowledgments xxiii
about this book xxv

Introduction 1
Disclaimer 2
Introduction to OCP Java SE 7 Programmer II certification

(1Z0-804) 2
The importance of the OCP Java SE 7 Programmer II certification 2
Comparing the OCA Java SE 7 Programmer I (1Z0-803) and OCP
Java SE 7 Programmer II (1Z0-804) exams 4 ■ Complete exam
objectives, mapped to book chapters, and readiness checklist 4

FAQ 7
FAQ on exam preparation 8 ■ FAQ on taking the exam 9

The testing engine used in the exam 11
ix

Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSx
1 Java class design 13
1.1 Java access modifiers 15

Public access modifier 16 ■ Protected access modifier 17
Default access (package access) 19 ■ The private access
modifier 23 ■ Access modifiers and Java entities 25
Effects of changing access modifiers for existing entities 26

1.2 Overloaded methods and constructors 28
Argument list 30 ■ When methods can’t be defined as
overloaded methods 34 ■ Overloaded constructors 35

1.3 Method overriding and virtual method invocation 40
Need of overridden methods 41 ■ Correct syntax of overriding
methods 44 ■ Can you override all methods from the base
class or invoke them virtually? 48 ■ Identifying method
overriding, overloading, and hiding 49 ■ Can you override
base class constructors or invoke them virtually? 50

1.4 Overriding methods of class Object 51
Overriding method toString() 51 ■ Overriding method
equals() 54 ■ Overriding method hashCode() 60

1.5 Casting and the instanceof operator 66
Implicit and explicit casting 67 ■ Combinations of casting 70
Using the instanceof operator 73

1.6 Packages 75
The need for packages 75 ■ Defining classes in a package using
the package statement 76 ■ Using simple names with import
statements 78 ■ Using packages without using the import
statement 79 ■ Importing a single member versus all members
of a package 80 ■ The import statement doesn’t import the
whole package tree 80 ■ Importing classes from the default
package 81 ■ Static imports 81

1.7 Summary 82
1.8 Review notes 83

Java access modifiers 83 ■ Overloaded methods and
constructors 84 ■ Method overriding and virtual
method invocation 84 ■ Java packages 85

1.9 Sample exam questions 85
1.10 Answers to sample exam questions 90
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
2 Advanced class design 95
2.1 Abstract classes and their application 97

Identify abstract classes 97 ■ Construct abstract classes and
subclasses 100 ■ Understand the need for abstract classes 103
Follow the do’s and don’t’s of creating and using abstract
classes 103 ■ Compare abstract classes and concrete classes 105

2.2 Static and final keywords 106
Static modifier 107 ■ Nonaccess modifier—final 115

2.3 Enumerated types 122
Understanding the need for and creating an enum 123
Adding implicit code to an enum 124 ■ Extending
java.lang.Enum 125 ■ Adding variables, constructors,
and methods to your enum 127 ■ Where can you define
an enum? 130

2.4 Static nested and inner classes 132
Advantages of inner classes 133 ■ Static nested class (also
called static inner class) 134 ■ Inner class (also called
member class) 139 ■ Anonymous inner classes 147
Method local inner classes 152 ■ Disadvantages of
inner classes 153

2.5 Summary 154
2.6 Review notes 154

Abstract classes 154 ■ Nonaccess modifier—static 155
Nonaccess modifier—final 155 ■ Enumerated types 156
Static nested classes 157 ■ Inner classes 158 ■ Anonymous
inner classes 158 ■ Method local inner classes 159

2.7 Sample exam questions 159
2.8 Answers to sample exam questions 166

3 Object-oriented design principles 172
3.1 Interfaces 174

Understanding interfaces 175 ■ Declaring interfaces 176
Implementing interfaces 179 ■ Extending interfaces 183

3.2 Class inheritance versus interface inheritance 184
Comparing class inheritance and interface inheritance 184
Preferring class inheritance over interface inheritance 185
Preferring interface inheritance over class inheritance 186
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
3.3 IS-A and HAS-A relationships in code 190
Identifying and implementing an IS-A relationship 191
Identifying and implementing a HAS-A relationship 196

3.4 Cohesion and low coupling 197
Cohesion 197 ■ Coupling 198

3.5 Object composition principles 200
3.6 Introduction to design patterns 201

What is a design pattern? 201 ■ Why do you need a
design pattern? 201

3.7 Singleton pattern 202
Why do you need this pattern? 202 ■ Implementing the
Singleton pattern 202 ■ Ensuring creation of only one object
in the Singleton pattern 203 ■ Comparing Singleton with
global data 207

3.8 Factory pattern 208
Simple Factory pattern (or Static Factory pattern) 208
Factory Method pattern 210 ■ Abstract Factory pattern 211
Benefits of the Factory pattern 213 ■ Using the Factory pattern
from the Java API 214

3.9 DAO pattern 215
What is the DAO pattern? 215 ■ Implementing the
DAO pattern 215 ■ Using the Simple Factory pattern
with the DAO pattern 217 ■ Using the Factory Method
or Abstract Factory pattern with the DAO pattern 218
Benefits of the DAO pattern 220

3.10 Summary 220
3.11 Review notes 222

Interfaces 222 ■ Class inheritance versus interface
inheritance 223 ■ IS-A and HAS-A relationships
in code 223 ■ Cohesion and low coupling 223
Object composition principles 224 ■ Singleton pattern 224
Factory pattern 225 ■ DAO pattern 226

3.12 Sample exam questions 226
3.13 Answers to sample exam questions 234

4 Generics and collections 242
4.1 Introducing generics: WARM-UP 244

Need for introducing generics 244 ■ Benefits and complexities
of using generics 245
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xiii
4.2 Creating generic entities 246
Creating a generic class 246 ■ Working with generic
interfaces 250 ■ Using generic methods 252
Bounded type parameters 253 ■ Using wildcards 255
Using bounded wildcards 257 ■ Type erasure 260
Refreshing the commonly used terms 262

4.3 Using type inference 263
Using type inference to instantiate a generic class 264
Using type inference to invoke generic methods 265

4.4 Understanding interoperability of collections using raw
types and generic types 265
Mixing reference variables and objects of raw and generic types 266
Subtyping with generics 270

4.5 Introducing the collections framework: WARM-UP 271
4.6 Working with the Collection interface 273

The core Collection interface 274 ■ Methods of the
Collection interface 275

4.7 Creating and using List, Set, and Deque
implementations 276
List interface and its implementations 276 ■ Deque interface
and its implementations 282 ■ Set interface and its
implementations 290 ■ Set implementation classes 291

4.8 Map and its implementations 296
Map interface 296 ■ HashMap 297 ■ LinkedHashMap 304
TreeMap 305

4.9 Using java.util.Comparator and
java.lang.Comparable 308
Comparable interface 308 ■ Comparator interface 310

4.10 Sorting and searching arrays and lists 313
Sorting arrays 313 ■ Sorting List using Collections 317
Searching arrays and List using collections 318

4.11 Using wrapper classes 320
Class hierarchy of wrapper classes 320 ■ Creating objects of
the wrapper classes 321 ■ Retrieving primitive values from
the wrapper classes 322 ■ Parsing a string value to a
primitive type 322 ■ Difference between using method
valueOf() and constructors of wrapper classes 323
Comparing objects of wrapper classes 323
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxiv
4.12 Autoboxing and unboxing 325
4.13 Summary 327
4.14 Review notes 328

Creating generic entities 328 ■ Using type inference 330
Understanding interoperability of collections using raw types and
generic types 330 ■ Working with the Collection interface 330
Creating and using List, Set, and Deque implementations 331
Map and its implementations 334 ■ Using java.util.Comparator
and java.lang.Comparable 336 ■ Sorting and searching
arrays and lists 336 ■ Using wrapper classes 337
Autoboxing and Unboxing 337

4.15 Sample exam questions 338
4.16 Answers to sample exam questions 343

5 String processing 348
5.1 Regular expressions 349

What is a regular expression? 351 ■ Character classes 351
Predefined character classes 354 ■ Matching boundaries 356
Quantifiers 358 ■ Java’s regex support 362

5.2 Searching, parsing, and building strings 364
Searching strings 364 ■ Replacing strings 368
Parsing and tokenizing strings with Scanner and
StringTokenizer 372

5.3 Formatting strings 376
Formatting classes 376 ■ Formatting methods 376
Defining format strings 377 ■ Formatting parameter %b 379
Formatting parameter %c 380 ■ Formatting parameters %d
and %f 380 ■ Formatting parameter %s 381

5.4 Summary 382
5.5 Review notes 382

Regular expressions 382 ■ Search, parse, and build strings 384
Formatting strings 385

5.6 Sample exam questions 387
5.7 Answers to sample exam questions 391

6 Exceptions and assertions 396
6.1 Using the throw statement and the throws clause 398

Creating a method that throws a checked exception 400
Using a method that throws a checked exception 400
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xv
Creating and using a method that throws runtime exceptions
or errors 403 ■ Points to note while using the throw statement
and the throws clause 404

6.2 Creating custom exceptions 409
Creating a custom checked exception 410 ■ Creating a custom
unchecked exception 412

6.3 Overriding methods that throw exceptions 413
6.4 Using the try statement with multi-catch and

finally clauses 415
Comparing single-catch handlers and multi-catch handlers 415
Handling multiple exceptions in the same exception handler 416

6.5 Auto-closing resources with a try-with-resources
statement 422
How to use a try-with-resources statement 422
Suppressed exceptions 424 ■ The right ingredients 426

6.6 Using assertions 431
Exploring the forms of assertions 432 ■ Testing invariants in
your code 435 ■ Understanding appropriate and inappropriate
uses of assertions 439

6.7 Summary 442
6.8 Review notes 443

Using the throw statement and the throws clause 443
Custom exceptions 444 ■ Overriding methods that throw
exceptions 444 ■ try statement with multi-catch and
finally clauses 445 ■ Auto-close resources with
try-with-resources statement 445 ■ Assertions 446

6.9 Sample exam questions 447
6.10 Answers to sample exam questions 456

7 Java I/O fundamentals 463
7.1 Introducing Java I/O: WARM-UP 464

Understanding streams 464 ■ Understanding multiple
flavors of data 465

7.2 Working with class java.io.File 469
Instantiating and querying File instances 470
Creating new files and directories on your physical device 472
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxvi
7.3 Using byte stream I/O 473
Input streams 473 ■ Output streams 475 ■ File I/O with
byte streams 477 ■ Buffered I/O with byte streams 481
Primitive values and strings I/O with byte streams 482
Object I/O with byte streams: reading and writing objects 484

7.4 Using character I/O with readers and writers 489
Abstract class java.io.Reader 491 ■ Abstract class
java.io.Writer 491 ■ File I/O with character streams 492
Buffered I/O with character streams 493 ■ Data streams
with character streams: using PrintWriter to write to a file 494
Constructor chaining with I/O classes 496

7.5 Working with the console 497
7.6 Summary 499
7.7 Review notes 500

Working with class java.io.File 500 ■ Using byte
stream I/O 500 ■ Using character I/O with readers
and writers 502 ■ Working with the console 503

7.8 Sample exam questions 504
7.9 Answers to sample exam questions 509

8 Java file I/O (NIO.2) 512
8.1 Path objects 516

Multiple ways to create Path objects 518 ■ Methods to access
Path components 521 ■ Comparing paths 522
Converting relative paths to absolute paths 523
Resolving paths using methods resolve and resolveSibling 525
Method relativize() 526

8.2 Class Files 527
Create files and directories 527 ■ Check for the existence of files
and directories 529 ■ Copy files 530 ■ Move files and
directories 534 ■ Delete files and directories 534
Commonly thrown exceptions 535

8.3 Files and directory attributes 535
Individual attributes 535 ■ Group of attributes 537
Basic attributes 540 ■ DOS attributes 541 ■ POSIX
attributes 542 ■ AclFileAttributeView interface 543
FileOwnerAttributeView interface 543
UserDefinedAttributeView interface 543
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xvii
8.4 Recursively access a directory tree 545
FileVisitor interface 546 ■ Class SimpleFileVisitor 549
Initiate traversal for FileVisitor and SimpleFileVisitor 550
DirectoryStream interface 553

8.5 Using PathMatcher 555
8.6 Watch a directory for changes 557

Create WatchService object 557 ■ Register with
WatchService object 557 ■ Access watched events using
WatchKey interface 558 ■ Processing events 558

8.7 Summary 561
8.8 Review notes 561

Path objects 561 ■ Class Files 563 ■ Files and directory
attributes 564 ■ Recursively access a directory tree 566
Using PathMatcher 566 ■ Watch a directory for changes 567

8.9 Sample exam questions 568
8.10 Answers to sample exam questions 573

9 Building database applications with JDBC 577
9.1 Introduction 578

JDBC API overview 579 ■ JDBC architecture 580
JDBC drivers 580

9.2 Interfaces that make up the JDBC API core 581
Interface java.sql.Driver 582
Interface java.sql.Connection 583
Interface java.sql.Statement 583
Interface java.sql.ResultSet 583

9.3 Connecting to a database 584
Loading JDBC drivers 585 ■ Use DriverManager to
connect to a database 586 ■ Exceptions thrown by
database connections 588

9.4 CRUD (create, retrieve, update, and delete)
operations 589
Read table definition and create table 590 ■ Mapping SQL data
types to Java data types 591 ■ Insert rows in a table 592
Update data in a table 594 ■ Delete data in a table 595
Querying database 595
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxviii
9.5 JDBC transactions 599
A transaction example 599 ■ Create savepoints and
roll back partial transactions 601 ■ Commit modes and
JDBC transactions 603

9.6 RowSet objects 603
Interface RowSetFactory 605 ■ Class RowSetProvider 605
An example of working with JdbcRowSet 605

9.7 Precompiled statements 607
Prepared statements 607 ■ Interface CallableStatement 610
Database-stored procedures with parameters 612

9.8 Summary 613
9.9 Review notes 614

Introduction 614 ■ Interfaces that make up the
JDBC API core 615 ■ Connecting to a database 615
CRUD (create, retrieve, update, and delete) operations 616
JDBC transactions 617 ■ RowSet objects 617
Precompiled statements 618

9.10 Sample exam questions 619
9.11 Answers to sample exam questions 624

10 Threads 627
10.1 Create and use threads 629

Extending class Thread 630 ■ Implement interface
Runnable 632

10.2 Thread lifecycle 634
Lifecycle of a thread 634 ■ Methods of class Thread 637
Start thread execution 637 ■ Pause thread execution 639
End thread execution 645

10.3 Protect shared data 645
Identifying shared data: WARM-UP 645 ■ Thread
interference 646 ■ Thread-safe access to shared data 649
Immutable objects are thread safe 654 ■ Volatile variables 655

10.4 Identify and fix code in a multithreaded
environment 657
Variables you should care about 657 ■ Operations you should
care about 658 ■ Waiting for notification of events: using wait,
notify, and notifyAll 659 ■ Deadlock 662 ■ Starvation 663
Livelock 664 ■ Happens-before relationship 664
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xix
10.5 Summary 665
10.6 Review notes 665

Create and use threads 665 ■ Thread lifecycle 666
Methods of class Thread 667 ■ Protect shared data 668
Identify and fix code in a multithreaded environment 669

10.7 Sample exam questions 670
10.8 Answers to sample exam questions 675

11 Concurrency 679
11.1 Concurrent collection classes 680

Interface BlockingQueue 681 ■ Interface ConcurrentMap 682
Class ConcurrentHashMap 682

11.2 Locks 684
Acquire lock 685 ■ Acquire lock and return immediately 686
Interruptible locks 688 ■ Nonblock-structured locking 690
Interface ReadWriteLock 692 ■ Class ReentrantReadWriteLock 692
Atomic variables 693

11.3 Executors 695
Interface Executor 696 ■ Interface Callable 698
Interface ExecutorService 699 ■ Thread pools 700
Interface ScheduledExecutorService 701

11.4 Parallel fork/join framework 703
11.5 Summary 708
11.6 Review notes 709

Concurrent collection classes 709 ■ Locks 709
Executors 710 ■ Parallel fork/join framework 711

11.7 Sample exam questions 712
11.8 Answers to sample exam questions 716

12 Localization 719
12.1 Internationalization and localization 720

Advantages of localization 722 ■ Class java.util.Locale 722
Creating and accessing Locale objects 723 ■ Building locale-aware
applications 727

12.2 Resource bundles 728
Implementing resource bundles using .properties files 728
Implementing resource bundles using ListResourceBundle 733
Loading resource bundles for invalid values 735
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxx
12.3 Formatting dates, numbers, and currencies for
locales 737
Format numbers 738 ■ Format currencies 740
Format dates 743 ■ Formatting and parsing time for a
specific locale 745 ■ Formatting and parsing date and time
together for a specific locale 746 ■ Using custom date and time
patterns with SimpleDateFormat 747 ■ Creating class Date object
using class Calendar 749

12.4 Summary 749
12.5 Review Notes 750

Internationalization and localization 750
Resource bundles 752 ■ Formatting dates, numbers,
and currencies for locales 753

12.6 Sample exam questions 754
12.7 Answers to sample exam questions 758

appendix Answers to “Twist in the Tale” exercises 761

index 781

13 Full mock exam
Available online only at www.manning.com/gupta2
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/gupta2

preface
The OCP Java SE Programmer II certification is designed to tell would-be employers
that you really know your basic and advanced Java stuff. It certifies that you under-
stand and can work with design patterns and advanced Java concepts like concurrency,
multithreading, localization, string processing, and JDBC. The exam preparation helps
you to understand the finer details of the Java language and its implementation and
usage, which is crucial to writing quality code.

 Cracking this exam is not an easy task. Thorough preparation is crucial if you want
to pass the exam the first time with a score that you can be proud of. You need to
know Java inside and out, and you need to understand the certification process so that
you’re ready for the challenging questions you’ll face on the exam.

 This book is a comprehensive guide to the 1Z0-804 exam. You’ll explore a wide
range of important Java topics as you systematically learn how to pass the certification
exam. Each chapter starts with a list of the exam objectives covered in that chapter.
Throughout the book you’ll find sample questions and exercises designed to rein-
force key concepts and prepare you for what you’ll see on the real exam, along with
numerous tips, notes, and visual aids.

 Unlike many other exam guides, this book provides multiple ways to digest impor-
tant techniques and concepts, including comic conversations, analogies, pictorial rep-
resentations, flowcharts, UML diagrams, and, naturally, lots of well-commented code.
xxi

Licensed to Mark Watson <nordickan@gmail.com>

PREFACExxii
 The book also gives insight into typical exam question mistakes and guides you in
avoiding traps and pitfalls. It provides

■ Complete coverage of exam topics, all mapped to chapter and section numbers
■ Hands-on coding exercises, including particularly challenging ones that throw

in a twist
■ Instruction on what’s happening behind the scenes using the actual code from

the Java API source
■ Everything you need to master both the concepts and the exam

This book is written for developers with a working knowledge of Java. My hope is that
the book will deepen your knowledge, prepare you well for the exam, and that you
will pass it with flying colors!
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
First and foremost, I thank Dheeraj. He helped me to get started with this book, and
his guidance, encouragement, and love enabled me to get over the goal line.

 My sincere gratitude to Marjan Bace, publisher at Manning, for giving me the
opportunity to author this book.

 An extremely talented individual, Cynthia Kane, my development editor at Man-
ning, was a pleasure to work with. She not only helped me improve the organization
of the chapters, she also pulled me up whenever the task of completing the book
became overwhelming for me.

 The contributions of Roel De Nijs, technical proofreader on this book, are unpar-
alleled. His feedback helped me to improve all sections and chapters. Jean-François
Morin, technical proofreader for a few chapters, also helped me to improve the book
just before it went into production.

 Gregor Zurowski, my technical editor, provided great insight and helped iron out
technical glitches as the book was being written.

 Apart from applying her magic to sentence and language constructions, Jodie Allen,
my copyeditor, was very supportive and patient in applying changes across all chapters.

 I’d also like to thank Ozren Harlovic, review editor, for managing the review pro-
cess and meticulously funneling the feedback to me to make this book better.

 Mary Piergies, Alyson Brener, and Kevin Sullivan were awesome in their expertise
at turning all text, code, and images into publishable form. I am also grateful to Can-
dace Gillhoolley and Ana Radic for managing the promotion of this book.
xxiii

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTSxxiv
 Next, I’d like to thank all the MEAP readers for trusting me by buying the book
while it was being written. I thank them for their patience, suggestions, corrections,
and encouragement.

 Technical reviewers helped in validating the chapters’ contents at various stages of
their development. The reviewers’ detailed and helpful feedback helped me to improve
the book throughout the writing process: Alexander Schwartz, Ashutosh Sharma, Bill
Weiland, Colin Hastie, Dylan Scott, Jamie Atkinson, Kevin Vig, Kyle Smith, Manish
Verma, Mikael Strand, Mikalai Zaikin, Robin Coe, Simon Joseph Aquilina, Steve
Etherington, and Witold Bolt. Special shout-out to Mikalai for his detailed feedback—
it helped me to improve the contents enormously.

 I thank my former colleagues Harry Mantheakis, Paul Rosenthal, and Selvan
Rajan, whose names I have used in coding examples throughout the book. I have
always looked up to them.

 Finally, I thank my parents and my daughters, Shreya and Pavni. This book
would have been not been possible without their unconditional support, love, and
encouragement.
Licensed to Mark Watson <nordickan@gmail.com>

about this book
This book is written for developers with a working knowledge of Java who want to earn the
OCP Java SE 7 Programmer II certification (exam 1Z0-804). It uses powerful tools and fea-
tures to make reaching your goal of certification a quick, smooth, and enjoyable experi-
ence. This section will explain the features used in the book and tell you how to use the
book to get the most out of it as you prepare for the certification exam. More information
on the exam and on how the book is organized is available in the Introduction.

Start your preparation with the chapter-based exam
objective map
I strongly recommend a structured approach to preparing for this exam. To help you
with this task, I’ve developed a chapter-based exam objective map, as shown in figure 1.
The full version is in the Introduction (table 2).

Exam objective as per Oracle’s website
Covered in chapter/

section

1 Java Class Design Chapter 1

1.1 Use access modifiers: private, protected, and public Section 1.1

1.2 Override methods Section 1.3

1.3 Overload constructors and methods Section 1.2

Figure 1 The Introduction to this book provides a list of all exam objectives and the corresponding
chapter and section numbers where they are covered.
xxv

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxvi
The map in the Introduction shows the complete exam objective list mapped to the
relevant chapter and section numbers. You can jump to the relevant section number
to work on a particular exam topic.

Chapter-based objectives
Each chapter starts with a list of the exam objectives covered in that chapter, as shown
in figure 2. This list is followed by a quick comparison of the major concepts and top-
ics covered in the chapter with real-world objects and scenarios.

Section-based objectives
Each main section in a chapter starts by identifying the exam objective(s) that it cov-
ers. Each listed exam topic starts with the exam objective and its subobjective number.

 In figure 3, the number 4.2 refers to section 4.2 in chapter 4 (the complete list of
chapters and sections can be found in the contents). The 4.1 preceding the exam
objective refers to the objective’s numbering in the list of exam objectives on Ora-
cle’s website (the complete numbered list of exam objectives is given in table 2 in
the Introduction).

Exam objectives covered in this chapter What you need to know

[3.1] Write code that declares, imple-
ments, and/or extends interfaces

The need for interfaces. How to declare, implement,
and extend interfaces. Implications of implicit modifiers
that are added to an interface and its members.

[3.2] Choose between interface inheri-
tance and class inheritance

The differences and similarities between implementing
inheritance by using interfaces and by using abstract or
concrete classes. Factors that favor using interface
inheritance over class inheritance, and vice versa.

Figure 2 An example of the list of exam objectives and brief explanations at the beginning of each
chapter

4.2 Creating generic entities

On the exam, you’ll be tested on how to create generic classes, interfaces, and meth-
ods—within generic and nongeneric classes or interfaces.

[4.1] Create a generic class

Figure 3 An example of the beginning of a section, identifying the exam objective that it covers
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxvii
Exam tips
Each chapter provides multiple exam tips to re-emphasize the points that are the most
confusing, overlooked, or frequently answered incorrectly by candidates and that
therefore require special attention for the exam. Figure 4 shows an example.

Notes
All chapters also include multiple notes, which draw your attention to points that
should be noted while you’re preparing for the exam. Figure 5 shows an example.

Sidebars
Sidebars contain information that may not be directly relevant to the exam but that is
related to it. Figure 6 shows an example.

EXAM TIP A type argument must be passed to the type parameter of a base
class. You can do so while extending the base class or while instantiating
the derived class.

Figure 4 Example of an exam tip; they occur multiple times in a chapter

NOTE Though the exam might not include explicit questions on the
contents of a class file after type erasure, it will help you to understand
generics better and answer all questions on generics.

Figure 5 Example note

Using instanceof versus getClass in method equals()
Using instanceof versus getClass is a common subject of debate about proper use
and object orientation in general (including performance aspects, design patterns,
and so on). Though important, this discussion is beyond the scope of this book. If
you’re interested in further details, refer to Josh Bloch’s book .Effective Java

Figure 6 Example sidebar
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxviii
Images
I’ve used a lot of images in the chapters for an immersive learning experience. I
believe that a simple image can help you understand a concept quickly, and a little
humor can help you to retain information longer.

 Simple images are used to draw your attention to a particular line of code (as
shown in figure 7).

As shown in figure 8, I’ve used pictorial representation to aid better understanding of
how Java concepts work.

public static Singleton getInstance() {
if (anInstance == null)

anInstance = new Singleton() ;
return anInstance;

}

Create new

Singleton object

Calling

method 1

Calling

method 2

Figure 7 An example image that draws your attention to a particular line of code

class Outer {

}

class Inner{} class Outer {
class Inner{

private final Outer this$0;
Inner (Outer outer){

this$0 = outer;
}

}
Java

compiler

In

Code added

before byte code

generation

1

Out4

Out2

In3

Outer.class

Outer$Inner.class

Figure 8 An example of pictorial representation of how the compiler handles data in an array
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxix
To reinforce important points and help you retain them longer, a little humor has
been added using comic strips (as in figure 9).

I’ve also used images to group and repre-
sent information for quick reference. Fig-
ure 10 shows an example of a rather raw
form of the UML diagram that you may
draw on an erasable board while taking
your exam to represent an IS-A relation-
ship between classes and interfaces. I
strongly recommend that you try to create
a few of your own figures like these.

 An image can also add more meaning
to a sequence of steps explained in the
text. For example, figure 11 seems to bring
the process of adding and removing items
to an ArrayList to life by showing place-
ment of the existing items at each step.
Again, try a few of your own. It’ll be fun!

if x.equals(y)==true

x.hashCode()==
y.hashCode()
must be true

Before

marriage

x y

if x.equals(y)==false

x.hashCode() and

y.hashCode() can be

same or different

Post

breakup....

x y

If we are not
in love… we might

or reside
at the same address.

If we are in
love… we must reside
at the same address.

must

not

might not
might

Figure 9 An example of a little humor to help you remember that the finally block always executes

Animal

Herbivore

Carnivore

Cow

Goat

Movable

Lion Tiger

Hunter

Figure 10 An example of grouping and
representing information for quick reference
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxx
The exam requires that you know multiple methods from collection classes, File I/O,
NIO.2, concurrency, and others. The number of these methods can be overwhelming,
but grouping these methods according to their functionality can make this task a lot
more manageable. Figure 12 shows an example of an image that groups methods of
the Queue class used to work with Deque as FIFO.

Figure 11 An example image showing how existing elements are placed when items are added to or
removed from an ArrayList

head tail

Remove elements

remove

Query elements

element

peer

Query and remove

poll

Add elements

add(E)

offer(E)

0 1 2 3 4 5 6 7

Figure 12 An example
image showing Queue
methods used to work
with Deque as a FIFO
data structure
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxxi
String processing expressions can be hard to comprehend. Figure 13 is an example of
an image that can help you understand the strings that match a regular expression.

In multithreading, the same code can be executed by multiple threads. Such code can
be difficult to comprehend. Figure 14 is an example of an image that clearly shows
how the variable values of book:Book might be modified by multiple threads.

ni t h ie r c o a

12 13 14 1615 17 18 19 2120 22 23

t

24

t eh el a t h re

0 1 2 43 5 6 7 98 10 11

te h e

37 38 39 40

am d e h e r s e

25 26 27 2928 30 31 32 3433 35 36

Target string

ni t h ie r c o a

12 13 14 1615 17 18 19 2120 22 23

t

24

t eh el a t h re

0 1 2 43 5 6 7 98 10 11

te h e

37 38 39 40

am d e h e r s e

25 26 27 2928 30 31 32 3433 35 36

Matching result

Regex
Match a

nonword boundary

followed by “the”

\Bthe

Figure 13 Example of image showing the strings that match a regex pattern

book:Book

copiesSold = 0+1task1
title = "Java"
copiesSold = 0

book:Book

title = "Java"
copiesSold = 1

book:Book

copiesSold = 0+1task2
title = "Java"
copiesSold = 0

task3

book:Book

title = "Java"
copiesSold = 1

book:Book

copiesSold = 0–1
title = "Java"
copiesSold = 0

book:Book

title = "Java"
copiesSold = –1

Time

Figure 14 An example of how interleaving threads can lead to incorrect results
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxxii
Twist in the Tale exercises
Each chapter includes a few Twist in the Tale exercises. For these exercises, I’ve tried
to use modified code from the examples already covered in a chapter, and the “Twist
in the Tale” title refers to modified or tweaked code. These exercises highlight how
even small code modifications can change the behavior of your code. They should
encourage you to carefully examine all of the code on the exam.

 My main reason for including these exercises is that on the real exam you may be
asked to answer more than one question that seems exactly the same as another. But
upon closer inspection, you’ll realize that these questions differ slightly, and that these
differences change the behavior of the code and the correct answer option.

 The answers to all of the Twist in the Tale exercises are given in the appendix.

Review notes
When you’re ready to take your exam, don’t forget to reread the review notes a day
before or on the morning of the exam. These notes contain important points from
each chapter as a quick refresher.

Exam questions
Each chapter concludes with a set of sample exam questions. These follow the same
pattern as the real exam questions. Attempt these exam questions after completing
a chapter.

Answers to exam questions
The answers to all exam questions provide detailed explanations, including why
options are correct or incorrect. Mark your incorrect answers and identify the sections
that you need to reread. If possible, draw a few diagrams—you’ll be amazed at how
much they can help you retain the concepts. Give it a try—it’ll be fun!

This book online
More information and a bonus chapter consisting of a mock exam can be found online
at www.manning.com/gupta2.

Author Online
The purchase of this book includes free access to a private web forum run by Manning
Publications, where you can make comments, ask technical questions, and receive
help from the author and from other users. To access the forum and subscribe to it,
point your web browser to www.manning.com/gupta2. This page provides informa-
tion on how to get on the forum once you are registered, what kind of help is avail-
able, and the rules of conduct on the forum.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/gupta2
http://www.manning.com/gupta2

ABOUT THIS BOOK xxxiii
 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest her interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
Mala Gupta is passionate about making people employable by bridging the gap
between their existing and required skills. In her quest to fulfill this mission, she is
authoring books to help IT professionals and students on industry-recognized Oracle
Java certifications.

 Mala has a master’s degree in computer applications along with multiple other cer-
tifications from Oracle. With over a decade and a half of experience working in IT as a
developer, architect, trainer, and mentor, she has worked with international training
and software services organizations on various Java projects. She is experienced in
mentoring teams on technical and process skills.

 She is the founder and lead mentor of a portal (www.ejavaguru.com) that has
offered Java courses for Oracle certification since 2006.

 Mala is a firm believer in creativity as an essential life skill. To popularize the
importance of creativity, innovation, and design in life, she started “KaagZevar”
(www.facebook.com/KaagZevar)—a platform to nurture design and creativity in life.

About the cover illustration
The figure on the cover this book is captioned “The habit of a French merchant in
1700.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Differ-
ent Nations, Ancient and Modern (four volumes), London, published between 1757 and
1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic. Thomas Jefferys (1719–1771) was called “geographer to
King George III.” An English cartographer who was the leading map supplier of his
day, Jefferys engraved and printed maps for government and other official bodies and
produced a wide range of commercial maps and atlases, especially of North America.
His work as a mapmaker sparked an interest in local dress customs of the lands he sur-
veyed and mapped, which are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late eighteenth century, and collections such as this one were popular,
introducing both the tourist as well as the armchair traveler to the inhabitants of
other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then, and the diversity by region and country, so rich at the time,
has faded away. It is now hard to tell the inhabitants of one continent apart from
Licensed to Mark Watson <nordickan@gmail.com>

http://www.facebook.com/KaagZevar
http://www.ejavaguru.com

ABOUT THIS BOOK xxxiv
another. Perhaps, trying to view it optimistically, we have traded cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’ pictures.
Licensed to Mark Watson <nordickan@gmail.com>

Introduction
This book is intended specifically for individuals who wish to earn the Oracle Cer-
tified Professional (OCP) Java SE 7 Programmer II certification (exam number
1Z0-804). It assumes that you have practical experience of working with Java. If you
are completely new to Java or to object-oriented languages, I suggest that you start
your journey with an entry-level book and then come back to this one.

This introduction covers
■ Introduction to the Oracle Certified Professional

(OCP) Java SE 7 Programmer II certification
(exam number 1Z0-804)

■ Importance of OCP Java SE 7 Programmer II
certification

■ Detailed exam objectives, mapped to book
chapters

■ FAQ on exam preparation and on taking
the exam

■ Introduction to the testing engine used for
the exam
1

Licensed to Mark Watson <nordickan@gmail.com>

2 Introduction
Disclaimer
The information in this chapter is sourced from Oracle.com, public websites, and user
forums. Input has been taken from real people who have earned Java certification,
including the author. All efforts have been made to maintain the accuracy of the con-
tent, but the details of the exam—including its objectives, pricing, pass score, total
number of questions, and maximum duration—are subject to change per Oracle’s
policies. The author and publisher of the book shall not be held responsible for any
loss or damage accrued due to any information contained in this book or due to any
direct or indirect use of this information.

Introduction to OCP Java SE 7 Programmer II
certification (1Z0-804)
The Oracle Certified Professional Java SE 7 Programmer II certification exam (1Z0-
804) covers intermediate and advanced concepts of Java programming, such as the
importance of threads, concurrency, localization, JDBC, String processing, and design
patterns.

 This exam is the second of the two steps in earning the title of OCP Java SE 7 Program-
mer. The first step is to earn the OCA Java SE 7 Programmer I certification (1Z0-803).

NOTE Though you can write the exams 1Z0-803 and 1Z0-804 in any order
to earn the title of OCP Java SE 7 Programmer, it is highly recommended
that you write exam 1Z0-803 before exam 1Z0-804. Exam 1Z0-803 covers
basics of Java and exam 1Z0-804 covers advanced Java topics.

This exam certifies that an individual possesses strong practical skills in intermedi-
ate and advanced Java programming language concepts. Table 1 lists the details of
this exam.

The importance of the OCP Java SE 7 Programmer II certification

Real, on-the-job projects need you to understand and work with multiple basic and
advanced concepts. Apart from covering the finer details of basic Java-like class design, it
covers advanced Java topics like threading, concurrency, localization, File I/O, string
processing, exception handling, assertions, collections API, and design patterns. This

Table 1 Details for OCP Java SE 7 Programmer II exam (1Z0-804)

Exam number 1Z0-804

Java version Based on Java version 7

Number of questions 90

Passing score 65%

Time duration 150 minutes

Pricing US $245

Type of questions Multiple-choice
Licensed to Mark Watson <nordickan@gmail.com>

3Introduction to OCP Java SE 7 Programmer II certification (1Z0-804)
certification establishes your expertise with these topics, increasing your prospects for
better projects, jobs, remuneration, responsibilities, and designations.

 The OCP Java SE 7 Programmer II exam (1Z0-804) is an entry-level exam in your
Java certification roadmap, as shown in figure 1. This exam is a prerequisite for most
of the other Professional and Expert Oracle certifications in Java. The dashed lines
and arrows in the figure depict the prerequisites for certifications.

Associate Professional Expert Master

Java SE 7 Java SE 7

Java SE 6/5

Java SE 6

Developer

Java EE 5

Enterprise

Architect

Java EE 6

Enterprise

Architect

Java SE

Java EE

Java ME

Java SE 5/6

Exam

covered by

book

Java EE 5 Web

Services

Developer

Java EE 5 Web

Component

Developer

Java EE 6 Web

Component

Developer

Java EE 6

Enterprise

JavaBeans

Developer

Java EE 6 Web

Services

Developer

Java EE 6 Web

JavaServer

Faces Developer

Java EE 6 Java

Persistence API

Developer

Java ME Mobile

Application

Developer

Java EE 5

Business

Component

Developer

Increasing difficulty level

Figure 1 The OCP Java SE 7 Programmer II certification (1Z0-804) is an entry-level certification in the
Java certification roadmap. It’s a prerequisite for writing most of the other Professional and Expert
certifications in Java.
Licensed to Mark Watson <nordickan@gmail.com>

4 Introduction
As shown in figure 1, the Java certification tracks are offered under the categories
Associate, Professional, Expert, and Master.

Comparing the OCA Java SE 7 Programmer I (1Z0-803) and OCP
Java SE 7 Programmer II (1Z0-804) exams

The confusion about these two exams is due to the similarity in their names, but these
are separate exams. Starting with Java 7, Oracle has raised the bar to earn the title of
Oracle Certified Professional Java SE 7 Programmer, which now requires successfully
completing the following two exams:

■ OCA Java SE 7 Programmer I (exam number: 1Z0-803)
■ OCP Java SE 7 Programmer II (exam number: 1Z0-804)

The OCA Java SE 7 Programmer certification is designed for individuals who possess
basic skills in the Java programming language. Exam 1Z0-803 covers comparatively
basic Java language features, such as data types, operators, decision constructs, arrays,
methods, inheritance, and exception handling.

Complete exam objectives, mapped to book chapters, and
readiness checklist

Table 2 shows the complete list of exam objectives for the OCP Java SE 7 Programmer II
exam, which was taken from Oracle’s website. All the objectives are mapped to the
book’s chapters and the section numbers that cover them.

Table 2 Exam objectives and subobjectives mapped to chapter and section numbers

Exam objective as per Oracle’s website
Covered in chapter/

section

11 Java class design Chapter 1

11.1 Use access modifiers: private, protected, and public Section 1.1

11.2 Override methods Section 1.3

11.3 Overload constructors and methods Section 1.2

11.4 Use the instanceof operator and casting Section 1.5

11.5 Use virtual method invocation Section 1.3

11.6 Override the hashCode, equals, and toString methods from
the Object class to improve the functionality of your class

Section 1.4

11.7 Use package and import statements Section 1.6

12 Advanced class design Chapter 2

12.1 Identify when and how to apply abstract classes Section 2.1

12.2 Construct abstract Java classes and subclasses Section 2.1

12.3 Use the static and final keywords Section 2.2
Licensed to Mark Watson <nordickan@gmail.com>

5Introduction to OCP Java SE 7 Programmer II certification (1Z0-804)
12.4 Create top-level and nested classes Section 2.4

12.5 Use enumerated types Section 2.3

13 Object-oriented design principles Chapter 3

13.1 Write code that declares, implements, and/or extends interfaces Section 3.1

13.2 Choose between interface inheritance and class inheritance Section 3.2

13.3 Apply cohesion, low-coupling, IS-A, and HAS-A principles Sections 3.3, 3.4

13.4 Apply object composition principles (including HAS-A relationships) Section 3.5

13.5 Design a class using the Singleton design pattern Section 3.7

13.6 Write code to implement the Data Access Object (DAO) pattern Section 3.9

13.7 Design and create objects using a Factory pattern Section 3.8

14 Generics and collections Chapter 4

14.1 Create a generic class Section 4.2

14.2 Use the diamond for type inference Section 4.3

14.3 Analyze the interoperability of collections that use raw types and
generic types

Section 4.4

14.4 Use wrapper classes, autoboxing, and unboxing Sections 4.11, 4.12

14.5 Create and use List, Set, and Deque implementations Section 4.7

14.6 Create and use Map implementations Section 4.8

14.7 Use java.util.Comparator and java.lang.Comparable Section 4.9

14.8 Sort and search arrays and lists Section 4.10

15 String processing Chapter 5

15.1 Search, parse, and build strings (including Scanner, String-
Tokenizer, StringBuilder, String, and Formatter)

Section 5.1

15.2 Search, parse, and replace strings by using regular expressions,
using expression patterns for matching limited to: . (dot), * (star),
+ (plus), ?, \d, \D, \s, \S, \w, \W, \b, \B, [], ()

Sections 5.1, 5.2

15.3 Format strings using the formatting parameters: %b, %c, %d, %f,
and %s in format strings

Section 5.3

16 Exceptions and assertions Chapter 6

16.1 Use throw and throws statements Section 6.1

16.2 Use the try statement with multi-catch and finally clauses Section 6.4

Table 2 Exam objectives and subobjectives mapped to chapter and section numbers (continued)

Exam objective as per Oracle’s website
Covered in chapter/

section
Licensed to Mark Watson <nordickan@gmail.com>

6 Introduction
16.3 Develop code that uses try-with-resources statements Section 6.5

16.4 Create custom exceptions Section 6.2

16.5 Test invariants by using assertions Section 6.6

17 Java I/O fundamentals Chapter 7

17.1 Read and write data from the console Section 7.5

17.2 Use streams to read from and write to files by using classes in
the java.io package including BufferedReader,
BufferedWriter, File, FileReader, FileWriter,
DataInputStream, DataOutputStream, Object-
OutputStream, ObjectInputStream, and PrintWriter

Sections 7.2, 7.3, 7.4

18 Java file I/O (NIO.2) Chapter 8

18.1 Operate on file and directory paths with the Path class Section 8.1

18.2 Check, delete, copy, or move a file or directory with the Files class Section 8.2

18.3 Read and change file and directory attributes, focusing on the
BasicFileAttributes, DosFileAttributes, and
PosixFileAttributes interfaces

Section 8.3

18.4 Recursively access a directory tree using the DirectoryStream
and FileVisitor interfaces

Section 8.4

18.5 Find a file with the PathMatcher interface Section 8.5

18.6 Watch a directory for changes with the WatchService interface Section 8.6

19 Building database applications with JDBC Chapter 9

19.1 Describe the interfaces that make up the core of the JDBC
API (including Driver, Connection, Statement, and
ResultSet) and their relationships to provider implementations

Section 9.2

19.2 Identify the components required to connect to a database using
the DriverManager class (including the JDBC URL)

Section 9.3

19.3 Submit queries and read results from the database (including
creating statements, returning result sets, iterating through
the results, and properly closing result sets, statements,
and connections)

Section 9.4

19.4 Use JDBC transactions (including disabling auto-commit mode,
committing and rolling back transactions, and setting and rolling
back to savepoints)

Section 9.5

19.5 Construct and use RowSet objects using the RowSetProvider
class and the RowSetFactory interface

Section 9.6

Table 2 Exam objectives and subobjectives mapped to chapter and section numbers (continued)

Exam objective as per Oracle’s website
Covered in chapter/

section
Licensed to Mark Watson <nordickan@gmail.com>

7FAQ
FAQ
You might be anxious when you start your exam preparation or even think about get-
ting certified. This section can help calm your nerves by answering frequently asked
questions on exam preparation and on writing the exam.

19.6 Create and use PreparedStatement and
CallableStatement objects

Section 9.7

10 Threads Chapter 10

10.1 Create and use the Thread class and the Runnable interface Section 10.1

10.2 Manage and control thread lifecycle Section 10.2

10.3 Synchronize thread access to shared data Section 10.3

10.4 Identify code that may not execute correctly in a multi-threaded
environment

Section 10.4

11 Concurrency Chapter 11

11.1 Use collections from the java.util.concurrent package
with a focus on the advantages over and differences from the tradi-
tional java.util collections

Section 11.1

11.2 Use Lock, ReadWriteLock, and ReentrantLock classes in
the java.util.concurrent.locks package to support lock-
free, thread-safe programming on single variables

Section 11.2

11.3 Use Executor, ExecutorService, Executors,
Callable, and Future to execute tasks using thread pools

Section 11.3

11.4 Use the parallel fork/join framework Section 11.4

12 Localization Chapter 12

12.1 Read and set the locale by using the Locale object Section 12.2

12.2 Build a resource bundle for each locale Section 12.2

12.3 Call a resource bundle from an application Section 12.2

12.4 Format dates, numbers, and currency values for localization with
the NumberFormat and DateFormat classes (including num-
ber format patterns)

Section 12.3

12.5 Describe the advantages of localizing an application Section 12.1

12.6 Define a locale using language and country codes Section 12.1

Table 2 Exam objectives and subobjectives mapped to chapter and section numbers (continued)

Exam objective as per Oracle’s website
Covered in chapter/

section
Licensed to Mark Watson <nordickan@gmail.com>

8 Introduction
FAQ on exam preparation

This sections answers frequently asked questions on how to prepare for the exam,
including the best approach, study material, preparation duration, and how to test
self-readiness.

WILL THE EXAM DETAILS EVER CHANGE FOR THE OCP JAVA SE 7 PROGRAMMER II EXAM?
Oracle can change the exam details for a certification even after the certification is
made live. The changes can be made to any of its details, like exam objectives, pricing,
exam duration, exam questions, and others. In the past, Oracle has made similar
changes to certification exams. Such changes may not be major, but it is always advis-
able to check Oracle’s website for the latest exam information when you start your
exam preparation.

WHAT IS THE BEST WAY TO PREPARE FOR THIS EXAM?
Generally, candidates use a combination of resources, such as books, online study
materials, articles on the exam, free and paid mock exams, and training to prepare for
the exam. Different combinations work best for different people, and there is no one
perfect formula for preparation. Select the method—training or self-study—that
works best for you. Combine it with a lot of code practice and mock exams.

HOW DO I KNOW WHEN I AM READY FOR THE EXAM?
You can be sure about your exam readiness by consistently getting a good score on the
mock exams. Generally, a score of 80% and above on approximately 7 mock exams
(the more the better) attempted consecutively will assure you of a similar score on the
real exam.

HOW MANY MOCK TESTS SHOULD I ATTEMPT BEFORE THE REAL EXAM?
Ideally, you should attempt at least five complete mock exams before you attempt the
real exam. The more the better!

I HAVE TWO–FOURS YEARS’ EXPERIENCE WORKING WITH JAVA. DO I STILL NEED TO PREPARE FOR
THIS CERTIFICATION?
There is a difference between the practical knowledge of having worked with Java and
the knowledge required to pass this certification exam. The authors of the Java certifi-
cation exams employ multiple tricks to test your knowledge. Hence, you need a struc-
tured preparation and approach to succeed on the certification exam.

WHAT IS THE IDEAL TIME REQUIRED TO PREPARE FOR THE EXAM?
The preparation time frame mainly depends on your experience with Java and the
amount of time that you can spend to prepare yourself. On average, you will require
approximately 200 hours of study over two or three months to prepare for this exam.
Again, the number of study hours required depends on individual learning curves
and backgrounds.

 It’s important to be consistent with your exam preparation. You cannot study for a
month and then restart after, say, a gap of a month or more.
Licensed to Mark Watson <nordickan@gmail.com>

9FAQ
DO I NEED TO COMPLETE ANY TRAINING FROM ORACLE?
Though Oracle requires candidates to complete specific Oracle training programs for
a few of its certification courses, it isn’t mandatory to complete any training from Ora-
cle for this certification.

DOES THIS EXAM INCLUDE ANY UNSCORED QUESTIONS?
A few of the questions that you write on any Oracle exam may be marked unscored.
Oracle’s policy states that while writing an exam, you won’t be informed whether a
question will be scored. You may be surprised to learn that as many as 10 out of the 90
questions on the OCP Java SE 7 Programmer II exam may be unscored. Even if you
answer a few questions incorrectly, you stand a chance of scoring 100%.

 Oracle regularly updates its question bank for all its certification exams. These
unscored questions may be used for research and to evaluate new questions that can
be added to an exam.

CAN I START MY EXAM PREPARATION WITH THE MOCK EXAMS?
If you are quite comfortable with the advanced Java language features, then yes, you
can start your exam preparation with the mock exams. This will also help you to
understand the types of questions to expect on the real certification exam. But if you
have little or no experience working with advanced Java concepts, I don’t advise you
to start with the mock exams. The exam authors often use a lot of tricks to evaluate a
candidate on the real certification exam. Starting your exam preparation with mock
exams will only leave you confused about the Java concepts.

SHOULD I REALLY BOTHER GETTING CERTIFIED?
Yes, you should, for the simple reason that employers bother about the certification of
employees. Organizations prefer a certified Java developer over a noncertified Java
developer with similar IT skills and experience. The certification can also get you a
higher paycheck than uncertified peers with comparable skills.

FAQ on taking the exam

This section contains a list of frequently asked questions related to exam registration,
the exam coupon, do’s and don’t’s while taking the exam, and exam retakes.

WHERE AND HOW DO I WRITE THIS EXAM?
You can write this exam at an Oracle Testing Center or Pearson VUE Authorized Test-
ing Center. To sit for the exam, you must register and purchase an exam voucher. The
following options are available:

■ Register for the exam and pay Pearson VUE directly.
■ Purchase an exam voucher from Oracle and register at Pearson VUE to take

the exam.
■ Register at an Oracle Testing Center.

Look for the nearest testing centers in your area, register yourself, and schedule an
exam date and time. Most of the popular computer training institutes also have a
Licensed to Mark Watson <nordickan@gmail.com>

10 Introduction
testing center on their premises. You can locate a Pearson VUE testing site at
www.pearsonvue.com/oracle/, which contains detailed information on locating test-
ing centers and scheduling or rescheduling an exam. At the time of registration,
you’ll need to provide the following details along with your name, address, and con-
tact numbers:

■ Exam title and number (OCP Java SE 7 Programmer II, 1Z0-804)
■ Any discount code that should be applied during registration
■ Oracle Testing ID/Candidate ID, if you have written any other Oracle/Sun cer-

tification exam(s)
■ Your OPN Company ID (If your employer is in the Oracle Partner Network, you

can find out the company ID and use any available discounts on the exam fee.)

HOW LONG IS THE EXAM COUPON VALID FOR?
Each exam coupon is printed with an expiration date. Beware of any discounted cou-
pons that come with an assurance that they can be used past the expiration date.

CAN I REFER TO NOTES OR BOOKS WHILE WRITING THIS EXAM?
You can’t refer to any books or notes while writing this exam. You are not allowed
to carry any blank paper for rough work or even your mobile phone inside the test-
ing cubicle.

WHAT IS THE PURPOSE OF MARKING A QUESTION WHILE WRITING THE EXAM?
By marking a question, you can manage your time efficiently. Don’t spend a lot of
time on a single question. You can mark a difficult question to defer answering it while
writing your exam. You have an option to review answers to the marked questions at
the end of the exam. Also, navigating from one question to another using Back and
Next buttons is usually time-consuming. If you are unsure of an answer, mark it and
review it at the end.

CAN I WRITE DOWN THE EXAM QUESTIONS AND BRING THEM BACK WITH ME?
No. The exam centers no longer provide sheets of paper for the rough work that you
may need to do while taking the exam. The testing center will provide you with either
erasable or nonerasable boards. If you’re provided with a nonerasable board, you may
request another one if you need it.

 Oracle is quite particular about certification candidates distributing or circulating
the memorized questions in any form. If Oracle finds out that this is happening, it
may cancel a candidate’s certificate, bar that candidate forever from writing any Ora-
cle certification, inform the employer, or take legal action.

WHAT HAPPENS IF I COMPLETE THE EXAM BEFORE OR AFTER THE TOTAL TIME?
If you complete the exam before the total exam time has elapsed, review your answers
and click the Submit or finish button.

 If you have not clicked the Submit button and you use up all the exam time, the
exam engine will no longer allow you to modify any of the exam answers and will pres-
ent the screen with the Submit button.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.pearsonvue.com/oracle/

11The testing engine used in the exam
WILL I RECEIVE MY SCORE IMMEDIATELY AFTER THE EXAM?
No, you won’t. When you click the Submit exam button, the screen will inform you that
your exam results will be available in an hour. Usually Oracle sends you an email when
the results can be accessed online. Even if you don’t receive an email from Oracle, you
could log in and check your result. The result includes your score on each exam
objective. The certificate itself will arrive via mail within six to eight weeks.

WHAT HAPPENS IF I FAIL? CAN I RETAKE THE EXAM?
It’s not the end of the world. Don’t worry if you fail. You can retake the exam after 14
days (and the world will not know it’s a retake).

 However, you cannot retake a passed exam to improve your score. Also, you cannot
retake a beta exam.

The testing engine used in the exam
The UI of the testing engine used for the certification exam is quite simple. (You could
even call it primitive, compared to today’s web, desktop, and smartphone applications.)

 Before you can start the exam, you will be required to accept the terms and condi-
tions of the Oracle Certification Candidate Agreement. Your computer screen will dis-
play all these conditions and give you an option to accept the conditions. You can
proceed with writing the exam only if you accept these conditions.

 Here are the features of the testing engine used by Oracle:

■ The engine UI is divided into three sections. The UI of the testing engine is divided
into the following three segments:
– Static upper section—Displays question number, time remaining, and a check-

box to mark a question for review.
– Scrollable middle section—Displays the question text and the answer options.
– Static bottom section—Displays buttons to display the previous question, display

the next question, end the exam, and review marked questions.
■ Each question is displayed on a separate screen. The exam engine displays one ques-

tion on the screen at a time. It does not display multiple questions on a single
screen, like a scrollable web page. All effort is made to display the complete
question and answer options without scrolling, or with little scrolling.

■ Code exhibit button. Many questions include code. Such questions, together with
their answers, may require significant scrolling to be viewed. As this can be
quite inconvenient, such questions include a Code Exhibit button that displays
the code in a separate window.

■ Mark questions to be reviewed. The question screen displays a check box with the
text “Mark for review” at the top-left corner. A question can be marked using this
option. The marked questions can be reviewed at the end of the exam.

■ Buttons to display previous and next questions. The test includes buttons to display
previous and next questions within the bottom section of the testing engine.
Licensed to Mark Watson <nordickan@gmail.com>

12 Introduction
■ Buttons to end the exam and review marked questions. The engine displays buttons to
end the exam and to review the marked questions in the bottom section of the
testing engine.

■ Remaining time. The engine displays the time remaining for the exam at the top
right of the screen.

■ Question number. Each question displays its serial number.
■ Correct number of answer options. Each question displays the correct number of

options that should be selected from multiple options.

On behalf of all at Manning Publications, I wish you good luck and hope that you
score very well on your exam.
Licensed to Mark Watson <nordickan@gmail.com>

Java class design
Exam objectives covered in this chapter What you need to know

[1.1] Use access modifiers: private, pro-
tected, and public

How to use appropriate access modifiers to design
classes
How to limit accessibility of classes, interfaces,
enums, methods, and variables by using the appropri-
ate access modifiers
The correct combination of access modifiers and the
entities (classes, interfaces, enums, methods, and
variables) to which they can be applied
The implications of modifying the access modifier of a
Java entity

[1.2] Override methods The conditions and requirements that make a sub-
class override a base class method
How to differentiate among overloaded, overridden,
and hidden methods

[1.3] Overload constructors and methods The need and right rules to overload constructors and
methods

[1.4] Use the instanceof operator
and casting

Understand the right use of the instanceof
operator, and implicit and explicit object casting
and their implications
Compilation errors and runtime exceptions
associated with the use of the instanceof
operator and casting

[1.5] Use virtual method invocation The methods that can and can’t be invoked virtually
13

Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 1 Java class design
Classes and interfaces are building blocks of an application. Efficient and effective
class design makes a significant impact on the overall application design. Imagine
if, while designing your classes, you didn’t consider effective packaging, correct over-
loaded or overridden methods, or access protection—you might lose on extensibil-
ity, flexibility, and usability of your classes. For example, if you didn’t override methods
hashCode() and equals() correctly in your classes, your seemingly “equal” objects
might not be considered equal by collection classes like HashSet or HashMap. Or,
say, imagine if you didn’t use the right access modifiers to protect your classes and
their members, they could be subject to unwanted manipulation by other classes
from the same or different packages. The creation of overloaded methods is another
domain, which is an important class design decision. It eases instance creation and
use of methods.

 Class design decisions require an insight into understanding correct and appropri-
ate implementation practices. When armed with adequate information you’ll be able
to select the best practices and approach to designing your classes. The topics covered
in this chapter will help you design better classes by taking you through multiple
examples. This chapter covers

■ Access modifiers
■ Method overloading
■ Method overriding
■ Virtual method invocation
■ Use of the instanceof operator and casting
■ Override methods from class Object to improve the functionality of your class
■ How to create packages and use classes from other packages

Let’s get started with how to control access to your classes and their members, using
access modifiers.

Exam objectives covered in this chapter What you need to know

[1.6] Override methods from the Object
class to improve the functionality of
your class

The need to override methods from class Object—dif-
ferentiate correct, incorrect, appropriate, and inappropri-
ate overriding

[1.7] Use package and import statements How to package classes and use package, import,
and static import statements
Licensed to Mark Watson <nordickan@gmail.com>

15Java access modifiers
1.1 Java access modifiers

When you design applications and create classes, you need to answer multiple questions:

■ How do I restrict other classes from accessing certain members of a class?
■ How do I prevent classes from modifying the state of objects of a class, both

within the same and separate packages?

Java access modifiers answer all these questions. Access modifiers control the accessibil-
ity of a class or an interface, including its members (methods and variables), by other
classes and interfaces within the same or separate packages. By using the appropriate
access modifiers, you can limit access to your class or interface, and its members.

 Access modifiers can be applied to classes, interfaces, and their members (instance
and class variables and methods). Local variables and method parameters can’t be
defined using access modifiers. An attempt to do so will prevent the code from compiling.

 In this section, we’ll cover all of the access modifiers—public, protected, and
private—as well as default access, which is the result when you don’t use an access
modifier. You’ll also discover the effects of changing the access levels of existing types
on other code.

NOTE Access modifiers are also covered in the OCA Java SE 7 Program-
mer I exam (1Z0-803). If you’ve written this exam recently, then perhaps
you might like to skip sections 1.1.1–1.1.4.

To understand all of these access modifiers, we’ll use the same set of classes: Book,
CourseBook, Librarian, StoryBook, and House. Figure 1.1 depicts these classes using
UML notation.

 Classes Book, CourseBook, and Librarian are defined in the package library.
Classes StoryBook and House are defined in the package building. Classes StoryBook
and CourseBook (defined in separate packages) extend class Book. Using these classes,

[1.1] Use access modifiers: private, protected, and public

library

Book

CourseBook

<<extends>>

<<extends>>

Librarian

building

StoryBook

House

Figure 1.1 A set of classes and their relationships to help understand access modifiers
Licensed to Mark Watson <nordickan@gmail.com>

16 CHAPTER 1 Java class design
you’ll see how the accessibility of a class and its members varies with different access
modifiers, from unrelated to derived classes, across packages.

 As we cover each of the access modifiers, we’ll add a set of instance variables and a
method to class Book with the relevant access modifier.

1.1.1 Public access modifier

This is the least restrictive access modifier. Classes and interfaces defined using the
public access modifier are accessible across all packages, from derived to unre-
lated classes.

 To understand the public access modifier, let’s define class Book as a public class
and add a public instance variable (isbn) and a public method (printBook()) to it.
Figure 1.2 shows the UML notation.

 Examine the following definition of class Book:

package library;
public class Book {
 public String isbn;
 public void printBook() {}
}

The public access modifier is said to be the least restrictive, so let’s try to access the
public class Book and its public members from class House. We’ll use class House
because House and Book are defined in separate packages and they’re unrelated. Class
House doesn’t enjoy any advantages of being defined in the same package or being a
derived class.

 Here’s the code for class House:

package building;
import library.Book;
public class House {

library

Book

+isbn:String

+printBook()

CourseBook

<<extends>>

<<extends>>

Librarian

building

StoryBook

House

Figure 1.2 Understanding the public access modifier

public
class Book public

variable
isbn

public method
printBook()
Licensed to Mark Watson <nordickan@gmail.com>

17Java access modifiers

a

 public House() {
 Book book = new Book();
 String value = book.isbn;
 book.printBook();
 }
}

In the preceding example, class Book and its public members—instance variable isbn
and method printBook()—are accessible to class House. They’re also accessible to the
other classes: StoryBook, Librarian, and CourseBook. Figure 1.3 shows the classes
that can access a public class and its members.

1.1.2 Protected access modifier

The members of a class defined using the protected access modifier are accessible to

■ Classes and interfaces defined in the same package
■ All derived classes, even if they’re defined in separate packages

EXAM TIP Members of an interface are implicitly public. If you define
interface members as protected, the interface won’t compile.

Let’s add a protected instance variable author and method modifyTemplate() to class
Book. Figure 1.4 shows the class representation.

Book is
ccessible
to House

isbn is accessible
to House

printBook() is
accessible to House

Same package

Unrelated classes

Derived classes

Separate package

Figure 1.3 Classes that can access a public class and
its members

library

Book

#author:String

#modifyTemplate()

CourseBook

<<extends>>

<<extends>>

Librarian

building

StoryBook

House

Figure 1.4 Understanding the protected access modifier
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 1 Java class design
Here’s the code for class Book (I’ve deliberately left out its public members because they
aren’t required in this section):

package library;
public class Book {
 protected String author;
 protected void modifyTemplate(){}
}

Figure 1.5 illustrates how classes from the same and separate packages, derived classes,
and unrelated classes access class Book and its protected members.

protected
variable author

protected method
modifyTemplate()

package library;

public class Book {

protected string author;

protected void modifyTemplate(){}

}

package library;

public class CourseBook extends Book {

public CourseBook(){

author="ABC";

modifyTemplate();

}

}

<<extends>>

<<extends>>

package library;

public class Librarian {

public Librarian(){

Book book = new Book();

book.author = "ABC";

book.modifyTemplate();

}

}

package building;

import library.Book;

public class StoryBook extends Book{

public StoryBook(){

author="ABC";

modifyTemplate();

}

}

package building;

import library.Book;

public class House{

public House(){

Book book=new Book();

book.author="ABC";

book.modifyTemplate();

}

}

C
a

n
n

o
t a

c
c
e

s
s

Can access

Can access

Can access

library building

Figure 1.5 Access of protected members of class Book in unrelated and derived classes, from the
same and separate packages
Licensed to Mark Watson <nordickan@gmail.com>

19Java access modifiers
Class House fails compilation for trying to access method modifyTemplate()and vari-
able author, as follows:

House.java:8: modifyTemplate()has protected access in library.Book
 book.modifyTemplate();
 ^

A derived class inherits the protected members of its base class, irrespective of the
packages in which they are defined.

 Notice that the derived classes CourseBook and StoryBook inherit class Book’s pro-
tected member variable author and method modifyTemplate(). If class StoryBook
tries to instantiate Book using a reference variable and then tries to access its pro-
tected variable author and method modifyTemplate(), it won’t compile:

package building;
import library.Book;
class StoryBook extends Book {
 StoryBook () {
 Book book = new Book();
 String v = book.author;
 book.modifyTemplate();
 }
}

EXAM TIP A concise but not too simple way of stating the previous rule
is this: A derived class can inherit and access protected members of its
base class, regardless of the package in which it’s defined. A derived
class in a separate package can’t access protected members of its base
class using reference variables.

Figure 1.6 shows the classes that can access protected members of a class or an interface.

1.1.3 Default access (package access)

The members of a class defined without using any explicit access modifier are defined
with package accessibility (also called default accessibility). The members with package
access are only accessible to classes and interfaces defined in the same package. The
default access is also referred to as package-private. Think of a package as your home,
classes as rooms, and things in rooms as variables with default access. These things

Book and StoryBook
defined in separate
packages

Protected members of Book aren’t
accessible in StoryBook if accessed
using an instance of Book.

Same package

Unrelated classes

Derived classes

Separate package

Using

inheritance

Using

reference variable

Figure 1.6 Classes that can
access protected members
Licensed to Mark Watson <nordickan@gmail.com>

20 CHAPTER 1 Java class design
aren’t limited to one room—they can be accessed across all the rooms in your home.
But they’re still private to your home—you wouldn’t want them to be accessed outside
your home. Similarly, when you define a package, you might want to make accessible
members of classes to all the other classes across the same package.

NOTE While the package-private access is as valid as the other access lev-
els, in real projects, it often appears as the result of inexperienced devel-
opers forgetting to specify the access modifier of Java components.

Let’s define an instance variable issueCount and a method issueHistory()with default
access in class Book. Figure 1.7 shows the class representation with these new members.

 Here’s the code for class Book (I’ve deliberately left out its public and protected
members because they aren’t required in this section):

package library;
public class Book {
 int issueCount;
 void issueHistory () {}
}

You can see how classes from the same package and separate packages, derived classes,
and unrelated classes access class Book and its members (instance variable issueCount
and method issueHistory()) in figure 1.8.

 Because classes CourseBook and Librarian are defined in the same package as
class Book, they can access the members issueCount and issueHistory(). Because
classes House and StoryBook aren’t defined in the same package as class Book, they
can’t access the members issueCount and issueHistory(). Class StoryBook fails
compilation with the following error message:

StoryBook.java:6: issueHistory () is not public in library.Book; cannot be
accessed from outside package

 book.issueHistory ();
 ^

library

Book

~issueCount:int

~issueHistory()

CourseBook

<<extends>>

<<extends>>

Librarian

building

StoryBook

House

Figure 1.7 Understanding class representations for the default access

public class
Book issueCount with

default access

issueHistory() with
default access
Licensed to Mark Watson <nordickan@gmail.com>

21Java access modifiers
Class House is unaware of the existence of issueHistory()—it fails compilation with
the following error message:

House.java:9: cannot find symbol
symbol : method issueHistory ()
location: class building.House
 issueHistory ();

DEFINING A CLASS BOOK WITH DEFAULT ACCESS

What happens if you define a class with default access? What will happen to the acces-
sibility of its members if the class itself has default (package) accessibility?

package library;

public class Book {

int issueCount;

void issueHistory(){}

}

package library;

public class CourseBook extends Book {

public CourseBook(){

int c = issueCount;

issueHistory();

}

}

<<extends>>

<<extends>>

package library;

public class Librarian {

public Librarian(){

Book b = new Book();

int c = b.issueCount;

b.issueHistory();

}

}

package building;

import library.Book;

public class StoryBook extends Book{

public StoryBook(){

int c = issueCount;

issueHistory();

}

}

package building;

import library.Book;

public class House{

public House(){

Book b = new Book();

int c = b.issueCount;

b.issueHistory();

}

}

C
a

n
n

o
t a

c
c
e

s
s

Cannot access

Can access

Can access

library building

Figure 1.8 Access of members with default access to class Book in unrelated and derived classes
from the same and separate packages
Licensed to Mark Watson <nordickan@gmail.com>

22 CHAPTER 1 Java class design
Consider this situation: Assume that Superfast Burgers opens a new outlet on a beauti-
ful island and offers free meals to people from all over the world, which obviously
includes inhabitants of the island. But the island is inaccessible by all means (air and
water). Would the existence of this particular Superfast Burger outlet make any sense
to people who don’t inhabit the island? An illustration of this example is shown in fig-
ure 1.9.

 The island is like a package in Java, and the Superfast Burger outlet is like a class
defined with default access. In the same way that the Superfast Burger outlet can’t be
accessed from outside the island on which it exists, a class defined with default (pack-
age) access is visible and accessible only within the package in which it’s defined. It
can’t be accessed from outside its package.

 Let’s redefine class Book with default (package) access as follows:

package library;
class Book {
 //.. class members
}

The behavior of class Book remains the same for classes CourseBook and Librarian,
which are defined in the same package. But class Book can’t be accessed by classes
House and StoryBook, which reside in a separate package.

 Let’s start with class House. Examine the following code:

package building;
import library.Book;
public class House {}

Can be accessed

only by inhabitants

of the island

Far-away island

inaccessble by

air and water

Figure 1.9 This Superfast Burgers cannot be accessed from outside the island because
the island is inaccessible by air and water.

Book now has
default access

Book isn’t
accessible in House
Licensed to Mark Watson <nordickan@gmail.com>

23Java access modifiers
Class House fails compilation with the following error message:

House.java:2: library.Book is not public in library; cannot be accessed from
outside package

import library.Book;

Here’s the code of class StoryBook:

package building;
import library.Book;
class StoryBook extends Book {}

Figure 1.10 shows which classes can access members of a class or an interface with
default (package) access.

 Because a lot of programmers are confused about which members are made
accessible by using the protected access modifier and no modifier (default), the
following exam tip offers a simple and interesting rule to help you remember their
differences.

EXAM TIP Default access can be compared to package-private (accessible
only within a package) and protected access can be compared to pack-
age-private + kids (kids refers to derived classes). Kids can access pro-
tected members only by inheritance and not by reference (accessing
members by using the dot operator on an object).

1.1.4 The private access modifier

The private access modifier is the most restrictive access modifier. The members of a
class defined using the private access modifier are accessible only to them. For exam-
ple, the internal organs of your body (heart, lungs, etc.) are private to your body. No
one else can access them. It doesn’t matter whether the class or interface in question
is from another package or has extended the class—private members aren’t accessible
outside the class in which they’re defined.

EXAM TIP Members of an interface are implicitly public. If you define
interface members as private, the interface won’t compile.

Book isn’t accessible
in StoryBook

StoryBook cannot
extend Book

Same package

Unrelated classes

Derived classes

Separate package

Figure 1.10 Classes that can
access members with default
(package) access
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 1 Java class design
Let’s see the private members in action by adding a private method countPages() to
class Book. Figure 1.11 depicts the class representation using UML.

 Examine the following definition of class Book:

package library;
class Book {
 private void countPages () {}
 protected void modifyTemplate(){
 countPages ();
 }
}

None of the classes defined in any of the packages (whether derived or not) can
access the private method countPages(). But let’s try to access it from class Course-
Book. I chose class CourseBook because both of these classes are defined in the same
package, and class CourseBook extends class Book. Here’s the code of CourseBook:

package library;
class CourseBook extends Book {
 CourseBook () {
 countPages ();
 }
}

Because class CourseBook tries to access private members of class Book, it will not com-
pile. Similarly, if any of the other classes (StoryBook, Librarian, or House) try to
access private method countPages() of class Book, it will not compile. Figure 1.12
shows the classes that can access the private members of a class.

NOTE For your real projects, it is possible to access private members of a
class outside them, using Java Reflection. But Java Reflection isn’t on the
exam. So don’t consider it when answering questions on the accessibility
of private members.

library

Book

-countPages()

#modifyTemplate()

CourseBook

<<extends>>

<<extends>>

Librarian

building

StoryBook

House

Figure 1.11 Understanding the private access modifier

Private method

Only Book can access
its own private
method countPages()

CourseBook
extends Book

CourseBook cannot
access private method
countPages()
Licensed to Mark Watson <nordickan@gmail.com>

25Java access modifiers
1.1.5 Access modifiers and Java entities

Can every access modifier be applied to all the Java entities? The simple answer is no.
Table 1.1 lists the Java entities and the access modifiers that can be used with them.

What happens if you try to code the combinations for an X above? None of these com-
binations will compile. Here’s the code:

protected class MyTopLevelClass {}
private class MyTopLevelClass {}
protected interface TopLevelInterface {}
protected enum TopLevelEnum {}

void myMethod(private int param) {}
void myMethod(int param) {
 public int localVariable = 10;
}

Watch out for these combinations on the exam. It’s simple to insert these small and
invalid combinations in any code snippet and still make you believe that you’re being
tested on a rather complex topic like threads or concurrency.

EXAM TIP Watch out for invalid combinations of a Java entity and an
access modifier. Such code won’t compile.

Table 1.1 Java entities and the access modifiers that can be applied to them

Entity name public protected private

Top-level class, interface, enum ✓ ✗ ✗

Nested class, interface, enum ✓ ✓ ✓

Class variables and methods ✓ ✓ ✓

Instance variables and methods ✓ ✓ ✓

Method parameters and local variables ✗ ✗ ✗

Same package

Unrelated classes

Derived classes

Separate package

Figure 1.12 No classes can
access private members of
another class.

Won’t compile—top-level
class, interface, and enums
can’t be defined with protected
and private access.

Won’t compile—method parameters
and local variables can’t be defined
using any explicit access modifiers.
Licensed to Mark Watson <nordickan@gmail.com>

26 CHAPTER 1 Java class design
1.1.6 Effects of changing access modifiers for existing entities

Shreya, a programmer, changed the access modifier of a member in her class, Book,
and see what Harry (another programmer) had to go through the next morning (fig-
ure 1.13).

 Let’s analyze what happened. Why did Harry’s code break when Shreya changed
her own code? As shown in figure 1.14, Harry’s class StoryBook extends class Book cre-
ated by Shreya. Before the modifications, Harry’s class StoryBook accessed the pro-
tected member author from its parent class Book. But when Shreya modified the
access modifier of the member author from protected to default access, it could no
longer be accessed by class StoryBook because they reside in separate packages. So,
even though Harry didn’t change his code, it didn’t compile.

 You can change the access modifier of a member in two ways:

■ Accessibility is decreased—for example, a public member is made private
■ Accessibility is increased—for example, a private member is made public

WHEN ACCESSIBILITY OF AN ENTITY IS DECREASED (MORE RESTRICTIVE)
As shown in figure 1.14, when an entity is made more restrictive, there are chances
that other code that uses that entity might break.

WHEN ACCESSIBILITY OF AN ENTITY IS INCREASED (LESS RESTRICTIVE)
There are no issues when an entity is made less restrictive, say, when access of an
entity is changed from default to protected or public. With increased access, an

Impact of decreasing accessibility in real-life projects
Decreasing the accessibility of entities can affect the overall application in a big way.
This is especially important for designing APIs and maintaining software. Many Java
developers make the mistake of carelessly decreasing the accessibility of methods
or fields, which can result in access issues with other components in a system.

Project status: code by Harry fails compilation

Harry Paul

I promise!
I didn’t change

any code!
Then how did
this happen?

Figure 1.13 A change in the access modifier of a member of a class can
break the code of other classes.
Licensed to Mark Watson <nordickan@gmail.com>

27Java access modifiers
entity may become visible to other classes, interfaces, and enums to which it wasn’t
visible earlier.

 Apart from being an important exam topic, you’re sure to encounter issues related
to access modifiers at your workplace in real projects. Let’s see whether you can spot a
similar issue in the first “Twist in the Tale” exercise.

About the “Twist in the Tale” exercises
For these exercises, I’ve tried to use modified code from the examples already cov-
ered in the chapter. The “Twist in the Tale” title refers to modified or tweaked code.
These exercises will help you understand how even small code modifications can
change the behavior of your code. They should also encourage you to carefully exam-
ine all of the code on the exam. The reason for these exercises is that on the exam,
you may be asked more than one question that seems to require the same answer.
But on closer inspection, you’ll realize that the questions differ slightly, and this will
change the behavior of the code and the correct answer option. All answers to “Twist
in the Tale” exercises are in the appendix.

package library;

public class Book {

protected String author;

}

<<extends>>

Can

access

Before modification

Shreya’s code Harry’s code

library building

package building;

import library.Book;

Class StoryBook extends Book{

{author = "Selvan";}

}

After modification

package library;

public class Book {

String author;

}

<<extends>>

Can’t

access

Shreya’s code Harry’s code

library building

package building;

import library.Book;

Class StoryBook extends Book{

{author = "Selvan";}

}

Figure 1.14 Code before and after modification showing why Harry’s code failed to compile, even
though he didn’t change a bit of it.
Licensed to Mark Watson <nordickan@gmail.com>

28 CHAPTER 1 Java class design
Here are the classes written by Shreya and Harry (residing in separate source code
files) that work without any issues:

package library; // Class written by Shreya
public class Book {
 protected String author;
}

package building; // Class written by Harry
import library.Book;
class StoryBook extends Book {
 { author = "Selvan"; }

}

On Friday evening, Shreya modified her code and checked it in to the organization’s
version control system. Do you think Harry would be able to run his code without any
errors when he checks out the modified code on Monday morning, and why? Here’s
the modified code:

package library; // Class written by Shreya
class Book {
 protected String author;
}

package building; // Class written by Harry
import library.Book;
class StoryBook extends Book {
 { author = "Selvan"; }
}

In the next section, we’ll cover the need and semantics of defining overloaded meth-
ods. You can compare overloaded methods with any action that you might specify with
multiple, different, or additional details. Let’s get started with understanding the
need of defining overloaded methods.

1.2 Overloaded methods and constructors

Overloaded methods are methods with the same name but different method parameter
lists. In this section, you’ll learn how to create and use overloaded methods.

 Imagine that you’re delivering a lecture and need to instruct the audience to take
notes using paper, a Smartphone, or a laptop—whichever is available to them for the
day. One way to do this is to give the audience a list of instructions like

■ Take notes using paper.
■ Take notes using Smartphones.
■ Take notes using laptops.

Twist in the Tale 1.1

[1.3] Overload constructors and methods
Licensed to Mark Watson <nordickan@gmail.com>

29Overloaded methods and constructors
Another method is to instruct them to “take notes” and then provide them with the
paper, a Smartphone, or a laptop they’re supposed to use. Apart from the simplicity of
the latter method, it also gives you the flexibility to add other media on which to take
notes (such as one’s hand, some cloth, or the wall) without needing to remember the
list of all the instructions.

 This second approach—providing one set of instructions (with the same name)
but a different set of input values—can be compared to overloaded methods in Java,
as shown in figure 1.15.

 The implementation of the example shown in figure 1.15 in code is as follows:

class Paper {}
class Smartphone {}
class Laptop {}

class Lecture {
 void takeNotes(Paper paper) {}
 void takeNotes(Smartphone phone) {}
 void takeNotes(Laptop laptop) {}
}

Overloaded methods are usually referred to as methods that are defined in the same
class, with the same name, but with a different method argument list. A derived class
can also overload the methods inherited from its base class as follows:

class Paper {}
class Smartphone {}
class Laptop {}

class Lecture {
 void takeNotes(Paper paper) {}
 void takeNotes(Smartphone phone) {}
 void takeNotes(Laptop laptop) {}
}
class Canvas {}
class FineArtLecture extends Lecture {
 void takeNotes(Canvas canvas) {}
}

takeNotesUsingPaper

takeNotesUsingSmartphone

Unrelated methods

Different names

takeNotesUsingLaptop

takeNotes(Paper)

takeNotes(Smartphone)

Overloaded methods

Same names

takeNotes(Laptop)

Figure 1.15 Real-life examples of overloaded methods

Overloaded
method—
takeNotes()

takeNotes() in FineArtLecture
overloads takeNotes() from
Lecture by specifying a
different parameter list.
Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 1 Java class design
Overloaded methods make it easier to add methods with similar functionality that
work with a different set of input values. Let’s work with an example from the Java API
classes that we all use frequently: System.out.println(). Method println() accepts
multiple types of method parameters:

int intVal = 10;
boolean boolVal = false;
String name = "eJava";

System.out.println(intVal);
System.out.println(boolVal);
System.out.println(name);

When you use method println(), you know that whatever you pass to it as a method
argument will be printed to the console. Wouldn’t it be crazy to use methods like
printlnInt(), printlnBool(), and printlnString() for the same functionality? I
think so, too.

 Let’s examine in detail the method parameters passed to overloaded methods,
their return types, and their access and nonaccess modifiers.

NOTE The exam will test you on how you can define correct overloaded
methods, which overloaded methods get invoked when you use a set of
arguments, and also whether a compiler is unable to resolve the call.

1.2.1 Argument list

Overloaded methods accept different lists of arguments. The argument lists can differ
in terms of

■ The change in the number of parameters that are accepted
■ The change in the type of the method parameters that are accepted
■ The change in the positions of the parameters that are accepted (based on

parameter type, not variable names)

Let’s work with some examples to verify these points.

CHANGE IN THE NUMBER OF METHOD PARAMETERS

Overloaded methods that define a different number of method parameters are the
simplest among all the method types. Let’s work with an example of an overloaded
method, calcAverage(), which accepts a different count of method parameters:

class Result {
 double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2;
 }
 double calcAverage(int marks1, int marks2, int marks3) {
 return (marks1 + marks2 + marks3)/3;
 }
}

Prints an
int value

Prints a
boolean value Prints a

string value

Two method
arguments

Three
method
arguments
Licensed to Mark Watson <nordickan@gmail.com>

31Overloaded methods and constructors
CHANGE IN THE TYPE OF METHOD PARAMETERS

In the following example, the difference is in the argument list—due to the change
in the type of parameters it accepts—to calculate the average of integer and deci-
mal numbers:

class Result {
 double calcAverage(int marks1, double marks2) {
 return (marks1 + marks2)/2;
 }
 double calcAverage(double marks1, double marks2) {
 return (marks1 + marks2)/2;
 }
}

When you define overloaded methods with object references as parameters, their
classes might or might not share an inheritance relationship. When the classes don’t
share an inheritance relationship, there isn’t any confusion with the version of the
method that will be called:

class Employee {}
class Engineer extends Employee {}
class CEO extends Employee {}
class Travel {
 static String bookTicket(Engineer val) {
 return "economy class";
 }
 static String bookTicket(CEO val) {
 return "business class";
 }
}

For the preceding code, if you call method bookTicket() by passing it a CEO object, it
will call the method that accepts a parameter of type CEO—no confusion here. Now,
what happens if you define overloaded methods that accept object references of
classes which share an inheritance relationship? For example (modifications in code
are in bold)

class Employee {}
class CEO extends Employee {}
class Travel {
 static String bookTicket(Employee val) {
 return "economy class";
 }
 static String bookTicket(CEO val) {
 return "business class";
 }
}

Arguments—
int and double

Arguments—
double and
double

Engineer and CEO
aren’t in the same
inheritance tree

Method
parameters—CEO
extends Employee
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 1 Java class design
Which of these methods do you think would be called if you pass a CEO object to
method bookTicket()? Can a CEO object be assigned to both CEO and Employee?

class TravelAgent {
 public static void main(String... args) {
 System.out.println(Travel.bookTicket(new CEO()));
 }
}

The preceding code calls overloaded method bookTicket()that accepts a CEO, because
without any explicit reference variable, new CEO() is referred to using a CEO variable.
Now, try to determine the output of the following code:

class TravelAgent {
 public static void main(String... args) {
 Employee emp = new CEO();
 System.out.println(Travel.bookTicket(emp));
 }
}

The preceding code prints “economy class” and not “business class” because the type
of the reference variable emp is Employee. The overloaded methods are bound at
compile time and not runtime. To resolve the call to the overloaded methods, the
compiler considers the type of variable that’s used to refer to an object.

EXAM TIP Calls to the overloaded methods are resolved during
compilation.

Using the preceding Employee and CEO example, figure 1.16 shows a fun way to remem-
ber calls to the overloaded methods are resolved during compilation.

Prints
“business
class”

Prints
“economy
class”

Group

secretary

Travel

desk

Please book a
ticket to Paris for

our employee. Sure!

CEO Travel

desk

Why didn’t
you book business

class?

Because you
were referred to
as an employee.

Figure 1.16 Overloaded methods are resolved during compilation.
Licensed to Mark Watson <nordickan@gmail.com>

33Overloaded methods and constructors
For the overloaded method bookTicket() that defines the method parameter of
either Engineer or CEO, watch out for exam questions that try to call it using a refer-
ence variable of Employee:

class Employee {}
class Engineer extends Employee {}
class CEO extends Employee {}
class Travel {
 static String bookTicket(Engineer val) {
 return "economy class";
 }
 static String bookTicket(CEO val) {
 return "business class";
 }
 public static void main(String args[]) {
 Employee emp = new CEO();
 System.out.println(bookTicket(emp));
 }
}

CHANGE IN THE POSITIONS OF METHOD PARAMETERS

The methods are correctly overloaded if they only change the positions of the param-
eters that are passed to them, as follows:

double calcAverage(double marks1, int marks2) {
 return (marks1 + marks2)/2;
}
double calcAverage(int marks1, double marks2) {
 return (marks1 + marks2)/2;
}

Although you might argue that the arguments being accepted are the same, with only
a difference in their positions, the Java compiler treats them as different argument
lists. Therefore, the previous code is a valid example of overloaded methods. But an
issue arises when you try to execute this method using values that can be passed to
both versions of the overloaded method. In this case, the code in method main() will
fail to compile:

class MyClass {
 static double calcAverage(double marks1, int marks2) {
 return(marks1 + marks2)/2;
 }
 static double calcAverage(int marks1, double marks2) {
 return(marks1 + marks2)/2;
 }
 public static void main(String[] args) {
 calcAverage(2, 3);
 }
}

In the previous code, B defines the calcAverage() method, which accepts two
method parameters: a double and an int. The code at c defines overloaded method

Accepts
Engineer

Accepts CEO

Won’t compile—Travel
doesn’t define method
that accepts Employee

Arguments—
double and int

Arguments—
int and double

Method
parameters—
double and int

 b

Method
parameters—
int and double

 c

Compiler can’t determine
overloaded calcAverage()
that should be called

 d
Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 1 Java class design
calcAverage(), which accepts two method parameters: first an int and then a double.
Because an int literal value can be passed to a variable of type double, literal values 2
and 3 can be passed to both overloaded methods, declared at B and c. Because this
method call is dubious, the code at d fails to compile, with the following message:

MyClass.java:10: error: reference to calcAverage is ambiguous, both method
calcAverage(double,int) in MyClass and method calcAverage(int,double) in
MyClass match
 calcAverage(2, 3);
 ^
1 error

EXAM TIP For primitive method arguments, if a call to an overloaded
method is dubious, the code won’t compile.

Here’s an interesting question: Would an overloaded method with the following sig-
nature solve this specific problem?

static double calcAverage(int marks1, int marks2)

Yes, it will. Because the type of literal integer value is int, the compiler will be able to
resolve the call calcAverage(2, 3) to calcAverage(int marks1, int marks2) and
compile successfully.

1.2.2 When methods can’t be defined as overloaded methods

The overloaded methods give you the flexibility of defining methods with the same
name that can be passed a different set of arguments. But it doesn’t make sense to
define overloaded methods with a difference in only their return types or access or
nonaccess modifiers.

RETURN TYPE

Methods can’t be defined as overloaded methods if they only differ in their return
types, as follows:

class Result {
 double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2;
 }
 int calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2;
 }
}

The methods defined in the preceding code aren’t correctly overloaded methods—
they won’t compile.

EXAM TIP When the Java compiler differentiates methods, it doesn’t con-
sider their return types. So you can’t define overloaded methods with the
same parameter list and different return types.

Return type of
calcAverage() is double

Return type of
calcAverage() is int
Licensed to Mark Watson <nordickan@gmail.com>

35Overloaded methods and constructors

ess
r—
nized
ACCESS MODIFIER

Methods can’t be defined as overloaded methods if they only differ in their access
modifiers, as follows:

class Result {
 public double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2;
 }
 protected double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2;
 }
}

NONACCESS MODIFIER

Methods can’t be defined as overloaded methods if they only differ in their nonaccess
modifiers, as follows:

class Result {
 public synchronized double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2;
 }
 public final double calcAverage(int marks1, int marks2) {
 return (marks1 + marks2)/2;
 }
}

Let’s revisit the rules for defining overloaded methods.

In the next section, we’ll create overloaded versions of special methods, called con-
structors, which are used to create objects of a class.

1.2.3 Overloaded constructors

While creating instances of a class, you might need to assign default values to some of
its variables and assign explicit values to the rest. You can do so by overloading the

Rules to remember for defining overloaded methods
Here’s a quick list of rules to remember for the exam for defining and using over-
loaded methods:

■ A class can overload its own methods and methods inherited from its base class.
■ Overloaded methods must be defined with the same name.
■ Overloaded methods must be defined with different parameter lists.
■ Overloaded methods might define a different return type or access or nonaccess

modifier, but they can’t be defined with only a change in their return types or
access or nonaccess modifiers.

Access—public

Access—protected

Nonacc
modifie
synchro

Nonaccess
modifier—
final
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 1 Java class design
constructors. Overloaded constructors follow the same rules as discussed in the previous
section on overloaded methods:

■ Overloaded constructors must be defined using a different argument list.
■ Overloaded constructors can’t be defined by a mere change in their access

modifiers.

EXAM TIP Watch out for exam questions that use nonaccess modifiers
with constructors.

Using nonaccess modifiers with constructors is illegal—the code won’t compile. Here’s
an example of class Employee, which defines four overloaded constructors:

class Employee {
 String name;
 int age;
 Employee() {
 name = "John";
 age = 25;
 }
 Employee(String newName) {
 name = newName;
 age = 25;
 }
 Employee(int newAge, String newName) {
 name = newName;
 age = newAge;
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

In the previous code, the code at B defines a constructor that doesn’t accept any
arguments, and the code at c defines another constructor that accepts a single argu-
ment. Note the constructors defined at d and e. Both of these accept two arguments,
String and int. But the placement of these two arguments is different in d and e,
which is acceptable and valid for overloaded constructors and methods.

INVOKING AN OVERLOADED CONSTRUCTOR FROM ANOTHER CONSTRUCTOR

It’s common to define multiple constructors in a class. Unlike overloaded methods,
which can be invoked using the name of a method, overloaded constructors are
invoked by using the keyword this—an implicit reference, accessible to an object, to
refer to itself. For instance

class Employee {
 String name;
 int age;
 Employee() {
 this(null, 0);
 }

No-argument
constructor

 b

Constructor with one
String argument

 c

Constructor with
two arguments—
int and String

 d

Constructor with
two arguments—
String and int

 e

No-argument
constructor

 b

Invokes constructor that
accepts two arguments c
Licensed to Mark Watson <nordickan@gmail.com>

37Overloaded methods and constructors
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

The code at B defines a no-argument constructor. At c, this constructor calls the
overloaded constructor by passing to it values null and 0. d defines an overloaded
constructor that accepts two arguments.

 Because a constructor is defined using the name of its class, it’s a common mistake
to try to invoke a constructor from another constructor using the class’s name:

class Employee {
 String name;
 int age;
 Employee() {
 Employee(null, 0);
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

Also, when you invoke an overloaded constructor using the keyword this, it must be
the first statement in your constructor:

class Employee {
 String name;
 int age;
 Employee() {
 System.out.println("No-argument constructor");
 this(null, 0);
 }
 Employee(String newName, int newAge) {
 name = newName;
 age = newAge;
 }
}

That’s not all: you can’t call a constructor from any other method in your class. None
of the other methods of class Employee can invoke its constructor.

Rules to remember for defining overloaded constructors
Here’s a quick list of rules to remember for the exam for defining and using over-
loaded constructors:

■ Overloaded constructors must be defined using different argument lists.
■ Overloaded constructors can’t be defined by just a change in the access modifiers.
■ Overloaded constructors can be defined using different access modifiers.

Constructor
that accepts
two arguments

 d

Won’t compile—you can’t
invoke a constructor within a
class by using the class’s name.

Won’t compile—call to
overloaded constructor
must be first statement
in constructor.
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 1 Java class design
INSTANCE INITIALIZERS

Apart from constructors, you can also define an instance initializer to initialize the
instance variables of your class. An instance initializer is a code block defined within a
class, using a pair of {}. You can define multiple instance initializers in your class. Each
instance initializer is invoked when an instance is created, in the order they’re defined
in a class. They’re invoked before a class constructor is invoked.

 Why do you think you need an instance initializer if you can initialize your
instances using constructors? Multiple reasons exist:

■ For a big class, it makes sense to place the variable initialization just after its
declaration.

■ All the initializers are invoked, irrespective of the constructor that’s used to
instantiate an object.

■ Initializers can be used to initialize variables of anonymous classes that can’t
define constructors. (You’ll work with anonymous classes in the next chapter.)

Here’s a simple example:

class Pencil {
 public Pencil() {
 System.out.println("Pencil:constructor");
 }
 public Pencil(String a) {
 System.out.println("Pencil:constructor2");
 }
 {
 System.out.println("Pencil:init1");
 }
 {
 System.out.println("Pencil:init2");
 }

 public static void main(String[] args) {
 new Pencil();
 new Pencil("aValue");
 }
}

The output of the preceding code is

Pencil:init1
Pencil:init2
Pencil:constructor

(continued)
■ A constructor can call another overloaded constructor by using the keyword this.
■ A constructor can’t invoke a constructor by using its class’s name.
■ If present, the call to another constructor must be the first statement in a

constructor.

Added to both
overloaded
constructors
Licensed to Mark Watson <nordickan@gmail.com>

39Overloaded methods and constructors
Pencil:init1
Pencil:init2
Pencil:constructor2

The next “Twist in the Tale” exercise hides an important concept within its code,
which you can get to know only if you try to compile and execute the modified code.

Let’s modify the definition of class Employee used in the section on overloaded con-
structors as follows:

class Employee {
 String name;
 int age;
 Employee() {
 this("Shreya", 10);
 }
 Employee (String newName, int newAge) {
 this();
 name = newName;
 age = newAge;
 }
 void print(){
 print(age);
 }
 void print(int age) {
 print();
 }
}

What is the output of this modified code, and why?

The instance initializer blocks are executed after an implicit or explicit call to the par-
ent class’s constructor:

class Instrument {
 Instrument() {
 System.out.println("Instrument:constructor");
 }
}
class Pencil extends Instrument {
 public Pencil() {
 System.out.println("Pencil:constructor");
 }
 {
 System.out.println("Pencil:instance initializer");
 }
 public static void main(String[] args) {
 new Pencil();
 }
}

Twist in the Tale 1.2
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 1 Java class design
The output of the preceding code is

Instrument:constructor
Pencil:instance initializer
Pencil:constructor

Figure 1.17 shows a fun way of remembering the order of execution of a parent class
constructor, instance initializers, and a class constructor. Paul, our programmer, was
having a very hard time remembering the order of execution of all these code blocks.
He literally had to stand upside down to get the order right.

EXAM TIP If a parent or child class defines static initializer block(s), they
execute before all parent and child class constructors and instance initial-
izers—first for the parent and then for the child class.

Now that you’ve seen how to create the overloaded variants of methods and construc-
tors, let’s dive deep into method overriding. These two concepts, overloading and
overriding, seem to be confusing for a lot of programmers. Let’s get started by clear-
ing the cobwebs.

1.3 Method overriding and virtual method invocation

Do you celebrate a festival or an event in exactly the same manner as celebrated by
your parents? Or have your modified it? Perhaps you celebrate the same festivals
and events, but in your own unique manner. In a similar manner, classes can inherit

Alphabetical order Execution order

Child constructor

Child initialization block

Parent constructor

Parent initialization block

Got
the execution

order.

1

2

3

4

Figure 1.17 The order of execution of constructors and instance initializers in parent and
child classes

[1.2] Override methods

[1.5] Use virtual method invocation
Licensed to Mark Watson <nordickan@gmail.com>

41Method overriding and virtual method invocation
behavior from other classes. But they can redefine the behavior that they inherit—this
is also referred to as method overriding.

 Method overriding is an object-oriented programming (OOP) language feature
that enables a derived class to define a specific implementation of an existing base
class method to extend its own behavior. A derived class can override an instance
method defined in a base class by defining an instance method with the same method
signature/method name and number and types of method parameters. Overridden
methods are also synonymous with polymorphic methods. The static methods of a base
can’t be overridden, but they can be hidden by defining methods with the same signa-
ture in the derived class.

 A method that can be overridden by a derived class is called a virtual method. But
beware: Java has always shied away from using the term virtual methods and you will not
find a mention of this term in Java’s vocabulary. This term is used in other OO lan-
guages like C and C++. Virtual method invocation is the invocation of the correct over-
ridden method, which is based on the type of the object referred to by an object
reference and not by the object reference itself. It’s determined at runtime, not at
compilation time.

 The exam will question you on the need for overridden methods; the correct syn-
tax of overridden methods; the differences between overloaded, overridden, and hid-
den methods; common mistakes while overriding methods; and virtual method
invocation. Let’s get started with the need for overridden methods.

NOTE A base class method is referred to as the overridden method and the
derived class method is referred to as the overriding method.

1.3.1 Need of overridden methods

In the same way we inherit our parents’ behaviors but redefine some of the inherited
behavior to suit our own needs, a derived class can inherit the behavior and properties
of its base class but still be different in its own manner—by defining new variables and
methods. A derived class can also choose to define a different course of action for its
base class method by overriding it. Here’s an example of class Book, which defines a
method issueBook() that accepts days as a method parameter:

class Book {
 void issueBook(int days) {
 if (days > 0)
 System.out.println("Book issued");
 else
 System.out.println("Cannot issue for 0 or less days");
 }
}

Following is another class, CourseBook, which inherits class Book. This class needs to
override method issueBook() because a CourseBook can’t be issued if it’s only for
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 1 Java class design
reference. Also, a CourseBook can’t be issued for 14 or more days. Let’s see how this is
accomplished by overriding method issueBook():

class CourseBook extends Book {
 boolean onlyForReference;
 CourseBook(boolean val) {
 onlyForReference = val;
 }
 @Override
 void issueBook(int days) {
 if (onlyForReference)
 System.out.println("Reference book");
 else
 if (days < 14)
 super.issueBook(days);
 else
 System.out.println("days >= 14");
 }
}

The code at B uses the annotation @Override, which notifies the compiler that this
method overrides a base class method. Though optional, this annotation can come in
very handy if you try to override a method incorrectly. The code at c defines method
issueBook() with the same name and method parameters as defined in class Book.
The code at d calls method issueBook() defined in class Book; however, it isn’t man-
datory to do so. It depends on whether the derived class wants to execute the same
code as defined by the base class.

NOTE Whenever you intend to override methods in a derived class, use
the annotation @Override. It will warn you if a method can’t be overrid-
den or if you’re actually overloading a method rather than overriding it.

The following example can be used to test the preceding code:

class BookExample {
 public static void main(String[] args) {
 Book b = new CourseBook(true);
 b.issueBook(100);
 b = new CourseBook(false);
 b.issueBook(100);
 b = new Book();
 b.issueBook(100);
 }
}

Figure 1.18 represents the compilation and execution process of class BookExample, as
Step 1 and Step 2:

■ Step 1: The compile time uses the reference type for the method check.
■ Step 2: The runtime uses the instance type for the method invocation.

Now let’s move on to how to correctly override a base class method in a derived class.

Annotation—
@Override b

Overrides issueBook()
in base class Book c

Calls issueBook()
defined in Book d

Prints “Reference
book”

Prints “days
>= 14”

b now refers to
a Book instancePrints “Book

issued”
Licensed to Mark Watson <nordickan@gmail.com>

43Method overriding and virtual method invocation
Step 1

Java

compiler

Consult

Compilation

successful

In

Book b = new CourseBook(true);
b.issueBook(100);

class Book {
void issueBook(int days){
.....
}

}

BookExample.class
– –
– –

Type of reference variable “b” is
Book. BookI must consult class to

verify existence of method issueBook().

Java

runtime

Consult

Confusion

Result

In

Book b = new CourseBook(true);
b.issueBook(100);

Step 2

BookExample.class

class CourseBook extends Book {
void issueBook(int days){
.....
}

}

Type of object referred by “b” is
CourseBook. CourseBookI must consult
for description of method issueBook().

Classes andBook

CourseBook define
method issueBook()

with identical
signatures.

1

2

3

4

Because method signatures

are exactly the same, call

issueBook() CourseBookfrom

(type of object is).CourseBook

Book

issueBook(int)

CourseBook

onlyForReference

issueBook(int)

Figure 1.18 To compile b.issueBook(), the compiler refers only to the definition of class Book.
To execute b.issueBook(), the Java Runtime Environment (JRE) uses the actual method
implementation of issueBook() from class CourseBook.
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 1 Java class design

M
revi
bas
1.3.2 Correct syntax of overriding methods

Let’s start with an example of overridden method review(), as follows:

class Book {
 synchronized protected List review(int id,
 List names) throws Exception {
 return null;
 }
}
class CourseBook extends Book {
 @Override
 final public ArrayList review(int id,
 List names) throws IOException {
 return null;
 }
}

Figure 1.19 shows the components of a method declaration: access modifiers, nonac-
cess modifiers, return type, method name, parameter list, and a list of exceptions that
can be thrown (method declaration isn’t the same as method signature). The figure
also compares the review method defined in base class Book with overriding method
review() defined in class CourseBook with respect to these identified parts.

 Table 1.2 compares the method components shown in figure 1.19.

Table 1.2 Comparison of method components and their acceptable values for an overriding method

Method
component

Value in
class Book

Value in class
CourseBook

Overriding method review()
in class CourseBook

Access modifier protected public Define same access or less restrictive
access than method review() in
the base class.

ethod
ew() in
e class

Book CourseBook
extends Book

Overridden method review()
in derived class CourseBook

Method

review()
in Book

synchronized

Nonaccess

modifiers

Same or different

(conditions apply)

Same or

covariant

Exact match None, same,

or subclass

protected

Access

modifiers

List

Method

review() in

CourseBook
final public ArrayList

Return

type

review

review

(int id,
List names)

(int id,
List names)

Method

name

Parameter

list

throws
Exception

throws
IOException

Exception

list

Figure 1.19 Comparing parts of a method declaration for a base class method and overriding method
Licensed to Mark Watson <nordickan@gmail.com>

45Method overriding and virtual method invocation
EXAM TIP The rule listed in table 1.2 on exceptions in overriding meth-
ods only applies to checked exceptions. An overriding method can throw
any unchecked exception (RuntimeException or Error) even if the over-
ridden method doesn’t. The unchecked exceptions aren’t part of the
method signature and aren’t checked by the compiler.

Chapter 6 includes a detailed explanation on overridden and overriding methods that
throw exceptions. Let’s walk through a couple of invalid combinations that are impor-
tant and very likely to be on the exam.

NOTE Though a best practice, I’ve deliberately not preceded the defini-
tion of the overriding methods with the annotation @Override because
you might not see it on the exam.

ACCESS MODIFIERS

A derived class can assign the same or more access but not a weaker access to the over-
riding method in the derived class:

class Book {
 protected void review(int id, List names) {}
}
class CourseBook extends Book {
 void review(int id, List names) {}
}

Nonaccess
modifier

synchronized final Overriding method can use any
nonaccess modifier for an overridden
method. A nonabstract method can
also be overridden to an abstract
method. But a final method in the
base class cannot be overridden. A
static method cannot be overridden to
be nonstatic.

Return type List ArrayList Define the same or a subtype of the
return type used in the base class
method (covariant return types).

Method name review review Exact match.

Parameter list (int id, List
names)

(int id, List
names)

Exact match.

Exceptions thrown throws
Exception

throws
IOException

Throw none, same, or a subclass of
the exception thrown by the base
class method.

Table 1.2 Comparison of method components and their acceptable values for an overriding method

Method
component

Value in
class Book

Value in class
CourseBook

Overriding method review()
in class CourseBook

Won’t compile;
overriding methods in
derived classes can’t
use a weaker access.
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 1 Java class design
NONACCESS MODIFIERS

A derived class can’t override a base class method marked final:

class Book {
 final void review(int id, List names) {}
}
class CourseBook extends Book {
 void review(int id, List names) {}
}

ARGUMENT LIST AND COVARIANT RETURN TYPES

When the overriding method returns a subclass of the return type of the overridden
method, it’s known as a covariant return type. To override a method, the parameter list
of the methods in the base and derived classes must be exactly the same. It you try to
use covariant types in the argument list, you’ll end up overloading the methods and
not overriding them. For example

class Book {
 void review(int id, List names) throws Exception {
 System.out.println("Base:review");
 }
}
class CourseBook extends Book {
 void review(int id, ArrayList names) throws IOException {
 System.out.println("Derived:review");
 }
}

At B method review() in base class Book accepts an object of type List. Method
review() in derived class CourseBook accepts a subtype ArrayList (ArrayList imple-
ments List). These methods aren’t overridden—they’re overloaded:

class Verify {
 public static void main(String[] args)throws Exception {
 Book book = new CourseBook();
 book.review(1, null);
 }
}

The code at B uses a reference variable of type Book to refer to an object of type
CourseBook. The compilation process assigns execution of method review() from
base class Book to the reference variable book. Because method review() in class
CourseBook doesn’t override the review method in class Book, the JRE doesn’t have any
confusion regarding whether to call method review() from class Book or from class
CourseBook. It moves forward with calling review() from Book.

EXAM TIP It’s the reference variable type that dictates which overloaded
method will be chosen. This choice is made at compilation time.

Won’t compile; final
methods can’t be
overridden.

Argument list—
int and List b

Argument
list—int and
ArrayList

Reference variable
of type Book used
to refer to object
CourseBook. b

Calls review in
Book; prints
“Base:review”
Licensed to Mark Watson <nordickan@gmail.com>

47Method overriding and virtual method invocation

Comp
ove

meth
dec
thr
Ru

Exc
EXCEPTIONS THROWN

An overriding method must either declare to throw no exception, the same excep-
tion, or a subtype of the exception declared to be thrown by the base class method, or
else it will fail to compile. This rule, however, doesn’t apply to error classes or runtime
exceptions. For example

class Book {
 void review() throws Exception {}
 void read() throws Exception {}
 void close() throws Exception {}
 void write() throws NullPointerException {}
 void skip() throws IOException {}
 void modify() {}
}
class CourseBook extends Book {
 void review() {}
 void read() throws IOException {}
 void close() throws Error {}
 void write() throws RuntimeException {}
 void skip() throws Exception {}
 void modify() throws IOException {}
}

EXAM TIP An overriding method can declare to throw any Runtime-
Exception or Error, even if the overridden method doesn’t.

To remember this preceding point, let’s compare exceptions with monsters. Figure 1.20
shows a fun way to remember the exceptions (monsters) that can be on the list of an

Compiles;
declares to throw
no exception.

Compiles; declares to
throw IOException, a
subclass of Exception.

Compiles; an overriding
method can declare to
throw any Error.

iles; an
rriding
od can
lare to
ow any
ntime-
eption.

Doesn’t compile; declares to
throw Exception, a superclass of
IOException. Overriding method
can’t declare to throw broader
exceptions than declared to be
thrown by overridden method.

Doesn’t compile; declares to throw IOException.
Overriding method can’t declare to throw a checked

exception if overridden method doesn’t.

Exception list

overridden method

(in base class)

Exception list

overriding method

(in derived class)

None Same Narrower ErrorError NoneRuntime-

Exception

Runtime-

Exception

Figure 1.20 Comparing exceptions to monsters. When an overridden method declares to throw a
checked exception (monster), the overriding method can declare to throw none, the same, or a
narrower checked exception. An overriding method can declare to throw any Error or
RuntimeException.
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 1 Java class design
overriding method, when the overridden method doesn’t declare to throw a checked
exception and when it declares to throw a checked exception.

1.3.3 Can you override all methods from the base class or
invoke them virtually?

The simple answer is no. You can override only the following methods from the
base class:

■ Methods accessible to a derived class
■ Nonstatic base class methods

METHODS ACCESSIBLE TO A BASE CLASS

The accessibility of a method in a derived class depends on its access modifier. For
example, a private method defined in a base class isn’t available to any of its derived
classes. Also, a method with default access in a base class isn’t available to a derived
class in another package. A class can’t override the methods that it can’t access.

ONLY NONSTATIC METHODS CAN BE OVERRIDDEN

If a derived class defines a static method with the same name and signature as the one
defined in its base class, it hides its base class method and doesn’t override it. You can’t
override static methods. For example

class Book {
 static void printName() {
 System.out.println("Book");
 }
}
class CourseBook extends Book {
 static void printName() {
 System.out.println("CourseBook");
 }
}

Method printName() in class CourseBook hides printName() in class Book. It doesn’t
override it. Because the static methods are bound at compile time, the method print-
Name() that’s called depends on the type of the reference variable:

class BookExampleStaticMethod {
 public static void main(String[] args) {
 Book base = new Book();
 base.printName();

 Book derived = new CourseBook();
 derived.printName();
 }

}

Static method
in base class

Static method
in derived class

Prints
“Book”

Prints
“Book”
Licensed to Mark Watson <nordickan@gmail.com>

49Method overriding and virtual method invocation
1.3.4 Identifying method overriding, overloading, and hiding

It’s easy to get confused with method overriding, overloading, and hiding. Figure 1.21
identifies these methods in classes Book and CourseBook. On the left are the class def-
initions, and on the right their UML representations.

EXAM TIP When a class extends another class, it can overload, override,
or hide its base class methods. A class can’t override or hide its own meth-
ods—it can only overload its own methods.

Let’s check out the correct code for defining a static or nonstatic method in a derived
class that overrides or hides a static or nonstatic method in a base class using the next
“Twist in the Tale” exercise.

Let’s modify the code of classes Book and CourseBook and define multiple combina-
tions of static and nonstatic method print() in both these classes as follows:

a class Book{
 static void print(){}
}

Twist in the Tale 1.3

class Book{
public static void printName(){

....
}
public int issueBook(int days){

....
}
public int returnBook(int days){

....
}

}

class CourseBook extends Book{
public static void printName(){

....
}
public int issueBook(int days){

....
}
public int issueBook(){

....
}
public int returnBook(int a, int b){

....
}

}

Book

+ printName()

+ issueBook(int)

+ returnBook(int)

CourseBook

+ printName()

+ issueBook(int)

+ issueBook()

+ returnBook(int, int)

Method

overriding

Method

hiding

Method

overloading

Method

overloading

Figure 1.21 Identifying method overriding, method overloading, and method hiding in a base and
derived class
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 1 Java class design
class CourseBook extends Book{
 static void print(){}
}

b class Book{
 static void print(){}
}
class CourseBook extends Book{
 void print(){}
}

c class Book{
 void print(){}
}
class CourseBook extends Book{
 static void print(){}
}

d class Book{
 void print(){}
}
class CourseBook extends Book{
 void print(){}
}

Your task is to first tag them with one of the options and then compile them on your
system to see if they’re correct. On the actual exam, you’ll need to verify (without a
compiler) if a code snippet compiles or not:

■ Overridden print() method
■ Hidden print() method
■ Compilation error

1.3.5 Can you override base class constructors or invoke
them virtually?

The simple answer is no. Constructors aren’t inherited by a derived class. Because
only inherited methods can be overridden, constructors cannot be overridden by a
derived class. If you attempt an exam question that queries you on overriding a base
class constructor, you know that it’s trying to trick you.

EXAM TIP Constructors can’t be overridden because a base class con-
structor isn’t inherited by a derived class.

Now that you know why and how to override methods in your own classes, let’s see in the
next section why it’s important to override the methods of class java.lang.Object.
Licensed to Mark Watson <nordickan@gmail.com>

51Overriding methods of class Object
1.4 Overriding methods of class Object

All the classes in java—classes from the Java API, user-defined classes, or classes from
any other API—extend class java.lang.Object, either implicitly or explicitly. Because
this section talks about overriding the methods from class Object, let’s take a look at
its nonfinal and final methods in figure 1.22.

 You might write a Java class to be used in your small in-house project or a commer-
cial project, or it could be a part of a library that may be released to be used by other
programmers. As you have less control over who uses your class and how it’s used, the
importance of correctly overriding methods from class Object rises. It’s important to
override the nonfinal Object class methods so that these classes can be used effi-
ciently by other users. Apart from being able to be used as desired, incorrect overrid-
ing of these methods can also result in increased debug time.

 Because the final methods can’t be overridden, I’ll discuss the nonfinal methods
of class Object in this section. These methods—clone(), equals(), hashCode(),
toString(), and finalize()—define a contract, a set of rules on how to override
these methods, specified by the Java API documentation.

1.4.1 Overriding method toString()

Method toString() is called when you try to print out the value of a reference vari-
able or use a reference variable in a concatenation operator. The default implementa-
tion of method toString() returns the name of the class, followed by @ and the hash

[1.6] Override methods from the Object class to improve the functionality
of your class

java.lang.Object

Nonfinal methods

clone()

equals() toString()

hashCode()

finalize() getClass() notify()

wait()notifyAll()

Final methods

Figure 1.22 Categorization of final and nonfinal methods of class java.lang.Object
Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 1 Java class design

toSt
de

java.lan
code of the object it represents. Following is the code of method toString(), as
defined in class Object in the Java API:

public String toString() {
 return getClass().getName() + "@" + Integer.toHexString(hashCode());
}

Following is an example of class Book, which doesn’t override method toString().
In this case, a request to print the reference variable of this class will call method
toString() defined in class Object:

class Book {
 String title;
}
class PrintBook {
 public static void main(String[] args) {
 Book b = new Book();
 System.out.println(b);
 }
}

Let’s override method toString() in class Book. The contract of method toString()
specifies that it should return a concise but informative textual representation of the
object that it represents. This is usually accomplished by using the value of the instance
variables of an object:

class Book {
 String title;
 @Override
 public String toString() {
 return title;
 }
}
class Test {
 public static void main(String[] args) {
 Book b = new Book();
 b.title = "Java Certification";
 System.out.println(b);
 }
}

If a class defines a lot of instance variables, method toString()might include only the
important ones—that is, the ones that provide its concise description. In the following
example, class Book defines multiple instance variables and uses a few of them in
method toString():

class Book {
 String title;
 String isbn;
 String[] author;
 java.util.Date publishDate;

ring() as
fined in

g.Object

Prints a value similar
to Book@45a877

toString() uses title
to represent Book

Prints book title,
“Java Certification”

Instance
variables to
store a Book’s
state
Licensed to Mark Watson <nordickan@gmail.com>

53Overriding methods of class Object

to
use

isbn, a
first e

o
au
de
a

 double price;
 int version;
 String publisher;
 boolean eBookReady;
 @Override
 public String toString() {
 return title + ", ISBN:"+isbn + ", Lead Author:"+author[0];
 }
}
class Test {
 public static void main(String[] args) {
 Book b = new Book();
 b.title = "Java Smart Apps";
 b.author = new String[]{"Paul", "Larry"};
 b.isbn = "9810-9643-987";
 System.out.println(b);
 }
}

You have overridden method toString() inappropriately if it returns any text that’s spe-
cific to a particular class, for example, the name of a class or a value of a static variable:

class Book {
 String title;
 static int bookCopies = 1000;
 @Override
 public String toString() {
 return title + ", Copies:" + bookCopies;
 }
}
class CourseBook extends Book {
 static int bookCopies = 99999;
}
class BookOverrideToString {
 public static void main(String[] args) {
 CourseBook b = new CourseBook();
 b.title = "Java Smart Apps";
 System.out.println(b);
 }
}

In this code, B shows inappropriate overriding of method toString() because it uses
a static variable. The code at c defines a static variable bookCopies in class Course-
Book. Because static members are bound at compile time, method toString() will refer
to the variable bookCopies defined in class Book, even if the object it refers to is of the
type CourseBook. d prints the value of the static variable defined in class Book.

 Overriding methods of class Object is an important concept. Let it sink in. The
next “Twist in the Tale” exercise will ensure that you get the hang of correct overrid-
ing of method toString(), before moving on to the next section.

Instance variables
to store a Book’s
state

String
s title,
nd the
lement
f array
thor to
scribe
 Book.

Prints “Java Smart
Apps, ISBN:9810-9643-
987, Lead Author:Paul”

Overridden
toString() uses static
variable of Book.

 b

Static variable
bookCopies also
defined in CourseBook c

Prints “Java Smart
Apps, Copies:1000” d
Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 1 Java class design
Which of the following classes—Book1, Book2, Book3, or Book4—shows an appropriate
overridden method toString()?

class Book1 {
 String title;
 int copies = 1000;
 public String toString() {
 return "Class Book, Title: " + title;
 }
}
class Book2 {
 String title;
 int copies = 1000;
 public String toString() {
 return ""+copies * 11;
 }
}
class Book3 {
 String title;
 int copies = 1000;
 public String toString() {
 return title;
 }
}
class Book4 {
 String title;
 int copies = 1000;
 public String toString() {
 return getClass().getName() + ":" + title;
 }
}

1.4.2 Overriding method equals()

Method equals() is used to determine whether two objects of a class should be con-
sidered equal or not. Figure 1.23 shows a conversation between two objects, wonder-
ing whether they’re equal or not.

Twist in the Tale 1.4

Are we
equal?

equals()

knows it
better!

Figure 1.23 Applying a twist on
Shakespeare’s quote: “Equal or not
equal, that is the question.”
Method equals() returns a
boolean value that determines
whether two objects should be
considered equal or not.
Licensed to Mark Watson <nordickan@gmail.com>

55Overriding methods of class Object
The default implementation of method equals() in class Object compares the object
references and returns true if both reference variables refer to the same object, or
false otherwise. In essence, it only returns true if an object is compared to itself. Fol-
lowing is the default implementation of method equals() in class java.lang.Object:

public boolean equals(Object obj) {
 return (this == obj);
}

The exam will question you on the following points:

■ The need to override method equals()
■ Overriding method equals() correctly
■ Overriding method equals() incorrectly

THE NEED TO OVERRIDE METHOD EQUALS()
You need to override method equals() for objects that you wish to equate logically,
which normally depends on the state of an object (that is, the value of its instance vari-
ables). The goal of overriding method equals() is to check for equality of the objects,
not to check for the same variable references. For two objects of the same class, say,
object1 and object2, equals() checks whether object1 is logically equal to object2,
but object1 isn’t necessarily pointing to the exact same object as object2.

 For example, class String overrides method equals() to check whether two
String objects define the exact same sequence of characters:

String name1 = "Harry";
String name2 = new String ("Harry");
System.out.println(name1.equals(name2));

In the preceding code, name1 and name2 refer to separate String objects but define the
exact same sequence of characters—"Harry". So name1.equals(name2) returns true.

AN EXAMPLE

You might need to find out whether the same undergraduate course is or is not offered
by multiple universities. In an application, you can represent a university using a class,
say, University, and each course being offered using a class, say, Course. Assuming that
each university offers a list of courses, you can override method equals() in class
Course to determine if two Course objects can be considered equal, as follows:

class Course {
 String title;
 int duration;
 public boolean equals(Object o) {
 if (o != null && o instanceof Course) {
 Course c = (Course)o;
 return (title.equals(c.title) && duration==c.duration);
 }
 else
 return false;
 }
}

Prints
“true”
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 1 Java class design
RULES FOR OVERRIDING METHOD EQUALS()
Method equals() defines an elaborate contract (set of rules), as follows (straight
from the Java API documentation):

1 It’s reflexive—For any non-null reference value x, x.equals(x) should return true.
This rule states that an object should be equal to itself, which is reasonable.

2 It’s symmetric—For any non-null reference values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true. This rule states that two
objects should be comparable to each other in the same way.

3 It’s transitive—For any non-null reference values x, y, and z, if x.equals(y)
returns true and y.equals(z) returns true, then x.equals(z) should return
true. This rule states that while comparing objects, you shouldn’t selectively
compare the values based on the type of an object.

4 It’s consistent—For any non-null reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the objects is modified. This rule states
that method equals() should rely on the value of instance variables that can be
accessed from the memory and shouldn’t try to rely on values like the IP address of
a system, which may be assigned a separate value upon reconnection to a network.

5 For any non-null reference value x, x.equals(null) should return false. This
rule states that a non-null object can never be equal to null.

Quite a lot of rules to remember! Let’s use an interesting way to remember all these
rules, by comparing equals() to love. So when you see “x.equals(x),” read it as
“x.loves(x).” Read “if x.equals(y) returns true, y.equals(x) must return true”
as “if x loves y, y loves x.” All these rules are shown in figure 1.24. They’ll make more
sense when you cover them using these examples.

CORRECT AND INCORRECT OVERRIDING OF METHOD EQUALS()
To override method toString() correctly, follow the method overriding rules defined
in section 1.3. Note that the type of parameter passed to equals() is Object. Watch
out for exam questions that seem to override equals(), passing it to a parameter type
of the class in which it’s defined. In the following example, class Course doesn’t over-
ride method equals(), it overloads it:

class Course {
 String title;
 Course(String title) {
 this.title = title;
 }
 public boolean equals(Course o) {
 return title.equals(o.title);
 }
 public static void main(String args[]) {
 Object c1 = new Course("eJava");
 Object c2 = new Course("eJava");
 System.out.println(c1.equals(c2));
 }
}

Course doesn’t override
toString(), it overloads it.

Prints
“false”
Licensed to Mark Watson <nordickan@gmail.com>

57Overriding methods of class Object
I love myself!

If we love each other now...
we’ll always love each other.

x.equals(x) trueis

x

if x.equals(y)==true
then y.equals(x)

should be true

if x.equals(y)==true
and if y.equals(z)==true

then x.equals(z)
should be true

if x.equals(y)==true
then it is always true

if (x != null)
x.equals(null) falsethen is

If I love you... I love you!

x

I cannot love !null

x

x

y

z

x y

x

If I love z ...

y

x loves me!

If

If I love y...If

If

If

Figure 1.24 A fun way to remember all the rules of the equals() contract by comparing equals()
with love.
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 1 Java class design
EXAM TIP Use Object as the parameter type to equals(). Using any other
type will overload equals().

APPROPRIATE AND INAPPROPRIATE OVERRIDING OF METHOD EQUALS()
If you don’t follow the contract of method equals() while overriding it in your
classes, you’ll be overriding it inappropriately. An inappropriately overridden method
equals() doesn’t mean compilation failure.

EXAM TIP An inappropriately overridden method equals() doesn’t mean
compilation failure.

In the following code, class Course doesn’t comply with the symmetric and reflexive
rules while overriding method equals(). Class University shows how these rules
aren’t adhered to:

class Course {
 String title;
 Course(String title) {
 this.title = title;
 }
 public boolean equals(Object o) {
 return (title.equals(o));
 }
}
class University {
 public static void main(String[] args) {
 Course c1 = new Course("level1");
 String s1 = "level1";
 System.out.println(c1.equals(s1));
 System.out.println(s1.equals(c1));

 System.out.println(c1.equals(c1));
 }
}

The code at B prints true for c1.equals(s1) and false for s1.equals(c1), which is
a clear violation of equals()’s symmetric contract, which states that for any non-null
reference values x and y, x.equals(y) should print true if and only if y.equals(x)
returns true. The Course object will not evaluate to true in String’s method
equals() because equals() in String first verifies if the object being compared to it
is a String object before checking to see if their character sequence is the same. At c,
c1.equals(c1) prints false, violating the reflexive rule that states that an object
should be equal to itself.

 Let’s work with another example, where class JavaCourse violates the transitive
rule while overriding method equals(). Class JavaCourse extends class Course and
defines method equals(), which compares its object to both an object of Course
and JavaCourse. Method equals() compares the common attributes, if the object
being compared is that of the base class Course. It also compares all the attributes, if
the object being compared is of class JavaCourse:

Compares title of
course with object
passed to equals

Shows violation of
symmetric rule—
c1.equals(s1) prints
“true” but s1.equals(c1)
prints “false”

 b

Shows violation of reflexive rule—
c1.equals(c1) prints “false” c
Licensed to Mark Watson <nordickan@gmail.com>

59Overriding methods of class Object
class Course {
 String title;
 Course(String title) {
 this.title = title;
 }
 public boolean equals(Object o) {
 if (o instanceof Course) {
 Course c = (Course)o;
 return (title.equals(c.title));
 }
 else
 return false;
 }
}
class JavaCourse extends Course {
 int duration = 0;
 JavaCourse(String title, int duration) {
 super(title);
 this.duration = duration;
 }
 public boolean equals(Object o) {
 if (o instanceof JavaCourse) {
 return (super.equals(o) &&
 ((JavaCourse)o).duration == duration);
 }
 else if(o instanceof Course) {
 return (super.equals(o));
 }
 else
 return false;
 }
}

In the following code for class University2, c1 is equal to c2 and c2 is equal to c3
because these comparisons only check the course title. But c1 isn’t equal to c3
because the course durations aren’t the same. Therefore, the overridden method
equals() in class JavaCourse fails the transitive rule:

class University2 {
 public static void main(String[] args) {
 Course c1 = new JavaCourse("level1", 2);
 Course c2 = new Course("level1");
 Course c3 = new JavaCourse("level1", 12);

 System.out.println(c1.equals(c2));
 System.out.println(c2.equals(c3));
 System.out.println(c1.equals(c3));
 }
}

Inappropriate overriding of method equals() can result in bizarre behavior. Use of
equals() by collection classes is explained in detail in chapter 4.
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 1 Java class design
1.4.3 Overriding method hashCode()

First, method hashCode() isn’t called by method equals() or vice versa. The contract
of methods equals() and hashCode() mentions that both these methods should be
overridden if one of them is overridden. This makes a lot of programmers believe that
perhaps these methods are called by each other, which isn’t the case. Figure 1.25
shows a fun way to remember that methods equals() and hashCode() deny being in a
relationship and calling each other.

THE NEED TO OVERRIDE METHOD HASHCODE()
Method hashCode() returns a hash-code value for an object, which is used to effi-
ciently store and retrieve values in collection classes that use hashing algorithms, such
as HashMap. Hashing algorithms identify the buckets in which they would store the
objects and from which they would retrieve them. A well-written method hashCode()
ensures that objects are evenly distributed in these buckets. Objects with the same
hash-code values are stored in the same bucket. To retrieve an object, its bucket is
identified using its hash-code value. If the bucket contains multiple objects, method
equals() is used to find the target object.

 To understand how this works, let’s create a class called MyNumber, which contains a
primitive long as its field. It returns a sum of all the individual digits of its field as its
method hashCode(), as follows:

class MyNumber {
 long number;
 MyNumber(long number) {this.number = number;}
 public int hashCode() {
 int sum = 0;
 long num = number;
 do {
 sum += num % 10; num /= 10;
 }
 while(num != 0);
 return sum;
 }
}

The programmers
claim you’re in a

relationship and often call
each other.

No!! We don’t even
have each other’s
phone number.

Interviewer equals() hashCode()

Figure 1.25 Methods hashCode() and equals() don’t call each other.
Licensed to Mark Watson <nordickan@gmail.com>

61Overriding methods of class Object
Let’s assume you add the following keys and values in a HashMap:

Map<MyNumber, String> map = new HashMap<>();
MyNumber num1 = new MyNumber(1200);
MyNumber num2 = new MyNumber(2500);
MyNumber num3 = new MyNumber(57123);
map.put(num1, "John");
map.put(num2, "Mary");
map.put(num3, "Sam");

With the preceding keys, each bucket contains only one entry. When you request the
HashMap to retrieve a value, it would find the corresponding bucket using the key’s
hash-code value and then it retrieves the value. Now let’s add another key-value pair:

MyNumber num4 = new MyNumber(57123);
map.put(num4, "Kim");

Now the bucket with the hash-code value 18 has two String values. In this case, Hash-
Map would use the hashCode() value to identify the bucket and then call method
equals() to find the correct object. This explains why distinct hash-code values for
distinct values are preferred.

NOTE Chapter 4 explains in detail how the hashing algorithms in collec-
tion classes use methods hashCode() and equals().

OVERRIDING METHOD HASHCODE() CORRECTLY

Here’s the signature of method hashCode() as defined in class Object:

public native int hashCode();

To correctly override method hashCode(), you must follow the rules already discussed
in section 1.3. Watch out for exam questions that use the incorrect case for hash-
Code()—the correct name uses uppercase C. Figure 1.26 shows a fun way to remem-
ber this simple, but important, exam point.

Hash-code
value 3

Hash-code
value 7

Hash-code
value 18

Hash-code
value 18

I take all coding
seriously! That’s why

Code starts with capital
C in .hashCode()

hashCode()

Figure 1.26 The correct case
of hashCode() includes a
capital C.
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 1 Java class design
To override method hashCode() correctly, you must also abide by its contract, as men-
tioned in the Java documentation. For the exam, the following rules are important:

1 If two objects are equal according to method equals(Object), then calling
method hashCode() on each of the two objects must produce the same inte-
ger result.

2 It’s not required that if two objects are unequal according to method equals
(java.lang.Object), that calling method hashCode() on each of the two objects
must produce distinct integer results.

Let’s use a fun analogy to remember these rules, as shown in figure 1.27. Let’s com-
pare method equals() to being in love and method hashCode() to a physical address.
When two objects are in love with each other, they must reside at the same address
(this is what they think before they marry). Later, if they fall out of love, they might or
might not continue to reside at the same address.

 Figure 1.27 will make more sense as you work with the code examples in this section.
 Let’s revisit the previous example, including equals() and verifying the rules:

class MyNumber {
 long number;
 MyNumber(long number) {this.number = number;}

if x.equals(y)==true

x.hashCode()==
y.hashCode()
must be true

Before

marriage

x y

if x.equals(y)==false

x.hashCode() and

y.hashCode() can be

same or different

Post

breakup....

x y

If we are not
in love… we might

or reside
at the same address.

If we are in
love… we must reside
at the same address.

must

not

might not
might

Figure 1.27 Comparing equals() with being in love and hashCode() with an address. If two
objects are equal, they must return the same hashCode(). But if two objects return the same
hashCode(), they might not be equal.
Licensed to Mark Watson <nordickan@gmail.com>

63Overriding methods of class Object

”

 public int hashCode() {
 int sum = 0;
 long num = number;
 do {
 sum += num % 10; num /= 10;
 }
 while(num != 0);
 return sum;
 }
 public boolean equals(Object o) {
 if (o != null && o instanceof MyNumber)
 return (number == ((MyNumber)o).number);
 else
 return false;
 }
 public static void main(String args[]) {
 MyNumber n1 = new MyNumber(9);
 MyNumber n2 = new MyNumber(18);
 MyNumber n3 = new MyNumber(18);
 System.out.println
 (n1.equals(n2)+":"+n1.hashCode()+":"+n2.hashCode());
 System.out.println
 (n2.equals(n3)+":"+n2.hashCode()+":"+n3.hashCode());
 }
}

The preceding code abides by both the rules of the hashCode() contract, when
n2.equals(n3) returns true, n2.hashCode() and n3.hashCode() return the same
value. But when n1.equals(n2) returns false, n1.hashCode() and n2.hashCode()
might not return distinct values.

 Let’s modify the preceding code, so that hashCode() returns distinct values when
equals() returns false:

class MyNumber {
 long number;
 MyNumber(long number) {this.number = number;}
 public int hashCode() {
 return (int)number;
 }
 public boolean equals(Object o) {
 if (o != null && o instanceof MyNumber)
 return (number == ((MyNumber)o).number);
 else
 return false;
 }
 public static void main(String args[]) {
 MyNumber n1 = new MyNumber(9);
 MyNumber n2 = new MyNumber(18);
 MyNumber n3 = new MyNumber(18);
 System.out.println
 (n1.equals(n2)+":"+n1.hashCode()+":"+n2.hashCode());
 System.out.println
 (n2.equals(n3)+":"+n2.hashCode()+":"+n3.hashCode());
 }
}

Prints
“false:9:9”

Prints
“true:9:9”

Prints
“false:9:18”

Prints
“true:18:18
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 1 Java class design
NOTE Using a system-dependent value (like a memory address) is allowed
in hashCode(). But objects of such classes can’t be used as keys in dis-
tributed systems because equal objects (across systems) will return differ-
ent hash-code values.

OVERRIDING METHOD HASHCODE() INAPPROPRIATELY

Inappropriate overriding isn’t the same as incorrect overriding—the former won’t fail
compilation but can have issues with object retrieval. On the exam, watch out for
questions that will show code for hashCode(), equals(), or both, and query what hap-
pens when the class instances are used as keys in collection classes, like HashMap. In
this section, you’ll work with examples that override hashCode() correctly—syntacti-
cally, but not appropriately.

 In the previous section you learned why it’s important for method hashCode() that
two objects return the same value, if they’re equal as per method equals(). Failing
this condition, an object value will never be able to be retrieved from a HashMap. Let’s
see what happens when class MyNumber doesn’t return the same hashCode() values for
its equal objects:

class MyNumber {
 int primary, secondary;
 MyNumber(int primary, int secondary) {
 this.primary = primary;
 this.secondary = secondary;
 }
 public int hashCode() {
 return secondary;
 }
 public boolean equals(Object o) {
 if (o != null && o instanceof MyNumber)
 return (primary == ((MyNumber)o).primary);
 else
 return false;
 }
 public static void main(String args[]) {
 Map<MyNumber, String> map = new HashMap<>();
 MyNumber num1 = new MyNumber(2500, 100);
 MyNumber num2 = new MyNumber(2500, 200);
 System.out.println(num1.equals(num2));
 map.put(num1, "Shreya");
 System.out.println(map.get(num2));
 }
}

In the preceding code, even though the code at c prints true, confirming that
objects num1 and num2 are considered equal by equals(), the code at d prints null.
The reason for this? The hashCode() in MyNumber doesn’t return the same values for
its equal objects. In method hashCode(), the code at B uses secondary to calculate its
value, which isn’t used by equals().

Doesn’t print
same hashCode()
value for equal
objects

 b

Prints “true”—
objects num1
and num2 are
considered equal.

 c

Prints
“null” d
Licensed to Mark Watson <nordickan@gmail.com>

65Overriding methods of class Object
 Another rule of method hashCode() is that when it’s invoked on the same object
more than once during the execution of a Java application, hashCode() must consis-
tently return the same integer, provided no information used in the equals() com-
parisons on the object is modified. This integer doesn’t need to remain consistent
from one execution of an application to another execution of the same application.

 Let’s see what happens when hashCode() doesn’t return the same integer value
when it’s invoked on the same instance during the execution of a Java application:

class MyNumber {
 int number;
 MyNumber(int number) {this.number = number;}
 public int hashCode() {
 return ((int)(Math.random() * 100));
 }
 public boolean equals(Object o) {
 if (o != null && o instanceof MyNumber)
 return (number == ((MyNumber)o).number);
 else
 return false;
 }
 public static void main(String args[]) {
 Map<MyNumber, String> map = new HashMap<>();
 MyNumber num1 = new MyNumber(2500);
 map.put(num1, "Shreya");
 System.out.println(map.get(num1));
 }
}

In the preceding code, when you add key-value num1, "Shreya" to HashMap, you most
likely won’t be able to retrieve Shreya using the same key, num1. This is because each
call to num1.hashCode() might return a different value (the chances of returning the
same hashCode() values aren’t ruled out, but are very low).

INEFFICIENT OVERRIDING OF HASHCODE()
In real projects, always strive for generating distinct values in hashCode(). Distinct
hashCode() values and faster object access are directly related in collection objects
that use hashing functions to retrieve and store values. Here’s an example of ineffi-
cient overriding of method hashCode():

class MyNumber {
 long number;
 MyNumber(long number) {this.number = number;}
 public int hashCode() {
 return 1654;
 }
}

In the preceding code, method hashCode() returns the same hash-code value for all
the objects of MyNumber. This essentially stores all the values in the same bucket, if

Prints random hash-
code values on each
invocation

Prints “null”
(most probably)
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 1 Java class design
objects of the above class are used as keys in class HashMap (or in similar classes that
use hashing), and reduces it to a linked list, drastically reducing its efficiency.

EXAM TIP Read the questions on method hashCode() carefully. You
might be questioned on incorrect, inappropriate, or inefficient overriding
of hashCode().

EFFECTS OF USING MUTABLE OBJECTS AS KEYS

Java recommends using immutable objects as keys for collection classes that use the hash-
ing algorithm. What if you don’t? The exam might query you on this important question.

 Revisiting the example used in the previous section, what happens if the value of
the field number is changed during the course of the application? In this case, you’ll
never be able to retrieve the corresponding value in the HashMap, because the HashMap
will not be able to look for the right bucket:

class MyNumber {
 int number;
 MyNumber(int number) {this.number = number;}
 public int hashCode() {
 return number;
 }
 public boolean equals(Object o) {
 if (o != null && o instanceof MyNumber)
 return (number == ((MyNumber)o).number);
 else
 return false;
 }
 public static void main(String args[]) {
 Map<MyNumber, String> map = new HashMap<>();
 MyNumber num1 = new MyNumber(2500);
 map.put(num1, "Shreya");
 num1.number = 100;
 System.out.println(map.get(num1));
 }
}

In the preceding code, the field used to determine the hash code of an object is mod-
ified in main(). With the modified key, HashMap won’t be able to retrieve its corre-
sponding object.

 In the next section, you’ll cover when, why, and how you can cast an instance to
another type and use the instanceof operator.

1.5 Casting and the instanceof operator

Imagine that you enroll yourself for flying classes, where you expect to be trained by
an experienced pilot. Even though your trainer might also be a swimming champion,

Add value Shreya
to HashMap using
key num1.

Modify field number
of key num1, which is
used by equals() and
hashCode().

Prints “null”—can’t
locate object with
modified key.

[1.4] Use the instanceof operator and casting
Licensed to Mark Watson <nordickan@gmail.com>

67Casting and the instanceof operator
you need not know about it. You need not care about the characteristics and behavior
that’s not related to flying. Now think of a situation when you do care about the swim-
ming skills of your instructor. Imagine that when you’re attending the flying classes,
your friend enquires whether your flying instructor also conducts swimming classes and,
if yes, whether she would be willing to assist your friend. In this case, a need arises to
enquire about the swimming skills (additional existing skills) of your flying instructor.

 Similarly, in Java, you can refer to an object of a derived class using a reference
variable of its base class or implemented interface. But you might need to access the
members of the derived class, which aren’t defined in its base class or the imple-
mented interface. Here’s when casting can help. Casting shows how an object of a
type can be used as an object of another type, either implicitly or explicitly. The
instanceof operator is used to logically test whether an object is a valid type of a
class or an interface.

1.5.1 Implicit and explicit casting

Let’s start with the definitions of the interface Printable and classes ShoppingItem
and Book to show implicit and explicit casting. Class Book extends class ShoppingItem
and implements the interface Printable as follows:

public interface Printable {
 void print();
}
public class ShoppingItem {
 public void description() {
 System.out.println("Shopping Item");
 }
}
public class Book extends ShoppingItem implements Printable {
 public void description() {
 System.out.println("Book");
 }
 public void print() {
 System.out.println("Printing book");
 }
}

Figure 1.28 shows the inheritance relationship between these classes.

ShoppingItem

Book

<<extends>>

Implements

Printable

Figure 1.28 Relationship between
classes ShoppingItem and Book
and the interface Printable
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 1 Java class design
Now let’s create variables of type Printable and ShoppingItem and assign to them
objects of the type Book:

class Shopping {
 public static void main(String args[]) {
 Book book = new Book();
 Printable printable = book;
 printable.print();

 ShoppingItem shoppingItem = book;
 shoppingItem.description();
 }
}

The code at B shows how an object of type book is implicitly referred to, or casted to,
type Printable. The code at c shows how an object of type book is implicitly referred
to, or casted to, type ShoppingItem. Objects of subclasses can be implicitly casted to
their base classes or the interfaces that they implement.

 As shown in the preceding code block for the class Book, you can see that Book
defines a method description(). Let’s try to access it using the printable variable:

class Shopping {
 public static void main(String args[]) {
 Printable printable = new Book();
 printable.description();
 }
}

The code at B fails to compile with the following message:

Shopping.java:4: error: cannot find symbol
 printable.description();
 ^
 symbol: method description()
 location: variable printable of type Printable
1 error

Because the type of the reference variable printable is Printable, the compiler refers
to the definition of the interface Printable when you call method description() on
printable. Figure 1.29 shows what happens behind the scenes.

 But you know that the actual object is of type Book. Is there a way to treat the refer-
ence variable printable as a Book? Yes, there is! You need to inform the compiler you
know what you’re doing by using an explicit cast, as follows (see also figure 1.30):

class Shopping {
 public static void main(String args[]) {
 Printable printable = new Book();
 ((Book)printable).description();
 }
}

Implicit
casting

 b

Acceptable c

Won’t compile—can’t
access method
description() in Printable.

 b
Licensed to Mark Watson <nordickan@gmail.com>

69Casting and the instanceof operator
printable.description();

interface Printable{
public void print();

}

Compilation

error

Java

compiler

In

Consult

Out

I just consulted interface
Printable.It doesn’t define

method description().

Figure 1.29 The Java compiler doesn’t compile code if you try to access description(), defined
in class Book, by using a variable of the interface Printable.

((Book)printable).description();

class Book extends ShoppingItem
implements Printable{

public void description(){
....

}
....
....
....

}

Java

compiler

In

Consult

Out

Okay! So now I must consult class
Book to determine the existence

of method description().

Compilation

successful

Figure 1.30 Explicit casting can be used to access description() defined in class Book by
using a variable of the interface Printable.
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 1 Java class design
In the preceding code, (Book) is placed just before the name of the variable, printable,
to cast it to Book. Note how a pair of parentheses surrounds (Book)printable. Casting
in this line of code is another method of telling the compiler that you know that the
actual object being referred to is Book, even though you’re using a reference variable
of type Printable.

1.5.2 Combinations of casting
To work with a combination of casting, let’s work with a set of classes and interfaces, as
shown in figure 1.31.

ASSIGNMENTS WITH IMPLICIT CASTING

Implicit upcasting is allowed. You can assign a reference variable of a derived class to a
reference variable of its own type, its base classes, and the interfaces that it implements
as follows:

public class UpcastWithImplicitCasting {
 public static void main(String[] arguments) {
 Book book = new Book();

 Chair chair = book;
 ShoppingItem shoppingItem = book;
 Printable printable = book;
 Object object = book;

 Chair chair2 = new Chair();
 Printable printable2 = chair;
 }
}

BookChair

<<extends>>
<<extends>> Implements

Printable

interface Printable {
void print();

}
class ShoppingItem {

public void description() {
System.out.println("Shopping Item");

}
}
class Chair extends ShoppingItem {

public void description() {
System.out.println("Chair");

}
}
class Book extends ShoppingItem

implements Printable {
public void description() {

System.out.println("Book");
}
public void print() {

System.out.println("Printing book");
}

}

ShoppingItem

Figure 1.31 Set of classes and interfaces, with their UML representation

Won’t compile—both Book and
Chair extend ShoppingItem, but
don’t belong to a single line of
inheritance.

Okay—a book is
a ShoppingItem.Okay—a

book is
Printable.

Okay—a book
is an Object.

Won’t compile—Chair
doesn’t implement Printable.
Licensed to Mark Watson <nordickan@gmail.com>

71Casting and the instanceof operator

c
Sho
Implicit downcasting isn’t allowed. You can’t assign reference variables of a base class
to reference variables of its derived classes or to the interfaces that it doesn’t imple-
ment. For example

public class DowncastWithImplicitCasting {
 public static void main(String[] arguments) {
 ShoppingItem shoppingItem3 = new ShoppingItem();

 Book book3 = shoppingItem3;
 Chair chair3 = shoppingItem3;
 Printable printable3 = shoppingItem3;

 Object object3 = shoppingItem3;
 }
}

EXAM TIP In the absence of explicit casting, you’ll never get ClassCast-
Exception—a RuntimeException.

ASSIGNMENT WITH EXPLICIT CASTING

Both implicit and explicit upcasting are allowed. So, for the exam, let’s focus on
explicit downcasting.

 Java recommends programming to an interface, which implies using reference
variables of a base class or implementing interfaces to refer to the actual objects. But
you might need to cast an object referred by a base class to its specific type. You can
downcast an object to a type that falls in its inheritance tree using explicit casting. For
a nonfinal class, you can explicitly cast its object to any interface type, even if the class
doesn’t implement the interface. Let’s see what happens when you accept a method
parameter of type ShoppingItem and try to cast it explicitly to other types:

public class DowncastWithExplicitCasting {
 static void downCast(ShoppingItem item) {
 Book book = (Book)item;
 Chair chair = (Chair)item;
 Printable printable = (Printable)item;
 }
 public static void main(String args[]) {
 ShoppingItem item = new ShoppingItem();
 downCast(item);
 }
}

The code at B and c compiles with an explicit cast. But its individual lines will fail at
runtime. At runtime, Java can determine the exact type of the object being casted. It
throws a ClassCastException if you’re trying to cast types that aren’t allowed.

NOTE For the exam, you need to be very clear whether an explicit cast will
result in a compilation error or a runtime exception (ClassCastException).

Won’t compile—a
ShoppingItem isn’t
necessarily a book.

Won’t
ompile—a
ppingItem

isn’t
necessarily

a chair.

Won’t compile—
a ShoppingItem
isn’t Printable.

Okay—a chair
is an Object.

Compiles with casting—will
throw ClassCastException;
can’t downcast instance of
parent object to subclass type.

 b

Compiles with casting—will
throw ClassCastException;
ShoppingItem doesn’t
implement Printable. c
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 1 Java class design
Does the preceding code make you wonder why an explicit cast from a ShoppingItem
instance to Printable is permitted, even though ShoppingItem doesn’t implement
Printable? It’s to allow subclasses of ShoppingItem to implement Printable and use
the reference variable of type Printable to refer to its instances. So what happens if
you try to cast a final class’s instance to an interface it doesn’t implement? The code
won’t compile:

interface Printable {}
final class Engineer {}
class Factory {
 public static void main(String[] args) {
 Engineer engineer = new Engineer();
 Printable printable = (Printable)engineer;
 }
}

EXAM TIP Class String is defined as a final class. Watch out for ques-
tions that explicitly cast String objects to interfaces they don’t imple-
ment. They won’t compile.

What about casting null to a type? You can explicitly cast null to any type without a
compilation error or runtime exception (ClassCastException):

static void castNull() {
 Book book = (Book)null;
 Chair chair = (Chair)null;
 Printable printable = (Printable)null;
}

EXAM TIP You can explicitly cast null to any type. It won’t generate a
compilation error or throw a ClassCastException.

ACCESS OF MEMBERS WITH EXPLICIT CASTING

You can access methods and variables of explicitly casted variables in single or multi-
ple lines of code:

public class AccesMembersWithExplicitCasting {
 static void accessMember(ShoppingItem item) {
 Book book = (Book)item;
 book.description();

 ((Book)item).description();
 }
}

Here the code at B casts a reference item to Book in one line and then accesses its
method description(). At c, note how the object referred by item is casted-
enclosed within () to call its member method description(). The inclusion in () is
due to the fact that the dot operator has precedence over the casting parentheses.

Won’t compile—can’t
cast final class Engineer’s
instance to Printable.

Cast a reference variable
and access its method
in multiple steps.

 b

Cast objects and call their
members in a single step. c
Licensed to Mark Watson <nordickan@gmail.com>

73Casting and the instanceof operator
EXAM TIP If you cast an instance to a class outside its inheritance tree,
you’ll get a compiler error. If you cast an instance to a class within its
inheritance tree, but the types don’t match at runtime, the code will
throw a ClassCastException.

In the previous examples, you learned how mismatching of objects and explicit cast-
ing can throw a ClassCastException. In the next section, you’ll see how you can pre-
vent this by using the instanceof operator to safely cast objects to a type.

1.5.3 Using the instanceof operator

The instanceof operator is used to logically test whether an object is a valid type of a
class or an interface. You should proceed with explicit casting only if this operator
returns true, or you risk running into a ClassCastException at runtime. For example,
consider equals(), which defines a method parameter of type Object. When you over-
ride equals() to determine the equality of objects of your class, you might need to
query the state of the accepted argument before you move forward with an explicit cast:

class Course {
 String title;
 Course(String t) {title = t;}
 public boolean equals(Object obj) {
 if (obj instanceof Course) {
 Course c = (Course)obj;
 return (title.equals(c.title));
 }
 else
 return false;
 }
}

The code at B ensures that the type of the accepted method parameter—that is,
obj—is Course, before it moves forward with the explicit casting of obj to Course c.

Points to remember for casting
■ An instance can be implicitly casted to its superclasses or interfaces that it

implements.
■ An instance of a nonfinal class can be explicitly casted to any interface at com-

pile time.
■ Classes in the same inheritance tree can be casted to each other using explicit

casting at compile time.
■ Objects of classes that don’t form part of the same inheritance tree cannot

be casted.
■ Casting to an interface is successful at runtime if the class implements the

interface.
■ Casting to a derived class type is successful at runtime if the casted object is

actually a type of the derived class to which it’s casted.

Use instanceof to
verify if obj is an
instance of Course.

 b

Explicitly cast
obj to Course. c
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 1 Java class design
In the absence of this check, the code at c would execute for all non-null method
parameters, which can result in a ClassCastException if the object passed to equals()
isn’t of type Course.

EXAM TIP The operator instanceof returns false if the reference vari-
able being compared to is null.

In the previous example, the type of method parameter to equals() is Object, which
is the parent class of all classes. But if the instanceof operator uses inconvertible
types, the code won’t compile. In the following example, the instanceof operator
uses a reference variable of type Course to test whether the object that it refers to can
be an instance of class Student. Because Course and Student are unrelated, class Test
won’t compile:

class Course {}
class Student {}
public class TestInstanceof {
 public static void main(String[] args) {
 Course c = new Course();
 Student s = new Student();
 System.out.println(c instanceof Student);
 }
}

EXAM TIP The instanceof operator never throws a runtime exception; it
returns either true or false. If the instanceof operator uses inconvert-
ible types, the code won’t compile.

The instanceof operator is preceded by a value (literal value or a variable name) and
is followed by a class, interface, or enum name. It’s acceptable to use the literal value
null with the instanceof operator:

class Course {
 public static void main(String[] args) {
 System.out.println(null instanceof Course);
 }
}

EXAM TIP The literal value null isn’t an instance of any class. So
<referenceVariable> instanceof <ClassName> will return false when-
ever the <referenceVariable> is null.

Using instanceof versus getClass in method equals()
Using instanceof versus getClass is a common subject of debate about proper use
and object orientation in general (including performance aspects, design patterns,
and so on). Though important, this discussion is beyond the scope of this book. If
you’re interested in further details, refer to Josh Bloch’s book Effective Java.

Won’t compile—can’t use
instanceof to compare
inconvertible types.

Prints “false”—null
can’t be an instance
of any class.
Licensed to Mark Watson <nordickan@gmail.com>

75Packages
Note that o in instanceof is lowercase; take a look at figure 1.32 for a fun way of remem-
bering this.

 Next we’ll move forward with defining the Java classes and interfaces in named
packages. This is a common requirement in real Java applications. So let’s get started.

1.6 Packages

In this section, you’ll learn what Java packages are and how to create them. You’ll use
the import statement, which enables you to use simple names for classes and inter-
faces defined in separate packages.

1.6.1 The need for packages

You can use packages to group together a related set of enums, classes, and interfaces.
Packages also provide namespace management. You can create separate packages to
define classes for separate projects, such as Android games and online healthcare sys-
tems. Further, you can create subpackages within these packages, such as separate sub-
packages for GUIs, database access, networking, and so on.

NOTE In real-life projects, you’ll never work with a package-less class or
interface. Almost all organizations that develop software have strict pack-
age-naming rules, which are often documented.

If you don’t include an explicit package statement in a class or an interface, it’s part of
a default package.

How would you help
your fans remember
that o is lowercase
in instanceof?

I’m a Java keyword
and all Java keywords

are lowercase.

Interviewer instanceof

Figure 1.32 Remember that o in instanceof is lowercase.

[1.7] Use package and import statements
Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 1 Java class design
1.6.2 Defining classes in a package using the package statement

You can define classes and interfaces in a package by using the package statement as
the first statement in your class or interface (only comments can precede the package
statement). Here’s an example:

package certification;
class ExamQuestion {
 //..code
}

The class in the previous code defines a class ExamQuestion in the certification
package. You can define an interface, MultipleChoice, in a similar manner:

package certification;
interface MultipleChoice {
 //..code
}

Figure 1.33 shows the UML representation of the
certification package, with class ExamQuestion and
interface MultipleChoice.

 The name of the package in the previous examples
is certification. You may use such names for small
projects that contain only a few classes and interfaces,
but it’s common for organizations to use subpackages
to define all their classes. For example, if folks at
Oracle define a class to store exam questions for a Java
Associate exam, they might use the package name
com.oracle.javacert.associate. For subpackages, the
package statement includes the complete package name.
Figure 1.34 shows its UML representation along with
the corresponding class definition.

NOTE A fully qualified name for a class or interface is formed by prefix-
ing its name with its package name (separated by a period). The fully
qualified name of the ExamQuestion class is certification.ExamQues-
tion in figure 1.33 and com.oracle.javacert.associate.ExamQues-
tion in figure 1.34.

certification

ExamQuestion

MultipleChoice

Figure 1.33 A UML
representation of the
certification package,
class ExamQuestion, and
interface MultipleChoice

com.oracle.javacert.associatepackage com.oracle.javacert.associate;
class ExamQuestion {

// variables and methods
} ExamQuestion

Figure 1.34 A subpackage and its corresponding class definition
Licensed to Mark Watson <nordickan@gmail.com>

77Packages
DIRECTORY STRUCTURE AND PACKAGE HIERARCHY

The hierarchy of the classes defined in packages should match the hierarchy of the
directories in which these classes and interfaces are defined in the code. For example,
class ExamQuestion in the certification package should be defined in a directory
with the name certification. The name of the certification directory and its location
are governed by the rules shown in figure 1.35.

For the package example shown in figure 1.35, note that there isn’t any constraint on
the location of the base directory in which the directory structure is defined. Examine
figure 1.36.

Rules to remember about packages
Here are a few important rules about packages:

■ Per Java naming conventions, package names should all be in lowercase.
■ The package and subpackage names are separated using a dot (.).
■ Package names follow the rules defined for valid identifiers in Java.
■ For packaged classes and interfaces, the package statement is the first state-

ment in a Java source file (a .java file). The exception is that comments can
appear before or after a package statement.

■ There can be a maximum of one package statement per Java source code file
(.java file).

■ All the classes and interfaces defined in a Java source code file will be defined
in the same package. There’s no way to define them in different packages.

This can be any directory.

This structure should match the

package hierarchy, certification.

Figure 1.35 Matching directory structure and package hierarchy

This can be any directory.

This structure should

match the package hierarchy,

com.oracle.javacert.associate.

Figure 1.36 There’s no constraint on the location of the base
directory to define directories corresponding to package hierarchy.
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 1 Java class design
SETTING THE CLASS PATH FOR CLASSES IN PACKAGES

To enable the JRE to find your classes, interfaces, and enums defined in packages, add
the base directory that contains your Java code to the class path.

 For example, to enable the JRE to locate the certification.ExamQuestion class
from the previous examples, add the directory C:\MyCode to the class path. To enable
the JRE to locate class com.oracle.javacert.associate.ExamQuestion, add the
directory C:\ProjectCode to the class path.

 You don’t need to bother setting the class path if you’re working with an integrated
development environment (IDE). But I strongly encourage you to learn how to work
with a simple text editor and how to set a class path. This can be particularly helpful
with your projects at work. I’ve also witnessed many interviewers querying candidates
on the need for class paths.

1.6.3 Using simple names with import statements

The import statement enables you to use simple names instead of using fully qualified
names for classes and interfaces defined in separate packages. Let’s work with an exam-
ple, in which classes LivingRoom and Kitchen are defined in the package home and
classes Cubicle and ConferenceHall are defined in the package office. Class Cubicle
uses (is associated to) class LivingRoom in the package home, as shown in figure 1.37.

Class Cubicle can refer to class LivingRoom without using an import statement:

package office;
class Cubicle {
 home.LivingRoom livingRoom;
}

Class Cubicle can use the simple name for class LivingRoom by using the import
statement:

package office;
import home.LivingRoom;

class Cubicle {
 LivingRoom livingRoom;
}

home

LivingRoom

Kitchen

office

Cubicle

ConferenceHall

Figure 1.37 A UML
representation of
classes LivingRoom
and Cubicle, defined
in separate packages,
with their associations

For no import statement, use fully qualified
name to refer to LivingRoom from package home

Import
statement

No need to use fully qualified
name of LivingRoom
Licensed to Mark Watson <nordickan@gmail.com>

79Packages
NOTE The import statement doesn’t embed the contents of the imported
class in your class, which means that importing more classes doesn’t
increase the size of your own class. It lets you use the simple name for a
class or interface defined in a separate package.

1.6.4 Using packages without using the import statement

Classes in the java.lang package are automatically imported in all the Java classes,
interfaces, and enums. To use simple names for classes, interfaces, and enums from
other packages, you should use the import statement. It’s possible to use a class or
interface from a package without using the import statement by using its fully quali-
fied name:

class AnnualExam {
 certification.ExamQuestion eq;
}

But using a fully qualified class name can clutter your code if you use multiple vari-
ables of interfaces and classes defined in other packages. Don’t use this approach in
real projects.

 For the exam, it’s important to note that you can’t use the import statement to use
multiple classes or interfaces with the same names from different packages. For exam-
ple, the Java API defines class Date in two commonly used packages: java.util and
java.sql. To define variables of these classes in a class, use their fully qualified names
with the variable declaration:

class AnnualExam {
 java.util.Date date1;
 java.sql.Date date2;
}

An attempt to use an import statement to import both these classes in the same class
will not compile:

import java.util.Date;
import java.sql.Date;
class AnnualExam { }

In the preceding code, you want to use a shortcut (Date) but your shortcut refers to
either java.util.Date or java.sql.Date. So the Java compiler has no way of
knowing which is which (both have Date as their simple name), therefore the com-
piler error.

Missing import
statement

Define a variable of ExamQuestion
by using its fully qualified name.

Missing import
statement

Variable of type
java.util.DateVariable of type

java.sql.Date

Code to import classes with same name
from different packages won’t compile
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 1 Java class design
1.6.5 Importing a single member versus all members of a package

You can import either a single member or all members (classes and interfaces) of a pack-
age using the import statement. First, revisit the UML notation of the certification
package, as shown in figure 1.38.

 Examine the following code for class AnnualExam:

import certification.ExamQuestion;
class AnnualExam {
 ExamQuestion eq;
 MultipleChoice mc;
}

By using the wildcard character, an asterisk (*), you can import all of the public mem-
bers, classes, and interfaces of a package. Compare the previous class definition with
the following definition of class AnnualExam:

import certification.*;
class AnnualExam {
 ExamQuestion eq;
 MultipleChoice mc;
}

When you work with an IDE, it may automatically add import statements for classes
and interfaces that you reference in your code.

1.6.6 The import statement doesn’t import the whole package tree

You can’t import classes from a subpackage by using an asterisk in the import state-
ment. For example, the UML notation in figure 1.39 depicts the package com.oracle
.javacert with class Schedule and two subpackages, associate and webdeveloper.
The associate package contains class ExamQuestion, and the webdeveloper package
contains class MarkSheet.

 The following import statement will import only the Schedule class; it won’t
import classes ExamQuestion and MarkSheet:

import com.oracle.javacert.*;

certification

ExamQuestion

MultipleChoice Figure 1.38 A UML representation
of the certification package

Imports only
ExamQuestion

Compiles
okayWill not

compile

Imports all classes and
interfaces from certification

Compiles
okayAlso compiles

okay

Imports
Schedule only
Licensed to Mark Watson <nordickan@gmail.com>

81Packages
Similarly, the following import statement will import all the classes from the associ-
ate and webdeveloper packages:

import com.oracle.javacert.associate.*;
import com.oracle.javacert.webdeveloper.*;

1.6.7 Importing classes from the default package

What happens if you don’t include a package statement in your class or interface? In
this case, they become part of a default, no-name package. This default package is auto-
matically imported in the Java classes and interfaces defined within the same directory
on your system.

 For example, classes Person and Office, which aren’t defined in an explicit pack-
age, can use each other if they’re defined in the same directory:

class Person {
 // code
}
class Office {
 Person p;
}

EXAM TIP Members of a named package can’t access classes and inter-
faces defined in the default package.

1.6.8 Static imports

You can import an individual static member of a class or an interface, or all its static
members, by using the import static statement. Though accessible using an instance,
the static members are usually accessed by prefixing their name with the class or inter-
face names. By using static import, you can drop the prefix and just use the name of
the static variable or method.

com.oracle.javacert

Schedule

associate

ExamQuestion

webdeveloper

MarkSheet
Figure 1.39 A UML representation
of the com.oracle.javacert
package and its subpackages

Imports
ExamQuestion only

Imports
MarkSheet only

Not defined in an
explicit package

Person accessible
in Office
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 1 Java class design
 In the following code, class ExamQuestion defines a public static variable named
marks and a public static method named print():

package certification;
public class ExamQuestion {
 static public int marks;
 public static void print() {
 System.out.println(100);
 }
}

Variable marks can be accessed in class AnnualExam using the import static state-
ment. The order of the keywords import and static can’t be reversed:

package university;
import static certification.ExamQuestion.marks;
class AnnualExam {
 AnnualExam() {
 marks = 20;
 }
}

EXAM TIP This feature is called static imports, but syntax is import static.

To use all public and static members of class ExamQuestion in class AnnualExam with-
out importing each of them individually, you can use an asterisk with the import
static statement:

package university;
import static certification.ExamQuestion.*;
class AnnualExam {
 AnnualExam() {
 marks = 20;
 print();
 }
}

Because variable marks and method print() are public, they’re accessible to class
AnnualExam. By using import static you don’t have to prefix them with their class
name. But if they were defined using any other access modifier, they wouldn’t be
accessible in AnnualExam because both these classes are defined in separate packages
and AnnualExam doesn’t inherit ExamQuestion.

1.7 Summary
This chapter covers the basic building blocks of the Java class design, starting with
access modifiers, and then overloading and overriding methods, creating packages,
and using classes from other packages.

 As a Java programmer, you should understand the role of access modifiers in
designing your classes. We covered how access modifiers enable a class to control who
can access it, to what extent, and how.

Public static
variable marks

Public static
method print()

Correct statement is
import static, not
static importAccess variable marks

without prefixing it
with its class name

Imports all static
members of
ExamQuestion

Uses marks and print() without
prefixing them with their class names
Licensed to Mark Watson <nordickan@gmail.com>

83Review notes
 Efficient design and implementation of an application also depends on correct
and appropriate overloaded and overridden methods. You witnessed multiple exam-
ples on the need for overloading and overriding methods, including the correct
ingredients. We also covered why all the methods of a base class can’t be overridden.

 A discussion of the nonfinal methods of class java.lang.Object, which is the par-
ent class of all the Java classes, showed you why and how to override its methods. The
methods of class Object are called by various other classes and JRE, which makes it
crucial for a developer to override the relevant methods from class Object before
shipping them off to be used by other people.

 You also learned how you can use casting to refer to specific behavior of derived class
objects when they’re referred to their base class references. The instanceof operator is
used to logically test whether an object is a valid type of a class or an interface.

 In the final section, we worked with package and import statements. It’s important
to group your classes, interfaces, enums, and other Java entities depending on their
functionality. In real programming projects, you’d always work with classes organized
in packages.

REVIEW NOTES
This section lists the main points covered in this chapter.

Java access modifiers

■ The access modifiers control the accessibility of your class and its members out-
side the class and package.

■ Access modifiers defined by Java are public, protected, and private. In the
absence of an explicit access modifier, a member is defined with the default
access level.

■ The public access modifier is the least restrictive access modifier.
■ Classes and interfaces defined using the public access modifier are accessible

to related and unrelated classes outside the package in which they’re defined.
■ The members of a class defined using the protected access modifier are acces-

sible to classes and interfaces defined in the same package and to all derived
classes, even if they’re defined in separate packages.

■ The members of a class defined without using an explicit access modifier are
defined with package accessibility (also called default accessibility).

■ The members with package access are accessible only to classes and interfaces
defined in the same package.

■ A class defined using default access can’t be accessed outside its package.
■ The private members of a class are only accessible to itself.
■ The private access modifier is the most restrictive access modifier.
■ A top-level class, interface, or enum can only be defined using the public or

default access. They can’t be defined using protected or private access.
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 1 Java class design
■ Method parameters and local variables can never be defined using an explicit
access modifier. They don’t have access control–only scope. Either they’re in
scope or out of scope.

■ If accessibility of an existing Java entity or its member is decreased, it can break
others’ code.

Overloaded methods and constructors

■ Overloaded methods are methods with the same name but different method
parameter lists.

■ A class can overload its own methods and inherited methods from its base class.
■ Overloaded methods accept different lists of arguments.
■ The argument lists of overloaded methods can differ in terms of change in the

number, type, or position of parameters that they accept.
■ Overloaded methods are bound at compile time. Unlike overridden methods

they’re not bound at runtime.
■ A call to correctly overloaded methods can also fail compilation if the compiler

is unable to resolve the call to an overloaded method.
■ Overloaded methods might define a different return type or access or nonac-

cess modifier, but they can’t be defined with only a change in their return types
or access or nonaccess modifiers.

■ Overloaded constructors must be defined using different argument lists.
■ Overloaded constructors can’t be defined by just a change in the access modifiers.
■ Overloaded constructors can be defined using different access modifiers.
■ A constructor can call another overloaded constructor by using the keyword this.
■ A constructor can’t invoke another constructor by using its class’s name.
■ If present, the call to another constructor must be the first statement in a

constructor.

Method overriding and virtual method invocation

■ Method overriding is an OOP language feature that enables a derived class to
define a specific implementation of an existing base class method to extend its
own behavior.

■ A derived class can override an instance method defined in a base class by
defining an instance method with the same method signature.

■ Whenever you intend to override methods in a derived class, use the annotation
@Override. It will warn you if a method can’t be overridden or if you’re actually
overloading a method rather than overriding it.

■ Overridden methods can define the same or covariant return types.
■ A derived class can’t override a base class method to make it less accessible.
■ Overriding methods must define exactly the same method parameters; the use

of a subclass or parent class results in overloading methods.
Licensed to Mark Watson <nordickan@gmail.com>

85Sample exam questions
■ Static methods can’t be overridden. They’re not polymorphic and they’re bound
at compile time.

■ In a derived class, a static method with the same signature as that of a static
method in its base class hides the base class method.

■ A derived class can’t override the base class methods that aren’t accessible to it,
such as private methods.

■ Constructors cannot be overridden because a base class constructor isn’t inher-
ited by a derived class.

■ A method that can be overridden by a derived class is called a virtual method.
■ Virtual method invocation is invocation of the correct method–determined

using the object type and not its reference.

Java packages

■ You can use packages to group together a related set of classes and interfaces.
■ The package and subpackage names are separated using a period.
■ Classes and interfaces in the same package can access each other.
■ An import statement allows the use of simple names for classes and interfaces

defined in other packages.
■ You can’t use the import statement to access multiple classes or interfaces with

the same names from different packages.
■ You can import either a single member or all members (classes and interfaces)

of a package using the import statement.
■ You can’t import classes from a subpackage by using the wildcard character, an

asterisk (*), in the import statement.
■ A class from the default package can’t be used in any named package, regard-

less of whether it’s defined within the same directory or not.
■ You can import an individual static member of a class or all its static members

by using an import static statement.
■ An import statement can’t be placed before a package statement in a class. Any

attempt to do so will cause the compilation of the class to fail.
■ The members of the default package are accessible only to classes or interfaces

defined in the same directory on your system.

SAMPLE EXAM QUESTIONS

Q 1-1. Which of the following points should you incorporate in your application design?

a Create related classes in a single package.
b Don’t make derived classes overload methods from their base class.
c Expose the functionality of your classes using public methods.
d Create private methods to work as helper methods for the public methods.
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 1 Java class design
Q 1-2. What is the output of the following code?

class Wood {
 public Wood() {
 System.out.println("Wood");
 }
 {
 System.out.println("Wood:init");
 }
}
class Teak extends Wood {
 {
 System.out.println("Teak:init");
 }
 public Teak() {
 System.out.println("Teak");
 }
 public static void main(String args[]) {
 new Teak();
 }
}

a Wood:init
Wood
Teak:init
Teak

b Wood
Wood:init
Teak:init
Teak

c Wood:init
Teak:init
Wood
Teak

d Wood
Wood:init
Teak
Teak:init

Q 1-3. Examine the following code and select the answer options that are correct
individually.

class Machine {
 void start() throws Exception { System.out.println("start machine"); }
}
class Laptop {
 void start() { System.out.println("Start Laptop"); }
 void start(int ms) { System.out.println("Start Laptop:"+ms); }
}

a Class Laptop overloads method start().
b Class Laptop overrides method start().
c Class Machine overrides method start().
Licensed to Mark Watson <nordickan@gmail.com>

87Sample exam questions
d Class Machine won’t compile.
e Class Laptop won’t compile.

Q 1-4. Given that classes Class1 and Class2 exist in separate packages and source
code files, examine the code and select the correct options.

package pack1;
public class Class1 {
 protected String name = "Base";
}

package pack2;
import pack1.*;
class Class2 extends Class1{
 Class2() {
 Class1 cls1 = new Class1(); //line 1
 name = "Derived"; //line 2
 System.out.println(cls1.name); //line 3
 }
}

a Class2 can extend Class1 but it can’t access the name variable on line 2.
b Class2 can’t access the name variable on line 3.
c Class2 can’t access Class1 on line 1.
d Class2 won’t compile.
e Line 3 will print Base.
f Line 3 will print Derived.

Q 1-5. Select the correct option.

a The declaration of private variables to store the state of an object is encouraged.
b The protected members of a class aren’t accessible outside the package in which

the class is defined.
c The public members of a class that’s defined with default access can be accessed

outside the package.
d If you change the signature or implementation of a private method, other classes

that use this method cease to compile.

Q 1-6. Given the following code

interface Scavenger{}
class Bird{}
class Parrot extends Bird{}
class Vulture extends Bird implements Scavenger{}

class BirdSanctuary {
 public static void main(String args[]) {
 Bird bird = new Bird();
 Parrot parrot = new Parrot();
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 1 Java class design
 Vulture vulture = new Vulture();
 //INSERT CODE HERE
 }
}

In which of the following options will the code, when inserted at //INSERT CODE HERE,
throw a ClassCastException?

a Vulture vulture2 = (Vulture)parrot;

b Parrot parrot2 = (Parrot)bird;

c Scavenger sc = (Scavenger)vulture;

d Scavenger sc2 = (Scavenger)bird;

Q 1-7. Assuming that all of the following classes are defined in separate source code
files, select the incorrect statements.

package solarfamily;
public class Sun {
 public Sun() {}
}

package stars;
public class Sun {
 public Sun() {}
}

package skyies;
import stars.Sun; // line1
import solarfamily.Sun; // line2
class Sky {
 Sun sun = new Sun(); // line 3
}

a Code compilation fails at line 1.
b Code compilation fails at line 2.
c Code compilation fails at line 3.
d The code compiles successfully and class Sky creates an object of class Sun from

the stars package.
e The code compiles successfully and class Sky creates an object of class Sun from

the solarfamily package.

Q 1-8. Select the correct options.

class Color {
 String name;
 Color(String name) {this.name = name;}
 public String toString() {return name;}
 public boolean equals(Object obj) {
 return (obj.toString().equals(name));
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

89Sample exam questions
a Class Color overrides method toString() correctly.
b Class Color overrides method equals() correctly.
c Class Color fails to compile.
d Class Color throws an exception at runtime.
e None of the above.

Q 1-9. Given the following code

class Book {
 String isbn;
 Book(String isbn) {this.isbn = isbn;}
 public int hashCode() {
 return 87536;
 }
}

Select the correct option.

a Objects of the class Book can never be used as keys because the corresponding
objects wouldn’t be retrievable.

b Method hashCode() is inefficient.
c Class Book will not compile.
d Though objects of class Book are used as keys, they will throw an exception

when the corresponding values are retrieved.

Q 1-10. What is the output of the following code?

class Wood {
 String wood = "Wood";
 public Wood() {
 wood = "Wood";
 }
 {
 wood = "init:Wood";
 }
}
class Teak extends Wood {
 String teak;
 {
 teak = "init:Teak";
 }
 public Teak() {
 teak = "Teak";
 }
 public static void main(String args[]) {
 Teak teak = new Teak();
 System.out.println(teak.wood);
 System.out.println(teak.teak);
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 1 Java class design
a init:Wood
init:Teak

b init:Wood
Teak

c Wood
init:Teak

d Wood
Teak

Q 1-11. Given the following code

class Cloth {}
class Shirt extends Cloth implements Resizable{}
class Shorts extends Cloth {}
interface Resizable {}

class Factory {
 public static void main(String sr[]) {
 Shirt s = new Shirt();
 //INSERT CODE HERE
 System.out.println(res);
 }
}

Which options will print true?

a boolean res = new Cloth() instanceof Shirt;

b boolean res = new Shirt() instanceof Resizable;

c boolean res = null instanceof Factory;

d Cloth cloth = new Cloth();
Shirt shirt = new Shirt();
boolean res = shirt instanceof cloth;

ANSWERS TO SAMPLE EXAM QUESTIONS

A 1-1. a, c, d

[1.1] Use access modifiers: private, protected, and public
[1.3] Overload constructors and methods
[1.7] Use package and import statements

Explanation: Option (a) is correct. A package enables you to create a namespace to
group related classes and interfaces together.

 Option (b) is incorrect. A base class overloads its base class method, as required.
Making derived classes overload their base class methods doesn’t make it an incorrect
or inefficient design.

 Options (c) and (d) are also correct. The functionality of your classes should be
exposed using the public methods. The private methods are called within the class in
which they’re defined. They usually work as helper methods.
Licensed to Mark Watson <nordickan@gmail.com>

91Answers to sample exam questions
A 1-2. a

[1.3] Overload constructors and methods

Explanation: When a class is compiled, the contents of its initializer block are added
to its constructor, just before its own contents. For example, here’s the decompiled
code for class Wood. As you can see, the contents of its initializer block are added to
its constructor:

class Wood
{
 public Wood()
 {
 System.out.println("Wood:init");
 System.out.println("Wood");
 }
}

A 1-3. a

[1.2] Override methods
[1.3] Overload constructors and methods

Explanation: Class Laptop correctly overloads the method start() by defining a dif-
ferent parameter list.

 Options (b) and (c) are incorrect because classes Laptop and Machine are unre-
lated. A derived class can override its base class method.

 Method start() qualifies as a valid overridden method in class Laptop, if Laptop
extends class Machine. It’s acceptable for an overriding method to not throw any
checked exception, even if the base class method is throwing a checked exception.

 Options (d) and (e) are incorrect because both classes will compile successfully.

A 1-4. b, d

[1.7] Use package and import statements

Explanation: A derived class can access a protected member of its base class, across
packages, directly. But if the base and derived classes are in separate packages, then
you can’t access protected members of the base class by using reference variables of
class Base in a derived class. So, Class2 doesn’t compile.

 Options (e) and (f) are incorrect because Class2 won’t compile.

A 1-5. a

[1.1] Use access modifiers: private, protected, and public
[1.7] Use package and import statements

Explanation: Option (b) is incorrect because the protected members of a class are
accessible by the derived classes, outside the package in which the class is defined.
Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 1 Java class design
 Option (c) is incorrect because a class with default access isn’t visible outside the
package within which it’s defined. If the class isn’t visible itself, it doesn’t matter
whether its members are accessible or not.

 Option (d) is incorrect because a private method can’t be used outside the class in
which it’s defined.

A 1-6. b, d

[1.4] Use the instanceof operator and casting

Explanation: ClassCastException is thrown at runtime. So the options that don’t fail
to compile are eligible to be considered for the following question: Will they throw a
ClassCastException?

 Option (a) is incorrect because it fails to compile.
 Option (b) is correct because classes Bird and Parrot are in the same hierarchy

tree, so an object of base class Bird can be explicitly casted to its derived class Parrot
at compilation. But the JVM can determine the type of the objects at runtime. Because
an object of a derived class can’t refer to an object of its base class, this line throws a
ClassCastException at runtime.

 Option (c) is incorrect because class Vulture implements the interface Scavenger,
so this code will also execute without the explicit cast.

 Option (d) is correct. An instance of a nonfinal class can be casted to any inter-
face type using an explicit cast during the compilation phase. But the exact object
types are validated during runtime and a ClassCastException is thrown if the
object’s class doesn’t implement that interface. Class Bird doesn’t implement the
interface Scavenger and so this code fails during runtime, throwing a ClassCast-
Exception.

A 1-7. b

[1.7] Use package and import statements

Explanation: Class Sky fails with the following error message:

Sky.java:3: error: stars.Sun is already defined in a single-type import
import solarfamily.Sun;
^
1 error

A 1-8. a

[1.2] Override methods

Explanation: Class Color overrides method toString() correctly, but not method
equals(). According to the contract of method equals(), for any non-null reference
Licensed to Mark Watson <nordickan@gmail.com>

93Answers to sample exam questions
values x and y, x.equals(y) should return true if and only if y.equals(x) returns
true—this rule states that two objects should be comparable to each other in the
same way. Class Color doesn’t follow this rule. Here’s the proof:

class TestColor {
 public static void main(String args[]) {
 Color color = new Color("red");
 String string = "red";

 System.out.println(color.equals(string)); // prints true
 System.out.println(string.equals(color)); // prints false
 }
}

A 1-9. b

[1.6] Override the hashCode, equals, and toString methods from the Object class to
improve the functionality of your class

Explanation: Method hashCode() returns the same hash code for all the objects of
this class. This essentially makes all the values be stored in the same bucket if objects
of the preceding classes are used as keys in class HashMap (or similar classes that use
hashing), and reduces it to a linked list, drastically reducing its efficiency.

 Option (a) in incorrect. Book instances can be used to retrieve corresponding key
values but only in limited cases—when you use the same keys (instances) to store and
retrieve values. Even though hashCode() will return the same value for different Book
instances, equals() will always compare the reference variables and not their values,
returning false.

A 1-10. d

[1.3] Overload constructors and methods

Explanation: When a class is compiled, the contents of its initializer block are added
to its constructor just before its own contents. For example, here’s the decompiled
code for class Wood. As you can see, the contents of its initializer block are added to
its constructor:

class Wood
{
 public Wood()
 {
 wood = "Wood"; // initial initialization
 wood = "init:wood"; // re-assignment by the initializer block
 wood = "Wood"; // re-assignment by the constructor
 }
 String wood;
}

Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 1 Java class design
A 1-11. b

[1.4] Use the instanceof operator and casting

Explanation: Option (a) prints false.
 Option (c) prints false. It doesn’t fail to compile because null is a valid literal

value that can be used for objects.
 Option (d) fails to compile. The instanceof operator must be followed by the

name of an interface, class, or enum.
Licensed to Mark Watson <nordickan@gmail.com>

Advanced class design
Exam objectives covered in this chapter What you need to know

[2.1] Identify when and how to apply
abstract classes

The design requirements and implications of using
abstract classes in your application.

[2.2] Construct abstract Java classes and
subclasses

Construction and inheritance with abstract Java
classes.

[2.3] Use the static and final keywords The need for defining static and final members
(classes, methods, initializer blocks, and variables).
The implications of defining nonstatic/nonfinal mem-
bers as static/final members, and vice versa.

[2.4] Create top-level and nested classes The flavors of nested classes—inner, static nested,
method local, and anonymous.
The design benefits, advantages, and disadvantages of
creating inner classes.
How each type of nested class is related to its outer
class.
The access and nonaccess modifiers that can be used
with the definition of these classes and their members.

[2.5] Use enumerated types How to compare enumerated types with regular
classes. How to define enums with constructors, vari-
ables, and methods. How to define enums within
classes, interfaces, and methods. How to override
methods of a particular enum constant.
Use of variables of enum types—when to use the enum
name and when to leave it. Use of enumerated types in
switch constructs. The default methods available to
all enums.
95

Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 2 Advanced class design
While designing your application, you might need to answer questions like these:

■ How do I ensure that a derived class implements an inherited behavior in its
own specific manner?

■ When do I prevent my class from being extended or methods from being
overridden?

■ When do I make objects share the same copy of a variable and when do I pro-
vide them with their own separate individual copy?

■ When do I create an inner class to perform a set of related tasks and when do I
let the top-level class handle it?

■ How do I define constants by using enums?

Design decisions require insight into the benefits and pitfalls of multiple approaches.
When armed with adequate information, you can select the best practices and
approaches to designing your classes and application.

 The topics covered in this chapter will help you answer the aforementioned ques-
tions. I’ll take you through examples and give you multiple choices to help you deter-
mine the best option for designing your classes. This chapter covers

■ Abstract classes
■ Keywords static and final
■ Enumerated types
■ Nested and inner classes

EXAM TIP Take note of the relationship between an exam objective
heading and its subobjectives. For example, the topics of using the
static and final keywords, using enumerated types, and creating top-
level and nested classes are included within the main objective advanced
class design. So, apart from using the correct syntax of all of these, the
exam will query you on the impact of their use on the design of a class
and an application.

Let’s start with the first exam objective in this chapter, identifying when and how to
apply abstract classes.
Licensed to Mark Watson <nordickan@gmail.com>

97Abstract classes and their application
2.1 Abstract classes and their application

Imagine you’re asked to bring a bouquet of flowers. Because no particular flower is
specified, you can choose any flower. How is the term flower used here? It communicates
a group of properties and behavior, which are applicable to multiple types of flowers.
Flowers like tulip, rose, hibiscus, and lotus, though similar, are also unique. In this
example, you can compare the term flower to an abstract class: the term captures basic
properties and behavior, yet enforces individual flower types to implement some of that
behavior in a unique manner—all flowers must have petals, though of different size,
color, or shape.

 In this section, we’ll focus on how the exam will test you on identifying abstract
classes, and understanding their need, construction, use, and application. We’ll also
cover the dos and don’ts of creating abstract classes. For the exam, it’s important to com-
pare the similarities and differences of abstract classes and concrete classes. These differ-
ences affect the creation and use of these classes. Let’s start by identifying abstract classes.

2.1.1 Identify abstract classes

An abstract class is an incomplete class or is considered to be incomplete. You define it by
using the keyword abstract. You can’t instantiate an abstract class, but you can subclass
it to create abstract or concrete derived classes. The choice of defining an abstract class
depends on the application context in which the classes are created; it all depends on
the details that you need for a class in an application. For example, a class Animal might
be defined as an abstract class in one application but not in another.

 Imagine that you need to create a simple application, GeoAnimals, which helps
young children identify a predefined set of common wild animals, while including
basic information like the food the animals eat and their habitat. Figure 2.1 shows (a

[2.1] Identify when and how to apply abstract classes

[2.2] Construct abstract Java classes and subclasses

Lion

food:String
avgLife:double

eat()
live()

Tiger

food:String
avgLife:double
striped:boolean

eat()
live()

Elephant

food:String
avgLife:double

eat()
live()

moveTrunk()

Figure 2.1 Classes Lion, Tiger, and Elephant identified for creating the
application GeoAnimals
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 2 Advanced class design
few) classes—Lion, Elephant, and Tiger—that you might identify for this application.
I deliberately limited the number of classes to keep the example simple.

 As you can see, classes Lion, Tiger, and Elephant have common attributes and
behavior. Let’s pull out another generic class—say, Animal—and make the rest of the
classes extend it. Figure 2.2 shows the new arrangement.

 Now the big question: Do you need to define the base class Animal as an abstract
class? How can you determine this? You can ask yourself simple questions to answer
the big question:

■ Should my application be allowed to create instances of the generic class Animal?
If no, define class Animal as an abstract class.

■ Does class Animal include behavior that’s common to all its derived classes, but
can’t be generalized (must it be implemented by the derived classes in their own
specific manner)? If yes, define the relevant method as an abstract method and
class Animal as an abstract class.

In this sample application, you’d never need objects of class Animal because they would
always refer to a specific type of animal. So class Animal qualifies to be defined as an
abstract class. Also, eating behavior, though common to all the animals, is unique to
every specific animal. So method eat() is a perfect candidate to be defined as an
abstract method. Figure 2.3 shows the new arrangement, where class Animal is defined
as an abstract class, and method eat() is defined as an abstract method. Now all the
derived classes must implement method eat().

 Because an abstract class is meant to be extended by other classes, and its abstract
methods are meant to be implemented, it’s recommended that you document its
expected behavior in your real-life projects. This documentation will enable your class
to be inherited and used appropriately.

EXAM TIP An abstract method doesn’t define an implementation. It
enforces all the concrete derived classes to implement it.

Animal

food:String
avgLife:double

eat()
live()

Tiger

striped:boolean

Elephant

moveTrunk()

<<extends>>

Lion

Figure 2.2 Classes Lion, Tiger, and Elephant inherit class Animal.
Licensed to Mark Watson <nordickan@gmail.com>

99Abstract classes and their application
Until this point, you’ve looked at how to identify an abstract class. Does that imply that
if you were to define class Animal in another application, you’d define it as an abstract
class? Not always. For example, an application that counts all living beings, catego-
rized as humans, animals, and plants, might not need to define class Animal as an
abstract class because the application might not need to create its specific types; it needs
only a count of the total animals. If you need to store the type of an animal, class Animal
can define an attribute—say, species. This arrangement is shown in figure 2.4.

 Another frequently asked question by new programmers or designers is, when is
an abstract base class fit to be defined as an interface? Interfaces can be defined only
when no implementation of any method is provided. Also, an interface can define
only constants, which can’t be reassigned another value by the implementing classes.
The base class Animal discussed previously can’t be defined as an interface; it can’t
define its attributes food and avgLife as constants. As an example of an interface, the
Java package java.util contains multiple interfaces, such as List. The interface List
defines multiple methods, which must be implemented by all the implementing
classes, such as ArrayList.

Animal

food:String
avgLife:double

eat()
live()

Tiger

striped:boolean

eat()

Elephant

eat()

<<extends>>

Lion

moveTrunk()
eat()

Abstract

base class

Abstract

method

Figure 2.3 Abstract class Animal defines an abstract method eat() and is
inherited by classes Lion, Tiger, and Elephant.

Animal

species:String

Human Plant

LivingBeing

Figure 2.4 Class Animal need not be always defined as an abstract class in all
applications.
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 2 Advanced class design
NOTE Starting with Java 8, an interface can define a default implementa-
tion of its methods, so an implementing class might not necessarily over-
ride these methods. But this exam is based on Java 7 and I’ll continue to
refer to an interface as the one that can’t define method implementation.

Now that you understand how to identify abstract classes, let’s look at how to construct
abstract classes and their subclasses, and how to apply them. On the exam, you’ll be
questioned on correct construction of abstract classes, their subclasses, and their dos
and don’ts.

2.1.2 Construct abstract classes and subclasses

To keep the code small, let’s code the abstract class Animal and only two of its derived
classes, Lion and Elephant:

abstract class Animal {
 protected String food;
 protected double avgLife;

 Animal(String food, double avgLife) {
 this.food = food;
 this.avgLife = avgLife;
 }

 abstract void eat();

 void live() {
 System.out.println("Natural habitat : forest");
 }
}

At B, abstract class Animal is defined by prefixing the class definition with the key-
word abstract. The code at c defines attributes to store values for food and average
life span: food and avgLife. The code at d defines a constructor for class Animal.
You can’t instantiate an abstract class, but you can create its constructors, including
overloaded constructors. At least one of the Animal constructors must be called by
instances of its derived classes. The code at e defines abstract method eat(), which
delegates the responsibility of implementing it to the derived classes. You can define
class Animal as an abstract class, even if doesn’t define any abstract methods. The code
at f defines method live(), with an implementation. If required, it can be overrid-
den by the derived classes.

EXAM TIP It isn’t obligatory for abstract classes to define abstract meth-
ods. Abstract methods must not define a body.

Abstract base
class Animal

 b

Properties of
class Animal

 c

Constructor d

Abstract
method eat()

 e

Nonabstract
method live()

 f
Licensed to Mark Watson <nordickan@gmail.com>

101Abstract classes and their application
Following is the definition of derived class Lion:

class Lion extends Animal{
 Lion(String food, double avgLife) {
 super(food, avgLife);
 }
 void eat() {
 System.out.println("Lion-hunt " + food);
 }
}

Class Lion extends the base class Animal. It defines a constructor at B, which accepts
a double value for average life and a String value for food and passes it on to its base
class’s constructor. At c, class Lion implements method eat(). Let’s now define
class Elephant:

class Elephant extends Animal{
 Elephant(String food, double avgLife) {
 super(food, avgLife);
 }

 void eat() {
 System.out.println("Elephant-method eat");
 }

 void moveTrunk() {
 System.out.println("Elephant-method moveTrunk");
 }
}

At B, class Elephant defines a constructor that calls its base class constructor. At c,
it implements abstract method eat() from the base class. At d, it defines a new
method, moveTrunk().

EXAM TIP Notice the power of base class constructors to ensure that
all derived class constructors pass them a value. The base class Animal
defines only one constructor that accepts a value for its instance variables
food and avgLife. Because a derived class constructor must call its base
class’s constructor, classes Lion and Elephant define a constructor that
calls Animal’s constructor.

Let’s put all these classes to work, in class GeoAnimals, as follows:

class GeoAnimals{
 Animal[] animals = new Animal[2];

 GeoAnimals() {
 animals[0] = new Lion("Antelope", 20);
 animals[1] = new Elephant("Bananas", 60);
 }

Constructor b

Implement
method eat()

 c

Constructor b

Implement
method eat()

 c

New method
moveTrunk()

 d

An array of type Animal—base
class of Lion and Elephant

 b

Initialize array animals
with separate instances
of Lion and Elephant.

 c
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 2 Advanced class design
 void flashcards() {
 for (Animal anAnimal : animals) {
 anAnimal.eat();
 anAnimal.live();
 }
 }

 public static void main(String args[]) {
 GeoAnimals myAnimals = new GeoAnimals();
 myAnimals.flashcards();
 }
}

Here’s the output of the preceding code (blank lines were added to improve readability):

Lion-hunt Antelope
Natural habitat : forest

Elephant-method eat
Natural habitat : forest

Let’s walk through this code. The code at B declares an array of type Animal. Though
you can’t create instances of abstract class Animal, an array of Animal can be used to
store objects of its derived classes, Lion and Elephant. The code at c initializes ani-
mals with instances of classes Lion and Elephant. The code at d iterates through the
array animals, calling methods eat() and live() on all its elements. The code at e
defines method main() that creates an object of class GeoAnimals, calling method
flashcards().

 The code in this section walked you through how to create abstract classes and
their subclasses, and how to use them. The efficient use of abstract classes lies in their
identification in an application. Let’s see how well you score on identifying all abstract
and concrete classes in an application in the following “Twist in the Tale” exercise.

The following are names of multiple classes. Your task is to arrange these in an inheri-
tance hierarchy, connecting all base and derived classes. At end of the exercise, all
these classes should be connected, with the base class at the top and derived classes
below it.

Twist in the Tale 2.1

Iterate through objects of
array animals, calling
methods eat() and live().

 d

Create an instance of GeoAnimals
and call method flashcards().

 e

Cat

Dog

Omnivore

Herbivore

TigerAnimal

Carnivore ElephantDeer

Lion
Licensed to Mark Watson <nordickan@gmail.com>

103Abstract classes and their application
Here’s another example that will help you attempt the preceding exercise.

EXAM TIP An abstract method can’t be defined in a concrete class. It can
be defined in an abstract class only.

2.1.3 Understand the need for abstract classes

An abstract class represents partial implementation of an object or concept. But why
do you need partial implementation? Do abstract classes exist only so other classes can
inherit them? These questions are frequently asked by new Java application designers.
You might also have to answer these questions on the exam.

 You need an abstract class to pull out and group together the common properties and
behavior of multiple classes—the same reason you need a nonabstract base class. You
define a base class as an abstract class to prevent creation of its instances. As the creator, you
think that it doesn’t include enough details to create its own objects. When you define
abstract methods in a base class, it forces all its nonabstract derived classes to implement
the incomplete functionality (abstract methods) in their own unique manner.

 Because you can’t create instances of an abstract class, there’s not much sense in
creating an abstract base class, which isn’t extended by other classes.

EXAM TIP Abstract classes make a point loud and clear: they force the con-
crete derived classes to implement a base class’s abstract methods, in
their own unique manner.

Note that I haven’t discussed the need for, advantages of, or disadvantages of creating
nonabstract base classes in this section. This section specifically covers base classes
that are abstract.

2.1.4 Follow the dos and don’ts of creating and using abstract classes

Apart from the points covered in the previous section, the exam will likely include
other theoretical and coding questions on the dos and don’ts of creating and imple-
menting abstract classes.

Book

NonFictionNonFiction

History

StoryBook

Book

Geology

CourseBook

Fiction

StoryBook

Fiction Geology

CourseBook

History

<<extends>>
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 2 Advanced class design
DON’T CREATE AN ABSTRACT CLASS ONLY TO PREVENT CREATION OF ITS OBJECTS

To prevent instantiation of a class by using the operator new, define all its class con-
structors as private. For example, class java.lang.Math in the Java API doesn’t allow
creation of its objects by defining its constructor as a private member:

package java.lang;
public final class Math{
 private Math() { /*code */}
}

DON’T MAKE AN ABSTRACT CLASS IMPLEMENT INTERFACES THAT RESULT IN INVALID
METHOD IMPLEMENTATION

When a class implements an interface, the class must implement its methods (unless
the class is abstract) to meet the contract. But if the class defines methods with the
same name as the one defined in the interface, they should either comply with correct
method overriding or overloading rules or else the class won’t compile. In the follow-
ing example, class Animal can’t implement interface Live:

interface Live{
 boolean eat();
}

abstract class Animal implements Live{
 public abstract void eat();
}

Class Animal won’t compile because method eat() from interface Live and method
eat() defined in class Animal exist as invalid overloaded methods.

DON’T CREATE OBJECTS OF AN ABSTRACT CLASS

Code that creates objects of an abstract class won’t compile:

abstract class Animal{}
class Forest {
 Animal animal = new Animal();
}

DON’T DEFINE AN ABSTRACT CLASS AS A FINAL CLASS

A final class can’t be extended. On the other hand, abstract classes are created so they
can be extended by other classes. Hence, abstract classes can’t be defined as final classes.

abstract final class Animal {}

Method eat() that
returns boolean value

Won’t compile; method eat() from
Live and Animal can’t coexist.

Method eat() doesn’t
return any value.

Won’t compile; can’t
instantiate abstract classes.

Won’t compile
Licensed to Mark Watson <nordickan@gmail.com>

105Abstract classes and their application
DON'T FORCE AN ABSTRACT CLASS TO IMPLEMENT ALL METHODS FROM THE INTERFACE(S)
IT IMPLEMENTS
An abstract class can implement multiple interfaces. It might not implement all the
abstract methods from the implemented interface(s), leaving them to be imple-
mented by all its nonabstract derived classes:

interface Live{
 void eat();
}
abstract class Animal implements Live{}

DO USE AN OBJECT OF AN ABSTRACT CLASS TO REFER TO OBJECTS OF ITS NONABSTRACT
DERIVED CLASSES

An abstract class can’t be instantiated. But this doesn’t stop you from using a reference
variable of an abstract base class to refer to an instance of its nonabstract derived class:

abstract class Animal{}
class Deer extends Animal{}
class Forest{
 Animal animal = new Deer();
}

Comparing an abstract class with a concrete class is obvious, as covered in the next sec-
tion. This comparison will help you with multiple exam objectives: identifying abstract
classes, their construction, and their application.

2.1.5 Compare abstract classes and concrete classes

Do you think the constructor of an abstract base class is called in the same manner as
that of a concrete base class? Yes, indeed. Table 2.1 answers many more questions like
this by comparing abstract and concrete classes.

Table 2.1 Comparing an abstract class with a concrete class

Comparison Category
Abstract

class
Concrete

class

Create a new type ✓ ✓

Use as base class ✓ ✓

Extend another class ✓ ✓

Implement interfaces ✓ ✓

Define attributes and concrete methods ✓ ✓

Require at least one constructor to be called by its derived classes ✓ ✓

Define abstract methods ✓ ✗

Allow object creation ✗ ✓

Abstract class Animal doesn’t
implement eat() from interface Live.

Abstract class variable can refer
to instance of its derived class
Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 2 Advanced class design
Before moving on to the next section, let’s quickly list the points to remember about
abstract classes for the exam.

Identification of abstract classes is an important design decision. It changes how other
classes might use the abstract class. Similarly, creating classes that can’t be extended,
creating methods that can’t be overridden, or creating class (or static) members are
other important design decisions. In the next section, you’ll see how you can do so by
using the static and final nonaccess modifiers.

2.2 Static and final keywords

Defining a class as a final class prevents it from being extended. Similarly, a static vari-
able or method can be accessed without instances of its class; the variable or method is
available after its class is loaded into memory. These are a few examples of how the
nonaccess modifiers static and final change the default behavior of a Java entity.
For the exam, you need to understand the need for defining static and final members
(classes, methods, initializer blocks, and variables) together with their correct definition

Rules to remember for creating abstract classes
■ An abstract class must be defined by using the keyword abstract.
■ An abstract class can extend any other abstract or concrete class and imple-

ment other interfaces.
■ An abstract class can define multiple constructors.
■ An abstract class can define instance and static variables.
■ An abstract class can define instance and static methods.
■ An abstract class might not necessarily define an abstract method and can exist

without any abstract method.
■ A class can’t define an abstract static method.
■ Don’t create an abstract class just to prevent creation of its instances.
■ Don’t make an abstract class implement interfaces that result in incorrect over-

loaded or overridden methods.

Rules to remember for subclassing an abstract class
■ A concrete subclass must implement all the abstract methods in its abstract

superclass(es).
■ An abstract subclass might not implement all the abstract methods in its

abstract superclass(es).
■ A subclass must call at least one constructor from its superclass.

[2.3] Use the static and final keywords
Licensed to Mark Watson <nordickan@gmail.com>

107Static and final keywords
and use. You also need to know the implications of defining nonstatic/nonfinal mem-
bers as static/final members, and vice versa.

2.2.1 Static modifier

You can define variables, methods, nested classes, and nested interfaces as static mem-
bers. They belong to a class and not to instances. They can be accessed soon after
their class is loaded into memory. Top-level classes, interfaces, and enums can’t be
defined as static entities. Watch out for code that declares top-level classes, interfaces,
and enums as static members. Such code won’t compile. Let’s get started with static
class variables.

STATIC VARIABLES
Static variables belong to a class and are shared by all its instances. Their value is the
same for all instances of their class. A static class variable is created when its class is
loaded into memory by the JVM. It can exist and is accessible even if no instances of
the class exist. So you can use it to perform operations that span multiple instances of a
class. Class Book defines a static class variable bookCount, to count the instances of
class Book that are created while your program is running:

class Book {
 static int bookCount;
 public Book() {
 ++bookCount;
 }
}

class Publisher{
 public static void main(String args[]){
 System.out.println(Book.bookCount);
 Book b1 = new Book();
 Book b2 = new Book();
 System.out.println(Book.bookCount);
 }
}

Assuming that no instances of Book were created earlier, the code at B prints 0. The
code at c prints 2 due to creation of two instances of class Book, created on the pre-
ceding lines. Each invocation of the construction increments the value of the static
class variable bookCount by 1.

EXAM TIP Unlike instance variables, which are initialized for each
instance, static class variables are initialized only once, when they are
loaded into memory. The default variable values are false for boolean;
'\u0000' for char; 0 for byte; short, int, 0L for long; 0.0F for float;
0.0D for double; and null for objects.

Because the same value of a static class variable is shared across all the instances of
a class, if modified, the same modified value is reflected across all instances. In the

Static variable
bookCount

bookCount is incremented
in constructor

Prints “0” b

Prints “2” c
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 2 Advanced class design
following code, the value of the static class variable bookCount is accessed and modi-
fied using the class name Book and instances b1 and b2 (modifications in bold):

class Book {
 static int bookCount;
 public Book() {
 ++bookCount;
 }
}
class Publisher{
 public static void main(String args[]){
 System.out.println(Book.bookCount);
 Book b1 = new Book();
 Book b2 = new Book();
 System.out.println(Book.bookCount);
 b1.bookCount = 10;
 System.out.println(b2.bookCount);
 }
}

NOTE For simplicity, I’ve defined the variable bookCount with default
access, which is directly accessed and manipulated outside the class
Book. This isn’t a recommended approach in real-life projects. Encapsu-
late your data by defining the class and instance variables as private and
make them accessible outside their class through accessor and mutator
methods.

On the exam, you’re likely to see code that accesses a static class variable by using the
name of its class and its instances. Although a static class variable is allowed to be accessed
by using instances of a class, it’s not a preferred approach; it makes the static class vari-
able seem to belong to an instance, which is incorrect. Always refer to a static class mem-
ber by using its class name.

EXAM TIP You can access a static member by using the name of its class
or any of its instances. All these approaches refer to the same static mem-
ber. The preferred approach is to use a class name; otherwise, a static
member seems to be tied to an instance, which is incorrect.

A combination of the static and final nonaccess modifiers is used to define constants
(variables whose value can’t change). In the following code, the class Emp defines the
constants MIN_AGE and MAX_AGE:

class Emp {
 public static final int MIN_AGE = 20;
 static final int MAX_AGE = 70;
}

Prints “0” (access bookCount
using class name Book)

Set value of bookCount to 10,
using reference variable b1.

Prints “10” (access bookCount
using reference variable b2)

Constant MIN_AGE

Constant MAX_AGE
Licensed to Mark Watson <nordickan@gmail.com>

109Static and final keywords
STATIC METHODS

Static methods don’t need instances of a class. They can be called even if no instance
of the class exists. You define static methods to access or manipulate static class vari-
ables. The static methods can’t access nonstatic fields or nonstatic methods. Referring
to the example of class Book, which used the static variable bookCount to count all
instances of class Book, static methods getBookCount() and incrementBookCount()
can be created to access bookCount and manipulate it:

class Book {
 private static int bookCount;
 public static int getBookCount(){
 return bookCount;
 }

 public void incrementBookCount() {
 ++bookCount;
 }
}

You also use static methods to define utility methods—methods that usually manipulate
the method parameters to compute and return an appropriate value:

static double average(double num1, double num2, double num3) {
 return(num1+num2+num3)/3;
}

A static method might not always define method parameters. For example, the method
random in class java.lang.Math doesn’t accept any parameters. It returns a pseudo-
random number, greater than or equal to 0.0 and less than 1.0.

EXAM TIP A static method is used to manipulate static class variables or
to define utility methods. A utility method may or may not accept method
parameters.

WHAT CAN A STATIC METHOD ACCESS?
Neither static class methods nor static class variables can access the nonstatic instance
variables and instance methods of a class. But the reverse is true: nonstatic variables
and methods can access static variables and methods because the static members of a
class exist even if no instances of the class exist. Static members are forbidden from
accessing instance methods and variables, which can exist only if an instance of the
class is created.

 Examine the following code:

class MyClass {
 static int x = count();
 int count() { return 10; }
}

Static method to retrieve
value of static variable
bookCount

Static method to
increment value of static
variable bookCount

Compilation
error
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 2 Advanced class design
This is the compilation error thrown by the previous class:

MyClass.java:3: nonstatic method count() cannot be
 referenced from a static context
 static int x = count();
 ^
1 error

The following code is valid:

class MyClass {
 static int x = result();
 static int result() { return 20; }
 int nonStaticResult() { return result(); }
}

You can use constructors or instance initializer blocks to initialize the instance vari-
ables. But how can you initialize the static variables, after they’re loaded into memory?
Static initializer blocks are the answer.

STATIC INITIALIZER BLOCKS

A static initializer block is a code block defined using braces and prefixed by the key-
word static:

static {
 //code to initialize static variables
}

Because static variables can’t be initialized using the constructors of a class, a static ini-
tializer block is used to initialize static variables. This initializer block executes when a
class is loaded by the JVM into memory. You can define multiple static initializer blocks
in your code, which execute in the order of their appearance. All types of statements
are allowed in this block, including declaration, initialization, assignment, and calling
of other static variables and methods. In the following example, class AffiliateProgram
defines a static variable accountOpenBonus. The variable accountOpenBonus is initial-
ized using a static initializer block:

class AffiliateProgram {
 private static int accountOpenBonus;
 static {
 accountOpenBonus = 5;
 }
}

You might argue that you could initialize the static variable accountOpenBonus as follows:

class AffiliateProgram {
 private static int accountOpenBonus = 5;
}

Static variable referencing
a static method

Nonstatic method
using a static method

Declare static
variable

Initialize static variable using
a static initializer block

Declare and initialize
a static variable
Licensed to Mark Watson <nordickan@gmail.com>

111Static and final keywords
But what happens if you need to use a calculated value or initialize the value of
accountOpenBonus based on the outcome of a condition:

class AffiliateProgram {
 private static int accountOpenBonus;
 static {
 if (/* file XYZ exists */)
 accountOpenBonus = 5;
 else
 accountOpenBonus = 15;
 }
}

Again, you might argue that you can move the preceding conditional execution to a
static method and use it to initialize variable accountOpenBonus, without using the
static initializer block:

class AffiliateProgram {
 private static int accountOpenBonus = initAccountOpenBonus();

 private static int initAccountOpenBonus() {
 if (/* file XYZ exists */)
 return 5;
 else
 return 15;
 }
}

What happens if method initAccountOpenBonus() throws a checked exception, say,
FileNotFoundException? In this case, you must use a static initializer block to assign
the returned value from initAccountOpenBonus() to variable accountOpenBonus. As
you know, if a method throws a checked exception, its use should either be enclosed
within a try block or the method that uses it should declare the exception to be
thrown. In this case, neither is possible; the declaration of the variable accountOpen-
Bonus can’t be enclosed within a try block because this statement doesn’t exist within
a method or code block. Here’s the relevant code:

import java.io.*;
class AffiliateProgram {
 private static int accountOpenBonus = initAccountOpenBonus();
 private static int initAccountOpenBonus() throws FileNotFoundException
 {
 //relevant code
 }
}

Conditional
assignment of variable
accountOpenBonus

Conditional assignment of
variable accountOpenBonus

using static method

Won’t compile; can’t declare and
initialize variable using method that

throws checked exception
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 2 Advanced class design
And here’s the way out:

class AffiliateProgram {
 private static int accountOpenBonus;
 private static int initAccountOpenBonus()
 throws FileNotFoundException{
 //..relevant code
 }
 static {
 try {
 accountOpenBonus = initAccountOpenBonus();
 }
 catch (FileNotFoundException e) {
 //.. relevant code
 }
 }
}

Another reason for the existence of a static initializer block is to add values (static or
dynamic) to collection objects that have already been initialized. Here’s an example:

class AddValuesToStaticVariables {
 static private String[] dataStores = new String[5];
 static {
 dataStores[0] = "us.ny";
 dataStores[1] = "jp.tk";
 dataStores[2] = "gr.br";
 //..code that assigns dynamic value to dataStores[]
 }
}

The static initializer blocks can be tricky and cumbersome to work with when it
comes to debugging them. On the exam, beware of code that defines multiple ini-
tializer blocks. If a class defines multiple initializer blocks, they execute in the order
of their appearance in a class. Let’s examine output of code that defines multiple
initializer blocks:

class StaticInitBlocks {
 static int staticVar = 10;
 static {
 System.out.println("First");
 ++staticVar;
 }
 static {
 System.out.println("Second");
 ++staticVar;
 }

 static void modifyStaticVar() {
 ++staticVar;
 }

Static
variable

Static method that
throws checked

exception

static
initializer

block
try block to catch
FileNotFoundException
thrown by
initAccountOpenBonus()

String array data-
Stores is initialized.

Add explicit values
to dataStores.

Pull values from
the database
and add to String
array dataStores.
Licensed to Mark Watson <nordickan@gmail.com>

113Static and final keywords
 public StaticInitBlocks() {
 System.out.println("Constructor:" + staticVar);
 }

 public static void main(String args[]) {
 new StaticInitBlocks();
 modifyStaticVar();
 new StaticInitBlocks();
 }
}

Code in a static initializer block executes when a class is loaded in memory by JVM—
before creation of its instances. The output of the preceding code is as follows:

First
Second
Constructor:12
Constructor:13

Can the static and instance initializer blocks access the static or instance variables of a
class, like other methods? Let me modify the preceding code and use it for the next
“Twist in the Tale” exercise.

Following is modified code for class DemoMultipleStaticBlocks. Answer the question
before you execute it on your system. Which answer correctly shows its output?

class DemoMultipleStaticBlocks {
 static {
 ++staticVar;
 }
 static int staticVar ;
 static {
 ++staticVar;
 }
 public DemoMultipleStaticBlocks() {
 System.out.println("Constructor:" + staticVar);
 }
 public static void main(String args[]) {
 new DemoMultipleStaticBlocks();
 }
}

a Constructor: 2
b Constructor: 1
c Constructor: 0
d Compilation error
e Runtime exception

Twist in the Tale 2.2
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 2 Advanced class design
EXAM TIP On the exam, beware of code that defines multiple initializer
blocks. If a class defines multiple initializer blocks, they execute in the
order of their appearance in a class.

Watch out for another combination on the exam: initialization of a static class variable
and its manipulation in a static block. What do you think is the order of execution in
the following code? Will the following example code print 1 or 11?

public class AssignManipulateStaticVariable {
 static {
 rate = 10;
 }
 static int rate = 0;

 static {
 ++rate;
 }
 public AssignManipulateStaticVariable() {
 System.out.println(rate);
 }
 public static void main(String args[]) {
 new AssignManipulateStaticVariable();
 }
}

For the preceding code, the compiler rearranges the code to execute. It declares the
static variable age and then picks up the code from all the static initializer blocks and
assignment of age and combines them in a single static initializer block, in the order
of their occurrence, as follows:

static int rate;
static
{
 rate = 10;
 rate = 0;
 ++rate;
}

The preceding code explains why AssignManipulateStaticVariable prints 1 and
not 11.

STATIC CLASSES AND INTERFACES
Let’s look at other types of static entities: static classes and interfaces. These are also
referred to as nested classes, static nested classes, static interfaces, and static nested interfaces.
You can’t prefix the definition of a top-level class or an interface with the keyword
static. A top-level class or interface is one that isn’t defined within another class or
interface. The following code fails to compile:

static class Person {}
static interface MyInterface {}

First static initializer
block to assign 10 to rate

Declare
static

variable
rate and
assign 0

to it.

Second static initializer block
to increment rate by 1

Prints “1”
Licensed to Mark Watson <nordickan@gmail.com>

115Static and final keywords
But you can define a class and an interface as a static member of another class. The
following code is valid:

class Person {
 static class Address {}
 static interface MyInterface {}
}

As you know, the static variables and methods of a class are accessible without the
existence of any of its objects. Similarly, you can access a static class without an
object of its outer class. You’ll learn all about the other details of the static classes in
section 2.3.2 .

2.2.2 Nonaccess modifier—final

The decision to apply the nonaccess modifier final to a class, interface, variable, or
method is an important class design decision. To start, should you define your class as
a final class? Yes, if you don’t want it to be subclassed. Should you define your method
as a final method? Yes, if you don’t want any of its subclasses to override it. Do you
want to define a variable as a final variable? Yes, if after the variable is initialized,
you don’t want it to be reassigned another value. Knowing these details will enable
you to make the right decisions—when, why, where, and how to apply the nonaccess
modifier final and when not to. Apart from testing you on how to use the modifier
final in code, the exam will also query you on the implications of its use on the
design or behavior of code. Let’s start with final variables.

FINAL VARIABLES

The final variables can be initialized only once. You can tag all types of variables—
static variables, instance variables, local variables, and method parameters—with the
nonaccess modifier final. Because of the differences in how these variable types are
initialized, they exhibit different behavior. Let’s start with defining a static variable
as a final variable:

class TestFinal {
 static final int staticFinal = 10;
}

A final static class variable can be initialized with its declaration, or by using a static initial-
izer block, which is guaranteed to execute only once for a class. Because a static method
can be called multiple times, it can’t define code to initialize a final (static) variable:

class TestFinal {
 static final int staticFinal2 = 12345;

 static final int staticFinal;

 static {
 staticFinal = 1234;
 }

Static nested
class

Static nested
interface

Static final variable initialized
with its declaration

Static final
variable not
initialized

Static initializer
block to initialize
static variable
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 2 Advanced class design
 static void setStaticFinal(int value) {
 staticFinal = value;
 }
}

Because the constructor of a class executes on creation of every instance of the
class, you can’t initialize a final static variable in the constructor. The following code
won’t compile:

class FinalStatic {
 static final int finalVar;

 FinalStatic() {
 finalVar = 10;
 }
}

Similarly, though you can initialize a final instance variable in the class’s constructor or
its instance initializer block, you can’t initialize it in an instance method. Instance meth-
ods can execute more than once:

class InstanceFinalVariables {
 final int finalVar2 = 710;

 final int finalVar;

 InstanceFinalVariables() {
 finalVar = 10;
 }

 void setValue(int a) {
 finalVar = a;
 }
}

EXAM TIP If a static or instance variable is marked final, it must be ini-
tialized, or the code won’t compile.

Interestingly, you can survive code with an uninitialized final local variable, if you
don’t use it:

class MyClass {
 void setValue(int a) {
 final int finalLocalVar1;
 finalLocalVar1 = 20;

 final int finalLocalVar2;
 }
}

Won’t compile; static method can
execute multiple times and so it can’t
include initialization of final variable.

Final static variable
can’t be initialized in
constructor of a class

Instance final variable
initialized with its declaration

Instance final variable
not initialized

Class’s constructor initializes
instance final variable

Won’t compile; a method may execute
multiple times and so can’t include code
to initialize a final variable.

Final local variable declared and
initialized on separate lines

Uninitialized final local
variable; compiles
successfully
Licensed to Mark Watson <nordickan@gmail.com>

117Static and final keywords

t
In the preceding code, if you try to use the uninitialized final local variable final-
LocalVar2, your code won’t compile. Modified code is as follows:

class MyClass {
 void setValue(int a) {
 final int finalLocalVar1;
 finalLocalVar1 = 20;

 final int finalLocalVar2;

 System.out.println(finalLocalVar2);
 }
}

Method parameters are initialized when the method is invoked. If a method marks
its method parameter(s) as final, the method body can’t reassign a value to it,
as follows:

class MyClass {
 void setValue(final int finalMethodParam) {
 finalMethodParam = 10;
 }
}

There’s a difference between final primitive variables and final object reference
variables. The final primitive variables can’t change, but the object referred to by
final object reference variables can be changed. Only the final reference itself can’t
be changed:

class MyClass {
 void addCondition(final StringBuilder query) {
 query.append("WHERE id > 500");
 query = new StringBuilder("SELECT name FROM emp");
 }
}

CONDITIONAL ASSIGNMENT OF FINAL VARIABLES

What happens when you initialize a final variable within an if-else construct, switch
statement, or for, do-while, or while loop? In this case, code that assigns a value to
the final variable might not execute. If the Java compiler is doubtful about the initial-
ization of your final variable, the code won’t compile. For example, the constructor of
MyClass assigns a value to its final instance variable finalVar by using an if state-
ment, as shown in the following code listing.

Won’t compile when
you try to use an
uninitialized local
variable.

Final method
parameter

Won’t compile; value
can’t be assigned to final
method parameter.

Final method
parameter

Can modify objec
referred to by
final reference
variable query.Won’t compile; can’t reassign

another object to final
reference variable query.
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 2 Advanced class design
class MyClass {
 final int finalVar;
 MyClass(double a, double b) {
 if (a > b)
 finalVar = 20;
 else if (b >= a)
 finalVar = 30;
 }
}

Class MyClass fails compilation with the following compilation error message:

variable finalVar might not have been initialized

The code at B assigns a value to finalVar if the condition a > b evaluates to true. The
code at c assigns a value to finalVar if condition b >= a evaluates to true. The com-
piler has its doubts about being able to execute (and thus initialize) in all conditions.
So, the Java compiler will consider initialization of a final variable complete only if the
initialization code will execute in all conditions. Adding an else branch results in suc-
cessful code compilation:

class MyClass {
 final int finalVar;
 MyClass(double a, double b) {
 if (a>b)
 finalVar = 20;
 else
 finalVar = 30;
 }
}

In the preceding code, B initializes finalVar to 30 if the condition a > b evaluates to
true. Otherwise, it initializes finalVar to 30 at c. Let’s modify the code in listing 2.1
so it uses constant literal values instead of variables, in if conditions:

class MyClass {
 final int finalVar;
 MyClass(double a, double b) {
 if (1>2)
 finalVar = 10;
 else if (100>10)
 finalVar = 20;
 }
}

The preceding code compiles successfully, because with the constant values, the com-
piler can determine that code at B will execute, initializing a value to the final vari-
able for sure.

Listing 2.1 Conditional assignment of final instance variable in class’s constructor

Assigns 20 to
finalVar if a > b

 b

Assigns 30 to finalVar
if b >= a c

Assigns 20 to
finalVar if a > b

 b

Assigns 30 to finalVar
otherwise c

Assigns 10 to
finalVar if 1 > 2

Assigns 20 to finalVar
if 100 > 10 b
Licensed to Mark Watson <nordickan@gmail.com>

119Static and final keywords
 Let’s modify the code again, so it continues to use the variables in the if condi-
tions. In listing 2.1, the Java compiler complained that variable finalVar might not
have been initialized. So let’s explicitly assign a value to variable finalVar, before the
start of the if statement, as follows:

class MyClass {
 final int finalVar;
 MyClass(double a, double b) {
 finalVar = 100;
 if (a>b)
 finalVar = 20;
 else if (b>=a)
 finalVar = 30;
 }
}

The code at B initializes finalVar, and the code at c tries to assign a value to it, con-
ditionally. Because a final variable can’t be reassigned a value, the preceding code fails
compilation with the following compilation error message:

variable finalVar might already have been assigned
 finalVar = 20;
 ^

EXAM TIP On the exam, look out for multiple initializations of a final vari-
able. Code snippets that try to reinitialize a final variable won’t compile.

The simplest way to initialize a final variable is to do so with its declaration. If not initial-
ized with its declaration, a static final variable can be initialized in the class’s static initial-
izer block. An instance final variable can be initialized in its constructor or the instance
initializer block. A local final variable can be assigned a value in the method in which it’s
defined. A final method parameter can’t be reassigned a value within the method.

 It’s time for you to attempt the next “Twist in the Tale” exercise, which tests you on
understanding assignment of a base class’s final instance variable from the derived class.

Let’s modify the code used in the preceding examples so class MyClass does not ini-
tialize its final instance variable finalVar. This variable is initialized in its derived
class, MyDerivedClass, as follows:

abstract class MyClass {
 public final int finalVar;
}
class MyDerivedClass extends MyClass {
 MyDerivedClass() {
 super();
 finalVar = 1000;
 }
}

Twist in the Tale 2.3

Explicit assignment
to final variable
finalVar

 b

Conditional
assignment to final
variable finalVar

 c
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 2 Advanced class design
Your task is to first think about the possible output of the following code before you
compile it on your system:

class Test {
 {System.out.println(new MyDerivedClass().finalVar);}
 public static void main(String args[]) {
 new Test();
 }
}

FINAL METHODS

The final methods defined in a base class can’t be overridden by its derived classes.
The final methods are used to prevent a derived class from overriding the implemen-
tation of a base class’s method. Can you think of any scenario where you’d need this?
Picture this: the base class of all the Java classes, java.lang.Object, defines multiple
final methods—wait, notify, getClass. Methods wait() and notify() are used in
threading and synchronization. If the derived classes were allowed to override these
methods, how do you think Java would implement threading and synchronization?

 If a derived class tries to override a final method from its base class, it won’t com-
pile, as follows:

class Base {
 final void finalMethod() {}
}
class Derived extends Base {
void finalMethod() {}
}

The preceding code fails to compile, with the following compilation error message:

finalMethod() in Derived cannot override finalMethod() in Base
 final void finalMethod() {}
 ^
 overridden method is final
1 error

As you know, you can override only what is inherited by a derived class. The following
code compiles successfully, even though the derived class seems to override a final
method from its base class:

class Base {
 private final void finalMethod() {}
}
class Derived extends Base {
 final void finalMethod() {}
}

Final method
in base class

Won’t compile; final method in
base class can’t be overridden.

Private methods aren’t
inherited by derived classes.

Compiles
successfully
Licensed to Mark Watson <nordickan@gmail.com>

121Static and final keywords
The base class’s private methods aren’t inherited by a derived class. In the previous
code, method finalMethod() is defined as a private method in class Base. So it
doesn’t matter whether it’s marked as a final method. Method finalMethod() defined
in class Derived doesn’t override the base class’s method finalMethod(). Class
Derived defines a new method, finalMethod().

EXAM TIP The private methods of a base class aren’t inherited by its
derived classes. A method using the same signature in the derived class
isn’t an overridding method, but a new method.

FINAL CLASSES
You can prevent a class from being extended by marking it as a final class. But why
would you do so? A class marked as a final class can’t be derived by any other class. For
example, class String, which defines an immutable sequence of characters, is defined
as a final class. It’s a core class, which is used in a lot of Java API classes and user-
defined classes. What happens, say, if a developer extends class String and modifies
its equals() method to return a value true for all method parameter values passed to
it? Because we can’t extend the final class String, let’s create a class MyString and
override its equals() method to return true without comparing any values:

class MyString {
 String name;
 MyString (String name) {this.name = name;}
 public boolean equals(Object o) {
 return true;
 }
}

Many classes from the Java API, like HashMap and ArrayList, rely heavily on the cor-
rect implementation of equals() for searching, deleting, and retrieving objects. Imag-
ine the effect it would have if you try to use objects of class MyString in an ArrayList
and retrieve a matching value:

class UseMyStringInCollectionClasses {
 public static void main(String args[]) {
 ArrayList<MyString> list = new ArrayList<>();
 MyString myStrEast = new MyString("East");
 MyString myStrWest = new MyString("West");
 list.add(myStrEast);
 System.out.println(list.contains(myStrWest));
 }
}

Surprisingly, the preceding code prints true even though list doesn’t contain a
matching MyString object. This is because method contains90 in ArrayList uses the
equals() (overridden) method of the objects it holds. If you can’t get all of this expla-
nation, don’t worry. Collection classes are covered in detail in chapter 4. Imagine the

Creates
ArrayList—list

Add only one element
to list—myStrEast

Prints “true”—list can
find myStrWest, which
was never added to it.
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 2 Advanced class design
havoc that objects of an extended String class can cause, if class String wasn’t
defined as a final class, was allowed to be extended, and its methods overridden.

 You can mark a class as a final class by prefixing its definition with the keyword
final:

final class FinalClass {
 //.. this need not be detailed here
}

You can’t reverse the position of the keywords final and class:

class final ClassBeforeFinalWontCompile {}

The original intent of defining an abstract class was to extend it to create more mean-
ingful and concrete classes. Because a final class can’t be extended, you can’t define a
class both as final and abstract:

abstract final class FinalAbstractClassDontExist {}

If you try to extend a final class, your class won’t compile:

final class Base {}
class Derived extends Base {}

EXAM TIP Look out for trick questions on the exam that extend final
classes from the Java API, like class String and the wrapper classes Byte,
Short, Integer, Long, Float, Double, Boolean, and Character. When you
don’t look at the source code of the base class and see that it’s marked
final, it’s easy to overlook that the classes that extend it won’t compile.
Though the authors of this exam claim not to include trick questions,
they also state that they expect the candidates to know “their stuff.”

The enumerated types share some characteristics of the final keyword. Enumerated
types enable you to define a new type, but with a predefined set of objects. Let’s see
how in the next section.

2.3 Enumerated types

Think of the courses offered by a university or maybe even the roles within an organi-
zation: each defines a finite and predefined set of objects. These finite and predefined

Class is marked final by
adding final to its definition.

Won’t compile; position of keywords
class and final can’t be interchanged.

Won’t compile; a class
can’t be defined both as
final and abstract.

Final class

Won’t compile; can’t
extend a final base class.

[2.5] Use enumerated types
Licensed to Mark Watson <nordickan@gmail.com>

123Enumerated types
sets of objects can be defined as enumerated types, or enums. An enum defines a new
custom data type (like interfaces and classes). Users are allowed to use only existing
enum objects; they can’t create new enum objects. Type safety was the main reason
for introducing enumerated types in Java version 5.0, discussed further in the fol-
lowing section.

2.3.1 Understanding the need for and creating an enum

Let’s assume that you have been assigned the task of creating a gaming application
that can be played at exactly three levels: beginner, intermediate, and expert. How
would you restrict your variable to be assigned only these three values?

 You can accomplish this by creating an enum. An enum enables you to create a
type, which has a fixed set of constants. Following is an example of the enum Level,
which defines three programming levels:

enum Level { BEGINNER, INTERMEDIATE, EXPERT }

An enum lets you define a new type, the way classes and interfaces enable you to
define your own types. The preceding line of code creates a new type, Level, which
defines the constants BEGINNER, INTERMEDIATE, and EXPERT of type Level. (Syntacti-
cally, you can use any case for defining these constant values, but following Oracle’s
recommendation of using uppercase letters for constant values will save you a lot of
headaches.) These constants are also static members and are accessible by using the
name of the enum in which they’re defined.

 You can assign a gaming level, defined by the enum Level for a game. Let’s define
a class, Game, which defines an instance variable, gameLevel, of type Level, as follows:

class Game {
 Level gameLevel;
}

Class GameApp defines a field game of type Game and initializes it as follows:

class GameApp {
 Game game = null;

 public void startGame () {
 game = new Game();
 game.gameLevel = Level.BEGINNER;
 }
}

The class GameApp demonstrates the real benefit of all this enum business. Because the
variable gameLevel (defined in class Game) is of type Level, you can assign only one of the
constants defined in the enum Level—that is, Level.BEGINNER, Level.INTERMEDIATE,
or Level.EXPERT.

 Let’s look into the finer details of enums, as discussed in the next section.

The enum values are
constant values.

Variable of
type Level

Assigns constant
BEGINNER
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 2 Advanced class design
2.3.2 Adding implicit code to an enum

When you create an enum, Java adds implicit code and modifiers to its members.
These details will help you explain the behavior of enum constants, together with how
to access and use them. Let’s work with the enum Level created in the previous sec-
tion (2.3.1) and decompile its Level.class file, using a decompiler (like JD):

enum Level { BEGINNER, INTERMEDIATE, EXPERT }

A decompiler converts Java byte code (.class) to a Java source file (.java). The newly
created Java source file will include any implicit code that was added during the com-
pilation process. Listing 2.2 shows decompiled enum Level (to make the code easier
to understand, I’ve added some comments):

final class Level extends Enum
{
 public static final Level BEGINNER;
 public static final Level INTERMEDIATE;
 public static final Level EXPERT;

 private static final Level $VALUES[];

 static
 {
 BEGINNER = new Level("BEGINNER", 0);
 INTERMEDIATE = new Level("INTERMEDIATE", 1);
 EXPERT = new Level("EXPERT", 2);
 $VALUES = (new Level[] {
 BEGINNER, INTERMEDIATE, EXPERT
 });
 }

 public static Level[] values()
 {
 return (Level[])$VALUES.clone();
 }

 public static Level valueOf(String s)
 {
 return (Level)Enum.valueOf(Level, s);
 }

 private Level(String s, int i)
 {
 super(s, i);
 }
}

In the decompiled code, at B you can notice that an enum is implicitly defined as
a final entity. At c you can notice that all enum constants are implicitly declared
as public, final, and static variables. The code at d defines an array to store a

Listing 2.2 Decompiled enum Level

enum is implicitly
declared final.

 b

enum constants are
implicitly public,
static, and final.

 c

Array to store
reference to all
enum constants d

Creation of
enum constants
occurs in static
initializer block

 e

Method values return
an array of all enum
constants. f

Method valueOf() parses a
String value and returns
corresponding enum constant g

Private
constructor h
Licensed to Mark Watson <nordickan@gmail.com>

125Enumerated types
reference to all enum constants. The variables are declared at c and d. They are
initialized in a static initializer block at e. Method values() returns an array of all
enum constants at f and valueOf() returns an enum constant for a corresponding
String value at g. The code at h defines a private constructor.

 If the enum constants are themselves created in a static initializer block, when does
a static initializer block in an enum execute? See for yourself in the next “Twist in the
Tale” exercise.

Let’s add some code to the enum Level so it defines a constructor and a static initial-
izer block. Examine the code and determine the correct options that follow.

enum Level {
 BEGINNER;
 static{ System.out.println("static init block"); }
 Level(){
 System.out.println("constructor");
 }
 public static void main(String... args){
 System.out.println(Level.BEGINNER);
 }
}

a constructor
static init block
BEGINNER

b static init block
constructor
BEGINNER

c constructor
static init block
beginner

d static init block
constructor
beginner

In listing 2.2 you’ll notice that all enum constants of BEGINNER, INTERMEDIATE, and
EXPERT are created in the order they were defined and assigned an ordinal: 0, 1, and 2.
Are enum constants created in this manner? Let’s check it out in the next section.

2.3.3 Extending java.lang.Enum

All enums in Java extend the abstract class java.lang.Enum, defined in the Java API.
As always, it’s interesting to peek at the source code from the Java API, to understand
why some pieces of code behave in a particular way. Let’s look at the (partial) code of
class java.lang.Enum, which will help you get the hang of how the enum constants
are created, their order, and their default names. Please note that the comments

Twist in the Tale 2.4
Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 2 Advanced class design
aren‘t part of the code from class java.lang.Enum. These comments have been added
to clarify the code for you.

public abstract class Enum<E extends Enum<E>>
implements Comparable<E>, Serializable {
 private final String name;
 private final int ordinal;

 protected Enum(String name, int ordinal) {
 this.name = name;
 this.ordinal = ordinal;
 }

 public String toString() {
 return name;
 }

 public final String name() {
 return name;
 }
 //.. rest of the code
}

The class Enum defines only one constructor with String and int parameters to
specify its name and ordinal (order). Every enum constant is implicitly assigned an
order on its creation. Let’s refer back to the example of enum Level as defined in
listing 2.2. The enum constant values BEGINNER, INTERMEDIATE, and EXPERT are cre-
ated within the enum Level, in its static initializer block (refer to code listing 2.1),
as follows:

public static final level BEGINNER = new Level ("BEGINNER", 0);
public static final level INTERMEDIATE = new Level ("INTERMEDIATE", 1);
public static final level EXPERT = new Level ("EXPERT", 2);

EXAM TIP Watch out for exam questions that use methods like
Collections.sort() from the Collections API to sort enum constants.
The default order of enum constants is their order of definition. The
enum constants aren’t sorted alphabetically.

Now, examine the following code:

public class TestEnum {
 public static void main(String args[]) {
 System.out.println(Level.BEGINNER.name());
 System.out.println(Level.BEGINNER);
 }
}

Listing 2.3 Partial code listing of class java.lang.Enum

Name of the
enum constant

Position of
enum constant

Name and position of
enum constant is saved
on its creation

Default implementation
of toString() returns
name of enum constant

Method name() is marked final
and can’t be overridden; returns
enum constant’s name.

Prints
“BEGINNER”

Also prints “BEGINNER”
by calling method
toString()
Licensed to Mark Watson <nordickan@gmail.com>

127Enumerated types

e

Note both methods—toString() and name() defined in java.lang.Enum—return the
value of the instance variable name (revisit code listing 2.3—class java.lang.Enum
defines an instance variable name). Because method name() is a final method, you
can’t override it. But you can override method toString() to return any description
that you want.

EXAM TIP For an enum constant BEGINNER in enum Level, calling
System.out.println(Level.BEGINNER) returns the name of the enum
constant—that is, BEGINNER. You can override toString() in an enum to
modify this default return value.

Because a class can extend from only one base class, an attempt to make your enum
extend any other class will fail. The following code won’t compile:

class Person {}
enum Level extends Person { BEGINNER, INTERMEDIATE, EXPERT }

But you can make your enum implement any number of interfaces. A class can extend
only one base class but can implement multiple interfaces. The following code com-
piles successfully:

interface MyInterface {}
enum Level implements MyInterface { BEGINNER, INTERMEDIATE, EXPERT }

You can’t explicitly make a class extend java.lang.Enum:
class MyClass extends java.lang.Enum {}

EXAM TIP An enum implicitly extends java.lang.Enum, so it can’t extend
any other class. But a class can’t explicitly extend java.lang.Enum.

2.3.4 Adding variables, constructors, and methods to your enum

You can add variables, constructors, and methods to an enum. You can also override
the nonfinal methods from the java.lang.Enum class. Following is an example:

enum IceCream {
 VANILLA, STRAWBERRY, WALNUT, CHOCOLATE;

 private String color;

 public String getColor() {
 return color;
 }

 public void setColor(String val) {
 color = val;
 }

Won’t
compile

Will
compil

Won’t
compile

enum constants b

Instance variable in
enum IceCream

 c

Method
getColor()

 d

Method
setColor()

 e
Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 2 Advanced class design
 public String toString() {
 return "MyColor:"+ color;
 }
}

The code at B defines a list of enum constants: VANILLA, STRAWBERRY, WALNUT, and
CHOCOLATE in enum IceCream. Note that this constant list must be the first in the
enum definition and should be followed by a semicolon. A semicolon is optional if
you don’t add methods and variables to your enum. The code at c defines an
instance variable color in enum IceCream. The code at d and e adds methods get-
Color() and setColor() to enum IceCream. The code at f overrides the public
toString() method inherited from class java.lang.Enum.

EXAM TIP The enum constant list must be the first in the enum defini-
tion and should be followed by a semicolon. A semicolon is optional if
you don’t add methods and variables to your enum.

You can call the methods defined in the preceding example, as follows:

public class UseIceCream {
 public static void main(String[] args) {
 IceCream.VANILLA.setColor("white");
 System.out.println(IceCream.VANILLA.getColor());
 System.out.println(IceCream.VANILLA);
 }
}

The output of this code is as follows:

white
MyColor:white

Are you thinking that the code at B is invalid because enum values are constant val-
ues? Note that this code is absolutely valid. VANILLA is a type of enum IceCream, and
you can call methods that are available to it. The code at c calls the method get-
Color(), and the code at d calls method toString(), which was overridden in enum
IceCream.

 You can also define constructors in your enum and override methods that apply
only to particular enum constants, as follows in listing 2.4 (modifications in bold):

enum IceCream {
 VANILLA("white"),
 STRAWBERRY("pink"),

Listing 2.4 enum IceCream with custom constructor and constant specific class body

Override method
toString() f

 b
 c

 d
Licensed to Mark Watson <nordickan@gmail.com>

129Enumerated types

Th
 WALNUT("brown") {
 public String toString() {
 return "WALNUT is Brown in color";
 }
 public String flavor() {
 return "great!";
 }
 },
 CHOCOLATE("dark brown");

 private String color;
 IceCream(String color) {
 this.color = color;
 }
 public String toString() {
 return "MyColor:" + color;
 }
}

The code at B, known as a constant specific class body, defines overridding methods
for a particular enum constant, WALNUT. The code at d defines a constructor for
enum IceCream, but it can be used only within an enum. A constructor in an enum
can be defined only with default or private access; public and protected access lev-
els aren’t allowed.

EXAM TIP An enum can’t define a constructor with public or protected
access level.

In the preceding code, it might be strange to note that though you can define a
method flavor() at c, you can’t call it, as follows:

public class UseIceCream {
 public static void main(String[] args) {
 System.out.println(IceCream.VANILLA);
 System.out.println(IceCream.WALNUT);
 //System.out.println(IceCream.WALNUT.flavor());
 }
}

This behavior can be attributed to WALNUT creating an anonymous class and overriding
the methods of enum IceCream. But it’s still referenced by a variable of type IceCream,
which doesn’t define the method flavor. If this leaves you guessing about what all this
stuff with anonymous classes is, you can go grab a glass of anonymous inner classes in
section 2.4.4.

 Let’s see how class IceCream’s constant WALNUT returns a custom value for its
toString() method, that it overrides in its constant specific class body. In the follow-
ing example, class IceCreamParlor uses method values() to access all enum con-
stants and outputs their values:

class IceCreamParlor {
 public static void main(String args[]) {

Methods defined
between { and }
are available only
to enum constant
WALNUT.

 b

is method
can’t be

executed. c

Constructor that
accepts string d

Prints
“MyColor:white”

Prints “WALNUT is
Brown in color”

Won’t compile
Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 2 Advanced class design
 for (IceCream ic : IceCream.values())
 System.out.println(ic);
 }
}

The output of the preceding code is

MyColor:white
MyColor:pink
WALNUT is Brown in color
MyColor:dark brown

In the preceding output, notice how the String representation of WALNUT differs from
the other enum constants.

EXAM TIP An enum constant can define a constant specific class body and
use it to override existing methods or define new variables and methods.

2.3.5 Where can you define an enum?

You can define an enum as a top-level enum, or as a member of a class or an interface.
Until now, you worked with a top-level enum. The following code shows you how to
define an enum as a member of another class or interface:

class MyClass {
 enum Level { BEGINNER, INTERMEDIATE, EXPERT }
}
interface MyInterface {
 enum Level { BEGINNER, INTERMEDIATE, EXPERT }
}

But you can’t define an enum local as a method. For example, the following code
won’t compile:

class MyClass {
 void aMethod() {
 enum Level { BEGINNER, INTERMEDIATE, EXPERT }
 }
}

At the end of this section on enums, let’s revisit the important rules that you should
remember for the exam.

Rules to remember about enums
■ An enum can define a main method. This means that you can define an enum

as an executable Java application.
■ The enum constant list must be defined as the first item in an enum, before the

declaration or definition of methods and variables.

Method values()
returns an array of
all enum constants.

enum as a member
of other class

enum as a member
of an interface
Licensed to Mark Watson <nordickan@gmail.com>

131Enumerated types
When you’re consuming a lot of information, missing the small and simple details is
easy. Let’s check whether you remember and can spot some basic information about
enums in the next “Twist in the Tale” exercise.

Let’s modify the code used in enum IceCream in this section. Examine the code and
determine the correct options that follow.

public enum IceCreamTwist {
 VANILLA("white"),
 STRAWBERRY("pink"),
 WALNUT("brown"),
 CHOCOLATE("dark brown");

 String color;

 IceCreamTwist(String color) {
 this.color = color;
 }

 public static void main(String[] args) {
 System.out.println(VANILLA); //line1
 System.out.println(CHOCOLATE); //line2
 }
}

a Compilation error: Can’t run an enum as a standalone application.
b Compilation error at (#1) and (#2): Can’t access VANILLA and CHOCOLATE in a

static main method.

(continued)
■ The enum constant list might not be followed by a semicolon, if the enum

doesn’t define any methods or variables.
■ When an enum constant overrides an enum method, the enum constant creates

an anonymous class, which extends the enum.
■ An enum constant can define a constant specific class body and use it to over-

ride existing methods or define new variables and methods.
■ An enum implicitly extends java.lang.Enum, so it can’t extend any other class.

But a class can’t explicitly extend java.lang.Enum. An enum can implement
interface(s).

■ An enum can never be instantiated using the keyword new.
■ You can define multiple constructors in your enums.
■ An enum can’t define a constructor with public or protected access level.
■ An enum can define an abstract method. Just ensure to override it for all your

enum constants.
■ The enum method values() returns a list of all the enum constants.
■ An enum can be defined as a top-level enum, or as a member or another class

or interface. It can’t be defined local to a method.

Twist in the Tale 2.5
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 2 Advanced class design
c No errors. Output is

VANILLA
CHOCOLATE

d No errors. Output is

white
dark brown

An enum defines a new type with limitations. Similarly, nested and inner classes define
a new type with constraints on their use. Defined within another class, nested and
inner classes are characterized with a different set of behavior that sets them apart
from the top-level classes. Let’s uncover these details in the next section.

2.4 Static nested and inner classes

A nested class is a class defined within another class. Nested classes that are declared as
static are referred to as static nested classes. Nested classes that aren’t declared as static
are referred to as inner classes. Like a regular top-level class, an inner or static nested
class can define variables and methods.

 You can also define inner classes within methods and without a name. Figure 2.5
shows the types of inner classes, distinguished by their placement within the top-level
class and whether they are defined as and with static members.

 Before we dive into a detailed discussion of all the flavors of the inner classes,
table 2.2 provides a quick definition of the types of inner classes.

For the exam, you’ll need to know why inner classes and static nested classes are
important in the design of an application, their advantages and disadvantages, and
how to create and use them. Let’s start with a discussion of the advantages of inner

Table 2.2 Flavors of inner classes and their definitions

Type of inner class Description

Static or static nested
class

Is a static member of its enclosing class and can access all the static vari-
ables and members of its outer class

Inner or member class Is an instance member of its enclosing class. It can access all the
instance and static members of its outer class, including private members.

Method local inner class Is defined within a method. Local inner classes are local to a method. They
can access all the members of a class, including its private members, but
they can be accessed only within the method in which they’re defined.

Anonymous inner class Is a local class without a name

[2.4] Create top-level and nested classes
Licensed to Mark Watson <nordickan@gmail.com>

133Static nested and inner classes
classes, followed by a detailed discussion of all these classes. At the end of this section,
we’ll discuss their disadvantages.

2.4.1 Advantages of inner classes

Inner classes offer multiple advantages. To start, they help you objectify the function-
ality of a class, within it. For example, you might define a class Tree, which defines
operations to add objects, remove objects, and sort them based on a condition.
Instead of defining methods and variables to sort them within the class Tree, you
could encapsulate sorting functionality within another class TreeSort. Because the
class TreeSort would always work with Tree and might not be needed outside the class
Tree, TreeSort can be defined as an inner class within class Tree. Another example
for using inner classes is as parameter containers. Instead of using long method signa-
tures, inner classes are often used to keep method signatures compact by passing ref-
erence parameters of inner classes instead of a long list of individual parameters.

 Just as you can organize your top-level classes by using packages, you can further
organize your classes by using inner classes. Inner classes might not be accessible to all
other classes and packages.

class Inner{

}

Class Outer {

} Nonstatic Static

Inner class

Outer class

Local inner class

static class StaticNested{

}

Static nested class

void foo(){

class LocalInner{}

}

static void foo(){

class LocalInner{}

}

Anonymous

inner class

Object foo(){

return new Object{}{

public String toString(){

return "anonymous";

}

};

}

static Object foo(){

return new Object{}{

public String toString(){

return "anonymous";

}

};

}

Figure 2.5 An outer class showing all types of inner classes that it can define: inner class, static
nested class, local inner class, and anonymous inner class
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 2 Advanced class design
 Inner classes also offer a neat way to define callback methods. For example, con-
sider a user-interface-intensive GUI application, which defines multiple controls (but-
tons, keys, and screen) to accept a user’s input. These user controls should register
listeners, which are classes that define methods that are called back, when a user con-
trol receives an input. Instead of defining a single class to handle all callback methods
for multiple user controls, you can use inner classes to define callback methods for
individual user controls.

 Let’s start with the simplest type of inner class: a static nested class.

2.4.2 Static nested class (also called static inner class)

A static nested class is a static class that’s defined (nested) within another class. It’s
referred to as a nested class and not an inner class because it isn’t associated with any
instance of its outer class. You’d usually create a static nested class to encapsulate par-
tial functionality of your main class, whose instance can exist without the instance of
its outer class. It can be accessed like any other static member of a class, by using the
class name of the outer class. A static nested class is initialized when it’s loaded with its
outer class in memory. Figure 2.6 shows a static nested class.

class Inner{

}

Class Outer {

} Nonstatic Static

Inner class

Outer class

In this section:

Static nested class

Local inner class

static class StaticNested{

}

Static nested class

void foo(){

class LocalInner{}

}

static void foo(){

class LocalInner{}

}

Anonymous

inner class

Object foo(){

return new Object{}{

public String toString(){

return "anonymous";

}

};

}

static Object foo(){

return new Object{}{

public String toString(){

return "anonymous";

}

};

}

Figure 2.6 A static nested class within an outer class
Licensed to Mark Watson <nordickan@gmail.com>

135Static nested and inner classes
In the following (simplified) example, class DBConnection defines a static nested class,
DBConnectionCache, which creates and stores database connections with default con-
nection values. When requested a database connection, class DBConnection checks if a
default connection for the specified database exists. If yes, it returns the default con-
nection; otherwise it creates and returns a new connection.

class DBConnection {
 public DBConnection (String username, String pwd, String URL) {
 // code to establish a Database connection
 }
 public DBConnection OracleConnection
 (String username, String pwd, String URL) {
 DBConnection conn = DBConnectionCache.getDefaultOracleConnection();
 if (conn != null) {
 return conn;
 }
 else {
 //establish and return new DBconnection using method parameters
 }
 }
 /*
 * Oversimplified version of a static nested class which uses default
 * values to establish DB connections and store them in a static array
 */
 static class DBConnectionCache {
 static DBConnection connections[];
 static {
 connections = new DBConnection[3];
 connections[0] = new DBConnection
 (/*arguments to establish a connection to an ORACLE DB*/);
 connections[1] = new DBConnection
 (/*arguments to establish a connection to a MySQL DB*/);
 }
 static DBConnection getDefaultOracleConnection() {
 return connections[0];
 }
 static DBConnection getDefaultMySQLConnection() {
 return connections[1];
 }
 }
}

EXAM TIP In the preceding example, access to nested class DBConnection-
Cache can be restricted by using an appropriate access modifier with its
definition.

In the next section, you’ll work with one of the most important points to be tested on
the exam—how to instantiate static nested classes.
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 2 Advanced class design

in

ts
:20”
 Let’s code class StaticNested as shown in figure 2.6:

class Outer {
 static int outerStatic = 10;
 int outerInstance = 20;

 static class StaticNested {
 static int innerStatic = 10;
 int innerInstance = 20;
 }
}

NOTE A static nested class isn’t usually referred to as an inner class,
because it isn’t associated with an object of the outer class.

When you create a static nested class, it’s compiled as a separate class file. The .class
file for a static nested file includes the name of its outer class. On compiling the code
shown in the preceding example, the compiler generates two .class files, Outer.class
and Outer$StaticNested.class.

 As with a regular top-level class, a static nested class is a type and you can instanti-
ate it. Multiple separate instances of a static nested class can be created. Each instance
of the static nested class can have a different value for its instance variables. Let’s
instantiate the StaticNested class from the preceding example code:

class Outer {
 static int outerStatic = 10;
 int outerInstance = 20;

 static class StaticNested {
 static int innerStatic = 10;
 int innerInstance = 20;
 }
 public static void main(String args[]) {
 StaticNested nested1 = new StaticNested();
 Outer.StaticNested nested2 = new Outer.StaticNested();

 nested1.innerStatic = 99;
 nested1.innerInstance = 999;

 System.out.println(nested1.innerStatic + ":" +
 nested1.innerInstance);
 System.out.println(nested2.innerStatic + ":" +
 nested2.innerInstance);
 }
}

When a static nested class is instantiated outside its outer class, you must prefix it with
its outer class name:

class AnotherClass {
 Outer.StaticNested nested1 = new Outer.StaticNested();
 StaticNested nested2 = new StaticNested();
}

When static nested
class is instantiated
within its outer class,
it doesn’t need to be
prefixed with its
outer class name
(though it can).

Modify the value
of innerStatic for
all instances of
StaticNested.

Modify only
the value of
nerInstance
for nested1.

Prints
“99:999”

Prin
“99

When static nested class is instantiated outside its outer
class, it must be prefixed with its outer class name

Won’t compile
Licensed to Mark Watson <nordickan@gmail.com>

137Static nested and inner classes
For the exam, it’s important to remember the syntax of instantiating a static nested
class: the count of operator new and its placement. It uses the new operator once, just
before the name of the static nested class. Figure 2.7 highlights correct and incorrect
instantiation code snippets.

 Another point that you must remember when instantiating a static nested class is
when to prefix the name of a static nested class with its outer class. Figure 2.8 shows

StaticNested one = new StaticNested();

Outer.StaticNested two = new Outer.StaticNested();

StaticNested three = new Outer.new StaticNested();

StaticNested four = new Outer().new StaticNested();

StaticNested five = Outer.new StaticNested();

Figure 2.7 Correct and incorrect instantiation of a static nested class

Class

StaticNested

Within

class

Outer

Method

Paul()

Hi
StaticNested !

Hi
Outer.StaticNested !

Method

Shreya()

Hi Shreya!
Hi Paul!

Class
StaticNested

Outside

class

Outer

Method

Paul()

Hi
StaticNested !

Hi
Outer.StaticNested !

Method

Shreya()

Hi Paul!
Who is that
girl calling?

Figure 2.8 An interesting way to remember that you must prefix the name of the static inner class
with its outer class when referring to it outside its outer class.
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 2 Advanced class design
an interesting way to remember that you must prefix the name of the static inner
class with its outer class when you’re referring to it outside its outer class. For the
rest of the cases you might, but it isn’t mandatory, prefix the name of the static
nested class with its outer class. In figure 2.8 when method Shreya doesn’t prefix
StaticNested with its outer class, outside the class Outer, StaticNested doesn’t seem
to recognize the call.

ACCESSING MEMBERS OF A STATIC NESTED CLASS

To access the static members of a static nested class, you need not create an object of
this class. You need an object of a static nested class to access its instance members.
Here’s an example:

class Outer1 {
 public static void main(String args[]) {
 System.out.println(new Outer.StaticNested().innerInstance);
 System.out.println(Outer.StaticNested.innerStatic);
 }
}

NOTE On the exam, you might be asked whether you can instantiate a
static nested class, how to instantiate it, and whether it can define instance
or static members, or both.

ACCESS LEVELS OF A STATIC NESTED CLASS

A static nested class can be defined using all access levels: private, default access,
protected, and public. The accessibility of the static nested class depends on its
access modifier. For example, a private static nested class can’t be accessed outside its
outer class. The access of a static nested class also depends on the accessibility of
its outer class. If the outer class is defined with the default access, an inner nested
class with public access won’t make it accessible outside the package in which its
outer class is defined.

MEMBERS OF OUTER CLASS ACCESSIBLE TO STATIC NESTED CLASS

A static nested class can access only the static members of its outer class. An exam-
ple follows.

class Outer {
 static int outerStatic = 10;
 int outerInstance = 20;

 static class StaticNested {
 static int innerStatic = outerInstance;
 int innerInstance = outerInstance;;
 }

}

Object of StaticNested class required to
access its instance members

Object of StaticNested class not required
to access its static members

Can’t access instance variables
from a static nested class
Licensed to Mark Watson <nordickan@gmail.com>

139Static nested and inner classes
2.4.3 Inner class (also called member class)

The definition of an inner class is enclosed within another class, also referred to as an
outer class. An inner class is an instance member of its outer class. An instance of an inner
class shares a special bond with its outer class and can’t exist without its instance. Fig-
ure 2.9 illustrates the placement of an inner class within an outer class.

Rules to remember about static nested classes
■ To create an object of a static nested class, you need to prefix its name with the

name of its outer class (necessary only if you’re outside the outer class).
■ A static nested class can define both static and nonstatic members.
■ You need not create an object of a static nested class to access its static mem-

bers. They can be accessed the way static members of a regular class are
accessed.

■ You should create an object of a static nested class to access its nonstatic
members, by using the operator new.

■ A static nested class can be defined using any access modifier.
■ A static nested class can define constructor(s).

class Inner{

}

Class Outer {

} Nonstatic Static

Inner class

Outer class

Local inner class

static class StaticNested{

}

Static nested class

void foo(){

class LocalInner{}

}

static void foo(){

class LocalInner{}

}

Anonymous

inner class

Object foo(){

return new Object{}{

public String toString(){

return "anonymous";

}

};

}

static Object foo(){

return new Object{}{

public String toString(){

return "anonymous";

}

};

}

In this section:

Inner class

Figure 2.9 Placement of an inner class within an outer class
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 2 Advanced class design
You’d usually create an inner class to encapsulate partial functionality of your main
class such that the existence of the inner class instance isn’t possible without its outer
class instance. This is in contrast to a nested static class, which can be used without an
instance of its outer class.

 For example, the following code defines a class Tree and an inner class TreeSort.
Tree defines operations to add, remove, and sort objects based on a condition.
Instead of defining methods and variables to sort the tree elements within class Tree,
it encapsulates sorting functionality within class TreeSort. Class TreeSort would
always work with Tree and might not be needed without class Tree:

class Node {
 Object value;
 Node left, right;
}
class Tree {
 Tree() {}
 Node rootNode;
 void addElement(Object value) {
 //.. code //
 }
 void removeElement(Object value) {
 //.. code //
 }
 void sortTree(boolean ascending) {
 new TreeSort(ascending).sort();
 }

 class TreeSort{
 boolean ascendingSortOrder = true;
 TreeSort(boolean order) {
 ascendingSortOrder = order;
 }
 void sort() {
 // outer class’s rootNode and sort tree values
 // sorting code can be complex
 }
 }
}

Figure 2.10 illustrates the bare-bones inner class Inner, defined within another class,
Outer, and how the compiler generates separate class files for the outer and inner classes.

 Throughout this section, I refer to the concept of outer and inner classes as outer class
and inner class. I refer to names of the outer class and inner class by using code font.

NOTE You can create an outer class and inner class using any names. The
names of these classes are chosen as Outer and Inner so it’s easy for you
to recognize them.

Instances of Node
used to store Tree
elements

Defining sorting code
in a separate inner
class makes class Tree
simpler and cleaner.
Licensed to Mark Watson <nordickan@gmail.com>

141Static nested and inner classes
CHARACTERISTICS OF INNER CLASSES

Because an inner class is a member of its outer class, an inner class can be defined
using any of the four access levels: public, protected, default access, and private.
Like a regular top-level class, an inner class can also define constructors, variables,
and methods. But an inner class can’t define nonfinal static variables or methods, as
shown in figure 2.11.

class Outer {

}

class Inner{} Outer.class

Outer$Inner.class

Java

compiler

In

Out

Separate class files for

outer and inner classes

Let me assign
separate space
to inner class

Figure 2.10 The compiler generates separate class files for an outer class and inner class.
The name of the inner class is prefixed with the name of the outer class and a $ sign.

class Outer {

}

protected class Inner{

}

Inner(){}
public String publicInner = "Inner";
private int privateInner = 20;
//static int staticInner = 10;
//static void staticMethod(){}

An inner class…

Can be defined

using any

access modifier

Can define

constructors

Can define instance

variables and methods

Can’t define static

methods and nonfinal

static variables

Figure 2.11 Characteristics of an inner class: it can be defined using any access modifier, can
define constructors, and can define instance variables and methods. An inner class can define static
members variables but not static methods.
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 2 Advanced class design
CREATION OF AN INNER CLASS

Whenever you instantiate an inner class, remember that an instance of an inner class
can’t exist without an instance of the outer class in which it’s defined. Let’s look at cre-
ating an inner class:

■ Within an outer class, as an instance member
■ Within a method of an outer class
■ Within a static method of an outer class
■ Outside the outer class

First, a definition of a bare-bones outer class and inner class follows:

class Outer {
 class Inner {}
}

Class Outer can instantiate inner class Inner as its instance member (additions in
bold), as follows:

class Outer {
 Inner objectInner = new Inner();
 class Inner {}
}

In the previous code, like all instance variables, objectInner can access an instance of
its outer class and its members, Outer. Similarly, an instance of an inner class created
within an instance method of an outer class can access the instance of its outer class.
So, you can instantiate class Inner within an instance method of class Outer, as follows
(additions in bold):

class Outer {
 Inner in = new Inner();
 class Inner {}
 void aMethod () {
 Inner objectInner = new Inner();
 }
}

EXAM TIP You must have an outer class instance to create an inner class
instance.

Now, let’s try to instantiate class Inner within a static method of class Outer (additions
in bold):

class Outer {
 class Inner {}
 static void staticMethod() {
 Inner in = new Inner();
 }
}

Bare-bones
outer classBare-bones

inner class

Creation of object of class
Inner in class Outer, as its
instance member

Instantiation of class
Inner in class Outer
within its method

Won’t
compile

 b
Licensed to Mark Watson <nordickan@gmail.com>

143Static nested and inner classes
The code at B doesn’t compile because in method staticMethod() there’s no outer
class instance to tie the inner class instance to, which is required for creation of its
inner class Inner. But it’s possible to instantiate class Outer in the method static-
Method(). When you have an Outer instance, you can instantiate Inner:

class Outer {
 class Inner {}
 static void staticMethod () {
 Outer outObj = new Outer();
 Inner innerObj = outObj.new Inner();
 }
}

The code at B creates outObj, an Outer instance in the static method static-
Method(). outObj is used to create an instance of class Inner at c because you need
an outer class instance to create an inner class instance. It’s interesting to note that
the operator new is called on outObj to create the innerObj instance. Have you
invoked the operator new on an object earlier? The operator new is always used to
instantiate a class. But to instantiate an inner class by using an instance of an outer class,
you should invoke the operator new on the outer class’s instance.

 Following is another way of creating the instance innerObj, using a single line
of code:

class Outer {
 class Inner {}
 static void staticMethod () {
 Inner innerObj = new Outer().new Inner();
 }
}

The code at B may look bizarre, because it contains two occurrences of the operator
new. The first occurrence of this operator is used to create an instance of Outer. The
second occurrence is used to create an instance of class Inner.

 If another class wants to create an instance of class Inner, it needs an instance of
class Outer. If it doesn’t have one, it should first create one, just like with method
staticMethod() in the previous code snippet:

class Foo {
 Inner inner;
 Foo () {
 Outer outer = new Outer();
 inner = outer.new Inner();
 }
}

Instance of Outer can
be created in method
staticMethod()

 b

Instance of Inner is created
by calling operator new on
Outer instance c

Single line of code creates
inner class object in outer
class’s static method

 b

Won’t
compile
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 2 Advanced class design
What makes the preceding code fail compilation? Inner isn’t a top-level class, so its
variable type should include the name of its outer class, Outer, so class Foo can find
this class. The following code compiles successfully and creates an Inner instance:

class Foo {
 Outer.Inner inner;
 Foo () {
 Outer outer = new Outer();
 inner = outer.new Inner();
 }
}

Similarly, a static method of class Foo can instantiate Inner, as follows:

class Foo {
 public static void main(String args[]) {
 Outer outer = new Outer();
 Outer.Inner inner = outer.new Inner();
 }
}

EXAM TIP The accessibility of an inner class outside its outer class depends
on the access modifier used to define the inner class. For example, an
inner class with default access can’t be accessed by classes in different
packages than the outer class.

WHAT CAN AN INNER CLASS ACCESS?
An inner class is a part of its outer class. Therefore an inner class can access all vari-
ables and methods of an outer class, including its private members and the ones that
it inherits from its base classes. An inner class can also define members with the same
name as its outer class, as shown in figure 2.12.

Outside its outer class, the type
of inner class should include
the name of its outer class.

class Outer

}

private String privateOuter = "Outer";

}

private int sameName = 20;

class Inner{

String publicInner = privateOuter;

int sameName = Outer.this.sameName;

Object of class canOuter
be accessed using Outer.this

in class Inner

private variable of

class accessibleOuter
in class Inner

Figure 2.12 An inner class can access all the members of its outer class, including its private
members. Outer class members with the same name as inner class members can be accessed
using Outer.this, where Outer is the name of the outer class.
Licensed to Mark Watson <nordickan@gmail.com>

145Static nested and inner classes
An object uses the reference this to refer to its own object. An inner class can use the
reference this to refer to its own object, and the name of its outer class followed by
.this to refer to the object of its outer class, as shown in figure 2.13.

CAN AN INNER CLASS COEXIST WITH ONLY ITS OUTER CLASS?
Yes, an inner class can exist only with an object of its outer class. When a compiler
compiles an inner class, it seems to insert code in the inner class, which defines an
instance variable of its outer class, initialized using its constructor, as illustrated in fig-
ure 2.14.

this

Outer.this

Class Outer
Refers to object of class Outerthis

Class Inner
Refers to object of class Inner

Figure 2.13 An inner class uses this to refer to its own object and
<name_of_its_outer_class>.this to refer to its outer class’s object.

class Outer {

}

class Inner{} class Outer {
class Inner{

private final Outer this$0;
Inner (Outer outer){

this$0 = outer;
}

}
Java

compiler

In

Code added

before byte code

generation

1

Out4

Out2

In3

Outer.class

Outer$Inner.class

Figure 2.14 Java instantiates an inner class by passing it an outer class instance.
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 2 Advanced class design
It’s time to attempt a quick exercise on inner classes in the following “Twist in the
Tale” exercise.

Apart from modifying the code used in an earlier example, I have also modified the
class names for this exercise. Your task is to examine the following code and deter-
mine the correct answer option.

class Flower {
 String color = "red";
 Petal[] petals;
 private class Petal {
 public Petal() {System.out.println(color);}
 String color = "purple"; // line 1
 static final int count = 3; // line 2
 }
 Flower() {
 petals = new Petal[2]; // line 3
 }
 public static void main(String args[]) {
 new Flower();
 }
}

Rules to remember about inner classes
■ You can create an object of the inner class within an outer class or outside an

outer class.
■ When an inner class is created outside its outer class, its type name should

include the name of its outer class, followed by a dot (.) and then the name of
the inner class.

■ To create an inner class with a static method of an outer class, or outside an
outer class, call the operator new on the object of the outer class to instantiate
the inner class.

■ An inner class can’t define static methods. It can define final static variables but
nonfinal static variables aren’t allowed.

■ Members of the inner class can refer to all variables and methods of the outer
class.

■ An inner class can be defined with all access modifiers.
■ An inner class can define constructors.
■ An inner class can define variables and methods with any access level.

Twist in the Tale 2.6
Licensed to Mark Watson <nordickan@gmail.com>

147Static nested and inner classes
a Code prints red twice.
b Code prints purple twice.
c Code prints red three times.
d Code prints purple three times.
e Code prints nothing.
f Code fails compilation due to code at (#1).
g Code fails compilation due to code at (#2).
h Code fails compilation due to code at (#3).

Anonymous classes are another type of inner class. As their title suggests, they don’t
have a name. In the next section, you’ll see why we need unnamed inner classes, and
when and how they are created.

2.4.4 Anonymous inner classes

As the name implies, an anonymous inner class isn’t defined using an explicit name. An
anonymous inner class is created when you combine instance creation with inheriting
a class or implementing an interface. Anonymous classes come in handy when you
wish to override methods for only a particular instance. They save you from defining
new classes. The anonymous class might override none, few, or all methods of the
inherited class. It must implement all methods of an implemented interface. The
newly created object can be assigned to any type of variable—static variable, instance
variable, local variable, method parameter, or returned from a method. Let’s start
with an example of an anonymous inner class that extends a class.

ANONYMOUS INNER CLASS THAT EXTENDS A CLASS

Let’s start with a class Pen:

class Pen{
 public void write() {
 System.out.println("Pen-write");
 }
}

This is how a class, say, Lecture, would usually instantiate Pen:

class Lecture {
 Pen pen = new Pen();
}

Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 2 Advanced class design
Let’s replace this usual object instantiation by overriding method write, while instanti-
ating Pen. To override method write() for this particular instance, we insert a class
definition between () and ; (() and ; are in bold):

class Lecture {
 Pen pen = new Pen()
 {
 public void write() {
 System.out.println("Writing with a pen");
 }
 }
 ;
}

The preceding code creates an anonymous class, which extends class Pen. The object
reference pen refers to an object of this anonymous class.

 The code at B creates an object. Note that this line of code isn’t followed by a
semicolon. Instead, it’s followed by an opening brace at c, which starts the definition
of the anonymous class that extends Pen. The code at d overrides method write()
from the base class Pen. The closing brace at e marks the end of the definition of the
anonymous class. The code at f defines the semicolon, which is used to mark the end
of object creation, which started at B. I’ve deliberately placed the semicolon on a sep-
arate line so you can clearly identify the start and end of the anonymous class. It’s
usual to place this semicolon after the closing brace, used to mark the end of the
anonymous class.

 You can create an anonymous class even if you don’t override any methods of
class Pen:

class Lecture {
 static Pen pen = new Pen(){};

 public static void main(String args[]) {
 System.out.println(new Pen());
 System.out.println(pen);
 }
}

Similarly, you can pass an anonymous class instance to a method parameter. Now let’s
see an example of method notes() in class Lecture, which accepts a method parame-
ter of type Pen:

class Pen{
 public void write() {
 System.out.println("Pen-write");
 }
}

Create an anonymous
class that extends
class Pen.

 b
Begin class definition
for anonymous class.

 c

Override method
write() for instance
referred to by pen.

 d

End class
definition for
anonymous class. e

End of creation of object
referred to by variable pen,
marked by semicolon. f

Create an anonymous class, which extends
Pen but doesn’t override its methods.

Prints a value similar to Pen@1034bb5;
new Pen() returns an object of Pen.

Prints a value similar to Lecture$1@15f5897;
pen refers to an instance of anonymous class
that extends Pen.
Licensed to Mark Watson <nordickan@gmail.com>

149Static nested and inner classes
class Lecture {
 public void notes(Pen pen) {
 pen.write();
 }
}

Here’s how another class—say, Student—calls notes() from class Lecture, subclassing
Pen, and passing the object to it:

class Student {
 void attendLecture() {
 Lecture lecture = new Lecture();
 lecture.notes(new Pen() {
 public void write() {
 System.out.println("Okay! I am writing");
 }
 }
);
 }
}

The preceding code can seem to be more complex than the previous example. To
understand it better, let’s build this code, line by line. In class Student, you call notes()
on object reference lecture:

class Student {
 void attendLecture() {
 Lecture lecture = new Lecture();
 lecture.notes(/* need to pass Pen object */);
 }
}

In the next step, I’ll replace the comment in the preceding code with new Pen(){}, so
I’m ready to subclass Pen (additions in bold):

class Student {
 void attendLecture() {
 Lecture lecture = new Lecture();
 lecture.notes(new Pen(){});
 }
}

I’ll insert the definition of overridden method write() within the curly brace {} of
the Pen anonymous inner class declaration, included in the method parameter to
notes() (additions in bold):

class Student {
 void attendLecture() {
 Lecture lecture = new Lecture();
 lecture.notes(new Pen(){public void write() {
 System.out.println("Okay! I am writing");
 }});
 }
}

Method notes() accepts
parameter of type Pen.

Call notes() by passing
it newly baked object of
anonymous subclass of Pen.
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 2 Advanced class design
Let’s indent the code, to improve the readability:

class Student {
 void attendLecture() {
 Lecture lecture = new Lecture();
 lecture.notes(new Pen(){
 public void write() {
 System.out.println("Okay! I am writing");
 }
 });
 }
}

You can use an anonymous inner class to return a value from a method:

class Outer{
 Object foo() {
 return new Object() {
 public String toString() {
 return "anonymous";
 }
 };
 }
}

ANONYMOUS INNER CLASS THAT IMPLEMENTS AN INTERFACE

Until now, you should have read that you can’t instantiate interfaces; you can’t use the
keyword new with an interface. Think again. Examine the following code, in which
the class BirdSanctuary instantiates the interface Flyable by using the keyword new:

interface Flyable{
 void fly();
}

class BirdSanctuary {
 Flyable bird = new Flyable(){
 public void fly() {
 System.out.println("Flying high in the sky");
 }
 };
}

Don’t worry; you’ve been reading correctly that you can’t use the operator new with an
interface. The catch in the preceding code is that bird refers to an object of an anon-
ymous inner class, which implements the interface Flyable.

 The anonymous class used to instantiate an interface in the preceding code saved
you from creating a class beforehand, which implemented the interface Flyable.

EXAM TIP An anonymous inner class can extend at most one class or
implement one interface. Unlike other classes, an anonymous class can
neither implement multiple interfaces, nor extend a class and implement
an interface together.

Create an anonymous class
that subclasses class Object.

Override method toString()
from class Object.

Use new to
instantiate interface.
Licensed to Mark Watson <nordickan@gmail.com>

151Static nested and inner classes
HOW TO ACCESS ADDITIONAL MEMBERS IN ANONYMOUS CLASSES
By using an anonymous class, you can override the methods from its base class or
implement the methods of an interface. You can also define new methods and vari-
ables in an anonymous class (in bold):

interface Flyable{
 void fly();
}

class BirdSanctuary {
 Flyable bird = new Flyable(){
 public void fly() {
 System.out.println("Flying high in the sky");
 }
 public void hungry(){
 System.out.println("eat");
 }
 };

}

You can’t call the additional member, method hungry(), using the reference variable
bird. Why? The type of the reference variable bird is Flyable. So the variable bird
can access only the members defined in interface Flyable. The variable bird can’t
access additional methods and variables that are defined in anonymous classes that
implement it.

ANONYMOUS CLASS DEFINED WITHIN A METHOD

When an anonymous inner class is defined within a method, it can access only the
final variables of the method in which it’s defined. This is to prevent reassignment of
the variable values by the inner class. Examine the following example.

class Pizza{
 Object margarita() {
 String ingredient = "Cheese";
 return new Pizza() {
 public String toString() {
 System.out.println(ingredient);
 return "margarita";
 }
 };
 }
}

The code at B will compile if ingredient is modified to be defined as a final
local variable.

 The last type of inner class on this exam is a method local inner class, which can be
created within methods and code blocks like initializer blocks, conditional constructs,
or loops. I’ll discuss these in the next section.

Won’t
compile

 b
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 2 Advanced class design
2.4.5 Method local inner classes

The method local inner classes are defined within static or instance methods of a class.
Though these classes can also be defined within code blocks, they are typically created
within methods. So their discussion will be limited to their creation in methods. Fig-
ure 2.15 shows the definition of a bare-bones method local inner class, Inner, defined
within method outerMethod() of class Outer. The Java compiler generates separate
class files for the classes Outer and Inner. Because a class can define method local
inner classes with the same name in separate methods, the Java compiler adds a num-
ber to the name of the compiled file for the local inner classes.

 A class can define multiple method local inner classes, with the same class name, in
separate methods, as follows:

class Outer {
 void outerMethod () {
 class Inner { }
 }
 static void outerMethod2 () {
 class Inner { }
 }
}

For the preceding code, the Java compiler will generate three class files: Outer.class,
Outer$1Inner.class, and Outer$2Inner.class.

CHARACTERISTICS OF METHOD LOCAL INNER CLASSES

Recall that none of the variables within a method can be defined using any explicit
modifier (public, protected, private). Similarly, method local inner classes can’t
be defined using any explicit access modifier. But a method local inner class can

class Outer {
void outerMethod(){

}

class Inner{}

Outer.class

Outer$1Inner.class

Java

compiler

In

Separate class files
}

Out

Figure 2.15 Compiler generates separate class files for an outer class and method local
inner class. The name of the method local inner class is prefixed with the name Outer
class, a $ sign, and an integer.

Class Inner defined in
method outerMethod()

Class Inner defined in
method outerMethod2()
Licensed to Mark Watson <nordickan@gmail.com>

153Static nested and inner classes
define its own constructors, variables, and methods by using any of the four access
levels:

class Outer {
 private int privateOuter = 10;
 void outerMethod () {
 class Inner {
 protected Inner() {}
 public int publicInner = 100;
 int privateInner = privateOuter;
 }
 }
}

But a method local inner class can’t define static variables or static methods.

CREATION OF A LOCAL INNER CLASS

A method local inner class can be created only within the method in which it’s defined.
Also, its object creation can’t appear before the declaration of the local inner class, as
shown in the following code:

class Outer {
 void outerMethod () {
 //Inner in1 = new Inner();
 class Inner {}
 Inner in2 = new Inner();
 }
}

WHAT CAN A METHOD LOCAL INNER CLASS ACCESS?
A method local inner class can access all variables and methods of its outer class,
including its private members and the ones that it inherits from its base classes. A
method local inner class can also define members with the same name as its outer
class. In this case, the members of the outer class can be referred to by using the name
of the outer class followed by the implicit reference this. Class Inner can access mem-
bers of class Outer by using Outer.this, as shown in the following code:

class Outer {
 private int privateOuter = 10;
 void outerMethod () {
 class Inner {
 protected Inner() {}
 public int publicInner = 100;
 int privateInner = Outer.this.privateOuter;
 }
 }
}

2.4.6 Disadvantages of inner classes

Using inner classes is an advanced concept, and it can be difficult for inexperienced
programmers to identify, implement, and maintain them.

Can’t be defined using an
explicit access modifier

Can define its constructs, variables,
and methods using any access level

Can access all members,
including private members,
of its outer class

Won’t
compile

Will
compile

Local inner class can
access all members
of its outer class,
including private
members.
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 2 Advanced class design
 On translation to byte code, inner classes can be accessed by classes in the same
package. Because inner classes can access the private members of their outer class,
they could break the designed encapsulation. You need to be careful when you create
the inner and static nested classes.

2.5 Summary
This chapter covers abstract classes, static and final keywords, enumerated types,
and nested and inner classes. The choice of identifying abstract classes isn’t straight-
forward. This chapter showed you simple examples so you’re well aware of their need,
importance, advantages, and shortcomings.

 Application of the static and final nonaccess modifiers are important design
decisions. You should know about the Java entities that can use these modifiers,
together with how they change the default behavior of the entities. Incorrect design
decisions can make an application inefficient and difficult to extend or maintain.

 This chapter covered enums that are used to create a new type with a finite and pre-
defined set of objects. The definition of an enum can be as simple as including only the
name of enum constants, or as complex as including variables, constructors, and meth-
ods. The exam is sure to test you on the finer details of enums, all covered in this chapter.

 Static nested classes, inner classes, anonymous inner classes, and method local
inner classes were also covered. An inner class shares an intimate relation with its
outer class. Inner classes help you objectify the functionality of a class. Identification
of an inner class is also an important design decision. It can help you further organize
your code and allow limited access to your inner classes. But an overdose of the inner
and nested classes can make your application difficult to work with and manage.

REVIEW NOTES
This section lists the main points covered in this chapter.

Abstract classes

■ An abstract class is defined by using the keyword abstract. It defines variables to
store the state of an object. It may define abstract and nonabstract methods.

■ An abstract class must not necessarily define abstract methods. But if it defines
even one abstract method, it must be marked as an abstract class.

■ An abstract class can’t be instantiated.
■ An abstract method doesn’t have any implementation. It represents a behavior

that’s required by all derived classes of an abstract class. Because the base class
doesn’t have enough details to implement an abstract method, the derived
classes are left to implement it in their own specific manner.

■ An abstract class can’t be instantiated.
■ An abstract class forces all its nonabstract-derived classes to implement the

incomplete functionality in their own unique manner.
Licensed to Mark Watson <nordickan@gmail.com>

155Review notes
■ A base class should be defined as an abstract class so it can implement the avail-
able details but still prevent itself from being instantiated.

■ An abstract class can be extended by both abstract and concrete classes. If an
abstract class is extended by another abstract class, the derived abstract class
might not implement the abstract methods of its base class.

■ If an abstract class is extended by a concrete class, the derived class must imple-
ment all the abstract methods of its base class, or it won’t compile.

■ A derived class must call its superclass’s constructor (implicitly or explicitly),
irrespective of whether the superclass or derived class is an abstract class or con-
crete class.

■ An abstract class can’t define abstract static methods. Because static methods
belong to a class and not to an object, they aren’t inherited. A method that
can’t be inherited can’t be implemented. Hence this combination is invalid.

■ Efficient use of an abstract class lies in the identification of an abstract class in
your application design so you can define common code for your objects and
leave the ones that are more specific, by defining them as abstract. You can
enforce the derived classes to implement these abstract methods.

Nonaccess modifier—static

■ Static members (fields and methods) are common to all instances of a class,
and aren’t unique to any instance of a class.

■ Static members exist independently of any instances of a class, and may be
accessed even when no instances of the class have been created.

■ Static members are also known as class fields or class methods because they are
said to belong to their class, and not to any instance of that class.

■ A static variable and method can be accessed using the name of an object refer-
ence variable or the name of a class.

■ A static method and variable can’t access nonstatic variables and methods of a
class. But the reverse works: nonstatic variables and methods can access static
variables and methods.

■ Static classes and interfaces are a type of nested classes and interfaces.
■ You can’t prefix the definition of a top-level class or an interface with the key-

word static. A top-level class or interface is one that isn’t defined within
another class or interface.

Nonaccess modifier—final

■ You can’t reinitialize a final variable defined in any scope—class, instance, local,
or method parameter.

■ An instance final variable can be initialized either with its declaration in the ini-
tializer block or in the class’s constructor.
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 2 Advanced class design
■ A static final variable can be initialized either with its declaration or in the
class’s static initializer block.

■ You can’t initialize a final instance variable in an instance method because it
can’t be guaranteed to execute only once. Such a method won’t compile.

■ You can’t initialize a final static variable in a static method because it can’t be
guaranteed to execute only once. Such a method won’t compile.

■ If you don’t initialize a final local variable in a method, the compiler won’t com-
plain, as long as you don’t use it.

■ If you try to access the value of a final local variable before assigning a value to
it, the code won’t compile.

■ The Java compiler considers initialization of a final variable complete only if the
initialization code will execute in all conditions. If the Java compiler can’t be
sure of execution of code that assigns a value to your final variable, it will com-
plain (code won’t compile) that you haven’t initialized a final variable. If an if
construct uses constant values, the Java compiler can predetermine whether the
then or else blocks will execute. In this case, it can predetermine whether
these blocks of code will execute to initialize a final variable.

■ A final instance variable defined in a base class can’t be initialized in the
derived class. If you try to do so, your code won’t compile.

■ Final methods defined in a base class can’t be overridden by its derived classes.
■ Final methods are used to prevent a derived class from overriding the imple-

mentation of a base class’s method.
■ Private final methods in a base class aren’t inherited by derived classes. A

method defined using the same method signature in a derived class isn’t an
overridden method, but a new method.

■ A final class can’t be extended by any other class.
■ A class is defined as final so that it can’t be extended by any other class. This

prevents objects of derived classes from being passed on to reference variables
of their base classes.

■ An interface can’t be defined as final because an interface is abstract, by
default. A Java entity can’t be defined both as final and abstract.

Enumerated types

■ Enumerated types are also called enums.
■ An enum enables you to create a type, which has a fixed set of constants.
■ An enum can never be instantiated using the keyword new.
■ Unlike a class, which is defined using the keyword class, an enumerated type is

defined using the keyword enum, and can define multiple variables and methods.
■ If you define a variable of an enum type, it can be assigned constant values only

from that enum.
■ All enums extend the abstract class java.lang.Enum, defined in the Java API.
Licensed to Mark Watson <nordickan@gmail.com>

157Review notes
■ Because a class can extend from only one base class, an attempt to make your
enum extend any other class will fail its compilation.

■ The enum constants are implicit static members.
■ An enum can implement any interface, but its constants should implement the

relevant interface methods.
■ An enum can define an abstract method. Just ensure that you override it for all

your enum constants.
■ You can add instance variables, class variables, instance methods, and class

methods to your enums.
■ An enum can’t use instance variables in the overridden methods for a particular

enum constant.
■ You can override nonfinal methods from class java.lang.Enum, for individual

(or all) enum constants.
■ Your enums can also define constructors, which can be called from within

the enum.
■ You can define multiple constructors in your enums.
■ Enum constants can define new methods, but these methods can’t be called on

the enum constant.
■ You can define an enum as a top-level enum or within another class or interface.
■ You can’t define an enum local to a method.
■ An enum can define a main method.

Static nested classes

■ This class isn’t associated with any object of its outer class. Nested within its
outer class, it’s accessed like any other static member of a class—by using the
class name of the outer class.

■ A static nested class is accessible outside the class in which it’s defined by using
names of both the outer class and inner class.

■ You can define both static and nonstatic members in a static nested class.
■ A static nested class can define constructors.
■ To access the static members of a static nested class, you need not create an object

of this class. You need an object to access the instance members of this class.
■ The accessibility of the nested static class depends on its access modifier. For

example, a private static nested class can’t be accessed outside its class.
■ A static nested class can access only the static members of its outer class. Simi-

larly, the outer class can access only the static members of its nested inner class.
An attempt to access instance members on either side will fail compilation
unless it’s accessed through an instance of the outer or static nested class.

■ All access levels can be used with this class—public, protected, default, and
private.
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 2 Advanced class design
Inner classes

■ An inner class is an instance member of its outer class.
■ An object of an inner class shares a special bond with its outer class and can’t exist

without its instance.
■ An inner class can be defined using any of the four access levels—public,

protected, default, and private.
■ Members of an inner class can refer to all variables and methods of an outer class.
■ An inner class can define constructors.
■ An inner class can define variables and methods with any access.
■ An inner class can’t define static methods and nonfinal static variables.
■ You can create an object of an inner class within an outer class or outside an

outer class.
■ Outside the outer class an inner class is instantiated using

Outer.Inner inner = new Outer().new Inner();

Anonymous inner classes

■ An anonymous inner class is created when you combine object instance cre-
ation with inheriting a class or implementing an interface.

■ An anonymous inner class might override none, few, or all methods of the
inherited class.

■ An anonymous inner class must implement all methods of the implemented
interface.

■ An instance of an anonymous class can be assigned to any type of variable
(static variable, instance variable, or local variable) or method parameter, or be
returned from a method.

■ The following line creates an anonymous inner class that extends Object and
assigns it to a reference variable of type Object:

Object obj = new Object(){};

■ The following line calls a method, say aMethod(), passing to it an instance of an
anonymous class that implements Runnable:

aMethod(new Runnable() {
 public void run() {}
});

■ When an anonymous inner class is defined within a method, it can access only
the final variables of the method in which it’s defined. This is to prevent reas-
signment of the variable values by the inner class.

■ Though you can define variables and methods in an anonymous inner class,
they can’t be accessed using the reference variable of the base class or interface,
which is used to refer to the anonymous class instance.
Licensed to Mark Watson <nordickan@gmail.com>

159Sample exam questions
Method local inner classes

■ Method local inner classes are defined within a static or instance method of
a class.

■ A class can define multiple method local inner classes, with the same class
name, but in separate methods.

■ Method local inner classes can’t be defined using any explicit access modifier.
■ A method local inner class can define its own constructors, variables, and

methods by using any of the four access levels—public, protected, default,
and private.

■ A method local inner class can be created only within the method in which it’s
defined. Also, its object creation can’t appear before its declaration.

■ A method local inner class can access all variables and methods of its outer class,
including its private members and the ones that it inherits from its base classes.
It can only access the final local variables of the method in which it’s defined.

■ A method local inner class can define members with the same name as its outer
class. In this case, the members of the outer class can be referred to by using
Outer.this.

SAMPLE EXAM QUESTIONS

Q 2-1. Select the correct statement(s) based on the following code:

enum Keywords {
 ASSERT(1.4), // line1
 DO, IF, WHILE; // line2
 double version = 1.0; // line3

 Keywords() { // constructor 1
 this.version = 1.0; // constructor 1
 } // constructor 1

 Keywords(double version) { // constructor 2
 this.version = version; // constructor 2
 } // constructor 2

 public static void main(String args[]) {
 Keywords[] keywords = Keywords.values();
 for (Keywords val:keywords) System.out.println(val);
 }
}

a The enum keywords won’t compile due to code at (#1).
b The enum keywords won’t compile due to code at either (#2) or (#3).
c If you swap the complete code at (#1) and (#2) with code at (#3), enum key-

words will compile successfully.
d The enum keywords will fail to compile due to the declaration of multiple

constructors.
e None of the above
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 2 Advanced class design
Q 2-2. Consider the following definition of class Foo:

abstract class Foo {
 abstract void run();
}

Which of the classes correctly subclass Foo? (Choose all that apply.)
a class Me extends Foo {

 void run() {/* ... */}
}

b abstract class You extends Foo {
 void run() {/* ... */}
}

c interface Run {
 void run();
}
class Her extends Foo implements Run {
 void run() {/* ... */}
}

d abstract class His extends Foo {
 String run() {/* ... */}
}

Q 2-3. Which lines of code, when inserted at //INSERT CODE HERE, will print the following:

BASKETBALL:CRICKET:TENNIS:SWIMMING:

enum Sports {
 TENNIS, CRICKET, BASKETBALL, SWIMMING;
 public static void main(String args[]) {
 // INSERT CODE HERE
 }
}

a for (Sports val:Sports.values()) System.out.print(val+":");
b for (Sports val:Sports.orderedValues()) System.out.print(val+":");
c for (Sports val:Sports.naturalValues()) System.out.print(val+":");
d for (Sports val:Sports.ascendingValues()) System.out.print(val+":");
e None of the above

Q 2-4. Given that classes Outer and Test are defined in separate packages and source
code files, which code options, when inserted independently at //INSERT CODE HERE,
will instantiate class Inner in class Test? (Choose all that apply.)

// Source code-Outer.java
package ejava.ocp;
public class Outer {
 public static class Inner{}
}

Licensed to Mark Watson <nordickan@gmail.com>

161Sample exam questions
// Source code-Test.java
package ejava.exams;
import static ejava.ocp.Outer.Inner;
class Test {
 //INSERT CODE HERE
}

a Inner inner = new Inner();
b Outer.Inner inner = new Outer.Inner();

c Outer.Inner inner = new Inner();

d Outer.Inner inner = Outer.new Inner();

Q 2-5. Given the following definition of classes Outer and Inner, select options that
can be inserted individually at //INSERT CODE HERE. (Choose all that apply.)

class Outer {
 void aMethod() {
 class Inner {
 // INSERT CODE HERE
 }
 }
}

a protected Inner() {}

b final static String name = "eJava";

c static int ctr = 10;

d private final void Inner() {}

e Outer outer = new Outer();

f Inner inner = new Inner();

g static void print() {}

h static final void print() {}

Q 2-6. Given the following definition of enum Size, select the commented line num-
ber(s) in class MyClass, where you can insert the enum definition individually. (Choose
all that apply.)

enum Size {SMALL, MEDIUM, LARGE}
class MyClass {
 // line1
 void aMethod() {
 //line2
 }
 class Inner {
 //line3
 }
 static class StaticNested{
 //line4
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 2 Advanced class design
a The code at (#1)
b The code at (#2)
c The code at (#3)
d The code at (#4)

Q 2-7. Given the following code, which option, when inserted at /*INSERT CODE
HERE*/, will instantiate an anonymous class referred to by the variable floatable?

interface Floatable {
 void floating();
}
class AdventureCamp {
 Floatable floatable = /*INSERT CODE HERE*/
}

a new Floatable();

b new Floatable(){};

c new Floatable() { public void floating() {}};

d new Floatable() public void floating() {};

e new Floatable(public void floating()) {}};

f new Floatable() { void floating() {}};

g None of the above

Q 2-8. What is the output of the following code? (Choose all that apply.)

interface Admissible {} // line1
class University {
 static void admit(Admissible adm) {
 System.out.println("admission complete");
 }
 public static void main(String args[]) {
 admit(new Admissible(){}); // line2
 }
}

a The class prints admission complete.
b The class doesn’t display any output.
c The class fails to compile.
d University will print admission complete if code at (#2) is changed to the

following:

admit(new Admissible());

e Class University instantiates an anonymous inner class.
f If Admissible is defined as a class, as follows, the result of the preceding code

will remain the same:

class Admissible {}
Licensed to Mark Watson <nordickan@gmail.com>

163Sample exam questions
Q 2-9. Which of the following statements are correct? (Choose all that apply.)

a An abstract class must define variables to store the state of its object.
b An abstract class might define concrete methods.
c An abstract class might not define abstract methods.
d An abstract class constructor might be called by its derived class.
e An abstract class can extend another nonabstract class.
f An abstract class can’t define static final abstract methods.

Q 2-10. Which of the classes, when inserted at //INSERT CODE HERE, will create an
instance of class Inner? (Choose all that apply.)

class Outer {
 class Inner {}
}
class Test {
 //INSERT CODE HERE
}

a Outer.Inner inner = new Outer.Inner();

b Outer.Inner inner = Outer().new Inner();

c Outer.Inner inner = Outer.new Inner();

d Outer.Inner inner = new Outer().new Inner();

e Outer.Inner inner = new Inner();

f Outer outer = new Outer();
Inner inner = new Outer.Inner();

g Outer outer = new Outer();
Outer.Inner inner = outer.new Inner();

h Outer outer = new Outer();
Inner inner = new outer.Inner();

Q 2-11. Select the incorrect options. (Choose all that apply.).

a An anonymous inner class always extends a class, implicitly or explicitly.
b An anonymous inner class might not always implement an interface.
c An anonymous inner class is a direct subclass of class java.lang.Object.
d You can make an anonymous inner class do both—explicitly extend a user-

defined class and an interface.
e An anonymous inner class can implement multiple user-defined interfaces.

Q 2-12. Select the correct options for the classes Satellite and Moon:

abstract class Satellite{
 static {
 ctr = (int)Math.random(); // line1
 }
Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 2 Advanced class design
 static final int ctr; // line2
}
class Moon extends Satellite{
 public static void main(String args[]) {
 System.out.println(Moon.ctr); // line3
 }
}

a Code at only (#1) fails compilation.
b Code at either (#1) or (#2) fails compilation.
c Code at (#3) fails compilation.
d Code compiles and executes successfully.

Q 2-13. What is the output of the following code?

enum BasicColor {
 RED;
 static {
 System.out.println("Static init");
 }
 {
 System.out.println("Init block");
 }
 BasicColor(){
 System.out.println("Constructor");
 }
 public static void main(String args[]) {
 BasicColor red = BasicColor.RED;
 }
}

a Init block
Constructor
Static init

b Static init
Init block
Constructor

c Static init
Constructor
Init block

d Constructor
Init block
Static init

Q 2-14. What is the output of the following code?

enum Browser {
 FIREFOX("firefox"),
 IE("ie"){public String toString() {return "Internet Browser";}},
 NETSCAPE("netscape");
 Browser(String name){}
Licensed to Mark Watson <nordickan@gmail.com>

165Sample exam questions
 public static void main(String args[]) {
 for (Browser browser:Browser.values())
 System.out.println(browser);
 }
}

a FIREFOX
Internet Browser
NETSCAPE

b FIREFOX
INTERNET BROWSER
NETSCAPE

c FIREFOX
IE
NETSCAPE

d firefox
ie
netscape

Q 2-15. What is the output of the following code?

class Base {
 static {
 System.out.print("STATIC:");
 }
 {
 System.out.print("INIT:");
 }
}
class MyClass extends Base {
 static {
 System.out.print("static-der:");
 }
 {
 System.out.print("init-der:");
 }
 public static void main(String args[]) {
 new MyClass();
 }
}

a STATIC:INIT:static-der:init-der:

b INIT:STATIC:init-der:static-der:

c STATIC:static-der:INIT:init-der:

d static-der:init-der:STATIC:INIT:

Q 2-16. Select the correct statements. (Choose all that apply.).

a An abstract class can’t define static final variables.
b The abstract methods defined in an abstract base class must be implemented by

all its derived classes.
Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 2 Advanced class design
c An abstract class enforces all its concrete derived classes to implement its
abstract behavior.

d An abstract class might not define static methods.
e The initialization of the final variables defined in an abstract base class can be

deferred to its derived classes.

ANSWERS TO SAMPLE EXAM QUESTIONS

A 2-1. e

[2.3] Use the static and final keywords
[2.5] Use enumerated types

Explanation: The code compiles successfully. An enum can define and use multiple
constructors. The declaration of enum constants must follow the opening brace of the
enum declaration. It can’t follow the definition of variables or methods.

A 2-2. a, b

[2.1] Identify when and how to apply abstract classes
[2.2] Construct abstract Java classes and subclasses

Explanation: When a class extends another class or implements an interface, the meth-
ods in the derived class must be either valid overloaded or valid overridden methods.

 Option (c) is incorrect. The concrete class Her extends Foo and implements Run.
To compile Her, it must implement run() with public access so that it implements
run() with default access in class Foo and run() with public access in interface Run:

class Her extends Foo implements Run {
 public void run() {}
}

Because class Her in option (c) defines run() with default access, it fails to implement
public run() from interface Run and fails compilation.

 Option (d) is incorrect. Method run() defined in class His and method run()
defined in class Foo don’t form either valid overloaded or overridden methods.

A 2-3. e

[2.5] Use enumerated types

Explanation: Option (a) is incorrect. The code in this option will print the natural
order of the definition of the enum (the order in which they were defined):

TENNIS:CRICKET:BASKETBALL:SWIMMING:

Options (b), (c), and (d) define nonexistent enum methods. Code in these options
won’t compile.
Licensed to Mark Watson <nordickan@gmail.com>

167Answers to sample exam questions
A 2-4. a

[2.4] Create top-level and nested classes
[2.5] Use enumerated types

Explanation: Due to the following static import statement, only the nested static class
Inner is visible in class Test:

import static ejava.ocp.Outer.Inner;

Class Outer isn’t visible in class Test. Options (b) and (c) will instantiate class Inner if
the following import statement is included in class Test:

import ejava.ocp.Outer;

A 2-5. a, b, d, e, f

[2.4] Create top-level and nested classes

Explanation: You can define final static variables in a method local inner class, but you
can’t define non-final static variables, static methods, or static final methods. You can
define constructors with any access modifier in a local inner class.

A 2-6. a, d

[2.4] Create top-level and nested classes
[2.5] Use enumerated types

Explanation: You can’t define an enum within a method or a nonstatic inner class.

A 2-7. c

[2.4] Create top-level and nested classes

Explanation: To instantiate an anonymous class that can be referred to by the variable
floatable of type Floatable, the anonymous class must implement the interface,
implementing all its methods.

 Because interface Floatable defines method floating() (methods defined in an
interface are implicitly public and abstract), it must be implemented by the anony-
mous class. Only option (c) correctly implements method floating(). Following is its
correctly indented code, which should be more clear:

new Floatable() {
 public void floating() {
 }
};

Option (b) doesn’t implement floating(). Option (a) tries to instantiate the inter-
face Floatable, which isn’t allowed. Option (f) looks okay, but isn’t because it makes
the method floating() more restrictive by not defining it as public.
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 2 Advanced class design
A 2-8. a, e, f

[2.4] Create top-level and nested classes

Explanation: Options (b) and (c) are incorrect because the class compiles successfully
and prints a value.

 Option (d) is incorrect because it tries to instantiate the interface Admissible and
not an instance of the anonymous inner class that implements Admissible.

 Option (e) is correct because code at (#2) instantiates an anonymous inner class,
which implements the interface Admissible. Because the interface Admissible
doesn’t define any methods, code at (#2) doesn’t need to implement any methods.

 Option (f) is correct. If Admissible is defined as a class, the anonymous inner class
at (#2) will subclass it. Because Admissible doesn’t define any abstract methods, there
aren’t any added complexities.

A 2-9. b, c, e, f

[2.1] Identify when and how to apply abstract classes

Explanation: Note the use of can, must, and might or might not in these options.
Note that this isn’t a test on English grammar or vocabulary. The meaning of an exam
question will completely change depending on whether it uses “can” (feasible),
“must” (mandatory), or “might” (optional) in a question.

 Option (a) is incorrect because it isn’t mandatory for an abstract class to define
instance variables.

 Option (d) is incorrect because the constructor of all base classes—concrete or
abstract—must be called by their derived classes.

 Option (f) is a correct statement. The combination of final and abstract modifi-
ers is incorrect. An abstract method is meant to be overridden in the derived classes,
whereas a final method can’t be overridden.

A 2-10. d, g

[2.4] Create top-level and nested classes

Explanation: An inner class is a member of its outer class and can’t exist without its
instance. To create an instance of an inner class outside either the outer or inner class,
you must do the following:

■ If using a reference variable, use type Outer.Inner.
■ Access an instance of the Outer class.
■ Create an instance of the Inner class.

To create instances of both the Outer and Inner classes on a single line, you must use
the operator new with both the Outer class and Inner class, as follows:

new Outer().new Inner();
Licensed to Mark Watson <nordickan@gmail.com>

169Answers to sample exam questions
If you already have access to an instance of Outer class, say, outer, call new Inner() by
using outer:

outer.new Inner();

A 2-11. c, d, e

[2.4] Create top-level and nested classes

Explanation: Note that you have to select incorrect statements in this question. This
can be confusing, because most of the time on the exam, you’re asked to select cor-
rect options.

 Option (a) is a correct statement. If an anonymous inner class extends a class, it
subclasses it explicitly. When it implements an interface, it implicitly extends class
java.lang.Object. If an anonymous inner class doesn’t subclass a class implicitly, it
implicitly extends java.lang.Object.

 Option (b) is a correct statement. An anonymous inner class might not always
implement an interface.

 Option (c) is an incorrect statement. An anonymous inner class isn’t always a
direct subclass of class java.lang.Object, if it extends any other class explicitly.

 Option (d) is an incorrect statement. You can’t make an anonymous inner class
extend both a class and an interface explicitly. I deliberately used the words user-
defined classes and user-defined interfaces so you wouldn’t assume that an anonymous class
implicitly subclasses a class from a Java API.

 Option (e) is an incorrect statement. You can’t make an anonymous class imple-
ment multiple interfaces explicitly.

A 2-12. d

[2.2] Construct abstract Java classes and subclasses
[2.3] Use the static and final keywords

Explanation: No compilation or runtime issues exist with this code. A static initializer
block can access and initialize a static variable; it can be placed before the static vari-
able declaration. A static variable defined in a base class is accessible to its derived
class. Even though class Moon doesn’t define the static variable ctr, it can access the
static variable ctr defined in its base class Satellite.

A 2-13. a

[2.3] Use the static and final keywords
[2.5] Use enumerated types

Explanation: The creation of enum constants happens in a static initializer block,
before the execution of the rest of the code defined in the static block. Here’s the
decompiled code for enum BasicColor, which shows how enum constants are initialized
Licensed to Mark Watson <nordickan@gmail.com>

170 CHAPTER 2 Advanced class design
in the static block. To initialize an enum constant, its constructor is called. Note that
the contents of the default constructor and instance initializer blocks are added to the
new constructor implicitly defined during the compilation process:

final class BasicColor extends Enum
{
 public static BasicColor[] values()
 {
 return (BasicColor[])$VALUES.clone();
 }

 public static BasicColor valueOf(String s)
 {
 return (BasicColor)Enum.valueOf(BasicColor, s);
 }

 private BasicColor(String s, int i)
 {
 super(s, i);
 System.out.println("Init block");
 System.out.println("Constructor");
 }

 public static void main(String args[])
 {
 BasicColor basiccolor = RED;
 }

 public static final BasicColor RED;
 private static final BasicColor $VALUES[];

 static
 {
 RED = new BasicColor("RED", 0);
 $VALUES = (new BasicColor[] {
 RED
 });
 System.out.println("Static init");
 }
}

NOTE If you try to compile the preceding code it won’t compile because
classes can’t directly extend java.lang.Enum. I’ve included this code just to
show you how the Java compiler modifies code of an enum and adds addi-
tional code to it. It explains why an enum constructor executes before its
static block.

A 2-14. a

[2.5] Use enumerated types

Explanation: An enum extends class java.lang.Enum, which extends class java.lang
.Object. Each enum constant inherits method toString() defined in class java
.lang.Enum. Class java.lang.Enum overrides method toString() to return the enum
constant’s name.
Licensed to Mark Watson <nordickan@gmail.com>

171Answers to sample exam questions
 An enum constant can override any of the methods that are inherited by it. The
enum Browser defines a constructor that accepts a String method parameter, but it
doesn’t use it. All enum constants, except enum constant IE, print the name of the
constant itself.

A 2-15. c

[2.3] Use the static and final keywords

Explanation: When you instantiate a derived class, the derived class instantiates its
base class. The static initializers execute when a class is loaded in memory. So the
order of execution of static and instance initializer blocks is as follows:

■ 1) Base class static initializer block
■ 2) Derived class static initializer block
■ 3) Base class instance initializer block
■ 4) Derived class instance initializer block

A 2-16. c, d

[2.1] Identify when and how to apply abstract classes
[2.3] Use the static and final keywords

Explanation: Option (a) is incorrect. An abstract class can define static final variables.
 Option (b) is incorrect. The abstract methods defined in an abstract base class

must be implemented by all its concrete derived classes. Abstract derived classes might
not implement the abstract methods from their abstract base class.

 Option (e) is incorrect. The initialization of a final variable defined in an abstract
base class must complete in the class itself—with its initialization, in its initializer
block, or in its constructor. It can’t be deferred to its derived class.
Licensed to Mark Watson <nordickan@gmail.com>

Object-oriented
design principles
Exam objectives covered in this chapter What you need to know

[3.1] Write code that declares, imple-
ments, and/or extends interfaces

The need for interfaces. How to declare, implement,
and extend interfaces. Implications of implicit modifiers
that are added to an interface and its members.

[3.2] Choose between interface inheri-
tance and class inheritance

The differences and similarities between implementing
inheritance by using interfaces and by using abstract or
concrete classes. Factors that favor using interface
inheritance over class inheritance, and vice versa.

[3.3] Apply cohesion, low-coupling, IS-A,
and HAS-A principles

Given a set of IS-A and HAS-A relationships, how to
implement them in code. Given code snippets, how to
correctly identify the relationships (IS-A or HAS-A) imple-
mented by them.
How to identify and promote low coupling and high
cohesion.

[3.4] Apply object composition principles
(including HAS-A relationships)

Given that an object can be composed of multiple other
objects, how to determine the types of compositions—
and implement them in code.

[3.5] Design a class using the Singleton
design pattern

How to implement the Singleton design pattern. The
need for the existence of exactly one copy of a class.

[3.6] Write code to implement the DAO
pattern

The usability of the DAO pattern. How this pattern
enables separation of data access code in an application.

[3.7] Design and create objects using a
Factory pattern

The need for, use of, and benefits of a Factory for creat-
ing objects.
How this pattern is used in the existing Java API classes.
172

Licensed to Mark Watson <nordickan@gmail.com>

173Interfaces
Have you ever tried to find out the secret(s) behind the most successful people?
Almost all agree to follow a set of lifelong principles. So, articles like “Three Common
Habits of the Most Successful People” might include points similar to these:

■ Never hit the snooze button when the alarm goes off in the morning, so you
aren’t delaying your actions.

■ First things first: prioritize your work.
■ Follow your passion and do what you love, because you’ll be working almost all

your life.

These are the principles that successful people follow (though perhaps in a different
manner) to achieve the greatest height of success.

 Similarly, object-oriented design (OOD) principles enable you to create better applica-
tion designs, which are manageable and extensible. For example, as a programmer or
designer, you know that application requirements typically change. Implementing
these modified needs requires changes in the existing code, which usually introduces
bugs. Chances are that if the application design implements OOD principles, the mod-
ification task will require comparatively less effort. Again, as an example, if your appli-
cation’s design uses the design principles of low coupling and high cohesion, chances
are low that changes in a class will affect another class.

 Design patterns (for example, the Singleton pattern) also help you design better
applications. Unlike inheritance, a design pattern is an example of experience reuse
and not code reuse. Building sloping roofs in areas that receive a lot of snowfall can
be compared to using a design pattern. A sloping roof was identified as a solution to
avoid accumulation of snow on rooftops after multiple people faced issues with flat
roofs. Just as a sloping roof is applicable specifically to areas receiving snowfall, a
design pattern resolves a specific design issue.

 Obviously, we can see that the object-oriented design principles are important, but
what specifically do you need to know for the exam? Well, the exam will test you on
what object-oriented design principles are and how to apply them in your applica-
tions. You’ll likely find questions on the creation of and preferred use of classes and
interfaces to design your application, and how to relate and use Java objects together.
In addition, you’ll need to know how to make the best use of design patterns in your
application. Yes, this is a lot, but I promise to walk you through each piece so you’re
prepared. This chapter covers

■ Interfaces—their declaration, implementation, and application
■ Choosing between class inheritance and interface inheritance
■ Relationships between Java objects
■ Application of object composition principles
■ Implementation of IS-A and HAS-A relationships between objects
■ Singleton design pattern
■ Data Access Object (DAO) design pattern
■ Factory design pattern
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 3 Object-oriented design principles
Interfaces are one of the most powerful concepts in Java. Believe me, not many
designers completely understand how to use them effectively in their design. To be a
good application designer, you must know how to do so. Let’s start with a quick exam-
ple: in how many ways can you refer to your father? Apart from being your father, he
could also be referred to as a friend, guide, husband, swimmer, orator, teacher, man-
ager, and much more. How can you achieve the same in Java, to refer to the same
object by using multiple types? In the next section, you’ll learn about the need for
using interfaces, followed by declaring, implementing, and extending them. Let’s
get started.

3.1 Interfaces

Before we deep-dive into working with interfaces, note that the term interface has mul-
tiple meanings. First, an interface is a type created by using the keyword interface.
For example, the following code creates the interface Movable:

interface Moveable {
 void move();
}

An interface in its second meaning is more general. It’s how two systems can interact
with each other (like your television and the remote control). It’s how classes can
interact with each other, using their public methods. For class Person, its interface
(public methods) refers to its methods eat() and work():

class Person {
 public void eat() {}
 public void work() {}
}

Figure 3.1 represents an interface as a type and as a group of public methods of a class.
 Note that this exam objective refers to an interface as a type, which is created using

the keyword interface.

[3.1] Write code that declares, implements, and/or extends interfaces

Java

type

interface Movable{
void move();

}
Public

methods

class Person{
public void eat(){}
public void work(){}

}

Figure 3.1 The term interface has two meanings: a type created using the keyword
interface and a group of public methods of a class.
Licensed to Mark Watson <nordickan@gmail.com>

175Interfaces
3.1.1 Understanding interfaces

We all, quite often, use interfaces in our lives. For example, when you refer to some-
one as a runner, do you care whether that person is also an orator, a parent, or an
entrepreneur? You care only that the person is able to run. The term runner enables
you to refer to unrelated individuals, by opening a small window to each person and
accessing behavior that’s applicable to only that person’s capacity as a runner. Some-
one can be referred to as a runner only if that person supports characteristics relevant
to running, though the specific behavior can depend on the person.

 In the preceding example, you can compare the term runner to a Java interface,
which defines the required behavior run. An interface can define a set of behaviors
(methods) and constants. It delegates the implementation of the behavior to the
classes that implement it. Interfaces are used to refer to multiple related or unrelated
objects that share the same set of behavior. Figure 3.2 compares the interface runner
with a small window to an object, which is concerned only about the running capabili-
ties of that object.

 Similarly, when you design your application by using interfaces, you can use similar
windows (also referred to as specifications or contracts) to specify the behavior that you
need from an object, without caring about the specific type of objects. Separating the
required behavior from its implementation has many benefits. As an application
designer, you can use interfaces to establish the behavior that’s required from objects,
promoting flexibility in the design (new classes that implement an interface can be
created and used later). Interfaces make an application manageable, extensible, and
less prone to propagation of errors due to changes to existing types.

Parent

Window Runner
has limited access

to the objects

Entrepreneur

invest

run

expand

Orator

work

run

conferences

facilitate

guide

run

Figure 3.2 You can compare an interface with a window that can connect multiple
objects but has limited access to them.
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 3 Object-oriented design principles
3.1.2 Declaring interfaces

You can define methods and constants in an interface. Declaring an interface is sim-
ple, but don’t let this simplicity take you for a ride. For the exam, it’s important to
understand the implicit modifiers that are added to the members of an interface. All
methods of an interface are implicitly public and abstract, and its variables are implic-
itly public, static, and final. Let’s start with the interface Runner that defines a method
speed() and a variable distance. Figure 3.3 shows how implicit modifiers are added
to the members of interface Runner during the compilation process.

 Why do you think these implicit modifiers are added to the interface members?
Because an interface is used to define a contract, it doesn’t make sense to limit access
to its members—and so they are implicitly public. An interface can’t be instantiated,
and so the value of its variables should be defined and accessible in a static context,
which makes them implicitly static. Because an interface is a contract, its implementa-
tions shouldn’t be able to change it, so the interface variables are implicitly final.
Interface methods are implicitly abstract so that it’s mandatory for the classes to
implement them.

 The exam will also test you on the various components of an interface declaration,
including access and nonaccess modifiers. Here’s the complete list of the components
of an interface declaration:

■ Access modifiers
■ Nonaccess modifiers
■ Interface name
■ All extended interfaces, if the interface is extending any interfaces
■ Interface body (variables and methods), included within a pair of curly braces {}

To include all the possible components, let’s modify the declaration of the inter-
face Runner:

public strictfp interface Runner extends Athlete, Walker {}

The components of the interface Runner are shown in figure 3.4. To declare any inter-
face, you must include the keyword interface; the name of the interface; and its body,
marked by {}.

interface Runner{

int speed();

double distance = 70;

}

interface Runner{

public abstract int speed();

public static final double distance = 70;

}

Becomes

Figure 3.3 All the methods of an interface are implicitly public and abstract. Its variables are implicitly
public, static, and final.
Licensed to Mark Watson <nordickan@gmail.com>

177Interfaces
The optional and compulsory components of an interface can be summarized as
listed in table 3.1.

EXAM TIP The declaration of an interface can’t include a class name. An
interface can never extend any class.

Can you define a top-level, protected interface? No, you can’t. For the exam, you must
know the answer to such questions about the correct values for each component that
can be used with an interface declaration. Let’s dive into these nuances.

VALID ACCESS MODIFIERS FOR AN INTERFACE

You can declare a top-level interface (the one that isn’t declared within any other class or
interface), with only the following access levels:

■ public

■ No modifier (default access)

If you try to declare your top-level interfaces by using the other access modifiers
(protected or private), your interface will fail to compile. The following definitions
of the interface MyInterface won’t compile:

private interface MyInterface{}

protected interface MyInterface {}

Table 3.1 Optional and compulsory components of an interface declaration

Compulsory Optional

Keyword interface Access modifier

Name of the interface Nonaccess modifier

Interface body, marked by the opening
and closing curly braces {}

Keyword extends, together with the name of the base
interface(s). (Unlike a class, an interface can extend multiple
interfaces.)

public strictfp interface Runner extends Athlete, Walker { }

Access

modifier

Nonaccess

modifier

Keyword Interface

name

Keyword Name of interfaces

extended by

interface Runner

Curly

braces

Optional Optional Compulsory Compulsory Optional Optional Compulsory

Figure 3.4 Components of an interface declaration

Top-level interface can’t
be defined as private

Top-level interface can’t
be defined as protected
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 3 Object-oriented design principles
EXAM TIP All the top-level Java types (classes, enums, and interfaces) can
be declared using only two access levels: public and default. Inner or
nested types can be declared using any access level.

VALID ACCESS MODIFIERS FOR MEMBERS OF AN INTERFACE

All members of an interface—variables, methods, inner interfaces, and inner classes
(yes, an interface can define a class within it!)—are public by default. Interfaces sup-
port only the public access modifier. Using other access modifiers results in compila-
tion errors.

interface MyInterface {
 private int number = 10;
 protected void aMethod();
 interface interface2{}
 public interface interface4{}
}

The code at B fails compilation with the following error message:

illegal combination of modifiers: public and private
 private int number = 10;

SPECIAL CHARACTERISTICS OF METHODS AND VARIABLES OF AN INTERFACE

Methods in interfaces are public and abstract by default. The following methods
defined individually in an interface are equivalent:

int getMembers();
public abstract int getMembers();

Variables defined in interfaces are public, static, and final by default. The following
variables defined individually in an interface are equivalent:

int maxMembers = 100;
public static final int maxMembers = 100;

Because the interface variables are implicitly final, you can define only constants in an
interface. Ensure that you initialize these constants, or your code won’t compile:

interface MyInterface {
 int number;
}

VALID NONACCESS MODIFIERS FOR AN INTERFACE

You can declare a top-level interface with only the following nonaccess modifiers:

■ abstract

■ strictfp

NOTE The strictfp keyword guarantees that results of all floating-point
calculations are identical on all platforms.

Won’t
compile

 b
Won’t
compile

interface2 is
implicitly prefixed
with public.

Interface member can
be prefixed with public

Won’t compile; variables
within interface must be
initialized.
Licensed to Mark Watson <nordickan@gmail.com>

179Interfaces
If you try to declare your top-level interfaces by using the other nonaccess modifiers
(final, static, transient, synchronized, or volatile), the interface will fail to
compile. All of the following interface declarations fail to compile:

final interface MyInterface {}
static interface MyInterface {}
transient interface MyInterface {}
synchronized interface MyInterface {}
volatile interface MyInterface {}

A nested interface can be defined using the nonaccess modifier static (any other
nonaccess modifier isn’t allowed):

class Outer {
 static interface MyInterface1 {}
}

With good coverage of interface declaration, let’s start making classes implement
interfaces.

3.1.3 Implementing interfaces

You can compare implementing an interface to signing a contract. When a concrete
class declares its implementation of an interface, it agrees to implement all its abstract
methods. A class can implement multiple interfaces. For example, class Home imple-
ments Livable and GuestHouse:

interface Livable {
 void live();
}
interface GuestHouse {
 void welcome();
}
class Home implements Livable, GuestHouse {
 public void live() {}
 public void welcome() {}
}

If you don’t implement all the methods defined in the implemented interfaces, a class
can’t compile as a concrete class. Let’s modify the code of class Home, as follows:

class Home implements Livable, GuestHouse {
 public void welcome() {}
}

The compiler says it all:

House.java:7: error: Home is not abstract and does not override
abstract method live() in Livable
class Home implements Livable, GuestHouse {
^
1 error

Won’t compile; invalid
nonaccess modifiers
used with interface
declaration

Nested
interface

abstract
method live()

abstract method
welcome()

Class uses keyword
implements to
implement interface
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 3 Object-oriented design principles

So a class can choose not to implement all the methods from the implemented
interface(s) and still compile successfully, but only if it’s defined as an abstract class,
as follows:

abstract class Home implements Livable, GuestHouse {
 public void welcome() {}
}

EXAM TIP A concrete class must implement all the methods from the inter-
faces that it implements. An abstract class can choose not to implement all
the methods from the interfaces that it implements.

DEFINING AND ACCESSING VARIABLES WITH THE SAME NAME
A class can define an instance or a static variable with the same name as the variable
defined in the interface that it implements. In the following class, the interface Livable
defines variables status and ratings. Class Home implements Livable and defines
instance variable status and static variable ratings, with a default access level:

interface Livable {
 boolean status = true;
 int ratings = 10;
}
class Home implements Livable {
 boolean status;
 static int ratings = 7;
 Home() {
 System.out.println(status);
 System.out.println(Livable.status);

 System.out.println(ratings);
 System.out.println(Livable.ratings);
 }
}

EXAM TIP A class can define an instance or a static variable with the same
name as the variable defined in the interface that it implements. These
variables can be defined using any access level.

FOLLOWING METHOD OVERRIDING RULES FOR IMPLEMENTING INTERFACE METHODS

The methods in an interface are public, by default. So, trying to assign weaker access
to the implemented method in a class won’t allow it to compile:

interface Livable {
 void live();
}
class Home implements Livable {
 void live() {}
}

Abstract class doesn’t have to
implement all methods from
implemented interfaces

public
variables

Variables with
default access

Prints
“false” Prints

“true”

Prints “7”

Prints “11”

public
method

Won’t compile;
method implemented
using weaker access
Licensed to Mark Watson <nordickan@gmail.com>

181Interfaces
The compilation error message says it all:

House.java:8: error: live() in Home cannot implement live() in Livable
 void live() {}
 ^
 attempting to assign weaker access privileges; was public
1 error

EXAM TIP Because interface methods are implicitly public, the imple-
menting class must implement them as public methods, or else the class
will fail to compile.

IMPLEMENTING MULTIPLE INTERFACES THAT DEFINE METHODS WITH THE SAME NAME

Methods in the interfaces don’t define any implementation; they come without any
baggage. But what happens if a class implements multiple interfaces that define meth-
ods with the same name? Let’s add a method live() to interface GuestHouse (modifi-
cations in bold):

interface Livable {
 void live();
}
interface GuestHouse {
 void welcome();
 void live();
}

Class Home implements two interfaces, Livable and GuestHouse, both of which define
method live():

class Home implements Livable, GuestHouse {
 public void live() {
 System.out.println("live");
 }
 public void welcome() {
 System.out.println("welcome");
 }
}

Both the Java compiler and Java Runtime Environment are good with the preceding
code. Because the signature of method live() is the same in both interfaces, Livable
and GuestHouse, class Home needs to define only one implementation for method
live() to fulfill both contracts (interface implementations).

OVERLAPPING METHOD IMPLEMENTATIONS WITH THEIR OVERLOAD VERSIONS

A class can try to implement multiple interfaces that define methods with the same
name. But in doing so, you can have a not-so-pleasant cocktail of overlapping method
implementations and their overloaded versions. We have two scenarios here:

■ Correctly overloaded methods
■ Invalid overloaded methods

Interface Livable
defines method live().

Interface GuestHouse also
defines method live().

Method live() in
Home has only one
implementation.
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 3 Object-oriented design principles
Overloaded methods are defined by using the same name but a different parameter
list. For example, when implemented in class Home, method live() defined in the
interface Livable overloads method live() defined in the interface GuestHouse.
Class Home must implement both these methods:

interface Livable {
 void live();
}
interface GuestHouse {
 void live(int days);
}
class Home implements Livable, GuestHouse {
 public void live() {
 System.out.println("live");
 }
 public void live(int days) {
 System.out.println("live for " + days);
 }
}

You can’t define overloaded methods by changing only the return type of methods.
What happens if method live() in the interfaces Livable and GuestHouse returns
different types? In this case, class Home needs to implement both versions of method
live(), which can’t be qualified as overloaded methods. So class Home doesn’t com-
pile in this case:

interface Livable {
 String live();
}
interface GuestHouse {
 void live();
}
class Home implements Livable, GuestHouse {
 public String live() {
 return null;
 }
 public void live() {
 System.out.println("live");
 }
}

Here’s the compiler error for class Home:

Home.java:11: error: method live() is already defined in class Home
 public void live() {
 ^
Home.java:7: error: Home is not abstract and does not override abstract
 method live() in GuestHouse
class Home implements Livable, GuestHouse {
^

live() doesn’t accept any
method parameters.

live() accepts a
method parameter.

Correctly overloaded
method live() from Livable

Correctly overloaded
method live() from
GuestHouse

live() returns
String.

live() returns
nothing—void.

Class Home
won’t compile.

When implemented in class Home,
both versions of live() qualify as
incorrectly overloaded methods.
Licensed to Mark Watson <nordickan@gmail.com>

183Interfaces
Home.java:8: error: live() in Home cannot implement live() in GuestHouse
 public String live() {
 ^
 return type String is not compatible with void
3 errors

EXAM TIP A class can implement methods with the same name from multi-
ple interfaces. But these must qualify as correctly overloaded methods.

3.1.4 Extending interfaces

An interface can inherit multiple interfaces. Because all the members of an interface
are implicitly public, a derived interface inherits all the methods of its super inter-
face(s). An interface uses the keyword extends to inherit an interface, as shown in the
following example:

interface GuestHouse {
 void welcome();
}
interface PayingGuestHouse extends GuestHouse {
 void paidBreakfast();
}
interface StudentPGHouse extends PayingGuestHouse {
 void laundry();
}
interface ChildFriendly {
 void toys();
}
interface FamilyPGHouse extends ChildFriendly, PayingGuestHouse {
 void kitchen();
}

The preceding code is shown in figure 3.5 as a UML diagram.

<<extends>>

<<extends>> <<extends>>

<<interface>>
GuestHouse

+welcome()

<<interface>>
PayingGuestHouse

+paidBreakfast()

<<interface>>
FamilyPGHouse

+kitchen()

<<interface>>
StudentPGHouse

+laundry()

<<interface>>
ChildFriendly

+toys()

Figure 3.5 UML
relationships between
interfaces that extend
other interfaces
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 3 Object-oriented design principles
By extending interfaces, you can combine methods of multiple interfaces. In the pre-
vious example, the interface FamilyPGHouse combines the methods of the interfaces
ChildFriendly, PayingGuestHouse, and GuestHouse.

 When a class implements an interface, it should implement all the methods
defined in the interface and its base interfaces, unless it’s declared as abstract. If, for
example, a class implements the interface PayingGuestHouse, that class must imple-
ment method paidBreakfast() defined in the interface PayingGuestHouse, and
method welcome() defined in the interface GuestHouse. Let’s work with a concrete
example of a class implementing interfaces in the next section.

3.2 Class inheritance versus interface inheritance

A class can implement interface(s) and a class can also extend a class and override its
methods. So the big question is, while designing classes and interfaces in your applica-
tion, how do you implement inheritance to reuse existing code? Would you prefer
that your class inherit another (abstract or concrete) class or implement an interface?
There is no straight answer to this question. Depending on the requirements, you
might need to extend a class or implement an interface, because each offers a differ-
ent set of benefits. To make this informed decision, let’s focus on the similarities and
differences in both approaches.

3.2.1 Comparing class inheritance and interface inheritance

An interface doesn’t include implementation details, whereas a class does. This basic
distinction has introduced differences in inheriting a class and implementing an
interface. These differences are listed in table 3.2.

Rules to remember about interfaces
■ An interface is abstract by definition.
■ An interface can define only public, abstract methods and public, static, final

variables.
■ An interface uses the keyword extends to inherit other interfaces.
■ A class can implement multiple interfaces. An interface can extend multiple

interfaces.
■ An interface can define inner interfaces and (surprisingly) inner classes too.
■ If a class doesn’t implement all the methods of the interface that it implements,

the class must be defined as an abstract class.
■ A class uses the keyword implements to implement an interface.
■ If a class implements multiple interfaces that define methods with the same

name, the interface methods must either qualify as correctly overloaded or over-
ridden methods, or else the class won’t compile.

[3.2] Choose between interface inheritance and class inheritance
Licensed to Mark Watson <nordickan@gmail.com>

185Class inheritance versus interface inheritance
Now for the similarities between class and interface inheritance. In both cases, you
can refer to a derived class or implementing class by using a variable of the base class
or implemented interface.

3.2.2 Preferring class inheritance over interface inheritance

Class inheritance scores better when you want to reuse the implementation already
defined in a base class. It also scores better when you want to add new behavior to an
existing base class. Let’s examine both of these in detail.

REUSING THE IMPLEMENTATION FROM THE BASE CLASS
When we create any class, we extend and reuse class java.lang.Object. The class
Object defines code to take care of all the threading and object-locking issues, together
with providing default implementation for methods like toString(), hashCode(),
and equals(). Method toString() returns a textual description (String) of an
instance. Methods like hashCode() and equals() enable objects to be stored and
retrieved efficiently in hash-based collection classes like HashMap. What do you think
would happen if class java.lang.Object was defined as an interface? In this case,
you’d need to implement all these methods for every class that you created.

 But it’s not useful to replicate this type of boilerplate code across many implemen-
tation classes. So class inheritance comes in handy here.

ADDING NEW BEHAVIOR IN ALL DERIVED CLASSES
Imagine you created a set of entities (Lion, Elephant), identified their common behav-
ior, and moved the common behavior to their common base class (Animal). Because
you control the definition of all these classes, you might add new behavior to your base
class and make it available to all the derived classes. Examine the following definition of
the abstract class Animal and nonabstract class Lion, which extends class Animal:

public abstract class Animal {
 public abstract void move();
 public abstract void live();
}

Table 3.2 Differences between class inheritance and interface inheritance

Class inheritance Interface inheritance

Instantiation of
derived class

Instantiation of a derived class instantiates its
base class.

Interfaces can’t be
instantiated.

How many? A class can extend only one base class. A class can implement multi-
ple interfaces.

Reusing implementa-
tion details

A class can reuse the implementation details of
its base class.

An interface doesn’t include
implementation details.

Modification to base
class implementa-
tion details

With the modified base class, a derived class
might cease to offer the functionality it was orig-
inally created for; it may also fail to compile.

Interfaces don’t include
implementation details.
Licensed to Mark Watson <nordickan@gmail.com>

186 CHAPTER 3 Object-oriented design principles
public class Lion extends Animal {
 public void move(){/*...*/}
 public void live(){/*...*/}
}

Let’s add another method to Animal (modifications in bold):

public abstract class Animal {
 public abstract void move();
 public abstract void live();
 public void eat() {/*...*/}
}
public class Lion extends Animal {
 public void move(){/*...*/}
 public void live(){/*...*/}
}

The addition of public method eat() in class Animal makes it available to all sub-
classes of Lion, implicitly. But adding or modifying behavior in a base class is not
always a bed of roses, as you’ll see in the next section.

3.2.3 Preferring interface inheritance over class inheritance

You may prefer interface inheritance over class inheritance when you need to define
multiple contracts for classes.

IMPLEMENTING MULTIPLE INTERFACES

Imagine you need to use a class that can be executed in a separate thread and can be
attached as an ActionListener to a GUI component. You can achieve this by making
your class implement multiple interfaces that support these functionalities—inter-
faces Runnable and ActionListener:

class MyClass implements Runnable, ActionListener {
 //..code to implement methods from interface
 //..Runnable and ActionListener
}

Interface implementation has one major advantage: a class can implement multiple
interfaces, to support multiple functionality. For the preceding example, you can pass
instances of class MyClass to all methods that define parameters of type Runnable or
ActionListener.

DEFINING A NEW CONTRACT FOR EXISTING CLASSES TO ABIDE BY

Starting with Java version 7, a new language feature has been added to the exception
handling: auto-closing resources by using a try-with-resources statement. The intent is
to define a try statement that can use streams that can be auto-closed, releasing any sys-
tem resources associated with them. This prevents Java objects from using resources
that are no longer required. These unused and unclosed resources can lead to
resource leakage. Though a try statement provides a finally clause that can be
used by programmers to close streams, at times it isn’t being used to do so. So to
manage resources automatically, Java designers introduced the try-with-resources

Addition of new
method eat
Licensed to Mark Watson <nordickan@gmail.com>

187Class inheritance versus interface inheritance
statement. The objects that can be used with this statement need to define a close
method, so this method can be called to automatically close and release used
resources. To apply this constraint, Java designers at Oracle started by defining inter-
face java.lang.AutoCloseable, as follows:

package java.lang;
public interface AutoCloseable {
 void close() throws Exception;
}

The try-with-resources statement can declare only objects that implement the inter-
face java.lang.AutoCloseable. Prior to Java 7 (starting with Java 5), many input and
output streams from the Java IO API implemented the interface java.io.Closeable:

public abstract class Reader implements Readable, Closeable {
public abstract class Writer implements Appendable, Closeable, Flushable {
public abstract class InputStream implements Closeable {
public abstract class OutputStream implements Closeable, Flushable {

To accommodate the use of class instances mentioned in the preceding code, the
existing interface java.io.Closeable was tricked (read: modified) into extending
java.lang.AutoCloseable:

package java.io;
import java.io.IOException;
 public interface Closeable extends AutoCloseable {
 public void close() throws IOException;
}

Also, any user-defined class that implements the interface java.lang.AutoCloseable
or any of its subinterfaces can be used with a try-with-resources statement. Here’s a
quick example of using a try-with-resources statement:

void openFile(String filename) throws Exception {
 try (FileInputStream fis = new FileInputStream(new File(filename))) {
 /* ... */
 }
}

As you’ll see in chapter 6, a try block in try-with-resources can exist without any com-
panion catch or finally block.

 Interface inheritance added new behavior to classes like Reader and Writer without
breaking their existing code. Inheritance of the interface AutoCloseable by Closeable
defines multiple contracts for instances of these classes. They can now be assigned to a
reference variable of type AutoCloseable, enabling them to be used with a try-with-
resources statement.

 Several other classes and interfaces implement or extend AutoCloseable, among
the main Java Database Connectivity (JDBC) interfaces (Connection, Statement,
ResultSet) and several Java Sound API interfaces.

Object of FileInputStream can be declared in
try-with-resources because FileInputStream

implements Closeable (which extends AutoCloseable).
Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 3 Object-oriented design principles
FRAGILE DERIVED CLASSES

Adding to or modifying a base class can affect its derived classes. Adding new methods
to a base class can result in breaking the code of a derived class. Consider this initial
arrangement, which works well:

public abstract class Animal {
 void move(){}
}
class Lion extends Animal {
 void live(){}
}

Now consider a modified arrangement: a new method live() is added to base class
Animal. Because live() clashes (because of an incorrectly overridden method) with
the existing method live() in its derived class Lion, Lion will no longer compile:

public abstract class Animal {
 void move(){}
 String live(){
 return "live";
 }
}
class Lion extends Animal {
 void live(){}
}

EXAM TIP Class inheritance isn’t always a good choice because derived
classes are fragile. If any changes are made to a base class, a derived class
might break. Extending classes that are from another package or are
poorly documented aren’t good candidates for base classes.

If a base class chooses to modify the implementation details of its methods, the
derived classes might not be able to offer the functionality they were supposed to, or
they might respond differently. Consider this initial arrangement:

public abstract class Animal {
 String currentPosition;
 public void move(String newPosition){
 currentPosition = newPosition;
 }
}
class Lion extends Animal {
 void changePosition(String newPosition) {
 super.move(newPosition);
 System.out.println("New Position:" + newPosition);
 }
}
class Test{
 public static void main(String args[]) {
 new Lion().changePosition("Forest");
 }
}

New method
added to Animal

live() in Lion neither
overloads nor overrides
live() in Animal.

Prints “New
Position:Forest”
once
Licensed to Mark Watson <nordickan@gmail.com>

189Class inheritance versus interface inheritance
Imagine that Animal adds another line of code to method move(). Let’s see how it
changes the code output of class Test (modification in bold):

public abstract class Animal {
 String currentPosition;
 public void move(String newPosition){
 currentPosition = newPosition;
 System.out.println("New Position:" + newPosition);
 }
}
class Lion extends Animal {
 void changePosition(String newPosition) {
 super.move(newPosition);
 System.out.println("New Position:" + newPosition);
 }

 public static void main(String args[]) {
 new Lion().changePosition("Forest");
 }
}

EXAM TIP There isn’t any clear winner when it comes to selecting the
better option from class inheritance and interface inheritance. Analyze
the given conditions or situations carefully to answer questions on this
topic.

Imagine the thought process required to modify the core Java classes when its new ver-
sion is planned or executed. As you witnessed in the preceding example, changes to a
base class can break the code of its derived classes.

 In the next “Twist in the Tale” exercise, let’s try to figure out how an already-
defined class implements the interface AutoCloseable, or any of its subinterfaces, so
it can be used with a try-with-resources statement.

As shown in the preceding examples, a try-with-resources statement can declare
resources (objects) that implement the interface java.lang.AutoCloseable or any of
its subinterfaces. A programmer has defined a class MyLaptop as follows, and wants to
use it with a try-with-resources statement. Which option will enable the programmer
to achieve this goal?

class MyLaptop {
 public int open() {
 /* some code */
 return 0;
 }
 public void charge() {
 /* some code */
 }

Twist in the Tale 3.1

Implementation
details modified;
new code line added

Prints “New
Position:Forest”
twice
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 3 Object-oriented design principles
 public int close() {
 /* some code */
 return 1;
 }
}

a Make class MyLaptop implement interface java.lang.AutoCloseable.
b Make class MyLaptop implement interface java.io.Closeable, which extends

interface java.lang.AutoCloseable.
c Create a new interface MyCloseable that extends java.lang.AutoCloseable,

and make class MyLaptop implement it.
d Class MyLaptop can’t implement interface java.lang.AutoCloseable or any of

its subinterfaces because of the definition of its method close().

In the next section, you’ll work with how to identify and implement IS-A and HAS-A
principles in code.

3.3 IS-A and HAS-A relationships in code

You’ll be amazed at how easily you can identify and implement IS-A and HAS-A rela-
tionships between classes and objects, if you remember one simple rule—follow the
literal meaning of these terms:

■ IS-A—This relationship is implemented when
– A class extends another class (derived class IS-A base class)
– An interface extends another interface (derived interface IS-A base interface)
– A class implements an interface (class IS-A implemented interface)

■ HAS-A—This relationship is implemented by defining an instance variable. If a
class—say, MyClass—defines an instance variable of another class—say, Your-
Class—MyClass HAS-A YourClass. If MyClass defines an instance variable of an
interface—say, YourInterface—YourClass HAS-A YourInterface.

EXAM TIP Representing IS-A and HAS-A relationships by using (quick)
UML diagrams can help you on the exam. Though you may not see UML
diagrams on the exam, creating quick UML diagrams on an erasable
board (or something similar) provided to you during the exam will help
you answer these questions.

The exam will test whether you can identify and implement these relationships in
your code, so let’s start with an example of an IS-A relationship.

[3.3] Apply cohesion, low-coupling, IS-A, and HAS-A principles
Licensed to Mark Watson <nordickan@gmail.com>

191IS-A and HAS-A relationships in code
3.3.1 Identifying and implementing an IS-A relationship

An IS-A relationship is implemented by extending classes or interfaces and implement-
ing interfaces. Traverse the inheritance tree up the hierarchy to identify this relation-
ship. A derived class IS-A type of its base class and its implemented interfaces. A derived
interface IS-A type of its base interface. The reverse isn’t true; a base class or interface
isn’t a type of its derived class or interface.

IDENTIFYING AN IS-A RELATIONSHIP

Here’s a simple but long example for you to read and comprehend:

interface Movable {}
interface Hunter extends Movable {}

class Animal implements Movable {}
class Herbivore extends Animal {}
class Carnivore extends Animal implements Hunter {}

class Cow extends Herbivore {}
class Goat extends Herbivore {}

class Lion extends Carnivore {}
class Tiger extends Carnivore {}

Which of the following options do you think are correct?

■ Cow IS-A Hunter.
■ Tiger IS-A Herbivore.
■ Cow IS-A Movable.
■ Animal IS-A Herbivore.

To answer this question, refer to the preceding code, and you’ll notice that the inter-
face Hunter is implemented only by class Carnivore. Class Cow doesn’t extend class
Carnivore. So, Cow IS-A Hunter is incorrect.

 Similarly, you can refer to the preceding code to answer all the other options.
Option 2 is incorrect because class Tiger doesn’t extend class Herbivore. Option 3 is
correct because the interface Movable is implemented by class Animal, which is the
base class of Herbivore, extended by class Cow.

 Option 4 is incorrect because you can’t traverse the hierarchy tree down to deter-
mine an IS-A relationship. Evaluate it like this: An Herbivore IS-A type of Animal with
some additions or modifications because an Herbivore can modify (override) meth-
ods of class Animal and add new ones. But Animal IS-NOT-A Herbivore. Animal can
also be a Carnivore.

 Phew! So we had to refer to the code multiple times to answer each option. How
about representing the relationships between these classes and interfaces by using
UML notation, as shown in figure 3.6?
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 3 Object-oriented design principles
If you can traverse up, from a derived class
or interface to a base class or interface, fol-
lowing the connecting arrows (lined or
dashed), the derived entity shares an IS-A
relationship with the base entity. If you
think that the preceding figure seems to
depict a rather polished form of a class-and-
interface relationship, look at figure 3.7,
which shows the same relationship in a
rather raw form.

 I understand that you may not have the
time or patience to draw neat diagrams
during the exam because of time con-
straints or space available to you on an
erasable board. The main point to remem-
ber is to use correct connecting lines to
connect two types. Use an arrow to show
an IS-A relationship and a line to show a
HAS-A relationship.

Animal

Movable

Herbivore Carnivore

Cow Goat Lion Tiger

Hunter

Traverse up the

hierarchy tree

to determine

IS-A relationship.

Extends

Implements

Interface

Class

Figure 3.6 A UML representation can help answer questions about IS-A relationships
between classes and interfaces.

Animal

Herbivore

Carnivore

Cow

Goat

Movable

Lion Tiger

Hunter

Figure 3.7 A rather raw form of the UML
diagram that you may draw on an erasable
board while taking your exam to represent
an IS-A relationship between classes and
interfaces
Licensed to Mark Watson <nordickan@gmail.com>

193IS-A and HAS-A relationships in code
 When I attempted this exam, I drew similar not-so-good-looking diagrams. Believe
me, they helped me answer questions quickly, without referring to the code again and
again. Also, the questions on the exam may not use names that indicate an obvious
relationship between classes and interfaces. The next “Twist in the Tale” exercise will
ensure that you get the hang of this point.

Using the following code

interface InterH {}
interface SameY extends InterH {}

class JamD implements InterH {}
class SunP extends JamD {}
class BreaU extends JamD implements SameY {}

your task is to identify which of the following statements are true:

a SunP IS-A InterH.
b JamD IS-A SameY.
c InterH IS-A InterH.
d SameY IS-A JamD.

First attempt the exercise without drawing a UML diagram, and then by drawing and
using a UML diagram. Do you think using the UML diagram helps you answer the
questions more quickly?

EXAM TIP The key to finding the types that participate in an IS-A relation-
ship is to find your way, up the hierarchy tree, in the direction of the
arrows. This technique will not only help you with the exam, but also take
you a long way in your professional career.

IMPLEMENTING AN IS-A RELATIONSHIP

You can implement an IS-A relationship by extending classes or interfaces, or by
implementing interfaces. Here is a quick set of rules for implementing inheritance
between classes and interfaces in code:

■ A class inherits another class by using the keyword extends.
■ A class implements an interface by using the keyword implements.
■ An interface inherits another interface by using the keyword extends.

How will you implement the following relationship in code?

Herbivore IS-A Animal

Twist in the Tale 3.2
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 3 Object-oriented design principles
Because you don’t know whether either Herbivore or Animal refers to a class or an
interface, you have the following possibilities:

■ Herbivore and Animal are classes. Herbivore extends Animal.
■ Herbivore and Animal are interfaces. Herbivore extends Animal.
■ Herbivore is a class, and Animal is an interface. Herbivore implements Animal.

Figure 3.8 shows these three possible implementations.

Now, let’s add another relationship to the previous one. How would you implement
the following relationship and rules in code?

■ Herbivore IS-A Animal.
■ Carnivore IS-A Animal.
■ Animal can define only abstract methods and constants.

The third rule makes it clear that Animal is an interface. But you still don’t know
whether Herbivore and Carnivore are classes or interfaces. So you can have the fol-
lowing possibilities:

■ Herbivore and Carnivore are interfaces that extend the interface Animal.
■ Herbivore and Carnivore are classes that implement the interface Animal.
■ Herbivore is a class that implements the interface Animal. Carnivore is an

interface that extends the interface Animal.
■ Herbivore is an interface that extends the interface Animal. Carnivore is a

class that implements the interface Animal.

These relationships can be implemented as shown in figure 3.9.
 The exam may specify a similar set of rules and ask you to choose the code that you

think correctly implements the specified conditions. Let’s work through another set

Animal

Herbivore

class Animal {}
class Herbivore

extends Animal{}

interface Animal {}
class Herbivore

implements Animal{}

interface Animal {}
interface Herbivore

extends Animal{}

Herbivore

Animal

Herbivore AnimalIS-A

Animal

Herbivore

Figure 3.8 How to implement an IS-A relationship, if you don’t know whether the relationship is
between classes, interfaces, or both
Licensed to Mark Watson <nordickan@gmail.com>

195IS-A and HAS-A relationships in code
of rules and implement the relationships in code. How would you implement the fol-
lowing relationships and rules in code?

1 Abc IS-A Xyz.
2 Abc defines methods and instance variables.
3 Xyz can declare only abstract methods.
4 Xyz IS-A Lmn.

Rule 2 states that Abc is a class, because an interface can’t define instance variables.
Rule 3 states that Xyz is an interface, because a class can declare both abstract and
nonabstract methods. When you go up the hierarchy tree of an interface, you can find
only another interface. In other words, Lmn is also an interface. The preceding rules
evaluate to the following:

■ Abc is a class.
■ Xyz and Lmn are interfaces.
■ Abc implements Xyz.
■ Xyz extends Lmn.

Herbivore AnimalIS-A

Carnivore AnimalIS-A

Animal can only define abstract methods and constants

Animal

Animal Animal

Herbivore Carnivore

Herbivore HerbivoreCarnivore Carnivore

Herbivore Carnivore

Animal

Figure 3.9 How to implement an IS-A relationship between three entities, one of which is
an interface
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 3 Object-oriented design principles
After the evaluation, these rules seem simple to implement. Figure 3.10 shows the
relationships in UML notation and in code.

 When a class defines an instance variable of another class, they share a HAS-A rela-
tionship, covered in the next section.

3.3.2 Identifying and implementing a HAS-A relationship

As compared to an IS-A relationship, a HAS-A relationship is easy to identify and imple-
ment. I hope this statement relieves you! Consider this definition of the bare-bones
class Engine:

class Engine {}

Which of the following classes (Statistics, Car, PartsFactory, TestCar) do you
think shares a HAS-A relationship with class Engine?

class Statistics {
 static Engine engine;
}
class Car {
 Engine engine;
}
class PartsFactory {
 Object createEngine() {
 Engine engine = new Engine();
 //.. code
 return engine;
 }
}
class TestCar {
 boolean testEngine(Engine engine) {
 //.. code
 }
}

Of all the preceding classes—Statistics, Car, PartsFactory, and TestCar—only Car
shares a HAS-A relationship with the class Engine because Car defines an instance
variable of type Engine. Note that it doesn’t matter whether the instance variable
engine in class Car is initialized with an object. The HAS-A relationship is shared by
the classes.

Abc

Xyz

Lmn

interface Lmn{}
interface Xyz extends Lmn{}
class Abc implements Xyz{}

Figure 3.10 Implementing a set
of rules and an IS-A relationship
between three entities: two
interfaces, and a class

Statistics defines class
variable of type Engine.

Car defines instance
variable of type Engine.

PartsFactory defines
local variable of
type Engine.

TestCar defines
method parameter
of type Engine.
Licensed to Mark Watson <nordickan@gmail.com>

197Cohesion and low coupling
EXAM TIP Classes and interfaces can share a HAS-A relationship with
each other. If a class or interface—say, Type1—defines an instance vari-
able of a class or interface—say, Type2, Type1 HAS-A Type2 is correct. The
reverse isn’t correct. Also, the HAS-A relationship is shared by classes,
and so the relationship isn’t affected, whether the instance variable is
initialized or not.

The exam doesn’t stop at the IS-A and HAS-A relationships. Let’s see how high cohesion
and low coupling can improve your application design.

3.4 Cohesion and low coupling

Focused teams and team members are known to deliver better results. On the other
hand, highly dependent departments, teams, or team members might perform poorly.
The same principles can be applied to application design. Focused classes and modules
(cohesion) that aren’t highly dependent (or coupled) on other classes or modules are
generally easy to work with, reusable, and maintainable. Let’s start with the design prin-
ciple cohesion, which supports creation of focused modules and classes.

3.4.1 Cohesion

Cohesion refers to how focused a class or a module is. High cohesion refers to a well-
focused class or module, whereas low cohesion refers to a class or module that doesn’t
have a well-defined responsibility. Such modules or classes might perform multiple
actions, which could have been assigned to separate classes.

 Imagine a book editor who is supposed to edit book content, manage the book-
printing process, and reach out to new authors for new book ideas. Let’s define this
editor by using a class, say, Editor:

class Editor{
 public void editBooks() {}
 public void manageBookPrinting() {}
 public void reachOutToNewAuthors() {}
}

Because this editor is managing multiple tasks over a period of time, managing all
these processes might become difficult. Also, working with multiple responsibilities
can prevent the editor from specializing in all these processes. Let’s limit the tasks to
the book-editing process:

class Editor{
 public void useEditTools() {}
 public void editFirstDraft() {}
 public void clearEditingDoubts() {}
}

[3.3] Apply cohesion, low-coupling, IS-A, and HAS-A principles

Low cohesion; Editor is
performing diverse set
of unrelated tasks

High cohesion; Editor
is performing multiple
but related tasks.
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 3 Object-oriented design principles
The preceding example creates a highly cohesive class, Editor. Highly cohesive classes
are easy to use. In the preceding example, class Editor provides a one-stop solution
for all editing tasks. Highly cohesive classes are also easy to maintain and reuse; when-
ever you need to add or modify any editing-related process, you know which class you
need to refer to: class Editor.

EXAM TIP Well-designed applications aim for highly cohesive classes and
modules.

Classes and modules also perform better if they are least affected by the changes
made to other classes or modules. Let’s work with this aspect in detail in the next
section on coupling.

3.4.2 Coupling

Coupling refers to how much a class or module knows about other classes or modules.
If a class—say, Editor—interacts with another class—say, Author—by using its inter-
face (public methods), then classes Editor and Author are loosely coupled. But if class
Editor can access and manipulate Author by using its nonpublic members, these
classes are tightly coupled.

 Let’s code the class Author:

class Author {
 String name;
 String skypeID;
 public String getSkypeID() {
 return skypeID;
 }
}

NOTE The terms low coupling and loose coupling refer to the same concept.
They are often used interchangeably.

The modified class Editor is tightly coupled with class Author. The method clear-
EditingDoubts in class Editor accesses the nonpublic member skypeId of class Author:

class Editor{
 public void clearEditingDoubts(Author author) {
 setUpCall(author.skypeID);
 converse(author);
 }
 void setUpCall(String skypeID) { /* */}
 void converse(Author author) {/* */}
}

What happens, say, if a programmer changes the name of the variable skypeID in class
Author to skypeName? The code of class Editor won’t compile. As long as the public
interface of a class remains the same, it’s free to change its implementation details. In

Tight coupling; nonpublic
variable skypeID is referred
to outside its class Author.
Licensed to Mark Watson <nordickan@gmail.com>

199Cohesion and low coupling
this case, the name of instance variable skypeID forms part of Author’s implementa-
tion details. One suggested solution is to use the public method getSkypeID() in class
Editor (changes in bold):

class Author {
 String name;
 String skypeName;
 public String getSkypeID() {
 return skypeName;
 }
}
class Editor{
 public void clearEditingDoubts(Author author) {
 setUpCall(author.getSkypeID());
 converse(author);
 }
 void setUpCall(String skypeID) { /* */}
 void converse(Author author) {/* */}
}

Interfaces also promote loose coupling across classes and modules. Assume that the
entity Author is defined as an interface, which can be implemented by specialized
authors such as TechnicalAuthor. Here’s the new arrangement:

interface Author {
 String getSkypeID();
}
class TechnicalAuthor implements Author{
 String name;
 String skypeName;
 public String getSkypeID() {
 return skypeName;
 }
}
class Editor{
 public void clearEditingDoubts(Author author) {
 setUpCall(author.getSkypeID());
 converse(author);
 }
 void setUpCall(String skypeID) { /* */}
 void converse(Author author) {/* */}
}

The code at B defines the entity Author as an interface. At c, class TechnicalAuthor
implements Author. At d, the type of parameter passed to method clearEditing-
Doubts() is the interface Author. So method clearEditingDoubts() is guaranteed to
access only public members of instances of Author. Also, because method clear-
EditingDoubts() can be passed objects of classes that implement Author, it can also
accept instances of classes that are created later, such as FictionWriter, which imple-
ment Author.

Change in instance variable
name won’t affect classes
that access this method

Loose coupling; public
method getSkypeID()
accesses Author’s
skypeName.

interface
Author

 b

Class TechnicalAuthor
implements Author. c

Loose coupling; method
clearEditingDoubts()
uses interface to access
concrete implementations d
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 3 Object-oriented design principles
EXAM TIP Well-designed applications aim for loosely coupled classes and
modules.

The tips for creating well-designed applications don’t end here. The next section cov-
ers object composition principles.

3.5 Object composition principles

How can you use the existing functionality of a class? Inexperienced programmers or
newcomers to the Java programming language and OOP often answer this question by
saying, “inheritance.” They shouldn’t be completely blamed for this incorrect answer.
Many books, articles, and programmers overemphasize inheritance—which is correct
in a way, because inheritance is an important concept. But this might leave a lot of
newcomers with the wrong impression that inheriting a class is the best way to use
another class. Most of the time, you can use another class by composing your own class
with an object of another class. Let’s start with a quick example:

class Engine { /* code */ }
class Wheel { /* code */ }
class Car {
 Engine engine;
 Wheel[] wheels = new Wheel[5];
}

EXAM TIP Object composition enables you to use the existing functional-
ity of classes without extending them. The approach is simple: create and
use objects of other classes in your own class.

Look around for examples of classes defined by your peers, in books or articles, or
in the Java API. You’ll be amazed to notice that composition is the way to use a class,
when you want to use the functionality of any other class. You should inherit a class
only when you think that the derived class is a type of its base class. For example, it’s
correct to say that RacingCar is a type of Car. But it’s incorrect to say that Engine is a
type of Car.

 There’s another reason to favor object composition over inheritance: a base class is
fragile (refer to the subsection “Fragile Derived Classes” in section 3.2.3 for an exam-
ple). A change to a base class can have major effects on all its derived classes. For
example, changing the method signature of a public method in a base class can lead
to broken code of all its derived classes. A change in the nonpublic variables or meth-
ods of a base class can affect its derived classes, if the variables or methods are used by
the derived classes.

 The remaining sections cover the design patterns on the exam. Before you dive into
the details of the design patterns, let’s look at what they are and why we need them.

[3.4] Apply object composition principles (including HAS-A relationships)

Car is composed of
Engine and Wheel.
Licensed to Mark Watson <nordickan@gmail.com>

201Introduction to design patterns
3.6 Introduction to design patterns
People who live in regions that experience snowfall build sloping roofs so that snow
and ice don’t accumulate on the rooftops. This “pattern” of designing sloping roofs
was identified after multiple persons faced similar difficulties and found similar solu-
tions. Now this is an established practice. Being ignorant about the design pattern of
building a sloping roof can cause you a lot of rework later. Similarly, in the computing
domain, multiple design patterns have been documented by observing recurring pro-
gramming, behavioral, or implementation issues.

3.6.1 What is a design pattern?

A design pattern identifies a specific problem and suggests a solution to it. It’s neither
ready-made code that you can drop in your projects nor a framework to use. For
example, you might document the sloping-roof design pattern as

■ Design pattern name: Sloping roof
■ Problem: Accumulation of snow and ice on rooftops
■ Suggested solution: Build sloping roofs for all houses, offices, and buildings in

areas that receive snowfall during any time of the year. This enables snow or ice
from rooftops to slide and fall to the ground.

Notice the design pattern doesn’t include actual materials or tools to build a house.

NOTE No formal format of documentation of a design pattern exists. You
can document it the way you like.

3.6.2 Why do you need a design pattern?

Design patterns offer experience reuse and not code reuse. Design patterns help you reuse
the experience of application designers and developers in terms of the guidelines that
you can follow to implement commonly occurring programming scenarios. By using
design patterns for known issues in your application, you’ll benefit from the experi-
ence of others and be less likely to reinvent the wheel.

NOTE The Singleton and Factory design patterns are creational patterns
initially described in the Gang of Four (GoF) book Design Patterns: Ele-
ments of Reusable Object-Oriented Software by Gamma et al. (Addison-Wesley,
1995). DAO is an integration-tier core J2EE pattern; see Core J2EE Patterns:
Best Practices and Design Strategies, Second Edition, by Deepak Alur, John
Crupi, and Dan Malks (Prentice Hall, 2003).

In the next section, we’ll cover the first design pattern that is covered on this exam:
the Singleton design pattern.
Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 3 Object-oriented design principles
3.7 Singleton pattern

Singleton is a creational design pattern that ensures that a class is instantiated only
once. The class also provides a global point of access to it.

 So under what conditions would you want to have only one object of a class?
Wouldn’t the object feel lonely because there’s only one of its kind?

3.7.1 Why do you need this pattern?

Imagine the issues that can be caused by multiple browser caches or multiple thread
pools. In these scenarios, you might need only one object of a class to encapsulate all
operations for managing a pool of resources, and to also serve as a global point of ref-
erence. Other common examples include a single instance of Device Manager to
manage all the devices on your system, and a single instance of a print spooler to man-
age all the printing jobs.

3.7.2 Implementing the Singleton pattern

Implementation of the Singleton class involves a single class. But don’t let this sim-
plicity dismiss the finer details that you should get right. Let’s move on to the basics of
implementing the Singleton pattern:

1 Define a private constructor for the class that implements the Singleton pattern.
To prevent any other class from creating an object of this class, mark the con-
structor of this class as a private member:

class Singleton {
 private Singleton() {
 System.out.println("Private Constructor");
 }
}

Now, no class can execute new Singleton() to create an instance of this class.
But if no other class can create objects of this class, how will they use it? The
class that implements the Singleton pattern creates and manages its sole
instance by defining a static variable to store this instance.

2 Define a private static variable to refer to the only instance of the Singleton class.
A static variable ensures that the class stores and accesses the same instance. In
the following code, the variable anInstance is a class variable:

class Singleton {
 private static Singleton anInstance = null;
 private Singleton() {
 System.out.println("Private Constructor");
 }
}

[3.5] Design a class using the Singleton design pattern
Licensed to Mark Watson <nordickan@gmail.com>

203Singleton pattern
A well-encapsulated class should enable access to its members by using well-
defined interfaces. So let’s create a method to access the private variable
anInstance.

3 Define a public static method to access the only instance of the Singleton class.
Before you access the variable anInstance, you should create it. The creation
and return of this variable is usually defined as follows (additions to previous
code in bold):

class Singleton {
 private static Singleton anInstance = null;
 public static Singleton getInstance() {
 if (anInstance == null)
 anInstance = new Singleton();
 return anInstance;
 }
 private Singleton() {
 System.out.println("Private Constructor");
 }
}

A class can request an object of class Singleton by calling the static method get-
Instance():

class UseSingleton {
 public static void main(String args[]) {
 Singleton singleton1 = Singleton.getInstance();
 Singleton singleton2 = Singleton.getInstance();
 System.out.println(singleton1 == singleton2);
 }
}

The output of this code confirms that an object of class Singleton is created only once:

Private Constructor
true

These steps ensure that only one object of class Singleton ever exists. But what hap-
pens if multiple classes request an object of class Singleton at exactly the same time?
This may lead to the creation of more than one object of class Singleton. Don’t worry;
we have ways to fix this one too, as discussed in the next section.

3.7.3 Ensuring creation of only one object in the Singleton pattern

Though the previous code seems to guarantee that only one instance of Singleton will
be created, concurrent access of method getInstance() may result in creation of
multiple instances. This can be a problem in multithreaded environments, such as
application servers and servlet engines. Before you fix the issue of concurrent creation

If anInstance hasn’t
been initialized

Initialize
anInstance

Return
anInstance

New instance of class
Singleton created and
returned when
accessed first time

Previously created
instance returned for
subsequent calls to
method getInstance()

Prints
“true”
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 3 Object-oriented design principles
of an object in a Singleton pattern, you need to ensure that you understand the finer
details of this issue. So let’s get started.

UNDERSTANDING THE PROBLEM OF CONCURRENT ACCESS

Imagine that two objects request class Singleton to return its instance at exactly the
same time, by calling method getInstance():

class Singleton {
 private static Singleton anInstance = null;
 public static Singleton getInstance() {
 if (anInstance == null)
 anInstance = new Singleton();
 return anInstance;
 }
 private Singleton() {
 System.out.println("Private Constructor");
 }
}

Because each call will discover that the variable anInstance hasn’t been initialized,
each method call will create a new object and assign it to the variable anInstance.
Method getInstance() may also return separate objects for each call. This is shown
in figure 3.11.

 If you think that it doesn’t make a difference if you create multiple objects of a
class that implements the Singleton pattern, think again. The definition of the previ-
ously defined class Singleton is oversimplified. Real classes that implement the
Singleton pattern define much more meaningful code in their constructors—for
example, initializing their own resources, starting threads, or creating database or net-
work connections. Obviously, a class won’t like to do all these again, when it’s not sup-
posed to.

public static Singleton getInstance() {
if (anInstance == null)

anInstance = new Singleton() ;
return anInstance;

}

Create new

Singleton object

Calling

method 1

Calling

method 2

Figure 3.11 Multiple concurrent calls to method getInstance() can
create multiple objects of class Singleton.
Licensed to Mark Watson <nordickan@gmail.com>

205Singleton pattern
FIXING CONCURRENT CREATION: EAGER INITIALIZATION

There are multiple ways to ensure that an object of a class that implements the Single-
ton pattern is initialized only once. To begin with, eager initialization will enable you to
initialize the static variable as soon as the class is loaded:

class Singleton {
 private static final Singleton anInstance = new Singleton();
 public static Singleton getInstance() {
 return anInstance;
 }
 private Singleton() {
 System.out.println("Private Constructor");
 }
}

The code at B executes when the class is loaded by the Java class loaders. So an object
of class Singleton is created before any class requests it. When any other object
requests an object of class Singleton, using method getInstance(), the code at c
simply returns the Singleton instance anInstance. The preceding code ensures that
multiple objects of class Singleton aren’t created.

FIXING CONCURRENT CREATION: SYNCHRONIZED LAZY INITIALIZATION

Though this seems to be the perfect solution, eager initialization creates an object of
class Singleton, even if it’s never used. Don’t worry; every problem has a solution.
Let’s not employ eager initialization and synchronize method getInstance():

class Singleton {
 private static Singleton anInstance;
 synchronized public static Singleton getInstance() {
 if (anInstance == null)
 anInstance = new Singleton();
 return anInstance;
 }
 private Singleton() {
 System.out.println("Private Constructor");
 }
}

Method getInstance() is defined as a synchronized method at B. This means that
multiple threads or objects can’t execute this method concurrently. So this again saves
us from multiple-object creation of a class implementing the Singleton pattern. If
you’re thinking that this is the last way to fix multiple-object creation issues for a
Singleton class, take a deep breath, my friend, because there’s more to it.

 On the exam, you might also see a variation of the previously defined synchro-
nized method getInstance(). Because synchronized methods don’t allow concurrent
execution, your application may feel a performance hit if a lot of classes in your appli-
cation call method getInstance(). Java can rescue you this time, by synchronizing

Eager initialization; anInstance is
initialized as soon as class loaded

 b

Simply returns
anInstance c

No eager
initialization

Method
getInstance()
defined as
synchronized
method B
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 3 Object-oriented design principles
method getInstance() partially (if you’re new to threading and concurrency and
can’t understand the following code, don’t worry. Just refer to chapters 10 and 11 on
threading and concurrency):

public static Singleton getInstance() {
 if (anInstance == null) {
 synchronized (Singleton.class) {
 if (anInstance == null)
 anInstance = new Singleton();
 }
 }
 return anInstance;
}

After the thread acquires a lock on Singleton.class and enters the synchronized
block, the code checks whether anInstance is null (again), before creating a new
object. This is to ensure that after the lock is acquired, the condition hasn’t changed
and anInstance is still null.

EXAM TIP On the exam, all of these approaches (eager initialization, syn-
chronization of the complete method getInstance(), and partial synchro-
nization of method getInstance()) may be presented, and you may be
questioned about the right approach for implementing the Singleton pat-
tern. All these approaches are good. Beware of modified code that tries to
synchronize a partial getInstance() method, which doesn’t synchronize
the code that creates an object of Singleton.

USING ENUMS

By using enums, you can implement the Singleton pattern in a thread-safe manner.
Here’s a simple implementation:

public enum Singleton {
 INSTANCE;

 public void initCache(){
 //..code
 }
}

Because enum instances can’t be created by any other class, the enum Singleton will
ensure the existence of only one of its instances, Singleton.INSTANCE.

NOTE Even though using a single-element enum is the best way to imple-
ment the Singleton pattern, you must know all the previously discussed
approaches to answer questions on this topic on the exam.

After making yourself aware of the multiple rules that you need to follow to apply the
Singleton pattern, test yourself on it with the next “Twist in the Tale” exercise.

Don’t synchronize
complete method

Synchronize code
block that creates
new object
Licensed to Mark Watson <nordickan@gmail.com>

207Singleton pattern
Does the class in the following code apply the Singleton pattern correctly?

class Singleton {
 private Singleton anInstance;
 synchronized public Singleton getInstance() {
 if (anInstance == null)
 anInstance = new Singleton();
 return anInstance;
 }
}

NOTE The Singleton pattern is also referred to as an anti-pattern. It has
been overused by developers and designers, who make a lot of assump-
tions about the applications that use it. It also makes testing difficult.

Even before the Singleton pattern was officially recognized and used, single-object
instances with global access have been implemented using static variables. But this has its
own set of disadvantages.

3.7.4 Comparing Singleton with global data

Programmers have been creating and using single instances of a class by defining
them as static variables for quite a long time. Some of them do that even now. But
doing so requires the following serious considerations:

■ Possibility of creating multiple objects of the same type—Using a static variable doesn’t
stop you (or any other user) from creating another object of the class and refer-
ring to it by another name. Limiting creation of only one object is the responsi-
bility of the application developer and isn’t included as part of the class design
in this case. This, as you know, can introduce issues when multiple (unwanted)
objects are created.

■ Eager initialization—Static variables are usually initialized before any class uses
them. This risks allocation of resources and other processing that may never
have been required or used (for example, initializing resources of the class used
as a global variable) and other tasks that it may define in its constructor (for
example, starting threads, or creating database or network connections).

■ Pollution of namespace—Using multiple static variables within an application is
sure to pollute the namespace, which is, again, not a preferred approach.

The API of a language, product, or service can be huge, and it isn’t possible for users
to know about all its classes. It makes a lot of sense to be able to create and use objects
of a class by specifying a set of requirements. The Factory pattern makes this feasible.
Apart from hiding the implementation details of object creation, it enables developers
to extend an API and users to use the newer classes.

Twist in the Tale 3.3
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 3 Object-oriented design principles
3.8 Factory pattern

Imagine you need to open files, say, Hello.doc and Hello.xml, programmatically using
your Java application. To do so, you’d need instances of classes, say, WordProcessor
and TextEditor, that can open these files. One of the obvious approaches is to use the
operator new to create an instance of WordProcessor and TextEditor to open files.
But this would result in tight coupling between the application that opens files and
the classes that are used to open the files. What happens if you need to use another
class, say, QuickProcessor, to open .doc files in the future?

 In this section, you’ll work with how to use the Factory pattern to prevent tight cou-
pling between classes. This pattern also eliminates direct constructor calls in favor of
invoking a method. One of the most frequently used design patterns, multiple Factory
patterns exist:

■ Simple Factory or Static Factory pattern
■ Factory Method pattern
■ Abstract Factory pattern

On the exam, most of the questions on the Factory pattern refer to the Simple Fac-
tory pattern.

3.8.1 Simple Factory pattern (or Static Factory pattern)

This pattern creates and returns objects of classes that extend a common parent class
or implement a common interface. The objects are created without exposing the
instantiation logic to the client. The calling class is decoupled from knowing the exact
name of the instantiated class.

 Figure 3.12 shows the UML class diagram for classes used in the sample code to
exhibit the Simple Factory pattern.

[3.7] Design and create objects using a factory pattern

Uses

Creates

<<implements>> <<implements>>Request for

App object

Client
<<interface>>

App

AppFactory WordProcessor TextEditor

Figure 3.12 UML class diagram for interfaces and classes implementing the Simple
Factory pattern
Licensed to Mark Watson <nordickan@gmail.com>

209Factory pattern

App
ted

ssor
ditor

.

In the following sample code, class Client is decoupled from knowing the exact sub-
class, either WordProcessor or TextEditor, that it needs to open a file. It calls App-
Factory’s method getAppInstance(), passing it the file extension, which returns an
appropriate App object. It gives you the flexibility of modifying class AppFactory with-
out impacting class Client. You might want to modify method getAppInstance() to
return another App instance, say, XMLEditor, to open a .txt file. For instance

interface App {
 void open(String filename);
}
class WordProcessor implements App {
 public void open(String filename) {
 System.out.println("Launch WordProcessor using " + filename);
 }
}
class TextEditor implements App {
 public void open(String filename) {
 System.out.println("Launch TextEditor using " + filename);
 }
}
class AppFactory {
 public static App getAppInstance(String fileExtn) {
 App appln = null;
 if (fileExtn.equals(".doc")) {
 appln = new WordProcessor();
 }
 else if (fileExtn.equals(".txt") ||
 fileExtn.equals(".xml")) {
 appln = new TextEditor();
 }
 return appln;
 }
}
class Client{
 public static void main(String args[]) {
 App app = AppFactory.getAppInstance(".doc");
 app.open("Hello.doc");
 App app2 = AppFactory.getAppInstance(".xml");
 app2.open("Hello.xml");
 }
}

NOTE Because method getAppInstance() in class AppFactory is a static
method, this pattern is also referred to as the Static Factory pattern or
Factory Class pattern.

Method getAppInstance() is manageable with just a few comparisons (if-else) state-
ments. What happens if method getAppInstance() is supposed to return App instances
for a wide variety of file extensions? Because it can become unmanageable, let’s work
with a variation of the Simple Factory pattern—that is, the Factory Method pattern.

Interface
implemen
by classes
WordProe
and TextE

Implements Simple
Factory pattern by
returning App
object according to
parameter value

Client is decoupled from
classes TextEditor and
WordProcessor; it calls
AppFactory.getApp-
Instance() to get App object
Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 3 Object-oriented design principles

App
ted

 and
3.8.2 Factory Method pattern

The intent of the Factory Method pattern is to define an interface for creating an
object but let subclasses decide which class to instantiate. The Factory Method pattern
lets a class defer instantiation to its subclasses.

 Figure 3.13 shows the UML class diagram for classes used in the sample code to
exhibit the Factory Method pattern.

 In the following example code, to get the required App object, class Client uses one
of the subclasses of abstract class AppFactory and calls its method getAppInstance().
Method getAppInstance() calls method getApp(), which is a factory method defined
as an abstract method in class AppFactory. It is implemented by its concrete factory
classes, WordAppFactory and TextEditAppFactory. The subclasses WordAppFactory
and TextEditAppFactory implement getApp() to return a specific App object. It allows
Client to use WordProcessor and TextEditor, but decouples it from knowing their
names. This arrangement promotes flexibility to change the App object returned from
concrete factory classes (WordAppFactory and TextEditAppFactory):

interface App {
 void open(String filename);
}
class WordProcessor implements App {
 public void open(String filename) {
 System.out.println("Launch WordProcessor using " + filename);
 }
}
class TextEditor implements App {
 public void open(String filename) {
 System.out.println("Launch TextEditor using " + filename);
 }
}

Uses

Creates Creates

<<extends>> <<extends>>

Request for

App object

Client
<<interface>>

App

<<abstract class>>
AppFactory

WordProcessor TextEditorWordAppFactory TextEditAppFactory

Figure 3.13 UML class diagram for interfaces and classes implementing the Factory Method pattern

Interface
implemen
by classes
Word-
Processor
TextEditor
Licensed to Mark Watson <nordickan@gmail.com>

211Factory pattern

Conc
Fac
cla
abstract class AppFactory {
 public App getAppInstance() {
 App appln = getApp();
 return appln;
 }
 public abstract App getApp();
}
class WordAppFactory extends AppFactory {
 public App getApp() {
 return new WordProcessor();
 }
}
class TextEditAppFactory extends AppFactory {
 public App getApp() {
 return new TextEditor();
 }
}
class Client {
 public static void main(String args[]) {
 AppFactory factory = new WordAppFactory();
 App app = factory.getAppInstance();
 app.open("Hello.doc");

 app = new TextEditAppFactory().getAppInstance();
 app.open("Hello.xml");
 }
}

Now, what happens if you were required to create families of related classes, such as
applications that can open rich format files for editing in Windows and Mac sys-
tems? Because these systems might use separate applications for similar purposes,
let’s modify the example used in the previous section to use the Abstract Factory
pattern.

3.8.3 Abstract Factory pattern

The Abstract Factory pattern is used to create a family of related products (in contrast,
the Factory Method pattern creates one type of object). This pattern also defines an
interface for creating objects, but it lets subclasses decide which class to instantiate.

 Figure 3.14 shows the UML class diagram for classes used in the sample code to
exhibit the Abstract Factory pattern.

 In the following example code, to get the required App and Font objects, class
Client uses one of the subclasses of abstract class AppFactory and calls its meth-
ods getAppInstance() or getFontInstance(). The Concrete Factory pattern classes
WordAppFactory and TextEditAppFactory return an appropriate concrete object for
the interfaces App and Font. This pattern also allows Client to use WordProcessor,
TextEditor, RichFont, and RegularFont, but decouples it from knowing their
names. This arrangement also promotes flexibility to change the App or Font object

Abstract
Factory class

Factory
Method

rete
tory
sses

Implement Factory
Method to return a
specific App object.

Client class uses variable
of Abstract Factory
pattern to refer to a
concrete factory object

Because factory refers to
WordAppFactory object,
call to getAppInstance()
returns WordProcessor
object
Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 3 Object-oriented design principles
returned from Concrete Factory pattern classes (WordAppFactory and TextEdit-
AppFactory).

interface App { /* code */ }
class WordProcessor implements App { /* code */ }
class TextEditor implements App { /* code */ }

interface Font { /* code */ }
class RichFont implements Font { /* code */ }
class RegularFont implements Font { /* code */ }

abstract class AppFactory {
 protected abstract App getApp();
 protected abstract Font getFont();

 public App getAppInstance() {
 App appln = getApp();
 return appln;
 }
 public Font getFontInstance() {
 Font font = getFont();
 return font;
 }
}

class WordAppFactory extends AppFactory {
 protected App getApp() {
 return new WordProcessor();
 }
 protected Font getFont() {
 return new RichFont();
 }
}

class TextEditAppFactory extends AppFactory {
 protected App getApp() {
 return new TextEditor();
 }

UsesUses

Creates

CreatesCreates Creates

<<extends>>

<<implements>> <<implements>>

<<extends>>

Request for

App object

Client <<interface>>
App

<<abstract class>>
AppFactory

WordProcessor TextEditor

<<interface>>
Font

RichFont RegularFont WordAppFactory TextEditFactory

Figure 3.14 UML class diagram for interfaces and classes implementing the Abstract Factory pattern

interface App implemented
by classes WordProcessor
and TextEditor

interface Font
implemented by classes
RichFont and RegularFont

Abstract
Factory class

Concrete
Factory
classes
Licensed to Mark Watson <nordickan@gmail.com>

213Factory pattern
 protected Font getFont() {
 return new RegularFont();
 }
}

class ClientAbstractFactoryMethod {
 public static void main(String args[]) {
 AppFactory factory1 = new WordAppFactory();
 App app1 = factory1.getAppInstance();
 Font font1 = factory1.getFontInstance();
 System.out.println(app1 + ":" + font1);

 AppFactory factory2 = new TextEditAppFactory();
 App app2 = factory2.getAppInstance();
 Font font2 = factory2.getFontInstance();
 System.out.println(app2 + ":" + font2);
 }
}

NOTE The sample code used in the sections on Factory Method and
Abstract Factory patterns can use App or Font as an interface or abstract
or concrete class.

In the next section, you’ll learn the terms and phrases that the exam uses to test you
on the benefits of using the Factory pattern.

3.8.4 Benefits of the Factory pattern

The exam won’t ask you to select the benefit of a specific Factory pattern—that is,
Simple Factory, Factory Method, or Abstract Factory. Here are the benefits that apply
to all Factory patterns:

■ Prefer method invocation over direct constructor calls
■ Prevent tight coupling between a class implementation and your application
■ Promote creation of cohesive classes
■ Promote programming to an interface
■ Promote flexibility. Object instantiation logic can be changed without affecting

the clients that use objects. They also allow addition of new concrete classes.

Here’s a list of what doesn’t apply or isn’t related to the Factory pattern:

■ It doesn’t eliminate the need of overloading constructors in class implemen-
tations.

■ It doesn’t encourage the use of any particular access modifier. It isn’t compul-
sory to define private members to use this pattern.

■ It won’t slow your application.
■ It isn’t related to how to monitor objects for change.

The exam will question you on the classes from the Java API that use this pattern. Let’s
cover them in the next section.

Concrete Factory class
used to create objects
of App and Font
Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 3 Object-oriented design principles
3.8.5 Using the Factory pattern from the Java API

You’ll find this important design pattern in multiple classes in the Java API.
 Some of these classes are listed in table 3.3.

Table 3.3 Classes and methods from the Java API that use the Factory pattern

Class Method Description

java.util.Calendar getInstance() Gets a calendar using
the default time zone
and locale.

java.util.Arrays asList() Returns a fixed-size list
backed by the specified
array.

java.util.ResourceBundle getBundle() Overloaded versions of
this method return a
resource bundle using
the specified base name,
target locale, class
loader, and control.

java.sql.DriverManager getConnection() Establishes and returns
a connection to the given
database URL.

java.sql.DriverManager getDriver() Attempts to locate
and return a driver
that understands the
given URL.

java.sql.Connection createStatement() Overloaded version of
this method creates a
statement object for
sending SQL statements
to the database and gen-
erates ResultSet
objects with the given
type, concurrency, and
holdability.

java.sql.Statement executeQuery() Executes the given SQL
statement, which returns
a single ResultSet
object.

java.text.NumberFormat getInstance()
getNumberFormat()

Returns a general-
purpose number format
for the current default
locale.

java.text.NumberFormat getCurrencyInstance() Returns a currency for-
mat for the current
default locale.
Licensed to Mark Watson <nordickan@gmail.com>

215DAO pattern
NOTE Refer to chapter 12 for detailed coverage of the Factory method
getInstance() defined in class NumberFormat.

Almost all applications need to store data to a persistent medium in one form or
another. Data persistence can range from using simple text files to full-fledged data-
base management systems. In the next section, we’ll cover how the Data Access Object
(DAO) pattern enables you to separate code that communicates with the data source
from the classes that use the data.

3.9 DAO pattern

Imagine your employee application needs to read its data from and write to multiple
sources like flat files, relational databases, XML, or JSON. Add to this the differences in
accessing the data for different vendor implementations. How would your application
manage to work with data stored in a different format, with different data manage-
ment systems, offering separate features, using separate APIs? This section shows you
how the DAO pattern helps in a similar situation.

3.9.1 What is the DAO pattern?

The DAO pattern abstracts and encapsulates all access to a data store (flat files, rela-
tional databases, XML, JSON, or any other data source). It manages the connection
with the data source to access and store the data. It shields a client from knowing how
to retrieve or store data and lets it specify what data to retrieve and store. So it makes
the client code flexible to work with multiple data sources.

EXAM TIP The DAO pattern decouples classes that define business or
presentation logic from the data persistence details.

3.9.2 Implementing the DAO pattern

Identify the data that you need to store to or retrieve from a data store (say, Emp).
Define an interface, a DAO, say, EmpDAO, to expose the data’s CRUD operations. The

java.text.NumberFormat getIntegerInstance() Returns an integer for-
mat for the current
default locale.

java.util.concurrent
.Executors

newFixedThreadPool()
newCachedThreadPool()
newSingleThreadExecutor()

Creates a thread pool.

Table 3.3 Classes and methods from the Java API that use the Factory pattern

Class Method Description

[3.6] Write code to implement the DAO pattern
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 3 Object-oriented design principles
implementation details are hidden from clients and defined in a class (say, EmpDAO-
Impl). If the implementation details to access data in the data source change, it
doesn’t affect a client. This pattern allows an application to adapt to different data
stores or its version without affecting a client. Figure 3.15 shows the UML class dia-
gram of classes implementing the DAO pattern.

 In the following sample code, class Emp encapsulates the employee data that can
be read from and stored to multiple types of data stores. The interface EmpDAO
exposes the operations that can be performed with Emp objects in a data store. Class
EmpDAOImpl implements EmpDAO, connecting to a data store and retrieving Emp from
it and updating it in the data store. Note how class Client is decoupled from the
data storage and retrieval details. Class Client works with EmpDAO and not with its
specific implementation.

class Emp {
 int id;
 String name;
 int age;
 String address;
}
interface EmpDAO {
 public int create(Emp e);
 public Emp get(int id);
 public boolean delete(Emp e);
 public boolean update(Emp e);
 public Collection<Emp> getAll();
}
class EmpDAOImpl implements EmpDAO {
 public int create(Emp e) {
 /* connect to datastore, insert data for employee e */
 }
 public Emp get(int id) {
 /* connect to datastore, retrieve and return data for employee-id id */
 }
 public boolean delete(Emp e) {
 /* connect to datastore and delete data for employee-id e.id */
 }

Uses Encapsulates

Creates/modifies Data store
Uses/

modifies

Client
<<interface>>

EmpDAO

Emp EmpDAOImpl

Figure 3.15 UML class diagram of classes and interfaces implementing the DAO pattern
Licensed to Mark Watson <nordickan@gmail.com>

217DAO pattern

obj
da
 public boolean update(Emp e) {
 /* connect to datastore and update employee data */
 }
 public Collection<Emp> getAll() {
 /* connect to datastore, retrieve emp data, return as Collection */
 }
}
class Client {
 public static void main(String args[]) {
 Emp emp = new Emp();
 emp.id = 10; emp.name = "Harry";
 emp.age = 39; emp.address = "UK";

 EmpDAO dao = new EmpDAOImpl();
 dao.create(emp);
 emp.name = "Harry M"; emp.age = 40;
 dao.update(emp);

 Emp emp2 = dao.get(11);
 if (emp2 != null) dao.delete(emp2);
 }
}

EXAM TIP The CRUD operations form the basis of the DAO pattern.

The preceding example uses only one implementation of the DAO interface. How
would an application manage working with multiple DAO implementations? You can
use the Factory pattern—that is, Simple Factory, Factory Method, or Abstract Fac-
tory—with the DAO pattern to work with multiple DAO implementations, as shown in
the next section.

EXAM TIP The exam might ask you whether it’s common to use the Fac-
tory pattern with the DAO pattern. The answer is yes (as shown in the
next section). But it isn’t mandatory to use the Factory pattern with the
DAO pattern (as shown in this section).

3.9.3 Using the Simple Factory pattern with the DAO pattern

You can use a Factory pattern to work with multiple DAO pattern implementations.
The following example uses the Simple Factory pattern. Method getInstance() in
class DAOFactory returns an instance of the EmpDAO implementation, which can be
used by a client class (Client). I haven’t repeated the class details deliberately for
Emp and EmpDAO to keep the code short. They’re the same as used in the example in
the preceding section. The code for classes EmpDAOOracleImpl and EmpDAOMySQL-
Impl can be assumed to be the same as the code for class EmpDAOImpl used in the
preceding example.

class Emp { /* code */ }
interface EmpDAO { /* code */ }

Create Emp
object.

Initialize
emp object.Create

instance of
EmpDAO.

Insert emp data in data
store using method create().

Modify existing
values of emp object.

Update emp
object in

data store.

Retrieve
ect from
ta store.

Delete data corresponding
to retrieved data from
data store.
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 3 Object-oriented design principles

on

DAOFac
uses Sim

Fac
patt
class EmpDAOOracleImpl implements EmpDAO { /* code */ }
class EmpDAOMySQLImpl implements EmpDAO { /* code */ }

abstract class DAOFactory {
 public static int ORACLE = 1;
 public static int MYSQL = 2;
 public static EmpDAO getEmpDAOInstance(int DBtype) {
 if (DBtype == ORACLE)
 return new EmpDAOOracleImpl();
 else if (DBtype == MYSQL)
 return new EmpDAOMySQLImpl();
 else
 return null;
 }
}

class Client {
 public static void main(String args[]) {
 EmpDAO empDAO = DAOFactory.getEmpDAOInstance(DAOFactory.ORACLE);
 Emp emp = new Emp();
 emp.id = 10; emp.name = "Harry";
 emp.age = 39; emp.address = "UK";
 empDAO.create(emp);
 }
}

NOTE To keep the code simple, this and the next section use DAO imple-
mentation classes for only two different data stores, Oracle and MySQL.

In the next section, you’ll see how you can decouple data storage and retrieval for
multiple type of objects (Emp, Dept) from multiple data stores (Oracle, MySQL) using
the Factory Method or Abstract Factory patterns with the DAO pattern.

3.9.4 Using the Factory Method or Abstract Factory pattern with
the DAO pattern

In the following example, class Client needs to store and retrieve objects of Emp and
Dept to and from a data store. To decouple Client from the persistence details, the inter-
faces EmpDAO and DeptDAO define all data store operations with Emp and Dept objects.

 The example code defines implementation classes for Oracle and MySQL data
stores. Classes EmpDAOOracleImpl and DeptDAOOracleImpl define implementation
details for an Oracle data store and classes EmpDAOMySQLImpl and DeptDAOMySQLImpl
define implementation details for a MySQL data store. The abstract class DAOFactory
defines abstract methods getEmpDAO() and getDeptDAO(), which are implemented by
its subclasses OracleDAOFactory and MySQLDAOFactory.

 To store Emp and Dept objects to an Oracle database, class Client can use Oracle-
DAOFactory, and to store them to a MySQL database, class Client can use MySQLDAO-
Factory:

class Emp { /* code */ }
class Dept { /* code */ }

EmpDAO implementati
for Oracle Database

EmpDAO implementation
for MySQL Database

tory
ple

tory
ern. Static Factory

pattern to return
implementation
of EmpDAO

Get EmpDAO
implementation

for Oracle DB.

Insert emp data
in data store.

Data objects
to persist
Licensed to Mark Watson <nordickan@gmail.com>

219DAO pattern
interface EmpDAO { /* code */ }
interface DeptDAO { /* code */ }

class EmpDAOOracleImpl implements EmpDAO { /* code */ }
class DeptDAOOracleImpl implements DeptDAO { /* code */ }

class EmpDAOMySQLImpl implements EmpDAO { /* code */ }
class DeptDAOMySQLImpl implements DeptDAO { /* code */ }

abstract class DAOFactory {
 protected abstract EmpDAO getEmpDAO();
 protected abstract DeptDAO getDeptDAO();
 public EmpDAO getEmpDAOInstance() {
 return getEmpDAO();
 }
 public DeptDAO getDeptDAOInstance() {
 return getDeptDAO();
 }
}

class OracleDAOFactory extends DAOFactory {
 protected EmpDAO getEmpDAO() {
 return new EmpDAOOracleImpl();
 }
 protected DeptDAO getDeptDAO() {
 return new DeptDAOOracleImpl();
 }
}
class MySQLDAOFactory extends DAOFactory {
 protected EmpDAO getEmpDAO() {
 return new EmpDAOMySQLImpl();
 }
 protected DeptDAO getDeptDAO() {
 return new DeptDAOMySQLImpl();
 }
}

class Client {
 public static void main(String args[]) {
 DAOFactory factory = new OracleDAOFactory();
 EmpDAO empDAO = factory.getEmpDAOInstance();
 DeptDAO deptDAO = factory.getDeptDAOInstance();

 Emp emp = new Emp();
 empDAO.create(emp);

 Dept dept = new Dept();
 deptDAO.update(dept);
 }
}

In the next section, you’ll see what terms and phrases the exam might use to test you
on the benefits of using the DAO pattern.

DAO pattern

DAO pattern
implementation for
Oracle database

DAO pattern
implementation for
MySQL database

Abstract Factory
pattern class

Factory to return
Oracle DAO
implementations

Factory to return
MySQL DAO
implementations

Create
OracleDAOFactory.

Access EmpDAO and
DeptDAO implementations.

Insert emp data
in database.

Update dept data
in database.
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 3 Object-oriented design principles
3.9.5 Benefits of the DAO pattern

The benefits of the DAO pattern are

■ It abstracts and encapsulates all access to a data source. It manages the connec-
tion to the data source to obtain and store data.

■ It promotes programming to an interface. It completely hides the data access
implementation from its clients.

■ It decouples the business logic layer and persistence layer. It makes the code
independent of any changes to a data source or its vendor (for example, plain-
text, XML, LDAP, MySQL, Oracle, or DB2).

■ It promotes flexibility. Because the interfaces accessible to client classes don’t
change, new implementation classes can be added.

■ The DAO pattern might also include Factory pattern classes.
■ It prevents tight coupling between client classes and DAO implementation

classes. It promotes the creation of cohesive classes.

Design patterns help you to reuse the experience of other programmers to create
robust application designs. When you work with real-life projects, identify recurrent
issues across projects and their probable solutions. You never know, you might identify
and pen your own design patterns. Good luck to you!

3.10 Summary
In this chapter, you covered interfaces and how to use them in class design. Given the
task of designing an application, API, or framework, you need to define multiple inter-
faces and abstract classes. But the choice of using abstract classes and interfaces isn’t
straightforward.

 An interface can define only constants and abstract methods. The methods of an
interface are implicitly abstract and can’t define any implementation details. The
interfaces are used to define a contract, which all the classes should adhere to. Inter-
faces only specify the behavior that should be supported by their implementing classes;
the implementation details are left for the classes.

 You can subclass an abstract class to create concrete classes only if you implement
all of the class’s abstract methods. Similarly, a concrete class should implement all the
methods of an interface.

 For the exam, you also need to know when to use interface inheritance and when
to use class inheritance. Class inheritance helps you reuse implementation details pro-
vided in the base classes, so the derived classes don’t have to write all the code them-
selves. Class inheritance also scores better when you want to add new behavior to an
existing base class. You may prefer interface inheritance over class inheritance when
you need to define multiple contracts for classes. Interface implementation has one
major advantage of allowing a class to implement multiple interfaces, so an object of
the class can be assigned to variables of multiple interface types.
Licensed to Mark Watson <nordickan@gmail.com>

221Summary
 Java objects share multiple relationships with other objects. IS-A and HAS-A are two
important relationships shared by Java objects. The IS-A relationship is implemented
using inheritance. You can implement the IS-A relationship by extending classes,
extending interfaces, and implementing interfaces. When a class has an instance vari-
able of a certain type, the class HAS-A <certain-type>.

 Both inheritance and composition enable you to reuse the functionality of a class,
but with a difference. Most often, newcomers to programming or OOP aren’t sure
whether to use inheritance or composition, to use another object. So they inherit a
class when they want to use it in another class. You should use inheritance when the
extended class is a specialized type of the base class. You should use composition when
you simply want to use the functionality being offered by a class in another class.

 Design patterns help you reuse the experience of other application designers and
developers, in terms of the guidelines and suggested solutions for implementing an
application’s commonly occurring logic. A design pattern enables you to reuse experi-
ence and not code. We discussed all three design patterns that are on the exam: Sin-
gleton, DAO, and Factory method.

 Singleton is a class design pattern that ensures that a class is instantiated only
once. The class also provides a global point of access to it. This pattern is usually
applied to only one class. Common examples include a single instance of Device
Manager to manage all the devices on your system, or a single instance of print
spooler to manage all printing jobs. To apply the Singleton pattern, you should
mark the constructor of a class as private so that no other class can call it. Make the
class itself create the sole instance, referred by a static variable. You can define a
static method to access this sole instance.

 The Factory pattern prevents tight coupling between the classes it uses from their
concrete class implementation. It also eliminates direct constructor calls in favor of
invoking a method. Multiple variations of this pattern exist: Simple Factory, Factory
Method, and Abstract Factory.

 The Simple Factory pattern creates and returns objects of classes that extend a
common parent class or implement a common interface. The objects are created
without exposing the instantiation logic to the client. The calling class is decoupled
from knowing the exact name of the instantiated class. The intent of the Factory
Method pattern is to define an interface for creating an object but let subclasses
decide which class to instantiate. The Factory Method pattern lets a class defer instan-
tiation to its subclasses. The Abstract Factory pattern is used to create a family of related
products (in contrast, the Factory Method pattern creates one type of object). This
pattern also defines an interface for creating objects, but it lets subclasses decide
which class to instantiate.

 You learned what the DAO pattern is and how to implement it in code. This pat-
tern encapsulates all access to the persistent store to access and manipulate the data.
The DAO pattern also manages the connection to the data store to retrieve and store
the data. Usually, a DAO class accesses and manipulates a separate data object. An
Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 3 Object-oriented design principles
application usually defines a separate DAO for separate data objects that should be
persisted. You need this design pattern so you can decouple data access code from the
business logic. This eases the transition from using various data storage formats and
vendors and creates more cohesive classes. The DAO pattern is frequently used with
the Factory pattern.

REVIEW NOTES
This section lists the main points covered in this chapter.

Interfaces
■ An interface is an example of separating the behavior that an object should sup-

port from its implementation. An interface is used to define behavior by defin-
ing a group of abstract methods.

■ All members (variables and methods) of an interface are implicitly public.
■ You declare an interface using the keyword interface. An interface can define

only public, final, static variables and public, abstract methods.
■ The methods of an interface are implicitly abstract and public.
■ The variables of an interface are implicitly public, static, and final.
■ You can declare a top-level interface only with public and default access.

Valid nonaccess modifiers that can be applied to an interface are abstract
and strictfp.

■ An interface that’s defined within another interface can be defined with any
access modifier.

■ An interface can’t extend a class.
■ An interface can extend multiple interfaces. It can’t implement another interface.
■ An interface can define inner interfaces and (surprisingly) inner classes too.
■ Because all the members of an interface are implicitly public, a derived inter-

face inherits all the methods of its base interface.
■ You can compare interface implementation to the signing of a contract. When

a concrete class declares an implementation of an interface, it agrees to and
must implement all its abstract methods.

■ If you don’t implement all the methods defined in the implemented interfaces,
a class can’t compile as a concrete class. A concrete class must implement all the
methods from the interfaces that it implements. An abstract class might not
implement all the methods from the interfaces that it implements.

■ A class can define an instance or a static variable with the same name as the vari-
able defined in the interface that it implements. These variables can be defined
using any access level.

■ Because the methods in an interface are implicitly public, if you try to assign a
weaker access to the implemented method in a class, it won’t compile.
Licensed to Mark Watson <nordickan@gmail.com>

223Review notes
■ A class can inherit methods with the same name from multiple interfaces.
There are no compilation issues if these methods have exactly the same method
signature or if these methods can coexist in the implemented class as over-
loaded methods. The class won’t compile if these methods coexist as incorrectly
overloaded or overridden methods.

Class inheritance versus interface inheritance

■ Class inheritance scores better when you want to reuse the implementation
already defined in a base class. It also scores better when you want to add new
behavior to an existing base class.

■ You can add new behavior to an abstract or nonabstract base class, and you may
not break all the classes that subclass it.

■ You may prefer interface inheritance over class inheritance when you need to
define multiple contracts for classes.

■ Interface implementation has one major advantage of allowing a class to imple-
ment multiple interfaces, so an object of the class can be assigned to variables of
multiple interface types.

IS-A and HAS-A relationships in code

■ An IS-A relationship is implemented using inheritance.
■ You can traverse the inheritance tree up the hierarchy to identify an IS-A rela-

tionship. A derived class IS-A type of its base class and its implemented inter-
faces. A derived interface IS-A type of its base interface. A base class or interface
is not a type of its derived class or interface.

■ The key to finding the entities that participate in an IS-A relationship is to find
your way, up the hierarchy tree, in the direction of the arrows. This technique
not only will help you with the exam, but also will take you a long way in your
professional career.

■ You can implement an IS-A relationship by extending classes, extending inter-
faces, or implementing interfaces.

■ A HAS-A relationship is implemented using association.
■ The relationship MyClass HAS-A YourClass is implemented by defining an

instance variable of type YourClass in MyClass. Defining an instance variable of
type MyClass in YourClass will implement the relationship YourClass HAS-A
MyClass.

Cohesion and low coupling

■ Cohesion refers to how focused a class or a module is.
■ High cohesion refers to a well-focused class or module, whereas low cohesion

refers to a class or module that doesn’t have a well-defined responsibility.
■ Well-designed applications aim for highly cohesive classes and modules.
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 3 Object-oriented design principles
■ Coupling refers to how much a class or module knows about other classes
or modules.

■ Loosely coupled classes interact with each other by using their interface (public
methods).

■ Low coupling and loose coupling refer to the same concept and are often used
interchangeably.

■ Well-designed applications aim for loosely coupled classes and modules.

Object composition principles

■ Newcomers to programming often extend a class when they want to use a class
in another class. They use inheritance in place of composition.

■ You should extend a class (inheritance) when you want the objects of the
derived classes to reuse the interface of their base class.

■ You should define an object of another class (composition) when you want to
use the functionality offered by the class.

Singleton pattern

■ Singleton is a creational design pattern that ensures that a class is instantiated
only once. The class also provides a global point of access to it.

■ It is used in scenarios when you might need only one object of a class.
■ Implementation of the Singleton pattern involves a single class.
■ A class that implements the Singleton pattern must define its constructor as

private.
■ A Singleton class uses a static private reference variable to refer to its sole

instance.
■ A Singleton class defines a static method to access its sole instance.
■ To avoid threading issues with the creation of the sole instance of the Singleton

class, you might use either of the following to create its sole instance:
– Eager initialization—instantiate the object with its declaration
– Synchronized lazy initialization—create the instance using a synchronized

method or code block
■ You can also use enums to implement the Singleton pattern because enum

instances can’t be created by any other class.
■ On the exam, all of these approaches (eager initialization, synchronization of

the complete method getInstance(), and partial synchronization of method
getInstance()) may be presented, and you may be questioned about the
right approach for implementing the Singleton pattern. All these approaches
are good. Beware of modified code that tries to synchronize a partial method
getInstance(), which doesn’t synchronize the code that creates an object of
Singleton.
Licensed to Mark Watson <nordickan@gmail.com>

225Review notes
Factory pattern
■ One of the most frequently used design patterns, multiple flavors of this pattern

exist: Simple Factory, Factory Method, and Abstract Factory.
■ The Simple Factory pattern creates and returns objects of classes that extend a

common parent class or implement a common interface. The objects are cre-
ated without exposing the instantiation logic to the client. The calling class is
decoupled from knowing the exact name of the instantiated class.

■ The intent of the Factory Method pattern is to define an interface for creating
an object but let subclasses decide which class to instantiate. The Factory
Method pattern lets a class defer instantiation to its subclasses.

■ The Abstract Factory pattern is used to create a family of related products (in
contrast, the Factory Method pattern creates one type of object). This pattern
also defines an interface for creating objects but it lets subclasses decide which
class to instantiate.

■ The benefits of the Factory pattern are
– Prefers method invocation over direct constructor calls
– Prevents tight coupling between a class implementation and your application
– Promotes creation of cohesive classes
– Promotes programming to an interface
– Promotes flexibility. Object instantiation logic can be changed without affect-

ing the clients that use objects. It also allows the addition of new concrete
classes.

■ The following don’t apply to the Factory pattern:
– It doesn’t eliminate the need of overloading constructors in class implemen-

tations.
– It doesn’t encourage the use of any particular access modifier. It isn’t com-

pulsory to define private members to use this pattern.
– It won’t slow your application.
– It isn’t related to how to monitor objects for change.

■ The Java API uses the Factory pattern in many of its classes, including
– Calendar.getInstance()

– Arrays.asList()

– ResourceBundle.getBundle()

– DriverManager.getConnectionEstablish(), DriverManager.getDriver()
– Connection.createStatement()

– Statement.executeQuery()

– NumberFormat.getInstance(), NumberFormat.getNumberFormat(), Number-
Format.getCurrencyInstance(), NumberFormat.getIntegerInstance()

– Executors.newFixedThreadPool(), Executors.newCachedThreadPool(),
Executors.newSingleThreadExecutor()
Licensed to Mark Watson <nordickan@gmail.com>

226 CHAPTER 3 Object-oriented design principles
DAO pattern
■ The DAO pattern encapsulates all communication with a persistent store to

access and manipulate the stored data.
■ The DAO pattern also manages the connection to the data store to retrieve and

store the data.
■ An application usually defines separate DAO classes for each type of data object

that should be persisted.
■ The CRUD operations form the basis of the DAO pattern.
■ The DAO pattern removes the direct dependency between an application and

the data persistence implementation.
■ The DAO pattern is frequently used with the Factory pattern.

SAMPLE EXAM QUESTIONS

Q 3-1. What is the output? Choose the best answer.

interface Online {
 String course = "OCP";
 int duration = 2;
}
class EJavaGuru implements Online {
 String course = "OCA";
 public static void main(String args[]) {
 EJavaGuru ejg = new EJavaGuru();
 System.out.print(ejg.course); // n1
 System.out.print(EJavaGuru.duration); // n2
 }
}

a Compilation fails at line n1.
b Compilation fails at line n2.
c Compilations fails at both lines n1 and n2.
d Code prints “OCA2”.
e Code prints “OCP2”.
f Code throws a runtime exception.

Q 3-2. In the next Java version, designers are planning to create a new switch state-
ment. This statement should be able to accept an object of type SwitchArgument and
be able to call method defaultValue() on it. Which of the following options describe
feasible (workable) options?

a Define class SwitchArgument and make class java.lang.Object extend class
SwitchArgument.

b Define method defaultValue in class java.lang.Object.
c Define interface SwitchArgument with no methods. The classes that need to be

used in this switch statement can implement interface SwitchArgument.
Licensed to Mark Watson <nordickan@gmail.com>

227Sample exam questions
d Define interface SwitchArgument with method defaultValue(). The classes
that need to be used in this switch statement can implement interface Switch-
Argument.

Q 3-3. Given the following code, select the correct options:

class AbX {}
class Sunny extends AbX {}
interface Moon {}
class Sun implements Moon {
 Sunny AbX;
}

a Sunny IS-A Moon.
b Sunny HAS-A AbX.
c Sun HAS-A AbX.
d Sun HAS-A Sunny.
e AbX HAS-A Moon.
f Sun IS-A Abx.
g Sunny IS-A Abx.

Q 3-4. Given the following statements, chose the options that are correct individually:

■ ABCD can’t define instance variables.
■ XYZ can only define public methods.
■ ABCD can extend XYZ.
■ XYZ can’t implement ABCD.
■ LMN can define instance variables.
■ LMN can’t extend ABCD.

a ABCD is a class.
b ABCD is an interface.
c XYZ is a class.
d XYZ is an interface.
e LMN is a class.
f LMN is an interface.

Q 3-5. Which of the following options are correct?

a If you add a method to your interface, you’ll break all the classes that imple-
ment it.

b If you add a nonabstract method to a base abstract class, its subclasses might not
always succeed to compile.
Licensed to Mark Watson <nordickan@gmail.com>

228 CHAPTER 3 Object-oriented design principles
c When you work with an interface type, you decouple from its implementation.
d Code that works with a reference variable of an abstract base class works with

any object of its subclasses.

Q 3-6. Given the following statements, choose the corresponding code implementation:

■ Apple HAS-A Ball.
■ Ball IS-A Cone.
■ Cone HAS-A Apple.
■ Dot IS-A Ball.

a class Apple { String Ball; }
class Cone { String Apple; }

class Ball extends Cone {}
class Dot extends Ball {}

b class Apple {Ball Ball;}
class Cone {Apple Apple;}
class Ball extends Cone {}
class Dot extends Ball {}

c class Apple {Ball aVar;}
class Cone {Apple age;}
class Ball extends Cone {}
class Dot extends Ball {}

d class Apple {Ball var;}

interface Cone {Apple a;}
interface Ball implements Cone {}
interface Dot implements Ball {}

Q 3-7. What is true about interfaces? (Choose all that apply.)

a They force an implementing class to provide its own specific functionality.
b An object of a class implementing an interface can be referred to by its own type.
c An interface can define constructors to initialize its final variables.
d An interface can define a static initializer block to initialize its variables.

Q 3-8. Select all incorrect statements.

a An abstract class may define abstract methods.
b An abstract class forces all its concrete derived classes to implement all its

abstract methods.
c An abstract class does provide enough details for its objects to be created.
d An abstract class is used to group the common behaviors of a set of similar

objects, but which itself may be incomplete.
e An abstract class may not be used to create a new type.
f You can create an instance of an abstract class.
Licensed to Mark Watson <nordickan@gmail.com>

229Sample exam questions
Q 3-9. Assuming that the names of the classes used in the following code represent the
actual objects, select the correct options.

class Ray {}
class Satellite {}
class Sun { Ray rays; }
class Moon extends Satellite {}
class Earth {}
class SolarSystem {
 Earth a;
 Moon b;
}

a Sun is associated with Ray.
b Moon is composed of Satellite.
c SolarSystem is composed of Earth and Moon.
d SolarSystem is associated with Earth.
e SolarSystem is associated with Moon.
f Ray is composed of Sun.

Q 3-10. Given the following code, which options correctly declare, implement, and
extend these interfaces?

interface Coverable {}
interface Package {}
interface Ship extends Coverable, Package {}

a class Book implements Ship {}

b class Container implements Coverable {}
class Bottle extends Container{}

c interface Voyage implements Ship {}
class Fan implements Voyage {}

d interface Delivery extends Ship{}

interface Payment extends Package, Delivery{}
class Product extends Payment {}

Q 3-11. Which of the following code options implements the Singleton pattern correctly?

a class King {
 private static King king = null;
 private King() {}
 public static King getInstance() {
 king = new King();
 return king;
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 3 Object-oriented design principles
b class King {
 private static King king = new King();
 public static King getInstance() {
 return king;
 }
}

c class King {
 private static King king = new King();
 private King() {}
 private static King getInstance() {
 return king;
 }
}

d class King {
 private static King king;
 public static King getInstance() {
 if (king == null)
 king = new King();
 return king;
 }
}

e None of the above

Q 3-12. Given the following definition of class King, which option, when replacing
//INSERT CODE HERE//, implements the Singleton pattern correctly? (Choose all
that apply.)

class King {
 private static String name;
 private static King king = new King();
 // INSERT CODE HERE //
 public static King getInstance() {
 return king;
 }
}

a private King() {}

b private King() {
 name = null;
}

c private King() {
 name = new String("King");
}

d private King() {
 if (name != null)
 name = new String("King");
}

e None of the above
Licensed to Mark Watson <nordickan@gmail.com>

231Sample exam questions
Q 3-13. Given the following definition of class King, which option, when replacing
//INSERT CODE HERE//, implements the Singleton pattern correctly with no concur-
rent creation of objects of class King? (Choose all that apply.)

class Jungle {}
class King {
 private static King king = null;
 private King() {}
 //INSERT CODE HERE//
}

a public static synchronized King getInstance() {
 if (king == null)
 king = new King();
 return king;
}

b public static King getInstance() {
 if (king == null) {
 synchronized (Jungle.class){
 king = new King();
 }
 }
 return king;
}

c public static King getInstance() {
 synchronized (Jungle.class){
 if (king == null) {
 king = new King();
 }
 }
 return king;
}

d synchronized static public King getInstance() {
 synchronized (Jungle.class){
 if (king == null) {
 king = new King();
 }
 }
 return king;
}

Q 3-14. Given the following statements, select all options that are correct individually:

■ Class Queen implements the Singleton pattern.
■ Class King implements the Singleton pattern.
■ Class Prince doesn’t implement the Singleton pattern.
■ Class Princess doesn’t implement the Singleton pattern.

a Only class Queen can create an object of class King.
b Either class King or class Queen can create an object of class King.
Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 3 Object-oriented design principles
c Only class King can create its object.
d Both classes King and Queen can create objects of Prince and Princess.
e All classes (King, Queen, and Princess) can create objects of Prince.

Q 3-15. Given the definition of class Person as follows, which options do you think are
correct implementations of a class that implements the DAO pattern for class Person
(there are no compilation issues with this code)?

class Person {
 int id;
 String name;
 int age;
}

a class PersonDAO {
 class DAO {
 Person person;
 }
}

b class PersonDAO {
 Person findPerson(int id) { /* code */ }
 Person seekPerson(int id) { /* code */ }
}

c class PersonDAO {
 static Person findPerson(int id) { /* code */ }
 static int create(Person p) { /* code */ }
 static int update(Person p) { /* code */ }
 static int delete(Person p) { /* code */ }
}

d class PersonDAO {
 Person findPerson(int id) { /* code */ }
 int create(Person p) { /* code */ }
 int update(Person p) { /* code */ }
 int delete(Person p) { /* code */ }
}

Q 3-16. Select the correct statements:

a The DAO pattern helps decouple code that inserts data in persistence storage
from code that deletes data in persistence storage.

b The DAO pattern helps encapsulate persistence data logic.
c The DAO eases migration of persistent data from one vendor to another.
d The DAO promotes low coupling and high cohesion.
Licensed to Mark Watson <nordickan@gmail.com>

233Sample exam questions
Q 3-17. Given the following definition of class Person, which of its methods would you
need to move to another class, say, PersonDAO, to implement the DAO pattern?

class Person {
 int id;
 String name;
 int age;
 int getId() {return id;}
 void setId(int id) {this.id = id;}
 String getName() {return name;}
 void setName(String name) {this.name = name;}
 int getAge() {return age;}
 void setAge(int age) {this.age = age;}
 void find() { /* code to find Person with this id in DB */ }
 void insert() { /* code to insert Person with its details in DB */ }
 void modify() { /* code to update Person with this id in DB*/ }
 void remove() { /* code to remove Person with this id in DB */ }
}

a Methods getId(), setId(), find(), insert(), modify(), remove()
b Methods find(), insert(), modify(), remove()
c Methods getId(), setId(), getName(), setName(), getAge(), setAge()
d Methods getId(), setId()

Q 3-18. Given

class Animal {}
class Herbivore extends Animal {}
class Carnivore extends Animal {}
class Cow extends Herbivore {}
class Tiger extends Carnivore {}
class Client{
 public void createAnimal(String eatingHabits) {
 Animal foo = null;
 if (eatingHabits.equals("grass"))
 foo = new Cow();
 else if (eatingHabits.equals("deer"))
 foo = new Tiger();
 }
}

What are the benefits of moving creation of Animal instances from class Client to a
separate class, say, Animals?

a To enable class Client to use Animal instances without the need to know its
instance creation logic

b To promote extensibility—specific Animal classes can be added later, which
might be returned by class Animals

c To implement the Singleton pattern
d To implement DAO

e To enable low coupling and high cohesion
Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 3 Object-oriented design principles
Q 3-19. Given

interface Animal {}
class Cat implements Animal {}
class Tiger implements Animal {}
class Factory {
 static Animal getInstance(String type) {
 if (type.equals("Tiger"))
 return new Tiger();
 else if (type.equals("Cat"))
 return new Cat();
 else
 return getAnimal();
 }
 private static Animal getAnimal() {
 return new Cat();
 }
}

Select code that initializes an Animal reference using a Factory:

a Animal animal = Factory.getInstance();
b Animal animal = Factory.getAnimal();
c Animal animal = Factory.getInstance("Animal");
d Animal animal = Factory.getAnimal("Tiger");
e Animal animal = new Factory().getInstance("Cat");

Q 3-20. Which of the following use the Factory pattern? (Choose all that apply.)

a Object.equals();

b Calendar.getInstance()

c DriverManager.getDriver();

d Object.wait();

e NumberFormat.getDateInstance();

ANSWERS TO SAMPLE EXAM QUESTIONS

A 3-1. d

[3.1] Write code that declares, implements, and/or extends interfaces

Explanation: Class EJavaGuru defines an instance variable course. Interface Online
also defines a variable with the same name—course (which is implicitly static). Class
EJavaGuru implements Online. Using EJavaGuru’s instanceName.course will refer to
its instance variable. Using Online.course will refer to the variable course from
Online. Using EJavaGuru.course will result in a compilation error. Code on line n1
compiles successfully and prints OCA.
Licensed to Mark Watson <nordickan@gmail.com>

235Answers to sample exam questions
 Because the variables defined in an interface are implicitly static and final, the vari-
able duration can be accessed as EJavaGuru.duration. Code on line n2 compiles suc-
cessfully and prints 2.

 However, a class can’t define static and instance variables with the same name. The
following class won’t compile:

class EJavaGuru {
 String course;
 static String course;
}

A 3-2. d

[3.2] Choose between interface inheritance and class inheritance

Explanation: Option (a) is incorrect. java.lang.Object is the base class of all classes
in Java. Making class java.lang.Object extend another class can be extremely risky.
Adding a method with a particular signature can break code of some other class, if it
has defined a method with the same name (defaultValue()) but a different signa-
ture that isn’t compatible, forming invalid overloaded methods.

 Option (b) is incorrect. Because the requirement expects an object of Switch-
Argument, adding just method defaultValue() to class java.lang.Object won’t serve
the purpose. To define a new type, we need to define SwitchArgument as either a class
or an interface.

 Option (c) is incorrect. The requirement mentions that the object of Switch-
Argument, passed to a switch statement, should define method defaultValue().
Defining this method in interface SwitchArgument ensures that all classes that imple-
ment interface SwitchArgument define method defaultValue().

 Option (d) is correct. Creation of type SwitchArgument as an interface with
method defaultValue() provides a convenient option for all existing classes that
want to be passed as an argument to the switch statement. When the classes imple-
ment the interface SwitchArgument, they’ll be responsible for implementing method
defaultValue().

A 3-3. d, g

[3.3] Apply cohesion, low-coupling, IS-A, and HAS-A principles

Explanation Option (a) is incorrect. Classes Sunny and Moon are unrelated.
 Option (b) is incorrect. Class Sunny extends class AbX; it doesn’t define a variable

of type AbX. The correct relationship here would be Sunny IS-A AbX.
 Option (c) is incorrect. Class Sun defines a variable of type Sunny. So the correct

relation would be Sun HAS-A Sunny. The IS-A and HAS-A relationships don’t reflect the
names of the variables.
Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 3 Object-oriented design principles
 Option (d) is correct. Class Sun defines a variable of type Sunny, so the relationship
Sun HAS-A Sunny is correct.

 In option (e), class AbX doesn’t define any variable of type Moon, so this relation-
ship is incorrect.

 In option (f), class Sun doesn’t extend class AbX, so this relationship is incorrect.
 In option (g), class Sunny extends class AbX, so this relationship is correct.

A 3-4. b, d, e

[2.1] Identify when and how to apply abstract classes
[2.2] Construct abstract Java classes and subclasses
[3.1] Write code that declares, implements, and/or extends interfaces

Explanation: Option (a) is incorrect. As specified, ABCD can’t define an instance vari-
able, but a class can define instance variables.

 Option (b) is correct. All the variables defined in an interface are implicitly public,
final, and static. The static variables can’t exist as instance variables.

 Option (c) is incorrect. XYZ can’t exist as a class. As specified, XYZ can define only
public methods, whereas a class can define nonpublic methods.

 Option (d) is correct. XYZ can exist as an interface because all the methods in an
interface are implicitly public. All methods in a class aren’t implicitly public.

 Option (e) is correct, and (f) is incorrect. LMN is a class because it can define
instance methods and can’t extend ABCD, an interface.

A 3-5. a, b, c, d

[2.1] Identify when and how to apply abstract classes
[2.2] Construct abstract Java classes and subclasses
[3.1] Write code that declares, implements, and/or extends interfaces

Explanation: Option (a) is correct. If you add a method to your interface, all the
classes that implement the interface will fall short on the definition of the newly
added method and will no longer compile.

 Option (b) is correct. If you add a nonabstract method to your base class, you can
break its subclasses. If a subclass method has the same name as the newly added
method in the base class, which doesn’t qualify as a valid overloaded or overriding
method, the subclass won’t compile.

 Option (c) is correct. When you work with an interface type, you’re free to work
with any object that implements the interface.

 Option (d) is correct. Objects of all subclasses can be assigned to a reference vari-
able of its abstract or nonabstract base class. So code that works with the abstract base
class will work with objects of any of its subclasses.
Licensed to Mark Watson <nordickan@gmail.com>

237Answers to sample exam questions
A 3-6. b, c

[3.3] Apply cohesion, low-coupling, IS-A, and HAS-A principles

Explanation: An IS-A or a HAS-A relationship is defined between the types of the vari-
ables, and not their names.

 Option (a) is incorrect. Class Apple HAS-A String and not Ball.
 Option (b) is correct. Class Apple defines a variable Ball of type Ball. So Apple

HAS-A Ball. It’s acceptable to define a variable with the name of its class. Class Cone
defines a variable Apple of type Apple. So it satisfies the relationship Cone HAS-A
Apple. Class Ball extends class Cone, so it satisfies Ball IS-A Cone. Class Dot extends
class Ball. So it satisfies Dot IS-A Ball.

 Option (c) is also correct. Class Apple defines a variable aVar of type Ball. So
Apple HAS-A Ball. Class Cone defines a variable age of type Apple. So it satisfies the
relationship Cone HAS-A Apple. Class Ball extends class Cone, so it satisfies Ball IS-A
Cone. Class Dot extends class Ball. So it satisfies Dot IS-A Ball.

 Option (d) is incorrect. An interface can’t implement another interface. It can
only extend it.

A 3-7. a, b

[3.1] Write code that declares, implements, and/or extends interfaces

Explanation: Options (c) and (d) are incorrect. An interface can neither define a
constructor nor a static initializer block.

A 3-8. c, e, f

[2.1] Identify when and how to apply abstract classes

Explanation: Option (c) is an incorrect statement, because objects of an abstract class
can’t be created, even if the class doesn’t define any abstract method.

 Option (e) is an incorrect statement. An abstract class defines a new type. This type
can be used to define variables in multiple scopes (instance variables, static variables,
method parameters, and local variables).

 Option (f) is an incorrect statement, because you can’t create an object of an
abstract class.

A 3-9. a, c, d, e

[3.4] Apply object composition principles (including HAS-A relationships)

Explanation: Option (a) is correct. Sun gives out rays, so Sun is associated with Ray.
Option (b) is incorrect. Moon is a type of Satellite. Composition is a whole-part rela-
tionship; if the enclosing object goes out of scope, the part also goes out of scope.
Licensed to Mark Watson <nordickan@gmail.com>

238 CHAPTER 3 Object-oriented design principles
 Option (c) is correct. If SolarSystem goes out of scope, all the objects that it’s
composed of, including Earth and Moon, will go out of scope.

 Options (d) and (e) are correct. Composition is a special type of association, and
objects in this relationship are associated with each other.

 Option (f) is incorrect. Ray isn’t composed of Sun. It’s the other way around:
Sun is composed of Ray. If Sun goes out of scope, Ray also goes out of scope (is no
longer visible).

A 3-10. a, b

[3.1] Write code that declares, implements, and/or extends interfaces

Explanation: Option (c) is incorrect, because an interface (Voyage) can’t implement
another interface (Ship).

 Option (d) is incorrect, because a class (Product) can’t extend an interface (Payment).

A 3-11. e

[3.5] Design a class using the Singleton design pattern

Explanation: Option (a) is incorrect. It creates a new object of class King, whenever
method getInstance() is called. On the contrary, the Singleton pattern creates only
one instance of a class.

 Option (b) is incorrect. A Singleton should define a private constructor so
that no other class can create its objects. The class defined in this option doesn’t
define any constructor. In the absence of a constructor, the Java compiler creates a
default constructor for a class with the access modifier as that of the class itself.
Because the class in this option is defined with default or package access, a con-
structor with default access will be created for it by the Java compiler. Because
other classes can use its constructor to create new objects of this class, it doesn’t
qualify as a Singleton.

 Option (c) is incorrect. There is no way to access an object of class King outside
the class itself. Variable king is a static private variable, so it can’t be accessed directly.
The constructor of the class is marked private, so it can’t be used to create objects of
this class. Method getInstance() is also private, so no other class can call it.

 Option (d) is incorrect. Though the variable king is private, and method get-
Instance creates and returns an object of class King, the catch here is that this class
doesn’t define a constructor. As mentioned in the explanation of option (b), in the
absence of a constructor, the Java compiler creates a default constructor. Because
other classes can use its constructor to create new objects of this class, it doesn’t qual-
ify as a Singleton.
Licensed to Mark Watson <nordickan@gmail.com>

239Answers to sample exam questions
A 3-12. a, b, c, d

[3.5] Design a class using the Singleton design pattern

Explanation: All the options are trying to confuse you with the correct implementation
of method getInstance() of a class that uses the Singleton pattern with its constructor.
A class that implements the Singleton pattern should have a private constructor, so no
other class can create its objects. The implementation of the constructor isn’t detailed
by the Singleton pattern. The class may choose to include or exclude whatever it feels
is good for it.

A 3-13. a, c, d

[3.5] Design a class using the Singleton design pattern

Explanation: In option (a), the complete method getInstance() is synchronized,
which ensures that only one Thread executes this method and creates an instance of
class King (assigning it to the static variable king), if it’s null.

 Option (b) is incorrect. Method getInstance() synchronizes only the code king =
new King();. So multiple methods can still execute method getInstance() concur-
rently and query whether the variable king is null. If, say, two threads find it null,
they both will execute the following code (though not at the same time):

king = new King();

When the second Thread executes the preceding code, it creates and assigns another
object of class King to variable king. This method fails to prevent multiple creations of
objects of class King.

 Option (c) is correct. Method getInstance() synchronizes the part of the method
that creates an object of class King. When the control is within the synchronized
block, the code checks again to confirm that variable king is still null. If true, it cre-
ates an object of class King and assigns it to the variable king.

 Option (d) is correct. It defines the same code as option (c), but with a difference:
this option applies the synchronized keyword to the method also. Though synchro-
nizing the code block and the complete method isn’t required, it isn’t incorrect to do
so. Because this method prevents creation of multiple objects of class King, it qualifies
as a correct implementation of method getInstance().

A 3-14. c, d, e

[3.5] Design a class using the Singleton design pattern

Explanation: Options (a) and (b) are incorrect and (c) is correct. Only a class that
implements the Singleton pattern can create its object, because its constructor is
marked private. No other class can. Only class King can create its own object by call-
ing its constructor from its other method.
Licensed to Mark Watson <nordickan@gmail.com>

240 CHAPTER 3 Object-oriented design principles
 Options (d) and (e) are correct. If a class doesn’t implement the Singleton pat-
tern, we can assume that creation of its multiple objects is allowed. So another class
can also create its objects.

A 3-15. c, d

[3.6] Write code to implement the DAO pattern

Explanation: Options (a) and (b) are incorrect. A class that implements the DAO pat-
tern should define methods for CRUD operations (create, retrieve, update, and
delete). Options (a) and (b) don’t define all these methods.

 Options (c) and (d) are correct. Both these options define methods for CRUD
operations. You can implement these methods as static or nonstatic.

A 3-16. b, c, d

[3.6] Write code to implement the DAO pattern

Explanation: Option (a) is incorrect. The DAO pattern helps separate and decouple
application logic from persistence storage logic. It isn’t used to decouple different
data manipulation operations.

A 3-17. b

[3.6] Write code to implement the DAO pattern

Explanation: To implement the DAO pattern, you should move the methods that
interact with the persistent data storage to a separate class. In class Person, the getter
and setter methods are for assigning and retrieving object fields. They don’t work with
data in persistence storage. The rest of the methods (find(), insert(), modify(),
and remove()) work with persistent data and should be moved to another class to
implement the DAO pattern. The DAO pattern doesn’t specify any rules for conven-
tions on naming these methods and the type that they return.

A 3-18. a, b, e

[3.7] Design and create objects using a Factory pattern

Explanation: Here’s one of the ways you can move Animal instance creation logic to
class Animals:

class Amimals{
 public static Animal createAnimal(String eatingHabits) {
 Animal foo = null;
 if (eatingHabits.equals("grass"))
 foo = new Cow();
Licensed to Mark Watson <nordickan@gmail.com>

241Answers to sample exam questions
 else if (eatingHabits.equals("deer"))
 foo = new Tiger();
 return foo;
 }
}

Option (a) is correct. Moving method createAnimal() to a separate class frees class
Client from knowing the logic of creating Animal instances. It can call Animals
.createAnimal(), passing it a String value to get an appropriate Animal instance.

 Option (b) is correct. Method createAnimal() in class Animals can be modified
to include instantiation of other specific Animal instances without modifying its API.

 Options (c) and (d) are incorrect. The stated modification is neither related to
data persistence nor to creating just one instance of a class.

 Option (e) is correct. With the modification, class Client doesn’t need to know
about the specific implementations of class Animal. Class Client can concentrate on
using Animal instances rather than knowing how to create them.

A 3-19. c, e

[3.7] Design and create objects using a Factory pattern

Explanation: Class Factory doesn’t expose the object creation logic of Animal objects
and uses the Factory pattern to create and return its instances.

 Option (a) won’t compile. Though you might dismiss it as a trivial or tricky option,
note that it’s easy to find similar options on the exam.

 Options (b) and (d) won’t compile because getAnimal() is a private method and
it doesn’t define the method parameters.

 Option (e) is correct. A static method can be accessed using both the class name
and an instance.

A 3-20. b, c, e

[3.7] Design and create objects using a Factory pattern

Explanation: Methods equals() and wait() in class Object don’t use the Factory pattern.
Licensed to Mark Watson <nordickan@gmail.com>

Generics and collections
Exam objectives covered in this chapter What you need to know

[4.1] Create a generic class How to define generic classes, interfaces, and meth-
ods with single and multiple type parameters
How to define generic methods with a generic or reg-
ular class

[4.2] Use the diamond for type inference How to drop the type from the angle brackets to
instantiate generic classes
How to use wildcards to create and instantiate
generic classes

[4.3] Analyze the interoperability of collec-
tions that use raw types and generic types

What happens when you lose type safety by using
variables of raw types and objects of generic types
How to determine and differentiate scenarios that
would generate compilation errors and warnings

[4.4] Use wrapper classes, autoboxing, and
unboxing

How and when values are boxed and unboxed when
used with wrapper classes

[4.5] Create and use List, Set, and
Deque implementations

How to create objects of the List interface
(ArrayList, LinkedList), objects of the
Deque interface (ArrayDeque, LinkedList),
and objects of the Set interface (HashSet,
LinkedHashSet, and TreeSet)
How each implementing class stores data, manipu-
lates it, searches it, and iterates over it
How the List, Set, and Deque implementations
use methods hashCode(), equals(),
compare(), and compareTo()
Given a set of requirements, how to choose the best
interface or its implementing class
242

Licensed to Mark Watson <nordickan@gmail.com>

243Introducing generics: WARM-UP
Imagine you need to collect pencils at your workplace. You request all your fellow
workers to drop their pencils in a box at the main entrance of the office. When you
open the box the next day, you also find ink pens and marker pens (!), which you
didn’t ask for. Even though you mentioned pencils, people could add pens to the box
because no one stopped them from doing so. Now imagine that you could use a box
that wouldn’t allow adding any item other than a pencil. Would you prefer it? If you
answered yes, you’d prefer to use generics. In Java, generics empower you to specify the
type of objects that you’d like to work with so that you don’t work with other types—
knowingly or unknowingly.

 Now imagine that you need to sort all the collected pencils according to their color
and size. Would you like to do that yourself, or would you prefer a magic box that
would accept all the pencils and return them to you in a sorted order? If you chose the
magic box, you’d like using the collections framework. The Java collections frame-
work includes multiple interfaces and classes to store and manipulate a collection of
objects, including the methods that sort and search them.

 This chapter covers

■ Creating and using generic types
■ Using the diamond for type inference
■ Analyzing the interoperability of collections that use raw types and generic types
■ Using wrapper classes, autoboxing, and unboxing
■ Creating and using List, Set, and Deque implementations
■ Creating and using Map implementations
■ Working with the java.util.Comparator and java.lang.Comparable interfaces
■ Sorting and searching arrays and lists

Let’s start with an introduction to generics, in the next warm-up section. Feel free to
skip it and move to the next section if you’re an experienced generics programmer.

Exam objectives covered in this chapter What you need to know

[4.6] Create and use Map implementations How to instantiate Map objects: HashMap,
LinkedHashMap, and TreeMap
How Map implementations use methods hashCode(),
equals(), compare(), and compareTo()

[4.7] Use java.util.Comparator and
java.lang.Comparable

How to define natural and custom ordering of objects of
a class

[4.8] Sort and search arrays and lists How to sort and search arrays and lists using methods
from classes Arrays and Collections
Importance of using sorted collections for searching
values
Licensed to Mark Watson <nordickan@gmail.com>

244 CHAPTER 4 Generics and collections
4.1 Introducing generics: WARM-UP
Generics enable you to abstract over types. They add type safety to collection classes.
Introduced with Java version 5.0, generics enable developers to detect certain bugs
during compilation so they can’t creep into the runtime code. Debugging an applica-
tion is a costly affair, in terms of the time and effort required to find a bug and then
fix it. The sooner you can detect a bug, the easier it is to fix it. While developing soft-
ware, it’s easier to fix a bug during unit testing than it is to fix the same bug during
integration testing or, say, when it shows up months after an application goes live. A
bug is easier to fix in the development phase than in the maintenance phase.

4.1.1 Need for introducing generics

Before generics were introduced, programmers used to assume that a class, interface,
or method would work with a certain data type. For example, figure 4.1 shows how a
programmer would assume that the ArrayList referred to by lst would contain
String objects. But because lst is a collection of objects of type Object, it can accept
any type of data (other than primitives). An issue can creep in when these different
types of objects are treated as String types during runtime.

NOTE In figures 4.1 and 4.2, ArrayList-lst is created with an initial
capacity (and not size) of two elements. The size of an ArrayList increases
as more elements are added to it.

With the introduction of generics, programmers could indicate their intent of using a
particular type of data with a class, interface, or method (not enums, because enums
can’t have generic type parameters). Figure 4.2 shows how you can indicate that an

List lst = new ArrayList(2);

lst

null

null

lst.add("Paul");
lst.add(newInteger(1));

lst

Paul

for (int i = 0; i < lst.size(); ++i){
String str = (String)lst.get(i);
System.out.println(str.length());

}

Paul

String

cast

1

String

cast

1

Figure 4.1 Before generics were added, collection classes like ArrayList allowed the
addition of any type of data. A programmer’s assumption of adding only a particular type of data
to a collection was met with a casting exception at runtime.
Licensed to Mark Watson <nordickan@gmail.com>

245Introducing generics: WARM-UP
ArrayList referred to by lst will accept only objects of type String. Code that tries to
add an object of any other type won’t compile.

 As shown in figure 4.2, with generics, the incorrect data type is determined during
compilation. This compilation-time safety enables you to identify bugs during devel-
opment, thus building better code.

EXAM TIP The basic purpose behind using generics is to enable you to
mark your intent of using a class, method, or interface with a particular
data type. Generics add compile-time safety to collections.

4.1.2 Benefits and complexities of using generics

Apart from compile-time safety, you also get the following benefits with generics:

■ Removing explicit casts—Prior to generics, you needed to add casts when you had
a list with strings and you wanted to get a string out of the list. With generics this
isn’t needed anymore.

■ Better code readability—Without explicit casting, code is less cluttered, which
improves readability.

■ Developing generic algorithms—Just as you need not hard-code values when you
work with methods and can accept them as method parameters, generics help
you parameterize over data types and develop algorithms that work with multi-
ple data types.

But every new concept or approach has its own set of limitations and complexities,
and using generics is no exception. As you work through this chapter, you’ll see how
adding generics to the collections framework created new complexities. (Coverage is
limited to the exam topics.)

List lst = new ArrayList (2);<String> <>

lst

null

null

null

lst.add("Paul");

lst

Paul

lst.add(new Integer(1)); Compilation error

no suitable method found

for add(Integer)

Figure 4.2 Post-generics, you can mark your intent of using a particular data type with a
class, method, or interface. If the code doesn’t adhere to the restrictions, the code fails
to compile.
Licensed to Mark Watson <nordickan@gmail.com>

246 CHAPTER 4 Generics and collections
 In the next section, you’ll create your own generic entities. If you haven’t already
worked with generic entities, it might take a while for all the related concepts to sink in.

4.2 Creating generic entities

On the exam, you’ll be tested on how to create generic classes, interfaces, and meth-
ods—within generic and nongeneric classes or interfaces.

4.2.1 Creating a generic class

In this section, we’ll start with an example of a nongeneric class and then modify it to
create a generic class. You’ll learn how to use a generic class and how important vari-
able naming conventions are for the type parameters.

A NONGENERIC CLASS

To understand how to create a generic class, let’s begin with an example of a nongeneric
class, Parcel:

class Parcel {
 private Object obj;
 public void set(Object obj) {
 this.obj = obj;
 }
 public Object get() {
 return obj;
 }
}

Class ParcelNonGeneric can use class Parcel, calling its method set() to assign an
object of class Book. It can retrieve this object by using get() and cast it to class
Phone(!). Even though not desired, it’s allowed:

class Phone{}
class Book{}

class ParcelNonGeneric {
 public static void main(String args[]) {
 Parcel parcel = new Parcel();
 parcel.set(new Book());
 System.out.println((Phone)parcel.get());
 }
}

ADDING TYPE SAFETY TO A NONGENERIC CLASS

Let’s see how you add type safety to class Parcel. Let’s define class Parcel as a generic
class by adding a type parameter to it, so that you can retrieve only the object type that
you assign to it, as shown in figure 4.3.

[4.1] Create a generic class

Assign object
of Book

Cast object of Book to
Phone; code compiles but
throws ClassCastException
at runtime.
Licensed to Mark Watson <nordickan@gmail.com>

247Creating generic entities
As shown in the preceding code, the declaration of generic class Parcel includes the
type parameter T. After adding the type information, it’s read as Parcel<T> or Parcel
of T. The generic class Parcel<T> defines a private instance variable of type T, and
get() and set() methods to retrieve and set its value. Methods get() and set() use
the parameter type T as their method parameter and return type.

EXAM TIP The first occurrence of T is different from its remaining occur-
rences because only the first one is surrounded by <>.

USING A GENERIC CLASS

Having seen how to create a generic class, let’s see how you can use it. Class UseGeneric-
Parcel instantiates Parcel and calls its methods get() and set(). Note that you don’t
need an explicit cast when you use Book instance by calling parcel.get():

class Book{}
class UseGenericParcel {
 public static void main(String args[]) {
 Parcel<Book> parcel = new Parcel<Book>();
 parcel.set(new Book());
 Book myBook = parcel.get();
 }
}

With the generic class Parcel, UseGenericParcel can use method set() to assign
an object of type Book. But UseGenericParcel can’t cast the retrieved object to an
unrelated class, say, Phone. If it tries to do so, the code won’t compile (as shown in
figure 4.4).

class Parcel <T> {

private T t;

public void set (T t){

this.t=t;

}

public T get(){

return t;

}

}

Type parameter T

Variable of type T

Method parameter

of type T

Returns an object

of type T

Figure 4.3 How to convert a nongeneric class to a generic class by adding
type parameters

Parameterized type
Parcel<Book> indicates
Parcel will work with
instances of Book.

set() accepts
Book instance.get() returns Book

instance; no explicit
casts required.
Licensed to Mark Watson <nordickan@gmail.com>

248 CHAPTER 4 Generics and collections
EXAM TIP A type parameter can be used in the declaration of classes,
variables, method parameters, and method return types.

VARIABLE NAMES USED FOR TYPE PARAMETERS

You must follow the variable naming rules for type parameters; for instance, you can’t
use Java keywords. As per Oracle’s naming conventions, you should use uppercase sin-
gle characters for type parameters. This also sets them apart from other variables and
method parameters, which use camelCase. Though the constants use uppercase, they
aren’t usually limited to single characters.

 Now, what happens if you don’t follow the conventions for naming type parame-
ters? Here’s an interesting exam question. For the modified definition of class Parcel
in the following code, do you think method set() can be passed String objects?

class MyClass{}
class Parcel<MyClass>{
 private MyClass t;
 public void set(MyClass t) {
 this.t = t;
 }
}

Yes, it can. In the preceding code, MyClass is used as a placeholder for a type argument
that you pass to class Parcel—it doesn’t refer to class MyClass. So you can instantiate
Parcel, passing it a type argument, say, String, and pass a String value to its method
set(). For example

class UseParcel {
 public static void main(String args[]) {
 Parcel<String> parcel = new Parcel<>();

class Phone{}
class Book {}

class UseGenericParcel{

public static void main(String[] args){

Parcel<Book> parcel = new Parcel<Book>();

parcel.set(new Book());

System.out.println((Phone)parcel.get());

}

}

Actual

parameter

Parameterized

type

Won’t compile

get() Bookreturns

Can’t cast toBook Phone

Figure 4.4 A class that uses a generic class uses a parameterized type, replacing the formal
parameter with an actual parameter. Also, invalid casts aren’t allowed.
Licensed to Mark Watson <nordickan@gmail.com>

249Creating generic entities
 parcel.set("OCP");
 System.out.println(parcel.get().length());
 }
}

GENERIC CLASS EXTENDING ANOTHER GENERIC CLASS

A generic class can be extended by another generic class. In the following example,
generic class GenericBookParcel<T> extends generic class Parcel<T>:

class Parcel<T> {}
class GenericBookParcel<T> extends Parcel<T> {}

In all cases, an extended class must be able to pass type arguments to its base class. For
the preceding example, the type argument passed to class GenericBookParcel is passed
to its base class, Parcel, when you instantiate GenericBookParcel. For example

GenericBookParcel<String> parcel = new GenericBookParcel<>();

The preceding example passes argument String to GenericBookParcel’s type param-
eter T. But if you define GenericBookParcel in a way that it can’t pass an argument to
the parameters of its base class, the code won’t compile. Do you think the following
code will compile?

class Parcel<T> {}
class GenericBookParcel<X> extends Parcel<T> {}

No, it won’t. In the preceding code, class GenericBookParcel defines a type param-
eter X, but doesn’t include T in its type parameter list. Because this arrangement pre-
vents GenericBookParcel from passing type arguments to its base class Parcel, it
fails to compile.

 You can also define new type parameters for a derived class when you extend a
generic base class. In the following example, class GenericBookParcel defines two
type parameters X and T:

class Parcel<T> {}
class GenericBookParcel<X, T> extends Parcel<T> {}

Here’s another example, in which the derived class passes type arguments to its
generic base class in its declaration:

class Parcel<T> {}
class GenericBookParcel<X> extends Parcel<Book> {} //

EXAM TIP A type argument must be passed to the type parameter of a base
class. You can do so while extending the base class or while instantiating
the derived class.

Generic
extended class

Won’t compile; no way
to pass argument to T

Compiles
successfully

Type argument
Book passed to
base class Parcel
Licensed to Mark Watson <nordickan@gmail.com>

250 CHAPTER 4 Generics and collections
NONGENERIC CLASS EXTENDING A GENERIC CLASS

You can extend a generic base class to define a nongeneric base class. To do so, the
derived class doesn’t define any type parameters but passes arguments to all type
parameters of its generic base class. For example

class Parcel<T>{}
class NonGenericPhoneParcel extends Parcel<Phone> {}

In the preceding example, NonGenericPhoneParcel is a nongeneric class that passes
argument Phone to its base class Parcel<T>.

 Watch out for exam questions that try to pass type arguments to a nongeneric class.
For class NonGenericPhoneParcel defined in the preceding example code, the follow-
ing code won’t compile:

NonGenericPhoneParcel<String> var = new NonGenericPhoneParcel<>();

EXAM TIP You can’t pass type arguments to a nongeneric class.

MULTIPLE TYPE PARAMETERS

The example of generic class Parcel used in this section defines one type parameter.
A generic class with multiple type parameters takes the following form:

class ClassName <T1, T2, …, Tn> { /* code */}

In the next section on generic interfaces, you’ll also work with multiple type parameters.

4.2.2 Working with generic interfaces

A generic interface enables you to abstract over types. In this section, you’ll see how to
define and implement generic interfaces.

DEFINING A GENERIC INTERFACE

The declaration of a generic interface includes one or more type parameters. Let’s
look at an example of a generic interface that can accept multiple type parameters:
the MyMap interface accepts two type parameters and defines methods put() and
get(). You can compare the MyMap interface to a simplified version of the Map inter-
face, defined in the java.util package:

interface MyMap<K, V>{
 void put(K key, V value);
 V get(K key);
}

Won’t
compile

MyMap accepts two type
parameters—K and V.

put() accepts a key of type
K and a value of type V.

For a key of type K, get()
returns a value of type V.
Licensed to Mark Watson <nordickan@gmail.com>

251Creating generic entities
NONGENERIC CLASS IMPLEMENTING A GENERIC INTERFACE

When a nongeneric class implements a generic interface, the type parameters don’t
follow the class name. For the implemented interface, the type parameters are replaced
by actual types:

class MapLegendNonGeneric implements MyMap<String, Integer> {
 public void put(String s, Integer i) {}
 public Integer get(String s) { return null; }
}

In the preceding example, MapLegendNonGeneric is a nongeneric class which imple-
ments generic interface MyMap (defined in the previous section).

 When implementing a generic interface, take note of the type parameters and how
they are used in method declarations (method parameters and return types). The
methods of an implementing class must implement or override all the interface meth-
ods. In the following example, class MapLegendNonGeneric won’t compile because it
doesn’t override the abstract method get(String) in MyMap (the return type of get()
is declared to be String, not Integer):

class MapLegendNonGeneric implements MyMap<String, Integer> {
 public void put(String s, Integer i) {}
 public String get(String s) { return null; }
}

EXAM TIP A nongeneric class can implement a generic interface by
replacing its type parameters with actual types.

GENERIC CLASS IMPLEMENTING A GENERIC INTERFACE

Here’s an example of declaring a generic class that implements a generic MyMap inter-
face. To pass the type parameter information to a class, the type parameters must fol-
low both the name of the class and the interface implemented by the class:

interface MyMap<K, V>{
 void put(K key, V value);
 V get(K key);
}
class MapLegendGeneric<K, V> implements MyMap<K, V> {
 public void put(K key, V value) { }
 public V get(K key) { return null; }
}

You might also choose a combination. In the following examples, the classes define
only one parameterized type, V or K. While implementing the MyMap interface, the
classes pass actual parameters (String or Integer) to one of the interface’s parame-
terized types (K or V):

class MapLegendGeneric2<V> implements MyMap<String, V> {
 public void put(String key, V value) {}
 public V get(String key) { return null; }
}

Won’t
compile

Type parameters are
included right after class
and interface names.
Licensed to Mark Watson <nordickan@gmail.com>

252 CHAPTER 4 Generics and collections
class MapLegendGeneric3<K> implements MyMap<K, String> {
 public void put(K key, String value) {}
 public String get(K key) { return null; }
}

It’s important to use a correct combination of type parameters and actual parameters
in the method declarations. The following class won’t compile because class Map-
LegendGeneric<K> doesn’t implement method put(K key, String value) from the
MyMap interface:

class MapLegendGeneric4<K> implements MyMap<K, String> {
 public void put(Object value, K key) {}
 public String get(K key) { return null; }
}

EXAM TIP Generic classes and interfaces are collectively referred to as
generic types.

4.2.3 Using generic methods

A generic method defines its own formal type parameters. You can define a generic
method in a generic or a nongeneric class.

GENERIC METHODS DEFINED IN A NONGENERIC CLASS OR INTERFACE

A nongeneric class doesn’t define type parameters. To define a generic method in a
nongeneric class or interface, you must define the type parameters with the method,
in its type parameter section. A method’s type parameter list is placed just after its access
and nonaccess modifiers and before its return type. Because a type parameter could
be used to define the return type, it should be known before the return type is used.
An example

abstract class Courier {
 public <E> void deliver(E[] array) {
 for (E item : array) {
 System.out.println("Delivering - " + item);
 }
 }
}

EXAM TIP For a generic method (defined in a nongeneric class or inter-
face), its type parameter list is placed just after the access and nonaccess
modifiers and before its return type.

GENERIC METHODS DEFINED IN A GENERIC CLASS OR INTERFACE

The following example defines a generic interface, and a generic method that defines
its own type parameter.

interface Map<X, Y>{
 <T> void mapMaterial(T t);
}

Won’t
compile

Nongeneric
class

Generic
method

Generic interface
declaration

Generic method declaration
with its own type parameters
Licensed to Mark Watson <nordickan@gmail.com>

253Creating generic entities
You can also define a generic constructor in a generic class:

class Phone<X> {
 <T> Phone(T t) {
 //..code
 }
}

Instantiating Phone

Phone<Double> c = new Phone<Double>("Android");

In the following “Twist in the Tale” exercise, let’s see whether you can determine the
difference between the presence and absence of angle brackets in a definition of
generic entities.

Consider this definition of the Map interface discussed in a previous section:

interface MyMap<K, V>{
 void put(K key, V value);
 V get(K key);
}

Now modify that definition to the following:

interface MyMap<K, V>{
 void put(K key, V value);
 <V> get(K key);
}

Do you think these modifications will make any difference to the definition of the
MyMap interface?

In the next section, let’s see how you can limit the parameter types that you can pass
to a generic class, interface, or method.

4.2.4 Bounded type parameters

You can limit the type of objects that can be passed as arguments to generic classes,
interfaces, and methods by using bounded type parameters.

NEED FOR BOUNDED TYPE PARAMETER

Without a bounded type parameter (and explicit type casting), you can access only
the members defined in the superclass of all classes—that is, class Object.

 In the following example, the generic class Parcel won’t be able to access method
getWeight() of class Gift:

abstract class Gift{
 abstract double getWeight();
}

Twist in the Tale 4.1

Generic class
declaration with
type parameter X

Generic constructor
declaration with
type parameter T
Licensed to Mark Watson <nordickan@gmail.com>

254 CHAPTER 4 Generics and collections
class Book extends Gift{
 public double getWeight() {return 3.2;}
}
class Phone extends Gift{
 public double getWeight() { return 1.1; }
}
class Parcel<T>{
 private T t;
 public void set(T t) {
 this.t = t;
 }
 public void shipParcel() {
 if (t.getWeight() > 10)
 System.out.println("Ship by courier ABC");
 else
 System.out.println("Ship by courier XYZ");
 }
}

To access members of class Gift in Parcel, you can limit the type of objects that can
be passed to class Parcel (to Gift and its subclasses) by using bounded parameters
(discussed next).

DEFINING BOUNDED TYPE PARAMETERS

You can specify the bounds to restrict the set of types that can be used as type argu-
ments to a generic class, interface, or method. It also enables access to the methods
(and variables) defined by the bounds.

 Let’s restrict the type of objects that can be passed to class Parcel to Gift so that
the methods of class Parcel can access the methods and variables of class Gift.
Because the definitions of classes Gift, Book, and Phone are the same as in the preced-
ing section, they aren’t repeated in the following code:

class Parcel<T extends Gift>{
 private T t;
 public void set(T t) {
 this.t = t;
 }
 public void shipParcel() {
 if (t.getWeight() > 10)
 System.out.println("Ship by courier ABC");
 else
 System.out.println("Ship by courier XYZ");
 }
}

In the preceding code, the code at B defines a bounded parameter for class Parcel
with its bounds as class Gift. Because the bound of t is Gift, its method getWeight()
can be accessed using t c.

 The keyword implements isn’t used to specify the bound as an interface. The fol-
lowing code won’t compile:

class Parcel<T implements Serializable>{}

Won’t compile;
type of t is Object.

Bounded type
parameter b

Compiles; type
of t is Gift.

 c

Won’t compile
Licensed to Mark Watson <nordickan@gmail.com>

255Creating generic entities
EXAM TIP For a bounded type parameter, the bound can be a class,
interface, or enum, but not an array or a primitive type. All cases use the
keyword extends to specify the bound. If the bound is an interface, the
implements keyword isn’t used.

On the exam, you might see a question that tries to instantiate a generic class by pass-
ing it a type argument that doesn’t comply with its bounded parameter. What do you
think happens in this case—a compilation error or a runtime exception? What do
you think is the output of the following code, which tries to instantiate class Parcel
with type parameter <T extends Gift>?

Parcel<String> p = new Parcel<>();

The preceding code will not compile because the type argument String isn’t within
bounds of type variable T.

DEFINING MULTIPLE BOUNDS

A type parameter can have multiple bounds. The list of bounds consists of one class
and/or multiple interfaces. The following example defines a generic class Parcel, the
type parameter T of which has multiple bounds:

interface Wrappable{}
interface Exchangeable{}
class Gift{}
class Parcel <T extends Gift, Exchangeable, Wrappable>{}

In this case, the type argument that you pass to the bounded type parameter must be a
subtype of all bounds. If you try to pass a type argument that doesn’t subtype all the
bounds, your code won’t compile.

EXAM TIP For a type parameter with multiple bounds, the type argument
must be a subtype of all bounds.

4.2.5 Using wildcards

The wildcard ? represents an unknown type. You can use it to declare the type of a
parameter; a local, instance, or static variable; and return value of generic types. But
you can’t use it as a type argument to invoke a generic method, create a generic class
instance, or for a supertype.

NEED TO USE AN UNKNOWN TYPE

Before you understand how to use the wildcard, you must know where and why you
need it. Say you’re given the following class inheritance tree:

class Gift{}
class Book extends Gift{}
class Phone extends Gift{}

You can assign an object of class Book or Phone to a reference variable of type Gift:

Gift gift = new Book();
gift = new Phone();
Licensed to Mark Watson <nordickan@gmail.com>

256 CHAPTER 4 Generics and collections
But the following assignment isn’t valid:

List<Gift> wishList = new ArrayList<Book>();

You can assign an ArrayList to a variable of type List. But the type that you pass to it
in the angle brackets must be the same. Though ArrayList<T> implements List<T>
for any type T, ArrayList<Book> implements neither ArrayList<Gift> nor List<>.
So assignment of ArrayList<Book> to a variable of type List<Gift> isn’t allowed
with generics.

EXAM TIP You can assign an instance of a subclass, say, String, to a vari-
able of its base class, Object. But you can’t assign ArrayList<String> to
a variable of type List<Object>. Inheritance doesn’t apply to the type
parameters.

You can use a wildcard to get around this. In the following example, you can assign an
ArrayList of any type to wishList:

List<?> wishList = new ArrayList<Book>();

Because ? refers to an unknown type, wishList is a list of an unknown type. So it’s
acceptable to assign a list of Book objects to it.

ADDING OBJECTS TO COLLECTIONS DEFINED USING A WILDCARD

On the exam, take note of code that tries to add objects to collections that are defined
by using the wildcard. Referring to our example, if you try to add or insert a Book
instance into the ArrayList referred by the variable wishList, the code won’t compile:

List<?> wishList = new ArrayList<Book>();
wishList.add(new Book());

Because of the ? you can invoke method add() with literally any object—String,
Integer, Book, Phone, and others. But ArrayList<Book> should only have Book
instances. Because the compiler can’t guarantee it, it forbids adding anything to the
list when using a wildcard ?.

ITERATING COLLECTIONS WITH A WILDCARD

You can iterate a collection defined using wildcard ?. Note that the type of the variable
used to refer to the list values is Object—the base class of all Java classes. Here’s an
example of using ? in wrapGift() to iterate a List of any type:

class Gift{}
class Book extends Gift{
 String title;
 Book(String title) {
 this.title = title;
 }

Won’t compile

? refers to any type

? refers to
any type

Won’t compile

Class Book
extends Gift.
Licensed to Mark Watson <nordickan@gmail.com>

257Creating generic entities

B

ext
 public String toString() {
 return title;
 }
}
class Courier {
 public static void wrapGift(List<?> list) {
 for (Object item : list) {
 System.out.println("GiftWrap - " + item);
 }
 }
 public static void main(String args[]) {
 List<Book> bookList = new ArrayList<Book>();
 bookList.add(new Book("Oracle"));
 bookList.add(new Book("Java"));
 wrapGift(bookList);

 List<String> stringList = new ArrayList<String>();
 stringList.add("Paul");
 stringList.add("Shreya");
 wrapGift(stringList);
 }
}

EXAM TIP When you use a wildcard to declare your variables or method
parameters, you lose the functionality of adding objects to a collection. In
this case, using the add method will result in compilation failure.

The wildcard ? accepts objects of all unknown types. Let’s use bounded wildcards to
limit the types of objects that we can use.

4.2.6 Using bounded wildcards
To restrict the types that can be used as arguments in a parameterized type, you can
use bounded wildcards.

UPPER-BOUNDED WILDCARDS

You can restrict use of arguments to a type and its subtypes by using <? extends Type>,
where Type refers to a class, interface, or enum.

EXAM TIP In upper-bounded wildcards, the keyword extends is used for
both a class and an interface.

Consider the following classes:

class Gift{}
class Book extends Gift{}
class Phone extends Gift{}

For a variable that uses the upper-bounded wildcard <? extends Gift>, the following
assignments are valid:

List<? extends Gift> myList1 = new ArrayList<Gift>();
List<? extends Gift> myList2 = new ArrayList<Book>();
List<? extends Gift> myList3 = new ArrayList<Phone>();

wrapGift will accept list
of any unknown type

Type of variable item
is Object, superclass
of all objects.

wrapGift will accept a
list of Book objects.

wrapGift will accept a
list of String objects.

Though Gift doesn’t
extend itself, this
assignment is valid.

ook and
Phone

end Gift.
Licensed to Mark Watson <nordickan@gmail.com>

258 CHAPTER 4 Generics and collections

.

Let’s see how you can use the upper-bounded wildcard in method parameters. Let’s
modify the method wrapGift(), used in the previous section, to restrict its type argu-
ments to Gift or its subclasses (modifications in bold):

 public static void wrapGift(List<? extends Gift> list) {
 for (Gift item : list) {
 System.out.println("GiftWrap - " + item);
 }
 }

EXAM TIP In the preceding method wrapGift(), the loop variable item
can be of type Gift or its subtype, Object.

For the preceding method, you can pass to it List of Gift or objects that extend class
Gift. If you try to pass it a list of any other object type, it won’t compile.

List<Book> bookList = new ArrayList<Book>();
bookList.add(new Book("Oracle"));
bookList.add(new Book("Java"));
wrapGift(bookList);

List<String> stringList = new ArrayList<String>();
stringList.add("Paul");
stringList.add("Shreya");
wrapGift(stringList);

For the exam, you must know the operations that are allowed for variables declared by
using upper-bounded wildcards. You can iterate and read values from a collection
declared with upper-bounded wildcards. But you can’t write any values to the collec-
tion. For example, you can’t add any object to a List defined as List<? extends
Gift> because such a list can refer to a list of either Gift, Book, or Phone. Adding a
mismatched object can pollute the list, which isn’t allowed.

EXAM TIP For collections defined using upper-bounded wildcards, you
can’t add any objects. You can iterate and read values from such collections.

It’s interesting to note that class String is a final class that can’t be subclassed. If you
try to define a class that extends class String, it won’t compile:

class MyClass extends String {}

But it’s acceptable to define an upper-bounded wildcard that extends class String.
Here’s the modified code:

public static void wrapGift(List<? extends String> list) {
 for (String item : list) {
 System.out.println("GiftWrap - " + item);
 }
}

wrapGift() will
accept List of Gift
or List of classes
that extend Gift.

With bounded wildcard
<? extends Gift>, wrapGift()
will accept List of class Book.

Won’t compile; with bounded wildcard
<? extends Gift>, wrapGift() won’t
accept List of class String.

Won’t compile; can’t
extend final class String.

Accept objects of
class String or
objects of classes
that extend String
Licensed to Mark Watson <nordickan@gmail.com>

259Creating generic entities

ext
Ob

.

W
com
EXAM TIP You can use final classes in upper-bounded wildcards. Although
class X extends String won’t compile, <? extends String> will compile
successfully.

LOWER-BOUNDED WILDCARDS

You can restrict use of type arguments to a type and its base or supertypes by using
<? super Type>, where Type refers to a class, interface, or enum. Consider the follow-
ing classes:

class Gift{}
class Book extends Gift{}
class Phone extends Gift{}

For a variable that uses the lower-bounded wildcard <? super Gift>, note the follow-
ing assignments:

List<? super Gift> myList1 = new ArrayList<Gift>();
List<? super Gift> myList2 = new ArrayList<Object>();
List<? super Gift> myList3 = new ArrayList<Phone>();
List<? super Phone> myList4 = new ArrayList<Gift>();

So, what can you read from and add to collection objects defined using lower-bounded
wildcards? Here’s an example:

List<? super Gift> list = new ArrayList<Gift>();
list.add(new Gift());
list.add(new Book());
list.add(new Phone());
list.add(new Object());
for (Object obj : list) System.out.println(obj);

EXAM TIP In the preceding example, the loop variable obj can’t be of
type Gift.

Table 4.1 lists wildcard and bounded wildcard variables, and the types of values that
can be read from and written to them.

Table 4.1 Variables and the values that can be read from or added to them

Variable Read objects of type Write objects of type

List<?> Object N/A

List<? extends Gift> Gift N/A

List<? super Gift> Object Gift and its subclasses

Though Gift isn’t its
own superclass, this
assignment is valid.Gift

ends
ject. Won’t compile; gift

doesn’t extend Phone

Valid; Phone
extends Gift.

List<? super Gift> is
assigned ArrayList<Gift>.

Can add instances of
Gift or its subclasses to
List<? super Gift>.on’t

pile

Elements are read as instance
Object, superclass of Gift.
Licensed to Mark Watson <nordickan@gmail.com>

260 CHAPTER 4 Generics and collections
4.2.7 Type erasure

When class UseGenericParcel instantiates Parcel, it uses the parameterized type
Parcel<Book>, replacing the formal type parameter T with the actual parameter Book.
When you do this, you can assume to be using the following definition of class Parcel,
where all references of T are replaced with Book:

class Parcel<Book>{
 private Book t;
 public void set(Book t) {
 this.t = t;
 }
 public Book get() {
 return t;
 }
}

Though the preceding code can help to a great extent to show how a generic class
behaves, it’s incorrect. It might make you think that you have access to multiple ver-
sions of compiled code, which is incorrect. In this section, you’ll see that type informa-
tion is erased during the compilation process; this is called type erasure.

 On compilation, the type information of a generic class or an interface is erased.
The compilation process generates one class file for each generic class or interface;
separate class files aren’t created for parameterized types.

EXAM TIP When a generic class is compiled, you don’t get multiple ver-
sions of the compiled class files. A generic class gets compiled into a sin-
gle class file, erasing the type information during the compilation process.

The compiler erases the type information by replacing all type parameters in generic
types with Object (for unbounded parameter types) or their bounds (for bounded
parameter types). The compiler might insert type casts to preserve type safety and
generate bridge methods to preserve polymorphism in extended generic types.

NOTE Though the exam might not include explicit questions on the
contents of a class file after type erasure, it will help you to understand
generics better and answer all questions on generics.

ERASURE OF GENERIC TYPE IN CLASSES, INTERFACES, AND METHODS

For a generic class Parcel, which uses an unbounded type parameter, say, T

class Parcel<T>{
 private T t;
 public void set(T t) {
 this.t = t;
 }
 public T get() {
 return t;
 }
}

This isn’t how a generic
class is compiled; this
is how it behaves.
Licensed to Mark Watson <nordickan@gmail.com>

261Creating generic entities
On compilation, the Java compiler replaces all occurrences of T with Object:

class Parcel {
 private Object t;
 public void set(Object t) {
 this.t = t;
 }
 public Object get() {
 return t;
 }
}

Here’s an example of an interface that uses both bounded and unbounded type
parameters:

interface MyMap<K extends String, V>{
 void put(K key, V value);
 V get(K key);
}

For the preceding interface, the Java compiler would replace all occurrences of K with
its first bound class, String, and V with Object:

interface MyMap {
 void put(String key, Object value);
 Object get(String key);
}

Similarly, for generic methods, the unbounded and bounded type parameters are
replaced by Object or their first bound class. For the generic method deliver() in
class Courier

abstract class Courier {
 public <E> void deliver(E[] array) {
 for (E item : array) {
 System.out.println("Delivering - " + item);
 }
 }
}

The Java compiler would replace all occurrences of E with Object:

abstract class Courier {
 public void deliver(Object[] array) {
 for (Object item : array) {
 System.out.println("Delivering - " + item);
 }
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

262 CHAPTER 4 Generics and collections
BRIDGE METHODS

The Java compiler might need to create additional methods, referred to as bridge
methods, as part of the type erasure process. In the following example, class Book-
Parcel extends Parcel<Book>:

class Book {}
class Parcel<T>{
 private T t;
 public void set(T t) {
 this.t = t;
 }
}
class BookParcel extends Parcel<Book> {
 public void set(Book book) {
 super.set(book);
 }
}

For the preceding code, during type erasure, the Java compiler erases and adds a
bridge method to class BookParcel—that is, set(Object). This is to add type safety to
class BookParcel, ensuring that only Book instances can be assigned to its field t.
Because method set(Object) accepts Object but casts it to Book, it will throw a
ClassCastException for any other object type:

class Parcel {
 private Object t;
 public void set(Object obj) {
 t = obj;
 }
}
class BookParcel extends Parcel {
 public void set(Book book) {
 super.set(book);
 }
 public void set(Object obj) {
 set((Book)obj);
 }
}

4.2.8 Refreshing the commonly used terms

Table 4.2 lists the new terms that were introduced with generics, which you are sure to
see on the exam.

Table 4.2 Commonly used terms with generics and their meanings

Term Meaning

Generic types A generic type is a generic class or a generic interface, having one or more type
parameters in its declaration.

Parameterized types An invocation of a generic type is generally known as a parameterized type. For
generic type List<E>, List<String> is a parameterized type.

Throws ClassCastException
for objects others than Book
Licensed to Mark Watson <nordickan@gmail.com>

263Using type inference
In the next section, you’ll learn how the compiler can determine type arguments if
you don’t specify them while creating instances of generic types.

4.3 Using type inference

Imagine solving a riddle with multiple constraints in the form of hints. You resolve the
constraints to derive the answer. You can compare type inference with generating and
solving constraints to promote flexibility in a programming language. Here’s a simple
(nongeneric) example: Java constrains the numeric operands of an addition operator
(+) to be at least promoted to the int data type. So when + is used with int and short
types, the type of the resultant value can be inferred to be an int type. Type inference is a
Java compiler’s capability to determine the argument type passed to an expression or
method by examining its declaration and invocation.

 With generics, you usually use angle brackets (<>, also referred to as the diamond)
to specify the type of arguments to instantiate a generic class or invoke a generic
method. What happens if you don’t specify the type arguments? The Java compiler
might be able to infer the argument type by examining the declaration of the generic
entity and its invocation. But if it can’t, it’ll throw a warning, an error, or an exception.
In this section, you’ll see how to answer the exam questions on using the diamond for
type inference to instantiate generic classes and invoke generic methods.

NOTE By throwing an unchecked warning, the compiler states that it can’t
ensure type safety. The term unchecked refers to operations that might
result in violating type safety. This occurs when the compiler doesn’t have
enough type information to perform all type checks.

Type parameter You use type parameters to define generic classes, interfaces, or methods.
E in List<E> is a type parameter.

Type argument A type argument specifies the type of objects to be used for a type parameter.
For List<String>, String is a type argument.

Wildcard A wildcard is represented by a ? (a question mark). It refers to an
unknown type.

Bounded wildcard A wildcard is bounded when it is a base or supertype of a type.

Raw type The name of a generic class, or a generic class without any type arguments, is
a raw type. For List<E>, List is a raw type.

Table 4.2 Commonly used terms with generics and their meanings

Term Meaning

[4.2] Use the diamond for type inference
Licensed to Mark Watson <nordickan@gmail.com>

264 CHAPTER 4 Generics and collections
4.3.1 Using type inference to instantiate a generic class

When generics were introduced with Java 5, it was mandatory to include the type argu-
ments to instantiate a generic class. Consider the generic class Parcel:

class Parcel<T>{
 //..code
}

The following code instantiates Parcel, passing it type argument String:

Parcel<String> parcel = new Parcel<String>();

But with Java 7, you can drop the type arguments required to invoke the constructor
of a generic class and use an empty set of type arguments, <>:

Parcel<String> parcel = new Parcel<>();

In the preceding code, the compiler can infer the type argument passed to Parcel as
String. But an attempt to drop the diamond will result in a compilation warning:

Parcel<String> parcel = new Parcel();

Imagine another situation. What happens if you attempt to try it the other way around?
Do you think the following code is valid?

Parcel<> parcel = new Parcel<String>();

The preceding code won’t compile. Imagine what happens if Parcel defines a generic
constructor:

class Parcel<T>{
 <X> Parcel(X x) {}
 public static void main(String[] args) {
 new Parcel<String>(new StringBuilder("Java"));
 }
}

In the preceding code, String is passed as an explicit type argument to the type
parameter T. The type of the parameter X (specified by the constructor) is inferred by
the compiler to be StringBuilder, which is passed to Parcel’s constructor.

Type arguments included
to invoke constructor of
generic class Parcel.

With Java 7, empty set of
type arguments can invoke
constructor of generic class

Compilation warning;
attempt to assign raw
type to generic type

Won’t compile

Compiler infers type
of formal parameter
X as StringBuilder.
Licensed to Mark Watson <nordickan@gmail.com>

265Understanding interoperability of collections using raw types and generic types

4.3.2 Using type inference to invoke generic methods

A Java compiler can’t infer the type parameters by using the diamond in the case of
generic methods. It uses the type of the actual arguments passed to the method to
infer the type parameters. Let’s add the generic method deliver() to class Parcel:

class Parcel<T> {
 public <X> void deliver(X x) {
 System.out.println(x.getClass());
 }
 public static void main(String args[]) {
 Parcel<String> parcel = new Parcel<>();
 parcel.<Integer>deliver(new Integer(10));
 //parcel.<>deliver(new Integer(10));
 parcel.deliver("Hello");
 }
}

Here’s the output of the preceding code:

class java.lang.Integer
class java.lang.String

The next section covers an important topic: mixing generic and raw types. For the
exam, you must know how the code behaves when you mix them: compilation warn-
ings, errors, and runtime exceptions. You should also understand that by mixing them,
you risk losing type safety.

4.4 Understanding interoperability of collections using raw
types and generic types

Before we start with how collections that use a raw type operate with generic types, you
should know why this interoperability was allowed. When generics were introduced
with Java 5, there was a lot of existing Java code, which didn’t use generics. Because a
new enhancement can’t render existing code useless, the existing code that didn’t use
generics needed to be valid and interoperable, to be made to work with generics. This
is also referred to as migration compatibility. This, however, introduced multiple compli-
cations, including generation of bridge methods and explicit casts.

 To recap, when a generic class is used without its type information, it’s referred to
as its raw type. For example, for the generic class Parcel<T>, its raw type is Parcel.

Type parameter X to
generic method deliver()

Outputs type of argument
passed to deliver().

Type of parameter X is Integer;
determined using Integer
object passed to deliver().

Won’t compile; can’t use
<> with generic method.

Type of parameter X is String;
inferred using actual argument
passed to deliver().

[4.3] Analyze the interoperability of collections that use raw types and
generic types
Licensed to Mark Watson <nordickan@gmail.com>

266 CHAPTER 4 Generics and collections
EXAM TIP Raw types exist only for generic types. Watch out for exam ques-
tions that might mention raw types for nongeneric classes and interfaces.

Let’s examine the interoperability of code that mixes the assignment of objects of
generic types with reference variables of raw types, and vice versa.

4.4.1 Mixing reference variables and objects of raw and generic types

You can assign a parameterized type to its raw type. But the reverse will give a compiler
warning. Consider the following generic class:

class Parcel<T> {
 private T t;
 public void set(T t) {
 this.t = t;
 }
 public T get() {
 return t;
 }
}

The following assignment is allowed:

Parcel parcel = new Parcel<Phone>();

But you lose the type information for the class Parcel in the preceding code. When
you call its method set() (passing it a method parameter of any type), you’ll get a
compiler warning:

Parcel parcel = new Parcel<Phone>();
parcel.set("harry");

Here’s the detailed warning that the compiler generates when you compile the code
using the flag -Xlint:unchecked, which informs you that the raw type Parcel is
unable to comprehend type parameter T:

warning: [unchecked] unchecked call to set(T) as a member of the raw type
Parcel
 parcel.set(new String("harry"));
 ^
 where T is a type-variable:
 T extends Object declared in class Parcel
1 warning

This happens because the variable parcel of raw type Parcel doesn’t have access to
generic type information.

 On the exam, watch out for code that mixes raw with generic type. For such code,
you’ll need to determine whether the code compiles with or without any warning, or
throws a runtime exception. In the following code (for class Parcel defined in this

Because you lose type information
when you use variable of raw type,
you can pass String object to set(),
instead of Phone object
Licensed to Mark Watson <nordickan@gmail.com>

267Understanding interoperability of collections using raw types and generic types
section), parcel.set(Phone) will compile with a warning, but attempt to assign the
return value of parcel.get() to a variable of type Phone:

Parcel parcel = new Parcel<Phone>();
parcel.set(new Phone());
Phone phone = parcel.get();

EXAM TIP When you mix raw with generic types, you might get a com-
piler warning or error, or a runtime exception.

Let’s get our heads around this with a pictorial representation (see figure 4.5). I’ve
deliberately used interface List and class ArrayList from the collections framework
because you might get to see them in similar code on this exam.

Compiles with
warning

Won’t compile; with
reference variable of
raw type

List
raw type

List
raw type

List List = new ArrayList<String>();

list.add(new String("Shreya"));

list.add(new Integer(1));

list.add(new Object());
!!!

Hey! I am
clueless about

parameterized types.

Compiler warnings!
This is an unchecked
call to .add(T t)

String value = list.get(0);

Compilation error!
Without type parameter

information, compiler
can’t ensure list.get()

will return object.String

List
raw type

Figure 4.5 When you use a reference variable of a raw type, you lose the type information.
Licensed to Mark Watson <nordickan@gmail.com>

268 CHAPTER 4 Generics and collections
Now, let’s try to assign a raw type to a parameterized type:

Parcel<Phone> parcel = new Parcel();

This code generates the following compilation warning:

warning: [unchecked] unchecked conversion
 Parcel<Phone> parcel = new Parcel();
 ^
 required: Parcel<Phone>
 found: Parcel

But it doesn’t generate any compiler warning for methods that accept type parameters:

Parcel<Phone> parcel = new Parcel();
parcel.set(new Phone());
//parcel.set(new String());
Phone phone = parcel.get();

Let me modify this preceding code and use a combination of raw and generic types in
the next “Twist in the Tale” exercise. If you can answer this question correctly, you’ll
answer it correctly on the exam too!

Consider the definition of the following generic type MyMap and class CustomMap that
implements it:

interface MyMap<K, V>{
 void put(K key, V value);
 V get(K key);
}
class CustomMap<K, V> implements MyMap<K, V> {
 K key;
 V value;
 public void put(K key, V value) {
 this.key = key; this.value = value;
 }
 public V get(K key) {
 return value;
 }
}

Which options are true about the following code?

class Twist4_2 {
 public static void main(String args[]) {
 CustomMap map = new CustomMap<Integer, String>(); //1
 map.put(new String("1"), "Selvan"); //2

Twist in the Tale 4.2

Generates
compilation
warning No compiler

warnings

Won’t compile if uncommented;
reference variable parcel knows
it’s the parameter types.Compiles

successfully
Licensed to Mark Watson <nordickan@gmail.com>

269Understanding interoperability of collections using raw types and generic types

)

Inst
 String strVal = map.get(new Integer(1)); //3
 System.out.println(strVal); //4
 }
}

a Class Twist4_2 will compile successfully if you replace line 1 with the follow-
ing line:

CustomMap<Integer, String> map = new CustomMap();

b Code on line 2 will generate a compiler warning.
c Code on line 3 will compile if the type of variable strVal is Object.
d The code outputs null without any modifications.

On the exam, you might see questions on generics that include other classes from the
collection framework, like Stack. So the next example uses Stack (covered in detail
later in this chapter).

 Let’s look at another scenario, where we mix a method that uses parameters of raw
types with actual objects that include generic type information:

class Interoperability {
 public static void pushItems(Stack stackParam, Object item) {
 stackParam.push(item);
 }
 public static void main(String args[]) {
 Stack<String> stackObj = new Stack<String>();
 stackObj.push("Paul");
 pushItems(stackObj, new Integer(77));
 String value = stackObj.pop();
 System.out.println(value);
 }
}

The code at B defines method pushItems(), with parameter of raw type Stack.
Whenever you use a raw type, you lose all the type information. So the code at c
throws a compilation warning stating that you made an unchecked call to push(E). It’s
warning you that you might end up adding incorrect data to your Stack object. Code
in method main() instantiates a Stack of String objects at d. At e, the code pushes
a String object to stackObj. So far, so good. A call to method pushItems() f pushes
an Integer object to stackObj. Why is this allowed? Because the method parameter
stackParam is of a raw type, there is no type information, so the compiler doesn’t
know that the original object (stackObj) only allows strings; therefore, the integer is
successfully pushed to the stack allowing only strings (stackObj). The code at g
throws a ClassCastException at runtime because the type of the returned object is
Integer and not String.

pushItems(
defines
parameter
of raw type

 b

Generates warning:
[unchecked] unchecked
call to push(E) as member
of raw type Stack. c

antiates
Stack of

String
objects.

 d

Pushes
String

object. e

Calls pushItems(),
which pushes
Integer to stackObj. f

Throws ClassCastException
at runtime. g
Licensed to Mark Watson <nordickan@gmail.com>

270 CHAPTER 4 Generics and collections
 That’s exactly one of the possible problems when you mix generics with nongenerics
code. That’s also why you get that compiler warning: to warn you that the compiler can’t
protect you from doing stupid things, like putting an integer in an only-string stack.

 As per polymorphism, you can assign an object of a subclass to reference a variable
of its base class. But this subtyping rule doesn’t work when you assign a collection-of-a-
derived-class object to a reference variable of a collection of a base class. Let’s see why
in the next section.

4.4.2 Subtyping with generics
Because the class ArrayList implements the List interface, you can assign an object
of ArrayList to a reference variable of List. Similarly, because class String extends
class Object, you can assign an object of String to a reference variable of Object.

 With generics, you must follow certain subtyping rules. The following line is valid
because a generic class is a subtype of its raw type:

List list = new ArrayList<String>();

But the following isn’t valid:

List<Object> list = new ArrayList<String>();

This assignment isn’t allowed. If you declare a reference variable List<Object> list,
whatever you assign to the list must be of generic type Object. A subclass of Object is
not allowed. Figure 4.6 shows the relationship between the interface List, class Array-
List, and classes Object and String. It also shows the related valid and invalid code.

Won’t compile

ArrayList

List

List list = new ArrayList();

String

Object

Object obj = new String();

List list = new ArrayList<String>();

List<Object> list = new ArrayList<String>();

Compilation error

Figure 4.6 Object of ArrayList<String> isn’t compatible with a reference variable of
type List<Object>.
Licensed to Mark Watson <nordickan@gmail.com>

271Introducing the collections framework: WARM-UP
Apart from generics, this exam will also test you on the collections framework. It’ll
include many implementations of the interfaces List, Set, Deque, and Map, together
with classes Comparator and Comparable. It’ll also test you on how to search and sort
arrays and lists. The next warm-up section introduces collections and the collections
framework. Experienced developers can skip the introduction section.

4.5 Introducing the collections framework: WARM-UP
Imagine that you have to process a list of results submitted by registered users of
your website for an opinion poll. You aren’t concerned about the order of receiving
or processing these results, but you won’t accept multiple votes from the same user.
Imagine that in another case, you’re creating a drawing application that includes an
Undo button. You need to keep track of the order in which the drawing commands
are selected, so you can undo the last command. Duplicate commands are allowed
in a drawing application. Imagine yet another case, when you’re looking up a word
in a dictionary. The words are ordered alphabetically, but duplicate words don’t
exist in the dictionary.

 These scenarios show examples of needing to store and retrieve collections of data
in various manners. For one collection, you might need to retrieve data in the order in
which it was generated. For another collection, you might not allow duplicate values
but would prefer data to be sorted on a data item. Figure 4.7 depicts these examples,

Shreya’s opinion

Collection of results

of opinion poll

Sorted

Paul’s opinion

Selvan’s opinion

Harry’s opinion

3-Draw circle

2-Color circle red

1-Draw circle

Ordered

Duplicate

allowed

4-Color circle blue

Collection of commands

in a drawing application

False

Synchronized

Volatile

Exception

Word

Collection of words and

their meanings in dictionary

Meaning

Figure 4.7 Depending on how you need to process a collection of data, you might need a data
structure that can sort the collection values, retain the insertion order of the elements, and not allow
duplicate elements.
Licensed to Mark Watson <nordickan@gmail.com>

272 CHAPTER 4 Generics and collections
along with a table on their requirements: whether the structure used to store the data
needs to be sorted, be ordered, or allow duplicate values.

 A collection is an object that can group other objects. Each object in a collection is
referred to as an element. The Java collections framework is architecture for represent-
ing and manipulating collections. This framework defines many interfaces to support
the need for storing a collection of data in various formats. These collections might
need to be ordered, to be sorted, to allow duplicate values, to be immutable, to be of
fixed size, and more. The collections framework includes high-performance, high-
quality implementations of useful data structures to store a collection of your objects.
It includes the following:

■ Interfaces—Multiple interfaces like List, Set, Deque, and Map model the data
structures used for storing, accessing, and manipulating a collection of data.

■ Implementations—Concrete classes like ArrayList, HashSet, and TreeMap imple-
ment the interfaces.

■ Algorithms—Classes like Collections and Arrays contain utility methods like
sort() and search() for sorting and searching List objects or arrays.

NOTE Don’t confuse the interface Collection with the class Collections.
Collection is the base interface in the collections framework that is
extended by most of the other interfaces. Class Collections defines util-
ity methods to operate on or return collections.

Figure 4.8 shows the main interfaces and their implementations in the collections
framework (limited to exam coverage). It also shows the classes Collections and
Arrays, which define utility methods to sort and search List or array objects.

But at the same time, using the collections framework can be overwhelming. The key
to optimal use of the collections framework is to get the basics right. So, let’s start with
the base interface in the Java collections framework: Collection.

EXAM TIP All the collection classes are generic; they all define type
parameters. Watch out for exam questions that use them without type
parameters; these are referred to as raw types.

The importance of the collection framework
A recruiting manager once asked me why my technical architect places so much
emphasis on the ability of a possible recruit to work with data structures and on
the recruit’s experience with the collections framework. I replied that the collections
framework is an extremely powerful and flexible framework. A developer who can use
its existing classes to store and search data effectively or who can craft out a custom
implementation by using the existing framework will be an asset to any organization.
Licensed to Mark Watson <nordickan@gmail.com>

273Working with the Collection interface
4.6 Working with the Collection interface

The interface Collection<E> represents a group of objects known as its elements.
There is no direct implementation of Collection; no concrete class implements it.
It’s extended by more-specific interfaces such as Set, List, and Queue. This collec-
tion is used for maximum generality—to work with methods that can accept objects
of, say, Set, List, and Queue. Figure 4.9 shows the basic Collection interface and its
main subinterfaces.

Queue

Deque

Iterable

Collection

ArrayList

List

LinkedList ArrayDeque

Set

SortedSet

HashSet

TreeSet

LinkedHashSet

Map

SortedMap

HashMap

TreeMap

LinkedHashMap

Object

Collections

Implementations

Algorithms

Interfaces

Implements

Extends

Arrays

Figure 4.8 The main interfaces and their implementations in the collections framework. Class
Collections, a utility class that implements various algorithms for searching and sorting, is also
a part of the collections framework.

[4.5] Create and use List, Set, and Deque implementations
Licensed to Mark Watson <nordickan@gmail.com>

274 CHAPTER 4 Generics and collections
All collection classes are generic. Here’s the declaration of the Collection interface:

public interface Collection<E>
 extends Iterable<E>

A thorough understanding of the Collection interface will help you absorb a lot of
concepts and classes that we cover in the rest of this chapter.

EXAM TIP The Map interface doesn’t extend the core Collection interface.

4.6.1 The core Collection interface

The Collection interface implements the Iterable interface, which defines method
iterator(), enabling all the concrete implementations to access an Iterator<E> to
iterate over all the collection objects. So for all the implementing classes, you’d be
able to access an Iterator to iterate over its elements.

 When you work with the concrete implementations of the collections framework,
you’ll notice that almost all the classes provide two constructors: a void (no-argument)
constructor and another that accepts a single argument of type Collection. The
former creates an empty collection, and the latter creates a new collection with the
same elements as its argument, dropping any elements that don’t fit the new collec-
tion being created. As an interface, Collection can’t enforce this requirement
because it can’t define a constructor. But the classes that implement this interface
implement it.

 The methods of the Collection interface aren’t marked synchronized. The syn-
chronized methods result in a performance drop, even in single-threaded code, and
so the creators of the collections framework opted out for them. If you’ve worked with

Iterable

List Set

SortedSet

<<extends>>

Queue

Collection

Map

SortedMapDeque

Figure 4.9 The core Collection interface and the main interfaces that extend it

All collection classes
are generic.
Licensed to Mark Watson <nordickan@gmail.com>

275Working with the Collection interface
or read about the Hashtable or Vector classes, which were introduced before the Java
collections framework, you’d notice that the methods of these data structures are syn-
chronized. With the existing collections framework, you can get the same functional-
ity (without synchronization) by using the collection classes HashMap and ArrayList.

NOTE The main target of the exam is to prepare you to write efficient,
real-world applications. A solid understanding of the collections frame-
work will go a long way for you, both on the exam and in your career.

4.6.2 Methods of the Collection interface

Figure 4.10 shows the methods of the Collection interface, grouped by their func-
tionality: methods that modify Collection, methods that query it, and miscellaneous.

Unsupported operations
When specific concrete classes implement the methods defined from the Collection
interface, the classes might not need to support all its operations specified. For
example, a list that’s immutable might not support the Collection’s method
add() that adds elements to itself. In this case, this immutable list can choose to
return false or throw UnsupportedOperationException from method add(). All
methods of the Collection interface that modify itself specify (but don’t mandate)
that classes that don’t support these operations might throw Unsupported-
OperationException.

Interface Collection

Query methodsModification methods

Add elements

add()

addAll()

Remove elements

clear()

remove()

removeAll()

retainAll()

contains()

equals()

isEmpty()

size()

Miscellaneous

iterator()

toArray()

Figure 4.10 Methods defined in the Collection interface, grouped by their functionality
Licensed to Mark Watson <nordickan@gmail.com>

276 CHAPTER 4 Generics and collections
Because most of the interfaces implement the Collection interface, most of the imple-
mentation classes include methods to add, remove, and query its elements and retrieve
an Iterator to retrieve the collection elements. The implementation, though, varies
across classes.

 As you proceed and work with the implementation of classes in the collection
framework, you’ll notice that almost all the classes mention that the Iterator
returned by method iterator() is fail-fast. This implies that if you try to modify the
structure of a collection by adding or removing elements from it, after the Iterator is
created, the Iterator will throw the exception ConcurrentModificationException.
But this doesn’t happen if you modify the collection by using the Iterator’s own add
or remove methods. This important behavior prevents collections from returning arbi-
trary values during concurrent access.

 As we move on to the next section to discuss more interfaces (namely, Set, List,
and Deque), you’ll notice how each of them might suggest a different implementation
of the methods from the Collection interface, to support the specific data structure
that they represent.

4.7 Creating and using List, Set, and Deque implementations

Each of the interfaces List, Set, and Deque model different data structures. The List
interface allows null and duplicate values and retains the order of insertion of objects.
Set doesn’t allow addition of duplicate objects. Deque is a linear collection that sup-
ports the insertion and removal of elements at both its ends.

 In the following sections, when you further explore these interfaces and their
implementations, you’ll notice the similarities in how each implementation is created.
Let’s explore the List interface and its implementations.

4.7.1 List interface and its implementations

The List interface models an ordered collection of objects. It returns the objects to
you in the order in which you added them to a List. It allows you to store duplicate
elements. Figure 4.11 shows valid example data that you’d typically store in a List.

 In a List, you can control the position where you want to store an element. This is
the reason that this interface defines overloaded methods to add, remove, and retrieve

[4.5] Create and use List, Set, and Deque implementations

List of shopping items

1. External HDD

2. iPhone5s

3. Wooden frame

4. Black ink

Sequence of pizza orders

1. Deliver XYZ to ABC.

2. Deliver ABX to YYY.

3. Deliver MM to ZZ.

4. Deliver XYZ to ABC.

Figure 4.11 Examples of
data elements that you
could store in a List
Licensed to Mark Watson <nordickan@gmail.com>

277Creating and using List, Set, and Deque implementations
elements at a particular position. Apart from including the iterator method to return
an Iterator, List also includes a method to return a ListIterator, to iterate the
complete list or a part of it. Figure 4.12 shows
the methods of the List interface, grouped by
their functionality to help you to retain the
information better.

 In this section, I’ll cover only one of the two
implementations of interface List: ArrayList
(shown in figure 4.13). Because the other List
implementation, LinkedList, also implements
the interface Deque, I’ll cover it in the next sec-
tion on Deque.

Interface List

Query methodsModification methods

Add elements

add(E e)

add(int index, E e)

addAll(Collection
<? extends E> c)

addAll(int index,
Collection
<? extends E> c)

Remove elements

clear()

remove(int index)

Modify elements

set(int index, E c)

remove(Object o)

removeAll
(Collection<?> c)

retainAll
(Collection<?> c)

contains(Object o)

equals(Object o)

get(int index)

isEmpty()

lastIndexOf
(Object o)

subList(int from,
int to)

indexOf(Object o)

Miscellaneous

hashCode()

toArray()

toArray(T[] a)

Iterator methods

iterator()

listIterator()

listIterator
(int index)

containsAll
(Collection<?> c)

size()

Figure 4.12 Methods of the List interface, grouped by their functionality

Queue

DequeArrayList

List

LinkedList

Figure 4.13 The List interface and its
implementations (on the exam)
Licensed to Mark Watson <nordickan@gmail.com>

278 CHAPTER 4 Generics and collections

ry

con

fin
ARRAYLIST CLASS

An ArrayList is a resizable array implementation of the List interface. It’s interest-
ing to note that internally, an ArrayList uses an array to store its elements. An Array-
List defines multiple constructors:

ArrayList()
ArrayList(Collection<? extends E> c)
ArrayList(int initialCapacity)

Class ManipulateArrayList creates an ArrayList and manipulates it using methods
add(), remove(), set(), and contains():

class ManipulateArrayList {
 public static void main(String args[]) {
 ArrayList<String> list = new ArrayList<>();

 list.add("Harry");
 list.add("Selvan");
 list.add("Harry");

 list.add(0, "Paul");

 list.remove("Harry");

 String oldValue = list.set(0, "Shreya");

 list.get(7);

 System.out.println("list contains Harry : " +
 list.contains("Harry"));

 ListIterator<String> iterator = list.listIterator();
 while (iterator.hasNext())
 System.out.println(iterator.next());
 }
}

It’s interesting to note that an ArrayList uses the size variable to keep track of the
number of elements inserted in it. By default, an element is added to the first available
position in the array. But if you add an element to an earlier location, the rest of the
list elements are shifted to the right. Similarly, if you remove an element that isn’t the
last element in the list, ArrayList shifts the elements to the left. As you add more ele-
ments to an ArrayList that can’t be added to its existing array, it allocates a bigger

Constructs empty list with
initial capacity of 10

Constructs list containing elements
of specified collection, in the order
they’re returned by iterator

Constructs empty list with
specified initial capacity

Creates ArrayList
with default initial
capacity of 10.

Adds String objects
Harry, Selvan, and Harry;
duplicate values allowed

Adds String object Paul at
first position, shifting existing
list elements to right

Uses equals() to find and
remove first occurrence of
value matching String Har

Replaces
value at

position 0
with String

Shreya,
retrieving
replaced

value. Retrieves element at position 7;
throws IndexOutOfBoundsException
because only three elements
remain in listtains() searches

sequentially and
uses equals() to
d first matching

occurrence

List can return
multiple iterators,
Iterator and
ListIterator.

hasNext() returns
boolean value indicating
whether iterator can
access more valuesnext() accesses and

returns next value
Licensed to Mark Watson <nordickan@gmail.com>

279Creating and using List, Set, and Deque implementations
array and copies its elements to the new array. An ArrayList maintains a record of its
size, so that you can’t add elements at arbitrary locations. Figure 4.14 shows how ele-
ments are added, removed, and modified in an ArrayList.

Harry

0 1 2 3 4 5 6 7 8 9

create an ArrayList

<String>

a) Create an ArrayList
with initial capacity 10

b) Size = 0

0 1 2 3 4 5 6 7 8 9

list.add (“Harry”)

list.add (“Selvan”)

list.add (“Harry”)

a) Add elements in

sequence

b) Size = 3

Selvan

Harry

Paul

0 1 2 3 4 5 6 7 8 9

list.add (0 “Paul”)

a) Add “Paul” at

position 0

b) Shift elements

to right

c) Size = 4

Harry Harry

Selvan

Paul

0 1 2 3 4 5 6 7 8 9

list.remove (“Harry”)

a) Remove first

occurrence of “Harry”

b) Shift elements

to left

c) Size = 3

Selvan

Harry

Shreya

0 1 2 3 4 5 6 7 8 9

list.set (0 “Shreya”)
a) Replace element

at position 0

Selvan

Harry

Shreya

0 1 2 3 4 5 6 7 8 9

list.get (7)

a) Size of ArrayList
with occupied

position = size = 3

b) 7>3

c) Throw exception

Selvan

Harry

IndexOutOf
BoundsException

Figure 4.14 An ArrayList offers a resizable array. Internally, it uses an array to store its elements. It
manipulates this array to add, remove, or modify ArrayList elements. The elements of the internal array
are moved to the left or right, when elements are removed from or added to it, respectively. If the ArrayList
exceeds the existing size of the internal array, its elements are copied to a new array with increased size.
Licensed to Mark Watson <nordickan@gmail.com>

280 CHAPTER 4 Generics and collections
What happens when you ask an ArrayList to remove an object by using method
remove(Object obj)? It sequentially searches the ArrayList to find the target object.
Have you ever wondered how the class ArrayList determines the equality of objects?
In the preceding example, you’re trying to remove a String object with the value
Harry. ArrayList compares the target object and the object that it stores by using
method equals(). If a match is found, the ArrayList removes the first occurrence of
the String value Harry.

EXAM TIP To remove an element, an ArrayList first searches through its
elements to find an element that can be considered equal to the target ele-
ment. It does so by calling method equals() on the target object and its
own objects, one by one. If a matching element is found, remove(Object)
removes the first occurrence of the match found.

IMPORTANCE OF THE EQUALS METHOD IN FINDING AND REMOVING VALUES FROM AN ARRAYLIST

The example code in the preceding section uses String instances, which override
method equals(). Let’s work with an example in which the class, whose objects are
stored by an ArrayList, doesn’t override method equals().

 In the following example, class UsingEquals stores Emp instances in an ArrayList.
Class UsingEquals tries to remove an Emp object from its ArrayList by using method
remove(). Do you think it’ll work? Here’s the code:

class UsingEquals {
 public static void main(String args[]) {
 ArrayList<Emp> list = new ArrayList<Emp>();
 list.add(new Emp(121, "Shreya"));
 list.add(new Emp(55, "Harry"));
 list.add(new Emp(15, "Paul"));
 list.add(new Emp(121, "Shreya"));

 System.out.println(list.size());

 Emp emp = new Emp (121, "Shreya");
 list.remove(emp);

 System.out.println(list.size());
 }
}
class Emp {
 int id;
 String name;
 Emp(int id, String name) {
 this.id = id;
 this.name = name;
 }
}

In the preceding example, no Emp objects were removed from list. This is because
Emp doesn’t define method equals(), so the default implementation of method
equals() of class Object is used. As you already (should) know, this compares the
object references for equality and not the object contents. So method remove() fails

Create an
ArrayList of
Emp objects.

Prints “4”

Tries to remove object
referred by emp from list

No match found; no
objects removed;
prints “4”.
Licensed to Mark Watson <nordickan@gmail.com>

281Creating and using List, Set, and Deque implementations

s
 is

at

ce

to find a matching object referred by emp in list. The answer is to override method
equals() in class Emp (modified code in bold):

class Emp {
 int id;
 String name;
 Emp(int id, String name) {
 this.id = id;
 this.name = name;
 }
 public boolean equals(Object obj) {
 if (obj instanceof Emp) {
 Emp emp = (Emp)obj;
 if (emp.id == this.id && emp.name.equals(this.name))
 return true;
 }
 return false;
 }
}

With the preceding definition of class Emp, class UsingEquals will be able to find and
remove a matching value for the Emp instance referred by emp.

EXAM TIP If you’re adding instances of a user-defined class as elements
to an ArrayList, override its method equals() or else its methods
contains() or remove() might not behave as expected.

I’ve often observed that when people read the collection framework (which is seemingly
complicated), they tend to overlook simple concepts. For example, here’s one simple
concept: reference variables store a reference to the object that they refer to, and they
can be reassigned a new object. In the next “Twist in the Tale” exercise, let’s see how this
concept can be used on the exam to test you on the collection framework.

What is the output of the following code?

import java.util.*;
class RemoveArrayListElements {
 public static void main(String args[]) {
 ArrayList<Integer> list = new ArrayList<>();
 Integer age1 = 20;
 Integer age2 = 20;
 list.add(age1);
 list.add(age2);
 System.out.print(list.size() + ":");
 age1 = 30;
 list.remove(age1);
 System.out.print(list.size());
 }
}

Twist in the Tale 4.3

equals() return
true when Emp
compared with
another Emp th
shares same
value for instan
variables id and
name
Licensed to Mark Watson <nordickan@gmail.com>

282 CHAPTER 4 Generics and collections
a 1:1
b 2:1
c 2:2
d 1:0
e 2:0

EXAM TIP The ArrayList methods clear(), remove(), and removeAll()
offer different functionalities. clear() removes all the elements from an
ArrayList. remove(Object) removes the first occurrence of the specified
element, and remove(int) removes the element at the specified position.
removeAll() removes from an ArrayList all of its elements that are con-
tained in the specified collection.

The other important methods of class ArrayList are get() and contains().

The other implementation of the List interface, LinkedList, also implements the
Deque interface, covered in the next section.

4.7.2 Deque interface and its implementations

A queue is a linear collection of objects. A Deque is a double-ended queue, a queue
that supports insertion and deletion of elements at both its ends. Let’s revisit the
hierarchy of the Deque interface, as shown in figure 4.15. The Deque interface extends
the Queue interface.

 As a double-ended queue, a Deque can work as both a queue and a stack. A queue is
a linear collection of elements, in which the elements are added to one end and are
processed (or taken off) from the other end. For example, in a queue of people at a

Iterable

List Set

SortedSet

<<extends>>

Queue

Collection

Map

SortedMapDeque

Figure 4.15 Hierarchy of the Deque interface
Licensed to Mark Watson <nordickan@gmail.com>

283Creating and using List, Set, and Deque implementations
ticket counter, new persons enter the queue at its end. The tickets are issued to the
people at its beginning. A queue is also referred to as a first in, first out (FIFO) list.

 A stack is a linear collection of elements that allows objects to be added and removed
at the same end. For example, in a stack of plates, the plates are always added to the top
and removed from the top. A stack is also referred to as a last in, first out (LIFO) list data
structure. Figure 4.16 shows real-world examples of a queue and a stack.

 The Deque interface defines multiple methods to add, remove, and query the exis-
tence of elements from both its ends. Because Deque works as both a queue and a stack,
it’s easier to get a hang of its methods if you understand the operations and corre-
sponding methods used for queues and stacks. As I mentioned previously, in a queue,
elements are typically added to its tail (or end), and taken off from its head (or begin-
ning). Figure 4.17 shows the Queue methods (Deque extends Queue) used to add ele-
ments to the end of a queue and remove or query elements from its beginning.

Ticket counter Stack of plates

Last plate that enters

the stack is the first

plate to get off it

First in, first out (FIFO) Last in, first out (LIFO)

Figure 4.16 Real-world examples of a queue and a stack

head tail

Remove elements

remove

Query elements

element

peer

Query and remove

poll

Add elements

add(E)

offer(E)

0 1 2 3 4 5 6 7

Figure 4.17 Queue methods used to work with Deque as a FIFO data structure
Licensed to Mark Watson <nordickan@gmail.com>

284 CHAPTER 4 Generics and collections
Now, let’s see how a Deque works as a stack. In a stack, elements are added and taken
off the same end of the queue: its head. Figure 4.18 shows the stack methods used to
add and remove elements from its head, using Deque as a LIFO data structure.

 For a stack, which allows insertion at only one end, the purpose of method push()
is implicit: elements are added at (and removed from) the top. Similarly, with Queue,
which usually enables insertion only at its tail, the purpose of method add() or
offer() seems implicit: to insert elements at the tail of the list. Now, because Deque
supports a double-linked list, supporting insertion at both its ends, method add() or
offer() could be ambiguous. So Deque supports other methods with explicit pur-
poses, including addFirst(), addLast(), offerFirst(), and offerLast(). So you can
see multiple methods that serve the same purpose. Figure 4.19 shows the Deque inter-
face, representing it as a list with a head and tail. Elements of all implementations of
Deque might not be implemented as a contiguous list. It’s just to show the beginning
and end of a list. This figure shows the methods that are used to add, delete, and
query methods at both ends of Deque. The figure also shows other methods that
remove and query the Deque elements at random positions.

EXAM TIP The legacy class Stack is used to model a LIFO list. The addi-
tion, removal, and query operations of a Stack are named push(), pop(),
and peek(). Though the Deque interface isn’t related to Stack, Deque
supports a double-ended queue and can be used as a Stack. Deque also
defines the methods push(), pop(), and peek() to add, remove, and
query elements at its beginning.

Though the Deque implementations aren’t required to prohibit the addition of null
values, it is strongly recommended that they do because certain Deque implementa-
tions return null to signal that the underlying list is empty.

head

Add elements

push(E)

Remove elements

pop()

Query and remove elements

peek()

0 1 2 3 4 5 6 7

Figure 4.18 The stack methods
used to work with Deque as a
LIFO data structure
Licensed to Mark Watson <nordickan@gmail.com>

285Creating and using List, Set, and Deque implementations
addFirst(E)

offerFirst(E)

bush(E)

0 1 2 3 4 5 6 7

tail

Add elements to head

remove()

removeFirst()

pop()

Remove elements from head

element()

getFirst()

peekFirst()

peek()

Query elements at head

removeLast()

Removes element at tail

getLast()

peekLast()

Query elements at tail

pollLast()

Queries and removes from tail

add(E)

addLast(E)

offerLast(E)

offer(E)

Add elements to tail

remove(Object)

removeFirstOccurrence()

removeLastOccurrence()

Remove at random position

contains(Object O)

size()

Remove at random position

iterator()

descendingIterator()

Iterator

poll()

pollFirst()

Query and remove from head

head

Figure 4.19 Deque methods used to add, remove, and query elements at both its ends. The figure
also includes other methods, which operate at random positions.
Licensed to Mark Watson <nordickan@gmail.com>

286 CHAPTER 4 Generics and collections

De

De
IMPLEMENTATIONS OF THE DEQUE INTERFACE

This section covers two main Deque implementations: ArrayDeque and LinkedList, as
shown in figure 4.20.

CLASS ARRAYDEQUE

Let’s get started with class ArrayDeque. It’s a resizable array implementation of the
Deque interface. Here’s a list of constructors of this class:

ArrayDeque()
ArrayDeque(Collection<? extends E> c)
ArrayDeque(int numElements)

Let’s work with an example using the ArrayDeque constructor and other methods from
this class:

import java.util.*;
class TestArrayDeque {
 public static void main(String... args) {
 String strArray[] = {"A1", "B2", "C3"};

 ArrayDeque<String> arrDeque = new
 ArrayDeque<String>(Arrays.asList(strArray));

 arrDeque.push("D4");
 arrDeque.offer("E5");

 //arrDeque.push(null);

 System.out.println(arrDeque.pop());
 System.out.println(arrDeque.remove());

 arrDeque.add("F6");
 System.out.println(arrDeque.peek());

 System.out.println(arrDeque); #J
 }
}

Queue

Deque

List

LinkedList ArrayDeque
Figure 4.20 The Deque interface and
its implementations (on the exam)

Constructs empty array deque with
initial capacity to hold 16 elements.

Constructs deque containing
elements of specified
collection, in order of return
by collection’s iterator

Constructs empty array deque
with initial capacity to hold
specified number of elements

String
array

Creates ArrayDeque
from String List;

Arrays.asList converts
array to List.

push() adds
element at

que beginning

offer() adds
element at
Deque end

Can’t add null to
ArrayDeque; will throw
NullPointerException.

pop() returns
and removes

element at
que beginning

remove() also returns and removes
element at Deque beginning

add() adds an element
to end of queue

peek() queries and returns
element at beginning of queue
Licensed to Mark Watson <nordickan@gmail.com>

287Creating and using List, Set, and Deque implementations
Here’s the output of the preceding code:

D4
A1
B2
[B2, C3, E5, F6]

Whenever Deque adds or removes an element, it modifies its pointers to the beginning
and end. The take-away from the preceding code is that you need to take note of the
methods that add to the beginning or end of the list. You also need to take note of
methods like peek(), which only queries Deque; remove(), which removes elements
from Deque; and poll(), which queries and removes an element from Deque. Method
poll() queries and removes, and method remove() just removes. Method poll()
returns null when Deque is empty and remove() throws a runtime exception.

EXAM TIP All the insertion methods (add(), addFirst(), addLast(),
offer(), offerFirst(), offerLast(), and push()) throw a NullPointer-
Exception if you try to insert a null element into an ArrayDeque.

This is a classic example of how to implement a requirement or a recom-
mendation in a concrete class. The Deque interface suggests that the
implementing classes shouldn’t allow null elements because some of its
special methods return null to indicate that the underlying Deque is
empty. To implement this suggestion, the methods that add elements to
class ArrayDeque throw NullPointerException when you try to add a null
element to it.

You can iterate over the elements of Deque by using an Iterator, returned by methods
iterator() and descendingIterator().

NOTE Together with the Deque-specific methods discussed in this section,
ArrayDeque also implements methods inherited from the Collection
interface, such as contains(), indexOf(), and others.

CLASS LINKEDLIST

Class LinkedList implements both the List and Deque interfaces. So it’s a double-
linked list implementation of the List and Deque interfaces. It implements all List
and Deque operations. Unlike ArrayDeque, it permits addition of null elements.

 Here are the constructors of class LinkedList:

LinkedList()
LinkedList(Collection<? extends E> c)

So what happens when you add elements to or remove elements from a LinkedList?
Let’s work with an example:

import java.util.*;
class TestLinkedList {

Constructs
empty list.

Constructs list containing elements
of specified collection, in order of
return by collection’s iterator
Licensed to Mark Watson <nordickan@gmail.com>

288 CHAPTER 4 Generics and collections

Cre
Li

Str
 public static void main(String... args) {
 LinkedList<String> list = new LinkedList<String>();

 list.offer("Java");
 list.push("e");
 list.add(1, "Guru");

 System.out.println(list);

 System.out.println(list.remove("e"));

 Iterator<String> it = list.iterator();
 while(it.hasNext()) System.out.println(it.next());
 }
}

Figure 4.21 shows how a LinkedList maintains a reference to its first and last ele-
ments. It also shows how, in the absence of using an array, each node in a LinkedList
maintains a reference to its previous and next element. Whenever you add elements
to or remove elements from a LinkedList, it modifies the previous and next refer-
ences of its adjacent elements. As you can see, because each list element maintains a
reference to its previous and next element, this list can be traversed in forward and
reverse directions.

ates empty
nkedList of
ing objects.

Uses offer() to add
String "Java” to end

Uses push() to
add String "e"
to beginning.

Uses add(1, "Guru") to insert
"Guru" at position 1, adjusting
references for adjacent values.

Finds and removes first
matching occurrence
for String object "e"

Iterates in sequential
manner, from first
element to last

New LinkedList
<String>();

first null

last null

list.offer
("Java")

first lastitem:

prev: null

next: null

Java

Javalist.push("e") first item:

prev: null

next:

e lastitem:

prev:

next: null

Javalist.remove
("e")

first item:

prev: null

next:

lastitem:

prev:

next: null

Guru

Guru

list.add
(1, "Guru")

first item:

prev: null

next:

e item:

prev:

next:

Java lastitem:

prev:

next: null

Figure 4.21 Pictorial representation of code that adds elements to and removes elements from a
LinkedList
Licensed to Mark Watson <nordickan@gmail.com>

289Creating and using List, Set, and Deque implementations
Note the difference in internal manipulation of an ArrayList or ArrayDeque and a
LinkedList. A LinkedList doesn’t move a set of elements when you add a new ele-
ment to it. It modifies the value of the reference variables prev and next, for adjacent
elements, to keep track of its sequence of elements. This is unlike ArrayList or
ArrayDeque, which copy a set of array elements to the right or left, when elements are
added to or removed from it.

 On the exam you’ll get questions to choose the most appropriate interface or class
based on a given scenario. A LinkedList is like an ArrayList (ordered by index) but
the elements are double-linked to each other. So besides the methods from List, you
get a bunch of other methods to add or remove at the beginning and end of this list.
So it’s a good choice if you need to implement a queue or a stack. A LinkedList is use-
ful when you need fast insertion or deletion, but iteration might be slower than an
ArrayList.

EXAM TIP Because a LinkedList implements List, Queue, and Deque, it
implements methods from all these interfaces.

In the next “Twist in the Tale” exercise, let me modify the preceding code and see
whether you can determine how that affects the code output. Let’s see whether you
still remember the inheritance concepts covered in chapter 3.

What is the output of the following code?

import java.util.*;
class TestLinkedList {
 public static void main(String... args) {
 List<String> list = new LinkedList<String>();

 list.offer("Java");
 list.push("e");
 list.add(1, "Guru");
 list.remove("e");

 System.out.println(list);
 }
}

a [Guru, Java]
b [Java, Guru]
c [e, Guru, Java]
d Compilation error
e Runtime exception

Let’s explore another important interface, Set, and its implementing classes in the
following section.

Twist in the Tale 4.4
Licensed to Mark Watson <nordickan@gmail.com>

290 CHAPTER 4 Generics and collections
4.7.3 Set interface and its implementations
The Set interface models the mathematical Set abstraction. It’s a collection of objects that
doesn’t contain duplicate elements. Figure 4.22 shows valid and invalid examples of Set.

EXAM TIP The Set interface doesn’t allow duplicate elements and the
elements are returned in no particular order.

To determine the equality of objects, Set uses its method equals(). For two elements,
say e1 and e2, if e1.equals(e2) returns true, Set doesn’t add both these elements.
Set defines methods to add and remove its elements. It also defines methods to query
itself for the occurrence of specific objects. Because it indirectly implements the
Iterable interface, it includes method iterator() to retrieve an Iterator. It also
includes methods to convert it into an array. Figure 4.23 shows the methods of the Set
interface, grouped for convenience.

Red

Valid set

Green

Yellow

Red

Red

Invalid set

Duplicate

elements
Green

Yellow

Figure 4.22 Valid and invalid examples of Set

Interface Set

Query methodsModification methods

Add elements

add(E e)

addAll(Collection
<?extendsE> c)

Remove elements

clear()

remove(Object o)

removeAll
(Collection<?> c)

retainAll
(Collection<?> c)

contains(Object o)

equals(Object o)

isEmpty()

Miscellaneous

hashCode()

iterator()

toArray()

toArray(T[] a)

containsAll
(Collection<?> c)

size()

Figure 4.23 Methods of the Set interface, grouped for convenience
Licensed to Mark Watson <nordickan@gmail.com>

291Creating and using List, Set, and Deque implementations
The exam will query you on the use of Set and its methods. For example, it may query
on the appropriate scenarios for using Set or its implementation. It might include a
question such as this: When you try to add duplicate String values to a Set, does it
throw an exception or simply ignore the duplicate value?

 The answer to these questions can vary with the implementing classes. For exam-
ple, one implementation may return false if you add a duplicate String value, but
another may throw an exception. Let’s look at implementations of the Set interface,
how they’re related, and the behavior of their methods in the next section.

4.7.4 Set implementation classes

For the exam, we’ll work on the main Set implemen-
tation classes: HashSet, LinkedHashSet, and Tree-
Set, as shown in figure 4.24.

CLASS HASHSET

Class HashSet implements the Set interface. As
required by the Set interface, it doesn’t allow dupli-
cate elements. Also, it makes no guarantee to the
order of retrieval of its elements. It’s implemented
using a HashMap. To store and retrieve its elements, a
HashSet uses a hashing method, accessing an
object’s hashCode value to determine the bucket in
which it should be stored.

 Before I discuss HashSet further, it’s important
that you understand the meaning of buckets and
importance of methods hashCode() and equals(). Let’s use a simple example of a
hotel—when guests leave the hotel they must leave their room key at reception. There
the key is put in one big bucket. So when guests arrive they say their room number
and the receptionist has to go through all the keys until he finds the matching one
(compare it with method equals()). Then a new system is introduced. Instead of hav-
ing one big bucket, they have some smaller buckets, each with a label (1–9). From now
on they apply the same algorithm each time—when the room key is left at reception,
the receptionist adds all numbers of the room and repeats this process until just 1 num-
ber is left (e.g. 236 -> 2+3+6=11 -> 1+1=2). The key is put in the bucket with that number
(hashCode). When guests arrive and want their key back, they say the room number, the
receptionist applies the algorithm (compare it with hashCode()), goes to the corre-
sponding bucket, and searches for the matching room key (method equals()).

 Let’s see what happens when the class AddElementsToHashCode tries to add unique
and duplicate objects to a HashSet:

class AddElementsToHashSet {
 public static void main(String args[]) {
 String str1 = new String("Harry");
 String str2 = new String("Shreya");

Set

SortedSet

HashSet

TreeSet

LinkedHashSet

Figure 4.24 The Set interface and
its implementations (on the exam)
Licensed to Mark Watson <nordickan@gmail.com>

292 CHAPTER 4 Generics and collections
 String str3 = new String("Selvan");
 String str4 = new String("Shreya");

 HashSet<String> set = new HashSet<>();

 set.add(str1);
 set.add(str2);
 set.add(str3);
 set.add(str4);

 for (String e : set) System.out.println(e);
 }
}

In the preceding code, the string object "Shreya" referred by the variable str4 isn’t
added to set. HashSet uses the hashCode() values of the string objects to determine
the appropriate bucket to add them to. A bucket can store multiple objects. Before
adding an object, HashSet compares its existing elements in the target bucket by
using methods hashCode() and equals() to avoid duplicates being added.

 A few important points about working with the preceding example code on
HashSet:

■ Method hashCode() doesn’t call method equals().
■ Method equals() doesn’t call method hashCode().
■ Classes should override their hashCode() methods efficiently to enable collec-

tion classes like HashSet to store them in separate buckets.

To make the concept sink in, here’s the next “Twist in the Tale” exercise for you.
Let’s examine the role of equals() and hashCode() in storing and retrieving ele-
ments in HashSet.

Given the following definition of class Person, which options are correct for class
Twist4_5?

class Person {
 String name;
 Person(String name) { this.name = name; }
 public String toString() { return name; }
}
class Twist4_5 {
 public static void main(String args[]) {
 HashSet<Person> set = new HashSet<Person>();
 Person p1 = new Person("Harry");
 Person p2 = new Person("Shreya");
 Person p3 = new Person("Selvan");
 Person p4 = new Person("Shreya");
 set.add(p1);
 set.add(p2);
 set.add(p3);

Twist in the Tale 4.5

Create new
HashSet<String>

Add str1
to set. Add str2 to set.

Add str3
to set.

Duplicate String “Shreya”.
Not added to set. Prints Harry, Shreya,

and Selvan (not
always in this order).
Licensed to Mark Watson <nordickan@gmail.com>

293Creating and using List, Set, and Deque implementations
 set.add(p4);
 for (Person e : set) System.out.println(e);
 }
}

a HashSet adds all fours objects, referred to by variables p1, p2, p3, and p4.
b If class Person overrides method hashCode() as follows, only p1 would be added

to set:

public int hashCode() {
 return 10;
}

c If class Person overrides both methods hashCode() and equals() as follows,
only p1 would be added to set:

public boolean equals(Object o) {
 return true;
}
public int hashCode() {
 return 10;
}

d If class Person overrides only method equals() as follows, only p1, p2, and p3
will be added to set:

public boolean equals(Object o) {
 if (o instanceof Person) {
 return this.name.equals(((Person)o).name);
 }
 else
 return false;
}

The following example shows some of the methods of class HashSet in action:

import java.util.*;
class ManipulateHashSet {
 public static void main(String args[]) {
 List<String> list = new ArrayList<String>();
 list.add("Shreya");
 list.add("Selvan");

 HashSet<String> set = new HashSet<String>();
 set.add("Harry");
 set.addAll(list);

 System.out.println(set.contains("Shreya"));
 System.out.println(set.remove("Selvan"));

 for (String e : set) System.out.println(e);
 }
}

Creates and
populates ArrayList.

Adds all elements from
list; no duplicate elements.

Returns true.

Selvan is removed
from HashSet.
Licensed to Mark Watson <nordickan@gmail.com>

294 CHAPTER 4 Generics and collections
EXAM TIP Watch out for questions that add null to a HashSet. A Hash-
Set allows storing of only one null element. All subsequent calls to stor-
ing null values are ignored.

Class HashSet uses hashing algorithms to store, remove, and retrieve its elements. So
it offers constant time performance for these operations, assuming that the hash func-
tion disperses its elements properly among its buckets. Covering writing an efficient
hash function is beyond the scope of this book. You can find complete books on this
topic. Efficient and faster removal, addition, and retrieval of objects have always been
a requirement, and many have completed a doctorate on it.

NOTE Access the source code of class String from the Java API. Examine
how it overrides hashCode(), using its individual characters to generate
its hash code.

CLASS LINKEDHASHSET

A LinkedHashSet offers the benefits of a HashSet combined with a LinkedList. It
maintains a double-linked list running through its entries. As with a LinkedList, you
can retrieve objects from a LinkedHashSet in the order of their insertion. Like a
HashSet, a LinkedHashSet uses hashing to store and retrieve its elements quickly. A
LinkedHashSet permits null values. LinkedHashSet can be used to create a copy of a
Set with the same order as that of the original set.

 In the following example code, class UseLinkedHashSet creates LinkedHashSet of
City. It uses method add() to add individual City instances and method addAll() to
add all objects of the specified collection:

class City {
 String name;
 City(String name) {
 this.name = name;
 }
 public String toString() {
 return name;
 }
}
class UseLinkedHashSet {
 public static void main(String args[]) {
 Set<City> route = new LinkedHashSet<>();

 route.add(new City("Seattle"));
 route.add(new City("Copenhagen"));
 route.add(new City("NewDelhi"));

 List<City> extendedRoute = new ArrayList<>();
 extendedRoute.add(new City("Beijing"));
 extendedRoute.add(new City("Tokyo"));

 route.addAll(extendedRoute);

 Iterator<City> iter = route.iterator();
 while (iter.hasNext())
 System.out.println(iter.next());

Objects from LinkedAdd-
Set can be retrieved in
their insertion order.

List extends
Collection.

addAll() accepts
Collection object.

Prints “false” because City
doesn’t override equals().
Licensed to Mark Watson <nordickan@gmail.com>

295Creating and using List, Set, and Deque implementations

Const
new, e

tree
so

accor
to spec
compa

e
 System.out.println(route.contains(new City("Seattle")));
 }
}

The output of the preceding code is:

Seattle
Copenhagen
NewDelhi
Beijing
Tokyo
false

In the preceding code, note that addAll() accepts a Collection object. So you can
add elements of an ArrayList to a LinkedHashSet. The order of insertion of objects
from extendedRoute to route is determined by the order of objects returned by
extendedRoute’s iterator (ArrayList objects can be iterated in the order of their
insertion). Because you can retrieve objects from a LinkedHashSet in the order of
their insertion, iter iterates the City objects in the order of their insertion (as shown
in the code output).

EXAM TIP Watch out for exam questions that create a LinkedHashSet by
using a reference variable of type List. A LinkedHashSet implements the
Collection and Set interfaces, not List.

The next class on the exam is TreeSet, which uses a binary tree behind the scenes.

CLASS TREESET

A TreeSet stores all its unique elements in a sorted order. The elements are ordered
either on their natural order (achieved by implementing the Comparable interface)
or by passing a Comparator, while instantiating a TreeSet. If you fail to specify either
of these, TreeSet will throw a runtime exception when you try to add an object to it.

 Unlike the other Set implementations like HashSet and LinkedHashSet, which use
equals() to compare objects for equality, a TreeSet uses method compareTo() (for
the Comparable interface) or compare() (for the Comparator interface) to compare
objects for equality and their order. As discussed in detail in the next sections on the
Comparator and Comparable interfaces, the implementation of method compare() or
compareTo() should be consistent with method equals() of the object instances,
which are added to a TreeSet. If two object instances are equal according to their
method equals(), but not according to their methods compare() or compareTo(),
the Set can exhibit inconsistent behavior.

 Constructors of class TreeSet

TreeSet()
TreeSet(Collection<? extends E> c)
TreeSet(Comparator<? super E> comparator)
TreeSet(SortedSet<E> s)

Constructs new, empty tree set, sorted
according to natural ordering of its elements

Constructs new tree set containing
elements in specified collection, sorted
according to natural ordering of elements

ructs
mpty
 set,
rted
ding
ified

rator

Constructs new tree set containing sam
elements and using same ordering as
specified sorted set
Licensed to Mark Watson <nordickan@gmail.com>

296 CHAPTER 4 Generics and collections

Tre

S

s
Behind the scenes, a TreeSet uses a Black-Red binary tree. This tree modifies itself as
you add more values to it so it has the least number of levels and the values are distrib-
uted as evenly as possible. Let’s create a TreeSet, using another collection of objects:

class TestTreeSet {
 public static void main(String args[]) {
 String[] myNames = {"Shreya", "Harry", "Paul", "Shreya", "Selvan"};
 TreeSet<String> treeSetNames = new
 TreeSet<String>(Arrays.asList(myNames));
 Iterator it = treeSetNames.descendingIterator();
 while (it.hasNext())
 System.out.println(it.next());
 }
}

EXAM TIP In the absence of passing a Comparator instance to a TreeSet
constructor, the objects that you add to a TreeSet must implement
Comparable. In the preceding example, String (which implements
Comparable) objects are added to the TreeSet. Watch out for storing
objects of wrapper classes, Enum and File in a TreeSet; they all imple-
ment Comparable. The natural order of enum constants is the order in
which they’re declared. StringBuffer and StringBuilder don’t imple-
ment Comparable.

All the collection classes include constructors to use another collection object to
instantiate itself. But depending on how it’s implemented, it might not include all the
elements from the collection passed to its constructor.

 A List allows the addition of duplicate elements, but a Set doesn’t. In the preced-
ing example, when you create a TreeSet using a List, which contains duplicate ele-
ments, one of the duplicate elements is dropped from the TreeSet. TreeSet also
includes iterators to iterate over its values in ascending or descending order.

4.8 Map and its implementations

Unlike the other interfaces from the collections framework, like List and Set, the
Map interface doesn’t extend the Collection interface. In this section, you’ll work
with Map and SortedMap interfaces and their implementations like HashMap, Linked-
HashMap, and TreeMap.

4.8.1 Map interface

Imagine locking or unlocking the door of your home using a key. This key allows you
to restrict access to your home to a key holder. You can compare a Map with a pool of
keys, mapped to the values that they can unlock. A key can map to a 0 or a 1 value.

eSet created
using List of
tring values

descendingIterator()
returns TreeSet value
in descending order.

Prints “Shreya
Selvan Paul
Harry”.

[4.6] Create and use Map implementations
Licensed to Mark Watson <nordickan@gmail.com>

297Map and its implementations
 A Map doesn’t allow the addition of duplicate keys.
Items added to a Map aren’t ordered. The retrieval
order of items from a Map object isn’t guaranteed to
be the same as its insertion order. The Map interface
declares methods to add or delete a key-value pair or
query the existence of a key or value. It also defines
methods to retrieve the set of keys, values, and key-
value pairs.

EXAM TIP Map objects don’t allow the addi-
tion of duplicate keys.

The addition of a null value as a key or value depends
on a particular Map implementation. For example,
HashMap and LinkedHashMap allow the insertion of
null as a key, but TreeMap doesn’t—it throws an exception.

 As shown in figure 4.25, the Map implementations on the exam are HashMap,
LinkedHashMap, and TreeMap. Let’s get started with HashMap.

4.8.2 HashMap
A HashMap is a hash-based Map that uses the hash value of its key (returned by hash-
Code()) to store and retrieve keys and their corresponding values. Each key can refer
to a 0 or 1 value. The keys of a HashMap aren’t ordered. The HashMap methods aren’t
synchronized, so they aren’t safe to be used in a multithreaded environment.

EXAM TIP The keys of a HashMap aren’t ordered. The HashMap methods
aren't synchronized, so they aren’t safe to be used in a multithreaded
environment.

CREATING A HASHMAP AND ADDING VALUES TO IT
Let’s create a HashMap that stores employee names as keys and their salaries as the cor-
responding values. The following code creates a HashMap with a default initial capacity
and adds values to it using method put(Object key, Object value):

Map<String, Double> salaryMap = new HashMap<>();
salaryMap.put("Paul", 8888.8);
salaryMap.put("Shreya", 99999.9);
salaryMap.put("Selvan", 5555.5);

HashMap defines another constructor (declaration shown below), which accepts a
Map object:

HashMap(Map<? extends K,? extends V> m)

You can use the preceding constructor to create a HashMap by passing it another Map
instance:

Map<String, Double> salaryMap = new HashMap<>();
Map<String, Object> copySalaryMap = new HashMap<>(salaryMap);

Map

SortedMap

HashMap

TreeMap

LinkedHashMap

Figure 4.25 The Map interface and
its implementations (on the exam)
Licensed to Mark Watson <nordickan@gmail.com>

298 CHAPTER 4 Generics and collections
The exam might question you on whether the addition or removal of key-value pairs
to and from salaryMap will reflect in copySalaryMap. The following example shows
that when you delete a key-value pair from salaryMap, it’s not removed from copy-
SalaryMap:

Map<String, Double> salaryMap = new HashMap<>();
salaryMap.put("Paul", 8888.8);
salaryMap.put("Shreya", 99999.9);
Map<String, Object> copySalaryMap = new HashMap(salaryMap);

Set<String> keys = copySalaryMap.keySet();
for (String k : keys)
 System.out.println(k);

salaryMap.remove("Paul");

keys = copySalaryMap.keySet();
for (String k : keys)
 System.out.println(k);

EXAM TIP You can create a HashMap by passing its constructor another
Map object. Additions of new key-value pairs or deletions of existing key-
value pairs in the Map object passed to the constructor aren’t reflected in
the newly created HashMap.

On the exam watch out for the type of the key and value used by the Map object that
you pass to the HashMap constructor. The following code won’t compile:

Map<String, Double> salaryMap = new HashMap<>();
Map<Object, String> copySalaryMap = new HashMap<>(salaryMap);

Because a HashMap stores objects as its keys and values, it’s common to see code that
stores another collection object (like an ArrayList) as a value in a Map (on the exam).
For example

Map<String, List<Double>> salaryMap = new HashMap<>();

When working with generics, note how the type parameters are passed to construc-
tors. You can replace the preceding code with the following:

Map<String, List<Double>> salaryMap = new HashMap<String, List<Double>>();

But the following are invalid instantiations:

Map<String, List<Double>> salaryMap = new HashMap<<>, List<>>();
Map<String, List<Double>> salaryMap = new HashMap<String, List<>>();
Map<String, List<Double>> salaryMap =
 new HashMap<String, ArrayList<Double>>();

Create copy-
SalaryMap
using
salaryMap.

Outputs two
key values.

Remove a key-value
pair from salaryMap.

Still outputs
two key values.

Won’t
compile

Won’t
compile
Licensed to Mark Watson <nordickan@gmail.com>

299Map and its implementations
RETRIEVING KEYS AND VALUES

You can call method get() on a HashMap to retrieve the value for a key. For example

enum IceCream {CHOCOLATE, STRAWBERRY, WALNUT};

Map<String, List<IceCream>> iceCreamMap = new HashMap<>();

List<IceCream> iceCreamLst = new ArrayList<>();
iceCreamLst.add(IceCream.WALNUT);
iceCreamLst.add(IceCream.CHOCOLATE);

iceCreamMap.put("Shreya", iceCreamLst);
System.out.println(iceCreamMap.get("Shreya"));

On the exam, you might see a code snippet similar to the preceding code, with a dif-
ference in type arguments passed to the initialization of HashMap. The following code
compiles without any warning:

Map<String, List> iceCreamMap = new HashMap<>();

Methods containsKey() and containsValue() check for the existence of a key or a
value in a Map, returning a boolean value. Methods get() and containsKey() rely on
appropriate overriding of key’s hashCode() and equals() methods (discussed in
detail in the previous section on HashSet). In the following example, class Emp doesn’t
override these methods. Do you think method get() will work as expected?

class Emp {
 String name;
 String name) {
 this.name = name;
 }
}
Map<Emp, Emp> empMgrMap = new HashMap<>();
empMgrMap.put(new Emp("Shreya"), new Emp("Selvan"));
System.out.println(empMgrMap.get(new Emp("Shreya")));

The preceding code outputs null.

EXAM TIP The String class and all the wrapper classes override their
hashCode() and equals() methods. So they can be correctly used as keys
in a HashMap.

Let’s see how overriding methods hashCode() and equals() helps. Here’s the modi-
fied code, in which class Emp overrides methods hashCode() and equals():

class Emp {
 String name;
 Emp(String name) {
 this.name = name;
 }
 public int hashCode() {
 return name.hashCode();
 }

Prints “[WALNUT,
CHOCOLATE]”

Prints
“null”
Licensed to Mark Watson <nordickan@gmail.com>

300 CHAPTER 4 Generics and collections

ts
e”
 public boolean equals(Object o) {
 if (o instanceof Emp)
 return ((Emp)o).name.equals(name);
 else
 return false;
 }
}
class Test {
 public static void main(String args[]) {
 Map<Emp, Emp> empMgrMap = new HashMap<>();
 empMgrMap.put(new Emp("Shreya"), new Emp("Selvan"));
 System.out.println(empMgrMap.get(new Emp("Shreya")));
 }
}

EXAM TIP HashMap uses hashing functions to add or retrieve key-value
pairs. The key must override both methods equals() and hashCode() so
that it can be added to a HashMap and retrieved from it.

Do you think methods containsKey() and containsValue() will work as expected, if
class Emp overrides only method equals() and not method hashCode()? Here’s the
modified code (Emp doesn’t override hashCode()):

class Emp {
 String name;
 Emp(String name) {
 this.name = name;
 }
 public boolean equals(Object o) {
 if (o instanceof Emp)
 return ((Emp)o).name.equals(name);
 else
 return false;
 }
}
class Test {
 public static void main(String args[]) {
 Map<Emp, Emp> empMgrMap = new HashMap<>();
 empMgrMap.put(new Emp("Shreya"), new Emp("Selvan"));
 System.out.println(empMgrMap.containsKey(new Emp("Shreya")));
 System.out.println(empMgrMap.containsValue(new Emp("Selvan")));
 }
}

Class Emp in the preceding example overrides method equals() and not method
hashCode(). Because method containsKey() uses both methods hashCode() and
equals() to determine the equality of keys, the code at B outputs false. Because
method containsValue() uses method equals() and not method hashCode() to
determine the equality of HashMap values, the code at c outputs true.

EXAM TIP When objects of a class that only overrides method equals()
and not method hashCode() are used as keys in a HashMap, contains-
Key() will always return false.

Prin
“fals

 b
Prints
“true”

 c
Licensed to Mark Watson <nordickan@gmail.com>

301Map and its implementations
ADDING DUPLICATE OR NULL KEYS

What happens if you add a duplicate key to a HashMap? Will the method call be
ignored or will its new value replace the key’s previous value? The latter is true. At the
end of execution of the following code, salaryMap will store 99999.9 as the value for
key "Paul".

Map<String, Double> salaryMap = new HashMap<>();
salaryMap.put("Paul", 8888.8);
salaryMap.put("Paul", 99999.9);

EXAM TIP If you add a key-value pair to a HashMap such that the key
already exists in the HashMap, the key’s old value will be replaced with the
new value.

Do you think you can add a key-value pair to a HashMap with null as the key? The
HashMap allows the addition of a maximum of one null key. For example

Map<String, Double> salaryMap = new HashMap<>();
salaryMap.put(null, 88.8);
salaryMap.put(null, 99.9);
System.out.println(salaryMap.get(null));
String s = null;
salaryMap.put(null, 77.7);
System.out.println(salaryMap.get(s));

EXAM TIP You can add a value with null as the key in a HashMap.

REMOVING HASHMAP ENTRIES

You can use method remove(key) or clear() to remove one or all key-value pairs of a
Map. Method remove() removes the mapping for the specified key from a Map if it is
present. It returns the value associated with the key, or null if the key doesn’t exist in
the map. Method remove() is simple to work with. For example

Map<String, Double> salaryMap = new HashMap<>();
salaryMap.put("Paul", 88.8);
System.out.println(salaryMap.remove("Paul"));

EXAM TIP Method remove() can return a null value, irrespective of
whether the specified key exists in a HashMap. It might return null if a
matching key isn’t present in HashMap, or if null is stored as a value for
the specified key.

What happens if you try to remove a key-value pair from a HashMap that uses List as a
key? Here’s an example:

Map<List, String> flavorNameMap = new HashMap<>();

List<IceCream> iceCreamLst = new ArrayList<>();
iceCreamLst.add(IceCream.WALNUT);
iceCreamLst.add(IceCream.CHOCOLATE);

Prints
“99.9”

Prints
“77.7”

Removes Paul, 88.8
pair and prints “88.8”.
Licensed to Mark Watson <nordickan@gmail.com>

302 CHAPTER 4 Generics and collections
flavorNameMap.put(iceCreamLst, "Shreya");

List<IceCream> iceCreamLst2 = new ArrayList<>();
iceCreamLst2.add(IceCream.WALNUT);
iceCreamLst2.add(IceCream.CHOCOLATE);

System.out.println(flavorNameMap.remove(iceCreamLst2));

Because the size and order of elements in lists iceCreamLst and iceCreamLst2 are the
same, they’re considered equal by their equals() methods. The ArrayList also over-
rides its hashCode(), returning the same hash-code values for equal lists. This enables
method remove() to find the specified list and remove its corresponding values.

EXAM TIP For a HashMap, methods that query or search a key use the
key’s methods hashCode() and equals().

Method clear() doesn’t accept any method arguments and returns void. At the end
of execution of the following code, salaryMap wouldn’t have any key-value pairs:

Map<String, Double> salaryMap = new HashMap<>();
salaryMap.put("Paul", 88.8);
salaryMap.put("Shreya", 88.8);
salaryMap.clear();

EXAM TIP Method remove() removes a maximum of one key-value pair
from a HashMap. Method clear() clears all the entries of a HashMap.
Method remove() accepts a method parameter but clear() doesn’t.

DETERMINING THE SIZE OF HASHMAP

You can use methods size() and isEmpty() to query a HashMap’s size. Method size()
returns an int value representing the count of key-value mappings in a HashMap.
Method isEmpty() returns a boolean value—true represents a HashMap with no key-
value mappings.

COPYING ANOTHER MAP OBJECT

You can use method putAll() to copy all the mappings from the specified map to a
HashMap. What happens if the source and target HashMap have the same keys? If the
map reference passed to putAll() defines keys that already exist in this map, then the
values in this map are replaced. For example

Map<Integer, String> map = new HashMap<>();
map.put(1, "Shreya");
map.put(11, "Paul");

Map<Integer, String> anotherMap = new HashMap<>();
anotherMap.put(1, "Harry");

anotherMap.putAll(map);

Matches key referred
by iceCreamLst and
removes value "Shreya".

For Integer value 1,
anotherMap has
value "Shreya".
Licensed to Mark Watson <nordickan@gmail.com>

303Map and its implementations
EXAM TIP Method putAll() accepts an argument of type Map. It copies
all the mappings from the specified map to the map that calls putAll().
For common keys, the values of the map that calls putAll() are replaced
with the values of the Map object passed to the putAll() method.

RETRIEVING KEYS, VALUES, AND KEY-VALUE PAIRS
The Map interface defines methods keySet(), values(), and entrySet() to access
keys, values, and key-value pairs of a Map. The following example shows these methods
in action:

enum Color {RED, BLUE, YELLOW};

Map<Color, String> colorMap = new HashMap<>();
colorMap.put(Color.RED, "Passion");
colorMap.put(Color.BLUE, "Stability");
colorMap.put(Color.YELLOW, "Energy");

Collection<String> mood = colorMap.values();
Set<Color> colors = colorMap.keySet();
Set<Map.Entry<Color, String>> colorsMood = colorMap.entrySet();

for (String s : mood)
 System.out.println(s);

for (Color c : colors)
 System.out.println(c);

for (Map.Entry pair : colorsMood)
 System.out.println(pair.getKey() + ":" + pair.getValue());

Because the order of iteration of a HashMap might change, the following is one of the
probable outputs of the preceding code:

Passion
Energy
Stability
RED
YELLOW
BLUE
RED:Passion
YELLOW:Energy
BLUE:Stability

EXAM TIP Method values() returns a Collection object, method key-
Set() returns a Set object, and method entrySet() returns a Map.Entry
object.
Licensed to Mark Watson <nordickan@gmail.com>

304 CHAPTER 4 Generics and collections
4.8.3 LinkedHashMap

The LinkedHashMap IS-A HashMap with a predictable iteration order. Like a Linked-
List (covered previously in this chapter), a LinkedHashMap maintains a double-linked
list that runs through all its entries. This linked list is used to retrieve the Linked-
HashMap elements in the order they were inserted. Like a HashMap, the methods of a
LinkedHashMap aren’t synchronized.

 The following example shows that (unlike a HashMap) a LinkedHashMap would
always iterate over its elements in their order of insertion:

Map<String, Integer> colorMap = new HashMap<>();
colorMap.put("Red", 1);
colorMap.put("Blue", 2);
colorMap.put("Yellow", 3);
colorMap.put("Purple", 4);
colorMap.put("Orange", 5);

for (Integer i : colorMap.values())
 System.out.print(i);

System.out.println("");

Map<String, Integer> linkedColorMap = new LinkedHashMap<>();
linkedColorMap.put("Red", 1);
linkedColorMap.put("Blue", 2);
linkedColorMap.put("Yellow", 3);
linkedColorMap.put("Purple", 4);
linkedColorMap.put("Orange", 5);

for (Integer i : linkedColorMap.values())
 System.out.print(i);

Here’s a probable output of the code:

21345
12345

NOTE Methods to add, retrieve, remove, or query the elements of a
LinkedHashMap work in a similar manner as discussed in the previous sec-
tion on HashMap.

Class HashTable legacy code
Class HashTable wasn’t a part of the collections framework initially. It was retrofitted
to implement the Map interface in Java 2, making it a member of the Java Collection
framework. But it’s considered legacy code. It’s roughly equivalent to a HashMap, with
some differences. The operations of a HashMap aren’t synchronized, whereas the
operations of a HashTable are synchronized. But if you need to work with a HashMap
in a multithreaded environment (which needs synchronized methods), you can use
class ConcurrentHashMap (covered in chapter 11).

Unlike a HashMap, a HashTable doesn’t allow the addition of null keys or values.

Iteration order of map elements
can vary with each execution

Prints “12345”
Licensed to Mark Watson <nordickan@gmail.com>

305Map and its implementations
4.8.4 TreeMap

A TreeMap is sorted according to the natural ordering of its keys or as defined by a
Comparator passed to its constructor. It implements the SortedMap interface. Like
HashMap and LinkedHashMap, the operations of a TreeMap aren’t synchronized, which
makes it unsafe to be used in a multithreaded environment.

NOTE The Comparable and Comparator interfaces are discussed in detail
in the next section.

Because the key-value pairs of a TreeMap are always sorted, querying a TreeMap (using
methods containsKey() and get()) is faster in comparison to querying keys of other
unsorted implementations of the Map interface.

 In one of the previous sections, you learned how HashMap uses methods hash-
Code() and equals() of its key to add, remove, or query it. But TreeMap performs all
key comparisons by using method compareTo() or compare() of its keys. Two keys are
considered equal by a TreeMap if the key’s method compareTo() or compare() consid-
ers them equal.

 Let’s get started by creating some TreeMap objects.

CREATING TREEMAP OBJECTS

When you create a TreeMap object, you should specify how its keys should be ordered.
A key might define its natural ordering by implementing the Comparable interface. If
it doesn’t you should pass a Comparator object to specify the key’s sort order.

 Because this is an important point to note for the exam, I’ll cover multiple scenar-
ios here. Let’s start with instantiating a TreeMap, which uses enum objects as its keys
(enums define their natural order by implementing the Comparable interface):

enum IceCream {STRAWBERRY, CHOCOLATE, WALNUT};

Map<IceCream, String> flavorMap = new TreeMap<>();
flavorMap.put(IceCream.CHOCOLATE, "Paul");
flavorMap.put(IceCream.STRAWBERRY, "Shreya");

for (String s : flavorMap.values())
 System.out.println(s);

The output of the preceding code is:

Shreya
Paul

In the preceding output, note that IceCream.STRAWBERRY precedes IceCream
.CHOCOLATE. The natural order of enum elements is the sequence in which they’re
defined. The set of values that you retrieve from a TreeMap is sorted on its keys and not
on its values.

EXAM TIP The natural order of enum elements is the sequence in which
they’re defined. The set of values that you retrieve from a TreeMap is
sorted on its keys and not on its values.

Natural order of enums
is their sequence of
declaration
Licensed to Mark Watson <nordickan@gmail.com>

306 CHAPTER 4 Generics and collections

Tre
cr
All the wrapper classes and String class implement the Comparable interface, so you
can use their objects as TreeMap keys. Let’s see what happens when you use objects of
a user-defined class, say, Flavor, which doesn’t define its natural sort order, as keys
to TreeMap:

class Flavor {
 String name;
 Flavor(String name) {
 this.name = name;
 }
}
class CreateTreeMap {
 public static void main(String args[]) {
 Map<Flavor, String> flavorMap = new TreeMap<>();
 flavorMap.put(new Flavor("Chocolate"), "Paul");
 }
}

In the preceding code, note that you can instantiate a TreeMap by neither passing it a
Comparator object, nor using keys that implement the Comparable interface. But an
attempt to add a key-value pair to such a TreeMap will throw a runtime exception.

EXAM TIP You can create a TreeMap without passing it a Comparator
object or without using keys that implement the Comparable interface.
But adding a key-value pair to such a TreeMap will throw a runtime excep-
tion, ClassCastException.

Now, what happens if the keys used in a TreeMap define a natural order and a
Comparator object is also passed to a TreeMap constructor? What happens if the natu-
ral order of the keys doesn’t match with the order defined by the Comparator object?
Or, is the natural order of keys ignored if a Comparator object is passed to a TreeMap
object? Let’s answer these questions using the next example:

class Flavor implements Comparable<Flavor> {
 String name;
 Flavor(String name) {
 this.name = name;
 }
 public int compareTo(Flavor f) {
 return this.name.compareTo(f.name);
 }
}

class MyComparator implements Comparator<Flavor> {
 public int compare(Flavor f1, Flavor f2) {
 return f2.name.compareTo(f1.name);
 }
}

class CreateTreeMap {
 public static void main(String args[]) {
 Map<Flavor,String> flavorMap = new TreeMap<>(new MyComparator());

Flavor class
doesn’t implement
Comparable. TreeMap

instantiation
doesn’t throw
an exception.

Throws Class-
CastException.

Natural order of
Flavor instances is
alphabetical order
of its names.

MyComparator orders
Flavor instances in
reverse alphabetical
order of its names.

eMap
eation
Licensed to Mark Watson <nordickan@gmail.com>

307Map and its implementations
 flavorMap.put(new Flavor("Chocolate"), "Paul");
 flavorMap.put(new Flavor("Vanilla"), "Selvan");

 for (Flavor flavor : flavorMap.keySet())
 System.out.println(flavor.name);
 }
}

The output of the preceding code is:

Vanilla
Chocolate

The preceding code shows that when you pass a Comparator object to a TreeMap con-
structor, the natural order of its keys is ignored.

EXAM TIP When you pass a Comparator object to a TreeMap constructor,
the natural order of its keys is ignored.

Class TreeMap implements the SortedMap interface. Watch out for similar code on the
exam that tries to instantiate a SortedMap. It won’t compile. For example

Map<String, String> map = new SortedMap<String, String>();

COMPARING KEYS: TREEMAP VERSUS HASHMAP

Unlike a HashMap, a TreeMap uses method compare() or compareTo() to determine
the equality of its keys. In the following example, a TreeMap can access the value
associated with a key, even though its key doesn’t override its method equals() or
hashCode():

class Flavor implements Comparable<Flavor> {
 String name;
 Flavor(String name) {
 this.name = name;
 }
 public int compareTo(Flavor f) {
 return this.name.compareTo(f.name);
 }
}
class CreateTreeMap {
 public static void main(String args[]) {
 Map<Flavor, String> flavorMap = new TreeMap<>();
 flavorMap.put(new Flavor("Chocolate"), "Paul");
 flavorMap.put(new Flavor("Apple"), "Harry");
 System.out.println(flavorMap.get(new Flavor("Apple")));
 }
}

In this section on TreeMap, you learned how user-defined classes can use the Comparable
and Comparator interfaces to define a natural or custom order of objects. The next
section covers these interfaces in detail.

Won’t compile

Prints
“Harry”
Licensed to Mark Watson <nordickan@gmail.com>

308 CHAPTER 4 Generics and collections
4.9 Using java.util.Comparator and java.lang.Comparable

Until now, you have used method equals() to compare objects for equality. But when
it comes to sorting a collection of objects, you must also compare objects to determine
whether an object is less than or greater than another object. To do so, you can use
two interfaces: java.lang.Comparable and java.util.Comparator.

4.9.1 Comparable interface
The Comparable interface is used to define the natural order of the objects of the class
that implements it. It is a generic interface (using T as type parameter) and defines
only one method, compareTo(T object), which compares the object to the object
passed to it as a method parameter. It returns a negative integer, zero, or a positive
integer if this object is less than, equal to, or greater than the specified object. Here’s
the definition of the Comparable interface:

package java.lang;
public interface Comparable<T> {
 public int compareTo(T o);
}

Here’s an example of class Person that implements the Comparable interface:

class Person implements Comparable<Person> {
 String name;
 int age;

 Person (String name, int age) {
 this.name = name;
 this.age = age;
 }
 public int compareTo(Person person) {
 return (this.age-person.age);
 }
 public String toString() {
 return name;
 }
}

EXAM TIP The Comparable interface is used to define the natural order of
the objects of the class that implements it.

Some collection classes, like TreeSet and TreeMap, store their elements in a sorted
order. You can specify the sort order of the elements by making their class implement
the Comparable interface. Here’s an example in which TreeSet stores instances of
class Person, which implements Comparable:

class TestComparable {
 public static void main(String args[]) {
 TreeSet<Person> set = new TreeSet<>();

[4.7] Use java.util.Comparator and java.lang.Comparable

Generic
interface

Person constructor
accepts name and age.

Natural order of instances of Person
is based on int value of its age

Overridden toString()
to return name
Licensed to Mark Watson <nordickan@gmail.com>

309Using java.util.Comparator and java.lang.Comparable
 set.add(new Person("Shreya", 12));
 set.add(new Person("Harry", 40));
 set.add(new Person("Paul", 30));

 Iterator<Person> iterator = set.iterator();
 while(iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

The TreeSet values are returned in ascending order of age of class Person. Here’s the
output of the preceding code:

Shreya
Paul
Harry

EXAM TIP Method compareTo() returns a negative integer, zero, or a
positive integer if this object is less than, equal to, or greater than the
specified object.

It’s important to note that the implementation of method compareTo() should be
consistent with the implementation of method equals(). This rule is recommended,
but not required.

 For any two object instances a and b, if a.compareTo(b) returns a value 0, then
a.equals(b) should return true. Let’s see what happens if we implement compareTo()
in an inconsistent manner in class Person and add its instances to a TreeSet (changes
in bold):

class Person implements Comparable<Person> {
 String name;
 int age;

 Person (String name, int age) {
 this.name = name;
 this.age = age;
 }
 public int compareTo(Person person) {
 return 0;
 }
 public String toString() {
 return name;
 }
}
class TestComparable {
 public static void main(String args[]) {
 TreeSet<Person> set = new TreeSet<>();

 Person p1 = new Person("Shreya", 12);
 Person p2 = new Person("Harry", 40);
 Person p3 = new Person("Paul", 30);

compareTo
returns 0.
Licensed to Mark Watson <nordickan@gmail.com>

310 CHAPTER 4 Generics and collections
 set.add(p1);
 set.add(p2);
 set.add(p3);

 Iterator<Person> iterator = set.iterator();
 while(iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

Classes like TreeSet and TreeMap store their elements in a sorted order. Before set
adds the second element, p2, it compares it to the existing element, p1. Because
p1.compareTo(p2) returns 0, set doesn’t add the duplicate element and returns false.
The same steps are repeated when set tries to add p3. At the end, only one element,
p1, is added to set.

QUICK EXERCISE Modify method compareTo() in the preceding example so
that TreeSet returns the values in descending order of Person’s age.

What if you want to sort the elements of class Person based on its instance variable,
name? Also, can you do this if you can’t modify the source code of class Person? Yes, it’s
possible by using the Comparator interface, as discussed in the next section.

4.9.2 Comparator interface

The Comparator interface is used to define the sort order of a collection of objects,
without requiring them to implement this interface. This interface defines methods
compare() and equals(). You can pass Comparator to sort methods like Arrays.sort
and Collections.sort. It’s also passed to collection classes like TreeSet and TreeMap
that require ordered elements.

 The Comparator interface is used to specify the sort order for classes that

■ Don’t define a natural sort order
■ Need to work with an alternate sort order
■ Don’t allow modification to their source code so that natural ordering can be

added to them

EXAM TIP Unlike the Comparable interface, the class whose objects are
being compared need not implement the Comparator interface.

Here’s the source code for this interface:

package java.util;
public interface Comparator<T> {
 int compare(T o1, T o2);
 boolean equals(Object obj);
}

p2 and p3 aren’t added to set because
Set doesn’t allow duplicate values.

Prints only one
value, Shreya.
Licensed to Mark Watson <nordickan@gmail.com>

311Using java.util.Comparator and java.lang.Comparable
Like the Comparable interface, method compare() in Comparator returns a nega-
tive integer, zero, or a positive integer if o1 is less than, equal to, or greater than o2.
Let’s modify the example used in the preceding section to use Comparator instead
of Comparable:

import java.util.*;
class TestComparator {
 public static void main(String args[]) {
 TreeSet<Person> set = new TreeSet<>(
 new Comparator<Person>(){
 public int compare(Person p1, Person p2) {
 return (p1.age-p2.age);
 }
 }
);
 set.add(new Person("Shreya", 12));
 set.add(new Person("Harry", 40));
 set.add(new Person("Paul", 30));

 Iterator<Person> iterator = set.iterator();
 while(iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

class Person {
 String name;
 int age;
 Person (String name, int age) {
 this.name = name;
 this.age = age;
 }
 public String toString() {
 return name;
 }
}

The output of the preceding code is:

Shreya
Paul
Harry

As you noticed, class Person no longer needs to implement Comparable. Class Tree-
Set accepts Comparator to define the sort order of its elements. What happens if
class Person implements the Comparable interface, which sorts it on name, and the
Comparator interface sorts it on age? What do you think is the output of the code in
the next “Twist in the Tale” exercise?

Class TreeSet
is passed an
anonymous
inner class.

Class Person
doesn’t implement
the Comparator
interface.
Licensed to Mark Watson <nordickan@gmail.com>

312 CHAPTER 4 Generics and collections
What is the output of the following class?

class Twist4_6 {
 public static void main(String args[]) {
 TreeSet<Person> set = new TreeSet<>(new Comparator<Person>(){
 public int compare(Person p1, Person p2) {
 return (p1.age-p2.age);
 }
 });
 Person p1 = new Person("Shreya", 12);
 Person p2 = new Person("Harry", 40);
 Person p3 = new Person("Paul", 30);
 set.add(p1);
 set.add(p2);
 set.add(p3);
 Iterator<Person> iterator = set.iterator();
 while(iterator.hasNext()) {
 System.out.print(iterator.next()+":");
 }
 }
}
class Person implements Comparable<Person>{
 String name;
 int age;
 Person (String name, int age) {
 this.name = name;
 this.age = age;
 }
 public int compareTo(Person person) {
 return name.compareTo(person.name);
 }
 public String toString() { return name; }
}

a Shreya:Paul:Harry:

b Harry:Paul:Shreya:

c Paul:Shreya:Harry:

d Harry:Shreya:Paul:

Like the Comparable interface, the implementation of method compare() in Comparator
should be consistent with the implementation of method equals(). For any two
object instances a and b, if compare(a, b) returns a value 0, then a.equals(b) should
return true.

 In the next section, let’s see why you need sorted data and how to use Comparable
and Comparator to sort and search arrays and lists.

Twist in the Tale 4.6
Licensed to Mark Watson <nordickan@gmail.com>

313Sorting and searching arrays and lists
4.10 Sorting and searching arrays and lists

How do you view the list of names in a phone directory or the list of selected candi-
dates for admission to a university? Usually, these lists are sorted on their names or on
their registration numbers (for university students). Do you think it’s easier and faster
to find a particular name or a candidate in a sorted list? Yes, it is.

 You might need data in a sorted order for multiple reasons: to display information
in an ascending or descending order, or to search for particular data. Searching data
is always faster in a sorted list. Searching an unsorted list requires comparing all list
elements with the target element, resulting in a time- and processing-intensive task. In
today’s world, when we’re overwhelmed with data, fast searching and retrieval of data
is crucial.

 For the exam, you need to know how to search and sort arrays and List by using
the existing methods from the collections framework classes, Arrays and Collections
to be specific. The OCP Java SE 7 Programmer II exam won’t ask you to create or write
your own sorting methods. Let’s get started with the sorting methods that are accessi-
ble using classes Arrays and Collections.

4.10.1 Sorting arrays

The class Arrays in the collections framework defines multiple methods to sort arrays
of primitive data types and objects. You can use these methods to sort either a com-
plete array or a part of it. Table 4.3 lists the sorting methods for arrays of byte, int,
and Object. The class Arrays defines similar methods for other primitive data types:
char, short, long, float, and double. Please note that I’ve deliberately excluded them from
this list to keep the table short.

Table 4.3 Class Arrays defines sort methods for arrays of Object and all primitive data types
 (excluding type boolean)

Method name Method description

static void sort(byte[] a) Sorts the specified array into ascending numerical order

static void sort(byte[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into ascending order

static void sort(int[] a) Sorts the specified array into ascending numerical order

static void sort(int[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into ascending order

static void sort(Object[] a) Sorts the specified array of objects into ascending order,
according to the natural ordering of its elements

[4.8] Sort and search arrays and lists
Licensed to Mark Watson <nordickan@gmail.com>

314 CHAPTER 4 Generics and collections
EXAM TIP All the methods in table 4.3 that sort a partial array accept
fromIndex and toIndex values. The element stored at position from-
Index is sorted, but the element stored at position toIndex isn’t.

Let’s look at a simple example of sorting an int array:

class SortArrays {
 public static void main(String args[]) {
 int[] intArray = {20, 14, 4, 10, 5, 3};
 for (int a:intArray) System.out.print(a + " ");
 Arrays.sort(intArray);
 System.out.println();
 for (int a:intArray) System.out.print(a + " ");

 System.out.println();

 intArray = new int[]{20, 14, 4, 10, 5, 3};
 for (int a:intArray) System.out.print(a + " ");
 Arrays.sort(intArray, 1, 5);
 System.out.println();
 for (int a:intArray) System.out.print(a + " ");

 }
}

EXAM TIP A quick reminder that the index of an array is 0-based.

The output of the preceding code is as follows:

20 14 4 10 5 3
3 4 5 10 14 20
20 14 4 10 5 3
20 4 5 10 14 3

When you sort an array of objects using the sort method from class Arrays, it uses
the natural sort order of the instances. If the objects don’t specify a natural sort
order, an overloaded version of sort can be passed a Comparator. A lot of classes

static void sort(Object[] a,
int fromIndex, int toIndex)

Sorts the specified range of the specified array of objects
into ascending order, according to the natural ordering of
its elements

static <T> void sort(T[] a,
Comparator<? super T> c)

Sorts the specified array of objects according to the order
induced by the specified comparator

static <T> void sort(T[] a,
int fromIndex, int toIndex,
Comparator<? super T> c)

Sorts the specified range of the specified array of objects
according to the order induced by the specified comparator

Table 4.3 Class Arrays defines sort methods for arrays of Object and all primitive data types
 (excluding type boolean) (continued)

Method name Method description

int array with
6 elements

Sorts all elements
of array intArray.

Reinitializes
intArray.

Sorts elements at
positions 1, 2, 3, and 4,
excluding element at
position 5.
Licensed to Mark Watson <nordickan@gmail.com>

315Sorting and searching arrays and lists
like String and wrapper classes implement Comparable and define a natural sort
order. The String values are sorted in alphabetical or lexicographic order. On the
exam you might be queried about the natural sorting order of String values, which
differ only in the case of their letters. What do you think is the output of the follow-
ing sorting operation?

String[] strArray = {"ocP", "oCP", "OcP", "OCp", "Ocp"};
for (String str:strArray) System.out.print(str + " ");
Arrays.sort(strArray);
System.out.println();
for (String str:strArray) System.out.print(str + " ");

Each character has a corresponding ASCII or Unicode value. The uppercase letters
have a lower ASCII value than their lowercase counterparts.

EXAM TIP Watch out for exam questions that sort string objects starting
with a space. A space has a lower ASCII or Unicode value than lowercase
or uppercase letters. Let’s see how you can use a comparator to sort the
objects of a user-defined class:

class SortObjects {
 public static void main(String args[]) {
 Person p1 = new Person("Shreya", 32);
 Person p2 = new Person("Harry", 40);
 Person p3 = new Person("Paul", 30);

 Person[] objArray = new Person[]{p1, p2, p3};

 Arrays.sort(objArray,
 new Comparator<Person>(){
 public int compare(Person p1, Person p2) {
 return (p1.age-p2.age);
 }
 }
);
 for (Person p:objArray) System.out.print(p + " ");
 }
}
class Person {
 String name;
 int age;
 Person (String name, int age) {
 this.name = name;
 this.age = age;
 }
 public String toString() {
 return name+":"+age;
 }
}

Literal String
values that differ
only in their case

sort() sorts
strArray

Prints OCp OcP
Ocp oCP ocP

sort() is passed array
of instances of Person
and comparator that
defines sort order for
Person instances
Licensed to Mark Watson <nordickan@gmail.com>

316 CHAPTER 4 Generics and collections
The preceding code sorts the Person instances on the increasing order of their ages,
printing this:

Paul:30 Shreya:32 Harry:40

Imagine what happens if you neither use a Comparator nor define a natural ordering
for your class. Find out by attempting the next “Twist in the Tale” exercise.

What is the output of the following class?

import java.util.*;
class Twist4_7 {
 public static void main(String args[]) {
 Person p1 = new Person("Shreya", 32);
 Person p2 = new Person("Harry", 40);
 Person p3 = new Person("Paul", 30);

 Person[] objArray = new Person[]{p1, p2, p3};

 Arrays.sort(objArray);

 for (Person p:objArray) System.out.print(p + " ");
 }
}
class Person {
 String name;
 int age;
 Person (String name, int age) {
 this.name = name;
 this.age = age;
 }
 public int compareTo(Person person) {
 return (this.age-person.age);
 }
 public String toString() {
 return name+":"+age;
 }
}

a Shreya:32 Paul:30 Harry:40
b Paul:30 Shreya:32 Harry:40
c Shreya:32 Harry:40 Paul:30
d Compilation error
e Runtime exception

Twist in the Tale 4.7
Licensed to Mark Watson <nordickan@gmail.com>

317Sorting and searching arrays and lists
4.10.2 Sorting List using Collections

Class Collections defines two sorting methods to sort objects of List:

static <T extends Comparable<? super T>> void sort(List<T> list)
static <T> void sort(List<T> list, Comparator<? super T> c)

Here’s an example of sorting a list using method Collections.sort():

class SortList {
 public static void main(String args[]) {
 List<Integer> integers = new ArrayList<>();
 integers.add(new Integer(200));
 integers.add(new Integer(87));
 integers.add(new Integer(999));

 for (Integer i : integers) {
 System.out.println(i);
 }

 System.out.println("After calling Collections.sort()");
 Collections.sort(integers);

 for (Integer i : integers) {
 System.out.println(i);
 }
 }
}

The output of the preceding code is:

200
87
999
After calling Collections.sort()
87
200
999

What would happen if we add another item to a list after it was sorted? Will it be
sorted too? Let’s find out using the next example:

class SortList {
 public static void main(String... args) {
 Star s1 = new Star("Sun", 7777.77);
 Star s2 = new Star("Sirius", 999999.99);
 Star s3 = new Star("Pilatim", 222.22);

 List<Star> list = new ArrayList<>();
 list.add(s1); list.add(s2); list.add(s3);

Sorts specified list into ascending order,
according to natural ordering of elements

Sorts specified list according to order
induced by specified comparator

Creates new ArrayList,
referred by list.

Adds Star
instances to list.
Licensed to Mark Watson <nordickan@gmail.com>

318 CHAPTER 4 Generics and collections
 Collections.sort(list);
 list.add(new Star("Litmier", 4444.44));
 Collections.reverse(list);

 for (Star star:list) System.out.println(star);
 }
}
class Star implements Comparable<Star> {
 String name;
 double mass;
 Star(String name, double mass) {
 this.name = name;
 this.mass = mass;
 }
 public int compareTo(Star other) {
 return (int)(this.mass - other.mass);
 }
 public String toString(){
 return name + ":" + mass;
 }
}

Here’s the output of the preceding code:

Litmier:4444.44
Sirius:999999.99
Sun:7777.77
Pilatim:222.22

EXAM TIP Once sorted, new elements are added to a list according to the
specific algorithm used by the underlying data structure. After you sort
elements of an ArrayList, the new elements are added to its end.

4.10.3 Searching arrays and List using collections

Classes Arrays and Collections define method binarySearch() to search a sorted
array or a List for a matching value using the binary search algorithm. The list or
array must be sorted according to the natural order of its elements or as specified by
Comparator. If you pass this method an unsorted list, the results are undefined. If
more than one value matches the target key value to be searched, this method can
return any of these values. Method binarySearch() returns the index of the search
key, if it is contained in the list; otherwise it returns (-(insertion point) - 1). The inser-
tion point is defined as the point at which the key would be inserted into the list: the
index of the first element greater than the key, or list.size() if all elements in
the list are less than the specified key. Note that this guarantees that the return value
will be >= 0 if and only if the key is found.

 Following is the declaration of the overloaded method binarySearch(), which
searches the specified array for the specified value using the binary search algorithm:

static int binarySearch(byte[] a, byte key)
static int binarySearch(int[] a, int key)
static int binarySearch(Object[] a, Object key)
static <T> int binarySearch(T[] a, T key, Comparator<? super T> c)

Sorts list.

Adds another Star
instance to list;
this isn’t sorted.

Reverses order of
list; doesn’t sort in
descending order.
Licensed to Mark Watson <nordickan@gmail.com>

319Sorting and searching arrays and lists
The preceding list includes the searching methods for the primitive data types byte
and int and objects. I’ve deliberately not included the overloaded methods for the
rest of the primitive data types (char, short, long, float, and double) to keep it man-
ageable. For example

public class SortSearch {
 static final Comparator<Integer> INT_COMPARATOR =
 new Comparator<Integer>() {
 public int compare (Integer n1, Integer n2) {
 return n2.compareTo(n1);
 }
 };

 public static void main(String args[]) {
 ArrayList<Integer> list = new ArrayList<>();
 list.add(9999);
 list.add(10);
 list.add(55);
 list.add(28);

 Collections.sort(list, null);
 System.out.println(Collections.binarySearch(list, 55));

 Collections.sort(list,INT_COMPARATOR);
 System.out.println(Collections.binarySearch(list, 55));
 }
}

The output of the preceding code is

2
1

Here’s the list of the overloaded method binarySearch(), which searches a range of
the specified array for the specified value by using the binary search algorithm.
Again, I’ve deliberately excluded the overloaded version of these methods for the
rest of the primitive data types (char, short, long, float, and double) to keep the
list manageable:

static int binarySearch(byte[] a, int fromIndex, int toIndex, byte key)
static int binarySearch(int[] a, int fromIndex, int toIndex, int key)
static int binarySearch(Object[] a, int fromIndex, int toIndex, Object key)
static <T> int binarySearch(T[] a, int fromIndex, int toIndex, T key,
Comparator<? super T> c)

Here’s the list of methods defined in class Collections to search the specified list for
the specified object using the binary search algorithm:

static <T> int binarySearch(List<? extends Comparable<? super T>> list, T key)
static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super
T> c)
Licensed to Mark Watson <nordickan@gmail.com>

320 CHAPTER 4 Generics and collections
Similar to method binarySearch(), which accepts List objects, method binary-
Search()v that accepts arrays requires the array to be sorted in an ascending order, or
else the results are undefined. The output value in the following example is undefined:

import java.util.*;
public class SearchArray {
 public static void main(String[] args) {
 Object[] myArray = new Object[3];
 myArray[0] = "Java";
 myArray[1] = "EJava";
 myArray[2] = "Guru";
 int position = Arrays.binarySearch(myArray, "Java");
 System.out.println(position);
 }
}

On the exam you might see a question that stores different object types in an array of
type Object[]. What do you think is the output of the following code?

import java.util.*;
public class SearchArray2 {
 public static void main(String[] args) {
 Object[] myArray = new Object[3];
 myArray[0] = "Java";
 myArray[1] = 10;
 myArray[2] = 'z';
 int position = Arrays.binarySearch(myArray, "Java");
 System.out.println(position);
 }
}

The preceding code throws a ClassCastException at runtime when it tries to convert
Integer value 10 to String.

4.11 Using wrapper classes

 Java defines a wrapper class for each of its primitive data types. The wrapper classes
are used to wrap primitives in an object, so they can be added to a collection object.
Wrapper classes help you write cleaner code, which is easy to read. For this exam, you
should be able to use these wrapper classes and understand how boxing and unbox-
ing applies to these classes.

4.11.1 Class hierarchy of wrapper classes

All the wrapper classes are immutable. They share multiple usage details and meth-
ods. Figure 4.26 shows their hierarchy.

 All the numeric wrapper classes extend the class java.lang.Number. Classes Boolean
and Character directly extend class Object. All the wrapper classes implement the

[4.4] Use wrapper classes, autoboxing, and unboxing
Licensed to Mark Watson <nordickan@gmail.com>

321Using wrapper classes

W
com
interfaces java.io.Serializable and java.lang.Comparable. All these classes can
be serialized to a stream, and their objects define a natural sort order.

4.11.2 Creating objects of the wrapper classes

You can create objects of all the wrapper classes in multiple ways:

■ Assignment—By assigning a primitive to a wrapper class variable
■ Constructor—By using wrapper class constructors
■ Static methods—By calling the static method of wrapper classes, like valueOf()

For example

Boolean bool1 = true;
Character char1 = 'a';
Byte byte1 = 10;
Double double1 = 10.98;

Boolean bool2 = new Boolean(true);
Character char2 = new Character('a');
Byte byte2 = new Byte((byte)10);
Double double2 = new Double(10.98);

//Character char3 = new Character("a");
Boolean bool3 = new Boolean("true");
Byte byte3 = new Byte("10");
Double double3 = new Double("10.98");

Boolean bool4 = Boolean.valueOf(true);
Boolean bool5 = Boolean.valueOf(true);
Boolean bool6 = Boolean.valueOf("TrUE");
Double double4 = Double.valueOf(10);

You can create objects of the rest of the wrapper classes (Short, Integer, Long, and
Float) in a similar manner. All the wrapper classes define constructors to create an
object using a corresponding primitive value or as a String.

 Another interesting point to note is that neither of these classes defines a default
no-argument constructor. Because wrapper classes are immutable, it doesn’t make

Byte Short

CharacterBoolean

Object Serializable

Number

Integer Long Float Double

Comparable

Figure 4.26 Hierarchy of wrapper classes

Autoboxing

Constructors that
accept primitive
value

on’t
pile Constructors that

accept String

Using static
method
valueOf()
Licensed to Mark Watson <nordickan@gmail.com>

322 CHAPTER 4 Generics and collections
sense to initialize the wrapper objects with the default primitive values if they can’t be
modified later.

EXAM TIP All wrapper classes (except Character) define a constructor
that accepts a String argument representing the primitive value that
needs to be wrapped. Watch out for exam questions that include a call to
a no-argument constructor of a wrapper class. None of these classes defines
a no-argument constructor.

You can assign a primitive value directly to a reference variable of its wrapper class
type—thanks to autoboxing. The reverse is unboxing, when an object of a primitive
wrapper class is converted to its corresponding primitive value. I’ll discuss autoboxing
and autounboxing in detail in the next section.

4.11.3 Retrieving primitive values from the wrapper classes

All wrapper classes define methods of the format primitiveValue(), where primitive
refers to the exact primitive data type name. Table 4.4 shows a list of the classes and
their methods to retrieve corresponding primitive values.

It’s interesting to note that all numeric wrapper classes define methods to retrieve the
value of the primitive value they store, as a byte, short, int, long, float, and double.

4.11.4 Parsing a string value to a primitive type

To get a primitive data type value corresponding to a string value, you can use the
static utility method parseDataType(), where DataType refers to the type of the
return value. Each wrapper class (except Character) defines a method, to parse a
String to the corresponding primitive value, listed as follows:

Table 4.4 Methods to retrieve primitive values from wrapper classes

Boolean Character Byte, Short, Integer, Long, Float, Double

booleanValue() charValue() byteValue(), shortValue(), intValue(),

longValue(),floatValue(), doubleValue()

Table 4.5 Parsing methods defined by wrapper classes

Class name Method

Boolean public static boolean parseBoolean(String s)

Character no corresponding parsing method

Byte public static byte parseByte(String s)

Short public static short parseShort (String s)

Integer public static int parseInt(String s)
Licensed to Mark Watson <nordickan@gmail.com>

323Using wrapper classes
All these parsing methods throw a NumberFormatException for invalid values. Here
are some examples:

Long.parseLong("12.34");

Byte.parseByte("1234");

Boolean.parseBoolean("true");

Boolean.parseBoolean("TrUe");

4.11.5 Difference between using method valueOf() and constructors
of wrapper classes

Method valueOf() returns an object of the corresponding wrapper class when it’s
passed an argument of a primitive type or String. Then what is the difference between
method valueOf() and constructors of these classes, which also accept method argu-
ments of a primitive type and String?

 Wrapper classes Character, Byte, Short, Integer, and Long cache objects with val-
ues in the range of –128 to 127. These classes define inner static classes that store
objects for the primitive values –128 to 127 in an array. If you request an object of any
of these classes, from this range, method valueOf() returns a reference to a pre-
defined object; otherwise, it creates a new object and returns its reference:

Long var1 = Long.valueOf(123);
Long var2 = Long.valueOf("123");
System.out.println(var1 == var2);

Long var3 = Long.valueOf (223);
Long var4 = Long.valueOf (223);
System.out.println (var3 == var4);

4.11.6 Comparing objects of wrapper classes

The wrapper classes correctly implement methods hashCode() and equals(), so you
can use them in collection framework classes as keys in a map. In the following exam-
ple, you can use Double objects as keys in a HashMap:

public class UseWrapperAsKeysInMap {
 public static void main(String[] args) {

Long public static long parseLong(String s)

Float public static float parseFloat(String s)

Double public static double parseDouble(String s)

Table 4.5 Parsing methods defined by wrapper classes

Class name Method

Throws NumberFormatException:
12.34 isn’t valid long.

Throws NumberFormatException:
1234 is out of range for byte.

Returns Boolean true.

No exceptions; the String
argument isn’t case-sensitive.

Prints “true”; var1 and var2
refer to same cached object.

Prints “false”; var3 and var4
refer to different objects.
Licensed to Mark Watson <nordickan@gmail.com>

324 CHAPTER 4 Generics and collections
 Map<Double, String> map = new HashMap<>();
 map.put(6.6, "OCA");
 map.put(7.7, "OCP");

 System.out.println(map.get(6.6));
 System.out.println(map.get(new Double(7.7)));
 }
}

EXAM TIP Integer literal values are implicitly converted to Integer objects
and decimal literal values are implicitly converted to Double objects.

Let’s modify the preceding code and try to retrieve the string value “OCP” using a
Float object with value 7.7. Do you think objects of Double and Float with the same
values are considered equal?

public class UseWrapperAsKeysInMap {
 public static void main(String[] args) {
 Map<Double, String> map = new HashMap<>();
 map.put(6.6, "OCA");
 map.put(7.7, "OCP");
 System.out.println(map.get(6.6));
 System.out.println(map.get(new Float((float)7.7)));
 }
}

In the preceding code, a Float object with a value can’t be used to retrieve the value
that was added to a HashMap using a Double instance. Their values don’t matter.

EXAM TIP The objects of different wrapper classes with the same values
are not equal.

All the wrapper classes also implement the Comparable interface. You can compare
them using method compareTo() and use them in collection framework classes that
use natural ordering (like TreeSet). Method compareTo() returns a negative integer,
zero, or a positive integer as this object is less than, equal to, or greater than the speci-
fied object. What do you think is the output of the following code that adds Boolean
instances to a HashSet?

public class UseTreeSetWithWrapperClasses {
 public static void main(String[] args) {
 TreeSet<Boolean> set = new TreeSet<Boolean>();
 set.add(new Boolean(true));
 set.add(new Boolean("FaLSe"));
 set.add(Boolean.valueOf("TrUe"));
 for (Boolean b : set)
 System.out.println(b);
 }
}

The output of the preceding code is

false
true

Prints “OCA”

Prints “OCP”

Outputs ‘OCA’

Outputs ‘null’
Licensed to Mark Watson <nordickan@gmail.com>

325Autoboxing and unboxing
EXAM TIP When arranged in natural sort order, false precedes true.

In the preceding code, you can add Boolean instances to a HashSet because Boolean
implements the Comparable interface. Because HashSet ignores the addition of dupli-
cate values, only one Boolean.false object is added to HashSet. When instances of
a class that doesn’t implement Comparable are added to a HashSet, a ClassCast-
Exception is thrown at runtime.

 The next section covers autoboxing and unboxing, used by a compiler to convert
primitive values to wrapper objects and vice versa.

4.12 Autoboxing and unboxing

Autoboxing is the automatic conversion of a primitive data type to an object of the cor-
responding wrapper class (you box the primitive value). Unboxing is the reverse process
(you unbox the primitive value), as shown in figure 4.27.

 The wrapper classes use autoboxing and unboxing features quite frequently:

Double d1 = new Double(12.67);
System.out.println(d1.compareTo(21.68));

Compare the use of the preceding method against the following method defined by
class Double:

public int compareTo(Double anotherDouble)

Wait—did I just mention that method compareTo() defined in the class Double
accepts an object of class Double and not a double primitive data type? Then why does
the preceding code compile? The answer is autoboxing. Java converted the primitive
double to an object of class Double (by using method valueOf()), so it works cor-
rectly. The Java compiler converted it to the following at runtime:

Double d1 = new Double(12.67D);
System.out.println(d1.compareTo(Double.valueOf(21.68D)));

[4.4] Use wrapper classes, autoboxing, and unboxing

Primitive

value

Autoboxing

Unboxing Object of

wrapper class

Figure 4.27 Autoboxing and unboxing

Prints -1, since
12.67 < 21.68
Licensed to Mark Watson <nordickan@gmail.com>

326 CHAPTER 4 Generics and collections
Now examine the following code (an example of unboxing with autoboxing):

public class Unboxing {
 public static void main (String args[]) {
 ArrayList<Double> list = new ArrayList<Double>();
 list.add(12.12);
 list.add(11.24);
 Double total = 0;
 for (Double d : list)
 total += d;
 }
}

In the preceding code, at the end of execution of the for loop, total will be assigned
a Double value of 23.36. The arithmetic operators like += can’t be used with objects.
So why do you think the code compiles? In this example, the Java compiler converted
the preceding code to the following at runtime:

public class Unbox {
 public static void main(String args[]) {
 ArrayList list = new ArrayList();
 list.add(new Double(12.12D));
 list.add(new Double(87.98D));
 Double total = Double.valueOf(0.0D);
 for(Iterator iterator = list.iterator(); iterator.hasNext();)
 {
 Double d = (Double)iterator.next();
 total += total.doubleValue() + d.doubleValue();
 }
 }

In the previous section, I mentioned that wrapper classes are immutable. So, what
happens when you add a value to the variable total, a Double object? In this case, the
variable total refers to a new Double object.

EXAM TIP Wrapper classes are immutable. Adding a primitive value to a
wrapper class variable doesn’t modify the value of the object it refers to.
The wrapper class variable is assigned a new object.

Here’s another interesting question. What happens if you pass null as an argument to
the following method?

public int increment(Integer obj) {
 return ++i;
}

Because the Java compiler would call obj.intValue() to get obj’s int value, passing
null to method increment() will throw a NullPointerException.

EXAM TIP Unboxing a wrapper reference variable, which refers to null,
will throw a NullPointerException.

List of
Double

Autoboxing-Add double

Unbox to use operator
+= with total
Licensed to Mark Watson <nordickan@gmail.com>

327Summary
With the preceding exam tip, you’ve completed the coverage of generics and collec-
tions topics for the exam. With an understanding of all the related nuances under
your belt, you’ll be able to write better code in real projects. Good luck to you.

4.13 Summary
We started this chapter with a warm-up section on generics, including the need for
their introduction and the benefits and complexities of using them. The chapter cov-
ered the creation of generic classes, interfaces, and methods. It included how to
define and use single and multiple type parameters. You can use bounded type param-
eters to limit the type of objects that can be passed as arguments to generic classes,
interfaces, and methods. We also covered the wildcard ? to declare a type of a variable
or a return type of a method. Bounded wildcards enable you to restrict the types that
can be used as arguments in a parameterized type. You learned how type erasure
removes the type information during the compilation process so that you get only one
class file for each generic class on the interface on compilation. Type erasure also cre-
ates bridge methods.

 By using type inference, a compiler can determine type arguments if you don’t
specify them while creating instances of generic types. But if it can’t, it’ll throw a warn-
ing, an error, or an exception. Mixing of raw and generic types was allowed to use
code that existed before generics were introduced. If not used correctly, you might get
a compiler warning or error, or a runtime exception, when you mix raw with generic
types. With generics, you must follow certain subtyping rules. A generic class is a sub-
type of its raw type. An object of ArrayList<String> isn’t compatible with a reference
variable of type List<Object>.

 You also worked with the collections framework, an architecture for representing
and manipulating collections. You worked with the main interfaces, their implementa-
tions, and the algorithms used to manipulate collection objects. The Collection inter-
face is extended by the List, Deque, and Set interfaces (but not by the Map interface).
The Collection interface defines methods to manipulate and query its elements.

 The List interface models an ordered collection of objects. It returns the objects
to you in the order in which you added them to a List. It allows you to store duplicate
elements. The List implementations on the exam are ArrayList and LinkedList.

 A Queue is a linear collection of objects. A Deque is a double-ended queue, a queue
that supports the insertion and deletion of elements at both its ends. The Deque
implementations on the exam are LinkedList and ArrayDeque.

 The Set interface models the mathematical Set abstraction. It’s a collection of
objects that doesn’t contain duplicate elements. Set implementations on the exam are
HashSet, LinkedHashSet, and TreeSet.

 A Map stores a pool of key-value pairs. It doesn’t allow the addition of duplicate
keys. Items added to a Map aren’t ordered. The retrieval order of items from a Map
object isn’t guaranteed to be the same as its insertion order. Map implementations on
the exam are HashMap, LinkedHashMap, and TreeMap.
Licensed to Mark Watson <nordickan@gmail.com>

328 CHAPTER 4 Generics and collections
 Class HashTable wasn’t a part of the collections framework initially. It was retrofit-
ted to implement the Map interface in Java 2, making it a member of the Java Collec-
tion framework. But it’s considered legacy code. It’s roughly equivalent to a HashMap,
with some differences. The operations of a HashMap aren’t synchronized, whereas the
operations of a HashTable are synchronized.

 The Comparable interface is used to define the natural order of objects. The
Comparator interface is used to define the custom order for objects when you don’t
want to use their natural order, can’t define or redefine their natural order, or need a
custom order. These interfaces are used by multiple interfaces and classes to sort
objects like TreeSet, TreeMap, Collections.sort(), and Arrays.sort(). Classes
Arrays and Collections define methods to sort and search arrays and lists.

 The wrapper classes are used to wrap primitive types so that they can be used with
collection classes. Autoboxing is the automatic conversion of a primitive data type to
an object of the corresponding wrapper class (you box the primitive value). Unboxing
is the reverse process.

REVIEW NOTES
This section lists the main points covered in this chapter.

 Creating generic entities
■ You define a generic class, interface, or method by adding one or more type

parameters to it.
■ A class that uses a generic class uses a parameterized type, replacing the formal

parameter with an actual parameter. Also, invalid casts aren’t allowed.
■ Java’s naming conventions limit the use of single uppercase letters for type

parameters. Though not recommended, using any valid identifier name for
type parameters is acceptable code.

■ A generic class can be extended by another generic or nongeneric class.
■ An extended class must be able to pass type arguments to its generic base class.

If it doesn’t, the code won’t compile.
■ When a nongeneric class extends a generic class, the derived class doesn’t

define any type parameters but passes arguments to all type parameters of its
generic base class.

■ A generic interface is defined by including one or more type parameters in its
declaration.

■ When a nongeneric class implements a generic interface, the type parameters
follow the interface name.

■ When a generic class implements a generic interface, the type parameters fol-
low both the class and the interface name.

■ A generic method defines its own formal type parameters. You can define a
generic method in a generic or a nongeneric class.
Licensed to Mark Watson <nordickan@gmail.com>

329Review notes
■ To define a generic method in a nongeneric class or interface, you must define
the type parameters with the method in its type parameter section.

■ A method’s type parameter list is placed just after its access and nonaccess mod-
ifiers and before its return type. Because a type parameter could be used to
define the return type, it should be known before the return type is used.

■ You can define a generic method in a generic class or interface, defining its
own type parameters.

■ You can also define a generic constructor in a generic class.
■ You can specify the bounds to restrict the set of types that can be used as type

arguments to a generic class, interface, or method. It also enables access to the
methods (and variables) defined by the bounds.

■ For a bounded type parameter, the bound can be a class, an interface, or an enum,
but not an array or a primitive type. All cases use the keyword extends to specify
the bound. If the bound is an interface, the implements keyword isn’t used.

■ A type parameter can have multiple bounds. The list of bounds consists of one
class or multiple interfaces.

■ For a type parameter with multiple bounds, the type argument must be a sub-
type of all bounds.

■ The wildcard ? represents an unknown type. You can use it to declare the type
of a parameter; a local, instance, or static variable; and a return value of generic
types. But you can’t use it as a type argument to invoke a generic method, create
a generic class instance, or for a supertype.

■ You can assign an instance of a subclass, say, String, to a variable of its base
class, Object. But you can’t assign ArrayList<String> to a variable of type
List<Object>. Inheritance doesn’t apply to type parameters.

■ When you use a wildcard to declare your variables or method parameters, you
lose the functionality of adding objects to a collection.

■ To restrict the types that can be used as arguments in a parameterized type, you
can use bounded wildcards.

■ In upper-bounded wildcards, the keyword extends is used for both a class and
an interface.

■ For collections defined using upper-bounded wildcards, you can’t add any
objects. You can iterate and read values from such collections.

■ You can use final classes in upper-bounded wildcards. Although class X
extends String won’t compile, <? extends String> will compile successfully.

■ You can restrict the use of type arguments to a type and its supertypes or base
types by using <? super Type>, where Type refers to a class, interface, or enum.

■ Type information is erased during the compilation process; this is called type
erasure.

■ When a generic class is compiled, you don’t get multiple versions of the com-
piled class files.
Licensed to Mark Watson <nordickan@gmail.com>

330 CHAPTER 4 Generics and collections
■ The compiler erases the type information by replacing all type parameters in
generic types with Object (for unbounded parameter types) or their bounds
(for bounded parameter types).

■ The Java compiler might need to create additional methods, referred to as
bridge methods, as part of the type erasure process.

Using type inference

■ If you don’t specify the type of type arguments to instantiate a generic class or
invoke a generic method, the Java compiler might be able to infer the argu-
ment type by examining the declaration of the generic entity and its invocation.
If the type can’t be inferred, you might get a compilation warning, an error, or
an exception.

■ By throwing an unchecked warning, the compiler states that it can’t ensure type
safety. The term unchecked refers to operations that might result in violating
type safety. This occurs when the compiler doesn’t have enough type informa-
tion to perform all type checks.

■ Starting with Java 7, you can drop the type arguments required to invoke the
constructor of a generic class and use a diamond—that is, <>. But an attempt to
drop the diamond will result in a compilation warning.

■ A Java compiler can’t infer the type parameters by using the diamond in the
case of generic methods. It uses the type of the actual arguments passed to the
method to infer the type parameters.

Understanding interoperability of collections using raw types and
generic types

■ Raw types exist only for generic types.
■ You can assign a parameterized type to its raw type, but the reverse will give a

compiler warning.
■ When you assign a parameterized type to its raw type, you lose the type information.
■ When you mix raw types with generic types, you might get a compiler warning

or error or a runtime exception.
■ You can assign an object of a subclass to reference a variable of its base class. But

this subtyping rule doesn’t work when you assign a collection-of-a-derived-class
object to a reference variable of a collection of a base class.

■ If you declare a reference variable List<Object> to a list, whatever you assign to
the list must be of generic type Object. A subclass of Object isn’t allowed.

Working with the Collection interface

■ The Collection<E> interface represents a group of objects known as its elements.
■ There’s no direct implementation of Collection; no concrete class implements

it. It’s extended by more specific interfaces such as Set, List, and Queue.
Licensed to Mark Watson <nordickan@gmail.com>

331Review notes
■ This collection is used for maximum generality—to work with methods that can
accept objects of, say, Set, List, and Queue.

■ All collection classes are generic.
■ The Map interface doesn’t extend the core Collection interface.
■ The Collection interface implements the Iterable interface, which defines

method iterator(), enabling all the concrete implementations to access an
Iterator<E> to iterate over all the collection objects.

■ The methods of the Collection interface aren’t marked as synchronized.

Creating and using List, Set, and Deque implementations

■ The List interface models an ordered collection of objects. It returns the
objects to you in the order in which you added them. It allows you to store
duplicate elements.

■ In a List you can control the position where you want to store an element. This
is the reason that this interface defines overloaded methods to add, remove,
and retrieve elements at a particular position.

■ Method listIterator() of List can be used to iterate the complete list or a
part of it.

■ An ArrayList is a resizable array implementation of the List interface.
■ An ArrayList uses the size variable to keep track of the number of elements

inserted in it. By default, an element is added to the first available position in
the array. But if you add an element to an earlier location, the rest of the list ele-
ments are shifted to the right.

■ If you remove an element that isn’t the last element in the list, ArrayList shifts
the elements to the left.

■ An ArrayList maintains a record of its size so that you can’t add elements at
arbitrary locations.

■ ArrayList’s method remove() sequentially searches the ArrayList to find the tar-
get object, using method equals() to compare its elements with the target object.

■ If a matching element is found, remove(Object) removes the first occurrence
of the match found.

■ If you’re adding instances of a user-defined class as elements to an ArrayList,
override its method equals() or else its method contains() or remove() might
not behave as expected.

■ The ArrayList methods clear(), remove(), and removeAll() offer different
functionalities. clear() removes all the elements from an ArrayList. remove
(Object) removes the first occurrence of the specified element, and remove(int)
removes the element at the specified position. removeAll() removes from an
ArrayList all of its elements that are contained in the specified collection.

■ A Deque is a double-ended queue, a queue that supports the insertion and dele-
tion of elements at both its ends.
Licensed to Mark Watson <nordickan@gmail.com>

332 CHAPTER 4 Generics and collections
■ As a double-ended queue, a Deque can work as both a queue and a stack.
■ The Deque interface defines multiple methods to add, remove, and query the

existence of elements from both its ends.
■ Methods addFirst(), addLast(), offerFirst(), and offerLast() add and

remove elements from the top and tail.
■ Deque also defines methods push(), pop(), and peek() to add, remove, and

query elements at its beginning.
■ ArrayDeque and LinkedList implement the Deque interface.
■ ArrayDeque is a resizable array implementation of the Deque interface.
■ Deque’s method peek() only queries elements, it doesn’t remove them.
■ Deque’s method remove() just removes an element.
■ Deque’s method poll() returns null when Deque is empty and remove() throws

a runtime exception.
■ All the insertion methods (add(), addFirst(), addLast(), offer(), offer-

First(), offerLast(), and push()) throw a NullPointerException if you try
to insert a null element into an ArrayDeque.

■ You can iterate over the elements of Deque by using an Iterator, returned by
methods iterator() and descendingIterator().

■ Class LinkedList implements both the List and Deque interfaces. So it’s a
double-linked list implementation of the List and Deque interfaces.

■ Unlike ArrayDeque, LinkedList permits addition of null elements.
■ A LinkedList is like an ArrayList (ordered by index) but the elements are

double-linked to each other. So besides the methods from List, you get a
bunch of other methods to add or remove at the beginning and end of this list.
So it’s a good choice if you need to implement a queue or a stack. A LinkedList
is useful when you need fast insertion or deletion, but iteration might be slower
than an ArrayList.

■ Because a LinkedList implements List, Queue, and Deque, it implements
methods from all these interfaces.

■ The Set interface models the mathematical Set abstraction.
■ The Set interface doesn’t allow duplicate elements and the elements are returned

in no particular order.
■ To determine the equality of objects, Set uses their method equals(). For two

elements, say e1 and e2, if e1.equals(e2) returns true, Set doesn’t add both
these elements.

■ Set defines methods to add and remove its elements. It also defines methods to
query itself for the occurrence of specific objects.

■ Class HashSet implements the Set interface. It doesn’t allow the addition of
duplicate elements and makes no guarantee to the order of retrieval of its
elements.

■ HashSet is implemented using a HashMap.
Licensed to Mark Watson <nordickan@gmail.com>

333Review notes
■ To store and retrieve its elements, a HashSet uses a hashing method, access-
ing an object’s hashCode() value to determine the bucket in which it should
be stored.

■ Method hashCode() doesn’t call method equals().
■ Method equals() doesn’t call method hashCode().
■ Classes should override their hashCode() methods efficiently to enable collec-

tion classes like HashSet to store them in separate buckets.
■ A HashSet allows storing of only one null element. All subsequent calls to stor-

ing null values are ignored.
■ Class HashSet uses hashing algorithms to store, remove, and retrieve its ele-

ments. So it offers constant time performance for these operations, assuming
that the hash function disperses its elements properly among its buckets.

■ A LinkedHashSet offers the benefits of a HashSet combined with a LinkedList.
It maintains a double-linked list running through its entries.

■ As with a LinkedList, you can retrieve objects from a LinkedHashSet in the
order of their insertion.

■ Like a HashSet, a LinkedHashSet uses hashing to store and retrieve its ele-
ments quickly.

■ A LinkedHashSet permits null values.
■ LinkedHashSet can be used to create a copy of a Set with the same order as that

of the original set.
■ LinkedHashSet’s method addAll() accepts a Collection object. So you can

add elements of an ArrayList to a LinkedHashSet. The order of insertion of
objects from ArrayList to LinkedHashSet is determined by the order of objects
returned by ArrayList’s iterator (ArrayList objects can be iterated in the
order of their insertion).

■ A TreeSet stores all its unique elements in a sorted order. The elements are
ordered either on their natural order (achieved by implementing the Comparable
interface) or by passing a Comparator while instantiating a TreeSet. If you fail
to specify either of these, TreeSet will throw a runtime exception when you try
to add an object to it.

■ Unlike the other Set implementations like HashSet and LinkedHashSet,
which use equals() to compare objects for equality, a TreeSet uses method
compareTo() (for the Comparable interface) or compare() (for the Comparator
interface) to compare objects for equality and their order.

■ If two object instances are equal according to their method equals(), but not
according to their method compare() or compareTo(), a Set can exhibit incon-
sistent behavior.

■ Classes Enum and File implement the Comparable interface. The natural order
of enum constants is the order in which they’re declared. Classes StringBuffer
and StringBuilder don’t implement the Comparable interface.
Licensed to Mark Watson <nordickan@gmail.com>

334 CHAPTER 4 Generics and collections
Map and its implementations
■ Unlike the other interfaces from the collections framework, like List and Set,

the Map interface doesn’t extend the Collection interface.
■ A Map defines key-values pairs, where a key can map to a 0 or 1 value.
■ Map objects don’t allow the addition of duplicate keys.
■ The addition of a null value as a key or value depends on a particular Map

implementation. A HashMap and LinkedHashMap allow insertion of null as a key,
but TreeMap doesn’t—it throws an exception.

■ A HashMap is a hash-based Map that uses the hash value of its key (returned by
hashCode()) to store and retrieve keys and their corresponding values. Each
key can refer to a 0 or 1 value. The keys of a HashMap aren’t ordered. The Hash-
Map methods aren’t synchronized, so they aren’t safe to be used in a multi-
threaded environment.

■ You can create a HashMap by passing its constructor another Map object. Addi-
tions of new key-value pairs or deletions of existing key-value pairs in the Map
object passed to the constructor aren’t reflected in the newly created HashMap.

■ Because a HashMap stores objects as its keys and values, it’s common to see code
that stores another collection object (like an ArrayList) as a value in a Map.

■ You can call method get() on a HashMap to retrieve the value for a key.
■ Methods containsKey() and containsValue() check for the existence of a

key or a value in a HashMap, returning a boolean value. Methods get() and
containsKey() rely on appropriate overriding of a key’s methods hashCode()
and equals().

■ Class String and all the wrapper classes override their methods hashCode()
and equals(), so they can be correctly used as keys in a HashMap.

■ HashMap uses hashing functions to add or retrieve key-value pairs. The key must
override both methods equals() and hashCode() so that it can be added to a
HashMap and retrieved from it.

■ When objects of a class that only overrides method equals() (and not method
hashCode()) are used as keys in a HashMap, containsKey() will always return
false.

■ If you add a key-value pair to a HashMap such that the key already exists in the
HashMap, the key’s old value will be replaced with the new value.

■ You can add a value with null as the key in a HashMap.
■ You can use method remove(key) or clear() to remove one or all key-value

pairs of a HashMap.
■ Method remove() can return a null value, irrespective of whether the specified

key exists in a HashMap. It might return null if matching a key isn’t present in
HashMap, or if null is stored as a value for the specified key.

■ For a HashMap, methods that query or search a key use the key’s methods hash-
Code() and equals().
Licensed to Mark Watson <nordickan@gmail.com>

335Review notes
■ Method remove() removes a maximum of one key-value pair from a HashMap.
Method clear() clears all the entries of a HashMap. Method remove() accepts a
method parameter but clear() doesn’t.

■ You can use methods size() and isEmpty() to query a HashMap’s size.
■ You can use method putAll() to copy all the mappings from the specified map

to a HashMap.
■ Method putAll() accepts an argument of type Map. It copies all the mappings

from the specified map to the map that calls putAll(). For common keys, the
values of map that call putAll() are replaced with the values of the Map object
passed to putAll().

■ The Map interface defines methods keySet(), values(), and entrySet() to
access keys, values, and key-value pairs of a HashMap.

■ Method values() returns a Collection object, method keySet() returns a Set
object, and method entrySet() returns a Map.Entry object.

■ Class HashTable wasn’t a part of the collections framework initially. It was retro-
fitted to implement the Map interface in Java 2, making it a member of the Java
Collection framework. But it’s considered legacy code. It’s roughly equivalent
to a HashMap with some differences. The operations of a HashMap aren’t syn-
chronized, whereas the operations of a HashTable are synchronized.

■ The LinkedHashMap IS-A HashMap with a predictable iteration order. Like a
LinkedList, a LinkedHashMap maintains a double-linked list, which runs through
all its entries.

■ A LinkedHashMap will always iterate over its elements in their order of
insertion.

■ A TreeMap is sorted according to the natural ordering of its keys or as defined
by a Comparator passed to its constructor.

■ TreeMap implements the SortedMap interface. Like HashMap and LinkedHash-
Map, the operations of a TreeMap aren’t synchronized, which makes it unsafe to
be used in a multithreaded environment.

■ The TreeMap performs all key comparisons by using method compareTo() or
compare(). Two keys are considered equal by a TreeMap if the key’s method
compareTo() or compare() considers them equal.

■ When you create a TreeMap object, you should specify how its keys should
be ordered. A key might define its natural ordering by implementing the
Comparable interface. If it doesn’t you should pass a Comparator object to
specify the key’s sort order.

■ The set of values that you retrieve from a TreeMap is sorted on its keys and not
on its values.

■ You can create a TreeMap without passing it a Comparator object or without
using keys that implement a Comparable interface. But adding key-value pairs
to such a TreeMap will throw a runtime exception, ClassCastException.
Licensed to Mark Watson <nordickan@gmail.com>

336 CHAPTER 4 Generics and collections
■ When you pass a Comparator object to TreeMap constructor, the natural order
of its keys is ignored.

■ Because a TreeMap uses method compare() or compareTo() to determine the
equality of its keys, it can access the value associated with a key, even though its
key doesn’t override its method equals() or hashCode().

Using java.util.Comparator and java.lang.Comparable

■ The Comparable interface is used to define the natural order of the objects of
the class that implements it.

■ Comparable is a generic interface (using T as type parameter) and defines only
one method, compareTo(T object), which compares the object to the object
passed to it as a method parameter.

■ Method compareTo() returns a negative integer, zero, or a positive integer if
this object is less than, equal to, or greater than the specified object.

■ The Comparator interface is used to define the sort order of a collection of
objects, without requiring them to implement this interface.

■ The Comparator interface defines methods compare() and equals().
■ You can pass Comparator to sort methods like Arrays.sort() and Collections

.sort().
■ A Comparator object is also passed to collection classes like TreeSet and Tree-

Map that require ordered elements.
■ The Comparator interface is used to specify the sort order for classes that

– Don’t define a natural sort order
– Need to work with an alternate sort order
– Don’t allow modification to their source code so that natural ordering can

be added to them

Sorting and searching arrays and lists

■ Class Arrays in the collections framework defines multiple methods to sort
complete or partial arrays of primitive data types and objects.

■ When method Arrays.sort() accepts fromIndex and toIndex values to sort a
partial array, the element stored at position fromIndex is sorted, but the ele-
ment stored at position toIndex isn’t.

■ A space has a lower ASCII or Unicode value than lowercase or uppercase letters.
When arranged in an ascending order, a String value that starts with a space is
placed before the String values that don’t start with a space.

■ Class Collections defines method sort() to sort objects of List.
■ Classes Arrays and Collections define method binarySearch() to search a

sorted array or a List for a matching value using the binary search algorithm.
The array or List must be sorted according to the natural order of its elements
or as specified by Comparator. If you pass this method an unsorted list, the
Licensed to Mark Watson <nordickan@gmail.com>

337Review notes
results are undefined. If more than one value matches the target key value to be
searched, this method can return any of these values.

■ Method binarySearch() returns the index of the search key if it’s contained in
the list; otherwise it returns (-(insertion point) - 1). The insertion point is
defined as the point at which the key would be inserted into the list: the index
of the first element greater than the key, or list.size() if all elements in the
list are less than the specified key. Note that this guarantees that the return
value will be >= 0 if and only if the key is found.

Using wrapper classes
■ All the wrapper classes are immutable.
■ All the wrapper classes implement the Comparable interface. All these classes

define their natural order.
■ You can create objects of all the wrapper classes in multiple ways:

– Assignment—By assigning a primitive to a wrapper class variable
– Constructor—By using wrapper class constructors
– Static methods—By calling the static method of wrapper classes, like valueOf()

■ All wrapper classes (except Character) define a constructor that accepts a
String argument representing the primitive value that needs to be wrapped.
Watch out for exam questions that include a call to a no-argument constructor
of a wrapper class. None of these classes defines a no-argument constructor.

■ To get a primitive data-type value corresponding to a string value, you can use
the static utility method parseDataType(), where DataType refers to the type of
the return value.

■ Wrapper classes Character, Byte, Short, Integer, and Long cache objects with
values in the range of –128 to 127. These classes define inner static classes that
store objects for the primitive values –128 to 127 in an array. If you request an
object of any of these classes, from this range, method valueOf() returns a ref-
erence to a predefined object; otherwise, it creates a new object and returns
its reference.

■ Integer literal values are implicitly converted to Integer objects and decimal lit-
eral values are implicitly converted to Double objects.

■ The objects of different wrapper classes with the same values aren’t equal.
■ When arranged in natural sort order, false precedes true.

Autoboxing and Unboxing
■ Autoboxing is the automatic conversion of a primitive data type to an object of

the corresponding wrapper class (you box the primitive value). Unboxing is the
reverse process (you unbox the primitive value).

■ Wrapper classes are immutable. Adding a primitive value to a wrapper class vari-
able doesn’t modify the value of the object it refers to. The wrapper class variable
is assigned a new object.
Licensed to Mark Watson <nordickan@gmail.com>

338 CHAPTER 4 Generics and collections
■ Unboxing a wrapper reference variable, which refers to null, will throw a Null-
PointerException.

SAMPLE EXAM QUESTIONS

Q 4-1. Which of the following options creates a generic class that can be passed multi-
ple generic types? (Choose all that apply.)

a class EJavaMap<A , B> {}

b class EJavaMap<A a, B b> {}

c class EJavaMap<Aa extends String, Bb extends Object> {
 void add(Aa a) {}
 void add(Bb a) {}
}

d class EJavaMap<Aa, Bb> {
 void add(Aa a, Bb b) {}
}

Q 4-2. Which of the following statements are true about generic classes, interfaces,
and methods?

a If you define a generic class, you must define its corresponding raw class explicitly.
b On compilation, type information is erased from a generic class.
c A generic method can be defined within a generic class or a regular class.
d Generic interfaces might not accept multiple generic type parameters.

Q 4-3. Which of the following options when inserted at //INSERT CODE HERE would
compile successfully without any warning? (Choose all that apply.)

class Box<T> {
 T t;
 Box(T t) {
 this.t = t;
 }
 T getValue() {
 return t;
 }
}
class Test {
 public static void main(String args[]) {
 //INSERT CODE HERE
 }
}

a Box box = new Box("abcd");

b Box<String> box = new Box<>("String");

c Box<String> box = new Box<String>("Object");

d Box<Object> box = new Box<String>("String");
Licensed to Mark Watson <nordickan@gmail.com>

339Sample exam questions
Q 4-4. Consider this pre-generics implementation of method concat() in class MyString:

class MyString {
 public static String concat(List list) { //1
 String result = new String(); //2
 for (Iterator iter = list.iterator(); iter.hasNext();) { //3
 String value = (String)iter.next(); //4
 result += value; //5
 }
 return result;
 }
}

Which three of the following changes together will allow method concat() to be used
with generics without generating unchecked warnings?

a Replace line 1 with public static String concat(List<String> list) {.
b Replace line 1 with public static String concat(List<Integer> list) {.
c Remove code on line 3.
d Remove code on line 4.
e Change code on line 3 to for (String value : list) {.
f Change code on line 3 to for (String value : list.listIterator()) {.

Q 4-5. What happens when you try to compile and execute the following class with
Java 7? (Choose all that apply.)

class EJava {
 public static void main(String args[]) {
 ArrayList list = new ArrayList();
 list.add("ABCD");
 list.add(1);
 list.add(new Thread());

 for (Object obj:list) System.out.println(obj);
 }
}

a Class EJava fails to compile with Java 7.
b Class EJava compiles with a compilation warning when compiled with Java 7.
c Class EJava iterates though all the objects of the list and prints their values as

returned by their method toString().
d Class EJava prints the first list value and throws a ClassCastException while

trying to print the second list element.

Q 4-6. What is the output of the following code?

import java.util.*;
public class MyHashSet {
 public static void main (String [] args) {
 Set<Phone> set = new TreeSet<>();
 set.add(new Phone("Harry"));
Licensed to Mark Watson <nordickan@gmail.com>

340 CHAPTER 4 Generics and collections
 set.add(new Phone("Paul"));
 set.add(new Phone("Harry"));
 set.add(new Phone("Paul"));

 Iterator <Phone> iterator = set.iterator ();

 while (iterator.hasNext()) {
 Phone ph = iterator.next();
 switch (ph.toString()){
 case "Harry": System.out.print("?Harry? ");
 break;
 case "Paul": System.out.print("<Paul> ");
 break;
 }
 }
 System.out.print("Set size=" + set.size());
 }
}
class Phone{
 String manufacturer;
 Phone(String value) {
 manufacturer = value;
 }
 public String toString() {
 return manufacturer;
 }
}

a <Paul> ?Harry? ?Harry? <Paul> Set size=4
b <Paul> ?Harry? <Paul> ?Harry? Set size=4
c ?Harry? ?Harry? <Paul> <Paul> Set size=4
d <Paul> ?Harry? Set size=2
e ?Harry? <Paul> Set size=2
f Compilation error
g Runtime exception
h The output is unpredictable.

Q 4-7. Given the following code, which code options when inserted at //INSERT CODE
HERE will sort the keys in props?

class EMap {
 public static void main(String... args) {
 HashMap props = new HashMap();
 props.put("Harry", "Manth");
 props.put("Paul", "Rosen");
 props.put("Alm", "Bld");
 Set keySet = props.keySet();
 //INSERT CODE HERE
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

341Sample exam questions
a Arrays.sort(keySet);

b Collections.sort(keySet);

c Collection.sort(keySet);

d Collections.arrange(keySet);

e keySet = new TreeSet(keySet);
f keySet = new SortedSet(keySet);

Q 4-8. Which code option(s) when inserted at //INSERT CODE HERE will make class
EJava print Harry?

class EJava {
 public static void main(String args[]) {
 String myArray[] = {"Harry", "Shreya",
 "Selvan", "Paul"};
 //INSERT CODE HERE
 System.out.println(myArrayList.get(0));
 }
}

a List <?> myArrayList = new LinkedList<?>(Arrays.asList(myArray));
b List <?> myArrayList = new LinkedList<>(Arrays.asList(myArray));
c List <? extends String> myArrayList = new LinkedList<>(Arrays.asList

(myArray));
d List myArrayList = new LinkedList(Arrays.asList(myArray));
e List myArrayList = new LinkedList<String>(Arrays.asList(myArray));

Q 4-9. Which statements are true about method hashCode()?

a Method hashCode() is used by classes such as HashMap to determine inequality
of objects.

b Method hashCode() is used by classes such as HashSet to determine equality
of objects.

c Method hashCode() is used by class Collections.sort to order the elements of
a collection.

d Method hashCode() is used by classes like HashSet, TreeSet, and HashMap,
which use hashing to group their elements into hash buckets.

e An efficient hashCode() method includes use of a particular algorithm recom-
mended by Java.

Q 4-10. What is the output of the following code? (Choose all that apply.)

import java.util.*;
class MyHash {
 public static void main(String args[]) {
 Person p1 = new Person("Shreya");
 Person p2 = new Person("Harry");
Licensed to Mark Watson <nordickan@gmail.com>

342 CHAPTER 4 Generics and collections
 Person p3 = new Person("Paul");
 Person p4 = new Person("Paul");
 HashSet<Person> set = new HashSet<>();
 set.add(p1);
 set.add(p2);
 set.add(p3);
 set.add(p4);
 System.out.println(set.size());
 }
}

class Person {
 String name;
 Person(String name) {
 this.name = name;
 }
 public int hashCode() {
 return 20;
 }
 public boolean equals(Object obj) {
 return true;
 }
}

a 0
b 1
c 2
d 3
e 4
f Compilation error
g Runtime exception

Q 4-11. Which code option when inserted at //INSERT CODE HERE will enable you to
sort instances of class Student using their natural order and add them to a TreeSet?

class Student implements Comparator<Student> {
 String id;
 String name;
 //INSERT CODE HERE
}

a public boolean compare(Object obj1, Object obj2) {/* relevant code

here */}

b public int compare(Object obj1, Object obj2) {/* relevant code here

*/}

c public boolean compareTo(Student s1, Student s2) {/* relevant code

here */}

d public boolean compare(Object obj1) {/* relevant code here */}

e public int compare(Student obj1) {/* relevant code here */}

f None of the above
Licensed to Mark Watson <nordickan@gmail.com>

343Answers to sample exam questions
Q 4-12. Select true statements about method hashCode().

a Classes HashSet and HashMap use method hashCode() to store and retrieve
their values.

b Class TreeSet can use method hashCode() to store and retrieve its elements.
c Method hashCode() is used to test for object equality and inequality for a class.
d If hashCode() for two objects of the same class returns the same value, the objects

are considered equal.
e For a class, method hashCode() can be used to test for object inequality.

ANSWERS TO SAMPLE EXAM QUESTIONS

A 4-1. a, c, d

[4.1] Create a generic class

Explanation: Though Java recommends using single letters like T or V to specify the
type, using the letters A and B is correct in option (a) as per the syntax.

 Option (b) is incorrect because it uses invalid syntax to specify the type parameters
to a class. To specify multiple type parameters in a class declaration, you need to spec-
ify a placeholder for only the type—not its variables.

 Option (c) and (d) are correct. It’s acceptable to define the type parameters as a
subtype of an existing Java class. Though not recommended, it’s acceptable to use
type parameters with more than one letter: Aa and Bb.

A 4-2. b, c

[4.1] Create a generic class

Explanation: Option (a) is incorrect. A raw type doesn’t include the generic informa-
tion. For the generic type List<T>, its raw type is List. You don’t need to define a raw
type explicitly for any generic class or interface. You can access the raw type of all the
generic types.

 Option (d) is incorrect. Like generic classes, generic interfaces can define any
number of generic type parameters.

A 4-3. b, c

[4.2] Use the diamond for type inference
[4.3] Analyze the interoperability of collections that use raw types and generic types

Explanation: Option (a) generates a compilation warning, because it uses generic
code without its type information.

 Options (b) and (c) are correct. The type that you use for declaring a variable of
class Box is String, as in Box<String> box. Class Box defines only one constructor that
Licensed to Mark Watson <nordickan@gmail.com>

344 CHAPTER 4 Generics and collections
accepts an object of its type parameter. Even though you can just use the angle
brackets and drop the type parameter String from it, you must pass a String object
to the constructor of class Box or a subclass. The following code also compiles with-
out warning (and I pass an instance of a subclass of the generic type parameter into
the constructor):

Box<Object> box3 = new Box<Object>("Object");

Option (d) fails to compile. Even though class String subclasses class Object, the ref-
erence variable box of type Box<Object> can’t refer to objects of Box<String>.

A 4-4. a, d, e

[4.3] Analyze the interoperability of collections that use raw types and generic types

Explanation: The options (a), (d), and (e), when implemented together, will allow
method concat() to be used with generics without generating any warnings.

 Option (b) is incorrect. Replacing line 1 with public static String concat
(List<Integer> list) { would generate a ClassCastException at runtime, if a list
other than a list of integer objects is passed to method concat().

 Option (c) is incorrect because a for loop is required to iterate through the list
objects.

 Options (d) and (e) are correct. With generics, you can use an advanced for loop
to iterate through list elements. Because the object type is already specified (as
String), the advanced for loop returns String objects, which don’t require an
explicit cast.

 Option (f) is incorrect and won’t compile.

A 4-5. b, c

[4.3] Analyze the interoperability of collections that use raw types and generic types

Explanation: The code executes, printing all the values of the objects added to the
List. Method toString() is implicitly called when you try to print the value of
an object.

 Using a raw type of interface is allowed post-introduction of generics. This is
allowed for backward compatibility with nongenerics code.

 But all uses of the add methods with List’s raw type will compile with the following
compilation warning:

warning: [unchecked] unchecked call to add(E) as a member of the raw type
ArrayList

 list.add("ABCD");
 ^
 where E is a type-variable:
 E extends Object declared in class ArrayList
Licensed to Mark Watson <nordickan@gmail.com>

345Answers to sample exam questions
A 4-6. g

[4.5] Create and use List, Set, and Deque implementations

Explanation: The code fails at runtime with the following message because class Phone
doesn’t implement the java.lang.Comparable interface:

Exception in thread "main" java.lang.ClassCastException: Phone
can’t be cast to java.lang.Comparable.

This exception is thrown when the code tries to add a value to set. A TreeSet should be
able to sort its elements either by using their natural order or by using a Comparator
object passed to TreeSet’s constructor. A class defines its natural sort order by imple-
menting the Comparable interface. Class Phone doesn’t define its natural order. Also,
while instantiating set, no Comparator object is passed to TreeSet’s constructor.

 You can instantiate a TreeSet that neither uses elements with a natural sort order
nor is passed a Comparator object. But such a TreeSet will throw a runtime exception
when you try to add an element to it.

A 4-7. e

[4.6] Create and use Map implementations

Explanation: Option (a) is incorrect because method sort() of class Arrays sorts only
arrays, not HashMap.

 Option (b) is incorrect. Method sort() of class Collections sorts List objects,
not HashMap.

 Option (c) is incorrect because Collection isn’t defined in the Java API.
 Option (d) is incorrect because method arrange() isn’t defined in class Collections.
 Option (f) is incorrect because SortedSet is an interface, which can’t be instantiated.

A 4-8. b, c, d, e

[4.2] Use the diamond for type inference
[4.3] Analyze the interoperability of collections that use raw types and generic types
[4.5] Create and use List, Set, and Deque implementations

Explanation: Option (a) is incorrect. This code won’t compile. When Java runtime
instantiates a LinkedList object, it must know the type of objects that it stores—either
implicitly or explicitly. But, in this option, the type of the LinkedList object is neither
stated explicitly nor can it be inferred.

 Option (b) is correct. The wildcard ? is used to refer to any type of object. Here
you’re creating a reference variable myArrayList, which is a List of any type. This ref-
erence variable is initialized with LinkedList object, whose type is inferred by the
argument passed to the constructor of LinkedList.
Licensed to Mark Watson <nordickan@gmail.com>

346 CHAPTER 4 Generics and collections
 Option (c) is correct. This option uses the bounded wildcard <? extends String>,
restricting the unknown type to be either class String or any of its subclasses. Even
though String is a final class, ? extends String is acceptable code.

 Option (d) generates a compiler warning because it uses raw types.
 Option (e) doesn’t generate a compiler warning because the object creation uses

generics.

A 4-9. a

[4.5] Create and use List, Set, and Deque implementations

Explanation: Option (b) is incorrect. Method equals()is used to determine the
equality of objects.

 Option (c) is incorrect. Class Collections defines two overloaded versions of
method sort(). Both accept a List object, with or without a Comparator object.
Method sort() sorts a List passed to it into ascending order, according to the natural
ordering of its elements, or by using the order specified by a Comparator object.

 Option (d) is incorrect. Though HashSet and HashMap use hashCode() for hash-
ing, TreeSet doesn’t.

 Option (e) is incorrect. Java doesn’t recommend any particular algorithm for
writing an efficient hashCode() method. But Java does recommend writing an effi-
cient algorithm.

A 4-10. b

[4.5] Create and use List, Set, and Deque implementations

Explanation: Method HashSet() uses method hashCode() to determine an appropri-
ate bucket for its element. If it adds a new element to a bucket that already contains
an element, HashSet calls equals on the elements to determine whether they’re
equal. HashSet doesn’t allow duplicate elements. When it adds a Person object, the
same hashCode value makes it land in the same bucket. Calling the equals() method
returns true, signaling that an attempt is being made to add a duplicate object, which
isn’t allowed by HashSet.

A 4-11. f

[4.5] Create and use List, Set, and Deque implementations
[4.7] Use java.util.Comparator and java.lang.Comparable

Explanation: Instances of a class are sorted using its natural order, if the class imple-
ments the Comparable interface and not Comparator.

 The Comparator interface is used to define how to compare two objects for sorting
(less than, equal to, or greater than). Unlike the Comparable interface, the Comparator
Licensed to Mark Watson <nordickan@gmail.com>

347Answers to sample exam questions
interface need not be implemented by the class whose objects are to be sorted. The
Comparator interface can be used to define an order for objects if the objects don’t
define their natural order. It can also be used to define a custom order for objects.
You can use a Comparator object to define an order for objects, the natural order of
which you can’t define or modify. When you pass a Comparator object to the instantia-
tion of a collection class like TreeMap, the TreeMap uses the order as defined by the
Comparator object, ignoring the natural order of its keys.

 For example, the following class defines a custom (descending) order for String
objects:

class DescendingStrings implements Comparator<String> {
 public int compare(String s1, String s2) {
 return s2.name.compareTo(s1.name);
 }
}

A 4-12. a, e

[4.5] Create and use List, Set, and Deque implementations
[4.6] Create and use Map implementations

Explanation: In option (a), classes HashSet and HashMap use hashing to store and
retrieve their values. Hashing uses the hashCode value to determine the bucket in
which the values should be stored.

 Option (b) is incorrect. TreeSet ignores the hashCode values. A TreeSet stores its
elements based on its key’s natural ordering or the ordering defined by a Comparator.

 Options (c) and (d) are incorrect, and (e) is correct. The hashCode value is used
to test for object inequality. If two objects return different hashCode values, they can
never be equal. But if your objects return the same hashCode values, they can be
unequal (if their equals() returns false).
Licensed to Mark Watson <nordickan@gmail.com>

String processing
Imagine that after completing a 500-page draft of your novel, you want to change
the name of your main character from Beri to Bery. This should be simple, right?
You can use your word processor’s Find/Replace option and be well on your way.
From a text file, you pull out a list of email addresses of all the publishers to whom
you wish to submit your manuscript. But before using these addresses, you want to
run a quick check to ensure that they’re valid—that they include an @ sign and a
dot (.), followed by a domain name. This should also be simple. You can use your
email client to check them. Now, imagine your novel becomes a best seller, and

Exam objectives covered in this chapter What you need to know

[5.1] Search, parse, and build strings
(including Scanner, String-
Tokenizer, StringBuilder,
String, and Formatter)

The methods that can be used to parse
and build strings, from classes Scanner,
StringTokenizer, StringBuilder, and
Formatter.

[5.2] Search, parse, and replace strings by
using regular expressions, using expression
patterns for matching limited to . (dot), *
(star), + (plus), ?, \d, \D, \s, \S, \w, \W,
\b, \B, [], ()

What regular expressions (regex) are and how they’re
used to search, parse, and replace strings. Under-
stand the use of the relevant API classes in the
java.util.regex package.

[5.3] Format strings using the formatting
parameters %b, %c, %d, %f, and %s in for-
mat strings

The purpose of formatting parameters to format
strings and other data types.
How to determine code output when invalid
combination of format parameters and data
types is used.
348

Licensed to Mark Watson <nordickan@gmail.com>

349Regular expressions
your publisher wants to translate it into multiple languages. Wow! Assuming that your
novel includes numbers and decimal numbers, the publisher would also need to
reformat these numbers based on the language that your text is translated into. Vari-
ous languages might use different separators in decimal numbers. Though not a
straightforward task, it’s feasible.

 Finding and replacing text, validating it, and formatting numbers in different ways
are all examples of common requirements. Java applications might need to perform
similar common data manipulation and formatting tasks. To accomplish this, Java
includes flexible and powerful classes and methods to search, parse, replace, and for-
mat data. This chapter covers

■ How classes from the Java API (String, StringBuilder, Scanner, String-
Tokenizer, Formatter) can help you search, parse, build, and replace strings

■ Regular expressions and what you can do with them
■ How to format strings by using format specifiers

Even though you might be familiar with working with the Java programming lan-
guage, it’s possible that you didn’t get an opportunity to work with regular expressions
(regex) in Java (or in any other programming language). Now available to be used
with most programming languages, either integrated or as an external library, regex is
a powerful and flexible language to describe data and search matching data. But this
chapter’s coverage of regex is limited to the exam topics.

 Let’s start with the basic differences between searching text for exact matches and
searching for regex patterns.

5.1 Regular expressions

As opposed to exact matches, you can use regex to search for data that matches a pat-
tern. Let’s imagine that in addition to changing the name of your main character in
your novel, you want to change all references of sun to moon. Though the solution
might seem as simple as using Find/Replace, how would you go about it if in some
places in the novel, sun is misspelled as sin, son, or sbn?

 Figure 5.1 compares searching for a fixed literal value (sun) with finding a regex
pattern (s.n) against a target string value: sun soon son.

 As shown in figure 5.1, the literal search string sun finds one match, starting at
position 0, in the target string sun soon son. Unlike the unmatched values, I’ve high-
lighted the matching value with a dark background. On the other hand, the regex
pattern s.n (the dot is a metacharacter that can match any character) finds two

[5.2] Search, parse, and replace strings by using regular expressions,
using expression patterns for matching limited to . (dot), * (star),
+ (plus), ?, \d, \D, \s, \S, \w, \W, \b, \B, [], ().
Licensed to Mark Watson <nordickan@gmail.com>

350 CHAPTER 5 String processing
matches: sun and son, starting at positions 0 and 9 in the target search string sun
soon son.

 Similarly, you can use regex to find text that matches a pattern and to perform
operations such as these:

■ Check method arguments—Determine whether a string value starts with Sh and ends
with either y or a. Determine whether author@manning is a valid email address.

■ Validate user input—Verify whether 765-981-abc is a correct phone number.
■ Search usernames in a text file—Find the ones that are exactly 10 characters long,

starting with a letter A and followed by 4 digits and 5 letters.

All of these are common examples of needing regular expressions to describe your tar-
get data and find it in a stream (a string, a file, a network connection).

NOTE After you’ve found your target data, you can manipulate it any
way you like: replace it, print it to a file, alert a user about invalid data,
and so forth.

As I move on with this chapter, I’ll show you how to use metacharacters, character
classes, and quantifiers in regex. You’ll see how to use them in code to search for
matching data and manipulate it.

 Before I take a plunge into this topic, let me reiterate that regular expressions is a
relatively big topic, and this book limits its coverage to the exam topics. Though I
can’t guarantee that you’ll start writing amazing regex after reading this chapter,

s u n s o o n s o n

0 1 2 43 5 6 7 98 10 11

Target string

s u n s o o n s o n

0 1 2 43 5 6 7 98 10 11

Match result

sun s.n

Search string

Literal match

s u n s o o n s o n

0 1 2 43 5 6 7 98 10 11

Target string

s u n s o o n s o n

0 1 2 43 5 6 7 98 10 11

Match result

Search string

Regex match

Figure 5.1 Comparing the matching of literal values with finding regex patterns
Licensed to Mark Watson <nordickan@gmail.com>

351Regular expressions
you’ll definitely be comfortable using them, and of course, ready to answer the rele-
vant exam questions.

 Let’s see what a regular expression is and how to evolve one.

5.1.1 What is a regular expression?

The example in the previous section showed you that exact matches might not be able
to find all your matching data. In such cases, you need to define patterns of data (for
example, s.n) that can match your target data. You can define these patterns by using
regular expressions. Regular expressions come with a syntax (which we’ll cover in the
next few pages). With that syntax you can create a pattern to describe target search data.

 What’s the difference between describing data and specifying it? When you
describe data, you detail out its attributes or characteristics. When you specify data,
you state the exact data. In the example shown in figure 5.1, the regex s.n describes
the data as follows:

■ The first character must be s.
■ Allow any character at the second position.
■ The third character must be n.

NOTE Regular expressions is also referred to as a language because it has its
own syntax. Regex refers to both the language and the data patterns that
it defines.

Let’s work with some examples so that this definition makes more sense. First up,
character classes.

5.1.2 Character classes

Character classes aren’t classes defined in the Java API. The term refers to a set of char-
acters that you can enclose within square brackets ([]). When used in a regex pattern,
Java looks for exactly one of the specified characters (not words).

 Referring to our example of the novel, imagine that you want to search for all
occurrences of the phrase organized an event. But organized is also written as organised
(in the United Kingdom). Instead of searching your manuscript twice—first for orga-
nized and then for organised—you can use the character class [sz] in the search
string organi[sz]ed. [sz] would match either s or z so you can find both organized
and organised.

 Let’s work with another example, one you might see on the exam. Figure 5.2 shows
how character class [fdn] is used to find an exact match of f, d, or n. With a target
string I am fine to dine at nine, the regex [fdn]ine matches the words fine, dine, and
nine, at positions 5, 13, and 21.

 Let’s see how you can use Java classes Pattern and Matcher (covered in detail later
in the chapter) from the java.util.regex package to work with searching the text
shown in the preceding example.
Licensed to Mark Watson <nordickan@gmail.com>

352 CHAPTER 5 String processing

n

.

ing
d
.

import java.util.regex.*;
class UseRegex{
 public static void main(String[] args) {
 String targetString = "I am fine to dine at nine";
 String regex = "[fdn]ine";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(targetString);
 while (matcher.find()) {
 System.out.println(matcher.group() + " starts at " +
 matcher.start() + ", ends at " +
 matcher.end());
 }
 }
}

NOTE Building a string by using the concatenation operators (+ and +=)
isn’t a recommended practice. Later in this chapter, you’ll see how to use
formatting classes and parameters such as %s and %d to include and for-
mat variable values in String literal values.

Here’s the output of the preceding code:

fine starts at 5, ends at 9
dine starts at 13, ends at 17
nine starts at 21, ends at 25

The code at B defines the target string to be searched. The code at c defines the
regex pattern. The code at d, class Pattern, a compiled representation of a regex,

Listing 5.1 Simple code to work with regex using Pattern and Matcher

d i n e a t n i n

12 13 14 1615 17 18 19 2120 22 23

e

24

I a m f i n e t o

0 1 2 43 5 6 7 98 10 11

d i n e a t n i n

12 13 14 1615 17 18 19 2120 22 23

e

24

I a m f i n e t o

0 1 2 43 5 6 7 98 10 11

Target string

Match result

[fdn]ine

Regex

Match “f” or “d” or “n”

followed by “ine”

Figure 5.2 Character class [fdn] matches exactly one occurrence of f, d, or n.

Target string to
be searched

 b

Regex
pattern

 c Instantiate Patter
using factory
method compile()

 d

Matcher
created from

pattern
specifying

target string

 e
while matches
found

 f

Prints match
text, start an
end position

 g
Licensed to Mark Watson <nordickan@gmail.com>

353Regular expressions
is instantiated. Because this class doesn’t define any public constructor, you must
instantiate it by using its factory method compile(). Method compile() compiles a
regular expression into a Pattern object. At e, class Matcher is instantiated by
calling method matcher() on the Pattern instance. Matcher will match the given
input against this pattern. Class Matcher is an engine that performs match opera-
tions on a character sequence by interpreting a regex pattern. It also doesn’t define
a public constructor.

 Method find() of class Matcher returns true as long as it can find more
matches of a regex in a target string. At f, the while loop executes for all matches
found. The code at g uses methods group(), start(), and end() to extract the
matched string, its start position in the target string, and its end position in the tar-
get string.

 Compare the values returned by matcher.start() and matcher.end() in the out-
put shown for the preceding example and in figure 5.2. The substring fine occupies
positions 5, 6, 7, and 8 in the target string I am fine to dine at nine. But matcher.end()
returns the value 9. Beware of this on the exam. It can be combined in a tricky man-
ner with other methods like String’s method substring().

EXAM TIP If a matched string occupies index positions 1, 2, and 3 in a
target string, method end() of class Matcher returns the value 4 for the
corresponding call on end(). You can expect trick questions on this
returned value on the exam.

Table 5.1 list examples of simple character classes that you can use to create regex pat-
terns and find them in target data.

EXAM TIP If the Java Runtime engine determines that a pattern is
invalid, it throws the runtime exception PatternSyntaxException. On
the exam, when you see a question on the possible output of a string pro-
cessing code, examine the regex pattern for invalid values.

Table 5.1 Examples of regex patterns that use simple character classes

Class type Regex pattern Description

Simple [agfd] Match exactly one from a, g, f, or d

Range [a-f0-7] Match exactly one from the range a to f (both inclusive) or 0
to 7 (both inclusive)

Negation [^123k-m] Match exactly one character that is not 1, 2, or 3 or from the
range k to m (both inclusive)
Licensed to Mark Watson <nordickan@gmail.com>

354 CHAPTER 5 String processing
5.1.3 Predefined character classes

Java’s regex engine supports predefined character classes for your convenience.
Table 5.2 lists the predefined classes included on this exam. You can test these regex
using the class UseRegex included in listing 5.1.

NOTE To use a regex pattern that includes a backslash (\), you must
escape the \ in the pattern by preceding it with another \. The character
literal \ has a special meaning; it’s used as an escape character. To use it
as a literal, it must be escaped.

The dot (.) is a metacharacter that matches any character. Metacharacters are special
characters, which have special meanings. The search regex pattern 1.3 is not used to
find 1.3 in the target string. It’ll find the digit 1 followed by any character, followed by
the digit 3. For example, it’ll also find all of these: 123, 1M3, 193, 1)3, 1.3, 1,3, and 1+3.

 Table 5.3 lists example target strings, regex patterns, and the result of finding a
regex pattern in the target string. Figure 5.3, a pictorial representation of table 5.3,
shows a target string, the regex pattern that is applied to the target string, and the
results. The regex pattern that could be matched in the target string is highlighted

Table 5.2 Predefined character classes on this exam

Character class Description

. Any character (may or may not match line terminators)

\d A digit: [0-9]

\D A nondigit: [^0-9]

\s A whitespace character: [space, \t (tab), \n (new line), \x0B (end of line), \f
(form feed), \r (carriage)]

\S A nonwhitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A nonword character: [^\w]

Table 5.3 Examples of target strings, regex patterns that use predefined character classes, and their
matching results.

Target string Regex Match found Start and end positions of match found

A5C7M% \d Yes 5 starts at 1, ends at 2
7 starts at 3, ends at 4

A5C7M% \D Yes A starts at 0, ends at 1
C starts at 2, ends at 3
M starts at 4, ends at 5
% starts at 5, ends at 6
Licensed to Mark Watson <nordickan@gmail.com>

355Regular expressions
A B 890 \s Yes (First space) starts at 1, ends at 2
(Second space) starts at 3, ends at 4
(Third space) starts at 4, ends at 5

A B $890 \S Yes A starts at 0, ends at 1
B starts at 2, ends at 3
$ starts at 4, ends at 5
8 starts at 5, ends at 6
9 starts at 6, ends at 7
0 starts at 7, ends at 8

A b$9; \w Yes A starts at 0, ends at 1
b starts at 2, ends at 3
9 starts at 4, ends at 5

A b$9; \W Yes (Space) starts at 1, ends at 2
$ starts at 3, ends at 4
; starts at 5, ends at 6

Table 5.3 Examples of target strings, regex patterns that use predefined character classes, and their
matching results.

Target string Regex Match found Start and end positions of match found

A 5 C 7 M %

0 1 2 43 5

Target string

A 5 C 7 M %

0 1 2 43 5

A 5 C 7 M %

0 1 2 43 5

A 5 C 7 M %

0 1 2 43 5

ResultRegex

\d

\D

A b $ 9 ;

0 1 2 43 5

A b $ 9 ;

0 1 2 43 5

A b $ 9 ;

0 1 2 43 5

A b $ 9 ;

0 1 2 43 5

\w

\W

B 8 9 0

2 3 4 65

A

0 1 7

B 8$ 9 0

2 3 4 65

A

0 1 7

B 8 9 0

2 3 4 65

A

0 1 7

B 8$ 9 0

2 3 4 65

A

0 1 7

\s

\S

Figure 5.3 Pictorial representation of target strings, regex pattern applied to them, and the
matches found, including matching positions
Licensed to Mark Watson <nordickan@gmail.com>

356 CHAPTER 5 String processing

with a colored background. The starting position numbers of the matched string are
marked with an up arrow.

 Let’s code an example that uses a predefined character class and replace all the
matching occurrences with a literal string:

class UsePredefinedCharacterClass{
 public static void main(String[] args) {
 String targetString = "A b$9;";
 String regex = "\\W";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(targetString);
 String replacedStr = matcher.replaceAll("[]");

 System.out.println(replacedStr);
 }
}

The preceding code uses the illustration in figure 5.3. It uses Matcher’s replaceAll()
to replace all matching regex patterns in the target string with a string literal.

EXAM TIP Because String objects are immutable, calling replaceAll()
won’t change the contents of String referred to by the variable target-
String in the preceding code example. replaceAll() creates and returns
a new String object with the replaced values. Watch out for questions
based on it on the exam.

5.1.4 Matching boundaries

Say you want to find all occurrences of the word the in your book. To do that, you’d need
to search for the text the. Well, the same is true when you want to match the, which can
be part of another word, for example, their, leather, or seethe. So you need a way to limit
your searches to the start or end of a word. Matching boundaries can help you with this.
You can match boundaries including the start of a line, a word, a nonword, or the end of
a line by using regex patterns. Table 5.4 lists the boundary constructs that you’re likely
to see on the exam. Even though the boundary constructs ^ (beginning of line) and $
(end of line) aren’t explicitly included in the exam objectives, you might see them in
answer options that are incorrect. To ward off any confusion, I’ve included them in this
section. These constructs also might be helpful in your projects at work.

Table 5.4 Boundary constructs on this exam

Boundary construct Description

\b A word boundary

\B A nonword boundary

^ Beginning of a line

$ End of a line

Target
search
string

Regex
to be

searched

Instantiates Pattern
and compiles regex
pattern.

Creates a matcher that
will match given input
against this pattern.

Replaces all
matches found
with literal [].Prints

A[]b[]9[].
Licensed to Mark Watson <nordickan@gmail.com>

357Regular expressions
Let’s see what happens when you match the regex pattern \bthe against the literal
string value the leather in their code made her seethe, as shown in figure 5.4.

 As shown in figure 5.4, \bthe matches words that start with the, including the and
their. The first match is found at position 0, and the second match is found at posi-
tion 15, in their. What if you want to find words that include the but don’t start with the?

 Let’s modify the regex pattern \bthe used in the preceding example to \Bthe;
instead of matching words that start with the, you’ll match words that don’t start with
the. Figure 5.5 shows the matching values.

 The regex pattern \Bthe matches all occurrences of the that aren’t at the begin-
ning of a word. For the match found at position 7 in the word leather, it doesn’t matter
whether the is followed by any other character or a word boundary. What do you think
will be the output of matching the regex patterns ^the and the$ against the literal
string value the leather in their coat made her seethe? Try it out using a simple
code snippet.

ni t h ie r c o a

12 13 14 1615 17 18 19 2120 22 23

t

24

t eh el a t h re

0 1 2 43 5 6 7 98 10 11

te h e

37 38 39 40

am d e h e r s e

25 26 27 2928 30 31 32 3433 35 36

Target string

ni t h ie r c o a

12 13 14 1615 17 18 19 2120 22 23

t

24

t eh el a t h re

0 1 2 43 5 6 7 98 10 11

te h e

37 38 39 40

am d e h e r s e

25 26 27 2928 30 31 32 3433 35 36

Matching result

\Bthe

Regex
Match word boundary

followed by “the”

Figure 5.4 Matching regex pattern \Bthe against the string value the leather in their coat
made her seethe. \B is a word boundary. When placed before the text the, it limits searches to
finding words that start with the.

ni t h ie r c o a

12 13 14 1615 17 18 19 2120 22 23

t

24

t eh el a t h re

0 1 2 43 5 6 7 98 10 11

te h e

37 38 39 40

am d e h e r s e

25 26 27 2928 30 31 32 3433 35 36

Target string

ni t h ie r c o a

12 13 14 1615 17 18 19 2120 22 23

t

24

t eh el a t h re

0 1 2 43 5 6 7 98 10 11

te h e

37 38 39 40

am d e h e r s e

25 26 27 2928 30 31 32 3433 35 36

Matching result

Regex
Match a

nonword boundary

followed by “the”

\Bthe

Figure 5.5 Matching regex pattern \Bthe against the string value the leather in their coat
made her seethe. \B is a nonword boundary. When placed before the text the, it limits its searches
to finding words that don’t start with the.
Licensed to Mark Watson <nordickan@gmail.com>

358 CHAPTER 5 String processing
It’s time to test your skills in determining matching values for a regex pattern, in the
first “Twist in the Tale” exercise.

Consider the following string literal value:

String targetString = "The leather in their coat made her seethe";

Which of these options correctly defines a regex pattern for searching the literal
string for the at either the beginning or end of a word, but not in its middle?

a String regex = "\\Bthe\\B";
b String regex = "\\bthe\\B";
c String regex = "\\Bthe\\b";
d String regex = "\\bthe|the\\b";

It’s interesting to note that none of these regex options is invalid, and each produces
output. Can you also determine the matched the for all these options?

5.1.5 Quantifiers

Imagine you want to search for the word colour or color in your book. A layman would
search the book text first for colour and then again for color. A smart searching tool
could search for both strings using a single search string by using quantifiers in the
search string. You can specify the number of occurrences of a pattern to match in a
target value by using quantifiers. The coverage of quantifiers is limited to greedy
quantifiers on this exam. You could also use possessive or reluctant quantifiers. But
because they aren’t on the exam, I won’t cover them any further. Table 5.5 describes
the greedy quantifiers.

The greedy quantifiers are so named because they make the matcher read the com-
plete input string before starting to get the first match. If the matcher can’t match the
entire input string, it backs off the input string by one character and attempts again. If
repeats this until a match is found or until no more characters are left. At the end,
depending on whether you asked it to match zero, one, or more occurrences, it’ll try
to match the pattern against zero, one, or more characters from the input string.

Twist in the Tale 5.1

Table 5.5 Greedy quantifiers

Quantifier (Greedy) Description

X? Matching X, once or not at all

X* Matching X, zero or more times

X+ Matching X, one or more times
Licensed to Mark Watson <nordickan@gmail.com>

359Regular expressions
USING ? TO MATCH ZERO OR ONE OCCURRENCE

■ In all the preceding examples, we tried to search for exactly one occurrence of
a particular digit or character. What if you want to match zero or one occur-
rence of a letter? For example, color in the United States is spelled colour in the
United Kingdom. How will you match all occurrences of colour or color in a text
file? The metacharacter ? can help: Search string—I am colour in UK and color
in US

■ Regex—colou?r

■ Searches for colour or color
■ In the preceding example, you apply ? to a single letter. You can also apply ? to

a group of characters. How would you search for occurrences of August and Aug
in a text? To do so, you can group the required characters by using parentheses
and place ? right after them: Search string—It can be written as August or Aug

■ Regex—Aug(ust)?

■ Searches for August or Aug
■ Imagine you need to search for the words ball, mall, fall, and all by using a regu-

lar expression in the target text: Search string—A ball can fall in a mall with all
■ Regex—[bmf]?all

■ Searches for ball, mall, fall, or all

In this example, because ? is applied to the character class [bmf], it can be used to
search for a single occurrence of either b, m, f, or none of these. Note that [bmf] with-
out ? wouldn’t match the text all.

 In the sections to follow, I’ll cover working with a combination of ?, square brack-
ets, and curly brackets. The set of combinations and permutations that can be used
with a language feature makes it interesting, and at the same time overwhelming! The
key to conquer such features is to understand a simpler concept before moving on to
the next level.

ZERO LENGTH MATCHES WITH ?
Let’s try to match the regex d? against the target string bday. Following are the target
strings and the corresponding code with its output:

■ Search string—bday
■ Regex—d?

■ Searches for zero or one occurrence of letter d

Following is the relevant code:

class UseQuantifier{
 public static void main(String[] args) {
 String targetString = "bday";
 String regex = "d?";

 Pattern pattern = Pattern.compile(regex);
 Matcher matcher = pattern.matcher(targetString);

Target string to
be searched

Regex with
quantifier

Instantiates
pattern,

compiles
regex.

Creates a
matcher that
will match
given input
against this
pattern.
Licensed to Mark Watson <nordickan@gmail.com>

360 CHAPTER 5 String processing
 while (matcher.find()) {
 System.out.printf("Found :%s: starts at %d, ends at %d",
 matcher.group(),
 matcher.start(),
 matcher.end());
 System.out.println();
 }
 }
}

NOTE You can use the preceding code (class UseQuantifier) to match a
regex pattern against a string value, listing the start and end positions of
the matches found.

Here’s the output of this code:

Found :: starts at 0, ends at 0
Found :d: starts at 1, ends at 2
Found :: starts at 2, ends at 2
Found :: starts at 3, ends at 3
Found :: starts at 4, ends at 4

Does this output make you wonder why five matches are found? Remember that ? will
match zero or one occurrence of the letter d. The regex engine found zero matches,
with length 0, at positions 0, 2, 3, and 4. It found one match (with length 1) at posi-
tion 1. Figure 5.6 illustrates the found matches.

USING * TO MATCH ZERO OR MORE OCCURRENCES

■ You can use the metacharacter * to match zero or more occurrences of a regex.
The regex fo*d will match all occurrences of words in which o occurs zero or
more times: Search string—food, fod, fooodder, fd

■ Regex—fo*d

■ Matches food, fod, foood, fd
■ You can also apply * to a group of characters. How would you search for text

that starts with a letter, ends with a letter, and might contain zero or more digits
in between? Let’s create the regex pattern to search for this pattern. The letters
could be either in lowercase or uppercase. You know that \d or [0-9] can be

b d a y

0 1 2 43

Target string

b d a y

0 1 2 3 4

ResultRegex

d?

0 Match 1 Match

Figure 5.6 Matching regex
pattern d? against the string
value bday
Licensed to Mark Watson <nordickan@gmail.com>

361Regular expressions
used to match any digit and that [A-Za-z] can be used to match any letter in
lowercase or uppercase. Because the digit can appear zero or more times, we
evolve the regex as follows: Search string—b234a A6Z abc

■ Regex—[A-Za-z]\d*[A-Za-z]

■ Searches for text starting and ending with a letter and containing zero or more
digits in between

The regex [A-Za-z]\d*[A-Za-z] matches b234a, A6Z, and ab in the preceding search
string. It matches ab because \d* asked it to look for zero or more occurrences of dig-
its. Because ab has zero digits between a and b, it’s matched. It won’t match bc because
b was already consumed for matching ab.

■ Now, what if you need to modify the preceding example, to limit the digits that
appear between the letters to a range of 1 to 5? This is simple: just replace \d*
with [1-5]. Examine the following: Search string—b234a A6Z abc

■ Regex—[A-Za-z][1-5]*[A-Za-z]

■ Searches for text starting and ending with a letter, and containing zero or more
digits in the range 1–5 in between

The preceding regex [A-Za-z][1-5]*[A-Za-z] matches only b234a and ab in the tar-
get string b234a A6Z abc. It doesn’t match A6Z because 6 isn’t in the range 1–5.

ZERO LENGTH MATCHES WITH *
Since * matches zero or more occurrences of a pattern, it also occurs in zero length
matches, that is, a match wherein the specified pattern can’t be found. Revisit the pre-
vious subsection, “Zero length matches with ?”. If you replace the pattern d? with d*,
the code will output the same result because * also matches zero occurrences of a pat-
tern, like the metacharacter ?.

USING + TO MATCH ONE OR MORE OCCURRENCES

■ You can use the metacharacter + to match one or more occurrences of a regex.
For example, the regex fo+d will match all occurrences of words, where o
occurs one or more times: Search string—food, fod, fooodder, fd

■ Regex—fo+d

■ Matches food, fod, foood

You can also apply + to a group of characters. How would you search for text that starts
with a letter and ends with a letter and may contain one or more digits in between? We
know that \d can be used to match any digit and that [A-Za-z] can be used to match
any letter in lowercase or uppercase. Because the digit can appear one or more times,
you can evolve the regex as follows:

■ Search string—b234a A6Z abc
■ Regex—[A-Za-z]\d+[A-Za-z]

■ Searches for text starting and ending with a letter and containing one or more
digits in between

■ Matches b234a A6Z
Licensed to Mark Watson <nordickan@gmail.com>

362 CHAPTER 5 String processing
The regex matches b234a and A6Z in the preceding search string. It doesn’t match ab
because \d+ asks it to look for one or more digits. Because ab has zero digits between
a and b, it isn’t matched!

 Now, what if we need to modify the preceding example to limit the digits that
appear between the letters in the range of 1 to 5? This is simple: just replace \d+ with
[1-5]+. Examine the following:

■ Search string—b234a A6Z abc
■ Regex—[A-Za-z][1-5]+[A-Za-z]

■ Searches for text starting and ending with a letter and containing one or more
digits in the range of 1–5 in between

■ Matches b234a

This regex matches only b234a in the search string. It doesn’t match A6Z because 6
isn’t in the range 1–5. It doesn’t match ab because it doesn’t have a digit in the range
of 1–5 between the letters a and b. Since + looks for one or more occurrences of a pat-
tern, it doesn’t qualify for zero length matches.

NOTE For this exam, you should know how to use the ?, *, and + meta-
characters in regex. Metacharacters have a different meaning for the
regex engine.

If you don’t remember how many instances *, +, and ? match, table 5.6 lists a silly but
simple set of questions and answers that might help you remember.

5.1.6 Java’s regex support

Java incorporated regex support by defining the java.util.regex package in ver-
sion 1.4. Regex in Java supports Unicode as it matches against CharSequence objects.
This package defines classes for matching character sequences against the patterns
specified by regular expressions. For this, you particularly need the Matcher and
Pattern classes.

 I’ve used these classes in the coding examples in the previous sections. Class
Pattern is a compiled representation of a regular expression. It doesn’t define a

Table 5.6 Questions and answers to help remember the number of matches for *, +, and ?

Metacharacter Occurrence Funny question Silly answer to funny question

* 0 or many How many stars can you see? 0 in a cloudy sky, many in a
clear sky

? 0 or 1 What can be the answer to one of
the most important questions: Do
you love me?

Yes (1) or no (0)

+ 1 or more How many spouses can you add
in your life?

1 or more
Licensed to Mark Watson <nordickan@gmail.com>

363Regular expressions
public constructor. You can instantiate this class by using its factory method compile().
Here’s an example:

Pattern pattern = Pattern.compile("a*b");

After you create a Pattern object, you must instantiate a Matcher object, which can be
used to find matching patterns in a target string. Class Matcher is referred to as an
engine that scans a target CharSequence for a matching regex pattern. Class Matcher
doesn’t define a public constructor. You can create and access a Matcher object by call-
ing the instance method matcher() on an object of class Pattern:

Matcher m = p.matcher("aaaaab");

After you have access to the Matcher object, you can do the following:

■ Match a complete input sequence against a pattern.
■ Match the input sequence starting at the beginning.
■ Find multiple occurrences of the matching pattern.
■ Retrieve information about the matching groups.

NOTE Class Matcher is an engine that interprets a Pattern and matches
it against a character sequence.

With the addition of the java.util.regex package, Java also added
methods, like matches(), to existing classes, like String, which matched
string values with the given regular expression. However, behind the scenes,
String.matches() calls method matches() defined in class Pattern. At
times, such methods might also manipulate the values themselves, before
using classes Pattern/ Matcher, to support regex.

In the next section, I’ll continue working with more examples of creating and using
regex patterns, using classes String, StringBuilder, Scanner, and StringTokenizer.
Class String defines multiple methods to search and replace string values based on
exact and regex patterns. But class StringBuilder doesn’t support search or
replace methods based on regex. You’ll see how you can use Scanner and String-
Tokenizer to parse and tokenize streams (such as text in a file) by using exact text
or regex patterns.

NOTE The use of StringTokenizer is discouraged in new code. This leg-
acy class is retained for backward compatibility. Use classes from the
java.util.regex package or String.split() to get the functionality of
StringTokenizer.
Licensed to Mark Watson <nordickan@gmail.com>

364 CHAPTER 5 String processing
5.2 Searching, parsing, and building strings
When did you last search the internet for your favorite music, the latest news, or stock
prices? Most people do that every day, every hour. Apart from searching the internet,
people also search printed hardcopies. Searching text, and tokenizing and parsing it,
are important and integral tasks to complete a lot of other tasks. Java includes multi-
ple classes like Scanner, StringTokenizer, StringBuilder, String, and Formatter to
accomplish searching, parsing, and building strings. Let’s get started with how to
search for exact matches and regex patterns.

5.2.1 Searching strings

Class String defines multiple methods to search strings for exact matches of a single
character or string. These methods allow searching from the beginning of a string, or
starting or ending at a specified position.

METHODS INDEXOF() AND LASTINDEXOF()
Both methods indexOf() and lastIndexOf() find a matching character or string in
a string and return the matching position. Method indexOf() returns the first match-
ing position of a character or string, starting from the specified position of the string,
or from its beginning. Method lastIndexOf() returns the last matching position of
a character in the entire string, or its subset (position 0 to the specified position).
Figure 5.7 shows a pictorial representation of a string, use of these methods, and the
positions of the matches found.

[5.1] Search, parse, and build strings (including Scanner, StringTokenizer,
StringBuilder, String, and Formatter)

[5.2] Search, parse, and replace strings by using regular expressions,
using expression patterns for matching limited to . (dot), * (star),
+ (plus), ?, \d, \D, \s, \S, \w, \W, \b, \B, [], ()

p a i n t t h e c u

0 1

indexOf('t')

2 43 5 6 7 98 10 11

lastIndexOf('t', 15) indexOf('t', 15)

lastIndexOf('t')

indexOf("the") lastIndexOf("the")

p a n d t h e p l a

12 13 14 1615 17 18 19 2120 22 23

t e

2524 26

Figure 5.7 Showing use of methods indexOf() and lastIndexOf()
Licensed to Mark Watson <nordickan@gmail.com>

365Searching, parsing, and building strings
Here’s the code that implements the methods shown in figure 5.7:

String sentence = "paint the cup and the plate";

System.out.println(sentence.indexOf('t'));
System.out.println(sentence.lastIndexOf('t', 15));

System.out.println(sentence.indexOf("the"));
System.out.println(sentence.indexOf('t', 15));

System.out.println(sentence.lastIndexOf("the"));
System.out.println(sentence.lastIndexOf('t'));

Both methods indexOf() and lastIndexOf() differ in the manner in which they
search a target string: indexOf() searches in increasing position numbers, and last-
IndexOf() searches backward. Due to this difference, indexOf('a', -100) will search
the complete string, but lastIndexOf('a', -100) won’t. In a similar manner, because
lastIndexOf() searches backward, lastIndexOf('a', 100) will search this string, but
indexOf('a', 0) or indexOf('a', -100) won’t. This is shown in figure 5.8.

 Here’s the code that implements the methods shown in figure 5.8:

String sentence = "paint the cup and the plate";

System.out.println(sentence.indexOf('a'));
System.out.println(sentence.indexOf('a', 0));
System.out.println(sentence.indexOf('a', -100));
System.out.println(sentence.indexOf('a', 100));

System.out.println(sentence.lastIndexOf('a'));
System.out.println(sentence.lastIndexOf('a', 0));
System.out.println(sentence.lastIndexOf('a', 100));
System.out.println(sentence.lastIndexOf('a', -100));

Prints “4”

Prints “6”

Prints “6”

Prints “18”

Prints “18”

Prints “25”

p a i n t t h e c u

0 1

indexOf('a')

indexOf('a', 0)

indexOf('a', –100)

indexOf('a', 100)

lastIndexOf('a')

lastIndexOf('a', 100)

lastIndexOf('a', 0)

lastIndexOf('a', –100)–1

2 43

indexOf() searches

in direction

lastIndexOf() searches

in direction

5 6 7 98 10 11

–1

–1

p a n d t h e p l a

12 13 14 1615 17 18 19 2120 22 23

t e

2524 26

Figure 5.8 Methods indexOf() and lastIndexOf() search a target string in different directions.

Search
forward

Search
backward
Licensed to Mark Watson <nordickan@gmail.com>

366 CHAPTER 5 String processing

St
ob
EXAM TIP Methods indexOf() and lastIndexOf() don’t throw a com-
pilation error or runtime exception if the search position is negative
or greater than the length of the string. If no match is found, they
return -1.

METHOD CONTAINS()
Method contains() searches for exact matches in a string and returns true if a match
is found, false otherwise. Because contains() accepts a method parameter of type
CharSequence, you can pass to it both a String or a StringBuilder object:

String sentence = "paint the cup and the plate";
StringBuilder sb = new StringBuilder("the");
String str = "the";

System.out.println(sentence.contains(sb));
System.out.println(sentence.contains(str));

METHODS SUBSEQUENCE() AND SUBSTRING()
Both methods subSequence() (uppercase S) and substring() (no uppercase letter)
return a substring of the string. Here’s the signature of these methods:

CharSequence subSequence(int beginIndex, int endIndex)
String substring(int beginIndex)
String substring(int beginIndex, int endIndex)

EXAM TIP To remember the return types of methods subSequence() and
substring() on the exam, just remember that the names of these methods
can be used to determine their return type. Method subSequence()
returns CharSequence, and method substring() returns String.

Method subSequence() simply calls method substring(); it was added to class String
in Java 1.4 to support implementation of the interface CharSequence by class String.
Method substring() defines overloaded versions, which accept one or two int
method parameters to specify the start or the end positions. Method subSequence()
defines only one variant: the one that accepts two int method parameters for the start
and the end position. For the exam, you must remember that these methods don’t
include the character at the end position, as shown in figure 5.9.

StringBuilder
object

ring
ject Searches matching StringBuilder

value in target string; prints “true”.

Searches matching string value
in target string; prints “true”.

Returns new character sequence
that’s subsequence of this sequence Returns new string

that’s substring of
this string

Returns new string that’s
substring of this string
Licensed to Mark Watson <nordickan@gmail.com>

367Searching, parsing, and building strings
EXAM TIP Methods subSequence() and substring() don’t include the
character at the end position in the result string. Also, unlike methods
indexOf() and lastIndexOf(), they throw the runtime exception String-
IndexOutOfBoundsException for invalid start and end positions. The sub-
traction value from endIndex – beginIndex is the number of chars these
methods will return.

METHOD SPLIT()
Method split(String regex) and method split(String regex, int limit) in class
String search for a matching regex pattern and split a string into an array of string
values. Figure 5.10 shows how the string paint-the-cup-cop-and-cap is split with the
regex pattern c.p. As discussed in the previous section on regex, the dot in regex c.p,
will match exactly one character.

NOTE Tokenizing is the process of splitting a string, based on a separator,
into tokens. A separator can be a character, text, or a regex. For example,
if string 1234;J Perry;94.75 is split using a semicolon as the separator,
the tokens that you'll get are 1234, J Perry, and 94.75.

p a i n t t h e c u

0 1 2 4

subSequence (2, 7)

3 5 6 7 98 10 11

sentence.substring(–1, 5);

sentence.subSequence(10, 30);
StringIndexOutOfBoundsException

sentence p a n d t h e p l a

12 13 14 1615 17 18 19 2120 22 23

t e

2524 26

substring (20)

Figure 5.9 Methods subSequence() and substring() don’t include the character at the last
position in their return value.

p a i n t - - - - -t h e c u

String[] tokens = sentence.split("c.p");

sentence p c o p a n d

- -a n d

c a p

p a i n t - -t h e
0

-
1

2

tokens

Matching string values are

not included in tokens

Figure 5.10 The String array returned by split() doesn’t contain the values that it matches to
split the target string.
Licensed to Mark Watson <nordickan@gmail.com>

368 CHAPTER 5 String processing
You can limit the maximum number of tokens that you want to retrieve by using
split(String regex, int limit). Figure 5.11 shows how the target string paint-the-
cup-cop-and-cap is split with split("c.p", 2). Because the total number of tokens is
limited to two, the regex pattern c.p is matched only once. The remaining string after
the first match is stored as the second array value.

 If limit is nonpositive, then the regex pattern will be applied as many times as
possible and the array tokens can have any length. If limit is passed 0, the regex
pattern will be applied as many times as possible, but tokens won’t include trailing
empty strings.

5.2.2 Replacing strings

Finding and replacing characters or text is a common requirement. You can use mul-
tiple methods to find and replace text or regex by using class String. As mentioned
previously, the methods that accept the interface CharSequence as a parameter can
accept arguments of all the implementing classes: String, StringBuffer, and String-
Builder. Table 5.7 lists the replacing methods defined in class String.

Table 5.7 Methods to replace string values, using exact matches and regex patterns

Method Description

replace(char old, char new) Returns a new string resulting from finding and replacing all
occurrences of old character with new character

replace(CharSequence old,
CharSequence new)

Returns a new string resulting from finding and replacing
each substring of this string that matches the old target
sequence with the specified new replacement sequence

replaceAll(String regex,
String replacement)

Replaces each substring of this string that matches the
given regular expression with the given replacement

replaceFirst(String regex,
String replacement)

Replaces the first substring of this string that matches the
given regular expression with the given replacement

p a i n t - - - - -t h e c u

String[] tokens = sentence.split("c.p", 2);

sentence p c o p a n d c a p

- - -c o p a n d c a p

p a i n t - -t h etokens

Return only

2 tokens

Figure 5.11 You can limit the maximum number of tokens returned by split().
Licensed to Mark Watson <nordickan@gmail.com>

369Searching, parsing, and building strings
METHOD REPLACE()
On the exam, you’re likely to see chained method invocation with String methods.
What happens when method replace() tries to replace a substring of a string with
another substring of the same string? Also, what happens if these string values that are
searched and replaced overlap? Here’s an example:

String str = "RENT-TENT";

String newString = str.replace(
 str.substring(2, 5),
 str.subSequence(str.indexOf("T"),
 str.lastIndexOf('N')));
System.out.println(newString);

Figure 5.12 helps explain this code. To make the code simpler to show and under-
stand, I’ve replaced str.indexOf("T") and str.lastIndexOf('N') with their return
values—that is, 3 and 7—which are passed as arguments to str.subSequence().

 As shown in figure 5.12, method replace() creates and returns a new string,
newStr, by replacing the occurrence of the characters it finds at positions 2, 3, and 4
of str, with the characters it finds at positions 3, 4, 5, and 6 of str. The length of the
replacement string can be greater than, equal to, or smaller than the substring that
it replaces.

METHOD REPLACEALL()
This method searches for matching regex patterns in a string and replaces them with
the specified string value. An example follows:

String str = "cat cup copp";
String newString = str.replaceAll("c.p\\B", "()");
System.out.println(newString);

R E N T - ET N T

str.substring (2, 5)

newStr = str.replace(str.substring(2, 5), str.subSequence(3, 7));

str R E N T - ET N T

str.subSequence(3, 7)

R E T - T T TE E NnewStr

0 1 2 43 5 6 7 8 0 1 2 43 5 6 7 8

Figure 5.12 An example of using replace() to create a new string (newStr) that replaces a
substring of str with another substring of str

Target string
to be searched Finds regex

pattern
c.p\B and
replaces it
with ().

Prints “cat
cup ()p”.
Licensed to Mark Watson <nordickan@gmail.com>

370 CHAPTER 5 String processing
If no match in the target string is found, replaceAll() returns the contents of the
original string.

EXAM TIP Unlike replace(), replaceAll() doesn’t accept method param-
eters of type CharSequence. Watch out for the passing of objects of class
StringBuilder to replaceAll().

The combination of the overloaded methods replace(), replaceAll(), and replace-
First() can be confusing on the exam. Take note of the method parameters that can
be passed to each of these methods. Let’s attempt our next “Twist in the Tale” exer-
cise, which should help you get a better grasp of all these string replacement methods
and regex patterns.

I’ve modified the code used in a previous example for this exercise. Execute this code
on your system and select the correct answer.

class ReplaceString2 {
 public static void main(String[] args) {
 String str = "cat cup copp";
 String newString = str.replaceAll("c.p\\b", "()"); //line4
 System.out.println(newString);
 }
}

a The code outputs cat () copp.
b The code outputs cat cup ()p.
c The code outputs cat cup copp.
d If code marked with comment line 4 is replaced with the following code, it’ll

output cat () copp:

String newString = str.replaceFirst("c.p\\b", "()");

e If code marked with comment line 4 is replaced with the following code, it’ll
output cat () ()p:

String newString = str.replace("c.p", "()");

f If code marked with comment line 4 is replaced with the following code, it’ll
output cat cup copp:

String newString = str.replace(new StringBuilder("cat"), "()");

Twist in the Tale 5.2
Licensed to Mark Watson <nordickan@gmail.com>

371Searching, parsing, and building strings
OTHER METHODS

For this exam, you must also know about other commonly used String methods that
you can use to compare string values, match a substring, and determine whether a
string starts or ends with a literal value, as listed in table 5.8.

You need to be careful with String class methods that accept integer values as index
positions to start or end their searches. Here’s an example of the values returned by
the overloaded method startsWith(), when you pass negative, zero, or positive val-
ues to it:

String str = "Start startup, time to start";
System.out.println(str.startsWith("Start"));
System.out.println(str.startsWith("Start", 0));

System.out.println(str.startsWith("Start", -1));
System.out.println(str.startsWith("Start", 1));

When comparing letters, is a greater than, smaller than, or equal to A? When compar-
ing letters lexicographically, note that a letter in lowercase is greater than its upper-
case. The following example outputs a positive value:

String a = "a";
String b = "A";
System.out.println(a.compareTo(b));
System.out.println(b.compareTo(a));

Table 5.8 Methods for comparing string values

Method Description

endsWith(String suffix) Returns true if this string ends with the specified suffix

startsWith(String prefix) Returns true if this string starts with the specified prefix

startsWith(String prefix,
int offset)

Returns true if the substring of this string beginning at the
specified index starts with the specified prefix

compareTo(String
anotherStr)

Compares this string with anotherStr lexicographically.
Returns a negative, zero, or positive value depending on
whether this string is less than, equal to, or greater than
anotherStr.

compareToIgnoreCase(String
anotherStr)

Compares this string with anotherStr lexicographically,
ignoring case differences. Returns a negative, zero, or positive
value depending on whether this string is less than, equal to,
or greater than anotherStr.

equals(Object object) Returns true if the object being compared defines the same
sequence of characters

equalsIgnoreCase(String
anotherStr)

Compares this String to anotherStr, ignoring case con-
siderations

Prints
“true”

Prints
“false”

Outputs positive
number

Outputs negative
number
Licensed to Mark Watson <nordickan@gmail.com>

372 CHAPTER 5 String processing
EXAM TIP Lexicographically, a lowercase letter is greater than its equiva-
lent uppercase letter. Method compareTo() returns a negative number
(not necessarily –1) if the String object on which it’s called is lexico-
graphically smaller than the one it’s compared to.

Don’t let the simplicity of these methods take you for a ride. When chained, they can
become difficult to answer. What do you think is the output of the following code?

String str = "Start startup, time to start";
System.out.println(str.substring(0,1).compareTo(str.substring(6,7)));

Execute the preceding code on your system and find out the answer yourself.
 The next section covers how to parse and tokenize String by using class Scanner.

5.2.3 Parsing and tokenizing strings with Scanner and StringTokenizer

Parsing is the process of analyzing a string to find tokens or items. For example, you
can parse the text 9187 to find the integer value 9187. As you know, the same number
can be stored as text or as an integer value.

SCANNER CLASS

Class Scanner can be used to parse and tokenize streams. (Streams are covered in
chapter 7.) Scanner is a simple text scanner, which can parse primitive types and
strings. Scanner tokenizes its input string by using a pattern, which can be a char-
acter, a string literal, or a regex. You can then use the resulting tokens, converting
them to different data types. Here’s a quick look at the constructors relevant for
this exam:

Scanner(File source)
Scanner(Readable source)
Scanner(String source)

Now that you know the sources available to Scanner, let’s work with an example of
tokenizing a String with the default delimiter:

Scanner scanner = new Scanner("The \tnew \nProgrammer exam");
while (scanner.hasNext())
 System.out.println (scanner.next());

Here’s the output of this code:

The
new
Programmer
exam

Use File as source
to Scanner. FileReader,

BufferedReader
implement Readable.

Use String as
source to Scanner.

String contains
spaces, tab (\t),
and newline
character (\n).
Licensed to Mark Watson <nordickan@gmail.com>

373Searching, parsing, and building strings
If no delimiter is specified, a pattern that matches whitespace is used by default for
a Scanner object. You can specify the required regex by calling its method use-
Delimiter() as follows:

Scanner scanner = new Scanner("The1new22Programmer exam6");
scanner.useDelimiter("[\\d]+");
while (scanner.hasNext())
 System.out.println(scanner.next());

The output of this code is as follows:

The
new
Programmer exam

What if you want to do the reverse in this example: print out the numbers 1, 22, and
6 and leave the characters? You just change the regex to be used as a delimiter,
as follows:

scanner.useDelimiter("[\\sA-Za-z]+");

Method next() defined in class Scanner returns an object of type String. This class
defines multiple nextXXX() methods, where XXX refers to a primitive data type. Instead
of returning a string value, these methods return the value as the corresponding prim-
itive type.

Scanner scanner = new Scanner ("Shreya,20,true");
scanner.useDelimiter(",");
System.out.println(scanner.next());
System.out.println(scanner.nextInt());
System.out.println(scanner.nextBoolean());

The following example parses the target string by using the regex [\\sA-Za-z]+,
which is for one or more occurrences of a whitespace or a letter. The tokenized num-
bers are retrieved using nextInt():

Scanner scanner = new Scanner ("1 2 4 The new 55 Programmer 44 exam");
scanner.useDelimiter("[\\sA-Za-z]+");
int total = 0;
while (scanner.hasNextInt())
 total = total + scanner.nextInt();
System.out.println(total);

Target string
with letters
and digits

Uses regex [\d}+
to tokenize text.

Finds and returns
next token

Reads regex [\sA-Za-z]+ as a match for 1 or
more occurrences of whitespace, character,
or letter in uppercase or lowercase.

Retrieves next
string value Retrieves

next int value

Retrieves next
Boolean value

Target string contains combination
of words, numbers, spaces

Delimiter is any combination
of whitespace/letters.

nextInt returns
int value.
Licensed to Mark Watson <nordickan@gmail.com>

374 CHAPTER 5 String processing

F
regex

matc
t

The output of this code is 106 (1 + 2 + 4 + 55 + 44). For the exam, make note of the
multiple hasNext(), hasNextXxx(), next(), and nextXxx() methods. Methods has-
Next() and hasNextXxx() only return true or false but don’t advance. Only meth-
ods next() and nextXxx() advance in the input. So you’ll have to be careful or you’ll
end up with a program which runs eternally, like this one:

Scanner scanner = new Scanner ("1 2 4 The new 55 Programmer 44 exam");
scanner.useDelimiter("[\\s]+");
int total = 0;
while (scanner.hasNext())
 if (scanner.hasNextInt())
 total = total + scanner.nextInt();
System.out.println(total);

Class Scanner also defines method findInLine(), which tries to match the specified
pattern with no regard to delimiters in the input. Here’s an example:

Scanner scanner = new Scanner ("ABC 223.2343 Paul 10");
scanner.findInLine("(ABC)+[\\d]+\\.[\\d]+[A-za-z]+[\\d]+");

System.out.println(scanner.next());
System.out.println(scanner.nextDouble());
System.out.println(scanner.next());
System.out.println(scanner.nextInt());

The output of this code is as follows:

ABC
223.2343
Paul
10

NOTE The decimal values (float and double) are Locale-specific (Locale
is covered in chapter 12). For decimal numbers, a Locale might use a
decimal comma or a decimal point.

What happens when there’s a mismatch in the next token and the method used to
retrieve the data? Does it lead to a compilation error or a runtime exception? Let’s
uncover an important concept in our next “Twist in the Tale” exercise.

The following code contains a mismatch in the type of token retrieved (a can be
stored as a character or string) and the method (nextInt) used to retrieve this data.
What’s the output of the following code?

Twist in the Tale 5.3

Target string contains ABC, double value,
multiple occurrences of letters, integer.

ind
that
hes
ext.

First token is
string value

Second token is
double value

Third token is
string value

Fourth token is
int value
Licensed to Mark Watson <nordickan@gmail.com>

375Searching, parsing, and building strings
import java.util.*;
public class MyScan {
 public static void main(String[] args) {
 String in = "1 a 10 . 100 1000";
 Scanner s = new Scanner(in);
 int accum = 0;
 for(int x = 0; x < 4; x++) {
 accum += s.nextInt();
 }
 System.out.println(accum);
 }
}

a The code prints 1111.
b The code doesn’t compile.
c The code throws java.util.InputMismatchException.
d The code throws java.util.MismatchException.
e The code throws java.util.ParsingException.

STRINGTOKENIZER CLASS

You can use the StringTokenizer class to break a string into tokens. To separate the
tokens you can specify the delimiter to be used either at the time of instantiating
StringTokenizer or on a per-token basis. In the absence of an explicit delimiter, a
whitespace is used.

StringTokenizer st = new StringTokenizer("start your startup");
while (st.hasMoreTokens()) {
 System.out.println(st.nextToken());
}

The preceding code uses a whitespace as a delimiter and outputs:

start
your
startup

Methods hasMoreTokens() and hasMoreElements() in class StringTokenizer return
a boolean value indicating whether more tokens are available or not. Methods next-
Token() and nextElement() return the next token. The return type of method
nextToken() is String and of method nextElement() is Object.

 If the delimiter used to instantiate StringTokenizer is null, the constructor
doesn’t throw an exception. But trying to access the resultant tokens or invoking any
other method on the StringTokenizer instance results in a NullPointerException:

StringTokenizer st = new StringTokenizer("start your startup", null);
System.out.println(st.hasMoreElements());

Throws NullPointerException
because delimiter is null.
Licensed to Mark Watson <nordickan@gmail.com>

376 CHAPTER 5 String processing
NOTE StringTokenizer is a legacy class that’s retained for compatibility
reasons. Oracle recommends use of method split() of class String or
classes from a regex package to get the same functionality.

Apart from searching, parsing, and manipulating strings, formatting strings is another
frequently used feature. Let’s format some string values.

5.3 Formatting strings

How often do you use the operator + to concatenate a String value with the value of
another variable (for example, "name:"+emp+"age:"+age)? Do you find this expres-
sion cumbersome to use? This section discusses formatting classes, methods, and
parameters that can replace the + operator for concatenating String and other vari-
able values. You can also write the formatted text to OutputStream, File, or String-
Builder. Let’s start with identifying the classes that you can use to format strings.

5.3.1 Formatting classes

Class java.util.Formatter and I/O classes like PrintStream and PrintWriter define
methods to format strings (coverage of formatting classes is limited to exam topics).

 You can use class Formatter to write formatted strings to a file, stream, or String-
Builder objects. Class Formatter is an interpreter for printf-style format strings. This
class provides support for layout justification and alignment; common formats for
numeric, string, and date/time data; and locale-specific output. This type of format-
ted printing is heavily inspired by C’s printf.

 On the exam you’ll be queried on how to write formatted strings to the standard out-
put. You can use class System to access the standard input, standard output, and error
output streams. The standard output in class System is made accessible using a static
variable, out, which is of type PrintStream (remember using System.out.println()).
Class PrintStream defines methods to output formatting strings.

5.3.2 Formatting methods

Class Formatter defines the overloaded method format()to write a formatted string
to its destination using the default or specified Locale (covered in chapter 12), for-
mat string, and arguments:

format(String format, Object... args)
format(Locale l,String format, Object... args)

[5.3] Format strings using the formatting parameters %b, %c, %d, %f,
and %s in format strings
Licensed to Mark Watson <nordickan@gmail.com>

377Formatting strings

 is
.

To output formatted strings to the standard output, you can use class PrintStream
and its overloaded methods format() and printf(), which use the default or speci-
fied Locale, format strings, and arguments:

format(String format, Object... args)
format(Locale l,String format, Object... args)
printf(String format, Object... args)
printf(Locale l, String format, Object... args)

Behind the scenes, method printf() simply calls method format(). Also the number
of method arguments that these methods accept is the same. So you really need to
work with one method to format the strings.

EXAM TIP System.out.println() can’t write formatted strings to the
standard output; System.out.format() and System.out.printf() can.

Here’s a quick example to write a formatted string to the standard output and to a file:

import java.util.Formatter;
import java.io.File;
class FormattedStrings {
 public static void main(String args[]) throws Exception {
 String name = "Shreya";

 Formatter formatter = new Formatter(new File("data.txt"));
 formatter.format("My name is %s", name);
 formatter.flush();

 System.out.printf("My name is %s", name);
 }
}

In the preceding code, %s is replaced with the value of variable name. In the next sec-
tion, let’s see how to define format strings, the formatting parameters (on the exam),
and their elements.

NOTE Because class Locale and Java I/O classes are covered in chapters
12 and 7, I won’t include other examples about these classes here.

5.3.3 Defining format strings

To use methods format() and printf(), you need to define a format string that
defines how to format text and an object argument list that defines what to format. You
can define a combination of fixed text and one or more embedded format specifiers,
to be passed to formatting methods. The format specifier takes the following form:

%[argument_index$][flags][width][.precision]conversion_char

Table 5.9 describes the format specifier elements.

Destination
file data.txt

Format
parameter %s.

Destination is
standard output.
Licensed to Mark Watson <nordickan@gmail.com>

378 CHAPTER 5 String processing
NOTE The conversion characters on the exam are %b, %c, %d, %f ,and %s.

Let’s get started with how to use the formatting parameter %b.

Table 5.9 Format specifier elements and their purposes

Format specifier element Optional/ required What it means

argument_index Optional Decimal integer indicating the position of the argu-
ment in the argument list. The first argument is refer-
enced by 1$, the second by 2$, and so forth.

flags Optional Set of characters that modify the output format. The
set of valid flags depends on the conversion.

width Optional A non-negative decimal integer indicating the minimum
number of characters to be written to the output.

precision Optional A non-negative decimal integer usually used to
restrict the number of characters. The specific behav-
ior depends on the conversion.

conversion_char Required A character indicating how the argument should be
formatted. The set of valid conversions for a given
argument depends on the argument’s data type.

How to work with format specification
The general syntax is as follows:

%[arg_index$][flags][width][.precision]conversion_char

■ Compulsory element—A format specification must start with a % sign and end
with a conversion character.

■ Optional elements—arg-index, flags, width, and .precision are all optional.
■ Anything before a % and after the conversion character is printed as it is. For

example, printf("xxx%1$dyyy%2$dzzz", 10, 20) outputs xxx10yyy20zzz.
■ You need to remember the following flags:

- Left-justify this argument; must specify width as well.
+ Include a sign (+ or -) with this argument. Applicable only if conversion char-

acter is d or f (for numbers).
0 Pad this argument with zeros. Applicable only if conversion character is d or

f (for numbers). Must specify width as well.
, Use locale-specific grouping separators (for example, the comma in 123,456).

Applicable only if conversion character is d or f (for numbers).
(Enclose negative numbers in parentheses. Applicable only if conversion char-

acter is d or f (for numbers).
Licensed to Mark Watson <nordickan@gmail.com>

379Formatting strings

.Flag
justifies

text t
5.3.4 Formatting parameter %b
If the target argument arg is null, then %b prints the result as false. If arg is boolean
or Boolean, the result is the String returned by String.valueOf(). Otherwise, the
result is true.

String name = "Shreya";
Integer age = null;
boolean isShort = false;

System.out.format("Name %b, age %b, isShort %b", name, age, isShort);

The preceding code formats the text as follows:

Name true, age false, isShort false

Now, what happens if there’s a mismatch in the number of arguments passed to
method format() and the number of times %b appears in the format string? If the
number of arguments exceeds the required count, the extra variables are quietly
ignored by the compiler and JVM. In the following example, the extra variables in the
first line are ignored and it outputs Name true. But for the second line because the
number of required arguments falls short, the JVM throws java.util.MissingFormat-
ArgumentException at runtime:

System.out.format("Name %b", name, age, isShort);
System.out.printf("Name %b, age %b", name);

EXAM TIP If the count of formatting parameters is more than the argu-
ments passed to methods format() or printf(), then java.util.Missing-
FormatArgumentException is thrown at runtime.

This format specifier accepts primitive and reference variables and, hence, you can
pass any type of argument to this format specifier. Examine the following examples,
which use different combinations of flags, width, and precision:

System.out.format("\nName defined %10b.", name);
System.out.format("\nName defined %.1b.", name);
System.out.format("\nName defined %-10b.", name);

Here’s the output of the preceding code:

Name defined true.
Name defined t.
Name defined true .

EXAM TIP You can pass any type of primitive variable or object reference
to %b.

%b prints “true”
for non-null
values.

%b prints
“false” for
null values.

%b evaluates and
outputs boolean
value

Ignores extra
variables

Throws runtime
exception

Minimum width specified as 10
adds 6 spaces before result true

Precision 1 truncates
length of result to t.

left-
 the
rue.
Licensed to Mark Watson <nordickan@gmail.com>

380 CHAPTER 5 String processing

Pr

de
ile.
5.3.5 Formatting parameter %c

%c outputs the result as a Unicode character. Examine the following examples:

System.out.printf("\nChar %c", new Character('\u007b'));

System.out.printf("\nChar %c", '\u6124');

System.out.printf("\nChar %c", new Boolean(true));

System.out.printf("\nChar %c", '\affff');

If the target can’t be converted to a Unicode character, a runtime exception is thrown:

Exception in thread "main" java.util.IllegalFormatConversionException: c !=
java.lang.Boolean

EXAM TIP You can pass only literals and variables that can be converted
to a Unicode character (char, byte, short, int, Character, Byte, Short,
and Integer) to the %c specifier. Passing variables of type boolean, long,
float, Boolean, Long, Float, or any other class will throw Illegal-
FormatConversionException.

5.3.6 Formatting parameters %d and %f

Did you ever notice that the amount displayed in your bank statements is formatted in
a particular manner—say, for example, a maximum width of 20 digits, with exactly 2
digits after the decimal point, and grouped according to the locale-specific informa-
tion? Let’s see how you can do this by formatting a float or double value, using the
format specifier %f. In the following examples, I’ve used square brackets in the results
displayed ([]) to help you determine how the numbers are formatted with padding
and left justification:

System.out.printf("[%f]", 12.12345);
System.out.printf("[%010f]", 12.12345);
System.out.printf("[%-10f]", 12.12345);
System.out.printf("[%10.2f]", 12.98765);
System.out.printf("[%,f]", 123456789.12345);

NOTE Because the formatting of the numbers is specific to your default
locale, you might not see the same output as mentioned in the preced-
ing code.

ints
“{“

Prints “(Om)” in
Devanagari script.

Throws runtime exception
if target can’t be converted
to Unicode character.

Values with invalid Unico
values (\affff) won’t comp

Prints
“[12.123450]”.

Outputs value with width 10, zero
padded; prints “[012.123450]”.

Value with width 10, left-justified;
prints “[12.123450]”.

Value with width 10, exactly
2 digits after decimal point;
prints “[12.99]”.

Locale-specific grouping using ‘,’;
prints “[123,456,789.123450]”.
Licensed to Mark Watson <nordickan@gmail.com>

381Formatting strings

P
“[123
Though you can assign an int literal to a float or double variable (float f = 10 or
long d = 10), you can’t use int variables or literal values with %f. The following code
will throw an IllegalFormatConversionException runtime exception:

System.out.printf("[%,f]", 12345);

EXAM TIP By default, %f prints six digits after the decimal. It also rounds
off the last digit. You can pass literal values or variables of type float,
double, Float, and Double to the format specifier %f.

You can format the integers as follows:

System.out.printf("[%d]", 12345);
System.out.printf("[%010d]", 12345);
System.out.printf("%(,d", -123456789);
System.out.printf("[%-10.2d]", 12345);

EXAM TIP You can pass literal values or variables of type byte, short,
int, long, Byte, Short, Integer, or Long to the %d format specifier. The
code throws runtime exceptions for all other types of values.

Also, the flags +, 0, (, and ,(comma) can be specified only with the numeric specifiers
%d and %f. If you try to use them with any other format specifier (%b, %s, or %c), you’ll
get a runtime exception.

5.3.7 Formatting parameter %s

%s is a general-purpose format specifier that can be applied to both primitive variables
and object references. For primitive variables, the value will be displayed; for object
references, method toString() of the object is called:

String name = "Harry";
Integer age = null;
String[] skills = {"Java", "Android"};
System.out.format("Name is %s, age is %s, skills are %s", name,
age,skills);

In the preceding code, format() sends the following to the standard output (the exact
integer value following @ will vary on your system):

Name is Harry, age is null, skills are [Ljava.lang.String;@1d9dc39

EXAM TIP You can pass any type of primitive variable or object reference
to the format specifier %s.

rints
45]”.

Outputs value with width 10, zero
padded; prints “[0000012345]”.

Negative numbers enclosed
within parentheses; prints
“(-123,456,789)”.Throws java.util.IllegalFormatPrecisionException

at runtime; can’t specify precision with integers.
Licensed to Mark Watson <nordickan@gmail.com>

382 CHAPTER 5 String processing
It’s interesting to note how you can specify the argument_index to change the argu-
ments used at a particular location. Let’s specify the argument index in the preceding
example to swap the variables name and age:

age = 40;
System.out.format("Name is %2$s, age is %1$s", name, age);

The output of the code is as follows:

Name is 40, age is Harry

EXAM TIP You can specify that the argument_index change the argu-
ments used at a particular location.

5.4 Summary
String processing is a relatively big topic, so we started this chapter with an outline
of what to expect on the exam. The exam covers searching, parsing, replacing, and
formatting strings. It also covers formatting primitive data types and object references.
We covered the classes that you need to know and their respective methods to work
with this functionality. Classes String and StringBuilder are used to work with
strings, to modify, search, and replace their values. Class Scanner is used to tokenize
data and manipulate it.

 When you search data, you can look for either exact matches or a pattern of data.
A regular expression (or regex) is a powerful language that can be used to define data
patterns to be searched for. I limited discussion of regex to the patterns included on
the exam. I covered Java’s regex support with the java.util.regex package. At the
end of the chapter, you learned how to control and define the format of your data
(primitive values and objects) by using class Formatter and its utility methods, in a
locale-specific or custom format.

REVIEW NOTES
This section lists the main points covered in this chapter.

Regular expressions

■ Regular expressions, or regex, are used to define patterns of data to be found in
a stream.

■ A regex has a syntax, which can be defined by using regular and special
characters.

■ As opposed to exact matches, you can use regex to search for data that matches
a pattern.

■ Character classes aren’t classes defined in the Java API. The term refers to a set
of characters that you can enclose within square brackets [].

■ Java supports predefined and custom character classes.
Licensed to Mark Watson <nordickan@gmail.com>

383Review notes
■ You create a custom character class by enclosing a set of characters within
square brackets []:
– [fdn] can be used to find an exact match of f, d, or n.
– [^fdn] can be used to find a character that doesn’t match either f, d, or n.
– [a-cA-c] can be used to find an exact match of either a, b, c, A, B, or C.

■ You can use these predefined character classes as follows:
– A dot matches any character (and may or may not match line terminators).
– \d matches any digit: [0-9].
– \D matches a nondigit: [^0-9].
– \s matches a whitespace character: [(space), \t (tab), \n (new line), \x0B

(end of line), \f (form feed), \r (carriage)]
– \S matches a non-whitespace character: [^\s].
– \w matches a word character: [a-zA-Z_0-9].
– \W matches a nonword character: [^\w].

■ To use a regex pattern in Java code that includes a backslash, you must escape
the \ by preceding it with another \. The character literal \ has a special mean-
ing; it’s used as an escape character. To use it as a literal, it must be escaped.

■ For the exam, you’ll need to know these boundary matchers:
– \b indicates a word boundary.
– \B indicates a nonword boundary.
– ^ indicates the beginning of a line.
– $ indicates the end of a line.

■ You can specify the number of occurrences of a pattern to match in a target
value by using quantifiers.

■ The coverage of quantifiers on this exam is limited to the following greedy
quantifiers:
– X? matches X, once or not at all.
– X* matches X, zero or more times.
– X+ matches X, one or more times.
– X{min,max} matches X, within the specified range.

■ Regex in Java supports Unicode, as it matches against the CharSequence
objects.

■ Class Pattern is a compiled representation of a regular expression. It doesn’t
define a public constructor. You can instantiate this class by using its factory
method compile().

■ Class Matcher is referred to as an engine that scans a target CharSequence for a
matching regex pattern. Class Matcher doesn’t define a public constructor. You
can create and access a Matcher object by calling the instance method
matcher() on an object of class Pattern.

■ When you have access to the Matcher object, you can match a complete input
sequence against a pattern, match the input sequence starting at the beginning,
Licensed to Mark Watson <nordickan@gmail.com>

384 CHAPTER 5 String processing
find multiple occurrences of the matching pattern, or retrieve information
about the matching groups.

Search, parse, and build strings

You can search strings for exact matches of characters or strings, at the beginning of a
string, or starting at a specified position, using String class’s overloaded methods
indexOf (note the capital O).

■ Method indexOf() returns the first matching position of a character or string,
starting from the specified position of this string, or from its beginning.

■ Method lastIndexOf() returns the last matching position of a character in the
entire string, or its subset (position 0 to the specified position).

■ Methods indexOf() and lastIndexOf() differ in the manner that they search a
target string—indexOf() searches in increasing position numbers and last-
IndexOf() searches backward. Due to this difference, indexOf('a', -100) will
search the complete string, but lastindexOf('a', -100) won’t. In a similar
manner, because lastIndexOf() searches backwards, lastIndexOf('a', 100)
will search the string, but indexOf('a', 0) or indexOf('a', -100) won’t.

■ Methods indexOf() and lastIndexOf() don’t throw a compilation error or
runtime exception if the search position is negative or greater than the length
of this string. If no match is found, they return –1.

■ Method contains() searches for an exact match in this string. Because
contains() accepts a method parameter of interface CharSequence, you can
pass to it both a String and a StringBuilder object.

■ Methods subSequence (uppercase S) and substring (no uppercase letter)
accept int parameters and return a substring of the target string.

■ Method substring() defines overloaded versions, which accept one or two int
method parameters to specify the start and end positions.

■ Method subSequence() defines only one variant, the one that accepts two int
method parameters for the start and end positions.

■ Methods subSequence() and substring() don’t include the character at the
end position in the result String. Also, unlike methods indexOf() and
lastIndexOf(), they throw the runtime exception StringIndexOutOfBounds-
Exception for invalid start and end positions.

■ The name of methods subSequence() and substring() can be used to deter-
mine their return type. subSequence() returns CharSequence and substring()
returns String.

■ Methods split(String regex) and split(String regex, int limit) in class
String search for a matching regex pattern and split a String into an array of
string values.

■ The String array returned by split() doesn’t contain the values that it
matches to split the target string.
Licensed to Mark Watson <nordickan@gmail.com>

385Review notes
■ You can limit the maximum number of tokens that you want to retrieve by using
split(String regex, int limit).

■ replace(char oldChar, char newChar) returns a new String resulting from find-
ing and replacing all occurrences of the old character with the new character.

■ replace(CharSequence oldVal, CharSequence newVal) returns a new String
resulting from finding and replacing each substring of the string that matches
the old target sequence with the specified new replacement sequence.

■ replaceAll(String regex, String replacement) replaces each substring of the
string that matches the given regular expression with the given replacement.

■ replaceFirst(String regex, String replacement) replaces the first sub-
string of the string that matches the given regular expression with the given
replacement.

■ Unlike replace(), replaceAll() doesn’t accept method parameters of type
CharSequence. Watch out for the passing of objects of class StringBuilder to
replaceAll().

■ The combination of the replace, replaceAll, and replaceFirst overloaded
methods can be confusing on the exam. Take note of the method parameters
that can be passed to each of these methods.

■ Scanner can be used to parse and tokenize strings.
– If no delimiter is specified, a pattern that matches whitespace is used by

default for a Scanner object.
– You can specify a custom delimiter by calling its method useDelimiter() with

a regex.
– Method next() returns an object of type String.
– Scanner also defines multiple nextXXX methods, where XXX refers to a primi-

tive data type. These methods return the value as the corresponding primi-
tive type.

– Methods hasNext() and hasNextXxx() only return true or false but don’t
advance. Only methods next() and nextXxx() advance in the input.

– Method findInLine() matches the specified pattern with no regard to
delimiters in the input.

Formatting strings

■ Class java.util.Formatter is an interpreter for printf-style format strings.
■ A formatter provides support for layout justification and alignment; common

formats for numeric, string, and date/time data; and locale-specific output.
■ Formatter’s format() is used to format data.
■ To use format(), you need to define a format string that defines how to format

text and an object argument list that defines what to format.
■ You can define a combination of fixed text and one or more embedded format

specifiers, to be passed to the method’s format() first argument.
Licensed to Mark Watson <nordickan@gmail.com>

386 CHAPTER 5 String processing
■ The format specifier takes the following form:

%[argument_index$][flags][width][.precision]conversion

■ A format specification must start with a % sign and end with a conversion character:
– b for boolean
– c for char
– d for int, byte, short, and long
– f for float and double
– s for String

■ If the number of arguments exceeds the required count, the extra variables are
quietly ignored by the compiler and JVM. But if the number of required argu-
ments falls short, the JVM throws a runtime exception.

■ The - indicates to left-justify this argument; you must specify width as well. Num-
ber flags (only applicable for numbers, conversion chars d and f) are as follows:
– The + indicates to include a sign (+ or -) with this argument.
– 0 indicates to pad this argument with zeros. Must specify width as well.
– , indicates to use locale-specific grouping separators (for example, the

comma in 123,456).
– (is used to enclose negative numbers in parentheses.

■ The flags +, 0, (, and , can be specified only with the numeric specifiers %d and
%f. If you try to use them with any other format specifier (%b, %s, or %c), you’ll
get a runtime exception.

■ Format specifier %b
– You can pass any type of primitive variable or object reference to specifier %b.
– If the target argument arg is null, then %b outputs the result as false. If

arg is boolean or Boolean, the result is the String returned by String
.valueOf(). Otherwise, the result is true.

■ Format specifier %c
– %c outputs the result as a Unicode character.
– You can pass only literals and variables that can be converted to a Unicode

character (char, byte, short, int, Character, Byte, Short, and Integer) to
the %c specifier. Passing variables of type boolean, long, float, Boolean, Long,
Float, or any other class will throw IllegalFormatConversionException.

■ Format specifier %f
– You can format decimal numbers (float, Float, double, and Double) by

using the format specifier %f.
– By default, %f prints six digits after the decimal. It also rounds off the last digit.

■ Format specifier %d
– You can format integers (byte, short, int, long, Byte, Short, Integer, Long)

by using the format specifier %d.
– If you pass literal values or variables of type float, double, Float, or Double

to the format specifier %d, the code will throw a runtime exception.
Licensed to Mark Watson <nordickan@gmail.com>

387Sample exam questions
■ Format specifier %s
– %s outputs the value for a primitive variable. For reference variables, it calls

toString() on objects that are not null and outputs null for null values.
– You can pass any type of primitive variable or object reference to specifier %s.

SAMPLE EXAM QUESTIONS

Q 5-1. What is the output of the following code?

class Format1 {
 public static void main(String... args) {
 double num1 = 7.12345678;
 int num2 = (int)8.12345678;
 System.out.printf("num1=%f, num2=%2d, %b", num1, num2, num2);
 }
}

a num1=7.123456, num2= 8, true
b num1=7.123456, num2=8, true
c num1=7.123457, num2= 8, true
d num1=7.123457, num2=8 , true
e num1=7.1234, num2=8, false
f num1=7.1234, num2=8.1234, true
g Compilation error
h Runtime exception

Q 5-2. Given the following command line

java Regex1 \d\d 761cars8 5dogs-total846

what is the output of the following code?

class Regex1 {
 public static void main(String[] args) {
 Pattern pattern = Pattern.compile(args[0]);
 Matcher matcher = pattern.matcher(args[1]);
 boolean found = false;
 while(found = matcher.find()) {
 System.out.println(matcher.group());
 }
 }
}

a 76
61

b 76
Licensed to Mark Watson <nordickan@gmail.com>

388 CHAPTER 5 String processing
c 76
61
84
46

d 76
84

e No output

Q 5-3. Given the following variables, which options will throw exceptions at runtime?

String eJava = "Guru";
Integer start = 100;
boolean win = true;
Float duration = new Float(-1099.9999);

a System.out.format("%d", eJava);
b System.out.printf("%s", start);
c System.out.printf("[%-12b]", win);
d System.out.format("%s12", eJava);
e System.out.format("%d", duration);
f System.out.format("[%+,-(20f]", duration);

Q 5-4. What is the output of the following code?

Scanner scanner = new Scanner("ThemeXtheirXcarpet77");
scanner.useDelimiter("t.*e");
while (scanner.hasNext())
 System.out.println (scanner.next());

a ThemeX
the
t77

b ThemeX
t77

c The
the

d t77

e Compilation error
f Runtime exception

Q 5-5. Which options will output the following code?

Hello true 123456

a System.out.print("%s %b %d", new StringBuilder("Hello"), "false",
123456);
Licensed to Mark Watson <nordickan@gmail.com>

389Sample exam questions
b System.out.printf("%s %b %d", new String("Hello"), "false", 123456);
c System.out.format("%s %b %d", new StringBuilder("Hello"), "false",

123456);

d System.out.println("%s %b %d", new StringBuilder("Hello"), "false",
123456.70);

e System.out.printf("%s %b %d", new StringTokenizer("Hello"), "false",
123456);

f System.out.format("%s %b %d", ("Hello"), "FALSE", new Integer(123456));

Q 5-6. What is the output of the following code?

class StringCompare {
 public static void main(String[] args) {
 String mgr1 = "Paul & Harry's new office";
 StringBuilder emp = new StringBuilder("Harry");
 System.out.println(mgr1.contains(emp));
 }
}

a true

b false

c Compilation error
d Runtime exception

NOTE This question includes reading from a file that’s covered in chap-
ter 7. In the exam it’s usual to see questions that are based on multiple
exam topics.

Q 5-7. Given that the content of the file data.txt is

Harry;8765,Per[fect

which options are correct for the following code?

public class StrToken {
 public static void main(String[] args) throws Exception {
 BufferedReader br = new BufferedReader(new FileReader("data.txt"));
 String line;
 StringTokenizer st;
 while ((line = br.readLine()) != null) {
 st = new StringTokenizer(line, "[,;]"); //line1
 while (st.hasMoreElements())
 System.out.println(st.nextElement());
 }
 br.close();
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

390 CHAPTER 5 String processing
a The code prints
Harry
8765
Per
fect

b The code prints
Harry
8765
Per[fect

c The code prints
Harry;8765
Per[fect

d If the code on line //line1 is changed to the following, it’ll output the same
results:
st = new StringTokenizer(line, "[,;$]"); //line1

e Code fails to compile.
f Code throws a runtime exception.

Q 5-8. What is the output of the following code?

String eJava = "e Java Guru";
if(eJava.matches("u.u")){
 String[] tokens = eJava.split("\\Bu");
 for (String token : tokens) System.out.println(token);
}
else {
 System.out.println(eJava.replace(
 eJava.subSequence(3, 4), eJava.substring(11)));
}

a e Java G
r

b e Java Guru
c e Jv Guru
d e Juvu Guru
e java.lang.StringIndexOutOfBoundsException: String index out of

range: 11
f Code fails to compile.

Q 5-9. Which option, when used as a format specifier, will format the decimal literal
value 14562975.6543 to use at least the locale-specific grouping separator and include
a sign with it (+ or -)? (Choose all that apply.)

a %+,3f

b %,+20f
Licensed to Mark Watson <nordickan@gmail.com>

391Answers to sample exam questions
c %+,f

d %,+f

e %()f

f %-,f

g %0.+f

Q 5-10. Given the following string, which code options use the correct regex to
replace the first letter of all words with A, leave the remaining string unchanged, and
print the replaced string value?

String target = "amita, matinda,shreya,mike, and anthony are arrogant";

a System.out.println(target.subSequence("[\\b]\\w", "A"));
b System.out.println(target.replace("\\b\\w", "A"));
c System.out.println(target.replaceAll("\\s\\b\\w", "A"));
d System.out.println(target.replace("\\s\\b\\w", "A"));
e System.out.println(target.modify("\\b\\w", "A"));
f System.out.println(target.replaceAll("\\b\\w", "A"));
g None of the above

ANSWERS TO SAMPLE EXAM QUESTIONS

A 5-1. c

[5.3] Format strings using the formatting parameters: %b, %c, %d, %f, and %s in for-
mat strings

Explanation: By default, %f prints out six digits after the decimal number. It also
rounds off the last digit. So num1=%f outputs 7.123457 and not 7.123456.

 Because the double literal 8.12345678 is explicitly casted to an int value, num2 con-
tains the integer part of the double literal 8.12345678, that is, 8. %2d sets the total
width of the output to 2 digits, padded with spaces and right-aligned by default. It out-
puts a space preceding the digit 8.

 For all non-Boolean primitive values, %b outputs true.

A 5-2. b

[5.2] Search, parse, and replace strings by using regular expressions, using expression
patterns for matching limited to: . (dot), * (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b,
\B, [], ()

Explanation: The last argument (5dogs-total846) is ignored when you use the fol-
lowing command line because a space precedes it.

java -ea Regex1 \d\d 761cars8 5dogs-total846
Licensed to Mark Watson <nordickan@gmail.com>

392 CHAPTER 5 String processing
When you pass the regex by using the command-line arguments, you don’t need to
escape the backslashes. It’s required only for literal string values.

 \d\d will match two adjacent digits in the literal 761cars8—that is, 76. It won’t
match 61 because the digit 6 was already consumed in finding 76. By default, Java’s
regex engine won’t use characters that have already been consumed.

A 5-3. a, e

[5.3] Format strings using the formatting parameters: %b, %c, %d, %f, and %s in for-
mat strings

Explanation: You’ll get runtime exceptions if you use either of the following for a for-
mat specifier:

■ An invalid data type
■ An invalid combination of flags

Options (a) and (e) throw runtime exceptions because they use the format specifier
%d, which must be used only with integer literal values or variables, and not with
String or decimal numbers.

 Option (b) won’t throw any exception because you can pass any type of primitive
variable or object reference to the format specifier %s. Also, this option doesn’t use
any format flag that’s invalid to be used with %s.

 Option (c) won’t throw any exceptions. You can specify the alignment and width
element -12 with %b.

 Option (d) won’t throw any exceptions. The value 12 that follows %s is not part of the
width element, but a literal value following %s, so it’s a completely valid format string.

A 5-4. b

[5.1] Search, parse, and build strings (including Scanner, StringTokenizer, String-
Builder, String, and Formatter)
[5.2] Search, parse, and replace strings by using regular expressions, using expression
patterns for matching limited to: . (dot), * (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b,
\B, [], ().

Explanation: The code compiles successfully and throws no exceptions at runtime. So
options (e) and (f) are incorrect.

 In the regex t.*e, the metacharacter . matches any character, and * is a greedy
quantifier. t.*e searches for the letter t and scans all the remaining letters to find the
last occurrence of the letter e. The string theirXcarpe matches this regex pattern. So
theirXcarpe is used as a delimiter to the tokenizer ThemeXtheirXcarpet77. Text pre-
ceding and following this delimiter is returned as tokens.
Licensed to Mark Watson <nordickan@gmail.com>

393Answers to sample exam questions
A 5-5. b, c, f

[5.3] Format strings using the formatting parameters: %b, %c, %d, %f, and %s in for-
mat strings.

Explanation: Options (a) and (d) won’t compile. The type of the variable out in class
System is PrintStream. PrintStream’s methods print() and println() accept just
one method parameter. They’re overloaded to accept parameters of all the primitive
types and object references. But, they don’t accept format strings and arguments.

 Option (b) is correct. The format specifier %b returns the value true for non-null
values for object references other than Boolean or boolean.

 Option (c) is correct. The format specifier %s calls method toString() on an
object reference to get its String representation. Method toString() of class String-
Builder creates and returns a new String by using the sequence stored by the
StringBuilder. So printing a StringBuilder doesn’t print a value similar to String-
Builder@135d.

 Option (e) is incorrect. %s calls StringTokenizer’s method toString() to access
its String representation. This option outputs a value similar to this:

java.util.StringTokenizer@750159 true 123456

Option (f) is correct. Methods printf() and format() provide exactly the same func-
tionality. Behind the scenes, printf() calls format().

A 5-6. a

[5.1] Search, parse, and build strings (including Scanner, StringTokenizer, String-
Builder, String, and Formatter)

Explanation: Method contains() accepts a method parameter of type CharSequence,
and so an object of class StringBuilder is acceptable (class StringBuilder imple-
ments the interface CharSequence). Method contains() returns true, if the speci-
fied String equivalent can be found in the String object on which this method
is called.

A 5-7. a, d

[5.1] Search, parse, and build strings (including Scanner, StringTokenizer, String-
Builder, String, and Formatter)
[5.2] Search, parse, and replace strings by using regular expressions, using expression
patterns for matching limited to: . (dot), * (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b,
\B, [], ().

Explanation: On the exam, you’re likely to see questions based on multiple exam
objectives, just as this question covers file handling and string processing.
Licensed to Mark Watson <nordickan@gmail.com>

394 CHAPTER 5 String processing
 Class StringTokenizer doesn’t accept the delimiter as a regex pattern. When
[,;] is passed as a delimiter to class StringTokenizer, the occurrence of either of
these characters acts as a delimiter. So the line read from file data.txt is delimited
using , ; and [.

 Because the text in file data.txt doesn’t include $, changing the delimiter text from
[,;] to [,;$] won’t affect the output.

A 5-8. c

[5.1] Search, parse, and build strings (including Scanner, StringTokenizer, String-
Builder, String, and Formatter)
[5.2] Search, parse, and replace strings by using regular expressions, using expression
patterns for matching limited to: . (dot), * (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b,
\B, [], ().

Explanation: Method matches() doesn’t look for a matching subsequence. It matches
the complete string value against the given regex pattern. Because the regex pat-
tern u.u matches a subsequence and not the entire string value e Java Guru, it
returns false.

 The length of string eJava is 11, so eJava.substring(11) doesn’t throw String-
IndexOutOfBoundsException. It returns an empty string, which replaces string "a in
string value e Java Guru, resulting in e Jv Guru.

A 5-9. a, b, c, d

[5.3] Format strings using the formatting parameters: %b, %c, %d, %f, and %s in for-
mat strings.

Explanation: You must use the following for the required format:
■ %f
■ Flag + to include a sign
■ Flag , to use locale-specific grouping

Options (a), (b), (c), and (d) use the correct format specifier, %f. The flags + and ,
can appear in any order. It’s acceptable to specify the width of the numeric literal.

 If the total width specified with the format specifier is less than the width of the
argument passed to it, it’s ignored. If the width specified after the decimal is less than
the number of digits stored by the value to be formatted, it’s rounded off.

 Options (e), (f), and (g) are incorrect. They either include an invalid combination
of flags or don’t include the required flags.
Licensed to Mark Watson <nordickan@gmail.com>

395Answers to sample exam questions
A 5-10. f

[5.1] Search, parse, and build strings (including Scanner, StringTokenizer, String-
Builder, String, and Formatter)
[5.2] Search, parse, and replace strings by using regular expressions, using expression
patterns for matching limited to: . (dot), * (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b,
\B, [], ().

Explanation: Option (a) is incorrect because it doesn’t compile. You can only pass
integer values as parameters, not strings. Method subSequence() doesn’t replace
string values. It extracts and returns a matching subsequence of a string.

 Options (b) and (d) are incorrect because replace() doesn’t accept a regex pat-
tern. It replaces exact matches of a string value.

 Option (c) is incorrect—not all strings have a space in front of the first letter, so
the replace() option isn’t performed on every word in the string. \\s will also match
and replace the spaces (or whitespace, but not a combination of both).

 Option (e) is incorrect because modify() doesn’t exist.
 Option (f) is correct. replaceAll() can be passed a regex and its replacement. All

matching regex values in the string are replaced with the specified replacement
string. The regex pattern \b\w matches a word boundary (\b) followed by a word
character (\w)— that is, a-zA-Z_0-9.
Licensed to Mark Watson <nordickan@gmail.com>

Exceptions
and assertions
Exam objectives covered in this chapter What you need to know

[6.1] Use the throw statement and
throws clause

How to define methods that throw exceptions.
The difference between the throw statement and the
throws clause.
The different combinations of defining overriding meth-
ods, when the overridden or overriding methods throw
checked exceptions.

[6.2] Use the try statement with multi-
catch and finally clauses

How to use this new language feature with Java 7. How
to prevent coding the same set of statements for multi-
ple exception handlers. How to catch multiple and unre-
lated exceptions in a single catch block.

[6.3] Auto-close resources with a try-
with-resources statement

How to use a try-with-resources statement so you
never forget to close resources such as file handlers
and URL connections.
When a try-with-resources statement throws
exceptions, how to handle them. How to define
a try–with-resources statement without a catch
or finally block.

[6.4] Create custom exceptions How to create your own exceptions, including sub-
classes. How to use them in your code.

[6.5] Test invariants by using assertions The need for and purpose of assertions. The correct
syntax of an assert statement. Correct and incorrect
usage of assertions for variants and flow control. How
to enable and disable assertions.
396

Licensed to Mark Watson <nordickan@gmail.com>

397Using the throw statement and the throws clause
First let’s talk about exception handling. Imagine that the pilot of an airplane has an
accident just an hour before the flight’s scheduled takeoff. The airline manages the
situation by arranging for an alternate pilot, enabling the flight to take off at the sched-
uled time. What a relief for both the passengers and the airline. This example illustrates
how an exceptional condition (a pilot’s accident) that was outside the immediate con-
trol of the airline can modify the initial flow of an action (the predefined airline flight
operation). It demonstrates the need to handle such unexpected conditions appropri-
ately (the arrangement of an alternate pilot). Can you imagine the inconvenience that
would be caused to all the passengers if the airline had no alternate plan to arrange for
another pilot and recover from this situation?

 Similarly, it’s important for a Java application to handle unexpected or exceptional
conditions so it doesn’t fail, exit abruptly, or return invalid values. Java’s exception han-
dling is a mechanism that lets you do just that. It enables you to build robust applica-
tions that can recover from exceptional conditions that may arise during the course of
a program, by defining an alternate flow of actions.

 Now let’s talk about assertions. Whenever you board an international flight, the
airline staff checks your visa and stamps your passport. Imagine what would happen if
they missed stamping your passport at emigration? Would you be in trouble, at immi-
gration, when you fly back to your own country? As you can see, a failed assumption
that all passports were stamped at emigration can cause issues with immigration. For
such cases, the airline would examine the existing procedures and formulate new
checks so that a similar situation doesn’t occur again.

 Just as a failed assumption can help an airline identify an existing flaw in its opera-
tions, a failed assumption in an application can help identify and fix errors in the
application logic during its development. It’s difficult to find subtle bugs in the imple-
mentation of application logic when a programmer uses predefined assumptions
(believe me—it happens a lot). You must use assertions to check assumptions in the
program logic, variable values, and pre- and postconditions of methods, to avoid bugs
or errors. An assertion offers a way of indicating what should always be true.

 Exception handling helps you gracefully handle an exceptional condition by defin-
ing an alternate flow of action. On the other hand, assertions help you identify and fix
potential application logic errors.

 Exception handling is covered in both the OCA Java SE 7 Programmer I exam
(1Z0-803) and OCP Java SE 7 Programmer II exam (1Z0-804). This chapter covers
exception-handling topics that are specific to the latter exam. Assertions are covered
only by the second exam. This chapter covers

■ The throw statement and throws clause
■ The try statement with multi-catch and finally clauses (new in Java 7)
■ Auto-closing resources with a try-with-resources statement (new in Java 7)
■ Custom exceptions
■ Testing invariants by using assertions
Licensed to Mark Watson <nordickan@gmail.com>

398 CHAPTER 6 Exceptions and assertions
This chapter assumes that you’re already aware of the basic exception handling cov-
ered by the OCA Java SE 7 Programmer I exam. If required, you can refer to OCA Java
SE 7 Programmer I Certification Guide: Prepare for the 1Z0-803 Exam (Manning, 2013),
which covers Java’s basic exception handling.

 Let’s get started with the use of the throw statement and the throws clause.

6.1 Using the throw statement and the throws clause

Imagine that you’re assigned the task of finding a specific book, and then reading
and explaining its contents to a class of students. The required sequence looks like
the following:

■ Get the specified book.
■ Read aloud its contents.
■ Explain the contents to a class of students.

But what happens if you can’t find the specified book? You can’t proceed with the rest of
the actions without it, so you need to report back to the person who assigned the task to
you. This unexpected event (missing book) prevents you from completing your task. By
reporting it, you want the originator of this request to take corrective or alternate steps.

 Let’s code the preceding task as method teachClass(), as shown in figure 6.1, and
use it to compare the throw statement and the throws clause. This example code is
for demonstration purposes only, because it uses methods locateBook(), readBook(),
and explainContents(), which aren’t defined.

[6.1] Use the throw statement and throws clause

void teachClass() throws BookNotFoundException {

boolean bookFound = locateBook();

if (!bookFound)

throw new BookNotFoundException();

else {
readbook();
explainContents();

}
}

Keyword

throws

Keyword

throw

Figure 6.1 Comparing the throw statement and the throws clause
Licensed to Mark Watson <nordickan@gmail.com>

399Using the throw statement and the throws clause
The code in figure 6.1 is simple to follow. On execution of throw new BookNot-
FoundException, the execution of teachClass() halts. The JVM creates an instance of
BookNotFoundException and sends it off to the caller of teachClass() so alternate
arrangements can be made.

 The throw statement is used to throw an instance of BookNotFoundException. The
throws statement is used in the declaration of method teachClass() to signal that it
can throw BookNotFoundException.

 Why does a method choose to throw an exception as opposed to handling it itself?
It’s a contract between the calling method and the called method. Referring to method
teachClass() shown in figure 6.1, the caller of teachClass would like to be informed
if teachClass() is unable to find the specified book. Method teachClass() doesn’t
handle BookNotFoundException because its responsibilities don’t include how to work
around a missing book.

 The preceding example helps identify a situation when you’d want a method to
throw an exception, rather than handling it itself. It shows you how to use and com-
pare the statement throw and clause throws—to throw exceptions and to signal that a
method might throw an exception. The example also shows that a calling method can
define alternate code, when the called method doesn’t complete successfully and
throws an exception. Apart from testing this logic, the exam will test you on how to
create and use methods that throw checked or unchecked (runtime) exceptions and
errors, along with several other rules.

 Before you move forward with the chapter, it’s important to clearly identify all
kinds of exception classes as shown in figure 6.2.

 Here’s a list of different kinds of exceptions:

■ Exception classes—Refers to Throwable class and all its subclasses
■ Error classes—Refers to Error class and all its subclasses
■ Runtime exception classes—Refers to RuntimeException class and all its subclasses
■ Unchecked exception classes—Refers to runtime exception classes and error classes
■ Checked exceptions classes—Refers to all exception classes other than the unchecked

exception classes. Class Throwable and any of its subclasses that aren’t a subclass
of either Error or RuntimeException are checked exceptions.

Now let’s create a method that throws checked exceptions.

java.lang.Object

java.lang.RuntimeException

java.lang.Throwable

java.lang.Error java.lang.Exception

Figure 6.2 Using exception
hierarchy to identify all kinds
of exception classes
Licensed to Mark Watson <nordickan@gmail.com>

400 CHAPTER 6 Exceptions and assertions

6.1.1 Creating a method that throws a checked exception

Let’s create a simple method that doesn’t handle the checked exception thrown by it,
by using the statement throw and clause throws. Class DemoThrowsException defines
method readFile(), which includes a throws clause in its method declaration. The
actual throwing of an exception is accomplished by the throw statement:

import java.io.FileNotFoundException;
class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 boolean found = findFile(file);
 if (!found)
 throw new FileNotFoundException("Missing file");
 else {
 //code to read file
 }
 }
 boolean findFile(String file) {
 //code to return true if file can be located
 }
}

A method can have multiple comma-separated class names of exceptions in its throws
clause. Including runtime exceptions or errors in the method declaration isn’t
required. Including them in the documentation is the preferred way to mention
them. A method can still throw runtime exceptions or errors without including them
in its throws clause.

EXAM TIP Syntactically, you don’t always need a combination of the
throw statement and throws clause to create a method that throws an
exception (checked or unchecked). You can replace the throw statement
with a method that throws an exception.

6.1.2 Using a method that throws a checked exception

To use a method that throws a checked exception, you must do one of the following:

■ Handle the exception—Enclose the code within a try block and catch the thrown
exception.

■ Declare it to be thrown—Declare the exception to be thrown by using the throws
clause.

■ Handle and declare—Implement both of the preceding options together.

EXAM TIP The rule of either handling or declaring an exception is also
referred to as the handle-or-declare rule. To use a method that throws a
checked exception, you must either handle the exception or declare it to
be thrown. But this rule only applies to the checked exceptions and not
to the unchecked exceptions.

throws statement indicates method
can throw FileNotFoundException

or one of its subclasses

If file can’t be
found, code
creates and
throws instance
of FileNotFound-
Exception by using
throw statement
Licensed to Mark Watson <nordickan@gmail.com>

401Using the throw statement and the throws clause
In the following example, method useReadFile() handles FileNotFoundException (a
checked exception) thrown by readFile() by using a try-catch block:

class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 //..code
 }
 void useReadFile(String name) {
 try {
 readFile(name);
 }
 catch (FileNotFoundException e) {
 //code
 }
 }
}

A modified definition of method useReadFile() declares to throw a FileNotFound-
Exception:

class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 //..code
 }
 void useReadFile(String name) throws FileNotFoundException{
 readFile(name);
 }
}

The compiler doesn’t complain if you mix the preceding approaches. Method use-
ReadFile() can handle FileNotFoundException itself and still declare it to be thrown
(highlighted in bold):

import java.io.*;
class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 //..code
 }
 void useReadFile(String name) throws FileNotFoundException{

 try {
 readFile(name);
 }
 catch (FileNotFoundException e) {
 //code
 }
 }
}

useReadFile uses readFile that
throws FileNotFoundException

Call to readFile should be enclosed
in try block because it throws
checked FileNotFoundException

useReadFile()
declares that
it could throw
FileNotFound-
Exception.

readFile need not
be enclosed in
try-catch block

useReadFile()
declares that
it could throw
FileNotFound-
Exception.

readFile is enclosed
in try-catch block
Licensed to Mark Watson <nordickan@gmail.com>

402 CHAPTER 6 Exceptions and assertions
So what happens when FileNotFoundException is thrown by method readFile()?
Will its catch block handle FileNotFoundException, or will readFile() throw the
exception to its calling method? Let’s find out in our first “Twist in the Tale” exercise.

Let’s modify some of the code used in the previous examples. Which answer correctly
shows the output of class TwistThrowsException?

import java.io.*;
class TwistThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 System.out.println("readFile");
 throw new FileNotFoundException();
 }
 void useReadFile(String name) throws FileNotFoundException {
 System.out.println("useReadFile");
 try {
 readFile(name);
 }
 catch (FileNotFoundException e) {
 //code
 }
 }
 public static void main(String args[]) {
 new TwistThrowsException().useReadFile("a");
 }
}

a useReadFile

readFile
FileNotFoundException thrown at runtime

b useReadFile
FileNotFoundException thrown at runtime

c Compilation error

d FileNotFoundException thrown at runtime
e useReadFile

readFile

Did you ever happen to debug or fix a piece of code written by someone else? Dur-
ing such a session, have you ever noticed that to avoid coding multiple exception
handlers (prior to Java 7), programmers often caught an overly broad exception,
which often made its way into the production code? The next tip shows why you
must avoid that technique.

Twist in the Tale 6.1
Licensed to Mark Watson <nordickan@gmail.com>

403Using the throw statement and the throws clause

lause
 that
hod
w
ound-
n

6.1.3 Creating and using a method that throws runtime exceptions or errors

While creating a method that throws a runtime exception or error, including the
exception or error name in the throws clause isn’t required. A method that throws a
runtime exception or error isn’t subject to the handle-or-declare rule.

 Let’s see this concept in action by modifying the preceding example so method
readFile() throws a NullPointerException (a runtime exception) when a null
value is passed to it (code changes are shown in bold in this example and throughout
the rest of the chapter):

import java.io.FileNotFoundException;
class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 if (file == null)
 throw new NullPointerException();
 boolean found = findFile(file);
 if (!found)
 throw new FileNotFoundException("Missing file");
 else {
 //code to read file
 }
 }
 boolean findFile(String file) {
 //code to return true if file can be located
 }
}

Practical issues with catching an overly broad exception
Many times (prior to Java 7), developers took a shorter route to handle all checked
exceptions: they defined just one exception handler, java.lang.Exception. Here’s
an example:

class MyCustomException extends Exception {}
class MultiCatch {
 void myMethod(Connection con, String fileName) {
 try {
 // code
 }
 catch (Exception e) {
 // code
 }
 }
}

This, of course, has issues, because java.lang.Exception is the superclass of all
exceptions, including RuntimeException. The preceding catch block will silently
catch all types of runtime exceptions also. It might become difficult to debug such
code—it might log the same message for different exceptions or might try to handle
all types of exceptions in the same way, which might not have been the intent.

Code that might throw MyCustom-
Exception, FileNotFoundException,
or SQLException

Catch all types of checked
and runtime exceptions.

throws c
indicates
this met
can thro
FileNotF
Exceptio

Code throws
NullPointerException,
but it’s not included
in throws clause.
Licensed to Mark Watson <nordickan@gmail.com>

404 CHAPTER 6 Exceptions and assertions
The exam might trick you by including the names of runtime exceptions and errors in
one method’s declaration and leaving them out in another. (You can include the
name of unchecked exceptions in the throws clause, but you don’t have to.) Assum-
ing that the rest of the code remains the same, the following method declaration
is correct:

public void readFile(String file)
 throws NullPointerException, FileNotFoundException {
 //rest of the code remains same
}

EXAM TIP Adding runtime exceptions or errors to a method’s declara-
tion isn’t required. A method can throw a runtime exception or error
irrespective of whether its name is included in its throws clause.

Table 6.1 lists common errors and runtime exceptions. All are covered in detail in OCA
Java SE 7 Programmer I Certification Guide.

6.1.4 Points to note while using the throw statement and the throws clause

Apart from understanding the need for throwing exceptions and using their syntax,
you need to know a few rules about throwing exceptions with the throw statement and
the throws clause. These rules are presented in this section.

A METHOD CAN THROW A SUBCLASS OF CHECKED EXCEPTION MENTIONED IN ITS THROWS CLAUSE,
NOT ITS SUPERCLASS
Because class IOException is a superclass of class FileNotFoundException, method
readFile() can’t throw an object of class IOException:

class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 boolean found = findFile(file);

Table 6.1 Common errors and exceptions

Runtime exceptions Errors

ArrayIndexOutOfBoundsException ExceptionInInitializerError

IndexOutOfBoundsException StackOverflowError

ClassCastException NoClassDefFoundError

IllegalArgumentException OutOfMemoryError

IllegalStateException

NullPointerException

NumberFormatException

Though not required,
including runtime exceptions

in throws clause is valid

throws clause includes
FileNotFoundException
Licensed to Mark Watson <nordickan@gmail.com>

405Using the throw statement and the throws clause

 if (!found)
 throw new IOException("Missing file");
 else {
 //code to read file
 }
 }
 boolean findFile(String file) {
 //code to return true if file can be located
 }
}

Let’s modify the definition of method readFile() by declaring it might throw an
IOException. Because IOException is a superclass of class FileNotFoundException,
readFile() can throw an object of FileNotFoundException:

class DemoThrowsException {
 public void readFile(String file) throws IOException {
 boolean found = findFile(file);
 if (!found)
 throw new FileNotFoundException("Missing file");
 else {
 //code to read file
 }
 }
 boolean findFile(String file) {
 //code to return true if file can be located
 }
}

Note that this rule doesn’t apply to errors and runtime exceptions.

EXAM TIP An overriding method can throw any error or runtime exception,
irrespective of whether they’re thrown by the overridden method or not.

A METHOD CAN HANDLE THE EXCEPTION AND STILL DECLARE IT TO BE THROWN

This is usually done by methods whose exception handlers might throw the same
exception. Method useReadFile() handles the FileNotFoundException and also
declares it to be rethrown:

class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 //..code
 }
 void useReadFile(String name) throws FileNotFoundException {
 try {
 readFile(name);
 }
 catch (FileNotFoundException e) {
 //..code
 throw e;
 }
 }
}

Won’t compile; can’t
throw object of
superclass of checked
exception mentioned
in throws clause.

throws clause
includes IOException

Will compile;
can throw object
of derived class of
checked exception
mentioned in
throws clause.

useReadFile()
could throw
FileNotFound-
Exception.

Code is valid;
useReadFile()
handles FileNot-
FoundException
from readFile().

FileNotFoundException
instance will be handed over to
method that calls useReadFile()
Licensed to Mark Watson <nordickan@gmail.com>

406 CHAPTER 6 Exceptions and assertions

A METHOD THAT DECLARES A CHECKED EXCEPTION TO BE THROWN MIGHT NOT ACTUALLY THROW IT
Method readFile() includes the name of the checked exception FileNotFound-
Exception in its throws clause, but doesn’t throw it:

import java.io.FileNotFoundException;
class DemoThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 System.out.println("readFile:" + file);
 }
}

But do you think you can call readFile() as a method that doesn’t throw an excep-
tion (without enclosing it within a try-catch block or declaring the exception)? Let’s
check it out in our next “Twist in the Tale” exercise.

What is the output of class ThrowsException?

import java.io.FileNotFoundException;
class TwistThrowsException {
 public void readFile(String file) throws FileNotFoundException {
 System.out.println("readFile:" + file);
 }
 public static void main(String args[]) {
 System.out.println("main");
 new TwistThrowsException().readFile("Hello.txt");
 }
}

a main
readFile:Hello.txt

b main
readFile:Hello.txt
FileNotFoundException thrown at runtime

c Compilation error
d FileNotFoundException thrown at runtime

YOU CAN RETHROW EXCEPTIONS WITH MORE-INCLUSIVE TYPE CHECKING

Starting with Java 7, the variable type that you use to rethrow an exception can be
more generic in the catch block:

class GenericVariableTypeToRethrowException {
 public static void main(String args[])
 throws IOException, SQLException {
 String source = "DBMS";

Twist in the Tale 6.2

Compiles successfully even if readFile()
doesn’t throw FileNotFoundException.

Method declares to
throw exceptions
IOException and
SQLException
Licensed to Mark Watson <nordickan@gmail.com>

407Using the throw statement and the throws clause
 try {
 if (source.equals("DBMS"))
 throw new SQLException();
 else
 throw new IOException();
 }
 catch (Exception e) {
 throw e;
 }
 }
}

In the preceding code, the try block can throw two types of checked exceptions:
SQLException or IOException. But the type of the variable e in the catch block is
Exception, which is a superclass of SQLException and IOException. Prior to Java 7,
this code would fail to compile because main() is trying to throw an object of
Exception from its catch block, when its method declaration states that it can
throw an IOException or SQLException. (For checked exceptions, a method can’t
throw a superclass of the exception included in its declaration.) With Java 7, the
preceding code compiles successfully, because the compiler can determine that
the type of the checked exception received by the catch block would always be
either IOException or SQLException. So it’s okay to throw it, even though the
type of the variable e is Exception.

 Do you think the code will compile successfully if instead of rethrowing the excep-
tion in the catch block, you create a new object of class Exception and throw it? No, it
won’t. It would be a direct violation of the contract between the declarations of excep-
tions that method main() states to be throwing and what it actually throws. The follow-
ing modified example won’t compile:

class GenericVariableTypeToRethrowException2 {
 public static void main(String args[])
 throws IOException, SQLException {
 String source = "DBMS";
 try {
 if (source.equals("DBMS"))
 throw new SQLException();
 else
 throw new IOException();
 }
 catch (Exception e) {
 throw new Exception();
 }
 }
}

EXAM TIP With Java 7, you can rethrow exceptions with more inclusive
type checking.

Type of variable e in catch block
is Exception, more generic than
IOException and SQLException

Catch block rethrows
caught exception

Method declares
to throw
IOException and
SQLException

Won’t compile; catch
block creates and throws
Exception instance.
Licensed to Mark Watson <nordickan@gmail.com>

408 CHAPTER 6 Exceptions and assertions
A METHOD CAN DECLARE TO THROW ALL TYPES OF EXCEPTIONS, EVEN IF IT DOESN’T
In the following example, class ThrowExceptions defines multiple methods that declare
to throw different exception types. Class ThrowExceptions compiles successfully, even
though its methods don’t include the code that might throw these exceptions:

class ThrowExceptions {
 void method1() throws Error {}
 void method2() throws Exception {}
 void method3() throws Throwable {}
 void method4() throws RuntimeException {}
 void method5() throws FileNotFoundException {}
}

Though a try block can define a handler for unchecked exceptions not thrown by it,
it can’t do so for checked exceptions (other than Exception):

class HandleExceptions {
 void method6() {
 try {}
 catch (Error e) {}
 }
 void method7() {
 try {}
 catch (Exception e) {}
 }
 void method8() {
 try {}
 catch (Throwable e) {}
 }
 void method9() {
 try {}
 catch (RuntimeException e) {}
 }
 void method10() {
 try {}
 catch (FileNotFoundException e) {}
 }
}

In the preceding code, method6(), method7(), method8(), and method9() compile
even though their try blocks don’t define code to throw the exception being handled
by their catch blocks. But method10() won’t compile.

EXAM TIP A method can declare to throw any type of exception—checked
or unchecked—even if it doesn’t. But a try block can’t define a catch
block for a checked exception (other than Exception) if the try block
doesn’t throw that checked exception or uses a method that declares to
throw that checked exception.

Before moving on to the next section, let’s summarize the points to remember for the
throw statement and the throws clause.

Won’t
compile
Licensed to Mark Watson <nordickan@gmail.com>

409Creating custom exceptions
You can throw your own custom exceptions from methods by using the throw and
throws statements, in the same way you work with exception classes from the Java API.
Why do you need to create custom exception classes, when you can use exception
classes that are already defined in the Java API? Let’s discover in the next section.

6.2 Creating custom exceptions

Take a look at figure 6.3, which shows just a few of the existing exceptions from the
Java API.

 What information do you gather when a piece of code throws a FileNotFound-
Exception or ArrayIndexOutOfBoundsException? Without reading the code, you can
know that FileNotFoundException was probably thrown by code that couldn’t locate
a specified file. Similarly, ArrayIndexOutOfBoundsException will probably be thrown
by code that tried to access an array element at an index position out of its bounds.

Rules to remember about the throw statement and the throws clause
■ The throw statement is used within a method to throw an instance of a checked

exception, a runtime exception, or an error.
■ The throws clause is used with a method's declaration to list the exceptions

that a method can throw.
■ A method can include multiple comma-separated exception and error class

names in its throws clause.
■ The rule of either handling or declaring a checked exception is also referred to

as the handle-or-declare rule.
■ To use a method that throws a checked exception, you must either handle the

exception or declare it to be thrown.
■ The handle-or-declare rule only applies to the checked exceptions and not to the

unchecked exceptions.
■ Including runtime exceptions or errors in a throws clause isn’t required.
■ Adding unchecked exceptions or errors in the throws clause adds no obligations

about handling them in a try-catch block.
■ A method can throw a more specific exception subclass than the one mentioned

in its throws clause, but not a more generic one (superclass).
■ A method can handle a checked or unchecked exception and still declare it to

be thrown.
■ A method that declares a checked exception to be thrown might not throw it.
■ With Java 7, you can rethrow exceptions with more inclusive type checking.
■ A method can declare to throw any type of exception—checked or unchecked—

even if it doesn’t. But a try block can’t define a catch block for a checked
exception (other than Exception) if the try block doesn’t throw that checked
exception or uses a method that declares to throw that checked exception.

[6.4] Create custom exceptions
Licensed to Mark Watson <nordickan@gmail.com>

410 CHAPTER 6 Exceptions and assertions
The name of an exception can convey a lot of information to other developers or users,
which is one of the main reasons for defining a custom exception. A custom exception
can also be used to communicate a more descriptive message. For example, assume that
you’re developing an API to enable users to connect to your server to access its services.
How can you communicate failure of the login process to a user, which can arise from
multiple reasons such as a database connectivity issue or inappropriate user access privi-
leges? One of the preferred approaches is to define and use custom exceptions.

 Custom exceptions also help you restrict the escalation of implementing specific
exceptions to higher layers. For example, data access code on your server that accesses
persistent data may throw a SQLException. But users connecting to your server should
not be returned this exception. You may catch SQLException and throw another
checked or unchecked exception (the choice of throwing a checked or unchecked
exception is beyond the scope of this book). If you can’t find an appropriate existing
exception, create one!

6.2.1 Creating a custom checked exception
You can subclass java.lang.Exception (or any of its subclasses) to define custom
exceptions. To create custom checked exceptions, subclass java.lang.Exception or
its subclasses (which aren’t subclasses of RuntimeException). Let’s revisit the excep-
tion classes in figure 6.4.

ArrayIndexOutOf
BoundsException

NullPointer
Exception

?
?

!

FileNotFound
Exception

IOException

!

Figure 6.3 Existing exceptions defined in the Java API

java.lang.Object

java.lang.RuntimeException

java.lang.Throwable

java.lang.Error java.lang.Exception

Figure 6.4 Hierarchy of Exception and Error classes
Licensed to Mark Watson <nordickan@gmail.com>

411Creating custom exceptions
A word of caution here: even though you can extend class java.lang.Throwable to
create your own exceptions, it isn’t recommended. Class Throwable is the superclass
of classes java.lang.Error and java.lang.Exception. The exception handler for
this class will catch all types of errors and exceptions! For example, say an OutOf-
MemoryError brings the JVM into an unstable state. Catching it as a subclass of Error
or Throwable would be undesirable and potentially dangerous. Obviously, you may
not want this behavior.

EXAM TIP Don’t extend class java.lang.Throwable to create your own
exceptions, even though you can. Class Throwable is the superclass of
classes java.lang.Error and java.lang.Exception. The exception han-
dler for this class will catch all types of errors and exceptions.

Often organizations prefix the name of a custom exception with their organization,
project, or module name. Let’s create a custom exception, LoginException, which is a
checked exception:

class LoginException extends Exception {}

Let’s add constructors to it, a no-argument constructor and one that accepts a descrip-
tion of an exception or problem that occurred, as follows:

class LoginException extends Exception{
 public LoginException() {
 super();
 }
 public LoginException(String message) {
 super(message);
 }
}

Note that an exception class is like any other class to which you add your own methods
and variables. Let’s define another class, UserActivity, which defines method
login(). This method creates an instance of LoginException and throws it if a user is
unable to log in successfully. Note that I’ve tried to show how (checked) exceptions
are thrown in real-world applications. Because the main focus here is to throw a
checked exception, I haven’t implemented method findInDatabase(), as it would
have been implemented in the real world. It’s simply reduced to returning a false
value. Examine the following code:

class UserActivity {
 public void login(String user, String pwd) throws LoginException {
 if (!findInDatabase(user, pwd))
 throw new LoginException("Invalid username or password");
 }

LoginException is a
checked exception.

No-argument
constructor

Constructor that
accepts String

Add throws clause to
method declaration

Instantiate LoginException
and throw it.
Licensed to Mark Watson <nordickan@gmail.com>

412 CHAPTER 6 Exceptions and assertions

s
 private boolean findInDatabase(String user, String pwd) {
 // code that returns true if user/ pwd
 // combination found in database
 // false otherwise
 return false;
 }
}

6.2.2 Creating a custom unchecked exception

Class Error, class RuntimeException, and their derived classes are collectively referred
to as unchecked exception classes.

 You can subclass java.lang.RuntimeException to create a custom runtime excep-
tion. Here is the modified class LoginException:

class LoginException extends RuntimeException{
 public LoginException() {
 super();
 }
 public LoginException(String message) {
 super(message);
 }
}

You can throw this exception (now a runtime, or unchecked, exception) in the same
manner as mentioned previously in class UserActivity. The only change is that
(though allowed) now you no longer need to include the throws clause in method
login()’s declaration, as follows:

class UserActivity {
 public void login(String username,String pwd) {
 if (!findInDatabase(username, pwd))
 throw new LoginException("Invalid username or password");
 }
 private boolean findInDatabase(String username, String pwd) {
 // code that returns true if username/ pwd
 // combination found in database
 // false otherwise
 return false;
 }
}

To create custom Error classes, you can subclass java.lang.Error by extending it.
But Error classes represent serious exceptional conditions, which shouldn’t be thrown
programmatically.

 On the exam, you’ll see both custom exceptions and exceptions from the Java API.
Though overriding methods that throw exceptions isn’t explicitly defined as a sepa-
rate exam topic, you’re likely to be tested on it.

Since LoginException
extends RuntimeException,
now it’s an unchecked
exception.

No need to
define throw
clause in
method
declaration
for runtime
exception
Licensed to Mark Watson <nordickan@gmail.com>

413Overriding methods that throw exceptions
6.3 Overriding methods that throw exceptions
In this section, you’ll work through compilation issues that occur with overridden and
overriding methods, when either of them declares to throw a checked exception. Mul-
tiple combinations exist, as shown in figures 6.5 and 6.6.

EXAM TIP With overriding and overridden methods, it's all about which
checked exceptions an overridden method and an overriding method
declare, not about the checked exceptions both actually throw.

<<extends>>

aMethod()

Base

aMethod()

Derived

Doesn’t

declare to throw

a checked

exception

Declares to

throw a checked

exception

Figure 6.5 If an overridden method doesn’t declare to throw any checked exception,
the overriding method can’t declare to throw a checked exception.

<<extends>>

aMethod()

Base

aMethod()

Derived4

aMethod()

Derived3

aMethod()

Derived2

aMethod()

Derived1

Declares

to throw

IOException

Doesn’t

declare to

throw a checked

exception

Declares

to throw

Exception

Declares

to throw

IOException

Declares

to throw

FileNotFound
Exception

java.lang.
Exception

java.io.
FileNotFound
Exception

java.io.
IOException

Figure 6.6 If an overridden method declares to throw a checked exception, the overriding method
can choose to declare to not throw any checked exception, throw the same exception, or throw a more
specific exception. The overriding method can’t declare to throw a more generic checked exception.
Licensed to Mark Watson <nordickan@gmail.com>

414 CHAPTER 6 Exceptions and assertions
EXAM TIP Method overriding rules apply only to checked exceptions.
They don’t apply to runtime exceptions or errors. Beware: you’re likely to
be tested on this difference on the exam.

Let’s work with all these combinations by using code snippets.

RULE 1: IF A BASE CLASS METHOD DOESN’T DECLARE TO THROW A CHECKED EXCEPTION, AN
OVERRIDING METHOD IN THE DERIVED CLASS CAN’T DECLARE TO THROW A CHECKED EXCEPTION
Examine the following code:

class Base {
 public void aMethod() {}
 public void noRuntimeException() {}
}
class Derived extends Base {
 public void aMethod() throws Exception {}
 public void noRuntimeException() throws RuntimeException {}
}

RULE 2: IF A BASE CLASS METHOD DECLARES TO THROW A CHECKED EXCEPTION, AN OVERRIDING
METHOD IN THE DERIVED CLASS CAN CHOOSE NOT TO DECLARE TO THROW ANY CHECKED EXCEPTION
Examine the following code:

class Base {
 public void aMethod() throws IOException {}
 public void withRuntimeException() throws RuntimeException {}

}
class Derived1 extends Base {
 public void aMethod() {}
 public void withRuntimeException() {}
}

RULE 3: IF A BASE CLASS METHOD DECLARES TO THROW A CHECKED EXCEPTION, AN OVERRIDING
METHOD IN THE DERIVED CLASS CANNOT DECLARE TO THROW A SUPERCLASS OF THE EXCEPTION
THROWN BY THE ONE IN THE BASE CLASS
Examine the following code:

class Base {
 public void aMethod() throws IOException {}
 public void withRuntimeException() throws NullPointerException {}

}
class Derived2 extends Base {
 public void aMethod() throws Exception {}
 public void withRuntimeException() throws RuntimeException{}

}

This line fails
to compile. This line

compiles
successfully.

Both lines compile
successfully.

This line fails
to compile.
Licensed to Mark Watson <nordickan@gmail.com>

415Using the try statement with multi-catch and finally clauses
RULE 4: IF A BASE CLASS METHOD DECLARES TO THROW A CHECKED EXCEPTION, AN OVERRIDING
METHOD IN THE DERIVED CLASS CAN DECLARE TO THROW THE SAME EXCEPTION

The following code compiles successfully:

class Base {
 void aMethod() throws IOException {}
 void methodUncheckedEx() throws Error {}
}
class Derived3 extends Base {
 void aMethod() throws IOException {}
 void methodUncheckedEx() throws NullPointerException {}
}

RULE 5: IF A BASE CLASS METHOD DECLARES TO THROW A CHECKED EXCEPTION, AN OVERRIDING
METHOD IN THE DERIVED CLASS CAN DECLARE TO THROW A DERIVED CLASS OF THE EXCEPTION
THROWN BY THE ONE IN THE BASE CLASS

The following code compiles successfully:

class Base {
 void aMethod() throws IOException {}
}
class Derived4 extends Base {
 void aMethod() throws FileNotFoundException {}
}

After working with the method overriding rules that include throwing exceptions, let’s
use the try statement with multi-catch and finally clauses. Starting with Java 7, the
try statement can catch multiple exceptions in the same handler, as discussed in
the next section.

6.4 Using the try statement with multi-catch and
finally clauses

Prior to Java 7, if a try block needed to execute the same action for multiple
exceptions thrown, it had to define separate handlers for each of them. Starting
with Java 7, you can catch multiple, unrelated exceptions with one handler, also
called a multi-catch.

6.4.1 Comparing single-catch handlers and multi-catch handlers

The multi-catch comes in handy if you need to execute the same action for handling
multiple, unrelated exceptions. I specifically mention unrelated exceptions, because
an exception handler for, say, MyException, can handle MyException and all of its
subclasses. You can compare this approach of defining separate exception handlers

[6.2] Use the try statement with multi-catch and finally clauses
Licensed to Mark Watson <nordickan@gmail.com>

416 CHAPTER 6 Exceptions and assertions

ow
und-

e
y
(prior to Java 7) with defining only one exception handler to execute the same steps
for multiple unrelated exceptions (starting in Java 7) by using figure 6.7.

 Now that you know the difference between a multi-catch and single-catch han-
dler, let’s dive into the details of defining multi-catch handlers with finally clauses.

6.4.2 Handling multiple exceptions in the same exception handler

You should know the basic syntax for creating and using multi-catch blocks, together
with the gotchas that may be used on the exam. So let’s start with the basic syntax of
multi-catch blocks.

BASIC SYNTAX OF MULTI-CATCH BLOCK

To catch multiple exceptions in a single handler, just separate the different exception
types with a vertical bar (|). The following is an example of a try block that defines
code that can handle FileNotFoundException and SQLException (or any of their sub-
classes) using a multi-catch block:

Line1> class MultiCatch {
Line2> void myMethod(Connection con, String fileName) {
Line3> try {
Line4> File file = new File(fileName);
Line5> FileInputStream fin = new FileInputStream(file);

Line6> Statement stmt = con.createStatement();
Line7> }
Line8> catch (FileNotFoundException | SQLException e) {
Line9> System.out.println(e.toString());
Line10> }
Line11> }
Line12>}

Single-catch handler

try {

}
catch (fileNotFoundException e){

//log exception
}
catch (MyCustomException e){

//log exception
}
catch (NumberFormatException e){

//log exception
}

Multi-catch handler

try {

}
catch (FileNotFoundException |

MyCustomException |
NumberFormatException e){

//log exception
}

A single handler

can handle multiple

unrelated exceptions.

Figure 6.7 Comparing the differences between executing the same action with single-catch
and multi-catch exception handlers

Might thr
FileNotFo
Exception

Might throw
SQLException

Executes if line 5 throws
FileNotFoundException or lin
6 throws SQLException or an
of their subclasses.
Licensed to Mark Watson <nordickan@gmail.com>

417Using the try statement with multi-catch and finally clauses

e

In the preceding code, the exception handler will execute if the code throws File-
NotFoundException, SQLException, or any of their subclasses.

FINALLY BLOCK CAN FOLLOW MULTI-CATCH BLOCK

A multi-catch block can be followed by a finally block. Here’s an example:

class MultiCatchWithFinally {
 void myMethod(Connection con, String fileName) {
 try {
 File file = new File(fileName);
 FileInputStream fin = new FileInputStream(file);

 Statement stmt = con.createStatement();
 }
 catch (FileNotFoundException | SQLException e) {
 System.out.println(e.toString());
 }
 finally {
 System.out.println("finally");
 }
 }
}

The syntax seems to be simple. So let’s look at some of the gotchas that you need to be
aware of for the exam.

EXCEPTIONS THAT YOU CATCH IN A MULTI-CATCH BLOCK CAN’T SHARE AN INHERITANCE RELATIONSHIP

What happens if you add another line of code in the previous example, which
involves reading from FileInputStream, which might throw an IOException? Let’s
add IOException to the list of exceptions being caught in the multi-catch block:

class MultiCatch {
 void myMethod(Connection con, String fileName) {
 try {
 File file = new File(fileName);
 FileInputStream fin = new FileInputStream(file);
 fin.read();

 Statement stmt = con.createStatement();
 }
 catch (IOException| FileNotFoundException | SQLException e) {
 System.out.println(e.toString());
 }
 }
}

This code fails compilation with the following error message:

MultiCatch.java:13: error: Alternatives in a multi-catch statement cannot
be related by subclassing
 catch (IOException | FileNotFoundException | SQLException e) {
 ^
 Alternative FileNotFoundException is a subclass of alternative IOException
1 error

finally block can follow
multi-catch block

May throw
FileNotFound-
Exception

May throw
IOException

May throw
SQLException

Fails to
compil
Licensed to Mark Watson <nordickan@gmail.com>

418 CHAPTER 6 Exceptions and assertions
Looks like the code fails to compile because the IOException is caught before the
FileNotFoundException. In regular catch blocks, if you catch a superclass exception
before a derived class exception, the code won’t compile. So let’s swap the order of
IOException and FileNotFoundException in the preceding code:

class MultiCatch {
 void myMethod(Connection con, String fileName) {
 try {
 File file = new File(fileName);
 FileInputStream fin = new FileInputStream(file);
 fin.read();

 Statement stmt = con.createStatement();
 }
 catch (FileNotFoundException | IOException| SQLException e) {
 System.out.println(e.toString());
 }
 }
}

The code fails compilation with the following message:

Alternatives in a multi-catch statement cannot be related by subclassing
 catch (FileNotFoundException | IOException | SQLException e) {
 ^
 Alternative FileNotFoundException is a subclass of alternative IOException
1 error

So the takeaway from the previous examples is that you can’t use subclasses as alterna-
tive types in a multi-catch block. The correct multi-catch block for code that may
throw an IOException, FileNotFoundException, and SQLException is as follows:

class MultiCatch {
 void myMethod(Connection con, String fileName) {
 try {
 ..
 }
 catch (IOException | SQLException e) {
 System.out.println(e.toString());
 }
 }
}

Because multi-catch blocks are used to execute the same piece of code, when multi-
ple exceptions are thrown, it makes no sense to use subclasses.

COMBINING MULTI-CATCH AND SINGLE-CATCH BLOCKS

You can combine multi-catch and single-catch blocks, as shown in the following code:

class MultiAndSingleCatch {
 void myMethod(Connection con, String fileName) {

Might throw
FileNotFound-
Exception

Might throw
IOException

Might throw
SQLException

Swapping exception types
doesn’t make a difference;

code fails to compile.

Code that might throw
IOException, FileNotFound-
Exception, or SQLException

Catch IOException (superclass
of FileNotFoundException)
and SQLException or any of
their subclasses.
Licensed to Mark Watson <nordickan@gmail.com>

419Using the try statement with multi-catch and finally clauses

F

n
r
 try {
 ..
 }
 catch (FileNotFoundException e) {}
 catch (IOException | SQLException e) {}
 }
}

EXAM TIP Watch out for a combination of multi-catch and single-catch
exception handlers on the exam. They can get quite tricky.

USING A SINGLE EXCEPTION VARIABLE IN THE MULTI-CATCH BLOCK

It’s easy to overlook that even though a multi-catch handler defines multiple excep-
tion types, it must use only one variable. Figure 6.8 defines two multi-catch exception
handlers. The latter multi-catch block uses multiple variables, which is incorrect and
won’t compile.

IN A MULTI-CATCH BLOCK, VARIABLE E IS IMPLICITLY FINAL

In a multi-catch block, the variable that accepts the exception object is implicitly
final. A final variable can’t be reassigned a value. So if you try to reassign a value to the
variable of the multi-catch exception handler, the code won’t compile:

class MultiCatch {
 void myMethod(Connection con, String fileName) {
 try {
 ..
 }
 catch (IOException| SQLException e) {
 e = new FileNotFoundException();
 }
 }
}

TYPE OF EXCEPTION VARIABLE IN A MULTI-CATCH BLOCK
In a multi-catch block, the type of the reference variable that accepts the exception
object is a common base class of all the exception types mentioned in a multi-catch
block. In the following code, the type of the reference variable ex is Exception, the

Code that may throw IOException,
FileNotFoundException, or SQLException

Catch
ileNotFound
Exception or

any of its
subclasses.

Catch IOException and SQLExceptio
or any of their subclasses (except fo
FileNotFoundException or its
subclasses).

catch (SQLException | IOException e) {...}

catch (SQLException el | IOException e2) {...} Figure 6.8 A multi-catch
block that uses multiple
exception variables won’t
compile.

Code that may throw
IOException or SQLException

Catch IOException
and SQLException.

Won’t compile; can’t
reassign value to variable e
because it’s implicitly final.
Licensed to Mark Watson <nordickan@gmail.com>

420 CHAPTER 6 Exceptions and assertions
common base class of Exception1 and Exception2. This is why calling info() on ex
won’t compile:

class Exception1 extends IOException{

 public String info() {
 return "I'm Base Exception";
 }
}

class Exception2 extends Exception{

 public String info() {
 return "I'm Derived Exception";
 }
}

class TestVariableTypeInMultiCatch {
 public static void main(String args[]) {
 try {
 int a = 10;

 if (a <= 10)throw new Exception1();
 else throw new Exception2();
 }
 catch (Exception1 | Exception2 ex) {

 System.out.println(ex.info());
 }
 }
}

Okay, let’s modify the code from the previous example so it prints out the value of
variable ex, in the next “Twist in the Tale” exercise.

Which answer correctly shows the output of class TestMultiCatch?

import java.io.*;

class Exception1 extends IOException{}
class Exception2 extends Exception{}

class TestMultiCatch {
 public static void main(String args[]) {
 try {
 int a = 10;
 if (a <= 10)throw new Exception1();
 else throw new Exception2(); // line1
 }
 catch (Exception1 | Exception2 ex) {
 System.out.println(ex);
 }
 }
}

Twist in the Tale 6.3

Custom exception Exception1
extends IOException.

Exception1 defines
method info.

Custom exception Exception2
extends Exception.

Exception2 defines
method info.

Type of variable ex is
Exception, common
superclass of Exception1
and Exception2.

Won’t compile; class Exception
doesn’t define method info.
Licensed to Mark Watson <nordickan@gmail.com>

421Using the try statement with multi-catch and finally clauses
a Value similar to Exception1@96a34
b Value similar to Exception2@45a86e
c Exception1

d Exception2

Do you think this code will compile successfully if you comment the code marked with
//line1?

And what would happen if both custom exceptions used in the preceding example
code implement an interface?

interface IEx {
 String info();
}
class Exception1 extends IOException implements IEx{
 public String info() {
 return "I'm Base Exception";
 }
}

class Exception2 extends Exception implements IEx {
 public String info() {
 return "I'm Derived Exception";
 }
}

class TestVariableTypeInMultiCatch {
 public static void main(String args[]) {
 try {
 int a = 10;

 if (a <= 10)throw new Exception1();
 else throw new Exception2();
 }
 catch (Exception1 | Exception2 ex) {
 System.out.println(ex.info());
 }
 }
}

In the preceding code, variable ex is of intersection type with Exception and IEx as its
bounds. You can call methods accessible to class Exception and interface IEx on the
reference variable ex.

 The next section covers another major language enhancement in Java: auto-closing
resources by using a try-with-resources statement.

Custom exception
Exception1 extends
IOException;
implements IEx.

Custom exception
Exception2 extends
Exception;
implements IEx.

Variable ex is an
intersection type,
with Exception and
IEx as its bounds.

Compiles
successfully.
Licensed to Mark Watson <nordickan@gmail.com>

422 CHAPTER 6 Exceptions and assertions

t-
6.5 Auto-closing resources with a try-with-resources
statement

Prior to Java 7, developers used finally blocks to close resources such as file han-
dlers, and database or network connections. Here’s a quick example to show how a
FileInputStream instance was closed prior to Java 7:

try {
 FileInputStream fis = /* instantiate */
 /* other code */
}
finally {
 if (fis != null)
 try {
 fis.close();
 }
 catch (Exception e) {/* */}
}

As you can see, closing a resource required a lot of boilerplate code and was error-
prone too. What if a developer didn’t close a resource in a finally block?

 Starting with Java 7, you can use a try-with-resources statement to auto-close resources
defined with the try statement.

6.5.1 How to use a try-with-resources statement

The try-with-resources statement is a type of try statement that can declare one or
more resources. A resource is an object such as file handlers and database or network
connections, which should be closed after it’s no longer required. If you declare a
resource by using a try-with-resources statement, it automatically closes the resource
by calling its close method, just before the end of the try block. A resource must
implement the java.lang.AutoCloseable interface or any of its subinterfaces to be
eligible to be declared in a try-with-resources statement. Let’s start with an example.

AN EXAMPLE

In the following example, a try-with-resources statement declares and initializes an
object (fin) of type FileInputStream. Because the try-with-resources statement is
supposed to automatically call method close() on fin, the following code doesn’t
explicitly make this call:

class AutoClose {
 void readFileContents(String fileName) {
 File file = new File(fileName);
 try (FileInputStream fin = new FileInputStream(file)){
 //.. some code
 }

[6.3] Auto-close resources with a try-with-resources statement

Code to open
FileInputStream;
can throw FileNo
FoundException

Some code
Licensed to Mark Watson <nordickan@gmail.com>

423Auto-closing resources with a try-with-resources statement

 fin
t-

n can
n.

.

 catch (FileNotFoundException e) {
 System.out.println(e.toString());
 }
 }
}

But wait! This code doesn’t compile and gives the following compilation error:

AutoClose.java:7: error: unreported exception IOException;
must be caught or declared to be thrown
 try (FileInputStream fin = new FileInputStream(file)){
 ^
 exception thrown from implicit call to close() on resource variable 'fin'
1 error

So what went wrong? The try-with-resources statement calls method close() just
before the completion of the try block. Note that if method close() throws any
exception, it should be taken care of by your method; it must either catch it or declare
it to be thrown. Code that handles both FileNotFoundException and IOException
is correct:

class AutoClose {
 void readFileContents(String fileName) {
 File file = new File(fileName);
 try (FileInputStream fin = new FileInputStream(file)){
 //.. some code
 }
 catch (IOException e) {
 System.out.println(e.toString());
 }
 }
}

The following code declares IOException to be thrown, and so it’s also correct:

class AutoClose {
 void readFileContents(String fileName) throws IOException {
 File file = new File(fileName);
 try (FileInputStream fin = new FileInputStream(file)){
 //.. some code
 }
 }
}

Did you notice that the try block defined in the preceding code wasn’t followed by
either a catch or a finally block? This is unlike a regular try block, which must be
followed by either a catch or a finally block.

Catch FileNotFoundException
that might be thrown by code
to initialize fin.

Code to initialize
can throw FileNo
FoundException;
calling close on fi
throw IOExceptioDetails of

this code not
required Catch IOException

(IOException is superclass
of FileNotFoundException).

Declares
IOException
to be thrown

Initialization of fin may throw
FileNotFoundException; calling close on

fin may throw IOException.
Licensed to Mark Watson <nordickan@gmail.com>

424 CHAPTER 6 Exceptions and assertions

()
NOTE FileInputStream implements java.io.Closeable, which, start-
ing with Java 7, extends java.lang.AutoCloseable. So FileInputStream
is a valid resource to be used by the try statement.

6.5.2 Suppressed exceptions

In a try-with-resources statement, if both the code in the try block and close()
throw an exception, the exception thrown by close() is suppressed by the exception
thrown by the try block.

 The resources initialized by the try-with-resources statement are automatically
closed, just before the end of execution of the try block. This happens regardless of
whether any exceptions are thrown. Let’s understand the flow of code by using class
RiverRaft, which implements the AutoCloseable interface:

class RiverRaft implements AutoCloseable {
 public RiverRaft() throws Exception {
 System.out.println("Start raft");
 }
 public void crossRapid() throws Exception {
 System.out.println("Cross rapid");
 throw new Exception("Cross Rapid exception");
 }
 public void close() throws Exception {
 System.out.println("Reach river bank");
 }
}

The class SuppressedExceptions initializes an instance of RiverRaft by using a
try-with-resources statement:

public class SuppressedExceptions {
 public static void main(String[] args) throws Exception {
 try (RiverRaft raft = new RiverRaft();) {
 raft.crossRapid();

 }
 catch (Exception e) {
 System.out.println("Exception caught:" + e);
 }
 }
}

EXAM TIP Though not required, I’ve deliberately used a semicolon (;)
after declaring and initializing raft in the preceding code. Watch out for
questions on the exam that include or exclude a semicolon at the end
of the resource defined by a try-with-resources statement. A try-with-
resources statement can declare multiple resources, which are separated by
a semicolon. After the last resource declaration, a semicolon is optional.

For the code at B, the try-with-resources statement creates a RiverRaft instance. For
the code at c, method crossRapid() throws an exception, but the try-with-resources

Instantiate
RiverRaft; no
exceptions
thrown.

 b

Method crossRapid
throws Exception. c

close() called on
raft, before control
is transferred to
exception handler d
Licensed to Mark Watson <nordickan@gmail.com>

425Auto-closing resources with a try-with-resources statement
statement executes close() d before passing the control to the exception handler.
Here’s the output of the preceding code:

Start raft
Cross rapid
Reach river bank
Exception caught:java.lang.Exception: Cross Rapid exception

Now what happens if close() in RiverRaft also throws an exception? Which excep-
tion will be propagated to the exception handler? Will it be the exception from
close() or from crossRapid()? Here’s the modified code:

public class SuppressedExceptions {
 public static void main(String[] args) throws Exception {
 try (RiverRaft raft = new RiverRaft();) {
 raft.crossRapid();
 }
 catch (Exception e) {
 System.out.println("Exception caught:" + e);
 }
 }
}
class RiverRaft implements AutoCloseable {
 public RiverRaft() throws Exception {
 System.out.println("Start raft");
 }
 public void crossRapid() throws Exception {
 System.out.println("Cross rapid");
 throw new Exception("Cross Rapid exception");
 }
 public void close() throws Exception {
 System.out.println("Reach river bank");
 throw new Exception("Close exception");
 }
}

The exception from method crossRapid() made it the exception handler. Here’s the
output of the preceding code:

Start raft
Cross rapid
Reach river bank
Exception caught:java.lang.Exception: Cross Rapid exception

Because the output of the previous code snippets looks identical, what do you think
happened to the exception thrown by method close()? This exception was suppressed
by the exception thrown by crossRapid(). This is a new automatic resource manage-
ment feature in Java 7. In a try-with-resources statement, when the code enclosed
within the try body (try block minus its initialization code) throws an exception, fol-
lowed by an exception thrown by the try-with-resources statement (which implicitly
calls method close()), then the latter is suppressed.

 Even though the exception thrown by close() is suppressed in the preceding
code, it’s associated with the exception thrown by crossRapid(). You can retrieve the

Method crossRapid()
throws Exception.

Method close() also
throws Exception.
Licensed to Mark Watson <nordickan@gmail.com>

426 CHAPTER 6 Exceptions and assertions
suppressed exceptions by calling getSuppressed() on the exception that has sup-
pressed the other exceptions. The getSuppressed() method returns an array contain-
ing all of the exceptions that were suppressed in order to deliver the exception
thrown by crossRapid(). The following modified code shows how you can trace the
exception thrown by method close(). Because only one exception was suppressed,
the code accessed the first element of the array returned by getSuppressed():

public class SuppressedExceptions {
 public static void main(String[] args) throws Exception {
 try (RiverRaft raft = new RiverRaft();) {
 raft.crossRapid();
 }
 catch (Exception e) {
 System.out.println("Exception caught:" + e);
 Throwable[] exs = e.getSuppressed();
 if (exs.length>0)
 System.out.println(exs[0]);
 }
 }
}
class RiverRaft implements AutoCloseable {
 public RiverRaft() throws Exception {
 System.out.println("Start raft");
 }
 public void crossRapid() throws Exception {
 System.out.println("Cross rapid");
 throw new Exception("Cross Rapid exception");
 }
 public void close() throws Exception {
 System.out.println("Reach river bank");
 throw new Exception("Close exception");
 }
}

EXAM TIP In a try-with-resources statement, when the code enclosed
within the try body (try minus its initialization code) throws an excep-
tion, followed by an exception thrown by the try-with-resources state-
ment (which implicitly calls method close()), then the latter exception
is suppressed. getSuppressed() never returns null. If there aren’t any
suppressed expressions, the length of the returned array is 0.

Now, let’s take a quick look at the nuts and bolts of using a try-with-resources state-
ment, which you should know for this exam.

6.5.3 The right ingredients

Working with a try-with-resources statement can be tricky because it involves several
points to be taken care of. Let’s start with the declaration of multiple resources in a
try-with-resources statement.

Retrieves and prints
first suppressed
exception.
Licensed to Mark Watson <nordickan@gmail.com>

427Auto-closing resources with a try-with-resources statement

 to
k

DECLARING AND INITIALIZING RESOURCES

The variables used to refer to resources are implicitly final variables. You must declare
and initialize resources in the try-with-resources statement. You can’t define un-initialized
resources:

void copyFileContents(String inFile, String outFile) throws IOException{
 try (FileInputStream fin;
 FileOutputStream fout;){
 //..rest of the code
 }
}

It’s acceptable to the Java compiler to initialize the resources in a try-with-resources
statement to null, only as long as they aren’t being reassigned a value in the try block
(as they are implicitly final):

void copyFileContents(String inFile, String outFile) throws IOException{
 try (FileInputStream fin = null;
 FileOutputStream fout = null;){
 //..rest of the code
 }
}

But it doesn’t make much sense to initialize a final variable with null. Once initialized
to null, a resource can’t be reassigned a value in a try-with-resources statement. If
you try to do so, the code won’t compile:

void copyFileContents(String inFile, String outFile) throws IOException{
 try (FileInputStream fin = null;
 FileOutputStream fout = null;){

 fin = new FileInputStream(inFile);
 //..rest of the code
 }
}

EXAM TIP The variables defined in a try-with-resources statement are
implicitly final.

SCOPE OF THE RESOURCE DECLARED BY TRY-WITH-RESOURCES IS LIMITED TO IT
The resource declared by try-with-resources is closed just before the completion of
the try block. Also, its scope is limited to the try block. So if you try to access it out-
side the try block, it won’t compile. Following is an example of a simple method that
tries to copy contents of one file to another:

class AutoClose {
 void copyFileContents(String inFile, String outFile)
 throws IOException{

 try (FileInputStream fin = new FileInputStream(inFile);
 FileOutputStream fout = new FileOutputStream(outFile)){

Won’t compile; resources
must be initialized.

Will compile successfully,
if initialized with null, only
as long as it isn’t used.

Assigned null
to resources.

Won’t compile; you
can’t reassign another
value to fin.

Scope
of fout
limited
try bloc
Licensed to Mark Watson <nordickan@gmail.com>

428 CHAPTER 6 Exceptions and assertions
 byte [] buffer = new byte[1024];
 int i = 0;
 while ((i = fin.read(buffer)) != -1)
 fout.write(buffer,0,i);
 }
 finally {
 fout = new FileOutputStream(inFile);
 }

 }
}

A SEMICOLON MIGHT NOT FOLLOW THE LAST RESOURCE DECLARED BY TRY STATEMENT

You can initialize multiple resources in a try-with-resources statement, separated by a
semicolon (;). It isn’t obligatory for a semicolon to follow the declaration of the last
resource, as shown in figure 6.9.

RESOURCES MUST IMPLEMENT JAVA.IO.AUTOCLOSEABLE OR ITS SUBINTERFACES
(DIRECTLY OR INDIRECTLY)
In the previous examples, I used objects of classes FileInputStream and FileOutput-
Stream in a try-with-resources statement. These classes implement the java.io
.Closeable interface. Starting with Java 7, java.io.Closeable was modified to
extend the java.lang.AutoCloseable interface, so that classes implementing it could
be used with a try-with-resources statement.

Won’t compile; code
outside try block can’t
access variable fout.

class AutoClose {
void copyFileContents(String inFile, String outFile)

throws IOException{

try (FileInputStream fin = new FileInputStream(inFile);
FileOutputStream fout = new FileOutputStream(outFile)){
//..code

}
}

}

class AutoClose {
void copyFileContents(String inFile, String outFile)

throws IOException{

try (FileInputStream fin = new FileInputStream(inFile);
FileOutputStream fout = new FileOutputStream(outFile);){
//..code

}
}

}

Okay to

include or exclude

the semicolon

Figure 6.9 The last resource defined in a try-with-resources statement might not be followed by a
semicolon (;).
Licensed to Mark Watson <nordickan@gmail.com>

429Auto-closing resources with a try-with-resources statement

s

To use instances of your own class with a try-with-resources statement, you can imple-
ment the java.lang.AutoCloseable interface:

class MyAutoCloseableRes implements AutoCloseable{
 MyAutoCloseableRes() {
 System.out.println("Constructor called");
 }
 public void close() {
 System.out.println("Close called");
 }
}
class AutoClose2 {
 void useCustomResources() {

 try (MyAutoCloseableRes res = new MyAutoCloseableRes();){
 System.out.println("within try-with-resources");
 }
 finally {
 System.out.println("finally");
 }
 }
}

class Test {
 public static void main(String args[]) {
 new AutoClose2().useCustomResources();
 }
}

The output of the preceding class Test is as follows:

Constructor called
within try-with-resources
Close called
finally

DEFINITION OF INTERFACES JAVA.LANG.AUTOCLOSEABLE AND JAVA.IO.CLOSEABLE

On the exam, you might get to answer explicit questions on the exceptions that are
thrown by method close() defined in the AutoCloseable and Closeable interfaces.
Following is the definition of the AutoCloseable interface from the Java source code
(minus the comments):

package java.lang;
public interface AutoCloseable {
 void close() throws Exception;
}

Here’s the definition of the Closeable interface from the Java source code (minus
the comments):

package java.io;
public interface Closeable extends AutoCloseable {
 public void close() throws IOException;
}

MyAutoCloseableRes
implements AutoCloseable,
so it can be used in
try-with-resources.

MyAutoCloseableRes implements
the only method, close(), defined
by AutoCloseable.

An object
of MyAuto-
CloseableRe
can be used
in try-with-
resources.

Try block doesn’t
catch any exception,
because no method of
MyAutoCloseableRes
throws exception

Method close() of AutoCloseable
throws Exception.

Method close() of interface
Closeable throws IOException.
Licensed to Mark Watson <nordickan@gmail.com>

430 CHAPTER 6 Exceptions and assertions

Method close() in the Closeable interface overrides method close() from the
AutoCloseable base interface. Method close(), which implements the Closeable
interface, won’t be able to throw exceptions that are broader than IOException. If
you implement an interface, you must have valid implementations for each method
defined in the interface.

THE RESOURCES DECLARED WITH TRY-WITH-RESOURCES ARE CLOSED IN THE REVERSE ORDER OF
THEIR DECLARATION

Class MyResource implements the AutoCloseable interface. Its constructor accepts
a name for its instance, which is printed when the constructor and method close()
are called:

class MyResource implements AutoCloseable{
 String name;
 MyResource(String name) {
 this.name = name;
 System.out.println("Created:"+name);
 }
 public void close() {
 System.out.println("Closed:"+name);
 }
}
class TestAutoCloseOrder {
 public static void main(String args[]) {
 try (MyResource res1 = new MyResource("1");
 MyResource res2 = new MyResource("2")){

 System.out.println("within try-with-resources");
 }
 finally {
 System.out.println("finally");
 }
 }
}

Here’s the output of the preceding code:

Created:1
Created:2
within try-with-resources
Closed:2
Closed:1
finally

EXAM TIP The resources declared with the try-with-resources are closed
in the reverse order of their declaration. In this and previous sections, we
covered exceptions and worked with how the exception handlers enable
you to recover from exceptional conditions during the execution of your
program. In the next section, you’ll see how the assertions enable you to
test and debug your assumptions and flow control during the development
of your code.

MyResource implements
AutoCloseable so it can be
used with try-with-resources.

Creates MyResource
instance and assigns
it to res1.

Creates another
MyResource instance
and assigns it to res2.

Method close() is
called first on res2
and then on res1,
after execution of
code on this line.
Licensed to Mark Watson <nordickan@gmail.com>

431Using assertions

r
6.6 Using assertions

While testing your code, have you ever come across a situation that made you think
that a variable in your code could be assigned more values than you assumed, or that
your code wasn’t executing as planned for a combination of values?

 Assertions help you test your assumptions about the execution of code. For exam-
ple, you could test your assumption by using a combination of control-flow and log-
ging statements to print the message Error: pages should NOT be < 200, if the value of
pages is greater than 200, as follows:

void printReport() {
 int pages = 100;
 while (/*some condition*/) {
 if (/*some condition*/) {
 pages++;
 }
 }
 if (pages<200)
 System.out.println("Error: pages should NOT be < 200");
}

Because it’s an assumption, it needs to be tested and fixed during the development
phase. So you can use an assert statement to verify the preceding assumption:

void printReport() {
 int pages = 100;
 while (/*some condition*/) {
 if (/*some condition*/) {
 pages++;
 }
 }
 assert (pages<200): " Error: pages should NOT be < 200";
}

In the preceding example, the programmer’s assumption is coded as an assertion.
 An assertion offers a way of indicating what should always be true. An assertion is

implemented using an assert statement that enables you to test your assumptions
about the values assigned to variables and the flow of control in your code. An
assert statement uses a boolean expression, which you believe to be true. If this
boolean expression evaluates to false, your code will halt its execution by throwing
an AssertionError.

 Assertions are used for testing and debugging your code. They aren’t for error
checking, which is why they’re off by default. Assertions are disabled by default so they
don’t become a performance liability in deployed applications.

 This exam will query you on testing invariants by using assertions, the short and
long form of assertions, and their appropriate and inappropriate use. Assertions were

[6.5] Test invariants by using assertions

When
assumption
is not met,
print an erro
message
should not
exceed 200

Assertion
to verify
and test
assumptions
Licensed to Mark Watson <nordickan@gmail.com>

432 CHAPTER 6 Exceptions and assertions
introduced in version 1.4, and though powerful, are one of the underused features of
Java. Let’s start with the forms of assertions.

6.6.1 Exploring the forms of assertions

An assertion is defined by using an assert statement that can take two forms. The
simpler form uses only a boolean expression, as shown in figure 6.10.

 If the boolean expression used in an assert statement (as shown in figure 6.10)
evaluates to false, the JRE will throw an AssertionError. Assuming that assertions
have been enabled, the following code

public class ThrowAssertionError {
 public static void main(String args[]) {
 assert false;
 }
}

will throw the following error at runtime:

Exception in thread "main" java.lang.AssertionError
 at ThrowAssertionError.main(ThrowAssertionError.java:3)

EXAM TIP If the boolean expression used in an assert statement evalu-
ates to false, an AssertionError is thrown (if assertions are enabled
at runtime).

As you can see, the preceding output doesn’t include any custom error message. To
include custom details with an AssertionError, you can use the longer form of an
assert statement, as shown in figure 6.11.

 The expression used in the longer form of an assert statement is another way to
pass arguments to an AssertionError. If the boolean expression used in the longer
form of the assert statement (as shown in figure 6.11) evaluates to false, the JRE

assert ;
boolean

expression

Throws AssertionError
if it evaluates to false

Figure 6.10 The assert
statement’s simple form accepts a
boolean expression.

Throws AssertionError
because boolean value
following assert is false.

assert : Expression ;
boolean

expression

Colon

Must return a

value of any type

Figure 6.11 An assert statement’s
longer form accepts a boolean
expression and an expression.
Licensed to Mark Watson <nordickan@gmail.com>

433Using assertions
creates an object of AssertionError by passing the expression to its constructor. Assum-
ing that assertions have been enabled, the following code uses the longer form of the
assert statement:

public class ThrowDetailedAssertionError {
 public static void main(String args[]) {
 assert false : "Testing Assertions";
 }
}

The preceding code throws an AssertionError with the message Testing Assertions
at runtime:

Exception in thread "main" java.lang.AssertionError: Testing Assertions
 at ThrowDetailedAssertionError.main(ThrowDetailedAssertionError.java:3)

The exam also will test you on the valid expressions used for the assert statement.
The shorter form of the assert statement uses one expression, which must evaluate to
a boolean value. The longer form of the assert statement uses two expressions: the
first one must evaluate to a boolean value, but the second can evaluate to any type of
primitive value or object. Look out for incorrect use of methods for the second
expression, whose return type is void. What do you think is the output of the class
ThrowAssertionError?

class Person {
 void getNothing() {}
}
public class ThrowAssertionError {
 public static void main(String args[]) {
 assert false : new Person().getNothing();
 assert true : new ArrayList<String>().clear();
 }
}

Because the methods getNothing() (class Person) and clear() (class ArrayList)
don’t return any value, the class ThrowAssertionError won’t compile. You might find
similar occurrences on the exam.

 Class AssertionError uses the String representation of the value passed to its
constructor for its detailed message. A String representation of an object is retrieved
by calling its method toString(). Let’s look at a tricky use of the assert statement.
Class TrickAssert defines an assert statement and uses a boolean assignment for its
first expression and an object for its second expression. Assuming that assertions are
enabled, what do you think is the output of the following code?

class Person {
 public String toString() {
 return "Pirates of the Caribbean";
 }
}

Throws AssertionError
with message "Testing
Assertions"

Line won’t compile
because getNothing
doesn’t return a value.

Line won’t compile
because clear doesn’t
return a value.
Licensed to Mark Watson <nordickan@gmail.com>

434 CHAPTER 6 Exceptions and assertions
public class TrickAssert {
 public static void main(String args[]) {
 boolean b = false;
 assert (b = true) : new Person();
 }
}

A lot of programmers have answered that the preceding code throws an AssertionError:

Exception in thread "main" java.lang.AssertionError: Pirates of the Caribbean

But it doesn’t, because the expression (b = true) returns true. Revisit the example:
this expression is assigning the boolean literal value true to variable b; it isn’t compar-
ing b with true. Also, the second expression returns an object of class Person.
AssertionError executes toString() to retrieve a String representation of an object
of class Person.

EXAM TIP The longer form of the assert statement uses two expres-
sions: the first one must evaluate to a boolean value, but the second can
evaluate to any type of primitive value or object.

If you use an object of class Throwable for the second expression in an assert state-
ment, it becomes the cause of the thrown AssertionError. Here’s an example:

public class DefineCauseOfAssertionError {
 public static void main(String args[]) {
 assert (false) : new FileNotFoundException("java.txt missing");
 }
}

Assuming that assertions are enabled, the preceding example gives the following
output:

Exception in thread "main" java.lang.AssertionError:
java.io.FileNotFoundException: java.txt missing
 at DefineCauseOfAssertionError.main(DefineCauseOfAssertionError.java:4)
Caused by: java.io.FileNotFoundException: java.txt missing

It’s time for our next “Twist in the Tale” exercise. Let me check whether you’ve been
able to retain a few concepts discussed in previous chapters.

Let’s modify some of the code used in the previous examples. Which answer correctly
shows the output of class AssertionTwist?

public class AssertionTwist {
 public static void main(String args[]) {
 evenOdd(-11);
 }
 static void evenOdd(int num) {
 if (num%2 == 0)
 System.out.println("Even");

Twist in the Tale 6.4
Licensed to Mark Watson <nordickan@gmail.com>

435Using assertions
 else if (num%2 == 1)
 System.out.println("Odd");
 else {
 System.out.println("This should never be printed");
 assert false : new Person();
 }
 }
}
class Person {
 private String toString () {
 return "Pirates of the Caribbean";
 }
}

a Odd

b This should never be printed:

AssertionError: Pirates of the Caribbean

c This should never be printed:

AssertionError: Person@6b97fdOdd

d Compilation error
e A runtime exception

Do you think class AssertionTwist will give the same output for executing even-
Odd(-10)?

In this section, you examined the nitty-gritty of the syntax for the assert statement. In
the next section, you’ll look at how to test invariants in your code.

6.6.2 Testing invariants in your code

The exam objective specifically states, test invariants by using assertions. You can use
assertions to test your assumptions about multiple types of invariants:

■ Internal invariants
■ Control-flow invariants
■ Class invariants

Let’s start with internal invariants.

INTERNAL INVARIANTS

When you implement the business logic for a method, you can make multiple assump-
tions about the values assigned to your variables. Here’s an example, which assumes
that a variable of type State can be assigned only the value ON or OFF:

enum State {ON, OFF};
public class InternalAssumption {
 private void machineState(State state) {
 switch (state) {
Licensed to Mark Watson <nordickan@gmail.com>

436 CHAPTER 6 Exceptions and assertions
 case ON: System.out.println("state is ON");
 break;
 case OFF: System.out.println("state is OFF");
 break;
 }
 }
}

Let’s modify the code to include this assumption using an assert statement:

enum State {ON, OFF};
public class InternalAssumptionWithAssert {
 private void machineState(State state) {
 switch (state) {
 case ON: System.out.println("state is ON");
 break;
 case OFF: System.out.println("state is OFF");
 break;
 default: assert false;
 }
 }
}

If the control of flow reaches line assert false;, the assumption of the programmer
is invalidated and the code throws an error (AssertionError). One of my colleagues
argued that there is no need for an assert statement here because a variable of type
State can’t be assigned values other than ON or OFF. If you agree, what happens if
more values are added to enum State during enhancement or maintenance of the
project? In this case, the original assumptions won’t hold true.

 Let’s take a look at another example, in which a programmer assumes that the
protocol variable within transmitFile() can exist only with values FTP, HTTP,
and HTTPS:

public class InternalAssumption {
 void transmitFile(String protocol, String fileName) {
 if (protocol.equals("FTP")) {
 //..code to transmit file using FTP
 }
 else if (protocol.equals("HTTP")) {
 //..code to transmit file using HTTP
 }
 else if (protocol.equals("HTTPS")) {
 //..code to transmit file using HTTPS
 }
 else {
 System.out.println("Control shouldn't reach here");
 System.out.println("Only FTP, HTTP, HTTPS supported");
 }
 }
}

If value other than ON
or OFF is assigned to
state, AssertionError
is thrown

Assumption that
protocol can take only

values FTP, HTTP, HTTPS
Licensed to Mark Watson <nordickan@gmail.com>

437Using assertions
Programmers often document their assumptions (within the code), as shown in the
previous example. A better alternative is to use assertions, so relevant action can be
taken when these assumptions fail. Following is the modified code:

public class InternalAssumption {
 void transmitFile(String protocol, String fileName) {
 if (protocol.equals("FTP")) {
 //..code to transmit file using FTP
 }
 else if (protocol.equals("HTTP")) {
 //..code to transmit file using HTTP
 }
 else if (protocol.equals("HTTPS")) {
 //..code to transmit file using HTTPS
 }
 else {
 assert false:"Only FTP, HTTP, HTTPS supported";
 }
 }
}

Note that there is an important difference between unreachable code as defined by the
Java specification and code that shouldn’t be reached, as used in the previous example.
Unreachable code won’t compile. For example, in class UnreachableCode, the state-
ment placed after the return statement is unreachable and won’t compile:

class UnreachableCode {
 void unreachableStatement() {
 return;
 System.out.println("code CANNOT reach here");
 }
}

On the other hand, code that shouldn’t be reached is code that shouldn’t execute in a
method if all goes as per a programmer’s assumption. Though it compiles successfully,
its execution represents a flaw in the implementation of programming logic. Here’s
an example:

class CodeThatShouldNotReach {
 void unreachableStatement() {
 int a = (int)(Math.random() * 4) + 1;
 if (a>=2)
 return;
 else if (a <2)
 return;
 System.out.println("code SHOULD NOT reach here");
 }
}

Code throws
AssertionError
(if assertions are
enabled and) if
protocol takes
value other than
FTP, HTTP, or HTTPS

Code won’t compile:
unreachable code.

Code compiles
successfully, but
its execution
means flaw in
implementation
logic
Licensed to Mark Watson <nordickan@gmail.com>

438 CHAPTER 6 Exceptions and assertions
EXAM TIP Unreachable code isn’t the same as a programmer’s assumption
of code that shouldn’t be reached. Unreachable code won’t compile as per
Java’s rules. On the other hand, code that shouldn’t be reached compiles
successfully. But execution of this code means a flaw in the implementa-
tion of application logic.

Apart from internal invariants, you may make assumptions about the flow of control
in your code, as discussed in the next section.

CONTROL-FLOW INVARIANTS

You can use assertions at locations that you assume control should never be reached.
In method processImage(), a programmer assumes that an image (for an applica-
tion) can be stored only at a server or on a local disk. The programmer uses a com-
ment to state this assumption:

public class ControlFlowAssumption {
 void processImage(String fileName) {
 if (/* image stored on server*/) {
 // get image from server
 return;
 }
 else if (/* image stored on local disk*/){
 // get image from local system
 return;
 }
 // control should never reach here!
 // because an image can be stored
 // either on server or on local system
 }
}

Replace the preceding comments in bold with an assert statement as follows:

public class ControlFlowAssumption {
 void getImage(String fileName) {
 if (/* image stored on server*/) {
 // get image from server
 return;
 }
 else if (/* image stored on local disk*/){
 // get image from local system
 return;
 }
 assert false;
 }
}

CLASS INVARIANTS

Class invariants are methods that you use to validate the state of an object. The state of
an object can change due to explicit assignment or reassignment of its fields, or due
to any processing of field values. After each modification, class invariants can be used
to check whether all fields have valid data.

Assumption that code
control will never
reach this line

Use of assert statement for
control-flow invariants if
control reaches here
Licensed to Mark Watson <nordickan@gmail.com>

439Using assertions
 Assume that you create a class to define and operate a data structure that stores a
sorted list of students in a class, sorted on their overall performance in an academic
year. Its methods to add new students or retrieve a student at a particular position
might assume that the existing student list is already sorted. A class invariant might be
that this list is sorted. You can place code to check this assumption in your methods.
For example

import java.util.*;
class Student {}
class SortedStudents {
 List<Student> students = null;
 private boolean sorted() {
 // returns true if list students is sorted
 // false otherwise
 }
 public void addStudent(Student newStudent) {
 assert sorted();
 // code to add new student to list
 }
 public Student getStudent(String studentID) {
 assert sorted();
 // code to search list and retrieve matching Student object
 }
}

It’s easy to confuse the appropriate and inappropriate use of assertions, and you’re
sure to see questions on it on the exam. In the next section, let’s cover some rules that
will help you answer these questions.

6.6.3 Understanding appropriate and inappropriate uses of assertions

The simple fact that assertions can be turned on or off, and are turned off by default,
makes them inappropriate for all your assumptions. Let’s work with some examples
in detail.

DON’T USE ASSERTIONS TO CHECK METHOD PARAMETERS OF PUBLIC METHODS

You can’t control the values of the arguments that are passed to your public methods;
these values can be called by classes written by other programmers. To validate the
parameters to public methods, you must use code that is guaranteed to execute.
Because assertions can be turned off, you can’t guarantee whether your assertion code
will execute.

 In the example that follows, the public method result() in class DemoAssertion1
validates the arguments passed to it and throws an IllegalArgumentException for
invalid values. It doesn’t use an assertion to do so:

public class DemoAssertion1 {
 public double result(int score, int maxVal) {
 double resultVal = 0;
 if (score > 0 && maxVal > 0) {
 resultVal = /* some calculation */
 }

Class
invariant

Using class
invariant to validate
object state
Licensed to Mark Watson <nordickan@gmail.com>

440 CHAPTER 6 Exceptions and assertions
 else {
 throw new IllegalArgumentException();
 }
 return resultVal;
 }
}

USE ASSERTIONS TO CHECK METHOD PARAMETERS OF PRIVATE METHODS

A private method can be called by the methods of the class in which it’s defined.
When a nonprivate method calls a private method, it usually passes validated parame-
ter values to it. You can assert this assumption by using an assert statement. In the fol-
lowing example, method calcResult() uses the assert statement to check that both
values passed to it are greater than zero. If the assertion fails, it will throw an Assertion-
Error (if assertions are enabled), or else return the calculated value:

class DemoAssertion2 {
 private double calcResult(int score, int maxVal){
 assert(score > 0 && maxVal > 0);
 return (score / maxVal * 100);
 }
}

Examine the following code:

public class DemoAssertion3 {
 int number = 10;
 private void inappropriateAssertCondition(State state) {
 assert (++number > 5);
 // some other code;
 }
}

The code in bold at B increments the value of the number variable, and then deter-
mines whether its value is greater than 5. This line of code will silently increment the value
of the instance variable number whenever method inappropriateAssertCondition()
executes on any instance of class DemoAssertion3. Depending on whether assertions
are enabled on the host system, the same code might output different values, which
might not be expected.

 Similarly, you shouldn’t modify the state of an object in an assert statement:

public class DemoAssertion4 {
 int number = 10;
 MyClass myClass = new MyClass();
 private void inappropriateAssertCondition(State state) {
 assert (++number > 5): myClass.modifyDescription
 ("assertion error");
 // some other code;
 }
}

Doesn’t uses
assertion to validate
method parameters
of a public method.

Use assert to validate
method parameters of
a private method. Don’t
use Assertions to modify
variable values or state
of an object.

Increments variable value to
evaluate assert expression. b

Modifies state of
object myClass.
Licensed to Mark Watson <nordickan@gmail.com>

441Using assertions
class MyClass {
 String description = "No error";
 public String modifyDescription(String val) {
 description = val;
 return description;
 }
}

In the preceding example, expression2 (myClass.modifyDescription(..)) passed to
the assert statement modifies the state of object myClass, which it shouldn’t.

DON’T DEPEND ON ASSERTIONS TO MAKE YOUR CODE FUNCTION CORRECTLY

As mentioned previously, assertions can be turned on or off by the host machine on
which a piece of Java code is supposed to execute. Also, assertions are turned off by
default. So it’s never advisable to define code, using assertions, which you must exe-
cute for correct functioning of your code.

USE ASSERTIONS FOR SITUATIONS THAT CAN NEVER OCCUR (EVEN IN PUBLIC METHODS)
Use assertions for situations that can never occur, even in public methods. Use asser-
tions to test invariants—internal invariants, control-flow invariants, or class invari-
ants—in your code (discussed in detail in section 6.6.2).

 By default, assertions are disabled, because they’re meant to test and verify your
code during the development and testing phases. But they can be easily enabled when
the program starts. You, as a programmer, can test your code during the development
and testing phase and execute the same code without the assertions enabled (and the
related extra overhead) on the production server. Of course, if the code on the pro-
duction server behaves unexpectedly, you can enable assertions to determine whether
any of your logic is flawed, which is negating your assumptions.

EXAM TIP Assertions can be turned on or off for specific classes or
packages.

You can enable assertions for a class, say, DemoAssertion, by using either of the follow-
ing commands:

java –ea DemoAssertion
java –enableassertions DemoAssertion

All your assert statements are equivalent to blank statements, if assertions are dis-
abled. For example, if assertions are disabled, the following method

private static double calcResult(int score, int maxVal) {
 assert (score > 0 && maxVal > 0);
 return (score/maxVal*100);
}

will execute as if no assert statement were defined in it, as follows:

private static double calcResult(int score, int maxVal) {
 return (score/maxVal*100);
}

Licensed to Mark Watson <nordickan@gmail.com>

442 CHAPTER 6 Exceptions and assertions
Similarly, you can use the command options –da and -disableassertions to disable
assertions.

6.7 Summary
Exception handling is a mechanism for handling errors and exceptional conditions
that arise during the course of a program. It also helps you define exception-handling
code separate from the main application logic. This chapter specifically covers the throw
statement and the throws clause, the try statement with multi-catch and finally
clauses, the try-with-resources statement, and custom exceptions and assertions.

 I started this chapter by covering the throw statement and the throws clause. The
throws clause is added to a method declaration to specify that a method can throw
any of the listed exceptions (or its subclasses) during its execution. When an excep-
tional condition is encountered, a method might handle the exception itself, or throw
it to the calling method, by using the throw statement within a method.

 You can create custom exceptions by extending class java.lang.Exception or any
of its derived classes. The name of an exception can convey a lot of information to
other developers or users, and this is one of the main reasons for defining a custom
exception. Custom exceptions also help you restrict the escalation of implementation-
specific exceptions to higher layers. For example, you can wrap a data connection
exception in your own custom exception and rethrow the exception. You can create
custom checked exceptions by subclassing java.lang.Exception and a custom run-
time exception by subclassing java.lang.RuntimeException. You can throw and han-
dle custom exceptions like regular exceptions.

 Starting with Java 7, you can handle multiple exceptions in the same handler by
using a try statement with multi-catch. This prevents a programmer from duplicating
the code required to handle multiple exceptions or to catch a much generalized excep-
tion. You need to follow the rules to catch multiple exceptions in a single block:

■ Exception names are separated by a vertical bar in the catch block.
■ The variable that accepts the exception object in the catch handler is implic-

itly final.
■ Exceptions can’t share an inheritance relationship.
■ You can use multi-catch and single-catch blocks for the same try block.

Prior to Java 7, developers used finally blocks to close resources such as file han-
dlers, databases, or network connections. With the new language feature of the try-
with-resources statement, you can declare resources and automatically close them.
The scope of the resources declared with a try-with-resources statement is limited to
it. Resources (classes) that implement the java.lang.AutoCloseable interface or any
of its subinterfaces can be used with the try-with-resources statement. If multiple
resources are declared by a try-with-resources statement, they’re closed in the reverse
order of their declaration.
Licensed to Mark Watson <nordickan@gmail.com>

443Review notes
 Assertions enable you to test your assumptions about the execution of your code.
Assertions are coded by using the assert statement. They’re used for testing and debug-
ging your code, and so are turned off by default. This also ensures that assert state-
ments don’t become a performance liability when an application is deployed. An assert
statement takes two forms: the simpler form uses just a boolean expression, and the sec-
ond form uses a boolean expression with an expression, which results in any value. If the
boolean expression in an assert statement evaluates to false, an AssertionError is
thrown. If an assert statement uses its second form, its expression is passed to the con-
structor of AssertionError, so that its details are displayed in the call stack when this
error is thrown. You can use assertions to test internal invariants, control-flow invariants,
and class invariants. Internal invariants are used to assert values in a loop, conditional
statements, or a switch-case. Control-flow invariants are used to assert the business logic
implemented in code, to assert that a particular line of code won’t execute for a set of val-
ues. Class assertions are used to assert the state of all objects of a class, before or after a
method executes on its object. You can also use assertions to validate parameter values
to a private method. You must not use assertions to verify method parameters passed to
public methods or to define code that must execute for correct functioning of your
code. Because assertions can be enabled and disabled, and are usually disabled by
default, you can’t be sure about execution of your assertions code.

REVIEW NOTES
This section lists the main points covered in this chapter.

Using the throw statement and the throws clause

■ The throws clause is part of a method declaration and lists exceptions that can
be thrown by a method.

■ The throws clause is used with a method declaration to specify that the method
won’t handle the mentioned exception (or subclasses) and might throw it to
the calling method. The calling method should handle this thrown exception
appropriately or declare it to be rethrown.

■ The throw statement is used to throw an exception from a method, constructor,
or an initialization block. When an exceptional condition occurs in a method,
that method can handle it (by using a try statement), or throw the exception to
the calling method by using the throw statement.

■ A method indicates that it throws a checked exception by including its name in
the throws clause, in its method declaration.

■ When you use a method that throws a checked exception, you must either
enclose the code within a try block or declare it to be rethrown in the calling
method’s declaration. This is also known as the handle-or-declare rule.

■ A method can throw a runtime exception or error irrespective of whether its
name is included in the throws clause.
Licensed to Mark Watson <nordickan@gmail.com>

444 CHAPTER 6 Exceptions and assertions
■ A method can throw a subclass of the exception mentioned in its throws clause
but not a superclass.

■ A method can handle the exception and still declare it to be thrown.
■ A method can declare to throw any type of exception, checked or unchecked,

even if it doesn’t. But a try block can’t define a catch block for a checked
exception (other than Exception) if the try block doesn’t throw that checked
exception or use a method that declares to throw that checked exception.

Custom exceptions

■ You can create a custom exception by extending class java.lang.Exception or
any of its subclasses.

■ You can subclass java.lang.Exception or its subclasses (which don’t subclass
RuntimeException) to create custom checked exceptions.

■ You can subclass java.lang.RuntimeException or its subclasses to create cus-
tom runtime exceptions.

■ You can add variables and methods to a custom exception class, like a regu-
lar class.

■ The name of an exception can convey a lot of information to other developers or
users, which is one of the main reasons for defining a custom exception. A cus-
tom exception can also be used to communicate a more descriptive message.

■ Custom exceptions help you restrict the escalation of implementation-specific
exceptions to higher layers. For example, SQLException thrown by data access
code can be wrapped within a custom exception and rethrown.

■ You can throw and catch custom exceptions like the other exception classes.

Overriding methods that throw exceptions

■ With overriding and overridden methods, it’s all about which checked excep-
tions an overridden method and an overriding method declare, not about the
checked exceptions both actually throw.

■ If a method in the base class doesn’t declare to throw any checked exception,
the overriding method in the derived class can’t throw any checked exception.

■ If a method in a base class declares to throw a checked exception, the overrid-
ing method in the derived class can choose not to declare to throw any
checked exception.

■ If a method in a base class declares to throw a checked exception, the overrid-
ing method in the derived class can declare to throw the same exception or a
subclass of the exception thrown by the method in the base class. An overriding
method in the derived class can’t override a method in the base class, if it
declares to throw a more generic checked exception.

■ Method overriding rules apply only to checked exceptions. They don’t apply to
runtime (unchecked) exceptions or errors.
Licensed to Mark Watson <nordickan@gmail.com>

445Review notes
try statement with multi-catch and finally clauses

■ A multi-catch handler can be used to handle more than one unrelated exception.
■ To catch multiple exceptions in a single handler, separate the exceptions in a list

by using a vertical bar (|).
■ A finally block can follow a multi-catch block, like a regular catch block.
■ The exceptions that you catch in a multi-catch block can’t share an inheritance

relationship. If you try to do so, your code won’t compile.
■ You can combine multi-catch and single-catch blocks.
■ The same rules apply when combining multi-catch and single-catch blocks—that

is, more specific exceptions at the top and more general ones at the bottom.
■ You must define a single exception variable in the multi-catch block.
■ In a multi-catch block, the variable that accepts the exception object is implic-

itly final.
■ In a multi-catch block, the type of variable that accepts the exception object is

the most specific, common super-type of all featured exception classes. Most of
the time it’s likely to be Exception, but it could be more specific (for example,
IOException for classes FileNotFoundException and EOFException). If the
exception classes implement a common interface, then the variable is of an
intersection type, with the exception class and interface as its bounds.

■ Multi-catch blocks save you from duplicating code, if you need to execute the
same code for handling multiple exceptions.

Auto-close resources with try-with-resources statement

■ You can use a try-with-resources statement to define resources with a try state-
ment that will be automatically closed after the try block completes its execution.

■ The try-with-resources is a type of try statement that can declare one or
more resources.

■ A resource is an object such as file handlers, databases, or network connections,
which should be closed after it’s no longer required.

■ A resource must implement the java.lang.AutoCloseable interface or any of
its subinterfaces (directly or indirectly) to be eligible to be declared by a try-
with-resources statement.

■ The java.lang.AutoCloseable interface defines method close().
■ If declared within the try-with-resources statement, a resource is automatically

closed by calling its close() method at the end of the try block.
■ If method close() throws any exception, it should be taken care of by the

method that defines the try block; the method must either catch it or declare it
to be thrown.

■ A try-with-resources block might not be followed by a catch or a finally block.
This is unlike a regular try block, which must be followed by either a catch or a
finally block.
Licensed to Mark Watson <nordickan@gmail.com>

446 CHAPTER 6 Exceptions and assertions
■ The resource declared by try-with-resources is closed immediately after the
completion of the try block. Its scope is limited to the try block, and if you try
to access it outside the try block, your code won’t compile.

■ The variables used to refer to resources are implicitly final variables. You must
declare and initialize resources in the try-with-resources statement.

■ It’s acceptable to the Java compiler to initialize the resources in a try-with-
resources statement to null, only as long as they aren’t being assigned a value
in the try block.

■ You can initialize multiple resources in a try-with-resources statement, sepa-
rated by a semicolon (;). The semicolon after the last resource is optional.

■ Multiple classes like FileInputStream and FileOutputStream from file I/O
implement the java.io.Closeable interface, which extends the java.lang
.AutoCloseable interface.

Assertions

■ An assertion offers a way of asserting what should always be true.
■ An assertion is implemented by using an assert statement that enables you to

test your assumptions about the values assigned to variables and the flow of con-
trol in your code.

■ An assert statement uses a boolean expression, which you believe to be true. If
this boolean expression evaluates to false, an AssertionError is thrown (if
assertions are enabled).

■ Assertions are used for testing and debugging your code. They’re off by default.
■ Assertions are disabled by default so they don’t become a performance liability

in deployed applications.
■ An assertion is defined using an assert statement that can take two forms. The

simpler form uses only a boolean expression: assert <boolean expression>;.
■ The longer form of an assert statement includes an expression with the boolean

expression: assert <boolean expression>:<expression>;. The second expres-
sion used here must return a value (of any type).

■ In the longer form of an assert statement, when the boolean expression evalu-
ates to false, the JRE creates an object of AssertionError by passing the value
of the second expression to AssertionError’s constructor.

■ In the longer form of an assert statement, if you use a method with no return
value (void) for the second expression, your code won’t compile.

■ In the longer form of an assert statement, you can create an object for the sec-
ond expression. Note that a constructor creates and returns an object, and so it
satisfies the requirement that the second expression must return a value.

■ You can test multiple types of invariants in your code by using assertions: inter-
nal invariants, control-flow invariants, and class invariants.

■ An assertion is used to verify that code that shouldn’t execute, never executes.
Licensed to Mark Watson <nordickan@gmail.com>

447Sample exam questions
■ Assertions can’t be used to verify unreachable code, because unreachable code
doesn’t compile.

■ You can use assertions at locations that you assume control should never
be reached.

■ You must not use assertions to check method parameters for public methods.
■ You can use assertions to check method parameters for private methods.
■ You must not use assertions to modify variable values or the state of an object.
■ Assertions can be enabled or disabled at the launch of a program.
■ Because assertions can be enabled or disabled, don’t use them to define code

that must execute in all cases.
■ Use the command-line option –ea or –enableassertions to enable assertions.
■ Use the command-line option –da or –disableassertions to disable assertions.
■ All assert statements are equivalent to blank statements, if the assertions

are disabled.
■ A generalized –da switch (no assertions enabled) corresponds to the default

JRE behavior.

SAMPLE EXAM QUESTIONS

Q 6-1. Consider the following code and then select the correct options. (Choose all
that apply.)

class ThrowException {
 public void readFile(String file) throws IOException { // line1
 System.out.println("readFile"); // line2
 }
 void useReadFile(String name) throws IOException{ // line3
 try {
 readFile(name);
 }
 catch (IOException e) {
 System.out.println("catch-IOException");
 }
 }
 public static void main(String args[]) throws Throwable{ // line4
 new ThrowException().useReadFile("foo"); // line5
 }
}

a Code on both line 1 and line 2 causes compilation failure.
b Code on either line 1 or line 2 causes compilation failure.
c If code on line 1 is changed to the following, the code will compile successfully:

public void readFile(String file) {d)

d A change in code on line 3 can prevent compilation failure:

void useReadFile(String name) {
Licensed to Mark Watson <nordickan@gmail.com>

448 CHAPTER 6 Exceptions and assertions
e Code on either line 4 or line 5 causes compilation failure. If line 4 is changed to
the following, a ThrowException will compile:

public static void main(String args[]) throws Exception {

Q 6-2. Given the following line of code

String s = "assert";

which of the following code options will compile successfully? (Choose all that apply.)

a assert(s == null : s = new String());

b assert s == null : s = new String();

c assert(s == null) : s = new String();

d assert(s.equals("assert"));

e assert s.equals("assert");

f assert s == "assert" ; s.replace('a', 'z');

g assert s = new String("Assert") : s.toString();

h assert s == new String("Assert") : System.out.println(s);

i assert(s = new String("Assert") : System.out.println(s));

Q 6-3. What’s the output of the following code?

class Box implements AutoCloseable {
 Box() {
 throw new RuntimeException();
 }
 public void close() throws Exception {
 System.out.println("close");
 throw new Exception();
 }
}
class EJavaFactory{
 public static void main(String args[]) {
 try (Box box = new Box()) {
 box.close();
 }
 catch (Exception e) {
 System.out.println("catch:"+e);
 }
 finally {
 System.out.println("finally");
 }
 }
}

a catch:java.lang.RuntimeException
close
finally

b catch:java.lang.RuntimeException
finally
Licensed to Mark Watson <nordickan@gmail.com>

449Sample exam questions
c catch:java.lang.RuntimeException
close

d close
finally

e Compilation exception

Q 6-4. Paul has to modify a method that throws a SQLException when the method
can’t find matching data in a database. Instead of throwing a SQLException, the
method must throw a custom exception, DataException. Assuming the modified
method is defined as follows, which option presents the most appropriate definition
of DataException?

void accessData(String parameters) {
 try {
 //..code that might throw SQLException
 }
 catch (SQLException e) {
 throw new DataException("Error with Data access");
 }
}

a class DataException extends Exception {
 DataException() {super();}
 DataException(String msg) { super(msg); }
}

b class DataException extends RuntimeException {
 DataException() {}
 DataException(String msg) {}
}

c class DataException {

 DataException() {super();}
 DataException(String msg) { super(msg); }
}

d class DataException extends Throwable {

 DataException() {super();}
 DataException(String msg) { super(msg); }
}

Q 6-5. Which of the following options show appropriate usage of assertions? (Choose
all that apply.)

// INSERT CODE HERE
 assert (b != 0) : "Can't divide with zero";
 return (a/b);
}

a public float divide(int a, int b) {

b public static float divide(int a, int b) {

c private static float divide(int a, int b) {

d private float divide(int a, int b) {
Licensed to Mark Watson <nordickan@gmail.com>

450 CHAPTER 6 Exceptions and assertions
Q 6-6. Which options can be inserted at //INSERT CODE HERE so the code compiles suc-
cessfully? (Choose all that apply.)

class BreathingException extends Exception {}
class DivingException extends Exception {}

class Swimmer {
 public void swim() throws BreathingException {}
 public void dive() throws DivingException {}
}

class Swimming{
 public static void main(String args[])throws
 BreathingException, DivingException {
 try {
 Swimmer paul = new Swimmer();
 paul.swim();
 paul.dive();
 }
 //INSERT CODE HERE
 }
}

a catch(DivingException | BreathingException e){

 throw e;
}

b catch(Exception e){
 throw e;
}

c catch(DivingException | BreathingException e){

 throw new DivingException();
}

d catch(Exception e){

 throw new Exception();
}

e catch(Exception e){

 throw new RuntimeException();
}

Q 6-7. Selvan defines two custom exception classes:

class BaseException extends IOException {}
class DerivedException extends FileNotFoundException {}

When Paul tries to use these exception classes in his own interfaces, the code
doesn’t compile:

interface Base {
 void read() throws BaseException;
}
interface Derived extends Base {
 void read() throws DerivedException;
}

Licensed to Mark Watson <nordickan@gmail.com>

451Sample exam questions
Which definition of read() in the Derived interface compiles successfully?

a void read() throws FileNotFoundException;

b void read() throws IOException;

c void read();

d void read() throws Exception;

e void read() throws BaseException;

f void read() throws RuntimeException;

g void read() throws Throwable;

Q 6-8. Given the following code, select the correct options:

class AssertTest {
 static int foo = 10;
 static boolean calc() {
 ++foo;
 return false;
 }
 public static void main(String args[]) {
 assert (calc());
 System.out.println(foo);
 }
}

a If AssertTest is executed using the following command, it will print 11:

java -enable AssertTest

b If AssertTest is executed using the following command, it will print 10:

java -ea AssertTest

c If AssertTest is executed using the following command, it will print 10:

java -da AssertTest

d If AssertTest is executed using the following command, it will throw an
AssertionError and print 11:

java -enableAssertions AssertTest

e None of the above

Q 6-9. What’s the output of the following code?

class Box implements AutoCloseable {
 public void emptyContents() {
 System.out.println("emptyContents");
 }
 public void close() {
 System.out.println("close");
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

452 CHAPTER 6 Exceptions and assertions
class EJavaFactory{
 public static void main(String args[]) {
 try (Box box = new Box()) {
 box.close();
 box.emptyContents();
 }
 }
}

a close
emptyContents
java.lang.RuntimeException

b close
java.lang.RuntimeException

c close
emptyContents
close

d close
java.lang.NullPointerException

Q 6-10. Which of the following statements are correct? (Choose all that apply.)

a You must initialize the resources in the try-with-resources statement.
b try-with-resources can be followed only by the finally block.
c Method close() on the resource is called irrespective of whether an exception

is thrown during its initialization.
d If the close method is called on a resource within a try block, the implicit call

on close() will throw an exception.
e The resources declared with try-with-resources are accessible within the catch

and finally blocks, if an exception is thrown during implicit closing of the
resources.

Q 6-11. What’s the output of the following code?

class Box implements AutoCloseable {
 public void open() throws Exception {
 throw new Exception();
 }
 public void close() throws Exception {
 System.out.println("close");
 throw new Exception();
 }
}
class EJavaFactory{
 public static void main(String args[]) {
 try (Box box = new Box()) {
 box.open();
 }
Licensed to Mark Watson <nordickan@gmail.com>

453Sample exam questions
 catch (Exception e) {
 System.out.println("catch:"+e);
 }
 finally {
 System.out.println("finally");
 }
 }
}

a catch:java.lang.Exception
finally

b catch:java.lang.Exception

c close
finally

d close
catch:java.lang.Exception
finally

e close
catch:java.lang.Exception
catch:java.lang.Exception
finally

Q 6-12. Select the correct statements. (Choose all that apply.)

class Assert {
 public void construction(double load){
 double maxLoad = 1322976;
 // calculations to re-assign a value to maxLoad
 try {
 if (maxLoad > 18753) assert false; // line1
 }
 catch (AssertionError e) {
 // log error
 // recalculate load
 }
 }
}

a When assertions fail, you should avoid recalculating variable values in the
error handler.

b Code on line1 can throw an AssertionException.
c Class Assert shows inappropriate use of assertions.
d Class Assert won’t compile.
e Class Assert will throw a runtime error.

Q 6-13. What’s the output of the following code?

class Box implements AutoCloseable {
 public void close() throws Exception {
 System.out.println("close");
Licensed to Mark Watson <nordickan@gmail.com>

454 CHAPTER 6 Exceptions and assertions
 throw new Exception();
 }
}
class EJavaFactory{
 public static void main(String args[]) {
 try (Box box = new Box()) {
 box.close();
 box.close();
 }
 catch (Exception e) {
 System.out.println("catch:"+e);
 }
 finally {
 System.out.println("finally");
 }
 }
}

a catch:java.lang.Exception

b close
catch:java.lang.Exception
finally

c close
close
catch:java.lang.Exception
finally

d close
close
catch:java.lang.Exception
catch:java.lang.Exception
finally

e close
close
java.lang.CloseException
finally

f close
java.lang.RuntimeException
finally

Q 6-14. Examine the classes defined as follows and select the correct options. (Choose
all that apply.)

class Jumpable extends RuntimeException {}
class Closeable extends java.lang.Closeable{}
class Thunder extends Throwable {}
class Storm extends java.io.FileNotFoundException{}

a The classes Jumpable and Closeable are unchecked exceptions.
b It isn’t mandatory to include the name of exception Jumpable in the throws

clause of a method.
Licensed to Mark Watson <nordickan@gmail.com>

455Sample exam questions
c You shouldn’t define a custom exception class the way class Thunder has been
defined.

d Class Storm is a checked exception.
e All these classes will not compile successfully.

Q 6-15. Assuming that assertions are enabled, what’s the output of the following code?

class MyAssertClass {
 public static void main(String... args) {
 String name = new String("Shreya");
 boolean fail = false;
 if (name == "Shreya") {
 System.out.println(name);
 }
 else {
 // I explicitly set the name to Shreya
 // code cannot reach here
 assert false;
 }
 }
}

a No output
b java.lang.AssertionError

c java.lang.Exception

d java.lang.RuntimeException

e java.lang.AssertionException

f None of the above

Q 6-16. What’s the output of the following code?

class Admission implements AutoCloseable{
 String id;
 Admission(String id) {
 this.id = id;
 }
 public void close() {
 System.out.println("close:"+id);
 }
}
class CloseableResources {
 public static void main(String... args) {
 try (Admission admn1 = new Admission("2765");
 Admission admn2 = new Admission("8582");){}
 }
}

a close:8582
close:2765

b close:2765
close:8582
Licensed to Mark Watson <nordickan@gmail.com>

456 CHAPTER 6 Exceptions and assertions
c Compilation error
d Runtime exception

Q 6-17. Which of the options, when inserted at //INSERT CODE HERE, will print close?
(Choose all that apply.)

//INSERT CODE HERE
 public void close() {
 System.out.println("close");
 }
}
class EJavaFactory2 {
 public static void main(String... args) {
 try (Carton arton = new Carton()) {}
 }
}

a class Carton implements AutoCloseable{

b class Carton implements java.lang.Closeable{

c class Carton implements java.lang.AutoCloseable{

d class Carton implements ImplicitCloseable{

e class Carton implements java.io.Closeable{

ANSWERS TO SAMPLE EXAM QUESTIONS

A 6-1. f

[6.1] Use throw and throws statements

Explanation: The code as is (without any changes) compiles successfully. Options (a)
and (b) are incorrect because a method (readFile()) can declare a checked excep-
tion (IOException) to be thrown in its throws clause, even if the method doesn’t
throw it.

 Option (c) is incorrect. If line 1 is changed so that method readFile() doesn’t
declare to throw an IOException, method useReadFile() won’t compile. The catch
block in method useReadFile() tries to handle IOException, which isn’t thrown by
its try block. This causes compilation error.

 Option (d) is incorrect. Code on line 3 will compile as it is. It’s okay for useRead-
File() to handle the exception thrown by readFile() using try-catch and still
declare it to be rethrown using the throws clause.

 Option (e) is incorrect. The code compiles successfully.
 Option (f) is correct. Even though useReadFile() handles IOException and doesn’t

actually throw it, it declares it to be rethrown in its throws clause. So, the method that
uses useReadFile() must either handle the checked exception—IOException (or one
of its superclasses)—or declare it to be rethrown. Because Exception is a superclass of
Licensed to Mark Watson <nordickan@gmail.com>

457Answers to sample exam questions
IOException, replacing throws Throwable with throws Exception in the declaration
of method main() enables the code to compile.

A 6-2. b, c, d, e, f

[6.5] Test invariants by using assertions

Explanation: Option (a) is incorrect. For the longer form of the assert statement that
uses two expressions, you can’t enclose both expressions within a single parentheses.

 Options (b) and (c) are correct. It’s optional to include the individual expressions
used in the longer form within a single parentheses.

 Options (d) and (e) are correct. The shorter form of the assert statement uses
only one expression, which might or might not be included within parentheses.

 Option (f) is correct. The semicolon placed after the condition s == "assert"
delimits the assert statement, and the statement following the semicolon is treated as
a separate statement. It’s equivalent to an assert statement using its shorter form fol-
lowed by another statement, as follows:

assert s == "assert" ;
s.replace('a', 'z');

Option (g) is incorrect because the first expression in an assert statement must
return a boolean value. In this code, the first expression returns an object of class
String.

 Option (h) is incorrect because the second expression in an assert statement
must return a value of any type. In this code, the return type of method println()
is void.

 Option (i) is incorrect. It incorrectly encloses both expressions of the assert state-
ment within a single pair of parentheses. If parentheses were removed, it’s also an ille-
gal usage of the long form because it uses an expression that doesn’t return a boolean
value for its first expression and its second expression doesn’t return any value.

A 6-3. b

[6.3] Auto-close resources with a try-with-resources statement

Explanation: The constructor of class Box throws a RuntimeException, and so the box
variable isn’t initialized in the try-with-resources statement. Method close() of class
Box isn’t called implicitly because execution didn’t proceed inside the try block.

 When try-with-resources throws an exception, the control is transferred to the
catch block. In this case, the exception handler prints catch:java.lang.Runtime-
Exception. The finally block always executes, thereafter printing finally.
Licensed to Mark Watson <nordickan@gmail.com>

458 CHAPTER 6 Exceptions and assertions
A 6-4. b

[6.4] Create custom exceptions

Explanation: Option (a) is incorrect because it defines custom exception DataException
as a checked exception. To use checked DataException, accessData() must specify it
to be thrown in its throws clause.

 Option (b) is correct because it defines custom exception DataException as an
unchecked or runtime exception. Even though method accessData() throws a Data-
Exception, a runtime exception, it need not declare its name in its throws clause.

 Option (c) is incorrect. Class DataException extends class Object and not
Exception. Also, this code won’t compile because class Object doesn’t define a con-
structor that matches Object(String).

 Option (d) is incorrect. If DataException extends Throwable, accessData() won’t
compile because it’s also a checked exception and therefore must be handled or
declared.

A 6-5. c, d

[6.5] Test invariants by using assertions

Explanation: Options (a) and (b) are incorrect because assertions must not be used to
check method arguments for nonprivate methods. Nonprivate methods can be called
by objects of other classes, and you can’t validate their method arguments by using
assertions. Assertions can be disabled at runtime, so they aren’t the right option to val-
idate method arguments to public methods. You should throw exceptions in this case.
For example, when you come across invalid values that are passed to a nonprivate
method, you can throw an IllegalArgumentException.

A 6-6. a, b, c, e

[6.1] Use throw and throws statements
[6.2] Use the try statement with multi-catch and finally clauses

Explanation: Method swim() throws a BreathingException, and method dive()
throws a DivingException, both checked exceptions. Method main() is declared to
throw both a BreathingException or DivingException.

 The code that is inserted at //INSERT CODE HERE must do the following:

■ The option must use the correct syntax of try with single-catch or multi-catch.
■ Because method main() throws both a BreathingException and Diving-

Exception, the try statement might not handle it.
■ It must not throw a checked exception more generic than the ones declared by

method main() itself—that is, BreathingException and DivingException.
Licensed to Mark Watson <nordickan@gmail.com>

459Answers to sample exam questions
Option (a) is correct. It defines the correct syntax to use try with multi-catch, and
rethrows the caught instance of BreathingException or DivingException.

 Option (b) is correct. Though the type of the exception caught in the exception
handler is Exception, the superclass of the exceptions thrown by main(), the com-
piler knows that the try block can throw only two checked exceptions, Breathing-
Exception or DivingException. So this thrown exception is caught and rethrown
with more inclusive type checking.

 Option (c) is correct. The multi-catch statement is correct syntactically. Also, the
throw statement throws a checked DivingException, which is declared by method
main()’s throws clause.

 Option (d) is incorrect. The catch block throws an instance of checked exception
Exception, the superclass of the exceptions declared to be thrown by main(), which
isn’t acceptable.

 Option (e) is correct. It isn’t obligatory to include the names of the runtime excep-
tions thrown by a method in its throws clause.

A 6-7. c, e, f

[6.1] Use throw and throws statements
[6.4] Create custom exceptions

Explanation: Though the question seems to be testing you on the hierarchy of excep-
tion classes IOException and FileNotFoundException, it’s not. This question is about
creating custom exception classes with overridden methods that throw exceptions.

 To understand the explanation, note the following class hierarchies:

■ Exception FileNotFoundException extends IOException.
■ Exception BaseException extends IOException.
■ Exception DerivedException extends FileNotFoundException.
■ Exception DerivedException doesn’t extend BaseException.

This class hierarchy implies the following:

■ BaseException isn’t a type of DerivedException.
■ BaseException and FileNotFoundException are unrelated exceptions.

To override read() in the Base interface, read() in the Derived interface must either
declare to throw a BaseException, any derived classes of BaseException, any runtime
exception or errors, or no exception.

 Option (a) is incorrect because FileNotFoundException is unrelated to Base-
Exception.

 Options (b), (d), and (g) are incorrect because IOException, Exception, and
Throwable are all superclasses of BaseException (and not subclasses) and therefore
invalid when overriding method read().
Licensed to Mark Watson <nordickan@gmail.com>

460 CHAPTER 6 Exceptions and assertions
A 6-8. c

[6.5] Test invariants by using assertions

Explanation: Options (a) and (d) are incorrect. -enable and –enableAssertions
are invalid switch options. The correct switch options to enable assertions are –ea and
–enableassertions. If you use an invalid argument (like -enable) the program will
not run, but will exit immediately with an “Unrecognized option” error. Option (b) is
incorrect. With assertions enabled, assert(calc()) will evaluate to assert(false)
and throw an AssertionError, exiting the application, before printing any values.

 Option (c) is correct. With assertions disabled, the assert (calc()) statement is
equivalent to an empty statement or a nonexistent line of code. So method calc()
isn’t executed, and the value of the static variable foo (10) is printed.

A 6-9. c

[6.3] Auto-close resources with a try-with-resources statement

Explanation: An implicit or explicit call to method close() doesn’t set a resource to
null, and you can call methods on it. So the try block results in the following:

■ Explicit call to method close()
■ Explicit call to method emptyContents()
■ Implicit call to method close()

No exceptions are thrown, and the code prints the output as shown in option (c).

A 6-10. a, b

[6.2] Use the try statement with multi-catch and finally clauses
[6.3] Auto-close resources with a try-with-resources statement

Explanation: Option (c) is incorrect. If a resource couldn’t be initialized because of
an exception, it doesn’t exist. There’s no point in auto-closing such a resource.

 Option (d) is incorrect. Subsequent calls to close() don’t throw an exception.
 Option (e) is incorrect. The resources declared within a try-with-resources state-

ment are accessible only within the try block.

A 6-11. d

[6.3] Auto-close resources with a try-with-resources statement

Explanation: The code box.open() within the try block throws an Exception. Before
the control is transferred to the exception handler, the resource box is implicitly
closed by calling its close() method, which also throws an Exception.

 If an exception is thrown from the try block and one or more exceptions are
thrown from the try-with-resources statement, then those exceptions thrown from
Licensed to Mark Watson <nordickan@gmail.com>

461Answers to sample exam questions
the try-with-resources statement are suppressed. So the exception thrown by the
implicit call to box.close() is suppressed. A suppressed exception forms the cause of
the exception that suppresses it. It can be retrieved by using method getSuppressed()
on the exception handler, as follows:

catch (Exception e) {
 System.out.println("catch:"+e);
 for (Throwable th : e.getSuppressed())
 System.out.println(th);
}

It prints the following:

catch:java.lang.Exception
java.lang.Exception

A 6-12. c

[6.5] Test invariants by using assertions

Explanation: Option (a) is incorrect, and (c) is correct. Though verifying the value of
variable maxLoad using the assert statement is valid and appropriate usage of an asser-
tion, handling an AssertionError isn’t. You should never handle an AssertionError.
Assertions enable you to test your assumptions while you’re developing your applica-
tions. You must not try to recover from an AssertionError. If an assumption fails, you
must correct the code or logic accordingly. If you foresee exceptional conditions in the
production version of your application, use exceptions instead of assertions.

 Option (b) is incorrect because the code on line 1 can throw an AssertionError
and not an AssertionException.

 Options (d) and (e) are incorrect. Class Assert will compile successfully. Note that
assert (small a) is a keyword, and not Assert (capital A). When executed with asser-
tions enabled, the assert statement might throw an AssertionError, which will be
handled by the catch block. So class Assert won’t throw a runtime exception and
might throw an AssertionError.

A 6-13. c

[6.3] Auto-close resources with a try-with-resources statement

Explanation: This question tries to trick you with explicit calls of method close()
placed in the try block. Though close() is implicitly called to close a resource, it’s
possible to call it explicitly in the try block. But the explicit call to close() is inde-
pendent of the implicit call to close() for each resource defined in the try-with-
resources statement.

 The first call to method close() prints close. Because this method call throws an
exception, the control is ready to be transferred to the catch block and thus the sec-
ond explicit call to method close() doesn’t execute. But before the control is moved
Licensed to Mark Watson <nordickan@gmail.com>

462 CHAPTER 6 Exceptions and assertions
to the catch block, the implicit call to method close() is made, which again prints
close and throws an exception. The exception thrown by the implicit call of method
close() is suppressed by the exception thrown by the explicit call of method close(),
placed before the end of the try block.

 The control is then transferred to the catch block and, last, to the finally block.

A 6-14. b, c, d, e

[6.4] Create custom exceptions

Explanation: Option (a) is incorrect because java.lang.Closeable is undefined. So
class Jumpable won’t compile.

 Option (e) is a correct option because class Jumpable won’t compile.

A 6-15. b

[6.5] Test invariants by using assertions

Explanation: When the assertion fails, an instance of AssertionError is thrown. The
condition (name == "Shreya") evaluates to false because it compares the object ref-
erences and not the String values.

A 6-16. a

[6.3] Auto-close resources with a try-with-resources statement

Explanation: The code compiles successfully, and no runtime exceptions are thrown
during its execution. The resources initialized in a try-with-resources statement are
closed in the reverse order.

A 6-17. a, c, e

[6.3] Auto-close resources with a try-with-resources statement

Explanation: The code will print close, if class Carton implements the java.lang
.AutoCloseable interface or any of its subinterfaces. Options (a) and (c) are correct,
because Carton implements the interface java.lang.AutoCloseable itself.

 Option (b) is incorrect. The Closeable interface that extends the java.lang
.AutoCloseable interface is defined in the java.io package.

 Option (d) is incorrect. The Java API doesn’t define any interface with the name
ImplicitCloseable in the java.lang package.

 Option (e) is correct because java.io.Closeable is a subinterface of java.lang
.AutoCloseable.
Licensed to Mark Watson <nordickan@gmail.com>

Java I/O fundamentals
The Java I/O API is powerful and flexible. It enables you to read and write multiple
types of data: raw bytes, characters, and even objects. You can read data from multi-
ple and diverse data sources such as files, network sockets, and memory arrays, and
write them to multiple data destinations. Java I/O also provides the flexibility of
reading or writing buffered and unbuffered data. You can also chain multiple input
and output sources. You can use the same methods to read from an input resource
such as a file, a console, or a network connection.

 The Java I/O API is huge and could be a textbook on its own. Coverage in this
chapter is limited to the Java I/O exam topics for the OCP Java SE 7 Programmer II
exam. This chapter assumes no prior knowledge of Java I/O.

Exam objectives covered in this chapter What you need to know

[7.1] Read and write data from the console How to access the unique console related
to a JVM
How to read from and write data to the
console

[7.2] Use streams to read from and write to files by
using classes in the java.io package including
BufferedReader, BufferedWriter, File,
FileReader, FileWriter, DataInputStream,
DataOutputStream, ObjectOutputStream,
ObjectInputStream, and PrintWriter

The definitions of byte I/O streams and
character streams, and their similarities
and differences
How to read and write raw bytes, primitive
data, strings, and objects to files by using
one class or a combination of classes
463

Licensed to Mark Watson <nordickan@gmail.com>

464 CHAPTER 7 Java I/O fundamentals
NOTE Introduction to I/O concepts is covered in warm-up section 7.1. If
you’re good with the basics of I/O, please skip this section and move to
section 7.2.

This chapter doesn’t cover the new file I/O (NIO.2). NIO.2 is covered in the next chap-
ter. This chapter covers

■ Introduction to Java I/O
■ Types of streams: byte streams and character streams
■ Buffering data for faster reading and writing
■ Reading and writing bytes, primitives, and objects using data streams and

object streams
■ Chaining I/O streams
■ Writing formatted data to character streams
■ Reading data from and writing it to the console

Let’s start with the basics of Java I/O in the next section.

7.1 Introducing Java I/O: WARM-UP
Java I/O lets you read your files, data, photos, and videos from multiple sources and
write them to several destinations. You can use it to prepare a formatted report that
you can send to a printer. You can copy your files, create directory structures, delete
them, and do much more.

 Java I/O includes a lot of classes and can be intimidating to work with. You must
get the hang of its basics, so you can categorize and work with a group of classes and
methods. Java abstracts all its data sources and data destinations as streams.

7.1.1 Understanding streams

A question that I’m asked quite often is: What is a stream—the data, data source, or
data destination? And it’s a fair question. A stream is a sequence of data. The Java I/O
stream is an abstraction of a data source or a data destination. It represents an object
that can produce data or receive data. An input stream is used to read data from a
data source. An output stream is used to write data to a data destination.

 Just as a stream of water represents a continuous flow of water, a Java stream pro-
duces or consumes a continuous flow of data. I/O streams are used to move data from
a data source to a Java program, and from a Java program to a data destination.

■ An input stream enables you to read data from a data source to a Java application.
■ An output stream enables you to write data from a Java application to a data

destination.

Licensed to Mark Watson <nordickan@gmail.com>

465Introducing Java I/O: WARM-UP
A Java program can read from multiple data sources and destinations, like a file on
your storage device, another application, an array in memory, a network connection,
and others. Figure 7.1 shows the flavors of I/O streams—input streams and output
streams—and how they’re connected to data sources and destinations.

NOTE The exam limits the use of streams to reading from and writing to
files. So the rest of the chapter covers reading and writing of data in mul-
tiple formats from and to only files.

The exam covers multiple classes that can read and write bytes, characters, and
objects. Before we dive into the details of working with these classes, the next sec-
tion includes a quick overview of the main types of I/O streams: byte streams and
character streams.

7.1.2 Understanding multiple flavors of data

Java I/O uses separate classes to read and write different types of data. The data is
broadly divided into byte data and character data. The byte streams read and write
byte data. To read and write characters and text data, Java I/O uses readers and writ-
ers, referred to as character streams. Byte streams can be used to read and write practi-
cally all kinds of data including zip files, image or video files, text or PDF files, and
others. Character streams are used to read and write character data. Figure 7.2 shows
these streams.

File

Input

stream

Read from

source

Write to

destination

Output

stream

Java

application

1011100 01011001 011100 01011001

Data sources

Application

x

Memory

Network

socket

File

Application

Memory

Network

socket

x

Data destinations

Figure 7.1 Flavors of I/O streams: input streams and output streams. An input stream enables a
Java program to read data from a data source. An output stream enables a Java program to write data
to a data destination.
Licensed to Mark Watson <nordickan@gmail.com>

466 CHAPTER 7 Java I/O fundamentals
Going back to the basics, a computer system reads and writes all data as binary data
(0s and 1s, referred to as bits) from all sources and to all destinations. A byte stream
reads and write bytes (8 bits) to and from data sources. All the other I/O classes build
on the byte streams, adding more functionality. For example, character streams take
into account Unicode characters and the user’s charset. Instead of reading or writing
8-bit data from or to a file, character streams define methods to read or write 16-bit
data. But behind the scenes they use byte streams to get their work done. Figure 7.3
shows the input and output streams for reading and writing byte and character data.
As mentioned earlier, the exam covers writing data to and reading data from only
files. A Java application uses FileOutputStream to write bytes to a file and FileInput-
Stream to read bytes from a file. Similarly, it uses FileReader to read Unicode text
from a file and FileWriter to write Unicode text to a file.

Creating files and reading or writing byte data from them or to them
Though you can read and write practically all byte data by using byte streams, you
might need the assistance of specific classes to interpret the read data or written
data in a particular format. For example, to create a PDF file, interpret its data, and
write data to it, you might need to use an API by Adobe or a third party.

I/O

streams

Byte streams Character streams

Read and write

byte data

Read and write

character data

.zip files Text files

Image files

PDF files Figure 7.2 Main categories of
Java I/O streams: byte streams
and character streams
Licensed to Mark Watson <nordickan@gmail.com>

467Introducing Java I/O: WARM-UP
Invoking the I/O methods to read and write (very small) basic units of data (byte or
character) isn’t efficient. Buffered streams add functionality to other streams by buffer-
ing data. Buffered streams read from a buffer (also referred to as memory or an
internal array), and the native API is called when it’s empty. Similarly, they write
data to a buffer and flush it to the underlying output stream when it’s full. A buff-
ered stream buffers input/output from another input/output stream. Figure 7.4 shows

File

(images, .zip,

8-bit text)

File

(text)

Java

application

(Write bytes to file) (Write Unicode chars to file)

(Read bytes from file) (Read Unicode chars from file)

FileOutputStream FileWriter

FileInputStream FileReader

Figure 7.3 A Java application uses FileInputStream and FileOutputStream to read
and write byte data from and to files, respectively. It uses FileReader and FileWriter to
read and write Unicode text from and to files.

File

(images, .zip,

8-bit text,

etc.)

File

(text)

Java

application

FileOutputStream

BufferedOutputStream BufferedWriter

BufferedInputStream BufferedReader

FileWriter

FileInputStream FileReader

Figure 7.4 A BufferedInputStream reads and buffers data from an InputStream like
FileInputStream. BufferedOutputStream buffers data before writing it to an
OutputStream like FileOutputStream. Similarly, a BufferedReader buffers input from
a Reader like FileReader. A BufferedWriter buffers data before sending it off to a
Writer like FileWriter.
Licensed to Mark Watson <nordickan@gmail.com>

468 CHAPTER 7 Java I/O fundamentals
how BufferedInputStream, BufferedOutputStream, BufferedReader, and Buffered-
Writer buffer data from byte and character streams.

 As shown in figure 7.4, a Java application communicates with an object of a buff-
ered stream (like BufferedInputStream), which interacts with the underlying Input-
Stream (like FileInputStream). Notice how figure 7.4 shows that the buffered stream
encloses within it an object of another stream. This pictorial representation will be
handy when you instantiate buffered streams in the next sections.

EXAM TIP To instantiate a BufferedInputStream, you need to pass it an
instance of another InputStream, like FileInputStream. Constructor
wrapping (passing instances to instantiate instances) can become com-
plex in Java I/O.

All these buffered classes are specialized filter classes for the underlying stream. They
modify the way their underlying streams behave, by buffering data. The filter classes
such as BufferedInputStream and BufferedOutputStream are decorator classes. They
add functionality to the existing base classes.

 Other InputStream and OutputStream subclasses you need to know for the exam
are classes DataInputStream and DataOutputStream. These classes define methods
for reading and writing primitive values and strings. For example, a method to read
int values, say, readInt, will read 4 bytes from an input stream and return an int
value. Similarly, a method to write an int value, say writeInt(), will write 4 bytes of
data. Figure 7.5 shows how you can read and write primitive values and strings from a
file by using DataInputStream and DataOutputStream. As I mentioned previously,
because the exam covers reading from and writing to files only, the images show the
data source and destination as files.

 You can also read and write objects using object streams. Only objects that support
serialization (must implement marker interface Serializable) can be read from and

Source Destination

Java

application

DataInputStream

FileInputStream FileOutputStream

DataOutputStream

Write primitive data,

including byte and char

Read primitive data,

including byte and char

Figure 7.5 A DataInputStream can read primitive values (including byte and char) and
strings from a file by using FileInputStream. A DataOutputStream can write primitive
values and strings to a file using FileOutputStream.
Licensed to Mark Watson <nordickan@gmail.com>

469Working with class java.io.File
written to a data source. The object stream classes are ObjectInputStream and Object-
OutputStream. Figure 7.6 shows this arrangement.

 To read and write data to a physical file, you need instances of java.io.File. All
classes that read from or write to a file either accept an instance of File or instantiate
one themselves using a path and filename. Before using streams to read data from and
write data to files, let’s work with File in the next section.

NOTE Java version 7 has introduced a new interface that offers the exist-
ing functionality of class File, addresses its existing issues, and offers
additional functionality: java.nio.file.Path. Because File is on the
exam, we’ll continue to use class File for all examples in this chapter.
Path is covered in chapter 8.

7.2 Working with class java.io.File

To read from and write to files by using java.io classes, you’ll need to work with
class File.

 File is an abstract representation of a path to a file or a directory. It can be absolute
or relative. An absolute path can be resolved without any further information. A rela-
tive path is interpreted from another path. The name of the class File is rather mis-
leading because it might not be associated with an actual file (or directory) on a system.
You can create objects of class File to store information about the files or directories
on your system. You can use an object of class File to create a new file or directory,

File File

Java

application

Read objects Write objects

ObjectInputStream

FileInputStream FileOutputStream

ObjectOutputStream

Figure 7.6 An ObjectInputStream reads an object from a file by using a
FileInputStream. An ObjectOutputStream writes an object to a file by using a
FileOutputStream.

[7.2] Use streams to read from and write to files by using classes in the
java.io package including BufferedReader, BufferedWriter, File,
FileReader, FileWriter, DataInputStream, DataOutputStream,
ObjectOutputStream, ObjectInputStream, and PrintWriter
Licensed to Mark Watson <nordickan@gmail.com>

470 CHAPTER 7 Java I/O fundamentals
delete it, or inquire about or modify its attributes. You can read the contents of a file
or write to it by using byte and character I/O classes.

EXAM TIP A File instance can refer to either a file or a directory. But it
might not be necessarily associated with an actual file or directory.

To read from or write to a file, you’ll need to instantiate File objects, which can be
used by I/O classes such as FileInputStream, FileOutputStream, FileReader, and
FileWriter. Because a File instance can refer to either a file or a directory, you might
want to verify that you aren’t writing your valuable data to a directory. Let’s work with
an example to instantiate File objects and check whether they represent files or
directories. The first step is to examine the File constructors:

File(String pathname)
File(File parent, String child)
File(String parent, String child)

The next section includes an example to instantiate File objects (using the preceding
File constructors) and check whether they’re files or directories.

7.2.1 Instantiating and querying File instances

Say you’re given the directory in the following listing (C:\\temp, with its child files and
directories). Let’s count its (first-level) subdirectories and files. As shown in the fol-
lowing listing, the code should print one directory and two files.

import java.io.*;
public class CountDirFiles {
 public static void main(String... args) {
 countDirFiles(new File("c:\\temp"));
 }
 public static void countDirFiles(File dir) {
 if (dir.isDirectory()) {
 int fileCount = 0;
 int dirCount = 0;
 String[] list = dir.list();
 File item = null;
 for (String listItem : list) {
 item = new File(dir, listItem);
 if (item.isFile())
 ++fileCount;
 else if (item.isDirectory())
 ++dirCount;
 }

Listing 7.1 Working with File instances

Creates new File instance by converting given
pathname string into abstract pathname

Creates new File instance from
parent abstract pathname and
child pathname string

Creates new File instance from parent
pathname string and child pathname string

If a directory,
proceed

Retrieves files and
subdirectories

Iterates files and
subdirectories

Creates File
object

Increments
fileCount,

for files

Increments dirCount,
for directories
Licensed to Mark Watson <nordickan@gmail.com>

471Working with class java.io.File

 System.out.println ("File(s):"+ fileCount);
 System.out.println ("Dir(s):"+ dirCount);
 }
 else {
 throw new IllegalArgumentException("Not a directory");
 }
 }
}

The output of this code is as follows:

File(s):2
Dir(s):1

In this example, I created an object of class File and passed it to method count-
DirFiles(). This method checks whether the File object represents a directory,
using dir.isDirectory(). If dir.isDirectory() returns true, the method retrieves
a list of the names of its child files and directories, using method list(). Note that the
method returns a list of the names as an array of String. To determine whether an indi-
vidual array item is a file or directory, we need to first create a File instance using direc-
tory dir and the item itself. This is accomplished by using the following line of code:

item = new File(dir, listItem);

You can query a File instance to determine whether it represents a file or a directory,
and increment the variables used to store the respective count, as follows:

if (item.isFile())
 ++fileCount;
else if (item.isDirectory())
++dirCount;

EXAM TIP You can create a File instance that represents a nonexistant
file on your file system. And you can even invoke methods like isFile()
without getting an exception.

Revisit the following line of code from listing 7.1:

item = new File(dir, listItem)

This constructor creates a new file instance from a parent abstract pathname and a
child pathname string, using the following constructor defined in class File:

File(File parent, String child)

What happens when you replace new File(dir, listItem) from listing 7.1 with this
constructor: new File(listItem)? The code now prints 0 for both the file and direc-
tory count.

 Why? If you create a File object, without specifying its complete path, it assumes that
the file that you’re referring to exists in the current directory (the one that contains

Throws
exception
if method
argument
isn’t
directory
Licensed to Mark Watson <nordickan@gmail.com>

472 CHAPTER 7 Java I/O fundamentals
your .class file). The variable listItem contains just the filename, without its complete
path. In the absence of the complete path name, the variable item refers to a nonexist-
ing file on your system (because it’s looking in the wrong directory). Because the item
variable doesn’t represent a file or directory on your system, methods isFile() and
isDirectory() return false, and neither of the variable values, dirCount or file-
Count, is modified.

EXAM TIP The objects of class File are immutable; the pathname repre-
sented by a File object can’t be changed.

7.2.2 Creating new files and directories on your physical device

Creating an object of class File won’t create a real file or directory on your system. To
create a new file on your system, use method createNewFile(), and to create new
directories, use methods mkdir() or mkdirs(), as listed in table 7.1.

Here’s an example that creates new files and directories:

import java.io.*;
public class CreateFileAndDirs {
 public static void main(String... args) throws IOException {
 File dirs = new File("\\usr\\code\\java");
 System.out.println(dirs.mkdirs());
 File file = new File(dirs, "MyText.txt");
 if (!file.exists())
 System.out.println(file.createNewFile());
 }
}

This code creates a directory tree usr\code\java and a file (MyText.txt) on our system:

Table 7.1 Methods used to create new physical files and directories

File method Exception thrown Description (from Java API documentation)

boolean
createNewFile()

IOException Atomically creates a new, empty file named by
this abstract pathname if and only if a file with
this name doesn’t yet exist.

boolean mkdir() SecurityException Creates the directory named by this abstract
pathname.

boolean mkdirs() SecurityException Creates the directory named by this abstract
pathname, including any necessary but nonexis-
tent parent directories. Note that if this opera-
tion fails, it may have succeeded in creating
some of the necessary parent directories.

Creates multiple
directories in root
directory

If file doesn’t
exist

Try to
create file
Licensed to Mark Watson <nordickan@gmail.com>

473Using byte stream I/O
But the results might vary on your system (you might not have the access permission
to create files or directories). Be careful when you create objects of class File on your
system. Even though the following code creates an object of class File, with a weird
name, it compiles successfully:

File f = new File ("*&^%$.yu");

The preceding code doesn’t throw any exception because it won’t create a file on the
physical storage on your system. It creates only an object of class File, which as men-
tioned before, might not necessarily represent a file or directory. Because creation of
files and directories are system-specific operations, creation of a file with the name
*&^%$.yu might succeed on one system, but fail on another. For example, on a system
running Windows, calling method createNewFile() on this object will throw the fol-
lowing exception at runtime:

Exception in thread "main" java.io.IOException: The filename, directory
name, or volume label syntax is incorrect
 at java.io.WinNTFileSystem.createFileExclusively(Native Method)
 at java.io.File.createNewFile(File.java:883)

With the basic knowledge of using a File object, let’s deep-dive into how to read and
write the contents of a file by using byte streams.

7.3 Using byte stream I/O

Byte streams work with reading and writing byte data. They’re broadly categorized
as input streams and output streams. All input streams extend the base abstract
class java.io.InputStream, and all output streams extend the base abstract class
java.io.OutputStream. Let’s start with input streams.

7.3.1 Input streams

Class java.io.InputStream is an abstract base class for all the input streams in Java.
It’s extended by all the classes that need to read bytes (for example, image data) from
multiple data sources. Let’s start with the most important method of this class, read(),
used to read data from a source. The class InputStream defines multiple overloaded
versions of method read(), which can be used to read a single byte of data as int, or
multiple bytes into a byte array:

int abstract read()
int read(byte[] b)
int read(byte[] b, int off, int len)

[7.2] Use streams to read from and write to files by using classes in the
java.io package including BufferedReader, BufferedWriter, File,
FileReader, FileWriter, DataInputStream, DataOutputStream,
ObjectOutputStream, ObjectInputStream, and PrintWriter

Reads the next,
single byte of data

Reads multiple bytes of
data into a byte array
Licensed to Mark Watson <nordickan@gmail.com>

474 CHAPTER 7 Java I/O fundamentals
But you wouldn’t use these methods yourself. You’d use method read() by more-
specific classes that extend the abstract class InputStream. For example, class File-
InputStream extends InputStream and overrides its read() method for you to use.

EXAM TIP Watch out for the use of method read() from class Input-
Stream. It returns the next byte of data, or -1 if the end of the stream is
reached. It doesn’t throw an EOFException.

Method close() is another important method of class InputStream. Calling close()
on a stream releases the system resources associated with it.

 Because InputStream is an abstract class, you can’t create an instance to read from a
data source or destination. You need one of its subclasses to do the work for you. So
why do you need to bother with so much theory about it?

Table 7.2 contains a list of the main methods in class java.io.InputStream (from the
Java API documentation). Don’t worry about the details; we’ll cover the relevant
details in the subsequent sections.

Why do you need to bother with so much theory on InputStream?
On the exam, you’ll be tested on whether you can call a particular method on an
object. For example, you might be tested on whether you can call the method read()
or close() on an object of, say, FileInputStream, a subclass of InputStream.
Because methods read() and close() are defined in class InputStream, they can
be called on objects of any derived classes of InputStream.

These might not be straightforward questions. You need to get the hang of the basics
to answer them correctly.

Table 7.2 List of methods in class java.io.InputStream

Method name Return type Description

close() void Closes this input stream and releases any system
resources associated with the stream.

abstract read() int Reads the next byte of data from the input stream.

read(byte[] b) int Reads a number of bytes from the input stream and stores
them into the buffer array b.

read(byte[] b, int
off, int len)

int Reads up to len bytes of data from the input stream into
an array of bytes.
Licensed to Mark Watson <nordickan@gmail.com>

475Using byte stream I/O
Figure 7.7 shows the classes that extend the abstract class java.io.InputStream. In
the next sections, you’ll see how to use all these classes. Don’t panic: because they
share a lot of similarity, they’ll be simple to work with.

EXAM TIP All the classes that include InputStream in their name— File-
InputStream, ObjectInputStream, BufferedInputStream, and DataInput-
Stream—extend abstract class InputStream, directly or indirectly.

Apart from image files, you can also read character data by using byte streams. But you
aren’t encouraged to do so because the Java API defines well-defined classes for char-
acter I/O. On the exam, you’ll see questions on valid I/O code and recommended I/O
code. Though using a byte stream to read (and write) characters is valid code, it’s not
a recommended practice.

 Let’s move on to this class’s counterpart for writing byte data to sources: class
java.io.OutputStream.

7.3.2 Output streams

Class java.io.OutputStream is also an abstract class. It’s the base class for all the out-
put streams in Java. It’s extended by all the classes that need to write bytes (for exam-
ple, image data) to multiple data destinations. The most important method of this
class is write(), which can be used to write a single byte of data or multiple bytes from
a byte array to a data destination:

abstract void write(int b)
void write(byte[] b)
void write(byte[] b, int off, int len)

Methods close() and flush() are other important methods of class OutputStream.
Often data isn’t written directly to the output stream but buffered for an efficient
management of resources. If you want to write data to the output stream right away
without waiting for the buffer to be full, call flush(). Method close() is used to
release system resources being used by this stream.

InputStream
{abstract}

FileInputStream ObjectInputStream

<<extends>>

BufferedInputStream DataInputStream

Figure 7.7 Abstract class InputStream and its subclasses (the ones that are on the exam)

Writes single byte

Writes multiple bytes
from a byte array
Licensed to Mark Watson <nordickan@gmail.com>

476 CHAPTER 7 Java I/O fundamentals
 You’d usually work with method write() defined by more specific classes that
extend OutputStream. For example, class FileOutputStream extends OutputStream
and overrides its write() method.

EXAM TIP Class OutputStream defines methods write(), flush(), and
close(). So these are valid methods that can be called on any objects of
classes that extend class OutputStream.

Table 7.3 contains a list of the methods in class java.io.OutputStream. I’ll cover the
important methods in the subsequent sections.

Figure 7.8 shows abstract class java.io.OutputStream and its subclasses.

EXAM TIP All the classes that include OutputStream in their name—
FileOutputStream, ObjectOutputStream, BufferedOutputStream, and
DataOutputStream—extend abstract class OutputStream, directly or indi-
rectly. Let’s start reading from and writing to files with byte streams.

Table 7.3 Methods in class java.io.OutputStream

Method name Return type Description

close() void Closes this output stream and releases any system
resources associated with this stream.

flush() void Flushes this output stream and forces any buffered output
bytes to be written out.

write(byte[] b) void Writes b.length bytes from the specified byte array to this
output stream.

write(byte[] b,
int off, int len)

void Writes len bytes from the specified byte array, starting at off-
set off to this output stream.

abstract
write(int b)

void Writes the specified byte to this output stream.

OutputStream
{abstract}

FileOutputStream ObjectOutputStream

<<extends>>

BufferedOutputStream DataOutputStream

Figure 7.8 Abstract class OutputStream and its subclasses covered by this exam
Licensed to Mark Watson <nordickan@gmail.com>

477Using byte stream I/O
7.3.3 File I/O with byte streams

Bytes can represent any type of data, including character data. Data in any file type—
Portable Document Format (PDF), zip, Microsoft Word, and others—can be read and
written as byte data. To read and write raw bytes from and to a file, use FileInput-
Stream and FileOutputStream, as shown in figure 7.9.

 Before you work with an example of reading from and writing to files, take note of
the constructors of FileInputStream and FileOutputStream. You can instantiate
FileInputStream by passing it the name of a file as a File instance or as a string
value. The constructor opens a connection to a file and might throw a FileNotFound-
Exception, if the specified file can’t be found:

FileInputStream(File file) throws FileNotFoundException {}
FileInputStream(String name) throws FileNotFoundException {}

EXAM TIP FileInputStream is instantiated by passing it a File or String
instance. It can’t be instantiated by passing it another InputStream. The
above-mentioned constructors of class FileInputStream throw a checked
exception, FileNotFoundException, which must be handled accordingly.

Instantiation of FileOutputStream creates a stream to write to a file specified either as
a File instance or a string value. You can also pass a boolean value specifying whether
to append to the existing file contents. Here are the overloaded constructors of class
FileOutputStream:

FileOutputStream(File file) throws FileNotFoundException
FileOutputStream(File file, boolean append) throws FileNotFoundException
FileOutputStream(String name) throws FileNotFoundException
FileOutputStream(String nm, boolean append) throws FileNotFoundException

EXAM TIP The above-mentioned constructors of FileOutputStream
throw a FileNotFoundException, a checked exception. Also, during its
instantiation, you can specify whether to append data to an underlying
file or override its contents.

File

(images, .zip,

8-bit text)

Java

application

(Write bytes to file)

(Read bytes from file)

FileOutputStream

FileInputStream
Figure 7.9 A Java application
uses FileInputStream and
FileOutputStream to read and
write byte data from and to files.
Licensed to Mark Watson <nordickan@gmail.com>

478 CHAPTER 7 Java I/O fundamentals

ates
t-

Fil
Let’s work with an example of reading a PDF file and writing it to another file. A PDF
file never contains just character data. Even if a PDF file contains only characters, it also
contains formatting information, so as a whole, a PDF file can’t be considered charac-
ter data. You can also use the PDF format for an image file, if you have any doubts.

EXAM TIP Even though FileInputStream and FileOutputStream can be
used to write character data, you shouldn’t use them to do so. Unlike byte
I/O streams, character streams take into account a user’s charset and work
with Unicode characters, which are better suited for character data.

To read and write to separate PDF files, you need objects of java.io.FileInput-
Stream and java.io.FileOutputStream that can connect to these input and output
PDF files. You need to call at least one method on FileInputStream to read data,
and one method on FileOutputStream to write data. Previously, I mentioned that
InputStream and OutputStream define methods read() and write() to read and
write a single byte of data, respectively. Let’s work with these methods in the follow-
ing listing.

import java.io.*;
public class ReadWriteBytesUsingFiles {
 public static void main(String[] args) throws IOException {
 try (
 FileInputStream in = new FileInputStream("Sample.pdf");
 FileOutputStream out = new FileOutputStream("Sample2.pdf");
)
 {
 int data;

 while ((data = in.read()) != -1) {

 out.write(data);
 }
 }
 }
}

EXAM TIP Are you wondering why you need to create a variable of type
int to read byte data from a file in the preceding code? When a stream
exhausts itself and no data can be read from it, method read() returns -1,
which can’t be stored by a variable of type byte.

The code at B and c instantiates FileInputStream and FileOutputStream. The
constructors used in this code accept the filenames as String objects. You can also
pass the constructors’ instances of class File or String. At d, you declare a variable
of type int to store the byte data you read from the file. At e, you call in.read(),
which reads and returns a single byte from the underlying file Sample.pdf. When no
more data can be read from the input file, method read() returns -1, and this is when

Listing 7.2 Using FileInputStream and FileOutputStream to read and write bytes

Instanti
FileInpu
Stream

 b

Instantiates
eOutputStream c Declares variable to store

a single byte of data
 d

Loops until end of
stream is reached (no
more bytes can be read) eWrites byte data

to destination file f
Licensed to Mark Watson <nordickan@gmail.com>

479Using byte stream I/O
the while loop ends its execution. At f, you write a single byte of data to another file
by using out, an instance of FileOutputStream.

NOTE Copying a file’s content might not copy its attributes. To copy a
file, it’s advisable to use methods such as copy from class java.nio
.file.Files.

I/O operations that require reading and writing of a single byte from and to a file are
a costly affair. To optimize these operations, you can use a byte array:

import java.io.*;public class ReadWriteBytesUsingFiles2 {
 public static void main(String[] args) throws IOException {
 try (
 FileInputStream in = new FileInputStream(
 new File("Sample.pdf"));
 FileOutputStream out = new FileOutputStream("Sample2.pdf");
)
 {
 int data;
 byte[] byteArr = new byte[1024];

 while ((data = in.read(byteArr)) != -1) {

 out.write(byteArr, 0, data);
 }
 }
 }
}

Programmers are often confused about the correct use of method read() that accepts
a byte array. Unlike read(), read(byte[]) doesn’t return the read bytes. It returns the
count of bytes read, or -1 if no more data can be read. The actual data is read in the byte
array that is passed to it as a method parameter.

 So do you think it makes a difference whether I write the complete byte array to
the output stream or write the count of the bytes that were read from the input
device? Let me test you on this concept in the next “Twist in the Tale” exercise.

Let’s modify some of the code used in the previous example. Select the correct
options for the following code.

import java.io.*;

class Twist {
 public static void main(String[] args) throws IOException {
 try (
 FileInputStream in = new FileInputStream("Twist.java");
 FileOutputStream out = new FileOutputStream("Copy.java");
)

Twist in the Tale 7.1

Creates byte
array of size 1024

read(byteArr) reads
data into array byteArr

Writes only
read bytes to
output stream
Licensed to Mark Watson <nordickan@gmail.com>

480 CHAPTER 7 Java I/O fundamentals
 {
 int data;
 byte[] byteArr = new byte[2048];
 while ((data = in.read(byteArr)) != -1) {
 out.write(byteArr);
 }
 }
 }
}

a Class Twist executes successfully and creates its own copy with the name
Copy.java.

b Class Twist executes successfully, doesn’t throw any exceptions, but fails to cre-
ate its own identical copy.

c Class Copy.java fails to compile.
d Class Twist doesn’t compile.

Watch out! Class FileOutputStream defines method write() that accepts an int
parameter. But when you use this method to write an int value, it writes only 1 byte to
the output stream. An int data type uses 4 bytes, or 32 bits. write(int) writes the 8
low-order bits of the argument passed to it. The 24 high-order bits are ignored. Here’s
an example that uses binary literals with underscores:

class FileStreamsAlwaysReadWriteBytes {
 public static void main(String args[]) throws Exception {
 try (
 OutputStream os = new FileOutputStream("temp.txt");
 InputStream is = new FileInputStream("temp.txt");
) {
 int i999 = 0b00000000_00000000_00000011_11100111;
 int i20 = 0b00000000_00000000_00000000_00010100;
 os.write(i999);
 os.write(i20);
 System.out.println(i999 + ":" + is.read());
 System.out.println(i20 + ":" + is.read());
 }
 }
}

EXAM TIP Method write(int) in class OutputStream writes a byte to
the underlying output stream. If you write an int value by using this
method, only the 8 low-order bits are written to the output stream; the
rest are ignored.

In the next section, you’ll see how buffering data reads and writes speeds up the
I/O processes.

Writes 1 byte
(8 lower bits) to
underlying file;
999 is written
as 231

Writes 20 because
20 can be coded
in 8 lower bits.

Prints 999:231Prints 20:20
Licensed to Mark Watson <nordickan@gmail.com>

481Using byte stream I/O
7.3.4 Buffered I/O with byte streams

Imagine you need to transfer a couple of boxes from one room of your home to
another. Would you need less time if you transferred one box at a time, or if you
loaded a couple of them in a container and moved the container? Of course, the lat-
ter would need less time. Similarly, buffering stores data in memory before sending a
read or write request to the underlying I/O devices. Buffering drastically reduces the
time required for performing reading and writing I/O operations.

 To buffer data with byte streams, you need classes BufferedInputStream and
BufferedOutputStream. You can instantiate a BufferedInputStream by passing it an
InputStream instance. A BufferedOutputStream can be instantiated by passing it
an OutputStream instance. You can also specify a buffer size or use the default size.
Here are their constructors:

public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int size)
public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int size)

EXAM TIP The exam might test you on how to instantiate buffered streams
correctly. To instantiate BufferedInputStream, you must pass it an object
of InputStream. To instantiate BufferedOutputStream, you must pass it
an object of OutputStream.

Let’s compare reading and writing a PDF file of considerable size with and without
using buffered streams. To start, let’s read and write the PDF file for the Java 7 Lan-
guage specification (jls7.pdf):

import java.io.*;
import java.util.Date;
public class NonBufferedBytesReadWrite {
 public static void main(String[] args) throws IOException {
 try (
 FileInputStream in = new FileInputStream("jls7.pdf");
 FileOutputStream out = new FileOutputStream("jls7-copy.pdf");
)
 {
 long start = System.currentTimeMillis();

 int data;
 while ((data = in.read()) != -1) {
 out.write(data);
 }

 long end = System.currentTimeMillis();
 System.out.println("MilliSeconds elapsed : " + (end-start));
 }
 }
}

Size of
jls7.pdf is
2.96 MB

Reads, writes
1 byte at a time

Outputs milliseconds
used to copy jls7.pdf to

jls-copy.pdf.
Licensed to Mark Watson <nordickan@gmail.com>

482 CHAPTER 7 Java I/O fundamentals
Let’s see how the same I/O process performs using buffered streams:

import java.io.*;
import java.util.Date;
public class BufferedReadWriteBytes{
 public static void main(String[] args) throws IOException {
 try (
 FileInputStream in = new FileInputStream("jls7.pdf");
 FileOutputStream out = new FileOutputStream("jls7-copy.pdf");
 BufferedInputStream bis = new BufferedInputStream(in);
 BufferedOutputStream bos = new BufferedOutputStream(out);
)
 {
 long start = System.currentTimeMillis();

 int data;
 while ((data = bis.read()) != -1) {
 bos.write(data);
 }

 long end = System.currentTimeMillis();
 System.out.println("MilliSeconds elapsed : " + (end-start));
 }
 }
}

As exhibited by the preceding examples, buffered I/O operations are way faster than
nonbuffered I/O operations.

 You can use FileInputStream and FileOutputStream to read and write only byte
data from and to an underlying file. These classes (FileInputStream and FileOutput-
Stream) don’t define methods to work with any other specific primitive data types or
objects, which is what you might need most of the time. In the next section, you’ll see
how to read and write primitive values and strings by using DataInputStream and
DataOutputStream.

7.3.5 Primitive values and strings I/O with byte streams

Data input and output streams let you read and write primitive values and strings from
and to an underlying I/O stream in a machine-independent way. Data written with
DataOutputStream can be read by DataInputStream. You can instantiate a Data-
InputStream by passing it an InputStream instance. A DataOutputStream can be con-
structed by passing it an OutputStream instance. Here are their constructors:

DataInputStream(InputStream in)
DataOutputStream(OutputStream out)

Here’s an example of reading and writing char, int, double, and boolean primitive
values and strings using data input and output streams:

import java.io.*;
public class ReadWritePrimitiveData {

Creates BufferedInputStream,
passing it object of FileInputStream.

Creates
BufferedOutputStream,

passing it object of
FileOutputStream.

Reads and
buffers data

Buffers and
writes data

Outputs milliseconds used to
copy jls7.pdf to jls-copy.pdf.
Licensed to Mark Watson <nordickan@gmail.com>

483Using byte stream I/O
 public static void main(String... args) throws IOException {
 try (
 FileOutputStream fos = new FileOutputStream(
 new File("myData.data"));
 DataOutputStream dos = new DataOutputStream(fos);

 FileInputStream fis = new FileInputStream("myData.data");
 DataInputStream dis = new DataInputStream(fis);
) {
 dos.writeChars("OS");
 dos.writeInt(999);
 dos.writeDouble(45.8);
 dos.writeBoolean(true);
 dos.writeUTF("Will score 100%");

 System.out.println(dis.readChar());
 System.out.println(dis.readChar());
 System.out.println(dis.readInt());
 System.out.println(dis.readDouble());
 System.out.println(dis.readBoolean());
 System.out.println(dis.readUTF());

 //System.out.println(dis.readBoolean());
 }
 }
}

The contents of file myData.data are shown
as a screenshot in figure 7.10. As you can
see, this file doesn’t store its data in human-
readable form. It can be reconstructed
using DataInputStream.

 Any read operation by DataInput-
Stream past the end of the file will throw
an EOFException. The data should be read
in the same order as written by DataOutputStream. DataOutputStream writes the byte
data for the corresponding primitive data. Each data type might be interpreted in a dif-
ferent manner and occupy a different number of bytes (for example, int uses 4 bytes,
and double uses 8 bytes). If the data being read doesn’t match the data that was written,
you’ll get unexpected values. For example, if you write a double value and read two int
values instead, you’ll get unexpected values:

import java.io.*;
public class ReadWritePrimitiveData1 {
 public static void main(String... args) throws IOException {
 try (
 FileOutputStream fos = new FileOutputStream(
 new File("myData.data"));
 DataOutputStream dos = new DataOutputStream(fos);

Instantiates
DataOutput-

Stream by
passing

instance of
FileOutput-

Stream

Instantiates
DataInput-
Stream by

passing
instance of
FileInput-

Stream

Writes primitive data
and Unicode String to
output stream

Reads first char

Reads
second

char

Reads int value

Reads
double value

Reads Boolean
value

Reads Unicode
string value

If uncommented, this line throws
EOFException at runtime.

Figure 7.10 Snapshot of contents of file
myData.data
Licensed to Mark Watson <nordickan@gmail.com>

484 CHAPTER 7 Java I/O fundamentals
 FileInputStream fis = new FileInputStream("myData.data");
 DataInputStream dis = new DataInputStream(fis);
) {
 dos.writeDouble(45.8);
 System.out.println(dis.readInt());
 System.out.println(dis.readInt());
 }
 }
}

The output of the preceding code is:

1078388326
1717986918

In the preceding code, bytes from a double value could be interpreted as int values,
though incorrectly. What happens if you try to read bytes from a char value as int values?

import java.io.*;
public class ReadWritePrimitiveData1 {
 public static void main(String... args) throws IOException {
 try (
 FileOutputStream fos = new FileOutputStream(
 new File("myData.data"));
 DataOutputStream dos = new DataOutputStream(fos);

 FileInputStream fis = new FileInputStream("myData.data");
 DataInputStream dis = new DataInputStream(fis);) {
 dos.writeBoolean(true);
 dos.writeChar('A');
 dos.writeInt(99);
 System.out.println(dis.readInt());
 }
 }
}

EXAM TIP If a mismatch occurs in the type of data written by Data-
OutputStream and the type of data read by DataInputStream, you might
not get a runtime exception. Because data streams read and write bytes,
the read operation constructs the requested data from the available bytes,
though incorrectly.

In the next section, you’ll read and write the state of your objects to a file.

7.3.6 Object I/O with byte streams: reading and writing objects

To read and write objects, you can use object streams. An ObjectOutputStream can write
primitive values and objects to an OutputStream, which can be read by an Object-
InputStream. To write objects to a file, use a file for the stream. Objects of a class
that implements the java.io.Serializable interface can be written to a stream. Serial-
ization is making a deep copy of the object so the whole object graph is written—

Writes double
value

Reads int value

Reads another
int value

Writes 1 byte of
data (Boolean =

1 byte of data)
Writes 2 bytes
of data
(char = 2 bytes)

Writes 4 bytes of
data (int = 4 bytes)

Reads 4 bytes of data; prints
16793856; interprets first

4 bytes as int value.
Licensed to Mark Watson <nordickan@gmail.com>

485Using byte stream I/O
that is, all instance variables, and if some instance variables refer to some other objects,
all the instance variables of the referred objects will be too (only if they implement
Serializable), and so on. The default serialization process doesn’t write the values
of static or transient variables of an object. The reading process, or de-serializa-
tion, builds the complete object, including the dependencies.

 You can use classes ObjectInputStream and ObjectOutputStream to read and
write objects and primitive values. Figure 7.11 shows this arrangement.

 You can instantiate these classes by passing them objects of InputStream or Output-
Stream. Here are their constructors that read from or write to a specified InputStream
or OutputStream:

public ObjectInputStream(InputStream in)
public ObjectOutputStream(OutputStream out)

EXAM TIP You can use ObjectOutputStream and ObjectInputStream to
read and write all serializable objects and primitive values.

IMPLEMENT SERIALIZABLE TO READ AND WRITE OBJECTS FROM AND TO A FILE

Let’s start by writing an object of class Car to a file. The following code declares a bare-
bones class Car and writes its object to a file, object.data, by using ObjectOutput-
Stream and FileOutputStream:

import java.io.*;
class Car {}
class WriteObject{
 public static void main(String args[]) throws IOException{
 try (
 FileOutputStream out = new FileOutputStream("object.data");
 ObjectOutputStream oos = new ObjectOutputStream(out);
) {
 Car c = new Car();
 oos.writeObject(c);

File File

Java

application

Read objects Write objects

ObjectInputStream

FileInputStream FileOutputStream

ObjectOutputStream

Figure 7.11 ObjectOutputStream writes an object to a file by using FileOutput-
Stream. ObjectInputStream can reconstruct saved objects back from a file by using
FileInputStream.
Licensed to Mark Watson <nordickan@gmail.com>

486 CHAPTER 7 Java I/O fundamentals
 oos.flush();
 }
 }
}

Though the preceding code compiles successfully, it throws a java.io.NotSerializable-
Exception at runtime. What went wrong? Class Car should implement the Serializable
interface so that it can be written to and read from a file. Here’s the modified code:

import java.io.*;
class Car implements Serializable {}
class ReadWriteObject{
 public static void main(String args[]) throws Exception{
 try (
 FileOutputStream out = new FileOutputStream("object.data");
 ObjectOutputStream oos = new ObjectOutputStream(out);
 FileInputStream in = new FileInputStream("object.data");
 ObjectInputStream ois = new ObjectInputStream(in);

) {
 Car c = new Car();
 oos.writeObject(c);
 oos.flush();
 Car c2 = (Car)ois.readObject();
 System.out.println(c2);
 }
 }
}

Apart from declaring to throw an IOException, method readObject() might also
throw a ClassNotFoundException, if the JRE fails to retrieve the class information cor-
responding to the retrieved object.

EXAM TIP To write objects to a file, their classes should implement java
.io.Serializable, or the code will throw a java.io.NotSerializable-
Exception.

READ AND WRITE OBJECTS WITH NONSERIALIZABLE PARENT CLASSES

What happens if class Car extends another class, say Vehicle, which doesn’t imple-
ment the Serializable interface? Would you be able to write Car objects to a file? In
this case, the variables of the Vehicle class are serialized to a file. For example

import java.io.*;
class Vehicle {
 String name = "Vehicle";
}
class Car extends Vehicle implements Serializable {
 String model = "Luxury";
}
class ParentNotSerializable{
 public static void main(String args[]) throws Exception{

Car implements
Serializable interface.

Writes object
c to file

readObject() returns
Object, so needs explicit
cast to Car class.

Base class doesn’t
implement Serializable.

Derived class
implements
Serializable.
Licensed to Mark Watson <nordickan@gmail.com>

487Using byte stream I/O
 try (
 FileOutputStream out = new FileOutputStream("object.data");
 ObjectOutputStream oos = new ObjectOutputStream(out);
 FileInputStream in = new FileInputStream("object.data");
 ObjectInputStream ois = new ObjectInputStream(in);

) {
 Car c = new Car();
 oos.writeObject(c);
 oos.flush();
 Car c2 = (Car)ois.readObject();
 System.out.println(c2.name + ":" + c2.model);
 }
 }
}

READ AND WRITE OBJECTS WITH NONSERIALIZABLE DATA MEMBERS

Would you be able to write objects to Car to a file, if any of its object fields doesn’t
implement the Serializable interface? In this case, the code will throw a java
.io.NotSerializableException when you attempt to write a Car object to a file.
For example

import java.io.*;
class Engine {
 String make = "198768";
}
class Car implements Serializable {
 String model = "Luxury";
 Engine engine = new Engine();
}
class DataMemberNotSerializable{
 public static void main(String args[]) throws Exception{
 try (
 FileOutputStream out = new FileOutputStream("object.data");
 ObjectOutputStream oos = new ObjectOutputStream(out);

) {
 Car c = new Car();
 oos.writeObject(c);
 oos.flush();
 }
 }
}

EXAM TIP A class whose object fields don’t implement the Serializable
interface can’t be serialized even though the class itself implements the
Serializable interface. An attempt to serialize such object fields will
throw a runtime exception.

READ AND WRITE OBJECTS ALONG WITH PRIMITIVE VALUES FROM AND TO A FILE

You can use ObjectInputStream and ObjectOutputStream to read and write both
objects and primitive values from and to a file. The data should be retrieved in the
order that it was written. In the following example, class WritePrimAndObjects writes

Prints
Vehicle:Luxury

Engine doesn’t
implement Serializable.

Car
implements
Serializable.

Throws
NotSerializableException.
Licensed to Mark Watson <nordickan@gmail.com>

488 CHAPTER 7 Java I/O fundamentals

ex

re
ca

IOEx
C

Ex

v

a boolean value and then a Car instance. These values should be retrieved in this
order. An attempt to read mismatching data types will result in throwing runtime
exception OptionalDataException:

class ReadPrimAndObjects{
 public static void main(String args[]) throws IOException,
 ClassNotFoundException{
 try (
 FileInputStream in = new FileInputStream("object.data");
 ObjectInputStream ois = new ObjectInputStream(in);
) {
 System.out.println(ois.readBoolean());
 Car c = (Car)ois.readObject();
 System.out.println(c.name);
 }
 }
}
class Car implements Serializable{
 String name;
 Car(String value) {
 name = value;
 }
}

EXAM TIP Retrieve the data (primitive and objects) in the order it was
written using object streams, or it might throw a runtime exception.

The code at B reads an object from the underlying stream. Method readObject()
returns Object, which is explicitly casted to class Car. For the exam, you should know
that this method can throw multiple exceptions:

■ ClassNotFoundException—Class of a serialized object cannot be found
■ OptionalDataException—Primitive data was found in the stream instead of

objects.
■ IOException—Any of the usual input-/output-related exceptions

THE TRANSIENT AND STATIC VARIABLES AREN’T WRITTEN TO A FILE

When you write objects to a file using ObjectOutputStream, its transient or static
variables aren’t written to the file. For example

import java.io.*;
class Car implements Serializable{
 String name;
 transient String model;
 transient int days;
 static int carCount;
 Car(String value) {
 name = value;
 model = "some value";
 days = 98;
 ++carCount;
 }
}

Checked
ceptions

that
adObject
n throw:
ception,
lassNot-
Found-

ception.

readObject returns
instance of Object and
can throw Optional-
DataException b

transient
variables

static
ariable

Assign value to
transient variables
Licensed to Mark Watson <nordickan@gmail.com>

489Using character I/O with readers and writers
class ReadWriteCarObjects{
 public static void main(String args[]) throws Exception {
 try (
 FileOutputStream out = new FileOutputStream("object.data");
 ObjectOutputStream oos = new ObjectOutputStream(out);
 FileInputStream in = new FileInputStream("object.data");
 ObjectInputStream ois = new ObjectInputStream(in);
) {
 Car c = new Car("AAA");
 oos.writeObject(c);
 oos.flush();

 new Car("BBB");

 Car c2 = (Car)ois.readObject();
 System.out.println(c2.name);
 System.out.println(c2.model + ":" + c2.days);
 System.out.println(c2.carCount);
 }
 }
}

In the preceding code, because the value of transient variables model and days wasn’t
written to the file, the deserialization process assigns default values to these variables:
null for objects and 0 for int type.

NOTE You can also change the serialization process using methods
defaultReadObject() and defaultWriteObject(). But this is beyond
the scope of this exam.

METHODS OF OBJECTINPUTSTREAM AND OBJECTOUTPUTSTREAM

Figure 7.12 shows the methods to read and write byte data, primitive data, objects, and
a few miscellaneous methods of classes ObjectInputStream and ObjectOutputStream.

 In this section, we covered how to read and write primitive data, strings, and
objects to an underlying file by using byte I/O classes. Let’s move forward with covering
character I/O with readers and writers.

7.4 Using character I/O with readers and writers

Reader and Writer are abstract base classes for reading and writing Unicode-
compliant character data. They don’t replace the byte-oriented I/O classes, but sup-
plement them.

Prints
null:0

Prints 2

[7.2] Use streams to read from and write to files by using classes in the
java.io package including BufferedReader, BufferedWriter, File,
FileReader, FileWriter, DataInputStream, DataOutputStream,
ObjectOutputStream, ObjectInputStream, and PrintWriter
Licensed to Mark Watson <nordickan@gmail.com>

490 CHAPTER 7 Java I/O fundamentals
Classes Reader and Writer handle 16-bit Unicode well, which isn’t supported by the
byte-oriented InputStream and OutputStream classes. Also note that Java’s primitive
data type char stores 16-bit Unicode values. Even though you can use InputStream
and OutputStream to read and write characters, you should use the character-oriented
Reader and Writer classes to read and write character data. Internationalization is
possible only by using 16-bit Unicode values. Also Reader and Writer classes offer
faster I/O operations.

Byte

data

Object

Miscellaneous

Primitive

data

ObjectInputStream

int read()

int read (byte[] buf)

int read(byte[] buf,
int off,
int len)

ObjectOutputStream

void write(int)

void write(byte[] buf,
int off, int len)

void write(byte[])

void writeBoolean(boolean)

void writeByte(byte)

void writeShort(short)

void writeInt(int)

void writeChar(char)

void writeLong(long)

void writeFloat(float)

void writeDouble(double)

void writeObject(object)

void writeBytes(String)

void writeChars(String)

boolean readBoolean()

byte readByte()

short readShort()

int readInt()

char readChar()

long readLong()

float readFloat()

double readDouble()

object readObject()

void close()

int available()

void close()

void flush()

Figure 7.12 Methods of class ObjectInputStream and ObjectOutputStream to read and
write byte data, primitive data, and objects
Licensed to Mark Watson <nordickan@gmail.com>

491Using character I/O with readers and writers

Wri
str
7.4.1 Abstract class java.io.Reader

Class Reader defines overloaded read() methods to read character data from an
underlying data stream:

int read()
int read(char[] cbuf)
abstract int read(char[] cbuf, int off, int len)

Class Reader implements Closeable (and its parent interface AutoCloseable). So
Reader objects can be declared as resources with a try-with-resources statement.

EXAM TIP Compare the overloaded read() methods of class Input-
Stream with the read() methods of class Reader. The read() methods of
InputStream accept an array of byte as their method parameter, and
the read() methods of Reader accept an array of char as their method
parameter.

Because class Reader is an abstract class, you won’t use it to read data. Instead you’ll
use one of its concrete subclasses to do the reading for you. Figure 7.13 shows
abstract class Reader and its subclasses (BufferedReader and FileReader) that are
on the exam.

7.4.2 Abstract class java.io.Writer

The abstract class Writer defines overloaded write() methods to write character data
to an underlying data source:

void write(char[] cbuf)
abstract void write(char[] cbuf, int off, int len)
void write(int c)
void write(String str)
void write(String str, int off, int len)

Reads single
character Reads characters

into array Reads
characters into
portion of array

Reader
{abstract}

BufferedReader FileReader

<<extends>>

Figure 7.13 Abstract class Reader and its subclasses that are on the exam

Writes array
of characters Writes portion

of array of
characters

Writes single
character

tes
ing

Writes portion
of string
Licensed to Mark Watson <nordickan@gmail.com>

492 CHAPTER 7 Java I/O fundamentals
Class Writer implements Closeable (and its parent interface AutoCloseable). So you
can instantiate and use its objects with a try-with-resources statement, which results in
an implicit call to Writer’s method close(). Reader’s method close() is used to close
the resources associated with the stream. Method flush() is used to write any saved
values from a previous write, from a buffer, to the intended destination.

EXAM TIP With the overloaded write() methods of class Writer, you
can write a single character or multiple characters, stored in char arrays
or String, to a data source.

Because class Writer is an abstract class, you won’t use it to write data. Instead you’ll
use one of its concrete subclasses to do the writing for you. Figure 7.14 shows abstract
class Writer and its subclasses (BufferedWriter, FileWriter, and PrintWriter) that
are on the exam.

 Let’s read and write files by using classes FileReader and FileWriter.

7.4.3 File I/O with character streams

FileReader and FileWriter are convenience classes for reading and writing charac-
ter data from files. Unless specified, the instances of these classes assume the default
character set of the operating system. You can instantiate a FileReader by passing it
the name of a file as a string value or as a File instance. Following are the overloaded
constructors of class FileReader:

FileReader(File file)
FileReader(String fileName)

You can instantiate FileWriter by passing it the name of a file as a string value or as a
File instance. You also have the option of specifying whether you want to override the
existing content of a file or append new content to it, by passing a boolean value to
the constructor. Here are the overloaded constructors of class FileWriter:

FileWriter(File file)
FileWriter(File file, boolean append)
FileWriter(String fileName)
FileWriter(String fileName, boolean append)

Writer
{abstract}

BufferedWriter PrintWriterFileWriter

<<extends>>

Figure 7.14 Abstract class Writer and its subclasses that are on the exam
Licensed to Mark Watson <nordickan@gmail.com>

493Using character I/O with readers and writers
The following listing shows an example of reading and writing characters from a file
by using FileReader and FileWriter.

import java.io.*;

public class ReadChars{
 public static void main(String[] args) throws IOException {
 try (
 FileReader input = new FileReader("ReadChars.java");
 FileWriter output = new FileWriter("CopyReadChars.java");
)
 {
 int data;

 while ((data = input.read()) != -1) {
 output.write(data);
 }
 }
 }
}

The preceding code is similar to the code shown in listing 7.2, which uses FileInput-
Stream and FileOutputStream to read and write bytes from files. But it uses File-
Reader to read characters from a source and FileWriter to write it to a destination.

 Data buffering helps produce efficient and faster I/O operations. Buffered I/O
with character streams is covered in the next section.

7.4.4 Buffered I/O with character streams

In the real world, nonbuffered data read and write operations are rare, because read-
ing characters one at a time from a file is a costly affair. Whenever you call method
read() on FileReader, it makes a read request to the underlying character stream.
This slows the performance of your application.

 To buffer data with character streams, you need classes BufferedReader and
BufferedWriter. You can instantiate a BufferedReader by passing it a Reader instance.
A BufferedWriter can be instantiated by passing it a Writer instance. You can also
specify a buffer size or use the default size. Here are their constructors:

public BufferedReader(Reader in)
public BufferedReader(Reader in, int sz)
public BufferedWriter(Writer out)
public BufferedWriter(Writer out, int sz)

EXAM TIP The exam might test you on how to instantiate buffered char-
acter streams correctly. To instantiate BufferedReader, you must pass it
an object of Reader. To instantiate BufferedWriter, you must pass it an
object of Writer.

Listing 7.3 Reading and writing characters from files

Read from
ReadChars.java until no
more characters found

Write character to
CopyReadChars.java
Licensed to Mark Watson <nordickan@gmail.com>

494 CHAPTER 7 Java I/O fundamentals
Class BufferedReaderWriter copies characters from BufferedReaderWriter.java to
Copy.java using BufferedReader and BufferedWriter:

import java.io.*;
public class BufferedReaderWriter{
 public static void main(String... args){
 try (
 FileReader fr = new FileReader("BufferedReaderWriter.java");
 BufferedReader br = new BufferedReader(fr);
 FileWriter fw = new FileWriter("Copy.java");
 BufferedWriter bw = new BufferedWriter(fw);
){
 String line = null;
 while ((line = br.readLine())!= null) {
 bw.write(line);
 bw.newLine();
 }
 }
 catch (IOException ioe) {
 System.out.println (ioe);
 }
 }
}

The preceding code instantiates BufferedReader by using a FileReader instance and
BufferedWriter by using a FileWriter instance. Instead of using method read(), it
uses method readLine() to read a single line from the character stream. Method
readLine() doesn’t include line-feed (\n) and carriage-return (\r) characters. So
you use bw.newLine() to insert a new line in the output file.

 Class BufferedReader also defines methods read() and read(char[]) to read sin-
gle characters of data from Reader. But these methods are implemented differently
than the same methods of class FileReader. Class BufferedReader buffers data on
the first read, and the subsequent request to the read() methods returns data from the
buffer. But this isn’t the case with class FileReader.

 In the next section, you’ll work with PrintWriter, which can be used to write all
primitive values and strings to an underlying File, OutputStream, or Writer object.

7.4.5 Data streams with character streams: using PrintWriter to
write to a file

Class PrintWriter can be used to print (write) formatted representations of objects to
a file. This class implements all the print methods found in class PrintStream. This
essentially means that you can use all the overloaded print methods that you’ve been
using (via the class variable System.out) to write data to a file, a PrintWriter
instance. Here’s an example:

public class WriteToFileUsingPrintWriter{
 public static void main(String... args){

Reads
single line

Write characters to
BufferedWriter

readLine() and close() can
throw IOException; Reader and
Writer instantiation can throw
FileNotFoundException
Licensed to Mark Watson <nordickan@gmail.com>

495Using character I/O with readers and writers
 try {
 FileWriter fw = new FileWriter("file1.txt", true);
 PrintWriter pw = new PrintWriter(fw);

 pw.write(97);
 pw.write("String");
 pw.write("PartialString", 0, 4);
 pw.write(new char[]{'c','h','a','r'});
 pw.write(new char[]{'c','h','a','r'}, 1, 1);

 pw.print(true);
 pw.print('a');
 pw.print(12.45f);
 pw.print(41.87);
 pw.print(39865L);
 pw.print(pw);
 pw.print(new Integer(10));

 pw.println(true);
 pw.println('a');
 pw.println(12.45f);
 pw.println(41.87);
 pw.println(39865L);
 pw.println(pw);
 pw.println(new Integer(10));

 pw.close();
 }
 catch (IOException ioe) {
 System.out.println(ioe);
 }
 }
}

The preceding example creates a PrintWriter instance by using a FileWriter instance.
It then uses the overloaded version of methods write(), print(), and println() to
write to the underlying file. The overloaded versions of methods print() and println()
are convenient methods to print (or write) data of primitive types and objects. A
PrintWriter instance can be created by passing it the name of a file as a string value
or as a File instance with or without specifying an explicit character set to use. These
are created without automatic line flushing. You can also instantiate PrintWriter by
passing it a Writer instance and a boolean value specifying auto-flushing. Here’s the
list of its constructors:

PrintWriter(File file)
PrintWriter(File file, String charset)
PrintWriter(String fileName)
PrintWriter(String fileName, String charset)
PrintWriter(Writer out, boolean autoFlush)

Table 7.4 shows the commonly used methods for class PrintWriter and the valid
method arguments.

Instantiates
PrintWriter

Overloaded write()
methods

Overloaded print()
methods

Overloaded println()
methods

Flush and
close stream
Licensed to Mark Watson <nordickan@gmail.com>

496 CHAPTER 7 Java I/O fundamentals
NOTE Methods format() and printf(), listed in table 7.4, accept a for-
mat string and arguments. These methods are covered in detail in chap-
ters 5 and 12.

It’s easy to confuse how the constructors of the I/O classes can be chained. The next
section will help you understand the concept.

7.4.6 Constructor chaining with I/O classes

Most programmers get cold feet when they think about constructor chaining in I/O
classes. It’s quite intimidating. Do you think the following line of code instantiates a
BufferedReader using FileReader and File instances correctly?

BufferedReader br = new BufferedReader(new FileReader(new File("ab.txt")));

Let’s evaluate the preceding line of code. The only way to construct an object of class
BufferedReader is by passing to it an object of class Reader. Because class FileReader
passes the IS-A Reader test, FileReader is a valid argument to the constructor of class
BufferedReader. Now, class FileReader can accept an argument of either String or
File, and class File accepts an argument of type String. So the preceding line of
code is valid.

 Figure 7.15 shows the inheritance tree of the I/O classes you need to know for the
exam, together with their constructors. It should help answer all questions related to
chaining of constructors in file I/O.

 With a firm understanding of working with byte and character streams to read
and write all types of data to a file, let’s move on to reading and writing data from
a console.

Table 7.4 Commonly used methods with their valid arguments

Method Valid method arguments

write int/ char[]/ String

print boolean/ int/ char[]/ char/ long/ float/ double/ Object/ String

println boolean/ int/ char[]/ char/ long/ float/ double/ Object/ String

format (Locale locale, String format, Object... args)

format (String format, Object... args)

printf (Locale locale, String format, Object... args)

printf (String format, Object... args)
Licensed to Mark Watson <nordickan@gmail.com>

http://java.sun.com/javase/6/docs/api/java/io/PrintWriter.html#format(java.util.Locale, java.lang.String, java.lang.Object...)
http://java.sun.com/javase/6/docs/api/java/util/Locale.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/util/Locale.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html

497Working with the console
7.5 Working with the console

Class java.io.Console defines methods to access the character-based console device,
associated with the current Java virtual machine. It’s interesting to note that you may or
may not be able to access the console associated with a JVM, depending on the underly-
ing platform and how the JVM was started. If you invoke a JVM from the command line
without redirecting the standard input and output streams, you’ll be able to access its
console, which will typically be connected to the keyboard and display from which the
virtual machine was launched. You may not be able to access the console associated with
a JVM, if it started automatically as a result of execution of some other program.

NOTE You’ll not get access to the console when using IDEs like Eclipse.
To execute code that needs to access the console, work with a text editor
and command prompt.

Object

InputStream File

+File(String)
+File(File, String)
+File(String, String)

OutputStream

<<extends>>

FileInputStream

+FileInputStream(File)
+FileInputStream(String)

<<extends>>

FileOutputStream

+FileOutputStream(File)
+FileOutputStream(String)

BufferedInputStream

+BufferedInputStream(InputStream)

BufferedOutputStream

+BufferedOutputStream(OutputStream)

<<extends>>

DataInputStream

+DataInputStream(InputStream)

DataOutputStream

+DataOutputStream(OutputStream)

ObjectInputStream

+ObjectInputStream(InputStream)

ObjectOutputStream

+ObjectOutputStream(OutputStream)

Figure 7.15 Hierarchy of I/O classes, including constructors and their method parameters

[7.1] Read and write data from the console
Licensed to Mark Watson <nordickan@gmail.com>

498 CHAPTER 7 Java I/O fundamentals

ts
o

e
te.

.

Let’s work with an example of how to use the class Console to interact with a user.
Code in the following example outputs a formatted message to a user and accepts
input and a password. The Console object supports secure password entry by its method
readPassword(). This method suppresses echoing of the password when a user enters
it. Also the return type of this method is (mutable) char[] and not String:

public class InteractWithUserUsingConsole{
 public static void main(String... args){
 Console console = System.console();
 if (console != null) {
 String file = console.readLine("Enter File to delete:");
 console.format("About to delete %s %n", file);

 console.printf("Sure to delete %s(Y/N)?", file);
 String delete = console.readLine();

 if (delete.toUpperCase().trim().equals("Y")) {
 char[] pwd = console.readPassword("Enter Password:");
 if (pwd.length>0)
 console.format("Deleted %s", file);
 else
 console.format("No password. Cancelling deletion");
 }
 else
 console.format("Operation cancelled... %nNow exiting.");
 }
 else
 System.out.println("No console");
 }
 }

The code at B accesses an object of class Console by calling System.console(). This
method returns null if no console is associated with the current JVM. You can’t create
an object of this class yourself. Class Console doesn’t define a public constructor.

 The code at c uses readLine() to prompt a user to enter the name of the file to
delete. The answer is read by the same method. The code at d and e uses methods
format() and printf() to print formatted data to the user and accept whether the
code proceeds with deleting the file. If the user enters Y or y, the code at f prompts
the user to enter the password and reads it using readPassword(). If a password is
entered, an appropriate message is displayed to the user.

EXAM TIP If no console device is available, System.console() returns
null. A null value signals that either the program was launched in a non-
interactive environment or perhaps the underlying operating system
doesn’t support the console operations.

Table 7.5 lists important methods of class Console.
 Coverage of class Console brings us to the end of this chapter on the basics of

file I/O.

Accesses console
by calling
System.console().

 b Promp
user t
enter
filenam
to dele

 c

Uses format() to
display text and
variable values. d Outputs

formatted data e

Prompts user to
enter password;
password values

aren’t echoed f
Licensed to Mark Watson <nordickan@gmail.com>

499Summary
7.6 Summary
This chapter covers the fundamentals of Java I/O. It starts with an introduction to the
streams. The Java I/O stream is an abstraction of a data source or a data destination.
An input stream is used to read data from a data source. An output stream is used to
write data to a data destination.

 To read from and write to files, you’ll need to work with class File. File is an
abstract representation of a path to a file or a directory. You can use an object of class
File to create a new file or directory, delete it, or inquire about or modify its attri-
butes. You can read the contents of a file or write to it by using byte and character
I/O classes.

 Byte streams work with reading and writing byte data. They’re broadly categorized
as input streams and output streams. All input streams extend the base abstract class
java.io.InputStream, and all output streams extend the base abstract class java.io
.OutputStream.

 Class java.io.InputStream is an abstract base class for all the input streams in
Java. It’s extended by all the classes that need to read bytes (for example, image data)
from multiple data sources. Class java.io.OutputStream is also an abstract class. It’s
the base class for all the output streams in Java. It’s extended by all the classes that
need to write bytes (for example, image data) to multiple data destinations.

 To read and write any byte data from and to files, you can use FileInputStream
and FileOutputStream. To buffer data with byte streams, use classes BufferedInput-
Stream and BufferedOutputStream.

 Data input and output streams let you read and write primitive values and strings
from and to an underlying I/O stream in a machine-independent way. DataInput-
Stream and DataOutputStream are decorator classes that define methods for reading

Table 7.5 Important methods of class Console from the Java API documentation

Constructor Description

Console format(String fmt,
Object... args)

Writes a formatted string to the console’s output stream
by using the specified format string and arguments.

Console printf(String format,
Object... args)

A convenience method to write a formatted string to the
console’s output stream by using the specified format
string and arguments

String readLine() Reads a single line of text from the console.

String readLine(String fmt,
Object... args)

Provides a formatted prompt, and then reads a single
line of text from the console.

char[] readPassword() Reads a password or passphrase from the console with
echoing disabled.

char[] readPassword(String fmt,
Object... args)

Provides a formatted prompt, and then reads a password
or passphrase from the console with echoing disabled.
Licensed to Mark Watson <nordickan@gmail.com>

500 CHAPTER 7 Java I/O fundamentals
and writing primitive values and strings. Data written with DataOutputStream can be
read by DataInputStream.

 To read and write objects, you can use object streams. An ObjectOutputStream can
write primitive values and objects to an OutputStream, which can be read by an
ObjectInputStream. The objects to be written to a file must implement the java
.io.Serializable interface.

 Reader and Writer are abstract base classes for reading and writing Unicode-
compliant character data. FileReader and FileWriter are convenience classes for
reading and writing character data from files. To buffer data with character streams,
use BufferedReader and BufferedWriter classes.

 Class PrintWriter can be used to print (write) formatted representations of
objects to a file. Class java.io.Console defines methods to access the character-based
console device associated with the current JVM.

REVIEW NOTES
This section lists the main points covered in this chapter.

Working with class java.io.File

■ File is an abstract representation of a path to a file or a directory.
■ You can use an object of class File to create a new file or directory, delete it, or

inquire about or modify its attributes.
■ A File instance might not be necessarily associated with an actual file or directory.
■ File’s method isDirectory() returns true if the path it refers to is a directory.
■ File’s method isFile() returns true if the path it refers to is a file.
■ For a directory, File’s method list() returns an array of subdirectories and files.
■ You can create a File instance that represents a nonexisting file on your file

system. And you can even invoke methods like isFile() without getting an
exception.

■ The objects of class File are immutable; the pathname represented by a File
object can’t be changed.

■ Methods createNewFile(), mkdir(), and mkdirs() can be used to create new
files or directories.

Using byte stream I/O

■ Class java.io.InputStream is an abstract base class for all the input streams.
■ Class InputStream defines multiple overloaded versions of method read(),

which can be used to read a single byte of data as int, or multiple bytes into a
byte array.

■ Method read() returns the next byte of data, or -1 if the end of the stream is
reached. It doesn’t throw an EOFException.
Licensed to Mark Watson <nordickan@gmail.com>

501Review notes
■ Method close() is another important method of class InputStream. Calling
close() on a stream releases the system resources associated with it.

■ Class java.io.OutputStream is an abstract class. It’s the base class for all the
output streams in Java.

■ The most important method of OutputStream class is write(), which can be
used to write a single byte of data or multiple bytes from a byte array to a data
destination.

■ Class OutputStream also defines methods write(), flush(), and close(). So
these are valid methods that can be called on any objects of classes that extend
class OutputStream.

■ All the classes that include OutputStream in their name—FileOutputStream,
ObjectOutputStream, BufferedOutputStream, and DataOutputStream—extend
abstract class OutputStream, directly or indirectly.

■ To read and write raw bytes from and to a file, use FileInputStream and File-
OutputStream.

■ FileInputStream is instantiated by passing it a File instance or string value. It
can’t be instantiated by passing it another InputStream.

■ Instantiation of FileOutputStream creates a stream to write to a file specified
either as a File instance or a string value. You can also pass a boolean value
specifying whether to append to the existing file contents.

■ Copying a file’s content might not copy its attributes. To copy a file, it’s advis-
able to use methods such as copy() from class java.nio.file.Files.

■ I/O operations that require reading and writing of a single byte from and to a
file are a costly affair. To optimize the operation, you can use a byte array.

■ Unlike read(), read(byte[]) doesn’t return the read bytes. It returns the
count of bytes read, or -1 if no more data can be read. The actual data is read in
the byte array that’s passed to it as a method parameter.

■ Method write(int) in class OutputStream writes a byte to the underlying out-
put stream. If you write an int value by using this method, only the 8 low-order
bits are written to the output stream; the rest are ignored.

■ To buffer data with byte streams, you need classes BufferedInputStream and
BufferedOutputStream.

■ You can instantiate a BufferedInputStream by passing it an InputStream instance.
■ A BufferedOutputStream can be instantiated by passing it an OutputStream

instance.
■ You can specify a buffer size or use the default size for both BufferedInput-

Stream and BufferedOutputStream.
■ To instantiate BufferedInputStream, you must pass it an object of Input-

Stream. To instantiate BufferedOutputStream, you must pass it an object of
OutputStream.
Licensed to Mark Watson <nordickan@gmail.com>

502 CHAPTER 7 Java I/O fundamentals
■ You can use FileInputStream and FileOutputStream to read and write only
byte data from and to an underlying file. These classes (FileInputStream and
FileOutputStream) don’t define methods to work with any other specific prim-
itive data types or objects.

■ Data input and output streams let you read and write primitive values and
strings from and to an underlying I/O stream in a machine-independent way.
Data written with DataOutputStream can be read by DataInputStream.

■ If a mismatch occurs in the type of data written by DataOutputStream and the
type of data read by DataInputStream, you might not get a runtime exception.
Because data streams read and write bytes, the read operation constructs the
requested data from the available bytes, though incorrectly.

■ An ObjectOutputStream can write primitive values and objects to an Output-
Stream, which can be read by an ObjectInputStream.

■ To write objects to a file, their classes should implement java.io.Serializable,
or the code will throw a java.io.NotSerializableException.

■ If a class implements the Serializable interface, but its base class doesn’t, the
class’s instance can be serialized.

■ A class whose object fields don’t implement the Serializable interface can’t be
serialized even though the class itself implements the Serializable interface. An
attempt to serialize such object fields will throw a runtime exception.

■ Retrieve the data (primitive and objects) in the order it was written using object
streams, or it might throw a runtime exception.

■ When you write objects to a file using ObjectOutputStream, its transient or
static variables aren’t written to the file.

Using character I/O with readers and writers

■ Reader and Writer are abstract base classes for reading and writing Unicode-
compliant character data.

■ Classes Reader and Writer handle 16-bit Unicode well, which isn’t supported by
the byte-oriented InputStream and OutputStream classes.

■ Abstract class Reader defines overloaded read() methods to read character
data from an underlying data stream.

■ Class Reader implements Closeable (and its parent interface AutoCloseable). So
Reader objects can be declared as resources with a try-with-resources statement.

■ Compare the overloaded read() methods of class InputStream with the read()
methods of class Reader. The read() methods of InputStream accept an array
of byte as their method parameter, and the read() methods of Reader accept
an array of char as their method parameter.

■ Abstract class Writer defines overloaded write() methods to write character
data to an underlying data source.
Licensed to Mark Watson <nordickan@gmail.com>

503Review notes
■ With the overloaded write() methods of class Writer, you can write a single
character or multiple characters stored in char arrays or string to a data source.

■ FileReader and FileWriter are convenience classes for reading and writing
character data from files.

■ You can instantiate a FileReader by passing it the name of a file as a string value
or as a File instance.

■ You can instantiate a FileWriter by passing it the name of a file as a string value
or as a File instance. You also have the option of specifying whether you want
to override the existing content of a file or append new content to it by passing
a boolean value to the constructor.

■ To buffer data with character streams, you need classes BufferedReader and
BufferedWriter.

■ You can instantiate a BufferedReader by passing it a Reader instance.
■ You can instantiate a BufferedWriter by passing it a Writer instance.
■ You can also specify a buffer size or use the default size for both Buffered-

Reader and BufferedWriter.
■ Class PrintWriter can be used to print (write) formatted representations of

objects to a file. This class implements all the print() methods found in class
PrintStream.

■ This essentially means that you can use all the overloaded print() methods
that you’ve been using (via the class variable System.out) to write data to a file,
a PrintWriter instance.

Working with the console

■ Class java.io.Console defines methods to access the character-based console
device associated with the current JVM.

■ You may or may not be able to access the console associated with a JVM, depend-
ing on the underlying platform and how the JVM was started.

■ If you invoke a JVM from the command line without redirecting the standard
input and output streams, you’ll be able to access its console, which will typi-
cally be connected to the keyboard and display from which the virtual machine
was launched.

■ You may not be able to access the console associated with a JVM if it started auto-
matically as a result of the execution of some other program.

■ You will not get access to the console when using IDEs like Eclipse.
■ You can access an object of class Console by calling System.console().
■ If no console device is available, System.console() returns null. A null value

signals that either the program was launched in a noninteractive environment or
perhaps the underlying operating system doesn’t support the console operations.

■ You can’t create an object of Console yourself. Class Console doesn’t define a
public constructor.
Licensed to Mark Watson <nordickan@gmail.com>

504 CHAPTER 7 Java I/O fundamentals
SAMPLE EXAM QUESTIONS

Q 7-1. What’s the output of the following code?

import java.io.*;
class Q1 {
 public static void main(String args[]) throws IOException {
 DataOutputStream dos = new DataOutputStream(
 new FileOutputStream("contacts.txt"));
 dos.writeDouble(999.999);
 DataInputStream dis = new DataInputStream(
 new FileInputStream("contacts.txt"));
 System.out.println(dis.read());
 System.out.println(dis.read());
 dis.close();
 dos.close();
 }
}

a 999.999
-1

b 999
999

c 999.999
EOFException

d None of the above

Q 7-2. Which options are true for the following code?

import java.io.*;
class ReadFromConsole {
 public static void main(String args[]) throws IOException {
 Console console = System.console();
 String name = "";
 while (name.trim().equals("")) {
 name = console.readLine("What is your name?\n");
 console.printf(name);
 }
 }
}

a Class ReadFromConsole can be used to repeatedly prompt a user to enter a
name, until the user doesn’t enter a value.

b console.readLine prints the prompt What is your name? and waits for the user
to enter a value.

c console.printf(name) prints the value, entered by the user, back to the console.
d Class ReadFromConsole can never throw a NullPointerException.
Licensed to Mark Watson <nordickan@gmail.com>

505Sample exam questions
Q 7-3. Select the incorrect statements.

a PrintWriter can be used to write a String to the text file data.txt.
b PrintWriter can be used to write to FileOutputStream.
c PrintWriter’s format and println methods can write a formatted string by

using the specified format string and arguments.
d None of the methods or constructors of class PrintWriter throw I/O exceptions.

Q 7-4. Assuming that a user enters the values eJava and Guru, when prompted to enter
username and password values, what values would be sent to file login-credentials.txt
when using the following code?

class FromConsoleToFile {
 public static void main(String args[]) throws Exception {
 try (PrintWriter pw = new PrintWriter(
 new File("login-credentials.txt"));) {
 Console console = System.console();
 String username = console.readLine("Username:");
 String pwd = console.readPassword("Password:");

 pw.println(username);
 pw.println(pwd);
 pw.flush();
 }
 }
}

a eJava
Guru

b eJava

c eJava
<BLANK LINE>

d eJava
String@b6546

e Compilation error
f Runtime exception

Q 7-5. Assuming that the variable file refers to a valid File object, which of the fol-
lowing options can be used to instantiate a BufferedInputStream?

a BufferedInputStream bis = new BufferedInputStream(file);

b BufferedInputStream bis = new DataInputStream(new FileInputStream

(file));

c BufferedInputStream bis = new BufferedInputStream(new DataInput-

Stream(new FileInputStream(file)));

d BufferedInputStream bis = new BufferedInputStream(new FileInput-

Stream(new DataInputStream(file)));
Licensed to Mark Watson <nordickan@gmail.com>

506 CHAPTER 7 Java I/O fundamentals
Q 7-6. Which option(s) will make the Console object accessible?

a Console console = new Console(System.in, System.out);

b Console console = System.console();

c Console console = System.getConsole();

d Console console = System.accessConsole();

e Console console = new Console();

f Console console = System.createConsole();

g None of the above

Q 7-7. Given the following code to read and write instances of Phone, which definition
of class Phone will persist only its variable model?

class ReadWriteObjects {
 public void write(Phone ph, String fileName) throws Exception {
 ObjectOutputStream oos = new ObjectOutputStream(
 new FileOutputStream(fileName));
 oos.writeObject(ph);
 oos.flush();
 oos.close();
 }
 public Phone read(String fileName) throws Exception {
 ObjectInputStream ois = new ObjectInputStream(
 new FileInputStream(fileName));
 Phone ph = (Phone)ois.readObject();
 ois.close();
 return ph;
 }
}

a class Phone implements Serializable {
 int sessionId;
 String model = "EJava";
}

b class Phone {
 transient int sessionId;
 String model = "EJava";
}

c class Phone implements Persistable {
 transient int sessionId;
 String model = "EJava";
}

d class Phone implements Serializable {
 transient int sessionId;
 String model = "EJava";
}

Licensed to Mark Watson <nordickan@gmail.com>

507Sample exam questions
Q 7-8. Which lines of code, when inserted at //INSERT CODE HERE, will enable class
Copy to copy contents from file ejava.txt to ejava-copy.txt?

class Copy {
 public static void main(String args[]) {
 try {
 InputStream fis = new DataInputStream(new FileInputStream(
 new File("eJava.txt")));
 OutputStream fos = new DataOutputStream(new FileOutputStream(
 new File("eJava-copy.txt")));
 int data = 0;
 while ((data = fis.read()) != -1) {
 fos.write(data);
 }
 }
 //catch (/* INSERT CODE HERE */) {
 }
 finally {
 try {
 if (fos != null) fos.close();
 if (fis != null) fis.close();
 }
 catch (IOException e) {}
 }
 }
}

a catch (IOException e) {

b catch (FileNotFoundException e) {

c catch (FileNotFoundException | IOException e) {

d catch (IOException | FileNotFoundException e) {

Q 7-9. Which option, when inserted at //INSERT CODE HERE, will enable method
read() in class ReadFile to read and output its own source file?

class ReadFile{
 public void read() throws IOException{
 File f = new File("ReadFile.java");
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);
 String line = null;
 //INSERT CODE HERE
 System.out.println(line);
 br.close();
 fr.close();
 }
}

a while ((line = br.readLine()) != null)

b while ((line = fr.readLine()) != null)
Licensed to Mark Watson <nordickan@gmail.com>

508 CHAPTER 7 Java I/O fundamentals
c while ((line = f.readLine()) != null)

d while ((line = br.readLine()) != -1)

e while ((line = fr.readLine()) != -1)

f while ((line = f.readLine()) != -1)

Q 7-10. Given the following XML, which code options, when inserted at //INSERT
CODE HERE, will write this XML (in exactly the same format) to a text file?

<emp>
<id>8743</id>
<name>Harry</name>
</emp>
class WriteXML{
 public void writeEmpData() throws IOException{
 File f = new File("empdata.txt");
 PrintWriter pw = null;
 //INSERT CODE HERE
 pw.close();
 }
}

a pw = new PrintWriter(f);
pw.println("<emp>");
pw.write("<id>");
pw.writeInt(8743);
pw.println("</id>");
pw.print("<name>Harry</name>");
pw.print("</emp>");
pw.flush();

b pw = new PrintWriter(new FileOutputStream(f));
pw.write("<emp>");
pw.write("<id>8743</id>");
pw.write("<name>Harry</name>");
pw.write("</emp>");
pw.flush();

c pw = new PrintWriter(f);
pw.println("<emp>");
pw.println("<id>8743</id>");
pw.println("<name>Harry</name>");
pw.println("</emp>");
pw.flush();

d pw = new PrintWriter(new FileOutputStream(f));
pw.println("<emp>");
pw.println("<id>8743</id>");
pw.println("<name>Harry</name>");
pw.println("</emp>");
pw.flush();
Licensed to Mark Watson <nordickan@gmail.com>

509Answers to sample exam questions
ANSWERS TO SAMPLE EXAM QUESTIONS

A 7-1. d

[7.2] Use streams to read from and write to files by using classes in the java.io package
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInput-
Stream, DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter

Explanation: dos.writeDouble(999.999) writes 8 bytes of data to the underlying
stream, and dis.read() reads a single byte of data from the underlying stream, inter-
prets it as an integer value, and outputs it. So the code neither prints 999.999 nor
throws an EOFException.

A 7-2. a, b, c

[7.1] Read and write data from the console

Explanation: Option (d) is incorrect because System.console() might return null,
depending on how the JVM is invoked. A console isn’t available to a JVM if it’s started
using another program or a background process, or if the underlying OS doesn’t sup-
port it. In such cases, console.readLine throws a NullPointerException.

A 7-3. d

[7.2] Use streams to read from and write to files by using classes in the java.io package
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInput-
Stream, DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter

Explanation: Options (a) and (b) are correct statements. A PrintWriter can be used
to write to a file, an OutputStream, and a Writer.

 Option (c) is also a correct statement because the PrintWriter’s methods
format() and printf() can write a formatted string by using the specified format
string and arguments.

 Option (d) is an incorrect statement. Some of the constructors of PrintWriter
may throw I/O exceptions (for example, when a file couldn’t be found). But none of
the methods of PrintWriter throw an exception. You can use checkError() to verify
if an error has occurred (for example, format conversion has failed).

A 7-4. e

[7.2] Use streams to read from and write to files by using classes in the java.io package
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInput-
Stream, DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter

[7.1] Read and write data from the console

Explanation: The code fails to compile because the return type of method read-
Password() is char[] and not String. If the type of the variable pwd is changed from
Licensed to Mark Watson <nordickan@gmail.com>

510 CHAPTER 7 Java I/O fundamentals
String to char[], the contents of the file login-credentials.txt will match as shown in
option (a). The overloaded println() method in class PrintWriter accepts a char[]
parameter and prints its individual characters to the underlying file, OutputStream,
or Writer.

A 7-5. c

[7.2] Use streams to read from and write to files by using classes in the java.io package
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInput-
Stream, DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter

Explanation: Options (a), (b), and (d) won’t compile. Option (a) is incorrect. To
instantiate BufferedReader, you must pass to its constructor an instance of Input-
Stream. In option (b), you can’t instantiate BufferedInputStream by invoking a con-
structor of DataInputStream. In option (d), you can’t instantiate FileInputStream by
passing it an instance of InputStream. It needs an instance of a File or String.

A 7-6. b

[7.1] Read and write data from the console

Explanation: Options (a), (c), (d), and (f) are invalid code options. Option (e) is
incorrect because Console’s constructor is defined as private. They won’t compile.

A 7-7. d

[7.2] Use streams to read from and write to files by using classes in the java.io package
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInput-
Stream, DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter

Explanation: To persist instances of a class, the class must implement the Serializable
interface. Serializable is a marker interface; it doesn’t define any methods. Also, to
prevent a field from persisting, define it as a transient variable.

 Option (a) doesn’t mark the field sessionId as transient.
 Option (b) doesn’t implement either Serializable or Externalizable.
 Option (c) implements the Persistable interface, which doesn’t exist.

A 7-8. a

[7.2] Use streams to read from and write to files by using classes in the java.io package
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInput-
Stream, DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter

Explanation: Code in class Copy can throw two checked exceptions: FileNotFound-
Exception and IOException. Instantiation of FileInputStream and FileOutput-
Stream can throw a FileNotFoundException. Calling methods read() and write()
Licensed to Mark Watson <nordickan@gmail.com>

511Answers to sample exam questions
can throw an IOException. Because IOException is the base class of FileNotFound-
Exception, the exception handler for IOException will handle FileNotFound-
Exception also.

 Option (b) won’t handle the IOException thrown by methods read() and write().
 Options (c) and (d) are incorrect because alternatives in a multi-catch statement

must not pass the IS-A test. The alternatives used in these options pass the IS-A test;
FileNotFoundException extends IOException.

A 7-9. a

[7.2] Use streams to read from and write to files by using classes in the java.io package
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInput-
Stream, DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter

Explanation: Method readLine() isn’t defined in classes File and FileReader. It’s
defined only in class BufferedReader. Also, readLine() returns null if the end of the
stream has been reached.

A 7-10. c, d

[7.2] Use streams to read from and write to files by using classes in the java.io package
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInput-
Stream, DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter

Explanation: Option (a) won’t compile. Class PrintWriter doesn’t define method
writeInt(). It defines overloaded write() methods with accepted method parame-
ters of type char[], int, or String.

 Option (b) is incorrect because it writes all the given XML in a single line, without
inserting line breaks.

 Option (c) is correct. The overloaded println() method in PrintWriter writes
data to the underlying stream and then terminates the line.

 Option (d) is correct. A PrintWriter can be used to write to a byte stream
(OutputStream) and a character stream (Writer).
Licensed to Mark Watson <nordickan@gmail.com>

Java file I/O (NIO.2)
Exam objectives covered in this chapter What you need to know

[8.1] Operate on file and directory paths with the
Path class

How to create and manipulate real, absolute,
and symbolic paths to files and directories.

[8.2] Check, delete, copy, or move a file or direc-
tory with the Files class

How to work with class Files and Path
objects to create files and directories, check
for their existence, and delete, copy, and
move them.

[8.3] Read and change file and directory
attributes, focusing on the BasicFile-
Attributes, DosFileAttributes, and
PosixFileAttributes interfaces

How to use class Files to access and modify
the individual and group of file and directory
attributes—namely, basic, dos, and posix.
How to access or modify attributes that aren’t
supported by the underlying operating system.

[8.4] Recursively access a directory tree using
the DirectoryStream and FileVisitor
interfaces

How to use DirectoryStream,
FileVisitor, and SimpleFileVisitor
to walk a directory tree.
How to define code that should execute when
a file is visited, before and after a directory
is visited.

[8.5] Find a file with the PathMatcher interface How to use PathMatcher to find directory
names and filenames that match a regex or
glob pattern.

[8.6] Watch a directory for changes by using the
WatchService interface

How to set a watch on a directory for creation,
modification, and deletion of elements from it.
How to listen to these events and define code
that should execute when an event occurs.
512

Licensed to Mark Watson <nordickan@gmail.com>

513Path objects
Think of any real-world application—almost all of them need to communicate with
the file system to store, access, or manipulate their data or configuration values. Prior
to Java 7, file system access and management has always been full of challenges. Often
developers used native code to work with simple or advanced operations like copy-
ing or moving files atomically, querying their attributes, monitoring changes in a
folder, or traversing a directory structure. But Java applications with native code lose
platform independence.

 Released with Java 7, NIO.2 (New Input/Output version 2) extensively improved
the existing I/O capabilities and added new ones. Though NIO was introduced with
Java 1.4, Java 7 further extended the NIO API, which resulted in a name change, now
called NIO.2. NIO.2 adds new file access and management functionality, such as defin-
ing new classes and interfaces to access files and file systems, accessing their metadata,
the ability to traverse file trees, networking with the socket API, Asynchronous Chan-
nel API, WatchService API, the ability to support a new file system, and more.

 Though Java NIO.2 defines a lot of functionality, the good news is that the exam
doesn’t include all of it. This chapter covers the NIO.2 topics that are relevant to
the exam:

■ Using the Path interface
■ Using class Files
■ Working with file and directory attributes
■ Walking a directory tree using the DirectoryStream and FileVisitor

interfaces
■ Using the PathMatcher interface
■ Using the WatchService API

The topics covered in this chapter include coverage of a lot of classes from the Java
NIO.2 that deal with working with paths, files, and their attributes, and walking and
watching directory structures and more. This boils down to using a lot of Java API
classes and their methods, which can become boring. So let’s make it interesting and
fun. Let’s work with building a sample application, Exam FlashCards, to help you
apply most of the exam topics covered in this chapter.

 In this application, you’ll read and write your favorite exam tips and notes from
and to text files on your system. The notes will be organized according to the main
objective and subobjective numbers. Each main exam objective will map to a direc-
tory and the tips or notes for a main exam objective will be stored in a text file, on
separate lines. Figure 8.1 shows the file and directory hierarchy for text files 8-1.txt,
8-2.txt, and 8-3.txt.

 In this application, let’s start with storing exam notes in a file. This application uses
Swing components to create a simple UI for accepting the exam objective number, the
subobjective, and notes to the file. Play around with creating directories and files
using the application, and add notes and check your physical files. Figure 8.2 shows a
screenshot of the application.
Licensed to Mark Watson <nordickan@gmail.com>

514 CHAPTER 8 Java file I/O (NIO.2)
Listing 8.1 shows the code for figure 8.1. Don’t worry if you can’t follow all the code—
it uses Swing components, which aren’t on the exam. I’ve annotated the code so that
it’s easier to follow.

import java.io.*;
import java.nio.file.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

Listing 8.1 Building sample application’s UI

8-1.txt 8-2.txt

obj8

8-3.txt

OCPJava7

C:\

obj7

Figure 8.1 File and hierarchy
directory for text files 8-1.txt,
8-2.txt, and 8-3.txt

Figure 8.2 Sample
application to add a
new flash card
Licensed to Mark Watson <nordickan@gmail.com>

515Path objects
public class NewFlashCard implements ActionListener {
 JFrame f = new JFrame("OCP Java SE 7 - New FlashCard");
 JTextField tfMainObj = null;
 JTextField tfSubObj = null;
 JTextField tfNote = null;
 JButton btnSave = null;
 JButton btnClear = null;
 JButton btnExit = null;

 private void buildUI() {
 tfMainObj = new JTextField();
 tfSubObj = new JTextField();
 tfNote = new JTextField();
 btnSave = new JButton("Save");
 btnSave.addActionListener(this);

 JPanel topPanel = new JPanel();
 topPanel.setLayout(new GridLayout(6,2));
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(""));

 topPanel.add(new JLabel(" Main objective number"));
 topPanel.add(tfMainObj);
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(" Sub objective number"));
 topPanel.add(tfSubObj);
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(" Flashcard text:"));
 topPanel.add(new JLabel(""));

 JPanel middlePanel = new JPanel();
 middlePanel.setLayout(new BorderLayout());
 middlePanel.add(tfNote);

 JPanel bottomPanel = new JPanel();
 bottomPanel.add(btnSave);

 JPanel mainPanel = new JPanel();
 mainPanel.setLayout(new BorderLayout());
 mainPanel.add(BorderLayout.NORTH, topPanel);
 mainPanel.add(BorderLayout.CENTER, middlePanel);
 mainPanel.add(BorderLayout.SOUTH, bottomPanel);

 f.getContentPane().setLayout(new BorderLayout());
 f.setSize(500, 250);
 f.getContentPane().add(mainPanel);
 f.setVisible(true);
 }

 public void actionPerformed(ActionEvent e) {
 // Code to execute when Save button is activated
 }

Textfields to accept input for
main and subobjective numbers
and flash card textButton to

initiate
saving
of text
to file Initialize

text fields

Initialize button and
add ActionListener to it

Build UI

Code in action-
Performed will
execute when user
activates Save button
Licensed to Mark Watson <nordickan@gmail.com>

516 CHAPTER 8 Java file I/O (NIO.2)
 public static void main(String[] args) {
 NewFlashCard nfc = new NewFlashCard();
 nfc.buildUI();
 }
}

In this application, the main objective number corresponds to a directory and the sub-
objective number corresponds to a text file, to which flash card text is written. You
need to follow these steps to write an exam note to a file:

1 Get a Path referring to file /8/8-1.txt.
2 Create a corresponding file or directories if they don’t already exist.
3 Open the file in append mode and copy the flash card text to the file.

Before you can move forward with the first step of creating a Path object, let’s discuss
Path objects in detail.

8.1 Path objects

Objects of the java.nio.file.Path interface are used to represent the path of files or
directories in a file system. The interface represents a hierarchal path containing
directory names and filenames separated by platform-specific delimiters. A path can
contain multiple directories, a single filename, or both.

NOTE Prior to Java 7, class java.io.File was used to represent the path
of a file or directory in a file system. But it had several drawbacks. Its
methods didn’t throw exceptions when they failed, which was essential to
determine the cause of failure. Most of the methods of class File didn’t
scale. For example, a request to a large directory listing could make a sys-
tem hang. It didn’t support much access to the metadata. These reasons
and more were responsible for the introduction of Path in Java 7.

Figure 8.3 shows a sample directory tree in both a Windows and a Unix OS, with a root
node, directories, and files.

 In figure 8.3 (Windows OS), the path to file Hello.txt can be represented using the
Path interface both as c:\users\harry\Hello.txt (absolute path) and as Hello.txt (rela-
tive path). An absolute path includes the complete path from the root directory to
the file or directory. Because a path is system-specific, the paths that a Path object
represent are platform-dependent. It’s interesting to note that an object of Path
might not be tied to a real file or directory on a system. The Path interface defines
methods to work with and to manipulate Path objects, resolving one path to
another. But it doesn’t contain methods to work with the actual physical directories
and files that a Path object refers to. To work with the actual files and directories, you

Create NewFlashCard
instance and build the UI

[8.1] Operate on file and directory paths with the Path class
Licensed to Mark Watson <nordickan@gmail.com>

517Path objects
can use java.nio.file.Files. We’ll use the directory structure shown in figure 8.1 to
show you how to work with Path objects.

EXAM TIP Because a Path object might not be tied to a real file or direc-
tory on a system, it can refer to a nonexistent file or directory.

Apart from referring to a file and a directory, a Path object can also refer to a symbolic
link. A symbolic link is a special file that refers to another file. The file referred to by a
symbolic link is called its target. All operations with a symbolic link are channeled to
the symbolic link’s target. When you read data from or write data to a symbolic link,
you write to its underlying target file. But if you delete a symbolic link, the target file
isn’t deleted. Apart from working with paths that refer to files and directories, NIO can
work with symbolic links also. It includes multiple methods where you can specify
whether you want the symbolic links to be followed or not. NIO can also determine cir-
cular references in symbolic links where a target refers back to the symbolic link.

 A Path object is system-dependent. A Path can never be equal to a Path associated
with another file system, even if they include exactly the same values. For example, a
Path object to file ‘Hello.txt’ on Windows isn’t equal to a Path object to file ‘Hello.txt’
on Solaris. Let’s get started with creating some Path objects.

Code.java

harry

Hello.txt

code

users

C:\

shreya

Code.java

harry

Hello.txt

code

home

/(root)

Windows Unix

shreya

Figure 8.3 Sample directory tree structure on Windows and Unix
Licensed to Mark Watson <nordickan@gmail.com>

518 CHAPTER 8 Java file I/O (NIO.2)
8.1.1 Multiple ways to create Path objects

You can create Path objects by using methods from multiple classes: java.nio
.file.Paths, java.nio.file.FileSystem, and java.io.File. Table 8.1 shows a list
of these classes, together with the relevant methods.

Paths (notice an extra “s” at the end) is a factory class that defines static methods to
create Path objects. Method get(String first, String... more) converts a string
representation of a file or directory to a Path object. You can use a single string or
sequence of string objects to create a Path object. You can use a forward slash (/) as a
file and directory separator. Here are multiple ways of specifying a path to file 8-1.txt,
using Paths.get():

Paths.get("C:/OCPJava7/8/8-1.txt");
Paths.get("C:", "OCPJava7", "8", "8-1.txt");
Paths.get("C:\\OCPJava7\\8\\8-1.txt");
Paths.get("8-1.txt");

The code at B, c, and d defines an absolute path to file 8-1.txt. The code at e
defines a relative path. For a relative path, the target file or directory is assumed to
exist in your current directory. Note how the code at d uses a backward slash (\) as a
file separator. You must escape a backslash in a Java string value:

Path path = Paths.get("c:\users\harry\Hello.txt");
Path path2 = Paths.get("c:\\users\\harry\\Hello.txt");

When the path is provided as one string, where individual subpaths are separated by a
path separator, only the last method argument is considered as a filename. All the oth-
ers are assumed to be directory names.

Table 8.1 List of classes and their respective methods that can be used to create objects of Path

Class name Method declaration

java.nio.file.Paths public static Path get(String first,
String... more)

java.nio.file.FileSystem public abstract Path getPath(String first,
String... more)

java.io.File public Path toPath()

Absolute path
to file 8-1.txt

 b Absolute path to file
8-1.txt, with directories
and files as separate
arguments

 c

Absolute path to
file 8-1.txt, with
backslashes escaped dRelative path

to file 8-1.txt e

Won’t compile; need to
escape \ used as a separator,
by using another \.

Okay
Licensed to Mark Watson <nordickan@gmail.com>

519Path objects

e

txt
CREATING PATH OBJECTS BY USING FILESYSTEM CLASS

You can also create Path objects by using method getPath() in class FileSystem.
Because class FileSystem is an abstract class, you can get a reference to the current
class FileSystem object by calling getDefault() on class FileSystems. Assuming that
this application executes on a Unix or Linux machine, here’s how you can create
objects of Path to refer to file 8-1.txt:

FileSystems.getDefault().getPath("/home/OCPJava7/8/8-1.txt");
FileSystems.getDefault().getPath("/home", "OCPJava7", "8", "8-1.txt");
FileSystems.getDefault().getPath("\\home\\OCPJava7\\8\\8-1.txt");
FileSystems.getDefault().getPath("8-1.txt");

A Path object can refer to a nonexistent file or directory. Watch out for this point on
the exam. Even though you didn’t create the file 8-1.txt until this point, a Path object
that refers to it is valid.

EXAM TIP A Path object can refer to a nonexistent file or directory.

CREATING PATH OBJECTS BY USING FILE CLASS

As discussed in chapter 7, prior to Java 7, objects of class java.io.File were used to
represent the file and directory paths. Starting with Java 7, a new method, toPath(),
was added to class File to bridge the gap between the existing I/O classes and NIO
classes. You can create a Path object by using a File instance:

File file = new File("Hello.txt");
Path path = file.toPath();

What happens if you create a Path object as follows?

Path path = Paths.get("");

Created using a zero-length string value, the preceding path variable refers to the cur-
rent directory. Though path.toString() returns a zero-length string value, path.get-
AbsolutePath() would return its absolute path.

NOTE Behind the scenes, both Paths.get() and File.toPath() call
FileSystems.getDefault().getPath().

Let’s refer back to the sample application Exam FlashCards and add functionality to
it—that is, code that executes when a user activates the Save button. Let’s create
Path objects by adding code to method actionPerformed() as shown in the follow-
ing listing.

Absolut
path to
file 8-1.

Relative path
to file 8-1.txt

Object of java.io.File

Path created using one
element that’s empty.
Licensed to Mark Watson <nordickan@gmail.com>

520 CHAPTER 8 Java file I/O (NIO.2)
public void actionPerformed(ActionEvent e) {
 String baseDir = "E:\\OCPJava7\\";
 String subDir = tfMainObj.getText();
 String fileName = tfSubObj.getText() + ".txt";
 Path path = Paths.get(baseDir, subDir, fileName);

 JOptionPane.showMessageDialog(f, path.toString());
}

Until this point, you’re only creating Path objects. They aren't tied to a real file or
directory. Before you can move on with creating real files and directories that can be
tied to this Path interface, you need to familiarize yourself with the Path objects and
how they can be manipulated.

INTERFACE JAVA.NIO.FILE.PATH VERSUS CLASS JAVA.NIO.FILE.PATHS

Due to the similarity in their names, it’s easy to confuse Paths with Path. But they are
different—Path is an interface and Paths is a class. The class Paths is a utility class, with
static methods to create objects that can be referred to by variables of the Path inter-
face. The Path interface is used to represent the path of files or directories on a sys-
tem. Figure 8.4 shows a UML representation of the Path interface and class Paths.

 The Path interface extends interfaces Comparable, Iterable, and Watchable. This
essentially means that the Path objects can be compared (with each other), iterated

Listing 8.2 Adding functionality to the sample application

Base dir Directory for
objectives

File name—one file
per subobjective

Create
Path

object

Show Path in a
message box

Object Comparable

Iterable

Extends

Interface

Package

Class

java.lang

Watchable

Path

java.nio.file

Paths

Figure 8.4 Comparing class Paths and interface Path
Licensed to Mark Watson <nordickan@gmail.com>

521Path objects
(over their directories and file components), and watched for changes. We’ll cover
these in the later sections of this chapter.

EXAM TIP Most of the Path methods perform syntactic operations. They
manipulate the paths to a file or directory without accessing the file sys-
tems. They’re logical operations on paths in memory.

Let’s get started with working with Path methods that access its components.

8.1.2 Methods to access Path components

Path objects are used to work with the files and directories in a file system, and so the
paths are system-dependent. On the exam, you’ll be asked to use Path objects to
retrieve information about a path like its subpath and root or parent directories. Let’s
work with a quick example:

class ManipulatePaths {
 public static void main(String args[]) {
 Path path = FileSystems.getDefault().getPath
 ("c:\\users\\obj8\\8-1.txt");
 System.out.println("toString()-> " + path.toString());
 System.out.println("getRoot()-> " + path.getRoot());
 System.out.println("getName(0)-> " + path.getName(0));
 System.out.println("getName(1)-> " + path.getName(1));
 System.out.println("getFileName()-> " + path.getFileName());
 System.out.println("getNameCount()-> " + path.getNameCount());
 System.out.println("getParent()-> " + path.getParent());
 System.out.println("subpath(0,2)-> " + path.subpath(0,2));

 }
}

Here’s the output of the preceding code:

toString()-> c:\users\obj8\8-1.txt
getRoot()-> c:\
getName(0)-> users
getName(1)-> obj8
getFileName()-> 8-1.txt
getNameCount()-> 3
getParent()-> c:\users\obj8
subpath(0,2)-> users\obj8

Figure 8.5 shows a pictorial representation of the preceding code that makes it easy to
retain this information. Note how the root of a path is not used in all the Path meth-
ods. Though it’s used by a method like getRoot(), it’s ignored by other methods like
subpath() and getName().

EXAM TIP Methods getName(), getNameCount(), and subpath() don’t
use the root directory of a path. Method getRoot() returns the root of an
absolute path and null for relative paths. Play around with these meth-
ods—you might see them on the exam.
Licensed to Mark Watson <nordickan@gmail.com>

522 CHAPTER 8 Java file I/O (NIO.2)
The Path methods that accept positions throw an IllegalArgumentException at run-
time for invalid positions. For example, getName() and subpath() throw an Illegal-
ArgumentException if you pass invalid path positions to them:

Path path = FileSystems.getDefault().getPath("c:\\users\\obj8\\8-1.txt");
System.out.println("subpath(0,4)-> " + path.subpath(0,4));

The code path.subpath(0,4) will throw an IllegalArgumentException because it
refers to an invalid position in the value referred by path.

8.1.3 Comparing paths

You can compare paths lexicographically using the method compareTo(Path). To check
whether a path starts or ends with another path, you can use startsWith(String),
startsWith(Path), endsWith(String), and endsWith(Path):

class ComparePaths {
 public static void main(String args[]) {
 Path path1 = FileSystems.getDefault().
 getPath("c:\\users\\obj8\\8-1.txt");
 Path path2 = Paths.get("d:\\users\\obj8\\8-1.txt");

 System.out.println(path1.compareTo(path2));
 System.out.println(path2.startsWith("\\"));

 System.out.println(path1.endsWith("-1.txt"));
 System.out.println(path1.endsWith(Paths.get("8-1.txt\\")));
 }
}

Methods startsWith(String) and endsWith(String) convert the method argument
to a Path object before comparing it with the first or last element of the Path object.
Although you’re using String, a string comparison isn’t executed. It’s comparing

Paths.get("C:\\users\\obj8\\8-1.txt);

C:\

users

obj8

8-1.txt

getRoot()

getName(0)

getName(1)

getFileName()

subpath(0,2)

getParent()

subpath(0,2)
getParent()

Paths.get("users\\obj8\\8");

getNameCount() = 3 getNameCount() = 3

users

obj8

8

getRoot() = null

getName(0)

getName(1)

getFileName()

Figure 8.5 Representation of calling various Path methods

Throws
IllegalArgument-
Exception

Returns a negative
number—path1 is
lexicographically
smaller than path2.Returns

false

Returns
false

Returns true—trailing separators
aren’t taken into account.
Licensed to Mark Watson <nordickan@gmail.com>

523Path objects
paths, and path "1.txt" isn’t the same as "8-1.txt" (two different files or directo-
ries). This explains why path1.endsWith("-1.txt") returns false.

EXAM TIP Methods startsWith() and endsWith() are overloaded:
startsWith(String), startsWith(Path), endsWith(String), and ends-
With(Path). So if you pass null to these methods, you’ll get a compiler
error.

8.1.4 Converting relative paths to absolute paths

The code in listing 8.2 uses a hard-coded value for the base directory. Let’s see how you
use your current directory and parent directories to create Path objects. Let’s assume
that your current working directory is E:/OCPJavaSE7/FileNIO. Now assume you enter
the value of the subobjective as 8-1. The following will create an absolute path to 8-1.txt
in your current working directory, that is, E:\OCPJavaSE7\FileNIO\8-1.txt:

Path file = Paths.get("8-1.txt");
Path path = file.toAbsolutePath();

Imagine that you want to create a text file 8-1.txt in the parent directory of your cur-
rent working directory. Knowing that you can use .. to denote your parent directory,
do you think the following will help?

Path file = Paths.get("..\\8-1.txt");
Path path = file.toAbsolutePath();

Yes, it will. Though the preceding code will insert .. in the Path object, if you use it to
create the corresponding file, it will be created in the parent directory of the current
working directory.

EXAM TIP Note that the method name to retrieve the absolute path from
a Path object is toAbsolutePath() and not getAbsolutePath(). These
method names are similar and might be used on the exam.

In the preceding code, path will refer to E:\OCPJavaSE7\FileNIO\..\8-1.txt. As you can
see, inclusion of directories FileNIO and .. is redundant in the preceding path. You
can remove these redundant values by calling method normalize() on Path:

Path file = Paths.get("..\\8-1.txt");
Path path = file.toAbsolutePath();
path = path.normalize();
System.out.println(path);

EXAM TIP Path is immutable and calling normalize() on a Path object
doesn’t change its value.

Though implicit, it’s common to use a period (.) to denote the current directory. For
example, if you refer to file 8-1.txt, you refer to this path in the current directory. But

Prints
E:\OCPJavaSE7\8-1.txt
Licensed to Mark Watson <nordickan@gmail.com>

524 CHAPTER 8 Java file I/O (NIO.2)
it’s common for programmers to refer to this path as ./8-1.txt. Again, when you
include a period in a Path object, you’re including redundant information, which can
be removed too using method normalize(). The following code assumes your current
working directory is E:/OCPJavaSE7/FileNIO:

Path file = Paths.get(".\\8-1.txt");
Path path = file.toAbsolutePath();
path = path.normalize();
System.out.println(path);

EXAM TIP Method normalize() doesn’t check the actual file system to ver-
ify if the file (or directory) the resulting path is referring to actually exists.

Do you think, when a Path object includes redundancies like . or .., that calling
information retrieval methods like subpath() or getName() will also include these
redundancies in the returned values? Let’s see whether you can answer this question
in the first “Twist in the Tale” exercise for this chapter.

Examine the following code and select the correct answers.

import java.nio.file.*;
class Twist8_1{
 public static void main(String args[]) {
 Path path = Paths.get("c:\\OCPJavaSE7\\..\\obj8\\.\\8-1.txt");

 System.out.println(path.toString()); //line1
 System.out.println(path.getName(1)); //line2
 System.out.println(path.getParent()); //line3
 System.out.println(path.subpath(2,4)); //line4
 }
}

a Code on line 1 outputs c:\OCPJavaSE7\..\obj8\.\8-1.txt
b Code on line 1 outputs c:\obj8\8-1.txt
c Code on line 2 outputs OCPJavaSE7
d Code on line 2 outputs c:\
e Code on line 2 outputs ..
f Code on line 3 outputs c:\OCPJavaSE7\..\obj8\
g Code on line 3 outputs c:\obj8\
h Code on line 4 throws an IllegalArgumentException

Twist in the Tale 8.1

Prints
E:\OCPJavaSE7\FileNIO\8-1.txt
Licensed to Mark Watson <nordickan@gmail.com>

525Path objects
8.1.5 Resolving paths using methods resolve and resolveSibling

The overloaded methods resolve(String) and resolve(Path) are used to join a rel-
ative path to another path. If you pass an absolute path as a parameter, this method
returns the absolute path:

Path path = Paths.get("/mydir/code");
System.out.println(path.resolve(Paths.get("world/Hello.java")));
System.out.println(path.resolve ("/world/Hello.java"));

Path absolutePath = Paths.get("E:/OCPJavaSE7/");
System.out.println(absolutePath.resolve(path));
System.out.println(path.resolve(absolutePath));

The output of the preceding code is:

\mydir\code\world\Hello.java
\world\Hello.java
E:\mydir\code
E:\OCPJavaSE7

Imagine you need to retrieve the path to a file in the same directory, say, to create its
copy or to rename it. To do so, you can use the overloaded methods resolve-
Sibling(String) and resolveSibling(Path). These resolve a given path against a
path’s parent. If the given path is an absolute path, this method returns the absolute
path. If you pass it an empty path, it returns the parent of the path:

Path path = Paths.get("/mydir/eWorld.java");
Path renamePath = path.resolveSibling(Paths.get("newWorld.java"));
Path copyPath = path.resolveSibling("backup/eWorld.java");
Path absolutePath = Paths.get("E:/OCPJavaSE7/");

System.out.println(renamePath);
System.out.println(copyPath);
System.out.println(path.resolveSibling(""));

System.out.println(absolutePath.resolveSibling(path));
System.out.println(path.resolveSibling(absolutePath));

The output of the preceding code is as follows:

\mydir\newWorld.java
\mydir\backup\eWorld.java
\mydir

E:\mydir\eWorld.java
E:\OCPJavaSE7

EXAM TIP Methods resolve() and resolveSibling() don’t check the
actual file system to verify if the file (or directory) the resulting path is
referring to actually exists.
Licensed to Mark Watson <nordickan@gmail.com>

526 CHAPTER 8 Java file I/O (NIO.2)
8.1.6 Method relativize()

Imagine you need a path to construct a path between two Path objects. To do so, you
can use method relativize(). It can be used to construct a path between two relative
or absolute Path objects:

Path dir = Paths.get("code");
Path file = Paths.get("code/java/IO.java");
System.out.println(file.relativize(dir));
System.out.println(dir.relativize(file));

dir = Paths.get("/code");
file = Paths.get("/java/IO.java");
System.out.println(file.relativize(dir));
System.out.println(dir.relativize(file));

The output of the preceding code is:

..\..
java\IO.java
..\..\code
..\java\IO.java

What happens when you try to use relativize() to construct a path between a rela-
tive path and an absolute path or two absolute paths having different roots (say, C:\
and D:\)? Invocation of method relativize() in the following code would throw a
runtime exception:

Path dir = Paths.get("/code");
Path dirC = Paths.get("C:/code/MyClass.java");
Path dirD = Paths.get("D:/notes/summary.txt");

System.out.println(dir.relativize(dirD));
System.out.println(dirC.relativize(dirD));

EXAM TIP You can’t create a path from a relative path to an absolute path
and vice versa using method relativize(). If you do so, you’ll get a run-
time exception (IllegalArgumentException). Also, method relativize()
doesn’t check the actual file system to verify if the file (or directory) the
resulting path is referring to actually exists.

Unlike method toRealPath(), most of the Path methods perform syntactic opera-
tions—that is, logical operations on paths in memory. Let’s see whether you remem-
ber this important point while determining the output of the Path methods in the
next “Twist in the Tale” exercise.

Assuming that the byte code for class Twist8_2 (Twist8_2.class) is located in direc-
tory /home, what is the output of the following code?

class Twist8_2{
 public static void main(String args[]) {
 Path dir = Paths.get("code");

Twist in the Tale 8.2

Relative paths

Absolute paths

Would throw
runtime exception
Licensed to Mark Watson <nordickan@gmail.com>

527Class Files
 Path file = Paths.get("code/java/IO.java");
 Path relative = file.resolve(file.relativize(dir));
 Path absolute = relative.toAbsolutePath();
 System.out.println(absolute);
 }
}

a /home/code/

b /home/code/../..

c /home/java/IO.java/../..

d /home/code/java/IO.java/../..

In this section you learned how to create Path objects and manipulate them in mem-
ory without connecting them to the real files or directories on your file system. In the
next section, you’ll see how class Files uses these Path objects to create, move, copy,
delete, walk, and query files and directories on a system.

8.2 Class Files

Class java.nio.file.Files consists entirely of static methods for manipulating files
and directories. Because the creation and deletion of files and directories are depen-
dent on the underlying platform, most of the methods of class Files delegate these
tasks to the associated system provider.

 Let’s get started with the creation of files and directories.

8.2.1 Create files and directories

Class Files defines multiple methods to create files and directories:

public static Path createFile(Path path, FileAttribute<?>... attrs)
 throws IOException
public static Path createDirectory(Path dir, FileAttribute<?>... attrs)
 throws IOException
public static Path createDirectories(Path dir, FileAttribute<?>... attrs)
 throws IOException

Method createFile() atomically checks for the existence of the file specified by the
method parameter path and creates it if it doesn’t exist. The (checking and creation)
operation is atomic with respect to all the file system operations that might affect the
directory. Method createFile() fails and throws an exception if the file already
exists, if a directory with the same name exists, if its parent directory doesn’t exist due
to an I/O error, or if the specified file attributes can’t be set.

 Method createDirectory() creates the specified directory (not the parent direc-
tories) on the file system. This method also atomically checks for the existence of the

[8.2] Check, delete, copy, or move a file or directory with the Files class
Licensed to Mark Watson <nordickan@gmail.com>

528 CHAPTER 8 Java file I/O (NIO.2)

subo
value

ory

direc
on fi

ter

ld
specified directory and creates it if it doesn’t exist. Method createDirectory() throws
an exception if a file or directory exists with the same name, if its parent directory
doesn’t exist, if an I/O error occurs, or if the specified directory attributes can’t be set.

 Method createDirectories() creates a directory, creating all nonexistent parent
directories. If the target directory already exists, createDirectories() doesn’t throw
any runtime exceptions. It throws an exception if the specified dir exists but isn’t a
directory, if an I/O occurs, or if the specified directory attributes can’t be set.

EXAM TIP Specifying file or directory attributes is optional with methods
createFile(), createDirectory(), and createDirectories(). All these
methods declare to throw an IOException, which is a checked exception.

Let’s use these methods and add some action to the sample application Exam Flash-
Cards. Let’s create directories corresponding to the objective number entered by a
user and text file corresponding to the subobjective number. Directory and file cre-
ation will happen when a user activates the Save button. When a user activates the
Save button, code defined in method actionPerformed will execute (the remaining
code listing remains the same as shown in listing 8.1). Here’s the code for method
actionPerformed():

public void actionPerformed(ActionEvent e) {
 String baseDir = "E:\\OCPJava7\\";
 String subDir = tfMainObj.getText();
 String fileName = tfSubObj.getText() + ".txt";

 Path filePath = Paths.get(baseDir, subDir, fileName);

 try {
 Files.createDirectories(filePath.getParent());
 Files.createFile(filePath);

 PrintWriter pw = new PrintWriter(
 new FileWriter(filePath.toFile(), true));
 pw.println(tfNote.getText());
 pw.flush();
 }
 catch (IOException ioe) {
 JOptionPane.showMessageDialog(f, ioe.toString());
 }
}

The code at B defines a base directory to store your flash card data: E:\OCPJava7\. The
code at c and d retrieves the value of the main objective and subobjective entered
by a user. Because you’re writing the flash cards text to a text file, the extension .txt is
appended to it. The code at e creates an absolute path corresponding to the .txt file.
The code at f executes createDirectories() from class Files, creating all nonexis-
tent parent directories on your system. The code at g calls createFile() from class
Files to create the target file on your system. If it can’t create a file because the file

Base
directory to
store data

 b
Retrieve main
objective value
entered by user

 c

Retrieve
bjective

 entered
by user

 d

Create Path object by
converting base direct
to absolute path

 e

Create
complete
tory tree
le system

 f
Create file on
file system

 g

Open a PrintWri
to file and write
text from text-fie
note to it

 h

Handle IOException
from creation of
directories, file, and
writing to file

 i
Licensed to Mark Watson <nordickan@gmail.com>

529Class Files
already exists, it throws a FileAlreadyExistsException. The code at h creates a
PrintWriter and writes the flash card tip to the text file. Because it’s a Swing applica-
tion, I’ve defined a message box to show you the name of the thrown exception i.

EXAM TIP In class Files, method createDirectories() can create both
the target directory and multiple nonexistent parent directories. If the
directory already exists and it can’t create a directory, no exceptions
are thrown. Methods createDirectory() and createFile() create a
single directory and file respectively. They throw a FileAlreadyExists-
Exception if a directory or file with the same name already exists.

In the sample application, click the Save button twice; the code that creates the text
file will throw a FileAlreadyExistsException. In the next section, let’s see how you
can check for the existence of files or directories before you issue a command to cre-
ate them.

8.2.2 Check for the existence of files and directories

You can check for the existence of a file or directory referred by a Path object using
methods exists() and notExists() in class Files:

public static boolean exists(Path path, LinkOption... options)
public static boolean notExists(Path path, LinkOption... options)

Method exists() checks whether a file or directory referred by a Path exists or not; it
returns true if the file or directory exists and false if the target doesn’t exist or its
existence can’t be determined.

 Method notExists() is not a complement of method exists(). It returns true if
a target doesn’t exist. If these methods can’t determine the existence of a file, both
of them will return false. By default, these methods follow a symbolic link. To over-
ride this behavior, you can pass LinkOption.NOFOLLOW_LINKS to these methods
(java.nio.file.LinkOption is an enum). What happens if you check for the exis-
tence of a target path and before you can create a new file or directory another
application creates it? In this case, you must handle the exception accordingly.

 Let’s add checks to verify the existence of your target directory and file in the sam-
ple application:

public void actionPerformed(ActionEvent e) {
 String baseDir = "E:\\OCPJava7\\";
 String subDir = tfMainObj.getText();
 String fileName = tfSubObj.getText() + ".txt";

 Path filePath = Paths.get(baseDir, subDir, fileName);

 try {
 if (Files.notExists(filePath.getParent()))
 Files.createDirectory(filePath.getParent());
 if (!Files.exists(filePath))
 Files.createFile(filePath);
Licensed to Mark Watson <nordickan@gmail.com>

530 CHAPTER 8 Java file I/O (NIO.2)
 PrintWriter pw = new PrintWriter(
 new FileWriter(filePath.toFile(), true));
 pw.println(tfNote.getText());
 pw.flush();
 }
 catch (IOException ioe) {
 JOptionPane.showMessageDialog(f, ioe.toString());
 }
}

EXAM TIP Watch out for questions that state that exists() and not-
Exists() will never return the same boolean value for the same Path
object. Both methods exists() and notExists() would return false if
they can’t determine the existence of the target file or directory.

8.2.3 Copy files

Imagine you create a study group to prepare for this exam. To get going, the members
plan to share their individual flash card notes that they created using this application.
To do so, they email the text files with flash card notes to everyone in the group. How
would you use the notes from these files in your application? You might

■ Copy the file to the directory that’s used by your application
■ Copy the contents of the received file to a file that’s used by your application

Class Files’s overloaded copy() method enables you to read from InputStream and
write to a Path object, read from a Path object and write to OutputStream, and read
from and write to Path objects:

public static long copy(InputStream in, Path target, CopyOption... options)
public static long copy(Path source, OutputStream out)
public static Path copy(Path source, Path target, CopyOption... options)

EXAM TIP Files.copy() can copy only files, not directories. If the source
is a directory, then in the target an empty directory is created (without
copying the entries in the directory). This method returns a long or Path
value, not a boolean value. Watch out for its invalid use in exam questions
that use copy() to copy directories, use it in try-with-resources state-
ments, or use its return value to test whether a file was copied or not.

Method copy() accepts objects of the CopyOption interface. You can use objects of
enum StandardCopyOption (shown in table 8.2), which implements this interface.

Table 8.2 Enum constants of StandardCopyOption can be passed to methods that accept
CopyOption. StandardCopyOption implements the CopyOption interface.

Enum constant Description

StandardCopyOption.ATOMIC_MOVE Hasn’t been implemented yet

StandardCopyOption.COPY_ATTRIBUTES Copy attributes

StandardCopyOption.REPLACE_EXISTING Replace existing entity with the same name
Licensed to Mark Watson <nordickan@gmail.com>

531Class Files

T
to

file

Te
to

dest

B

s
For the example, let’s copy the flash card notes received in a .txt file to a folder that’s
used by your application. Figure 8.6 shows the screenshot of this application after the
Copy File button is activated.

 Here’s the code of this Swing application, which accepts the path to the source
and destination files from a user and copies the source file to the destination. It
might seem unnecessary to you to define an elaborate example to copy files. Read-
ing or browsing through the Java API, particularly the Java File I/O API, can be very
boring. Try out the following code with different combinations of source and target
files. It displays the error messages in a popup box and the contents on the copied
file. Try it with different combinations of the source and target files, using relative
or absolute paths.

import java.io.*;
import java.nio.file.*;
import java.nio.charset.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class CopyFlashCardData implements ActionListener {
 JFrame f = new JFrame("OCP Java SE 7 - Copy FlashCard Data");
 JTextField tfCopyFrom = null;
 JTextField tfCopyTo = null;
 JTextArea taFileContents = null;
 JButton btnCopyFile = null;

 private void buildUI() {
 tfCopyFrom = new JTextField();
 tfCopyTo = new JTextField();
 taFileContents = new JTextArea("Click 'Copy file' to " +
 "view contents");
 taFileContents.disable();
 btnCopyFile = new JButton("Copy File");
 btnCopyFile.addActionListener(this);

Figure 8.6 Swing
application used to
copy a source file to
a destination

ext field
 accept
 source

xt field
 accept

file
ination

Text area to
display copied file

utton to
initiate

file copy

Build
application’
UI
Licensed to Mark Watson <nordickan@gmail.com>

532 CHAPTER 8 Java file I/O (NIO.2)

r
s.

h

e

C
t

S
Opti
 JPanel topPanel = new JPanel();
 topPanel.setLayout(new GridLayout(6,2));
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(""));

 topPanel.add(new JLabel(" File Source"));
 topPanel.add(tfCopyFrom);
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(" File Destination"));
 topPanel.add(tfCopyTo);

 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(" Destination File Contents"));
 topPanel.add(new JLabel(""));

 JPanel middlePanel = new JPanel();
 middlePanel.setLayout(new BorderLayout());
 middlePanel.add(taFileContents);

 JPanel bottomPanel = new JPanel();
 bottomPanel.add(btnCopyFile);

 JPanel mainPanel = new JPanel();
 mainPanel.setLayout(new BorderLayout());
 mainPanel.add(BorderLayout.NORTH, topPanel);
 mainPanel.add(BorderLayout.CENTER, middlePanel);
 mainPanel.add(BorderLayout.SOUTH, bottomPanel);
 f.getContentPane().setLayout(new BorderLayout());
 f.setSize(500, 550);
 f.getContentPane().add(mainPanel);
 f.setVisible(true);

 tfCopyFrom.setText("E:/OCPJava7/downloads/8-1.txt");
 tfCopyTo.setText("E:/OCPJava7/8/8-1.txt");
 }
 public void actionPerformed(ActionEvent e) {
 try {
 Path source = Paths.get(tfCopyFrom.getText());
 Path target = Paths.get(tfCopyTo.getText());

 Files.copy(source, target,
 StandardCopyOption.REPLACE_EXISTING);

 byte[] bytes = Files.readAllBytes(target);
 taFileContents.setText(new String(
 bytes, Charset.defaultCharset()));
 }
 catch (IOException ioe) {
 JOptionPane.showMessageDialog(f, ioe.toString());
 }
 }
 public static void main(String[] args) {
 CopyFlashCardData fc = new CopyFlashCardData();
 fc.buildUI();
 }
}

Build
application’s
UI

Define default values fo
source and target field

Create Path object
from source value
entered by user

Create Pat
object from
target valu
entered by
user

all Files.copy
o copy file to
destination;

tandardCopy-
on.REPLACE_

EXISTING
replaces

existing file

Reads target file
and displays its

contents in a
text area. Shows message for

exception caught
in a dialog box
Licensed to Mark Watson <nordickan@gmail.com>

533Class Files
You can use absolute links and relative links to copy files. When you use a relative link
to a target file, where do you think the target file is created? Is it created relative to
your Java code (.class) and not relative to your source file?

EXAM TIP If you use a relative path to the target file, the file is created
relative to your Java class (.class file) and not relative to the source file
(passed as a parameter to method Files.copy()).

The preceding code shows you how to copy a file to another location. Method copy()
in class Files doesn’t allow you to append data to an existing file. If you want to add
the notes sent to you by your study group to your own text files, you need to open the
target file in append mode and use I/O streams or readers/writers to do so. If you’re
not sure how to do this, refer to chapter 7.

EXAM TIP Method copy() in class Files doesn’t allow you to append
data to an existing file; rather, it creates a new file or replaces an exist-
ing one.

The overloaded version of method copy() that reads from InputStream and writes to
a Path object can also be used to read from your system’s standard input stream using
System.in and write it to a file as follows:

try (InputStream in = System.in){
 Path target = Paths.get("myNotesFromConsole.txt");
 Files.copy(in, target, StandardCopyOption.REPLACE_EXISTING);
}
catch (IOException ioe) {
 System.out.println(ioe);
}

You can also read from a Path object and write its contents to OutputStream:

import java.io.*;
import java.nio.file.*;
public class WriteDataFromPathToStream{
 public static void main(String[] args) {
 try (OutputStream out = new FileOutputStream("Copy.txt")){
 Path source = Paths.get("WriteDataFromPathToStream.java");
 Files.copy(source, out);
 }
 catch (IOException ioe) {
 System.out.println(ioe);
 }
 }
}

Copy Path
object to
OutputStream
Licensed to Mark Watson <nordickan@gmail.com>

534 CHAPTER 8 Java file I/O (NIO.2)
Figure 8.7 shows the types of sources and targets that can be used with the overloaded
method copy() in class Files.

8.2.4 Move files and directories

Moving files and directories is a common requirement. To move files or directories pro-
grammatically, you can use Files.move(), which moves or renames a file to a target file:

public static Path move(Path source, Path target, CopyOption... options)

To rename a file notes.txt to copy-notes.txt, keeping the file in the same directory, you
can use the following:

Path source = Paths.get("notes.txt");
Files.move(source, source.resolveSibling("copy-notes.txt"));

To move a file to a new directory, retaining the same filename and replacing any exist-
ing file of that name in the new directory, you can use the following:

Path source = Paths.get("notes.txt");
Path target = Paths.get("/home/myNotes/");
Files.move(source, target.resolve(source.getFileName()),
 StandardCopyOption.REPLACE_EXISTING);

EXAM TIP You can only move empty directories using method Files
.move(). You can rename a nonempty directory by using Files.move().
But you can’t move a file or directory to a nonexisting directory.

8.2.5 Delete files and directories

To delete a directory or a file referred to by a Path object, you can use the following
methods from class Files:

public static void delete(Path path)
public static boolean deleteIfExists(Path path)

Both the preceding methods can delete a file or directory (if it’s empty). If you try to
delete a directory that isn’t empty, these methods will throw a DirectoryNotEmpty-
Exception. If you try to delete a nonexistent file or directory using method delete(),
it will throw a NoSuchFileException. But method deleteIfExists() won’t throw an

InputStream Path

Path OutputStream

Path Path

Source Target

Figure 8.7 Types of sources
and targets used by the
overloaded method copy()
to copy files

Deletes a file

Deletes a file
if it exists
Licensed to Mark Watson <nordickan@gmail.com>

535Files and directory attributes
exception if the file or directory at the specified path doesn’t exist—it will return
false. The deletion operation might also fail if the target file is in use, because some
operating systems don’t allow deletions of files or directories if they’re in use by an
active program.

EXAM TIP Methods delete() and deleteIfExists() can be used to
delete files and (nonempty) directories.

8.2.6 Commonly thrown exceptions

File creation, copying, renaming, moving, and deletion throw a couple of common
checked and unchecked exceptions:

■ IOException (checked exception)—The I/O devices are beyond the immediate
control of JVM, so operations involving the I/O devices can fail at any time,
throwing an IOException.

■ NoSuchFileException (runtime exception)—This exception is thrown when
you try to delete, move, or copy a nonexistent file or directory.

When you operate on files and directories, you might want to query their existing
attributes. Let’s see how you can do that in the next section.

8.3 Files and directory attributes

Imagine you want to set the last modification time stamp for a file or directory or add
a new user-defined attribute to it. You can do so by adding, accessing, or modifying the
attributes of a file or directory. The file or directory attributes refer to their metadata,
or data about data. You use files or directories to store your data. The OS stores addi-
tional data about your data that helps it to determine when it was created, modified,
accessed, and so on. You can access individual attributes or a group of attributes for
files and directories.

 Prior to version 7, Java supported limited access to the attributes of files and direc-
tories. To access non-supported attributes, developers often worked with native code.
With its java.nio.file.attribute package, NIO.2 supports access to and (if allowed)
modification of a larger set of file and directory attributes.

8.3.1 Individual attributes

Class Files defines static methods to access individual attributes of a file or directory
referred by a Path, such as its size, when was it last modified, whether it’s readable or

[8.3] Read and change file and directory attributes, focusing on the
BasicFileAttributes, DosFileAttributes, and PosixFileAttributes
interfaces
Licensed to Mark Watson <nordickan@gmail.com>

536 CHAPTER 8 Java file I/O (NIO.2)
writable, and whether it’s a directory or a file. Following is an example to access some
of the attributes of a java source file:

import java.nio.file.*;
public class AccessAttributes{
 public static void main(String[] args) throws Exception {
 Path path = Paths.get("MyAttributes.java");

 System.out.println("size:" + Files.size(path));
 System.out.println("isDirectory:" + Files.isDirectory(path));
 System.out.println("isExecutable:" + Files.isExecutable(path));
 System.out.println("isHidden:" + Files.isHidden(path));
 System.out.println("isReadable:" + Files.isReadable(path));
 System.out.println("isSameFile:" + Files.isSameFile(path, path));
 System.out.println("isDirectory:" + Files.isDirectory(path));
 System.out.println("isSymbolicLink:" + Files.isSymbolicLink(path));
 System.out.println("isWritable:" + Files.isWritable(path));
 System.out.println("getLastModifiedTime:" +
 Files.getLastModifiedTime(path));
 System.out.println("getOwner:" + Files.getOwner(path));
 }
}

Here’s the output of the preceding code (the value of some of these attributes might
vary depending on your system):

size:958
isDirectory:false
isExecutable:true
isHidden:false
isReadable:true
isSameFile:true
isDirectory:false
isSymbolicLink:false
isWritable:true
getLastModifiedTime:2014-12-09T08:03:54.609375Z
getOwner:AD-3B5C889B134A\Administrator (User)

You can also access the individual attributes of a file or directory by using method Files
.getAttribute(), passing to it the name of the attribute as a string value. To modify the
attributes of an existing file or directory, you can use Files.setAttribute(). Table 8.3
shows the relevant methods of class Files that can be used to update existing attributes.

Table 8.3 Methods to modify individual attributes of files or directories

Method Description

public static Path setAttribute(Path path, String
attribute, Object value, LinkOption... options)

Sets the value of a file attri-
bute

public static Path setLastModifiedTime(Path path,
FileTime time)

Updates a file’s last modi-
fied time attribute

public static Path setOwner(Path path, UserPrincipal
owner)

Updates the file owner
Licensed to Mark Watson <nordickan@gmail.com>

537Files and directory attributes
The following code displays the existing creation time of a Java source file using method
Files.getAttribute() and then modifies it using method Files.setAttribute():

import java.nio.file.*;
import java.nio.file.attribute.*;
public class ModifyAttributes{
 public static void main(String[] args) {

 Path path = Paths.get("ModifyAttributes.java");
 System.out.println("creationTime:" +
 Files.getAttribute(path, "creationTime"));

 FileTime newTime = FileTime.fromMillis(System.currentTimeMillis());
 Files.setAttribute(path, "creationTime", newTime);

 System.out.println("creationTime:" +
 Files.getAttribute(path, "creationTime"));
 }
}

EXAM TIP Methods Files.setAttribute() and Files.getAttribute()
can be used to access a file or directory attribute and modify it (if allowed).
The attribute name is passed to these methods as a string value.

Rather than accessing individual attributes, you can also access a group of attributes,
as discussed in the next section.

8.3.2 Group of attributes

Querying the file system multiple times to access all file or directory attributes can
affect your application’s performance. To get around this, you can access a group of file
attributes by calling Files.getFileAttributeView() or Files.readAttributes().

INTERFACES TO READ AND MODIFY ATTRIBUTE SETS

Different file systems might support different attribute sets. Java groups related attri-
butes that correspond to a specific file system implementation like DOS or POSIX, or
to a common functionality like file owner attributes. You can use multiple interfaces
to access file and directory attributes and modify them. These groups are defined as
interfaces, and the ones on the exam are as follows:

■ BasicFileAttributes and BasicFileAttributeView—The BasicFile-

Attributes interface defines methods to access the basic attributes that should
be supported by all the file systems. The BasicFileAttributeView interface
can be used to modify the basic attributes.

■ DosFileAttributes and DosFileAttributeView—The DosFileAttributes

interface extends BasicFileAttributes and defines methods to access attri-
butes specific to Windows files and directories. The DosFileAttributeView
interface defines methods to modify the DOS file attributes.

■ PosixFileAttributes and PosixFileAttributeView—The PosixFile-

Attributes interface also extends BasicFileAttributes and defines methods

Retrieves value
of attribute
creationTime.

Updates value
of attribute

creationTime.
Licensed to Mark Watson <nordickan@gmail.com>

538 CHAPTER 8 Java file I/O (NIO.2)
to access attributes related to the POSIX family of standards, like Linux or UNIX.
The PosixFileAttributeView interface defines methods to modify attributes
related to the POSIX family.

■ AclFileAttributeView—Available only for Windows OS, this interface sup-
ports access and updates of a file’s access control list (ACL).

■ FileOwnerAttributeView—This interface supports access and updates to the
owner of a file or directory. It’s supported by all systems that support the con-
cept of file owners.

■ UserDefinedFileAttributeView—This interface supports the addition, modi-
fication, and deletion of user-defined metadata.

NOTE For the preceding list of interfaces, the ones that end with the
term “View” are collectively referred to as the view interfaces, and they’re
used to update file and directory attributes.

Figure 8.8 shows BasicFileAttributes, DosFileAttributes, and PosixFileAttributes
interfaces with their methods to help you get a better understanding of the methods
that they define.

<<interface>>
BasicFileAttributes

creationTime() : FileTime
lastAccessTime() : FileTime
lastModifiedTime() : FileTime

isRegularFile() : boolean
isDirectory() : boolean
isSymbolicLink() : boolean
isOther() : boolean

size () : long

<<interface>>
DosFileAttributes

isArchive() : boolean
isHidden() : boolean
isReadOnly() : boolean
isSystem() : boolean

<<interface>>
PosFileAttributes

group() : GroupPrincipal
owner() : UserPrincipal
permissions() : Set<PosixFilePermissions>

Figure 8.8 Interface BasicFileAttributes is extended by interfaces DosFileAttributes
and PosixFileAttributes
Licensed to Mark Watson <nordickan@gmail.com>

539Files and directory attributes
EXAM TIP The BasicFileAttributes, DosFileAttributes, and Posix-
FileAttributes interfaces define methods to access attributes. They
don’t define methods to modify (or set) the attributes. Use class Files or
view interfaces (covered in this section) to modify the attributes.

Figure 8.9 shows the view interfaces, which can be used to modify file or directory
attributes.

 To access and update a group of attributes for a directory or file, you can access an
attribute view by using method File.getFileAttributeView(). To only access (not
update) an attribute group, you can use method File.readAttributes(). You can
also call method readAttributes() on an attribute view to get its corresponding attri-
bute set. Following is an example that uses these methods:

Path path = Paths.get("pathToaFile");
PosixFileAttributeView view = Files.getFileAttributeView(path,
 PosixFileAttributeView.class);
PosixFileAttributes attr = view.readAttributes();
PosixFileAttributes attr2 = Files.readAttributes(path,
 PosixFileAttributes.class);

EXAM TIP If a file system doesn’t support an attribute view, Files.get-
FileAttributeView() returns null. If a file system doesn’t support an
attribute set, File.readAttributes() will throw a runtime exception.

Let’s get started with accessing basic attributes and modifying them.

<<interface>>
FileAttributeView

name():String

<<interface>>
BasicFileAttributeView

readAttributes():BasicFileAttributes
setTimes(FileTime lastModified,

FileTime lastAccess,
FileTime createTime):void

<<interface>>
AclFileAttributeView

getAcl():List<AclEntry>
setAcl(List<AclEntry>):void

<<interface>>
DosFileAttributeView

readAttributes():DosFileAttributes
setArchive(boolean val):void
setHidden(boolean val):void
setReadOnly(boolean val):void
setSystem(boolean val):void

<<interface>>
PosixFileAttributeView

readAttributes():PosixFileAttributes
setGroup(GroupPrincipal):void
setPermissions(Set<PosixFilePermissions>

perms):void

<<interface>>
FileOwnerAttributeView

getOwner()userPrincipal
setOwner(userPrincipal

owner)

<<interface>>
UserDefinedFileAttributeView

delete(String name):void
list():List<String>
read(String name,ByteBuffer dst):int
size(String name):int
write(String name,ByteBuffer src):int

<<extends>> <<extends>>

<<extends>><<extends>>

Figure 8.9 Interfaces BasicFileAttributeView, DosFileAttributeView, PosixFileAttribute-
View, AclFileAttributeView, FileOwnerAttributeView, and UserDefinedFileAttributeView
can be used to update attribute values using Files.readAttributes() and Files.getFileAttributeView().
Licensed to Mark Watson <nordickan@gmail.com>

540 CHAPTER 8 Java file I/O (NIO.2)

p

Time

-
8.3.3 Basic attributes

Imagine you need to delete all files in a directory, whose creation time is older than
one day, using your Java code. If you can access the creation time of a file, you can
determine if the file needs to be deleted or not. Here’s an example:

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;
class DeleteOldFiles {
 public static void delDayOldFile(String fileName) throws IOException {
 Path file = Paths.get(fileName);

 BasicFileAttributes attr = Files.readAttributes(file,
 BasicFileAttributes.class);
 FileTime fileCreationTime = attr.creationTime();

 long currentTime = System.currentTimeMillis();
 FileTime dayOldFileTime = FileTime.fromMillis(
 currentTime - (24*60*60*1000));

 if (fileCreationTime.compareTo(dayOldFileTime) < 0)
 Files.delete(file);
 }
}

You can access an object of a class that implements the BasicFileAttributes inter-
face by calling Files.readAttributes() and passing it BasicFileAttributes.class.
You don’t need to be bothered about the exact type of the object that’s returned
to you.

EXAM TIP If an underlying system doesn’t support all the basic time-
stamps—that is, creationTime, lastAccessTime, and lastModified-
Time—it might return system-specific information.

The next example uses BasicFileAttributeView to modify the file creation, modifi-
cation, and access time of a file to 60, 50, and 30 seconds from the current time:

public class ModAttributes{
 public static void modifyDateAttr(String fileName) throws IOException {
 Path file = Paths.get(fileName);
 BasicFileAttributeView view = Files.getFileAttributeView(file,
 BasicFileAttributeView.class);

 long now = System.currentTimeMillis();
 FileTime creation = FileTime.fromMillis(now - 60000);
 FileTime lastModified = FileTime.fromMillis(now - 50000);
 FileTime lastAccess = FileTime.fromMillis(now - 30000);

 view.setTimes(lastModified, lastAccess, creation);
 }
}

Create a path to
filename

Get basic file
attributes

of file
Get file’s
creation
timestam

Get current
time’s

milliseconds
Compute File
for a day old

Check if file creation
timestamp is older
than one dayDelete

file
Licensed to Mark Watson <nordickan@gmail.com>

541Files and directory attributes
Another method that you can use to read the file attributes is:

 static Map<String,Object> readAttributes(Path path,
 String attributes,
 LinkOption... options)
 throws IOException

The parameter attributes take the form [view name:]attribute-list. The square brack-
ets mean that the view name is optional—it can take values basic, dos, and posix. If
this value is absent, it defaults to basic. The attributes are specified as a comma-
separated list of the attributes to be read (without any spaces). You can specify * to
read all the attributes for a group. Here’s an example for accessing all the attributes of
a file, printing them (attribute names and their values), and changing the last-
ModifiedTime of the file:

Path file = Paths.get(fileName);
Map<String,Object> values = Files.readAttributes(file, "*");

for (String attribute:values.keySet()) {
 System.out.println(attribute + " : " + values.get(attribute));
}

FileTime newTime = FileTime.fromMillis(System.currentTimeMillis());
Files.setAttribute(file, "lastModifiedTime", newTime);

You can also use a comma-delimited list of values:

Map<String,Object> values = Files.readAttributes(file,
 "lastModifiedTime,isDirectory");

To modify an attribute, you can call an XxxFileAttributeView interface, call
Files.setAttribute(), or call a specific method from class Files, if it exists. For
example, you can modify the last modified time of a Path object by calling Files
.setLastModifiedTime(). The following line of code updates the last modified time
for the file referred to by the variable file:

Files.setLastModifiedTime(file, dayOldFileTime);

EXAM TIP Methods Files.setAttribute() and Files.getAttribute()
throw an IllegalArgumentException or UnsupportedOperationException
if you pass them an invalid or unsupported attribute.

8.3.4 DOS attributes

As shown in figure 8.9, the DosFileAttributes interface makes the following attri-
butes available:

■ archive

■ hidden

■ readonly

■ system
Licensed to Mark Watson <nordickan@gmail.com>

542 CHAPTER 8 Java file I/O (NIO.2)
EXAM TIP The DOS attributes are available on a Windows system only.
Trying to access them on other systems will throw a runtime exception.

The following example uses the DosFileAttribute and DosFileAttributeView inter-
faces to access DOS attributes of a file, updating them if a file is read only:

Path file = Paths.get("name-of-a-file");
DosFileAttributeView dosView = Files.getFileAttributeView(file,
 DosFileAttributeView.class);
DosFileAttributes dosAttrs = dosView.readAttributes();
if (dosAttrs.isReadOnly()) {
 dosView.setHidden(true);
 dosView.setArchive(false);
 dosView.setReadOnly(false);
 dosView.setSystem(true);
}
else
 System.out.println("Don't modify the attributes");

You can also access file or directory attributes by using class Files. The following code
reads DOS attributes:

Map<String,Object> values = Files.readAttributes(file,
 "dos:archive,hidden");
Map<String,Object> values2 = Files.readAttributes(file, "dos:*");
DosFileAttributes attr = Files.readAttributes(file,
 DosFileAttributes.class);
DosFileAttr

EXAM TIP When you read all DOS attributes using method Files.read-
Attributes(), you also read the basic attributes.

To modify a DOS attribute, you must prefix the attribute name with dos: because an
attribute is implicitly prefixed with basic: (which can result in an invalid attribute).
Imagine that you wish to prevent listing a specific file in a files explorer on a Win-
dows system. You can use Files.setAttribute() to modify its hidden property and
set it to true:

Files.setAttribute(file, "dos:hidden", true);

EXAM TIP When you read or write an invalid value to a file attribute, the
code throws the runtime exception ClassCastException.

8.3.5 POSIX attributes

The POSIX attributes are as follows:

■ group

■ owner

■ permissions

Use DosFile-
Attributes to
access file
attributes.

Use DosFileAttributeView
to update file attributes.

Read
listed DOS
attributes

Read
all DOS
attributes
Licensed to Mark Watson <nordickan@gmail.com>

543Files and directory attributes
EXAM TIP The POSIX attributes are available on the POSIX family of stan-
dards, like UNIX, LINUX, etc. Trying to access them on other systems will
throw a runtime exception.

The following example updates the permissions of a file depending on whether it’s
owned by admin or not. It uses the PosixFileAttributeView and PosixFileAttributes
interfaces:

PosixFileAttributeView posixView = Files.getFileAttributeView(file,
 PosixFileAttributeView.class);
PosixFileAttributes posixAttrs = posixView.readAttributes();
if (posixAttrs.owner().getName().equals("admin"))
 posixView.setPermissions(PosixFilePermissions.fromString("rwxrwxrwx"));
else
 posixView.setPermissions(PosixFilePermissions.fromString("rwxr-x---"));

You can also use class Files to read all POSIX file attributes:

Map<String,Object> values = Files.readAttributes(file, "posix:*");
PosixFileAttributes attr = Files.readAttributes(file,
 PosixFileAttributes.class);

8.3.6 AclFileAttributeView interface

The AclFileAttributeView interface supports reading and updating a file’s ACL or
file owner attributes. It defines methods getAcl() and setAcl(). This view is available
only for Windows systems.

8.3.7 FileOwnerAttributeView interface

The FileOwnerAttributeView interface is supported by all file systems with a file
owner concept, and this view includes methods to access and update the owner of a
file or directory. If defines methods getOwner() and setOwner(UserPrincipal).

EXAM TIP To read or update the owner of a file or directory you can use
the AclFileAttributeView, FileOwnerAttributeView, and PosixFile-
Attribute interfaces.

8.3.8 UserDefinedAttributeView interface

The UserDefinedAttributeView interface can be used to add, delete, access, and
modify additional user-defined attributes to a file or directory. It defines methods
delete(String), list(), read(String, ByteBuffer), size(String), and write
(String, ByteBuffer) to, respectively, delete, list, read, get the attribute’s size, and
write attribute values.

 Imagine you’re developing a file management application that enables multiple
users to delete files. But the files chosen for deletion are only marked for deletion and
the actual deletion is executed separately. To accomplish this, you can add a user-
defined attribute delete to a file with a value of, say, true. This attribute can be que-
ried before actually deleting a file. The following sample code shows how you can do
Licensed to Mark Watson <nordickan@gmail.com>

544 CHAPTER 8 Java file I/O (NIO.2)

B

B

it. It defines code to write and read the user-defined attribute delete in method
main(). But in a real application, this would usually be defined in separate classes
or methods.

import java.io.*;
import java.nio.file.*;
import java.nio.*;
import java.nio.file.attribute.*;
import java.nio.charset.*;
public class UserAttrs{
 public static void main(String args[]) throws IOException {
 Path file = Paths.get("eJava.txt");

 UserDefinedFileAttributeView view= Files.getFileAttributeView(file,
 UserDefinedFileAttributeView.class);

 writeAttr(view,"delete",true);
 if (readAttr(view, "delete"))
 Files.delete(file);
 }
 static void writeAttr(UserDefinedFileAttributeView view,
 String attr,
 boolean value) throws IOException {
 if (value)
 view.write(attr,Charset.defaultCharset().encode("true"));
 else
 view.write(attr,Charset.defaultCharset().encode("false"));
 }
 static boolean readAttr(UserDefinedFileAttributeView view,
 String attr) throws IOException {
 ByteBuffer buf = ByteBuffer.allocate(view.size(attr));
 view.read(attr, buf);
 buf.flip();
 String value = Charset.defaultCharset().decode(buf).toString();
 return (value.equalsIgnoreCase("true"));
 }
}

The preceding code would delete the file referred by the variable file from your sys-
tem. The possibilities are endless for how you can use a user-defined attribute that you
add to a file or directory. In this section, you learned how to access and update the
attributes of a single file or directory. If you combine it with recursive access of a direc-
tory tree, it can open a lot of possibilities. For example, you can create, read, identify,
update, or delete files with a particular attribute or a group of attributes. Recursive
access of a directory tree is a breeze with the supporting classes in NIO.2. Let’s exam-
ine it in detail in the next section.

Use
write(String,
yteBuffer) to
write a user-

defined
attribute.

Use size() to
get the size
of attribute
value delete.

Use
read(String,

yteBuffer) to
read a user-

defined
attribute.
Licensed to Mark Watson <nordickan@gmail.com>

545Recursively access a directory tree
8.4 Recursively access a directory tree

Imagine you’re ready to write your exam and want to view all the notes that you cre-
ated using the sample application Exam FlashCards. Because you’ve been storing the
text files corresponding to all the exam objectives in separate subdirectories, you can
recursively access the directory, which includes all these subdirectories, thereby access-
ing all the text files.

 Before we move further, let me briefly cover the difference between a recursive
and nonrecursive access of a directory for directory OCP, as shown in figure 8.10.

 A nonrecursive access of directory OCP will only access its immediate subdirecto-
ries: obj2 and obj8. On the other hand, a recursive access of the directory OCP will
access all its subdirectories and files.

 There are multiple ways to access a directory. Common and popular access algo-
rithms are breadth-first and depth-first. In a breadth-first search algorithm, all the direc-
tories and files on the first level are accessed before moving on to the members on the
next level, and so on until no more are remaining. In a depth-first algorithm, a direct
subdirectory of the main directory is accessed recursively before moving forward with
searching the next subdirectory. Further, there are multiple ways in which a directory
and its members can be accessed in a depth-first search: preorder, in-order, and postorder.

[8.4] Recursively access a directory tree using the DirectoryStream and
FileVisitor interfaces

obj8

OCP

Nonrecursive access

obj2

code

2-1.txt 8-2.txt

obj8

OCP

Recursive access

obj2

code

2-1.txt 8-2.txt

1

2 3

1

2

3 6

4

5

Figure 8.10 Sample directory structure to show recursive and nonrecursive access of directory OCP.
Licensed to Mark Watson <nordickan@gmail.com>

546 CHAPTER 8 Java file I/O (NIO.2)
You can compare the directory and its subdirectories and files with a tree data structure.
A tree data structure has a root node, with multiple children. The preorder access will
visit a node prior to accessing its children. The in-order access will access its left sub-
tree, the node itself, and then its right subtree. The in-order access applies to binary
tree structures, which have no more than two subtrees. In postorder access, a node is
visited after its children are visited. Figure 8.11 shows example tree structures and the
nodes numbered in the order they will be visited in a breadth-first access and in a
depth-first access.

NOTE The exam won’t query you on details of how to access a tree,
breadth-first or depth-first. But it will help you to understand (and remem-
ber) how the access of a tree or a directory structure works.

Class Files defines overloaded method walkFileTree() to walk recursively through
the specified path. To define the traversal behavior, this method accepts an object of
FileVisitor interface, which is covered in the next section.

8.4.1 FileVisitor interface

You can use the FileVisitor, a generic interface to define the code that you want to
execute during the traversal of a directory structure. When you traverse a directory
structure, you can define what to do before or after you visit a directory, when you visit

2 3

1Level 1 Breadth-first

access

Depth-first

access

4

Level 2

Level 3 5 5

2 5

1

Pre-order access

(visit node before children)

3 4 6

2 5

4

In-order access

(visit left subtree, node, right subtree)

1 3 6

3 5

6

Post-order access

(visit node after its children)

1 2 4

Figure 8.11 Breadth-first and depth-first directory tree access
Licensed to Mark Watson <nordickan@gmail.com>

547Recursively access a directory tree
a file, or when access to a file is denied. The methods of the FileVisitor interface are
listed in table 8.4.

Let’s assume that you stored your exam tips in text files 2-1.txt and 8-2.txt using the
directory structure shown in figure 8.12.

 Let’s create a class, say MyFileVisitor, which implements the FileVisitor inter-
face and traverses this directory structure, storing the exam objective numbers (2-1
and 8-2) and their corresponding tips as a List<String> in a HashMap<String,
List<String>>. The code is shown in listing 8.3.

Table 8.4 Methods of interface FileVisitor<T>

Method Method signature

FileVisitResult postVisitDirectory(T
dir, IOException exc)

Invoked for a directory after entries in the
directory, and all of their descendants, have
been visited.

FileVisitResult preVisitDirectory(T
dir, BasicFileAttributes attrs)

Invoked for a directory before entries in the
directory are visited.

FileVisitResult visitFile(T file,
BasicFileAttributes attrs)

Invoked for a file in a directory.

FileVisitResult visitFileFailed(T
file, IOException exc)

Invoked for a file that couldn’t be visited.

obj8

OCP

obj2

code

2-1.txt 8-2.txt

Figure 8.12 Example of
directory structure used to
store exam tips in text files
2-1.txt and 8-2.txt
Licensed to Mark Watson <nordickan@gmail.com>

548 CHAPTER 8 Java file I/O (NIO.2)

Cal
to

subdi
and

d

fi
d
i

R
w
u

L

wh
c

ac
class MyFileVisitor implements FileVisitor<Path> {

 Map<String, java.util.List<String>> flashcards = new HashMap<>();

 public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs) {
 String dirName = dir.getFileName().toString();
 if (dirName.startsWith("code"))
 return FileVisitResult.SKIP_SUBTREE;
 else
 return FileVisitResult.CONTINUE;

 }
 public FileVisitResult postVisitDirectory(Path dir,
 IOException exc) {
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attrs) {

 String fileName = file.getFileName().toString();

 if (fileName.endsWith(".txt")) {
 java.util.List<String> tips = new ArrayList<>();

 try (
 BufferedReader reader = new BufferedReader(
 new FileReader(file.toFile()));
){
 String line = null;
 while((line = reader.readLine()) != null)
 tips.add(line);
 }
 catch (Exception e) {
 System.out.println(e);
 }

 flashcards.put(fileName.substring(
 0, fileName.length()-4),tips);
 }
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult visitFileFailed(Path file, IOException exc) {
 System.out.println(exc);
 return FileVisitResult.SKIP_SUBTREE;
 }
 public Map<String, java.util.List<String>> getFlashCardsMap() {
 return flashcards;
 }
}

Listing 8.3 Using FileVisitor to recursively access exam tips from files

MyFileVisitor implements
FileVisitor<Path>.

 b Hash map to store objective
number and its corresponding

exam tips as List<String>

 c

led prior
 visiting

rectories
files of a
irectory. d

Called after visiting
subdirectories and
files of a directory.

 e

Called
when a

le (not a
irectory)
s visited.

 f

eads text files
ith exam tips

sing Buffered-
Reader and

adds them to
ist<String>.

 g

Add objective
number and its
list of tips to a

hash map

 h

Called
en a file
an’t be
cessed.

 i
Licensed to Mark Watson <nordickan@gmail.com>

549Recursively access a directory tree
NOTE In listing 8.3, I’ve deliberately excluded multiple checks to keep
the example simple.

In listing 8.3, notice how all the methods of the FileVisitor interface return a con-
stant of enum FileVisitResult to signal whether to continue with the traversal of a
directory or to skip it (table 8.5 lists all the constant values for FileVisitResult).

 The code at B for class MyFileVisitor implements the FileVisitor<Path>
interface. The code at c defines a hash map to store the exam objectives as its keys
and the corresponding exam tips as values. The code at d for method preVisit-
Directory() skips traversing the subtree for directories with the name “code” by return-
ing FileVisitResult.SKIP_SUBTREE. The code at e defines postVisitDirectory(),
which is called after all the children of a directory are visited. Because the example
didn’t require any action in the method, it simply returns FileVisitResult.CONTINUE.
The code at f defines visitFile(), which is called when code accesses a file (not a
directory). At g, method visitFile() includes a simple check of reading a file that
ends with .txt; for this simple example, assume that all text files will define the exam
objectives. It reads the file contents using a BufferedReader and adds each line to a
List<String>. At h, the exam objective and the list of exam tips are added to the
hash map. Method visitFile() is passed file attributes. If the file can’t be visited for
some reason—for example, reading the attributes failed due to an IOException—
method visitFileFailed() is called, defined at i.

EXAM TIP Methods preVisitDirectory() and visitFile() are passed
BasicFileAttributes of the path that they operate on. You can use
these methods to query file or directory attributes.

You can also work with SimpleFileVisitor from the Java API, a class that implements
the FileVisitor interface and all its methods. It saves you from implementing meth-
ods that you might not need.

8.4.2 Class SimpleFileVisitor

Class SimpleFileVisitor is a simple visitor of files with default behavior to visit all
files and to rethrow I/O errors. It implements the FileVisitor interface (methods of

Table 8.5 Enum FileVisitResult constants and their descriptions

Enum constant Description

CONTINUE Continue

SKIP_SIBLINGS Continue without visiting the siblings of this file or directory

SKIP_SUBTREE Continue without visiting the entries in this directory

TERMINATE Terminate
Licensed to Mark Watson <nordickan@gmail.com>

550 CHAPTER 8 Java file I/O (NIO.2)
FileVisitor interface are listed in table 8.5). You can extend this class to implement
methods for only the required behavior.

 Imagine you need to recursively traverse a directory structure and print only the
names of all the files. In this case, you can extend the SimpleFileVisitor class and
override only the visitFile() method. Following is the code that accomplishes it:

import java.nio.file.*;
import java.nio.file.attribute.*;
class ListFileNames extends SimpleFileVisitor<Path> {
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attributes) {
 System.out.println("File name :" + file.getFileName());
 return FileVisitResult.CONTINUE;
 }
}
public class TestListFiles2 {
 public static void main(String[] args) throws Exception {
 Path path = Paths.get("E:/OCPJavaSE7");
 ListFileNames listFileNames = new ListFileNames();
 Files.walkFileTree(path, listFileNames);
 }
}

In the preceding code, at B, class ListFileNames declares to extend SimpleFile-
Visitor class. Because this example code doesn’t need to define other directory tra-
versal behavior, like pre- and post-directory visits or file visit failure, ListFileNames
overrides only one method, visitFile(). The code at c initiates the traversal of the
directory structure (discussed in detail in the next section) referred by variable path
in method main(). You can assign path to any valid directory on your system.

8.4.3 Initiate traversal for FileVisitor and SimpleFileVisitor

You can initiate traversal of a directory by calling the overloaded method walkFile-
Tree() from class Files:

public static Path walkFileTree(Path start,
 FileVisitor<? super Path> visitor)
 throws IOException

public static Path walkFileTree(Path start,
 Set<FileVisitOption> options,
 int maxDepth,
 FileVisitor<? super Path> visitor)
 throws IOException

This method traverses through a directory structure, the root of which is specified
by a Path object. The directory tree is traversed depth-first. The traversal is consid-
ered complete when either all the members of a tree are visited, any of method File-
Visitor returns FileVisitResult.TERMINATE, or if an exception is thrown during
the traversal.

Class ListFileNames
extends
SimpleFileVisitor

 b

Initiate directory
tree traversal c
Licensed to Mark Watson <nordickan@gmail.com>

551Recursively access a directory tree

f
n

EXAM TIP A directory tree is traversed depth-first. But the order in which
the subdirectories are traversed is unpredictable.

Let’s see how you can initiate traversal of a directory and display the flash cards in
the sample application. Figure 8.13 shows a screenshot of the sample application,
displaying the exam tips from the text files as shown in the directory structure in fig-
ure 8.12.

 Here’s the code to display the exam tips (as shown in figure 8.13), persisted in the
text files, as shown in figure 8.12.

import java.io.*;
import java.nio.file.*;
import java.nio.charset.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.nio.file.attribute.*;

public class DisplayFlashCards implements ActionListener{
 JFrame f = new JFrame("OCP Java SE 7 - Display FlashCard Data");
 JLabel lblObjectiveNo = null;
 JLabel lblFlashcard = null;
 JButton btnNext = null;

 private void buildUI() {
 lblObjectiveNo = new JLabel();
 lblFlashcard = new JLabel();
 lblObjectiveNo.setBorder(
 BorderFactory.createLineBorder(Color.BLACK));
 lblFlashcard.setBorder(
 BorderFactory.createLineBorder(Color.BLACK));
 btnNext = new JButton(" > ");

Listing 8.4 Reading and displaying exam tips from files

Figure 8.13 Sample
application displaying
exam objective and
exam tip

Build UI o
applicatio

 b
Licensed to Mark Watson <nordickan@gmail.com>

552 CHAPTER 8 Java file I/O (NIO.2)

Ins

Fil
Fi

F
Fi

call
th

E:\\

i

p.

 btnNext.addActionListener(this);

 JPanel topPanel = new JPanel();
 topPanel.setLayout(new GridLayout(6,1));
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(" Exam Objective"));
 topPanel.add(lblObjectiveNo);
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(""));
 topPanel.add(new JLabel(" Exam Tip"));

 JPanel middlePanel = new JPanel();
 middlePanel.setLayout(new BorderLayout());
 middlePanel.add(lblFlashcard);

 JPanel bottomPanel = new JPanel();
 bottomPanel.add(btnNext);

 JPanel mainPanel = new JPanel();
 mainPanel.setLayout(new BorderLayout());
 mainPanel.add(BorderLayout.NORTH, topPanel);
 mainPanel.add(BorderLayout.CENTER, middlePanel);
 mainPanel.add(BorderLayout.SOUTH, bottomPanel);

 f.getContentPane().setLayout(new BorderLayout());
 f.setSize(500, 550);
 f.getContentPane().add(mainPanel);
 f.setVisible(true);
 }

 MyFileVisitor fileVisitor = new MyFileVisitor();

 Map<String, java.util.List<String>> flashcards = null;
 Iterator<String> examObjIterator = null;
 ListIterator<String> tipsIterator = null;

 public void accessAllExamTips() throws IOException {
 Files.walkFileTree(Paths.get("E:\\OCP"), fileVisitor);
 flashcards = fileVisitor.getFlashCardsMap();
 }

 public void initExamTips() {
 examObjIterator = flashcards.keySet().iterator();
 showNextTip();
 }

 private void showNextTip() {
 if(tipsIterator != null && tipsIterator.hasNext()) {
 lblFlashcard.setText("<html>" +
 tipsIterator.next() + "</html>");
 }
 else {
 if(examObjIterator.hasNext()) {
 String currentExamObj = examObjIterator.next();
 lblObjectiveNo.setText(currentExamObj);

 tipsIterator = flashcards.get(currentExamObj)
 .listIterator();
 if(tipsIterator != null && tipsIterator.hasNext()) {

Build UI of
application

 b

tantiate
MyFile-
Visitor,

used by
es.walk-
leTree().

 c

Variables to store
flashcards as a
hash map and
iterators to its
keyset and values.

 d

iles.walk-
leTree() is
ed to walk
e file tree
rooted at
OCPJava7;

accepts
nstance of
FileVisitor.

 e

Obtain iterator to
all exam objectives,
stored as keys in
hash map flashcards;
displays first exam ti

 f

Shows the
next tip

 g
Licensed to Mark Watson <nordickan@gmail.com>

553Recursively access a directory tree

 lblFlashcard.setText("<html>" +
 tipsIterator.next() + "</html>");
 }
 }
 }
 }
 public void actionPerformed(ActionEvent e) {
 try {
 showNextTip();
 }
 catch (Exception ioe) {
 JOptionPane.showMessageDialog(f, ioe.toString());
 }
 }

 public static void main(String[] args) throws Exception {
 DisplayFlashCards fc = new DisplayFlashCards();
 fc.buildUI();
 fc.accessAllExamTips();
 fc.initExamTips();
 }
}

The preceding code creates a class, DisplayFlashCards, which reads text files stored
in the directory structure as shown in figure 8.12, and displays the exam tips in a swing
application. You can display the next exam tip by activating the Next button. The
example shows how you can use File.walkFileTree() to walk a directory structure,
read the exam tips from the text files, and store them in a hash map.

 The code at B builds the UI of the swing application. Don’t worry if you can’t fol-
low all of it—swing components aren’t on the exam. The code at c instantiates
MyFileVisitor, a class that implements the FileVisitor interface. Complete code
for class MyFileVisitor is shown in listing 8.3. The code at d defines variables to
store the exam tips in a hash map, with iterators to its keyset (exam objectives) and
values (List<String>). At e, Files.walkFileTree() initiates the traversal of the file
tree rooted at E:\OCP using the FileVisitor instance. The code at f obtains an
iterator to all the exam objectives, stored as keys in the hash map flashcards. And
also the first exam tip is displayed. Method showNextTip() displays the next available
exam tip in the swing application g. The code at h is called when the Next button is
activated by a user. Method main() calls methods to build the UI of the swing applica-
tion, traverses the mentioned path retrieving all exam tips from the file system, and
displays the first tip.

NOTE This sample application doesn’t include the Previous button, to
keep the example code simple. If you want, you can add this functionality
yourself to hone your skills with the collection classes.

8.4.4 DirectoryStream interface

The DirectoryStream interface can be used to iterate over all the files and directories
in a directory. You can use an Iterator or for-each construct to iterate over a directory.

Shows the
next tip

 g

Called when
Next button
is clicked

 h
Licensed to Mark Watson <nordickan@gmail.com>

554 CHAPTER 8 Java file I/O (NIO.2)
The order in which the directory contents are iterated is unpredictable. Following is
an example that uses DirectoryStream with a for-each construct:

import java.io.*;
import java.nio.file.*;
public class DirStream{
 public static void main(String args[]) throws IOException {
 Path dir = Paths.get("E:/OCPJavaSE7");
 try (DirectoryStream<Path> stream=Files.newDirectoryStream(dir)) {
 for (Path value : stream) {
 System.out.println(value + ":" + Files.isDirectory(value));
 }
 }
 }
}

The preceding code outputs a list of all the files and directories in the directory
referred by the variable dir. The code uses Files.newDirectoryStream(Path) to get a
DirectoryStream object, the values of which are iterated over by using a for-each con-
struct. What happens if you try to iterate a file (and not a directory) using Directory-
Stream? In this case you’ll get a runtime exception (NotDirectoryException).

EXAM TIP If you pass Path to a file (and not a directory) to Files.new-
DirectoryStream(), it will throw a runtime exception. The order of
iteration of files and directories in a specified directory using Directory-
Stream is unpredictable.

The next example uses an Iterator to iterate over the files and directories of a direc-
tory using method Files.DirectoryStream(Path dir, String glob) (glob is covered
in the next section):

import java.io.*;
import java.nio.file.*;
import java.util.*;
public class DirStream{
 public static void main(String args[]) throws IOException {
 Path dir = Paths.get("E:/OCPJavaSE7/FileNIO");
 try (DirectoryStream<Path> stream = Files.newDirectoryStream(
 dir, "*.{txt,java}")) {
 Iterator iterator = stream.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
 }
}

The preceding code iterates over the files and directories of the directory referred to by
the variable dir. The glob value *.{txt,java} passed to the overloaded method new-
DirectoryStream() limits the values that are iterated to the ones that end with “txt” or
Licensed to Mark Watson <nordickan@gmail.com>

555Using PathMatcher
“java.” Method iterator() returns an Iterator associated with the DirectoryStream
object. Iterator’s method hasNext() checks whether more elements are available or
not and method next() retrieves the next object.

 Other common examples that can be used to demonstrate walking a directory
structure include copying, deleting, querying, or modifying the attributes of files and
directories in a directory structure.

 Another common requirement while traversing a directory structure is to search
for files or directories with a pattern of, say, *.txt. Next we’ll cover the use of Path-
Matcher to find a file.

8.5 Using PathMatcher

Imagine you want to count all the text files in a directory, or count only the .pdf files
whose names start with “report”, or perhaps delete all files whose names include
“system”. To do so, you can create a pattern using special characters and then match
your file or directory names against those patterns. You can define these patterns
using regex, glob, or other syntax.

 Regex syntax is covered in detail in chapter 5 of this book. A glob pattern supports
a simpler form of pattern matching than the regex. It supports fewer special con-
structs. The asterisk (*) matches anything or nothing. The question mark (?) matches
any single character and the characters classes (like [0-9] or [a-zA-Z]). A glob
doesn’t support substring matches, which are supported by regex.

EXAM TIP In glob * matches zero or more characters. In regex .* matches
zero or more characters.

To match a Path object with a pattern, you should create an object of java.nio
.file.PathMatcher. PathMatcher is an interface with just one method: matches(). It
returns true if a given path matches this matcher’s pattern:

boolean matches(Path path)

You can create a PathMatcher by calling FileSystem.getPathMatcher() and passing
it the pattern to be matched:

public abstract PathMatcher getPathMatcher(String syntaxAndPattern)

The method parameter accepts a string of the form syntax:pattern. FileSystem sup-
ports glob and regex syntax. It can also support other syntax (which are beyond the
scope of this book). Before moving on with an example of how to use the PathMatcher
interface, let’s browse through some of the patterns that you can use to match Path
objects, as described in table 8.6.

[8.5] Find a file with the PathMatcher interface
Licensed to Mark Watson <nordickan@gmail.com>

556 CHAPTER 8 Java file I/O (NIO.2)

G
F

Cr
Matc
passi
In the sample application, recall that you stored all the exam tips in a text file with a
name that reflects its exam objective number—for example, 2-1.txt, 8-2.txt, and 12-4.txt.
The following code snippet uses class PathMatcher to determine whether a path matches
the target regex pattern:

import java.nio.file.*;
class MyMatcher {
 public static void main(String args[]) {
 PathMatcher matcher = FileSystems.getDefault().getPathMatcher
 ("regex:[1-9]*[0-9]?-[1-9]?.txt");

 Path file = Paths.get("12-1.txt");
 if (matcher.matches(file)) {
 System.out.println(file);
 }
 }
}

The code at B defines a regex pattern that will match files and directories of the pat-
tern [1-9]*[0-9]?-[1-9]?.txt against the Path object defined by the code at c.
At d, file is matched against the matcher’s pattern, using matcher.matches().

Table 8.6 A few examples of patterns that you can pass to FileSystem.getPathMatcher to
match Path objects

Pattern to match Description of pattern

glob:*.{java,class} Match path names that end with extension .java or .class

glob:*{java,class} Match path names that end with java or class. They might
not include a dot just before (note the missing dot just
before {).

glob:*java,class Match path names that end with java,class; for example, Hel-
lojava,class, and Hello.java,class (java,class doesn’t evaluate
to either java or class).

glob:???.class Match path names that include exactly three characters fol-
lowed by .class. For example, it will match abc.class,
ab,.class, and a!b.class. It won’t match abcd.class or
abcde.class.

glob:My[notes,tips,ans].doc Match an exact match of ‘My’ followed by any one character
included within [], followed by .doc. For example, it matches
Mys.doc and My,.doc. It doesn’t match notes.doc,
Mytips.doc, or Myans.doc.

regex:MyPics[0-9].png Match MyPics followed by any digit, followed by .png. For
example, MyPics0.png, MyPics1.png, and MyPics9.png.

glob:/home/*/* Matches a path like home/shreys/code on UNIX platforms.

glob:/home/** Matches a path like home/shreys/code and home/shreys on
UNIX platforms.

et default
ileSystem.
eate Path-
her object,
ng it regex

pattern. b

Create Path object to
match against the pattern. c

file is matched against
matcher’s pattern. d

Prints
path
Licensed to Mark Watson <nordickan@gmail.com>

557Watch a directory for changes
8.6 Watch a directory for changes

Imagine your application displays arrival and departure times of flights, which it reads
from a file. What happens if this data is updated while it’s being displayed by the appli-
cation? In this case, you might want to update the displayed times also. To do so, your
application should be able to detect when the file, which stores its data, is modified.
The WatchService API can help you. It enables you to watch a directory for changes like
addition, modification, or deletion of contents of a directory. A thread-safe option for
watching directories for changes, WatchService API is one of the interesting additions
to Java 7.

 To see how you can work with the WatchService API, let’s work with a simplified
example of a command-line application (say, WatchDirectories) that watches
changes to a directory and one of its directories and outputs the name of the affected
file. The following sections will cover partial code of the application WatchDirectories
to understand how to use the WatchService API. The application’s complete code is
included at the end.

8.6.1 Create WatchService object

The first step to watch a directory for changes is to create a WatchService object. A
file system operates independently of a JVM. To create a WatchService object, you can
use the FileSystem class, which provides an interface to a file system and is the factory
for objects to access files and other objects in the file system. It defines method new-
WatchService() to create a WatchService object:

WatchService watchService = FileSystems.getDefault().newWatchService();

The next step is to register directories with the WatchService object.

8.6.2 Register with WatchService object

The directories that need to be watched for additions, modifications, or deletions
must be registered with a WatchService object. A WatchService object watches a
directory for the following events:

■ StandardWatchEventKinds.ENTRY_CREATE—This event occurs when a new file
or directory is created, moved, or renamed in the directory being watched.

■ StandardWatchEventKinds.ENTRY_DELETE—This event occurs when an existing
file or directory is deleted, moved, or renamed in the directory being watched.

■ StandardWatchEventKinds.ENTRY_MODIFY—This event is platform-dependent. It
usually occurs when contents of an existing file are modified. It can also occur if
the attributes of a file or directory (in the directory being watched) are modified.

■ StandardWatchEventKinds.OVERFLOW—This indicates that an event has been lost.

[8.6] Watch a directory for changes by using the WatchService interface
Licensed to Mark Watson <nordickan@gmail.com>

558 CHAPTER 8 Java file I/O (NIO.2)
You can register multiple directories to be watched with the same WatchService object,
by using method register() of Path. Multiple events can be registered in the same
method call. Each registration process returns a WatchKey (discussed in the next sec-
tion). The following example registers two directories (to be watched for multiple
events) with the same WatchService object:

WatchService watchService = FileSystems.getDefault().newWatchService();
Path dir1 = Paths.get("E:/OCPJavaSE7");
Path dir2 = Paths.get("E:/OCPJavaSE7/8");

WatchKey regWatchKey = dir1.register(watchService,
 StandardWatchEventKinds.ENTRY_MODIFY,
 StandardWatchEventKinds.ENTRY_DELETE,
 StandardWatchEventKinds.ENTRY_CREATE);
dir2.register(watchService,
 StandardWatchEventKinds.ENTRY_MODIFY,
 StandardWatchEventKinds.ENTRY_DELETE,
 StandardWatchEventKinds.ENTRY_CREATE);

EXAM TIP You can watch a directory for changes. If you try to register a
file for changes, you’ll get a runtime exception (NotDirectoryExcep-
tion). Registering a directory for any event (create, modify, or delete)
doesn’t implicitly register its subdirectories.

In the next section, you’ll see how the WatchService API stores the registered Watchable
events, using the WatchKey objects.

8.6.3 Access watched events using WatchKey interface

The WatchKey object is a token that represents the registration of a Watchable object
with a WatchService. As seen in the code in the previous section, a WatchKey object is
created when you register your directory to be watched for create, modify, or delete
events with a WatchService. A WatchKey can be in multiple states:

■ Ready—A WatchKey is initially created with a ready state.
■ Signaled—When an event is detected, the WatchKey is signaled and queued. It

can be retrieved using WatchService’s methods poll() or take().
■ Cancelled—Calling method cancel() on a WatchKey or closing the WatchService

cancels a WatchKey.
■ Valid—A WatchKey in a ready or signaled state is in a valid state.

In the next section, you’ll see how the detected events are processed using Watch-
Service.

8.6.4 Processing events

A WatchService queues the registered events when they occur. The registered con-
sumers can retrieve the queued WatchKeys and process the corresponding events. The
WatchService interface defines method take() and overloaded method poll() to
Licensed to Mark Watson <nordickan@gmail.com>

559Watch a directory for changes

e
h-
ce
retrieve the queued WatchKeys. Once a key is processed, the consumer invokes the
key’s method reset() so that it can be signaled and requeued for further events.

 To wait for registered events to occur, you need an infinite loop. Method take() of
the WatchService interface retrieves and removes the next WatchKey, waiting if none
are yet present. On the other hand, its poll() method retrieves and removes the next
WatchKey, or returns null if none is present (no waiting). You can also use its over-
loaded method poll(long timeout, TimeUnit unit) to specify the waiting time if
none is present.

 When the registered events occur, methods WatchService’s poll() or take()
return to retrieve the queued WatchKeys. For each retrieved WatchKey, call the Watch-
Key’s method pollEvents() to retrieve and remove all pending events for the key.
Method pollEvents() returns a list of the events (WatchEvent) that were retrieved.
Because you can register multiple paths and events with the same WatchService
object, you can query the WatchEvent to determine the source of the event and its
type, and process the event as required.

 The following example watches two directories for create, modify, and delete events.
Execute this code and, while it’s running, use another system utility, like a file explorer,
to modify, create, or delete files in the directories that this code is watching. The code
will display the name of the newly created, modified, or deleted file or directory:

import java.io.*;
import java.nio.file.*;
import static java.nio.file.StandardWatchEventKinds.*;

public class WatchDirectories {

 public static void main(String args[]) {
 WatchService watchService = null;

 try {
 watchService = FileSystems.getDefault().newWatchService();
 Path dir1 = Paths.get("E:/OCPJavaSE7/");
 Path dir2 = Paths.get("E:/OCPJavaSE7/8");

 dir1.register(watchService,
 ENTRY_MODIFY, ENTRY_DELETE, ENTRY_CREATE);
 dir2.register(watchService, ENTRY_DELETE);

 WatchKey watchKey = null;

 while(true) {
 watchKey = watchService.take();
 for (WatchEvent<?> watchEvent: watchKey.pollEvents()) {

 WatchEvent.Kind<?> kind = watchEvent.kind();
 Path path = ((WatchEvent<Path>)watchEvent).context();

 if (kind == OVERFLOW) {
 continue;
 }

Static
import

 b

Creat
Watc
Servi

 c

Register multiple
directories and

events with
watchService

 d

Wait for a
registered
event to occur

 e
For a WatchKey,

get a list of
events

 f

Get type of event g

Retrieve event
source h If event lost, skip

remaining for loop i
Licensed to Mark Watson <nordickan@gmail.com>

560 CHAPTER 8 Java file I/O (NIO.2)
 else if (kind == ENTRY_CREATE) {
 System.out.format("\nCreate - %s", path);
 }
 else if (kind == ENTRY_MODIFY) {
 System.out.format("\nModify - %s", path);
 }
 else if (kind == ENTRY_DELETE) {
 System.out.format("\nDelete - %s", path);
 }
 }
 if(!watchKey.reset()) { break; }
 }
 }
 catch (IOException ioe) {
 System.out.println(ioe.toString());
 }
 catch (InterruptedException ioe) {
 System.out.println(ioe.toString());
 }
 finally {
 try {
 watchService.close();
 } catch (IOException e) {
 System.out.println(e);
 }
 }
 }
}

In the preceding code, the static import at B enables the code to use constants
ENTRY_CREATE, ENTRY_MODIFY, and OVERFLOW without prefixing them with Standard-
WatchEventKinds. The code at c creates a WatchService object by calling method
newWatchService() on FileSystem. The code at d registers two directories, referred
by paths dir1 and dir2, with the same watchService object. The code uses an infinite
loop to retrieve the queued WatchKeys. At e, watchService.take() waits for a regis-
tered event to occur and retrieves the corresponding WatchKey. For the WatchKey
retrieved, the code at f retrieves a list of events by calling watchKey.pollEvents().
At g and h, the code retrieves the type and source of the event that has occurred.
A file system might generate a lot of events, such that an event might be lost. The
type of event reported is OVERFLOW i if an event is lost. At j, 1), and 1!, the code
processes events for creation (ENTRY_CREATE), modification (ENTRY_MODIFY), or dele-
tion (ENTRY_DELETE) of a file or directory within the registered directories. At 1@,
the code resets the watchKey by calling watchKey.reset() so that it can be queued
and signaled again. At the end, the code at 1# closes the WatchService object by
calling close().

 The possibilities are immense in how you process the events, detected using
WatchService, and are limited only by your needs or your imagination.

Process event
ENTRY_CREATE j

Process event
ENTRY_MODIFY 1)

Process event
ENTRY_DELETE 1!

Reset WatchKey
so that it can be
queued again1@

Close
watchService1#
Licensed to Mark Watson <nordickan@gmail.com>

561Review notes
8.7 Summary
We started this chapter with an introduction to NIO.2 and the sample application. We
covered the Path interface and worked with examples on how Path objects are cre-
ated. You learned how to use Path methods to access path components, compare
paths, convert relative paths to absolute paths, and resolve paths. Class Files is used
to manipulate files and directories. It can be used to automatically check and create
single or multiple files and directories, check for their existence, and copy, move, or
delete them.

 You learned how to access and update attributes of files and directories by using
attribute views or class Files. NIO.2 defines a rich set of classes and interfaces that
enable you to access and update basic, dos, Posix, Acl, and user-defined attributes of
files or directories.

 You can use the FileVisitor interface and classes SimpleFileVisitor and
DirectoryStream to traverse and access a directory stream. You can find a file with a
matching regex or glob pattern using the PathMatcher interface.

 One of the most interesting features of NIO.2, the WatchService API enables you
to watch a directory for creation, modification, and deletion of new or existing files
and directories. When the registered events are triggered, they can be processed
as required.

REVIEW NOTES
This section lists the main points covered in this chapter.

Path objects

■ Objects of the Path interface are used to represent the path of files or directo-
ries in a file system.

■ Because a Path object might not be tied to a real file or directory on a system, it
can refer to a nonexistent file or directory.

■ Apart from referring to a file or a directory, a Path object can also refer to a
symbolic link. A symbolic link is a special file that refers to another file.

■ When you read data from or write data to a symbolic link, you read from or
write to its underlying target file. But if you delete a symbolic link, the target file
isn’t deleted.

■ A Path can never be equal to a Path associated with another file system, even if
they include exactly the same values.

■ You can create Path objects by using Paths.get() or FileSystems.get-
Default().getPath().

■ You can convert a File instance to a Path object by calling toPath() on the
File instance.

■ Behind the scenes, both Paths.get() and File.toPath() call FileSystems
.getDefault().getPath().
Licensed to Mark Watson <nordickan@gmail.com>

562 CHAPTER 8 Java file I/O (NIO.2)
■ Most of the Path methods perform syntactic operations. They manipulate the
paths to a file or directory without accessing the file systems. They’re logical
operations on paths in memory.

■ Methods getName(), getNameCount(), and subpath() don’t use the root direc-
tory of a path. Method getRoot() returns the root of an absolute path and null
for relative paths.

■ The Path methods that accept positions throw an IllegalArgumentException
at runtime for invalid positions. For example, getName() and subpath() throw
an IllegalArgumentException if you pass invalid path positions to them.

■ You can compare paths lexicographically using method compareTo(Path).
■ To check whether a path starts or ends with another path, you can use starts-

With(String), startsWith(Path), endsWith(String), and endsWith(Path).
■ Methods startsWith() and endsWith() are overloaded—startsWith(String),

startsWith(Path), endsWith(String), and endsWith(Path). So if you pass
null to these methods, you'll get a compiler error.

■ The method name to retrieve the absolute path from a Path object is toAbsolute-
Path() and not getAbsolutePath().

■ You can remove redundant path values by calling method normalize() on Path.
■ Path is immutable and calling normalize() on a Path object doesn’t change

its value.
■ Method normalize() doesn't check the actual file system to verify if the file (or

directory) the resulting path is referring to actually exists.
■ If a Path object includes redundancies like . or .., calling information retrieval

methods like subpath() or getName() will include these redundancies in the
returned values.

■ The overloaded methods resolve(String) and resolve(Path) are used to
join a relative path to another path. If you pass an absolute path as a parameter,
this method returns the absolute path.

■ To retrieve the path to a file in the same directory, say, to create its copy or to
rename it, you can use the overloaded methods resolveSibling(String) and
resolveSibling(Path).

■ Method resolveSibling() resolves a given path against a path’s parent. If the
given path is an absolute path, this method returns the absolute path. If you
pass it an empty path, it returns the parent of the path.

■ Methods resolve() and resolveSibling() don’t check the actual file system
to verify if the file (or directory) the resulting path is referring to actually exists.

■ To construct a path between two Path objects, use method relativize(). It can
be used to construct a path between two relative or absolute Path objects.

■ You can’t create a path from a relative path to an absolute path and vice versa
using method relativize(). If you do so, you’ll get a runtime exception
(IllegalArgumentException).
Licensed to Mark Watson <nordickan@gmail.com>

563Review notes
■ Method relativize() doesn't check the actual file system to verify if the file
(or directory) the resulting path is referring to actually exists.

Class Files

■ Class java.nio.file.Files defines static methods for manipulating files and
directories.

■ Method createFile() atomically checks for the existence of the file specified
by the method parameter path and creates it if it doesn’t exist.

■ Method createFile() fails and throws an exception if the file already exists, a
directory with the same name exists, its parent directory doesn’t exist due to an
I/O error, or the specified file attributes can’t be set.

■ Method createDirectory() creates the specified directory (not the parent
directory) on the file system. It also atomically checks for the existence of the
specified directory and creates it if it doesn’t exist.

■ Method createDirectory() throws an exception if a file or directory exists
with the same name, its parent directory doesn’t exist due to an I/O error, or
the specified directory attributes can’t be set.

■ Method createDirectories() creates a directory, creating all nonexistent par-
ent directories.

■ If the target directory already exists, createDirectories() doesn’t throw any
runtime exception. It throws an exception if the specified dir exists but isn’t a
directory, an I/O occurs, or the specified directory attributes can’t be set.

■ Specifying file or directory attributes is optional with methods createFile(),
createDirectory(), and createDirectories(). All these methods declare to
throw an IOException, which is a checked exception.

■ You can check for the existence of a file or directory referred by a Path object
using methods exists() and notExists().

■ Method notExists() isn’t a complement of method exists(). It returns true
if a target doesn’t exist or false if its existence can’t be determined. If these
methods can’t determine the existence of a file, both of them will return false.

■ Class Files’s overloaded method copy() enables you to read from InputStream
and write to a Path object, read from a Path object and write to OutputStream,
and read from and write to Path objects.

■ Files.copy() can copy only files, not directories. If the source is a directory,
then in the target an empty directory is created (without copying the entries in
the directory). This method returns a long or Path value, not a boolean value.

■ If you use a relative path to the target file, the file is created relative to your Java
class file (.class) and not relative to the source file (passed as a parameter to
method Files.copy()).

■ To move files or directories programmatically, you can use Files.move(), which
moves or renames a file to a target file.
Licensed to Mark Watson <nordickan@gmail.com>

564 CHAPTER 8 Java file I/O (NIO.2)
■ You can only move empty directories using method Files.move(). You can
rename a nonempty directory by using Files.move(). But you can’t move a file
or directory to a nonexisting directory.

■ To delete a directory or a file referred to by a Path object, you can use methods
delete(Path) or deleteIfExists(Path).

■ If you try to delete a directory that isn’t empty, methods delete(Path) and
deleteIfExists(Path) will throw a DirectoryNotEmptyException.

■ If you try to delete a nonexistent file or directory using method delete(), it will
throw a NoSuchFileException. But method deleteIfExists() won’t throw an
exception if the file or directory at the specified path doesn’t exist—rather, it
will return false.

■ Methods delete() and deleteIfExists() can be used to delete files and (non-
empty) directories.

Files and directory attributes

■ Class Files defines static methods to access individual attributes of a file or
directory referred by a Path.

■ You can access the individual attributes of a file or directory by using method
Files.getAttribute(), passing to it the name of the attribute as a string value.
To modify the attributes of an existing file or directory, you can use Files.set-
Attribute().

■ You can access a group of file attributes by calling Files.getFileAttribute-
View() or Files.readAttributes().

■ The BasicFileAttributes interface defines methods to access the basic attri-
butes that should be supported by all the file systems.

■ The BasicFileAttributeView interface can be used to modify the basic
attributes.

■ The DosFileAttributes interface extends BasicFileAttributes and defines
methods to access attributes specific to Windows files and directories.

■ The DosFileAttributeView interface defines methods to modify the DOS
file attributes.

■ The PosixFileAttributes interface also extends BasicFileAttributes and
defines methods to access attributes related to the POSIX family of standards,
like Linux or UNIX.

■ The PosixFileAttributeView interface defines methods to modify attributes
related to the POSIX family.

■ Available only for Windows OS, the AclFileAttributeView interface supports
access and updates of a file’s ACL.

■ The FileOwnerAttributeView interface supports access and updates to the
owner of a file or directory. It is supported by all systems that support the con-
cept of file owners.
Licensed to Mark Watson <nordickan@gmail.com>

565Review notes
■ The UserDefinedFileAttributeView interface supports the addition, modifi-
cation, and deletion of user-defined metadata.

■ The BasicFileAttributes, DosFileAttributes, and PosixFileAttributes

interfaces define methods to access attributes. They don’t define methods to
modify (or set) the attributes.

■ The BasicFileAttributeView, DosFileAttributeView, PosixFileAttribute-

View, AclFileAttributeView, FileOwnerAttributeView, and UserDefined-

FileAttributeView interfaces can be used to update attribute values.
■ If a file system doesn’t support an attribute view, Files.getFileAttribute-

View() returns null. If a file system doesn’t support an attribute set, File

.readAttributes() will throw a runtime exception.
■ If an underlying system doesn’t support all the basic timestamps—that is,

creationTime, lastAccessTime, and lastModifiedTime—it might return system-
specific information.

■ Methods Files.setAttribute() and Files.getAttribute() throw an Illegal-

ArgumentException or UnsupportedOperationException if you pass them an
invalid or unsupported attribute.

■ The DosFileAttributes interface makes the following attributes available:
– archive

– hidden

– readonly

– system

■ The DOS attributes are available on a Windows system only. Trying to access
them on other systems will throw a runtime exception.

■ When you read all DOS attributes using method Files.readAttributes(), you
also read the basic attributes.

■ The POSIX attributes are as follows:
– group

– owner

– permissions

■ The POSIX attributes are available on the POSIX family of standards, such as
UNIX and LINUX. Trying to access them on other systems will throw a run-
time exception.

■ To read or update the owner of a file or directory you can use the AclFile-

AttributeView, FileOwnerAttributeView, and PosixFileAttributeView

interfaces.
■ The UserDefinedAttributeView interface can be used to add, delete, access, and

modify additional user-defined attributes to or from a file or directory. It defines
methods delete(String), list(), read(String, ByteBuffer), size(String),
and write(String, ByteBuffer) to, respectively, delete, list, read, get an attri-
bute’s size, and write attribute values.
Licensed to Mark Watson <nordickan@gmail.com>

566 CHAPTER 8 Java file I/O (NIO.2)
Recursively access a directory tree

■ Class Files defines overloaded method walkFileTree() to walk recursively
through the specified path. To define the traversal behavior, this method accepts
an object of the FileVisitor interface.

■ You can use the FileVisitor, a generic interface, to define the code that you
want to execute during the traversal of a directory structure. When you traverse
a directory structure, you can define what to do before or after you visit a direc-
tory, when you visit a file, or when access to a file is denied.

■ Method postVisitDirectory() is invoked for a directory after entries in the
directory and all of their descendants have been visited.

■ Method preVisitDirectory() is invoked for a directory before entries in the
directory are visited.

■ Method visitFile() is invoked for a file in a directory.
■ Method visitFileFailed() is invoked for a file that couldn’t be visited.
■ Methods preVisitDirectory() and visitFile() are passed BasicFile-

Attributes of the path that they operate on. You can use these methods to
query file or directory attributes.

■ Class SimpleFileVisitor is a simple visitor of files with default behavior to visit
all files and to rethrow I/O errors. It implements the FileVisitor interface.

■ You can initiate traversal of a directory by calling the overloaded method walk-
FileTree() from class Files.

■ The DirectoryStream interface can be used to iterate over all the files and
directories in a directory. You can use an Iterator or for-each construct to iter-
ate over a directory. The order in which the directory contents are iterated is
unpredictable.

■ If you pass Path to a file (and not a directory) to Files.newDirectoryStream(),
it will throw a runtime exception. The order of iteration of files and directories
in a specified directory using DirectoryStream is unpredictable.

Using PathMatcher

■ You can match your file or directory names against a regex or glob pattern by
using PathMatcher.

■ A glob pattern supports a simpler form of pattern matching than the regex. It
supports fewer special constructs.

■ In glob, * matches zero or more characters. In regex, .* matches zero or more
characters.

■ To match a Path object with a pattern, you should create an object of java
.nio.file.PathMatcher. PathMatcher is an interface with just one method:
matches(). It returns true if a given path matches this matcher’s pattern.

■ You can create a PathMatcher by calling FileSystem.getPathMatcher() and
passing it the pattern to be matched.
Licensed to Mark Watson <nordickan@gmail.com>

567Review notes
Watch a directory for changes

■ WatchService enables you to watch a directory for changes like addition, modi-
fication, or deletion of contents of a directory.

■ The first step to watch a directory for changes is to create a WatchService
object.

■ A WatchService object watches a directory for the following events:
– StandardWatchEventKinds.ENTRY_CREATE—This event occurs when a new file

or directory is created, moved, or renamed in the directory being watched.
– StandardWatchEventKinds.ENTRY_DELETE—This event occurs when an exist-

ing file or directory is deleted, moved, or renamed in the directory being
watched.

– StandardWatchEventKinds.ENTRY_MODIFY—This event is platform-dependent.
It usually occurs when contents of an existing file are modified. It can also
occur if the attributes of a file or directory (in the directory being watched)
are modified.

– StandardWatchEventKinds.OVERFLOW—This indicates that an event has
been lost.

■ You can register multiple directories to be watched with the same WatchService
object by using method register() of Path.

■ You can watch a directory for changes. If you try to register a file for changes,
you’ll get a runtime exception (NotDirectoryException). Registering a direc-
tory for any event (create, modify, or delete) doesn’t implicitly register its
subdirectories.

■ The WatchKey object is a token that represents the registration of a Watchable
object with a WatchService. A WatchKey object is created when you register
your directory to be watched for create, modify, or delete events with a Watch-
Service.

■ A WatchKey can be in multiple states:
– Ready—A WatchKey is initially created with a ready state.
– Signaled—When an event is detected, the WatchKey is signaled and queued.

It can be retrieved using method WatchService’s poll() or take().
– Cancelled—Calling method cancel() on a WatchKey or closing the Watch-

Service cancels a WatchKey.
– Valid—A WatchKey in a ready or signaled state is in a valid state.

■ A WatchService queues the registered events when they occur. The regis-
tered consumers can retrieve the queued WatchKeys and process the corre-
sponding events.

■ The WatchService interface defines method take() and overloaded method
poll() to retrieve the queued WatchKeys. Once a key is processed, the con-
sumer invokes the key’s method reset() so that it can be signaled and requeued
for further events.
Licensed to Mark Watson <nordickan@gmail.com>

568 CHAPTER 8 Java file I/O (NIO.2)
■ Method take() of the WatchService interface retrieves and removes the next
WatchKey, waiting if none is yet present.

■ Method poll() of the WatchService interface retrieves and removes the next
WatchKey, or null if none is present (no waiting). You can also use its over-
loaded method poll(long timeout, TimeUnit unit) to specify the waiting time
if none is present.

■ For each retrieved WatchKey, you can call the WatchKey’s method pollEvents()
to retrieve and remove all pending events for the key.

■ Method pollEvents() returns a list of the events (WatchEvent) that were
retrieved.

Because you can register multiple paths and events with the same WatchService
object, you can query the WatchEvent to determine the source of the event and its
type, and process the event as required.

SAMPLE EXAM QUESTIONS

Q 8-1. Given the following directory structure

root dir
|- MyDir
 |- 8_1.java
 |- 8_1.class
 |- Hello.txt

which options when inserted at /* INSERT CODE HERE */will delete the file represented
by the Path object path?

import java.nio.file.*;
class Q8_1 {
 public static void main(String... args) throws Exception {
 Path path = Paths.get("Hello.txt");
 Files.delete(/* INSERT CODE HERE */);
 }
}

a path.toAbsolutePath()

b path.resolveSibling("Q8_1.class")

c path.toRealPath()

d path.resolve()

Q 8-2. What is the output of the following code?

class Q8_2 {
 public static void main(String... args) {
 Path path1 = FileSystems.getDefault().getPath("/main/sub/notes/

file.txt");
 Path path2 = Paths.get("code/Hello.java");
 System.out.println(path1.getRoot()+ ":" + path2.getRoot());
Licensed to Mark Watson <nordickan@gmail.com>

569Sample exam questions
 System.out.println(path1.getName(0) + ":" + path2.getName(0));
 System.out.println(path1.subpath(1, 3) + ":" + path2.subpath(0,1));
 }
}

a \main:null
file.txt:Hello.java
sub\notes\file.txt:code\Hello.java

b \:null
file.txt:Hello.java
sub\notes:code

c main:code
file.txt:Hello.java
sub\notes:code

d \:null
main:code
sub\notes:code

e None of the above
f Compilation fails

Q 8-3. Which definition of class MyFileVisitor will enable the following code to
delete recursively all files that are smaller than 100 bytes in size?

Path path = Paths.get("/myHomeDir");
Files.walkFileTree(path, new MyFileVisitor());

a class MyFileVisitor implements FileVisitor<Path> {
 public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) throws IOException{
 if (attrs.size() <= 100) {
 Files.delete(file);
 }
 return FileVisitResult.CONTINUE;
 }
}

b class MyFileVisitor extends SimpleFileVisitor<Path> {
 public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) throws IOException{
 if (attrs.size() <= 100) {
 Files.delete(file);
 }
 return FileVisitResult.CONTINUE;
 }
}

c class MyFileVisitor implements FileVisitor<Path> {
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attrs) throws IOException{
 if (attrs.size() <= 100) {
 Files.delete(file);
 }
Licensed to Mark Watson <nordickan@gmail.com>

570 CHAPTER 8 Java file I/O (NIO.2)
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs) {}
 public FileVisitResult postVisitDirectory(Path dir,
 IOException exc) {}
 public FileVisitResult visitFileFailed(Path file,
 IOException exc) {}
}

d class MyFileVisitor extends SimpleFileVisitor {
 public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) throws IOException{
 if (attrs.getSize() <= 100) {
 Files.deleteFile(file);
 }
 return FileVisitResult.CONTINUE;
 }
}

e Compilation error
f Runtime exception

Q 8-4. What is the output of the following code?

Path path1 = Paths.get("MyDir/hello.java");
Path path2 = Paths.get("FriendDir/code");
Path path3 = path1.relativize(path2);
for (Path path : path3)
 System.out.println(path);

a ..
..
FriendDir
code

b ..
..
MyDir
hello.java

c FriendDir
code

d MyDir
hello.java

e ..
MyDir

f Compilation error
g Runtime exception
Licensed to Mark Watson <nordickan@gmail.com>

571Sample exam questions
Q 8-5. Select the correct statements:

a Paths.get() can throw a FileNotFoundException.
b getParent() in Path returns an empty path if a path doesn’t have a parent.
c getNameCount() in Path excludes the root of a path.
d For absolute paths, toAbsolutePath() in Path returns null.

Q 8-6. Which code options when inserted at /* INSERT CODE HERE */ will copy the
specified file from the specified source to the destination?

public static void copyFile (String src, String dest) throws IOException{
 /* INSERT CODE HERE */
 java.nio.file.Files.copy(source, destination);
}

a Path source = Paths.get(src);
Path destination = Paths.get(dest);

b FileInputStream source = new FileInputStream(new File(src));
Path destination = Paths.get(dest);

c Path source = Paths.get(src);
BufferedOutputStream destination = new BufferedOutputStream(
 new FileOutputStream(dest));

d FileInputStream source = new FileInputStream(new File(src));
FileOutputStream destination = new FileOutputStream(new File(dest));

Q 8-7. Which options are true for the following code?

public static void check(Path path) throws Exception {
 if (!Files.exists(path)) {
 System.out.println("Not exists");
 Files.createDirectories(path.getParent());
 Files.createFile(path);
 }
 else if (!Files.notExists(path)) {
 System.out.println("exists");
 Files.delete(path);
 }
 else {
 System.out.println("can never reach here");
 }
}

a check() will output "Not exists" and try to create a new file, if it doesn’t exist.
b check() will output "exists" and try to delete the file if it exists. It won’t delete

a directory.
c check() can never output "can never reach here".
d check() can throw an IOException, NoSuchFileException.
Licensed to Mark Watson <nordickan@gmail.com>

572 CHAPTER 8 Java file I/O (NIO.2)
Q 8-8. Select the incorrect statements for the following code:

public static void toggleFile(Path file) throws Exception {
 DosFileAttributes attr = Files.readAttributes(file,
 DosFileAttributes.class);
 if (attr.isHidden()) { //line1
 Files.setAttribute(file, "dos:hidden", Boolean.FALSE); //line2
 }
 else
 Files.setAttribute(file, "dos:hidden", Boolean.TRUE); //line3
}

a toggleFile() changes the attribute of a file or directory to hidden if it isn’t,
and vice versa (when executed on a Windows system).

b If "dos:hidden" is changed to "hidden" on lines 2 and 3, toggleFile() can
change the "hidden" attributes of files or directories on all OSs.

c Replacing attr.isHidden() with attr.hidden() will not modify the code results.
d toggleFile can throw an UnsupportedOperationException.

Q 8-9. What is the output of the following code?

Path path1 = Paths.get("/pin/./bin/tub/../code/../Hello.java");
System.out.println(path1.normalize());

a \pin\bin\tub\Hello.java

b \pin\bin\tub\code\Hello.java

c \bin\tub\code\Hello.java

d \bin\Hello.java

e \pin\bin\Hello.java

Q 8-10. For which string values will the method match return true?

public static boolean match(String filename) throws Exception {
 Path path = Paths.get(filename);
 PathMatcher matcher = FileSystems.getDefault().getPathMatcher("glob:/

mydir/*/*");
 return (matcher.matches(path));
}

a /mydir/notes/java/String

b /mydir/notes/java

c /mydir/notes

d mydir/notes/java/String

e mydir/notes/java
Licensed to Mark Watson <nordickan@gmail.com>

573Answers to sample exam questions
Q 8-11. Given the following code, which code options can be inserted at /*INSERT
CODE HERE*/ without any compilation errors?

Path file = Paths.get("/mydir");
PosixFileAttributes attr = Files.readAttributes(file,

PosixFileAttributes.class);
System.out.println(/*INSERT CODE HERE*/);

a attr.group()

b attr.owner()

c attr.size()

d attr.permissions()

e attr.creationTime()

f attr.isReadOnly()

g attr.isRegularFile()

ANSWERS TO SAMPLE EXAM QUESTIONS

A 8-1. a, c

[8.1] Operate on file and directory paths with the Path class

Explanation: Option (b) is incorrect. The call path.resolveSibling("Q8_1.class")
will resolve the path from file Q8_1.class against the parent directory of file Hello.txt.
Because these files exist in the same directory, a (valid) path to file Q8_1.class is
returned. So Files.delete() will not delete file Hello.txt, but Q8_1.class instead.

 Option (d) will fail compilation. Method resolve() accepts either a Path or a
String, resolving it against the path on which it’s called.

A 8-2. d

[8.1] Operate on file and directory paths with the Path class

Explanation: The getRoot method returns the root of a path for an absolute path and
null for a relative path. Because "/main/sub/notes/file.txt" starts with a /, it’s
considered an absolute path and getRoot will return / or \ depending on your under-
lying OS (\ for Windows and / for UNIX).

 Method getName() excludes the root of a path and returns the element of this
path, specified by the index parameter to this method. The element closest to the root
in the directory hierarchy has an index of 0 and the element farthest from the root
has an index of count-1 (where count is the total number of Path elements).

 Method subpath() (small p) returns the subsequence of the name elements of a
Path, starting at the method parameter startIndex (inclusive) up to the name ele-
ment at endIndex (exclusive).
Licensed to Mark Watson <nordickan@gmail.com>

574 CHAPTER 8 Java file I/O (NIO.2)
A 8-3. b

[8.4] Recursively access a directory tree using the DirectoryStream and FileVisitor
interfaces

Explanation: Option (a) is incorrect because it won’t compile. The FileVisitor inter-
face defines four methods: preVisitDirectory(), postVisitDirectory(), visit-
File(), and visitFileFailed(). Class MyFileVisitor in this option implements only
one method.

 Option (c) is incorrect. Though class MyFileVisitor implements all the methods
of the FileVisitor interface, methods preVisitDirectory(), postVisitDirectory(),
and visitFileFailed() don’t return a value. All these methods must return a value
of type FileVisitResult.

 Option (d) is incorrect because the correct method name to get the file size from
BasicFileAttributes is size. The correct method name to delete a file using class
Files is delete.

A 8-4. a

[8.1] Operate on file and directory paths with the Path class

Explanation: path1.relativize(path2) creates a relative path from path1 to path2.
To navigate from relative path1 (MyDir/hello.java) to relative path2 (FriendDir/
code), you need to do the following steps:

1 (apply ..)—Navigate to the parent directory of MyDir/hello.java—that is, MyDir.
2 (apply ..)—Navigate to the parent directory of MyDir.
3 (apply /FriendDir)—Navigate to /FriendDir.
4 (apply /code)—Navigate to code.

The Path interface extends the Iterable interface. A Path object can iterate over its
name elements using the for-each loop.

A 8-5. c

[8.1] Operate on file and directory paths with the Path class

Explanation: Option (a) is incorrect. A Path object might refer to a nonexistent file or
directory. It can throw an InvalidPathException if the path string cannot be con-
verted to a Path object.

 Option (b) is incorrect because getParent() returns null if a Path object doesn’t
have a parent.

 Option (d) in incorrect. For absolute paths, toAbsolutePath() returns the path
itself. For a relative path, the absolute path is resolved in an implementation-
dependent manner.
Licensed to Mark Watson <nordickan@gmail.com>

575Answers to sample exam questions
A 8-6. a, b, c

[8.2] Check, delete, copy, or move a file or directory with the Files class

Explanation: The overloaded copy() method in class Files can copy a source to a
destination in the following formats:

■ From InputStream to Path
■ From Path to OutputStream
■ From Path to Path

Therefore, options (a), (b), and (c) are correct. FileInputStream extends Input-
Stream, FileOutputStream extends OutputStream, and BufferedOutputStream

extends OutputStream. So their objects can be passed to Files.copy().
 Option (d) is incorrect because method copy() in class Files doesn’t copy Input-

Stream to OutputStream.

A 8-7. a, d

[8.2] Check, delete, copy, or move a file or directory with the Files class

Explanation: Option (b) is incorrect because Files.delete() can be used to delete
files and empty directories. If you try to delete a nonempty directory, Files.delete()
will throw a DirectoryNotEmptyException.

 Option (c) is incorrect because both exists() and notExists() can return false
if the underlying system can’t determine the existence of a file.

A 8-8. b, c

[8.3] Read and change file and directory attributes, focusing on the BasicFile-
Attributes, DosFileAttributes, and PosixFileAttributes interfaces

Explanation: Option (a) is a correct statement because method toggleFile()
changes the attribute "hidden" of a file to true if it’s false and vice versa.

 Option (b) is an incorrect statement. If "dos:hidden" is changed to "hidden", the
code will throw a runtime exception. "hidden" is a DOS file attribute. DOS and POSIX
attributes must be prefixed with dos: or posix: in method Files.setAttribute. You
don’t need to prefix the basic file attributes with basic:. In the absence of any prefix,
basic: is added automatically.

 Option (c) is an incorrect statement because the correct method name to access
the attribute "hidden" from DosFileAttributes is isHidden.

 Option (d) is a correct statement because if you execute this code on an OS that
doesn’t support DosFileAttributes, Files.readAttributes() will throw an
UnsupportedOperationException.
Licensed to Mark Watson <nordickan@gmail.com>

576 CHAPTER 8 Java file I/O (NIO.2)
A8-9. e

[8.1] Operate on file and directory paths with the Path class

Explanation: Method normalize() removes the redundancies like “.” (current direc-
tory) and “..” (parent directory) from a path. Because “.” denotes the current
directory, it’s simply removed by normalize(). “..” is only removed if it is preceded
by a non-“..” name. In the following example, no redundancies are removed:

System.out.println(Paths.get("../../OCPJava7/8.1.txt").normalize());

A8-10. b

[8.5] Find a file with the PathMatcher interface

Explanation: The glob pattern /mydir/*/* evaluates to root (/), followed by dir
mydir, followed by any two subdirectories. Only option (b) matches this pattern.

A8-11.a, b, c, d, e, g

[8.3] Read and change file and directory attributes, focusing on the BasicFile-
Attributes, DosFileAttributes, and PosixFileAttributes interfaces

Explanation: The PosixFileAttributes interface extends the BasicFileAttributes
interface, so a PosixFileAttributes object can access methods creationTime(),
size(), and isRegularFile() defined in the BasicFileAttributes interface.
Method isReadOnly() is defined in the DosFileAttributes interface and it can’t be
used with an object of PosixFileAttributes.
Licensed to Mark Watson <nordickan@gmail.com>

Building database
applications with JDBC
Exam objectives covered in this chapter What you need to know

[9.1] Describe the interfaces that make up the
core of the JDBC API (including the Driver,
Connection, Statement, and ResultSet)
and their relationships to provider implementations

Identification of the interfaces that make up
the core of the JDBC API
How an application creates objects of these
interfaces

[9.2] Identify the components required to connect
to a database using class DriverManager
(including the JDBC URL)

The steps and components required to connect
to a database using class DriverManager,
for JDBC API version 3.0 and before and JDBC
API version 4.0 and later

[9.3] Submit queries and read results from the
database (including creating statements, returning
result sets, iterating through the results, and prop-
erly closing result sets, statements, and connec-
tions)

How to execute SQL statements against a
database using the interfaces Connection,
Statement, and ResultSet
How to combat the SQLException thrown by
database operations
How to use try-catch-finally and try-
with-resources statements to close database
resources

[9.4] Use JDBC transactions (including disabling
auto-commit mode, committing and rolling back
transactions, and setting and rolling back to save-
points)

How to create transactions, Savepoint,
commit, and roll back changes
Effects of auto-commit mode on a transaction

[9.5] Construct and use RowSet objects using
class RowSetProvider and the
RowSetFactory interface

How to create RowSet objects using class
RowSetProvider and the interface
RowSetFactory
The specialized types of RowSet objects
577

Licensed to Mark Watson <nordickan@gmail.com>

578 CHAPTER 9 Building database applications with JDBC
Given multiple options, choosing the right technology to connect a Java application to
a database is challenging.

 At present, there are multiple approaches and technologies to connect a Java
application with a database. Examples include the EJB Entity Beans, Java Persistence
API (JPA), Java Database Objects (JDO), and others. Hibernate™ is a popular JPA
implementation. Hibernate is an Object Relational Mapping (ORM) framework for
the Java language. Each of these approaches or implementations has its own set of
advantages and disadvantages. For example, you can’t use JPA entities or EJB Entity
Beans with Java’s Standard Edition (JSE). Apart from accessibility, other factors like
license fees, ease of use, backward compatibility, and availability of expertise in a
particular technology might affect your choice of approach or API to use to connect
to a database.

 The exam has included a simple industry standard to connect your Java applica-
tion to any tabular data: Java Database Connectivity (JDBC). JDBC has been around
since Java version 1.1.

 Before I go further, let me clarify that the exam won’t query you on your capabili-
ties to connect tables in a database or write complex SQL queries. The exam will focus
on testing your capabilities on how to connect a Java application to a database using
the JDBC API. It will query you on the prerequisites for establishing a connection, such
as the existence of JDBC drivers, the connection URL, submitting queries, reading
results, performing transactions, and using multiple flavors of results (ResultSet and
RowSet) and statements (Statement, CallableStatement, and PreparedStatement).

 Let’s get started with an introduction to the JDBC API so that you understand what
it is and how it connects your Java class to a database, before getting our hands dirty
with the actual code.

9.1 Introduction
JDBC is a Java API. It’s an industry standard for database-independent connections
from Java applications to tabular data stored in relational databases, flat files, or
spreadsheets. The JDBC API defines multiple interfaces, which must be implemented
by the database vendors or a third party, and is supplied as a driver. As shown in fig-
ure 9.1, you can think of the bridge between a Java application and a database to be
made of the JDBC API and driver implementation classes. The JDBC API provides your
classes with the interfaces and classes to connect to a database and process the results.
The actual classes that implement the interfaces in the JDBC API are defined by the
driver for a database.

Exam objectives covered in this chapter What you need to know

[9.6] Create and use PreparedStatement and
CallableStatement objects

How to use PreparedStatement and
CallableStatement statements to execute
static and dynamic SQL statements and stored pro-
cedures
Licensed to Mark Watson <nordickan@gmail.com>

579Introduction
Any Java class can use JDBC to connect with a database using a driver. JDBC has been
around since 1997, and was added to JSE 1.1 as JDBC 1.0. Since its first version, multi-
ple enhancements have been made to the JDBC API. Java 7 ships with JDBC version 4.1.
JDBC classes are defined in Java packages java.sql and javax.sql.

9.1.1 JDBC API overview
By using the classes and interfaces from the JDBC API, Java classes can connect to a
data source, execute SQL (Structured Query Language, the standard language for
relational database management systems, RDBMS), and process the results. At the
heart of the JDBC API lies the use of SQL to create, modify, and delete database objects
like tables, and query and update them, as shown in figure 9.2.

 JDBC provides vendor-neutral access to the common database features. So if you
don’t use proprietary features of a database, you can easily change the database that
you connect to. The JDBC API includes an abstraction of a database connection, state-
ments, and result sets.

NOTE Though different in meaning, the terms database and database engine
are often used interchangeably by developers. A database refers to the col-
lection of data and the relationships supporting the data. The database
software refers to the software like MySQL to access the data. A database
engine is a process instance of the software that accesses the database. A
database server is the computer on which the database engine runs.

JDBC

API

Driver

implementation
+

Database
Java

application

Figure 9.1 JDBC API and driver implementation classes are a bridge
between a Java application and a database

J

D

B

C

A

P

I

Data

source

Java

application

Establish connection1

Send SQL statements2

SQL results3

Process results4

Figure 9.2 JDBC API usage overview
Licensed to Mark Watson <nordickan@gmail.com>

580 CHAPTER 9 Building database applications with JDBC
Let’s look at the classes and interfaces
that make up the core of the JDBC API.

9.1.2 JDBC architecture

With the JDBC API, you have a choice
of connecting to a local or remote
data store either directly or through
an application server. The JDBC API
supports the use of a two-tier model
or n-tier (multiple-tier) model to con-
nect to a database or data source. In a
two-tier model, your Java application
connects directly with a local or remote
data source using a JDBC driver. In an
n-tier model, a Java or non-Java appli-
cation sends a command to an applica-
tion server, which connects to a remote
or local database using the JDBC API.
Figure 9.3 shows an application con-
necting to a data source using two-tier
and n-tier architecture.

 JDBC drivers provided by the database or a third party work as interpreters to
enable the Java applications to “talk” with the databases. These come in multiple fla-
vors, as discussed in the next section.

9.1.3 JDBC drivers

The JDBC API includes two major set of interfaces:

■ A JDBC API for application developers
■ A lower-level JDBC driver API for writing drivers

JDBC drivers are the implementation of the lower-level JDBC driver API as defined in
the JDBC specifications. Depending on whether the drivers are implemented using
only Java code, native code, or partial Java, they are categorized as follows:

■ Type 4—pure Java JDBC driver
■ Type 3—pure Java driver for database middleware
■ Type 2—native API, partly Java driver
■ Type 1—JDBC-ODBC bridge

Figure 9.4 shows the different types of drivers.
 For the exam, you won’t be questioned on the types of JDBC drivers, how they

are implemented, and other driver-related specific details. The exam covers how
you’d make your Java application access a given driver, using the correct connection
string to establish a connection with the underlying database. Also, for the exam,

Data source

Two-tier architecture

JDBC

driver

Database

Java

application

JDBC API

Network

n-tier architecture

JDBC

driver

Java or non-Java

application

Java

application server

JDBC API

Figure 9.3 JDBC architecture
Licensed to Mark Watson <nordickan@gmail.com>

581Interfaces that make up the JDBC API core
you’ll only need to connect with the type 4 JDBC driver—that is, the pure Java
JDBC driver.

 With an overview of the JDBC API, its architecture, and the various drivers that you
can use to connect a Java application to a database, let’s look next at the main inter-
faces that make up the core of the JDBC API.

9.2 Interfaces that make up the JDBC API core

The JDBC API defines multiple interfaces, which are implemented by the database
vendor or a third party that your Java application is connecting with. The implementa-
tion of these interfaces is bundled in a driver and made available to the Java applica-
tion. JDBC calls from your Java applications are converted to database calls by a driver.
Figure 9.5 shows the main interfaces from packages java.sql and javax.sql that
you’ll work with in this chapter (and that are covered on the exam).

Database

Java application

JDBC API

Type 4 driver Type 3 driver

Database Database

Type 2 driver Type 1 driver

Pure Java

JDBC driver

Pure Java driver

for DB middleware

Native API,

partly Java driver

JDBC-ODBC

bridge

Middleware

server

Vendor DB

library

ODBC

driver

Database

Vendor DB

library

Figure 9.4 Multiple flavors of JDBC drivers

[9.1] Describe the interfaces that make up the core of the JDBC API
(including the Driver, Connection, Statement, and ResultSet
interfaces and their relationship to provider implementations)
Licensed to Mark Watson <nordickan@gmail.com>

582 CHAPTER 9 Building database applications with JDBC
Every driver must implement a minimum set of interfaces defined in the JDBC API to
conform to the JDBC specifications. The interface java.sql.Driver is one that must
be implemented by all JDBC drivers, as discussed in the next section.

9.2.1 Interface java.sql.Driver

Every driver class must implement the interface java.sql.Driver. A Java system
allows for the existence and registration of multiple drivers. When a database vendor
or third party develops a JDBC driver, it must implement this interface. When a class
implementing this interface is loaded into memory, it must create an instance of itself
and register itself with class DriverManager. It does this by defining a static initializer
block, which instantiates it and registers itself with class DriverManager. When a Java
application requests to establish a connection with a database, class DriverManager
searches for an appropriate driver from its list of registered drivers to connect with the
target database.

 You can manually load and register a driver by calling method forName() from
class java.lang.Class. For example, let’s assume that the name of the class that
implements the interface java.sql.Driver in MySQL’s JDBC driver is com.mysql.jdbc
.Driver. To load and register this driver, you should execute the following:

Class.forName("com.mysql.jdbc.Driver");

Manual loading of the drivers was required until JDBC version 3.0. Starting with
JDBC 4.0 and later, Java applications can automatically load and register the drivers
using the Service Provider Mechanism (SPM), introduced with Java 6 and JDBC 4.0.
For SPM, the driver needs to include the configuration file META-INF/services/

ResultSetDriver

Statement

PreparedStatement

CallableStatement

Connection

java.sql

RowSet

javax.sql

Figure 9.5 Interfaces that make up the core of the JDBC API
Licensed to Mark Watson <nordickan@gmail.com>

583Interfaces that make up the JDBC API core
java.sql.Driver in the .jar file. This file contains the name of the JDBC driver’s imple-
mentation of java.sql.Driver. An example for MySQL’s JDBC driver is com.mysql
.jdbc.Driver. When DriverManager requests a database connection, it loads driver
classes.

9.2.2 Interface java.sql.Connection

The interface java.sql.Connection represents a connection session with the speci-
fied database. It’s used to create the SQL statements Statement, PreparedStatement,
and CallableStatement, which can be executed against database objects. A Connection
object can be used to initiate transactions by creating savepoints, and committing or
rolling back all changes to specified savepoints.

 The Connection object can also be used to get a database’s metadata—that is,
information regarding the data stored in a database. It makes accessible the SQL
grammar supported by the database, its stored procedures, and other database-related
information.

9.2.3 Interface java.sql.Statement

The interface java.sql.Statement is used to create and execute static SQL state-
ments and retrieve their results. These SQL statements can be used to create, modify,
and delete database objects like tables, or insert, retrieve, modify, and delete table
data. The results from the database are returned as ResultSet objects or int values
indicating the number of affected rows.

 The interface Statement is extended by interfaces java.sql.PreparedStatement
and java.sql.CallableStatement. Objects of both of these subinterfaces represent
precompiled SQL statements, which execute faster than their uncompiled counter-
parts. They can also be used to execute SQL statements with placeholders, using ?.
CallableStatements are used to execute database-stored procedures.

9.2.4 Interface java.sql.ResultSet

The interface java.sql.ResultSet is retrieved as a result of executing a SQL
SELECT statement against a database. It represents a table of data. The ResultSet
object can be read-only, scrollable, or updatable. By default, a ResultSet object is
only read-only and can be traversed in only one (forward) direction. You can create
a scrollable ResultSet (that can be traversed forward and backward) and/or an
updatable ResultSet by passing the relevant parameters during the creation of a
Statement object.

 Let’s now dive deep into the first step of connecting to a database using class
java.sql.DriverManager.
Licensed to Mark Watson <nordickan@gmail.com>

584 CHAPTER 9 Building database applications with JDBC
9.3 Connecting to a database

The first step to make a Java class communicate with a database is to establish a con-
nection between them. Class java.sql.DriverManager talks with the JDBC driver to
return a Connection object, which can be used by your Java classes for all further com-
munication with the database.

EXAM TIP For the exam, it’s important to note the difference between a
JDBC driver (lowercase d) and a Driver class (uppercase D). A JDBC
driver is a set of classes provided by the database vendor, or a third party,
usually in a .jar or .zip file, to support the JDBC API. A Driver class is an
implementation of the interface java.sql.Driver in a JDBC driver. For
example, for MySQL, its platform-independent JDBC driver can be down-
loaded as mysql-connector-java-5.1.27.zip. The name of the class that
implements java.sql.Driver in MySQL Connector/J (JDBC driver) is
com.mysql.jdbc.Driver.

To connect with a database, you need class DriverManager only once. When a JDBC
client needs to connect with a database, it connects with class DriverManager, which
finds an appropriate driver, establishes a connection with the database, and returns
the Connection object to the JDBC client. For further JDBC calls, the JDBC doesn’t
need class DriverManager again. It uses the Connection object and other implementa-
tions of the JDBC interfaces provided by the JDBC driver to send the SQL queries and
get the results. These steps are shown in figure 9.6.

 In the next section, let’s see how JDBC drivers are loaded in memory and regis-
tered with the DriverManager.

[9.2] Identify the components required to connect to a database using
class DriverManager (including the JDBC URL)

JDBC

client

DriverManager
(JDBC API)

Get

connection
First step:

get database

connection

Subsequent steps:

use Connection
object

1

Connection

object

3

Find

appropriate

driver from

registered

drivers

2

JDBC client JDBC driver

J
D
B
C

Database

Figure 9.6 To communicate with a data source, a JDBC client needs the DriverManager only once.
Licensed to Mark Watson <nordickan@gmail.com>

585Connecting to a database
9.3.1 Loading JDBC drivers

For the exam, it’s important to understand how JDBC drivers are loaded and regis-
tered. There are two approaches to load JDBC drivers:

■ Manual (JDBC API version 3.0 and before)
■ Automatic (JDBC API version 4.0 and later)

With JDBC 3.0 and its earlier versions, you need to call Class.forName(), passing it
the name of the class that implements the interface java.sql.Driver. An example of
loading a JDBC driver for a MySQL database is as follows:

Class.forName("com.mysql.jdbc.Driver");

EXAM TIP Class.forName() will throw a ClassNotFoundException (a
checked exception) if the JVM is unable to locate the specified class.

The preceding code will load class com.mysql.jdbc.Driver in memory, executing its
static initializer block(s). According to the JDBC specification, a driver must register
itself with the DriverManager. For example, here’s the static initializer block defined
in MySQL’s class com.mysql.jdbc.Driver that initializes and registers itself with the
DriverManager:

static {
 try {
 java.sql.DriverManager.registerDriver(new Driver());
 } catch (SQLException E) {
 throw new RuntimeException("Can't register driver!");
 }
}

JDBC 4.0 and its later versions support automatic loading and registration of all JDBC
drivers accessible via an application’s class path. You no longer need to explicitly
load the driver in memory using Class.forName(). The SPM automates the driver-
loading mechanism. Using SPM, every JDBC 4.0 driver implementation must include
the configuration file with the name java.sql.Driver within the META-INF/services
folder in their .jar file. The file java.sql.Driver contains the full name of the class
that the vendor used to implement the interface jdbc.sql.Driver. For example,
com.mysql.jdbc.Driver is the name for the MySQL driver. When DriverManager
requests a database connection, it loads these driver classes.

 The exam might specify the JDBC API version that’s being used for an application
and then query you on whether you’d need to load the driver explicitly. Figure 9.7
shows the difference in steps in establishing a connection with a database using the
JDBC API for versions 3.0 and before and versions 4.0 and later.
Licensed to Mark Watson <nordickan@gmail.com>

586 CHAPTER 9 Building database applications with JDBC
9.3.2 Use DriverManager to connect to a database

Class DriverManager manages all the instances of JDBC driver implementations regis-
tered with a JVM. When loaded into memory, its static initializer attempts to load all
JDBC drivers that are referred to in the jdbc.drivers system property. DriverManager
is a starting point to obtain database connections for Java SE.

 When you invoke method getConnection(), the DriverManager finds the appro-
priate drivers from its set of registered drivers, establishes a connection with a data-
base, and returns a Connection object. Here are the overloaded getConnection()
methods:

public static Connection getConnection
 (String url) throws SQLException
public static Connection getConnection
 (String url, Properties info) throws SQLException
public static Connection getConnection
 (String url, String user, String pwd) throws SQLException

The JDBC URL determines the appropriate driver for a given URL string. For example

jdbc:subprotocol://<host>:<port>/<database_name>

Following is an example of a URL string for connecting with a MySQL database on a
local host:

DriverManager.getConnection
 ("jdbc:mysql://localhost/feedback?"
 + "user=sqluser&password=sqluserpw");

The default port for MySQL is 3306. Usually, if the default port is being used by the
database server, the :<port> value of the JDBC URL can be omitted. Here are a few
additional examples of JDBC connection strings for MySQL:

jdbc:mysql://data.ejavaguru.com:3305/examDB
jdbc:mysql://localhost:3305/mysql?connectTimeout=0
jdbc:mysql://127.0.0.1:3306/examDB

JDBC 3.0

and before

Step 1 (Load and register driver) Class.forName("----");

Step 2 (Establish DB connection) DriverManager.getConnection("----");

JDBC 4.0

and later

Step 1 (Load and register driver

and establish DB

connection)

DriverManager.getConnection("----");

Figure 9.7 Difference in steps to establish a connection with a database using JDBC API version 3.0
(and before) and JDBC API version 4.0 and later

Additional parameter
connectTimeout
Licensed to Mark Watson <nordickan@gmail.com>

587Connecting to a database
In a connection string, apart from specifying the type of driver, host, port, and data-
base to connect to, you can also specify additional parameters like the default
connectTimeout, autoConnect, and others. But you don’t need to worry about these
additional parameters for the exam. Following is an example of using the JDBC API to
connect a Java class with a MySQL database:

import java.sql.*;
class CreateConnection {
 public static void main(String[] args) {
 Connection con = null;
 try {
 String url = "jdbc:mysql://localhost/BookLibrary";
 String username = "test";
 String password = "test";

 con = DriverManager.getConnection(url, username, password);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 System.out.println(con);
 }
}

NOTE To keep it simple, the code in this section doesn’t include closing
of the Connection object. I’ll cover that in the next section.

Alternatively, you can also connect with a database by including the username and
password as part of the JDBC connection string (changes in bold):

import java.sql.*;
class CreateConnection {
 public static void main(String[] args) {
 Connection con = null;
 try {
 con = DriverManager.getConnection
 ("jdbc:mysql://localhost/BookLibrary?"
 + "user=test&password=test");
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 System.out.println(con);
 }
}

It’s common to use Properties to specify the login credentials for the JDBC URL:

import java.sql.*;
class CreateConnection {
 public static void main(String[] args) {
 Connection con = null;
 try {
 java.util.Properties prop = new java.util.Properties();
 prop.put("user", "test");
Licensed to Mark Watson <nordickan@gmail.com>

588 CHAPTER 9 Building database applications with JDBC
 prop.put("password", "test");
 con = DriverManager.getConnection
 ("jdbc:mysql://localhost/BookLibrary", prop);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 System.out.println(con);
 }
}

EXAM TIP Make note of the property names for specifying the username
and password: the keys are "user" and "password". An attempt to use
any other key to specify the username and password to connect to a data-
base will throw a SQLException.

9.3.3 Exceptions thrown by database connections

Let’s see what happens if your application can’t load a JDBC driver. For example, I
didn’t add the JDBC driver to the application’s class-path environment variable on pur-
pose. Here’s the exception message that I got when I tried to run this code:

java.sql.SQLException: No suitable driver found for jdbc:mysql://localhost/
BookLibrary?user=test&password=test

If the class is unable to connect to a database due to invalid login credentials, you’ll
get a SQLException:

java.sql.SQLException: Access denied for user 'test'@'test' (using password:
YES)

The individual SQL exception message will differ across various databases and their
versions. After you connect to a database successfully, the next step is to execute SQL
statements that can create database objects, and query, update, and delete them.

Connecting to a data source
There are two ways to connect to a database: by using class java.sql.Driver-
Manager or the interface javax.sql.DataSource. Class DriverManager was
included in the JDBC API since its beginning and the interface DataSource was
added later in JDBC version 2.0. Class DriverManager is the preferred class to
establish database connections with Java SE applications because DataSource
works with the Java Naming and Directory Interface (JNDI). JNDI is usually supported
by Java applications with a container that supports JNDI like Java Enterprise Edition
Server. For the exam, you must only know how to establish a connection using a
DriverManager. The use of DataSource isn’t on the exam.
Licensed to Mark Watson <nordickan@gmail.com>

589CRUD (create, retrieve, update, and delete) operations
9.4 CRUD (create, retrieve, update, and delete) operations

Since its release as JDBC API version 1.0 with JDK 1.1 in 1997, to JDBC 4.1 with JDK 7,
one of the goals of the JDBC API has been to maintain its focus on SQL. The focus of
this API has always been to access relational data from the Java classes. This is the core
on which this JDBC API is built. For the purpose of the exam, you should be able to
identify the SQL statements related to

■ How to create a table, including reading a definition of a given table
■ How to insert rows in a table
■ How to retrieve rows in a table, specifying the columns to be selected and

search criteria
■ How to update rows in a table
■ How to delete rows in a table

Figure 9.8 shows an outline of basic steps for executing a SQL statement against a data-
base. A ResultSet is returned for SQL SELECT statements. SQL INSERT, UPDATE,
DELETE, and other statements will return int values specifying successful execution or
the number of rows affected.

 Let’s get started with the execution of a SQL statement to create a table.

[9.3] Submit queries and read results from the database (including
creating statements, returning result sets, iterating through the
results, and properly closing result sets, statements, and connections)

JDBC

client

JDBC

clientDriverManager

getConnection create

Statement

Close

Statement

Close

Connection

Driver

found

Connection

established

N Y

Exception

N Y

SQLException SQLException SQLException

process

ResultSet

Y

Close

ResultSet

Execution

successful?

N

N

Iteration/

modification

successful?

Connection

executeQuery

Statement ResultSet

Figure 9.8 Basic steps for executing a SQL SELECT statement against a database
Licensed to Mark Watson <nordickan@gmail.com>

590 CHAPTER 9 Building database applications with JDBC
9.4.1 Read table definition and create table

To create a database table, you need a Connection object; use the Connection object
to create a Statement object and call method executeUpdate() on the Statement
object, passing it the SQL statement. For example

import java.sql.*;
class CreateTable {
 public static void main(String[] args) {
 Connection con = null;
 Statement statement = null;
 try {
 String url = "jdbc:mysql://localhost/BookLibrary";
 String username = "test";
 String password = "test";

 con = DriverManager.getConnection(url, username, password);

 statement = con.createStatement();

 int result = statement.executeUpdate("CREATE TABLE book " +
 " (id INT PRIMARY KEY, " +
 " title VARCHAR(1000), " +
 " author CHAR(255), " +
 " publication_year INT, " +
 " unit_price REAL)");
 System.out.println(result);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 finally {
 try {
 if (statement != null) statement.close();
 if (con != null) con.close();
 }
 catch (SQLException e) {}
 }
 System.out.println(con);
 }
}

NOTE In the book, you’ll see the use of uppercase for keywords in all
SQL statements. Though the case of SQL is ignored by the underlying
database, the use of uppercase for keywords is recommended and prac-
ticed for better readability.

Note that you need to call method executeUpdate() on Statement and not execute-
Query() to execute a Data Definition Language (DDL) request. What happens if you
try to execute the preceding SQL statement using method executeQuery()?

statement.executeQuery("CREATE TABLE book " +
 " (id INT PRIMARY KEY, " +
 " title VARCHAR(1000), " +

Establish a
connection

with database

Create
Statement

Call executeUpdate
on Statement to
create new table

createConnection, createStatement, and
executeUpdate can throw SQLException

Connection
and Statement
objects must
be closed.
Licensed to Mark Watson <nordickan@gmail.com>

591CRUD (create, retrieve, update, and delete) operations
 " author CHAR(255), " +
 " publication_year INT, " +
 " unit_price REAL)");

The use of executeQuery() will throw a SQLException at runtime (the exact excep-
tion message might vary across systems):

java.sql.SQLException: Can not issue data manipulation statements with
executeQuery().

EXAM TIP Method executeUpdate() is used to execute SQL queries to
insert new rows in a table, and update and delete existing rows. It’s also
used to execute DDL queries, such as the creation, modification, and dele-
tion of database objects like tables. If you use method executeQuery() for
any of these operations, you’ll get a SQLException at runtime.

The SQL statements that you include in your code are defined as string
values. This essentially means that even if any of the SQL statements are
invalid, the code compiles successfully. The Java application passes the
SQL statements to the database, which determines whether the SQL is
formed correctly or not. When a database receives an incorrect SQL state-
ment, it notifies the Java application with an appropriate exception and
message at runtime.

9.4.2 Mapping SQL data types to Java data types

For the exam, you might be given a table definition and shown related code to insert
data into the table, update its values, or delete the values. To do so, you must know
how to read a table definition and how SQL types map to Java types. For example, note
the following definition of table Book:

Table Book
id, INTEGER: PK,
title, VARCHAR(100)
author, CHAR(255),
publication_year, INTEGER
unit_price, REAL

What data type can you use to insert values into column title, which has a SQL type
of VARCHAR? You can use table 9.1 to answer this question, which shows the different
types of data that can be used in a table and their equivalent Java data types.

EXAM TIP The term PK in table 9.1 refers to the table’s primary key. A pri-
mary key is a column, which doesn’t accept duplicate values. It’s used to
uniquely identify a row in a table. In the preceding example, each book
can be assigned and identified using a unique id (identification) num-
ber. On the exam, you might see this term in a table definition, but you
won’t be asked questions about it.
Licensed to Mark Watson <nordickan@gmail.com>

592 CHAPTER 9 Building database applications with JDBC
You don’t need to memorize these SQL data types and their corresponding Java data
types. But remember the simple data conversion rules. For example, if you try to
insert a Date object into a column with the SQL data type INT, you might get a SQL-
Exception.

 In the next section, let’s work with an example to read a table definition and insert
data into it.

9.4.3 Insert rows in a table

On the exam, you might be given the definition of a table and questioned on the code
to insert rows in it. Here’s a sample of the definition of table Book from the preceding
section (a table definition in SQL may refer to a “table” as an “item”):

Item Book
id, INTEGER: PK,
title, VARCHAR(100)
author, CHAR(255),
publication_year, INTEGER
unit_price, REAL

It’s usual for the exam to include the description of the book as Item Book. Let’s work
with the code to insert rows in this table using the try-with-resources construct that
auto-closes resources Statement and Connection:

class InsertIntoTable {
 public static void main(String[] args) {
 try (Connection con = getConnection();
 Statement statement = con.createStatement()){

Table 9.1 Data types in a database and their equivalent Java data types

SQL data type Java data type Description

CHAR java.lang.String Character data of fixed length

VARCHAR java.lang.String Character data of variable length

VARCHAR2 java.lang.String Character data of variable length

INT int Integer values

INTEGER int Integer values

INTEGER(4) int Integer values

REAL/DOUBLE double Decimal numbers

REAL(4,2)/DOUBLE(4,2) double Decimal numbers

DATE java.sql.Date Date

Step 1: Establish
a connection with
database

Step 2:
Create
Statement
object
Licensed to Mark Watson <nordickan@gmail.com>

593CRUD (create, retrieve, update, and delete) operations

i

r
-

 int ret = statement.executeUpdate
 ("INSERT INTO book VALUES (" +
 "1, 'Expert In Java', 'Mantheakis', 2009, 59.9)");

 System.out.println(ret);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 String url = "jdbc:mysql://localhost/BookLibrary";
 java.util.Properties prop = new java.util.Properties();
 prop.put("user", "test");
 prop.put("password", "test");
 return DriverManager.getConnection(url, prop);
 }
}

EXAM TIP Because the interfaces Connection, Statement, and Result-
Set extend the interface AutoCloseable, you can create their instances in
a try-with-resources statement.

In the preceding code, the SQL statement used to insert a row in table Book didn’t
specify the column names. You might also see SQL statements on the exam that specify
the name of the columns:

int ret = statement.executeUpdate
 ("INSERT INTO book (id, title, author, publication_year, unit_price)"+
 " VALUES (1, 'Expert In Java', 'Mantheakis', 2009, 59.9)");

EXAM TIP You’ll not be tested on how to write SQL statements on this
exam. But you should know how to read basic SQL statements to insert,
retrieve, update, and delete table data. Including and excluding col-
umn names while inserting new rows in a table are two ways to insert
data in a table.

It’s easy to get confused with the method name used to insert data into a table. The
preceding example used method executeUpdate() (and not execute()). Method
executeUpdate() is also used to execute SQL UPDATE and DELETE statements. Here are
the overloaded versions of this method, as mentioned in the Java API documentation:

int executeUpdate(String sql)
int executeUpdate(String sql, int autoGeneratedKeys)

Step 3: Call
executeUpdate

on statement to
nsert new row in

table; returns
number of rows

affected

Prints “1”

Column names included
in SQL query

Executes given SQL statement, which may be an INSERT,
UPDATE, or DELETE statement or SQL statement that

returns nothing, such as a SQL DDL statement

Executes given SQL
statement and signals drive
with given flag whether auto
generated keys produced by
Statement object should be
made available for retrieval
Licensed to Mark Watson <nordickan@gmail.com>

594 CHAPTER 9 Building database applications with JDBC
int executeUpdate(String sql, int[] columnIndexes)
int executeUpdate(String sql, String[] columnNames)

9.4.4 Update data in a table

To update the data in a table, use method executeUpdate() from the interface
Statement. You can use a single SQL query to update single or multiple rows. To
update data, the database must find and mark the rows that need to be updated, spec-
ified using the WHERE clause of a SQL statement. Let’s update the unit_price of book
Expert in Java to 99.9:

class UpdateTable {
 public static void main(String[] args) {
 try (Connection con = getConnection();
 Statement statement = con.createStatement()){
 int ret = statement.executeUpdate
 ("UPDATE book " +
 "SET unit_price = 99.9 " +
 "WHERE title = 'Expert In Java'");

 System.out.println(ret);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 String url = "jdbc:mysql://localhost/BookLibrary";
 String username = "test";
 String password = "test";
 return DriverManager.getConnection(url, username, password);
 }
}

The following SQL query would update all the existing rows in a table:

statement.executeUpdate
 ("UPDATE book " +
 "SET unit_price = 99.9");

You can also update multiple columns and define multiple conditions using AND, OR,
and comparison operators to find and update matching rows. The following SQL
query would update columns unit_price and author for all books of author Man-
theakis and having a unit price greater than 39.9:

int ret = statement.executeUpdate
 ("UPDATE book " +
 "SET unit_price = 99.9, " +
 "author = 'Harry Mantheakis' " +

Executes given SQL statement and signals driver that auto-generated
keys indicated in given array should be made available for retrieval

Step 1: Establish
a connection with
database

Step 2:
Create
Statement
object

Step 3: Call
executeUpdate()
on statement to

update an existing
row for title

“Expert In Java”
Prints “1”

If no WHERE condition, UPDATE SQL
statement will update all rows
Licensed to Mark Watson <nordickan@gmail.com>

595CRUD (create, retrieve, update, and delete) operations

d

 "WHERE author = 'Mantheakis' " +
 "AND unit_price > 39.9");

EXAM TIP For all SQL operations on a database, the preferred program-
ming approach is to close the Connection and Statement objects. You
must either close them explicitly by calling close() on them or use them
with a try-with-resources statement, which auto-closes them. You’re very
likely to see a question that asks you about closing these resources and in
their correct order—first Statement and then Connection object.

9.4.5 Delete data in a table
Deletion of data works in a manner that’s similar to updating data in a database, as dis-
cussed in the preceding section. Use method executeUpdate() to execute a SQL
query to delete rows from a table. The following code will delete all rows from table
Book, if their year of publication is before 1900:

class DeleteTableData {
 public static void main(String[] args) {
 try (Connection con = getConnection();
 Statement statement = con.createStatement()){
 int ret = statement.executeUpdate
 ("DELETE FROM book " +
 "WHERE publication_year < 1900");

 System.out.println("ret="+ret);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 String url = "jdbc:mysql://localhost/BookLibrary";
 String username = "test";
 String password = "test";
 return DriverManager.getConnection(url, username, password);
 }
}

9.4.6 Querying database
Imagine you need to check your library for the existence of all books with a unit price
greater than 47.7. Figure 9.9 shows all existing rows in table Book.

Step 1: Establish
a connection with
database

Step 2:
Create
Statement
object

Step 3: Call
executeUpdate on

Statement to
elete all rows with

publication_year
< 1900. Prints number of

rows deleted

Figure 9.9 MySQL client showing results of selecting all rows from table Book
Licensed to Mark Watson <nordickan@gmail.com>

596 CHAPTER 9 Building database applications with JDBC
To select the required information, you can issue an appropriate SQL SELECT query
and the database would return to you a set of information as table rows as a ResultSet
object. For example

class QueryTableData {
 public static void main(String[] args) {
 try (Connection con = getConnection();
 Statement statement = con.createStatement()){

ResultSet rs = statement.executeQuery
 ("SELECT * FROM book " +
 "WHERE unit_price > 47.7");){

 while (rs.next()) {
 System.out.print(rs.getInt("id") + "-");
 System.out.print(rs.getString("title") + "-");
 System.out.print(rs.getString("author") + "-");
 System.out.print(rs.getInt("publication_year") + "-");
 System.out.println(rs.getDouble("unit_price"));
 }
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 String url = "jdbc:mysql://localhost/BookLibrary";
 String username = "test";
 String password = "test";
 return DriverManager.getConnection(url, username, password);
 }
}

EXAM TIP Method executeQuery() is used for SQL SELECT statements.

As you can see in figure 9.9, table Book has three matching rows for a unit_price
greater than 47.7. The output of the preceding code is as follows:

1-Expert in Java-Harry Mantheakis-2009-99.9
2-All Objects-Rosenthal-2010-49.9
4-Quilling Expert-Shreya Gupta-2012-199.9

Let’s take a closer look at the structure of the ResultSet object, returned by method
executeQuery(), as shown in figure 9.10.

 At the beginning, the cursor position is before the first row. Method next() returns
a boolean value indicating whether more rows are available in the ResultSet and
moves the cursor position to the next row, if it’s available. The code iterates through
all the rows of the ResultSet object and prints the column values by calling Result-
Set’s methods getString(), getInt(), and getDouble().

 For the exam, you must understand multiple concepts when you access a Result-
Set using a SQL SELECT query. The preceding example used * to specify that the
resulting set must include all the columns for the selected row. You can restrict the

Call executeQuery()
to execute SQL
SELECT statement

next() moves
current cursor

in ResultSet
object to next
available row
Licensed to Mark Watson <nordickan@gmail.com>

597CRUD (create, retrieve, update, and delete) operations
column data that’s returned to you by specifying the column names. The following
query will select three columns—id, title, and publication_year—from table Book
where the value for the author is 'Harry Mantheakis':

ResultSet rs = statement.executeQuery
 ("SELECT id, title, publication_year FROM book " +
 "WHERE author='Harry Mantheakis'");

Take note of method getString() and its method arguments (column names) used
to retrieve the value for a column in a row. The overloaded method getString() in
the interface ResultSet accepts either the column position or column label and
returns the table value as a string. It takes the following forms:

String getString(int columnLabel)
String getString(int columnIndex)

EXAM TIP Although everything in Java is 0-based, column indexes in a
ResultSet are 1-based.

The interface ResultSet also defines overloaded methods to retrieve the values from
the ResultSet as specific data types, accepting column positions and column labels.
Table 9.2 lists these methods.

Table 9.2 Overloaded methods in interface ResultSet to retrieve individual data
value as a particular data type

Method return type Method name

int getInt(String columnLabel)

int getInt(int columnIndex)

long getLong(String columnLabel)

long getLong(int columnIndex)

float getFloat(String columnLabel)

float getFloat(int columnIndex)

id

1

2

4

title

Expert in Java

All Objects

Quilling Expert

author

Harry Mantheakis

Rosenthal

Shreya Gupta

publication_year

2009

2010

2012

unit_price

99.9

49.9

199.9

Row 1

Row 2

Row 3

Cursor position

before row 1

Figure 9.10 When you issue a SQL SELECT statement, executeQuery() returns a ResultSet. A
ResultSet is a link to a database cursor with selected results—an object that maintains a cursor (or
a pointer) to the current row. At the beginning, the cursor is placed before the beginning of the first row.
Licensed to Mark Watson <nordickan@gmail.com>

598 CHAPTER 9 Building database applications with JDBC
What happens if the target table doesn’t find any matching rows in the table for your
SELECT query? In this case, the ResultSet object isn’t set to null. It’s initialized, but it
doesn’t contain any rows. For example

class QueryTableDataNoData {
 public static void main(String[] args) {
 try (Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery
 ("SELECT id, title, author FROM book " +
 "WHERE unit_price=155.99");){

 System.out.println(rs);

 ResultSetMetaData rsmd = rs.getMetaData();

 System.out.println(rsmd.getColumnLabel(1));
 System.out.println(rsmd.getColumnLabel(2));
 System.out.println(rsmd.getColumnLabel(3));
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 //code to establish and return connection
 }
}

EXAM TIP If your SQL statement doesn’t return any rows, the ResultSet
object doesn’t point to a null value. In this case, you’ll get a ResultSet
object that won’t include any rows.

Even though the SQL statement in the preceding code didn’t return any rows, the
resultant ResultSet doesn’t refer to a null value. This is verified by calling methods
on the ResultSet object rs. The preceding example retrieves the metadata (data
about data) from the ResultSet by calling method getMetaData().

double getDouble(String columnLabel)

double getDouble(int columnIndex)

java.lang.String getString(String columnLabel)

java.lang.String getString(int columnIndex)

java.sql.Date getDate(String columnLabel)

java.sql.Date getDate(int columnIndex)

Table 9.2 Overloaded methods in interface ResultSet to retrieve individual data
value as a particular data type (continued)

Method return type Method name

No matching rows
for unit_price

155.99.

Won’t
print null.

Get MetaData
for this

result set.
Retrieve and print
column names for
positions 1, 2, and 3.
Licensed to Mark Watson <nordickan@gmail.com>

599JDBC transactions
 In this section, you worked with modification of data in a database as independent
operations. However, in the real world, most often, a simple function like updating
the last name of an employee might include execution of multiple database state-
ments. In the next section, we’ll cover how database transactions logically group mul-
tiple database operations, which can be committed or rolled back.

9.5 JDBC transactions

Imagine that a programmer, Selvan, needs to transfer $55 from his bank account to
Paul’s account. This simple transfer would require multiple steps like a withdrawal of
$55 from Selvan’s account, depositing the same amount to Paul’s bank account, and
modification of the total available balances of both these bank accounts.

 A typical fund transfer like this might involve multiple changes to the relevant
database records. For such cases, you wouldn’t like partial completion of steps. For
example, what happens if Selvan’s bank debits the $55 amount from his bank account
but doesn’t credit it to Paul’s account? Similarly, if the bank credits the amount to
Paul’s account without debiting it from Selvan’s account, its own data would be invalid
or inconsistent. For this process to be marked complete and valid, all individual data-
base changes should complete successfully. If either of them fails, none should be
reflected in the database.

 By default, the JDBC API initiates all database changes as soon as you execute SQL
queries. To ensure that all or none of a set of database modifications happen, you can
define them as a single JDBC transaction. The multiple database changes in a JDBC
transaction execute as a single unit so that all or none of them execute. Actually, all
the changes within a transaction are executed in the database, but they’re persisted
when they’re committed. This is an important conceptual difference.

 In the next section, you’ll see the typical database changes that might be required
to complete a simple funds transfer.

9.5.1 A transaction example

When you establish a connection with a database, by default it’s in the auto-commit
mode—that is, all changes performed by SQL statements are immediately committed
to the database. Let’s modify this behavior and execute a set of SQL statements to
transfer funds ($55) from a bank account (ID: 5555) to another bank account (ID:
7777). Let’s assume that the database defines tables bank_acct and transaction to
store the details of each bank account and their related transactions, as shown in fig-
ure 9.11. To complete the process of transferring funds, the class must modify the
account balances in table bank_acct and insert rows in table transaction.

[9.4] Use JDBC transactions (including disabling auto-commit mode,
committing and rolling back transactions, and setting and rolling
back to savepoints)
Licensed to Mark Watson <nordickan@gmail.com>

600 CHAPTER 9 Building database applications with JDBC
Here’s the complete code:

class TransactionTranferFunds {
 public static void main(String[] args) {
 Connection con = null;
 Statement statement = null;
 try {
 con = getConnection();
 con.setAutoCommit(false);
 statement = con.createStatement();

 int result = statement.executeUpdate
 ("INSERT INTO transaction VALUES " +
 " (1, '5555', 'db', 55.0, '2000-01-21')");

 result = statement.executeUpdate
 ("INSERT INTO transaction VALUES " +
 " (2, '7777', 'cr', 55.0, '2000-01-21')");

 result = statement.executeUpdate
 ("UPDATE bank_account " +
 "SET balance = 944.0 " +
 "WHERE acct_no='5555'");

Transfer funds (55)
Process

Before

transaction

Table

bank_acct

A/C No. 5555 A/C No. 7777

After

transaction

Table

bank_acct

Table

transaction

Table

transaction

acct_no

5555

7777

acct_name

Selvan Rajan

Paul Rosenthal

balance

944.0

155.0

acct_no

5555

7777

acct_name

Selvan Rajan

Paul Rosenthal

balance

999.0

100.0

1

2

5555

7777

Debit

Credit

55.0

55.0

2000-01-21

2000-01-21

id acct_no type amount date

id acct_no type amount date

Figure 9.11 A simple process of a funds transfer can include multiple data modifications in
the database.

Start transaction
by calling setAuto-
Commit(false) on
Connection object

 b

Insert row 1
in table

transaction.

 c

Insert row 2
in table

transaction.

 d

Update balance for
acct_no 5555 in table
bank_account.

 e
Licensed to Mark Watson <nordickan@gmail.com>

601JDBC transactions
 result = statement.executeUpdate
 ("UPDATE bank_account " +
 "SET balance = 155.0 " +
 "WHERE acct_no='7777'");

 con.commit();
 }
 catch (SQLException e) {
 System.out.println(e);
 try {
 con.rollback();
 }
 catch(SQLException ex) {
 System.out.println(ex);
 }
 }
 }
 static Connection getConnection() throws SQLException{
 // code to create and return Connection object
 }
}

To start a transaction that includes multiple SQL statements, the code calls setAuto-
Commit(false) on the Connection object B. The code at c and d inserts rows in
table transaction. The code at e and f modifies the balance of account numbers
5555 and 7777 in table bank_account. At the end of the execution of all the SQL state-
ments, the code at g calls commit() on the Connection object. If any SQLException is
thrown during the execution of any of the SQL statements, the exception handler calls
rollback() on the Connection object h so that a partial set of statements isn’t per-
sisted in the database.

 As mentioned earlier, all statements are sent to the database and all requested
changes are performed by the database system. Methods commit() and rollback()
only decide whether these changes are persisted (that is, confirmed) in the database
or not.

EXAM TIP Method executeUpdate() returns a count of the rows that are
or would be affected in the database for row insertions, modifications,
and deletion. The value is returned even if the statement isn’t committed.
This method returns 0 for SQL DDL statements, which create database
objects and modify their structure or delete them.

Rolling back or losing all the transactions might be undesirable in most situations. In
the next section, you’ll see how you define savepoints in your transactions, so that if any
exceptions occur during the course of the transaction, you might consider rolling
back to particular savepoints.

9.5.2 Create savepoints and roll back partial transactions

By using a savepoint, you can exercise finer control over the work done by a set of SQL
statements in a transaction. Within a transaction, you can create and set a savepoint,

Update balance for
acct_no 7777 in table
bank_account.

 f

Commit all changes
to database g

If any exception is
thrown, call rollback()
on Connection object h
Licensed to Mark Watson <nordickan@gmail.com>

602 CHAPTER 9 Building database applications with JDBC

ed
int
to
yFor7777.
and later roll back the work done because you set the savepoint. You can create multi-
ple savepoints in a transaction and release them or roll them back.

 The following example defines multiple SQL statements to credit the salary of
three account holders with IDs 5555, 7777, and 9999. For each account holder, a row
is added to table transaction and then its balance is updated in table bank_account.
After executing the SQL statements for these account holders, the bank realizes that it
used an incorrect transaction amount. Notice how the following application uses save-
points in a transaction to roll back the transaction:

class TransactionSavepoint {
 public static void main(String[] args) {
 Connection con = null;
 Statement statement = null;
 try {
 con = getConnection();
 con.setAutoCommit(false);
 statement = con.createStatement();

 int result = statement.executeUpdate
 ("INSERT INTO transaction values " +
 " (101, '5555', 'db', 2099.0, '2020-10-01')");
 result = statement.executeUpdate
 ("UPDATE bank_account " +
 "SET balance = balance + 2099.0 " +
 "WHERE acct_no='5555'");

 Savepoint sp5555 = con.setSavepoint();

 result = statement.executeUpdate
 ("INSERT INTO transaction values " +
 " (102, '7777', 'db', 12099.0, '2020-10-01')");
 result = statement.executeUpdate
 ("UPDATE bank_account " +
 "SET balance = balance + 12099.0 " +
 "WHERE acct_no='7777'");

 Savepoint sp7777 = con.setSavepoint("CrSalaryFor7777");

 result = statement.executeUpdate
 ("INSERT INTO transaction values " +
 " (103, '9999', 'db', 5099.0, '2020-10-01')");
 result = statement.executeUpdate
 ("UPDATE bank_account " +
 "SET balance = balance + 5099.0 " +
 "WHERE acct_no='9999'");
 Savepoint savepoint = con.setSavepoint("CrSalaryFor9999");

 con.rollback(sp7777);
 con.commit();
 }
 catch (SQLException e) {
 System.out.println(e);
 try {
 con.rollback();
 }

To start a transaction,
set Connection’s auto-
commit mode to false.

 b

SQL statements
to credit salary

for acct_no 5555

 c

Set unnamed
Savepoint
sp5555.

 d

SQL statements
to credit salary

for acct_no 7777

 e

Set nam
Savepo
sp7777
CrSalar

 f

SQL statements
to credit salary

for acct_no 9999

 g

Set named
Savepoint
sp9999 to
CrSalary-
For9999. h

Roll back all transactions
to point sp7777. i

Commit the rest of
the transactions. j

If SQLException, roll back
all database changes.1)
Licensed to Mark Watson <nordickan@gmail.com>

603RowSet objects
 catch(SQLException ex) {
 System.out.println(ex);
 }
 }
 }
 static Connection getConnection() throws SQLException{
 // code to create and return Connection object
 }
}

In the preceding code, B sets the auto-commit mode of a Connection object to
false. This is important. The default auto-commit mode is true, which if not
changed will make the commit and rollback methods throw a SQLException. The
code at c executes a SQL statement to credit the salary of the account holder with ID
5555 by inserting a row in table transaction and updating the balance in table
bank_account. The code at d sets the first savepoint. The code at e defines a SQL
statement to credit the salary for the account holder with ID 7777, and the code at f
creates a named savepoint, CrSalaryFor7777. The code at g defines a SQL statement
to credit the salary for the account holder with ID 9999, and the code at h creates
another named savepoint, CrSalaryFor9999. The code at i rolls back the transac-
tion, discarding all executed statements, going backward, to the point where save-
point CrSalaryFor7777 is created. The code at j commits all the database changes
that were executed before the creation of savepoint CrSalaryFor7777. In case the
code encounters a SQLException, the code at 1) rolls ba.ck the complete transaction.

9.5.3 Commit modes and JDBC transactions

A JDBC connection can have two automatic commit (auto-commit) modes:

■ true (default)
■ false

To work with a transaction, you must set the auto-commit mode to false or methods
rollback() and commit() will throw a SQLException.

 If the commit mode of a connection is set to false and you try to set it to true dur-
ing the course of a transaction, the code will throw a SQLException when you call any
transaction-related method like commit() or rollback().

9.6 RowSet objects

Imagine that you need to show a graph in your application depicting the performance
of your organization. The data for the graph needs to be retrieved from a database.
This task doesn’t seem to be difficult. You can connect to the database using the JDBC

[9.5] Construct and use RowSet objects using the RowSetProvider class
and the RowSetFactory interface
Licensed to Mark Watson <nordickan@gmail.com>

604 CHAPTER 9 Building database applications with JDBC
API, send a SQL query to the database, get a ResultSet, extract the values from it, and
display the graph accordingly. Now imagine that you need to update the graph when-
ever any change is made to the underlying data in the database, using any application.
A RowSet can help here.

 You can configure a RowSet object by setting its properties, connecting to a JDBC
data source, executing a SQL statement, and getting the results.

 You can register listeners with a RowSet object so that when an event occurs on a
RowSet object (like any modification to its value), the registered listeners can be
notified.

 RowSet objects can be connected or disconnected. A connected RowSet object, like
JdbcRowSet, maintains a connection with its data source throughout its life. On the
other hand, a disconnected RowSet object, like CachedRowSet, establishes a connec-
tion with the data source, gets the values, and then disconnects itself. It can still
update its values and later update them in the data source by reconnecting to it. Fig-
ure 9.12 shows the relationship among the interface ResultSet and the interface
RowSet and its subinterfaces.

 In the next section, let’s work with the classes and interfaces that can be used to
create RowSet objects.

ResultSet

java.sql

RowSet

javax.sql

CachedRowSet JdbcRowSet

javax.sql.rowset

WebRowSet

FilteredRowSet JoinRowSet
Figure 9.12 Relationship among
interfaces ResultSet and RowSet
and the subinterfaces of Rowset
Licensed to Mark Watson <nordickan@gmail.com>

605RowSet objects
9.6.1 Interface RowSetFactory

The interface javax.sql.rowset.RowSetFactory defines the implementation of a
factory that can be used to obtain different types of RowSet implementations. Table 9.3
lists its methods.

To get access to an object of RowSetFactory, you can use class RowSetProvider, dis-
cussed in the next section.

9.6.2 Class RowSetProvider

Class javax.sql.rowset.RowSetProvider defines factory methods to get a RowSet-
Factory implementation. The RowSetFactory can then be used to create objects of
different types of RowSet implementations. Here’s how you can create an instance of
this default implementation and a JdbcRowSet using it:

RowSetFactory rowsetFactory = RowSetProvider.newFactory();
JdbcRowSet crs = rowsetFactory.createJdbcRowSet();

You can also specify a custom factory implementation by specifying its name. For
example

RowSetFactory rowsetFactory = RowSetProvider.newFactory(
 "com.ejava.sql.rowset.CustomRowSetFactory", null);

This interface defines the following methods to create objects of RowSetFactory
implementations:

static RowSetFactory newFactory()
static RowSetFactory newFactory(String factoryClassName, ClassLoader cl)

9.6.3 An example of working with JdbcRowSet

Let’s create and use a JdbcRowSet by using RowSetFactory and RowSetProvider. For
this example, we’ll use the default factory implementation provided by Oracle. The

Table 9.3 Methods of interface RowSetFactory

Method Description

CachedRowSet createCachedRowSet() Creates a new instance of a CachedRowSet

FilteredRowSet createFilteredRowSet() Creates a new instance of a FilteredRowSet

JdbcRowSet createJdbcRowSet() Creates a new instance of a JdbcRowSet

JoinRowSet createJoinRowSet() Creates a new instance of a JoinRowSet

WebRowSet createWebRowSet() Creates a new instance of a WebRowSet

Creates new instance of default
RowSetFactory implementation

Creates new instance of RowSetFactory
from specified factory class name
Licensed to Mark Watson <nordickan@gmail.com>

606 CHAPTER 9 Building database applications with JDBC

con

C

 to
e

ws
able
ove

custom implementation is out of the scope of this exam, so it isn’t discussed here. A
JdbcRowSet object accomplishes the following:

■ It establishes a connection with a database (so you don’t need a separate
Connection object).

■ It creates a PreparedStatement object for the query to execute (so you don’t
need a separate Statement object).

■ It executes the SQL statement to create a ResultSet object.

EXAM TIP If the execute method isn’t successful, you can only call
execute and close methods on it. The rest of the methods will throw an
exception.

Here’s an example:

class RowSetExample {
 public static void main(String[] args) {
 JdbcRowSet jdbcRS = null;
 try {

 RowSetFactory rowSetFactory = RowSetProvider.newFactory();
 jdbcRS = rowSetFactory.createJdbcRowSet();

 jdbcRS.setUrl("jdbc:mysql://localhost/BookLibrary");
 jdbcRS.setUsername("test");
 jdbcRS.setPassword("test");
 jdbcRS.setCommand("SELECT * FROM book");
 jdbcRS.execute();

 while (jdbcRS.next()) {

 System.out.print(jdbcRS.getString("id") + "-");
 System.out.print(jdbcRS.getString("title") +"-");
 System.out.print(jdbcRS.getString("unit_price"));
 System.out.println();
 }
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 finally {
 try {
 jdbcRS.close();
 }
 catch (SQLException e) {}
 }
 }
}

In the preceding code, note how the JdbcRowSet object manages all the database
operations without any separate Connection, Statement, or ResultSet objects. The

Use RowSetProvider to get
default implementation of

RowSetFactory

 b

Use RowSet-
Factory to

create object
of JdbcRowSet

 c

Call setURL
to define

nection URL d
Call setUsername
and setPassword to set
username and password

 e

all setCommand
to define SQL

statement f

Call execute to
execute SQL

statement g

Call next
determin
whether
more ro
are avail
and to m
cursor to
next row hCall getString to

extract column
value in a row i

Call close() on
JdbcRowSet object j
Licensed to Mark Watson <nordickan@gmail.com>

607Precompiled statements
code at B and c uses the RowSetProvider and RowSetFactory to get an object of
JdbcRowSet. The code at d defines the database connection string using method
setURL(), and at e it defines the database username and password values. The
code at f defines the SQL statement by using RowSet’s method setCommand. The code
at g executes the SQL statement using method execute(). It receives the result of
the SQL statement and then can check for the existence of more rows by calling the
next method h. The JdbcRowSet object accesses the columns by calling method get-
String() and passing the relevant column names i. With database objects, it’s
important to call close on the JdbcRowSet object j.

9.7 Precompiled statements

Unlike the objects of the interface Statement, the objects of interfaces Prepared-
Statement and CallableStatement represent precompiled SQL statements. Pre-
compiled SQL statements are compiled in the database system. The precompiled
statements execute faster than their noncompiled counterparts. Another major
advantage offered by PreparedStatement and CallableStatement is their ability to
include placeholders in SQL statements using a ?. You can assign values to these place-
holders by calling one of the appropriate setDataType(parameterIndex, value) on
these objects. And the most critical advantage of using parameters with Prepared-
Statement and CallableStatement is that they prevent SQL injection attacks. Let’s
get started with using the PreparedStatement.

9.7.1 Prepared statements

The interface java.sql.PreparedStatement extends the interface java.sql.Statement.
Its objects represent precompiled SQL statements. The first difference that you’d
notice when you compare PreparedStatement with Statement is in its creation. Unlike
Statement, you must specify the relevant SQL statement when you create an object of
PreparedStatement. The following code replaces Statement with a PreparedStatement
object; the rest of the code remains the same:

class QueryPrepStatement {
 public static void main(String[] args) {
 try (Connection con = getConnection();
 PreparedStatement stmt = con.prepareStatement
 ("SELECT * FROM book " +
 "WHERE unit_price > 47.5");
 ResultSet rs = stmt.executeQuery();){
 while (rs.next()) {
 System.out.print(rs.getString("id") + "-");
 System.out.print(rs.getString("title") +"-");
 System.out.print(rs.getString("author") + "-");
 System.out.print(rs.getString("publication_year") + "-");

[9.6] Create and use PreparedStatement and CallableStatement objects

SQL query is
specified when
you create an

object of
Prepared-
Statement
Licensed to Mark Watson <nordickan@gmail.com>

608 CHAPTER 9 Building database applications with JDBC

 System.out.print(rs.getString("unit_price"));
 System.out.println();
 }
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 // code to get a valid connection
 }
}

EXAM TIP Unlike the interface Statement, where you specify the SQL
query with the issue of method executeQuery() or executeUpdate(),
you must specify the SQL query when you create objects of Prepared-
Statement.

As shown in the preceding example, you can use the PreparedStatement objects for
SQL statements that don’t include placeholders. The fact that you can include param-
eters makes PreparedStatement objects even more useful. Imagine that you need to
update the unit price of all books in table book by reading the new prices (column
unit_price) from table new_book_price. Here’s an example:

class UpdateBookPricePrepStatement {
 public static void main(String[] args) throws Exception {
 try {
 Connection con = getConnection();
 PreparedStatement bookUpdStmt = con.prepareStatement
 ("UPDATE book SET " +
 "unit_price = ? WHERE id = ?");
 PreparedStatement bookNewPrStmt = con.prepareStatement
 ("SELECT id, unit_price FROM new_book_price");

 ResultSet bookNewPrRs = bookNewPrStmt.executeQuery();

 while (bookNewPrRs.next()) {
 bookUpdStmt.setDouble
 (1, bookNewPrRs.getDouble("unit_price"));
 bookUpdStmt.setString(2, bookNewPrRs.getString("id"));
 bookUpdStmt.executeUpdate();
 }
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 // code to get a valid connection
 }
}

PreparedStatement
for input

parameters for
price and id

Prepared-
Statement
without any
parameters

Call execute-
Query to execute

SQL SELECT
statement For all data retrieved from

table new_book_price

Read id and
unit_price from

new_book_price
and set their values
as parameter values

for bookUpdStmt.

Call execute-
Update to execute

SQL UPDATE
statement
Licensed to Mark Watson <nordickan@gmail.com>

609Precompiled statements
In the preceding code, note how values are assigned to the parameters in a Prepared-
Statement. The interface PreparedStatement defines methods to assign values to its
parameters by using its setDataType (parameterIndex, value) methods. Because
column unit_price is SQL type REAL, you use the setDouble(int parameterIndex,
double value) method to assign the unit price. Because column id is SQL type CHAR,
you use the setString(int parameterIndex, String value) method to assign the ID.
Table 9.4 lists important methods of the interface PreparedStatement.

EXAM TIP PreparedStatement defines three methods to execute its SQL
statement: execute(), executeQuery(), and executeUpdate(). Method
execute() can execute any type of SQL statement and returns a boolean
value—true when a query executes successfully, false when an error
occurs. Method executeQuery() executes a SQL SELECT statement and
returns a ResultSet. Method executeUpdate() executes a DDL query,
like CREATE TABLE, and INSERT, UPDATE, and DELETE SQL statements. It

Table 9.4 Important methods of interface PreparedStatement

Method name Method description

void clearParameters() Clears the current parameter values immediately.

boolean execute() Executes the SQL statement in this PreparedStatement
object, which may be any kind of SQL statement.

ResultSet executeQuery() Executes the SQL query in this PreparedStatement
object and returns the ResultSet object generated by
the query.

int executeUpdate() Executes the SQL statement in this PreparedStatement
object, which must be a SQL DML statement, such as
INSERT, UPDATE, or DELETE, or a SQL statement that
returns nothing, such as a DDL statement.

void setByte(int
parameterIndex, byte x)

Sets the designated parameter to the given Java byte value.

void setDate(int
parameterIndex, Date x)

Sets the designated parameter to the given
java.sql.Date value using the default time zone of the
virtual machine that’s running the application.

void setDouble(int
parameterIndex, double x)

Sets the designated parameter to the given Java double
value.

void setFloat(int
parameterIndex, float x)

Sets the designated parameter to the given Java float
value.

void setInt(int
parameterIndex, int x)

Sets the designated parameter to the given Java int value.

void setLong(int
parameterIndex, long x)

Sets the designated parameter to the given Java long value.
Licensed to Mark Watson <nordickan@gmail.com>

610 CHAPTER 9 Building database applications with JDBC
returns 0 for DDL statements and the number of rows affected for SQL
INSERT, UPDATE, and DELETE statements.

In the next section, let’s see how you can use existing database-stored procedures
using java.sql.CallableStatement.

9.7.2 Interface CallableStatement

Compare a stored procedure with a method in Java. The same way you can define
multiple statements in a method to form a logical unit, a stored procedure defines
multiple SQL statements to form a logical unit. For example, a database procedure
could update the price of all the books in a table by reading the new values from
another table. For database operations, using stored procedures would improve your
Java application’s performance. On creation, the stored procedures are compiled and
stored in the database. It’s much more efficient to execute multiple, precompiled SQL
statements together in a procedure, rather than sending individual, noncompiled
SQL statements from your application.

 You can execute the database-stored procedures from your Java applications by
using CallableStatement in the JDBC API. Let’s begin with creating a simple database-
stored procedure using a JDBC call. The creation process is simple. You can use objects
of Statement or PreparedStatement to send this logical group of SQL statements to
the database. Here’s an example using MySQL of the creation of a database procedure
that joins tables book and new_book_price and lists id and author columns from table
book and the unit_price column from table new_book_price. Don’t worry about the
fine SQL details to join the tables. What’s important is to note that this procedure
doesn’t accept any parameters and can be created using a JDBC call:

class CreateDatabaseProcedure{
 public static void main(String[] args) {
 try {
 Connection con = getConnection();
 PreparedStatement statement = con.prepareStatement
 ("CREATE PROCEDURE book_details_new_prices() "+
 "BEGIN "+
 "SELECT A.id, A.author, B.unit_price " +
 "FROM book A, new_book_price B " +
 "WHERE A.id = B.id; "+
 "END;");
 int result = statement.executeUpdate();
 System.out.println(result);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 // code to get a valid Connection object
 }
}

Create a
stored
procedure
Licensed to Mark Watson <nordickan@gmail.com>

611Precompiled statements
NOTE Most of the popular databases support stored procedures but
they might have variations with the creation and use of stored proce-
dures. Don’t worry; the exam won’t query you with these fine details.
The exam expects you to know how to create objects of the interface
CallableStatement and use it to call stored procedures from your Java
applications.

Execution of the preceding code will create a procedure called book_details_
new_prices in the database. It’s important to note database objects are rarely created
via the JDBC API, but this is shown in the preceding example code for demonstra-
tion purposes.

 Let’s see how you can call this procedure from your Java application:

class CallProcedure{
 public static void main(String[] args) {
 try {
 Connection con = getConnection();
 CallableStatement cs = con.prepareCall
 ("{call book_details_new_prices()}");

 ResultSet rs = cs.executeQuery();

 while(rs.next()) {
 System.out.println(rs.getString("id") + "--" +
 rs.getString("author") + "--" +
 rs.getDouble("unit_price"));
 }
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 // code to get a valid connection
 }
}

Note the similarity in creating objects of PreparedStatement and CallableState-
ment. Unlike the Statement object, where you specify the SQL statement while calling
methods executeQuery() or executeUpdate(), you must specify the SQL statement
when you create objects of PreparedStatement and CallableStatement. Also note
the SQL statement used to call a procedure:

call book_details_new_prices()

Because the database-stored procedure book_details_new_prices doesn’t accept any
parameters, it’s acceptable to drop the () following the procedure name:

CallableStatement cs = con.prepareCall
 ("{call book_details_new_prices}");

Call prepareCall to create
object of CallableStatement,

passing it name of stored
procedure

Because stored
procedure

book_details_new
_prices executes

SQL SELECT
statement, it will
return ResultSet
Licensed to Mark Watson <nordickan@gmail.com>

612 CHAPTER 9 Building database applications with JDBC

create

re

ter
9.7.3 Database-stored procedures with parameters

The way it’s quite usual for you to define method parameters for your Java methods,
it’s also usual to define parameters for a database-stored procedure. Let’s work with an
example of a stored procedure that accepts a parameter. The following code creates
the relevant database procedure:

class DatabaseCreateProcedure{
 public static void main(String[] args) {
 try {
 Connection con = getConnection();
 PreparedStatement statement = con.prepareStatement
 ("CREATE PROCEDURE proc_book_count (OUT count INT) "+
 "BEGIN "+
 "SELECT COUNT(*) INTO count FROM book; "+
 "END;");
 int result = statement.executeUpdate();
 System.out.println(result);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 // code to get a valid Connection
 }
}

Unlike the stored procedure shown in the preceding example, the procedure in the
following example accepts multiple parameters: an IN (input) parameter to send val-
ues to the procedure, and an OUT (output) parameter to return values from the proce-
dure. The database procedure proc_author_row_count accepts the author name as a
CHAR value, and it selects the total book count from table book for author names that
match its input parameter. It stores the book count in its OUT parameter:

class CreateProcedureRowCount{
 public static void main(String[] args) {
 try {
 Connection con = getConnection();
 PreparedStatement statement = con.prepareStatement
 ("CREATE PROCEDURE proc_author_row_count " +
 "(IN author_name CHAR(50), OUT count INT) "+
 "BEGIN "+
 "SELECT COUNT(*) INTO count FROM book " +
 "WHERE author = author_name; " +
 "END;");
 int result = statement.executeUpdate();
 System.out.println(result);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }

Code to
a stored
procedu
with a
parame

Database-
stored
procedure
with IN
and OUT
parameters
Licensed to Mark Watson <nordickan@gmail.com>

613Summary
 static Connection getConnection() throws SQLException{
 // get a valid Connection object
 }
}

You can define parameters of type IN, OUT, and INOUT with a database-stored proce-
dure. The parameters of type IN can be used to pass values to a procedure, the param-
eters of type OUT can be used to return values from a procedure, and the parameters
of type INOUT can be used to do both—pass values to a procedure and return values
from it.

 Let’s see how you can set the variables for method parameters while calling the
database-stored procedure:

class CallStoredProcedureWithParameters{
 public static void main(String[] args) {
 try {
 Connection con = getConnection();
 CallableStatement cs = con.prepareCall
 ("{call proc_author_row_count(?, ?)}");

 int rowCount = 10;
 String authorName = "Shreya";

 cs.setString(1, authorName);
 cs.registerOutParameter(2, Types.NUMERIC);
 cs.setInt(2, rowCount);

 cs.execute();

 System.out.println("rowCount = " + rowCount);
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
 static Connection getConnection() throws SQLException{
 // code to get a valid Connection object
 }
}

9.8 Summary
This chapter introduces the JDBC API, and its overview, architecture, and JDBC drivers.
The JDBC API is an industry standard for connecting Java to tabular data, typically
stored in database systems and also in flat files or Excel spreadsheets. It’s a mature and
simple technology that has been around since Java Standard Edition version 1.1.

 To connect a JDBC client to a database, the JDBC client should have access to a
JDBC driver. JDBC drivers implement the interfaces defined in the JDBC API. JDBC driv-
ers are provided by the database vendor or a third party and come in multiple flavors
(like type 1 and type 2). The JDBC API is a call-level API. At its core, it works with send-
ing SQL statements to a data source and retrieving the results. It can also modify the
return values and update the underlying database.

Use ? for
procedure

parameters

Set first procedure
parameter using
parameter index

position and value
Register OUT
parameter

Assign second
parameter Execute

CallableStatement

Print value returned
in OUT paramater
Licensed to Mark Watson <nordickan@gmail.com>

614 CHAPTER 9 Building database applications with JDBC
 We worked with the interfaces that make up the core of the JDBC API: java.sql
.Driver, java.sql.Connection, java.sql.Statement, javax.sql.RowSet, and java
.sql.ResultSet. Class DriverManager manages the registration and loading of JDBC
drivers and establishes a connection with a database.

 We used Statement objects to send SQL statements to the database to create tables,
query them, and update and modify their values. ResultSet objects store the results
returned by the database. The values in a ResultSet can be modified and committed
to the database. Most of the database operations throw a SQLException; therefore
almost all the methods of these core interfaces throw a SQLException.

 We worked with the commit modes of a database connection: auto-commit and
manual commit. To start a transaction, you must set the auto-commit mode of the
database connection to false. You witnessed how to exercise finer control over a sub-
set of the SQL statements in a transaction by creating savepoints and rolling back par-
tial transactions, in the case where an exception is thrown.

 The interface RowSet extends the interface ResultSet. It can be used as a Java-
Bean component and it defines multiple properties, which can be set to connect to a
database, execute SQL statements, retrieve results, and update them back to the data-
base. RowSet is extended by multiple interfaces, such as JdbcRowSet, CachedRowSet,
and others, offering specialized functionalities.

 At the end of the chapter, we worked with PreparedStatement and Callable-
Statement. Objects of these interfaces represent precompiled statements. Prepared-
Statement can be used to execute SQL statements with or without placeholders.
CallableStatement can be used to execute stored database procedures with method
parameters passed as parameters.

REVIEW NOTES
This section lists the main points covered in this chapter.

Introduction

■ JDBC is part of the core Java API; you don’t need to download it separately to use
it in your Java applications.

■ By using the standard classes and interfaces from the JDBC API, Java classes can
connect to a database, execute SQL, and process the results.

■ JDBC is a standard specification—any Java class can use JDBC to connect with a
database using a JDBC driver.

■ Contrary to the JDBC API, JDBC drivers are external class bundles not included
in the JDK.

■ JDBC has been around since 1997 and was added to JSE 1.1 as JDBC 1.0. Since its
first version, multiple enhancements have been made to JDBC. Java 7 ships with
JDBC 4.1.
Licensed to Mark Watson <nordickan@gmail.com>

615Review notes
■ JDBC classes are defined in Java packages java.sql and javax.sql.
■ You can access tabular data stored on relational databases, flat files, and Excel

spreadsheets using the JDBC API.
■ JDBC provides vendor-neutral access to the common database features. So if you

don’t use proprietary features of a database, you can easily change the database
that you connect to. The JDBC API includes an abstraction of a database connec-
tion, statements, and result sets.

■ With the JDBC API, you have a choice of connecting to a local or remote data
store either directly or through an application server.

■ JDBC drivers are the implementation of the lower-level JDBC driver API as
defined in the JDBC specifications.

■ Depending on whether the drivers are implemented using only Java code,
native code, or partial Java, they’re categorized as type 4, pure Java JDBC driver;
type 3, pure Java driver for database middleware; type 2, native API, partial Java
driver; and type 1, JDBC–ODBC bridge.

Interfaces that make up the JDBC API core

■ The interfaces that make up the core of the JDBC API are java.sql.Driver,
java.sql.Connection, java.sql.Statememt, java.sql.ResultSet, and javax
.sql.RowSet.

■ Every JDBC driver implementation must implement the interface Driver.
■ Every driver must implement a minimum set of interfaces defined in the JDBC

API to conform to the JDBC specifications.
■ Connection represents a connection session with the specified database. It’s

used to create SQL statements, execute them against the database, start and
commit transactions, and retrieve other details.

■ The interface Statement is used to create and execute static SQL statements
and retrieve their results.

■ Interfaces PreparedStatement and CallableStatement extend the Statement
interface. They represent precompiled statements.

■ PreparedStatement can be used to execute static or dynamic SQL statements.
■ CallableStatement is used to execute stored database procedures.
■ A ResultSet is retrieved as a result of executing a SQL SELECT statement against

a database. It represents a table of data.

Connecting to a database

■ The first step to make a Java class communicate with a database is to establish a
connection between them.

■ Class java.sql.DriverManager talks with the JDBC driver to return a Connection
object, which can be used by your Java classes for all further communication
with the database.
Licensed to Mark Watson <nordickan@gmail.com>

616 CHAPTER 9 Building database applications with JDBC
■ For the exam, it’s important to note the difference between a JDBC driver (lower-
case d) and a Driver (uppercase D). A JDBC driver is a set of classes provided by
the database vendor or a third party, usually in a .jar or .zip file, to support the
JDBC API. A Driver class is an implementation of the interface java.sql.Driver.

■ To connect with a data source, you need class DriverManager only once.
■ Manual loading of drivers is required for JDBC API version 3.0 and before.
■ JDBC drivers should be manually loaded by calling Class.forName(), passing it

the name of the Driver class.
■ If Class.forName() can’t load the JDBC driver, it throws a ClassNotFound-

Exception (a checked exception).
■ For JDBC API 4.0 and later, JDBC drivers can be automatically loaded and regis-

tered by class DriverManager.
■ When a class is loaded in memory, its static initializer block executes. According

to the JDBC specifications, a driver must register itself with the DriverManager.
■ The JVM loads class DriverManager when you call any of its methods.
■ Class DriverManager manages all the instances of JDBC driver implementations

registered with a system.
■ When you invoke method getConnection(), class DriverManager finds the

appropriate drivers from its set of registered drivers, establishes a connection
with a database, and returns the Connection object.

■ There are three overloaded versions of method getConnection().
■ You can connect to a database by including the username and password as part

of the JDBC connect URL string.
■ It’s common to use Properties to specify the login credentials for the JDBC

URL in method getConnection().
■ The property names for specifying the username and password to establish a

connection are "user" and "password". An attempt to use any other key to
specify and use username and password will throw a SQLException.

■ If your application can’t load a JDBC driver or connect to a database due to
invalid login credentials, it will throw an exception.

CRUD (create, retrieve, update, and delete) operations

■ To create a Statement object, call method createStatement() on a Connection
object.

■ To define and execute a static SQL statement for a Statement object, call
executeQuery() or executeUpdate() on Statement.

■ Method executeQuery() returns ResultSet.
■ Method executeUpdate() returns an int value specifying the number of

affected rows.
■ Method executeUpdate() is used to execute SQL queries to insert new rows in a

table, and update and delete existing rows. It’s also used to execute DDL queries
Licensed to Mark Watson <nordickan@gmail.com>

617Review notes
like the creation, modification, and deletion of database objects like tables. If
you use method executeQuery() for any of these operations, you’ll get a
SQLException at runtime.

■ The SQL statements that you include in your code are defined as string values.
This essentially means that if any of the SQL statement is invalid, no compila-
tion errors are thrown.

■ If a SQL SELECT returns no rows, ResultSet doesn’t refer to a null value. It
refers to an initialized ResultSet object with zero rows.

■ Connection, Statement, and ResultSet objects should be closed by calling
their method close() either implicitly or explicitly.

■ If you create Connection, Statement, and ResultSet objects using a try-with-
resources statement, it will auto-close them.

JDBC transactions

■ A transaction is a logical set of SQL statements. Either all or none of the state-
ments must execute from a transaction.

■ To initiate a transaction, set the default database auto-commit mode to false.
■ If the auto-commit mode of a connection is set to true, calling any of the trans-

action methods like commit() or rollback() will throw a SQLException.
■ Method executeUpdate() returns a count of the rows that are or would be

affected in the database for row insertions, modifications, and deletion. The
value is returned even if the statement isn’t committed to a database.

■ By using a savepoint, you can exercise finer control over the work done by a set
of SQL statements in a transaction.

RowSet objects

■ You can use RowSet objects as JavaBeans components, which can be created and
configured at design time.

■ You can configure a RowSet object by setting its properties, connecting to a
JDBC data source, executing a SQL statement, and getting the results.

■ The interface javax.sql.RowSet extends the interface java.sql.ResultSet.
■ You can register listeners with a RowSet object so that when an event occurs on

a RowSet object (like any modification to its value), the registered listeners can
be notified.

■ RowSet objects can be connected or disconnected. A connected RowSet object, like
JdbcRowSet, maintains a connection with its data source throughout its life. On
the other hand, a disconnected RowSet object, like CachedRowSet, establishes a
connection with the data source, gets the values, and then disconnects itself.

■ The interface javax.sql.rowset.RowSetFactory defines the implementa-
tion of a factory that can be used to obtain different types of RowSet imple-
mentations.
Licensed to Mark Watson <nordickan@gmail.com>

618 CHAPTER 9 Building database applications with JDBC
■ Class javax.sql.rowset.RowSetProvider defines factory methods to get a
RowSetFactory implementation. The RowSetFactory can then be used to cre-
ate objects of different types of RowSet implementations. The Java API defines a
default implementation of RowSetFactory.

■ If the execute method isn’t successful on a RowSet object, you can only call
execute and close methods on it. The rest of the methods will throw an
exception.

Precompiled statements

■ Interfaces java.sql.PreparedStatement and java.sql.CallableStatement
extend the java.sql.Statement interface.

■ The objects of interfaces PreparedStatement and CallableStatement repre-
sent precompiled SQL statements.

■ Precompiled statements execute faster than their noncompiled counterparts.
■ Another major advantage offered by PreparedStatement and Callable-

Statement is their ability to include placeholders in SQL statements using ?.
You can assign values to these placeholders by calling one of the appropriate
setDataType(parameterIndex, value) on these objects.

■ Unlike Statement, you must specify the relevant SQL statement when you cre-
ate an object of PreparedStatement.

■ PreparedStatement defines three methods to execute its SQL statement:
execute(), executeQuery(), and executeUpdate(). Method execute() can exe-
cute any type of SQL statement and returns a boolean value. Method execute-
Query() executes a SQL SELECT statement and returns a ResultSet. Method
executeUpdate() executes DDL statements and table INSERT, UPDATE, and
DELETE SQL statements. It returns 0 for DDL statements and the number of rows
affected for SQL INSERT, UPDATE, and DELETE statements.

■ You can execute the database-stored procedures from your Java applications by
using CallableStatement in the JDBC API.

■ If a database-stored procedure doesn’t accept any parameter, it’s acceptable
to drop the () following the procedure name in a call to execute it using
CallableStatement.

■ A database stored procedure can accept multiple parameters: an IN (input)
parameter to send values to the procedure, and an OUT (output) parameter to
return values from the procedure.

■ You can define parameters of type IN, OUT, and INOUT with a database-stored
procedure using CallableStatement.
Licensed to Mark Watson <nordickan@gmail.com>

619Sample exam questions
SAMPLE EXAM QUESTIONS

Q 9-1. Given that method getConnection() returns a valid Connection object, the
query variable defines a valid SQL statement, and class PrepStatement prints 0, select
the options for the following code that can be correct individually:

class PrepStatement {
 public static void main(String[] args) {
 try {
 String query = "....."; //line1
 Connection con = getConnection();
 PreparedStatement statement =
 con.prepareStatement(query);
 System.out.println(
 statement.executeUpdate());
 }
 catch (SQLException e) {
 System.out.println(e);
 }
 }
}

a Line 1 defines a SQL SELECT statement that returned zero rows.
b Line 1 defines a SQL UPDATE statement that affected zero rows.
c Line 1 defines a SQL DELETE statement that affected zero rows.
d Line 1 defines a SQL CREATE TABLE statement, which would always return

zero rows.

Q 9-2. Which SQL standard is JDBC 4.1 (Java 7) consistent with?

a SQL99
b SQL:2003
c SQL:2010
d SQL7

Q 9-3. Given the following table

Item tree
id INT PRIMARY KEY,
average_age REAL,
name CHAR(100)

which statements are true about the following code if con is a valid Connection object?

try (Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery("SELECT * FROM tree");){
 if (rs.next()) rs.getString(2); //line1
}

Licensed to Mark Watson <nordickan@gmail.com>

620 CHAPTER 9 Building database applications with JDBC
catch (SQLException e) {
 System.out.println(e);
}

a If table tree has one or more rows, the code throws a runtime exception at
line 1.

b The code prints the average_age for all rows in table tree.
c The code prints the name for all rows in table tree.
d If there are no rows in table tree, the code won’t throw an exception.
e If table tree has five rows, the code prints the value for the average_age for the

first row.
f If table tree has five rows, the code prints the value for name for the first row.

Q 9-4. A programmer is unable to connect her Java application to a database using
JDBC. Assuming that she is using Java 7 on her system and trying to connect with a
remote MySQL database, what are the possible solutions that can help her?

a Add the driver .jar file—that is, mysql-connector-java-5.1.26-bin.jar—to the Java
application’s class path.

b Add the driver .jar file—that is, mysql-connector-java-5.1.26-bin.jar—to the sys-
tem’s class path.

c Add the driver .jar file—that is, mysql-connector-java-5.1.26-bin.jar—to the
remote system’s class path hosting the MySQL database.

d Call method Class.forName() passing it the string value mysql-connector-
java-5.1.26-bin.jar.

e Call method DriverManager.loadDriver() to load the MySQL driver in mem-
ory.

f Create a new Driver instance by calling new and pass it to DriverManager’s
method connect().

g Call DriverManager’s method getConnection(), passing it the database URL,
username, and password.

h Call DriverManager’s method connect(), passing it the database URL, user-
name, and password.

Q 9-5. Which of the following code options would create objects of RowSet?
a RowSetFactory aFactory = RowSetProvider.newFactory();

CachedRowSet rowset = aFactory.createCachedRowSet();

b RowSetFactory aFactory = RowSetProvider.newFactory();
JDBCRowSet rowset = aFactory.createJDBCRowSet();

c RowSetFactory aFactory = RowSetProvider.createFactory();
CachedRowSet rowset = aFactory.cachedRowSet();

d RowSetFactory aFactory = RowSetProvider.newFactory();
ComparableRowSet rowset = aFactory.createComparableRowSet();
Licensed to Mark Watson <nordickan@gmail.com>

621Sample exam questions
Q 9-6. Which of the following options will populate ResultRet rs with all rows from
table Contact, assuming getConnection() returns a valid Connection object?

a public static void main(String[] args) throws Exception{
 Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery("SELECT * FROM contact");
}

b public static void main(String[] args) {
 Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery("SELECT * FROM contact");
}

c public static void main(String[] args) throws SQLException{
 Connection con = getConnection();
 Statement statement = con.prepareStatement();
 ResultSet rs = statement.executeQuery("SELECT * FROM contact");
}

d public static void main(String[] args) throws Throwable{
 Connection con = getConnection();
 Statement statement = con.callableStatement("SELECT * FROM contact");
 ResultSet rs = statement.executeUpdate();
}

Q 9-7. Select the correct option to be inserted at //INSERT CODE HERE that calls the
database-stored procedure hello_world.

class Procedure{
 public static void main(String[] args) {
 try {
 Connection con = getConnection();
 //INSERT CODE HERE
 cs.setString(1, "eJavaGuru");
 cs.registerOutParameter(2, Types.NUMERIC);
 cs.setInt(2, 10);
 System.out.println(cs.executeUpdate());
 }
 catch (SQLException e) {}
 }
}

a CallableStatement cs = con.prepareCall("{hello_world(?, ?)}");

b CallableStatement cs = con.prepareCall("{call procedure_hello_world

(?, ?)}");

c CallableStatement cs = con.prepareCall("{call hello_world}");

d CallableStatement cs = con.prepareCall("{call hello_world(?, ?)}");

e CallableStatement cs = con.prepareCall("hello_world(?, ?)");
Licensed to Mark Watson <nordickan@gmail.com>

622 CHAPTER 9 Building database applications with JDBC
Q 9-8. Given the following table

Item Book
id INT PRIMARY KEY,
title CHAR(100),
publisher CHAR(100),
unit_price REAL,

what is the result of the following code?

class Transact1 {
 public static void main(String[] args) throws SQLException{
 Connection con = null;
 try {
 con = getConnection(); //assume this get a valid connection
 con.setAutoCommit(false);
 Savepoint sv1 = con.setSavepoint(); // line 1
 Statement statement = con.createStatement();
 statement.executeUpdate("UPDATE book " +
 "SET unit_price = 10.0");
 Savepoint sv2 = con.setSavepoint("sv2"); // line 2
 statement.executeUpdate("UPDATE book " +
 "SET unit_price = 20.0");
 con.rollback();
 con.commit(); // line 3
 }
 catch (SQLException e) {
 con.rollback(); // line 4
 }
 }
}

a The code updates the unit_price of all rows in table book to 10.0.
b The code updates the unit_price of all rows in table book to 20.0.
c There is no change in the value of unit_price in table book.
d The code fails to compile on either line 1, line 2, or line 4.
e If the code on line 3 throws a runtime exception other than SQLException, the

code will update the unit_price of all rows in table book to 20.0.

Q 9-9. Which of the following options demonstrates the correct use and closing of
database resources?

a public static void main(String[] args) throws Exception {
 Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery("SELECT name, email FROM
doctor");
}

Licensed to Mark Watson <nordickan@gmail.com>

623Sample exam questions
b public static void main(String[] args) throws Exception {
 try (Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery("SELECT name, email FROM
doctor");) {}
}

c public static void main(String[] args) throws Exception {
 try {
 Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery("SELECT name, email FROM
doctor");
 }
 catch (SQLException e) {
 rs.close();
 statement.close();
 con.close();
 }
}

d public static void main(String[] args) throws Exception {
 try {
 Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery("SELECT name, email FROM
doctor");
 }
 catch (SQLException e) {
 con.close();
 statement.close();
 rs.close();
 }
}

e public static void main(String[] args) throws Exception {
 try {
 Connection con = getConnection();
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery("SELECT name, email FROM
doctor");
 }
 catch (SQLException e) {
 try {
 con.close();
 statement.close();
 rs.close();
 }
 catch (Exception e) {}
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

624 CHAPTER 9 Building database applications with JDBC
ANSWERS TO SAMPLE EXAM QUESTIONS

A 9-1. b, c, d

[9.6] Create and use PreparedStatement and CallableStatement objects

Explanation: You can’t use method executeUpdate() to execute a SQL SELECT query.
If you do, you’ll get a SQLException with a similar message:

java.sql.SQLException: Can not issue executeUpdate() for SELECTs

Similarly, you can’t execute data deletion and modification queries with method
executeQuery(). If you do so, you’ll get a SQLException:

java.sql.SQLException: Can not issue data manipulation statements with
executeQuery().

A 9-2. b

[9.1] Describe the interfaces that make up the core of the JDBC API (including the
Driver, Connection, Statement, and ResultSet interfaces and their relationship to pro-
vider implementations)

Explanation: One of the goals of JDBC 4.1, which is shipped with Java 7, is to be consis-
tent with SQL:2003. JDBC 3.0 supported SQL99 features that were widely supported by
the industry. JDBC 4.1 is supporting major components of SQL:2003.

A 9-3. d, e

[9.3] Submit queries and read results from the database (including creating state-
ments, returning result sets, iterating through the results, and properly closing result
sets, statements, and connections)

Explanation: This question makes you take note of multiple points:

■ What happens if the database data type doesn’t match with Java’s getXXX()
methods used to retrieve the database column value? You can use method get-
String() to retrieve all types of database values. But if you use other getXXX()
methods like getDouble() to retrieve a database column value, the method will
throw a SQLException if the column value can’t be implicitly converted to Java
data type double.

■ The index of the column values in a ResultSet start with position 1 and not 0.
rs.getString() will return the value of the second database column—that is,
average_age.

■ Like any if statement, if rs.next() returns true, the code in its block will exe-
cute once.
Licensed to Mark Watson <nordickan@gmail.com>

625Answers to sample exam questions
A 9-4. a, b, g

[9.2] Identify the components required to connect to a database using the Driver-
Manager class (including the JDBC URL)

Option (c) is incorrect. To connect a Java application to a database using JDBC, the
driver class should be added to the class path of the application or system executing
the Java class. Its addition to the class path of the system on which the database is
hosted doesn’t matter.

 Option (d) is incorrect. Starting with Java 6 (JDBC 4.0) you don’t need to call
Class.forName() to explicitly load the JDBC driver. Starting with JDBC 4.0, SPM auto-
mates the driver loading and registration process. The drivers must include a configu-
ration file with the name java.sql.Driver (containing the name of the actual class
file implementing the java.sql.Driver interface) within the META-INF folder in
their .jar file. DriverManager class searches for drivers on the classpath and registers
them automatically.

 Option (e) is incorrect because method loadDriver() doesn’t exist.
 Option (f) is incorrect because you aren’t supposed to create new Driver instances

yourself.
 Option (h) is incorrect because the correct method name is getConnection().

A 9-5. a

[9.5] Construct and use RowSet objects using the RowSetProvider class and the Row-
SetFactory interface

Option (b) is incorrect because the correct class name is JdbcRowSet. Also, the method
invoked on aFactory is invalid.

 Option (c) is incorrect because the correct factory method name is newFactory()
and not createFactory(). Also, the method invoked on aFactory is invalid.

 Option (d) is incorrect because the Java API doesn’t define the interface
ComparableRowSet.

A 9-6. a

[9.3] Submit queries and read results from the database (including creating state-
ments, returning result sets, iterating through the results, and properly closing result
sets, statements, and connections)

Explanation: The code in option (b) won’t compile. This code neither handles the
checked SQLException thrown by the JDBC API statements, nor declares the main
method to throw it.

 Option (c) is incorrect because you must pass the SQL query when you create an
object of PreparedStatement using Connection’s method prepareStatement().
Licensed to Mark Watson <nordickan@gmail.com>

626 CHAPTER 9 Building database applications with JDBC
 Option (d) is incorrect because class Connection doesn’t define method callable-
Statement(). The correct method to create an object of CallableStatement is
prepareCall() (from class Connection).

A 9-7. d

[9.6] Create and use PreparedStatement and CallableStatement objects

Explanation: To call a stored procedure using Java’s CallableStatement, you must
prefix the procedure name with the word call. Stored procedures that accept
method parameters must be followed by parentheses. The question marks used in the
code in this question are placeholders to insert variable values.

A 9-8. c

[9.4] Use JDBC transactions (including disabling auto-commit mode, committing and
rolling back transactions, and setting and rolling back to savepoints)

Explanation: The code sets multiple savepoints. The first, Savepoint-sv1, isn’t tagged
with a name. When rollback() is called on a Connection object without the save-
point name, it’s rolled back to the unnamed savepoint.

A 9-9. b

[9.3] Submit queries and read results from the database (including creating state-
ments, returning result sets, iterating through the results, and properly closing result
sets, statements, and connections)

Option (a) is incorrect because it doesn’t care to call close on the database objects
con, resultset, and statement.

 Option (b) is correct because the try-with-resources statement declares the data-
base resources and closes all of them in reverse order of their creation. The main
method declares to throw the exception Exception so the try-with-resources state-
ment doesn’t need to be followed by a catch handler to take care of the exceptions
thrown during the creation and auto-closing of the resources.

 Options (c) and (d) won’t compile. The reference variables are created in the try-
block, so they are out of scope (and thus unknown) in the catch-block.

 Option (e) is incorrect. The code doesn’t compile. The reference variables are cre-
ated in the try-block, so they are out of scope (and thus unknown) in the catch-
block. The catch handler around the close() method invocations has exactly the
same name (e) as its surrounding catch handler. Also, in the catch handler, the
close() methods are invoked in the order Connection, Statement and ResultSet.
On the other hand, the automatic resource closing will call close() in the order
ResultSet, Statement, and Connection.
Licensed to Mark Watson <nordickan@gmail.com>

Threads
Have you ever watched a movie with a group of friends, laughing, shouting, and
sharing popcorn, nachos, or fries—all at the same time? If yes, you’ve already prac-
ticed multithreading and concurrency. You can compare these separate tasks—watching
a movie, laughing, shouting, and so on—with multiple threads (multithreading),
which you execute concurrently (at the same time). Can you imagine watching a
movie with your friends, pausing it so that you can (only) laugh, followed by

Exam objectives covered in this chapter What you need to know

[10.1] Create and use the Thread class and
the Runnable interface

How to use class Thread and the Runnable
interface to create classes that can execute as a
separate thread of execution.

[10.2] Manage and control thread lifecycle What states a thread of execution can be in, and
how it transitions from one state to another includ-
ing the methods involved.
What is or can’t be guaranteed by each method.
How the execution of a method depends on the
thread scheduling by the underlying operating
system.

[10.3] Synchronize thread access to shared
data

How sharing of objects between threads can lead
to inconsistent memory and invalid object state.
How to make your classes thread safe.

[10.4] Identify code that may not execute cor-
rectly in a multithreaded environment

How to identify classes, methods, and variables
that might not work as expected in a multi-
threaded environment. How to fix them.
627

Licensed to Mark Watson <nordickan@gmail.com>

628 CHAPTER 10 Threads
(only) shouting, and so on? It sounds bizarre. Similarly, apart from executing multiple
applications concurrently, multithreading facilitates optimal use of a computer’s pro-
cessing capabilities. Modeled around human behavior, multithreading is the need of
the hour.

 Multithreading is implemented by the underlying OS by dividing and allotting pro-
cessor time to the running applications using multiple algorithms (round-robin, high
priority first, preemptive, and so on). Applications can execute as single or multiple
processes, which might run multiple threads. Java supports multithreading by enabling
you to define and create separate threads of execution in your applications. Most Java
Virtual Machine (JVM) implementations run as a single process. A process is a self-
contained execution environment complete with its own private set of basic runtime
resources, including memory. A process can create multiple threads, also known as
lightweight processes. Creation of a thread requires fewer resources. Multiple threads
share the resources of the process in which they’re created, like memory and files.
They also have their own exclusive working space, like stacks and PC registers.

 “Every problem has a solution, and every solution has a problem”—this statement
holds true for threads. Threads were created so that they could make the best use of a
processor’s time. An application can create multiple threads. When threads share
objects among themselves, it can result in interleaving operations (thread interference)
and reading inconsistent object values (memory inconsistency). You can protect shared
data by synchronizing its access. But this can lead to other issues like thread conten-
tion through deadlock, starvation, and livelock.

NOTE Even if you don’t create a multithreaded Java application, you
can’t ignore these concepts. Java technologies like swing in Core Java and
Servlets in web applications and many popular Java frameworks implic-
itly multithread and call your code from multiple threads. Developing
safe code that works and behaves well in a multithreaded environment
demands knowledge about multithreading and synchronization.

Multithreading is a big topic and its coverage in this chapter is limited to the topics
covered on the exam. This chapter also includes an introduction to a few threading
concepts that you must know to understand the chapter contents. These introductory
sections can be identified by the use of the term warm-up in section headings. You can
skip these if you’re familiar with these concepts.

 For the exam, you must be able to clearly identify what is guaranteed and what isn’t
by threads. For example, a thread is guaranteed to execute its own code in the
sequence in which it’s defined. But you can’t guarantee when a thread exactly starts,
pauses, or resumes its execution. Make note of these points.

EXAM TIP For the exam, it’s important to understand what threads guar-
antee and what they don’t. Expect multiple questions on expected, probable,
and assured thread behavior.
Licensed to Mark Watson <nordickan@gmail.com>

629Create and use threads
This chapter covers

■ How to create threads using class Thread and the Runnable interface
■ How to define and use Thread instances to create separate threads of execution
■ How to manage and control the thread lifecycle
■ How to protect data from concurrent access by threads
■ How to identify code that might not execute correctly in a multithreaded

environment

Let’s get started with creating and using threads.

10.1 Create and use threads

All nontrivial Java applications are multithreaded. A JVM supports multiple thread execu-
tion. Multiple threads can be supported by an underlying system by using multiple hard-
ware processors, by time-slicing a single processor, or by time-slicing multiple processors.
Java language supports multithreading. Class Thread and the Runnable interface can
be used to define and start your own threads. In the next chapter on concurrency, we’ll
explore the java.util.concurrent package to execute your threads.

 You’ll often hear about thread objects and threads of execution in a multithreaded
or concurrent application. Though related, a Thread instance and a thread of execution
aren’t the same. A Thread instance is a Java object. The implementation of Java
threads is JVM-specific. A JVM implementation might even choose not to map Java
threads to native threads at all! Creation of a thread of execution is passed to the OS
by a JVM implementation. A thread of execution has its own set of program counter
(PC) registers to store the next set of instructions to execute. It also has its own stack
that stores method frames to store the state of a method invocation. The state of a
method invocation includes the value of local variables, method parameters, method
return values, exception handler parameters, and intermediate values. A process like
JVM’s can create multiple threads of execution to execute multiple tasks simultane-
ously. A Thread instance and a thread of execution are depicted in figure 10.1.

 Have you ever wondered how many threads your Java application has? At least
one—the main thread. A JVM starts execution of a Java application using a thread of
execution: main. This thread executes code defined in method main() and can create
other threads of execution.

NOTE The main thread is named ‘main’ by the JVM. Don’t confuse it
with the method main().

In this section, you’ll see how to define and start your own threads using Java classes
that either extend class Thread or implement the Runnable interface. Let’s get started
with an example.

[10.1] Create and use the Thread class and the Runnable interface
Licensed to Mark Watson <nordickan@gmail.com>

630 CHAPTER 10 Threads
Have you tried dancing and singing simultaneously? Let’s create a small program that
emulates this behavior by creating and starting multiple threads simultaneously. Let’s
get started with extending class Thread.

10.1.1 Extending class Thread

Class Thread can be used to create and start a new thread of execution. To create your
own thread objects using class Thread, you must

■ Extend class Thread
■ Override its method run()

To create and start a new thread of execution, you must

■ Call start() on your Thread instance

When a new thread of execution starts, it will execute the code defined in the thread
instance’s method run(). Method start() will trigger creation of a new thread of exe-
cution, allocating resources to it. We’ll cover the methods of class Thread as we move
forward in the chapter.

 The following listing shows the code for the sample application that creates a
new thread Sing by extending class Thread, and instantiates this thread in method
main().

class Sing extends Thread{
 public void run() {
 System.out.println("Singing.......");
 }
}

Listing 10.1 Using class Thread to create a thread

myThread:Thread

Thread instance

Next

instruction

to execute

PC register

A thread of

execution

name = {'b','u','y'}
priority = 7
daemon = false
stackSize = 10000
...
...

Frame

(state of

method

invocations)

Java

stack

Process

Figure 10.1 A Thread instance and a thread of execution

run() begins execution when
you call start() on a thread.
Licensed to Mark Watson <nordickan@gmail.com>

631Create and use threads
class SingAndDance {
 public static void main(String args[]) {
 Thread sing = new Sing();
 sing.start();
 System.out.println("Dancing");
 }
}

When you execute the code in listing 10.1, method main() might complete its execu-
tion before or after the thread sing starts its execution. The same code might gener-
ate different output when you execute it on the same or different systems, at different
times. The exact time of thread execution is determined by how the underlying
thread scheduler schedules the execution of threads. Because thread scheduling is
specific to a specific JVM and depends on a lot of parameters, the same system might
change the order of processing of your threads. The probable outputs of the code in
listing 10.1 are shown in figure 10.2.

EXAM TIP The exam might question you on the probable output of a
multithreaded application. Because you can’t be sure of the order of exe-
cution of threads by an underlying OS, such questions can have multiple
correct code outputs.

In listing 10.1, note that calling start() on a Thread instance creates a new thread of
execution. The default implementation of method start() in class Thread checks if
you’re starting it for the first time; if yes, it calls a native method to start a new thread
of execution, calling its method run(). What happens if you override method start()
without calling the superclass’s default implementation?

class Sing extends Thread{
 public void run() {
 System.out.println("Singing.......");
 }
 public void start() {
 System.out.println("Starting...");
 }
}
class SingAndDance {
 public static void main(String args[]) {
 Thread sing = new Sing();
 sing.start();
 System.out.println("Dancing");
 }
}

Instantiate
Thread

Start thread
sing

Figure 10.2 Probable
outputs of class
SingAndDance

Sing overrides
start

Overridden start() doesn’t start
the thread; it won’t create new
thread of execution
Licensed to Mark Watson <nordickan@gmail.com>

632 CHAPTER 10 Threads
The preceding code is guaranteed to output the following because it isn’t starting
another thread:

Starting...
Dancing

EXAM TIP Watch out for code that overrides method start() in a class
that extends Thread. If it doesn’t call method start() from its superclass
Thread, it won’t start a new thread of execution.

When you create a thread class by extending class Thread, you lose the flexibility of
inheriting any other class. To get around this, instead of extending class Thread, you
can implement the Runnable interface, as discussed next.

10.1.2 Implement interface Runnable

If a class implements the Runnable interface, its instances can define code that can be
executed by threads of execution. The Runnable interface defines just one method,
run():

public interface Runnable {
 public abstract void run();
}

Steps for a class to use the Runnable interface

■ Implement the Runnable interface
■ Implement its method run()

Let’s modify class Sing defined in listing 10.1 so that it implements the Runnable
interface instead of extending class Thread (modifications are in bold):

class Sing implements Runnable{
 @Override
 public void run() {
 System.out.println("Singing.......");
 }
}
class SingAndDance2 {
 public static void main(String args[]) {
 Thread sing = new Thread(new Sing());
 sing.start();
 System.out.println("Dancing");
 }
}

NOTE While implementing or overriding methods, I won’t use the anno-
tation @Override in all code examples in the rest of the chapters because
the code examples on the exam might not use it.

Listing 10.2 Using the Runnable interface to create a thread

Sing implements
Runnable

run begins execution when
you call start on a thread.

Instantiate thread by passing
instance of Runnable to
Thread’s constructor

Start
thread sing.
Licensed to Mark Watson <nordickan@gmail.com>

633Create and use threads
The preceding code will generate the same output as shown in figure 10.1. Apart from
the most obvious difference that class Sing implements the Runnable interface, com-
pare the difference in how sing is instantiated:

Thread sing = new Thread(new Sing());

If your class implements the Runnable interface, then you should pass its instance to
the constructor of class Thread. If your class extends class Thread, then you can create
a new thread by using the new operator and invoking its constructor.

 Class Thread defines multiple overloaded constructors. The following constructors
allocate a new Thread object:

Thread()
Thread(String name)
Thread(Runnable target)
Thread(Runnable target, String name)

A Thread constructor that accepts a string value enables you to create a thread with a
name. But if you don’t assign an explicit name to a thread, Java automatically generates
and assigns a name to it. Make note of the Thread constructor that accepts a Runnable
object. A Thread instance stores a reference to a Runnable object and uses it when you
start its execution (by calling start()). Here’s the partial code of class Thread:

public class Thread implements Runnable {
 /* What will be run. */
 private Runnable target;
 /*.. rest of the code.. */
}

Because class Thread implements the Runnable interface, you can instantiate a thread
by passing it another Thread instance. So what happens when you create a thread, say,
A, using another Thread instance, say, B? Does Java create multiple threads of execu-
tion in this case? When you execute A.start(), will it execute A.run() or B.run()?
Let’s answer all these questions using the next “Twist in the Tale” exercise.

Class SingAndDance instantiates a thread by passing it an instance of the class that
extends the thread itself. Will the following class execute method start() or run()
twice? What do you think is the output of the following code?

class SingAndDance3 {
 public static void main(String args[]) {
 Thread sing = new Sing();
 Thread newThread = new Thread(sing);
 newThread.start();
 }
}
class Sing extends Thread{
 public void run() {
 System.out.println("Singing");

Twist in the Tale 10.1
Licensed to Mark Watson <nordickan@gmail.com>

634 CHAPTER 10 Threads
 }
}

a The code fails to compile.
b The code prints Singing.
c The code prints Singing twice.
d Class SingAndDance3 starts one new thread of execution in main.
e Class SingAndDance3 starts two new threads of execution in main.
f There is no output.

Each thread is created with a priority. Its range varies from 1 to 10, with 1 being the lowest
priority and 10 the highest priority. By default, a thread creates another thread with the
same priority as its own. It can also be explicitly set for a Thread instance, using Thread’s
method setPriority(int). A thread scheduler might choose to execute threads with
higher priorities over threads with lower priorities, though you can’t guarantee it.

EXAM TIP You can’t guarantee that a thread with a higher priority will
always execute before a thread with a lower priority.

When you call start() on a Thread instance, it creates a new thread of execution. A
thread of execution has a lifecycle: a thread is created, it might be paused, and eventu-
ally it completes its execution. The next section explores the different states in which
a thread can exist, the methods that you can call on a thread, and how these methods
affect the states of a thread.

10.2 Thread lifecycle

A thread’s lifecycle consists of multiple states. You can control the transition of a
thread from one state to another by calling its methods. The methods signal the JVM
regarding the change in status of a thread. The exact time of state transition is con-
trolled by a thread scheduler, which is bound to vary across platforms.

10.2.1 Lifecycle of a thread

A thread can exist in multiple states: NEW, RUNNABLE, WAIT, TIMED_WAITING, BLOCKED, or
TERMINATED. A thread doesn’t begin its execution with its instantiation. Figure 10.3
shows the various phases of a thread, including the methods that can be called on a
thread object in each state, which makes it transition from one state to another. For
the exam, you must know how a thread transitions from one state to another and what
methods you can call on a thread when it’s in different phases.

 A Java thread can officially exist in the states as defined by a thread’s inner enum,
State. Table 10.1 lists the values of enum Thread.State.

[10.2] Manage and control thread lifecycle
Licensed to Mark Watson <nordickan@gmail.com>

635Thread lifecycle
Table 10.1 States of a thread as defined by enum Thread.State

Thread state Description

NEW A thread that has been created but hasn't yet started is in this state.

RUNNABLE Thread state for a runnable thread. A thread in this state is executing in the JVM
but it may be waiting for other resources from the OS, such as a processor.

BLOCKED A thread that’s blocked waiting for a monitor lock is in this state.

WAITING A thread that’s waiting indefinitely for another thread to perform a particular
action is in this state.

TIMED_WAITING A thread that’s waiting for another thread to perform an action for up to a speci-
fied waiting time is in this state.

TERMINATED A thread whose run() method has finished is in this state (still a thread
object but not a thread of execution).

Thread instantiation

Call start()

run() completes

Chosen

by

Thread

Scheduler

Suspended

by Thread

Scheduler/

yield()

Monitor

lock

acquired

Waiting

to acquire

monitor

lock

ExceptionExceptionException

Waiting

time

elapsed

sleep(int)
wait(int)
join(int)

wait()
join()

notify()
notifyAll()

NEW

RUNNABLE

READY

RUNNING

TERMINATED

WAITING BLOCKEDTIMED_WAITING

Figure 10.3 Various phases of a thread
Licensed to Mark Watson <nordickan@gmail.com>

636 CHAPTER 10 Threads
Calling start() on a new thread instance implicitly calls its run(), which transitions
its state from NEW to RUNNABLE. A thread in the RUNNABLE state is all set to be executed.
It’s just waiting to be chosen by the thread scheduler so that it gets the processor time.
Thread scheduling is specific to the underlying OS on every system. As a programmer,
you can’t control or determine when a particular thread transitions from the READY
state to the RUNNING state, and when it actually gets to execute. A thread scheduler fol-
lows various scheduling mechanisms to utilize a processor efficiently, and also to give a
fair share of processor time to each thread. It might suspend a running thread to give
way to other READY threads and it might execute it later. The READY and the RUNNING
states are together referred to as the RUNNABLE state.

EXAM TIP The states READY and RUNNING are together referred to as
the RUNNABLE state.

A running thread enters the TIMED_WAITING state, when it might need to wait for a spec-
ified interval of time, before it can resume its execution. It happens when sleep(int),
join(int), or wait(int) is called on a running thread. On completion of the elapsed
interval, a thread enters the queue eligible to be scheduled by the thread scheduler.
When join() or wait() is called on a running thread, it transitions to the WAITING
state. It can change back to the RUNNABLE state when notify() or notifyAll() is
called (the details of all these methods are discussed later). A RUNNABLE thread might
enter the BLOCKED state when it’s waiting for other system resources like network con-
nections or to acquire an object lock to execute a synchronized method or code block.
Depending on whether the thread is able to acquire the monitor lock or resources, it
returns back to the RUNNABLE state.

 With the successful completion of run(), a thread enters the TERMINATED state. A
thread might transition from any state to the TERMINATED state due to an exception.
You can execute the following quick code to get a list of all the threads that are active
on your system and the state they’re in:

Set<Thread> threadSet = Thread.getAllStackTraces().keySet();
for(Thread t : threadSet)
 System.out.println(t + " --- " + t.getState());

Here’s probable output of this code (which might vary on each individual’s system):

Thread[Reference Handler,10,system] --- WAITING
Thread[Finalizer,8,system] --- WAITING
Thread[Attach Listener,5,system] --- RUNNABLE
Thread[Signal Dispatcher,9,system] --- RUNNABLE
Thread[Thread-1,5,main] --- TIMED_WAITING

It’s very likely for the exam to question you on what happens if you call a method
(and how many times) that you weren’t supposed to in a particular thread state. For
example, can you call join() on a thread in its NEW state, or, say, can you call start()
Licensed to Mark Watson <nordickan@gmail.com>

637Thread lifecycle
on a thread twice? To answer these questions, you’ll need to know the thread meth-
ods, covered next.

10.2.2 Methods of class Thread

Before we can move forward with the methods that can be called in a particular
thread state, let’s categorize the methods of class Thread as instance or static methods,
and if these methods can be used to change a thread’s state or to query it. The thread
methods are shown in figure 10.4.

NOTE Class Thread includes deprecated methods, like resume(), stop(),
and suspend(). Because their use isn’t encouraged, they aren’t dis-
cussed in this chapter. You won’t find the deprecated methods on the
exam either.

The next section dives into the methods that you can call to transition a thread in the
NEW state to a thread in the RUNNABLE state.

10.2.3 Start thread execution

Calling start() on a Thread instance creates a new thread of execution, which exe-
cutes run(). You can call start() on a thread that’s in the NEW state. Calling start()
from any other thread state will throw an IllegalThreadStateException:

class CantCallStartOnSameThreadMoreThanOnce {
 public static void main(String args[]) {
 Thread sing = new Sing();

Thread

QueryChange thread state

join()

Miscellaneous

Instance

methods

Static

methods

join(long)

join(long,int)

start()

yield()

sleep(long,int)

sleep(long)

getId()

getName()

getPriority()

isAlive()

interrupted()

currentThread()

setPriority(int)

setName(String)

run()

Figure 10.4 Main methods of class Thread

State of thread
sing is NEW
Licensed to Mark Watson <nordickan@gmail.com>

638 CHAPTER 10 Threads
 sing.start();
 sing.start();
 }
}
class Sing extends Thread{
 public void run() {
 System.out.println("Singing");
 }
}

The preceding code might print Singing and then throw an IllegalThreadState-
Exception. It might throw an IllegalThreadStateException without printing Singing.
How? The preceding code might start the thread sing, but before it prints Singing,
method main() might call start() on the sing thread again, throwing an Illegal-
ThreadStateException.

EXAM TIP You can call start() only once on a Thread instance when it’s
in the NEW state. Calling start() on a thread in any other state will throw
an IllegalThreadStateException.

What happens if you replace sing.start() with sing.run()?

class CanCallRunMultipleTimes {
 public static void main(String args[]) {
 Thread sing = new Sing();
 sing.run();
 sing.run();
 }
}
class Sing extends Thread{
 public void run() {
 System.out.println("Singing");
 }
}

The output of the preceding code is as follows:

Singing
Singing

In the preceding code, run() neither starts a new thread of execution in main, nor
modifies the state of thread sing B. The main calls run like any other method—wait-
ing for run to complete execution, before executing the code at c. The code at c
again executes run() and prints Singing.

EXAM TIP Calling run() on a Thread instance doesn’t start a new thread
of execution. The run() continues to execute in the same thread. Watch
out for trick questions on using start() versus run() in the exam.

Because start() starts a new thread of execution, you might find it interesting how
the exceptions are handled in multithreaded applications. For example, if both the

Calls start()—state of thread
sing changes to RUNNABLE.

Can’t call start() on a thread state other
than NEW; throws java.lang.Illegal-
ThreadStateException.

State of thread
sing—NEW b

 c
Calls run()—State of
thread remains NEW.
Licensed to Mark Watson <nordickan@gmail.com>

639Thread lifecycle
calling thread and the called thread throw unhandled exceptions at runtime, do you
think the code will encounter only one or both? Let’s find out using the next “Twist in
the Tale” exercise.

What do you think is the output of the following code?

class Twist10_2 {
 public static void main(String args[]) {
 Thread sing = new Sing();
 sing.start();
 throw new RuntimeException("main");
 }
}
class Sing extends Thread{
 public void run() {
 System.out.println("Singing");
 throw new RuntimeException("run");
 }
}

a java.lang.RuntimeException: main
Singing
java.lang.RuntimeException: run

b Singing
java.lang.RuntimeException: run
java.lang.RuntimeException: main

c java.lang.RuntimeException: main

d Singing
java.lang.RuntimeException: run

e Singing
java.lang.RuntimeException: main
java.lang.RuntimeException: run

Once a thread begins its execution, multiple factors might pause its execution. Let’s
examine them in detail in the next section.

10.2.4 Pause thread execution

A thread might pause its execution due to the calling of an explicit method or when
its time slice with the processor expires.

THREAD SCHEDULING

A processor’s time is usually time-sliced to allow multiple threads to run, with each
thread using one or more time slices. A thread scheduler might suspend a running
thread and move it to the ready state, executing another thread from the ready queue.
Thread scheduling is specific to JVM implementation and beyond the control of an

Twist in the Tale 10.2
Licensed to Mark Watson <nordickan@gmail.com>

640 CHAPTER 10 Threads
application programmer. The scheduler moves a thread from the READY state to RUN-
NING and vice versa, to support concurrent processing of threads.

EXAM TIP As a Java programmer, you can’t control or determine when
the thread scheduler moves a thread from the RUNNING state to READY and
vice versa. It’s specific to an OS.

METHOD THREAD.YIELD()
Imagine while debugging or testing your code, you need to reproduce a bug due to
race conditions (that is, when multiple threads compete). You can insert a call to
Thread.yield() in one of the threads. The static method yield() makes the cur-
rently executing thread pause its execution and give up its current use of the proces-
sor. But it only acts as a hint to the scheduler. The scheduler might also ignore it. The
static method yield() can be placed literally anywhere in your code—not only in
method run():

class YieldProcessorTime {
 public static void main(String args[]) {
 Thread sing = new Sing();
 sing.start();
 Thread.yield();
 }
}
class Sing extends Thread{
 public void run() {
 yield();
 System.out.println("Singing");
 }
}

As shown in figure 10.5, when called from two threads, thread 1 and thread 2,
yield() might or might not yield its execution.

 So what’s guaranteed from this method call? To be precise, nothing. It might not
make the currently executing thread give up its processor time. If it does, it doesn’t
guarantee when it will happen and when the thread will resume its execution.

Might cause thread main
to yield its processor time.

When executed, might
cause thread sing to
yield its processor time.

Thread.yield()

Thread 2

Thread 1

Time

State

RUNNINGState

READY

Figure 10.5 Calling yield() might yield the current thread’s execution slot as soon as it’s
called or after a delay, or it might be ignored.
Licensed to Mark Watson <nordickan@gmail.com>

641Thread lifecycle

EXAM TIP Method yield() is static. It can be called from any method,
and it doesn’t throw any exceptions.

METHOD THREAD.SLEEP()
The static method Thread.sleep() is guaranteed to cause the currently executing
thread to temporarily give up its execution for at least the specified number of milli-
seconds (and nanoseconds) and move to the READY state. You use sleep() to slow
down the execution of your thread. Imagine you’re using a thread to animate a ball
across a visible frame. Execute the following class and you’ll see that a black ball
zooms across the screen:

import javax.swing.*;
import java.awt.*;
class MyFrame {
 public static void main(String args[]) {
 JFrame frame = new JFrame();
 frame.setSize(400, 300);
 frame.setVisible(true);
 MovingBall ball = new MovingBall(60, frame);
 ball.start();
 }
}
class MovingBall extends Thread{
 int radius;
 Graphics g;
 int xPos, yPos;
 JFrame frame;
 MovingBall(int radius, JFrame frame) {
 this.radius = radius;
 this.g = frame.getGraphics();
 this.frame = frame;
 }
 public void run() {
 while (true) {
 g.setColor(Color.WHITE);
 g.fillRect(0, 0, frame.getWidth(), frame.getHeight());
 ++xPos; ++yPos;
 g.setColor(Color.BLACK);
 g.fillOval(xPos, yPos, radius, radius);
 }
 }
}

In the preceding code, method run() tries to animate a ball by first painting the com-
plete visible frame area with white and then drawing a black oval at the specified x and
y positions. Each loop repeats these steps with modified x and y coordinates that
make the ball move across the frame. You can slow down the moving ball by making
MovingBall sleep for the specified milliseconds (modifications are in bold):

class MovingBall extends Thread{
 int radius;
 Graphics g;

Create a frame.

Create and start
MovingBall thread.

x and y positions
to draw an oval

Execute it
forever.

Paint whole
screen whiteModify x and

y position of
moving ball Draw ball at new

x and y position
Licensed to Mark Watson <nordickan@gmail.com>

642 CHAPTER 10 Threads
 int xPos, yPos;
 JFrame frame;
 MovingBall(int radius, JFrame frame) {
 this.radius = radius;
 this.g = frame.getGraphics();
 this.frame = frame;
 }
 public void run() {
 while (true) {
 try {
 Thread.sleep(10);
 }
 catch (InterruptedException e) {
 System.out.println(e);
 }
 xPos = xPos + 2; yPos = yPos + 2;
 g.setColor(Color.WHITE);
 g.fillRect(0, 0, frame.getWidth(), frame.getHeight());
 g.setColor(Color.BLACK);
 g.fillOval(xPos, yPos, radius, radius);
 }
 }
}

Class Thread defines the overloaded versions of sleep() as follows:

public static native void sleep(long milli) throws InterruptedException;
public static void sleep(long milli, int nanos) throws InterruptedException

Whether a thread will sleep for the precise duration specified in nanoseconds will
depend on an underlying system. Unless interrupted, the currently executing thread
will sleep at least for the specified duration. On the exam, watch out for questions that
state a thread will become runnable exactly after the expiration of the sleep duration.
Unless interrupted, a thread is guaranteed to sleep for at least the specified duration.
The exact time to resume execution depends on the thread scheduler.

EXAM TIP A thread that’s suspended due to a call to sleep doesn’t lose
ownership of any monitors.

You can also expect questions on where to place a call to method sleep(). The answer
depends on who is executing a call to sleep(). Like yield(), sleep() is Thread’s
static method. It makes the currently executing thread give up its execution and sleep.
It can be called from any piece of code—all code is executed by some thread. If it’s
placed in Runnable’s run(), it will cause the thread to sleep. Placed otherwise, it will
make the calling thread sleep. What happens if you place sleep() in MovingBall’s
constructor (showing only relevant code)?

class MovingBall extends Thread{
 //..code not shown deliberately
 MovingBall(int radius, JFrame frame) {

Guarantees to sleep for
at least 10 milliseconds
(if not interrupted).

If interrupted, sleeping
thread might throw
InterruptedException
Licensed to Mark Watson <nordickan@gmail.com>

643Thread lifecycle
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.out.println(e);
 }
 //..code not shown deliberately
 }
 public void run() {
 //..code not shown deliberately
 }
}

A thread that instantiates MovingBall will execute sleep(), and then sleep for the
specified duration before it can complete MovingBall’s instantiation.

METHOD JOIN()
A thread might need to pause its own execution when it’s waiting for another thread
to complete its task. If thread A calls join() on a Thread instance B, A will wait for B
to complete its execution before A can proceed to its own completion. Imagine mul-
tiple teams—design, development, and testing—are working on a software project.
The project can’t be sent to a customer until all of these teams complete their tasks.
Ideally, the delivery process will wait for design development and testing teams to
complete their tasks before the delivery process can move ahead with its own task of
handing over the project to a customer. Let’s code a subset of this example. The
design team must complete the design of a screen before a developer can start cod-
ing it:

class ScreenDesign extends Thread {
 public void run() {
 for (int i = 0; i < 5; i++) System.out.println(i);
 }
}
class Developer {
 ScreenDesign design;
 Developer(ScreenDesign design) {
 this.design = design;
 }
 public void code() {
 try {
 System.out.println("Waiting for design to complete");
 design.join();
 System.out.println("Coding phase start");
 }
 catch(InterruptedException e) {
 System.out.println(e);
 }
 }
}
class Project {
 public static void main(String[] args) {
 ScreenDesign design = new ScreenDesign(); design.start();

run() simply
prints a couple
of numbers.

Developer stores a
reference to Design.

code() calls
design.join().

join() throws checked
InterruptedException.

Start
thread
design.
Licensed to Mark Watson <nordickan@gmail.com>

644 CHAPTER 10 Threads
 Developer dev = new Developer(design);
 dev.code();
 }
}

Figure 10.6 shows probable outputs of the preceding code. Because class Developer
isn’t a Runnable instance, it doesn’t execute it in its own thread of execution; rather, it
executes in the thread main. When Developer calls design.join(), the thread main
waits for design to complete its execution before executing the rest of its code.

EXAM TIP Method join() guarantees that the calling thread won’t exe-
cute its remaining code until the thread on which it calls join() completes.

Class Thread defines overloaded join() methods as follows:

public final synchronized void join(long milli) throws InterruptedException
public final synchronized void join(long millis, int nanos)
 throws InterruptedException
public final void join() throws InterruptedException

The variations of join() that accept milliseconds and nanoseconds wait for at least
the specified duration (if they’re not interrupted!). Behind the scenes, join() is
implemented using methods wait(), isAlive(), and notifyAll().

METHODS WAIT(), NOTIFY(), AND NOTIFYALL()
Imagine a server accepts and queues multiple requests from users that are processed
by a thread. This thread might need to wait and pause its own execution if there are
no new requests in the queue. A thread can pause its execution and wait on an object,
a queue in this case, by calling wait(), until another thread calls notify() or notify-
All() on the same object.

 Methods wait(), notify(), and notifyAll() can be called on all Java objects,
because they’re defined in class Object and not class Thread. Because these methods
can be invoked by synchronized methods and blocks and by threads that own the
object monitors, we’ll cover these methods in detail in the next section after covering
object monitors and synchronized methods and blocks.

dev.code(), which
runs in thread main,
calls design.join.

Figure 10.6 Probable outputs of calling join() on a thread
Licensed to Mark Watson <nordickan@gmail.com>

645Protect shared data
10.2.5 End thread execution

A thread completes its execution when its method run() completes. You must not call
the deprecated method stop() to stop execution of a thread. A thread might perform a
task for a finite number of times or it might loop for an indefinite number of times. In
the later case, the thread should define an exit condition to indicate its completion:

class Sing extends Thread{
 boolean singStatus = true;
 public void run() {
 while (singStatus)
 System.out.println("Singing");
 }
 public void setSingStatus(boolean value) {
 singStatus = value;
 }
}

In the preceding code, the instance of thread Sing will execute until its instance vari-
able singStatus is assigned a value of false. An application can modify the value of
singStatus using setSingStatus(boolean). Once run() completes its execution, the
status of a thread changes to TERMINATED.

 You create threads to speed up execution of a process so that unrelated tasks
don’t need to be executed in sequence and can execute concurrently. But these
multiple threads might share data among themselves. Next, let’s see how sharing
data among multiple threads can result in incorrect data, and how to protect shared
data among threads.

10.3 Protect shared data

Threads are lightweight processes that share certain areas of the memory, unlike regu-
lar processes. This makes threads very efficient, but it also introduces additional com-
plexities regarding memory management. You can protect your shared data by
making it accessible (for reading and writing) to only one thread at a point of time.
Other techniques include defining immutable classes (the states of which can’t be mod-
ified) and defining volatile variables. In this section, you’ll identify the data that’s
shared across threads and needs to be protected, and the related techniques.

 Let’s get started with the identification of what data can be shared among multi-
ple threads.

10.3.1 Identifying shared data: WARM-UP

A JVM instance hosts only one Java application. A Java application can create and
execute multiple threads. When a new thread is created, it’s allotted its exclusive
share in the memory. The JVM also allows partial runtime data to be shared between

run() executes until
singStatus is false.

[10.3] Synchronize thread access to shared data
Licensed to Mark Watson <nordickan@gmail.com>

646 CHAPTER 10 Threads
threads. A JVM’s runtime data set includes the method area, the heap, Java stacks,
and PC registers (it also includes native method stacks, which aren’t covered by the
exam, so they aren’t discussed here). The method area includes class information
that includes a note on all its variables and methods. This data set includes the static
variables, which are accessible and shared by all the threads in a JVM. The static vari-
ables are shared by one class loader—that is, each class loader has its own set of
static variables. The heap includes objects that are created during the lifetime of an
application, again shared by multiple threads and processes. PC registers and Java
stacks aren’t shared across the threads. On instantiation, each thread gets a PC regis-
ter, which defines the next set of instructions to execute. Each thread is also
assigned a Java stack. When a thread begins execution of a method, a method frame
is created and inserted into the java stack, which is used to store the local variables,
method parameters, return values, and intermediate values that might be used in a
method. Of all this data, the method area and heap are shared across threads. Fig-
ure 10.7 shows this arrangement.

 In the next section, you’ll see how multiple threads can interfere with each
other’s working.

10.3.2 Thread interference

Interleaving of multiple threads that manipulate shared data using multiple steps
leads to thread interference. You can’t assume that a single statement of Java code
executes atomically as a single step by the processor. For example, a simple state-
ment like incrementing a variable value might involve multiple steps like loading of
the variable value from memory to registers (working space), incrementing the
value, and reloading the new value in the memory. When multiple threads execute
this seemingly atomic statement, they might interleave, resulting in incorrect vari-
able values.

Java

stacks

• Local variables

• Method parameters

• Return values

• Intermediate values

• Exception handler

parameters

Program

counter registers

• Next executable

instruction

Method

area

Static variables

Heap

Shared across threads Not shared across threads

Objects

Java runtime data

Figure 10.7 Identifying parts of runtime data that can be shared across threads
Licensed to Mark Watson <nordickan@gmail.com>

647Protect shared data

Ins
NOTE Operations that use arithmetic and assignment operators like ++,
--, +=, -=, *=, and /= aren’t atomic. Multiple threads that manipulate
variable values using these operators can interleave.

Let’s work with an example of a class Book, which defines an instance variable copies-
Sold that can be manipulated using its methods newSale() or returnBook():

class Book{
 String title;
 int copiesSold = 0;
 Book(String title) {
 this.title = title;
 }
 public void newSale() {
 ++copiesSold;
 }
 public void returnBook() {
 --copiesSold;
 }
}

The threads OnlineBuy and OnlineReturn manipulate the value of class Book’s instance
variable copiesSold in their run() using methods newSale() and returnBook():

class OnlineBuy extends Thread{
 private Book book;
 public OnlineBuy(Book book) {
 this.book = book;
 }
 @Override
 public void run() {
 book.newSale();
 }
}
class OnlineReturn extends Thread{
 private Book book;
 public OnlineReturn(Book book) {
 this.book = book;
 }
 @Override
 public void run() {
 book.returnBook();
 }
}

Let’s see what happens when another class, say, ShoppingCart, instantiates a Book and
passes it to the threads OnlineBuy and OnlineReturn:

class ShoppingCart {
 public static void main(String args[]) throws Exception {
 Book book = new Book("Java");
 Thread task1 = new OnlineBuy(book); task1.start();

Nonatomic statements include loading variable
values from memory to registers, manipulating
values, and loading them back to memory.

When started, OnlineBuy
calls newSale() on its
Book instance.

When started, OnlineReturn
calls returnBook() on its
Book instance.

tantiate
Book

instance
book.

Instantiate
OnlineBuy using
book and start
thread task1.
Licensed to Mark Watson <nordickan@gmail.com>

648 CHAPTER 10 Threads

 Thread task2 = new OnlineBuy(book); task2.start();
 Thread task3 = new OnlineReturn(book); task3.start();
 }
}

In the preceding code method main() starts three threads—task1, task2, and task3.
These threads manipulate and share the same Book instance, book. The threads task1
and task2 execute book.newSale(), and task3 executes book.returnBook(). As
mentioned previously, ++copiesSold and --copiesSold aren’t atomic operations.
Also, as a programmer you can’t determine or command the exact time when these
threads will start with their execution (it depends on how they’re scheduled to exe-
cute by the OS). Let’s assume that task2 starts with its execution and reads book
.copiesSold. Before it can modify this shared value, it’s also read by threads task3
and task2, which are unaware that this value is being modified by another thread. All
these threads modify the value of book.copiesSold and update it back in order. The
last thread to update the value book.copiesSold overrides updates of the other two
threads. Figure 10.8 shows one of the possible ways in which the threads task1, task2,
and task3 can interleave.

 So, how can you assure that when multiple threads update shared values it doesn’t
lead to incorrect results? How can you communicate between threads? Let’s discuss
this in the next section.

Instantiate
another
OnlineBuy
instance using
book and start
thread task2.

Instantiate OnlineReturn instance
using book and start thread task3.

book:Book

copiesSold = 0+1task1
title = "Java"
copiesSold = 0

book:Book

title = "Java"
copiesSold = 1

book:Book

copiesSold = 0+1task2
title = "Java"
copiesSold = 0

task3

book:Book

title = "Java"
copiesSold = 1

book:Book

copiesSold = 0–1
title = "Java"
copiesSold = 0

book:Book

title = "Java"
copiesSold = –1

Time

Figure 10.8 Interleaving threads can lead to incorrect results.
Licensed to Mark Watson <nordickan@gmail.com>

649Protect shared data
10.3.3 Thread-safe access to shared data

Imagine if you could lock a shared object while it was being accessed by a thread;
you’d be able to prevent other threads from modifying it. This is exactly what Java
does to make its data thread safe. Making your applications thread safe means securing
your shared data so that it stores correct data, even when it’s accessed by multiple
threads. Thread safety isn’t about safe threads—it’s about safeguarding your shared
data that might be accessible to multiple threads. A thread-safe class stores correct
data without requiring calling classes to guard it.

 You can lock objects by defining synchronized methods and synchronized statements.
Java implements synchronization by using monitors, covered in the next quick warm-
up section.

OBJECT LOCKS AND MONITORS: WARM-UP
Every Java object is associated with a monitor, which can be locked or unlocked by a
thread. At a time, only one thread can hold lock on a monitor and is referred to as the
monitor owner. Owning the monitor is also referred to as acquiring the monitor. If another
thread wants to acquire the monitor of that object, it must wait for it to be released.

 When the keyword synchronized is added to a method, only one thread can
execute it at a time. To execute a synchronized method, a thread must acquire the
monitor of the object on which the method is called. When the monitor of an
object is locked, no other thread can execute any synchronized method on that
object. When acquired, a thread can release the lock on the monitor if

■ It has completed its execution.
■ It needs to wait for another operation to complete.

For the first case, it releases the lock and exits. For the latter case, it enters a waiting set
of threads that are waiting to acquire the monitor again. Threads enter the waiting set
due to an execution of yield or wait. They can reacquire the monitor when notify-
All() or notify() is called.

 Figure 10.9 shows how a thread might have to wait to hold a lock on a monitor.
Only one thread can own the monitor of an object, and a thread might release the
monitor and enter a waiting state.

Acquire

Object

Set of

threads

waiting to

acquire lock
Release lock

and exit

Release

Acquire

Set of

waiting threads

waiting to

reacquire lock

Monitor

Owner thread

Figure 10.9 A
thread must own
a monitor before it
can execute
synchronized
code. Only the
monitor owner
can execute the
synchronized
code.
Licensed to Mark Watson <nordickan@gmail.com>

650 CHAPTER 10 Threads
With an understanding of how objects and their monitors, threads, and execution of
synchronized code work together, let’s modify the code used in section 10.3.2 so that
threads working with shared data don’t interleave.

SYNCHRONIZED METHODS
Synchronized methods are defined by prefixing the definition of a method with the key-
word synchronized. You can define both instance and static methods as synchronized
methods. The methods, which modify the state of instance or static variables, should
be defined as synchronized methods. This prevents multiple threads from modifying
the shared data in a manner that leads to incorrect values.

 When a thread invokes a synchronized method, it automatically locks the moni-
tor. If the method is an instance method, the thread locks the monitor associated
with the instance on which it’s invoked (referred to as this within the method). For
static methods, the thread locks the monitor associated with the Class object,
thereby representing the class in which the method is defined. These locks are
released once execution of the synchronized method completes, with or without
an exception.

EXAM TIP For nonstatic instance synchronized methods, a thread locks
the monitor of the object on which the synchronized method is called.
To execute static synchronized methods, a thread locks the monitor asso-
ciated with the Class object of its class.

In the following listing, let’s modify the definition of class Book by defining its meth-
ods newSale() and returnBook() as synchronized methods. The methods that
belong to the data being protected are defined as synchronized.

class Book{
 String title;
 int copiesSold = 0;
 Book(String title) {
 this.title = title;
 }
 synchronized public void newSale() {
 ++copiesSold;
 }
 synchronized public void returnBook() {
 --copiesSold;
 }
}
class OnlineBuy extends Thread{
 private Book book;
 public OnlineBuy(Book book) {
 this.book = book;
 }

Listing 10.3 Working with synchronized methods

newSale() is now a
synchronized method.

returnBook() is now a
synchronized method.
Licensed to Mark Watson <nordickan@gmail.com>

651Protect shared data
 @Override
 public void run() {
 book.newSale();
 }
}
class OnlineReturn extends Thread{
 private Book book;
 public OnlineReturn(Book book) {
 this.book = book;
 }
 @Override
 public void run() {
 book.returnBook();
 }
}
class ShoppingCart {
 public static void main(String args[]) throws Exception {
 Book book = new Book("Java");
 Thread task1 = new OnlineBuy(book); task1.start();
 Thread task2 = new OnlineBuy(book); task2.start();
 Thread task3 = new OnlineReturn(book); task3.start();
 }
}

Figure 10.10 shows how threads task2, task1, and task3 might acquire a lock on the
monitor of object book defined in the main method of class ShoppingCart. As you see,
a thread can’t execute synchronized methods newSale() and returnBook() on book
without acquiring a lock on its monitor. So each thread has exclusive access to book to
modify its state, resulting in a correct book state at the completion of main.

book:Book

Monitor

title = "Java"
copiesSold = 0

Time

task1

task3

task2

book:Book

Monitor

title = "Java"
copiesSold = 1

task2
Release and exit

book:Book

Monitor

title = "Java"
copiesSold = 1

task3

task1

book:Book

Monitor

title = "Java"
copiesSold = 2

task1
Release and exit

book:Book

Monitor

title = "Java"
copiesSold = 2

task3

book:Book

Monitor

title = "Java"
copiesSold = 1

task3

Release

and exit

Figure 10.10 Threads acquire a lock on the monitor of object book before executing its synchronized methods
newSale() and returnBook(). So threads task1, task2, and task3 don’t interleave.
Licensed to Mark Watson <nordickan@gmail.com>

652 CHAPTER 10 Threads
EXAM TIP A thread releases the lock on an object monitor after it exits a
synchronized method, whether due to successful completion or due to an
exception.

What happens if, instead of defining methods newSale() and returnBook() as syn-
chronized methods (see listing 10.3), you define the run() methods in the threads
OnlineBuy and OnlineReturn as synchronized methods? Will this modification pro-
tect the data of shared object book in ShoppingCart? Let’s answer this question in the
next “Twist in the Tale” exercise. Take a closer look; apart from the mentioned modifi-
cation, I’ve also modified some other bits of code.

What do you think is the output of the following code?
class Book{
 int copiesSold = 0;
 public void newSale() { ++copiesSold; }
 public void returnBook() { --copiesSold; }
}
class OnlineBuy extends Thread{
 private Book book;
 public OnlineBuy(Book book) { this.book = book; }
 synchronized public void run() { //1
 book.newSale();
 }
}
class OnlineReturn extends Thread{
 private Book book;
 public OnlineReturn(Book book) { this.book = book; }
 synchronized public void run() { //2
 book.returnBook();
 }
}
class ShoppingCart {
 public static void main(String args[]) throws Exception {
 Book book = new Book(); //3
 Thread task1 = new OnlineBuy(book); task1.start(); //4
 Thread task2 = new OnlineBuy(book); task2.start(); //5
 Thread task3 = new OnlineReturn(book); task3.start(); //6
 }
}

a The code on lines 1 and 2 fails to compile. It can’t override run by adding the
keyword synchronized.

b The code compiles, but calling start() on lines 4, 5, and 6 doesn’t call run
defined on lines 1 and 2. It calls the default run() method defined in class Thread.

c Lines 4, 5, and 6 call run() defined at lines 1 and 2, but fail to protect data of
object book defined at line 3.

d Lines 4, 5, and 6 call run() defined at lines 1 and 2, and succeed in protecting
data of object book defined at line 3.

Twist in the Tale 10.3
Licensed to Mark Watson <nordickan@gmail.com>

653Protect shared data

n

synch

synch

n

As stated before, when a thread acquires a lock on the object monitor, no other
thread can execute any other synchronized method on the object until the lock is
released. This could become inefficient if your class defined synchronized methods
that manipulate different sets of unrelated data. To do so, you might mark a block of
statements with the keyword synchronized, as covered in the next section.

SYNCHRONIZED STATEMENTS
To execute synchronized statements, a thread must acquire a lock on an object moni-
tor. For an instance method, it might not acquire a lock on the instance itself. You can
specify any object on which a thread must acquire the monitor lock before it can exe-
cute the synchronized statements.

 In the previous example for class Book, let’s remove the keyword synchronized
from the definition of method newSale() and define synchronized statements in it:

class Book{
 double rank = 0;
 int copiesSold = 0;

 Object objSale = new Object();
 Object objPos = new Object();

 public void newSale() {
 synchronized(objSale) {
 ++copiesSold;
 }
 }
 public void rankImprove() {
 synchronized(objPos) {
 --rank;
 }
 }
}

The code at B defines objects objSale and objPos that are used to execute synchro-
nized statements defined in methods newSale() and rankImprove(). The code at c
shows newSale() is no longer a synchronized method. At d, a thread that executes
newSale() must acquire a lock on the object objSale before it can execute the syn-
chronized statements that start from the code at d and end at e. Method newSale()
manipulates variable copiesSold. The code at f defines an instance method that
includes a synchronized statement that manipulates the instance variable rank.

 While a thread is executing method newSale() on a Book instance, another thread
can execute method rankImprove() on the same Book instance because newSale()
and rankImprove() acquire locks on monitors of separate objects—that is, objSale
and objPos.

EXAM TIP Multiple threads can concurrently execute methods with syn-
chronized statements if they acquire locks on monitors of separate objects.

Threads acquire lock on monitor
of these objects to execute
synchronized statements in
newSale() and rankImprove()

 b

ewSale()
isn’t a

ronized
method.

 c

Start of synchronized
block in newSale() d

End of
ronized
block in
ewSale() e

Instance method that
includes a synchronized
statement that manipulates
instance variable rank

 f
Licensed to Mark Watson <nordickan@gmail.com>

654 CHAPTER 10 Threads

pr
inst
varia
A thread releases the lock on the object monitor once it exits the synchronized state-
ment block due to successful completion or an exception. If you’re trying to modify
your shared data using synchronized statements, ensure that the data items are mutu-
ally exclusive. As shown in the preceding example, the object references objSale and
objPos refer to different objects.

10.3.4 Immutable objects are thread safe

Immutable objects like an instance of class String and all the wrapper classes (like
Boolean, Long, Integer, etc.) are thread safe because their contents can’t be modi-
fied. So no matter how and when you access them, it doesn’t result in a dirty read or
dirty write. The exam might ask you to identify a class whose instances are safe from
concurrent access and modification, without thread synchronization. The simple
answer is the use of immutable objects. In the following example, once title is initial-
ized, no matter how it’s accessed by multiple threads, it never leads to inconsistent
memory or race conditions:

class Book{
 private String title;
}

EXAM TIP Shared immutable objects can’t result in inconsistent object
data or an incorrect object state because, once initialized, they can’t be
modified.

Here’s an example of how to create an immutable class:

import java.util.Date;
final class BirthDate {
 private final Date birth;
 public BirthDate(Date dob) {
 birth = dob;
 }
 public Date getBirthDate() {
 return (Date)birth.clone();
 }
 public boolean isOlder(Date other) {
 // calculate 'other' with 'birth'
 // return true is 'birth' < 'other'
 return true;
 }
}

The code at B defines class BirthDate as a final class to ensure that no class can
extend the immutable class, and to define additional methods to modify the value of
its instance variables. The variable birth is defined as a final and private member
at c. A private variable can’t be manipulated outside the class. Declaring a variable as
final prevents it from being reassigned a value. But it doesn’t prevent its existing value
from being modified (remember you can’t reassign a value to a final reference variable,

final class that
can’t be extended

 b

ivate
ance
bles c

Value to instance variables can be
assigned only during their instantiation.

Returns
a clone

of birth.

 d

No methods allow
modifications to private
instance variables of
BirthDate.

 e
Licensed to Mark Watson <nordickan@gmail.com>

655Protect shared data
but you can modify its value if its methods allow you to). At d, getBirthDate()
returns a clone of birth, so that any modifications to the returned value don’t change
the value of instance variable birth. At e, you notice that none of the methods of
class BirthDate allow modification of its instance value birth.

 In the next “Twist in the Tale” exercise, let’s change the positions of a few keywords
in class BirthDate, defined in the preceding example code, and see whether it will
still survive concurrent access by multiple threads and store and report correct data.

Examine the following class, assuming that java.util.Date is an immutable class. Do
you think it will be safe to use it in a multithreaded environment, without any external
synchronization of methods that call this class’s methods?

import java.util.Date;
final class BirthDate {
 private final Date birth;
 public BirthDate(Date dob) {
 birth = dob;
 }
 final public Date getBirthDate() {
 return birth;
 }
 final public boolean isOlder(Date other) {
 // code to compare dates
 return true;
 }
}

a Yes
b No

Threads might read and write shared values in their own cache memory. Let’s see how
you can prevent threads from doing so.

10.3.5 Volatile variables

Apart from using synchronized methods and code blocks, you can use volatile vari-
ables to synchronize access to data. Though simpler to use than synchronized code,
volatile variables offer only a subset of the features offered by the synchronized
code. A synchronized code block can be executed by only one thread, as an atomic
operation. Also before a thread gives up the monitor lock on an object, the changes it
made to the data become visible to the next thread that acquires the object’s monitor
lock. The volatile variables don’t support the atomicity feature.

 A read or write operation on a volatile variable creates a happens-before relationship
with operations on the same object by other threads. As a result, the compiler can’t
include optimizations that might enable threads to read the values of volatile variables

Twist in the Tale 10.4
Licensed to Mark Watson <nordickan@gmail.com>

656 CHAPTER 10 Threads
from their own local cache. When a thread reads from or writes to a variable (both
primitive and reference variables) marked with the keyword volatile, it accesses it
from the main memory as opposed to storing its copy in the thread's cache memory.
This prevents multiple threads from storing a local copy of shared values that might
not be consistent across threads.

 So if they don’t offer features as good as synchronized code, why do we need them?
Because they offer simplicity and better performance when defining thread-safe data
within certain limits. The modified value of the volatile variables shouldn’t be depen-
dent on their current value (like a counter). Also they shouldn’t be dependent on
other variables for their values. Here’s an example of code that defines and uses the
volatile variable closeAcct:

class BankAccount {
 volatile boolean closeAcct = false;
 public void markClosure() {
 closeAcct = true;
 }
 public void closeAccount() {
 if (closeAcct) {
 //..procceed with account closure
 }
 }
}

Another example of using volatile variables is for initializing objects. But if the object
is expected to change after initialization, you might need to use additional synchroni-
zation to ensure thread-safe data:

class StockData{}
class StockExchange{
 static volatile StockData data = null;
 static void loadStockData() {
 // load and initialize reference variable 'data'
 // the variable 'data' is written to only once
 }
}
class BuyStocks {
 public void buy() {
 if (StockExchange.data != null) {
 // analyze data
 // buy stocks
 }
 }
}

In this example, if the reference variable data isn’t defined as a volatile variable, other
classes might access it before it’s completely initialized.

 Every problem has a solution and every solution has a problem. Though creating
multiple threads results in better use of the underlying processor, it can lead to other
issues like inconsistent memory, thread deadlock, and more. Let’s cover these in detail
in the next section.

volatile variable
closeAcct

New value of closeAcct
isn’t dependent on its
existing value
Licensed to Mark Watson <nordickan@gmail.com>

657Identify and fix code in a multithreaded environment
10.4 Identify and fix code in a multithreaded environment

Threading issues arise when multiple threads work with shared data and when
they’re dependent on other threads. This section identifies the data that you need
to be careful with when working with multiple threads, the operations (or methods)
that can lead to threading issues, the order of operations, and how to get around all
of these issues.

 Let’s get started with identifying the data that the threads can share among them-
selves. Only when you know what data can be shared, will you be able to identify how it
can be fixed.

10.4.1 Variables you should care about

Threads can share the heap that includes class variables and instance variables. Each
thread gets its own share of stack memory, which includes local variables, method
parameters, and exception handler parameters. So a multithreaded application
should safeguard the static and instance variables or attributes of its shared objects.
Figure 10.11 shows the type of variables that are always safe in a multithreaded appli-
cation. So it’s always the not-so-safe instance and static variables that you need to
care about.

NOTE The terms static variables and static attributes, and instance variables
and instance attributes, are the same and are often used interchangeably.

But what kind of operations should you care about? Should you only be concerned
with the methods that change the value of a shared variable? Or, should you also syn-
chronize the read operations? Let’s answer these questions in the next section.

[10.4] Identify code that may not execute correctly in a multithreaded
environment

Instance

attributes

Shared across threads Not shared across threads

Static

attributes

Method

parameters

Local

variables

Intermediate

values

Return

values

Exception

handler

parameters

Figure 10.11 Local
variables, method
parameters, and
exception handler
parameters are always
safe in a multithreaded
application.
Licensed to Mark Watson <nordickan@gmail.com>

658 CHAPTER 10 Threads
10.4.2 Operations you should care about

To safeguard your data, you might think you only need to worry about methods that
modify the value of a variable. Think again. Methods that only read shared variable val-
ues can also return incorrect or inconsistent data.

 Imagine that agents Shreya and Harry (two threads) manage renting an exhibition
ground, say, Axiom (shared resource). Harry has agreed to rent it to a customer and
is in the process of signing the legal papers (one thread is updating the shared
resource). Shreya has no clue about this development. Just before Harry completes
signing the rental agreement, Shreya receives an enquiry about the availability of
Axiom and she confirms that it’s available (another thread reads data while the shared
resource is being modified). In this case, Shreya accessed inconsistent data.

 Similarly, threads that access shared objects can report inconsistent memory. Referring
back to the previous example of class Book (with an instance variable copiesSold),
imagine two threads are accessing the same Book instance. One thread updates the
count of copiesSold and the other thread retrieves the value of copiesSold. If the sec-
ond thread retrieves the value of copiesSold just before the first thread completes the
modification, the second thread returns a dirty value that is inconsistent. For instance

class Book{
 private int copiesSold = 0;
 public void newSale() {
 ++copiesSold;
 }
 public int getCopiesSold() {
 return copiesSold;
 }
}
class OnlineBuy extends Thread{
 private Book book;
 public OnlineBuy(Book book) {
 this.book = book;
 }
 public void run() {
 book.newSale();
 }
}
class OnlineEnquiry extends Thread{
 private Book book;
 public OnlineEnquiry(Book book) {
 this.book = book;
 }
 public void run() {
 System.out.println(book.getCopiesSold());
 }
}
class InconsistentMemory {
 public static void main(String args[]) throws Exception {
 Book eBook = new Book();
 Thread buy = new OnlineBuy(eBook);
 Thread enquire = new OnlineEnquiry(eBook);

When started,
OnlineBuy executes
newSale() on its
instance book.

When started,
OnlineEnquiry executes
getCopiesSold() on its
instance book.

Pass same Book instance book
to threads buy and enquire.
Licensed to Mark Watson <nordickan@gmail.com>

659Identify and fix code in a multithreaded environment
 buy.start();
 enquire.start();
 }
}

In the preceding example, the thread enquire might
read inconsistent data if it happens to execute eBook
.getCopiesSold() before the thread buy executes
eBook.newSale(). Depending on how the threads are
scheduled, you might see either of the outputs shown
in figure 10.12.

 Imagine a thread that produces data and another thread that consumes it. What
happens if the producer thread lags behind, leaving the consumer thread without any
data to process? Let’s work with this situation in the next section.

10.4.3 Waiting for notification of events: using wait, notify, and notifyAll

If interdependent threads share data that’s processed alternately by them, the threads
should be able to communicate with each other to notify when there’s a completion
of events, or else the threads might not work correctly.

 Imagine you’re waiting for your friend to go river rafting at a camp. You check
whether she has arrived by peeping out of your tent every minute. This can become
quite inconvenient. How about asking her to notify you when she arrives? Let’s imple-
ment this in code using the wait and notify methods from class Object. Because
these methods are defined in class Object, they can be called on any Java object.
Methods wait(), notify(), and notifyAll() enable threads sharing the same data to
communicate with each other.

EXAM TIP Methods wait(), notify(), and notifyAll() are defined in
class Object and not in class Thread.

To call wait() or notify() a thread must own the object’s monitor lock. So calls to
these methods should be placed within synchronized methods or blocks. Here’s an
implementation of the previous example in code:

class GoRafting extends Thread {
 Friend friend;
 GoRafting(Friend friend) {
 this.friend = friend;
 }
 public void run() {
 System.out.println("Friend reached:" + friend.reached);
 synchronized(friend) {
 try {
 friend.wait();
 }

Thread enquire might execute
ebook.getCopiesSold before thread buy
completes execution of eBook.newSale.

Figure 10.12 Probable outputs
of class InconsistentMemory

Waits for object friend to call either
notify() or notifyAll(); call to wait()
enclosed within a synchronized block.

 b
Licensed to Mark Watson <nordickan@gmail.com>

660 CHAPTER 10 Threads
 catch (InterruptedException e) {
 System.out.println(e);
 }
 }
 System.out.println("Reached:" + friend.reached + ",going rafting");
 }
}
class Friend extends Thread {
 boolean reached = false;

 public void run() {
 while (!reached) {
 try {
 Thread.sleep(2000);
 }
 catch (InterruptedException e) {
 System.out.println(e);
 }
 confirmReached();
 }
 }
 public synchronized void confirmReached() {
 reached = true;
 notify();
 }
}
class Camping {
 public static void main(String args[]) {
 Friend paul = new Friend();
 GoRafting rafting = new GoRafting(paul);
 rafting.start();
 paul.start();
 }
}

The code at d starts the thread rafting. At B, when thread rafting calls
friend.wait(), it’s placed in the waiting set of threads for the object friend, gives up
friend’s monitor lock, and waits until

■ Another thread invokes notify() or notifyAll() on the same object, friend
■ Some other thread interrupts GoRafting

At e, the thread of execution paul starts its execution. To execute notify at c, it
must acquire a lock on the monitor for object paul. Once it acquires the lock, it exe-
cutes notify(), notifying and waking up one of the threads waiting on friend.
Because in this example only one thread is waiting on object friend, notify() wakes
up the thread rafting. But waking up the thread rafting doesn’t guarantee that it
will resume its execution immediately. It will enter the RUNNABLE (or execution) state
and be ready for when the thread scheduler chooses it for execution.

 If multiple threads are waiting on an object’s monitor, notify() wakes up one of
these threads. Which thread will be chosen isn’t defined and is specific to the JVM
implementation. Method notifyAll() wakes up all the threads that are waiting on an

For this example
code, thread sleeps
for two seconds.

Calls confirmedReached,
which calls notify.

Call to notify placed in a
synchronized method c

Start thread
rafting

 d

Start thread
friend e
Licensed to Mark Watson <nordickan@gmail.com>

661Identify and fix code in a multithreaded environment
object’s monitor. These threads compete in the usual manner to acquire a lock on the
object’s monitor and resume their execution.

 When rafting resumes its execution, it will send its remaining code to execution.

EXAM TIP Methods wait(), notify(), and notifyAll() must be called
from a synchronized method or code blocks or else an IllegalMonitor-
StateException will be thrown by the JVM.

The overloaded wait() methods enable you to specify a wait timeout:

public final void wait(long timeout) throws InterruptedException
public final void wait(long timeout, int nanos) throws InterruptedException

When a thread calls the method wait() on an object specifying a timeout duration, it
waits until another thread calls notify() or notifyAll on the same object, it’s inter-
rupted by another thread, or the waiting timeout elapses. Even though the overloaded
version wait(long, int) accepts a timeout duration in nanoseconds, supporting such
time precision is JVM- and OS-specific.

EXAM TIP All overloaded versions of wait() throw a checked
InterruptedException. Methods notify() and notifyAll() don’t throw
an InterruptedException.

Unlike the Thread’s method join(), which waits for another thread to complete its
execution, methods wait() and notify() don’t require a thread to complete their
execution. The thread that calls wait(), waits for another thread to notify it using
method notify() or notifyAll(). Some other examples from daily life of using
wait() and notify() are teachers and students waiting to be notified for a next work-
shop on life skills (which can happen multiple times), an operator who answers a
phone whenever she’s notified of an incoming call, or customers waiting for notifica-
tion of new offers on a range of televisions.

 The exam is sure to question you on the status of a thread when it executes meth-
ods from class Thread (sleep(), join(), yield()) and methods from class Object
(wait(), notify() and notifyAll()), and whether they release or retain the object’s
monitor locks (if they have acquired one). Figure 10.13 summarizes this information.

Method name

sleep()

yield()

join()

notify()/notifyAll()

wait()

Change in status of executing thread

RUNNABLE

RUNNABLE

RUNNABLE

RUNNABLE

RUNNABLE

TIMED_WAITING

No change

WAITING TIMED_WAITINGor

No change

WAITING TIMED_WAITINGor

Releases lock?

Figure 10.13 Change in thread’s status when methods are executed from class Thread
(sleep(), join(), yield()) and class Object (wait(), notify(), notifyAll())
Licensed to Mark Watson <nordickan@gmail.com>

662 CHAPTER 10 Threads
Multiple threads might deadlock when they have acquired a lock on objects and are
waiting to acquire locks on additional objects that are owned by other waiting threads.
Let’s discuss this threading issue in detail next.

10.4.4 Deadlock

Imagine a tester and a developer are working on two applications, an Android applica-
tion and an iPhone application. The Android application is in its testing phase; it
should be tested and the reported bugs should be fixed by the developer. The iPhone
application needs to be developed from scratch; it should be coded by the developer
and then tested for bugs. Imagine the tester starts testing the Android application and
the developer starts working with the iPhone application. The Android application
completes the testing phase and requests for the developer to fix the bugs. At the
same time, the iPhone application completes its development phase and requests the
tester to test it. The managers working with both the Android and iPhone applications
refuse to release their resources (developer or tester) before their project completes.
So both projects are waiting for the other project to complete—that is, waiting for the
same set of resources. This causes a deadlock—these threads might wait forever.
Here’s how this looks in code:

class Developer {
 synchronized void fixBugs() {
 System.out.println("fixing..");
 }
 synchronized void code() {
 System.out.println("coding..");
 }
}
class Tester {
 synchronized void testAppln() {
 System.out.println("testing..");
 }
}
class AndroidApp extends Thread {
 Developer dev;
 Tester tester;
 AndroidApp(Developer dev, Tester t) {
 this.dev = dev;
 this.tester = t;
 }
 public void run() {
 synchronized(tester) {
 tester.testAppln();
 dev.fixBugs();
 }
 }
}
class iPhoneApp extends Thread {
 Developer dev;
 Tester tester;

Synchronized
methods

 b

Acquire lock on
tester, reentrant
lock on tester,
lock on dev

 c
Licensed to Mark Watson <nordickan@gmail.com>

663Identify and fix code in a multithreaded environment
 iPhoneApp(Developer dev, Tester t) {
 this.dev = dev;
 this.tester = t;
 }
 public void run() {
 synchronized(dev) {
 dev.code();
 tester.testAppln();
 }
 }
}
class DeadLock {
 public static void main(String args[]) {
 Tester paul = new Tester();
 Developer selvan = new Developer();

 AndroidApp androidApp = new AndroidApp(selvan, paul);
 iPhoneApp iPhoneApp = new iPhoneApp(selvan, paul);

 androidApp.start();
 iPhoneApp.start();
 }
}

The code at B defines synchronized code in classes Tester and Developer. A
thread must acquire a lock on an object’s monitor before it can execute its synchro-
nized methods. At e, code passes the same Developer and Tester instances—that
is, paul and selvan—to AndroidApp and iPhoneApp threads. At c, the thread
AndroidApp first acquires a lock on its instance member tester, then reacquires the
lock to execute its testAppln. It then tries to acquire a lock on its instance member
dev so that it can call its method fixBugs(). But by this time, the code at d has
begun its execution, where the thread iPhoneApp has already acquired a lock on a
shared object dev and is waiting to acquire a lock on tester so that it can execute
testAppln. At this point, both the threads AndroidApp and iPhoneApp deadlock. On
the exam, you should be able to recognize the conditions that might lead to thread
deadlocking.

10.4.5 Starvation

Imagine you’re invited to dine with the president or your favorite sports star, or say a
natural calamity strikes. Will it change your existing engagements for the evening?
There’s a very high probability that it would. Similarly, all application and OS threads
that execute on a system are assigned a priority (default or explicit). Usually threads
with a higher priority are preferred to execute by the thread scheduler. But this pref-
erence might leave threads with a lower priority starved to be scheduled.

 A thread can also starve to be scheduled when it’s waiting to acquire a lock on an
object monitor that has been acquired by another thread that usually takes long to
execute and is invoked frequently.

Acquire lock on
dev, reentrant
lock on dev, lock
on tester

 d

Same developer
and tester work
with Android
and iPhone
applications

 e
Licensed to Mark Watson <nordickan@gmail.com>

664 CHAPTER 10 Threads
 Thread scheduling is dependent on an underlying OS. Usually all OSs support pri-
oritized scheduling of high-priority threads, but this behavior isn’t guaranteed across
different platforms.

10.4.6 Livelock

Imagine you’re talking with your friend on your mobile phone and the call drops. You
try to reconnect with her, but her phone is busy (because she’s trying to call you!). You
wait for a few moments and try to reconnect, only to discover that her phone is still
busy, because she waited for exactly the same duration before trying to reconnect
again. If you compare yourself and your friend with threads, you both are in a livelock.
You and your friend aren’t blocked—both of you are responding but aren’t being able
to do what you both intend to (talk with each other).

EXAM TIP Threads in a livelock aren’t blocked; they’re responding to
each other, but they aren’t able to move to completion.

Because a livelock depends on the exact time of execution of threads, the same set of
threads might not always livelock.

10.4.7 Happens-before relationship

With threads, there’s little that can be guaranteed. You can’t determine exactly when a
particular method will start, pause, or resume its execution. You can’t guarantee the
sequence in which multiple threads might execute. On the exam, you’ll be ques-
tioned on the correct, incorrect, or probable outcome of code that defines or works
with threads. The Java language uses a happens-before relationship, which is when one
task is guaranteed to happen before another in a multithreading environment. Fig-
ure 10.14 shows this relationship.

Thread

start()

Thread

Step 1

Step 2

Step 3

Object

monitor

Happens-before

Volatile

variable

Write

Thread

All action

in thread

Any

action

in started

thread

Step 4

Step 5

Read

Any other

thread

returns from

join()
on this

Figure 10.14 Happens-before relationship
Licensed to Mark Watson <nordickan@gmail.com>

665Review notes
The happens-before relationship, as included in Java’s language specification, will enable
you to answer a lot of questions on threading on the exam. For example

■ The execution of start()happens-before any action in a thread is started.
■ When code is defined in a sequence, step 1 happens-before step 2.
■ Unlocking of an object monitor happens-before any other thread acquires a lock

on it.
■ A write to a volatile field happens-before every subsequent read of that field.
■ All actions in a thread happens-before any other thread returns from a join on

that thread.

As you attempt the sample exam questions at the end of this chapter, mark the
answers that could be determined using the happens-before relationship. If you dis-
cover other threading behavior that can be added to the happens-before relationship,
please notify me too!

10.5 Summary
This chapter covers how threads enable systems to use their single or multiple proces-
sors to execute applications concurrently. We worked with class Thread and interface
Runnable to define and create threads. Threads can exist in multiple states (NEW,
RUNNABLE, WAITING, TIMED_WAITING, BLOCKED and TERMINATED), and we used multiple
methods (start(), yield(), join(), sleep(), wait(), notify(), notifyAll()) to tran-
sition threads from one state to another. With multithreading you can guarantee very little
when it comes to commanding or determining when a thread actually transitions from
one state to another. The actual thread scheduling is handled by the underlying OS.

 We covered how threads can be independent or dependent. Dependent threads
communicate with each other by sharing data, which can lead to thread interference
and memory inconsistency issues. Prevention techniques include synchronizing thread
access to data by acquiring locks and defining atomic operations. We used synchro-
nized methods and code blocks to synchronize data access. The volatile variables,
though not as powerful and effective as synchronized methods, offer a simple solution
to safeguard data from multiple concurrent thread access.

 Using locks on objects safeguards object data, but it also leads to thread conten-
tion. Other threading issues include deadlock, starvations, and livelock.

REVIEW NOTES
This section lists the main points covered in this chapter.

Create and use threads

■ All nontrivial Java applications are multithreaded.
■ Multiple threads can be supported by an underlying system by using multiple

hardware processors, by time-slicing a single processor, or by time-slicing multi-
ple processors.
Licensed to Mark Watson <nordickan@gmail.com>

666 CHAPTER 10 Threads
■ Implementation of Java threads is JVM-specific.
■ Though related, a Thread instance and a thread of execution aren’t the same. A

Thread instance is a Java object.
■ The main thread is named main by the JVM. Don’t confuse it with the method

main().
■ Class Thread and interface Runnable can be used to create and start a new

thread of execution.
■ To create your own thread objects using class Thread, you must extend it and

override its method run().
■ When you call start() on a Thread instance, it creates a new thread of

execution.
■ When a new thread of execution starts, it will execute the code defined in the

thread instance’s method run(). Method start() will trigger the creation of a
new thread of execution, allocating resources to it.

■ Because you can’t be sure of the order of execution of threads by an underlying
OS, multithreaded code might output different results when executed on the
same or a different system.

■ When you create a thread class by extending class Thread, you lose the flexibil-
ity of inheriting any other class.

■ When you implement the Runnable interface, you must implement its
method run().

■ If your class implements the Runnable interface, then you should pass its
instance to the constructor of class Thread.

■ The Thread constructor accepts a Runnable object. A Thread instance stores a
reference to a Runnable object and uses it when you start its execution (by call-
ing start()).

■ Because class Thread implements the Runnable interface, you can instantiate a
thread by passing it another Thread instance.

■ Each thread is created with a priority. Its range varies from 1 to 10, with 1 being
the lowest priority and 10 the highest priority. By default, a thread creates
another thread with the same priority as its own.

■ You can’t guarantee that a thread with a higher priority will always execute
before a thread with a lower priority.

Thread lifecycle

■ You can control the transition of a thread from one state to another by calling
its methods.

■ The exact time of thread state transition is controlled by a thread scheduler,
which is bound to vary across platforms.

■ A thread can exist in multiple states: NEW, RUNNABLE, WAIT, TIMED_WAITING,
BLOCKED, or TERMINATED.
Licensed to Mark Watson <nordickan@gmail.com>

667Review notes
■ A thread that hasn’t yet started is in the NEW state.
■ Calling start() on a new thread instance implicitly calls its method run(),

which transitions its state from NEW to READY.
■ A thread in the RUNNABLE state is all set to be executed. It’s just waiting to be

chosen by the thread scheduler so that it gets the processor time.
■ As a programmer, you can’t control or determine when a particular thread

transitions from the READY state to the RUNNING state, and when it actually
gets to execute.

■ The states READY and RUNNING are together referred to as the RUNNABLE state.
■ A thread in the RUNNABLE state is executing in the JVM, but it may be waiting for

other resources from the OS, such as a processor.
■ A thread that’s blocked waiting for a monitor lock is in the BLOCKED state.
■ A thread that’s waiting for another thread to perform an action for up to a spec-

ified waiting time is in the TIMED_WAITING state.
■ A RUNNING thread enters the TIMED_WAITING state when you call sleep(int),

join(int), or wait(int) on it.
■ A thread that’s waiting indefinitely for another thread to perform a particular

action is in the WAITING state.
■ When you call wait() on a RUNNING thread, it transitions to the WAITING

state. It can change back to the READY state when notify() or notifyAll() is
called.

■ A RUNNING thread might enter the BLOCKED state when it’s waiting for other
system resources like network connections or to acquire an object lock to execute
a synchronized method or code block. Depending on whether the thread is able
to acquire the monitor lock or resources, it returns back to the READY state.

■ With the successful completion of run(), a thread is in the TERMINATED state.
■ A thread might transition from any state to the TERMINATED state due to an

exception.

Methods of class Thread

■ Calling start() on a Thread instance creates a new thread of execution, which
executes run().

■ You can call start() on a thread that’s in the NEW state. Calling start() from
any other thread state will throw an IllegalThreadStateException.

■ Calling run() on a Thread instance doesn’t start a new thread of execution. The
run() continues to execute in the same thread.

■ A thread might pause its execution due to the calling of an explicit method or
when its time slice with the processor expires.

■ Method yield() makes the currently executing thread pause its execution and
give up its current use of the processor. But it only acts as a hint to the sched-
uler. The scheduler might also ignore it.
Licensed to Mark Watson <nordickan@gmail.com>

668 CHAPTER 10 Threads
■ Method yield()is static. It can be called from any method, and it doesn’t throw
any exceptions.

■ Method yield() can be placed literally anywhere in your code—not only in
method run().

■ Method sleep() is guaranteed to cause the currently executing thread to tem-
porarily give up its execution for at least the specified number of milliseconds
(and nanoseconds).

■ Unless interrupted, the currently executing thread will sleep for at least the
specified duration. It might not start its execution immediately after the speci-
fied time elapses.

■ Method sleep() is Thread’s static method and it makes the currently executing
thread give up its execution. Because all code is executed by some thread, place-
ment of sleep() will determine which Thread instance will give up its execution.

■ A thread that’s suspended due to a call to sleep() doesn’t lose ownership of
any monitors.

■ If thread A calls join() on a Thread instance B, A will wait for B to complete its
execution before A can proceed to its own completion.

■ Method join() guarantees that the calling thread won’t execute its remaining
code until the thread on which it calls join() completes.

■ A thread can pause its execution and wait on an object, a queue in this case, by
calling wait(), until another thread calls notify() or notifyAll() on the
same object.

■ Methods wait(), notify(), and notifyAll() can be called on all Java objects,
because they’re defined in class Object and not class Thread.

■ A thread completes its execution when its method run() completes.

Protect shared data

■ Interleaving of multiple threads that manipulate shared data using multiple
steps leads to thread interference.

■ A simple statement like incrementing a variable value might involve multiple
steps like loading of the variable value from memory to registers (working
space), incrementing the value, and reloading the new value in memory.

■ When multiple threads execute this seemingly atomic statement, they might
interleave, resulting in incorrect variable values.

■ Making your applications thread safe means securing your shared data so that it
stores correct data, even when it’s accessed by multiple threads.

■ Thread safety isn’t about safe threads—it’s about safeguarding your shared data
that might be accessible to multiple threads.

■ A thread-safe class stores correct data without requiring calling classes to guard it.
■ You can lock objects by defining synchronized methods and synchronized

statements.
Licensed to Mark Watson <nordickan@gmail.com>

669Review notes
■ Synchronized methods are defined by prefixing the definition of a method with
the keyword synchronized. You can define both instance and static methods as
synchronized methods.

■ For nonstatic synchronized methods, a thread locks the monitor of the object
on which the synchronized method is called. To execute static synchronized
methods, a thread locks the monitor associated with the Class object of
its class.

■ A thread releases the lock on an object monitor after it exits a synchronized
method, whether due to successful completion or due to an exception.

■ To execute synchronized statements, a thread must acquire a lock on an object
monitor. For instance methods an implicit lock is acquired on the object on
which it’s called. For synchronized statements, you can specify an object to
acquire a lock on.

■ To execute synchronized statements, a lock must be acquired before the execu-
tion of the statements.

■ Multiple threads can concurrently execute methods with synchronized state-
ments if they acquire a lock on monitors of separate objects.

■ A thread releases the lock on the object monitor once it exits the synchronized
statement block due to successful completion or an exception.

■ Immutable objects like an instance of class String and the wrapper classes
(like Boolean, Long, Integer, etc.) are thread safe because their contents
can’t be modified.

■ You can define an immutable class by limiting access to its attributes within the
class and not defining any methods to modify its state.

■ Once initialized, an immutable instance doesn’t allow modification to its value.
■ You can use volatile variables to synchronize access to data.
■ When a thread reads from or writes to a variable (both primitive and reference

variables) marked with the keyword volatile, it accesses it from the main
memory, as opposed to storing its copy in the thread’s cache memory. This pre-
vents multiple threads from storing a local copy of shared values that might not
be consistent across threads.

Identify and fix code in a multithreaded environment

■ Threading issues arise when multiple threads work with shared data and when
they’re dependent on other threads.

■ Local variables, method parameters, and exception handler parameters are
always safe in a multithreaded application.

■ Class and instance variables might not always be safe in a multithreaded
application.

■ Methods wait(), notify(), and notifyAll() can be used for interthread
notification.
Licensed to Mark Watson <nordickan@gmail.com>

670 CHAPTER 10 Threads
■ To call wait() or notify() a thread must own the object’s monitor lock. So
calls to these methods should be placed within synchronized methods or blocks
or else an IllegalMonitorStateException will be thrown by the JVM.

■ All overloaded versions of wait() throw a checked InterruptedException.
Methods notify() and notifyAll() don’t throw an InterruptedException.

■ Unlike Thread’s method join(), which waits for another thread to complete its
execution, methods wait() and notify() don’t require a thread to complete
their execution.

■ Multiple threads might deadlock when they have acquired a lock on objects and
are waiting to acquire locks on additional objects that are owned by other wait-
ing threads.

■ All threads are assigned a priority, either implicitly or explicitly. Usually threads
with a higher priority are preferred to execute by the thread scheduler. But this
preference might leave threads with a lower priority starved to be scheduled.

■ A thread can also starve to be scheduled when it’s waiting to acquire a lock on
an object monitor that has been acquired by another thread that usually takes
long to execute and is invoked frequently.

■ Threads in a livelock aren’t blocked; they’re responding to each other, but they
aren’t able to move to completion.

■ With threads, there’s little that can be guaranteed. The Java language uses a
happens-before relationship, which is when one task is guaranteed to happen
before another in a multithreading environment.

■ The execution of start() happens-before any action in a thread is started.
■ When code is defined in a sequence, step 1 happens-before step 2.
■ Unlocking of an object monitor happens-before any other thread acquires a

lock on it.
■ A write to a volatile field happens-before every subsequent read of that field.
■ All actions in a thread happens-before any other thread returns from a join on

that thread.

SAMPLE EXAM QUESTIONS

Q 10-1. What is the probable output of the following code?

enum Seasons{SPRING,SUMMER}
class ETree extends Thread {
 String name;
 public ETree(String name) {this.name = name;}
 public void run() {
 for (Seasons season : Seasons.values())
 System.out.print(name + "-" + season + " ");
 }
 public static void main(String args[]) {
 ETree oak = new ETree("Oak"); oak.start();
Licensed to Mark Watson <nordickan@gmail.com>

671Sample exam questions
 ETree maple = new ETree("Maple"); maple.start();
 }
}

a Oak-SPRING Maple-SPRING Oak-SUMMER Maple-SUMMER

b Oak-SUMMER Oak-SPRING Maple-SPRING Maple-SUMMER

c Oak-SUMMER Maple-SUMMER Oak-SPRING Maple-SPRING

d Oak-SPRING Oak-SUMMER Maple-SPRING Maple-SUMMER

e Maple-SPRING Maple-SUMMER Oak-SPRING Oak-SUMMER

f Maple-SPRING Oak-SPRING Oak-SUMMER Maple-SUMMER

g Compilation error
h Runtime exception

Q 10-2. Examine the following code and select the correct options.

public class EThread {
 public static void main(String[] args) {
 Thread bug = new Thread() {
 public void run() {
 System.out.print("check bugs");
 }
 };
 Thread reportQA = new Thread(bug);
 reportQA.run();
 }
}

a No code output
b Code prints check bugs once.
c Code prints check bugs twice.
d Code prints check bugs in an infinite loop.
e Replacing reportQA.run() with reportQA.start() will throw a compilation

exception.
f Replacing reportQA.run() with reportQA.start() will generate the same out-

put on the system’s console.

Q 10-3. What is the output of the following code?

1. class EPen implements Runnable {
2. public void run() {
3. System.out.println("eJava");
4. start();
5. }
6. public static void main(String... args) {
7. new Thread(new EPen()).start();
8. }
9. }
Licensed to Mark Watson <nordickan@gmail.com>

672 CHAPTER 10 Threads
a It prints eJava once.
b It prints eJava multiple times.
c Compilation error
d Runtime exception

Q 10-4. The thread paul must start only after the thread shreya has completed its
execution. Which of the following code options, when inserted at //INSERT CODE
HERE, will ensure this?

1. class EJob extends Thread {
2. public void run() {
3. System.out.println("executing");
4. }
5. public static void main(String[] args) {
6. Thread paul = new EJob();
7. Thread shreya = new EJob();
8. shreya.start();
9. paul.start();
10. //INSERT CODE HERE
11. }
12. }

a shreya.join();

b paul.join();

c shreya.sleep(1000);

d shreya.wait();

e paul.notify();

f None of the above

Q 10-5. What is the output of the following code?

class ELock{}
class EPaper implements Runnable {
 public void run() {
 synchronized(ELock.class) {
 System.out.println("Hand made paper");
 }
 }
 public static void main(String args[]) throws Exception {
 Thread epaper = new Thread(new EPaper());
 epaper.start();
 synchronized(ELock.class) {
 epaper.join();
 }
 }
}

a The threads main and epaper will always deadlock.
b The threads main and epaper might not deadlock.
Licensed to Mark Watson <nordickan@gmail.com>

673Sample exam questions
c Compilation error
d Runtime exception

Q 10-6. Selvan is testing a multithreaded application in which thread A downloads
data in a hash map. Thread B uses the data from the same hash map and displays it to
a user for modification. Thread C is supposed to save the modified data and replace
the existing data in the hash map. When a user tries to save the data, the application
stops responding. What could be the probable reasons?

a Thread A and thread C deadlock.
b Thread B and thread C deadlock.
c Thread C is discovered to be a high-priority thread that performs complex cal-

culations and doesn’t allow other threads to execute.
d Thread C throws an exception.

Q 10-7. Instances of which of the following classes will always be safe to use in a multi-
threaded environment?

a class ESafe {final int value; /*constructor to initialize value*/}

b class ESafe {final Object value; /*constructor to initialize value*/}

c final class ESafe {
 ESafe(Object obj) {value = obj;}
 private final Object value;
 synchronized Object read() {return value;}
 synchronized void modify(Object obj) {}
}

d class ESafe {final String value; /*constructor to initialize value*/}

Q 10-8. What is the output of the following code?

class EProcess extends Thread {
 public void run() {
 this.yield(); //line1
 for (int i = 0; i < 1000; i++)
 System.out.print(i);
 }
 public static void main(String... args) {
 Thread myThread = new EProcess();
 myThread.run(); //line2
 }
}

a On execution, code at line 1 might make the thread main give up its execution slot.
b On execution, code at line 1 makes the thread myThread give up its execu-

tion slot.
c Compilation error at line 1
d Runtime exception at line 2
Licensed to Mark Watson <nordickan@gmail.com>

674 CHAPTER 10 Threads
Q 10-9. Select the correct options for the following code.

class EAppln extends Thread {
 String name;
 EAppln(String name) { this.name = name; }
 public void run() throws InterruptedException { //1
 sleep(1000); //2
 System.out.println("executing-" + name);
 }
}
class EJava {
 public static void main(String args[]) {
 EAppln app1 = new EAppln("Detect");
 EAppln app2 = new EAppln("Analyze");
 app1.start();
 app2.start();
 }
}

a The output is
executing-Detect
executing-Analyze

b The output is
executing-Analyze
executing-Detect

c The thread appl sleeps for a maximum of 1000 milliseconds before it’s resched-
uled to run again.

d The treads app1 and app2 might sleep at the same time.
e Compilation error
f Runtime exception

Q 10-10. On execution, class DeclareResults might not display all of the four string val-
ues passed to ProcessData constructors at lines 18 and 19. How can you fix this situation?

1. import java.util.*;
2. class Admission{
3. static int id;
4. static Map<Integer, String> results = new HashMap<>();
5. static int getNextId() {return ++id; }
6. static void qualify(Integer i, String s) {results.put(i, s);}
7. }
8. class ProcessData extends Thread{
9. List<String> list;
10. ProcessData(String[] val) {list = Arrays.asList(val);}
11. public void run() {
12. for (String item : list)
13. Admission.qualify(Admission.getNextId(), item);
14. }
15. }
16. class DeclareResults {
17. public static void main(String args[]) throws Exception {
Licensed to Mark Watson <nordickan@gmail.com>

675Answers to sample exam questions
18. ProcessData thread1 = new ProcessData(
 new String[]{"Paul", "Shreya"});
19. ProcessData thread2 = new ProcessData(
 new String[]{"Shreya", "Harry"});
20. thread1.start(); thread2.start();
21. thread1.join(); thread2.join();
22. for (String name : Admission.results.values())
23. System.out.println(name);
24. }
25. }

a By declaring only the getNextId method as synchronized at line 5
b By declaring only the qualify method as synchronized at line 6
c By declaring both the getNextId and qualify methods as synchronized at

lines 5 and 6
d By passing unique values to the threads thread1 and thread2 at lines 18 and 19
e By changing the type of variable results from Map to List
f None of the above

ANSWERS TO SAMPLE EXAM QUESTIONS

A 10-1. a, d, e, f

[10.1] Create and use the Thread class and the Runnable interface

Explanation: Each thread instance oak and maple, when started, will output the values
of enum Seasons—that is, SPRING and SUMMER (always in this order). The order of the
elements returned by Seasons.values() isn’t random. The enum values are always
returned in the order in which they are defined.

 You can’t guarantee whether thread oak completes or begins its execution before
or after thread maple. The thread scheduler can start oak, make it print Oak-SPRING,
run maple so that it prints Maple-SPRING, return the control to oak, or run maple to
completion. Whatever the sequence, the happens-before contract guarantees that
code in a thread executes in the order it’s defined. So the thread oak or maple can
never print the enum value SUMMER before the enum value SPRING.

A 10-2. b, f

[10.1] Create and use the Thread class and the Runnable interface

Explanation: The following code creates an anonymous class that subclasses class
Thread. Its instance is referred by bug, a reference variable of type Thread.

Thread bug = new Thread() {
 public void run() {
 System.out.print("check bugs");
 }
};
Licensed to Mark Watson <nordickan@gmail.com>

676 CHAPTER 10 Threads
Because class Thread implements the Runnable interface, you can pass its instance as a
target object to instantiate another Thread instance, reportQA:

Thread reportQA = new Thread(bug);

The variable reportQA refers to an anonymous class instance that overrides its method
run(). So calling reportQA.run() executes the overridden method run() and prints
check bugs only once.

 Option (f) is correct. Even though calling reportQA.run() doesn’t start a separate
thread of execution and reportQA.start() does, both will print check bugs once on
the system’s console.

A 10-3. c

[10.1] Create and use the Thread class and the Runnable interface

Explanation: Class EPen implements the Runnable interface; it doesn’t extend class
Thread. So it doesn’t have access to method start(). Calling start() at line 4 results
in the compilation failure.

A 10-4. f

[10.2] Manage and control thread lifecycle

Explanation: Calling join from a thread ensures that the thread on which join is
called completes before the calling thread completes its execution. If the thread main
calls shreya.join() before starting the thread paul, it can ensure that paul will start
after shreya completes its execution. For this to happen, main should call shreya
.join() at line 9 and paul.start() at line 10.

 Options (a) and (b) are incorrect. Calling shreya.join() or paul.join() at line 10
will ensure that these threads complete their execution before the thread main com-
pletes its own execution.

 Option (c) is incorrect. The thread main executes shreya.sleep(). Because
sleep() is a static method, it will make main sleep for at least the specified time in mil-
liseconds (if not interrupted).

 Options (d) and (e) are incorrect because they won’t serve the purpose. Method
wait() makes a thread release its object lock and makes it wait until another object
that has acquired a lock on it calls notify() or notifyAll(). Also wait(), notify(),
and notifyAll() must be called from a synchronized block of code or else JVM will
throw an IllegalMonitorStateException.

A 10-5. b

[10.4] Identify code that may not execute correctly in a multi-threaded environment

Explanation: You can’t determine the exact time that a scheduler starts the execution
of a thread. So the thread epaper can acquire the lock on a monitor associated with
Licensed to Mark Watson <nordickan@gmail.com>

677Answers to sample exam questions
class ELock, execute the epaper’s method run(), and exit before method main() gets its
turn to acquire a lock on ELock.class and call epaper.join().

A 10-6. a, b, c

[10.3] Synchronize thread access to shared data

Explanation: The application stops responding after a user tries to save data. So the
issue is the series of actions that execute when thread C is initiated. All the three
threads, A, B, and C, are sharing the same data set. Thread C might try to write data
that is being modified by thread A or B. So thread C might deadlock with thread
A or B.

 Option (c) is correct. Saving the data is supposed to start thread C. An application
might appear to stop responding if it doesn’t respond to user events. A scheduler
chooses from a pool of threads to execute the threads that are ready for execution.
Though OS-specific, threads of high priority are usually preferred over threads with
lower priority.

 Option (d) is incorrect. An unhandled exception should make the applica-
tion exit.

A 10-7. a, c, d

[10.4] Identify code that may not execute correctly in a multi-threaded environment

Explanation: Option (a) is correct. Once assigned a value, a primitive variable can’t be
changed. So it’s safe from reading and writing inconsistent or dirty values.

 Option (b) is incorrect. Even though defining the instance variable value of class
ESafe as a final member prevents reassigning a value to it, it doesn’t prevent modifi-
cations to its state. The reference variable value isn’t private, so it’s accessible outside
class ESafe.

 Option (c) is correct. Marked with the keyword private, value isn’t accessible out-
side class ESafe. Also, access to the state of ESafe is synchronized and is safe from con-
current reading or writing by multiple threads.

 Option (d) is correct. Once initialized, the state of class ESafe (value of variable
value) can’t be modified because class String is immutable.

A 10-8. a

[10.2] Manage and control thread lifecycle

Explanation: The code at line 2 doesn’t start a new thread of execution. So myThread
.run() executes in the main thread and not a separate thread. When main executes
this.yield() (yield() is a static method), it might make main give up its execution
slot and wait until the scheduler allows it to run again.
Licensed to Mark Watson <nordickan@gmail.com>

678 CHAPTER 10 Threads
A 10-9. e

[10.2] Manage and control thread lifecycle

Explanation: Method run() in class EAppln can’t override method run() in class Thread
by declaring to throw a checked InterruptedException. The class fails to compile.

A 10-10. c

[10.3] Synchronize thread access to shared data
[10.4] Identify code that may not execute correctly in a multi-threaded environment

Explanation: The variable results, a hash map, stores unique keys. Concurrent access
to the unsynchronized getNextId() can return the same ID values if it’s accessed con-
currently by multiple threads. This can lead to overriding values for the same keys in a
hash map. So getNextId() should be declared as a synchronized method at line 5.

 Method qualify() must also be declared as a synchronized method to make Map
results thread safe; concurrent updates to a Map can result in overriding values.
Internally, a hash map uses hash values of its keys to determine in which bucket it
should add a value. When a hash map adds multiple values to a bucket, it links them
so that it can retrieve all the values for a bucket value. But concurrent modification
of a Map object might report an empty bucket to multiple threads and so no linking
will happen between the values added to the same bucket. This can lead to untrace-
able values.
Licensed to Mark Watson <nordickan@gmail.com>

Concurrency
Exam objectives covered in this chapter What you need to know

[11.1] Use collections from the
java.util.concurrent package with a
focus on the advantages over and differences
from the traditional java.util collections

How collections from the
java.util.concurrent package resolve
common concurrency issues
How to replace traditional collections with con-
current collections

[11.2] Use Lock, ReadWriteLock, and
ReentrantLock in the
java.util.concurrent.locks package
to support lock-free, thread-safe programming on
single variables

How to exercise fine control over locking objects
by using Lock, ReadWriteLock, and
ReentrantLock

[11.3] Use Executor, ExecutorService,
Executors, Callable, and Future to exe-
cute tasks using thread pools

How to separate task and threads using
Executor
How to manage a pool of threads by using
ExecutorService
How to define tasks using Runnable and
Callable
How to use Executors to access objects
of Executor, ExecutorService, and
thread pools

[11.4] Use the parallel fork/join framework How to work with a fork/join framework using
subclasses of ForkJoinTask and
ForkJoinPool
679

Licensed to Mark Watson <nordickan@gmail.com>

680 CHAPTER 11 Concurrency
With the increasing processing power of devices, your applications must support
concurrent execution of tasks for faster outputs. Concurrent applications also make
optimal use of the processors. But concurrent applications are difficult to develop,
maintain, and debug. To develop thread-safe, high-performance, and scalable applica-
tions, Java’s low-level threading capabilities are insufficient. This chapter outlines the
common issues with the concurrent execution of tasks and how to combat these issues
using various approaches, frameworks, classes, and interfaces. Again, the coverage of
concurrency issues and their solutions is limited to the topics on the exam.

 This chapter covers

■ Using collections from the java.util.concurrent package
■ Applying fine-grained locking using locking classes from the java.util

.concurrent.locks package
■ Using ExecutorService and pools of threads to execute and manage tasks
■ Using the parallel fork/join framework

Let's get started with effectively resolving common concurrency problems by using
collection classes from the java.util.concurrent package.

11.1 Concurrent collection classes

The concurrent collection classes avoid memory inconsistency errors by defining a
happens-before relationship between an operation that adds an object to the collection
and subsequent operations that access or remove that object. Developers have long
been developing thread-safe versions of the collection objects from the java.util
package. The java.util.concurrent package includes a number of additions to
the Java Collections Framework. These are most easily categorized by the collection
interfaces provided:

■ BlockingQueue defines a first-in-first-out data structure that blocks or times out
when you attempt to add items to a full queue, or retrieve from an empty queue.

■ ConcurrentMap is a subinterface of java.util.Map that defines useful atomic
operations. These operations remove or replace a key-value pair only if the key
is present, or add a key-value pair only if the key is absent. Making these opera-
tions atomic helps avoid synchronization. The standard general-purpose imple-
mentation of ConcurrentMap is ConcurrentHashMap, which is a concurrent
analog of HashMap.

■ ConcurrentNavigableMap is a subinterface of ConcurrentMap that supports
approximate matches. The standard general-purpose implementation of

[11.1] Use collections from the java.util.concurrent package with a focus
on the advantages over and differences from the traditional java.util
collections
Licensed to Mark Watson <nordickan@gmail.com>

681Concurrent collection classes
ConcurrentNavigableMap is ConcurrentSkipListMap, which is a concurrent
analog of TreeMap.

Writing concurrent programs is difficult—you need to deal with thread safety and per-
formance. The individual operations of ConcurrentHashMap are safe—that is, multi-
ple threads can put values into the same map object in a safe manner. But these can
be misused by the developers if they try to combine multiple safe operations into a sin-
gle operation.

11.1.1 Interface BlockingQueue

The BlockingQueue interface is a queue that’s safe to use when shared between multi-
ple threads. The implementing classes like ArrayBlockingQueue include a construc-
tor to define an initial capacity (which can’t be modified) from which items are added
and removed. It blocks adding new elements if the queue has reached its capacity. It
also blocks removing elements from an empty queue. It works on the producer–consumer
pattern, which is when a single thread or multiple threads produce elements and add
them to a queue to be consumed by other threads.

 Imagine multiple clients (producers) that send requests to a server. The server
(consumer) responds to all the requests that it receives. To manage the requests that
all the clients might send to the server, the server can limit the maximum number of
requests that it can accept at a given point in time. The requests can be added to a
blocking queue, which will block adding new requests if it reaches its upper limit. Sim-
ilarly, if no new requests are available in a queue, the server thread will block until
requests are made available to it. Here’s an implementation of this example in code:

class Request {}

class Client implements Runnable {
 private BlockingQueue<Request> queue;
 Client(BlockingQueue<Request> queue) {
 this.queue = queue;
 }
 public void run() {
 try {
 Request req = null;
 while(true) {
 req = new Request();
 queue.put(req);
 System.out.println("added request - " + req);
 }
 }
 catch (InterruptedException ex) {
 System.out.println(ex);
 }
 }
}

class Server implements Runnable {
 private BlockingQueue<Request> queue;

Inserts Request objects
into BlockingQueue,
waiting if necessary for
space to become available.
Licensed to Mark Watson <nordickan@gmail.com>

682 CHAPTER 11 Concurrency
 Server(BlockingQueue<Request> queue) {
 this.queue = queue;
 }
 public void run() {
 try {
 while (true) {
 System.out.println("processing .. " + queue.take());
 }
 }
 catch (InterruptedException ex) {
 System.out.println(ex);
 }
 }
}

class LoadTesting{
 public static void main(String args[]) {
 BlockingQueue<Request> queue = new ArrayBlockingQueue<Request>(3);

 Client client = new Client(queue);
 Server server = new Server(queue);

 new Thread(client).start();
 new Thread(server).start();
 }
}

11.1.2 Interface ConcurrentMap

The ConcurrentMap interface extends the java.util.Map interface. It defines meth-
ods to replace or remove a key-value pair if the key is present, or add a value if the key
is absent. Table 11.1 lists methods of ConcurrentMap.

11.1.3 Class ConcurrentHashMap

A concrete implementation of the ConcurrentMap interface, class ConcurrentHashMap
is a concurrent class analogous to class HashMap. A HashMap is an unsynchronized collec-
tion. If you’re manipulating a HashMap using multiple threads, you must synchronize

Table 11.1 Methods of interface ConcurrentMap

Method Description

V putIfAbsent(K key, V value) If the specified key isn’t already associated with a
value, this associates it with the given value.

boolean remove(Object key, Object
value)

Removes the entry for a key only if it’s currently
mapped to a given value.

V replace(K key, V value) Replaces the entry for a key only if it’s currently
mapped to some value.

boolean replace(K key, V oldValue, V
newValue)

Replaces the entry for a key only if it’s currently
mapped to a given value.

Retrieves and removes the
head of BlockingQueue,

waiting if necessary until a
Request object becomes

available.

Pass the same BlockingQueue
object to client and server

client adds Request objects to queue and
server retrieves them from the queue.
Licensed to Mark Watson <nordickan@gmail.com>

683Concurrent collection classes
its access. But locking the entire HashMap object can create serious performance issues
when it’s being accessed by multiple threads. If multiple threads are retrieving values,
it makes sense to allow concurrent read operations and monitor write operations.

 The ConcurrentHashMap class is the answer to improving the responsiveness of
HashMap when it needs to be accessed concurrently by multiple threads. Instead of
exclusively locking itself to be accessed by one thread, ConcurrentHashMap allows
access by multiple threads. It concurrently allows multiple threads to read its values
and limited threads to modify its values. Also, the iterators of ConcurrentHashMap
don’t throw a ConcurrentModificationException, so you don’t need to lock the col-
lection while iterating it. So what happens if new elements are added to Concurrent-
HashMap after you accessed its iterator? The iterator may still traverse only the elements
that existed at the time of creation of the iterator. Though not guaranteed on all plat-
forms, the iterators might reflect the new additions.

 With the added benefits of offering better performance when accessed by multiple
threads concurrently, this collection also offers some drawbacks. Because it doesn’t
lock the complete collections while modifying their elements, methods like size()
might not return the exact accurate size of a ConcurrentHashMap when invoked by
multiple threads.

 Let’s work with an example of class ConcurrentHashMap:

class UseConcurrentMap {
 static final ConcurrentMap<Integer, String> map =
 new ConcurrentHashMap<>();
 static {
 //code to populate map
 }
 static void manipulateMap(Integer key, String value) {
 // complex computations
 if(!map.containsKey(key))
 map.put(key, value);
 }
}

When you work with multiple threads, you need to synchronize access to your shared
resources so that concurrent access doesn’t leave them in an inconsistent state. In the
preceding example, the individual operation containsKey(key) is a read operation
and put(key, value) is a write operation. Though individually these methods are
thread safe, together (execute method 1, then method 2) they aren’t. A race condi-
tion can occur when method manipulateMap() is executed by multiple threads. The
solution is to replace them with a single atomic method call:

 static void manipulateMap(Integer key, String value) {
 // complex computations
 map.replace(key, value);
 }

Check for existence
of key in map

Replace existing
value for key

Atomic operation replaces
value in map if corresponding
key is present
Licensed to Mark Watson <nordickan@gmail.com>

684 CHAPTER 11 Concurrency
Before moving on to the next section, let’s revisit the mapping of classes and inter-
faces from java.util.concurrent and its corresponding java.util analog, as shown
in table 11.2.

In chapter 10, we worked with synchronized methods and code blocks. Before a
thread can execute a synchronized method’s code it implicitly acquires a lock on an
object’s monitor. But these implicit locking techniques are inefficient to develop scal-
able concurrent applications. In the next section, we’ll work with explicit lock objects
that offer finer locking control.

11.2 Locks

Lock objects offer multiple advantages over implicit locking of an object’s monitor.
Unlike an implicit lock, a thread can use explicit lock objects to wait to acquire a lock
until a time duration elapses. Lock objects also support interruptible lock waits, non-
block-structured locks, multiple condition variables, lock polling, and scalability benefits.

NOTE To execute synchronized code, a thread must acquire either an
implicit or an explicit lock on an object’s monitor. Where no explicit Lock
classes are used, I’ll refer to it as an implicit lock.

Table 11.3 shows a list of the methods of the Lock interface from the Java API
documentation.

Table 11.2 Mapping of classes and interfaces from package java.util.concurrent and
its corresponding package java.util analog

Package java.util.concurrent java.util analog

BlockingQueue Queue

ArrayBlockingQueue Queue

LinkedBlockingQueue Queue

ConcurrentMap Map

ConcurrentHashMap HashMap

ConcurrentSkipListMap TreeMap

CopyOnWriteArrayList ArrayList

LinkedBlockingDeque Deque

[11.2] Use Lock, ReadWriteLock, and ReentrantLock in the
java.util.concurrent.locks package to support lock-free, thread-safe
programming on single variables
Licensed to Mark Watson <nordickan@gmail.com>

685Locks
Let’s get started with using class ReentrantLock that implements the Lock interface.

11.2.1 Acquire lock

Method lock() acquires a lock on a Lock object. If the lock isn’t available, it waits
until the lock can be acquired. For instance

class Rainbow {
 Lock myLock = new ReentrantLock();
 static List<String> colors = new ArrayList<>();
 public void addColor(String newColor) {
 myLock.lock();
 try {
 colors.add(newColor);
 }
 finally {
 myLock.unlock();
 }
 }
}

Method lock() is comparable to intrinsic locks because it waits until a lock can be
acquired on a Lock object.

EXAM TIP Call method unlock() on a Lock object to release its lock
when you no longer need it.

Let’s see how you can poll and check whether method lock() is available, without
waiting for it, in the next section.

Table 11.3 Methods of interface Lock

Method Description

void lock() Acquires the lock. If the lock isn’t available then the current
thread becomes disabled for thread scheduling purposes and
lies dormant until the lock has been acquired.

void lockInterruptibly() Acquires the lock unless the current thread is interrupted.

Condition newCondition() Returns a new Condition instance that’s bound to this
Lock instance.

boolean tryLock() Acquires the lock only if it’s free at the time of invocation.

boolean tryLock(long time,
TimeUnit unit)

Acquires the lock if it’s free within the given waiting time and
the current thread hasn’t been interrupted.

void unlock() Releases the lock.

Lock object

Call lock to acquire lock;
wait if lock not available

Call unlock to
release lock
Licensed to Mark Watson <nordickan@gmail.com>

686 CHAPTER 11 Concurrency
11.2.2 Acquire lock and return immediately

Imagine you’re waiting for your favorite soccer star to sign an autograph for you. If
you’ve been waiting for too long, it makes sense to quit waiting and leave. But
threads waiting to acquire implicit object locks can’t quit. Once a thread initiates a
request to acquire an implicit lock on an object monitor, it can neither stop itself
nor can it be asked to do so by any other thread. With explicit locks, you can
request a thread to acquire a lock on an object monitor if it’s available and return
immediately.

 Following is example code in which class Order uses implicit locks on two refer-
ence variables before it can manipulate them. When method main() starts two instances
of class Shipment, passing them Inventory objects in reverse order, they might dead-
lock, without generating any output:

class Inventory {
 int inStock; String name;
 Inventory(String name) { this.name = name; }
 public void stockIn(long qty) { inStock += qty; }
 public void stockOut(long qty) { inStock -= qty; }
}
class Shipment extends Thread {
 Inventory loc1, loc2; int qty;
 Shipment(Inventory loc1, Inventory loc2, int qty) {
 this.loc1 = loc1;
 this.loc2 = loc2;
 this.qty = qty;
 }
 public void run() {
 synchronized(loc1) {
 synchronized(loc2) {
 loc2.stockOut(qty);
 loc1.stockIn(qty);

 System.out.println(loc1.inStock + ":" + loc2.inStock);
 }
 }
 }
 public static void main(String args[]) {
 Inventory loc1 = new Inventory("Seattle"); loc1.inStock = 100;
 Inventory loc2 = new Inventory("LA"); loc2.inStock = 200;
 Shipment s1 = new Shipment(loc1, loc2, 1);
 Shipment s2 = new Shipment(loc2, loc1, 10);
 s1.start();
 s2.start();
 }
}

Depending on how an underlying scheduler executes the threads s1 and s2, they
might or might not deadlock. Let’s modify the preceding example and add an explicit
lock object to class Inventory on single variables loc1 and loc2, so that threads s1
and s2 never deadlock. Now, instead of locking on the Inventory object’s monitor,

Acquire lock
on loc1

Acquire lock
on loc2

Release
lock on loc2

Release lock
on loc1
Licensed to Mark Watson <nordickan@gmail.com>

687Locks

e

te
method run() in Shipment can lock on an explicit lock object, ReentrantLock (modi-
fications in bold):

import java.util.concurrent.locks.*;
class Inventory {
 int inStock; String name;
 Lock lock = new ReentrantLock();
 Inventory(String name) { this.name = name; }
 public void stockIn(long qty) { inStock += qty; }
 public void stockOut(long qty) { inStock -= qty; }
}
class Shipment extends Thread {
 Inventory loc1, loc2; int qty;
 Shipment(Inventory loc1, Inventory loc2, int qty) {
 this.loc1 = loc1;
 this.loc2 = loc2;
 this.qty = qty;
 }
 public void run() {
 if (loc1.lock.tryLock()) {
 if (loc2.lock.tryLock()) {
 loc2.stockOut(qty);
 loc1.stockIn(qty);
 System.out.println(loc1.inStock + ":" + loc2.inStock);
 loc2.lock.unlock();
 loc1.lock.unlock();
 }
 else
 System.out.println("Locking false:" + loc2.name);
 }
 else
 System.out.println("Locking false:" + loc1.name);
 }
 public static void main(String args[]) {
 Inventory loc1 = new Inventory("Seattle"); loc1.inStock = 100;
 Inventory loc2 = new Inventory("LA"); loc2.inStock = 200;
 Shipment s1 = new Shipment(loc1, loc2, 1);
 Shipment s2 = new Shipment(loc2, loc1, 10);
 s1.start();
 s2.start();
 }
}

At B, the code defines a reference variable of type Lock, which is assigned an object
of class ReentrantLock. When started, the thread Shipment must acquire a lock on
both Inventory objects loc1 and loc2 so that it can execute methods stockOut() and
stockIn(), thereby ensuring that no other thread is modifying these objects. With
explicit locks, Shipment can acquire a lock on object lock, which is defined as an
instance member of class Inventory.

 At C, run() calls tryLock() on loc1.lock. Method tryLock() tries to acquire a
lock on a Lock object, and returns immediately returning a boolean value specify-
ing whether it could obtain the lock or not. If loc1.lock.tryLock() returns true,

Inventory defines a
variable of type Lock,
assigned an object of
ReentrantLock.

 b

loc1.lock.tryLock() tries to
acquire a lock on object loc1.lock
and returns immediately.

 c

loc2.lock.try-
Lock() tries to
acquire a lock

on object
loc2.lock and

returns
immediately. d

Manipulate loc1
and loc2.

 e

If lock
couldn’t b
acquired,
outputs
appropria
messages

 f
Licensed to Mark Watson <nordickan@gmail.com>

688 CHAPTER 11 Concurrency
loc2.lock.tryLock() at D tries to obtain a lock on loc2.lock before it can manipu-
late loc1 and loc2 at E. The code outputs appropriate messages if it can’t lock at F.

 Method main() starts two new threads, s1 and s2, passing them objects loc1 and
loc2. No matter how threads s1 and s2 execute, they will never deadlock. Unlike wait-
ing to acquire an implicit lock on objects loc1 and loc2, they call loc1.lock.try-
Lock() and loc2.lock.tryLock(), which return immediately.

EXAM TIP Watch out for the use of methods acquire(), acquireLock(),
release(), and releaseLock() on the exam. None of these is a valid
method. Because the terms acquire and release are used to discuss methods
lock(), unlock(), tryLock(), and lockInterruptibly(), these terms
might be used on the exam to confuse you.

11.2.3 Interruptible locks

Imagine you have an appointment with a doctor and are waiting for her to arrive. Your
waiting can be interrupted by a phone call informing you that you need to attend to
other tasks. Also, you might set yourself a time limit, after which you might not be able
to wait and will resume your other work.

 The following methods of Lock enable you to specify a waiting timeout or to try
and acquire a lock while being available for interruption:

■ lockInterruptibly()

■ tryLock(long time, TimeUnit unit)

In listing 11.1, class Bus defines a Lock object. Class Employee extends class Thread.
When started, it tries to acquire a lock on the Lock object associated with a Bus instance
using lockInterruptibly().

import java.util.concurrent.locks.*;
class Bus {
 Lock lock = new ReentrantLock();
 public void boardBus(String name) {
 System.out.println(name + ": boarded");
 }
}
class Employee extends Thread {
 Bus bus;
 String name;
 Employee(String name, Bus bus) {
 this.bus = bus;
 this.name = name;
 }
 public void run() {
 try {
 bus.lock.lockInterruptibly();
 try {
 bus.boardBus(name);

Listing 11.1 Working with interruptible locks

Try to acquire lock
while being available
for interruption

 b

If lock acquired, execute
required code

 c
Licensed to Mark Watson <nordickan@gmail.com>

689Locks
 } finally {
 bus.lock.unlock();
 }
 } catch(InterruptedException e) {
 System.out.println(name + ": Interrupted!!");
 Thread.currentThread().interrupt();
 }
 }
 public static void main(String args[]) {
 Bus bus = new Bus();
 Employee e1 = new Employee("Paul", bus);
 e1.start();
 e1.interrupt();

 Employee e2 = new Employee("Shreya", bus);
 e2.start();
 }
}

In the preceding code, the outer try-catch blocks at B and E acquire the lock and
handle the InterruptedException. If the locking attempt is successful, the try block
at C executes the required code and its finally block at D releases the lock. The
code at F starts a thread and the code at G tries to interrupt the thread. Even though
the code at G interrupts the thread e1, do you think it’s sure to be interrupted? Not
really, depending on how the thread e1 is executed—that is, whether it’s waiting to
acquire a lock on bus.lock or it has already completed the code in method run(), the
code at G might not interrupt e1. Also, because the thread e2 might actually start its
execution before the thread e1, figure 11.1 shows the probable outputs of the preced-
ing example.

It’s important to make note of the order in which you acquire a lock using lock-
Interruptibly(), handle the InterruptedException that it throws, and unlock it.
Let’s see whether you can detect this point in the code (you might be tested on it on
the exam!) using the next “Twist in the Tale” exercise.

What is the probable output of the following code?

import java.util.concurrent.locks.*;
class Bus {
 Lock lock = new ReentrantLock();

Twist in the Tale 11.1

Release acquired
lock in finally block.

 d

Define action
if thread is
interrupted e

Start
thread e1

 f

Interrupt
thread e1 g

Figure 11.1 Probable outputs of listing 11.1
Licensed to Mark Watson <nordickan@gmail.com>

690 CHAPTER 11 Concurrency
 public void boardBus(String name) {
 System.out.println(name + ": boarded");
 }
}
class Employee extends Thread {
 Bus bus; String name;
 Employee(String name, Bus bus) {
 this.bus = bus;
 this.name = name;
 }
 public void run() {
 try {
 bus.lock.lockInterruptibly();
 bus.boardBus(name);
 }
 catch (InterruptedException e) {
 System.out.println(name + ": Interrupted!!");
 Thread.currentThread().interrupt();
 }
 finally {
 bus.lock.unlock();
 }
 }
 public static void main(String args[]) {
 Employee e1 = new Employee("Paul", new Bus());
 e1.start();
 e1.interrupt();
 }
}

a Paul: boarded

b Paul: Interrupted!!

c Paul: Interrupted!! and IllegalThreadStateException is thrown
d Paul: Interrupted!! and IllegalMonitorStateException is thrown
e None of the above

In the next section, you’ll see how you can retain a lock on Lock objects, across
methods.

11.2.4 Nonblock-structured locking

With intrinsic locks, you must release the lock on an object’s monitor at the end of the
synchronized code blocks or methods. Because code blocks can’t span across meth-
ods, intrinsic locks can’t be acquired across methods. Extrinsic locks or a lock on Lock
objects can be acquired across methods. Figure 11.2 compares block and nonblock
locking with intrinsic and extrinsic locks.

Licensed to Mark Watson <nordickan@gmail.com>

691Locks
Here’s some example code to work with extrinsic locks:

import java.util.concurrent.locks.*;
class Bus {
 ReentrantLock lock = new ReentrantLock();
 boolean locked = false;
 public void board(String name) {
 if (lock.tryLock()) {
 locked = true;
 System.out.println(name + ": boarded");
 }
 }
 public void deboard(String name) {
 if (lock.isHeldByCurrentThread() && locked) {
 System.out.println(name + ": deboarded");
 lock.unlock();
 locked = false;
 }
 }
}

EXAM TIP Lock fairness: a ReentrantLock lock can be a nonfair or a fair
lock. It can acquire locks in the order they were requested or acquire
locks out of turn.

Intrinsic locks Extrinsic locks

Aquire lock

Release lock

Start

Start synchronized

method1

method1

method1

method1

—

Start synchronized

block

—

— —

— —

— —

— —

— —

— —

— —

End synchronized

block

End synchronized

—

—

—

—

—

—

—

—

—

End

method1End method2End

method2Start

Start method1

Figure 11.2 Comparing intrinsic and extrinsic locks for block and nonblock locking

Acquire lock in
one method.

Release lock in
another method.
Licensed to Mark Watson <nordickan@gmail.com>

692 CHAPTER 11 Concurrency
11.2.5 Interface ReadWriteLock

Interface ReadWriteLock maintains a pair of associated locks, one for read-only oper-
ations and another for write-only operations. The read-only lock may be held simul-
taneously by multiple reader threads as long as there are no writing processes in
progress. The write-only lock is an exclusive lock. It can be acquired by only one
thread. As listed in table 11.4, the ReadWriteLock interface defines only two methods:
readLock() and writeLock().

EXAM TIP The ReadWriteLock interface doesn’t extend Lock or any
other interface. It maintains a pair of associated Locks—one for only
reading operations and one for writing.

You can use methods readLock() and writeLock() to get a reference to the read or
write Lock. Let’s work with a concrete implementation of the ReadWriteLock inter-
face, class ReentrantReadWriteLock, in the next section.

11.2.6 Class ReentrantReadWriteLock

A ReentrantReadWriteLock has a read and a write lock associated with it. You can
access these locks (reference variables of type Lock) by calling its methods readLock()
and writeLock(). You can acquire multiple read locks as long as no write lock has
been acquired on a ReadWriteLock object. The writeLock is an exclusive lock; it can
be acquired by only one thread when no read thread has been acquired. For example

import java.util.*;
import java.util.concurrent.locks.*;
class Rainbow {
 private final ReadWriteLock myLock = new ReentrantReadWriteLock();
 private static int pos;
 static Map<Integer, String> colors = new HashMap<>();

 public void addColor(String newColor) {
 myLock.writeLock().lock();
 try {
 colors.put(new Integer(++pos), newColor);
 }
 finally {
 myLock.writeLock().unlock();
 }
 }

Table 11.4 Methods of interface ReadWriteLock

Method name Description

Lock readLock() Returns the lock used for reading.

Lock writeLock() Returns the lock used for writing.

ReentrantReadWriteLock

myLock.writeLock() returns
writeLock and lock acquires
a lock on it.

Release lock
on writeLock.
Licensed to Mark Watson <nordickan@gmail.com>

693Locks
 public void display() {
 myLock.readLock().lock();
 try {
 for (String s : colors.values()) {
 System.out.println(s);
 }
 }
 finally {
 myLock.readLock().unlock();
 }
 }
}

11.2.7 Atomic variables

The java.util.concurrent.atomic package defines multiple classes that support
atomic operations of read-compare/modify-write on single variables. At the surface,
these operations might seem similar to the operations with volatile variables. Though
modifications to a volatile variable are guaranteed to be visible to other threads, vola-
tile variables can’t define a sequence of operations (like read-compare/modify-write)
as an atomic operation.

 Here’s an example of class Book from chapter 10 to show you how nonatomic oper-
ations with primitive variables can lead to thread interference:

class Book{
 String title;
 int copiesSold = 0;
 Book(String title) {
 this.title = title;
 }
 public void newSale() {
 ++copiesSold;
 }
 public void returnBook() {
 --copiesSold;
 }
}

The code defined at B isn’t atomic. Incrementing or decrementing primitive values
includes multiple steps. When executed by multiple concurrent threads, newSale()
and returnBook() can result in thread interference. To get around this, you can
define these methods as synchronized methods, but it will block thread execution.
Java defines multiple convenient classes in the java.util.concurrent.atomic pack-
age that define frequently used operations like read-modify-write as atomic opera-
tions. Let’s use one of these classes, AtomicInteger, in class Book, and replace the type
of its primitive int variable copiesSold:

class Book{
 String title;
 AtomicInteger copiesSold = new AtomicInteger(0);

myLock.readLock()
returns readLock and
lock acquires a lock on it.

Unlock
readLock.

Nonatomic statements include loading
of variable values from memory to
registers, manipulating values, and
loading them back to memory.

 b
Licensed to Mark Watson <nordickan@gmail.com>

694 CHAPTER 11 Concurrency
 Book(String title) {
 this.title = title;
 }
 public void newSale() {
 copiesSold.incrementAndGet();
 }
 public void returnBook() {
 copiesSold.decrementAndGet();
 }
}

Methods incrementAndGet() and decrementAndGet() defined at B are atomic oper-
ations. Concurrent execution of these methods won’t result in interfering threads.

 Class AtomicInteger defines multiple methods xxxAndGet() and getAndXxx(),
where Xxx refers to an operation like increment, decrement, and add. xxxAndGet()
returns an updated value and getAndXxx() returns the previous value.

EXAM TIP Method incrementAndGet() returns the updated value but
method AtomicInteger’s getAndIncrement() returns the previous value.

The other commonly used operations with AtomicInteger are to add or subtract spec-
ified values from it, assign it a value, and compare values before assignment. Table 11.5
lists these methods.

Table 11.5 Methods of class AtomicInteger

Method Description

int addAndGet(int delta) Atomically adds the given value to the current
value. Returns the updated value.

int getAndAdd(int delta) Atomically adds the given value to the current
value.

compareAndSet(int expect, int update) Atomically sets the value to the given updated
value if the current value == the expected value.

int getAndSet(int newValue) Atomically sets to the given value and returns
the old value.

public final void set(int newValue) Sets to the given value.

int getAndDecrement() Atomically decrements by one the current value.
Returns the previous value.

int getAndIncrement() Atomically increments by one the current value.
Returns the previous value.

int decrementAndGet() Atomically decrements by one the current value.
Returns the updated value.

int incrementAndGet() Atomically increments by one the current value.
Returns the updated value.

Atomic
operations

 b
Licensed to Mark Watson <nordickan@gmail.com>

695Executors
EXAM TIP Class AtomicInteger defines method compareAndSet() but
not method setAndCompare().

Other commonly used classes defined in the java.util.concurrent.atomic package
are AtomicBoolean, AtomicLong, AtomicIntegerArray, AtomicLongArray, and Atomic-
Reference<V>. AtomicLong defines the same methods as class AtomicInteger (as
listed in table 11.5). The difference is the type of method parameters and their return
types (long instead of int).

EXAM TIP The java.util.concurrent.atomic package doesn’t define
classes by the names AtomicShort, AtomicByte, AtomicFloat, or Atomic-
Double. These invalid class names might be used on the exam.

In this section, you learned how to exercise finer control over how locks are acquired,
managed, and released. In the next section, we’ll work with exercising finer control
over the tasks done by threads and the threads themselves.

11.3 Executors

In chapter 10, we used class Thread and the Runnable interface to create multiple
threads that execute asynchronously. Class Thread and the Runnable interface define
a close connection with a task (that is, a logical unit of work) done by a thread and the
thread itself. Though okay for smaller applications, large applications call for a separa-
tion of tasks and the threads for thread creation and their management.

 The Executor framework enables decoupling of task submission with task execu-
tion. By using this framework, you can create tasks using interfaces Runnable and
Callable. These tasks are submitted to Executor to launch new tasks. Executor-
Service extends Executor and adds methods to manage the lifecycle of tasks and
executors. ScheduledExecutorService extends ExecutorService and supports future
or periodic execution of tasks. Future represents the state of asynchronous tasks
and can be used to query their status or cancel them. Class Executors defines utility
and factory methods for interfaces Executor, ExecutorService, and Scheduled-
ExecutorService.

 Figure 11.3 shows the classes and interfaces that we’ll work with in this section,
how they’re related to each other, and where they’re placed in the java.util
.concurrent package.

 Let’s get started with the Executor interface.

[11.3] Use Executor, ExecutorService, Executors, Callable, and Future
to execute tasks using thread pools
Licensed to Mark Watson <nordickan@gmail.com>

696 CHAPTER 11 Concurrency
11.3.1 Interface Executor

With class Thread and the Runnable interface, the task executed by a thread and the
thread itself are closely connected. The Executor interface allows you to define classes
that know how to execute Runnable tasks. It allows you to decouple task submission
and its execution. By implementing its sole method, void execute(Runnable), you
can determine how you want to execute the tasks:

■ Which task will execute first
■ The order of execution of tasks
■ How many tasks can execute concurrently
■ How many tasks can be queued

Here’s an example of a Runnable object, Order, which is processed by Hotel, an
Executor:

class Order implements Runnable {
 String name;
 Order(String name) {this.name = name;}
 public void run() {
 System.out.println(name);
 }
}
class Hotel implements Executor {
 final Queue<Runnable> custQueue = new ArrayDeque<>();
 public void execute(Runnable r) {
 synchronized(custQueue) {
 custQueue.offer(r);
 }
 processEarliestOrder();
 }

 private void processEarliestOrder() {
 synchronized(custQueue) {
 Runnable task = custQueue.poll();
 new Thread(task).start();
 }
 }
}

ExecutorService Callable

Executor

Future

Executors

ScheduledExecutorService

java.util.concurrent

Figure 11.3 Interfaces and
classes that we’ll work with
in this section

Implement
execute.

 b

Add Runnable
object to a queue. c

Retrieve Runnable
object from execute.

 d

Start new thread for
executing submitted task e
Licensed to Mark Watson <nordickan@gmail.com>

697Executors
In the preceding code, class Hotel controls how it processes the Runnable tasks sub-
mitted to it. At B, Hotel implements Executor’s method execute(). At C, it adds
the submitted task to a queue. Method execute() calls processEarliestOrder(),
which at D retrieves a task from the queue, and at E starts a new thread to execute it.

 By decoupling task submission from task execution, it’s simple to modify how to
execute tasks. In the preceding code, you can modify execute() so that class Hotel
works with a pool of worker threads ready to be assigned a task to execute, rather than
executing each task using a new thread.

 You can code execute() to exercise complete control over how to execute tasks.
You might wish to process tasks with high priority earlier than the lower-priority ones,
or process the last submitted task as the first task.

 In the next “Twist in the Tale” exercise, let’s modify just a line of code from the
preceding example and see whether you can determine its overall impact on the exe-
cution of the tasks submitted to class Hotel.

What is the output of the following code?

class Order implements Runnable {
 String name;
 Order(String name) {this.name = name;}
 public void run() {
 System.out.println(name);
 }
}
class Hotel implements Executor {
 final Queue<Runnable> custQueue = new ArrayDeque<>();
 public void execute(Runnable r) {
 synchronized(custQueue) {
 custQueue.offer(r);
 }
 processEarliestOrder();
 }

 private void processEarliestOrder() {
 synchronized(custQueue) {
 Runnable task = custQueue.poll();
 task.run();
 }
 }
 public static void main(String args[]) {
 Hotel hotel = new Hotel();
 hotel.execute(new Order("tea"));
 hotel.execute(new Order("coffee"));
 hotel.execute(new Order("burger"));
 }
}

a The code will fail to compile.
b The code will throw an exception at runtime.

Twist in the Tale 11.2
Licensed to Mark Watson <nordickan@gmail.com>

698 CHAPTER 11 Concurrency
c The code can output "tea", "coffee", and "burger" in any order.
d The code will output "tea", "coffee", and "burger" in a fixed order for all

executions of class Hotel.

The java.util.concurrent package defines an advanced interface, ExecutorService,
which enables you to control and manage the submitted tasks better. Apart from
accepting Runnable objects, it also accepts Callable objects. Before exploring the
ExecutorService interface, let’s examine the Callable interface.

11.3.2 Interface Callable

Comparing interfaces Runnable and Callable, method run() of the Runnable inter-
face doesn’t return a value and can’t throw a checked exception. Both of these are
taken care of by the Callable interface:

public interface Callable<V> {
 /**
 * Computes a result, or throws an exception if unable to do so.
 *
 * @return computed result
 * @throws Exception if unable to compute a result
 */
 V call() throws Exception;
}

In the following example, class Order implements the Callable interface. Because it
isn’t interested in returning a value from call(), it uses Void as its parameterized
argument:

class Order implements Callable<Void> {
 String name;
 Order(String name) {this.name = name;}
 @Override
 public Void call() throws Exception {
 System.out.println(name);
 if (name.equalsIgnoreCase("berry"))
 throw new Exception("Berry unavailable");
 return null;
 }
}

EXAM TIP If you don’t want your Callable to return a value, you can cre-
ate it using Callable<Void>.

You can submit Callable and Runnable objects to an ExecutorService. Let’s move
forward with discussing the ExecutorService interface in the next section.
Licensed to Mark Watson <nordickan@gmail.com>

699Executors
11.3.3 Interface ExecutorService

The ExecutorService interface extends the Executor interface and defines methods
to manage progress and termination of tasks that are submitted to it. It defines meth-
ods to

■ Submit single Runnable and Callable objects for execution, returning Future
objects

■ Submit multiple Runnable objects for execution, returning Future objects
■ Shut down the ExecutorService, allowing or disallowing submitted tasks to be

completed

Table 11.6 shows the methods of the ScheduledService interface.

Table 11.6 Methods of interface ScheduledService

Method name Description

boolean awaitTermination(long
timeout, TimeUnit unit)

Blocks until all tasks have completed execution
after a shutdown request, the timeout occurs,
or the current thread is interrupted—whichever
happens first.

<T> List<Future<T>>
invokeAll(Collection<? extends
Callable<T>> tasks)

Executes the given tasks, returning a list of
Futures holding their statuses and results when
all complete.

<T> List<Future<T>>
invokeAll(Collection<? extends
Callable<T>> tasks, long timeout,
TimeUnit unit)

Executes the given tasks, returning a list of
Futures holding their statuses and results when
all complete or the timeout expires—whichever hap-
pens first.

<T> T invokeAny(Collection<?
extends Callable<T>> tasks)

Executes the given tasks, returning the result of one
that has completed successfully (that is, without
throwing an exception), if any do.

<T> T invokeAny(Collection<?
extends Callable<T>> tasks, long
timeout, TimeUnit unit)

Executes the given tasks, returning the result of one
that has completed successfully (that is, without
throwing an exception), if any do before the given
timeout elapses.

boolean isShutdown() Returns true if this executor has been shut down.

boolean isTerminated() Returns true if all tasks have completed following
shutdown.

void shutdown() Initiates an orderly shutdown in which previously
submitted tasks are executed, but no new tasks
will be accepted.

List<Runnable> shutdownNow() Attempts to stop all actively executing tasks, halts
the processing of waiting tasks, and returns a list of
the tasks that were awaiting execution.
Licensed to Mark Watson <nordickan@gmail.com>

700 CHAPTER 11 Concurrency
In the next section, we’ll work with thread pools, and you’ll learn what they are, why
you need them, and how they’re implemented using ExecutorService.

11.3.4 Thread pools

Imagine only one chef is employed in a restaurant to prepare orders from its custom-
ers. As the restaurant consistently increases its customer count, it makes sense to
employ more chefs to speed up service and reduce waiting time. But an increased
count of chefs wouldn’t decrease the food preparation time in the same proportion,
because they would be waiting to access the same resources—that is, the oven, refrig-
erator, food-processing equipment, etc. Also, even if they aren’t doing anything, they
would consume restaurant resources like monetary benefits, physical space in the
kitchen, and more. What happens when the kitchen runs out of all its physical space
from the constant addition of new chefs? In an application, a similar condition called
exhaustion of physical resources can lead to a crash.

 By limiting the number of concurrent tasks, an application ensures that it doesn’t
fail or have resource exhaustion or suffer performance issues. The solution is to use
pools of threads, which create a predefined number of threads and reuse them to exe-
cute tasks. You must optimize the size of the thread pool. The threads shouldn’t over-
whelm the scheduler and introduce unnecessary thread contention and performance
degradation. There should be enough to only keep the processor busy.

 A thread pool includes a homogeneous pool of worker threads. These are usually
bound to a work queue, holding references to tasks that are waiting to be executed. A
worker thread would typically request the next task for execution, execute it, and go
back to waiting to execute the next task.

 Class Executors in the java.util.concurrent package defines convenient static
methods to retrieve multiple preconfigured thread pools:

■ Fixed thread pool, which creates a pool with a fixed number of threads
■ Cached thread pool
■ Single thread executor
■ Scheduled thread pool

<T> Future<T> submit(Callable<T>
task)

Submits a value-returning task for execution and
returns a Future representing the pending results
of the task.

Future<?> submit(Runnable task) Submits a Runnable task for execution and returns
a Future representing that task.

<T> Future<T> submit(Runnable
task, T result)

Submits a Runnable task for execution and returns
a Future representing that task.

Table 11.6 Methods of interface ScheduledService (continued)

Method name Description
Licensed to Mark Watson <nordickan@gmail.com>

701Executors
Let’s work with an example of Callable objects that are submitted to a thread pool:

class Order implements Callable<Void> {
 String name;
 Order(String name) {this.name = name;}
 public Void call() throws Exception {
 System.out.println(name);
 if (name.equalsIgnoreCase("berry"))
 throw new Exception("Berry unavailable");
 return null;
 }
}
class Hotel {
 ExecutorService service = Executors.newFixedThreadPool(5);

 public void orderFood(Order order) {
 service.submit(order);
 }
 public void hotelClosedForDay() {
 service.shutdown();
 }
 public void hotelClosedForever() {
 service.shutdown();
 try {
 if (!service.awaitTermination(60, TimeUnit.SECONDS)) {
 service.shutdownNow();

 if (!service.awaitTermination(60, TimeUnit.SECONDS))
 System.err.println("Pool did not terminate");
 }
 } catch (InterruptedException ie) {
 service.shutdownNow();
 Thread.currentThread().interrupt();
 }
 }
}

In the preceding example, class Hotel uses Executors to retrieve a fixed thread pool
of five threads. This thread pool implements the ExecutorService interface. When a
task is submitted to ExecutorService using execute(), it uses one of its available
worker threads to execute it. If no worker threads are available to execute the task, the
submitted task waits for a worker thread to become available. Method shutdown()
doesn’t accept submission of new tasks and waits for the existing tasks to complete to
execution. Method shutdownNow() cancels currently executing tasks, apart from
refusing to accept new tasks. Method awaitTermination() blocks until all tasks have
completed execution after a shutdown request, the timeout occurs, or the current
thread is interrupted—whichever happens first.

11.3.5 Interface ScheduledExecutorService

The ScheduledExecutorService interface supports future or periodic execution
of tasks.

call() doesn’t return any
value; its return type is Void.

Create ExecutorService
object by calling

Executors.newFixed-
ThreadPool.

Submit Callable to
ExecutorService for execution.

Disable new tasks
from being submitted.Wait awhile

for existing
tasks to

terminate.

Cancel
currently
executing
tasks.

Wait awhile
for tasks to
respond to

being
cancelled.

(Re-)cancel if current
thread also interrupted

Preserve
interrupt status.
Licensed to Mark Watson <nordickan@gmail.com>

702 CHAPTER 11 Concurrency

-

 Imagine you need to send out reminder emails to all the employees of your organi-
zation to submit their daily status reports. This email is sent out every day. Let’s see
how you can use ScheduledExecutorService in this case:

import static java.util.concurrent.TimeUnit.*;
import java.util.concurrent.*;
class Reminder implements Runnable {
 public void run() {
 // send reminder emails to all employees
 System.out.println("All Mails sent");
 }
}
class ReminderMgr {
 ScheduledExecutorService service =
 Executors.newScheduledThreadPool(1);
 Reminder reminder = new Reminder();

 public void sendReminders() {
 service.scheduleAtFixedRate(reminder, 0, 24, HOURS);
 }
 public static void main(String args[]) {
 ReminderMgr mgr = new ReminderMgr();
 mgr.sendReminders();
 }
}

Table 11.7 lists all the methods of the ScheduledExecutorService interface.

Table 11.7 Methods of interface ScheduledExecutorService

Method name Description

<V> ScheduledFuture<V>
schedule(Callable<V> callable, long
delay, TimeUnit unit)

Creates a ScheduledFuture that becomes
enabled after the given delay.

ScheduledFuture<?> schedule(Runnable
command, long delay, TimeUnit unit)

Creates and executes a one-shot action that
becomes enabled after the given delay.

ScheduledFuture<?>
scheduleAtFixedRate(Runnable
command, long initialDelay, long
period, TimeUnit unit)

Creates and executes a periodic action that
becomes enabled first after the given initial
delay, and subsequently within the given
period—that is, executions will commence after
initialDelay, then initialDelay +
period, then initialDelay + 2 ×
period, and so on.

ScheduledFuture<?>
scheduleWithFixedDelay(Runnable
command, long initialDelay, long
delay, TimeUnit unit)

Creates and executes a periodic action that
becomes enabled first after the given initial
delay, and subsequently within the given delay
between the termination of one execution and
the commencement of the next.

When started, this
Runnable object sends out
emails to all employees.

Call Executors
.newScheduled-
ThreadPool to
get a Scheduled
ExecutorService
object.

Execute task
reminder now
and every
24 hours.
Licensed to Mark Watson <nordickan@gmail.com>

703Parallel fork/join framework
The ScheduledExecutorService interface greatly simplifies thread handling for
developers. It provides methods to manage tracking of progress and termination of
asynchronous tasks (threads). In their absence, developers used to write their own
classes or work with third-party classes to manage concurrent applications. Starting
with version 7, Java has a new addition to the java.concurrent package, the fork/
join framework. As you’ll see in the next section, it makes the best use of multicore
processors.

11.4 Parallel fork/join framework

Today, all computing devices—servers, desktops, tables, and mobile phones—feature
multicore processors, so it made a lot of sense to add a feature to the programming
language itself to utilize them. Introduced with Java 7, the fork/join framework
extends the existing Java concurrency package, supporting hardware parallelism, a
key feature of multicore systems. The fork/join framework isn’t intended to replace
or compete with the existing concurrency classes from the java.util.concurrent
package. It works by breaking down larger, processing-intensive tasks into smaller,
independent tasks recursively, processing each unit of a task and then merging back
the results.

EXAM TIP The fork/join framework is best suited for tasks that are pro-
cessor intensive and that can be divided into smaller tasks that can exe-
cute independently, in parallel. Tasks that block, work with I/O, or
need synchronization aren’t good candidates to use with the fork/join
framework.

Figure 11.4 shows the logic of the fork/join framework’s divide-and-conquer parallel
algorithm.

 As you can see in figure 11.4, the size of a problem is evaluated before it’s further
divided. If the problem is small enough (smaller than or equal to a threshold limit), it
isn’t subdivided and is executed sequentially. The bigger problems are subdivided
into two or more subproblems, and the fork/join framework recursively invokes itself
on the subproblems in parallel, waits for their results, and then combines them. You
should select the threshold limit carefully.

NOTE The fork/join framework is named so because it initiates execu-
tion of a task that forks or starts multiple subtasks, and waits for them to
join back (or complete their execution).

[11.4] Use the parallel fork/join framework
Licensed to Mark Watson <nordickan@gmail.com>

704 CHAPTER 11 Concurrency
Class ForkJoinPool is a concrete implementation of the fork/join framework. It imple-
ments the ExecutorService interface. Like ExecutorService, a fork/join framework
maintains a queue of tasks that are used to assigns tasks to its multiple worker threads.
But it’s different from an ExecutorService because a fork/join framework implements

Solve problem

Divide problem

Solve

sequentially

(asynchronously)

Combine results

Problem small

enough to be solved

sequentially?

No

Yes

For each

problem

Start

Stop

Figure 11.4 Divide-and-
conquer algorithm used by
fork/join framework

New task

Get tasks

Get tasks

Thread 1 Thread 2

Steal

Common task queue

Figure 11.5 Threads in a
fork/join framework use work-
stealing algorithms. When a
thread runs out of tasks in its
own deque, it can steal tasks
from other threads to avoid
blocking waiting threads.
Licensed to Mark Watson <nordickan@gmail.com>

705Parallel fork/join framework
a work-stealing algorithm. In this algorithm, when worker threads run out of tasks, they
steal tasks from other worker threads to avoid blocking waiting threads.

 Figure 11.5 shows how a fork/join pool maintains a common task queue but
reduces contention by implementing a work-stealing algorithm. Individual threads
maintain their own task queue using Deque. When a task forks a new thread, it’s
pushed to the thread’s deque. When threads are waiting for a task to join, they pop
one of their tasks, instead of simply waiting. When threads run out of all the tasks in
their deque, they steal a task from the tail of another thread’s deque.

 Class ForkJoinPool provides the entry point for submissions from non-ForkJoinTask
clients, as well as management and monitoring operations. Your problem-solving class
should be a subclass of ForkJoinTask. ForkJoinTask is an abstract base class for tasks
that run within a ForkJoinPool. A ForkJoinTask can be compared to a much lighter-
weight version of a thread. A large number of ForkJoinTasks can be executed by a
smaller number of actual threads in a ForkJoinPool. Figure 11.6 shows class ForkJoin-
Pool and class ForkJoinTask and its two subclasses, RecursiveTask and Recursive-
Action. RecursiveAction is used for computations that don’t return a result, and
RecursiveTask is used for computations that return a result.

 Let’s apply the fork/join framework to a simple example of calculating the sum of
an integer array, by dividing it into smaller tasks of calculating the sum of its subarrays
that execute as asynchronous tasks. In this example we’ll work with ForkJoinPool and
RecursiveTask.

import java.util.concurrent.*;
public class CalcSum extends RecursiveTask<Integer> {
 private int UNIT_SIZE = 15;
 private int[] values;
 private int startPos;
 private int endPos;

 public CalcSum(int[] values) {
 this(values, 0, values.length);
 }

Listing 11.2 Implement fork/join framework using ForkJoinPool

ExecutorService

Executor

ForkJoinPool

<<abstract>>

ForkJoinTask

<<abstract>>

RecursiveAction
<<abstract>>

RecursiveTask

Figure 11.6 Classes implemented in the fork/join framework

CalcSum extends
RecursiveTask-
<Integer>. b
Licensed to Mark Watson <nordickan@gmail.com>

706 CHAPTER 11 Concurrency

a

 public CalcSum(int[] values, int startPos, int endPos) {
 this.values = values;
 this.startPos = startPos;
 this.endPos = endPos;
 }
 @Override
 protected Integer compute() {
 final int currentSize = endPos - startPos;
 if (currentSize <= UNIT_SIZE) {
 return computeSum();
 }
 else {
 int center = currentSize/2;
 int leftEnd = startPos + center;
 CalcSum leftSum = new CalcSum(values, startPos, leftEnd);
 leftSum.fork();

 int rightStart = startPos + center+1;
 CalcSum rightSum = new CalcSum(values, rightStart, endPos);
 return(rightSum.compute() + leftSum.join());
 }
 }

 private Integer computeSum() {
 int sum = 0;
 for (int i = startPos; i < endPos; i++) {
 sum += values[i];
 }
 System.out.println("Sum(" + startPos + "-" + endPos + "):" + sum);
 return sum;
 }

 public static void main(String[] args) {
 int[] intArray = new int[100];
 java.util.Random randomValues = new java.util.Random();

 for (int i = 0; i < intArray.length; i++) {
 intArray[i] = randomValues.nextInt(10);
 }

 ForkJoinPool pool = new ForkJoinPool();
 CalcSum calculator = new CalcSum(intArray);

 System.out.println(pool.invoke(calculator));
 }
}

Depending on how the asynchronous tasks are scheduled on a system, each execution of
the preceding code might yield a different output. Here’s one of the probable outputs:

Sum(89-100) : 56
Sum(76-88) : 46
Sum(64-75) : 62
Sum(39-50) : 48
Sum(51-63) : 43

For CalcSum, overridden
method compute() returns
an integer value. c

Calling fork on
leftSum makes

it execute
synchronously.

 d

leftSum.join waits
until it returns a
value; compute is
main computation
performed by task. e

Private
helper

method f

Instantiates a
ForkJoinPool.

 g

invoke() awaits
and obtains result h
Licensed to Mark Watson <nordickan@gmail.com>

707Parallel fork/join framework
Sum(26-38) : 32
Sum(13-25) : 57
Sum(0-12) : 54
398

In the preceding code, B defines class CalcSum, which extends RecursiveTask
<Integer>. This parameter, Integer, is the type of the value returned by method
compute(). Method compute(), defined at C, is called once for the main task when
invoke() is called on a ForkJoinPool instance, passing it an object of CalcSum. It also
gets called when fork() is called on a RecursiveTask instance. Method compute()
calculates the size of an array and compares it with a unit size (15 in this case). If it’s
less than this unit size, it computes the sum of its array elements using computeSum() F.
If the array size is greater, it creates an instance of CalcSum, passing it the left half of
the array, and the code at D calls fork() on it. Calling fork executes a Recursive-
Task asynchronously. Then method compute() creates another instance of CalcSum,
passing it the right half of the array. At E, it calls compute() on the right part and
join() on the left part. Calling compute() will recursively create (left and right)
CalcSum objects, if it still needs to be divided into smaller tasks. Calling join() will
return the result of the computation when it’s done. Method main() creates an array
intArray and initializes it by generating random integer values using class Random.
The code at G creates a ForkJoinPool. The code at H calls invoke(), which exe-
cutes the given task, returning its result on completion.

NOTE The preceding code example is for demonstration purposes. The
fork/join framework recommends 100–10,000 computational steps in the
compute method so that its work-stealing algorithm and join() can work
effectively.

The order of execution of calling compute() and join() is important in the preced-
ing code. Do you think the preceding code results in equally efficient code if you
modify this execution order? Take a look in the next “Twist in the Tale” exercise.

What is the result of replacing method compute() with the following modified method
compute() from listing 11.2?

protected Integer compute() {
 final int currentSize = endPos - startPos;
 if (currentSize <= UNIT_SIZE) {
 return computeSum();
 }
 else {
 int center = currentSize/2;
 int leftEnd = startPos + center;
 CalcSum leftSum = new CalcSum(values, startPos, leftEnd);
 leftSum.fork();

Twist in the Tale 11.3
Licensed to Mark Watson <nordickan@gmail.com>

708 CHAPTER 11 Concurrency
 int rightStart = startPos + center+1;
 CalcSum rightSum = new CalcSum(values, rightStart, endPos);
 return(leftSum.join() + rightSum.compute());
 }
}

a The code might generate an incorrect sum of array elements.
b The code will always generate the correct sum of array elements.
c The code won’t benefit from the fork/join framework.
d The code will throw a runtime exception.

This coverage of the fork/join framework brings an end to the concurrency topics
that you need to know for the exam.

11.5 Summary
To develop thread-safe, high-performance, and scalable applications, Java’s low-level
threading capabilities are insufficient. In this chapter, we used collections from Java’s
java.util.concurrent package to effectively resolve common concurrency issues.
We worked with multiple concurrent classes and interfaces, such as BlockingQueue,
ConcurrentMap, and ConcurrentSkipListMap.

 By relying on synchronized code blocks to coordinate access between threads, you
can’t develop scalable applications. You learned about explicit Lock objects used to
wait to acquire a lock on an object’s monitor. Lock objects also support interruptible
lock waits, nonblock-structured locks, multiple condition variables, lock polling, and
scalability benefits.

 The Executor framework enables decoupling of task submission with task execu-
tion. By using this framework, you can create tasks using interfaces Runnable and
Callable. These tasks are submitted to Executor to launch new tasks. Executor-
Service extends Executor and adds methods to manage the lifecycle of tasks and
executors. ScheduledExecutorService extends ExecutorService and supports future
or periodic execution of tasks. Future represents the state of asynchronous tasks and
can be used to query their status or cancel them. You use class Executors to call utility
and factory methods for interfaces Executor, ExecutorService, and Scheduled-
ExecutorService.

 The fork/join framework extends the existing Java concurrency package, sup-
porting hardware parallelism, a key feature of multicore systems. The fork/join frame-
work isn’t indented to replace or compete with the existing concurrency classes
from the java.util.concurrent package. It works by breaking down a larger task
into smaller tasks recursively, processing each unit of the task and then combining
back the results.
Licensed to Mark Watson <nordickan@gmail.com>

709Review notes
REVIEW NOTES

Concurrent collection classes

■ BlockingQueue defines a first-in-first-out data structure that blocks or times out
when you attempt to add to a full queue or retrieve from an empty queue.

■ ConcurrentMap is a subinterface of java.util.Map that defines useful atomic
operations.

■ ConcurrentMap operations remove or replace a key-value pair only if the key is
present, or add a key-value pair only if the key is absent. Making these opera-
tions atomic helps avoid synchronization.

■ The standard general-purpose implementation of ConcurrentMap is Concurrent-
HashMap, which is a concurrent analog of HashMap.

■ ConcurrentNavigableMap is a subinterface of ConcurrentMap that supports
approximate matches.

■ The standard general-purpose implementation of ConcurrentNavigableMap is
ConcurrentSkipListMap, which is a concurrent analog of TreeMap.

■ A concurrent collection helps avoid memory consistency errors by defining a
happens-before relationship between an operation that adds an object to the
collection and subsequent operations that access or remove that object.

Locks

■ Lock and ReadWriteLock are interfaces.
■ ReentrantLock and ReentrantReadWriteLock are concrete classes.
■ Lock objects offer multiple advantages over the implicit locking of an object’s

monitor. Unlike an implicit lock, a thread can use explicit lock objects to wait to
acquire a lock until a time duration elapses.

■ Lock objects also support interruptible lock waits, nonblock-structured locks,
lock polling, and scalability benefits.

■ Method lock() acquires a lock on a Lock object. If the lock isn’t available, it
waits until the lock can be acquired.

■ Method lock() is comparable to intrinsic locks because it waits until a lock can
be acquired on a Lock object.

■ Call unlock on a Lock object to release its lock when you no longer need it.
■ If you don’t call unlock() on a Lock object after acquiring a lock on it, the code

will still compile successfully.
■ Method tryLock() tries to acquire a lock on a Lock object, and returns immedi-

ately a boolean value specifying whether it could obtain the lock or not.
■ Watch out for the use of methods acquire(), acquireLock(), release(), and

releaseLock() on the exam. None of these is a valid method. Because the
terms acquire and release are used to discuss methods lock(), unlock(), try-
Lock(), and lockInterruptibly(), these terms might be used on the exam to
confuse you.
Licensed to Mark Watson <nordickan@gmail.com>

710 CHAPTER 11 Concurrency
■ Methods lockInterruptibly() and tryLock(long time, TimeUnit unit) of the
Lock interface enable you to specify a waiting timeout or to try and acquire a
lock while being available for interruption.

■ Extrinsic locks or the lock on Lock objects can be acquired across methods.
■ An interface, ReadWriteLock maintains a pair of associated locks, one for read-

only operations and another for write-only operations.
■ The ReadWriteLock interface doesn’t extend Lock or any other interface.
■ The ReadWriteLock interface defines only two methods, readLock() and

writeLock().
■ A ReentrantReadWriteLock has a read and a write lock associated with it. You

can access these locks (reference variables of type Lock) by calling its methods
readLock() and writeLock().

■ You can acquire read locks until a write lock has been acquired on a Read-
WriteLock object.

■ WriteLock is an exclusive lock; it can be acquired by only one thread when no
read thread has been acquired.

■ The java.util.concurrent package defines multiple classes that support
atomic operations of read-compare/modify-write on single variables.

■ Other commonly used classes defined in the java.util.concurrent.atomic
package are AtomicInteger, AtomicBoolean, AtomicLong, AtomicInteger-
Array, AtomicLongArray, and AtomicReference<V>.

■ The java.util.concurrent.atomic package doesn’t define classes by the names
AtomicShort, AtomicByte, AtomicFloat, or AtomicDouble. These invalid class
names might be used on the exam.

Executors

■ The Executor framework enables decoupling of task submission with task
execution.

■ By using this framework, you can create tasks using interfaces Runnable and
Callable.

■ The Runnable interface defines method run() and the Callable interface
defines method call().

■ Executor allows you to decouple task submission and its execution.
■ The Executor interface defines only one method, void execute(Runnable).
■ You can define your own execution policy by implementing Executor’s method

execute().
■ Comparing the Runnable and Callable interface, method run() of Runnable

doesn’t return a value and can’t throw a checked exception. But method
call() of Callable can return a value and throw a checked exception.

■ If you don’t want Callable to return a value, you can create it using
Callable<Void>, defining the return type of call() as Void and returning
null from it.
Licensed to Mark Watson <nordickan@gmail.com>

711Review notes
■ The ExecutorService interface extends the Executor interface and defines
methods to manage progress and termination of tasks that are submitted to it.

■ Implemented using ExecutorService, thread pools use a pool of worker
threads to execute new tasks. If the pool runs out of worker threads, the submit-
ted task waits for a worker thread to become available.

■ Thread pools prevent spawning of new threads to execute each new submitted
task, thereby avoiding overwhelming the scheduler.

■ Class Executors defines utility and factory methods for interfaces Executor,
ExecutorService, and ScheduledExecutorService.

■ ScheduledExecutorService extends ExecutorService and supports future or
periodic execution of tasks.

■ Future represents the state of an asynchronous task and can be used to query
its status or cancel it.

■ ScheduledExecutorService can schedule Callable or Runnable tasks that exe-
cute just once, after a given delay.

■ ScheduledExecutorService can schedule only Runnable tasks (not Callable
tasks) that can execute multiple times, starting its first execution after an initial
delay and subsequent execution after the specified period.

Parallel fork/join framework

■ The parallel fork/join framework makes the best use of multicore processors.
■ The fork/join framework extends the existing Java concurrency package, sup-

porting hardware parallelism, a key feature of multicore systems.
■ The fork/join framework isn’t intended to replace or compete with the existing

concurrency classes from the java.util.concurrent package.
■ The fork/join framework works by breaking down a larger task into smaller

tasks recursively, processing each unit of the task, and then combining back
the results.

■ You can define a recursive task using either RecursiveTask or Recursive-
Action. RecursiveAction is used to define tasks that don’t return a value.
RecursiveTask returns a value.

■ You can instantiate a fork/join pool by using ForkJoinPool and passing it the
number of processors it should use. By default, ForkJoinPool uses all the avail-
able processors.

■ Execution of RecursiveAction or RecursiveTask starts when you call invoke
on ForkJoinPool, passing it a RecursiveAction or RecursiveTask object,
which calls their compute().

■ Method compute() determines whether the task is small enough to be executed
or if it needs to be divided into multiple tasks. If the task needs to be split, a new
RecursiveAction or RecursiveTask object is created, calling fork on it. Call-
ing join on these tasks returns their result.
Licensed to Mark Watson <nordickan@gmail.com>

712 CHAPTER 11 Concurrency
SAMPLE EXAM QUESTIONS

Q 11-1. Which of the following options is a thread-safe variant of ArrayList?

a ConcurrentList

b ConcurrentArrayList

c CopyOnReadWriteArrayList

d CopyOnReadArrayList

e CopyOnWriteArrayList

Q 11-2. Which line of code, when inserted at //INSERT CODE HERE, will ensure that
on execution, single or multiple MyColors instances won’t throw a Concurrent-
ModificationException at runtime?

class MyColors extends Thread{
 static private Map<Integer, String> map;
 MyColors() {
 //INSERT CODE HERE
 map.put(1, "red");
 map.put(2, "blue");
 map.put(3, "yellow");
 }
 public void iterate() {
 Iterator iter = map.keySet().iterator();
 while(iter.hasNext()) {
 Integer key = (Integer)iter.next();
 String val = (String)map.get(key);
 System.out.println(key + "-" + val);
 add(4, "green");
 }
 }
 public void add(Integer i, String v){
 map.put(i, v);
 }

 public void run() {
 iterate();
 }
}

a map = new HashMap<Integer, String>();

b map = new NoExceptionHashMap<Integer, String>();

c map = new ConcurrentMap<Integer, String>();

d map = new ConcurrentHashMap<Integer, String>();

e map = new CopyOnWriteHashMap<Integer, String>();

f None of the above
Licensed to Mark Watson <nordickan@gmail.com>

713Sample exam questions
Q 11-3. Which of the following concurrent collection classes can you use to imple-
ment the producer–consumer design pattern?

a WaitNotifyQueue

b BlockingQueue

c LinkedBlockingQueue

d ArrayBlockingQueue

e ConcurrentBlockingQueue

f ProducerConsumerQueue

g ProducerConsumerList

Q 11-4. Examine the following code and select the correct options.

1. class UseConcurrentHashMap {
2. static final ConcurrentMap<Integer, String> map =
3. new ConcurrentHashMap<>();
4. static {
5. //code to populate map
6. }
7. static void manipulateMap(Integer key, String value) {
8. if(!map.containsKey(key))
9. map.put(key, value);
10. }
11.}

a Because code at lines 2 and 3 uses ConcurrentHashMap, operations in method
manipulateMap() are thread safe.

b Operations in manipulateMap() will be thread safe if lines 8 and 9 are replaced
with map.putIfAbsent(key, value);.

c If line 2 is replaced with the following code, there won’t be any concurrency
issues with manipulateMap(): static final ConcurrentHashMap<Integer,
String> map =.

d Removing code at lines 4, 5, and 6 will ensure calling manipulateMap() won’t
override any values.

Q 11-5. Which of the following methods from class AtomicLong can be used to atomi-
cally compare values and modify them?

a compareAndSet

b compareAndModify

c modifyAndCompare

d compareValuesAndSet

e compareAndSetModifySafely
Licensed to Mark Watson <nordickan@gmail.com>

714 CHAPTER 11 Concurrency
Q 11-6. Examine the following code and select the correct answer options.

class University {
 Lock myLock = new ReentrantLock(); //1
 static List<String> students = new ArrayList<>();
 public void add(String newStudent) {
 myLock.lock(); //2
 try {
 students.add(newStudent);
 }
 finally {
 myLock.unlock(); //3
 }
 }
}

a At line 1, if a reference variable lock is assigned an object of ReentrantRead-
WriteLock, it won’t make a difference.

b The code at line 2 tries to acquire a lock on object myLock. If the lock isn’t avail-
able, it waits until the lock can be acquired.

c The code at line 2 tries to acquire a lock on object myLock. If the lock isn’t avail-
able, it returns immediately.

d If the code at line 3 is removed, the code will fail to compile.

Q 11-7. Select the incorrect statements.

a The ReadWriteLock interface maintains a pair of associated locks, one for read-
only operations and another for write-only operations.

b A read-only lock may be held simultaneously by multiple reader threads, irre-
spective of whether there are any writing processes in progress or not.

c A write-only lock is an exclusive lock. It can be acquired by only one thread.
d The ReadWriteLock interface defines only two methods, readLock() and

writeLock().

Q 11-8. Objects of which of the following can be executed by an Executor?

a class Order implements Runnable {
 public void run() {}
}

b class Order implements Callable {
 public void call() {}
}

c class Order implements Executable {
 public void execute() {}
}

d class Order implements Schedulable {
 public void schedule() {}
}

Licensed to Mark Watson <nordickan@gmail.com>

715Sample exam questions
Q 11-9. Which of the following can be used to execute a Runnable or Callable object
after an initial delay of 10 minutes?

a ForkJoinPool

b ScheduledExecutorService

c TimedExecutorService

d SchedulableExecutorService

Q 11-10. Code in which of the following options can be inserted at //INSERT CODE
HERE?

class MyService {
 public static void main(String args[]) {
 ExecutorService service = Executors.newFixedThreadPool(5);
 service.submit(new Task());
 }
}
//INSERT CODE HERE

a class Task implements Executor {public void execute() {} }

b class Task implements Executable {public void execute() {} }

c class Task implements Submittable {public void submit() {} }

d class Task implements Callable<Void> {public Void call() {return

null;} }

e class Task implements Callable<Integer> {public Integer call()

{return 1;} }

f class Task implements Callable {public void call() {} }

Q 11-11. Which of the following objects can be passed to ForkJoinPool.invoke()?

a ForkJoin

b ForkJoinThread

c ForkJoinTask

d AbstractForkJoinTask

e RecursiveThread

f RecursiveAction

g RecursiveTask

Q 11-12. Which of the following problems make a good candidate to be solved using
the fork/join framework?

a Problems that can be divided into independent tasks
b Problems that work with a lot of external files
c Problems the subtasks of which rely on synchronization to calculate their results
d Problems that need to connect with an external server to choose their courses

of action
Licensed to Mark Watson <nordickan@gmail.com>

716 CHAPTER 11 Concurrency
ANSWERS TO SAMPLE EXAM QUESTIONS

A 11-1. e

[11.1] Use collections from the java.util.concurrent package with a focus on the advan-
tages over and differences from the traditional java.util collections

Explanation: Options a, b, c, and d are incorrect because the Java API doesn’t define
these interfaces or classes.

A 11-2. d

[11.1] Use collections from the java.util.concurrent package with a focus on the advan-
tages over and differences from the traditional java.util collections

Explanation: Option (a) is incorrect because iterators returned by HashMap are fail-
fast. If a collection changes (addition, deletion, or modification of elements) after you
retrieved an iterator, it will throw a ConcurrentModificationException.

 Options (b) and (e) are incorrect because these use invalid class names.
 Option (c) is incorrect because ConcurrentMap is an interface; therefore, it can’t

be instantiated.
 Option (d) is correct because iterators returned by ConcurrentHashMap are fail-

safe. If a collection changes (elements are added, deleted, or modified) after the iter-
ator is created, they don’t throw any runtime exception. These iterators work with a
clone of the collection rather than working with the collection itself.

A 11-3. c, d

[11.1] Use collections from the java.util.concurrent package with a focus on the advan-
tages over and differences from the traditional java.util collections

Explanation: Methods put() and take() of the BlockingQueue interface specify in-
built locking support to be provided by all the implementing classes to implement the
producer–consumer design pattern. LinkedBlockingQueue and ArrayBlockingQueue
are concrete implementations of the BlockingQueue interface.

A 11-4. b

[11.1] Use collections from the java.util.concurrent package with a focus on the advan-
tages over and differences from the traditional java.util collections

Explanation: Option (a) is incorrect. The individual operations of classes Concurrent-
HashMap, containsKey, and put are atomic and safe to be used concurrently by multi-
ple threads. But when these methods are used together in manipulateMap, it doesn’t
guarantee thread safety for the time between these two method calls. Multiple calls to
Licensed to Mark Watson <nordickan@gmail.com>

717Answers to sample exam questions
atomic operations don’t form an atomic operation. You need external locking or syn-
chronization to make such operations thread safe.

 Option (b) is correct because method putIfAbsent() in ConcurrentHashMap com-
bines two steps: checking for the existence of a key and replacing its value in a
method, and synchronizing the key-value pair access across threads.

 Options (c) and (d) are incorrect because these steps will not make a difference in
this case.

A 11-5. a

[11.2] Use Lock, ReadWriteLock, and ReentrantLock classes in the java.util.concur-
rent.locks package to support lock-free, thread-safe programming on single variables

Explanation: Options (b), (c), (d), and (e) are incorrect because they’re invalid
method names.

A 11-6. b

[11.2] Use Lock, ReadWriteLock, and ReentrantLock classes in the java.util.concur-
rent.locks package to support lock-free, thread-safe programming on single variables

Explanation: Option (a) is incorrect because, on assigning an object of Reentrant-
ReadWriteLock to reference variable myLock, the code won’t compile. Class Reentrant-
ReadWriteLock and the Lock interface are unrelated. ReentrantReadWriteLock doesn’t
implement Lock, directly or indirectly.

 Option (d) is incorrect because you should unlock an object when you no longer
require a lock on it. If you don’t, your code will compile anyway.

A 11-7. b

[11.2] Use Lock, ReadWriteLock, and ReentrantLock classes in the java.util.concur-
rent.locks package to support lock-free, thread-safe programming on single variables

Explanation: Option (b) is incorrect because the read-only lock may be held simulta-
neously by multiple reader threads, as long as no write lock is acquired.

A 11-8. a

[11.3] Use Executor, ExecutorService, Executors, Callable, and Future to execute tasks
using thread pools

Explanation: Option (b) is incorrect because the Executor interface defines just one
method, void execute(Runnable). It only accepts objects of Runnable, not Callable.

 Options (c) and (d) are incorrect because they use invalid interface names.
Licensed to Mark Watson <nordickan@gmail.com>

718 CHAPTER 11 Concurrency
A 11-9. b

[11.3] Use Executor, ExecutorService, Executors, Callable, and Future to execute tasks
using thread pools

Explanation: Option (a) is incorrect because ForkJoinPool doesn’t support execu-
tion of a scheduled delay of tasks.

 Options (c) and (d) are incorrect because they use invalid class names.

A 11-10. d, e

[11.3] Use Executor, ExecutorService, Executors, Callable, and Future to execute tasks
using thread pools

Explanation: You can pass either Runnable or Callable to method submit() of
ExecutorService. Options (d) and (e) correctly implement the Callable<T> inter-
face. Callable’s method call() returns a value. If you don’t want it to return a value,
implement Callable<Void>, define the return type of call() to Void, and return
null from it.

A 11-11. c, f, g

[11.4] Use the parallel fork/join framework

Explanation: ForkJoinPool.invoke() accepts objects of class ForkJoinTask, which
is an abstract class. RecursiveAction and RecursiveTask are abstract subclasses of
ForkJoinTask.

A 11-12. a

[11.4] Use the parallel fork/join framework

Explanation: A fork/join framework is best suited to be applied to problems that can
be divided into independent tasks that can be executed in parallel. Subtasks that need
to work a lot with I/O or network connections can’t utilize the processors optimally
because they might be blocked waiting for an I/O operation. Similarly, when subtasks
need to synchronize among themselves, they defeat the whole purpose of executing in
parallel to speed up the execution.
Licensed to Mark Watson <nordickan@gmail.com>

Localization
Exam objectives covered in this chapter What you need to know

[12.1] Read and set the locale by using
objects of class Locale

How to access a host’s default locale.
How to access and assign a Locale for different
locale-specific formatting classes and loading
resource bundles.

[12.2] Build a resource bundle for each
locale

How to define resource-bundle families as Property
files or Java classes for each supported Locale.

[12.3] Call a resource bundle from
an application

How to load and access a resource bundle for a given
Locale in an application.
Determine what happens if the specified resource bun-
dle family, resource bundle, or Locale includes
invalid values.

[12.4] Format dates, numbers, and
currencies for localization with classes
NumberFormat and DateFormat
(including number format patterns)

The classes that are used to format dates, numbers,
and currencies for a given Locale.
The factory methods that are defined in classes
NumberFormat and DateFormat to retrieve their
instances. How to pass Locale information to these
classes.
The available default and custom patterns to format
numbers, currencies, dates, and times.

[12.5] Describe the advantages of localiz-
ing an application

The requirements and advantages of localizing an
application to multiple locales.

[12.6] Define a locale using language and
country codes

How to use Locale constructors, Locale constants,
and factory methods to construct and access objects of
class Locale, using language and country codes.
719

Licensed to Mark Watson <nordickan@gmail.com>

720 CHAPTER 12 Localization
Imagine you’re based in England. You log in to a web application to book movie tick-
ets for 5/1/2020. But when you visit the cinema hall on 5 January 2020, you find out
that the tickets were booked for May 1, 2020! What went wrong here? Apparently, the
application developer was unaware of the difference in the date formats used by peo-
ple across the globe and assumed the application to work with the date format used in
the United States. The date formats differ in the United States and England. The date
formats in the United States are displayed in the format MM-DD-YYYY (month-day-year),
whereas in England they’re displayed in the format DD-MM-YYYY (day-month-year).
The application didn’t consider the region you were in, to display the dates appropri-
ately. Will you ever go back and use the same application again? Perhaps not.

 The term user experience is used to describe a user’s experience with an application
or an organization and its services or products. Around the world, organizations are
striving to improve the experience of their users because happy customers result in
profitable businesses.

 Apart from improving the user experience, localized applications have become the
need of the hour. Creating an internationalized application that can be localized to
different users according to their regions, languages, or cultures is an important
aspect of application development.

 Java includes built-in support for creating internationalized applications that can
be easily localized. This chapter covers

■ The need and advantages of localizing an application
■ Using class Locale to create different locales
■ Reading and setting locales for an application
■ Building a resource bundle for a locale
■ Calling a resource bundle from an application
■ Formatting dates, numbers, and currencies for localization with classes Number-

Format and DateFormat

Let’s get started with an example to help you understand the various aspects of an
application that should be localized to improve the user experience.

12.1 Internationalization and localization

Can you spot the difference in the images and the text accompanying them between
the left and right panes in figure 12.1? These are screenshots of the same Java applica-
tion—“Indian Folk Art”—used to register for an art course. The screenshot on the left

[12.5] Describe the advantages of localizing an application

[12.6] Define a locale using language and country codes
Licensed to Mark Watson <nordickan@gmail.com>

721Internationalization and localization
shows the application screen when used in the United States. The screenshot on the
right shows the application screen when used in France.

 This is an example of how an internationalized application can be localized to differ-
ent locations, suiting different users. It’s important to adapt applications to location-
specific and cultural differences. As you can see in figure 12.1, the screenshots differ in
the image used, the text language, and the format of the date, numbers, and currencies.
The one on the left uses an image that the designer specifically designed for U.S. users,
the text is displayed in English, and the currencies, dates, and numbers are formatted
according to how they’re used in the United States. The image on the right was specifi-
cally created to be displayed for French users. The text is displayed in French, and the
currencies, dates, and numbers are formatted according to how they’re used in France.

 If you want more users from around the world to use your applications, respect
their preferences in terms of the languages they use and special formatting (if any) of
dates, numbers, and currencies.

 Internationalization and localization go hand in hand. Internationalization is the
process of designing an application in a manner that it can be adapted to various
locales. Localization is the process of adapting your software for a locale by adding
locale-specific components and translating text. The better internationalized an
application is, the easier it is to localize it for a particular locale. You can also com-
pare internationalization to making an application generic, and localization to mak-
ing it specific.

NOTE Internationalization is also abbreviated as i18n because there are
18 letters between i and n. Localization is also abbreviated as l10n
because there are 10 letters between l and n.

Total bookings 23,467

When: August 1, 2020

Price: $12,345.11

Réservations totales 23 467

Book now

En date du: 1 aout 2020

Réserver

Prix: 12 345,11 €

Figure 12.1 Differences between screenshots of the same Java application for
customers in the United States (left) and France (right)
Licensed to Mark Watson <nordickan@gmail.com>

722 CHAPTER 12 Localization
12.1.1 Advantages of localization

Different geographical locations and cultures all over the world might use different
languages and different formats to display dates, numbers, and currencies. For exam-
ple, the decimal number 1789.999 is displayed using a different format in the United
States (1,789.999), France (1 789,999), and Germany (1.789,999). The date for “the
30th of August 2073” is displayed using a different format in the United States (8/30/
73), the United Kingdom (30/08/73), and Germany (30.08.73). Similarly, the cur-
rency signs used in the United States ($), the United Kingdom (£), France (€), and
Germany (€) are different.

 The following phrase from David Brower has been used in multiple contexts like
education, business, and building computer applications: “Think globally, act locally.”
The users of a computer application can span the whole globe. The applications that
respect their users by using their language and a regionally and culturally specific dis-
play will be more successful than the ones that don’t.

BETTER USER EXPERIENCE

User experience includes all aspects of a user’s interaction with an application or an
organization and its services or products. Localizing an application is a subset of the
user’s experience. When users get to see data like numbers, currencies, dates, and
times in their own languages and formatting styles, it results in a better user experi-
ence. In figure 12.1, do you think you’d be happier to use a customized version of this
application, for your own country and language?

INTERPRETING INFORMATION IN THE RIGHT MANNER

In the United States, the date October 4, 2020 would be written as 10/04/20 (MM/
DD/YY) in short form. On the other hand, the same date in India would be written as
04/10/20 (DD/MM/YY). Users in these countries could misinterpret the dates if they
aren’t formatted to their own locations.

CULTURALLY SENSITIVE INFORMATION

Different cultures might prefer the use of different colors, or symbols during certain
occasions or festivals. An application that can tap this information will not appear
indifferent to various cultures and will add to its revenue.

EXAM TIP The exam might query you on practical cases of advantages of
localizing your application.

In the next section, let’s get started with the Java classes that you need to work with to
internationalize your application.

12.1.2 Class java.util.Locale

Java’s API documentation defines a locale as “a specific geographical, political, or
cultural region.” You can use class Locale to capture the information regarding a
user’s language, country, or region. Figure 12.2 is a world map showing locales that
refer to only a language, a region, or both. You can define locales to refer to languages
Licensed to Mark Watson <nordickan@gmail.com>

723Internationalization and localization
like Chinese, English, or Japanese; or regions like Japan, the United Kingdom, and
the United States. You can define locales that refer to both language and region. It’s
interesting to note that the same region or country, like Switzerland, might need
to work with multiple languages like German (Locale("de", "CH")) and French
(Locale("fr", "CH")).

 Class Locale itself doesn’t provide any method to format numbers, dates, or cur-
rencies. It just encapsulates the data related to the locale of a user, which can be used
by other classes such as NumberFormat or DateFormat to format the data according to
a particular locale. Displaying numbers, dates, and currencies according to a user’s
native language, country, and region are locale-sensitive because they need information
about the user’s locale.

EXAM TIP Class Locale doesn’t itself provide any method to format the
numbers, dates, or currencies. You use Locale objects to pass locale-
specific information to other classes like NumberFormat or DateFormat to
format data.

12.1.3 Creating and accessing Locale objects

You can create and access objects of class Locale by using

■ Constructors of class Locale
■ Locale methods
■ Locale constants
■ Class Locale.Builder

Language

Region

Language

and region

Locale

("en", "GB")

Locale("de", "CH")

Locale("fr", "CH")

Locale.US

Locale.GB

Locale.JAPAN

Locale.JAPANESE

Locale.CHINESE

Locale("en", "CA")

Locale("fr", "CA")

Figure 12.2 Pictorial representations of multiple locales defined using language, region, or both
Licensed to Mark Watson <nordickan@gmail.com>

724 CHAPTER 12 Localization
Let’s get started with using the constructors of class Locale.

CREATE LOCALE OBJECTS USING ITS CONSTRUCTORS

You can create an object of class Locale using one of its following constructors:

Locale(String language)
Locale(String language, String country)
Locale(String language, String country, String variant)

Here are some examples:

Locale french = new Locale("fr");
Locale germany = new Locale("de", "DE");
Locale japan = new Locale("ja", "JP", "MAC");

EXAM TIP Language is the most important parameter that you pass to a
Locale object. All overloaded constructors of Locale accept language as
their first parameter. Watch out for exam questions that pass language
as the second or third argument to a Locale constructor, which might
return an unexpected value.

The preceding constructors accept up to three method parameters. No exceptions
are thrown if you pass incorrect or invalid values for these arguments. Because passing
correct values for these parameters is important to construct a valid Locale object,
let’s take a look at the valid values that can be passed to them:

■ Language is a lowercase, two-letter code. Some of the commonly used values are
en (English), fr (French), de (German), it (Italian), ja (Japanese), ko (Korean),
and zh (Chinese). You can access the complete list of these language codes at
http://www.loc.gov/standards/iso639-2/php/English_list.php.

■ Country or region code is an uppercase, two-letter code or three numbers.
Table 12.1 shows some commonly used country and region codes. You can
access the complete list of these country codes at
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

■ Variant is a vendor- or browser-specific code, such as WIN for Windows and MAC
for Macintosh.

Table 12.1 Commonly used country and region codes (ISO-3166)

Description A-2 code

United States of America US

United Kingdom GB

France FR

Germany DE

Specify only
language Specify language

and country

Specify language,
country, and variant
Licensed to Mark Watson <nordickan@gmail.com>

http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

725Internationalization and localization
EXAM TIP You don’t need to memorize all of the language or country
codes that are used to initialize a Locale. But the exam expects you to be
aware of commonly used values like en, US, and fr.

ACCESS LOCALE OBJECT USING LOCALE’S STATIC METHOD

You can access the current value of a JVM’s default locale, by using class Locale’s static
method getDefault():

public static Locale getDefault()

EXAM TIP Watch out for the use of invalid combinations of class and
method names to access a JVM’s default locale. Locale.getDefault-
Locale(), System.getLocale(), and System.getDefaultLocale() are
invalid values.

ACCESS LOCALE OBJECTS USING LOCALE CONSTANTS

Class Locale defines Locale constants for a region, a language, or both. Examples
include Locale.US, Locale.UK, Locale.ITALY, Locale.CHINESE, Locale.GERMAN, and
a couple of others for commonly used locales for languages and countries.

EXAM TIP If you specify only a language constant to define a Locale, its
region remains undefined. Look out for exam questions that print the
region when you don’t specify it during the creation of a Locale.

CREATE LOCALE OBJECTS USING LOCALE.BUILDER

Starting with Java 7, you can also use Locale.Builder to construct a Locale object,
by calling its constructor and then calling methods setLanguage(), setRegion(),
and build():

Locale.Builder builder = new Locale.Builder();
builder.setLanguage("fr");
builder.setRegion("CA");
Locale locale = builder.build();

Italy IT

Spain ES

Japan JP

Korea KR

China CN

Table 12.1 Commonly used country and region codes (ISO-3166)

Description A-2 code
Licensed to Mark Watson <nordickan@gmail.com>

726 CHAPTER 12 Localization

r
RETRIEVING INFORMATION ABOUT A LOCALE OBJECT

Let’s create an object of class Locale and use some of its methods:

import java.util.*;
public class LocaleMethods {
 public static void main(String[] args) {
 msg("Default Locale:"+Locale.getDefault());
 Locale.setDefault(Locale.ITALY);

 Locale[] all = Locale.getAvailableLocales();

 Locale loc = new Locale("fr", "FR");

 msg("Code Country:"+loc.getCountry());
 msg("Code Language:"+loc.getLanguage());
 msg("Display Country:"+loc.getDisplayCountry());
 msg("Display Language:"+loc.getDisplayLanguage());
 msg("Display Name:"+loc.getDisplayName());
 }
 static void msg(String str) { System.out.println (str); }
}

The output of the first line (with added spaces for readability) might differ on your
system, depending on your default locale:

Default Locale :en_US
Code Country :FR
Code Language :fr
Display Country :Francia
Display Language :francese
Display Name :francese (Francia)

The code at B retrieves and prints the current default locale associated with the JVM.
The code at c resets the default locale for the current JVM. It’s important to note that
only one default locale can be associated with an instance of the JVM. The code at d
creates an object of Locale using the language fr (French) and country FR (France).
It’s interesting to note that the invocation of the methods getDisplayCountry(),
getDisplayLanguage(), and getDisplayName() display the values in Italian. Assum-
ing your default locale is Locale.FRANCE, if you comment out the code at c, these
methods will print the following values:

Diplay Country :France
Display Language :français
Display Name :français (France)

But if you create the Locale object on line d using invalid language and country val-
ues (for example, Locale loc = new Locale ("fren", "FRen")), the code will not com-
plain and will print out values similar to the following:

Display Country :FREN
Display Language :fren
Display Name :fren (FREN)

getDefault() gets
default locale

 b

setDefault() changes
default locale

 c
getAvailable-

Locales()
retrieves all

installed and
supported

Locales.

Create a Locale object
using Locale’s constructor.

 d

getCountry()
gets two-lette
country code

getLanguage()
gets two-letter
language code

getDisplay-
Country() gets full
country name

getDisplayLanguage()
gets full language name

getDisplay-
Name() calls
toString on

Locale.
Licensed to Mark Watson <nordickan@gmail.com>

727Internationalization and localization
An overloaded version of getDisplayXxx() methods also accepts an object of class
Locale to print out the values according to the specified locale.

EXAM TIP You can use class Locale to retrieve and set the current default
locale with a JVM. You can also retrieve an array of all the available and
installed locales using Locale.

Now that you know multiple ways to create Locale objects, let’s see if you can deter-
mine whether Locale objects created using these methods are equivalent or not, in
the first “Twist in the Tale” exercise.

Given the following code:

Locale locale1 = Locale.FRENCH;
Locale locale2 = Locale.FRANCE;
Locale locale3 = new Locale.Builder().setLanguage("fr").build();
Locale locale4 = new

Locale.Builder().setLanguage("fr").setRegion("FR").build();
Locale locale5 = new Locale("fr");
Locale locale6 = new Locale("fr", "FR");

what is the output of the following code?

System.out.print(locale1.equals(locale3));
System.out.print(locale2.equals(locale6));
System.out.print(locale4.equals(locale5));

a truetruefalse

b truefalsefalse

c falsetruefalse

d truetruetrue

12.1.4 Building locale-aware applications

To build locale-aware applications, first you must identify and isolate locale-specific
data, like currencies, date-time format, numbers, text messages, labels in a GUI appli-
cation, sounds, colors, graphics, icons, phone numbers, measurements, personal titles,
postal addresses, and so on. Note that this exam covers a subset of building locale-
aware applications limited to text, numbers, currencies, dates, and times.

 The next step is to identify code that works with locale-specific data. Instead of
consuming and displaying this data directly, use locale-specific classes to display and
format data according to a selected locale.

 Identify the locales that your application must support. The application must ship
with locale-specific data for all supported locales in resource bundles. For example,

Twist in the Tale 12.1
Licensed to Mark Watson <nordickan@gmail.com>

728 CHAPTER 12 Localization
for displaying text in different languages that an application supports, it must be
accompanied with the translated text in separate Java classes or properties files (as
key-value pairs).

 This section outlined the requirements and importance of internationalizing
applications so that they can be localized to multiple locales. Java encapsulates the
notion of geographical and culturally different locations using class Locale. To local-
ize an application to a locale, you must create and pass it appropriate Locale objects,
so that the application can display locale-specific data, like translated text messages,
from appropriate resource bundles.

 Let’s get started with how to create resource bundles for multiple locales for an
application.

12.2 Resource bundles

An abstract class, java.util.ResourceBundle represents locale-specific resources. These
locale-specific resources, like text messages, the name and location of images and
icons, and labels for your GUI application, are stored in a resource bundle. Applications
supporting multiple locales define locale-specific information in multiple resource
bundles, which form part of a resource-bundle family. All these resource bundles share a
common base name with additional name components specifying the region, lan-
guage, or variant.

 ResourceBundle is subclassed by concrete classes ListResourceBundle and
PropertyResourceBundle. You can localize your application by defining your locale-
specific resources like text messages, icons, and labels in text files (as .properties files)
or as Object arrays (two-dimensional) stored in your custom classes that extend List-
ResourceBundle. In the next section, you’ll see how to work with defining locale-
specific information stored in .properties files.

EXAM TIP An application can include multiple resource bundles to local-
ize to separate locales.

12.2.1 Implementing resource bundles using .properties files

Let’s start with outlining the resource-bundle family for the sample application shown
in figure 12.1, as .properties files. Imagine that you wish to localize the application

[12.1] Read and set the locale by using the Locale object

[12.2] Build a resource bundle for each locale

[12.3] Call a resource bundle from an application
Licensed to Mark Watson <nordickan@gmail.com>

729Resource bundles
“Indian Folk Art” for countries and languages United States/English, France/French,
and India/Hindi. Figure 12.3 shows the .properties file with key-value pairs. The keys
remain constant in all these .properties files and the values vary.

 Figure 12.3 shows three .properties files, each referred to as a resource bundle.
Together they form part of the resource-bundle family IndianArtLabelsBundle:

■ IndianArtLabelsBundle.properties (B in figure 12.3)
■ IndianArtLabelsBundle_fr.properties (c in figure 12.3)
■ IndianArtLabelsBundle_hi_IN.properties (d in figure 12.3)

These three .properties files define the same set of keys. The values for these keys dif-
fer in each file. Figure 12.3 shares the bigger picture of the resource bundles. Here’s
the code of all these individual .properties files (# is used to add comments in a .prop-
erties file):

IndianArtLabelsBundle.properties
Labels
total_bookings = Total bookings

IndianArtLabelsBundle.properties

Labels
total_bookings = Total bookings
when = When
price = Price
book_now = Book now

#images
sample_art = flag_fish.png

1

2

3

Default

resource

bundle

IndianArtLabelsBundle_fr.properties

Labels
total_bookings = Réservations totales
when = Lors de
price = Prix
book_now = Réserver

#images
sample_art = flag_mango_oval.png

IndianArtLabelsBundle_hi_IN.properties

#Labels
total_bookings = \u0915\u0941\u0932 \u092C\u0941\u0915\u093f\u0902\u0917
when = \u0915\u092c
price = \u0915\u0940\u092e\u0924
book_now = \u0905\u092D\u0940 \u092C\u0941\u0915 \u0915\u0930\u0947\u0902

#images
sample_art = mango_stripes.png

Resource bundle

for language

French "fr"

Resource

bundle

family

Resource bundle for language

Hindi "hi" and region/country India "IN"

(Share common base name

"IndianArtLabelsBundle")

Figure 12.3 Resource-bundle family as .properties files to localize application Indian Folk Art shown
in figure 12.1. The resource-bundle family shares a common base name (IndianArtLabelsBundle)
with additional components to identify their locales.
Licensed to Mark Watson <nordickan@gmail.com>

730 CHAPTER 12 Localization
when = When
price = Price
book_now = Book now
#images
sample_art = flag_fish.png

IndianArtLabelsBundle_fr.properties
Labels
total_bookings = Réservations totales
when = Lors de
price = Prix
book_now = Réserver
#images
sample_art = flag_mango_oval.png

IndianArtLabelsBundle_hi_IN.properties
Labels
total_bookings = \u0915\u0941\u0932 \u092C\u0941\u0915\u093f\u0902\u0917
when = \u0915\u092c
price = \u0915\u0940\u092e\u0924
book_now = \u0905\u092D\u0940 \u092C\u0941\u0915 \u0915\u0930\u0947\u0902
#images
sample_art = mango_stripes.png

Note the use of Unicode values used to display the Devanagri font (characters in
Hindi language) for India in file IndianArtLabelsBundle_hi_IN.properties. Because
using language in multiple scripts isn’t on the exam, I didn’t use classes to read text in
other scripts; instead, I used Unicode characters in the .properties file.

NOTE To load and use your resource bundles, correct placement of your
class file and resource bundle files is important.

Let’s see how you can load these resource bundles in your application to display
locale-specific information. Moving ahead with the sample application Indian Folk
Art, the following listing (a swing application) can be used to load locale-specific
resources.

import java.io.*;
import java.util.*;
import java.text.NumberFormat;
import javax.swing.*;
import java.awt.*;
public class IndianArt {
 JFrame f = new JFrame("BookNow");
 JLabel lTotalBookings = new JLabel();
 JLabel lWhen = new JLabel();
 JLabel lPrice = new JLabel();
 JLabel lImage;
 JButton btnBook = new JButton();

Listing 12.1 Load and use resource bundles

GUI
components

 b
Licensed to Mark Watson <nordickan@gmail.com>

731Resource bundles

L

 private void buildShowUI() {
 f.getContentPane().setLayout(new FlowLayout());
 f.setSize(300, 400);

 f.getContentPane().add(lTotalBookings);
 f.getContentPane().add(lImage);

 JPanel panel1 = new JPanel();
 panel1.setLayout(new GridLayout(4, 1));
 panel1.add(lWhen);
 panel1.add(lPrice);
 panel1.add(new JLabel(""));
 panel1.add(btnBook);

 f.getContentPane().add(panel1);
 f.setVisible(true);
 }

 private void setLocaleSpecificData(Locale locale) {
 ResourceBundle labels = ResourceBundle.getBundle
 ("resource-bundle.IndianArtLabelsBundle", locale);

 String text = null;
 text = labels.getString("total_bookings");
 lTotalBookings.setText(text);

 text = labels.getString("when");
 lWhen.setText(text);

 text = labels.getString("price");
 lPrice.setText(text);

 text = labels.getString("book_now");
 btnBook.setText(text);

 ImageIcon artImage = new ImageIcon
 (labels.getString("sample_art"));
 lImage = new JLabel(artImage);

 }

 public static void main(String[] args) {
 IndianArt ia = new IndianArt();
 ia.setLocaleSpecificData(new Locale("hi", "IN"));
 ia.buildShowUI();
 }
}

Let’s walk through the code in listing 12.1. The code at B and c creates and builds a
UI using Java’s swing components. The code is easy to understand, but don’t worry if
you don’t understand it because swing components aren’t on the exam. They’re used
here to work with a practical example.

 The code at d loads the locale-specific resource bundle from the resource-bundle
family for the specified locale. The static method getBundle() of ResourceBundle
accepts the location of the resource-bundle family as the first argument and Locale as
the second argument, and loads the single resource bundle, not the complete family.

Code to build
and show GUI
components

 c

oad resource-
bundle family d

Get values for
keys in individual
resource bundles

 e

Load different
images for

different
locales.

 f

Intantiate
IndianArt.

 g
Use Locale("hi", "IN")
to load resources from
IndianArtLabelsBundle
_hi_IN.properties.

 h

Build and show
GUI components. i
Licensed to Mark Watson <nordickan@gmail.com>

732 CHAPTER 12 Localization

d;

.

The resource bundles can also be defined in separate folders (resource-bundle in
this example).

 The code at e retrieves values for the keys defined in the .properties files, using
method getString(), and assigns them to relevant labels. Note how the code at f
uses the location of an image file to load locale-specific images. The code at g instan-
tiates class IndianArt. The code at h uses locale Locale("hi", "IN") to load resources
from file IndianArtLabelsBundle_hi_IN.properties. The code at i builds and displays
the relevant GUI.

 You can load a resource bundle for the French language by replacing the line at h
with the following:

ia.setLocaleSpecificData(Locale.FRANCE);

The default resource bundle for family IndianArtLabelsBundle will be loaded if you
don’t specify an explicit Locale, or if the Locale that you specify doesn’t have a corre-
sponding resource bundle for this application. For example

ResourceBundle labels = ResourceBundle.getBundle
 ("resource-bundle.IndianArtLabelsBundle");
ia.setLocaleSpecificData(Locale.JAPAN);

What happens if the locale that you specify (like Locale.CANADA_FRENCH) or your
default locale has French as the language? In this situation, the IndianArtLabels-
Bundle_fr.properties file will be loaded.

 Figure 12.4 shows the output for the sample application when it’s loaded with the
default resource bundle IndianArtLabelsBundle.properties; the resource bundle for

No Locale
argument passe
loads default
resource bundle

Default bundle loaded because
application doesn’t have corresponding
.properties file for Canada.

Figure 12.4 Output for the application Indian Folk Art when executed by loading locale-specific data
from separate resource bundles
Licensed to Mark Watson <nordickan@gmail.com>

733Resource bundles
the locale India—language Hindi and region India, IndianArtLabelsBundle_hi_IN
.properties; and the resource bundle for the locale France, for the language French,
IndianArtLabelsBundle_fr.properties.

 As you can see, figure 12.4 doesn’t include the formatted numbers. We’ll work with
them in section 12.3.

EXAM TIP To implement resource bundles using Property Resource
Bundle, create text files with the extension “.properties”. Each .properties
file is referred to as a resource bundle. All the resource bundles are collec-
tively referred to as a resource-bundle family.

Because ResourceBundle is an abstract class, when you load the resource bundle using
a .properties file, method getBundle() returns an object of class PropertyResource-
Bundle (a subclass of ResourceBundle). In the next section, let’s see how you can work
with ListResourceBundle to define custom classes to manage resource bundles.

12.2.2 Implementing resource bundles using ListResourceBundle

You can also define locale-specific data in resource bundles by defining them as sub-
classes of ListResourceBundle, a subclass of abstract class ResourceBundle. In the
previous section, you used .properties files to define resource bundles. The follow-
ing classes include the same data in a Java class; note the similarity in the naming of
the classes, the keys, and their values:

import java.util.*;
public class IndianArtLabelsBundle extends ListResourceBundle{
 protected Object[][] getContents() {
 return new Object[][] {
 {"total_bookings", "Total Bookings"},
 {"when", "When"},
 {"price", "Price"},
 {"book_now", "Book Now"},
 {"sample_art", "flag_fish.png"},
 };
 }
}

import java.util.*;
public class IndianArtLabelsBundle_fr extends ListResourceBundle{
 protected Object[][] getContents() {
 return new Object[][] {
 {"total_bookings", "Réservations totales"},
 {"when", "Lors de"},
 {"price", "Prix"},
 {"book_now", "Réserver"},
 {"sample_art", "flag_mango_oval.png"},
 };
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

734 CHAPTER 12 Localization
import java.util.*;
public class IndianArtLabelsBundle_hi_IN extends ListResourceBundle{
 protected Object[][] getContents() {
 return new Object[][] {
 {"total_bookings", "\u0915\u0941\u0932

\u092C\u0941\u0915\u093f\u0902\u0917"},
 {"when", "\u0915\u092c"},
 {"price", "\u0915\u0940\u092e\u0924"},
 {"book_now", "\u0905\u092D\u0940 \u092C\u0941\u0915

\u0915\u0930\u0947\u0902"},
 {"sample_art", "mango_stripes.png"},
 };
 }
}

Given that there’s no difference in the name of these resource-bundle files, the code
in code listing 12.1 will work without any modifications. But in this case, the code at d
from listing 12.1 (ResourceBundle.getBundle) will return an instance of List-
ResourceBundle.

 Figure 12.5 shows the resource bundles defined as Java classes.

public class IndianArtLabelsBundle extends
ListResourceBundle{

protected Object[][] getContents() {
return new Object[][] {

("total_bookings", "Total Bookings"),
("when", "When"),
("price", "Price"),
("book_now", "Book Now"),
("sample_art", "flag_fish.png"),

};
}

}

1

2

Default

resource

bundle

Resource bundle

for language

French "fr"

Resource

bundle

family

Resource bundle for language

Hindi 'hi' and region/country India 'IN'

(Share common base name

"IndianArtLabelsBundle")public class IndianArtLabelsBundle_fr extends
ListResourceBundle{

protected Object[][] getContents() {
return new Object[][] {

("total_bookings", "Réservations totales"),
("when", "Lors de"),
("price", "Prix"),
("book_now", "Réserver"),
("sample_art", "flag_mango_oval.png"),

};
}

}

3 public class IndianArtLabelsBundle_hi_IN extends ListResourceBundle {
protected Object[][] getContents() {

return new Object[][] {
("total_bookings", "\u0915\u0941\u0932 \u092C\u0941\u0915\u093f\u0902\u0917"),
("when", "\u0915\u092c"),
("price", "\u0915\u0940\u092e\u0924"),
("book_now", "\u0905\u092D\u0940 \u092C\u0941\u0915 \u0915\u0930\u0947\u0902"),
("sample_art", "mango_stripes.png"),

};
}

}

Figure 12.5 Resource bundles defined as Java classes that are subclasses of class ListResourceBundle
Licensed to Mark Watson <nordickan@gmail.com>

735Resource bundles
Because no changes were made to listing 12.1, you’ll get the same results when you
execute the application.

 So far so good. What happens if you can’t load a resource-bundle family or a par-
ticular resource bundle? Let’s examine this situation in detail in the next section.

12.2.3 Loading resource bundles for invalid values

On the exam, you’re very likely to be asked questions on what happens if you pass
invalid resource-bundle names or locales while loading your resource-bundle family.

ISSUE WITH LOADING RESOURCE-BUNDLE FAMILY
When your class can’t load the specified resource bundle due to an incorrect name
of the resource-bundle family or because it can’t locate it, it will throw a runtime
exception. For example, imagine that the resource bundle XYBundle doesn’t exist or
isn’t locatable:

ResourceBundle bundle = ResourceBundle.getBundle("XYBundle", Locale.JAPAN);

This code will throw a runtime exception:

Exception in thread "main" java.util.MissingResourceException: Can't find
bundle for base name XYBundle, locale ja_JP

ISSUE WITH LOADING RESOURCE BUNDLE FOR A LOCALE

Now what happens if you specify a Locale for which no matching resource bundle
exists? Given a Locale, table 12.2 lists the order in which Java searches for a matching
resource bundle.

Imagine that you’ve defined the following resource bundles as .properties files for an
application. Assuming that the default locale on your system is en_US, which resource
bundle will be loaded by the Java Runtime Environment (JRE) for Locale.FRANCE?
(For Locale.FRANCE, region is FR and language is French, abbreviated as fr.)

■ MyResourceBundle_de_DE.properties
■ MyResourceBundle_de.properties

Table 12.2 Search order for a resource bundle for a Locale

Order Resource bundle

1 bundleName_localeLanguage_localeCountry_localeVariant

2 bundleName_localeLanguage_localeCountry

3 bundleName_localeLanguage

4 bundleName_defaultLanguage_defaultCountry_defaultVariant

5 bundleName_defaultLanguage_defaultCountry

6 bundleName_defaultLanguage

7 bundleName
Licensed to Mark Watson <nordickan@gmail.com>

736 CHAPTER 12 Localization
■ MyResourceBundle_FR.properties
■ MyResourceBundle.properties

Because an exact match isn’t found for MyResourceBundle_fr_FR.properties, the JRE
looks for MyResourceBundle_fr.properties, which is also missing. No matches are
found for the default locale—that is, en_US. So the JRE loads the base resource bun-
dle—that is, MyResourceBundle.properties.

EXAM TIP If no matching resource bundles can be found or loaded, the
JRE throws the runtime exception MissingResourceException. If no
matching resource bundle is found, the JRE tries to load the base resource
bundle—that is, one that doesn’t include any additional name compo-
nents, bundleName.

The next “Twist in the Tale” exercise uses modified values for the resource bun-
dles and a given locale. Let’s see whether you can determine the correct answer.
Good luck.

The default locale of the host system is Locale.JAPAN and the following list of resource-
bundle files is included with the application:

a MessagesBundle_fr.properties
b MessagesBundle_fr_FR.properties
c MessagesBundle_DE.properties
d MessagesBundle_de.properties
e MessagesBundle.properties

Which of these resource bundles will be loaded for locale de_DE?

In this section, we created resource bundles to store constant text, like messages and
file locations, used by an application to localize to a particular locale. We created
the resource bundles as text files (.properties files) and as subclasses of List-
ResourceBundle.

 In the next section, you’ll see how to format dates, numbers, and currencies for
different locales in an application.

Twist in the Tale 12.2
Licensed to Mark Watson <nordickan@gmail.com>

737Formatting dates, numbers, and currencies for locales
12.3 Formatting dates, numbers, and currencies for locales

To parse or format numbers, dates, and currencies for a specific locale, you can use
classes from packages java.util and java.text. Table 12.3 will help you better relate
the features with the relevant classes.

Classes java.text.NumberFormat and java.text.DateFormat are abstract classes that
define static methods to retrieve an object from these classes. Because abstract classes
cannot be instantiated, these static methods return an object of subclasses of these
classes. The static method getInstance() in class NumberFormat returns an object of
class DecimalFormat. The static method getInstance()in class DateFormat returns an
instance of class SimpleDateFormat. So a reference variable of classes NumberFormat
and DateFormat refers to an object of their subclasses—that is, DecimalFormat and
SimpleDateFormat. Figure 12.6 shows a hierarchial relationship between the relevant
formatting classes.

EXAM TIP Classes NumberFormat and DateFormat are abstract classes. If
an exam question tries to instantiate these classes, be aware that they
won’t compile.

Table 12.3 List of features and the relevant classes used to implement them

Feature Relevant class

Format or parse numbers java.text.NumberFormat, java.text.DecimalFormat

Format or parse currencies java.text.NumberFormat

Format or parse dates java.text.DateFormat, java.util.Date,
java.util.Calendar

[12.4] Format dates, numbers, and currencies for localization with the
NumberFormat and DateFormat classes (including number format
patterns)

java.text.NumberFormat

<<extends>> <<extends>>

<<extends>> <<extends>>

java.text.DecimalFormat

java.text.Format

java.text.DateFormat

java.text.SimpleDateFormat

Figure 12.6 Hierarchical relationship between classes used for formatting
numbers, currencies, dates, and times
Licensed to Mark Watson <nordickan@gmail.com>

738 CHAPTER 12 Localization
12.3.1 Format numbers

Class NumberFormat can be used to format and parse numbers according to the default
or a particular locale. To do this, you need an object of this class. Class NumberFormat
defines convenient static methods getInstance() and getInstance (Locale) to retrieve
NumberFormat objects for the default locale or a specific locale. Because NumberFormat
is an abstract class, these methods return an object of its subclasses. If you need to for-
mat or parse numbers according to a specific locale, use the latter method. Once you
have access to an object of class NumberFormat, call its methods format() and parse()
to format a number and parse a string value according to a particular locale.

 Let’s get started with an example, which formats and parses number and string val-
ues for the default and specific locales:

import java.util.Locale;
import java.text.NumberFormat;
public class FormatNumbers {
 public static void main(String[] args) {
 double num = 12345.1111;
 defaultLocale(num);
 specificLocale(Locale.GERMANY, num);
 specificLocale(Locale.FRANCE, num);
 specificLocale(Locale.US, num);
 }
 static void defaultLocale(double num) {
 NumberFormat nfDefault = NumberFormat.getInstance();
 msg("\nDefault Locale");
 msg("formatting: " + nfDefault.format(num));
 try {
 msg("parsing : " + nfDefault.parse("12345.1111"));
 }
 catch (java.text.ParseException e) {
 msg(e.toString());
 }
 }
 static void specificLocale(Locale locale, double num) {
 NumberFormat nfSpecific = NumberFormat.getInstance(locale);
 msg("\n"+locale.getDisplayCountry());
 msg("formatting: " + nfSpecific.format(num));
 try {
 msg("parsing : " + nfSpecific.parse("12345.1111"));
 }
 catch (java.text.ParseException e) {
 msg(e.toString());
 }
 }
 static void msg(String str) { System.out.println(str); }
}

The output of this code is as follows (this might vary on your system):

Default Locale
formatting: 12,345.111
parsing : 12345.1111

Get
NumberFormat
for the current
default locale.

Get NumberFormat
for the specified

locale.
Licensed to Mark Watson <nordickan@gmail.com>

739Formatting dates, numbers, and currencies for locales
Germany
formatting: 12.345,111
parsing : 123451111

France
formatting: 12 345,111
parsing : 12345

United States
formatting: 12,345.111
parsing : 12345.1111

As visible from the output, different locales may use different thousand and decimal
separator values. Here’s what’s happening in the preceding example:

■ Method main() calls methods defaultLocale() and specificLocale() with
Locale values Locale.GERMANY, Locale.FRANCE, and Locale.US.

■ Method defaultLocale() retrieves a NumberFormat using method getInstance()
and calls its methods format() and parse() to format and parse the values
according to the JVM’s current default locale.

■ Method specificLocale() performs the same tasks as method default-
Locale(), but with a locale-specific NumberFormat.

This exam requires you to determine the appropriate methods to use if you want to use
the default locale or a specific locale. The preceding example shows that you just need
to retrieve an appropriate NumberFormat that caters to the default locale or a specific
locale. When you execute methods format() and parse(), the instance of class Number-
Format executes them according to the Locale information passed to it. Table 12.4 lists
all the factory methods that can be used to access an object of NumberFormat.

Table 12.4 Factory methods in NumberFormat to create and return its objects

Method name Method description

getInstance() Returns a general-purpose number format for the
current default locale.

getInstance(Locale inLocale) Returns a general-purpose number format for a
specified locale.

getIntegerInstance() Returns an integer number format for the current
default locale.

getIntegerInstance(Locale inLocale) Returns an integer number format for a specified
locale.

getNumberInstance() Returns a general-purpose number format for the
current default locale.

getNumberInstance(Locale inLocale) Returns a general-purpose number format for a
specified locale.

getPercentInstance() Returns a percentage format for the current
default locale.
Licensed to Mark Watson <nordickan@gmail.com>

740 CHAPTER 12 Localization

Nu
fo
sp

d

The instances retrieved using getIntegerInstance would only consider the integer
part of a number. The instances retrieved using getPercentInstance would display
fractions as percentages. For example, it will format 98% for the value .98.

12.3.2 Format currencies

You can use class java.text.NumberFormat to format the currencies for the default or
any specific locale. For example

import java.util.Locale;
import java.text.NumberFormat;
public class FormatCurrency {
 public static void main(String[] args) {
 double amt = 12345.1111;
 defaultLocale(amt);
 specificLocale(Locale.UK, amt);
 specificLocale(Locale.GERMANY, amt);
 specificLocale(Locale.FRANCE, amt);
 specificLocale(Locale.US, amt);
 specificLocale(Locale.JAPAN, amt);
 }
 static void defaultLocale(double num) {
 NumberFormat nfDefault = NumberFormat.getCurrencyInstance();
 msg("\nDefault Locale Currency:"+nfDefault.getCurrency());
 msg("formatted amt: " + nfDefault.format(num));
 }
 static void specificLocale(Locale locale, double num) {
 NumberFormat nfSpec = NumberFormat.getCurrencyInstance(locale);
 msg("\n"+locale.getDisplayCountry()+
 " Currency:"+nfSpec.getCurrency());
 msg("formatted amt: " + nfSpec.format(num));
 }
 static void msg(String str) { System.out.println (str); }
}

The output of this code on the Command prompt is as follows (this might vary on
your system):

Default Locale Currency:USD
formatted amt: $12,345.11

United Kingdom Currency:GBP
formatted amt: £12,345.11

getPercentInstance(Locale inLocale) Returns a percentage format for a specified locale.

getCurrencyInstance() Returns a currency format for the current default
locale.

getCurrencyInctance(Locale inLocale) Returns a currency format for the specified locale.

Table 12.4 Factory methods in NumberFormat to create and return its objects (continued)

Method name Method description

Default
NumberFormat

for currency

mberformat
r currency, a
ecific locale

Display locale
country and
currency as
three-letter wor
Licensed to Mark Watson <nordickan@gmail.com>

741Formatting dates, numbers, and currencies for locales
Germany Currency:EUR
formatted amt: 12.345,11 €

France Currency:EUR
formatted amt: 12 345,11 €

United States Currency:USD
formatted amt: $12,345.11

Japan Currency:JPY
formatted amt: ?12,345

Before we discuss why the currency symbols didn’t display properly, here’s a quick
summary of the code:

■ Method main() calls method defaultLocale() without passing any Locale
arguments and specificLocale with Locale values like Locale.GERMANY,
Locale.FRANCE, Locale.US, and others.

■ Method defaultLocale() retrieves an object of class NumberFormat using
method getCurrencyInstance() and calls its method format() to format the
amount according to the JVM’s current default locale.

■ Method specificLocale() performs the same tasks as method default-
Locale(), but with a locale-specific instance of class NumberFormat, retrieved
using method getCurrencyInstance(Locale).

Now, going back to the output of the code, did you notice the Yen symbol didn’t print
properly in the previous output? This can be due to either an issue with the range of
values that can be displayed by the Command prompt, or if the NumberFormat
instance doesn’t support the symbol of a particular locale. There’s little you can do
about the latter reason, so let’s experiment with the first one. Here’s the code to send
the formatted amount to a JTextArea (same as before, with just the introduction of a
JFrame and JTextArea to display the output), and the rest of the code remains the
same (modifications in bold):

import java.util.Locale;
import java.text.NumberFormat;
import javax.swing.*;
public class FormatCurrencyVer2 {
 static JTextArea textArea = new JTextArea();
 public static void main(String[] args) {
 JFrame f = new JFrame("Currency");
 f.getContentPane().add(textArea);
 f.setSize(300, 400);
 double amt = 12345.1111;
 defaultLocale(amt);
 specificLocale(Locale.UK, amt);
 specificLocale(Locale.GERMANY, amt);
 specificLocale(Locale.FRANCE, amt);
 specificLocale(Locale.US, amt);
 specificLocale(Locale.JAPAN, amt);
 f.setVisible(true);
 }
Licensed to Mark Watson <nordickan@gmail.com>

742 CHAPTER 12 Localization
 // methods defaultLocale ..same as defined in previous example
 // method specificLocale ..same as defined in previous example
 static void msg(String str) {
 textArea.append("\n" + str);
 }
}

Figure 12.7 shows the output from this modified code—the
image of the JFrame that outputs the result.

 As visible in Figure 12.7, the currency symbol for Japan
is displayed properly. The font used in swing components
covers a greater subset of the Unicode chart than the one
used in the Windows console.

 The examples that we used to format the numbers and
currencies are the same, except in retrieving the instance of
class NumberFormat. To format currencies, we used the
NumberFormat’s static methods getCurrencyInstance()

and getCurrencyInstance (Locale). To format the num-
bers, we used NumberFormat’s static methods getInstance()
and getInstance(Locale) (static method getNumber-
Instance() can also be used).

 When you execute the format method on an instance of
class NumberFormat, it knows whether it’s supposed to for-
mat it as a currency value or as a number. I deliberately
used a version of this code that didn’t display the currency
sign correctly so you could see the symbols displayed with
the modified code. This is just to make you understand that the code that you write
to format currencies may be fine, but you still may not get the expected output, due to
other issues.

EXAM TIP The exam requires you to determine the appropriate methods
to use if you want to use the default locale or a specific locale, given a sce-
nario. To format numbers and currencies, you need an instance of Number-
Format. To format numbers and currencies in the default locale, retrieve
an instance of NumberFormat using the methods getInstance() or get-
NumberInstance() and getCurrencyInstance(), respectively. To format
numbers and currencies in a specific locale, retrieve an instance of
NumberFormat using the methods getInstance(Locale) or getNumber-
Instance(Locale) and getCurrencyInstance(Locale), respectively. Once
the NumberFormat instance has the locale information with it, it can for-
mat and parse the numbers and currencies accordingly.

Figure 12.7 Output in a
JTextArea that can handle
the display of a greater
subset of the Unicode
character set
Licensed to Mark Watson <nordickan@gmail.com>

743Formatting dates, numbers, and currencies for locales
12.3.3 Format dates

You can use class DateFormat to format and parse dates and times according to the
default locale or a particular locale. Class DateFormat defines a lot of overloaded static
methods to retrieve an instance of a DateFormat. Because class DateFormat itself is an
abstract class, these static methods return an instance of its subclass, SimpleDate-
Format. Whenever an object of class DateFormat is referred to, you should read it as an
object of class SimpleDateFormat. Once you get an object of class DateFormat, you
can use its format() and parse() methods to format and parse dates according to the
default or a specific locale.

 Let’s get started with the static overloaded methods to retrieve an object of class
DateFormat. Here’s a list of these factory methods, defined in class DateFormat:

static DateFormat getInstance()
static DateFormat getDateInstance()
static DateFormat getDateInstance(int style)
static DateFormat getDateInstance(int style, Locale aLocale)
static DateFormat getDateTimeInstance()
static DateFormat getDateTimeInstance(int dateStyle, int timeStyle)
static DateFormat getDateTimeInstance(int dateStyle,
 int timeStyle, Locale aLocale)
static DateFormat getTimeInstance()
static DateFormat getTimeInstance(int style)
static DateFormat getTimeInstance(int style, Locale aLocale)

These factory methods accept zero to three method arguments. Let’s take a look at
the values that can be passed on these method arguments:

■ aLocale—A specific locale for which you need to format your date value
■ style, dateStyle, timeStyle—One of the following integer constant values

defined in DateFormat
– DateFormat.SHORT: is completely numeric, such as 31.07.20 or 10:30 pm
– DateFormat.MEDIUM is longer, such as Jul 31, 2020 or 10:30:17 pm
– DateFormat.LONG is longer, such as July 31, 2020 or 3:30:32 pm PST
– DateFormat.FULL is pretty completely specified, such as Saturday, July 31,

2020 AD or 10:30:32 pm PST

For the overloaded method getDateTimeInstance(), if you pass on DateFormat.FULL
to the variable argument dateStyle, and DateFormat.SHORT to the argument time-
Style, the time will be returned in format DateFormat.FULL. If the value that you pass
to the argument dateStyle has a more elaborate style value than the value passed to
the variable timeStyle, the argument dateStyle overshadows the argument time-
Style. Once you have an object of class DateFormat in place, call its parse and format
methods to parse and format a date for the default of a specific locale.

 The following listing is an example that formats a given date according to the
default locale and a number of predefined Locale values, each with the styles FULL,
LONG, MEDIUM, and SHORT:
Licensed to Mark Watson <nordickan@gmail.com>

744 CHAPTER 12 Localization
import java.util.*;
import java.text.DateFormat;
public class FormatDates {
 static int[] styles = new int[]{DateFormat.FULL,
 DateFormat.LONG,
 DateFormat.MEDIUM,
 DateFormat.SHORT};
 static String[] desc = new String[]{"FULL","LONG","MEDIUM","SHORT"};
 public static void main(String[] args) {
 Date date = new Date();
 defaultLocale(date);
 specificLocale(Locale.GERMANY, date);
 specificLocale(Locale.FRANCE, date);
 specificLocale(Locale.CHINA, date);
 }
 static void defaultLocale(Date date) {
 msg("\nDefault Locale:");
 for (int style : styles) {
 DateFormat nfDefault = DateFormat.getDateInstance(style);
 msg(desc[style]+"\t:" + nfDefault.format(date));
 }
 }
 static void specificLocale(Locale locale, Date date) {
 msg("\n"+locale.getDisplayCountry());
 for (int style : styles) {
 DateFormat spec = DateFormat.getDateInstance(style, locale);
 msg(desc[style]+"\t:" + spec.format(date));
 }
 }
 static void msg(String str) { System.out.println(str); }
}

Here’s the output of this code on the Command prompt (this might vary depending
on your system):

Default Locale:
FULL :Sunday, August 1, 2020
LONG :August 1, 2020
MEDIUM :Aug 1, 2020
SHORT :8/1/20

Germany
FULL :Sonntag, 1. August 2020
LONG :1. August 2020
MEDIUM :01.08.2020
SHORT :01.08.20

France
FULL :dimanche 1 août 2020
LONG :1 août 2020
MEDIUM :1 août 2020
SHORT :01/08/20

Listing 12.2 Format date according to different locales

Valid date and
time styles

DateFormat for
default locale, with

a specific style

DateFormat for a
specific locale, with

a specific style
Licensed to Mark Watson <nordickan@gmail.com>

745Formatting dates, numbers, and currencies for locales
China
FULL :2020?8?1? ???
LONG :2020?8?1?
MEDIUM :2020-8-1
SHORT :20-8-1

Let’s look at what’s happening in the preceding code:

■ Method main() calls methods defaultLocale() and specificLocale() with
Locale values Locale.GERMANY, Locale.FRANCE, and Locale.CHINA.

■ Method defaultLocale() retrieves an object of class DateFormat using
method getDateInstance(), passing to it style values. It then calls its method
format() to format the date according to the JVM’s current default locale and a
specified style.

■ Method specificLocale() performs the same tasks as method default-
Locale(), but with a locale-specific instance of class DateFormat, retrieved
using method getDateInstance(style, Locale). Method format() formats
the date according to the specified locale and style.

Again, because the Command prompt might not sup-
port the Unicode character set, the Chinese charac-
ters aren’t displayed as required on the Command
prompt. The formatted date value when printed to a
JTextArea prints it appropriately (the default font
used by swing components can handle the Unicode
characters). Figure 12.8 shows the screenshot.

12.3.4 Formatting and parsing time for a specific locale

The previous example prints dates formatted for different locales and styles (FULL,
LONG, MEDIUM, and SHORT). Similarly, you can also format the time for different locales
and styles. To do so, you just need to retrieve the DateFormat instance using one of
the following factory methods:

static DateFormat getTimeInstance()
static DateFormat getTimeInstance(int style)
static DateFormat getTimeInstance(int style, Locale aLocale)

Let’s see this in action. Revisit the previous example and listing 12.2. Replace the fol-
lowing lines of code:

DateFormat nfDefault = DateFormat.getDateInstance(style);
DateFormat spec = DateFormat.getDateInstance(style, locale);

with these lines of code:

DateFormat nfDefault = DateFormat.getTimeInstance(style);
DateFormat spec = DateFormat.getTimeInstance(style, locale);

Figure 12.8 Formatted date and
time in Chinese
Licensed to Mark Watson <nordickan@gmail.com>

746 CHAPTER 12 Localization
The output of the code after making these changes (using getTimeInstance()) is as
follows (this might vary on your system):

Default Locale:
FULL :11:05:07 AM IST
LONG :11:05:07 AM IST
MEDIUM :11:05:07 AM
SHORT :11:05 AM

Germany
FULL :11.05 Uhr IST
LONG :11:05:07 IST
MEDIUM :11:05:07
SHORT :11:05

France
FULL :11 h 05 IST
LONG :11:05:07 IST
MEDIUM :11:05:07
SHORT :11:05

12.3.5 Formatting and parsing date and time together for
a specific locale

To print the date and time together, use one of the following factory methods to
retrieve the DateFormat instance:

static DateFormat getDateTimeInstance()
static DateFormat getDateTimeInstance(int dateStyle, int timeStyle)
static DateFormat getDateTimeInstance(int dateStyle,
 int timeStyle, Locale aLocale)

Revisit listing 12.2 and replace the following lines of code:

DateFormat nfDefault = DateFormat.getDateInstance(style);
DateFormat nfSpecific = DateFormat.getDateInstance(style, locale);

with these lines of code:

DateFormat nfDefault = DateFormat.getDateTimeInstance(style, style);
DateFormat nfSpec = DateFormat.getDateTimeInstance(style, style, locale);

The output of the modified code includes both the date and time:

Default Locale:
FULL :Sunday, August 1, 2010 11:33:33 AM IST
LONG :August 1, 2010 11:33:33 AM IST
MEDIUM :Aug 1, 2010 11:33:33 AM
SHORT :8/1/10 11:33 AM

Germany
FULL :Sonntag, 1. August 2010 11.33 Uhr IST
LONG :1. August 2010 11:33:33 IST
MEDIUM :01.08.2010 11:33:33
SHORT :01.08.10 11:33
Licensed to Mark Watson <nordickan@gmail.com>

747Formatting dates, numbers, and currencies for locales
France
FULL :dimanche 1 août 2010 11 h 33 IST
LONG :1 août 2010 11:33:33 IST
MEDIUM :1 août 2010 11:33:33
SHORT :01/08/10 11:33

In this example, note that we’re passing the same style argument to the dateStyle
and timeStyle. If the method argument passed to the dateStyle is more liberal in
terms of the method argument passed to timeStyle, the latter will be ignored.

EXAM TIP If the method argument passed to the dateStyle is more lib-
eral in terms of the method argument passed to timeStyle, the latter will
be ignored.

12.3.6 Using custom date and time patterns with SimpleDateFormat

All the previous examples used the predefined formats (FULL, LONG, MEDIUM, and
SHORT). Though these styles are sufficient for formatting dates and times for almost
every condition, you can create your own style by using class java.text.SimpleDate-
Format, using one of the following constructors:

SimpleDateFormat()
SimpleDateFormat(String pattern)
SimpleDateFormat(String pattern, Locale locale)

You can pass the customized pattern as a string value to format the date and time. For
example, if you’d like to format the date as year-month(in digits)-day, you can use
class SimpleDateFormat, as follows:

Date date = new Date();
SimpleDateFormat defaultFormatter = new SimpleDateFormat("yyyy-MM-dd");
System.out.println(defaultFormatter.format(date));

If you run this code on August 2, 2020, its output would be:

2020-08-02

It’s quite interesting to note the change in the formatted date value, if you vary the
count of the letter M in the preceding pattern from one to four or more, as follows:

Date date = new Date();
defaultFormatter = new SimpleDateFormat("yyyy-M-dd");
System.out.println(defaultFormatter.format(date));

defaultFormatter = new SimpleDateFormat("yyyy-MMM-dd");
System.out.println(defaultFormatter.format(date));

defaultFormatter = new SimpleDateFormat("yyyy-MMMM-dd");
System.out.println(defaultFormatter.format(date));

Prints
“2020-8-02”

Prints
“2020-Aug-02”

Prints
“2020-August-02”
Licensed to Mark Watson <nordickan@gmail.com>

748 CHAPTER 12 Localization
If you wish to format the preceding date as “Day Sun, 02th Aug 2020”, modify the pat-
tern and create an object of class SimpleDateFormat, as follows:

defaultFormatter = new SimpleDateFormat("'Day' EE', 'dd'th' MMM yyyy");
System.out.println(defaultFormatter.format(date));

To format according to a specific locale, create an object of SimpleDateFormat by
passing it a Locale instance:

Date date = new Date();
SimpleDateFormat spFormatter = new SimpleDateFormat
 ("yyyy-MMMM-dd HH:mm:ss", Locale.FRANCE);
System.out.println(spFormatter.format(date));

Table 12.5 includes a list of the pattern letters, what they mean, and an example or
range of their values.

Be very careful with the case of the letters that you use in a pattern for formatting
dates. While working with a project, I used the pattern yyyy-mm-dd to format a date,

Table 12.5 List of the pattern letters that can be used to create a custom pattern for formatting dates
and times

Letter Date/time component Example/range

G Era designator AD

Y Year 2010; 10

w (small w) Week in year 30

W Week in month 2

D Day in year 232

d (small d) Day in month 11

E Day in week Tuesday; Tue

a (small a) am/pm marker pm

H Hour in day (0-23)

h (small h) Hour in am/pm (1-12)

m (small m) Minute in hour 29

S (small s) Second in minute 12

S Millisecond 869

z (small z) General time zone Pacific Standard Time; PST; GMT-08:00

Z RFC 822 Time Zone -0800

Prints “Day Sun,
02th Aug 2020”

Prints “2020-août-02
18:00:29”
Licensed to Mark Watson <nordickan@gmail.com>

749Summary
but the code repeatedly returned the month number as 30! After validating the pat-
tern, I realized that mm is used for minutes and not months (I executed my code at
18.30 hrs!). This is a perfect recipe for subtle bugs, which are difficult to trace!

EXAM TIP Make note of the case of the letters that you use in patterns for
formatting dates. The pattern m is used for minutes in an hour, not
months in a year.

12.3.7 Creating class Date object using class Calendar

Method format() defined in classes DateFormat and SimpleDateFormat, which you
use to format your date values, accepts objects of class java.util.Date. But many of
the methods defined in class Date have been deprecated and you should only use it to
create the current date and time using the default constructor. To create other dates

■ Create an object of class Calendar with the current date and time.
■ Call one of its overloaded set() methods to set the year, month, day, hour, min-

ute, and seconds:
– set(int year, int month, int date)
– void set(int year, int month, int date, int hourOfDay, int minute)
– void set(int year, int month, int date, int hourOfDay, int minute,

int second)
■ Use its method getTime() to retrieve the corresponding Date object.

For example

Calendar cal = Calendar.getInstance();
cal.set(1973, Calendar.AUGUST, 30, 14, 10, 40);
Date date = cal.getTime();

NOTE In real projects, working with literal values to specify months or
days (Sunday, Monday, and so on) is never preferred. Always use constant
values for them.

Don’t get confused by the name of the method getTime(). Class Calendar’s method
getTime() returns a Date object. But Date’s method getTime() returns a long value
(number of milliseconds since January 1, 1970, 00:00:00 GMT represented by the
Date object).

12.4 Summary
Users of an application span the whole globe and internationalized applications that
can be localized to specific locales have become a need rather than a want. In this chap-
ter, you learned how you can internationalize your Java applications using Locales,

Current date
and time

Set date value
as Aug 30 1973,
14:10:40

Create Date object
from calendar
Licensed to Mark Watson <nordickan@gmail.com>

750 CHAPTER 12 Localization
resource bundles, and classes for formatting numbers, dates, and currencies, so that
they can be localized to multiple locales.

 The first step in building locale-aware applications is to identify and isolate locale-
specific data, like currencies, dates, times, numbers, text messages, labels in a GUI
application, and so on. The next step is to identify code that works with locale-specific
data. Instead of consuming and displaying the locale-specific data directly, use locale-
specific classes to display and format data according to a selected locale.

 Java captures the idea of regions with geographical, language, and cultural differ-
ences using a Locale. A Locale object doesn’t format or select your locale-aware data.
It’s used by other classes to load locale-specific resource bundles and locale-specific
formatting classes. Locale-specific resources like text messages, name and location of
images and icons, and labels for your GUI application (constant data) are stored in a
resource bundle. Applications supporting multiple locales define locale-specific infor-
mation in multiple resource bundles, which form part of a resource-bundle family. All
these resource bundles share a common base name with additional name compo-
nents specifying the region, language, or variant.

 Abstract class ResourceBundle is subclassed by concrete classes ListResource-
Bundle and PropertyResourceBundle. You can localize your application by defining
your locale-specific resources in text files (as .properties files) or as Object arrays
stored in your custom classes that extend ListResourceBundle.

 Abstract classes java.text.NumberFormat and java.text.DateFormat are used to
format locale-specific numbers, currencies, dates, and times.

REVIEW NOTES
This section lists the main points covered in this chapter.

Internationalization and localization

■ An internationalized application can be localized to different regions.
■ Internationalization is the process of designing an application in a manner that

it can be adapted to various locales.
■ Localization is the process of adapting your software for a locale by adding

locale-specific components and translating text.
■ Different locales might use different languages or formats of currency, dates,

and numbers.
■ Advantages of localization

– Better user experience
– Interpreting information in the right manner
– Adapting according to culturally sensitive information

■ Class Locale doesn’t itself provide any method to format the numbers, dates, or
currencies. You use Locale objects to pass locale-specific information to other
classes like NumberFormat or DateFormat to format data.
Licensed to Mark Watson <nordickan@gmail.com>

751Review Notes
■ You can create and access objects of class Locale by using
– Constructors of class Locale
– Locale methods
– Locale constants
– Class Locale.Builder

■ Overloaded constructors of Locale
– Locale(String language)

– Locale(String language, String country)

– Locale(String language, String country, String variant)

■ No exceptions are thrown if you pass incorrect or invalid values to a Locale
constructor.

■ Language is a lowercase, two-letter code. Some of the commonly used values
are en (English), fr (French), de (German), it (Italian), ja (Japanese), ko
(Korean), and zh (Chinese).

■ Country or region code is an uppercase, two-letter code. Some of the commonly
used values are US (United States), FR (France), JP (Japan), DE (Germany), and
CN (China).

■ Variant is a vendor- or browser-specific code, such as WIN for Windows and
MAC for Macintosh.

■ Language is the most important parameter that you pass to a Locale object. All
overloaded constructors of Locale accept language as their first parameter.

■ You don’t need to memorize all of the language or country codes that are used
to initialize a Locale. But the exam expects you to be aware of commonly used
values like EN, US, and FR.

■ You can access the current value of a JVM’s default locale by using class Locale’s
static method getDefault(). The methods Locale.getDefaultLocale(),
System.getLocale(), and System.getDefaultLocale() are invalid methods to
access a system’s default locale.

■ Class Locale defines Locale constants for a region, a language, or both.
Examples include Locale.US, Locale.UK, Locale.ITALY, Locale.CHINESE, and
Locale.GERMAN for commonly used locales for languages and countries.

■ If you specify only a language constant to define a Locale, its region remains
undefined. Look out for exam questions that print the region when you don’t
specify it during the creation of a Locale.

■ You can also use Locale.Builder to construct a Locale object by calling its con-
structor and then calling methods setLanguage(), setRegion(), and build().

■ To build locale-aware applications, first you must identify and isolate locale-
specific data, like currencies, date-time format, numbers, text messages, labels
in a GUI application, sounds, colors, graphics, icons, phone numbers, measure-
ments, personal titles, postal addresses, and so on.

■ Instead of consuming and displaying this data directly, locale-specific classes are
used to display or format data according to a selected locale.
Licensed to Mark Watson <nordickan@gmail.com>

752 CHAPTER 12 Localization
Resource bundles

■ To implement resource bundles using property files, create text files with
the extension .properties. Each .properties file is referred to as a resource
bundle. All the resource bundles are collectively referred to as a resource-
bundle family.

■ An abstract class ResourceBundle represents locale-specific resources.
■ Locale-specific resources like text messages, the name and location of images

and icons, and labels for your GUI application are stored in a resource bundle.
■ Applications supporting multiple locales define locale-specific information in

multiple resource bundles, which form part of a resource-bundle family.
■ All these resource bundles share a common base name with additional name

components specifying the region, language, or variant.
■ You can implement resource bundles using either .properties files or Java classes.
■ To support countries and languages United States/English (US/en) and France/

French(FR/fr), an application (myApp) might define the resource-bundle
files as:

– myapp_en.properties, myapp_fr.properties
– myapp_en_US.properties, myapp_fr_FR.properties

■ There’s no link between an application name and the resource bundle base
name. The following names for resource bundle files are also valid for the previ-
ous note:

– messages_en.properties, messages_fr.properties
– messages_en_US.properties, messages_fr_FR.properties

■ All the .properties files in a bundle contain the same keys, with different values.
■ Here’s the code to load the locale-specific resource bundle from the resource-

bundle family for a locale:

ResourceBundle labels = ResourceBundle.getBundle("resource-
bundle.IndianArtLabelsBundle", locale);

■ The static method getBundle() of ResourceBundle accepts the location of the
resource-bundle family as the first argument and Locale as the second argu-
ment, and loads the single resource bundle, not the complete family.

■ You can call methods getString(), getObject(), keySet(), getKeys(), and
getStringArray() from class ResourceBundle to access its keys and values.

■ You can also define locale-specific data in resource bundles by defining them
as subclasses of ListResourceBundle, a subclass of abstract class Resource-
Bundle.

■ When your class can’t load the specified resource bundle due to an incorrect
name of the resource-bundle family or because it can’t locate it, it will throw a
runtime exception.
Licensed to Mark Watson <nordickan@gmail.com>

753Review Notes
■ Given a Locale, here’s the order in which Java searches for a matching
resource bundle.

1 bundleName_localeLanguage_localeCountry_localeVariant

2 bundleName_localeLanguage_localeCountry

3 bundleName_localeLanguage

4 bundleName_defaultLanguage_defaultCountry_defaultVariant

5 bundleName_defaultLanguage_defaultCountry

6 bundleName_defaultLanguage

7 bundleName

Formatting dates, numbers, and currencies for locales

■ To format or parse
– Numbers, use NumberFormat and DecimalFormat classes
– Currencies, use NumberFormat class
– Dates, use DateFormat, SimpleDateFormat, Date and Calendar classes

■ NumberFormat and DateFormat are abstract classes. Class DecimalFormat extends
class NumberFormat. Class SimpleDateFormat extends class DateFormat.

■ The static method getInstance() in class NumberFormat returns an object of
class DecimalFormat.

■ The static method getInstance() in class DateFormat returns an instance of
class SimpleDateFormat.

■ To format numbers or parse string values
– Use NumberFormat.
– Call methods NumberFormat.getInstance(), NumberFormat.getInstance

(Locale), or NumberFormat.getNumberInstance(Locale) to get a Number-
Format instance.

– Call method NumberFormat’s format(num) or parse(String) to format a
number or parse a string value.

■ To format currency
– Use NumberFormat.
– Call NumberFormat.getCurrencyInstance() or NumberFormat.getCurren-

cyInstance(Locale) to get a NumberFormat instance.
– Call method NumberFormat’s format(num).

■ To format dates
– Use DateFormat.
– Call methods DateFormat.getInstance(), DateFormat.getDateInstance(),

DateFormat.getDateTimeInstance(), or DateFormat.getTimeInstance()
to get a DateFormat instance.

– Call method DateFormat’s format(Date).
Licensed to Mark Watson <nordickan@gmail.com>

754 CHAPTER 12 Localization
■ Predefined date formatting styles
– DateFormat.SHORT is completely numeric, such as 31.07.20 or 10:30 p.m.
– DateFormat.MEDIUM is longer, such as Jul 31, 2020 or 10:30:17 p.m.
– DateFormat.LONG is longer, such as July 31, 2020 or 3:30:32 p.m. PST.
– DateFormat.FULL is longer, such as Friday, July 31, 2020.

■ Use class SimpleDateFormat for complete control of the formatting style of
date and time.

■ Create a SimpleDateFormat object by calling its constructors, passing it a for-
matting pattern as a string, together with a Locale.

■ Call method SimpleDateFormat’s format(), passing it a Date object to format it.
■ The case of the letters used in specifying patterns for SimpleDateFormat is

case-sensitive.
■ To use Date objects with date formatting classes, you can call new Date() to get

the current date and time.
■ To create Date objects with a specific date, use class Calendar. Call Calendar

.getInstance() and then its method set().

SAMPLE EXAM QUESTIONS

Q 12-1. Given the language code for Spanish is es and the country code for Spain is ES,
which of the following code options defines a Locale to work with the Spanish language?

a Locale locale = new Locale();
locale.setLanguage("es");
locale.setCountry("ES");

b Locale locale = new Locale("es", "ES");

c Locale locale = new Locale("ES", "es");

d Locale locale = new Locale("es");

Q 12-2. Assume the following code executes on the following date and time:

Date: 2009 Jan 21

Time: 21:45:12

Date today = new Date();
//INSERT CODE HERE
System.out.println(dateFmt.format(today));
System.out.println(timeFmt.format(today));

Which of the following lines of code, when inserted at //INSERT CODE HERE, will out-
put the date and time that coincides with the UK’s Locale?

21/01/09
21:45:12

a Locale.setDefault(Locale.UK);
DateFormat dateFmt = DateFormat.getDateInstance(DateFormat.SHORT);
DateFormat timeFmt = DateFormat.getTimeInstance(DateFormat.MEDIUM);
Licensed to Mark Watson <nordickan@gmail.com>

755Sample exam questions
b DateFormat dateFmt = new SimpleDateFormat("dd/MM/yy");
DateFormat timeFmt = new SimpleDateFormat("HH:mm:ss");

c DateFormat dateFmt = DateFormat.getDateInstance(DateFormat.SHORT);
DateFormat timeFmt = DateFormat.getTimeInstance(DateFormat.MEDIUM);

d DateFormat dateFmt = DateFormat.getDateInstance(DateFormat.SHORT,
Locale.UK);
DateFormat timeFmt = DateFormat.getTimeInstance(DateFormat.MEDIUM,
Locale.UK);

Q 12-3. Given the following code, which of the options will load resource bundle
"foo_en_UK" for Locale.UK and assign it to the variable bundle? The default language
for the U.K. region is English (en).

ResourceBundle bundle = null;

a bundle = ResourceBundle.getBundle("foo_en_UK.properties");

b bundle = ResourceBundle.getListBundle("foo_en_UK");

c bundle = ResourceBundle.getBundle("foo_en_UK.properties", Locale.UK);

d bundle = ResourceBundle.getListBundle("foo_en_UK", Locale.UK);

e bundle = ResourceBundle.getPropertyBundle("foo.properties");

f bundle = ResourceBundle.getBundle("foo_en_UK", new Locale("en", "UK"));

Q 12-4. Which of the following code options accesses the default locale for the host
system and creates a new locale with the default locale’s language and country?

a Locale locale = Locale.getDefaultLocale();
Locale newLocale = new Locale(locale.getLanguage(), locale.getCountry());

b Locale locale = Locale.getDefault();
Locale newLocale = new Locale(locale.getLanguage(), locale.getCountry());

c Locale locale = Locale.getDefault();
Locale newLocale = new Locale(locale.getDisplayLanguage(),
locale.getDisplayCountry());

d Locale locale = Locale.getDefaultLocale();
Locale newLocale = new Locale(locale);

Q 12-5. What is the output of the following code?

NumberFormat fmt = new NumberFormat(Locale.US);
System.out.println(fmt.format(123123.99));

a 123123.99

b 123,123.99

c 1,23,123.99

d 123 123.99

e 1 23 123.99

f 123,124.00

g Compilation error
h Runtime exception
Licensed to Mark Watson <nordickan@gmail.com>

756 CHAPTER 12 Localization
Q 12-6. Given that an application must support the languages Spanish (es) and Ger-
man (de), which of the following options includes correct definitions to build resource
bundles that support these languages?

a class MyBundle_DE extends ListResourceBundle { /* code */ }
class MyBundle_de extends ListResourceBundle { /* code */ }
class MyBundle_es extends ListResourceBundle { /* code */ }

b class MyBundle_DE extends ResourceBundle { /* code */ }
class MyBundle_de extends ResourceBundle { /* code */ }
class MyBundle_es extends ResourceBundle { /* code */ }
class MyBundle_spanish extends ResourceBundle { /* code */ }

c class MyBundle_es extends PropertyResourceBundle { /* code */ }
class MyBundle_DE extends PropertyResourceBundle { /* code */ }
class MyBundle_de extends PropertyResourceBundle { /* code */ }

d class MyBundle_de extends Bundle { /* code */ }
class MyBundle_DE extends Bundle { /* code */ }
class MyBundle_es extends Bundle { /* code */ }

Q 12-7. Select the incorrect statements:

a To localize an application, you don’t need to internationalize it.
b A localized application improves user experience by displaying numbers in a

region-specific format.
c A localized application can define its location-specific data in a separate .prop-

erties file.
d A translator can read locale data as key-value pairs from a .properties file, trans-

late it, and define a new .properties file with the same keys and different values.
e To support additional locales, an application might not need to recompile any

of its code.

Q 12-8. An application supports resource bundles for languages French (fr), Span-
ish (es), and English (en). The following are the listings of the corresponding
resource bundles:

#GlobalBundle_en.properties
greeting=Hi

#GlobalBundle_fr.properties
greeting=Salut

#GlobalBundle_es.properties
greeting=Hola

Given that the default locale is Spanish, what’s the output of the following code?

Locale.setDefault(new Locale("ja", "JP"));
Locale newLocale = Locale.getDefault();
ResourceBundle messages = ResourceBundle
 .getBundle("GlobalBundle", newLocale);
System.out.println(messages.getString("greeting"));
Licensed to Mark Watson <nordickan@gmail.com>

757Sample exam questions
a Hi

b Salut

c Hola

d No output
e Compilation error
f Runtime exception

Q 12-9. Given that the letters e and r don’t have any special meaning in defining a cus-
tom date and time format, what’s the output of the following code if it’s executed at
21:00 hrs on Jan. 21, 2020?

SimpleDateFormat dateFormat = new SimpleDateFormat("YYYY year");
System.out.println(dateFormat.format(new Date()));

a 2020 year
b 2020 ya
c 2020; 20 pm
d 2020 ypm
e Compilation error
f Runtime exception

Q 12-10. What’s the output of the following code?

Locale locale = new Locale("fr", "FR");
Locale.setDefault(locale);
Locale locale1 = Locale.FRENCH;
System.out.println(locale1.getDisplayCountry());

a France

b FR

c fr

d No output
e Runtime exception

Q 12-11. Which of the options when inserted at //INSERT CODE HERE will format the
currency for Locale with the language German (de)?

double amt = 12345.1111;
//INSERT CODE HERE
System.out.println(format.format(amt));

a Locale.setDefault(Locale.GERMAN);
NumberFormat format = NumberFormat.getCurrencyInstance();

b CurrencyFormat format = CurrencyFormat.getCurrencyInstance(Locale.GERMAN);

c NumberFormat format = NumberFormat.getInstance("currency", Locale.GERMAN);

d NumberFormat format = NumberFormat.getCurrencyInstance(new Locale("de"));
Licensed to Mark Watson <nordickan@gmail.com>

758 CHAPTER 12 Localization
Q 12-12. Select the correct statements:

a ListResourceBundle is a subclass of ResourceBundle.
b PropertiesResourceBundle is a subclass of ResourceBundle.
c If you change any key or value used with ListResourceBundle, you must recom-

pile at least one class file.
d If you change any key or value defined in .properties files, you might not recom-

pile any class file.
e You can’t define resource bundles defined as ListResourceBundle in packages.

ANSWERS TO SAMPLE EXAM QUESTIONS
A 12-1. b, d

[12.6] Define a locale using language and country codes

Explanation: Option (a) is incorrect because it uses an invalid Locale constructor and
methods. Class Locale defines the following constructors:

Locale(String language)
Locale(String language, String country)
Locale(String language, String country, String variant)

Option (c) is incorrect. To create a Locale, language code must be the first argument,
and region or country is the second argument. This option passes language as the sec-
ond argument.

 Option (d) is correct because you need to work with Spanish. So it’s acceptable to
pass only this value and leave the region code.

A 12-2. a, b, d

[12.1] Read and set the locale by using the Locale object
[12.4] Format dates, numbers, and currency values for localization with the Number-
Format and DateFormat classes (including number format patterns)

Option (c) is incorrect because this code would format the date and time values
according to the host’s default locale. The output should be formatted according to
Locale.UK or by using the exact pattern.

A 12-3. f

[12.3] Call a resource bundle from an application

Explanation: Options (b), (d), and (e) are incorrect because they use the nonexistent
factory methods getListBundle and getResourceBundle. The correct and only fac-
tory method to retrieve a resource bundle is to call one of the overloaded methods,
getBundle().

 Options (a) and (c) are incorrect because the file extension ‘.properties’ must not
be included to load a resource bundle.
Licensed to Mark Watson <nordickan@gmail.com>

759Answers to sample exam questions
A 12-4. b

[12.1] Read and set the locale by using the Locale object

Explanation: Options (a) and (d) are incorrect because they use nonexistent method
names to access the default locale. The correct factory method name is Locale.get-
Default.

 Option (c) is incorrect because the Locale’s constructor should be passed lan-
guage and country codes and not their display names. The methods getDisplay-
Language and getDisplayCountry retrieve display names for languages and countries.
The correct methods to use here are getLanguage() and getCountry(), which return
codes for the language and country.

A 12-5. g

[12.4] Format dates, numbers, and currency values for localization with the Number-
Format and DateFormat classes (including number format patterns)

Explanation: Class NumberFormat is an abstract class—you can’t instantiate it. Class
NumberFormat defines multiple factory methods to create and return an object of the
relevant classes that implement NumberFormat, like getInstance(), getInstance
(Locale), getNumberInstance(), and getNumberInstance(Locale).

A 12-6. a

[12.2] Build a resource bundle for each locale

Explanation: Options (b), (c), and (d) are incorrect because they don’t extend the
right class. To define a resource bundle in a Java class, it must extend class List-
ResourceBundle.

A 12-7. a

[12.5] Describe the advantages of localizing an application

Explanation: Only option (a) is an incorrect statement because applications that are
internationalized can be localized to particular locales.

A 12-8. f

[12.2] Build a resource bundle for each locale
[12.3] Call a resource bundle from an application

Explanation: The application defines resource bundles to support languages French
(fr), Spanish (es), and English (en). The following code changes the default locale
for the application to Locale.JAPAN, with the language as Japanese:

Locale.setDefault(new Locale("ja", "JP"));
Licensed to Mark Watson <nordickan@gmail.com>

760 CHAPTER 12 Localization
When the code retrieves the default locale for the same application, it returns Locale
.JAPAN and not the earlier default locale language, Spanish:

Locale newLocale = Locale.getDefault();

Because no matching resource bundle for the language Japanese and country Japan
can be found, this application throws a MissingResourceException at runtime.

A 12-9. f

[12.4] Format dates, numbers, and currency values for localization with the Number-
Format and DateFormat classes (including number format patterns)

Explanation: If you use an illegal character for defining a date and time pattern for
class SimpleDateFormat, it will throw an IllegalArgumentException, which is a run-
time exception.

A 12-10. d

[12.6] Define a locale using language and country codes

Explanation: When you create a locale using only the language component, its region
or country part remains unassigned. Calling getDisplayCountry on such a Locale
object will return an empty string.

A 12-11. a, d

[12.4] Format dates, numbers, and currency values for localization with the Number-
Format and DateFormat classes (including number format patterns)
[12.6] Define a locale using language and country codes

Explanation: Option (b) is incorrect because it uses a nonexistent class Currency-
Format. Option (c) is incorrect because it uses a nonexistent getInstance method
that accepts a type of the formatter to be returned and a Locale.

A 12-12. a, c, d

[12.2] Build a resource bundle for each locale

Explanation: Option (b) is incorrect because the correct name is PropertyResource-
Bundle. PropertyResourceBundle extends ResourceBundle.

 Option (e) is incorrect because resource bundles defined using ListResource-
Bundle can be defined in a package like any other class.
Licensed to Mark Watson <nordickan@gmail.com>

appendix
Answers to “Twist in

the Tale” exercises

Chapters 1–12 include numerous “Twist in the Tale” exercises. The answers to these
exercises are given in this appendix, with comprehensive explanations. The answer
to each exercise includes the following elements:

■ Purpose—The aim of the exercise (the twist to which each exercise is trying to
draw your attention)

■ Answer—The correct answer
■ Explanation—A comprehensive explanation of the answer

Let’s get started with the first chapter.

A.1 Chapter 1: Java class design
Chapter 1 includes 4 “Twist in the Tale” exercises.

A.1.1 Twist in the Tale 1.1

Purpose: This exercise demonstrates how decreasing the accessibility of an entity by
changing its access modifier might impact the code that uses it.

Answer: On recompilation, the class written by Harry, StoryBook, won’t compile.

Explanation: When the accessibility of class Book is changed from public to default,
class Book won’t be visible and accessible outside its library package. If Book can’t
be accessed outside its package, class StoryBook in another package, building,
won’t be able to inherit from it.
761

Licensed to Mark Watson <nordickan@gmail.com>

762 APPENDIX Answers to “Twist in the Tale” exercises
A.1.2 Twist in the Tale 1.2

Purpose: This exercise demonstrates that recursive constructor invocation isn’t allowed.

Answer: The code fails to compile with the following error message:

Employee.java:4: error: recursive constructor invocation
 Employee() {
 ^
1 error

Explanation: A constructor can’t call itself. If a class defines two overloaded construc-
tors, A and B, A can’t call itself. Also, if A calls B, B can’t call A because it would again
result in a recursive constructor call.

A.1.3 Twist in the Tale 1.3

Purpose: To distinguish between overloaded, overridden, and hidden methods

Answer and explanation: Combination letter (a) compiles successfully. The static method
print() in CourseBook hides the static method print() in its base class, Book:

class Book {
 static void print() {}
}
class CourseBook extends Book {
 static void print() {}
}

Instance methods can override methods from their base class, but static methods
don’t. When a derived class defines a static method with the same signature as one
of the methods in its base class, it hides it. Static methods don’t participate in
polymorphism.

 Combination letter (b) won’t compile. The static method print() in the base
class Book can’t be hidden by the instance method print() in the derived class
CourseBook:

class Book {
 static void print() {}
}
class CourseBook extends Book {
 void print() {}
}

Combination letter (c) won’t compile either. The instance method print() in base
class Book can’t be overridden by the static method print() in derived class
CourseBook:

class Book{
 void print() {}
}

Licensed to Mark Watson <nordickan@gmail.com>

763Chapter 2: Advanced class design
class CourseBook extends Book {
 static void print() {}
}

Combination (d) compiles successfully. The instance method print() in CourseBook
overrides the instance method print() in its base class, Book:

class Book{
 void print() {}
}
class CourseBook extends Book {
 void print() {}
}

A.1.4 Twist in the Tale 1.4

Purpose: To demonstrate appropriate overriding of methods of class Object—in par-
ticular, toString(). Beware: appropriate method overriding is not the same as correct
method overriding.

Answer: Book1, Book3, and Book4 exhibit the appropriate overridden method
toString().

Explanation: The contract of method toString() specifies that it should return a con-
cise but informative textual representation of the object that it represents. This is usu-
ally accomplished by using the value of the instance variables of an object. The default
implementation of this method in class Object returns the name of the object’s class,
followed by an @ sign and its hash-code value.

 Class Book1 overrides method toString() to return a textual message followed by
the value of its instance variable title, so it meets the toString() contract. Method
toString() in class Book2 returns a product of copies and 11. It isn’t appropri-
ately overridden. When used by other developers, the value returned by toString()
will not make much sense. Book3 returns title and Book4 returns title and its class
name, which also exhibit the appropriate override of this method and meets the
toString() contract.

A.2 Chapter 2: Advanced class design
Chapter 2 includes 6 “Twist in the Tale” exercises.

A.2.1 Twist in the Tale 2.1

Purpose: To enable you to draw UML class diagrams, depicting a base-derived class rela-
tionship between classes. You’ll need to draw similar UML class diagrams (on your
rough sheet) in the real exam to quickly answer questions on object casting and IS-A
and HAS-A relationships.

Licensed to Mark Watson <nordickan@gmail.com>

764 APPENDIX Answers to “Twist in the Tale” exercises
Answer: Shown in figure A.1.

A.2.2 Twist in the Tale 2.2

Purpose: Unlike constructors and other methods, an initializer block can't reference
(access and use) an instance variable before it’s defined. Similarly, a static initializer
block can't reference a static variable before it is defined. Assessing a variable before
it is defined is also known as forward referencing. An instance initializer block can refer
to a static variable before it is declared, because static variables are made available
when a class is loaded in memory, which happens before initialization of objects of
its class.

Answer: d

Explanation: The code fails to compile because the first static initializer block defined
in class DemoMultipleStaticBlocks can’t forward reference the static variable static-
Var. The code fails with the following error message:

DemoMultipleInstanceBlocks.java:4: error: illegal forward reference
 ++staticVar;
 ^
1 error

A.2.3 Twist in the Tale 2.3

Purpose: To show that a final variable must be initialized in the class in which it’s
declared. Its initialization can’t be deferred to its derived class.

Answer: The code won’t compile.

Explanation: A static or instance final variable must be initialized in the class in which
it is declared using any one of these options:

■ Initialize the final variable with its declaration.
■ Initialize a static final variable in the class’s static initializer block.
■ Initialize an instance final variable in an instance initializer block or a constructor.

CarnivoreHerbivore Omnivore

Animal

Deer Elephant Tiger Lion Cat Dog

Figure A.1 UML diagram depicting the inheritance relationship between the given classes
Licensed to Mark Watson <nordickan@gmail.com>

765Chapter 2: Advanced class design
A.2.4 Twist in the Tale 2.4

Purpose: To verify that enum constants are created before execution of static blocks

Answer: The code outputs the following:

constructor
static init block
BEGINNER

Explanation: The definition of an enum starts with its constants, which are created in a
static initializer block. Because the static initializer blocks execute in the order of their
declaration, any static initializer in an enum will execute after the completion of the
creation of its own enum constants. So even though it might seem that the static ini-
tializer block in enum Level will execute after its constructor, it won’t.

A.2.5 Twist in the Tale 2.5

Purpose: To test multiple facts:

■ An enum can define a main() method.
■ The enum constants are static, so they can be accessed in any static method

defined within the enum.
■ The overridden method toString() in class Enum returns the name of the

enum constant.

Answer: c

Explanation: There aren’t any errors with the code. All enums inherit class Enum. The
default implementation of toString() in Enum returns the enum constant’s name. So
System.out.println(VANILLA) outputs VANILLA. To use the string values passed to
enum constants in enum IceCreamTwist, you need to override its method toString()
as follows:

public String toString() {
 return color;
}

A.2.6 Twist in the Tale 2.6

Purpose: To test multiple points:

■ An inner class can define a variable with the same name as its outer class.
■ An inner class can define a static variable if it’s marked final.
■ An inner class can’t define a static variable that’s not marked final.
■ When you initialize an array with some size, the array elements are initialized to

null. So the default constructor for the array elements isn’t invoked.
■ Instantiation of an outer class doesn’t instantiate its inner class automatically.

Answer: e
Licensed to Mark Watson <nordickan@gmail.com>

766 APPENDIX Answers to “Twist in the Tale” exercises
Explanation: In inner class Petal, the code at line 1 assigns a value to its own instance
variable color. The inner class Petal can access its outer class’s (Flower) instance
variable color by using Flower.this.color. The only type of static member that an
inner class is allowed to define is a final static variable. The code at (#3) initializes an
array to hold two Petal objects. Both petal[0] and petal[1] are initialized to null.
So the default constructor of Petal is never invoked and that’s why this program out-
puts nothing.

A.3 Chapter 3: Object-oriented design principles
Chapter 3 includes 3 “Twist in the Tale” exercises.

A.3.1 Twist in the Tale 3.1

Purpose: To enable you to understand that the choice of implementing either the class
inheritance or the interface inheritance is not very obvious. Apart from class design
considerations, you also need to pay attention to any conflicting method signatures
that lead to overlapping of overloaded and overridden methods in a class that extends
another class or implements an interface.

Answer: d

Explanation: To enable an object of class MyLaptop to be used in a try-with-resources
statement, class MyLaptop should implement the AutoCloseable interface or any of
its subinterfaces. But the definition of method close(), which is already defined in
class MyLaptop, conflicts with the definition of the close() method defined in the
AutoCloseable interface. Methods close() defined in class MyLaptop and the Auto-
Closeable interface qualify as neither overridden or overloaded methods because
they differ only in their return type:

Class: MyLaptop - public int close()
Interface: AutoCloseable – void close()

So, class MyLaptop will fail to compile if it implements the AutoCloseable interface or
any of its subinterfaces.

A.3.2 Twist in the Tale 3.2

Purpose: To encourage you to draw simple UML class diagrams on your erasable boards
(that you receive at the testing center for your rough notes) to represent an inheri-
tance relationship between classes and interfaces to answer questions on IS-A and
HAS-A relationships. A quick UML diagram won’t take long to draw and will simplify
answering exam questions, similar to this one.

Answer: a, c

Explanation: Figure A.2 shows two UML class diagrams. The one on the left takes care
of all the UML notations. Though the UML diagram on the right doesn’t take care of
Licensed to Mark Watson <nordickan@gmail.com>

767Chapter 4: Generics and collections
all the UML diagram notations (not the one that you can send to your prospective cli-
ents), it still makes clear the inheritance relationship between the classes and inter-
faces so that you can quickly answer similar questions on the exam. To answer whether
an entity IS-A another type or not, just walk up the hierarchy tree. Also, TypeA IS-A
TypeA is always true.

A.3.3 Twist in the Tale 3.3

Purpose: To bring your attention to simpler concepts. The exam tip in the chapter
that’s placed just before this exercise mentions eager initialization, synchronizing
getInstance(), or using a synchronization block in getInstance(). When you read
about advanced concepts, you might overlook the basic and simple concepts.

Answer: No.

Explanation: The constructor of this class must be marked private and variable
anInstance and method getInstance() must be marked static.

 The singleton pattern restricts the creation of instances of a class to one. The code
in this example has multiple issues: its constructor isn’t private and variable anInstance
and method getInstance() are defined as instance members.

 Marking the constructor as private will guarantee no more than one instance of class
Singleton can be created. But without the static method getInstance(), this class is
useless. Method getInstance() is an instance method, so you need an instance but
can’t initialize it with a private constructor. Variable anInstance must be marked static
as well, because an instance variable can’t be accessed in a static method.

A.4 Chapter 4: Generics and collections
Chapter 4 includes 7 “Twist in the Tale” exercises.

A.4.1 Twist in the Tale 4.1

Purpose: To differentiate between the notion <T> and T used in the definition of
generic methods in generic and nongeneric classes or interfaces.

SameY

InterH

JamD

BreaU SunP

SameY

InterH

JamD

BreaU

SunP

Figure A.2 UML
class diagram
Licensed to Mark Watson <nordickan@gmail.com>

768 APPENDIX Answers to “Twist in the Tale” exercises
Answer: After the modification, the MyMap interface will fail to compile.

Explanation: For a generic interface or class, its type information follows the name of
the class or interface. In the following example, the type information <K, V> follows
the interface name MyMap:

interface MyMap<K, V>{
}

The generic methods get() and put() can use the type parameters K and V defined by
the MyMap interface in its type declaration <K, V>:

interface MyMap<K, V>{
 V get(K key);
}

For method get(), when you enclose V in <>, it’s no longer considered as its return
type—it becomes type information. Because method get() doesn’t define a return type
anymore, it doesn’t compile.

A.4.2 Twist in the Tale 4.2

Purpose: To understand how the combination of raw and generic data types work,
including compilation errors and warnings that they generate

Answer: b, c

Explanation: The code that uses a combination of raw and generic data types can run
into compilation errors and warnings. The following code defines the generic class
and interface, and will compile without any errors or warnings:

interface MyMap<K, V>{
 void put(K key, V value);
 V get(K key);
}
class CustomMap<K, V> implements MyMap<K, V> {
 K key;
 V value;
 public void put(K key, V value) {
 //.. code
 }
 public V get(K key) {
 return value;
 }
}

When you define a reference variable using the class’s raw type, it loses the type infor-
mation and isn’t aware about the type of the objects that you’d use to work with it. In
the following code, map loses type information and is unaware about the types Integer
and String that are passed to the CustomMap instantiation:

CustomMap map = new CustomMap<Integer, String>();
map.put(new String("1"), "Selvan");
String strVal = map.get(new Integer(1));
Licensed to Mark Watson <nordickan@gmail.com>

769Chapter 4: Generics and collections
In the preceding code, map is a raw type. Method get() will return a value of type
Object. Without an explicit cast, you can't assign an Object to a String reference vari-
able. So assignment of map.get(new Integer(1)) to strVal fails compilation.

 Option (a) is incorrect. If you modify the code as mentioned, it will result in
another compilation error, this time at line 2. The code at line 2 tries to add a String-
String key-value pair to map, when it’s supposed to accept an Integer-String key-
value pair.

A.4.3 Twist in the Tale 4.3

Purpose: To remove an object from a collection, the collection checks for its existence. If
you modify the value of an object or reassign another object to the reference variable,
you might not be able to find the original object that you added to the collection.

 The collections that use hashing algorithms use hashCode(), equals(), or both to
compare object values. Collections like ArrayList that don’t use hashing algorithms
use only equals() to compare object values.

Answer: c

Explanation: The following code adds the Integer object with value 20 (referred by
variable age1) to list:

ArrayList<Integer> list = new ArrayList<>();
Integer age1 = 20;
list.add(age1);

Before the code requests the object referred by age1 to be removed from list, it reas-
signs another object to it:

age1 = 30;
list.remove(age1);

Because the Integer object with value 30 was never added to list, it can’t be removed
from it. Let’s see what happens for the following code:

list.remove(new Integer(20));

After execution of the preceding code, the first occurrence of the Integer object with
value 20 will be removed from list. This shows

■ An ArrayList uses method equals() to compare its elements before remov-
ing them.

■ Method remove() removes only the first occurrence of a matching element.

Here’s another quick question. Do you think the following code will throw a runtime
exception?

list.remove(20);

Yes, it will. ArrayList defines the overloaded remove() methods:

■ remove(int index)
■ remove(Object obj)
Licensed to Mark Watson <nordickan@gmail.com>

770 APPENDIX Answers to “Twist in the Tale” exercises
list.remove(20) will try to remove an element at array position 20, throwing an
IndexOutOfBoundException. It won’t autobox the int value 20 to an Integer instance
and try to remove it from list.

EXAM TIP For an ArrayList of Integer objects, calling remove(20) will
remove its element at position 20. It won’t remove an Integer object with
value 20 from the ArrayList.

A.4.4 Twist in the Tale 4.4

Purpose: A reference variable of an interface can only access the variables and methods
defined in the interface (in the absence of an explicit cast).

Answer: d

Explanation: The List interface doesn’t define methods offer() or push(). Class
LinkedList implements both List and Deque. Methods offer() and push() are
defined in Deque. Though a reference variable of type List can be used to refer to a
LinkedList instance, it can’t access methods that it doesn’t define.

A.4.5 Twist in the Tale 4.5

Purpose: To highlight the role of equals() and hashCode() in storing and retrieving
elements in a HashSet, which is a collection that uses a hashing algorithm.

Answer: a, c

Explanation: To understand the code in this exercise and the answer options, you must
know how elements are added to a HashSet.

 When elements are added to class HashSet, it queries method hashCode() of the
element to get the bucket in which the element would be stored. If the bucket doesn’t
contain any elements, it stores the new element in the bucket. If the bucket already
contains elements, HashSet checks for matching hashCode values, compares object
references, or queries method equals() to ensure that it stores unique values.

 As per answer option (b), Person only overrides the hashCode method:

public int hashCode() {
 return 10;
}

In the absence of the overridden method equals(), even though all the reference
variables p1, p2, p3, and p4 have the same hashCode() values, they aren’t considered
equal. So all objects referred by these variables are added to HashSet. Though option
(c) doesn’t define an appropriately overridden method equals(), it returns true for
any object compared with a Person object:

public boolean equals(Object o) {
 return true;
}

Licensed to Mark Watson <nordickan@gmail.com>

771Chapter 4: Generics and collections
public int hashCode() {
 return 10;
}

With the preceding code, all the reference variables p1, p2, p3, and p4 have the same
hashCode values and they return true when compared with each other. Because Hash-
Set doesn’t allow duplicate elements, it adds the object referred by variable p1 only.

 Option (d) overrides equals() only. Because hashCode() isn’t overridden, the
objects referred by variables p1, p2, p3, and p4 will have different hashCode() values.
Even for two Person objects with the same name, their hashCode() will be different.
When the hashCode() values are different, the hashing algorithm doesn’t call equals().

A.4.6 Twist in the Tale 4.6

Purpose: To show how instances of a class are sorted if both Comparable and Comparator
are used

Answer: a

Explanation: When class Twist4_6 instantiates TreeSet that can store Person instances,
it also defines a Comparator to compare Person instances on their age values. Class
Person implements the Comparable interface, which sorts it on name. Comparator
takes precedence over Comparable, so Person instances are sorted using Comparator,
returning the output in option (a).

A.4.7 Twist in the Tale 4.7

Purpose: To implement an interface, a class must include the implements clause in its
declaration. If a class defines the interface methods, but its declaration doesn’t men-
tion that the class implements it, the class isn’t considered as implementing the
interface.

Answer: e

Explanation: Though class Person defines method compareTo(), its declaration doesn’t
mention that it implements Comparable. When you call Arrays.sort(<reference-
to-anArray>), the array objects must implement the Comparable interface so that
they can be sorted on their natural order. If the class doesn't implement Comparable,
you can use the overloaded method sort(), which takes an array and a Comparator
instance. Because the code in this exercise doesn’t comply with either of these rules,
the code throws the following runtime exception:

Exception in thread "main" java.lang.ClassCastException: Person cannot be
cast to java.lang.Comparable
Licensed to Mark Watson <nordickan@gmail.com>

772 APPENDIX Answers to “Twist in the Tale” exercises
A.5 Chapter 5: String processing
Chapter 5 includes 3 “Twist in the Tale” exercises.

A.5.1 Twist in the Tale 5.1

Purpose: To identify correct and incorrect regexes (regular expressions) that match a
target string. An incorrect regex is not the same as an invalid regex. Code that defines
an invalid regex will compile if it’s a valid string value. But it will throw a Pattern-
SyntaxException at runtime.

Answer: d

Explanation: \b matches a word boundary and \B matches a nonword boundary.
 Option (a) is incorrect because regex \Bthe\B will match “the” in a target string,

which isn't placed at the start or end of a word. For example, “the” in “leather.”
 Option (b) is incorrect because regex \bthe\B will match words that start with

“the” but don't end with it. For example, it will match “the” in “their”. This pattern
won’t find words that end with “the”.

 Option (c) is incorrect because regex \Bthe\b will match words that don't start
with “the” but end with “the”. For example, it will match “the” in “seethe”. But this pat-
tern won’t find words that start with “the”.

 Option (d) is correct. The pattern \bthe will match a word that starts with “the”
and the pattern the\b will match a word that ends with “the”. Because the regex
\\bthe|the\\b uses a logical or operator (|), it will match a word that either starts
with “the” or ends with “the”—for example, “the” in “their” and “the” in “seethe”.

A.5.2 Twist in the Tale 5.2

Purpose: To remember that the similar sounding string methods—that is, replace(),
replaceAll(), and replaceFirst()—offer different functionality. Also make note of
the method parameters that can be passed to these overloaded methods.

Answer: a, d

Explanation: The first three options—(a), (b), and (c)—test the strings that a regex
pattern will match. The next options—(d), (e), and (f)—test the use of methods
replace() and replaceFirst(), together with different regex patterns.

 Option (a) is correct and (b) and (c) are incorrect. The regex c.p\\b will match
“cup” and not “cupp”. This regex will match letter “c” followed by any (one) character,
followed by “p”, followed by a word boundary (end of word). Method replaceAll()
matches a target string against a regex pattern and returns a new string, with all occur-
rences of the matched pattern replaced by the specified text.
Licensed to Mark Watson <nordickan@gmail.com>

773Chapter 6: Exceptions and assertions
 Option (d) is correct and (e) and (f) are incorrect. Following are the signatures of
the methods replace(), replaceAll(), and replaceFirst() defined in class String:

String replace(char oldChar, char newChar)
String replace(CharSequence target, CharSequence replacement)
String replaceAll(String regex, String replacement)
String replaceFirst(String regex, String replacement)

Unlike methods replaceAll() and replaceFirst(), which match and replace all or
the first occurrence of a matching regex pattern, the overloaded replace() methods
don’t match and replace a regex pattern. They find and replace exact string matches. If
you modify the example in this exercise, replacing replaceAll() with replace(), the
method replace() won’t be able to find an exact match for c.p\b.

A.5.3 Twist in the Tale 5.3

Purpose: To verify what happens when there is a mismatch in the type of the token
returned by Scanner and the actual method that’s used to retrieve it

Answer: c

Explanation: The tokens of Scanner can be retrieved using next(), which returns an
object of type String. It also defines multiple nextXXX() methods where XXX refers to
a primitive data type. Instead of returning a String value, these methods return the
value as the corresponding primitive type. There can be a mismatch in the type of
the token returned and method nextXXX() used to retrieve a token.

 In class MyScan used in this exercise, Scanner’s method nextInt() returns the next
token as an int value. But the second token in string 1 a 10 . 100 1000—that is, a—
isn’t an int. The Java Runtime throws an InputMismatchException when it detects
this mismatch.

 The code compiles because the token values can’t be determined during the com-
pilation process.

A.6 Chapter 6: Exceptions and assertions
Chapter 6 includes 4 “Twist in the Tale” exercises.

A.6.1 Twist in the Tale 6.1

Purpose: How to use a method that declares throwing a checked exception in its
method declaration, even if it handles it itself and will never throw it.

Answer: c

Explanation: Method useReadFile() includes a checked exception, FileNotFound-
Exception, in its throws clause, so the calling method, main(), must declare to han-
dle the thrown exception. Because main() doesn’t, the code fails to compile.
Licensed to Mark Watson <nordickan@gmail.com>

774 APPENDIX Answers to “Twist in the Tale” exercises
 You might argue that method useReadFile() would never throw a FileNotFound-
Exception because it handles it itself using a catch block. But this doesn’t form a
strong reason to convince the compiler to relax its rules. In short, if a method declares
to throw a checked exception, the calling method must either handle it or declare it
in one of the following ways:

■ Handle exception—Using a try-catch block
■ Declare exception—Add the exception to the exception list or throws clause

A.6.2 Twist in the Tale 6.2

Purpose: This exercise has two purposes:

■ To establish that a method can declare to throw a checked exception, even
though it doesn’t include any code that might throw it

■ How to use such a method

Answer: c

Explanation: This is similar to the previous exercise, though with subtle differences. It
establishes that you can declare to throw checked exceptions (by using the throws
clause), even if your code doesn’t include any code that throws the mentioned
checked exception.

 It reconfirms that whenever you use a method that declares to throw a checked
exception, you must accomplish either of the following or else your code won’t compile:

■ A handle exception using a try-catch block
■ A declare exception by adding the exception to the exception list or throws

clause

A.6.3 Twist in the Tale 6.3

Purpose: To show that in a multi-catch block, the type of the reference variable is the
base class of all the exception classes. Also, the default implementation of method
toString() in class Throwable returns the fully qualified name of the Throwable
instance (all Exception and Error classes) together with its exception message.

Answer: c
Will the code compile after commenting code marked with //line1? No.

Explanation: An attempt to retrieve the value of a reference variable itself calls its
method toString(). The common base class of classes Exception1 and Exception2
is Exception. Class Exception inherits class Throwable, which overrides method
toString(). The default implementation of method toString() in class Throwable
returns the fully qualified name of the Throwable instance (all Exception and Error
classes) together with its exception message.

 Because exception classes used in this example aren’t specifically defined in any
package (the default package doesn’t have an explicit name), an attempt to execute
Licensed to Mark Watson <nordickan@gmail.com>

775Chapter 7: Java I/O fundamentals
System.out.println(ex), passing it an Exception1 instance, outputs Exception1.
The default implementation of toString() in class Object, the base class of all the
Java classes, returns the class name together with the instance’s hash-code value.

 When you comment on code marked //line1, the code won’t compile. After
the modification, the catch block would try to handle the checked exception
Exception2, which is never thrown by its corresponding try block.

A.6.4 Twist in the Tale 6.4

Purpose: To remind you that appearances can be deceptive. A code snippet that seems
to check you on assertions might actually be checking you on another concept.

Answer: d

Explanation: The code won’t compile because while overriding toString(), class
Person assigns a weaker access level (private) to it. When you override a base
class method, you can assign the same or wider access level to it, but you can’t make
it more restrictive.

A.7 Chapter 7: Java I/O fundamentals
Chapter 7 includes 1 “Twist in the Tale” exercise.

A.7.1 Twist in the Tale 7.1

Purpose: To show that though the following operations seem to be the same, they’re
different:

■ Read data into a byte array and write all the byte array contents to an output
stream.

■ Read data into a byte array and write only the filled-in byte array to an output
stream.

Answer: b, c

Explanation: When you create a local array of a primitive data type, all its members are
initialized to their default values. The following line of code in class Twist creates a
local array of type byte, initializing all its members to 0.

byte[] byteArr = new byte[2048];

Class Twist reads the source file into byteArr using FileInputStream’s method
read(byte[]). This method returns the total number of bytes read into the byteArr,
or -1 if there is no more data because the end of the file has been reached. When
read() returns -1, data might not be read into all the positions of byteArr. So it
makes sense to write only the data that has been read. If you write all the byteArr
data, you have a high probability of writing the default value, 0, resulting in a copy
that’s not identical. But if you’re very lucky and the file size is a plurality of the array
length, you still have an identical copy.
Licensed to Mark Watson <nordickan@gmail.com>

776 APPENDIX Answers to “Twist in the Tale” exercises
 Copy.java fails to compile because it isn’t identical to Twist.java and includes addi-
tional byte values written to it.

A.8 Chapter 8: Java file I/O (NIO.2)
Chapter 8 includes 2 “Twist in the Tale” exercises.

A.8.1 Twist in the Tale 8.1

Purpose: To show what happens with redundancies in a Path object when you retrieve
its components

Answer: a, e, f

Explanation: Methods toString(), getName(), getParent(), and subpath() don’t
remove any redundancies from the Path object. An example of a method that
removes a redundancy from a Path object is normalize(). Also, the root element of a
path isn’t its first name element. The element that’s closest to the root in the directory
hierarchy has index 0.

 The output of this exercise’s code is as follows:

c:\OCPJavaSE7\..\obj8\.\8-1.txt
..
c:\OCPJavaSE7\..\obj8\.
obj8\.

Path objects are used to represent the path of files or directories in a file system. They
represent a hierarchal path, containing directory names and filenames separated by
platform-specific delimiters. The Path methods used in this example don’t eliminate
the redundancy before returning their values.

A.8.2 Twist in the Tale 8.2

Purpose: To reiterate that most of the Path methods perform syntactic operations—
that is, logical operations on paths in memory

Answer: d

Explanation: Method relativize() is used to construct a path between two relative or
absolute Path objects. Method resolve() is used to join a relative path to another
path. If you pass an absolute path as a parameter, this method returns the absolute
path. The operation file.resolve(file.relativize(dir)) returns ‘code/java/
IO.java/../..’. Given that file Twist8_2 (Twist8_2.class) is located in the directory
‘/home’, calling toAbsolutePath() on ‘code/java/IO.java/../..’ returns ‘/home/
code/java/IO.java/../..’.

A.9 Chapter 9: Building database applications with JDBC
Chapter 9 includes no “Twist in the Tale” exercises.
Licensed to Mark Watson <nordickan@gmail.com>

777Chapter 10: Threads
A.10 Chapter 10: Threads
Chapter 10 includes 4 “Twist in the Tale” exercises.

A.10.1 Twist in the Tale 10.1

Purpose: When you instantiate a thread, say, A, passing it another Thread instance, say,
B, calling A.start() will start one new thread of execution. Calling A.start() will
execute B.run.

Answer: b

Explanation: Class Thread defines an instance variable target of type Runnable,
which refers to the target object it needs to start. When you instantiate newThread by
passing it a Sing instance, sing, newThread.runnable refers to sing. When you call
newThread.start(), newThread() checks if its target is null or not. Because it
refers to sing, calling newThread.start() starts a new thread of execution, calling
target.run().

A.10.2 Twist in the Tale 10.2

Purpose: To show that a multithreaded application can throw multiple unhandled
exceptions

Answer: a, b, e

Explanation: In multithreaded applications, you can’t predetermine the order of exe-
cution of threads. When multiple threads in your application throw unhandled excep-
tions, your application can throw all of these exceptions from separate threads. This is
unlike single-threaded applications, which throw only one unhandled exception.
Class Twist10_2 starts a new thread, sing, which outputs Singing before throwing a
RuntimeException. After Twist10_2 starts thread sing, it throws a RuntimeException
itself. The order of execution of throwing of RuntimeException by threads main and
sing is random. But the output of text Singing is sure to happen-before thread sing
throws a RuntimeException.

A.10.3 Twist in the Tale 10.3

Purpose: To synchronize the right methods to protect your shared data

Answer: c

Explanation: Because the methods newSale() and returnBook() aren’t defined as syn-
chronized methods, multiple threads can access these methods concurrently, posing a
risk of thread interference that fails to protect the data of object book, defined on
line 3. Defining the run() methods as synchronized doesn’t help to protect the data
of object book. It restricts execution of run to a single thread; it doesn’t restrict modi-
fication of an instance of Book to a single thread. To protect your shared data, you
Licensed to Mark Watson <nordickan@gmail.com>

778 APPENDIX Answers to “Twist in the Tale” exercises
should add the synchronized keyword to the methods that directly manipulate your
shared data.

A.10.4 Twist in the Tale 10.4

Purpose: To identify classes that can be used and shared safely in a multithreaded appli-
cation without external synchronization

Answer: a

Explanation: Class BirthDate is defined as a final class, and its methods are declared
final, which will prevent this class from being subclassed and its methods can’t be
overridden. Make note of the methods that modify the value of the BirthDate instance.
The objects of this class are immutable—that is, the methods of BirthDate don’t allow
modification of its instance variable birth. Also, birth is declared as a private mem-
ber, so it can never be manipulated by any other class. It’s safe to be used in a multi-
threaded application without external synchronization.

A.11 Chapter 11: Concurrency
Chapter 11 includes 3 “Twist in the Tale” exercises.

A.11.1 Twist in the Tale 11.1

Purpose: Make note of the order in which you acquire a lock using lockInterrupt-
ibly(), handle the InterruptedException that it throws, and unlock it. Unlock the
lock only if you can acquire it; otherwise, it will throw an IllegalMonitorState-
Exception.

Answer: a, d

Explanation: If the thread e1 in main manages to complete its execution before
e.interrupt() executes, class Employee will output the following:

Paul: boarded

If e.interrupt() executes before thread e1 in main manages to complete its execu-
tion, class Employee will output the following:

Paul: Interrupted!!
IllegalMonitorStateException

Compare the code in this exercise with the code in listing 11.1. The finally block in
this exercise calls bus.lock.unlock() irrespective of whether or not a lock could be
obtained on bus.lock. When the finally block executes after the code fails to acquire a
lock on bus.lock, it will throw an IllegalMonitorStateException.

A.11.2 Twist in the Tale 11.2

Purpose: How to code method execute() to exercise complete control over how to
execute tasks for an executor. Calling start() on a Thread instance starts a new thread
Licensed to Mark Watson <nordickan@gmail.com>

779Chapter 12: Localization
of execution. Calling run() on a Runnable instance executes the thread in the same
thread of execution.

Answer: d

Explanation: The execute method adds the submitted task at the end of its custQueue
and calls processEarliestOrder(), which retrieves the first task from this queue. But
processEarliestOrder() calls task.run(), which executes method run() on task in
the same thread as the calling thread, without starting any new thread of execution:

public void execute(Runnable r) {
 synchronized(custQueue) {
 custQueue.offer(r);
 }
 processEarliestOrder();
}
private void processEarliestOrder() {
 synchronized(custQueue) {
 Runnable task = custQueue.poll();
 task.run();
 }
}

Because each invocation of task.run() waits for method run() to complete before
returning from the method, the code will always execute the submitted tasks in the
predefined manner.

A.11.3 Twist in the Tale 11.3

Purpose: The order of execution of calling join() and compute() on divided subtasks
is important in a fork/join framework.

Answer: b, c

Explanation: Though the code will always return correct results, it won’t benefit from
the fork/join framework. Each task waits for its completion (join() is called) before
starting execution of a new thread.

A.12 Chapter 12: Localization
Chapter 12 includes 2 “Twist in the Tale” exercises.

A.12.1 Twist in the Tale 12.1

Purpose: To show that you can use different methods to create Locale objects, such as
Locale constants, Locale constructors, and LocaleBuilder. Depending on how Locale
objects are created or initialized, some of their fields might be initialized with default
or null values.

Answer: a

Explanation: Locale.FRENCH only assigns its language as French. Locale assigns null
to its region field. Locale.FRANCE assigns its region to France and its language as
Licensed to Mark Watson <nordickan@gmail.com>

780 APPENDIX Answers to “Twist in the Tale” exercises
French. Locale’s method equals() compares their field values to determine their
equality. You can output the value of a Locale object by calling its method toString().
The following code

Locale locale1 = Locale.FRENCH;
Locale locale2 = Locale.FRANCE;
System.out.println(locale1);
System.out.println(locale2);

outputs the following:

fr
fr_FR

Locale’s method toString() returns a string representation of this Locale object,
consisting of language, country, variant, script, and extensions, as

language + "_" + country + "_" + (variant + "_#" | "#") + script + "-" +
extensions

A.12.2 Twist in the Tale 12.2

Purpose: To determine the sequence of the search order for a resource bundle from a
given set of resource-bundle files, given the target and default Locale values

Answer: d

Explanation: Here’s the list of the resource-bundle files:

■ MessagesBundle_fr.properties
■ MessagesBundle_fr_FR.properties
■ MessagesBundle_DE.properties
■ MessagesBundle_de.properties
■ MessagesBundle.properties

Given that the default locale of the host system is Locale.JAPAN, and you need to
load the resource bundle for locale de_DE, here’s the search order for the matching
resource bundle:

1 MessagesBundle_de_DE.properties
2 MessagesBundle_de.properties
3 MessagesBundle_ja_JP.properties
4 MessagesBundle_ja.properties
5 MessagesBundle.properties

As evident, MessagesBundle_de.properties matches the target locale de_DE.
Licensed to Mark Watson <nordickan@gmail.com>

index
Symbols

? (question mark) 255, 359–360
[] square brackets 351
* quantifier 360–361
\ (backslash) 354, 518
+ quantifier 361–362
< > angle brackets 263
| (logical or operator) 772

A

absolute paths, converting
523–524

abstract classes 474
advantages of 103
best practices 103–105
concrete classes vs. 105–106
constructing 100–103
identifying 97–100
overview 97
review notes for 154–155

Abstract Factory pattern
211–213, 218–219

access control list. See ACL
access modifiers

default access 19–23
effects of changing 26–28
for interfaces 177–178
overview 15–16, 25
package access 19–23
private access modifier 23–24
protected access modifier

17–19
public access modifier 16–17
review notes on 83–84

accessibility, decreasing 26
accessor methods 108
ACL (access control list) 538
AclFileAttributeView

interface 538, 543
ActionListener 186
add() method 284
addAll() method 295
addAndGet() method 694
addFirst() method 284
addLast() method 284
angle brackets 263
anonymous inner classes

accessing members of 151
creating by implementing

interface 150
creating extending class

147–150
defining within method 151
disadvantages of 153–154
overview 147
review notes for 158

ArrayBlockingQueue 684
ArrayDeque class 286–287
ArrayIndexOutOfBounds-

Exception 404, 409
arrays

review notes on 336–337
searching 318–320
sorting 313–316

asList() method 214
AssertionError 432, 434, 436,

440
assertions

appropriate uses for 440–443
exercise answers 773–775

forms of 432–435
inappropriate uses for 439,

441
review notes on 446–447
testing invariants

class invariants 438–439
control-flow invariants 438
internal invariants

435–438
assignments

with explicit casting 71–72
with implicit casting 70–71

atomic variables 693–695
attributes, file and directory

AclFileAttributeView
interface 543

attribute sets 537–539
basic attributes 540–541
DOS attributes 541–542
FileOwnerAttributeView

interface 543
individual attributes

535–537
POSIX attributes 542–543
review notes on 564–565
UserDefinedAttributeView

interface 543–544
autoboxing

defined 322
overview 325–328
review notes on 337–338

AutoCloseable interface 422,
428

auto-commit mode 599
awaitTermination()

method 699, 701
781

Licensed to Mark Watson <nordickan@gmail.com>

INDEX782
B

%b parameter 379
backslash (\) 354, 518
BasicFileAttributes

interface 537
BasicFileAttributeView

interface 537
binary trees 295
binarySearch() method 318
BLOCKED state 635
BlockingQueue interface

680–682
booleanValue() method 322
bounded type parameters

253–255
bounded wildcards 257–259
bridge methods 262
buckets 291
BufferedInputStream class 468,

481
BufferedOutputStream

class 468, 476, 481
BufferedReader class 468, 493
BufferedWriter class 468,

492–493
buffering

byte streams 481–482
character streams 493–494

byte streams
buffering 481–482
InputStream class 473–475
OutputStream class 475–476
overview 477–480
for primitive types 482–484
review notes on 500–502

byteValue() method 322

C

%c parameter 380
Calendar class 749–750
Callable interface 698–699
CallableStatement

interface 610–611
camelCase 248
cancel() method 558
casting

accessing members with
explicit 72–73

assignment with explicit 71–72
assignment with implicit

70–71
explicit 67–70
implicit 67–70

casts 245
CHAR data type 592
character classes

overview 351–353
predefined 354–356

character streams
buffering 493–494
overview 489–493
PrintWriter class 494–496
Reader class 491
review notes on 502–503
Writer class 491–492

charValue() method 322
checked exceptions

custom 410–411
throwing 400–403

class invariants 438–439
class path 78
ClassCastException 71, 73–74,

269, 306, 325, 404, 542
classes

abstract
advantages of 103
best practices 103–105
concrete classes vs. 105–106
constructing 100–103
identifying 97–100
overview 97
review notes for 154–155

access modifiers
default access 19–23
effects of changing 26–28
overview 15–16, 25
package access 19–23
private access modifier

23–24
protected access

modifier 17–19
public access modifier

16–17
review notes on 83–84

anonymous inner
accessing members of 151
creating by implementing

interface 150
creating extending

class 147–150
defining within

method 151
disadvantages of 153–154
overview 147
review notes for 158

casting
accessing members with

explicit 72–73

assignment with
explicit 71–72

assignment with
implicit 70–71

explicit 67–70
implicit 67–70

enumerated types
adding implicit code

to 124–125
adding variables, construc-

tors, and methods
127–130

extending
java.lang.Enum 125–127

overview 122–123
review notes for 156–157
valid locations for 130–132

final modifier
for classes 121–122
conditional assignment of

variables 117–119
general discussion 115
for methods 120–121
review notes for 155–156
for variables 115–117

generic
extending 249–250
multiple type

parameters 250
overview 246–248
variable names for type

parameters 248–249
inheritance

adding behavior in derived
classes 185–186

interface inheritance
vs. 184–185

reusing implementation
from base class 185

review notes on 223
inner

accessibility for 144–145
creating 142–144
disadvantages of 153–154
overview 132–134, 139–141
review notes for 158

instanceof operator 73–75
method local inner

overview 152–153
review notes for 159

method overriding
base class constructors

and 50
equals() method 54–59
hashCode() method 60–66
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 783
classes (continued)
identifying overriding,

overloading, and
hiding 49–50

methods that can be
overridden 48

overview 40–42, 51
review notes on 84–85
syntax for 44–48
toString() method 51–53

overloaded constructors
instance initializers

38–40
invoking from another

constructor 36–38
overview 35–36

overloaded methods
changing number of

method parameters 30
changing positions of

method parameters
33–34

changing type of method
parameters 31–33

methods that cannot be
overloaded 34–35

overview 28–30
review notes on 84

packages
advantages of using 75
directory structure and

package hierarchy 77
importing classes from

default package 81
importing classes from

subpackages 80–81
importing single member

vs. all members 80
package statement 76–77
review notes on 85
setting class path for classes

in 78
static imports 81–83
using simple names with

import statements 78
using without import

statement 79
static modifier

accessibility for static
members 109–110

for classes 114–115
general discussion 107
initializer blocks 110–114
for interfaces 114–115
for methods 109

review notes for 155
for variables 107–108

static nested
access levels of 138
accessibility of outer class

members 138–139
accessing members of 138
overview 132–138
review notes for 157

type safety 246–247
ClassNotFoundException 486,

488, 585
clear() method 282
clearParameters() method 609
clone() method 51
close() method 474–476
Closeable interface 428, 492
code exhibit button 11
cohesion 197–198
collections

arrays
searching 318–320
sorting 313–316

Collection interface
Collections class vs. 272
methods of 275–276
overview 273–275

Comparable interface
308–310

Comparator interface
310–312

concurrency with
BlockingQueue

interface 681–682
ConcurrentHashMap

class 682–684
ConcurrentMap

interface 682
overview 680–681
review notes on 709

Deque interface
ArrayDeque class 286–287
LinkedList class 287–289
overview 282–286

iterating with wildcard
256–257

List interface 276–282
lists

searching 318–320
sorting 317–318

Map interface
HashMap class 297–304
LinkedHashMap class 304
overview 296–297
TreeMap class 305–307

overview 271–272
review notes on 330–336
Set interface

HashSet class 291–294
LinkedHashSet class

294–295
overview 290–291
TreeSet class 295–296

commit modes 603
commit() method 603
Comparable interface 308–310,

336, 520
Comparator interface 310–312,

336
compare() method 295, 307,

310
compareAndSet() method

694–695
compareTo() method 295,

307–309, 324, 371–372,
522

compareToIgnoreCase()
method 371

compile() method 353
compute() method 707, 779
computeSum() method 707
concurrency

collections
BlockingQueue

interface 681–682
ConcurrentHashMap

class 682–684
ConcurrentMap

interface 682
overview 680–681
review notes on 709

defined 627
executors

Callable interface 698
Executor interface 696–698
ExecutorService

interface 699–700
overview 695–696
review notes on 710–711
ScheduledExecutorService

interface 701–703
thread pools 700–701

exercise answers 778–779
Lock objects

acquiring lock and return
immediately 686–688

atomic variables and
693–695

interruptible locks 688–690
lock() method 685
Licensed to Mark Watson <nordickan@gmail.com>

INDEX784
concurrency (continued)
nonblock-structured

locking 690–691
overview 684–685
ReadWriteLock

interface 692
ReentrantReadWriteLock

class 692
review notes on 709–710

parallel fork/join framework
overview 703–708
review notes on 711

Singleton pattern and 204
ConcurrentHashMap class 304,

682, 684
ConcurrentMap interface 680,

682, 684
ConcurrentModification-

Exception 276, 683
ConcurrentNavigableMap

interface 680
ConcurrentSkipListMap 684
Connection interface 583
console I/O

overview 497–500
review notes on 503

constant specific class body 129
constants 123
constructors

adding to enums 127–130
chaining for I/O classes 496
overloaded

instance initializers 38–40
invoking from another

constructor 36–38
overview 35–36

contains() method 281, 366
containsKey() method 299,

305, 683
containsValue() method 299
control-flow invariants 438
copy() method 530, 533
CopyOnWriteArrayList 684
CopyOption interface 530
coupling 198–200
coupon for exam 10
create, retrieve, update, and

delete operations. See
CRUD operations

createCachedRowSet()
method 605

createDirectories()
method 528–529

createDirectory() method 528
createFile() method 527, 529

createFilteredRowSet()
method 605

createJdbcRowSet()
method 605

createJoinRowSet() method 605
createNewFile() method

472–473
createStatement() method 214
createWebRowSet()

method 605
CRUD (create, retrieve, update,

and delete) operations
creating tables 590–591
deletes 595
inserting rows 592–593
overview 589–590
queries 595–598
review notes on 616–617
SQL data types and Java data

types 591–592
updates 594

culture 722
currency formatting 740–742

D

%d parameter 380–381
DAO (Data Access Object)

design pattern 173
advantages of 220
implementing 215–217
overview 215
review notes on 226
using Abstract Factory pattern

with 218–219
using Factory Method pattern

with 218–219
using Simple Factory pattern

with 217–218
Data Definition Language. See

DDL
database applications

CallableStatement
interface 610–611

connecting to databases
exceptions from 588
loading JDBC drivers 585
overview 584–585
review notes on 615–616
using DriverManager

586–588
CRUD operations

creating tables 590–591
deletes 595
inserting rows 592–593

overview 589–590
queries 595–598
review notes on 616–617
SQL data types and Java

data types 591–592
updates 594

JDBC API
Connection interface 583
Driver interface 582
overview 579–580
ResultSet interface 583
review notes on 615
Statement interface 583

JDBC drivers 580–581
JDBC transactions

commit modes 603
example using 599–601
overview 599
review notes on 617
savepoints 601–603

overview 578–579
prepared statements

607–610
RowSet objects

JdbcRowSet class 605–607
overview 603–605
review notes on 617–618
RowSetFactory

interface 605
RowSetProvider class 605

stored procedures 612–614
database engines 579
DataInputStream 482
DataOutputStream 476, 482
DataSource interface 588
DATE data type 592
date formatting 743–749
DateFormat class 723, 737, 743,

745, 749
DDL (Data Definition

Language) 590
deadlock 662–663
DecimalFormat class 737
decorator classes 468
decrementAndGet()

method 694
default access 19–23
defaultLocale() method 739
delete() method 534
deleteIfExists() method 534
Deque interface 705, 770

ArrayDeque class 286–287
LinkedList class 287–289
overview 282–286
review notes on 331–333
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 785
derived classes 185–186,
188–190

design patterns
advantages of 201
DAO pattern

advantages of 220
implementing 215–217
overview 215
review notes on 226
using Abstract Factory pat-

tern with 218–219
using Factory Method pat-

tern with 218–219
using Simple Factory pat-

tern with 217–218
Factory pattern

Abstract Factory
pattern 211–213

advantages of 213
Factory Method

pattern 210–211
Java API uses of 214–215
review notes on 225
Simple Factory

pattern 208–209
overview 201
Singleton pattern

concurrent access
issues 204

eager initialization 205
implementing 202–203
overview 202
review notes on 224
static variables vs. 207
synchronized lazy

initialization 205–206
using enums 206–207

directories
attributes

AclFileAttributeView
interface 543

attribute sets 537–539
basic attributes 540–541
DOS attributes 541–542
FileOwnerAttributeView

interface 543
individual attributes

535–537
POSIX attributes 542–543
review notes on 564–565
UserDefinedAttributeView

interface 543–544
checking existence of

529–530
copying 530–534

creating 527–529
deleting 534–535
moving 534
recursive tree access

DirectoryStream
interface 553

FileVisitor interface
546–549

overview 545–546, 550–553
review notes on 566
SimpleFileVisitor class

549–550
watching for changes

accessing watched events
using WatchKey
interface 558

creating WatchService
object 557

overview 557
processing events 558–561
registering with WatchSer-

vice object 557–558
review notes on 567–568

DirectoryNotEmptyException
534

DirectoryStream interface 553
dirty reads/writes 654
DOS attributes 541–542
DosFileAttributes interface 537,

541
DosFileAttributeView

interface 537, 542
DOUBLE data type 592
doubleValue() method 322
downcasting 71
Driver interface 582
DriverManager class 584, 586,

588

E

eager initialization 205
end() method 353
endsWith() method 371, 522
entrySet() method 303
enum constants 765
enumerated types

adding implicit code to
124–125

adding variables, constructors,
and methods 127–130

extending
java.lang.Enum 125–127

overview 122–123
review notes for 156–157

Singleton pattern and
206–207

valid locations for 130–132
EOFException 483
equals() method 54–59,

280–282, 769
equalsIgnoreCase()

method 371
Error class 412
exam

changes to 8
completing before allotted

time 10
coupon for 10
marking questions during 10
preparing for 8
retaking 11
taking mock tests before 8
testing engine used in 11–12
using notes during 10
where to take 9–10

Exam object 4
exceptions

custom
checked exceptions

410–411
overview 409–410
review notes on 444
unchecked exceptions 412

from database
connections 588

exercise answers 773–775
for Files class 535
overriding methods that

throw exceptions 413–415
throw statements and throws

clauses
checked exceptions

400–403
handling exceptions 405
overview 398–400
rethrowing

exceptions 406–407
runtime exceptions

403–404
subclass of checked

exceptions 404–405
try statements

handling multiple
exceptions 416–421

single-catch vs. multi-catch
handlers 415–416

try-with-resources statements
closing order of

resources 430
Licensed to Mark Watson <nordickan@gmail.com>

INDEX786
exceptions (continued)
declaring resources 427
example using 422–424
scope of resources declared

by 427
semicolon usage 428
suppressed

exceptions 424–426
execute() method 606, 609,

697
executeQuery() method 214,

590–591, 596, 609
executeUpdate() method

590–591, 593, 595, 601,
609

executors
Callable interface 698
Executor interface 696–698
ExecutorService

interface 699–700, 704
overview 695–696
review notes on 710–711
ScheduledExecutorService

interface 701–703
thread pools 700–701

exhaustion of physical
resources 700

exists() method 529
experience

and preparation 8
explicit casting

accessing members with
72–73

assignments with 71–72
overview 67–70

explicit names 147
extends keyword 183, 193, 255,

257

F

%f parameter 380–381
factory class 518
Factory Method pattern

210–211, 218–219
Factory pattern

Abstract Factory pattern
211–213

advantages of 213
Factory Method pattern

210–211
Java API uses of 214–215
review notes on 225
Simple Factory pattern

208–209

FIFO (first in, first out) 283
File class

creating files and
directories 472–473

creating instances of 470–472
creating path objects

using 519–520
overview 469–470

FileAlreadyExistsException 529
FileInputStream class 466, 470,

474, 477–478, 482
FileNotFoundException 401,

404, 409, 477, 773
FileOutputStream class 466,

470, 476–478, 482
FileOwnerAttributeView

interface 538, 543
FileReader class 466, 470, 492
Files class

checking existence of files and
directories 529–530

common exceptions on 535
copying files and

directories 530–534
creating files and

directories 527–529
deleting files and

directories 534–535
moving files and

directories 534
review notes on 563–564

FileSystem class 519
FileVisitor interface 546–549
FileWriter class 466, 470, 492
final modifier

for classes 121–122
conditional assignment of

variables 117–119
general discussion 115
for methods 120–121
review notes for 155–156
for variables 115–117

finalize() method 51
first in, first out. See FIFO
floatValue() method 322
flush() method 475–476
fork/join framework 703–708
ForkJoinPool class 704–705
ForkJoinTask class 705
format() method 377, 496, 499,

738–739, 749
formatting strings

%b parameter 379
%c parameter 380
classes for 376

%d parameter 380–381
%f parameter 380–381
format specifiers 377–378
methods for 376–377
review notes on 385–386
%s parameter 381–382

formatting, locale
Calendar class 749–750
currencies 740–742
dates 743–745
dates and time together

746–749
numbers 738–740
review notes on 753–754
time 745–746

forName() method 585
forward referencing 764
fromIndex value 314

G

Gang of Four 201
generics

bounded type parameters
defining 254–255
need for 253–254

bounded wildcards 257–259
classes

extending 249–250
multiple type

parameters 250
overview 246–248, 767
variable names for type

parameters 248–249
interfaces

defining 250
generic class

implementing 251–252
nongeneric class

implementing 251
interoperability of raw

types and generic types
265–271

methods 252–253, 767
need for 244–245
pros and cons of 245–246
review notes on 328–330
subtyping with 270–271
terminology 262–263
type erasure

bridge methods 262
overview 260–261

type inference
instantiating generic class

using 264
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 787
generics (continued)
invoking generic methods

using 265
overview 263–264

unknown type using
wildcard 255–257

get() method 519
getAbsolutePath() method 523
getAcl() method 543
getAndAdd() method 694
getAndDecrement()

method 694
getAndIncrement()

method 694
getAndSet() method 694
getAttribute() method 536–537
getBundle() method 214, 731,

733
getClassl() method 74
getConnection() method 214,

586
getCurrencyInstance()

method 214, 740–742
getDate() method 598
getDateInstance() method 745
getDateTimeInstance()

method 743
getDefault() method 519, 725
getDefaultLocale() method 725
getDisplayCountry()

method 726
getDisplayLanguage()

method 726
getDisplayName() method 726
getDouble() method 598
getDriver() method 214
getFileAttributeView()

method 537, 539
getFloat() method 597
getInstance() method 203,

205–206, 214, 737–739,
742

getInt() method 597
getIntegerInstance()

method 215, 739
getLocale() method 725
getLong() method 597
getMetaData() method 598
getName() method 521, 524,

776
getNameCount() method 521
getNumberFormat()

method 214
getNumberInstance()

method 739

getOwner() method 543
getParent() method 776
getPath() method 519
getPathMatcher() method 555
getPercentInstance()

method 739
getRoot() method 521
getString() method 597–598
getTime() method 749
getTimeInstance() method 746

H

happens-before
relationships 655, 664–665

HAS-A relationships
implementing 196–197
overview 190–191
review notes on 223

hashCode() method 769
correct syntax for 61–63
inappropriate syntax for

64–65
inefficient syntax for 65–66
overview 60–61
using mutable objects as

keys 66
HashMap class

copying 302–303
defined 682
determining size of 302
duplicate keys in 301
null keys in 301
overview 297–299
removing entries 301–302
retrieving keys and

values 299–300, 303–304
HashSet class 291–294, 770
HashTable class 304
hasMoreElements()

method 375
hasMoreTokens() method 375
hasNext() method 555
hidden methods 41, 49
high cohesion 197

I

I/O (input/output)
byte streams

buffering 481–482
InputStream class 473–475
OutputStream class

475–476
overview 477–480

for primitive types 482–484
review notes on 500–502

character streams
buffering 493–494
overview 489–493
PrintWriter class 494–496
Reader class 491
review notes on 502–503
Writer class 491–492

console reading and writing
overview 497–500
review notes on 503

constructor chaining with I/O
classes 496

exercise answers 775–776
File class

creating files and
directories 472–473

creating instances of
470–472

overview 469–470
review notes on 500

object streams
implementing Serializable

interface 485–486
methods for 489
overview 484–489
reading and writing objects

to file 486–488
transient and static variables

and 488–489
streams 464–465
types of data for 465–469
See also NIO.2

IllegalArgumentException 404,
439, 522, 526, 541

IllegalFormatConversion-
Exception 380–381

IllegalMonitorStateException
661, 778

IllegalStateException 404
IllegalThreadStateException

637–638
immutable objects 654–655
implements keyword 193, 255
implicit casting

assignments with 70–71
overview 67–70

import statements
importing classes from default

package 81
importing classes from

subpackages 80–81
single member vs. all

members 80
Licensed to Mark Watson <nordickan@gmail.com>

INDEX788
import statements (continued)
using packages without 79
using simple names with 78

importance of certification 3, 9
inconsistent memory 658
incrementAndGet()

method 694
indexOf() method 364–365
IndexOutOfBoundsException

404
inheritance

class
adding behavior in derived

classes 185–186
interface inheritance

vs. 184–185
reusing implementation

from base class 185
review notes on 223

interface
class inheritance vs.

184–185
defining new contract for

existing classes 186–187
derived classes 188–190
implementing multiple

interfaces 186
review notes on 223

inner classes
accessibility for 144–145
anonymous

accessing members of 151
creating by implementing

interface 150
creating extending

class 147–150
defining within

method 151
disadvantages of 153–154
overview 147
review notes for 158

creating 142–144
overview 132–134, 139–141
review notes for 158

input/output. See I/O
InputStream class 473–475
instance initializers 38–40
instance variables 116, 657
instanceof operator 73–75
INT data type 592
INTEGER data type 592
interfaces

access modifiers for
177–178

declaring 176–179

extending 183–184
generic

defining 250
generic class

implementing 251–252
nongeneric class

implementing 251
implementing 179–183
inheritance

class inheritance vs.
184–185

defining new contract
for existing classes
186–187

derived classes 188–190
implementing multiple

interfaces 186
review notes on 223

method overriding 180–181
methods in 178
nonaccess modifiers for

178–179
overlapping method

implementations
181–183

overview 174–175
review notes on 222–223
static modifier and

114–115
variables in 178, 180

internal invariants 435–438
internationalization

advantages 722
building applications

using 727–728
defined 721
formatting for locales

Calendar class 749–750
currencies 740–742
dates 743–745
dates and time

together 746–749
numbers 738–740
review notes on 753–754
time 745–746

Locale objects
accessing using

constants 725
accessing using static

method 725
class overview 722–723
creating using

constructors 724–725
creating using

Locale.builder 725

retrieving information
about 726–727

overview 719–722
resource bundles

implementing using
ListResourceBundle
733–735

implementing using
property files
728–733

loading for invalid
values 735–736

overview 728
review notes on 752–753

review notes on 750–751
InterruptedException 661,

689
interruptible locks 688–690
intValue() method 322
invariants, testing

class invariants 438–439
control-flow invariants 438
internal invariants

435–438
invoke() method 707
invokeAll() method 699
invokeAny() method 699
IOException 404, 407, 486,

488, 535, 549
IS-A relationships

identifying 191–193
implementing 193–196
overview 190–191
review notes on 223

isDirectory() method 471
isEmpty() method 302
isFile() method 471
isShutdown() method 699
isTerminated() method 699
Iterable interface 274, 520
iterator() method 290, 555

J

Java class 4
Java Database Connectivity. See

JDBC
Java Database Objects. See JDO
Java Naming and Directory

Interface. See JNDI
Java Persistence API. See JPA
Java Runtime Environment. See

JRE
Java Standard Edition. See JSE
Java Virtual Machine. See JVM
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 789
JDBC (Java Database
Connectivity) 187

API
Connection interface 583
Driver interface 582
overview 579–580
ResultSet interface 583
review notes on 615
Statement interface 583

architecture 580
CallableStatement

interface 610–611
connecting to databases

exceptions from 588
loading JDBC drivers 585
overview 584–585
review notes on 615–616
using DriverManager

586–588
CRUD operations

creating tables 590–591
deletes 595
inserting rows 592–593
overview 589–590
queries 595–598
review notes on 616–617
SQL data types and Java

data types 591–592
updates 594

drivers 580–581
exercise answers 776
prepared statements

607–610
RowSet objects

JdbcRowSet class 605–607
overview 603–605
review notes on 617–618
RowSetFactory interface

605
RowSetProvider class 605

stored procedures 612–614
transactions

commit modes 603
example using 599–601
overview 599
review notes on 617
savepoints 601–603

JdbcRowSet class 605–607
JDO (Java Database

Objects) 578
JNDI (Java Naming and Direc-

tory Interface) 588
join() method 636, 643–644,

707, 779
JPA (Java Persistence API) 578

JRE (Java Runtime
Environment) 735

JSE (Java Standard Edition) 578
JVM (Java Virtual Machine) 628

K

keySet() method 303

L

language parameter 724
lastIndexOf() method

364–365
LIFO (last in, first out) 283
lightweight processes 628
LinkedBlockingDeque 684
LinkedBlockingQueue 684
LinkedHashMap class 304
LinkedHashSet class 294–295
LinkedList class 287–289
List interface 770

overview 276–282
review notes on 331–333
searching lists 318–320
sorting lists 317–318

ListResourceBundle class 728,
733–735

livelock 664
local variables 657
localization

advantages 722
building applications

using 727–728
defined 721
exercise answers 779–780
formatting for locales

Calendar class 749–750
currencies 740–742
dates 743–745
dates and time

together 746–749
numbers 738–740
review notes on 753–754
time 745–746

Locale objects
accessing using

constants 725
accessing using static

method 725
class overview 722–723
creating using

constructors 724–725
creating using

Locale.builder 725

retrieving information
about 726–727

overview 719–722
resource bundles

implementing using
ListResourceBundle
733–735

implementing using prop-
erty files 728–733

loading for invalid
values 735–736

overview 728
review notes on 752–753

review notes on 750–751
Lock objects

acquiring lock and return
immediately 686–688

atomic variables and 693–695
interruptible locks 688–690
lock() method 685
nonblock-structured

locking 690–691
overview 684–685
ReadWriteLock interface 692
ReentrantReadWriteLock

class 692
review notes on 709–710

lock() method 688
lockInterruptibly()

method 685, 688–689, 778
logical or operator (|) 772
longValue() method 322
loosely coupled 198
low cohesion 197
low coupling 198
lower-bounded wildcards 259

M

main thread 629
Map interface

HashMap class
copying 302–303
determining size of 302
duplicate keys in 301
null keys in 301
overview 297–299
removing entries 301–302
retrieving keys and

values 299–300, 303–304
LinkedHashMap class 304
overview 296–297
review notes on 334–336
TreeMap class 305–307

mark questions 11
Licensed to Mark Watson <nordickan@gmail.com>

INDEX790
marking questions 10
matcher() method 353
matches() method 363
member classes 139
memory inconsistency 628
metacharacters 349, 362
method frames 629
method local inner classes

overview 152–153
review notes for 159

method overriding
base class constructors

and 50
equals() method 54–59
hashCode() method

correct syntax for 61–63
inappropriate syntax

for 64–65
inefficient syntax for 65–66
overview 60–61
using mutable objects as

keys 66
identifying 49–50
interfaces 180–181
methods that can be

overridden 48
overview 40–42, 51
review notes on 84–85
syntax for 44–48
toString() method 51–53

methods
adding to enums 127–130
final 120–121
generic 252–253
interface 178
overloaded

changing number of
method parameters 30

changing positions of
method parameters
33–34

changing type of method
parameters 31–33

methods that cannot be
overloaded 34–35

overview 28–30
review notes on 84

private 121
static 109

migration compatibility 265
MissingFormatArgument-

Exception 379
MissingResourceException 736
mkdirs() method 472
mock exams 8–9

mock tests
before exam 8
preparing for exam using 9

monitors 649
move() method 534
multithreading 627
mutator methods 108

N

namespaces 207
native() method 631
nested classes 114
New Input/Output version 2. See

NIO.2
NEW state 635
newCachedThreadPool()

method 215
newCondition() method 685
newDirectoryStream()

method 554
newFixedThreadPool()

method 215
newSingleThreadExecutor()

method 215
newWatchService()

method 557, 560
next() method 555, 596, 773
nextElement() method 375
nextToken() method 375
NIO.2 (New Input/Output ver-

sion 2)
exercise answers 776
files and directory attributes

AclFileAttributeView
interface 543

attribute sets 537–539
basic attributes 540–541
DOS attributes 541–542
FileOwnerAttributeView

interface 543
individual attributes

535–537
POSIX attributes 542–543
review notes on 564–565
UserDefinedAttributeView

interface 543–544
Files class

checking existence of
files and directories
529–530

common exceptions
on 535

copying files and
directories 530–534

creating files and
directories 527–529

deleting files and
directories 534–535

moving files and
directories 534

review notes on 563–564
overview 512–516
path objects

comparing paths 522–523
converting relative paths to

absolute paths 523–524
creating using File

class 519–520
creating using FileSystem

class 519
methods for 521–522
overview 516–518
Paths class vs. Path

interface 520–521
relativize() method

526–527
resolving paths 525
review notes on 561–563

PathMatcher interface
555–556, 566

recursive directory access
DirectoryStream

interface 553
FileVisitor interface

546–549
overview 545–546,

550–553
review notes on 566
SimpleFileVisitor class

549–550
watching directory for

changes
accessing watched events

using WatchKey
interface 558

creating WatchService
object 557

overview 557
processing events 558–561
registering with Watch-

Service object 557–558
review notes on 567–568

nonaccess modifiers
final modifier

for classes 121–122
conditional assignment of

variables 117–119
general discussion 115
for methods 120–121
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 791
nonaccess modifiers (continued)
review notes for 155–156
for variables 115–117

for interfaces 178–179
overloaded constructors

and 36
overloaded methods and 35
static modifier

accessibility for static
members 109–110

for classes 114–115
general discussion 107
initializer blocks 110–114
for interfaces 114–115
for methods 109
review notes for 155
for variables 107–108

normalize() method 523, 776
NoSuchFileException 535
NotDirectoryException 558
notExists() method 529
notify() method 636, 644, 649,

659–660
notifyAll() method 636, 644,

649, 659–660
NotSerializableException

486–487
NullPointerException 287, 326,

375, 403–404
number formatting 738–740
NumberFormat class 723,

737–739, 742
NumberFormatException 323,

404

O

Object class
equals() method 54–59
hashCode() method

correct syntax for 61–63
inappropriate syntax

for 64–65
inefficient syntax for

65–66
overview 60–61
using mutable objects as

keys 66
method overriding for 51
toString() method 51–53

object composition
principles 200

object locks 649–650
Object Relational Mapping. See

ORM

object streams
implementing Serializable

interface 485–486
methods for 489
overview 484–489
reading and writing objects to

file 486–488
transient and static variables

and 488–489
ObjectInputStream 484, 487,

489
object-oriented design. See OOD
object-oriented programming.

See OOP
ObjectOutputStream 476, 484,

487, 489
OCA (Oracle Certified

Associate) 1, 4
OCA (Oracle Certified Associ-

ate), Java SE 7 Programmer I
(1Z0-803) 2

FAQ 7–11
importance of certification

3, 9
OCA vs. OCP exams 4
readiness checklist 4

OCP (Oracle Certified
Professional) 4

OCP (Oracle Certified Profes-
sional), Java SE 7 Program-
mer II (1Z0-804)

vs. OCA 4
offer() method 284
offerFirst() method 284
offerLast() method 284
OOD (object-oriented design)

class inheritance
adding behavior in derived

classes 185–186
interface inheritance

vs. 184–185
reusing implementation

from base class 185
review notes on 223

cohesion
overview 197–198
review notes on 223–224

coupling
overview 198–200
review notes on 223–224

DAO pattern
advantages of 220
implementing 215–217
overview 215
review notes on 226

using Abstract Factory pat-
tern with 218–219

using Factory Method pat-
tern with 218–219

using Simple Factory pat-
tern with 217–218

design patterns 201
Factory pattern

Abstract Factory
pattern 211–213

advantages of 213
Factory Method

pattern 210–211
Java API uses of 214–215
review notes on 225
Simple Factory

pattern 208–209
HAS-A relationships

implementing 196–197
overview 190–191
review notes on 223

interface inheritance
class inheritance vs.

184–185
defining new contract for

existing classes 186–187
derived classes 188–190
implementing multiple

interfaces 186
review notes on 223

interfaces
access modifiers for

177–178
declaring 176–179
extending 183–184
implementing 179–183
method overriding

180–181
methods in 178
nonaccess modifiers

for 178–179
overlapping method

implementations
181–183

overview 174–175
review notes on 222–223
variables in 178, 180

IS-A relationships
identifying 191–193
implementing 193–196
overview 190–191
review notes on 223

object composition principles
overview 200
review notes on 224
Licensed to Mark Watson <nordickan@gmail.com>

INDEX792
OOD (object-oriented design)
(continued)

overview 172–174
Singleton pattern

concurrent access
issues 204

eager initialization 205
implementing 202–203
overview 202
review notes on 224
static variables vs. 207
synchronized lazy

initialization 205–206
using enums 206–207

OOP (object-oriented
programming) 40

OptionalDataException 488
Oracle Certification Candidate

Agreement 11
ORM (Object Relational

Mapping) 578
outer classes 142
OutputStream class 475–476
overloaded constructors

instance initializers 38–40
invoking from another

constructor 36–38
overview 35–36

overloaded methods
changing number of

method parameters
30

changing positions of
method parameters
33–34

changing type of method
parameters 31–33

methods that cannot be
overloaded 34–35

overview 28–30
review notes on 84

@Override annotation 42

P

package access 19–23
packages

advantages of using 75
directory structure and pack-

age hierarchy 77
importing

classes from default
package 81

classes from
subpackages 80–81

without import
statement 79

single member vs. all
members 80

using simple names with
import statements 78

package statement 76–77
review notes on 85
setting class path for classes

in 78
static imports 81–83
using without import

statement 79
parallel fork/join framework

overview 703–708
review notes on 711

parameters, bounded type
defining 254–255
need for 253–254

parse() method 738–739
parseBoolean() method

322
parseByte() method 322
parseDouble() method

323
parseFloat() method 323
parseInt() method 322
parseLong() method 323
parseShort() method 322
parsing strings

overview 372–376
review notes on 384–385

path objects
comparing paths 522–523
converting relative paths

to absolute paths
523–524

creating using File class
519–520

creating using FileSystem
class 519

methods for 521–522
overview 516–518
Paths class vs. Path

interface 520–521
relativize() method

526–527
resolving paths 525
review notes on 561–563

PathMatcher interface
555–556, 566

Paths class vs. Path
interface 520–521

patterns, regular
expression 349, 351

PatternSyntaxException 353,
772

pausing thread execution
639–644

PC (program counter) 629
PDF (Portable Document

Format) 477
peek() method 284
poll() method 287, 558
pollEvents() method 559
polymorphic methods 41
pop() method 284
Portable Document Format. See

PDF
POSIX attributes 542–543
PosixFileAttributes

interface 537, 543
PosixFileAttributeView

interface 538, 543
postVisitDirectory()

method 547
prepared statements

607–610
preparing for exam 8

and experience 8
time required for 8
using mock tests 9

preVisitDirectory()
method 547, 549

print() method 496, 762
printf() method 377, 496
println() method 496
PrintStream class 376–377
PrintWriter class 376, 492,

494–496
priority, thread 634
private access modifier

23–24
private methods 121
processEarliestOrder()

method 697
producer–consumer

pattern 681
program counter. See PC
PropertiesResourceBundle

class 728
protected access modifier

17–19
public access modifier 16–17,

178
push() method 284
put() method 683
putAll() method 302
putIfAbsent() method

682
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 793
Q

quantifiers, regular expression
overview 358–359
using ? to match zero or one

occurrence 359–360
using * to match zero or more

occurrences 360–361
using + to match one or more

occurrences 361–362
question mark (?) 255,

359–360
questions, displaying 11
questions, displaying with

buttons 11
questions, marking 11
questions, number of 12
questions, reviewing 12
Queue interface 282

R

raw types 265–271
RDBMS (relational database

management systems) 579
read() method 473–474, 479,

491
readAttributes() method 537,

539–540, 542
Reader class 491
readiness checklist 4, 8
readLine() method 498
readLock() method 692
readObject() method 486
readPassword() method 498
ReadWriteLock interface 692
REAL data type 592
recursive directory access

DirectoryStream
interface 553

FileVisitor interface 546–549
overview 545–546, 550–553
review notes on 566
SimpleFileVisitor class

549–550
RecursiveAction class 705
ReentrantReadWriteLock

class 692
register() method 558
regular expressions

character classes 351–353
Java support 362–363
matching boundaries

356–358
overview 349–351

predefined character
classes 354–356

quantifiers
overview 358–359
using ? to match zero or

one occurrence 359–360
using * to match zero or

more occurrences
360–361

using + to match one or
more occurrences
361–362

review notes on 382–384
relational database manage-

ment systems. See RDBMS
relative paths, converting

523–524
relativize() method 526–527,

776
remove() method 281–282, 301,

682
removeAll() method 282
replace() method 369, 682,

772
replaceAll() method 369–370,

772
replaceFirst() method 370, 772
reset() method 559
resolve() method 525, 776
resolveSibling() method 525
resource bundles

implementing using
ListResourceBundle
733–735

implementing using property
files 728–733

loading for invalid
values 735–736

overview 728
review notes on 752–753

ResourceBundle class 728
resources

closing order of 430
declaring 427
example using 422–424
scope of 427
semicolon usage 428
suppressed exceptions

424–426
ResultSet interface 583
resume() method 637
ResursiveTask class 705
retaking exam 11
rethrowing exceptions 406–407
rollback() method 603

RowSet objects
JdbcRowSet class 605–607
overview 603–605
review notes on 617–618
RowSetFactory interface 605
RowSetProvider class 605

run() method 630, 632, 636,
638

Runnable interface 632–634,
695, 699

RUNNABLE state 635
RuntimeException 403–404,

412, 777

S

%s parameter 381–382
savepoints 601–603
Scanner class 372–375
schedule() method 702
scheduleAtFixedRate()

method 702
ScheduledExecutor

interface 699
ScheduledExecutorService

interface 695, 701–703
scheduleWithFixedDelay()

method 702
scheduling of threads 639–640
score

received immediately 11
scrollable middle section,

engine UI 11
searching

arrays 318–320
strings

contains() method 366
indexOf() method 364–365
lastIndexOf()

method 364–365
review notes on 384–385
split() method 367–368
subsequence()

method 366–367
substring() method

366–367
Serializable interface 485–486
Service Provider Mechanism. See

SPM
Set interface

HashSet class 291–294
LinkedHashSet class 294–295
overview 290–291
review notes on 331–333
TreeSet class 295–296
Licensed to Mark Watson <nordickan@gmail.com>

INDEX794
set() method 694
setAcl() method 543
setAttribute() method 536–537,

541
setAutoCommit() method 601
setByte() method 609
setDataType() method 607
setDate() method 609
setDouble() method 609
setFloat() method 609
setInt() method 609
setLanguage() method 725
setLastModifiedTime()

method 536, 541
setLong() method 609
setOwner() method 536, 543
setPriority() method 634
setRegion() method 725
shortValue() method 322
shutdown() method 699, 701
shutdownNow() method 699
Simple Factory pattern

208–209, 217–218
simple names 78
SimpleDateFormat class 737,

743, 747–749
SimpleFileVisitor class 549–550
Singleton pattern

concurrent access issues 204
eager initialization 205
implementing 202–203
overview 202
review notes on 224
static variables vs. 207
synchronized lazy

initialization 205–206
using enums 206–207

size() method 302
sleep() method 641–643
sort() method 313, 317
SortedMap interface 305, 307
sorting arrays 313–316
specificLocale() method 739
split() method 367–368
SPM (Service Provider

Mechanism) 582
SQLException 407, 410, 588,

591
square brackets [] 351
StandardWatchEventKinds

events 557
start() method 630–631, 636,

637–639
startsWith() method 371, 522
starvation 663–664

state, thread 634
Statement interface 583
static bottom section, engine

UI 11
static methods 41
static modifier

accessibility for static
members 109–110

for classes 114–115
general discussion 107
initializer blocks 110–114
for interfaces 114–115
for methods 109
review notes for 155
for variables 107–108

static nested classes
access levels of 138
accessibility of outer class

members 138–139
accessing members of 138
overview 132–138
review notes for 157

static upper section, engine
UI 11

static variables 657
object streams and 488–489
Singleton pattern vs. 207

stop() method 637, 645
stored procedures 612–614
streams

byte streams
buffering 481–482
InputStream class 473–475
OutputStream class

475–476
overview 477–480
for primitive types 482–484
review notes on 500–502

character streams
buffering 493–494
overview 489–493
PrintWriter class 494–496
Reader class 491
review notes on 502–503
Writer class 491–492

object streams
implementing Serializable

interface 485–486
methods for 489
overview 484–489
reading and writing objects

to file 486–488
transient and static variables

and 488–489
overview 464–465

strictfp keyword 178
strings

exercise answers 772–773
formatting

%b parameter 379
%c parameter 380
classes for 376
%d parameter 380–381
%f parameter 380–381
format specifiers 377–378
methods for 376–377
review notes on 385–386
%s parameter 381–382

overview 348–349
parsing 372–376, 384–385
regular expressions

character classes 351–353
Java support 362–363
matching boundaries

356–358
overview 349–351
predefined character

classes 354–356
quantifiers 358–362
review notes on 382–384

replacing 369–370
Scanner class 372–375
searching

contains() method 366
indexOf() method

364–365
lastIndexOf()

method 364–365
review notes on 384–385
split() method 367–368
subsequence()

method 366–367
substring() method

366–367
tokenizing 375–376

StringTokenizer class 375–376
submit() method 700
subpath() method 521, 524, 776
subsequence() method

366–367
substring() method 353,

366–367
subtyping with generics

270–271
suppressed exceptions 424–426
suspend() method 637
symbolic links 517
synchronized keyword 649
synchronized lazy

initialization 205–206
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 795
synchronized methods 650–653
synchronized statements

653–654

T

take() method 558
tasks 695
TERMINATED state 635
testing engine

used in exam 11–12
Thread class 695
thread pools 700–701
threads

creating 629–630, 665–666
exercise answers 777–778
general discussion 627–629
lifecycle

ending execution of 645
join() method 643–644
notify() method 644
notifyALL() method 644
overview 634–637
pausing execution

639–644
review notes on 666–667
sleep() method 641–643
start() method 637–639
Thread class methods

637
thread scheduling

639–640
wait() method 644
yield() method 640

Runnable interface 632–634
Thread class 630–632,

667–668
thread safety

deadlock 662–663
happens-before

relationships 664–665
immutable objects

654–655
livelock 664
local variables 657
object locks 649–650
operations affecting

objects 658–659
review notes on 668–670
shared data 645–646
starvation 663–664
synchronized

methods 650–653
synchronized

statements 653–654

thread interference
646–648

volatile variables 655–656
waiting for event

notifications 659–662
throw statements and throws

clauses
checked exceptions 400–403
handling exceptions 405
overview 398–400
rethrowing exceptions

406–407
review notes on 443–444
runtime exceptions 403–404
subclass of checked

exceptions 404–405
Throwable class 411, 774
ThrowExceptions class 408
tightly coupled 198
time format 745–749
time, remaining 12
TIMED_WAITING state 635
toAbsolutePath() method 523
toIndex value 314
tokenizing strings 375–376
toPath() method 519
toString() method 51–53, 763,

776
transactions

commit modes 603
example using 599–601
overview 599
review notes on 617
savepoints 601–603

transient variables 488–489
TreeMap class 305–307
TreeSet class 295–296, 771
try statements

handling multiple
exceptions 416–421

review notes on 445
single-catch vs. multi-catch

handlers 415–416
tryLock() method 685, 687–688
try-with-resources statements

closing order of
resources 430

declaring resources 427
example using 422–424
review notes on 445–446
scope of resources declared

by 427
semicolon usage 428
suppressed exceptions

424–426

“Twist in the Tale” exercises 27
type erasure

bridge methods 262
overview 260–261

type inference
instantiating generic class

using 264
invoking generic methods

using 265
overview 263–264
review notes on 330

type parameters 246, 249
type safety 246–247

U

unboxing
defined 322
overview 325–328
review notes on 337–338

unchecked exceptions 412
unchecked warnings 263
unknown type 255–257
unlock() method 685, 688
unreachable code 437–438
unscored questions 9
UnsupportedOperation-

Exception 275, 541
upcasting 71
upper-bounded wildcards

257–258
user experience 720, 722
UserDefinedAttributeView

interface 543–544
UserDefinedFileAttributeView

interface 538
utility methods 109

V

valueOf() method 323
values() method 303
VARCHAR data type 592
VARCHAR2 data type 592
variables

adding to enums 127–130
final 115–117
in interfaces 178, 180
static 107–108

virtual methods 41
visitFile() method 547,

549–550
visitFileFailed() method 547,

549
volatile variables 655–656
Licensed to Mark Watson <nordickan@gmail.com>

INDEX796
W

wait() method 636, 644, 659
WAITING state 635
walkFileTree() method 546,

550, 553
Watchable interface 520
watching directories

accessing watched events
using WatchKey
interface 558

creating WatchService
object 557

overview 557

processing events 558–561
registering with WatchService

object 557–558
review notes on 567–568

wildcards 255–259
work-stealing algorithm 705
wrapper classes

autoboxing and
unboxing 325–328

class hierarchy of 320–321
comparing objects 323–325
creating objects 321–322
parsing string value to primi-

tive type 322–323

retrieving primitive values
from 322

review notes on 337
valueOf() method vs. 323

write() method 476, 480, 491,
496

writeLock() method 692
WritePrimAndObjects class

487
Writer class 491–492

Y

yield() method 640
Licensed to Mark Watson <nordickan@gmail.com>

RELATED MANNING TITLES
OCA Java SE 7 Programmer I Certification Guide
Prepare for the 1Z0-803 exam
by Mala Gupta

ISBN: 9781617291043
560 pages, $49.99
April 2013

Spring in Action, Fourth Edition
Covers Spring 4
by Craig Walls

ISBN: 9781617291203
624 pages, $49.99
November 2014

Groovy in Action, Second Edition
by Dierk König and Paul King

with Guillaume Laforge, Hamlet D'Arcy,
Cédric Champeau, Erik Pragt, and Jon Skeet

ISBN: 9781935182443
912 pages, $59.99
June 2015

Netty in Action
by Norman Maurer and Marvin Allen Wolfthal

ISBN: 9781617291470
300 pages, $54.99
September 2015
For ordering information go to www.manning.com

Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/gupta/
http://manning.com/walls5/
http://manning.com/koenig2/
http://manning.com/maurer/
http://www.manning.com
http://manning.com/gupta/
http://manning.com/walls5/
http://manning.com/koenig2/
http://manning.com/maurer/

RELATED MANNING TITLES
Agile Metrics in Action
How to measure and improve team performance
by Christopher W. H. Davis

ISBN: 9781617292484
272 pages, $44.99
July 2015

Software Development Metrics
by David Nicolette

ISBN: 9781617291357
192 pages, $59.99
July 2015

Learn Git in a Month of Lunches
by Rick Umali

ISBN: 9781617292415
375 pages, $39.99
August 2015

Git in Practice
by Mike McQuaid

ISBN: 9781617291975
272 pages, $39.99
September 2014
For ordering information go to www.manning.com

Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/davis2/
http://manning.com/nicolette/
http://manning.com/umali/
http://manning.com/mcquaid/
http://www.manning.com
http://manning.com/davis2/
http://manning.com/nicolette/
http://manning.com/umali/
http://manning.com/mcquaid/

Mala Gupta

The OCP Java 7 certifi cation tells potential employers that
you’ve mastered the language skills you need to design and
build professional-quality Java software. Passing the OCP

isn’t just about knowing your Java, though. You have to also
know what to expect on the exam and how to beat the built-in
tricks and traps.

OCP Java SE 7 Programmer II Certifi cation Guide is a
comprehensive, focused study guide that prepares you to pass
the OCP exam the fi rst time you take it. It systematically guides
you through each exam objective, reinforcing the Java skills you
need through examples, exercises, and cleverly constructed visual
aids. In every chapter you’ll fi nd questions just like the ones
you’ll face on the real exam. Tips, diagrams, and review notes
give structure to the learning process to improve your retention.

What’s Inside
● 100% coverage of the OCP Java SE 7 Programmer II
 exam (1Z0-804)
● Flowcharts, UML diagrams, and other visual aids
● Hands-on coding exercises
● Focuses on passing the exam, not the Java language itself

Designed for readers with intermediate-level Java skills.

Mala Gupta is a trainer of programmers who plan to pass Java
certifi cation exams. She holds the OCP Java SE 7 Programmer,
SCWCD, and SCJP certifi cations and is the author of OCA Java
SE 7 Programmer I Certifi cation Guide (Manning 2013).

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/ocp-java-se-7-programmer-ii-certification-guide

$44.99 / Can $51.99 [INCLUDING eBOOK]

OCP Java SE 7
Programmer II Certifi cation Guide

JAVA CERTIFICATION

M A N N I N G

“A good read for all who
want to deepen their Java

knowledge, even if not
 preparing for the exam.”

—Simon Joseph Aquilina
KPMG Crimsonwing

“Makes the certifi cation
objectives clear and easy

 to understand.”—Mikael Strand, Capgemini

“An excellent resource for the
OCP certifi cation exam.”—Ashutosh Sharma
Discover Financial Services, LLC

“With a conversational style
of writing, detailed code
examples, and self-test

questions, this book will
successfully lead you to

 your OCP certifi cation.”—Mikalai Zaikin, IBA IT Park

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Start your preparation with the chapter-based exam objective map
	Chapter-based objectives
	Section-based objectives
	Exam tips
	Notes
	Sidebars
	Images
	Twist in the Tale exercises
	Review notes
	Exam questions
	Answers to exam questions
	This book online
	Author Online
	About the author
	About the cover illustration

	Introduction
	Disclaimer
	Introduction to OCP Java SE 7 Programmer II certification (1Z0-804)
	The importance of the OCP Java SE 7 Programmer II certification
	Comparing the OCA Java SE 7 Programmer I (1Z0-803) and OCP Java SE 7 Programmer II (1Z0-804) exams
	Complete exam objectives, mapped to book chapters, and readiness checklist

	FAQ
	FAQ on exam preparation
	FAQ on taking the exam

	The testing engine used in the exam

	1 Java class design
	1.1 Java access modifiers
	1.1.1 Public access modifier
	1.1.2 Protected access modifier
	1.1.3 Default access (package access)
	1.1.4 The private access modifier
	1.1.5 Access modifiers and Java entities
	1.1.6 Effects of changing access modifiers for existing entities

	1.2 Overloaded methods and constructors
	1.2.1 Argument list
	1.2.2 When methods can’t be defined as overloaded methods
	1.2.3 Overloaded constructors

	1.3 Method overriding and virtual method invocation
	1.3.1 Need of overridden methods
	1.3.2 Correct syntax of overriding methods
	1.3.3 Can you override all methods from the base class or invoke them virtually?
	1.3.4 Identifying method overriding, overloading, and hiding
	1.3.5 Can you override base class constructors or invoke them virtually?

	1.4 Overriding methods of class Object
	1.4.1 Overriding method toString()
	1.4.2 Overriding method equals()
	1.4.3 Overriding method hashCode()

	1.5 Casting and the instanceof operator
	1.5.1 Implicit and explicit casting
	1.5.2 Combinations of casting
	1.5.3 Using the instanceof operator

	1.6 Packages
	1.6.1 The need for packages
	1.6.2 Defining classes in a package using the package statement
	1.6.3 Using simple names with import statements
	1.6.4 Using packages without using the import statement
	1.6.5 Importing a single member versus all members of a package
	1.6.6 The import statement doesn’t import the whole package tree
	1.6.7 Importing classes from the default package
	1.6.8 Static imports

	1.7 Summary
	Review notes
	Java access modifiers
	Overloaded methods and constructors
	Method overriding and virtual method invocation
	Java packages

	Sample exam questions
	Answers to sample exam questions

	2 Advanced class design
	2.1 Abstract classes and their application
	2.1.1 Identify abstract classes
	2.1.2 Construct abstract classes and subclasses
	2.1.3 Understand the need for abstract classes
	2.1.4 Follow the dos and don’ts of creating and using abstract classes
	2.1.5 Compare abstract classes and concrete classes

	2.2 Static and final keywords
	2.2.1 Static modifier
	2.2.2 Nonaccess modifier—final

	2.3 Enumerated types
	2.3.1 Understanding the need for and creating an enum
	2.3.2 Adding implicit code to an enum
	2.3.3 Extending java.lang.Enum
	2.3.4 Adding variables, constructors, and methods to your enum
	2.3.5 Where can you define an enum?

	2.4 Static nested and inner classes
	2.4.1 Advantages of inner classes
	2.4.2 Static nested class (also called static inner class)
	2.4.3 Inner class (also called member class)
	2.4.4 Anonymous inner classes
	2.4.5 Method local inner classes
	2.4.6 Disadvantages of inner classes

	2.5 Summary
	Review notes
	Abstract classes
	Nonaccess modifier—static
	Nonaccess modifier—final
	Enumerated types
	Static nested classes
	Inner classes
	Anonymous inner classes
	Method local inner classes

	Sample exam questions
	Answers to sample exam questions

	3 Object-oriented design principles
	3.1 Interfaces
	3.1.1 Understanding interfaces
	3.1.2 Declaring interfaces
	3.1.3 Implementing interfaces
	3.1.4 Extending interfaces

	3.2 Class inheritance versus interface inheritance
	3.2.1 Comparing class inheritance and interface inheritance
	3.2.2 Preferring class inheritance over interface inheritance
	3.2.3 Preferring interface inheritance over class inheritance

	3.3 IS-A and HAS-A relationships in code
	3.3.1 Identifying and implementing an IS-A relationship
	3.3.2 Identifying and implementing a HAS-A relationship

	3.4 Cohesion and low coupling
	3.4.1 Cohesion
	3.4.2 Coupling

	3.5 Object composition principles
	3.6 Introduction to design patterns
	3.6.1 What is a design pattern?
	3.6.2 Why do you need a design pattern?

	3.7 Singleton pattern
	3.7.1 Why do you need this pattern?
	3.7.2 Implementing the Singleton pattern
	3.7.3 Ensuring creation of only one object in the Singleton pattern
	3.7.4 Comparing Singleton with global data

	3.8 Factory pattern
	3.8.1 Simple Factory pattern (or Static Factory pattern)
	3.8.2 Factory Method pattern
	3.8.3 Abstract Factory pattern
	3.8.4 Benefits of the Factory pattern
	3.8.5 Using the Factory pattern from the Java API

	3.9 DAO pattern
	3.9.1 What is the DAO pattern?
	3.9.2 Implementing the DAO pattern
	3.9.3 Using the Simple Factory pattern with the DAO pattern
	3.9.4 Using the Factory Method or Abstract Factory pattern with the DAO pattern
	3.9.5 Benefits of the DAO pattern

	3.10 Summary
	Review notes
	Interfaces
	Class inheritance versus interface inheritance
	IS-A and HAS-A relationships in code
	Cohesion and low coupling
	Object composition principles
	Singleton pattern
	Factory pattern
	DAO pattern

	Sample exam questions
	Answers to sample exam questions

	4 Generics and collections
	4.1 Introducing generics: WARM-UP
	4.1.1 Need for introducing generics
	4.1.2 Benefits and complexities of using generics

	4.2 Creating generic entities
	4.2.1 Creating a generic class
	4.2.2 Working with generic interfaces
	4.2.3 Using generic methods
	4.2.4 Bounded type parameters
	4.2.5 Using wildcards
	4.2.6 Using bounded wildcards
	4.2.7 Type erasure
	4.2.8 Refreshing the commonly used terms

	4.3 Using type inference
	4.3.1 Using type inference to instantiate a generic class
	4.3.2 Using type inference to invoke generic methods

	4.4 Understanding interoperability of collections using raw types and generic types
	4.4.1 Mixing reference variables and objects of raw and generic types
	4.4.2 Subtyping with generics

	4.5 Introducing the collections framework: WARM-UP
	4.6 Working with the Collection interface
	4.6.1 The core Collection interface
	4.6.2 Methods of the Collection interface

	4.7 Creating and using List, Set, and Deque implementations
	4.7.1 List interface and its implementations
	4.7.2 Deque interface and its implementations
	4.7.3 Set interface and its implementations
	4.7.4 Set implementation classes

	4.8 Map and its implementations
	4.8.1 Map interface
	4.8.2 HashMap
	4.8.3 LinkedHashMap
	4.8.4 TreeMap

	4.9 Using java.util.Comparator and java.lang.Comparable
	4.9.1 Comparable interface
	4.9.2 Comparator interface

	4.10 Sorting and searching arrays and lists
	4.10.1 Sorting arrays
	4.10.2 Sorting List using Collections
	4.10.3 Searching arrays and List using collections

	4.11 Using wrapper classes
	4.11.1 Class hierarchy of wrapper classes
	4.11.2 Creating objects of the wrapper classes
	4.11.3 Retrieving primitive values from the wrapper classes
	4.11.4 Parsing a string value to a primitive type
	4.11.5 Difference between using method valueOf() and constructors of wrapper classes
	4.11.6 Comparing objects of wrapper classes

	4.12 Autoboxing and unboxing
	4.13 Summary
	Review notes
	Creating generic entities
	Using type inference
	Understanding interoperability of collections using raw types and generic types
	Working with the Collection interface
	Creating and using List, Set, and Deque implementations
	Map and its implementations
	Using java.util.Comparator and java.lang.Comparable
	Sorting and searching arrays and lists
	Using wrapper classes
	Autoboxing and Unboxing

	Sample exam questions
	Answers to sample exam questions

	5 String processing
	5.1 Regular expressions
	5.1.1 What is a regular expression?
	5.1.2 Character classes
	5.1.3 Predefined character classes
	5.1.4 Matching boundaries
	5.1.5 Quantifiers
	5.1.6 Java’s regex support

	5.2 Searching, parsing, and building strings
	5.2.1 Searching strings
	5.2.2 Replacing strings
	5.2.3 Parsing and tokenizing strings with Scanner and StringTokenizer

	5.3 Formatting strings
	5.3.1 Formatting classes
	5.3.2 Formatting methods
	5.3.3 Defining format strings
	5.3.4 Formatting parameter %b
	5.3.5 Formatting parameter %c
	5.3.6 Formatting parameters %d and %f
	5.3.7 Formatting parameter %s

	5.4 Summary
	Review notes
	Regular expressions
	Search, parse, and build strings
	Formatting strings

	Sample exam questions
	Answers to sample exam questions

	6 Exceptions and assertions
	6.1 Using the throw statement and the throws clause
	6.1.1 Creating a method that throws a checked exception
	6.1.2 Using a method that throws a checked exception
	6.1.3 Creating and using a method that throws runtime exceptions or errors
	6.1.4 Points to note while using the throw statement and the throws clause

	6.2 Creating custom exceptions
	6.2.1 Creating a custom checked exception
	6.2.2 Creating a custom unchecked exception

	6.3 Overriding methods that throw exceptions
	6.4 Using the try statement with multi-catch and finally clauses
	6.4.1 Comparing single-catch handlers and multi-catch handlers
	6.4.2 Handling multiple exceptions in the same exception handler

	6.5 Auto-closing resources with a try-with-resources statement
	6.5.1 How to use a try-with-resources statement
	6.5.2 Suppressed exceptions
	6.5.3 The right ingredients

	6.6 Using assertions
	6.6.1 Exploring the forms of assertions
	6.6.2 Testing invariants in your code
	6.6.3 Understanding appropriate and inappropriate uses of assertions

	6.7 Summary
	Review notes
	Using the throw statement and the throws clause
	Custom exceptions
	Overriding methods that throw exceptions
	try statement with multi-catch and finally clauses
	Auto-close resources with try-with-resources statement
	Assertions

	Sample exam questions
	Answers to sample exam questions

	7 Java I/O fundamentals
	7.1 Introducing Java I/O: WARM-UP
	7.1.1 Understanding streams
	7.1.2 Understanding multiple flavors of data

	7.2 Working with class java.io.File
	7.2.1 Instantiating and querying File instances
	7.2.2 Creating new files and directories on your physical device

	7.3 Using byte stream I/O
	7.3.1 Input streams
	7.3.2 Output streams
	7.3.3 File I/O with byte streams
	7.3.4 Buffered I/O with byte streams
	7.3.5 Primitive values and strings I/O with byte streams
	7.3.6 Object I/O with byte streams: reading and writing objects

	7.4 Using character I/O with readers and writers
	7.4.1 Abstract class java.io.Reader
	7.4.2 Abstract class java.io.Writer
	7.4.3 File I/O with character streams
	7.4.4 Buffered I/O with character streams
	7.4.5 Data streams with character streams: using PrintWriter to write to a file
	7.4.6 Constructor chaining with I/O classes

	7.5 Working with the console
	7.6 Summary
	Review notes
	Working with class java.io.File
	Using byte stream I/O
	Using character I/O with readers and writers
	Working with the console

	Sample exam questions
	Answers to sample exam questions

	8 Java file I/O (NIO.2)
	8.1 Path objects
	8.1.1 Multiple ways to create Path objects
	8.1.2 Methods to access Path components
	8.1.3 Comparing paths
	8.1.4 Converting relative paths to absolute paths
	8.1.5 Resolving paths using methods resolve and resolveSibling
	8.1.6 Method relativize()

	8.2 Class Files
	8.2.1 Create files and directories
	8.2.2 Check for the existence of files and directories
	8.2.3 Copy files
	8.2.4 Move files and directories
	8.2.5 Delete files and directories
	8.2.6 Commonly thrown exceptions

	8.3 Files and directory attributes
	8.3.1 Individual attributes
	8.3.2 Group of attributes
	8.3.3 Basic attributes
	8.3.4 DOS attributes
	8.3.5 POSIX attributes
	8.3.6 AclFileAttributeView interface
	8.3.7 FileOwnerAttributeView interface
	8.3.8 UserDefinedAttributeView interface

	8.4 Recursively access a directory tree
	8.4.1 FileVisitor interface
	8.4.2 Class SimpleFileVisitor
	8.4.3 Initiate traversal for FileVisitor and SimpleFileVisitor
	8.4.4 DirectoryStream interface

	8.5 Using PathMatcher
	8.6 Watch a directory for changes
	8.6.1 Create WatchService object
	8.6.2 Register with WatchService object
	8.6.3 Access watched events using WatchKey interface
	8.6.4 Processing events

	8.7 Summary
	Review notes
	Path objects
	Class Files
	Files and directory attributes
	Recursively access a directory tree
	Using PathMatcher
	Watch a directory for changes

	Sample exam questions
	Answers to sample exam questions

	9 Building database applications with JDBC
	9.1 Introduction
	9.1.1 JDBC API overview
	9.1.2 JDBC architecture
	9.1.3 JDBC drivers

	9.2 Interfaces that make up the JDBC API core
	9.2.1 Interface java.sql.Driver
	9.2.2 Interface java.sql.Connection
	9.2.3 Interface java.sql.Statement
	9.2.4 Interface java.sql.ResultSet

	9.3 Connecting to a database
	9.3.1 Loading JDBC drivers
	9.3.2 Use DriverManager to connect to a database
	9.3.3 Exceptions thrown by database connections

	9.4 CRUD (create, retrieve, update, and delete) operations
	9.4.1 Read table definition and create table
	9.4.2 Mapping SQL data types to Java data types
	9.4.3 Insert rows in a table
	9.4.4 Update data in a table
	9.4.5 Delete data in a table
	9.4.6 Querying database

	9.5 JDBC transactions
	9.5.1 A transaction example
	9.5.2 Create savepoints and roll back partial transactions
	9.5.3 Commit modes and JDBC transactions

	9.6 RowSet objects
	9.6.1 Interface RowSetFactory
	9.6.2 Class RowSetProvider
	9.6.3 An example of working with JdbcRowSet

	9.7 Precompiled statements
	9.7.1 Prepared statements
	9.7.2 Interface CallableStatement
	9.7.3 Database-stored procedures with parameters

	9.8 Summary
	Review notes
	Introduction
	Interfaces that make up the JDBC API core
	Connecting to a database
	CRUD (create, retrieve, update, and delete) operations
	JDBC transactions
	RowSet objects
	Precompiled statements

	Sample exam questions
	Answers to sample exam questions

	10 Threads
	10.1 Create and use threads
	10.1.1 Extending class Thread
	10.1.2 Implement interface Runnable

	10.2 Thread lifecycle
	10.2.1 Lifecycle of a thread
	10.2.2 Methods of class Thread
	10.2.3 Start thread execution
	10.2.4 Pause thread execution
	10.2.5 End thread execution

	10.3 Protect shared data
	10.3.1 Identifying shared data: WARM-UP
	10.3.2 Thread interference
	10.3.3 Thread-safe access to shared data
	10.3.4 Immutable objects are thread safe
	10.3.5 Volatile variables

	10.4 Identify and fix code in a multithreaded environment
	10.4.1 Variables you should care about
	10.4.2 Operations you should care about
	10.4.3 Waiting for notification of events: using wait, notify, and notifyAll
	10.4.4 Deadlock
	10.4.5 Starvation
	10.4.6 Livelock
	10.4.7 Happens-before relationship

	10.5 Summary
	Review notes
	Create and use threads
	Thread lifecycle
	Methods of class Thread
	Protect shared data
	Identify and fix code in a multithreaded environment

	Sample exam questions
	Answers to sample exam questions

	11 Concurrency
	11.1 Concurrent collection classes
	11.1.1 Interface BlockingQueue
	11.1.2 Interface ConcurrentMap
	11.1.3 Class ConcurrentHashMap

	11.2 Locks
	11.2.1 Acquire lock
	11.2.2 Acquire lock and return immediately
	11.2.3 Interruptible locks
	11.2.4 Nonblock-structured locking
	11.2.5 Interface ReadWriteLock
	11.2.6 Class ReentrantReadWriteLock
	11.2.7 Atomic variables

	11.3 Executors
	11.3.1 Interface Executor
	11.3.2 Interface Callable
	11.3.3 Interface ExecutorService
	11.3.4 Thread pools
	11.3.5 Interface ScheduledExecutorService

	11.4 Parallel fork/join framework
	11.5 Summary
	Review notes
	Concurrent collection classes
	Locks
	Executors
	Parallel fork/join framework

	Sample exam questions
	Answers to sample exam questions

	12 Localization
	12.1 Internationalization and localization
	12.1.1 Advantages of localization
	12.1.2 Class java.util.Locale
	12.1.3 Creating and accessing Locale objects
	12.1.4 Building locale-aware applications

	12.2 Resource bundles
	12.2.1 Implementing resource bundles using .properties files
	12.2.2 Implementing resource bundles using ListResourceBundle
	12.2.3 Loading resource bundles for invalid values

	12.3 Formatting dates, numbers, and currencies for locales
	12.3.1 Format numbers
	12.3.2 Format currencies
	12.3.3 Format dates
	12.3.4 Formatting and parsing time for a specific locale
	12.3.5 Formatting and parsing date and time together for a specific locale
	12.3.6 Using custom date and time patterns with SimpleDateFormat
	12.3.7 Creating class Date object using class Calendar

	12.4 Summary
	Review Notes
	Internationalization and localization
	Resource bundles
	Formatting dates, numbers, and currencies for locales

	Sample exam questions
	Answers to sample exam questions

	Appendix—Answers to “Twist in the Tale” exercises
	A.1 Chapter 1: Java class design
	A.1.1 Twist in the Tale 1.1
	A.1.2 Twist in the Tale 1.2
	A.1.3 Twist in the Tale 1.3
	A.1.4 Twist in the Tale 1.4

	A.2 Chapter 2: Advanced class design
	A.2.1 Twist in the Tale 2.1
	A.2.2 Twist in the Tale 2.2
	A.2.3 Twist in the Tale 2.3
	A.2.4 Twist in the Tale 2.4
	A.2.5 Twist in the Tale 2.5
	A.2.6 Twist in the Tale 2.6

	A.3 Chapter 3: Object-oriented design principles
	A.3.1 Twist in the Tale 3.1
	A.3.2 Twist in the Tale 3.2
	A.3.3 Twist in the Tale 3.3

	A.4 Chapter 4: Generics and collections
	A.4.1 Twist in the Tale 4.1
	A.4.2 Twist in the Tale 4.2
	A.4.3 Twist in the Tale 4.3
	A.4.4 Twist in the Tale 4.4
	A.4.5 Twist in the Tale 4.5
	A.4.6 Twist in the Tale 4.6
	A.4.7 Twist in the Tale 4.7

	A.5 Chapter 5: String processing
	A.5.1 Twist in the Tale 5.1
	A.5.2 Twist in the Tale 5.2
	A.5.3 Twist in the Tale 5.3

	A.6 Chapter 6: Exceptions and assertions
	A.6.1 Twist in the Tale 6.1
	A.6.2 Twist in the Tale 6.2
	A.6.3 Twist in the Tale 6.3
	A.6.4 Twist in the Tale 6.4

	A.7 Chapter 7: Java I/O fundamentals
	A.7.1 Twist in the Tale 7.1

	A.8 Chapter 8: Java file I/O (NIO.2)
	A.8.1 Twist in the Tale 8.1
	A.8.2 Twist in the Tale 8.2

	A.9 Chapter 9: Building database applications with JDBC
	A.10 Chapter 10: Threads
	A.10.1 Twist in the Tale 10.1
	A.10.2 Twist in the Tale 10.2
	A.10.3 Twist in the Tale 10.3
	A.10.4 Twist in the Tale 10.4

	A.11 Chapter 11: Concurrency
	A.11.1 Twist in the Tale 11.1
	A.11.2 Twist in the Tale 11.2
	A.11.3 Twist in the Tale 11.3

	A.12 Chapter 12: Localization
	A.12.1 Twist in the Tale 12.1
	A.12.2 Twist in the Tale 12.2

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Back cover

