

Confidential Information

Optical Disc Archive

ODA Drive SDK Guide

Version 4.1.1
December 22th 2017

Sony Corporation

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 Conditions of Publication

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

ii

Optical Disc Archive

ODA Drive SDK Guide

Version 4.1.1

December 22th 2017

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 Conditions of Publication

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

iii

Conditions of Publication

COPYRIGHT

This ODA DRIVE SDK GUIDE is published by:

Sony Corporation, Tokyo, Japan.

All rights are reserved. Reproduction in whole or in part is prohibited without express
and prior written permission of Sony Corporation.

DISCLAIMER

The information contained herein is believed to be accurate as of the date of publication;
however, Sony Corporation will not be liable for any damages, including indirect or
consequential, from use of the ODA DRIVE SDK GUIDE or reliance on the accuracy of
this document

LICENSING

Subject to a non-disclosure agreement, this document is available for informative
purposes only.

Application of the ODA DRIVE SDK GUIDE n both medium and equipment products
requires a separate license from Sony Corporation.

CLASSIFICATION

The information contained in this document is marked as confidential and shall be
treated as confidential according to the provisions of the Agreement through which the
document has been obtained.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 Table of Contents

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

iv

Table of Contents

1 General .. 1
1.1 Outline of ODA Drive SDK .. 1
1.2 Scope of ODA Drive SDK .. 1
1.3 Definition of terms and acronyms .. 2
1.4 Notation .. 2

1.4.1 Numerical Notation .. 2
1.4.2 Arithmetic notation .. 2
1.4.3 Units ... 3

2 General File I/O Interface .. 4
2.1 Common for All Operating Systems ... 4

2.1.1 Numerical Limitation .. 4
2.1.1.1.1 Maximum Number of Files .. 4
2.1.1.1.2 Maximum depth of Directories.. 4

2.1.2 Naming Conversion ... 4
2.1.2.1 Length of File Names .. 4

2.1.3 File Access Restriction .. 5
2.1.3.1 Write Protection ... 5
2.1.3.2 Read Operation .. 5
2.1.3.3 File Attributes .. 5

2.1.4 Recommendation and Tips .. 5
2.1.4.1 Detect Write Error ... 5
2.1.4.2 Remaining Volume Size .. 6
2.1.4.3 Simultaneous File Access .. 6
2.1.4.4 Flushing and Disaster Recovery Policy of ODAFS driver .. 6

2.2 Local Restrictions and Specifications of general API ... 7
2.2.1 Windows .. 7
2.2.2 Macintosh OSX.. 7
2.2.3 Linux ... 7

3 ODA Drive SDK .. 8
3.1 Software Requirements ... 8

3.1.1 Windows Environment ... 8
3.1.2 Macintosh OSX Environment ... 8
3.1.3 Linux Environment .. 8

3.2 Contents of SDK ... 9
3.2.1 Windows Environment ... 9
3.2.2 Macintosh OSX Environment ... 9
3.2.3 Linux Environment .. 9

3.3 API Summary ... 11
3.3.1 General operations .. 11

3.3.1.1 SDK Version ... 11
3.3.1.2 Error Message .. 12
3.3.1.3 Operational Mode .. 13
3.3.1.4 Export Drive/Driver logs ... 15

3.3.2 Drive/Media operations .. 16
3.3.2.1 Medium Information ... 16
3.3.2.2 Drive Identifier(Macintosh OSX only) ... 20
3.3.2.3 Drive Information .. 21
3.3.2.4 Number of Files and Directories in the Volume .. 25
3.3.2.5 Software Write Protect .. 26
3.3.2.6 Cartridge type in the Drive .. 28
3.3.2.7 Media existence in the Drive .. 29

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 Table of Contents

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

v

3.3.2.8 Eject Cartridge from Drive ... 30
3.3.2.9 Re-formatting the Cartridge ... 31
3.3.2.10 Finalize Write Once Media ... 33
3.3.2.11 Exclusive Access Mode (Windows only) ... 34
3.3.2.12 Attributes in Cartridge Memory .. 35
3.3.2.13 Allocate new disc ... 39
3.3.2.14 Flush volume buffers ... 40
3.3.2.15 Raw mount flag (Windows only) ... 41
3.3.2.16 Remount volume (Windows only) ... 44
3.3.2.17 Current Loaded Disc ... 45
3.3.2.18 Volume label(Linux only) .. 46
3.3.2.19 Support Media Information .. 47

3.3.3 File operations .. 48
3.3.3.1 File Recording Information ... 48
3.3.3.2 File Control Option.. 50
3.3.3.3 Hash Information .. 52
3.3.3.4 Direct read access (Windows only) ... 55

4 Guideline .. 58
4.1 Detect ODA drives .. 58

4.1.1 Windows .. 58
4.1.2 Macintosh OSX.. 58
4.1.3 Linux ... 58

4.2 DIRECT READ ACCESS (Advanced) .. 59

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 General

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

1

1 General

1.1 Outline of ODA Drive SDK
An ODA drive (e.g. ODS-D55U) can mount an ODA medium (e.g. ODC1500R) which
contains 12 optical discs and a cartridge memory (CM) inside. And the dedicated ODAFS
driver provides that general file I/O interface as a usual volume (ODA volume). There
are some limitations and restrictions to control ODA volumes, and there are also
effective ways to read or write files by the general file I/O interface.

Figure 1-1 Optical Disc Archive Drive Unit & Cartridge

Sony also provides useful and original API, which contains the utility functions such as
re-formatting an ODA volume, the accessibility for CM, and the inquiry methods of original
or extended information of ODA drives or volumes. This API is called ODA Drive SDK API,
and its module is ODA Drive SDK library.

This document also describes how to use ODA Drive SDK API of ODA Drive SDK library.

Finally, ODA Drive SDK includes some sample codes which are command base C++
projects controlling ODA drives or volumes via the general file I/O or ODA Drive SDK API
above.

1.2 Scope of ODA Drive SDK

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 General

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

2

ODA Drive

ODAFS Driver

ODA Drive SDK library

CMUtility Extended

Kernel
User

Storage Device Driver

Archive system

ODA Drive SDK API (C/C++)

General file I/O

ODA Drive SDK

Host PC

1.3 Definition of terms and acronyms
Cartridge: Physical package of storage unit which contains 12 optical discs inside.

Volume: Logical storage unit which contains files or directories accessible from a root
directory.

Media/Medium: Collective term of cartridge and volume.

1.4 Notation

1.4.1 Numerical Notation
Numbers in decimal notation are represented as a sequence of decimal digits with no suffix,
while numbers in hexadecimal notation are represented as a sequence of hexadecimal
digits suffixed by “h”.

1.4.2 Arithmetic notation
The notation Int(x) shall mean the integer part of x.

The notation AlignDown(a,b) shall mean b×Int(a/b) , where a and b are integers.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 General

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

3

1.4.3 Units
In general, for example, when 1KB is expressed, it is ambiguous whether it means power
of ten (103 bytes) or power of two (210 bytes). To clarify them, this document defines as
follows:

1 kB = 103 bytes, 1 KiB = 210 bytes
1 MB = 106 bytes, 1 MiB = 220 bytes
1 GB = 109 bytes, 1 GiB = 230 bytes
1 TB = 1012 bytes, 1 TiB = 240 bytes

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 General File I/O Interface

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

4

2 General File I/O Interface

2.1 Common for All Operating Systems

2.1.1 Numerical Limitation

2.1.1.1.1 Maximum Number of Files
Maximum number of files recorded on an ODA volume, inclusive of directories, is 60000
(parity on), or 240000 (parity off), where the root directory is also counted as one.

2.1.1.1.2 Maximum depth of Directories
Maximum depth of directories of the file node is 64, where the root directory is also
counted as one. For example, the depth of “E:\test.txt” is 2.

2.1.2 Naming Conversion
All characters in a filename, directory name, and volume label (i.e. logical volume
identifier) shall be expressed by Unicode 2.0. In addition, the available character code
range is U+0 to U+10FFFF except shown the table below.

Code Character
U+0000 - U+001F

U+0022 " (double quoatation)
U+002A * (asterisk)
U+002F / (slash)
U+003A : (colon)
U+003C < (less than)
U+003E > (greater than)
U+003F ? (question mark)
U+005C \(back slash, or Yen

mark)
U+007C | (vertical bar)
U+007F (DEL)

2.1.2.1 Length of File Names
The maximum length of a filename or a directory name is 127 characters.

The maximum length of a volume label is 63 characters.

Within a filename, directory name, or volume label, a character expressed by surrogate

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 General File I/O Interface

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

5

pair is counted as two characters.

2.1.3 File Access Restriction

2.1.3.1 Write Protection
To perform sequential recording, the following restrictions are applied for the write
operation:

− Only one file can be write-open simultaneously. When a file is write-open, another write-open
operation will be rejected with an error.

− Only new file or the file which size is zero can be write-open. In other words, a non-zero size existing
file can be neither over-written nor appended.

− Seek operation is not allowed for write-open file. All the data shall be written sequentially.

2.1.3.2 Read Operation
The following one restriction applies for the read operation:

− Write-open file cannot be read-open. When try to read-open a file and the file is already
write-open, the read-open request will be rejected with an error. The file shall be
write-closed before read-open

Maximum number of file handles for reading is up to Operation System limitations.

Reading file with seeking (random reading) is also available.

2.1.3.3 File Attributes
File attributes such as ReadOnly/Hidden/System/Archive can be set as usual file system.
However, there are some restrictions depend on the running OS.

2.1.4 Recommendation and Tips

2.1.4.1 Detect Write Error
The application which writes a file to ODA volume shall check the returned error of create,
write, close function. Furthermore, the application shall check that the written file size in
ODA volume is equivalent to the source file size after completing the file writing. If the file
is recorded with ODADriveSDK_FILE_PACKED_WRITE flag by
ODADriveSDK_SetFileControlOptionEx (), the application shall check the file size after
when the application write another file WITHOUT ODADriveSDK_FILE_PACKED_WRITE
flag by ODADriveSDK_SetFileControlOptionEx(), or call
ODADriveSDK_FlushVolumeBuffers().

Because, ODAFS driver always uses internal cache buffer for writing file, even if user
indicated to disable the cached write. Such internal cache buffer will be flushed at the time
of closing file handle. And, it is impossible to return such error at the time of closing file
handle by ODAFS driver. ODAFS driver will truncate such “error file” size till the size
recorded successfully.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 General File I/O Interface

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

6

It means “error file” size will be shorter than source file size. In other words, if the written
file in ODA volume size is equivalent to source file size, ODAFS driver has not detected any
device error during the writing process. Please, note that verification of the written file
stream is another work. For that purpose, “verify write mode” is provided for ODA volume.
It can be set by ODA Drive SDK.

2.1.4.2 Remaining Volume Size
The application which tries to write a file to ODA volume shall check the remaining size of
ODA volume is enough before creating the file. ODAFS driver returns the volume
remaining size as a file will be able to use that size without medium error occurrence.

Thus, the application shall check the volume remaining size is larger than the file size, and
take a margin for device error occurrence as whichever larger: 10% of the writing file size
or 128MiB.

And the application shall check the remaining volume size again at next file writing time.

2.1.4.3 Simultaneous File Access
It is restricted to create multiple write file handles simultaneously on the same ODA
volume.

On the other hand, it is possible to create or open read file handles even while another
write file handle is opened on the same ODA volume. The files on reading or writing may
be recorded on different discs in the ODA medium. Therefore, if the application issues read
or write commands for each file handle in turn to the same ODA volume, it causes serious
performance down because of frequent disc changing in the ODA drive.

The application should make those commands sequence together and order them
sequentially to issue them for each file. Ideally, the application should have just only one
file handle at the same time, and should create or open file handle after closing another
one in one by one manner for an ODA volume.

2.1.4.4 Flushing and Disaster Recovery Policy of ODAFS driver
ODAFS driver caches FS information internally, and flush it to ODA medium at following
time:

− Closing the write file handle
− Approx. 5 seconds after the end of other changings:
− Closing file handles which has been used as creating directory, or deleting / renaming / moving /

changing attributes of file or directory.
− Changing volume label
− Ejecting the ODA medium
− Finalizing, Re-formatting, Roll-backing the ODA volume

While application is changing something for an ODA volume, and if serious trouble such as
power down of the ODA drive is occurred before finishing of above FS flushing, ODAFS
driver will roll-back to the last roll-back point which has been recorded by flushing FS

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 General File I/O Interface

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

7

information successfully at next mounting time.

It means the writing file will be committed to ODA medium synchronously at the time of
the handle closing. However, the other changing of ODA volume (e.g. create directory,
delete file.. and so on) will not be committed to ODA medium until next FS flushing even
after closing of those handles.

2.2 Local Restrictions and Specifications of general
API

2.2.1 Windows
The caller process shall run as administrator. Otherwise, some of functions will not work.

2.2.2 Macintosh OSX
When a cartridge is mounted, cartridge is mounted automatically under /Volume. The
directory name under /Volumes is used to be “Volume Name”.

T.B.D

2.2.3 Linux
When a cartridge is inserted, the behavior of mount depends on the configuration of a
system and the model of ODA drive.

1. A system which Udev is installed

 ODS-D55U、ODS-D77U
The cartridge is mounted automatically under /media. The directory name under
/media is used to be “Volume Name”.

 ODS-D77F

The cartridge is automatically recognized, although not mounted automatically.
In order to mount, it is necessary to click the icon named "Volume Name" on
Nautilus or run the following command on a terminal.
>udisks --mount /dev/sdx

2. A system which Udev is not installed

In order to mount, it is necessary to run the following command on a terminal.
e.g.
>mount -t odaudf /dev/sdx /mnt/mnt_point

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

8

3 ODA Drive SDK
ODA Driver SDK is a utility library for software vendors who support ODA drives. This SDK
incudes the features to get drive and volume information and file location on the disc. Also,
it supports the reading and writing of Cartridge Memory, media formatting, enable or
disable software write protect and finalization to write once media.

3.1 Software Requirements

3.1.1 Windows Environment
ODA Driver SDK supports the following Operating Systems

Windows 7 SP1 32/64bits
Windows 8 32/64 bits
Windows 8.1 32/64bits
Windows 10 32/64bits
Windows Server 2008 R2
Windows Server 2012
Windows Server 2012 R2

Sony provides 32bits and 64bits dll (dynamic link library) include files and import libraries
for release and debug build. Also, Sony provides sample code how to use SDK. The project
file and solution file of sample codes are for Visual Studio 2010.

3.1.2 Macintosh OSX Environment
Macintosh version will be supported in the feature version. We have a plan to support the
following Operating Systems.

OSX 10.6.8 32bits (Snow Leopard)
OSX 10.7.5 32/64bits (Lion)
OSX 10.8.4 64bits (Mountain Lion)
OSX 10.9.5 64bits (Mavericks)
OSX 10.10.5 64bits (Yosemite)
OSX 10.11.2 64bits (El Capitan)

Sony will provide 32bits and 64bits universal binary framework. Also, Sony will provide
sample codes. The project files of sample codes are for Xcode 4.5 or later.

3.1.3 Linux Environment
Linux version supports the following distributions.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

9

Red Had Enterprise Linux 6.2/6.3/6.4/6.5/6.6/7.0/7.1 64bits for Intel Platform
Sony will provide 64bits so files, include files. Sony will also provide sample codes and
makefile.

An application which links ODA Driver SDK for Linux shall run with root privilege, since the
SDK issues SCSI commands to SCSI device directly.

3.2 Contents of SDK

3.2.1 Windows Environment

Figure 3-1 Windows Platform Contents of SDK

3.2.2 Macintosh OSX Environment
T.B.D.

3.2.3 Linux Environment
There are three components in zip archive.

libodadrivesdk-x.x.x-x.el6.x86_64.rpm : SDK package
libodadrivesdk-devel-x.x.x-x.el6.x86_64.rpm : Development package
example.tar.gz : Sample codes

Following are instructions for installing SDK package and Development package.

env bin win32

x64

debug

release

bin

debug

release
include

win32

x64

debug

release

lib

debug

release win

Sample
Fil

Debug DLL

Release DLL
Built sample

Debug Import
Lib a
Release Import
Lib a

Debug DLL

Release DLL
Built sample

Debug Import
Lib
Release Import
Lib a

Visual Studio
Project Files

Include files

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

10

[Confirm the current rpms]
> rpm -qa | grep libodadrivesdk
> libodadrivesdk-x.x.x-x.el6.x86_64
> libodadrivesdk-devel-x.x.x-x.el6.x86_64

[Uninstall the old SDK rpms with the following orde]r
>rpm -e libodadrivesdk-devel-x.x.x-x.el6.x86_64
>rpm -e libodadrivesdk-x.x.x-x.el6.x86_64

[Install the new SDK rpms with the following order]
> rpm -ivh libodadrivesdk-x.x.x-x.el6.x86_64.rpm
> rpm -ivh libodadrivesdk-devel-x.x.x-x.el6.x86_64.rpm

Following are instructions for compiling sample codes.

[Compiling sample codes]
>cd DriveSDKx.xx/ODADriveSDK_Vxxxx_Linux/env/example
>./configure
>make.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

11

3.3 API Summary

3.3.1 General operations

3.3.1.1 SDK Version
An application can get the ODA Drive SDK version by ODADriveSDK_GetVersion().
Major/Minor/Update version value is equivalent to Optical Disc Archive Software (ODA
driver/utility) corresponding to this SDK. Internal version value is given for this ODA Drive
SDK originally.

#define ODA_DRIVE_SDK_VERSION_MAJOR 4
#define ODA_DRIVE_SDK_VERSION_MINOR 1
#define ODA_DRIVE_SDK_VERSION_UPDATE 0
#define ODA_DRIVE_SDK_VERSION_INTERNAL 4
#define ODA_DRIVE_SDK_VERSION_STRING ODADriveSDK_INITSTRING("3.2.0.2")

Figure 3-2 Version Definitions (example)

/**
 * function: ODADriveSDK_GetVersion
 *
 * summary:
 * Get ODSDriverSDK Version.
 *
 * return: ODSDriverSDK Version.
 */
ODA_DRIVE_SDK_CAPI
ODADriveSDK_CHAR* ODADriveSDK_GetVersion(void);

Figure 3-3 GetVersion Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

12

3.3.1.2 Error Message
An application can get the reason of error by ODADriveSDK_GetErrorMessage(). The
errCode will be given as return value of this SDK functions.

/**
 * function: ODADriveSDK_GetErrorMessage
 *
 * summary:
 * Get error message of ODADriveSDK.
 *
 * param [in] errCode: error code which returned from fucntion
 * param [out] errMsgBuff: pointer to buffer of error msg
 * param [in] errMsgBuffLength: buffer length of error msg
 *
 * return:
 */
ODA_DRIVE_SDK_CAPI void
ODADriveSDK_GetErrorMessage(
 uint64_t errCode,
 char *errMsgBuff,
 uint32_t errMsgBuffLength
);

Figure 3-4 GetErrorMessage Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

13

3.3.1.3 Operational Mode
An application can get operational mode by ODADriveSDK_GetOperationalMode(), set
them by ODADriveSDK_SetOperationalMode(), and reset them as factory settings by
ODADriveSDK_ResetOperationalMode().

The parameter of operational mode is registered in the running system (PC).

It means when those parameters are set, the changes effect to all the drives/volumes
which connected to the running system.

To effect those parameters, application shall eject the cartridge once by
ODADriveSDK_DoEject() for example, and re-inject the cartridge again.

/** operational mode */
enum ODADriveSDK_OPERATIONAL_MODE_NAME
{
 ODADriveSDK_DEFAULT_VOLUME_TYPE = 0,
 ///< default volume type. // ODADriveSDK_VOLUME_TYPE value; # refer
ODADriveSDK_VOLUME_TYPE declaration.
 ODADriveSDK_WRITE_VERIFY = 1,
 ///< write-verify. // uint32_t value; # No verify == 0, Verify == 1. Reserved == others.
 ODADriveSDK_DRIVES_REC_INHIBIT = 2,
 ///< make the drives rec-inhibit. // uint32_t value; # No restrictions == 0, Rec Inhibit == 1. Reserved
== others.
 ODADriveSDK_DEFAULT_FS_SYNC = 3
 ///< synchronize management data to media immediately after completion of writing files. //
ODADriveSDK_FILE_CONTROL_OPTION_OF_FS_FLUSH value; # refer
ODADriveSDK_FILE_CONTROL_OPTION_OF_FS_FLUSH declaration.
};

Figure 3-5 OperationalModeName Enum

/**
 * function: ODADriveSDK_GetOperationalMode
 *
 * summary:
 * Get current operational mode.
 *
 * param [in] modeName: name of operational mode.
 * param [out] value: pointer to value which size depends on modeName (refer
ODADriveSDK_OPERATIONAL_MODE_NAME).
 * param [in] valueBufferSize: buffer size of value.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetOperationalMode(
 enum ODADriveSDK_OPERATIONAL_MODE_NAME modeName,
 void* value, uint64_t valueBufferSize
);

Figure 3-6 GetOperationalMode Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

14

/**
 * function: ODADriveSDK_SetOperationalMode
 *
 * summary:
 * Set current operational mode.
 *
 * param [in] modeName: name of operational mode.
 * param [in] value: pointer to value which size depends on modeName (refer
ODADriveSDK_OPERATIONAL_MODE_NAME).
 * param [in] valueBufferSize: buffer size of value.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_SetOperationalMode(
 enum ODADriveSDK_OPERATIONAL_MODE_NAME modeName,
 const void* value, uint64_t valueBufferSize
);

Figure 3-7 SetOperationalMode Function

/**
 * function: ODADriveSDK_ResetOperationalMode
 *
 * summary:
 * Reset current operational mode as factory settings.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_ResetOperationalMode(void);

Figure 3-8 ResetOperationalMode Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

15

3.3.1.4 Export Drive/Driver logs
An application can get drive/driver logs by ODADriveSDK_GetDrivelog()/GetDriverLog().

To get a drive log by ODADriveSDK_GetDrivelog(), eject a cartridge from drive before it,
otherwise it failed. Check the presence or absence of a cartridge by
ODADriveSDK_CheckMediaExist() before calling ODADriveSDK_GetDrivelog(). If a
cartridge exists, eject it by ODADriveSDK_DoEject(). The drive will be restarted after the
completion of ODADriveSDK_GetDrivelog(). ODADriveSDK_GetDrivelog() works only for
ODS-D77U/ODS-D280U.

Using ODADriveSDK_GetDriverlog(), collect driver log files in where these are saved to the
designated directory. If ODADriveSDK_DRIVER_LOG_WITH_SYSTEM flag is set, system
information will be included.

/**
 * function: ODADriveSDK_GetDriveLog
 *
 * summary:
 * Get a drive log.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
 * In case of Mac, set "deviceId".
 * In case of Linux, set "/dev/sdX", or"/dev/sgX".
 * param[in] outputFilePath:
 * Output file path to save the drive log
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI unit64_t
ODADriveSDK_GetDriveLog(
 const ODADriveSDK_CHAR* drive,
 const ODADriveSDK_CHAR* outputFilePath
);

Figure 3-9 GetDriveLog Function

enum ODADriveSDK_DRIVER_LOG_FLAG
{
 ODADriveSDK_DRIVER_LOG_ONLY = 0, ///< Get driver logs only.
 ODADriveSDK_DRIVER_LOG_WITH_SYSTEM = 1 ///< Get driver logs with system information.
};

Figure 3-10 DriverLogFlag Enum

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

16

/**
 * function: ODADriveSDK_GetDriverLog
 *
 * summary:
 * Get driver logs.
 *
 * param[in] driverLogFlag:
 * Option flag
 * param[in] outputDirPath:
 * Output directory path to collect and save driver logs
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI unit64_t
ODADriveSDK_GetDriverLog(
 enum ODADriveSDK_DRIVER_LOG_FLAG driverLogFlag,
 const ODADriveSDK_CHAR* outputDirPath
);

Figure 3-11 GetDriverLog

3.3.2 Drive/Media operations

3.3.2.1 Medium Information
An application can get the basic information about a medium in the drive by
ODADriveSDK_GetInformation().

The MountStatus ODADriveSDK_MOUNT_STATUS_NOT_READ is available for Linux only.

#define ODADriveSDK_MOUNT_STATUS_NO_ERROR 0x00000000
#define ODADriveSDK_MOUNT_STATUS_DRIVER_ERROR 0x80000001
#define ODADriveSDK_MOUNT_STATUS_DEVICE_ERROR 0x80000002
#define ODADriveSDK_MOUNT_STATUS_SYSTEM_GUARD 0x80000003
#define ODADriveSDK_MOUNT_STATUS_NOT_READY 0x80000004
#define ODADriveSDK_MOUNT_STATUS_BLANK_MEDIA 0x80000010
#define ODADriveSDK_MOUNT_STATUS_UNSUPPORTED_MEDIA 0x80000020
#define ODADriveSDK_MOUNT_STATUS_CORRUPTED_MEDIA 0x80000030
#define ODADriveSDK_MOUNT_STATUS_UNSUPPORTED_VOLUME 0x80000100
#define ODADriveSDK_MOUNT_STATUS_UNKNOWN_VOLUME 0x80000200
#define ODADriveSDK_MOUNT_STATUS_INCONSISTED_VOLUME_UNRECOVERABLE_VERSION
 0x80000300
#define ODADriveSDK_MOUNT_STATUS_INCONSISTED_VOLUME_UNRECOVERABLE
 0x80000400

Figure 3-12 MountStatus Definitions

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

17

#define ODADriveSDK_WRITE_PROTECT_DEVICE_CONDITIONS 0x00000001
#define ODADriveSDK_WRITE_PROTECT_MEDIA_CONDITIONS 0x00000100
#define ODADriveSDK_WRITE_PROTECT_UNRECORDABLE_MEDIA 0x00000200
#define ODADriveSDK_WRITE_PROTECT_MEDIA_SETTINGS 0x00000400
#define ODADriveSDK_WRITE_PROTECT_WORN_OUT_MEDIA 0x00000800
#define ODADriveSDK_WRITE_PROTECT_FINALIZED_MEDIA 0x00001000
#define ODADriveSDK_WRITE_PROTECT_CM_SETTINGS 0x00002000
#define ODADriveSDK_WRITE_PROTECT_CM_CONDITIONS 0x00004000
#define ODADriveSDK_WRITE_PROTECT_ROLLBACKED_VOLUME 0x00020000
#define ODADriveSDK_WRITE_PROTECT_USER_SETTINGS 0x00040000
#define ODADriveSDK_WRITE_PROTECT_DRIVER_RESTRICTION 0x00080000
#define ODADriveSDK_WRITE_PROTECT_TEMPORAL_LOCK 0x00100000

Figure 3-13 WriteProtectReasonFlags Definitions

#define ODADriveSDK_ACCESS_MODE_NORMAL 0
#define ODADriveSDK_ACCESS_MODE_RAW 2

Figure 3-14 AccessMode Definitions

#define ODADriveSDK_MEDIUM_TYPE_UNKNOWN (0x00) // Unknown medium
#define ODADriveSDK_MEDIUM_TYPE_BD_SL_R (0xE1) //BD Single Layer Recordable
#define ODADriveSDK_MEDIUM_TYPE_BD_SL_RE (0xE2) //BD Single Layer Rewritable
#define ODADriveSDK_MEDIUM_TYPE_BD_DL_R (0xE3) //BD Dual Layer Recordable
#define ODADriveSDK_MEDIUM_TYPE_BD_DL_RE (0xE4) //BD Dual Layer Rewritable
#define ODADriveSDK_MEDIUM_TYPE_BD_TL_RE (0xE6) //BD Triple Layer Rewritable
#define ODADriveSDK_MEDIUM_TYPE_BD_QL_R (0xE7) //BD Quad Layer Recordable
#define ODADriveSDK_MEDIUM_TYPE_AD_TL_R (0xF1) //AD Triple Layer Recordable

Figure 3-15 MediumType Definitions

enum ODADriveSDK_VOLUME_TYPE
{
 ODADriveSDK_VOLUME_TYPE_PARITY_ON = 0,
///< volume type=0: Maximum number of files or directories is 60000. Parity stream will be generated
background while file recording.
 ODADriveSDK_VOLUME_TYPE_PARITY_OFF = 1
///< volume type=1: Maximum number of files or directories is 240000. No parity stream.
};

Figure 3-16 VolumeType Enum

#define ODADriveSDK_DISC_USAGE_CONDITION_WRITABLE 0
#define ODADriveSDK_DISC_USAGE_CONDITION_RECOMMEND_NEW_DISC 1
#define ODADriveSDK_DISC_USAGE_CONDITION_WRITE_PROTECTED 2

Figure 3-17 DiscUsageCondition Definitions

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

18

struct ODA_DRIVE_SDK_CAPI ODADriveSDK_DiscUsageInfo
{
 uint8_t index; ///< Index of the disc written in progress
 uint8_t condition; ///< Condition of the disc written in progress
 uint64_t capacity; ///< Capacity of the disc written in progress[bytes]
 uint64_t available; ///< Available space size of the disc written in progress [bytes]
 uint64_t used; ///< Used space size off the disc written in progress (= capacity - available)
[bytes]
};

Figure 3-18 DiscUsageInfo Structure

struct ODA_DRIVE_SDK_CAPI ODADriveSDK_BasicInfo
{
 uint8_t serialNumber[ODA_SERIAL_NUMBER_LENGTH]; ///< serial number of the
cartridge
 uint32_t initializationCount; ///< initialization count of the volume
 uint32_t initializationId; ///< id set at the time of volume creation
 uint32_t modificationId; ///< id set at the time of volume modification
 uint8_t numberOfDiscs; ///< number of discs in the cartridge
 uint32_t mountStatus; ///< mount status of the volume
 uint32_t writeProtectReason; ///< flags of write protect reason of the volume and cartridge
 uint32_t accessMode; ///< access mode of the volume
 uint8_t mediumType; ///< medium typen of the discs and cartridge
 char vendor[8]; ///< cartridge vendor id
 char productName[16]; ///< cartridge product name
 char mediaTypeForLongForm[48]; ///< cartridge type (long form)
 char mediaTypeForShortForm[16]; /// cartridge type (short form) enum
ODADriveSDK_VOLUME_TYPE volumeType; ///< type of the volume
 struct ODADriveSDK_DiscUsageInfo usageInfo; ///< usage info of the disc written in
progress
};

Figure 3-19 BasicInfo Structure

/**
 * function: ODADriveSDK_GetInformation
 *
 * summary:
 * Get basic information of the medium in the drive.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".

 * I In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX".
 * param[out] info:
 * Basic information of drive
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetInformation(
 const ODADriveSDK_CHAR* drive,
 struct ODADriveSDK_BasicInfo* info
);

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

19

Figure 3-20 GetInfomation Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

20

3.3.2.2 Drive Identifier(Macintosh OSX only)
An application can get identifier of drive connected to Macintosh by
ODADriveSDK_GetDriveIdVector. The identifier of drive can be used as “drive” parameter
in following APIs.

ODADriveSDK_GetInformation

ODADriveSDK_DoEject

ODADriveSDK_GetDeviceInformation

ODADriveSDK_CheckMediaExist

ODADriveSDK_SetSoftwareWriteProtect

ODADriveSDK_GetSoftwareWriteProtect

//* drive identifier */
struct ODA_DRIVE_SDK_CAPI ODADriveSDK_DriveId
{
 char deviceId[17]; ///< drive identifier(null terminal char string)
};

/** drive identifier vector */
struct ODA_DRIVE_SDK_CAPI ODADriveSDK_DriveIdVector
{
 uint32_t driveIdNum; ///< number of drive
identifier
 struct ODADriveSDK_DriveId driveIds[1]; ///< drive identifier
};

Figure 3-21 DriveIdVector Structure

/**
 * function: ODADriveSDK_GetDriveIdVector
 *
 * summary:
 * Get identifier of drive cnnected to the system.
 *
 * param[out] driveIdBuffer:
 * Drive identifier
 * param[in] driveIdBufferSize:
 * Buffer size of driveIdBuffer
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
 ODADriveSDK_GetDriveIdVector(

struct ODADriveSDK_DriveIdVector* driveIdBuffer,
uint64_t driveIdBufferSize

);

Figure 3-22 GetDeviceInfomation Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

21

3.3.2.3 Drive Information
An application can get the drive information such as drive’s model name, serial name and
firmware version by ODADriveSDK_GetDeviceInformation and
ODADriveSDK_GetDeviceInformationEx. The application can also get the alarm code and
hours meters of drive.

Note that ODADriveSDK_GetDeviceInformation dosen't support part of
ODADriveSDK_HoursMeter(discGuideCounter, carryMotorHCounter,
carryMotorVCounter).

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

22

struct ODADriveSDK_HoursMeter
{
 uint8_t dataType; ///< data Structure format type
 union
 {
 //* ODS-D55U (dataType==0) */
 struct
 {
 uint16_t dataStructureLength; ///< data Structure length
 uint8_t dataStructureFormatType; ///< data Structure format type
 uint32_t operationTime; ///< operation time
 uint32_t spindleTime; ///< spindle time
 uint32_t laser; ///< laser
 uint32_t selectCount; ///< select count
 uint32_t seekCount; ///< seek count
 uint32_t carryCount; ///< carry count
 uint32_t injectCount; ///< inject count
 } Type0;

 //* ODS-D77U/F (dataType==1) */
 struct
 {
 uint16_t dataStructureLength; ///< data Structure length
 uint8_t dataStructureFormatType; ///< data Structure format type
 uint32_t operationTime; ///< operation time
 uint32_t spindleTime; ///< spindle time
 uint32_t laser0; ///< laser parameter 0
 uint32_t laser1; ///< laser parameter 1
 uint32_t selectCount; ///< select count
 uint32_t seekCount0; ///< seek count 0
 uint32_t seekCount1; ///< seek count 1
 uint32_t carryCount; ///< carry count
 uint32_t injectCount; ///< inject count
 uint32_t discGuideCounter; ///< disc guide count
 uint32_t carryMotoreHCounter; ///< carriy motoer H count
 } Type1;

 //* ODS-D280U/F (dataType==2) */
 struct
 {
 uint16_t dataStructureLength; ///< data Structure length
 uint8_t dataStructureFormatType; ///< data Structure format type
 uint32_t operationTime; ///< operation time
 uint32_t spindleTime; ///< spindle time
 uint32_t laser0; ///< laser parameter 0
 uint32_t laser1; ///< laser parameter 1
 uint32_t laser2; ///< laser parameter 2
 uint32_t laser3; ///< laser parameter 3
 uint32_t selectCount; ///< select count
 uint32_t seekCount0; ///< seek count 0
 uint32_t seekCount1; ///< seek count 1
 uint32_t seekCount2; ///< seek count 2
 uint32_t seekCount3; ///< seek count 3
 uint32_t carryCount; ///< carry count
 uint32_t injectCount; ///< inject count

uint32_t discGuideCounter; ///< disc guide count
 uint32_t carryMotorHCounter; ///< carrt motor H count
 uint32_t carryMotorVCounter; ///< carrt motor V count

 } Type2;
 } Data;
};

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

23

Figure 3-23 HoursMeter Structure

struct ODADriveSDK_AlarmCode
{
 uint8_t mainCode; ///< main code
 uint16_t subCode; ///< sub code (bits 0-11 used)
};

Figure 3-24 AlarmCode Structure

struct ODA_DRIVE_SDK_CAPI ODADriveSDK_DeviceInfo
{
 char modelName[17]; ///< drive model name(null terminal char string)
 char serialNumber[17]; ///< drive serial number(null terminal char string)
 char firmwareVersion[5]; ///< drive firmware version(binary)
 struct ODADriveSDK_HoursMeter hoursMeter; ///< drive hours meter
 struct ODADriveSDK_AlarmCode alarmCode; ///< drive alarm code
};

Figure 3-25 DeviceInfo Structure

/**
 * function: ODADriveSDK_GetDeviceInformation
 *
 * summary:
 * Get the drive information whether a cartridge is in or not.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".

 * In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX".
 * param[out] info:
 * Drive information
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetDeviceInformation(
 const ODADriveSDK_CHAR *drive,
 struct ODADriveSDK_DeviceInfo* info
);

Figure 3-26 GetDeviceInfomation Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

24

/**
 * function: ODADriveSDK_GetDeviceInformationEx
 *
 * summary:
 * Get the drive information whether a cartridge is in or not.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".

 * In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX".
 * param[out] info:
 * Drive information
* param[in] infoSize
* Buffer size of info

 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetDeviceInformationEx(
 const ODADriveSDK_CHAR *drive,
 struct ODADriveSDK_DeviceInfo* info,

uint32_t infoSize
);

Figure 3-27 GetDeviceInfomationEx Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

25

3.3.2.4 Number of Files and Directories in the Volume
An application can get the number of files and directories in the volume by
ODADriveSDK_GetFileCount().

/**
 * function: ODADriveSDK_GetFileCount
 *
 * summary:
 * Get total number of files and directories in the volume.
 * When access mode(in BasicInfo, get with GetInformation()) of the volume is RAW,
 * NumberOfFiles and NumberOfDirectories are set 0.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 * param[out] numberOfFiles:
 * Number of recorded files
 * param[out] numberOfDirectories:
 * Number of recorded directorieds
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetFileCount(
 const ODADriveSDK_CHAR *drive,
 uint32_t *numberOfFiles,
 uint32_t *numberOfDirectories
);

Figure 3-28 GetFileCount Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

26

3.3.2.5 Software Write Protect
ODA cartridges have a software write protect setting. This software write protect setting is
ORing to other write protect settings such as cartridge’s write protect switch.

The volume will be toggled read-only/writable, when an application calls
ODADriveSDK_SetSoftwareWriteProtect() to set this software write protect setting on/off.

This feature will be kept even after when the cartridge is ejected.

An application can also obtain the current protect setting by
ODADriveSDK_GetSoftwareWriteProtect().

enum ODADriveSDK_SOFTWARE_WRITE_PROTECT
{
 ODADriveSDK_SOFTWARE_WRITE_PROTECT_OFF = 0, ///< software write protect off
 ODADriveSDK_SOFTWARE_WRITE_PROTECT_ON = 1 ///< software write protect on
};

Figure 3-29 SoftwareWriteProtect Enum

/**
 * function: ODADriveSDK_SetSoftwareWriteProtect
 *
 * summary:
 * Set the software write protect of the cartridge on or off.
 * The software write protect flag is recorded in CM(cartridge memory).
 * The cartridge will be ejected automatically by this calling.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".

 * In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX".
 * param[in] writeProtect:
 * If ODADriveSDK_SOFTWARE_WRITE_PROTECT_OFF, write protect is off.
 * If ODADriveSDK_SOFTWARE_WRITE_PROTECT_ON, write protect is on.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t ODADriveSDK_SetSoftwareWriteProtect(
 const ODADriveSDK_CHAR *drive,
 enum ODADriveSDK_SOFTWARE_WRITE_PROTECT writeProtect
);

Figure 3-30 SetSoftwareWriteProtect Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

27

/**
 * function: ODADriveSDK_GetSoftwareWriteProtect.
 *
 * summary:
 * Get whether the software write protect of the cartridge is on or off.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".

 * In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX".
 * param[out] writeProtect:
 * If ODADriveSDK_SOFTWARE_WRITE_PROTECT_OFF, write protect is off.
 * If ODADriveSDK_SOFTWARE_WRITE_PROTECT_ON, write portect is on.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t ODADriveSDK_GetSoftwareWriteProtect(
 const ODADriveSDK_CHAR *drive,
 enum ODADriveSDK_SOFTWARE_WRITE_PROTECT *writeProtect
);

Figure 3-31 GetSoftwareWriteProtect Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

28

3.3.2.6 Cartridge type in the Drive
An application can get the type of cartridge in the drive by
ODADriveSDK_GetCartridgeType().

enum ODADriveSDK_CARTRIDGE_TYPE
{
 ODADriveSDK_CRTRIDGE_TYPE0 = 0, ///< Generation1 type cartridge
 ODADriveSDK_CRTRIDGE_TYPE1 = 1 ///< Generation2 type cartridge

ODADriveSDK_CARTRIDGE_UNSUPPORTED = -1
};

Figure 3-32 CartridgeType Enum

/**
 * function: ODADriveSDK_GetCartridgeType
 *
 * summary:
 * Get the type of cartridge in the drive.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
 * In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".
 * In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX".
 * param[out] cartridgeType:
 * If ODADriveSDK_CRTRIDGE_TYPE0, Geneartion1 type catridge exis in the drive.
 * If ODADriveSDK_CRTRIDGE_TYPE1, Generation2 type catridge exis in the drive.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t ODADriveSDK_GetCartridgeType(

const ODADriveSDK_CHAR *drive,
enum ODADriveSDK_CARTRIDGE_TYPE *cartridgeType

);

Figure 3-33 GetCartridgeType Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

29

3.3.2.7 Media existence in the Drive
An application can check a cartridge existence in the drive by
ODADriveSDK_CheckMediaExist().

enum ODADriveSDK_IS_CARTRIDGE_EXISTED
{
 ODADriveSDK_NO_CARTRIDGE = 0, ///< there is no cartridge in the drive
 ODADriveSDK_CARTRIDGE_EXIST = 1 ///< a cartridge exists in the drive
};

Figure 3-34 IsCartridgeExisted Enum

/**
 * function: ODADriveSDK_CheckMediaExist
 *
 * summary:
 * Check whether a catridge exists or not in a drive.
 * When the cartridge is on the way to injecting or ejecting,
 * this function returns as existing.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".

 * In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX".
 * param[out] isExist:
 * If ODADriveSDK_CARTRIDGE_EXIST, a catridge is in the drive.
 * If ODADriveSDK_NO_CARTRIDGE, no cartridge is in the drive.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t ODADriveSDK_CheckMediaExist(
 const ODADriveSDK_CHAR *drive,
 enum ODADriveSDK_IS_CARTRIDGE_EXISTED *isExist
);

Figure 3-35 CheckMediaExist Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

30

3.3.2.8 Eject Cartridge from Drive
An application can eject the cartridge from the specified drive by ODADriveSDK_DoEject().

This function will wait until the cartridge has been ejected completely. It means the
cartridge can be removed from the cartridge slot of the drive physically after this function
calling.

/**
 * function: ODADriveSDK_DoEject
 *
 * summary:
 * Eject a cartridge from the drive safety.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".

 * In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX".
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_DoEject(
 const ODADriveSDK_CHAR *drive
);

Figure 3-36 DoEject Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

31

3.3.2.9 Re-formatting the Cartridge
An application can delete all files and directories and re-initialize volume by
ODADriveSDK_DoAllDelete ().

Caller shall set two parameters: formatMethod and volumeType.

If ODADriveSDK_BACKTRACK is set to formatMethod parameter, the remaining size of the
volume will be regained to initial size. ODADriveSDK_BACKTRACK can be set only for
rewritable medium, and cannot be set for write once (recordable) medium. When
ODADriveSDK_BACKTRACK is set, volumeType parameter is effect.

If ODADriveSDK_NO_BACKTRACK is set to formatMethod parameter, the remaining size
will not be gained. The volumeType parameter will be ignored, and the new re-formatted
volume will inherit volumeType from previous volume.

This API may take a time. When you set callback function, API calls callback function with
the progress periodically.

After this API is completed, the volume is mounted on Windows and Macintosh OS X. On
the other hand, the volume is unmounted on Linux.

enum ODADriveSDK_PROCESSING_REQUEST
{
 ODADriveSDK_REQUEST_CANCEL = 0, ///< cancel processing
 ODADriveSDK_REQUEST_CONTINUE = 1 ///< continue processing
};

Figure 3-37 ProcessingRequest Enum

/**
 * function: ODADriveSDK_AllDeleteCallback
 *
 * summary:
 * User defined callback function called from ODADriveSDK_DoAllDelete.
 * User can check formatting progress by deleting disc number.
 * User can select whether continue or cancel for processing by return value.
 *
 * param [in] discNum:
 * Number of deleted discs
 * param [in] param:
 * User defined parameter set at calling ODADriveSDK_DoAllDelete
 *
 * return: ODADriveSDK_REQUEST_CONTINUE to continue, or ODADriveSDK_REQUEST_CANCEL to
cancel.
 */
typedef enum ODADriveSDK_PROCESSING_REQUEST
(*ODADriveSDK_AllDeleteCallback)(
 uint32_t discNum,
 void* param
);

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

32

Figure 3-38 FormatCallback Callback-Function

enum ODADriveSDK_FORMAT_METHOD
{
 ODADriveSDK_NO_BACKTRACK = 0, ///< delete entries of files or directories only(volume
capacity will not be gained.)
 ODADriveSDK_BACKTRACK = 1 ///< erase used marker of discs (volume capacity
will be gained.)
};

Figure 3-39 FormatMethod Enum

/**
 * function: ODADriveSDK_DoAllDelete
 *
 * summary:
 * Delete all files in the volume.
 * If the medium is RE, a caller can select formatMethod either ODADriveSDK_BACKTRACK or
ODADriveSDK_NO_BACKTRACK.
 * If the medium is WO, formatMethod is ignored.
 * The callback function ODADriveSDK_DoAllDelete() is called only in case of formatMethod is
ODADriveSDK_BACKTRACK.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 * param[in] formatMethod:
 * If ODADriveSDK_BACKTRACK, capacity of volume will be restored, but the deleted files will
never be
 * recoverable by roll back.(RE)
 * If ODADriveSDK_NO_BACKTRACK, capacity of volume will not be restored, but the deleted
file will be
 * recoverable by roll back. (RE/WO)
 * param[in] volumeType:
 * Volume type (refer ODADriveSDK_VOLUME_TYPE).
 * Valid only if formatMethod == ODADriveSDK_BACKTRACK. Otherwise, current
volumeType will be used.
 * param[in] callback:
 * Callback function for checking deleted disc num before format. (if not necessary, set NULL)
 * param[in] param:
 * User defined parameter for callback function. (if not necessary, set NULL)
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_DoAllDelete(
 const ODADriveSDK_CHAR *drive,
 enum ODADriveSDK_FORMAT_METHOD formatMethod,
 enum ODADriveSDK_VOLUME_TYPE volumeType,
 ODADriveSDK_AllDeleteCallback callback,
 void *param
);

Figure 3-40 DoAllDelete Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

33

3.3.2.10 Finalize Write Once Media
An application can finalize the write once media by ODADriveSDK_DoFinalize(). However,
the finalized medium becomes read-only forever, it is recommended for a lengthy storage
life. This function works only for write once media.

After this API is completed, the volume is mounted on Windows and Macintosh OS X. On
the other hand, the volume is unmounted on Linux.

/**
 * function: ODADriveSDK_DoFinalize
 *
 * summary:
 * Finalyze the WO medium by this function.
 * After finalizing, the cartridge will be read only.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_DoFinalize(
 const ODADriveSDK_CHAR *drive
);

Figure 3-41 DoFinalize Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

34

3.3.2.11 Exclusive Access Mode (Windows only)
An application can enter exclusive access mode for the volume by
ODADriveSDK_EnterExclusiveAccessMode(). When the application process enters
exclusive access mode for the volume, any other process cannot open/create any files or
directories except for /root directory. Only the caller application process which entering
exclusive access mode has full access control for the volume.

The application can exit from exclusive access mode by either calling
ODADriveSDK_ExitExclusiveAccessMode(), or close handle. Note that the handles
possessed by the process will be closed automatically, when the process is terminated.

/**
 * function: ODADriveSDK_EnterExclusiveAccessMode
 *
 * summary:
 * Enter the caller process to exclusive access mode,
 *
 * param[in] handle:
 * Pointer of volume HANDLE which has been opened by caller before this calling.
 * (e.g. by CreateFile() on Windows)
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_EnterExclusiveAccessMode(
 void *handle
);

Figure 3-42 EnterExclusiveAccessMode Function

/**
 * function: ODADriveSDK_ExitExclusiveAccessMode
 *
 * summary:
 * Exit the caller process from exclusive access mode,
 *
 * param[in] handle:
 * Pointer of volume HANDLE. The handle will be closed by caller after this calling.
 * (e.g. by CloseHandle() on Windows)
 *
 * return zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_ExitExclusiveAccessMode(
 void *handle
);

Figure 3-43 ExitExclusiveAccessMode Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

35

3.3.2.12 Attributes in Cartridge Memory
The attributes in Cartridge Memory can be accessed by ODADriveSDK_EnumAttribute(),
ODADriveSDK_ReadAttribute(), or ODADriveSDK_WriteAttribute().

struct ODA_DRIVE_SDK_CAPI ODADriveSDK_AttributeIdVector
{
 uint32_t attributeNum; ///< number of attributes
 uint16_t attributeIds[1]; ///< attribute ids
};

Figure 3-44 AttributeIdVector Structure

/**
 * function: ODADriveSDK_EnumAttribute
 *
 * summary:
 * Enumerate lists of attribute data in the cartridge memory.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 * param[out] attributeIdBuffer:
 * Pointer to ODADriveSDK_AttributeIdVector (variable length)
 * param[in] attributeIdBufferSize:
 * Buffer size of attributeIdBuffer
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_EnumAttribute(
 const ODADriveSDK_CHAR *drive,
 struct ODADriveSDK_AttributeIdVector* attributeIdBuffer,
 uint64_t attributeIdBufferSize
);

Figure 3-45 EnumAttribute Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

36

/**
 * function: ODADriveSDK_ReadAttribute
 *
 * summary:
 * Read attribute data from the cartridge memory.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 * param[in] identifier:
 * Attribute identifier
 * param[out] flagsAndFormat:
 * Format[LSB0-1bit]={0(Binary),1(Ascii),2(Text)}, Reserved[2-6bit],
ReadOnly[7bit]={0(R/W),1(ReadOnly)}
 * param[out] value:
 * Value of attribute
 * param[in] valueBufferSize:
 * Buffer size of value
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_ReadAttribute(
 const ODADriveSDK_CHAR *drive,
 uint16_t identifier,
 uint8_t* flagsAndFormat,
 uint32_t* valueSizeReturned,
 void* value, uint32_t valueBufferSize
);

Figure 3-46 ReadAttribute Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

37

/**
 * function: ODADriveSDK_WriteAttribute
 *
 * summary:
 * Write attribute data to the cartridge memory.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 * param[in] identifier:
 * Attribute identifier
 * param[in] flagsAndFormat:
 * Format[LSB0-1bit]={0(Binary),1(Ascii),2(Text)}, Reserved[2-6bit],
ReadOnly[7bit]={0(R/W),1(ReadOnly)}
 * param[in] value:
 * Value of attribute
 * param[in] valueBufferSize:
 * Buffer size of value
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_WriteAttribute(
 const ODADriveSDK_CHAR *drive,
 uint16_t identifier,
 uint8_t flagsAndFormat,
 const void* value,
 uint32_t valueBufferSize
);

Figure 3-47 WriteAttribute Function

ID Length Format Writable Name

0003h 8 BINARY No LOAD COUNT

0004h 8 BINARY No MAM SPACE REMAINING

0007h 2 BINARY No INITIALIZATION COUNT

020Ah 40 ASCII No DEVICE VENDOR/SERIAL NUMBER AT LAST LOAD

020Bh 40 ASCII No DEVICE VENDOR/SERIAL NUMBER AT LAST LOAD-1

020Ch 40 ASCII No DEVICE VENDOR/SERIAL NUMBER AT LAST LOAD-2

020Dh 40 ASCII No DEVICE VENDOR/SERIAL NUMBER AT LAST LOAD-3

0224h 8 BINARY No LOGICAL POSITION OF FIRST ENCRYPTED BLOCK

0225h 8 BINARY No LOGICAL POSITION OF FIRST UNENCRYPTED BLOCK AFTER THE

FIRST ENCRYPTED BLOCK

0400h 8 ASCII No MEDIUM MANUFACTURER

0401h 32 ASCII No MEDIUM SERIAL NUMBER

0406h 8 ASCII No MEDIUM MANUFACTURE DATE

0407h 8 BINARY No MAM CAPACITY

0408h 1 BINARY No MEDIUM TYPE

0409h 2 BINARY No MEDIUM TYPE INFORMATION

0800h 8 ASCII No APPLICATION VENDOR

0801h 32 ASCII No APPLICATION NAME

0802h 8 ASCII No APPLICATION VERSION

0803h 160 TEXT No USER MEDIUM TEXT LABEL

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

38

0804h 12 ASCII No DATE AND TIME LAST WRITTEN

0805h 1 BINARY No TEXT LOCALIZATION IDENTIFIER

0806h 32 ASCII Yes BARCODE

0D00h 1 BINARY No MAX SLOT NUMBER OF WRITTEN DISC

0D03h 1 BINARY No WRITE PROTECT

0D12h 24 BINARY No MEDIUM REWRITE COUNT

1100h 1 BINARY No CARTRIDGE TYPE

1101h 1 BINARY No DISC PACKAGING POLICY OF CARTRIDGE

1102h 1 BINARY No NUMBER OF DISCS IN CARTRIDGE

1500h 128 ASCII No VENDOR UNIQUE VOLUME INFORMATION

1501h 8 BINARY No TOTAL VOLUME SIZE

1502h 8 BINARY No REMAINING VOLUME SIZE

1503h 4 BINARY No TOTAL NUMBER OF FILES IN VOLUME

1504h 4 BINARY No TOTAL NUMBER OF DIRECTORIES IN VOLUME

1505h 256 ASCII Yes NDEF MESSAGE

1580h
-159Bh

Max:
544

Not

Specified

Yes
USER ATTRIBUTES

Table 3-1 Attributes

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

39

3.3.2.13 Allocate new disc
An application can allocate new disc to the volume by ODADriveSDK_AllocateNewDisc().

/**
 * function: ODADriveSDK_AllocateNewDisc
 *
 * summary:
 * Change current writing disc to a next new disc.
 * If there is any writing file handles on the volume, this calling will be failed.
 * If no new disc in the cartridge, this callin will be failed.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 *
 * return true if successful, or false otherwise.
 *
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_AllocateNewDisc(
 const ODADriveSDK_CHAR *drive
);

Figure 3-48 AllocateNewDisc function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

40

3.3.2.14 Flush volume buffers
An application makes all the volume buffers flush to the medium by
ODADriveSDK_FlushVolumeBuffers().

There shall be no writable handle is opened when this function is called, otherwise the
function will be failed by error.

/**
 * function: ODADriveSDK_FlushVolumeBuffers
 *
 * summary:
 * Flush volume management data buffer to the disc forcibly.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_FlushVolumeBuffers(
 const ODADriveSDK_CHAR *drive
);

Figure 3-49 FlushVolumeBuffers Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

41

3.3.2.15 Raw mount flag (Windows only)
An application can set the raw mount flag to the volume by
ODADriveSDK_SetRawMountFlag(). If the rawMountFlag is set (=1), the file system driver
will complete mounting quickly, but will not provide normal file access (only the volume is
able to be opened), and accessMode of volume will be
ODADriveSDK_ACCESS_MODE_RAW from next mounting. If the rawMountFlag is not set
(=0), the file system driver will mount normally as usual.

The rawMountFlag setting is remained during the system running, but will be reset at next
system start.

To get current rawMountFlag setting, use ODADriveSDK_GetRawMountFlag().

To change the system behavior at the system starting, an application can set default raw
mount flag by calling ODADriveSDK_SetDefaultRawMountFlag(). This default setting
change shall take effect from next mounting, and shall be overridden by subsequent
calling of ODADriveSDK_SetRawMountFlag().

To get current defaultRawMountFlag setting, use
ODADriveSDK_GetDefaultRawMountFlag().

enum ODADriveSDK_RAW_MOUNT_FLAG
{
 ODADriveSDK_RAW_MOUNT_FLAG_OFF = 0, ///< raw mount flag off(default)
 ODADriveSDK_RAW_MOUNT_FLAG_ON = 1 ///< raw mount flag on
};

Figure 3-50 RawMountFlag Enum

/**
 * function: ODADriveSDK_SetDefaultRawMountFlag
 *
 * summary:
 * Set default raw mount flag for the system.
 * This flag setting is persitent and remained even after the system rebooted.
 * This setting change shall take effect from next mounting,
 * and shall be overridden by subsequent calling of ODADriveSDK_SetRawMountFlag().
 *
 * param[in] rawMountFlag:
 * Raw mount flag.
 * If ODADriveSDK_RAW_MOUNT_FLAG_OFF, raw mount flag is clear(default).
 * If ODADriveSDK_RAW_MOUNT_FLAG_ON, raw mount flag is set.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_SetDefaultRawMountFlag(
 enum ODADriveSDK_RAW_MOUNT_FLAG defaultrawMountFlag
);

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

42

Figure 3-51 SetDefaultRawMountFlag Function

/**
 * function: ODADriveSDK_GetRawMountFlag
 *
 * summary:
 * Get the default raw mount flag set by ODADriveSDK_SetDefaultRawMountFlag().
 *
 * param[out] defaultRawMountFlag:
 * Raw mount flag
 * If ODADriveSDK_RAW_MOUNT_FLAG_OFF, raw mount flag is clear(default).
 * If ODADriveSDK_RAW_MOUNT_FLAG_ON, raw mount flag is set.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetDefaultRawMountFlag(
 enum ODADriveSDK_RAW_MOUNT_FLAG *defaultRawMountFlag
);

Figure 3-52 GetDefaultRawMountFlag Function

/**
 * function: ODADriveSDK_SetRawMountFlag
 *
 * summary:
 * Set raw mount flag for the volume.
 * The volume accessMode will be ODADriveSDK_ACCESS_MODE_RAW from next mount.
 * This flag setting is remained during the system running, but will be reset
 * at next system start.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
 * param[in] rawMountFlag:
 * Raw mount flag.
 * If ODADriveSDK_RAW_MOUNT_FLAG_OFF, raw mount flag is clear(default).
 * If ODADriveSDK_RAW_MOUNT_FLAG_ON, raw mount flag is set.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_SetRawMountFlag(
 const ODADriveSDK_CHAR *drive,
 enum ODADriveSDK_RAW_MOUNT_FLAG rawMountFlag
);

Figure 3-53 SetRawMountFlag Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

43

/**
 * function: ODADriveSDK_GetRawMountFlag
 *
 * summary:
 * Get the volume raw mount flag set by ODADriveSDK_SetRawMountFlag().
 * Note the current volume's accessMode will be obtained by ODADriveSDK_GetInformation().
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* param[out] rawMountFlag:

 * Raw mount flag
 * If ODADriveSDK_RAW_MOUNT_FLAG_OFF, raw mount flag is clear(default).
 * If ODADriveSDK_RAW_MOUNT_FLAG_ON, raw mount flag is set.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetRawMountFlag(
 const ODADriveSDK_CHAR *drive,
 enum ODADriveSDK_RAW_MOUNT_FLAG *rawMountFlag
);

Figure 3-54 GetRawMountFlag Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

44

3.3.2.16 Remount volume (Windows only)
The volume will be remounted without cartridge ejecting by this calling. The setting of
ODADriveSDK_SetRawMountFlag() will be reflect to the volume.

There shall be no handle is opened for the volume when this function is called, otherwise
the function will be failed by error.

/**
 * function: ODADriveSDK_DoRemount
 *
 * summary:
 * Remounted the volume without cartridge ejecting.
 * Following API will be effective by this calling:
 * ODADriveSDK_SetRawMountFlag()
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_DoRemount(
 const ODADriveSDK_CHAR *drive
);

Figure 3-55 DoRemount Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

45

3.3.2.17 Current Loaded Disc
An application can get index number of the disc which is loaded in the internal optical drive
unit by ODADriveSDK_GetCurrentLoadedDiscIndex().

/**
 * function: ODADriveSDK_GetCurrentLoadedDiscIndex
 *
 * summary:
 * Get index number of the disc which is loaded in the internal optical drive.unit
 *
 * param[in] drive:
 * Drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* In case of Mac, set "/Volumes/XXX" or "/dev/diskX".

 * In case of Linux, set mount point.
 * param[out] index:
 * Current loaded disc index.
 * If (0 <= index < 12), current loaded disc index.
 * If (index == 255), no disc is loaded.
 * Otherwise. reserved.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetCurrentLoadedDiscIndex(
 const ODADriveSDK_CHAR *drive,
 uint8_t *index
);

Figure 3-56 GetCurrentLoadedDiscIndex Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

46

3.3.2.18 Volume label(Linux only)
An application can set the volume label by ODADriveSDK_SetVolumeLabel().

The usable characters for the volume label are from 1 to 63 characters in Unicode 2.0.

/**
 * function: ODADriveSDK_SetVolumeLabel
 *
 * summary:
 * Set volume label.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Linux, set mount point.
 * param[in] label:
 * New volume name
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_SetVolumeLabel (
 const ODADriveSDK_CHAR *drive,

ODADriveSDK_CHAR *label
);

Figure 3-57 SetVolumeLabel Function

An application can get the volume label by ODADriveSDK_GetVolumeLabel().

/**
 * function: ODADriveSDK_GetVolumeLabel
 *
 * summary:
 * Get volume label.
 *
 * param[in] drive:
 * Drive path of target
 * In case of Linux, set mount point.
 * param[out] label:
 * Volume name
 * param [in] valueBufferSize:
 * buffer size of value.
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetVolumeLabel (
 const ODADriveSDK_CHAR *drive,

ODADriveSDK_CHAR *label,
uint32_t valueBufferSize

);

Figure 3-58 GetVolumeLabel Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

47

3.3.2.19 Support Media Information
An application can get media information which the specified drive supports by
ODADriveSDK_GetSupportedMediaInfo.

enum ODADriveSDK_SUPPORTED_MEDIA_STATUS
{
 ODADriveSDK_SUPPORTED_MEDIA_STATUS_READ_ONLY = 0,
 ODADriveSDK_SUPPORTED_MEDIA_STATUS_READ_WRITE = 1
};

Figure 3-59 SupportedMediaStatus Enum

struct ODA_DRIVE_SDK_CAPI ODADriveSDK_SupportedMediaDescriptor
{
 char mediumManufacturer [8];
 char mediumProductIdentification [16];
 enum ODADriveSDK_SUPPORTED_MEDIA_STATUS mediumStatus;
 uint8_t reserve[7];
};

Figure 3-60 Supported Media Descriptor Structure

struct ODA_DRIVE_SDK_CAPI ODADriveSDK_SupportedMediaInfo
{
 uint32_t sizeOfDescriptor

struct ODADriveSDK_SupportedMediaDescriptor supportedMediaDescriptor[1];
};

Figure 3-61 Supported Media Info Structure

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

48

/**
 * function: ODADriveSDK_GetSupportedMediaInfo
 *
 * summary:
 * Get Supported Media Information of a drive..
 *
 * param[in] drive:
 * Drive path of target
* In case of Windows, set "G:", or "G:\" (case insensitive).t

 * In case of Mac, set "/Volumes/XXX", "/dev/diskX", or "deviceId".
. * In case of Linux, set mount point, "/dev/sdX", or"/dev/sgX". * param[out] label:
 * Volume name
 * param [out] supportedMediaInfoBuffer:
 * Pointer to ODADriveSDK_SupportedMediaInfo (variable length)
 *
* param [in] supportedMediaInfoSize:

 * Buffer size of supportedMediaInfoBuffer
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetSupportedMediaInfo (
 const ODADriveSDK_CHAR *drive,

struct ODADriveSDK_SupportedMediaInfo* supportedMediaInfoBuffer,
uint64_t supportedMediaInfoSize

);

Figure 3-62 GetSupportedMediaInfo Function

3.3.3 File operations

3.3.3.1 File Recording Information
An application can obtain each file’s recording information in the discs in the cartridges by
ODADriveSDK_GetFileRecordingInfo().

/** file recording information */
struct ODA_DRIVE_SDK_CAPI ODADriveSDK_FileRecordingInfo
{
 uint32_t discId; ///< recording disc id(equal to disc index)
 uint64_t fileSize; ///< recording file offset in the disc (Byte)
};

/** file recording information vector */
struct ODA_DRIVE_SDK_CAPI ODADriveSDK_FileRecordingInfoVector
{
 uint32_t infoNum; ///< number of ODADriveSDK_FILE_RECORDING_INFO
 struct ODADriveSDK_FileRecordingInfo infos[1]; ///< file recording information
};

Figure 3-63 FileRecordingInfoVector Structure

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

49

/**
 * function: ODADriveSDK_GetFileRecordingInfo
 *
 * summary:
 * Get recording information of the file.
 * The recording information is consist of {disc id, size}
 * example:
 * If a 20GiB file is recorded 10GiB each discs in Disc1, Disc2,
 * this API return fileRecordingInfo such as {disc1, 10GiB}, {disc2, 10GiB}.
 *
 * param[in] filePath:
 * File path of target
 * param[out] fileRecordingInfoBuffer:
 * File recording information
 * param[in] fileRecordingInfoBufferSize:
 * Fuffer size of fileRecordingInfoBuffer
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetFileRecordingInfo(
 const ODADriveSDK_CHAR *filePath,
 struct ODADriveSDK_FileRecordingInfoVector* fileRecordingInfoBuffer,
 uint64_t fileRecordingInfoBufferSize
);

Figure 3-40 GetFileRecordingInfo Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

50

3.3.3.2 File Control Option
An application can set the control options of writing file by
ODADriveSDK_SetFileControlOption () or ODADriveSDK_SetFileControlOptionEx ().

ODADriveSDK_SetFileControlOption() is obsolete function. For new application
development, use the ODADriveSDK_SetFileControlOptionEx () instead.

enum ODADriveSDK_FILE_CONTROL_OPTION_OF_FS_FLUSH
{
 ODADriveSDK_REFRAIN_FS_FLUSH_AT_CLOSE = 0, ///< refrain FS flush at close
 ODADriveSDK_FORCE_FS_FLUSH_AT_CLOSE = 1 ///< force FS flush at close
};

Figure 3-64 FileControlOptionOfFsFlush Enum

/**
 * function: ODADriveSDK_SetFileControlOption
 *
 * summary:
 * Set control option to writing file handle,
 * This function is provided for backward compatibility,
 * but obsolete.
 *
 * param[in] handle:
 * Depends on OS.(Win: pointer of opened HANDLE. Linux: pointer of opened file descriptor)
 * param[in] fsFlushOption:
 * File control options of FS flush (refer
ODADriveSDK_FILE_CONTROL_OPTION_OF_FS_FLUSH).
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_SetFileControlOption(
 void *handle,
 enum ODADriveSDK_FILE_CONTROL_OPTION_OF_FS_FLUSH fsFlushOption
);

Figure 3-65 SetFileControlOption Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

51

#define ODADriveSDK_FILE_INHIBIT_SPANNING_DISC_WRITE 0x00000002
#define ODADriveSDK_FILE_REFRAIN_FS_FLUSH_AT_CLOSE 0x00000004
#define ODADriveSDK_FILE_FORCE_FS_FLUSH_AT_CLOSE 0x00000008
#define ODADriveSDK_FILE_PACKED_WRITE 0x00000010

Figure 3-66 FileControlOptionFlag

/**
 * function: ODADriveSDK_SetFileControlOptionEx
 *
 * summary:
 * Set control option to writing file handle,
 *
 * param[in] handle:
 * Depends on OS.(Win: pointer of opened HANDLE. Linux: pointer of opened file descriptor)
 * param[in] fileControlOptionFlag:
 * File control options flag(refer file control option flag).
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_SetFileControlOptionEx(
 void *handle,
 uint32_t fileControlOptionFlag
);

Figure 3-67 SetFileControlOptionEx Function

Name of flag Remarks

ODADriveSDK_FILE_INHIBIT_
SPANNING_DISC_WRITE

If this flag is set, the file been writing by this handle will not
be able to span the disc even when the written disc is out of
space. When the written disc is out of space the write
function of the handle will be failed by error.
If ODADriveSDK_FILE_PACKED_WRITE is also set, this flag
will be ignored.

ODADriveSDK_FILE_FORCE_
FS_FLUSH_AT_CLOSE

If this flag is set, the FS buffer will been flushed when the file
handle is closed.
This flag will override
ODADriveSDK_FILE_REFRAIN_FS_FLUSH_AT_CLOSE or
ODADriveSDK_FILE_PACKED_WRITE if those flags are also
set.

ODADriveSDK_FILE_REFRAIN
_FS_FLUSH_AT_CLOSE

If this flag is set, the FS buffer will not been flushed even
when the file handle is closed.
This flag will be ignored if
ODADriveSDK_FILE_FORCE_FS_FLUSH_AT_CLOSE flag is
also set.

This flag will override ODADriveSDK_FILE_PACKED_WRITE.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

52

Table 2: fileControlOptionFlags of SetFileControlOptionEx

3.3.3.3 Hash Information
An application can add the hash information to a file by ODADriveSDK_AddHashINfo ().An
application can also obtain the hash information of a file by ODADriveSDK_GetHashInfo()
and remove the hash information of a file by ODADriveSDK_RemoveHashInfo() .

/** hash type */
enum ODADriveSDK_HASH_TYPE
{
 ODADriveSDK_HASH_TYPE_NON = 0, ///< Hash has not been set
 ODADriveSDK_HASH_TYPE_MD5 = 3 ///< MD5
};

Figure 3-68 Hash Type

/** hash info */
struct ODA_DRIVE_SDK_CAPI ODADriveSDK_HashInfo
{
 enum ODADriveSDK_HASH_TYPE hashType; ///< hash type
 uint16_t hashLength; ///< size of hash value
 uint8_t hashValue[1]; ///< hash value
};

Figure 3-69 Hash Infomation

ODADriveSDK_FILE_PACKED
_WRITE

If this flag is set, the written file of the handle will been
buffered on memory even after the file handle is closed. This
flag should be set to speed up series of small file writing.
This flag will be ignored If
ODADriveSDK_FILE_REFRAIN_FS_FLUSH_AT_CLOSE or
ODADriveSDK_FILE_FORCE_FS_FLUSH_AT_CLOSE are also
set.
See Detect Write Error for error checking.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

53

/**
 * function: ODADriveSDK_GetHashInfo
 *
 * summary:
 * Get Hash Info of a file in the volume.
 *
 * param[in] filePath:
 * File path of target
 * param[out] hashInfoBuffer
 * Pointer to ODADriveSDK_HashInfo (variable length)
 * param[in] hashInfoBufferSize
 * Buffer size of hashInfoBuffer
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t ODADriveSDK_GetHashInfo(const ODADriveSDK_CHAR *filePath,
struct ODADriveSDK_HashInfo* hashInfoBuffer, uint64_t hashInfoBufferSize);

Figure 3-70 GetHashInfomation Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

54

/**
 * function: ODADriveSDK_AddHashInfo
 *
 * summary:
 * Add Hash Info to a file in the volume.
 *
 * param[in] filePath:
 * File path of target
 * param[in] hashInfoBuffer
 * Pointer to ODADriveSDK_HashInfo (variable length)
 * param[in] hashInfoBufferSize
 * Buffer size of hashInfoBuffer
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t ODADriveSDK_AddHashInfo(const ODADriveSDK_CHAR *filePath,
struct ODADriveSDK_HashInfo* hashInfoBuffer, uint64_t hashInfoBufferSize);

Figure 3-71 AddHashInfomation Function

/**
 * function: ODADriveSDK_RemoveHashInfo
 *
 * summary:
 * Remove Hash Info of a file in the volume.
 *
 * param[in] filePath:
 * File path of target
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t ODADriveSDK_RemoveHashInfo(const ODADriveSDK_CHAR *filePath);

Figure 3-72 RemoveHashInfomation Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

55

3.3.3.4 Direct read access (Windows only)
An application can read file by ODADriveSDK_GetFileAllocationInfo/ReadFile/CloseFile
with using file allocation which is obtained by ODADriveSDK_GetFileAllocationInfo.

The file can be opened whether the volume mounted normally or raw by this calling.

The start position of read (parameter whence) and size (parameter requestSize) shall be
aligned to 65,536 bytes for ODADriveSDK_ReadFile().

Only one file can be opened at the time. Therefore, the caller shall close the opened handle
by ODADriveSDK_CloseFile() before calling next
ODADriveSDK_OpenFileHandleWithAllocationInfo().

/** file allocation information */
struct ODA_DRIVE_SDK_CAPI ODADriveSDK_FileAllocationInfo
{
 uint32_t discId; ///< recording disc id(equal to disc index)
 uint32_t blockOffset; ///< recording block offset [2,048bytes/block]
 uint32_t numberOfBlocks; ///< number of blocks of this allocation
};

/** file recording information vector */
struct ODA_DRIVE_SDK_CAPI ODADriveSDK_FileAllocationInfoVector
{
 uint64_t opaque; /// opaque value for caller, but shall be saved.
 uint64_t fileSize; /// size of the file
 uint32_t infoNum; ///< number of ODADriveSDK_FILE_ALLOCATION_INFO
 struct ODADriveSDK_FileAllocationInfo infos[1]; ///< file allocation information
};

Figure 3-73 FileAllocationInfoVector Structure

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

56

/**
 * function: ODADriveSDK_GetFileAllocationInfo
 *
 * summary:
 * Get allocation information of the file.
 * The allocation information can be used for ODADriveSDK_OpenFileWithAllocationInfo().
 *
 * param[in] filePath:
 * File path of target
 * param[out] fileAllocationInfoBuffer:
 * File allocation information
 * param[in] fileAllocationInfoBufferSize:
 * Buffer size of fileAllocationInfoBuffer
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_GetFileAllocationInfo(
 const ODADriveSDK_CHAR *filePath,
 struct ODADriveSDK_FileAllocationInfoVector* fileAllocationInfoBuffer,
 uint64_t fileAllocationInfoBufferSize
);

Figure 3-74 GetFileAllocationInfo Function

/**
 * function: ODADriveSDK_OpenFileWithAllocationInfo
 *
 * summary:
 * Open file with allcationwhich is obtained by ODADriveSDK_GetFileAllocationInfo().
 * File can be opened whether the volume is mounted normally or raw.
 * Only one file handle can be opened at the time. It means caller shall close the
 * opened file handle by ODADriveSDK_CloseFile() before calling next
ODADriveSDK_OpenFileWithAllocation().
 *
 * param[in] drive:
 * drive path of target
 * In case of Windows, set "G:", or "G:\" (case insensitive).
* param[in] fileAllocationInfoBuffer:

 * File allocation information
 * param[in] fileAllocationInfoBufferSize:
 * Buffer size of fileAllocationInfoBuffer.
 * param[out] handle:
 * Depends on OS.(Win: pointer of opened HANDLE)
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_OpenFileWithAllocationInfo(
 const ODADriveSDK_CHAR *drive,
 const struct ODADriveSDK_FileAllocationInfoVector* fileAllocationInfoBuffer,
 uint64_t fileAllocationInfoBufferSize,
 void *handle
);

Figure 3-75 OpenFileWithAllocationInfo Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 ODA Drive SDK

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

57

/**
 * function: ODADriveSDK_ReadFile
 *
 * summary:
 * Read the file data from ODA to the buffer by this function
 * The file handle shall have been opened by ODADriveSDK_OpenFileWithAllocationInfo().
 * The read request shall be aligned to 64KiB(0x10000).
 *
 * param[in] handle:
 * File handle opened by ODADriveSDK_OpenFileWithAllocationInfo().
 * param[in] whence:
 * Start position to read file [bytes].
 * If value < 0(minus value), use the read pointer which holds last position of reading done.
 * Otherwise(zero or larger), shall be aligned to 65536(0x10000).
 * param[in] requestSize:
 * Request size to read file [bytes].
 * Shall be aligned to 65536(0x10000), and 67108864(0x4000000) at maximum.
 * param[out] buffer:
 * Buffer to read data in.
 * Caller shall prepare the buffer which size is equal or larger than requestSize above.
 * param[out] resultSize:
 * Result size that the buffer has been filled with actual read data.
 *
 * return: zero if successful, or error code otherwise.
*/
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_ReadFile(
 void *handle, int64_t whence,
 uint32_t requestSize,
 void* buffer, uint32_t *resultSize
);

Figure 3-76 ReadFile Function

/**
 * function: ODADriveSDK_CloseFile
 *
 * summary:
 * Close a file handle opened by ODADriveSDK_OpenFileWithAllocationInfo().
 *
 * param[in] handle:
 * File handle opened by ODADriveSDK_OpenFileWithAllocationInfo().
 *
 * return: zero if successful, or error code otherwise.
 */
ODA_DRIVE_SDK_CAPI uint64_t
ODADriveSDK_CloseFile(
 void *handle
);

Figure 3-77 OpenFileWithAllocationInfo Function

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 Guideline

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

58

4 Guideline

4.1 Detect ODA drives

4.1.1 Windows
The application calls GetLogicalDrives() to retrieve bitmask representing the currently
available disk drives. Next the application calls ODADriveSDK_GetDeviceInformation() for
each drive letters according to the bitmask of available drives above, and checks the return
value of the function. If ODADriveSDK_GetDeviceInformation() returns success (zero), it
is ODA drive otherwise not ODA drive.

4.1.2 Macintosh OSX
The application can call ODADriveSDK_DriveIdVector to get lists of ODA drive identifiers.

4.1.3 Linux
The application can call ODADriveSDK_GetDeviceInformation() for each SCSI generic
device files such as /dev/sdX and /dev/sgX, and checks the return value of the function. If
ODADriveSDK_GetDeviceInformation() returns success (zero), it is ODA drive otherwise
not ODA drive.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 Guideline

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

59

4.2 DIRECT READ ACCESS (Advanced)

Cartridge[0]

DB

File[0]
Allocation

ODAFS(NORMAL)

Application

ODA drive

Disc[0]
Disc[1]
Disc[2]

Disc[11]
ODA volume (Cartridge[0])

・・・ ・・・

DB server

HOST PC

FS File[0] FS

File[0]
Allocation

File[0]
Allocation

File[0]

ODA drive

Cartridge[0]

DB

File[0]
Allocation

ODAFS(RAW)

Application

ODA drive

Disc[0]
Disc[1]
Disc[2]

Disc[11]
ODA volume (Cartridge[0])

・・・ ・・・

DB server

HOST PC

File[0]

File[0]
Allocation

File[0]
Allocation

File[0]

ODA drive

NORMAL FILE ACCESS DIRECT READ ACCESS

Figure 4-1 NORMAL FILE ACCESS and DIRECT READ ACCESS

ODAFS driver ver 3.2.0 or later supports direct read access feature to reduce the time of
retrieving file from when the cartridge is located outside of a drive. This direct read access
feature is assumed for applications which supports ODA library (ODS-L30M Petasite).
ODAFS driver ver 3.2.0 or later also supports disc auto load disabling feature. It may save 20
to 30 seconds constantly for FS mounting. When it works, ODA drive will not load the disc
which FS management data is recorded on, and ODAFS driver will parse the FS management
data on local HDD cache instead. This disc auto load disabling feature will work in the
background. Therefore, an application can not control this feature.
On the other hand, the direct read access feature can be controlled from an application, and
it will be able to reduce the parsing time of FS management data of ODAFS driver. The FS
parsing time depends on the number of files and PC performance, and it may cost 90-120
seconds at maximum.
The direct read access feature saves the FS parsing time to 0.1 seconds, because ODAFS
driver will not parse the FS management data. However, an application can read the file via
ODA Drive SDK.

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 Guideline

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

60

ODADriveSDK_DoRemount()

ODADriveSDK_
SetRawMountFlag(NORMAL)

ODADriveSDK_
SetRawMountFlag(RAW)

MOVE_MEDIUM
(Library Slot->Drive)

ODADriveSDK_
OpenFileWithAllocationInfo()

ODADriveSDK_ReadFile()

ODADriveSDK_CloseFile()

Open anotther file
for read?

Create another file
for write?

WAIT MOUNTING

Yes

No
No

Yes

Yes

DIRECT READ ACCESS

ODADriveSDK_DoFinalyze()

ODADriveSDK_
SetSoftwareWriteProtect()

ODADriveSDK_DoEject()

MOVE_MEDIUM
(DRIVE->Library Slot)

MOVE_MEDIUM
(Library Slot->Drive)

ODADriveSDK_
SetRawMountFlag(NORMAL)

Finalyze WO medium?

Set software
write protect?

New file created?

ODADriveSDK_
GetFileAllocationInfo()

WAIT MOUNTING

FILE OPERATIONS
(Windows API)

Create/Open another file?

Mount the volume
for DIRECT READ ACCESS?

No

No

No

No

No

Yes

Yes

Yes

Yes

NORMAL FILE ACCESS

Figure 4-2 Flowchart for support direct read access

 Optical Disc Archive
 ODA Drive SDK Guide
version 4.1.1 Guideline

© Sony Corporation, Dec. 22th 2017

CONFIDENTIAL

61

Above Figure 4-1 NORMAL FILE ACCESS and DIRECT READ ACCESS shows how direct read
access feature works. And Figure 4-2 Flowchart for support direct read access shows how
an application which supports direct read access should use ODA Drive SDK. Applications
which support ODA library are assumed, so that it moves a medium by MOVE MEDIUM of
ODS-L30M’s SCSI Media Changer command.
The application will write files by normal manner like left diagram in the former figure.
ODAFS is mounted normally at that time and the application writes or reads files via
standard I/F. After writing a file, the application shall get file allocation information from the
written files via ODADriveSDK_GetFileAllocation(), and store the file allocation information
to its database related to the written file. The application will eject the medium after when it
finishes file access.
Only for the retrieving files, the application set raw mount flag to the volume before injecting
the medium to drive by ODADriveSDK_SetRawMountFlag(RAW) like right diagram in the
former figure. By this setting, ODAFS will be mounted raw from next mounting without FS
parsing. In spite of ODAFS does not provide normal file access as raw mount, the application
can open the file with the file allocation information loaded from its database by
ODADriveSDK_OpenFileWithAllocationInfo(). After that, the application can read the portion
or entire file by ODADriveSDK_ReadFile().
The application can change the volume mount from raw to normal by
ODADriveSDK_SetRawMountFlag() and ODADriveSDK_DoRemount() without ejecting the
medium.

	1 General
	1.1 Outline of ODA Drive SDK
	1.2 Scope of ODA Drive SDK
	1.3 Definition of terms and acronyms
	1.4 Notation
	1.4.1 Numerical Notation
	1.4.2 Arithmetic notation
	1.4.3 Units

	2 General File I/O Interface
	2.1 Common for All Operating Systems
	2.1.1 Numerical Limitation
	2.1.1.1.1 Maximum Number of Files
	2.1.1.1.2 Maximum depth of Directories

	2.1.2 Naming Conversion
	2.1.2.1 Length of File Names

	2.1.3 File Access Restriction
	2.1.3.1 Write Protection
	2.1.3.2 Read Operation
	2.1.3.3 File Attributes

	2.1.4 Recommendation and Tips
	2.1.4.1 Detect Write Error
	2.1.4.2 Remaining Volume Size
	2.1.4.3 Simultaneous File Access
	2.1.4.4 Flushing and Disaster Recovery Policy of ODAFS driver

	2.2 Local Restrictions and Specifications of general API
	2.2.1 Windows
	2.2.2 Macintosh OSX
	2.2.3 Linux

	3 ODA Drive SDK
	3.1 Software Requirements
	3.1.1 Windows Environment
	3.1.2 Macintosh OSX Environment
	3.1.3 Linux Environment

	3.2 Contents of SDK
	3.2.1 Windows Environment
	3.2.2 Macintosh OSX Environment
	3.2.3 Linux Environment

	3.3 API Summary
	3.3.1 General operations
	3.3.1.1 SDK Version
	3.3.1.2 Error Message
	3.3.1.3 Operational Mode
	3.3.1.4 Export Drive/Driver logs

	3.3.2 Drive/Media operations
	3.3.2.1 Medium Information
	3.3.2.2 Drive Identifier(Macintosh OSX only)
	3.3.2.3 Drive Information
	3.3.2.4 Number of Files and Directories in the Volume
	3.3.2.5 Software Write Protect
	3.3.2.6 Cartridge type in the Drive
	3.3.2.7 Media existence in the Drive
	3.3.2.8 Eject Cartridge from Drive
	3.3.2.9 Re-formatting the Cartridge
	3.3.2.10 Finalize Write Once Media
	3.3.2.11 Exclusive Access Mode (Windows only)
	3.3.2.12 Attributes in Cartridge Memory
	3.3.2.13 Allocate new disc
	3.3.2.14 Flush volume buffers
	3.3.2.15 Raw mount flag (Windows only)
	3.3.2.16 Remount volume (Windows only)
	3.3.2.17 Current Loaded Disc
	3.3.2.18 Volume label(Linux only)
	3.3.2.19 Support Media Information

	3.3.3 File operations
	3.3.3.1 File Recording Information
	3.3.3.2 File Control Option
	3.3.3.3 Hash Information
	3.3.3.4 Direct read access (Windows only)

	4 Guideline
	4.1 Detect ODA drives
	4.1.1 Windows
	4.1.2 Macintosh OSX
	4.1.3 Linux

	4.2 DIRECT READ ACCESS (Advanced)

