

 Please read the Important Notice and Warnings at the end of this document Revision 1.35

www.infineon.com January 29, 2018

SLS 32AIA020X2/4

OPTIGA™ Trust X1
Solution Reference Manual

About this document

Scope and purpose

The scope of this document is the OPTIGA™ Trust X1
1 solution spanning from the device with its

external interface to the enabler components used for integrating the device with a bigger system.

Intended audience

This document addresses the audience: customers, solution providers, system integrators.

1
 All references regarding the OPTIGA™ Trust X are given generically without indicating the dedicated

version (e.g. X1, ...).

OPTIGA™ Trust X1
Solution Reference Manual

Table of Contents

Manual 2 Revision 1.35

www.infineon.com January 29, 2018

Table of Contents

Table of Contents ... 2

Figures .. 5

Tables ... 6

1 Definitions ... 8

1.1 Abbreviations ... 8

1.2 Naming Conventions.. 9

1.3 References .. 9

2 Supported Use Cases ... 11

2.1 Architecture Decomposition ... 11

2.1.1 OPTIGA Trust X IP Protection View [bdd] ... 13

2.1.2 OPTIGA Trust X Brand Protection View [bdd] ... 13

2.1.3 OPTIGA Trust X Communication Protection View [bdd] 14

2.1.4 OPTIGA Trust X Communication Protection View -toolbox- [bdd] 15

2.1.4.1 Host Code Size .. 16

2.2 Sequence Diagrams .. 17

2.2.1 Use Case: One-way Authentication - IP Protection [osd] 17

2.2.2 Use Case: One-way Authentication - Brand Protection [osd] 18

2.2.3 Use Case: Mutual Authentication (DTLS-Client-Overview) [osd] 19

2.2.4 Use Case: Mutual Authentication (DTLS-Client-Detailed) [osd] 20

2.2.5 Use Case: Protect communication data with OPTIGA™ Trust X [osd] 22

2.2.6 Use Case: Write General Purpose Data - data object [osd] 23

2.2.7 Use Case: Write General Purpose Data - metadata [osd] 24

2.2.8 Use Case: Read General Purpose Data - data object [osd] 25

2.3 Toolbox based Sequence Diagrams .. 26

2.3.1 Use Case: Mutual Auth establish session -toolbox- (TLS-Client) [osd] 26

2.3.2 Use Case: Abbreviated Handshake -toolbox- (TLS-Client) [osd] 29

2.3.3 Use Case: Host FW Update -toolbox- ... 30

2.4 Referenced Sequence Diagrams ... 31

2.4.1 Encrypt Payload w/o chaining (DTLS) [osd] .. 31

2.4.2 Decrypt Payload w/o chaining (DTLS) [osd] .. 32

3 Enabler APIs .. 34

3.1 CommandLib ... 34

3.1.1 CmdLib_CloseSession .. 34

3.1.2 CmdLib_Decrypt ... 34

3.1.3 CmdLib_Encrypt ... 35

3.1.4 CmdLib_GetMaxCommsBufferSize .. 35

OPTIGA™ Trust X1
Solution Reference Manual

Table of Contents

Manual 3 Revision 1.35

www.infineon.com January 29, 2018

3.1.5 CmdLib_GetMessage ... 36

3.1.6 CmdLib_PutMessage.. 36

3.1.7 CmdLib_CalcHash .. 37

3.1.8 CmdLib_OpenApplication ... 38

3.1.9 CmdLib_GetDataObject .. 39

3.1.10 CmdLib_SetDataObject .. 39

3.1.11 CmdLib_SetOptigaCommsContext ... 40

3.1.12 CmdLib_GetRandom .. 40

3.1.13 CmdLib_GetSignature .. 40

3.1.14 CmdLib_SetAuthScheme .. 41

3.1.15 CmdLib_VerifySign ... 41

3.1.16 CmdLib_GenerateKeyPair .. 42

3.1.17 CmdLib_CalculateSign ... 42

3.1.18 CmdLib_CalculateSharedSecret ... 43

3.1.19 CmdLib_DeriveKey ... 44

3.2 CryptoLib ... 45

3.2.1 CryptoLib_GenerateSeed ... 45

3.2.2 CryptoLib_GetRandom ... 45

3.2.3 CryptoLib_ParseCertificate ... 45

3.2.4 CryptoLib_VerifySignature .. 46

3.3 IntegrationLib ... 46

3.3.1 IntLib_ReadGpData .. 46

3.3.2 IntLib_WriteGpData .. 47

3.3.3 IntLib_Authenticate ... 47

3.4 OCP ... 48

3.4.1 OCP_Connect .. 48

3.4.2 OCP_Send ... 49

3.4.3 OCP_Receive ... 50

3.4.4 OCP_Init ... 51

3.4.5 OCP_Disconnect .. 52

3.5 optiga_comms_ifx_i2c ... 53

3.5.1 optiga_comms_close .. 53

3.5.2 optiga_comms_open .. 54

3.5.3 optiga_comms_reset .. 55

3.5.4 optiga_comms_transceive .. 55

4 OPTIGA™ Trust X External Interface ... 57

4.1 Warm Reset ... 57

OPTIGA™ Trust X1
Solution Reference Manual

Table of Contents

Manual 4 Revision 1.35

www.infineon.com January 29, 2018

4.2 Power Consumption... 57

4.2.1 Low Power Sleep Mode .. 57

4.3 Protocol Stack.. 57

4.4 Commands .. 58

4.4.1 Command basic definitions ... 58

4.4.2 Error Codes .. 59

4.4.3 Command/Response Definitions ... 61

4.4.3.1 OpenApplication .. 62

4.4.3.2 GetDataObject ... 63

4.4.3.3 SetDataObject ... 64

4.4.3.4 GetRandom ... 65

4.4.3.5 SetAuthScheme ... 66

4.4.3.6 GetAuthMsg ... 67

4.4.3.7 SetAuthMsg ... 68

4.4.3.8 ProcUpLinkMsg ... 69

4.4.3.9 ProcDownLinkMsg ... 70

4.4.3.10 CalcHash ... 71

4.4.3.11 CalcSign .. 73

4.4.3.12 VerifySign .. 74

4.4.3.13 GenKeyPair ... 75

4.4.3.14 CalcSSec ... 76

4.4.3.15 DeriveKey .. 77

4.4.4 Authentication Scheme Definitions.. 77

4.4.5 Authentication Message Definitions .. 78

4.4.6 Crypto Performance .. 80

4.5 Security Monitor ... 80

4.5.1 Security Events ... 80

4.5.2 Security Policy .. 81

4.5.3 Characteristics .. 81

4.6 Data Structures .. 83

4.6.1 Access Conditions .. 83

4.6.2 Application-specific data structures ... 85

4.6.3 Common data structures ... 85

4.6.4 TLV-Coding and Access Conditions (AC) ... 89

5 Appendix ... 95

5.1 Command Coding Examples ... 95

5.2 (D)TLS Protocol Details ... 95

5.2.1 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 ... 95

OPTIGA™ Trust X1
Solution Reference Manual

Figures

Manual 5 Revision 1.35

www.infineon.com January 29, 2018

5.3 (D)TLS Messages .. 96

5.3.1 (D)TLS Record Protocol message .. 96

5.3.1.1 (D)TLS Handshake messages ... 96

5.4 Limitations ... 100

5.4.1 Memory/ Environment Constraints .. 100

5.4.2 DTLS-Protocol .. 100

5.5 Certificate (Chain) Validation ... 101

5.5.1 Parameter Validation .. 101

5.5.2 Path Validation ... 102

5.6 Security Guidance ... 102

5.6.1 Use Case: Host FW Update -toolbox- ... 102

5.6.2 Use Case: Mutual Authentication (DTLS-Client) ... 102

5.6.3 Key usage associated to toolbox functionality ... 103

5.6.4 Key pair generation associated to toolbox functionality 103

5.6.5 Shared secret for key derivation associated to toolbox functionality 103

5.6.6 Use Case: One-way Authentication .. 103

5.7 Glossary .. 103

5.8 Change History .. 106

Figures
Figure 1 - OPTIGA Trust X IP Protection View [bdd] ... 13

Figure 2 - OPTIGA Trust X Brand Protection View [bdd] ... 14

Figure 3 - OPTIGA Trust X Communication Protection View [bdd] .. 15

Figure 4 - OPTIGA Trust X Communication Protection View -toolbox- [bdd] 16

Figure 5 - Use Case: One-way Authentication - IP Protection [osd] .. 18

Figure 6 - Use Case: One-way Authentication - Brand Protection [osd] .. 19

Figure 7 - Use Case: Mutual Authentication (DTLS-Client-Overview) [osd] 20

Figure 8 - Use Case: Mutual Authentication (DTLS-Client-Detailed) [osd] 22

Figure 9 - Use Case: Protect communication data with OPTIGA™ Trust X [osd] 23

Figure 10 - Use Case: Write General Purpose Data - data object [osd] ... 24

Figure 11 - Use Case: Write General Purpose Data - metadata [osd] ... 25

Figure 12 - Use Case: Read General Purpose Data - data object [osd] .. 26

Figure 13 - Use Case: Mutual Auth establish session -toolbox- (TLS-Client) [osd] 28

Figure 14 - Use Case: Abbreviated Handshake -toolbox- (TLS-Client) [osd] 30

Figure 15 - Use Case: Host FW Update -toolbox- ... 31

Figure 16 - Encrypt Payload w/o chaining (DTLS) [osd] .. 32

Figure 17 - Decrypt Payload w/o chaining (DTLS) [osd] .. 32

OPTIGA™ Trust X1
Solution Reference Manual

Tables

Manual 6 Revision 1.35

www.infineon.com January 29, 2018

Figure 18 - Go-to-Sleep diagram ... 57

Figure 19 Power profile .. 82

Figure 20 Throttling down profile.. 82

Figure 21 Security Event Counter Characteristics .. 83

Figure 22 Metadata sample ... 93

Figure 23 SetDataObject (Metadata) examples ... 93

Figure 24 GetDataObject [Read data] example ... 95

Figure 25 SetDataObject [Write data] example .. 95

Tables
Table 1 - Host Code Size .. 17

Table 2 - Protocol Stack Variation ... 58

Table 3 - APDU Fields .. 58

Table 4 - Command Codes ... 59

Table 5 - Response Status Codes .. 59

Table 6 - Error Codes ... 61

Table 7 - OpenApplication Coding .. 62

Table 8 - GetDataObject Coding ... 63

Table 9 - SetDataObject Coding ... 64

Table 10 - GetRandom Coding ... 65

Table 11 - SetAuthScheme Coding ... 66

Table 12 - GetAuthMsg Coding ... 67

Table 13 - SetAuthMsg Coding ... 68

Table 14 - ProcUpLinkMsg Coding ... 69

Table 15 - ProcDownLinkMsg Coding ... 70

Table 16 - CalcHash Coding ... 72

Table 17 - CalcSign Coding .. 73

Table 18 - VerifySign Coding .. 74

Table 19 - GenKeyPair Coding ... 75

Table 20 - CalcSSec Coding ... 76

Table 21 - DeriveKey Coding .. 77

Table 22 - Authentication Schemes .. 77

Table 23 - DTLS Handshake client sequence ... 79

Table 24 - One-way authentication sequence ... 80

Table 25 - Crypto Performance Metrics ... 80

Table 26 - Security Events .. 81

OPTIGA™ Trust X1
Solution Reference Manual

Tables

Manual 7 Revision 1.35

www.infineon.com January 29, 2018

Table 27 - Access Condition Identifier and Operators ... 84

Table 28 - Data Structure "Unique Application Identifier" .. 85

Table 29 - Data Structure "Arbitrary data object" ... 85

Table 30 - Common data structures .. 87

Table 31 - Life Cycle Status .. 88

Table 32 - Security Status ... 88

Table 33 - Data structure Coprocessor UID OPTIGA™ Trust X .. 89

Table 34 - Common data objects with TAG’s and AC‘s ... 89

Table 35 - Common key objects with TAG’s and AC‘s .. 90

Table 36 - Authentication application-specific data objects with TAG’s and AC‘s 90

Table 37 - Metadata associated with data and key objects ... 91

Table 38 - Algorithm Identifier ... 91

Table 39 - Key Usage Identifier ... 92

Table 40 - Key Agreement/ Encryption Primitives ... 92

Table 41 - Key Derivation Method ... 92

Table 42 - Signature Schemes .. 92

Table 43 - Terms of OPTIGA™ Trust X Solution Reference Manual ... 105

OPTIGA™ Trust X1
Solution Reference Manual

Definitions

Manual 8 Revision 1.35

www.infineon.com January 29, 2018

1 Definitions
This chapter Definitions provides abbreviations, naming conventions and references to maintain a
common language throughout the document.

1.1 Abbreviations

Abbreviation Term

AC Access Condition

AES Advanced Encryption Standard

APDU Application Data Unit

API Application Programming Interface

bdd Block Definition Diagram

CA Certification Authority

CCS Infineon division Chip Card and Security

CRL Certificate Revocation List

DD Device Driver

DO Data Object

DTLS Datagram Transport Layer Security

EAL Evaluation Assurance Level

EDH Erase Disturb Handling

ESW Embedded Software

GAD Generic Authentication Device

GUI Graphical User Interface

HFD/MCDS Halogen-Free Declaration / Material Content Data Sheet

LC / LCM Life Cycle / Life Cycle Management

NVM Non-Volatile Memory

NW Network

OID Object Identifier

osd Object Sequence Diagram

PMTU Path Maximum Transmission Unit

RAM Random-Access Memory

RoS Restriction of Hazardous Substances

RS Revocation Server

SEC Security Event Counter

SecMC Secure Microcontroller

SW Software

OPTIGA™ Trust X1
Solution Reference Manual

Definitions

Manual 9 Revision 1.35

www.infineon.com January 29, 2018

Abbreviation Term

TLS Transport Layer Security

UID Unique Identifier

USB Universal Serial Bus

VAR Value-added Reseller

µC / MCU Microcontroller

1.2 Naming Conventions
Throughout this document the naming of cryptographic material (e.g. keys) are constructed by

concatenating abbreviations (in "camel notation") given in this section. (e.g. SmcPriAUT →
OPTIGA™ Trust X Private Key for Authentication).

Abbreviation Term

ECC Elliptic Curve Crypto (Key)

EXT Key Holder is External Entity

MAC Message Authentication (Key, integrity)

PKI Public Key Infrastructure

PRI Private (Key)

PUB Public (Key)

RND Random Value

RSA RSA (Key)

SEC Secret (Key)

SES Symmetric Session (Key)

SMC Key Holder is Secure Micro Controller

1.3 References
This section provides references to information used in this document or information useful
becoming familiar with in the context of the technology specified within this document.

[Data Sheet] OPTIGA™ Trust X - Data Sheet

[DTLS] https://tools.ietf.org/html/rfc6347

Datagram Transport Layer Security Version 1.2

[ESW] Refer to chapter “OPTIGA™ Trust X External Interface”

The external Interface of the OPTIGA™ Trust X

[Getting_Started] OPTIGA™ Trust X - Getting Started Guide

[IFX_I2C] Infineon Technologies AG; IFX I2C Protocol Specification

https://tools.ietf.org/html/rfc6347

OPTIGA™ Trust X1
Solution Reference Manual

Definitions

Manual 10 Revision 1.35

www.infineon.com January 29, 2018

[I²C] http://www.nxp.com/documents/user_manual/UM10204.pdf

www.nxp.com/documents/user_manual/UM10204.pdf

NXP; UM10204 I²C-bus specification and user manual

[Keys_Certificates] OPTIGA™ Trust X - Key and Certificates

[PC_AppNote] OPTIGA™ Trust X - PC Application Note

[PKCS#1] http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11300-wp-pkcs-
1v2-2-rsa-cryptography-standard.pdf

PKCS#1 v2.1: RSA cryptography standard. RSA Laboratories
Technical Note, 2002.

[RFC4492] https://tools.ietf.org/html/rfc4492

Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS)

[RFC5116] https://tools.ietf.org/html/rfc5116

An Interface and Algorithms for Authenticated Encryption

[RFC5280] https://tools.ietf.org/html/rfc5280

Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

[RFC6655] https://tools.ietf.org/html/rfc6655

AES-CCM Cipher Suites for Transport Layer Security (TLS)

[RFC7925] https://tools.ietf.org/html/rfc7925

Transport Layer Security (TLS)/ Datagram Transport Layer
Security (DTLS) Profiles for the Internet of Thinks.

[TLS] http://tools.ietf.org/html/rfc5246

The Transport Layer Security (TLS) Protocol, Version 1.2, August
2008

[UML] http://www.omg.org/spec/UML/2.4.1

Object Management Group: “OMG Unified Modeling Language
(OMG UML), Infrastructure

Version 2.4.1”, August 2011, formal/2011-08-05
Object Management Group: “OMG Unified Modeling Language
(OMG UML), Superstructure

Version 2.4.1”, August 2011, formal/2011-08-06

[USB Auth] <http://www.usb.org/developers/docs>

Universal Serial Bus Type-C Authentication Specification

[X.509] http://tools.ietf.org/html/rfc5280

Internet X.509 public key infrastructure certificate and certificate
revocation list (CRL) profile. RFC5280, May 2008

[X.690] ASN.1 encoding rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER). X.690, 2002.

[XMC_AppNote] OPTIGA™ Trust X - XMC Application Note

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
https://tools.ietf.org/html/rfc4492
https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6655
https://tools.ietf.org/html/rfc7925
http://tools.ietf.org/html/rfc5246
http://www.omg.org/spec/UML/2.4.1
http://www.usb.org/developers/docs
http://tools.ietf.org/html/rfc5280

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 11 Revision 1.35

www.infineon.com January 29, 2018

2 Supported Use Cases
In the Supported Use Cases chapter a collection of authentication use cases, which apply on the shown Architecture Decomposition, are expressed as
UML sequence diagrams to show how to utilize the OPTIGA™ Trust X enabler components (OPTIGA™ Trust X device driver, Communication and
Crypto APIs, ...) and the external OPTIGA™ Trust X interface to achieve the target functionality of the solution. This chapter is intended to maintain a
well understanding of the OPTIGA™ Trust X eco system components particular for system integrators who like to integrate the OPTIGA™ Trust X with
their solution.
The OPTIGA™ Trust X is produced within security production environment and meets the same high level security standards regarding access
protection and secure work flows. The OPTIGA™ Trust X provides a number of arbitrary data objects which hold user/customer related information.
The subsequent document is structured in the chapters 'Supported Use Cases', 'Enabler APIs', 'OPTIGA™ Trust X External Interface' and 'Appendix'.
The 'Supported Use Cases' provides a number of sequence diagrams which are showing the detailed functionality of the OPTIGA™ Trust X.

2.1 Architecture Decomposition
Architecture Components

The architecture components contained in the various solution views (OPTIGA Trust X IP Protection View [bdd], OPTIGA Trust X Brand Protection View

[bdd], OPTIGA Trust X Communication Protection View [bdd], OPTIGA Trust X Communication Protection View -toolbox- [bdd]) subsequently shown are listed
and briefly described in the table below.

Name Description

3rd Party Crypto Lib Cryptographic functionalities are implemented in software and provided in 3rd Party Crypto Lib. The
main cryptographic operations of interest for OPTIGA™ Trust X are certificate parsing, signature
verification and certificate verification. 3rd Party Crypto Lib is supplied by 3rd party.

Accessory Application The Accessory Application is the embedded application implementing the accessory functionality. For IP
protection it uses the APIs exposed by the IntegrationLib and CommandLib.

CommandLib CommandLib is the main interface to interact with OPTIGA™ Trust X. It is aware of the format of
commands to be sent to OPTIGA™ Trust X. Commands to OPTIGA™ Trust X are sent and received in
the form of APDUs. APDUs are described in chapter OPTIGA™ Trust X External Interface.

CommandLib provides APIs for the cryptographic functionalities implemented in OPTIGA™ Trust X.
Once the user calls the APIs with appropriate parameters the CommandLib prepares APDU and sends
it to OPTIGA™ Trust X. The response from OPTIGA™ Trust X is received in the form of APDUs.

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 12 Revision 1.35

www.infineon.com January 29, 2018

Name Description

CommandLib extracts response from APDU and returns it to the application.

CommandLib interacts with optiga_comms_ifx_i2c for reliable communication with OPTIGA™ Trust X.

CryptoLib The CryptoLib wraps the Cryptographic Library specific API to a neutral API to enable multiple sourcing
of a 3rd Party Crypto Lib maximizing the reuse of the cryptography consuming components of the
OPTIGA™ Trust X solution. The CryptoLib exports only those API functions which are required by the
OPTIGA™ Trust X solution.

Host Application The Host Application is the embedded application implementing the host functionality.

IntegrationLib The IntegrationLib mainly implements use cases which user can use for reference, for use cases which
is made up of several commands implemented by command lib.

OCP OCP (OPTIGA Crypto & Protected Comm Library) module is exposing the interface to the
cryptographic functionalities. OCP fulfills the cryptographic functionalities by calling the implementation
of the underlying components.

optiga_comms_ifx_i2c optiga_comms_ifx_i2c is the interface used to communicate with OPTIGA™ Trust X. The CommandLib
generates data in the form of APDUs to communicate with OPTIGA™ Trust X. Size of APDUs varies
between few bytes to kilo bytes. The IFX I2C protocol handles this huge data transaction generated by
different applications. The protocol implementation is done in multiple layers and seamlessly handles
data transfer from Host to OPTIGA™ Trust X and OPTIGA™ Trust X to Host. More details of IFX I2C
protocol can be found in [IFX_I2C].

optiga_comms_tc optiga_comms_tc is used to communicate with the underlying HW interface like UDP/IP via the platform
abstraction layer (pal). It takes care of seamless transfer of data over the transparent channel.

pal The pal is a Platform Abstraction Layer, abstracting HW and Operating System functionalities for the
Infineon XMC family of µController or upon porting to any other µController. It abstracts away the low
level device driver interface (socket_xmc, timer_xmc, i2c_xmc) to allow the modules calling it being
platform agnostic. The pal is composed of hardware, software and an operating system abstraction
part.

Server Application The Server Application represents the entity to which the OPTIGA™ Trust X is used establishing a secure
communication channel with.

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 13 Revision 1.35

www.infineon.com January 29, 2018

2.1.1 OPTIGA Trust X IP Protection View [bdd]

Figure 'OPTIGA Trust X IP Protection View [bdd]' shows the block definition diagram of the IP Protection Solution Architecture containing its

main functional blocks. This view is applied for IP protection solution kind of use cases, where the involved blocks are represented as

dedicated lifelines.

The color coding provides information of whether the functional block gets entirely (yellow) or partly (green) provided by IFX or entirely

(blue) provided by a 3rd party.

Figure 1 - OPTIGA Trust X IP Protection View [bdd]

2.1.2 OPTIGA Trust X Brand Protection View [bdd]

Figure 'OPTIGA Trust X Brand Protection View [bdd]' shows the block definition diagram of the Brand Protection Solution Architecture

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 14 Revision 1.35

www.infineon.com January 29, 2018

containing its main functional blocks. The optiga_comms_tc and the Accessory Application are implementing a transparent channel between

the CommandLib on the Host and the optiga_comms_ifx_i2c driver on the Accessory. This view is applied for Brand Protection solution kind of

use cases, where the involved blocks are represented as dedicated lifelines.

The color coding provides information of whether the functional block gets entirely (yellow) or partly (green) provided by IFX or entirely

(blue) provided by a 3rd party.

Figure 2 - OPTIGA Trust X Brand Protection View [bdd]

2.1.3 OPTIGA Trust X Communication Protection View [bdd]

Figure 'OPTIGA Trust X Communication Protection View [bdd]' shows the block definition diagram of the Communication Protection Solution

Architecture containing its main functional blocks. The entities communicating across a protected channel are the Sever and the Client

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 15 Revision 1.35

www.infineon.com January 29, 2018

(OPTIGA™ Trust X). This view is applied for Communication Protection Solution kind of use cases, where the involved blocks are

represented as dedicated lifelines.

The color coding provides information of whether the functional block gets entirely (yellow) or partly (green) provided by IFX or entirely

(blue) provided by a 3rd party.

Figure 3 - OPTIGA Trust X Communication Protection View [bdd]

2.1.4 OPTIGA Trust X Communication Protection View -toolbox- [bdd]

Figure 'OPTIGA Trust X Communication Protection View -toolbox- [bdd]' shows the block definition diagram of the Toolbox based Communication

Protection Solution Architecture, containing its main functional blocks. The entities communicating across a protected channel are the

Sever and the Client (Host). This view is applied for Communication Protection Solution kind of use cases utilizing the toolbox functionality,

where the involved blocks are represented as dedicated lifelines.

The color coding provides information of whether the functional block gets entirely (yellow) or partly (green) provided by IFX or entirely

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 16 Revision 1.35

www.infineon.com January 29, 2018

(blue) provided by a 3rd party.

Figure 4 - OPTIGA Trust X Communication Protection View -toolbox- [bdd]

2.1.4.1 Host Code Size
The Table Host Code Size shows the footprint of the various host side configurations. The "Note" column names the component(s) contained in the
footprint calculation. All other components even shown by the architecture diagram are project specific and provided by the system integrator. The
values specified in the table Host Code Size are based on Keil ARM MDK v5.14, targeting Cortex M (32 bit) controller. These values are subjected to
vary based on the target controller architecture (8/16/32 bit), compiler and optimization level chosen.

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 17 Revision 1.35

www.infineon.com January 29, 2018

Configuration Footprint (RAM / CODE) Note

The IP Protection Architecture is shown by OPTIGA Trust X

IP Protection View [bdd].
11 / 50 KByte The components IntegrationLib, CryptoLib, 3rd Party Crypto

Lib, CommandLib, optiga_comms_ifx_i2c are covered.

The Brand Protection Architecture (Accessory) is shown by
OPTIGA Trust X Brand Protection View [bdd].

2 / 6 KByte The component optiga_comms_ifx_i2c is covered.

The Brand Protection Architecture (Host) is shown by
OPTIGA Trust X Brand Protection View [bdd].

11 / 50 KByte The components IntegrationLib, CryptoLib, 3rd Party Crypto

Lib, CommandLib are covered.

The Communication Protection Architecture (Server <=>

OPTIGA Trust X) is shown by OPTIGA Trust X

Communication Protection View [bdd].

8 / 27 KByte The components OCP, CommandLib, optiga_comms_ifx_i2c
are covered.

Table 1 - Host Code Size

2.2 Sequence Diagrams

2.2.1 Use Case: One-way Authentication - IP Protection [osd]
The Accessory Application likes to verify the authenticity of the OPTIGA™ Trust X. In case the authenticity verification succeeds, the Accessory
considers itself not being cloned.
The CryptoLib provides a challenge (random value) and the OPTIGA™ Trust X simply applies a signature on it and returns the result as response by
which it proofs its authenticity.
This sequence diagram is provided to show the functions involved in performing a one-way authentication based on a public key signature scheme.
Note: This use case applies on the OPTIGA Trust X IP Protection View [bdd].
Pre-condition:

 The OPTIGA™ Trust X application is already launched
Post-condition:

 The Accessory Application considers the OPTIGA™ Trust X as an authentic member of the regarded PKI domain (either IFX or Customer)

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 18 Revision 1.35

www.infineon.com January 29, 2018

Figure 5 - Use Case: One-way Authentication - IP Protection [osd]

2.2.2 Use Case: One-way Authentication - Brand Protection [osd]
The Host Application likes to verify the authenticity of the OPTIGA™ Trust X. In case the authenticity verification succeeds, the Host considers the
Accessory not being cloned and thus a legitimate member of the branded ecosystem.
The Host Application provides a challenge (random value) and the OPTIGA™ Trust X simply applies a signature on it and returns the result as response
by which it proofs its authenticity.
This sequence diagram is provided to show the functions involved in performing a one-way authentication based on a public key signature scheme.
Note 1: This use case applies on the OPTIGA Trust X Brand Protection View [bdd].
Note 2: The transparent channel (TC) is implemented by optiga_comms_tc and Accessory Application, but not shown here, since the TC is not adding
any semantics. However, the TC is adding a communication technology specific delay!
Pre-condition:

 The OPTIGA™ Trust X application is already launched

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 19 Revision 1.35

www.infineon.com January 29, 2018

Post-condition:

 The Host Application considers the OPTIGA™ Trust X as an authentic member of the regarded PKI domain (either IFX or Customer)

Figure 6 - Use Case: One-way Authentication - Brand Protection [osd]

2.2.3 Use Case: Mutual Authentication (DTLS-Client-Overview) [osd]
The Server Application and the Host Application, like to prove that they are mutually authentic. Both the Server Application and the Host Application, with
the help of OPTIGA™ Trust X, executing the DTLS Handshake and ChangeCipherSpec protocol by which, upon successful execution, both parties
prove their authenticity and negotiating session key material for further use with application records.
Sequence diagram 'Use Case: Mutual Authentication (DTLS-Client-Overview) [osd]' shows the sequence of operations for DTLS handshake. Messages are
grouped to measure the retransmission timeout and upon elapsing retransmitting the uplink message. For more details about DTLS handshake refer
[DTLS].

Note: This use case applies on the OPTIGA Trust X Communication Protection View [bdd].

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 20 Revision 1.35

www.infineon.com January 29, 2018

Figure 7 - Use Case: Mutual Authentication (DTLS-Client-Overview) [osd]

2.2.4 Use Case: Mutual Authentication (DTLS-Client-Detailed) [osd]
The External World and the OPTIGA™ Trust X, like to prove that they are mutually authentic. Both the External World and the OPTIGA™ Trust X
executing the DTLS Handshake and ChangeCipherSpec protocol by which upon successful execution both parties prove their authenticity and
negotiating session key material for further use with application records. The scope of this diagram is on the OPTIGA™ Trust X external interface
invoked by the CommandLib.
Figure "Use Case: Mutual Authentication (DTLS-Client-Detailed) [osd]" shows the sequence of functions to be executed in case the OPTIGA™ Trust X

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 21 Revision 1.35

www.infineon.com January 29, 2018

performs the client side part of the protocol.
Note: This use case applies on the OPTIGA Trust X Communication Protection View [bdd].

Pre-condition:

 The OPTIGA™ Trust X application is already launched

 Unique identities, expressed by a Private key and the corresponding public key certificate, are available to both parties.

 Public key certificates provided to the OPTIGA™ Trust X roots back (maybe multiple certificates in a chain) to the trust anchor residing in the
OPTIGA™ Trust X.

Post-condition:

 The External World considers the OPTIGA™ Trust X as an authentic member of the regarded PKI domain (either IFX or Customer) and vice versa.

 Session key material is negotiated and known by both parties.

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 22 Revision 1.35

www.infineon.com January 29, 2018

Figure 8 - Use Case: Mutual Authentication (DTLS-Client-Detailed) [osd]

2.2.5 Use Case: Protect communication data with OPTIGA™ Trust X [osd]
Once the Use Case: Mutual Authentication (DTLS-Client-Detailed) [osd] is successful executed the user likes to send / receive integrity and confidentiality
protected application data to / from authenticated server. Sequence diagram 'Use Case: Protect communication data with OPTIGA™ Trust X [osd]' shows
the regarded sequence of operations. The data is either consumed (uplink)or provided (downlink) by the External World (Host Application).
Note: This use case applies on the OPTIGA Trust X Communication Protection View [bdd].

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 23 Revision 1.35

www.infineon.com January 29, 2018

Pre-condition:

 The Use Case: Mutual Authentication (DTLS-Client-Detailed) [osd] is successful executed and the session key material is negotiated and initialized.

Figure 9 - Use Case: Protect communication data with OPTIGA™ Trust X [osd]

2.2.6 Use Case: Write General Purpose Data - data object [osd]
The External World (Host Application or Accessory Application) likes to update a data object maintained by the OPTIGA™ Trust X.
The sequence diagram Use Case: Write General Purpose Data - data object [osd] is provided to show the functions involved in performing an update of
data object.
Note: This use case applies on all architecture views.
Pre-condition:

 The OPTIGA™ Trust X application is already launched

 The necessary access condition for writing the target data object are satisfied
Post-condition:

 The target data object is updated

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 24 Revision 1.35

www.infineon.com January 29, 2018

Figure 10 - Use Case: Write General Purpose Data - data object [osd]

2.2.7 Use Case: Write General Purpose Data - metadata [osd]
The External World (Host Application or Accessory Application) likes to update the metadata associated to a data object which is maintained by the
OPTIGA™ Trust X.
The sequence diagram Use Case: Write General Purpose Data - metadata [osd] is provided to show the functions involved in updating metadata
associated to a data object.
Note: This use case applies on all architecture views.
Pre-condition:

 The OPTIGA™ Trust X application is already launched

 The necessary access condition for writing the metadata associated to a data object are satisfied.
Post-condition:

 The metadata associated to the target data object are updated

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 25 Revision 1.35

www.infineon.com January 29, 2018

Figure 11 - Use Case: Write General Purpose Data - metadata [osd]

2.2.8 Use Case: Read General Purpose Data - data object [osd]
The External World (Host Application or Accessory Application) likes to read the content of a data object maintained by the OPTIGA™ Trust X.
The sequence diagram Use Case: Read General Purpose Data - data object [osd] is provided to show the functions involved in reading a data object.
Note: This use case applies on all architecture views.
Pre-condition:

 The OPTIGA™ Trust X application is already launched

 The necessary access condition for reading the target data object are satisfied

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 26 Revision 1.35

www.infineon.com January 29, 2018

Figure 12 - Use Case: Read General Purpose Data - data object [osd]

2.3 Toolbox based Sequence Diagrams
All use case shown in this section apply on OPTIGA Trust X Communication Protection View -toolbox- [bdd].

2.3.1 Use Case: Mutual Auth establish session -toolbox- (TLS-Client) [osd]
The Server and the Client (on behalf of the User), which incorporates the OPTIGA™ Trust X, like to proof the authenticity of each other. Both the Server

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 27 Revision 1.35

www.infineon.com January 29, 2018

and OPTIGA™ Trust X providing challenges (random value) and both entities return one or multiple cryptograms (depending on the applied
authentication protocol) as response by which both parties proof their authenticity. The Server and Client executing ECDHE for key agreement and
ECDSA FIPS 186-3 sign SHA256 hash for authentication.
Note: the hashing of the handshake messages by the Client is not shown. This could be performed by SW at the Client or via CalcHash command by
the OPTIGA™ Trust X. In the latter case the intermediate results shall be returned by OPTIGA™ Trust X and provided for continuing the hashing with
further commands.
Pre-conditions:

 The OPTIGA™ Trust X application is already launched

 The public key pairs for authentication purpose and public key certificates are properly installed at the OPTIGA™ Trust X.

 The Trust Anchor for verifying the Public Key Certificates of the authentication partner (Server) is properly installed.
Post-condition:

 The Client knows the session keys (write_key) to run the application protocol without the help of the OPTIGA™ Trust X.

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 28 Revision 1.35

www.infineon.com January 29, 2018

Figure 13 - Use Case: Mutual Auth establish session -toolbox- (TLS-Client) [osd]

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 29 Revision 1.35

www.infineon.com January 29, 2018

2.3.2 Use Case: Abbreviated Handshake -toolbox- (TLS-Client) [osd]
The Server and the Client (on behalf of the User), which incorporates the OPTIGA™ Trust X, like to resume an established session. Both the Server and
OPTIGA™ Trust X providing challenges (random value via "Hello" msg) and both entities providing verification data to prove the possession of the
cryptographic parameters (master secret) previously negotiated.
Note: the hashing of the handshake messages by the Client is not shown. This could be performed by SW at the Client or via CalcHash command by
the OPTIGA™ Trust X. In the latter case the intermediate results shall be returned by OPTIGA™ Trust X and provided for continuing the hashing with
further commands.
Pre-conditions:

 The OPTIGA™ Trust X session master secret, which was calculated by the previous handshake - is available at the regarded session context and
gets used as input by DeriveKey for the new session keys.

 The Client is able to hash all handshake messages without the help of OPTIGA™ Trust X.
Post-condition:

 The Client knows the session keys (write_key) to run the application protocol without the help of the OPTIGA™ Trust X.

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 30 Revision 1.35

www.infineon.com January 29, 2018

Figure 14 - Use Case: Abbreviated Handshake -toolbox- (TLS-Client) [osd]

2.3.3 Use Case: Host FW Update -toolbox-
The Host likes to update its FW in a protected way, which prevents from installation and execution of unauthorized code. This sequence diagram is
provided to show the OPTIGA™ Trust X functions (CalcHash, VerifySign, DeriveKey) involved in performing the use case.
Pre-condition:

 The FW-image shared secret is loaded to an arbitrary data object (e.g. 0xF1D0-0xF1DF), which should be locked for read = NEV and in operational
mode at least.

 The Platform Integrity Trust Anchor (0xE0EF) is loaded.
Post-condition:

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 31 Revision 1.35

www.infineon.com January 29, 2018

 The metadata signature is verified

 The FW-image decryption secret is returned to the Host

Figure 15 - Use Case: Host FW Update -toolbox-

2.4 Referenced Sequence Diagrams

2.4.1 Encrypt Payload w/o chaining (DTLS) [osd]
The External World likes to protect (e.g. encrypt, integrity value) fragments of a DTLS payload. The OPTIGA™ Trust X returns the protected data as long
as encryption is involved. In case of integrity protection the regarded integrity value is returned as response to the command providing the last part of
the fragment.
Pre-condition(s):

 The OPTIGA™ Trust X knows the session key.
Post-condition(s):

 The un-protected payload provided is protected, which means
in case of encryption "available encrypted" and
in case of integrity protection the integrity value is generated and returned by OPTIGA™ Trust X.

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 32 Revision 1.35

www.infineon.com January 29, 2018

Figure 16 - Encrypt Payload w/o chaining (DTLS) [osd]

2.4.2 Decrypt Payload w/o chaining (DTLS) [osd]
The External World likes to unprotect (e.g. decrypt, integrity check) Fragments of a DTLS payload. The OPTIGA™ Trust X returns the plain data as long
as decryption is involved. In case of integrity protection the regarded state gets returned as response to the command providing the last part of the
fragment.
Pre-condition(s):

 The OPTIGA™ Trust X knows the session key.
Post-condition(s):

 The protected payload provided is unprotected, which means
in case of decryption "available in plain" and
in case of integrity protection the integrity is verified and the regarded status is available.

Figure 17 - Decrypt Payload w/o chaining (DTLS) [osd]

OPTIGA™ Trust X1
Solution Reference Manual

Supported Use Cases

Manual 33 Revision 1.35

www.infineon.com January 29, 2018

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 34 Revision 1.35

www.infineon.com January 29, 2018

3 Enabler APIs
The Enabler APIs chapter provides the specification of the host side APIs of the enabler
components which get provided by the OPTIGA™ Trust X solution. The target platforms for those
enabler components are embedded systems, Linux and Windows.

3.1 CommandLib
CommandLib is the main interface to interact with OPTIGA™ Trust X. It is aware of the format of
commands to be sent to OPTIGA™ Trust X. Commands to OPTIGA™ Trust X are sent and received
in the form of APDUs. APDUs are described in [ESW] .

CommandLib provides APIs for the cryptographic functionalities implemented in OPTIGA™ Trust X.
Once the user calls the APIs with appropriate parameters CommandLib prepares APDU and sends
it to OPTIGA™ Trust X. The response from OPTIGA™ Trust X is received in the form of APDUs.
CommandLib extracts response from APDU and returns it to the application.

CommandLib interacts with optiga_comms_ifx_i2c for reliable communication with OPTIGA™ Trust X.

3.1.1 CmdLib_CloseSession

CmdLib_CloseSession

Description CmdLib_CloseSession closes a OPTIGA™ Trust X Security Chip session as
indicated by the Session Reference (OID)

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR,
CMD_LIB_INVALID_SESSIONID, CMD_LIB_INSUFFICIENT_MEMORY

Signature CmdLib_CloseSession (in PwSessionRefId : uint16_t) : int32_t

Parameters in PwSessionRefId : uint16_t

OID of session to be closed

3.1.2 CmdLib_Decrypt

CmdLib_Decrypt

Description CmdLib_Decrypt decrypts data by issuing ProcDownLink command to OPTIGA™

Trust X Security Chip.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 Input and Output buffers must be provided by the caller. Buffer deallocation is
the responsibility of the user.

 The input data in sbBlob_d, sInData should contain sufficient memory to
accommodate APDU header, data formatting, Ciphertext.

 The Ciphertext and any specific data for decryption should start after an offset
of size OVERHEAD_UPDOWNLINK.

 wInDataLength in sProcCryptoData_d should be greater than zero.

 Plaintext is returned in sCmdResponse_d* sOutData from zero offset.

 In addition to the Plaintext, the length of buffer in sOutData should be sufficient
to accommodate Response APDU header and data formatting. This is defined
as OVERHEAD_ENCDEC_RESPONSE

 The total length of the Plaintext is returned in wRespLength of
sCmdResponse_d.

 The current implementation of Security chip does not support command
chaining. The maximum value of wInDataLength depends on the value

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 35 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_Decrypt

supported by the security chip.

 Currently, the security chip supports only 0xE100 as session key OID.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_LIB_INVALID_SESSIONID,
CMD_LIB_INVALID_LEN, CMD_DEV_ERROR, CMD_LIB_NULL_PARAM

Signature CmdLib_Decrypt (inout PpsDecVector : sProcCryptoData_d) : int32_t

Parameters inout PpsDecVector : sProcCryptoData_d

Pointer to structure containing Ciphertext and Plaintext

3.1.3 CmdLib_Encrypt

CmdLib_Encrypt

Description CmdLib_Encrypt encrypts data by issuing ProcUpLink command to OPTIGA™ Trust

X Security Chip.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 Input and Output buffers must be provided by the user. Buffer deallocation is
the responsibility of the user.

 The input data in sbBlob_d sInData should contain sufficient memory to
accommodate APDU header, data formatting,Plaintext.

 The Plaintext and any specific data for encryption should start after an offset of
size OVERHEAD_UPDOWNLINK.

 wInDataLength in sProcCryptoData_d should be greater than zero.

 Ciphertext is returned in sCmdResponse_d* sOutData from zero offset.

 In addition to the Ciphertext, the length of buffer in sOutData should be
sufficient to accommodate Response APDU header and data formatting. This
is defined as OVERHEAD_ENCDEC_RESPONSE

 The total length of the Ciphertext is returned in wRespLength of
sCmdResponse_d.

 The current implementation of Security chip does not support command
chaining. The maximum value of wInDataLength depends on the value
supported by the security chip.

 Currently, the security chip supports only 0xE100 as session key OID.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_LIB_INVALID_SESSIONID,
CMD_LIB_INVALID_LEN, CMD_DEV_ERROR, CMD_LIB_NULL_PARAM

Signature CmdLib_Encrypt (inout PpsEncVector : sProcCryptoData_d) : int32_t

Parameters inout PpsEncVector : sProcCryptoData_d

Pointer to structure containing Plaintext and Ciphertext

3.1.4 CmdLib_GetMaxCommsBufferSize

CmdLib_GetMaxCommsBufferSize

Description CmdLib_GetMaxCommsBufferSize returns the maximum communication buffer size
supported by the security chip.
Notes:

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 36 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_GetMaxCommsBufferSize

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 The operation does not verify if the read access is permitted for the data
object.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR

Signature CmdLib_GetMaxCommsBufferSize (inout PpsGMsgVector : sProcMsgData_d)

Parameters inout PpsGMsgVector : sProcMsgData_d

3.1.5 CmdLib_GetMessage

CmdLib_GetMessage

Description CmdLib_GetMessage generates uplink message by issuing ProcUpLink command
to OPTIGA™ Trust X Security Chip.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 Caller should provide a callback through sCallBack_d.

 This callback allows the caller to allocate memory for the message and keep
copying data into the memory in case of lengthy messages.

 Allocated buffer is returned to caller in sCBGetMsg_d.

 The callback should return CMD_LIB_OK for successful allocation of memory
else CMD_LIB_ERROR in case of error.

 Any Message specific data must be provided by the caller in the union
puMsgParams. The union is defined as uMsgParams_d.

 The caller must provide correct data in puMsgParams. This function does not
validate the content of the message specific data. E.g For sending
gmt_unix_time for Client Hello message,
uMsgParams_d.sMsgParamCH_d.dwUnixTime must be set. If puMsgParams
is set to NULL, then random dwUnixTime will be considered for Client Hello
message and certificate will not be send for Client Certificate message.

 The psBlobInBuffer pointer which is member of sProcMsgData_d should be
set to NULL.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_INVALID_PARAM,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_ERROR,
CMD_LIB_NULL_PARAM

Signature CmdLib_GetMessage (inout PpsGMsgVector : sProcMsgData_d) : int32_t

Parameters inout PpsGMsgVector : sProcMsgData_d

Pointer to (D)TLS Handshake Message parameters

3.1.6 CmdLib_PutMessage

CmdLib_PutMessage

Description CmdLib_PutMessage processes downlink message by issuing ProcDownLink
command to OPTIGA™ Trust X Security Chip
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 37 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_PutMessage

 Input buffer must be provided by the caller.

 Clearing of the buffers is the responsibility of the user.

 The input pointer should contain sufficient memory to accommodate APDU
header and data formatting.

 The operation will not recopy the Authentication message data but add the
header and data formatting information before it, in the same input buffer. The
puMsgParams and psCallBack pointer which is member of sProcMsgData_d
should be set to NULL

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_INVALID_PARAM,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_ERROR,
CMD_LIB_NULL_PARAM

Signature CmdLib_PutMessage (in PpsPMsgVector : sProcMsgData_d) : int32_t

Parameters in PpsPMsgVector : sProcMsgData_d

Pointer to (D)TLS Handshake Message parameters

3.1.7 CmdLib_CalcHash

CmdLib_CalcHash

Description CmdLib_CalcHash calculates a hash of the input data using the OPTIGA™ Trust X.
Input:

 Provide the required type of input data for hashing. Use
sCalcHash_d::eHashDataType with the following options,
eDataStream : Indicates, sDataStream is considered as hash input.
eOIDData : Indicates, sOIDData is considered for hash input.

 Provide the input to import/export the hash context. Use
sContextInfo_d::eContextAction with the following options,
eImport : Import hash context to perform the hash.
eExport : Export current active hash context.
eImportExport : Import hash context and Export back the context after
hashing.
eUnused : Context data import/export feature is not used. This option is also
recommended for eHashSequence_d as eStartFinalizeHash or
eTerminateHash.

Output:

 Successful API execution,
Hash is returned in sOutHash only if eHashSequence_d is
eStartFinalizeHash,eIntermediateHash or eFinalizeHash.
Hash context data is returned only if sContextInfo_d::eContextAction is
eExport or eImportExport.

Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 eTerminateHash in eHashSequence_d is used to terminate any existing hash
session. Any input data or hash context options supplied with this sequence is
ignored.

 Sequences for generating a hash successfully can be as follows:
eStartHash, eFinalizeHash
eStartHash, eContinueHash (single or multiple), eFinalizeHash
eStartFinalizeHash
eStartHash, eIntermediateHash, eContinueHash, eFinalizeHash

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 38 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_CalcHash

 If the memory buffer is not sufficient to store output hash/hash context or the
data to be sent to security chip is more than communication buffer,
CMD_LIB_INSUFFICIENT_MEMORY error is retured.

 This operation does not maintain any state of hashing operations.

 There is no support for chaining while sending data therefore in order to avoid
communication buffer overflow, the caller must take care of fragmenting the
data for hashing.

 Use the operation CmdLib_GetMaxCommsBufferSize to check the maximum
communication buffer size supported by the security chip. In addition, the
overhead for command APDU header and TLV encoding must be considered
as explained below.

 Read the maximum communication buffer size using
CmdLib_GetMaxCommsBufferSize and store in a variable "wMaxCommsBuffer"

 Substract the header overheads and hash context size(depends on applicable
Hash algorithm) respectively from wMaxCommsBuffer.
The result gives the Available_Size to frame the hash data input.
Only hash calculation :
Available_Size = (wMaxCommsBuffer -
CALC_HASH_FIXED_OVERHEAD_SIZE)
Import context to security chip and calculate hash :
Available_Size = (wMaxCommsBuffer -
CALC_HASH_FIXED_OVERHEAD_SIZE -
CALC_HASH_IMPORT_OR_EXPORT_OVERHEAD_SIZE -
CALC_HASH_SHA256_CONTEXT_SIZE)
Calulate hash and export context out of security chip :
Available_Size = (wMaxCommsBuffer -
CALC_HASH_FIXED_OVERHEAD_SIZE -
CALC_HASH_IMPORT_OR_EXPORT_OVERHEAD_SIZE
Import context to security chip, calculate hash and export context out of
security chip :
Available_Size = (wMaxCommsBuffer -
CALC_HASH_FIXED_OVERHEAD_SIZE -
CALC_HASH_IMPORT_AND_EXPORT_OVERHEAD_SIZE -
CALC_HASH_SHA256_CONTEXT_SIZE)

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR,
CMD_LIB_INVALID_PARAM, CMD_LIB_NULL_PARAM,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_ERROR,
CMD_DEV_EXEC_ERROR

Signature CmdLib_CalcHash (inout PpsCalcHash : sCalcHash_d*) : int32_t

Parameters inout PpsCalcHash : sCalcHash_d*

Pointer to the message from which calculating the hash.

3.1.8 CmdLib_OpenApplication

CmdLib_OpenApplication

Description CmdLib_OpenApplication opens the OPTIGA™ Trust X Application. The Unique
Application Identifier is used internally by the function while forming the command
APDU.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR

Signature CmdLib_OpenApplication (in PpsOpenApp : const sOpenApp_d*) : int32_t

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 39 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_OpenApplication

Parameters in PpsOpenApp : const sOpenApp_d*

Pointer to the open application structure sOpenApp containing inputs for opening
application on security chip.

3.1.9 CmdLib_GetDataObject

CmdLib_GetDataObject

Description CmdLib_GetDataObject reads data or metadata of the specified data object by
issuing GetDataObject command based on input parameters.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 The function does not verify if the read access is permitted for the data object.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_ERROR,
CMD_LIB_NULL_PARAM

Signature CmdLib_GetDataObject (in PpsGDVector : sGetData_d, inout PpsResponse :
sCmdResponse_d) : int32_t

Parameters in PpsGDVector : sGetData_d

Pointer to Get Data Object inputs
inout PpsResponse : sCmdResponse_d

Pointer to Response structure

3.1.10 CmdLib_SetDataObject

CmdLib_SetDataObject

Description CmdLib_SetDataObject writes data or metadata to the specified data object by
issuing SetDataObject command based on input parameters.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 The function does not verify if the write access permitted for the data object.

 While writing metadata, the metadata must be specified in an already TLV
encoded byte array format. For example, to set LcsO to operational the value
passed by the user must be 0x20 0x03 0xC0, 0x01, 0x07.

 The function does not validate if the provided input data bytes are correctly
formatted. For example, while setting LcsO to operational, function does not
verify if the value is indeed 0x07.

 In case of failure,it is possible that partial data is written into the data object.
In such a case, the user should decide if the data has to be re-written.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_INVALID_PARAM,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_ERROR,
CMD_LIB_NULL_PARAM

Signature CmdLib_SetDataObject (in PpsSDVector : sSetData_d) : int32_t

Parameters in PpsSDVector : sSetData_d

Pointer to Set Data Object inputs

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 40 Revision 1.35

www.infineon.com January 29, 2018

3.1.11 CmdLib_SetOptigaCommsContext

CmdLib_SetOptigaCommsContext

Description CmdLib_SetOptigaCommsContext sets the optiga_comms_ifx_i2c context provided by
the caller.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_NULL_PARAM

Signature CmdLib_SetOptigaCommsContext (inout p_input_optiga_comms :
optiga_comms_t) : int32_t

Parameters inout p_input_optiga_comms : optiga_comms_t

Pointer to optiga_comms_ifx_i2c context.

3.1.12 CmdLib_GetRandom

CmdLib_GetRandom

Description CmdLib_GetRandom returns random bytes generated by OPTIGA™ Trust X Security
Chip.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 Command chaining is not supported in this operation.

 If the requested length of random bytes is either more than communication
buffer size or more than the buffer size in PpsResponse,
CMD_LIB_INSUFFICIENT_MEMORY error is returned.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_LIB_LENZERO_ERROR,
CMD_DEV_ERROR, CMD_LIB_NULL_PARAM

Signature CmdLib_GetRandom (in PpsRng : sRngOptions_d, inout PpsResponse :
sCmdResponse_d) : int32_t

Parameters in PpsRng : sRngOptions_d

Pointer to sRngOptions_d to specify random number generation
inout PpsResponse : sCmdResponse_d

Pointer to sCmdResponse_d to store random number

3.1.13 CmdLib_GetSignature

CmdLib_GetSignature

Description CmdLib_GetSignature returns the signature generated by OPTIGA™ Trust X
Security Chip. The message to be signed is provided by the caller.
The following commands are issued in the sequence.

 SetAuthScheme : To set authentication scheme and the private key to be used

 SetAuthMsg : To write the message to Security Chip that must be digitally
signed.

 GetAuthMsg : To read the digitally signed message from Security Chip.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 The operation just returns the signature without verifying it.

 The private key to be used in set auth scheme is passed in
sAuthMsg_d::wOIDDevPrivKey.

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 41 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_GetSignature

 The sAuthMsg_d::prgbRnd and sAuthMsg_d::wRndLength carry the challenge
to be signed.

 The length of challenge should be between 8 and 256 bytes. If the length of
challenge is out of this range, CMD_LIB_INVALID_LEN error is returned.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_DEV_ERROR,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_LIB_NULL_PARAM

Signature CmdLib_GetSignature (in PpsAuthMsg : sAuthMsg_d, inout PpsResponse :
sCmdResponse_d) : int32_t

Parameters in PpsAuthMsg : sAuthMsg_d

Pointer to Get Signature Object inputs
inout PpsResponse : sCmdResponse_d

Pointer to Response structure

3.1.14 CmdLib_SetAuthScheme

CmdLib_SetAuthScheme

Description CmdLib_SetAuthScheme sets the Authentication Scheme by issuing
SetAuthScheme command to OPTIGA™ Trust X Security Chip.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 Currently only session OID (0xE100) is supported by the security chip.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_INVALID_PARAM,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_ERROR,
CMD_LIB_NULL_PARAM

Signature CmdLib_SetAuthScheme (in PpsAuthVector : sAuthScheme_d) : int32_t

Parameters in PpsAuthVector : sAuthScheme_d

Pointer to Authentication Scheme data

3.1.15 CmdLib_VerifySign

CmdLib_VerifySign

Description CmdLib_VerifySign verifies the signature over the input digest by using the Security
chip.
Input:

 For eVerifyDataType
eDataStream indicates that sPubKeyInput is considered for signature
verification.
eOIDData indicates that wOIDPubKey is considered for signature verification.

Output:

 Successful signature verification returns CMD_LIB_OK.
Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 If the the data to be sent to security chip is more than communication buffer,
CMD_LIB_INSUFFICIENT_MEMORY is returned.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_NULL_PARAM,

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 42 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_VerifySign

CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_EXEC_ERROR,
CMD_DEV_ERROR

Signature CmdLib_VerifySign (in PpsVerifySign : sVerifyOption_d const*, inout PpsDigest :
sbBlob_d const*, inout PpsSignature : sbBlob_d const*) : int32_t

Parameters in PpsVerifySign : sVerifyOption_d const*

Pointer to information for verifying signature
inout PpsDigest : sbBlob_d const*

pointer to a blob which holds the digest
inout PpsSignature : sbBlob_d const*

pointer to a blob which holds the Signature to be verified

3.1.16 CmdLib_GenerateKeyPair

CmdLib_GenerateKeyPair

Description CmdLib_GenerateKeyPair generates a key pair by issuing GenKeyPair command to
Security chip.
Input:

 Provide the required option for exporting the generated keys. Use
sKeyPairOption_d::eKeyExport
eStorePrivKeyOnly indicates that only private key is stored in the OID and
public key is exported.
eExportKeyPair indicates that both public and private keys are exported.

Output:

 Successful execution,
Public key is returned in sOutKeyPair_d::sPublicKey.
Private key is returned in sOutKeyPair_d::sPrivateKey, if input is
eExportKeyPair.

Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 Values of eKeyUsage_d can be logically 'ORed' and passed to
sKeyPairOption_d::eKeyUsage.

 If the memory buffers in sOutKeyPair_d is not sufficient to store the generated
keys, CMD_LIB_INSUFFICIENT_MEMORY is returned.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_NULL_PARAM,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_EXEC_ERROR,
CMD_DEV_ERROR

Signature CmdLib_GenerateKeyPair (in PpsKeyPairOption : sKeyPairOption_d const*,
inout PpsOutKeyPair : sOutKeyPair_d) : int32_t

Parameters in PpsKeyPairOption : sKeyPairOption_d const*

inout PpsOutKeyPair : sOutKeyPair_d

3.1.17 CmdLib_CalculateSign

CmdLib_CalculateSign

Description CmdLib_CalculateSign calculates signature on a digest by using the Security Chip.
Input:

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 43 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_CalculateSign

 Provide the signature scheme. Use sCalcSignOptions_d::eSignScheme.

 Provide the digest to be signed. Use sCalcSignOptions_d::sDigestToSign.

 Provide the OID of the private key. Use sCalcSignOptions_d::wOIDSignKey.
Output:

 Successful execution,
Signature is returned in PpsSignature.

Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 If the the data to be sent to security chip is more than communication buffer,
CMD_LIB_INSUFFICIENT_MEMORY is returned.

 If the memory buffer in PpsSignature is not sufficient to store the generated
signature, CMD_LIB_INSUFFICIENT_MEMORY is returned.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_NULL_PARAM,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_EXEC_ERROR,
CMD_DEV_ERROR

Signature CmdLib_CalculateSign (in PpsCalcSign : sCalcSignOptions_d const*, inout
PpsSignature : sbBlob_d *) : int32_t

Parameters in PpsCalcSign : sCalcSignOptions_d const*

inout PpsSignature : sbBlob_d *

3.1.18 CmdLib_CalculateSharedSecret

CmdLib_CalculateSharedSecret

Description CmdLib_CalculateSharedSecret calculates a shared secret by using the security
chip.
Input:

 Provide the key agreement algorithm for generating shared secret. Use
sCalcSSecOptions_d::eKeyAgreementType.

 Provide the OID of private key. Use sCalcSSecOptions_d::wOIDPrivKey.

 Provide the algorithm identifier of the public key. Use
sCalcSSecOptions_d::ePubKeyAlgId.

 Provide the public key. Use sCalcSSecOptions_d::sPubKey.

 Provide the OID to store the shared secret. Use
sCalcSSecOptions_d::wOIDSharedSecret.
0x0000 indicates that the shared secret is exported.

Output:

 Successful execution,
Calculated shared secret is returned in PpsSecret if
sCalcSSecOptions_d::wOIDSharedSecret is 0x0000.

Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 If the the data to be sent to security chip is more than communication buffer,
CMD_LIB_INSUFFICIENT_MEMORY is returned.

 If the memory buffer in PpsSecret is not sufficient to store the calculated
secret, CMD_LIB_INSUFFICIENT_MEMORY is returned.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_NULL_PARAM,

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 44 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_CalculateSharedSecret

CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_EXEC_ERROR,
CMD_DEV_ERROR

Signature CmdLib_CalculateSharedSecret (in PpsCalcSSec : sCalcSSecOptions_d const*,
inout PpsSecret : sbBlob_d*) : int32_t

Parameters in PpsCalcSSec : sCalcSSecOptions_d const*

Pointer to sCalcSSecOptions_d to provide input for shared secret calculation
inout PpsSecret : sbBlob_d*

Pointer to sbBlob_d that contains calculated shared secret

3.1.19 CmdLib_DeriveKey

CmdLib_DeriveKey

Description CmdLib_DeriveKey derives a key using the Security Chip for the host requested
key derivation algorithm.
Input:

 Provide the key derivation method. Use sDeriveKeyOptions_d::eKDM.

 Provide the OID of the shared secret. Use
sDeriveKeyOptions_d::wOIDSharedSecret.

 Provide the input seed. Use sDeriveKeyOptions_d::sSeed.

 Provide the length for derived key. Use
sDeriveKeyOptions_d::wDerivedKeyLen.

 Provide the OID to store the derived key. Use
sDeriveKeyOptions_d::wOIDDerivedKey.
0x0000 indicates that the derived key is exported.

Output:

 Successful execution,
Derived key is returned in PpsKey if sDeriveKeyOptions_d::wOIDDerivedKey
is 0x0000.

Notes:

 Application on security chip must be opened using CmdLib_OpenApplication
before using this operation.

 If the the data to be sent to security chip is more than communication buffer,
CMD_LIB_INSUFFICIENT_MEMORY is returned.

 If the memory buffer in PpsKey is not sufficient to store the derived key,
CMD_LIB_INSUFFICIENT_MEMORY is returned.

Note Return values: CMD_LIB_OK, CMD_LIB_ERROR, CMD_LIB_NULL_PARAM,
CMD_LIB_INSUFFICIENT_MEMORY, CMD_DEV_EXEC_ERROR,
CMD_DEV_ERROR

Signature CmdLib_DeriveKey (in PpsDeriveKey : sDeriveKeyOptions_d const*, inout
PpsKey : sbBlob_d *) : int32_t

Parameters in PpsDeriveKey : sDeriveKeyOptions_d const*

Pointer to sDeriveKeyOptions_d to provide inputs for key derivation
inout PpsKey : sbBlob_d *

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 45 Revision 1.35

www.infineon.com January 29, 2018

CmdLib_DeriveKey

Pointer to sbBlob_d that contains derived key

3.2 CryptoLib
The CryptoLib wraps the Cryptographic Library specific API to a neutral API to enable multiple
sourcing of a 3rd Party Crypto Lib. This allows reuse of the components of the OPTIGA™ Trust X
solution, which are consuming cryptographic functionalities. The CryptoLib exports only those API
functions which are required by the OPTIGA™ Trust X solution.

3.2.1 CryptoLib_GenerateSeed

CryptoLib_GenerateSeed

Description CryptoLib_GenerateSeed generates seed for initializing the crypto pseudo random
generator.

 Reads 24 bytes of random data bytes from and stores it. The data bytes are
read only once.

 A subsequent requests for seed generation uses the stored random data
bytes.

 Concatenates counter to the random bytes and computes HASH (SHA256) on
the concatenated value.

 Maximum length of generated seed is 32 bytes.

Signature CryptoLib_GenerateSeed (inout prgbSeed : puint8_t, in dwSeedLength : uint32_t)
: int32_t

Parameters inout prgbSeed : puint8_t

Pointer to the seed
in dwSeedLength : uint32_t

Length of the seed

3.2.2 CryptoLib_GetRandom

CryptoLib_GetRandom

Description CryptoLib_GetRandom generates random data bytes of requested length.

 If the requested length is less than 32 bytes, random data bytes of 32 bytes,
will be generated and the requested number of bytes will be returned.

 The crypto random number generator is initialized and seeded only once.

 For subsequent seeding, the first 32 bytes of the generated random data bytes
will be fed back as seed.

Signature CryptoLib_GetRandom (in wRandomDataLen, inout psResponse :
sCmdResponse_d*) : int32_t

Parameters in wRandomDataLen

Number of random bytes requested
inout psResponse : sCmdResponse_d*

Pointer to response structure

3.2.3 CryptoLib_ParseCertificate

CryptoLib_ParseCertificate

Description CryptoLib_ParseCertificate parses raw X509 v3 certificate into a custom defined
certificate structure.

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 46 Revision 1.35

www.infineon.com January 29, 2018

CryptoLib_ParseCertificate

 The raw certificate must be in DER encoded format.

 The function does not allocate any memory.

 Stores reference address/location from raw certificate data into the custom
defined certificate structure.

 The following details are parsed from the raw certificate :
Public Key,
Signature,
Certificate Data

Signature CryptoLib_ParseCertificate (in psRawCertificate : const sbBlob_d*, inout
psCertificate : sCertificate_d *) : int32_t

Parameters in psRawCertificate : const sbBlob_d*

Pointer to structure containing raw certificate data and its length
inout psCertificate : sCertificate_d *

Structure which holds parsed certificate data

3.2.4 CryptoLib_VerifySignature

CryptoLib_VerifySignature

Description CryptoLib_VerifySignature verifies the signature using the given public key.

Signature CryptoLib_VerifySignature (in psSignatureVector : const sSignatureVector_d *) :
int32_t

Parameters in psSignatureVector : const sSignatureVector_d *

Pointer to structure which holds data for signature verification

3.3 IntegrationLib
IntegrationLib mainly implements use cases which user can use for reference, for eg. one-way
authentication is a use case which is made up of several commands implemented in command lib.

3.3.1 IntLib_ReadGpData

IntLib_ReadGpData

Description IntLib_ReadGpData reads the specified general purpose data object from the
OPTIGA™ Trust X Security Chip.
The function performs the following steps while reading the data object,

 Reads the Application Life Cycle Status(LcsA) and Global Life Cycle
Status(LcsG)

 Reads the metadata of the data object.

 Verifies the read access conditions of the data object.

 Reads the data object, if read access is permitted.

Note Return values: INT_LIB_OK, INT_LIB_NULL_PARAM,
INT_LIB_INVALID_RESPONSE, INT_LIB_INVALID_AC,
INT_LIB_ZEROLEN_ERROR, INT_LIB_ERROR, CMD_DEV_ERROR

Signature IntLib_ReadGpData (in PpsGDVector : const sReadGPData_d*, inout
PpsGPData : sbBlob_d *) : int32_t

Parameters in PpsGDVector : const sReadGPData_d*

Pointer to Get Data parameters
inout PpsGPData : sbBlob_d *

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 47 Revision 1.35

www.infineon.com January 29, 2018

IntLib_ReadGpData

Pointer to data buffer for response

3.3.2 IntLib_WriteGpData

IntLib_WriteGpData

Description IntLib_WriteGpData writes to the specified general purpose data object to the
OPTIGA™ Trust X Security Chip.
The function performs the following steps while writing to the data object,

 Reads the Application Life Cycle Status(LcsA) and Global Life Cycle
Status(LcsG)

 Reads the metadata of the data object.

 Verifies the write access conditions of the data object.

 Writes to the data object, if write access is permitted.

Note Return values: INT_LIB_OK, INT_LIB_NULL_PARAM,
INT_LIB_INVALID_RESPONSE, INT_LIB_INVALID_AC, INT_LIB_ERROR,
CMD_DEV_ERROR

Signature IntLib_WriteGpData (in PpsSDVector : const sWriteGPData_d*) : int32_t

Parameters in PpsSDVector : const sWriteGPData_d*

Pointer to set data parameters

3.3.3 IntLib_Authenticate

IntLib_Authenticate

Description IntLib_Authenticate performs One Way Authentication to prove the authenticity of
the device which incorporates OPTIGA™ Trust X Security Chip.
The operation performs one way authentication in the following way:

 Reads the Device Certificate from OPTIGA™ Trust X Security Chip specified by
sOneWayAuth_d::wOIDDevCertificate

 Verifies the Device Certificate signature using the Trust Anchor public key that
is available within the CA certificate parameter sOneWayAuth_d::sCaCert.

 Random number of the length specified by sOneWayAuth_d::wChallengeLen is
generated on Host which is used as a message that will be sent to OPTIGA™

Trust X Security Chip.

 Issues SetAuthScheme APDU command based on the private key provided in
sOneWayAuth_d::wOIDDevPrivKey

 Issues SetAuthMsg and GetAuthMsg APDU commands to Security Chip to get
signature on the challenge

 Verifies the signature using the public key extracted from the device certificate
Notes:

 CA certificate must be provided in DER encoded binary format.

 The current implementation is based on ECC NIST P 256 bit key length.

 The wChallengeLen must range from 8 to 256 bytes. It is recommended to use
a minimum challenge length of 16 bytes. If the length is out of this range,
INT_LIB_INVALID_LENGTH error is returned.

 This API supports device certificate objects in "One-Way Authentication" and
"TLS" identity format only. Identity validation failures will return
INT_LIB_INVALID_CERTIFICATE_FORMAT error.

 For TLS identity, certificates chaining must be encoded as per RFC-5246.

 Under some erroneous conditions, error codes from Command Library and

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 48 Revision 1.35

www.infineon.com January 29, 2018

IntLib_Authenticate

crypto Library can also be returned.

 If the return code is CMD_DEV_EXEC_ERROR, it might indicate that the
application on the security chip is either closed or a reset has occurred. In
such a case, user must invoke CmdLib_OpenApplication before attempting
any interaction with the security chip.

Note Return values: INT_LIB_OK, INT_LIB_ERROR, INT_LIB_ZEROLEN_ERROR,
INT_LIB_INVALID_PARAM, INT_LIB_NULL_PARAM, CMD_DEV_ERROR

Signature IntLib_Authenticate (in PpsOneWayAuth : sOneWayAuth_d const*) : int32_t

Parameters in PpsOneWayAuth : sOneWayAuth_d const*

3.4 OCP
OCP (OPTIGA Crypto & Protected Comm Library) is the module providing application the interface
to the cryptographic functionalities. OCP fulfills the cryptographic functionalities by calling the
implementations of the underlying components.

Cryptographic functionalities are implemented in software or in hardware. The software
implementation of cryptographic functionalities is supplied by 3rd party. The hardware
implementation is provided by OPTIGA™ Trust X. Currently only HW crypto is supported.

For DTLS the OCP implements the Handshake state machine. The outgoing messages of
Handshake layer are generated by OPTIGA™ Trust X. The incoming messages from server are
processed by OPTIGA™ Trust X. The record layer is implemented in OCP. However the encryption
and decryption functionalities are fulfilled by OPTIGA™ Trust X.

Additionally for DTLS, Windowing, Fragmentation and De-Fragmentation of handshake messages,
time-out and retransmission of messages are implemented in OCP module.

OCP interacts with pal to send and receive DTLS records.

3.4.1 OCP_Connect

OCP_Connect

Description OCP_Connect connects to the server and performs a DTLS handshake protocol as
per DTLS v1.2
Pre-conditions:

 OCP_Init was successful and application context is available.

 Server trust anchor must be available in the security chip.
Details:

 Connects to the server via the pal.

 Invokes CmdLib_SetAuthScheme based on configuration.

 Performs a DTLS Handshake.
Input:

 Caller must provide a valid PhAppOCPCtx handle otherwise
OCP_LIB_SESSIONID_UNAVAILABLE is returned.

Notes:

 The default value of timeout for retransmission must be 2 seconds on the
server side.

 If a connection already exists on the given port and IP address,
OCP_LIB_CONNECTION_ALREADY_EXISTS is returned.

 Under some failure conditions, error codes from lower layers could also be
returned.

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 49 Revision 1.35

www.infineon.com January 29, 2018

OCP_Connect

 In case of a Failure other than OCP_LIB_CONNECTION_ALREADY_EXISTS
and OCP_LIB_SESSIONID_UNAVAILABLE
The Session gets closed automatically.
The memory allocated in OCP_Init is freed.
OCP handle will not be set to NULL. It is up to the user to check return code
and take appropriate action.

 If the return value is CMD_DEV_EXEC_ERROR, it might indicate that the
application on the security chip is either closed or a reset has occurred.

Note Return values: OCP_LIB_OK, OCP_LIB_ERROR, OCP_LIB_NULL_PARAM,
OCP_LIB_CONNECTION_ALREADY_EXISTS

Signature OCP_Connect (in PhAppOCPCtx : hdl_t) : int32_t

Parameters in PhAppOCPCtx : hdl_t

Handle to OCP context

3.4.2 OCP_Send

OCP_Send

Description OCP_Send sends application data to the DTLS server.
Pre-conditions:

 OCP_Connect was successful and application context is available.
Details:

 Sends application data to DTLS server.

 Application data is sent only if the use case Mutual Authentication Public Key
Scheme (DTLS) was successfully performed.

 Encryption of the application data is done at the record layer.
Input:

 Caller must provide a valid PhAppOCPCtx handle.

 Caller must provide the data to be sent and its length
If the length of the data to be sent is greater than MAX_APP_DATALEN
(PhAppOCPCtx), then OCP_LIB_INVALID_LEN is returned.
If the length of the data to be sent is equal to zero, then
OCP_LIB_LENZERO_ERROR is returned.

Notes:

 The maximum length of data that can be sent by the operation depends upon
the PMTU value set during OCP_Init (This length can be obtained by
MAX_APP_DATALEN (PhAppOCPCtx).

 Fragmentation of data to be sent should be done by the application. This
operation does not perform data fragmentation.

 If the record sequence number has reached maximum value for epoch 1, then
OCP_RL_SEQUENCE_OVERFLOW error is returned. User must call
OCP_Disconnect in this condition. No Alert will be sent due to the unavailability
of record sequence number.

 Under some failure conditions, error codes from lower layers could also be
returned.

 In case of a Failure,
Existing session remains open and memory allocated during OCP_Init is not
freed.
PhAppOCPCtx handle is not set to NULL.
The operation does not send any alert to the server.

 If the return value is CMD_DEV_EXEC_ERROR, it might indicate that the
application on the security chip is either closed or a reset has occurred. In

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 50 Revision 1.35

www.infineon.com January 29, 2018

OCP_Send

such a case, close the existing DTLS session using OCP_Disconnect.

Note Return values: OCP_LIB_OK, OCP_LIB_ERROR, OCP_LIB_NULL_PARAM,
OCP_LIB_SESSIONID_UNAVAILABLE,
OCP_LIB_AUTHENTICATION_NOTDONE, OCP_LIB_MALLOC_FAILURE,
OCP_LIB_LENZERO_ERROR, OCP_LIB_INVALID_LEN,
OCP_RL_SEQUENCE_OVERFLOW

Signature OCP_Send (in PhAppOCPCtx : hdl_t, in PprgbData : puint8_t, in PwLen :
uint16_t) : int32_t

Parameters in PhAppOCPCtx : hdl_t

Handle to OCP context
in PprgbData : puint8_t

Pointer to data to be send
in PwLen : uint16_t

Length of data to be send

3.4.3 OCP_Receive

OCP_Receive

Description OCP_Receive receives application data from the DTLS server.
Pre-conditions:

 OCP_Connect was successful and application context is available.
Details:

 Receives application data from the DTLS server.

 Application data is received only if the use case Mutual Authentication Public
Key Scheme (DTLS) was successfully performed.

 Received data is assumed to be encrypted and processed accordingly.
Decryption of the application data is done at the record layer.

 Total received application data length is updated in PpwLen.
Input:

 Caller must provide a valid PhAppOCPCtx handle.

 Caller must provide the buffer where application data should be returned.

 Caller must provide the length of the buffer.
If the length of the buffer is equal to zero, then OCP_LIB_LENZERO_ERROR
is returned.

 Caller must provide the timeout value in milliseconds. The value should be
greater than 0 and maximum up to (2^16)-1.
If the timeout is zero OCP_LIB_INVALID_TIMEOUT is returned.

Notes:

 The maximum length of data that can be received by the API depends upon
the PMTU value set during OCP_Init. This length is indicated by
MAX_APP_DATALEN (PhAppOCPCtx).

 If required, the re-assembly of received data should be done by the
application. This operation does not perform data re-assembly.

 Failure in decrypting data will return OCP_LIB_DECRYPT_FAILURE.

 If a fatal alert with valid description is received,
OCP_AL_FATAL_ERROR is returned.
User must invoke OCP_Disconnect in this condition. Invoking OCP_Send or
OCP_Receive will return OCP_LIB_OPERATION_NOT_ALLOWED.

 If a valid Hello request is received, the operation internally sends a warning

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 51 Revision 1.35

www.infineon.com January 29, 2018

OCP_Receive

alert with description "no-renegotiation" to the server and then waits for data
until timeout occurs.

 If the length of buffer provided by the caller is not sufficient to return received
data, OCP_LIB_INSUFFICIENT_MEMORY is returned. This data will not be
returned in subsequent invocation.

 If timeout occurs, OCP_LIB_TIMEOUT is returned.

 Under some failure conditions, error codes from lower layers could also be
returned.

 In case of a Failure,
Existing session remains open and memory allocated during OCP_Init is not
freed.
PhAppOCPCtx handle is not set to NULL.
The operation does not send any alert to the server.
PpwLen is set to zero.

 If the return value is CMD_DEV_EXEC_ERROR, it might indicate that the
application on the security chip is either closed or a reset has occurred. In
such a case, close the existing DTLS session using OCP_Disconnect.

Note Return values: OCP_LIB_OK, OCP_LIB_ERROR, OCP_LIB_NULL_PARAM,
OCP_LIB_SESSIONID_UNAVAILABLE,
OCP_LIB_AUTHENTICATION_NOTDONE, OCP_LIB_MALLOC_FAILURE,
OCP_LIB_LENZERO_ERROR, OCP_AL_FATAL_ERROR,
OCP_LIB_INSUFFICIENT_MEMORY, OCP_LIB_INVALID_TIMEOUT,
OCP_LIB_TIMEOUT

Signature OCP_Receive (in PhAppOCPCtx : hdl_t, inout PprgbData : uint8_t, inout PpwLen
: uint16_t, in PwTimeout : uint16_t) : int32_t

Parameters in PhAppOCPCtx : hdl_t

Handle to OCP context
inout PprgbData : uint8_t

Pointer to buffer where data is to be received
inout PpwLen : uint16_t

Pointer to the Length of buffer. Updated with actual length of received data
in PwTimeout : uint16_t

Timeout in milliseconds

3.4.4 OCP_Init

OCP_Init

Description OCP_Init initializes the OCP context based on the user inputs provided in
PpsAppOCPConfig. Once the OCP context is initialised, PphAppOCPCtx is
returned as a handle.
PphAppOCPCtx handle is used for all interactions with the OCP operations
OCP_Connect, OCP_Disconnect, OCP_Send and OCP_Receive.
Pre-conditions:

 Communication with the security chip is up and running.

 optiga_comms_open must be successfully executed.

 The optiga_comms context for command library is registered using
CmdLib_SetOptigaCommsContext.

Details:

 Checks for an available session OID.

 Opens application on the security chip using CmdLib_OpenApplication.

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 52 Revision 1.35

www.infineon.com January 29, 2018

OCP_Init

 Allocates the memory for internal structures, initializes it and returns as a
hdl_t*

Input:

 The caller must provide configuration information in sAppOCPConfig_d

 eMode allows the caller to configure the OCP context as a client/server as per
eMode_d. Currently server mode is not supported.

 eConfiguration allows the caller to choose supported OCP context
configuration as per eConfiguration_d. Currently eTLS_12_TCP_HWCRYPTO
is not supported.

 wOIDDevCertificate allows the caller to choose the supported certificate for
client authentication.
If there is no client certificate then set it to 0x0000.

 wOIDDevPrivKey allows the caller to choose the private key used for client
authentication.

 psNetworkParams allows the caller to configure the port, IP Address and
maximum PMTU required for transport layer connection.

 Valid IP address and port number must be provided. The correctness of the IP
address and port number will not be verified.

 PMTU value should range from 296 to 1500, else
OCP_LIB_UNSUPPORTED_PMTU error is returned.

 Logger allows user to log data. The caller must provide the low level log writer
through sLogger_d.

 pfGetUnixTIme (fGetUnixTime_d) is a call-back function pointer that allows
caller to provide 32-bit Unix time format.

 If pfGetUnixTIme is set to NULL, the unix time will not be sent to security chip.

 If pfGetUnixTIme is not set to NULL or valid function pointer, the behavior
would be unexpected.

 The call back function pfGetUnixTIme is expected to return status s as
CALL_BACK_OK for success.

Notes:

 Currently, only 1 DTLS session is supported by security chip.

 If user invokes OCP_Init, without disconnecting/closing the previous
session/context (if available), will lead to error
OCP_LIB_SESSIONID_UNAVAILABLE.

 Under some failure conditions, error codes from lower layers could also be
returned.

Note Return values: OCP_LIB_OK, OCP_LIB_ERROR, OCP_LIB_NULL_PARAM,
OCP_LIB_UNSUPPORTED_CONFIG, OCP_LIB_SESSIONID_UNAVAILABLE,
OCP_LIB_UNSUPPORTED_PMTU, OCP_LIB_UNSUPPORTED_CERTIFICATE

Signature OCP_Init (in PpsAppOCPConfig : sAppOCPConfig_d, inout PphAppOCPCtx :
hdl_t) : int32_t

Parameters in PpsAppOCPConfig : sAppOCPConfig_d

Application configuration
inout PphAppOCPCtx : hdl_t

Handle to OCP context

3.4.5 OCP_Disconnect

OCP_Disconnect

Description OCP_Disconnect disconnects from server and closes the DTLS session.

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 53 Revision 1.35

www.infineon.com January 29, 2018

OCP_Disconnect

Pre-conditions:

 OCP_Init or OCP_Connect was successful.
Details:

 Applicable only if called after a successful OCP_Connect
Closes DTLS session on security chip via CmdLib_CloseSession.
Sends closure alert to the server via pal.
Disconnects from the server via pal.

 Applicable if called after successful OCP_Init or OCP_Connect
Clear memory associated with PhAppOCPCtx handle.
Clears the internal session reference Id registry.
PhAppOCPCtx handle will not be set to NULL. It is up to the caller to check
return code and take appropriate action.

Input:

 Caller must provide a valid PhAppOCPCtx handle.
Notes:

 If the record sequence number has reached maximum value for epoch 1, No
Alert will be send due to the unavailability of record sequence number.

 DTLS server will not be notified of the fault condition that leads to failure while
sending Close_Notify alert.

Note Return values: OCP_LIB_OK, OCP_LIB_NULL_PARAM, OCP_LIB_ERROR

Signature OCP_Disconnect (in PhAppOCPCtx : hdl_t) : int32_t

Parameters in PhAppOCPCtx : hdl_t

Handle to OCP context

3.5 optiga_comms_ifx_i2c
I2C is the interface used to communicate between Host and OPTIGA™ Trust X. The application
running on Host generates data in the form of APDUs to communicate with OPTIGA™ Trust X. Size
of APDUs varies between few bytes to kilo bytes. IFX_I2C protocol handles this huge data
transaction generated by different applications. The protocol implementation is done in multiple
layers and seamlessly handles data transfer from Host to OPTIGA™ Trust X and OPTIGA™ Trust X to
Host. More details of IFX I2C protocol can be found in [IFX_I2C].

3.5.1 optiga_comms_close

optiga_comms_close

Description optiga_comms_close closes the IFX I2C protocol stack for the given context.
Details:

 A successful optiga_comms_open must be done before using this operation.

 De-Initializes the I2C slave device.

 Power downs the I2C slave.
User Input:

 The input p_ctx must not be NULL.

Note Return values: OPTIGA_COMMS_SUCCESS, OPTIGA_COMMS_ERROR

Signature optiga_comms_close (in p_ctx : optiga_comms_t)

Parameters in p_ctx : optiga_comms_t

Pointer to protocol context

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 54 Revision 1.35

www.infineon.com January 29, 2018

3.5.2 optiga_comms_open

optiga_comms_open

Description optiga_comms_open initializes optiga_comms_ifx_i2c and provides a handle.
Details:

 Performs a reset sequence.

 Initializes the I2C slave device.

 Initializes the ifx i2c protocol stack and registers the event callbacks.

 Negotiates the frame size and bit rate with the I2C slave.
User Input:

 The context pointer p_ctx must not be NULL.

 The following parameters in p_ctx must be initialized with appropriate values
slave address:
Address of I2C slave
frame_size:
Frame size in bytes. Minimum supported value is 16 bytes.
It is recommended not to use a value greater than the slave's frame size.
The user specified frame size is written to I2C slave's frame size register.The
frame size register is read back from I2C slave. This frame value is used by
the ifx-i2c protocol even if it is not equal to the user specified value.
frequency:
Frequency/speed of I2C master in KHz.
This must be lowest of the maximum frequency supported by the devices
(master/slave) connected on the bus.
Initial negotiation starts with a frequency of 100KHz.
If the user specified frequency is more than 400 KHz, the I2C slave is
configured to operate in "Fm+" mode, otherwise the I2C slave is configured for
"SM & Fm" mode.
If the user specified frequency frequency negotiation fails, the I2C master
frequency remains at 100KHz
upper_layer_event_handler:
Upper layer event handler. This is invoked when optiga_comms_open is
asynchronously completed.
upper_layer_ctx:
Context of upper layer.
p_slave_vdd_pin:
GPIO pin for VDD. If not set, cold reset is not done.
p_slave_reset_pin:
GPIO pin for Reset. If not set, warm reset is not done.

Notes:

 The values of registers MAX_SCL_FREQU and DATA_REG_LEN, read from
slave are not validated.

Note Return values: OPTIGA_COMMS_SUCCESS, OPTIGA_COMMS_ERROR

Signature optiga_comms_open (in p_ctx : optiga_comms_t)

Parameters in p_ctx : optiga_comms_t

Pointer to protocol context

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 55 Revision 1.35

www.infineon.com January 29, 2018

3.5.3 optiga_comms_reset

optiga_comms_reset

Description optiga_comms_reset resets the I2C slave and initializes the IFX I2C protocol stack
for a given context.
Details:

 A successfull optiga_comms_open must be done before using this operation.

 Resets the I2C slave.

 Initializes the ifx i2c protocol stack.

 Re-Initializes and negotiates the frame size and bit rate with the I2C slave.The
values remain same as that in previous optiga_comms_open.

Input:

 The context pointer p_ctx must not be NULL.
Notes:

 For COLD and WARM reset type: If the gpio(vdd and/or reset) pins are not
configured, the operation continues without any failure return status.

Note Return values: OPTIGA_COMMS_SUCCESS, OPTIGA_COMMS_ERROR

Signature optiga_comms_reset (in p_ctx : optiga_comms_t, inout reset_type : uint8_t)

Parameters in p_ctx : optiga_comms_t

Pointer to protocol context
inout reset_type : uint8_t

type of reset

3.5.4 optiga_comms_transceive

optiga_comms_transceive

Description optiga_comms_transceive used to send and receive data over I2C.
Details:

 A successful optiga_comms_open must be done before using this operation.

 Transmit data(Command) to I2C slave.

 Receive data(Response) from I2C slave.
Input:

 The context pointer p_ctx must not be NULL.

 The following parameters in p_ctx must be initialized with appropriate values
upper_layer_event_handler:
Upper layer event handler, if it is different from that in optiga_comms_open. This
is invoked when optiga_comms_transceive is asynchronously completed.
upper_layer_ctx:
Context of upper layer, if it is different from that in optiga_comms_transceive.

Notes:

 The actual number of bytes received is stored in p_rx_buffer_len. In case of
error, p_rx_buffer_len is set to 0.

 If the size of prgbReadBuffer is zero or insufficient to copy the response bytes
then IFX_I2C_STACK_MEM_ERROR error is returned.

Note Return values: OPTIGA_COMMS_SUCCESS, OPTIGA_COMMS_ERROR,
IFX_I2C_MEM_ERROR

Signature optiga_comms_transceive (in p_ctx : optiga_comms_t, in p_data : puint8_t, in
p_data_length : puint16_t, inout p_buffer : puint8_t, inout p_buffer_len :
puint16_t)

OPTIGA™ Trust X1
Solution Reference Manual

Enabler APIs

Manual 56 Revision 1.35

www.infineon.com January 29, 2018

optiga_comms_transceive

Parameters in p_ctx : optiga_comms_t

Pointer to protocol context
in p_data : puint8_t

Pointer to buffer to send data buffer
in p_data_length : puint16_t

Pointer to length of send data in buffer
inout p_buffer : puint8_t

Pointer to buffer to receive data
inout p_buffer_len : puint16_t

Pointer to length of receive data buffer

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 57 Revision 1.35

www.infineon.com January 29, 2018

4 OPTIGA™ Trust X External Interface
The chapter OPTIGA™ Trust X External Interface provides the detailed definition of the OPTIGA™

Trust X commands available at its I/O interface.

4.1 Warm Reset
The Warm Reset (reset w/o power off/on cycle) of the OPTIGA™ Trust X might be triggered either
by HW signal or by SW. In case of a HW triggered Warm Reset the RST pin must be set to low (for
more details refer to [Data Sheet]). In case of a SW triggered Warm Reset the I2C master must
write to the SOFT_RESET register (for more details refer to [IFX_I2C]).

4.2 Power Consumption
When operating, the power consumption of OPTIGA™ Trust X is limited to meet the requirements
regarding the power limitation set by the Host. The power limitation is implemented by utilizing the
current limitation feature of the underlying HW device in steps of 1 mA from 6mA to 15 mA with a
precision of ±5% (for more details refer to Current limitation).

4.2.1 Low Power Sleep Mode
The OPTIGA™ Trust X automatically enters a low-power mode after a configurable delay. Once it
has entered Sleep mode, the OPTIGA™ Trust X resumes normal operation as soon as its address is
detected on the I2C bus.
In case no command is sent to the OPTIGA™ Trust X it behaves as shown in Figure "Go-to-Sleep
diagram".
(1) As soon as the OPTIGA™ Trust X is idle it starts to count down the “delay to sleep” time
(tSDY).
(2) In case this time elapses the device enters the “go to sleep” procedure.
(3) The “go to sleep” procedure waits until all idle tasks are finished (e.g. counting down the
SEC). In case all idle tasks are finished and no command is pending, the OPTIGA™ Trust X enters
sleep mode.

VCC

IO

tSDY

Power State

operational

idle

sleep

1

2

undefined

3

Figure 18 - Go-to-Sleep diagram

4.3 Protocol Stack
The OPTIGA™ Trust X is an I2C slave device. The protocol stack from the physical up to the
application layer is specified in [IFX-I2C].
The protocol variation for the OPTIGA™ Trust X project is defined by Table "Protocol Stack Variation".

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 58 Revision 1.35

www.infineon.com January 29, 2018

Property Value Comment

MAX_PACKET_SIZE 0x110

WIN_SIZE 1

MAX_NET_CHAN 1

CHAINING TRUE

TRANS_TIMEOUT 10 ms

TRANS_REPEAT 3

PWR_SAVE_TIMEO
UT

 Not implemented

BASE_ADDR 0x30 I2C base address default

MAX_SCL_FREQU 1000 KHz

GUARD_TIME 50 µs

I2C_STATE SOFT_RESET = 1; CONT_READ = 0; REP_START = 0;
CLK_STRETCHING = 0

Table 2 - Protocol Stack Variation

4.4 Commands
This chapter provides the detailed description of the OPTIGA™ Trust X command coding and how
those commands behave.

4.4.1 Command basic definitions

Name Description

Cmd Command code2 as defined in Table "Command Codes"

Param Parameter to control major variants of a command. For
details refer to the particular command definition.

InLen Length of the command data section

InData Command data section

Sta Response status code as defined in Table "Response Status

Codes"

UnDef Undefined value (contains any value 0x00-0xFF)

OutLen Length of the response data section.

OutData Response data section

Table 3 - APDU Fields

Command Codes

Command

Code

Name Short description

0x01 or 0x81 GetDataObject Command to get (read) an data object

2
 In case the most significant bit of Cmd is set to '1', the Last Error Code XE "Last Error Code" gets flushed

implicitly. This feature might be used to avoid an explicit read (with flush) of the Last Error Code XE "Last
Error Code" . This feature has priority over any further command evaluation

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 59 Revision 1.35

www.infineon.com January 29, 2018

Command

Code

Name Short description

0x02 or 0x82 SetDataObject Command to set (write) an data object

0x0C or 0x8C GetRandom Command to generate a random stream

0x10 or 0x90 SetAuthScheme Command to set the authentication scheme which
gets used subsequently

0x18 or 0x98 GetAuthMsg Command to get (receive from OPTIGA™ Trust X)
an authentication message

0x19 or 0x99 SetAuthMsg Command to set (send to OPTIGA™ Trust X) an
authentication message

0x1A or 0x9A ProcUpLinkMsg Command to process an up-link message (receive
from OPTIGA™ Trust X)

0x1B or 0x9B ProcDownLinkMsg Command to process a down-link message (send
to OPTIGA™ Trust X)

0x30 or 0xB0 CalcHash Command to calculate a Hash

0x31 or 0xB1 CalcSign Command to calculate a signature

0x32 or 0xB2 VerifySign Command to verify a signature

0x33 or 0xB3 CalcSSec Command to execute a Diffie-Hellmann key
agreement

0x34 or 0xB4 DeriveKey Command to derive keys

0x38 or 0xB8 GenKeyPair Command to generate public key pairs

0x70 or 0xF0 OpenApplication Command to launch an application

Table 4 - Command Codes

Response Status Codes

Response Status
Code

Name Short description

0x00 NO ERROR Command was executed successfully

0xFF (GENERAL) ERROR Command execution failed due to an error.
The more specific error indication is available
at the Last Error Code data object (Refer to
Table “Error Codes”). In this case the OutData
field is absent.

Table 5 - Response Status Codes

4.4.2 Error Codes
The possible error codes are listed in Table Error Codes. If multiple commands happen to produce
subsequent errors then only the highest-numbered error code is stored.

Field Code Description

No error 0x00 No Error

Invalid OID 0x01 Invalid OID

Invalid Param field 0x03 Invalid Param field in command

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 60 Revision 1.35

www.infineon.com January 29, 2018

Field Code Description

Invalid length field 0x04 Invalid Length field in command

Invalid parameter in data field 0x05 Invalid parameter in command data field

Internal process error 0x06 Internal process error

Access conditions not satisfied 0x07 Access conditions are not satisfied

Data object boundary exceeded 0x08 The sum of offset and data provided (offset +
data length) exceeds the max length of the
data object

Metadata truncation error 0x09 Metadata truncation error

Invalid command field 0x0A Invalid command field

Command out of sequence 0x0B Command or message out of sequence.

Command not available 0x0C due to termination state of the application

 due to Application closed

Insufficient buffer/ memory 0x0D Insufficient memory to process the command
APDU

Invalid Handshake message 0x21 Illegal parameters in (D)TLS Handshake
message, either in header or data.

Version mismatch 0x22 Protocol or data structure version mismatch
(e.g. DTLS version, X.509 Version, ...).

Insufficient/Unsupported Cipher
Suite

0x23 Cipher suite mismatch between client and
server.

Unsupported extension/
identifier

0x24 An unsupported extension found in the
message

 Unsupported keyusage/Algorithm
extension/identifier for the usage of Private
key

Unsupported Parameters 0x25 At least one parameter received in the
handshake message is not supported.

Invalid Trust Anchor 0x26 The Trust Anchor is either not loaded or the
loaded Trust Anchor is invalid (e.g. not well
formed X.509 certificate, public key missing,
...).

Trust Anchor Expired 0x27 The Trust Anchor loaded at OPTIGA™ Trust X
is expired.

Unsupported Trust Anchor 0x28 The cryptographic algorithms specified in
Trust Anchor loaded are not supported by
OPTIGA™ Trust X.

Invalid certificate format 0x29 Invalid certificate(s) in certificate message with
the following reasons.

 Invalid format

 Invalid chain of certificates

 Signature verification failure

Unsupported certificate
algorithm

0x2A At least one cryptographic algorithm specified
in the certificate is not supported (e.g. hash or
sign algorithms).

Certificate expired 0x2B The certificate or at least one certificate in a
certificate chain received is expired.

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 61 Revision 1.35

www.infineon.com January 29, 2018

Field Code Description

Signature verification failure 0x2C Signature verification failure.

MAC validation failure 0x2D Message Integrity validation failure (e.g. during
CCM decryption).

Table 6 - Error Codes

4.4.3 Command/Response Definitions

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 62 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.1 OpenApplication
The OpenApplication is used to open an application on the OPTIGA™ Trust X. Since after cold or
warm Reset all applications residing on the OPTIGA™ Trust X are closed, an application has to be
opened before using it. This command instantiates3 and initializes the application context.

Field Offset
[direct]

Description

Cmd 0 [in] 0x70 or 0xF04 Command Code

Param 1 [in] 0x00 Initialize a clean application context

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] 0x00-0xFF Unique Application Identifier (refer to Table "Data Structure

"Unique Application Identifier"")

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0x0000 Length of OutData

OutData 4 [out] Absent

Table 7 - OpenApplication Coding

3
 An application might be multiple times available on the OPTIGA™ Trust X. Each of them are referenced to

as an instance of that application, which owns a dedicated application context, thus are independent but
sharing the same code and NVM data associated to that application. In case an application has only a single
instance available it is called a Singleton Application.
4
 In case of 0xF0 the Last Error Code gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 63 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.2 GetDataObject
The GetDataObject command is used to read data objects from the OPTIGA™ Trust X. The field
“Param” contains the type of data accessed. The field “InData” contains the OID of the data object,
and optional the offset within the data object and maximum length to be returned with the response
APDU.
Note: This command supports chaining through partial read applying offset & length as
appropriate.

Field Offset
[direct]

Description

Cmd 0 [in] 0x01 or 0x815 Command Code

Param 1 [in] 0x00 Read data

 0x01 Read metadata

InLen 2 [in] 0x0006 Length of Data in case “Param = 0x00”

 0x0002 Length of Data in case “Param = 0x00” and the entire data
of the data object starting at offset 0 shall be returned

 0x0002 Length of Data in case “Param = 0x01”

InData 4 [in] 0x0000-0xFFFF OID of data object to be read (refer to 'TLV-Coding and

Access Conditions (AC)')
0x0000-0xLLLL Offset within the data object (0xLLLL denotes the
length of the data object - 1)
0x0001-0xFFFF Number of Data bytes to be read. In case the length is
longer than the available data the length will be adapted to the
maximum possible length6 and returned with the response APDU. (e.g.
0xFFFF indicates all data from offset to the end of the data object)

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0x0000-0xFFFF Length of Data

OutData 4 [out] 0x00-0xFF Data object or metadata

Table 8 - GetDataObject Coding

5
 In case of 0x81 the Last Error Code gets flushed

6
 considering the offset and used data length

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 64 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.3 SetDataObject
The SetDataObject command is used to write data objects to the OPTIGA™ Trust X. The field “Param”
contains the type of data accessed. The field “InData” contains the OID of the data object, the offset
within the data object, and the data to be written.
Note: This command supports chaining through partial write applying offset & length as
appropriate.

Field Offset
[direct]

Description

Cmd 0 [in] 0x02 or 0x827 Command Code

Param 1 [in] 0x00 Write data

 0x01 Write metadata

 0x40 Erase & write data

InLen 2 [in] 0xXXXX Length of Data +4

InData 4 [in] 0x0000-0xFFFF OID of data object to be written (refer to 'TLV-Coding

and Access Conditions (AC)')
0x0000-0xLLLL Offset within the data object (0xLLLL denotes the
length of the data object - 1)
0x00-0xFF Data bytes to be written starting from the offset within the
data object.

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0x0000 Length of Data

OutData 4 [out] Absent

Table 9 - SetDataObject Coding

7
 In case of 0x82 the Last Error Code gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 65 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.4 GetRandom
The GetRandom command is used to generate a random stream to be used by various security
schemes. The field “Param” contains the type of random stream. The field “InData” contains the
length of the random stream to be returned with the response APDU.

Field Offset
[direct]

Description

Cmd 0 [in] 0x0C or 0x8C8 Command Code

Param 1 [in] 0x00 Random number from TRNG (according [AIS-31])

 0x01 Random number from DRNG (according [SP 800-90A])

InLen 2 [in] 0x0002 Length of Data

InData 4 [in] 0x0008-0x0100 length of random stream to be returned

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0x0000-0xFFFF Length of Data

OutData 4 [out] 0x00-0xFF Random stream.

Table 10 - GetRandom Coding

8
 In case of 0x8C the Last Error Code gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 66 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.5 SetAuthScheme
The SetAuthScheme command is used to set the authentication scheme and private key to be used
subsequently.

Field Offset
[direct]

Description

Cmd 0 [in] 0x10 or 0x909 Command Code

Param 1 [in] 0xXX Authentication Scheme (refer to chapter Authentication Schemes)

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] 0xE0F0, 0xE0F1-0xE0F3 OID of the device private key (PriKey) to be
used.
0xE100 OID of the session context, where the SesKey to be negotiated
gets stored (is only provided in case the authentication scheme
supports session key negotiation).

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0x0000 Length of OutData

OutData 4 [out] Absent

Table 11 - SetAuthScheme Coding

9
 In case of 0x90 the Last Error Code gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 67 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.6 GetAuthMsg
The GetAuthMsg command is used to read an authentication message from the OPTIGA™ Trust X.
Those authentication messages and their sequence of exchange between the OPTIGA™ Trust X
and its host are defined in detail in Chapter “Supported Use Cases”.

Field Offset
[direct]

Description

Cmd 0 [in] 0x18 or 0x9810 Command Code

Param 1 [in] 0xXX Authentication Message Type (refer to chapter Authentication

Message Definitions)

InLen 2 [in] 0x0000 Length of InData

InData 4 [in] Absent

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0x0000-0xFFFF Length of OutData

OutData 4 [out] 0x00-0xFF Authentication message

Table 12 - GetAuthMsg Coding

10

 In case of 0x98 the Last Error Code gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 68 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.7 SetAuthMsg
The SetAuthMsg is used to write an authentication message to the OPTIGA™ Trust X. Those
authentication messages and their sequence of exchange between the OPTIGA™ Trust X and the
connected host are defined in detail in Chapter “Supported Use Cases”.

Field Offset
[direct]

Description

Cmd 0 [in] 0x19 or 0x9911 Command Code

Param 1 [in] 0xXX Authentication Message Type (refer to Authentication Message

Definitions)

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] 0x00-0xFF Authentication Message

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0x0000 Length of OutData

OutData 4 [out] Absent

Table 13 - SetAuthMsg Coding

11

 In case of 0x99 the Last Error Code gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 69 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.8 ProcUpLinkMsg
The ProcUpLinkMsg command is used to process an uplink message by the OPTIGA™ Trust X.
Those messages and their sequence of exchange between the OPTIGA™ Trust X and its host are
defined in detail in Chapter “Supported Use Cases”.

Field Offset
[direct]

Description

Cmd 0 [in] 0x1A or 0x9A12 Command Code

Param 1 [in] 0xXX Authentication Message Type (refer to chapter Authentication

Message Definitions)

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] Authentication Message InData[InLen]
0xE100-0xE103 Session reference (Session context OID used in
regarded SetAuthScheme command)
TLV Record (optional one or multiple)

 0x31, 0x0004, xx yy zz ww
sRnd.gmt_unix_time; valid for PARAM = 0x01

 0x32, 0x0002, xx yy
CertificateOID; valid for PARAM = 0x0B

 0x6y, 0xXXXX, 0x00-0xFF (start/final y = 1)
Record data to be protected; valid for PARAM = 0x61

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0xXXXX Length of OutData

OutData 4 [out] Authentication Message OutData[OutLen]
TLV Record (alternative one)

 0x5y, 0xXXXX, 0x00-0xFF (start/final y = 1)
Record data protected

 0x6y, 0xXXXX, 0x00-0xFF (start/final y = 1)
handshake message

Table 14 - ProcUpLinkMsg Coding

12

 In case of 0x9A the Last Error Code gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 70 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.9 ProcDownLinkMsg
The ProcDownLinkMsg is used to process a downlink authentication message by the OPTIGA™ Trust

X. Those authentication messages and their sequence of exchange between the OPTIGA™ Trust X
and the connected host are defined in detail in Chapter “Supported Use Cases”.

Field Offset
[direct]

Description

Cmd 0 [in] 0x1B or 0x9B13 Command Code

Param 1 [in] 0xXX Authentication Message Type (refer to Authentication Message

Definitions)

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] Authentication Message InData[InLen]
0xE100-0xE103 Session reference (Session context OID used in
regarded SetAuthScheme command)
TLV Record (alternative one)

 0x5y, 0xXXXX, 0x00-0xFF (start/final y = 1)
Record data protected

 0x6y, 0xXXXX, 0x00-0xFF (start/final y = 1)
handshake message

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0xXXXX Length of OutData

OutData 4 [out] Authentication Message OutData[OutLen]
TLV Record (optional)

 0x6y, 0xXXXX, 0x00-0xFF (start/final y = 1)
Record data unprotected

Table 15 - ProcDownLinkMsg Coding

13

 In case of 0x9B the Last Error Code gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 71 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.10 CalcHash
The CalcHash is used calculating a digest of a message by the OPTIGA™ Trust X. The message to
be hashed gets either provided by the External World or could be one data object, or a part of a data
object, or parts of multiple data objects, hosted by the OPTIGA™ Trust X whose read access rights
are met.
In case the Intermediate hash data (context of the hash sequence which allows continuing it) is
returned, the hash calculation can be continued regardless whether another hash function is
executed in-between. However, the in-between hash function must be finalized or it gets
terminated upon continuing the exported (context) sequence.
Note: Once the hash calculation is started (y=0) and not finalized (y=1/3/4) each command starting
a new hash (e.g. CalcHash with start hashing; Handshake protocol using ProcUpLinkMsg or
ProcDownLinkMsg) will terminate the currently running hash calculation and drop the result.

Field Offset
[direct]

Description

Cmd 0 [in] 0x30 or 0xB014 Command Code

Param 1 [in] 0xXX Hash Algorithm Identifier (refer to table 'Algorithm Identifier')

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] Hash Input InData[InLen]
(alternative one)

 0x0y, Length15, Message data (start y = 0, start&final y = 1, continue
y = 2, final y=3, final and keep intermediate hash y=516)

 0x04, 0x0000 - To terminate the hash sequence in case initialized
already.

 0x1y, 0x0006, OID17, Offset, Length18 (start y = 0, start&final y = 1,
continue y = 2, final y=3, final and keep intermediate hash y=5)

(optional one or multiple)
(only allowed in conjunction with continue (y=2) or final (y=3) or final
and keep intermediate hash (y=5) indication)

 0x06, Length, Intermediate hash context data

(only allowed in conjunction with start (y=0) or continue (y=2) indication)
0x07, 0x0000 indicate exporting the Intermediate hash context via the
external interface

Note: allowed sequences are "start-(zero to n-times continue)-final" or
"start&final" (atomic) or "start-(zero to n-times continue)-terminate"

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0xXXXX Length of OutData

OutData 4 [out] Digest or intermediate hash context data
0x01, Length, Hash/Digest

14

 In case of 0xB0 the Last Error Code gets flushed
15

 Length can be 0 in case of y= 0 or 2 or 3 or 5; else it must be > 0
16

 keeping the current Intermediate hash context valid and return the hash
17

 The OID might vary throughout the hash chaining (start to final)
18

 Offset + Length must not exceed the used length of the data object addressed by OID

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 72 Revision 1.35

www.infineon.com January 29, 2018

Field Offset
[direct]

Description

0x06, Length, Intermediate Hash context data

Note 1: Digest is only returned in case of the final part of the message
(y = 1/3) was indicated with the command. In all other cases the Digest
is absent.
Note 2: Intermediate hash context is only returned if indicated by InData.

Table 16 - CalcHash Coding

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 73 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.11 CalcSign
The CalcSign is used to calculate a signature over the message digest provided with the InData.
This command is notifying the security event Private Key Use.

Field Offset
[direct]

Description

Cmd 0 [in] 0x31 or 0xB119 Command Code

Param 1 [in] 0xXX Signature Scheme (refer to Signature Schemes)

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] Signature Input InData[InLen]

 0x01, Length20, Digest to be signed

 0x03, 0x0002, OID of signature key21
Note: The key usage of the addressed key must be set to Sign or
Auth; refer to Key Usage Identifier

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0xXXXX Length of OutData

OutData 4 [out] 0x00-0xFF Signature22
Note: The length of the signature is derived from the applied key and
signature scheme.

Table 17 - CalcSign Coding

19

 In case of 0xB1 the Last Error Code gets flushed
20

 Shall be 10 bytes up to the length of the addressed signature key
21

 The addressed signing key shall be a private key
22

 The signature pair (r,s) is encoded as two DER "INTEGER"

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 74 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.12 VerifySign
The VerifySign is used to verify a signature over a given digest provided with the InData.

Field Offset
[direct]

Description

Cmd 0 [in] 0x32 or 0xB223 Command Code

Param 1 [in] 0xXX Signature Scheme (refer to Signature Schemes)

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] Signature Input InData[InLen]

 0x01, Length24, Digest

 0x02, Length25, Signature over Digest26
(alternative one)

 0x04, 0x0002, OID of Public Key Certificate27

 0x05, 0x0001, Algorithm Identifier (of the Public Key), 0x06, Length,
Public Key28

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0x0000 Length of OutData

OutData 4 [out] Absent

Table 18 - VerifySign Coding

23

 In case of 0xB2 the Last Error Code gets flushed
24

 The length of the digest must be up to the key size used for the signature (e.g. ECC256 = 32) and its max.
length is 64 bytes
25

 The length is limited to max. 520 bytes
26

 The ECC signature pair (r,s) is encoded as two DER "INTEGER"
27

 Must be a single certificate (DER coded) with the key usage either digitalSignature or keyCertSign
according [RFC5280]. The first byte of the object must be 0x30 (which is the start byte of a DER encoded
certificate)
28

 PubKey is encoded as DER "BIT STRING"

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 75 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.13 GenKeyPair
The GenKeyPair is used to generate a key pair. The Public Key gets returned to the caller. The
Private Key gets stored at the provided OID of a Key or it gets returned to the caller in case no OID
is provided.

Field Offset
[direct]

Description

Cmd 0 [in] 0x38 or 0xB829 Command Code

Param 1 [in] 0xXX Algorithm Identifier (ref to Algorithm Identifier) of the key to be
generated

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] Generate Key Pair Input InData[InLen]
(alternative one)

 0x01, 0x0002, OID of Private Key30 to be generated and stored as
indicated by the OID (no Private Key export!). The Public Key gets
exported in plain.
0x02, 0x0001, key usage (ref to Key Usage Identifier)

 0x07, 0x0000 (export key pair in plain)

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0xXXXX Length of OutData

OutData 4 [out] 0x01, Len, PrivKey31

 0x02, Len, PubKey32
Table 19 - GenKeyPair Coding

29

 In case of 0xB8 the Last Error Code gets flushed
30

 Private Key can either be a non-volatile Device Private Key OR a Session Context for volatile Device
Private Key, in which case the generated Key has to be stored in the respective Session Context and can
later be addressed.
31

 PrivKey is encoded as DER "OCTET STRING"
32

 PubKey is encoded as DER "BIT STRING"

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 76 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.14 CalcSSec
The CalcSSec command calculates a shared secret, applying the algorithm defined by Param. The
session context addressed in InData (tag 0x08) gets flushed and the agreed shared secret is stored
there for further use or returned as requested by InData (tag 0x07).

Field Offset
[direct]

Description

Cmd 0 [in] 0x33 or 0xB333 Command Code

Param 1 [in] 0xXX Key agreement primitive (refer to Key Agreement/ Encryption

Primitives)

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] 0x01, 0x0002, OID of Private Key

 0x05, 0x0001, Algorithm Identifier, 0x06, Length, Public Key34
(alternative one)

 0x07, 0x000035

 0x08, 0x0002, OID of Shared Secret36

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0xXXXX Length of OutData

OutData 4 [out] 0x00-0xFF Shared secret
Note 1: Shared secret is only returned in case it is requested by InData
(0x07, 0x0000)

Table 20 - CalcSSec Coding

33

 In case of 0xB3 the Last Error Code gets flushed
34

 PubKey is encoded as DER "BIT STRING"
35

 Indicates exporting the shared secret via the external interface
36

 The shared secret becomes part of the session context and can be addressed until the session context
gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 77 Revision 1.35

www.infineon.com January 29, 2018

4.4.3.15 DeriveKey
The DeriveKey command derives a key from a shared secret. The derived key is returned or saved
as part of the addressed session context. The key which is stored as part of the session context
can be further used as shared secret until it gets flushed.

Field Offset
[direct]

Description

Cmd 0 [in] 0x34 or 0xB437 Command Code

Param 1 [in] 0xXX Key derivation method (refer to Key Derivation Method)

InLen 2 [in] 0xXXXX Length of InData

InData 4 [in] Key Derivation Parameter InData[InLen]

 0x01, 0x0002, OID of Shared Secret to derive the new secret from38

 0x02, Len, Secret derivation data39

 0x03, 0x0002, Length of the key to be derived40
(alternative one)

 0x07, 0x000041

 0x08, 0x0002, OID of derived key42

Sta 0 [out] 0x00 | 0xFF Response Status Code

UnDef 1 [out] 0x00-0xFF Undefined Value

OutLen 2 [out] 0xXXXX Length of OutData

OutData 4 [out] 0x00-0xFF Derived data
Note 1: Derived data is only returned in case it is requested by InData
(0x07, 0x0000)

Table 21 - DeriveKey Coding

4.4.4 Authentication Scheme Definitions
The Table Authentication Schemes shows the supported authentication schemes and their coding
used for the SetAuthScheme command.

Value Description

0x91 The ECDSA FIPS 186-3 sign SHA256 hash scheme as specified within FIPS 186-3

 ECC key length is determined by the External World through the public key
certificate

 Hash algorithm used is SHA256

0x99 The DTLS-Client side of the DTLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher
suite as defined by [RFC6347] {0xC0,0xAE}

Table 22 - Authentication Schemes

37

 In case of 0xB4 the Last Error Code gets flushed
38

 The source of the shared secret could be a session context or data object. The used size of the data
object must be max. 64 bytes.
39

 min. Length = 8 byte; max. length = 1024 byte
40

 min. Length = 16 byte; max. length = 48 byte in case of session reference; max. length = 256 byte in case
of returned secret
41

 Indicates exporting the derived key via the external interface
42

 The key becomes part of the session context and can be addressed as shared secret until the session
context gets flushed

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 78 Revision 1.35

www.infineon.com January 29, 2018

4.4.5 Authentication Message Definitions
The Table DTLS Handshake client sequence shows the sequence of commands and the regarded
parameters to execute a mutual authentication utilizing the DTLS protocol.

Command Param CmdData RespData Note

SetAuthScheme 0x99 OID of PriKey
OID of SesKey

- refer to Table
"Authentication

Schemes"
ProcUpLinkMsg 0x01 0xE100-0xE103

SesID
0x31, len,
sRnd.gmt_unix_time

0x61, len,
[sHeaderDTLS, sHello]

ProcDownLinkMsg 0x03 0xE100-0xE103
SesID
0x61, len,
[sHeaderDTLS,

sHelloVerifyRequest]

ProcUpLinkMsg 0x03 0xE100-0xE103
SesID

0x61, len,
[sHeaderDTLS,

sClientHelloWithCooki

e]

ProcDownLinkMsg 0x02 0xE100-0xE103
SesID

0x61, len,
[sHeaderDTLS, sHello]

-

ProcDownLinkMsg 0x0B 0xE100-0xE103
SesID
0x60/0x61/0x62, len,
[sHeaderDTLS,

sCertificate]

- In case the
length of the
certificate chain
structure leads to
a command size
exceeding the
max. buffer size,
the External World
applies
command level
chaining.

ProcDownLinkMsg 0x0C 0xE100-0xE103
SesID
0x61, len,
[sHeaderDTLS,

sServerKeyExchange]

-

ProcDownLinkMsg 0x0D 0xE100-0xE103
SesID
0x61, len,
[sHeaderDTLS,

sCertificateRequest]

-

ProcDownLinkMsg 0x0E 0xE100-0xE103
SesID
0x61, len,
[sHeaderDTLS,

-

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 79 Revision 1.35

www.infineon.com January 29, 2018

Command Param CmdData RespData Note

sServerHelloDone]
ProcUpLinkMsg 0x0B 0xE100-0xE103

SesID
0x32, 0x0002, OID
of certificate data
object

0x60/0x61/0x62, len,
[sHeaderDTLS,

sCertificate]

In case the
length of the
certificate chain
structure
exceeds the
max. buffer size,
the External World
has to repeat the
same command
until the tag
value in the
response
indicates final.

ProcUpLinkMsg 0x10 0xE100-0xE103
SesID

0x61, len,
[sHeaderDTLS,

sClientKeyExchange]

ProcUpLinkMsg 0x0F 0xE100-0xE103
SesID

0x61, len,
[sHeaderDTLS,

sCertificateVerify]

ProcUpLinkMsg 0x14 0xE100-0xE103
SesID

0x61, len,
[sHeaderDTLS,

sFinished]

ProcUpLinkMsg 0x61 0xE100-0xE103
SesID
0x61, len,
unprotected
Record(sRecordDTLS

(sHeaderDTLS,

sFinished))

0x51, len, protected
Record(sRecordDTLS

)

The finished
message
generated in the
previous step to
be encrypted
and send to the
server.

ProcDownLinkMsg 0x51 0xE100-0xE103
SesID
0x51, len, protected
Record(sRecordDTLS

)

0x61, len,
unprotected
Record(sRecordDTLS

)

ProcDownLinkMsg 0x14 0xE100-0xE103
SesID
0x61, len,
[sHeaderDTLS,

sFinished]

-

ProcUpLinkMsg 0x71 0xE100-0xE103
SesID

- Close the
session as
indicated by
SesID

Table 23 - DTLS Handshake client sequence

The Table One-way authentication sequence shows the sequence of commands and the regarded
parameters to execute a one-way authentication.

Command Param CmdData RespData Note

SetAuthScheme 0x91 OID of PriKey - refer to Table
"Authentication

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 80 Revision 1.35

www.infineon.com January 29, 2018

Command Param CmdData RespData Note

Schemes"
SetAuthMsg 0x01 Message to be

signed
- Length of

Message must
be in a range of
8 to 256 bytes

GetAuthMsg 0x02 - Response (SIGN) Length of SIGN
depends on key
length

Table 24 - One-way authentication sequence

4.4.6 Crypto Performance
The performance metrics for various schemes are provided by Table 'Crypto Performance Metrics'

Scheme Sequence Execution Time43 Note

0x91:
Authentication
Schemes

@ OPTIGA™ Trust X
external interface.

 SetAuthMsg

 GetAuthMsg

ECC 256 < 80 ms Refer to "strict" container
@ Use Case: One-way

Authentication - PubKey

signature scheme [osd].

0x99:
Authentication
Schemes

@ OPTIGA™ Trust X
external interface.

 ProcDownLinkMsg

 ProcUpLinkMsg

ECC 256 < 1000 ms Refer to "strict" container
without "Wait" executed as
of Use Case: Mutual
Authentication establish
session (DTLS-Client) [osd]

AES 128 @ OPTIGA™ Trust X
external interface.

 ProcDownLinkMsg
or

 ProcUpLinkMsg

CCM 15 KByte/s Measured with 1KByte of
payload processed at
once.

Table 25 - Crypto Performance Metrics

4.5 Security Monitor
The Security Monitor is a central component which enforces the security policy of the OPTIGA™

Trust X. It consumes security events sent by security aware parts of the OPTIGA™ Trust X
embedded SW and takes actions accordingly.

4.5.1 Security Events
The Table "Security Events" provides the definition of not permitted security events considered by
the OPTIGA™ Trust X implementation.

Name Description

Decryption Failure The Decryption Failure event occurs in case a decryption and/
or integrity check of provided data lead to an integrity failure.

43

 Execution of the entire sequence, except the External World timings, with I2C@400KHz & current
limitation max. value

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 81 Revision 1.35

www.infineon.com January 29, 2018

Name Description

Private Key Use The Private Key Use event occurs in case the internal services
are going to use a OPTIGA™ Trust X hosted private key.

Suspect System Behavior The Suspect System Behavior event occurs in case the
embedded software detects inconsistencies with the
expected behavior of the system. Those inconsistencies
might be redundant information which doesn’t fit to their
counterpart.

Table 26 - Security Events

4.5.2 Security Policy
This paragraph provides all details of the policy chosen for the Generic Authentication Device
project.
In order to mitigate exhaustive testing of the OPTIGA™ Trust X private keys, secret keys and
passwords, and to limit the possible number of failure attacks targeting disclosure of those assets,
the Security Monitor judges the notified security events regarding the number of occurrence over
time and in case those violate the permitted usage profile of the system takes actions to throttle
down the performance and thus the possible frequency of attacks.
The permitted usage profile is defined as:
1. One protected operation (refer to Security Events) events per tmax period.

2. A Suspect System Behavior event is never permitted and will cause setting the SEC to its
maximum.

3. tmax is set to 5 seconds (± 5%).

The Security Monitor must enforce, in exhaustive testing scenarios, that the maximum permitted
usage profile is not violated.

With other words it must not allow more than one out of the protected operations per tmax period
(worst case, ref to bullet 1. above). This condition must be stable, at least after 500 uninterrupted
executions of protected operations.

4.5.3 Characteristics
This paragraph provides the throttle down characteristics for the protected operations implemented
by the Security Monitor. The Security Monitor uses the SEC to count Security Events in order to
figure out not permitted usage profiles. Figure "Throttling down profile" depicts the characteristic
(dotted line) of the dependence between the value of the SEC and the implemented delay for
protected operations. The value of SEC gets decreased by one every tmax period. With other words,
the delay starts as soon as SEC reaches the value of 128 and will be tmax in case the SEC reaches
its maximum value of 255.

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 82 Revision 1.35

www.infineon.com January 29, 2018

S
ta

rt
U

p

C
P

 i
d

le

Power

Limit

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

SEC * tmax + ((5-SECcredit) * tmax))

Sleep

SEC == 0

SECcredit == 5

Go to sleep

Low

Power

Figure 19 Power profile

Figure "Power Profile" depicts the power profile of a regular startup sequence, caused either by
PowerUP, Warm Reset, or Security Reset. The OPTIGA™ Trust X starts up with its maximum power
consumption limit set by the Current limitation data object (refer to Table Common data structures). As
soon as the OPTIGA™ Trust X enters idle state (nothing to compute or communicate) the OPTIGA™

Trust X reduces its power consumption to the low power limit (System Halt Power Consumption). In
case a time period of tmax is elapsed the SEC gets decremented by one. As soon as the SEC
reaches the value of 0, the SECcredit counter reaches its maximum value, and the OPTIGA™ Trust

X is in idle state, the OPTIGA™ Trust X enters the sleep mode to achieve maximum power saving. It
is recommended not to switch off the power before the SEC becomes 0. In order to avoid power
consumption at all, VCC could be switched off while keeping the I2C bus connected. However,
before doing that the SEC value should have reached 0, to avoid accumulated SEC values which
might lead to throttling down the OPTIGA™ Trust X performance (ref to Figure "Throttling down
profile") for functionalities which potentially triggering Security Events. However, the method of
switching VCC off and on is limited to 200000 times over lifetime.

tdelay [s]

SEC

0

255

127

tmax

Figure 20 Throttling down profile

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 83 Revision 1.35

www.infineon.com January 29, 2018

The SEC Credit methodology is introduced in order to reduce stress for the NVM cells hosting the
SEC. For that purpose the device collects SECcredit over time (residing in RAM).

 After power-up or restart the SECcredit is cleared.

 In case the tmax elapses without a Security Event and the SEC is > 0 the SEC gets decreased by
one.

 In case tmax elapses without a Security Event and the SEC is =0, the SECcredit gets increased
by one to a maximum limit of 5.

 In case a Security Event occurs and the SECcredit is > 0 the SECcredit gets decreased by one.

 In case the SECcredit is = 0 and a Security Event occurs the SEC hosted in NVM gets
increased.

Figure 21 Security Event Counter Characteristics

4.6 Data Structures

4.6.1 Access Conditions
At each level of the data structure, Access Conditions (AC’s) are defined. The ACs are defined for
commands acting upon data. The ACs must be fulfilled before the data can be accessed through
the regarded commands.

The following access types are used in this document:

RD reading a data or key object by an external command (e.g. GetDataObject)

CHA changing (writing or flushing) a data or key object by an external command (e.g.
SetDataObject)

DEL deleting a data or key object by an external command (no command defined yet)

EXE utilizing a data or key object implicitly by executing a complex command (e.g. CalcSign,
GenKeyPair, ...)

The following ACs are used in this document:

ALW the action is always possible. It can be performed without any restrictions.

Idle
Security Event

SEC += 1
SECcredit == 0

SECcredit -= 1

tmax elapsed

Power-up /

restart

SECcredit += 1

SEC == 0

SECcredit < 5

SEC -=1

SECcredit = 0

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 84 Revision 1.35

www.infineon.com January 29, 2018

NEV the action is never possible. It can only be performed internally.

LcsG(X) the action is only possible in case the global Lifecycle Status meets the condition given
by X.

LcsA(X) the action is only possible in case the application-specific Lifecycle Status meets the
condition given by X.

LcsO(X) the action is only possible in case the data object-specific Lifecycle Status meets the
condition given by X.

Table 'Access Condition Identifier and Operators' defines the Access Condition Identifier and
Operands to be used, to define ACs associated with data objects. Access Condition Identifier must
be used with the commands trying to achieve associated ACs.
There are simple and complex Access Condition expressions defined.

 A Simple AC (sAC) expression consists just of an access type tag (e.g. read, change,
increment, decrement, delete), the length of the condition, and a single condition (e.g. ALW,
NEV, LcsO < 0x04 …) which must be satisfied to grand access for that access type.

 A Complex AC (cAC) expression consists of multiple simple expressions combined by &&
and/or || operators. Where …
... && operators combining sACs to an access token (AT)
 AT = sAC1 … && sACn (n = 1…7)
... || operators combining multiple ATs to a cAC
 cAC = AT1 … || ATm (m = 1…3; ((n1+ … +nm) * m) > 1)

Notes:

 An AT evaluates TRUE in case all contained simple AC evaluate TRUE (logical AND).

 In case one of the AT evaluates TRUE, the regarded access becomes granted (logical OR).

 ALW and NEV are not allowed in cACs
Remark: With the rules given above it doesn’t matter whether starting the evaluation of a complex
expression from the beginning or the end.
The access conditions which could be associated to OPTIGA™ Trust X data and key objects are
defined by Table "Access Condition Identifier and Operators".

AC ID Operator Value Description

ALW - 0x00 1 byte; Value

LcsG - 0x70 3 byte; Value, Qualifier, Reference

(e.g. LcsG < op → 0x70, 0xFC, 0x04)

LcsA - 0xE0 3 byte; Value, Qualifier, Reference

(e.g. LcsA > in → 0xE0, 0xFB, 0x03)

LcsO - 0xE1 3 byte; Value, Qualifier, Reference
(e.g. LcsO < op → 0xE1, 0xFB, 0x03)

- == 0xFA equal

- > 0xFB greater than

- < 0xFC less than

- && 0xFD logical AND

- || 0xFE logical OR

NEV - 0xFF 1 byte; Value

Table 27 - Access Condition Identifier and Operators

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 85 Revision 1.35

www.infineon.com January 29, 2018

4.6.2 Application-specific data structures

Data element Value Coding Length
(Bytes)

Registered application provider
identifier (RID)

0xD27600000444 HexNumber
5

5

Proprietary application identifier
extension (PIX)

'GenAuthAppl'
0x47656E417574684170706C

Ascii11 11

Table 28 - Data Structure "Unique Application Identifier"

Data element Value Coding Length
(Bytes)

Arbitrary data object type 1 0x00 - 0xFF application-
specific

100

Arbitrary data object type 2 0x00 - 0xFF application-
specific

1500

Table 29 - Data Structure "Arbitrary data object"

4.6.3 Common data structures
Table 'Common data structures' shows all common data structures defined for the OPTIGA™ Trust X.

Data element Value Coding Length
(Bytes)

Description

Life Cycle State
(refer to Table
'Life Cycle Status')

 BinaryNumber
8

1 The LCS is implemented in a
way that the four primary states
only progress in one direction
from a lower value to a higher
value (e.g. initialization =>
operational state, but not vice
versa). The application-specific
states, if used at all, are
managed by the particular
application.

Security State
(refer to Table
'Security Status')

 BinaryNumber
8

1 The device and each
application may have a security
status associated. The device
security status is further
referenced to by “Global
security status” and the
application specific status by
“Application-specific security
status”.

Last Error Code
(refer to Table
'Error Codes')

 BinaryNumber
8

1 The Last Error Code stores the
most recent error code
generated since the data object
was last cleared. The

44

 RID of former Siemens HL will be reused for IFX

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 86 Revision 1.35

www.infineon.com January 29, 2018

Data element Value Coding Length
(Bytes)

Description

availability of a Last Error Code
is indicated by the (GENERAL)
ERROR (refer to Table
'Response Status Codes'),
returned from a failed command
execution. The error code is
cleared (set to 0x00 = “no
error”) after it is read or in case
the MSB bit is set in the Cmd
field of a Command APDU (ref
to Table 'Command Codes'). The
possible error codes are listed
in Table 'Error Codes'. If multiple
commands happen to produce
subsequent errors then only the
highest-numbered error code is
stored.

Sleep Mode
Activation Delay
in ms

0x14 - 0xFF BinaryNumber
8

1 The Sleep Mode Activation
Delay holds the delay time in
milliseconds starting from the
last communication until the
device enters its power saving
sleep mode. The allowed
values are 20-255 (ms). Its
default content is 20.

Current limitation
in mA

0x06 - 0x0F BinaryNumber
8

1 The Current limitation holds the
maximum value of current
allowed to be consumed by the
OPTIGA™ Trust X across all
operating conditions. The
allowed values are 6-15 (mA).
This register resides in Non-
Volatile Memory (NVM) and will
be restored upon power up or
reset. Its default content is
6mA.
Note: 15mA will cause best
case performance. 9 mA will
cause roughly 60% of the best
case performance. Even the
maximum communication
speed might be degraded by
Current limitation (How the max.
possible communication speed
gets indicated to the I2C
master, please refer to
[IFX_I2C]).

Buffer size in
number of bytes

0x0200 -
0xFFFF

BinaryNumber
16

2 The Maximum Com Buffer Size
holds the maximum size of
APDUs transferred through the
communication buffer.

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 87 Revision 1.35

www.infineon.com January 29, 2018

Data element Value Coding Length
(Bytes)

Description

Note: In case higher data
volumes need to be transferred,
command chaining must be
applied.

Security Event
Counter (SEC)

0x00 - 0xFF 0x00 - 0xFF 1 The SEC holds the current
value of the Security Event

Counter as described in chapter
Security Monitor.

Public Key
Certificate

0x00 - 0xFF x.509 1728
(max.)

The Public Key Certificate data
object holds one or multiple of
X.509 Certificate (refer to
[RFC5280]). The certificate was
issued by IFX or a Customer. A
host utilizes it to authenticate
the OPTIGA™ Trust X within the
regarded PKI domain (IFX or
Customer).

 One-Way Authentication
Identity:
Certificate DER coded
The first byte of the DER
encoded certificate is 0x30
and is used as Tag to
differentiate from other Public

Key Certificate formats
defined below.

 TLS Identity:
Tag = 0xC0
Length = Value length (2
Bytes)
Value = Certificate Chain45

 USB Type-C Identity:
Tag = 0xC2
Length = Value length (2
Bytes)
Value = USB Type-C
Certificate Chain [USB Auth]

46
Root CA Public
Key Certificate
aka "Trust
Anchor"

0x00 - 0xFF x.509 (maybe
self signed
certificate)

1024
(max.)

The Root CA Public Key

Certificate data object holds the
Public Key Certificate of the IFX
or Customer Root or
Intermediate Certification
Authority.

Table 30 - Common data structures

1. Creation state

2. Initialization state

45

 Format of a "Certificate Structure Message" used in TLS Handshake
46

 Format as defined in Section 3.2 of the USB Type-C Authentication Specification.

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 88 Revision 1.35

www.infineon.com January 29, 2018

3. Operational state

4. Termination state

The LCS is implemented in a way that the four primary states only progress in one direction from a
lower value to a higher value (e.g. initialization => operational state, but not vice versa). The
application-specific states, if used at all, are managed by the particular application.

The life cycle status shall be interpreted according to Table 'Life Cycle Status'.

Table 'Life Cycle Status' shows all coding of the Life Cycle Status defined for the OPTIGA™ Trust X.

Bit 8-5 Bit 4-1 Description

0 0 0 0 x x x x RFU

0 0 0 0 0 0 0 1 Creation state (abbreviation = cr)

0 0 0 0 0 0 1 1 Initialization state (abbreviation = in)

0 0 0 0 0 1 1 1 Operational state (abbreviation = op)

0 0 0 0 1 1 1 1 Termination state (abbreviation = te)47
Table 31 - Life Cycle Status

Table 'Security Status' shows the security status defined for the device either global or application-
specific. The default is 0x00 after reset for the global and after OpenApplication for the application-
specific Security Status 48 49.

Bit 8-7 Bit 6-1 Description

x x x x x x x x RFU
Table 32 - Security Status

Table 'Data structure Coprocessor UID OPTIGA™ Trust X' shows UID definition for the OPTIGA™ Trust

X.

Offset Data Type Name Description

0 uint8_t bCimIdentifier CIM Identifier

1 uint8_t bPlatformIdentifier Platform Identifier

2 uint8_t bModelIdentifier Model identifier

3 uint16_t wROMCode ID of ROM mask

5 uint8_t rgbChipType[6] Chip type

11 uint8_t rgbBatchNumber[6] Batch number

17 uint16_t wChipPositionX Chip position on wafer: X-coordinate

19 uint16_t wChipPositionY Chip position on wafer: Y-coordinate

21 uint32_t dwFirmwareIdentifier Firmware Identifier

25 uint8_t rgbESWBuild[2] ESW build number, BCD coded

47

 this state is not applicable for the LcsA
48

 bit = 0 status not satisfied
49

 bit = 1 status satisfied

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 89 Revision 1.35

www.infineon.com January 29, 2018

Table 33 - Data structure Coprocessor UID OPTIGA™ Trust X

4.6.4 TLV-Coding and Access Conditions (AC)
Table 'Common data objects with TAG’s and AC‘s' shows all common data structures defined for the
OPTIGA™ Trust X with its TAG’s and AC’s.

Tag Structure definition Default
Value

ACs CHA/DEL/RD
(default LcsO)

0xE0C0 Data Structure global 'Life Cycle Status'
(LcsG)

0x07 ALW/ NEV/ ALW (op)

0xE0C1 Data Structure global 'Security Status' 0x00 ALW50/ NEV/ ALW (op)

0xE0C2 Data structure 'Data structure Coprocessor UID

OPTIGA™ Trust X'
 NEV/ NEV/ ALW (op)

0xE0C3 Data structure 'Sleep Mode Activation Delay'
(refer to 'Common data structures')

0x14 ALW/ NEV/ ALW (op)

0xE0C4 Data structure 'Current limitation' (refer to
'Common data structures')

0x06 ALW/ NEV/ ALW (op)

0xE0C5 Data structure 'Security Event Counter (SEC)'
(refer to 'Common data structures')

 NEV/ NEV/ ALW (op)

0xE0C6 Data structure 'Maximum Com Buffer Size'
(refer to 'Common data structures')

 NEV/ NEV/ ALW (op)

0xE0E0 Device Public Key Certificate issued by IFX
(refer to 'Common data structures')

 LcsO < op/ NEV/ ALW
(op)

0xE0E1-
0xE0E3

Project-specific device Public Key Certificate
1-351. (refer to 'Common data structures')

0x00 LcsO < op/ NEV/ ALW
(cr)

0xE0E8 Root CA Public Key Certificate 152 (refer to
'Common data structures')

 LcsO < op/ NEV/ ALW
(cr)

0xE0EF Root CA Public Key Certificate 853. This trust
anchor is assigned to platform integrity use
cases (refer to 'Common data structures').

0x00 LcsO < op/ NEV/ ALW
(cr)

Table 34 - Common data objects with TAG’s and AC‘s

Table 'Common key objects with TAG’s and AC‘s' shows all common Keys defined for the OPTIGA™

Trust X with its TAG’s and AC’s.

50

 It is only possible to reset an achieved security status
51

 due to its size the certificate is not written in an atomic way. With other words in case the write gets
terminated by a tearing event like power lost or reset, the write might be incomplete - the certificate is just
partly written
52

 due to its size the public key or certificate is not written in an atomic way. With other words in case the
write gets terminated by a tearing event like power lost or reset, the write might be incomplete - the certificate
is just partly written.
53

 due to its size the public key or certificate is not written in an atomic way. With other words in case the
write gets terminated by a tearing event like power lost or reset, the write might be incomplete - the certificate
is just partly written.

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 90 Revision 1.35

www.infineon.com January 29, 2018

Tag Structure definition Default
Value

ACs EXE/CHA/DEL/RD
(default LcsO)

0xE0F0 Device Private Key 1 ALW/ NEV/ NEV/ NEV
(op)

0xE0F1-
0xE0F3

Device Private Key 2-4; The GetDataObject,
SetDataObject commands are not allowed for
the data part of the key object even if the
metadata state the access rights differently.

 ALW/ LcsO < op/ NEV/
NEV (cr)

0xE100-
0xE103

Session context 1-4 (OID to address one of
the four session contexts e.g. (D)TLS
connection state). These OIDs are not
applicable for the GetDataObject,
SetDataObject commands. The session
context holds either Private key or Shared
secret or is target for toolbox commands like
(GenKeyPair, CalcSSec, DeriveKey).

 ALW/ NEV/ NEV/ NEV
(op)

Table 35 - Common key objects with TAG’s and AC‘s

Table 'Authentication application-specific data objects with TAG’s and AC‘s' shows all data structures
defined for the OPTIGA™ Trust X Authentication Application with its TAGs and ACs.

Tag Structure definition Default
Value

ACs CHA/DEL/RD
(default LcsO)

0xF1C0 Data Structure application 'Life Cycle Status'
(LcsA)

0x01 ALW/ NEV/ ALW (op)

0xF1C1 Data Structure application 'Security Status' 0x00 ALW54/ NEV/ ALW (op)

0xF1C2 Error codes (refer to Table 'Error Codes') NEV55/ NEV/ ALW (op)

0xF1D0-
0xF1DF

Data Structure "Arbitrary data object" type 1. 0x00 app-specific/ NEV/ app-
specific (cr)

0xF1E0-
0xF1E1

Data Structure "Arbitrary data object" type 2. 0x00 app-specific/ NEV/ app-
specific (cr)

Table 36 - Authentication application-specific data objects with TAG’s and AC‘s

Metadata associated with data / key objects are expressed as constructed TLV data objects. The
metadata itself are expresses as simple TLV-Objects contained within the metadata constructed
TLV-Object. The following table provides a collection of the possible metadata types as data
attributes (e.g. LCS, max length …) and access conditions (read, change …) to those data objects.
The access conditions expressed in Table Access Condition Identifier and Operators describing under
which condition metadata itself could be accessed (GetDataObject or SetDataObject; Param ==
0x01).
Implicit rules:

 In case the entry for an access condition (tag = 0xD?) is absent, the regarded access condition
is defined NEV.

 In case the LcsO is absent, the access conditions of the regarded data object is considered as
operational (op) and couldn’t be changed.

54

 It is only possible to reset an achieved security status
55

 cleared on read

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 91 Revision 1.35

www.infineon.com January 29, 2018

 In case the Used size (Tag 0xC5) is absent, the used size is same as max. size.

 The changed metadata get effective as soon as the change gets consolidated at the data
object.

Table 'Metadata associated with data and key objects' shows all common data structures defined for
the OPTIGA™ Trust X with its TAG’s and AC’s.

Tag Structure definition Default
Value

ACs CHA/DEL/RD
(default LcsO)

0x20 Metadata constructed TLV-Object

0xC0 Life Cycle State of the data object (LcsO)
(refer to Table 'Life Cycle Status')

 ALW/NEV/ALW (n.a.)

0xC4 Max. size of the data object NEV/NEV/ALW (n.a.)

0xC5 Used size of the data object auto56/NEV/ALW (n.a.)

0xD0 Change Access Condition descriptor LcsO < op/NEV/ALW
(n.a.)

0xD1 Read Access Condition descriptor LcsO < op/NEV/ALW
(n.a.)

0xD2 Delete Access Condition descriptor LcsO < op/NEV/ALW
(n.a.)

0xE0 Algorithm associated with key container
(refer to Table 'Algorithm Identifier')

 auto57/NEV/ALW (n.a.)

0xE1 Key usage associated with key container
(refer to Table 'Key Usage Identifier')

 LcsO < op/NEV/ALW
(n.a.)

Table 37 - Metadata associated with data and key objects

Table 'Algorithm Identifier' shows the coding of algorithm identifier used by the OPTIGA™ Trust X.

Value Description

0x03 Elliptic Curve Key on NIST P256 curve.

0x04 Elliptic Curve Key on NIST P384 curve

0xE2 SHA 256

Table 38 - Algorithm Identifier

Table 'Key Usage Identifier' the coding of key usage identifier used by the OPTIGA™ Trust X.

Value Description

0x01 Auth (Authentication)

0x02 Enc (Encryption, Key Transport)

0x04 HostFwUpdate

0x08 DevMgmt (Device Management)

0x10 Sign

56

 if the used size is present
57

 As part of the key generation this tag will be updated automatically

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 92 Revision 1.35

www.infineon.com January 29, 2018

Value Description

0x20 KeyAgree (Key Agreement)

Table 39 - Key Usage Identifier

Table 'Key Agreement/ Encryption Primitives' shows the coding of key agreement/ encryption
primitives used by the OPTIGA™ Trust X.

Value Description

0x01 Elliptic Curve Diffie-Hellman shared secret agreement according to NIST SP-800 56A.

Table 40 - Key Agreement/ Encryption Primitives

Table 'Key Derivation Method' the coding of key derivation method used by the OPTIGA™ Trust X.

Value Description

0x01 IETF 5246 TLS PRF SHA256

Table 41 - Key Derivation Method

Table 'Signature Schemes' shows the coding of signature schemes used by the OPTIGA™ Trust X.

Value Description

0x11 ECDSA FIPS 186-3 w/o hash

Table 42 - Signature Schemes

Examples of commonly used access conditions:

 Arbitrary Data Record @ shipping to customer
0x20, 0x11, // TL metadata TLV-Object

 0xC0, 0x01, 0x03, // TLV LcsO = in

 0xC4, 0x01, 0x64, // TLV max size = 100

 0xC5, 0x01, 0x0A, // TLV used size = 10

 0xD1, 0x01, 0x00, // TLV Read = ALW

 0xD0, 0x03, 0xE1, 0xFC, 0x04 // TLV Change = LcsO < op

 // TLV Delete = NEV (absent)

Note: in case of NEV the AC term for that kind of AC could be absent. In this example for “delete”

 Project-Specific device Public Key Certificate @ shipping to customer

0x20, 0x16, // TL metadata TLV-Object

 0xC0, 0x01, 0x03, // TLV LcsO = in

 0xC4, 0x02, 0x04, 0x00, // TLV max size = 1024

 0xC5, 0x02, 0x03, 0x40, // TLV used size = 832

 0xD1, 0x01, 0x00, // TLV Read = ALW

 0xD0, 0x03, 0xE1, 0xFC, 0x04; // TLV Change = LcsO < op

 0xD2, 0x01, 0xFF // TLV Delete = NEV

Note: there is no ordering rule for metadata tags

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 93 Revision 1.35

www.infineon.com January 29, 2018

Figure 22 Metadata sample

Figure 23 SetDataObject (Metadata) examples

OPTIGA™ Trust X1
Solution Reference Manual

OPTIGA™ Trust X External Interface

Manual 94 Revision 1.35

www.infineon.com January 29, 2018

Note: The values specified in Figure 22 and Figure 23 are in HEX format.

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 95 Revision 1.35

www.infineon.com January 29, 2018

5 Appendix

5.1 Command Coding Examples

 GetDataObject
For Example, The GetDataObject command to read 5 bytes of Coprocessor UID data object
starting from offset 2 is as shown below.

Figure 24 GetDataObject [Read data] example

Note: The values specified in Figure 24 are in HEX format.

 SetDataObject
For Example, The SetDataObject command to write 8 bytes of data to arbitrary data object 0xF1D0
starting from offset 9 is as shown below.

Figure 25 SetDataObject [Write data] example

Note: The values specified in Figure 25 are in HEX format.

5.2 (D)TLS Protocol Details

5.2.1 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
The TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 implementation details are provided below:
DTLS is intentionally very similar to TLS. Therefore, [RFC6347] specifies DTLS as a series of deltas
from TLS 1.2. Where [RFC6347] does not explicitly call out differences, DTLS is the same as TLS.

Verification of Server Signature in ServerKeyExchange Message:
[RFC5246] specifies the signature_algorithms Extensions indicating Hash Algorithm and Signature
Algorithm used. Since in the absence of the signature_algorithms the default value is {sha1,ecdsa}
this Extension shall be included in the Client Hello Message indicating {sha256,ecdsa} .

Generation of CertificateVerify Message:
NISTP-256 shall be supported as Signature Key. Therefore the Client Certificate Message shall
contain an NISTP-256 ECDSA capable Public Key. Public Key Points MUST be in uncompressed
Format. SHA256 and ECDSA for the Signature Algorithm shall be supported. Hence the Client
shall only accept Certificate Request Message, which will indicate {sha256,ecdsa} as

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 96 Revision 1.35

www.infineon.com January 29, 2018

supported_signature_algorithms and ecdsa_sign as ClientCertificateType.

PRF Usage and Hash:
The PRF shall be based on SHA-256 as specified in [RFC7251] section 2. These cipher suites
make use of the default TLS 1.2 PseudorandomFunction (PRF), which uses HMAC with the SHA-
256 hash function. For Hashing of Handshake Messages used in the Verify Message SHA256
shall be supported. It shall be the same as for the PRF: The Hash MUST be the Hash used as the
basis for the PRF

CCM Specification Details:
AEAD_AES_128_CCM as specified in [RFC5116] shall be used.
Nonce Generation as specified in [RFC6655] section 3 shall be used:

struct {

 uint32 client_write_IV; // low order 32-bits

 uint64 seq_num; // TLS sequence number

} CCMClientNonce;

5.3 (D)TLS Messages
This section is provided just for information and not considered to be entirely implemented as
shown here.

5.3.1 (D)TLS Record Protocol message
The Record Protocol takes messages to be transmitted, fragments the data into manageable
blocks, optionally compresses the data, applies a MAC, encrypts and transmits the result.
Received data is decrypted, verified, decompressed, reassembled, and then delivered to higher-
level layers.
The four protocols that use the record protocol are handshake protocol, alert protocol, change
cipher spec protocol, application data protocol and heartbeat protocol.
This chapter shows the record layer structure.

eRecContentType

Description The eRecContentType specifies the enumeration for all the (D)TLS
Record Layer content types.

Enumeration literals eChangeCipherSuite

eAlert

eHandshake

eApplication

eHeartbeat58

5.3.1.1 (D)TLS Handshake messages
This chapter provides detailed information regarding the (D)TLS Handshake messages. Handshake
Protocol is used to negotiate the secure attributes of a session. Handshake messages are sent to
record layer, where they are encapsulated within one or more TLSPlaintext structures, which are
processed and transmitted as specified by the current active session state.
Note: This section covers the full standard. However, the implementation of the OPTIGA™ Trust X is

58

 Content Type not supported

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 97 Revision 1.35

www.infineon.com January 29, 2018

in some extend limited (for detailed information refer to the "Limitations" section).

eHandshakeType

Description The eHandshakeType specifies the enumeration for all the DTLS
handshake messages.

Enumeration literals eHello_request

eClient_hello

eServer_hello

eHello_verify_request

eCertificate

eServer_key_exchange

eCertificate_request

eServer_hello_done

eCertificate_verify

eClient_key_exchange

eFinished

5.3.1.1.1 Hello Request

This message is sent by server at any time. It is a notification that the client has to begin
negotiation a new session. In response, the client should send ClientHello message when
convenient. This message may be ignored by the client if it is negotiating a session and also if it
does not wish to renegotiate a session and the client may also respond with a no-renegotiation
alert message.
This message must not be included in the message hash. Servers do not send this message
immediately upon the client's initial connection and are not expected to repeat the request until the
subsequent handshake negotiation is complete.

5.3.1.1.2 Hello

Client sends Client_hello message after reception of Hello Request message from server or to
initiate a session spontaniously. This message has the list of ciphersuites supported by the client, a
random number and protocol version and extensions for ECC based ciphersuites.
In response the server sends a Server_Hello message whose structure is the same as specified by
sHello.

eCompressionMethod

Description List of compression methods supported by the client/ server

Enumeration literals NULL (0)

eCompressionMax

eECPointFormat

Description Specifies the different types of point formats

Enumeration literals eUncompressed

eAnsiX962_compressed_prime

eECPointFormatMax

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 98 Revision 1.35

www.infineon.com January 29, 2018

eExtensionType

Description Extension types are for extended functionality. Size is 2 bytes

Enumeration literals eElliptic_curves

Specifies the type of extension is an elliptic curve

eEc_point_formats

Specifies the type of extension is a point format

eSignature_algorithms

Specifies the type of extension is a signature algorithm

eExtensionTypeMax

eNamedCurve

Description List of all the ECC curves, size is 2 bytes

Enumeration literals eSect163k1

eSecp256r1

eArbitrary_explicit_prime_curves

eArbitrary_explicit_char2_curves

eNamedCurveMax

rgbCipherSuite

Description Cipher Suite is specified as 2 byte parameter. For eg:
TLS_ECDHE_ECDSA_WITH_AES_128_CCM = {0xC0,0xAC}. All the cipher

suites used in TLS can be found in [IANA].

Data type uint8_t

5.3.1.1.3 HelloVerifyRequest

The client expects this message from the server after it sends the ClientHello Message. If the
server's message is lost, the client knows that either the ClientHello or the HelloVerifyRequest is
lost and retransmits. When the server receives retransmission, it knows to retransmit. The server
also maintains retransmission timer and retransmits when timer expires.

5.3.1.1.4 ClientHelloWithCookie

The ClientHello message is sent twice. Once during beginning of session establishment, and
second after it receives the HelloVerifyRequest from the server. The second ClientHello includes the
cookie which is sent by server as part of HelloVerifyRequest.

5.3.1.1.5 Certificate

Server sends Certificate message when certificates are used for authentication. This is sent after
Server Hello Message.
Client sends the Certificate message when requested by server through Certificate Request message

5.3.1.1.6 Server Key Exchange

This message conveys cryptographic information to allow the client to communicate the pre-master
secret: a Diffie-Hellman public key used by the client to complete a key exchange. This message is
sent when using ephemeral key exchange algorithms like ECDHE_ECDSA, ECDHE_RSA and

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 99 Revision 1.35

www.infineon.com January 29, 2018

ECDHE_anon.

eECCurveType

Enumeration literals eExplicit_prime

eExplicit_char2

eNamed_curve

eECCurveTypeMax

5.3.1.1.7 Certificate Request

This is an optional message sent by server to request client certificate for authentication.

eClientCertificateType

Enumeration literals eEcdsa_sign

eRsa_fixed_ecdh

eEcdsa_fixed_ecdh

eClientCertificateTypeMax

eHashAlgorithm

Enumeration literals eNone

eMD5

eSHA1

eSHA224

eSHA256

eSHA384

eSHA512

eHashAlgorithmMax

eSignatureAlgorithm

Enumeration literals eANONYMOUS

eRSA

eDSA

eECDSA

eSignatureAlgorithmMax

5.3.1.1.8 Server Hello Done

The ServerHelloDone is sent by server to indicate end of Server Hello and associated messages.
After sending this message server will wait for client response.

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 100 Revision 1.35

www.infineon.com January 29, 2018

5.3.1.1.9 Client Key Exchange

This message is sent after ServerHelloDone. The message is used by client to communicate Diffie-
Hellman public value to the server

5.3.1.1.10 Certificate Verify

This message is used to provide explicit verification of a client certificate. It constitutes the digitally
signed handshake message. The Hash and Signature Algorithm used in the signature must be one
of those present in supported_signature_algorithms field of CertificateRequest Message.

5.3.1.1.11 Finished

This message is sent after receiving change cipher spec message. It is sent to verify that the key
exchange and authentication processes were successful.

5.3.1.1.11.1 (D)TLS ChangeCipherSpec message

The (D)TLS ChangeCipherSpec message is sent by the client to notify the receiving party that
subsequent records will be protected under the newly negotiated CipherSpec and keys.
On sending this message to Server the Client takes the following actions:

 Instruct the record layer to make the write pending state as write active state
On receipt of Server ChangeCipherSpec message the Client takes the following actions:

 Instruct record layer to immediately copy the read pending state into the read current state

eCipherSpec

Enumeration literals eCipherSpecMax

5.4 Limitations

5.4.1 Memory/ Environment Constraints

 Maximum size of handshake message payload is limited to 1536 bytes. A value larger than this
would lead to an "Internal Error" Alert. This implicitly limits the size of TLS-Identity certificates
used in handshake massages.

 Maximum PMTU set by the user can range from 296 to 1500. Any attempt to set the value
beyond these limits will lead to "Unsupported PMTU" error.

 The maximum UDP payload can range from (296-28) to (1500-28) bytes. This value is derived
considering the header of IP and UDP.

5.4.2 DTLS-Protocol
This section highlights the limitations and deviations from the [RFC6347]

 Record sequence number validation for HelloVerifyRequest and ServerHello against that of
ClientHello is not done, this applies even if HelloVerifyRequest is received in fragments.

 Multiple messages in a record are consumed only if they belong to the same flight. Each

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 101 Revision 1.35

www.infineon.com January 29, 2018

message is processed one after the other. Processing stops at an invalid message, Flight
completion or end of record.

 Multiple records in a datagram are processed sequentially.

 HelloRequest message when received, is fully ignored without considering its message
sequence number. Since the HelloRequest message is ignored, the design allows
HelloVerifyRequest to have message sequence number of either 0 or 1.

 Decode error and Handshake failure will lead to "illegal Parameter" alert message.

 Each message is sent in a separate record, even if the PMTU can accommodate more number
of messages.

 Certificate chains are not supported with the Client Certificate message.

 USB Type C certificate chains are not compliant with the DTLS implementation of the Client
Certificate message. Those would lead to an error condition at server side.

5.5 Certificate (Chain) Validation
This chapter specifies all the considerations done for implementation of certificate (chain)
validation as specified by [RFC5280].

5.5.1 Parameter Validation
Following are the Basic Parameter Checks performed on all the Certificates in a Chain.

 Leaf Certificate Should NOT be a CA certificate

 Public Key
i. Only uncompressed Format is supported
ii. Length check

 Key usage
i. Leaf Certificate -- DigitalSignature (if present)
ii. CA Certificate -- KeyCertSign (mandatory)

 Hash Algorithm - Is supported [SHA256]

 Signature Algorithm - Is supported [ECDSA]

 Certificate Validity
i. NotBefore < CurrentTime < NotAfter (if Current Time is supplied by Host)
ii. NotBefore < NotAfter (If Current Time is NOT Supplied by Host)
iii. Certificate well formed

 Basic Constraints
i. cA - Flag to indicate cA certificate (TRUE for cA)

Following are the Basic Parameter Checks performed on Trust Anchor certificates

 The following ARE are validated
i. Public Key Info
ii. Supported Curve types(NIST ECC P-256 and NIST ECC P-384)
iii. Length
iv. Compression type (Uncompressed)
v. Signing Algorithm (SHA-256, ECDSA)
vi. CA (Must)
vii. Key Usage - keyCertSign

 The following are NOT Validated
i. Validity
ii. Signature
iii. Subject DN and issuer DN (For Equality)
iv. Authority Key identifier and Subject Key identifiers (For Equality)
v. Processing of Certificate Revocation List and policy mapping check is not done

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 102 Revision 1.35

www.infineon.com January 29, 2018

[RFC5280] specifies a number of fields (specified as MUST/SHOULD etc), which will not be
validated for Correct Formation and Correctness of Data. Whichever field is verified for correctness
are explicitly mentioned above.

5.5.2 Path Validation
For certificate path validation the OPTIGA™ Trust X performs Signature Verification back to the pre-
installed Trust Entity (Trusted Root CA) on the OPTIGA™ Trust X and verification of Correct Key
Usage, Algorithms, and Certificate Type (End Entity, CA Certificates). However full certificate path
validation as defined in RFC5280 MUST be performed on the customer host system.
Note: If the Host System does not perform Certificate Path Validation it could for example
inadvertently permit the use of expired or revoked certificates, etc. or if someone had an email
signing certificate that chains up to the trusted root CA, it could probably be misused to set up a
TLS connection to the OPTIGA™ Trust X.

The following checks are executed or not executed by the OPTIGA™ Trust X:

 Signature Validation

 Path Validation Ends at the Trust Anchor

 Missing CAs between the last certificate in the chain and the Trust Anchor
i. Path Construction will NOT be DONE
ii. Will be considered as invalid/failure case

 Certificate repetition in a chain against the serial number is not validated

5.6 Security Guidance
The security guidance provides useful information how to use and configure the customer solution
in a reasonable manner.

5.6.1 Use Case: Host FW Update -toolbox-
The shared secret size shall be 64 byte to render a brute force useless.

FW Shared secret which is stored in one of data objects could be modified and read out by an
attacker. By reading the global shared secret, the attacker can create faulty image containing
malicious code which could be multicast installed to all nodes of the same type. By writing the
global shared secret, the attacker can create faulty image containing malicious code which could
be installed on the modified node.

 After setting the shared secret, the regarded data object access conditions RD and CHA
shall be configured with never allowed (NEV) and the lifecycle state of the data object (LcsO)
shall be set to operational (op) to prevent changes to the access conditions.

Platform integrity trust anchor which is stored in a data object can be modified by an attacker. By
doing that the attacker can create new metadata which will be accepted by the modified node. This
might be used to undermine the rollback prevention of the solution and could lead to installing
known security flaws.

 After installing the trust anchor, the regarded data object access conditions CHA shall be
configured with never allowed (NEV) and the lifecycle state of the data object (LcsO) shall be
set to operational (op) to prevent changes to the access conditions.

5.6.2 Use Case: Mutual Authentication (DTLS-Client)
DTLS server trust anchor which is stored in a data object can be modified by an attacker. Doing

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 103 Revision 1.35

www.infineon.com January 29, 2018

that the attacker can mimic the legitimate server and misuse the services provided or consumed by
the nodes.

 After installing the trust anchor, the regarded data object access conditions CHA shall be
configured with never allowed (NEV) and the lifecycle state of the data object (LcsO) shall be
set to operational (op) to prevent changes to the access conditions.

5.6.3 Key usage associated to toolbox functionality
Key usage which is stored in a key object metadata can be modified by an attacker. Doing that the
attacker can misuse the key in not intended schemes, which could enable crypto analysis or brute
force attacks.

 The regarded key object usage shall be configured with the least usage profile (in most cases
just one) as required by the target host application

 After setting the key usage, the lifecycle state of the key object (LcsO) shall be set to
operational (op) to prevent changes to the key usage.

5.6.4 Key pair generation associated to toolbox functionality
The generated key pair and the associated public key certificate are stored in key object and public
key certificate data object. The attacker attempts to re-generate the key pair. Doing that the
attacker is dropping the identity which was associated to that key pair and could be considered as
DoS attack.
Note: A similar result could be achieved in case only the certificate data object gets corrupted.

 After installing the identity, the regarded key object and public key certificate access
conditions CHA shall be configured with never allowed (NEV) and the lifecycle state of the
key and data object (LcsO) shall be set to operational (op) to prevent changes to the access
conditions.

5.6.5 Shared secret for key derivation associated to toolbox
functionality

A shared secret which gets fed in a key derivation function, either from the session context or from
a data object shall be at least of a size of 16 bytes.

5.6.6 Use Case: One-way Authentication
Authentication trust anchor on the host shall be protected against unintended or unpermitted
change. By changing the attacker can counterfeit the legitimate device and participate in an eco-
system without license.

5.7 Glossary
The Glossary provides a consistent set of definitions to help avoid misunderstandings. It is
particular important to Developers, who make use of the terms in the Glossary when designing
and implementing, and Analysts, who use the Glossary to capture project-specific terms, and to
ensure that all kind of specifications make correct and consistent use of those terms.

Term Description Abbreviation

computer data
storage

computer data storage, often called storage or
memory, is a technology consisting of computer
components and recording media used to retain

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 104 Revision 1.35

www.infineon.com January 29, 2018

Term Description Abbreviation

digital data. It is a core function and fundamental
component of computers.

Datagram Transport
Layer Security

Datagram Transport Layer Security (DTLS) protocol
provides communications privacy for datagram
protocols. The protocol allows client/server
applications to communicate in a way that is
designed to prevent eavesdropping, tampering or
message forgery. The DTLS protocol is based on
Transport Layer Security (TLS) protocol and
provides equivalent security guarantees.

DTLS

designed for re-use designed for re-use is synonym for designing /
developing reusable components.

embedded system An embedded system is a computer system with a
dedicated function within a larger mechanical or
electrical system, often with real-time computing
constraints

Generic
Authentication Device

The Generic Authentication Device provides a set of
functionalities required for authentication use cases.
The term "generic" means the user of the device
has a certain flexibility to adapt the device for his
particular purpose.

GAD

Microcontroller Microcontroller is a small computer on a single
integrated circuit containing a processor core,
memory, and programmable input/output
peripherals.

µC / MCU

Non-Volatile Memory Non-Volatile Memory, NVM or non-volatile storage is
a computer data storage that can get back stored
information even when not powered. Examples of
non-volatile memory include read-only memory
(ROM), electrical erasable programmable read-only
memory (EEPROM), flash memory (the most
popular for Secure Microcontroller), ferroelectric RAM
(F-RAM), most types of magnetic computer storage
devices (e.g. hard disks , floppy disks, and
magnetic tape, optical discs, and early computer
storage methods such as paper tape and punched
cards.

NVM

Random-Access
Memory

Random-Access Memory is a form of a computer data

storage. A Random-Access Memory device allows
data items to be read and written in roughly the
same amount of time regardless of the order in
which data items are accessed.

RAM

Restriction of
Hazardous
Substances

Directive on the restriction of the use of certain
hazardous substances in electrical and electronic
equipment 2002/95/EC

RoS

Secure
Microcontroller

Secure Microcontroller is a Microcontroller particular
designed for embedded security applications and is
hardened against a huge variety of attacks which
threaten the contained assets.

SecMC

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 105 Revision 1.35

www.infineon.com January 29, 2018

Term Description Abbreviation

stereotype A stereotype is in [UML] a modeling element that
extends the semantics of the metamodel.
Stereotypes must be based on certain existing
types or classes in the metamodel. Stereotypes
may extend the semantics, but not the structure of
pre-existing types and classes.

system A system is a set of interacting or interdependent
components forming an integrated whole. Every
system is circumscribed by its spatial and temporal
boundaries, surrounded and influenced by its
environment, described by its structure and purpose
and expressed in its functioning.

Transport Layer
Security

Transport Layer Security (TLS) protocol provides
communications privacy for IP based (e.g. TCP/IP)
protocols. The protocol allows client/server
applications to communicate in a way that is
designed to prevent eavesdropping, tampering or
message forgery.

TLS

Table 43 - Terms of OPTIGA™ Trust X Solution Reference Manual

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 106 Revision 1.35

www.infineon.com January 29, 2018

5.8 Change History

Version Date Description

1.00 01-Dec-2016 First document release

1.10 14-Feb-2017 Error code "0x0D; Insufficient communication buffer size" added.

 API refinements; CmdLib_OpenApplication, IntLib_Authenticate,
OCP_Init, OCP_Connect, OCP_Send, OCP_Receive,
OCP_Disconnect

 API operation added; CmdLib_CalcHash

 Table DTLS Handshake client sequence refined (sHeaderDTLS
added where appropriate).

 Minor refinements

1.15 22-Feb-2017 Review feedback to version 1.10 incorporated

1.20 27-Feb-2017 Memory/ Environment Constraints refined with hint to max. size of
TLS-Identity certificate.

 Some minor refinements.

1.25 01-Mar-2017 Minor refinements: references, typo, grammar, etc.

1.26 18-Apr-2017 Tables Common key objects with TAG’s and AC‘s, Common data

objects with TAG’s and AC‘s, Authentication application-specific data

objects with TAG’s and AC‘s, adapted to toolbox requirements.

 Table DTLS Session Key removed.

 Commands CalcSign, VerifySign, GenKeyPair, DeriveKey added.

 Command CalcHash refined.

1.27 23-Apr-2017 Table Common data objects with TAG’s and AC‘s, Common key
objects with TAG’s and AC‘s, Metadata associated with data and key

objects, Algorithm Identifier refined.

 Table Key Usage Identifier added.

1.28 02-May-2017 Commands CalcHash, GenKeyPair, CalcSign refined.

1.29 03-Jun-2017 Security Policy rephrased

 Table Error Codes.Unsupported extension/ identifier, Common key

objects with TAG’s and AC‘s refined.

 Commands GetRandom, CalcSign, VerifySign, GenKeyPair,
CalcSSec, DeriveKey refined.

1.30 28-Jun-2017 Minor changes (typo, etc.)

 Table Key Usage Identifier updated.

 Chapter Enabler APIs updated.

1.31 31-Jul-2017 Chapter Toolbox based Sequence Diagrams added.

 Command DeriveKey updated.

1.32 02-Aug-2017 Sequence diagram Use Case: Host FW Update -toolbox- updated.

 Command DeriveKey updated.

 Chapter Security Guidance added

1.33 02-Jan-2018 Chapter Enabler APIs reworked with changed architecture.

 Block definition diagrams OPTIGA Trust X IP Protection View [bdd],
OPTIGA Trust X Brand Protection View [bdd], OPTIGA Trust X

Communication Protection View [bdd], OPTIGA Trust X

Communication Protection View -toolbox- [bdd] reworked, with
regards to changed architecture.

 Table Host Code Size updated.

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 107 Revision 1.35

www.infineon.com January 29, 2018

 VerifySign footnotes revised.

1.34 08-Jan-2018 Diagram OPTIGA Trust X Communication Protection View [bdd],
OPTIGA Trust X Communication Protection View -toolbox- [bdd]
refined.

 Some language refined (optiga_comms_reset,
CmdLib_SetAuthScheme, OpenApplication).

1.35 29-Jan-2018 Review feedback from application engineering incorporated.

OPTIGA™ Trust X1
Solution Reference Manual

Appendix

Manual 108 Revision 1.35

www.infineon.com January 29, 2018

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2018 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics
(“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any
typical values stated herein and/or any
information regarding the application of the
product, Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind,
including without limitation warranties of non-
infringement of intellectual property rights of any
third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies
in customer’s applications.

The data contained in this document is
exclusively intended for technically trained staff.
It is the responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition January 29, 2018

ifx1

Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™,
CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™,
ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™,
PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID
FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

ifx1owners.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	Table of Contents
	Figures
	Tables
	1 Definitions
	1.1 Abbreviations
	1.2 Naming Conventions
	1.3 References

	2 Supported Use Cases
	2.1 Architecture Decomposition
	2.1.1 OPTIGA Trust X IP Protection View [bdd]
	2.1.2 OPTIGA Trust X Brand Protection View [bdd]
	2.1.3 OPTIGA Trust X Communication Protection View [bdd]
	2.1.4 OPTIGA Trust X Communication Protection View -toolbox- [bdd]
	2.1.4.1 Host Code Size

	2.2 Sequence Diagrams
	2.2.1 Use Case: One-way Authentication - IP Protection [osd]
	2.2.2 Use Case: One-way Authentication - Brand Protection [osd]
	2.2.3 Use Case: Mutual Authentication (DTLS-Client-Overview) [osd]
	2.2.4 Use Case: Mutual Authentication (DTLS-Client-Detailed) [osd]
	2.2.5 Use Case: Protect communication data with OPTIGA™ Trust X [osd]
	2.2.6 Use Case: Write General Purpose Data - data object [osd]
	2.2.7 Use Case: Write General Purpose Data - metadata [osd]
	2.2.8 Use Case: Read General Purpose Data - data object [osd]

	2.3 Toolbox based Sequence Diagrams
	2.3.1 Use Case: Mutual Auth establish session -toolbox- (TLS-Client) [osd]
	2.3.2 Use Case: Abbreviated Handshake -toolbox- (TLS-Client) [osd]
	2.3.3 Use Case: Host FW Update -toolbox-

	2.4 Referenced Sequence Diagrams
	2.4.1 Encrypt Payload w/o chaining (DTLS) [osd]
	2.4.2 Decrypt Payload w/o chaining (DTLS) [osd]

	3 Enabler APIs
	3.1 CommandLib
	3.1.1 CmdLib_CloseSession
	3.1.2 CmdLib_Decrypt
	3.1.3 CmdLib_Encrypt
	3.1.4 CmdLib_GetMaxCommsBufferSize
	3.1.5 CmdLib_GetMessage
	3.1.6 CmdLib_PutMessage
	3.1.7 CmdLib_CalcHash
	3.1.8 CmdLib_OpenApplication
	3.1.9 CmdLib_GetDataObject
	3.1.10 CmdLib_SetDataObject
	3.1.11 CmdLib_SetOptigaCommsContext
	3.1.12 CmdLib_GetRandom
	3.1.13 CmdLib_GetSignature
	3.1.14 CmdLib_SetAuthScheme
	3.1.15 CmdLib_VerifySign
	3.1.16 CmdLib_GenerateKeyPair
	3.1.17 CmdLib_CalculateSign
	3.1.18 CmdLib_CalculateSharedSecret
	3.1.19 CmdLib_DeriveKey

	3.2 CryptoLib
	3.2.1 CryptoLib_GenerateSeed
	3.2.2 CryptoLib_GetRandom
	3.2.3 CryptoLib_ParseCertificate
	3.2.4 CryptoLib_VerifySignature

	3.3 IntegrationLib
	3.3.1 IntLib_ReadGpData
	3.3.2 IntLib_WriteGpData
	3.3.3 IntLib_Authenticate

	3.4 OCP
	3.4.1 OCP_Connect
	3.4.2 OCP_Send
	3.4.3 OCP_Receive
	3.4.4 OCP_Init
	3.4.5 OCP_Disconnect

	3.5 optiga_comms_ifx_i2c
	3.5.1 optiga_comms_close
	3.5.2 optiga_comms_open
	3.5.3 optiga_comms_reset
	3.5.4 optiga_comms_transceive

	4 OPTIGA™ Trust X External Interface
	4.1 Warm Reset
	4.2 Power Consumption
	4.2.1 Low Power Sleep Mode

	4.3 Protocol Stack
	4.4 Commands
	4.4.1 Command basic definitions
	4.4.2 Error Codes
	4.4.3 Command/Response Definitions
	4.4.3.1 OpenApplication
	4.4.3.2 GetDataObject
	4.4.3.3 SetDataObject
	4.4.3.4 GetRandom
	4.4.3.5 SetAuthScheme
	4.4.3.6 GetAuthMsg
	4.4.3.7 SetAuthMsg
	4.4.3.8 ProcUpLinkMsg
	4.4.3.9 ProcDownLinkMsg
	4.4.3.10 CalcHash
	4.4.3.11 CalcSign
	4.4.3.12 VerifySign
	4.4.3.13 GenKeyPair
	4.4.3.14 CalcSSec
	4.4.3.15 DeriveKey

	4.4.4 Authentication Scheme Definitions
	4.4.5 Authentication Message Definitions
	4.4.6 Crypto Performance

	4.5 Security Monitor
	4.5.1 Security Events
	4.5.2 Security Policy
	4.5.3 Characteristics

	4.6 Data Structures
	4.6.1 Access Conditions
	4.6.2 Application-specific data structures
	4.6.3 Common data structures
	4.6.4 TLV-Coding and Access Conditions (AC)

	5 Appendix
	5.1 Command Coding Examples
	5.2 (D)TLS Protocol Details
	5.2.1 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

	5.3 (D)TLS Messages
	5.3.1 (D)TLS Record Protocol message
	5.3.1.1 (D)TLS Handshake messages
	5.3.1.1.1 Hello Request
	5.3.1.1.2 Hello
	5.3.1.1.3 HelloVerifyRequest
	5.3.1.1.4 ClientHelloWithCookie
	5.3.1.1.5 Certificate
	5.3.1.1.6 Server Key Exchange
	5.3.1.1.7 Certificate Request
	5.3.1.1.8 Server Hello Done
	5.3.1.1.9 Client Key Exchange
	5.3.1.1.10 Certificate Verify
	5.3.1.1.11 Finished
	5.3.1.1.11.1 (D)TLS ChangeCipherSpec message

	5.4 Limitations
	5.4.1 Memory/ Environment Constraints
	5.4.2 DTLS-Protocol

	5.5 Certificate (Chain) Validation
	5.5.1 Parameter Validation
	5.5.2 Path Validation

	5.6 Security Guidance
	5.6.1 Use Case: Host FW Update -toolbox-
	5.6.2 Use Case: Mutual Authentication (DTLS-Client)
	5.6.3 Key usage associated to toolbox functionality
	5.6.4 Key pair generation associated to toolbox functionality
	5.6.5 Shared secret for key derivation associated to toolbox functionality
	5.6.6 Use Case: One-way Authentication

	5.7 Glossary
	5.8 Change History

