€ oculus

Oculus Platform
Developer Guide

Version 1.0.0.0

Copyrights and Trademarks

© 2016 Oculus VR, LLC. All Rights Reserved.

OCULUS VR, OCULUS, and RIFT are trademarks of Oculus VR, LLC. (C) Oculus VR, LLC. All rights reserved.
BLUETOQOTH is a registered trademark of Bluetooth SIG, Inc. All other trademarks are the property of their
respective owners. Certain materials included in this publication are reprinted with the permission of the
copyright holder.

Contents

Introduction

Create an Organization

Create an App

Getting ApplDs

Giving Entitlement to an App

Viewing App Information

Updating Your App for Platform Features
Adding Oculus Platform Support to Your Project
REST Requests
Integrating with the Oculus Platform

Native C++
Unity

Ownership

Presence and Friends
Rooms

In-App Purchases (Gear VR)
Achievements
Leaderboards
Matchmaking

P2P

Build Channels

Viewing Build Channels
Uploading a Binary
Migrating a Build
Adding Users

o N o g b

10
12
13
13
14

16
17
18
20
23
25
27
30

32
32
33
34
34

Introduction

Welcome to the Oculus Platform Developer Guide.

The Oculus Platform is designed to provide you with the infrastructure you need, so you can focus on creating a
great game or experience. The Oculus Platform currently provides the following features:

Friend Management—to enable social functionality and increase engagement, this enables players to add
friends and find friends that are currently online.

Rooms—your app can create rooms where players gather or you can enable players to create them.

Achievements—you can create trophies, badges, awards, medals, or challenges in your app and Oculus will
manage it.

Leaderboards—if your app or experience is competitive, you can create leaderboards to track the top
players.

Matchmaking—if players can't find a match, you can help them find available games. The platform supports
both standard and skill-based pools.

In-App Purchases—enables you to monetize your games and experiences.
Peer-to-Peer Networking—enables players to communicate directly.

The Oculus Platform APl is a non-blocking asynchronous API that enables you to be in control of the
performance profile of your application. Your application makes API calls that are routed through the Oculus
App. These calls return JSON objects that are passed back to your application. This allows you to process
responses when convenient and enables Oculus to make updates and improvements with a minimal number of
client side APl changes.

The Platform services run on a globally distributed network of servers to ensure calls have a similar performance
profile regardless of geographical location. Since API calls are essentially web calls, some of them are also
available to you as secure server-to-server calls, which you can make from your backend.

Create an Organization

Before you can do anything with the Oculus Platform, you need to create or join an organization.

To create an organization, go to and follow the on-screen

prompts.

To add yourself to an organization, ask the organization owner to go to
and click the Members tab. Then, he or she simply has to click Add User and enter your

username.

https://developer2.oculus.com/organization/create
https://developer2.oculus.com/organization/create
https://developer2.oculus.com/organization/create

Create an App

After you create or join an organization, you can create one or more apps.

To create an app, click your username in the upper right corner and select My Apps. Then, click Create New
App and follow the on-screen prompts.

After the app is created, the Platform Ul displays the Builds tab. To add a build, click Update Build. To provide
app metadata to the platform, click Update App Info.

Getting ApplIDs

AppIDs are used to identify your app when making programmatic requests to the Oculus Platform.
To get the ApplD for one of your apps:

Go to .

Click My Apps. Your applications are displayed.

Hover over an app and click Overview. The information page appears.
Click the Platform tab.

Select from the following:

AR

a. App ID—the ID used to initialize the SDK and make REST requests.

https://developer.oculus.com/

Giving Entitlement to an App

Creating apps is usually a collaborative process. To enable developers and coworkers to access your app
without having to pay for it and to enable access before public release, you can grant entitlements.

To give a developer an entitlement to an app:

Go to .

Click My Apps. Your applications are displayed.

Hover over an app and click Overview. The information page appears.
Click the Platform tab.

Click Developers.

S e o

Select the developers who should be granted entitlements and click Save.

https://developer.oculus.com/

Viewing App Information

The App Information page contains information that is displayed to users when they are deciding whether to
download or purchase your app. This information includes information about your company, the App's genre, a
description of the App, and so on.

To view information about one of your Apps:

Go to .

Click My Apps. Your applications are displayed.

To view information about an App, hover over it and click Overview. The information page appears.
Review the information.

To view the image assets associated with the app, click Image Assets.

To view information about the build, click Build Info.

S e o

https://developer.oculus.com/

10 | Updating Your App for Platform Features | Oculus Platform

Updating Your App for Platform Features

This section describes how to prepare your app or experience for the Oculus Platform features.

Adding Oculus Platform Support to Your Project

To add Oculus Platform support to your Visual C++ project:

1. Open the Properties page.
2. Select VC++ Directories.
3. Add the location of the SDK includes folder (InstallFoldeninclude) to Include Directories.

Figure 1: Project Property Pages

Configuration: .Act'n.re{Debug) vi Platform: | Active(Win32) Vl | Configuration Manager...

i Commen Properties 4 General
4 Configuration Properties Executable Directories S(VC_ExecutablePath_x86);5(WindowsSDK_ExecutablePath);$
General Include Directories S(VC_IncludePath): S(WindowsSDE_IncludePath):
Debugging Reference Directories S(VC_ReferencesPath_x86);
Library Directories S(VC_LibraryPath_x86);S (WindowsSDK_LibraryPath_x86);
C/Cs+ Library WinRT Directories §(WindowsSDK_MetadataPath):
Linker Source Directories S(VC_SourcePath);

b

b

b Manifest Tool Exclude Directories S(VC_IncludePath):S(WindowsSDK_IncludePath); $(MSBuild_
I XML Document Generator
b
3
b
b

Browse Information
Build Events
Custom Build Step
Code Analysis

Executable Directories

Path to use when searching for executable files while building a VC++ project. Corresponds to
environment variable PATH.

Apply

Oculus Platform | Updating Your App for Platform Features | 11

4. Add the location of the lib file (InstallFolder\Windows) to Library Directories.

Figure 2: Project Property Pages

Configuration: | Active(Debug)

Active(Win32) v| | Configuration Manager... |

i Commeon Properties

4 Configuration Properties
General

Debugging

VC++ Directories
C/C++

Linker

Manifest Tool

XML Document Generator
Browse Information
Build Events

Custom Build Step
Code Analysis

2
|3
b
I
3
3
|3
b

Executable Directories
Include Directories
Reference Directories
Library Directories
Library WinRT Directories
Source Directories

Exclude Directories

S(VC_Execu‘tabIePath_xSﬁ}:S(WindowsSDK_ExecutabIePatE
S(VC_IncludePath): $(WindowsSDK_IncludePath);
S(VC_ReferencesPath_x86);
S(VC_LibraryPath_x86);S(WindowsSDK_LibraryPath_x86);
S(WindowsSDK_MetadataPath):

S(VC_SourcePath);

S(VC_IncludePath): $(Windows5DK_IncludePath); S(MSBuild_

Executable Directories

Path to use when searching for executable files while building a VC++ project. Corresponds to
environment variable PATH.

5. Expand Linker and select Input.

Ok || Cancel Apply

12 | Updating Your App for Platform Features | Oculus Platform

6. Add the loader library (LibOVRPlatform32_1.lib or LibOVRPlatformé4_1.lib) to Additional Dependencies.

Figure 3: Project Property Pages

Configuration: | Active(Debug) v Platform: |Active(Win32) V| | Configuration Manager...

> Common Properties Additional Dependencies LibOVRPlatform.lib;%(AdditionalDependencies)
4 Configuration Properties Ignore All Default Libraries

General Ignore Specific Default Libraries

Debugging Module Definition File

VC++ Directories Add Module to Assembly

b C/Ces Embed Managed Resource File
4 Linker

Force Symbol References
E—— Delay Loaded Dils

Manifest File
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line Additional Dependencies

I Manifest Tool Specifies additional items to add to the link command line [i.e. kernel32.lib]

oK | Cancel | Apply

7. Using the DLL loader instead of direct linking enables DLL signature verification and graceful detection of
the Oculus Runtime. To use the loader, drop the cpp file (InstallFolder/Windows/OVR_PlatformLoader.cpp)
into your project.

To bypass the Loader, add this define before including OVR_Platform.

#define OVRPL DISABLED
#include <OVR Platform.h>

REST Requests

Depending on the type of operation, you might use the Platform Ul or API.

Although many requests are made in the Ul, eventually you will be able to make most of them
programmatically. This section describes how to make REST requests.

Before you can make a request, make sure you have the credentials for your App. For more information, see
Getting ApplDs on page 7.

Many types of requests to the APl use the following format:

[GET/POST/DELETE] https://graph.oculus.com/app id/api
?access_token=token|app id|app secret

&option l=<option-1>

&option 2=<option-2>

where:

app_id—ID of the app.

* api—name of the API (e.g., "leaderboards").

* token—Request token.

* app_secret—the secret key for the app.

* option_1, option_2, ...—options specific to the API.

The following is an example request that creates a leaderboard:

[POST]https://graph.oculus.com/3294569807254367/leaderboards?access_token:OC|3294569807254367|
971b£33c22d4e56438900334be288e43&api_name=game-leaders&sort order=HIGHER IS BETTER>

g Note: All requests are encrypted; only the endpoint (graph.oculus.com) is passed in the clear.

Integrating with the Oculus Platform

To ensure that your game is ready for the Oculus Store, you will need to add code that ensures each user has
an entitlement for your app.

Depending on your development environment, there are different ways to verify entitlements. This section
describes how to check entitlements for native C++ and Unity applications.

Native C++

This section describes how to set up your app for native C++ development.

Initializing in Production

Applications that run in a production environment and are launched from the Oculus App use a call, similar to
the following, that passes in your ApplID:

// Initialization call
if (ovr PlatformInitializeWindows (appID) != ovrPlatformInitialize Success)
{
// Exit. Initialization failed which means either the oculus service isn’t on the machine or
they’ve hacked their DLL
}
ovr Entitlement GetIsViewerEntitled();

Use code similar to the following to poll for a response:

// Poll for a response

while ((message = ovr PopMessage()) != nullptr) {
switch (ovr Message GetType (message)) {
case ovrMessage Entitlement GetIsViewerEntitled:

if (!ovr Message IsError (message))
{

// User is entitled. Continue with normal game behaviour
}

else

{
// User is NOT entitled. Exit

break;
default:
break;

}

Checking Entitlement in Production

Make the following call, which will return a bool that indicates whether the user is entitled:
ovr Entitlement GetIsViewerEntitled();

which will result in a message returned with the results.

Note: If you are using the legacy test token for standalone development, all entitlement checks will
pass.

Modifying Your Game Loop
To modify your game loop:

1. Look for messages being sent from the platform by modifying your game loop to call ovr PopMessage ()
in a loop until it returns null. These can be returned from a call or a notification sent from the platform.

2. When a message is received, call ovr Message GetType () to extract the message type.
3. Use ovr Message IsError () to verify if the message contains a failure or a success response.

Messages include different data, based on the type. There are several helper functions in OVR_Platform.h
that parse the data into a convenient struct, which use the ovr Message * naming convention.

4. After processing a message, call ovr FreeMessage () to clean up and prevent memory leaks.

Unity
This section describes how to set up your app for Unity development.

Initializing in Production

To initialize in Unity, use the Initialize method of the Platform object:

Oculus.Platform.Core.Initialize (appID)

Checking Entitlement in Production

To check for an entitlement:

Platform.Entitlement.IsUserEntitledToApplication().OnComplete (callbackMethod) ;

which will call your callback method when returning the results.

To process the results, use code similar to the following:

void callbackMethod (Message msq)
{
if (!msg.IsError)
{
// Entitlement check passed
}

Oculus Platform | Updating Your App for Platform Features | 15

else

{
// Entitlement check failed

}

Note: If you are using the legacy test token for standalone development, all entitlement checks will
pass.

Initializing in the Unity Editor

For Unity, you set your test token in the Unity editor. After importing the Oculus Platform wrapper, the Oculus
Platform menu item is added to the editor. Select Platform Settings and paste in your Token:

Figure 4: Unity Platform Token
qQ OculusPlatform

Script None (Mono Script)
Standalone Access Token PUT_YOUR_ACCESS_TOKEN_HERE

Then, initialize normally:
Oculus.Platform.Core.Initialize (appID)
= Note: Make sure to give an entitlement to the user. For more information, see Giving Entitlement to

an App on page 8. Make sure you are logged into the Oculus App while developing in a standalone
environment.

Modifying the Game Loop

Add the following call to your Update() method to make sure your callbacks are processed:

Request.RunCallbacks () ;

Ownership

The Oculus Platform uses entitlements to ensure users have an entitlement to your software before they can run
it.

To ensure that the user running your application is a legitimate customer, we provide a couple basic ways for
you to verify the user currently owns the game. On the client side, we have a synchronous and an asynchronous
call. These calls work even if the user isn't connected to the internet by using the last known cached value. We
also provide a way to make a server-server call using a client-provided nonce that can’t be tampered with by
the client.

Is Entitled

The following function checks if the user is entitled to use the application:

ovr Entitlement GetIsViewerEntitled()

This function returns a boolean that specifies whether the user is entitled.

Get Cryptographic Nonce

This method is a single use; once verified with the server, it is no longer valid. The following function requests a
cryptographic nonce that identifies the current user:

ovr UserProof Generate ()

It returns the ovrMessage UserProof Generate message type. Use ovr Message GetUserProof () to
parse the message into an ovrUserProof pointer.

Your server can validate a Nonce using a secure server-server call using an HTTP POST to the following end
point:

[POST] https://graph.oculus.com/user nonce validate
?access_token=<user-access-token>

&nonce=<nonce>

&user id=<user-id>

The request returns verification. For example:
{"is_valid":true}

Q Note: Your current App Secret can be found on the developer portal under Platform > API. A user-
generated nonce is single-use only. To test requests, Oculus recommends the Postman Chrome plugin.

Presence and Friends

In a connected world, it is important to be able to find your friends.

The Oculus platform enables users to add friends by entering their usernames or selecting them from a
"recently played" list. Once added, games can access those connections and identities.

Get Logged In User
The following function returns information for the currently logged in user:
ovr User GetLoggedInUser ()

It returns the ovrMessage UserGetLoggedInUser. Use ovr Message GetUser to parse the message into
an ovrUser pointer.

Get Currently Logged In Friends
The following function returns all friends who are currently logged in:
ovr User GetLoggedInUserFriends ()

It returns the ovrMessage UserGetFriends message type. Use ovr Message GetUserArray () to parse
the message into an ovrUserArray pointer.

Get Information About a User
To display additional information about a user:
ovr User Get ()

It returns the ovrMessage UserGet message type. Use ovr Message GetUser () to parse the message
into an ovrUser pointer.

Get All Friends
The following function returns all friends of the currently logged in user:

ovr_User GetFriends ()

It returns the ovrMessage UserGetFriends message type. Use ovr Message GetUserArray () to parse
the message into an ovrUserArray pointer.

Rooms

Rooms are virtual places where users can meet to chat or initiate games and experiences.

There are three types of rooms: public rooms, private rooms that only friends can join, and private rooms that
are invitation only. Rooms can be moderated and initiated by your app or you can allow users to create rooms
that they control.

Get Information About a Room
The following requests information for the provided room ID:

ovr Room_ Get ()

It returns the ovrMessage RoomGet. Use ovr Message GetRoom () to parse message into an ovrRoom
pointer.

Join an Existing Room
To have the logged in user join an existing room:
ovr_Room_ Join ()

It returns the ovrMessage RoomJoin message type. Use ovr Message GetRoom() to parse the message
into an ovrRoom pointer.

Get Information About the Current Room
To get information about the current room:

ovr_ Room GetCurrent ()

It returns the ovrMessage RoomGetCurrent message type. Use ovr Message GetRoom () to parse the
message into an ovrUser pointer.

Leave a Room
To have the logged in user leave the room:

ovr Room Leave ()

It returns the ovrMessage RoomLeave message type. Use ovr Message GetRoom () to parse the message
into an ovrRoom pointer.

Create a Room

You can create a public or private room and set a maximum room size. To create a room or enable a user to
create and join a room:

ovr_Room CreateAndJoinPrivate ()

It returns the ovrMessage RoomCreateAndJoinPrivate message type. Use ovr Message GetRoom() to
parse the message into an ovrRoom pointer.

Find Users to Invite

To get a list of users that are entitled to the app and can currently log in:
ovr Room GetInvitableUsers ()

It returns the ovrMessage UserGetInvitableUsers message type. Use ovr Message GetUserArray ()
to parse the message into an ovrUserArray pointer.

Invite a User to a Room
Using the list of invitable users, your app or user can invite one or more users to the room:
ovr_Room InviteUser ()

It returns the ovrMessage RoomInviteUser message type. Use ovr Message GetRoom () to parse the
message into an ovrRoom pointer.

Kick a User out of a Room
To kick a user out of a room:
ovr Room KickUser ()

It returns the ovrMessage RoomKickUser message type. Use ovr Message GetRoom() to parse the
message into an ovrRoom pointer.

Update Room Metadata
You can add up to 2k of key/value pairs to a room. To add metadata:

ovr_ Room UpdateDataStore ()

It returns the ovrMessage RoomUpdateDataStore message type. Use ovr Message GetRoom () to parse
the message into an ovrRoom pointer.

View Room Updates

The following is a platform notification that isn't triggered by a call:
ovrMessage RoomUpdateNotification

Use ovr Message GetRoom () to parse the message into an ovrRoom pointer.

In-App Purchases (Gear VR)

To create in-app purchases, you create multiple items in a tab-delimited spreadsheet and make them available
to your users.

Defining Purchases

The current format of the in-app purchases file is:

SKU Name Description Currency Amount Item Type
EXAMPLE]l Example 1 Example IAP item 1 USD 1.99 Consumable
EXAMPLE2 Example 2 Example IAP item 2 USD 1.99 Durable

To get the latest sample template:

Go to .

Click My Apps. Your applications are displayed.

Hover over the and click Overview. The information page appears.
Click the Platform tab.

Click I1AP.

Click Download Template.

S e i

To upload IAPs:

Go to :

Click My Apps. Your applications are displayed.

Hover over the and click Overview. The information page appears.
Click the Platform tab.

Click IAP.

Click Upload TSV and follow the on-screen prompts.

S e o

Initiating a Purchase

The following function initiates the Oculus checkout flow for the specified SKU:

ovr IAP LaunchCheckoutFlow ()

It returns the ovrMessage IAPStartCheckout.Use ovr Message GetPurchase () to parse the message
into an ovrPurchase pointer.

Get Products by SKU

The following function returns an array of products that match the SKU:

ovr IAP GetViewerPurchases ()

It returns the ovrMessage IAPGetPurchases message type. Use the
ovr Message GetPurchaseArray () to parse the message into an ovrPurchaseArray pointer.

https://developer.oculus.com/
https://developer.oculus.com/

View Purchases

The following function returns purchases for the user:
ovr IAP GetViewerPurchases ()

It returns the ovrMessage IAPGetProducts message type. Use the GetProductArray () to parse the
message into an ovrProductArray pointer.
Consume Purchase

The following function consumes the specified SKU:
ovr_ IAP ConsumePurchase ()

It returns the ovrMessage IAPConsumePurchase message type. Use the ovr Message GetBoolean () to
see if the item was consumed.

REST Requests

The App access token is a string composed of OC | SAPPID | SAPPSECRET, where $APPID and $APPSECRET are
per-application values that can be found on the Platform tab of the developer console.

The user access token is returned by the ovr_AccessToken_Get() SDK call.

To verify ownership of an IAP item:

[POST] https://graph.oculus.com/$SAPPID/verify entitlement
?sku=<sku-to-check>
&access token=<user-access-token>

The request returns verification. For example:
{"success":true}

To consume an IAP item:

[POST] https://graph.oculus.com/SAPPID/consume entitlement
?sku=<sku-to-consume>
&access token=<user-access-token>

The request returns verification. For example:
{"success":true}

To verify consumption, repeat the previous operation. It should return false.

To view all items owned by a user:

[GET] https://graph.oculus.com/$APPID/viewer purchases
?sku=<sku-to-check>

&access token=<user-access-token>

&fields==id, item{sku}

22 | In-App Purchases (Gear VR) | Oculus Platform

The request returns an array of items, based on the fields you specified. For example:

{"data": [{"1d":"963119010431337","item": {"sku" :"EXAMPLE1"}}]}

Achievements

You can create trophies, badges, awards, medals, or challenges in your apps and Oculus will manage it.

There are currently three types of achievements: simple, count, and bitfield. Although Oculus will track and
manage these achievements, your app is responsible for rendering and displaying achievements to your users.

Create Achievements
To create an achievement:

Go to

Click the Platform tab.
Click Achievements.

SARIE I I

The Achievements page appears.

Figure 5: Achievements

Build Info Platform Statistics

AP Achievements
API Name Type
Test3 COUNT

Achievements

lopers Testl SIMPLE

foo BITFIELD

6. Click Create Achievement.
7. Select from the following:

Click My Apps. Your applications are displayed.

Target

50

0

5

Hover over an app and click Overview. The information page appears.

Bitfield Length

* Simple—select Simple and enter the name that will be used by the API.

e Count—select Count and enter the name and count that will trigger the achievement.
e Bitfield—select Bitfield and enter the name, bitfield length, and the number of that must be met to be

awarded the achievement.
8. Click Submit.

Get Achievement Definition

To check the definition of an achievement:

ovr AchievementDefinition GetByName ()

It returns the GetAchievementDefinitionArray message type. Use
ovrMessage AchievementDefinitionGetByName () to parse the message into an array of

ovrAchievementDefinition pointers.

https://developer.oculus.com/

Get Achievement Progress
To check the progress of an achievement:
ovr AchievementProgress GetByName ()
It returns the ovrMessage AchievementProgressGetByName message type. Use

ovr Message GetAchievementProgressArray () to parse the message into an array of
ovrAchievementProgress pointers.

Unlock an Achievement
To unlock an achievement:
ovr_ AchievementProgress Unlock()

It returns the ovrMessage AchievementProgressUnlock message type. Use ovr Message IsError ()
to verify success.

Increment a Count
To increment a count achievement:

ovr_AchievementProgress_ AddCount ()

It returns the ovrMessage AchievementProgressAddCount message type. Use
ovr Message IsError () to verify success.

Add to a Bitfield
To add to a bitfield achievement:

ovr_AchievementProgress_AddFields ()

It returns the ovrMessage AchievementProgressAddFields message type. Use
ovr Message IsError () to verify success.

Leaderboards

You can create leaderboards, update them, and view their results.

Although Oculus will manage your leaderboards, your app is responsible for rendering and displaying the
results to your users.

Creating Leaderboards

Currently, leaderboards can only be created programmatically. To create a leaderboard you can make an HTTP
POST request to the following web endpoint:

https://graph.oculus.com/<appid>/leaderboards?access_token=0C|<appid>|
<app_secret>&api name=<leaderboard name>&sort order=<HIGHER IS BETTER| |LOWER IS BETTER >

To obtain your credentials, see on page 7.

Writing to a Leaderboard

To write to a leaderboard:
ovr Leaderboard WriteEntry ()

It returns the ovrMessage LeaderboardWriteEntry message type. Use
ovr Message GetLeaderboardUpdateStatus () to parse the message into a
ovrLeaderboardUpdateStatus pointer.

g Note:
Extradata is 2KB of space that can be used for game specific information.

This will only update if the current score is better than the previous score, unless forceUpdate is true.

Get Leaderboard Entries

To retrieve leaderboard entries for a leaderboard:

ovr Leaderboard GetEntries ()

It returns the ovrMessage LeaderboardGetEntries message type. Use
ovr Message GetLeaderboardEntryArray () to parse the message into an ovrLeaderboardEntryArray
pointer.

Use ovr Leaderboard GetNextEntries () and ovr Leaderboard GetPreviousEntries () to
paginate through results

REST Requests

The App access token is a string composed of OC | SAPPID | $APPSECRET, where $APPID and $APPSECRET are
per-application values that can be found on the Platform tab of the developer console.

The user access token is returned by the ovr_AccessToken_Get() SDK call. To get the user ID:

[GET] https://graph.oculus.com/me
?access_ token=<access-token>

26 | Leaderboards | Oculus Platform

The request returns the ID of the user. For example:

{"id":"1095130347203668"}

To create a new leaderboard programmatically:

[POST] https://graph.oculus.com/$APPID/leaderboards
?access_ token=<access-token>

&api name=<leaderboard-name>
&sort order={HIGHER IS BETTER | LOWER IS BETTER}

The request returns the ID of the leaderboard. For example:
{"id":"1074233745960170"}

To get the ID of a leaderboard, using the leaderboard name:

[GET] https://graph.oculus.com/$SAPPID/leaderboards
?access_token=<access-token>

&api name=<leaderboard-name>

The request returns the ID of the leaderboard. For example:
"id":"1074233745960170")

To delete a leaderboard:

[DELETE] https://graph.oculus.com/<leaderboard-id>

The request returns the status. For example:

{"success":true}

n Note: Once deleted, a leaderboard cannot be recovered.

Matchmaking

For multiplayer games, you can create matchmaking pools that help users find each other and start a game.
There are two types of pools: standard pools and skill pools.
When you create a new pool you will have the following options to set:

® Pool key—unique text string that identifies the matchmaking pool in your app.
e Mode—current available modes are:

* Bout—head-to-head pool where all clients queue alone.
* Room—pool where clients can queue alone or a client can create a room to queue.

e Skill pool—the rating used to creating matches. This can be set to none for matchmaking that doesn't use
skill as a matching factor.

¢ Data Settings—filters you can use with matchmaking queries to limit the matches. Current filter types
include:

e String—defines a set of string values that are valid inputs.
e Double.

* |Integer.
Skill pools have the following additional options:

e Luck factor—how much luck is a factor in the results of a game.

* Draw probability—initial estimate of how often, between 0.0 and 1.0, a draw occurs between players of
equal skill.

Find a Pool
To cancel a search:
ovr Matchmaking Cancel ()

If successful, it returns the ovrMessage MatchmakingBrowse message type. Use
ovr Message GetRoom() to parse the message into an ovrRoomArray array.

Cancel a Pool Search

To return a list of matchmaking rooms in the current pool, filtered by skill and ping (if enabled):
ovr Matchmaking Browse ()

You receive the following message the search is canceled:

ovrMessage Matchmaking Cancel

Create Pools
To create a pool:

1. Goto .
2. Click My Apps. Your applications are displayed.
3. Hover over an app and click Overview. The information page appears.

https://developer.oculus.com/

28 | Matchmaking | Oculus Platform

4. Click the Platform tab.
5. Click Matchmaking.

The Matchmaking page appears.
6. Click Create Pool.

The Create Matchmaking Pool dialog box appears.

Figure 6: Create Matchmaking Pool

Pool Key

Non-user-facing alphanumeric/underscore key you'll pass into all your endpoints to use this configuration.

Mode

Bout: A room will be created when the match begins and destroyed when it ends. All matchable parties come from the
same pool. Browse: The user is searching for a matching room from a pool ofavailable ones, multiple options returned.
Room: There are two pools of candidates: room hosts and parties looking for rcoms. Use this where the room itself
has interest, or when it may outlive a group of players.

ar

Select the Mode

Skill Pool

If you want skill-based matchmaking, specify the skill pool within which users will be ranked.

Select a Skill Pool

Should Consider Round Trip Time?

Does your game care about peer-to-peer latency?

Yes ® No

Data Settings

In order for matchmaking to help clients find good results the system needs to know a bit about the constraints you'd
want to filter on. We support named int, double, and string filters (where strings support a pre-set list of values). Note:
once added filters can not be removed or have their type changed. Some examples: a key game_mode might map to a
string type with the List<4v4, 2v2, CaptureTheFlag> or a key game_length_in_minutes might be an int type. These
filters can then be used through the enqueue methods on the SDK.

Key Type String Options

Add Data Setting

7. Configure the pool settings.
8. Click Submit.

Create a Room for a Matchmaking Pool

To create a room for a matchmaking pool:

ovr Matchmaking CreateRoom ()

The client automatically joins the room on success. It returns the ovrMessage MatchmakingCreateRoom
message type. Use ovr Message GetRoom() to parse the message into an ovrRoom pointer.

Queue for a Matchmaking Pool
To request to queue a user into a matchmaking pool:

ovr Matchmaking Enqueue ()

It returns the ovrMessage MatchmakingEnqueue message type. Use ovr Message IsError () to parse
the message for success or failure.

Receive Match Notification
You receive the following message when a match is found:
ovrMessage MatchmakingMatchFoundNotification
Use ovr Message GetRoom() to parse the message into an ovrRoom pointer.
The user is not automatically joined to the room. You must join using ovr Room Join ().
Start Match (Rated Pools Only)
To indicate that a match started:

ovr Matchmaking StartMatch ()

It returns the ovrMessage _MatchmakingStartMatch message type. Use ovr Message IsError() to
parse the message for success or failure.

Submit Results (Rated Pools Only)
To submit the results of a match for a given roomID:

ovr_Matchmaking ReportResultInsecure ()

It returns the ovrMessage MatchmakingReportResultInsecure message type which contains a set of
key-value pairs for each user in the match where the key is the user ID and the value is the final ranking in the
match. Use ovr Message IsError () to parse the message for success or failure.

P2P

Users can send messages to each other through peer-to-peer (P2P) networking.

You can choose between reliable messages and unreliable messages. The following is an example of a P2P
message exchange session:

Your application sends a message from Alice to Bob using ovr Net SendPacket ().

Bob's application polls for messages and receives ovrMessage NetworkingPeerConnectRequest.
Your application displays a prompt to Bob. Bob agrees to connect.

HAown -

Because Alice included a message, your application parses the message using ovr Net ReadPacket ()
and ovr Packet GetBytes , which it then displays to Bob. Your application frees memory used by the
message with ovr Packet Free ().

o

Alice is requesting donations for her ferret rescue foundation.
6. Bob closes the message and connection. Your application closes the connection using ovr_Net_Close().

Open Connection
The following function attempts to open a connection with a user:
ovr Net Connect (const char* peerID, ovrSendPolicy policy)

It sends a ovrMessage NetworkingPeerConnectRequest to the specified user ID. It returns a
ovrMessage NetworkingPeerConnectionStateChange when the connection is established.

Note: ovr Net SendPacket () still implicitly connects. However, it does not buffer messages in
unreliable mode. ovr Net Connect () allows the application to delay sending messages until an
actual connection is established.

Send Message

The following function sends data to the specified user ID:

ovr Net SendPacket ()

It sends a ovrMessage NetworkingPeerConnectRequest to the specified user ID.

Open Connection
Opens a connection with the specified user ID:

ovr Net Accept ()
It sends a ovrMessage NetworkingPeerConnectRequest to the specified user ID.
This should be called after receiving a ovrMessage NetworkingPeerConnectRequest.
Close Connection
Closes a connection with the specified user ID:

ovr Net Close()

Read Packet
Reads a received packet, if available:
ovr Net ReadPacket ()
It returns the ovrMessage ReadPacket message type. Use o ovr Packet GetSenderID () to getthe

sender ID, o ovr Packet GetSize to get the size of the packet, or ovr Packet GetBytes to getthe
contents of the packet.

Free Memory
After you parse the message, free the memory used by the packet:

ovr_ Packet Free()

Connection State Change

You receive the following message any time a connection state changes:
ovrMessage NetworkingConnectionStateChange

Valid states include ovrPeerState_Unknown, ovrPeerState_Connected, and ovrPeerState_Timeout.
Use ovr Message GetNetworkingPeer () to extract the ID of the sender.

Timeout indicates a client is unreachable or has rejected a connection.

Connection Request
This message is received when a user receives a connection request:

ovrMessage NetworkingPeerConnectRequest

Use ovr Message GetNetworkingPeer () to extract the ID of the sender.

Build Channels

The Oculus Platform supports release management through build channels, so you can guide your game or
experience through different testing and release stages.

The Oculus Platform provides four build channel stages:

e Alpha

* Beta

® Release Candidate (RC)
e Live

You can upload different versions of your app and make it available to different groups of testers in each
channel.

After your app is available in the store, any new builds that you promote to the Live channel are automatically
pushed to users that have the app or download the app.

Viewing Build Channels

You can view the state of your build channels at any time.
To view build channels for an app:

1. Goto :
2. Click My Apps. Your applications are displayed.
3. Hover over an app and click Overview. The information page appears.

https://developer.oculus.com/

Click the Builds tab. The Platform Ul displays each build channel, the version of its build, a version code,
subscribed users, and the date the version was last updated.

Figure 7: Build Channels

Builds

Info

Build Dashboard

Channel

LIVE

RC

BETA

ALPHA

Version Name

2.4.0

224

Platform

Statistics

Once your app is available in the store, any new builds uploaded
to the LIVE channel will be immediately pushed to users.

Version Code

Uploading a Binary

Subscribed Users

0 Users @

0 Users @

0 Users @

Date Updated

Dec 22, 2015 (1:43pm)

Nov 06, 2015 (6:21pm)

Nov 06, 2015 (6:21pm)

Update App Info

GNONONO

You can upload a binary into any build channel.

As you are developing and testing your app, it moves from Alpha, to Beta, to RC, and finally to Live. The first
time it is set to Live, it will be submitted to the Oculus Store Team for review. After the Oculus Store Team

approves it, all future updates immediately deploy to users without review.

To upload a binary:

1.

S e

Make sure your manifest file is correct and that the install location is set correctly. For more information, see

the
Go to

Click My Apps. Your applications are displayed.

Hover over an app and click Overview. The information page appears.

Click the Builds tab.

Locate the channel where you want to upload the file, click the ... button, and select Upload New Binary.
You are prompted to upload the file.

Follow the on-screen prompts.

https://developer.oculus.com/documentation/publish/latest/
https://developer.oculus.com/

Migrating a Build

After verifying a build, you can migrate it to another build channel.

When migrating, the binary is not deleted from the old channel. To migrate a binary to another build channel:

A A

Go to .

Click My Apps. Your applications are displayed.

Hover over an app and click Overview. The information page appears.
Click the Builds tab.

Locate the channel where you want to upload the file, click the ... button, and select Migrate to Another
Channel. You are prompted to select another channel.

Select the channel and click Migrate. The binary is copied to the new channel and the old binary is deleted
(if present).

a Note: To move a binary to production, simply select the Live channel. The first time it is set to Live,

it will be submitted to the Oculus Store Team for review. After the Oculus Store Team approves it, all
future updates immediately deploy to users without review.

Adding Users

Depending on your release process, you can add different users to each build channel.

You can add a user to multiple build channels; currently, the user will see the highest version.

To add a user:

NOo bk~ wDd =

Go to .

Click My Apps. Your applications are displayed.

Hover over an app and click Overview. The information page appears.

Click the Builds tab.

Locate the channel to which you want to add users and click the + button. You are prompted to add a user.
Enter the email address of a registered Oculus user and click Add User. The user is added.

Repeat this process for each user to add.

https://developer.oculus.com/
https://developer.oculus.com/

	Contents
	Introduction
	Create an Organization
	Create an App
	Getting AppIDs
	Giving Entitlement to an App
	Viewing App Information
	Updating Your App for Platform Features
	Adding Oculus Platform Support to Your Project
	REST Requests
	Integrating with the Oculus Platform
	Native C++
	Unity

	Ownership
	Presence and Friends
	Rooms
	In-App Purchases (Gear VR)
	Achievements
	Leaderboards
	Matchmaking
	P2P
	Build Channels
	Viewing Build Channels
	Uploading a Binary
	Migrating a Build
	Adding Users

