OpenGL Programming Guide (Addison-Wesley
Publishing Company)

Chapter 1
I ntroduction to OpenGL

Chapter Objectives

After reading this chapter, you' |l be able to do the following:

® Appreciate in general terms what OpenGL does

Identify different levels of rendering complexity

Understand the basic structure of an OpenGL program

Recognize OpenGL command syntax

Identify the sequence of operations of the OpenGL rendering pipeline

Understand in general terms how to animate graphicsin an OpenGL program

This chapter introduces OpenGL. It has the following major sections:

"What Is OpenGL?" explains what OpenGL is, what it does and doesn’t do, and how it works.

"A Smidgen of OpenGL Code" presents a small OpenGL program and briefly discussesit. This
section also defines afew basic computer-graphics terms.

"OpenGL Command Syntax" explains some of the conventions and notations used by OpenGL
commands.

"OpenGL as a State Machine" describes the use of state variablesin OpenGL and the commands
for querying, enabling, and disabling states.

"OpenGL Rendering Pipeline” shows atypical sequence of operations for processing geometric
and image data.

"OpenGL-Related Libraries" describes sets of OpenGL-related routines, including an auxiliary
library specifically written for this book to simplify programming examples.

"Animation" explainsin general terms how to create pictures on the screen that move.

What Is OpenGL ?

OpenGL is a software interface to graphics hardware. This interface consists of about 150 distinct
commands that you use to specify the objects and operations needed to produce interactive
three-dimensional applications.

OpenGL is designed as a streamlined, hardware-independent interface to be implemented on many
different hardware platforms. To achieve these qualities, no commands for performing windowing tasks
or obtaining user input are included in OpenGL ; instead, you must work through whatever windowing
system controls the particular hardware you' re using. Similarly, OpenGL doesn't provide high-level
commands for describing models of three-dimensional objects. Such commands might allow you to
specify relatively complicated shapes such as automobiles, parts of the body, airplanes, or molecules.
With OpenGL, you must build up your desired model from asmall set of geometric primitives - points,
lines, and polygons.

A sophisticated library that provides these features could certainly be built on top of OpenGL. The
OpenGL Utility Library (GLU) provides many of the modeling features, such as quadric surfaces and
NURBS curves and surfaces. GLU is astandard part of every OpenGL implementation. Also, thereisa
higher-level, object-oriented toolkit, Open Inventor, which is built atop OpenGL, and is available
separately for many implementations of OpenGL. (See "OpenGL-Related Libraries' for more
information about Open Inventor.)

Now that you know what OpenGL doesn’t do, here’ swhat it does do. Take alook at the color plates -
they illustrate typical uses of OpenGL. They show the scene on the cover of this book, rendered (which
isto say, drawn) by a computer using OpenGL in successively more complicated ways. The following
list describes in general terms how these pictures were made.

® "Plate 1" shows the entire scene displayed as awireframe model - that is, asif al the objectsin the
scene were made of wire. Each line of wire corresponds to an edge of a primitive (typically a
polygon). For example, the surface of the table is constructed from triangular polygons that are
positioned like slices of pie.

Note that you can see portions of objects that would be obscured if the objects were solid rather
than wireframe. For example, you can see the entire model of the hills outside the window even
though most of this model is normally hidden by the wall of the room. The globe appears to be
nearly solid because it’s composed of hundreds of colored blocks, and you see the wireframe lines
for all the edges of all the blocks, even those forming the back side of the globe. The way the
globe is constructed gives you an idea of how complex objects can be created by assembling
lower-level objects.

® "Plate 2" shows a depth-cued version of the same wireframe scene. Note that the lines farther from
the eye are dimmer, just as they would beinrea life, thereby giving avisua cue of depth.
OpenGL uses atmospheric effects (collectively referred to as fog) to achieve depth cueing.

® "Plate 3" shows an antialiased version of the wireframe scene. Antialiasing is atechnique for
reducing the jagged edges (also known as jaggies) created when approximating smooth edges
using pixels - short for picture elements - which are confined to a rectangular grid. Such jaggies

are usually the most visible with near-horizontal or near-vertical lines.

® "Plate 4" shows a flat-shaded, unlit version of the scene. The objects in the scene are now shown
as solid. They appear "flat" in the sense that only one color is used to render each polygon, so they
don’'t appear smoothly rounded. There are no effects from any light sources.

® "Plate 5" showsalit, smooth-shaded version of the scene. Note how the scene looks much more
realistic and three-dimensional when the objects are shaded to respond to the light sources in the
room as if the objects were smoothly rounded.

® "Plate 6" adds shadows and textures to the previous version of the scene. Shadows aren’t an
explicitly defined feature of OpenGL (there is no "shadow command"), but you can create them
yourself using the techniques described in Chapter 14. Texture mapping allows you to apply a
two-dimensional image onto a three-dimensional object. In this scene, the top on the table surface
isthe most vibrant example of texture mapping. The wood grain on the floor and table surface are
all texture mapped, as well as the wallpaper and the toy top (on the table).

® "Plate 7" shows amotion-blurred object in the scene. The sphinx (or dog, depending on your
Rorschach tendencies) appears to be captured moving forward, leaving a blurred trace of its path
of motion.

® "Plate 8" showsthe scene asit’ s drawn for the cover of the book from a different viewpoint. This
plate illustrates that the image really is a snapshot of models of three-dimensional objects.

® "Plate 9" brings back the use of fog, which was seen in "Plate 2," to show the presence of smoke
particlesin the air. Note how the same effect in "Plate 2" now has a more dramatic impact in
"Plate 9."

® "Plate 10" shows the depth-of-field effect, which simulates the inability of a cameralensto
maintain al objectsin a photographed scene in focus. The camera focuses on a particular spot in
the scene. Objects that are significantly closer or farther than that spot are somewhat blurred.

The color plates give you an idea of the kinds of things you can do with the OpenGL graphics system.
The following list briefly describes the major graphics operations which OpenGL performsto render an
image on the screen. (See "OpenGL Rendering Pipeline” for detailed information about this order of
operations.)

1. Construct shapes from geometric primitives, thereby creating mathematical descriptions of objects.
(OpenGL considers points, lines, polygons, images, and bitmaps to be primitives.)

2. Arrange the objectsin three-dimensional space and select the desired vantage point for viewing the
composed scene.

3. Calculate the color of all the objects. The color might be explicitly assigned by the application,
determined from specified lighting conditions, obtained by pasting a texture onto the objects, or
some combination of these three actions.

4. Convert the mathematical description of objects and their associated color information to pixels on

the screen. This processis called rasterization.

During these stages, OpenGL might perform other operations, such as eliminating parts of objects that
are hidden by other objects. In addition, after the scene is rasterized but before it’s drawn on the screen,
you can perform some operations on the pixel dataif you want.

In some implementations (such as with the X Window System), OpenGL is designed to work even if the
computer that displays the graphics you create isn’t the computer that runs your graphics program. This
might be the case if you work in a networked computer environment where many computers are
connected to one another by adigital network. In this situation, the computer on which your program
runs and issues OpenGL drawing commandsiis called the client, and the computer that receives those
commands and performs the drawing is called the server. The format for transmitting OpenGL
commands (called the protocol) from the client to the server is always the same, so OpenGL programs
can work across a network even if the client and server are different kinds of computers. If an OpenGL
program isn’'t running across a network, then there’ s only one computer, and it is both the client and the
server.

A Smidgen of OpenGL Code

Because you can do so many things with the OpenGL graphics system, an OpenGL program can be
complicated. However, the basic structure of a useful program can be simple: Itstasks areto initialize
certain states that control how OpenGL renders and to specify objects to be rendered.

Before you look at some OpenGL code, let’s go over afew terms. Rendering, which you’ ve already seen
used, is the process by which a computer creates images from models. These models, or objects, are
constructed from geometric primitives - points, lines, and polygons - that are specified by their vertices.

The final rendered image consists of pixels drawn on the screen; a pixel isthe smallest visible el ement
the display hardware can put on the screen. Information about the pixels (for instance, what color they’re
supposed to be) is organized in memory into bitplanes. A bitplane is an area of memory that holds one
bit of information for every pixel on the screen; the bit might indicate how red a particular pixel is
supposed to be, for example. The bitplanes are themselves organized into a framebuffer, which holds all
the information that the graphics display needs to control the color and intensity of all the pixels on the
screen.

Now look at what an OpenGL program might look like. Example 1-1 renders awhite rectangle on a
black background, as shown in Figure 1-1.

Figure 1-1 : White Rectangle on a Black Background

Example 1-1 : Chunk of OpenGL Code

#i ncl ude <what ever YouNeed. h>
mai n() {
InitializeAW ndowPl ease();

gl earColor (0.0, 0.0, 0.0, 0.0);
gl dear (G_COLOR BUFFER BIT);
gl Color3f (1.0, 1.0, 1.0);
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
gl Begi n(GL_POLYGON) ;

gl Vertex3f (0.25, 0.25, 0.0);

gl Vertex3f (0.75, 0.25, 0.0);

gl Vertex3f (0.75, 0.75, 0.0);

gl Vertex3f (0.25, 0.75, 0.0);
gl End() ;
gl Fl ush();

Updat eTheW ndowAndCheckFor Event s() ;
}

Thefirst line of the main() routine initializes awindow on the screen: The I nitializeAWindowPleasg()
routine is meant as a placeholder for window system-specific routines, which are generally not OpenGL
calls. The next two lines are OpenGL commands that clear the window to black: glClear Color ()
establishes what color the window will be cleared to, and glClear () actually clears the window. Once the
clearing color is set, the window is cleared to that color whenever glClear () iscalled. This clearing color
can be changed with another call to glClear Color (). Similarly, the glColor 3f() command establishes
what color to use for drawing objects - in this case, the color is white. All objects drawn after this point
use this color, until it’s changed with another call to set the color.

The next OpenGL command used in the program, glOrtho(), specifies the coordinate system OpenGL
assumes as it draws the final image and how the image gets mapped to the screen. The next calls, which
are bracketed by glBegin() and glEnd(), define the object to be drawn - in this example, a polygon with
four vertices. The polygon’s "corners' are defined by the glVertex3f() commands. As you might be able
to guess from the arguments, which are (X, y, 2) coordinates, the polygon is a rectangle on the z=0 plane.

Finally, glFlush() ensures that the drawing commands are actually executed rather than stored in a
buffer awaiting additional OpenGL commands. The UpdateT heWindowAndCheckFor Events()
placeholder routine manages the contents of the window and begins event processing.

Actually, this piece of OpenGL codeisn’t well structured. Y ou may be asking, "What happensif | try to
move or resize the window?' Or, "Do | need to reset the coordinate system each time | draw the
rectangle?" Later in this chapter, you will see replacements for both I nitializeAWindowPlease() and
UpdateT heWindowAndCheckFor Events() that actually work but will require restructuring the code to
make it efficient.

OpenGL Command Syntax

Asyou might have observed from the simple program in the previous section, OpenGL commands use
the prefix gl and initial capital letters for each word making up the command name (recall
glClearColor (), for example). Similarly, OpenGL defined constants begin with GL _, use all capital
letters, and use underscores to separate words (like GL_COLOR_BUFFER_BIT).

Y ou might also have noticed some seemingly extraneous |etters appended to some command names (for
example, the 3f in glColor 3f() and glVertex3f()). It' s true that the Color part of the command name
glColor 3f() is enough to define the command as one that sets the current color. However, more than one
such command has been defined so that you can use different types of arguments. In particular, the 3
part of the suffix indicates that three arguments are given; another version of the Color command takes
four arguments. Thef part of the suffix indicates that the arguments are floating-point numbers. Having
different formats allows OpenGL to accept the user’s datain his or her own data format.

Some OpenGL commands accept as many as 8 different data types for their arguments. The letters used
as suffixes to specify these data types for SO C implementations of OpenGL are shown in Table 1-1,
along with the corresponding OpenGL type definitions. The particular implementation of OpenGL that
you' re using might not follow this scheme exactly; an implementation in C++ or Ada, for example,
wouldn’t need to.

Table 1-1 : Command Suffixes and Argument Data Types

Suffix | Data Type Typical Corresponding OpenGL Type
C-Language Type Definition

b 8-bit integer signed char GLbyte

S 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer | unsigned short GLushort

ui 32-bit unsigned integer | unsigned int or unsigned long GLuint, GLenum,

GLhitfield

Thus, the two commands

gl Vertex2i (1, 3);
gl Vertex2f (1.0, 3.0);

are equivalent, except that the first specifies the vertex’s coordinates as 32-bit integers, and the second
specifies them as single-precision floating-point numbers.

Note: Implementations of OpenGL have leeway in selecting which C data type to use to represent
OpenGL datatypes. If you resolutely use the OpenGL defined data types throughout your application,
you will avoid mismatched types when porting your code between different implementations.

Some OpenGL commands can take a final letter v, which indicates that the command takes a pointer to a
vector (or array) of values rather than a series of individual arguments. Many commands have both
vector and nonvector versions, but some commands accept only individual arguments and others require
that at least some of the arguments be specified as a vector. The following lines show how you might
use a vector and a nonvector version of the command that sets the current color:

gl Col or3f (1.0, 0.0, 0.0);

G.float color_array[] = {1.0, 0.0, 0.0};
gl Col or 3fv(col or _array);

Finally, OpenGL defines the typedef GLvoid. Thisis most often used for OpenGL commands that
accept pointers to arrays of values.

In the rest of this guide (except in actual code examples), OpenGL commands are referred to by their
base names only, and an asterisk isincluded to indicate that there may be more to the command name.
For example, glColor*() stands for all variations of the command you use to set the current color. If we
want to make a specific point about one version of a particular command, we include the suffix
necessary to define that version. For example, glVertex*v() refersto all the vector versions of the
command you use to specify vertices.

OpenGL asa State Machine

OpenGL is astate machine. Y ou put it into various states (or modes) that then remain in effect until you
change them. Asyou’ ve already seen, the current color is a state variable. Y ou can set the current color
to white, red, or any other color, and thereafter every object is drawn with that color until you set the
current color to something else. The current color is only one of many state variables that OpenGL
maintains. Others control such things as the current viewing and projection transformations, line and
polygon stipple patterns, polygon drawing modes, pixel-packing conventions, positions and
characteristics of lights, and material properties of the objects being drawn. Many state variables refer to
modes that are enabled or disabled with the command glEnable() or gIDisable().

Each state variable or mode has a default value, and at any point you can query the system for each
variable's current value. Typically, you use one of the six following commands to do this:
glGetBooleanv(), glGetDoublev(), glGetFloatv(), glGetlntegerv(), glGetPointerv(), or
gllsEnabled(). Which of these commands you select depends on what data type you want the answer to
be given in. Some state variables have a more specific query command (such as glGetL ight* (),
glGetError(), or gilGetPolygonStipple()). In addition, you can save a collection of state variables on an
attribute stack with glPushAttrib() or giPushClientAttrib(), temporarily modify them, and later restore
the values with glPopAttrib() or glPopClientAttrib(). For temporary state changes, you should use
these commands rather than any of the query commands, since they’re likely to be more efficient.

See Appendix B for the complete list of state variables you can query. For each variable, the appendix
also lists a suggested glGet* () command that returns the variable' s value, the attribute class to which it
belongs, and the variable’ s default value.

OpenGL Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series of processing stages called
the OpenGL rendering pipeline. This ordering, as shown in Figure 1-2, is not a strict rule of how
OpenGL isimplemented but provides areliable guide for predicting what OpenGL will do.

If you are new to three-dimensional graphics, the upcoming description may seem like drinking water
out of afire hose. Y ou can skim this now, but come back to Figure 1-2 as you go through each chapter
in this book.

The following diagram shows the Henry Ford assembly line approach, which OpenGL takes to
processing data. Geometric data (vertices, lines, and polygons) follow the path through the row of boxes

that includes evaluators and per-vertex operations, while pixel data (pixels, images, and bitmaps) are
treated differently for part of the process. Both types of data undergo the same final steps (rasterization
and per-fragment operations) before the final pixel dataiswritten into the framebuffer.

Vertex Perwvertex
data operations

Evaluato rs | gedahd primitive
assembly

Lo
Y

Display Fer-fragment

o perations

list 1
2| ixE Texture _» Framebuffer

r—— o perations -- T lassembly
Pikel ™ | | __Toooooo._ ______Izzm
data

Figure 1-2 : Order of Operations

Rasterization |—me-

Now you' || see more detail about the key stages in the OpenGL rendering pipeline.
Display Lists

All data, whether it describes geometry or pixels, can be saved in adisplay list for current or later use.
(The dlternative to retaining datain a display list is processing the dataimmediately - also known as
immediate mode.) When adisplay list is executed, the retained datais sent from the display list just as if
it were sent by the application in immediate mode. (See Chapter 7 for more information about display
lists.)

Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and surfaces may be
initially described by control points and polynomial functions called basis functions. Evaluators provide
amethod to derive the vertices used to represent the surface from the control points. The method isa
polynomial mapping, which can produce surface normal, texture coordinates, colors, and spatial
coordinate values from the control points. (See Chapter 12 to learn more about evaluators.)

Per-Vertex Operations

For vertex data, next is the "per-vertex operations' stage, which converts the vertices into primitives.
Some vertex data (for example, spatial coordinates) are transformed by 4 x 4 floating-point matrices.
Spatial coordinates are projected from a position in the 3D world to a position on your screen. (See
Chapter 3 for details about the transformation matrices.)

If advanced features are enabled, this stage is even busier. If texturing is used, texture coordinates may
be generated and transformed here. If lighting is enabled, the lighting calculations are performed using
the transformed vertex, surface normal, light source position, material properties, and other lighting

information to produce a color value.

Primitive Assembly

Clipping, amajor part of primitive assembly, is the elimination of portions of geometry which fall
outside a half-space, defined by a plane. Point clipping simply passes or rejects vertices, line or polygon
clipping can add additional vertices depending upon how the line or polygon is clipped.

In some cases, thisis followed by perspective division, which makes distant geometric objects appear
smaller than closer objects. Then viewport and depth (z coordinate) operations are applied. If culling is
enabled and the primitive is a polygon, it then may be rejected by a culling test. Depending upon the
polygon mode, a polygon may be drawn as points or lines. (See "Polygon Details" in Chapter 2.)

The results of this stage are complete geometric primitives, which are the transformed and clipped
vertices with related color, depth, and sometimes texture-coordinate values and guidelines for the
rasterization step.

Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline, pixel datatakes a different
route. Pixels from an array in system memory are first unpacked from one of avariety of formats into
the proper number of components. Next the datais scaled, biased, and processed by a pixel map. The
results are clamped and then either written into texture memory or sent to the rasterization step. (See
"Imaging Pipeline" in Chapter 8.)

If pixel dataisread from the frame buffer, pixel-transfer operations (scale, bias, mapping, and clamping)
are performed. Then these results are packed into an appropriate format and returned to an array in
system memory.

There are special pixel copy operations to copy datain the framebuffer to other parts of the framebuffer
or to the texture memory. A single pass is made through the pixel transfer operations before the datais
written to the texture memory or back to the framebuffer.

Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to make them look
morerealigtic. If several texture images are used, it’s wise to put them into texture objects so that you
can easily switch among them.

Some OpenGL implementations may have special resources to accelerate texture performance. There

may be specialized, high-performance texture memory. If this memory is available, the texture objects
may be prioritized to control the use of this limited and valuable resource. (See Chapter 9.)

Rasterization

Rasterization is the conversion of both geometric and pixel datainto fragments. Each fragment square
corresponds to a pixel in the framebuffer. Line and polygon stipples, line width, point size, shading

model, and coverage calculations to support antialiasing are taken into consideration as vertices are
connected into lines or the interior pixels are calculated for afilled polygon. Color and depth values are
assigned for each fragment square.

Fragment Oper ations

Before values are actually stored into the framebuffer, a series of operations are performed that may
alter or even throw out fragments. All these operations can be enabled or disabled.

The first operation which may be encountered is texturing, where atexel (texture element) is generated
from texture memory for each fragment and applied to the fragment. Then fog cal culations may be
applied, followed by the scissor test, the al pha test, the stencil test, and the depth-buffer test (the depth
buffer isfor hidden-surface removal). Failing an enabled test may end the continued processing of a
fragment’ s square. Then, blending, dithering, logical operation, and masking by a bitmask may be
performed. (See Chapter 6 and Chapter 10) Finaly, the thoroughly processedfragment is drawn into the
appropriate buffer, where it has finally advanced to be a pixel and achieved itsfinal resting place.

OpenGL-Related Libraries

OpenGL provides a powerful but primitive set of rendering commands, and al higher-level drawing
must be done in terms of these commands. Also, OpenGL programs have to use the underlying
mechanisms of the windowing system. A number of libraries exist to alow you to simplify your
programming tasks, including the following:

® The OpenGL Utility Library (GLU) contains several routines that use lower-level OpenGL
commands to perform such tasks as setting up matrices for specific viewing orientations and
projections, performing polygon tessellation, and rendering surfaces. Thislibrary is provided as
part of every OpenGL implementation. Portions of the GLU are described in the OpenGL
Reference Manual. The more useful GLU routines are described in this guide, where they're
relevant to the topic being discussed, such asin all of Chapter 11 and in the section "The GLU
NURBS Interface” in Chapter 12. GLU routines use the prefix glu.

® For every window system, thereisalibrary that extends the functionality of that window system to
support OpenGL rendering. For machines that use the X Window System, the OpenGL Extension
to the X Window System (GL X) is provided as an adjunct to OpenGL. GLX routines use the
prefix gl X. For Microsoft Windows, the WGL routines provide the Windows to OpenGL interface.
All WGL routines use the prefix wgl. For IBM 0S/2, the PGL is the Presentation Manager to
OpenGL interface, and its routines use the prefix pgl.

All these window system extension libraries are described in more detail in both Appendix C. In
addition, the GLX routines are also described in the OpenGL Reference Manual.

® The OpenGL Utility Toolkit (GLUT) isawindow system-independent toolkit, written by Mark
Kilgard, to hide the complexities of differing window system APIs. GLUT isthe subject of the
next section, and it’s described in more detail in Mark Kilgard's book OpenGL Programming for
the X Window System (ISBN 0-201-48359-9). GLUT routines use the prefix glut. "How to Obtain

the Sample Code" in the Preface describes how to obtain the source code for GLUT, using ftp.

® Open Inventor is an object-oriented toolkit based on OpenGL which provides objects and methods
for creating interactive three-dimensional graphics applications. Open Inventor, which iswritten in
C++, provides prebuilt objects and a built-in event model for user interaction, high-level
application components for creating and editing three-dimensional scenes, and the ability to print
objects and exchange data in other graphics formats. Open Inventor is separate from OpenGL.

Include Files

For all OpenGL applications, you want to include the gl.h header file in every file. AlImost all OpenGL
applications use GLU, the aforementioned OpenGL Utility Library, which requiresinclusion of the glu.h
header file. So aimost every OpenGL source file begins with

#i nclude <@/ gl . h>
#i ncl ude <@/ gl u. h>

If you are directly accessing awindow interface library to support OpenGL, such as GLX, AGL, PGL,
or WGL, you must include additional header files. For example, if you are calling GL X, you may need
to add these lines to your code

#i ncl ude <X11/Xli b. h>
#i ncl ude <@/ gl x. h>

If you are using GLUT for managing your window manager tasks, you should include
#i nclude <G/ glut. h>

Note that glut.h includes gl.h, glu.h, and glx.h automatically, so including all three files is redundant.
GLUT for Microsoft Windows includes the appropriate header file to access WGL.

GLUT, the OpenGL Utility Toolkit

Asyou know, OpenGL contains rendering commands but is designed to be independent of any window
system or operating system. Consequently, it contains no commands for opening windows or reading
events from the keyboard or mouse. Unfortunately, it’simpossible to write a complete graphics program
without at least opening awindow, and most interesting programs require a bit of user input or other
services from the operating system or window system. In many cases, complete programs make the most
interesting examples, so this book uses GLUT to simplify opening windows, detecting input, and so on.
If you have an implementation of OpenGL and GLUT on your system, the examples in this book should
run without change when linked with them.

In addition, since OpenGL drawing commands are limited to those that generate simple geometric
primitives (points, lines, and polygons), GLUT includes several routines that create more complicated
three-dimensional objects such as a sphere, atorus, and ateapot. Thisway, snapshots of program output
can be interesting to look at. (Note that the OpenGL Utility Library, GLU, also has quadrics routines
that create some of the same three-dimensional objects as GLUT, such as a sphere, cylinder, or cone.)

GLUT may not be satisfactory for full-featured OpenGL applications, but you may find it a useful

starting point for learning OpenGL. The rest of this section briefly describes a small subset of GLUT
routines so that you can follow the programming examplesin the rest of this book. (See Appendix D for
more details about this subset of GLUT, or see Chapters 4 and 5 of OpenGL Programming for the X
Window System for information about the rest of GLUT.)

Window M anagement
Five routines perform tasks necessary to initialize a window.

® glutlnit(int *argc, char **argv) initializes GLUT and processes any command line arguments (for
X, thiswould be options like -display and -geometry). glutlnit() should be called before any other
GLUT routine.

® glutlnitDisplayM ode(unsigned int mode) specifies whether to use an RGBA or color-index color
model. Y ou can also specify whether you want a single- or double-buffered window. (If you're
working in color-index mode, you'll want to load certain colors into the color map; use
glutSetColor () to do this.) Finally, you can use this routine to indicate that you want the window
to have an associated depth, stencil, and/or accumulation buffer. For example, if you want a
window with double buffering, the RGBA color model, and a depth buffer, you might call
glutl nitDisplayM ode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH).

® glutlnitWindowPosition(int x, int y) specifies the screen location for the upper-left corner of your
window.

® glutlnitWindowSize(int width, int size) specifiesthe size, in pixels, of your window.

® int glutCreateWindow(char *string) creates a window with an OpenGL context. It returns a
unique identifier for the new window. Be warned: Until glutMainL oop() is called (see next
section), the window is not yet displayed.

The Display Callback

glutDisplayFunc(void (* func)(void)) is the first and most important event callback function you will
see. Whenever GLUT determines the contents of the window need to be redisplayed, the callback
function registered by glutDisplayFunc() is executed. Therefore, you should put all the routines you
need to redraw the scene in the display callback function.

If your program changes the contents of the window, sometimes you will have to call
glutPostRedisplay(void), which gives glutM ainL oop() a nudge to call the registered display callback
at its next opportunity.

Running the Program

The very last thing you must do is call glutM ainL oop(void). All windows that have been created are
now shown, and rendering to those windows is now effective. Event processing begins, and the
registered display callback istriggered. Once thisloop is entered, it is never exited!

Example 1-2 shows how you might use GLUT to create the simple program shown in Example 1-1.

Note the restructuring of the code. To maximize efficiency, operations that need only be called once
(setting the background color and coordinate system) are now in a procedure called init(). Operations to
render (and possibly re-render) the scene are in the display() procedure, which isthe registered GLUT
display callback.

Example 1-2 : Simple OpenGL Program Using GLUT: hello.c

#i nclude <@/ gl . h>
#i nclude <G/ glut. h>

voi d di spl ay(voi d)

/* clear all pixels */
gl dear (G_COLOR BUFFER BIT);

/* draw white polygon (rectangle) with corners at
* (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)
*/
gl Color3f (1.0, 1.0, 1.0);
gl Begi n(GL_POLYGON) ;
gl Vertex3f (0.25, 0.25, 0.0);
gl Vertex3f (0.75, 0.25, 0.0);
gl Vertex3f (0.75, 0.75, 0.0);
gl Vertex3f (0.25, 0.75, 0.0);
gl End() ;

[* don’t wait!
* start processing buffered OpenG routines

*/
gl Flush ();
}
void init (void)
{
/* select clearing (background) col or */

gl dearColor (0.0, 0.0, 0.0, 0.0);

/* initialize view ng values */
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
glOtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

}
/*
* Declare initial w ndow size, position, and di splay node
* (single buffer and RGBA). Open wi ndow with "hello"
* inits title bar. Call initialization routines.
* Register callback function to display graphics.
* Enter nain |oop and process events.
*/
int main(int argc, char** argv)
{

glutinit(&rgc, argv);

glutlinitD splayMode (GLUT_SINGLE | GLUT_RGB)
gl ut I nit WndowSi ze (250, 250);

gl utlni t WndowPosition (100, 100);

gl ut Creat eW ndow ("hel | 0");

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut Mai nLoop() ;
return O; /* 1SOCrequires main to return int. */

}

Handling Input Events
Y ou can use these routines to register callback commands that are invoked when specified events occur.

® glutReshapeFunc(void (* func)(int w, int h)) indicates what action should be taken when the
window is resized.

® glutKeyboardFunc(void (* func)(unsigned char key, int x, int y)) and glutM ouseFunc(void
(* func)(int button, int state, int x, int y)) alow you to link a keyboard key or a mouse button with a
routine that’ s invoked when the key or mouse button is pressed or released.

® glutMotionFunc(void (* func)(int X, int y)) registers aroutine to call back when the mouseis
moved while a mouse button is aso pressed.

Managing a Background Process

Y ou can specify afunction that’s to be executed if no other events are pending - for example, when the
event loop would otherwise be idle - with glutldleFunc(void (* func)(void)). This routine takes a pointer
to the function asits only argument. Passin NULL (zero) to disable the execution of the function.

Drawing Three-Dimensional Objects

GLUT includes several routines for drawing these three-dimensional objects:

cone icosahedron teapot
cube octahedron tetrahedron
dodecahedron sphere torus

Y ou can draw these objects as wireframes or as solid shaded objects with surface normals defined. For
example, the routines for a cube and a sphere are as follows:

void glutWireCube(GLdouble size);
void glutSolidCube(GLdouble size);
void glutWireSpher e(GLdouble radius, GLint slices, GLint stacks);
void glutSolidSpher e(GLdouble radius, GLint slices, GLint stacks);

All these models are drawn centered at the origin of the world coordinate system. (See for information
on the prototypes of all these drawing routines.)

Animation

One of the most exciting things you can do on a graphics computer is draw pictures that move. Whether
you're an engineer trying to see al sides of a mechanical part you're designing, apilot learning to fly an
airplane using a simulation, or merely a computer-game aficionado, it’s clear that animation is an
important part of computer graphics.

In amovie theater, motion is achieved by taking a sequence of pictures and projecting them at 24 per
second on the screen. Each frame is moved into position behind the lens, the shutter is opened, and the
frameis displayed. The shutter is momentarily closed while the film is advanced to the next frame, then
that frame is displayed, and so on. Although you’ re watching 24 different frames each second, your
brain blends them all into a smooth animation. (The old Charlie Chaplin movies were shot at 16 frames
per second and are noticeably jerky.) In fact, most modern projectors display each picture twice at arate
of 48 per second to reduce flickering. Computer-graphics screenstypically refresh (redraw the picture)
approximately 60 to 76 times per second, and some even run at about 120 refreshes per second. Clearly,
60 per second is smoother than 30, and 120 is marginally better than 60. Refresh rates faster than 120,
however, are beyond the point of diminishing returns, since the human eyeisonly so good.

The key reason that motion picture projection worksis that each frame is complete when it is displayed.
Suppose you try to do computer animation of your million-frame movie with a program like this:

open_w ndow() ;
for (i = 0; i < 1000000; i++) {
cl ear _the_wi ndow() ;
draw frame(i);
wait_until _a_24th_of _a_second_i s_over();

}

If you add the time it takes for your system to clear the screen and to draw atypical frame, this program
gives more and more disturbing results depending on how close to 1/24 second it takes to clear and
draw. Suppose the drawing takes nearly afull 1/24 second. Items drawn first are visible for the full 1/24
second and present a solid image on the screen; items drawn toward the end are instantly cleared as the
program starts on the next frame. They present at best a ghostlike image, since for most of the 1/24
second your eyeis viewing the cleared background instead of the items that were unlucky enough to be
drawn last. The problem is that this program doesn’t display completely drawn frames; instead, you
watch the drawing as it happens.

Most OpenGL implementations provide double-buffering - hardware or software that supplies two
complete color buffers. One is displayed while the other is being drawn. When the drawing of aframeis
complete, the two buffers are swapped, so the one that was being viewed is now used for drawing, and
vice versa. Thisislike amovie projector with only two frames in aloop; while one is being projected on
the screen, an artist is desperately erasing and redrawing the frame that’ s not visible. Aslong as the artist
isquick enough, the viewer notices no difference between this setup and one where all the frames are
already drawn and the projector is simply displaying them one after the other. With double-buffering,
every frame is shown only when the drawing is complete; the viewer never sees a partially drawn frame.

A modified version of the preceding program that does display smoothly animated graphics might look
likethis:

open_wi ndow_i n_doubl e_buf f er _node();
for (i = 0; i < 1000000; i++) {

cl ear _the_wi ndow() ;

draw frame(i);

swap_t he buffers();

}
The Refresh That Pauses

For some OpenGL implementations, in addition to simply swapping the viewable and drawable buffers,
the swap_the_buffers() routine waits until the current screen refresh period is over so that the previous
buffer is completely displayed. This routine also allows the new buffer to be completely displayed,
starting from the beginning. Assuming that your system refreshes the display 60 times per second, this
means that the fastest frame rate you can achieve is 60 frames per second (fps), and if all your frames
can be cleared and drawn in under 1/60 second, your animation will run smoothly at that rate.

What often happens on such a system is that the frame is too complicated to draw in /60 second, so
each frame is displayed more than once. If, for example, it takes 1/45 second to draw aframe, you get 30
fps, and the graphics are idle for 1/30-1/45=1/90 second per frame, or one-third of the time.

In addition, the video refresh rate is constant, which can have some unexpected performance
consequences. For example, with the 1/60 second per refresh monitor and a constant frame rate, you can
run at 60 fps, 30 fps, 20 fps, 15 fps, 12 fps, and so on (60/1, 60/2, 60/3, 60/4, 60/5, ...). That means that
if you're writing an application and gradually adding features (say it’s aflight ssimulator, and you're
adding ground scenery), at first each feature you add has no effect on the overall performance - you still
get 60 fps. Then, al of a sudden, you add one new feature, and the system can’t quite draw the whole
thing in 1/60 of a second, so the animation slows from 60 fpsto 30 fps because it misses the first
possible buffer-swapping time. A similar thing happens when the drawing time per frame is more than
1/30 second - the animation drops from 30 to 20 fps.

If the scene’ s complexity is close to any of the magic times (1/60 second, 2/60 second, 3/60 second, and
so on in this example), then because of random variation, some frames go slightly over the time and
some dightly under. Then the frame rate isirregular, which can be visually disturbing. In this case, if
you can't simplify the scene so that all the frames are fast enough, it might be better to add an
intentional, tiny delay to make sure they all miss, giving a constant, slower, frame rate. If your frames
have drastically different complexities, a more sophisticated approach might be necessary.

Motion = Redraw + Swap

The structure of real animation programs does not differ too much from this description. Usudly, itis
easier to redraw the entire buffer from scratch for each frame than to figure out which parts require
redrawing. Thisis especially true with applications such as three-dimensional flight simulators where a
tiny change in the plane’ s orientation changes the position of everything outside the window.

In most animations, the objects in a scene are ssimply redrawn with different transformations - the
viewpoint of the viewer moves, or a car moves down the road a bit, or an object isrotated slightly. If
significant recomputation is required for non-drawing operations, the attainable frame rate often slows
down. Keep in mind, however, that the idle time after the swap_the_buffer () routine can often be used
for such calculations.

OpenGL doesn't have aswap_the buffers() command because the feature might not be available on all
hardware and, in any case, it's highly dependent on the window system. For example, if you are using
the X Window System and accessing it directly, you might use the following GL X routine:

void glX SwapBuffers(Display *dpy, Window window);

(See Appendix C for equivalent routines for other window systems.)

If you are using the GLUT library, you'll want to call this routine:

void glutSwapBuffers(void);

Example 1-3 illustrates the use of glutSwapBuffers() in an example that draws a spinning square as

shown in Figure 1-3. The following example aso shows how to use GLUT to control an input device
and turn on and off an idle function. In this example, the mouse buttons toggle the spinning on and off.

(3358

Frame 0 Frame 10 Frame 20 Frame 30 Frame 40

Figure 1-3 : Double-Buffered Rotating Square

Example 1-3 ;. Double-Buffered Program: double.c

#i nclude <@./gl. h>

#i ncl ude <G/ gl u. h>
#i ncl ude <G./glut. h>
#i ncl ude <stdlib. h>

static G.float spin = 0.0;
void init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
voi d di spl ay(voi d)

gl d ear (G._COLOR BUFFER BI T);
gl PushiMatri x();

gl Rotatef(spin, 0.0, 0.0, 1.0);
gl Color3f(1.0, 1.0, 1.0);

gl Rectf(-25.0, -25.0, 25.0, 25.0);
gl PopMat ri x();
gl ut SwapBuffers();

}
voi d spi nDi spl ay(voi d)
{
spin = spin + 2.0;
if (spin > 360.0)
spin = spin - 360.0
gl ut Post Redi spl ay() ;
}
void reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl Ortho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
voi d nouse(int button, int state, int x, int y)
{
switch (button) {
case GLUT_LEFT_BUTTON
if (state == G.UT_
gl ut I dl eFunc(spi nDi spl ay) ;
br eak;
case GLUT_M DDLE_BUTTON
if (state == G.UT_DOWN)
gl ut I dl eFunc(NULL) ;
br eak;
defaul t:
br eak;
}
}
/*

* Request doubl e buffer display node.
Regi st er nmouse input call back functions

int main(int argc, char** argv)

glutinit(&rgc, argv);
glutlinitD spl ayMbde (G.UT_DOUBLE | GLUT_RGB)
gl utlni t WndowSi ze (250, 250);

gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut MouseFunc(nouse) ;

gl ut Mai nLoop() ;

return O;

OpenGL Programming Guide (Addison-Wesley

Publishing Company)

|+ OpenGL Programming Guide (Addison-Wesley
Publishing Company)

Chapter 2
State Management and Drawing Geometric
Objects

Chapter Objectives
After reading this chapter, you’ll be able to do the following:
® Clear the window to an arbitrary color
® Force any pending drawing to complete
® Draw with any geometric primitive - points, lines, and polygons - in two or three dimension
® Turn states on and off and query state variables
® Control the display of those primitives - for example, draw dashed lines or outlined polygol
® Specify normal vectors at appropriate points on the surface of solid objects
® Usevertex arraydo store and access a lot of geometric data with only a few function calls
® Save and restore several state variables at once
Although you can draw complex and interesting pictures using OpenGL, they’re all constructed
small number of primitive graphical items. This shouldn’t be too surprising - look at what Leonair
Vinci accomplished with just pencils and paintbrushes.
At the highest level of abstraction, there are three basic drawing operations: clearing the windo\
drawing a geometric object, and drawing a raster object. Raster objects, which include such thit
two-dimensional images, bitmaps, and character fonts, are covezédpter 8In this chapter, you
learn how to clear the screen and to draw geometric objects, including points, straight lines, anc
polygons.
You might think to yourself, "Wait a minute. I've seen lots of computer graphics in movies and o
television, and there are plenty of beautifully shaded curved lines and surfaces. How are those
all OpenGL can draw are straight lines and flat polygons?" Even the image on the cover of this
includes a round table and objects on the table that have curved surfaces. It turns out that all th

lines and surfaces you've seen are approximated by large numbers of little flat polygons or stral
in much the same way that the globe on the cover is constructed from a large set of rectangular

The globe doesn’t appear to have a smooth surface because the blocks are relatively large con
the globe. Later in this chapter, we show you how to construct curved lines and surfaces from Ic
small geometric primitives.

This chapter has the following major sections:

® "A Drawing Survival Kit"explains how to clear the window and force drawing to be comple:
also gives you basic information about controlling the color of geometric objects and desct
coordinate system.

® "Describing Points, Lines, and Polygorssfows you what the set of primitive geometric objec
and how to draw them.

® "Basic State Managemerdéscribes how to turn on and off some states (modes) and query
variables.

® "Displaying Points, Lines, and PolygoreXplains what control you have over the details of h
primitives are drawn - for example, what diameter points have, whether lines are solid or o
and whether polygons are outlined or filled.

® "Normal Vectors'discusses how to specify normal vectors for geometric objects and (briefl
what these vectors are for.

® "Vertex Arrays"shows you how to put lots of geometric data into just a few arrays and how
only a few function calls, to render the geometry it describes. Reducing function calls may
increase the efficiency and performance of rendering.

® "Attribute Groups'reveals how to query the current value of state variables and how to sav
restore several related state values all at once.

® "Some Hints for Building Polygonal Models of Surfacegplores the issues and techniques
involved in constructing polygonal approximations to surfaces.

One thing to keep in mind as you read the rest of this chapter is that with OpenGL, unless you ¢
otherwise, every time you issue a drawing command, the specified object is drawn. This might ¢
obvious, but in some systems, you first make a list of things to draw. When your list is complete
tell the graphics hardware to draw the items in the list. The first style is taleediate-modgraphics
and is the default OpenGL style. In addition to using immediate mode, you can choose to save

commands in a list (calleddasplay lis) for later drawing. Immediate-mode graphics are typically e
to program, but display lists are often more effici@itapter #ells you how to use display lists and

why you might want to use them.

A Drawing Survival Kit

This section explains how to clear the window in preparation for drawing, set the color of object:
are to be drawn, and force drawing to be completed. None of these subjects has anything to do
geometric objects in a direct way, but any program that draws geometric objects has to deal wit

issues.

Clearing the Window

Drawing on a computer screen is different from drawing on paper in that the paper starts out wt
all you have to do is draw the picture. On a computer, the memory holding the picture is usually
with the last picture you drew, so you typically need to clear it to some background color before
start to draw the new scene. The color you use for the background depends on the application.
word processor, you might clear to white (the color of the paper) before you begin to draw the t¢
you're drawing a view from a spaceship, you clear to the black of space before beginning to dra
stars, planets, and alien spaceships. Sometimes you might not need to clear the screen at all; fi
example, if the image is the inside of a room, the entire graphics window gets covered as you d
the walls.

At this point, you might be wondering why we keep talking alstearingthe window - why not just
draw a rectangle of the appropriate color that’s large enough to cover the entire window? First,
command to clear a window can be much more efficient than a general-purpose drawing comm
addition, as you'll see i@hapter 30penGL allows you to set the coordinate system, viewing posi
and viewing direction arbitrarily, so it might be difficult to figure out an appropriate size and loca
a window-clearing rectangle. Finally, on many machines, the graphics hardware consists of mul
buffers in addition to the buffer containing colors of the pixels that are displayed. These other bt
must be cleared from time to time, and it's convenient to have a single command that can clear
combination of them. (Se@hapter 1Gor a discussion of all the possible buffers.)

You must also know how the colors of pixels are stored in the graphics hardware krinipfaass
There are two methods of storage. Either the red, green, blue, and alpha (RGBA) values of a pi
be directly stored in the bitplanes, or a single index value that references a color lookup table is
RGBA color-display mode is more commonly used, so most of the examples in this book use it.
Chapter 4or more information about both display modes.) You can safely ignore all references f
values untilChapter 6

As an example, these lines of code clear an RGBA mode window to black:

glClearColor(0.0, 0.0, 0.0, 0.0);
gl G ear (G._COLOR BUFFER BIT);

The first line sets the clearing color to black, and the next command clears the entire window to
current clearing color. The single parametegl@ear () indicates which buffers are to be cleared. Ir
this case, the program clears only the color buffer, where the image displayed on the screen is
Typically, you set the clearing color once, early in your application, and then you clear the buffe
often as necessary. OpenGL keeps track of the current clearing color as a state variable rather
requiring you to specify it each time a buffer is cleared.

Chapter 4andChapter 1Qalk about how other buffers are used. For now, all you need to know is
clearing them is simple. For example, to clear both the color buffer and the depth buffer, you wc
the following sequence of commands:

glClearColor(0.0, 0.0, 0.0, 0.0);
gl C earDept h(1.0);

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

In this case, the call giClear Color () is the same as before, tji€lear Depth() command specifies tl
value to which every pixel of the depth buffer is to be set, and the parametegliCldae() command
now consists of the bitwise OR of all the buffers to be cleared. The following sumnuhG/ ez ()
includes a table that lists the buffers that can be cleared, their names, and the chapter where e
buffer is discussed.

void glClearColor(GLclampfred, GLclampfgreen GLclampfblue,

GLclampfalpha);
Sets the current clearing color for use in clearing color buffers in RGBA modeCli@peer 4for
more information on RGBA mode.) Trieel, green blue, andalphavalues are clamped if
necessary to the range [0,1]. The default clearing color is (0, 0, 0, 0), which is black.

void glClear(GLbitfield mask;
Clears the specified buffers to their current clearing values.midskargument is a bitwise-OR«
combination of the values listedTiable 2-1

Table 2-1 : Clearing Buffers

Buffer Name Reference
Color buffer GL_COLOR_BUFFER_BIT | Chapter 4
Depth buffer GL_DEPTH_BUFFER_BIT Chapter 10

Accumulation buffer| GL_ACCUM_BUFFER_BIT | Chapter 10

Stencil buffer GL_STENCIL_BUFFER_BIT| Chapter 10

Before issuing a command to clear multiple buffers, you have to set the values to which each bi
be cleared if you want something other than the default RGBA color, depth value, accumulation
and stencil index. In addition to tigeClear Color () andglClear Depth() commands that set the curre
values for clearing the color and depth buffgr€lear I ndex(), glClear Accum(), andglClear Stencil()
specify thecolor index accumulation color, and stencil index used to clear the corresponding buf
(SeeChapter 4andChapter 1Gor descriptions of these buffers and their uses.)

OpenGL allows you to specify multiple buffers because clearing is generally a slow operation, s
every pixel in the window (possibly millions) is touched, and some graphics hardware allows se
buffers to be cleared simultaneously. Hardware that doesn’t support simultaneous clears perfor
sequentially. The difference between

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

and

gl d ear (GL_COLOR_BUFFER BI T);
gl O ear (GL_DEPTH_BUFFER BI T);

is that although both have the same final effect, the first example might run faster on many mac
certainly won’t run more slowly.

Specifying a Color

With OpenGL, the description of the shape of an object being drawn is independent of the desc
its color. Whenever a particular geometric object is drawn, it's drawn using the currently specifie
coloring scheme. The coloring scheme might be as simple as "draw everything in fire-engine re
might be as complicated as "assume the object is made out of blue plastic, that there’s a yellow
pointed in such and such a direction, and that there’s a general low-level reddish-brown light
everywhere else." In general, an OpenGL programmer first sets the color or coloring scheme ar
draws the objects. Until the color or coloring scheme is changed, all objects are drawn in that cc
using that coloring scheme. This method helps OpenGL achieve higher drawing performance tt
would result if it didn’t keep track of the current color.

For example, the pseudocode

set _current_color(red);
draw_obj ect (A);

draw_obj ect (B);

set _current_col or(green);
set _current_col or (bl ue);
draw _object (C);

draws objects A and B in red, and object C in blue. The command on the fourth line that sets th
color to green is wasted.

Coloring, lighting, and shading are all large topics with entire chapters or large sections devotec
To draw geometric primitives that can be seen, however, you need some basic knowledge of he
the current color; this information is provided in the next paragraphsCtsaster 4andChapter Sor
details on these topics.)

To set a color, use the commagi@olor 3f(). It takes three parameters, all of which are floating-poi
numbers between 0.0 and 1.0. The parameters are, in order, the red, green, @rdgouentsf the
color. You can think of these three values as specifying a "mix" of colors: 0.0 means don't use ¢
that component, and 1.0 means use all you can of that component. Thus, the code

gl Col or3f (1.0, 0.0, 0.0);

makes the brightest red the system can draw, with no green or blue components. All zeros mak
in contrast, all ones makes white. Setting all three components to 0.5 yields gray (halfway betw:
and white). Here are eight commands and the colors they would set.

gl Col or3f (0.0, 0.0, 0.0); bl ack

gl Color3f(1.0, 0.0, 0.0); red

gl Color3f(0.0, 1.0, 0.0); green

gl Color3f(1.0, 1.0, 0.0); yel | ow
gl Col or3f (0.0, 0.0, 1.0); bl ue

gl Color3f(1.0, 0.0, 1.0); magent a

gl Color3f(0.0, 1.0, 1.0); cyan

gl Color3f(1.0, 1.0, 0); white

You might have noticed earlier that the routine to set the clearing gisidear Color (), takes four
parameters, the first three of which match the parametegiGotor 3f(). The fourth parameter is the
alpha value; it's covered in detail IBlending" in Chapter 6For now, set the fourth parameter of
glClear Color() to 0.0, which is its default value.

Forcing Completion of Drawing

As you saw if'OpenGL Rendering Pipeline" in Chaptemiost modern graphics systems can be
thought of as an assembly line. The main central processing unit (CPU) issues a drawing comn
Perhaps other hardware does geometric transformations. Clipping is performed, followed by sh:
and/or texturing. Finally, the values are written into the bitplanes for display. In high-end archite
each of these operations is performed by a different piece of hardware that's been designed to
its particular task quickly. In such an architecture, there’s no need for the CPU to wait for each «
command to complete before issuing the next one. While the CPU is sending a vertex down the
the transformation hardware is working on transforming the last one sent, the one before that is
clipped, and so on. In such a system, if the CPU waited for each command to complete before i
the next, there could be a huge performance penalty.

In addition, the application might be running on more than one machine. For example, suppose
main program is running elsewhere (on a machine called the client) and that you're viewing the
of the drawing on your workstation or terminal (the server), which is connected by a network to-
client. In that case, it might be horribly inefficient to send each command over the network one
since considerable overhead is often associated with each network transmission. Usually, the ¢
gathers a collection of commands into a single network packet before sending it. Unfortunately,
network code on the client typically has no way of knowing that the graphics program is finishec
drawing a frame or scene. In the worst case, it waits forever for enough additional drawing com
fill a packet, and you never see the completed drawing.

For this reason, OpenGL provides the comngltlish(), which forces the client to send the netwo
packet even though it might not be full. Where there is no network and all commands are truly €
immediately on the serveglFlush() might have no effect. However, if you're writing a program the
you want to work properly both with and without a network, include a cglHaish() at the end of
each frame or scene. Note tigitlush() doesn’t wait for the drawing to complete - it just forces the
drawing to begin execution, thereby guaranteeing that all previous comexauigan finite time evel
if no further rendering commands are executed.

There are other situations wheté&lush() is useful.

® Software renderers that build image in system memory and don’t want to constantly updat
screen.

® Implementations that gather sets of rendering commands to amortize start-up costs. The
aforementioned network transmission example is one instance of this.

void glFlush(void);

Forces previously issued OpenGL commands to begin execution, thus guaranteeing that t
complete in finite time.

A few commands - for example, commands that swap buffers in double-buffer mode - automati
flush pending commands onto the network before they can occur.

If glFlush() isn’t sufficient for you, tryglFinish(). This command flushes the networkgislush() does
and then waits for notification from the graphics hardware or network indicating that the drawing
complete in the framebuffer. You might need to gisenish() if you want to synchronize tasks - for

example, to make sure that your three-dimensional rendering is on the screen before you use C
PostScript to draw labels on top of the rendering. Another example would be to ensure that the
is complete before it begins to accept user input. After you isgil@rash() command, your graphics
process is blocked until it receives notification from the graphics hardware that the drawing is cc
Keep in mind that excessive useglifinish() can reduce the performance of your application, espe
if you’re running over a network, because it requires round-trip communicat@gfluh() is sufficien
for your needs, use it insteadgbFinish().

void glFinish(void);
Forces all previously issued OpenGL commands to complete. This command doesn’t retu
all effects from previous commands are fully realized.

Coordinate System Survival Kit

Whenever you initially open a window or later move or resize that window, the window system \
send an event to notify you. If you are using GLUT, the notification is automated; whatever rout
been registered tglutReshapeFunc() will be called. You must register a callback function that will

® Reestablish the rectangular region that will be the new rendering canvas
® Define the coordinate system to which objects will be drawn

In Chapter 3you’ll see how to define three-dimensional coordinate systems, but right now, just c
simple, basic two-dimensional coordinate system into which you can draw a few objects. Call
glutReshapeFunc(reshape), wherer eshape() is the following function shown iBExample 2-1

Example 2-1: Reshape Callback Function

void reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity ();
gluGrtho2D (0.0, (G.double) w, 0.0, (G.double) h);

}

The internals of GLUT will pass this function two arguments: the width and height, in pixels, of t
new, moved, or resized windoglViewport() adjusts the pixel rectangle for drawing to be the entii
new window. The next three routines adjust the coordinate system for drawing so that the lowetr
corner is (0, 0), and the upper-right cornemish) (SeeFigure 2-).

To explain it another way, think about a piece of graphing papemvEmelh values inreshape()
represent how many columns and rows of squares are on your graph paper. Then you have to |
on the graph paper. TighuOrtho2D() routine puts the origin, (0, 0), all the way in the lowest, leftrr
square, and makes each square represent one unit. Now when you render the points, lines, anc
in the rest of this chapter, they will appear on this paper in easily predictable squares. (For now
your objects two-dimensional.)

{50, 50)

{0, 0)

Figure 2-1: Coordinate System Defined by w = 50, h =50

Describing Points, Lines, and Polygons

This section explains how to describe OpenGL geometric primitives. All geometric primitives are
eventually described in terms of theartices- coordinates that define the points themselves, the
endpoints of line segments, or the corners of polygons. The next section discusses how these
are displayed and what control you have over their display.

What Are Points, Lines, and Polygons?

You probably have a fairly good idea of what a mathematician means by thetentéine, and
polygon. The OpenGL meanings are similar, but not quite the same.

One difference comes from the limitations of computer-based calculations. In any OpenGL
implementation, floating-point calculations are of finite precision, and they have round-off errors
Consequently, the coordinates of OpenGL points, lines, and polygons suffer from the same prol

Another more important difference arises from the limitations of a raster graphics display. On st
display, the smallest displayable unit is a pixel, and although pixels might be less than 1/100 of
wide, they are still much larger than the mathematician’s concepts of infinitely small (for points)
infinitely thin (for lines). When OpenGL performs calculations, it assumes points are represente
vectors of floating-point numbers. However, a point is typically (but not always) drawn as a sing
and many different points with slightly different coordinates could be drawn by OpenGL on the ¢
pixel.

Points

A point is represented by a set of floating-point numbers called a vertex. All internal calculations
done as if vertices are three-dimensional. Vertices specified by the user as two-dimensional (th
only x andy coordinates) are assigned eoordinate equal to zero by OpenGL.

Advanced

OpenGL works in the homogeneous coordinates of three-dimensional projective geometry, so f
internal calculations, all vertices are represented with four floating-point coordirages (). If wis
different from zero, these coordinates correspond to the Euclidean three-dimensional\womi(
z/w). You can specify the coordinate in OpenGL commands, but that’s rarely done. ivtb@ordinat:
isn't specified, it's understood to be 1.0. (2gmendix Ffor more information about homogeneous
coordinate systems.)

Lines

In OpenGL, the terrine refers to dine segmentnot the mathematician’s version that extends to
infinity in both directions. There are easy ways to specify a connected series of line segments, «
closed, connected series of segmentskgpae 2-3. In all cases, though, the lines constituting the
connected series are specified in terms of the vertices at their endpoints.

>

Figure 2-2: Two Connected Series of Line Segments

Polygons

Polygons are the areas enclosed by single closed loops of line segments, where the line segme
specified by the vertices at their endpoints. Polygons are typically drawn with the pixels in the ir
filled in, but you can also draw them as outlines or a set of points'P8kgon Details.)

In general, polygons can be complicated, so OpenGL makes some strong restrictions on what ¢
a primitive polygon. First, the edges of OpenGL polygons can’t intersect (a mathematician woul
polygon satisfying this conditionsample polygoj Second, OpenGL polygons mustdoavex
meaning that they cannot have indentations. Stated precisely, a region is convex if, given any t\
in the interior, the line segment joining them is also in the interiorFeee 2-3for some examples ¢
valid and invalid polygons. OpenGL, however, doesn’t restrict the number of line segments mak
the boundary of a convex polygon. Note that polygons with holes can’t be described. They are
nonconvex, and they can’'t be drawn with a boundary made up of a single closed loop. Be awar
you present OpenGL with a nonconvex filled polygon, it might not draw it as you expect. For ins
on most systems no more than the convex hull of the polygon would be filled. On some system:
than the convex hull might be filled.

IO XEQ

Valid Invaltd

Figure 2-3: Valid and Invalid Polygons

The reason for the OpenGL restrictions on valid polygon types is that it's simpler to provide fast
polygon-rendering hardware for that restricted class of polygons. Simple polygons can be rende
quickly. The difficult cases are hard to detect quickly. So for maximum performance, OpenGL c
its fingers and assumes the polygons are simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex polygons, or polygons witt
Since all such polygons can be formed from unions of simple convex polygons, some routines t
more complex objects are provided in the GLU library. These routines take complex description
tessellate them, or break them down into groups of the simpler OpenGL polygons that can then
rendered. (Se&olygon Tessellation" in Chapter #dr more information about the tessellation
routines.)

Since OpenGL vertices are always three-dimensional, the points forming the boundary of a part
polygon don’t necessarily lie on the same plane in space. (Of course, they do in many cases zif
coordinates are zero, for example, or if the polygon is a triangle.) If a polygon’s vertices don't lie
same plane, then after various rotations in space, changes in the viewpoint, and projection ontc
display screen, the points might no longer form a simple convex polygon. For example, imagine
four-pointquadrilateralwhere the points are slightly out of plane, and look at it almost edge-on. *
can get a nonsimple polygon that resembles a bow tie, as shéwgure 2-4 which isn’t guaranteed 1
be rendered correctly. This situation isn’t all that unusual if you approximate curved surfaces by
guadrilaterals made of points lying on the true surface. You can always avoid the problem by us
triangles, since any three points always lie on a plane.

Figure 2-4 : Nonplanar Polygon Transformed to Nonsimple Polygon

Rectangles

Since rectangles are so common in graphics applications, OpenGL provides a filled-rectangle d
primitive, glRect*(). You can draw a rectangle as a polygon, as descrid€@penGL Geometric
Drawing Primitives,"but your particular implementation of OpenGL might have optimgRect* ()
for rectangles.

void glRect{sifd}(TYPE1, TYPE/1, TYPE2 TYPE/2);

void glRect{sifd}\(TYPEV1, TYPEV2);
Draws the rectangle defined by the corner poirtls) and &2, y9. The rectangle lies in the
planez=0 and has sides parallel to the andy-axes. If the vector form of the function is used
corners are given by two pointers to arrays, each of which contains ghpair.

Note that although the rectangle begins with a particular orientation in three-dimensional space
x-y plane and parallel to the axes), you can change this by applying rotations or other transform
(SeeChapter Jor information about how to do this.)

Curves and Curved Surfaces

Any smoothly curved line or surface can be approximated - to any arbitrary degree of accuracy
short line segments or small polygonal regions. Thus, subdividing curved lines and surfaces sui
and then approximating them with straight line segments or flat polygons makes them appear c
(seeFigure 2-5. If you're skeptical that this really works, imagine subdividing until each line segr
or polygon is so tiny that it's smaller than a pixel on the screen.

Figure 2-5: Approximating Curves

Even though curves aren’t geometric primitives, OpenGL does provide some direct support for
subdividing and drawing them. (S€aapter 1Zor information about how to draw curves and curve
surfaces.)

Specifying Vertices

With OpenGL, all geometric objects are ultimately described as an ordered set of vertices. You
glVertex*() command to specify a vertex.

void glVertex{234}{sifd}[v](TYPEcoord9;
Specifies a vertex for use in describing a geometric object. You can supply up to four coor
(x,y, z, Wfor a particular vertex or as few as twg, §) by selecting the appropriate version of
command. If you use a version that doesn’t explicitly speoifyv, zis understood to be 0 and
is understood to be 1. Calls ghVertex* () are only effective betweergiBegin() andglEnd()
pair.

Example 2-2orovides some examples of usgly ertex*().

Example 2-2 : Legal Uses of glVertex*()

gl Vertex2s(2, 3);
gl Vertex3d(0.0, O.
gl Vertex4f (2.3, 1.

0, 3.1415926535898);
0, -2.2, 2.0);

GLdoubl e dvect[3] = {5.0, 9.0, 1992.0};
gl Vert ex3dv(dvect);

The first example represents a vertex with three-dimensional coordinates (2, 3, 0). (Remember
isn't specified, the coordinate is understood to be 0.) The coordinates in the second example ar
0.0, 3.1415926535898) (double-precision floating-point numbers). The third example represent:
vertex with three-dimensional coordinates (1.15, 0.5, -1.1). (Remember tikajth@dz coordinates
are eventually divided by the coordinate.) In the final exampldyectis a pointer to an array of three
double-precision floating-point numbers.

On some machines, the vector forngbfertex*() is more efficient, since only a single parameter n
to be passed to the graphics subsystem. Special hardware might be able to send a whole serie:
coordinates in a single batch. If your machine is like this, it's to your advantage to arrange your
that the vertex coordinates are packed sequentially in memory. In this case, there may be some
performance by using the vertex array operations of OpenGL:'{8eex Arrays.)

OpenGL Geometric Drawing Primitives

Now that you’ve seen how to specify vertices, you still need to know how to tell OpenGL to cree
of points, a line, or a polygon from those vertices. To do this, you bracket each set of vertices b
call toglBegin() and a call tglEnd(). The argument passeddiBegin() determines what sort of
geometric primitive is constructed from the vertices. For exariplemnple 2-3pecifies the vertices f
the polygon shown ifigure 2-6

Example 2-3 : Filled Polygon

gl Begi n(GL_POLYGON) ;
gl Vertex2f (0.0,
gl Vertex2f (0.0,
gl Vertex2f (4.0,
gl Vertex2f (6.0
gl Vertex2f (4.0,
gl End() ;

CRWWwo
o
N

N
s

GL_POLYGON GL_FOINTS

Figure 2-6 : Drawing a Polygon or a Set of Points

If you had used GL_POINTS instead of GL_POLYGON, the primitive would have been simply t|
points shown irFigure 2-6 Table 2-2in the following function summary f@iBegin() lists the ten
possible arguments and the corresponding type of primitive.

void glBegin(GLenummode;
Marks the beginning of a vertex-data list that describes a geometric primitive. The type of
primitive is indicated bynode which can be any of the values showmaile 2-2

Table 2-2 : Geometric Primitive Names and Meanings

Value Meaning

GL_POINTS individual points

GL_LINES pairs of vertices interpreted as individual line segments
GL_LINE_STRIP series of connected line segments

GL_LINE_LOOP same as above, with a segment added between last and first vgrtice
GL_TRIANGLES triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP || linked strip of triangles

GL_TRIANGLE_FAN linked fan of triangles

GL_QUADS guadruples of vertices interpreted as four-sided polygons
GL_QUAD_STRIP linked strip of quadrilaterals
GL_POLYGON boundary of a simple, convex polygon

void glEnd(void);
Marks the end of a vertex-data list.

Figure 2-7shows examples of all the geometric primitives listetlahle 2-2 The paragraphs that
follow the figure describe the pixels that are drawn for each of the objects. Note that in addition
points, several types of lines and polygons are defined. Obviously, you can find many ways to ¢
same primitive. The method you choose depends on your vertex data.

[2]
i -yd
vie my2

GL_FOINTS

GL_LINES

Wi VB
<7
D

GL_TRIANGLES

vh
w2
iy
v

GL_QUADS

wil ',
.bg:g
o . i vz

GL_LINE_STRIP

v v w4 vi -
X
w7 ﬂg 5 vt

¥6

GL_TRIAMGLE_STRIP GL_TRIANGLE_FARN
w7
’
ﬁ vG v v2
v2 v U
w3
GL_QUAD_STRIP GL_POLYEON

Figure 2-7 : Geometric Primitive Types

As you read the following descriptions, assume thadrtices (vO, v1, v2, ..., vn-1) are described
between aBegin() andglEnd() pair.

GL_POINTS

GL_LINES

GL_LINE_STRIP

GL_LINE_LOOP

GL_TRIANGLES

GL_TRIANGLE_STRIP

Draws a point at each of timevertices.

Draws a series of unconnected line segments. Segments are drawr
between vO and v1, between v2 and v3, and so orislbdd, the last
segment is drawn between vn-3 and vn-2, and vn-1 is ignored.

Draws a line segment from vO to v1, then from v1 to v2, and so on,
finally drawing the segment from vn-2 to vn-1. Thus, a totatbline
segments are drawn. Nothing is drawn untesslarger than 1. There
are no restrictions on the vertices describing a line strip (or a line lo
the lines can intersect arbitrarily.

Same as GL_LINE_STRIP, except that a final line segment is draw
from vn-1 to vO, completing a loop.

Draws a series of triangles (three-sided polygons) using vertices vO
v2, then v3, v4, v5, and so onnlisn’t an exact multiple of 3, the final
one or two vertices are ignored.

Draws a series of triangles (three-sided polygons) using vertices vO

GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

GL_POLYGON

v2, then v2, v1, v3 (note the order), then v2, v3, v4, and so on. The
ordering is to ensure that the triangles are all drawn with the same
orientation so that the strip can correctly form part of a surface.
Preserving the orientation is important for some operations, such as
culling. (Se€'Reversing and Culling Polygon Facga"'must be at least
3 for anything to be drawn.

Same as GL_TRIANGLE_STRIP, except that the vertices are vO, Vv:
v2, then vO, v2, v3, then vO, v3, v4, and so on Sgare 2-7.

Draws a series of quadrilaterals (four-sided polygons) using vertice:
vl, v2, v3, then v4, v5, v6, v7, and so om Ién’t a multiple of 4, the
final one, two, or three vertices are ignored.

Draws a series of quadrilaterals (four-sided polygons) beginning wit
v0, v1, v3, v2, then v2, v3, v5, v4, then v4, v5, v7, v6, and so on (se
Figure 2-7. n must be at least 4 before anything is drawn.i$f odd,

the final vertex is ignored.

Draws a polygon using the points vO, ..., vn-1 as verticesist be at
least 3, or nothing is drawn. In addition, the polygon specified must
intersect itself and must be convex. If the vertices don’t satisfy thest
conditions, the results are unpredictable.

Restrictions on Using glBegin() and glEnd()

The most important information about vertices is their coordinates, which are specified by the

glVertex*() command. You can also supply additional vertex-specific data for each vertex - a cc
normal vector, texture coordinates, or any combination of these - using special commands. In a
few other commands are valid betweegiBegin() andglEnd() pair. Table 2-3contains a complete lis

of such valid commands.

Table 2-3: Valid Commands between glBegin() and glEnd()

Command Purpose of Command Reference
glVertex*() set vertex coordinates Chapter 2
glColor*() set current color Chapter 4
glindex*() set current color index Chapter 4
gINormal*() set normal vector coordinategs Chapter 2
glTexCoord*() set texture coordinates Chapter 9
glEdgeFlag*() control drawing of edges Chapter 2
glMaterial*() set material properties Chapter 5
glArrayElement() extract vertex array data Chapter 2
glEvalCoord*(), glEvalPoint*()| generate coordinates Chapter 12
glCallList(), glCallLists() execute display list(s) Chapter 7

No other OpenGL commands are valid betwegtBagin() andglEnd() pair, and making most other
OpenGL calls generates an error. Some vertex array commands, gliehaideClientState() and
glVertexPointer (), when called betweegiBegin() andglEnd(), have undefined behavior but do not
necessarily generate an error. (Also, routines related to OpenGL, sul&tf @goutines have undefine
behavior betweeglBegin() andglEnd().) These cases should be avoided, and debugging them m
more difficult.

Note, however, that only OpenGL commands are restricted; you can certainly include other
programming-language constructs (except for calls, such as the aforemegkin@doutines). For
example Example 2-4raws an outlined circle.

Example 2-4 : Other Constructs between gIiBegin() and glEnd()

#define Pl 3.1415926535898

Gint circle_points = 100;

gl Begi n(GL_LI NE_LCOP) ;

for (i = 0; i <circle_points; i++) {
angle = 2*Pl*i/circl e_points;
gl Vertex2f (cos(angle), sin(angle));

}
gl End() ;

Note: This example isn’t the most efficient way to draw a circle, especially if you intend to do it

repeatedly. The graphics commands used are typically very fast, but this code calculates an an
calls thesin() andcos() routines for each vertex; in addition, there’s the loop overhead. (Another v
calculate the vertices of a circle is to use a GLU routine;@aadrics: Rendering Spheres, Cylinder
and Disks" in Chapter 1}1If you need to draw lots of circles, calculate the coordinates of the verti
once and save them in an array and create a display lisTiiagéer J, or use vertex arrays to render
them.

Unless they are being compiled into a display listgldlertex* () commands should appear between
someglBegin() andglEnd() combination. (If they appear elsewhere, they don’t accomplish anythi
they appear in a display list, they are executed only if they appear betgi@agia() and aglEnd().
(SeeChapter #or more information about display lists.)

Although many commands are allowed betwgi@egin() andglEnd(), vertices are generated only
when aglVertex* () command is issued. At the momeh¥ertex*() is called, OpenGL assigns the
resulting vertex the current color, texture coordinates, normal vector information, and so on. To
look at the following code sequence. The first point is drawn in red, and the second and third or
blue, despite the extra color commands.

gl Begi n(GL_PQA NTS) ;

gl Color3f(0.0, 1.0, 0.0); /* green */
gl Col or3f (1.0, 0.0, 0.0); [* red */

gl Vertex(...);

gl Color3f(1.0, 1.0, 0.0); /* yellow */
gl Color3f (0.0, 0.0, 1.0); /* blue */
gl Vertex(...);

gl Vertex(...);

gl End() ;

You can use any combination of the 24 versions offtffertex* () command betweegiBegin() and
glEnd(), although in real applications all the calls in any particular instance tend to be of the san
If your vertex-data specification is consistent and repetitive (for exagi@lelor*, glVertex*,
glColor*, glVertex*,...), you may enhance your program’s performance by using vertex arrays. (
"Vertex Arrays.)

Basic State M anagement

In the previous section, you saw an example of a state variable, the current RGBA color, and h¢
be associated with a primitive. OpenGL maintains many states and state variables. An object m
rendered with lighting, texturing, hidden surface removal, fog, or some other states affecting its
appearance.

By default, most of these states are initially inactive. These states may be costly to activate; for
turning on texture mapping will almost certainly slow down the speed of rendering a primitive.
However, the quality of the image will improve and look more realistic, due to the enhanced gra
capabilities.

To turn on and off many of these states, use these two simple commands:

void glEnable(GLenumcap);

void glDisable(GLenumcap);
glEnable() turns on a capability, andIDisable() turns it off. There are over 40 enumerated
values that can be passed as a parametgtiEnable() or glDisable(). Some examples of these
are GL_BLEND (which controls blending RGBA values), GL_DEPTH_TEST (which contro
depth comparisons and updates to the depth buffer), GL_FOG (which controls fog),
GL_LINE_STIPPLE (patterned lines), GL_LIGHTING (you get the idea), and so forth.

You can also check if a state is currently enabled or disabled.

GLbooleangll sEnabled(GLenumcapability)
Returns GL_TRUE or GL_FALSE, depending upon whether the queried capability is curre
activated.

The states you have just seen have two settings: on and off. However, most OpenGL routines ¢
for more complicated state variables. For example, the roglt@etor 3f() sets three values, which ar
part of the GL_CURRENT_COLOR state. There are five querying routines used to find out wha
are set for many states:

void glGetBooleanv(GLenumpname GLboolean paramg;

void gl Getl ntegerv(GLenumpname GLint *paramg;

void glGetFloatv(GLenumpname GLfloat *paramg;

void glGetDoublev(GLenumpname GLdouble paramsg;

void glGetPointerv(GLenumpname GLvoid **paramg;
Obtains Boolean, integer, floating-point, double-precision, or pointer state variablegnginee
argument is a symbolic constant indicating the state variable to returnparainsis a pointer tc
an array of the indicated type in which to place the returned data. See the taBlgseindix Bfor
the possible values fgname For example, to get the current RGBA color, a tablappendix B
suggests you usgGetl ntegerv(GL_CURRENT_COLORyarams or
glGetFloatv(GL_CURRENT_COLORaramg. A type conversion is performed if necessary t
return the desired variable as the requested data type.

These querying routines handle most, but not all, requests for obtaining state informatitfh¢See
Query Commands" in Appendix r an additional 16 querying routines.)

Displaying Points, Lines, and Polygons
By default, a point is drawn as a single pixel on the screen, a line is drawn solid and one pixel w

polygons are drawn solidly filled in. The following paragraphs discuss the details of how to char
these default display modes.

Point Detalils

To control the size of a rendered point, gdeintSize() and supply the desired size in pixels as the
argument.

void glPointSize(GLfloatsizé;
Sets the width in pixels for rendered poirsigemust be greater than 0.0 and by default is 1.0

The actual collection of pixels on the screen which are drawn for various point widths depends «
whether antialiasing is enabled. (Antialiasing is a technique for smoothing points and lines as th
rendered; se®Antialiasing” in Chapter @or more detail.) If antialiasing is disabled (the default),
fractional widths are rounded to integer widths, and a screen-aligned square region of pixels is |
Thus, if the width is 1.0, the square is 1 pixel by 1 pixel; if the width is 2.0, the square is 2 pixels
pixels, and so on.

With antialiasing enabled, a circulgroup of pixels is drawn, and the pixels on the boundaries are
typically drawn at less than full intensity to give the edge a smoother appearance. In this mode,
non-integer widths aren’t rounded.

Most OpenGL implementations support very large point sizes. The maximum size for antialiase
is queryable, but the same information is not available for standard, aliased points. A particular
implementation, however, might limit the size of standard, aliased points to not less than its ma:
antialiased point size, rounded to the nearest integer value. You can obtain this floating-point ve
using GL_POINT_SIZE_RANGE withlGetFloatv().

Line Detalils

With OpenGL, you can specify lines with different widths and lines thagtgmgledin various ways -
dotted, dashed, drawn with alternating dots and dashes, and so on.

WidelLines

void glLineWidth(GLfloat width);
Sets the width in pixels for rendered lineggith must be greater than 0.0 and by default is 1.0

The actual rendering of lines is affected by the antialiasing mode, in the same way as for points
"Antialiasing” in Chapter § Without antialiasing, widths of 1, 2, and 3 draw lines 1, 2, and 3 pixel
wide. With antialiasing enabled, non-integer line widths are possible, and pixels on the boundar
typically drawn at less than full intensity. As with point sizes, a particular OpenGL implementatic
might limit the width of nonantialiased lines to its maximum antialiased line width, rounded to th
nearest integer value. You can obtain this floating-point value by using GL_LINE_WIDTH_RAN
with glGetFloatv().

Note: Keep in mind that by default lines are 1 pixel wide, so they appear wider on lower-resoluti
screens. For computer displays, this isn’t typically an issue, but if you're using OpenGL to rende
high-resolution plotter, 1-pixel lines might be nearly invisible. To obtain resolution-independent |
widths, you need to take into account the physical dimensions of pixels.

Advanced
With nonantialiased wide lines, the line width isn’t measured perpendicular to the line. Instead, |

measured in thg direction if the absolute value of the slope is less than 1.0; otherwise, it's meas
thex direction. The rendering of an antialiased line is exactly equivalent to the rendering of a fills

rectangle of the given width, centered on the exact line.
Stippled Lines

To make stippled (dotted or dashed) lines, you use the comgHameStipple() to define the stipple
pattern, and then you enable line stippling witBnable().

gl Li neSti ppl e(1, Ox3F07);
gl Enabl e(G._LI NE_STI PPLE) ;

void glLineStipple(GLint factor, GLushortpatterr);

Sets the current stippling pattern for lines. gadternargument is a 16-bit series of Os and 1s
and it's repeated as necessary to stipple a given line. A 1 indicates that drawing occurs, al
it does not, on a pixel-by-pixel basis, beginning with the low-order bit of the pattern. The pi
can be stretched out by usifgctor, which multiplies each subseries of consecutive 1s and C
Thus, if three consecutive 1s appear in the pattern, they’re stretched tdesitoifis 2. factor is
clamped to lie between 1 and 255. Line stippling must be enabled by passing GL_LINE_S
to glEnable(); it's disabled by passing the same argumerdl @isable().

With the preceding example and the pattern 0x3F07 (which translates to 0011111100000111 in
a line would be drawn with 3 pixels on, then 5 off, 6 on, and 2 off. (If this seems backward, reme
that the low-order bit is used first.) iéctor had been 2, the pattern would have been elongated: 6
on, 10 off, 12 on, and 4 offigure 2-8shows lines drawn with different patterns and repeat factors
you don’t enable line stippling, drawing proceeds gmtternwere OxFFFF andiactor 1. (Use
glDisable() with GL_LINE_STIPPLE to disable stippling.) Note that stippling can be used in
combination with wide lines to produce wide stippled lines.

PATTERM FACTOR

Ox00FF 1

0x00FF 2

OxOCOF L - — - —

OxOCOF g — -

OXAAAA e
OxARAS, 8 - — e e e e = =
OXAARA i - — - — - — —
OxAARA 4 - — — — — =

Figure 2-8 : Stippled Lines

One way to think of the stippling is that as the line is being drawn, the pattern is shifted by 1 bit
time a pixel is drawn (ofactor pixels are drawn, ifactorisn’t 1). When a series of connected line
segments is drawn between a sirgiigegin() andglEnd(), the pattern continues to shift as one seqgi
turns into the next. This way, a stippling pattern continues across a series of connected line sec
WhenglEnd() is executed, the pattern is reset, and - if more lines are drawn before stippling is ¢
- the stippling restarts at the beginning of the pattern. If you're drawing lines with GL_LINES, thq
pattern resets for each independent line.

Example 2-Sllustrates the results of drawing with a couple of different stipple patterns and line v
It also illustrates what happens if the lines are drawn as a series of individual segments instead

single connected line strip. The results of running the program appgegune 2-9

Figure 2-9: Wide Stippled Lines

Example 2-5: Line Stipple Patterns: lines.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl ut. h>

#def i ne drawOnelLi ne(x1,yl, x2,y2) glBegin(G_LINES); \
gl Vertex2f ((x1),(yl)); gl Vertex2f ((x2),(y2)); gl End();

void init(void)

glClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._FLAT);

voi d di spl ay(voi d)
int i;

gl Clear (G_COLOR BUFFER BIT);
/* select white for all lines */
gl Color3f (1.0, 1.0, 1.0);

/* in 1st row, 3 lines, each with a different stipple */
gl Enabl e (G._LI NE_STI PPLE)

gl LineStipple (1, 0x0101); /* dotted */
dr awOneLi ne (50.0, 125.0, 150.0, 125.0);
gl LineStipple (1, OxO0FF); [/* dashed */
drawOneLi ne (150.0, 125.0, 250.0, 125.0);
gl LineStipple (1, 0x1C47); [/* dash/dot/dash */
dr awOneLi ne (250.0, 125.0, 350.0, 125.0);
/* in 2nd row, 3 wide lines, each with different stipple */
gl LineWdth (5.0);
gl LineStipple (1, 0x0101); /* dotted */
dr awOneLi ne (50.0, 100.0, 150.0, 100.0);
gl LineStipple (1, OxO0FF); [/* dashed */
dr awOnelLi ne (150.0, 100.0, 250.0, 100.0);
gl LineStipple (1, 0x1C47); [/* dash/dot/dash */
dr awOnelLi ne (250.0, 100.0, 350.0, 100.0);
gl LineWdth (1.0);

in 3rd row, 6 lines, with dash/dot/dash stipple */
as part of a single connected line strip */
gl LineStipple (1, 0x1C47); [/* dash/dot/dash */

*

~ ~

gl Begin (G._LI NE_STRI P)
for (i =0; i <7; i++4)

gl Vertex2f (50.0 + ((CG.float) i * 50.0), 75.0);
gl End ();

/* in 4th row, 6 independent |ines with sane stipple */
for (i =0; i <6; i++) {
drawOneLi ne (50.0 + ((G.float) i * 50.0), 50.0,
50.0 + ((Q.float)(i+1) * 50.0), 50.0);
}

in 5th row, 1 line, with dash/dot/dash stipple */
and a stipple repeat factor of 5 */
gl LineStipple (5 0x1C47); [/* dash/dot/dash */
drawOneLi ne (50.0, 25.0, 350.0, 25.0);

*

~ ~

gl Di sabl e (GL_LI NE_STI PPLE);

gl Flush ();
}
voi d reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode (G._PRQIECTI ON);
gl Loadl dentity ();
gluOrtho2D (0.0, (G.double) w, 0.0, (G.double) h);
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutinitD spl ayMbde (GLUT_SINGLE | GLUT_RGB)
gl utlni t WndowSi ze (400, 150);

gl utlni t WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

}
Polygon Details

Polygons are typically drawn by filling in all the pixels enclosed within the boundary, but you cat
draw them as outlined polygons or simply as points at the vertices. A filled polygon might be sol
filled or stippled with a certain pattern. Although the exact details are omitted here, filled polygol
drawn in such a way that if adjacent polygons share an edge or vertex, the pixels making up the
vertex are drawn exactly once - they’re included in only one of the polygons. This is done so the¢
partially transparent polygons don’t have their edges drawn twice, which would make those edg
appear darker (or brighter, depending on what color you're drawing with). Note that it might rest
narrow polygons having no filled pixels in one or more rows or columns of pixels. Antialiasing
polygons is more complicated than for points and lines. '(&ealiasing” in Chapter Gor details.)

Polygons as Points, Outlines, or Solids

A polygon has two sides - front and back - and might be rendered differently depending on whic
facing the viewer. This allows you to have cutaway views of solid objects in which there is an ot

distinction between the parts that are inside and those that are outside. By default, both front ar
faces are drawn in the same way. To change this, or to draw only outlines or vertices, use
glPolygonM ode().

void glPolygonMode(GLenumface GLenummode);
Controls the drawing mode for a polygon’s front and back faces. The parafaetsan be
GL_FRONT_AND_BACK, GL_FRONT, or GL_BAGHKodecan be GL_POINT, GL_LINE, or
GL_FILL to indicate whether the polygon should be drawn as points, outlined, or filled. By
default, both the front and back faces are drawn filled.

For example, you can have the front faces filled and the back faces outlined with two calls to thi
routine:

gl Pol ygonMbde(GL_FRONT, G._FILL);
gl Pol ygonMbde(GL_BACK, G__LINE);

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order on the screen are ca
front-facing. You can construct the surface of any "reasonable” solid - a mathematician would c
a surface an orientable manifold (spheres, donuts, and teapots are orientable; Klein bottles and
strips aren’t) - from polygons of consistent orientation. In other words, you can use all clockwise
polygons, or all counterclockwise polygons. (This is essentially the mathematical definition of
orientable)

Suppose you've consistently described a model of an orientable surface but that you happen to
clockwise orientation on the outside. You can swap what OpenGL considers the back face by u
functionglFrontFace(), supplying the desired orientation for front-facing polygons.

void glFrontFace(GLenunmmodse;
Controls how front-facing polygons are determined. By defandteis GL_CCW, which
corresponds to a counterclockwise orientation of the ordered vertices of a projected polygt
window coordinates. khodeis GL_CW, faces with a clockwise orientation are considered
front-facing.

In a completely enclosed surface constructed from opaque polygons with a consistent orientatic
of the back-facing polygons are ever visible - they’re always obscured by the front-facing polygc
you are outside this surface, you might enable culling to discard polygons that OpenGL determi
back-facing. Similarly, if you are inside the object, only back-facing polygons are visible. To inst
OpenGL to discard front- or back-facing polygons, use the comgi@udl Face() and enable culling
with glEnable().

void glCullFace(GLenummods);
Indicates which polygons should be discarded (culled) before they’re converted to screen
coordinates. The mode is either GL_FRONT, GL_BACK, or GL_FRONT_AND_ BACK to ir
front-facing, back-facing, or all polygons. To take effect, culling must be enabled using
glEnable() with GL_CULL_FACE; it can be disabled wighDisable() and the same argument.

Advanced

In more technical terms, the decision of whether a face of a polygon is front- or back-facing dep
the sign of the polygon’s area computed in window coordinates. One way to compute this area

n-1

_1
A=7T E¥irla L1 d
i=0

wherexi andyi are thex andy window coordinates of thigh vertex of then-vertex polygon and

iel 18 (i+]) mod »

Assuming that GL_CCW has been specifie@>d, the polygon corresponding to that vertex is
considered to be front-facing; otherwise, it's back-facing. If GL_CW is specified aq@,ithen the
corresponding polygon is front-facing; otherwise, it's back-facing.

Try This

Modify Example 2-5y adding some filled polygons. Experiment with different colors. Try differel
polygon modes. Also enable culling to see its effect.

Stippling Polygons

By default, filled polygons are drawn with a solid pattern. They can also be filled with a 32-bit by
window-aligned stipple pattern, which you specify wgtRolygonStipple().

void glPolygonStipple(const GLubyte rhask;
Defines the current stipple pattern for filled polygons. The argumeaskis a pointer to a 32 x
32 bitmap that’s interpreted as a mask of Os and 1s. Where a 1 appears, the correspondin
the polygon is drawn, and where a 0 appears, nothing is drigigare 2-10shows how a stipple
pattern is constructed from the charactersnask Polygon stippling is enabled and disabled t
usingglEnable() andglDisable() with GL_POLYGON_STIPPLE as the argument. The
interpretation of thenaskdata is affected by thgiPixelStore* () GL_UNPACK* modes. (See
"Controlling Pixel-Storage Modes" in Chapter) 8

In addition to defining the current polygon stippling pattern, you must enable stippling:
gl Enabl e(G._POLYGON_STI PPLE) ;

UseglDisable() with the same argument to disable polygon stippling.

Figure 2-11shows the results of polygons drawn unstippled and then with two different stippling
patterns. The program is shownBrample 2-6 The reversal of white to black (froRigure 2-10to
Figure 2-1) occurs because the program draws in white over a black background, using the pat
Figure 2-10as a stencil.

. & | T

12968 32 18 @ 4 2 1128%1!21! 8 4 2 11288432168 8 4 2 11)BBA3Z9E B 4 2 1

/
/

/
/
/ \

128 64 32 16 8 4 2 1

,\//

By default, for each byte the moat significant bit is firat,
Bit ordering can be changed by calling glPixelStore*(}.

Figure 2-10 : Constructing a Polygon Stipple Pattern

AN

Lemn) Lemn) e

Figure2-11: Stippled Polygons

Example 2-6 : Polygon Stipple Patterns:

#i nclude <@/ gl . h>
#i ncl ude <G/ gl ut.
voi d di spl ay(voi d)

GLubyte flyJ[]

0x00,
0x03,
0x04,
0x04,
0x04,
0x44,
0x44,
0x44,
0x66,
0x19,
0x07,
0x03,
0x06,
0x18,
0x10,
0x10,

0x00,
0x80,
0x60,
0x18,
0x06,
0x01,
0x01,
0x01,
0x01,
0x81,
Oxel,
0x31,
0x64,
Oxcc,
0x63,
0x18,

h>

{
0x00,

0x01,
0x06,
0x18,
0x60,
0x80,
0x80,
0x80,
0x80,
0x81,
0x87,
0x8c,
0x26,
0x33,
0xCe6,
0x18,

GLubyte hal ftone[] =

OxAA,
OxAA,
OxAA,
OXAA,
OxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,

gl C ear

OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,

OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,

0x00,
0xCo,
0x20,
0x20,
0x20,
0x22,
0x22,
0x22,
0x66,
0x98,
Oxe0,
0xcO,
0x60,
0x18,
0x08,
0x08,
{

OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,

gl Color3f (1.0, 1.0, 1.0);

~ ~
*

draw one solid,
then two stippled rectangles

0x00,
0x06,
0x04,
0x04,
0x44,
0x44,
0x44,
0x44,
0x33,
0x0C,
0x03,
0x03,
0xO0c,
0x10,
0x10,
0x10,

0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,

(GL_COLOR_BUFFER BI T);

polys.c

0x00,
0xCo,
0x30,
0x0C,
0x03,
0x01,
0x01,
0x01,
0x01,
0xC1,
0x3f,
0x33,
Oxcc,
Oxc4,
0x30,
0x00,

0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,

unsti ppl ed rectangl e,

gl Rectf (25.0, 25.0, 125.0, 125.0);
gl Enabl e (G._POLYGON STI PPLE)
gl Pol ygonStipple (fly);
gl Rectf (125.0, 25.0, 225.0, 125.0);
gl Pol ygonSti ppl e (hal ftone);
25.0, 325.0, 125.0);
gl Di sabl e (G._POLYGON STl PPLE) ;

gl Rectf (225.0

gl Flush ();

}

void init (void)

0x00,
0x03,
0x0C,
0x30,
0xCo,
0x80,
0x80,
0x80,
0x80,
0x83,
oxf c,
Oxcc,
0x33,
0x23,
0x0c,
0x00,

0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,

0x00,
0x60,
0x20,
0x20,
0x22,
0x22,
0x22,
0x22,
0xCC,
0x30,
0xcO,
0xcO,
0x30,
0x08,
0x08,
0x08};

0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
Ox55}

*/

glClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
void reshape (int w, int h)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);

gl Matri xMode (GL_PRQIECTI ON);

gl Loadl dentity ();

gluGrtho2D (0.0, (G.double) w, 0.0, (G.double) h);

}

int main(int argc, char** argv)

{
glutinit(&rgc, argv);
glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (350, 150);
gl ut Cr eat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut Mai nLoop() ;
return O;

}

You might want to use display lists to store polygon stipple patterns to maximize efficiency. (Se:
"Display-List Design Philosophy" in Chaptel) 7

Mar king Polygon Boundary Edges
Advanced

OpenGL can render only convex polygons, but many nonconvex polygons arise in practice. To
these nonconvex polygons, you typically subdivide them into convex polygons - usually triangle
shown inFigure 2-12- and then draw the triangles. Unfortunately, if you decompose a general pc
into triangles and draw the triangles, you can'’t reallygliBelygonM ode() to draw the polygon’s
outline, since you get all the triangle outlines inside it. To solve this problem, you can tell Open(
whether a particular vertex precedes a boundary edge; OpenGL keeps track of this information
passing along with each vertex a bit indicating whether that vertex is followed by a boundary ed
Then, when a polygon is drawn in GL_LINE mode, the nonboundary edges aren’t dr&igurén
2-12 the dashed lines represent added edges.

Figure 2-12 : Subdividing a Nonconvex Polygon

By default, all vertices are marked as preceding a boundary edge, but you can manually control

setting of the edge flag with the commaghEdgeFlag* (). This command is used betwegiBegin() anc
glEnd() pairs, and it affects all the vertices specified after it until the giexigeFlag() call is made. It
applies only to vertices specified for polygons, triangles, and quads, not to those specified for st
triangles or quads.

void glEdgeFlag(GLbooleanflag);

void glEdgeFlagv(const GLboolean flag);
Indicates whether a vertex should be considered as initializing a boundary edge of a polyg
flag is GL_TRUE, the edge flag is set to TRUE (the default), and any vertices created are
considered to precede boundary edges until this function is called agaifiagtbeing
GL_FALSE.

As an examplekxample 2-Mraws the outline shown Figure 2-13

Va2

/.

Vo
Figure 2-13 : Outlined Polygon Drawn Using Edge Flags

Example 2-7 : Marking Polygon Boundary Edges

gl Pol ygonMbde(GL_FRONT_AND BACK, G._LINE);
gl Begi n(GL_POLYGON) ;

gl EdgeFl ag(G._TRUE) ;

gl Vert ex3fv(V0);

gl EdgeFl ag(G._FALSE) ;

gl Vertex3fv(V1);

gl EdgeFl ag(G_._TRUE) ;

gl Vertex3fv(V2);
gl End() ;

Normal Vectors

A normal vector(or normal, for short) is a vector that points in a direction that’s perpendicular to
surface. For a flat surface, one perpendicular direction is the same for every point on the surfac
a general curved surface, the normal direction might be different at each point on the surface. V
OpenGL, you can specify a normal for each polygon or for each vertex. Vertices of the same pc
might share the same normal (for a flat surface) or have different normals (for a curved surface’
you can’'t assign normals anywhere other than at the vertices.

An object’s normal vectors define the orientation of its surface in space - in particular, its oriente
relative to light sources. These vectors are used by OpenGL to determine how much light the ol
receives at its vertices. Lighting - a large topic by itself - is the subj&hagfter Sand you might war

to review the following information after you've read that chapter. Normal vectors are discussed
here because you define normal vectors for an object at the same time you define the object’s ¢

You useglNormal*() to set the current normal to the value of the argument passed in. Subseque
to glVertex* () cause the specified vertices to be assigned the current normal. Often, each verte:
different normal, which necessitates a series of alternating callsEaanmple 2-8

Example 2-8 : Surface Normals at Vertices

gl Begin (G_POLYGON);
gl Nor mal 3f v(n0);
gl Vertex3fv(v0);
gl Nor mal 3f v(nl);
gl Vertex3fv(vl);
gl Nor mal 3f v(n2);
gl Vertex3fv(v2);
gl Nor mal 3f v(n3);
gl Vertex3fv(v3);

gl End() ;

void gINormal 3{bsidf}{(TYPEx, TYPEy, TYPEZ);

void gINormal 3{bsidf}v(constTYPE*Vv);
Sets the current normal vector as specified by the arguments. The nonvector version (with
V) takes three arguments, which specify @ Qy, ngz vector that's taken to be the normal.
Alternatively, you can use the vector version of this function (with) thied supply a single arra
of three elements to specify the desired normal bJ'geandi versions scale their parameter
values linearly to the range [-1.0,1.0].

There’s no magic to finding the normals for an object - most likely, you have to perform some
calculations that might include taking derivatives - but there are several techniques and tricks y«
use to achieve certain effecégppendix Eexplains how to find normal vectors for surfaces. If you
already know how to do this, if you can count on always being supplied with normal vectors, or
don’t want to use the lighting facility provided by OpenGL lighting facility, you don’t need to reac
appendix.

Note that at a given point on a surface, two vectors are perpendicular to the surface, and they ¢
opposite directions. By convention, the normal is the one that points to the outside of the surfac
modeled. (If you get inside and outside reversed in your model, just change every normal vectq

Yy, 9 to (-&xgr; , -y,-2)).

Also, keep in mind that since normal vectors indicate direction only, their length is mostly irrelev
You can specify normals of any length, but eventually they have to be converted to having a ler
before lighting calculations are performed. (A vector that has a length of 1 is said to be of unit le
normalized.) In general, you should supply normalized normal vectors. To make a normal vecto
length, divide each of its y, zcomponents by the length of the normal:

Length = N+ ¥+ 7

Normal vectors remain normalized as long as your model transformations include only rotations

translations. (Se€hapter Jor a discussion of transformations.) If you perform irregular
transformations (such as scaling or multiplying by a shear matrix), or if you specify nonunit-leng
normals, then you should have OpenGL automatically normalize your normal vectors after the
transformations. To do this, callEnable() with GL_NORMALIZE as its argument. By default,
automatic normalization is disabled. Note that automatic normalization typically requires additio
calculations that might reduce the performance of your application.

Vertex Arrays

You may have noticed that OpenGL requires many function calls to render geometric primitives
Drawing a 20-sided polygon requires 22 function calls: one cglBegin(), one call for each of the
vertices, and a final call g End(). In the two previous code examples, additional information (pol
boundary edge flags or surface normals) added function calls for each vertex. This can quickly
triple the number of function calls required for one geometric object. For some systems, functiol
have a great deal of overhead and can hinder performance.

An additional problem is the redundant processing of vertices that are shared between adjacen
polygons. For example, the cubeHigure 2-14has six faces and eight shared vertices. Unfortunate
using the standard method of describing this object, each vertex would have to be specified thre
once for every face that uses it. So 24 vertices would be processed, even though eight would b

Figure 2-14 : Six Sides; Eight Shared Vertices

OpenGL has vertex array routines that allow you to specify a lot of vertex-related data with just
arrays and to access that data with equally few function calls. Using vertex array routines, all 2(
in a 20-sided polygon could be put into one array and called with one function. If each vertex al
surface normal, all 20 surface normals could be put into another array and also called with one

Arranging data in vertex arrays may increase the performance of your application. Using vertex
reduces the number of function calls, which improves performance. Also, using vertex arrays m
non-redundant processing of shared vertices. (Vertex sharing is not supported on all implement
OpenGL.)

Note: Vertex arrays are standard in version 1.1 of OpenGL but were not part of the OpenGL 1.0
specification. With OpenGL 1.0, some vendors have implemented vertex arrays as an extensiol

There are three steps to using vertex arrays to render geometry.

1. Activate (enable) up to six arrays, each to store a different type of data: vertex coordinates

colors, color indices, surface normals, texture coordinates, or polygon edge flags.

2. Put data into the array or arrays. The arrays are accessed by the addresses of (that is, pol
their memory locations. In the client-server model, this data is stored in the client’'s addres

3. Draw geometry with the data. OpenGL obtains the data from all activated arrays by derefe
the pointers. In the client-server model, the data is transferred to the server's address spa
are three ways to do this:

1. Accessing individual array elements (randomly hopping around)
2. Creating a list of individual array elements (methodically hopping around)
3. Processing sequential array elements
The dereferencing method you choose may depend upon the type of problem you encoun

Interleaved vertex array data is another common method of organization. Instead of having up t
different arrays, each maintaining a different type of data (color, surface normal, coordinate, ant
you might have the different types of data mixed into a single array'l(8edeaved Arraysfor two
methods of solving this.)

Step 1. Enabling Arrays

The first step is to cafjlEnableClientState() with an enumerated parameter, which activates the ¢
array. In theory, you may need to call this up to six times to activate the six available arrays. In |
you’'ll probably activate only between one to four arrays. For example, it is unlikely that you wou
activate both GL_COLOR_ARRAY and GL_INDEX_ARRAY, since your program’s display mod
supports either RGBA mode or color-index mode, but probably not both simultaneously.

void glEnableClientState(GLenumarray)
Specifies the array to enable. Symbolic constants GL_VERTEX_ARRAY, GL_COLOR_AF
GL_INDEX_ARRAY, GL_NORMAL_ARRAY, GL_TEXTURE_COORD_ARRAY, and
GL_EDGE_FLAG_ARRAY are acceptable parameters.

If you use lighting, you may want to define a surface normal for every vertexX'NBewmal Vectors.)
To use vertex arrays for that case, you activate both the surface normal and vertex coordinate ¢

gl Enabl ed i ent St at e(G._NORNMAL_ARRAY) ;
gl Enabl ed i ent St at e(G._VERTEX_ARRAY) ;

Suppose that you want to turn off lighting at some point and just draw the geometry using a sing
You want to calglDisable() to turn off lighting states (s&ehapter . Now that lighting has been
deactivated, you also want to stop changing the values of the surface normal state, which is wa
effort. To do that, you call

gl Di sabl ed i ent St at e(G._NORVAL_ARRAY) ;

void glDisableClientState(GLenumarray);

Specifies the array to disable. Accepts the same symbolic constghiEnalsleClientState().

You might be asking yourself why the architects of OpenGL created these new (and long!) com
namesgl* ClientState(). Why can’t you just calylEnable() andglDisable()? One reason is that
glEnable() andglDisable() can be stored in a display list, but the specification of vertex arrays ca
because the data remains on the client’s side.

Step 2: Specifying Data for the Arrays

There is a straightforward way by which a single command specifies a single array in the client
There are six different routines to specify arrays - one routine for each kind of array. There is al:
command that can specify several client-space arrays at once, all originating from a single inter
array.

void glVertexPointer(GLint size GLenuntype GLsizeistride

const GLvoidpointer);
Specifies where spatial coordinate data can be accepsatteris the memory address of the f
coordinate of the first vertex in the arraypespecifies the data type (GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE) of each coordinate in the arrgiyeis the number of coordinate
per vertex, which must be 2, 3, orstrideis the byte offset between consecutive vertexssidé
is 0, the vertices are understood to be tightly packed in the array.

To access the other five arrays, there are five similar routines:

void glColorPointer(GLint size GLenuntype GLsizeistride,

const GLvoid pointer);

void gll ndexPointer(GLenumtype GLsizeistride, const GLvoid pointer);
void gINormalPointer (GLenuntype GLsizeistride,

const GLvoid pointer);

void gl TexCoordPointer (GLint size GLenuntype GLsizeistride,

const GLvoid pointer);

void glEdgeFlagPointer(GLsizeistride, const GLvoid pointer);

The main differences among the routines are whether size and type are unique or must be spec
example, a surface normal always has three components, so it is redundant to specify its size. ,
flag is always a single Boolean, so neither size nor type needs to be merfairie®-4displays legal
values for size and data types.

Table 2-4 : Vertex Array Sizes (Values per Vertex) and Data Types(continued)

Command Sizes Valuesfor type Argument

glVertexPointer | 2, 3,4 | GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

gIiNormalPointer | 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glColorPointer 3,4 GL_BYTE, GL_UNSIGNED_ BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, GL_DOUBLE

glindexPointer 1 GL_UNSIGNED_BYTE, GL_SHORT, GL_INT, GL_FLOAT,
GL_DOUBLE

glTexCoordPointer| 1, 2, 3, 4| GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer| 1 no type argument (type of data must be GLboolean)

Example 2-Qses vertex arrays for both RGBA colors and vertex coordinates. RGB floating-poir
values and their corresponding (X, y) integer coordinates are loaded into the GL_COLOR_ARR.
GL_VERTEX_ARRAY.

Example 2-9 : Enabling and Loading Vertex Arrays: varray.c

static GLint vertices[] = {25, 25,
100, 325,
175, 25,

static G float colors[] = {1.0, 0.2: 0. 2,

gl Enabl e ientState (G._COLOR _ARRAY);
gl Enabl ed i ent St at e (G._VERTEX ARRAY);

gl Col or Poi nter (3, G._FLOAT, 0, colors);
gl VertexPointer (2, G__INT, 0, vertices);

Stride

With a stride of zero, each type of vertex array (RGB color, color index, vertex coordinate, and ¢
must be tightly packed. The data in the array must be homogeneous; that is, the data must be ¢
color values, all vertex coordinates, or all some other data similar in some fashion.

Using a stride of other than zero can be useful, especially when dealing with interleaved arrays.
following array of GLfloats, there are six vertices. For each vertex, there are three RGB color ve
which alternate with the (X, y, z) vertex coordinates.

static G.float intertwined[] =

{1. 100. 0, 100.0,
0.0, 200.0, O.
100. 0, 300.0,
200. 0, 300.0,
300. 0, 200.0,
200. 0, 100.0,

epPrEPoo

NoooNN
Prooop
coNNNO
cooooo
cooo ©

coorkR
dMhhOoOoo

b

Stride allows a vertex array to access its desired data at regular intervals in the array. For exarnr
reference only the color values in théertwinedarray, the following call starts from the beginning ¢
the array (which could also be passed&imertwined[0]) and jumps ahead 6sfzeof (GLfloat) bytes,
which is the size of both the color and vertex coordinate values. This jump is enough to get to tt
beginning of the data for the next vertex.

gl Col orPoi nter (3, G._FLQAT, 6 * sizeof (G.float), intertw ned);

For the vertex coordinate pointer, you need to start from further in the array, at the fourth eleme
intertwined(remember that C programmers start counting at zero).

gl Vert exPoi nter (3, G._FLQOAT, 6*si zeof (GLfloat), & ntertw ned[3]);
Step 3: Dereferencing and Rendering

Until the contents of the vertex arrays are dereferenced, the arrays remain on the client side, ar
contents are easily changed. In Step 3, contents of the arrays are obtained, sent down to the se
then sent down the graphics processing pipeline for rendering.

There are three ways to obtain data: from a single array element (indexed location), from a seq
array elements, and from an ordered list of array elements.

Dereference a Single Array Element

void glArrayElement(GLint ith)

Obtains the data of one (tlith) vertex for all currently enabled arrays. For the vertex coordir
array, the corresponding command wouldgbeertex[sizd[typd v(), wheresizeis one of [2,3,4],
andtypeis one of [s,i,f,d] for GLshort, GLint, GLfloat, and GLdouble respectively. Both size
type were defined bytVertexPointer(). For other enabled arrayglArrayElement() calls
glEdgeFlagv(), glTexCoord[sizd[typd (), glColor[sizd[typd v(), gll ndex[typdv(), and
glNormal[typd V(). If the vertex coordinate array is enabled, th€ertex*v() routine is executec
last, after the execution (if enabled) of up to five corresponding array values.

glArrayElement() is usually called betweeagiBegin() andglEnd(). (If called outside,
glArrayElement() sets the current state for all enabled arrays, except for vertex, which has no c
state.) InExample 2-10a triangle is drawn using the third, fourth, and sixth vertices from enabled
vertex arrays (again, remember that C programmers begin counting array locations with zero).

Example 2-10 : Using glArrayElement() to Define Colors and Vertices

gl Enabl el ientState (G._COLOR _ARRAY);

gl Enabl ed i ent St ate (G._VERTEX ARRAY);

gl Col or Poi nter (3, G._FLOAT, 0, colors);
gl VertexPointer (2, G__INT, 0, vertices);

gl Begi n(GL_TRI ANGLES)
gl ArrayEl enent (2);

gl ArrayEl enent (3);

gl ArrayEl enent (5);
gl End() ;

When executed, the latter five lines of code has the same effect as

gl Begi n(GL_TRI ANGLES) ;

gl Col or 3f v(col ors+(2*3*si zeof (G.fl oat));
gl Vertex3fv(vertices+(2*2*sizeof (Gint));
gl Col or 3f v(col ors+(3*3*si zeof (G.fl oat));
gl Vertex3fv(vertices+(3*2*si zeof (Aint));
gl Col or 3f v(col ors+(5*3*si zeof (G.fl oat));
gl Vertex3fv(vertices+(5*2*sizeof (GLint));
gl End() ;

SinceglArrayElement() is only a single function call per vertex, it may reduce the number of fun:
calls, which increases overall performance.

Be warned that if the contents of the array are changed begh&sgin() andglEnd(), there is no
guarantee that you will receive original data or changed data for your requested element. To be
don’t change the contents of any array element which might be accessed until the primitive is
completed.

Dereferencealist of Array Elements

glArrayElement() is good for randomly "hopping around" your data arrays. A similar routine,
glDrawElements(), is good for hopping around your data arrays in a more orderly manner.

void glDrawElements(GLenummode GLsizeicount GLenuntype

void *indiceg;
Defines a sequence of geometric primitives usoyntnumber of elements, whose indices are
stored in the arrayndices typemust be one of GL_UNSIGNED_ BYTE, GL_UNSIGNED_SF
or GL_UNSIGNED_INT, indicating the data type of itngicesarray. modespecifies what kind «
primitives are constructed and is one of the same values that is accepj&tedin(); for
example, GL_POLYGON, GL_LINE_LOOP, GL_LINES, GL_POINTS, and so on.

The effect ofglDrawElements() is almost the same as this command sequence:

int i;
gl Begi n (node);
for (i = 0; i < count; i++)
gl ArrayEl enent (i ndices[i]);
gl End() ;

glDrawElements() additionally checks to make surede count andtypeare valid. Also, unlike the
preceding sequence, executgirawElements() leaves several states indeterminate. After execul
of giIDrawElements(), current RGB color, color index, normal coordinates, texture coordinates, a
edge flag are indeterminate if the corresponding array has been enabled.

With glDrawElements(), the vertices for each face of the cube can be placed in an array of indic
Example 2-1shows two ways to uggDrawElements() to render the cub&igure 2-15hows the
numbering of the vertices usedimample 2-11

Back

Front

Figure 2-15: Cube with Numbered Vertices

Example 2-11 : Two Ways to Use glDrawElements()

static Gubyte frontlndices = {4, 5, 6, 7};

static Gubyte rightlindices = {1, 2, 6, 5};

static GLubyte bottom ndices = {0, 1, 5, 4};

static GLubyte backlndices = {0, 3, 2, 1};

static Gubyte leftindices = {0, 4, 7, 3};

static Gubyte toplndices = {2, 3, 7, 6};

gl DrawEl ement s(GL_QUADS, 4, GL_UNSI GNED BYTE, frontlndices);

gl Dr awEl enent s(G__QUADS
gl Dr anEl enent s(GL_QUADS
gl Dr awEl enent s(G._QUADS
gl Dr awEl enent s(G._QUADS
gl Dr awkl enent s(G__QUADS

, GL_UNSI GNED_BYTE,

GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,

ri ghtlndices);
bott onl ndi ces) ;
backl ndi ces);

| eft I ndices);

t opl ndi ces);

Or better still, crunch all the indices together:

static Gubyte alllndices = {4, 5, 6, 7,
0, 1, 5 4, 0, 3, 2, 1,
0, 4 7, 3, 2, 3, 7, 6};

1, 2, 6, 5,

gl Drawkl enent s(G._QUADS, 24, G._UNSI GNED BYTE, alllndices);

Note: It is an error to encapsulageDrawElements() between @lBegin()/glEnd() pair.

With bothglArrayElement() andglDrawElements(), it is also possible that your OpenGL
implementation caches recently processed vertices, allowing your application to "share" or "reu:
vertices. Take the aforementioned cube, for example, which has six faces (polygons) but only e
vertices. Each vertex is used by exactly three faces. WighautayElement() or glDrawElements(),
rendering all six faces would require processing twenty-four vertices, even though sixteen vertic
would be redundant. Your implementation of OpenGL may be able to minimize redundancy anc

as few as eight vertices. (Reuse of vertices may be limited to all vertices within a single
olDrawElements() call or, forglArrayElement(), within oneglBegin()/glEnd() pair.)

Der eference a Sequence of Array Elements

While glArrayElement() andglDrawElements() "hop around” your data arraygPrawArrays()
plows straight through them.

void glDrawArrays(GLenummode GLint first, GLsizeicouny;
Constructs a sequence of geometric primitives using array elements starfirgj ahd ending a
first+countl of each enabled arraynodespecifies what kinds of primitives are constructed ¢
is one of the same values acceptedBegin(); for example, GL_POLYGON, GL_LINE_LOO
GL_LINES, GL_POINTS, and so on.

The effect ofglDrawArrays() is almost the same as this command sequence:

int i;

gl Begi n (node);

for (i =0; i < count; i++)
gl ArrayEl ement (first + i);

gl End() ;

As is the case withlDrawElements(), glDrawArrays() also performs error checking on its parame
values and leaves the current RGB color, color index, normal coordinates, texture coordinates,
flag with indeterminate values if the corresponding array has been enabled.

Try This
® Change the icosahedron drawing routin&xample 2-130 use vertex arrays.

Interleaved Arrays
Advanced

Earlier in this chapter (ifStride"), the special case of interleaved arrays was examined. In that se
the arrayintertwined which interleaves RGB color and 3D vertex coordinates, was accessed by
glColor Pointer () andglVertexPointer (). Careful use of stride helped properly specify the arrays.

static G.float intertwined[] =

{1. 100. 0, 100. 0,
0.0, 200.0, O.
100. 0, 300. 0,
200. 0, 300.0,
300. 0, 200.0,
200. 0, 100.0,

coorkp
INTSINEXSYS
orrroo
nooonN
rrooop
conNNO
cooooo
cooo ©

b

There is also a behemoth routig nterleavedArrays(), that can specify several vertex arrays at ol
glinterleavedArrays() also enables and disables the appropriate arrays (so it combines both Ste
2). The arrayntertwinedexactly fits one of the fourteen data interleaving configurations supporte:
glinterleavedArrays(). So to specify the contents of the ariratgrtwinedinto the RGB color and

vertex arrays and enable both arrays, call
gl I nterl eavedArrays (G._C3F _V3F, 0, intertw ned);

This call togll nterleavedArrays() enables the GL_COLOR_ARRAY and GL_VERTEX_ARRAY
arrays. It disables the GL_INDEX_ARRAY, GL_TEXTURE_COORD_ARRAY,
GL_NORMAL_ARRAY, and GL_EDGE_FLAG_ARRAY.

This call also has the same effect as calji@@plor Pointer () andglVertexPointer () to specify the
values for six vertices into each array. Now you are ready for Step 3: GaincgayElement(),
glDrawElements(), orglDrawArrays() to dereference array elements.

void gll nterleavedArrays(GLenumformat GLsizeistride void *pointer)
Initializes all six arrays, disabling arrays that are not specifiedarmat, and enabling the array
that are specifiedformatis one of 14 symbolic constants, which represent 14 data configur:
Table 2-5displaysformatvalues.stride specifies the byte offset between consecutive vertexe
strideis 0, the vertexes are understood to be tightly packed in the goayteris the memory
address of the first coordinate of the first vertex in the array.

Note thatll nterleavedArrays() does not support edge flags.

The mechanics djll nterleavedArrays() are intricate and require referencdet@mple 2-12andTable
2-5. In that example and table, you'll see et, ec, and en, which are the boolean values for the er
disabled texture coordinate, color, and normal arrays, and you'll see st, sc, and sv, which are th
(number of components) for the texture coordinate, color, and vertex arrays. tc is the data type
RGBA color, which is the only array that can have non-float interleaved values. pc, pn, and pv ¢
calculated strides for jumping over individual color, normal, and vertex values, and s is the strid:
is not specified by the user) to jump from one array element to the next.

The effect ofglinterleavedArrays() is the same as calling the command sequenégample 2-12vith
many values defined ifiable 2-5 All pointer arithmetic is performed in units of
sizeof (GL_UNSIGNED_BYTE).

Example 2-12 : Effect of glinterleavedArrays(format, stride, pointer)

t str;
set et, ec, en, st, sc, sv, tc, pc, pn, pv, and s
as a function of Table 2-5 and the val ue of format
/
str = stride;
if (str == 0)
str = s;
gl Di sabl ed i ent St at e(GL_EDGE_FLAG _ARRAY) ;
gl Di sabl ed i ent St at e(GL_I NDEX_ARRAY) ;
if (et) {
gl Enabl ed i ent St at e(G._ TEXTURE_COORD_ARRAY) ;
gl TexCoor dPoi nter(st, G._FLQOAT, str, pointer);

[
/

* % * 3

}

el se

gl Di sabl ed i ent St at e(G._TEXTURE _COORD_ARRAY)
if (ec) {

gl Enabl ed i ent St at e(G._COLOR_ARRAY) ;

gl Col or Poi nter(sc, tc, str, pointer+pc);

el se
gl Di sabl ed i ent St at e(GL_COLOR_ARRAY) ;
if (en) {
gl Enabl ed i ent St at e(G._NORMAL_ARRAY) ;
gl Nor mal Poi nt er (GL_FLQAT, str, pointer+pn);
}
el se
gl Di sabl ed i ent St at e(G._NORVAL_ARRAY) ;
gl Enabl ed i ent St at e(G._VERTEX_ARRAY) ;
gl Vert exPoi nter(sv, G._FLOAT, str, pointer+pv);

In Table 2-5 T and F are True and False. &izeof (GL_FLOAT). c is 4 times
sizeof (GL_UNSIGNED_BYTE), rounded up to the nearest multiple of f.

Table 2-5: (continued) Variables that Direct glinterleavedArrays()

format et lec|en|st|sc|sv]|tc pc
GL_V2F F|F | F 2
GL_V3F F|F | F 3
GL_C4UB_V2F F|T|F 4 | 2 GL_UNSIGNED_BYTE | O
GL_C4UB_V3F F|T|F 4 | 3 | GL_UNSIGNED BYTE| 0
GL_C3F V3F FIT|F 3 | 3 | GL_FLOAT 0
GL_N3F_V3F FIF |T 3
GL_C4F_N3F_V3F FlT|T 4 | 3 | GL_FLOAT 0
GL_T2F_V3F T|F | F 2 3
GL_T4F_VA4F T|F | F 4 4

GLT2F C4UB V3F | T |T |F |2] 4 |3 | GL_UNSIGNED BYTE| 2f
GL_T2F_C3F_V3F T|IT|F |2]3 |3 | GLFLOAT 2f
GL_T2F_N3F_V3F TIF|T |2 3 of
GL T2F C4F N3F V3A| T | T | T |2 | 4 | 3 | GL_FLOAT 2f | of
GL TAF CAF N3F VAR T | T | T |4 | 4 | 4 | GL_FLOAT 4f | 8f

Start by learning the simpler formats, GL_V2F, GL_V3F, and GL_C3F_V3F. If you use any of tt
formats with C4UB, you may have to use a struct data type or do some delicate type casting an
math to pack four unsigned bytes into a single 32-bit word.

For some OpenGL implementations, use of interleaved arrays may increase application perforn
With an interleaved array, the exact layout of your data is known. You know your data is tightly
and may be accessed in one chunk. If interleaved arrays are not used, the stride and size inforr
to be examined to detect whether data is tightly packed.

Note: glinterleavedArrays() only enables and disables vertex arrays and specifies values for the
vertex-array data. It does not render anything. You must still complete Step 3 and call
glArrayElement(), glDrawElements(), orglDrawArrays() to dereference the pointers and render
graphics.

Attribute Groups

In "Basic State Managemengbu saw how to set or query an individual state or state variable. W
you can also save and restore the values of a collection of related state variables with a single ¢

OpenGL groups related state variables into an attribute group. For example, the GL_LINE_BIT
consists of five state variables: the line width, the GL_LINE_STIPPLE enable status, the line sti
pattern, the line stipple repeat counter, and the GL_LINE_SMOOQOTH enable statuar{tta&asing”
in Chapter § With the commandglPushAttrib() andglPopAttrib(), you can save and restore all fi
state variables, all at once.

Some state variables are in more than one attribute group. For example, the state variable,
GL_CULL_FACE, is part of both the polygon and the enable attribute groups.

In OpenGL Version 1.1, there are now two different attribute stacks. In addition to the original a
stack (which saves the values of server state variables), there is also a client attribute stack, ac

the commandglPushClientAttrib() andglPopClientAttrib().

In general, it’s faster to use these commands than to get, save, and restore the values yourself.
values might be maintained in the hardware, and getting them might be expensive. Also, if you’
operating on a remote client, all the attribute data has to be transferred across the network cont
and back as it is obtained, saved, and restored. However, your OpenGL implementation keeps
attribute stack on the server, avoiding unnecessary network delays.

There are about twenty different attribute groups, which can be saved and resigiRagshéttrib()
andglPopAttrib(). There are two client attribute groups, which can be saved and restored by
glPushClientAttrib() andglPopClientAttrib(). For both server and client, the attributes are storec
stack, which has a depth of at least 16 saved attribute groups. (The actual stack depths for you
implementation can be obtained using GL_MAX_ATTRIB_STACK_ DEPTH and
GL_MAX_CLIENT_ATTRIB_STACK_DEPTH withglGetIntegerv().) Pushing a full stack or
popping an empty one generates an error.

(See the tables iAppendix Bto find out exactly which attributes are saved for particular mask val
that is, which attributes are in a particular attribute group.)

void glPushAttrib(GLbitfield mash;

void glPopAttrib(void);
glPushAttrib() saves all the attributes indicated by bitsnaskby pushing them onto the attribi
stack.glPopAttrib() restores the values of those state variables that were saved with the las
glPushAttrib(). Table 2-7lists the possible mask bits that can be logically ORed together to
any combination of attributes. Each bit corresponds to a collection of individual state varial
For example, GL_LIGHTING_BIT refers to all the state variables related to lighting, which
include the current material color, the ambient, diffuse, specular, and emitted light, a list of
lights that are enabled, and the directions of the spotlights. \WiRapAttrib() is called, all thos:
variables are restored.

The special mask, GL_ALL_ATTRIB_BITS, is used to save and restore all the state variables ir
attribute groups.

Table 2-6 : (continued) Attribute Groups

Mask Bit Attribute Group

GL_ACCUM_BUFFER_BIT accum-buffer

GL_ALL_ATTRIB_BITS -

GL_COLOR_BUFFER_BIT color-buffer

GL _CURRENT _BIT current

GL_DEPTH_BUFFER_BIT depth-buffer

GL_ENABLE_BIT enable
GL_EVAL_BIT eval
GL_FOG_BIT fog
GL_HINT_BIT hint
GL_LIGHTING_BIT lighting
GL_LINE_BIT line
GL_LIST BIT list
GL_PIXEL_MODE_BIT pixel
GL_POINT BIT point
GL_POLYGON_BIT polygon

GL_POLYGON_STIPPLE_BIT| polygon-stipple

GL_SCISSOR_BIT scissor

GL_STENCIL_BUFFER _BIT | stencil-buffer

GL_TEXTURE_BIT texture
GL_TRANSFORM_BIT transform
GL_VIEWPORT_BIT viewport

void glPushClientAttrib(GLbitfield mask;

void glPopClientAttrib(void);
glPushClientAttrib() saves all the attributes indicated by bitsnaskby pushing them onto the
client attribute stackglPopClientAttrib() restores the values of those state variables that wel
saved with the lagilPushClientAttrib(). Table 2-7lists the possible mask bits that can be
logically ORed together to save any combination of client attributes.
There are two client attribute groups, feedback and select, that cannot be saved or restore
the stack mechanism.

Table 2-7 : Client Attribute Groups

Mask Bit Attribute Group

GL_CLIENT_PIXEL_STORE_BIT | pixel-store

GL_CLIENT_VERTEX_ARRAY_BIT | vertex-array

GL_ALL_CLIENT_ATTRIB_BITS -

can’'t be pushed or popped feedback

can’t be pushed or popped select

Some Hints for Building Polygonal M odels of Surfaces

Following are some techniques that you might want to use as you build polygonal approximatio
surfaces. You might want to review this section after you've Gkapter Son lighting andChapter 7on
display lists. The lighting conditions affect how models look once they’re drawn, and some of th
following techniques are much more efficient when used in conjunction with display lists. As yol
these techniques, keep in mind that when lighting calculations are enabled, normal vectors mus
specified to get proper results.

Constructing polygonal approximations to surfaces is an art, and there is no substitute for expel
This section, however, lists a few pointers that might make it a bit easier to get started.

® Keep polygon orientations consistent. Make sure that when viewed from the outside, all th
polygons on the surface are oriented in the same direction (all clockwise or all countercloc
Consistent orientation is important for polygon culling and two-sided lighting. Try to get thi:
the first time, since it's excruciatingly painful to fix the problem later. (If youglSeale* () to
reflect geometry around some axis of symmetry, you might change the orientation with
glFrontFace() to keep the orientations consistent.)

® When you subdivide a surface, watch out for any nontriangular polygons. The three vertice
triangle are guaranteed to lie on a plane; any polygon with four or more vertices might not.
Nonplanar polygons can be viewed from some orientation such that the edges cross each
and OpenGL might not render such polygons correctly.

® There’s always a trade-off between the display speed and the quality of the image. If you
subdivide a surface into a small number of polygons, it renders quickly but might have a ja
appearance; if you subdivide it into millions of tiny polygons, it probably looks good but mit

take a long time to render. Ideally, you can provide a parameter to the subdivision routines
indicates how fine a subdivision you want, and if the object is farther from the eye, you car
coarser subdivision. Also, when you subdivide, use large polygons where the surface is re
flat, and small polygons in regions of high curvature.

® For high-quality images, it's a good idea to subdivide more on the silhouette edges than in
interior. If the surface is to be rotated relative to the eye, this is tougher to do, since the sill
edges keep moving. Silhouette edges occur where the normal vectors are perpendicular te
vector from the surface to the viewpoint - that is, when their vector dot product is zero. Yot
subdivision algorithm might choose to subdivide more if this dot product is near zero.

® Try to avoid T-intersections in your models (§&gure 2-16. As shown, there’s no guarantee t
the line segments AB and BC lie on exactly the same pixels as the segment AC. Sometim
do, and sometimes they don’t, depending on the transformations and orientation. This can
cracks to appear intermittently in the surface.

-
~

Figure 2-16 : Modifying an Undesirable T-intersection

® |f you're constructing a closed surface, make sure to use exactly the same numbers for co
at the beginning and end of a closed loop, or you can get gaps and cracks due to numeric
round-off. Here’s a two-dimensional example of bad code:

/* don’t use this code */
#define Pl 3.14159265
#defi ne EDGES 30

/* draw a circle */
gl Begi n(GL_LI NE_STRI P) ;
for (i = 0; i <= EDCES; i++)
gl Vertex2f (cos((2*PI*i)/EDGES), sin((2*Pl*i)/EDGES));
gl End();

The edges meet exactly only if your machine manages to calculate the sine and cosine of
(2*PI*EDGES/EDGES) and gets exactly the same values. If you trust the floating-point uni
your machine to do this right, the authors have a bridge they’'d like to sell you.... To correc
code, make sure that wher= EDGES, you use 0 for the sine and cosine, not
2*PI*EDGES/EDGES. (Or simpler still, use GL_LINE_LOOP instead of GL_LINE_STRIP,
change the loop termination condition to i < EDGES.)

An Example: Building an | cosahedron

To illustrate some of the considerations that arise in approximating a surface, let’s look at some
code sequences. This code concerns the vertices of a regular icosahedron (which is a Platonic
composed of twenty faces that span twelve vertices, each face of which is an equilateral triangl
icosahedron can be considered a rough approximation for a spkRaneple 2-13lefines the vertices

and triangles making up an icosahedron and then draws the icosahedron.

Example 2-13 : Drawing an Icosahedron

#define X .525731112119133606
#define Z .850650808352039932

static G.float vdata[12][3] = {
{-X 0.0, 2z}, {X 0.0, Z}, {-X 0.0, -2}, {X 0.0, -2},
{0.0, z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},
{z, X, 0.0}, {-2Z, X 0.0}, {Z, -X 0.0}, {-2Z, -X 0.0}

itatic GLuint tindices[20][3] = {
{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
{8, 10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0, 1,6},
{6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };
int i;
gl Begi n(GL_TRI ANGLES)
for (i =0; i < 20; i++) {
[* color information here */
gl Vertex3fv(&vdata[tindices[i][0]][0]);
gl Vertex3fv(&vdata[tindices[i][1]][0]);
gl Vertex3fv(&vdata[tindices[i][2]][0]);

}
gl End() ;

The strange numbebsandZ are chosen so that the distance from the origin to any of the vertices
icosahedron is 1.0. The coordinates of the twelve vertices are given in thedatay{] , where the
zeroth vertex is {&Xgr; , 0.0, &Zgr; }, the first is {X, 0.0, 4, and so on. The arrayndices[][] tells
how to link the vertices to make triangles. For example, the first triangle is made from the zerott
and first vertex. If you take the vertices for triangles in the order given, all the triangles have the
orientation.

The line that mentions color information should be replaced by a command that sets the colidin o
face. If no code appears here, all faces are drawn in the same color, and it'll be impossible to di
three-dimensional quality of the object. An alternative to explicitly specifying colors is to define ¢
normals and use lighting, as described in the next subsection.

Note: In all the examples described in this section, unless the surface is to be drawn only once,
should probably save the calculated vertex and normal coordinates so that the calculations don
be repeated each time that the surface is drawn. This can be done using your own data structul
constructing display lists. (S&hapter 7)

Calculating Normal Vectorsfor a Surface

If a surface is to be lit, you need to supply the vector normal to the surface. Calculating the norr
cross product of two vectors on that surface provides normal vector. With the flat surfaces of an

icosahedron, all three vertices defining a surface have the same normal vector. In this case, the
needs to be specified only once for each set of three vertices. The €oderiple 2-14an replace the
"color information here" line ikexample 2-13or drawing the icosahedron.

Example 2-14 : Generating Normal Vectors for a Surface

G.float di[3], d2[3], norni3];

for (j =0; j <3; j++) {

di[j] vdata[tindices[i][O]][j] - vdata[tindices[i][1]
d2[j] vdata[tindices[i][1]][j] - vdata[tindices[i][2]

1[i];
10i];

nor ncrossprod(dl, d2, norm;
gl Nor mal 3f v(nornj;

The functionnor mcrossprod() produces the normalized cross product of two vectors, as shown il
Example 2-15

Example 2-15 : Calculating the Normalized Cross Product of Two Vectors

void nornalize(float v[3])
Gfloat d = sqrt(v[O]*v[O] +v[1]*v[1]+v[2]*Vv[2]);

if (d ==0.0) {
error("zero length vector");
return;

i[m [=d; v[1] /=4d; v[2] /= d;

voi d norntrossprod(float vi[3], float v2[3], float out[3])

Gint i, j;
G.float |ength;

out[0] = vi[1]*v2[2] - v1[2]*v2[1];
out[1] = v1[2]*v2[0] - v1[O0]*v2[2];
out[2] = v1[0]*v2[1] - vi1[1]*v2[O];

normal i ze(out);

}

If you're using an icosahedron as an approximation for a shaded sphere, you'll want to use norr
vectors that are perpendicular to the true surface of the sphere, rather than being perpendicular
faces. For a sphere, the normal vectors are simple; each points in the same direction as the ve«
the origin to the corresponding vertex. Since the icosahedron vertex data is for an icosahedron
1, the normal and vertex data is identical. Here is the code that would draw an icosahedral
approximation of a smoothly shaded sphere (assuming that lighting is enabled, as desChiagtein
5):

gl Begi n(G._TRI ANGLES)

for (i =0; i < 20; i++) {
gl Nor mal 3f v(&vdat a[ti ndi ces|
gl Vertex3fv(&vdata[tindices|
gl Nor mal 3f v(& dat a[ti ndi ces|
gl Vertex3fv(&vdata[tindices|
gl Nor mal 3f v(&vdat a[ti ndi ces|

oy
][
][
11
i

gl Vertex3fv(&data[tindices[i]]

gl End() ;

Improving the M odel

A twenty-sided approximation to a sphere doesn’t look good unless the image of the sphere on
screen is quite small, but there’s an easy way to increase the accuracy of the approximation. Irr
icosahedron inscribed in a sphere, and subdivide the triangles as sHeagurén2-17 The newly
introduced vertices lie slightly inside the sphere, so push them to the surface by normalizing the
(dividing them by a factor to make them have length 1). This subdivision process can be repeat
arbitrary accuracy. The three objects showhigure 2-17use 20, 80, and 320 approximating triang|
respectively.

Figure 2-17 : Subdividing to Improve a Polygonal Approximation to a Surface

Example 2-16erforms a single subdivision, creating an 80-sided spherical approximation.

Example 2-16 : Single Subdivision

void drawtriangl e(float *vl1, float *v2, float *v3)

gl Begi n(G._TRI ANGLES)
gl Normal 3fv(vl); vl Vertex3fv(vl);
gl Normal 3fv(v2); vl Vertex3fv(v2);
gl Normal 3fv(v3); vl Vertex3fv(v3);
gl End() ;

voi d subdivide(float *vi1, float *v2, float *v3)

{ G float v12[3], v23[3], v31[3];

Gint i;

for (i =0; i <3; i++) {
v12[i] = vi[i]+v2[i];
v23[i] = v2[i]+v3[i];

v31[i] = v3[i]+vl[i];

normal i ze(v12);
normal i ze(v23);
normal i ze(v31);
drawt ri angl e(vl, v12, v31);
drawt ri angl e(v2, v23, v12);
draw ri angl e(v3, v31, v23);
drawt ri angl e(v12, v23, v3l);
}

for (i =0; i <20; i++) {
subdi vi de(&vdat a[ti ndi ces|
&dat a[ti ndi ces|
&vdata[tindi ces[

——
—————
N~ O
—e
——
—————
o OO
[P P

}

Example 2-17s a slight modification oExample 2-16vhich recursively subdivides the triangles to
proper depth. If the depth value is 0, no subdivisions are performed, and the triangle is drawn a
depth is 1, a single subdivision is performed, and so on.

Example 2-17 : Recursive Subdivision

voi d subdivide(float *vi1, float *v2, float *v3, |ong depth)

{
G.float v12[3], v23[3], v31[3];
Gint i;
if (depth == 0) {
drawt ri angl e(vl, v2, v3);
return,
b . .
for (i =0; i <3; i++) {
v12[i] = vi[i]+v2[i];
v23[i] = v2[i]+v3[i];
v31[i] = v3[i]+vi[i];
normal i ze(v12);
normal i ze(v23);
normal i ze(v3l);
subdi vide(vl, v12, v31, depth-1);
subdi vide(v2, v23, v12, depth-1);
subdi vi de(v3, v31, v23, depth-1);
subdi vi de(v12, v23, v31, depth-1);
}

Generalized Subdivision

A recursive subdivision technique such as the one descriltecdmple 2-1tan be used for other tyy
of surfaces. Typically, the recursion ends either if a certain depth is reached or if some conditiol
curvature is satisfied (highly curved parts of surfaces look better with more subdivision).

To look at a more general solution to the problem of subdivision, consider an arbitrary surface
parameterized by two variablaf] andu[l]. Suppose that two routines are provided:

void surf(G.float u[2], G.float vertex[3], Gfloat normal[3]);
float curv(G.float u[2]);

If surf() is passedi[], the corresponding three-dimensional vertex and normal vectors (of length
returned. Ifu[] is passed tourv(), the curvature of the surface at that point is calculated and retur
(See an introductory textbook on differential geometry for more information about measuring su
curvature.)

Example 2-1&hows the recursive routine that subdivides a triangle either until the maximum de
reached or until the maximum curvature at the three vertices is less than some cutoff.

Example 2-18 : Generalized Subdivision

voi d subdivide(float ul[2], float u2[2], float u3[2],
float cutoff, |ong depth)

{
G.float vi[3], v2[3], v3[3], nl[3], n2[3], n3[3];
G.float ul2[2], u23[2], u32[2];
Gint i;
if (depth == maxdepth || (curv(ul) < cutoff &&
curv(u2) < cutoff && curv(u3) < cutoff)) {
surf(ul, vi1, nl); surf(u2, v2, n2); surf(u3, v3, n3);
gl Begi n(GL_POLYGON) ;
gl Normal 3fv(nl); gl Vertex3fv(vl);
gl Nor mal 3f v(n2); gl Vertex3fv(v2);
gl Normal 3fv(n3); gl Vertex3fv(v3);
gl End() ;
return;
}
for (i =0; i < 2; i++) {
ul2[i] = (ul[i] + u2[i])/2.0;
u23[i] = (u2[i] + u3[i])/2.0;
u3l[i] = (u3[i] + ul[i])/2.0;
subdi vi de(ul, ul2, u3l, cutoff, depth+l);
subdi vi de(u2, u23, ul2, cutoff, depth+l);
subdi vi de(u3, u3l, u23, cutoff, depth+l);
subdi vide(ul2, u23, u3l, cutoff, depth+l);
}
OpenGL Programming Guide (Addison-Wesley

Publishing Company)

OpenGL Programming Guide (Addison-Wesley
Publishing Company)

Chapter 3

Viewing

Chapter Objectives

After reading this chapter, you’ll be able to do the following:
® View ageometric modah any orientation by transforming it in three-dimensional space
® Control the location in three-dimensional space from which the model is viewed
® Clip undesired portions of the model out of the scene that’s to be viewed

® Manipulate the appropriate matrix stacks that control model transformation for viewing anc
project the model onto the screen

® Combine multiple transformations to mimic sophisticated systems in motion, such as a sol
system or an articulated robot arm

® Reverse or mimic the operations of the geometric processing pipeline

Chapter Zxplained how to instruct OpenGL to draw the geometric models you want displayed i
scene. Now you must decide how you want to position the models in the scene, and you must ¢
vantage point from which to view the scene. You can use the default positioning and vantage pt
most likely you want to specify them.

Look at the image on the cover of this book. The program that produced that image contained &
geometric description of a building block. Each block was carefully positioned in the scene: Son
blocks were scattered on the floor, some were stacked on top of each other on the table, and s«
assembled to make the globe. Also, a particular viewpoint had to be chosen. Obviously, we wat
look at the corner of the room containing the globe. But how far away from the scene - and whe
exactly - should the viewer be? We wanted to make sure that the final image of the scene conte
good view out the window, that a portion of the floor was visible, and that all the objects in the s
were not only visible but presented in an interesting arrangement. This chapter explains how to
OpenGL to accomplish these tasks: how to position and orient models in three-dimensional spa
how to establish the location - also in three-dimensional space - of the viewpoint. All of these fa
help determine exactly what image appears on the screen.

You want to remember that the point of computer graphics is to create a two-dimensional image
three-dimensional objects (it has to be two-dimensional because it's drawn on a flat screen), bu
need to think in three-dimensional coordinates while making many of the decisions that determi

gets drawn on the screen. A common mistake people make when creating three-dimensional gi
to start thinking too soon that the final image appears on a flat, two-dimensional screen. Avoid t
about which pixels need to be drawn, and instead try to visualize three-dimensional space. Crei
models in some three-dimensional universe that lies deep inside your computer, and let the cor
its job of calculating which pixels to color.

A series of three computer operations convert an object’s three-dimensional coordinates to pixe
positions on the screen.

Transformations, which are represented by matrix multiplication, include modeling, viewing
projection operations. Such operations include rotation, translation, scaling, reflecting,
orthographic projection, and perspective projection. Generally, you use a combination of s
transformations to draw a scene.

Since the scene is rendered on a rectangular window, objects (or parts of objects) that lie
the window must be clipped. In three-dimensional computer graphics, clipping occurs by ti
out objects on one side of a clipping plane.

Finally, a correspondence must be established between the transformed coordinates and
pixels. This is known as\aewporttransformation.

This chapter describes all of these operations, and how to control them, in the following major s

"Overview: The Camera Analogyives an overview of the transformation process by descri
the analogy of taking a photograph with a camera, presents a simple example program th:
transforms an object, and briefly describes the basic OpenGL transformation commands.

"Viewing and Modeling Transformationgiplains in detail how to specify and to imagine the
effect of viewing and modeling transformations. These transformations orient the model ar
camera relative to each other to obtain the desired final image.

"Projection Transformationgiescribes how to specify the shape and orientation eidigng
volume The viewing volume determines how a scene is projected onto the screen (with a
perspective or orthographic projection) and which objects or parts of objects are clipped ol
scene.

"Viewport Transformationexplains how to control the conversion of three-dimensional moc
coordinates to screen coordinates.

"Troubleshooting Transformationptesents some tips for discovering why you might not be
getting the desired effect from your modeling, viewing, projection, and viewport transforme

"Manipulating the Matrix Stacksdiscusses how to save and restore certain transformations
is particularly useful when you’re drawing complicated objects that are built up from simple

"Additional Clipping Planestiescribes how to specify additional clipping planes beyond tho:
defined by the viewing volume.

® "Examples of Composing Several Transformatiomalks you through a couple of more
complicated uses for transformations.

® "Reversing or Mimicking Transformationshows you how to take a transformed point in win
coordinates and reverse the transformation to obtain its original object coordinates. The
transformation itself (without reversal) can also be emulated.

Overview: The Camera Analogy

The transformation process to produce the desired scene for viewing is analogous to taking a p
with a camera. As shown Kigure 3-1 the steps with a camera (or a computer) might be the follov

1. Set up your tripod and pointing the camera at the scene (viewing transformation).
2. Arrange the scene to be photographed into the desired composition (modeling transforma
3. Choose a camera lens or adjust the zoom (projection transformation).

4. Determine how large you want the final photograph to be - for example, you might want it
enlarged (viewport transformation).

After these steps are performed, the picture can be snapped or the scene can be drawn.

With a Camera With a Computer
1& viewing
| _ |] =

positiening the viewing volume
in the world

‘ ’
!

madeling

&

—

posilioning the modeals
In ﬂl% world

prajection

T

determining shape of viewing volums
photograph viewport

Figure 3-1: The Camera Analogy

Note that these steps correspond to the order in which you specify the desired transformations
program, not necessarily the order in which the relevant mathematical operations are performec
object’s vertices. The viewing transformations must precede the modeling transformations in yo
but you can specify the projection and viewport transformations at any point before drawing occ
Figure 3-2shows the order in which these operations occur on your computer.

Viewport hY
' ATransfarmation I;‘

| . | Modalview ([
VERTEX.- Matrix [)

X
¥
z
W eya clip normelized device window
coordinates coordinates coordingtes coordinetes
object
coordinates

Figure 3-2: Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construct a 4 x 4 khawixich is
then multiplied by the coordinates of each vextéxthe scene to accomplish the transformation

Vv'=Mv

(Remember that vertices always have four coordinates ¢, W}, though in most casesis 1 and for
two-dimensional datais 0.) Note that viewing and modeling transformations are automatically af
to surface normal vectors, in addition to vertices. (Normal vectors are used only in eye coordina
This ensures that the normal vector’s relationship to the vertex data is properly preserved.

The viewing and modeling transformations you specify are combined to form the modelview ma
which is applied to the incoming object coordinates to yield eye coordinates. Next, if you've spe
additional clipping planes to remove certain objects from the scene or to provide cutaway views
objects, these clipping planes are applied.

After that, OpenGL applies the projection matrix to yigig coordinatesThis transformation defines
viewing volume; objects outside this volume are clipped so that they’re not drawn in the final sc
After this point, the perspective division is performed by dividing coordinate valugstbyproduce
normalized device coordinatg$SeeAppendix Ffor more information about the meaning of the
coordinate and how it affects matrix transformations.) Finally, the transformed coordinates are ¢
to window coordinates by applying the viewport transformation. You can manipulate the dimens
the viewport to cause the final image to be enlarged, shrunk, or stretched.

You might correctly suppose that th@ndy coordinates are sufficient to determine which pixels ne
to be drawn on the screen. However, all the transformations are performedzaodhginates as well
This way, at the end of this transformation processz tladues correctly reflect the depth of a given
vertex (measured in distance away from the screen). One use for this depth value is to eliminat
unnecessary drawing. For example, suppose two vertices have the aadyevalues but different
values. OpenGL can use this information to determine which surfaces are obscured by other su
and can then avoid drawing the hidden surfaces.C8apter 1Gor more information about this
technique, which is calledidden-surface removal

As you've probably guessed by now, you need to know a few things about matrix mathematics
most out of this chapter. If you want to brush up on your knowledge in this area, you might cons

textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3-Idraws a cube that’s scaled by a modeling transformatioriF{gees 3-3. The viewing
transformationgluL ook At(), positions and aims the camera towards where the cube is drawn. A
projection transformation and a viewport transformation are also specified. The rest of this secti
you throughExample 3-1and briefly explains the transformation commands it uses. The succeed
sections contain the complete, detailed discussion of all OpenGL'’s transformation commands.

Figure 3-3: Transformed Cube

Example 3-1 : Transformed Cube: cube.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ gl ut. h>

voi d init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
voi d di spl ay(voi d)
{

gl Cear (G_COLOR BUFFER BIT);

gl Color3f (1.0, 1.0, 1.0);

gl Loadl dentity (); /[* clear the matrix */
/* viewing transformation */

gl uLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

gl Scalef (1.0, 2.0, 1.0); /* nodeling transformation */
gl ut WreCube (1.0);
gl Flush ();

}

voi d reshape (int w, int h)

{
gl Viewport (0, 0, (GLsizei) w, (Gsizei) h);
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity ();
gl Frustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
gl Mat ri xMode (GL_MODELVI EW ;

}

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutlnitD splayMdde (GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (500, 500);

gl utlnit WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

}

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera. In this «
example, before the viewing transformation can be specified, the current matrix is set to the ide
matrix withglL oadl dentity(). This step is necessary since most of the transformation commands
multiply the current matrix by the specified matrix and then set the result to be the current matri:
don’t clear the current matrix by loading it with the identity matrix, you continue to combine prev
transformation matrices with the new one you supply. In some cases, you do want to perform si
combinations, but you also need to clear the matrix sometimes.

In Example 3-1after the matrix is initialized, the viewing transformation is specified glith ook At ().
The arguments for this command indicate where the camera (or eye position) is placed, where |
aimed, and which way is up. The arguments used here place the camera at (0, 0, 5), aim the ce
towards (0, O, 0), and specify the up-vector as (0, 1, 0). The up-vector defines a unique orientat
the camera.

If gluL ookAt() was not called, the camera has a default position and orientation. By default, the
is situated at the origin, points down the negatiagis, and has an up-vector of (0, 1, 0). SExample
3-1, the overall effect is thafuL ook At() moves the camera 5 units along the z-axis. (8m®ving and
Modeling Transformationsfor more information about viewing transformations.)

The Modeling Transformation

You use the modeling transformation to position and orient the model. For example, you can ro
translate, or scale the model - or perform some combination of these operatixemiple 3-1

glScalef() is the modeling transformation that is used. The arguments for this command specify
scaling should occur along the three axes. If all the arguments are 1.0, this command has no ef
Example 3-1the cube is drawn twice as large in ytdirection. Thus, if one corner of the cube had
originally been at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The e
this modeling transformation is to transform the cube so that it isn’t a cube but a rectangular bo:

Try This
Change thg@luL ookAt() call inExample 3-1o the modeling transformatiahT randatef() with
parameters (0.0, 0.0, -5.0). The result should look exactly the same as when ygluluseldAt().

Why are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube could
viewed, you could have moved the cube away from the camera (with a modeling transformatior

duality in the nature of viewing and modeling transformations is why you need to think about the
of both types of transformations simultaneously. It doesn’t make sense to try to separate the eff
sometimes it's easier to think about them one way rather than the other. This is also why model
viewing transformations are combined into thedelview matridoefore the transformations are appl
(See"Viewing and Modeling Transformationgdr more detail on how to think about modeling and
viewing transformations and how to specify them to get the result you want.)

Also note that the modeling and viewing transformations are included dafiay() routine, along
with the call that's used to draw the cugkitWireCube(). This way,display() can be used repeated
to draw the contents of the window if, for example, the window is moved or uncovered, and you
ensured that each time, the cube is drawn in the desired way, with the appropriate transformatic
potential repeated use display() underscores the need to load the identity matrix before perform
the viewing and modeling transformations, especially when other transformations might be perf
between calls tdisplay().

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. You can think of tt
transformation as determining what the field of view or viewing volume is and therefore what ob
are inside it and to some extent how they look. This is equivalent to choosing among wide-angl
normal, and telephoto lenses, for example. With a wide-angle lens, you can include a wider sce
final photograph than with a telephoto lens, but a telephoto lens allows you to photograph objec
though they’re closer to you than they actually are. In computer graphics, you don’t have to pay
for a 2000-millimeter telephoto lens; once you've bought your graphics workstation, all you neet
is use a smaller number for your field of view.

In addition to the field-of-view considerations, the projection transformation determines how obj
projectedonto the screen, as its name suggests. Two basic types of projections are provided fol
OpenGL, along with several corresponding commands for describing the relevant parameters ir
different ways. One type is theerspectivgorojection, which matches how you see things in daily i
Perspective makes objects that are farther away appear smaller; for example, it makes railroad
appear to converge in the distance. If you're trying to make realistic pictures, you’ll want to choc
perspective projection, which is specified with ghérustum() command in this code example.

The other type of projection is orthographic, which maps objects directly onto the screen withou
affecting their relative size. Orthographic projection is used in architectural and computer-aided
applications where the final image needs to reflect the measurements of objects rather than ho
might look. Architects create perspective drawings to show how particular buildings or interior s
look when viewed from various vantage points; the need for orthographic projection arises whel
blueprint plans or elevations are generated, which are used in the construction of buildings. (Se
"Projection Transformationgor a discussion of ways to specify both kinds of projection
transformations.)

BeforeglFrustum() can be called to set the projection transformation, some preparation needs t
happen. As shown in thr@shape() routine inExample 3-1the command calleglM atrixM ode() is
used first, with the argument GL_PROJECTION. This indicates that the current matrix specifies
projection transformation; the following transformation calls then affect the projection matrix. As
can see, a few lines latgiM atrixM ode() is called again, this time with GL_MODELVIEW as the

argument. This indicates that succeeding transformations now affect the modelview matrix inste
projection matrix. (SeBManipulating the Matrix Stackgbr more information about how to control t
projection and modelview matrices.)

Note thatglL oadl dentity() is used to initialize the current projection matrix so that only the specif
projection transformation has an effect. Nghwrustum() can be called, with arguments that define
parameters of the projection transformation. In this example, both the projection transformation
viewport transformation are contained in tleshape() routine, which is called when the window is fi
created and whenever the window is moved or reshaped. This makes sense, since both project
width to height aspect ratio of the projection viewing volume) and applying the viewport relate d
to the screen, and specifically to the size or aspect ratio of the window on the screen.

Try This

Change th@lFrustum() call in Example 3-1to the more commonly used Utility Library routine
gluPer spective() with parameters (60.0, 1.0, 1.5, 20.0). Then experiment with different values,
especially forfovyandaspect

The Viewport Transformation

Together, the projection transformation and the viewport transformation determine how a scene
mapped onto the computer screen. The projection transformation specifies the mechanics of hc
mapping should occur, and the viewport indicates the shape of the available screen area into w
scene is mapped. Since the viewport specifies the region the image occupies on the computer ¢
you can think of the viewport transformation as defining the size and location of the final proces
photograph - for example, whether the photograph should be enlarged or shrunk.

The arguments tglViewport() describe the origin of the available screen space within the windo
0) in this example - and the width and height of the available screen area, all measured in pixel
screen. This is why this command needs to be called wighdnape() - if the window changes size, tr
viewport needs to change accordingly. Note that the width and height are specified using the ac
width and height of the window; often, you want to specify the viewport this way rather than givi
absolute size. (Se¥iewport Transformationfor more information about how to define the viewpo

Drawing the Scene

Once all the necessary transformations have been specified, you can draw the scene (that is, t¢
photograph). As the scene is drawn, OpenGL transforms each vertex of every object in the scel
modeling and viewing transformations. Each vertex is then transformed as specified by the proj
transformation and clipped if it lies outside the viewing volume described by the projection
transformation. Finally, the remaining transformed vertices are divideddmyg mapped onto the
viewport.

General-Purpose Transformation Commands

This section discusses some OpenGL commands that you might find useful as you specify desi
transformations. You've already seen a couple of these comnuhluidsgy ixM ode() and
glL oadl dentity(). The other two commands described heagik oadM atrix* () andglMultM atrix*() -

allow you to specify any transformation matrix directly and then to multiply the current matrix by
specified matrix. More specific transformation commands - sughua®okAt() andglScale*() - are
described in later sections.

As described in the preceding section, you need to state whether you want to modify the model
projection matrix before supplying a transformation command. You choose the matrix with
glMatrixMode(). When you use nested sets of OpenGL commands that might be called repeate
remember to reset the matrix mode correctly. (@MeatrixM ode() command can also be used to
indicate the texture matrix; texturing is discussed in detdilire Texture Matrix Stack” in Chapter)9

void glMatrixMode(GLenunmmode;
Specifies whether the modelview, projection, or texture matrix will be modified, using the
argument GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURHETode Subsequent
transformation commands affect the specified matrix. Note that only one matrix can be mc
a time. By default, the modelview matrix is the one that’'s modifiable, and all three matrices
contain the identity matrix.

You use thalL oadl dentity() command to clear the currently modifiable matrix for future
transformation commands, since these commands modify the current matrix. Typically, you alw
this command before specifying projection or viewing transformations, but you might also call it
specifying a modeling transformation.

void glLoadl dentity(void);
Sets the currently modifiable matrix to the 4 x 4 identity matrix.

If you want to specify explicitly a particular matrix to be loaded as the current matrix, use
glLoadMatrix*(). Similarly, usegIMultMatrix* () to multiply the current matrix by the matrix passe
in as an argument. The argument for both these commands is a vector of sixteenmialu2s.(. ,
m16) that specifies a matrM as follows:

i ms me M3
Wz Mg Mo mi4
3 omy oml ms
4 Mg Mz mig

Remember that you might be able to maximize efficiency by using display lists to store frequent
matrices (and their inverses) rather than recomputing them'' P®&g®ay-List Design Philosophy" in
Chapter 7 (OpenGL implementations often must compute the inverse of the modelview matrix ¢
normals and clipping planes can be correctly transformed to eye coordinates.)

Caution: If you're programming in C and you declare a matrixnpd[4], then the element[i][j] is in
theith column andth row of the OpenGL transformation matrix. This is the reverse of the standa
convention in whichm([i][j] is in rowi and columrj. To avoid confusion, you should declare your
matrices asn16].

void glLoadMatrix{fd}(constTYPE*m);
Sets the sixteen values of the current matrix to those specified by

void giMultMatrix{fd}(constTYPE*m);
Multiplies the matrix specified by the sixteen values pointed tolipythe current matrix and
stores the result as the current matrix.

Note: All matrix multiplication with OpenGL occurs as follows: Suppose the current matthaisd the
matrix specified witlglMultM atrix* () or any of the transformation command#flisAfter
multiplication, the final matrix is alwaySM. Since matrix multiplication isn’t generally commutativ
the order makes a difference.

Viewing and Modeling Transfor mations

Viewing and modeling transformations are inextricably related in OpenGL and are in fact combi
a single modelview matrix. (SéA Simple Example: Drawing a Cub&One of the toughest problernr
newcomers to computer graphics face is understanding the effects of combined three-dimensio
transformations. As you've already seen, there are alternative ways to think about transformatic
you want to move the camera in one direction, or move the object in the opposite direction? Eas
thinking about transformations has advantages and disadvantages, but in some cases one way
naturally matches the effect of the intended transformation. If you can find a natural approach fc
particular application, it's easier to visualize the necessary transformations and then write the
corresponding code to specify the matrix manipulations. The first part of this section discusses |
think about transformations; later, specific commands are presented. For now, we use only the
matrix-manipulation commands you've already seen. Finally, keep in mind that you must call
glMatrixM ode() with GL_MODELVIEW as its argument prior to performing modeling or viewing
transformations.

Thinking about Transfor mations

Let’s start with a simple case of two transformations: a 45-degree counterclockwise rotation abc
origin around the-axis, and a translation down tkaxis. Suppose that the object you're drawing is
small compared to the translation (so that you can see the effect of the translation), and that it's
originally located at the origin. If you rotate the object first and then translate it, the rotated obje«
appears on the-axis. If you translate it down theaxis first, however, and then rotate about the ori
the object is on the ling=x, as shown ifrigure 3-4 In general, the order of transformations is critic
If you do transformation A and then transformation B, you almost always get something differen
you do them in the opposite order.

Fotate then Translate Translate then Rotate

Figure 3-4 : Rotating First or Translating First

Now let’s talk about the order in which you specify a series of transformations. All viewing and
modeling transformations are represented as 4 x 4 matrices. Each sugtbtsitie atrix* () or
transformation command multiplies a new 4 x 4 mad#tiky the current modelview matrX to yield
CM. Finally, verticess are multiplied by the current modelview matrix. This process means that t
transformation command called in your program is actually the first one applied to the vEiMces:
Thus, one way of looking at it is to say that you have to specify the matrices in the reverse orde
many other things, however, once you've gotten used to thinking about this correctly, backward
seem like forward.

Consider the following code sequence, which draws a single point using three transformations:

gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

gl Mul t Mat ri xf (N)

gl Mul tiatrixf(M;

gl Mul t Mat ri xf (L);

gl Begi n(GL_PO NTS) ;

gl Vert ex3f (v); /* draw transforned vertex v */
gl End() ;

apply transformation N */
apply transformation M */
apply transformation L */

~~
* %k X

With this code, the modelview matrix successively contgiNs NM, and finallyNML, wherel
represents the identity matrix. The transformed vert&Md.v. Thus, the vertex transformation is
N(M(Lv)) - that is,v is multiplied first byL, the resultind-v is multiplied byM, and the resultinylLv
is multiplied byN. Notice that the transformations to vertegffectively occur in the opposite order
than they were specified. (Actually, only a single multiplication of a vertex by the modelview ma
occurs; in this example, tid M, andL matrices are already multiplied into a single matrix before
applied tov.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate system - in which matrix multiplica
affect the position, orientation, and scaling of your model - you have to think of the multiplicatior
occurring in the opposite order from how they appear in the code. Using the simple example sh
the left side ofFigure 3-4(a rotation about the origin and a translation alonghes), if you want the

object to appear on the axis after the operations, the rotation must occur first, followed by the
translation. To do this, you'll need to reverse the order of operations, so the code looks somethi
this (whereR is the rotation matrix and is the translation matrix):

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

gl Mul t Matri xf(T); /* translation */
gl Mul tMatri xf (R); /* rotation */
draw_t he_object();

Moving a L ocal Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed coordinate system in
your model is transformed and instead imagine that a local coordinate system is tied to the obje
drawing. All operations occur relative to this changing coordinate system. With this approach, tt
matrix multiplications now appear in the natural order in the code. (Regardless of which analogy
using, the code is the same, but how you think about it differs.) To see this in the translation-rot
example, begin by visualizing the object with a coordinate system tied to it. The translation opetr
moves the object and its coordinate system dowr-thas. Then, the rotation occurs about the
(now-translated) origin, so the object rotates in place in its position on the axis.

This approach is what you should use for applications such as articulated robot arms, where the
joints at the shoulder, elbow, and wrist, and on each of the fingers. To figure out where the tips
fingers go relative to the body, you'd like to start at the shoulder, go down to the wrist, and so ol
applying the appropriate rotations and translations at each joint. Thinking about it in reverse wo
far more confusing.

This second approach can be problematic, however, in cases where scaling occurs, and especi
when the scaling is nonuniform (scaling different amounts along the different axes). After unifor
scaling, translations move a vertex by a multiple of what they did before, since the coordinate s'
stretched. Nonuniform scaling mixed with rotations may make the axes of the local coordinate s
nonperpendicular.

As mentioned earlier, you normally issue viewing transformation commands in your program be
modeling transformations. This way, a vertex in a model is first transformed into the desired orie
and then transformed by the viewing operation. Since the matrix multiplications must be specifie
reverse order, the viewing commands need to come first. Note, however, that you don’'t need to
either viewing or modeling transformations if you're satisfied with the default conditions. If there
viewing transformation, the "camera" is left in the default position at the origin, pointed toward tt
negativez-axis; if there’s no modeling transformation, the model isn’t moved, and it retains its sp
position, orientation, and size.

Since the commands for performing modeling transformations can be used to perform viewing
transformations, modeling transformations diseussedirst, even if viewing transformations are
actuallyissuedfirst. This order for discussion also matches the way many programmers think wh
planning their code: Often, they write all the code necessary to compose the scene, which invol
transformations to position and orient objects correctly relative to each other. Next, they decide
they want the viewpoint to be relative to the scene they’ve composed, and then they write the vi
transformations accordingly.

Modeling Transfor mations

The three OpenGL routines for modeling transformationgldneanslate* (), glRotate* (), and
glScale* (). As you might suspect, these routines transform an object (or coordinate system, if yc
thinking of it that way) by moving, rotating, stretching, shrinking, or reflecting it. All three comme
are equivalent to producing an appropriate translation, rotation, or scaling matrix, and then callii
glMultMatrix* () with that matrix as the argument. However, these three routines might be faste
usingglMultM atrix* (). OpenGL automatically computes the matrices for you. Appendix Fif
you're interested in the details.)

In the command summaries that follow, each matrix multiplication is described in terms of what
to the vertices of a geometric object using the fixed coordinate system approach, and in terms ¢
does to the local coordinate system that’s attached to an object.

Trandate

void glTrandate{fd}(TYPE, TYPE yTYPE);
Multiplies the current matrix by a matrix that moves (translates) an object by thexgiweandz
values (or moves the local coordinate system by the same amounts).

Figure 3-5shows the effect aji Trandate*().

Figure 3-5: Translating an Object

Note that using (0.0, 0.0, 0.0) as the argumenglfbranslate* () is the identity operation - that is, it h
no effect on an object or its local coordinate system.

Rotate

void glRotate{fd}(TYPEangle TYPEx, TYPEy, TYPEZ);
Multiplies the current matrix by a matrix that rotates an object (or the local coordinate syst:
a counterclockwise direction about the ray from the origin through the pqigt §. Theangle
parameter specifies the angle of rotation in degrees.

The effect ofglRotatef(45.0, 0.0, 0.0, 1)0which is a rotation of 45 degrees aboutzais, is shown
in Figure 3-6

Figure 3-6 : Rotating an Object

Note that an object that lies farther from the axis of rotation is more dramatically rotated (has a |
orbit) than an object drawn near the axis. Also, ifahgleargument is zero, trgtRotate* () command
has no effect.

Scale

void glScale{fd}(TYPEx, TYPE y TYPE);
Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object along

axes. Eaclx, y, andz coordinate of every point in the object is multiplied by the correspondi
argumentx, y, or z. With the local coordinate system approach, the local coordinate axes ar
stretched, shrunk, or reflected by the/, andz factors, and the associated object is transform

with them.

Figure 3-7shows the effect ajlScalef(2.0, -0.5, 1.0

¥

% wy x

Figure 3-7: Scaling and Reflecting an Object

glScale*() is the only one of the three modeling transformations that changes the apparent size
object: Scaling with values greater than 1.0 stretches an object, and using values less than 1.0
Scaling with a -1.0 value reflects an object across an axis. The identity values for scaling are (1
1.0). In general, you should limit your usegbcale* () to those cases where it is necessary. Using
glScale* () decreases the performance of lighting calculations, because the normal vectors have
renormalized after transformation.

Note: A scale value of zero collapses all object coordinates along that axis to zero. It's usually n
good idea to do this, because such an operation cannot be undone. Mathematically speaking, t
cannot be inverted, and inverse matrices are required for certain lighting operatiohdfes 5
Sometimes collapsing coordinates does make sense, however; the calculation of shadows on &
surface is a typical application. (S&hadows" in Chapter 14In general, if a coordinate system is t
be collapsed, the projection matrix should be used rather than the modelview matrix.

A Modeling Transformation Code Example

Example 3-3s a portion of a program that renders a triangle four times, as shéwjune 3-8 These
are the four transformed triangles.

® A solid wireframe triangle is drawn with no modeling transformation.

® The same triangle is drawn again, but with a dashed line stipple and translated (to the left
the negative x-axis).

® A triangle is drawn with a long dashed line stipple, with its heigtaix(s) halved and its width
(x-axis) increased by 50%.

® A rotated triangle, made of dotted lines, is drawn.

Figure 3-8 : Modeling Transformation Example

Example 3-2 : Using Modeling Transformations: model.c

gl Loadl dentity();
gl Color3f(1.0, 1.0, 1.0);
draw triangl e(); /* solid lines */

gl Enabl e(GL_LI NE_STI PPLE) ; /* dashed lines */
gl LineStippl e(1, OxFOFO);

gl Loadl dentity();

gl Transl atef (-20.0, 0.0, 0.0);

draw_ triangl e();

gl LineStippl e(1, OxFOOF); /*1 ong dashed |ines */
gl Loadl dentity();

gl Scalef(1.5, 0.5, 1.0);

draw triangl e();

gl LineStipple(l, 0x8888); /[* dotted lines */
gl Loadl dentity();

gl Rotatef (90.0, 0.0, 0.0, 1.0);

draw triangle ();

gl Di sabl e (G_LI NE_STI PPLE) ;

Note the use oflL oadldentity() to isolate the effects of modeling transformations; initializing the
matrix values prevents successive transformations from having a cumulative effect. Even thoug
glL oadl dentity() repeatedly has the desired effect, it may be inefficient, because you may have
respecify viewing or modeling transformations. (Sdanipulating the Matrix Stackgbr a better way
to isolate transformations.)

Note: Sometimes, programmers who want a continuously rotating object attempt to achieve this
repeatedly applying a rotation matrix that has small values. The problem with this technique is t
because of round-off errors, the product of thousands of tiny rotations gradually drifts away fron
value you really want (it might even become something that isn’t a rotation). Instead of using thi
technique, increment the angle and issue a new rotation command with the new angle at each 1
step.

Viewing Transfor mations

A viewing transformation changes the position and orientation of the viewpoint. If you recall the
analogy, the viewing transformation positions the camera tripod, pointing the camera toward the
Just as you move the camera to some position and rotate it until it points in the desired directiot
viewing transformations are generally composed of translations and rotations. Also remember t|
achieve a certain scene composition in the final image or photograph, you can either move the
move all the objects in the opposite direction. Thus, a modeling transformation that rotates an o
counterclockwise is equivalent to a viewing transformation that rotates the camera clockwise, fc
example. Finally, keep in mind that the viewing transformation commands must be called befor¢
modeling transformations are performed, so that the modeling transformations take effect on th:
first.

You can manufacture a viewing transformation in any of several ways, as described next. You ¢
choose to use the default location and orientation of the viewpoint, which is at the origin, looking
the negative-axis.

® Use one or more modeling transformation commands (thgiffisanslate* () andglRotate*()).
You can think of the effect of these transformations as moving the camera position or as n
all the objects in the world, relative to a stationary camera.

® Use the Utility Library routingluL ookAt() to define a line of sight. This routine encapsulate
series of rotation and translation commands.

® Create your own utility routine that encapsulates rotations and translations. Some applicat
might require custom routines that allow you to specify the viewing transformation in a con

way. For example, you might want to specify the roll, pitch, and heading rotation angles of
in flight, or you might want to specify a transformation in terms of polar coordinates for a c.
that’s orbiting around an object.

Using glTrangdlate* () and glRotate* ()

When you use modeling transformation commands to emulate viewing transformations, you'’re 1
move the viewpoint in a desired way while keeping the objects in the world stationary. Since the
viewpoint is initially located at the origin and since objects are often most easily constructed the
well (seeFigure 3-9, in general you have to perform some transformation so that the objects car
viewed. Note that, as shown in the figure, the camera initially points down the negmtigse(You're
seeing the back of the camera.)

Figure 3-9: Object and Viewpoint at the Origin

In the simplest case, you can move the viewpoint backward, away from the objects; this has the
effect as moving the objects forward, or away from the viewpoint. Remember that by default for
down the negative-axis; if you rotate the viewpoint, forward has a different meaning. So, to put £
of distance between the viewpoint and the objects by moving the viewpoint, as sHogurén3-10
use

gl Transl atef (0.0, 0.0, -5.0);

This routine moves the objects in the scene -5 units alorggetkis. This is also equivalent to moving
the camera +5 units along theaxis.

Figure 3-10 : Separating the Viewpoint and the Object

Now suppose you want to view the objects from the side. Should you issue a rotate command
after the translate command? If you're thinking in terms of a grand, fixed coordinate system, firs
imagine both the object and the camera at the origin. You could rotate the object first and then |
away from the camera so that the desired side is visible. Since you know that with the fixed coo
system approach, commands have to be issued in the opposite order in which they should take
you know that you need to write the translate command first in your code and follow it with the r
command.

Now let’s use the local coordinate system approach. In this case, think about moving the object
local coordinate system away from the origin; then, the rotate command is carried out using the
now-translated coordinate system. With this approach, commands are issued in the order in wh
they’re applied, so once again the translate command comes first. Thus, the sequence of transt
commands to produce the desired result is

gl Transl atef (0.0, 0.0, -5.0);
gl Rotatef(90.0, 0.0, 1.0, 0.0);

If you're having trouble keeping track of the effect of successive matrix multiplications, try using
the fixed and local coordinate system approaches and see whether one makes more sense to)
that with the fixed coordinate system, rotations always occur about the grand origin, whereas w
local coordinate system, rotations occur about the origin of the local system. You might also try
thegluL ook At() utility routine described in the next section.

Using the gluL ook At() Utility Routine

Often, programmers construct a scene around the origin or some other convenient location, the
want to look at it from an arbitrary point to get a good view of it. As its name suggegjisiltbek At()
utility routine is designed for just this purpose. It takes three sets of arguments, which specify th
location of the viewpoint, define a reference point toward which the camera is aimed, and indice

direction is up. Choose the viewpoint to yield the desired view of the scene. The reference poin
typically somewhere in the middle of the scene. (If you've built your scene at the origin, the refe
point is probably the origin.) It might be a little trickier to specify the correct up-vector. Again, if \
built some real-world scene at or around the origin and if you've been taking the ppsitiggo point
upward, then that’'s your up-vector fgiuL ook At(). However, if you're designing a flight simulator,
is the direction perpendicular to the plane’s wings, from the plane toward the sky when the plan
right-side up on the ground.

ThegluL ookAt() routine is particularly useful when you want to pan across a landscape, for inst
With a viewing volume that's symmetric in botlandy, the gyex, eyey, eyepoint specified is alway:
in the center of the image on the screen, so you can use a series of commands to move this po
thereby panning across the scene.

void gluLookAt(GLdoubleeyex GLdoubleeyey GLdoubleeyez GLdoublecenterx GLdoublecentery
GLdoublecenterz GLdoubleupx, GLdoubleupy, GLdoubleup2);
Defines a viewing matrix and multiplies it to the right of the current matrix. The desired vie'
is specified bgyex eyey andeyez Thecenterx centery andcenterzarguments specify any poil
along the desired line of sight, but typically they’re some point in the center of the scene b
looked at. Theipx upy, andupzarguments indicate which direction is up (that is, the directio
from the bottom to the top of the viewing volume).

In the default position, the camera is at the origin, is looking down the negatig and has the
positivey-axis as straight up. This is the same as calling

gl uLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

Thez value of the reference point is -100.0, but could be any negatreeause the line of sight will
remain the same. In this case, you don’t actually want talcdllookAt(), because this is the default
(seeFigure 3-1) and you are already there! (The lines extending from the camera represent the
volume, which indicates its field of view.)

¥

Figure 3-11 : Default Camera Position

Figure 3-12shows the effect of a typicgluL ookAt() routine. The camera positioayex, eyey, eyes
at (4, 2, 1). In this case, the camera is looking right at the model, so the reference point is at (2,

An orientation vector of (2, 2, -1) is chosen to rotate the viewpoint to this 45-degree angle.

Figure 3-12 : Using gluLookAt()

So, to achieve this effect, call
gl uLookAt (4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);

Note thatgluL ook At() is part of the Utility Library rather than the basic OpenGL library. This isn’t
because it's not useful, but because it encapsulates several basic OpenGL commands - specifir
glTrandate* () andglRotate* (). To see this, imagine a camera located at an arbitrary viewpoint a
oriented according to a line of sight, both as specified ghithookAt() and a scene located at the
origin. To "undo" whagluL ookAt() does, you need to transform the camera so that it sits at the ¢
and points down the negatizeaxis, the default position. A simple translate moves the camera to t
origin. You can easily imagine a series of rotations about each of the three axes of a fixed coort
system that would orient the camera so that it pointed toward negaauges. Since OpenGL allows
rotation about an arbitrary axis, you can accomplish any desired rotation of the camera with a s
glRotate* () command.

Note: You can have only one active viewing transformation. You cannot try to combine the effec
two viewing transformations, any more than a camera can have two tripods. If you want to chan
position of the camera, make sure you gHlloadl dentity() to wipe away the effects of any current
viewing transformation.

Advanced

To transform any arbitrary vector so that it's coincident with another arbitrary vector (for instanc
negativez-axis), you need to do a little mathematics. The axis about which you want to rotate is «
by the cross product of the two normalized vectors. To find the angle of rotation, normalize the |
two vectors. The cosine of the desired angle between the vectors is equal to the dot product of
normalized vectors. The angle of rotation around the axis given by the cross product is always |
and 180 degrees. (SAppendix Efor definitions of cross and dot products.)

Note that computing the angle between two normalized vectors by taking the inverse cosine of |
product is not very accurate, especially for small angles. But it should work well enough to get'y

started.
Creating a Custom Utility Routine
Advanced

For some specialized applications, you might want to define your own transformation routine. S
is rarely done and in any case is a fairly advanced topic, it's left mostly as an exercise for the re
following exercises suggest two custom viewing transformations that might be useful.

Try This

® Suppose you're writing a flight simulator and you’d like to display the world from the point «
view of the pilot of a plane. The world is described in a coordinate system with the origin o
runway and the plane at coordinatesy(2. Suppose further that the plane has sootfiepitch,
andheading(these are rotation angles of the plane relative to its center of gravity).

Show that the following routine could serve as the viewing transformation:

voi d pil otVi ew{ GLdoubl e pl anex, G.doubl e pl aney,
GLdoubl e pl anez, G.double roll
GLdoubl e pitch, G.doubl e headi ng)

{

gl Rotated(roll, 0.0, 0.0, 1.0);

gl Rotated(pitch, 0.0, 1.0, 0.0);

gl Rot at ed(heading, 1.0, 0.0, 0.0);

gl Transl at ed(- pl anex, -planey, -planez);
}

® Suppose your application involves orbiting the camera around an object that’s centered at
origin. In this case, you'd like to specify the viewing transformation by using polar coordine
Let thedistancevariable define the radius of the orbit, or how far the camera is from the ori
(Initially, the camera is movedistanceunits along the positiveaxis.) Theazimuthdescribes the
angle of rotation of the camera about the object irxthelane, measured from the positiaxis
Similarly, elevationis the angle of rotation of the camera in yheplane, measured from the
positivez-axis. Finally twist represents the rotation of the viewing volume around its line of

Show that the following routine could serve as the viewing transformation:

voi d pol ar Vi ew{ GLdoubl e di stance, G.double tw st,
GLdoubl e el evati on, G.doubl e azi nut h)

{
gl Transl ated(0.0, 0.0, -distance);
gl Rotated(-twist, 0.0, 0.0, 1.0);
gl Rot at ed(-el evation, 1.0, 0.0, 0.0);
gl Rot ated(azimuth, 0.0, 0.0, 1.0);
}

Projection Transformations

The previous section described how to compose the desired modelview matrix so that the corre
modeling and viewing transformations are applied. This section explains how to define the desil
projection matrix, which is also used to transform the vertices in your scene. Before you issue a
transformation commands described in this section, remember to call

gl Matri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();

so that the commands affect the projection matrix rather than the modelview matrix and so that
avoid compound projection transformations. Since each projection transformation command co
describes a particular transformation, typically you don’t want to combine a projection transform
with another transformation.

The purpose of the projection transformation is to defiievaing volumewhich is used in two ways.
The viewing volume determines how an object is projected onto the screen (that is, by using a
perspective or an orthographic projection), and it defines which objects or portions of objects ar
out of the final image. You can think of the viewpoint we’ve been talking about as existing at on
the viewing volume. At this point, you might want to rereddimple Example: Drawing a Cub&dr
its overview of all the transformations, including projection transformations.

Per spective Projection

The most unmistakable characteristic of perspective projection is foreshortening: the farther an
from the camera, the smaller it appears in the final image. This occurs because the viewing volt
perspective projection is a frustum of a pyramid (a truncated pyramid whose top has been cut o
plane parallel to its base). Objects that fall within the viewing volume are projected toward the a
the pyramid, where the camera or viewpoint is. Objects that are closer to the viewpoint appear |
because they occupy a proportionally larger amount of the viewing volume than those that are f
away, in the larger part of the frustum. This method of projection is commonly used for animatic
visual simulation, and any other applications that strive for some degree of realism because it's
to how our eye (or a camera) works.

The command to define a frustughk-rustum(), calculates a matrix that accomplishes perspective
projection and multiplies the current projection matrix (typically the identity matrix) by it. Recall t
theviewing volume is used to clip objects that lie outside of it; the four sides of the frustum, its tc
its base correspond to the six clipping planes of the viewing volume, as shbigana 3-13 Objects ¢
parts of objects outside these planes are clipped from the final image. Ngi&thatum() doesn’t
require you to define a symmetric viewing volume.

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdoubleleft, GLdoubleright, GLdoublebottom

GLdoubletop, GLdoublenear, GLdoublefar);
Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The
frustum’s viewing volume is defined by the parameté&; pottom-near) and fight, top, -neay
specify theX, y, 2 coordinates of the lower-left and upper-right corners of the near clipping
plane;nearand far give the distances from the viewpoint to the near and far clipping plane:
They should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or
translations on the projection matrix to alter this orientation, but this is tricky and nearly always
avoidable.

Advanced

Also, the frustum doesn’t have to be symmetrical, and its axis isn’'t necessarily aligned w1éxithe
For example, you can ugt-rustum() to draw a picture as if you were looking through a rectangul
window of a house, where the window was above and to the right of you. Photographers use st
viewing volume to create false perspectives. You might use it to have the hardware calculate i
much higher than normal resolutions, perhaps for use on a printer. For example, if you want an
that has twice the resolution of your screen, draw the same picture four times, each time using
frustum to cover the entire screen with one-quarter of the image. After each quarter of the imag
rendered, you can read the pixels back to collect the data for the higher-resolution imaghafeet
for more information about reading pixel data.)

Although it's easy to understand conceptualfirustum() isn't intuitive to use. Instead, you might t
the Utility Library routinegluPer spective(). This routine creates a viewing volume of the same she
glFrustum() does, but you specify it in a different way. Rather than specifying corners of the nee
clipping plane, you specify the angle of the field of view (&THgr; , or thetBigare 3-14 in they

direction and the aspect ratio of the width to heighf) ((For a square portion of the screen, the asf
ratio is 1.0.) These two parameters are enough to determine an untruncated pyramid along the
sight, as shown ifigure 3-14 You also specify the distance between the viewpoint and the near

clipping planes, thereby truncating the pyramid. Notedhe®er spective() is limited to creating
frustums that are symmetric in both theandy-axes along the line of sight, but this is usually what
want.

- near L

-

far

Figure 3-14 : Perspective Viewing Volume Specified by gluPerspective()

void gluPerspective(GLdoublefovy, GLdoubleaspect

GLdoublenear, GLdoublefar);
Creates a matrix for a symmetric perspective-view frustum and multiplies the current matri
fovyis the angle of the field of view in tka plane; its value must be in the range [0.0,180.0]
aspects the aspect ratio of the frustum, its width divided by its henglat: and far values the
distances between the viewpoint and the clipping planes, along the neggtisge They should
always be positive.

Just as withlglFrustum(), you can apply rotations or translations to change the default orientation
viewing volume created byluPer spective(). With no such transformations, the viewpoint remains
the origin, and the line of sight points down the negatiagis.

With gluPer spective(), you need to pick appropriate values for the field of view, or the image ma
distorted. For example, suppose you're drawing to the entire screen, which happens to be 11 in
If you choose a field of view of 90 degrees, your eye has to be about 7.8 inches from the screer
image to appear undistorted. (This is the distance that makes the screen subtend 90 degrees.)
is farther from the screen, as it usually is, the perspective doesn’t look right. If your drawing are:
occupies less than the full screen, your eye has to be even closer. To get a perfect field of view
out how far your eye normally is from the screen and how big the window is, and calculate the ¢
window subtends at that size and distance. It's probably smaller than you would guess. Anothel
think about it is that a 94-degree field of view with a 35-millimeter camera requires a 20-millimet
which is a very wide-angle lens. (S8eoubleshooting Transformationfir more details on how to
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to dc
OpenGL? The answer is, in a word, no. The projection and other transformations are inherently
If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches
kilometers, or leagues, it's up to you. The only rule is that you have to use a consistent unit of

measurement. Then the resulting image is drawn to scale.
Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more inf
a box (sed-igure 3-15%. Unlike perspective projection, the size of the viewing volume doesn’t cha
from one end to the other, so distance from the camera doesn’t affect how large an object appe
type of projection is used for applications such as creating architectural blueprints and compute
design, where it’s crucial to maintain the actual sizes of objects and angles between them as th
projected.

)ton
AL
laﬂ—Sb
- A
ﬁ‘e;rd 4L rlght
vlewpoint
; viewing valume
botiom E 5
near far

Figure 3-15: Orthographic Viewing Volume

The commandg)lOrtho() creates an orthographic parallel viewing volume. As giinustum(), you
specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdoubleleft, GLdoubleright, GLdoublebottom

GLdoubletop, GLdoublenear, GLdoublefar);
Creates a matrix for an orthographic parallel viewing volume and multiplies the current ma
it. (left, bottom, -negrand ight, top, -neaj are points on the near clipping plane that are
mapped to the lower-left and upper-right corners of the viewport window, respectsfe]y. (
bottom, -faj and ¢ight, top, -far) are points on the far clipping plane that are mapped to the
respective corners of the viewport. Bagmar and far can be positive or negative.

With no other transformations, the direction of projection is parallel te-&éixés, and the viewpoint
faces toward the negatizeaxis. Note that this means that the values passed farf@ndnear are usel
as negative values if these planes are in front of the viewpoint, and positive if they’re behind the
viewpoint.

For the special case of projecting a two-dimensional image onto a two-dimensional screen, use
Utility Library routinegluOrtho2D(). This routine is identical to the three-dimensional version,
glOrtho(), except that all the coordinates for objects in the scene are assumed to lie between -1
1.0. If you're drawing two-dimensional objects using the two-dimensional vertex commandszall
coordinates are zero; thus, none of the objects are clipped becauseoidhess.

void gluOrtho2D(GLdoubleleft, GLdoubleright,

GLdoublebottom GLdoubletop);
Creates a matrix for projecting two-dimensional coordinates onto the screen and multiplies
current projection matrix by it. The clipping region is a rectangle with the lower-left corner i
(left, bottom and the upper-right corner atight, top).

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the modelview and proj
matrices, any primitives that lie outside the viewing volume are clipped. The six clipping planes
those that define the sides and ends of the viewing volume. You can specify additional clipping
and locate them wherever you choose. (3eklitional Clipping Planesfor information about this
relatively advanced topic.) Keep in mind that OpenGL reconstructs the edges of polygons that ¢
clipped.

Viewport Transfor mation

Recalling the camera analogy, you know that the viewport transformation corresponds to the st
where the size of the developed photograph is chosen. Do you want a wallet-size or a poster-si
photograph? Since this is computer graphics, the viewport is the rectangular region of the windc
the image is drawrkigure 3-16shows a viewport that occupies most of the screen. The viewport
measured in window coordinates, which reflect the position of pixels on the screen relative to th
lower-left corner of the window. Keep in mind that all vertices have been transformed by the mc
and projection matrices by this point, and vertices outside the viewing volume have been clippe

e

Figure 3-16 : Viewport Rectangle

Defining the Viewport

The window system, not OpenGL, is responsible for opening a window on the screen. However
default the viewport is set to the entire pixel rectangle of the window that’s opened. You use the
glViewport() command to choose a smaller drawing region; for example, you can subdivide the
to create a split-screen effect for multiple views in the same window.

void glViewport(GLint x, GLinty, GLsizewidth, GLsizeiheighi;

Defines a pixel rectangle in the window into which the final image is mappedx, Wh@dramete
specifies the lower-left corner of the viewport, andth andheightare the size of the viewport
rectangle. By default, the initial viewport values abe(, winWidth, winHeight wherewinWidth
andwinHeightare the size of the window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing volume. If t
ratios are different, the projected image will be distorted when mapped to the viewport, as show
Figure 3-17 Note that subsequent changes to the size of the window don’t explicitly affect the vi
Your application should detect window resize events and modify the viewport appropriately.

undistorted distorted

Figure 3-17 : Mapping the Viewing Volume to the Viewport

In Figure 3-17 the left figure shows a projection that maps a square image onto a square viewpc
these routines:

gl uPerspective(fovy, 1.0, near, far);
gl Vi ewport (0, 0, 400, 400);

However, in the right figure, the window has been resized to a nonequilateral rectangular viewp
the projection is unchanged. The image appears compressed aleraxibe

gl uPer spective(fovy, 1.0, near, far);
gl Viewport (0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match the viewport:

gl uPer spective(fovy, 2.0, near, far);
gl Vi ewport (0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different viewports. You might di

object with different projection and/or viewing transformations for each viewport. To create two
side-by-side viewports, you might issue these commands, along with the appropriate modeling,
and projection transformations:

gl Viewport (0, 0, sizex/2, sizey);

gl Vi ewport (sizex/2, . 0, sizex/2, sizey);
The Transformed Depth Coordinate

The depthZ) coordinate is encoded during the viewport transformation (and later stored in the di
buffer). You can scalevalues to lie within a desired range with thBepthRange() command.
(Chapter 1@iscusses the depth buffer and the corresponding uses for the depth coordinatex) Ur
andy window coordinatesg, window coordinates are treated by OpenGL as though they always re
from 0.0 to 1.0.

void glDepthRange(GLclampdnear, GLclampdfar);
Defines an encoding farcoordinates that's performed during the viewport transformation. T
nearand far values represent adjustments to the minimum and maximum values that can |
in the depth buffer. By default, they’re 0.0 and 1.0, respectively, which work for most appli
These parameters are clamped to lie within [0,1].

In perspective projection, the transformed depth coordinate (likedhdy coordinates) is subject to
perspective division by th& coordinate. As the transformed depth coordinate moves farther awa
the near clipping plane, its location becomes increasingly less precis€idGexe3-18)

depth coordinats spacing

Figure 3-18 : Perspective Projection and Transformed Depth Coordinates

Therefore, perspective division affects the accuracy of operations which rely upon the transforn
coordinate, especially depth-buffering, which is used for hidden surface removal.

Troubleshooting Transfor mations

It's pretty easy to get a camera pointed in the right direction, but in computer graphics, you hav¢
specify position and direction with coordinates and angles. As we can attest, it'’s all too easy to

the well-known black-screen effect. Although any number of things can go wrong, often you get
effect - which results in absolutely nothing being drawn in the window you open on the screen -
incorrectly aiming the "camera" and taking a picture with the model behind you. A similar proble
arises if you don’t choose a field of view that’'s wide enough to view your objects but narrow enc
they appear reasonably large.

If you find yourself exerting great programming effort only to create a black window, try these
diagnostic steps.

1. Check the obvious possibilities. Make sure your system is plugged in. Make sure you're dr
your objects with a color that's different from the color with which you're clearing the scree
Make sure that whatever states you're using (such as lighting, texturing, alpha blending, Ic
operations, or antialiasing) are correctly turned on or off, as desired.

2. Remember that with the projection commands, the near and far coordinates measure dist:
the viewpoint and that (by default) you're looking down the negatasas. Thus, if the near val
is 1.0 and the far 3.0, objects must haeeordinates between -1.0 and -3.0 in order to be vis
To ensure that you haven't clipped everything out of your scene, temporarily set the near ¢
clipping planes to some absurdly inclusive values, such as 0.001 and 1000000.0. This alte
appearance for operations such as depth-buffering and fog, but it might uncover inadverte
clipped objects.

3. Determine where the viewpoint is, in which direction you're looking, and where your object
It might help to create a real three-dimensional space - using your hands, for instance - to
these things out.

4. Make sure you know where you’re rotating about. You might be rotating about some arbitr
location unless you translated back to the origin first. It's OK to rotate about any point unle
you’re expecting to rotate about the origin.

5. Check your aim. UsgluL ookAt() to aim the viewing volume at your objects. Or draw your
objects at or near the origin, and gb€ransate* () as a viewing transformation to move the
camera far enough in tlzadirection only so that the objects fall within the viewing volume. O
you’'ve managed to make your objects visible, try to change the viewing volume increment
achieve the exact result you want, as described next.

Even after you’'ve aimed the camera in the correct direction and you can see your objects, they
appear too small or too large. If you're usgigPer spective(), you might need to alter the angle
defining the field of view by changing the value of the first parameter for this command. You car
trigonometry to calculate the desired field of view given the size of the object and its distance fr
viewpoint: The tangent of half the desired angle is half the size of the object divided by the diste
the object (se€igure 3-19. Thus, you can use an arctangent routine to compute half the desired
Example 3-3assumes such a routiraan?2(), which calculates the arctangent given the length of tr
opposite and adjacent sides of a right triangle. This result then needs to be converted from radi
degrees.

Distanes ————|— =

Figure 3-19 : Using Trigonometry to Calculate the Field of View

Example 3-3: Calculating Field of View

#define Pl 3.1415926535

doubl e cal cul at eAngl e(doubl e si ze, doubl e di stance)

{
doubl e radt heta, degtheta;

r adt het a 2.0 * atan2 (size/2.0, distance);
degt het a (180.0 * radtheta) / PI
return (degtheta);

}

Of course, typically you don’t know the exact size of an object, and the distance can only be de
between the viewpoint and a single point in your scene. To obtain a fairly good approximate val
the bounding box for your scene by determining the maximum and minknyrandz coordinates of
all the objects in your scene. Then calculate the radius of a bounding sphere for that box, and u
center of the sphere to determine the distance and the radius to determine the size.

For example, suppose all the coordinates in your object satisfy the equationsx<e3, 5 ≤y
≤ 7, and -5 &lez ≤ 5. Then the center of the bounding box is (1, 6, 0), and the radius of a
bounding sphere is the distance from the center of the box to any corner - say (3, 7, 5) - or

Jo e 76245 0 = JF0= 5477

If the viewpoint is at (8, 9, 10), the distance between it and the center is

Jo12 4 ©- 62+ (10- 02 = J58 = 12,570

The tangent of the half angle is 5.477 divided by 12.570, which equals 0.4357, so the half angle
degrees.

Remember that the field-of-view angle affects the optimal position for the viewpoint, if you're try
achieve a realistic image. For example, if your calculations indicate that you need a 179-degree

view, the viewpoint must be a fraction of an inch from the screen to achieve realism. If your calc
field of view is too large, you might need to move the viewpoint farther away from the object.

Manipulating the Matrix Stacks

The modelview and projection matrices you've been creating, loading, and multiplying have onl
the visible tips of their respective icebergs. Each of these matrices is actually the topmost mem|
stack of matrices (sdagure 3-20.

projection

. . madalview ¢ matrix staok

P]S e 4> Wanaticw
3
1] E |
mnop

Figure 3-20 : Modelview and Projection Matrix Stacks

A stack of matrices is useful for constructing hierarchical models, in which complicated objects :
constructed from simpler ones. For example, suppose you're drawing an automobile that has fc
wheels, each of which is attached to the car with five bolts. You have a single routine to draw a
and another to draw a bolt, since all the wheels and all the bolts look the same. These routines
wheel or a bolt in some convenient position and orientation, say centered at the origin with its a
coincident with the axis. When you draw the car, including the wheels and bolts, you want to ca
wheel-drawing routine four times with different transformations in effect each time to position th
wheels correctly. As you draw each wheel, you want to draw the bolts five times, each time tran
appropriately relative to the wheel.

Suppose for a minute that all you have to do is draw the car body and the wheels. The English
description of what you want to do might be something like this:

® Draw the car body. Remember where you are, and translate to the right front wheel. Draw
wheel and throw away the last translation so your current position is back at the origin of tl
body. Remember where you are, and translate to the left front wheel....

Similarly, for each wheel, you want to draw the wheel, remember where you are, and successiv
translate to each of the positions that bolts are drawn, throwing away the transformations after ¢
is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal mechanism f
this sort of successive remembering, translating, and throwing away. All the matrix operations tl
been described so fagliLcadMatrix(), giMultMatrix(), glL oadl dentity() and the commands that

create specific transformation matrices) deal with the current matrix, or the top matrix on the ste
can control which matrix is on top with the commands that perform stack opergtRumiM atrix(),
which copies the current matrix and adds the copy to the top of the stacgkPaphll atrix(), which
discards the top matrix on the stack, as showsgare 3-21 (Remember that the current matrix is
always the matrix on the top.) In effegtPushM atrix() means "remember where you are" and
glPopMatrix() means "go back to where you were."

Figure 3-21 : Pushing and Popping the Matrix Stack

void glPushMatrix(void);
Pushes all matrices in the current stack down one level. The current stack is determined b
glMatrixMode(). The topmost matrix is copied, so its contents are duplicated in both the to|
second-from-the-top matrix. If too many matrices are pushed, an error is generated.

void glPopMatrix(void);
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was
second-from-the-top matrix becomes the top matrix. The current stack is determined by
glMatrixMode(). If the stack contains a single matrix, calligdPopMatrix() generates an error.

Example 3-4draws an automobile, assuming the existence of routines that draw the car body, a
and a bolt.

Example 3-4 : Pushing and Popping the Matrix

draw wheel _and_bol t s()
{

long i;

dr aw_wheel ();
for(i=0;i<5;i++){
gl Pushiatri x();
gl Rotatef(72.0*i,0.0,0.0,1.0);
gl Transl atef (3.0,0.0,0.0);
draw bol t();
gl PopMat ri x();

}
draw _body and wheel _and_bol ts()
draw _car _body();

gl PushiMatri x();
gl Transl at ef (40, 0, 30); /*move to first wheel position*/

draw wheel _and_bol ts();
gl PopMat ri x();
gl PushMatri x();
gl Transl at ef (40, 0, - 30) ; /*move to 2nd wheel position*/
draw wheel _and_bol ts();
gl PopMat ri x();
C /*draw | ast two wheels sinilarly*/

}

This code assumes the wheel and bolt axes are coincident withttse that the bolts are evenly
spaced every 72 degrees, 3 units (maybe inches) from the center of the wheel, and that the fror
are 40 units in front of and 30 units to the right and left of the car’s origin.

A stack is more efficient than an individual matrix, especially if the stack is implemented in hard
When you push a matrix, you don’t need to copy the current data back to the main process, anc
hardware may be able to copy more than one element of the matrix at a time. Sometimes you n
to keep an identity matrix at the bottom of the stack so that you don’t needdt.callil dentity()
repeatedly.

The Moddview Matrix Stack

As you've seen earlier ifWiewing and Modeling Transformationgfie modelview matrix contains tf
cumulative product of multiplying viewing and modeling transformation matrices. Each viewing t
modeling transformation creates a new matrix that multiplies the current modelview matrix; the |
which becomes the new current matrix, represents the composite transformation. The modelvie
stack contains at least thirty-two 4 x 4 matrices; initially, the topmost matrix is the identity matrix
implementations of OpenGL may support more than thirty-two matrices on the stack. To find the
maximum allowable number of matrices, you can use the query command
glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH GLint * params.

The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, which describes the vi
volume. Generally, you don’t want to compose projection matrices, so yowlitsae | dentity()
before performing a projection transformation. Also for this reason, the projection matrix stack n
only two levels deep; some OpenGL implementations may allow more than two 4 x 4 matrices.
the stack depth, callGetlntegerv(GL_MAX PROJECTION_STACK DEPTHGLInt * params.

One use for a second matrix in the stack would be an application that needs to display a help w
with text in it, in addition to its normal window showing a three-dimensional scene. Since text is
easily positioned with an orthographic projection, you could change temporarily to an orthograp
projection, display the help, and then return to your previous projection:

gl Mat ri xMode(GL_PRQIECTI ON) ;

gl PushMatri x(); /*save the current projection*/
gl Loadl dentity();
glOtho(...); /*set up for displaying hel p*/

di spl ay_the_hel p():
gl PopMatri x();

Note that you'd probably have to also change the modelview matrix appropriately.

Advanced

If you know enough mathematics, you can create custom projection matrices that perform arbit
projective transformations. For example, the OpenGL and its Utility Library have no built-in mec
for two-point perspective. If you were trying to emulate the drawings in drafting texts, you might
such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, bottom, top, near, and far
can define up to six additional clipping planes to further restrict the viewing volume, as sHagurée
3-22 This is useful for removing extraneous objects in a scene - for example, if you want to disg
cutaway view of an object.

Each plane is specified by the coefficients of its equatiorrB&+Cz+D = 0. The clipping planes are
automatically transformed appropriately by modeling and viewing transformations. The clipping
becomes the intersection of the viewing volume and all half-spaces defined by the additional cli
planes. Remember that polygons that get clipped automatically have their edges reconstructed
appropriately by OpenGL.

N S
e e
o Y T
i o _
@k,__:;’:___ — .:_\ lv/T
] ——_,=_—.~_—_:._______:T__ - \ \ \“\\
”““—-E—:::_——aﬂ N

Figure 3-22 : Additional Clipping Planes and the Viewing Volume

void glClipPlane(GLenumplang const GLdoubl&equation);
Defines a clipping plane. Theguationargument points to the four coefficients of the plane
equation, A+By+Cz+D = 0. All points with eye coordinates (xe, ye, ze, we) that satisfy (A E
D)M-1 (xe ye ze we)T >= 0 lie in the half-space defined by the plane, where M is the curre
modelview matrix at the tingtClipPlang() is called. All points not in this half-space are clippe
away. Theplaneargument is GL_CLIP_PLANEwherei is an integer specifying which of the
available clipping planes to definieis a number between 0 and one less than the maximum
number of additional clipping planes.

You need to enable each additional clipping plane you define:

gl Enabl e(GL_CLI P_PLANEi) ;

You can disable a plane with
gl Di sabl e(G._CLI P_PLANEI) ;

All implementations of OpenGL must support at least six additional clipping planes, although so
implementations may allow more. You can gieetlntegerv() with GL_MAX_CLIP_PLANES to fin
how many clipping planes are supported.

Note: Clipping performed as a result giClipPlane() is done in eye coordinates, not in clip

coordinates. This difference is noticeable if the projection matrix is singular (that is, a real projec
matrix that flattens three-dimensional coordinates to two-dimensional ones). Clipping performec
coordinates continues to take place in three dimensions even when the projection matrix is sing

A Clipping Plane Code Example

Example 3-5enders a wireframe sphere with two clipping planes that slice away three-quarters
original sphere, as shown kigure 3-23

Figure 3-23 : Clipped Wireframe Sphere

Example 3-5 : Wireframe Sphere with Two Clipping Planes: clip.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>
#i nclude <@/ glut. h>

void init(void)

glClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
voi d di spl ay(voi d)

G.doubl e egn[4] = {0.0, 1.0, 0.0, 0.0};
GL.doubl e egn2[4] = {1.0, 0.0, 0.0, 0.0};

gl G ear (G._COLOR BUFFER BIT);
gl Color3f (1.0, 1.0, 1.0);

gl PushiMatri x();

gl Transl atef (0.0, 0.0, -5.0);

[* clip lower half -- y <0 */
gl dipPlane (G._CLI P_PLANEO, eqn);
gl Enabl e (G._CLI P_PLANEO);

/* clip left half -- x <0 */
gl dipPlane (G._CLI P_PLANE1l, eqn2);
gl Enabl e (GL_CLI P_PLANEl);

gl Rotatef (90.0, 1.0, 0.0, 0.0);
gl ut WreSphere(1.0, 20, 16);
gl PopMat ri x();

gl Flush ();
}
void reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode (G._PRQIECTI ON);
gl Loadl dentity ();
gl uPerspective(60.0, (G.float) w (Gfloat) h, 1.0, 20.0);
gl Matri xMode (GL_MODELVI EW ;
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutinitD splayMbde (GLUT_SINGLE | GLUT_RGB);
gl utlni t WndowSi ze (500, 500);

gl utlni t WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

}
Try This

® Try changing the coefficients that describe the clipping planEgample 3-5

® Try calling a modeling transformation, suchgiRotate* (), to affectglClipPlane(). Make the
clipping plane move independently of the objects in the scene.

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a particular resul
two examples discussed are a solar system, in which objects need to rotate on their axes as we
orbit around each other, and a robot arm, which has several joints that effectively transform coc
systems as they move relative to each other.

Building a Solar System

The program described in this section draws a simple solar system with a planet and a sun, bot
the same sphere-drawing routine. To write this program, you need gtRatate* () for the revolution
of the planet around the sun and for the rotation of the planet around its own axis. You also nee

glTrandlate*() to move the planet out to its orbit, away from the origin of the solar system. Reme
that you can specify the desired size of the two spheres by supplying the appropriate argument:
glutWireSpherg() routine.

To draw the solar system, you first want to set up a projection and a viewing transformation. Fo
example gluPer spective() andgluL ookAt() are used.

Drawing the sun is straightforward, since it should be located at the origin of the grand, fixed co
system, which is where the sphere routine places it. Thus, drawing the sun doesn’t require tran:
you can us@lRotate* () to make the sun rotate about an arbitrary axis. To draw a planet rotating
the sun, as shown Figure 3-24 requires several modeling transformations. The planet needs to |
about its own axis once a day. And once a year, the planet completes one revolution around the

AT ~ ™ Rotate (pay)
/
‘ .-f"/ \\ CE ﬁlﬂﬂl\J‘ N
H '\-\. A E"\-u..\
(sun | Translate " _

— N

A Revalva (Vear)
AN e
Figure 3-24 : Planet and Sun

To determine the order of modeling transformations, visualize what happens to the local coordi
system. An initiaglRotate* () rotates the local coordinate system that initially coincides with the g
coordinate system. NexdlTranslate*() moves the local coordinate system to a position on the ple
orbit; the distance moved should equal the radius of the orbit. Thus, thegifttoshte* () actually
determines where along the orbit the planet is (or what time of year it is).

A secondylRotate* () rotates the local coordinate system around the local axes, thus determining
time of day for the planet. Once you've issued all these transformation commands, the planet ci
drawn.

In summary, these are the OpenGL commands to draw the sun and planet; the full program is <
Example 3-6

gl PushiMat ri x();

glutVVreSphere(20, 16); /* draw sun */

gl Rotatef ((G.fl o t) year, 0.0, 1.0, 0.0);

gl Transl atef (2.0, 0.0, 0.0);

gl Rotatef ((G.floa t) day, 0.0, 1.0, 0.0);

gl ut WreSphere(0 10, 8); /* draw smal | er pl anet */

gl PopMat ri x();
Example 3-6 : Planetary System: planet.c

#i nclude <@./gl. h>
#i ncl ude <@/ gl u. h>

#i nclude <@/ gl ut. h>

static int year = 0, day = O;

VOi

{

voi

VOi

VOi

}

i nt

d init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

d di splay(void)

gl C ear
gl Col or3f (1.0, 1.0, 1.0);

gl PushiMatri x();
gl ut WreSphere(1.0,
gl Rotatef ((G.float) year,

gl Rotatef ((G.float) day,
gl ut WreSphere(0.2, 10, 8);
gl PopMat ri x();

gl ut SwapBuffers();

d reshape (int w, int h)

gl Viewport (0, O,
gl Loadl dentity ();
gl uPer specti ve(60. 0,
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

gl uLookAt (0.0,

d keyboard (unsigned char

switch (key) {
case ‘d’:
day = (day + 10)
gl ut Post Redi spl ay() ;
br eak;
case ‘D :

day = (day - 10) % 360:

gl ut Post Redi spl ay() ;
br eak;

case ‘y’:
year = (year + 5)
gl ut Post Redi spl ay() ;
br eak;

case ‘'Y':
year = (year - 5)
gl ut Post Redi spl ay() ;
br eak;

defaul t:
br eak;

}

mai n(i nt argc,

(GL_COLOR BUFFER BI T);

20, 16);
0.0, 1.0, 0.0);
gl Transl atef (2.0, 0.0, 0.0);

0.0, 1.0, 0.0);

(GLsizei) w,
gl Matri xMode (GL_PRQIECTI ON);

(GLfloat) w (G.float) h,

0.0, 5.0, 0.0,

key,

% 360;

% 360;

% 360;

char** argv)

/* draw sun */

/* draw smal |l er planet */

(GLsizei) h);
1.0, 20.0);
0.0, 0.0, 0.0, 1.0, 0.0);

int x, int y)

glutinit(&rgc, argv);
glutlinitD spl ayMbde (G.UT_DOUBLE | GLUT_RGB)
gl utl ni t WndowSi ze (500, 500);

gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O;

}
Try This

® Try adding a moon to the planet. Or try several moons and additional planets. Hint: Use
glPushMatrix() andglPopMatrix() to save and restore the position and orientation of the
coordinate system at appropriate moments. If you’re going to draw several moons around
you need to save the coordinate system prior to positioning each moon and restore the co
system after each moon is drawn.

® Try tilting the planet’s axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with two or more segme
arm should be connected with pivot points at the shoulder, elbow, or otherkagote 3-25shows a
single joint of such an arm.

Figure 3-25: Robot Arm

You can use a scaled cube as a segment of the robot arm, but first you must call the appropriat
modeling transformations to orient each segment. Since the origin of the local coordinate syster
initially at the center of the cube, you need to move the local coordinate system to one edge of
Otherwise, the cube rotates about its center rather than the pivot point.

After you callglTrandate*() to establish the pivot point agbRotate* () to pivot the cube, translate
back to the center of the cube. Then the cube is scaled (flattened and widened) before it is drav
glPushMatrix() andglPopMatrix() restrict the effect afl Scale* (). Here’s what your code might loo
like for this first segment of the arm (the entire program is showxample 3-7-

gl Transl atef (
gl Rotatef ((GL
gl Transl atef (

- 0.0, O. O)
fl o) sho Ide 0.0, 0.0, 1.0);
1.0, 0.0, 0.0);

gl Pushiatri x();

gl Scal ef (2.0, 0.4, 1.0);
gl ut WreCube (1.0);

gl PopMat ri x();

To build a second segment, you need to move the local coordinate system to the next pivot poi
the coordinate system has previously been rotated;dles is already oriented along the length of t
rotated arm. Therefore, translating alongstrexis moves the local coordinate system to the next p
point. Once it’s at that pivot point, you can use the same code to draw the second segment as)
for the first one. This can be continued for an indefinite number of segments (shoulder, elbow, v
fingers).

gl Transl atef (1.0, 0.0, 0.0);
gl Rotatef ((G.float) elbow, 0.0, 0.0, 1.0);
gl Transl atef (1.0, 0.0, 0.0);

gl PushMatri x()
gl Scal ef (2.0, 0.4, 1.0);
gl ut WreCube (1.0);

gl PopMat ri x();

Example 3-7 : Robot Arm: robot.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ glut. h>

static int shoulder = 0, el bow = 0;
void init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
voi d di spl ay(voi d)
{

gl dear (G_COLOR BUFFER BIT);

gl PushiMatri x();

gl Transl atef (-1.0, 0.0, 0.0);

gl Rotatef ((G.float) shoulder, 0.0, 0.0, 1.0);
gl Transl atef (1.0, 0.0, 0.0);

gl PushiMatri x();

gl Scalef (2.0, 0.4, 1.0);

gl ut WreCube (1.0);

gl PopMat ri x();

gl Translatef (1.0, 0.0, 0.0);

gl Rotatef ((G.float) elbow, 0.0, 0.0, 1.0);
gl Transl atef (1.0, 0.0, 0.0);

gl PushiMatri x();

gl Scalef (2.0, 0.4, 1.0);

gl ut WreCube (1.0);

gl PopMat ri x();

gl PopMat ri x();
gl ut SwapBuf fers();
}

voi d reshape (int w, int h)

gl Viewport (0, 0, (CGLsizei) w, (Gsizei) h);

gl Matri xMode (GL_PRQIECTI ON);

gl Loadl dentity ();

gl uPerspective(65.0, (Gfloat) w (Gfloat) h, 1.0, 20.0);
gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

gl Transl atef (0.0, 0.0, -5.0);

}

voi d keyboard (unsigned char key, int x, int y)

switch (key) {

case ‘s’: /* s key rotates at shoul der */
shoul der = (shoul der + 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

case 'S':
shoul der = (shoul der - 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

case ‘e': /* e key rotates at el bow */
el bow = (el bow + 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

case ‘E':
el bow = (el bow - 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

def aul t:
br eak;

}
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlinitD splayMbde (G.UT_DOUBLE | GLUT_RGB);
gl utlnit WndowSi ze (500, 500);

gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O;

}
Try This

® Modify Example 3-%o add additional segments onto the robot arm.

® Modify Example 3-7o add additional segments at the same position. For example, give the
arm several "fingers" at the wrist, as showirigure 3-26 Hint: UseglPushMatrix() and
glPopMatrix() to save and restore the position and orientation of the coordinate system at
wrist. If you’re going to draw fingers at the wrist, you need to save the current matrix prior-
positioning each finger and restore the current matrix after each finger is drawn.

Figure 3-26 : Robot Arm with Fingers

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projection matrices and a
for clipping to transform the world (or object) coordinates of a vertex into window (or screen)
coordinates. However, there are situations in which you want to reverse that process. A commc
situation is when an application user utilizes the mouse to choose a location in three dimension
mouse returns only a two-dimensional value, which is the screen location of the cursor. Therefc
application will have to reverse the transformation process to determine from where in
three-dimensional space this screen location originated.

The Utility Library routinegluUnPr oject() performs this reversal of the transformations. Given the
three-dimensional window coordinates for a location and all the transformations that affected th
gluUnProj ect() returns the world coordinates from where it originated.

int gluUnProject(GLdoublewinx, GLdoublewiny, GLdoublewinz const GLdoublenodelMatrix[16],

const GLdoublgrojMatrix[16], const GLintviewport[4], GLdouble*objx, GLdouble*objy, GLdouble

*0bj2);
Map the specified window coordinategrix, winy, winginto object coordinates, using
transformations defined by a modelview matnpoflelMatriy, projection matrix projMatrix),
and viewport yiewpor). The resulting object coordinates are returnealjx, objy,andobjz The
function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as
noninvertible matrix). This operation does not attempt to clip the coordinates to the viewpc
eliminate depth values that fall outsidegbtbepthRange().

There are inherent difficulties in trying to reverse the transformation process. A two-dimensiona
location could have originated from anywhere on an entire line in three-dimensional space. To
disambiguate the resutfluUnProject() requires that a window depth coordinatén@) be provided an
thatwinz be specified in terms gfDepthRange(). For the default values gfDepthRange(), winzat
0.0 will request the world coordinates of the transformed point at the near clipping planeyinhde
1.0 will request the point at the far clipping plane.

Example 3-8lemonstrategluUnProject() by reading the mouse position and determining the
three-dimensional points at the near and far clipping planes from which it was transformed. The

computed world coordinates are printed to standard output, but the rendered window itself is jus

Example 3-8 . Reversing the Geometric Processing Pipeline: unproject.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G./glut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

voi d di spl ay(voi d)
{
gl G ear (G._COLOR BUFFER BIT);

gl Fl ush();
}
void reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
gl uPerspective (45.0, (G.float) w (G.float) h, 1.0, 100.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
voi d nouse(int button, int state, int x, int y)
{

GLint viewport[4];

GLdoubl e nvrmatri x[16], projmatrix[16];

Gint realy; [/* OpenG y coordinate position */

GLdouble wx, wy, wz; /* returned world x, y, z coords */

switch (button) {
case GLUT_LEFT_BUTTON
if (state == GLUT_DOWN) ({

gl Get I ntegerv (G._VI EWPORT, viewport);

gl Get Doubl ev (GL_MODELVI EW MATRI X, nvnatr|x)

gl Get Doubl ev (G._ PRQIECTI ON_MATRI X, prOJnatr|x)

/* note viewport[3] is height of windowin pixels */

realy =V|wmmt[$ - (&int) y - 1;

printf ("Coordinates at cursor are (%id, %d)\n",
X, realy);

gl uUnProj ect ((G.double) x, (G.double) realy, 0.0,
nvmatri x, projmatrix, viewport, &w, &wy, &wz);

printf ("World coords at z=0.0 are (%, %, %)\n",
WX, Wy, wz);

gl uUnProj ect ((G.double) x, (G.double) realy, 1.0,
nvmatri x, projmatrix, viewport, &w, &wy, &wz);

printf ("World coords at z=1.0 are (%, %, %)\n",
WX, Wy, wz);

br eak;
case GLUT_RI GHT_BUTTON
if (state == G.UT_DOWN)
exit(0);
br eak;
defaul t:
br eak;

}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutinitD splayMode (GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (500, 500);
gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut MouseFunc(nouse) ;
gl ut Mai nLoop() ;
return O;

}

gluProject() is another Utility Library routine, which is relatedgimUnPr oj ect().gluProject() mimics
the actions of the transformation pipeline. Given three-dimensional world coordinates and all th
transformations that affect thegluPr oject() returns the transformed window coordinates.

int gluProject(GLdoubleobjx, GLdoubleobjy, GLdoubleobjz, const GLdoublenodelMatrix[16],const
GLdoubleprojMatrix[16], const GLintviewport[4], GLdouble*winx, GLdouble*winy, GLdouble
*Winz);
Map the specified object coordinatebjx, objy, objzinto window coordinates, using
transformations defined by a modelview matnpo{lelMatriy, projection matrix projMatrix),
and viewport yiewpor). The resulting window coordinates are returneavinx, winy,andwinz
The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure.

OpenGL Programming Guide (Addison-Wesley
Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 4
Color

Chapter Objectives
After reading this chapter, you’ll be able to do the following:

® Decide between using RGBA or color-index mode for your application

® Specify desired colors for drawing objects

® Use smooth shading to draw a single polygon with more than one color
The goal of almost all OpenGL applications is to draw color pictures in a window on the scr
The window is a rectangular array of pixels, each of which contains and displays its own ca
Thus, in a sense, the point of all the calculations performed by an OpenGL implementation
calculations that take into account OpenGL commands, state information, and values of pa
- is to determine the final color of every pixel that's to be drawn in the window. This chapter
explains the commands for specifying colors and how OpenGL interprets them in the follow
major sections:

® "Color Perceptiondiscusses how the eye perceives color.

® "Computer Color'describes the relationship between pixels on a compwtetor and their
colors; it also defines the two display modes, RGBA and color index.

® "RGBA versus Color-Index Mode2xplains how the two display modes use graphics
hardware and how to decide which mode to use.

® "Specifying a Color and a Shading ModdEscribes the OpenGL commands you use to
specify the desired color or shading model.

Color Perception

Physically, light is composed of photons - tiny particles of light, each traveling along its owr
and each vibrating at its own frequency (or wavelength, or energy - any one of frequency,

wavelength, or energy determines the others). A photon is completely characterized by its |
direction, and frequency/wavelength/energy. Photons with wavelengths ranging from about
nanometers (nm) (violet) and 720 nm (red) cover the colors of the visible spectrum, forminc
colors of a rainbow (violet, indigo, blue, green, yellow, orange, red). However, your eyes pe
lots of colors that aren’t in the rainbow - white, black, brown, and pink, for example. How dc

happen?

What your eye actually sees is a mixture of photons of different frequencies. Real light sout
characterized by the distribution of photon frequencies they emit. Ideal white light consists
equal amount of light of all frequencies. Laser light is usually very pure, and all photons hay
almost identical frequencies (and direction and phase, as well). Light from a sodium-vapor
has more light in the yellow frequency. Light from most stars in space has a distribution tha
depends heavily on their temperatures (black-body radiation). The frequency distribution of
from most sources in your immediate environment is more complicated.

The human eye perceives color when certain cells in the retina (catiedells, or justcones)
become excited after being struck by photons. The three different kinds of cone cells respo
to three different wavelengths of light: one type of cone cell responds best to red light, one
green, and the other to blue. (A person who is color-blind is usually missing one or more ty,
cone cells.) When a given mixture of photons enters the eye, the cone cells in the retina re
different degrees of excitation depending on their types, and if a different mixture of photon
in that happens to excite the three types of cone cells to the same degrees, its color is
indistinguishable from that of the first mixture.

Since each color is recorded by the eye as the levels of excitation of the cone cells by the i
photons, the eye can perceive colors that aren’t in the spectrum produced by a prism or rai
For example, if you send a mixture of red and blue photons so that both the red and blue c«
the retina are excited, your eye sees it as magenta, which isn’t in the spectrum. Other coml
give browns, turquoises, and mauves, none of which appear in the color spectrum.

A computer-graphics monitor emulates visible colors by lighting pixels with a combination o
green, and blue light in proportions that excite the red-, green-, and blue-sensitive cones in
retina in such a way that it matches the excitation levels generated by the photon mix it’s tr
emulate. If humans had more types of cone cells, some that were yellow-sensitive for exan
color monitors would probably have a yellow gun as well, and we’d use RGBY (red, green,
yellow) quadruples to specify colors. And if everyone were color-blind in the same way, this
chapter would be simpler.

To display a particular color, the monitor sends the right amounts of red, green, and blue li¢
appropriately stimulate the different types of cone cells in your eye. A color monitor can ser
different proportions of red, green, and blue to each of the pixels, and the eye sees a milliol
pinpoints of light, each with its own color.

This section considers only how the eye perceives combinations of photons that enter it. Tt
situation for light bouncing off materials and entering the eye is even more complex - white
bouncing off a red ball will appear red, or yellow light shining through blue glass appears al
black, for example. (Sé®eal-World and OpenGL Lighting” in Chaptefdr a discussion of thes
effects.)

Computer Color

On a color computer screen, the hardware causes each pixel on the screen to emit differen
of red, green, and blue light. These are called the R, G, and B values. They're often packec
(sometimes with a fourth value, called alpha, or A), and the packed value is called the RGE
RGBA) value. (SeéBlending" in Chapter Gor an explanation of the alpha values.) The color

information at each pixel can be stored eithdR@BA mode, in which the R, G, B, and possibly
values are kept for each pixel, or in color-index mode, in which a single number (called the
index) is stored for each pixel. Each color index indicates an entry in a table that defines a |
set of R, G, and B values. Such a table is calleala map.

In color-index mode, you might want to alter the values in the color map. Since color maps
controlled by the window system, there are no OpenGL commands to do this. All the exam|
this book initialize the color-display mode at the time the window is opened by using routine
the GLUT library. (Sedppendix Dfor details.)

There is a great deal of variation among the different graphics hardware platforms in both tl
of the pixel array and the number of colors that can be displayed at each pixel. On any graj
system, each pixel has the same amount of memory for storing its color, and all the memor
the pixels is called theolor buffer. The size of a buffer is usually measured in bits, so an 8-bi
buffer could store 8 bits of data (256 possible different colors) for each pixel. The size of the
possible buffers varies from machine to machine. (Bespter 1Gor more information.)

The R, G, and B values can range from 0.0 (none) to 1.0 (full intensity). For example, R = (
0.0, and B = 1.0 represents the brightest possible blue. If R, G, and B are all 0.0, the pixel i
if all are 1.0, the pixel is drawn in the brightest white that can be displayed on the Btmeding
green and blue creates shades of cyan. Blue and red combine for magenta. Red and greer
yellow. To help you create the colors you want from the R, G, and B components, look at tr
cube shown in Plate 12. The axes of this cube represent intensities of red, blue, and green.
black-and-white version of the cube is showfkigure 4-1

Grean
b
Yellow
Cyan o White
/ \ — Red
\ Magenta
Blue Black

Figure4-1: The Color Cube in Black and White

The commands to specify a color for an object (in this case, a point) can be as simple as th

he current RGB color is red: */

gl Color3f (1.0, 0.0, 0.0); /* t
/[* full red, no green, no blue. */

gl Begin (G_PQO NTS);
gl Vertex3fv (point_array);
gl End ();

In certain modes (for example, if lighting or texturing calculations are performed), the assig!
color might go through other operations before arriving in the framebuffer as a value repres
color for a pixel. In fact, the color of a pixel is determined by a lengthy sequence of operatic

Early in a program’s execution, the color-display mode is set to either RGBA mode or color
mode. Once the color-display mode is initialized, it can’t be changed. As the program execl
color (either a color index or an RGBA value) is determined on a per-vertex basis for each
geometric primitive. This color is either a color you've explicitly specified for a vertex or, if
lighting is enabled, is determined from the interaction of the transformation matrices with th
surface normals and other material properties. In other words, a red ball with a blue light s
it looks different from the same ball with no light on it. (S3&pter For details.) After the
relevant lighting calculations are performed, the chosen shading model is applied. As expla
"Specifying a Color and a Shading Modsigu can choose flat or smooth shading, each of wh
has different effects on the eventual color of a pixel.

Next, the primitives areasterized, or converted to a two-dimensional image. Rasterizing invol
determining which squares of an integer grid in window coordinates are occupied by the pri
and then assigning color and other values to each such square. A grid square along with its
associated values of colar(depth), and texture coordinates is callefdagment. Pixels are
elements of the framebuffer; a fragment comes from a primitive and is combined with its
corresponding pixel to yield a new pixel. Once a fragment is constructed, texturing, fog, anc
antialiasing are applied - if they're enabled - to the fragments. After that, any specified alph
blending, dithering, and bitwise logical operations are carried out using the fragment and th
already stored in the framebuffer. Finally, the fragment’s color value (either color index or F
is written into the pixel and displayed in the window using the window’s color-display mode.

RGBA versus Color-Index Mode

In either color-index or RGBA mode, a certain amount of color data is stored at each pixel.
amount is determined by the number of bitplanes in the framebuffer. A bitplane contains 1 |
data for each pixel. If there are 8color bitplanes, there are 8 color bits per pixel, and hence
different values or colors that can be stored at the pixel.

Bitplanes are often divided evenly into storage for R, G, and B components (that is, a 24-bi
system devotes 8 bits each to red, green, and blue), but this isn’t always true. To find out tt
number of bitplanes available on your system for red, green, blue, alpha, or color-index vali
glGetintegerv() with GL_RED_BITS, GL_GREEN_BITS, GL_BLUE_BITS, GL_ALPHA_BIT
and GL_INDEX_BITS.

Note: Color intensities on most computer screens aren’t perceived as linear by the human ¢
Consider colors consisting of just a red component, with green and blue set to zero. As the
varies from 0.0 (off) to 1.0 (full on), the number of electrons striking the pixels increases, bt
guestion is, does 0.5 look like halfway between 0.0 and 1.0? To test this, write a program tt
alternate pixels in a checkerboard pattern to intensities 0.0 and 1.0, and compare it with a r
drawn solidly in color 0.5. From a reasonable distance from the screen, the two regions shc
appear to have the same intensity. If they look noticeably different, you need to use whatev
correction mechanism is provided on your particular system. For example, many systems
table to adjust intensities so that 0.5 appears to be halfway between 0.0 and 1.0. The mapy
generally used is an exponential one, with the exponent referred to as gamma (hence the t
gamma correction). Using the same gamma for the red, green, and blue components gives
good results, but three different gamma values might give slightly better results. (For more
on this topic, see Foley, van Dam, et@mputer Graphics: Principles and Practice. Reading,
MA: Addison-Wesley Developers Press, 1990.)

RGBA Display Mode

In RGBA mode, the hardware sets aside a certain number of bitplanes for each of the R, G
A components (not necessarily the same number for each component) as shigureid-2 The

R, G, and B values are typically stored as integers rather than floating-point numbers, and 1
scaled to the number of available bits for storage and retrieval. For example, if a system ha
available for the R component, integers between 0 and 255 can be stored; thus, 0, 1, 2, ...,
bitplanes would correspond to R values of 0/255 = 0.0, 1/255, 2/255, ..., 255/255 = 1.0. Re
of the number of bitplanes, 0.0 specifies the minimum intensity, and 1.0 specifies the maxir
intensity.

Figure4-2 : RGB Values from the Bitplanes

Note: The alpha value (the A in RGBA) has no direct effect on the color displayed on the sc
can be used for many things, including blending and transparency, and it can have an effec
values of R, G, and B that are written. (SBknding" in Chapter or more information about
alpha values.)

The number of distinct colors that can be displayed at a single pixel depends on the numbe
bitplanes and the capacity of the hardware to interpret those bitplanes. The number of distii
colors can’t exceed 2n, whemas the number of bitplanes. Thus, a machine with 24 bitplanes
RGB can display up to 16.77 million distinct colors.

Dithering
Advanced

Some graphics hardware uses dithering to increase the number of apparent colors. Ditherir
technique of using combinations of some colors to create the effect of other colors. To illust
how dithering works, suppose your system has only 1 bit each for R, G, and B and thus car
only eight colors: black, white, red, blue, green, yellow, cyan, and magenta. To display a pil
region, the hardware can fill the region in a checkerboard manner, alternating red and white
If your eye is far enough away from the screen that it can’t distinguish individual pixels, the
appears pink - the average of red and white. Redder pinks can be achieved by filling a high
proportion of the pixels with red, whiter pinks would use more white pixels, and so on.

With this technique, there are no pink pixels. The only way to achieve the effect of "pinknes

cover a region consisting of multiple pixels - you can’t dither a single pixel. If you specify ar
value for an unavailable color and fill a polygon, the hardware fills the pixels in the interior ¢
polygon with a mixture of nearby colors whose average appears to your eye to be the color
want. (Remember, though, that if you're reading pixel information out of the framebuffer, yo
the actual red and white pixel values, since there aren’t any pink ongsh&ater or more
information about reading pixel values.)

Figure 4-3illustrates some simple dithering of black and white pixels to make shades of gra:
left to right, the 4 x 4 patterns at the top represent dithering patterns for 50 percent, 19 perc
69 percent gray. Under each pattern, you can see repeated reduced copies of each patterr
black and white squares are still bigger than most pixels. If you look at them from across th
you can see that they blur together and appear as three levels of gray.

Figure 4-3 : Dithering Black and White to Create Gray

With about 8 bits each of R, G, and B, you can get a fairly high-quality image without dither
Just because your machine has 24 color bitplanes, however, doesn’t mean that dithering w
desirable. For example, if you are running in double-buffer mode, the bitplanes might be di\
into two sets of twelve, so there are really only 4 bits each per R, G, and B component. Wit
dithering, 4-bit-per-component color can give less than satisfactory results in many situatiol

You enable or disable dithering by passing GL_DITHEBIEnable() or gIDisable(). Note that
dithering, unlike many other features, is enabled by default.

Color-Index Display Mode

With color-index mode, OpenGL uses a color magdokup table), which is similar to using a
palette to mix paints to prepare for a paint-by-number scene. A painter’s palette provides sj
mix paints together; similarly, a computer’s color map provides indices where the primary re
green, and blue values can be mixed, as showigire 4-4

Index Red Green Blue

]
L]
aaE °> ABE N b Qo PO =

B]

Figure4-4: A Color Map

A painter filling in a paint-by-number scene chooses a color from the color palette and fills t
corresponding numbered regions with that color. A computer stores the color index in the b
for each pixel. Then those bitplane values reference the color map, and the screen is paintt
the corresponding red, green, and blue values from the color map, as shogurent-5

4

]

/

Figure4-5: Using a Color Map to Paint a Picture

In color-index mode, the number of simultaneously available colors is limited by the size of
color map and the number of bitplanes available. The size of the color map is determined b
amount of hardware dedicated to it. The size of the color map is always a power of 2, and t
sizes range from 256 (28) to 4096 (212), where the exponent is the number of bitplanes be
If there are 2n indices in the color map amdvailable bitplanes, the number of usable entries
smaller of 2n and 2m.

With RGBA mode, each pixel’s color is independent of other pixels. However, in color-inde:
mode, each pixel with the same index stored in its bitplanes shares the same color-map loc
the contents of an entry in the color map change, then all pixels of that color index change
color.

Choosing between RGBA and Color-Index M ode

You should base your decision to use RGBA or color-index mode on what hardware is avai
and on what your application needs. For most systems, more colors can be simultaneously

represented with RGBA mode than with color-index mode. Also, for several effects, such a:
shading, lighting, texture mapping, and fog, RGBA provides more flexibility than color-inde»
mode.

You might prefer to use color-index mode in the following cases:

® |f you're porting an existing application that makes significant use of color-index mode
might be easier to not change to RGBA mode.

® If you have a small number of bitplanes available, RGBA mode may produce noticeak
coarse shades of colors. For example, if you have only 8 bitplanes, in RGBA mode, y«
have only 3 bits for red, 3 bits for green, and 2 bits for blue. You'd only have 8 (23) sh
red and green, and only 4 shades of blue. The gradients between color shades are lik
very obvious.

In this situation, if you have limited shading requirements, you can use the color looku
to load more shades of colors. For example, if you need only shades of blue, you can
color-index mode and store up to 256 (28) shades of blue in the color-lookup table, wi
much better than the 4 shades you would have in RGBA mode. Of course, this examg
would use up your entire color-lookup table, so you would have no shades of red, gre:
other combined colors.

® Color-index mode can be useful for various tricks, such as color-map animation and d
in layers. (Se€hapter 14or more information.)

In general, use RGBA mode wherever possible. It works with texture mapping and works b
with lighting, shading, fog, antialiasing, and blending.

Changing between Display M odes

In the best of all possible worlds, you might want to avoid making a choice between RGBA
color-index display mode. For example, you may want to use color-index mode for a color-I
animation effect and then, when needed, immediately change the scene to RGBA mode fol

mapping.

Or similarly, you may desire to switch between single and double buffering. For example, y
have very few bitplanes; let’s say 8 bitplanes. In single-buffer mode, you'll have 256 (28) cc
but if you are using double-buffer mode to eliminate flickering from your animated program,
may only have 16 (24) colors. Perhaps you want to draw a moving object without flicker an
willing to sacrifice colors for using double-buffer mode (maybe the object is moving so fast"
viewer won'’t notice the details). But when the object comes to rest, you will want to draw it
single-buffer mode so that you can use more colors.

Unfortunately, most window systems won't allow an easy switch. For example, with the X V
System, the color-display mode is an attribute of the X Visual. An X Visual must be specifie
before the window is created. Once it is specified, it cannot be changed for the life of the wi
After you create a window with a double-buffered, RGBA display mode, you’re stuck with it.

A tricky solution to this problem is to create more than one window, each with a different di:
mode. Then you must control the visibility of the windows (for example, mapping or unmap|
X Window, or managing or unmanaging a Motif or Athena widget) and draw the object into

appropriate, visible window.

Specifying a Color and a Shading M oddl

OpenGL maintains a current color (in RGBA mode) and a current color index (in color-inde:
mode). Unless you're using a more complicated coloring model such as lighting or texture
mapping, each object is drawn using the current color (or color index). Look at the followinc
pseudocode sequence:

set _col or (RED);
draw i tem(A);
draw_ i tem B);

set _col or (GREEN) ;
set _col or (BLUE);
draw item(O ;

ltems A and B are drawn in red, and item C is drawn in blue. The fourth line, which sets the
color to green, has no effect (except to waste a bit of time). With no lighting or texturing, wr
current color is set, all items drawn afterward are drawn in that color until the current color i
changed to something else.

Specifying a Color in RGBA Mode
In RGBA mode, use thglColor*() command to select a current color.

void glColor3{b si fdub usui} (TYPEr, TYPEg, TYPEbD);

void glColor4{b si f d ub usui} (TYPEr, TYPEQ, TYPED, TYPEa);

void glColor3{b si f d ub us ui}v (const TYPE*V);

void glColor4{b si f d ub us ui}v (const TYPE*V);
Setsthe current red, green, blue, and alpha values. This command can have up to three
suffixes, which differentiate variations of the parameters accepted. The first suffix is either 3
or 4, to indicate whether you supply an alpha value in addition to the red, green, and blue
values. If you don’t supply an alpha value, it’s automatically set to 1.0. The second suffix
indicates the data type for parameters: byte, short, integer, float, double, unsigned byte,
unsigned short, or unsigned integer. The third suffix is an optional v, which indicates that the
argument is a pointer to an array of values of the given data type.

For the versions djlColor*() that accept floating-point data types, the values should typicall
range between 0.0 and 1.0, the minimum and maximum values that can be stored in the
framebuffer. Unsigned-integer color components, when specified, are linearly mapped to
floating-point values such that the largest representable value maps to 1.0 (full intensity), a
maps to 0.0 (zero intensity). Signed-integer color components, when specified, are linearly
to floating-point values such that the most positive representable value maps to 1.0, and th
negative representable value maps to -1.0Tabée 4-).

Neither floating-point nor signed-integer values are clamped to the range [0,1] before updai
current color or current lighting material parameters. After lighting calculations, resulting co
values outside the range [0,1] are clamped to the range [0,1] before they are interpolated o
into a color buffer. Even if lighting is disabled, the color components are clamped before
rasterization.

Table4-1: Converting Color Values to Floating-Point Numbers

Suffix | DataType Minimum Value | Min Maximum Value | Max
Value Value
Mapsto Mapsto

b 1-byte integer| -128 -1.0 127 1.0

S 2-byte integer| -32,768 -1.0 32,767 1.0

[4-byte integer| -2,147,483,648 | -1.0 2,147,483,647 1.0

ub unsigned 0 0.0 255 1.0

1-byte integer

us unsigned 0 0.0 65,535 1.0
2-byte integer

ui unsigned 0 0.0 4,294,967,295 1.0
4-byte integer

Specifying a Color in Color-Index Mode

In color-index mode, use tlgtl ndex* () command to select a single-valued color index as the
current color index.

void gll ndex{sifd ub}(TYPE c);

void gll ndex{sifd ub}v(const TYPE *c);
Setsthe current color index to c. The first suffix for this command indicates the data type for
parameters: short, integer, float, double, or unsigned byte. The second, optional suffix isv,
which indicates that the argument is an array of values of the given data type (the array
contains only one value).

In "Clearing the Window" in Chapter, §ou saw the specification gfClear Color (). For
color-index mode, there is a correspondihglear | ndex().

void glClearlndex(GLfloat cindex);
Sets the current clearing color in color-index mode. In a color-index mode window, a call to
glClear(GL_COLOR BUFFER BIT) will use cindex to clear the buffer. The default clearing
index is 0.0.

Note: OpenGL does not have any routines to load values into the color-lookup table. Windc
systems typically already have such operations. GLUT has the rguttsetColor () to call the
window-system specific commands.

Advanced

The current index is stored as a floating-point value. Integer values are converted directly t
floating-point values, with no special mapping. Index values outside the representable rang
color-index buffer aren’t clamped. However, before an index is dithered (if enabled) and wri
the framebuffer, it's converted to fixed-point format. Any bits in the integer portion of the res
fixed-point value that don’t correspond to bits in the framebuffer are masked out.

Specifying a Shading M odel

A line or a filled polygon primitive can be drawn with a single color (flat shading) or with ma
different colors (smooth shading, also called Gouraud shading). You specify the desired sh
technique withgl ShadeM odel ().

void glShadeModel (GLenum mode);
Sets the shading model. The mode parameter can be either GL_SMOOTH (the default) or
GL_FLAT.

With flat shading, the color of one particular vertex of an independent primitive is duplicatec
all the primitive’s vertices to render that primitive. With smooth shading, the color at each vi
treated individually. For a line primitive, the colors along the line segment are interpolated k
the vertex colors. For a polygon primitive, the colors for the interior of the polygon are interg
between the vertex colosxample 4-1draws a smooth-shaded triangle, as shovRliate 11" in
Appendix L

Example 4-1 . Drawing a Smooth-Shaded Triangle: smooth.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl ut. h>

voi d init(void)

{
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._SMOOTH);
}
void triangl e(void)
{
gl Begi n (G_TRI ANGLES);
gl Col or3f (1.0, 0.0, 0.0);
gl Vertex2f (5.0, 5.0);
gl Col or3f (0.0, 1.0, 0.0);
gl Vertex2f (25.0, 5.0);
gl Col or3f (0.0, 0.0, 1.0);
gl Vertex2f (5.0, 25.0);
gl End();
}
voi d di spl ay(voi d)
{
gl O ear (G_COLOR BUFFER BIT);
triangle ();
gl Flush ();
}
void reshape (int w, int h)
{

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity ();

if (w<=h)

gluOrtho2D (0.0, 30.0, 0.0, 30.0*(G.float) h/(G.float) w;
el se

gluGrtho2D (0.0, 30.0*(G.float) w (G.float) h, 0.0, 30.0);
gl Matri xMode(GL_MODELVI EW ;

}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutinitD splayMbde (GLUT_SINGLE | GLUT_RGB)
gl utlnit WndowSi ze (500, 500);
gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut Mai nLoop() ;
return O;

}

With smooth shading, neighboring pixels have slightly different color values. In RGBA mod:
adjacent pixels with slightly different values look similar, so the color changes across a poly
appear gradual. In color-index mode, adjacent pixels may reference different locations in th
color-index table, which may not have similar colors at all. Adjacent color-index entries may
contain wildly different colors, so a smooth-shaded polygon in color-index mode can look
psychedelic.

To avoid this problem, you have to create a color ramp of smoothly changing colors among
contiguous set of indices in the color map. Remember that loading colors into a color map i
performed through your window system rather than OpenGL. If you use GLUT, you can ust
glutSetColor () to load a single index in the color map with specified red, green, and blue va
The first argument foglutSetColor () is the index, and the others are the red, green, and blue
values. To load thirty-two contiguous color indices (from color index 16 to 47) with slightly
differing shades of yellow, you might call

for (i =0; i < 32; i++) {
gl ut Set Col or (16+i, 1.0*(i/32.0), 1.0*(i/32.0), 0.0);
}

Now, if you render smooth-shaded polygons that use only the colors from index 16 to 47, tt
polygons have gradually differing shades of yellow.

With flat shading, the color of a single vertex defines the color of an entire primitive. For a li
segment, the color of the line is the current color when the second (ending) vertex is specif
a polygon, the color used is the one that’s in effect when a particular vertex is specified, as
in Table 4-2 The table counts vertices and polygons starting from 1. OpenGL follows these
consistently, but the best way to avoid uncertainty about how a flat-shaded primitive will be
is to specify only one color for the primitive.

Table 4-2 : How OpenGL Selects a Color for the ith Flat-Shaded Polygon

Type of Polygon Vertex Used to Select the Color for theith Polygon

single polygon 1
triangle strip i+2
triangle fan I+2

independent trianglg 3i

quad strip 2i+2

independent quad | 4i

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 5
Lighting
Chapter Objectives
After reading this chapter, you’ll be able to do the following:

® Understand how real-world lighting conditions are approximated by OpenGL

® Render illuminated objects by defining the desired light sources and lighting model

® Define the material properties of the objects being illuminated

® Manipulate the matrix stack to control the position of light sources
As you saw irChapter 40penGL computes the color of each pixel in a final, displayed scen:
that's held in the framebuffer. Part of this computation depends on what lighting is used in t
scene and on how objects in the scene reflect or absorb that light. As an example of this, re
the ocean has a different color on a bright, sunny day than it does on a gray, cloudy day. Tl
presence of sunlight or clouds determines whether you see the ocean as bright turquoise o

gray-green. In fact, most objects don’t even look three-dimensional until theyFiglite 5-1
shows two versions of the exact same scene (a single sphere), one with lighting and one w

Figure5-1: A Lit and an Unlit Sphere

As you can see, an unlit sphere looks no different from a two-dimensional disk. This demor
how critical the interaction between objects and light is in creating a three-dimensional scer

With OpenGL, you can manipulate the lighting and objects in a scene to create many differ

kinds of effects. This chapter begins with a primer on hidden-surface removal. Then it exple
to control the lighting in a scene, discusses the OpenGL conceptual model of lighting, and «
in detail how to set the numerous illumination parameters to achieve certain effects. Towar:
of the chapter, the mathematical computations that determine how lighting affects color are
presented.

This chapter contains the following major sections:

® "A Hidden-Surface Removal Survival Kitlescribes the basics of removing hidden surfa
from view.

® "Real-World and OpenGL Lightinggxplains in general terms how light behaves in the v
and how OpenGL models this behavior.

® "A Simple Example: Rendering a Lit Sphemetroduces the OpenGL lighting facility by
presenting a short program that renders a lit sphere.

® "Creating Light Sources#xplains how to define and position light sources.

® "Selecting a Lighting Modeltliscusses the elements of a lighting model and how to spe
them.

® "Defining Material Propertieséxplains how to describe the properties of objects so that
interact with light in a desired way.

® "The Mathematics of Lightingpresents the mathematical calculations used by OpenGL
determine the effect of lights in a scene.

® "Lighting in Color-Index Mode'tliscusses the differences between using RGBA mode ¢
color-index mode for lighting.

A Hidden-Surface Removal Survival Kit

With this section, you begin to draw shaded, three-dimensional objects, in earnest. With sh
polygons, it becomes very important to draw the objects that are closer to our viewing posit
to eliminate objects obscured by others nearer to the eye.

When you draw a scene composed of three-dimensional objects, some of them might obsc
parts of others. Changing your viewpoint can change the obscuring relationship. For examg
you view the scene from the opposite direction, any object that was previously in front of ar
now behind it. To draw a realistic scene, these obscuring relationships must be maintained
your code works like this:

while (1) {
get _viewi ng_point_from nouse_position();
gl O ear (G._COLOR BUFFER BI T);
draw 3d_object A();
draw _3d_object _B();
}

For some mouse positions, object A might obscure object B. For others, the reverse may h
nothing special is done, the preceding code always draws object B second (and thus on toy
A) no matter what viewing position is selected. In a worst case scenario, if objects A and B
intersect one another so that part of object A obscures object B and part of B obscures A, ¢
the drawing order does not provide a solution.

The elimination of parts of solid objects that are obscured by others is lualied-surface
removal. (Hidden-line removal, which does the same job for objects represented as wirefrar
skeletons, is a bit trickier and isn’t discussed here."Siglelen-Line Removal" in Chapter Tdr
details.) The easiest way to achieve hidden-surface removal is to use the depth buffer (son
called a z-buffer). (Also se@éhapter 10

A depth buffer works by associating a depth, or distance, from the view plane (usually the r
clipping plane), with each pixel on the window. Initially, the depth values for all pixels are se
the largest possible distance (usually the far clipping plane) usigiGrear () command with
GL_DEPTH_BUFFER_BIT. Then the objects in the scene are drawn in any order.

Graphical calculations in hardware or software convert each surface that's drawn to a set o
on the window where the surface will appear if it isn’'t obscured by something else. In additi
distance from the view plane is computed. With depth buffering enabled, before each pixel
a comparison is done with the depth value already stored at the pixel. If the new pixel is clo
(in front of) what's there, the new pixel’s color and depth values replace those that are curre
written into the pixel. If the new pixel's depth is greater than what's currently there, the new
is obscured, and the color and depth information for the incoming pixel is discarded.

To use depth buffering, you need to enable depth buffering. This has to be done only once.
drawing, each time you draw the scene, you need to clear the depth buffer and then draw t
in the scene in any order.

To convert the preceding code example so that it performs hidden-surface removal, modify
following:

glutlnitD splayMbde (GLUT_DEPTH |);
gl Enabl e(G._DEPTH_TEST) ;

while (1) {
gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
get _vi ewi ng_poi nt_from nmouse_position();
draw_3d_object _A();
draw _3d_object _B();

}

The argument tglClear () clears both the depth and color buffers.

Depth-buffer testing can affect the performance of your application. Since information is dis
rather than used for drawing, hidden-surface removal can increase your performance slight
However, the implementation of your depth buffer probably has the greatest effect on perfo
A "software" depth buffer (implemented with processor memory) may be much slower than
implemented with a specialized hardware depth buffer.

Real-World and OpenGL Lighting

When you look at a physical surface, your eye’s perception of the color depends on the dis
of photon energies that arrive and trigger your cone cells."(3#er Perception” in Chapter)4

Those photons come from a light source or combination of sources, some of which are abs
and some of which are reflected by the surface. In addition, different surfaces may have ve
different properties - some are shiny and preferentially reflect light in certain directions, whi
others scatter incoming light equally in all directions. Most surfaces are somewhere in betw

OpenGL approximates light and lighting as if light can be broken into red, green, and blue
components. Thus, the color of light sources is characterized by the amount of red, green, .
light they emit, and the material of surfaces is characterized by the percentage of the incon
green, and blue components that is reflected in various directions. The OpenGL lighting eq
are just an approximation but one that works fairly well and can be computed relatively quic
you desire a more accurate (or just different) lighting model, you have to do your own calcu
in software. Such software can be enormously complex, as a few hours of reading any opti
textbook should convince you.

In the OpenGL lighting model, the light in a scene comes from several light sources that ca
individually turned on and off. Some light comes from a particular direction or position, and
light is generally scattered about the scene. For example, when you turn on a light bulb in ¢
most of the light comes from the bulb, but some light comes after bouncing off one, two, thr
more walls. This bounced light (called ambient) is assumed to be so scattered that there is
tell its original direction, but it disappears if a particular light source is turned off.

Finally, there might be a general ambient light in the scene that comes from no particular st
if it had been scattered so many times that its original source is impossible to determine.

In the OpenGL model, the light sources have an effect only when there are surfaces that al
reflect light. Each surface is assumed to be composed of a material with various properties
material might emit its own light (like headlights on an automobile), it might scatter some in
light in all directions, and it might reflect some portion of the incoming light in a preferential
direction like a mirror or other shiny surface.

The OpenGL lighting model considers the lighting to be divided into four independent comg
emissive, ambient, diffuse, and specular. All four components are computed independently
added together.

Ambient, Diffuse, and Specular Light

Ambient illumination is light that's been scattered so much by the environment that its direci
impossible to determine - it seems to come from all directions. Backlighting in a room has &
ambient component, since most of the light that reaches your eye has first bounced off mar
surfaces. A spotlight outdoors has a tiny ambient component; most of the light travels in the
direction, and since you're outdoors, very little of the light reaches your eye after bouncing
other objects. When ambient light strikes a surface, it's scattered equally in all directions.

The diffuse component is the light that comes from one direction, so it's brighter if it comes
squarely down on a surface than if it barely glances off the surface. Once it hits a surface, |
it's scattered equally in all directions, so it appears equally bright, no matter where the eye
located. Any light coming from a particular position or direction probably has a diffuse comg

Finally, specular light comes from a particular direction, and it tends to bounce off the surfa

preferred direction. A well-collimated laser beam bouncing off a high-quality mirror produce
almost 100 percent specular reflection. Shiny metal or plastic has a high specular compone
chalk or carpet has almost none. You can think of specularity as shininess.

Although a light source delivers a single distribution of frequencies, the ambient, diffuse, ar
specular components might be different. For example, if you have a white light in a room w
walls, the scattered light tends to be red, although the light directly striking objects is white.
OpenGL allows you to set the red, green, and blue values for each component of light
independently.

Material Colors

The OpenGL lighting model makes the approximation that a material’s color depends on th
percentages of the incoming red, green, and blue light it reflects. For example, a perfectly r
reflects all the incoming red light and absorbs all the green and blue light that strikes it. If y«
such a ball in white light (composed of equal amounts of red, green, and blue light), all the
reflected, and you see a red ball. If the ball is viewed in pure red light, it also appears to be
however, the red ball is viewed in pure green light, it appears black (all the green is absorb
there’s no incoming red, so no light is reflected).

Like lights, materials have different ambient, diffuse, and specular colors, which determine
ambient, diffuse, and specular reflectances of the material. A material’'s ambient reflectance
combined with the ambient component of each incoming light source, the diffuse reflectanc
the light’s diffuse component, and similarly for the specular reflectance and component. An
and diffuse reflectances define the color of the material and are typically similar if not identi
Specular reflectance is usually white or gray, so that specular highlights end up being the c
the light source’s specular intensity. If you think of a white light shining on a shiny red plasti
sphere, most of the sphere appears red, but the shiny highlight is white.

In addition to ambient, diffuse, and specular colors, materials haaraissive color, which
simulates light originating from an object. In the OpenGL lighting model, the emissive color
surface adds intensity to the object, but is unaffected by any light sources. Also, the emissi
does not introduce any additional light into the overall scene.

RGB Valuesfor Lightsand Materials

The color components specified for lights mean something different than for materials. For
the numbers correspond to a percentage of full intensity for each color. If the R, G, and B v
a light’'s color are all 1.0, the light is the brightest possible white. If the values are 0.5, the ci
still white, but only at half intensity, so it appears gray. If R=G=1 and B=0 (full red and gree
no blue), the light appears yellow.

For materials, the numbers correspond to the reflected proportions of those colors. So if R=
G=0.5, and B=0 for a material, that material reflects all the incoming red light, half the incor
green, and none of the incoming blue light. In other words, if an OpenGL light has compong
(LR, LG, LB), and a material has corresponding components (MR, MG, MB), then, ignoring
other reflectivity effects, the light that arrives at the eye is given by (LR*MR, LG*MG, LB*MI

Similarly, if you have two lights that send (R1, G1, B1) and (R2, G2, B2) to the eye, OpenG
the components, giving (R1+R2, G1+G2, B1+B2). If any of the sums are greater than 1
(corresponding to a color brighter than the equipment can display), the component is clamg

A Simple Example: Rendering a Lit Sphere
These are the steps required to add lighting to your scene.

1. Define normal vectors for each vertex of all the objects. These normals determine the
orientation of the object relative to the light sources.

2. Create, select, and position one or more light sources.

3. Create and selectieghting model, which defines the level of global ambient light and the
effective location of the viewpoint (for the purposes of lighting calculations).

4. Define material properties for the objects in the scene.

Example 5-laccomplishes these tasks. It displays a sphere illuminated by a single light sou
shown earlier irFigure 5-1

Example 5-1: Drawing a Lit Sphere: light.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G./glut. h>

void init(void)

G.float mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
G.float mat_shininess[] = { 50.0 };

G.float light position[] ={ 1.0, 1.0, 1.0, 0.0 };
gl earColor (0.0, 0.0, 0.0, 0.0);

gl ShadeMbdel (G._SMOOTH);

gl Material fv(G._FRONT, G._SPECULAR, nmat_specul ar);
gl Material fv(G._FRONT, G._SHI NI NESS, mat _shi ni ness);
gl Lightfv(G_LIGHTO, G._PCSITION, |ight_position);

gl Enabl e(G_LI GHTI NG ;
gl Enabl e(G._LI GHTO) ;
gl Enabl e(G._DEPTH_TEST) ;

}

voi d di spl ay(voi d)

{
gl Cear (G_COLOR BUFFER BIT | G._DEPTH BUFFER BIT);
gl ut Sol i dSphere (1.0, 20, 16);
gl Flush ();

}

void reshape (int w, int h)

{

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity();
if (w<=h)
glOtho (-1.5, 1.5, -1.5*(G.float)h/(G.float)w,
1.5*(C.float)h/(G.float)w, -10.0, 10.0);
el se
glOtho (-1.5*(G.fl oat)w (G.float)h,

1.5*(CG.float)w (G float)h, -1.5, 1.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

}
int main(int argc, char** argv)

glutlnit(&rgc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (500, 500);

gl utlnit WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay) ;

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

}

The lighting-related calls are in tidt() command; they’re discussed briefly in the following
paragraphs and in more detail later in the chapter. One thing to noteeaboytle 5-1is that it
uses RGBA color mode, not color-index mode. The OpenGL lighting calculation is different
two modes, and in fact the lighting capabilities are more limited in color-index mode. Thus,
is the preferred mode when doing lighting, and all the examples in this chapter use it. (See
"Lighting in Color-Index Mode'for more information about lighting in color-index mode.)

Define Normal Vectorsfor Each Vertex of Every Object

An object’s normals determine its orientation relative to the light sources. For each vertex, (
uses the assigned normal to determine how much light that particular vertex receives from
light source. In this example, the normals for the sphere are defined as part of the
glutSolidSpher () routine. (SeéNormal Vectors" in Chapter #r more details on how to define
normals.)

Create, Position, and Enable One or More Light Sources

Example 5-luses only one, white light source; its location is specified bglthightfv() call. This
example uses the default color for light zero (GL_LIGHTO), which is white; if you want a
differently colored light, usglLight*() to indicate this. You can include at least eight different
light sources in your scene of various colors; the default color of these other lights is black.
particular implementation of OpenGL you're using might allow more than eight.) You can al
locate the lights wherever you desire - you can position them near the scene, as a desk lan
be, or an infinite distance away, like the sun. In addition, you can control whether a light prc
narrow, focused beam or a wider beam. Remember that each light source adds significantl
calculations needed to render the scene, so performance is affected by the number of light:
scene. (Se&Creating Light Sourcedbr more information about how to create lights with the
desired characteristics.)

After you've defined the characteristics of the lights you want, you have to turn them on witl
glEnable() command. You also need to agllEnable() with GL_LIGHTING as a parameter to
prepare OpenGL to perform lighting calculations. (E&®abling Lighting"for more information.)
Select a Lighting Model

As you might expect, thglLightM odel* () command describes the parameters of a lighting m

In Example 5-1the only element of the lighting model that's defined explicitly is the global
ambient light. The lighting model also defines whether the viewer of the scene should be
considered to be an infinite distance away or local to the scene, and whether lighting calcul
should be performed differently for the front and back surfaces of objects in theEcample 5-
uses the default settings for these two aspects of the model - an infinite viewer and one-sid
lighting. Using a local viewer adds significantly to the complexity of the calculations that mu
performed, because OpenGL must calculate the angle between the viewpoint and each obj
an infinite viewer, however, the angle is ignored, and the results are slightly less realistic. F
since in this example, the back surface of the sphere is never seen (it's the inside of the sp
one-sided lighting is sufficient. (S&8electing a Lighting Modelfor a more detailed descriptior
of the elements of an OpenGL lighting model.)

Define Material Propertiesfor the Objectsin the Scene

An object’s material properties determine how it reflects light and therefore what material it
to be made of. Because the interaction between an object’s material surface and incident i
complex, specifying material properties so that an object has a certain desired appearance
You can specify a material’'s ambient, diffuse, and specular colors and how shiny it is. In thi
example, only these last two material properties - the specular material color and shininess
explicitly specified (with thglIM aterialfv() calls). (SeéDefining Material Propertiesfor a
description and examples of all the material-property parameters.)

Some | mportant Notes

As you write your own lighting program, remember that you can use the default values for <
lighting parameters; others need to be changed. Also, don’t forget to enable whatever lights
define and to enable lighting calculations. Finally, remember that you might be able to use
lists to maximize efficiency as you change lighting conditions. (Besplay-List Design
Philosophy" in Chapter.y

Creating Light Sources

Light sources have a number of properties, such as color, position, and direction. The follo\
sections explain how to control these properties and what the resulting light looks like. The
command used to specify all properties of lighigisght*(); it takes three arguments: to identi
the light whose property is being specified, the property, and the desired value for that prog

void glLight{if}(GLenum light, GLenum pname, TYPEparam);

void glLight{if}v(GLenum light, GLenum pname, TYPE * param);
Creates the light specified by light, which can be GL_LIGHTO, GL_LIGHTL, ..., or
GL_LIGHTY. The characteristic of the light being set is defined by pname, which specifiesa
named parameter (see Table 5-1). param indicates the values to which the pname
characteristic is set; it's a pointer to a group of values if the vector version is used, or the
value itself if the nonvector version is used. The nonvector version can be used to set only
single-valued light characteristics.

Table 5-1 : Default Values for pname Parameter of glLight*()

Parameter Name Default Value M eaning
GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient RGBA intensity of light
GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse RGBA intensity of light

GL_SPECULAR

(1.0, 1.0, 1.0, 1.0

specular RGBA intensity of
light

GL_POSITION (0.0, 0.0, 1.0, 0.0) (%,Y, z, w) position of light
GL_SPOT_DIRECTION (0.0, 0.0, -1.0) (X, y, 2) direction of spotlight
GL_SPOT_EXPONENT 0.0 spotlight exponent
GL_SPOT_CUTOFF 180.0 spotlight cutoff angle
GL_CONSTANT_ATTENUATION 1.0 constant attenuation factor
GL_LINEAR_ATTENUATION 0.0 linear attenuation factor
GL_QUADRATIC_ATTENUATION | 0.0 guadratic attenuation factor

Note: The default values listed for GL_DIFFUSE and GL_SPECULARahle 5-1apply only to
GL_LIGHTO. For other lights, the default value is (0.0, 0.0, 0.0, 1.0) for both GL_DIFFUSE
GL_SPECULAR.

Example 5-Zhows how to usglLight*():

Example 5-2 : Defining Colors and Position for a Light Source

G.float light_anbient[] ={ 0.0, 0.0, 0.0, 1.0 };
G.float light_diffuse[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float light _specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float light_position[] ={ 1.0, 1.0, 1.0, 0.0}
ght _ambi ent) ;

gl Li ght fv(GL_LI GHTO, GL_AMBI ENT, | i
gl Li ght f v(GL_LI GHTO, GL_DI FFUSE, |ight _diffuse);
gl Li ght fv(G._LI GHTO, G__SPECULAR, |ight_specul ar);

gl Lightfv(G._LI GHTO, GL_PCSITION, |ight_position);

As you can see, arrays are defined for the parameter valueglagittfv() is called repeatedly tc
set the various parameters. In this example, the first three cgllsightfv() are superfluous, sin
they’re being used to specify the default values for the GL_AMBIENT, GL_DIFFUSE, and
GL_SPECULAR parameters.

Note: Remember to turn on each light wgtenable(). (See’Enabling Lighting"for more
information about how to do this.)

All the parameters faglLight*() and their possible values are explained in the following secti
These parameters interact with those that define the overall lighting model for a particular s
and an object’s material properties. (S8electing a Lighting Modeland"Defining Material
Properties'for more information about these two topi€Ehe Mathematics of Lightingéxplains
how all these parameters interact mathematically.)

Color

OpenGL allows you to associate three different color-related parameters - GL_AMBIENT,
GL_DIFFUSE, and GL_SPECULAR - with any patrticular light. The GL_AMBIENT parametse
refers to the RGBA intensity of the ambient light that a particular light source adds to the sc
you can see iitable 5-1 by default there is no ambient light since GL_AMBIENT is (0.0, 0.0,
1.0). This value was used bixample 5-11f this program had specified blue ambient light as

G.float light _anmbient[] ={ 0.0, 0.0, 1.0, 1.0};
gl Li ghtfv(GL_LI GHTO, GL_AMBI ENT, |ight_anbient);

the result would have been as shown in the left sidBlafe 13" in Appendix.|

The GL_DIFFUSE parameter probably most closely correlates with what you naturally thint
"the color of a light." It defines the RGBA color of the diffuse light that a particular light sour
adds to a scene. By default, GL_DIFFUSE is (1.0, 1.0, 1.0, 1.0) for GL_LIGHTO, which prot
bright, white light as shown in the left side"®late 13" in Appendix.IThe default value for any
other light (GL_LIGHTZ, ..., GL_LIGHT?7) is (0.0, 0.0, 0.0, 0.0).

The GL_SPECULAR parameter affects the color of the specular highlight on an object. Tyg
a real-world object such as a glass bottle has a specular highlight that’s the color of the ligr
on it (which is often white). Therefore, if you want to create a realistic effect, set the

GL_SPECULAR parameter to the same value as the GL_DIFFUSE parameter. By default,
GL_SPECULAR s (1.0, 1.0, 1.0, 1.0) for GL_LIGHTO and (0.0, 0.0, 0.0, 0.0) for any other |

Note: The alpha component of these colors is not used until blending is enableGhépeer 6
Until then, the alpha value can be safely ignored.

Position and Attenuation

As previously mentioned, you can choose whether to have a light source that’s treated as t
located infinitely far away from the scene or one that’'s nearer to the scene. The first type is
to as airectional light source; the effect of an infinite location is that the rays of light can be
considered parallel by the time they reach an object. An example of a real-world directional
source is the sun. The second type is callpdsdional light source, since its exact position witr
the scene determines the effect it has on a scene and, specifically, the direction from whick
rays come. A desk lamp is an example of a positional light source. You can see the differer
between directional and positional lights'®ate 12" in Appendix.IThe light used ifexample 5-:
is a directional one:

G.float light _position[] ={ 1.0, 1.0, 1.0, 0.0 };
gl Lightfv(G_LIGHTO, G._POCSITION, |ight_position);

As shown, you supply a vector of four valugsy(z, w) for the GL_POSITION parameter. If the
last valuey, is zero, the corresponding light source is a directional one, anxl the)(values
describe its direction. This direction is transformed by the modelview matrix. By default,

GL_POSITION is (0, 0, 1, 0), which defines a directional light that points along the negakis:
(Note that nothing prevents you from creating a directional light with the direction of (0, O, O
such a light won'’t help you much.)

If the w value is nonzero, the light is positional, and the/,(2) values specify the location of the
light in homogeneous object coordinates. (8ppendix F) This location is transformed by the
modelview matrix and stored in eye coordinates. (Seatrolling a Light's Position and
Direction" for more information about how to control the transformation of the light’s locatior
Also, by default, a positional light radiates in all directions, but you can restrict it to producir
cone of illumination by defining the light as a spotlight. (S&@otlights"for an explanation of ho
to define a light as a spotlight.)

Note: Remember that the colors across the face of a smooth-shaded polygon are determint
colors calculated for the vertices. Because of this, you probably want to avoid using large p
with local lights. If you locate the light near the middle of the polygon, the vertices might be
away to receive much light, and the whole polygon will look darker than you intended. To a
this problem, break up the large polygon into smaller ones.

For real-world lights, the intensity of light decreases as distance from the light increases. Si
directional light is infinitely far away, it doesn’t make sense to attenuate its intensity over di
so attenuation is disabled for a directional light. However, you might want to attenuate the |
from a positional light. OpenGL attenuates a light source by multiplying the contribution of t
source by an attenuation factor:

|

attenuation factor = 5
o+ Fpd + Ryd

where

d = distance between the light’s position and the vertex
kc = GL_CONSTANT_ATTENUATION

ki = GL_LINEAR_ATTENUATION

kq = GL_QUADRATIC_ATTENUATION

By default,kc is 1.0 and botkl andkq are zero, but you can give these parameters different v

gl Li ght f (GL_LI GHTO, GL_CONSTANT_ATTENUATI ON, 2.0);
gl Li ght f (GL_LI GHTO, GL_LI NEAR ATTENUATI ON, 1.0);
gl Li ght f (GL_LI GHTO, GL_QUADRATI C_ATTENUATI ON, 0.5);

Note that the ambient, diffuse, and specular contributions are all attenuated. Only the emis:
global ambient values aren’t attenuated. Also note that since attenuation requires an additit
division (and possibly more math) for each calculated color, using attenuated lights may slc
application performance.

Spotlights

As previously mentioned, you can have a positional light source act as a spotlight - that is,

restricting the shape of the light it emits to a cone. To create a spotlight, you need to detern
spread of the cone of light you desire. (Remember that since spotlights are positional lights
also have to locate them where you want them. Again, note that nothing prevents you from
a directional spotlight, but it won’t give you the result you want.) To specify the angle betwe
axis of the cone and a ray along the edge of the cone, use the GL_SPOT_CUTOFF param
angle of the cone at the apex is then twice this value, as shéwgune 5-2

Gl SPOT_CUTOFF

Figure5-2: GL_SPOT_CUTOFF Parameter

Note that no light is emitted beyond the edges of the cone. By default, the spotlight feature
disabled because the GL_SPOT_CUTOFF parameter is 180.0. This value means that light
emitted in all directions (the angle at the cone’s apex is 360 degrees, so it isn’t a cone at al
value for GL_SPOT_CUTOFF is restricted to being within the range [0.0,90.0] (unless it ha
special value 180.0). The following line sets the cutoff parameter to 45 degrees:

gl Li ght f (GL_LI GHTO, G._SPOT_CUTOFF, 45.0);
You also need to specify a spotlight’s direction, which determines the axis of the cone of lig

G.float spot_direction[] ={ -1.0, -1.0, 0.0 };
gl Lightfv(G _LIGHTO, G._SPOT_DI RECTI QN, spot _direction);

The direction is specified in object coordinates. By default, the direction is (0.0, 0.0, -1.0), s
don’t explicitly set the value of GL_SPOT_DIRECTION, the light points down the negadixis.
Also, keep in mind that a spotlight’s direction is transformed by the modelview matrix just a
though it were a normal vector, and the result is stored in eye coordinaté C¢8telling a
Light's Position and Directionfor more information about such transformations.)

In addition to the spotlight’s cutoff angle and direction, there are two ways you can control t
intensity distribution of the light within the cone. First, you can set the attenuation factor des
earlier, which is multiplied by the light’s intensity. You can also set the GL_SPOT_EXPONE
parameter, which by default is zero, to control how concentrated the light is. The light’s inte
highest in the center of the cone. It's attenuated toward the edges of the cone by the cosine
angle between the direction of the light and the direction from the light to the vertex being li
to the power of the spot exponent. Thus, higher spot exponents result in a more focused lic
source. (Se&The Mathematics of Lightingfor more details on the equations used to calculate
intensity.)

Multiple Lights

As mentioned, you can have at least eight lights in your scene (possibly more, depending ¢
OpenGL implementation). Since OpenGL needs to perform calculations to determine how r
light each vertex receives from each light source, increasing the number of lights adversely
performance. The constants used to refer to the eight lights are GL_LIGHTO, GL_LIGHT1,
GL_LIGHT2, GL_LIGHTS3, and so on. In the preceding discussions, parameters related to
GL_LIGHTO were set. If you want an additional light, you need to specify its parameters; al
remember that the default values are different for these other lights than they are for GL_LI
as explained iTable 5-1 Example 5-3defines a white attenuated spotlight.

Example 5-3: Second Light Source

G.float lightl anbient[] ={ 0.2, 0.2, 0.2, 1.0 };
G.float lightl_diffuse[] = 1.0, 1.0, 1.0, 1.0 };
G.float lightl_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float lightl position[] = -2.0, 2.0, 1.0, 1.0 };
G.float spot _direction[] ={ -1.0, -1.0, 0.0 };

gl Lightfv(G._LI GHT1, GL_AMBI ENT, |ightl_anbient);

gl Lightfv(G__LIGHT1, G._DI FFUSE, |ightl_diffuse);

gl Lightfv(G _LIGHT1l, G._SPECULAR, |ightl specul ar);
gl Lightfv(G_LIGHT1, GL_PCSITION, lightl position);
gl Li ght f (GL_LI GHT1, GL_CONSTANT_ATTENUATI ON, 1.5);
gl Li ght f (GL_LI GHT1, GL_LI NEAR_ATTENUATI ON, O0.5);

gl Li ght f (G._LI GHT1, GL_QUADRATI C_ATTENUATI ON, 0. 2);

gl Li ghtf(G._LI GHT1, GL_SPOT_CUTCFF, 45.0);
gl Lightfv(G _LI GAT1, G._SPOT_DI RECTI O\, spot _direction);
gl Li ghtf (G._LI GHT1, GL_SPOT_EXPONENT, 2.0);

gl Enabl e(GL_LI GHT1);

If these lines were added Example 5-1the sphere would be lit with two lights, one directione
and one spotlight.

Try This
Modify Example 5-1in the following manner:
® Change the first light to be a positional colored light rather than a directional white one

® Add an additional colored spotlight. Hint: Use some of the code shown in the precedir
section.

® Measure how these two changes affect performance.

Controlling aLight’s Position and Direction

OpenGL treats the position and direction of a light source just as it treats the position of a g
primitive. In other words, a light source is subject to the same matrix transformations as a
More specifically, whemlLight*() is called to specify the position or the direction of a light

source, the position or direction is transformed by the current modelview matrix and stored
coordinates. This means you can manipulate a light source’s position or direction by chang
contents of the modelview matrix. (The projection matrix has no effect on a light's position «
direction.) This section explains how to achieve the following three different effects by chan
the point in the program at which the light position is set, relative to modeling or viewing

transformations:
® A light position that remains fixed
® A light that moves around a stationary object
® A light that moves along with the viewpoint
Keeping the Light Stationary

In the simplest example, askixample 5-1the light position remains fixed. To achieve this effi
you need to set the light position after whatever viewing and/or modeling transformation yo
In Example 5-4the relevant code from theit() andreshape() routines might look like this.

Example 5-4 : Stationary Light Source

gl Viewport (0, 0, (GLsizei) w, (Gsizei) h);
gl Mat ri xMode (G._PRQIECTI ON);
gl Loadl dentity();
if (w<=h)
glOtho (-1.5, 1.5, -1.5*h/w, 1.5*h/w, -10.0, 10.0);
el se
gOtho (-1.5*wh, 1.5*wh, -1.5, 1.5, -10.0, 10.0);
gl Matri xMode (GL_MODELVI EW ;
gl Loadl dentity();

[* later ininit() */
G.float light_position[] = { 1.0, 1.0, 1.0, 1.0 };
gl Lightfv(G _LI GATO, GL_POSITI ON, position);

As you can see, the viewport and projection matrices are established first. Then, the identit
is loaded as the modelview matrix, after which the light position is set. Since the identity me
used, the originally specified light position (1.0, 1.0, 1.0) isn’t changed by being multiplied b
modelview matrix. Then, since neither the light position nor the modelview matrix is modifie
this point, the direction of the light remains (1.0, 1.0, 1.0).

Independently Moving the Light

Now suppose you want to rotate or translate the light position so that the light moves relati
stationary object. One way to do this is to set the light position after the modeling transform
which is itself changed specifically to modify the light position. You can begin with the same
of calls ininit() early in the program. Then you need to perform the desired modeling
transformation (on the modelview stack) and reset the light position, probafpiay().
Example 5-5hows whatlisplay() might be.

Example 5-5 : Independently Moving Light Source

static G.doubl e spin;
voi d di spl ay(voi d)

G.float light_position[] ={ 0.0, 0.0, 1.5, 1.0 };
gl G ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

gl PushMatri x();
gl uLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

gl PushiMatri x();
gl Rotated(spin, 1.0, 0.0, 0.0);
gl Li ghtfv(G._LIGHTO, GL_PCSITION, |ight_position);
gl PopMat ri x();
gl ut Sol i dTorus (0.275, 0.85, 8, 15);
gl PopMat ri x();
gl Fl ush();
}

spin is a global variable and is probably controlled by an input desisglay() causes the scene
be redrawn with the light rotategin degrees around a stationary torus. Note the two pairs of
glPushMatrix() andglPopMatrix() calls, which are used to isolate the viewing and modeling
transformations, all of which occur on the modelview stack. SinEgample 5-5he viewpoint
remains constant, the current matrix is pushed down the stack and then the desired viewing
transformation is loaded witluL ook At(). The matrix stack is pushed again before the mode
transformatiorglRotated() is specified. Then the light position is set in the new, rotated coor
system so that the light itself appears to be rotated from its previous position. (Remember t
light position is stored in eye coordinates, which are obtained after transformation by the
modelview matrix.) After the rotated matrix is popped off the stack, the torus is drawn.

Example 5-6Gs a program that rotates a light source around an object. When the left mouse
is pressed, the light position rotates an additional 30 degrees. A small, unlit, wireframe cub
drawn to represent the position of the light in the scene.

Example 5-6 : Moving a Light with Modeling Transformations: movelight.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>
#i nclude "glut.h"

static int spin = 0;

voi d init(void)
{
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._SMOOTH);
gl Enabl e(G_LI GHTI NG ;
gl Enabl e(GL_LI GHTO) ;
gl Enabl e(G._DEPTH_TEST) ;

~

* % *

Here is where the light position is reset after the nodeling
transformation (gl Rotated) is called. This places the
light at a new position in world coordi nates. The cube
* represents the position of the light.
*/
voi d di spl ay(voi d)
{

G.float position[] ={ 0.0, 0.0, 1.5, 1.0 };

gl Cear (G_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);
gl Pushiatrix ();
gl Transl atef (0.0, 0.0, -5.0);

gl PushMvatrix ();
gl Rotated ((G.double) spin, 1.0, 0.0, 0.0);
glLightfv (GL_LIGHTO, G._PCSITIQN, position);

gl Translated (0.0, 0.0, 1.5);
gl Di sabl e (GL_LI GHTI NG ;

gl Col or3f (0.0, 1.0, 1.0);
gl utWreCube (0.1);

gl Enabl e (GL_LI GHTING);

gl PopMatrix ();

gl ut Sol i dTorus (0.275, 0.85, 8, 15);
gl PopMatrix ();

gl Flush ();
}
void reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode (GL_PRQIECTI ON);
gl Loadl dentity();
gl uPerspective(40.0, (G.float) w (Gfloat) h, 1.0, 20.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}

voi d nouse(int button, int state, int x, int y)

switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) ({
spin = (spin + 30) % 360;
gl ut Post Redi spl ay() ;

br eak;
defaul t:
br eak;

}

int main(int argc, char** argv)
{
glutlnit(&argc, argv);
glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (500, 500);
gl utlnit WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut MouseFunc(nouse) ;
gl ut Mai nLoop() ;
return O,

}
Moving the Light Source Together with Your Viewpoint

To create a light that moves along with the viewpoint, you need to set the light position befc
viewing transformation. Then the viewing transformation affects both the light and the view
the same way. Remember that the light position is stored in eye coordinates, and this is on
few times when eye coordinates are criticaEkample 5-7the light position is defined imit(),
which stores the light position at (0, 0, 0) in eye coordinates. In other words, the light is shir
from the lens of the camera.

Example 5-7 : Light Source That Moves with the Viewpoint

G.float light position() ={ 0.0, 0.0, 0.0, 1.0 };

gl Viewport (0, 0, (Gint) w, (GLint) h);

gl Mat ri xMode(GL_PROQJECTI ON) ;

gl Loadl dentity();

gl uPerspective(40.0, (G.float) w (Gfloat) h, 1.0, 100.0);
gl Mat ri xMode(GL_MCODELVI EW ;

gl Loadl dentity();

gl Lightfv(G_LIGHTO, GL_PCSITION, |ight position);

If the viewpoint is now moved, the light will move along with it, maintaining (0, O, 0) distanct
relative to the eye. In the continuationEbfample 5-7which follows next, the global variablesx(
ey, €2) and (ipx, upy, upz) control the position of the viewpoint and up vector. digplay() routine
that’s called from the event loop to redraw the scene might be this:

static GL.double ex, ey, ez, upx, upy, upz;
voi d di spl ay(voi d)

gl O ear (GL_COLOR BUFFER _MASK | GL_DEPTH BUFFER MASK) ;
gl PushMatri x();
gl uLookAt (ex, ey, ez, 0.0, 0.0, 0.0, upx, upy, upz);
gl ut Sol i dTorus (0.275, 0.85, 8, 15);
gl PopMat ri x();
gl Fl ush();
}

When the lit torus is redrawn, both the light position and the viewpoint are moved to the sar
location. As the values passedjtal ookAt() change and the eye moves, the object will never
appear dark, because it is always being illuminated from the eye position. Even though you
respecified the light position, the light moves because the eye coordinate system has chan

This method of moving the light can be very useful for simulating the illumination from a mil
hat. Another example would be carrying a candle or lantern. The light position specified by
to glLightfv(GL_LIGHTI, GL_POSITION, position) would be the x, y, and z distance from th
position to the illumination source. Then as the eye position moves, the light will remain the
relative distance away.

Try This
Modify Example 5-@n the following manner:
® Make the light translate past the object instead of rotating around it. Hingd Trsenslated()
rather than the firgflRotated() in display(), and choose an appropriate value to use inst

of spin.

® Change the attenuation so that the light decreases in intensity as it's moved away fror
object. Hint: Add calls tglLight*() to set the desired attenuation parameters.

Selecting a Lighting M odel
The OpenGL notion of a lighting model has three components:

® The global ambient light intensity

® \Whether the viewpoint position is local to the scene or whether it should be considere
an infinite distance away

® \Whether lighting calculations should be performed differently for both the front and ba
faces of objects

This section explains how to specify a lighting model. It also discusses how to enable lightil
is, how to tell OpenGL that you want lighting calculations performed.

The command used to specify all properties of the lighting mod#l ightM odel* ().
glLightM odel* () has two arguments: the lighting model property and the desired value for tl

property.

void glLightModel{if}(GLenum pname, TYPEparam);

void glLightModel{if}v(GLenum pname, TYPE * param);
Sets properties of the lighting model. The characteristic of the lighting model being set is
defined by pname, which specifies a named parameter (see Table 5-2). param indicates the
values to which the pname characteristic is set; it'sa pointer to a group of values if the
vector version is used, or the value itself if the nonvector version is used. The nonvector
version can be used to set only single-valued lighting model characteristics, not for
GL_LIGHT _MODEL_AMBIENT.

Table 5-2 : Default Values for pname Parameter of glLightModel*()

Parameter Name Default Value Meaning

GL_LIGHT _MODEL_AMBIENT (0.2,0.2,0.2, 1.0)| ambient RGBA intensity of
the entire scene

GL_LIGHT_MODEL_LOCAL_VIEWER || 0.0 or GL_FALSE| how specular reflection
angles are computed

GL_LIGHT_MODEL_TWO_SIDE 0.0 or GL_FALSE| choose between one-sideq
or two-sided lighting

Global Ambient Light

As discussed earlier, each light source can contribute ambient light to a scene. In addition,
be other ambient light that’s not from any particular source. To specify the RGBA intensity «
global ambient light, use the GL_LIGHT_MODEL_AMBIENT parameter as follows:

G.float | nodel _anbient[] ={ 0.2, 0.2, 0.2, 1.0 };
gl Li ght Model f v(G._LI GHT_MODEL_AMBI ENT, | nodel _anbi ent) ;

In this example, the values used fioodel_ambient are the default values for
GL_LIGHT_MODEL_AMBIENT. Since these numbers yield a small amount of white ambie
light, even if you don’t add a specific light source to your scene, you can still see the object
scene!'Plate 14" in Appendix shows the effect of different amounts of global ambient light.

Local or Infinite Viewpoint

The location of the viewpoint affects the calculations for highlights produced by specular
reflectance. More specifically, the intensity of the highlight at a particular vertex depends or
normal at that vertex, the direction from the vertex to the light source, and the direction fron
vertex to the viewpoint. Keep in mind that the viewpoint isn’t actually being moved by calls -
lighting commands (you need to change the projection transformation, as desctPmgeiction
Transformations” in Chapte);3dnstead, different assumptions are made for the lighting
calculations as if the viewpoint were moved.

With an infinite viewpoint, the direction between it and any vertex in the scene remains con
local viewpoint tends to yield more realistic results, but since the direction has to be calcula
each vertex, overall performance is decreased with a local viewpoint. By default, an infinite
viewpoint is assumed. Here’s how to change to a local viewpoint:

gl Li ght Model i (GL_LI GHT_MODEL_LOCAL_VI EWVER, GL_TRUE);

This call places the viewpoint at (0, O, 0) in eye coordinates. To switch back to an infinite
viewpoint, pass in GL_FALSE as the argument.

Two-sided Lighting

Lighting calculations are performed for all polygons, whether they’re front-facing or back-fas
Since you usually set up lighting conditions with the front-facing polygons in mind, however
back-facing ones typically aren’t correctly illuminatedElxample 5-lwhere the object is a sphe
only the front faces are ever seen, since they’re the ones on the outside of the sphere. So,
case, it doesn’t matter what the back-facing polygons look like. If the sphere is going to be
away so that its inside surface will be visible, however, you might want to have the inside s
be fully lit according to the lighting conditions you've defined; you might also want to supply
different material description for the back faces. When you turn on two-sided lighting with

gl Li ght Model i (GL_LI GHT_MODEL_TWOD SI DE, GL_TRUE);

OpenGL reverses the surface normals for back-facing polygons; typically, this means that t
surface normals of visible back- and front-facing polygons face the viewer, rather than poin
away. As a result, all polygons are illuminated correctly. However, these additional operatic
usually make two-sided lighting perform more slowly than the default one-sided lighting.

To turn two-sided lighting off, pass in GL_FALSE as the argument in the preceding call. (S¢
"Defining Material Propertiesfor information about how to supply material properties for bott
faces.) You can also control which faces OpenGL considers to be front-facing with the com
glFrontFace(). (Se€'Reversing and Culling Polygon Faces" in Chaptéranore information.)

Enabling Lighting

With OpenGL, you need to explicitly enable (or disable) lighting. If lighting isn’t enabled, the
current color is simply mapped onto the current vertex, and no calculations concerning norr
light sources, the lighting model, and material properties are performed. Here’s how to enal
lighting:

gl Enabl e(GL_LI GHTI NG) ;

To disable lighting, calyiDisable() with GL_LIGHTING as the argument.

You also need to explicitly enable each light source that you define, after you've specified t
parameters for that sourdexample 5-luses only one light, GL_LIGHTO:

gl Enabl e(G._LI GHTO) ;

Defining Material Properties

You've seen how to create light sources with certain characteristics and how to define the ¢
lighting model. This section describes how to define the material properties of the objects ir
scene: the ambient, diffuse, and specular colors, the shininess, and the color of any emitte
(See"The Mathematics of Lightingfor the equations used in the lighting and material-propert
calculations.) Most of the material properties are conceptually similar to ones you've alread
to create light sources. The mechanism for setting them is similar, except that the comman
calledgiMaterial* ().

void glMaterial{if}(GLenum face, GLenum pname, TYPE param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE * param);
Secifies a current material property for usein lighting calculations. face can be
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the object the
material should be applied to. The particular material property being set isidentified by
pname and the desired values for that property are given by param, which is either a pointer
to a group of values (if the vector version is used) or the actual value (if the nonvector version
is used). The nonvector version works only for setting GL_SHININESS. The possible values
for pname are shown in Table 5-3. Note that GL_ AMBIENT_AND_DIFFUSE allows you to
set both the ambient and diffuse material colors simultaneously to the same RGBA value.

Table 5-3 : Default Values for pname Parameter of glMaterial*()

Parameter Name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0)| diffuse color of material

GL_AMBIENT_AND_DIFFUSE ambient and diffuse color of materig

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_SHININESS 0.0 specular exponent

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_COLOR_INDEXES (0,1,1) arg_bient, diffuse, and specular colo
indices

As discussed ifiSelecting a Lighting Model,{you can choose to have lighting calculations
performed differently for the front- and back-facing polygons of objects. If the back faces m
indeed be seen, you can supply different material properties for the front and the back surf:
using theface parameter oflM aterial* (). Se€'Plate 14" in Appendix for an example of an
object drawn with different inside and outside material properties.

To give you an idea of the possible effects you can achieve by manipulating material prope
"Plate 16" in Appendix.IThis figure shows the same object drawn with several different sets
material properties. The same light source and lighting model are used for the entire figure.
sections that follow discuss the specific properties used to draw each of these spheres.

Note that most of the material properties set gitMaterial*() are (R, G, B, A) colors. Regardle
of what alpha values are supplied for other parameters, the alpha value at any particular ve
the diffuse-material alpha value (that is, the alpha value given to GL_DIFFUSE with the
glMaterial*() command, as described in the next section). (Bleading" in Chapter @or a
complete discussion of alpha values.) Also, none of the RGBA material properties apply in
color-index mode. (Set.ighting in Color-Index Mode'for more information about what
parameters are relevant in color-index mode.)

Diffuse and Ambient Reflection

The GL_DIFFUSE and GL_AMBIENT parameters set vgitl aterial* () affect the color of the
diffuse and ambient light reflected by an object. Diffuse reflectance plays the most importar
determining what you perceive the color of an object to be. It's affected by the color of the i
diffuse light and the angle of the incident light relative to the normal direction. (It's most inte
where the incident light falls perpendicular to the surface.) The position of the viewpoint dot
affect diffuse reflectance at all.

Ambient reflectance affects the overall color of the object. Because diffuse reflectance is br

where an object is directly illuminated, ambient reflectance is most noticeable where an obj
receives no direct illumination. An object’s total ambient reflectance is affected by the globe
ambient light and ambient light from individual light sources. Like diffuse reflectance, ambie
reflectance isn’t affected by the position of the viewpoint.

For real-world objects, diffuse and ambient reflectance are normally the same color. For thi
OpenGL provides you with a convenient way of assigning the same value to both simultane
with giMaterial*():

Gfloat mat_anb diff[] = { 0.1, 0.5, 0.8, 1.0 };
gl Materi al f v(GL_FRONT_AND BACK, G._AMBI ENT_AND DI FFUSE
mat _anb_diff);

In this example, the RGBA color (0.1, 0.5, 0.8, 1.0) - a deep blue color - represents the curi
ambient and diffuse reflectance for both the front- and back-facing polygons.

In "Plate 16" in Appendix,lthe first row of spheres has no ambient reflectance (0.0, 0.0, 0.0,
and the second row has a significant amount of it (0.7, 0.7, 0.7, 1.0).

Specular Reflection

Specular reflection from an object produces highlights. Unlike ambient and diffuse reflectiol
amount of specular reflection seen by a viewer does depend on the location of the viewpoir
brightest along the direct angle of reflection. To see this, imagine looking at a metallic ball ¢
in the sunlight. As you move your head, the highlight created by the sunlight moves with yo
some extent. However, if you move your head too much, you lose the highlight entirely.

OpenGL allows you to set the effect that the material has on reflected light (with GL_SPEC
and control the size and brightness of the highlight (with GL_SHININESS). You can assign
number in the range of [0.0, 128.0] to GL_SHININESS - the higher the value, the smaller a
brighter (more focused) the highlight. (S&&e Mathematics of Lightingfor the details of how
specular highlights are calculated.)

In "Plate 16" in Appendix,Ithe spheres in the first column have no specular reflection. In the
second column, GL_SPECULAR and GL_SHININESS are assigned values as follows:

G.float mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float |low shininess[] ={ 5.0 };

gl Material fv(G._FRONT, G._SPECULAR, mat_specul ar);
gl Material fv(G._FRONT, G__SHI NI NESS, | ow_shi ni ness);

In the third column, the GL_SHININESS parameter is increased to 100.0.
Emission

By specifying an RGBA color for GL_EMISSION, you can make an object appear to be givi
light of that color. Since most real-world objects (except lights) don’t emit light, you'll probat
use this feature mostly to simulate lamps and other light sources in a scéhatdri6" in

Appendix | the spheres in the fourth column have a reddish, grey value for GL_EMISSION:

G.float mat_emission[] = {0.3, 0.2, 0.2, 0.0};
gl Material fv(G._FRONT, G._EM SSI ON, mat_eni ssion);

Notice that the spheres appear to be slightly glowing; however, they’re not actually acting a
sources. You would need to create a light source and position it at the same location as the
create that effect.

Changing M aterial Properties

Example 5-luses the same material properties for all vertices of the only object in the scene
sphere). In other situations, you might want to assign different material properties for differe
vertices on the same object. More likely, you have more than one object in the scene, and «
object has different material properties. For example, the code that proélatedl 6" in
Appendix lhas to draw twelve different objects (all spheres), each with different material
propertiesExample 5-8&hows a portion of the codedisplay().

Example 5-8 : Different Material Properties: material.c

G.float no_mat[] = { 0.0,
G.float mat_anmbient[] = {
GLfl oat mat _anbi ent _col or[
G.float mat_diffuse[] = {
GL.fl oat mat_specul ar[]
GLfl oat no_shi ni ness|[] . ;
GLfl oat | ow_shininess[] = { 5.0 };
GLfl oat hi gh_shi ni ness[] = { 100.0 };

G.fl oat mat_emi ssion[] {0.3, 0.2, 0.2, 0.0};

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

/* draw sphere in first row, first columm
* diffuse reflection only; no anbient or specul ar
*/
gl PushiMat ri x();
gl Transl atef (-3.75, 3.0, 0.0);
gl Material f v(GL_FRONT, G._AMBI ENT, no_nat);
gl Material fv(G._FRONT, GL DI FFUSE, mat _di ffuse)
gl Material fv(G._FRONT, G._SPECULAR, no_mat);
gl Material fv(GL_FRONT, GL_SHI NI NESS, no_shi ni ness);
gl Material fv(G_FRONT, G._EM SSION, no_nmt);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMat ri x();

/* draw sphere in first row, second col um
* diffuse and specul ar reflection; |ow shininess; no anbient
*/
gl PushiMatri x();
gl Transl atef (-1.25, 3.0, 0.0);
gl Material f v(GL_FRONT, G._AMBI ENT, no_nat);
gl Material fv(G._FRONT, G._DI FFUSE, mat _di ffuse);
gl Material fv(G._FRONT, G._SPECULAR, mat_specul ar);
gl Material f v(GL._FRONT, G._SHI NI NESS, | ow_shi ni ness);
gl Material fv(GL_FRONT, G._EM SSION, no_mat);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMat ri x();

/* draw sphere in first row, third colum
* diffuse and specul ar reflection; high shininess; no anbient
*/

gl PushMatri x();

gl Transl atef (1.25, 3.0, 0.0);

gl Material fv(G._FRONT, G._AMBI ENT, no_nat);

gl Material fv(GL_FRONT, GL_DI FFUSE, mat _di ffuse)

gl Material fv(G._FRONT, GL_SPECULAR, nat_specul ar);

gl Material fv(G._FRONT, G__SHI NI NESS, hi gh_shi ni ness);
gl Material fv(G._FRONT, G._EM SSION, no_mat);

gl ut Sol i dSphere(1.0, 16, 16);

gl PopMat ri x();

/* draw sphere in first row, fourth colum
* diffuse reflection; enission; no anbient or specular refl.
*/
gl PushiMatri x();
gl Transl atef (3.75, 3.0, 0.0);
gl Materi al f v(GL_FRONT, G._AMBI ENT, no_nat);
gl Material fv(G._FRONT, G _DI FFUSE, nmat _diffuse);
gl Material fv(G _FRONT, G._SPECULAR, no_mat);
gl Material fv(G._FRONT, G._SHI NI NESS, no_shi ni ness);
gl Material fv(G._FRONT, G._EM SSI ON, mat _eni ssion);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMat ri x();

As you can seglMaterialfv() is called repeatedly to set the desired material property for ear
sphere. Note that it only needs to be called to change a property that needs to be respecifi
second, third, and fourth spheres use the same ambient and diffuse properties as the first ¢
these properties do not need to be respecified. §iivtaterial* () has a performance cost

associated with its usExample 5-&ould be rewritten to minimize material-property changes.

Another technique for minimizing performance costs associated with changing material pro
is to useglColorMaterial().

void glColorMaterial (GLenum face, GLenum mode);
Causes the material property (or properties) specified by mode of the specified material face
(or faces) specified by face to track the value of the current color at all times. A change to the
current color (using glColor*()) immediately updates the specified material properties. The
face parameter can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK (the default).
The mode parameter can be GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE
(the default), GL_SPECULAR, or GL_EMISION. At any given time, only one mode is active.
glColorMaterial () has no effect on color-index lighting.

Note thatglColorMaterial() specifies two independent values: the first specifies which face ¢
faces are updated, and the second specifies which material property or properties of those
updated. OpenGL doest maintain separat@ode variables for each face.

After callingglColorMaterial(), you need to catjlEnable() with GL_COLOR_MATERIAL as
the parameter. Then, you can change the current colorgl§iobpr*() (or other material
properties, usinglM aterial*()) as needed as you draw:

gl Enabl e(G._COLOR_NMATERI AL) ;

gl Col or Mat eri al (GL._FRONT, G._DI FFUSE);

/* now gl Col or* changes diffuse reflection */
gl Col or3f(0.2, 0.5, 0.8);

/* draw sone objects here */

gl Col or Mat eri al (GL_FRONT, G._SPECULAR);

/* gl Color* no | onger changes diffuse reflection */
/* now gl Col or* changes specul ar reflection */
gl Col or3f(0.9, 0.0, 0.2);

/* draw ot her objects here */

gl D sabl e(G._CO_LOR _MATERI AL) ;

You should usglColorMaterial() whenever you need to change a single material parameter

most vertices in your scene. If you need to change more than one material parameter, as w
case for'Plate 16" in Appendix,luseglMaterial*(). When you don’t need the capabilities of
glColorMaterial() anymore, be sure to disable it so that you don’t get undesired material pri
and don't incur the performance cost associated with it. The performance value in using
glColorMaterial() varies, depending on your OpenGL implementation. Some implementatio
may be able to optimize the vertex routines so that they can quickly update material proper
based on the current color.

Example 5-3hows an interactive program that ugkolor M aterial() to change material
parameters. Pressing each of the three mouse buttons changes the color of the diffuse refl

Example 5-9 : Using glColorMaterial(): colormat.c

#i nclude <@./gl. h>

#i ncl ude <@/ gl u. h>

#i ncl ude "glut.h"

G.float diffusewaterial[4] ={ 0.5, 0.5, 0.5 1.0 };

void init(void)

{
G.float mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float light position[] ={ 1.0, 1.0, 1.0, 0.0 };
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._SMOOTH);
gl Enabl e(G._DEPTH_TEST) ;
gl Material fv(G._FRONT, G._DI FFUSE, diffuseMaterial);
gl Material fv(G._FRONT, G._SPECULAR, mat_specul ar);
gl Material f (G._FRONT, G._SHI NI NESS, 25.0);
gl Lightfv(G._LI GHTO, G__PCSITION, |ight_position);
gl Enabl e(G_LI GHTI NG ;
gl Enabl e(G _LI GHTO) ;
gl Col or Mat eri al (GL_FRONT, GL_DI FFUSE)
gl Enabl e(G._COLOR_MATERI AL) ;
}
voi d di spl ay(voi d)
{
gl dear(G_CO.OR BUFFER BI T | G._DEPTH BUFFER BIT);
gl ut Sol i dSphere(1.0, 20, 16);
gl Flush ();
}
voi d reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode (G._PRQIECTI ON);
gl Loadl dentity();
if (w<=h)
glOtho (-1.5, 1.5, -1.5*(G.float)h/(G.float)w,
1.5*(G.float)h/(Gfloat)w, -10.0, 10.0);
el se
glOtho (-1.5*(G.fl oat)w (G.fl oat) h,
1.5*(Gfloat)w (Gfloat)h, -1.5, 1.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}

voi d nouse(int button, int state, int x, int y)

switch (button) {
case GLUT_LEFT_BUTTON
if (state == GLUT_DOWN) ({ /* change red */
di ffuseivaterial [0] += 0.1;
if (diffuseMaterial[0] > 1.0)
di ffusemvaterial [0] = 0.0;
gl Col or4fv(diffuseMaterial);
gl ut Post Redi spl ay() ;
}
br eak;
case GLUT_M DDLE_BUTTON
if (state == GLUT_DOWN) ({ /* change green */
di ffusewvaterial[1] += 0.1;
if (diffuseMaterial[1l] > 1.0)
di ffusematerial [1] = 0.0;
gl Col or4fv(diffuseMaterial);
gl ut Post Redi spl ay() ;
}
br eak;
case GLUT_RI GHT_BUTTON
if (state == GLUT_DOWN) ({ /* change blue */
di f fuseMvaterial [2] += 0. 1;
if (diffuseMaterial[2] > 1.0)
di ffuseivaterial[2] = 0.0;
gl Col or4fv(diffuseMaterial);
gl ut Post Redi spl ay() ;

br eak;
defaul t:
br eak;

}
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (500, 500);

gl utlnit WndowPosition (100, 100);
gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut MouseFunc(nouse) ;

gl ut Mai nLoop() ;

return O;

}
Try This

Modify Example 5-8n the following manner:

® Change the global ambient light in the scene. Hint: Alter the value of the
GL_LIGHT_MODEL_AMBIENT parameter.

® Change the diffuse, ambient, and specular reflection parameters, the shininess expon
the emission color. Hint: Use tigiM aterial* () command, but avoid making excessive ca

® Use two-sided materials and add a user-defined clipping plane so that you can see th
and outside of a row or column of spheres. (Seklitional Clipping Planes" in Chapter 3
you need to recall user-defined clipping planes.) Hint: Turn on two-sided lighting with

GL_LIGHT_MODEL_TWO_SIDE, set the desired material properties, and add a clipp
plane.

® Remove all thg@lMaterialfv() calls, and use the more efficieggColor M aterial() calls to
achieve the same lighting.

The Mathematics of Lighting
Advanced

This section presents the equations used by OpenGL to perform lighting calculations to det
colors when in RGBA mode. (S&€Ehe Mathematics of Color-Index Mode Lightinfgr
corresponding calculations for color-index mode.) You don’t need to read this section if you
willing to experiment to obtain the lighting conditions you want. Even after reading this sect
you'll probably have to experiment, but you'll have a better idea of how the values of param
affect a vertex’s color. Remember that if lighting is not enabled, the color of a vertex is simg
current color; if it is enabled, the lighting computations described here are carried out in eye
coordinates.

In the following equations, mathematical operations are performed separately on the R, G,
components. Thus, for example, when three terms are shown as added together, the R val
values, and the B values for each term are separately added to form the final RGB color
(R1+R2+R3, G1+G2+G3, B1+B2+B3). When three terms are multiplied, the calculation is
(R1R2R3, G1G2G3, B1B2B3). (Remember that the final A or alpha component at a vertex
to the material’s diffuse alpha value at that vertex.)
The color produced by lighting a vertex is computed as follows:
vertex color =

the material emission at that vertex +

the global ambient light scaled by the material’'s ambient property at that vertex +

the ambient, diffuse, and specular contributions from all the light sources, properly att

After lighting calculations are performed, the color values are clamped (in RGBA mode) to i
range [0,1].

Note that OpenGL lighting calculations don’t take into account the possibility of one object
blocking light from another; as a result shadows aren’t automatically createdS{Beews" in
Chapter 14or a technique to create shadows.) Also keep in mind that with OpenGL, illumin:
objects don't radiate light onto other objects.

Material Emission

The material emission term is the simplest. It's the RGB value assigned to the GL_EMISSI(
parameter.

Scaled Global Ambient Light

The second term is computed by multiplying the global ambient light (as defined by the
GL_LIGHT_MODEL_AMBIENT parameter) by the material’s ambient property (GL_AMBIE
value as assigned wittM aterial*()):

ambientlight model * ambientmaterial

Each of the R, G, and B values for these two parameters are multiplied separately to comp
final RGB value for this term: (R1R2, G1G2, B1B2).

Contributionsfrom Light Sources

Each light source may contribute to a vertex’s color, and these contributions are added tog:
The equation for computing each light source’s contribution is as follows:

contribution = attenuation factor * spotlight effect *
(ambient term + diffuse term + specular term)
Attenuation Factor

The attenuation factor was described itPosition and Attenuation”

1

attenuation factor = 5
R

where
d = distance between the light’s position and the vertex
kc = GL_CONSTANT_ATTENUATION
kl = GL_LINEAR_ATTENUATION
kq = GL_QUADRATIC_ATTENUATION
If the light is a directional one, the attenuation factor is 1.
Spotlight Effect
The spotlight effect evaluates to one of three possible values, depending on whether the ligh
actually a spotlight and whether the vertex lies inside or outside the cone of illumination prc
by the spotlight:
® 1 if the light isn’t a spotlight (GL_SPOT_CUTOFF is 180.0)

® 0 if the light is a spotlight, but the vertex lies outside the cone of illumination produced
spotlight.

® (max {v -d, 0})GL_SPOT_EXPONENT where:
Vv = (v, vy, vz) is the unit vector that points from the spotlight (GL_POSITION) to the v

d = (dx, dy, dz) is the spotlight’s direction (GL_SPOT_DIRECTION), assuming the ligh
spotlight and the vertex lies inside the cone of illumination produced by the spotlight.

The dot product of the two vectorsandd varies as the cosine of the angle between ther
hence, objects directly in line get maximum illumination, and objects off the axis have
illumination drop as the cosine of the angle.
To determine whether a particular vertex lies within the cone of illumination, OpenGL evalu
(max {v -d, 0}) wherev andd are as defined in the preceding discussion. If this value is less
the cosine of the spotlight’s cutoff angle (GL_SPOT_CUTOFF), then the vertex lies outside
cone; otherwise, it's inside the cone.
Ambient Term
The ambient term is simply the ambient color of the light scaled by the ambient material prc
ambientlight *ambientmaterial

Diffuse Term

The diffuse term needs to take into account whether light falls directly on the vertex, the diff
color of the light, and the diffuse material property:

(max {L -n, 0}) * diffuselight * diffusematerial
where:

L =(Lx, Ly, Lz) is the unit vector that points from the vertex to the light position
(GL_POSITION).

n = (nx, ny, nz) is the unit normal vector at the vertex.
Specular Term
The specular term also depends on whether light falls directly on the vettexa I§ less than or
equal to zero, there is no specular component at the vertex. (If it's less than zero, the light i
wrong side of the surface.) If there’s a specular component, it depends on the following:
® The unit normal vector at the vertex(ny, nz).
® The sum of the two unit vectors that point between (1) the vertex and the light positior
light direction) and (2) the vertex and the viewpoint (assuming that
GL_LIGHT_MODEL_LOCAL_VIEWER is true; if it's not true, the vector (0, 0, 1) is use
as the second vector in the sum). This vector sum is normalized (by dividing each con
by the magnitude of the vector) to yied (sx, sy, sz).

® The specular exponent (GL_SHININESS).

® The specular color of the light (GL_SPECULARIight).

® The specular property of the material (GL_SPECULARmMaterial).
Using these definitions, here’s how OpenGL calculates the specular term:
(max {s - n, O})shininess * specularlight * specularmaterial

However, ifL -n = 0, the specular term is 0.

Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following represe
entire lighting calculation in RGBA mode:

vertex color = emissionmaterial +

ambientlight model * ambientmaterial +

-1
! (1)* (spotlight effect), *
o Fo+ R + I::gc:!2 ;

[ambientlight *fambientmaterial +

(max {L -n, 0}) * diffuselight * diffusematerial +

(max {s-n, 0})shininess * specularlight * specularmaterial] i

Lighting in Color-Index Mode

In color-index mode, the parameters comprising RGBA values either have no effect or have
special interpretation. Since it's much harder to achieve certain effects in color-index mode
should use RGBA whenever possible. In fact, the only light-source, lighting-model, or mate
parameters in an RGBA form that are used in color-index mode are the light-source param
GL_DIFFUSE and GL_SPECULAR and the material parameter GL_SHININESS. GL_DIFF
and GL_SPECULARdI andd, respectively) are used to compute color-index diffuse and spe
light intensities dci andsci) as follows:

dci = 0.30 R¢l) + 0.59 G(lI) + 0.11 Bdl)

sci = 0.30 R§) + 0.59 G§) + 0.11 BH)

where RK), G(x), and B§) refer to the red, green, and blue components, respectively, ofkcolc
The weighting values 0.30, 0.59, and 0.11 reflect the "perceptual” weights that red, green,

have for your eye - your eye is most sensitive to green and least sensitive to blue.

To specify material colors in color-index mode, g aterial* () with the special parameter

GL_COLOR_INDEXES, as follows:

G.float mat_colormap[] = { 16.0, 47.0, 79.0 };
gl Material fv(G._FRONT, G._COLOR | NDEXES, nat_col ormap);

The three numbers supplied for GL_COLOR_INDEXES specify the color indices for the arr
diffuse, and specular material colors, respectively. In other words, OpenGL regards the cols
associated with the first index (16.0 in this example) as the pure ambient color, with the sec
index (47.0) as the pure diffuse color, and with the third index (79.0) as the pure specular ¢
default, the ambient color index is 0.0, and the diffuse and specular color indices are both 1
thatglColorMaterial() has no effect on color-index lighting.)

As it draws a scene, OpenGL uses colors associated with indices in between these numbe
objects in the scene. Therefore, you must build a color ramp between the indicated indices
example, between indices 16 and 47, and then between 47 and 79). Often, the color ramp
smoothly, but you might want to use other formulations to achieve different effects. Here’s
example of a smooth color ramp that starts with a black ambient color and goes through a |
diffuse color to a white specular color:

* (i/32.0), 0.0, 1.0 * (i/32.0));

for (i = 0; i < 32; i++)
i 0
i 0, 1.0 * (i/32.0), 1.0);

{
glutSetColor (16 + i, 1.
gl ut Set Col or (48 + 1.

}

The GLUT library commandlutSetColor () takes four arguments. It associates the color inde:
indicated by the first argument to the RGB triplet specified by the last three arguments.3\(h
the color index 16 is assigned the RGB value (0.0, 0.0, 0.0), or black. The color ramp build:
smoothly up to the diffuse material color at index 47 (whei31), which is assigned the pure
magenta RGB value (1.0, 0.0, 1.0). The second loop builds the ramp between the magenta
color and the white (1.0, 1.0, 1.0) specular color (index'P3ate 15" in Appendix shows the
result of using this color ramp with a single lit sphere.

The Mathematics of Color-Index Mode Lighting
Advanced

As you might expect, since the allowable parameters are different for color-index mode tha
RGBA mode, the calculations are different as well. Since there’s no material emission and

ambient light, the only terms of interest from the RGBA equations are the diffuse and spect
contributions from the light sources and the shininess. Even these need to be modified, ho\
explained next.

Begin with the diffuse and specular terms from the RGBA equations. In the diffuse term, ins
diffuselight * diffusematerial, substitutiei as defined in the previous section for color-index
mode. Similarly, in the specular term, instead of specularlight * specularmaterisdi asalefinec
in the previous section. (Calculate the attenuation, spotlight effect, and all other component
these terms as before.) Call these modified diffuse and speculaidtands, respectively. Now l¢
s =min{ s, 1}, and then compute

¢ =am +d(1-s')(dm-am) + s (sm-am)

wheream, dm, andsm are the ambient, diffuse, and specular material indexes specified usin
GL_COLOR_INDEXES. The final color index is

¢ =min{c,sm}

After lighting calculations are performed, the color-index values are converted to fixed-poin
an unspecified number of bits to the right of the binary point). Then the integer portion is m:
(bitwise ANDed) with 2n-1, where is the number of bits in a color in the color-index buffer.

OpenGL Programming Guide
(Addison-Wedley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 6
Blending, Antialiasing, Fog, and Polygon
Offset

Chapter Objectives

After reading this chapter, you’ll be able to do the following:
® Blend colors to achieve such effects as making objects appear translucent
® Smooth jagged edges of lines and polygons with antialiasing
® Create scenes with realistic atmospheric effects

® Draw geometry at or near the same depth, but avoid unaesthetic artifacts from interse
geometry

The preceding chapters have given you the basic information you need to create a
computer-graphics scene; you've learned how to do the following:

® Draw geometric shapes

® Transform those geometric shapes so that they can be viewed from whatever perspec
wish

® Specify how the geometric shapes in your scene should be colored and shaded

® Add lights and indicate how they should affect the shapes in your scene
Now you're ready to get a little fancier. This chapter discusses four techniques that can adc
detail and polish to your scene. None of these techniques is hard to use - in fact, it's probatl

to explain them than to use them. Each of these techniques is described in its own major st

® "Blending"tells you how to specify a blending function that combines color values fron
source and a destination. The final effect is that parts of your scene appear translucer

® "Antialiasing" explains this relatively subtle technique that alters colors so that the edg
points, lines, and polygons appear smooth rather than angular and jagged.

® "Fog" describes how to create the illusion of depth by computing the color values of a
based on its distance from the viewpoint. Thus, objects that are far away appear to fa
the background, just as they do in real life.

® |f you've tried to draw a wireframe outline atop a shaded object and used the same ve
you’ve probably noticed some ugly visual artifatBolygon Offset"shows you how to
tweak (offset) depth values to make an outlined, shaded object look beautiful.

Blending

You've already seen alpha values (alpha is the A in RGBA), but they’ve been ignored until

Alpha values are specified wighColor* (), when usingylClear Color () to specify a clearing colo
and when specifying certain lighting parameters such as a material property or light-source
intensity. As you learned i@hapter 4the pixels on a monitor screen emit red, green, and blue
light, which is controlled by the red, green, and blue color values. So how does an alpha va
affect what gets drawn in a window on the screen?

When blending is enabled, the alpha value is often used to combine the color value of the f
being processed with that of the pixel already stored in the framebuffer. Blending occurs aff
scene has been rasterized and converted to fragments, but just before the final pixels are c
the framebuffer. Alpha values can also be used in the alpha test to accept or reject a fragm
on its alpha value. (S&ghapter 1Gor more information about this process.)

Without blending, each new fragment overwrites any existing color values in the framebuffe
though the fragment were opaque. With blending, you can control how (and how much of) i
existing color value should be combined with the new fragment’s value. Thus you can use :
blending to create a translucent fragment that lets some of the previously stored color value
through.” Color blending lies at the heart of techniques such as transparency, digital compc
and painting.

Note: Alpha values aren’t specified in color-index mode, so blending operations aren’t perfc
in color-index mode.

The most natural way to think of blending operations is to think of the RGB components of .
fragment as representing its color and the alpha component as representing opacity. Trans
translucent surfaces have lower opacity than opaque ones and, therefore, lower alpha valu
example, if you're viewing an object through green glass, the color you see is partly green 1
glass and partly the color of the object. The percentage varies depending on the transmissi
properties of the glass: If the glass transmits 80 percent of the light that strikes it (that is, he
opacity of 20 percent), the color you see is a combination of 20 percent glass color and 80
of the color of the object behind it. You can easily imagine situations with multiple transluce
surfaces. If you look at an automobile, for instance, its interior has one piece of glass betwe
your viewpoint; some objects behind the automobile are visible through two pieces of glass

The Sour ce and Destination Factors

During blending, color values of the incoming fragment gth&ce) are combined with the color
values of the corresponding currently stored pixel ¢dsignation) in a two-stage process. Firsty
specify how to compute source and destination factors. These factors are RGBA quadruple
are multiplied by each component of the R, G, B, and A values in the source and destinatio
respectively. Then the corresponding components in the two sets of RGBA quadruplets are
To show this mathematically, let the source and destination blending factors be (Sr, Sg, Sb

(Dr, Dg, Db, Da), respectively, and the RGBA values of the source and destination be indic
with a subscript of s or d. Then the final, blended RGBA values are given by

(RsSr+RdDr, GsSg+GdDg, BsSb+BdDb, AsSa+AdDa)
Each component of this quadruplet is eventually clamped to [0,1].

Now consider how the source and destination blending factors are generated. You use
glBlendFunc() to supply two constants: one that specifies how the source factor should be
computed and one that indicates how the destination factor should be computed. To have |
take effect, you also need to enable it:

gl Enabl e(G._BLEND) ;

UseglDisable() with GL_BLEND to disable blending. Also note that using the constants GL_
(source) and GL_ZERO (destination) gives the same results as when blending is disabled;
values are the default.

void glBlendFunc(GLenum sfactor, GLenum dfactor);
Controls how color values in the fragment being processed (the source) are combined with
those already stored in the framebuffer (the destination). The argument sfactor indicates how
to compute a source blending factor; dfactor indicates how to compute a destination blending
factor. The possible values for these arguments are explained in Table 6-1. The blend factors
are assumed to liein therange [0,1] ; after the color values in the source and destination are
combined, they're clamped to therange [0,1].

Note: In Table 6-1 the RGBA values of the source and destination are indicated with the sul
s and d, respectively. Subtraction of quadruplets means subtracting them componentwise.
Relevant Factor column indicates whether the corresponding constant can be used to spec
source or destination blend factor.

Table6-1: Source and Destination Blending Factors

Constant Relevant Factor Computed Blend Factor

GL_ZERO source or destination (0, 0, 0, 0)

GL_ONE source or destination (1, 1, 1, 1)
GL_DST_COLOR source (Rd, Gd, Bd, Ad)
GL_SRC_COLOR destination (Rs, Gs, Bs, As)
GL_ONE_MINUS_DST_COLOR| source (1,1, 1, 1)-(Rd, Gd, Bd, Ad
GL_ONE_MINUS_SRC_COLOR| destination (1,1, 1, 1)-(Rs, Gs, Bs, As)
GL_SRC_ALPHA source or destinatiof (As, As, As, As)

GL_ONE_MINUS_SRC_ALPHA| source or destination (1, 1, 1, 1)-(As, As, As, As)

GL_DST_ALPHA source or destination (Ad, Ad, Ad, Ad)

GL_ONE_MINUS_DST_ALPHA| source or destinatiof (1, 1, 1, 1)-(Ad, Ad, Ad, Ad)

GL_SRC_ALPHA SATURATE | source (f, f, f, 1); f=min(As, 1-Ad)

Sample Uses of Blending

Not all combinations of source and destination factors make sense. Most applications use ¢
number of combinations. The following paragraphs describe typical uses for particular
combinations of source and destination factors. Some of these examples use only the incol
alpha value, so they work even when alpha values aren’t stored in the framebuffer. Also no
often there’s more than one way to achieve some of these effects.

® One way to draw a picture composed half of one image and half of another, equally bl
is to set the source factor to GL_ONE and the destination factor to GL_ZERO, and dr:
first image. Then set the source factor to GL_SRC_ALPHA and destination factor to
GL_ONE_MINUS_SRC_ALPHA, and draw the second image with alpha equal to 0.5.
pair of factors probably represents the most commonly used blending operation. If the
is supposed to be blended with 0.75 of the first image and 0.25 of the second, draw tr
image as before, and draw the second with an alpha of 0.25.

® To blend three different images equally, set the destination factor to GL_ONE and the
factor to GL_SRC_ALPHA. Draw each of the images with an alpha equal to 0.333333
this technique, each image is only one-third of its original brightness, which is noticeal
where the images don’t overlap.

® Suppose you're writing a paint program, and you want to have a brush that gradually

color so that each brush stroke blends in a little more color with whatever is currently |
image (say 10 percent color with 90 percent image on each pass). To do this, draw th
of the brush with alpha of 10 percent and use GL_SRC_ALPHA (source) and
GL_ONE_MINUS_SRC_ALPHA (destination). Note that you can vary the alphas acro
brush to make the brush add more of its color in the middle and less on the edges, for
antialiased brush shape. (Sé@atialiasing.”) Similarly, erasers can be implemented by
setting the eraser color to the background color.

The blending functions that use the source or destination colors - GL_DST_COLOR o
GL_ONE_MINUS_DST_COLOR for the source factor and GL_SRC_COLOR or
GL_ONE_MINUS_SRC_COLOR for the destination factor - effectively allow you to
modulate each color component individually. This operation is equivalent to applying ¢
simple filter - for example, multiplying the red component by 80 percent, the green
component by 40 percent, and the blue component by 72 percent would simulate viev
scene through a photographic filter that blocks 20 percent of red light, 60 percent of gi
and 28 percent of blue.

Suppose you want to draw a picture composed of three translucent surfaces, some ot
others, and all over a solid background. Assume the farthest surface transmits 80 per:
the color behind it, the next transmits 40 percent, and the closest transmits 90 percen
compose this picture, draw the background first with the default source and destinatio
factors, and then change the blending factors to GL_SRC_ALPHA (source) and
GL_ONE_MINUS_SRC_ALPHA (destination). Next, draw the farthest surface with an
of 0.2, then the middle surface with an alpha of 0.6, and finally the closest surface witl
alpha of 0.1.

If your system has alpha planes, you can render objects one at a time (including their
values), read them back, and then perform interesting matting or compositing operatic
the fully rendered objects. (See "Compositing 3D Rendered Images" by Tom Duff,
SIGGRAPH 1985 Proceedings, p. 41-44, for examples of this technique.) Note that ok
used for picture composition can come from any source - they can be rendered using
commands, rendered using techniques such as ray-tracing or radiosity that are impler
another graphics library, or obtained by scanning in existing images.

You can create the effect of a nonrectangular raster image by assigning different alph
to individual fragments in the image. In most cases, you would assign an alpha of 0 to
"invisible" fragment and an alpha of 1.0 to each opaque fragment. For example, you c
a polygon in the shape of a tree and apply a texture map of foliage; the viewer can se
parts of the rectangular texture that aren’t part of the tree if you've assigned them alpt
values of 0. This method, sometimes cabidtboarding, is much faster than creating the ti
out of three-dimensional polygons. An example of this technique is shdwgure 6-1 The
tree is a single rectangular polygon that can be rotated about the center of the trunk, ¢
by the outlines, so that it's always facing the viewer. (Se&ture Functions" in Chapter 9
for more information about blending textures.)

Figure 6-1: Creating a Nonrectangular Raster Image

® Blending is also used for antialiasing, which is a rendering technigue to reduce the jac
appearance of primitives drawn on a raster screen."f8¢ialiasing” for more information.

A Blending Example

Example 6-1draws two overlapping colored triangles, each with an alpha of 0.75. Blending i
enabled and the source and destination blending factors are set to GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA, respectively.

When the program starts up, a yellow triangle is drawn on the left and then a cyan triangle
on the right so that in the center of the window, where the triangles overlap, cyan is blende:
the original yellow. You can change which triangle is drawn first by typing ‘t’ in the window.

Example 6-1 : Blending Example: alpha.c

#i ncl ude <G/ gl . h>

#i ncl ude <@/ gl u. h>
#i nclude <G/ glut. h>
#i ncl ude <stdlib. h>

static int leftFirst = GL_TRUE

/* Initialize al pha bl ending function. */
static void init(void)

{
gl Enabl e (G._BLEND);
gl Bl endFunc (G._SRC ALPHA, GL_ONE_M NUS_SRC ALPHA);
gl ShadeMbdel (G._FLAT);
gl CearColor (0.0, 0.0, 0.0, 0.0);
}

static void drawLeft Tri angl e(voi d)

/* draw yellow triangle on LHS of screen */
gl Begi n (GL_TRI ANGLES)
gl Color4f(1.0, 1.0, 0.0, 0.75);
gl Vertex3f (0.1, 0.9, 0.0);
gl Vertex3f (0.1, 0.1, 0.0);
gl Vertex3f (0.7, 0.5, 0.0);
gl End() ;

static void drawRi ght Tri angl e(voi d)

/* draw cyan triangle on RHS of screen */
gl Begi n (GL_TRI ANGLES)
gl Color4f (0.0, 1.0, 1.0, 0.75);
gl Vertex3f (0.9, 0.9, 0.0);
gl Vertex3f (0.3, 0.5, 0.0);
gl Vertex3f (0.9, 0.1, 0.0);
gl End() ;

voi d di spl ay(voi d)
gl A ear (G._COLOR BUFFER BI T);

if (leftFirst) {
drawLeft Tri angl e();
drawRi ght Tri angl e() ;

el se {
drawRi ght Tri angl e();
drawLeft Tri angl e();

}
gl Flush();

void reshape(int w, int h)

gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROQJECTI ON) ;
gl Loadl dentity();
if (w<=h)
gluOrtho2D (0.0, 1.0, 0.0, 1.0*(G.float)h/(G.float)w);
el se
gluOrtho2D (0.0, 1.0*(G.float)w (Gfloat)h, 0.0, 1.0);

}

voi d keyboard(unsi gned char key, int x, int vy)

switch (key) {

case ‘t’:

case ‘T’
leftFirst = lleftFirst;
gl ut Post Redi spl ay() ;
br eak;

case 27: [|* Escape key */
exit(0);
br eak;

defaul t:
br eak;

}
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlinitD splayMode (GLUT_SINGLE | GLUT_RGB)
gl ut I nit WndowSi ze (200, 200);

gl ut Cr eat eW ndow (argv[0]);

init();

gl ut ReshapeFunc (reshape);

gl ut Keyboar dFunc (keyboard);

gl ut Di spl ayFunc (di spl ay);

gl ut Mai nLoop() ;

return O;

}

The order in which the triangles are drawn affects the color of the overlapping region. Whei
triangle is drawn first, cyan fragments (the source) are blended with yellow fragments, whic
already in the framebuffer (the destination). When the right triangle is drawn first, yellow is

blended with cyan. Because the alpha values are all 0.75, the actual blending factors becol
for the source and 1.0 - 0.75 = 0.25 for the destination. In other words, the source fragment
somewhat translucent, but they have more effect on the final color than the destination frag

Three-Dimensional Blending with the Depth Buffer

As you saw in the previous example, the order in which polygons are drawn greatly affects
blended result. When drawing three-dimensional translucent objects, you can get different
appearances depending on whether you draw the polygons from back to front or from front
You also need to consider the effect of the depth buffer when determining the correct order
"A Hidden-Surface Removal Survival Kit" in Chaptefds an introduction to the depth buffer.
Also seé'Depth Test" in Chapter for more information.) The depth buffer keeps track of the
distance between the viewpoint and the portion of the object occupying a given pixel in a w
on the screen; when another candidate color arrives for that pixel, it's drawn only if its objec
closer to the viewpoint, in which case its depth value is stored in the depth buffer. With this
method, obscured (or hidden) portions of surfaces aren’t necessarily drawn and therefore ¢
used for blending.

If you want to render both opaque and translucent objects in the same scene, then you wat
the depth buffer to perform hidden-surface removal for any objects that lie behind the opaq
objects. If an opaque object hides either a translucent object or another opaque object, you
depth buffer to eliminate the more distant object. If the translucent object is closer, howeve
want to blend it with the opaque object. You can generally figure out the correct order to dr:
polygons if everything in the scene is stationary, but the problem can quickly become too h
either the viewpoint or the object is moving.

The solution is to enable depth buffering but make the depth buffer read-only while drawing
translucent objects. First you draw all the opaque objects, with the depth buffer in normal o
Then you preserve these depth values by making the depth buffer read-only. When the trar
objects are drawn, their depth values are still compared to the values established by the op
objects, so they aren’t drawn if they’re behind the opaque ones. If they're closer to the view
however, they don’t eliminate the opaque objects, since the depth-buffer values can’t chang
Instead, they’re blended with the opaque objects. To control whether the depth buffer is wri
useglDepthM ask(); if you pass GL_FALSE as the argument, the buffer becomes read-only,
whereas GL_TRUE restores the normal, writable operation.

Example 6-2demonstrates how to use this method to draw opaque and translucent
three-dimensional objects. In the program, typing ‘a’ triggers an animation sequence in whi
translucent cube moves through an opaque sphere. Pressing the ‘r’ key resets the objects |
scene to their initial positions. To get the best results when transparent objects overlap, dre
objects from back to front.

Example 6-2 : Three-Dimensional Blending: alpha3D.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ glut. h>

#defi ne MAXZ 8.0

#define MNZ -8.0

#define ZINC 0.4

static float solidZ = MAXZ

static float transparentZ = M Nz,
static GLuint spherelist, cubelist;

static void init(void)

{
G.float mat_specular[] = { 1.0, 1.0, 1.0, 0.15 };
G.float mat_shininess[] = { 100.0 };
G.float position[] ={ 0.5, 0.5, 1.0, 0.0 };

gl Material fv(G._FRONT, G._SPECULAR, mat_specul ar);
gl Material fv(G._FRONT, G__SHI NI NESS, mat_shi ni ness);
gl Lightfv(G _LIGHTO, G._POSI TI ON, position);

gl Enabl e(GL_LI GHTI NG) ;
gl Enabl e(GL_LI GHTO) ;
gl Enabl e(G._DEPTH_TEST) ;

sphereLi st = gl GenLists(1);

gl NewLi st (sphereLi st, G._COWI LE)
gl ut Sol i dSphere (0.4, 16, 16);

gl EndLi st ();

cubeLi st = gl GenLi sts(1);

gl NewLi st (cubelLi st, G._COWPI LE)
gl ut Sol i dCube (0. 6);

gl EndLi st ();

voi d di spl ay(voi d)

G.float mat_solid[] ={ 0.75, 0.75, 0.0, 1.0 };
G.float mat_zero[] ={ 0.0, 0.0, 0.0, 1.0 };

G.float mat_transparent[] = { 0.0, 0.8, 0.8, 0.6 };
G.float mat_enmission[] = { 0.0, 0.3, 0.3, 0.6 };

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

gl Pushiatrix ();
gl Transl atef (-0.15, -0.15, solid2);
gl Material fv(G._FRONT, G._EM SSI ON, nat_zero);
gl Material fv(G._FRONT, G._DI FFUSE, mat_solid);
gl Cal | Li st (spherelList);

gl PopMatrix ();

gl Pushiatrix ();
gl Transl atef (0.15, 0.15, transparentZ);
gl Rotatef (15.0, 1.0, 1.0, 0.0);
gl Rotatef (30.0, 0.0, 1.0, 0.0);
gl Material fv(G._FRONT, G_._EM SSI ON, mat _eni ssion);
gl Material fv(GL_FRONT, GL_DI FFUSE, mat transparent)
gl Enabl e (GL_BLEND);
gl Dept hivask (GL_FALSE) ;
gl Bl endFunc (GL_SRC ALPHA, G._ONE);
gl Cal | Li st (cubelList);
gl Dept hMask (G._TRUE);
gl Di sabl e (G._BLEND);
gl PopMatrix ();

gl ut SwapBuffers();

}
void reshape(int w, int h)
{
gl Viewport (0, 0, (Gint) w, (Gint) h);
gl Mat ri xMode(GL_PROQJECTI ON) ;
gl Loadl dentity();
if (w<=h)
glOtho (-1.5, 1.5, -1.5*(CG.float)h/(G.float)w,
1.5*(G.float)h/ (G float)w, -10.0, 10.0);
el se
glOtho (-1.5*(G.fl oat)w (G.float)h,
1.5*(G.float)w (Gfloat)h, -1.5, 1.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
voi d ani mat e(voi d)
{
if (solidZz <= MNZ || transparentZ >= NAXZ)
gl ut I dl eFunc(NULL) ;
el se {
solidzZ -= ZI NG
transparentZ += ZI NG,
gl ut Post Redi spl ay() ;
}
}
voi d keyboard(unsi gned char key, int x, int y)
{
switch (key) {
case ‘a’:
case ‘A

sol i dZ = MAXZ,
transparentZ = M Nz,
gl utl dl eFunc(ani mat e) ;
br eak;

case ‘r’:

case ‘R :
sol i dZ = MAXZ;
transparentZ = M NzZ;
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);

}
int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze(500, 500);

gl ut Creat eW ndow(argv[0]);

init();

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Di spl ayFunc(di spl ay);

gl ut Mai nLoop() ;

return O,

Antialiasing

You might have noticed in some of your OpenGL pictures that lines, especially nearly horiz
nearly vertical ones, appear jagged. These jaggies appear because the ideal line is approx
a series of pixels that must lie on the pixel grid. The jaggedness is called aliasing, and this
describes antialiasing techniques to redudégure 6-2shows two intersecting lines, both alias
and antialiased. The pictures have been magnified to show the effect.

Allased Antialiased

Figure6-2: Aliased and Antialiased Lines

Figure 6-3shows how a diagonal line 1 pixel wide covers more of some pixel squares than «
In fact, when performing antialiasing, OpenGL calculatesvarage value for each fragment bas
on the fraction of the pixel square on the screen that it would cover. The figure shows these
coverage values for the line. In RGBA mode, OpenGL multiplies the fragment’s alpha value
coverage. You can then use the resulting alpha value to blend the fragment with the corres
pixel already in the framebuffer. In color-index mode, OpenGL sets the least significant 4 bi
the color index based on the fragment’s coverage (0000 for no coverage and 1111 for com
coverage). It's up to you to load your color map and apply it appropriately to take advantag:
coverage information.

40510
40510
878489
434259
A07e39
41435
759952
759952
41435
A07e39
434259
.878489
40510
40510

'I'I
0
I
EErAe—Thmmoom =

Figure 6-3 : Determining Coverage Values

The details of calculating coverage values are complex, difficult to specify in general, and it
may vary slightly depending on your particular implementation of OpenGL. You can use the
glHint() command to exercise some control over the trade-off between image quality and s
but not all implementations will take the hint.

void glHint(GLenum target, GLenum hint);
Controls certain aspects of OpenGL behavior. The target parameter indicates which behavior
isto be controlled; its possible values are shown in Table 6-2. The hint parameter can be
GL_FASTEST to indicate that the most efficient option should be chosen, GL_NICEST to
indicate the highest-quality option, or GL_DONT_CARE to indicate no preference. The
interpretation of hints is implementation-dependent; an implementation can ignore them
entirely. (For more information about the relevant topics, see "Antialiasing” for the details on
sampling and "Fog" for details on fog.)
The GL_PERSPECTIVE_CORRECTION_HINT target parameter refersto how color values
and texture coordinates are interpolated across a primitive: either linearly in screen space (a
relatively ssimple calculation) or in a perspective-correct manner (which requires more
computation). Often, systems perform linear color interpolation because the results, while not
technically correct, are visually acceptable; however, in most cases textures require
per spective-correct interpolation to be visually acceptable. Thus, an implementation can
choose to use this parameter to control the method used for interpolation. (See Chapter 3 for
a discussion of perspective projection, Chapter 4 for a discussion of color, and Chapter 9 for
a discussion of texture mapping.)

Table 6-2 : Values for Use with glHint()

Parameter Meaning

GL_POINT_SMOOTH_HINT, Specify the desired sampling
GL_LINE_SMOOTH_HINT, guality of points, lines, or polygons
GL_POLYGON_SMOOTH_HINT during antialiasing operations
GL_FOG_HINT Specifies whether fog calculations

are done per pixel (GL_NICEST)
or per vertex (GL_FASTEST)

GL_PERSPECTIVE_CORRECTION_HINT Specifies the desired quality of
color and texture-coordinate
interpolation

Antialiasing Pointsor Lines

To antialias points or lines, you need to turn on antialiasingghMhable(), passing in

GL_POINT_SMOOTH or GL_LINE_SMOOQOTH, as appropriate. You might also want to prov
quality hint withglHint(). (Remember that you can set the size of a point or the width of a lin
You can also stipple a line. Sdane Details" in Chapter .2 Next follow the procedures describt
in one of the following sections, depending on whether you're in RGBA or color-index mode

Antialiasingin RGBA Mode

In RGBA mode, you need to enable blending. The blending factors you most likely want to
GL_SRC_ALPHA (source) and GL_ONE_MINUS_SRC_ALPHA (destination). Alternatively
can use GL_ONE for the destination factor to make lines a little brighter where they interse
you're ready to draw whatever points or lines you want antialiased. The antialiased effect is
noticeable if you use a fairly high alpha value. Remember that since you're performing blen
you might need to consider the rendering order as descrili&triee-Dimensional Blending witk
the Depth Buffer.'"However, in most cases, the ordering can be ignored without significant a
effects.Example 6-3nitializes the necessary modes for antialiasing and then draws two
intersecting diagonal lines. When you run this program, press the ‘r’ key to rotate the lines ¢
you can see the effect of antialiasing on lines of different slopes. Note that the depth buffer
enabled in this example.

Example 6-3 : Antialiased lines: aargb.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>
#i nclude <@/ glut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

static float rotAngle = 0.

/* Initialize antialiasing for RGBA node, including al pha
bl ending, hint, and line width. Print out inplenmentation
specific info on line width granularity and w dth.
*/

voi d init(void)

G.fl oat val ues[2];

gl Get Fl oatv (GL_LI NE_W DTH_GRANULARI TY, val ues);

printf ("GL_LINE_WDTH GRANULARITY value is 98.1f\n",
val ues[0]);

gl Get Fl oatv (G._LI NE_ W DTH _RANGE, val ues);

printf ("G._LINE_WDTH RANGE val ues are 938. 1f 93. 1f\n",
val ues[0], values[1]);

gl Enabl e (G._LI NE_SMOOTH) ;

gl Enabl e (GL_BLEND);

gl Bl endFunc (GL_SRC ALPHA, GL_ONE_M NUS_SRC ALPHA);
gl Hint (G__LI NE_SMOOTH_HI NT, GL_DONT_CARE);

gl LineWdth (1.5);

gl CearColor(0.0, 0.0, 0.0, 0.0);

/* Draw 2 diagonal lines to forman X */
voi d di spl ay(voi d)

gl d ear (GL_COLOR BUFFER BI T);

gl Color3f (0.0, 1.0, 0.0);
gl PushiMatri x();
gl Rotatef(-rotAngle, 0.0, 0.0, 0.1);
gl Begin (GL_LI NES);
gl Vertex2f (-0.5, 0.5);
gl Vertex2f (0.5, -0.5);
gl End ();
gl PopMat ri x();

gl Col or3f (0.0, 0.0, 1.0);
gl PushMatri x();
gl Rotatef(rotAngle, 0.0, 0.0, 0.1);
gl Begin (G__LINES);
gl Vertex2f (0.5, 0.5);
gl Vertex2f (-0.5, -0.5);
gl End ();
gl PopMat ri x();

gl Fl ush();
void reshape(int w, int h)

gl Viewport (0, 0, (Gint) w, (CGLint) h);
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
if (w<=h)
gluOrtho2D (-1.0, 1.0,
-1.0*(CG.float)h/ (G float)w, 1.0*(G.float)h/ (G float)w);
el se
gluOrtho2D (-1.0*(G.fl oat)w (G.float)h,
1.0*(G.float)w (G.float)h, -1.0, 1.0);
gl Mat ri xMode(GL_MCODELVI EW ;
gl Loadl dentity();

voi d keyboard(unsi gned char key, int x, int vy)

switch (key) {
case ‘r’:
case ‘R:
rot Angle += 20.;

if (rotAngle >= 360.) rotAngle = 0.
gl ut Post Redi spl ay() ;
br eak;
case 27: [|* Escape Key */
exit(0);
br eak;
defaul t:
br eak;

}

int main(int argc, char** argv)

{
glutinit(&rgc, argv);
glutlinitD splayMbde (GLUT_SINGLE | GLUT_RGB)
gl ut | ni t WndowSi ze (200, 200);
gl ut Cr eat eW ndow (argv[0]);
init();
gl ut ReshapeFunc (reshape);
gl ut Keyboar dFunc (keyboard);
gl ut Di spl ayFunc (di spl ay);
gl ut Mai nLoop() ;
return O;

}

Antialiasing in Color-Index M ode

The tricky part about antialiasing in color-index mode is loading and using the color map. S
last 4 bits of the color index indicate the coverage value, you need to load sixteen contiguo
indices with a color ramp from the background color to the object’s color. (The ramp has to
with an index value that’'s a multiple of 16.) Then you clear the color buffer to the first of the
sixteen colors in the ramp and draw your points or lines using colors in thetraampple 6-4

demonstrates how to construct the color ramp to draw antialiased lines in color-index mode
example, two color ramps are created: one contains shades of green and the other shades

Example 6-4 : Antialiasing in Color-Index Mode: aaindex.c

#i nclude <@/ gl . h>

#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i nclude <stdlib. h>

#def i ne RAMPSI ZE 16
#def i ne RAMP1START 32
#def i ne RAMP2START 48

static float rotAngle = 0.;
/* Initialize antialiasing for color-index node,

* including |loading a green color ranp starting

* at RAMP1START, and a blue color ranp starting

* at RAMP2START. The ranps nust be a nultiple of 16.
*/

void init(void)

int i;

for (i = 0; i < RAWPSIZE; i++) {
GLfl oat shade;
shade = (G.float) i/(G.float) RAMPSIZE;
gl ut Set Col or (RAMP1LSTART+(G&.int)i, 0., shade, 0.);
gl ut Set Col or (RAMP2START+(&int)i, 0., 0., shade);

}

gl Enabl e (G._LI NE_SMOOTH) ;

gl Hnt (GL_LINE_SMOOTH HI NT, G._DONT_CARE):
gl Linewdth (1.5);

gl G earlndex ((G.float) RAMPLSTART);

}
/* Draw 2 diagonal lines to forman X */
voi d di spl ay(voi d)
{
gl d ear (GL_COLOR BUFFER BI T);
gl I ndexi (RAMP1START) ;
gl PushiMatri x();
gl Rotatef(-rotAngle, 0.0, 0.0, 0.1);
gl Begi n (G_LI NES)
gl Vertex2f (-0.5, 0.5);
gl Vertex2f (0.5, -0.5);
gl End ();
gl PopMat ri x();
gl I ndexi (RAMP2START) ;
gl PushMatri x();
gl Rotatef(rotAngle, 0.0, 0.0, 0.1);
gl Begi n (G_LI NES)
gl Vertex2f (0.5, 0.5);
gl Vertex2f (-0.5, -0.5);
gl End ();
gl PopMat ri x();
gl Fl ush();
}
void reshape(int w, int h)
{
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
if (w<=h)
gluOrtho2D (-1.0, 1.0,
-1.0*(CG.float)h/ (G.float)w, 1.0*(CG.float)h/(G.float)w);
el se
gluOrtho2D (-1.0*(G.fl oat)w (G.float)h,
1.0*(G.float)w (Gfloat)h, -1.0, 1.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
voi d keyboard(unsi gned char key, int x, int vy)
{
switch (key) {
case ‘r’:
case ‘R:

rot Angl e += 20.
if (rotAngle >= 360.) rotAngle = 0.
gl ut Post Redi spl ay() ;
br eak;
case 27: [|* Escape Key */
exit(0);
br eak;
defaul t:
br eak;

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutlnitD splayMdde (GLUT_SINGLE | GLUT_I NDEX)
gl utl ni t WndowSi ze (200, 200);

gl ut Creat eW ndow (argv[0]);

init();

gl ut ReshapeFunc (reshape);

gl ut Keyboar dFunc (keyboard);

gl ut Di spl ayFunc (displ ay);

gl ut Mai nLoop() ;

return O;

}

Since the color ramp goes from the background color to the object’s color, the antialiased li
correct only in the areas where they are drawn on top of the background. When the blue lin
drawn, it erases part of the green line at the point where the lines intersect. To fix this, you
need to redraw the area where the lines intersect using a ramp that goes from green (the ¢
line in the framebuffer) to blue (the color of the line being drawn). However, this requires
additional calculations and it is usually not worth the effort since the intersection area is sm
that this is not a problem in RGBA mode, since the colors of object being drawn are blende
the color already in the framebuffer.

You may also want to enable the depth test when drawing antialiased points and lines in
color-index mode. In this example, the depth test is disabled since both of the lines lie in th
z-plane. However, if you want to draw a three-dimensional scene, you should enable the de
buffer so that the resulting pixel colors correspond to the "nearest" objects.

The trick described ifiThree-Dimensional Blending with the Depth Buffegn also be used to
mix antialiased points and lines with aliased, depth-buffered polygons. To do this, draw the
polygons first, then make the depth buffer read-only and draw the points and lines. The poi
lines intersect nicely with each other but will be obscured by nearer polygons.

Try This

Take a previous program, such as the robot arm or solar system examples destxeu ptes
of Composing Several Transformations” in Chaptearél draw wireframe objects with
antialiasing. Try it in either RGBA or color-index mode. Also try different line widths or point
to see their effects.

Antialiasing Polygons

Antialiasing the edges of filled polygons is similar to antialiasing points and lines. When diff
polygons have overlapping edges, you need to blend the color values appropriately. You c:
use the method described in this section, or you can use the accumulation buffer to perforn
antialiasing for your entire scene. Using the accumulation buffer, which is describedpter 10
is easier from your point of view, but it's much more computation-intensive and therefore sl
However, as you'll see, the method described here is rather cumbersome.

Note: If you draw your polygons as points at the vertices or as outlines - that is, by passing
GL_POINT or GL_LINE toglPolygonM ode&() - point or line antialiasing is applied, if enabled ¢
described earlier. The rest of this section addresses polygon antialiasing when you’re using
GL_FILL as the polygon mode.

In theory, you can antialias polygons in either RGBA or color-index mode. However, object
intersections affect polygon antialiasing more than they affect point or line antialiasing, so

rendering order and blending accuracy become more critical. In fact, they’re so critical that
you’'re antialiasing more than one polygon, you need to order the polygons from front to bac
then usalBlendFunc() with GL_SRC_ALPHA_SATURATE for the source factor and GL_Or"
for the destination factor. Thus, antialiasing polygons in color-index mode normally isn’t pra

To antialias polygons in RGBA mode, you use the alpha value to represent coverage value
polygon edges. You need to enable polygon antialiasing by passing GL_POLYGON_SMO(
glEnable(). This causes pixels on the edges of the polygon to be assigned fractional alpha
based on their coverage, as though they were lines being antialiased. Also, if you desire, y«
supply a value for GL_POLYGON_SMOOTH_HINT.

Now you need to blend overlapping edges appropriately. First, turn off the depth buffer so t
have control over how overlapping pixels are drawn. Then set the blending factors to
GL_SRC_ALPHA SATURATE (source) and GL_ONE (destination). With this specialized
blending function, the final color is the sum of the destination color and the scaled source ¢
scale factor is the smaller of either the incoming source alpha value or one minus the destil
alpha value. This means that for a pixel with a large alpha value, successive incoming pixe
little effect on the final color because one minus the destination alpha is almost zero. With t
method, a pixel on the edge of a polygon might be blended eventually with the colors from
polygon that's drawn later. Finally, you need to sort all the polygons in your scene so that t
ordered from front to back before drawing them.

Example 6-5hows how to antialias filled polygons; clicking the left mouse button toggles th
antialiasing on and off. Note that backward-facing polygons are culled and that the alpha v
the color buffer are cleared to zero before any drawing. Pressing the ‘t’ key toggles the anti
on and off.

Note: Your color buffer must store alpha values for this technique to work correctly. Make s
request GLUT_ALPHA and receive a legitimate window.

Example 6-5 : Antialiasing Filled Polygons: aapoly.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <@/ glut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>

GLbool ean pol ySnooth = GL_TRUE
static void init(void)
{
gl Cul | Face (G._BACK);
gl Enabl e (G._CULL_FACE)
gl Bl endFunc (GL_SRC _ALPHA SATURATE, G._ONE)
gl earColor (0.0, 0.0, 0.0, 0.0);

}

#def i ne NFACE 6

#def i ne NVERT 8

voi d dr awCube(GLdoubl e x0, G.doubl e x1, G.double yO,
GLdoubl e y1, G.double z0, G.double z1)

{

static G.float v[8][3];

/* indices of front,

static G.ubyte

{4, 5, 6, 7},

{0, 1, 5, 4},
b
v[0][0] = v[3][
v[1][0] = v[2]]
v[O0][1] = v[1]]
v[2][1] = v[3]]
v[o][2] = v[1]]
v[4][2] = v[5]]

#i f def GL_VERSI ON_
gl Enabl e ientState

c[8][4] = {
.0, 1.0}, {1.0, 0.0, 0.0, 1.0},
.0, 1.0}, {1.0, 1.0, 0.0, 1.0},
.0, 1.0}, {1.0, 0.0, 1.0, 1.0},
.0, 1.0}, {1.0, 1.0, 1.0, 1.0}
top, left, bottom right,
i ndi ces| NFACE][4] = {
{2, 3, 7, 6}, {0, 4, 7, 3},
{1, 5, 6, 2}, {0, 3, 2, 1}
0] = v[4][0] = v[7][0] = XO;
0] = v[5][0] = v[6][0] = x1;
1] = v[4][1] = v[5][1] = yO;
1] = v[6][1] = v[7][1] = yl;
2] =v[2][2] = v[3][2] = z0;
2] =v[6][2] =v[7][2] = z1;

1.1
(GL_VERTEX_ARRAY) ;

gl EnabledientState (G._COLOR _ARRAY);

gl Vert exPoi nt er
gl Col or Poi nt er

gl DrawEl ement s(GL_QUADS, NFACE*4, GL_UNSI GNED_BYTE,

gl Di sabl ed i ent
gl Di sabl ed i ent
#el se
printf ("If thi
printf ("vertex
exit(1);
#endi f

}

/* Note:
* for
*/

voi d di spl ay(voi d)

{

pol ygon
proper ble

i f (polySnoot h)

(3, GL_FLOAT, 0, v);
(4, GL_FLOAT, 0, c);

State (G._VERTEX _ARRAY):
State (GL_COLOR ARRAY):

s is G Version 1.0, ");
arrays are not supported.\n");

S must
ndi ng.

{

be drawn fromfront to back

back faces */

i ndi ces);

}

gl dear (G_COLOR BUFFER BIT);
gl Enabl e (G._BLEND);

gl Enabl e (G._POLYGON SMOOTH) ;
gl Di sabl e (G._DEPTH _TEST);

el se {

}

gl dear (GL_COLOR BUFFER BIT
gl Di sabl e (G._BLEND);

gl Di sabl e (GL_POLYGON_SMOOTH) ;
gl Enabl e (G._DEPTH TEST);

gl Pushiatrix ();

gl Transl atef (
gl Rot at ef (30.
gl Rot at ef (60.
dr awCube(- 0.

oo

gl PopMatrix ();

gl Flush ();

voi d reshape(int w,

gl Vi ewport (0, O,

int h)

(Gsizei) w, (&

GL_DEPTH_BUFFER BI T)

0.5);

sizei) h);

gl Mat ri xMode(GL_PROQJECTI ON) ;

gl Loadl dentity();

gl uPerspective(30.0, (Gfloat) w (Gfloat) h, 1.0, 20.0);
gl Mat ri xMode(GL_MCODELVI EW ;

gl Loadl dentity();

voi d keyboard(unsi gned char key, int x, int y)

switch (key) {

case ‘t’:

case ‘T':
pol ySnoot h = ! pol ySnoot h;
gl ut Post Redi spl ay() ;
br eak;

case 27:
exit(0); [/* Escape key */
br eak;

def aul t:
br eak;

}
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB
| GLUT_ALPHA | GLUT_DEPTH);

gl utlnit WndowSi ze(200, 200);

gl ut Creat eW ndow(argv[0]);

init ();

gl ut ReshapeFunc (reshape);

gl ut Keyboar dFunc (keyboard);

gl ut Di spl ayFunc (di spl ay);

gl ut Mai nLoop() ;

return O;

Fog

Computer images sometimes seem unrealistically sharp and well defined. Antialiasing mak
object appear more realistic by smoothing its edges. Additionally, you can make an entire il
appear more natural by adding fog, which makes objects fade into the distagisea general
term that describes similar forms of atmospheric effects; it can be used to simulate haze,
smoke, or pollution. (See Plate 9.) Fog is essential in visual-simulation applications, where
visibility needs to be approximated. It's often incorporated into flight-simulator displays.

When fog is enabled, objects that are farther from the viewpoint begin to fade into the fog c
You can control the density of the fog, which determines the rate at which objects fade as t
distance increases, as well as the fog’s color. Fog is available in both RGBA and color-inde
modes, although the calculations are slightly different in the two modes. Since fog is applie
matrix transformations, lighting, and texturing are performed, it affects transformed, lit, and
textured objects. Note that with large simulation programs, fog can improve performance, s
can choose not to draw objects that would be too fogged to be visible.

All types of geometric primitives can be fogged, including points and lines. Using the fog efi
points and lines is also called depth-cuing (as shown in Plate 2) and is popular in moleculai
modeling and other applications.

Using Fog

Using fog is easy. You enable it by passing GL_FO@Emable(), and you choose the color an
the equation that controls the density wgtRog* (). If you want, you can supply a value for
GL_FOG_HINT withglHint(), as described ohable 6-2 Example 6-&draws five red spheres,
each at a different distance from the viewpoint. Pressing the ‘f’ key selects among the three
different fog equations, which are described in the next section.

Example 6-6 : Five Fogged Spheres in RGBA Mode: fog.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <mat h. h>

#i nclude <@/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

static Gint foghMde;

static void init(void)

{
G.float position[] ={ 0.5, 0.5, 3.0, 0.0 };
gl Enabl e(GL_DEPTH_TEST) ;
gl Lightfv(G _LIGHTO, G._POSI TI ON, position);
gl Enabl e(G_LI GHTI NG ;
gl Enabl e(G_LI GHTO) ;
{
G.float mat[3] = {0.1745, 0.01175, 0.01175};
gl Material fv (G._FRONT, G._AMBI ENT, mat);
mat[0] = 0.61424; mat[1] = 0.04136; mat[2] = 0.04136;
gl Material fv (GL_FRONT, G._DI FFUSE, nmat);
mat [0] = 0.727811; mat[1] = 0.626959; mat[2] = 0.626959;
gl Material fv (G._FRONT, G._SPECULAR, mat);
gl Material f (GL_FRONT, G._SHI NI NESS, 0.6*128.0);
}
gl Enabl e(GL_FOG) ;
{
G.float fogColor[4] = {0.5, 0.5, 0.5, 1.0};
fogbde = GL_EXP;
gl Fogi (G._FOG MODE, fogMode);
gl Fogfv (GL_FOG COLCR, fogColor);
gl Fogf (G._FOG DENSITY, 0.35);
glH nt (GL_FOG H NT, G._DONT_CARE)
gl Fogf (G._FOG START, 1.0);
gl Fogf (G._FOG END, 5.0);
}
glClearColor(0.5 0.5, 0.5 1.0); [/* fog color */
}
static void renderSphere (G.float x, G.float y, G.float 2z)
{

gl PushMatri x();

gl Transl atef (x, y, z);

gl ut Sol i dSphere(0. 4, 16, 16);
gl PopMat ri x();

/* display() draws 5 spheres at different z positions.
*/
voi d di spl ay(voi d)
{
gl O ear (G_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

render Sphere (-2., -0.5, -1.0);
render Sphere (-1., -0.5, -2.0);

render Sphere (0., -0.5, -3.0);
render Sphere (1., -0.5, -4.0);
render Sphere (2., -0.5, -5.0);
gl Flush();
}
void reshape(int w, int h)
{
gl Viewport (0, O, (G.sizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROQJECTI ON) ;
gl Loadl dentity();
if (w<=h)
glOtho (-2.5, 2.5, -2.5*(G.float)h/(G.float)w,
2.5*(CG.float)h/ (G float)w, -10.0, 10.0);
el se
glOtho (-2.5*(G.fl oat)w (G.float)h,
2.5*(G.float)w (Gfloat)h, -2.5, 2.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity ();
}

voi d keyboard(unsi gned char key, int x, int vy)

switch (key) {
case ‘f’:
case ‘F':
if (foghbde == G_EXP) {
foghbde = GL_EXP2;
printf ("Fog nmode is GL_EXP2\n");

}

else if (fogbde == G._EXP2) {
fogbde = G._LI NEAR;
printf ("Fog nmode is G._LINEARn");

else if (fogvbde == G_LI NEAR) {
fogbde = GL_EXP;
printf ("Fog node is G._EXP\n");

}
gl Fogi (G._FOG MODE, foghMode);
gl ut Post Redi spl ay() ;
br eak;

case 27:
exit(0);
br eak;

defaul t:
br eak;

}
}

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutlinitbD splayMode (GLUT_SINGLE | GLUT_RGB | G.UT_DEPTH);
gl utl ni t WndowSi ze(500, 500);

gl ut Cr eat eW ndow(argv[0]);

init();

gl ut ReshapeFunc (reshape);

gl ut Keyboar dFunc (keyboard);

gl ut Di spl ayFunc (di spl ay);
gl ut Mai nLoop() ;
return O;

}
Fog Equations

Fog blends a fog color with an incoming fragment’s color using a fog blending factor. This f
f, is computed with one of these three equations and then clamped to the range [0,1].

f=eTRERSIN (G, EXP)
f=ef@ensitgaf (GL_EXP2)
F= 22-2 (3L LINEAR)

engd - shovt

In these three equatiorsis the eye-coordinate distance between the viewpoint and the fragr
center. The values faensity, start, andend are all specified witlglFog* (). Thef factor is used
differently, depending on whether you're in RGBA mode or color-index mode, as explained
next subsections.

void glFog{if}(GLenum pname, TYPE param);

void glFog{if}v(GLenum pname, TYPE * params);
Sets the parameters and function for calculating fog. If pnameis GL_FOG_MODE, then
paramiseither GL_EXP (the default), GL_EXP2, or GL_LINEAR to select one of the three
fog factors. If pnameis GL_FOG_DENSTY, GL_FOG_START, or GL_FOG_END, then
paramis (or points to, with the vector version of the command) a value for density, start, or
end in the equations. (The default values are 1, 0, and 1, respectively.) In RGBA mode, pname
can be GL_FOG_COLOR, in which case params points to four values that specify the fog’'s
RGBA color values. The corresponding value for pnamein color-index modeis
GL_FOG_INDEX, for which paramis a single value specifying the fog’ s color index.

Figure 6-4plots the fog-density equations for various values of the parameters.

I GL_EXP2, density=0.5

GL_EXP2, density=0.25
e, GL LINEAR
GL_EXP, density=0.25
percent
of griginal GL_EXP, density=0.5
color
n --------- \J\-iL-i

o distance from viewpoint 1

Figure 6-4 : Fog-Density Equations

Fogin RGBA Mode

In RGBA mode, the fog factdr is used as follows to calculate the final fogged color:
C=fCi+(1-f)Cf

where Ci represents the incoming fragment’'s RGBA values and Cf the fog-color values ass
with GL_FOG_COLOR.

Fogin Color-Index Mode
In color-index mode, the final fogged color index is computed as follows:
I=li+(1-f)If

where li is the incoming fragment’s color index and If is the fog’s color index as specified w
GL_FOG_INDEX.

To use fog in color-index mode, you have to load appropriate values in a color ramp. The fi
in the ramp is the color of the object without fog, and the last color in the ramp is the color ¢
completely fogged object. You probably want to gk&lear | ndex() to initialize the background
color index so that it corresponds to the last color in the ramp; this way, totally fogged objec
into the background. Similarly, before objects are drawn, you shouldleadiex* () and pass in tt
index of the first color in the ramp (the unfogged color). Finally, to apply fog to different colc
objects in the scene, you need to create several color ramps agithckgk* () before each object
is drawn to set the current color index to the start of each color Eatapple 6-7llustrates how
to initialize appropriate conditions and then apply fog in color-index mode.

Example 6-7 : Fog in Color-Index Mode: fogindex.c

#i ncl ude <@./gl. h>
#i ncl ude <@/ gl u. h>
#i ncl ude <mat h. h>

#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

/* Initialize color map and fog. Set screen clear color
* to end of color ranp.
*/

#defi ne NUMCOLORS 32

#defi ne RAMPSTART 16

static void init(void)

{

int i;

gl Enabl e(G._DEPTH_TEST) ;

for (i =0; i < NUMCOLORS; i++) {
A fl oat shade;

shade = (G.float) (NUMCOLORS-i)/(G.float) NUMCOLORS
gl ut Set Col or (RAMPSTART + i, shade, shade, shade);

}
gl Enabl e(G._FOG) ;
gl Fogi (G._FOG MODE, G._LI NEAR);

gl Fogi (G._FOG | NDEX, NUMCOLORS);
gl Fogf (G._FOG START, 1.0);

gl Fogf (G._FOG _END, 6.0);

gl H nt (G_FOG HI NT, GL_NI CEST);

gl C earl ndex((G.fl oat) (NUMCOLORS+RAMPSTART-1));
}

static void renderSphere (G.float x, Gfloat y, Gfloat z)

{
gl PushMatri x();

gl Transl atef (x, y, z);
gl ut WreSphere(0.4, 16, 16);
gl PopMat ri x();

}

/* display() draws 5 spheres at different z positions.
*/

voi d di spl ay(voi d)

{

gl G ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
gl I ndexi (RAMPSTART) ;

render Sphere (-2., -0.5, -1.0);
render Sphere (-1., -0.5, -2.0);
render Sphere (0., -0.5, -3.0);
render Sphere (1., -0.5, -4.0);
render Sphere (2., -0.5, -5.0);
gl Flush();
}
void reshape(int w, int h)
{
gl Viewport (0, O, w, h);
gl Mat ri xMode(GL_PROQJECTI ON) ;
gl Loadl dentity();
if (w<=h)
glOtho (-2.5, 2.5, -2.5*(G.float)h/(G.float)w,
2.5*(CG.float)h/ (G float)w, -10.0, 10.0);
el se
glOtho (-2.5*(G.fl oat)w (G.float)h,
2.5*(G.float)w (Gfloat)h, -2.5, 2.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity ();
}
voi d keyboard(unsi gned char key, int x, int vy)
{
switch (key) {
case 27:
exit(0);
}

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_I NDEX | GLUT_DEPTH);
gl utlni t WndowSi ze(500, 500);

gl ut Cr eat eW ndow(argv[0]);

init();

gl ut ReshapeFunc (reshape);

gl ut Keyboar dFunc (keyboard);

gl ut Di spl ayFunc (displ ay);

gl ut Mai nLoop() ;

return O;

Polygon Offset

If you want to highlight the edges of a solid object, you might try to draw the object with pol'
mode GL_FILL and then draw it again, but in a different color with polygon mode GL_LINE.
However, because lines and filled polygons are not rasterized in exactly the same way, the
values generated for pixels on a line are usually not the same as the depth values for a pol
edge, even between the same two vertices. The highlighting lines may fade in and out of th
coincident polygons, which is sometimes called "stitching” and is visually unpleasant.

The visual unpleasantness can be eliminated by using polygon offset, which adds an apprc
offset to force coincidergvalues apart to cleanly separate a polygon edge from its highlightii
line. (The stencil buffer, described'iGtencil Test" in Chapter 1@an also be used to eliminate
stitching. However, polygon offset is almost always faster than stenciling.) Polygon offset is
useful for applying decals to surfaces, rendering images with hidden-line removal. In additic
lines and filled polygons, this technique can also be used with points.

There are three different ways to turn on polygon offset, one for each type of polygon raste
mode: GL_FILL, GL_LINE, or GL_POINT. You enable the polygon offset by passing the
appropriate parameter ghEnable(), either GL_POLYGON_OFFSET_FILL,
GL_POLYGON_OFFSET_LINE, or GL_POLYGON_OFFSET_POINT. You must also call
glPolygonM ode() to set the current polygon rasterization method.

void glPolygonOffset(GLfloat factor, GLfloat units);
When enabled, the depth value of each fragment is added to a calculated offset value. The
offset is added before the depth test is performed and before the depth value is written into the
depth buffer. The offset value o is calculated by:
o= m* factor + r * units
where mis the maximum depth slope of the polygon and r is the smallest value guaranteed to
produce a resolvable difference in window coordinate depth values. The valuer isan
implementation-specific constant.

To achieve a nice rendering of the highlighted solid object without visual artifacts, you can ¢
add a positive offset to the solid object (push it away from you) or a negative offset to the
wireframe (pull it towards you). The big question is: "How much offset is enough?" Unfortur
the offset required depends upon various factors, including the depth slope of each polygor
width of the lines in the wireframe.

OpenGL calculates the depth slope (BEgire 6-5 of a polygon for you, but it's important that y
understand what the depth slope is, so that you choose a reasonable Valtterfofhe depth
slope is the change m(depth) values divided by the change in eithery coordinates, as you
traverse a polygon. The depth values are in window coordinates, clamped to the range [O, :
estimate the maximum depth slope of a polygoin(the offset equation), use this formula:

m=ner{ S)

P | polygon with depth slope =0

I

palygon with depth slope = 0 K

Figure 6-5: Polygons and Their Depth Slopes

For polygons that are parallel to the near and far clipping planes, the depth slope is zero. F
polygons in your scene with a depth slope near zero, only a small, constant offset is neede
create a small, constant offset, you can gas®r=0.0 andunits=1.0 toglPolygonOffset().

For polygons that are at a great angle to the clipping planes, the depth slope can be signific
greater than zero, and a larger offset may be needed. Small, non-zero vataetsifosuch as 0.7
or 1.0, are probably enough to generate distinct depth values and eliminate the unpleasant
artifacts.

Example 6-8&hows a portion of code, where a display list (which presumably draws a solid
is first rendered with lighting, the default GL_FILL polygon mode, and polygon offsetfagtor
of 1.0 andunits of 1.0. These values ensure that the offset is enough for all polygons in your
regardless of depth slope. (These values may actually be a little more offset than the minirr
needed, but too much offset is less noticeable than too little.) Then, to highlight the edges ¢
first object, the object is rendered as an unlit wireframe with the offset disabled.

Example 6-8 : Polygon Offset to Eliminate Visual Artifacts: polyoff.c

gl Enabl e(GL_LI GHTI NG ;

gl Enabl e(GL_LI GHTO) ;

gl Enabl e(G._POLYGON_COFFSET_FI LL);
gl Pol ygonOf fset (1.0, 1.0);

gl CallList (list);

gl Di sabl e(G._POLYGON_COFFSET_FI LL);

gl D sabl e(G_LI GHTI NG ;

gl D sabl e(G._LI GHTO) ;

gl Color3f (1.0, 1.0, 1.0);

gl Pol ygonMode(GL_FRONT_AND_BACK, GL_LI NE);
gl Cal I List (list);

gl Pol ygonMbde(GL_FRONT_AND BACK, G._FILL);

In a few situations, the simplest values factor andunits (1.0 and 1.0) aren’t the answers. For
instance, if the width of the lines that are highlighting the edges are greater than one, then
increasing the value dhctor may be necessary. Also, since depth values are unevenly trans
into window coordinates when using perspective projection"{de Transformed Depth
Coordinate" in Chapter)3less offset is needed for polygons that are closer to the near clippi
plane, and more offset is needed for polygons that are further away. Once again, experime
with the value offactor may be warranted.

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 7

Display Lists

Chapter Objectives

After reading this chapter, you' Il be able to do the following:

® Understand how display lists can be used along with commands in immediate mode to
organize your data and improve performance

® Maximize performance by knowing how and when to use display lists

A display list isagroup of OpenGL commands that have been stored for later execution. When a
display list isinvoked, the commandsin it are executed in the order in which they were issued.
Most OpenGL commands can be either stored in adisplay list or issued in immediate mode, which
causes them to be executed immediately. Y ou can freely mix immediate-mode programming and
display lists within a single program. The programming examples you’ ve seen so far have used
immediate mode. This chapter discusses what display lists are and how best to use them. It has the
following major sections:

® "Why Use Display Lists?' explains when to use display lists.

® "An Example of Using aDisplay List" gives a brief example, showing the basic commands
for using display lists.

® "Display-List Design Philosophy" explains why certain design choices were made (such as
making display lists uneditable) and what performance optimizations you might expect to see
when using display lists.

® "Creating and Executing a Display List" discusses in detail the commands for creating,
executing, and deleting display lists.

® "Executing Multiple Display Lists" shows how to execute several display listsin succession,
using asmall character set as an example.

® "Managing State Variables with Display Lists" illustrates how to use display lists to save and
restore OpenGL commands that set state variables.

Why Use Display Lists?

Display lists may improve performance since you can use them to store OpenGL commands for

later execution. It is often a good idea to cache commands in adisplay list if you plan to redraw the
same geometry multiple times, or if you have a set of state changes that need to be applied multiple
times. Using display lists, you can define the geometry and/or state changes once and execute them
multiple times.

To see how you can use display lists to store geometry just once, consider drawing atricycle. The
two wheels on the back are the same size but are offset from each other. The front wheel islarger
than the back wheels and also in a different location. An efficient way to render the wheels on the
tricycle would be to store the geometry for one wheel in adisplay list then execute the list three
times. Y ou would need to set the modelview matrix appropriately each time before executing the
list to calculate the correct size and location for the wheels.

When running OpenGL programs remotely to another machine on the network, it is especially
important to cache commandsin adisplay list. In this case, the server is a different machine than
the host. (See "What Is OpenGL?' in Chapter 1 for a discussion of the OpenGL client-server
model.) Since display lists are part of the server state and therefore reside on the server machine,
you can reduce the cost of repeatedly transmitting that data over a network if you store repeatedly
used commands in adisplay list.

When running locally, you can often improve performance by storing frequently used commandsin
adisplay list. Some graphics hardware may store display lists in dedicated memory or may store the
datain an optimized form that is more compatible with the graphics hardware or software. (See
"Display-List Design Philosophy" for a detailed discussion of these optimizations.)

An Example of Using a Display List

A display list isaconvenient and efficient way to name and organize a set of OpenGL commands.
For example, suppose you want to draw atorus and view it from different angles. The most
efficient way to do thiswould be to store the torusin adisplay list. Then whenever you want to
change the view, you would change the modelview matrix and execute the display list to draw the
torus. Example 7-1 illustrates this.

Example 7-1 : Creating a Display List: torus.c

#i ncl ude <@&./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <stdio. h>
#i ncl ude <math. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>

GLui nt theTorus;

/* Draw a torus */
static void torus(int nunc, int numt)

tr
int i, j, k;
double s, t, X, y, z, twopi

twopi = 2 * (double)MPI;

for (i = 0; i < nunt; i++) {
gl Begi n(GL._QUAD_STRI P) ;
for (j =0; j <= numt; j++) {

for (k = 1; k >= 0; k--) {

}
/*

s = (i + k) %nunt + 0.5;
t = %nunt;
X = (1+.1*cos(s*twopi/nunt))*cos(t*twopi/nunt);
y = (1+. 1*cos(s*twopi/nunt))*sin(t*twopi/nunt);
z =.1* sin(s * twopi / nunt);
gl Vertex3f(x, vy, z);
}
}
gl End();

Create display list with Torus and initialize state*/

static void init(void)

{

VOi

VOi

/*

Voi

t heTorus = gl GenLists (1);

gl NewLi st (t heTorus, G._COWPI LE);
torus(8, 25);

gl EndLi st ();

gl ShadeModel (GL_FLAT);
gl dearColor(0.0, 0.0, 0.0, 0.0);

d di splay(void)

gl A ear (GL_COLOR BUFFER BI T);
gl Color3f (1.0, 1.0, 1.0);

gl Cal | Li st (t heTor us);

gl Fl ush();

d reshape(int w, int h)

gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);

gl Mat ri xMode(GL_PROQJECTI ON) ;

gl Loadl dentity();

gl uPerspective(30, (G.float) w (G float) h, 1.0, 100.0);
gl Mat ri xMode(GL_MCODELVI EW ;

gl Loadl dentity();

gl uLookAt (0, 0, 10, 0, 0, 0, 0, 1, 0);

Rot at e about x-axis when "x" typed; rotate about y-axis
when "y" typed; "i" returns torus to original view */
d keyboard(unsigned char key, int x, int y)

switch (key) {
case ‘Xx':
case ‘X :
gl Rotatef(30.,1.0,0.0,0.0);
gl ut Post Redi spl ay() ;
br eak;
case ‘'y':
case ‘Y':
gl Rotatef(30.,0.0,1.0,0.0);
gl ut Post Redi spl ay() ;
br eak;
case 'i’:
case ‘|':
gl Loadl dentity();
gl uLookAt (0, 0, 10, 0, 0, 0O, O, 1, 0);
gl ut Post Redi spl ay() ;
br eak;

case 27:
exit(0);
br eak;

}
}

int main(int argc, char **argv)

{
gl utl ni t WndowSi ze(200, 200);

glutinit(&rgc, argv);

glutlnitD splayMde(GLUT_SI NGLE | GLUT_RGB)
gl ut Creat eW ndow(argv[0]);

init();

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Di spl ayFunc(di spl ay);

gl ut Mai nLoop() ;

return O,

}

Let’s start by looking at init(). It creates adisplay list for the torus and initializes the viewing
matrices and other rendering state. Note that the routine for drawing atorus (torus()) is bracketed
by gINewL ist() and glEndList(), which defines adisplay list. The argument listName for

glNewL ist() isan integer index, generated by glGenLists(), that uniquely identifies this display list.

The user can rotate the torus about the x- or y-axis by pressing the ‘x’ or 'y’ key when the window
has focus. Whenever this happens, the callback function keyboard() is called, which concatenates a
30-degree rotation matrix (about the x- or y-axis) with the current modelview matrix. Then
glutPostRedisplay() is called, which will cause glutMainL oop() to call display() and render the
torus after other events have been processed. When the ‘i’ key is pressed, keyboar d() restores the
initial modelview matrix and returns the torus to its original location.

The display() function is very simple: It clears the window and then calls glCallL ist() to execute
the commands in the display list. If we hadn’'t used display lists, display() would have to reissue the
commands to draw the torus each time it was called.

A display list contains only OpenGL commands. In Example 7-1, only the giBegin(), glVertex(),
and glEnd() calls are stored in the display list. The parameters for the calls are evaluated, and their
values are copied into the display list when it is created. All the trigonometry to create the torusis
done only once, which should increase rendering performance. However, the values in the display
list can’t be changed later. And once a command has been stored in alist it is not possible to
remove it. Neither can you add any new commands to the list after it has been defined. You can
delete the entire display list and create a new one, but you can't edit it.

Note: Display lists also work well with GLU commands, since those operations are ultimately
broken down into low-level OpenGL commands, which can easily be stored in display lists. Use of
display listswith GLU is particularly important for optimizing performance of GLU tessellators and
NURBS.

Display-List Design Philosophy

To optimize performance, an OpenGL display list is acache of commands rather than a dynamic
database. In other words, once adisplay list is created, it can’t be modified. If adisplay list were
modifiable, performance could be reduced by the overhead required to search through the display

list and perform memory management. As portions of a modifiable display list were changed,
memory allocation and deallocation might lead to memory fragmentation. Any modifications that
the OpenGL implementation made to the display-list commands in order to make them more
efficient to render would need to be redone. Also, the display list may be difficult to access, cached
somewhere over a network or a system bus.

The way in which the commandsin adisplay list are optimized may vary from implementation to
implementation. For example, acommand as simple as glRotate* () might show a significant
improvement if it’sin adisplay list, since the calculations to produce the rotation matrix aren’t
trivial (they can involve square roots and trigonometric functions). In the display list, however, only
the final rotation matrix needs to be stored, so a display-list rotation command can be executed as
fast as the hardware can execute giIMultM atrix* (). A sophisticated OpenGL implementation might
even concatenate adjacent transformation commands into a single matrix multiplication.

Although you' re not guaranteed that your OpenGL implementation optimizes display lists for any
particular uses, the execution of display listsisn’t slower than executing the commands contained
within them individually. There is some overhead, however, involved in jumping to adisplay list. If
aparticular list issmall, this overhead could exceed any execution advantage. The most likely
possibilities for optimization are listed next, with references to the chapters where the topics are
discussed.

® Matrix operations (Chapter 3). Most matrix operations require OpenGL to compute inverses.
Both the computed matrix and its inverse might be stored by a particular OpenGL
implementation in adisplay list.

® Raster bitmaps and images (Chapter 8). The format in which you specify raster dataisn’t
likely to be one that’ sideal for the hardware. When adisplay list is compiled, OpenGL might
transform the data into the representation preferred by the hardware. This can have a
significant effect on the speed of raster character drawing, since character strings usually
consist of a series of small bitmaps.

® Lights, materia properties, and lighting models (Chapter 5). When you draw a scene with
complex lighting conditions, you might change the materials for each item in the scene.
Setting the materials can be slow, since it might involve significant calculations. If you put
the material definitions in display lists, these calculations don’'t have to be done each time you
switch materials, since only the results of the calculations need to be stored; as aresult,
rendering lit scenes might be faster. (See "Encapsulating Mode Changes' for more details on
using display lists to change such values as lighting conditions.)

® Textures (Chapter 9). Y ou might be able to maximize efficiency when defining textures by
compiling them into a display list, since the display list may allow the texture image to be
cached in dedicated texture memory. Then the texture image would not have to be recopied
each time it was needed. Also, the hardware texture format might differ from the OpenGL
format, and the conversion can be done at display-list compile time rather than during display.

In OpenGL version 1.0, the display list is the primary method to manage textures. However,
if the OpenGL implementation that you are using isversion 1.1 or greater, then you should
store the texture in atexture object instead. (Some version 1.0 implementations have a
vendor-specific extension to support texture objects. If your implementation supports texture
objects, you are encouraged to use them.)

® Polygon stipple patterns (Chapter 2).

Some of the commands to specify the properties listed here are context-sensitive, so you need to
take thisinto account to ensure optimum performance. For example, when
GL_COLOR_MATERIAL isenabled, some of the material properties will track the current color.
(See Chapter 5.) Any glMaterial*() calls that set the same material properties are ignored.

It may improve performance to store state settings with geometry. For example, suppose you want
to apply atransformation to some geometric objects and then draw the result. Y our code may look
likethis:

gl NewLi st (1, GL_COWPI LE);
draw _sone_geonetric_objects();
gl EndLi st ();

gl LoadMatri x(M;
gl Cal | List(1)

However, if the geometric objects are to be transformed in the same way each time, it is better to
store the matrix in the display list. For example, if you were to write your code as follows, some

implementations may be able to improve performance by transforming the objects when they are
defined instead of each time they are drawn:

gl NewLi st (1, GL_COWPI LE);

gl LoadMatri x(M;
draw_sone_geonetric_objects();
gl EndLi st ();

gl Cal I List(1):

A more likely situation occurs when rendering images. As you will see in Chapter 8, you can
modify pixel transfer state variables and control the way images and bitmaps are rasterized. If the
commands that set these state variables precede the definition of the image or bitmap in the display
list, the implementation may be able to perform some of the operations ahead of time and cache the
result.

Remember that display lists have some disadvantages. Very small lists may not perform well since
there is some overhead when executing alist. Another disadvantage is the immutability of the
contents of a display list. To optimize performance, an OpenGL display list can't be changed and
its contents can’t be read. If the application needs to maintain data separately from the display list
(for example, for continued data processing), then alot of additional memory may be required.

Creating and Executing a Display List

Asyou've aready seen, giINewL ist() and glEndList() are used to begin and end the definition of a
display list, which isthen invoked by supplying its identifying index with glCallList(). In Example
7-2, adisplay list is created in the init() routine. Thisdisplay list contains OpenGL commands to
draw ared triangle. Then in the display() routine, the display list is executed ten times. In addition,
alineisdrawn in immediate mode. Note that the display list allocates memory to store the
commands and the values of any necessary variables.

Example 7-2 : Using aDisplay List: list.c

#i nclude <@./gl. h>

#i ncl ude <G/ gl u. h>

#i ncl ude <G/ gl ut. h>

#i nclude <stdlib. h>
GLui nt [|i st Name;

static void init (void)

i stName = gl GenLists (1);

gl NewLi st (listName, GL_COWPILE);

gl Col or3f (1.0, 0.0, 0.0);

gl Begi n (G._TRI ANGLES)
gl Vertex2f (0.0, 0.0);
gl Vertex2f (1.0, 0.0);
gl Vertex2f (0.0, 1.0);
gl End ();

/* current color

gl Translatef (1.5, 0.0, 0.0); /* nove position

gl EndLi st ();
gl ShadeMbdel (GL_FLAT);

}

static void drawLi ne (void)
{
gl Begi n (G_LI NES)
gl Vertex2f (0.0, 0.5);
gl Vertex2f (15.0, 0.5);
gl End ();

}

voi d di spl ay(voi d)

{
GLuint i;
gl dear (G_COLOR BUFFER BIT);
gl Col or3f (0.0, 1.0, 0.0);
for (i =0; i < 10; i++)

gl Call List (listName);
drawLtine (); [/* is this line
/* where is the

gl Flush ();

}

void reshape(int w, int h)

gl Viewport (0, O, w, h);

gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();

if (w<=h)

current col or
draw 10 triangl es

green? NO
i ne drawn?

*/
*/

green

red

*/

*/

*/
*/

gluortho2D (0.0, 2.0, -0.5 * (G.float) h/(Gfloat) w,
1.5 * (Gfloat) h/(G.float) w;

el se

gluOtho2D (0.0, 2.0*(G.float) w (G.float) h

gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

}
voi d keyboard(unsi gned char key,
{
switch (key) {
case 27:
exit(0);

int Xx,

int y)

-0. 5,

1.5);

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutinitD splayMbde (GLUT_SINGLE | GLUT_RGB);
gl utlni t WndowSi ze(650, 50);

gl ut Creat eW ndow(argv[0]);

init ();

gl ut ReshapeFunc (reshape);

gl ut Keyboar dFunc (keyboard);

gl ut Di spl ayFunc (displ ay);

gl ut Mai nLoop() ;

return O;

}

The glTrangdatef() routine in the display list alters the position of the next object to be drawn.
Without it, calling the display list twice would just draw the triangle on top of itself. The
drawLine&() routine, which is called in immediate mode, is also affected by the ten gl Trandatef()
callsthat precedeit. So if you call transformation commands within a display list, don’t forget to
take into account the effect those commands will have later in your program.

Only one display list can be created at atime. In other words, you must eventually follow
gINewL ist() with glEndList() to end the creation of adisplay list before starting another one. As
you might expect, calling glEndL ist() without having started a display list generates the error
GL_INVALID_OPERATION. (See"Error Handling" in Chapter 14 for more information about
processing errors.)

Naming and Creating a Display List

Each display list isidentified by an integer index. When creating adisplay list, you want to be
careful that you don’t accidentally choose an index that’s already in use, thereby overwriting an
existing display list. To avoid accidental deletions, use glGenL ists() to generate one or more
unused indices.

GLuint glGenLists(GLsizel range);
Allocates range number of contiguous, previously unallocated display-list indices. The
integer returned is the index that marks the beginning of a contiguous block of empty
display-list indices. The returned indices are all marked as empty and used, so subsequent
callsto glGenLists() don’t return these indices until they' re deleted. Zero isreturned if the
requested number of indicesisn’t available, or if rangeis zero.

In the following example, asingle index is requested, and if it provesto be available, it’s used to
create anew display list:

listlndex = gl GenLists(1);
if (listlndex = 0) {
gl NewLi st (Iistlndex, G._COWPI LE)

gl EndLi st ()
Note: Zeroisnot avalid display-list index.
void gINewList (GLuint list, GLenum mode);

Foecifies the start of a display list. OpenGL routines that are called subsequently (until
glEndList() is called to end the display list) are stored in a display list, except for a few

restricted OpenGL routines that can’t be stored. (Those restricted routines are executed
immediately, during the creation of the display list.) list is a nonzero positive integer that
uniquely identifies the display list. The possible values for mode are GL_COMPILE and
GL_COMPILE_AND_EXECUTE. Use GL_COMPILE if you don’t want the OpenGL
commands executed as they're placed in the display list; to cause the commands to be
executed immediately as well as placed in the display list for later use, specify
GL_COMPILE_AND_EXECUTE.

void glEndList (void);
Marks the end of a display list.

When adisplay list is created it is stored with the current OpenGL context. Thus, when the context
is destroyed, the display list is also destroyed. Some windowing systems allow multiple contexts to
share display lists. In this case, the display list is destroyed when the last context in the share group
is destroyed.

What’s Stored in a Display List

When you're building adisplay list, only the values for expressions are stored in thelist. If values
in an array are subsequently changed, the display-list values don’t change. In the following code
fragment, the display list contains a command to set the current RGBA color to black (0.0, 0.0, 0.0).
The subsequent change of the value of the color_vector array to red (1.0, 0.0, 0.0) has no effect on
the display list because the display list contains the values that were in effect when it was created.

G.float color_vector[3] = {0.0, 0.0, 0.0};
gl NewLi st (1, G._COWPI LE);
gl Col or 3f v(col or _vector);
gl EndLi st ();
color _vector[0] = 1.0;

Not all OpenGL commands can be stored and executed from within adisplay list. For example,
commands that set client state and commands that retrieve state values aren’t stored in adisplay list.
(Many of these commands are easily identifiable because they return values in parameters passed
by reference or return avalue directly.) If these commands are called when making a display list,
they’ re executed immediately.

Here are the OpenGL commands that aren’t stored in adisplay list (also, note that gINewL ist()
generates an error if it's called while you' re creating a display list). Some of these commands
haven’t been described yet; you can look in the index to see where they’ re discussed.

glColorPointer() glFlush() glNormal Pointer()
glDeletel ists() glGenLists() gl Pixel Store()
glDisableClientState() glGet*() glReadPixels()

gl EdgeFl agPointer() glIndexPointer() glRenderM ode&()

glEnableClientState() glinterleavedArrays() glSelectBuffer()

gl FeedbackBuffer() glisEnabled() gl TexCoordPointer()

glFinish() glisList() glVertexPointer()

To understand more clearly why these commands can’t be stored in adisplay list, remember that
when you're using OpenGL across a network, the client may be on one machine and the server on
another. After adisplay list is created, it resides with the server, so the server can’t rely on the client
for any information related to the display list. If querying commands, such as glGet* () or glis*(),
were alowed in adisplay list, the calling program would be surprised at random times by data
returned over the network. Without parsing the display list asit was sent, the calling program
wouldn’t know where to put the data. Thus, any command that returns avalue can’t be stored in a
display list. In addition, commands that change client state, such as glPixel Storg(),

gl SelectBuffer (), and the commands to define vertex arrays, can’t be stored in adisplay list.

The operation of some OpenGL commands depends upon client state. For example, the vertex array
specification routines (such as glVertexPointer ()glColor Pointer (), and gll nterleavedArrays()) set
client state pointers and cannot be stored in adisplay list. glArrayElement(), giDrawArrays(), and
glDrawElements() send data to the server state to construct primitives from elementsin the
enabled arrays, so these operations can be stored in adisplay list. (See"Vertex Arrays' in Chapter
2.) The vertex array data stored in thisdisplay list is obtained by dereferencing data from the
pointers, not by storing the pointers themselves. Therefore, subsequent changes to the datain the
vertex arrayswill not affect the definition of the primitive in the display list.

In addition, any commands that use the pixel storage modes use the modes that are in effect when
they are placed in the display list. (See "Controlling Pixel-Storage Modes" in Chapter 8.) Other
routines that rely upon client state - such as glFlush() and glFinish() - can’t be stored in adisplay
list because they depend upon the client state that is in effect when they are executed.

Executing a Display List

After you've created adisplay list, you can execute it by calling glCallList(). Naturally, you can
execute the same display list many times, and you can mix callsto execute display lists with callsto
perform immediate-mode graphics, as you’ ve aready seen.

void glCallList (GLuint list);
This routine executes the display list specified by list. The commandsin the display list are
executed in the order they were saved, just as if they were issued without using a display list.
If list hasn’t been defined, nothing happens.

You can cal glCallList() from anywhere within a program, as long as an OpenGL context that can
access the display list is active (that is, the context that was active when the display list was created
or a context in the same share group). A display list can be created in one routine and executed in a
different one, since itsindex uniquely identifiesit. Also, thereisno facility to save the contents of a
display list into adatafile, nor afacility to create adisplay list from afile. In this sense, adisplay
list is designed for temporary use.

Hierarchical Display Lists

Y ou can create a hierarchical display list, which isadisplay list that executes another display list
by calling glCallList() between agINewL ist() and glEndList() pair. A hierarchical display listis
useful for an object made of components, especialy if some of those components are used more

than once. For example, thisisadisplay list that renders a bicycle by calling other display liststo

render parts of the bicycle:

gl NewLi st (listlndex, G._COWPI LE);
gl Cal | Li st (handl ebars);
gl Cal | Li st (frane);
gl Transl atef (1.0,0.0,0.0);
gl Cal | Li st (wheel);
gl Transl atef (3.0,0.0,0.0);
gl Cal | Li st (wheel);
gl EndLi st ();

To avoid infinite recursion, there' s alimit on the nesting level of display lists; the limit is at least
64, but it might be higher, depending on the implementation. To determine the nesting limit for
your implementation of OpenGL, call

gl GetI ntegerv(G._MAX LI ST_NESTING Gint *data);

OpenGL alowsyou to create adisplay list that calls another list that hasn’t been created yet.
Nothing happens when the first list calls the second, undefined one.

Y ou can use ahierarchical display list to approximate an editable display list by wrapping alist
around several lower-level lists. For example, to put a polygon in adisplay list while allowing
yourself to be able to easily edit its vertices, you could use the code in Example 7-3.

Example 7-3 : Hierarchical Display List

gl NewLi st (1, G._COWPI LE) ;
gl Vertex3f(vl);

gl EndLi st ();

gl NewLi st (2, G_._COWPI LE) ;
gl Vertex3f (v2);

gl EndLi st ();

gl NewLi st (3, G._COWPI LE) ;
gl Vert ex3f (v3);

gl EndLi st ();

gl NewLi st (4, G._COWPI LE) ;
gl Begi n(GL_POLYGON) ;
gl Cal I List(1);
gl Cal |l List(2);
gl Cal I Li st (3);
gl End() ;
gl EndLi st ();

To render the polygon, call display list number 4. To edit avertex, you need only recreate the single
display list corresponding to that vertex. Since an index number uniquely identifies adisplay list,
creating one with the same index as an existing one automatically deletes the old one. Keep in mind
that this technique doesn’t necessarily provide optimal memory usage or peak performance, but it's
acceptable and useful in some cases.

Managing Display List Indices
So far, we' ve recommended the use of glGenLists() to obtain unused display-list indices. If you
insist upon avoiding glGenL ists(), then be sure to use gllsList() to determine whether a specific

index isin use.

GLboolean gllsList(GLuint list);

Returns GL_TRUE if list is already used for a display list and GL_FALSE otherwise.

Y ou can explicitly delete a specific display list or a contiguous range of lists with glDeleteL ists().
Using glDeletel ists() makes those indices available again.

void glDeleteLists(GLuint list, GLsizei range);
Deletesrange display lists, starting at the index specified by list. An attempt to delete a list
that has never been created isignored.

Executing M ultiple Display Lists

OpenGL provides an efficient mechanism to execute several display listsin succession. This
mechanism requires that you put the display-list indicesin an array and call glCallLists(). An
obvious use for such a mechanism occurs when display-list indices correspond to meaningful
values. For example, if you're creating afont, each display-list index might correspond to the
ASCII value of acharacter in that font. To have several such fonts, you would need to establish a
different initial display-list index for each font. Y ou can specify thisinitial index by using
glListBase() before calling glCallLists().

void glListBase(GLuint base);
Soecifies the offset that’s added to the display-list indicesin glCallLists() to obtain the final
display-list indices. The default display-list baseis 0. The list base has no effect on
glCallList(), which executes only one display list or on gINewL.ist().

void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);
Executes n display lists. The indices of the lists to be executed are computed by adding the
offset indicated by the current display-list base (specified with glListBase()) to the signed
integer valuesin the array pointed to by lists.
The type parameter indicates the data type of the valuesin lists. It can be set to GL_BYTE,
GL_UNSGNED_BYTE, GL_SHORT, GL_UNSGNED_SHORT, GL_INT,
GL_UNSIGNED _INT, or GL_FLOAT, indicating that lists should be treated as an array of
bytes, unsigned bytes, shorts, unsigned shorts, integers, unsigned integers, or floats,
respectively. Typecan also be GL_2 BYTES GL_3 BYTES or GL_4 BYTES inwhich case
sequences of 2, 3, or 4 bytes are read from lists and then shifted and added together, byte by
byte, to calcul ate the display-list offset. The following algorithmis used (where byte[0] isthe
start of a byte sequence).

/* b =2, 3, or 4, bytes are nunbered 0, 1, 2, 3 in array */

of f set

for (i
of fset = of fset << 8;
of fset += byte[i];

0;
0;

i < b; i+4) {

i ndex = offset + |istbase;

For multiple-byte data, the highest-order data comesfirst as bytes are taken fromthe array in
order.

As an example of the use of multiple display lists, ook at the program fragments in Example 7-4
taken from the full program in Example 7-5. This program draws characters with a stroked font (a
set of letters made from line segments). The routine initStrokedFont() sets up the display-list

indices for each letter so that they correspond with their ASCII values.
Example 7-4 : Defining Multiple Display Lists

void initStrokedFont (void)
{

GLui nt base;

base = gl GenLi sts(128);

gl Li st Base(base);

gl NewLi st (base+ A, GL_COWPI LE)
drawLetter (Adata); gl EndList();

gl NewLi st (base+ E', GL_COWVPI LE)
drawLetter (Edata); gl EndList();

gl NewLi st (base+' P, G._COWPI LE)
drawLetter(Pdata); gl EndList();

gl NewLi st (base+' R, GL_COWVPI LE)
drawLetter (Rdata); gl EndList();

gl NewLi st (base+ S, GL_COWPI LE)
drawLetter(Sdata); gl EndList();

gl NewLi st (base+ ', G._COWPI LE); /* space character */
gl Transl atef (8.0, 0.0, 0.0);
gl EndLi st ();

}

The glGenLists() command allocates 128 contiguous display-list indices. The first of the
contiguous indices becomes the display-list base. A display list is made for each |etter; each
display-list index is the sum of the base and the ASCII value of that letter. In this example, only a
few letters and the space character are created.

After the display lists have been created, glCallLists() can be called to execute the display lists. For
example, you can pass a character string to the subroutine printStrokedString():

void printStrokedString(G.byte *s)

Gint len = strlen(s);
gl Cal | Li sts(len, GL_BYTE, s);
}

The ASCII value for each letter in the string is used as the offset into the display-list indices. The
current list base is added to the ASCII value of each letter to determine the final display-list index
to be executed. The output produced by Example 7-5 is shown in Figure 7-1.

H SPHRE SERHPE HPPEARS HS

HPES PREPHARE RARE PEPPERS

Figure7-1: Stroked Font That Defines the Characters A, E, P, R, S

Example 7-5 : Multiple Display Liststo Define a Stroked Font: stroke.c

#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>
#i ncl ude <G/ glut. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

#define PT 1
#defi ne STROKE 2
#define END 3

typedef struct charpoint {
GLfl oat X, VY;

i nt type;

} CP;

CP Adata[] = {
{ o, 0, PT}, {0, 9, PT}, {1, 10, PT}, {4, 10, PT},
{5, 9, PT}, {5, 0, STRXXE}, {0, 5, PT}, {5, 5, END}

CP Edata[] = {
{5, 0, PT}, {0, O, PT}, {O, 10, PT}, {5, 10, STROKE},
{0, 5, PT}, {4, 5 END

CP Pdata[] = {

{o, o, pT}, {O, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT},
{4, 5, PT}, {0, 5, END

CP Rdata[] = {
{o, o, pT}, {O, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT},
{4, 5, PT}, {0, 5 STRXXE}, {3, 5 PT}, {5 0, END}

CP Sdata[] = {

{o, 1, pT}, {1, O, PT}, {4, O, PT}, {5, 1, PT}, {5, 4, PT},
{4, 5, pT}, {1, 5, PT}, {O, 6, PT}, {O, 9, PT}, {1, 10, PT},
{4, 10, PT}, {5, 9, END}

b

/* drawLetter() interprets the instructions fromthe array

* for that letter and renders the letter with |line segnments.
*/

static void drawLetter(CP *I)

gl Begi n(GL_LI NE_STRI P) ;

while (1) {
switch (I->type) {
case PT:
gl Vertex2fv(& ->x);
br eak;
case STROKE:
gl Vertex2fv(& ->x);
gl End() ;
gl Begi n(GL_LI NE_STRI P) ;
br eak;
case END:
gl Vertex2fv(& ->x);
gl End() ;
gl Transl atef (8.0, 0.0, 0.0);
return,
| ++;
}
}
/* Create a display list for each of 6 characters */

static void init (void)

{

GLui nt base;
gl ShadeModel (G._FLAT);

base = gl GenLists (128);

gl Li st Base(base);

gl NewLi st (base+ A, G_L_COWI LE); drawlLetter(Adata);
gl EndLi st ();

gl NewLi st (base+' E', G._COWPILE); drawlLetter(Edata);
gl EndLi st ();

gl NewLi st (base+' P, G._COWPI LE); drawlLetter(Pdata);
gl EndLi st ();

gl NewLi st (base+' R, G__COWPILE); drawlLetter(Rdata);
gl EndLi st ();

gl NewLi st (base+' S', G._COWPI LE); drawlLetter(Sdata);
gl EndLi st ();

gl NewLi st (base+ *‘, G._COWPI LE)

gl Transl atef (8.0, 0.0, 0.0); gl EndList();

}

char *testl
char *test2

"A SPARE SERAPE APPEARS AS';
"APES PREPARE RARE PEPPERS';

static void printStrokedString(char *s)

{
GLsizei len = strlen(s);
gl Call Lists(len, G_BYTE, (GLbyte *)s);
}
voi d di spl ay(voi d)
{
gl A ear (GL_COLOR BUFFER BI T);
gl Color3f(1.0, 1.0, 1.0);
gl PushiMatri x();
gl Scal ef (2.0, 2.0, 2.0);
gl Transl atef (10.0, 30.0, 0.0);
printStrokedString(testl);
gl PopMat ri x();
gl PushMatri x();
gl Scal ef (2.0, 2.0, 2.0);
gl Transl atef (10.0, 13.0, 0.0);
printStrokedString(test2);
gl PopMat ri x();
gl Fl ush();
}
voi d reshape(int w, int h)
{
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity ();
gluGrtho2D (0.0, (G.double) w, 0.0, (G.double) h);
}

voi d keyboard(unsi gned char key, int x, int y)

switch (key) {
case ‘ ‘:
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutinitD splayMbde (GLUT_SINGLE | GLUT_RGB);
gl utlni t WndowSi ze (440, 120);

gl ut Creat eW ndow (argv[0]);

init ();

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

Managing State Variableswith Display Lists

A display list can contain calls that change the value of OpenGL state variables. These values
change asthe display list is executed, just asif the commands were called in immediate mode and
the changes persist after execution of the display list is completed. As previously seen in Example
7-2 and in Example 7-6, which follows, the changes to the current color and current matrix made
during the execution of the display list remain in effect after it has been called.

Example 7-6 : Persistence of State Changes after Execution of a Display List

gl NewLi st (Iistlndex, G._COWPI LE);
gl Col or3f (1.0, 0.0, 0.0);
gl Begi n(GL_POLYGON) ;
gl Vertex2f (0.0,0.0);
gl Vertex2f (1.0,0.0);
gl Vertex2f (0.0, 1.0);
gl End() ;
gl Transl atef(1.5,0.0,0.0);
gl EndLi st ();

So if you now call the following sequence, the line drawn after the display list is drawn with red as
the current color and trandlated by an additional (1.5, 0.0, 0.0):

gl Cal I List(listlndex);
gl Begi n(GL_LI NES) ;
gl Vertex2f(2.0,-1.0);
gl Vertex2f (1.0,0.0);
gl End() ;

Sometimes you want state changesto persist, but other times you want to save the values of state
variables before executing adisplay list and then restore these values after the list has executed.
Remember that you cannot use glGet*() in adisplay list, so you must use another way to query and
store the values of state variables.

Y ou can use glPushAttrib() to save agroup of state variables and glPopAttrib() to restore the
values when you' re ready for them. To save and restore the current matrix, use glPushMatrix() and
glPopMatrix() as described in "Manipulating the Matrix Stacks" in Chapter 3. These push and pop
routines can be legally cached in adisplay list. To restore the state variables in Example 7-6, you
might use the code shown in Example 7-7.

Example 7-7 : Restoring State Variables within a Display List

gl NewLi st (Iistlndex, G._COWPI LE)
gl PushiMatri x();
gl PushAttri b(GL._CURRENT_BI T);
gl Col or3f(1.0, 0.0, 0.0);
gl Begi n(GL_POLYGON) ;
gl Vertex2f (0.0,0.0);
gl Vertex2f(1.0,0.0);
gl Vertex2f (0.0, 1.0);
gl End() ;
gl Transl atef(1.5,0.0,0.0);
gl PopAttrib();
gl PopMat ri x();
gl EndLi st ();

If you use the display list from Example 7-7, which restores values, the code in Example 7-8 draws
agreen, untrandated line. With the display list in Example 7-6, which doesn’t save and restore
values, thelineisdrawn red, and its position is translated ten times (1.5, 0.0, 0.0).

Example 7-8: The Display List May or May Not Affect drawLine()

voi d di spl ay(voi d)
{

Gint i;
gl O ear (G._COLOR BUFFER BI T);
gl Color3f(0.0, 1.0, 0.0); /* set current color to green */
for (i =0; i < 10; i++)

glCallList(listlndex); /* display list called 10 tinmes */
drawLi ne(); /* how and where does this |ine appear? */
gl Fl ush();

}
Encapsulating M ode Changes

Y ou can use display lists to organize and store groups of commands to change various modes or set
various parameters. When you want to switch from one group of settings to another, using display
lists might be more efficient than making the calls directly, since the settings might be cached in a
format that matches the requirements of your graphics system.

Display lists may be more efficient than immediate mode for switching among various lighting,
lighting-model, and material-parameter settings. Y ou might also use display listsfor stipple
patterns, fog parameters, and clipping-plane equations. In general, you'll find that executing display
listsis at least as fast as making the relevant calls directly, but remember that some overhead is
involved in jumping to adisplay list.

Example 7-9 shows how to use display lists to switch among three different line stipples. First, you
call glGenLists() to allocate adisplay list for each stipple pattern and create adisplay list for each
pattern. Then, you use glCallList() to switch from one stipple pattern to another.

Example 7-9 : Display Listsfor Mode Changes

GLui nt offset;
of fset = gl GenLi sts(3);

gl NewLi st (offset, G._COVPI LE)
gl Di sabl e (GL_LI NE_STI PPLE) ;
gl EndLi st ();

gl NewLi st (offset+1l, G._COWPI LE)
gl Enabl e (G__LI NE_STI PPLE)
gl LineStipple (1, OxOFOF);
gl EndLi st ();

gl NewLi st (offset+2, G._COWPI LE)
gl Enabl e (GL_LI NE_STI PPLE)
gl LineStipple (1, O0x1111);
gl EndLi st ();

#def i ne drawOneLi ne(x1,yl, x2,y2) gl Begi n(G._LINES); \
gl Vertex2f ((x1),(yl)); gl Vertex2f ((x2),(y2)); gl End();

gl Cal I List (offset);
dr awOnelLi ne (50.0, 125.0, 350.0, 125.0);

gl Cal | List (offset+1);
dr awOneLi ne (50.0, 100.0, 350.0, 100.0);

gl Cal | Li st (offset+2);
dr awOneLi ne (50.0, 75.0, 350.0, 75.0);

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 8
Drawing Pixels, Bitmaps, Fonts, and | mages

Chapter Objectives
After reading this chapter, you’ll be able to do the following:
® Position and draw bitmapped data

® Read pixel data (bitmaps and images) from the framebuffer into processor memory ar
memory into the framebuffer

® Copy pixel data from one color buffer to another, or to another location in the same bt
® Magnify or reduce an image as it's written to the framebuffer

® Control pixel-data formatting and perform other transformations as the data is moved
from the framebuffer

So far, most of the discussion in this guide has concerned the rendering of geometric data
lines, and polygons. Two other important classes of data that can be rendered by OpenGL

® Bitmaps, typically used for characters in fonts
® Image data, which might have been scanned in or calculated

Both bitmaps and image data take the form of rectangular arrays of pixels. One difference |
them is that a bitmap consists of a single bit of information about each pixel, and image dat
typically includes several pieces of data per pixel (the complete red, green, blue, and alpha
components, for example). Also, bitmaps are like masks in that they’re used to overlay ano
image, but image data simply overwrites or is blended with whatever data is in the framebu

This chapter describes how to draw pixel data (bitmaps and images) from processor mema
framebuffer and how to read pixel data from the framebuffer into processor memory. It also
describes how to copy pixel data from one position to another, either from one buffer to anc
within a single buffer. This chapter contains the following major sections:

® "Bitmaps and Fontstlescribes the commands for positioning and drawing bitmapped d
Such data may describe a font.

® "Images"presents the basic information about drawing, reading and copying pixel date

® "Imaging Pipeline'describes the operations that are performed on images and bitmaps
they are read from the framebuffer and when they are written to the framebuffer.

® "Reading and Drawing Pixel Rectanglesivers all the details of how pixel data is stored
memory and how to transform it as it's moved into or out of memory.

® "Tips for Improving Pixel Drawing Ratedists tips for getting better performance when
drawing pixel rectangles.

In most cases, the necessary pixel operations are simple, so the first three sections might t
need to read for your application. However, pixel manipulation can be complex - there are r
ways to store pixel data in memory, and you can apply any of several transformations to pi:
they’re moved to and from the framebuffer. These details are the subject of the fourth secti
this chapter. Most likely, you'll want to read this section only when you actually need to mal
of the information. The last section provides useful tips to get the best performance when re
bitmaps and images.

Bitmaps and Fonts

A bitmap is a rectangular array of Os and 1s that serves as a drawing mask for a correspon
rectangular portion of the window. Suppose you're drawing a bitmap and that the current re
color is red. Wherever there’s a 1 in the bitmap, the corresponding pixel is replaced by a re
(or combined with a red pixel, depending on which per-fragment operations are in effect. (S
"Testing and Operating on Fragments" in Chaptey It€here’s a 0 in the bitmap, the contents ¢
the pixel are unaffected. The most common use of bitmaps is for drawing characters on the

OpenGL provides only the lowest level of support for drawing strings of characters and
manipulating fonts. The commang&aster Pos* () andglBitmap() position and draw a single
bitmap on the screen. In addition, through the display-list mechanism, you can use a seque
character codes to index into a corresponding series of bitmaps representing those charact
Chapter #or more information about display lists.) You'll have to write your own routines to
provide any other support you need for manipulating bitmaps, fonts, and strings of characte

ConsiderExample 8-1which draws the character F three times on the sdfégure 8-1shows the
F as a bitmap and its corresponding bitmap data.

Oxff, Qa0
O EE, Q2o
O, Qx00
Oxol, (200
O, 0200
OxEE, (200
OxEE, (200
O, 0200
O, Qx00
Oxol, (200
O, 0200
O, Qx00

Figure 8-1: Bitmapped F and Its Data

Example 8-1 : Drawing a Bitmapped Character: drawf.c

#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>
#i ncl ude <G/ glut. h>
#i ncl ude <stdlib. h>

GLubyte rasters[24] = {
Oxc0, 0x00, OxcO, 0x00, OxcO, 0x00, 0Oxc0O, 0x00, OxcO, 0xo00,
oxff, 0Ox00, Oxff, 0Ox00, OxcO, 0x00, OxcO, 0x00, 0OxcO, 0xO00,
oxff, OxcO, Oxff, OxcO};

voi d init(void)

gl Pi xel Storei (G._UNPACK_ALI GNMENT, 1);
gl earColor (0.0, 0.0, 0.0, 0.0);

voi d di spl ay(voi d)

gl d ear (G._COLOR BUFFER BIT);

gl Color3f (1.0, 1.0, 1.0);

gl Rast er Pos2i (20, 20);

glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
gl Bitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
gl Fl ush();

void reshape(int w, int h)

gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);
gl Matri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

glOtho (0, w, 0, h, -1.0, 1.0);

gl Mat ri xMode(GL_MCDELVI EW ;

voi d keyboard(unsi gned char key, int x, int y)

switch (key) {
case 27:
exit(0);

}

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutlinitD spl ayMde(GLUT_SINGLE | GLUT_RGB)
gl utlnit WndowSi ze(100, 100);
gl ut I ni t WndowPosi tion(100, 100);
gl ut Creat eW ndow(argv[0]);
init();
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Di spl ayFunc(di spl ay) ;
gl ut Mai nLoop() ;
return O;

}

In Figure 8-1 note that the visible part of the F character is at most 10 bits wide. Bitmap dat
always stored in chunks that are multiples of 8 bits, but the width of the actual bitmap does
to be a multiple of 8. The bits making up a bitmap are drawn starting from the lower-left cor
First, the bottom row is drawn, then the next row above it, and so on. As you can tell from tl

the bitmap is stored in memory in this order - the array of rasters begins with Oxc0, 0x00, O:
0x00 for the bottom two rows of the F and continues to Oxff, 0xc0, 0xff, OxcO for the top two

The commands of interest in this exampleghRaster Pos2i() andglBitmap(); they’re discussed
detail in the next section. For now, ignore the cafllRixelStorei(); it describes how the bitmap
data is stored in computer memory. (S€entrolling Pixel-Storage Modegbr more information.

The Current Raster Position

The current raster position is the origin where the next bitmap (or image) is to be drawn. In
example, the raster position was set by calyjiiRpster Pos* () with coordinates (20, 20), which is
where the lower-left corner of the F was drawn:

gl Rast er Pos2i (20, 20);

void glRaster Pos{234}{sifd}(TYPE x, TYPE y, TYPE z TYPE w);

void glRaster Pos{234}{sifd}v(TYPE * coords);
Setsthe current raster position. The x, y, z, and w arguments specify the coordinates of the
raster position. If the vector form of the function is used, the coords array contains the
coordinates of the raster position. If giIRasterPos2* () is used, zisimplicitly set to zero and w
isimplicitly set to one; similarly, with glRasterPos3* (), wis set to one.

The coordinates of the raster position are transformed to screen coordinates in exactly the
as coordinates supplied withlgh/ertex* () command (that is, with the modelview and perspect
matrices). After transformation, they either define a valid spot in the viewport, or they're clig
out because the coordinates were outside the viewing volume. If the transformed point is cl
out, the current raster position is invalid.

Note: If you want to specify the raster position in screen coordinates, you'll want to make st
you've specified the modelview and projection matrices for simple 2D rendering, with some
like this sequence of commands, wherdth andheight are also the size (in pixels) of the
viewport:

gl Mat ri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

gluOrtho2D(0.0, (G.float) width, 0.0, (G.float) height);
gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

To obtain the current raster position, you can use the query conghetéloatv() with
GL_CURRENT_RASTER_POSITION as the first argument. The second argument should |
pointer to an array that can hold tixey(, z, w) values as floating-point numbers. Call
glGetBooleanv() with GL_CURRENT _RASTER_POSITION_VALID as the first argument to
determine whether the current raster position is valid.

Drawing the Bitmap
Once you've set the desired raster position, you can uggBhenap() command to draw the dat
void gIBitmap(GLsizel width, GLsizei height, GLfloat xbo,

GLfloat ybo, GLfloat xbi,
GLfloat ybi, const GLubyte * bitmap);

Draws the bitmap specified by bitmap, which is a pointer to the bitmap image. The origin of
the bitmap is placed at the current raster position. If the current raster position isinvalid,
nothing is drawn, and the raster position remains invalid. The width and height arguments
indicate the width and height, in pixels, of the bitmap. The width need not be a multiple of 8,
although the data is stored in unsigned characters of 8 bits each. (In the F example, it
wouldn’t matter if there were garbage bits in the data beyond the tenth bit; since glBitmap()
was called with a width of 10, only 10 bits of the row are rendered.) Use xbo and ybo to
define the origin of the bitmap (positive values move the origin up and to the right of the
raster position; negative values move it down and to the left); xbi and ybi indicate the x and y
increments that are added to the raster position after the bitmap is rasterized (see Figure
8-2).

(o Ypo) = (0, 0)
(g Wpp = (11, 0)

M
11T

Figure 8-2: Bitmap and Its Associated Parameters

Allowing the origin of the bitmap to be placed arbitrarily makes it easy for characters to exte
below the origin (typically used for characters with descenders, such as g, j, and y), or to &
beyond the left of the origin (used for various swash characters, which have extended flour
for characters in fonts that lean to the left).

After the bitmap is drawn, the current raster position is advancghli layndybi in thex- and
y-directions, respectively. (If you just want to advance the current raster position without dr¢
anything, calglBitmap() with thebitmap parameter set to NULL and with tiaédth andheight set
to zero.) For standard Latin fontdi is typically 0.0 andkbi is positive (since successive charac
are drawn from left to right). For Hebrew, where characters go from right to lethithalues
would typically be negative. Fonts that draw successive characters vertically in columns wc
zero forxbi and nonzero values fgbi. In Figure 8-2 each time the F is drawn, the current rast
position advances by 11 pixels, allowing a 1-pixel space between successive characters.

Sincexbo, ybo, xbi, andybi are floating-point values, characters need not be an integral numl
pixels apart. Actual characters are drawn on exact pixel boundaries, but the current raster |
kept in floating point so that each character is drawn as close as possible to where it belong
example, if the code in the F example was modified saxthag 11.5 instead of 12, and if more
characters were drawn, the space between letters would alternate between 1 and 2 pixels,
best approximation to the requested 1.5-pixel space.

Note: You can't rotate bitmap fonts because the bitmap is always drawn alignedktarttig
framebuffer axes.

Choosing a Color for the Bitmap

You are familiar with usinglColor*() andgll ndex*() to set the current color or index to draw
geometric primitives. The same commands are used to set different state variables,
GL_CURRENT_RASTER_COLOR and GL_CURRENT_RASTER_INDEX, for rendering
bitmaps. The raster color state variables are set glRaster Pos* () is called, which can lead to
trap. In the following sequence of code, what is the color of the bitmap?

glColor3f(1.0, 1.0, 1.0); /* white */
gl Rast er Pos3f v(position);

gl Color3f(1.0, 0.0, 0.0); /* red */
gl Bitmap(....);

The bitmap is white! The GL_CURRENT_RASTER_COLOR is set to white when

glRaster Pos3fv() is called. The second call g¢Color 3f() changes the value of
GL_CURRENT_COLOR for future geometric rendering, but the color used to render the bit
unchanged.

To obtain the current raster color or index, you can use the query comgh@etfdoatv() or
glGetintegerv() with GL_CURRENT_RASTER_COLOR or GL_CURRENT_RASTER_INDE
as the first argument.

Fontsand Display Lists

Display lists are discussed in general termShiapter 7However, a few of the display-list
management commands have special relevance for drawing strings of characters. As you 1
section, keep in mind that the ideas presented here apply equally well to characters that ar
using bitmap data and those drawn using geometric primitives (points, lines, and polygons)
"Executing Multiple Display Lists" in Chapterf@r an example of a geometric font.)

A font typically consists of a set of characters, where each character has an identifying nun
(usually the ASCII code) and a drawing method. For a standard ASCII character set, the ce
letter A is number 65, B is 66, and so on. The string "DAB" would be represented by the thr
indices 68, 65, 66. In the simplest approach, display-list number 65 draws an A, number 66
B, and so on. Then to draw the string 68, 65, 66, just execute the corresponding display list

You can use the commagtCallLists() in just this way:
void gl CallLists(G.sizei n, G.enumtype, const G.void *lists);

The first argumenty, indicates the number of characters to be dréype,is usually GL_BYTE,
andlistsis an array of character codes.

Since many applications need to draw character strings in multiple fonts and sizes, this sim
approach isn’t convenient. Instead, you'd like to use 65 as A no matter what font is current!
You could force font 1 to encode A, B, and C as 1065, 1066, 1067, and font 2 as 2065, 20¢
but then any numbers larger than 256 would no longer fit in an 8-bit byte. A better solution i
an offset to every entry in the string and to choose the display list. In this case, font 1 has A
C represented by 1065, 1066, and 1067, and in font 2, they might be 2065, 2066, and 2067
draw characters in font 1, set the offset to 1000 and draw display lists 65, 66, and 67. To dr
same string in font 2, set the offset to 2000 and draw the same lists.

To set the offset, use the commaghidistBase(). For the preceding examples, it should be calle
with 1000 or 2000 as the (only) argument. Now what you need is a contiguous list of unuse

display-list numbers, which you can obtain frglGenLists():
GLui nt gl GenLi sts(G.si zei range);

This function returns a block oénge display-list identifiers. The returned lists are all marked ¢
"used" even though they’re empty, so that subsequent caliSénL ists() never return the same
lists (unless you've explicitly deleted them previously). Therefore, if you use 4 as the argurr
if glGenLists() returns 81, you can use display-list identifiers 81, 82, 83, and 84 for your
characters. 1§lGenLists() can’t find a block of unused identifiers of the requested length, it re
0. (Note that the commamgtiDeletel ists() makes it easy to delete all the lists associated with
in a single operation.)

Most American and European fonts have a small number of characters (fewer than 256), st
to represent each character with a different code that can be stored in a single byte. Asian-
among others, may require much larger character sets, so a byte-per-character encoding is
impossible. OpenGL allows strings to be composed of 1-, 2-, 3-, or 4-byte characters throu
type parameter iglCallLists(). This parameter can have any of the following values:

GL_BYTE GL_UNSIGNED_BYTE
GL_SHORT GL_UNSIGNED_SHORT
GL_INT GL_UNSIGNED_INT
GL_FLOAT GL_2_BYTES

GL_3 BYTES GL_4 BYTES

(See"Executing Multiple Display Lists" in Chapterf@r more information about these values.)
Defining and Using a Complete Font

TheglBitmap() command and the display-list mechanism described in the previous section
easy to define a raster font.Eixample 8-2the upper-case characters of an ASCII font are def
In this example, each character has the same width, but this is not always the case. Once t
characters are defined, the program prints the message "THE QUICK BROWN FOX JUMP
OVER A LAZY DOG".

The code irExample 8-3s similar to the F example, except that each character’s bitmap is s
in its own display list. The display list identifier, when combined with the offset returned by
glGenLists(), is equal to the ASCII code for the character.

Example 8-2 : Drawing a Complete Font: font.c

#i nclude <@/ gl . h>

#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

GLubyte space[] =
{0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00, Ox00, OxO
GLubyte letters[][13] = {

} .

{0x00, 0x00, 0Oxc3, 0xc3, 0xc3, 0xc3, Oxff, O0xc3, 0xc3,
{0x00, 0x00, Oxfe, Oxc7, 0Oxc3, 0xc3, Oxc7, Oxfe, O0xc7,
{0x00, 0x00, Ox7e, Oxe7, OxcO, OxcO, OxcO, OxcO, OxcO
{0x00, 0x00, Oxfc, Oxce, Oxc7, 0xc3, Oxc3, 0xc3, 0xc3,
{0x00, 0x00, Oxff, OxcO, OxcO, 0OxcO, OxcO, Oxfc, 0xcO
{0x00, 0x00, 0OxcO, 0xcO, 0xcO, 0xcO, 0Oxc0, 0xcO0, Oxfc
{0x00, 0Ox00, Ox7e, Oxe7, Oxc3, 0xc3, Oxcf, OxcO, 0xcO,
{0x00, 0x00, Oxc3, 0xc3, O0xc3, 0xc3, O0xc3, Oxff, 0Oxc3,
{0x00, 0x00, Ox7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
{0x00, 0x00, Ox7c, Oxee, 0Oxc6, 0x06, 0x06, 0x06, 0xO06,
{0x00, 0x00, Oxc3, Oxc6, Oxcc, 0xd8, OxfO, Oxe0, OxfO,
{0x00, 0x00, Oxff, OxcO, OxcO, OxcO, OxcO, OxcO, OxcO
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xdb
{0x00, 0x00, Oxc7, Oxc7, Oxcf, Oxcf, Oxdf, Oxdb, Oxfb,
{0x00, 0x00, Ox7e, Oxe7, Oxc3, 0xc3, O0xc3, 0xc3, 0xc3,
{0x00, 0x00, 0OxcO, 0OxcO, OxcO, 0xcO, OxcO, Oxfe, Oxc7
{0x00, 0x00, Ox3f, Ox6e, Oxdf, Oxdb, Oxc3, 0xc3, 0xc3,
{0x00, 0x00, 0Oxc3, 0xc6, Oxcc, 0xd8, Oxf0, Oxfe, Oxc7,
{0x00, 0x00, Ox7e, Oxe7, 0x03, 0x03, 0x07, Ox7e, 0xeO,
{0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
{0x00, 0x00, Ox7e, Oxe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3,
{0x00, 0x00, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3, 0xc3,
{0x00, 0x00, Oxc3, Oxe7, Oxff, Oxff, Oxdb, Oxdb, Oxc3,
{0x00, 0x00, Oxc3, 0x66, 0x66, O0x3c, Ox3c, 0x18, 0x3c,
{0x00, 0x00, O0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c,
{0x00, 0x00, Oxff, OxcO, OxcO, 0x60, 0x30, Ox7e, O0xOc,

Guint fontOfset;

voi d makeRast er Font (voi d)

{

Voi

voi

~

* %k %k X X

Guint i, j;
gl Pi xel St orei (GL_UNPACK_ALI GNMENT, 1);

fontOFfset = gl GenLists (128);

for (i =0,j = A i <26; i++j++) {
gl NewLi st (fontOffset + j, G._COWPI LE)
gl Bitmap(8, 13, 0.0, 2.0, 10.0, 0.0, letters[i]);
gl EndLi st ();

gl NewLi st (fontOffset + ° *, G._COWPI LE)
gl Bitmap(8, 13, 0.0, 2.0, 10.0, 0.0, space);
gl EndLi st ();

d init(void)

gl ShadeMbdel (GL_FLAT);
makeRast er Font () ;

d printString(char *s)

gl PushAttrib (G_LIST_BIT);

gl Li st Base(fontOffset);

gl Cal I Lists(strlen(s), G._UNSI GNED BYTE, (GLubyte *) s);
gl PopAttrib ();

Everyt hi ng above this line could be in a library
that defines a font. To make it work, you’ve got
to call makeRasterFont() before you start naking
calls to printString().

0Oxc3,
0Oxc3,
0xcO,
0xc3,
0xcO,
0OxcO,
0xcO,
0xc3,
0x18,
0x06,
0xd8,
0OxcO,
Oxff,
oxf 3,
0xc3,
0xc3,
0Oxc3,
0Oxc3,
0xcO,
0x18,
0Oxc3,
0Oxc3,
0xc3,
0x3c,
0Ox3c,
0x06,

0x66,
0Oxc3,
0xcO,
Oxc7,
0xcO,
0OxcO,
0xcO,
0xc3,
0x18,
0x06,
Oxcc,
0OxcO,
Oxff,
oxf 3,
0xc3,
0xc3,
0Oxc3,
Oxc3,
0xcO,
0x18,
0Oxc3,
Oxc3,
0xc3,
0x66,
0x66,
0x03,

0Ox3c,
Oxc7,
Ooxe7,
Oxce,
0xcO,
0OxcO,
Ooxe7,
0xc3,
0x18,
0x06,
0xc6,
0OxcO,
Oxe7,
Oxe3,
Ooxe7,
Oxc7,
0x66,
Oxc7,
Ooxe7,
0x18,
0Oxc3,
Oxc3,
0xc3,
0x66,
0x66,
0x03,

Ox 1.
Oxf
Ox7:
Oxf «
Oxf 1
Oxf |
Ox7:
Oxc.
Ox7:
0x Ot
Oxc:
Oxc!
Oxc.
Oxe.
Ox7:
Oxf «
0x 3
Oxf
Ox7:
Oxf 1
Oxc.
Oxc.
Oxc:
Oxc.
Oxc.
Oxf |

voi d di spl ay(voi d)
{
G.float white[3] ={ 1.0, 1.0, 1.0 };

gl A ear (G._COLOR BUFFER BI T);
gl Col or 3fv(white);

gl Rast er Pos2i (20, 60);

printString("THE QU CK BROAN FOX JUWPS");
gl Rast er Pos2i (20, 40);

printString("OVER A LAZY DOG');

gl Flush ();

void reshape(int w, int h)

gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Matri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

glOrtho (0.0, w, 0.0, h, -1.0, 1.0);

gl Matri xMode(GL_MODELVI EW ;

voi d keyboard(unsi gned char key, int x, int vy)

switch (key) {
case 27:
exit(0);

}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlnitD splayMode(GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze(300, 100);
gl utl ni t WndowPosition (100, 100);
gl ut Cr eat eW ndow(argv[0]);
init();
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop() ;
return O;

| mages
An image is similar to a bitmap, but instead of containing only a single bit for each pixel in &
rectangular region of the screen, an image can contain much more information. For examp
image can contain a complete (R, G, B, A) color stored at each pixel. Images can come fro
several sources, such as

® A photograph that’s digitized with a scanner

® An image that was first generated on the screen by a graphics program using the grag
hardware and then read back, pixel by pixel

® A software program that generated the image in memory pixel by pixel

The images you normally think of as pictures come from the color buffers. However, you ce
or write rectangular regions of pixel data from or to the depth buffer or the stencil buffer. (Si
Chapter 1Gor an explanation of these other buffers.)

In addition to simply being displayed on the screen, images can be used for texture maps, i
case they're essentially pasted onto polygons that are rendered on the screen in the norme
(SeeChapter Jor more information about this technique.)

Reading, Writing, and Copying Pixel Data
OpenGL provides three basic commands that manipulate image data:

® glReadPixels() - Reads a rectangular array of pixels from the framebuffer and stores tr
in processor memory.

® glDrawPixels() - Writes a rectangular array of pixels from data kept in processor mem
into the framebuffer at the current raster position specifiegl Rgster Pos* ().

® glCopyPixels() - Copies a rectangular array of pixels from one part of the framebuffer t
another. This command behaves similarly to a cajlReadPixels() followed by a call to
glDrawPixels(), but the data is never written into processor memory.

For the aforementioned commands, the order of pixel data processing operations is $shgune
8-3.

Per-Veriex
g[HﬂﬁarFus*= Operatlons &
+ Primitive
Assembly

Per-
|Haater1m1lun | = Frogment e Frame

*{log, lexture) Buffer
Frocessor | glDrawPixels Operatians
Mamary |

giReadPixels -

giCopyPixels

Figure 8-3: Simplistic Diagram of Pixel Data Flow

The basic ideas iRigure 8-3are correct. The coordinatesgbRaster Pos* (), which specify the
current raster position used g\DrawPixels() andglCopyPixels(), are transformed by the
geometric processing pipeline. BaibrawPixels() andglCopyPixels() are affected by
rasterization and per-fragment operations. (But when drawing or copying a pixel rectangle,
almost never a reason to have fog or texture enabled.)

However, additional steps arise because there are many kinds of framebuffer data, many w
store pixel information in computer memory, and various data conversions that can be perfi
during the reading, writing, and copying operations. These possibilities translate to many di
modes of operation. If all your program does is copy images on the screen or read them int
memory temporarily so that they can be copied out later, you can ignore most of these moc
However, if you want your program to modify the data while it's in memory - for example, if
have an image stored in one format but the window requires a different format - or if you we

save image data to a file for future restoration in another session or on another kind of mac
significantly different graphical capabilities, you have to understand the various modes.

The rest of this section describes the basic commands in detail. The following sections disc
details of the series of imaging operations that comprise the Imaging Pipeline: pixel-storage
pixel-transfer operations, and pixel-mapping operations.

Reading Pixel Data from Frame Buffer to Processor Memory

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizel height,

GLenum format, GLenum type, GLvoid * pixels);
Reads pixel data from the framebuffer rectangle whose lower-left corner isat (x, y) and
whose dimensions are width and height and stores it in the array pointed to by pixels. format
indicates the kind of pixel data elementsthat areread (anindex valueor an R, G, B, or A
component value, aslisted in Table 8-1), and type indicates the data type of each element (see
Table 8-2).

If you are usingylReadPixels() to obtain RGBA or color-index information, you may need to
clarify which buffer you are trying to access. For example, if you have a double-buffered wil
you need to specify whether you are reading data from the front buffer or back buffer. To cc
the current read source buffer, ggiReadBuffer (). (See'Selecting Color Buffers for Writing anc
Reading" in Chapter 1D

Table 8-1 : Pixel Formats for gIReadPixels() or glDrawPixels()

format Constant

Pixel Format

GL_COLOR_INDEX

A single color index

GL_RGB A red color component, followed by a green color compong
followed by a blue color component

GL_RGBA A red color component, followed by a green color compong
followed by a blue color component, followed by an alpha
color component

GL_RED A single red color component

GL_GREEN A single green color component

GL_BLUE A single blue color component

GL_ALPHA A single alpha color component

GL_LUMINANCE

A single luminance component

GL_LUMINANCE_ALPHA

A luminance component followed by an alpha color
component

GL_STENCIL_INDEX

A single stencil index

GL_DEPTH_COMPONENT

A single depth component

Table 8-2 : Data Types for gIReadPixels() or glIDrawPixels()

type Constant Data Type

GL_UNSIGNED _BYTE | unsigned 8-bit integer

GL_BYTE signed 8-bit integer
GL_BITMAP single bits in unsigned 8-bit integers using the same format a
glBitmap()

GL_UNSIGNED_SHORT| unsigned 16-bit integer

GL_SHORT signed 16-bit integer
GL_UNSIGNED _INT unsigned 32-bit integer
GL_INT signed 32-bit integer
GL_FLOAT single-precision floating point

Remember that, depending on the format, anywhere from one to four elements are read (o
For example, if the format is GL_RGBA and you're reading into 32-bit integers (thatyjs i§
equal to GL_UNSIGNED _INT or GL_INT), then every pixel read requires 16 bytes of storag
(four components x four bytes/component).

Each element of the image is stored in memory as indicatédldg 8-2 If the element represen
a continuous value, such as a red, green, blue, or luminance component, each value is sca
into the available number of bits. For example, assume the red component is initially specif
floating-point value between 0.0 and 1.0. If it needs to be packed into an unsigned byte, on
of precision are kept, even if more bits are allocated to the red component in the framebuff
GL_UNSIGNED_SHORT and GL_UNSIGNED_INT give 16 and 32 bits of precision,
respectively. The normal (signed) versions of GL_BYTE, GL_SHORT, and GL_INT have 7,
and 31 bits of precision, since the negative values are typically not used.

If the element is an index (a color index or a stencil index, for example), and the type is not
GL_FLOAT, the value is simply masked against the available bits in the type. The signed v
GL_BYTE, GL_SHORT, and GL_INT - have masks with one fewer bit. For example, if a co
index is to be stored in a signed 8-bit integer, it’s first masked against Ox7f. If the type is
GL_FLOAT, the index is simply converted into a single-precision floating-point number (for
example, the index 17 is converted to the float 17.0).

Writing Pixel Data from Processor M emory to Frame Buffer

void glDrawPixels(GLsizei width, GLsizei height, GLenum format,

GLenum type, const GLvoid * pixels);
Draws a rectangle of pixel data with dimensions width and height. The pixel rectangleis
drawn with its lower-left corner at the current raster position. format and type have the same
meaning as with glReadPixels(). (For legal values for format and type, see Table 8-1 and

Table 8-2.) The array pointed to by pixels contains the pixel data to be drawn. If the current
raster position isinvalid, nothing is drawn, and the raster position remains invalid.

Example 8-3s a portion of a program, which uggBrawPixels() to draw an pixel rectangle in t
lower-left corner of a windownakeCheckl mage() creates a 64-by-64 RGB array of a
black-and-white checkerboard imagiRaster Pos2i(0,0) positions the lower-left corner of the
image. For now, ignorglPixelStorei().

Example 8-3 : Use of gIDrawPixels(): image.c

#def i ne checkl mageW dt h 64
#def i ne checkl mageHei ght 64
GLubyt e checkl mage[checkl nageHei ght] [checkl mageW dt h] [3] ;

voi d makeCheckl mage(voi d)

{

int i, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWdth; j++) {
c = ((((i&x8)==0)"((j&0x8))==0))*255;

checklmage[i][j][0] = (G.ubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i][j][2] = (G.ubyte) c;

}
}
}

void init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);

gl ShadeMovdel (GL_FLAT);

makeCheckl mage() ;

gl Pi xel St orei (GL_UNPACK_ALI GNMVENT, 1);

voi d di spl ay(void)

gl d ear (GL_COLOR BUFFER BI T);

gl Rast er Pos2i (0, 0);

gl Dr awPi xel s(checkl mageW dt h, checkl nageHei ght, G._RGB
GL_UNSI GNED_BYTE, checkl mage);

gl Fl ush();

When usingglDrawPixels() to write RGBA or color-index information, you may need to contr
the current drawing buffers witiiDrawBuffer (), which, along wittglReadBuffer (), is also
described inSelecting Color Buffers for Writing and Reading" in Chapter 10

Copying Pixel Data within the Frame Buffer

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height,

GLenum buffer);
Copies pixel data from the framebuffer rectangle whose lower-left corner isat (x, y) and
whose dimensions are width and height. The data is copied to a hew position whose lower -l eft
corner isgiven by the current raster position. buffer iseither GL_COLOR, GL_STENCIL, or
GL_DEPTH, specifying the framebuffer that is used. glCopyPixels() behaves similarly to a
glReadPixels() followed by a glDrawPixels(), with the following translation for the buffer to
format parameter:

® |f buffer is GL_DEPTH or GL_STENCIL, then GL_DEPTH_COMPONENT or
GL_STENCIL_INDEX is used, respectively.

® |[f GL_COLOR is specified, GL_RGBA or GL_COLOR_INDEX is used, depending on
whether the system is in RGBA or color-index mode.

Note that there’s no need forfarmat or data parameter foglCopyPixels(), since the data is nev
copied into processor memory. The read source buffer and the destination bgifopyfPixels()
are specified bglReadBuffer () andglDrawBuffer () respectively. BotlylDrawPixels() and
glCopyPixels() are used ifExample 8-4

For all three functions, the exact conversions of the data going to or from the framebuffer d
on the modes in effect at the time. See the next section for details.

| maging Pipeline

This section discusses the complete Imaging Pipeline: the pixel-storage modes and pixel-tr
operations, which include how to set up an arbitrary mapping to convert pixel data. You car
magnify or reduce a pixel rectangle before it's drawn by cagfiRgxelZoom(). The order of thes:
operations is shown iRigure 8-4

unpack
w| Pixel |m Flxel-Transfar Rasterlzatlon Par-
P;:'ﬂ?“m Storage Operalions ™ (including % Fragment [:r:fr;;:
sald :Fﬂﬁk Modes [*{{and Plxel Map) Plxel Zoom) Qperations
A + f 'y
Taxture
Mamory

Figure 8-4 : Imaging Pipeline

WhenglDrawPixels() is called, the data is first unpacked from processor memory according
pixel-storage modes that are in effect and then the pixel-transfer operations are applied. TF
resulting pixels are then rasterized. During rasterization, the pixel rectangle may be zoome:
down, depending on the current state. Finally, the fragment operations are applied and the
written into the framebuffer. (Sé&esting and Operating on Fragments" in Chaptefiot@
discussion of the fragment operations.)

WhenglReadPixels() is called, data is read from the framebuffer, the pixel-transfer operatior
performed, and then the resulting data is packed into processor memory.

glCopyPixels() applies all the pixel-transfer operations during what would bgl ReadPixels()
activity. The resulting data is written as it would begiyrawPixels(), but the transformations
aren’'t applied a second tim@gure 8-5shows howglCopyPixels() moves pixel data, starting frc
the frame buffer.

Pixel-Transler Rasterization Per- Frame
Operationa {including | Fragment == Buffer
Hand Pixel Map) Pixal Zoam) Opearatlona {atart)

Figure 8-5: glCopyPixels() Pixel Path

From"Drawing the Bitmap'andFigure 8-6 you see that rendering bitmaps is simpler than
rendering images. Neither the pixel-transfer operations nor the pixel-zoom operation are af

unpack Pixal Per-
s »! Storage » Rasterization [Fragment = Frore
Modes Operations

Figure 8-6 : gIBitmap() Pixel Path

Note that the pixel-storage modes and pixel-transfer operations are applied to textures as t
read from or written to texture memomjigure 8-7shows the effect ogl TexI mage* (),
gl TexSublmage* (), andglGet TexI mage().

unpack p— 31-

r Plxal wel-Transler

P::;:im " Storage Operationa
¥ Modes (and Pixe! Map)
pack 'L +

Texture

Mamary

Figure 8-7 : glTexImage*(), glTexSublmage*(), and glGetTexIimage() Pixel Paths

As seen irFigure 8-8 when pixel data is copied from the framebuffer into texture memory
(glCopyTexImage* () or giCopyTexSubl mage*()), only pixel-transfer operations are applied. (
Chapter Yor more information on textures.)

Pixel-Transfer Frame
Operationa Buffer
Kand Pixel Map) {=tart)
h +
Texture
Mamary

Figure 8-8 : glCopyTeximage*() and glCopyTexSubimage*() Pixel Paths

Pixel Packing and Unpacking

Packing and unpacking refer to the way that pixel data is written to and read from processac
memory.

An image stored in memory has between one and four chunks of datagsstiends. The data
might consist of just the color index or the luminance (luminance is the weighted sum of the
green, and blue values), or it might consist of the red, green, blue, and alpha components f
pixel. The possible arrangements of pixel datedpomats, determine the number of elements
stored for each pixel and their order.

Some elements (such as a color index or a stencil index) are integers, and others (such as
green, blue, and alpha components, or the depth component) are floating-point values, typi
ranging between 0.0 and 1.0. Floating-point components are usually stored in the framebuf
lower resolution than a full floating-point number would require (for example, color compont
may be stored in 8 bits). The exact number of bits used to represent the components depel
particular hardware being used. Thus, it's often wasteful to store each component as a full
floating-point number, especially since images can easily contain a million pixels.

Elements can be stored in memory as various data types, ranging from 8-bit bytes to 32-bit
or floating-point numbers. OpenGL explicitly defines the conversion of each component in ¢
format to each of the possible data types. Keep in mind that you may lose data if you try to
high-resolution component in a type represented by a small number of bits.

Controlling Pixel-Storage M odes

Image data is typically stored in processor memory in rectangular two- or three-dimensiona
Often, you want to display or store a subimage that corresponds to a subrectangle of the ai
addition, you might need to take into account that different machines have different byte-or
conventions. Finally, some machines have hardware that is far more efficient at moving dat
from the framebuffer if the data is aligned on 2-byte, 4-byte, or 8-byte boundaries in proces
memory. For such machines, you probably want to control the byte alignment. All the issue
in this paragraph are controlled as pixel-storage modes, which are discussed in the next su
You specify these modes by usigiixel Store* (), which you've already seen used in a couple
example programs.

All the possible pixel-storage modes are controlled withgtRixel Stor e* () command. Typically,
several successive calls are made with this command to set several parameter values.

void glPixel Store{if}(GLenum pname, TYPE param);

Sets the pixel-storage modes, which affect the operation of glDrawPixels(), glReadPixels(),
glBitmap(), glPolygonStipple(), gl Texl magelD(), glTexl mage2D(), gl TexSubl magelD(),
gl TexSubl mage2D(), and glGetTexl mage(). The possible parameter names for pname are
shown in Table 8-3, along with their data type, initial value, and valid range of values. The
GL_UNPACK* parameters control how data is unpacked from memory by glDrawPixel (),
glBitmap(), glPolygonStipple(), glTexl magelD(), gl Texl mage2D(), gl TexSubl magelD(),
and gl TexSublmage2D(). The GL_PACK* parameters control how data is packed into
memory by glReadPixels() and glGetTexI mage().

Table 8-3: glPixelStore() Parameters

Parameter Name Type Initial Valid Range
Value
GL_UNPACK_SWAP_BYTES, GLboolean| FALSE TRUE/FALSE
GL_PACK_SWAP_BYTES
GL_UNPACK_LSB_FIRST, GLboolean| FALSE TRUE/FALSE
GL_PACK _LSB_FIRST
GL_UNPACK_ROW_LENGTH, GLint 0 any nonnegative
GL_PACK _ROW_LENGTH integer
GL_UNPACK_SKIP_ROWS, GLint 0 any nonnegative
GL_PACK_SKIP_ROWS integer
GL_UNPACK_SKIP_PIXELS, GLint 0 any nonnegative
GL_PACK_SKIP_PIXELS integer
GL_UNPACK_ALIGNMENT, GLint 4 1,2,4,8
GL_PACK_ALIGNMENT

Since the corresponding parameters for packing and unpacking have the same meanings,
discussed together in the rest of this section and referred to without the GL_PACK or
GL_UNPACK prefix. For example, *SWAP_BYTES refers to GL_PACK_SWAP_BYTES an
GL_UNPACK_SWAP_BYTES.

If the *SWAP_BYTES parameter is FALSE (the default), the ordering of the bytes in memo
whatever is native for the OpenGL client; otherwise, the bytes are reversed. The byte rever
applies to any size element, but really only has a meaningful effect for multibyte elements.

Note: As long as your OpenGL application doesn’t share images with other machines, you
ignore the issue of byte ordering. If your application must render an OpenGL image that we
created on a different machine and the "endianness"” of the two machines differs, byte orde
be swapped using *SWAP_BYTES. However, *SWAP_BYTES does not allow you to reord
elements (for example, to swap red and green).

The *LSB_FIRST parameter applies when drawing or reading 1-bit images or bitmaps, for \
single bit of data is saved or restored for each pixel. If *LSB_FIRST is FALSE (the default),
bits are taken from the bytes starting with the most significant bit; otherwise, they’re taken i
opposite order. For example, if *LSB_FIRST is FALSE, and the byte in question is 0x31, th
in order, are {0, 0, 1, 1,0, 0, O, 1}. If *LSB_FIRST is TRUE, the orderis {1,0,0,0,1, 1,0, C

Sometimes you want to draw or read only a subrectangle of the entire rectangle of image d
stored in memory. If the rectangle in memory is larger than the subrectangle that's being dr
read, you need to specify the actual length (measured in pixels) of the larger rectangle with
*ROW_LENGTH. If *‘ROW_LENGTH is zero (which it is by default), the row length is
understood to be the same as the width that's specifiedjiiigadPixels(), glDrawPixels(), or

glCopyPixels(). You also need to specify the number of rows and pixels to skip before starti
copy the data for the subrectangle. These numbers are set using the parameters *SKIP_R(
*SKIP_PIXELS, as shown ifigure 8-9 By default, both parameters are 0, so you start at the
lower-left corner.

*ROW_LENGTH

sublmage

*SKIP_PIXELS

A

*SKIP_ROWS image

Figure 8-9: *SKIP_ROWS, *SKIP_PIXELS, and *ROW_LENGTH Parameters

Often a particular machine’s hardware is optimized for moving pixel data to and from memc
the data is saved in memory with a particular byte alignment. For example, in a machine wi
words, hardware can often retrieve data much faster if it's initially aligned on a 32-bit bounc
which typically has an address that is a multiple of 4. Likewise, 64-bit architectures might w
better when the data is aligned to 8-byte boundaries. On some machines, however, byte al
makes no difference.

As an example, suppose your machine works better with pixel data aligned to a 4-byte bou
Images are most efficiently saved by forcing the data for each row of the image to begin on
boundary. If the image is 5 pixels wide and each pixel consists of 1 byte each of red, green
blue information, a row requires 5 x 3 = 15 bytes of data. Maximum display efficiency can kt
achieved if the first row, and each successive row, begins on a 4-byte boundary, so there is
of waste in the memory storage for each row. If your data is stored like this, set the *ALIGN
parameter appropriately (to 4, in this case).

If *ALIGNMENT is set to 1, the next available byte is used. If it's 2, a byte is skipped if nece
at the end of each row so that the first byte of the next row has an address that’'s a multiple
the case of bitmaps (or 1-bit images) where a single bit is saved for each pixel, the same b
alignment works, although you have to count individual bits. For example, if you're saving &
bit per pixel, the row length is 75, and the alignment is 4, then each row requires 75/8, or 9
bytes. Since 12 is the smallest multiple of 4 that is bigger than 9 3/8, 12 bytes of memory a
for each row. If the alignment is 1, then 10 bytes are used for each row, as 9 3/8 is roundec
the next byte. (There is a simple us@léfixelStorei() in Example 8-9

Pixel-Transfer Operations

As image data is transferred from memory into the framebuffer, or from the framebuffer intc
memory, OpenGL can perform several operations on it. For example, the ranges of compoil
be altered - normally, the red component is between 0.0 and 1.0, but you might prefer to ke
some other range; or perhaps the data you’re using from a different graphics system stores

component in a different range. You can even create maps to perform arbitrary conversion
indices or color components during pixel transfer. Conversions such as these performed dt
transfer of pixels to and from the framebuffer are called pixel-transfer operations. They're
controlled with theglPixel Transfer* () andglPixelM ap* () commands.

Be aware that although the color, depth, and stencil buffers have many similarities, they do
behave identically, and a few of the modes have special cases for special buffers. All the
details are covered in this section and the sections that follow, including all the special case

Some of the pixel-transfer function characteristics are setghRilkel Transfer*(). The other
characteristics are specified wtPixelMap* (), which is described in the next section.

void glPixel Transfer{if}(GLenum pname, TYPE param);
Sets pixel-transfer modes that affect the operation of glDrawPixels(), glReadPixels(),
glCopyPixels(), gl TexlmagelD(), gl Texl mage2D(), glCopyTexl magelD(),
glCopyTexImage2D(), gl TexSubl magelD(), gl TexSubl mage2D(),
glCopyTexSubl magelD(), glCopyTexSubl mage2D(), and glGetTexl mage(). The parameter
pname must be one of those listed in the first column of Table 8-4, and its value, param, must
be in the valid range shown.

Table 8-4 : glPixelTransfer*() Parameters (continued)

Parameter Name Type Initial Value | Valid Range
GL_MAP_COLOR GLboolean| FALSE TRUE/FALSE
GL_MAP_STENCIL | GLboolean| FALSE TRUE/FALSE
GL_INDEX_SHIFT GLint 0 (- ∞ , ∞)
GL_INDEX_OFFSET| GLint 0 (- ∞ , ∞)
GL_RED_SCALE GLfloat 1.0 (- ∞ , ∞)
GL_GREEN_SCALE | GLfloat 1.0 (- ∞ , ∞)
GL_BLUE_SCALE GLfloat 1.0 (- &Infin; , ∞)
GL_ALPHA_SCALE | GLfloat 1.0 (- ∞ , ∞)
GL_DEPTH_SCALE | GLfloat 1.0 (- ∞ , ∞)
GL_RED_BIAS GLfloat 0 (- ∞ , ∞)
GL_GREEN_BIAS GLfloat 0 (- ∞ , ∞)
GL_BLUE_BIAS GLfloat 0 (- &Infin; , ∞)
GL_ALPHA_BIAS GLfloat 0 (- &Infin; , ∞)
GL_DEPTH_BIAS GLfloat 0 (- ∞ , ∞)

If the GL_MAP_COLOR or GL_MAP_STENCIL parameter is TRUE, then mapping is enabl
See the next subsection to learn how the mapping is done and how to change the contents
maps. All the other parameters directly affect the pixel component values.

A scale and bias can be applied to the red, green, blue, alpha, and depth components. For
you may wish to scale red, green, and blue components that were read from the framebuffe
converting them to a luminance format in processor memory. Luminance is computed as th
the red, green, and blue components, so if you use the default value for GL_RED_SCALE,
GL_GREEN_SCALE and GL_BLUE_SCALE, the components all contribute equally to the 1
intensity or luminance value. If you want to convert RGB to luminance, according to the NT
standard, you set GL_RED_SCALE to .30, GL_GREEN_SCALE to .59, and GL_BLUE_SC
to .11.

Indices (color and stencil) can also be transformed. In the case of indices a shift and offset
applied. This is useful if you need to control which portion of the color table is used during

rendering.
Pixel Mapping

All the color components, color indices, and stencil indices can be modified by means of a 1
lookup before they are placed in screen memory. The command for controlling this mappin
glPixelMap*().

void glPixelMap{ui us f}v(GLenum map, GLint mapsize,

const TYPE *values);
Loads the pixel map indicated by map with mapsize entries, whose values are pointed to by
values. Table 8-5 lists the map names and values; the default sizesare all 1 and the default
values are all 0. Each map’s size must be a power of 2.

Table 8-5 : glPixelMap*() Parameter Names and Values

Map Name Address Value

GL_PIXEL_MAP_|I TO | color index color index

GL_PIXEL_MAP_S TO_S | stencil index | stencil index

GL_PIXEL_MAP_I_TO_R | color index R

GL_PIXEL_MAP_| TO_G | colorindex | G

GL_PIXEL_MAP_I TO_B | color index B

GL_PIXEL_MAP_I TO_A | color index A

GL_PIXEL_MAP_R_TO R| R R
GL_PIXEL_MAP_G_TO G| G G
GL_PIXEL_MAP_B_TO B| B B
GL_PIXEL_MAP_A TO A| A A

The maximum size of the maps is machine-dependent. You can find the sizes of the pixel r
supported on your machine wighGetlntegerv(). Use the query argument
GL_MAX_PIXEL_MAP_TABLE to obtain the maximum size for all the pixel map tables, ant
GL_PIXEL_MAP_* TO_* SIZE to obtain the current size of the specified map. The six ma|
whose address is a color index or stencil index must always be sized to an integral power ¢
four RGBA maps can be any size from 1 through GL_MAX_PIXEL_MAP_TABLE.

To understand how a table works, consider a simple example. Suppose that you want to cr

256-entry table that maps color indices to color indices using GL_PIXEL_MAP_I_TO_1. Yol
create a table with an entry for each of the values between 0 and 255 and initialize the tabls
glPixelMap*(). Assume you're using the table for thresholding and want to map indices belc
(indices 0 to 100) to 0, and all indices 101 and above to 255. In this case, your table consis
Os and 155 255s. The pixel map is enabled using the rgli@nel Transfer*() to set the
parameter GL_MAP_COLOR to TRUE. Once the pixel map is loaded and enabled, incomir
indices below 101 come out as 0, and incoming pixels between 101 and 255 are mapped t
the incoming pixel is larger than 255, it’s first masked by 255, throwing out all the bits abow
eighth, and the resulting masked value is looked up in the table. If the incoming index is a
floating-point value (say 88.14585), it's rounded to the nearest integer value (giving 88), an
number is looked up in the table (giving 0).

Using pixel maps, you can also map stencil indices or convert color indices to RGER¢&dag
and Drawing Pixel Rectangle®r information about the conversion of indices.)

Magnifying, Reducing, or Flipping an Image

After the pixel-storage modes and pixel-transfer operations are applied, images and bitmag
rasterized. Normally, each pixel in an image is written to a single pixel on the screen. Howe
can arbitrarily magnify, reduce, or even flip (reflect) an image by wigelZoom().

void glPixelZoom(GLfloat zoomx, GLfloat zoomy);
Sets the magnification or reduction factors for pixel-write operations (glDrawPixels() or
glCopyPixels()), in the x- and y-dimensions. By default, zoomx and zoomy are 1.0. If they're
both 2.0, each image pixel is drawn to 4 screen pixels. Note that fractional magnification or
reduction factors are allowed, as are negative factors. Negative zoom factors reflect the
resulting image about the current raster position.

During rasterization, each image pixel is treated zmix x zoomy rectangle, and fragments ar
generated for all the pixels whose centers lie within the rectangle. More specificahyp |gti)
be the current raster position. If a particular group of elements (index or componentsjhsrite
row and belongs to theth column, consider the region in window coordinates bounded by th
rectangle with corners at

(xrp +zoomx * n, yrp +zoomy * m) and &rp +zoomx(n+1), yrp +zoomy(nm+1))

Any fragments whose centers lie inside this rectangle (or on its bottom or left boundaries) €
produced in correspondence with this particular group of elements.

A negative zoom can be useful for flipping an image. OpenGL describes images from the b
row of pixels to the top (and from left to right). If you have a "top to bottom" image, such as
frame of video, you may want to ugé’ixelZoom(1.0, -1.0) to make the image right side up fo
OpenGL. Be sure that you reposition the current raster position appropriately, if needed.

Example 8-4shows the use @lPixelZoom(). A checkerboard image is initially drawn in the
lower-left corner of the window. Pressing a mouse button and moving the mouse uses
glCopyPixels() to copy the lower-left corner of the window to the current cursor location. (If
copy the image onto itself, it looks wacky!) The copied image is zoomed, but initially it is zo
by the default value of 1.0, so you won’t notice. The ‘z’ and ‘Z’ keys increase and decrease
zoom factors by 0.5. Any window damage causes the contents of the window to be redrawi
Pressing the ‘I’ key resets the image and the zoom factors.

Example 8-4 : Drawing, Copying, and Zooming Pixel Data: image.c

#i ncl ude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>

#def i ne checkl mageW dt h 64
#def i ne checkl mageHei ght 64
GLubyt e checkl mage[checkl nageHei ght] [checkl mageW dt h] [3] ;

stati c GL.doubl e zoonfFactor = 1.0;
static GLint height;

voi d makeCheckl mage(voi d)

r
int i, j, c;
for (i = 0; i < checklnageHei ght; i++) {
for (j = 0; j < checklnageWdth; j++)
c = ((((i &x8)==0)"((]j &0x8))==0)) *255;
checklmage[i][j][0] = (GLubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i]l[j][2] = (G.ubyte) c;
}
}
}
voi d init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (GL_FLAT);
makeCheckl mage() ;
gl Pi xel St orei (GL_UNPACK_ALI GNVENT, 1);
}
voi d di spl ay(voi d)
{
gl G ear (G._COLOR BUFFER BIT);
gl Rast er Pos2i (0, 0);
gl Dr awPi xel s(checkl nageW dt h, checkl mageHei ght, G._RGB,
GL_UNSI GNED_BYTE, checkl mage);
gl Flush();
}
void reshape(int w, int h)
{
gl Viewport (0, O, (G.sizei) w, (Gsizei) h);
height = (GLint) h;
gl Mat ri xMode(GL_PROQJECTI ON) ;
gl Loadl dentity();
gluOrtho2D(0.0, (G.double) w, 0.0, (G.double) h);
gl Mat ri xMode(GL_MCDELVI EW ;
gl Loadl dentity();
}
void notion(int x, int vy)
{

static Gint screeny;

screeny = height - (GLint) vy;
gl Rast er Pos2i (x, screeny);
gl Pi xel Zoom (zoonfFact or, zoonfactor);

gl CopyPi xel s (0, 0, checkl mageW dt h, checkl nageHei ght,
G_COR);

gl Pi xel Zoom (1.0, 1.0);

gl Flush ();

voi d keyboard(unsi gned char key, int x, int y)

switch (key) {
case ‘r’:
case ‘R:
zoonfFactor = 1.0;
gl ut Post Redi spl ay() ;
printf ("zoonFactor reset to 1.0\n");
br eak;
case ‘'z’
zoonfactor += 0.5;
if (zoonfFactor >= 3.0)
zoonfFactor = 3.0;
printf ("zoonFactor is now %. 1f\n", zoonFactor);
br eak;
case ‘Z
zoonfFactor -= 0.5;
if (zoonfFactor <= 0.5)
zoonfFactor = 0.5;
printf ("zoonFactor is now %l. 1f\n", zoonfFactor);
br eak;
case 27:
exit(0);
br eak;
defaul t:
br eak;

}
}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlinitD splayMde(GLUT_SI NGLE | GLUT_RGB)
gl utlnit WndowSi ze(250, 250);
gl ut I ni t WndowPosi tion(100, 100);
gl ut Cr eat eW ndow(argv[0]);
init();
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Moti onFunc(noti on);
gl ut Mai nLoop() ;
return O;

Reading and Drawing Pixel Rectangles

This section describes the reading and drawing processes in detail. The pixel conversions

performed when going from framebuffer to memory (reading) are similar but not identical to
conversions performed when going in the opposite direction (drawing), as explained in the

following sections. You may wish to skip this section the first time through, especially if you
plan to use the pixel-transfer operations right away.

The Pixel Rectangle Drawing Process
Figure 8-10and the following list describe the operation of drawing pixels into the framebuff

byte short int float
Dala Stream
({index or component}

¥

unpack
| reBAL.Z
convart
to[D, 1]
-
convert .
L-*=REBA Pixal-
= Storage
Modes
Pixal-
kL Y Transfar
sgale shitt Modes
) hias . ofiset
L ¥
RGEBA*RGBA index*RGBA index*index
lookup o lockup Inokup
¥ l
clamp mask 1o
. to[0, 1] [0.0, 2n-1]
RGBA Index
Z {=tancil, color indax)

Pixel Data Out

Figure 8-10 : Drawing Pixels with gIDrawPixels()

1. If the pixels aren’t indices (that is, the format isn't GL_COLOR_INDEX or
GL_STENCIL_INDEX), the first step is to convert the components to floating-point for
necessary. (Seeable 4-1for the details of the conversion.)

2. If the format is GL_LUMINANCE or GL_LUMINANCE_ALPHA, the luminance elemen
converted into R, G, and B, by using the luminance value for each of the R, G, and B
components. In GL_LUMINANCE_ALPHA format, the alpha value becomes the A val
GL_LUMINANCE is specified, the A value is set to 1.0.

3. Each component (R, G, B, A, or depth) is multiplied by the appropriate scale, and the
appropriate bias is added. For example, the R component is multiplied by the value

corresponding to GL_RED_SCALE and added to the value corresponding to
GL_RED_BIAS.

4. If GL_MAP_COLOR is true, each of the R, G, B, and A components is clamped to the
[0.0,1.0], multiplied by an integer one less than the table size, truncated, and looked u
table. (SeéTips for Improving Pixel Drawing Rate$r more details.)

5. Next, the R, G, B, and A components are clamped to [0.0,1.0], if they weren’t already,
converted to fixed-point with as many bits to the left of the binary point as there are in
corresponding framebuffer component.

6. If you're working with index values (stencil or color indices), then the values are first
converted to fixed-point (if they were initially floating-point numbers) with some unspe
bits to the right of the binary point. Indices that were initially fixed-point remain so, anc
bits to the right of the binary point are set to zero.

The resulting index value is then shifted right or left by the absolute value of
GL_INDEX_SHIFT bits; the value is shifted left if GL_INDEX_SHIFT > 0 and right
otherwise. Finally, GL_INDEX_ OFFSET is added to the index.

7. The next step with indices depends on whether you're using RGBA mode or color-ind
mode. In RGBA mode, a color index is converted to RGBA using the color component
specified by GL_PIXEL_MAP_| TO R, GL_PIXEL MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_|_TO_A. (Sérixel Mapping"for
details.) Otherwise, if GL_MAP_COLOR is GL_TRUE, a color index is looked up throt
the table GL_PIXEL_MAP_|_TO_I. (If GL_MAP_COLOR is GL_FALSE, the index is
unchanged.) If the image is made up of stencil indices rather than color indices, and if
GL_MAP_STENCIL is GL_TRUE, the index is looked up in the table corresponding to
GL_PIXEL_MAP_S TO_S. If GL_MAP_STENCIL is FALSE, the stencil index is
unchanged.

8. Finally, if the indices haven’t been converted to RGBA, the indices are then masked tc
number of bits of either the color-index or stencil buffer, whichever is appropriate.

The Pixel Rectangle Reading Process
Many of the conversions done during the pixel rectangle drawing process are also done du

pixel rectangle reading process. The pixel reading process is shéigure 8-11and described i
the following list.

Pixels from Framebuffar

RGEA Index
rd {stancil, color indax}
¥
map
1[0, 1]
]
scale shift
bias offsat
" B |
¥ ¥
RGBA-=RGBA Index -=RGBA index -*index
lnokup b lookup lookup
ju [
] 1
¥ 44
clamp mask to Pixal-
te[o, 1] [0.0, 2n-1] Transter
= = Modes
L Pixal-
convert Storage
oL Modes
= RGBA
Z
L o Index
. pack |
"_'.........I......m
bwie short int float
Data Stream
(index or componant)
{0 memary

Figure 8-11 : Reading Pixels with glReadPixels()

1. If the pixels to be read aren’t indices (that is, the format isn't GL_COLOR_INDEX or
GL_STENCIL_INDEX), the components are mapped to [0.0,1.0] - that is, in exactly th
opposite way that they are when written.

2. Next, the scales and biases are applied to each component. If GL_MAP_COLOR is
GL_TRUE, they’re mapped and again clamped to [0.0,1.0]. If luminance is desired ins
RGB, the R, G, and B components are added (L =R + G + B).

3. If the pixels are indices (color or stencil), they’re shifted, offset, and, if GL_MAP_COL!(
GL_TRUE, also mapped.

4. If the storage format is either GL_COLOR_INDEX or GL_STENCIL_INDEX, the pixel
indices are masked to the number of bits of the storage type (1, 8, 16, or 32) and pacl
memory as previously described.

5. If the storage format is one of the component kind (such as luminance or RGB), the pi
always mapped by the index-to-RGBA maps. Then, they’re treated as though they ha
RGBA pixels in the first place (including potential conversion to luminance).

6. Finally, for both index and component data, the results are packed into memory accor
the GL_PACK* modes set withi Pixel Stor e* ().

The scaling, bias, shift, and offset values are the same as those used when drawing pixels,
you're both reading and drawing pixels, be sure to reset these components to the appropric
before doing a read or a draw. Similarly, the various maps must be properly reset if you inte
use maps for both reading and drawing.

Note: It might seem that luminance is handled incorrectly in both the reading and drawing
operations. For example, luminance is not usually equally dependent on the R, G, and B
components as it may be assumed from Bajhre 8-10andFigure 8-11 If you wanted your
luminance to be calculated such that the R component contributed 30 percent, the G 59 pe
the B 11 percent, you can set GL_RED_SCALE to .30, GL_RED_BIAS t0 0.0,andsoon. T
computed L is then .30R + .59G + .11B.

Tipsfor Improving Pixel Drawing Rates

As you can see, OpenGL has a rich set of features for reading, drawing and manipulating [
Although these features are often very useful, they can also decrease performance. Here a
tips for improving pixel draw rates.

® For best performance, set all pixel-transfer parameters to their default values, and set
zoom to (1.0,1.0).

® A series of fragment operations is applied to pixels as they are drawn into the framebt
(See'"Testing and Operating on Fragments" in Chaptey B6r optimum performance disa
all fragment operations.

® While performing pixel operations, disable other costly states, such as texturing and li

® If you use an image format and type that matches the framebuffer, you can reduce the
of work that the OpenGL implementation has to do. For example, if you are writing imi
an RGB framebuffer with 8 bits per component, gllrawPixels() with format set to RGB
andtype set to UNSIGNED_BYTE.

® For some implementations, unsigned image formats are faster to use than signed ima
formats.

® [t is usually faster to draw a large pixel rectangle than to draw several small ones, sinc
cost of transferring the pixel data can be amortized over many pixels.

® |f possible, reduce the amount of data that needs to be copied by using small data typ
example, use GL_UNSIGNED_BYTE) and fewer components (for example, use form:
GL_LUMINANCE_ALPHA).

® Pixel-transfer operations, including pixel mapping and values for scale, bias, offset, ar
other than the defaults, may decrease performance.

OpenGL Programming Guide
(Addison-Wedley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 9
Texture Mapping

Chapter Objectives
After reading this chapter, you’ll be able to do the following:
® Understand what texture mapping can add to your scene
® Specify a texture image
® Control how a texture image is filtered as it's applied to a fragment

® Create and manage texture images in texture objects and, if available, control a
high-performance working set of those texture objects

® Specify how the color values in the image combine with those of the fragment to whicl
being applied

® Supply texture coordinates to indicate how the texture image should be aligned to the
in your scene

® Use automatic texture coordinate generation to produce effects like contour maps anc
environment maps

So far, every geometric primitive has been drawn as either a solid color or smoothly shade
between the colors at its vertices - that is, they've been drawn without texture mapping. If y
to draw a large brick wall without texture mapping, for example, each brick must be drawn :
separate polygon. Without texturing, a large flat wall - which is really a single rectangle - mi
require thousands of individual bricks, and even then the bricks may appear too smooth an
to be realistic.

Texture mapping allows you to glue an image of a brick wall (obtained, perhaps, by scannir
photograph of a real wall) to a polygon and to draw the entire wall as a single polygon. Tex
mapping ensures that all the right things happen as the polygon is transformed and rendere
example, when the wall is viewed in perspective, the bricks may appear smaller as the wall
farther from the viewpoint. Other uses for texture mapping include depicting vegetation on |
polygons representing the ground in flight simulation; wallpaper patterns; and textures that
polygons look like natural substances such as marble, wood, or cloth. The possibilities are
Although it's most natural to think of applying textures to polygons, textures can be applied
primitives - points, lines, polygons, bitmaps, and images. Plates 6, 8, 18-21, 24-27, and 29-
demonstrate the use of textures.

Because there are so many possibilities, texture mapping is a fairly large, complex subject,

must make several programming choices when using it. For instance, you can map texture
surfaces made of a set of polygons or to curved surfaces, and you can repeat a texture in ¢
directions to cover the surface. A texture can even be one-dimensional. In addition, you cal
automatically map a texture onto an object in such a way that the texture indicates contour:
properties of the item being viewed. Shiny objects can be textured so that they appear to b
center of a room or other environment, reflecting the surroundings off their surfaces. Finally
texture can be applied to a surface in different ways. It can be painted on directly (like a de:
placed on a surface), used to modulate the color the surface would have been painted othe
used to blend a texture color with the surface color. If this is your first exposure to texture n
you might find that the discussion in this chapter moves fairly quickly. As an additional refei
you might look at the chapter on texture mappingundamentals of Three-Dimensional

Computer Graphicdy Alan Watt (Reading, MA: Addison-Wesley Publishing Company, 199(

Textures are simply rectangular arrays of data - for example, color data, luminance data, ol
and alpha data. The individual values in a texture array are often teadidsl\What makes texture
mapping tricky is that a rectangular texture can be mapped to nonrectangular regions, and
be done in a reasonable way.

Figure 9-1lillustrates the texture-mapping process. The left side of the figure represents the
texture, and the black outline represents a quadrilateral shape whose corners are mapped
spots on the texture. When the quadrilateral is displayed on the screen, it might be distorte:
applying various transformations - rotations, translations, scaling, and projections. The righ
the figure shows how the texture-mapped quadrilateral might appear on your screen after tl
transformations. (Note that this quadrilateral is concave and might not be rendered correctl
OpenGL without prior tessellation. SEdapter 1¥or more information about tessellating

polygons.)

CAAE (W

Figure 9-1: Texture-Mapping Process

Notice how the texture is distorted to match the distortion of the quadrilateral. In this case, i
stretched in the direction and compressed in thdirection; there’s a bit of rotation and sheari
going on as well. Depending on the texture size, the quadrilateral’s distortion, and the size
screen image, some of the texels might be mapped to more than one fragment, and some f

might be covered by multiple texels. Since the texture is made up of discrete texels (in this
256 x 256 of them), filtering operations must be performed to map texels to fragments. For
example, if many texels correspond to a fragment, they’re averaged down to fit; if texel bou
fall across fragment boundaries, a weighted average of the applicable texels is performed.
of these calculations, texturing is computationally expensive, which is why many specialize
graphics systems include hardware support for texture mapping.

An application may establish texture objects, with each texture object representing a single
(and possible associated mipmaps). Some implementations of OpenGL can support a spec
working set of texture objects that have better performance than texture objects outside the
set. These high-performance texture objects are saidresioentand may have special hardwa
and/or software acceleration available. You may use OpenGL to create and delete texture
and to determine which textures constitute your working set.

This chapter covers the OpenGL'’s texture-mapping facility in the following major sections.

® "An Overview and an Examplajives a brief, broad look at the steps required to perforn
texture mapping. It also presents a relatively simple example of texture mapping.

® "Specifying the Texturegxplains how to specify one- or two-dimensional textures. It als
discusses how to use a texture’s borders, how to supply a series of related textures oi
sizes, and how to control the filtering methods used to determine how an applied textt
mapped to screen coordinates.

® "Filtering" details how textures are either magnified or minified as they are applied to t
pixels of polygons. Minification using special mipmap textures is also explained.

® "Texture Objects'tlescribes how to put texture images into objects so that you can con
several textures at one time. With texture objects, you may be able to create a workin
high-performance textures, which are said to be resident. You may also prioritize textt
objects to increase or decrease the likelihood that a texture object is resident.

® "Texture Functionstliscusses the methods used for painting a texture onto a surface. "
choose to have the texture color values replace those that would be used if texturing \
effect, or you can have the final color be a combination of the two.

® "Assigning Texture Coordinateslescribes how to compute and assign appropriate textt
coordinates to the vertices of an object. It also explains how to control the behavior of
coordinates that lie outside the default range - that is, how to repeat or clamp textures
surface.

® "Automatic Texture-Coordinate Generatisiiows how to have OpenGL automatically
generate texture coordinates so that you can achieve such effects as contour and env
maps.

® "Advanced Featurexplains how to manipulate the texture matrix stack and how to us
g texture coordinate.

Version 1.1 of OpenGL introduces several new texture-mapping operations:

O Thirty-eight additional internal texture image formats

O Texture proxy, to query whether there are enough resources to accommodate a
texture image

O Texture subimage, to replace all or part of an existing texture image rather than
completely deleting and creating a texture to achieve the same effect

O Specifying texture data from framebuffer memory (as well as from processor me
O Texture objects, including resident textures and prioritizing
If you try to use one of these texture-mapping operations and can't find it, check the versior

number of your implementation of OpenGL to see if it actually supports it."(Beieh Version
Am | Using?" in Chapter 14

An Overview and an Example

This section gives an overview of the steps necessary to perform texture mapping. It also p
relatively simple texture-mapping program. Of course, you know that texture mapping can t
very involved process.

Stepsin Texture Mapping
To use texture mapping, you perform these steps.
1. Create a texture object and specify a texture for that object.
2. Indicate how the texture is to be applied to each pixel.
3. Enable texture mapping.
4. Draw the scene, supplying both texture and geometric coordinates.

Keep in mind that texture mapping works only in RGBA mode. Texture mapping results in
color-index mode are undefined.

Create a Texture Object and Specify a Texturefor That Object

A texture is usually thought of as being two-dimensional, like most images, but it can also k
one-dimensional. The data describing a texture may consist of one, two, three, or four elen
texel, representing anything from a modulation constant to an (R, G, B, A) quadruple.

In Example 9-1which is very simple, a single texture object is created to maintain a single
two-dimensional texture. This example does not find out how much memory is available. Si
only one texture is created, there is no attempt to prioritize or otherwise manage a working
texture objects. Other advanced techniques, such as texture borders or mipmaps, are not L
simple example.

Indicate How the Texturelsto Be Applied to Each Pixel

You can choose any of four possible functions for computing the final RGBA value from the
fragment color and the texture-image data. One possibility is simply to use the texture colol
final color; this is thelecalmode, in which the texture is painted on top of the fragment, just ¢
decal would be appliedEkample 9-luses decal mode.) Theplacemode, a variant of the deca
mode, is a second method. Another method is to use the textoeltdate or scale, the

fragment’s color; this technique is useful for combining the effects of lighting with texturing.
Finally, a constant color can be blended with that of the fragment, based on the texture valt

Enable Texture Mapping

You need to enable texturing before drawing your scene. Texturing is enabled or disabled t
glEnable() or glDisable() with the symbolic constant GL_TEXTURE_1D or GL_TEXTURE_2
for one- or two-dimensional texturing, respectively. (If both are enabled, GL_ TEXTURE_2C
one that is used.)

Draw the Scene, Supplying Both Texture and Geometric Coordinates

You need to indicate how the texture should be aligned relative to the fragments to which it
applied before it's "glued on." That is, you need to specify both texture coordinates and gec
coordinates as you specify the objects in your scene. For a two-dimensional texture map, f
example, the texture coordinates range from 0.0 to 1.0 in both directions, but the coordinatt
items being textured can be anything. For the brick-wall example, if the wall is square and 1
represent one copy of the texture, the code would probably assign texture coordinates (O, (
(1, 1), and (0, 1) to the four corners of the wall. If the wall is large, you might want to paint <
copies of the texture map on it. If you do so, the texture map must be designed so that the
the left edge match up nicely with the bricks on the right edge, and similarly for the bricks o
top and those on the bottom.

You must also indicate how texture coordinates outside the range [0.0,1.0] should be treate
textures repeat to cover the object, or are they clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture mapping is that int
textures are large. Typically, textures are read from an image file, since specifying a texture
programmatically could take hundreds of lines of cod&xample 9-1the texture - which consis
of alternating white and black squares, like a checkerboard - is generated by the program.
program applies this texture to two squares, which are then rendered in perspective, one of
facing the viewer squarely and the other tilting back at 45 degrees, as sHagure9-2 In objec
coordinates, both squares are the same size.

Figure9-2: Texture-Mapped Squares

Example 9-1 : Texture-Mapped Checkerboard: checker.c

#i nclude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

/*

Create checkerboard texture */

#def i ne checkl mageW dt h 64
#def i ne checkl mageHei ght 64
static Gubyte checkl mage[checkl nageHei ght] [checkl mageW dt h] [4] ;

static GLui nt texName;

Vo

{

VO

d makeCheckl nage(voi d)
int i, j, c;
for (i = 0; i < checklnageHei ght; i++) {

for (j = 0; j < checklmageWdth; j++) {
c = ((((i&0x8)==0)"((j&0x8))==0))*255;

checkl mage[i][j][0] = (G.ubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i][j][2] = (G.ubyte) c;
checklmage[i][j][3] = (G.ubyte) 255;
}
}
d init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (GL_FLAT);
gl Enabl e(G._DEPTH_TEST) ;

makeCheckl mage() ;
gl Pi xel St orei (G._UNPACK_ALI GNMENT, 1);

gl GenTextures(1, &texNane);
gl Bi ndText ure(GL_TEXTURE_2D, texNane);

gl TexParanmet eri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, G._REPEAT);

gl TexParamet eri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, G._REPEAT);

gl TexPar anet eri (GL_TEXTURE_2D, G._TEXTURE_MAG FI LTER
GL_NEAREST) ;

gl TexParamet eri (GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER,
GL_NEAREST) ;
gl Texl mage2D(GL_TEXTURE 2D, 0, G._RGBA, checkl nageW dt h,
checkl mageHei ght, 0, GL_RGBA, GL_UNSI GNED BYTE,
checkl mage) ;

}
voi d di spl ay(voi d)
{
gl O ear (G_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
gl Enabl e(GL_TEXTURE_2D) ;
gl TexEnvf (GL_TEXTURE_ENV, G._TEXTURE_ENV_MODE, GL_DECAL);
gl Bi ndText ure(GL_TEXTURE_2D, texNane);
gl Begi n(GL_QUADS) ;
gl TexCoor d2f (0.0, 0.0); gl Vertex3f(-2.0, -1.0, 0.0);
gl TexCoor d2f (0.0, 1.0); gl Vertex3f(-2.0, 1.0, 0.0);
gl TexCoord2f (1.0, 1.0); gl Vertex3f(0.0, 1.0, 0.0);
gl TexCoord2f (1.0, 0.0); gl Vertex3f(0.0, -1.0, 0.0);
gl TexCoor d2f (0.0, 0.0); gl Vertex3f(1.0, -1.0, 0.0);
gl TexCoord2f (0.0, 1.0); gl Vertex3f(1.0, 1.0, 0.0);
gl TexCoord2f (1.0, 1.0); gl Vertex3f(2.41421, 1.0, -1.41421);
gl TexCoor d2f (1.0, 0.0); gl Vertex3f(2.41421, -1.0, -1.41421);
gl End() ;
gl Fl ush();
gl Di sabl e(GL_TEXTURE_2D) ;
}
voi d reshape(int w, int h)
{
gl Viewport (0, O, (GLsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
gl uPerspective(60.0, (Gfloat) w (Gfloat) h, 1.0, 30.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
gl Transl atef (0.0, 0.0, -3.6);
}
voi d keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
br eak;
defaul t:
br eak;
}
}
int main(int argc, char** argv)
{

glutinit(&rgc, argv);

glutlnitD splayMde(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze(250, 250);

gl ut I ni t WndowPosi tion(100, 100);
gl ut Creat eW ndow(argv[0]);

init();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O;

The checkerboard texture is generated in the rootasleeCheckl mage(), and all the
texture-mapping initialization occurs in the routiné(). gilGenTextures() andglBindTextur ()
name and create a texture object for a texture image'8gwire Objects)'The single,
full-resolution texture map is specified gyl exl mage2D(), whose parameters indicate the size
the image, type of the image, location of the image, and other properties of {iSf@e#ying the
Texture"for more information abowgi T exl mage2D().)

The four calls t@I TexParameter* () specify how the texture is to be wrapped and how the co
are to be filtered if there isn't an exact match between pixels in the texture and pixels on the
(See"Repeating and Clamping Texturesmid"Filtering.")

In display(), glEnable() turns on texturinggl TexEnv* () sets the drawing mode to GL_DECAL
that the textured polygons are drawn using the colors from the texture map (rather than tak
account what color the polygons would have been drawn without the texture).

Then, two polygons are drawn. Note that texture coordinates are specified along with verte
coordinates. ThglTexCoord*() command behaves similarly to thi&ormal() command.
glTexCoord*() sets the current texture coordinates; any subsequent vertex command has tl
texture coordinates associated with it ugitifexCoor d*() is called again.

Note: The checkerboard image on the tilted polygon might look wrong when you compile ar
it on your machine - for example, it might look like two triangles with different projections of
checkerboard image on them. If so, try setting the parameter
GL_PERSPECTIVE_CORRECTION_HINT to GL_NICEST and running the example again
do this, usglHint().

Specifying the Texture

The command)l Texlmage2D() defines a two-dimensional texture. It takes several argument:
which are described briefly here and in more detail in the subsections that follow. The relatt
command for one-dimensional texturgls,exl magelD(), is described iiOne-Dimensional
Textures."

void gl Texl mage2D(GLenumtarget, GLintlevel GLintinternalFormat

GLsizeiwidth, GLsizeiheight GLintborder,

GLenumformat, GLenuntype

const GLvoidpixels);
Defines a two-dimensional texture. Tthegetparameter is set to either the constant
GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D. You usketetparameter if you're
supplying multiple resolutions of the texture map; with only one resollgns should be 0
(See'Multiple Levels of Detail'for more information about using multiple resolutions.)
The next parametemternalFormat indicates which of the R, G, B, and A components ¢
luminance or intensity values are selected for use in describing the texels of an image
value ofinternalFormatis an integer from 1 to 4, or one of thirty-eight symbolic constan
The thirty-eight symbolic constants that are also legal valuestemalFormatare
GL_ALPHA, GL_ALPHA4, GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16, GL_LUMINA|
GL_LUMINANCE4, GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE1S6,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCEG6_ALPHA.
GL_LUMINANCES8_ALPHAS8, GL_LUMINANCE12_ ALPHAA4,

GL_LUMINANCE12_ ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGE
GL_R3_G3 B2, GL_RGB4, GL_RGB5, GL_RGBS8, GL_RGB10, GL_RGB12, GL_RG
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBAS8, GL_RGB10_AZ2,
GL_RGBA12, and GL_RGBA16. (S&exture Functionsfor a discussion of how these
selected components are applied.)

If internalFormatis one of the thirty-eight symbolic constants, then you are asking for
specific components and perhaps the resolution of those components. For example, i
internalFormatis GL_R3_G3_B2, you are asking that texels be 3 bits of red, 3 bits of ¢
and 2 bits of blue, but OpenGL is not guaranteed to deliver this. OpenGL is only oblig;
choose an internal representation that closely approximates what is requested, but an
match is usually not required. By definition, GL_LUMINANCE, GL_LUMINANCE_ALP
GL_RGB, and GL_RGBA are lenient, because they do not ask for a specific resolutiol
compatibility with the OpenGL release 1.0, the numeric values 1, 2, 3, and 4, for
internalFormat are equivalent to the symbolic constants GL_LUMINANCE,
GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA, respectively.)

Thewidth andheightparameters give the dimensions of the texture imagyeler indicates
the width of the border, which is either zero (no border) or one."(3®ag a Texture’s
Borders") Bothwidth andheightmust have the form 2m+2b, where m is a nhonnegative
integer (which can have a different value wadth than forheigh) and b is the value of
border. The maximum size of a texture map depends on the implementation of Openc
must be at least 64 x 64 (or 66 x 66 with borders).

The formatandtype parameters describe the format and data type of the texture image
They have the same meaning as they dglfarawPixels(). (Se€'lmaging Pipeline” in
Chapter 8) In fact, texture data is in the same format as the data usgtDbbswPixels(), so
the settings ofl Pixel Store* () and glPixel Transfer* () are applied. (InExample 9-1the call

gl Pi xel St or ei (GL_UNPACK_ALI GNVENT, 1);

is made because the data in the example isn’t padded at the end of each texel row.) 1
formatparameter can be GL_COLOR_INDEX, GL_RGB, GL_RGBA, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA
that is, the same formats available fDrawPixels() with the exceptions of
GL_STENCIL_INDEX and GL_DEPTH_COMPONENT.

Similarly, thetypeparameter can be GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED _INT, GL_FLOAT, or GL_BITMAI
Finally, pixelscontains the texture-image data. This data describes the texture image i
well as its border.

The internal format of a texture image may affect the performance of texture operations. Fc
example, some implementations perform texturing with GL_RGBA faster than GL_RGB, be
the color components align the processor memory better. Since this varies, you should che
specific information about your implementation of OpenGL.

The internal format of a texture image also may control how much memory a texture image
consumes. For example, a texture of internal format GL_RGBAS8 uses 32 bits per texel, wh
texture of internal format GL_R3_G3_B2 only uses 8 bits per texel. Of course, there is a
corresponding trade-off between memory consumption and color resolution.

Note: Although texture-mapping results in color-index mode are undefined, you can still spe
texture with a GL_COLOR_INDEX image. In that case, pixel-transfer operations are applie

convert the indices to RGBA values by table lookup before they’re used to form the texture

The number of texels for both the width and height of a texture image, not including the opt
border, must be a power of 2. If your original image does not have dimensions that fit that
limitation, you can use the OpenGL Utility Library routiglesScalel mage() to alter the size of
your textures.

int gluScalel mage(GLenumformat, GLintwidthin, GLint heightin

GLenunmtypein const void #atain, GLintwidthout

GLint heightout GLenuntypeout void *dataou);
Scales an image using the appropriate pixel-storage modes to unpack the dadatfiom
The format, typein andtypeoutparameters can refer to any of the formats or data types
supported bylDrawPixels(). The image is scaled using linear interpolation and box filte
(from the size indicated lwidthin andheightinto widthoutandheightouj, and the resulting
image is written talataout using the pixel GL_PACK* storage modes. The caller of
gluScalel mage() must allocate sufficient space for the output buffer. A value of 0 is rett
on success, and a GLU error code is returned on failure.

The framebuffer itself can also be used as a source for texturgl@apy T exl mage2D() reads a
rectangle of pixels from the framebuffer and uses it for a new texture.

void glCopyTexl mage2D(GLenumtarget GLintlevel

GLint internalFormat

GLint x, GLinty, GLsizewidth, GLsizeiheight

GLint border);
Creates a two-dimensional texture, using framebuffer data to define the texels. The pi
read from the current GL_READ_BUFFER and are processed exactlgl&ogyPixels()
had been called but stopped before final conversion. The settigtf2x# Transfer*() are
applied.
Thetarget parameter must be set to the constant GL_ TEXTURE_2DeVéle
internalFormat andborder parameters have the same effects that they have for
gl Teximage2D(). The texture array is taken from a screen-aligned pixel rectangle with
lower-left corner at coordinates specified by tkeyj parameters. Theidth andheight
parameters specify the size of this pixel rectangle. ®atth andheightmust have the forn
2m+2b, where m is a nonnegative integer (which can have a different valuelfiothan for
heighd and b is the value dforder.

The next sections give more detail about texturing, including the usetafgie¢ border, andlevel
parameters. The&argetparameter can be used to accurately query the size of a texture (by cr
texture proxy withgl Texlmage* D()) and whether a texture possibly can be used within the te
resources of an OpenGL implementation. Redefining a portion of a texture is described in
"Replacing All or Part of a Texture Imag€&he-dimensional textures are discussed in
"One-Dimensional TexturesThe texture border, which has its size controlled byotrder
parameter, is detailed fiusing a Texture’s BordersThelevel parameter is used to specify
textures of different resolutions and is incorporated into the special techniounoépping
which is explained ifiMultiple Levels of Detail."Mipmapping requires understanding how to fi
textures as they’re applied; filtering is the subjectatering."

Texture Proxy

To an OpenGL programmer who uses textures, size is important. Texture resources are tyf

limited and vary among OpenGL implementations. There is a special texture proxy target tc
evaluate whether sufficient resources are available.

olGetintegerv(GL_MAX_TEXTURE_SIZE,...) tells you the largest dimension (width or heigt
without borders) of a texture image, typically the size of the largest square texture supporte
However, GL_ MAX_TEXTURE_SIZE does not consider the effect of the internal format of
texture. A texture image that stores texels using the GL_RGBA16 internal format may be u:
bits per texel, so its image may have to be 16 times smaller than an image with the
GL_LUMINANCE4 internal format. (Also, images requiring borders or mipmaps may furthe
reduce the amount of available memory.)

A special place holder, groxy, for a texture image allows the program to query more accura
whether OpenGL can accommodate a texture of a desired internal format. To use the prox
OpenGL, calglTexlmage2D() with atargetparameter of GL_PROXY_TEXTURE_2D and the
givenlevel, internalFormat, width, height, border, formahdtype (For one-dimensional texture
use corresponding 1D routines and symbolic constants.) For a proxy, you should pass NUL
pointer for thepixelsarray.

To find out whether there are enough resources available for your texture, after the texture
has been created, query the texture state variableg@iehT exL evel Par ameter*(). If there aren
enough resources to accommodate the texture proxy, the texture state variables for width,
border width, and component resolutions are set to 0.

void glGetTexL evel Parameter{if} v(GLenumtarget, GLintlevel

GLenumpname TYPE*paramg;
Returns inparamstexture parameter values for a specific level of detail, specifiésl/abk
targetdefines the target texture and is one of GL_ TEXTURE_1D, GL_TEXTURE_2D,
GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_2D. Accepted valyemfoeare
GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT, GL_TEXTURE_BORDER,
GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_
GL_TEXTURE_LUMINANCE_SIZE, or GL_TEXTURE_INTENSITY_SIZE.
GL_TEXTURE_COMPONENTS is also acceptedfame but only for backward
compatibility with OpenGL Release 1.0 - GL_TEXTURE_INTERNAL_FORMAT is the
recommended symbolic constant for Release 1.1.

Example 9-Zdemonstrates how to use the texture proxy to find out if there are enough resot
create a 64 x 64 texel texture with RGBA components with 8 bits of resolution. If this succe
thenglGetTexL evelParameteriv() stores the internal format (in this case, GL_RGBAS) into tt
variable format

Example 9-2 . Querying Texture Resources with a Texture Proxy

Gint format;

gl Tex| mage2D(GL_PROXY_TEXTURE 2D, 0, GL_RGBAS,
64, 64, 0, GL_RGBA, GL_UNSI GNED BYTE, NULL);
gl Get TexLevel Paranet eri v(G._PROXY_TEXTURE 2D, O,
GL_TEXTURE_| NTERNAL_FORVAT, &f ormat);

Note: There is one major limitation about texture proxies: The texture proxy tells you if there
space for your texture, but only if all texture resources are available (in other words, if it's tt
texture in town). If other textures are using resources, then the texture proxy query may res

affirmatively, but there may not be enough space to make your texture resident (that is, par
possibly high-performance working set of textures). (Segture Objectsfor more information
about managing resident textures.)

Replacing All or Part of a Texturelmage

Creating a texture may be more computationally expensive than modifying an existing one.
OpenGL Release 1.1, there are new routines to replace all or part of a texture image with n
information. This can be helpful for certain applications, such as using real-time, captured v
images as texture images. For that application, it makes sense to create a single texture ar
ol TexSubl mage2D() to repeatedly replace the texture data with new video images. Also, the
no size restrictions fayl TexSubl mage2D() that force the height or width to be a power of two.
This is helpful for processing video images, which generally do not have sizes that are pow
two.

void gl TexSubl mage2D(GLenuntarget GLintlevel GLint xoffsef

GLint yoffset GLsizewidth, GLsizeiheight

GLenumformat, GLenuntype const GLvoidpixels);
Defines a two-dimensional texture image that replaces all or part of a contiguous subr
(in 2D, it's simply a rectangle) of the current, existing two-dimensional texture image.
targetparameter must be set to GL_TEXTURE_2D.
Thelevel format,andtypeparameters are similar to the ones useddidrexl mage2D().
levelis the mipmap level-of-detail number. It is not an error to specify a width or heigh
zero, but the subimage will have no efféostmatandtypedescribe the format and data ty,
of the texture image data. The subimage is also affected by modegstkéeptore* () and
glPixel Transfer*().
pixelscontains the texture data for the subimagilth andheightare the dimensions of th
subregion that is replacing all or part of the current texture imag#setandyoffsetspecify
the texel offset in theandy directions (with (0, 0) at the lower-left corner of the texture)
specify where to put the subimage within the existing texture array. This region may n
include any texels outside the range of the originally defined texture array.

In Example 9-3some of the code frolxample 9-lhas been modified so that pressing the ‘s’
drops a smaller checkered subimage into the existing image. (The resulting texture is show
Figure 9-3) Pressing the ‘r’ key restores the original imdpeample 9-3hows the two routines,
makeCheckl mages() andkeyboard(), that have been substantially changed. ($egture
Objects"for more information abowiBindTextur&().)

Figure 9-3: Texture with Subimage Added

Example 9-3: Replacing a Texture Subimage: texsub.c

/* Create checkerboard textures */

#def i ne checkl mnageW dt h 64

#def i ne checkl mageHei ght 64

#defi ne subl mageWdth 16

#def i ne subl mageHei ght 16

static Gubyte checkl mage[checkl mageHei ght] [checkl mageW dt h] [4] ;
static GLubyte subl nage[subl nageHei ght][subl mageW dt h] [4] ;

voi d makeCheckl mages(voi d)

t
int i, j, c;
for (i = 0; i < checklnageHei ght; i++) {
for (j = 0; j < checklnageWdth; j++)
c = ((((i&x8)==0)"((] &0x8))==0)) *255;
checklmage[i][j][0] = (G.ubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i][j][2] = (G.ubyte) c;
checklmage[i][j][3] = (G.ubyte) 255;
}
}
for (i = 0; i < sublmageHeight; i++) {
for (j = 0; j < sublnmageWdth; j++)
c = ((((i&0x4)==0)"((]j &0x4))==0)) *255;
sublmage[i][j][0] = (GLubyte) c;
sublmage[i][j]1[1] = (GLubyte) O;
sublmage[i][j]1[2] = (GLubyte) O;
sublmage[i][j]1[3] = (GLubyte) 255;
}
}
}

voi d keyboard (unsigned char key, int x, int y)

switch (key) {

case ‘s’

case ‘'S
gl Bi ndText ure(GL_TEXTURE 2D, texNane);
gl TexSubl mage2D(GL_TEXTURE 2D, 0, 12, 44,

subl mageW dt h, subl mageHei ght, GL_RGBA,
GL_UNSI GNED_BYTE, subl nage);

gl ut Post Redi spl ay() ;
br eak;

case ‘r’

case ‘R :
gl Bi ndText ure(GL_TEXTURE 2D, texNane);
gl Texl mage2D(GL_TEXTURE 2D, 0, G._RGBA,

checkl mageW dt h, checkl nageHei ght, O,
GL_RGBA, G._UNSI GNED BYTE, checkl nage);

gl ut Post Redi spl ay() ;
br eak;

case 27:
exit(0);
br eak;

def aul t:
br eak;

}
}

Once again, the framebuffer itself can be used as a source for texture data; this time, a tex
subimageglCopyTexSublmage2D() reads a rectangle of pixels from the framebuffer and rep
a portion of an existing texture arraglQopyTexSublmage2D() is kind of a cross between
glCopyTexlmage2D() andgl TexSubl mage2D().)

void glCopyTexSubl mage2D(GLenuntarget, GLintlevel

GLint xoffset GLintyoffset GLintx, GLinty,

GLsizeiwidth, GLsizeiheigh;
Uses image data from the framebuffer to replace all or part of a contiguous subregion
current, existing two-dimensional texture image. The pixels are read from the current
GL_READ_BUFFER and are processed exactly gidbpyPixels() had been called,
stopping before final conversion. The settingglBfxel Store* () andglPixel Transfer* () are
applied.
Thetarget parameter must be set to GL_ TEXTURE_[2Relis the mipmap level-of-detail
number xoffsetandyoffsetspecify the texel offset in the x and y directions (with (0, 0) af
lower-left corner of the texture) and specify where to put the subimage within the exist
texture array. The subimage texture array is taken from a screen-aligned pixel rectang
the lower-left corner at coordinates specified by the/\ parameters. Theidth andheight
parameters specify the size of this subimage rectangle.

One-Dimensional Textures

Sometimes a one-dimensional texture is sufficient - for example, if you're drawing textured
where all the variation is in one direction. A one-dimensional texture behaves like a
two-dimensional one witheight= 1, and without borders along the top and bottom. All the
two-dimensional texture and subtexture definition routines have corresponding one-dimens
routines. To create a simple one-dimensional texturegliiszl magelD().

void gl TexlmagelD(GLenumtarget GLintlevel GLintinternalFormat

GLsizeiwidth, GLintborder, GLenumformat

GLenunmtype const GLvoidpixels);
Defines a one-dimensional texture. All the parameters have the same meanings as fo
gl Texl mage2D(), except that the image is now a one-dimensional array of texels. As b
the value ofvidthis 2m (or 2m+2, if there’s a border), where m is a nonnegative intege
can supply mipmaps, proxies (ts#tgetto GL_PROXY_TEXTURE_1D), and the same
filtering options are available as well.

For a sample program that uses a one-dimensional texture mé&xaseple 9-6
To replace all or some of the texels of a one-dimensional texturglTieseSubl magelD().

void gl TexSubl magelD(GLenuntarget GLintlevel GLint xoffsef

GLsizeiwidth, GLenumformat,

GLenunmtype const GLvoidpixels);
Defines a one-dimensional texture array that replaces all or part of a contiguous subre
(in 1D, a row) of the current, existing one-dimensional texture imagetaftet parameter
must be set to GL_TEXTURE_1D.
Thelevel format,andtypeparameters are similar to the ones useddidrexl magelD().
levelis the mipmap level-of-detail numbéormatandtypedescribe the format and data ty
of the texture image data. The subimage is also affected by modegd@kéystore* () or
glPixel Transfer*().

pixelscontains the texture data for the subimagdth is the number of texels that replace part
all of the current texture imageoffsetspecifies the texel offset for where to put the subimage
within the existing texture array.

To use the framebuffer as the source of a new or replacement for an old one-dimensional t
use eitheglCopyTexImagelD() or glCopyTexSubl magelD().

void glCopyTexl magelD(GLenumtarget, GLintlevel

GLintinternalFormat GLintx, GLinty,

GLsizeiwidth, GLintborder);
Creates a one-dimensional texture, using framebuffer data to define the texels. The pi
read from the current GL_READ_BUFFER and are processed exactlgl&ogyPixels()
had been called but stopped before final conversion. The settig2a Store* () and
glPixel Transfer*() are applied.
Thetarget parameter must be set to the constant GL_ TEXTURE_1DeVéle
internalFormat andborder parameters have the same effects that they have for
glCopyTexIlmage2D(). The texture array is taken from a row of pixels with the lower-left
corner at coordinates specified by they) parameters. Theidth parameter specifies the
number of pixels in this row. The valuenflith is 2m (or 2m+2 if there’s a border), where
IS @ nonnegative integer.

void glCopyTexSubl magelD(GLenuntarget GLintlevel GLint xoffset

GLint x, GLinty, GLsizeiwidth);
Uses image data from the framebuffer to replace all or part of a contiguous subregion
current, existing one-dimensional texture image. The pixels are read from the current
GL_READ_BUFFER and are processed exactly ggdbpyPixels() had been called but
stopped before final conversion. The settingglBifxel Store* () and glPixel Transfer*() are
applied.
Thetargetparameter must be set to GL_TEXTURE_|&Relis the mipmap level-of-detall
number xoffsetspecifies the texel offset and specifies where to put the subimage withil
existing texture array. The subimage texture array is taken from a row of pixels with tr
lower-left corner at coordinates specified by tkeyj parameters. Theidth parameter
specifies the number of pixels in this row.

Using a Texture'sBorders
Advanced

If you need to apply a larger texture map than your implementation of OpenGL allows, you
with a little care, effectively make larger textures by tiling with several different textures. Fol
example, if you need a texture twice as large as the maximum allowed size mapped to a sc
draw the square as four subsquares, and load a different texture before drawing each piece

Since only a single texture map is available at one time, this approach might lead to problel
edges of the textures, especially if some form of linear filtering is enabled. The texture valu
used for pixels at the edges must be averaged with something beyond the edge, which, ide
should come from the adjacent texture map. If you define a border for each texture whose 1
values are equal to the values of the texels on the edge of the adjacent texture map, then tl
behavior results when linear filtering takes place.

To do this correctly, notice that each map can have eight neighbors - one adjacent to each
one touching each corner. The values of the texels in the corner of the border need to corre
with the texels in the texture maps that touch the corners. If your texture is an edge or corn
whole tiling, you need to decide what values would be reasonable to put in the borders. The
reasonable thing to do is to copy the value of the adjacent texel in the texture map. Remernr
the border values need to be supplied at the same time as the texture-image data, so you r

figure this out ahead of time.

A texture’s border color is also used if the texture is applied in such a way that it only partia
covers a primitive. (Se#&kepeating and Clamping Texturdst more information about this
situation.)

Multiple Levels of Detail
Advanced

Textured objects can be viewed, like any other objects in a scene, at different distances fro
viewpoint. In a dynamic scene, as a textured object moves farther from the viewpoint, the t
map must decrease in size along with the size of the projected image. To accomplish this, ¢
has to filter the texture map down to an appropriate size for mapping onto the object, witho
introducing visually disturbing artifacts. For example, to render a brick wall, you may use a
(say 128 x 128 texel) texture image when it is close to the viewer. But if the wall is moved f
away from the viewer until it appears on the screen as a single pixel, then the filtered textur
appear to change abruptly at certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps of decreasing
resolutions, callechipmapsas shown ifrigure 9-4 The termmipmapwas coined by Lance
Williams, when he introduced the idea in his papRyramidal Parametrics(SIGGRAPH 1983
ProceedingsMip stands for the Latimultim im parvgo meaning "many things in a small place.
Mipmapping uses some clever methods to pack image data into memory.

Onginal Texture

Pre-Filtered Images

14

146

1784
@eb}.
P | pixel

Figure 9-4 : Mipmaps

When using mipmapping, OpenGL automatically determines which texture map to use basi
size (in pixels) of the object being mapped. With this approach, the level of detail in the texi
map is appropriate for the image that’s drawn on the screen - as the image of the object ge
smaller, the size of the texture map decreases. Mipmapping requires some extra computati
texture storage area; however, when it's not used, textures that are mapped onto smaller o
might shimmer and flash as the objects move.

To use mipmapping, you must provide all sizes of your texture in powers of 2 between the |
size and a 1 x 1 map. For example, if your highest-resolution map is 64 x 16, you must alst
maps of size 32 x 8,16 x4,8x2,4x1,2x1,and 1 x 1. The smaller maps are typically fi
and averaged-down versions of the largest map in which each texel in a smaller texture is ¢
average of the corresponding four texels in the larger texture. (Since OpenGL doesn’t requ
particular method for calculating the smaller maps, the differently sized textures could be tc
unrelated. In practice, unrelated textures would make the transitions between mipmaps ext
noticeable.)

To specify these textures, cglll exl mage2D() once for each resolution of the texture map, wit
different values for thievel width, height andimageparameters. Starting with zeteyel
identifies which texture in the series is specified; with the previous example, the largest texi
size 64 x 16 would be declared witlvel= 0, the 32 x 8 texture willbvel= 1, and so on. In
addition, for the mipmapped textures to take effect, you need to choose one of the appropri
filtering methods described in the next section.

Example 9-4llustrates the use of a series of six texture maps decreasing in size from 32 x !
1. This program draws a rectangle that extends from the foreground far back in the distanct
eventually disappearing at a point, as showtPlate 20" in Appendix.INote that the texture
coordinates range from 0.0 to 8.0 so 64 copies of the texture map are required to tile the re
eight in each direction. To illustrate how one texture map succeeds another, each map has
different color.

Example 9-4 : Mipmap Textures: mipmap.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G./glut. h>
#i ncl ude <stdlib. h>
GLubyte mi prmapl nage32[32][32][4];
GLubyte m prmapl nagel6[16][16][4];
GLubyte m prmapl nage8[8][8][4];
GLubyte m prmapl naged[4][4][4];
GLubyte m pmapl nage2[2][2][4];
GLubyte m prmapl magel[1][1][4];
static GLuint texNamne;
voi d makel mages(voi d)
{
int i, j;
for (i =0; i <32; i++) {
for (j =0; j <32, j++) {
m prmapl mage32[i][j]1[0] = 255;
m pmapl mage32[i][j][1] = 255;
m pmapl mage32[i][j][2] = O;
m prmapl mage32[i][j][3] = 255;
}
Yoo . .
for (i =0; i < 16; i++) {
for (j =0; j < 16; j++) {
m pmapl magel6[i][j][0] = 255;
m prapl magel6[i][j][1] = O;
m prmapl magel6[i][j]1[2] = 255;
m prmapl magel6[i][j][3] = 255;

voi

for (i =0; i

for (j =05] <|8; J')+£“) {
m pmapl mage8[i][j][0] = 255;
m pmapl mage8[i][j][1] = O;
m pmapl mage8[i][j][2] = O;
m prmapl mage8[i][j]1[3] = 255;
}
for (i =0; i <4, i++) {
for (j =0;] <4, j++) {
m pmapl mage4[i][j][0] = O;
m pmapl maged[i]J[j][1] = 255;
m pmapl mage4[i][j][2] = O;
m prmapl mage4[i][j]1[3] = 255;
}
%or (i =0; i <2; i++) {
for (j =0;] <2, j++) {
m pmapl mage2[i][j][0] = O;
m pmapl mage2[i][j][1] = O;
m pmapl mage2[i][j][2] = 255;
m pmapl mage2[i][j][3] = 255;
}
m prmapl magel[0] [0] [0] = 255;
m prmapl magel[0] [0] [1] = 255;
m prmapl magel[0] [0] [2] = 255;
m pmapl magel[0] [0] [3] = 255;
d init(void)
gl Enabl e(G._DEPTH_TEST) ;
gl ShadeModel (GL_FLAT);
gl Transl atef (0.0, 0.0, -3.6);

makel nages() ;
gl Pi xel St orei (GL_UNPACK_ALI GNMVENT, 1);

gl GenTextures(1, &texName);

gl Bi ndText ure(GL_TEXTURE 2D, texNane);

gl TexPar anet eri (G._TEXTURE_2D,

gl TexPar anet eri (G._TEXTURE_2D,

gl TexPar anet eri (GL_TEXTURE_2D,
GL_NEAREST) ;

gl TexPar anet eri (G._TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_REPEAT);
GL_TEXTURE_WRAP_T, GL_REPEAT):
GL_TEXTURE_MAG FI LTER,

GL_TEXTURE_M N_FI LTER,

GL_NEAREST_M PMAP_NEAREST) ;

gl Tex| mage2D(GL_TEXTURE 2D, 0, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Texl mage2D(GL_TEXTURE 2D, 1, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Tex| mage2D(GL_TEXTURE 2D, 2, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Tex| mage2D(GL_TEXTURE 2D, 3, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Tex| mage2D(GL_TEXTURE 2D, 4, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Texl mage2D(GL_TEXTURE 2D, 5, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,

32, 32, 0,

m pmapl mage32) ;
16, 16, O,

nm prmapl magel6) ;
rﬁ pm'apl 'mage8) ;
m prriapl ,rrage4) ;
rﬁ pm'apl 'mage2) ;

nm prmapl magel) ;

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

gl Enabl e(G._TEXTURE_2D) ;

voi d di spl ay(voi d)
{

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

gl Bi ndText ure(GL_TEXTURE_2D, texNane);

gl Begi n(GL_QUADS) ;

gl TexCoord2f (0.0, 0.0); gl Vertex3f(-2.0, -1.0, 0.0);

gl TexCoor d2f (0.0, 8.0); gl Vertex3f(-2.0, 1.0, 0.0);

gl TexCoord2f (8.0, 8.0); gl Vertex3f(2000.0, 1.0, -6000.0);
gl TexCoord2f (8.0, 0.0); gl Vertex3f(2000.0, -1.0, -6000.0);

gl End() ;
gl Fl ush();
}
void reshape(int w, int h)
{
gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROQJECTI ON) ;
gl Loadl dentity();
gl uPer spective(60.0, (G.float)w (Gfloat)h, 1.0, 30000.0);
gl Mat ri xMode(GL_MCODELVI EW ;
gl Loadl dentity();
}
voi d keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
br eak;
def aul t:
br eak;
}
}

int main(int argc, char** argv)

glutinit(&rgc, argv);
glutlnitD splayMde(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze(500, 500);
gl utlni t WndowPosi tion(50, 50);
gl ut Creat eW ndow(argv[0]);
init();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O;

}

Example 9-4llustrates mipmapping by making each mipmap a different color so that it's ob\
when one map is replaced by another. In a real situation, you define mipmaps so that the tr
is as smooth as possible. Thus, the maps of lower resolution are usually filtered versions of
original, high-resolution map. The construction of a series of such mipmaps is a software p
and thus isn’t part of OpenGL, which is simply a rendering library. However, since mipmap
construction is such an important operation, however, the OpenGL Utility Library contains t
routines that aid in the manipulation of images to be used as mipmapped textures.

Assuming you have constructed the level 0, or highest-resolution map, the routines
gluBuild1DMipmaps() andgluBuild2DMipmaps() construct and define the pyramid of mipme
down to a resolution of 1 x 1 (or 1, for one-dimensional texture maps). If your original imag:
dimensions that are not exact powers ajl@Build*DMipmaps() helpfully scales the image to t
nearest power of 2.

int gluBuild1DMipmaps(GLenuntarget, GLintcomponentsGLint width,

GLenumformat, GLenuntype void *data);

int gluBuild2DMipmaps(GLenuntarget, GLintcomponentsGLint width,

GLint height GLenumformat, GLenuntype

void *data);
Constructs a series of mipmaps and cgliEexl mage* D() to load the images. The
parameters fotarget, componentswidth, height format type anddataare exactly the san
as those fogl TexlmagelD() andglTexl mage2D(). A value of O is returned if all the
mipmaps are constructed successfully; otherwise, a GLU error code is returned.

Filtering

Texture maps are square or rectangular, but after being mapped to a polygon or surface ar
transformed into screen coordinates, the individual texels of a texture rarely correspond to
individual pixels of the final screen image. Depending on the transformations used and the
mapping applied, a single pixel on the screen can correspond to anything from a tiny portio
texel (magnification) to a large collection of texels (minification), as showigure 9-5 In either
case, it's unclear exactly which texel values should be used and how they should be averay
interpolated. Consequently, OpenGL allows you to specify any of several filtering options tc
determine these calculations. The options provide different trade-offs between speed and il
quality. Also, you can specify independently the filtering methods for magnification and
minification.

ortion of a texel__ g
/pomenclateel A,]
" T
E -]tht&lé_"“
texel

Taxture Polygan Texture Polygon

Magnification Minification

Figure 9-5: Texture Magnification and Minification

In some cases, it isn’t obvious whether magnification or minification is called for. If the mipr
needs to be stretched (or shrunk) in bothxtaady directions, then magnification (or minificatio
is needed. If the mipmap needs to be stretched in one direction and shrunk in the other, Og
makes a choice between magnification and minification that in most cases gives the best re
possible. It's best to try to avoid these situations by using texture coordinates that map with
distortion. (SeéComputing Appropriate Texture Coordinatgs."

The following lines are examples of how to gsEexPar ameter*() to specify the magnification
and minification filtering methods:

gl TexPar anet eri (G._TEXTURE 2D, G._TEXTURE_MAG FI LTER,
GL_NEAREST) ;

gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE M N _FI LTER,
GL_NEAREST) ;

The first argument tgl TexParameter*() is either GL_TEXTURE_2D or GL_TEXTURE_1D,
depending on whether you’re working with two- or one-dimensional textures. For the purpo
this discussion, the second argument is either GL_TEXTURE_MAG_FILTER or
GL_TEXTURE_MIN_FILTER to indicate whether you're specifying the filtering method for
magnification or minification. The third argument specifies the filtering mefhable 9-1lists the
possible values.

Table 9-1: Filtering Methods for Magnification and Minification

Par ameter Values

GL_TEXTURE_MAG_FILTER | GL_NEAREST or GL_LINEAR

GL_TEXTURE_MIN_FILTER | GL_NEAREST, GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR

If you choose GL_NEAREST, the texel with coordinates nearest the center of the pixel is u:
both magnification and minification. This can result in aliasing artifacts (sometimes severe).
choose GL_LINEAR, a weighted linear average of the 2 x 2 array of texels that lie nearest"
center of the pixel is used, again for both magnification and minification. When the texture
coordinates are near the edge of the texture map, the nearest 2 x 2 array of texels might in
some that are outside the texture map. In these cases, the texel values used depend on wt
GL_REPEAT or GL_CLAMP is in effect and whether you’ve assigned a border for the textL
(See"Using a Texture’s Borderg.GL_NEAREST requires less computation than GL_LINEAF
and therefore might execute more quickly, but GL_LINEAR provides smoother results.

With magnification, even if you've supplied mipmaps, the largest texture lenag<£ 0) is always
used. With minification, you can choose a filtering method that uses the most appropriate o
two mipmaps, as described in the next paragraph. (If GL_NEAREST or GL_LINEAR is spe
with minification, the largest texture map is used.)

As shown inTable 9-1 four additional filtering choices are available when minifying with
mipmaps. Within an individual mipmap, you can choose the nearest texel value with
GL_NEAREST_MIPMAP_NEAREST, or you can interpolate linearly by specifying
GL_LINEAR_MIPMAP_NEAREST. Using the nearest texels is faster but yields less desiral
results. The particular mipmap chosen is a function of the amount of minification required, ¢
there’s a cutoff point from the use of one particular mipmap to the next. To avoid a sudden
transition, use GL_NEAREST_MIPMAP_LINEAR or GL_LINEAR_MIPMAP_LINEAR to
linearly interpolate texel values from the two nearest best choices of mipmaps.
GL_NEAREST_MIPMAP_LINEAR selects the nearest texel in each of the two maps and tr
interpolates linearly between these two values. GL_LINEAR_MIPMAP_LINEAR uses lineal
interpolation to compute the value in each of two maps and then interpolates linearly betwe
two values. As you might expect, GL_LINEAR_MIPMAP_LINEAR generally produces the
smoothest results, but it requires the most computation and therefore might be the slowest.

Texture Objects

Texture objects are an important new feature in release 1.1 of OpenGL. A texture object st
texture data and makes it readily available. You can now control many textures and go bac
textures that have been previously loaded into your texture resources. Using texture object
usually the fastest way to apply textures, resulting in big performance gains, because it is a
always much faster to bind (reuse) an existing texture object than it is to reload a texture in
usinggl Texl mage* D().

Also, some implementations support a limited working set of high-performance textures. Yc
use texture objects to load your most often used textures into this limited area.

To use texture objects for your texture data, take these steps.
1. Generate texture names.

2. Initially bind (create) texture objects to texture data, including the image arrays and te:
properties.

3. If your implementation supports a working set of high-performance textures, see if yot
enough space for all your texture objects. If there isn’t enough space, you may wish tc
establish priorities for each texture object so that more often used textures stay in the
set.

4. Bind and rebind texture objects, making their data currently available for rendering tex
models.

Naming A Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid accidentally reusii
consistently usglGenTextures() to provide unused texture names.

void glGenTextures(GLsizein, GLuint*textureNameps
Returnsn currently unused names for texture objects in the aeagureNamesThe names
returned intextureNameslo not have to be a contiguous set of integers.
The names itextureNameare marked as used, but they acquire texture state and
dimensionality (1D or 2D) only when they are first bound.
Zero is a reserved texture name and is never returned as a texture nghGeijextures().

gllsTexture() determines if a texture name is actually in use. If a texture name was returnec
glGenTextures() but has not yet been bound (callgi®indTexture() with the name at least
once), thergll sTexture() returns GL_FALSE.

GLbooleangll sTexture(GLuinttextureNamg
Returns GL_TRUE tkextureNamas the name of a texture that has been bound and has
been subsequently deleted. Returns GL_FAL&&tiireNamas zero ortextureNames a
nonzero value that is not the name of an existing texture.

Creating and Using Texture Objects

The same routing|BindTextur &), both creates and uses texture objects. When a texture ne
initially bound (used witlglBindTexture()), a new texture object is created with default values
the texture image and texture properties. Subsequent cglibexd mage* (), gl TexSubl mage* (),
glCopyTexlmage* (), glCopyTexSubl mage* (), gl TexParameter* (), andglPrioritizeT extures()
store data in the texture object. The texture object may contain a texture image and associ:
mipmap images (if any), including associated data such as width, height, border width, inte
format, resolution of components, and texture properties. Saved texture properties include
minification and magnification filters, wrapping modes, border color, and texture priority.

When a texture object is subsequently bound once again, its data becomes the current texi
(The state of the previously bound texture is replaced.)

void glBindTexture(GLenumtarget, GLuinttextureNamg
glBindTexture() does three things. When ustegtureNamef an unsigned integer other
than zero for the first time, a new texture object is created and assigned that name. W
binding to a previously created texture object, that texture object becomes active. Wh
binding to atextureNamevalue of zero, OpenGL stops using texture objects and returns
the unnamed default texture.
When a texture object is initially bound (that is, created), it assumes the dimensionalit
target which is either GL_TEXTURE_1D or GL_TEXTURE_2D. Immediately upon its
binding, the state of texture object is equivalent to the state of the default GL_TEXTUI
or GL_TEXTURE_2D (depending upon its dimensionality) at the initialization of Open!
this initial state, texture properties such as minification and magnification filters, wrapg
modes, border color, and texture priority are set to their default values.

In Example 9-5two texture objects are creatednit(). In display(), each texture object is used
render a different four-sided polygon.

Example 9-5: Binding Texture Objects: texbind.c

#def i ne checkl mageW dt h 64

#def i ne checkl mageHei ght 64

static Gubyte checkl mage[checkl nageHei ght][checkl mageW dt h] [4] ;
static G.ubyte otherl mage[checkl nageHei ght][checkl mageW dt h] [4] ;

static G.uint texNane[2];

voi d makeCheckl mages(voi d)

{

int i, j, c;

for (i = 0; i < checklnmageHeight; i++) {
for (j = 0; j < checklnmageWdth; j++)
c = ((((i &0x8)==0)"((]j &0x8))==0)) *255;

checkl mage[i][j]1[0] (GLubyte) c;
checkl mage[i][j]11[1] (GLubyte) c;
(GLubyte) c;

checkl mage[i]
c = ((((i&x1

(GLubyte) 255;

checklmage[i][j]]2]
= (j &0x10))==0)) *255;

[
11
|11
11
11
11

3]
0"
0]
1]
2]
3]

I I I | e N | I | IR T B

ot herl mage[i] (GLubyte) c;

ot herl mage[i] (GLubyte) O;

otherlmage[i]][]j (GLubyte) O;
]

ot her | mage[i

(GLubyte) 255;

void init(void)
gl d ear Col or
gl ShadeModel (GL_FLAT);
gl Enabl e(G._DEPTH_TEST) ;

makeCheckl| mages() ;

gl Pi xel St orei (GL_UNPACK_ALI GNMVENT,

gl GenTextures(2, texNane);
gl Bi ndText ur e(GL_TEXTURE_2D,
gl TexPar anet eri (G._TEXTURE_2D,
gl TexPar anet eri (GL_TEXTURE_2D,
gl TexPar anet eri (GL_TEXTURE_2D,
GL_NEAREST) ;
gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;
gl Texl mage2D(G._TEXTURE 2D, 0,
checkl mageHei ght ,
checkl mage) ;

gl Bi ndText ur e(G._TEXTURE 2D,

gl TexPar anet eri (G._TEXTURE_2D,

gl TexPar anet eri (G._TEXTURE_2D,

gl TexPar anet eri (GL_TEXTURE_2D,
GL_NEAREST) ;

gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;

(0.0, 0.0, 0.0, 0.0);

1);

t exNane[0]);

GL_TEXTURE_WRAP_S, GL_CLAWP):
GL_TEXTURE_WRAP_T, GL_CLAWP);
GL_TEXTURE_MAG FI LTER

GL_TEXTURE_M N_FI LTER,

GL_RGBA, checkl nageW dt h,
0, GL_RGBA, GL_UNSI GNED BYTE,

texNane[1]);

GL_TEXTURE_WRAP_S, GL_CLAWP);
GL_TEXTURE_WRAP_T, GL_CLAWP):
GL_TEXTURE_MAG FI LTER]

GL_TEXTURE_M N_FI LTER,

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL):

gl Texl mage2D(G._TEXTURE 2D, 0,
checkl mageHei ght ,
ot her | mage) ;

gl Enabl e(G._TEXTURE_2D) ;

GL_RGBA, checkl nageW dt h,
0, GL_RGBA, GL_UNSI GNED BYTE,

}
voi d di spl ay(voi d)
{
gl G ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
gl Bi ndText ure(GL_TEXTURE 2D, texNane[O0]);
gl Begi n(G._QUADS) ;
gl TexCoord2f (0.0, 0.0); gl Vertex3f(-2.0, -1.0, 0.0);
gl TexCoord2f (0.0, 1.0); gl Vertex3f(-2.0, 1.0, 0.0);
gl TexCoor d2f (1.0, 1.0); gl Vertex3f(0.0, 1.0, 0.0);
gl TexCoord2f (1.0, 0.0); gl Vertex3f(0.0, -1.0, 0.0);
gl End() ;
gl Bi ndText ure(G._TEXTURE 2D, texNane[1]);
gl Begi n(G._QUADS) ;
gl TexCoor d2f (0.0, 0.0); gl Vertex3f(1.0, -1.0, 0.0);
gl TexCoord2f (0.0, 1.0); gl Vertex3f(1.0, 1.0, 0.0);
gl TexCoord2f (1.0, 1.0); gl Vertex3f(2.41421, 1.0, -1.41421);
gl TexCoor d2f (1.0, 0.0); gl Vertex3f(2.41421, -1.0, -1.41421);
gl End() ;
gl Fl ush();
}

Whenever a texture object is bound once again, you may edit the contents of the bound te»
object. Any commands you call that change the texture image or other properties change ti
contents of the currently bound texture object as well as the current texture state.

In Example 9-5after completion oflisplay(), you are still bound to the texture named by the
contents ofexName[1] Be careful that you don’t call a spurious texture routine that changes
data in that texture object.

When using mipmaps, all related mipmaps of a single texture image must be put into a sin¢
texture object. Ifexample 9-4levels 0-5 of a mipmapped texture image are put into a single
texture object nametg@xName

Cleaning Up Texture Objects

As you bind and unbind texture objects, their data still sits around somewhere among your
resources. If texture resources are limited, deleting textures may be one way to free up res

void glDeleteTextures(GLsizein, const GLuinttextureNameyg
Deletesn texture objects, named by elements in the aeatureNamesThe freed texture
names may now be reused (for examplal@gnTextures()).
If a texture that is currently bound is deleted, the binding reverts to the default texture,
glBindTexture() were called with zero for the valuetektureNameAttempts to delete
nonexistent texture names or the texture name of zero are ignored without generating
error.

A Working Set of Resident Textures

Some OpenGL implementations support a working set of high-performance textures, which
to be resident. Typically, these implementations have specialized hardware to perform text
operations and a limited hardware cache to store texture images. In this case, using texture
is recommended, because you are able to load many textures into the working set and ther
them.

If all the textures required by the application exceed the size of the cache, some textures ci
resident. If you want to find out if a single texture is currently resident, bind its object, and tt
olGetTexParameter*v() to find out the value associated with the GL_ TEXTURE_RESIDENT
state. If you want to know about the texture residence status of many textures, use
glAreTexturesResident().

GLbooleanglAreTexturesResident(GLsizein, const

GLuint'textureNamesGLbooleartresidencey
Queries the texture residence status ofrtbexture objects, named in the array
textureNamegesidencess an array in which texture residence status is returned for the
corresponding texture objects in the artaxtureNamedf all the named textures in
textureNameare resident, thglAreTexturesResident() function returns GL_TRUE, and tt
contents of the arragesidencesre undisturbed. If any texture iextureNames not
resident, thergl AreTexturesResident() returns GL_FALSE and the elementsasidences
which correspond to nonresident texture objectextureNamesare also set to GL_FALSI

Note thatglAreT exturesResident() returns the current residence status. Texture resources al
dynamic, and texture residence status may change at any time. Some implementations cac
textures when they are first used. It may be necessary to draw with the texture before chec
residency.

If your OpenGL implementation does not establish a working set of high-performance textu
then the texture objects are always considered resident. In thagléasd,extur esResident()
always returns GL_TRUE and basically provides no information.

Texture Residence Strategies

If you can create a working set of textures and want to get the best texture performance po
you really have to know the specifics of your implementation and application. For example,
visual simulation or video game, you have to maintain performance in all situations. In that
you should never access a nonresident texture. For these applications, you want to load ug
textures upon initialization and make them all resident. If you don’t have enough texture me
available, you may need to reduce the size, resolution, and levels of mipmaps for your text
images, or you may uggT exSubl mage* () to repeatedly reuse the same texture memory.

For applications that create textures "on the fly," nonresident textures may be unavoidable.
textures are used more frequently than others, you may assign a higher priority to those te»
objects to increase their likelihood of being resident. Deleting texture objects also frees up
Short of that, assigning a lower priority to a texture object may make it first in line for being
out of the working set, as resources dwinglBrioritizeT extures() is used to assign priorities tc
texture objects.

void glPrioritizeTextures(GLsizein, const GLuinttextureNames

const GLclampfpriorities);
Assigns the texture objects, named in the arri@xtureNameghe texture residence
priorities in the corresponding elements of the arpaprities. The priority values in the
array priorities are clamped to the range [0.0, 1.0] before being assigned. Zero indicat
lowest priority; these textures are least likely to be resident. One indicates the highest
priority.
glPrioritizeTextures() does not require that any of the texturegextureNamebe bound.
However, the priority might not have any effect on a texture object until it is initially bo

glTexParameter*() also may be used to set a single texture’s priority, but only if the texture
currently bound. In fact, use gfT exParameter*() is the only way to set the priority of a defaul
texture.

If texture objects have equal priority, typical implementations of OpenGL apply a least rece
used (LRU) strategy to decide which texture objects to move out of the working set. If you k
that your OpenGL implementation has this behavior, then having equal priorities for all text
objects creates a reasonable LRU system for reallocating texture resources.

If your implementation of OpenGL doesn’t use an LRU strategy for texture objects of equal
(or if you don’t know how it decides), you can implement your own LRU strategy by carefull
maintaining the texture object priorities. When a texture is used (bound), you can maximize
priority, which reflects its recent use. Then, at regular (time) intervals, you can degrade the
priorities of all texture objects.

Note: Fragmentation of texture memory can be a problem, especially if you're deleting and
lots of new textures. Although it is even possible that you can load all the texture objects int
working set by binding them in one sequence, binding them in a different sequence may le:
textures nonresident.

Texture Functions

In all the examples so far in this chapter, the values in the texture map have been used dire
colors to be painted on the surface being rendered. You can also use the values in the text

modulate the color that the surface would be rendered without texturing, or to blend the col
texture map with the original color of the surface. You choose one of four texturing function
supplying the appropriate argumentgldexEnv* ().

void gl TexEnV{if}(GLenumtarget GLenumpname TYPEparam);

void gl TexEnV{if} v(GLenumtarget GLenumpname TYPE* param);
Sets the current texturing functidargetmust be GL_TEXTURE_ENV phameis
GL_TEXTURE_ENV_MODHaramcan be GL_DECAL, GL_REPLACE, GL_MODULA’
or GL_BLEND, to specify how texture values are to be combined with the color values
fragment being processed.gdhameis GL_TEXTURE_ENV_COLORaramis an array of
four floating-point values representing R, G, B, and A components. These values are
only if the GL_BLEND texture function has been specified as well.

The combination of the texturing function and the base internal format determine how the te
are applied for each component of the texture. The texturing function operates on selected
components of the texture and the color values that would be used with no texturing. (Note
selection is performed after the pixel-transfer function has been applied.) Recall that when"
specify your texture map withi TexImage* D(), the third argument is the internal format to be

selected for each texel.

Table 9-2andTable 9-3show how the texturing function and base internal format determine
texturing application formula used for each component of the texture. There are six base in
formats (the letters in parentheses represent their values in the tables): GL_ALPHA (A),
GL_LUMINANCE (L), GL_LUMINANCE_ALPHA (L and A), GL_INTENSITY (), GL_RGB
(C), and GL_RGBA (C and A). Other internal formats specify desired resolutions of the text
components and can be matched to one of these six base internal formats.

Table9-2 : Replace and Modulate Texture Function

Base I nternal Format Replace Texture Function | Modulate Texture Function
GL_ALPHA C = Cf, C = Cf,
A=At A = AfAt
GL_LUMINANCE C = Lt, C = CfLt,
A = Af A = Af
GL_LUMINANCE_ALPHA | C=Lt, C = CfLt,
A=At A = AfAt
GL_INTENSITY C=1t, C = Cflt,
A=t A = Aflt
GL_RGB C =Ct, C = CfCt,
A = Af A = Af
GL_RGBA C =Ct, C = CfCt,

A=At A = AfAt

Table 9-3 : Decal and Blend Texture Function

Base I nternal Format Decal Texture Function || Blend Texture Function
GL_ALPHA undefined C = Cf,
A = AfAt
GL_LUMINANCE undefined C = Cf(1-Lt) + CcLt,
A = Af
GL_LUMINANCE_ALPHA | undefined C = Cf(1-Lt) + CcLt,
A = AfAt
GL_INTENSITY undefined C = Cf(1-It) + Cclt,
A = Af(1-1t) + Aclt,
GL_RGB C =Ct, C = Cf(1-Ct) + CcCt,
A = Af A = Af
GL_RGBA C = Cf(1-At) + CtAt, C = Cf(1-Ct) + CcCt,
A = Af A = AfAt

Note: In Table 9-2andTable 9-3 a subscript of t indicates a texture value, f indicates the incc
fragment value, c indicates the values assigned with GL_ TEXTURE_ENV_COLOR, and nc
subscript indicates the final, computed value. Also in the tables, multiplication of a color trip
scalar means multiplying each of the R, G, and B components by the scalar; multiplying (or
two color triples means multiplying (or adding) each component of the second by the corres
component of the first.

The decal texture function makes sense only for the RGB and RGBA internal formats (rem¢
that texture mapping doesn’t work in color-index mode). With the RGB internal format, the «
that would have been painted in the absence of any texture mapping (the fragment’s color)
replaced by the texture color, and its alpha is unchanged. With the RGBA internal format, tl
fragment’s color is blended with the texture color in a ratio determined by the texture alpha,
fragment’s alpha is unchanged. You use the decal texture function in situations where you"
apply an opaque texture to an object - if you were drawing a soup can with an opaque labe
example. The decal texture function also can be used to apply an alpha blended texture, st
insignia onto an airplane wing.

The replacement texture function is similar to decal; in fact, for the RGB internal format, the
exactly the same. With all the internal formats, the component values are either replaced o
alone.

For modulation, the fragment’s color is modulated by the contents of the texture map. If the
internal format is GL_LUMINANCE, GL_LUMINANCE_ALPHA, or GL_INTENSITY, the cols

values are multiplied by the same value, so the texture map modulates between the fragme
(if the luminance or intensity is 1) to black (if it's 0). For the GL_RGB and GL_RGBA intern:
formats, each of the incoming color components is multiplied by a corresponding (possibly
different) value in the texture. If there’s an alpha value, it's multiplied by the fragment’s alpf
Modulation is a good texture function for use with lighting, since the lit polygon color can be
to attenuate the texture color. Most of the texture-mapping examples in the color plates use
modulation for this reason. White, specular polygons are often used to render lit, textured o
and the texture image provides the diffuse color.

The blending texture function is the only function that uses the color specified by
GL_TEXTURE_ENV_COLOR. The luminance, intensity, or color value is used somewhat li
alpha value to blend the fragment’s color with the GL_ TEXTURE_ENV_COLOR."&aaple
Uses of Blending" in Chapterfér the billboarding example, which uses a blended texture.)

Assigning Texture Coordinates

As you draw your texture-mapped scene, you must provide both object coordinates and te»
coordinates for each vertex. After transformation, the object coordinates determine where ¢
screen that particular vertex is rendered. The texture coordinates determine which texel in f
texture map is assigned to that vertex. In exactly the same way that colors are interpolated
two vertices of shaded polygons and lines, texture coordinates are also interpolated betwee
vertices. (Remember that textures are rectangular arrays of data.)

Texture coordinates can comprise one, two, three, or four coordinates. They’re usually refe
as thes, t, r,andq coordinates to distinguish them from object coordinateg, (z,andw) and from
evaluator coordinates @ndv; seeChapter 12 For one-dimensional textures, you useshe
coordinate; for two-dimensional textures, you ss@dt. In Release 1.1, thecoordinate is
ignored. (Some implementations have 3D texture mapping as an extension, and that exten
ther coordinate.) The coordinate, likaw, is typically given the value 1 and can be used to cre
homogeneous coordinates; it's described as an advanced fedfline iip Coordinate.The
command to specify texture coordinatgld,exCoord*(), is similar toglVertex*(), glColor*(), and
glNormal*() - it comes in similar variations and is used the same way betj@egin() and
glEnd() pairs. Usually, texture-coordinate values range from O to 1; values can be assigned
this range, however, with the results describeétRigpeating and Clamping Textures."

void gl TexCoord{1234}{sifd}(TYPEcoords;

void gl TexCoord{1234}sifdv(TYPE*coord9;
Sets the current texture coordinatsst(r, 9. Subsequent calls gVertex*() result in those
vertices being assigned the current texture coordinates. §MigxCoord1* (), thes
coordinate is set to the specified valuandr are set to 0, and is set to 1. Using
gl TexCoord2*() allows you to specifyandt; r andq are set to 0 and 1, respectively. Witt
glTexCoord3*(), qis set to 1 and the other coordinates are set as specified. You can s|
all coordinates withgl TexCoord4* (). Use the appropriate suffix (s, i, f, or d) and the
corresponding value foFYPE(GLshort, GLint, GLfloat, or GLdouble) to specify the
coordinates’ data type. You can supply the coordinates individually, or you can use th
version of the command to supply them in a single array. Texture coordinates are mul
by the 4 x 4 texture matrix before any texture mapping occurs."TBeelexture Matrix
Stack.) Note that integer texture coordinates are interpreted directly rather than being
mapped to the range [-1,1] as normal coordinates are.

The next section discusses how to calculate appropriate texture coordinates. Instead of exj
assigning them yourself, you can choose to have texture coordinates calculated automatice
OpenGL as a function of the vertex coordinates. (Batomatic Texture-Coordinate Generatiol

Computing Appropriate Texture Coordinates

Two-dimensional textures are square or rectangular images that are typically mapped to th
polygons that make up a polygonal model. In the simplest case, you're mapping a rectangL
texture onto a model that’s also rectangular - for example, your texture is a scanned image
brick wall, and your rectangle is to represent a brick wall of a building. Suppose the brick w.
square and the texture is square, and you want to map the whole texture to the whole wall.
texture coordinates of the texture square are (0, 0), (1, 0), (1, 1), and (0O, 1) in counterclock\
order. When you're drawing the wall, just give those four coordinate sets as the texture coc
as you specify the wall’s vertices in counterclockwise order.

Now suppose that the wall is two-thirds as high as it is wide, and that the texture is again st
avoid distorting the texture, you need to map the wall to a portion of the texture map so tha
aspect ratio of the texture is preserved. Suppose that you decide to use the lower two-third
texture map to texture the wall. In this case, use texture coordinates of (0,0), (1,0), (1,2/3), .
(0,2/3) for the texture coordinates as the wall vertices are traversed in a counterclockwise ¢

As a slightly more complicated example, suppose you'd like to display a tin can with a label
wrapped around it on the screen. To obtain the texture, you purchase a can, remove the lal
scan it in. Suppose the label is 4 units tall and 12 units around, which yields an aspect ratic
1. Since textures must have aspect ratios of 2n to 1, you can either simply not use the top t
the texture, or you can cut and paste the texture until it has the necessary aspect ratio. Sug
decide not to use the top third. Now suppose the tin can is a cylinder approximated by thirty
polygons of length 4 units (the height of the can) and width 12/30 (1/30 of the circumferenc
can). You can use the following texture coordinates for each of the thirty approximating rec

1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)
2: (1/30, 0), (2/30, 0), (2/30, 2/3), (1/30, 2/3)

3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

30: (29/30, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only a few curved surfaces such as cones and cylinders can be mapped to a flat surface w
geodesic distortion. Any other shape requires some distortion. In general, the higher the cu
of the surface, the more distortion of the texture is required.

If you don’t care about texture distortion, it’s often quite easy to find a reasonable mapping.
example, consider a sphere whose surface coordinates are given by (cos &thgr; cos &phgr
&thgr; sin &phgr; , sin &thgr;), where 0 ≤ &thgr; ≤ 2 &pgr; , and 0 ≤ &phgr; ≤ &pc¢
The &thgr; - &phgr; rectangle can be mapped directly to a rectangular texture map, but the
you get to the poles, the more distorted the texture is. The entire top edge of the texture me
mapped to the north pole, and the entire bottom edge to the south pole. For other surfaces.
that of a torus (doughnut) with a large hole, the natural surface coordinates map to the text

coordinates in a way that produces only a little distortion, so it might be suitable for many
applicationsFigure 9-6shows two tori, one with a small hole (and therefore a lot of distortion
the center) and one with a large hole (and only a little distortion).

Figure 9-6 : Texture-Map Distortion

If you're texturing spline surfaces generated with evaluatorsdkaepter 1), theu andv
parameters for the surface can sometimes be used as texture coordinates. In general, how
there’s a large artistic component to successfully mapping textures to polygonal approxima
curved surfaces.

Repeating and Clamping Textures

You can assign texture coordinates outside the range [0,1] and have them either clamp or |
the texture map. With repeating textures, if you have a large plane with texture coordinates
from 0.0 to 10.0 in both directions, for example, you'll get 100 copies of the texture tiled tog
on the screen. During repeating, the integer part of texture coordinates is ignored, and copi
texture map tile the surface. For most applications where the texture is to be repeated, the
the top of the texture should match those at the bottom, and similarly for the left and right e

The other possibility is to clamp the texture coordinates: Any values greater than 1.0 are se
and any values less than 0.0 are set to 0.0. Clamping is useful for applications where you v
single copy of the texture to appear on a large surface. If the surface-texture coordinates re
0.0 to 10.0 in both directions, one copy of the texture appears in the lower corner of the sur
you've chosen GL_LINEAR as the filtering method (8Ektering™), an equally weighted
combination of the border color and the texture color is used, as follows.

® When repeating, the 2 x 2 array wraps to the opposite edge of the texture. Thus, texe
right edge are averaged with those on the left, and top and bottom texels are also ave

® |[f there is a border, then the texel from the border is used in the weighting. Otherwise,
GL_TEXTURE_BORDER_COLOR is used. (If you've chosen GL_NEAREST as the
filtering method, the border color is completely ignored.)

Note that if you are using clamping, you can avoid having the rest of the surface affected b
texture. To do this, use alpha values of O for the edges (or borders, if they are specified) of
texture. The decal texture function directly uses the texture’s alpha value in its calculations.
are using one of the other texture functions, you may also need to enable blending with goc
and destination factors. (S&&lending” in Chapter §

To see the effects of wrapping, you must have texture coordinates that venture beyond [0.(
Start withExample 9-1and modify the texture coordinates for the squares by mapping the te
coordinates from 0.0 to 3.0 as follows:

gl Begi n(GL_QUADS) ;
gl TexCoor d2f (0.
gl TexCoor d2f (0.
gl TexCoor d2f (3.
gl TexCoor d2f (3.

.0); glVertex3f(-2.0, -1.0, 0.0);
0); gl Vertex3f(-2.0, 1.0, 0.0);
0); gl Vertex3f (0. O 1.0, 0.0);
0); gl Vertex3f(0.0, -1.0, 0.0);

gl TexCoor d2f (0.
gl TexCoor d2f (0.
gl TexCoor d2f (3.
gl TexCoor d2f (3.

; gl Vertex3f(1.0, -1.0, 0.0);
0); gl Vertex3f(1.0, 1.0, 0.0);
0); gl Vertex3f(2.41421, 1.0, -1.41421);
.0); gl Vertex3f(2.41421, -1.0, -1.41421); gl End();

0000 o000
CWWO owwo
(=]
N

With GL_REPEAT wrapping, the result is as showirigure 9-7

Figure 9-7 : Repeating a Texture

In this case, the texture is repeated in botls#uedt directions, since the following calls are ma
to gl TexParameter*():

gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE WRAP_S, GL._REPEAT);
gl TexPar anet eri (GL_TEXTURE_2D, G._TEXTURE WRAP_T, G._REPEAT);

If GL_CLAMP is used instead of GL_REPEAT for each direction, you see something simila
Figure 9-8

Figure 9-8 : Clamping a Texture

You can also clamp in one direction and repeat in the other, as shéwguia 9-9

Figure 9-9 : Repeating and Clamping a Texture

You've now seen all the possible argumentsgfdexPar ameter * (), which is summarized here.

void gl TexParameter{if}(GLenumtarget GLenumpname TYPE paranj

void gl TexParameter{if} v(GLenumtarget, GLenumpname

TYPE *parany,
Sets various parameters that control how a texture is treated as it's applied to a fragm
stored in a texture object. Thargetparameter is either GL_ TEXTURE_2D or
GL_TEXTURE_1D to indicate a two- or one-dimensional texture. The possible values
pnameand paramare shown ifrable 9-4 You can use the vector version of the commat
supply an array of values for GL_TEXTURE_BORDER_COLOR, or you can supply
individual values for other parameters using the nonvector version. If these values are
supplied as integers, they’re converted to floating-point accordifigbde 4-1 they're also
clamped to the range [0,1].

Table 9-4 : glTexParameter*() Parameters

Parameter Values

GL_TEXTURE_WRAP_S GL_CLAMP, GL_REPEAT
GL_TEXTURE_WRAP_T GL_CLAMP, GL_REPEAT
GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR
GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,

GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_LINEAR

GL_TEXTURE_BORDER_COLOR| any four values in [0.0, 1.0]

GL_TEXTURE_PRIORITY [0.0, 1.0] for the current texture object

Try This

Figure 9-8andFigure 9-9are drawn using GL_NEAREST for the minification and magnificati
filter. What happens if you change the filter values to GL_LINEAR? Why?

Automatic Texture-Coordinate Gener ation

You can use texture mapping to make contours on your models or to simulate the reflectior
an arbitrary environment on a shiny model. To achieve these effects, let OpenGL automatic
generate the texture coordinates for you, rather than explicitly assigning theghTveit@oor d* ().
To generate texture coordinates automatically, use the conglibadsen().

void glTexGen{ifd}(GLenumcoord, GLenumpname TYPEparam);

void gl TexGen{ifd} v(GLenumcoord, GLenumpname TYPE* param);
Specifies the functions for automatically generating texture coordinates. The first para
coord must be GL_S, GL_T, GL_R, or GL_Q to indicate whether texture coordjrtateor
g is to be generated. Tipameparameter is GL_ TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE. Ifit's GL_TEXTURE_GEN_MQiaeamis
an integer (or, in the vector version of the command, points to an integer) that’s either
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. These symbolic cc
determine which function is used to generate the texture coordinate. With either of the
possible values fgpname paramis a pointer to an array of values (for the vector versiol
specifying parameters for the texture-generation function.

The different methods of texture-coordinate generation have different uses. Specifying the
reference plane in object coordinates is best for when a texture image remains fixed to a m
object. Thus, GL_OBJECT_LINEAR would be used for putting a wood grain on a table top.
Specifying the reference plane in eye coordinates (GL_EYE_LINEAR) is best for producing

dynamic contour lines on moving objects. GL_EYE_LINEAR may be used by specialists in
geosciences, who are drilling for oil or gas. As the drill goes deeper into the ground, the dril
be rendered with different colors to represent the layers of rock at increasing depths.
GL_SPHERE_MAP is predominantly used for environment mapping."Saeronment

Mapping.”
Creating Contours

When GL_TEXTURE_GEN_MODE and GL_OBJECT_LINEAR are specified, the generatic
function is a linear combination of the object coordinates of the veaeyo(zo,wo):

generated coordinatepix0 + p2y0 + p3z0 + p4w0

Thepl, ...,p4 values are supplied as tharamargument t@lTexGen*v(), with pnameset to
GL_OBJECT_PLANE. Withp1l, ...,p4 correctly normalized, this function gives the distance fr
the vertex to a plane. For examplepZ = p3 =p4 = 0 andpl = 1, the function gives the distanc
between the vertex and the place 0. The distance is positive on one side of the plane, negs
on the other, and zero if the vertex lies on the plane.

Initially in Example 9-6equally spaced contour lines are drawn on a teapot; the lines indicai
distance from the plane= 0. The coefficients for the plame= 0 are in this array:

static G.float xequal zero[] = {1.0, 0.0, 0.0, 0.0};

Since only one property is being shown (the distance from the plane), a one-dimensional te
map suffices. The texture map is a constant green color, except that at equally spaced inte
includes a red mark. Since the teapot is sitting ox-hplane, the contours are all perpendicul:
its base''Plate 18" in Appendix shows the picture drawn by the program.

In the same example, pressing the ‘s’ key changes the parameters of the reference plane t
static G.float slanted[] = {1.0, 1.0, 1.0, 0.0};

the contour stripes are parallel to the plarey +z= 0, slicing across the teapot at an angle, a
shown in"Plate 18" in Appendix.ITo restore the reference plane to its initial vakre 0, press th
‘X' key.

Example 9-6 : Automatic Texture-Coordinate Generation: texgen.c

#i nclude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#define stripel mageWdth 32
GLubyte stripel mage[4*stri pel mageW dt h];

static GLuint texNane;
voi d makeStri pel nage(voi d)
{

int j;

for (j = 0; j < stripelmageWdth; j++) {

stripelmage[4*j] = (Gubyte) ((j<=4) ? 255 : 0);
stripel mage[4*j +1] = (G.ubyte) ((j>4) ? 255 : 0);
stripel mage[4*j +2] = (G.ubyte) O;
stripel mage[4*j +3] = (G.ubyte) 255;
}
}

/* planes for texture coordinate generation */
static G.float xequal zero[] = {1.0, 0.0, 0.0, 0.0};
static Gfloat slanted[] = {1.0, 1.0, 1.0, 0.0};
static G.float *current Coeff;

static GLenum current Pl ane;

static GLint current GenMode;

void init(void)

{
gl CearColor (0.0, 0.0, 0.0, 0.0);
gl Enabl e(G._DEPTH_TEST) ;
gl ShadeModel (GL_SMOOTH) ;

makeSt ri pel mage() ;
gl Pi xel St orei (GL_UNPACK_ALI GNMENT, 1);

gl GenTextures(1, &texName);
gl Bi ndText ure(GL_TEXTURE_1D, texNane);
gl TexParamet eri (GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, G._REPEAT);
gl TexPar anmet eri (GL_TEXTURE_1D, G._TEXTURE_MAG FI LTER,
GL_LI NEAR);
gl TexParamet eri (GL_TEXTURE_1D, GL_TEXTURE_M N_FI LTER,
GL_LI NEAR);
gl Texl magelD(GL_TEXTURE 1D, 0, G.L_RGBA, stripelmgeWdth, O,
GL_RGBA, GL_UNSI GNED _BYTE, stri pel nage);

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, G._MODULATE);
current Coeff = xequal zero;

current GenMbde = GL_OBJECT_LI NEAR,

current Pl ane = GL_OBJECT_PLANE;

gl TexGeni (G_S, G._TEXTURE GEN MODE, current Genhode);

gl TexGenfv(G._S, currentPl ane, current Coeff);

gl Enabl e(G._TEXTURE_CEN_S);

gl Enabl e(GL_TEXTURE_1D);

gl Enabl e(G._CULL_FACE) ;

gl Enabl e(GL_LI GHTI NG ;

gl Enabl e(G_LI GHTO) ;

gl Enabl e(GL_AUTO NORMAL) ;

gl Enabl e(GL_NORMALI ZE) ;

gl Front Face(G._CW;

gl Cul | Face(GL_BACK) ;

gl Materialf (G._FRONT, G._SHI NI NESS, 64.0);

voi d di spl ay(voi d)
gl d ear(G_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

gl Pushiatrix ();
gl Rotatef(45.0, 0.0, 0.0, 1.0);
gl Bi ndText ure(GL_TEXTURE_1D, texNane);
gl ut Sol i dTeapot (2. 0);
gl PopMatrix ();
gl Fl ush();
}

void reshape(int w, int h)

gl Vi ewport (0, O,
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
if (w<=h)

glOtho (-3.5, 3.5,

el se

(GLsizei) w, (GL.sizei) h);

-3.5*(CG.float)h/ (Gfl oat)w,
3.5*(G.float)h/ (G.float)w,

-3.5, 3.5);

gl Ortho (-3.5%(GLfloat)w (GLfl oat)h,

3.5*(G.fl oat)w (G.float) h,

gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

}

voi d keyboard (unsigned char key,
switch (key) {
case ‘e’
case ‘F
current GenMode =
current Pl ane = GL_EYE PLANE;

gl TexGeni (GL_S, GL_TEXTURE_GEN_MODE,

gl TexGenfv(G&_S, currentPl ane,
gl ut Post Redi spl ay() ;
br eak;

case ‘0’

case ‘'O :
current GenMode =
current Pl ane =

gl TexGenfv(G&_S, currentPl ane,
gl ut Post Redi spl ay() ;
br eak;
case ‘s’
case 'S
current Coeff = slanted;
gl TexGenfv(G._S, currentPl ane,
gl ut Post Redi spl ay() ;
br eak;
case ‘Xx’
case ‘X
current Coeff = xequal zero;
gl TexGenfv(G&_S, currentPl ane,
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);
br eak;
defaul t:
br eak;

}
}
int main(int argc, char** argv)
glutlnit(&argc, argv);
glutlnitD spl ayMbde (GLUT_SI NGLE
gl utlnit WndowSi ze(256, 256);
gl utlnit WndowPosition(100, 100);
gl ut Cr eat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Mai nLoop() ;

int Xx,

GL_EYE_LI NEAR

GLUT_RGB |

-3.5, 3.5, -3.5, 3.5);

int y)

cur rent GenMode) ;
current Coeff);

GL_OBJECT LI NEAR,
GL_OBJECT_PLANE;
gl TexGeni (GL_S, GL_TEXTURE_GEN_MODE,

cur rent GenMode) ;
current Coeff);

current Coeff);

current Coeff);

GLUT_DEPTH) ;

return O;

}

You enable texture-coordinate generation forsheordinate by passing GL_TEXTURE_GEN_
to glEnable(). To generate other coordinates, enable them with GL_ TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q. UglDisable() with the appropriate
constant to disable coordinate generation. Also note the use of GL_REPEAT to cause the «
lines to be repeated across the teapot.

The GL_OBJECT_LINEAR function calculates the texture coordinates in the model’s coord
system. Initially inExample 9-6the GL_OBJECT _LINEAR function is used, so the contour il
remain perpendicular to the base of the teapot, no matter how the teapot is rotated or views
However, if you press the ‘e’ key, the texture generation mode is changed from
GL_OBJECT_LINEAR to GL_EYE_LINEAR, and the contour lines are calculated relative tc
eye coordinate system. (Pressing the ‘0’ key restores GL_OBJECT_LINEAR as the texture
generation mode.) If the reference plane #s0, the result is a teapot with red stripes parallel t
y-z plane from the eye’s point of view, as showrifthate 18" in Appendix.IMathematically, you
are multiplying the vectompllp2p3p4) by the inverse of the modelview matrix to obtain the val
used to calculate the distance to the plane. The texture coordinate is generated with the fol
function:

generated coordinatepl’ xe +p2'ye +p3'ze +pd’'we

where 01’ p2’ p3’ p4’) = (plp2p3p4)M-1

In this case,Xg, ye, ze,we) are the eye coordinates of the vertex, ahd..,p4 are supplied as the
paramargument t@lTexGen* () with pnameset to GL_EYE_PLANE. The primed values are
calculated only at the time they’re specified so this operation isn’'t as computationally exper
it looks.

In all these examples, a single texture coordinate is used to generate contosemdittexture
coordinates can be generated independently, however, to indicate the distances to two diffe
planes. With a properly constructed two-dimensional texture map, the resulting two sets of
can be viewed simultaneously. For an added level of complexity, you can calcuatedneinate
using GL_OBJECT_LINEAR and thecoordinate using GL_EYE_LINEAR.

Environment Mapping

The goal of environment mapping is to render an object as if it were perfectly reflective, so
colors on its surface are those reflected to the eye from its surroundings. In other words, if
at a perfectly polished, perfectly reflective silver object in a room, you see the walls, floor, a
other objects in the room reflected off the object. (A classic example of using environment
is the evil, morphing cyborg in the filfherminator 2) The objects whose reflections you see
depend on the position of your eye and on the position and surface angles of the silver obje
perform environment mapping, all you have to do is create an appropriate texture map and
have OpenGL generate the texture coordinates for you.

Environment mapping is an approximation based on the assumption that the items in the

environment are far away compared to the surfaces of the shiny object - that is, it's a small
a large room. With this assumption, to find the color of a point on the surface, take the ray f
eye to the surface, and reflect the ray off the surface. The direction of the reflected ray com
determines the color to be painted there. Encoding a color for each direction on a flat textul

equivalent to putting a polished perfect sphere in the middle of the environment and taking
of it with a camera that has a lens with a very long focal length placed far away. Mathemati
the lens has an infinite focal length and the camera is infinitely far away. The encoding ther
covers a circular region of the texture map, tangent to the top, bottom, left, and right edges
map. The texture values outside the circle make no difference, as they are never accessed
environment mapping.

To make a perfectly correct environment texture map, you need to obtain a large silvered s
take a photograph of it in some environment with a camera located an infinite distance awa
with a lens that has an infinite focal length, and scan in the photograph. To approximate thi
you can use a scanned-in photograph of an environment taken with an extremely wide-ang
fish-eye) lens. Plate 21 shows a photograph taken with such a lens and the results when th
is used as an environment map.

Once you've created a texture designed for environment mapping, you need to invoke Ope
environment-mapping algorithm. This algorithm finds the point on the surface of the sphere
the same tangent surface as the point on the object being rendered, and it paints the objec
with the color visible on the sphere at the corresponding point.

To automatically generate the texture coordinates to support environment mapping, use thi
your program:

gl TexGeni (GL_S, G._TEXTURE_GEN MODE, GL_SPHERE_MAP);
gl TexGeni (GL_T, G._TEXTURE_GEN MODE, GL_SPHERE_MAP);
gl Enabl e(G._TEXTURE _GEN_S);
gl Enabl e(GL_TEXTURE_GEN_T) ;

The GL_SPHERE_MAP constant creates the proper texture coordinates for the environme
mapping. As shown, you need to specify it for bothsthadt directions. However, you don’t ha
to specify any parameters for the texture-coordinate generation function.

The GL_SPHERE_MAP texture function generates texture coordinates using the following
mathematical steps.

1. uis the unit vector pointing from the origin to the vertex (in eye coordinates).

2. n’ is the current normal vector, after transformation to eye coordinates.

w

. I is the reflection vectoryXxryrz)T, which is calculated by - 2n’n’ Tu.

4. Then an interim valuan, is calculated by

m:EJri+ri+(r5+ 1?

o

. Finally, thes andt texture coordinates are calculated by

F=r./m +lf

and

— 1
r—r},x“m +3

Advanced Features

Advanced

This section describes how to manipulate the texture matrix stack and how to gisedhdinate.
Both techniques are considered advanced, since you don’t need them for many application
texture mapping.

The Texture Matrix Stack

Just as your model coordinates are transformed by a matrix before being rendered, texture
coordinates are multiplied by a 4 x 4 matrix before any texture mapping occurs. By default,
texture matrix is the identity, so the texture coordinates you explicitly assign or those that a
automatically generated remain unchanged. By modifying the texture matrix while redrawin
object, however, you can make the texture slide over the surface, rotate around it, stretch
shrink, or any combination of the three. In fact, since the texture matrix is a completely gen
4 matrix, effects such as perspective can be achieved.

When the four texture coordinates {, r, 9 are multiplied by the texture matrix, the resulting
vector €' t' ' q') is interpreted as homogeneous texture coordinates. In other words, the tex
map is indexed by'/q’ andt’/q’ . (Remember that/q’ is ignored in standard OpenGL, but may
used by implementations that support a 3D texture extension.) The texture matrix is actuall
matrix on a stack, which must have a stack depth of at least two matrices. All the standard
matrix-manipulation commands suchghBushMatrix(), glPopMatrix(), giMultMatrix(), and
glRotate* () can be applied to the texture matrix. To modify the current texture matrix, you n
set the matrix mode to GL_TEXTURE, as follows:

gl Matri xMode(GL_TEXTURE); /* enter texture matrix node */
gl Rotated(...);

[* ... other matrix nanipulations ... */

gl Matri xMode(GL_MODELVIEW ; /* back to nodel vi ew node */

The q Coordinate

The mathematics of thepcoordinate in a general four-dimensional texture coordinate is as
described in the previous section. You can make ugemnotases where more than one projecti
or perspective transformation is needed. For example, suppose you want to model a spotlic
has some nonuniform pattern - brighter in the center, perhaps, or noncircular, because of fl
lenses that modify the shape of the beam. You can emulate shining such a light on a flat st
making a texture map that corresponds to the shape and intensity of a light, and then proje
the surface in question using projection transformations. Projecting the cone of light onto st
in the scene requires a perspective transformagi@mé; 1), since the lights might shine on
surfaces that aren’t perpendicular to them. A second perspective transformation occurs bec

viewer sees the scene from a different (but perspective) point of view'Rlae=27" in Appendix
| for an example, and see "Fast Shadows and Lighting Effects Using Texture Mapping" by |
Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli, SIGGRAPH 1992
Proceedings,Gomputer Graphics26:2, July 1992, p. 249-252) for more details.)

Another example might arise if the texture map to be applied comes from a photograph tha
was taken in perspective. As with spotlights, the final view depends on the combination of t
perspective transformations.

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 10
The Framebuffer

Chapter Objectives

After reading this chapter, you’ll be able to do the following:
® Understand what buffers make up the framebuffer and how they’re used
® Clear selected buffers and enable them for writing

® Control the parameters of the scissoring, alpha, stencil, and depth-buffer tests that are
to pixels

® Perform dithering and logical operations
® Use the accumulation buffer for such purposes as scene antialiasing

An important goal of almost every graphics program is to draw pictures on the screen. The
composed of a rectangular array of pixels, each capable of displaying a tiny square of colol
point in the image. After the rasterization stage (including texturing and fog), the data are n
pixels, but are fragments. Each fragment has coordinate data which corresponds to a pixel.
as color and depth values. Then each fragment undergoes a series of tests and operations
which have been previously described (38lending" in Chapter pand others that are discusse¢
in this chapter.

If the tests and operations are survived, the fragment values are ready to become pixels. T
these pixels, you need to know what color they are, which is the information that’s stored in
color buffer. Whenever data is stored uniformly for each pixel, such storage for all the pixel:
called abuffer. Different buffers might contain different amounts of data per pixel, but within
given buffer, each pixel is assigned the same amount of data. A buffer that stores a single |
information about pixels is called a bitplane.

As shown inFigure 10-1the lower-left pixel in an OpenGL window is pixel (0, 0), correspond
to the window coordinates of the lower-left corner of the 1 x 1 region occupied by this pixel.
general, pixelX, y) fills the region bounded byon the leftx+1 on the righty on the bottom, anc
y+1 on the top.

lower left comer

a0 - of the window
3 20 -
£
E pixal (2, 1)
= J
3 1.0
_E
S
=
1] T T
0.0 1.0 2.0 3.0

¥ window coordinate

Figure 10-1: Region Occupied by a Pixel

As an example of a buffer, let’'s look more closely at the color buffer, which holds the color
information that’s to be displayed on the screen. Assume that the screen is 1280 pixels wid
1024 pixels high and that it's a full 24-bit color screen - in other words, there are 224 (or
16,777,216) different colors that can be displayed. Since 24 bits translates to 3 bytes (8 bit:
the color buffer in this example has to store at least 3 bytes of data for each of the 1,310,7z2
(1280*1024) pixels on the screen. A particular hardware system might have more or fewer
on the physical screen as well as more or less color data per pixel. Any particular color bufi
however, has the same amount of data saved for each pixel on the screen.

The color buffer is only one of several buffers that hold information about a pixel. For exam
"A Hidden-Surface Removal Survival Kit" in Chapten/®u learned that the depth buffer holds
depth information for each pixel. The color buffer itself can consist of several subbuffers. Tt
framebuffer on a system comprises all of these buffers. With the exception of the color buff
you don’t view these other buffers directly; instead, you use them to perform such tasks as
hidden-surface elimination, antialiasing of an entire scene, stenciling, drawing smooth moti
other operations.

This chapter describes all the buffers that can exist in an OpenGL implementation and how
used. It also discusses the series of tests and pixel operations that are performed before ar
written to the viewable color buffer. Finally, it explains how to use the accumulation buffer,
is used to accumulate images that are drawn into the color buffer. This chapter has the follc
major sections.

® "Buffers and Their Usegiescribes the possible buffers, what they’re for, and how to cle
them and enable them for writing.

® "Testing and Operating on Fragmengplains the scissoring, alpha, stencil, and depth-i
tests that occur after a pixel’s position and color have been calculated but before this
information is drawn on the screen. Several operations - blending, dithering, and logic
operations - can also be performed before a fragment updates the screen.

® "The Accumulation Buffertlescribes how to perform several advanced techniques usir
accumulation buffer. These techniques include antialiasing an entire scene, using mof
and simulating photographic depth of field.

Buffersand Thar Uses

An OpenGL system can manipulate the following buffers:

® Color buffers: front-left, front-right, back-left, back-right, and any number of auxiliary c
buffers

® Depth buffer
® Stencil buffer
® Accumulation buffer

Your particular OpenGL implementation determines which buffers are available and how m
per pixel each holds. Additionally, you can have multiple visuals, or window types, that hav:
different buffers availabléelable 10-1lists the parameters to use wiflGetl ntegerv() to query
your OpenGL system about per-pixel buffer storage for a particular visual.

Note: If you're using the X Window System, you're guaranteed, at a minimum, to have a vis
with one color buffer for use in RGBA mode with associated stencil, depth, and accumulatic
buffers that have color components of nonzero size. Also, if your X Window System
implementation supports a Pseudo-Color visual, you are also guaranteed to have one Opel
visual that has a color buffer for use in color-index mode with associated depth and stencil
You'll probably want to usglXGetConfig() to query your visuals; séppendix Cand the
OpenGL Reference Manufar more information about this routine.

Table 10-1 : Query Parameters for Per-Pixel Buffer Storage

Parameter Meaning

GL_RED_BITS, GL_GREEN_BITS,| Number of bits per R, G, B, or A component in the
GL_BLUE_BITS, GL_ALPHA_BITS| color buffers

GL_INDEX_BITS Number of bits per index in the color buffers
GL_DEPTH_BITS Number of bits per pixel in the depth buffer
GL_STENCIL_BITS Number of bits per pixel in the stencil buffer
GL_ACCUM_RED_BITS, Number of bits per R, G, B, or A component in the
GL_ACCUM_GREEN_BITS, accumulation buffer

GL_ACCUM_BLUE_BITS,
GL_ACCUM_ALPHA BITS

Color Buffers

The color buffers are the ones to which you usually draw. They contain either color-index o
color data and may also contain alpha values. An OpenGL implementation that supports
stereoscopic viewing has left and right color buffers for the left and right stereo images. If s
isn’t supported, only the left buffers are used. Similarly, double-buffered systems have front
back buffers, and a single-buffered system has the front buffers only. Every OpenGL
implementation must provide a front-left color buffer.

Optional, nondisplayable auxiliary color buffers may also be supported. OpenGL doesn'’t s
any particular uses for these buffers, so you can define and use them however you please.
example, you might use them for saving an image that you use repeatedly. Then rather tha
redrawing the image, you can just copy it from an auxiliary buffer into the usual color buffer
the description ofl CopyPixels() in "Reading, Writing, and Copying Pixel Data" in Chaptd¢oi8
more information about how to do this.)

You can use GL_STEREO or GL_DOUBLEBUFFER wgtlsetBooleanv() to find out if your
system supports stereo (that is, has left and right buffers) or double-buffering (has front anc
buffers). To find out how many, if any, auxiliary buffers are presentgl@et| ntegerv() with
GL_AUX_BUFFERS.

Depth Buffer

The depth buffer stores a depth value for each pixel. As describadHidden-Surface Removal
Survival Kit" in Chapter 5depth is usually measured in terms of distance to the eye, so pixe
larger depth-buffer values are overwritten by pixels with smaller values. This is just a usefu
convention, however, and the depth buffer's behavior can be modified as desctibeptmTest.
The depth buffer is sometimes called theuffer(the z comes from the fact thatindy values
measure horizontal and vertical displacement on the screen, aawbibie measures distance
perpendicular to the screen).

Stencil Buffer

One use for the stencil buffer is to restrict drawing to certain portions of the screen, just as
cardboard stencil can be used with a can of spray paint to make fairly precise painted imag
example, if you want to draw an image as it would appear through an odd-shaped windshie
can store an image of the windshield’s shape in the stencil buffer, and then draw the entire
The stencil buffer prevents anything that wouldn’t be visible through the windshield from be
drawn. Thus, if your application is a driving simulation, you can draw all the instruments an
items inside the automobile once, and as the car moves, only the outside scene need be uj

Accumulation Buffer

The accumulation buffer holds RGBA color data just like the color buffers do in RGBA mod
results of using the accumulation buffer in color-index mode are undefined.) It's typically us
accumulating a series of images into a final, composite image. With this method, you can p
operations like scene antialiasing by supersampling an image and then averaging the samj
produce the values that are finally painted into the pixels of the color buffers. You don't dra
directly into the accumulation buffer; accumulation operations are always performed in rect
blocks, which are usually transfers of data to or from a color buffer.

Clearing Buffers

In graphics programs, clearing the screen (or any of the buffers) is typically one of the mosi
expensive operations you can perform - on a 1280 x 1024 monitor, it requires touching wel
million pixels. For simple graphics applications, the clear operation can take more time thar
of the drawing. If you need to clear not only the color buffer but also the depth and stencil b
the clear operation can be three times as expensive.

To address this problem, some machines have hardware that can clear more than one buft
The OpenGL clearing commands are structured to take advantage of architectures like this
you specify the values to be written into each buffer to be cleared. Then you issue a single
command to perform the clear operation, passing in a list of all the buffers to be cleared. If
hardware is capable of simultaneous clears, they all occur at once; otherwise, each buffer i
sequentially.

The following commands set the clearing values for each buffer.

void glClearColor(GLclampfred, GLclampfgreen GLclampfblue

GLclampfalpha);

void glClearIndex(GLfloatindex);

void glClear Depth(GLclampddepth;

void glClear Stencil (GLint s);

void glClearAccum(GLfloatred, GLfloatgreen GLfloatblue,

GLfloatalpha);
Specifies the current clearing values for the color buffer (in RGBA mode), the color bu
color-index mode), the depth buffer, the stencil buffer, and the accumulation buffer. Tt
GLclampf and GLclampd types (clamped GLfloat and clamped GLdouble) are clampe
between 0.0 and 1.0. The default depth-clearing value is 1.0; all the other default clea
values are 0. The values set with the clear commands remain in effect until they’re ch
by another call to the same command.

After you've selected your clearing values and you're ready to clear the buffegbClese ().

void glClear(GLbitfield mask;
Clears the specified buffers. The valuenafskis the bitwise logical OR of some combinat
of GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_I
and GL_ACCUM_BUFFER_BIT to identify which buffers are to be cleared.
GL_COLOR_BUFFER_BIT clears either the RGBA color or the color-index buffer,
depending on the mode of the system at the time. When you clear the color or color-ir
buffer, all the color buffers that are enabled for writing (see the next section) are clear
pixel ownership test, scissor test, and dithering, if enabled, are applied to the clearing
operation. Masking operations, suchg€olorMask() andgllndexMask(), are also
effective. The alpha test, stencil test, and depth test do not affect the opergt@ieant).

Selecting Color Buffersfor Writing and Reading

The results of a drawing or reading operation can go into or come from any of the color buf
front, back, front-left, back-left, front-right, back-right, or any of the auxiliary buffers. You ca
choose an individual buffer to be the drawing or reading target. For drawing, you can also ¢
target to draw into more than one buffer at the same time. Yoyl DsawBuffer () to select the
buffers to be written angReadBuffer () to select the buffer as the sourcedidReadPixels(),

glCopyPixels(), glCopyTexl mage* (), andglCopyTexSubl mage* ().

If you are using double-buffering, you usually want to draw only in the back buffer (and swe
buffers when you’re finished drawing). In some situations, you might want to treat a
double-buffered window as though it were single-buffered by cadlidgawBuffer () to enable
you to draw to both front and back buffers at the same time.

glDrawBuffer() is also used to select buffers to render stereo images (GL*LEFT and GL*RI
and to render into auxiliary buffers (GL_AWX

void glDrawBuffer(GLenummodse);
Selects the color buffers enabled for writing or clearing. Disables buffers enabled by p
calls toglDrawBuffer(). More than one buffer may be enabled at one time. The vatned:
can be one of the following:

GL_FRONT GL_FRONT_LEFT GL_AUKXi
GL_BACK GL_FRONT RIGHT GL_FRONT AND_BACK
GL LEFT GL BACK LEFT GL_NONE

GL_RIGHT GL_BACK_RIGHT

Arguments that omit LEFT or RIGHT refer to both the left and right buffers; similarly,
arguments that omit FRONT or BACK refer to both. iTimeGL_AUX is a digit identifying ¢
particular auxiliary buffer.

By defaultmodeis GL_FRONT for single-buffered contexts and GL_BACK for
double-buffered contexts.

Note: You can enable drawing to nonexistent buffers as long as you enable drawing to at le
buffer that does exist. If none of the specified buffers exist, an error results.

void glReadBuffer(GLenummode;
Selects the color buffer enabled as the source for reading pixels for subsequent calls
glReadPixels(), glCopyPixels(), glCopyTexI mage* (), andglCopyTexSubl mage* (). Disables

buffers enabled by previous callsgilreadBuffer(). The value omodecan be one of the
following:

GL_FRONT GL_FRONT LEFT GL_AUXi

GL_BACK GL_FRONT_RIGHT

GL LEFT GL_BACK_LEFT

GL_RIGHT GL_BACK_RIGHT

By defaultimodeis GL_FRONT for single-buffered contexts and GL_BACK for
double-buffered contexts.

Note: You must enable reading from a buffer that does exist or an error results.

Masking Buffers

Before OpenGL writes data into the enabled color, depth, or stencil buffers, a masking opel
applied to the data, as specified with one of the following commands. A bitwise logical ANC
performed with each mask and the corresponding data to be written.

void gll ndexMask(GLuintmask;

void glColorMask(GLboolearred, GLbooleargreen GLboolearblue

GLbooleamalpha);

void glDepthMask(GLbooleanflag);

void glStencilMask(GLuint mask;
Sets the masks used to control writing into the indicated buffers. The mask set by
glindexMask() applies only in color-index mode. If a 1 appearsiaisk the corresponding
bit in the color-index buffer is written; where a 0 appears, the bit isn’t written. Similarly
glColorMask() affects drawing in RGBA mode only. Thd, green blue andalphavalues
control whether the corresponding component is written. (GL_TRUE means it is writte
flag is GL_TRUE forglDepthMask(), the depth buffer is enabled for writing; otherwise, i
disabled. The mask fgtStencilMask() is used for stencil data in the same way as the m
is used for color-index data igilndexMask(). The default values of all the GLboolean m:
are GL_TRUE, and the default values for the two GLuint masks are all 1’s.

You can do plenty of tricks with color masking in color-index mode. For example, you can L
bit in the index as a different layer and set up interactions between arbitrary layers with apg
settings of the color map. You can create overlays and underlays, and do so-called color-ir
animations. (Se€hapter 14or examples of using color masking.) Masking in RGBA mode is
useful less often, but you can use it for loading separate image files into the red, green, anc
bitplanes, for example.

You've seen one use for disabling the depth buffélmee-Dimensional Blending with the Dey
Buffer" in Chapter 6Disabling the depth buffer for writing can also be useful if a common
background is desired for a series of frames, and you want to add some features that may
obscured by parts of the background. For example, suppose your background is a forest, a
would like to draw repeated frames with the same trees, but with objects moving among the
After the trees are drawn with their depths recorded in the depth buffer, then the image of tl
is saved, and the new items are drawn with the depth buffer disabled for writing. As long as
items don’t overlap each other, the picture is correct. To draw the next frame, restore the in
the trees and continue. You don’t need to restore the values in the depth buffer. This trick it
useful if the background is extremely complex - so complex that it's much faster just to recc
image into the color buffer than to recompute it from the geometry.

Masking the stencil buffer can allow you to use a multiple-bit stencil buffer to hold multiple
stencils (one per bit). You might use this technique to perform capping as expldiSeshicil

Test"or to implement the Game of Life as describetlife in the Stencil Buffer" in Chapter 14

Note: The mask specified byl StencilM ask() controls which stencil bitplanes are written. This
mask isn'’t related to the mask that’s specified as the third paramet&afcilFunc(), which
specifies which bitplanes are considered by the stencil function.

Testing and Operating on Fragments

When you draw geometry, text, or images on the screen, OpenGL performs several calcule
rotate, translate, scale, determine the lighting, project the object(s) into perspective, figure
which pixels in the window are affected, and determine what colors those pixels should be
Many of the earlier chapters in this book give some information about how to control these
operations. After OpenGL determines that an individual fragment should be generated and
color should be, several processing stages remain that control how and whether the fragme
drawn as a pixel into the framebuffer. For example, if it's outside a rectangular region or if if
farther from the viewpoint than the pixel that’s already in the framebuffer, it isn’t drawn. In a
stage, the fragment’s color is blended with the color of the pixel already in the framebuffer.

This section describes both the complete set of tests that a fragment must pass before it gc
the framebuffer and the possible final operations that can be performed on the fragment as
written. The tests and operations occur in the following order; if a fragment is eliminated in .
test, none of the later tests or operations take place.

1. Scissor test

2. Alpha test

3. Stencil test

4. Depth test

5. Blending

6. Dithering

7. Logical operation
Each of these tests and operations is described in detail in the following sections.

Scissor Test

You can define a rectangular portion of your window and restrict drawing to take place with
using theglScissor () command. If a fragment lies inside the rectangle, it passes the scissor t

void glScissor(GLint x, GLinty, GLsizewidth, GLsizeiheigh);
Sets the location and size of the scissor rectangle (also known as the scissor box). Tt
parameters define the lower-left cornery), and the width and height of the rectangle.
Pixels that lie inside the rectangle pass the scissor test. Scissoring is enabled and dis
passing GL_SCISSOR_TESTgtBnable() andglDisable(). By default, the rectangle

matches the size of the window and scissoring is disabled.

The scissor test is just a version of a stencil test using a rectangular region of the screen. It
easy to create a blindingly fast hardware implementation of scissoring, while a given syster
be much slower at stenciling - perhaps because the stenciling is performed in software.

Advanced

An advanced use of scissoring is performing nonlinear projection. First divide the window ir
regular grid of subregions, specifying viewport and scissor parameters that limit rendering t
region at a time. Then project the entire scene to each region using a different projection m

To determine whether scissoring is enabled and to obtain the values that define the scissor
rectangle, you can use GL_SCISSOR_TEST wglitelEnabled() and GL_SCISSOR_BOX with
glGetlntegerv().

Alpha Test

In RGBA mode, the alpha test allows you to accept or reject a fragment based on its alpha
The alpha test is enabled and disabled by passing GL_ALPHA_THE$Ertable() and
glDisable(). To determine whether the alpha test is enabled, use GL_ALPHA_TEST with
gll sEnabled().

If enabled, the test compares the incoming alpha value with a reference value. The fragmel
accepted or rejected depending on the result of the comparison. Both the reference value ¢
comparison function are set wighAlphaFunc(). By default, the reference value is zero, the
comparison function is GL_ALWAYS, and the alpha test is disabled. To obtain the alpha
comparison function or reference value, use GL_ALPHA_TEST_FUNC or
GL_ALPHA_TEST_REF witlglGetl nteger v().

void glAlphaFunc(GLenumfung GLclampfref);
Sets the reference value and comparison function for the alpha test. The referencefvs
clamped to be between zero and one. The possible valuesméand their meaning are
listed inTable 10-2

Table 10-2 : glAlphaFunc() Parameter Values (continued)

Parameter Meaning

GL_NEVER Never accept the fragment

GL_ALWAYS Always accept the fragment

GL_LESS Accept fragment if fragment alpha < reference alpha
GL_LEQUAL Accept fragment if fragment alpha ≤ reference alpha
GL_EQUAL Accept fragment if fragment alpha = reference alpha
GL_GEQUAL Accept fragment if fragment alpha ≥ reference alpha

GL_GREATER Accept fragment if fragment alpha > reference alpha

GL_NOTEQUAL | Accept fragment if fragment alpha ≠ reference alpha

One application for the alpha test is to implement a transparency algorithm. Render your er
scene twice, the first time accepting only fragments with alpha values of one, and the secol
accepting fragments with alpha values that aren’t equal to one. Turn the depth buffer on du
passes, but disable depth buffer writing during the second pass.

Another use might be to make decals with texture maps where you can see through certair
the decals. Set the alphas in the decals to 0.0 where you want to see through, set them to :
otherwise, set the reference value to 0.5 (or anything between 0.0 and 1.0), and set the cor
function to GL_GREATER. The decal has see-through parts, and the values in the depth bi
aren’t affected. This technique, called billboarding, is describ&8ample Uses of Blending" in
Chapter 6

Stencil Test

The stencil test takes place only if there is a stencil buffer. (If there is no stencil buffer, the ¢
test always passes.) Stenciling applies a test that compares a reference value with the val.
a pixel in the stencil buffer. Depending on the result of the test, the value in the stencil buffe
modified. You can choose the particular comparison function used, the reference value, an
modification performed with thgl StencilFunc() andglStencilOp() commands.

void glStencilFunc(GLenumfung GLintref, GLuintmask;
Sets the comparison functiofu(c), reference value€f), and a maskniask for use with th
stencil test. The reference value is compared to the value in the stencil buffer using th
comparison function, but the comparison applies only to those bits where the correspc
bits of the mask are 1. The function can be GL_NEVER, GL_ALWAYS, GL_LESS,
GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. Ifit's
GL_LESS, for example, then the fragment passefig less than the value in the stencil
buffer. If the stencil buffer contaisditplanes, the low-ordes bits ofmaskare bitwise
ANDed with the value in the stencil buffer and with the reference value before the con

is performed. The masked values are all interpreted as nonnegative values. The stenc
enabled and disabled by passing GL_STENCIL_TES$iEtable() and glDisable(). By
default, funcis GL_ALWAYSgf is 0,maskis all 1's, and stenciling is disabled.

void glStencilOp(GLenumfail, GLenunefail, GLenunzpas$,
Specifies how the data in the stencil buffer is modified when a fragment passes or fail
stencil test. The three functiofel, zfail, andzpasscan be GL_KEEP, GL_ZERO,
GL_REPLACEGL_INCR, GL_DECR, or GL_INVERT. They correspond to keeping the
current value, replacing it with zero, replacing it with the reference value, incrementing
decrementing it, and bitwise-inverting it. The result of the increment and decrement fu
is clamped to lie between zero and the maximum unsigned integer value (2s-1 if the s
buffer holdss bits). Thefail function is applied if the fragment fails the stencil test; if it
passes, thenmfail is applied if the depth test fails amdassf the depth test passes, or if no
depth test is performed. (S&2epth Test.) By default, all three stencil operations are
GL_KEEP.

Stencil Queries
You can obtain the values for all six stencil-related parameters by using the query function

glGetIntegerv() and one of the values shownTiable 10-3 You can also determine whether the
stencil test is enabled by passing GL_STENCIL_TES{JltsEnabled().

Table 10-3 : Query Values for the Stencil Test (continued)

Query Value M eaning

GL_STENCIL_FUNC Stencil function

GL_STENCIL_REF Stencil reference value
GL_STENCIL_VALUE_MASK Stencil mask

GL_STENCIL_FAIL Stencil fail action

GL_STENCIL_PASS _DEPTH_FAIL| Stencil pass and depth buffer fail actiop
GL_STENCIL_PASS DEPTH_PAS$ Stencil pass and depth buffer pass acl1 on

Stencil Examples

Probably the most typical use of the stencil test is to mask out an irregularly shaped region
screen to prevent drawing from occurring within it (as in the windshield exam{Befiers and
Their Uses). To do this, fill the stencil mask with zeros, and then draw the desired shape in
stencil buffer with 1's. You can’t draw geometry directly into the stencil buffer, but you can
achieve the same result by drawing into the color buffer and choosing a suitable valuegast
function (such as GL_REPLACE). (You can gterawPixels() to draw pixel data directly into t
stencil buffer.) Whenever drawing occurs, a value is also written into the stencil buffer (in tr
the reference value). To prevent the stencil-buffer drawing from affecting the contents of th

buffer, set the color mask to zero (or GL_FALSE). You might also want to disable writing in
depth buffer.

After you've defined the stencil area, set the reference value to one, and the comparison fu
such that the fragment passes if the reference value is equal to the stencil-plane value. Dul
drawing, don’t modify the contents of the stencil planes.

Example 10-demonstrates how to use the stencil test in this way. Two tori are drawn, with
diamond-shaped cutout in the center of the scene. Within the diamond-shaped stencil masl
sphere is drawn. In this example, drawing into the stencil buffer takes place only when the
is redrawn, so the color buffer is cleared after the stencil mask has been created.

Example 10-1 : Using the Stencil Test: stencil.c

#i nclude <@/ gl . h>

#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i nclude <stdlib. h>

#def i ne YELLOWAT 1
#def i ne BLUEMAT 2

void init (void)

G.float yellow diffuse[] ={ 0.7, 0.7, 0.0, 1.0 };
G.float yellow specular[] ={ 1.0, 1.0, 1.0, 1.0 };

G.float blue diffuse[] ={ 0.1, 0.1, 0.7, 1.0 };
G.float blue_specular[] ={ 0.1, 1.0, 1.0, 1.0 };

G.float position_one[] ={ 1.0, 1.0, 1.0, 0.0 };

gl NewLi st (YELLOAWAT, GL_COWPI LE);

gl Material fv(G._FRONT, G._DI FFUSE, yell ow diffuse);
gl Material fv(G._FRONT, G._SPECULAR, yell ow specul ar);
gl Material f(G_FRONT, G._SHI NI NESS, 64.0);

gl EndLi st ();

gl NewLi st (BLUEMAT, GL_COWPI LE)

gl Material fv(G._FRONT, G._DI FFUSE, bl ue_diffuse);
gl Material fv(G._FRONT, G._SPECULAR, blue_ specul ar);
gl Material f (G._FRONT, GL_SHI NI NESS, 45.0);

gl EndLi st ();

gl Li ght fv(GL_LI GHTO, GL_POSI TI ON, position_one);

gl Enabl e(G._LI GHTO) ;
gl Enabl e(G._LI GHTI NG ;
gl Enabl e(G._DEPTH_TEST) ;

gl C ear St enci | (0x0);
gl Enabl e(GL_STENCI L_TEST) ;

}

/* Draw a sphere in a di anond-shaped section in the
* mddle of a wwndowwth 2 tori.

*/

voi d di spl ay(voi d)

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

/* draw bl ue sphere where the stencil is 1 */
gl Stencil Func (G._EQUAL, 0x1, 0Ox1);
gl Stencil O (G._KEEP, G.L_KEEP, G._KEEP);
gl Cal | Li st (BLUENAT);
gl ut Sol i dSphere (0.5, 15, 15);

/* draw the tori where the stencil is not 1 */
gl Stenci |l Func (G._NOTEQUAL, 0Ox1, 0x1);
gl PushiMatri x();
gl Rotatef (45.0, 0.0, 0.0, 1.0);
gl Rotatef (45.0, 0.0, 1.0, 0.0);
gl Cal | Li st (YELLOMWAT) ;
glut Sol i dTorus (0.275, 0.85, 15, 15);
gl PushiMatri x();
gl Rotatef (90.0, 1.0, 0.0, 0.0);
gl ut Sol i dTorus (0.275, 0.85, 15, 15);
gl PopMat ri x();
gl PopMat ri x();
}

/* \Wenever the wi ndow is reshaped, redefine the
* coordi nate systemand redraw the stencil area.
*/

void reshape(int w, int h)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);

/* create a dianmond shaped stencil area */
gl Matri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
if (w<=h)
gluOrtho2D(-3.0, 3.0, -3.0*(G.float)h/ (G float)w,
3.0*(CG.float)h/ (G.float)w);
el se
gl uOrtho2D(-3. 0*(G.fl oat)w (G.fl oat) h,
3.0*(G.float)w (Gfloat)h, -3.0, 3.0);
gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();

gl O ear (GL_STENCI L_BUFFER BI T) ;
gl Stenci |l Func (G._ALWAYS, O0x1, Ox1);
gl Stenci |l Op (G._REPLACE, G._REPLACE, GL._REPLACE);
gl Begi n(G._QUADS) ;
gl Vertex2f (-1.0, 0.0);
gl Vertex2f (0.0, 1.0);
gl Vertex2f (1.0, 0.0);
gl Vertex2f (0.0, -1.0);
gl End() ;

gl Matri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl uPerspective(45.0, (G.float) w (Gfloat) h, 3.0, 7.0);
gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();
gl Transl atef (0.0, 0.0, -5.0);
}

/* Main Loop

* Be certain to request stencil bits.
*/

int main(int argc, char** argv)

glutinit(&rgc, argv);
glutlnitD splayMyde (GLUT_SINGLE | GLUT_RGB
| GLUT_DEPTH | GLUT_STENCIL);

gl utlni t WndowSi ze (400, 400);

gl utlnit WndowPosition (100, 100);
gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut ReshapeFunc(reshape);

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

}

The following examples illustrate other uses of the stencil testGBagter 14or additional
ideas.)

® Capping - Suppose you're drawing a closed convex object (or several of them, as long

don’t intersect or enclose each other) made up of several polygons, and you have a ¢
plane that may or may not slice off a piece of it. Suppose that if the plane does interse
object, you want to cap the object with some constant-colored surface, rather than set
inside of it. To do this, clear the stencil buffer to zeros, and begin drawing with stencili
enabled and the stencil comparison function set to always accept fragments. Invert th
in the stencil planes each time a fragment is accepted. After all the objects are drawn,
of the screen where no capping is required have zeros in the stencil planes, and regic
requiring capping are nonzero. Reset the stencil function so that it draws only where t
stencil value is nonzero, and draw a large polygon of the capping color across the ent
screen.

Overlapping translucent polygons - Suppose you have a translucent surface that's me
polygons that overlap slightly. If you simply use alpha blending, portions of the underh
objects are covered by more than one transparent surface, which doesn’t look right. LU
stencil planes to make sure that each fragment is covered by at most one portion of tr
transparent surface. Do this by clearing the stencil planes to zeros, drawing only wher
stencil plane is zero, and incrementing the value in the stencil plane when you draw.

Stippling - Suppose you want to draw an image with a stipple pattern:Sp&ying
Points, Lines, and Polygons" in Chaptdo2more information about stippling.) You can «
this by writing the stipple pattern into the stencil buffer, and then drawing conditionally
the contents of the stencil buffer. After the original stipple pattern is drawn, the stencil
isn’t altered while drawing the image, so the object gets stippled by the pattern in the
planes.

Depth Test

For each pixel on the screen, the depth buffer keeps track of the distance between the view
the object occupying that pixel. Then if the specified depth test passes, the incoming depth
replaces the one already in the depth buffer.

The depth buffer is generally used for hidden-surface elimination. If a new candidate color 1
pixel appears, it's drawn only if the corresponding object is closer than the previous object.
way, after the entire scene has been rendered, only objects that aren’t obscured by other it
remain. Initially, the clearing value for the depth buffer is a value that's as far from the view,
possible, so the depth of any object is nearer than that value. If this is how you want to use
depth buffer, you simply have to enable it by passing GL_DEPTH_TE§Etable() and
remember to clear the depth buffer before you redraw each framé(|8aeng Buffers.) You
can also choose a different comparison function for the depth tesil@ahthFunc().

void glDepthFunc(GLenumfuno);
Sets the comparison function for the depth test. The valdarfomust be GL_NEVER,
GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER,
GL_NOTEQUAL. An incoming fragment passes the depth test ifatae has the specifiec
relation to the value already stored in the depth buffer. The default is GL_LESS, whicl
that an incoming fragment passes the test & #alue is less than that already stored in tF
depth buffer. In this case, thevalue represents the distance from the object to the view
and smaller values mean the corresponding objects are closer to the viewpoint.

Blending, Dithering, and L ogical Operations

Once an incoming fragment has passed all the tests described in the previous section, it ce
combined with the current contents of the color buffer in one of several ways. The simplest
which is also the default, is to overwrite the existing values. Alternatively, if you're using RC
mode and you want the fragment to be translucent or antialiased, you might average its val
the value already in the buffer (blending). On systems with a small number of available colc
might want to dither color values to increase the number of colors available at the cost of a
resolution. In the final stage, you can use arbitrary bitwise logical operations to combine the
incoming fragment and the pixel that’'s already written.

Blending

Blending combines the incoming fragment’s R, G, B, and alpha values with those of the pix
already stored at the location. Different blending operations can be applied, and the blendir
occurs depends on the values of the incoming alpha value and the alpha value (if any) stor
pixel. (Se€'Blending" in Chapter @or an extensive discussion of this topic.)

Dithering

On systems with a small number of color bitplanes, you can improve the color resolution at
expense of spatial resolution by dithering the color in the image. Dithering is like halftoning
newspapers. Although The New York Times has only two colors - black and white - it can s
photographs by representing the shades of gray with combinations of black and white dots.
Comparing a newspaper image of a photo (having no shades of gray) with the original phot
grayscale) makes the loss of spatial resolution obvious. Similarly, systems with a small nun
color bitplanes may dither values of red, green, and blue on neighboring pixels for the perci
a wider range of colors.

The dithering operation that takes place is hardware-dependent; all OpenGL allows you to-
turn it on and off. In fact, on some machines, enabling dithering might do nothing at all, whi
makes sense if the machine already has high color resolution. To enable and disable dithel
GL_DITHER toglEnable() andglDisable(). Dithering is enabled by default.

Dithering applies in both RGBA and color-index mode. The colors or color indices alternate
some hardware-dependent way between the two nearest possibilities. For example, in colo
mode, if dithering is enabled and the color index to be painted is 4.4, then 60% of the pixels
painted with index 4 and 40% of the pixels with index 5. (Many dithering algorithms are pos
but a dithered value produced by any algorithm must depend upon only the incoming value
fragment’s x and y coordinates.) In RGBA mode, dithering is performed separately for eacl
component (including alpha). To use dithering in color-index mode, you generally need to
the colors in the color map appropriately in ramps, otherwise, bizarre images might result.

L ogical Operations

The final operation on a fragment is the logical operation, such as an OR, XOR, or INVERT
is applied to the incoming fragment values (source) and/or those currently in the color buffe
(destination). Such fragment operations are especially useful on bit-blt-type machines, on v
primary graphics operation is copying a rectangle of data from one place in the window to ¢
from the window to processor memory, or from memory to the window. Typically, the copy
doesn’t write the data directly into memory but instead allows you to perform an arbitrary lo
operation on the incoming data and the data already present; then it replaces the existing c
the results of the operation.

Since this process can be implemented fairly cheaply in hardware, many such machines ar
available. As an example of using a logical operation, XOR can be used to draw on an ima
undoable way; simply XOR the same drawing again, and the original image is restored. As
example, when using color-index mode, the color indices can be interpreted as bit patterns
you can compose an image as combinations of drawings on different layers, use writemask
drawing to different sets of bitplanes, and perform logical operations to modify different laye

You enable and disable logical operations by passing GL_INDEX_ LOGIC_OP or
GL_COLOR_LOGIC_OP tglEnable() andglDisable() for color-index mode or RGBA mode,
respectively. You also must choose among the sixteen logical operatiomslvagihcOp(), or
you'll just get the effect of the default value, GL_COPY. (For backward compatibility with
OpenGL Version 1.(ylEnable(GL_LOGIC_OP) also enables logical operation in color-index
mode.)

void glLogicOp(GLenumopcodé;
Selects the logical operation to be performed, given an incoming (source) fragment ar
pixel currently stored in the color buffer (destinatiohable 10-4shows the possible value
for opcodeand their meanings(represents source arbidestination). The default value is
GL_COPY.

Table 10-4 : Sixteen Logical Operations

Parameter Operation | Parameter Operation

GL_CLEAR 0 GL_AND s∧ d
GL_COPY S GL OR s∨ d
GL_NOOP d GL_NAND =(s ∧ d)
GL_SET 1 GL_NOR (s ∨ d)
GL_COPY_INVERTED || —s GL_XOR s XOR d
GL_INVERT -d GL_EQUIV ~(s XOR d)

GL_AND_REVERSE | s∧-d | GL_AND_INVERTED | -s ∧ d

GL_OR_REVERSE s∨ ~d GL_OR_INVERTED =s ∨ d

The Accumulation Buffer
Advanced

The accumulation buffer can be used for such things as scene antialiasing, motion blur, sin
photographic depth of field, and calculating the soft shadows that result from multiple light <
Other techniques are possible, especially in combination with some of the other buffefhig S
Accumulation Buffer: Hardware Support for High-Quality Rendebgdaul Haeberli and Kurt
Akeley (SIGGRAPH 1990 Proceedings, p. 309-318) for more information on the uses for th
accumulation buffer.)

OpenGL graphics operations don’t write directly into the accumulation buffer. Typically, a s
images is generated in one of the standard color buffers, and these are accumulated, one ¢
into the accumulation buffer. When the accumulation is finished, the result is copied back ir
color buffer for viewing. To reduce rounding errors, the accumulation buffer may have hight
precision (more bits per color) than the standard color buffers. Rendering a scene several t
obviously takes longer than rendering it once, but the result is higher quality. You can decic
trade-off between quality and rendering time is appropriate for your application.

You can use the accumulation buffer the same way a photographer can use film for multipl
exposures. A photographer typically creates a multiple exposure by taking several pictures
same scene without advancing the film. If anything in the scene moves, that object appears
Not surprisingly, a computer can do more with an image than a photographer can do with a
For example, a computer has exquisite control over the viewpoint, but a photographer can’t
camera a predictable and controlled amount. {S&maring Buffers'for information about how tc
clear the accumulation buffer; ugkccum() to control it.)

void glAccum(GLenumop, GLfloatvalue);
Controls the accumulation buffer. Thp parameter selects the operation, aradueis a
number to be used in that operation. The possible operations are GL_ACCUM, GL_L(
GL_RETURN, GL_ADD, and GL_MULT.

® GL_ACCUM reads each pixel from the buffer currently selected for reading with
glReadBuffer (), multiplies the R, G, B, and alpha valuesvbyue and adds the result to th
accumulation buffer.

® GL_LOAD does the same thing, except that the values replace those in the accumula
buffer rather than being added to them.

® GL_RETURN takes values from the accumulation buffer, multiplies thewalmwg and
places the result in the color buffer(s) enabled for writing.

® GL_ADD and GL_MULT simply add or multiply the value of each pixel in the accumul
buffer byvalueand then return it to the accumulation buffer. For GL_MWaAlyeis
clamped to be in the range [-1.0,1.0]. For GL_ADD, no clamping occurs.

Scene Antialiasing

To perform scene antialiasing, first clear the accumulation buffer and enable the front buffe
reading and writing. Then loop several times (sxyhrough code that jitters and draws the ime
(jittering is moving the image to a slightly different position), accumulating the data with

gl Accum(GL_ACCUM 1.0/ n);
and finally calling
gl Accun{G._RETURN, 1.0);

Note that this method is a bit faster if, on the first pass through the loop, GL_LOAD is used
clearing the accumulation buffer is omitted. Sable 10-5for possible jittering values. With this
code, the image is drawrtimes before the final image is drawn. If you want to avoid showinc
user the intermediate images, draw into a color buffer that's not displayed, accumulate fron
and use the GL_RETURN call to draw into a displayed buffer (or into a back buffer that yot
subsequently swap to the front).

You could instead present a user interface that shows the viewed image improving as eacl
additional piece is accumulated and that allows the user to halt the process when the imag:
enough. To accomplish this, in the loop that draws successive imagetAcalim() with
GL_RETURN after each accumulation, using 16.0/1.0, 16.0/2.0, 16.0/3.0, ... as the second
argument. With this technique, after one pass, 1/16 of the final image is shown, after two p:
2/16 is shown, and so on. After the GL_RETURN, the code should check to see if the user
interrupt the process. This interface is slightly slower, since the resultant image must be co
after each pass.

To decide whai should be, you need to trade off speed (the more times you draw the scene
longer it takes to obtain the final image) and quality (the more times you draw the scene, th
smoother it gets, until you make maximum use of the accumulation buffer’s resol(Riaig.22"
and"Plate 23"show improvements made using scene antialiasing.

Example 10-2lefines two routines for jittering that you might find usefutPer spective() and
accFrustum(). The routineaccPer spective() is used in place ajiuPer spective(), and the first fou
parameters of both routines are the same. To jitter the viewing frustum for scene antialiasir
thex andy jitter values (of less than one pixel) to the fifth and sixth parameters of

accPer spective(). Also pass 0.0 for the seventh and eighth parametacsRer spective() and a
nonzero value for the ninth parameter (to prevent division by zero iasiBer spective()). These
last three parameters are used for depth-of-field effects, which are described later in this ct

Example 10-2 : Routines for Jittering the Viewing Volume: accpersp.c

#define Pl _ 3.14159265358979323846

voi d accFrustum GLdoubl e [eft, G.double right, G.double bottom
GLdoubl e top, G.doubl e near, G.double far, G.doubl e pixdx,
GLdoubl e pi xdy, GLdoubl e eyedx, G.doubl e eyedy,
GLdoubl e focus)

GLdoubl e xwsi ze, ywsize
GLdoubl e dx, dy;
GLint viewport[4];

gl Getlntegerv (G__VI EWPORT, viewport);

XWsi ze right - left;

ywsi ze = top - bottom

dx = -(pixdx*xwsize/ (CGL.doubl e) viewport[2] +
eyedx*near/focus);

dy = -(pixdy*ywsi ze/ (GL.doubl e) viewport[3] +
eyedy*near/focus);

gl Mat ri xMode(GL_PROJECTI ON) ;

gl Loadl dentity();

gl Frustum (left + dx, right + dx, bottom+ dy, top + dy,
near, far);

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

gl Transl atef (-eyedx, -eyedy, 0.0);

}

voi d accPerspective(G.doubl e fovy, G.doubl e aspect,
GL.doubl e near, G.double far, G.doubl e pixdx, G.doubl e pixdy,
GLdoubl e eyedx, G.doubl e eyedy, G.doubl e focus)

{
GLdoubl e fov2,left,right,bottomtop
fov2 = ((fovy*Pl_) / 180.0) / 2.0;
top = near / (fcos(fov2) / fsin(fov2));
bottom = -top;
right = top * aspect;
left = -right;
accFrustum (left, right, bottom top, near, far
pi xdx, pixdy, eyedx, eyedy, focus);
}

Example 10-3uses these two routines to perform scene antialiasing.

Example 10-3 : Scene Antialiasing: accpersp.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>

#i ncl ude <stdlib. h>
#i ncl ude <nath. h>

#i ncl ude <G/ glut. h>
#include "jitter.h"

VOi

voi

d init(void)

G.float mat_anmbient[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
G.float light position[] ={ 0.0, 0.0, 10.0, 1.0 };
G.float Imanbient[] ={ 0.2, 0.2, 0.2, 1.0 };

gl Material fv(G._FRONT, G._AMBI ENT, mat_anbient);

gl Material fv(GL_FRONT, GL_SPECULAR, nat_specul ar)
gl Material f(GL_FRONT, GL_SHI NI NESS, 50.0);

gl Lightfv(G._LIGHTO, G._POSITION, |ight position);
gl Li ght Model fv(GL_LI GHT_MODEL_AMBI ENT, | m anbi ent);

gl Enabl e(GL_LI GHTI NG ;
gl Enabl e(GL_LI GHTO) ;

gl Enabl e(GL_DEPTH_TEST) ;
gl ShadeMbdel (G._FLAT);

gl dearColor(0.0, 0.0, 0.0, 0.0);
gl O ear Accunm(0.0, 0.0, 0.0, 0.0);

d di spl ayObj ect s(voi d)

G.float torus diffuse[] ={ 0.7, 0.7, 0.0, 1.0 };

G.fl oat cube diffuse[] = { 0.0, 0.7, 0.7, 1.0 };
G.fl oat sphere_diffuse[] ={ 0.7, 0.0, 0.7, 1.0 };
G.float octa_diffuse[] ={ 0.7, 0.4, 0.4, 1.0 };

gl PushiMatrix ();
gl Transl atef (0.0, 0.0, -5.0);
gl Rotatef (30.0, 1.0, 0.0, 0.0);

gl PushMatrix ();

gl Transl atef (-0.80, 0.35, 0.0);

gl Rotatef (100.0, 1.0, 0.0, 0.0);

gl Material fv(G._FRONT, G._DI FFUSE, torus_diffuse);
gl ut Sol i dTorus (0.275, 0.85, 16, 16);

gl PopMatrix ();

gl Pushiatrix ();

gl Transl atef (-0.75, -0.50, 0.0);

gl Rotatef (45.0, 0.0, 0.0, 1.0);

gl Rotatef (45.0, 1.0, 0.0, 0.0);

gl Material fv(G._FRONT, G._DI FFUSE, cube_diffuse);

gl ut Sol i dCube (1.5);
gl PopMatrix ();

gl Pushiatrix ();

gl Transl atef (0.75, 0.60, 0.0);

gl Rotatef (30.0, 1.0, 0.0, 0.0);

gl Material fv(G._FRONT, G__DI FFUSE, sphere_diffuse);
gl ut Sol i dSphere (1.0, 16, 16);

gl PopMatrix ();

gl Pushiatrix ();

gl Transl atef (0.70, -0.90, 0.25);

gl Material fv(G._FRONT, G._DI FFUSE, octa_diffuse);
gl ut Sol i dCct ahedron ();

gl PopMatrix ();

gl PopMatrix ();

#defi ne ACSIZE 8
voi d di spl ay(voi d)
{

GLint viewport[4];
int jitter;

gl Cetl ntegerv (G_VI EWPORT, viewport);

gl d ear (GL_ACCUM BUFFER BI T);
for (jitter = 0; jitter < ACSIZE, jitter++) {
gl O ear (G_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);
accPerspective (50.0,
(GLdoubl e) viewport[2]/(G.doubl e) viewdort][3],
1.0, 15.0, j8g[jitter].x, j8[jitter].y, 0.0, 0.0, 1.0);
di spl ayQbj ects ();
gl Accum(G._ACCUM 1.0/ ACSI ZE);

gl Accum (GL_RETURN, 1.0);
gl Fl ush();

}
voi d reshape(int w, int h)

gl Viewport (0, O, (G.sizei) w, (Gsizei) h);

/* Main Loop

* Be certain you request an accumnul ati on buffer.
*/

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlnitD splayMde (GLUT_SINGLE | GUT_RGB
GLUT_ACCUM | GLUT_DEPTH);

gl utl ni t WndowSi ze (250, 250);

gl utlni t WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init();

gl ut ReshapeFunc(reshape);

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

}

You don’t have to use a perspective projection to perform scene antialiasing. You can antie
scene with orthographic projection simply by usghgrandate* () to jitter the scene. Keep in mi
thatglTrandate* () operates in world coordinates, but you want the apparent motion of the s
be less than one pixel, measured in screen coordinates. Thus, you must reverse the world-
mapping by calculating the jittering translation values, using its width or height in world
coordinates divided by its viewport size. Then multiply that world-coordinate value by the ai
of jitter to determine how much the scene should be moved in world coordinates to get a pr
jitter of less than one pixdExample 10-4&hows how théisplay() andreshape() routines might
look with a world-coordinate width and height of 4.5.

Example 10-4 : Jittering with an Orthographic Projection: accanti.c

#define ACSIZE 8

voi d di spl ay(voi d)
{

GLint viewport[4];
int jitter;

gl Get I ntegerv (G._VI EWPORT, viewport);

gl d ear (G._ACCUM BUFFER BI T);
for (jitter = 0; jitter < ACSIZE; jitter++)
gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);
gl PushMatrix ();
Note that 4.5 is the distance in world space between
left and right and bottom and top.
This formula converts fractional pixel nmovenent to
wor | d coordi nates.

* % %k % X

gl Translatef (j8[jitter].x*4.5/viewort][?2],
j8[jitter].y*4.5/viewort[3], 0.0);

di spl ayQbj ects ();

gl PopMatrix ();

gl Accum({ G__ACCUM 1.0/ ACSI ZE);

}
gl Accum (G._RETURN, 1.0);

gl Flush();
}
voi d reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
if (w<=h)
glOtho (-2.25, 2.25, -2.25*h/w, 2.25*h/w, -10.0, 10.0);
el se
glOtho (-2.25*w h, 2.25*w h, -2.25, 2.25, -10.0, 10.0);
gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
Motion Blur

Similar methods can be used to simulate motion blur, as shoifaile 7" in Appendix and
Figure 10-2 Suppose your scene has some stationary and some moving objects in it, and y
to make a motion-blurred image extending over a small interval of time. Set up the accumu
buffer in the same way, but instead of spatially jittering the images, jitter them temporally. T
entire scene can be made successively dimmer by calling

gl Accum (G._MJILT, decayFactor);

as the scene is drawn into the accumulation buffer, wlezrayFactois a number from 0.0 to 1.
Smaller numbers fatecayFactorcause the object to appear to be moving faster. You can tra
the completed scene with the object’s current position and "vapor trail" of previous position:
the accumulation buffer to the standard color buffer with

gl Accum (GL_RETURN, 1.0);

The image looks correct even if the items move at different speeds, or if some of them are
accelerated. As before, the more jitter points (temporal, in this case) you use, the better the
image, at least up to the point where you begin to lose resolution due to finite precision in tl
accumulation buffer. You can combine motion blur with antialiasing by jittering in both the s

and temporal domains, but you pay for higher quality with longer rendering times.

= Motion

Figure 10-2 : Motion-Blurred Obiject

Depth of Field

A photograph made with a camera is in perfect focus only for items lying on a single plane
distance from the film. The farther an item is from this plane, the more out of focus it is. The
of field for a camera is a region about the plane of perfect focus where items are out of foct
small enough amount.

Under normal conditions, everything you draw with OpenGL is in focus (unless your monito
bad, in which case everything is out of focus). The accumulation buffer can be used to appi
what you would see in a photograph where items are more and more blurred as their distar
a plane of perfect focus increases. It isn’t an exact simulation of the effects produced ina c
but the result looks similar to what a camera would produce.

To achieve this result, draw the scene repeatedly using calls with different argument values
glFrustum(). Choose the arguments so that the position of the viewpoint varies slightly arot
true position and so that each frustum shares a common rectangle that lies in the plane of |

focus, as shown iRigure 10-3 The results of all the renderings should be averaged in the us
way using the accumulation buffer.

— Mormal View
< {not jitterer)
<
A | Jittered at Point A
::: é Jittared at Point B
i
B

N

Flane in Focus

Figure 10-3 : Jittered Viewing Volume for Depth-of-Field Effects

"Plate 10" in Appendix shows an image of five teapots drawn using the depth-of-field effect
gold teapot (second from the left) is in focus, and the other teapots get progressively blurrie
depending upon their distance from the focal plane (gold teapot). The code to draw this ime
shown inExample 10-Fwhich assumeaccPer spective() andaccFrustum() are defined as

described irExample 10-2 The scene is drawn eight times, each with a slightly jittered viewi
volume, by callingaccPer spective(). As you recall, with scene antialiasing, the fifth and sixth
parameters jitter the viewing volumes in thandy directions. For the depth-of-field effect,
however, you want to jitter the volume while holding it stationary at the focal plane. The foc
plane is the depth value defined by the ninth (last) paramedecRer spective(), which isz=5.0
in this example. The amount of blur is determined by multiplyingtuedy jitter values (seventh
and eighth parameters adcPer spective()) by a constant. Determining the constant is not a
science; experiment with values until the depth of field is as pronounced as you want. (Not¢
Example 10-5the fifth and sixth parametersaocPer spective() are set to 0.0, so scene
antialiasing is turned off.)

Example 10-5 : Depth-of-Field Effect: dof.c

#i nclude <@./gl. h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
#include "jitter.h"

void init(void)

G.float anbient[] ={ 0.0, 0.0, 0.0, 1.0 };
G.float diffuse[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float position[] ={ 0.0, 3.0, 3.0, 0.0 };

G.float | nodel _anbient[] ={ 0.2, 0.2, 0.2, 1.0 };
G.float local _viewf] ={ 0.0 };

gl Lightfv(G_LI GHATO, G._AMBI ENT, anbient);
gl Li ghtfv(G._LI GHTO, G__DI FFUSE, diffuse);
gl Lightfv(G _LI GHTO, G._POSI TI ON, position);

gl Li ght Model f v(G._LI GHT_MODEL_AMBI ENT, | nodel _anbi ent);
gl Li ght Model fv(G._LI GHT_MODEL_LOCAL_VI EVER, | ocal _vi ew);

gl Front Face (GL_CW;

gl Enabl e(G_LI GHTI NG ;

gl Enabl e(GL_LI GHTO) ;

gl Enabl e(GL_AUTO _NORMNAL) ;
gl Enabl e(GL_NORMALI ZE) ;
gl Enabl e(G._DEPTH_TEST) ;

gl dearColor(0.0, 0.0, 0.0, 0.0);
gl d ear Accum(0.0, 0.0, 0.0, 0.0);
/* nmake teapot display list */
teapot Li st = gl GenLists(1);
gl NewLi st (teapotlList, G._COWILE);
gl ut Sol i dTeapot (0.5);

gl EndLi st ();
}
voi d render Teapot (G.float x, G.float y, Gfloat z,

G.float anbr, G.float anmbg, G.fl oat ambb,

G.float difr, G.float difg, G.float difb,

G.fl oat specr, G.float specg, Gfloat specb, G.float shine)
{

G.float mat[4];

gl PushiMatri x();

gl Transl atef (x, y, z);
mat[0] = anbr; mat[1l] = anbg; mat[2] = anbb; mat[3] = 1.0;
gl Material fv (GL_FRONT, GL_AMBI ENT, mat);
mat[0] = difr; mat[1l] = difg; mat[2] = difb;
gl Material fv (GL_FRONT, G._DlI FFUSE, mat);
mat [0] = specr; mat[1l] = specg; mat[2] = spech
gl Material fv (G._FRONT, G._SPECULAR, mat);
gl Material f (GL_FRONT, G._SHI NI NESS, shine*128.0);
gl Cal I Li st (teapotList);
gl PopMat ri x();
}

voi d di spl ay(voi d)
{

int jitter;
GLint viewport[4];

gl GetI ntegerv (G._VI EWPORT, viewport);
gl O ear (GL_ACCUM BUFFER BI T);

for (jitter = 0; jitter < 8; jitter++) {
gl dear (G _COLOR BUFFER BI T | G._DEPTH BUFFER BIT);
accPerspective (45.0,
(GLdoubl e) viewport[2]/(G.doubl e) viewport]3],
1.0, 15.0, 0.0, 0.0,
0.33*j8[jitter].x, 0.33*j8[jitter].y, 5.0);

/* ruby, gold, silver, enerald, and cyan teapots */
render Teapot (-1.1, -0.5, -4.5, 0.1745, 0.01175,
0. 01175, 0.61424, 0.04136, 0.04136,
0.727811, 0.626959, 0.626959, 0.6);
render Teapot (-0.5, -0.5, -5.0, 0.24725, 0.1995,
0. 0745, 0.75164, 0.60648, 0.22648,
0. 628281, 0.555802, 0.366065, 0.4);
render Teapot (0.2, -0.5, -5.5, 0.19225, 0.19225,
0.19225, 0.50754, 0.50754, 0.50754,
0.508273, 0.508273, 0.508273, 0.4);
render Teapot (1.0, -0.5, -6.0, 0.0215, 0.1745, 0.0215,
0. 07568, 0.61424, 0.07568, 0.633,
0.727811, 0.633, 0.6);
render Teapot (1.8, -0.5, -6.5, 0.0, 0.1, 0.06, 0.0,
0. 50980392, 0.50980392, 0.50196078,
0.50196078, 0.50196078, .25);
gl Accum (GL_ACCUM 0. 125);

}
gl Accum (G._RETURN, 1.0);
gl Fl ush();

void reshape(int w, int h)

gl Viewport (0, O, (Gsizei) w, (Gsizei) h);

/* Main Loop
* Be certain you request an accunul ati on buffer
*/
int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB
GLUT_ACCUM | GLUT_DEPTH);
gl utlnit WndowSi ze (400, 400);
gl utlnit WndowPosition (100, 100);
gl ut Cr eat eW ndow (argv[0]);

init();

gl ut ReshapeFunc(reshape);
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop() ;

return O;

}
Soft Shadows

To accumulate soft shadows due to multiple light sources, render the shadows with one ligl
on at a time, and accumulate them together. This can be combined with spatial jittering to ¢
the scene at the same time. (S8leadows" in Chapter 1#r more information about drawing
shadows.)

Jittering

If you need to take nine or sixteen samples to antialias an image, you might think that the b
choice of points is an equally spaced grid across the pixel. Surprisingly, this is not necessa
In fact, sometimes it's a good idea to take points that lie in adjacent pixels. You might want
uniform distribution or a normalized distribution, clustering toward the center of the pixel. (T
aforementioned SIGGRAPH paper discusses these issues.) In addita 1 0-5shows a few se
of reasonable jittering values to be used for some selected sample counts. Most of the exal
the table are uniformly distributed in the pixel, and all lie within the pixel.

Table 10-5: (continued) Sample Jittering Values

Count | Values

2 {0.25, 0.75}, {0.75, 0.25}

3 {0.5033922635, 0.8317967229}, {0.7806016275, 0.2504380877},

{0.2261828938, 0.4131553612}

4 {0.375, 0.25}, {0.125, 0.75}, {0.875, 0.25}, {0.625, 0.75}
5 {0.5, 0.5}, {0.3, 0.1}, {0.7, 0.9}, {0.9, 0.3}, {0.1, 0.7}
6 {0.4646464646, 0.4646464646}, {0.1313131313, 0.7979797979},

{0.5353535353, 0.8686868686}, {0.8686868686, 0.5353535353},

{0.7979797979, 0.1313131313}, {0.2020202020, 0.2020202020}

8 {0.5625, 0.4375}, {0.0625, 0.9375}, {0.3125, 0.6875}, {0.6875, 0.8125}, {0.8125
0.1875}, {0.9375, 0.5625}, {0.4375, 0.0625}, {0.1875, 0.3125}

{0.5, 0.5}, {0.1666666666, 0.9444444444}, {0.5, 0.1666666666},
{0.5, 0.8333333333}, {0.1666666666, 0.2777777777},
{0.8333333333, 0.3888888888}, {0.1666666666, 0.6111111111},

{0.8333333333, 0.7222222222}, {0.8333333333, 0.0555555555}

12

{0.4166666666, 0.625}, {0.9166666666, 0.875}, {0.25, 0.375},
{0.4166666666, 0.125}, {0.75, 0.125}, {0.0833333333, 0.125}, {0.75, 0.625)},
{0.25, 0.875}, {0.5833333333, 0.375}, {0.9166666666, 0.375},

{0.0833333333, 0.625}, {0.583333333, 0.875}

16

{0.375, 0.4375}, {0.625, 0.0625}, {0.875, 0.1875}, {0.125, 0.0625},
{0.375, 0.6875}, {0.875, 0.4375}, {0.625, 0.5625}, {0.375, 0.9375},

{0.625, 0.3125}, {0.125, 0.5625}, {0.125, 0.8125}, {0.375, 0.1875},

{0.875, 0.9375}, {0.875, 0.6875}, {0.125, 0.3125}, {0.625, 0.8125}

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 11
Tessdllators and Quadrics

Chapter Objectives
After reading this chapter, you' |l be able to do the following:

® Render concave filled polygons by first tessellating them into convex polygons, which can be
rendered using standard OpenGL routines.

® Usethe GLU library to create quadrics objects to render and model the surfaces of spheres
and cylinders and to tessellate disks (circles) and partial disks (arcs).

The OpenGL library (GL) is designed for low-level operations, both streamlined and accessible to
hardware acceleration. The OpenGL Utility Library (GLU) complements the OpenGL library,
supporting higher-level operations. Some of the GLU operations are covered in other chapters.
Mipmapping (gluBuild*DMipmaps()) and image scaling (gluScalel mage()) are discussed along
with other facets of texture mapping in Chapter 9. Several matrix transformation GLU routines
(gluOrtho2D(), gluPer spective(), gluL ook At(), gluProject(), and gluUnPr oject()) are described
in Chapter 3. The use of gluPickM atrix() is explained in Chapter 13. The GLU NURBS facilities,
which are built atop OpenGL evaluators, are covered in Chapter 12. Only two GL U topics remain:
polygon tessellators and quadric surfaces, and those topics are discussed in this chapter.

To optimize performance, the basic OpenGL only renders convex polygons, but the GLU contains
routines to tessellate concave polygons into convex ones, which the basic OpenGL can handle.
Where the basic OpenGL operates upon simple primitives, such as points, lines, and filled
polygons, the GLU can create higher-level objects, such as the surfaces of spheres, cylinders, and
CONeS.

This chapter has the following major sections.

® "Polygon Tessellation™ explains how to tessellate convex polygons into easier-to-render
convex polygons.

® "Quadrics. Rendering Spheres, Cylinders, and Disks" describes how to generate spheres,
cylinders, circles and arcs, including data such as surface normals and texture coordinates.

Polygon Tessellation

Asdiscussed in "Describing Points, Lines, and Polygons® in Chapter 2, OpenGL can directly
display only ssimple convex polygons. A polygon issimpleif the edges intersect only at vertices,

there are no duplicate vertices, and exactly two edges meet at any vertex. If your application
requires the display of concave polygons, polygons containing holes, or polygons with intersecting
edges, those polygons must first be subdivided into simple convex polygons before they can be
displayed. Such subdivision is called tessellation, and the GLU provides a collection of routines
that perform tessellation. These routines take as input arbitrary contours, which describe
hard-to-render polygons, and they return some combination of triangles, triangle meshes, triangle
fans, or lines.

Figure 11-1 shows some contours of polygons that require tessellation: from left to right, a concave
polygon, a polygon with a hole, and a self-intersecting polygon.

3
-

¥

Figure 11-1 : Contours That Require Tessellation

If you think a polygon may need tessellation, follow these typical steps.
1. Create anew tessellation object with gluNewT ess().

2. UsegluTessCallback() several timesto register callback functions to perform operations
during the tessellation. The trickiest case for a callback function is when the tessellation
algorithm detects an intersection and must call the function registered for the
GLU_TESS _COMBINE callback.

3. Specify tessellation properties by calling gluT essProperty(). The most important property is
the winding rule, which determines the regions that should be filled and those that should
remain unshaded.

4. Create and render tessellated polygons by specifying the contours of one or more closed
polygons. If the datafor the object is static, encapsulate the tessellated polygons in adisplay
list. (If you don’t have to recalcul ate the tessellation over and over again, using display listsis
more efficient.)

5. If you need to tessellate something else, you may reuse your tessellation object. If you are
forever finished with your tessellation object, you may delete it with gluDeleteT ess().

Note: The tessellator described here was introduced in version 1.2 of the GLU. If you are using an
older version of the GLU, you must use routines described in "Describing GLU Errors'. To query
which version of GLU you have, use gluGetString(GLU_VERSION), which returns a string with
your GLU version number. If you don’'t seem to have gluGetString() in your GLU, then you have
GLU 1.0, which did not yet have the gluGetString() routine.

Create a Tessellation Object

As acomplex polygon is being described and tessellated, it has associated data, such as the vertices,
edges, and callback functions. All this datais tied to a single tessellation object. To perform
tessellation, your program first hasto create atessellation object using the routine gluNewT ess().

GLUtesselator* gluNewTess(void);
Creates a new tessellation object and returns a pointer to it. A null pointer isreturned if the
creation fails.

A single tessellation object can be reused for all your tessellations. This object is required only
because library routines might need to do their own tessellations, and they should be able to do so
without interfering with any tessellation that your program is doing. It might also be useful to have
multiple tessellation objects if you want to use different sets of callbacks for different tessellations.
A typical program, however, allocates a single tessellation object and uses it for al its tessellations.
There’ s no real need to free it because it uses a small amount of memory. On the other hand, it
never hurtsto be tidy.

Tessdlation Callback Routines

After you create a tessellation object, you must provide a series of callback routines to be called at
appropriate times during the tessellation. After specifying the callbacks, you describe the contours
of one or more polygons using GL U routines. When the description of the contoursis complete, the
tessellation facility invokes your callback routines as necessary.

Any functions that are omitted are simply not called during the tessellation, and any information
they might have returned to your program islost. All are specified by the single routine
gluTessCallback().

void gluTessCallback(GLUtesselator *tessobj, GLenum type, void (* fn)());
Associates the callback function fn with the tessellation object tessobj. The type of the
callback is determined by the parameter type, which can be GLU_TESS BEGIN,
GLU_TESS BEGIN_DATA, GLU_TESS EDGE_FLAG, GLU_TESS EDGE_FLAG_DATA,
GLU_TESS VERTEX, GLU_TESS VERTEX DATA, GLU_TESS END,
GLU_TESS END_DATA, GLU_TESS COMBINE, GLU_TESS COMBINE_DATA,
GLU_TESS ERROR, and GLU_TESS ERROR DATA. The twelve possible callback
functions have the following prototypes:
GLU_TESS BEGIN void begin(GLenum type);
GLU_TESS BEGIN_DATA void begin(GLenum type,
void *user_data);
GLU_TESS EDGE_FLAG void edgeFlag(GLboolean flag);
GLU_TESS EDGE _FLAG_DATA void edgeFlag(GLboolean flag,
void *user_data);
GLU_TESS VERTEX void vertex(void *vertex_data);
GLU_TESS VERTEX_ DATA void vertex(void *vertex_data,
void *user_data);
GLU_TESS END void end(void);
GLU_TESS END_DATA void end(void *user_data);
GLU_TESS ERROR void error(GLenum errno);
GLU_TESS ERROR DATA void error(GLenum errno, void *user_data);
GLU_TESS COMBINE void combine(GLdouble coordq 3],
void *vertex_data[4],
GLfloat weight[4],

void **outData);

GLU_TESS COMBINE_DATA void combine(GLdouble coordq 3],
void *vertex_data[4],

GLfloat weight[4],

void **outData,

void *user_data);

To change a callback routine, smply call gluTessCallback() with the new routine. To eliminate a
callback routine without replacing it with anew one, pass gluTessCallback() anull pointer for the
appropriate function.

As tessellation proceeds, the callback routines are called in a manner

similar to how you use the OpenGL commands glBegin(), glEdgeFlag* (), glVertex*(), and
glEnd(). (See "Marking Polygon Boundary Edges" in Chapter 2 for more information about
glEdgeFlag*().) The combine callback is used to create new vertices where edges intersect. The
error callback isinvoked during the tessellation only if something goes wrong.

For every tessellator object created, aGLU_TESS BEGIN callback is invoked with one of four
possible parameters: GL_TRIANGLE _FAN, GL_TRIANGLE_STRIP, GL_TRIANGLES, and
GL_LINE_LOOP. When the tessellator decomposes the polygons, the tessellation algorithm will
decide which type of triangle primitive is most efficient to use. (If the

GLU_TESS BOUNDARY_ONLY property isenabled, then GL_LINE _LOOP is used for
rendering.)

Since edge flags make no sense in atriangle fan or triangle strip, if thereis a callback associated
with GLU_TESS EDGE_FLAG that enables edge flags, the GLU_TESS BEGIN callback is called
only with GL_TRIANGLES. The GLU_TESS EDGE_FLAG callback works exactly analogously
to the OpenGL glEdgeFlag* () call.

After the GLU_TESS BEGIN callback routine is called and before the callback associated with
GLU_TESS END iscalled, some combination of the GLU_TESS EDGE FLAG and

GLU_TESS VERTEX calbacksisinvoked (usualy by callsto gluTessVertex(), which is
described on page 425). The associated edge flags and vertices are interpreted exactly asthey arein
OpenGL between glBegin() and the matching glEnd().

If something goes wrong, the error callback is passed a GLU error number. A character string
describing the error is obtained using the routine gluError String(). (See "Describing GLU Errors'
for more information about this routine.)

Example 11-1 shows a portion of tess.c, where atessellation object is created and several callbacks
are registered.

Example 11-1 : Registering Tessellation Callbacks: tess.c

/* a portion of init() */
tobj = gl uNewTess();
gl uTessCal | back(tobj, G.U TESS VERTEX,

(GLvoid (*) ()) &gl Vertex3dv);
gl uTessCal | back(tobj, G.U TESS BEG N,

(Gvoid (*) ()) &beginCall back);
gl uTessCal | back(tobj, GLU TESS END,

(Gvoid (*) ()) &endcCall back);
gl uTessCal | back(tobj, G.U TESS ERROR,

(Gvoid (*) ()) &errorcCallback);
/* the callback routines registered by gluTessCal | back() */
voi d begi nCal | back(G.enum whi ch)
gl Begi n(whi ch) ;

voi d endCal | back(voi d)
gl End() ;

voi d errorCal |l back(G.enum error Code)

{
const GLubyte *estring;
estring = gluErrorString(errorCode);
fprintf (stderr, "Tessellation Error: 9%\n", estring);
exit (0);
}

In Example 11-1, the registered GLU_TESS VERTEX callback is simply glVertex3dv(), and only
the coordinates at each vertex are passed along. However, if you want to specify more information
at every vertex, such as acolor value, a surface normal vector, or texture coordinate, you'll have to
make a more complex callback routine. Example 11-2 shows the start of another tessellated object,
further along in program tess.c. The registered function vertexCallback() expectsto receive a
parameter that is a pointer to six double-length floating point values: the x, y, and z coordinates and
the red, green, and blue color values, respectively, for that vertex.

Example 11-2 : Vertex and Combine Callbacks: tess.c

/* a different portion of init() */

gl uTessCal | back(tobj, G.U TESS VERTEX,

(Gvoid (*) ()) &vertexCall back);
gl uTessCal | back(tobj, G.U TESS BEG N,

(GLvoid (*) ()) &beginCall back);
gl uTessCal | back(tobj, G.U TESS END

(Gvoid (*) ()) &endCall back);
gl uTessCal | back(tobj, GLU TESS ERROR,

(GLvoid (*) ()) &errorcCallback);
gl uTessCal | back(tobj, G.U TESS COwVBI NE

(Gvoid (*) ()) &combineCall back);

/* new call back routines registered by these calls */
voi d vertexCal | back(G.void *vertex)

{
const GLdoubl e *pointer
poi nter = (G.double *) vertex;
gl Col or 3dv(poi nt er +3) ;
gl Vert ex3dv(vertex);
}
voi d conbi neCal | back(G.doubl e coords][3],
GLdoubl e *vertex_datal 4],
G.fl oat weight[4], G.double **dataCut)
{

GLdoubl e *vert ex;
int i;

vertex = (G.double *) malloc(6 * sizeof(G.double));

vertex[0] = coords[O0];
vertex[1] = coords[1];
vertex[2] = coords[2];

for (i =3; i <7; i++)
vertex[i] = weight[0] * vertex data[O][i
+ weight[1] * vertex_data[1]
+ weight[2] * vertex_data[2]
+ weight[3] * vertex_data[3]
*dataQut = vertex;

}

Example 11-2 also shows the use of the GLU_TESS _COMBINE callback. Whenever the
tessellation algorithm examines the input contours, detects an intersection, and decides it must
create anew vertex, the GLU_TESS COMBINE callback isinvoked. The callback isalso called
when the tessellator decides to merge features of two vertices that are very close to one another.
The newly created vertex isalinear combination of up to four existing vertices, referenced by
vertex_data[0..3] in Example 11-2. The coefficients of the linear combination are given by
weight[0..3]; these weights sum to 1.0. coords gives the location of the new vertex.

The registered callback routine must allocate memory for another vertex, perform aweighted
interpolation of data using vertex_data and weight, and return the new vertex pointer as dataOut.
combineCallback() in Example 11-2 interpolates the RGB color vaue. The function allocates a
six-element array, puts the x, y, and z coordinates in the first three elements, and then puts the
weighted average of the RGB color values in the last three elements.

User-Specified Data

Six kinds of callbacks can be registered. Since there are two versions of each kind of callback, there
aretwelve calbacksin al. For each kind of callback, there is one with user-specified data and one
without. The user-specified datais given by the application to gluTessBeginPolygon() and is then
passed, unaltered, to each *DATA callback routine. With GLU_TESS BEGIN_DATA, the
user-specified data may be used for "per-polygon” data. If you specify both versions of a particular
callback, the callback with user_data is used, and the other isignored. So, although there are twelve
callbacks, you can have a maximum of six callback functions active at any time.

For instance, Example 11-2 uses smooth shading, so vertexCallback() specifies an RGB color for
every vertex. If you want to do lighting and smooth shading, the callback would specify a surface
normal for every vertex. However, if you want lighting and flat shading, you might specify only
one surface normal for every polygon, not for every vertex. In that case, you might choose to use
the GLU_TESS BEGIN_DATA callback and pass the vertex coordinates and surface normal in the
user_data pointer.

Tessellation Properties

Prior to tessellation and rendering, you may use gluT essPr operty() to set several propertiesto
affect the tessellation algorithm. The most important and complicated of these propertiesisthe
winding rule, which determines what is considered "interior" and "exterior."

void gluTessProperty(GLUtesselator *tessobj, GLenum property,

GLdouble value);
For the tessellation object tessobj, the current value of property is set to value. property is
one of GLU_TESS BOUNDARY _ONLY, GLU_TESS TOLERANCE, or

GLU_TESS WINDING_RULE.

If property isGLU_TESS BOUNDARY_ONLY, valueiseither GL_TRUE or GL_FALSE.
When set to GL_TRUE, polygons are no longer tessellated into filled polygons; line loops are
drawn to outline the contours that separate the polygon interior and exterior. The default
valueis GL_FALSE. (See gluTessNormal() to see how to control the winding direction of the
contours.)

If property isGLU_TESS TOLERANCE, valueis a distance used to cal culate whether two
vertices are close together enough to be merged by the GLU_TESS COMBINE callback. The
tolerance value is multiplied by the largest coordinate magnitude of an input vertex to
determine the maximum distance any feature can move as a result of a single merge
operation. Feature merging may not be supported by your implementation, and the tolerance
value is only a hint. The default tolerance value is zero.

The GLU_TESS WINDING_RULE property determines which parts of the polygon are on
the interior and which are the exterior and should not be filled. value can be one of
GLU_TESS WINDING_ODD (the default), GLU_TESS WINDING_NONZERO,
GLU_TESS WINDING_POSTIVE, GLU_TESS WINDING_NEGATIVE, or

GLU_TESS WINDING_ABS GEQ TWO.

Winding Numbersand Winding Rules

For a single contour, the winding number of a point is the signed number of revolutions we make
around that point while traveling once around the contour (where a counterclockwise revolution is
positive and a clockwise revolution is negative). When there are several contours, the individual
winding numbers are summed. This procedure associates a signed integer value with each point in
the plane. Note that the winding number is the same for al pointsin asingle region.

Figure 11-2 shows three sets of contours and winding numbers for points inside those contours. In
the left set, all three contours are counterclockwise, so each nested interior region adds one to the
winding number. For the middle set, the two interior contours are drawn clockwise, so the winding
number decreases and actually becomes negative.

Figure 11-2 : Winding Numbers for Sample Contours

The winding rule classifiesaregion asinsideif its winding number belongs to the chosen category
(odd, nonzero, positive, negative, or "absolute value of greater than or equal to two"). The odd and
nonzero rules are common ways to define the interior. The positive, negative, and "absolute
value>=2" winding rules have some limited use for polygon CSG (computational solid geometry)
operations.

The program tesswind.c demonstrates the effects of winding rules. The four sets of contours shown
in Figure 11-3 are rendered. The user can then cycle through the different winding rule propertiesto
see their effects. For each winding rule, the dark areas represent interiors. Note the effect of
clockwise and counterclockwise winding.

- - !

i
&
-

1

CONTOURS| [* " [

AND 7) f zf

WINDING 3 . Gzt [|2RrE]}

NUMBERS | { 2™ T .

4 1 . ¥ 1 - ¥ Illl Il[- A
L 3 -

WINDING Y -
RULES
- E
o l
o l
NEGATIVE uniflled . unfilied unflled

ABS_GEGLTWO - untilled + l

Figure 11-3 : How Winding Rules Define Interiors

CSG Usesfor Winding Rules

GLU_TESS WINDING_ODD and GLU_TESS WINDING_NONZERO are the most commonly
used winding rules. They work for the most typical cases of shading.

The winding rules are also designed for computational solid geometry (CSG) operations. Thy make
it easy to find the union, difference, or intersection (Boolean operations) of several contours.

First, assume that each contour is defined so that the winding number is zero for each exterior

region and one for each interior region. (Each contour must not intersect itself.) Under this model,
counterclockwise contours define the outer boundary of the polygon, and clockwise contours define
holes. Contours may be nested, but a nested contour must be oriented oppositely from the contour
that containsit.

If the original polygons do not satisfy this description, they can be converted to this form by first
running the tessellator with the GLU_TESS BOUNDARY_ONLY property turned on. This returns
alist of contours satisfying the restriction just described. By creating two tessellator objects, the
callbacks from one tessellator can be fed directly as input to the other.

Given two or more polygons of the preceding form, CSG operations can be implemented as
follows.

® UNION - To calculate the union of several contours, draw al input contours as asingle
polygon. The winding number of each resulting region is the number of original polygons that
cover it. The union can be extracted by using the GLU_TESS WINDING_NONZERO or
GLU_TESS WINDING_POSITIVE winding rules. Note that with the nonzero winding rule,
we would get the same result if all contour orientations were reversed.

® INTERSECTION - This only works for two contours at atime. Draw a single polygon using
two contours. Extract the result using GLU_TESS WINDING_ABS GEQ TWO.

® DIFFERENCE - Suppose you want to compute A diff (B union C union D). Draw asingle
polygon consisting of the unmodified contours from A, followed by the contours of B, C, and
D, with their vertex order reversed. To extract the result, use the
GLU_TESS WINDING_POSITIVE winding rule. (If B, C, and D are the result of a
GLU_TESS BOUNDARY_ONLY operation, an aternative to reversing the vertex order is
to use gluTessNor mal() to reverse the sign of the supplied normal.

Other Tessdllation Property Routines

There are complementary routines, which work alongside gluT essProperty().
gluGetTessProperty() retrieves the current values of tessellator properties. If the tessellator is
being used to generate wire frame outlines instead of filled polygons, gluTessNormal() can be used
to determine the winding direction of the tessellated polygons.

void gluGetTessProperty(GLUtesselator *tessobj, GLenum property,

GLdouble *value);
For the tessellation object tessobj, the current value of property isreturned to value. Values
for property and value are the same as for gluTessProperty().

void gluTessNormal (GLUtesselator *tessobj, GLdouble x, GLdoubley,

GLdouble 2);
For the tessellation object tessobj, gluTessNormal() defines a normal vector, which controls
the winding direction of generated polygons. Before tessellation, all input data is projected
into a plane perpendicular to the normal. Then, all output triangles are oriented
counter clockwise, with respect to the normal. (Clockwise orientation can be obtained by
reversing the sign of the supplied normal.) The default normal is (0, 0, 0).

If you have some knowledge about the location and orientation of the input data, then using
gluTessNor mal() can increase the speed of the tessellation. For example, if you know that all
polygons lie on the x-y plane, call gluTessNor mal(tessobj, O, 0, 1).

The default normal is (0, O, 0), and its effect is not immediately obvious. In this case, it is expected
that the input data lies approximately in a plane, and a plane isfitted to the vertices, no matter how
they are truly connected. The sign of the normal is chosen so that the sum of the signed areas of all
input contours is nonnegative (where a counterclockwise contour has a positive area). Note that if
the input data does not lie approximately in a plane, then projection perpendicular to the computed
normal may substantially change the geometry.

Polygon Definition

After all the tessellation properties have been set and the callback actions have been registered, it is
finally time to describe the vertices that compromise input contours and tessellate the polygons.

void gluTessBeginPolygon (GLUtesselator *tessobj, void *user_data);

void gluTessEndPolygon (GLUtesselator *tessobj);
Begins and ends the specification of a polygon to be tessellated and associates a tessellation
object, tessobj, with it. user_data points to a user-defined data structure, which is passed
along all the GLU_TESS * DATA callback functions that have been bound.

Callsto gluTessBeginPolygon() and gluT essEndPolygon() surround the definition of one or more
contours. When gluT essEndPolygon() is called, the tessellation algorithm is implemented, and the
tessellated polygons are generated and rendered. The callback functions and tessellation properties

that were bound and set to the tessellation object using gluT essCallback() and gluT essPr operty()

are used.

void gluTessBeginContour (GLUtesselator *tessoby));

void gluTessEndContour (GLUtesselator *tessobj);
Begins and ends the specification of a closed contour, which is a portion of a polygon. A
closed contour consists of zero or more callsto gluTessVertex(), which defines the vertices.
The last vertex of each contour isautomatically linked to the first.

In practice, aminimum of three verticesis needed for a meaningful contour.

void gluTessVertex (GLUtesselator *tessobj, GLdouble coordg 3],

void *vertex_data);
Foecifies a vertex in the current contour for the tessellation object. coords contains the
three-dimensional vertex coordinates, and vertex_data is a pointer that’s sent to the callback
associated with GLU_TESS VERTEX or GLU_TESS VERTEX_DATA. Typically,
vertex_data contains vertex coordinates, surface normals, texture coordinates, color
information, or whatever else the application may find useful .

In the program tess.c, a portion of which is shown in Example 11-3, two polygons are defined. One
polygon is arectangular contour with atriangular hole inside, and the other is a smooth-shaded,
self-intersecting, five-pointed star. For efficiency, both polygons are stored in display lists. The first
polygon consists of two contours; the outer one is wound counterclockwise, and the "hole" is
wound clockwise. For the second polygon, the star array contains both the coordinate and color
data, and its tessellation callback, vertexCallback(), uses both.

It isimportant that each vertex isin a different memory location because the vertex datais not
copied by gluTessVertex(); only the pointer (vertex_data) is saved. A program that reuses the same
memory for several vertices may not get the desired result.

Note: IngluTessVertex(), it may seem redundant to specify the vertex coordinate data twice, for
both the coords and vertex_data parameters,; however, both are necessary. coords refers only to the
vertex coordinates. vertex_data uses the coordinate data, but may also use other information for
each vertex.

Example 11-3 : Polygon Definition: tess.c

GL.doubl e rect[4][3] = {50.0, 50.0, 0.0,
200.0, 50.0, 0.0,
200.0, 200.0, 0.0,
50. 0, 200.0, 0.0};

G.double tri[3][3] = {75.0, 75.0, 0.0,
125.0, 175.0, 0.0,
175.0, 75.0, 0.0};

G.doubl e star[5][6] = {250.0, 50.0, 0.0, 1.0, 0.0, 1.0,
325.0, 200.0, 0.0, 1.0, 1.0, 0.0,
400.0, 50.0, 0.0, 0.0, 1.0, 1.0,
250.0, 150.0, 0.0, 1.0, 0.0, 0.0,
400.0, 150.0, 0.0, 0.0, 1.0, 0.0};

startList = gl GenLists(2);
tobj = gl uNewTess();
gl uTessCal | back(tobj, G.U TESS VERTEX,

(GLvoid (*) ()) &gl Vertex3dv);
gl uTessCal | back(tobj, G.U TESS BEGQ N,

(GLvoid (*) ()) &beginCall back);
gl uTessCal | back(tobj, G.U TESS END

(GLvoid (*) ()) &endCall back);
gl uTessCal | back(tobj, G.U TESS ERROR,

(GLvoid (*) ()) &errorcCallback);

gl NewLi st (startList, G._COWPILE);
gl ShadeMbdel (GL_FLAT);
gl uTessBegi nPol ygon(tobj, NULL);
gl uTessBegi nCont our (tobj);
gl uTessVertex(tobj, rect[0], rect[0])
gl uTessVertex(tobj, rect[1], rect[1]);
gl uTessVertex(tobj, rect[2], rect[2]);
gl uTessVertex(tobj, rect[3], rect[3]);
gl uTessEndCont our (t obj) ;
gl uTessBegi nCont our (t obj
gl uTessVertex(tobj, t
gl uTessVertex(tobj, t
gl uTessVertex(tobj, t
gl uTessEndCont our (t obj) ;
gl uTessEndPol ygon(tobj);
gl EndLi st ();

gl uTessCal | back(tobj, G.U TESS VERTEX,

(Gvoid (*) ()) &vertexCall back);
gl uTessCal | back(tobj, G.U TESS BEG N,

(GLvoid (*) ()) &beginCall back);
gl uTessCal | back(tobj, G.U TESS END

(Gvoid (*) ()) &endCall back);
gl uTessCal | back(tobj, G.U TESS ERROR,

(GLvoid (*) ()) &errorcCallback);
gl uTessCal | back(tobj, G.U TESS COwVBI NE

(Gvoid (*) ()) &conbineCall back);

gl NewLi st(startList + 1, G._COWI LE);

gl ShadeMbdel (GL_SMOOTH) ;

gl uTessProperty(tobj, G.U TESS W NDI NG RULE,
GLU TESS_W NDI NG_PCSI TI VE) ;

gl uTessBegi nPol ygon(tobj, NULL);
gl uTessBegi nCont our (t obj);
gl uTessVertex(tobj, star[0], star[0])
gl uTessVertex(tobj, star[1], star[1]);
gl uTessVertex(tobj, star[2], star[2]);
gl uTessVertex(tobj, star[3], star[3])
gl uTessVertex(tobj, star[4], star[4])
gl uTessEndCont our (t obj) ;
gl uTessEndPol ygon(t obj);
gl EndLi st ();

Deleting a Tessellator Object

If you no longer need a tessellation object, you can delete it and free all associated memory with
gluDeleteTess().

void gluDeleteTess(GLUtesselator *tessobj);
Deletes the specified tessellation object, tessobj, and frees all associated memory.

Tessellator Performance Tips
For best performance, remember these rules.

1. Cachethe output of the tessellator in adisplay list or other user structure. To obtain the
post-tessellation vertex coordinates, tessellate the polygons while in feedback mode. (See
"Feedback” in Chapter 13.)

2. UsegluTessNormal() to supply the polygon normal.

3. Usethe same tessellator object to render many polygons rather than allocate a new tessellator
for each one. (In a multithreaded, multiprocessor environment, you may get better
performance using several tessellators.)

Describing GLU Errors

The GLU provides aroutine for obtaining a descriptive string for an error code. This routine is not
limited to tessellation but is also used for NURBS and quadrics errors, aswell as errorsin the base
GL. (See"Error Handling" in Chapter 14 for information about OpenGL’s error handling facility.)

Backward Compatibility

If you are using the 1.0 or 1.1 version of GLU, you have a much less powerful tessellator available.
The 1.0/1.1 tessellator handles only simple nonconvex polygons or simple polygons containing
holes. It does not properly tessellate intersecting contours (no COMBINE callback), nor process
per-polygon data.

The 1.0/1.1 tessellator has some similarities to the current tessellator. gluNewTess() and
gluDeleteT ess() are used for both tessellators. The main vertex specification routine remains
gluTessVertex(). The callback mechanism is controlled by gluTessCallback(), although there are
only five callback functions that can be registered, a subset of the current twelve.

Here are the prototypes for the 1.0/1.1 tessellator. The 1.0/1.1 tessellator still worksin GLU 1.2, but
its use is no longer recommended.

void gluBeginPolygon(GLUtriangul ator Obj *tessobyj);
void gluNextContour(GLUtriangulator Obj *tessobj, GLenum type);
void gluEndPolygon(GLUtriangulator Obj *tessoby);

The outermost contour must be specified first, and it does not require an initial call to
gluNextContour (). For polygons without holes, only one contour is defined, and
gluNextContour() is not used. If a polygon has multiple contours (that is, holes or holes
within holes), the contours are specified one after the other, each preceded by
gluNextContour (). gluTessVertex() is called for each vertex of a contour.

For gluNextContour(), type can be GLU_EXTERIOR, GLU_INTERIOR, GLU_CCW,
GLU_CW, or GLU_UNKNOWN. These serve only as hints to the tessellation. If you get them
right, the tessellation might go faster. If you get them wrong, they’re ignored, and the
tessellation still works. For polygons with holes, one contour isthe exterior contour and the
other’sinterior. Thefirst contour is assumed to be of type GLU_EXTERIOR. Choosing
clockwise and counterclockwise orientation is arbitrary in three dimensions; however, there
are two different orientations in any plane, and the GLU_CCW and GLU_CW types should be
used consistently. Use GLU_UNKNOWN if you don’t have a clue.

It is highly recommended that you convert GLU 1.0/1.1 code to the new tessellation interface for
GLU 1.2 by following these steps.

1.

Change references to the major data structure type from GL UtriangulatorObj to
GLUtessdlator. In GLU 1.2, GLUtriangulatorObj and GL Utesselator are defined to be the
same type.

Convert gluBeginPolygon() to two commands: gluT essBeginPolygon() and
gluTessBeginContour (). All contours must be explicitly started, including the first one.

Convert gluNextContour () to both gluTessEndContour () and gluTessBeginContour (). You
have to end the previous contour before starting the next one.

Convert gluEndPolygon() to both gluTessEndContour () and gluTessEndPolygon(). The
final contour must be closed.

Change references to constants to gluTessCallback(). In GLU 1.2, GLU_BEGIN,
GLU_VERTEX, GLU_END, GLU_ERROR, and GLU_EDGE_FLAG are defined as
synonyms for GLU_TESS BEGIN, GLU_TESS VERTEX, GLU_TESS END,
GLU_TESS ERROR, and GLU_TESS EDGE_FLAG.

Quadrics. Rendering Spheres, Cylinders, and Disks

The base OpenGL library only provides support for modeling and rendering simple points, lines,
and convex filled polygons. Neither 3D objects, nor commonly used 2D objects such as circles, are
directly available.

Throughout this book, you' ve been using GLUT to create some 3D objects. The GLU also provides
routines to model and render tessellated, polygonal approximations for a variety of 2D and 3D
shapes (spheres, cylinders, disks, and parts of disks), which can be calculated with quadric
equations. Thisincludes routines to draw the quadric surfacesin avariety of styles and orientations.

Quadric surfaces are defined by the following general quadratic equation:
alx2 + a2y2 + a3z22 + adxy + abyx + abxz+ a7x+ a8y + a9z+ al0=0

(See David Rogers' Procedural Elements for Computer Graphics. New York, NY: McGraw-Hill
Book Company, 1985.) Creating and rendering a quadric surface is similar to using the tessellator.
To use aquadrics object, follow these steps.

1. To create aquadrics object, use gluNewQuadric().

2. Specify the rendering attributes for the quadrics object (unless you' re satisfied with the
default values).

1. UsegluQuadricOrientation() to control the winding direction and differentiate the
interior from the exterior.

2. UsegluQuadricDrawsStyle() to choose between rendering the object as points, lines, or
filled polygons.

3. For lit quadrics objects, use gluQuadricNor mals() to specify one normal per vertex or
one normal per face. The default isthat no normals are generated at all.

4. For textured quadrics objects, use gluQuadricTexture() if you want to generate texture
coordinates.

3. Preparefor problems by registering an error-handling routine with gluQuadricCallback().
Then, if an error occurs during rendering, the routine you'’ ve specified is invoked.

4. Now invoke the rendering routine for the desired type of quadrics object: gluSpher &),
gluCylinder (), gluDisk(), or gluPartialDisk(). For best performance for static data,
encapsul ate the quadrics object in adisplay list.

5. When you're completely finished with it, destroy this object with gluDeleteQuadric(). If you
need to create another quadric, it’s best to reuse your quadrics object.

Manage Quadrics Objects

A guadrics object consists of parameters, attributes, and callbacks that are stored in a data structure
of type GLUquadricObj. A quadrics object may generate vertices, normals, texture coordinates, and
other data, all of which may be used immediately or stored in adisplay list for later use. The
following routines create, destroy, and report upon errors of a quadrics object.

GLUquadricObj* gluNewQuadric (void);
Creates a new gquadrics object and returns a pointer to it. A null pointer is returned if the
routine fails.

void gluDeleteQuadric (GLUquadricObj *qobyj);
Destroys the quadrics object qobj and frees up any memory used by it.

void gluQuadricCallback (GLUquadricObj * qobj, GLenum which, void (* fn)());
Defines a function fnto be called in special circumstances. GLU_ERROR s the only legal
value for which, so fniscalled when an error occurs. If fnisNULL, any existing callback is
erased.

For GLU_ERROR, fniscalled with one parameter, which isthe error code. gluError String() can
be used to convert the error code into an ASCII string.

Control Quadrics Attributes

The following routines affect the kinds of data generated by the quadrics routines. Use these
routines before you actually specify the primitives.

Example 11-4, quadric.c, on page 435, demonstrates changing the drawing style and the kind of
normals generated as well as creating quadrics objects, error handling, and drawing the primitives.

void gluQuadricDrawStyle (GLUquadricObj * qobj, GLenum draw3tyle);
For the quadrics object qobj, drawStyle controls the rendering style. Legal values for
drawStyle are GLU_POINT, GLU_LINE, GLU_SLHOUETTE, and GLU_FILL.

GLU_POINT and GLU_LINE specify that primitives should be rendered as a point at every vertex
or aline between each pair of connected vertices.

GLU_SILHOUETTE specifies that primitives are rendered as lines, except that edges separating
coplanar faces are not drawn. This is most often used for gluDisk() and gluPartial Disk().

GLU_FILL specifiesrendering by filled polygons, where the polygons are drawn in a
counterclockwise fashion with respect to their normals. This may be affected by
gluQuadricOrientation().

void gluQuadricOrientation (GLUquadricObj *qobj, GLenum orientation);
For the quadrics object qobj, orientation is either GLU_OUTSIDE (the default) or
GLU_INSDE, which controls the direction in which normals are pointing.

For gluSphere() and gluCylinder (), the definitions of outside and inside are obvious. For
gluDisk() and gluPartialDisk(), the positive z side of the disk is considered to be outside.

void gluQuadricNormals (GLUquadricObj *gobj, GLenum normals);
For the quadrics object gobj, normalsis one of GLU_NONE (the default), GLU_FLAT, or
GLU_SMOOTH.

gluQuadricNormals() is used to specify when to generate normal vectors. GLU_NONE means that
no normals are generated and is intended for use without lighting. GLU_FLAT generates one
normal for each facet, which is often best for lighting with flat shading. GLU_SMOOTH generates
one normal for every vertex of the quadric, which isusually best for lighting with smooth shading.

void gluQuadricTexture (GLUquadricObj *qobyj,

GLboolean textureCoords);
For the quadrics object qobj, textureCoordsis either GL_FALSE (the default) or GL_TRUE.
If the value of textureCoordsis GL_TRUE, then texture coordinates are generated for the
quadrics object. The manner in which the texture coordinates are generated varies,
depending upon the type of quadrics object rendered.

Quadrics Primitives

The following routines actually generate the vertices and other data that constitute a quadrics
object. In each case, qobj refersto a quadrics object created by gluNewQuadric().

void gluSphere (GLUquadricObj *gobj, GLdouble radius,

GLint dlices, GLint stacks);
Draws a sphere of the given radius, centered around the origin, (0, O, 0). The sphereis
subdivided around the z axis into a number of slices (similar to longitude) and along the z
axisinto a number of stacks (latitude).
If texture coordinates are also generated by the quadrics facility, thet coordinate ranges from
0.0 at z= -radiusto 1.0 at z= radius, with t increasing linearly along longitudinal lines.
Meanwhile, sranges from 0.0 at the +y axis, to 0.25 at the + x axis, to 0.5 at the -y axis, to
0.75 at the -x axis, and back to 1.0 at the +y axis.

void gluCylinder (GLUquadricObj *qobj, GLdouble baseRadius,

GLdouble topRadius, GLdouble height,

GLint dlices, GLint stacks);
Draws a cylinder oriented along the z axis, with the base of the cylinder at z= 0 and the top
at z= height. Like a sphere, the cylinder is subdivided around the z axis into a number of
slices and along the z axis into a number of stacks. baseRadiusis the radius of the cylinder at
z= 0. topRadiusisthe radius of the cylinder at z= height. If topRadiusis set to zero, then a
cone is generated.
If texture coordinates are generated by the quadrics facility, then the t coordinate ranges
linearly from 0.0 at z= 0 to 1.0 at z= height. The stexture coordinates are generated the
same way as they are for a sphere.

Note: The cylinder isnot closed at the top or bottom. The disks at the base and at the top are not
drawn.

void gluDisk (GLUquadricObj *qobj, GLdouble innerRadius,

GLdouble outerRadius, GLint slices, GLint rings);
Draws a disk on the z= 0 plane, with a radius of outerRadius and a concentric circular hole
with a radius of innerRadius. If innerRadiusis O, then no holeis created. Thediskis
subdivided around the z axisinto a number of slices (like slices of pizza) and also about the z
axisinto a number of concentric rings.
With respect to orientation, the +z side of the disk is considered to be "outside"; that is, any
normals generated point along the +z axis. Otherwise, the normals point along the -z axis.
If texture coordinates are generated by the quadrics facility, then the texture coordinates are
generated linearly such that where R=outer Radius, the valuesfor sandt at (R, O, 0) is (1,
0.5), at (0, R, 0) they are (0.5, 1), at (-R, O, 0) they are (0, 0.5), and at (0, -R, 0) they are (0.5,
0).

void gluPartial Disk (GLUquadricObj * qobj, GLdouble innerRadius,

GLdouble outerRadius, GLint slices, GLint rings,

GLdouble startAngle, GLdouble sweepAngle);
Draws a partial disk onthez= 0 plane. A partial diskissimilar to a complete disk, in terms
of outerRadius, innerRadius, slices, and rings. The difference is that only a portion of a
partial disk is drawn, starting from startAngle through startAngle+ sweepAngle (where
startAngle and sweepAngle are measured in degrees, where 0 degreesis along the +y axis, 90
degrees along the +x axis, 180 along the -y axis, and 270 along the -x axis).
A partial disk handles orientation and texture coordinates in the same way as a complete
disk.

Note: For all quadrics objects, it’s better to use the * Radius, height, and similar arguments to scale
them rather than the gl Scale* () command so that the unit-length normals that are generated don’t

have to be renormalized. Set the rings and stacks arguments to values other than one to force
lighting calculations at a finer granularity, especialy if the material specularity is high.

Example 11-4 shows each of the quadrics primitives being drawn, as well as the effects of different

drawing styles.
Example 11-4 : Quadrics Objects: quadric.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ glut. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

Guint startlList;

voi d errorCal |l back(G.enum err or Code)

{
const GLubyte *estring;
estring = gluErrorString(errorCode);
fprintf(stderr, "Quadric Error: %\n", estring);
exit(0);

}

voi d init(void)

{

GLUguadri cOoj *qobj

G.fl oat mat _amnbient][] { 0.5, 0.5, 0.5, 1.0 };
G.float mat_specul ar[] { 1.0, 1.0, 1.0, 1.0 };
GLfl oat mat_shini ness[] { 50.0 };

G.float light position[] ={ 1.0, 1.0, 1.0, 0.0 };
GLfl oat nodel anbient]] { 0.5, 0.5, 0.5, 1.0 };

gl G earColor(0.0, 0.0, 0.0, 0.0);

gl Material fv(G._FRONT, G._AMBI ENT, nmat_anbient);

gl Material fv(G_FRONT, G._ SPECULAR mat specular)

gl Material fv(G._FRONT, G__SHI NI NESS, rmat_shi ni ness);

gl Li ghtfv(GL_LIGHTO, GL_POSITION, |ight _position);

gl Li ght Model fv(GL_LI GHT_MODEL_ AMVBI ENT, nndel_anbient);

gl Enabl e(GL_LI GHTI NG ;
gl Enabl e(G _LI GHTO) ;
gl Enabl e(G._DEPTH_TEST) ;

/* Create 4 display lists, each with a different quadric object.
* Different drawi ng styles and surface normal specifications
* are denonstrated.

startList = gl GenLists(4);

gobj = gl uNewQuadri c();
gl uQuadri cCal | back(gobj, G.U ERROR, errorCall back);

gl uQuadri cDrawstyl e(qobj, G.U FILL); /* snpboth shaded */
gl uQuadri cNor mal s(gobj, GLU SMOOTH);
gl NewLi st (startList, G._COWPILE);
gl uSphere(qobj, 0.75, 15, 10);
gl EndLi st ();

gl uQuadri cDrawstyl e(qobj, G.U FILL); /* flat shaded */
gl uQuadri cNor mal s(qobj, GLU _FLAT);
gl NewLi st (startList+1l, G._COWPILE);

gl uCylinder(qobj, 0.5, 0.3, 1.0, 15, 5);
gl EndLi st ();

gl uQuadri cDrawstyl e(qobj, GLULINE); /* wireframe */
gl uQuadri cNor mal s(gobj, G_LU_NONE);
gl NewLi st (startList+2, G._COWI LE);
gl ubi sk(qgobj, 0.25, 1.0, 20, 4);
gl EndLi st ();

gl uQuadri cDrawst yl e(qobj, G.U_SI LHOUETTE) ;
gl uQuadri cNor mal s(qobj, G_U_NONE);
gl NewLi st (startList+3, G._COWPILE);
gluParti al Di sk(qobj, 0.0, 1.0, 20, 4, 0.0, 225.0);
gl EndLi st ();

}
voi d di spl ay(voi d)
{
gl Jear (G._COLOR BUFFER BIT | G._DEPTH BUFFER BIT);
gl PushiMatri x();
gl Enabl e(G_LI GHTI NG ;
gl ShadeMbdel (G._SMOOTH);
gl Transl atef (-1.0, -1.0, 0.0);
gl Cal | Li st (startList);
gl ShadeModel (G._FLAT);
gl Transl atef (0.0, 2.0, 0.0);
gl PushiMatri x();
gl Rotatef (300.0, 1.0, 0.0, 0.0);
gl Cal | Li st(startList+1);
gl PopMat ri x();
gl D sabl e(G_LI GHTI NG ;
gl Color3f(0.0, 1.0, 1.0);
gl Transl atef (2.0, -2.0, 0.0);
gl Cal | Li st (startList+2);
gl Color3f(1.0, 1.0, 0.0);
gl Transl atef (0.0, 2.0, 0.0);
gl Cal | Li st (startList+3);
gl PopMat ri x();
gl Fl ush();
}
void reshape (int w, int h)
{
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
if (w<=h)
glOrtho(-2.5, 2.5, -2.5%(CG.float)h/(G.float)w,
2.5*(CG.float)h/ (G float)w, -10.0, 10.0);
el se
gl Ortho(-2.5*(CG.float)w (G.float)h,
2.5*(CG.float)w (G float)h, -2.5, 2.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}

voi d keyboard(unsi gned char key, int x, int y)

switch (key) {
case 27:

exit(0);
br eak;
}
}

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutlnitD splayMbde(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlni t WndowSi ze(500, 500);

gl utlnit WndowPosition(100, 100);
gl ut Creat eW ndow(argv[0]);
init();

gl ut Di spl ayFunc(di spl ay) ;

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O,

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

||+ OpenGL Programming Guide
(Addison-Wesley Publishing Company

Chapter 12
Evaluators and NURBS

Chapter Objectives
Advanced
After reading this chapter, you’ll be able to do the following:
® Use OpenGL evaluator commands to draw basic curves and surfaces
® Use the GLU’s higher-level NURBS facility to draw more complex curves and surface:
Note that this chapter presumes a number of prerequisites; they're liSRrdnaquisites.”

At the lowest level, graphics hardware draws points, line segments, and polygons, which ai
usually triangles and quadrilaterals. Smooth curves and surfaces are drawn by approximati
with large numbers of small line segments or polygons. However, many useful curves and :
can be described mathematically by a small number of parameters such asrriavpoints.
Saving the 16 control points for a surface requires much less storage than saving 1000 tria
together with the normal vector information at each vertex. In addition, the 1000 triangles o
approximate the true surface, but the control points accurately describe the real surface.

Evaluators provide a way to specify points on a curve or surface (or part of one) using only
control points. The curve or surface can then be rendered at any precision. In addition, nori
vectors can be calculated for surfaces automatically. You can use the points generated by
evaluator in many ways - to draw dots where the surface would be, to draw a wireframe vel
the surface, or to draw a fully lighted, shaded, and even textured version.

You can use evaluators to describe any polynomial or rational polynomial splines or surfact
degree. These include almost all splines and spline surfaces in use today, including B-splin
NURBS (Non-Uniform Rational B-Spline) surfaces, Bézier curves and surfaces, and Hermit
splines. Since evaluators provide only a low-level description of the points on a curve or su
they're typically used underneath utility libraries that provide a higher-level interface to the
programmer. The GLU’s NURBS facility is such a higher-level interface - the NURBS routir
encapsulate lots of complicated code. Much of the final rendering is done with evaluators, t
some conditions (trimming curves, for example) the NURBS routines use planar polygons f
rendering.

This chapter contains the following major sections.

® "Prerequisitestliscusses what knowledge is assumed for this chapter. It also gives se\
references where you can obtain this information.

® "Evaluators“explains how evaluators work and how to control them using the appropri.
OpenGL commands.

® "The GLU NURBS Interfacetiescribes the GLU routines for creating NURBS surfaces.

Prerequisites

Evaluators make splines and surfaces that are based on a Bézier (or Bernstein) basis. The
formulas for the functions in this basis are given in this chapter, but the discussion doesn't |
derivations or even lists of all their interesting mathematical properties. If you want to use
evaluators to draw curves and surfaces using other bases, you must know how to convert \
to a Bézier basis. In addition, when you render a Bézier surface or part of it using evaluator
need to determine the granularity of your subdivision. Your decision needs to take into accc
trade-off between high-quality (highly subdivided) images and high speed. Determining an
appropriate subdivision strategy can be quite complicated - too complicated to be discusse

Similarly, a complete discussion of NURBS is beyond the scope of this book. The GLU NUI
interface is documented here, and programming examples are provided for readers who ali
understand the subject. In what follows, you already should know about NURBS control po
knot sequences, and trimming curves.

If you lack some of these prerequisites, the following references will help.

® Farin, Gerald E.Curves and Surfaces for Computer-Aided Geometric Design, Fourth
Edition. San Diego, CA: Academic Press, 1996.

® Farin, Gerald EINURB Curves and Surfaces. from Projective Geometry to Practical Use.
Wellesley, MA: A. K. Peters Ltd., 1995.

® Farin, Gerald E., editoNURBSfor Curve and Surface Design, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1991.

® Hoschek, Josef and Dieter Lasganndamentals of Computer Aided Geometric Design.
Wellesley, MA: A. K. Peters Ltd., 1993.

® Piegl, Les and Wayne TilleThe NURBS Book. New York, NY: Springer-Verlag, 1995.

Note: Some terms used in this chapter might have slightly different meanings in other book:
spline curves and surfaces, since there isn’t total agreement among the practitioners of this
Generally, the OpenGL meanings are a bit more restrictive. For example, OpenGL evaluatc
always use Bézier bases; in other contexts, evaluators might refer to the same concept, bu
arbitrary basis.

Evaluators

A Bézier curve is a vector-valued function of one variable

C(u) = [X(u) Y (u) Z(u]

whereu varies in some domain (say [0,1]). A Bézier surface patch is a vector-valued functio
two variables

S(u,v) = [X(u,v) Y(uv) Z(uVv)]

whereu andv can both vary in some domain. The range isn’'t necessarily three-dimensional
shown here. You might want two-dimensional output for curves on a plane or texture coord
or you might want four-dimensional output to specify RGBA information. Even one-dimensi
output may make sense for gray levels.

For eachu (oru andyv, in the case of a surface), the formula@gy (or S()) calculates a point on t
curve (or surface). To use an evaluator, first define the funCiipar S(), enable it, and then use
theglEvalCoord1() or glEvalCoord2() command instead @fiVertex*(). This way, the curve or
surface vertices can be used like any other vertices - to form points or lines, for example. Ir
addition, other commands automatically generate series of vertices that produce a regular |
uniformly spaced i (or inu andv). One- and two-dimensional evaluators are similar, but the
description is somewhat simpler in one dimension, so that case is discussed first.

One-Dimensional Evaluators

This section presents an example of using one-dimensional evaluators to draw a curve. It tl
describes the commands and equations that control evaluators.

One-Dimensional Example: A Simple Bézier Curve

The program shown iBxample 12-Idraws a cubic Bézier curve using four control points, as
shown inFigure 12-1

Figure 12-1 :Bézier Curve

Example 12-1 :Bézier Curve with Four Control Points: bezcurve.c

#i ncl ude <G/ gl . h>

#i ncl ude <@/ gl u. h>
#i ncl ude <stdlib. h>
#i ncl ude <G/ gl ut. h>

G.float ctrlpoints[4][3] = {

voi

voi

voi

}

i nt

}

{ -4.0, -4.0, 0.0}, { -2.0, 4.0, 0.0},
{2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}};

d init(void)

glClearColor(0.0, 0.0, 0.0, 0.0);

gl ShadeModel (GL_FLAT);

gl Maplf (GL_MAP1_VERTEX_ 3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);
gl Enabl e(G._MAP1_VERTEX 3);

d di spl ay(void)
int i;

gl A ear (GL_COLOR BUFFER BI T);
gl Color3f(1.0, 1.0, 1.0);
gl Begi n(G_LI NE_STRI P) ;
for (i =0; i <= 30; i++)
gl Eval Coor d1f ((G.fl oat) i/30.0);
gl End() ;
/* The follow ng code displays the control points as dots. */
gl Poi nt Si ze(5.0);
gl Col or3f(1.0, 1.0, 0.0);
gl Begi n(GL_PQA NTS) ;
for (i =0; i < 4; i++)
gl Vertex3fv(&ctrlpoints[i][0]);
gl End() ;
gl Fl ush();

d reshape(int w, int h)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
if (w<=h)
gl Otho(-5.0, 5.0, -5.0*(G.float)h/(Gfloat)w,
5.0*(G.float)h/ (G float)w, -5.0, 5.0);
el se
gl O tho(-5.0*(G.fl oat)w (G.fl oat) h,
5.0*(CG.float)w (Gfloat)h, -5.0, 5.0, -5.0, 5.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

mai n(i nt argc, char** argv)

glutinit(&rgc, argv);

glutlnitD splayMde (GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (500, 500);

gl utlni t WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O,

A cubic Bézier curve is described by four control points, which appear in this example in th
ctripointg[][] array. This array is one of the argumentglMap1f(). All the arguments for this
command are as follows:

GL_MAP1_VERTEX_3

Three-dimensional control points are provided and three-dimensional vertices are pro
0.0

Low value of parameter
1.0

High value of parameter

The number of floating-point values to advance in the data between one control point
next

The order of the spline, which is the degree+1.: in this case, the degree is 3 (since this
cubic curve)

& ctrlpointg 0] [O]

Pointer to the first control point’s data
Note that the second and third arguments control the parameterization of the curve - as the
u ranges from 0.0 to 1.0, the curve goes from one end to the other. Thegtfalidble() enables
the one-dimensional evaluator for three-dimensional vertices.
The curve is drawn in the routidésplay() between thglBegin() andglEnd() calls. Since the
evaluator is enabled, the commagifivalCoord1f() is just like issuing @lVertex() command wit|
the coordinates of a vertex on the curve corresponding to the input parameter

Defining and Evaluating a One-Dimensional Evaluator

The Bernstein polynomial of degrador ordem+1) is given by
B (9= (7)# (-0’
If Pi represents a set of control points (one-, two-, three-, or even four- dimensional), then tl
equation
"
i) = B (w) 5,

i=0

represents a Bézier curvelwagaries from 0.0 to 1.0. To represent the same curve but allaon
vary betweeml andu2 instead of 0.0 and 1.0, evaluate

e

The commangMapl() defines a one-dimensional evaluator that uses these equations.

void giMap1{fd}(GLenumtarget, TYPEul, TYPEU2, GLint stride,

GLint order, const TYPE* points);

Defines a one-dimensional evaluator. The target parameter specifies what the control points
represent, as shown in Table 12-1, and therefore how many values need to be supplied in
points. The points can represent vertices, RGBA color data, normal vectors, or texture

coordinates. For

example, with GL_MAP1_COLOR 4, the evaluator generates color data along a curvein
four-dimensional (RGBA) color space. You also use the parameter values listed in Table 12-1
to enable each defined evaluator before you invoke it. Pass the appropriate value to
glEnable() or glDisable() to enable or disable the evaluator.

The second two parameters for glMapl* (), ul and u2, indicate the range for the variable u.
The variable stride is the number of single- or double-precision values (as appropriate) in
each block of storage. Thus, it’s an offset value between the beginning of one control point

and the beginning of the next.

The order isthe degree plus one, and it should agree with the number of control points. The
points parameter pointsto the first coordinate of the first control point. Using the example
data structure for giMap1* (), use the following for points:

(GLfloat *)(&ctlpoints[0].x)

Table 12-1 :Types of Control Points for giMap1*()

Parameter

Meaning

GL_MAP1_VERTEX_ 3

X, Y, z vertex coordinates

GL_MAP1_VERTEX_ 4

X, Y, Z, W vertex coordinateg

GL_MAP1_INDEX

color index

GL_MAP1_COLOR_4

R, G, B, A

GL_MAP1_NORMAL

normal coordinates

GL_MAP1_TEXTURE_COORD _1

stexture coordinates

GL_MAP1_TEXTURE_COORD 2

s, t texture coordinates

GL_MAP1 _TEXTURE_COORD 3

S, t, r texture coordinates

GL_MAP1_TEXTURE_COORD 4

s t, r, g texture coordinates

More than one evaluator can be evaluated at a time. If you have both a GL_MAP1_VERTE
a GL_MAP1 COLOR_4 evaluator defined and enabled, for example, then qlis/&dCoord1()
generate both a position and a color. Only one of the vertex evaluators can be enabled at ¢
although you might have defined both of them. Similarly, only one of the texture evaluators
active. Other than that, however, evaluators can be used to generate any combination of ve
normal, color, and texture-coordinate data. If more than one evaluator of the same type is ¢
and enabled, the one of highest dimension is used.

UseglEvalCoord1*() to evaluate a defined and enabled one-dimensional map.

void glEval Coord1{fd}(TYPE u);

void glEval Coord1{fd}v(TYPE *u);
Causes evaluation of the enabled one-dimensional maps. The argument u isthe value (or a
pointer to the value, in the vector version of the command) of the domain coordinate.

For evaluated vertices, values for color, color index, normal vectors, and texture coordinate
generated by evaluation. CallsgiievalCoord*() do not use the current values for color, color
index, normal vectors, and texture coordinag#svalCoord*() also leaves those values
unchanged.

Defining Evenly Spaced Coordinate Values in One Dimension

You can useglEvalCoord1() with any values fou, but by far the most common use is with eve
spaced values, as shown previouslizxample 12-1To obtain evenly spaced values, define a
one-dimensional grid usimgMapGrid1*() and then apply it usingiEvalMesh1()

void glMapGrid1{fd}(GLint n, TYPEul, TYPEU2);
Defines a grid that goes from ul to u2 in n steps, which are evenly spaced.

void glEvalMesh1(GLenum mode, GLint p1, GLint p2);
Applies the currently defined map grid to all enabled evaluators. The mode can be either
GL_POINT or GL_LINE, depending on whether you want to draw points or a connected line
along the curve. The call has exactly the same effect asissuing a glEval Coordl() for each of
the steps between and including pl and p2, where 0 <= pl, p2 <= n. Programmatically, it's
equivalent to the following:

gl Begi n(GL_PQA NTS) ; /* OR gl Begin(G_LINE_STRIP); */
for (i =pl; i <= p2; i++)
gl Eval Coord1(ul + i*(u2-ul)/n);
gl End() ;

except that if i = O or i = n, then glEvalCoordl() is called with exactly ul or u2 asits
parameter.

Two-Dimensional Evaluators

In two dimensions, everything is similar to the one-dimensional case, except that all the cor
must take two parametersandy, into account. Points, colors, normals, or texture coordinate:
must be supplied over a surface instead of a curve. Mathematically, the definition of a Bézi
surface patch is given by

Swv= B@WE®E
i=0 =0

wherePij are a set ofm*n control points, and thiBi are the same Bernstein polynomials for one
dimension. As before, tHaj can represent vertices, normals, colors, or texture coordinates.

The procedure to use two-dimensional evaluators is similar to the procedure for one dimen
1. Define the evaluator(s) withiMap2*().
2. Enable them by passing the appropriate valugHEaable().

3. Invoke them either by callinglEvalCoord2() between @lBegin() andglEnd() pair or by
specifying and then applying a mesh wgtMapGrid2() andglEvalMesh2()

Defining and Evaluating a Two-Dimensional Evaluator
UseglMap2*() andglEvalCoord2*() to define and then invoke a two-dimensional evaluator.

void giMap2{fd} (GLenumtarget, TYPEul, TYPEuU2, GLint ustride,

GLint uorder, TYPEV], TYPEV2, GLint vstride,

GLint vorder, TYPE points);
The target parameter can have any of the valuesin Table 12-1, except that the string MAP1 is
replaced with MAP2. As before, these values are also used with glEnable() to enable the
corresponding evaluator. Minimum and maximum values for both u and v are provided as ul,
u2, vl1, and v2. The parameters ustride and vstride indicate the number of single- or
double-precision values (as appropriate) between independent settings for these values,
allowing usersto select a subrectangle of control points out of a much larger array. For
example, if the data appearsin the form

G.float ctl points[100][100][3];

and you want to use the 4x4 subset beginning at ctlpointg] 20][30], choose ustride to be 100* 3
and vstride to be 3. The starting point, points, should be set to & ctlpoints[20][30][0].
Finally, the order parameters, uorder and vorder, can be different, allowing patches that are
cubic in one direction and quadratic in the other, for example.

void glEval Coord2{fd}(TYPE u, TYPE v);

void glEval Coord2{fd}v(TYPE *values);
Causes evaluation of the enabled two-dimensional maps. The arguments u and v are the
values (or a pointer to the valuesu and v, in the vector version of the command) for the
domain coordinates. If either of the vertex evaluatorsis enabled (GL_MAP2_VERTEX 3 or
GL_MAP2_VERTEX_4), then the normal to the surface is computed analytically. This normal
is associated with the generated vertex if automatic normal generation has been enabled by
passing GL_AUTO_NORMAL to glEnable(). If it's disabled, the corresponding enabled
normal map is used to produce a normal. If no such map exists, the current normal is used.

Two-Dimensional Example: A Bézier Surface

Example 12-2raws a wireframe Bézier surface using evaluators, as shdviguire 12-2 In this
example, the surface is drawn with nine curved lines in each direction. Each curve is drawr
segments. To get the whole program, addelsbape()andmain() routines fromExample 12-1

Figure 12-2 :Bézier Surface

Example 12-2 :Bézier Surface: bezsurf.c

#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>
#i nclude <stdlib. h>
#i nclude <G/ glut. h>

G.float ctrlpoints[4][4][3] = {
{{-1.5, -1.5, 4.0}, {-0.5 1.5, 2.0}
{o.5, -1.5, -1.0}, {1.5, -1.5, 2.0}},
{{-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0},
{0.5, -0.5, 0.0}, {1.5, -0.5 1.0}},
{-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0},
{0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}},
{{-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0},
{0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}}

b
voi d di spl ay(voi d)
{

int i, j;

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
1.0

gl Col or 3f (1.0, , 1.0);
gl Pushiatrix ();
gl Rotatef(85.0, 1.0, 1.0, 1.0);

for (j =0; j <=8, j++) {
gl Begi n(G_LI NE_STRI P) ;
for (i = 0; i <= 30; i++)
gl Eval Coord2f ((G.fl oat)i/30.0, (G.float)j/8.0);
gl End() ;
gl Begi n(G._LI NE_STRI P) ;
for (i = 0; i <= 30; i++)
gl Eval Coord2f ((G.float)j/8.0, (G.float)i/30.0);
gl End() ;

}
gl PopMatrix ();
gl Fl ush();

void init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);

gl Map2f (G_MAP2_VERTEX_ 3, 0, 1, 3, 4,
0, 1, 12, 4, &ctrlpoints[0][0][0]);
gl Enabl e(GL_MAP2_VERTEX_3) ;
gl MapGri d2f (20, 0.0, 1.0, 20, 0.0, 1.0);
gl Enabl e(GL_DEPTH_TEST) ;
gl ShadeMobdel (GL_FLAT);

}

Defining Evenly Spaced Coordinate Values in Two Dimensions

In two dimensions, thgiMapGrid2*() andglEvalMesh2()commands are similar to the
one-dimensional versions, except that ho#ndv information must be included.

void giMapGrid2{fd}(GLint nu, TYPEul, TYPEuU2,
GLint nv, TYPEVL, TYPEV2);
void glEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2);

Defines a two-dimensional map grid that goes from ul to u2 in nu evenly spaced steps, from
vltov2in nv steps (gIMapGrid2*()), and then appliesthis grid to all enabled evaluators
(glEvalMesh2()). The only significant difference from the one-dimensional versions of these
two commands is that in glEvalMesh2() the mode parameter can be GL_FILL aswell as
GL_POINT or GL_LINE. GL_FILL generatesfilled polygons using the quad-mesh primitive.
Sated precisely, glEvalMesh2() is nearly equivalent to one of the following three code
fragments. (It's nearly equivalent because when i is equal to nu or j to nv, the parameter is
exactly equal to u2 or v2, not to ul+nu* (u2-ul)/ nu, which might be dlightly different due to

round-off error.)

gl Begi n(GL_PQO NTS) ; /* node == G__PO NT */
for (i = nul; i <= nu2; i++)
for (j = nvl;, | <= nv2; |++)
gl Eval Coord2(ul + i*(u2-ul)/nu, v1+ *(v2-v1l)/nv);
gl End() ;
or
for (i = nul; i <= nu2; i++) { /* node == G_LINE */
gl Begi n(GL_LI NES) ;
for (j = nvl; j <= nv2; j++)
gl Eval Coord2(ul + i*(u2-ul)/nu, v14j*(v2-v1l)/nv);
gl End() ;
}
for (j = nvl; j <= nv2; j++) {
gl Begi n(GL_LI NES) ;
for (i = nul; i <= nu2; i++)
gl Eval Coord2(ul + i*(u2-ul)/nu, vil+j*(v2-vl)/nv);
gl End() ;
}
or
for (i = nul; i < nu2; i++) { /* nmode == GL_FILL */
gl Begi n(GL_QUAD_STRI P) ;
for (j = nvl;, j <= nv2; j++) {
gl Eval Coord2(ul + i*(u2-ul)/nu, vil+j*(v2-vl)/nv);
gl Eval Coord2(ul + (i +1)*(u2-ul)/nu, vi+j*(v2-vl)/nv);
gl End() ;
}

Example 12-3hows the differences necessary to draw the same Bézier surlaangse 12-2
but usinggIMapGrid2() andglEvalMesh2()to subdivide the square domain into a uniform 8x

grid. This program also adds lighting and shading, as showigume 12-3

Figure 12-3 :Lit, Shaded Bézier Surface Drawn with a Mesh

Example 12-3 :Lit, Shaded Bézier Surface Using a Mesh: bezmesh.c

void initlights(void)

{
G.float anbient[] = {0.2, 0.2, 0.2, 1.0};
G.float position[] = {0.0, 0.0, 2.0, 1.0};
G.float mat_diffuse[] = {0.6, 0.6, 0.6, 1.0};
G.float mat_specular[] = {1.0, 1.0, 1.0, 1.0};
G.fl oat mat_shini ness[] = {50.0};

0.

gl Enabl e(G_LI GHTI NG ;
gl Enabl e(G._LI GHTO) ;

gl Li ght fv(G._LI GHTO, GL_AMBI ENT, anbient);
gl Lightfv(G _LIGHTO, G._POSI TI ON, position);

gl Material fv(G._FRONT, G _DI FFUSE, mat _diffuse);
gl Material fv(G._FRONT, G._SPECULAR, mat_specul ar);
gl Material fv(G._FRONT, G._SHI NI NESS, nat_shi ni ness);

voi d di spl ay(voi d)

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
gl PushiMatri x();

gl Rotatef(85.0, 1.0, 1.0, 1.0);

gl Eval Mesh2(G&._FI LL, 0, 20, 0, 20);

gl PopMat ri x();

gl Fl ush();

void init(void)

glClearColor(0.0, 0.0, 0.0, 0.0);
gl Enabl e(G._DEPTH_TEST) ;
gl Map2f (GL_MAP2_VERTEX 3, 0, 1, 3, 4,
0, 1, 12, 4, &ctrlpoints[0][0][0]);
gl Enabl e(G._MAP2_VERTEX 3);
gl Enabl e(GL_AUTO NORMAL) ;
gl MapGri d2f (20, 0.0, 1.0, 20, 0.0, 1.0);
initlights();
}

Using Evaluators for Textures

Example 12-Z&nables two evaluators at the same time: The first generates three-dimension
on the same Bézier surfaceEsaample 12-3and the second generates texture coordinates. In
case, the texture coordinates are the same asathdv coordinates of the surface, but a special
Bézier patch must be created to do this.

The flat patch is defined over a square with corners at (0, 0), (0, 1), (1, 0), and (1, 1); it gen
0) at corner (0, 0), (0, 1) at corner (0, 1), and so on. Since it's of order two (linear degree pl
evaluating this texture at the point ¢) generates texture coordinatest). It's enabled at the sar
time as the vertex evaluator, so both take effect when the surface is drawléBe&9" in
Appendix 1) If you want the texture to repeat three times in each direction, change every 1.(
arraytexpty][][] to 3.0. Since the texture wraps in this example, the surface is rendered wit|
copies of the texture map.

Example 12-4 :Using Evaluators for Textures: texturesurf.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <stdlib. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <math. h>
G.float ctrlpoints[4][4][3] = {
{{ -1.5, -1.5, 4.0}, { -0.5, -1.5, 2.0},
{0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}},
{{ -1.5, -0.5, 1.0}, { -0.5, -0.5, 3.0},
{0.5, -0.5, 0.0}, {1.5, -0.5, -1.0}},
{{ -1.5, 0.5, 4.0}, { -0.5, 0.5, 0.0},
{0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}},
{{ -1.5, 1.5, -2.0}, { -0.5, 1.5, -2.0},
{0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}}
1
Gfloat texpts[2][2][2] = {{{0.0, 0.0}, {0.0, 1.0}},
{{1.0, 0.0}, {1.0, 1.0}}};

voi d di spl ay(voi d)

gl O ear(G_CO.OR BUFFER BI T |
gl Color3f(1.0, 1.0, 1.0);

gl Eval Mesh2(G&_FI LL, 0, 20, 0, 20);
gl Fl ush();

GL_DEPTH_BUFFER BI T);

#define i nageWdth 64
#def i ne i mageHei ght 64
GLubyt e i mage[3*i nageW dt h*i mageHei ght] ;

voi d makel mage(voi d)

t .
int i, j;
float ti, t]j
for (i =0; i <inmageWdth; i++) {
ti = 2.0*3.14159265%i /i mageW dt h;
for (j = 0; j < inmageHeight; j++) {

t] 2.0*3.14159265* /i mageHei ght ;
i mage[3* (i nageHei ght*i +j)]
(GLubyte) 127*(1.0+sin(ti));
i mage[3* (i nageHei ght *i +j) +1]
(GLubyte) 127*(1.0+cos(2*tj));
i mage[3* (i nageHei ght *i +j) +2]
(GLubyte) 127*(1.0+cos(ti+tj));

}
}

void init(void)

gl Map2f (GL_MAP2_VERTEX_3, 0, 1, 3, 4,
0, 1, 12, 4, &ctrlpoints[0][0][0]);
gl Map2f (G_ MAP2 TEXTURE COORD 2, 0, 1, 2, 2,
0, 1, 4, 2, &texpts[O][O][O])
gl Enabl e(G._MAP2_TEXTURE_COORD_2) ;
gl Enabl e(G._MAP2_VERTEX_3);
gl MapGri d2f (20, 0.0, 1.0, 20, 0.0, 1.0);
makel mage() ;
gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
gl TexParamet eri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL REPEAT)
gl TexPar anet eri (GL_TEXTURE 2D, GL_TEXTURE_WRAP_ T, GL_REPEAT);
gl TexPar amet eri (GL_TEXTURE 2D, GL_TEXTURE_MAG FI LTER
GL_NEAREST) ;
gl TexPar anmet eri (GL_TEXTURE_2D, G._TEXTURE_M N _FI LTER,
GL_NEAREST) ;
gl Texl mage2D(GL_TEXTURE_2D, 0, 3, inmageWdth, imageHei ght, O,
GL_RGB, G._UNSI GNED_BYTE, i nmmage);
gl Enabl e(G._TEXTURE_2D) ;
gl Enabl e(GL_DEPTH_TEST) ;
gl ShadeMbdel (G._FLAT);

}
void reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
if (w<=h)
gl Otho(-4.0, 4.0, -4.0*(G.float)h/(Gfloat)w,
4.0*(CG.float)h/(G.float)w, -4.0, 4.0);
el se
gl Ortho(-4.0*(CG.float)w (G.fl oat)h,
4.0*(CG.float)w (G.float)h, -4.0, 4.0, -4.0, 4.0);
gl Mat ri xMbde(GL_MODELVI EW ;
gl Loadl dentity();
gl Rotatef(85.0, 1.0, 1.0, 1.0);
}
int main(int argc, char** argv)
{

glutinit(&rgc, argv);

glutinitD splayMdde (GLUT_SINGLE | GLUT_RGB | G.UT_DEPTH);
gl utlni t WndowSi ze (500, 500);

gl utlni t WndowPosition (100, 100);

gl ut Creat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

The GLU NURBS Interface

Although evaluators are the only OpenGL primitive available to draw curves and surfaces ¢
and even though they can be implemented very efficiently in hardware, they’re often acces:

applications through higher-level libraries. The GLU provides a NURBS (Non-Uniform Ratic
B-Spline) interface built on top of the OpenGL evaluator commands.

A Simple NURBS Example

If you understand NURBS, writing OpenGL code to manipulate NURBS curves and surface
relatively easy, even with lighting and texture mapping. Follow these steps to draw NURBS
or untrimmed NURBS surfaces. (S8&im a NURBS Surfacefor information about trimmed
surfaces.)

1. If you intend to use lighting with a NURBS surface, ¢glinable() with
GL_AUTO_NORMAL to automatically generate surface normals. (Or you can calculat
own.)

2. UsegluNewNurbsRenderer()to create a pointer to a NURBS object, which is referred i
when creating your NURBS curve or surface.

3. If desired, calgluNurbsProperty() to choose rendering values, such as the maximum s
lines or polygons that are used to render your NURBS object.

4. Call gluNurbsCallback() if you want to be notified when an error is encountered. (Errot
checking may slightly degrade performance but is still highly recommended.)

5. Start your curve or surface by calligBeginCurve() or gluBeginSurface()

6. Generate and render your curve or surface.@aNurbsCurve() or gluNurbsSurface() at
least once with the control points (rational or nonrational), knot sequence, and order ¢
polynomial basis function for your NURBS object. You might call these functions addit
times to specify surface normals and/or texture coordinates.

7. Call gluEndCurve() or gluEndSurface()to complete the curve or surface.

Example 12-Fenders a NURBS surface in the shape of a symmetrical hill with control point
ranging from -3.0 to 3.0. The basis function is a cubic B-spline, but the knot sequence is
nonuniform, with a multiplicity of 4 at each endpoint, causing the basis function to behave li
Bézier curve in each direction. The surface is lighted, with a dark gray diffuse reflection anc
specular highlights€igure 12-4shows the surface as a lit wireframe.

/jeaEaRn)
AT
e EENRSY
Saasammn
=

Figure 12-4 :NURBS Surface

Example 12-5 :NURBS Surface: surface.c

#i nclude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ glut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

G.float ctlpoints[4][4]]3];
i nt showPoints = 0O;

GLUnur bsObj *theNurb

void init_surface(void)
{
int u,
for (u
for

0; u < 4; u++) {

;v < V++)
ts[fu][2.0*((CG.float)u - 1.5);
tsful[

V,
(v
ctl
ctl 2.0*((GLfloat)v - 1.5):

;ou
= 0,
poi n
poi n

<A
2
non

if ((u=1]] u==2) & (v == 1] v == 2))
ctlpointsfu][v][2] = 3.0;

el se
ctlpointsfu][v][2] = -3.0;

voi d nurbsError (G.enum error Code)
const GLubyte *estring;

estring = gluErrorString(errorCode);
fprintf (stderr, "Nurbs Error: %\n", estring);
exit (0);

voi d init(void)

G.float mat_diffuse[] ={ 0.7, 0.7, 0.7, 1.0 };
G.float mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
G.float mat_shininess[] = { 100.0 };

gl earColor (0.0, 0.0, 0.0, 0.0);

gl Material f v(GL_FRONT, G._DI FFUSE, mat_diffuse);

gl Material fv(G._FRONT, G._SPECULAR, nat specular)

gl Material f v(GL_FRONT, GL_SHI NI NESS, nat_sh|n|ness);

gl Enabl e(GL_LI GHTI NG ;

gl Enabl e(G_LI GHTO) ;

gl Enabl e(G._DEPTH_TEST) ;
gl Enabl e(GL_AUTO NORMAL) ;
gl Enabl e(GL_NORVALI ZE) ;

init_surface();

t heNurb = gl uNewNur bsRenderer () ;
gl uNur bsProperty(theNurb, G.U SAMPLI NG TOLERANCE, 25.0);
gl uNur bsProperty(theNurb, G.U D SPLAY MODE, G.U FILL);
gl uNur bsCal | back(t heNurb, GLU ERROR

(GLvoid (*)()) nurbsError);

}
voi d di spl ay(voi d)

GLfl oat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};

int i, j;
gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

gl PushiMatri x();
gl Rot atef (330.0, 1.
gl Scal ef (0.5, 0.5,

gl uBegi nSur f ace(t heNur b) ;

gl uNur bsSur f ace(t heNur b,
8, knots, 8, knots,
4 * 3, 3, &ctlp0|nts[0][0][0]
4, 4, G._MAP2_VERTEX 3);

gl uEndSur f ace(t heNur b) ;

i f (showPoints) {

gl Poi nt Si ze(5. 0);

gl D sabl e(G_LI GHTI NG ;

gl Color3f(1.0, 1.0, 0.0);

gl Begi n(GL_PO NTS) ;

for (i =0; i <4; i++) {

for (j =05 j <4, j++) {
gl Vertex3f(ctlpoints[i][j][0],
ctlpoints[i][j][1], ctlpoints[i]l[j]l[2]);

—_

}

];ll End();
gl Enabl e(GL_LI GHTI NG ;

éu PopMat ri x();
gl Flush();

void reshape(int w, int h)

gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);

gl Mat ri xMode(GL_PROQJECTI ON) ;

gl Loadl dentity();

gl uPer spective (45.0, (G.double)w (G.double)h, 3.0, 8.0);
gl Mat ri xMode(GL_MCODELVI EW ;

gl Loadl dentity();

gl Transl atef (0.0, 0.0, -5.0);

voi d keyboard(unsi gned char key, int x, int vy)

switch (key) {
case ‘c’:
case ‘C:
showPoi nts = ! showPoi nt s;
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);
br eak;
defaul t:
br eak;
}
}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlinitD splayMde(GUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (500, 500);
gl utlni t WndowPosition (100, 100);

gl ut Cr eat eW ndow(argv[0]);
init();

gl ut ReshapeFunc(reshape);

gl ut Di spl ayFunc(di spl ay);

gl ut Keyboar dFunc (keyboard);
gl ut Mai nLoop() ;

return O;

}
Manage a NURBS Object

As shown inExample 12-5gluNewNurbsRenderer()returns a new NURBS object, whose typ
a pointer to a GLUnurbsObj structure. You must make this object before using any other NI
routine. When you’re done with a NURBS object, you mayghsBeleteNurbsRenderer()to free
up the memory that was used.

GLUnNurbsObj* gluNewNurbsRenderer (void);
Creates a new NURBS aobject, nobj. Returns a pointer to the new object, or zero, if OpenGL
cannot allocate memory for a new NURBS object.

void gluDeleteNurbsRenderer (GLUnurbsObj * nobyj);
Destroys the NURBS object nobj.

Control NURBS Rendering Properties

A set of properties associated with a NURBS object affects the way the object is rendered.
properties include how the surface is rasterized (for example, filled or wireframe) and the pi
of tessellation.

void gluNurbsProperty(GLUnurbsObj * nobj, GLenum property,

GLfloat value);
Controls attributes of a NURBS object, nobj. The property argument specifies the property
and can be GLU_DISPLAY_MODE, GLU_CULLING, GLU_SAMPLING_METHOD,
GLU_SAMPLING_TOLERANCE, GLU_PARAMETRIC_TOLERANCE, GLU_U_STEP,
GLU_V_STEP, or GLU_AUTO_LOAD_MATRIX. The value argument indicates what the
property should be.
The default value for GLU_DISPLAY_MODE is GLU_FILL, which causes the surface to be
rendered as polygons. If GLU_OUTLINE_POLYGON is used for the display-mode property,
only the outlines of polygons created by tessellation are rendered. GLU_OUTLINE_PATCH
renders the outlines of patches and trimming curves. (See "Create a NURBS Curve or
Surface".)
GLU_CULLING can speed up performance by not performing tessellation if the NURBS
object falls completely outside the viewing volume; set this property to GL_TRUE to enable
culling (the default is GL_FALSE).
Since a NURBSobject isrendered as primitives, it's sampled at different values of its
parameter (s) (u and v) and broken down into small line segments or polygons for rendering.
If property isGLU_SAMPLING_METHOD, then value is set to one of
GLU_PATH_LENGTH (which isthe default), GLU_PARAMETRIC_ERROR, or
GLU_DOMAIN_DISTANCE, which specifies how a NURBS curve or surface should be
tessellated. When valueis set to GLU_PATH_LENGTH, the surfaceis rendered so that the
maximum length, in pixels, of the edges of tessellated polygonsis no greater than what is
specified by GLU_SAMPLING_TOLERANCE. When set to GLU_PARAMETRIC_ERROR,
then the value speC|f|ed by GLU_PARAMETRIC_TOLERANCE is the maximum distance, in
pixels, between tessellated polygons and the surfaces they approximate. When set to

GLU_DOMAIN_DISTANCE, the application specifies, in parametric coordinates, how many
sample points per unit length are taken in the u and v dimensions, using the values for
GLU_U_STEP and GLU_V_STEP.
If property is GLU_SAMPLING_TOLERANCE and the sampling method is
GLU_PATH_LENGTH, value controls the maximum length, in pixels, to use for tessellated
polygons. The default value of 50.0 makes the largest sampled line segment or polygon edge
50.0 pixelslong. If property is GLU_PARAMETRIC_TOLERANCE and the sampling method
isGLU_PARAMETRIC_ERROR, value controls the maximum distance, in pixels, between the
tessellated polygons and the surfaces they approximate. The default value for
GLU_PARAMETRIC_TOLERANCE is 0.5, which makes the tessellated polygons within
one-half pixel of the approximated surface. If the sampling method is
GLU_DOMAIN_DISTANCE and property iseither GLU_U_STEP or GLU_V_STEP, then
value is the number of sample points per unit length taken along the u or v dimension,
respectively, in parametric coordinates. The default for both GLU_U_STEP and
GLU_V_STEP is 100.
The GLU_AUTO_LOAD_MATRIX property determines whether the projection matrix,
modelview matrix, and viewport are downloaded from the OpenGL server (GL_TRUE, the
default), or whether the application must supply these matrices with
gluLoadSamplingMatrices() (GL_FALSE).

void gluLoadSamplingMatrices (GLUnurbsObj *nobj, const GLfloat modelMatrix[16], const

GLfloat projMatrix| 16], const GLint viewport[4]);
If the GLU_AUTO LOAD_MATRIX isturned off, the modelview and projection matrices and
the viewport specified in gluLoadSamplingMatrices() are used to compute sampling and
culling matrices for each NURBS curve or surface.

If you need to query the current value for a NURBS property, you may use
gluGetNurbsProperty().

void gluGetNurbsProperty (GLUnurbsObj * nobj, GLenum property,
GLfloat *value);
Given the property to be queried for the NURBS object nobj, return its current value.

Handle NURBS Errors

Since there are 37 different errors specific to NURBS functions, it's a good idea to register .
callback to let you know if you've stumbled into one of thenExample 12-5the callback
function was registered with

gl uNur bsCal | back(theNurb, G.U ERROR, (G.void (*)()) nurbsError);

void gluNurbsCallback (GLUnurbsObj *nobj, GLenum which,

void (* fn)(GLenum error Code));
which is the type of callback; it must be GLU_ERROR. When a NURBS function detects an
error condition, fnisinvoked with the error code asits only argument. errorCode is one of
37 error conditions, named GLU_NURBS ERROR1 through GLU_NURBS ERROR37. Use
gluErrorString() to describe the meaning of those error codes.

In Example 12-5thenurbsError() routine was registered as the error callback function:

voi d nurbsError (G.enum error Code)

const GLubyte *estring;

estring = gluErrorString(errorCode);
fprintf (stderr, "Nurbs Error: %\n", estring);
exit (0);

Create a NURBS Curve or Surface

To render a NURBS surfacgluNurbsSurface()is bracketed bgluBeginSurface()and
gluEndSurface(). The bracketing routines save and restore the evaluator state.

void gluBeginSurface (GLUnurbsObj * nobj);

void gluEndSurface (GLUnurbsObj * nobyj);
After gluBeginSurface(), one or more callsto gluNurbsSurface() defines the attributes of
the surface. Exactly one of these calls must have a surface type of GL_ MAP2_VERTEX 3 or
GL_MAP2_VERTEX 4 to generate vertices. Use gluEndSurface() to end the definition of a
surface. Trimming of NURBS surfacesis also supported between gluBeginSurface() and
gluEndSurface(). (See"Trima NURBS Surface”.)

void gluNurbsSurface (GLUnurbsObj *nobj, GLint uknot_count,

GLfloat *uknot, GLint vknot_count, GLfloat *vknot,

GLint u_stride, GLint v_stride, GLfloat *ctlarray,

GLint uorder, GLint vorder, GLenumtype);
Describes the vertices (or surface normals or texture coordinates) of a NURBS surface, nobj.
Several of the values must be specified for both u and v parametric directions, such asthe
knot sequences (uknot and vknot), knot counts (uknot_count and vknot_count), and order of
the polynomial (uorder and vorder) for the NURBS surface. Note that the number of control
pointsisn’t specified. Instead, it’s derived by determining the number of control points along
each parameter as the number of knots minus the order. Then, the number of control points
for the surface is equal to the number of control pointsin each parametric direction,
multiplied by one another. The ctlarray argument points to an array of control points.
The last parameter, type, is one of the two-dimensional evaluator types. Commonly, you might
use GL_MAP2 VERTEX 3 for nonrational or GL_MAP2 VERTEX 4 for rational control
points, respectively. You might also use other types, such as
GL_MAP2 TEXTURE_COORD_* or GL_MAP2_NORMAL to calculate and assign texture
coordinates or surface normals. For example, to create a lighted (with surface normals) and
textured NURBS surface, you may need to call this sequence:

gl uBegi nSur f ace(nobj) ;

gl uNur bsSurface(nobj, ..., G._MAP2 TEXTURE COORD 2);
gl uNur bsSurface(nobj, ..., G._MAP2 NORMAL);
gl uNur bsSurface(nobj, ..., G._MAP2_ VERTEX 3);

gl uEndSur f ace(nobj) ;

Theu_stride and v_stride arguments represent the number of floating-point values between
control pointsin each parametric direction. The evaluator type, aswell asits order, affects
theu_strideand v_stride values. In Example 12-5, u_strideis 12 (4 * 3) because there are
three coordinates for each vertex (set by GL_ MAP2_VERTEX_ 3) and four control pointsin
the parametric v direction; v_stride is 3 because each vertex had three coordinates, and v
control points are adjacent to one another.

Drawing a NURBS curve is similar to drawing a surface, except that all calculations are dor
one parameteu, rather than two. Also, for curvaguBeginCurve() andgluEndCurve() are the
bracketing routines.

void gluBeginCurve (GLUnurbsObj * nobj);

void gluEndCurve (GLUnurbsObj *nobyj);
After gluBeginCurve(), one or more callsto gluNurbsCurve() define the attributes of the
surface. Exactly one of these calls must have a surface type of GL_MAP1 VERTEX 3 or
GL_MAP1 VERTEX 4 to generate vertices. Use gluEndCurve() to end the definition of a
surface.

void gluNurbsCurve (GLUnurbsObj *nobj, GLint uknot_count,

GLfloat *uknot, GLint u_stride, GLfloat *ctlarray,

GLint uorder, GLenumtype);
Defines a NURBS curve for the object nobj. The arguments have the same meaning as those
for gluNurbsSurface(). Note that this routine requires only one knot sequence and one
declaration of the order of the NURBS object. If this curve is defined within a
gluBeginCurve()/gluEndCurve() pair, then the type can be any of the valid one-dimensional
evaluator types (such as GL_MAP1 VERTEX 3 or GL_MAP1 VERTEX 4).

Trim a NURBS Surface

To create a trimmed NURBS surface with OpenGL, start as if you were creating an untrimn
surface. After callinggyluBeginSurface()andgluNurbsSurface() but before calling
gluEndSurface() start a trim by callingluBeginTrim().

void gluBeginTrim (GLUnurbsObj * nobyj);

void gluEndTrim (GLUnurbsObj * nobyj);
Marks the beginning and end of the definition of a trimming loop. A trimming loop is a set of
oriented, trimming curve segments (forming a closed curve) that defines the boundaries of a
NURBS surface.

You can create two kinds of trimming curves, a piecewise linear curveghmwlCurve() or a
NURBS curve withlgluNurbsCurve(). A piecewise linear curve doesn’t look like what'’s
conventionally called a curve, because it's a series of straight lines. A NURBS curve for trin
must lie within the unit square of parametugc\) space. The type for a NURBS trimming curve
usually GLU_MAP1_TRIM2. Less often, the type is GLU_MAP1_TRIM3, where the curve i
described in a two-dimensional homogeneous space (W) by (u, v) = U /w, V' /w).

void gluPwlCurve (GLUnurbsObj *nobj, GLint count, GLfloat *array,

GLint stride, GLenum type);
Describes a piecewise linear trimming curve for the NURBS object nobj. There are count
points on the curve, and they're given by array. The type can be either GLU_MAP1 TRIM_2
(the most common) or GLU_MAP1_TRIM_3 ((u, v, w) homogeneous parameter space). The
type affects whether stride, the number of floating-point values to the next vertex, is2 or 3.

You need to consider the orientation of trimming curves - that is, whether they’re counterclc
or clockwise - to make sure you include the desired part of the surface. If you imagine walk
along a curve, everything to the left is included and everything to the right is trimmed away.
example, if your trim consists of a single counterclockwise loop, everything inside the loop |
included. If the trim consists of two nonintersecting counterclockwise loops with noninterse«
interiors, everything inside either of them is included. If it consists of a counterclockwise loc
two clockwise loops inside it, the trimming region has two holes in it. The outermost trimmir
curve must be counterclockwise. Often, you run a trimming curve around the entire unit sqt
include everything within it, which is what you get by default by not specifying any trimming
curves.

Trimming curves must be closed and nonintersecting. You can combine trimming curves, s
as the endpoints of the trimming curves meet to form a closed curve. You can nest curves,
islands that float in space. Be sure to get the curve orientations right. For example, an errol
if you specify a trimming region with two counterclockwise curves, one enclosed within ano
The region between the curves is to the left of one and to the right of the other, so it must b
included and excluded, which is impossilfigure 12-5llustrates a few valid possibilities.

|uBeginSurfaca();
quNu‘lghsﬁuﬁane?[%..];
'II aluBeginTrim{;
gluPwICurvel,..;; /A *f
\ gluEndTrim();
l aluBegnTrim();
\ gluPwiCurve(...; /* B *f
gluEndTrim{);
| D A gluBegnTrim();

duMurbaCurve(...)i* C %
) Sy
guBeginTrim(};
quNu?ba

Cuweg il
gluPwICurve(...}; &~ DO~/
gluEndTrim{;

Da gluEe?l‘nTrimI{};
- aluPwlCurval...;; »* E*f
guEndTrim:;
gluEndSurfaca();

Figure 12-5 :Parametric Trimming Curves

Figure 12-6shows the same small hill askigure 12-4this time with a trimming curve that's a
combination of a piecewise linear curve and a NURBS curve. The program that creates this

is similar to that shown iExample 12-5the differences are in the routines showExample
12-6

&

NG

AR
R

W
ir

RN
L WS

Figure 12-6 : Trimmed NURBS Surface

Example 12-6 :Trimming a NURBS Surface: trim.c
voi d di spl ay(voi d)

GLfl oat knot s[8] {0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 1.0, 1.0%;
GLfloat edgePt[5][2] = /* counter clockw se */
Ol
2

{{0.0, 0.0}, {&. 0.0}, {1.0, 1.0}, {0.0, 1.0},
{0.0, 0.0}};

G.float curvePt[4 = /* cl ockw se */

{{0.25, 0.5},]{E).]zs, 0.75}, {0.75, 0.75}, {0.75, 0.5}};

G.fl oat curveKnots[8] =
{0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 1.0, 1.03;
G.float pwPt[4][2] = /* cl ockwi se */
{{0.75, 0.5}, {0.5, 0.25}, {0.25, 0.5}};

gl O ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
gl PushMatri x();

gl Rotatef(330.0, 1.,0.,0.);

gl Scal ef (0.5, 0.5, 0.5);

gl uBegi nSur f ace(t heNur b) ;
gl uNur bsSur f ace(t heNurb, 8, knots, 8, knots,
4 * 3, 3, &ctlpoints[0][0][0],
4, 4, G._MAP2_VERTEX 3);
gl uBegi nTri m (t heNur b) ;
gl uPw Curve (theNurb, 5, &edgePt[O0][O0], 2,
GLU_MAP1_TRI M 2);
gl UENdTri m (t heNurb) ;
gl uBegi nTri m (t heNur b) ;
gl uNur bsCurve (theNurb, 8, curveKnots, 2,
&curvePt[0][0], 4, GLU MAP1_TRIM 2);
gl uPwW Curve (theNurb, 3, &w Pt[0][0], 2,
GLU MAP1_TRIM 2);
gl UEndTri m (t heNur b) ;
gl uEndSur f ace(t heNur b) ;

gl PopMat ri x();
gl Fl ush();
}

In Example 12-6gluBeginTrim() andgluEndTrim() bracket each trimming curve. The first trii
with vertices defined by the arragigePt[][], goes counterclockwise around the entire unit squ
of parametric space. This ensures that everything is drawn, provided it isn’t removed by a
clockwise trimming curve inside of it. The second trim is a combination of a NURBS trimmir
curve and a piecewise linear trimming curve. The NURBS curve ends at the points (0.9, 0.
(0.1, 0.5), where it is met by the piecewise linear curve, forming a closed clockwise curve.

OpenGL Programming Guide
(Addison-Wesley Publishing Company

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 13
Selection and Feedback

Chapter Objectives
After reading this chapter, you’ll be able to do the following:

® Create applications that allow the user to select a region of the screen or pick an obje
on the screen

® Use the OpenGL feedback mode to obtain the results of rendering calculations

Some graphics applications simply draw static images of two- and three-dimensional objec
applications allow the user to identify objects on the screen and then to move, modify, dele
otherwise manipulate those objects. OpenGL is designed to support exactly such interactiv
applications. Since objects drawn on the screen typically undergo multiple rotations, transle
and perspective transformations, it can be difficult for you to determine which object a user
selecting in a three-dimensional scene. To help you, OpenGL provides a selection mechan
automatically tells you which objects are drawn inside a specified region of the window. Yo
use this mechanism together with a special utility routine to determine which object within tl
region the user is specifying, prcking, with the cursor.

Selection is actually a mode of operation for OpenGL,; feedback is another such mode. In f
mode, you use your graphics hardware and OpenGL to perform the usual rendering calcule
Instead of using the calculated results to draw an image on the screen, however, OpenGL |
(or feeds back) the drawing information to you. For example, if you want to draw three-dime
objects on a plotter rather than the screen, you would draw the items in feedback mode, co
drawing instructions, and then convert them to commands the plotter can understand.

In both selection and feedback modes, drawing information is returned to the application ra
being sent to the framebuffer, as it is in rendering mode. Thus, the screen remains frozen -
drawing occurs - while OpenGL is in selection or feedback mode. In these modes, the cont
the color, depth, stencil, and accumulation buffers are not affected. This chapter explains e
these modes in its own section:

® "Selection"discusses how to use selection mode and related routines to allow a user ¢
application to pick an object drawn on the screen.

® "Feedback'tescribes how to obtain information about what would be drawn on the scr
and how that information is formatted.

Selection

Typically, when you’re planning to use OpenGL’s selection mechanism, you first draw your
into the framebuffer, and then you enter selection mode and redraw the scene. However, o
you're in selection mode, the contents of the framebuffer don’t change until you exit selectic
mode. When you exit selection mode, OpenGL returns a list of the primitives that intersect -
viewing volume (remember that the viewing volume is defined by the current modelview an
projection matrices and any additional clipping planes, as explair@dhapter 3 Each primitive

that intersects the viewing volume causes a selektiofhe list of primitives is actually returnec
as an array of integer-valuedmes and related data - thnét records - that correspond to the curr
contents of th@ame stack. You construct the name stack by loading names onto it as you iss
primitive drawing commands while in selection mode. Thus, when the list of names is retur
can use it to determine which primitives might have been selected on the screen by the use

In addition to this selection mechanism, OpenGL provides a utility routine designed to simp
selection in some cases by restricting drawing to a small region of the viewport. Typically, y
this routine to determine which objects are drawn near the cursor, so that you can identify v
object the user is picking. (You can also delimit a selection region by specifying additional
planes. Remember that these planes act in world space, not in screen space.) Since pickin
special case of selection, selection is described first in this chapter, and then picking.

The Basic Steps

To use the selection mechanism, you need to perform the following steps.

[

. Specify the array to be used for the returned hit recordsgBehectBuffer ().

N

. Enter selection mode by specifying GL_SELECT wjtRender M ode().
3. Initialize the name stack usimglj nitNames() andglPushName().

4. Define the viewing volume you want to use for selection. Usually this is different from
viewing volume you originally used to draw the scene, so you probably want to save &
restore the current transformation state \gltPushM atrix() andglPopM atrix().

5. Alternately issue primitive drawing commands and commands to manipulate the name
so that each primitive of interest has an appropriate name assigned.

6. Exit selection mode and process the returned selection data (the hit records).

The following paragraphs descrigkSelectBuffer () andglRender Mode(). In the next section, the
commands to manipulate the name stack are described.

void glSelectBuffer(GLsizal size, GLuint * buffer);
Soecifiesthe array to be used for the returned selection data. The buffer argument isa
pointer to an array of unsigned integers into which the data is put, and size indicates the
maximum number of values that can be stored in the array. You need to call glSelectBuffer()
before entering selection mode.

GLint glRenderMode(GLenum mode);
Controls whether the application isin rendering, selection, or feedback mode. The mode

argument can be one of GL_RENDER (the default), GL_SELECT, or GL_FEEDBACK. The
application remains in a given mode until gilRenderMode() is called again with a different
argument. Before entering selection mode, gl SelectBuffer() must be called to specify the
selection array. Smilarly, before entering feedback mode, glFeedbackBuffer() must be
called to specify the feedback array. The return value for glRenderMode() has meaning if the
current render mode (that is, not the mode parameter) is either GL_SELECT or
GL_FEEDBACK. Thereturn value is the number of selection hits or the number of values
placed in the feedback array when either mode is exited; a negative value means that the
selection or feedback array has overflowed. You can use GL_RENDER _MODE with

0l Getl ntegerv() to obtain the current mode.

Creating the Name Stack

As mentioned in the previous section, the name stack forms the basis for the selection infol
that’s returned to you. To create the name stack, first initialize itghtitiit Names(), which simply
clears the stack, and then add integer names to it while issuing corresponding drawing con
As you might expect, the commands to manipulate the stack allow you to push a name ont
(glPushName()), pop a name off of itg{PopName()), and replace the name on the top of the s
with a different onedlL oadName()). Example 13-Ishows what your name-stack manipulation
code might look like with these commands.

Example 13-1: Creating a Name Stack

gl I ni t Nanmes() ;
gl PushNane(0) ;

gl PushMatri x(); /* save the current transformation state */
/* create your desired view ng volume here */

gl LoadNane(1);

dr awSormehj ect () ;

gl LoadNane(2) ;

dr awAnot her Cbj ect () ;

gl LoadNane(3) ;

dr awYet Anot her Qbj ect () ;
drawJust OneMor eQbj ect () ;

gl PopMatrix (); /* restore the previous transformation state*/

In this example, the first two objects to be drawn have their own names, and the third and f
objects share a single name. With this setup, if either or both of the third and fourth objects
selection hit, only one hit record is returned to you. You can have multiple objects share the
name if you don’t need to differentiate between them when processing the hit records.

void gll nitNames(void);
Clears the name stack so that it’s empty.

void glPushName(GLuint name);
Pushes name onto the name stack. Pushing a name beyond the capacity of the stack generates
the error GL_STACK_OVERFLOW. The name stack’ s depth can vary among different
OpenGL implementations, but it must be able to contain at least sixty-four names. You can
use the parameter GL_NAME_STACK_DEPTH with glGetl ntegerv() to obtain the depth of
the name stack.

void glPopName(void);
Pops one name off the top of the name stack. Popping an empty stack generates the error

GL_STACK_UNDERFLOW.

void glLoadName(GLuint name);
Replaces the value on the top of the name stack with name. If the stack is empty, which it is
right after glinitNames() is called, glLoadName() generates the error
GL_INVALID_OPERATION. To avoid this, if the stack isinitially empty, call glPushName()
at least once to put something on the name stack before calling glLoadName().

Calls toglPushName(), gilPopName(), andglL oadName() are ignored if you're not in selection
mode. You might find that it simplifies your code to use these calls throughout your drawinc
and then use the same drawing code for both selection and normal rendering modes.

TheHit Record

In selection mode, a primitive that intersects the viewing volume causes a selection hit. Wh
name-stack manipulation command is executeglRender M ode() is called, OpenGL writes a h
record into the selection array if there’s been a hit since the last time the stack was manipu
glRender M ode() was called. With this process, objects that share the same name - for exar
object that's composed of more than one primitive - don’t generate multiple hit records. Als
records aren’t guaranteed to be written into the array giRénder M ode() is called.

Note: In addition to primitives, valid coordinates producedyliyaster Pos() can cause a selectio
hit. Also, in the case of polygons, no hit occurs if the polygon would have been culled.

Each hit record consists of four items, in order.
® The number of names on the name stack when the hit occurred.

® Both the minimum and maximum window-coordinatelues of all vertices of the primitiv
that intersected the viewing volume since the last recorded hit. These two values, whi
the range [0,1], are each multiplied by 232-1 and rounded to the nearest unsigned inte

® The contents of the name stack at the time of the hit, with the bottommost element firs

When you enter selection mode, OpenGL initializes a pointer to the beginning of the selecti
array. Each time a hit record is written into the array, the pointer is updated accordingly. If v
hit record would cause the number of values in the array to excegdethegument specified wit
glSelectBuffer (), OpenGL writes as much of the record as fits in the array and sets an overf
flag. When you exit selection mode wilRender M ode(), this command returns the number of
records that were written (including a partial record if there was one), clears the name stacl
the overflow flag, and resets the stack pointer. If the overflow flag had been set, the return
-1.

A Selection Example

In Example 13-2four triangles (green, red, and two yellow triangles, created by calling
drawTriangle()) and a wireframe box representing the viewing voludnaWViewVolume()) are
drawn to the screen. Then the triangles are rendered agact@Dbjects()), but this time in
selection mode. The corresponding hit records are procesgeocassHits(), and the selection
array is printed out. The first triangle generates a hit, the second one doesn’t, and the third
fourth ones together generate a single hit.

Example 13-2 : Selection Example: select.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

void drawlriangle (G.float x1, G.float yl, G.float x2
G.float y2, Gfloat x3, Gfloat y3, Gfloat 2z)

{
gl Begi n (GL_TRI ANGLES)
gl Vertex3f (x1, vyl1, z);
gl Vertex3f (x2, y2, z);
gl Vertex3f (x3, y3, z);
gl End ();

}

voi d drawvi ewwol une (G.float x1, G.float x2, Gfloat yl,

G.float y2, G.float z1, G.float z2)

{
gl Color3f (1.0, 1.0, 1.0);
gl Begin (GL_LI NE_LOOP);
gl Vertex3f (x1, yl1, -z1);
gl Vertex3f (x2, yl, -zl1);
gl Vertex3f (x2, y2, -z1);
gl Vertex3f (x1, y2, -z1);
gl End ();
gl Begin (GL_LI NE_LOOP);
gl Vertex3f (x1, yl1, -z2);
gl Vertex3f (x2, yl, -z2);
gl Vertex3f (x2, y2, -z2);
gl Vertex3f (x1, y2, -z2);
gl End ();
glBegin (&L_LINES); /* 4 lines */
gl Vertex3f (x1, yl, -z1);
gl Vertex3f (x1, yl1, -z2);
gl Vertex3f (x1, y2, -z1);
gl Vertex3f (x1, y2, -z2);
gl Vertex3f (x2, yl, -z1);
gl Vertex3f (x2, yl, -z2);
gl Vertex3f (x2, y2, -z1);
gl Vertex3f (x2, y2, -z2);
gl End ();

}

voi d drawScene (void)

{

gl Matri xMbde (GL_PRQIECTI ON);
gl Loadl dentity ();
gl uPer spective (40.0, 4.0/3.0, 1.0, 100.0);

gl Matri xMode (GL_MODELVI EW ;

gl Loadl dentity ();

gl uLookAt (7.5, 7.5, 12.5, 2.5, 2.5, -5.0, 0.0, 1.0, 0.0);
gl Col or 3f (0.0, 1.0, 0. O), /* green triangle */
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);

gl Col or3f (1.0, 0.0, 0.0); /* red triangle */
drawTri angle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);

gl Color3f (1.0, 1.0, 0.0); /* yellow triangles */
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);

drawTri angle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);

drawi ewol une (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);

}

void processHits (Gint hits, Guint buffer[])
{

unsigned int i, j;

GLui nt nanes, *ptr;

printf ("hits = %\n", hits);

ptr = (Guint *) buffer;

for (i =0; i <hits; i++) { /* for each hit */
names = *ptr;

printf (" nunber of names for hit = %\ n", nanes);
printf(" z1is %;", (float) *ptr/Ox7fffffff); ptr++
printf(" z2 is %\n", (float) *ptr/Ox7fffffff); ptr++
printf (" the nane is ");
for (j = 0; j < nanes; j++) { /* for each name */
printf ("% ", *ptr); ptr++;
}
printf ("\n");
}
}
#defi ne BUFSI ZE 512
voi d sel ect Obj ect s(voi d)
{
GLui nt sel ect Buf [BUFSI ZE]
Gint hits;
gl Sel ect Buf fer (BUFSIZE, sel ectBuf);
(void) gl Render Mbde (G._SELECT);
gl I ni t Nanmes() ;
gl PushNane(0) ;
gl PushiMatrix ();
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity ();
glOtho (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);
gl Matri xMode (GL_MODELVI EW ;
gl Loadl dentity ();
gl LoadNane(1);
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
gl LoadNane(2) ;
drawfriangle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
gl LoadNane(3) ;
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);
gl PopMatrix ();
gl Flush ();
hits = gl Render Mode (G._RENDER);
processHits (hits, selectBuf);
}
void init (void)
{
gl Enabl e(GL_DEPTH_TEST) ;
gl ShadeModel (GL_FLAT);
}
voi d di spl ay(voi d)
{

gl earColor (0.0, 0.0, 0.0, 0.0);
gl O ear (G._COLOR BUFFER BI T | G._DEPTH BUFFER BIT);

drawScene ();
sel ect oj ects ();
gl Fl ush();

int main(int argc, char** argv)

glutlnit(&rgc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (200, 200);

gl utlnit WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init();

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

}
Picking

As an extension of the process described in the previous section, you can use selection mc
determine if objects are picked. To do this, you use a special picking matrix in conjunction \
projection matrix to restrict drawing to a small region of the viewport, typically near the curs
Then you allow some form of input, such as clicking a mouse button, to initiate selection m¢
With selection mode established and with the special picking matrix used, objects that are (
near the cursor cause selection hits. Thus, during picking you're typically determining whict
objects are drawn near the cursor.

Picking is set up almost exactly like regular selection mode is, with the following major diffe

® Picking is usually triggered by an input device. In the following code examples, pressi
left mouse button invokes a function that performs picking.

® You use the utility routingluPickMatrix() to multiply a special picking matrix onto the
current projection matrix. This routine should be called prior to multiplying a standard
projection matrix (such aguPer spective() or glOrtho()). You'll probably want to save the
contents of the projection matrix first, so the sequence of operations may look like this

gl Matri xMode (G_PRQIECTI ON) ;
gl Pushiatrix ();
gl Loadl dentity ();
gl uPi ckMatrix (...);
gl uPerspective, gl Otho, gluOtho2D, or gl Frustum
[* ... draw scene for picking ; performpicking ... */
gl PopMat ri x();

Another completely different way to perform picking is describétinject Selection Using the
Back Buffer" in Chapter 14This technique uses color values to identify different components
object.

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width,

GLdouble height, GLint viewport[4]);
Creates a projection matrix that restricts drawing to a small region of the viewport and
multiplies that matrix onto the current matrix stack. The center of the picking regionis (X, y)
in window coordinates, typically the cursor location. width and height define the size of the
picking region in screen coordinates. (You can think of the width and height as the sensitivity
of the picking device.) viewport[] indicates the current viewport boundaries, which can be

obtained by calling
gl Get |l ntegerv(G_VI EWPORT, GLint *viewport);

Advanced

The net result of the matrix createdddyPickM atrix() is to transform

the clipping region into the unit cube -1 &l&; ¢, 2) ≤ 1 (or w ≤ (wx, wy, wz) ≤ w). The
picking matrix effectively performs an orthogonal transformation that maps a subregion of tl
cube to the unit cube. Since the transformation is arbitrary, you can make picking work for
sorts

of regions - for example, for rotated rectangular portions of the window. In certain situations
might find it easier to specify additional clipping planes to define the picking region.

Example 13-3llustrates simple picking. It also demonstrates how to use multiple names to i
different components of a primitive, in this case the row and column of a selected object. A
grid of squares is drawn, with each square a different color. The board[3][3] array maintains
current amount of blue for each square. When the left mouse button is prespek Shear es()
routine is called to identify which squares were picked by the mouse. Two names identify e
square in the grid - one identifies the row, and the other the column. Also, when the left mo
button is pressed, the color of all squares under the cursor position changes.

Example 13-3: Picking Example: picksquare.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <G/ gl ut. h>

int board[3][3]; /* ampunt of color for each square */

/* dear color value for every square on the board */
voi d init(void)

int i, j;
for (i =0; i < 3; i++)
for (j =0; j <3,] ++)
board[i][j] = O;
glClearColor (0.0, 0.0, 0.0, 0.0);

}

voi d dr awSquar es(GL.enum node)

Guint i, j;
for (i =0; i < 3; i++) {
if (nbde == G._SELECT)
gl LoadNane (i);
for (j =0; j <3; j ++) {
if (mode == G__SELECT)
gl PushNare (j);
gl Color3f ((G.float) i/3.0, (G.float)
(GLfloat) board[i][j]/3.0);
gl Recti (i, j, i+1, j+1);
if (nbde == G._SELECT)
gl PopNane ();

/3.0,

/* processHits prints out the contents of the
* gselection array.

*/
void processHits (Gint hits, Guint buffer[])
{

unsigned int i, j;

Guint ii, jj, nanes, *ptr;

printf ("hits = %l\n", hits);
ptr = (Guint *) buffer;
for (i =0; i < hits; i++) { /* for each hit */
nanmes = *ptr;
printf (" nunmber of names for this hit = %\ n", names);
ptr++;
printf(" z1is %;",

(float) *ptr/Ox7fffffff); ptr++;
printf(" z2 is %\n", (fl fff);

).

J

at) *ptr/Ox7ffff ;o ptr++;

o O

printf (" names are ");
for (j =0; j <nanes; j++) { /* for each name */
printf ("% ", *ptr);

if (j ==0) [/* set rowand colum */
ii = *ptr;
else if (j == 1)
ji = *ptr;
ptr++;
printf ("\n");

board[ii][jj] = (board[ii][jj] + 1) % 3;
}
}

#def i ne BUFSI ZE 512
voi d pickSquares(int button, int state, int x, int y)

GLui nt sel ect Buf [BUFSI ZF] ;
Gint hits;
GLint viewport[4];

if (button != GLUT_LEFT BUTTON || state != GLUT_DOWN)
return;

gl Get I ntegerv (G._VI EWPORT, viewport);

gl Sel ect Buf fer (BUFSIZE, sel ectBuf);
(voi d) gl Render Mode (G._SELECT);

gl I ni t Names() ;
gl PushNane(0) ;

gl Mat ri xMode (GL_PRQIECTI ON);
gl Pushiatrix ();
gl Loadl dentity ();
/* create 5x5 pixel picking region near cursor |ocation */
gl uPi ckhvatrix ((G.double) x, (G.double) (viewport[3] - V),
5.0, 5.0, viewport);
gluOrtho2D (0.0, 3.0, 0.0, 3.0);
drawSquar es (G._SELECT);

gl Mat ri xMode (G._PRQIECTI ON);
gl PopMatrix ();
gl Flush ();

hits = gl Render Mbde (G._RENDER);
processHits (hits, selectBuf);
gl ut Post Redi spl ay() ;

}
voi d di spl ay(voi d)

gl A ear (G._COLOR BUFFER BI T);
dr awSquar es (GL_RENDER) ;
gl Fl ush();

void reshape(int w, int h)

gl Viewport (0, O, w, h);

gl Mat ri xMode(GL_PROJECTI ON) ;

gl Loadl dentity();

gluOortho2D (0.0, 3.0, 0.0, 3.0);
gl Mat ri xMode(GL_MCODELVI EW ;

gl Loadl dentity();

}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlinitD splayMbde (GLUT_SINGLE | GLUT_RGB)
gl ut I nit WndowSi ze (100, 100);
gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut MouseFunc (pi ckSquares);
gl ut ReshapeFunc (reshape);
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop() ;
return O;

}

Picking with Multiple Names and a Hierarchical Model

Multiple names can also be used to choose parts of a hierarchical object in a scene. For ex
you were rendering an assembly line of automobiles, you might want the user to move the
pick the third bolt on the left front tire of the third car in line. A different name can be used t
identify each level of hierarchy: which car, which tire, and finally which bolt. As another exa
one name can be used to describe a single molecule among other molecules, and addition
can differentiate individual atoms within that molecule.

Example 13-4s a modification oExample 3-4which draws an automobile with four identical
wheels, each of which has five identical bolts. Code has been added to manipulate the nan
with the object hierarchy.

Example 13-4 : Creating Multiple Names

draw_wheel _and_bol t s()
{

long i;

draw_wheel _body();
for (i =0; i <5; i++) {
gl PushMatri x();
gl Rotate(72.0*i, 0.0, 0.0, 1.0);
gl Transl atef (3.0, 0.0, 0.0);
gl PushNane(i);
draw bolt_body();

gl PopNane();

gl PopMat ri x();
}
draw_body_and_wheel _and_bol t s()

draw_car_body();
gl PushMatrix();

gl Transl ate(40, 0, 20); /* first wheel position*/

gl PushNane(1); /* nanme of wheel nunber 1 */
draw wheel _and_bol ts();

gl PopNane();

gl PopMat ri x();
gl PushiMatri x();

gl Transl ate(40, 0, -20); /* second wheel position */

gl PushNane(2); /* nane of wheel nunber 2 */
draw_wheel _and_bol ts();

gl PopNane() ;

gl PopMat ri x();

/* draw | ast two wheels simlarly */

}

Example 13-51ses the routines Example 13-40 draw three different cars, numbered 1, 2, ar

Example 13-5: Using Multiple Names

draw_t hree_cars()

gl I ni t Names() ;
gl PushMatri x();
translate_to _first_car_position();
gl PushNane(1);
draw _body and wheel _and_bolts();
gl PopNare() ;
gl PopMat ri x();

gl PushMatri x();
translate_to_second_car_position();
gl PushNane(2) ;

draw _body and wheel _and_bolts();
gl PopNare() ;

gl PopMat ri x();

gl PushiMatri x();
translate to third car_position();
gl PushNane(3) ;

draw_body_and_wheel _and_bol ts();
gl PopNare() ;

gl PopMat ri x();

Assuming that picking is performed, the following are some possible name-stack return vali
their interpretations. In these examples, at most one hit record is returnedi asdd2 are deptf
values.

2d1d2 2 1 Car 2, wheel 1
1d1d2 3 Car 3 body

3d1d21 1 0Bolt 0 onwheelloncarl

empty The pick was outside all cars

The last interpretation assumes that the bolt and wheel don’t occupy the same picking regit
user might well pick both the wheel and the bolt, yielding two hits. If you receive multiple hit
have to decide which hit to process, perhaps by using the depth values to determine which
object is closest to the viewpoint. The use of depth values is explored further in the next se

Picking and Depth Values

Example 13-Glemonstrates how to use depth values when picking to determine which objes
picked. This program draws three overlapping rectangles in normal rendering mode. When
mouse button is pressed, fhiekRects() routine is called. This routine returns the cursor positi
enters selection mode, initializes the name stack, and multiplies the picking matrix onto the
before the orthographic projection matrix. A selection hit occurs for each rectangle the curs
over when the left mouse button is clicked. Finally, the contents of the selection buffer are
examined to identify which named objects were within the picking region near the cursor.

The rectangles in this program are drawn at different depthyatues. Since only one name is
used to identify all three rectangles, only one hit can be recorded. However, if more than or
rectangle is picked, that single hit has different minimum and maxiruatues.

Example 13-6 : Picking with Depth Values: pickdepth.c

#i nclude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>

void init(void)

gl dearColor(0.0, 0.0, 0.0, 0.0);

gl Enabl e(G._DEPTH_TEST) ;

gl ShadeModel (GL_FLAT);

gl Dept hRange(0.0, 1.0); /* The default z mapping */

voi d drawRect s(GLenum node)

if (nbde == G._SELECT)
gl LoadNane(1);
gl Begi n(G._QUADS) ;
gl Color3f(1.0, 1.0, 0.0);
gl Vertex3i (2, 0, 0);
gl Vertex3i (2, 6, 0);
gl Vertex3i (6, 6, 0);
gl Vertex3i (6, 0, 0);
gl End() ;
if (mpde == G._SELECT)
gl LoadNane(2) ;
gl Begi n(G._QUADS) ;
gl Col or3f(0.0, 1.0, 1.0);
gl Vertex3i (3, 2, -1);
gl Vertex3i (3, 8, -1);
gl Vertex3i (8, 8, -1);
gl Vertex3i (8, 2, -1);
gl End() ;
if (mbde == G._SELECT)
gl LoadNane(3) ;

gl Begi n(GL_QUADS) ;
gl Col or3f (1.0, 0.0, 1.0);
gl Vertex3i (0, 2, -2);

gl Vertex3i (0, 7, -2);
gl Vertex3i (5, 7, -2);
gl Vertex3i (5, 2, -2);
gl End() ;

void processH ts(G.int hits, GQuint buffer[])

unsigned int i, j;
GLui nt nanes, *ptr;

printf("hits = %\ n", hits);

ptr = (Guint *) buffer;

for (i =0; i < hits; i++) { [* for each hit */
nanmes = *ptr;

printf(" nunber of names for hit = %l\n", nanes); ptr++;

printf(" z1 is %;", (float) *ptr/Ox7fffffff); ptr++;

printf(" z2 is Y@\n", (float) *ptr/Ox7fffffff); ptr++;

printf(" the nane is ");

for (j =0; j <nanes; j++) { [/* for each nane */
printf("% ", *ptr); ptr++;

E)ri ntf("\n");
}
}

#def i ne BUFSI ZE 512

voi d pickRects(int button, int state, int x, int vy)
{

GLui nt sel ect Buf [BUFSI ZE] ;

Glint hits;

GLint viewport[4];

if (button != GLUT_LEFT_BUTTON || state != GLUT_DOM)
return;
gl Get I nt eger v(GL_VI EWPORT, Vi ewport);

gl Sel ect Buf f er (BUFSI ZE, sel ect Buf);
(void) gl Render Mode(GL_SELECT) ;

gl I ni t Nanmes() ;
gl PushNane(0) ;

gl Mat ri xMode(GL_PROJECTI ON) ;
gl PushiMatri x();
gl Loadl dentity();

/* create 5x5 pixel picking region near cursor |ocation */
gl uPi ckMatri x((G.doubl e) x, (G.double) (viewport[3] - V),

5.0, 5.0, viewport);

glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
drawRect s(GL_SELECT) ;
gl PopMat ri x();
gl Fl ush();

hits = gl Render Mode(G._RENDER) ;
processHi ts(hits, selectBuf);

}
voi d di spl ay(voi d)
gl O ear (G._COLOR BUFFER BI T | G._DEPTH BUFFER BIT);

dr awRect s(G__RENDER) ;
gl Fl ush();

void reshape(int w, int h)

gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;

gl Loadl dentity();

glOtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

}

int main(int argc, char **argv)
{
glutinit(&rgc, argv);
glutlnitD splayMde(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (200, 200);
gl utlnit WndowPosition (100, 100);
gl ut Creat eW ndow(argv[0]);
init();
gl ut MouseFunc(pi ckRect s);
gl ut ReshapeFunc(reshape);
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop() ;
return O;

}
Try This

® Modify Example 13-6o add additional calls tgiPushName() so that multiple names are «
the stack when the selection hit occurs. What will the contents of the selection buffer t

® By default,giDepthRange() sets the mapping of tlzevalues to [0.0,1.0]. Try modifying the
glDepthRange() values and see how it affects thealues that are returned in the selectio
array.

Hintsfor Writing a Program That Uses Selection

Most programs that allow a user to interactively edit some geometry provide a mechanism -
user to pick items or groups of items for editing. For two-dimensional drawing programs (fo
example, text editors, page-layout programs, and circuit-design programs), it might be easi
your own picking calculations instead of using the OpenGL picking mechanism. Often, it's €
find bounding boxes for two-dimensional objects and to organize them in some hierarchical
structure to speed up searches. For example, picking that uses the OpenGL style in a VLS|
program containing millions of rectangles can be relatively slow. However, using simple
bounding-box information when rectangles are typically aligned with the screen could make
picking in such a program extremely fast. The code is probably simpler to write, too.

As another example, since only geometric objects cause hits, you might want to create you
method for picking text. Setting the current raster position is a geometric operation, but it

effectively creates only a single pickable point at the current raster position, which is typical
the lower-left corner of the text. If your editor needs to manipulate individual characters witt
text string, some other picking mechanism must be used. You could draw little rectangles a
each character during picking mode, but it's almost certainly easier to handle text as a spec

If you decide to use OpenGL picking, organize your program and its data structures so that
to draw appropriate lists of objects in either selection or normal drawing mode. This way, w
user picks something, you can use the same data structures for the pick operation that you
display the items on the screen. Also, consider whether you want to allow the user to selec
objects. One way to do this is to store a bit for each item indicating whether it's selected (hc
this method requires traversing your entire list of items to find the selected items). You migl|
useful to maintain a list of pointers to selected items to speed up this search. It's probably ¢
idea to keep the selection bit for each item as well, since when you're drawing the entire pic
you might want to draw selected items differently (for example, in a different color or with a
selection box around them). Finally, consider the selection user interface. You might want t
the user to do the following:

® Select an item
® Sweep-select a group of items (see the next paragraphs for a description of this beha
® Add an item to the selection
® Add a sweep selection to the current selections
® Delete an item from a selection
® Choose a single item from a group of overlapping items
A typical solution for a two-dimensional drawing program might work as follows.

1. All selection is done by pointing with the mouse cursor and using the left mouse butto
what follows,cursor means the cursor tied to the mouse, lautthn means the left mouse
button.

2. Clicking on an item selects it and deselects all other currently selected items. If the cu
on top of multiple items, the smallest is selected. (In three dimensions, many other str
work to disambiguate a selection.)

3. Clicking down where there is no item, holding the button down while dragging the curs
and then releasing the button selects all the items in a screen-aligned rectangle whos
are determined by the cursor positions when the button went down and where it came
is called asweep selection. All items not in the swept-out region are deselected. (You mt
decide whether an item is selected only if it's completely within the sweep region, or if
part of it falls within the region. The completely within strategy usually works best.)

4. If the Shift key is held down and the user clicks on an item that isn’t currently selected
item is added to the selected list. If the clicked-upon item is selected, it's deleted from
selection list.

5. If a sweep selection is performed with the Shift key pressed, the items swept out are ¢
the current selection.

6. In an extremely cluttered region, it's often hard to do a sweep selection. When the but
down, the cursor might lie on top of some item, and normally that item would be selec
You can make any operation a sweep selection, but a typical user interface interprets

button-down on an item plus a mouse motion as a select-plus-drag operation. To solv
problem, you can have an enforced sweep selection by holding down, say, the Alt key
this, the following set of operations constitutes a sweep selection: Alt-button down, sw
button up. Items under the cursor when the button goes down are ignored.

7. If the Shift key is held during this sweep selection, the items enclosed in the sweep re
added to the current selection.

8. Finally, if the user clicks on multiple items, select just one of them. If the cursor isn’t
(or maybe not moved more than a pixel), and the user clicks again in the same place,
the item originally selected, and select a different item under the cursor. Use repeatec
the same point to cycle through all the possibilities.

Different rules can apply in particular situations. In a text editor, you probably don’t have to
about characters on top of each other, and selections of multiple characters are always cor
characters in the document. Thus, you need to mark only the first and last selected charact
identify the complete selection. With text, often the best way to handle selection is to identi
positions between characters rather than the characters themselves. This allows you to ha
empty selection when the beginning and end of the selection are between the same pair of
characters; it also allows you to put the cursor before the first character in the document or
final one with no special-case code.

In three-dimensional editors, you might provide ways to rotate and zoom between selectior
sophisticated schemes for cycling through the possible selections might be unnecessary. C
other hand, selection in three dimensions is difficult because the cursor’s position on the sc
usually gives no indication of its depth.

Feedback

Feedback is similar to selection in that once you're in either mode, no pixels are produced
screen is frozen. Drawing does not occur; instead, information about primitives that would t
been rendered is sent back to the application. The key difference between selection and fe
modes is what information is sent back. In selection mode, assigned names are returned tc
of integer values. In feedback mode, information about transformed primitives is sent back
array of floating-point values. The values sent back to the feedback array consist of tokens
specify what type of primitive (point, line, polygon, image, or bitmap) has been processed a
transformed, followed by vertex, color, or other data for that primitive. The values returned :
fully transformed by lighting and viewing operations. Feedback mode is initiated by calling

glRender M ode() with GL_FEEDBACK as the argument.

Here’s how you enter and exit feedback mode.

1. Call glFeedbackBuffer() to specify the array to hold the feedback information. The
arguments to this command describe what type of data and how much of it gets writte
the array.

2. Call giRenderMode() with GL_FEEDBACK as the argument to enter feedback mode. (
this step, you can ignore the value returnediBender M ode().) After this point, primitives
aren't rasterized to produce pixels until you exit feedback mode, and the contents of tl
framebuffer don’t change.

3. Draw your primitives. While issuing drawing commands, you can make several calls t
glPassT hrough() to insert markers into the returned feedback data and thus facilitate p

4. Exit feedback mode by callingfRender M ode() with GL_RENDER as the argument if yot
want to return to normal drawing mode. The integer value returngiRiesider M ode() is the
number of values stored in the feedback array.

5. Parse the data in the feedback array.

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat * buffer);
Establishes a buffer for the feedback data: buffer is a pointer to an array where the data is
stored. The size argument indicates the maximum number of values that can be stored in the
array. The type argument describes the information fed back for each vertex in the feedback
array; its possible values and their meaning are shown in Table 13-1. glFeedbackBuffer()
must be called before feedback mode is entered. In the table, k is 1 in color-index mode and 4
in RGBA mode.

Table 13-1: glFeedbackBuffer(dype Values

type Argument Coordinates | Color | Texture | Total Values
GL_2D X,y - - 2
GL_3D XY,z - - 3
GL_3D_COLOR X, VY, Z k - 3+Kk
GL_3D_COLOR_TEXTURE| x,v, z Kk 4 7+k
GL_4D _COLOR_TEXTURE| x,vy, z,w k 4 8 +k

The Feedback Array

In feedback mode, each primitive that would be rasterized (or each gid8itimap(),
glDrawPixels(), or glCopyPixels(), if the raster position is valid) generates a block of values t
copied into the feedback array. The number of values is determined tgpdlaegument to
olFeedbackBuffer(), as listed inTable 13-1 Use the appropriate value for the type of primitive
you're drawing: GL_2D or GL_3D for unlit two- or three-dimensional primitives, GL_3D_CC
for lit, three-dimensional primitives, and GL_3D_COLOR_TEXTURE or
GL_4D_COLOR_TEXTURE for lit, textured, three- or four-dimensional primitives.

Each block of feedback values begins with a code indicating the primitive type, followed by
that describe the primitive’s vertices and associated data. Entries are also written for pixel

rectangles. In addition, pass-through markers that you've explicitly created can be returned
array; the next section explains these markers in more degble 13-2shows the syntax for the
feedback array; remember that the data associated with each returned vertex is as de$eaibls

13-1 Note that a polygon can hamevertices returned. Also, they, z coordinates returned by

feedback are window coordinateswiis returned, it’s in clip coordinates. For bitmaps and pixe
rectangles, the coordinates returned are those of the current raster position. In the table, nc
GL_LINE_RESET_TOKEN is returned only when the line stipple is reset for that line segm:«

Table 13-2 : Feedback Array Syntax

Primitive Type | Code Associated Data
Point GL_POINT_TOKEN vertex
Line GL_LINE_TOKEN or vertex vertex

GL_LINE_RESET_TOKEN

Polygon GL_POLYGON_TOKEN n vertex vertex ...
vertex
Bitmap GL_BITMAP_TOKEN vertex
Pixel Rectangle| GL_DRAW_PIXEL_TOKEN or vertex
GL_COPY_PIXEL_TOKEN
Pass-through GL_PASS_THROUGH_TOKEN a floating-point
number

Using Markersin Feedback Mode

Feedback occurs after transformations, lighting, polygon culling, and interpretation of polyg
glPolygonM ode(). It might also occur after polygons with more than three edges are broken
triangles (if your particular OpenGL implementation renders polygons by performing this
decomposition). Thus, it might be hard for you to recognize the primitives you drew in the fe
data you receive. To help parse the feedback dataylPalisT hrough() as needed in your
sequence of drawing commands to insert a marker. You might use the markers to separate
feedback values returned from different primitives, for example. This command causes
GL_PASS_THROUGH_TOKEN to be written into the feedback array, followed by the
floating-point value you pass in as an argument.

void glPassThrough(GLfloat token);
Inserts a marker into the stream of values written into the feedback array, if called in
feedback mode. The marker consists of the code GL_PASS THROUGH_TOKEN followed by
a single floating-point value, token. This command has no effect when called outside of
feedback mode. Calling glPassThrough() between glBegin() and glEnd() generates a
GL_INVALID_OPERATION error.

A Feedback Example

Example 13-temonstrates the use of feedback mode. This program draws a lit, three-dime
scene in normal rendering mode. Then, feedback mode is entered, and the scene is redrav
the program draws lit, untextured, three-dimensional objects, the type of feedback data is
GL_3D_COLOR. Since RGBA mode is used, each unclipped vertex generates seven value
feedback bufferx, y, z r, g, b, anda.

In feedback mode, the program draws two lines as part of a line strip and then inserts a
pass-through marker. Next, a point is drawn at (-100.0, -100.0, -100.0), which falls outside
orthographic viewing volume and thus doesn’t put any values into the feedback array. Final
another pass-through marker is inserted, and another point is drawn.

Example 13-7 : Feedback Mode: feedback.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i nclude <@/ glut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

voi d init(void)

gl Enabl e(G._LI GHTI NG) ;
gl Enabl e(G._LI GHTO) ;

}
voi d drawGeonetry (GLenum node)
{
gl Begin (GL_LINE_STRI P);
gl Norrmal 3f (0.0, 0.0, 1.0);
gl Vertex3f (30.0, 30.0, 0.0);
gl Vertex3f (50.0, 60.0, 0.0);
gl Vertex3f (70.0, 40.0, 0.0);
gl End ();
i f (nobde == GL_FEEDBACK)
gl PassThrough (1.0);
gl Begin (G_PA NTS);
gl Vertex3f (-100.0, -100.0, -100.0); /* wll be clipped */
gl End ();
i f (mode == G__FEEDBACK)
gl PassThrough (2.0);
gl Begin (G _PA NTS);
gl Nornmal 3f (0.0, 0.0, 1.0);
gl Vertex3f (50.0, 50.0, 0.0);
gl End ();
}
voi d print3Dcol orVertex (G.int size, G.int *count,
G.fl oat *buffer)
t
int i;
printf (" ;
for (i =0; i <7; i++) {
printf ("%.2f ", buffer[size-(*count)]);
*count = *count - 1;
}
printf ("\n");
}

void printBuffer(GLint size, Gfloat *buffer)

GLi nt count;

A fl oat token;

count = size;
whil e (count) {
t oken = buffer[size-count]; count--;
if (token == G__PASS_THROUGH TCOKEN) ({
printf ("G._PASS_THROUGH TOKEN n");
printf (" 9%l 2f\n", buffer[size-count]);
count - -;

}
else if (token == GL_PO NT_TOKEN) {
printf ("G._PO NT_TOKEN n");
print 3Dcol or Vertex (size, &count, buffer);

}

else if (token == GL_LINE_TOKEN) {
printf ("G._LINE_TOKEM n");
print 3Dcol or Vertex (size, &count, buffer);
print3Dcol or Vertex (size, &count, buffer);

}

else if (token == G._LINE_RESET_TCKEN) ({
printf ("G._LINE_RESET_TOKEM n");
print3Dcol or Vertex (size, &count, buffer);
print3Dcol orVertex (size, &count, buffer);

}

}
}

voi d di spl ay(voi d)

GLfl oat feedBuffer[1024];
Gint size;

gl Matri xMbde (GL_PRQIECTI ON) :
gl Loadl dentity ();
glOrtho (0.0, 100.0, 0.0, 100.0, 0.0, 1.0):

gl CearColor (0.0, 0.0, 0.0, 0.0);
gl O ear (G._COLOR BUFFER BI T);
drawGeonetry (G._RENDER);

gl FeedbackBuffer (1024, G._3D COLOR, feedBuffer);
(voi d) gl Render Mbde (G._FEEDBACK) ;
drawGeonetry (G._FEEDBACK);

size = gl Render Mode (GL_RENDER);
printBuffer (size, feedBuffer);

}
int main(int argc, char** argv)

glutlnit(&argc, argv);

glutlnitD spl ayMode(GLUT_SINGLE | GLUT_RGB);
gl utlni t WndowSi ze (100, 100);

gl utlnit WndowPosition (100, 100);

gl ut Cr eat eW ndow(argv[0]);

init();

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

}

Running this program generates the following output:

GL_LI NE_RESET_TOKEN
30. 00 30.00 0.00 0.84 0.84 0.84 1.00

50. 00 60.00 0.00 0.84 0.84 0.84 1.00
GL_LI NE_TOKEN

50. 00 60.00 0.00 0.84 0.84 0.84 1.00
70.00 40.00 0.00 0.84 0.84 0.84 1.00
GL_PASS_THROUGH_TOKEN

1.00
GL_PASS_THROUGH_TOKEN

2.00
GL_PO NT_TOKEN

50. 00 50.00 0.00 0.84 0.84 0.84 1.00

Thus, the line strip drawn with these commands results in two primitives:

gl Begi n(GL_LI NE_STRI P) ;
gl Nornal 3f (0.0, 0.0, 1.0);
gl Vertex3f (30.0, 30.0, 0.0);
gl Vertex3f (50.0, 60.0, 0.0);
gl Vertex3f (70.0, 40.0, 0.0);
gl End() ;

The first primitive begins with GL_LINE_RESET_TOKEN, which indicates that the primitive
line segment and that the line stipple is reset. The second primitive begins with

GL_LINE_TOKEN, so it's also a line segment, but the line stipple isn’t reset and hence con
from where the previous line segment left off. Each of the two vertices for these lines gener
seven values for the feedback array. Note that the RGBA values for all four vertices in thes
lines are (0.84, 0.84, 0.84, 1.0), which is a very light gray color with the maximum alpha val
These color values are a result of the interaction of the surface normal and lighting parame

Since no feedback data is generated between the first and second pass-through markers, \
deduce that any primitives drawn between the first two califPassT hrough() were clipped out
of the viewing volume. Finally, the point at (50.0, 50.0, 0.0) is drawn, and its associated dat
copied into the feedback array.

Note: In both feedback and selection modes, information on objects is returned prior to any
fragment tests. Thus, objects that would not be drawn due to failure of the scissor, alpha, d
stencil tests may still have their data processed and returned in both feedback and selectio

Try This

Make changes tBxample 13-7and see how they affect the feedback values that are returnec
example, change the coordinate valueglOftho(). Change the lighting variables, or eliminate
lighting altogether and change the feedback type to GL_3D. Or add more primitives to see
other geometry (such as filled polygons) contributes to the feedback array.

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 14
Now That You Know

Chapter Objectives

This chapter doesn’t have objectives in the same way that previous chapters do. It's simply
collection of topics that describe ideas you might find useful for your application. Some topi
such as error handling, don't fit into other categories, but are too short for an entire chapter

OpenGL is kind of a bag of low-level tools; now that you know about those tools, you can u
to implement higher-level functions. This chapter presents several examples of such highel
capabilities.

This chapter discusses a variety of techniques based on OpenGL commands that illustrate
the not-so-obvious uses to which you can put these commands. The examples are in no pe
order and aren’t related to each other. The idea is to read the section headings and skip to
examples that you find interesting. For your convenience, the headings are listed and exple
briefly here.

Note: Most of the examples in the rest of this guide are complete and can be compiled and
In this chapter, however, there are no complete programs, and you have to do a bit of work
own to make them run.

® "Error Handling"tells you how to check for OpenGL error conditions.

® "Which Version Am | Using?tescribes how to find out details about the implementatio
including the version number. This can be useful for writing applications that are back
compatible with earlier versions of OpenGL.

® "Extensions to the Standargfesents techniques to identify and use vendor-specific
extensions to the OpenGL standard.

® "Cheesy Translucencyxplains how to use polygon stippling to achieve translucency; t
particularly useful when you don’t have blending hardware available.

® "An Easy Fade Effectshows how to use polygon stippling to create the effect of a fade
the background.

® "Object Selection Using the Back Buffet&scribes how to use the back buffer in a
double-buffered system to handle simple object picking.

® "Cheap Image Transformatiodiscusses how to draw a distorted version of a bitmappe
image by drawing each pixel as a quadrilateral.

® "Displaying Layers'explains how to display multiple different layers of materials and
indicate where the materials overlap.

® "Antialiased Charactersfescribes how to draw smoother fonts.
® "Drawing Round Pointstlescribes how to draw near-round points.
® "Interpolating Imagesshows how to smoothly blend from one image to the another.

® "Making Decals"explains how to draw two images, where one is a sort of decal that st
always appear on top of the other.

® "Drawing Filled, Concave Polygons Using the Stencil Buftes you how to draw concav
polygons, nonsimple polygons, and polygons with holes by using the stencil buffer.

® "Finding Interference Regionslescribes how to determine where three-dimensional pie
overlap.

® "Shadows'describes how to draw shadows of lit objects.

® "Hidden-Line Removaltliscusses how to draw a wireframe object with hidden lines rer
by using the stencil buffer.

® "Texture-Mapping Applicationstiescribes several clever uses for texture mapping, sucl
rotating and warping images.

® "Drawing Depth-Buffered Imagesélls you how to combine images in a depth-buffered
environment.

® "Dirichlet Domains"explains how to find the Dirichlet domain of a set of points using th
depth buffer.

® '"Life in the Stencil Buffer'explains how to implement the Game of Life using the stenci
buffer.

® "Alternative Uses for glDrawPixels() and glCopyPixelg{gscribes how to use these two
commands for such effects as fake video, airbrushing, and transposed images.

Error Handling

The truth is, your program will make mistakes. Use of error-handling routines are essential
development and are highly recommended for commercially released applications. (Unless
give a 100% guarantee your program will never generate an OpenGL error condition. Get r
OpenGL has simple error-handling routines for the base GL and GLU libraries.

When OpenGL detects an error (in either the base GL or GLU), it records a current error cc
command that caused the error is ignored, so it has no effect on OpenGL state or on the fr:
contents. (If the error recorded was GL_OUT_OF_MEMORY, however, the results of the

command are undefined.) Once recorded, the current error code isn’t cleared - that is, addi

errors aren’t recorded - until you call the query comngi@atError (), which returns the curren
error code. After you've queried and cleared the current error code, or if there’s no error to
with, glGetError() returns GL_NO_ERROR.

GLenum glGetError(void);
Returns the value of the error flag. When an error occursin either the GL or GLU, the error
flag is set to the appropriate error code value. If GL_NO_ERROR s returned, there has been
no detectable error since the last call to glGetError(), or since the GL wasinitialized. No
other errorsare recorded until glGetError() iscalled, the error code is returned, and the flag
isreset to GL_NO_ERROR.

It is strongly recommended that you qglGetError() at least once in eachsplay() routine.Table
14-1lists the basic defined OpenGL error codes.

Table 14-1: OpenGL Error Codes

Error Code Description
GL_INVALID_ENUM GLenum argument out of range
GL_INVALID_VALUE Numeric argument out of range

GL_INVALID_OPERATION | Operation illegal in current state

GL_STACK_OVERFLOW Command would cause a stack overflow

GL_STACK_UNDERFLOW | Command would cause a stack underflow

GL_OUT_OF MEMORY Not enough memory left to execute command

There are also thirty-seven GLU NURBS errors (with non-descriptive constant names,
GLU_NURBS_ERROR1, GLU_NURBS_ERRORZ2, and so on), fourteen tessellator errors
(GLU_TESS_MISSING_BEGIN_POLYGON, GLU_TESS_MISSING_END_POLYGON,
GLU_TESS_MISSING_BEGIN_CONTOUR, GLU_TESS_MISSING_END_CONTOUR,
GLU_TESS_COORD_TOO_LARGE, GLU_TESS_NEED_COMBINE_CALLBACK, and eig
generically named GLU_TESS_ERROR?*), and GLU_INCOMPATIBLE_GL_VERSION. Als:
the GLU defines the error codes GLU _INVALID_ENUM, GLU_INVALID VALUE, and
GLU_OUT_OF_MEMORY, which have the same meaning as the related OpenGL codes.

To obtain a printable, descriptive string corresponding to either a GL or GLU error code, us
GLU routinegluError String().

const GLubyte* gluErrorString(GLenum errorCode);
Returns a pointer to a descriptive string that corresponds to the OpenGL or GLU error
number passed in errorCode.

In Example 14-1a simple error handling routine is shown.

Example 14-1: Querying and Printing an Error

GLenum er r Code;
const GLubyte *errString;

if ((errCode = gl GetError()) !'= G._NO ERROR) {

errString = gluErrorString(errCode);
fprintf (stderr, "OpenG. Error: %\n", errString);

Note: The string returned bgluError String() must not be altered or freed by the application.

Which Version Am | Using?

The portability of OpenGL applications is one of OpenGL'’s attractive features. However, ne
versions of OpenGL introduce new features, which may introduce backward compatibility
problems. In addition, you may want your application to perform equally well on a variety of
implementations. For example, you might make texture mapping the default rendering mod
machine, but only have flat shading on another. You cagl@aString() to obtain release
information about your OpenGL implementation.

const GLubyte* glGetString(GLenum name);
Returns a pointer to a string that describes an aspect of the OpenGL implementation. name
can be one of the following: GL_VENDOR, GL_RENDERER, GL_VERSON, or
GL_EXTENSONS
GL_VENDOR returns the name of the company responsible for the OpenGL implementatic
GL_RENDERER returns an identifier of the renderer, which is usually the hardware platforr
more about GL_EXTENSIONS, see the next sectirtensions to the Standard."

GL_VERSION returns a string that identifies the version number of this implementation of
OpenGL. The version string is laid out as follows:

<version humber><space><vendor-specific information>

The version number is either of the form

major_number.minor_number

or

major_number.minor_number.release_number

where the numbers all have one or more digits. The vendor-specific information is optional.
example, if this OpenGL implementation is from the fictitious XYZ Corporation, the string re
might be

1.1.4 XYZ-0S 3.2

which means that this implementation is XYZ'’s fourth release of an OpenGL library that cot
to the specification for OpenGL Version 1.1. It probably also means this is release 3.2 of X*

proprietary operating system.

Another way to query the version number for OpenGL is to look for the symbolic constant (i
preprocessor statement #ifdef) named GL_VERSION_1 1. The absence of the constant
GL_VERSION_1 1 means that you have OpenGL Version 1.0.

Note: If running from client to server, such as when performing indirect rendering with the
OpenGL extension to the X Window System, the client and server may be different version
your client version is ahead of your server, your client might request an operation that is no
supported on your server.

Utility Library Version
gluGetString() is a query function for the Utility Library (GLU) and is similargi@et String().
const GLubyte* gluGetString(GLenum name);
Returns a pointer to a string that describes an aspect of the OpenGL implementation. name
can be one of the following: GLU_VERSON, or GLU_EXTENS ONS
Note thatgluGetString() was not available in GLU 1.0. Another way to query the version nur

for GLU is to look for the symbolic constant GLU_VERSION_1 1. The absence of the cons
GLU_VERSION_1_1 means that you have GLU 1.0.

Extensionsto the Standard

OpenGL has a formal written specification that describes what operations comprise the libr.
individual vendor or a group of vendors may decide to include additional functionality to the
released implementation.

New routine and symbolic constant names clearly indicate whether a feature is part of the (
standard or a vendor-specific extension. To make a vendor-specific name, the vendor appe
company identifier (in uppercase) and, if needed, additional information, such as a machine
For example, if XYZ Corporation wants to add a new routine and symbolic constant, they i
of the formglCommandXYZ() and GL_DEFINITION_XYZ. If XYZ Corporation wants to have
an extension that is available only on its FooBar graphics board, then the names might be
glCommandXY Zfb() and GL_DEFINITION_XYZ_FB.

If two of more vendors agree to implement the same extension, then the procedures and cc
are suffixed with the more generic EXgiCommandEXT () and GL_DEFINITION_EXT).

If you want to know if a particular extension is supported on your implementation, use
glGetString(GL_EXTENSIONS). This returns a list of all the extensions in the implementati
separated by spaces. If you want to find out if a specific extension is supported, use the co
Example 14-2o search through the list and match the extension name. Return GL_TRUE, i
GL_FALSE, if it isn't.

Example 14-2 : Find Out If An Extension Is Supported

static GL.bool ean QueryExtensi on(char *ext Nane)

{

char *p = (char *) gl Get String(G._EXTENSI ONS) ;
char *end = p + strlen(p);
while (p < end) {
int n =strcspn(p, " ");
if ((strlen(extNanme)==n) && (strncnp(extNane, p,n)==0)) {
return G._TRUE

p+=(n + 1);

return G._FALSE
}

Cheesy Translucency

You can use polygon stippling to simulate a translucent material. This is an especially gooc
solution for systems that don’t have blending hardware. Since polygon stipple patterns are
bits, or 1024 bits, you can go from opaque to transparent in 1023 steps. (In practice, that's
more steps than you need!) For example, if you want a surface that lets through 29 percent
light, simply make up a stipple pattern where 29 percent (roughly 297) of the pixels in the nr
zero and the rest are one. Even if your surfaces have the same translucency, don’t use the
stipple pattern for each one, as they cover exactly the same bits on the screen. Make up a
pattern for each by randomly selecting the appropriate number of pixels to be zero. (See
"Displaying Points, Lines, and Polygons" in Chaptéor2more information about polygon

stippling.)

If you don't like the effect with random pixels turned on, you can use regular patterns, but tt
don’t work as well when transparent surfaces are stacked. This is often not a problem beca
scenes have relatively few translucent regions that overlap. In a picture of an automobile w
translucent windows, your line of sight can go through at most two windows, and usually it’:
one.

An Easy Fade Effect

Suppose you have an image that you want to fade gradually to some background color. De
series of polygon stipple patterns, each of which has more bits turned on so that they repre
denser and denser patterns. Then use these patterns repeatedly with a polygon large enou
the region over which you want to fade. For example, suppose you want to fade to black in
steps. First define 16 different pattern arrays:

GLubyte stips[16][4*32];

Then load them in such a way that each has one-sixteenth of the pixels in a 32 x 32 stipple
turned on and that the bitwise OR of all the stipple patterns is all ones. After that, the follow
code does the trick:

draw the_picture();
gl Col or3f (0.0, 0.0, 0.0); /* set color to black */
for (i =0; i < 16; i++) {
gl Pol ygonSti ppl e(&stips[i][0]);
draw_a_pol ygon_| arge_enough_to_cover _the whol e_region();

In some OpenGL implementations, you might get better performance by first compiling the
patterns into display lists. During your initialization, do something like this:

#define STIP_OFFSET 100

for (i =0; i < 16; i++) {
gl NewLi st (i +STI P_OFFSET, G._COWPI LE)
gl Pol ygonSti ppl e(&stips[i][0]);
gl EndLi st ();

}

Then, replace this line in the first code fragment
gl Pol ygonSti ppl e(&stips[i][0]);

with

gl Cal I List(i):

By compiling the command to set the stipple into a display list, OpenGL might be able to re
the data in thetipg][] array into the hardware-specific form required for maximum
stipple-setting speed.

Another application for this technique is if you're drawing a changing picture and want to lei
some blur behind that gradually fades out to give some indication of past motion. For exam
suppose you’re simulating a planetary system and you want to leave trails on the planets tc
recent portion of their path. Again, assuming you want to fade in sixteen steps, set up the s
patterns as before (using the display-list version, say), and have the main simulation loop ¢
something like this:

current _stipple = 0;

while (1) { /* loop forever */
draw_t he_next frane();
gl Cal | Li st (current _stippl e++);
if (current _stipple == 16) current_stipple = 0;
gl Col or3f (0.0, 0.0, 0.0); /* set color to black */
draw_a_pol ygon_I arge_enough_t o_cover _t he_whol e_regi on();

}

Each time through the loop, you clear one-sixteenth of the pixels. Any pixel that hasn’t had
on it for sixteen frames is certain to be cleared to black. Of course, if your system supports
in hardware, it's easier to blend in a certain amount of background color with each frame. (!
"Displaying Points, Lines, and Polygons" in Chaptéor2polygon stippling detailChapter #or

more information about display lists, ati@lending” in Chapter 6or information about blending.

Object Selection Using the Back Buffer

Although the OpenGL selection mechanism ($sdection” in Chapter 33s powerful and
flexible, it can be cumbersome to use. Often, the situation is simple: Your application draws
composed of a substantial number of objects; the user points to an object with the mouse,
application needs to find the item under the tip of the cursor.

One way to do this requires your application to be running in double-buffer mode. When the
picks an object, the application redraws the entire scene in the back buffer, but instead of u
normal colors for objects, it encodes some kind of object identifier for each object’s color. T

application then simply reads back the pixel under the cursor, and the value of that pixel en
the number of the picked object. If many picks are expected for a single, static picture, you
the entire color buffer once and look in your copy for each attempted pick, rather than read
each pixel individually.

Note that this scheme has an advantage over standard selection in that it picks the object t
front if multiple objects appear at the same pixel, one behind the other. Since the image wit
colors is drawn in the back buffer, the user never sees it; you can redraw the back buffer (o
from the front buffer) before swapping the buffers. In color-index mode, the encoding is sim
send the object identifier as the index. In RGBA mode, encode the bits of the identifier into
G, and B components.

Be aware that you can run out of identifiers if there are too many objects in the scene. For ¢
suppose you’re running in color-index mode on a system that has 4-bit buffers for color-ind
information (16 possible different indices) in each of the color buffers, but the scene has thc
of pickable items. To address this issue, the picking can be done in a few passes. To think
in concrete terms, assume there are fewer than 4096 items, so all the object identifiers can
encoded in 12 bits. In the first pass, draw the scene using indices composed of the 4 high-(
then use the second and third passes to draw the middle 4 bits and the 4 low-order bits. Aff
pass, read the pixel under the cursor, extract the bits, and pack them together at the end to
object identifier.

With this method, the picking takes three times as long, but that’s often acceptable. Note th
you have the high-order 4 bits, you eliminate 15/16 of all objects, so you really need to drav
1/16 of them for the second pass. Similarly, after the second pass, 255 of the 256 possible
have been eliminated. The first pass thus takes about as long as drawing a single frame dc
second and third passes can be up to 16 and 256 times as fast.

If you're trying to write portable code that works on different systems, break up your object
identifiers into chunks that fit on the lowest common denominator of those systems. Also, k
mind that your system might perform automatic dithering in RGB mode. If this is the case, t
dithering.

Cheap Image Transfor mation

If you want to draw a distorted version of a bitmapped image (perhaps simply stretched or i
or perhaps drastically modified by some mathematical function), there are many possibilitie
can use the image as a texture map, which allows you to scale, rotate, or otherwise distort
image. If you just want to scale the image, you carglR&elZoom().

In many cases, you can achieve good results by drawing the image of each pixel as a quac
Although this scheme doesn’t produce images that are as nice as those you would get by
sophisticated filtering algorithm (and it might not be sufficient for sophisticated users), it's a
quicker.

To make the problem more concrete, assume that the original inragexsls byn pixels, with
coordinates chosen from [@-1] x [0, n-1]. Let the distortion functions bém,n) andy(m,n). For
example, if the distortion is simply a zooming by a factor of 3.2, xfram) = 3.2*m andy(m,n) =
3.2*n. The following code draws the distorted image:

gl ShadeMbdel (GL_FLAT);
gl Scal e(3.2, 3.2, 1.0);
for (j=0; j <n; j++) {
gl Begi n(G._QUAD_STRI P) ;
for (i=0; i <=m i++) {
gl Vertex2i(i,j);
gl Vertex2i (i, j+1);
set_color(i,j);

}
gl End() ;

This code draws each transformed pixel in a solid color equal to that pixel's color and scale
image size by 3.2. The routiset_color () stands for whatever the appropriate OpenGL commi
is to set the color of the image pixel.

The following is a slightly more complex version that distorts the image using the fundtipns
andy(i,j):

gl ShadeMbdel (GL_FLAT);
for (j=0; j < n; j++) {
gl Begi n(GL_QUAD_STRI P) ;
for (i=0; i <=m i++) {
gl Vertex2i (x(i,j), y(i,j));
gl Vertex2i (x(i,j+1), y(i,j+1));
set _color(i,j);

}
gl End() ;

An even better distorted image can be drawn with the following code:

gl ShadeMbdel (GL_SMOOTH) ;
for (j=0; j < (n-1); j++) {
gl Begi n(G._QUAD STRI P);
for (i=0; i <m i++) {
set_color(i,j);
gl Vertex2i (x(i,j), y(i,j));
set _color(i,j+1);
gl Vertex2i (x(i,j+1), y(i,j+1));

}
gl End() ;

This code smoothly interpolates color across each quadrilateral. Note that this version prod
fewer quadrilateral in each dimension than do the flat-shaded versions, because the color i
being used to specify colors at the quadrilateral vertices. In addition, you can antialias the
with the appropriate blending function (GL_SRC_ALPHA, GL_ONE) to get an even nicer in

Displaying Layers

In some applications such as semiconductor layout programs, you want to display multiple
layers of materials and indicate where the materials overlap each other.

As a simple example, suppose you have three different substances that can be layered. At
eight possible combinations of layers can occur, as shoWwabie 14-2

Table 14-2 : Eight Combinations of Layers

Layer 1 | Layer 2 | Layer 3 | Color

0 | absent absent absent black

1 | present | absent absent red

2 | absent present | absent green

3 | present | present | absent blue

4 || absent absent present | pink

5 | present | absent present | yellow

6 | absent present | present | white

7 | present | present | present | gray

You want your program to display eight different colors, depending on the layers present. C
arbitrary possibility is shown in the last column of the table. To use this method, use color-i
mode and load your color map so that entry 0O is black, entry 1 is red, entry 2 is green, and -
Note that if the numbers from 0 through 7 are written in binary, the 4 bit is turned on whene
layer 3 appears, the 2 bit whenever layer 2 appears, and the 1 bit whenever layer 1 appear

To clear the window, set the writemask to 7 (all three layers) and set the clearing color to 0
draw your image, set the color to 7, and then when you want to draw something m >ehe
writemask ton. In other types of applications, it might be necessary to selectively erase in a
in which case you would use the writemasks just discussed, but set the color to O instead o
"Masking Buffers" in Chapter 1fdr more information about writemasks.)

Antialiased Characters

Using the standard technique for drawing charactersghititmap(), drawing each pixel of a
character is an all-or-nothing affair - the pixel is either turned on or not. If you're drawing bl
characters on a white background, for example, the resulting pixels are either black or whit
a shade of gray. Much smoother, higher-quality images can be achieved if intermediate col
used when rendering characters (grays, in this example).

Assuming that you’re drawing black characters on a white background, imagine a highly m:
picture of the pixels on the screen, with a high-resolution character outline superimposed o
shown in the left side dfigure 14-1

=== = = = = =1 = = T ™
cccccccccccc}:—n
T-llac::c::c::c::c::c::c::c:::::c:::::m—n
Ll | Gad [Gad | Gad | Gnd [Rad [Rad | Bad | Lad | Lad | Lad | LAd | LAd | ==t
Ll | Gad [Gad | Gad | Gnd [Rad [Rad | Bad | Lad | Lad | Lad | LAd | LAd | ==t
MBI EEE R EEE R R =
+cccccccccccm—-
ololoo|lololo|lo|lole|o|o

ololo|olololo|lo|o|lo|o|mfw =
olo|lololo|lo|o|o|o|ope |wm|-

L= = = = = =R = L= = L= | L LR
ADDDDDDDDDDDEJ—l

Figure 14-1: Antialiased Characters

Notice that some of the pixels are completely enclosed by the character’s outline and shoul
painted black; some pixels are completely outside the outline and should be painted white;
many pixels should ideally be painted some shade of gray, where the darkness of the gray
corresponds to the amount of black in the pixel. If this technique is used, the resulting imag
screen looks better.

If speed and memory usage are of no concern, each character can be drawn as a small im
of as a bitmap. If you're using RGBA mode, however, this method might require up to 32 bi
pixel of the character to be stored and drawn, instead of the 1 bit per pixel in a standard chi
Alternatively, you could use one 8-bit index per pixel and convert these indices to RGBA by
lookup during transfer. In many cases, a compromise is possible that allows you to draw th
character with a few gray levels between black and white (say, two or three), and the result
description requires only 2 or 3 bits per pixel of storage.

The numbers in the right side Bigure 14-lindicate the approximate percentage coverage of
pixel: 0 means approximately empty, 1 means approximately one-third coverage, 2 means
two-thirds, and 3 means completely covered. If pixels labeled 0 are painted white, pixels lal
are painted black, and pixels labeled 1 and 2 are painted one-third and two-thirds black,
respectively, the resulting character looks quite good. Only 2 bits are required to store the r
0, 1, 2, and 3, so for 2 bits per pixel, four levels of gray can be saved.

There are basically two methods to implement antialiased characters, depending on wheth:
in RGBA or color-index mode.

In RGBA mode, define three different character bitmaps, corresponding to where 1, 2, and
in Figure 14-1 Set the color to white, and clear for the background. Set the color to one-thirc
(RGB = (0.666, 0.666, 0.666)), and draw all the pixels with a 1 in them. Then set RGB = (0.
0.333, 0.333), draw with the 2 bitmap, and use RGB = (0.0, 0.0, 0.0) for the 3 bitmap. What

doing is defining three different fonts and redrawing the string three times, where each pas:
the bits of the appropriate color densities.

In color-index mode, you can do exactly the same thing, but if you're willing to set up the cc
map correctly and use writemasks, you can get away with only two bitmaps per character ¢
passes per string. In the preceding example, set up one bitmap that has a 1 wherever 1 or
in the character. Set up a second bitmap that has a 1 wherever a 2 or a 3 appears. Load th
map so that O gives white, 1 gives light gray, 2 gives dark gray, and 3 gives black. Set the ¢
(11 in binary) and the writemask to 1, and draw the first bitmap. Then change the writemas
and draw the second. Where 0 appeaFsgare 14-1 nothing is drawn in the framebuffer. Whei
1, 2, and 3 appear, 1, 2, and 3 appear in the framebuffer.

For this example with only four gray levels, the savings is small - two passes instead of thre
eight gray levels were used instead, the RGBA method would require seven passes, and tf
color-map masking technique would require only three. With sixteen gray levels, the compe
fifteen passes to four passes. (3dasking Buffers" in Chapter 1for more information about

writemasks antBitmaps and Fonts" in Chapterf& more information about drawing bitmaps.)

Try This
® Can you see how to do RGBA rendering using no more images than the optimized

color-index case? Hint: How are RGB fragments normally merged into the color buffei
antialiasing is desired?

Drawing Round Points

Draw near-round, aliased points by enabling point antialiasing, turning blending off, and usi
alpha function that passes only fragments with alpha greater than 0.5A(8akasing" and
"Blending" in Chapter or more information about these topics.)

| nter polating mages

Suppose you have a pair of images (whewge can mean a bitmap image, or a picture gener
using geometry in the usual way), and you want to smoothly blend from one to the other. Tl
be done easily using the alpha component and appropriate blending operations. Let's say
to accomplish the blending in ten steps, where image A is shown in frame 0 and image B i<
in frame 9. The obvious approach is to draw image A with alpha equal&di9-)/9 and image [
with an alpha of/9 in framei.

The problem with this method is that both images must be drawn in each frame. A faster ay
is to draw image A in frame 0. To get frame 1, blend in 1/9 of image B and 8/9 of what's the
frame 2, blend in 1/8 of image B with 7/8 of what's there. For frame 3, blend in 1/7 of image
6/7 of what's there, and so on. For the last step, you're just drawing 1/1 of image B blendec
0/1 of what's left, yielding image B exactly.

To see that this works, if for frameou have

©-D4 B
5 9

and you blend in B/(9%igr;) with (8-&igr;)/(9- &igr;) of what's there, you get

B 8-i|(0-0D4 iB| 9-(G+DA (i+1)B
94*9-5[9 +9}‘ o "3

(See"Blending" in Chapter §

Making Decals

Suppose you're drawing a complex three-dimensional picture using depth-buffering to elimi
hidden surfaces. Suppose further that one part of your picture is composed of coplanar figL
and B, where B is a sort of decal that should always appear on top of figure A.

Your first approach might be to draw B after you've drawn A, setting the depth-buffering fur
to replace on greater or equal. Due to the finite precision of the floating-point representatior
vertices, however, round-off error can cause polygon B to be sometimes a bit in front and
sometimes a bit behind figure A. Here’s one solution to this problem.

1. Disable the depth buffer for writing, and render A.

2. Enable the depth buffer for writing, and render B.

3. Disable the color buffer for writing, and render A again.

4. Enable the color buffer for writing.
Note that during the entire process, the depth-buffer test is enabled. In step 1, A is rendere
wherever it should be, but none of the depth-buffer values are changed,; thus, in step 2, wh
appears over A, B is guaranteed to be drawn. Step 3 simply makes sure that all of the dept
under A are updated correctly, but since RGBA writes are disabled, the color pixels are une
Finally, step 4 returns the system to the default state (writing is enabled both in the depth b
in the color buffer).

If a stencil buffer is available, the following simpler technique works.

1. Configure the stencil buffer to write one if the depth test passes, and zero otherwise. |
A.

2. Configure the stencil buffer to make no stencil value change, but to render only where
values are one. Disable the depth-buffer test and its update. Render B.

With this method, it's not necessary to initialize the contents of the stencil buffer at any time
because the stencil value of all pixels of interest (that is, those rendered by A) are set wher
rendered. Be sure to reenable the depth test and disable the stencil test before additional p

are drawn. (Se&electing Color Buffers for Writing and Readinipépth Test,"and"Stencil Test
in Chapter 10

Drawing Filled, Concave Polygons Using the Stencil Buffer

Consider the concave polygon 1234567 showkignire 14-2 Imagine that it's drawn as a serie
triangles: 123, 134, 145, 156, 167, all of which are shown in the figure. The heavier line rep
the original polygon boundary. Drawing all these triangles divides the buffer into nine regior
C, ..., I, where region | is outside all the triangles.

4

134

123 134

134 145

134 145 156
123 134 145 156
156

123 156

156 167

(none)

Figure 14-2 : Concave Polygon

In the text of the figure, each of the region names is followed by a list of the triangles that c
Regions A, D, and F make up the original polygon; note that these three regions are covere
odd number of triangles. Every other region is covered by an even number of triangles (pos
zero). Thus, to render the inside of the concave polygon, you just need to render regions th
enclosed by an odd number of triangles. This can be done using the stencil buffer, with a tv

algorithm.

First, clear the stencil buffer and disable writing into the color buffer. Next, draw each of the
triangles in turn, using the GL_INVERT function in the stencil buffer. (For best performance
triangle fans.) This flips the value between zero and a nonzero value every time a triangle i
that covers a pixel. After all the triangles are drawn, if a pixel is covered an even number of
the value in the stencil buffers is zero; otherwise, it's nonzero. Finally, draw a large polygor
the whole region (or redraw the triangles), but allow drawing only where the stencil buffer is
nonzero.

Note: There’s a slight generalization of the preceding technique, where you don’t need to st
a polygon vertex. In the 1234567 example, let P be any point on or off the polygon. Draw tt
triangles: P12, P23, P34, P45, P56, P67, and P71. Regions covered by an odd number of t
are inside; other regions are outside. This is a generalization in that if P happens to be one
polygon’s edges, one of the triangles is empty.

This technique can be used to fill both nonsimple polygons (polygons whose edges cross e
other) and polygons with holes. The following example illustrates how to handle a complica
polygon with two regions, one four-sided and one five-sided. Assume further that there’s a
triangular and a four-sided hole (it doesn’t matter in which regions the holes lie). Let the twc
regions be abcd and efghi, and the holes jkl and mnop. Let z be any point on the plane. Dr¢
following triangles:

zab zbc zcd zda zef zfg zgh zhi zie zjk zkl zlj zmn zno zop zpm

Mark regions covered by an odd number of triangles,aand those covered by an even numbe
out. (Se€'Stencil Test" in Chapter 1for more information about the stencil buffer.)

Finding I nterference Regions

If you're designing a mechanical part made from smaller three-dimensional pieces, you ofte
to display regions where the pieces overlap. In many cases, such regions indicate design €
where parts of a machine interfere with each other. In the case of moving parts, it can be e
valuable, since a search for interfering regions can be done through a complete mechanica
the design. The method for doing this is complicated, and the description here might be toc
Complete details can be found in the papéaractive Inspection of Solids: Cross-sections and
Interferences, by Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider (SIGGRAPH 1
Proceedings).

The method is related to the capping algorithm describ&stamcil Test" in Chapter 10 he idea
is to pass an arbitrary clipping plane through the objects that you want to test for interferent
then determine when a portion of the clipping plane is inside more than one object at a time
static image, the clipping plane can be moved manually to highlight interfering regions; for :
dynamic image, it might be easier to use a grid of clipping planes to search for all possible
interferences.

Draw each of the objects you want to check and clip them against the clipping plane. Note
pixels are inside the object at that clipping plane using an odd-even count in the stencil buff
explained in the preceding section. (For properly formed objects, a point is inside the objec
drawn from that point to the eye intersects an odd number of surfaces of the object.) To fin

interferences, you need to find pixels in the framebuffer where the clipping plane is in the ir
of two or more regions at once; in other words, in the intersection of the interiors of any pail
objects.

If multiple objects need to be tested for mutual intersection, store 1 bit every time some inte
appears, and another bit wherever the clipping buffer is inside any of the objects (the union
objects’ interiors). For each new object, determine its interior, find the intersection of that in
with the union of the interiors of the objects so far tested, and keep track of the intersection
Then add the interior points of the new object to the union of the other objects’ interiors.

You can perform the operations described in the preceding paragraph by using different bit
stencil buffer together with various masking operations. Three bits of stencil buffer are requ
pixel - one for the toggling to determine the interior of each object, one for the union of all ir
discovered so far, and one for the regions where interference has occurred so far. To make
discussion more concrete, assume the 1 bit of the stencil buffer is for toggling interior/exter
2 bit is the running union, and the 4 bit is for interferences so far. For each object that you'r
to render, clear the 1 bit (using a stencil mask of one and clearing to zero), then toggle the
keeping the stencil mask as one and using the GL_INVERT stencil operation.

You can find intersections and unions of the bits in the stencil buffers using the stenciling
operations. For example, to make bits in buffer 2 be the union of the bits in buffers 1 and 2,
the stencil to those 2 bits, and draw something over the entire object with the stencil functic
pass if anything nonzero occurs. This happens if the bits in buffer 1, buffer 2, or both are tu
If the comparison succeeds, write a 1 in buffer 2. Also, make sure that drawing in the color
disabled. An intersection calculation is similar - set the function to pass only if the value in t
buffers is equal to 3 (bits turned on in both buffers 1 and 2). Write the result into the correct
(See"Stencil Test" in Chapter 10

Shadows

Every possible projection of three-dimensional space to three-dimensional space can be ac
with a suitable 4 x 4 invertible matrix and homogeneous coordinates. If the matrix isn’'t inve
but has rank 3, it projects three-dimensional space onto a two-dimensional plane. Every su
possible projection can be achieved with a suitable rank-3 4 x 4 matrix. To find the shadow
arbitrary object on an arbitrary plane from an arbitrary light source (possibly at infinity), you
to find a matrix representing that projection, multiply it on the matrix stack, and draw the ob
the shadow color. Keep in mind that you need to project onto each plane that you're calling
"ground.”

As a simple illustration, assume the light is at the origin, and the equation of the ground pla
ax+by+c+d=0. Given a vertex SsX,sy,sz,1), the line from the light through S includes all point:
&agr; S, where &agr; is an arbitrary real number. The point where this line intersects the pl:
occurs when

&agr; (@*sz+b*sy+c*sz) +d = 0,

SO

&agr; = -&dgr; /(a* sx+b* sy+c* s2).

Plugging this back into the line, we get

- &dgr; (&sgr; &xgr; , &sgr; &psgr; , &sgr; &zgr;)/(&agr; * &sgr; &xgr; + &bgr; * &sgr;
&psgr; + &khgr; * &sgr; &zor;)

for the point of intersection.

The matrix that maps S to this point for every S is

o T T B
e
Ok oo
Soo o

This matrix can be used if you first translate the world so that the light is at the origin.

If the light is from an infinite source, all you have is a point S and a directiordidy,(z). Points
along the line are given by

S+ &agr; D
Proceeding as before, the intersection of this line with the plane is given by
a(sx+ &agr; dx)+b(sy+ &agr; dy)+c(sz+ &agr; dz)+d =0

Solving for &agr; , plugging that back into the equation for a line, and then determining a
projection matrix gives

by + o¥dg -t ¥y -t ¥y o
-bEdx a¥dx + ey -b¥ds o
- ¥y -o ¥y a¥dx + b¥dy]
-~ ¥ax - ¥y - ¥y a*in + b¥dy¥o ¥y

This matrix works given the plane and an arbitrary direction vector. There’s no need to tran
anything first. (Se€hapter 3andAppendix F)

Hidden-Line Removal

If you want to draw a wireframe object with hidden lines removed, one approach is to draw
outlines using lines and then fill the interiors of the polygons making up the surface with pol
having the background color. With depth-buffering enabled, this interior fill covers any outlir
that would be obscured by faces closer to the eye. This method would work, except that the
guarantee that the interior of the object falls entirely inside the polygon’s outline; in fact, it n
overlap it in various places.

There’s an easy, two-pass solution using either polygon offset or the stencil buffer. Polygor
is usually the preferred technique, since polygon offset is almost always faster than stencil
Both methods are described here, so you can see how both approaches to the problem wo

Hidden-Line Removal with Polygon Offset

To use polygon offset to accomplish hidden-line removal, the object is drawn twice. The
highlighted edges are drawn in the foreground color, using filled polygons but with the polyt
mode GL_LINE to rasterize it as a wireframe. Then the filled polygons are drawn with the d
polygon mode, which fills the interior of the wireframe, and with enough polygon offset to ni
the filled polygons a little farther from the eye. With the polygon offset, the interior recedes
enough that the highlighted edges are drawn without unpleasant visual artifacts.

gl Enabl e(GL_DEPTH_TEST) ;

gl Pol ygonMode(GL_FRONT_AND BACK, GL_LI NE);
set _col or (foreground);

draw object with filled polygons();

gl Pol ygonMode(GL_FRONT_AND BACK, GL_FILL);
gl Enabl e(GL_POLYGON OFFSET_FI LL);

gl Pol ygonOf fset (1.0, 1.0);

set _col or (background) ;

draw obj ect _with_filled_pol ygons();

gl D sabl e(G._POLYGON _OFFSET_FI LL);

You may need to adjust the amount of offset needed (for wider lines, for exampléP ¢ygen
Offset" in Chapter 6or more information.)

Hidden-Line Removal with the Stencil Buffer

Using the stencil buffer for hidden-line removal is a more complicated procedure. For each
polygon, you'll need to clear the stencil buffer, and then draw the outline both in the frameb
and in the stencil buffer. Then when you fill the interior, enable drawing only where the ster
buffer is still clear. To avoid doing an entire stencil-buffer clear for each polygon, an easy w
clear it is simply to draw O’s into the buffer using the same polygon outline. In this way, you
to clear the entire stencil buffer only once.

For example, the following code represents the inner loop you might use to perform such
hidden-line removal. Each polygon is outlined in the foreground color, filled with the backgr
color, and then outlined again in the foreground color. The stencil buffer is used to keep the
color of each polygon from overwriting its outline. To optimize performance, the stencil and
parameters are changed only twice per loop by using the same values both times the polyc
outline is drawn.

gl Enabl e(GL_STENCI L_TEST) ;
gl Enabl e(G._DEPTH_TEST) ;
gl G ear (GL_STENCI L_BUFFER BI T) ;
gl Stenci | Func(GL_ALWAYS, 0, 1)'
gl Stencil Op(G_I NVERT, G__I NVERT, GL_I| NVERT);
set _col or (foreground);
for (i=0; i < nax; i++) {
out line_pol ygon(i);
set _col or (background);
gl Stenci | Func(G._EQUAL, 0, 1);
gl Stenci | Op(G._KEEP, G._KEEP, G._KEEP);
fill _polygon(i);

set _col or (foreground);

gl Stenci |l Func(G._ALWAYS, 0, 1);

gl Stenci | OQp(GL_I NVERT, GL_I NVERT, GL_I NVERT);
outl i ne_pol ygon(i);

}
(See"Stencil Test" in Chapter 10

Texture-Mapping Applications

Texture mapping is quite powerful, and it can be used in some interesting ways. Here are &
advanced applications of texture mapping.

® Antialiased text - Define a texture map for each character at a relatively high resolutio
then map them onto smaller areas using the filtering provided by texturing. This also r
text appear correctly on surfaces that aren’t aligned with the screen, but are tilted and
some perspective distortion.

® Antialiased lines - These can be done like antialiased text: Make the line in the texture
pixels wide, and use the texture filtering to antialias the lines.

® Image scaling and rotation - If you put an image into a texture map and use that textui
map onto a polygon, rotating and scaling the polygon effectively rotates and scales th

® Image warping - As in the preceding example, store the image as a texture map, but r
some spline-defined surface (use evaluators). As you warp the surface, the image foll
warping.

® Projecting images - Put the image in a texture map, and project it as a spotlight, creat
slide projector effect. (Sé&@he q Coordinate" in Chapterf@r more information about how
to model a spotlight using textures.)

(SeeChapter Jor information about rotating and scaliri@hapter For more information about
creating textures, ardhapter 1Zor details on evaluators.)

Drawing Depth-Buffered | mages

For complex static backgrounds, the rendering time for the geometric description of the bac
can be greater than the time it takes to draw a pixel image of the rendered background. If tl
fixed background and a relatively simple changing foreground, you may want to draw the
background and its associated depth-buffered version as an image rather than render it
geometrically. The foreground might also consist of items that are time-consuming to rende
whose framebuffer images and depth buffers are available. You can render these items intc
depth-buffered environment using a two-pass algorithm.

For example, if you're drawing a model of a molecule made of spheres, you might have an
of a beautifully rendered sphere and its associated depth-buffer values that were calculatec
Phong shading or ray-tracing or by using some other scheme that isn’t directly available thr

OpenGL. To draw a complex model, you might be required to draw hundreds of such sphe!
which should be depth-buffered together.

To add a depth-buffered image to the scene, first draw the image’s depth-buffer values into
depth buffer usinglDrawPixels(). Then enable depth-buffering, set the writemask to zero so
no drawing occurs, and enable stenciling such that the stencil buffers get drawn whenever
the depth buffer occurs.

Then draw the image into the color buffer, masked by the stencil buffer you've just written <
writing occurs only when there’s a 1 in the stencil buffer. During this write, set the stenciling
function to zero out the stencil buffer so that it's automatically cleared when it's time to add
next image to the scene. If the objects are to be moved nearer to or farther from the viewer
need to use an orthographic projection; in these cases, you use GL_DEPTH_BIAS with
glPixel Transfer*() to move the depth image. (S&poordinate System Survival Kit" in Chapter
"Depth Test"and"Stencil Test" in Chapter 1@ndChapter &or details orglDrawPixels() and
glPixel Transfer*().)

Dirichlet Domains

Given a set S of points on a plane, the Dirichlet domain or Voronoi polygon of one of the pc
the set of all points in the plane closer to that point than to any other point in the set S. The
provide the solution to many problems in computational geontétiyre 14-3shows outlines of
the Dirichlet domains for a set of points.

Figure 14-3 : Dirichlet Domains

If you draw a depth-buffered cone with its apex at the point in a different color than each of
points in S, the Dirichlet domain for each point is drawn in that color. The easiest way to do
to precompute a cone’s depth in an image and use the image as the depth-buffer values as
in the preceding section. You don’t need an image to draw in the framebuffer as in the case
shaded spheres, however. While you’re drawing into the depth buffer, use the stencil buffel

record the pixels where drawing should occur by first clearing it and then writing nonzero v
wherever the depth test succeeds. To draw the Dirichlet region, draw a polygon over the er
window, but enable drawing only where the stencil buffers are nonzero.

You can do this perhaps more easily by rendering cones of uniform color with a simple dep
buffer, but a good cone might require thousands of polygons. The technique described in tf
section can render much higher-quality cones much more quickly:AS¢ieden-Surface
Removal Survival Kit" in Chapter &hd"Depth Test" in Chapter 10

Lifein the Stencil Buffer

The Game of Life, invented by John Conway, is played on a rectangular grid where each g
location is "alive" or "dead."” To calculate the next generation from the current one, count th
number of live neighbors for each grid location (the eight adjacent grid locations are neighb
grid location is alive in generatior1 if it was alive in generatiomand has exactly two or three
live neighbors, or if it was dead in generatioand has exactly three live neighbors. In all othe
cases, it is dead in generatiotil. This game generates some incredibly interesting patterns ¢
different initial configurations. (See Martin Gardner, "Mathematical Ganseigfitific American,
vol. 223, no. 4, October 1970, p. 120-1Zgure 14-4shows six generations from a game.

|
#

4 5 .]

Figure 14-4 . Six Generations from the Game of Life

One way to create this game using OpenGL is to use a multipass algorithm. Keep the data
color buffer, one pixel for each grid point. Assume that black (all zeros) is the background c
and the color of a live pixel is nonzero. Initialize by clearing the depth and stencil buffers to
set the depth-buffer writemask to zero, and set the depth comparison function so that it pas
not-equal. To iterate, read the image off the screen, enable drawing into the depth buffer, a
stencil function so that it increments whenever a depth comparison succeeds but leaves th
buffer unchanged otherwise. Disable drawing into the color buffer.

Next, draw the image eight times, offset one pixel in each vertical, horizontal, and diagonal
direction. When you’re done, the stencil buffer contains a count of the number of live neighl

each pixel. Enable drawing to the color buffer, set the color to the color for live cells, and se
stencil function to draw only if the value in the stencil buffer is 3 (three live neighbors). In ac
if this drawing occurs, decrement the value in the stencil buffer. Then draw a rectangle cow
image; this paints each cell that has exactly three live neighbors with the "alive" color.

At this point, the stencil buffers contain 0, 1, 2, 4, 5, 6, 7, 8, and the values under the 2’s ar
The values under 0, 1, 4, 5, 6, 7, and 8 must be cleared to the "dead" color. Set the stencil
to draw whenever the value is not 2, and to zero the stencil values in all cases. Then draw
polygon of the "dead" color across the entire image. You're done.

For a usable demonstration program, you might want to zoom the grid up to a size larger tr
single pixel; it's hard to see detailed patterns with a single pixel per grid pointG8eslinate
System Survival Kit" in Chapter, 2nd"Depth Test"and"Stencil Test" in Chapter 10

Alternative Usesfor glDrawPixels() and glCopyPixels()

You might think ofglDrawPixels() as a way to draw a rectangular region of pixels to the scre
Although this is often what it's used for, some other interesting uses are outlined here.

® Video - Even if your machine doesn’t have special video hardware, you can display st
movie clips by repeatedly drawing frames wgtBrawPixels() in the same region of the bz
buffer and then swapping the buffers. The size of the frames you can display with rea:
performance using this method depends on your hardware’s drawing speed, so you 1
limited to 100 x 100 pixel movies (or smaller) if you want smooth fake video.

® Airbrush - In a paint program, your airbrush (or paintbrush) shape can be simulated u
alpha values. The color of the paint is represented as the color values. To paint with a
brush in blue, repeatedly draw a blue square giitmawPixels() where the alpha values al
largest in the center and taper to zero at the edges of a circle centered in the square.
using a blending function that uses alpha of the incoming color and (1-alpha) of the cc
already at the pixel. If the alpha values in the brush are all much less than one, you h
paint over an area repeatedly to get a solid color. If the alpha values are near one, ea
stroke pretty much obliterates the colors underneath.

® Filtered Zooms - If you zoom a pixel image by a nonintegral amount, OpenGL effectiv
uses a box filter, which can lead to rather severe aliasing effects. To improve the filter

jitter the resulting image by amounts less than a pixel and redraw it multiple times, usi
alpha blending to average the resulting pixels. The result is a filtered zoom.

® Transposing Images - You can swap same-size images in plagg®@opyPixels() using the
XOR operation. With this method, you can avoid having to read the images back into
processor memory. If A and B represent the two images, the operation looks like this:

1. A=AXORB

2. B=AXORB

3. A=AXORB

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix A
Order of Operations

This book describes all the operations performed between when vertices are initially specifi
fragments are finally written into the framebuffer. The chapters of this book are arranged in
order that facilitates learning rather than in the exact order in which these operations are ac
performed. Sometimes the exact order of operations doesn’t matter - for example, surfaces
converted to polygons and then transformed, or transformed first and then converted to pol
with identical results - and different implementations of OpenGL might do things differently.

This appendix describes a possible order; any implementation is required to give equivalen
If you want more details than are presented here, sé&ptm&L Reference Manual.

This appendix has the following major sections:
® "Overview"
® "Geometric Operations”
® "Pixel Operations"
® "Fragment Operations”

® "Odds and Ends"

Overview

This section gives an overview of the order of operations, as shdwgure A-1 Geometric data
(vertices, lines, and polygons) follows the path through the row of boxes that include evalue
per-vertex operations, while pixel data (pixels, images, and bitmaps) is treated differently fc
of the process. Both types of data undergo the rasterization and per-fragment operations b
final pixel data is written into the framebuffer.

Vertex Per-vertex
data operations

Evaluators | gelandd primitive

= 2
J assembly 1
Display P er-fragment

Raszterization |- o perations

list —i
3o | i — L \—» Framebuffer

r—- [0 perations =" [assambly
Pixel ™ i | __IToo———— ______Tm—
data

Figure A-1: Order of Operations

All data, whether it describes geometry or pixels, can be saved in a display list or processe
immediately. When a display list is executed, the data is sent from the display list just as if i
sent by the application.

All geometric primitives are eventually described by vertices. If evaluators are used, that de
converted to vertices and treated as vertices from then on. Vertex data may also be stored
used from specialized vertex arrays. Per-vertex calculations are performed on each vertex,
by rasterization to fragments. For pixel data, pixel operations are performed, and the result:
either stored in the texture memory, used for polygon stippling, or rasterized to fragments.

Finally, the fragments are subjected to a series of per-fragment operations, after which the
pixel values are drawn into the framebuffer.

Geometric Operations

Geometric data, whether it comes from a display list, an evaluator, the vertices of a rectanc
raw data, consists of a set of vertices and the type of primitive it describes (a vertex, line, o
polygon). Vertex data includes not only thxey(, z, w) coordinates, but also a normal vector, te»
coordinates, a RGBA color, a color index, material properties, and edge-flag data. All these
elements except the vertex’s coordinates can be specified in any order, and default values
well. As soon as the vertex commagitfertex*() is issued, the components are padded, if
necessary, to four dimensions (usavg 0 andw = 1), and the current values of all the elements
associated with the vertex. The complete set of vertex data is then processed. (If vertex arr
used, vertex data may be batch processed and processed vertices may be reused.)

Per-Vertex Operations

In the per-vertex operations stage of processing, each vertex’s spatial coordinates are tran:
by the modelview matrix, while the normal vector is transformed by that matrix’s inverse tra
and renormalized if specified. If automatic texture generation is enabled, new texture coord
are generated from the transformed vertex coordinates, and they replace the vertex’s old te
coordinates. The texture coordinates are then transformed by the current texture matrix ant
on to the primitive assembly step.

Meanwhile, the lighting calculations, if enabled, are performed using the transformed verte»
normal vector coordinates, and the current material, lights, and lighting model. These calcu
generate new colors or indices that are clamped or masked to the appropriate range and pi
the primitive assembly step.

Primitive Assembly

Primitive assembly differs, depending on whether the primitive is a point, a line, or a polyga
flat shading is enabled, the colors or indices of all the vertices in a line or polygon are set tc
same value. If special clipping planes are defined and enabled, they’re used to clip primitive
three types. (The clipping-plane equations are transformed by the inverse transpose of the
modelview matrix when they’re specified.) Point clipping simply passes or rejects vertices; |
polygon clipping can add additional vertices depending on how the line or polygon is clippe
this clipping, the spatial coordinates of each vertex are transformed by the projection matri»
the results are clipped against the standard viewing plemes&ohgr; ,y = £ &ohgr; , andz= *
&ohgr; .

If selection is enabled, any primitive not eliminated by clipping generates a selection-hit rep
no further processing is performed. Without selection, perspective divisierobgurs and the
viewport and depth-range operations are applied. Also, if the primitive is a polygon, it's ther
subjected to a culling test (if culling is enabled). A polygon might convert to vertices or lines
depending on the polygon mode.

Finally, points, lines, and polygons are rasterized to fragments, taking into account polygon
stipples, line width, and point size. Rasterization involves determining which squares of an
grid in window coordinates are occupied by the primitive. If antialiasing is enabled, coverag
portion of the square that is occupied by the primitive) is also computed. Color and depth vi
also assigned to each such square. If polygon offset is enabled, depth values are slightly rr
by a calculated offset value.

Pixel Operations

Pixels from host memory are first unpacked into the proper number of components. The Of
unpacking facility handles a number of different formats. Next, the data is scaled, biased, a
processed using a pixel map. The results are clamped to an appropriate range depending «
type and then either written in the texture memory for use in texture mapping or rasterized f
fragments.

If pixel data is read from the framebuffer, pixel-transfer operations (scale, bias, mapping, ar
clamping) are performed. The results are packed into an appropriate format and then returr
processor memory.

The pixel copy operation is similar to a combination of the unpacking and transfer operatior

except that packing and unpacking is unnecessary, and only a single pass is made througt
transfer operations before the data is written back into the framebuffer.

Texture Memory

OpenGL Version 1.1 provides additional control over texture memory. Texture image data

specified from framebuffer memory, as well as processor memory. All or a portion of a textt
image may be replaced. Texture data may be stored in texture objects, which can be loade
texture memory. If there are too many texture objects to fit into texture memory at the same
the textures that have the highest priorities remain in the texture memory.

Fragment Operations

If texturing is enabled, a texel is generated from texture memory for each fragment and apg
the fragment. Then fog calculations are performed, if they’re enabled, followed by the appli
of coverage (antialiasing) values, if antialiasing is enabled.

Next comes scissoring, followed by the alpha test (in RGBA mode only), the stencil test, an
depth-buffer test. If in RGBA mode, blending is performed. Blending is followed by ditherinc
logical operation. All these operations may be disabled.

The fragment is then masked by a color mask or an index mask, depending on the mode, ¢
into the appropriate buffer. If fragments are being written into the stencil or depth buffer, me
occurs after the stencil and depth tests, and the results are drawn into the framebuffer withs
performing the blending, dithering, or logical operation.

Oddsand Ends

Matrix operations deal with the current matrix stack, which can be the modelview, the proje
or the texture matrix stack. The commagtd ultMatrix* (), glLoadM atrix* (), and

glL oadl dentity() are applied to the top matrix on the stack, wilieranslate* (), glRotate* (),
glScale* (), glOrtho(), andglFrustum() are used to create a matrix that’'s multiplied by the top
matrix. When the modelview matrix is modified, its inverse transpose is also generated for |
vector transformation.

The commands that set the current raster position are treated exactly like a vertex commar
when rasterization would occur. At this point, the value is saved and is used in the rasterize
pixel data.

The variouglClear () commands bypass all operations except scissoring, dithering, and
writemasking.

|+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix B
State Variables

This appendix lists the queryable OpenGL state variables, their default values, and the commands
for obtaining the values of these variables. The OpenGL Reference Manual contains detailed
information on al the commands and constants discussed in this appendix. This appendix has these
major sections:

® "The Query Commands’

® "OpenGL State Variables'

The Query Commands

In addition to the basic commands to obtain the values of simple state variables (commands such as
glGetlntegerv() and gl sEnabled(), which are described in "Basic State Management" in Chapter
2), there are other specialized commands to return more complex state variables. The prototypes for
these specialized commands are listed here. Some of these routines, such as glGetError () and
glGetString(), have been discussed in more detail elsewhere in the book.

To find out when you need to use these commands and their corresponding symbolic constants, use
the tables in the next section, "OpenGL State Variables." Also see the OpenGL Reference Manual.

void glGetClipPlane(GLenum plane, GLdouble * equation);

GLenum glGetError (void);

void glGetL ight{if} v(GLenum light, GLenum pname, TYPE * params);
void glGetM ap{ifd} v(GLenum target, GLenum query, TYPE *V);

void glGetM aterial{if} v(GLenum face, GLenum pname, TYPE * params);
void glGetPixelM ap{f ui us}v(GLenum map, TYPE *values);

void glGetPolygonStipple(GL ubyte * mask);

const GLubyte * glGetString(GLenum name);

void glGetTexEnv{if} v(GLenum target, GLenum pname, TYPE * params);

void glGetTexGen{ifd} v(GLenum coord, GLenum pname, TYPE * params);

void glGetTexl mage(GLenum target, GLint level, GLenum format,
GLenum type, GLvoid * pixels);

void glGetTexL evel Parameter {if} v(GLenum target, GLint level,
GLenum pname, TYPE * params);

void glGetTexParameter{if} v(GLenum target, GLenum pname,
TYPE * params);

void gluGetNur bsProperty(GL UnurbsObj * nobj, GLenum property,
GLfloat *value);

const GLubyte * gluGetString(GLenum name);

void gluGet T essProper ty(GL Utessel ator *tess, GLenum which,
GLdouble *data);

OpenGL State Variables

The following pages contain tables that list the names of queryable state variables. For each
variable, the tables list a description of it, its attribute group, itsinitial or minimum value, and the
suggested glGet* () command to use for obtaining it. State variables that can be obtained using
glGetBooleanv(), glGetlntegerv(), glGetFloatv(), or glGetDoublev() are listed with just one of
these commands - the one that’ s most appropriate given the type of datato be returned. (Some
vertex array variables can be queried only with glGetPointerv().) These state variables can’t be
obtained using gl sEnabled(). However, state variables for which gll sEnabled() islisted as the
guery command can also be obtained using glGetBooleanv(), glGetlntegerv(), glGetFloatv(), and
glGetDoublev(). State variables for which any other command is listed as the query command can
be obtained only by using that command.

If one or more attribute groups are listed, the state variable belongs to the listed group or groups. If
no attribute group is listed, the variable doesn’'t belong to any group. glPushAttrib(),
glPushClientAttrib(), glPopAttrib(), and glPopClientAttrib() may be used to save and restore all
state values that belong to an attribute group. (See "Attribute Groups" in Chapter 2 for more
information.)

All queryable state variables, except the implementation-dependent ones, have initial values. If no
initial valueislisted, you need to consult either the section where that variable is discussed or the
OpenGL Reference Manual to determineitsinitial value.

Current Values and Associated Data

TableB-1: State Variables for Current Values and Associated Data

State Variable

Description

Attribute
Group

Initial
Value

GL_CURRENT_COLOR

Current
color

current

1,1,1,1

GL_CURRENT_INDEX

Current
color index

current

GL_CURRENT_TEXTURE_COORDS

Current
texture
coordinates

current

0,001

GL_CURRENT_NORMAL

Current
normal

current

0,01

GL_CURRENT_RASTER_POSITION

Current
raster
position

current

0,001

GL_CURRENT_RASTER_DISTANCE

Current
raster
distance

current

GL_CURRENT_RASTER_COLOR

Color
associated
with raster
position

current

1,111

GL_CURRENT_RASTER_INDEX

Color index
associated
with raster
position

current

GL_CURRENT_RASTER_TEXTURE_COORDS

Texture
coordinates
associated
with raster
position

current

0,001

GL_CURRENT_RASTER_POSITION_VALID

Raster
position
valid bit

current

GL_TRUE

GL_EDGE _FLAG

Edgeflag

current

GL_TRUE

Vertex Array

Table B-2: (continued) Vertex Array State Variables

State Variable Description | Attribute Initial
Group Value
GL_VERTEX_ARRAY Vertex array || vertex-array | GL_FALSE
enable
GL _VERTEX_ARRAY_SIZE Coordinates || vertex-array | 4
per vertex
GL_VERTEX_ARRAY_TYPE Type of vertex-array | GL_FLOAT
vertex
coordinates
GL_VERTEX_ ARRAY_STRIDE Stride vertex-array || O
between
vertices
GL_VERTEX_ARRAY_POINTER Pointer to vertex-array | NULL
the vertex
array
GL_NORMAL_ARRAY Normal vertex-array | GL_FALSE
array enable
GL_NORMAL_ARRAY_TYPE Type of vertex-array | GL_FLOAT
normal
coordinates
GL_NORMAL_ARRAY_STRIDE Stride vertex-array || O
between
normals
GL_NORMAL_ARRAY POINTER Pointer to vertex-array | NULL
the normal
array
GL_COLOR_ARRAY RGBA color | vertex-array | GL_FALSE
array enable
GL_COLOR _ARRAY_SIZE Colors per vertex-array | 4

vertex

GL_COLOR_ARRAY_TYPE

Type of
color
components

vertex-array

GL_FLOAT

GL_COLOR ARRAY_STRIDE

Stride
between
colors

vertex-array

GL_COLOR_ARRAY_POINTER

Pointer to
the color

array

vertex-array

NULL

GL_INDEX_ARRAY

Color-index
array enable

vertex-array

GL_FALSE

GL_INDEX_ARRAY_TYPE

Type of
color
indices

vertex-array

GL_FLOAT

GL_INDEX_ARRAY_STRIDE

Stride
between
color
indices

vertex-array

GL_INDEX_ARRAY_POINTER

Pointer to
the index

array

vertex-array

NULL

GL_TEXTURE_COORD_ARRAY

Texture
coordinate
array enable

vertex-array

GL_FALSE

GL_TEXTURE_COORD ARRAY_SIZE

Texture
coordinates
per element

vertex-array

GL_TEXTURE_COORD_ARRAY TYPE

Type of
texture
coordinates

vertex-array

GL_FLOAT

GL_TEXTURE_COORD_ARRAY_STRIDE

Stride
between
texture
coordinates

vertex-array

GL_TEXTURE_COORD_ARRAY POINTER | Pointer to vertex-array | NULL
the texture
coordinate
array
GL_EDGE_FLAG_ARRAY Edgeflag vertex-array | GL_FALSE
array enable
GL_EDGE _FLAG _ARRAY_STRIDE Stride vertex-array || O
between
edge flags
GL_EDGE _FLAG _ARRAY_POINTER Pointer to vertex-array || NULL
the edge
flag array
Transformation
Table B-3 : Transformation State Variables
State Variable Description Attribute | Initial Value
Group
GL_MODELVIEW_MATRIX Modelview - | dentity
matrix stack
GL_PROJECTION_MATRIX Projection - | dentity
matrix stack
GL_TEXTURE_MATRIX Texture - | dentity
matrix stack
GL_VIEWPORT Viewport viewport -
origin and
extent
GL_DEPTH_RANGE Depth range viewport 0,1
near and far
GL_MODELVIEW_STACK_DEPTH | Modelview - 1
matrix stack
poi nter

GL_PROJECTION_STACK_DEPTH

Projection
matrix stack
poi nter

GL_TEXTURE_STACK_DEPTH

Texture
matrix stack
poi nter

GL_MATRIX_MODE

Current
matrix mode

transform

GL_MODELVIEW

GL_NORMALIZE

Current
normal
normalization
on/off

transform/
enable

GL_FALSE

GL_CLIP_PLANEi

User clipping
plane
coefficients

transform

0,0,00

GL_CLIP_PLANEi

ith user
clipping plane
enabled

transform/
enable

GL_FALSE

Coloring

TableB-4:

Coloring State Variables

State Variable Description Attribute | Initial Value Get Command
Group

GL_FOG_COLOR Fog color fog 0,0,0,0 glGetF oatv()

GL_FOG_INDEX Fog index fog 0 ol GetFloatv()

GL_FOG_DENSITY Exponential fog | fog 1.0 glGetFl oatv()
density

GL_FOG_START Linear fog start fog 0.0 ol GetFloatv()

GL_FOG_END Linear fog end fog 1.0 gl GetFloatv()

GL_FOG_MODE Fog mode fog GL_EXP gl Getintegerv()

GL_FOG Trueif fog fog/enable | GL_FALSE glisEnabled()
enabled

GL_SHADE MODEL | glShadeModel() | lighting GL_SMOOTH | glGetintegerv()
Setting

Lighting

See also Table 5-1 and Table 5-3 for initial values.

Table B-5: (continued) Lighting State Variables

State Variable Description | Attribute | Initial Value C
Group

GL_LIGHTING Trueif lighting/e | GL_FALSE c
lighting is nable
enabled

GL_COLOR_MATERIAL Trueif lighting GL_FALSE C
color
tracking is

enabled

GL_COLOR_MATERIAL_PARAMETER | Materia lighting GL_AMBIENT_ | ¢
properties AND_DIFFUSE
tracking
current
color

GL_COLOR_MATERIAL_FACE Face(s) lighting GL_FRONT _ C
affected by AND_BACK
color
tracking

GL_AMBIENT Ambient lighting (0.2,0.2,0.2, C
material 1.0)
color

GL_DIFFUSE Diffuse lighting (0.8,0.8, 0.8, C
material 1.0)
color

GL_SPECULAR Specular lighting (0.0, 0.0, 0.0, C
material 1.0)
color

GL_EMISSION Emissive lighting (0.0, 0.0, 0.0, C
material 1.0)
color

GL_SHININESS Specular lighting 0.0 C
exponent of
material

GL_LIGHT _MODEL_AMBIENT Ambient lighting (0.2,0.2,0.2, C
scene color 1.0)

GL_LIGHT_MODEL_LOCAL_VIEWER | Vieweris lighting GL_FALSE C
local

GL_LIGHT_MODEL_TWO_SIDE Use lighting GL_FALSE C
two-sided
lighting

GL_AMBIENT Ambient lighting (0.0,0.0,0.0,2.0) C
intensity of

light i

GL_DIFFUSE

Diffuse
intensity of
light i

lighting

(@]

GL_SPECULAR

Specular
intensity of
light i

lighting

(@]

GL_POSITION

Position of
light i

lighting

(0.0, 0.0, 1.0,
0.0)

GL_CONSTANT_ATTENUATION

Constant
attenuation
factor

lighting

1.0

(@]

GL_LINEAR_ATTENUATION

Linear
attenuation
factor

lighting

0.0

GL_QUADRATIC_ATTENUATION

Quadratic
attenuation
factor

lighting

0.0

(e}

GL_SPOT_DIRECTION

Spotlight
direction of

light i

lighting

(0.0, 0.0, -1.0)

(@)

GL_SPOT_EXPONENT

Spotlight
exponent of

light i

lighting

0.0

(@}

GL_SPOT_CUTOFF

Spotlight
angle of
light i

lighting

180.0

(@)

GL_LIGHTI

Trueif light
i enabled

lighting/e
nable

GL_FALSE

(@]

GL_COLOR_INDEXES

ca, cd, and
csfor
color-index
lighting

lighting/e
nable

011

o

Rasterization

Table B-6 : (continued) Rasterization State Variables

State Variable Description Attribute Initial
Group Value
GL_POINT_SIZE Point size point 1.0
GL_POINT_SMOQOTH Point antialiasing point/enable GL_FALSE
on
GL_LINE_WIDTH Line width line 1.0
GL_LINE_SMOQOTH Line antialiasing line/enable GL_FALSE
on
GL_LINE_STIPPLE_PATTERN Line stipple line 1s
GL_LINE_STIPPLE_REPEAT Linestipplerepeat | line 1
GL_LINE_STIPPLE Line stipple line/enable GL_FALSE
enable
GL_CULL_FACE Polygon culling polygon/enable | GL_FALSE
enabled
GL_CULL_FACE_MODE Cull polygon GL_BACK
front-/back-facing
polygons
GL_FRONT_FACE Polygon front-face | polygon GL_CCWwW
CW/CCW
indicator
GL_POLYGON_SMOQOTH Polygon polygon/enable | GL_FALSE
antialiasing on
GL_POLYGON_MODE Polygon polygon GL_FILL
rasterization mode
(front and back)
GL_POLYGON_OFFSET_FACTOR | Polygon offset polygon 0
factor
GL_POLYGON_OFFSET_BIAS Polygon offset polygon 0

bias

GL_POLYGON_OFFSET_POINT

Polygon offset
enable for
GL_POINT mode
rasterization

polygon/enable

GL_FALSE

GL_POLYGON_OFFSET_LINE

Polygon offset
enable for
GL_LINE mode
rasterization

polygon/enable

GL_FALSE

GL_POLYGON_OFFSET _FILL

Polygon offset
enable for
GL_FILL mode
rasterization

polygon/enable

GL_FALSE

GL_POLYGON_STIPPLE

Polygon stipple
enable

polygon/enable

GL_FALSE

Polygon stipple
pattern

polygon-stipple

1s

Texturing
Table B-7 : (continued) Texturing State Variables
State Variable Description Attribute | Initial Value | G
Group

GL_TEXTURE_x Trueif x-D texture/e GL_FALSE gll
texturing enabled nable
(xis1D or 2D)

GL_TEXTURE_BINDING_x Texture object texture GL_FALSE gl
bound to
GL_TEXTURE_ x
(xis1D or 2D)

GL_TEXTURE x-D textureimage | - - o] [
at level of detail i

GL_TEXTURE_WIDTH x-D textureimage | - 0 gl
I’'swidth

GL_TEXTURE_HEIGHT x-D textureimage | - 0 gl
I’s height

priority

GL_TEXTURE_BORDER x-D textureimage | - 0 gl
i’s border width

GL_TEXTURE_INTERNAL x-D textureimage | - 1 gl

_FORMAT I’sinterna image
format

GL_TEXTURE_RED_SIZE x-D textureimage | - 0 gl
i’sred resolution

GL_TEXTURE_GREEN_SIZE x-D textureimage | - 0 gl
I’sgreen
resolution

GL_TEXTURE_BLUE_SIZE x-D textureimage | - 0 gl
I’s blue resolution

GL_TEXTURE_ALPHA _SIZE x-D textureimage | - 0 gl
i’sapha
resolution

GL_TEXTURE_LUMINANCE_SIZE | x-D textureimage | - 0 gl
I’s luminance
resolution

GL_TEXTURE_INTENSITY_SIZE x-D textureimage | - 0 gl¢
I’sintensity
resolution

GL_TEXTURE_BORDER_COLOR Texture border texture 0,000 gl¢
color

GL_TEXTURE_MIN_FILTER Texture texture GL_ gl¢
minification NEAREST _
function MIPMAP_

LINEAR

GL_TEXTURE_MAG _FILTER Texture texture GL_LINEAR | gl¢
magnification
function

GL_TEXTURE_WRAP_x Texture wrap texture GL_REPEAT | gl¢
mode (xisSor T)

GL_TEXTURE_PRIORITY Texture object texture 1 gl

GL_TEXTURE_RESIDENCY Textureresidency | texture GL_FALSE gl

GL_TEXTURE_ENV_MODE Texture texture GL_ gl
application MODULATE
function

GL_TEXTURE_ENV_COLOR Texture texture 0,000 gl¢
environment color

GL_TEXTURE_GEN_Xx Texgen enabled (x | texture/e | GL_FALSE all
IsS, T, R, or Q) nable

GL_EYE PLANE Texgen plane texture - gl
equation
coefficients

GL_OBJECT _PLANE Texgen object texture - o] [
linear coefficients

GL_TEXTURE_GEN_MODE Function used for texture GL_EYE_ gl
texgen LINEAR

Pixel Operations
Table B-8: (continued) Pixel Operations
State Variable Description | Attribute Initial Value C
Group C

GL_SCISSOR_TEST Scissoring scissor/enable GL_FALSE g
enabled

GL_SCISSOR_BOX Scissor box | scissor - g

GL_ALPHA_TEST Alphatest color-buffer/ GL_FALSE g
enabled enable

GL_ALPHA_TEST_FUNC Alphatest color-buffer GL_ALWAYS | g
function

GL_ALPHA _TEST_REF Alphatest color-buffer 0 g

reference
value

GL_STENCIL_TEST Stenciling stencil-buffer/en | GL_FALSE
enabled able

GL_STENCIL_FUNC Stencil stencil-buffer GL_ALWAYS
function

GL_STENCIL_VALUE_MASK Stencil stencil-buffer 1's
mask

GL_STENCIL_REF Stencil stencil-buffer 0
reference
value

GL_STENCIL_FAIL Stencil fall stencil-buffer GL_KEEP
action

GL_STENCIL_PASS DEPTH_FAIL | Stencil stencil-buffer GL_KEEP
depth buffer
fail action

GL_STENCIL_PASS DEPTH_PASS | Stencil stencil-buffer GL_KEEP
depth buffer
pass action

GL_DEPTH_TEST Depth depth-buffer/ena | GL_FALSE
buffer ble
enabled

GL_DEPTH_FUNC Depth depth-buffer GL_LESS
buffer test
function

GL_BLEND Blending color-buffer/ GL_FALSE
enabled enable

GL_BLEND_SRC Blending color-buffer GL_ONE
source
function

GL_BLEND_DST Blending color-buffer GL_ZERO
destination
function

GL_DITHER Dithering color-buffer/ GL_TRUE

enabled

enable

GL_INDEX_LOGIC OP

Color index
logical
operation
enabled

color-buffer/
enable

GL_FALSE

GL_COLOR_LOGIC_OP

RGBA
color
logical
operation
enabled

color-buffer/
enable

GL_FALSE

GL_LOGIC_OP MODE

Logical
operation
function

color-buffer

GL_COPY

Framebuffer Control

Table B-9 : Framebuffer Control State Variables

State Variable Description Attribute Initial Get
Group Value

GL_DRAW_BUFFER Buffers selected for color-buffer - gl Ge
drawing

GL_INDEX _WRITEMASK Color-index color-buffer 1s gl Ge
writemask

GL_COLOR _WRITEMASK Color write enables; | color-buffer GL_TRUE | glGe
R, G, B,or A

GL_DEPTH_WRITEMASK Depth buffer depth-buffer | GL_TRUE | glGe
enabled for writing

GL_STENCIL_WRITEMASK Stencil-buffer stencil-buffer | 1's 0l Ge
writemask

GL_COLOR_CLEAR _VALUE Color-buffer clear color-buffer 0,0,0,0 gl Ge
value (RGBA mode)

GL_INDEX_CLEAR_VALUE Color-buffer clear color-buffer 0 gl Ge
value (color-index
mode)

GL_DEPTH_CLEAR VALUE Depth-buffer clear depth-buffer | 1 glGe
value

GL_STENCIL_CLEAR_VALUE | Stencil-buffer clear stencil-buffer | O gl Ge
value

GL_ACCUM_CLEAR VALUE | Accumulation-buffer | accum-buffer | O 0l Ge
clear value

Pixels

Table B-10: (continued) Pixel State Variables

State Variable Description Attribute | Initial

Group Value

GL_UNPACK_SWAP_BYTES | Vaueof pixel-store | GL_FALS

GL_UNPACK_SWAP_BYTES

GL_UNPACK_LSB_FIRST Value of pixel-store | GL_FALS
GL_UNPACK_LSB_FIRST

GL_UNPACK_ROW_LENGTH | Value of pixel-store | O
GL_UNPACK_ROW_LENGTH

GL_UNPACK_SKIP_ROWS Value of pixel-store | O
GL_UNPACK_SKIP_ROWS

GL_UNPACK_SKIP _PIXELS Value of pixel-store || O
GL_UNPACK_SKIP_PIXELS

GL_UNPACK_ALIGNMENT Value of pixel-store | 4
GL_UNPACK_ALIGNMENT

GL_PACK_SWAP BYTES Value of pixel-store | GL_FALS
GL_PACK_SWAP _BYTES

GL_PACK_LSB_FIRST Value of pixel-store | GL_FALS
GL_PACK_LSB_FIRST

GL_PACK_ROW_LENGTH Value of pixel-store | O
GL_PACK_ROW_LENGTH

GL_PACK_SKIP_ROWS Value of pixel-store | O
GL_PACK_SKIP_ROWS

GL_PACK_SKIP PIXELS Value of pixel-store || O
GL_PACK_SKIP_PIXELS

GL_PACK_ALIGNMENT Value of pixel-store | 4
GL_PACK_ALIGNMENT

GL_MAP_COLOR Trueif colors are mapped pixel GL_FALS

GL_MAP_STENCIL Trueif stencil values are mapped | pixel GL_FALS

GL_INDEX_SHIFT Vaueof GL_INDEX_SHIFT pixel 0

GL_INDEX_OFFSET Value of GL_INDEX_OFFSET pixel 0

GL_x SCALE Vaueof GL_x SCALE; xis pixel 1

GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, or
GL_DEPTH

GL_x BIAS Vaueof GL_x BIAS; xisone pixel 0
of GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, or
GL_DEPTH
GL_ZOOM_X x zoom factor pixel 1.0
GL_ZOOM_Y y zoom factor pixel 1.0
GL_x glPixelMap() trandation tables; x | - 0's
isamap name from Table 8-1
GL_x SIZE Size of table x - 1
GL_READ_BUFFER Read source buffer pixel -
Evaluators
Table B-11: Evaluator State Variables
State Variable Description | Attribute Initial Get
Group Value Command
GL_ORDER 1D map - 1 glGetMapiv()
order
GL_ORDER 2D map - 1,1 glGetMapiv()
orders
GL_COEFF 1D control - - glGetMapfv()
points
GL_COEFF 2D control - - glGetM apfv()
points
GL_DOMAIN 1D domain - - glGetM apfv()
endpoints
GL_DOMAIN 2D domain - - glGetMapfv()
endpoints

GL_MAPL x

1D map
enables: Xis

map type

eva/enable

GL_FALSE

gllsEnabled()

GL_MAP2 x

2D map
enables: xis

map type

eva/enable

GL_FALSE

gllsEnabled()

GL_MAP1_GRID_DOMAIN

1D grid
endpoints

evd

0,1

gl GetFloatv()

GL_MAP2_GRID_DOMAIN

2D grid
endpoints

evd

0,101

gl GetFloatv()

GL_MAPL_GRID_SEGMENTS

1D grid
divisions

evd

gl GetFloatv()

GL_MAP2_GRID_SEGMENTS

2D grid
divisions

evd

11

glGetFloatv()

GL_AUTO_NORMAL

Trueif
automatic
normal
generation
enabled

evd

GL_FALSE

glIsEnabled()

Hints

Table B-12 : Hint State Variables

State Variable Description || Attribute | Initial Value
Group

GL_PERSPECTIVE_CORRECTION_HINT | Perspective | hint GL_DONT_CARE
correction
hint

GL_POINT_SMOQOTH_HINT Point hint GL_DONT_CARE
smooth hint

GL_LINE SMOOTH_HINT Line hint GL_DONT_CARE
smooth hint

GL_POLYGON_SMOOTH_HINT Polygon hint GL_DONT_CARE
smooth hint

GL_FOG_HINT Fog hint hint GL_DONT_CARE

I mplementation-Dependent Values

Table B-13 : (continued) Implementation-Dependent State Variables

State Variable Description Attribute | Minimui
Group Value

GL_MAX_LIGHTS Maximum number | - 8

of lights
GL_MAX_CLIP_PLANES Maximum number | - 6

of user clipping

planes
GL_MAX_MODELVIEW_STACK_DEPTH Maximum - 32

model view-matrix

stack depth
GL_MAX_PROJECTION_STACK_DEPTH Maximum - 2

projection-matrix

stack depth
GL_MAX_TEXTURE_STACK_DEPTH Maximum depth - 2

of texture matrix

stack

GL_SUBPIXEL_BITS

Number of bits of
subpixel precision
inxandy

GL_MAX_TEXTURE_SIZE

Seediscussion in
"Texture Proxy" in
Chapter 9

GL_MAX_PIXEL_MAP_TABLE

Maximum size of
aglPixelMap()
translation table

32

GL_MAX_NAME_STACK_DEPTH

M aximum
sdl ection-name
stack depth

GL_MAX_LIST_NESTING

Maximum
display-list call
nesting

GL_MAX_EVAL_ORDER

Maximum
evaluator
polynomial order

GL_MAX_VIEWPORT DIMS

Maximum
viewport
dimensions

GL_MAX_ATTRIB_STACK_DEPTH

Maximum depth
of the attribute
stack

16

GL_MAX_CLIENT ATTRIB_STACK_DEPTH

Maximum depth
of the client
attribute stack

16

GL_AUX_BUFFERS

Number of
auxiliary buffers

GL_RGBA_MODE Trueif color -
buffers store
RGBA

GL_INDEX_MODE Trueif color -
buffers store

indices

GL_DOUBLEBUFFER Trueif front and - -
back buffers exist

GL_STEREO Trueif left and - -
right buffers exist

GL_POINT_SIZE_RANGE Range (low to - 1,1
high) of
antialiased point
Sizes

GL_POINT_SIZE_GRANULARITY Antialiased - -
point-size
granularity

GL_LINE WIDTH_RANGE Range (low to - 1,1
high) of
antidliased line
widths

GL_LINE_WIDTH_GRANULARITY Antialiased - -
line-width
granularity

| mplementation-Dependent Pixel Depths

Table B-14 : Implementation-Dependent Pixel-Depth State V ariables (continued)

State Variable Description Attribute | Minimum || Get Command
Group Value

GL_RED BITS Number of bits | - - ol Getintegerv()
per red

component in
color buffers

GL_GREEN_BITS Number of bits | - - gl GetlIntegerv()
per green

component in
color buffers

GL_BLUE_BITS Number of bits | - - ol Getintegerv()
per blue

component in
color buffers

GL_ALPHA_BITS

Number of bits
per apha
component in
color buffers

gl Getlntegerv()

GL_INDEX_BITS

Number of bits
per index in
color buffers

glGetlntegerv()

GL_DEPTH_BITS

Number of
depth-buffer
bitplanes

gl Getlntegerv()

GL_STENCIL_BITS

Number of
stencil
bitplanes

gl GetlIntegerv()

GL_ACCUM_RED BITS

Number of bits
per red
component in
the
accumulation
buffer

ol Getintegerv()

GL_ACCUM_GREEN BITS

Number of bits
per green
component in
the
accumulation
buffer

gl Getlntegerv()

GL_ACCUM_BLUE_BITS

Number of bits
per blue
component in
the
accumulation
buffer

ol Getintegerv()

GL_ACCUM_ALPHA BITS

Number of bits
per apha
component in
the
accumulation
buffer

ol Getlntegerv()

M iscellaneous

Table B-15 : Miscellaneous State Variables

State Variable Description Attribute | Initial Value
Group
GL_LIST BASE Setting of list 0
glListBase()
GL_LIST_INDEX Number of - 0
display list
under
construction; O
if none
GL_LIST_MODE Mode of display | - 0
list under
construction;
undefined if
none
GL_ATTRIB_STACK_DEPTH Attribute stack - 0
poi nter
GL_CLIENT_ATTRIB_STACK_DEPTH | Client attribute - 0
stack pointer
GL_NAME_STACK _DEPTH Name stack - 0
depth
GL_RENDER_MODE glRenderMode() | - GL_RENDER
setting
GL_SELECTION_BUFFER POINTER Pointer to select 0
selection buffer
GL_SELECTION_BUFFER _SIZE Size of selection | select 0
buffer
GL_FEEDBACK_BUFFER POINTER Pointer to feedback 0
feedback buffer
GL_FEEDBACK_BUFFER_SIZE Size of feedback 0
feedback buffer
GL_FEEDBACK BUFFER _TYPE Type of feedback GL 2D

feedback buffer

Current error - 0 (
code(s)

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix C
OpenGL and Window Systems

OpenGL is available on many different platforms and works with many different window systems.
OpenGL is designed to complement window systems, not duplicate their functionality. Therefore,
OpenGL performs geometric and image rendering in two and three dimensions, but it does not
manage windows or handle input events.

However, the basic definitions of most window systems don’t support alibrary as sophisticated as
OpenGL, with its complex and diverse pixel formats, including depth, stencil, and accumulation
buffers, as well as double-buffering. For most window systems, some routines are added to extend
the window system to support OpenGL.
This appendix introduces the extensions defined for several window and operating systems: the X
Window System, the Apple Mac OS, OS2 Warp from IBM, and Microsoft Windows NT and
Windows 95. Y ou need to have some knowledge of the window systems to fully understand this
appendix.
This appendix has the following major sections:

® "GLX: OpenGL Extension for the X Window System™

® "AGL: OpenGL Extension to the Apple Macintosh"

® "PGL: OpenGL Extension for IBM OS/2 Warp"

® "WGL: OpenGL Extension for Microsoft Windows NT and Windows 95"

GL X: OpenGL Extension for the X Window System

In the X Window System, OpenGL rendering is made available as an extension to X in the formal
X sense. GLX isan extension to the X protocol (and its associated API) for communicating
OpenGL commands to an extended X server. Connection and authentication are accomplished with
the normal X mechanisms.

Aswith other X extensions, there is a defined network protocol for OpenGL’s rendering commands
encapsulated within the X byte stream, so client-server OpenGL rendering is supported. Since
performanceis critical in three-dimensional rendering, the OpenGL extension to X allows OpenGL
to bypass the X server’ sinvolvement in data encoding, copying, and interpretation and instead
render directly to the graphics pipeline.

The X Visua isthe key data structure to maintain pixel format information about the OpenGL
window. A variable of datatype XVisuallnfo keeps track of pixel information, including pixel type
(RGBA or color index), single or double-buffering, resolution of colors, and presence of depth,
stencil, and accumulation buffers. The standard X Visuals (for example, PseudoColor, TrueColor)
do not describe the pixel format details, so each implementation must extend the number of X
Visuals supported.

The GLX routines are discussed in more detail in the OpenGL Reference Manual. Integrating
OpenGL applications with the X Window System and the Motif widget set is discussed in great
detail in OpenGL Programming for the X Window System by Mark Kilgard (Reading, MA:
Addison-Wesley Developers Press, 1996), which includes full source code examples. If you
absolutely want to learn about the internals of GL X, you may want to read the GLX specification,
which can be found at

ftp://sgigate. sgi.conl pub/opengl/doc/

Initialization

Use glXQueryExtension() and giXQueryVersion() to determine whether the GLX extension is
defined for an X server and, if so, which version is present. glXQueryExtensionsString() returns
extension information about the client-server connection. glXGetClientString() returns
information about the client library, including extensions and version number.

gIXQueryServer String() returns similar information about the server.

gIXChooseVisual() returns a pointer to an XVisuallnfo structure describing the visual that meets
the client’ s specified attributes. Y ou can query avisual about its support of a particular OpenGL
attribute with giXGetConfig().

Controlling Rendering

Several GLX routines are provided for creating and managing an OpenGL rendering context. Y ou
can use such a context to render off-screen if you want. Routines are also provided for such tasks as
synchronizing execution between the X and OpenGL streams, swapping front and back buffers, and
using an X font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with glX CreateContext(). One of the arguments to this
routine allows you to request a direct rendering context that bypasses the X server as described
previously. (Note that to do direct rendering, the X server connection must be local, and the
OpenGL implementation needs to support direct rendering.) giXCreateContext() also allows
display-list and texture-object indices and definitions to be shared by multiple rendering contexts.
Y ou can determine whether a GLX context is direct with gl X1sDirect().

To make arendering context current, use gilXMakeCurrent(); giXGetCurrentContext() returns
the current context. Y ou can also obtain the current drawable with glXGetCurrentDrawable() and
the current X Display with gIXGetCurrentDisplay(). Remember that only one context can be
current for any thread at any one time. If you have multiple contexts, you can copy selected groups
of OpenGL state variables from one context to another with glXCopyContext(). When you’'re
finished with a particular context, destroy it with giXDestr oyContext().

Off-Screen Rendering

To render off-screen, first create an X Pixmap and then pass this as an argument to

gIXCreateGL XPixmap(). Once rendering is compl eted,

you can destroy the association between the X and GLX Pixmaps with gIXDestroyGL XPixmap().
(Off-screen rendering isn't guaranteed to be supported for direct renderers.)

Synchronizing Execution

To prevent X requests from executing until any outstanding OpenGL rendering is completed, call
gIXWaitGL (). Then, any previously issued OpenGL commands are guaranteed to be executed
before any X rendering calls made after giIXWaitGL (). Although the same result can be achieved
with glFinish(), giIXWaitGL () doesn’'t require around trip to the server and thus is more efficient
in cases where the client and server are on separate machines.

To prevent an OpenGL command sequence from executing until any outstanding X requests are
completed, use glXWaitX(). This routine guarantees that previously issued X rendering calls are
executed before any OpenGL calls made after glXWaitX().

Swapping Buffers

For drawables that are double-buffered, the front and back buffers can be exchanged by calling
glXSwapBuffers(). Animplicit glFlush() is done as part of this routine.

Using an X Font
A shortcut for using X fontsin OpenGL is provided with the command gl XUseXFont(). This

routine builds display lists, each of which calls glBitmap(), for each requested character from the
specified font and font size.

GL X Prototypes

Initialization

Determine whether the GLX extension is defined on the X server:

Bool giXQueryExtension (Display *dpy, int *errorBase, int *eventBase);
Query version and extension information for client and server:

Bool giXQueryVersion (Display *dpy, int *major, int *minor);

const char* gIXGetClientString (Display *dpy, int name);

const char* gIXQueryServer String (Display *dpy, int screen, int name);
const char* gIXQueryExtensionsString (Display *dpy, int screen);

Obtain the desired visual:

XVisualnfo* giXChooseVisual (Display *dpy, int screen,
int *attribList);

int gIXGetConfig (Display *dpy, XVisualInfo *visual, int attrib,
int *value);

Controlling Rendering
Manage or query an OpenGL rendering context:

GL X Context glX CreateContext (Display *dpy, XVisualInfo *visual,
GL X Context sharelist, Bool direct);

void glXDestroyContext (Display *dpy, GL XContext context);

void giXCopyContext (Display *dpy, GL X Context source,
GL X Context dest, unsigned long mask);

Bool gIXIsDirect (Display *dpy, GL X Context context);

Bool giXMakeCurrent (Display *dpy, GLXDrawable draw,
GL X Context context);

GL X Context gIXGetCurrentContext (void);
Display* giXGetCurrentDisplay (void);
GLXDrawable gIXGetCurrentDrawable (void);
Perform off-screen rendering:

GLXPixmap glXCreateGL XPixmap (Display *dpy, XVisuaInfo *visual,
Pixmap pixmap);

void gIXDestroyGL XPixmayp (Display *dpy, GLXPixmap pix);
Synchronize execution:

void giXWaitGL (void);

void giXWaitX (void);

Exchange front and back buffers:

void giXSwapBuffers (Display *dpy, GLXDrawable drawable);
Usean X font:

void giXUseXFont (Font font, int first, int count, int listBase);

AGL: OpenGL Extension to the Apple Macintosh

This section covers the routines defined as the OpenGL extension to the Apple Macintosh (AGL),
as defined by Template Graphics Software. An understanding of the way the Macintosh handles
graphics rendering (QuickDraw) is required. The Macintosh Toolbox Essentials and Imaging With
QuickDraw manuals from the Inside Macintosh series are also useful to have at hand.

For more information (including how to obtain the OpenGL software library for the Power
Macintosh), you may want to check out the web site for OpenGL information at Template Graphics
Software:

http://ww. sd. tgs. conf Product s/ opengl . ht m

For the Macintosh, OpenGL rendering is made available as alibrary that is either compiled in or
resident as an extension for an application that wishes to make use of it. OpenGL isimplemented in
software for systems that do not possess hardware acceleration. Where acceleration is available
(through the QuickDraw 3D Accelerator), those capabilities that match the OpenGL pipeline are
used with the remaining functionality being provided through software rendering.

The datatype AGLPixelFmtID (the AGL equivalent to XVisualInfo) maintains pixel information,
including pixel type (RGBA or color index), single- or double-buffering, resolution of colors, and
presence of depth, stencil, and accumulation buffers.

In contrast to other OpenGL implementations on other systems (such as the X Window System),
the client/server model is not used. However, you may still need to call glFlush() since some
hardware accelerators buffer the OpenGL pipeline and require a flush to empty it.

I nitialization

Use aglQueryVersion() to determine what version of OpenGL for the Macintosh is available.

The capabilities of underlying graphics devices and your requirements for rendering buffers are
resolved using aglChoosePixelFmt(). Use aglL istPixel Fmts() to find the particular formats
supported by a graphics device. Given a pixel format, you can determine which attributes are
available by using aglGetConfig().

Rendering and Contexts

Several AGL routines are provided for creating and managing an OpenGL rendering context. Y ou
can use such a context to render into either awindow or an off-screen graphics world. Routines are
also provided that allow you to swap front and back rendering buffers, adjust buffers in response to
amove, resize or graphics device change event, and use Macintosh fonts. For software rendering
(and in some cases, hardware-accelerated rendering) the rendering buffers are created in your
application memory space. For the application to work properly you must provide sufficient
memory for these buffersin your application’s SIZE resource.

Managing an OpenGL Rendering Context
An OpenGL rendering context is created (at least one context per window being rendered into) with

aglCreateContext(). This takes the pixel format you selected as a parameter and usesit to initialize
the context.

Use agiM akeCurrent() to make a rendering context current. Only one context can be current for a
thread of control at any time. Thisindicates which drawable is to be rendered into and which
context to use with it. It's possible for more than one context to be used (not simultaneously) with a
particular drawable. Two routines allow you to determine which is the current rendering context
and drawable being rendered into: aglGetCurrentContext() and aglGetCurrentDrawable().

If you have multiple contexts, you can copy selected groups of OpenGL state variables from one
context to another with aglCopyContext(). When a particular context is finished with, it should be
destroyed by calling aglDestr oyContext().

On-screen Rendering

With the OpenGL extensions for the Apple Macintosh you can choose whether window clipping is
performed when writing to the screen and whether the cursor is hidden during screen writing
operations. Thisisimportant since these two items may affect how fast rendering can be performed.
Call aglSetOptions() to select these options.

Off-screen Rendering

To render off-screen, first create an off-screen graphics world in the usual way, and pass the handle
into aglCreateAGL Pixmap(). This routine returns a drawabl e that can be used with
aglMakeCurrent(). Once rendering is completed, you can destroy the association with

aglDestr oyAGL Pixmap().

Swapping Buffers

For drawables that are double-buffered (as per the pixel format of the current rendering context),
call aglSwapBuffers() to exchange the front and back buffers. An implicit glFlush() is performed
as part of thisroutine.

Updating the Rendering Buffers

The Apple Macintosh toolbox requires you to perform your own event handling and does not
provide away for libraries to automatically hook in to the event stream. So that the drawables
maintained by OpenGL can adjust to changes in drawable size, position and pixel depth,
aglUpdateCurrent() is provided.

This routine must be called by your event processing code whenever one of these events occursin
the current drawable. Ideally the scene should be rerendered after a update call to take into account
the changes made to the rendering buffers.

Using an Apple Macintosh Font

A shortcut for using Macintosh fonts is provided with aglUseFont(). This routine builds display
lists, each of which calls gIBitmap(), for each requested character from the specified font and font
size.

Error Handling

An error-handling mechanism is provided for the Apple Macintosh OpenGL extension. When an

error occurs you can call aglGetError () to get amore precise description of what caused the error.

AGL Prototypes

Initialization

Determine AGL version:

GLboolean aglQueryVersion (int *major, int *minor);
Pixel format selection, availability, and capability:

AGLPixelFmtID aglChoosePixelFmt (GDHandle *dev, int ndev,
int *attribs);

int aglL istPixelFmts (GDHandle dev, AGLPixel FmtID ** fmts);
GLboolean aglGetConfig (AGLPixelFmtID pix, int attrib, int *value);
Controlling Rendering

Manage an OpenGL rendering context:

AGL Context aglCreateContext (AGLPixelFmtID pix,
AGL Context shareList);

GLboolean aglDestroyContext (AGL Context context);

GL boolean aglCopyContext (AGL Context source, AGL Context dest,
GLuint mask);

GLboolean aglM akeCurrent (AGL Drawable drawable,
AGL Context context);

GLboolean aglSetOptions (int opts);

AGL Context aglGetCurrentContext (void);
AGLDrawable aglGetCurrentDrawable (void);
Perform off-screen rendering:

AGLPixmap aglCreateAGL Pixmap (AGLPixelFmtID pix,
GWorldPtr pixmap);

GLboolean aglDestroyAGL Pixmap (AGLPixmap pix);
Exchange front and back buffers:

GL boolean aglSwapBuffers (AGLDrawable drawable);

Update the current rendering buffers:
GLboolean aglUpdateCurrent (void);
Use a Macintosh font:

GLboolean aglUseFont (int familylD, int size, int first, int count,
int listBase);

Find the cause of an error:

GLenum aglGetError (void);

PGL: OpenGL Extension for IBM OS2 Warp

OpenGL rendering for IBM OS/2 Warp is accomplished by using PGL routines added to integrate
OpenGL into the standard IBM Presentation Manager. OpenGL with PGL supports both a direct
OpenGL context (which is often faster) and an indirect context (which allows some integration of
Gpi and OpenGL rendering).

The datatype VISUALCONFIG (the PGL equivalent to XVisuallnfo) maintains the visual
configuration, including pixel type (RGBA or color index), single- or double-buffering, resolution
of colors, and presence of depth, stencil, and accumulation buffers.

To get more information (including how to obtain the OpenGL software library for IBM OS/2
Warp, Version 3.0), you may want to start at

http://ww. austin. i bm coni sof t war e/ Qpen@./

Packaged along with the software is the document, OpenGL On OS2 Warp, which provides more
detailed information. OpenGL support is included with the base operating system with OS/2 Warp
Version 4.

I nitialization

Use pglQueryCapability() and pglQueryVersion() to determine whether the OpenGL is supported
on this machine and, if so, how it is supported and which version is present. pglChooseConfig()
returns a pointer to an VISUAL CONFIG structure describing the visual configuration that best
meets the client’ s specified attributes. A list of the particular visual configurations supported by a
graphics device can be found using pglQueryConfigs().

Controlling Rendering

Several PGL routines are provided for creating and managing an OpenGL rendering context,
capturing the contents of a bitmap, synchronizing execution between the Presentation Manager and
OpenGL streams, swapping front and back buffers, using a color palette, and using an OS/2 logical
font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with pglCreateContext(). One of the arguments to this
routine allows you to request a direct rendering context that bypasses the Gpi and render to a PM
window, which is generally faster. Y ou can determine whether a OpenGL context is direct with
pgallsindirect().

To make arendering context current, use pglMakeCurrent(); pglGetCurrentContext() returns the
current context. Y ou can aso obtain the current window with pglGetCurrentWindow(). Y ou can
copy some OpenGL state variables from one context to another with pglCopyContext(). When
you're finished with a particular context, destroy it with pglDestroyContext().

Access the Bitmap of the Front Buffer

To lock access to the bitmap representation of the contents of the front buffer, use
pgalGrabFrontBitmap(). An implicit giIFlush() is performed, and you can read the bitmap, but its
contents are effectively read-only. Immediately after access is completed, you should call
pglReleaseFrontBitmap() to restore write access to the front buffer.

Synchronizing Execution

To prevent Gpi rendering requests from executing until any outstanding OpenGL rendering is
completed, call pglWaitGL (). Then, any previously issued OpenGL commands are guaranteed to
be executed before any Gpi rendering calls made after pglWaitGL ().

To prevent an OpenGL command sequence from executing until any outstanding Gpi requests are
completed, use pglWaitPM (). This routine guarantees that previously issued Gpi rendering calls
are executed before any OpenGL calls made after pglWaitPM ().

Note: OpenGL and Gpi rendering can be integrated in the same window only if the OpenGL
context is an indirect context.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be exchanged by calling
pglSwapBuffers(). An implicit glFlush() is done as part of this routine.

Using a Color Index Palette

When you arerunning in 8-bit (256 color) mode, you have to worry about color palette
management. For windows with a color index Visual Configuration, call

pglSelectColor I ndexPalette() to tell OpenGL what color-index palette you want to use with
your context. A color palette must be selected before the context isinitially bound to a
window. In RGBA mode, OpenGL setsup a palette automatically.

Using an OS2 L ogical Font

A shortcut for using OS/2 logical fontsin OpenGL is provided with the command pglUseFont ().
This routine builds display lists, each of which calls gIBitmap(), for each requested character from
the specified font and font size.

PGL Prototypes

Initialization

Determine whether OpenGL is supported and, if so, its version number:
long pglQueryCapability (HAB hab);

void pglQueryVersion (HAB hab, int *major, int *minor);

Visual configuration selection, availability and capability:
PVISUALCONFIG pglChooseConfig (HAB hab, int *attribList);
PVISUALCONFIG * pglQueryConfigs (HAB hab);

Controlling Rendering

Manage or query an OpenGL rendering context:

HGC pglCreateContext (HAB hab, PVISUALCONFIG pVisual Config,
HGC sharelist, Bool isDirect);

Bool pglDestroyContext (HAB hab, HGC hgc);

Bool pglCopyContext (HAB hab, HGC source, HGC dest, GL uint mask);
Bool pgIMakeCurrent (HAB hab, HGC hgc, HWND hwnd);

long pallsindirect (HAB hab, HGC hgc);

HGC pglGetCurrentContext (HAB haby);

HWND pglGetCurrentWindow (HAB hab);

Access and release the bitmap of the front buffer:

Bool pglGrabFrontBitmap (HAB hab, HPS *hps, HBITMAP * phbitmap);
Bool pglReleaseFrontBitmap (HAB hab);

Synchronize execution:

HPS pglWaitGL (HAB hab);

void pglWaitPM (HAB hab);

Exchange front and back buffers:

void pglSwapBuffers (HAB hab, HWND hwnd);

Finding a color-index palette:

void pglSelectColor I ndexPalette (HAB hab, HPAL, hpal, HGC hgc);
Usean OS2 logical font:

Bool pglUseFont (HAB hab, HPS hps, FATTRS *fontAttribs,
long logicalld, int first, int count, int listBase);

WGL: OpenGL Extension for Microsoft Windows NT and
Windows 95

OpenGL rendering is supported on systems that run Microsoft Windows NT and Windows 95. The
functions and routines of the Win32 library are necessary to initialize the pixel format and control
rendering for OpenGL. Some routines, which are prefixed by wgl, extend Win32 so that OpenGL
can be fully supported.

For Win32/WGL, the PIXELFORMATDESCRIPTOR is the key data structure to maintain pixel
format information about the OpenGL window. A variable of datatype
PIXELFORMATDESCRIPTOR keeps track of pixel information, including pixel type (RGBA or
color index), single- or double- buffering, resolution of colors, and presence of depth, stencil, and
accumulation buffers.

To get more information about WGL, you may want to start with technical articles available
through the Microsoft Developer Network at

http://ww. m crosoft.com nsdn/

Initialization

Use GetVersion() or the newer GetVersionEx() to determine version information.
ChoosePixelFormat() triesto find a PIXELFORMATDESCRIPTOR with specified attributes. If a
good match for the requested pixel format is found, then SetPixelFormat() should be called to
actually use the pixel format. Y ou should select a pixel format in the device context before calling
wglCreateContext().

If you want to find out details about a given pixel format, use DescribePixelFormat() or, for
overlays or underlays, wglDescribel ayer Plang().

Controlling Rendering

Several WGL routines are provided for creating and managing an OpenGL rendering context,
rendering to a bitmap, swapping front and back buffers, finding a color palette, and using either
bitmap or outline fonts.

Managing an OpenGL Rendering Context
wglCreateContext() creates an OpenGL rendering context for drawing on the device in the

selected pixel format of the device context. (To create an OpenGL rendering context for overlay or
underlay windows, use wglCr eatel.ayer Context() instead.) To make a rendering context current,

use wglMakeCurrent(); wglGetCurrentContext() returns the current context. Y ou can also obtain
the current device context with wglGetCurrentDC(). Y ou can copy some OpenGL state variables
from one context to another with wglCopyContext() or make two contexts share the same display
lists and texture objects with wglShar el ists(). When you' re finished with a particular context,
destroy it with wglDestr oyContext().

OpenGL Rendering to a Bitmap

Win32 has afew routinesto allocate (and deallocate) bitmaps, to which you can render OpenGL
directly. CreateDIBitmap() creates a device-dependent bitmap (DDB) from a device-independent
bitmap (DIB). CreateDI BSection() creates a device-independent bitmap (DIB) that applications
can write to directly. When finished with your bitmap, you can use DeleteObject() to freeit up.
Synchronizing Execution

If you want to combine GDI and OpenGL rendering, be aware there are no equivalents to functions
like gIXWaitGL (), gIXWaitX(), or pglWaitGL () in Win32. Although gIXWaitGL () has no
equivalent in Win32, you can achieve the same effect by calling glFinish(), which waits until all
pending OpenGL commands are executed, or by calling GdiFlush(), which waits until all GDI
drawing has compl eted.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be exchanged by calling
SwapBuffers() or wglSwapL ayer Buffer 5(); the latter for overlays and underlays.

Finding a Color Palette

To access the color palette for the standard (non-layer) bitplanes, use the standard GDI functions to
set the palette entries. For overlay or underlay layers, use wglRealizel ayer Palette(), which maps
palette entries from a given color-index layer plane into the physical palette or initializes the palette
of an RGBA layer plane. wglGetL ayer PaletteEntries() is used to query the entries in pal ettes of
layer planes.

Using a Bitmap or Outline Font

WGL has two routines, wglUseFontBitmaps() and wglUseFontOutlines(), for converting system

fonts to use with OpenGL. Both routines build a display list for each requested character from the
specified font and font size.

WGL Prototypes

Initialization

Determine version information:

BOOL GetVersion (LPOSVERSIONINFO IpVersioninformation);

BOOL GetVersionEx (LPOSVERSIONINFO IpVersionlnformation);

Pixel format availability, selection, and capability:

int ChoosePixelFormat (HDC hdc,
CONST PIXELFORMATDESCRIPTOR * ppfd);

BOOL SetPixelFormat (HDC hdc, int iPixel Format,
CONST PIXELFORMATDESCRIPTOR * ppfd);

int DescribePixelFormat (HDC hdc, int iPixelFormat, UINT nBytes,
LPPIXELFORMATDESCRIPTOR ppfd);

BOOL wglDescribel ayer Plane (HDC hdc, int i Pixel Format,
int iLayerPlane, UINT nBytes, LPLAY ERPLANEDESCRIPTOR plpd);

Controlling Rendering

Manage or query an OpenGL rendering context:

HGLRC wglCreateContext (HDC hdc);

HGLRC wglCreatel ayer Context (HDC hdc, int iLayerPlane);
BOOL wglSharelLists (HGLRC hglrcl, HGLRC hglrc2);
BOOL wglDeleteContext (HGLRC hglrc);

BOOL wglCopyContext (HGLRC hglrcSource, HGLRC higlrcDest,
UINT mask);

BOOL wglMakeCurrent (HDC hdc, HGLRC hglrc);

HGLRC wglGetCurrentContext (VOID) ;

HDC wglGetCurrentDC (VOID);

Access and release the bitmap of the front buffer:

HBITMAP CreateDIBitmap (HDC hdc,

CONST BITMAPINFOHEADER *Ipbmih, DWORD fdwinit,

CONST VOID *Ipblnit, CONST BITMAPINFO *Ipbmi, UINT fuUsage);

HBITMAP CreateDIBSection (HDC hdc, CONST BITMAPINFO * pbmi,
UINT iUsage, VOID * ppvBits, HANDLE hSection, DWORD dwOffset);

BOOL DeleteObject (HGDIOBJ hObject);
Exchange front and back buffers:
BOOL SwapBuffers(HDC hdc);

BOOL wglSwapL ayer Buffers (HDC hdc, UINT fuPlanes);

Finding a color palette for overlay or underlay layers:

int wglGetL ayer PaletteEntries (HDC hdc, int iLayerPlane, int iStart,
int cEntries, CONST COLORREF * pcr);

BOOL wglRealizel ayer Palette (HDC hdc, int iLayerPlane,
BOOL bRealize);

Use abitmap or an outline font:

BOOL wglUseFontBitmaps (HDC hdc, DWORD first, DWORD count,
DWORD listBase);

BOOL wglUseFontOutlines (HDC hdc, DWORD first, DWORD count,
DWORD listBase, FLOAT deviation, FLOAT extrusion, int format,
LPGLYPHMETRICSFLOAT Ipgmf);

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix D

Basicsof GLUT: The OpenGL Utility Toolkit

This appendix describes a subset of Mark Kilgard’s OpenGL Utility Toolkit (GLUT), which isfully
documented in his book, OpenGL Programming for the X Window System (Reading, MA.:
Addison-Wesley Developers Press, 1996). GLUT has become a popular library for OpenGL
programmers, because it standardizes and simplifies window and event management. GLUT has
been ported atop a variety of OpenGL implementations, including both the X Window System and
Microsoft Windows NT.

This appendix has the following major sections:
® "Initializing and Creating a Window"
® "Handling Window and Input Events'
® "L oading the Color Map"
® "Initializing and Drawing Three-Dimensional Objects’
® "Managing a Background Process"
® "Running the Program"

(See "How to Obtain the Sample Code" in the Preface for information about how to obtain the
source code for GLUT.)

With GLUT, your application structures its event handling to use callback functions. (This method
issimilar to using the Xt Toolkit, also known as the X Intrinsics, with awidget set.) For example,
first you open awindow and register callback routines for specific events. Then, you create amain
loop without an exit. In that loop, if an event occurs, its registered callback functions are executed.
Upon completion of the callback functions, flow of control is returned to the main loop.

Initializing and Creating a Window

Before you can open awindow, you must specify its characteristics: Should it be single-buffered or
double-buffered? Should it store colors as RGBA values or as color indices? Where should it
appear on your display? To specify the answers to these questions, call glutlnit(),
glutlnitDisplayM ode(), glutlnitWindowSize(), and glutl nitWindowPosition() before you call
glutCreateWindow() to open the window.

void glutl nit(int argc, char **argv);
glutlnit() should be called before any other GLUT routine, because it initializes the GLUT
library. glutlnit() will also process command line options, but the specific options are
window system dependent. For the X Window System, -iconic, -geometry, and -display are
examples of command line options, processed by glutl nit(). (The parameters to the glutl nit()
should be the same as those to main().)

void glutl nitDisplayMode(unsigned int mode);
Soecifies a display mode (such as RGBA or color-index, or single- or double-buffered) for
windows created when glutCreateWindow() is called. You can also specify that the window
have an associated depth, stencil, and/or accumulation buffer. The mask argument isa
bitwise ORed combination of GLUT _RGBA or GLUT_INDEX, GLUT_SINGLE or
GLUT_DOUBLE, and any of the buffer-enabling flags: GLUT_DEPTH, GLUT_STENCIL, or
GLUT_ACCUM. For example, for a double-buffered, RGBA-mode window with a depth and
stencil buffer, use GLUT_DOUBLE | GLUT_RGBA | GLUT _DEPTH | GLUT_STENCIL. The
default value is GLUT_RGBA | GLUT_SINGLE (an RGBA, single-buffered window).

void glutl nitWindowSize(int width, int height);

void glutl nitWindowPosition(int x, int y);
Requests windows created by glutCreateWindow() to have an initial size and position. The
arguments (X, y) indicate the location of a corner of the window, relative to the entire display.
The width and height indicate the window' s size (in pixels). The initial window size and
position are hints and may be overridden by other requests.

int glutCreateWindow(char * name);
Opens a window with previously set characteristics (display mode, width, height, and so on).
The string name may appear in thetitle bar if your window system does that sort of thing. The
window is not initially displayed until glutMainLoop() is entered, so do not render into the
window until then.
The value returned is a unique integer identifier for the window. Thisidentifier can be used
for controlling and rendering to multiple windows (each with an OpenGL rendering context)
from the same application.

Handling Window and | nput Events

After the window is created, but before you enter the main loop, you should register callback
functions using the following routines.

void glutDisplayFunc(void (* func)(void));
Soecifies the function that’ s called whenever the contents of the window need to be redrawn.
The contents of the window may need to be redrawn when the window is initially opened,
when the window is popped and window damage is exposed, and when glutPostRedisplay() is
explicitly called.

void glutReshapeFunc(void (* func)(int width, int height));
Soecifies the function that’s called whenever the window is resized or moved. The argument
func is a pointer to a function that expects two arguments, the new width and height of the
window. Typically, func calls glViewport(), so that the display is clipped to the new size, and
it redefines the projection matrix so that the aspect ratio of the projected image matches the
viewport, avoiding aspect ratio distortion. If glutReshapeFunc() isn’t called or is

deregistered by passing NULL, a default reshape function is called, which calls glViewport(O,
0, width, height).

void glutKeyboardFunc(void (* func)(unsigned int key, int x, int y);
Soecifies the function, func, that’s called when a key that generates an ASCI| character is
pressed. The key callback parameter is the generated ASCII value. The x and y callback
parameters indicate the location of the mouse (in window-relative coordinates) when the key
was pressed.

void glutMouseFunc(void (* func)(int button, int state, int x, int y));
Soecifies the function, func, that’s called when a mouse button is pressed or released. The
button callback parameter isone of GLUT_LEFT _BUTTON, GLUT_MIDDLE_BUTTON, or
GLUT_RIGHT_BUTTON. The state callback parameter is either GLUT_UP or
GLUT_DOWN, depending upon whether the mouse has been released or pressed. The x and y
callback parameters indicate the location (in window-r el ative coordinates) of the mouse when
the event occurred.

void glutMotionFunc(void (* func)(int x, int y));
Soecifies the function, func, that’s called when the mouse pointer moves within the window
while one or more mouse buttons is pressed. The x and y callback parametersindicate the
location (in window-relative coordinates) of the mouse when the event occurred.

void glutPostRedisplay(void);
Marks the current window as needing to be redrawn. At the next opportunity, the callback
function registered by glutDisplayFunc() will be called.

L oading the Color Map

If you're using color-index mode, you might be surprised to discover there’s no OpenGL routine to
load a color into a color lookup table. This is because the process of loading a color map depends
entirely on the window system. GLUT provides a generalized routine to load a single color index
with an RGB value, glutSetColor ().

void glutSetColor(GLint index, GLfloat red, GLfloat green, GLfloat blue);
Loads the index in the color map, index, with the given red, green, and blue values. These
values are normalized to liein the range [0.0,1.0].

Initializing and Drawing T hree-Dimensional Objects

Many sample programs in this guide use three-dimensional models to illustrate various rendering
properties. The following drawing routines are included in GLUT to avoid having to reproduce the
code to draw these models in each program. The routines render all their graphicsin immediate
mode. Each three-dimensional model comes in two flavors: wireframe without surface normals, and
solid with shading and surface normals. Use the solid version when you' re applying lighting. Only
the teapot generates texture coordinates.

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);
void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

void glutWireCube(GLdouble size);
void glutSolidCube(GLdouble size);

void glutWireTorus(GLdouble innerRadius, GLdouble outer Radius,
GLint nsides, GLint rings);
void glutSolidTorus(GLdouble innerRadius, GLdouble outer Radius,
GLint nsides, GLint rings);

void glutWirel cosahedron(void);
void glutSolidl cosahedron(void);

void glutWireOctahedron(void);
void glutSolidOctahedron(void);

void glutWireTetrahedron(void);
void glutSolidTetrahedron(void);

void glutWireDodecahedron(GLdouble radius);
void glutSolidDodecahedron(GLdouble radius);

void glutWireCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);
void glutSolidCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);

void glutWireTeapot(GLdouble size);
void glutSolidTeapot(GLdouble size);

Managing a Background Process

Y ou can specify afunction that’ s to be executed if no other events are pending - for example, when
the event loop would otherwise be idle - with glutldleFunc(). Thisis particularly useful for
continuous animation or other background processing.

void glutldleFunc(void (* func)(void));
Soecifies the function, func, to be executed if no other events are pending. If NULL (zero) is
passed in, execution of func isdisabled.

Running the Program

After al the setup is completed, GLUT programs enter an event processing loop, glutM ainL oop().

void glutMainLoop(void);
Entersthe GLUT processing loop, never to return. Registered callback functions will be
called when the corresponding events instigate them.

*| [+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix E
Calculating Normal Vectors

This appendix describes how to calculate normal vectors for surfaces. You need to define r
to use the OpenGL lighting facility, which is describe€hapter 5"Normal Vectors" in Chapter
introduces normals and the OpenGL command for specifying them. This appendix goes thr
details of calculating them. It has the following major sections:

® "Finding Normals for Analytic Surfaces"
® "Finding Normals from Polygonal Data"

Since normals are perpendicular to a surface, you can find the normal at a particular point «
surface by first finding the flat plane that just touches the surface at that point. The normal i
vector that’s perpendicular to that plane. On a perfect sphere, for example, the normal at a
the surface is in the same direction as the vector from the center of the sphere to that point
other types of surfaces, there are other, better means for determining the normals, dependi
how the surface is specified.

Recall that smooth curved surfaces are approximated by a large number of small flat polyg
the vectors perpendicular to these polygons are used as the surface normals in such an
approximation, the surface appears faceted, since the normal direction is discontinuous aci
polygonal boundaries. In many cases, however, an exact mathematical description exists ft
surface, and true surface normals can be calculated at every point. Using the true normals
the rendering considerably, as showirigure E-1 Even if you don’t have a mathematical
description, you can do better than the faceted look shown in the figure. The two major sec
this appendix describe how to calculate normal vectors for these two cases:

® "Finding Normals for Analytic Surfacegxplains what to do when you have a mathemat
description of a surface.

® "Finding Normals from Polygonal Databvers the case when you have only the polygotr
data to describe a surface.

Figure E-1: Rendering with Polygonal Normals vs. True Normals

Finding Normalsfor Analytic Surfaces
Analytic surfaces are smooth, differentiable surfaces that are described by a mathematical
(or set of equations). In many cases, the easiest surfaces to find normals for are analytic st
which you have an explicit definition in the following form:

V(st) = [X(st) Y(st) Z(st)]

wheres andt are constrained to be in some domain, dnd, andZ are differentiable functions ¢
two variables. To calculate the normal, find

which are vectors tangent to the surface instedt directions. The cross product

3V L av
2 o

is perpendicular to both and, hence, to the surface. The following shows how to calculate tt
product of two vectors. (Watch out for the degenerate cases where the cross product has z
length!)

[vy vg] se [wy W] = [(0y W wywg) (Wa vy - W) (Va Wy - Waiy) |

You should probably normalize the resulting vector. To normalize a vector [x y z], calculate
length

Length = &+ ¥+ 7

and divide each component of the vector by the length.
As an example of these calculations, consider the analytic surface
V(st) =[s2t3 3t]

From this we have

8Y _ [250-1], 2V = [0.32 5], and 2¥x 3_"_ [-3 252 65¢]
oax ; ds

So, for example, whesr1 andt=2, the corresponding point on the surface is (1, 8, 1), and the
vector (-24, 2, 24) is perpendicular to the surface at that point. The length of this vector is 3
unit normal vector is (-24/34, 2/34, 24/34) = (-0.70588, 0.058823, 0.70588).

For analytic surfaces that are described implicithy@sy, z) = 0, the problem is harder. In som
cases, you can solve for one of the variableszsa$(x, y), and put it in the explicit form given
previously:

Viagti=[stGE (s 0]

Then continue as described earlier.

If you can’t get the surface equation in an explicit form, you might be able to make use of tr
that the normal vector is given by the gradient

VF:[E F F_}
& ¥

evaluated at a particular poing {,). Calculating the gradient might be easy, but finding a po
that lies on the surface can be difficult. As an example of an implicitly defined analytic funct
consider the equation of a sphere of radius 1 centered at the origin:

X2+y2+2z2-1=0)

This means that

F(X,y,2)=x2+y2+2z2-1

which can be solved farto yield

Thus, normals can be calculated from the explicit form
Vis =[5t 17 7]

as described previously.

If you could not solve fog, you could have used the gradient
VF = I:Ex 2y Ez]

as long as you could find a point on the surface. In this case, it's not so hard to find a point
example, (2/3, 1/3, 2/3) lies on the surface. Using the gradient, the normal at this point is (4
4/3). The unit-length normal is (2/3, 1/3, 2/3), which is the same as the point on the surface
expected.

Finding Normals from Polygonal Data

As mentioned previously, you often want to find normals for surfaces that are described wit
polygonal data such that the surfaces appear smooth rather than faceted. In most cases, tt
way for you to do this (though it might not be the most efficient way) is to calculate the norn
vectors for each of the polygonal facets and then to average the normals for neighboring fa
the averaged normal for the vertex that the neighboring facets have in comgura.E-2shows &
surface and its polygonal approximation. (Of course, if the polygons represent the exact su
aren’t merely an approximation - if you're drawing a cube or a cut diamond, for example - d
the averaging. Calculate the normal for each facet as described in the following paragraphs
that same normal for each vertex of the facet.)

Figure E-2: Averaging Normal Vectors

To find the normal for a flat polygon, take any three vertides2, andv3 of the polygon that do
not lie in a straight line. The cross product

[V1-v2] x [v2 - V3]

is perpendicular to the polygon. (Typically, you want to normalize the resulting vector.) The
need to average the normals for adjoining facets to avoid giving too much weight to one of
For instance, in the example showrFigure E-2 if n1, n2, n3, andn4 are the normals for the fot
polygons meeting at point P, calculaiern2+n3+n4 and then normalize it. (You can get a bette
average if you weight the normals by the size of the angles at the shared intersection.) The

vector can be used as the normal for point P.

Sometimes, you need to vary this method for particular situations. For instance, at the bour
surface (for example, point Q Figure E-3, you might be able to choose a better normal base
your knowledge of what the surface should look like. Sometimes the best you can do is to ¢
the polygon normals on the boundary as well. Similarly, some models have some smooth [
some sharp corners (point R is on such an edggure E-3. In this case, the normals on eithel
side of the crease shouldn’'t be averaged. Instead, polygons on one side of the crease shot
drawn with one normal, and polygons on the other side with another.

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix F
Homogeneous Coordinates and
Transformation Matrices

This appendix presents a brief discussion of homogeneous coordinates. It also lists the forr
transformation matrices used for rotation, scaling, translation, perspective projection, and
orthographic projection. These topics are introduced and discusSédpter 3For a more
detailed discussion of these subjects, see almost any book on three-dimensional computer
for example Computer Graphics: Principles and Practice by Foley, van Dam, Feiner, and Hugt
(Reading, MA: Addison-Wesley, 1990) - or a text on projective geometry - for exarplReal
Projective Plane, by H. S. M. Coxeter, 2nd ed. (Cambridge: Cambridge University Press, 19
the discussion that follows, the term homogeneous coordinates always means three-dimen
homogeneous coordinates, although projective geometries exist for all dimensions.

This appendix has the following major sections:
® "Homogeneous Coordinates”

® "Transformation Matrices"

Homogeneous Coordinates

OpenGL commands usually deal with two- and three-dimensional vertices, but in fact all ar
internally as three-dimensional homogeneous vertices comprising four coordinates. Every «
vector &, y, z, W)T represents a homogeneous vertex if at least one of its elements is nonzet
real number is nonzero, therx(y, z, w)T and @x, ay, az, aw)T represent the same homogene
vertex. (This is just like fractiongly = (ax)/(ay).) A three-dimensional euclidean space pomy
2)T becomes the homogeneous vertex with coordinatgsZ, 1.0)T, and the two-dimensional
euclidean pointx, y)T becomesx, y, 0.0, 1.0)T.

As long asw is nonzero, the homogeneous vertex/(z, w)T corresponds to the three-dimensic
point x/w, y/w, Zw)T. If w = 0.0, it corresponds to no euclidean point, but rather to some ide:
"point at infinity." To understand this point at infinity, consider the point (1, 2, 0, 0), and note
the sequence of points (1, 2, 0, 1), (1, 2, 0, 0.01), and (1, 2.0, 0.0, 0.0001), corresponds to
euclidean points (1, 2), (100, 200), and (10000, 20000). This sequence represents points rz
moving toward infinity along the linex2=y. Thus, you can think of (1, 2, 0, 0) as the point at
infinity in the direction of that line.

Note: OpenGL might not handle homogeneous clip coordinateswwti® correctly. To be sure
that your code is portable to all OpenGL systems, use only nonnegatalaes.

Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and shearing) and projectic
as perspective and orthographic) can all be represented by applying an appropriate 4 x 4 n
the coordinates representing the vertex.riépresents a homogeneous vertexind a 4 x 4
transformation matrix, thellv is the image of under the transformation . (In
computer-graphics applications, the transformations used are usually nonsingular - in other
the matrixM can be inverted. This isn’t required, but some problems arise with nonsingular
transformations.)

After transformation, all transformed vertices are clipped saxthyaiandz are in the range |-
&ohgr; , w] (assumingv > 0). Note that this range corresponds in euclidean space to [-1.0, 1

Transforming Normals

Normal vectors aren’t transformed in the same way as vertices or position vectors. Mathenr
it's better to think of normal vectors not as vectors, but as planes perpendicular to those ve
Then, the transformation rules for normal vectors are described by the transformation rules
perpendicular planes.

A homogeneous plane is denoted by the row veatds, €, d), where at least one afb, c, ord is
nonzero. Ifg is a nonzero real number, thenl, c, d) and @a, gb, qc, qd) represent the same
plane. A pointX, Yy, z, W)T is on the planea(b, c, d) if ax+by+cz+dw = 0. (Ifw = 1, this is the
standard description of a euclidean plane.) In ordetafds, €, d) to represent a euclidean plane,
least one o0&, b, orc must be nonzero. If they’re all zero, then (0, @)0epresents the "plane al
infinity," which contains all the "points at infinity."

If p is a homogeneous plane and a homogeneous vertex, then the statemels on plang”
is written mathematically gsv = 0, wheregv is normal matrix multiplication. IM is a nonsingule
vertex transformation (that is, a 4 x 4 matrix that has an in\&¢&® thenpv = 0 is equivalent to
pM-1Mv = 0, soMvV lies on the planpM-1. ThuspM-1 is the image of the plane under the ve
transformatiorM.

If you like to think of normal vectors as vectors instead of as the planes perpendicular to tte
andn be vectors such thatis perpendicular ta. Then,nTv = 0. Thus, for an arbitrary nonsingu
transformatiorM, nTM-1Mv = 0, which means that nTM-1 is the transpose of the transforme
normal vector. Thus, the transformed normal vect@vlisl)Tn. In other words, normal vectors ¢
transformed by the inverse transpose of the transformation that transforms points. Whew!

Transformation Matrices

Although any nonsingular matrM represents a valid projective transformation, a few specia
matrices are particularly useful. These matrices are listed in the following subsections.

Trandation

The callgiTrandate* (x, y, z2) generate3, where

100x 100-7

_ lotoy 1 lotoy

T= o017 =4T7= 15013

0001 000 1
Scaling

The callglScale* (x, y, 2) generates S, where

o
Looo
£000 loo
s= [9900) anagts |7
00270 oolo
0001 :
0001

Notice that S-1 is defined onlyxf y, andz are all nonzero.

Rotation
The callglRotate* (a, X, y, 2) generates R as follows:

Letv=(x,y, 2)T,and u = V/||v|| = (X, Yy, Z')T.

Also let
O _zl yl
S= |7 0w mdM=uul +(cosea) (I-uuD) + (sina) 3
-yt x' 0
Then
mmm 0
R= | 0 whers m raprasants elements from M, which is a 3x3 matrix,
mmml
o0l

TheR matrix is always defined. ¥=y=z=0, thenR is the identity matrix. You can obtain the
inverse ofR, R-1, by substituting &agr; for a, or by transposition.

TheglRotate* () command generates a matrix for rotation about an arbitrary axis. Often, you
rotating about one of the coordinate axes; the corresponding matrices are as follows:

0 0

q
. . cosa -sina 0
glRotate®(a, 1, 0, 0 sina cose 0

1

0 0

oD o

[cosa 0 sina O
0 1 0 0
glRotate®{a, 0, 1, 0 sma D cosa 0

1

0 0 0

[cosa -sma 0 0]
glRotate®(a, 0, 0, 11 Solna ooosa [1] %

o o 0 1

As before, the inverses are obtained by transposition.
Per spective Projection

The callglFrustum(l, r, b, t, n, f) generate®, where

L G0 0 e
B = 0 rzib H 0 and -1 = 0 Iz_nb I;nb

0 0 "if;:f) % 0 0 -

0 0o 1 0] 0 0 %%_ﬁ

R is defined as long dstne;r, t ≠ b, andn ≠ f.
Orthographic Projection

The callglOrtho(l, r, b, t, n, f) generateR, where

__2 ral _d rad]
F-l : 0 r-i 2 0 0 2
2 t+d t-b t+ b

R: o t-b 0 t-b andR']': 0 2 0 2
00 fin ;_*nﬁ o o L:# ”;f

] 0] 1] 0 1

R is defined as long dstne; r, t ≠ b, andn ≠ f.

*| [+ OpenGL Programming Guide

(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix G
Programming TIps
This appendix lists some tips and guidelines that you might find useful. Keep in mind that these tips
are based on the intentions of the designers of the OpenGL, not on any experience with actual
applications and implementations! This appendix has the following major sections:

® "OpenGL Correctness Tips'

® "OpenGL Performance Tips'

® "GLX Tips"

OpenGL CorrectnessTips

® Perform error checking often. Call glGetError() at least once each time the scene is rendered
to make certain error conditions are noticed.

@ Do not count on the error behavior of an OpenGL implementation - it might changein a
future release of OpenGL. For example, OpenGL 1.1 ignores matrix operations invoked
between glBegin() and glEnd() commands, but a future version might not. Put another way,
OpenGL error semantics may change between upward-compatible revisions.

® |f you need to collapse all geometry to a single plane, use the projection matrix. If the
modelview matrix is used, OpenGL features that operate in eye coordinates (such as lighting
and application-defined clipping planes) might fail.

® Do not make extensive changes to a single matrix. For example, do not animate a rotation by
continually calling glRotate* () with an incremental angle. Rather, use glL oadl dentity() to
initialize the given matrix for each frame, then call giIRotate* () with the desired complete
angle for that frame.

® Count on multiple passes through arendering database to generate the same pixel fragments
only if this behavior is guaranteed by the invariance rules established for a compliant
OpenGL implementation. (See Appendix H for details on the invariance rules.) Otherwise, a
different set of fragments might be generated.

® Do not expect errors to be reported while adisplay list is being defined. The commands
within adisplay list generate errors only when the list is executed.

® Place the near frustum plane as far from the viewpoint as possible to optimize the operation

of the depth buffer.

Call glFlush() to force all previous OpenGL commands to be executed. Do not count on
glGet* () or glls*() to flush the rendering stream. Query commands flush as much of the
stream asis required to return valid data but don’t guarantee completing al pending rendering
commands.

Turn dithering off when rendering predithered images (for example, when glCopyPixels() is
called).

Make use of the full range of the accumulation buffer. For example, if accumulating four
images, scale each by one-quarter asit’s accumulated.

If exact two-dimensional rasterization is desired, you must carefully specify both the
orthographic projection and the vertices of primitives that are to be rasterized. The
orthographic projection should be specified with integer coordinates, as shown in the
following example:

gluOrtho2D(0, width, 0, height);

where width and height are the dimensions of the viewport. Given this projection matrix,
polygon vertices and pixel image positions should be placed at integer coordinates to rasterize
predictably. For example, glRecti(0, 0, 1, 1) reliably fills the lower left pixel of the viewport,
and glRaster Pos2i(0, 0) reliably positions an unzoomed image at the lower |eft of the
viewport. Point vertices, line vertices, and bitmap positions should be placed at half-integer
locations, however. For example, aline drawn from (x1, 0.5) to (x2, 0.5) will bereliably
rendered along the bottom row of pixelsinto the viewport, and a point drawn at (0.5, 0.5) will
reliably fill the same pixel asglRecti(0, 0, 1, 1).

An optimum compromise that allows all primitives to be specified at integer positions, while
still ensuring predictable rasterization, isto translate x and y by 0.375, as shown in the
following code fragment. Such atransation keeps polygon and pixel image edges safely
away from the centers of pixels, while moving line vertices close enough to the pixel centers.

gl Vi ewport (0, 0, width, height);

gl Mat ri xMbde(GL_PRQIECTI ON) ;

gl Loadl dentity();

gluOrtho2D(0, width, 0, height);

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

gl Transl at ef (0. 375, 0.375, 0.0);

/* render all primtives at integer positions */

Avoid using negative w vertex coordinates and negative q texture coordinates. OpenGL might
not clip such coordinates correctly and might make interpolation errors when shading
primitives defined by such coordinates.

Do not assume the precision of operations, based upon the data type of parameters to OpenGL
commands. For example, if you are using glRotated(), you should not assume that geometric
processing pipeline operates with double-precision floating point. It is possible that the
parameters to glRotated() are converted to a different data type before processing.

OpenGL Performance Tips

UseglColorMaterial() when only asingle material property isbeing varied rapidly (at each
vertex, for example). Use glM aterial() for infrequent changes, or when more than asingle
material property isbeing varied rapidly.

Use glL oadl dentity() to initialize a matrix, rather than loading your own copy of the identity
matrix.

Use specific matrix calls such as glRotate* (), giTransate* (), and glScale* () rather than
composing your own rotation, tranglation, or scale matrices and calling giIM ultM atrix().

Use query functions when your application requires just afew state values for its own
computations. If your application requires several state values from the same attribute group,
use glPushAttrib() and glPopAttrib() to save and restore them.

Use display lists to encapsulate potentially expensive state changes.

Use display lists to encapsulate the rendering calls of rigid objects that will be drawn
repeatedly.

Use texture objects to encapsul ate texture data. Place all the gl TexImage* () calls (including
mipmaps) required to completely specify atexture and the associated gl T exParameter* ()
calls (which set texture properties) into a texture object. Bind this texture object to select the
texture.

If the situation allowsiit, use gI* TexSubl mage() to replace all or part of an existing texture
image rather than the more costly operations of deleting and creating an entire new image.

If your OpenGL implementation supports a high-performance working set of resident
textures, try to make all your textures resident; that is, make them fit into the
high-performance texture memory. If necessary, reduce the size or internal format resolution
of your textures until they all fit into memory. If such areduction creates intolerably fuzzy
textured objects, you may give some textures lower priority, which will, when push comes to
shove, leave them out of the working set.

Use evaluators even for simple surface tessellations to minimize network bandwidth in
client-server environments.

Provide unit-length normalsif it’s possible to do so, and avoid the overhead of
GL_NORMALIZE. Avoid using gl Scale* () when doing lighting because it almost aways
requiresthat GL_NORMALIZE be enabled.

Set glShadeM odel() to GL_FLAT if smooth shading isn’t required.

UseasingleglClear() call per frameif possible. Do not use glClear () to clear small
subregions of the buffers; use it only for complete or near-complete clears.

Useasinglecal to glBegin(GL_TRIANGLES) to draw multiple independent triangles rather
than calling gIBegin(GL_TRIANGLES) multiple times, or calling glBegin(GL_POLY GON).

Evenif only asingletriangle isto be drawn, use GL_TRIANGLES rather than
GL_POLYGON. Useasingle call to glBegin(GL_QUANDS) in the same manner rather than
caling glBegin(GL_POLY GON) repeatedly. Likewise, use asingle call to
glBegin(GL_LINES) to draw multiple independent line segments rather than calling
glBegin(GL_LINES) multiple times.

® Some OpenGL implementations benefit from storing vertex datain vertex arrays. Use of
vertex arrays reduces function call overhead. Some implementations can improve
performance by batch processing or reusing processed vertices.

® |n general, use the vector forms of commands to pass precomputed data, and use the scalar
forms of commands to pass values that are computed near call time.

® Avoid making redundant mode changes, such as setting the color to the same value between
each vertex of aflat-shaded polygon.

® Be sure to disable expensive rasterization and per-fragment operations when drawing or
copying images. OpenGL will even apply textures to pixel imagesif asked to!

® Unless absolutely needed, avoid having different front and back polygon modes.

GLX Tips

® UseglXWaitGL () rather than glFinish() to force X rendering commands to follow GL
rendering commands.

® Likewise, use glXWaitX() rather than XSync() to force GL rendering commands to follow X
rendering commands.

® Be careful when using glXChooseVisual(), because boolean selections are matched exactly.
Since some implementations won't export visuals with al combinations of boolean
capabilities, you should call giXChooseVisual() several timeswith different boolean values
before you give up. For example, if no single-buffered visual with the required characteristics
isavailable, check for a double-buffered visual with the same capabilities. It might be
available, and it’s easy to use.

bl | g OpenGL Programming Guide
(Addison-Wesley Publishing Company)

[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix H
OpenGL Invariance

OpenGL is not a pixel-exact specification. It therefore doesn’t guarantee an exact match between
images produced by different OpenGL implementations. However, OpenGL does specify exact
matches, in some cases, for images produced by the same implementation. This appendix describes
the invariance rules that define these cases.

The obvious and most fundamental caseis repeatability. A conforming OpenGL implementation
generates the same results each time a specific sequence of commands is issued from the same
initial conditions. Although such repeatability is useful for testing and verification, it’s often not
useful to application programmers, because it’s difficult to arrange for equivalent initial conditions.
For example, rendering a scene twice, the second time after swapping the front and back buffers,
doesn’t meet this requirement. So repeatability can’t be used to guarantee a stable, double-buffered
image.

A simple and useful algorithm that counts on invariant execution is erasing aline by redrawing it in
the background color. This algorithm works only if rasterizing the line results in the same fragment
X,y pairs being generated in both the foreground and background color cases. OpenGL requires that
the coordinates of the fragments generated by rasterization be invariant with respect to framebuffer
contents, which color buffers are enabled for drawing, the values of matrices other than those on the
top of the matrix stacks, the scissor parameters, all writemasks, al clear values, the current color,
index, normal, texture coordinates, and edge-flag values, the current raster color, raster index, and
raster texture coordinates, and the material properties. It is further required that exactly the same
fragments be generated, including the fragment color values, when framebuffer contents, color
buffer enables, matrices other than those on the top of the matrix stacks, the scissor parameters,
writemasks, or clear values differ.

OpenGL further suggests, but doesn’t require, that fragment generation be invariant with respect to
the matrix mode, the depths of the matrix stacks, the alphatest parameters (other than alphatest
enable), the stencil parameters (other than stencil enable), the depth test parameters (other than
depth test enable), the blending parameters (other than enable), the logical operation (but not logical
operation enable), and the pixel-storage and pixel-transfer parameters. Because invariance with
respect to several enablesisn’t recommended, you should use other parameters to disable functions
when invariant rendering is required. For example, to render invariantly with blending enabled and
disabled, set the blending parametersto GL_ONE and GL_ZERO to disable blending rather than
caling giDisable(GL_BLEND). Alphatesting, stencil testing, depth testing, and the logical
operation all can be disabled in this manner.

Finally, OpenGL requires that per-fragment arithmetic, such as blending and the depth test, is
invariant to all OpenGL state except the state that directly definesit. For example, the only
OpenGL parameters that affect how the arithmetic of blending is performed are the source and
destination blend parameters and the blend enable parameter. Blending isinvariant to all other state
changes. Thisinvariance holds for the scissor test, the alphatest, the stencil test, the depth test,

blending, dithering, logical operations, and buffer writemasking.

Asaresult of all these invariance requirements, OpenGL can guarantee that images rendered into
different color buffers, either simultaneously or separately using the same command sequence, are
pixel identical. This holdsfor all the color buffersin the framebuffer or al the color buffersin an
off-screen buffer, but it isn't guaranteed between the framebuffer and off-screen buffers.

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

	Chapter 1: Introduction to OpenGL
	Chapter 2: State Management and Drawing Geometric Objects
	Chapter 3: Viewing
	Chapter 4: Color
	Chapter 5: Lighting
	Chapter 6: Blending, Antialiasing, Fog, and Polygon Offset
	Chapter 7: Display Lists
	Chapter 8: Drawing Pixels, Bitmaps, Fonts, and Images
	Chapter 9: Texture Mapping
	Chapter 10: The Framebuffer
	Chapter 11: Tessellators and Quadrics
	Chapter 12: Evaluators and NURBS
	Chapter 13: Selection and Feedback
	Chapter 14: Now That You Know
	Appendix A: Order of Operations
	Appendix B: State Variables
	Appendix C: OpenGL and Window Systems
	Appendix D: Basics of GLUT: The OpenGL Utility ToolKit
	Appendix E: Calculating Normal Vectors
	Appendix F: Homogeneus Coordinates and Transformation Matrices
	Appendix G: Programming Tips
	Appendix H: OpenGL Invariance

