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 Part One 

SOLUTIONS MANUAL 

 
 
 
 
 
 
 

 
This manual contains solutions to all of the problems in Operating Systems, 
Fourth Edition. If you spot an error in a solution or in the wording of a 
problem,  I would greatly appreciate it if you would forward the 
information via email to me at ws@shore.net. An errata sheet for this 
manual, if needed, is available at ftp://ftp.shore.net/members/ws/S/ 

 
W.S. 
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ANSWERS TO PROBLEMS 
1.1 Memory (contents in hex): 300: 3005;   301: 5940;   302: 7006 
 Step 1:  3005 → IR;    Step 2: 3 → AC 
 Step 3:  5940 → IR;    Step 4: 3 + 2 = 5 → AC 
 Step 5:  7006 → IR;    Step 6: AC → Device 6 
 
1.2 1. a. The PC contains 300, the address of the first instruction. This value is loaded 

in to the MAR. 
  b. The value in location 300 (which is the instruction with the value 1940 in 

hexadecimal)  is loaded into the MBR, and the PC is incremented. These two 
steps can be done in parallel. 

  c. The value in the MBR is loaded into the IR.  
 2. a. The address portion of the IR (940) is loaded into the MAR. 
  b. The value in location 940 is loaded into the MBR. 
  c. The value in the MBR is loaded into the AC. 
 3. a. The value in the PC (301) is loaded in to the MAR. 
  b. The value in location 301 (which is the instruction with the value 5941)  is 

loaded into the MBR, and the PC is incremented. 
  c. The value in the MBR is loaded into the IR.  
 4. a. The address portion of the IR (941) is loaded into the MAR. 
  b. The value in location 941 is loaded into the MBR. 
  c. The old value of the AC and the value of location MBR are added and the 

result is stored in the AC. 
 5. a. The value in the PC (302) is loaded in to the MAR. 
  b. The value in location 302 (which is the instruction with the value 2941)  is 

loaded into the MBR, and the PC is incremented. 
  c. The value in the MBR is loaded into the IR.  
 6. a. The address portion of the IR (941) is loaded into the MAR. 
  b. The value in the AC is loaded into the MBR. 
  c. The value in the MBR is stored in location 941. 
 
1.3 a. 224 = 16 MBytes 
 b. (1) If the local address bus is 32 bits, the whole address can be transferred at 

once and decoded in memory. However, since the data bus is only 16 bits, it 
will require 2 cycles to fetch a 32-bit instruction or operand. 

  (2) The 16 bits of the address placed on the address bus can't access the whole 
memory. Thus a more complex memory interface control is needed to latch the 
first part of the address and then the second part (since the microprocessor will 

CHAPTER 1 
COMPUTER SYSTEM OVERVIEW 
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end in two steps). For a 32-bit address, one may assume the first half will 
decode to access a "row" in memory, while the second half is sent later to access 
a "column" in memory. In addition to the two-step address operation, the 
microprocessor will need 2 cycles to fetch the 32 bit instruction/operand. 

 c. The program counter must be at least 24 bits. Typically, a 32-bit microprocessor 
will have a 32-bit external address bus and a 32-bit program counter, unless on-
chip segment registers are used that may work with a smaller program counter. 
If the instruction register is to contain the whole instruction, it will have to be 
32-bits long; if it will contain only the op code (called the op code register) then 
it will have to be 8 bits long. 

 
1.4 In cases (a) and (b), the microprocessor will be able to access 216 = 64K bytes; the 

only difference is that with an 8-bit memory each access will transfer a byte, while 
with a 16-bit memory an access may transfer a byte or a 16-byte word. For case (c), 
separate input and output instructions are needed, whose execution will generate 
separate "I/O signals" (different from the "memory signals" generated with the 
execution of memory-type instructions); at a minimum, one additional output pin 
will be required to carry this new signal. For case (d), it can support 28 = 256 input 
and 28 = 256 output byte ports and the same number of input and output 16-bit 
ports; in either case, the distinction between an input and an output port is defined 
by the different signal that the executed input or output instruction generated. 

 

1.5 Clock cycle =  
  

1
8 MHz

= 125 ns  

 Bus cycle = 4 × 125 ns = 500 ns 
 2 bytes transferred every 500 ns; thus transfer rate = 4 MBytes/sec 
 
 Doubling the frequency may mean adopting a new chip manufacturing technology 

(assuming each instructions will have the same number of clock cycles); doubling 
the external data bus means wider (maybe newer) on-chip data bus 
drivers/latches and modifications to the bus control logic. In the first case, the 
speed of the memory chips will also need to double (roughly) not to slow down 
the microprocessor; in the second case, the "wordlength" of the memory will have 
to double to be able to send/receive 32-bit quantities. 

 
1.6 a.  Input from the teletype is stored in INPR. The INPR will only accept data from 

the teletype when FGI=0. When data arrives, it is stored in INPR, and FGI is set 
to 1. The CPU periodically checks FGI. If FGI =1, the CPU transfers the contents 
of INPR to the AC and sets FGI to 0. 

   When the CPU has data to send to the teletype, it checks FGO. If FGO = 0, 
the CPU must wait. If FGO = 1, the CPU transfers the contents of the AC to 
OUTR and sets FGO to 0. The teletype sets FGI to 1 after the word is printed. 

 b. The process described in (a) is very wasteful. The CPU, which is much faster 
than the teletype, must repeatedly check FGI and FGO. If interrupts are used, 
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the teletype can issue an interrupt to the CPU whenever it is ready to accept or 
send data. The IEN register can be set by the CPU (under programmer control) 

 
1.7 If a processor is held up in attempting to read or write memory, usually no 

damage occurs except a slight loss of time. However, a DMA transfer may be to or 
from a device that is receiving or sending data in a stream (e.g., disk or tape), and 
cannot be stopped. Thus, if the DMA module is held up (denied continuing access 
to main memory), data will be lost. 

 
1.8 Let us ignore data read/write operations and assume the processor only fetches 

instructions. Then the processor needs access to main memory once every 
microsecond. The DMA module is transferring characters at a rate of 1200 
characters per second, or one every 833 µs. The DMA therefore "steals" every 833rd 

cycle. This slows down the processor approximately  
 
1

833
×100% = 0.12%  

 
1.9 a. The processor can only devote 5% of its time to I/O. Thus the maximum I/O 

instruction execution rate is 106 × 0.05 = 50,000 instructions per second. The I/O 
transfer rate is therefore 25,000 words/second. 

 b. The number of machine cycles available for DMA control is 
 
  106(0.05 × 5 + 0.95 × 2) = 2.15 × 106 
 
  If we assume that the DMA module can use all of these cycles, and ignore any 

setup or status-checking time, then this value is the maximum I/O transfer 
rate. 

 
1.10 a. A reference to the first instruction is immediately followed by a reference to the 

second. 
 b. The ten accesses to a[i] within the inner for loop which occur within a short 

interval of time. 
 
1.11 Define 
 Ci = Average cost per bit, memory level i 
 Si = Size of memory level i 
 Ti = Time to access a word in memory level i 
 Hi = Probability that a word is in memory i and in no higher-level memory 
 Bi = Time to transfer a block of data from memory level (i + 1) to memory level  i 
 
 Let cache be memory level 1; main memory, memory level 2; and so on, for a total 

of N levels of memory. Then 
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Cs =

CiSi
i=1

N
∑

Si
i=1

N
∑

  

 
 The derivation of Ts is more complicated.  We begin with the result from 

probability theory that:  

    
Expected Value of x =  i Pr x = 1[ ]

i=1

N
∑  

 We can write: 

  
Ts  =  TiHi

i=1

N
∑  

 
 We need to realize that if a word is in M1 (cache), it is read immediately. If it is in 

M2 but not M1, then a block of data is transferred from M2 to M1 and then read. 
Thus: 

   T2 = B1 + T1 
 
 Further  
   T3 = B2 + T2 = B1 + B2 + T1 
 
 Generalizing: 

  
T i =  Bj + T1

j=1

i−1
∑  

 So 

    
Ts =  BjHi( )

j=1

i−1
∑

i=2

N
∑ + T1 Hi

i=1

N
∑  

 

 But   
    

H i
i=1

N
∑ = 1  

 
 Finally 

    
Ts =  BjHi( )

j=1

i−1
∑

i=2

N
∑ + T1  

 
1.12 a. Cost = Cm × 8 × 106 = 8 × 103 ¢ = $80 
 b. Cost = Cc × 8 × 106 = 8 × 104 ¢ = $800 
 c. From Equation 1.1 : 1.1 × T1 = T1 + (1 – H)T2 
   (0.1)(100) = (1 – H)(1200) 
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   H = 1190/1200 
 
1.13 There are three cases to consider: 
 
Location of referenced word  Probability Total time for access in ns  
In cache 0.9  20 
Not in cache, but in main 
memory  

(0.1)(0.6) = 0.06 60 + 20 = 80 

Not in cache or main memory  (0.1)(0.4) = 0.04 12ms + 60 + 20 = 12000080 
 
 So the average access time would be: 
 
 Avg = (0.9)(20) + (0.06)(80) + (0.04)(12000080) = 480026 ns 
 
1.14 Yes, if the stack is only used to hold the return address. If the stack is also used to 

pass parameters, then the scheme will work only if it is the control unit that 
removes parameters, rather than machine instructions. In the latter case, the 
processor would need both a parameter and the PC on top of the stack at the same 
time. 
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ANSWERS TO PROBLEMS 

2.1 The answers are the same for (a) and (b). Assume that although processor 
operations cannot overlap, I/O operations can. 

 
  1 Job: TAT = NT Processor utilization = 50% 
  2 Jobs: TAT = NT Processor utilization = 100% 
  4 Jobs: TAT = (2N – 1)NT Processor utilization = 100% 
 
2.2 I/O-bound programs use relatively little processor time and are therefore favored 

by the algorithm. However, if a processor-bound process is denied processor time 
for a sufficiently long period of time, the same algorithm will grant the processor 
to that process since it has not used the processor at all in the recent past. 
Therefore, a processor-bound process will not be permanently denied access. 

 
2.3 There are three cases to consider: 
 

Location of referenced 
word  

Probability Total time for access in ns  

In cache 0.9  20 
 Not in cache, but in main 
memory  

(0.1)(0.6) = 0.06 60 + 20 = 80 

Not in cache or main 
memory  

(0.1)(0.4) = 0.04 12ms + 60 + 20 = 12000080 

 
So the average access time would be: 

 
Avg = (0.9)(20) + (0.06)(80) + (0.04)(12000080) = 480026 ns 

 
2.4 With time sharing, the concern is turnaround time. Time-slicing is preferred 

because it gives all processes access to the processor over a short period of time. In 
a batch system, the concern is with throughput, and the less context switching, the 
more processing time is available for the processes. Therefore, policies that 
minimize context switching are favored. 

 

CHAPTER 2 
OPERATING SYSTEM OVERVIEW 
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2.5 A system call is used by an application program to invoke a function provided by 
the operating system. Typically, the system call results in transfer to a system 
program that runs in kernel mode. 

 
2.6 The system operator can review this quantity to determine the degree of "stress" on 

the system. By reducing the number of active jobs allowed on the system, this 
average can be kept high. A typical guideline is that this average should be kept 
above 2 minutes [IBM86]. This may seem like a lot, but it isn't. 
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ANSWERS TO QUESTIONS 
3.1 An instruction trace for a program is the sequence of instructions that execute for 

that process. 
 
3.2 New batch job; interactive logon; created by OS to provide a service; spawned by 

existing process. See Table 3.1 for details. 
 
3.3 Running: The process that is currently being executed. Ready: A process that is 

prepared to execute when given the opportunity. Blocked: A process that cannot 
execute until some event occurs, such as the completion of an I/O operation. New: 
A process that has just been created but has not yet been admitted to the pool of 
executable processes by the operating system. Exit: A process that has been 
released from the pool of executable processes by the operating system, either 
because it halted or because it aborted for some reason. 

 
3.4 Process preemption occurs when an executing process is interrupted by the 

processor so that another process can be executed. 
 
3.5 Swapping involves moving part or all of a process from main memory to disk. 

When none of the processes in main memory is in the Ready state, the operating 
system swaps one of the blocked processes out onto disk into a suspend queue, so 
that another process may be brought into main memory to execute. 

 
3.6 There are two independent concepts: whether a process is waiting on an event 

(blocked or not), and whether a process has been swapped out of main memory 
(suspended or not). To accommodate this 2 × 2 combination, we need two Ready 
states and two Blocked states. 

 
3.7 1. The process is not immediately available for execution. 2. The process may or 

may not be waiting on an event. If it is, this blocked condition is independent of 
the suspend condition, and occurrence of the blocking event does not enable the 
process to be executed. 3. The process was placed in a suspended state by an agent: 
either itself, a parent process, or the operating system, for the purpose of 
preventing its execution. 4. The process may not be removed from this state until 
the agent explicitly orders the removal. 

 
3.8 The OS maintains tables for entities related to memory, I/O, files, and processes. 

See Table 3.10 for details. 

CHAPTER 3 
PROCESS DESCRIPTION AND CONTROL 
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3.9 Process identification, processor state information, and process control 

information. 
 
3.10 The user mode has restrictions on the instructions that can be executed and the 

memory areas that can be accessed. This is to protect the operating system from 
damage or alteration. In kernel mode, the operating system does not have these 
restrictions, so that it can perform its tasks. 

 
3.11 1. Assign a unique process identifier to the new process. 2. Allocate space for the 

process. 3. Initialize the process control block. 4. Set the appropriate linkages. 5. 
Create or expand other data structures. 

 
3.12 An interrupt is due to some sort of event that is external to and independent of the 

currently running process, such as the completion of an I/O operation. A trap 
relates to an error or exception condition generated within the currently running 
process, such as an illegal file access attempt. 

 
3.13 Clock interrupt, I/O interrupt, memory fault. 
 
3.14 A mode switch may occur without changing the state of the process that is 

currently in the Running state. A process switch involves taking the currently 
executing process out of the Running state in favor of another process. The process 
switch involves saving more state information. 

 

ANSWERS TO PROBLEMS 
3.1 •Creation and deletion of both user and system processes. The processes in the 

system can execute concurrently for information sharing, computation speedup, 
modularity, and convenience. Concurrent execution requires a mechanism for 
process creation and deletion. The required resources are given to the process 
when it is created, or allocated to it while it is running. When the process 
terminates, the OS needs to reclaim any reusable resources. 

 •Suspension and resumption of processes. In process scheduling, the OS needs to 
change the process's state to waiting or ready state when it is waiting for some 
resources. When the required resources are available, OS needs to change its 
state to running state to resume its execution. 

 •Provision of mechanism for process synchronization. Cooperating processes 
may share data. Concurrent access to shared data may result in data 
inconsistency. OS has to provide mechanisms for processes synchronization to 
ensure the orderly execution of cooperating processes, so that data consistency is 
maintained. 

 •Provision of mechanism for process communication. The processes executing 
under the OS may be either independent processes or cooperating processes. 
Cooperating processes must have the means to communicate with each other. 
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 •Provision of mechanisms for deadlock handling. In a multiprogramming 
environment, several processes may compete for a finite number of resources. If 
a deadlock occurs, all waiting processes will never change their waiting state to 
running state again, resources are wasted and jobs will never be completed. 

 
3.2 The following example is used in [PINK89] to clarify their definition of block and 

suspend: 
 
 Suppose a process has been executing for a while and needs an additional 

magnetic tape drive so that it can write out a temporary file. Before it can 
initiate a write to tape, it must be given permission to use one of the drives. 
When it makes its request, a tape drive may not be available, and if that is the 
case, the process will be placed in the blocked state. At some point, we assume 
the system will allocate the tape drive to the process; at that time the process 
will be moved back to the active state. When the process is placed into the 
execute state again it will request a write operation to its newly acquired tape 
drive. At this point, the process will be move to the suspend state, where it 
waits for the completion of the current write on the tape drive that it now 
owns. 

 
 The distinction made between two different reasons for waiting for a device could 

be useful to the operating system in organizing its work. However, it is no 
substitute for a knowledge of which processes are swapped out and which 
processes are swapped in. This latter distinction is a necessity and must be 
reflected in some fashion in the process state. 

 
3.3 We show the result for a single blocked queue. The figure readily generalizes to 

multiple blocked queues. 
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Segment: 0
1
2
3

0

7

Page descriptor
table

00021ABC

Main memory
(232 bytes)

232 memory
211 page size

= 221 page frames

 
 

3.4 Penalize the Ready, suspend processes by some fixed amount, such as one or two 
priority levels, so that a Ready, suspend process is chosen next only if it has a 
higher priority than the highest-priority Ready process by several levels of 
priority. 

 
3.5 a. A separate queue is associated with each wait state. The differentiation of 

waiting processes into queues reduces the work needed to locate a waiting 
process when an event occurs that affects it. For example, when a page fault 
completes, the scheduler know that the waiting process can be found on the 
Page Fault Wait queue. 

 b. In each case, it would be less efficient to allow the process to be swapped out 
while in this state. For example, on a page fault wait, it makes no sense to swap 
out a process when we are waiting to bring in another page so that it can 
execute. 

 c. The state transition diagram can be derived from the following state transition 
table: 

 
 Next State 

Current State Currently 
Executing 

Computable 
(resident) 

Computable 
(outswapped) 

Variety of wait 
states 
(resident) 

Variety of wait 
states 
(outswapped) 

Currently 
Executing 

 Rescheduled  Wait  

Computable 
(resident) 

Scheduled  Outswap   

Computable 
(outswapped) 

 Inswap    
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Variety of wait 
states (resident) 

 Event satisfied Outswap   

Variety of wait 
states 
(outswapped) 

  Event satisfied   

 
3.6 a. The advantage of four modes is that there is more flexibility to control access to 

memory, allowing finer tuning of memory protection. The disadvantage is 
complexity and processing overhead. For example, procedures running at each 
of the access modes require separate stacks with appropriate accessibility. 

 b. In principle, the more modes, the more flexibility, but it seems difficult to 
justify going beyond four. 

 
3.7 a. With j < i, a process running in Di is prevented from accessing objects in Dj. 

Thus, if Dj contains information that is more privileged or is to be kept more 
secure than information in Di, this restriction is appropriate. However, this 
security policy can be circumvented in the following way. A process running in 
Dj could read data in Dj and then copy that data into Di. Subsequently, a 
process running in Di could access the information. 

 b. An approach to dealing with this problem, known as a trusted system, is 
discussed in Chapter 15. 

 
3.8 a. A application may be processing data received from another process and 

storing the results on disk. If there is data waiting to be taken from the other 
process, the application may proceed to get that data and process it. If a 
previous disk write has completed and there is processed data to write out, the 
application may proceed to write to disk. There may be a point where the 
process is waiting both for additional data from the input process and for disk 
availability. 

 b. There are several ways that could be handled. A special type of either/or 
queue could be used. Or the process could be put in two separate queues. In 
either case, the operating system would have to handle the details of alerting 
the process to the occurrence of both events, one after the other. 

 
3.9 This technique is based on the assumption that an interrupted process A will 

continue to run after the response to an interrupt. But, in general, an interrupt may 
cause the basic monitor to preempt a process A in favor of another process B. It is 
now necessary to copy the execution state of process A from the location associated 
with the interrupt to the process description associated with A. The machine might 
as well have stored them there in the first place. Source: [BRIN73]. 

 
3.10 Because there are circumstances under which a process may not be preempted 

(i.e., it is executing in kernel mode), it is impossible for the operating system to 
respond rapidly to real-time requirements. 
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ANSWERS TO QUESTIONS 
4.1 This will differ from system to system, but in general, resources are owned by the 

process and each thread has its own execution state. A few general comments 
about each category in Table 3.5: Identification: the process must be identified but 
each thread within the process must have its own ID. Processor State Information: 
these are generally process-related. Process control information: scheduling and 
state information would mostly be at the thread level; data structuring could 
appear at both levels; interprocess communication and interthread communication 
may both be supported; privileges may be at both levels; memory management 
would generally be at the process level; and resource info would generally be at 
the process level. 

 
4.2 Less state information is involved. 
 
4.3 Resource ownereship and scheduling/execution. 
 
4.4 Foreground/background work; asynchronous processing; speedup of execution 

by parallel processing of data; modular program structure. 
 
4.5 Address space, file resources, execution privileges are examples. 
 
4.6 1. Thread switching does not require kernel mode privileges because all of the 

thread management data structures are within the user address space of a single 
process. Therefore, the process does not switch to the kernel mode to do thread 
management. This saves the overhead of two mode switches (user to kernel; kernel 
back to user). 2. Scheduling can be application specific. One application may 
benefit most from a simple round-robin scheduling algorithm, while another 
might benefit from a priority-based scheduling algorithm. The scheduling 
algorithm can be tailored to the application without disturbing the underlying OS 
scheduler. 3. ULTs can run on any operating system. No changes are required to 
the underlying kernel to support ULTs. The threads library is a set of application-
level utilities shared by all applications. 

 
4.7 1. In a typical operating system, many system calls are blocking. Thus, when a ULT 

executes a system call, not only is that thread blocked, but all of the threads within 
the process are blocked. 2. In a pure ULT strategy, a multithreaded application 
cannot take advantage of multiprocessing. A kernel assigns one process to only 

CHAPTER 4 
THREADS, SMP, AND MICROKERNELS 
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one processor at a time. Therefore, only a single thread within a process can 
execute at a time.  

 
4.8 Jacketing converts a blocking system call into a nonblocking system call by using 

an application-level I/O routine which checks the status of the I/O device. 
 
4.9 SIMD: A single machine instruction controls the simultaneous execution of a 

number of processing elements on a lockstep basis. Each processing element has 
an associated data memory, so that each instruction is executed on a different set 
of data by the different processors.. MIMD: A set of processors simultaneously 
execute different instruction sequences on different data sets. Master/slave: The 
operating system kernel always runs on a particular processor. The other 
processors may only execute user programs and perhaps operating system 
utilities. SMP: the kernel can execute on any processor, and typically each 
processor does self-scheduling from the pool of available processes or threads. 
Cluster: Each processor hs a dedicated memory, and is a self-contained computer. 

 
4.10 Simultaneous concurrent processes or threads; scheduling; synchronization; 

memory management; reliability and fault tolerance. 
 
4.11 Device drivers, file systems, virtual memory manager, windowing system, and 

security services. 
 
4.12 Uniform interfaces: Processes need not distinguish between kernel-level and user-

level services because all such services are provided by means of message passing. 
Extensibility: facilitates the addition of new services as well as the provision of 
multiple services in the same functional area. Flexibility: not only can new 
features be added to the operating system, but existing features can be subtracted 
to produce a smaller, more efficient implementation. Portability: all or at least 
much of the processor-specific code is in the microkernel; thus, changes needed to 
port the system to a new processor are fewer and tend to be arranged in logical 
groupings. Reliability: A small microkernel can be rigorously tested. Its use of a 
small number of application programming interfaces (APIs) improves the chance 
of producing quality code for the operating-system services outside the kernel. 
Distributed system support: the message orientation of microkernal 
communication lends itself to extension to distributed systems. Support for 
object-oriented operating system (OOOS): An object-oriented approach can lend 
discipline to the design of the microkernel and to the development of modular 
extensions to the operating system. 

 
4.13 It takes longer to build and send a message via the microkernel, and accept and 

decode the reply, than to make a single service call. 
 
4.14 These functions fall into the general categories of low-level memory management, 

inter-process communication (IPC), and I/O and interrupt management. 
 



-16- 

4.15 Messages. 
 

ANSWERS TO PROBLEMS 
4.1 Yes, because more state information must be saved to switch from one process to 

another. 
 
4.2 Because, with ULTs, the thread structure of a process is not visible to the operating 

system, which only schedules on the basis of processes. 
 
4.3 a. The use of sessions is well suited to the needs of an interactive graphics 

interface for personal computer and workstation use. It provides a uniform 
mechanism for keeping track of where graphics output and keyboard/mouse 
input should be directed, easing the task of the operating system. 

 b. The split would be the same as any other process/thread scheme, with address 
space and files assigned at the process level. 

 
4.4 The issue here is that a machine spends a considerable amount of its waking hours 

waiting for I/O to complete. In a multithreaded program, one KLT can make the 
blocking system call, while the other KLTs can continue to run. On uniprocessors, 
a process that would otherwise have to block for all these calls can continue to run 
its other threads. Source: [LEWI96] 

 
4.5 No. When a process exits, it takes everything with it—the KLTs, the process 

structure, the memory space, everything—including threads. Source: [LEWI96] 
 
4.6 As much information as possible about an address space can be swapped out with 

the address space, thus conserving main memory. 
 
4.7 a. If a conservative policy is used, at most 20/4 = 5 processes can be active 

simultaneously. Because one of the drives allocated to each process can be idle 
most of the time, at most 5 drives will be idle at a time. In the best case, none of 
the drives will be idle. 

 b. To improve drive utilization, each process can be initially allocated with three 
tape drives. The fourth one will be allocated on demand. In this policy, at most 
⎣20/3⎦ = 6 processes can be active simultaneously. The minimum number of 
idle drives is 0 and the maximum number is 2. Source: Advanced Computer 
Architecture, K. Hwang, 1993. 

 
4.8 Every call that can possibly change the priority of a thread or make a higher- 

priority thread runnable will also call the scheduler, and it in turn will preempt the 
lower-priority active thread. So there will never be a runnable, higher-priority 
thread. Source: [LEWI96] 
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ANSWERS TO QUESTIONS 
5.1 Communication among processes, sharing of and competing for resources, 

synchronization of the activities of multiple processes, and allocation of processor 
time to processes. 

 
5.2 Multiple applications, structured applications, operating-system structure. 
 
5.3 The ability to enforce mutual exclusion. 
 
5.4 Processes unaware of each other: These are independent processes that are not 

intended to work together. Processes indirectly aware of each other: These are 
processes that are not necessarily aware of each other by their respective process 
IDs, but that share access to some object, such as an I/O buffer. Processes directly 
aware of each other: These are processes that are able to communicate with each 
other by process ID and which are designed to work jointly on some activity. 

 
5.5 Competing processes need access to the same resource at the same time, such as a 

disk, file, or printer. Cooperating processes either share access to a common object, 
such as a memory buffer or are able to communicate with each other, and 
cooperate in the performance of some application or activity. 

 
5.6 Mutual exclusion: competing processes can only access a resource that both wish 

to access one at a time; mutual exclusion mechanisms must enforce this one-at-a-
time policy. Deadlock: if competing processes need exclusive access to more than 
one resource then deadlock can occur if each processes gained control of one 
resource and is waiting for the other resource. Starvation: one of a set of 
competing processes may be indefinitely denied access to a needed resource 
because other members of the set are monopolizing that resouce. 

 
5.7 1. Mutual exclusion must be enforced: only one process at a time is allowed into its 

critical section, among all processes that have critical sections for the same 
resource or shared object. 2. A process that halts in its non-critical section must do 
so without interfering with other processes. 3. It must not be possible for a process 
requiring access to a critical section to be delayed indefinitely: no deadlock or 
starvation. 4. When no process is in a critical section, any process that requests 
entry to its critical section must be permitted to enter without delay. 5. No 
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assumptions are made about relative process speeds or number of processors. 6. A 
process remains inside its critical section for a finite time only. 

 
5.8 1. A semaphore may be initialized to a nonnegative value. 2. The wait operation 

decrements the semaphore value. If the value becomes negative, then the process 
executing the wait is blocked. 3. The signal operation increments the semaphore 
value. If the value is not positive, then a process blocked by a wait operation is 
unblocked. 

 
5.9 A binary semaphore may only take on the values 0 and 1. A general semaphore 

may take on any integer value. 
 
5.10 A strong semaphore requires that processes that are blocked on that semaphore 

are  unblocked using a first-in-first-out policy. A weak semaphore does not dictate 
the order in which blocked processes are unblocked. 

 
5.11 A monitor is a programming language construct providing abstract data types and 

mutually exclusive access to a set of procedures 
 
5.12 There are two aspects, the send and receive primitives. When a send primitive is 

executed in a process, there are two possibilities: either the sending process is 
blocked until the message is received, or it is not. Similarly, when a process issues 
a receive primitive, there are two possibilities: If a message has previously been 
sent, the message is received and execution continues. If there is no waiting 
message, then either (a) the process is blocked until a message arrives, or (b) the 
process continues to execute, abandoning the attempt to receive. 

  
5.13 1. Any number of readers may simultaneously read the file. 2. Only one writer at a 

time may write to the file. 3. If a writer is writing to the file, no reader may read it. 
 
 

ANSWERS TO PROBLEMS 
5.1 b. The read coroutine reads the cards and passes characters through a one-

character buffer, rs, to the squash coroutine. The read coroutine also passes the 
extra blank at the end of every card image. The squash coroutine need known 
nothing about the 80-character structure of the input; it simply looks for double 
asterisks and passes a stream of modified characters to the print coroutine via a 
one-character buffer, sp. Finally, print simply accepts an incoming stream of 
characters and prints it as a sequence of 125-character lines. 

 
5.2 ABCDE; ABDCE; ABDEC; ADBCE; ADBEC; ADEBC; 
 DEABC; DAEBC; DABEC; DABCE 
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5.3 a. On casual inspection, it appears that tally will fall in the range 50 ≤ tally ≤ 100 
since from 0 to 50 increments could go unrecorded due to the lack of mutual 
exclusion. The basic argument contends that by running these two processes 
concurrently we should not be able to derive a result lower than the result 
produced by executing just one of these processes sequentially. But consider 
the following interleaved sequence of the load, increment, and store operations 
performed by these two processes when altering the value of the shared 
variable: 

 
  1. Process A loads the value of tally, increments tally, but then loses the 

processor (it has incremented its register to 1, but has not yet stored this 
value. 

  2. Process B loads the value of tally (still zero) and performs forty-nine 
complete increment operations, losing the processor after it has stored the 
value 49 into the shared variable tally. 

  3. Process A regains control long enough to perform its first store operation 
(replacing the previous tally value of 49 with 1) but is then immediately 
forced to relinquish the processor. 

  4. Process B resumes long enough to load 1 (the current value of tally) into its 
register, but then it too is forced to give up the processor (note that this was 
B's final load). 

  5. Process A is rescheduled, but this time it is not interrupted and runs to 
completion, performing its remaining 49 load, increment, and store 
operations, which results in setting the value of tally to 50. 

  6. Process B is reactivated with only one increment and store operation to 
perform before it terminates. It increments its register value to 2 and stores 
this value as the final value of the shared variable. 

 
  Some thought will reveal that a value lower than 2 cannot occur. Thus, the 

proper range of final values is 2 ≤ tally ≤ 100. 
 b. For the generalized case of N processes, the range of final values is 2 ≤ tally ≤ 

(N × 50), since it is possible for all other processes to be initially scheduled and 
run to completion in step (5) before Process B would finally destroy their work 
by finishing last. 

 Source: [RUDO90]. A slightly different formulation of the same problem appears 
in [BEN98] 

 
5.4 On average, yes, because busy-waiting consumes useless instruction cycles. 

However, in a particular case, if a process comes to a point in the program where it 
must wait for a condition to be satisfied, and if that condition is already satisfied, 
then the busy-wait will find that out immediately, whereas, the blocking wait will 
consume OS resources switching out of and back into the process. 

 
5.5 Consider the case in which turn equals 0 and P(1) sets blocked[1] to true and then 

finds blocked[0] set to false. P(0) will then set blocked[0] to true, find turn = 0, and 
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enter its critical section. P(1) will then assign 1 to turn and will also enter its critical 
section. 

 
5.6 a. Process P1 will only enter its critical section if flag[0] = false. Only P1 may 

modify flag[1], and P1 tests flag[0] only when flag[1] = true. It follows that 
when P1 enters its critical section we have: 

 
   (flag[1] and (not flag[0])) = true 
 
  Similarly, we can show that when P0 enters its critical section: 
 
   (flag[1] and (not flag[0])) = true 
 
 b. Case 1: A single process P(i) is attempting to enter its critical section. It will find 

flag[1-i] set to false, and enters the section without difficulty. 
  Case 2: Both process are attempting to enter their critical section, and turn = 0 

(a similar reasoning applies to the case of turn = 1). Note that once both 
processes enter the while loop, the value of turn is modified only after one 
process has exited its critical section. 

   Subcase 2a: flag[0] = false. P1 finds flag[0] = 0, and can enter its critical 
section immediately. 

   Subcase 2b: flag[0] = true. Since turn = 0, P0 will wait in its external loop for 
flag[1] to be set to false (without modifying the value of flag[0]. Meanwhile, 
P1 sets flag[1] to false (and will wait in its internal loop because turn = 0). At 
that point, P0 will enter the critical section. 

  Thus, if both processes are attempting to enter their critical section, there is no 
deadlock. 

 
5.7 It doesn't work. There is no deadlock; mutual exclusion is enforced; but starvation 

is possible if turn is set to a non-contending process. 
 
5.8 a. With this inequality, we can state that the condition in lines 4-5 is not satisfied 

and Pi can advance to stage j+1. Since the act of checking the condition is not a 
primitive, equation (1) may become untrue during the check: some Pr may set 
q[r] = j; several could do so, but as soon as the first of them also modifies 
turn[j], Pi can proceed (assuming it tries; this assumption is present throughout 
the proof, but will be kept tacit from now on). Moreover, once more than one 
additional process joins stage j, Pi can be overtaken. 

 b. Then either condition (1) holds, and therefore Pi precedes all other processes; or 
turn[j] ≠ i, with the implication the Pi is not the last, among all processes 
currently in lines 1-6 of their programs, to enter stage j. Regardless of how 
many processes modified turn[j] since Pi did, there is a lost one, Pr, for which 
the condition is its line 5 is true. This process makes the second line of the 
lemma hold (Pi is not alone at stage j). Note that it is possible that Pi proceeds 
to modify q[i] on the strength of its finding that condition (1) is true, and in the 
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meantime another process destroys this condition, thereby establishing the 
possibility of the second line of the lemma. 

 c. The claim is void for j = 1. For j = 2, we use Lemma 2: when there is a process at 
stage 2, another one (or more) will join it only when the joiner leaves behind a 
process in stage 1. That one, so long as it is alone there cannot advance, again 
by Lemma 2. Assume the Lemma holds for stage j-1; if there are two (or more) 
at stage j, consider the instant that the last of them joined in. At that time, there 
were (at least) two at stage j-1 (Lemma 2), and by the induction assumption, all 
preceding stages were occupied. By Lemma 2, none of these stages could have 
vacated since. 

 d. If stages 1 through j-1 contain at least one process, there are N – (j – 1) left at 
most for stage j. If any of those stages is "empty" Lemma 3 implies there is at 
most one process at stage j. 

 e. From the above, stage N-1 contains at most two processes. If there is only one 
there, and another is at its critical section, Lemma 2 says it cannot advance to 
enter its critical section. When there are two processes at stage N-1, there is no 
process left to be at stage N (critical section), and one of the two may enter its 
critical section. For the one remaining process, the condition in its line 5 holds. 
Hence there is mutual exclusion. 

   There is no deadlock: There is one process the precedes all others or is 
with company at the highest occupied stage, which it was not the last to enter, 
and for such a process the condition of its line 5 does not hold. 

   There is no starvation. If a process tries continually to advance, no other 
process can pass it; at worst, it entered stage 1 when all others were in their 
entry protocols; they may all enter stage N before it does—but no more. 

 Source: [HOFR90]. 
 
5.9 a. When a process wishes to enter its critical section, it is assigned a ticket 

number. The ticket number assigned is calculated by adding one to the largest 
of the ticket numbers currently held by  the processes waiting to enter their 
critical section and the process already in its critical section. The process with 
the smallest ticket number has the highest precedence for entering its critical 
section. In case more than one process receives the same ticket number, the 
process with the smallest numerical name enters its critical section. When a 
process exits its critical section, it resets its ticket number to zero.  

 b. If each process is assigned a unique process number, then there is a unique, 
strict ordering of processes at all times. Therefore, deadlock cannot occur. 

 c. To demonstrate mutual exclusion, we first need to prove the following lemma: 
if Pi is in its critical section, and Pk has calculated its number[k] and is 
attempting to enter its critical section, then the following relationship holds: 

  
  ( number[i], i ) < ( number[k], k ) 

 
  To prove the lemma, define the following times: 
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  Tw1 Pi reads choosing[k] for the last time, for j = k, in its first wait, so we 
have choosing[k] = false at Tw1. 

  Tw2 Pi begins its final execution, for j = k, of the second while loop. We 
therefore have Tw1 < Tw2. 

  Tk1 Pk enters the beginning of the repeat loop. 
  Tk2 Pk finishes calculating number[k]. 
  Tk3 Pk sets choosing[k] to false. We have Tk1 < Tk2 < Tk3. 
 
  Since at Tw1, choosing[k] = false, we have either Tw1 < Tk1 or Tk3 < Tw1. In the 

first case, we have number[i] < number[k], since Pi was assigned its number 
prior to Pk; this satisfies the condition of the lemma. 

   In the second case, we have Tk2 < Tk3 < Tw1 < Tw2, and therefore Tk2 < Tw2. 
This means that at Tw2, Pi has read the current value of number[k]. Moreover, 
as Tw2 is the moment at which the final execution of the second while for j = k 
takes place, we have (number[i], i ) < ( number[k], k), which completes the 
proof of the lemma. 

   It is now easy to show the mutual exclusion is enforced. Assume that Pi is 
in its critical section and Pk is attempting to enter its critical section. Pk will be 
unable to enter its critical section, as it will find number[i] ≠ 0 and 

  ( number[i], I ) < ( number[k], k ). 
 
5.10 a. There is no variable which is both read and written by more than one process 

(like the variable turn in Dekker's algorithm). Therefore, the bakery algorithm 
does not require atomic load and store to the same global variable. 

 b. Because of the use of flag to control the reading of turn, we again do not 
require atomic load and store to the same global variable. 

 
5.11 The following program is provided in [SILB98]: 
 
 var j: 0..n-1; 
  key: boolean; 
 repeat 
  waiting[i] := true; 
  key := true; 
  while waiting[i] and key do key := testset(lock); 
  waiting[i] := false; 
  < critical section > 
  J := i + 1 mod n; 
  while (j ≠ i) and (not waiting[j]) do j := j + 1 mod n; 
  if j = i then lock := false 
   else waiting := false; 
  < remainder section > 
 until false; 
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 The algorithm uses the common data structures 
  var waiting: array [0..n – 1] of boolean 
   lock: boolean  
 
 These data structures are initialized to false. When a process leaves its critical 

section, it scans the array waiting in the cyclic ordering (i + 1, i + 2, ..., n – 1, 0, ..., i – 
1). It designates the first process in this ordering that is in the entry section 
(waiting[j] = true) as the next one to enter the critical section. Any process waiting 
to enter its critical section will thus do so within n – 1 turns. 

 
5.12 The two are equivalent. In the definition of Figure 5.8, when the value of the 

semaphore is negative, its value tells you how many processes are waiting. With 
the definition of this problem, you don't have that information readily available. 
However, the two versions function the same. 

 
5.13 Suppose two processes each call Wait(s) when s is initially 0, and after the first has 

just done SignalB(mutex) but not done WaitB(delay), the second call to Wait(s) 
proceeds to the same point. Because s = –2 and mutex is unlocked, if two other 
processes then successively execute their calls to Signal(s) at that moment, they 
will each do SignalB(delay), but the effect of the second SignalB is not defined. 

  The solution is to move the else line, which appears just before the end line in 
Wait to just before the end line in Signal. Thus, the last SignalB(mutex) in Wait 
becomes unconditional and the SignalB(mutex) in Signal becomes conditional. For 
a discussion, see "A Correct Implementation of General Semaphores," by 
Hemmendinger, Operating Systems Review, July 1988. 

 
5.14 The program is found in [RAYN86]: 
 
 var a, b, m: semaphore; 
        na, nm: 0 … +∞; 
 a := 1; b := 1; m := 0; na := 0; nm := 0; 
 wait(b); na ← na + 1; signal(b); 
 wait(a); nm ← nm + 1; 
   wait(b); na ← na – 1; 
   if na = 0 then signal(b); signal(m) 
        else signal(b); signal(a) 
   endif; 
 wait(m); nm ← nm – 1; 
 <critical section>; 
 if nm = 0 then signal(a) 
    else signal(m) 
 endif; 
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5.15 The code has a major problem. The V(passenger_released) in the car code can 
unblock a passenger blocked on P(passenger_released) that is NOT the one riding 
in the car that did the V(). 

 
5.16 

 Producer Consumer s n delay 
1   1 0 0 
2 waitB(s)  0 0 0 
3 n++  0 1 0 
4 if (n==1) (signalB(delay))  0 1 1 
5 signalB(s)  1 1 1 
6  waitB(delay) 1 1 0 
7  waitB(s) 0 1 0 
8  n-- 0 0 0 
9  if (n==0) (waitB(delay))    
10 waitB(s)     

 
Both producer and consumer are blocked. 
 
5.17 This solution is from [BEN82]. 
 
 program producerconsumer; 
 var  n: integer; 
   s: (*binary*) semaphore (:= 1); 
   delay: (*binary*) semaphore (:= 0); 
 procedure producer; 
 begin 
  repeat 
   produce; 
   waitB(s); 
   append; 
   n := n + 1; 
   if n=0 then signalB(delay); 
   signalB(s) 
  forever 
 end; 
 procedure consumer; 
 begin 
  repeat 
   waitB(s); 
   take; 
   n := n – 1; 
   if n = -1 then 
    begin 



-25- 

    signalB(s); 
    waitB(delay); 
    waitB(s) 
    end; 
   consume; 
   signalB(s) 
  forever 
 end; 
 begin (*main program*) 
  n := 0; 
  parbegin 
   producer; consumer 
  parend 
 end. 
 
5.18 Any of the interchanges listed would result in an incorrect program. The 

semaphore s controls access to the critical region and you only want the critical 
region to include the append or take function. 

 
5.19 a. If the buffer is allowed to contain n entries, then the problem is to distinguish 

an empty buffer from a full one. Consider a buffer of six slots, with only one 
entry, as follows: 

 
   A   
   out in  

  
  Then, when that one element is removed, out = in. Now suppose that the buffer 

is one element shy of being full: 
 

D E  A B C 
  in out   

  
  Here, out = in + 1. But then, when an element is added, in is incremented by 1 

and out = in, the same as when the buffer is empty. 
 b. You could use an auxiliary variable, count, which is incremented and 

decremented appropriately. 
 
5.20 The answer is no for both questions. 
 
5.21 a. Change receipt to an array of semaphores all initialized to 0 and use enqueue2, 

queue2, and dequeue2 to pass the customer numbers. 
 b. Change leave_b_chair  to an array of semaphores all initialized to 0 and use 

enqueue1(custnr), queue1, and dequeue1(b_cust) to release the right barber. 
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 Figure 1 shows the program with both of the above modifications. Note: The 
barbershop example in the book and Problems 5.21 and 5.22 are based on the 
following article, used with permission: 

 
 Hilzer, P. "Concurrency with Semaphores." SIGSCE Bulletin, September 1992. 
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program barbershop2; 
var max_capacity: semaphore (:= 20); 
 sofa: semaphore (:= 4); 
 barber_chair, coord: semaphore (:= 3); 
 mutex1, mutex2, mutex3: semaphore (:=1); 
 cust_ready, payment: semaphore (:= 0); 
 finished, leave_b_chair, receipt: array[1..50] of semaphore (:=0); 
 count: integer; 
 
procedure customer; 
var  custnr:  integer; 
begin 
wait(max_capacity); 
enter shop; 
wait(mutex1); 
count := count + 1; 
custnr := count; 
signal(mutex1); 
wait(sofa); 
sit on sofa; 
wait(barber_chair); 
get up from sofa; 
signal(sofa); 
sit in barber chair; 
wait(mutex2); 
enqueue1(custnr); 
signal(cust_ready); 
signal(mutex2); 
wait(finished[custnr]); 
signal(leave_b_chair[custnr]); 
pay; 
wait(mutex3); 
enqueue2(custnr); 
signal(payment); 
signal(mutex3); 
wait(receipt[custnr]); 
exit shop; 
signal(max_capacity) 
end; 

procedure barber; 
var  b_cust:  integer; 
begin 
repeat 
wait(cust_ready); 
wait(mutex2); 
dequeue1(b_cust); 
signal(mutex2); 
wait(coord); 
cut hair; 
signal(coord); 
signal(finished[b_cust]); 
wait(leave_b_chair[custnr]); 
signal(barber_chair); 
forever 
end; 

procedure cashier; 
var  b_cust:  integer; 
begin 
repeat 
wait(payment); 
wait(mutex3); 
dequeue2(c_cust); 
signal(mutex3); 
wait(coord); 
accept pay; 
signal(coord); 
signal(receipt[c_cust]); 
forever 
end; 

 
begin (*main program*) 
 count := 0; 
 parbegin 
 customer; . . . 50 times; . . . customer; 
 barber; barber; barber; 
 cashier 
 parend 
end. 
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Figure 1   A Fair Barbershop, with Modifications 
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5.22 
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#define REINDEER 9 /* max # of reindeer 
*/ 
#define ELVES        3 /* size of elf group */ 

/* Semaphores */ 
only_elves = 3, /* 3 go to Santa */ 
emutex = 1, /* update elf_cnt */ 
rmutex = 1, /* update rein_ct */ 
rein_wait = 0, /* block early arrivals 
    back from islands */ 
sleigh = 0, /*all reindeer wait  
   around the sleigh */ 
done = 0, /* toys all delivered */
santa_signal = 0, /* 1st 2 elves wait on  
                                 this outside Santa's shop 
*/ 
santa = 0, /* Santa sleeps on this 
   blocked semaphore 
*/ 
problem = 0, /* wait to pose the  
     question to Santa */ 
elf_done = 0; /* receive reply */ 

/* Shared Integers */ 
rein_ct = 0; /* # of reindeer back 
*/ 
elf_ct = 0;              /* # of elves with problem 
*/ 

/* Reindeer Process */ 
for (;;) { 
  tan on the beaches in the Pacific until  
      Christmas is close 
  wait (rmutex) 
       rein_ct++ 
       if (rein_ct == REINDEER) { 
           signal (rmutex) 
           signal (santa) 
       } 
       else { 
            signal (rmutex) 
            wait (rein_wait) 
       } 
/* all reindeer waiting to be attached to sleigh 
*/ 
  wait (sleigh) 
   fly off to deliver toys 
   wait (done) 
   head back to the Pacific islands 
} /* end "forever" loop */ 

/* Elf Process */ 
for (;;) { 
  wait (only_elves)          /* only 3 elves "in" */
      wait (emutex) 
          elf_ct++ 
          if (elf_ct == ELVES) { 
             signal (emutex) 
             signal (santa)  /* 3rd elf wakes Santa 
*/ 
          } 
          else { 
              signal (emutex) 
              wait (santa _signal)  /* wait outside 
                                          Santa's shop door */ 
          } 
      wait (problem) 
       ask question      /* Santa woke elf up */ 
       wait (elf_done) 
  signal (only_elves) 
} /* end "forever" loop */ 

/* Santa Process */ 
for (;;) { 
  wait (santa)                  /* Santa "rests" */ 
  /* mutual exclusion is not needed on rein_ct 
      because if it is not equal to REINDEER,  
      then elves woke up Santa */ 
   if (rein_ct == REINDEER) { 
      wait (rmutex) 
      rein_ct = 0            /* reset while blocked */
      signal (rmutex) 
      for (i = 0; i < REINDEER – 1; i++) 
           signal (rein_wait) 
      for (i = 0; i < REINDEER; i++) 
           signal (sleigh) 
      deliver all the toys and return 
      for (i = 0; i < REINDEER; i++) 
           signal (done) 
   } 
    else {                      /* 3 elves have arrive */ 
      for (i = 0; i < ELVES – 1; i++) 
           signal (santa_signal) 
      wait (emutex) 
            elf_ct = 0 
      signal (emutex) 
      for (i = 0; i < ELVES; i++)  { 
           signal (problem) 
           answer that question 
           signal (elf_done) 
      } 
   } 
} /* end "forever" loop */ 
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5.23 a. There is an array of message slots that constitutes the buffer. Each process 

maintains a linked list of slots in the buffer that constitute the mailbox for that 
process. The message operations can implemented as: 

 
 send (message, dest) 
 wait (mbuf) wait for message buffer available 
 wait (mutex) mutual exclusion on message queue 
 acquire free buffer slog 
 copy message to slot 
 link slot to other messages 
 signal (dest.sem) wake destination process 
 signal (mutex) release mutual exclusion 
 
 receive message 
 wait (own.sem) wait for message to arrive 
 wait (mutex) mutual exclusion on message queue 
 unlink slot from own.queue 
 copy buffer slot to message 
 add buffer slot to freelist 
 signal (mbuf) indicate message slot freed 
 signal (mutex) release mutual exclusion 
 
 where mbuf is initialized to the total number of message slots available; own 

and dest refer to the queue of messages for each process, and are initially zero. 
 b. This solution is taken from [TANE97]. The synchronization process maintains a 

counter and a linked list of waiting processes for each semaphore. To do a 
WAIT or SIGNAL, a process calls the corresponding library procedure, wait or 
signal, which sends a message to the synchronization process specifying both 
the operation desired and the semaphore to be used. The library procedure 
then does a RECEIVE to get the reply from the synchronization process. 

  When the message arrives, the synchronization process checks the counter 
to see if the required operation can be completed. SIGNALs can always 
complete, but WAITs will block if the value of the semaphore is 0. If the 
operation is allowed, the synchronization process sends back an empty 
message, thus unblocking the caller. If, however, the operation is a WAIT and 
the semaphore is 0, the synchronization process enters the caller onto the queue 
and does not send a reply. The result is that the process doing the WAIT is 
blocked, just as it should be. Later, when a SIGNAL is done, the 
synchronization process picks one of the processes blocked on the semaphore, 
either in FIFO order, priority order, or some other order, and sends a reply. 
Race conditions are avoided here because the synchronization process handles 
only one request at a time. 
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ANSWERS TO QUESTIONS 
6.1 Examples of reusable resources are processors, I/O channels, main and secondary 

memory, devices, and data structures such as files, databases, and semaphores. 
Examples of consumable resources are interrupts, signals, messages, and 
information in I/O buffers. 

 
6.2 Mutual exclusion. Only one process may use a resource at a time. Hold and wait. 

A process may hold allocated resources while awaiting assignment of others. No 
preemption. No resource can be forcibly removed from a process holding it. 

 
6.3 The above three conditions, plus: Circular wait. A closed chain of processes exists, 

such that each process holds at least one resource needed by the next process in the 
chain. 

 
6.4 The hold-and-wait condition can be prevented by requiring that a process request 

all of its required resources at one time, and blocking the process until all requests 
can be granted simultaneously. 

 
6.5 First, if a process holding certain resources is denied a further request, that process 

must release its original resources and, if necessary, request them again together 
with the additional resource. Alternatively, if a process requests a resource that is 
currently held by another process, the operating system may preempt the second 
process and require it to release its resources. 

 
6.6 The circular-wait condition can be prevented by defining a linear ordering of 

resource types. If a process has been allocated resources of type R, then it may 
subsequently request only those resources of types following R in the ordering. 

 
6.7 Deadlock prevention constrains resource requests to prevent at least one of the 

four conditions of deadlock; this is either done indirectly, by preventing one of the 
three necessary policy conditions (mutual exclusion, hold and wait, no 
preemption), or directly, by preventing circular wait. Deadlock avoidance allows 
the three necessary conditions, but makes judicious choices to assure that the 
deadlock point is never reached. With deadlock detection, requested resources are 
granted to processes whenever possible.; periodically, the operating system 
performs an algorithm that allows it to detect the circular wait condition. 

 

CHAPTER 6 
CONCURRENCY: DEADLOCK AND 

STARVATION
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ANSWERS TO PROBLEMS 
6.1 1. Q acquires B and A, and then releases B and A. When P resumes execution, it 

will be able to acquire both resources. 
 2. Q acquires B and A. P executes and blocks on a request for A. Q releases B and A. 

When P resumes execution, it will be able to acquire both resources. 
 3. Q acquires B and then P acquires and releases A. Q acquires A and then releases 

B and A. When P resumes execution, it will be able to acquire B. 
 4. P acquires A and then Q acquires B. P releases A. Q acquires  A and then releases 

B. P acquires B and then releases B. 
 5. P acquires and then releases A. P acquires B. Q executes and blocks on request 

for B. P releases B. When Q resumes execution, it will be able to acquire both 
resources. 

 6. P acquires A and releases A and then acquires and releases B. When Q resumes 
execution, it will be able to acquire both resources. 

 
6.2 If Q acquires B and A before P requests A, then Q can use these two resources and 

then release them, allowing A to proceed. If P acquires A before Q requests A, then 
at most Q can proceed to the point of requesting A and then is blocked. However, 
once P releases A, Q can proceed. Once Q releases B, A can proceed. 

 
6.3 a. 0 0 0 0 
      0 7 5 0 
      6 6 2 2 
      2 0 0 2 
      0 3 2 0 
 b. to d. Running the banker's algorithm, we see processes can finish in the order 

p1, p4, p5, p2, p3. 
 e. Change available to (2,0,0,0) and p3's row of "still needs" to (6,5,2,2). Now p1, 

p4, p5 can finish, but with available now (4,6,9,8) neither p2 nor p3's "still 
needs" can be satisfied.  So it is not safe to grant p3's request. 

 
6.4 1. W = (2 1 0 0) 
 2. Mark P3;    W = (2 1 0 0) + (0 1 2 0) = (2 2 2 0) 
 3. Mark P2;    W = (2 2 2 0) + (2 0 0 1) = (4 2 2 1) 
 4. Mark P1;        no deadlock detected 
 
6.5 A deadlock occurs when process I has filled the disk with input (i = max) and 

process I is waiting to transfer more input to the disk, while process P is waiting to 
transfer more output to the disk and process O is waiting to transfer more output 
from the disk. Source: [BRIN73]. 

 
6.6 Reserve a minimum number of blocks (called reso) permanently for output 

buffering, but permit the number of output blocks to exceed this limit when disk 
space is available. The resource constraints now become: 
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i + o ≤ max 

i  ≤ max – reso 
 where 

0 < reso < max 
 
 If process P is waiting to deliver output to the disk, process O will eventually 

consume all previous output and make at least reso pages available for further 
output, thus enabling P to continue. So P cannot be delayed indefinitely by O. 
Process I can be delayed if the disk is full of I/O; but sooner or later, all previous 
input will be consumed by P and the corresponding output will be consumed by 
O, thus enabling I to continue. Source: [BRIN73]. 

 
6.7 i + o + p ≤ max –  
 i + o  ≤ max – resp 
 i + p ≤ max – reso 
 i  ≤ max – (reso + resp) 
  Source: [BRIN73]. 
 
6.8 a. 1. i ← i + 1 
  2. i ← i – 1;  p ← p + 1 
  3. p ← p – 1;  o ← o + 1 
  4. o ← o – 1 
  5. p ← p + 1 
  6. p ← p – 1 
 b. By examining the resource constraints listed in the solution to problem 6.7, we 

can conclude the following: 
 6. Procedure returns can take place immediately because they only release 

resources. 
 5. Procedure calls may exhaust the disk (p = max – reso) and lead to deadlock. 
 4. Output consumption can take place immediately after output becomes 

available. 
 3. Output production can be delayed temporarily until all previous output has 

been consumed and made at least reso pages available for further output. 
 2. Input consumption can take place immediately after input becomes 

available. 
 1. Input production can be delayed until all previous input and the 

corresponding output has been consumed. At this point, when i = o = 0, 
input can be produced provided the user processes have not exhausted the 
disk ( p < max – reso). 

  Conclusion: the uncontrolled amount of storage assigned to the user processes is 
the only possible source of a storage deadlock. Source: [BRIN73]. 

 
6.9 a. Creating the process would result in the state: 
 



-35- 

Process Max Hold Claim Free 
1 70 45 25 25 
2 60 40 20  
3 60 15 45  
4 60 25 35  

 
 There is sufficient free memory to guarantee the termination of either P1 or P2. 

After that, the remaining three jobs can be completed in any order. 
 b. Creating the process would result in the trivially unsafe state:  
 

Process Max Hold Claim Free 
1 70 45 25 15 
2 60 40 20  
3 60 15 45  
4 60 35 25  

 
6.10 It is unrealistic: don't know max demands in advance, number of processes can 

change over time, number of resources can change over time (something can 
break).  Most OS's ignore deadlock.  But Solaris only lets the superuser use the last 
process table slot. 

 
6.11 a. The buffer is declared to be an array of shared elements of type T. Another 

array defines the number of input elements available to each process. Each 
process keeps track of the index j of the buffer element it is referring to at the 
moment. 

 
 var  buffer: array 0..max-1 of shared T; 
         available: shared array 0..n-1 of 0..max; 
 
 "Initialization" 
 var K: 1..n-1; 
 region available do 
 begin 
  available(0) := max; 
  for every k do available (k) := 0; 
 end 
 
 "Process i" 
 var j: 0..max-1; succ: 0..n-1; 
 begin 
  j := 0; succ := (i+1) mod n; 
  repeat 
   region available do 
   await available (i) > 0; 
   region buffer(j) do consume element; 
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   region available do 
   begin 
    available (i) := available(i) – 1; 
    available (succ) := available (succ) + 1; 
   end 
   j := (j+1) mod max; 
  forever 
 end 
 
  In the above program, the construct region defines a critical region using some 

appropriate mutual-exclusion mechanism. The notation 
 

region v do S 
 
  means that at most one process at a time can enter the critical region associated 

with variable v to perform statement S. 
 b. A deadlock is a situation in which: 
 
   P0 waits for Pn-1 AND 
   P1 waits for P0    AND 
   . . . . . 
   Pn-1 waits for Pn-2  
 
  because 
 
   (available (0) = 0) AND 
   (available (1) = 0) AND 
   . . . . . 
   (available (n-1) = 0)  
 
  But if max > 0, this condition cannot hold because the critical regions satisfy the 

following invariant: 

    
claim(i)

i=1

N
∑ < N

  
available(i)

i= 0

n−1
∑ = max  

  Source: [BRIN73]. 
 
6.12 a. Deadlock occurs if all resource units are reserved while one or more processes 

are waiting indefinitely for more units. But, if all 4 units are reserved, at least 
one process has acquired 2 units. Therefore, that process will be able to 
complete its work and release both units, thus enabling another process to 
continue. 

 b. Using terminology similar to that used for the banker's algorithm, define 
claim[i] = total amount of resource units needed by process i; allocation[i] = 
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current number of resource units allocated to process i; and deficit[i] = amount 
of resource units still needed by i. Then we have: 

 

 
  

claim[i]
i

N
∑ = deficit[i]

i

N
∑ + allocation[i]

i

N
∑ < M + N  

 
 
  In a deadlock situation, all resource units are reserved: 
 

  
allocation[i]

i

N
∑ = M  

  
  and some processes are waiting for more units indefinitely. But from the two 

preceding equations, we find 
 

  
deficit[i]

i

N
∑ < N  

 
  This means that at least one process j has acquired all its resources (deficit[j] = 

0) and will be able to complete its task and release all its resources again, thus 
ensuring further progress in the system. So a deadlock cannot occur. 

 
6.13 a. In order from most-concurrent to least, there is a rough partial order on the 

deadlock-handling algorithms:  
  1. detect deadlock and kill thread, releasing its resources  
   detect deadlock and roll back thread's actions  
   restart thread and release all resources if thread needs to wait  
  None of these algorithms limit concurrency before deadlock occurs, because 

they rely on runtime checks rather than static restrictions. Their effects after 
deadlock is detected are harder to characterize: they still allow lots of 
concurrency (in some cases they enhance it), but the computation may no 
longer be sensible or efficient. The third algorithm is the strangest, since so 
much of its concurrency will be useless repetition; because threads compete for 
execution time, this algorithm also prevents useful computation from 
advancing. Hence it is listed twice in this ordering, at both extremes. 

  2. banker's algorithm 
   resource ordering  
  These algorithms cause more unnecessary waiting than the previous two by 

restricting the range of allowable computations. The banker's algorithm 
prevents unsafe allocations (a proper superset of deadlock-producing 
allocations) and resource ordering restricts allocation sequences so that threads 
have fewer options as to whether they must wait or not. 

  3. reserve all resources in advance  
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  This algorithm allows less concurrency than the previous two, but is less 
pathological than the worst one. By reserving all resources in advance, threads 
have to wait longer and are more likely to block other threads while they work, 
so the system-wide execution is in effect more linear. 

  4. restart thread and release all resources if thread needs to wait  
  As noted above, this algorithm has the dubious distinction of allowing both the 

most and the least amount of concurrency, depending on the definition of 
concurrency.  

 b. In order from most-efficient to least, there is a rough partial order on the 
deadlock-handling algorithms:  

  1. reserve all resources in advance 
   resource ordering  
  These algorithms are most efficient because they involve no runtime overhead. 

Notice that this is a result of the same static restrictions which made these rank 
poorly in concurrency.  

  2. banker's algorithm 
    detect deadlock and kill thread, releasing its resources  
  These algorithms involve runtime checks on allocations which are roughly 

equivalent; the banker's algorithm performs a search to verify safety which is 
O(n m) in the number of threads and allocations, and deadlock detection 
performs a cycle-detection search which is O(n) in the length of resource-
dependency chains. Resource-dependency chains are bounded by the number 
of threads, the number of resources, and the number of allocations.  

  3. detect deadlock and roll back thread's actions  
  This algorithm performs the same runtime check discussed previously but also 

entails a logging cost which is O(n) in the total number of memory writes 
performed.  

  4. restart thread and release all resources if thread needs to wait  
  This algorithm is grossly inefficient for two reasons. First, because threads run 

the risk of restarting, they have a low probability of completing. Second, they 
are competing with other restarting threads for finite execution time, so the 
entire system advances towards completion slowly if at all.  

   This ordering does not change when deadlock is more likely. The 
algorithms in the first group incur no additional runtime penalty because they 
statically disallow deadlock-producing execution. The second group incurs a 
minimal, bounded penalty when deadlock occurs. The algorithm in the third 
tier incurs the unrolling cost, which is O(n) in the number of memory writes 
performed between checkpoints. The status of the final algorithm is 
questionable because the algorithm does not allow deadlock to occur; it might 
be the case that unrolling becomes more expensive, but the behavior of this 
restart algorithm is so variable that accurate comparative analysis is nearly 
impossible. 

 
6.14 The philosophers can starve while repeatedly picking up and putting down their 

left forks in perfect unison. Source: [BRIN73]. 
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6.15 a. When a philosopher finishes eating, he allows his left neighbor to proceed if 

possible, then permits his right neighbor to proceed. The solution uses an array, 
state, to keep track of whether a philosopher is eating, thinking, or hungry 
(trying to acquire forks). A philosopher may move only into the eating state if 
neither neighbor is eating. Philosopher i's neighbors are defined by the macros 
LEFT and RIGHT. 

 b. This counterexample is due to [GING90]. Assume that philosophers P0, P1, and 
P3 are waiting with hunger while philosophers P2 and P4 dine at leisure. Now 
consider the following admittedly unlikely sequence of philosophers' 
completions of their suppers. 

 
EATING HUNGRY 

4  2 0  1  3 
2  0 1  3  4 
3  0 1  2  4 
0  2 1  3  4 
4  2 0  1  3 

 
   Each line of this table is intended to indicate the philosophers that are 

presently eating and those that are in a state of hunger. The dining philosopher 
listed first on each line is the one who finishes his meal next. For example, from 
the initial configuration, philosopher P4 finishes eating first, which permits P0 
to commence eating. Notice that the pattern folds in on itself and can repeat 
forever with the consequent starvation of philosopher P1. 

 
6.16 a. Assume that the table is in deadlock, i.e., there is a nonempty set D of 

philosophers such that each Pi in D holds one fork and waits for a fork held by 
neighbor. Without loss of generality, assume that Pj Œ D is a lefty. Since Pj 
clutches his left fork and cannot have his right fork, his right neighbor Pk never 
completes his dinner and is also a lefty. Therefore, Pk Œ D. Continuing the 
argument rightward around the table shows that all philosophers in D are 
lefties. This contradicts the existence of at least one righty. Therefore deadlock 
is not possible. 

 b. Assume that lefty Pj starves, i.e., there is a stable pattern of dining in which Pj 
never eats. Suppose Pj holds no fork. Then Pj's left neighbor Pi must 
continually hold his right fork and never finishes eating. Thus Pi is a righty 
holding his right fork, but never getting his left fork to complete a meal, i.e., Pi 
also starves. Now Pi's left neighbor must be a righty who continually holds his 
right fork. Proceeding leftward around the table with this argument shows that 
all philosophers are (starving) righties. But Pj is a lefty: a contradiction. Thus Pj 
must hold one fork. 

   As Pj continually holds one fork and waits for his right fork, Pj's right 
neighbor Pk never sets his left fork down and never completes a meal, i.e., Pk is 
also a lefty who starves. If Pk did not continually hold his left fork, Pj could eat; 
therefore Pk holds his left fork. Carrying the argument rightward around the 
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table shows that all philosophers are (starving) lefties: a contradiction. 
Starvation is thus precluded. 

 Source: [GING90]. 
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ANSWERS TO QUESTIONS 
7.1 Relocation, protection, sharing, logical organization, physical organization. 
 
7.2 Typically, it is not possible for the programmer to know in advance which other 

programs will be resident in main memory at the time of execution of his or her 
program. In addition, we would like to be able to swap active processes in and out 
of main memory to maximize processor utilization by providing a large pool of 
ready processes to execute. In both these cases, the specific location of the process 
in main memory is unpredictable. 

 
7.3 Because the location of a program in main memory is unpredictable, it is 

impossible to check absolute addresses at compile time to assure protection. 
Furthermore, most programming languages allow the dynamic calculation of 
addresses at run time, for example by computing an array subscript or a pointer 
into a data structure. Hence all memory references generated by a process must be 
checked at run time to ensure that they refer only to the memory space allocated to 
that process. 

 
7.4 If a number of processes are executing the same program, it is advantageous to 

allow each process to access the same copy of the program rather than have its 
own separate copy. Also, processes that are cooperating on some task may need to 
share access to the same data structure. 

 
7.5 By using unequal-size fixed partitions: 1. It is possible to provide one or two quite 

large partitions and still have a large number of partitions. The large partitions can 
allow the entire loading of large programs. 2. Internal fragmentation is reduced 
because a small program can be put into a small partition. 

 
7.6 Internal fragmentation refers to the wasted space internal to a partition due to the 

fact that the block of data loaded is smaller than the partition. External 
fragmentation is a phenomenon associated with dynamic partitioning, and refers 
to the fact that a large number of small areas of main memory external to any 
partition accumulates. 

 
7.7 A logical address is a reference to a memory location independent of the current 

assignment of data to memory; a translation must be made to a physical address 
before the memory access can be achieved. A relative address is a particular 
example of logical address, in which the address is expressed as a location relative 

CHAPTER 7 
MEMORY MANAGEMENT 
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to some known point, usually the beginning of the program. A physical address, 
or absolute address, is an actual location in main memory. 

 
7.8 In a paging system, programs and data stored on disk or divided into equal, fixed-

sized blocks called pages, and main memory is divided into blocks of the same size 
called frames. Exactly one page can fit in one frame. 

 
7.9 An alternative way in which the user program can be subdivided is segmentation. 

In this case, the program and its associated data are divided into a number of 
segments. It is not required that all segments of all programs be of the same length, 
although there is a maximum segment length. 

 

ANSWERS TO PROBLEMS 
7.1 Here is a rough equivalence: 
 
 Relocation ≈ support modular programming 
 Protection ≈ process isolation; protection and access control 
 Sharing ≈ protection and access control 
 Logical Organization ≈ support of modular programming 
 Physical Organization ≈ long-term storage; automatic allocation and  
           management 
 
7.2 Let s and h denote the average number of segments and holes, respectively. The 

probability that a given segment is followed by a hole in memory (and not by 
another segment) is 0.5, because deletions and creations are equally probable in 
equilibrium. so with s segments in memory, the average number of holes must be 
s/2. It is intuitively reasonable that the number of holes must be less than the 
number of segments because neighboring segments can be combined into a single 
hole on deletion. 

 
7.3 By problem 7.2, we know that the average number of holes is s/2, where s is the 

number of resident segments. Regardless of fit strategy, in equilibrium, the 
average search length is s/4. 

 
7.4 A criticism of the best fit algorithm is that the space remaining after allocating a 

block of the required size is so small that in general it is of no real use. The worst 
fit algorithm maximizes the chance that the free space left after a placement will be 
large enough to satisfy another request, thus minimizing the frequency of 
compaction. The disadvantage of this approach is that the largest blocks are 
allocated first; therefore a request for a large area is more likely to fail. 

 
7.5 a. 
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Request 70 A 128 256 512 
Request 35 A B 64 256 512 
Request 80 A B 64 C 128 512 

Return A 128 B 64 C 128 512 
Request 60 128 B D C 128 512 

Return B 128 64 D C 128 512 
Return D 256 C 128 512 
Return C 1024 

 
 b. 

 
 
7.6 a. 011011110100 
 b. 011011100000 
 

7.7  
    
buddy k =

x + 2k if x mod 2k +1 = 0
x − 2k if x mod 2k +1 = 2k

⎧ 
⎨ 
⎩ 

 

 
7.8 a. Yes, the block sizes could satisfy Fn = Fn-1 + Fn-2. 
 b. This scheme offers more block sizes than a binary buddy system, and so has the 

potential for less internal fragmentation, but can cause additional external 
fragmentation because many uselessly small blocks are created. 
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7.9 The use of absolute addresses reduces the number of times that dynamic address 
translation has to be done. However, we wish the program to be relocatable. 
Therefore, it might be preferable to use relative addresses in the instruction 
register. Alternatively, the address in the instruction register can be converted to 
relative when a process is swapped out of memory. 

 
7.10 The relationship is a = pz + w,  0 ≤ w < z, which can be stated as: 
 p = ⎣a/z⎦, the integer part of a/z. 
 w = Rz(a), the remainder obtained in dividing a by z. 
 
7.11 a. Observe that a reference occurs to some segment in memory each time unit, 

and that one segment is deleted every t references. Because the system is in 
equilibrium, a new segment must be inserted every t references; therefore, the 
rate of the boundary's movement is s/t words per unit time. The system's 
operation time t0 is then the time required for the boundary to cross the hole, 
i.e., t0 = fmr/s, where m = size of memory. The compaction operation requires 
two memory references—a fetch and a store—plus overhead for each of the (1 – 
f)m words to be moved, i.e., the compaction time tc is at least 2(1 – f)m. The 
fraction F of the time spent compacting is F = 1 – t0/(t0 + tc), which reduces to 
the expression given. 

 b. k = (t/2s) – 1 = 9;  F ≥ (1 – 0.2)/(1 + 1.8) = 0.29 
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ANSWERS TO QUESTIONS 
8.1 Simple paging: all the pages of a process must be in main memory for process to 

run, unless overlays are used. Virtual memory paging: not all pages of a process 
need be in main memory frames for the process to run.; pages may be read in as 
needed 

 
8.2 A phenomenon in virtual memory schemes, in which the processor spends most of 

its time swapping pieces rather than executing instructions. 
 
8.3 Algorithms can be designed to exploit the principle of locality to avoid thrashing. 

In general, the principle of locality allows the algorithm to predict which resident 
pages are least likely to be referenced in the near future and are therefore good 
candidates for being swapped out. 

 
8.4 Frame number: the sequential number that identifies a page in main memory; 

present bit: indicates whether this page is currently in main memory; modify bit: 
indicates whether this page has been modified since being brought into main 
memory. 

 
8.5 The TLB is a cache that contains those page table entries that have been most 

recently used. Its purpose is to avoid, most of the time, having to go to disk to 
retrieve a page table entry. 

 
8.6 With demand paging, a page is brought into main memory only when a reference 

is made to a location on that page. With prepaging, pages other than the one 
demanded by a page fault are brought in. 

 
8.7 Resident set management deals with the following two issues: (1) how many page 

frames are to be allocated to each active process; and (2) whether the set of pages 
to be considered for replacement should be limited to those of the process that 
caused the page fault or encompass all the page frames in main memory. Page 
replacement policy deals with the following issue: among the set of pages 
considered, which particular page should be selected for replacement. 

 
8.8 The clock policy is similar to FIFO, except that in the clock policy, any frame with a 

use bit of 1 is passed over by the algorithm. 
 

CHAPTER 8 
VIRTUAL MEMORY 
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8.9 (1) If a page is taken out of a resident set but is soon needed, it is still in main 
memory, saving a disk read. (2) Modified page can be written out in clusters rather 
than one at a time, significantly reducing the number of I/O operations and 
therefore the amount of disk access time. 

 
8.10 Because a fixed allocation policy requires that the number of frames allocated to a 

process is fixed, when it comes time to bring in a new page for a process, one of the 
resident pages for that process must be swapped out (to maintain the number of 
frames allocated at the same amount), which is a local replacement policy. 

 
8.11 The resident set of a process is the current number of pages of that process in main 

memory. The working set of a process is the number of pages of that process that 
have been referenced recently. 

 
8.12 With demand cleaning, a page is written out to secondary memory only when it 

has been selected for replacement. A precleaning policy writes modified pages 
before their page frames are needed so that pages can be written out in batches. 

 

ANSWERS TO PROBLEMS 
8.1 a. Split binary address into virtual page number and offset; use VPN as index into 

page table; extract page frame number; concatenate offset to get physical 
memory address 

 b. (i)   1052 = 1024 + 28 maps to VPN 1 in PFN 7, (7 × 1024+28 = 7196) 
  (ii)  2221 = 2 × 1024 + 173 maps to VPN 2, page fault 
  (iii) 5499 = 5 × 1024 + 379 maps to VPN 5 in PFN 0, (0 × 1024+379 = 379) 
 
8.2 a. PFN 3 since loaded longest ago at time 60 
 b. PFN 1 since referenced longest ago at time 160 
 c. Clear R in PFN 3 (oldest loaded), clear R in PFN 2 (next oldest loaded), victim 

PFN is 0 since R=0 
 d. Replace the page in PFN 3 since VPN 3 (in PFN 3) is used furthest in the future 
 e. There are 6 faults, indicated by * 
 

  * 
4 

 
0 

 
0 

 
0 

* 
2 

* 
4 

 
2 

* 
1 

* 
0 

* 
3 

 
2 

pages in 
memory in 
LRU order 

3 
0 
2 
1 

4 
3 
0 
2 

0 
4 
3 

0 
4 
3 

0 
4 

2 
0 

4 
2 
0 

2 
4 
0 

1 
2 
4 

0 
1 
2 
4 

3 
0 
1 
2 

2 

 
8.3 9 and 10 page transfers, respectively. This is referred to as "Belady's anomaly," and 

was reported in "An Anomaly in Space-Time Characteristics of Certain Programs 
Running in a Paging Machine," by Belady et al, Communications of the ACM, June 
1969. 
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8.4 a. LRU: Hit ratio = 16/33 
 
1 0 2 2 1 7 6 7 0 1 2 0 3 0 4 5 1 5 2 4 5 6 7 6 7 2 4 2 7 3 3 2 3 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 
- 0 0 0 0 0 6 6 6 6 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 
- - 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 
- - - - - 7 7 7 7 7 7 7 3 3 3 3 1 1 1 1 1 6 6 6 6 6 6 6 6 3 3 3 3 
F F F     F F   F   F   F   F F F   F     F F     F F     F 
 
 b. FIFO: Hit ratio = 16/33 
 
1 0 2 2 1 7 6 7 0 1 2 0 3 0 4 5 1 5 2 4 5 6 7 6 7 2 4 2 7 3 3 2 3 
 
1 1 1 1 1 1 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 2 2 
- 0 0 0 0 0 0 0 0 1 1 1 1 1 1 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7- - 2 

2 2 2 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4- - - - 
- 7 7 7 7 7 7 7 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3F F F     
F F     F   F F   F F F   F     F F       F     F   F c. These 
two policies are equally effective for this particular page trace. Source: 
[HWAN93]8.5 The principal advantage is a savings in physical memory space. 
This occurs for two reasons: (1) a user page table can be paged in to memory only 
when it is needed. (2) The operating system can allocate user page tables 
dynamically, creating one only when the process is created.  Of course, 
there is a disadvantage: address translation requires extra work.8.6 The machine 
language version of this program, loaded in main memory starting at address 
4000, might appear as: 4000 (R1)  ←  ONE Establish index register for 
i 4001 (R1)  ←  n Establish n in R2 4002 compare R1, R2 Test i > n
 4003 branch greater 4009 4004 (R3)  ←  B(R1) Access B[i] using index 
register R1 4005 (R3)  ←  (R3) + C(R1) Add C[i] using index register R1
 4006 A(R1)  ←  (R3) Store sum in A[i] using index register R1 4007 (R1)  
←  (R1) + ONE Increment i 4008 branch 4002 6000-6999 storage for A 7000-
7999 storage for B 8000-8999 storage for C 9000 storage for ONE 9001
 storage for n The reference string generated by this loop is 
 494944(47484649444)1000 consisting of over 11,000 references, but involving 
only five distinct pages. Source: [MAEK87].8.7 The S/370 segments are fixed in 
size and not visible to the programmer. Thus, none of the benefits listed for 
segmentation are realized on the S/370, with the exception of protection. The P bit 
in each segment table entry provides protection for the entire segment.8.8 Since 
each page table entry is 4 bytes and each page contains 4 Kbytes, then a one-page 
page table would point to 1024 = 210 pages, addressing a total of 210 * 212 = 222 
bytes. The address space however is 264 bytes. Adding a second layer of page 
tables, the top page table would point to 210 page tables, addressing a total of 232 
bytes. Continuing this process,Depth_Address Space__1_222 bytes__2_232 
bytes__3_242 bytes__4_252 bytes__5_262 bytes__6_262 bytes (≥ 264 bytes)__ we 
can see that 5 levels do not address the full 64 bit address space, so a 6th level is 
required. But only 2 bits of the 6th level are required, not the entire 10 bits.  So 
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instead of requiring your virtual addresses be 72 bits long, you could mask out and 
ignore all but the 2 lowest order bits of the 6th level. This would give you a 64 bit 
address. Your top level page table then would have only 4 entries. Yet another 
option is to revise the criteria that the top level page table fit into a single physical 
page and instead make it fit into 4 pages. This would save a physical page, which 
is not much.8.9 a. 400 nanoseconds. 200 to get the page table entry, and 200 to 
access the memory location. b. This is a familiar effective time calculation:          
(220 × 0.85) + (420 × 0.15) = 250  Two cases: First, when the TLB contains 
the entry required. In that case we pay the 20 ns overhead on top of the 200 ns 
memory access time. Second, when the TLB does not contain the item. Then we 
pay an additional 200 ns to get the required entry into the TLB. c. The 
higher the TLB hit rate is, the smaller the EMAT is, because the additional 200 ns 
penalty to get the entry into the TLB contributes less to the EMAT.8.10 a.
 N b. P8.11 a. This is a good analogy to the CLOCK algorithm. 
Snow falling on the track is analogous to page hits on the circular clock buffer. The 
movement of the CLOCK pointer is analagous to the movement of the plow.
 b. Note that the density of replaceable pages is highest immediately in front 
of the clock pointer, just as the density of snow is highest immediately in front of 
the plow. Thus, we can expect the CLOCK algorithm to be quite efficient in finding 
pages to replace. In fact, it can be shown that the depth of the snow in front of the 
plow is twice the average depth on the track as a whole. By this analogy, the 
number of pages replaced by the CLOCK policy on a single circuit should be twice 
the number that are replaceable at a random time. The analogy is imperfect 
because the CLOCK pointer does not move at a constant rate, but the inuitive idea 
remains. The snowplow analogy to the CLOCK algorithm comes from 
[CARR84]; the depth analysis comes from Knuth, D. The Art of Computer 
Programming, Volume 2: Sorting and Searching. Reading, MA: Addison-Wesley, 1997 
(page 256).8.12 The processor hardware sets the reference bit to 0 when a new page 
is loaded into the frame, and to 1 when a location within the frame is referenced. 
The operating system can maintain a number of queues of page-frame tables. A 
page-frame table entry moves from one queue to another according to how long 
the reference bit from that page frame stays set to zero. When pages must be 
replaced, the pages to be replaced are chosen from the queue of the longest-life 
nonreferenced frames.8.13 [PIZZ89] suggests the following strategy. Use a 
mechanism that adjusts the value of Q at each window time as a function of the 
actual page fault rate experienced during the window. The page fault rate is 
computed and compared with a system-wide value for "desirable" page fault rate 
for a job. The value of Q is adjusted upward (downward) whenever the actual 
page fault rate of a job is higher (lower) than the desirable value. Experimentation 
using this adjustment mechanism showed that execution of the test jobs with 
dynamic adjustment of Q consistently produced a lower number of page faults per 
execution and a decreased average resident set size than the execution with a 
constant value of Q (within a very broad range). The memory time product (MT) 
versus Q using the adjustment mechanism also produced a consistent and 
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considerable improvement over the previous test results using a constant value of 
Q. 

 

8.14 
  

232 memory
211 page size

= 221 page frames
 

 
Segment: 0

1
2
3

0

7

Page descriptor
table

00021ABC

Main memory
(232 bytes)

232 memory
211 page size

= 221 page frames

 
 
 a. 8 × 2K = 16K 
 b. 16K × 4 = 64K 
 c. 232 = 4 GBytes 
 

Logical Address: Seg-
ment Page Offset

(2) (3) (11)

X Y 2BC

0 0 02 1ABC

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0
offset (11 bits)21-bit page frame reference

(in this case, page frame = 67)  
 
8.15 a. 
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page number (5) offset (11) 
 
 b. 32 entries, each entry is 9 bits wide. 
 c. If total number of entries stays at 32 and the page size does not change, then 

each entry becomes 8 bits wide. 
 
8.16 There are three cases to consider: 
 

Location of referenced 
word  

Probability Total time for access in ns  

In cache 0.9  20 
Not in cache, but in main 
memory  

(0.1)(0.6) = 0.06 60 + 20 = 80 

Not in cache or main 
memory  

(0.1)(0.4) = 0.04 12ms + 60 + 20 = 12000080 

 
So the average access time would be: 
 

Avg = (0.9)(20) + (0.06)(80) + (0.04)(12000080) = 480026 ns 
 
8.17 It is possible to shrink a process's stack by deallocating the unused pages. By 

convention, the contents of memory beyond the current top of the stack are 
undefined. On almost all architectures, the current top of stack pointer is kept in a 
well-defined register. Therefore, the kernel can read its contents and deallocate any 
unused pages as needed. The reason that this is not done is that little is gained by 
the effort. If the user program will repeatedly call subroutines that need additional 
space for local variables (a very likely case), then much time will be wasted 
deallocating stack space in between calls and then reallocating it later on. If the 
subroutine called is only used once during the life of the program and no other 
subroutine will ever be called that needs the stack space, then eventually the 
kernel will page out the unused portion of the space if it needs the memory for 
other purposes. In either case, the extra logic needed to recognize the case where a 
stack could be shrunk is unwarranted. Source: [SCHI94]. 

 
8.18 From [BECK98]: 
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