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What is ONNX? 
 
ONNX (Open Neural Network Exchange) is an open format that represents deep learning models.  It 
is a community project championed by Facebook and Microsoft. Currently there are many libraries 
and frameworks which do not interoperate; hence, the developers are often locked into using one 
framework or ecosystem.  The goal of ONNX is to enable these libraries and frameworks to work 
together by sharing of models.  
 
Why ONNX? 
 
ONNX provides an intermediate representation (IR) of models (see below), whether a model is created 
using CNTK, TensorFlow or another framework. The IR representation allows deployment of ONNX 
models to various targets, such as IoT, Windows, Azure or iOS/Android.  
 
 
 

 
 
 
The intermediate representation provides data scientist with the ability to choose the best framework 
and tool for the job at hand, without having to worry about how it will be deployed and optimized for 
the deployment target.  
 
How ONNX? 
 
ONNX provides two core components: 

- Extensible computational graph model.  This model is represented as an acyclic graph, 
consisting of a list of nodes with edges.  It also contains metadata information, such as author, 
version, etc.  

- Operators.  These form the nodes in a graph.  They are portable across the frameworks and 
are currently of three types.  

o Core Operators - These are supported by all ONNX-compatible products.  
o Experimental Operators - Either supported or deprecated within few months.  
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o Custom Ops - which are specific to a framework or runtime.  
 
Where ONNX 
 
ONNX empathizes on reusability, and there are four ways of obtaining ONNX models  

- Public Repository –  https://github.com/onnx/models   
- Custom Vision Services (https://azure.microsoft.com/en-gb/services/cognitive-

services/custom-vision-service/) 
- Convert to ONNX model (https://docs.microsoft.com/en-us/windows/ai/convert-model-

winmltools) 
- Create your own in DSVM or Azure Machine Learning Services 

 
For custom models and converters, please review the currently supported export and import model 
framework (https://github.com/onnx/tutorials).  Here, we go through step-by-step guide for 
creating a custom model and convert it into ONNX then operationalize it using Flask.  
 
Step-by-step Guide to Operationalizing ONNX models 
 
The focus areas are as follows: 

1. How to install ONNX on your Machine  
2. Creating a Deep Neural Network Model Using Keras  
3. Exporting the trained Model using ONNX 
4. Deploying ONNX in Python Flask using ONNX runtime as a Web Service 

 
 
We are using the MNIST dataset (http://yann.lecun.com/exdb/mnist) for the building a deep ML 
classification model.  
 
Step1: Environment setup 
 
Conda is an open-source package management system and management environment primarily 
designed for Python that quickly installs, runs and update packages and their dependencies.    
 
It is recommended that you use a separate Conda environment for ONNX installation, this would avoid 
potential conflicts with the existing libraries. Note: If you do not have Conda installed, you can install 
it from the following URI: https://conda.io/docs/user-guide/install/download.html 
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Create & Activate Conda Environment  
 
To create a new Conda environment, type the following commands (see below) on the terminal 
window: 
 
1 conda create -n onnxenv python=3.6.6 
2 Source activate onnxenv (Mac/Linux) 
3 activate onnxenv (Windows) 
 
Line 1 creates an environment called ‘onnxenv’ for the python version 3.6.6 and installs all the libraries 
and their dependencies. It is possible to install other versions simply by referencing to the version 
number. Lines 2-3 activate the environment depending on the choice of platform.  
 
Installing ONNX/Keras and other Libraries  
 
The core python library for ONNX is called onnx (https://pypi.org/project/onnx/) and the current 
version is 1.3.0. 
 
1 pip install onnx 
2 pip install onnxmltools   
3 pip install onnxruntime 
4 pip install Keras 
5 pip install matplotlib 
6 pip install opencv_python 
 
Lines 1-3 install the libraries that are required to produce ONNX models and the runtime environment 
for running an ONNX model. The ONNX tools enable converting of ML model from another framework 
to ONNX format. Line 4 installs the Keras library which is a deep machine learning library that is 
capable of using various backends such CNTK, TensorFlow and Theano.  
 
Step 2: Preparing the Dataset  
 
In this example, you will be creating a Deep Neural Network for the popular MNIST dataset.  The 
MNIST dataset is designed to learn and classify handwritten characters.  For more information, see 
the following link (http://yann.lecun.com/exdb/mnist/).  
 
There is some prep work required on the dataset before we can start building and training the ML 
model.  We need to load the MNIST dataset and split them between train and test sets.  Line 1 below 
load the dataset and provides a default split of 60:40 (60% training, and 40% testing). 
 
… 
1 (train_features, train_label), (test_features, test_label) = mnist.load_data()… 
2    train_features = train_features.astype('float32') 
3    train_features/=255 … 
6    if backend.image_data_format() == 'channels_first': 
7 #set channel at the begining 
8   else: 
9      #set the channel at the end 
 
The total split of the data is [60000, 28, 28] [60000,] training dataset, and [10000, 28, 28] [10000,] 
testing dataset.  Lines 2-5 ensure that datatype is float and ranges between 0.0-1.0. 
 



Since we are dealing with gray scaled image, there is only one channel.  Lines 6-7 check to see if the 
channel is at the beginning (1st dimension of the vector) or at the end.  You should see an output with 
added channel: (60000, 28, 28, 1) (60000,) (10000, 28, 28, 1) (10000,) 
 
For full source code (see lines 22-45): https://github.com/mufajjul/onnx-
operationalisation/blob/master/mlmodel/mnistexperiment.py  
 
Step 3: Convolutional Neural Network (Deep Learning) 
 
In this example we are going to use Convolutional Neural Network to do the handwritten classification.  
So, the question is why we are considering CNN and not a traditional fully connected network.  The 
answer is simple, if you have an image with N (width) * M (height) * F (filters) and is connected to H 
(hidden) nodes. Then the total number of network parameters would be: 
 

𝑃 = (𝑵 ∗𝑴 ∗ 𝑭) ∗ 𝑯,   
where N= image width, M=image height and F = Filters, H = hidden nodes 

 
So, for example, a color image with 1000 * 1000 with 3 filters (R, G, B), connected to 1000 hidden 
layers.  This would produce a network with (P = 1000 * 1000 * 3 * 1000) 3bn parameters to train.  
 
It is difficult to get enough data to train such model without overfitting, and computational and 
memory requirements.  
 
A Convolution Neural Network breaks this problem into two parts.  It first detects various features 
such as edges, objects, faces etc., using convolutional layer (filters, padding and strides). Then it uses 
polling layer to reduce the dimensionality of the network.  Secondly, it applies the classification layer 
as a fully connected layer to classify the model.  
 
See the following link for more detailed explanation: https://github.com/mufajjul/onnx-
operationalisation/wiki/Convolutional-Neural-Network 
 
Defining the CNN model 
 
… 
1    keras_model = Sequential() 
2    keras_model.add(Conv2D(16, strides= (1,1), padding= 'valid', kernel_size=(3,  
3), activation='relu', input_shape=input_shape)) 
3     keras_model.add(Conv2D(32, (3, 3), activation='relu'))   
4    keras_model.add(Flatten()) 
…. 
5    keras_model.add(Dropout(0.5)) 
6    keras_model.add(Dense(self.number_of_classes, activation='softmax'))… 
7    keras_model.compile(loss=keras.losses.categorical_crossentropy, 
                  optimizer=keras.optimizers.Adadelta(), 
                  metrics=['accuracy']) 
  
Here we define a 11 layers CNN model with Keras. The first layer (line 2) of the Convolutional Neural 
Network consists of input shape of [28 ,28, 1], and uses 16 filters with size [3,3] and the activation 
function is Relu.  This will produce an output matrix of [14,14,32]. 
 
The next layer contains 32 filters with filter size of [3,3], this produces an output of [12,12,32]. The 
following layer applies a dropout (line 6), with {2,2}, which results in a matrix of [6,6,32].  Line 7 flattens 
the output, so that it is one-dimensional vector. This is then used as the input to the fully connected 



layer (line 12) with 128 nodes.  The model uses the categorical crossentropy as the loss function, with 
adadelta as the optimizer.  
 
Train/test the model  
 
The model is trained in batch mode with a size of 250, and epochs of 500.  The model is then scored 
using the test data.  
 
… 
1    model_history = model.fit(train_features, train_label, 
              batch_size=self.max_batch_size,epochs=self.number_of_epocs, 
              verbose=1,validation_data=(train_features, train_label)) 
2    score = model.evaluate(test_features, test_label, verbose=0) 
… 
 
You should see two outputs, one showing the loss value and other the accuracy.  Overtime, after a 
number of iterations and the loss value should decrease significantly and accuracy should increase.   
 
For full source code (see lines 44-104), please visit the following URI: 
https://github.com/mufajjul/onnx-operationalisation/blob/master/mlmodel/mnistexperiment.py  
 
Please try using various hypermeter, and layers to see the impact on the accuracy of the output.  
 
Step 4: Convert to ONNX Model  
 
Since the model is generated using the Keras, which TensorFlow backend, the model cannot directly 
be produced as an ONNX model, we therefore need to use a converter tool to convert from a Keras 
Model into an ONNX model. The winmltools module contains various methods for handing ONNX 
operations, such as save, convert and others. This module handles all the underlying complexity and 
provides seamless generation/transformation to ONNX model.  The code below converts a Keras 
model into ONNX model, then it saves it as an ONNX file.  
 
1 convert_model = winmltools.convert_keras(model) 
2 winmltools.save_model(convert_model, "mnist.onnx") 
 
This model can now be taken and deployed in an ONNX runtime environment.  
 
Step 5:  Operationalize Model  
 
In this section, we first create a score file, that defines inference of the model. This file typically 
provides two methods: init and run.  The init function is designed to load the ONNX model and make 
it available for inferencing.  The run method is invoked to carry out the scoring. It provides various 
pre-processing of the input data, then score the data using the model, and return the output as a JSON 
value.  
 
The score file is used by the Flask framework to expose the model as a REST end point, which then can 
be consumed by a service or an end user.    
 
 
 



… 
1 def init(): 
2    global onnx_session 
3    onnx_session = onnxruntime.InferenceSession('model/mnist.onnx') 
 
4 def run(raw_data): 
..  
5       classify_output = onnx_session.run(None, 
{onnx_session.get_inputs()[0].name:reshaped_img.astype('float32')}) 
.. 
6        return json.dumps({"prediction":classify_output}, cls=NumpyEncoder) 
 
The above code (lines 1-3) initializes the ONNX model by using the ONNX runtime environment.  The 
runtime loads the model and makes it available for the duration of the session. The run method 
(lines 4-6) receives an image, which is resized to [28,28], and reshaped to a matrix of [1, 28, 28, 1]. 
The classifier returns a json output with 10 classes with weighted distribution of value adding to 1.    
 
Full source code is available on the following URI: https://github.com/mufajjul/onnx-
operationalisation/blob/master/mlmodel/score.py 
 
The next step is to use the Python Flask framework to deploy the model as a REST Webservice.  The 
Webservice exposes a POST REST end point for client interaction.    
 
First, we need to install the flask libraries: 
 
pip install flask 
 
Once the flask library is installed, we need to create a file that defines the endpoints and the REST 
methods it can handle.  
 
The code below (line 1), loads the ONNX model by invoking the init method.   The application then 
waits for requests on the “/api/classify_digit” endpoint on port 80 as a HTTP POST.  When a request 
comes in, the image is converted into gray scaled and the run method is invoked.  Additional 
validations can be added to check the request input.  
 
.. 
1 mlmodel.score.init() … 
 
2 @app.route("/api/classify_digit", methods=['POST']) 
3 def classify(): 
4    input_img = np.fromstring(request.data, np.uint8) 
5    img = cv2.imdecode(input_img, cv2.IMREAD_GRAYSCALE) 
6    classify_response = "".join(map(str, mlmodel.score.run(img))) 
7    return (classify_response) 
 
To run the Web Server locally, type the following commands on the terminal: 
 
export FLASK_APP = onnxop.py 
python -m flask run 
 
This will start a server on port 5000.  To test the Webservice endpoint, you can send a POST 
request, using Postman.  If you do not have Postman installed, you can download it from the 
following URI: https://www.getpostman.com/ 
 



Summary 
 
In this starter guide, we have shown how to create an end-to-end machine learning 
experiment using ONNX, Keras and Flask as a first principle.  The solution clearly articulates 
how easy it is to use ONNX to operationalize a deep learning machine learning model and 
deploy it using popular framework such as Flask.  Of course, the Flask application can be wrap 
around as a Docker image and deployed to the cloud on a docker enabled container services 
such ACI or AKS.   
 
However, there are few aspects of machine learning experiments, such as how to maintain 
versioning of models, and keep track of various experiments, training the experiments on 
various compute nodes, which are vital for production grade machine learning solution have 
not been covered. Primarily, due to the challenge of implementing such functionalities as a 
code first approach, although there are libraries out there that can help. This is where the 
power of Azure Machine Learning service comes into the picture.  The Machine Learning 
Service (https://azure.microsoft.com/en-gb/services/machine-learning-service/) greatly 
simplify the data science process by providing high level building blocks that hides the 
complexity of manually configuring and running the experiments on various compute targets. 
It also supports out of the box operationalizing capabilities, such as generating Docker images 
with REST endpoint which can be deployed on a container service.   
 
 
Code 
 
Full source code is available on GitHub: 
 https://github.com/mufajjul/onnx-operationalisation 
 
This guide is available to download on GitHub 
https://github.com/mufajjul/onnx-operationalisation/tree/master/docs 
 

 


