Chapter 1

What is Operations Research?

Set 2.1a

Buy three roundtrip tickets for the

East	Crossing	Cont.
5,10	$(1,2) \rightarrow(\mathbf{t}=\mathbf{2})$	1,2
$1,5,10$	$(\mathbf{t}=\mathbf{1}) \leftarrow(1)$	2
1	$(5,10) \rightarrow(\mathbf{t}=\mathbf{1 0})$	$2,5,10$
1,2	$(\mathbf{t}=\mathbf{2}) \leftarrow(2)$	5,10
none	$(1,2) \rightarrow(\mathbf{t}=\mathbf{2})$	$2,5,10$
Total $=2+1+10+2+2=17$ minutes		

Given a string of length L :
(1) $\mathrm{h}=.3 \mathrm{~L}, \mathrm{w}=.2 \mathrm{~L}$, Area $=.06 \mathrm{~L}^{2}$
(2) $\mathrm{h}=.1 \mathrm{~L}, \mathrm{w}=.4 \mathrm{~L}$, Area $=.04 \mathrm{~L}^{2}$

Solution (2) is better because the area is larger
$\mathrm{L}=2(\mathrm{w}+\mathrm{h})$
$\mathrm{w}=\mathrm{L} / 2-\mathrm{h}$
$\mathrm{z}=\mathrm{wh}=\mathrm{h}(\mathrm{L} / 2-\mathrm{h})=\mathrm{Lh} / 2-\mathrm{h}^{2}$
$\delta z / \delta h=L / 2-2 h=0$
Thus, $\mathrm{h}=\mathrm{L} / 4$ and $\mathrm{w}=\mathrm{L} / 4$.
Solution is optimal because z is a concave function
(a)

Let $\mathrm{T}=$ Total tie to move all four individuals to the other side of the river. the objective is to determine the transfer schedule that minimizes T .
(b)

Let $t=$ crossing time from one side to the other. Use codes $1,2,5$, and 10 to represent Amy, Jim, John, and Kelly.

Let $L=o p s .1$ and $2=20 \mathrm{sec}, C=o p s .3$ and $4=25 \mathrm{sec}, U=0 p .5=20 \mathrm{sec}$ Gant chart: L1+load horse 1, L2=load horse 2, etc.
 165--U2 $2+$ L2--- 205
20-L2-40 45---C2---70 85---C1---110 165---C2--140
Total $=250$
205---C2---230---U2---250
Loaders utilization $=[250-(5+25)] / 250=88 \%$
Cutter utilization $=[250-(20+15+15+15+15)] / 250=68 \%$

$$
40--2 L 2--80 \quad 90--2 C 2---140 \quad 170--2 \mathrm{U} 2---210
$$

Total $=260$
Loaders utilization $=[260-(10+10)] / 260=92 \%$
Cutter utilization $=[260-(40+30+40)] / 250=58 \%$

60---3L2--120 135----3U1-----195

Total $=270$
Loaders utilization $=[270-(15+15)] / 270=89 \%$
Cutter utilization $=[270-(60+60)] / 270=56 \%$
Recommendation: One joist at time gives the smallest time. The problem has other alternatives that combine 1,2, and 3 joists. Cutter utilization indicates that cutter represents the bottleneck.

CHAPTER 2

Modeling with Linear Programming
(a) $x_{2}-x_{1} \geqslant 1$ or $-x_{1}+x_{2} \geqslant$
(b) $x_{1}+2 x_{2} \geqslant 3$ and $x_{1}+2 x_{2} \leq 6$
(c) $x_{2} \geq x_{1}$ or $x_{1}-x_{2} \leqslant 0$
(d) $x_{1}+x_{2} \geqslant 3$
(e) $\frac{x_{2}}{x_{1}+x_{2}} \leqslant 5$ or $.5 x_{1}-.5 x_{2} \geqslant 0$
(a) $\left(x_{1}, x_{2}\right)=(1,4)$
$\left(x_{1}, x_{2}\right) \geqslant 0$
$6 \times 1+4 \times 4=22<24$
$\mid x_{1}+2 x_{4}=9 \neq 6 \quad$ infeasible
(b)

$$
\left.\begin{array}{l}
\left(x_{1} x_{2}\right)=(2,2) \\
\left(x_{1}, x_{2}\right) \geqslant 0 \\
6 \times 2+4 \times 2=20 \\
1 \times 2+2 \times 2=6=24 \\
-1 \times 2+1 \times 2=0 \quad<1 \\
1 \times 2=2=2
\end{array}\right\} \text { feasible }
$$

(c)

$$
\left.\begin{array}{rl}
\left(x_{1}, x_{2}\right)=(3,1.5) \\
x_{1}, x_{2} \geq 0 \\
6 \times 3+4 \times 1.5=24 & =24 \\
1 \times 3+2 \times 1.5=6 & =6 \\
-1 \times 3+1 \times 1.5=-1.5 & <1 \\
1 \times 1.5=1.5 & <2
\end{array}\right\} \text { fencifle }
$$

(d) $\left(x_{1}, x_{2}\right)=(2,1)$

$$
\begin{aligned}
& x_{1}, x_{2} \geq 0 \\
& 6 \times 2+4 \times 1=16 \\
& \mid x_{2}+2 \times 1=4 \\
& -1 x_{2}+|x|=-1 \\
& \mid x 1=1 \\
& 2=5 \times 2+4 \times 1=\$ 14
\end{aligned}
$$

(e) $\left(x_{1}, x_{2}\right)=(2,-1)$
$x_{1} \geqslant 0, x_{2}<0$, infeasifle
Conchuari: (c) gives the best fensifle oflutessi

$$
\left(x_{1}, x_{2}\right)=(2,2)
$$

Let S_{1} and s_{2} be the unuced daily a sanuits of M1and M2.

$$
\begin{aligned}
& \text { ammuts of } \\
& \text { For M1: } S_{1}=24-\left(6 x_{1}+4 x_{2}\right)=4 \text { tons } / \text { day } \\
& \text { For M2: } S_{2}=6-\left(x_{1}+2 x_{2}\right) \\
&=6-(2+2 \times 2)=0 \text { tons/day }
\end{aligned}
$$

Quantity discount results in the following nonlesear objective function:

$$
z= \begin{cases}5 x_{1}+4 x_{2}, & 0 \leqslant x_{1} \leqslant 2 \\ 4.5 x_{1}+4 x_{2}, & x_{1}>2\end{cases}
$$

The sutuation cansot be treated. as a leniar program. Nonleniasity can be accounted for in thi caes uning mixed integer pergramining (chapter 9).

(a)

(b)

(d)

(e)

(b)

(C)
(a)

(b) $x_{2} \geqslant 2$

(c) $-x_{1}+x_{2}=1$

(c) No feasible space
$x_{1}=$ diely units of product 1
$x_{2}=$ daily units of product 2
Maximize $z=2 x_{1}+3 x_{2}$ $s . t$.

Optimum accurs at A :

$$
\begin{aligned}
& x_{1}=52.94 \\
& x_{2}=14.12 \\
& 2=7148.24
\end{aligned}
$$

Set 2.2a

 $x_{2}=$ number of units of B

Maximize $z=20 x_{1}+50 x_{2}$

$$
\begin{aligned}
& \frac{x_{1}}{x_{1}+x_{2}} \geqslant .8 \text { or }-2 x_{1}+.8 x_{2} \leqslant 0 \\
& x_{1} \leqslant 100 \\
& 2 x_{1}+4 x_{2} \leqslant 240 \\
& x_{1}, x_{2} \geqslant 0 \\
& \text { A dimer } \\
& \text { Optimal occurs at B. } \\
& x_{1}=80 \text { units } \\
& x_{2}=20 \text { units } \\
& z=\$ 2,600
\end{aligned}
$$

$x_{1}=$ number of sheets/day
$x_{2}=$ number of bars/day
6
Maximize $z=40 x_{1}+35 x_{2}$
s.t. $\frac{x_{1}}{800}+\frac{x_{2}}{600} \leq 1$
$0 \leq x_{1} \leq 550,0 \leq x_{2} \leq 580$

Optimum Solution:
$x_{1}=550$ sheets
$x_{2}=187.13$ bars
$z=\$ 28,549.40$
$x_{1}=\$$ invested in A
$x_{2}=\$$ inverted in B

Maximize $Z=.05 x_{1}+.08 x_{2}$
st.

$$
\begin{aligned}
& x_{1} \geqslant .25\left(x_{1}+x_{2}\right) \\
& x_{2} \leqslant .5\left(x_{1}+x_{2}\right) \\
& x_{1} \geqslant .5 x_{2} \\
& x_{1}+x_{2} \leq 5000 \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

$x_{1}=$ number of practical courses
$x_{2}=$ number of humanistic courses
3
Maximize $z=1500 x_{1}+1000 x_{2}$
st.

$$
\begin{aligned}
x_{1}+x_{2} & \leq 30 \\
x_{1} \quad & \geq 10 \\
x_{2} & \geq 10 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

optimum:

$$
\begin{aligned}
& x_{1}=20 \\
& x_{2}=10 \\
& z=\$ 40,000
\end{aligned}
$$

(b) Change $x_{1}+x_{2} \leqslant 30$ to $x_{1}+x_{2} \leqslant 31$ Optimum $z=\$ 41,500$ $\Delta z=\$ 41,500-40,000=\$ 1500$
Concluvion: Any additional course will be fo the practical type.

Set 2.2a

$x_{1}=$ unitisf oolutian A
$x_{2}=$ units of colution B
maximize $z=8 x_{1}+10 x_{2}$
sulyeit 6

$$
\begin{aligned}
.5 x_{1}+.5 x_{2} & \leqslant 150 \\
.6 x_{1}+.4 x_{2} & \leqslant 145 \\
x_{1} & \geqslant 30 \\
x_{1} & \leqslant 150 \\
x_{2} & \geqslant 40 \\
x_{2} & \leqslant 200 \\
x_{1}, x_{2} \geqslant 0 &
\end{aligned}
$$

Optimum: $x_{1}=200, x_{2}=50, z=\$ 267.50$
Aren allocation: 67% grano, 33% whentic
$x_{1}=$ play Kours pen day
$x_{2}=$ work hours penday
Maximize $z=2 x_{1}+x_{2}$ s.t.

$$
\begin{aligned}
& x_{1}+x_{2} \leq 10 \\
& x_{1}-x_{2} \leq 0 \\
& x_{1} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

$x_{1}=$ nbr. of grano boxes
$x_{2}=n b r$. of wheatie boxcs
Maximize $z=x_{1}+1.35 x_{2}$
s.t. $\quad 2 x_{1}+.4 x_{2} \leq 60$
$x_{1} \leqslant 200$
$x_{2} \leqslant 120$
$x_{1}, x_{2} \geq 0$
$x_{1}=$ Daily nbr. of type / Rat
$x_{2}=$ Doily nbr. of type 2 Lat
Maximize $z=8 x_{1}+5 x_{2}$
s.t. $\left.\quad \begin{array}{rl}2 x_{1}+x_{2} & \leq 400 \\ x_{1} & \leq 150 \\ x_{2} & \leq 200\end{array} \quad \begin{array}{rl} & \end{array}\right)=2 x_{2}$

$$
\begin{aligned}
& \text { Optimum Solutern; } \\
& x_{1}=4 \text { Rours } \\
& x_{2}=6 \text { hours } \\
& z=14 \text { "pleasarits" }
\end{aligned}
$$

continued.

Set 2.2a

$x_{1}=$ radio minutes
$x_{2}=T V$ minutes
Maximize $z=x_{1}+25 x_{2}$
s.t. $15 x_{1}+300 x_{2} \leq 10,000$
$\frac{x_{1}}{x_{2}} \geqslant 2$ or $-x_{1}+2 x_{2} \leqslant 0$
$x_{1} \leqslant 400, x_{1}, x_{2} \geqslant 0$

Optimum occurs at A:
$x_{1}=60.61$ mimulo
$x_{2}=30.3$ minutes
$z=818.18$
$x_{1}=$ tons of C_{1} convened per tour
$x_{2}=$ tons of C_{2} consumed pen hour
Maximize $z=12000 x_{1}+9000 X_{2}$
sit.
$1800 x_{1}+2100 x_{2} \leq 2000\left(x_{1}+x_{2}\right)$
or $-200 x_{1}+100 x_{2} \leq 0$
$2.1 x_{1}+.9 x_{2} \leq 20$

(a) Optimum occurs at A :
$x_{1}=5.128$ tons per hour
$x_{2}=10.256$ tons per Lour
$z=153,846 \quad 16$ of Stern
Optima $/$ ratio $=\frac{5.128}{10.256}=.5$
(6) $2.1 x_{1}+.9 x_{2} \leq(20+1)=21$

Optimum $z=161538$ 16 of steam $\Delta z=161538-153846=7692 \mathrm{lb}$
$x_{1}=$ Nb. of radio commercials beyond the first
$x_{2}=$ Nor. If $7 V$ ads beyond the first
Maximize $Z=2000 x_{1}+3000 x_{2}+5000+2000$
s.t. $300\left(x_{1}+1\right)+2000\left(x_{2}+1\right) \leqslant 20,000$
$300\left(x_{1}+1\right) \leqslant .8 \times 20,000$
$2000\left(x_{2}+1\right) \leqslant .8 \times 20,000$

$$
x_{1}, x_{2} \geqslant 0
$$

or
Maximize $z=2000 x_{1}+3000 x_{2}+7000$
SHF.

$$
\begin{align*}
& 300 x_{1}+2000 x_{2} \leq 17700 \tag{2}\\
& 300 x_{1} \leq 15700 \\
& 2000 x_{2} \leq 14000 \tag{3}
\end{align*}
$$

$$
x_{1}, x_{2} \geqslant 0
$$

Radio commercials $=52 \cdot 33+1=53.33$
Tr ads $=1+1=2$
$Z=107666.67+7000=114666.67$
$x_{1}=$ number of shirts pen hour
$x_{2}=$ number of blouses yon Lour
Maximize $z=8 x_{1}+12 x_{2}$
st.

$$
\begin{gather*}
20 x_{1}+60 x_{2} \leq 25 \times 60=1500 \tag{1}\\
70 x_{1}+60 x_{2} \leq 35 \times 60=2100 \tag{2}\\
12 x_{1}+4 x_{2} \leq 5 \times 60=300 \tag{3}\\
x_{1}, x_{2} \geqslant 0
\end{gather*}
$$

$x_{1}=$ Nbr. of desks pen day $x_{2}=$ Nbr. of chairs per day
Maximize $Z=50 x_{1}+100 x_{2}$

$$
\begin{align*}
& \frac{x_{1}}{200}+\frac{x_{2}}{80} \leq 1 \tag{i}\\
& \frac{x_{1}}{150}+\frac{x_{2}}{110} \leq 1 \tag{2}\\
& x_{1} \leq 120, x_{2} \leqslant 60 \tag{3,4}
\end{align*}
$$

Optimum:

$$
\begin{aligned}
& x_{1}=90 \text { denotes } \\
& x_{2}=44 \text { chairs } \\
& z=\$ 8900
\end{aligned}
$$

$x_{1}=$ number of WiFi 1 units
$x_{2}=$ number of WiFi 2 units
$x_{2}=$ number of HiFi 2 units

Constraints:

$6 x_{1}+4 x_{2} \leq 480 x \cdot 9=432$
$5 x_{1}+5 x_{2} \leq 480 x \cdot 86=412.8$
$4 x_{1}+6 x_{2} \leq 480 x \cdot 88=422.4$
or

$$
\begin{aligned}
6 x_{1}+4 x_{2}+51 & =432 \\
5 x_{1}+5 x_{2}+5_{2} & =412.8 \\
4 x_{1}+6 x_{2}+5_{3} & =422.4
\end{aligned}
$$

Objective function:

Minimize $s_{1}+S_{2}+s_{3}=1267.2-15 x_{1}-15 x_{2}$
Thus, mai $S_{1}+S_{2}+S_{3} \equiv \max 15 x_{1}+15 x_{2}$
Maximize $Z=15 x_{1}+15 x_{2}$
st.

$$
\begin{aligned}
6 x_{1}+4 x_{2} & \leq 432 \\
5 x_{1}+5 x_{2} & \leqslant 412.8 \\
4 x_{1}+6 x_{2} & \leqslant 422.4 \\
x_{1}, x_{2} \geqslant 0 &
\end{aligned}
$$

Optimum : (Problem has alternative optima) $x_{1}=50.88$ units
$x_{2}=31.68$ units
$z=1238.4$ minutes

Set 2.2b

additional constraint: $x_{1} \leqslant 450$

Optimum Solution:

$$
\begin{aligned}
& x_{1}=45016 \\
& x_{2}=35016 \\
& z=\$ 450
\end{aligned}
$$

$x_{1}=$ number of hours/week in store 1
 $x_{2}=$ number of Rous/week in store 2
Minimize $z=8 x_{1}+6 x_{2}$
st.
sit.

$$
\begin{aligned}
& x_{1}+x_{2} \geq 20 \\
& 5 \leqslant x_{1} \leqslant 12 \\
& 6 \leqslant x_{2} \leqslant 10
\end{aligned}
$$

Opternum:

$$
\begin{aligned}
& x_{1}=10 \text { hours } \\
& x_{2}=10 \text { hours } \\
& z=140 \text { stress index }
\end{aligned}
$$

Let
$x_{1}=10^{3} \mathrm{bbl} /$ day from Iran
$x_{2}=10^{3} \mathrm{bb} 1 /$ day form Dubai
Refinery capacily $=x_{1}+x_{2} \quad 10^{3} \mathrm{bb} / \mathrm{day}$
Minimize $z=x_{1}+x_{2}$
subject to

$$
x_{1} \geq-4\left(x_{1}+x_{2}\right)
$$

02

$$
\begin{aligned}
&-.6 x_{1}+.4 x_{2} \leq 0 \\
& .2 x_{1}+.1 x_{2} \geq 14 \\
& .25 x_{1}+.6 x_{2} \geq 30 \\
& .1 x_{1}+.15 x_{2} \geq 10 \\
& .15 x_{1}+.1 x_{2} \geqslant 8 \\
& x_{1} x_{2} \geqslant 0
\end{aligned}
$$

Optimum solution i from TORA:

LINEAR PROGRAMMING - GRAPHICAL SOLUTION
THE: diet problem
Summary of Optimal Solution:
Objective Value $=05.00$
Objective Value $=85.00$
$x 1=55.00$
$x 1=55.00$
$x 2=30.00$

$x_{1}=10^{3} \#$ riveted in blue chip stock
$x_{2}=10^{3} \$$ mivested in $x_{\text {ugh }}$-tech stocks
Minimize $z=x_{1}+x_{2}$
subject σ

$$
\begin{gathered}
.1 x_{1}+.25 x_{2} \geqslant 10 \\
.6 x_{1}-.4 x_{2} \geqslant 0 \\
x_{1}, x_{2} \geqslant 0
\end{gathered}
$$

ToeA optioniminalution:

LINEAR PROGRAMMING - GRAPHICAL SOLUTION

THe: diet problem
Summary of Optimal Solution:
Objective Value $=52.63$
$x 1=21.05$
$x 1=21.05$
$x 2=31.58$

Set 2.2b

$$
\begin{aligned}
& x_{1}=\text { Ratio of scrap } A \text { in alloy } \\
& x_{2}=\text { Ratio of scrap } B \text { in alloy }
\end{aligned}
$$

$x_{e}=N b r$ of efficiency apartments
$x_{d}=N b r$. of duplexes
$x_{S}=N b r$ of single - faring homes
$x_{r}=$ Retailspace in ft^{2}
Maximize $Z=600 x_{c}+750 x_{d}+1200 x_{s}+100 x_{\mu}$
s.t. $x_{e} \leq 500, x_{d} \leq 300, x_{s} \leq 250$
$x_{r} \geqslant 10 x_{e}+15 x_{d}+18 x_{s}$
$x_{r} \leqslant 10000$
$x_{d} \geq \frac{x_{e}+x_{s}}{2}$
$x_{e}, x_{d}, x_{s}, x_{n} \geqslant 0$
Optimal solution:
$z=1,595,714.29$
$x_{e}=207.14, x_{d}=228.57$
$x_{5}=250, x_{2}=10,000$
$\angle P$ does not guar antes integer odution.
Use rounded solution or apply integer $\angle P$
alfoithen (Chapati 9).
algorithm (chapter 9).
$x_{i}=$ Acquired portion os property i
Each site is soperesented by a separate \angle ? The site that yields the smaller objective value is selected.
Site 1 LP:
Minimize $z=25+x_{1}+2.1 x_{2}+2.35 x_{3}+1.85 x_{4}+2.95 x_{5}$
s.t. $x_{4} \geqslant .75$, all $x_{i} \geqslant 0, i=1,2, \cdots, 5$
$20 x_{1}+50 x_{2}+50 x_{y}+30 x_{4}+60 x_{5} \geqslant 200$
Optimum: $Z=34.6625$ million $\$$

$$
\begin{aligned}
& z=34.6625 \text { million } \ddagger \\
& x_{1}=.875, x_{2}=x_{3}=1, x_{4}=.75, x_{5}=1
\end{aligned}
$$

Site $2 L P:$
Minimize $Z=27+2.8 x_{1}+1.9 x_{2}+2.8 x_{3}+25 x_{4}$
s.t. $x_{3} \geqslant 5, x_{1}, x_{2}, x_{3}, x_{y} \geqslant 0$
$80 x_{1}+60 x_{2}+50 x_{3}+70 x_{4} \geqslant 200$
optimum: : $Z=34.35$ million $\$$

$$
\begin{aligned}
& z=34.35 \text { million } \$ \\
& x_{1}=x_{2}=1, x_{3}=x_{4}=.5
\end{aligned}
$$

Select site 2.
$x_{i j}=$ portion of project i completed in year j
3
maximize $z=.05\left(4 x_{y}+3 x_{12}+2 x_{13}\right)+$

$$
.07\left(3 x_{22}+2 x_{23}+x_{24}\right)+
$$

$$
\begin{aligned}
& .07\left(3 x_{22}+2 x_{23}+x_{24}\right)^{\top} \\
& 15\left(4 x_{31}+3 x_{32}+2 x_{33}+x_{34}\right)+
\end{aligned}
$$

$$
.02\left(2 x_{43}+x_{44}\right)
$$

St.

$$
\begin{aligned}
& \sum_{j=1}^{3} x_{1 j}=1, \sum_{j=3}^{4} x_{4 j}=1 \\
& \cdot 25 \leq \sum_{j=2}^{5} x_{2 j} \leq 1, \cdot 25 \leq \sum_{j=1}^{5} x_{3 j} \leq 1 \\
& 5 x_{11}+15 x_{31} \leq 3 \\
& 5 x_{12}+8 x_{22}+15 x_{32} \leq 6 \\
& 5 x_{13}+8 x_{23}+15 x_{33}+1.2 x_{43} \leq 7 \\
& 8 x_{24}+15 x_{34}+1.2 x_{44} \leq 7 \\
& 8 x_{25}+15 x_{35} \leq 7
\end{aligned}
$$

Optimum:

$$
\begin{aligned}
& z=\$ 523,750 \\
& x_{11}=.6, x_{12}=.4 \\
& x_{24}=.225, x_{25}=.025 \\
& x_{32}=-267, x_{33}=.387, x_{34}=.346 \\
& x_{43}=1
\end{aligned}
$$

$x_{p}=$ Nor. of low in come units
$x_{m}=N b r$. of middle micome units
$x_{u}=$ Nbr. of upper income units
$x_{p}=$ Abr. of public honing units
$x_{s}=N b$. of school homs
$x_{R}=$ Nor. If retail units
$x_{c}=N b r$. of condemned homes
Maximize $z=7 x_{l}+12 x_{m}+20 x_{u}+5 x_{p}+15 x_{n}$

$$
-10 x_{5}-7 x_{c}
$$

s.t. $100 \leqslant x_{l} \leqslant 200,125 \leqslant x_{m} \leqslant 190$ $75 \leqslant x_{u} \leqslant 260,300 \leq x_{p} \leq 600$ $0 \leq x_{5} \leq 2 / .045$
$.05 x_{l}+.07 x_{m}+.03 x_{u}+.025 x_{p}+$ $.045 x_{s}+.1 x_{n} \leqslant .85\left(50+.25 x_{c}\right)$ $x_{n} \geqslant .023 x_{l}+.034 x_{m}+.046 x_{4}+$ $.023 x_{p}+0.034 x_{s}$

Set 2.3a

$25 x_{s} \geqslant 1.3 x_{l}+1.2 x_{m}+.5 x_{u}+1.4 x_{p}$
Optimum: $z=8290.30$ thousand \ddagger

$$
\begin{aligned}
& x_{l}=100, x_{m}=125, x_{u}=227.04 \\
& x_{p}=300, x_{s}=32.54, x_{h}=25 \\
& x_{c}=0
\end{aligned}
$$

$x_{1}=$ Nb. of serigle-fanaily homes 5
$x_{2}=N b r$. If double-farindy homes
$x_{3}=$ Nbs. of truplef family homes
$x_{4}=N b r$. of recreation areas
Maximize $z=10,000 x_{1}+12000 x_{2}+15000 x_{3}$
s.f.

$$
2 x_{1}+3 x_{2}+4 x_{3}+x_{4} \leqslant .85 \times 800
$$

$$
\frac{x_{1}}{x_{1}+x_{2}+x_{3}} \geqslant .5 \text { or } .5 x_{1}-.5 x_{2}-.5 x_{3} \geqslant 0
$$

$$
x_{4} \geqslant \frac{x_{1}+2 x_{3}+3 x_{3}}{200} \text { or } 200 x_{9}-x_{1}-2 x_{2}-3 x_{3} \geqslant 0
$$

$$
1000 x_{1}+1200 x_{2}+1400 x_{3}+800 x_{4} \geq 100,000
$$

$$
400 x_{1}+600 x_{2}+890 x_{3}+450 x_{4} \leq 200,000
$$

$$
x_{1}, x_{2}, x_{3}, x_{4} \geqslant 0
$$

Optimum solution:

$$
\begin{aligned}
& x_{1}=339.15 \text { homes } \\
& x_{2}=0 \\
& x_{3}=0 \\
& x_{4}=1.69 \text { areas } \\
& z=3,391,521.20
\end{aligned}
$$

New land use constraint:
$2 x_{1}+3 x_{2}+4 x_{3}+x_{4} \leq .85(800+100)$
$\frac{\text { New Optimum solution: }}{z \neq 3,815,461.35}$

$$
x_{1}=381.54 \text { homes }
$$

$$
x_{2}=x_{3}=0
$$

$$
x_{4}=1.91 \text { areas }
$$

$$
\Delta z=\$ 3,815,461.35-3,391,521.20
$$

$$
=\$ 423,940.35
$$

$\Delta Z<450,000$, the purchasing cost of 100 acres. Hence, the purchase of the new acreage is not recommended.

YR R constraints remain unchanged, but the objective function is changed
Maximize $z=y$-commission where

$$
\begin{aligned}
\text { commination } & =.001(\text { all traneactoins in } \#) \\
& =.001\left[\left(x_{12}+x_{13}+x_{14}+x_{15}\right)+\right. \\
& \frac{1}{.769}\left(x_{21}+x_{23}+x_{24}+x_{25}\right)+ \\
& \frac{1}{.625}\left(x_{31}+x_{32}+x_{34}+x_{35}\right)+ \\
& \frac{1}{105}\left(x_{41}+x_{42}+x_{43}+x_{45}\right)+ \\
& \frac{1}{.342}\left(x_{51}+x_{52}+x_{53}+x_{54}\right)
\end{aligned}
$$

Optimum Solution :

	Without	with
z	5.09032	5.06211
y	5.09032	5.08986
Return	1.8064%	1.2421%

$$
\begin{aligned}
\text { Commission } & =5.08486-5.06211 \\
& =\$ 27,750 .
\end{aligned}
$$

or, $.555 \%$ of the original envediment of $\$ 5$ million
Invert I in fund tar p:

Output y in fund type q :

For specific p and q, the model below can be used to transform any frond to any other fund. In
the present yeroblem, $p=1(\$)$ and $q=2(€), 3\left(\frac{f}{f}\right), 4\left(\frac{7}{f}\right)$, and $5(K D)$.
General node i :

st.

$$
I+\sum_{\substack{j=1 \\ j \neq p}}^{n} r_{j p} x_{j p}=\sum_{\substack{j=1 \\ j \neq p}}^{n} x_{p j}
$$

$$
\sum_{\substack{j=1 \\ j \neq q}}^{n} r_{j q} x_{j q}=y+\sum_{\substack{j=1 \\ j \neq q}}^{n} x_{q j}
$$

$$
\sum_{\substack{j=1 \\ j \neq i}}^{n} r_{j i} x_{j i}=\sum_{\substack{j=1 \\ j \neq i}}^{n} x_{i j}, i \neq p \text { or q }
$$

$0 \leq x_{i j} \leq$ Cap $_{i}$, alt i and j
note: Solver or AMPL is ideal for solving this problem interactively. See files solver2.36-2.xls and amp 22.36-2. $+x$ t.

Results: (No commisaion)

p	q	Rate of return
$\$$	$\$$	1.8064%
$\$$	$€$	1.7966%
$\$$	$\#$	1.8287%
$\$$	$\#$	2.8515%
$\$$	$K D$	1.0471%

Wide discrepancy in \neq and $K D$ currencies may be attributed to the frat that Devi exchange rates may not be consistent with the remaining rates. veventhelers, the problem shows that there may be advantages in targeting accuonulation in different currencies.

To formulate the objective function correctly, all output currenaes are coveted to a single currency (arbitrarily chosen to be \# 9 . Thus

$$
y=r_{21} x_{26}+r_{31} x_{36}+r_{41} x_{46}+r_{51} x_{56}
$$

Maximize $z=y$

$$
\text { s.t. } \quad x_{26} \leq 2, x_{36} \leq 3, x_{46} \leq 400 ; x_{3 j} \leq 3.5
$$

$$
x_{1 j} \leqslant 5, x_{2 j} \leqslant 3, x_{4 j} \leqslant 100, x_{5 j} \leqslant 2.8 \text {, all j }
$$

$$
I+\sum_{i=2}^{5} x_{i} r_{i 1}=\sum_{j=2}^{5} x_{i j}
$$

$$
y=r_{21} x_{26}+r_{31} x_{36}+r_{41} x_{46}+r_{51} x_{56}
$$

$$
\begin{aligned}
& x_{i 6}+\sum_{\substack{j=1 \\
j \neq i}}^{5} x_{i j}=\sum_{\substack{j=1 \\
j \neq i}}^{5} r_{j i} x_{j i}, i=2,3,4,5 \\
& \text { all } x_{i j} \geq 0, \quad i \neq j
\end{aligned}
$$

Solution: Total accumulation $y={ }^{\ddagger} 7.1$ million

Minimize $z=y$
SHf.

$$
\begin{array}{ll}
\text { s.f. } & y=r_{21} x_{02}+r_{3}, x_{03}+r_{41} x_{04}+r_{51} x_{05} \\
& x_{02} \leqslant 3, x_{03} \leqslant 2, x_{05} \leqslant 2 \\
\text { all j: } & x_{i j} \leqslant 5, x_{2 j} \leqslant 3, x_{4 j} \leq 3.5, x_{4 j} \leqslant 100, x_{5 j} \leqslant 2.8 \\
& x_{0 j}+\sum_{\substack{i=1 \\
i \neq j}}^{5} r_{i j} x_{i j}=\sum_{\substack{k=1 \\
k \neq j}}^{5} x_{j k}, j=2,3,4,5
\end{array}
$$

$$
\sum_{i=2}^{s \neq j} \gamma_{i 1} x_{i j}=\sum_{j=2}^{s=j} x_{1 j}^{s}+I
$$

all $x_{i j} \geq 0$
Solution:

$y=\$ 5.894170322$
Rate of return $=1.7638 \%$

(a) $x_{i}=$ Undertaken portioning project $i \quad 1$ Maximize
$z=32.4 x_{1}+35.8 x_{2}+17.75 x_{3}+14.8 x_{4}+18.2 x_{5}$

$$
+12.35 x_{6}
$$

Subject to
$10.5 x_{1}+8.3 x_{2}+10.2 x_{3}+7.2 x_{4}+12.3 x_{5}+9.2 x_{6} \leq 60$
$14.4 x_{1}+12.6 x_{2}+14.2 x_{3}+10.5 x_{4}+10.1 x_{5}+7.8 x_{6} \leq 70$
$2.2 x_{1}+9.5 x_{2}+5.6 x_{3}+7.5 x_{4}+8.3 x_{5}+6.9 x_{6} \leq 35$
$2.4 x_{1}+3.1 x_{2}+4.2 x_{3}+5.0 x_{4}+6.3 x_{5}+5.1 x_{6} \leq 20$

$$
0 \leq x_{j} . \leq 1, j=1,2, \ldots, 6
$$

TORA optimumsoluteori :

$$
x_{1}=x_{2}=x_{3}=x_{4}=1, x_{5}=\cdot 84, x_{6}=0, z=116.06
$$

(b) Add the constraint $x_{2} \leq x_{6}$

TORA optimum solution:
$x_{1}=x_{2}=x_{3}=x_{4}=x_{6}=1, x_{5}=.03, z=113.68$
(c) Let S_{i} be the unwed founds at the end of year i and change the right -hand sides of constraints 2,3 , and 4 to $70+5$, $35+S_{2}$, and $20+S_{3}$, respectively.
TORA optimum solution :
$x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=1, \quad x_{6}=.71$
$z=\$ / 27.72$ (thousand)
The folutori is isitexpreted as follows:

i	S_{i}	$S_{i}-S_{i-1}$	Decurion
1	4.96	-	
2	7.62	+2.66	Don's borrow from yr 1
3	4.62	-3.00	Borrow $\$ 3$ from year 2
4	0	-4.62	Borrow 44.62 from yr 2

The effect of availing excess money for use in later years is that the first five projected are completed and 71% of project 6 is undertaken.
The total revenue increases from $\$ 116,060$ to 127,720 .
(d) The clack S_{i} en period i is treated as an unrestricted variable. TORA optionum of elution: $z=\$ 131.30$

$$
S_{1}=2.3, S_{2}=.4, S_{3}=-5, S_{4}=-6.1
$$

This means that additional funds are needed in years 3 and 4.
increase an return $=131.30-116.06$

$$
=\neq 15.24
$$

Ignoring the time value of money,
the amount borrowed $5+6.1-(2.3+.4)$
$=\$ 8.4$. Thus,
rate of return $=\frac{15.24-8.4}{8.4} \cong 81 \%$
$x_{i}=$ dollars investment in project
$i, i=1,2,3,4$
$y_{j}=$ dollar investment is bank in year $j, j=1,2,3,4,5$
Maximize $z=y_{5}$
Subject to
$x_{1}+x_{2}+x_{4}+y_{1} \leqslant 10,000$
$.5 x_{1}+.6 x_{2}-x_{3}+.4 x_{4}+1.065 y_{1}-y_{2}=0$
$.3 x_{1}+.2 x_{2}+.8 x_{3}+.6 x_{4}+1.065 y_{2}-y_{3}=0$
$1.8 x_{1}+1.5 x_{2}+1.9 x_{3}+1.8 x_{4}+1.065 y_{3}-y_{4}=0$
$1.2 x_{1}+1.3 x_{2}+.8 x_{3}+.95 x_{y}+1.06 y_{4}-y_{5}=0$ ace variables $\geqslant 0$
TORA optimal solution:
$x_{1}=0, x_{2}=\$ 10,000, x_{3}=\$ 6000, x_{4}=0$
$y_{1}=0, y_{2}=0, y_{3}=76800, y_{4}={ }^{y_{3}} 3,642$ $z=\$ 53,628.73$ at the start of year 5
$P_{i}=$ fraction undentatem of project 3
(i) $i=1,2$
$B_{j}=$ million dollars foroured in quarter $j, j=1,2,3,4$
$S_{j}=$ surpluomillion dollars at the stand of quarter $j, j=1,2,3,4,5$

$$
1 q_{1}+3 p_{2}
$$

$3.1 P_{1}+2.5 P_{2}$

(a) Maximize $z=S_{5}$

Subject to

$$
P_{1}+3 P_{2}+S_{1}-B_{1}
$$

$3.1 P_{1}+2.5 P_{2}-1.02 S_{1}+5_{2}+1.025 B_{1}-B_{2}=1$ $1.5 P_{1}-1.5 P_{2}-1.02 S_{2}+S_{3}+1.025 B_{2}-B_{3}=1$ $-1.8 P_{1}-1.8 P_{2}-1.02 J_{3}+S_{4}+1.025 B_{3}-B_{4}=1$ $-5 P_{1}-2.8 P_{2}-1.02 S_{4}+S_{5}+1.025 B_{4}=1$

$$
\begin{array}{ll}
0 \leq P_{1} \leq 1, & 0 \leq P_{2} \leq 1 \\
0 \leq B_{j} \leq 1, & j=1,2,3,4
\end{array}
$$

Optimums solution:

$$
\begin{aligned}
& P_{1}=.7113 \quad P_{2}=0 \\
& Z=5.8366 \text { miller dollar } \\
& B_{1}=0, B_{2}=.9104 \text { million dollars } \\
& B_{3}=1 \text { million dollars, } B_{4}=0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& B_{1}=0, S_{1}=.2887 \text { million } \$ \\
& B_{2}=9104, S_{2}=0 \\
& B_{3}=1, S_{3}=0 \\
& B_{4}=0, S_{4}=1.2553
\end{aligned}
$$

The solution shows that $B_{i} \cdot S_{j}=0$, meaning that you can't borrow and also end up with aupplus si any quarter. The result makes sense te cause the cost of borrowing (2.5%) is higher then The return on supper funds (2%)

Assume that the investment program ends at the start 8 yew 11 .
This, the 6 -year fond option can be exercised on years $1,2,3,4$, and 5 only. Similuly, the 9-year bond can be reed is years 1 and 2 only. Hence, from year 6 on, the only optori availabb is insured oavsige at 7.5%.

Let
$I_{i}=$ nacred saving inivealonents on yer $i, i=1,2, \ldots, 10$
$G_{i}=6$-year bond iniveativent in. year $i, i=1,2, \ldots, 5$
$M_{i}=9$-year fond invectinent in year i, $i=1,2$
The objective is to maximize Total accumulation at the and of year 10; thant is,
maximize $z=1.075 I_{10}+1.079 G_{5}+1.085 \frac{M}{2}$ The constraints repervent the balance equation for each year's cash flow.

$$
\begin{aligned}
& I_{1}+.98 G_{1}+1.02 M_{1}=2 \\
& I_{2}+.98 G_{2}+1.02 M_{2} \\
&= 2+1.075 I_{1}+.079 G_{1}+.085 M_{1} \\
& I_{3}+.98 G_{3} \\
&= 2.5+1.075 I_{2}+.079\left(G_{1}+G_{2}\right) \\
&+.085\left(M_{1}+M_{2}\right) \\
& I_{4}+.98 G_{4}= 2.5+1.075 I_{3}+ \\
& .079\left(G_{1}+G_{2}+G_{3}\right)+ \\
& .085\left(M_{1}+M_{2}\right) \\
& I_{5}+.98 G_{5}= 3+1.075 I_{4}+ \\
& .079\left(G_{1}+G_{2}+G_{3}+G_{4}\right)+ \\
& .085\left(M_{1}+M_{2}\right) \\
& I_{6}=3.5+1.075 I_{5} \\
&+.079\left(G_{1}+G_{2}+G_{3}+G_{4}+G_{5}\right) \\
&+.085\left(M_{1} 4 M_{2}\right)
\end{aligned}
$$

Set 2.3c

$$
\begin{aligned}
I_{7}=3.5 & +1.075 I_{6}+1.079 G_{1} \\
& +.079\left(G_{2}+G_{3}+G_{4}+G_{5}\right) \\
& +.085\left(M_{1}+M_{2}\right) \\
I_{8}=4 & +1.075 I_{7}+1.079 G_{2} \\
& +.079\left(G_{3}+G_{4}+G_{5}\right) \\
& +.085\left(M_{1}+M_{2}\right) \\
I_{9}=4 & +1.075 I_{8}+1.079 G_{3} \\
& +.079\left(G_{4}+G_{5}\right) \\
& +.085\left(M_{1}+M_{2}\right) \\
I_{10}=5 & +1.075 I_{9}+1.079 G_{4} \\
& +.079 G_{5}+1.085 M_{1}+.085 M_{2}
\end{aligned}
$$

$$
\text { all variables } \geq 0
$$

- optime silurian surat * Title: Problem 26a-14 Find iteration No: 14
Objective value (max) $=46.8500$

Year Recommendation
1 Invest all in $9-y r$ bond 2 Invest all in 9-yr. bond 3 Invest all in 6-yr bond 4 Invest all in 6-yr bond 5 Invest all in 6-yr bond 7 Invest all in insured saving: 8 Invest all in insured savings. 9 hereat all in insured parings 10 honest all in moused savings

$$
\begin{aligned}
& \begin{array}{l}
x_{i A}=\text { amount inverted in yeti } \\
\text { plan } A(1000 \$) \\
x_{i B}=\text { amount invested in year } i ; \\
\text { plan } B(1000 \$) \\
\text { Maximize } z=3 x_{2 B}+1.7 x_{3 A} \\
\text { subject to } \\
\\
x_{1 A}+x_{1 B}+x_{2 A}+x_{2 B} \\
-1.7 x_{1 A} \\
\quad \leq 100 \\
\quad-3 x_{1 B}-1.7 x_{2 A}+x_{3 A}=0 \\
x_{i A}, x_{i B} \geqslant 0 \text { for } i=1,2,3
\end{array}
\end{aligned}
$$

t OpTImum solution Summary * ritie: Problem 2.6a-15
Final iteration No: 4
Find iteration No: 4

Optimum solution: Invest $\$ 100,000$ in A in yr 1 and $\$ 170,000$ in B in yr 2.
Alternative optimum: Invest $\$ 100,000$ in B in yr 1 and $\$ 300,000$ in A in yr 3 .
$x_{i}=$ dowdies aldicatidt choice i,

$$
i=1,2,3,4
$$

$y=$ minimum return maximize $z=\min \left\{\begin{array}{l}-3 x_{1}+4 x_{2}-7 x_{3}+15 x_{4} \\ 5 x_{1}-3 x_{2}+9 x_{3}+4 x_{4} \\ \text { subject to } \\ 3 x_{1}-9 x_{2}+10 x_{3}-8 x_{4}\end{array}\right.$

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4} \leq 500 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

The problem can be converted to a linear program as

Maximize $z=y$
subject to
$-3 x_{1}+4 x_{2}-7 x_{3}+15 x_{4} \geqslant y$
$5 x_{1}-3 x_{2}+9 x_{3}+4 x_{4} \geqslant y$
$3 x_{1}-9 x_{2}+10 x_{3}-8 x_{4} \geqslant y$
$x_{1}+x_{2}+x_{3}+x_{4} \leq 500$
$x_{1}, x_{2}, x_{3}, x_{4} \geqslant 0$
y unrestricted
** OPTMUM SOLUTION SUMMARY ***
Title:
Final iteration No: 5
Objective value (max) $=1175.0000$

Allocate $\$ 287.50$ to choice 3 and $\$ 212.50$ to choice 4. Return $=$ $\$ / 175.00$
$i= \begin{cases}1, & \text { regular savings } \\ 2, & 3 \text {-month } C D \\ 3, & 6 \text {-month } C D\end{cases}$
$x_{i t}=$ Deposit in plan at start of month t
$t= \begin{cases}1,2, \ldots, 12 & \text { if } i=1 \\ 1,2, \ldots, 10 & \text { if } i=2 \\ 1,2, \ldots, 7 & \text { if } i=3\end{cases}$
$y_{1}=$ initial amount on hand to
in cure a feasible solution:
$r_{i}=$ interest rate for plan $i=1,2,3$
$J_{i}= \begin{cases}12, & i=1 \\ 10, & i=2 \\ 7, & i=3\end{cases}$
$P_{i}=\left\{\begin{array}{ll}1, & i=1 \\ 3, & i=2 \\ 6, & i=3\end{array} \quad d_{t}=\$\right.$ demand for period t
Maximize $z=\sum_{\substack{t=1 \\ t-P_{i}>0}}^{12} \sum_{i=1}^{3} r_{i} \cdot x_{i, t-p_{i}}-y_{1}$
set.

$$
\begin{aligned}
& y_{1}-x_{11}-x_{21}-x_{31} \geqslant d_{1} \\
& 1000+\sum_{\substack{i=1 \\
t-p_{i}>0}}^{3}\left(1+r_{i}\right) x_{i, t-p_{i}}-\sum_{i=1}^{3} x_{i t} \geqslant d_{t}, t=2, \cdots, J_{i}
\end{aligned}
$$

$$
x_{i t}, y_{1} \geqslant 0
$$

Solution: (see file amp/2.3c-7.txt)
$y_{1}=\$ 1200, z=-1136.29$
Entreat amount $=1200-1136.29=\$ 3.71$
Deposits:

t	$x_{1 t}$	$x_{2 t}$	$x_{3 t}$
1	0	0	0
2	0	200	0
3	286.48	313.53	0
4	0	587.43	0
5	314.37	289.30	0
6	0	734.69	0
7	0	98.20	0
8	0	294.60	
9	0	848.16	
10	0	0	
11	0		
12	0		

$X_{w_{1}}=$ wrenchen/whe uarigg neymber time
$x_{\omega_{2}}=$ \# wrenches/ut using overtime
$x_{\omega_{3}}=\#$ whenches/wk uning subconthacting
$x_{C_{1}}=$ \#chesilo/ wk using regular time
$x_{C_{2}}=$ chails/wt woing overtimi
$K_{C_{3}}=\# c$ hivels/wh wing subiontracting
Minimize $z=2 x_{\omega_{1}}+2 \cdot 8 x_{\omega_{2}}+3 x_{\omega_{3}}+2 \cdot 1 x_{c_{1}}$
Subject to

$$
+3.2 x_{c_{2}}+4.2 x_{c_{3}}
$$

$$
x_{\omega_{1}} \leq 550, x_{\omega_{2}} \leq 250
$$

$$
x_{c_{1}} \leq 620, x_{c_{2}} \leq 280
$$

$$
\frac{x_{c_{1}}+x_{c_{2}}+x_{c_{3}}}{x_{w_{1}}+x_{w_{2}}+x_{w_{3}}} \geq 2
$$

or

$$
2 x_{w_{1}}+2 x_{w_{2}}+2 x_{w_{3}}-x_{c_{1}}-x_{C_{2}}-x_{c_{3}} \leq 0
$$

$$
x_{w_{1}}+x_{w_{2}}+x_{w_{3}} \geq 1500
$$

$$
x_{c_{1}}+x_{c 2}+x_{c 3} \geq 1200
$$

all variables $\geqslant 0$
(a) Optimum from TORA:

$$
\begin{aligned}
& x_{w_{1}}=550, x_{w_{2}}=250, x_{w 3}=700 \\
& x_{c_{1}}=620, x_{c_{2}}=280, x_{c 3}=2100 \\
& 2=14,918
\end{aligned}
$$

(b) Increasing marginal cost ensureo that regular time capacily is used before that of overtion, and that overtime capacily is uned before that of subcontracting. of the manginal coot function is not. monotonically sicreasing, addithenal constraints ase needed to enruse that the capacity reatriction is satajied.
$x_{j}=$ number of units produced of product $j, j=1,2,3,4$

Profit per unit:

Product $1=75-2 \times 10-3 \times 5-7 \times 4=\$ 12$
Product 2 $=70-3 \times 10-2 \times 5-3 \times 4=\$ 18$
Product 3 $=55-4 \times 10-1 \times 5-2 \times 4=\$ 2$
Produc $4=45-2 \times 10-2 \times 5-1 \times 4=\$ 11$
Maximize $z=12 x_{1}+18 x_{2}+2 x_{3}+11 x_{4}$ s.t.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3}+2 x_{4} \leq 500 \\
& 3 x_{1}+2 x_{2}+x_{3}+2 x_{4} \leq 380 \\
& 7 x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 450 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

TORA Solution:

$$
\begin{aligned}
& x_{1}=0, x_{2}=133.33, x_{3}=0, x_{4}=50 \\
& z=\$ 2950
\end{aligned}
$$

$$
x_{j}=\text { number of unuts of model } ;
$$

\square
Maximize $z=30 x_{1}+20 x_{2}+50 x_{3}$ subject to

$$
\begin{aligned}
& \text { (1) } 2 x_{1}+3 x_{2}+5 x_{3} \leq 4000 \\
& \text { (2) } 4 x_{1}+2 x_{2}+7 x_{3} \leq 6000
\end{aligned}
$$

$$
\text { (3) } \begin{aligned}
4 x_{1}+2 x_{2}+7 x_{3} & \leq 6000 \\
x_{1}+.5 x_{2}+\frac{1}{3} x_{3} & \leq 1500
\end{aligned}
$$

$$
\text { (4) } \frac{x_{1}}{3}=\frac{x_{2}}{2} \text {, or } 2 x_{1}-3 x_{2}=0
$$

$$
\text { (5) } \frac{x_{2}}{2}=\frac{x_{3}}{5}, 025 x_{2}-2 x_{3}=0
$$

$$
x_{1} \geq 200, x_{2} \geq 200, x_{3} \geq 150
$$

… optimn solution sumerar ...

$x_{i j}=$ Nb. Cartons in month if ron supplies $j \Delta \quad x_{i j}=$ Qty of product i in month j, $I_{i}=$ End inventory in period $i, I_{0}=0$
$c_{i j}=$ Price per unit of $x_{i j}$
$h=$ Holding cost/unit/month
$C=$ suppheir capacing/month
$d_{i}=$ Demand for month i

$$
i=1,2,3, j=1,2
$$

Minimize $z=\sum_{i=1}^{3} \sum_{j=1}^{2} C_{i j} x_{i j}+$

$$
\frac{h}{2}\left(\sum_{i=1}^{3}\left(\sum_{j=1}^{2} x_{i j}+I_{i-1}+I_{i}\right)\right.
$$

s.t. $x_{i j} \leq C$, all i and j

$$
\sum_{j=1}^{2} x_{i j}+I_{i-1}-I_{i}=d_{i} \text {, all } i
$$

Optimum Solution:

i	$x_{i 1}$	$x_{i 2}$	I
1	400	100	0
2	400	400	200
3	200	0	0

Total cost $=\$ 167,450$.
Product 2:

$x_{c}=$ Production amount in quarter $c^{\circ} S$
$I_{i}=$ End inventory for quarter i
Minimize $z=20 x_{1}+22 x_{2}+24 x_{3}+26 x_{4}+$
St.

$$
3.5\left(I_{1}+I_{2}+I_{3}\right)
$$

$x_{i j}=$ Qty by operation i mi month j

Total cost $=\$ 32,250$
$x_{j}=$ Units of perrduct $j, j=1,2 \quad \$$
$\left.\begin{array}{l}y_{i}^{-}=\text {Unused hours of machure } i \\ y_{i}^{+}=\text {Orertime hours of machini } i\end{array}\right\} i=1,2$
Maximize $z=110 x_{1}+118 x_{2}-100\left(y_{1}^{+}+y_{2}^{+}\right)$
S.t.

$$
\begin{aligned}
& \frac{x_{1}}{5}+\frac{x_{2}}{5}+y_{1}^{-}-y_{1}^{+}=8 \\
& \frac{x_{1}}{8}+\frac{x_{2}}{4}+y_{2}^{-}-y_{2}^{+}=8 \\
& y_{1}^{+} \leq 4, y_{2}^{+} \leq 4 \\
& x_{1}, x_{2}, y_{1}^{-}, y_{1}^{+}, y_{2}^{-}, y_{2}^{+} \geqslant 0
\end{aligned}
$$

Soluteon:

$$
\begin{aligned}
& \text { Revenue }=\$ 6,232 \\
& x_{1}=56, y_{1}^{+}=4 \text { hs } \\
& x_{2}=4, \quad y_{2}^{+}=0 \\
& y_{1}^{-}, y_{2}^{-}=0
\end{aligned}
$$

Set 2.3e

$x_{s}=$ tons of strauberry/day
$x_{g}=\operatorname{tans}$ of grapes /day
$x_{a}=\tan$ o g apples /day
$x_{A}=$ cans of drink A /day Each can
$\left.\begin{array}{l}x_{B}=\text { cans of druik } B / \text { day } \\ x_{C}=\text { cans of drink } C / \text { day }\end{array}\right\}$ holds one 16
$x_{C}=$ cans of drunk C day
$x_{S A}=16$ of strawberry hoed in drink $A /$ day
$x_{S B}=16$ of strourberry used in disitk $B /$ day
$x_{g_{A}}=16$ \& grapes used in drive $A /$ dry
$x_{g_{B}}=16$ of grapes mooed in dirk $B /$ day
$x_{g C}=1 b$ of grapes used in dunite $C /$ day
$x_{a B}=16$ of apples used in init B lay y
$x_{a} C=16$ of apples used in divine $C /$ day
Maximize $z=1.15 x_{A}+1.25 x_{S}+1.2 x_{C}-200 x_{S}$

$$
\text { s.t. } \quad-100 x_{g}-90 x_{a}
$$

$x_{s} \leqslant 200, x_{g} \leqslant 100, x_{a} \leqslant 150$
$x_{5 A}+x_{5 B}=1500 x_{s}$
$x_{g A}+x_{g B}+x_{g C}=1200 x_{g}$
$x_{a B}+x_{a C}=1000 x_{a}$
$x_{A}=x_{5 A}+x_{g A}$
$x_{B}=x_{S B}+x_{g_{B}}+x_{A B}$
$x_{c}=x_{g C}+x_{a c}$
$x_{S A}=x_{g_{A}}$,
$x_{S B}=x_{g B}, x_{g B}=.5 x_{A B}$
$3 x_{g C}=2 x_{a c}$
all variables $\geqslant 0$
Optimum solution:
$x_{A}=90,000$ cans, $x_{B}=300,000$ cans, $x_{C}=0$

$x_{i j}:$	j		
i	A	B	C
s	45,000	75,000	0
g	45,000	75,000	0
a	0	150,000	0
	90,000	300,000	0

$x_{s}=80$ tans, $x_{g}=100$ tons, $x_{a}=150$ tons
$z=\$ 439,000 /$ day
$x_{s}=16$ of screws pu package
$x_{b}=16$ of bolts pen package
$x_{n}=16$ of nuts pa package
$x_{w}=16$ of unoters po er package
Minnie $z=1.1 x_{s}+1.5 x_{6}+\frac{70}{80} x_{n}+\frac{20}{30} x_{w}$
s.t. $\quad y=x_{s}+x_{b}+x_{n}+x_{w}$
$x_{s} \geqslant .1 y$
$x_{6} \geqslant .25 y, \frac{x_{b}}{50} \leq x_{w}, \frac{x_{b}}{10} \leq x_{n}$
$x_{n} \leq .15 y$
$x_{w} \leqslant 1 y$
$y \geq 1$
all variables are nonnegative Optimum solution:
$y=1, x_{5}=.5, x_{b}=.25, x_{n}=.15, x_{w}=.1$
$\operatorname{cost}=\$ 1.12$
$X_{0,(A, B, C)}=16$ of oats in cereals $A, B, C \geqslant$
$x_{r}(A, C)=16$ of raisins in cereals A, C
$x_{C,(B, C)}=16 \&$ Coconuts in cereals B, C
$x_{a,(A, B, C)}=1 b$ of almond in cereals A, B, C
$Y_{O}=x_{O A}+x_{O B}+x_{O C}$
$Y_{r}=X_{r A}+X_{r C}$
$Y_{c}=X_{c B}+X_{c} C$
$Y_{a}=x_{a A}+x_{a B}+x_{a C}$
$W_{A}=X_{o A}+x_{r A}+x_{a A}$
$W_{B}=x_{o B}+X_{C B}+X_{D B}$
$W_{C}=x_{0 C}+x_{C C}+x_{c C}+x_{a C}$
Maximize $\mathrm{Z}=\frac{1}{5}\left(2 W_{A}+2.5 W_{B}+3 W_{C}\right)$

$$
-\frac{1}{2000}\left(100 Y_{0}+120 Y_{r}+110 Y_{c}+200 Y_{n}\right)
$$

5.t. $W_{A} \leq 500 \times 5=2500$
$W_{B} \leqslant 600 \times 5=3000$
$W_{C} \leqslant 500 \times 5=4000$

Set 2.3 e

s.t.

$$
\begin{aligned}
& A \leq 2500, B \leqslant 3000 \\
& R+R^{-}-R^{-}=500 \\
& P+P^{-}-P^{+}=700 \\
& J+J^{-}-J^{+}=400 \\
& 35 A+.45 B=N R+N P+N J \\
& .6 A+.5 B=\angle R+\angle P+\angle J \\
& R=N R+\angle R \\
& P=N P+\angle P \\
& J=N J+L J
\end{aligned}
$$

all varibles are nonnegative Optimumdilution: $z=\$ 71,473.68$
$A=1684.21, B=0$
$R=500, P=700, J=400$

maximize $z=150 x_{1}+200 x_{2}+230 x_{3}+35 x_{4}$ s.t.

$$
\begin{aligned}
& x_{4} \leq 4000 \times 11 \\
& \text { or } x_{4} \leq 400 \\
& x_{1}+\left(\frac{x_{2}+\frac{x_{3}}{95}}{.8}\right) \leq 3 \times 4000 \\
& .76 x_{1}+.95 x_{2}+x_{3} \leq 9 / 2 \\
& x_{1} \geq 25, x_{2} \geq 25 \\
& x_{3} \geqslant 25, x_{4} \geqslant 0 \\
& \text { Optimim solution from TORA: } \\
& x_{1}=25 \text { Lons per woek } \\
& x_{2}=25 \text { lons per week } \\
& x_{3}=869.25 \text { tons pu week } \\
& x_{4}=400 \text { tons per weck } \\
& z=\$ 22,677.50
\end{aligned}
$$

$A=661 /$ her of stock A
$B=6$ th of atock B
$Y_{A}=6 b 1 / \operatorname{th}$ of A used in gaoduni $\left.i{ }^{\prime}\right\} i=1,2$
$Y_{B i}=b b / / h$ $p B$ used ingasthini $\} i=1,2$
Maximize $Z=7\left(Y_{A 1}+Y_{B 1}\right)+10\left(Y_{A Z}+Y_{B Z}\right)$
S.t.

$$
\begin{aligned}
& A=Y_{A 1}+Y_{A 2}, A \leq 450 \\
& B=Y_{B 1}+Y_{B 2}, B \leq 700 \\
& 98 Y_{A_{1}}+89 Y_{B_{1}} \geqslant 91\left(Y_{A 1}+Y_{B_{1}}\right) \\
& 98 Y_{A_{2}}+89 Y_{B 2} \geq 93\left(Y_{A_{2}}+Y_{B_{2}}\right) \\
& 10 Y_{A_{1}}+8 Y_{B_{1}} \leq 12\left(Y_{A_{1}}+Y_{B_{1}}\right) \\
& 10 Y_{A_{2}}+8 Y_{B_{2}} \leq 12\left(Y_{A_{2}}+Y_{B_{2}}\right)
\end{aligned}
$$

ale varrables ase nonnegative
Optimumodution:
$z=\neq 10,675$
$A=450 \quad 661 / \mathrm{h}$
$B=700 \quad 661 / \mathrm{h}$
Gusolni 1 production $=Y_{A 1}+Y_{B 1}$
$=61.11+213.89=275 \mathrm{bb} / \mathrm{lm}$
$\begin{aligned} \text { Gasoluri } 2 \text { production } & =Y_{A 2}+Y_{B} 2 \\ & =388.89+486 \cdot 11=875 \mathrm{bd} / \mathrm{hr}\end{aligned}$

Set 2.3e
S = tone of steel scrap/day $\quad 9$
$A=\operatorname{tons}$ of alum. scrap $/$ day
$C=$ tons of cast iron scrap / day
$A b=$ tone of alum. briquettes $/ d a y$
$S b=$ too silicon briquettes/day
$a=$ tons of alum. I day
$g=$ tom or graphite / day
$s=$ torn of ailicon / day
$a I=$ torn f alum. in ingot $I /$ day
$a I=$ tons nahum. in ingot II / day
$g I=$ tons of graphite in ingot I / day
$g \overline{I I}=$ tors graphic in ingot II /day
$S I=\operatorname{trno}$ of silicon in ingot $\frac{I}{I} /$ day
$\delta I=t_{n}$ of silicon in ingot $I \pi /$ day
$I_{1}=$ tons of ingot I/ day
$I_{2}=$ ton n of ingot II/day.
Minimize $Z=100 S+150 A+75 C+900 A b+380 S 6$
s.t. $S \leqslant 1000, A \leq 500, C \leq 2500$

$$
\begin{aligned}
& a=.1 S+.95 A+A b \\
& \begin{array}{l}
g=.05 S+.01 A+.15 C \\
S=.04 S+.02 A+.08 C+S_{b}
\end{array} \\
& I=a I+g I+8 I \\
& I_{2}=9 \pi+g I+8 I I \\
& a_{I}+a_{I I} \leq \&, s I+8 I \leq s, 2 I+g I \leq g \\
& .081 I_{1} \leqslant a I \leqslant 108 I_{1} \\
& \text {.015 } I_{1} \leqslant 8 I \leqslant .03 I_{1} \\
& \text { - } 025 I_{1} \leqslant 8 I<\infty \\
& \text {. } 062 I_{2} \leq a I I \leq .089 I_{2} \\
& \text {.041 } I_{2} \leqslant 2 \text { II } \leqslant \infty \\
& \text {-028 } I_{2} \leqslant 8 I I \leqslant .041 I_{2} \\
& I_{1} \geqslant 130, \quad I_{2} \geqslant 250 \\
& z=\$ 117,435.65 \\
& S=0, A=38.2, C=1489.41 \\
& A b=S b=0 \\
& I_{1}=130, \quad I_{2}=250 \\
& a=36.29, g=223.79, s=119.92
\end{aligned}
$$

$x_{i j}=$ tons of ore i allocated to ally k $\omega_{k}=$ Tons of alloy k produced

$$
\text { Maximize } z=200 \omega_{A}+300 \omega_{B}
$$

$$
\begin{aligned}
& -30\left(x_{1 A}+x_{1 B}\right) \\
& -40\left(x_{2 A}+x_{2 B}\right) \\
& -50\left(x_{3 A}+x_{3 B}\right)
\end{aligned}
$$

subject to
specification conatiaint:

$$
\begin{aligned}
& .2 x_{1 A}+.1 x_{2 A}+.05 x_{3 A} \leq .8 w_{A}(1) \\
& .1 x_{1 A}+.2 x_{2 A}+.05 x_{3 A} \leq .3 w_{A}(2) \\
& .3 x_{1 A}+.3 x_{2 A}+.2 x_{3 A} \geqslant .5 w_{A} \text { (3) } \\
& .1 x_{1 B}+.2 x_{2 B}+.05 x_{3 B} \geqslant .4 w_{B}(4) \\
& .1 x_{1 B}+.2 x_{2 B}+.05 x_{3 B} \leqslant .6 w_{B}(5) \\
& .3 x_{1 B}+.3 x_{2 B}+.7 x_{3 B} \geqslant .3 w_{B}(6) \\
& .3 x_{1 B}+.3 x_{2 B}+.2 x_{3 B} \leq .7 w_{B}(7)
\end{aligned}
$$

Oke constraints.

$$
\begin{aligned}
& x_{J A}+x_{1 B} \leq 1000 \\
& x_{2 A}+x_{2 B} \leq 2000 \\
& x_{3 A}+x_{3 B} \leq 3000
\end{aligned}
$$

Solution:

Produce 1800 tons of alloy A and 1000 toms of alloy B.

Set 2.3f

Let $x_{i}=\mathrm{Nbr}$. starting on day i and lasting for 7 days

$$
y_{i j}=\text { Nbr. starting shift on day } i \text { and starting their } 2 \text { days off on day } j, i \neq j
$$

Thus, of the x_{1} workers who start on Monday, y_{12} will take T and W off, y_{13} will take W and Th off, and so on, as the following table shows.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	\boldsymbol{x}_{7}
1	stantion Mon	y_{12}	$y_{12}+y_{13}$	$y_{13}+y_{14}$	$y_{14}+y_{15}$	$y_{15}+y_{16}$	y_{16}
2	y27	11 C	523	y23+y24	y24+y25	y25+y26	y26+y27
3	y $31+y 37$	931	Whe:	y 34	y $34+y 35$	y35+y36	y $36+y 37$
4	y $41+y 47$	y $41+y 42$	542	T	y 45	$y 45+y 46$	y $46+y 47$
5	$\mathbf{y 5 1 + y 5 7}$	y51+y52	y52+y53	y53		y56	y56+y57
6	y $61+y 67$	961+y62	y62+y63	y63+y64	y 64	Sal	y67
7	y71	y $71+y 72$	y72+y73	y73+y.74	y74+y75	y 75	Su

Minimize $\mathrm{z}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}$
Each employee has 2 days off: $x_{i}=\operatorname{sum}\{\mathrm{j}$ in $1 . .7, \mathrm{j} \nexists i\} y_{i j}$
Mon (1) constraint: $s-(y 27+y 31+y 37+y 41+y 47+y 51+y 57+y 61+y 67+y 71)>=12$
Tue (2) constraint: $s-(y 12+y 31+y 41+y 42+y 51+y 52+y 61+y 62+y 71+y 72>=18$
Wed (3) constraint: $s-(y 12+y 13+y 23+y 42+y 52+y 53+y 62+y 63+y 72+y 73>=20$
Th (4) constraint: $s-(y 13+y 14+y 23+y 24+y 24+y 53+y 63+y 64+y 73+y 74>=28$
Fii (5) constraint: $s-(y 14+y 15+y 24+y 25+y 34+y 35+y 45+y 64+y 74+y 75>=32$
Sat(6) constraint: $s-(y 15+y 16+y 25+y 26+y 35+y 36+y 45+y 46+y 56+y 75>=40$
Sun(7) constraint: $s-(y 16+y 26+y 27+y 36+y 37+y 46+y 47+y 56+y 57+y 67)>=40$

Solution: 42 employees

Starting	Nbr off						
On $\quad \mathrm{Nbr}$	M	Tu	Wed	Th	Fri	Sat	Sun
M 16			16				
Tu 8					8.		
Wed 8		8					
Th 0							
Fri 6			6				
Sat 2							
Sun 2							
Nbr off	10	24	22	14	10	2	2
Nbr at work	32	18	20	28	32	40	40
Surplus above minimum	20	0	0	0	0	0	0

Set 2.3g

Trim loss area $=$
$L(200 \times 4+100 \times 1+50 \times 5)=1150<\mathrm{ft}^{2}$
(b) 15 ' standee roll:

	Setting			
	1	2	3	4
5^{\prime}	3	1	1	0
7^{\prime}	0	1	0	2
9^{\prime}	0	0	1	0
trim lass	0	3	1	1
perft	0			

(c) $x_{1}+x_{2}+2 x_{5} \geqslant 120$

New Solution calls for decreasing
the number of standard 20'- node by 30
(d) $x_{1}+x_{3}+2 x_{6} \geq 240$

New solution calls for sicreaveng
the number of standard 20'ralls by 50
$x_{i}=$ Space (in 2) allocated 1% cereal c°
Maximize $z=1.11 x_{1}+1.3 x_{2}+1.08 x_{3}+1.25 x_{1}+1.2 x_{5}$ st.

$$
\begin{aligned}
& 16 x_{1}+24 x_{2}+18 x_{3}+22 x_{4}+20 x_{5} \leqslant 5000 \\
& x_{1} \leqslant 100, x_{2} \leqslant 85, x_{3} \leqslant 140, x_{4} \leqslant 80, x_{5} \leqslant 90 \\
& x_{i} \geqslant 0 \text { for all } i=1,2, \ldots, 5 \\
& \text { solution: }
\end{aligned}
$$

$$
\begin{aligned}
& z=\$ 314 / \text { day } \\
& x_{1}=100, x_{3}=140, x_{5}=44 \\
& x_{2}=x_{4}=0
\end{aligned}
$$

$x_{i}=N b_{r}$ of ads for issue $\left.i, i=1,3,4\right\}$
Minimize $z=S_{1}^{-}+S_{2}^{-}+S_{3}^{-}+S_{4}^{-}$ St.
$(-30,000+60,000+30,000) x_{1}+S_{1}^{-}-S_{1}^{+}=.51 \times 40,000$ $(10,000+30,000-45,000) x_{2}+S_{2}^{-}-S_{2}^{+}=.51 \times 400,000$ $(40,000+10,000) x_{3}+5_{3}^{-}-5_{3}^{+}=.57 \times 400,000$ $(90,000-25,000) x_{4}+5_{4}^{-}-5_{4}^{+}=.51 \times 400,000$
$1500\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \leqslant 100,000$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$

Solution:

$x_{1}=3.4, x_{2}=3.14, x_{3}=4.08, x_{y}=3.14$
$x_{i j}=$ Units g part j produced by
department $i, i=1,2,3, j=1,2$
Maximize $z=\min \left\{x_{11}+x_{21}, x_{12}+x_{22}, x_{13}+x_{23}\right\}$ or
Maximize $z=y$
set.

$$
\begin{aligned}
& y \leq x_{11}+x_{21} \\
& y \leq x_{12}+x_{22} \\
& y \leq x_{13}+x_{23} \\
& \frac{x_{11}}{5}+\frac{x_{12}}{5}+\frac{x_{13}}{10} \leq 100 \\
& \frac{x_{21}}{6}+\frac{x_{22}}{12}+\frac{x_{23}}{4} \leq 80 \\
& \text { all } x_{1 j} \geqslant 0
\end{aligned}
$$

Solution:
Nor. of assesally units $=y=556.2 \simeq 557$
$x_{11}=354.78, x_{12}=0$
$x_{21}=556.52, x_{22}=201.74$
$x_{31}=556.52, x_{32}=0$
$x_{i}=$ tors $\#$ Coal $i ; i^{\circ}=1,2,3$
Minimize $z=30 x_{1}+35 x_{2}+33 x_{3}$
s.t. $2500 x_{1}+1500 x_{2}+1600 x_{3} \leq 2000\left(x_{1}+x_{2}+x_{3}\right)$
$x_{1} \leq 30, x_{2} \leq 30, x_{3} \leq 30$
$x_{1}+x_{2}+x_{3} \geq 50$
Solution: $z=\$ 1361.11$
$x_{1}=22.22$ tans, $x_{2}=0, x_{3}=27.78$ tans.
$t_{i}=$ Green time in secs fo Highway i,
$i=1,2,3$
$M_{\text {aximize }} z=3\left(\frac{500}{3600}\right) t_{1}+4\left(\frac{600}{3600}\right) t_{2}+5\left(\frac{400}{3600}\right) t_{3}$
$s .+$.
$\left(\frac{500}{3600}\right) t_{1}+\left(\frac{600}{3600}\right) t_{2}+\left(\frac{400}{3600}\right) t_{3} \leq \frac{510}{3600}(2.2 \times 60-3 \times 10)$
$t_{1}+t_{2}+t_{3}+3 \times 10 \leq 2.2 \times 60, t_{1} \geqslant 25, t_{2} \geq 25, t_{3} \geqslant 25$
Solution: $z=\$ 58.04 / \mathrm{h}$

$$
t_{1}=25, t_{2}=43.6, t_{3}=33.4 \mathrm{sec}
$$

$y_{i}=$ observation i
Defense straight lune as
$\hat{y}_{i}=a+b, a, b$ un restricted
Minimize $\quad z=\sum_{i=1}^{10} y_{i}-\hat{y}_{i}$.

$$
=\sum_{i=1}^{10}\left|y_{i}-a i-b\right|
$$

Let $d_{i}=\left|y_{i}-a_{i}-b\right|$
Minimize $z=d_{1}+d_{2}+\cdots+d_{10}$
set.

$$
y_{i}-a i-b \leq d_{i}
$$

$y_{i}-a i-b \geq-d_{i}$
a, b, unsreaticted

$$
d_{i} \geq 0
$$

Solution: $\hat{y}_{i}=2.85714 i+6.42857$

$$
A_{2}=3520, A 3=1760, A 4=3520
$$

Distances (center to center) in miles:
A_{1}
A_{3}
P_{1}
$P_{2}$$\left[\begin{array}{cc}A 2 & A 4 \\ 2 & 7 \\ 2 & 3 \\ 3 & 2\end{array}\right]$
$\operatorname{Cost}(\$)$ per cubic $y d$:
(s)

AZ
(1) Al $\begin{array}{ll}\text { (z) } A 3 \\ \text { (3) } P_{1} \\ \text { (4) } P_{3}\end{array}\left(\begin{array}{ll}.2+2 x \cdot 15=.50 & .20+7 x \cdot 15=1.25 \\ \cdot 20+2 x \cdot 15=.50 & .20+3 \times .15=.65 \\ 1.70+3 \times .15=2.15 & 1.70+8 \times \cdot 15=2.90 \\ 2.10+7 \times .15=3.15 & 2.10+2 \times .15=2.40\end{array}\right)$ Using the code $A 1 \geq 1, A 3 \leq 2, P 1 \equiv 3, P 2 \equiv 4$,
$A 2=5, A 4 \approx 6$, let
$A_{2}=5, A A^{3}=6$, from source i to destination j
$x_{i j}=10^{3} y d^{3}$ fro

$$
i=1,2,3,4, j=5,6
$$

Minimize $z=1000\left(.5 x_{15}+1.25 x_{16}+.5 x_{25}+\right.$

$$
\begin{aligned}
& \text { mize } z=1000\left(.5 x_{15} 1.1 x_{16}^{7} x_{36}+2.4 x\right) \\
& .65 x_{26}+2.15 x_{35}+2.9 x_{36}+3.15 x_{45}+2.4 x^{2}
\end{aligned}
$$

st.

$$
\begin{aligned}
& x_{15}+x_{16} \leq 1760 \quad x_{35}+x_{36} \leq 20,000 \\
& x_{25}+x_{26} \leq 1760 \quad x_{45}+x_{46} \leq 15,000 \\
& x_{15}+x_{25}+x_{35}+x_{45} \geqslant 3520 \\
& x_{16}+x_{26}+x_{36}+x_{46} \geq 3520
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& A 1 \rightarrow A 2: x_{15}=1760\left(1000 \text { cu } y_{d}\right) \\
& A 1 \rightarrow A 4: x_{16}=0 \\
& A 3 \rightarrow A 2: x_{25}=0 \\
& A 3 \rightarrow A 4: x_{26}=1760 \\
& P 1 \rightarrow A 2: x_{35}=1760 \\
& P 1 \rightarrow A 4: X_{36}=0 \\
& P 2 \rightarrow A 2: X_{45}=0 \\
& P 2 \rightarrow A 4: X_{46}=1760
\end{aligned}
$$

Coot $=\$ 10,032,000$
$x_{i j}=$ Blue regulars on front $i \mathrm{mi}^{\prime}$ defence line $j, i=$
$y_{i j}=$ Blare reserves on front i in . defense line j.
$t_{i j}=$ Delay days on front $i \mathrm{~m}$: defense lares:
Maximize $z=\min \left\{t_{11}+t_{12}+t_{13}, t_{21}+t_{22}+t_{23}\right\}$ d^{2}

Set 2.3g

2-32

CHAPTER 3

The Simplex Method and Sensitivity Analysis

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=(3,1) \\
& M 1: S_{1}=24-(6 \times 3+4 \times 1)=2 \text { tons } / \text { day } \\
& M 2: S_{2}=6-(1 \times 3+2 \times 1)=1 \text { ton } / \text { day } \\
& \begin{aligned}
S_{1} & =x_{1}+x_{2}-800 \\
& =500+600-800=30016
\end{aligned}
\end{aligned}
$$

$$
10 x_{1}-3 x_{2} \geqslant-5 \equiv-10 x_{1}+3 x_{2} \leqslant 5
$$

Thus, $-10 x_{1}+3 x_{2}+51=5$
Also, $10 x_{1}-3 x_{2} \geq-5 \equiv 10 x_{1}-3 x_{2}-S_{2}=-5$
Thus, $-10 x_{1}+3 x_{2}+S_{2}=5$
(1) and (3) are the same
$x_{i j}=$ number of units of product 4
LP model
maximize $z=10\left(x_{11}+x_{12}\right)+15\left(x_{21}+x_{22}\right)$ subject to

$$
\begin{aligned}
&\left|\left(x_{11}+x_{21}\right)-\left(x_{12}+x_{22}\right)\right| \leq 5 \\
& x_{11}+x_{21} \leq 200 \\
& x_{12}+x_{22} \leq 250 \\
& x_{1 j} \geq 0 \text { for all } \neq j
\end{aligned}
$$

Equation form:

$$
t_{0}\left|\left(x_{11}+x_{21}\right)-\left(x_{12}+x_{27}\right)\right| \leqslant 5
$$

Maximize $z=10 x_{11}+10 x_{12}+15 x_{21}+15 x_{22}$
Subject is

$$
\begin{aligned}
x_{11}+x_{21}-x_{12}-x_{22}+s_{1} & =5 \\
-x_{11}-x_{21}+x_{12}+x_{22}+s_{2} & =5 \\
x_{11}+x_{21}+s_{3} & =200 \\
x_{12}+x_{22}+s_{4} & =250
\end{aligned}
$$

$x_{i j} \geqslant 0$ for all i and $;$ $s_{i} \geqslant 0$ for all i

$$
y=\max \left\{\left|x_{1}-x_{2}+3 x_{3}\right|,\left|-x_{1}+3 x_{2}-x_{3}\right|\right\}
$$

Hence

$$
\begin{aligned}
& \left|x_{1}-x_{2}+3 x_{3}\right| \leqslant y \\
& \left|-x_{1}+3 x_{2}-x_{3}\right| \leqslant y
\end{aligned}
$$

LP model:
minimize $z=y$
Subject To $^{-}$

$$
\begin{aligned}
x_{1}-x_{2}+3 x_{3} & \leq y \\
x_{1}-x_{2}+3 x_{3} & \geqslant-y \\
-x_{1}+3 x_{2}-x_{3} & \leq y \\
-x_{1}+3 x_{2}-x_{3} & \geq-y \\
x_{1}, x_{2}, x_{3}, y & \geq 0
\end{aligned}
$$

Equation form:
Minimize $z=y$
Subject to

$$
\left.\begin{array}{l}
\begin{array}{l}
-y+x_{1}-x_{2}+3 x_{3}+s_{1}
\end{array}=0 \\
-y-x_{1}+x_{2}-3 x_{3}+s_{2}=0 \\
-y-x_{1}+3 x_{2}-x_{3}+s_{3}=0 \\
-y+x_{1}-3 x_{2}+x_{3} \quad+s_{y}=0 \\
x_{1}, x_{2}, x_{3}, y, s_{1}, s_{2}, s_{3}, s_{4} \geqslant 0
\end{array}\right\} \begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \text { (1) } a_{i j} x_{j}=b_{i} \leftrightarrow\left\{\begin{array}{l}
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}
\end{array}\right.
\end{aligned}
$$

From (2), for $i=1,2, \ldots, m$, we have

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} & \Leftrightarrow \sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \geq \sum_{i=1}^{m} b_{i} \\
& \Leftrightarrow \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j}\right) x_{j} \geq \sum_{i=1}^{m} b_{i}
\end{aligned}
$$

Thus, (1) and (2) are equivalent to

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1,2, \cdots, m \\
& \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j}\right) x_{j} \geqslant \sum_{i=1}^{m} b_{i}
\end{aligned}
$$

Set 3.1b

$$
\begin{aligned}
& X_{1}=N b r \cdot \frac{1}{4}-1 b / d a y \\
& X_{2}=N b r . \text { cheeseburgers/day }
\end{aligned}
$$

Maximize $z=.2 x_{1}+.15 x_{2}-.25 x_{3}^{+}$ St.

$$
.25 x_{1}+.2 x_{2}+x_{3}^{-}-x_{3}^{+}=200
$$

$$
x_{1}+x_{2} \leq 900
$$

Solution: $z=\$ 173.35$
$x_{1}=900, x_{2}=0, x_{3}^{+}=251 \mathrm{~b}$
(a) $x_{j}=\#$ units of product j per day $, j=1,2$ $x_{3}^{+}=$unused minutes of machine time/ day $x_{3}=$ machine overtime pen day inminules
Maximize $z=6 x_{1}+7.5 x_{2}-.5 x_{3}^{-}$
Sulfict it

$$
\begin{aligned}
& 10 x_{1}+12 x_{2}+x_{3}^{+}-x_{3}^{-}=2500 \\
& 150 \leq x_{1} \leq 200 \\
& x_{2} \leq 45 \\
& x_{1}, x_{2} \geq 0 \\
& x_{3}^{+}, x_{3}^{-} \geq 0
\end{aligned}
$$

TORA getimumisolution:
$x_{1}=200 \mathrm{units} / \mathrm{day}$
$x_{2}=45$ units $/$ day
$x_{3}^{-}=$overtime minutes
$=40$ minutes $/$ day
$z=\$ 1517.50$
(b) Overtime at $7 / 50 /$ min yield $x_{3}^{-}=0$,
which means no 0 , which means no overtime i i needed ed
$x_{j}=\#$ of units of products $1, z$ and 3
Maximize $z=2 x_{1}+5 x_{2}+3 x_{3}-15 x_{5}-10 x_{5}$
subject σ
$2 x_{1}+x_{2}+2 x_{3}+x_{4}^{4}-x_{4}^{+}=80$
$x_{1}+x_{2}+2 x_{3}+x_{5}^{-}-x_{5}^{+}=65$ all valuables $\geqslant 0$
Solution: $z=\$ 325$
$x_{2}=65$ units, $x_{4}^{-}=15$
All other variables $=0$
(a)

Equation: form:
Maximize $z=2 x_{1}+3 x_{2}$
subject to

$$
\begin{gathered}
x_{1}+3 x_{2}+x_{3}=6 \\
3 x_{1}+2 x_{2}+x_{4}=6 \\
x_{1}, x_{2}, x_{3}, x_{4} \geqslant 0
\end{gathered}
$$

(b) Basic $\left(x_{1}, x_{2}\right)($ Point B):

$$
x_{1}+3 x_{2}=6
$$

$$
3 x_{1}+2 x_{2}=6
$$

Solution: $\left(x_{1}, x_{2}\right)=\left(\frac{6}{7}, \frac{12}{7}\right), z=6 \frac{6}{7}$
Basic $\left(x_{i}, x_{3}\right)($ Point E $)$:

$$
x_{1}+x_{3}=6
$$

$3 x_{1}=6$
Solution: $\left(x_{1}, x_{3}\right)=(2,4), z=4$
$\frac{\text { Basic }\left(x_{1}, x_{4}\right)(\text { Point } C):}{26}$

$$
x_{1}
$$

$$
=6
$$

$$
3 x_{1}+x y=6
$$

Solution : $\left(x_{1}, x_{y}\right)=(6,-12)$
Unique but infeasible
Basic $\left(x_{2}, x_{3}\right)($ Point $A)$:

$$
\begin{aligned}
& 3 x_{2}+x_{3}=6 \\
& 2 x_{2}=6
\end{aligned}
$$

Solution: $\left(x_{2}, x_{3}\right)=(3,-3)$
unique but infeanille.
Basic $\left(x_{2}, x_{y}\right)$ (Paint D):

$$
\begin{aligned}
& 3 x_{2}=6 \\
& 2 x_{2}+x_{y}=6
\end{aligned}
$$

Solution: $\left(x_{2}, x_{4}\right)=(2,2), z=6$
Bari $\left(x_{3}, x_{4}\right)($ Point $F):$

$$
\begin{aligned}
x_{3} & =6 \\
x_{y} & =6
\end{aligned}
$$

Sliction: $\left(x_{3}, x_{4}\right)=(6,6), z=0$
(c) Optimum solution occurs at B : $\left(x_{1}, x_{2}\right)=\left(\frac{6}{7}, \frac{12}{7}\right)$ with $z=6 \frac{6}{7}$
(d)

(e) From the graph in (d), we have

$$
\begin{aligned}
& A: x_{2}=3, x_{3}=-3 \\
& c: x_{1}=6, x_{4}=-12
\end{aligned}
$$

(a) Maximize $z=2 x_{1}-4 x_{2}+5 x_{3}-6 x_{4}$ Subjed 5

$$
\begin{aligned}
& x_{1}+4 x_{2}-2 x_{3}+8 x_{4}+x_{5}=2 \\
& -x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+x_{6}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geqslant 0
\end{aligned}
$$

Combination	solutes	status	z
x_{1}, x_{2}	$0,1 / 2$	Feasible	-2
x_{1}, x_{3}	8,3	Feasible	-31
x_{1}, x_{4}	$0,1 / 4$	Feasible	$-3 / 2$
x_{1}, x_{5}	$-1,3$	Infeasible	-
x_{1}, x_{6}	2,3	Feasible	4
x_{2}, x_{3}	$1 / 2,0$	Feasible	-2
x_{2}, x_{4}	$1 / 2,0$	Feasible	-2
x_{2}, x_{5}	$1 / 2,0$	Feasible	-2
x_{2}, x_{6}	$1 / 2,0$	Feasible	-2
x_{3}, x_{4}	$0,1 / 4$	Feasible	$-3 / 2$
x_{3}, x_{5}	$1 / 3,8 / 3$	Feasible	$5 / 3$
x_{3}, x_{6}	$-1,4$	Infeasible	-1
x_{4}, x_{5}	$1 / 4,0$	Feasible	$-3 / 2$
x_{4}, x_{6}	$1 / 4,0$	Feasible	$-3 / 2$
x_{5}, x_{6}	2,1	Feasible	0

Optemuin solution:

$$
\begin{aligned}
& x_{1}=8, x_{2}=0, x_{3}=3, x_{4}=0 \\
& z=31
\end{aligned}
$$

Maximize $z=2 x_{1}+3 x_{2}^{-}-3 x_{2}^{+}+5 x_{3}$ Subject 4

$$
\begin{aligned}
-6 x_{1}+7 x_{2}^{-}-7 x_{2}^{+}-9 x_{3}-x_{4} & =4 \\
x_{1}+x_{2}^{-}-x_{2}^{+}+4 x_{3} & =10 \\
x_{1}, x_{2}^{-}, x_{2}^{+}, x_{3}, x_{4} \geqslant 0 &
\end{aligned}
$$

$$
\left(x_{2}, x_{3}\right):
$$

$$
\begin{aligned}
7 x_{2}^{-}-7 x_{2}^{+} & =4 \\
x_{2}^{-}-x_{2}^{+} & =10
\end{aligned}
$$

Since $\left(7 x_{2}^{-}-7 x_{2}^{+}\right)$and $\left(x_{2}^{-}-x_{2}^{+}\right)$are dependent, it is impossible for x_{2}^{-}and x_{2}^{+}to be basic simultanemaly This means that at least x_{2}^{-}and x_{2}^{-} must be nonbasic at zero level; this mating it impossible for x_{2}^{-}and x_{2}^{+} to ascume positive values simultaneming es i any basic dolution.
maximize $2=x_{1}+3 x_{2}$ subject t

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=2 \\
& -x_{1}+x_{2}+x_{4}=4 \\
& x_{1} \text { unrestricted } \\
& x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

| Combination Solution status | |
| :---: | :---: | :---: |
| x_{1}, x_{2} | $26 / 3,-4 / 3 \quad$ Infeasible |

$x_{1}, x_{3} \quad 8,-2 \quad$ Infeasible
x_{1}, x_{4} 6,-4 Infeasible
$x_{2}, x_{3} \quad 16,-26 \quad$ Infeasible
$x_{2}, x_{4} \quad 3,-13 \quad$ Infeasible
$x_{3}, x_{4} \quad 6,-16 \quad$ Infeasible

Combination Solution	statue	2	
x_{1}, x_{2}	$-1,3$	Feasible	8
x_{1}, x_{3}	$-4,6$	Feasible	-4
x_{1}, x_{4}	2,6	Feasible	2
x_{2}, x_{3}	$4,-2$	Infeasible	-6
x_{2}, x_{4}	2,2	Feasible	6
x_{3}, x_{4}	2,4	Feasible	0

Optimum: $x_{1}=-1, x_{2}=3, z=8$
(c)

Set 3.3a

Extreme point Basic

A	$s_{1}, s_{2}, s_{3}, s_{4}$	x_{1}, x_{2}
B	$x_{1}, s_{2}, s_{3}, s_{4}$	s_{1}, x_{2}
C	$x_{1}, x_{2}, s_{3}, s_{4}$	s_{1}, s_{2}

(a) (A, B) adjacent, hence can be on a samples path. Remaining pairs cannot be on a simplex path because they are not adjacent.
(b) (i) Yes, because connects adjacent extreme posits
(ii) No, because C and I are not adjacent.
(iii) No, because the path returns to a prevroin extreme point.

(a) x_{3} enters at value 1

$$
z=0+3 \times 1=3
$$

(b) x, enters at value /

$$
z=0+5 \times 1=5
$$

(c) x_{2} enters at value 1

$$
z=0+7 \times 1=7
$$

(d) Tie broken arbitarily beliveen x_{1}, x_{2}, and x_{3}. Entering value $=1$ $z=0+|x|=1$

Set 3.3b

x_{5} enters: $x_{5}=\min \left(-, \frac{6}{1}, \frac{0}{6}\right)=0$. Thus,
$\Delta z=1 \times 0=0(x$, leaves $)$
x_{6} enters: $x_{6}=\min (\rightarrow, \rightarrow)$. Thus, no leaving variable and X_{6} can
be increased t o. $\Delta Z=+\infty$
(c) X_{4} cars improve solution.
x_{4} enters: $x_{4}=\min \left(-, \frac{6}{3},-\right)=2$. Thus,
x_{3} leaves. $\Delta z=-4 \times 2=-8$
(d) As shown in (b), x_{5} cannot Change Z because it enters the Solution a level zero. X7 cannot change Z either because its objective equation coefficient $=0 . \Delta z=0 \times \min \left(\frac{12}{5}, \frac{6}{3},-\right)=0$
(a) Maximize $Z=3 x_{1}+6 x_{2}:$
x_{2} is the first entering variable.
Reculting path is $A \rightarrow G \rightarrow F \rightarrow E$

Reculting path is $A \rightarrow G \rightarrow F \rightarrow E$.
(b) Maximize $Z=4 x_{1}+x_{2}$:

Entering variable $x_{1}=\binom{$ min intercept with $)}{x_{1}-a x i s}$

$$
\begin{aligned}
& x_{1}=\min (2,3,5)=2 \text { at } B \\
& \Delta z=4 \times Z=8
\end{aligned}
$$

(c) Maximize $z=x_{1}+4 x_{2}$:

Entering variable $x_{2}=\binom{$ min intercept }{ with $x_{2}-a x_{i}}$

$$
\begin{aligned}
& x_{2}=\operatorname{man}(1,2,4)=1 \\
& \Delta z=4 \times 1=4
\end{aligned}
$$

(a) X, will enter first and the ilinatrons will follow the path $A \rightarrow B \rightarrow C \rightarrow D$. (b) x_{2} enters first and che eteriatims will follow the path $A \rightarrow E \rightarrow D$
(c) The most-negature criterion requires more ilcrations (4. 20.3). This cuitenen is only a Rewistic, and although it does nor guarantee the emalleat number of
iterates, computational experience demonstrates that, on the average, Th maet-negative cuitevion w. more efficient.
(d) Iterations are identical, with the exception of the objective sow, which should appel with an grpozilisign Optimum tableau:

Basic	X_{1}	X_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	
\mathbf{Z}	0	0	$\frac{3}{4}$	$\frac{1}{2}$	0	0	21
\mathbf{X}_{1}	1	0	$1 / 4$	$-1 / 2$	0	0	3
\mathbf{X}_{2}	0	1	$-1 / 8$	$3 / 4$	0	0	$3 / 2$
$\mathrm{~S}_{3}$	0	0	$3 / 8$	$-5 / 4$	1	0	$5 / 2$
$\mathrm{~S}_{4}$	0	0	$1 / 8$	$-3 / 4$	0	1	$1 / 2$

Ifs, enters, ib value $=\min \left(\frac{3}{1 / 4},-, \frac{5 / 2}{3 / 8}, \frac{1 / 2}{1 / 8}\right)=4$
New $z=21-3 / 4 \times 4=18$
New $z=2!-3 / 4 \times 4=18$
If s_{2} enters, its value $=\min \left\{-, \frac{3 / 2}{3 / 4},-,-\right\}=2$ New $z=21-1 / 2 \times z=20$. The second best z is associated with S_{2} entering the baric solution
Wot easily extendable became the thing beat collation may not be an ad ja centCorner point of one current optimum point.
$x_{1}=$ number of purses per day
$x_{2}=$ number of bags per day
$x_{3}=$ number of backpactes poss day
Maximize $z=24 x_{1}+22 x_{2}+45 x_{3}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}+3 x_{3} \leq 42 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 40 \\
& x_{1}+5 x_{2}+x_{3} \leq 45 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

TORA's opternuinvolution:

$$
x_{1}=0, x_{2}=36, x_{3}=2, z=\$ 882
$$

Status of noorurces:

Resource	slack	$\frac{\text { Status }}{\text { Leather }}$
Scarce		
Sewing	0	scarce
Finishing	25	abundant

From TORA Iterations module, 12
click [III Iterations, then go to the optimal iteration and click any of the associated nontaisi variables $(\times 4,5 \times 6,5 \times 7,5 \times 8)$. Now, clack Next Iteration to produce the new. iteration in which the selected variable becomes basic. The associative value of z will deteriorates.

To determine the next-beat Solution, follows the procedure in Problem 1. First, let $X 4$ enter the baric solution and record the associated value of Z. Next, click View/Modify Input Data and resolve the problem to produce the same gotimum tablew that was cured before $X 4$ was entered into the baric dilution. Now, enter 5×6 into the basic solution and record the ascercialed value of Z. Repeat the percedun of 5×7 and 5×8. You will get th following results:

Entering variable	2
$\times 4$	2.63
5×6	1.00
5×7	6.40
5×8	1.90

The next best solution is associated with entering 5×7 into the base solution. Ascocuited values of the raualbles are

$$
x_{1}=1.6
$$

$$
x_{2}=0
$$

$$
x_{3}=1.6
$$

$$
x_{4}=0
$$

$$
z=6.40
$$

$\frac{M=1:}{\text { Opternuin solution: } x_{1}=0, x_{2}=2, \times R 4=1}$

$$
z=3
$$

Solutiori is infeasible because XR4 is positive. The season $M=1$ produces an infeasible solution is that it does not play the role of a penally of the real variables, x, and x_{2}. Using $P_{M}=1$ make, XR4 more attractive than x, from the stand point of minimizath $M=10$:
Opinion solution: $x_{1}=-4, x_{2}=1.8, z=3.4$ The solution is feasible because it does not sichude artificial at positive level. $M=10$ is relatively much lager than the objective coefficients of x, and x_{2}, and fence properly plays th ooh of a penalty.
$M=1000: 10$ of produces the optemam dilution as with $M=10$. The con clusion is that it suffice to elect M reasonably larger Than the object we coefficients of oed seal variables. Actually, $M=1000$ i. an "overkill" mithis care, and electing ouch hinge values could result in adverse.
(a) Minimize $z=4 x_{1}+x_{2}+M\left(R_{1}+R_{2}+R_{3}\right)$ subject is

$$
\begin{aligned}
3 x_{1}+x_{2}+R_{1} & =3 \\
4 x_{1}+3 x_{2}-s_{2}+R_{2} & =6 \\
x_{1}+2 x_{2}-s_{3}+R_{3} & =4 \\
x_{1}, x_{2}, s_{2}, s_{3}, R_{1}, R_{2}, R_{3} & \geq 0
\end{aligned}
$$

(b) Minimize $Z=4 x_{1}+x_{2}+M R_{1}$ subject ts

(c) Minimize $Z=4 x_{1}+x_{2}+M\left(R_{1}+R_{2}\right)$ subject to

$$
\begin{aligned}
3 x_{1}+x_{2}+R_{1} & =3 \\
4 x_{1}+3 x_{2}+R_{2} & =6 \\
x_{1}+2 x_{3}+s_{3} & =4
\end{aligned}
$$

Basic	x_{1}	x_{2}	R_{1}	R_{2}	s_{3}	
2	-4	-1	CM	CM	0	0
R_{1}	3	1	(1)	0		3
R_{2}	4	3		(1)		6
s_{3}	1	2			1	4
2	$-4+7 M$	$-1+4 M$	0	0	0	$9 M$
R_{1}	3	1	1			3
R_{2}	4	3		1	1	6
S_{3}	1	2			1	4

Set 3.4a

Sn Phase If we always minimize th rum of the artificial variables fecoure tet sum represents a mearure of infeasibility in the problem
(a) Minimize $r=R_{1}$
(b) Minimize $r=R_{1}+R_{2}+R_{1}$
(c) Minimize $r=R_{s}$
(d) Minimize $r=R_{1}+R_{2}+R_{5}$
(c) Minimise $r=R_{1}+R_{5}$
(a) Phase I:

Basic	x_{1}	x_{2}	x_{3}	S_{2}	R_{1}	R_{2}	0
R_{2}	0	0	0	0	-1	-1	0
R_{1}	1	1	1	0	1	0	7
R_{2}	2	-5	1	-1	0	1	10
n	3	-4	2	-1	0	0	17
R_{1}	1	1	1	0	1	0	7
R_{2}	2	-5	1	-1	0	1	10
n_{1}	0	$7 / 2$	$1 / 2$	$1 / 2$	0	$-3 / 2$	2
R_{1}	0	$7 / 2$	$1 / 2$	$1 / 2$	1	$-1 / 2$	2
x_{1}	1	$-5 / 2$	$1 / 2$	$-1 / 2$	0	$1 / 2$	5
1	0	0	0	0	-1	-1	0
x_{2}	0	1	$1 / 7$	$1 / 7$	$2 / 7$	$-1 / 7$	$4 / 7$
x_{1}	1	0	$6 / 7$	$-1 / 7$	$5 / 7$	$1 / 7$	$4 / 7$

Basic	x_{1}	x_{2}	x_{3}	5	$S_{0} / 1$	
3	-2	-3	5	0	0	
x_{2}	0	1	$1 / 7$	$1 / 7$	$4 / 7$	
0	x_{1}	1	0	$6 / 7$	$-1 / 7$	$45 / 7$
z	0	0	$50 / 7$	$1 / 7$	$102 / 7$	
ω	x_{2}	0	1	$1 / 7$	$1 / 7$	$4 / 7$
0	x_{1}	1	0	$6 / 7$	$-1 / 7$	$45 / 7$

(b) Phase I is the same as in (a)

\quad Basic	x_{1}	x_{2}	x_{3}	s_{2}	$s 1^{2}$
z	-2	-3	5	0	0
x_{2}	0	1	$1 / 7$	$1 / 7$	$4 / 7$
x_{1}	1	0	$6 / 7$	$-1 / 7$	$45 / 7$
3	0	0	$50 / 7$	$1 / 7$	$102 / 7$
	x_{2}	0	1	$1 / 7$	$1 / 7$

(c) Phase I is the same as in (a)

Phase II:

Bani th	x_{1}	x_{2}	x_{3}	s_{2}	$50 / 7$
3	-1	-2	-1	0	0
x_{2}	0	1	$1 / 7$	$1 / 7$	$4 / 7$
x_{1}	1	0	$6 / 7$	$-1 / 7$	$45 / 7$
3	0	0	$1 / 7$	$1 / 7$	$53 / 7$
x_{2}	0	1	$1 / 7$	$1 / 7$	$4 / 7$
x_{1}	1	0	$6 / 7$	$-1 / 7$	$45 / 7$

(d) Phase I is the same as iv i (a)

Phase II:

Banc	x_{1}	x_{2}	x_{3}	x_{4}	$50 / 4$
z	-4	8	-3	0	0
x_{2}	0	1	$1 / 7$	$1 / 7$	$4 / 7$
x_{1}	1	0	$6 / 7$	$-1 / 7$	$45 / 7$
z	0	0	$-5 / 7$	$-12 / 7$	$21 / 7$
x_{2}	0	1	$1 / 7$	$1 / 7$	$4 / 7$
x_{1}	1	0	$6 / 7$	$-1 / 7$	$45 / 7$
Minn					

Minimize $r=R$,
subject to

$$
\begin{gathered}
3 x_{1}+2 x_{2}-s_{1}+R_{1}=6 \\
2 x_{1}+x_{2}=2 \\
x_{1}, x_{2}, s_{1}, R_{1}, s_{2} \geq 0
\end{gathered}
$$

Solution of Phase I by TORA yields $r=2$, which indicates. that the problem has no feasible space
minimize $Z=R_{2}$
subject to

$$
\begin{gathered}
2 x_{1}+x_{2}+x_{3}+51=2 \\
3 x_{1}+4 x_{2}+2 x_{3}-5_{2}+R_{2}=8 \\
x_{1}, x_{2}, x_{3}, 5_{1}, 5_{2}, R_{2} \geqslant 0
\end{gathered}
$$

Phase I Optional solution:

Basic	x_{1}	x_{2}	x_{3}	s_{2}	s_{1}	R_{2}	sol $_{0} \underline{n}$
r	-5	0	-2	-1	-4	0	0
x_{2}	2	1	1	0	1	0	2
R_{2}	-5	0	-2	-1	-4	1	0

$$
R_{2}=0 \text { is basic in the Phase I solutsim }
$$

(b)							
Phase I (continued): R2 leaves, $x 1$ enters (also $\mathrm{x} 3, \mathrm{~s} 2$, and s 1 are candidates for the entering variable).							
	x1	x2	x3	s2	s1	R2	Sol
r	-5	0	-2	-1	-4	0	0
x2	2	1	1	0	1	0	2
R2	-5	0	-2	-1	-4	1	0
r	0	0	0	0	0	-1	
x2	0	1	1/5	-2/5	-3/5	215	2
x1	1	0	$2 / 5$	$1 / 5$	4/5	-1/5	0

Drop R2-column.
Phase II:

	x 1	x 2	x 3	s 2	s 1	Sol.
z	-2	-2	-4	0	0	0
x 2	0	1	$1 / 5$	$-2 / 5$	$-3 / 5$	2
x 1	1	0	$2 / 5$	$1 / 5$	$4 / 5$	0
z	0	0	$-14 / 5$	$-2 / 5$	$2 / 5$	4
x 2	0	1	$1 / 5$	$-2 / 5$	$-3 / 5$	2
x 1	1	0	$2 / 5$	$1 / 5$	$4 / 5$	0
z	7	0	0	1	6	4
x 2	$-1 / 2$	1	0	$-1 / 2$	-1	2
x 3	$5 / 2$	0	1	$1 / 2$	2	0

Optimum solution:
$x_{1}=0, x_{2}=2, x_{3}=0, z=4$

Phase I:
6

	x 1	x 2	x 3	R 1	R 2	R 3	Sol
r	-10	0	-4	-8	0	0	0
x 2	2	1	1	1	0	0	2
R2	-5	0	-2	-3	1	0	0
R3	-5	0	-2	-4	0	1	0
r	0	0	1	-2	-2	0	0
x2	0	1	$1 / 5$	$-1 / 5$	$2 / 5$	0	2
x1	1	0	$2 / 5$	$3 / 5$	$-1 / 5$	0	0
R3	0	0	0	-1	-1	1	0

Remove R1- and R2 columns, which gives

	x 1	x 2	x 3	R 3	Sol
r	0	0	1	0	0
x 2	0	1	$1 / 5$	0	2
x 1	1	0	$2 / 5$	0	0
R3	0	0	0	1	0

The R3-row is $\mathrm{R} 3=0$, which is redundant . Hence the R3-row and R3-column can be dropped from the tableau with no consequences.

Phase II:

	x 1	x 2	x 3	Sol
z	-3	-2	-3	0
x2	0	1	$1 / 5$	2
x 1	1	0	$2 / 5$	0
z	0	0	$-7 / 5$	4
x2	0	1	$1 / 5$	2
x1	1	0	$2 / 5$	0
z	$7 / 2$	0	0	4
x2	$-1 / 2$	1	0	2
x1	$5 / 2$	0	1	0

Optimum solution:
$x_{1}=0, x_{2}=2, x_{3}=0, z=4$
of x_{1}, x_{3}, x_{4}, or x_{5} assume 7 a positive value, the value of
Re objective function at the end of Phase I must necessarily become positive. This follows because these vanables have nonzero z-row coefficients in the optimal Phase I tableau. A positive objective value at the end of Phase I mean that. Phase I solution is infeasible. Anne Phase II uses the same conshaints as is Phase I, it follows that Phone II must hare $x_{1}=x_{3}=x_{4}=x_{5}=0$ as well.
Phase II:

Basic	x_{2}	R	$S_{\delta} / 2$
Z	-2	0	0
x_{2}	D	0	2
R	0	1	0
z	0	0	4
x_{2}	1	0	2
R	0	1	0

Optimum Solution:

$$
\begin{aligned}
& x_{1}=0 \quad x_{2}=2 \quad x_{3}=x_{y}=x_{5}=0 \\
& z=4
\end{aligned}
$$

$$
\begin{aligned}
-5 x_{1}+6 x_{2}-2 x_{3}+x_{4} & =-5 \\
x_{1}-3 x_{2}-5 x_{3}+x_{5} & =-8 \\
2 x_{1}+5 x_{2}-4 x_{3}+x_{6} & =9
\end{aligned}
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	R	
0	0	0	0	0	0	-1	
-5	6	-2	1	0	0	-1	-5
1	-3	-5	0	1	0	-1	-8
2	5	-4	0	0	1	0	9
-1	3	5	0	-1	0	0	8
-6	9	3	1	-1	0	0	3
-1	3	5	0	-1	0	1	8
2	5	-4	0	0	1	0	9

Phase I problem:
minimize $r=R$
subject ts

$$
\begin{array}{ll}
-6 x_{1}+9 x_{2}+3 x_{3}+x_{4}-x_{5} & =3 \\
-x_{1}+3 x_{2}+5 x_{3}-x_{5}+R & =8 \\
2 x_{1}+5 x_{2}-4 x_{3} & +x_{6}=9
\end{array}
$$

$$
\text { all variables } \geqslant 0
$$

The logic of the procedure it as follows:

In the R-columns, enter -! for any constraint with negative RHS and of or all other conviraints.
Next, use the R-column as a pivot column and select the pivot element as the one corresponding to the snout negate" RHS. This yourceduce will always require one artificial variable regardless of the number of constrains.
(a)

(b) $A: 1, B: 1, C:\binom{3}{2}=3, D: 1$
(a) Frim TORA, iterations 2

- and 3 are degenerate. Degeneracy is semoved isi iteration'4.
(b)

(a) Four itcuateons
(b) Thee iturations: In iteration 2 , defeneracy in removed becauce bawi $s X 5=0$ correoponds to, a negahive conatiaint coefficient in the entering rariable column ($x 2$).
(c) In part (a), solution en countens 2 degesersate brevi soluton at th same corner point: In put(b), only one baseidolution wor encountered.

$B_{g_{1}}$	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{2}	$s_{4} / 4 n$
3	-1	-2	-3	0	0	0	0
s_{1}	1	2	13	1	0	0	10
s_{2}	1	1	0	0	1	0	5
s_{3}	1	0	0	0	0	1	1
3	0	0	0	1	0	0	10
1	x_{3}	$1 / 3$	$2 / 3$	1	$1 / 3$	0	0
s_{2}	1	1	0	0	1	0	5
s_{3}	1	0	0	0	0	1	1
3	0	0	0	1	0	0	10
x_{3}	$-1 / 3$	0	1	$1 / 3$	$-2 / 3$	0	0
x_{2}	1	1	0	0	1	0	5
s_{3}	1	0	0	0	0	1	1
3	0	0	0	1	0	0	10
x_{3}	0	0	1	$1 / 3$	$-2 / 3$	$1 / 3$	$1 / 3$
x_{2}	0	1	0	0	1	-1	4
x_{1}	1	0	0	0	0	1	1
3	0	0	0	1	0	0	10
x_{3}	0	$2 / 3$	1	$1 / 3$	0	$-1 / 3$	3
s_{2}	0	1	0	0	1	-1	4
x_{1}	1	0	0	0	0	1	1
11							

Three alternative basic optima:

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{l}
(0,0,10 / 3) \\
(0,5,0 \\
(1,4,1 / 3)
\end{array}\right.
$$

The aroociated nonbarec alternative optima are

$$
\begin{aligned}
& \tilde{x}_{1}=\lambda_{3} \\
& \tilde{x}_{2}=5 \lambda_{2}+4 \lambda_{3} \\
& \tilde{x}_{3}=10 / 3 \lambda_{1}+1 / 3 \lambda_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}+\lambda_{3}=1 \\
& 0 \leqslant \lambda_{i} \leqslant 1, \quad i=1,2,3
\end{aligned}
$$

Basic	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	2
z	-2	1	3	0	0	0
s_{1}	1	-1	$[5$	1	0	10
s_{2}	2	-1	3	0	1	40
z	$-7 / 5$	$2 / 5$	0	$3 / 5$	0	6
x_{3}	$[1 / 5$	$-1 / 5$	1	$1 / 5$	0	2
s_{2}	$7 / 5$	$-2 / 5$	0	$-3 / 5$	1	34
z	0	-1	7	2	0	20
x_{1}	1	-1	5	1	0	10
s_{2}	0	$[1]$	-7	-2	1	20
z	0	0	$[0$	$\sqrt{0}$	1	40
x_{1}	1	0	-2	-1	0	30
x_{2}	0	1	-7	-2	1	20

x_{3} and 5 , can yield altosmative optima. How eves, because all or kin convinaint coefficient are negative (angereral, ≤ 0), nome cen yield an allen nature (coven point) basic solutions.

$\beta_{m_{1}}$	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	1
z	-3	-1	0	0	0	0	0
0	s_{1}	1	2	0	1	0	0
s_{2}	0	1	-1	0	1	0	2
s_{3}	7	3	-5	0	0	1	20
s_{3}	0	2	-3	0	3	0	6
s_{1}	0	1	11	1	-1	0	3
x_{1}	1	1	-1	0	1	0	2
s_{3}	0	-4	2	0	-7	1	6
z	0	5	0	3	$[0$	0	15
$1 x_{3}$	0	1	1	1	-1	0	3
x_{1}	1	2	0	1	0	0	5
s_{3}	0	-6	0	-2	-5	1	0

The potimim olution is degencicte because 5_{3} is basic and equal to zeno Clos, it has alternative nonbauc solutions because S_{2} Las a zero coefficients in the z-sow and all its constraint coefficients are $\leqslant 0$.

(b) Objecturi value is unbounded because each unit increase in x_{2} sicreaves z by 10
of, at any iteration, all the 3
consthourt coefficient of a
variable are ≤ 0, them te
solutiosiopace is unbounded inri the duriction of that variable. A move "foolproof" way of accomphiting shit task is solve a sequence of $\angle P_{s}$ in which the objective function ni
$m_{x \times i n i z e} z=x_{j}, j=1,2, \ldots, n$ Subject te the constraints of th problem. For the unbounded vauables, $Z=\infty$.

Set 3.5d

$x_{1}=$ number of units of $T 1$
$x_{2}=$ number of unis of $T 2$
$x_{3}=$ number of units of TT?
Constraints:

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}+6 x_{3} \leq 1000 \\
& 5 x_{1}+3 x_{2}+4 x_{3} \leq 1200 \\
& x_{1}+x_{2}+x_{3} \geqslant 500 \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

We can use Phase I to sec whether the problem las a feasible solution; that is,
minimize $r=R_{3}$
subject to

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}+6 x_{3}+5_{1}=1000 \\
& 5 x_{1}+3 x_{2}+4 x_{3}+s_{2}=1200 \\
& x_{1}+x_{2}+x_{3}-s_{3}+R_{3}=500 \\
& x_{1}, x_{2}, x_{3}, 5, s_{2}, 5_{3}, R_{3} \geqslant 0
\end{aligned}
$$

Optimum solution from TORA:

$$
R_{3}=r=225 \text { units }
$$

This is interpreted as a deficiency of 225 units. The most that
can be perduced is 500-225
$=275$ units

Basic	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	R_{1}	$s_{0} 1 \underline{n}$
Z	-3	-2	-3	0		0	$-8 M$
s_{1}	2	1	1	0	1	0	2
R_{1}	3	4	2	-1	0	1	8
Z	-1	$-4 M$	$-2 M$	M	0	0	2
	$+5 M$	0	$+2 M$	M	$+4 M$	0	4
x_{2}	2	1	1	0	1	0	2
R_{1}	-5	0	-2	-1	-4	1	0

Because $R_{1}=0$ is the optimal tableau, the problem has a Xeacible solutions. The optimum ollution is

$$
x_{1}=0, x_{2}=2, z=4
$$

Note that is th fecit iteration, R_{1} could have been used as th leaving variable, in which case it would not be baric in. the optimums iteration.
$x_{1}=$ Nb. units of product A
$x_{2}=$ Nb units of product B
Maximize $Z=2 x_{1}+3 x_{2}$
SHf.

(a)

$$
\begin{aligned}
& M 1 \text { at } C=2(0)+2(3)=6 \\
& M 1 \text { at } D=2(6)+2(0)=12 \\
& Z \text { at } C=2(0)+3(3)=9 \\
& Z \text { at } D=2(6)+3(0)=12
\end{aligned}
$$

Dual price $=\frac{12-9}{12-6}=50 /$ unit
Allowable range $=(6 \leq M 1 \leq 12)$
$M 2$ at $A=3(4)+6(0)=12$
M2 at $B=3(0)+6(4)=24$
Z at $A=2(4)+3(0)=8$
z of $B=2(0)+3(4)=12$
Dual price $=\frac{12-8}{24-12}=\$ 33 /$ unit
Range: $12 \leq M 2 \leq 24$
(b) Dual price $=\$.50 /$ unit valid is the range $6 \leq M \leq 12$
Increase in revenue $=.5 \times 4=\$ 2.00$ Increase in cost $=.3 \times 4=\$ 1.20$ Cost < Revenue - purchase recommended
(c) Dual price $=\$.33 /$ writ valid in the range $12 \leq M 2 \leq 24$
Purchase price/unit $<\$ 33$
(d) Dual puce $=\$.33 /$ unit valid in' the range $12 \leq M 2 \leq 24$. M2 is increased from 18 to 23 units Increase in parenue

$$
\begin{gathered}
=5 x \cdot 33=\$ 1.65 \\
\text { New optimum revenue }=10+1.65=\$ 11.65
\end{gathered}
$$

$x_{1}=$ daily numbles of typ 1 that
$x_{2}=$ daily number So pe 2 Lar
Maximize $2=8 x_{1}+5 x_{2}$

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 400 \\
& \leq 150 \\
x_{1} & \leq 200 \\
x_{2} & \leq x_{2}
\end{aligned}
$$

(a) Optimum occurs at B :

$$
\begin{aligned}
& x_{1}=100 \text { type } 1 \text { hat } \\
& x_{2}=200 \text { type } 2 \text { tats } \\
& 2=\$ 1800
\end{aligned}
$$

(b) $A=(0,200), \quad C=(150,200)$

| Capacity | 2 |
| :---: | :---: | :---: |
| $A \quad 2 \times 0+1 \times 200=200$ | $8 \times 0+5 \times 200=1000$ |
| C $2 \times 150+1 \times 200=500$ | $8 \times 150+5 \times 200=2200$ |

$$
\text { woth/capacily unit }=\frac{2200-1000}{500-200}
$$

Range: $(200,500)$

$$
=\$ 4 \text { per type } 2 \text { hat }
$$

(c) Dual price $=0$ in the range $(100, \infty)$

Thus, change from $x_{1} \leqslant 150$ to $x_{1} \leqslant 120$
has no effect on optimum z
(d) Let $d=$ demand limit for type 2 hat

	d	Z
$D(150,100)$	100	$8(150)+5(100)=\$ 1700$
$F(0,400)$	400	$8(0)+5(400)=\$ 2000$

Dual price $=\frac{2000-1700}{400-100}=\$ 1.00$
Range (100,400)
Maximum vicreace un demand limit for type 2 hat $=400-200=200 \mathrm{Rats}$

Set 3.6b
(a) $\frac{3}{6} \leqslant \frac{C_{A}}{C_{B}} \leqslant \frac{2}{2}$, or
(a) $\frac{0}{1} \leq \frac{c_{1}}{c_{2}} \leq \frac{2}{1}, \Omega$
$.5 \leqslant \frac{C_{A}}{C_{B}} \leqslant 1$ or $1 \leqslant \frac{C_{B}}{C_{A}} \leqslant 2$
(b) Maximize $Z=2 x_{A}+3 x_{B}$

$$
\begin{aligned}
& C_{B}=3: \quad 3 \times .5 \leq C_{A} \leq 3 \times 1 \\
& 1.5 \leq C_{A} \leq 3 \\
& C_{A}=2: \quad 2 \times .5 \leq C_{B} \leq 2 \times 2 \\
& 1 \leq C_{B} \leq 4
\end{aligned}
$$

(c)

$$
\frac{C_{A}}{C_{B}}=\frac{5}{4}=1.25 \text {, which falls outside }
$$

the range $5 \leq \frac{C_{A}}{C_{B}} \leq 1$. Optimum oolution changes and must be computed anew.
New solution: $x_{A}=4, x_{B}=0, z=\$ 20$.
(d) Case 1: $z=5 x_{A}+3 x_{B}$
$C_{A}=5$ foll outarde the range $(1.5,3)$,
hence the optimism changes. New Optimum is $x_{A}=4, x_{B}=0, z=420$.

Case 2: $\quad z=2 x_{A}+4 X_{B}$
$C_{B}=4$ foll in the range $(1,4)$, hence opternuin is unchanged at $x_{A}=x_{B}=2$

$$
Z=2(2)+4(3)=72
$$

(a) $\frac{1}{2} \leq \frac{c_{1}}{c_{2}} \leq \frac{6}{4}, \pi$

$$
5 \leqslant \frac{C_{1}}{C_{2}} \leqslant 1.5 \text { or } \frac{2}{3} \leqslant \frac{C_{2}}{C_{1}} \leqslant 2
$$

(b) Given $C_{1}=5$, then

$$
5\left(\frac{2}{3}\right) \leqslant C_{2} \leqslant 5(2), \text { or } \frac{10}{3} \leqslant C_{2} \leqslant 10
$$

(c) $\frac{c_{1}}{c_{2}}=\frac{5}{3}=1.67$, which fall outside the range $\cdot 5 \leq \frac{G}{C_{2}} \leq 1.5$.
Hence the solution changes

Feasibility conditions:

$$
\begin{aligned}
& x_{2}=100+\frac{1}{2} D_{1}-\frac{1}{4} D_{2} \\
& x_{3}=230+\frac{1}{2} D_{2} \\
& x_{6}=20-2 D_{1}+D_{2}+D_{3}
\end{aligned}
$$

$$
\text { (a) } \begin{aligned}
& D_{1}=438-430=8 \text { mex } \\
& D_{2}=500-460=40 \\
& D_{3}=410-420=-10 \\
& x_{2}=100+\frac{1}{2}(8)-\frac{1}{4}(40)=94>0 \\
& x_{3}=230+\frac{1}{2}(40)=250>0 \\
& x_{6}=20-2(8)+40-10=34>0
\end{aligned}
$$

Dual prices:

$$
\begin{aligned}
\text { Resource } 1 & =\$ 1 / \text { min },-200 \leqslant D_{1} \leqslant 10 \\
2 & =\$ 2 / \mathrm{min}^{\circ},-20 \leqslant D_{2} \leqslant 400 \\
3 & =\$ 0 / \mathrm{min}^{\circ},-20 \leq D_{3} \leq \infty
\end{aligned}
$$

$$
\begin{aligned}
\text { New profit } & =1350+D_{1}+2 D_{2}+0 D_{3} \\
& =1350+8+2 \times 40=1438
\end{aligned}
$$

(b)

$$
\begin{aligned}
& D_{1}=460-430=30 \mathrm{~min} \\
& D_{2}=440-460=-20 \\
& D_{3}=380-420=-40 \\
& x_{2}=100+\frac{1}{2}(30)-\frac{1}{4}(-20)=120>0 \\
& x_{3}=230+\frac{1}{2}(-20)=220>0 \\
& x_{6}=20-2(30)-20-40=-100<0
\end{aligned}
$$

(a) Overtime cost
Revenue (dual
is $\$ 1 / \mathrm{min}$.

Coot<Revenue \Rightarrow advantageous
(b) Dual price fir opuation $2=\$ 2 / \mathrm{mex}$ valid in the range $-20 \leqslant D_{z} \leqslant 400$ $D_{2}=120$ minutes
Revenue increase $=120 \times 2=\frac{\$}{\$} 40$
Cost increase $=2(\$ 55)=\$ 110$
Revenue $>\operatorname{cort} \Rightarrow$ accept.
(c) No, resource 3 is already abundant. This wi the reason its dual price $=0$
(d) Dual price for operation $/$ is $\$ 1 /$ mex, rated in the range $-200 \leqslant D, 10$

$$
\begin{aligned}
& D_{1}=440-430=10 \mathrm{~min} \\
& \text { Cost }=\frac{10}{60} \times 40=\$ 6.67 \\
& \text { New revenue }=1350+1 \times 10=\$ 1360 \\
& \text { Net revenue }=1360-6.67=\$ 1353.33
\end{aligned}
$$

(e) Dualyarice $=\frac{1}{2} / \mathrm{min},-20 \leq D_{2} \leqslant 400$ $D_{2}=-$ mex
Decrease in cost $=\frac{15}{60} \times 30=\$ 7.50$
Lostsevenue $=15 \times \$ 2.00=\$ 30.00$
Lost revenue $>$ Decrease in cost
Notrecommended.
$X_{j}=$ units of product $i=1,2,3$
Maximize $z=20 x_{1}+50 x_{2}+35 x_{3}$
SSt.

$$
\begin{aligned}
&-5 x_{1}+.5 x_{2}+.5 x_{3} \leq 0 \\
& x_{1} \leq 75 \\
& 2 x_{1}+4 x_{2}+3 x_{3} \leq 240 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(a) Solution: $z=\$ 2800$

$$
x_{1}=x_{2}=40, x_{3}=0
$$

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
z	0	0	$10 / 3$	$20 / 3$	0	$35 / 3$	2800
x_{2}	0	0	$5 / 6$	$2 / 3$	0	$1 / 6$	40
s_{2}	1	0	$1 / 6$	$4 / 3$	1	$-1 / 6$	35
x_{1}	0	1	$-1 / 6$	$-4 / 3$	0	$1 / 6$	40

(b) $2+10 / 3 x_{3}+20 / 3 S_{1}+0 S_{2}+35 / 3 S_{3}=2800$

Dual-price for raw material $=35 / 3 / 16$

$$
\begin{aligned}
& x_{2}=40+D_{3} / 6 \\
& S_{2}=35-D_{3} / 6 \\
& x_{1}=40+D_{3} / 6 \\
& D_{3}=12016 \text { falls sithe range }(-240,210)
\end{aligned}
$$

$$
\begin{aligned}
& \text { New solution: } \\
& \qquad \begin{aligned}
x_{1} & =40+\frac{120}{6}=60 \text { units } \\
x_{2} & =40+\frac{120}{6}=60 \text { units } \\
x_{3} & =0 \\
\text { New revenue } & =2800+(35 / 3)(120) \\
& =\$ 4200
\end{aligned}
\end{aligned}
$$

(c) Dual price $=0,-35 \leqslant D_{2}<\infty$

$$
\pm 10 \% 8.75= \pm 7.5 \text { o }
$$

Change has no effect on the solution
$x_{j}=$ units of product $j, j=1,2,3$, $_{j}$
Maximize $z=4.5 x_{1}+5 x_{2}+4 x_{3}$
sot.

$$
\begin{aligned}
& 10 x_{1}+5 x_{2}+6 x_{3} \leq 600 \\
& 6 x_{1}+8 x_{2}+9 x_{3} \leq 600 \\
& 8 x_{1}+10 x_{2}+12 x_{3} \leq 600 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(a) Solution: $z=\$ 325$

$$
x_{1}=50, x_{2}=20, x_{3}=0
$$

(b) Optimum tableau

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
Z	0	0	2	.083	0	.458	325
x_{1}	1	0	0	.167	0	-.083	50
s_{2}	0	0	-.6	.067	1	-.833	140
x_{2}	0	1	1.2	-.133	0	.167	20

$Z+2 x_{3}+.083 S_{1}+0 S_{2}+.458 S_{3}=325$
Dual price r:
Process 1: $\$.083 / \mathrm{min}$

$$
\begin{aligned}
& 2: \$ 0 / \mathrm{min} \\
& 3: \$.458 / \mathrm{min}
\end{aligned}
$$

Process $3>$ Process 1
(c) Process 1: $60 \times .083=\$ 4.98$

$$
\begin{aligned}
& 2: 0 \\
& 3: 60 x \cdot 458=\$ 27.48
\end{aligned}
$$

$x_{1}=$ Nb. Af practical courses
$x_{2}=N b_{r}$. of humanistic courses

$$
\begin{align*}
& \operatorname{Maximize} z= 1500 x_{1}+1000 x_{2} \\
& x_{1}+x_{2}+5,=30 \tag{1}\\
& x_{1}-S_{2}=10 \tag{2}\\
& x_{2}-5_{3}=10 \tag{3}\\
& x_{1}, x_{2}, 5_{1}, 5_{2}, S_{3} \geqslant 0
\end{align*}
$$

(a) Solution:

$$
\begin{aligned}
& z=40,000 \\
& x_{1}=20 \text { course } \\
& x_{2}=10 \text { courses }
\end{aligned}
$$

(b) From Fora,

$$
Z+1500 S_{1}+0 S_{2}+500 S_{3}=40,000
$$

S_{1} is a slack, S_{2} and S_{3} are surplus
Decal prices:
constraint $1: \$ 1500 /$ course constrain 2: $0 /$ min limit course constraint $3:-\$ 500 / \mathrm{min}$ limit course
Dual price for constraint / equals the revenue pu practical course. Hence, an addikorial course must necessarily te of the practical type.
(c) From TORA,

$$
\left.\begin{array}{l}
S_{2}=10+D_{1} \geqslant 0 \\
x_{1}=20+D_{1} \geqslant 0 \\
x_{2}=10
\end{array}\right\}-10 \leqslant D_{1}<\infty
$$

Thee, oh dual price of $\$ 1500$ for constraint 1 is rabid for any number of courses $\geqslant 30-10=20$.
(d) Dual price $=-\$ 500$. To determine the range when it apples, we lave for TORA

$$
\left.\begin{array}{l}
S_{1}=10-D_{3} \geq 0 \\
x_{1}=20-D_{3} \geq 0 \\
x_{2}=10+D_{3} \geq 0
\end{array}\right\}-10 \leq D_{3} \leq 10
$$

A unit increase in lower limit on humainatic course offering (ie. form 10 to 11) decreases revenue by $\$ 500$ $x_{1}=$ Radio minutes
$x_{2}=7 V$ minutes
$x_{3}=$ Newspaper ads
Maximize $z=x_{1}+50 x_{2}+5 x_{3}$

$$
\begin{align*}
& x_{1} \tag{3}\\
& -x_{1}+2 x_{2} \tag{4}\\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{align*}
$$

$$
\begin{equation*}
\leqslant 400 \tag{Z}
\end{equation*}
$$

Solution: $z=1561.36$

$$
x_{1}=59.09 \mathrm{~min}, x_{2}=29.55 \mathrm{~min}, x_{3}=5 \mathrm{ads}
$$

(b) $S_{1}, S_{3}, S_{4}=$ dlacks aroociatiod inith conotraints 1, 3, and 4
$S_{2}=$ dupplus anosciated with condiraint 2
From TORA's optimum tablean:

$$
Z+2.879 S_{2}+.1585_{1}+0 S_{2}+1.364 S_{3}=1561.36
$$

$$
\begin{gathered}
59.091+.006 D_{1}-.303 D_{2} \\
5
\end{gathered} \quad-.909 D_{4} \geqslant 0
$$

$$
\begin{gathered}
+D_{2} \\
340.909-.006 D_{1}+.303 D_{2}+D_{3}+.909 D_{4} \geqslant 0 \\
29.545+.003 D-.159 D_{1}
\end{gathered}
$$

$$
\begin{array}{ll}
29.545+.003 D_{1}-.152 D_{2} & \\
& +.909 D_{4} \geqslant 0 \\
\text { Consti } & +04 \geqslant 0
\end{array}
$$

Conotraint	Dual Price	RHS Ranget
1	.158	$(250,66250)$
2	-2.879^{*}	$(0,2000)$
3	0	$(59.09, \infty)$
4	1.3636	$(-375,65)$
N Negative becaure 5_{2} in a surplus variable		

+ Thesc results are faken from TORA output. They differ from these computed form the given
D_{i} - conditions becauce of zoundoff orror
Concluccions:

1. Encreasing the lower linsit on th number of newspaper ads is not advantageous becaure the associated dual price in regative $(=-2.879$)
2. Increaveing the upper limit on radio sinutes is nor warranted because its dual price is zero (the current livit is already. abuendant).
(c) Dual purice $=.158 / \mathrm{budget} *$ ralid in the Laxge $250 \leqslant \$ \leqslant 66250$.
50% budget increase $=\$ 5000$, on budyet will be ericreared to 15,000 . Encrease is $Z=.158 \times 5000=790$
(a) $X_{1}=$ Nbr. Shirts/weok
$x_{z}=N$ br. blouses/week
Maximize $z=8 x_{1}+12 x_{2}$
S.t.

$$
\begin{aligned}
& 20 x_{1}+60 x_{2} \leq 25 \times 60 \times 40=60,000 \\
& 70 x_{1}+60 x_{2} \leq 35 \times 60 \times 40=84,000 \\
& 12 x_{1}+4 x_{2} \leq 5 \times 60 \times 40=12,000 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Soluteri: $z=\$ 3920 /$ week
$x_{1}=480$ shivis, $x_{2}=840$ bloures
(b) Let S_{1}, S_{2}, and s_{3} be the slack ravilles arocciated cinth the cutting, seevirig, and packaging conctraints. Fromati optimum TORA tabbau, we lave

$$
2+.12 S_{1}+.08 S_{2}+0 S_{3}=13920
$$

Dept.	Wrth $/$ h (Dual price)
Culting	$\$.12 /=\$ 7.20 / \mathrm{h}$
Sewing	$\$.08 / \mathrm{min}=\$ 4.80 / \mathrm{h}$
Pacteging	$\$ 0 /$ he

(c) Breakeven wages are $\$ 7.20 / \mathrm{h}$ for cutting and $\$ 4.80 \mathrm{fo}$ sewing
(a) $x_{1}=$ units of solution A
$x_{2}=$ units of oolution B
Maximize $z=8 x_{1}+10 x_{2}$
S.t.

$$
\begin{align*}
& .5 x_{1}+.5 x_{2} \leq 150 \tag{1}\\
& .6 x_{1}+.4 x_{2} \leq 145 \tag{2}\\
& 30 \leq x_{1} \leq 150 \tag{3}\\
& 40 \leqslant x_{2} \leq 200 \tag{4}
\end{align*}
$$

Solution: $Z=\$ 2800$

$$
x_{1}=100 \text { units, } x_{2}=200 \text { units }
$$

(b) Deforie
$S_{1}, S_{2}, S_{3}, S_{4}=$ slackes in constraints $1,2,3,4$
$S_{5}, S_{6}=$ suplus vairables acerociated with the lower bounds of conotrains 3 and 4.
From TORA's opitimum tableaw:
$2+16 S_{1}+0 S_{2}+0 S_{3}+2 S_{4}+0 S_{5}+0 S_{6}=2800$
Condutiens:

$$
\begin{aligned}
& s_{5}=70+2 D_{1}-D_{4}-D_{5} \geqslant 0 \\
& s_{2}=5-1 \cdot 2 D_{1}+D_{2}+2 D_{4} \geqslant 0 \\
& s_{3}=50-2 D_{1}+D_{3}+D_{4} \geqslant 0 \\
& x_{1}=100+2 D_{1}-D_{4} \geqslant 0 \\
& x_{2}=200+D_{4} \geqslant 0 \\
& s_{4}=160+D_{4}-D_{6} \geqslant 0
\end{aligned}
$$

Set 3.6c

Constraint	Dual price	RHts-range
1	16	$(115,154.17)$
2	0	$(140, \infty)$
3 (upper)	0	$(100, \infty)$
3 (lower)	0	$(-\infty, 100)$
4 (upper)	2	$(175,270)$
4 (lower)	0	$(-\infty, 200)$
Increase in sawrmaterial $1 /$ and in		
ute eyper bound on solution B		
advantageous because their dual		
prices (16 and 2) are positive.		
(c) Increase in revenue/unit $=\$ 16$		
Increase in cost/unit $=\$ 20$		

1% decrease in maintenancetime is equivalent to $D_{1}=D_{2}=D_{3}=4.8$ minutes. This is equivalent to having Not recommended!
(d) Steal price for saw material 2 is zero because it is abundant. No increace is parented.
$X_{1}=$ Nb. DiGi-1
$x_{2}=$ Nor. DiGi-2
$s_{i}=$ Idle minutes for station $i ; i=1,2,3$
The objective is to minimize $s_{1}+s_{2}+s_{3}$. To express the objective function in
terms of x_{1} and x_{2}, consider

$$
\begin{aligned}
& 6 x_{1}+4 x_{2}+s_{1}=.9 \times 480=432 \\
& 5 x_{1}+4 x_{2}+s_{2}=.86 \times 480=412.8 \\
& 4 x_{1}+6 x_{2}+s_{3}=.88 \times 480=422.4
\end{aligned}
$$

Thud, $5_{1}+s_{2}+s_{5}=1267.2-15 x_{1}-14 x_{2}$ (a)

Maximize $z=15 x_{1}+14 x_{2}$
set.

$$
\begin{aligned}
& 6 x_{1}+4 x_{2}+5_{1}=432 \\
& 5 x_{1}+4 x_{2}+s_{2}=412.8 \\
& 4 x_{1}+6 x_{2}+s_{3}=422.4 \\
& x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geqslant 0
\end{aligned}
$$

Z represents the total used time in the three stations in minutes.
Solution: $Z=1241.28$ minutes $x_{1}=45.12$ units, $x_{2}=40.32$ units Utilization $=\frac{1241.28}{1267.20} \times 100=97.95 \%$
continued.

9

All three daily minutes fall within' th
allowable ranges. Thus

Station Increase in utilized time/ day
1

$2 \quad 4.8 \times 0=0$
$3 \quad 4.8 \times 1.2=5.76$
(c) $D_{1}=.9(600-480)=108 \mathrm{~min}$
$D_{2}=.86(600-480)=103.2$
$D_{3}=.88(600-480)=105.6$
From the conclitions in (b)
$x_{1}=.3 \times 108-.2 \times 10.5 .6+45.12=56.4$
$s_{2}=-.7 \times 108+103.2-.2 \times 105.6+25 . \%=32.4$
$x_{2}=-.2 \times 108+.3 \times 105.6+40.32=50.4$
Solution' is feasible. Hence dual prices
remain applicable ard the net utilization
is micreased by $1.7 \times 108+0 \times 103.2+1.2 \times 105.6$
$=310.32$ minutes. Because station 2 has zero dual price, its capacity need not be increased. The aroocrated cot thus equals $1.5(600-480)+0+1.5(600-$ $480)=\$ 360$.

The proposal can be improved by recommending that station 2 time remain unchanged.
$X_{1}=$ Nbr. purses/day
$x_{2}=$ Nbr. bags / day
$x_{3}=$ Nbr. backpackes/day
Maximize $z=24 x_{1}+22 x_{2}+45 x_{3}$ SSt.

$$
\begin{aligned}
& 2 x_{1}+x_{2}+3 x_{3} \leq 42 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 40 \\
& x_{1}+5 x_{2}+x_{3} \leq 45 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Solution: $z=\neq 882, x_{1}=0, x_{2}=2, x_{3}=36$ Letting S_{1}, s_{2}, S_{3} be the slacks
constraints $: 2$, and 3 , we get

$$
Z+20 x_{1}+s_{1}+21 S_{2}+0 S_{3}=882
$$

Conditand:
$x_{3}=2+D_{1}-D_{2} \geqslant 0$
$x_{2}=36-2 D_{1}+3 D_{2} \geqslant 0$
$S_{3}=25-.5 D_{2}+D_{3} \geqslant 0$

Resource	Dualprice	Pts Ranges
Leather	1	$(40,60)$
Sewing.	21	$(28,42)$
Finishing	0	$(20, \infty)$

(a) Available leather $=45 \mathrm{ft}^{2}$ falls wide RHS range. Solution remains feraith.
$D_{1}=45-42=3$. New solution:
$x_{1}=0$
$x_{2}=36-2 x_{3}=30$
$x_{3}=2+3=5$
$Z=882+1 \times D_{1}=882+1 \times 3=\$ 885$
(b) Availath leather $=41 \mathrm{ft}^{2}$ falls in the RHS range and the solution remains feasible. $D_{1}=41-42=-1$
$x_{2}=36-(2 x-1)=38$
$x_{3}=2-1=1$
$z=882+(1 x-1)=881$
(c) Sewing hours $=38$ foll withes the Rets
range. $D_{2}=38-40=-2$. Dual price $=21$
$x_{2}=36+3 x-2=30$
$x_{3}=2-(-2)=4$
$z=882+(21 x-2)=\$ 840$

(d) Sewing hours $=46$ hours falls outside the RHS rage. Thus, the current optimum baric solution is inffaiable. To obtain the new solution, eithes solve the problem anew or use the algoittlms in chaptre 4.
(e) Finishing Lours $=15$, which fall o outside the RHIS sarge, Hence, resolve the problem
(f) Sewing hours $=50$, which falls in the RHS range. $D_{3}=50-45=5$. Solution reonaions unchanged because dual price in zero and D_{3} dies not appear in the expression for x_{2} or x_{3}.
(g) Sud price $=\$ 21 / \mathrm{hr}$, which ns. higher than the cost of an ditional wren, pee hour. Hying is recommended.
$x_{1}=N b_{r}$ model / units
$x_{2}=N b r . \operatorname{model} 2$ units

Maximize $z=3 x_{1}+4 x_{2}$
st.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 1200 \\
& 2 x_{1}+x_{2} \leq 1000 \\
& 4 x_{2} \leq 800 \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

Solution: $z=\$ 1750$
$x_{1}=450, x_{2}=100$
(a) $S_{1}=0 \Rightarrow$ Resistors scarce $S_{2}=0 \Rightarrow$ capacitors scarce $S_{3}=400 \Rightarrow$ chips abundant
(b) $Z+\frac{5}{4} S_{1}+\frac{1}{4} S_{2}=1750$

Resource	Dual puce
Resistors	$\$ 1.25 /$ nestor
Capacitors	$\$.25 /$ capacitor
Chips	$\$ 0 /$ chip

(c) Conditions.

$$
\begin{aligned}
& X_{1}=450-\frac{1}{4} D_{1}+\frac{3}{4} D_{2} \geqslant 0 \\
& S_{3}=400-2 D_{1}+2 D_{2}+D_{3} \geqslant 0 \\
& x_{2}=100+\frac{1}{2} D_{1}-\frac{1}{2} D_{2} \geqslant 0
\end{aligned}
$$

Feasibility ranges:

$\left.\begin{array}{c}450-25 D_{1} \geqslant 0 \\ 400-2 D_{1} \geqslant 0\end{array}\right\} \Rightarrow-200 \leqslant D_{1} \leqslant 200$ $\left.\begin{array}{l}450-25 D_{1} \geqslant 0 \\ 400-200+.5 D_{1} \sum_{0}^{2} \\ 100\end{array}\right\} \Rightarrow-200 \leqslant D_{1} \leqslant 200$

Set 3.6c

$$
\left.\begin{array}{l}
450+.75 D_{2} \geq 0 \\
400+2 D_{2} \geq 0 \\
100-.5 D_{2} \geq 0
\end{array}\right\} \Rightarrow-200 \leqslant D_{2} \leq 200
$$

$400+D_{3} \geq 0 \Rightarrow-400 \leqslant D_{3}<\infty$
(d) $D_{1}=1300-1200=100$ in the allowable Range $-200 \leqslant D_{1} \leqslant 200$.

$$
\begin{aligned}
& \Delta z=100 \times 1.25=7125 \\
& x_{1}=450-.25 \times 100=425 \\
& x_{2}=100+.5 \times 100=150 \\
& \text { New } z=1750+\Delta z=\$ 1875
\end{aligned}
$$

(e) $D_{3}=350-800=-450$, which fall outside allowable range $-400 \leqslant D_{3}$. Thus, basicolution and dualipuce change and the problem must be solved anew.
(f) $-200 \leq D_{2} \leq 200$, decalpria $=25$.

There,

$$
\begin{gathered}
-200 \times \cdot 25 \leq \Delta Z \leqslant 200 \times \cdot 5 \\
-50 \leq \Delta Z \leq 50 \\
\$ 1700 \leq Z \leq \$ 1800 \\
450-.75 \times 200 \leq x_{1} \leq 450+.75 \times 200 \\
100-\frac{1}{2}(-200) \leq x_{2} \leq 100-\frac{1}{2}(+200)
\end{gathered}
$$

(g) Coat of punching 500 addition reactors $=500 \times \cdot 40=\$ 200$ $D_{1}=500$ resistors
Dual price of $\$ 1.25$ is raked in $-200 \leq D \leq 200$. Thus, for ot first 200 resistors alone, HIDec will get an additional revenue of $200 \times 1.25=\$ 250$, which is move than the cost of all sou resistors. Accept.
From Example 3.6-2, we have 1 for the TOYCO model

$$
\begin{aligned}
-200 & \leqslant D_{1} \leqslant 10 \\
-20 & \leqslant D_{2} \leqslant 400 \\
-20 & \leqslant D_{3}<\infty
\end{aligned}
$$

(a) $D_{1}=8, D_{2}=40, D_{3}=-10$
$A \| D_{L}, 2=1,2,3$ fall wither the
feambilig ranges. Tho continued...

$$
\begin{aligned}
& \Omega_{1}=\frac{8}{10}, s_{2}=\frac{40}{400}, r_{3}=\frac{-10}{-20} \\
& r_{1}+r_{2}+r_{3}=-8+.1+5=1.4>1
\end{aligned}
$$

Hence, no conclucion can be made about the feasilility of the new RHS $(438,500,410)$. Problem 1(a) show that these new values do produce a Feasible solution.
(b) $D_{1}=30, D_{2}=-20, D_{3}=-40$.

Because. D_{1} and D_{3} fall outside the given feasibility ranges, the 100% rule cannot be applied in this case
(a) From TORA,

$$
\begin{aligned}
& x_{1}=2+\frac{2}{3} D_{1}+\frac{1}{3} D_{2} \geq 0 \\
& x_{2}=2-\frac{1}{3} D_{1}+\frac{2}{3} D_{2} \geq 0
\end{aligned}
$$

Feasibility ranges:

$$
\begin{aligned}
& -3 \leq D_{1} \leq 6 \\
& -3 \leq D_{2} \leq 6
\end{aligned}
$$

(b)

$$
\left.\begin{array}{l}
D_{1}=D_{2}=\Delta>0 . \text { Thus } \\
x_{1}=2+\Delta / 3>0 \\
x_{2}=2+\Delta / 3>0
\end{array}\right\} \text { for all } \Delta>0
$$

100% rule for $0<\Delta \leq 3$:

$$
r_{1}=r_{2}=\frac{\Delta}{6} \leq \frac{3}{6} \Rightarrow r_{1}+r_{2}<1 \text {, which }
$$

confirms fearulility for $0<D<3$
100% rule for $3<\Delta \leqslant 6$:

$$
\begin{aligned}
& r_{1}=r_{2}=\frac{\Delta}{6} \Rightarrow \frac{3}{6}<r_{1}, r_{2} \leqslant \frac{6}{6} \\
& r_{1}+r_{2} \geqslant 1 \Rightarrow \text { cannot conform feasilitg. }
\end{aligned}
$$

100% rule for $\Delta>6$.
Δ is outside $-3 \leqslant D_{1}, D_{2} \leqslant 6$. Thurs, the rule in not applicable.

From Section 3.6.3, we have th
following optimality conditions for
TOYCO model:
$x_{1}: 4-\frac{1}{4} d_{2}+\frac{3}{2} d_{3}-d_{1} \geqslant 0$
$x_{4}: 1+\frac{1}{2} d_{2} \geq 0$
$x_{5}: 2-\frac{1}{4} d_{2}+\frac{1}{2} d_{3} \geqslant 0$
(i) $z=2 x_{1}+x_{2}+4 x_{3}$
$d_{1}=2-3=-1, d_{2}=1-2=-1, d_{3}=4-5=-1$
$x_{1}: 4-\frac{1}{4}(-1)+\frac{3}{2}(-1)-(-1)=3.75>0$
$x_{4}: 1+\frac{1}{2}(-1)=.5>0$
$x_{5}: 2-\frac{1}{4}(-1)+\frac{1}{2}(-1)=1.75>0$
Conclusion: Solution is unchanged
(ii) $z=3 x_{1}+6 x_{2}+x_{3}$

$$
d_{1}=3-3=0, d_{2}=6-2=4, d_{3}=1-5=-4
$$

$x_{1}: 4-\frac{1}{4}(4)+\frac{3}{2}(-4)-(0)=-3<0$
Conclusion: solutes c Ranges
(iii) $z=8 x_{1}+3 x_{2}+9 x_{3}$
$d_{1}=8-3=5, d_{2}=3-2=1, d_{3}=9-5=4$
$x_{1}: 4-\frac{1}{4}(1)+\frac{3}{2}(4)-(5)=4.75>0$
$x_{4}: 1+\frac{1}{2}(1)=1.5>0$
$x_{5}: 2-\frac{1}{4}(1)+\frac{1}{2}(4)=3.75>0$
Exclusion: Solution is unchanged
$x_{1}=$ Nmr cans of $A 1$
$x_{2}=N b r$. cans of A_{2}
$x_{3}=N b_{r}$. cans of $B K$
Maximize $z=80 x_{1}+70 x_{2}+60 x_{3}$
sf. $\begin{aligned} x_{1}+x_{2}+x_{3} & \leqslant 500 \\ x_{1} & \geqslant 100\end{aligned}$
$4 x_{1}-2 x_{2}-2 x_{3} \leqslant 0<S_{3}$ $x_{1}, x_{2}, x_{3} \geq 0$
TORA optimum tableau:

Basic	x_{1}	x_{2}	x_{3}	s_{1}	S_{2}	s_{3}	Solution
z	0	0	0	73.33	0	1.67	36666.67
x_{2}	0	1	1	.67	0	-17	333.33
x_{1}	1	0	0	.33	0	.17	166.67
S_{2}	0	0	0	.33	1	.17	66.67

(a) $z=\$ 366.67$

$$
x_{1}=166.67, x_{2}=333.33, x_{3}=0
$$

(b) Reduced cost If $x_{3}=10$ cents. Puce Should be increased by moue than 10 cents/can
(c) $d_{1}=d_{2}=d_{3}=-5$ cents

From the optimum tableau, reduced coats:
$x_{3}: 10+d_{2}-d_{3}=10-5-(-5)=10>0$
$s_{1}: 73.33+.67 d_{2}+.33 d_{1}$

$$
\begin{aligned}
& =73.33+.67(-5)+.33(-5)=68.33>0
\end{aligned}
$$

$S_{3}: 1.67-.17 d_{2}+.17 d_{1}=1.67-17(-5)+.17(-5)$

$$
=1.67>0
$$

conclusion: Solution is unchanged.
(a) Available carpenter homs on' a

10 -day period $=4 \times 10 \times 8=320$
$x_{1}=$ Nb. chains assembled in lodap
$x_{2}=$ Nbr. tables assembled in 10 days
Maximize $z=50 x_{1}+135 x_{2}$ 5.t.

$$
\begin{aligned}
& 5 x_{1}+2 x_{2} \leqslant 320 \\
& 4 \leqslant \frac{x_{1}}{x_{2}} \leqslant 6 \Rightarrow\left\{\begin{array}{l}
x_{1}-4 x_{2} \geqslant 0 \\
x_{1}-6 x_{2} \leqslant 0
\end{array}\right. \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

Solution: $z=\$ 27,840, x_{1}=384, x_{2}=64$
(b) Optimum tableau:

	x_{1}	x_{2}	s_{1}	S_{2}	s_{3}	solution
Z	0	0	87	0	6.5	27840
x_{2}	0	1	.2	0	-.1	64
x_{1}	1	0	1.2	0	.4	384
s_{2}	0	0	.4	1	.8	128

Optimality conditions:
$s_{1}: 87+1.2 d_{1}+.2 d_{2} \geqslant 0$
$s_{3}: 6.5+.4 d_{1}-.1 d_{2} \geq 0$
For $d_{1}=-5, d_{2}=-13.5$:
$S_{1}: 87+1.2(-5)+.2(-13.5)=78.3>0$
$s_{3}: 6.5+.4(-5)-.1(-13.5)=5.85>0$
Solution remain the same
(c) $d_{1}=25-50=-25, d_{2}=120-135=-15$

S: $: 87+1.2(-25)+.2(-15)=58.5>0$
$s_{3}: 6.5+.4(-25)-1(-15)=-2<0$
solutes changes

Set 3.6d

(a) $x_{1}=A_{m t}$ of personal loan ($($)
$x_{2}=$ Art. of car loan ($\$$)
Maximize $z=.14\left(x_{1}-.03 x_{1}\right)+.12\left(x_{2}-.02 x_{2}\right)$

$$
\begin{gathered}
-.03 x_{1}-.02 x_{2} \\
=.1058 x_{1}+.0976 x_{2}
\end{gathered}
$$

$$
x_{1}+x_{2} \leq 200,000
$$

$$
\frac{x_{2}}{x_{1}} \geqslant 2 \text { or } 2 x_{1}-x_{2} \leqslant 0
$$

$$
x_{1}, x_{2} \geqslant 0
$$

Solution: $z=\$ 20,067$

$$
x_{1}=\$ 66,667, x_{2}={ }^{7 / 33,333}
$$

Rate of return $=\frac{20,067}{200,000} \times 100=10.03 \%$
(b) Optimum tableau:

	x_{1}	x_{2}	s_{1}	s_{2}	Solution
z_{2}	0	0	.1003	.0027	20066.67
x_{2}	0	1	.6667	-.3333	133333.33
x_{1}	1	0	.3333	.3333	66656.67

Optimality conditions:
$S_{1}: .1003+.333 d_{1}+.6667 d_{2} \geqslant 0$
$S_{2}: .0027+.3333 d_{1}-03333 d_{2} \geqslant 0$
New x_{1}-adjective coefficient $=.14(1-.04)-.04$
New x_{2}-objective coefficient $=.0944$
New x_{2}-objective coefficient $=.12(1-.03) \cdots .03$

$$
=.0864
$$

$d_{1}=.0944-.1058=-.0114$
$d_{2}=.0864-.0976=-.0112$
$s_{1}: .1003+.3333(-.0114)+.6667(-.0112)$

$$
=.08907>0
$$

$s_{2}: .0027+.3333(-.0114)-.3333(-.0112)$

$$
=.00267>0
$$

Soluteri does not change

(a) $x_{i}=$ Nb of units of motor $i, i=1,2,3,4$

Maximize $z=60 x_{1}+40 x_{2}+25 x_{3}+30 x_{4}$
Sot.
$8 x_{1}+5 x_{2}+4 x_{3}+6 x_{4} \leq 8000$
$x_{1} \leqslant 500, x_{2} \leqslant 500, x_{3} \leqslant 800, x_{y} \leqslant 750$ $x_{1}, x_{2}, x_{3}, x_{4} \geqslant 0$
Solution: $z=\begin{aligned} & \$_{5} \\ & x_{4}=0\end{aligned}, 375, x_{1}=500, x_{2}=500, x_{3}=375$

4 (b) optimality conditions (from TORA):
$x_{4}: 7.5+1.5 d_{3}-d_{4} \geqslant 0$
$S_{1}: 6.25+.25 d_{3} \geqslant 0$
$S_{2}: 10-2 d_{3}+d_{1} \geqslant 0$
$s_{3}: 8.75-1.25 d_{3}+d_{2} \geqslant 0$
From $s_{3}, 8.75+d_{2} \geqslant 0 \Rightarrow-8.75 \leqslant d_{2}<\infty$
Thus, price of type 2 motor can be
reduced by of most $\$ 8.75$ inthout
causing a solutori change.
(c) $d_{1}=-15, d_{2}=-10, d_{3}=-6.25, d_{4}=-7.5$

Solution remains the same because
$x_{4}: 7.5+1.5(-6.25)-(-7.5)=5.625>0$
$S_{1}: 6.25+.25(-6.25)=4.6875>0$
$S_{2}: 10-2(-6.25)+(-15)=7.5>0$
$S_{3}: 8.75-1.25(-6.25)+(-10)=6.5625>0$
(d) Reduced coot for $x_{y}=7.5$. Increases price 7 tape 4 motor by move than $\$ 7.50$.
(a) $x_{1}=$ cases of juice/ day
$x_{2}=$ cases of sauce $/$ day
$x_{3}=$ cases of paste/day
Maximize $z=21 x_{1}+9 x_{2}+12 x_{3}$
Sot.
$(1 \times 24) x_{1}+\left(\frac{1}{2} \times 24\right) x_{2}+\left(\frac{3}{4} \times 24\right) x_{3} \leqslant 60,000$
$x_{1} \leqslant 2000, x_{2} \leqslant 5000, x_{3} \leqslant 6000$
$x_{1}, x_{2}, x_{3} \geq 0$
Solution: $z=\$ 51,000$

$$
x_{1}=2000, x_{2}=1000, x_{3}=0
$$

(b) From TORA, optimally conditions given d_{2} :
$x_{3}: 1.5+1.5 d_{2} \geq 0 \Rightarrow d_{2} \geq-1$
$s_{1}: .75+.083 d_{2} \geqslant 0 \Rightarrow d_{2} \geqslant-9$ $s_{2}: 3-2 d_{2} \geqslant 0 \Rightarrow d_{2} \leqslant 1.5$
Thus, $-1 \leq d_{2} \leq 1.5$, on $9-1 \leq$ price/case of sauce $\leq 9+1.5$
Solution mix remains it parve if oh
puce per case of sauce remains
beluvers $\$ 8$ and $\$ 10.50$.
3-30
(a) x, $=$ Nb. regular cabinets/day
$x_{2}=$ Nb. deluxe cabinets $/$ day
Maximize $z=100 x_{1}+140 x_{2}$
$5+$

$$
\begin{aligned}
& 5 x_{1}+x_{2} \leq 180 \\
& x_{1} \leq 200 \\
& x_{2} \leq 150 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution: $z=\$ 31,200$

$$
\begin{aligned}
& \bar{x}_{1}=200 \text { regular } \\
& x_{2}=80 \text { deluxe }
\end{aligned}
$$

(b) From TARA, optimality conditions:

$$
\begin{aligned}
& s_{1}: 140+d_{2} \geqslant 0 \\
& s_{2}: 30+d_{1}-15 d_{2} \geqslant 0 \\
& d_{1}=80-100=-20 \\
& d_{2}=80-140=-60 \\
& s_{1}: 140+(-60)=80>0 \\
& s_{2}: 30+(-20)-.5(-60)=40>0
\end{aligned}
$$

Solution cematris the sarre
(a) For the anginal TOYCO model,

TORA given (also re e section 3.6.3)

$$
-\infty<d_{1} \leqslant 4,-2 \leqslant d_{2} \leqslant 8,-8 / 3 \leqslant d_{3}<\infty
$$

(ii) Orig incl $z=3 x_{1}+2 x_{2}+5 x_{3}$

New $z=3 x_{1}+6 x_{2}+x_{3}$

i	d_{i}	μ_{i}	r_{i}	r_{i}
1	0	\ddots	4	$0 / 4=0$
2	4		8	$4 / 8=1 / 2$
3	-4	$-8 / 3$		$-4 /-\frac{8}{3}=3 / 2$
r	$r_{1}+r_{2}+r_{3}=0+1 / 2+3 / 2=2>1$			

The 100% rule in nonconcluevie in. this case. The solution in Problem / (ii) shows that the solution will change
(iii) Original $\begin{aligned} z & =3 x_{1}+2 x_{2}+5 x_{3} \\ \text { New } z & =8 x_{1}+3 x_{2}+9 x_{3}\end{aligned}$

Nous i				$=8 x_{1}+3 x_{2}+9 x_{3}$
i	d_{i}	u_{i}	v_{i}	r_{i}
1	5	4	$5 / 4$	
2	1	8	$1 / 8$	
3	4	∞	$4 / \infty=0$	

$$
r_{1}+r_{2}+r_{3}=\frac{5}{4}+\frac{1}{8}=\frac{11}{8}>1 \quad \text { continued. }
$$

The 100% rule is nonconclusive. Yet Problem I (iii) shows that the solution semauris unchanged.
The wo cases demonstrate that the 100% rule is to weak to be effective in decision making, and that it is snore reliable to arthize the simutioneous optimality conditions given in section 3.6.3.
(b) $-30 \leqslant d_{1}<\infty,-140 \leqslant d_{2} \leqslant 60$

New $z=80 x_{1}+80 x_{2}$
Original $z=100 x_{1}+140 x_{2}$

i
1

The 100% rule is nonconcluswe. Yet, Problem 7(6) shows that the Solution remain unchanged.

Set 3.6e

See file solver $3.6 e-1 . \times 15$ in ch3Files Dual prices for years $1,2,3$, and 4 are 0, 0, 0,2.89. Thus, for year 4, one (thousand) additional dollars nicreaces z by $\$ 2.89$ thousand. If is worthwhile to increase the funding on year 4.
See file tor 3.6e-2. +xt
Constraint Dual price Range 2

1	5.36	$(0, \infty)$
2	-3.73	$(-\infty, 6000)$
3	-1.13	$(-\infty, 6800)$
4	-1.07	$(-\infty, 33642)$
5	-1.00	$(-\infty, 53628.73)$

(a) Constraint 1: $x_{1}+x_{2}+x_{4}+y_{1} \leq 10,000$ Deal price $\$ 5.36 /$ mivested $\$$ Rate of return $=536 \%$
(b) Constraint 2: $\ddagger 1000$ spendon pleasure
$.5 x_{1}+.6 x_{2}-x_{3}+.4 x_{4}+1.065 y_{1}-y_{2}=1000$
Dual price $=-3.73 /$ pleasure $\$$
Range $=(-\infty, 6000)$
spending $\$ 1000$ at end 8 year 1
seduces total return by $\$ 3730$.
See file fora 3.6e-3. tat in ch3Files

Quarter	Dual price	Range
1	1.2488	$-6647,2.5806$
2	1.2443	$-6580,2.6122$
3	1.1945	$-.2646,1.1245$
4	1.0200	$-.2553,00$
5	1.0000	$-4.8366, \infty$

(a) An additional $\$$ available of the stat of quarter/ is worth $\$ 1.24888$ of th end of 4 quarters. Similarly, an additional dollar at the stout of periods 2,3, and 4 is wot $\$ 1.2443, \$ 1.1945$, ane $\$ 1.02$, respectively. The dual prince for quarter. 4 $(=\$ 1.02)$ shows that all we can do with the money then is to invent it at 2% on the quarter.

We can wee th dual price to determine

The rete of return dor each quartan - namely, quanta 1 :
$1.2488=1.2243(1+i) \Longrightarrow i_{i}=.02$
mater 2 quarter:
$1.2243=1.1945\left(1+i_{2}\right) \Rightarrow i_{2}=.025$ quarter 3 :
$1.1945=1.02(1+i) \Rightarrow i_{3}=-171$ quarter 4:

$$
1.02=1.0\left(1+i_{4}\right) \quad \Rightarrow \quad i_{4}=.02
$$

(b) the dual price werocialed with the expper bound on $B_{3}(U B-X 10)$ is \$. 149. It repoceents the neturnth pen dollar borrowed in pereid 3. also, an extra dollar mi pereid 3 is worth $\$ 1.1945$ at the end of the horizon. Howenn, if that dollar is borrowed, it must be repaid as $\$ 1.025 \mathrm{ks}$. the next quarter.
The repayment is equivalent t forgoing making 2% in interest. Thus, the netwoith of borrowing in pecked 3 ∞

$$
1.1945-1.025 \times 1.02=.149
$$

This sevcet is concirtent with th. duel price for the upper toundon B_{3}

The dual price phonies the worth yer additional $\$$ at the end of year 10 .
Annual into return:
Period $1: 2.1756=2.0173\left(1+i_{i}\right) \Rightarrow i=.0785$
Perionl2: $2.0173=1.8647\left(1+i_{i}\right) \Rightarrow i_{2}=.0818$
Period 3: $1.8647=1.7296\left(1+i_{3}\right) \Rightarrow i_{3}=.0781$
Period 4: $1.7296=1.6044\left(1+i_{4}\right) \Rightarrow i_{4}=.0780$
etc...

See file tora3.6e-5.txtin chafiles The dual price for constraint 1

$$
x_{1 A}+x_{1 B} \leqslant 100,000
$$

is $\$ 5.10$. Thus, each mivested $\$$ is worth $\$ 5.10$ at the end sf the enivestrment houzion. Range $(0, \infty)$
Dual price for the constraint

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 500
$$

is $\$ 2.35 \mathrm{pen} \$$ invited, range $(0, \infty)$ The gambles should bet the largest amount possible.

See file tora3.6e-7. $f x t$ in ch3Files 7 For, $x_{\omega 1}+x_{\omega_{2}}+x_{\omega 3} \geqslant 1500$, the dual price is $\$ 11.4$, range $(800, \infty)$

One extra wrench automatically requires the production of two chisels, then leading ts the following changes: Cost Pone wrench using aubcont. $=\$ 3.00$ coot of 2 chisels using sub cont. $=2 x \neq 4.20$ total $=\$ 11.40$ $x_{w_{1}} \leq 550$, dual price $=-\$ 1$, range $(-\infty, 1250)$. Af regular time capacity for wrenches is increased by 1 unit, one less wrench will be produced by subentractor, which saves $\$ 3-\$ 2=\$ 1$. Similar interpretations can be given for th remaining dual prices
See file tora3.6e-8.txt in ch3Files
Machine Capacity Dunlprice Range

	500	2	$(253.33,570)$
1	380	12	$(333.33,750)$

The companystould pay less than $\$ 2 / 1 \mathrm{r}$ for machine 1 and lees than $\$ 12 /$ he for machine 2 .

See file for $3.6 e-9 .+x+$ in ch3Files
(a) Constraint $2 x_{1}+3 x_{2}+5 x_{3} \leqslant 4000$ corresponds to saw material A. Its dual price in $\$ 10.27 /$ ib. For a purchere price of $\$ 12 / 16$, acquisition of additional saw material A is rot recommended.
(b) Constraint $4 x_{1}+2 x_{2}+7 x_{3} \leqslant 6000$ is associated with raw material B. 25 dual price is $\$ 0 / 16$. Resource B is already abundant Thus, no additional purchase is recommended.
(a) See file tora3.6e-10.txt

Constraint	Dual price
1	0
2	0
3	-400
4	-750
5	0
6	0
7	0

Constraints 3 and 4 have negative dual felice. These correspond respectively to He thin specification gr ally A and O first specification fr alloy B. Changes in these specifications affects profit adversely
(b) For the ore constraints, the dual prias are $\$ 90, \$ 110$, and $\$ 30$ per additional ton of ores 1,2 , and 3 , respectively. These are the maximum puce the company should pay.

CHAPTER 4

Duality and Post-Optimal Analysis

Primal:
Minimize $z=5 x_{1}+12 x_{2}+4 x_{3}$
subject to

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3}+5 & =10 \\
2 x_{1}-x_{2}+3 x_{3} & =8 \\
x_{1}, x_{2}, x_{3}, s_{1} \geq 0 &
\end{aligned}
$$

Dual:
Maximize $w=10 y_{1}+8 y_{2}$
subject to

$$
\begin{aligned}
& y_{1}+2 y_{2} \leq 5 \\
& 2 y_{1}-y_{2} \leq 12 \\
& y_{1}+3 y_{2} \leq 4 \\
& y_{1} \leq 0 \\
& y_{2} \text { uncrestrictel }
\end{aligned}
$$

Primal:
Minimize $z=15 x_{1}+12 x_{2}$
subject t

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =3 \\
2 x_{1}-4 x_{2}+x_{y} & =5 \\
3 x_{1}+x_{2} & =4 \\
x_{1}, x_{2}, x_{3}, x_{y} \geqslant 0 &
\end{aligned}
$$

Dual:
maximize $z=3 y_{1}+5 y_{2}+4 y_{3}$
subject A

$$
\begin{gathered}
y_{1}+2 y_{2}+3 y_{3} \leq 15 \\
2 y_{1}-4 y_{2}+y_{3} \leq 12 \\
-y_{1} y_{2} \leq y_{1} \geq 0 \\
y_{3} \text { unreatricted }
\end{gathered}
$$

Premal:
Minimize
Suljeits

$$
\begin{aligned}
z=5 x_{1}^{+}-5 x_{1}^{-}+6 x_{2} & =5 \\
x_{1}^{+}-x_{1}^{-}+2 x_{2} & =5 \\
-x_{1}^{+}+x_{1}^{-}+5 x_{2}-x_{3} & =3 \\
4 x_{1}^{+}-4 x_{1}^{-}+7 x_{2}+x_{y} & =8
\end{aligned}
$$

Qual:
maximize $z=5 y_{1}+3 y_{2}+8 y_{3}$
satjiot 5

$$
\begin{aligned}
y_{1}-y_{2}+4 y_{3} & \leq 5 \\
-y_{1}+y_{2}-4 y_{3} & \leq-5 \\
2 y_{1}+5 y_{2}+7 y_{3} & \leq 6 \\
-y_{2} & \leq 0 \\
y_{3} & \leq 0
\end{aligned}
$$

y, unsestricted
(a) Purnal:

Maximize $z=-5 x_{1}+2 x_{2}$
s.t.

$$
\begin{gathered}
x_{1}-x_{2}-x_{3}=2 \\
2 x_{1}+3 x_{2}+x_{y}=5 \\
x_{1}, x_{2}, x_{3}, x_{y} \geqslant 0
\end{gathered}
$$

Sual:
Minimize $\omega=2 y_{1}+5 y_{2}$
subjech to

$$
\begin{aligned}
y_{1}+2 y_{2} & \geq-5 \\
-y_{1}+3 y_{2} & \geq 2 \\
-y_{1} \quad y_{2} & \geq 0
\end{aligned}
$$

(b) Pusial:

$$
\text { minimize } z=6 x_{1}+3 x_{2}
$$

subject to

$$
\begin{aligned}
& 6 x_{1}-3 x_{2}+x_{3}-x_{4}=2 \\
& 3 x_{1}+4 x_{2}+x_{3}-x_{5}=5 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geqslant 0
\end{aligned}
$$

Oual:
Maximize $w=2 y_{1}+5 y_{2}$ subfect to

$$
\left.\begin{array}{rl}
6 y_{1}+3 y_{2} & \leq 6 \\
-3 y_{1}+4 y_{2} & \leq 3 \\
y_{1}+y_{2} & \leq 0 \\
-y_{1} & \leq 0 \\
-y_{2} & \leq 0
\end{array}\right\} \Rightarrow y_{1}, y_{2} \geq 0
$$

(c) Premal:

Maximize $z=x_{1}+x_{2}$
subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}=5 \\
& 3 x_{1}-x_{2}=6 \\
& x_{1}, x_{2} \text { unsesticted }
\end{aligned}
$$

Dual:
misimize $w=5 y_{1}+6 y_{2}$ sulyect to

$$
\begin{aligned}
2 y_{1}+3 y_{2} & =1 \\
y_{1}-y_{2} & =1
\end{aligned}
$$

y_{1}, y_{2} unsestricted

Prumal:
Maximize $Z=5 x_{1}+12 x_{2}+4 x_{3}-M R_{2}$

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}+S_{1}=10 \\
& 2 x_{1}-x_{2}+3 x_{3}+R_{2}=8 \\
& x_{1}, x_{2}, x_{3}, S_{1}, R_{2} \geqslant 0
\end{aligned}
$$

Dual
Minimize $\omega=10 y_{1}+8 y_{2}$
Subject to

$$
\left.\begin{array}{rl}
y_{1}+2 y_{2} & \geqslant 5 \\
2 y_{1}-y_{2} & \geqslant 12 \\
y_{1}+3 y_{2} & \geqslant 4 \\
y_{1} \quad y_{2} & \geqslant 0 \\
y_{2} \text { unsenticted }
\end{array}\right\} \text { same }
$$

All parts, (a) Hrough (e), are tiue
(1) $\max +(\geqslant$ constraints):

$$
\left.\sum a_{i j} x_{j},-S_{i}\right]=b_{i} \Rightarrow-y_{i} \geqslant 0 \Rightarrow y_{i} \leqslant 0
$$

(2) $\min +(\geqslant$ constraints):

$$
\sum a_{i j} x_{j}-S_{i}=b_{i} \Rightarrow-y_{i} \leqslant 0 \Rightarrow y_{i} \geqslant 0
$$

(3) max + (\leqslant constraints):

$$
\sum a_{i j} x_{j}+s_{i}=b_{i} \Rightarrow y_{i} \geq 0
$$

(4) min + (\leq conotiainti) :

$$
\sum a_{i j} x_{j}+s_{i}=b_{i} \Rightarrow y_{i} \leq 0
$$

(s) max or min + ($=$ consthaint) $\sum a_{i j} x_{j}=b_{i} \Rightarrow y_{i}$ unsestricted
(6) $\max +\left(x_{j} \geq 0\right):$

$$
\left[\begin{array}{l}
c_{j} \cdot x_{j} \\
a_{i j x_{j}}
\end{array}\right] \Rightarrow \sum_{i=1}^{m} a_{i j} y_{i} \geqslant c_{j}
$$

(7) $\max +\left(x_{j} \leq 0\right):$

Let $x_{j}=-x_{j}^{\prime}, x_{j}^{\prime} \geqslant 0$

$$
\begin{aligned}
{\left[\begin{array}{l}
-c_{j} x_{j}^{\prime} \\
-a_{i j} x_{j}^{\prime}
\end{array}\right] } & \Rightarrow-\sum_{i=1}^{m} a_{i j} y_{i} \geq-c_{j} \\
& \Rightarrow \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}
\end{aligned}
$$

(8) mesi $+\left(x_{j} \geq 0\right)$:

$$
\left[\begin{array}{r}
c_{j} \cdot x_{j} \\
a_{i j} \cdot x_{j}
\end{array}\right] \Rightarrow \sum_{i=1}^{m} a_{i j} y_{i} \leqslant c_{j}
$$

(9) max $+\left(x_{j} \leq 0\right)$:

Let $x_{j}=-x_{j}^{\prime}, \quad x_{j}^{\prime} \geqslant 0$

$$
\left.\begin{array}{rl}
-c_{i} \cdot x_{j}^{\prime} \\
-a_{i j} x_{j}^{\prime}
\end{array}\right] \Rightarrow-\sum_{i=1}^{m} a_{i j} y_{i} \leq-c_{j} .
$$

(10) max or mini + (x_{j} unresticted)

$$
\left.\begin{array}{r}
c_{j} x_{j} \\
a_{i j} x_{j}
\end{array}\right] \Rightarrow \sum_{i=1}^{m} a_{i j} y_{i}=c_{j}
$$

(a) $A_{3 \times \underline{2}} V_{\underline{1} \underline{1}_{2}}$ undefuned
(b) $\underset{3 \times 2}{A P 1}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)\binom{1}{2}=\left(\begin{array}{c}9 \\ 12 \\ 15\end{array}\right)_{3 \times 1}$
(c) $A_{3 \times 2} P 2_{3 \times 1}$ undefened
(d) $V_{1 \times \underline{2}} A_{\underline{3 \times 2}}$ undefened
(e) $V_{1 \times 3}^{2} A_{3 \times 2}=(-1,-2,-3)\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$

$$
=(-14,-32)_{1 \times 2}
$$

(f) $P 1_{2 \times 1} P \sum_{3 \times 1}$ undefiried
(g) $V_{1 \times 2} P 1_{2 \times 1}=(11,22)\binom{1}{2}$

$$
=55_{|x|}
$$

$$
\text { inverse }=\left(\begin{array}{cccc}
1 / 4 & -1 / 2 & 0 & 0 \\
-1 / 8 & 3 / 4 & 0 & 0 \\
3 / 8 & -5 / 4 & 1 & 0 \\
1 / 8 & -3 / 4 & 0 & 1
\end{array}\right)
$$

(b) $\left(\begin{array}{cccc}1 / 4 & -1 / 2 & 0 & 0 \\ -1 / 8 & 3 / 4 & 0 & 0 \\ 3 / 8 & -5 / 4 & 1 & 0 \\ 1 / 8 & -3 / 4 & 0 & 1\end{array}\right)\left(\begin{array}{l}24 \\ 6 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}3 \\ 3 / 2 \\ 5 / 2 \\ 1 / 2\end{array}\right)$

$$
\begin{aligned}
& \text { inverse }=\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
-4 / 3 & 1 & 0 \\
-1 / 3 & 0 & 1
\end{array}\right) \\
& \text { (b) }\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
-4 / 3 & 1 & 0 \\
-1 / 3 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
6 \\
3
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\end{aligned}
$$

Set 4.2c

Dual : Maximize $\quad \omega=50 y$
St.

$$
5 y \leq 10,-7 y \leq 4,3 y \leq 5, y \geq 0
$$

The constraints simplify to

$$
0 \leq y_{1} \leq 5 / 3
$$

Thus, $\max \omega=50 \times \frac{5}{3}=\frac{250}{3}=\min z$
Dual:
Maximize $w=50 y_{1}+20 y_{2}+30 y_{3}+35 y_{4}+10 y_{5}+90 y_{6}+20 y_{7} \longrightarrow$
st.

$$
\begin{aligned}
& 5 y_{1}+y_{2}+7 y_{3}+5 y_{4}+2 y_{5}+12 y_{6} \leq 5 \\
& 5 y_{1}+y_{2}+6 y_{3}+5 y_{4}+4 y_{5}+10 y_{6}+y_{7} \leq 6 \\
& 3 y_{1}-y_{2}-9 y_{3}+5 y_{4}-15 y_{5} \quad-10 y_{7} \leq 3 \\
& -y_{j} \leq 0 \Rightarrow y_{j} \geq 0, j=1,2, \ldots, 7
\end{aligned}
$$

From TORA, Optimal objective equation is

$$
\begin{aligned}
z+50 y_{1}+0 y_{2}+90 y_{3} & +65 y_{4}+70 y_{5}+10 y_{6}+0 y_{7} \\
& +0 S_{1}+20 S_{2}+0 S_{3}=120
\end{aligned}
$$

$\left(S_{1}, S_{2}, S_{3}\right)$ are stacte variables.
Thee, $x_{1}=0, x_{2}=20, x_{3}=0$
Obtaining the solution from the dual is advantgeom computationally because th dual has a monallen number of conatrounts.
Dual: Minimize $w=30 y_{1}+40 y$
st.

$$
\begin{aligned}
& y_{1}+y_{2} \geqslant 5 \\
& 5 y_{1}-5 y_{2} \geqslant 2 \\
& 2 y_{1}-6 y_{2} \geqslant 3 \\
& y_{2} \geqslant 0, y_{1} \text { unreotricted }
\end{aligned}
$$

mother 1: $z+0 x_{1}+23 x_{2}+7 x_{3}+105 x_{4}+0 x_{5}=150$
coefficient of $x_{4}=105 \Rightarrow y_{1}=105+(-100)=5$ Coefficient of $x_{5}=0 \Rightarrow y_{2}=0$
Method 2:

$$
\begin{aligned}
\left(y_{1}, y_{2}\right) & =(5,0)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \\
& =(5,0) \\
w & =30 \times 5+40 \times 0=150
\end{aligned}
$$

Dual: Maximize $w=3 y+6 y_{2}+4 y_{3}$
st.

$$
\begin{aligned}
3 y_{1}+4 y_{2}+y_{3} & \leq 4 \\
y_{1}+3 y_{2}+2 y_{3} & \leq 1 \\
-y_{2} & \leq 0 \Rightarrow y_{2} \geq 0 \\
y_{3} & \leq 0
\end{aligned}
$$

V_{1} unrestricted
method 1: $Z-98.6 x_{4}-100 x_{5}-.2 x_{6}=3.4$
Coefficient of $x_{4}=-98.6 \Rightarrow y_{1}=-98.6+100=1.4$
coefficient of $x_{5}=-100 \Rightarrow y_{2}=-100+100=0$
coefficient of $x_{6}=-.2 \Rightarrow y_{3}=-.2$

$$
\begin{aligned}
& \text { methen2: }_{\left(y_{1}, y_{2}, y_{3}\right)}=(4,1.0)\left(\begin{array}{ccc}
.4 & 0 & -.2 \\
-2 & 0 & .6 \\
1 & -1 & 1
\end{array}\right) \\
&=(1.4,0,-.2) \\
& w=3 \times 1.4+6 \times 0+4 \times-.2=3.4
\end{aligned}
$$

Dual: Minimize $w=4 y+8 y_{2}$
Sf.

$$
\begin{aligned}
y_{1}+y_{2} & \geqslant 2 \\
y_{1}+4 y_{2} & \geqslant 4 \\
y_{1} & \geqslant 4 \\
y_{2} & \geq-3
\end{aligned}
$$

metherd1: $Z+2 x_{1}+0 x_{2}+0 x_{3}+3 x_{4}=16$
coefficient $f x_{3}=0 \Rightarrow y_{1}=0+4=4$
coefficient of $x_{4}=3 \Rightarrow y_{2}=3+(-3)=0$
Method 2 :

$$
\begin{aligned}
& \left(x_{1}, y_{2}\right)=(4,4)\left(\begin{array}{lr}
1 & -.25 \\
0 & .25
\end{array}\right)=(4,0) \\
& \omega=4 \times 4+8 \times 0=16
\end{aligned}
$$

Dual: Minimize $\omega=3 y_{1}+4 y_{2}$
st.

$$
\begin{aligned}
& y_{1}+2 y_{2} \geqslant 1 \\
& 2 y_{1}-y_{2} \geqslant 5 \\
& y_{1} \geqslant 3, y_{2} \text { unseafincted }
\end{aligned}
$$

method: $z+2 x_{2}+0 x_{3}+99 x_{4}=5$
coefficient of $x_{3} \neq 0 \Rightarrow y_{1}=0+3=3$
Coefficient of $x_{3} \neq 0 \Rightarrow y_{2}=99+(-100)=-1$
coefficient of $x_{4}=99 \Rightarrow y_{2}=1$
melted 2:

$$
\begin{aligned}
& \left(y_{1}, y_{2}\right)=(3,1)\left(\begin{array}{cc}
1 & -.5 \\
0 & .5
\end{array}\right)=(3,-1) \\
& w=3 \times 3+4(-1)=5
\end{aligned}
$$

Set 4.2c

Maximize $z=x_{1}+x_{2}$
S.t.

$$
\begin{aligned}
& -3 x_{1}+3 x_{2} \leq 12 \\
& -3 x_{1}+2 x_{2} \leq-4 \\
& 3 x_{1}-5 x_{2} \leq 2 \\
& x_{1} \text { urresticted, } x_{2} \geqslant 0
\end{aligned}
$$

TORA solution:
$x_{1}=3.4737, x_{2}=1.6842, z=5.1579$
Dual: misimize $w=12 y-4 y_{2}+2 y_{3}$
s.t.

$$
\begin{aligned}
& y_{1}-3 y_{2}+3 y_{3}=1 \\
& 3 y_{1}+2 y_{2}-5 y_{3} \geq 1 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

FzomTORA, th optimal objective row is $w-3.0526 y_{2}-1.684 y_{4}-96.5263 y_{5}-98.3158 y_{6}$
(d_{5} and y_{6} are artificial variables) $=5.1579$
couffirient of $\begin{aligned} y_{5}=-96.5263 \Rightarrow x_{1} & =-96.5263+100 \\ & =3.4737\end{aligned}$
Coefficient of $y_{6}=-98.3158 \Rightarrow x_{2}=-98.3158+100$
(a)
$\frac{\text { Pimial }}{\text { main } z}=5 x_{1}+2 x_{2}$
s.t.

$$
\begin{gathered}
x_{1}-x_{2} \geqslant 3 \\
2 x_{1}+3 x_{2} \geqslant 5 \\
x_{1}, x_{2} \geqslant 0
\end{gathered}
$$

Feacible orlutions:

$\frac{\text { Dual }}{\max } w=3 y_{1}+5$	
s.t.	
$y_{1}+2 y_{2}$	≤ 5
$-y_{1}+3 y_{2}$	≤ 2
$y_{1} \quad y_{2}$	$\geqslant 0$

$$
x_{1}=3, x_{2}=0, z=15
$$

$$
y_{1}=3, y_{2}=1, w=14
$$

$$
\text { Range: } \quad 14 \leq \text { Optimum value } \leq 15
$$

(b)

$$
\begin{aligned}
& \max z=x_{1}+5 x_{2}+3 x_{3} \\
& \text { s.f. } x_{1}+2 x_{2}+x_{3}=3 \\
& 2 x_{1}-x_{2}=4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

$$
\operatorname{mis} w=3 y_{1}+4 y_{2}
$$

s.t.

$$
y_{1}+2 y_{2} \geq 1
$$

$$
\begin{aligned}
2 y_{1}^{\prime}-y_{2} & \geq 5 \\
y_{1}^{\prime} & \geq 3
\end{aligned}
$$

$$
\begin{aligned}
& y_{1} \stackrel{\geq 3}{\geq} \\
& y_{2} \text { uncestictel }
\end{aligned}
$$

Fracible solutions:

$$
\begin{array}{ll}
x_{1}=2, x_{2}=0, x_{3}=1 & y_{1}=3, y_{2}=0, \\
2=5 & w=9
\end{array}
$$

Range.
$5 \leq$ optimum value ≤ 9

(c)
$\max z=2 x_{1}+x_{2}$ meni $w=10 y_{1}+40 y_{2}$
s.t.

$$
\begin{aligned}
x_{1}-x_{2} & \leq 10 \\
2 x_{1} & \leq 40 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$ s.t.

$$
\begin{aligned}
y_{1}+2 y_{2} & \geqslant 2 \\
-y_{1} & \geqslant 1 \\
y_{1} \quad y_{2} & \geqslant 0
\end{aligned}
$$

Feaidble dobutem.

$$
\begin{array}{ll}
x_{1}=20, x_{2}=20 & \text { No fereible } \\
Z=60 & \text { solution }
\end{array}
$$

Prival is unbounded because Th pminal isferwitle and the dual tha no fenitle solution. (d)
$\max z=3 x_{1}+2 x_{2}$
s.t.

$$
\begin{array}{cl}
2 x_{1}+x_{2} \leq 3 & 2 y_{1}+3 y_{2} \geq 3 \\
3 x_{1}+4 x_{2} \leq 12 & y_{1}+4 y_{2} \geq 2 \\
x_{1}, x_{2} \geq 0 & y_{1} y_{2} \geq 0
\end{array}
$$

man $a^{\prime}=3 y_{1}+12 y_{2}$
S.t.

Fearikle solutions:

$$
\begin{array}{ll}
x_{1}=x_{2}=1 & y_{1}=2, y_{2}=0 \\
2=5 & \omega=6
\end{array}
$$

Rasge: $\quad 5 \leq$ optirium value ≤ 6
$\min z=5 x_{1}+2 x_{2}$
s.t.
s.t.

$$
\begin{array}{rr}
x_{1}-x_{2} \geqslant 3 & y_{1}+2 y_{2} \leq 5 \\
2 x_{1}+3 x_{2} \geqslant 5 & -y_{1}+3 y_{2} \leq 2 \\
x_{1}, x_{2} \geqslant 0 & y_{1}, y_{2} \geqslant 0
\end{array}
$$

(a) $\left(x_{1}=3, x_{2}=1 ; y_{1}=4, y_{2}=1\right)$:

Both premal and dual are infereible
(b) $\left(x_{1}=4, x_{2}=1 ; y_{1}=1, y_{2}=0\right)$:

Pumal fencible, $z=22$ Dual fearible, $w=3$
sence $z \neq w$, folutensaie
not opterial.
(c) $\left(x_{1}=3, x_{2}=0 ; y_{1}=5, y_{2}=0\right)$: Prisial feasifle, $z=15$ Dual fearible, $\omega=15$
fince $Z=W$, solutoris are optimal

Set 4.2d

Ateration 1: x_{5} artificial, $M=100$
Inverse $=\left(\begin{array}{cc}1 & -1 / 3 \\ 0 & 1 / 3\end{array}\right), C_{B}=(0,4)$

Conotrainde:

$\angle H S=\left(\begin{array}{cccc}1 & -1 / 3 \\ 0 & 1 / 3\end{array}\right)\left(\begin{array}{ccccc}1 & 2 & 1 & 1 & 0 \\ 2 & -1 & 3 & 0 & 1\end{array}\right)=\left(\begin{array}{cccc}1 / 3 & 7 / 3 & 0 & 1-1 / 3 \\ 2 / 3 & -1 / 3 & 1 & 0 \\ 1 / 3\end{array}\right)$
RHS $=\left(\begin{array}{ll}0 & 1 / 3 \\ 1 & -1 / 3 \\ 0 & 1 / 3\end{array}\right)\binom{10}{8}=\binom{22 / 3}{8 / 3}$
$\frac{\text { Objective row: }}{\text { Dual valuen }\left(y, y_{2}\right)}=(0,4)\left(\begin{array}{ll}1 & -1 / 3 \\ 0 & 1 / 3\end{array}\right)=(0,4 / 3)$ variable objective coefficiont
$\begin{array}{ll}x_{1} & y_{1}+2 y_{2}-5=0+2(4 / 3)-5=-7 / 3 \\ x_{2} & 2 y+y_{2}-12=2(0)-(4 / 3)-12=-40 / 3\end{array}$
$x_{2} \quad 2 y_{1}-y_{2}-12=2(0)-(4 / 3)-12=-40 / 3$
$x_{3} \quad y_{1}+3 y_{2}-4=0+3(4 / 3)-4=0$
$\begin{array}{ll}x_{3} & y_{1}+3 y_{2}-4=0+3(4 / 3)-4=0 \\ x_{4} & y_{1}-0\end{array}$
$x_{4} \quad y_{1}-0=0-0=0$
$\begin{array}{ll}x_{5} & y_{1}-(-M)=4 / 3-(-100)=304 / 3\end{array}$

Dual:

Minimize or $=21 y_{1}+21 y_{2}$
subyict 6

$$
\begin{aligned}
& 2 y_{1}+7 y_{2} \geqslant 4 \\
& 7 y_{1}+2 y_{2} \geqslant 14 \\
& y_{1}, y_{2} \geqslant 0
\end{aligned}
$$

(a) $\binom{x_{2}}{x_{4}}=\left(\begin{array}{cc}1 / 7 & 0 \\ -2 / 7 & 1\end{array}\right)\binom{21}{21}=\binom{3}{15} \Rightarrow$ feasible $\left(\begin{array}{l}x_{4} \\ x_{3} \\ x_{2}\end{array}\right)=\left(\begin{array}{ccc}1 & -1 / 2 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}30 \\ 60 \\ 20\end{array}\right)=\left(\begin{array}{c}0 \\ 50 \\ 20\end{array}\right)$ feaitble $\left(y_{1}, y_{2}\right)=(14,0)\left(\begin{array}{cc}1 / 7 & 0 \\ 2 / 7 & 1\end{array}\right)=(2,0)$ objcooff $x_{1}=2 y_{1}+7 y_{2}-4$

$$
\left.\begin{array}{l}
=2 \times 2+7 \times 0-4=0 \\
3=y,-0=2-0=2
\end{array}\right\} \Rightarrow \text { optimal }
$$

$\left.\begin{array}{r}=2 \times 2+7 \times 0-4=0 \\ \text { objcoeff of } x_{3}=y_{1}-0=2-0=2\end{array}\right\} \Rightarrow$ optimal
(b) Eeasibility:
$\binom{x_{2}}{x_{3}}=\left(\begin{array}{cc}0 & 1 / 2 \\ 1 & -7 / 2\end{array}\right)\binom{21}{2_{1}}=\binom{10.5}{-\frac{105}{2}} \Rightarrow$ infeasull Cetemality:
$\left(y_{1}, y_{2}\right)=(14,0)\left(\begin{array}{ll}0 & 1 / 2 \\ 1 & -7 / 2\end{array}\right)=(0,7)$
objcoesf of $x_{1}: 2 y_{1}+7 y_{2}-4=2 \times 0+7 x 7-4=45>0$
ofjcorffol $x_{4}: y_{2}-0=7-0>0$
solution is optisinal eut infearible
(c) Feacibilaty:
$\binom{x_{2}}{x_{1}}=\left(\begin{array}{cc}7 / 45 & -2 / 45 \\ -2 / 45 & 1 / 45\end{array}\right)\binom{21}{21}=\binom{7 / 3}{7 / 3} \Rightarrow$ feasible
Optimalhy:
$\left(\begin{array}{ll}\left(y_{1}, y_{2}\right)=(14,4)\end{array}\left(\begin{array}{cc}7 / 45 & -2 / 45 \\ -2 / 45 & 7 / 45\end{array}\right)=(2,0)\right.$
$\left.\begin{array}{l}\text { Obj couff of } x_{3}: y_{1}-0=2-0>0 \\ \text { obj cocfft } x_{4}: y_{2}-0=0-0=0\end{array}\right\}$ optimal
solution is gotimal and fracible
(d) Feasilility
$\binom{x_{1}}{x_{4}}=\left(\begin{array}{cc}1 / 2 & 0 \\ -7 / 2 & 1\end{array}\right)\binom{21}{21}=\binom{\frac{21}{2}}{-\frac{105}{2}} \Rightarrow$ infeasible Optimatiy:
$\left(y_{1}, y_{2}\right)=(4,0)\left(\begin{array}{cc}1 / 2 & 0 \\ -7 / 2 & 1\end{array}\right)=(2,0)$ $\left.\begin{array}{l}\text { Obj corff of } x_{2}: 7 y_{1}+2 y_{2}-14=0 \\ \text { Obj cotfo of } x_{3}: y_{1}-0=2-0=2\end{array}\right\}$ optimal Obj cotfol $x_{3}: y_{1}-0=2-0=2$
solutioni optimal lut infeacibl. olution optimal but infeacible

Dual:

subjinimize $\omega=30 y_{1}+60 y_{2}+20 y_{3}$

$$
\begin{aligned}
& y_{1}+3 y_{2}+y_{3} \geqslant 3 \\
& 2 y_{1} \\
& y_{1}+2 y_{2}+4 y_{3} \geqslant 2 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

 $\frac{\text { Oplimality: }}{\left(y_{1}, y_{2}, y_{3}\right)}=(0,5,0)\left(\begin{array}{ccc}1 & -1 / 2 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right)=(0,5 / 2,0)$ Obj corff of $x_{1}: y_{1}+3 y_{2}+y_{3}-3=0+3\left(\frac{5}{2}\right)+0-3=9 / 2$ objcoeff of $x_{2}: 2 y_{1}+4 y_{3}-2=2 \times 0+4 \times 0-2=-2<0$ solution feaxible but not patisial continued.
(b) Feasilitity:

$$
\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}
\end{array}\right)=\left(\begin{array}{ccc}
1 / 4 & -1 / 8 & 1 / 8 \\
3 / 2 & -1 / 4 & -3 / 4 \\
-1 & 1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{l}
30 \\
60 \\
20
\end{array}\right)=\left(\begin{array}{c}
5 / 2 \\
15 \\
10
\end{array}\right) \Rightarrow \text { feasible }
$$

ob; cooff of $x_{4}: y_{1}-0=5$
obj; corffif $x_{5}: y_{2}-0=0$
obj: corff of $x_{5}: y_{2}-0=0$
obj: coeff $\& x_{6}: y_{3}-0=-2 \Rightarrow$ not optimal
(c) Feacilility:

$$
\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{6}
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
30 \\
60 \\
20
\end{array}\right)=\left(\begin{array}{l}
0 \\
30 \\
20
\end{array}\right) \Rightarrow \text { feasible }
$$

Optimality,
$\left(y_{1}, y_{2}, y_{3}\right)=(2,5,0)\left(\begin{array}{ccc}1 / 2 & -1 / 4 & 0 \\ 0 & 1 / 2 & 0 \\ -2 & 1 & 1\end{array}\right)=(1,2,0), ~$ Obj coeff of $x_{1}: y_{1}+3 y_{2}+y_{3}-3=1+6+0-3=47$ ab; cooff of $x_{4} ; y_{1}-0=1-0=1$
obj cooff of $x_{5}: y_{2}-0=2-0=2$
Conotraints:
$L H S=\left(\begin{array}{ccc}3 / 5 & -1 / 5 & 0 \\ -4 / 5 & 3 / 5 & 0 \\ 1 & -1 & 1\end{array}\right)\left(\begin{array}{ccccc}3 & 1 & -1 & 0 & 0 \\ 4 & 3 & 0 & -1 & 0 \\ 1 & 2 & 0 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
L H S & =\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-4 / 5 & 3 / 5 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{ccccc}
3 & 1 & -1 & 0 & 0 \\
4 & 3 & 0 & -1 & 0 \\
1 & 2 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & -3 / 5 & 1 / 5 \\
0 & 1 & 4 / 5 & -3 / 5 \\
0 & 0 & 0 \\
\text { RHS } & =\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 1 \\
-4 / 5 & 3 / 5 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
6 \\
3
\end{array}\right)=\left(\begin{array}{l}
3 / 5 \\
6 / 5 \\
0
\end{array}\right)
\end{array}>.\left\{\begin{array}{ll}
3 / 2
\end{array}\right)\right.
\end{aligned}
$$

Objective cocfficient5:
$\begin{aligned}\left(y, y, y_{2}, y_{3}\right) & =(2,1,0) \\ & =(2 / 5,1 / 5,0)\end{aligned}\left(\begin{array}{ccc}3 / 5 & -1 / 5 & 0 \\ -4 / 5 & 3 / 5 & 0 \\ 1 & -1 & 1\end{array}\right)$

$$
=(2 / 5,1 / 5,0)
$$

objcooffoof $x_{3}=-y_{1}-0=-2 / 5$ objcoeff $2 x_{4}=-y_{2}-0=-1 / 5$

$$
z=2 \times 3 \frac{6}{5}+1 \times 6 / 5=12 / 5
$$

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
2	0	0	$-2 / 5$	$-1 / 5$	0	$12 / 5$
x_{1}	1	0	$-3 / 5$	$1 / 5$	0	$3 / 5$
x_{2}	0	1	$4 / 5$	$-3 / 5$	0	$6 / 5$
x_{5}	0	0	-1	1	1	0

$$
\begin{aligned}
& \text { (a) }\left(\begin{array}{l}
x_{4} \\
\text { (i) } \\
x_{3}
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 / 3 \\
0 & 1 / 3
\end{array}\right)\binom{10}{2}=\binom{28 / 3}{2 / 3} \\
& z=4 \times 2 / 3=8 / 3 \\
& \text { (ii) }\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
2 / 5 & -1 / 5 \\
1 / 5 & 2 / 5
\end{array}\right)\binom{10}{2}=\binom{18 / 5}{14 / 5} \\
& z=5 \times \frac{14}{5}+12 \times \frac{18}{5}=57.2 \\
& \text { (ii) }\binom{x_{2}}{x_{3}}=\left(\begin{array}{ll}
3 / 7 & -1 / 7 \\
1 / 7 & 2 / 7
\end{array}\right)\binom{10}{2}=\binom{4}{2} \\
& Z=12 \times 4+4 \times 2=56
\end{aligned}
$$

Solution in (b) is the beat (b)

$$
\text { b) } y_{1}, y_{2}=(12,5)\left(\begin{array}{cc}
2 / 5 & -1 / 5 \\
1 / 5 & 2 / 5
\end{array}\right)=\left(\frac{29}{5},-\frac{2}{5}\right)
$$

obj coff $y_{1} x_{3}: y_{1}+3 y_{2}-4=\frac{29}{5}+3\left(-\frac{2}{5}\right)-4=\frac{3}{5}$ obj coeffog $x_{4}: y_{1}-0=\frac{29}{5}-0=\frac{29}{5}$
solution is oxteinal

$$
\text { Inverse }=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

(a)

$$
\binom{x_{1}}{x_{5}}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{b_{1}}{b_{2}}=\binom{30}{10}
$$

Thus, $b_{1}=30, b_{2}=40$
(b) Optimal dual dolution:

$$
\left(y_{1}, y_{2}\right)=(5,0)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)=(5,0)
$$

(c) $(d, e)=\left(y_{1}, y_{2}\right)=(5, a)$

$$
\begin{aligned}
& a=5 y_{1}-5 y_{2}-2=5 \times 5-5 \times 0-2=23 \\
& \binom{b}{c}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{5}{-5}=\binom{5}{-10}
\end{aligned}
$$

objective value:

$$
\text { sichral }=b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3}
$$

in'perimal $=C_{1} x_{1}+C_{2} x_{2}$

$$
\left(\begin{array}{l}
x_{3} \\
x_{2} \\
x_{1}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
6 \\
2
\end{array}\right)
$$

Thus, $b_{1}=4, b_{2}=6, b_{3}=8$

Set 4.2d

$$
\begin{aligned}
\left(y_{1}, y_{2}, y_{3}\right) & =\left(0, c_{2}, c_{1}\right)\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \\
& =\left(0, c_{2}-c_{1}, c_{1}\right)
\end{aligned}
$$

objcofff of $x_{3}=0=y_{1}-0$?
obj corf of $\left.x_{4}=3=y_{2}-0\right\} y_{1}=0, y_{2}=3, y_{3}=2$
obj costs of $\left.x_{5}=2=y_{3}-0\right\}$
Thus, $C_{2}{ }^{-C_{1}}=3$ and $C_{1}=2 \Rightarrow C_{1}=2, C_{2}=5$
Now, cave delesmune the dyoctive rake as follows.

$$
\begin{aligned}
D_{\text {ul }} & =6_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3} \\
& =4 \times 0+6 \times 3+8 \times 2=34
\end{aligned}
$$

Premial $=C_{1} x_{1}+C_{2} x_{2}$

$$
=2 \times 2+5 \times 6=34
$$

Dual:
minimize $a r=4 y_{1}+8 y_{2}$
subject to

$$
\begin{aligned}
y_{1}+y_{2} & \geq 2 \\
y_{1}+4 y_{2} & \geq 4 \\
y_{1} \quad y_{2} & \geq 4
\end{aligned}
$$

For basic $\left(x_{1}, x_{2}\right)$, we have

$$
\left.\begin{array}{l}
y_{1}+y_{2}-2=0 \\
y_{1}+4 y_{2}-4=0
\end{array}\right\} \Rightarrow y_{1}=\frac{4}{3}, y_{2}=\frac{2}{3}
$$

Obj coif $8 x_{3}=y_{1}-4=\frac{4}{3}-4=-\frac{8}{3}<0$
The rennet shows that dh solution is not optimal.

From TORA outpat:					(b) Only Poldering capacily can be increaned because its dual price is positive (c) The fact that the dual pucis 8 the lower bounds on x_{1}, x_{2}, and x_{y} are negative shours that the lower bounds have adverse effect on profitability. Specifically, one usit decrease in the production of cables sc320, sc 325 , and sc 370 will
$\text { Range: }(20,36) \quad(4,6.7) \quad(-1.5, \infty) \quad(1.5, \infty)$					
(a) ${ }^{*} 750 \times(22-24)=-\# 1500$ (b) $\Delta z=\$ 500(4.5-6)=-\$ 750$ (c) $\Delta Z=\$ 0(10-2)=\$ 0$					
$x_{1}, x_{2}, x_{3}, x_{4}=$ daily units of calles $320,325,340$, and 370 (a) Maximize $z=9.4 x_{1}+10.8 x_{2}+8.75 x_{3}+7.8 x_{4}$ subject to $\begin{aligned} & 10.5 x_{1}+9.3 x_{2}+11.6 x_{3}+8.2 x_{4} \leq 4800 \\ & 20.4 x_{1}+24.6 x_{2}+17.7 x_{3}+26.5 y_{4} \leq 9600 \\ & 3.2 x_{1}+2.5 x_{2}+3.6 x_{3}+5.5 x_{4} \leq 4700 \\ & 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4} \leq 4500 \\ & x_{1} \geq 100, x_{2} \geq 100, x_{3} \geq 100, x_{4} \geq 100 \end{aligned}$					sc320, sc 325 , and sc 370 will reapectively increace the yerofit by $\$.68, \$ 1.36$, and $\$ 5.30$ ph cable. These values are valid concidering the cables one at a time. (d) Dual price for ooldering is $\$.49$ per miniute, valid in the range (8920, 10201.7) minutes. Hence, the $\$.49$ additional profit per minulé is gnaranteed parfer per minule for up to $\frac{10201-9600}{96 r 0}=6.26 \%$ only
					$x_{1}=$ number of jackets per week
Final iteration Ho: 3Obiective value (max) $=4011.1582$					$x_{2}=$ number of handbagt pers a
Variable.	value	obi coeff	Doj val Conerit		Maximize $z=350 x_{1}+120 x_{2}$
		$\begin{aligned} & 9.6000 \\ & \text { and } \\ & \text { B. } 8.8000 \\ & 7.85000 \end{aligned}$			Subject t $8 x_{1}+2 x_{2} \leq 1200$
Comatraint					$2 x_{1}+5 x_{2} \leq 185$
					$x_{1}, x_{2} \geq$
					TORA optimism Dolution: $x_{1} \cong 144, x_{2}=25, z=\$ 53,312.50$ Resource Dualprice Range
					Leather $\$ 19.38 / \mathrm{m}^{2} \quad(740,1233.33)$
bobe	ent coeft	yin coeft	nax coeft	Readeed cose	Labor \#16.25/hr (1800, 300
					BagCo should not pay mone than
Conetraint	curren	.-........ ms	Max ¢ns	al Price	\$19.38/m m^{2} of leather axd $\$ 16.25 / \mathrm{h}$
					of labor time.

Oral price: $y_{1}=1, y_{2}=2, y_{3}=0 \quad 1$ From TORA solution: all in $\$ / \mathrm{min}$

$$
\left(1-x_{1}\right) y_{1}+1.25 y_{2}+y_{3} \geqslant 3
$$

Reduced cost of $x_{2}=\left(1-n_{1}\right) \times 1+1.25 \times 2+1 \times 0-3$

$$
=5-r_{1}
$$

For x_{1} to be just profitable, its reduced cost must be (at least) zero, that is, $5-r_{1} \leqslant 0$ or $r_{1} \geqslant .5$. This means a seduction of at least
50%
Dual constraint for fire truck: 2

$$
\begin{aligned}
y_{2} & +3 y_{3} \geqslant 4 \\
\text { Reduced cost } & =y_{2}+3 y_{3}-4 \\
& =1 \times 2+3 \times 0-4=-2<0
\end{aligned}
$$

New by y is recommended.

$$
x_{j}=\text { number of units of } P P, j=1,2,3,4 \quad 3
$$

Maximize $z=3 x_{1}+6 x_{2}+5 x_{3}+4 x_{4}$ sulyeit ts

$$
\begin{aligned}
& 2 x_{1}+5 x_{2}+3 x_{3}+4 x_{4} \leqslant 5300 \\
& 3 x_{1}+4 x_{2}+6 x_{3}+4 x_{4} \leqslant 5300 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geqslant 0
\end{aligned}
$$

*** OpTIMA SOLUTION SUMARY ****
\qquad
Title: Problem $4.4 \mathrm{~b}-3$
Final iteration No: 4

Objective coefficients -- Single Changes: analysis ***

add the constraint $x_{1}+x_{3} \leq M$

Basic	x_{1}	x_{2}	x_{3}	S_{1}	s_{2}	s_{3}	S_{4}	
Z	-2	1	-1	0	0	0	0	0
S_{1}	-2	-3	5	1	0	0	0	-4
S_{2}	1	-9	1	0	1	0	0	-3
S_{3}	4	6	3	0	0	1	0	8
S_{4}	1	0	1	0	0	0	1	M
Z	0	0	1	0	0	0	2	$2 M$
S_{1}	0	-3	7	1	0	0	2	$-4+2 M$
S_{2}	0	-9	0	0	1	0	-1	$-3-M$
S_{3}	0	6	-1	0	0	1	-4	$8-4 M$
x_{1}	1	0	1	0	0	0	1	M

The second tableau is now optimal but infeasible. We can thus apply the dual simplex to the second tablean Optimal solution is

$$
\begin{aligned}
& x_{1}=1.286, x_{2}=.476, x_{3}=0 \\
& z=2.095
\end{aligned}
$$

(a) add the constraint $x_{3} \leq M$

$B_{a_{1}}$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
z	0	0	-2	0	0	0	0	0
x_{4}	1	-2	2	1	0	0	0	-8
x_{5}	-1	1	1	0	1	0	0	4
x_{6}	2	-1	4	0	0	1	0	10
x_{7}	0	0	11	0	0	0	1	M
z	0	0	0	0	0	0	2	$2 M$
x_{4}	1	-2	0	1	0	0	-2	$-8-2 M$
x_{5}	-1	1	0	0	1	0	-1	$4-M$
x_{6}	2	-11	0	0	0	1	-4	$10-4 M$
x_{7}	0	0	1	0	0	0	1	M

Lest tableau is optimal but infeearille application' of the dual ampler method yield the solution:

$$
\begin{aligned}
& x_{1}=56 / 9, x_{2}=26 / 3, x_{3}=14 / 9 \\
& z=28 / 9
\end{aligned}
$$

(b) Add The constraint $x_{1} \leqslant M$

	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	
Z	-1	3	0	0	0	0	0
S_{1}	1	-1	1	0	0	0	2
S_{2}	-1	-1	0	1	0	0	-4
S_{3}	-2	2	0	0	1	0	-3
S_{4}	1	0	0	0	0	1	M
z	0	3	0	0	0	1	M
S_{1}	0	-1	1	0	0	-1	$2-M$
S_{2}	0	-1	0	1	0	1	$-4+M$
S_{3}	0	2	0	0	1	2	$-3+2 M$
x_{1}	1	0	0	0	0	1	m

Optimum: $x_{1}=3, x_{2}=1 z=0$
(c) Add eh constraint $x_{1} \leqslant M$

	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	
z_{1}	1	-1	0	0	0	0	0
S_{1}	-1	4	1	0	0	0	-5
S_{2}	1	-3	0	1	0	0	1
S_{3}	-2	5	0	0	1	0	-1
S_{4}	1	0	0	0	0	1	M
z	0	-1	0	0	0	-1	$-M$
S_{1}	0	4	1	0	0	1	$-S+M$
S_{2}	0	-3	0	1	0	-1	$1-M$
S_{3}	0	5	0	0	1	2	$-1+2 M$
x_{1}	1	0	0	0	0	1	M

Problem ha no feasible solution
(d) Add the constraint $x_{3} \leqslant M$

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	s_{4}	
Z_{2}	0	0	-2	0	0	0	0	0
S_{1}	1	-3	7	1	0	0	0	-5
s_{2}	-1	1	-1	0	1	0	0	1
S_{3}	3	1	-10	0	0	1	0	8
S_{4}	0	0	1	0	0	0	1	m
3	0	0	0	0	0	0	2	$2 M$
S_{1}	1	-3	0	1	0	0	-7	$-5-7 M$
S_{2}	-1	1	0	0	1	0	1	$1+M$
S_{3}	3	1	0	0	0	1	10	$8+10 M$
S_{4}	0	0	1	0	0	0	1	M

Solution it unbounded
method 1: M-techrique (or twophase method)
Starting tableau:

$B_{S_{S i c}}$	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	R_{1}	R_{2}	R_{3}	S_{8} / n
2	-6	-7	-3	-5	0	0	0	$-M$	$-M$	$-M$	-
R_{1}	5	6	-3	4	-1	0	0	1	0	0	12
R_{2}	0	1	-5	-6	0	-1	0	0	1	0	10
R_{3}	2	5	1	1	0	0	-1	0	0	1	8

method 2: Solve the dual problem
Starting tafbean:

Basic	y_{1}	y_{2}	y_{3}	s_{1}	s_{2}	s_{3}	s_{y}	
w	-12	-10	-8	0	0	0	0	0
s_{1}	5	0	2	1	0	0	0	6
s_{2}	6	1	5	0	1	0	0	7
s_{3}	-3	-5	1	0	0	1	0	3
s_{4}	4	-6	1	0	0	0	1	5

method 3: Dual sisiply starting tableau:

Basic	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	$s_{0} l^{n}$
z	-6	-7	-3	-5	0	0	0	0
s_{1}	-5	-6	3	-4	1	0	0	-12
s_{2}	0	-1	5	6	0	1	0	-10
s_{3}	-2	-5	-1	-1	0	0	1	-8

Opisinal solution: $x_{1}=0, x_{2}=10, x_{3}=x_{4}=0$

$$
z=70
$$

method Number of iterations	
1	5
2	3

The dual siriplex is the beat. It followers because it requires the omaltoat number of iterations and has th emalledt number of constraints.

Basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
z	1	-1	0	0	0	0
x_{3}	-1	4	1	0	0	-5
x_{4}	1	-3	0	1	0	1
x_{5}	-2	5	0	0	1	-1
z						
x_{1}	1	-4	-1	0	0	5
x_{4}	0	1	1	1	0	-4
x_{5}	0	-3	-2	0	1	9

In the second iteration, now 2 . has all nonnegative coefficients on the left-hand side. This swears that the infeasibility of $x y$ cannot be removed, and the problem las no feasible solution.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
2	0	0	-2	0	0	0	0
x_{4}	1	-3	7	1	0	0	-5
x_{5}	-1	1	-1	0	1	0	1
x_{6}	3	1	-10	0	0	1	8
2	0	0	-2	0	0	0	0
x_{2}	$-1 / 3$	1	$-7 / 3$	$-1 / 3$	0	0	$5 / 3$
x_{5}	$[-2 / 3$	0	$4 / 3$	$1 / 3$	1	0	$-2 / 3$
x_{6}	$10 / 3$	0	$-23 / 3$	$1 / 3$	0	1	$19 / 3$
2			-2			0	
x_{1}		$-4 / 3$			2		
x_{1}		-2			1		
x_{6}		-1				3	

Iteration 3 is feasible but nonoptimal. However, x_{3} shows that the solution is unbounded.

First, we sole the penoblem using $Q=5200 \mathrm{lb}$, feed requirements for week /. The we use unaitivity analysis of the remaining aretes. Week / Solution (using TDRA)

$$
\begin{aligned}
& \binom{\text { Basic }}{\text { vector i }}=\left(\begin{array}{c}
x_{2} \\
x_{1} \\
S x_{5} \\
x_{3} \\
x_{4}
\end{array}\right), \quad Z=\$ 4224.74 \\
& \text { inverse }=\left(\begin{array}{cccccc}
.649 & 0 & -3.216 & -2.231 & 0 \\
.028 & 0 & 2.637 & -.006 & 0 \\
.004 & -1 & 1.010 & -000 & 0 \\
.323 & 0 & .579 & 2.438 & 0 \\
.011 & 0 & .018 & .146 & 1
\end{array}\right)
\end{aligned}
$$

Solution given Q :

$$
\begin{aligned}
\left(\begin{array}{c}
x_{2} \\
x_{1} \\
S x_{5} \\
x_{3} \\
S x_{11}
\end{array}\right) & =\text { (inverse) }\left(\begin{array}{l}
Q \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
.644 Q \\
.028 Q \\
.004 Q \\
.323 Q \\
.011 Q
\end{array}\right)
\end{aligned}
$$

General solution:

$$
\begin{aligned}
x_{1} & =.028 Q \\
x_{2} & =.649 Q \\
x_{3} & =.323 Q \\
z= & (.12 \times .028+.45 \times .649+1.6 \times .323) Q \\
= & .81221 Q
\end{aligned}
$$

$B^{-1}=$ miverace
$D_{i}=$ change in RHS of constraint i,

$$
i=1,2, \ldots, m
$$

Simultaneous reacibity conditions:

$$
B^{-1}\left(\begin{array}{c}
b_{1}+D_{1} \tag{1}\\
\vdots \\
b_{m}+D_{m}
\end{array}\right) \geq\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

Let $P_{i} \leq D_{i} \leqslant q_{i}$. be the feasititity range computed from th i single-change conditions:

$$
B^{-1}\left(\begin{array}{l}
b_{1} \tag{2}\\
\vdots \\
b_{i}+D_{i} \\
\vdots \\
b_{m}
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
i \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Dofere

$$
\Delta_{i}=\left\{\begin{array}{l}
p_{i}, \text { if } D_{i}<0 \\
q_{i}, \text { if } D_{i}>0
\end{array}\right.
$$

Condition (2) holds true for $D_{i}=\Delta_{i}$ also.
Now, define $r_{i} \geq 0, i=0,1,2, \ldots, m$ such that $r_{0}+r_{1}+\cdots+r_{m}=1$ Then

$$
B^{-1}\left[r_{0}\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)+r_{1}\left(\begin{array}{c}
b_{1}+\Delta \\
\vdots \\
b_{i} \\
\vdots \\
b_{m}
\end{array}\right)+\cdots+r_{m}\left(\begin{array}{c}
b_{1} \\
\vdots \\
p_{c} \\
b_{m}+\Delta_{m}
\end{array}\right)\right]
$$

must aldo be feasible. The last expression seduces to

$$
B^{-1}\left[\left(\begin{array}{c}
b_{1} \tag{3}\\
\vdots \\
b_{m}
\end{array}\right)+\left(\begin{array}{cc}
r_{1} & \Delta_{1} \\
\vdots \\
r_{m} & \Delta_{m}
\end{array}\right)\right] \geqslant\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

Next, select $r_{i}=\frac{D_{i}}{\Delta_{i}}, i=1,2, \cdots, m$. Then (3) is the same as condition (1). Haworth, because $r_{0}+r_{1}+\cdots+r_{m}=1$, it must be time that $r_{1}+r_{2}+\cdots+r_{m} \leq 1$. The conditim

$$
r_{1}+r_{2}+\cdots+r_{m} \leq 1
$$

thus imphei that (3), and Hence (1), is feasible. The condition is roth serffecient because (3) can be satigified for arbitrary values of r_{1}, r_{1}, \ldots, and r_{m}.

Set 4.5a

Set 4.5b

Current optimum is

$$
x_{1}=0, \quad x_{2}=100, \quad x_{3}=230
$$

(a) $4 x_{1}+x_{2}+2 x_{3} \leq 570$:

Since $4 \times 0+1 \times 100+2 \times 230=560<$ 570 , the additional constraint is redundant and the solution. remains urch anged.
(b) $4 x_{1}+x_{2}+2 x_{3} \leqslant 548$:

The current soluteri violates the new constraints. We use the dual simplex method to determine the

> Optimum solution:
$x_{1}=0, x_{2}=88, x_{3}=230$
$z=\$ 1326$

Maximize $z=5 x_{1}+6 x_{2}+3 x_{3}$ Subject to

$$
\begin{aligned}
& 5 x_{1}+5 x_{2}+3 x_{3} \leq 50 \\
& x_{1}+x_{2}-x_{3} \leq 20 \\
& 7 x_{1}+6 x_{2}-9 x_{3} \leq 30 \\
& 5 x_{1}+5 x_{2}+5 x_{3} \leq 35 \\
& 12 x_{1}+6 x_{2} \leq 90 \\
& x_{2}-9 x_{3} \leq 20 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Start with constraints (1),
(3), and (4). The asoocuatid solutions is

$$
x_{1}=0, x_{2}=6.2, x_{3}=.8
$$

This solution automatically satisfies the remaining conshaunts (2), (5), and (6). Hence these constrainics are dis-canded as redundant and the optemimsolution for the problem is as given above.

Set 4.5c
$\binom{$ gasic }{ vector }$=\left(\begin{array}{l}x_{2} \\ x_{3} \\ x_{6}\end{array}\right) \quad r_{\text {nverre }}=\left(\begin{array}{ccc}1 / 2 & -1 / 4 & 0 \\ 0 & 1 / 2 & 0 \\ -2 & 1 & 1\end{array}\right) \square$
Norbacic varrables: x_{1}, x_{4}, x_{5}
(a) $z=2 x_{1}+x_{2}+4 x_{3}$

$$
\begin{aligned}
\left(y_{1}, y_{2}, y_{3}\right) & =(1,4,0)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right) \\
& =(1 / 2,7 / 4,0)
\end{aligned}
$$

Reduced costs:

$x_{1}:(1 / 2,7 / 4,0)\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)-2=15 / 4$
$x_{4}:(1 / 2,7 / 4,0)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)-0=1 / 2$
$x_{5}:\left(1 / 2,7 / 4,0\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)-0=7 / 4\right.$
current folution semains optional
(b) $z=3 x_{1}+6 x_{2}+x_{3}$
$\begin{aligned}\left(y, y, y_{3}\right) & =(6,1,0)\left(\begin{array}{ccc}1 / 2 & -1 / 4 & 0 \\ 0 & 1 / 2 & 0 \\ -2 & 1 & 1\end{array}\right) \\ & =(3,-1,0)\end{aligned}$

$$
=(3,-1,0)
$$

Reduced conts:
$x_{1}: 1 \times 3+3 x-1+1 \times 0-3=-3<0$
$x_{4}: 1 \times 3+0 \times-1+0 \times 0-0=3$
$x_{5}: 0 \times 3+\mid x-1+0 \times 0-0=-1<0$
Solutioni is nor optimal.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
z	-3	0	0	3	-1	0	830
x_{2}	$-1 / 4$	1	0	$1 / 2$	$-1 / 4$	0	100
x_{3}	$3 / 2$	0	1	0	$1 / 2$	0	230
x_{6}	2	0	0	-2	1	1	20
2	0	0	0	0	$1 / 2$	$3 / 2$	860
x_{2}	0	1	$1 / 4$	$1 / 4$	$-1 / 4$	$1 / 8$	$102 \frac{1}{2}$
x_{3}	0	0	0	0	$1 / 2$	0	215
x_{1}	1	0	-1	-1	$1 / 2$	$1 / 2$	10

Optionumsolution: $x_{1}=10, x_{2}=102 \frac{1}{2}, x_{3}=215$
Froblem thr alternative pptina. $z=4860$
(c) $z=8 x_{1}+3 x_{2}+9 x_{3}$
$\left(y_{1}, y_{2}, y_{3}\right)=(3,90)\left(\begin{array}{ccc}1 / 2 & -1 / 4 & 0 \\ 0 & 1 / 2 & 0 \\ -2 & 1 & 1\end{array}\right)=\left(\frac{3}{2}, \frac{15}{4}, 0\right)$
Reduced coots:
Reduced coots:
$x_{1}: 1 \times \frac{3}{2}+3 \times \frac{15}{4}+1 \times 0-8=19 / 4$
$x_{4}: 1 \times \frac{3}{2}+3 \times 0+1 \times 0-0=3 / 2$
$x_{5}: 0 \times 3 / 2+1 \times 15 / 4+0 \times 0-0=15 / 4$
Solution sernaisis opetinal
Basic $=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{5} \\ x_{6}\end{array}\right)$, inverse $=\left(\begin{array}{cccc}1 / 4 & -1 / 2 & 0 & 0 \\ -1 / 8 & 3 / 4 & 0 & 0 \\ 3 / 8 & -5 / 4 & 1 & 0 \\ 1 / 8 & -3 / 4 & 0 & 1\end{array}\right)$

Dual problem:

minimize $\omega=24 y_{1}+6 y_{2}+y_{3}+2 y_{4}$
Subject t

$$
\begin{aligned}
& 6 y_{1}+y_{2}-y_{3} \quad \geqslant 5 \\
& 4 y_{1}+2 y_{2}+y_{3}+y_{4} \geqslant 4 \\
& y_{1}, y_{2}, y_{3}, y_{4} \geqslant 0
\end{aligned}
$$

(a) $\begin{aligned} z=3 x_{1} & +2 x_{2} \\ \left(y_{1}, y_{2}, y_{5}, y_{y}\right) & =(3, z, 0,0)\left(\begin{array}{cccc}1 / 4 & -1 / 2 & 0 & 0 \\ -1 / 8 & 3 / 4 & 0 & 0 \\ 3 / 8 & -5 / 4 & 1 & 0 \\ 1 / 8 & -3 / 4 & 0 & 1\end{array}\right) \\ & =(1 / 2,0,0,0)\end{aligned}$

Reduced coots:

$x_{3}: y_{1}-0=1 / 2-0=1 / 2$
$x_{4}: y_{2}-0=0-0=0$
Solution semains opstimal.
(b) $z=8 x_{1}+10 x_{2}$
$\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(8,10,0,0)$$\left(\begin{array}{cccc}1 / 4 & -1 / 2 & 0 & 0 \\ -1 / 8 & 3 / 4 & 0 & 0 \\ 3 / 8 & -5 / 4 & 1 & 0 \\ 1 / 8 & -3 / 4 & 0 & 1\end{array}\right)$

$$
=(3 / 4,7 / 2,0,0)
$$

Reduced corts:
$x_{3}: y_{1}-0=3 / 4-0=3 / 4$
$x_{4}: y_{2}-0=7 / 2-0=7 / 2$
Solutemiremains qatimal
(c) $\left.\begin{array}{rl}z & =2 x_{1}+5 x_{2} \\ \left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(2,5,1,0\end{array}\right)\left(\begin{array}{llll}1 / 4 & -1 / 2 & 0 & 0 \\ -1 / 8 & 3 / 4 & 0 & 0 \\ 3 / 8 & -5 / 4 & 1 & 0 \\ 1 / 8 & -3 / 4 & 0 & 1\end{array}\right)$
$=(-1 / 8,11 / 4,0,0)$
Reduced coas:
$x_{3}: y_{1}-0=-1 / 8-0=-1 / 8<0$
$x_{4}: y_{2}-0=11 / 4-0=11 / 4$
current doluten n nor qparial.

Set 4.5c

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
2	0	0	$-1 / 8$	$11 / 4$	0	0	$27 / 2$
x_{1}	1	0	$1 / 4$	$-1 / 2$	0	0	3
x_{2}	0	1	$-1 / 8$	$3 / 4$	0	0	$3 / 2$
x_{5}	0	0	$3 / 8$	$-5 / 4$	1	0	$5 / 2$
x_{6}	0	0	$1 / 8$	$\sqrt{-3 / 4}$	0	1	$1 / 2$
2	0	0	0	2	0	1	14
x_{1}	1	0	0	1	0	-2	2
x_{2}	0	1	0	0	0	1	2
x_{5}	0	0	0	1	1	-3	1
x_{3}	0	0	1	-6	0	8	4

Optimuincolution:

$$
x_{1}=2, x_{2}=2, x_{3}=4, z=14
$$

moet be nonnegative. However, th last expression reduces t $\left(z_{1}-c_{1}, \ldots, z_{n}-c_{n}\right)-\left(r_{1} \delta_{1}, \ldots, r_{n} \delta_{n}\right) \geq 0$
on

$$
\begin{equation*}
z_{j}-c_{j}-r \delta_{j} \geq 0, j=1,2, \cdots, n \tag{3}
\end{equation*}
$$

Now, ret $r=\frac{d_{j}}{\delta_{j}}$, then (3) is identical to (1), the derived condition. However, since $r_{0}+r_{1}+\cdots+r_{n}=1$ and $r_{0} \geqslant 0$, then for optimality we must have

$$
r_{1}+r_{2}+\cdots+r_{n} \leqslant 1
$$

Lat $d_{j}=c$ Range in the objective coefficient $c_{j}, j=1,2, \ldots, n$
The oumultaneous changes yield the same optimum if (for maximization)

$$
\begin{equation*}
\left(z_{j}-c_{j}-d_{j}\right) \geqslant 0, j=1,2, \ldots, n \tag{1}
\end{equation*}
$$

$\begin{aligned} & \text { Where } \\ & z_{j}=\text { left-handof conoiraintdual }\end{aligned}=\sum_{i=1}^{m} a_{i j} \cdot y_{i}$.
Let $u_{j} \leqslant d_{j} \leqslant v_{j}$ be the optimality range computed from the aringh-change condition

$$
\begin{equation*}
z_{j}-c_{j}-d_{j} \geqslant 0 \tag{2}
\end{equation*}
$$

and define'

$$
\delta_{j}= \begin{cases}u_{f}, & \text { if } d_{j}<0 \\ v_{j}, & \text { if } d_{j}>0\end{cases}
$$

Conditori (2) Soldo true also for $d_{j}=\delta$.
Define $r_{j} \geq 0, j=0,1,2, \cdots ; n$, such
that $r_{0}+r_{1}+\cdots+r_{n}=1$. Then

$$
\begin{aligned}
& r_{0}\left(z_{1}-c_{1}, \cdots, z_{n}-c_{n}\right)+r_{1}\left(z_{1}-c_{1}-\delta_{1}, \cdots,\right. \\
& \left.z_{n}-c_{n}\right)+\cdots+r_{n}\left(z_{1}-c_{1}, \cdots, z_{n}-c_{n}-\delta_{n}\right)
\end{aligned}
$$

Set 4.5d

Dual constraint for toy trains

$$
y_{1}+3 y_{2}+y_{3} \geqslant 3
$$

where $y_{1}=1, y_{2}=2$, and $y_{3}=0$ now reduced cos for x_{1} is

$$
\frac{P}{100}\left(y_{1}+3 y_{2}+y_{3}\right)-3 .
$$

For toy trains to be gist profitable, we must lave

$$
\begin{aligned}
& \frac{P}{100}(1+3 \times 2+1 \times 0)-3 \geq 0 \\
& \text { or } P \geq 42.86 \%
\end{aligned}
$$

(a) New dual constraint for fie
engines is

$$
3 y_{1}+2 y_{2}+4 y_{3} \geqslant 5, y_{1}=1, y_{2}=2, y_{3}=0
$$

Reduced cost $=3 \times 1+2 \times 2+4 \times 0-5$

$$
=2>0
$$

Fire engines are not profitable
(b) Reduced coot $=3 \times 1+2 \times 2+4 \times 0-10=-3$ $\binom{$ tableau }{ column }$=\left(\begin{array}{ccc}1 / 2 & -1 / 4 & 0 \\ 0 & 1 / 2 & 0 \\ -2 & 1 & 1\end{array}\right)\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

Maximize $z=5 x_{1}+4 x_{2}+3.5 x_{3}$

$$
\begin{aligned}
& 6 x_{1}+4 x_{2}+3 / 4 x_{3} \leq 24 \\
& x_{1}+2 x_{2}+3 / 4 x_{3} \leq 6 \\
&-x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{2} \leq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

New chat conshaint: $\frac{3}{4} y_{1}+\frac{3}{4} y_{2}+y_{3} \geq 3.5$
Dual coluthon: $y_{1}=3 / 4, y_{2}=1 / 2, y_{3}=0$
Produce art $=\frac{3}{4}(3 / 4+1 / 2)+0-3.5=-41 / 16$
$\binom{$ constrain }{ column }$=\left(\begin{array}{cccc}1 / 4 & -1 / 2 & 0 & 0 \\ -1 / 8 & 3 / 4 & 0 & 0 \\ 3 / 8 & -5 / 4 & 1 & 0 \\ 1 / 8 & -3 / 4 & 0 & 1\end{array}\right)\left(\begin{array}{c}3 / 4 \\ 3 / 4 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}-3 / 16 \\ 15 / 32 \\ 13 / 16 \\ -15 / 32\end{array}\right)$

$x_{1}=3.6$ tons, $x_{2}=0, x_{3}=3.2$ tons $z=\$ 29,200$

CHAPTER 5

Transportation Model and its Variants

(a) False
(b) True
(c) True
(a) $\sum a_{i}=25, \sum b_{j}=31$

Add a dummy source whose supply amount is $31-25=6$ units
(b) $\sum a_{i}=74, \sum b_{j}=65$ add a dummy destination whose demand amonent is 74-65 $=9$ units

Denver will be 150 cars short. 3 Similarly, Mimi will be 50 cars short of satioglying its demand
assign a very $\operatorname{Ligh}^{\text {cost }} M$ to the route from Detroit it Dummy

Optimum solution from TORA

Denver is 200 cars shout, $\cos t=\$ 33,200$

(b) $M=\$ 10,000$ in TORA

Total coot $=\$ 49,710$
(c) City / excess coot $=13 \times 1000$ $=\$ / 3,000$

(b)

(c) City 1 excess cost $=\$ 22,500$

Unit tranopontatori cost in $\$$ Unit costs is thousand $\$$ per 10
thousand to per million

$$
\text { gallons }=\left(\left(\frac{10 \not 1}{1000} \times 10^{6} \times \text { mileage }\right) \times \frac{1}{100}\right) \times \frac{1}{1000}
$$

$$
=\frac{\text { mileage }}{10}
$$

Arstibution area
Ref. 1

Total $\cos t=\$ 243,000$
Unit coat in thousand $\$$ from
Dumany source to distribution areas 2 or 3

$$
\begin{aligned}
& 2023 \\
& =\frac{5 \notin}{100} \times \frac{10^{6}}{10^{3}}=50 \text { thousand } \$ / \text { million } \\
& \text { gal }
\end{aligned}
$$

Distribution area

Cost $=\$ 304,000$

million gallons:
from refining 1 to Dummy

$$
=\frac{t \cdot 50}{100} \times \frac{10^{6}}{10^{3}}=15
$$

from refinery 2 \& Dummy

$$
=\frac{72.20}{100} \times \frac{10^{6}}{10^{3}}=22
$$

Refinery 3 diverts 3 million gallons for use within.
Total cost $=\$ 207,000$
(a) Total supply $=150+200+250=600$ crates

Total demand $=150+150+400+100=800$ canted $\|$
$\binom{$ Patenting/ overtime supply }{ by each of orchids $1 \$ 2}=800-600=200$ crate c

Problem has alternative optima.
(c) Orchad $1=0$ overtime crates Orchad $2=200$ overtime crates

Set 5.1a
Supply/demandquantites are 12 expressed in tuctelorids, determined by dividing the number of cars by 18 and rounding the remelt up, of necusaing. or example, supply amount at center 1 is $\frac{400}{18}=22.22$ or 23 truckloads. Expressing unit transposition coots in $\$ 1000$ per tuck load, we get

(b) alternative dohuten exists coot $=\$ 92,500$

Set 5.2a

Total cost $=\$ 560$

cost $=\$ 137,720$
alternative solution exists.
Period Production schedule

1	Regular:-180engeries Overtime- 20 engines
2	Regular: 230 engines

3 Regular 270 engines
Coot $=\$ 190,040$, alternative solution exists

5

Regular 300 engines
Regular 300 engines

Set 5.3a

Vogel:

(b)

5-7

VAM:
Penalties:

Penaltes $\left\{\begin{array}{llll}1 & 3 & (7) & \text { Step1 } \\ 1 & 3 & - & \text { step } 2\end{array}\right.$

$$
\cos t=\$ 33
$$

alternative solution exists
(ii)

Problem has alternative optima. Coot $=\$ 19$
Note: If x_{23} were selected as the zero in place of x_{32}, solution curved require one more iteration.

$$
\text { Cost }=\$ 142
$$

Set 5.3b

(c)	Nbr. of itcrations		
Method	(ii)	(ii)	(iii)
NW	3	4	5
Zeast cont	2	2	2
Vogel	2	1	1

Sent-coot stanting foluthon:		
$4{ }^{4} 2$	1	2

Total cost $=\$ 515$. Dest. 1 is 40 units short.
Vogel method:

Coot $=\$ 240$ - alternative solution exists

(a) $c_{i j}=u_{i}+v_{j}$ for basic $x_{i j}$.

Thus,
$c_{11}=2-2=0$
$c_{21}=3+2=5$
$c_{22}=3+5=8$
$c_{32}=5+5=10$
$c_{33}=5+10=15$
$\operatorname{Cot}=15 \times 0+5 \times 5+25 \times 8+5 \times 10$
$+80 \times 15=\$ 1475$
(b) $u_{c}+v_{j}-c_{i j} \leqslant 0$ for nonbasic $x_{j j}$

$$
\begin{array}{r}
-2+5-c_{12} \leqslant 0 \Rightarrow \quad c_{12} \geqslant 3 \\
-2+10-c_{13} \leqslant 0 \Rightarrow \quad c_{13} \geqslant 8 \\
3+10-c_{23} \leqslant 0 \Rightarrow \quad c_{23} \geqslant 13 \\
5+2-c_{31} \leqslant 0 \Rightarrow \quad c_{31} \geqslant 7
\end{array}
$$

Problems 6 and 7 on next page
(a) For bapic $x_{i j}, c_{i j}=u_{i}+v_{j}$.

cost $=3 \times 10+1 \times 20+4 \times 20=\$ 130$
(b) For non bareic $x_{i j}: u_{i}+v_{j}-c_{i j} \leqslant 0$ to satiafy optimality. Hence

$$
\begin{aligned}
2+1-(1+2 \theta) & \leq 0 \Rightarrow \theta \geqslant 1 \\
5+1-(1+3 \theta) & \leq 0 \Rightarrow \theta \geqslant 5 / 3 \\
2-1-(2+\theta) & \leq 0 \Rightarrow \theta \geqslant-1
\end{aligned}
$$

Take $\theta=\frac{5}{3}$ to yoeld $x_{13}=0$ as the zero basic varuable.

$$
\begin{aligned}
& \min Z=\begin{array}{llllll}
x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} \\
1 & 1 & 2 & 6 & 5 & 1
\end{array} \\
& \text { s.t. }
\end{aligned}
$$

Opternim $\angle P$ solution uaing TORA:

$$
z=15, x_{11}=2, x_{12}=7, x_{23}=6
$$

If we replace the ferst two constraints with equations, we get the optenum ofolution:

$$
\begin{array}{r}
z=27, x_{11}=2, x_{12}=3 \\
x_{22}=4, x_{23}=2
\end{array}
$$

He new ollution' is worde!

Add a "dummy" prate 4 set 2:(AT,7), (AT, 12) AT, 21), (AT, 28). with zero assignment coot to each job (including the of th).
The optimal solution will show the replacement by evidicating which of the current jobs (1 the 4) is assign ned to the dummy operator. If the dummy operator is assigned to the new job, the w he new job must assume lower psionty to the current fou fobs. (All aseignmint cost are divided by 10 for convenience.)

2	2	$M-4$	$[0]$	0	Optimum: 5
2	0	2	0	$1-4$	
2	0	2	$M-2$	0	$3-5$
5	0	4	6	7	$4-2$
0	0	0	1	0	

Since dummyoperator is assigned to job 1, new job 5 has hughes priority over jot 1.
Defense the following two sets.
$\operatorname{Set} 1:(D A, 3),(D A, 10),(D A, 17),(D A, 25)$

The idea is to match ane element from set I with another element from set 2 . The matching automatically decides the date and location for the purchase of each ticket. Fo example, consider The following assignment:

$$
\begin{aligned}
& (D A, 3)-(A T, 21) \\
& (D A, 10)-(A T, 7) \\
& (D A, 17)-(A T, 28) \\
& (D A, 25)-(A T, 12)
\end{aligned}
$$

This acaignment can be interpreted as follows:
Ticket 1: June $3 \quad D A \rightarrow A T$
June $21 \quad A T \rightarrow D A$
Ticket 2: June $7 \quad A T \rightarrow D A$
June $10 \quad D A \rightarrow A T$
Ticket 3: June $17 \quad D A \rightarrow A T$
June $28 \quad A T \rightarrow D A$
Ticket 4:- June $12 \quad A T \rightarrow D A$
June $25 D A \rightarrow A T$
The complete axajgment model is given below

	$A, 7$	$A, 12$	$A, 21$	$A, 28$
$D, 3$	400	300	300	280
$D, 10$	300	400	300	300
$D, 17$	300	300	400	300
$D, 25$	300	300	300	400

Optimum:

$$
\begin{array}{ll}
(D, 3)-(A, 28) & (A, 21)-(D, 25) \\
(A, 7)-(D, 10) & (A, 12)-(D, 17)
\end{array}
$$

Pabiem las alternative optima.

Set 5.4a

Distance matrix in meters:

The ranking of the projects by 7 the different teams can use ohs following numeric score
\therefore Highest preference
1 : lowest preference
A tie es i preference between avo or more projects is medicated by assigning the projects the same score. For example, the scores Project 12345678910 of new centers to candidate locations must reflect both distance and frequency of trips; that is

TORA optimum asaigriment:

$$
I-d
$$

$$
\pi-C
$$

$$
\text { III }-a
$$

IV -b

Set 5.5a

Let $B=300$ units
Optemum solution uxing TORA:

$$
B=300 \text { units }
$$

Optisium solution:

$\cos t=\$ 2,350$

$x_{i j}=$ number of laborers hired at the start of pevid i and terminated at the start of period j.
Define nodes $1,2,3,4$, and 5 to corrospond to the five months of the houzon. Node 6 is added to allow defining the variables $x_{i 6}$ that terminate at the end of the five-month planning horizon. The associated $\angle P$ is defined below.

	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	x_{23}	x_{24}	x_{25}	x_{26}	x_{34}	x_{35}	x_{36}	x_{45}	x_{46}	x_{56}	
	100	130	180	220	250	100	130	180	220	100	130	180	100	130	100	\min
(1)	1	1	1	1	1											≥ 100
(2)	1	1	1	1	1	1	1	1							≥ 120	
(3)			1	1	1		1	1	1	1	1	1				≥ 80
(4)				1	1			1	1		1	1	1	1		≥ 170
(5)					1				1			1		1	1	≥ 50

Let $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5} be the surplus variables associated with constraisits $1,2,3,4$, and 5 , respectively. The $\angle P$ oft er adding the surplus variables the appears as

Next, perform the following transformations:

1. Leave equation (1) unchanged.
2. Replace equation (2) with (2) - (1).
3. Replace equation' (3) with (3) - (2).
4. Replace equation (4) with (4)- (3).
5. Replace equation (5) with (5)-(4)
6. Add a new equation that equals -(5).

These transformations lead to th following LP

x_{12}	x_{13}	x_{24}	x_{15}	x_{16}	x_{23}	x_{24}	x_{25}	x_{26}	x_{34}	x_{35}	x_{36}	x_{45}	x_{46}	x_{36}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	
100	130	180	220	250	100	130	180	220	100	130	180	100	130	100						
1	1	1	1	1		1												-1		

The last LP has the ethucture of a transshipment model (se eproblem 7). Let

$$
\begin{array}{lll}
S_{1}=x_{21} & S_{3}=x_{43} & S_{5}=x_{65} \\
S_{2}=x_{32} & S_{4}=x_{54} &
\end{array}
$$

Then the $\angle P$ above can be translated as a network a follows:

The transshipment model the appears as

The optimum solution i from TORA is (Problem Las alternativeoptine)

this solution' can be interpreted as follows
1 Hire 100 laborers of the start of period 1 and terminate them at the start of periods 5 .
2. Hire 20 workers at the stat of pewiodZand terminablethem at the star of purrs.
3. Hire so workers at the start of period 4 and terminate them at the start of period 6 .
The solution satisfies the labor requirements exactly, oxapt for period 3 where there is a sumphes of 40 workers $\left(x_{43}=40\right)$.

CHAPTER 6

Network Models
(i)
(a) Path: 1-3-4-2
(b) Cycle: $1-3-4-5-1$
(c) Tree

(d) Spanning tree:

(ii)
(a) Path: 1-2-3
(b) Cycle: 1-2-3-1
(c) Thee

(d) Spanning Tree:

(i)

$$
\begin{aligned}
N= & \{1,2,3,4,5\} \\
A= & \{1-2,1-3,2-5,3-4, \\
& 3-5,4-2,4-5,5-1\}
\end{aligned}
$$

(ii) $\begin{aligned} N & =\{1,2,3,4\} \\ A & =\{1-2,1-3,2-3,2-4,3-4\}\end{aligned}$

Set 6.1a

The network shows that nodes connected by an are cannot fold consecutive numbers. Nodes \mathcal{D} and E each las 6 emanating arcs, Whereas all the remaining nodes lave at most 4 emanating arcs. Because 1 and 8 each can have 6 nonconsecutive neighbors namely, $1-3,1-4,1-5,1-6,1-7,1-8$ or
$8-6,8-5,8-4,8-3,8-2,8-1$) and ne other number has this jeropenty, 1 and 8 must be assigned t D and E. Setting $D=1$ and $E=8$, we must assign, $C=7$ and $F=2$ because 2 and 7 cant be asaigned.
anywhe else without notating the sequence condition. Next, we Rave ck yellowing
poocititities: pocentilites:

Tut possible solutions indicated by the Solid and dashed arcs:

Let

$$
i \equiv \text { inmate }
$$

For each node, top half represents the number of i's and g 's on the main land side. The bottom half is kat of alcatraz.

Switch $D=1$ and $E=8$ to two mirror arrangersents.

Set 6.2a

(a) Spanning tree length $=14$

(b) Spanning tree length $=21$

(c) Spanning tree length $=16$

(d) Spanning tree length $=20$

(e) Spanning tree length $=13$

(f) Spanning tree length $=21$

Total lexgth $=5780$ mules

Total length $=41$.
Set length of arcs 3-5, 5-3, 4-5,5-4, 4-7, $7-4,5-6$, and 6-5 to ∞ Total length $=53$

thige prassure Low prisome (a) $d_{i j}=1-\frac{n_{i j}}{n_{i j}+m_{i j}}$ $\frac{i-j}{1-2} \quad \frac{n_{i j}}{0} \quad \frac{m_{i j}}{10} \quad \frac{d_{i j}}{1}$ $1-30$
1-4
1-5
0
1-6
0
1
1-7
1-8
$1-9$
1-10
0
s
8
0
5
4
0
7
$I_{\text {continued... }}$

Set 6.2a

$i-j$	$n_{i j}$	$m_{i j}$	$d_{i j}$	(b) Spanningtrea
2-3	1	10	. 91	
$2-4$	5	4	. 44	(3) 5 (10) [7) 2
$2-5$ $2-6$	1	11	.92 .92	$T_{.2} \int_{.6} .6$
$2-6$ $2-7$	4	6	. 92	12
$2-8$	2	7	. 78	(5) (8) 7
2-9	0	10	1	S
2-10	3	7	. 7	
3-4	0	10	1	[83
3-5	4	1	. 2	
3-6	2	5	. 71	(1) (9)
3-7	2	6	. 75	(c) A 2-cell orbutios is formed by remoung
3-8	1	5	. 83	the sighest link en the menemal
3-9	1	4	. 8	sparning thes.
3-10	3	3	. 5	(3) (10)
4-5	1	9	. 9	-
4-6	0	11	1	(1)
4-7	3	6	. 67	(5) (8)
4-8	0	9	1	(8) (7)
4-9	0	8	19	
4-10	1	9	. 9	(6)
5-6	2	6	. 75	(1) \times
5-7	2	7	. 78	(1)
5-8	1	5	. 86	
5-9	1	5	. 83	3-cell folution:
5-10	3	4	. 57	(3) (10) (2)
6-7	3	5	. 63	(10) (2)
6-8	1	6		-
$6-9$ $6-10$	2	3 8	.60 .89	(5) (8) (7)
$7-8$	0	9	1	
7-9	1	6	. 86	(1)
7-10	1	9	. 9	(1)
8-9	1	3	. 75	-
$8-10$	2	4	. 67	
9-10	1	5	$.83$	

Set 6.3a

$$
\begin{aligned}
& \equiv \max \left(\log p_{1}+\log p_{2}+\cdots+\log _{n} p\right) \\
& \equiv \min \left(-\log p_{1}-\log p_{2}-\cdots-\log p_{n}\right)
\end{aligned}
$$

Optimum solution by TOR A :

$$
\begin{gathered}
1-2-4-3-6-7 \\
\sum_{i=1}^{7} \log P_{i}=.281286 . \text { Thus, } \\
\sum_{i=1}^{7} \log P_{i}=-.281286 .
\end{gathered}
$$

Hence,

$$
y=10^{-.28128}=.52326
$$

Define
$(i ; j ; k)=$ number of aides toasted of slices 1,2 , and 3

The two time charts below provides a summary of the time's between the successive nodes.

Problem 4 on P. 6-7

the associated neturok is the guerra.

The optimal sequence is $(0,0,0) \rightarrow$ $(1,1,0) \rightarrow(2,1,1) \rightarrow(2,2,2)$. It is interpreted as follows:

- Tout both sides of ellice/ auccesainly (without interruption) si side A.
- Tout side 1 of alice 2 in side B, then remove slice 2.
- Tout both sides of alice 3 in side B
- Toast side 2 of slice 2 si side A aflin slice $/$ is toasted.
Total tine $=106$ seconds.

Summary of the problem date

Setup cost $=\$ 200$

Shortest route: 1-2-3-5
Interpretation' क the olutioni: Order 100 units in Period/, 140 units in Period 2, and 390 units in Period 3. Total cont $=\$ 7896$
Define node (i, v), where i is the item number and ir is the volume remaining before item i is selected. Each arc represents a feasible value of the number of units of item i.

Item i	1	2	3
Volume/ unit	2	3	4
Value/ unit	30	50	70
Total avail de volume	$=5 \mathrm{ft}^{3}$		

He objective is to delermene the longest path between (1,5) and (E Ind). Congest path : $(1,5) \rightarrow(2,3) \rightarrow(3,0) \rightarrow$ End Interpretation of th solution:

Select items 1 and 2 (ore unit each)

$$
\text { Total value }=80
$$

Set 6.3b

shortest distance $=8$: alternative soutes:

$$
\begin{aligned}
& 1-3-6-8 \\
& 1-2-3-6-8 \\
& 1-3-5-6-8 \\
& 1-2-3-5-6-8
\end{aligned}
$$

b) From part (a), shostest didiance between (1) and (6) is 6 . alternativi soutes: 1-3-6

$$
1-3-5-6
$$

$$
1-2-3-6
$$

$$
\text { c) } 5
$$

$$
1-4:\left\{\begin{array}{l}
1-3-4 \\
1-3-2-5-4
\end{array}\right\}
$$

$$
1-6:\left\{\begin{array}{l}
1-3-2-5-6 \\
1-3-2-6
\end{array}\right\}
$$

shortest distance $=8$
Shortest routes:

$$
1-2: 1-3-2
$$

$$
1-3: 1-3
$$

$$
1-5: \quad 1-3-2-5
$$

$[0,-]$ alternativ soutes: $\begin{aligned} 4-5-6-8 \\ 4-6-8\end{aligned}$

$$
1-7:\left\{\begin{array}{l}
1-3-2-5-6-7 \\
1-3-2-6-7
\end{array}\right\} \quad 11
$$

shortest chatance $=5$

$$
\text { alternative }=\left\{\begin{array}{l}
2-3-6 \\
2-3-5-6 \\
2-5-6
\end{array}\right.
$$

Shorteat route: 1-4-6. Cost $\$ \$ 8900$ Buy in $2001 \neq 2004$

3(b)

Solutios: 1-2-4-3-5-6, Rout value $=.281286$ Probalility $=10^{-.281286}=.52326$ 3(c)

Solution: Order in 1 for 1
Order in 2 for 2
Order in 3 for 3 and 4

Set 6.4b
(a) Surplus Capacities:

$$
\begin{array}{ll}
2-3: & 40-0=40 \text { units } \\
2-5: & 30-20=10 \text { units } \\
4-3: & 5-0=5 \text { units }
\end{array}
$$

all other arcs have zero suppers capacities.
(b)

Flow through node $2=20$ units
Flow through node $3=30$ units
Flow through node $4=20$ units
(c)

No, because the arcs out of node I Lave zero sumphis capacity

$f_{3}=1$ unit

$$
[9,2]
$$

$f_{5}=4$ units

Set 6.4b

(8)

Set 6.5b

Set 6.5e

CHAPTER 7

Advanced Linear programming

$$
\begin{aligned}
& Q=\left\{x_{1}, x_{2} \mid x_{1}+x_{2} \leqslant 1, x_{1} \geqslant 0, x_{2} \geqslant 0 \quad \square\right. \\
& \operatorname{Let}\left(\vec{x}_{1}, \vec{x}_{2}\right) \geqslant 0 \text { and }\left(\vec{x}_{1}, \vec{x}_{2}\right) \geqslant 0 \text { be }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Wo distinct points in } Q \text { and defers for } \\
& 0 \leq \lambda \leq 1 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq \lambda \leq 1: \\
& \left(x_{1}, x_{2}\right)=\lambda\left(\bar{x}_{1}, \bar{x}_{2}\right)+(1-\lambda)\left(\overline{\bar{x}}, \overline{\bar{x}_{2}}\right) \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then }, \\
& \begin{aligned}
x_{1}+x_{2} & =\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}+(1-\lambda) \overline{\bar{x}}_{2} \\
& =\lambda\left(\bar{x}_{1}+\bar{x}_{2}\right)+(1-\lambda)\left(\bar{x}_{1}+\bar{x}_{2}\right) \\
& \leq \lambda(1)+(1-\lambda)(1)=1
\end{aligned}
\end{aligned}
$$

which shows that Q is convex.
The requite is tire even withent the nonvegatinty restrictions.

$$
Q=\left\{x_{1}, x_{2} \mid x_{1} \geq 1 \text { or } x_{2} \geq 2\right\}
$$

Let $\left(\bar{x}_{1}, \bar{x}_{2}\right)=(1,0) \in Q$

$$
\left(\overline{\bar{x}}_{1}, \overline{\bar{x}}_{2}\right)=(0,2) \in Q
$$

Consider

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) & =\lambda(1,0)+(1-\lambda)(0, z) \\
& =(\lambda, 2-2 \lambda) \quad 0 \leq \lambda \leq 1
\end{aligned}
$$

For $0<\lambda<1$, we have

$$
\begin{aligned}
& x_{1}=\lambda<1 \\
& x_{2}=2-2 \lambda<2
\end{aligned}
$$

Thus, $\left(x_{1}, x_{2}\right) \notin Q$.

$$
\begin{aligned}
& Q=\left\{x_{1}, x_{2} \mid x_{1}+x_{2} \leq 2, x_{1}, x_{2} \geqslant 0\right\} \\
& \left(\bar{x}_{1}, \bar{x}_{2}\right) \\
& =\lambda_{1}(0,0)+\lambda_{2}(2,0)+\lambda_{3}(0,2) \\
& \\
& \\
& =\left(2 \lambda_{2}, 2 \lambda_{3}\right)
\end{aligned}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3} \geqslant 0$
$\lambda_{1}+\lambda_{2}+\lambda_{3}=1$

$$
\begin{aligned}
E= & \frac{1}{2} A+\frac{1}{2} D \\
G= & \frac{5}{6} B+\frac{1}{6} C \\
F= & \frac{1}{2} E+\frac{1}{2} G \\
= & \frac{1}{2}\left(\frac{1}{2} A+\frac{1}{2} D\right)+ \\
& \frac{1}{2}\left(\frac{5}{6} B+\frac{1}{6} C\right) \\
= & \frac{1}{4} A+\frac{1}{4} D+\frac{5}{12} B+\frac{1}{12} C \\
= & \frac{1}{4}(2,0)+\frac{1}{4}(0,2)+\frac{5}{12}(6,0)+ \\
& \frac{1}{12}(0,6) \\
= & (3,1)
\end{aligned}
$$

(c) $\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{-2}{-1}$

unique solution: $x_{1}<0, x_{2}=0$
(d) $\left(\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{6}{3}$

(e) $\left(\begin{array}{cc}-2 & 4 \\ 1 & -2\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{2}{1}$

No solution.
(f) $\left(\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{1}$

No Solution
(a) $\operatorname{det}\left(P_{1}, P_{2}, P_{3}\right)=\operatorname{det}\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 4 \\ 3 & 1 & 2\end{array}\right)$

$$
=-4 \neq 0 \text {, basis }
$$

(b) $\operatorname{det}\left(P_{1}, P_{2}, P_{4}\right)=\operatorname{det}\left(\begin{array}{lll}1 & 0 & 2 \\ 2 & 2 & 0 \\ 3 & 1 & 0\end{array}\right)$

$$
=-8 \neq 0 \text {, basis }
$$

(c) $\operatorname{det}\left(P_{2}, P_{3}, P_{4}\right)=\operatorname{det}\left(\begin{array}{lll}0 & 1 & 2 \\ 2 & 4 & 0 \\ 1 & 2 & 0\end{array}\right)$
$=0$, not a basis
(d) In This problems, a basis must include exactly 3 independent. vectors.
(a) True
(b) True
(c) True

$$
\begin{aligned}
& B=\left(P_{3}, P_{4}\right)=\left(\begin{array}{cc}
2 & 4 \\
-2 & 6
\end{array}\right) \\
& B^{-1}=\left(\begin{array}{cc}
.3 & -.2 \\
.1 & .1
\end{array}\right), \quad x_{B}=\binom{x_{3}}{x_{4}}, c_{B}=(7.5) \\
& x_{B}=B_{6}^{-1}=\left(\begin{array}{cc}
.3 & -.2 \\
.1 & .1
\end{array}\right)\binom{10}{5}=\binom{2}{1.5} \geqslant\binom{ 0}{0} \\
& C B B^{-1}=(7,5)\left(\begin{array}{cc}
.3 & -.2 \\
.1 & .1
\end{array}\right)=(2.6,-.9) \\
& \left\{z_{j}-c_{j}\right\}_{j=1,2}=(2.6,-.9)\left(\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right)-(1,4) \\
& =(1.5,-.5) \\
& \mathcal{B}^{-1}\left(P_{1} P_{2}\right)=\left(\begin{array}{cc}
-3 & -2 \\
.1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
0 & -5 \\
.5 & 0
\end{array}\right)
\end{aligned}
$$ X_{B} is feasible lur not optimal. Tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	
z	1.5	-.5	0	0	21.5
x_{3}	0	.5	1	0	2
x_{4}	.5	0	0	1	1.5

maximize $z=(5,12,4)\left(\begin{array}{l}x_{1} \\ \text { subject to } \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\left.\begin{array}{rl}
\left(\begin{array}{cccc}
1 & 2 & 1 & 1 \\
2 & -2 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
P_{3} \\
x_{4}
\end{array}\right)=\binom{10}{2} \\
\operatorname{det}\left(P_{3}\right. & P_{4}
\end{array} P_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right) .
$$

$$
\begin{aligned}
& x_{B}=\left(x_{1}, x_{2}, x_{5}\right)^{T}, c_{B}=(2,1,0) \\
& B^{-1}=\left(\begin{array}{lll}
3 & 1 & 0 \\
4 & 3 & 0 \\
1 & 2 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-4 / 5 & 3 / 5 & 0 \\
1 & -1 & 1
\end{array}\right) \\
& C_{B} B^{-1}=(2,1,0)\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-4 / 5 & 3 / 5 & 0 \\
1 & -1 & 1
\end{array}\right) \\
& =(2 / 5,1 / 5,0) \\
& \left(z_{3}-c_{3}, z_{4}-c_{4}\right) \\
& =(2 / 5,1 / 5,0)\left(\begin{array}{cc}
-1 & 0 \\
0 & -1 \\
0 & 0
\end{array}\right)-(0,0) \\
& =(-2 / 5,-1 / 5) \Rightarrow \text { optimal } \\
& B^{-1}\left(\begin{array}{lllll|l}
P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & b
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-4 / 5 & 3 / 5 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{ccccc|c}
3 & 1 & -1 & 0 & 0 & 3 \\
4 & 3 & 0 & -1 & 0 & 6 \\
1 & 2 & 0 & 0 & 1 & 3
\end{array}\right) \\
& =\left(\begin{array}{ccccc|c}
1 & 0 & -3 / 5 & 1 / 5 & 0 & 3 / 5 \\
0 & 1 & 4 / 5 & -3 / 5 & 0 & 6 / 5 \\
0 & 0 & -1 & 1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Feasible

$$
z=C_{B}\left(B^{-1} b\right)=(2,1,0)\left(\begin{array}{c}
3 / 5 \\
6 / 5 \\
0
\end{array}\right)=12 / 5
$$

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	sontini
2	0	0	$-2 / 5$	$-1 / 5$	0	$12 / 5$
x_{1}	1	0	$-3 / 5$	$1 / 5$	0	$3 / 5$
x_{2}	0	1	$4 / 5$	$-3 / 5$	0	$6 / 5$
x_{5}	0	0	-1	1	1	0

$$
\begin{aligned}
& x_{B}=\left(x_{3}, x_{2}, x_{1}\right)^{\top}, c_{B}=\left(c_{2}, c_{2}, c_{1}\right) \\
& c_{B} B^{-1}=\left(0, c_{2}, c_{1}\right)\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)=\left(0, c_{2}-c_{1}, c_{1}\right) \\
& \text { For } x_{3}, x_{1} \text { and }
\end{aligned}
$$

For x_{3}, x_{y}, and x_{5},

$$
\begin{aligned}
\left\{Z_{1}-c_{j}\right\} & =C_{8} B^{-1}\left(P_{3}, P_{4}, P_{3}\right)-(0,0,0) \\
& =C_{B} B^{-1}=C_{B} B^{-1}=\left(0, C_{2}-C_{1}, c_{1}\right)
\end{aligned}
$$

Fromith table an, we lave

$$
\left(0, c_{2}-c_{1}, c_{1}\right)=(0,3,2)
$$

which gives

$$
c_{1}=2
$$

$$
c_{2}=5
$$

Hence,

$$
\begin{aligned}
\text { Optimum } z & =c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} \\
& =2 \times 2+5 \times 6+0 \times 2=34
\end{aligned}
$$

To construct the original problem,

$$
B^{-1}\left(P_{1} P_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)
$$

Thus,

$$
\begin{aligned}
\left(P P_{2}\right) & =B\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Similarly,

$$
b=B\left(\begin{array}{l}
2 \\
6 \\
2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
6 \\
2
\end{array}\right)=\left(\begin{array}{l}
4 \\
6 \\
8
\end{array}\right)
$$

Original model:
Maximize $z=2 x_{1}+5 x_{2}$
subject to

$$
\begin{array}{cl}
x_{1} & \leq 4 \\
x_{2} & \leq 6 \\
x_{1}+x_{2} & \leqslant 8 \\
x_{1}, x_{2} \geq 0 & \\
\hline
\end{array}
$$

All that is needed is ti $\quad 5$
show that the computations' lead to the column under $X_{I I}$.
For $x_{\text {III }}$, we have,

$$
\begin{aligned}
\left\{z_{j}-c_{j}\right\} & =C_{B} B^{-1} I-C_{I I} \\
& =C_{B} B^{-1}-C_{I I}
\end{aligned}
$$

Constraint coefficients

$$
=B^{-1}=B^{-1}
$$

(a) current $B=\left(P, P_{2}\right)$ P_{1} must leave so that b is enclosed between P_{2} and p_{3}, hence yielding feasible values of x_{2} and x_{3}
(b) $B=\left(P_{2} P_{4}\right)$ is a feasible baris

$$
z_{j}-c_{j}=C_{B} B^{-1} P_{j}-c_{j}
$$

Assume for convenience that

$$
B=\left(P_{1}, P_{2}, \ldots, P_{m}\right)
$$

Then, for the basic vectors P_{1}, P_{2}, \ldots, and P_{m}, we Rave

$$
\begin{aligned}
\left\{z_{j}-C_{j}\right\}_{j=1,2, \ldots,} & =C_{B} B^{-1}\left(P_{1}, \ldots, P_{m}\right)-\left(C_{1}, \cdots, C_{m}\right) \\
& =C_{B} B^{-1} B-C_{B} \\
& =C_{B} I-C_{B}=0
\end{aligned}
$$

Let $N B$ represent the pet of nonbasic variables at any iteration. Then

$$
z=z^{*}-\sum_{j \Sigma N B}\left(z_{j}-c_{j}\right) x_{j}
$$

(a) Since

$$
z_{j}-c_{j} \begin{cases}>0 & \text { for max } \\ <0 & \text { for man }\end{cases}
$$

it follows that all $x_{j}=0, j$ NB because if any x_{j}, $j \Sigma N B$ becomes positive $z<Z^{*}$ for max and ' $z>z^{*}$ for mini, which wi not optimal: Thus, $X_{B}=B^{-1} b$ and $x_{j}=0, j \in N B$ shows that the solution is unique.
(b) of $z_{j}-c_{j}=0$ for at least om $j \in N B$, then x_{j} can become based at a value other than zero anthint changing the optimum value of Z.
Thus, alternative optima exist.
starting tableau (max):

	x_{1}	x_{2}	\cdots	$x_{j} \cdots$
x_{n}				
z	$-c_{1}$	$-c_{i} \cdots$	$-c_{j} \cdots$	$-c_{n}$

At the starting iteration:

$$
B=I, \quad C_{B}=0
$$

Hence

$$
\begin{aligned}
\text { Pence } \\
\begin{aligned}
z_{j}-C_{j} & =C_{B} B^{-1} P_{j}-C_{j} \\
& =o\left(B^{-1} P_{j}\right)-C_{j} \\
& =-C_{j}
\end{aligned} \text {. }
\end{aligned}
$$

Starting tableau (asouming max):

	\cdots	x_{j}	\cdots	R_{1}	R_{2}	\cdots	R_{m}	
	\cdots	$-C_{j}$	\cdots	M	M	\cdots	M	0
R_{1}								
\vdots	\cdots	P_{j}	\cdots		I	b		
R_{m}								

$$
\begin{aligned}
B= & B^{-1}=I, C_{B}=(-M,-M, \cdots,-M) \\
C_{B} B^{-1}= & (-M,-M, \cdots,-M) \\
\left\{z_{j}-C_{j}\right\}= & (-M,-M, \cdots,-M)\left(P_{1}, \cdots, P_{n} \mid I\right) \\
& -\left(c_{1}, c_{2}, \cdots, c_{n},-M, \cdots,-M\right) \\
= & \left((-M,-M, \cdots,-M) P_{1}-C_{1}, \cdots,\right. \\
& \left.(-M,-M, \cdots,-M) P_{n}-c_{n}, 0, \cdots, 0\right)
\end{aligned}
$$

which yields the following tableau

\ldots	x_{j}	R_{1}	\cdots	R_{m}
$\cdots(-M, \cdots,-M) P_{j}-C_{j}$	\cdots	0	\cdots	0

Set 7.2a

The vectors

$\binom{c_{k}}{p_{k}}$ and $\binom{-c_{k}}{-p_{k}}$
correspond to x_{k}^{-}and x_{k}^{+}, respectively.
Assume that both x_{k}^{-}and x_{k}^{+}are nonbsic, and let \mathbf{B} and $\mathbf{c}_{\mathbf{B}}$ correspond to the current solution. Then
$z_{k}^{-}-c_{k}^{-}=\mathbf{c}_{B} \mathbf{B}^{-1} \mathbf{P}_{k}-c_{k}$
$z_{k}^{+}-c_{k}^{+}=-\mathbf{c}_{B} \mathbf{B}^{-1} \mathbf{P}_{k}+c_{k}=-\left(z_{k}^{-}-c_{k}^{-}\right)$

Thus, if x_{k}^{-}is a candidate for entering the basic solution, then x_{k}^{+}cannot be an entering candidate, and vice versa.

If $z_{k}^{+}-c_{k}^{+}=\left(z_{k}^{-}-c_{k}^{-}\right)=0$, then possibly one of the two variables may enter the basic solution to provide an alternative optimum. The two variables cannot be basic simultaneously because a basis B cannot include two dependent vectors \mathbf{P}_{k} and $-\mathbf{P}_{k}$

To show that the two variables cannot replace one another in alternative optima, assume that x_{k}^{-}is basic in the optimum solution. Then
$\mathbf{B}^{-1} \mathbf{P}_{k}=(0, \ldots, 1, \ldots, 0)^{T}$
$\mathbf{B}^{-1}\left(-\mathbf{P}_{k}\right)=(0, \ldots,-1, \ldots, 0)^{T}$

According to the feasibility condition, x_{k}^{+} cannot replace x_{k}^{-}because the corresponding pivot element $\mathbf{B}^{-1}\left(-\mathbf{P}_{k}\right)$ is negative, unless $x_{k}^{-}=0$, which is a trivial case.

Number of nonbasic variables $=n-m$. In the case of nondegeneracy, each entering nonbasic variable will be associated with a distinct adjacent extreme point. In the case of degeneracy, an entering nonbasic variable can result in a different basic solution without changing the extreme point itself. In this situation, the number of adjacent extreme points in less than $n-m$.

Let $x_{k}=d_{k}(\geq 0)$ represent the current basic solution. Then, the new basic solution after x_{j} enters and x_{r} leaves is
$x_{j}=\frac{d_{r}}{\left(\mathbf{B}^{-1} \mathbf{P}_{j}\right)_{r}}=\frac{0}{\left(\mathbf{B}^{-1} \mathbf{P}_{j}\right)_{r}}=0$, provided $\left(\mathbf{B}^{-1} \mathbf{P}_{j}\right)_{r} \neq 0$
$x_{k}^{j}=d_{k}-x_{j}\left(\mathbf{B}^{-1} \mathbf{P}_{j}\right)_{k}$, all basic $x_{k}, k \neq j$
The last equation is independent of $\left(\mathbf{B}^{-1} \mathbf{P}_{j}\right)_{k}$ for all k, because $x_{j}=0$. Hence, x_{k}^{\prime} remains feasible for all k.

1. If the minimum ratio corresponds to more than one basic variable, the next iteration is degenerate.
2. If x_{j} is the entering variable and if the basic variable x_{j} is zero, the next iteration will continue to be degenerate if $\left(\mathbf{B}^{-1} \mathbf{P}_{\mathrm{j}}\right)_{k}>0$.
3. Iffor every zero basic variable, $x k$, the pivot element $\left(\mathbf{B}^{-1} \mathbf{P} j\right)_{k} \leq$, then the next iteration will not be degenerate.

Under nondegeneracy:
number of extreme posits $=$ nusibber of basic sentimo
Under degeneracy:
number of extreme points
$<$ number of basic solutions
(a) $x_{j}=\theta=\frac{x_{r}}{\left(B^{-1} P_{j}\right)_{r}},\left(B^{-1} P_{j}\right)_{r}>0$

For P_{j}, we have

$$
\frac{\text { new } x_{j}}{\text { ald } x_{j}}=\frac{\frac{x_{n}}{\alpha\left(B^{-1} P_{j}\right)_{n}}}{\frac{x_{R}}{\left(B^{-1} P_{j}\right)_{n}}}=\frac{1}{\alpha}
$$

(b)
$\frac{\text { new } x_{j}}{\text { old } x_{j}}=\frac{\frac{\beta\left(B^{-1} b\right)_{r}}{\alpha\left(B^{-1} P_{j}\right)_{r}}}{\frac{\left(B^{-1} b\right)_{n}}{\left(B^{-1} P_{j}\right)_{r}}}=\frac{\beta}{\alpha}$

$$
\begin{aligned}
\operatorname{New}\left(z_{j}-c_{j}\right) & =c_{B}\left(\frac{1}{\beta} B^{-1} P_{j}\right)-\frac{1}{\beta} c_{j} \\
& =\frac{1}{\beta}\left(C_{B} B^{-1} P_{j}-c_{j}\right) \\
& =\frac{1}{\beta}\left(\operatorname{old} z_{j}-c_{j}\right), \beta>0
\end{aligned}
$$

Conclureron: x_{j} semausis nonbiacei
a vaualle x_{j} can be made profitable either by increasing c_{j}. σ by decreasing z_{j}. (which in the unit usage of resources by activity $j)$. Of come, a combination of the two changes will work as well.

$$
\begin{aligned}
& C_{B}=\left(C_{1}, C_{2}, \cdots, C_{m}\right) \\
& B=\left(P_{1}, P_{2}, \cdots, P_{m}\right)
\end{aligned}
$$

For the baric varubles

$$
\begin{aligned}
z_{j}-C_{j} & =C_{B} B^{-1}\left(P_{1}, \ldots, P_{m}\right)-\left(c_{1}, \cdots, c_{m}\right) \\
& =C_{B} B^{-1} B-C_{B} \\
& =C_{B} I-C_{B}=Q
\end{aligned}
$$

Thus, for the basic variable, $z_{j}-c_{j}=0$ regardless of the specific assignment to the vector C_{B} (e.g., D_{B}).
this result imphes that changes in C_{B} cannot affect the optimality of the baric variable surice these variables are already basic. If may, however, cause a nonbasic variable to become baric.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	1
z	0	$-2 / 3$	$5 / 6$	0	0	0	20
x_{1}	$2 / 3$				4		
x_{4}	$4 / 3$				2		
x_{5}	$5 / 3$				5		
x_{6}	1				2		

(a) Ster ting iteration:

Let x_{4} and x_{5} be the alack.

$$
x_{B}=\left(x_{4}, x_{5}\right)^{\top}, C_{B}=(0,0), B=B^{-1}=I
$$

First iteration:

$$
\begin{gathered}
C_{B} B^{-1}=(0,0) \\
\left(z_{j}-C_{j}\right)_{j=1,2,3}=(0,0)\left(\begin{array}{cc}
2 & -1 \\
1 & 2 \\
4
\end{array}\right)-(6,-2,3) \\
=(-6,2,-3) \Rightarrow x_{1} \text { enters } \\
x_{B}=B^{-1} b=I b=b=\binom{2}{4} \\
\alpha^{\prime}=B^{-1} P=P=\binom{2}{1} \\
\theta=\min _{k=4,5}\{2 / 2,4 / 1\}=1 \\
B_{\text {next }}^{-1}=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 1
\end{array}\right) \\
x_{B}=\left(x_{1}, x_{5}\right)^{\top}=(1,3)^{\top}
\end{gathered}
$$

Second iteration:

$$
\begin{aligned}
& C_{B} B^{-1}=(6,0)\left(\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 1
\end{array}\right)=(3,0) \\
& \left(3-C_{j}\right)_{j=2,3,4}=(3,0)\left(\begin{array}{cc}
-1 & 2 \\
0 & 4
\end{array}\right)-(-3,3,0) \\
& =(-1,3,3) \Rightarrow x_{2} \text { enters } \\
& x_{B}=\binom{x_{1}}{x_{5}}=\left(\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 1
\end{array}\right)\binom{2}{4}=\binom{1}{3} \\
& \alpha^{2}=B^{-1} P_{2}=\left(\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 1
\end{array}\right)\binom{-1}{0}=\binom{-1 / 2}{1 / 2} \\
& \theta=\text { min }\left\{-, \frac{3}{1 / 2}\right\}=6 \Rightarrow x_{6} \text { leaves } \\
& B_{\text {next }}^{-1}=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right) \\
& x_{B}=\left(x_{1}, x_{2}\right)^{T}=(4,6)^{\top}, C_{B}=(6,-2)
\end{aligned}
$$

Thin iruatin:

$$
\begin{gathered}
\begin{array}{c}
G_{B}^{-1}= \\
(6,-2)
\end{array}\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)=(2,2) \\
\left(\mathcal{f}_{j}-c_{j}\right)_{j=3,4,5}(2,2)\left(\begin{array}{cc}
2 & 1 \\
4 & 0
\end{array}\right)-(3,0,0) \\
=(9,2,2) \Rightarrow \text { optimal }
\end{gathered}
$$

Qetemal section:

$$
\begin{aligned}
& \text { puma dentren } \\
& x_{B}=\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
0 & 1 \\
-1 & 2
\end{array}\right)\binom{2}{4}=\binom{4}{6} \\
& z=C_{B} x_{B}=6 \times 4+(-2)(6)=12
\end{aligned}
$$

(b)

Starting iteration: bet x_{4}, x_{8}, and x_{6} be the slack variables.

$$
X_{B}=\left(x_{4}, x_{5}, x_{6}\right)^{\top}, \mathcal{C}=(0,0,0), B=B_{B^{-1}=I}
$$

First iteration: $\mathcal{B} B^{-1}=(0,0,0)$

$$
\begin{aligned}
&\left(B_{j}-c_{1} \cdot\right)_{j=1,2,3}=(0,0,0)\left(\begin{array}{ccc}
4 & 3 & 8 \\
4 & 1 & 12 \\
3
\end{array}\right)-(2,1,2) \\
&=(-2,-1,-2) \Rightarrow x, \text { enters } \\
& X_{B}=B^{-1} b=I 6=6=(12,8,8)^{T} \\
& \alpha^{\prime}=B^{-1} P_{1}=P_{1}=(4,4,4)^{\top} \\
& \theta=\min _{k=9,6}\left\{\frac{12}{4}, \frac{8}{4}, \frac{8}{4}\right\}=2 \Rightarrow x_{5} \text { lares } \\
& B_{\text {next }}^{-1}=\left(\begin{array}{lll}
1 & 4 & 0 \\
0 & 4 & 0 \\
0 & 4 & 1
\end{array}\right)^{-1}=\left(\begin{array}{lll}
1 & -1 & 0 \\
0 & 1 / 4 & 0 \\
0 & -1 & 1
\end{array}\right) \\
& X_{B}=\left(x_{4}, x_{1}, x_{6}\right), C_{B}=(0,2,0)
\end{aligned}
$$

fend iteration: $\varepsilon_{B} E^{-1}=(0,1 / 1,0)$

$$
\begin{aligned}
& \left(3,-c_{j}\right)_{j=2,3,5}=(0,1 / 2,0)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 / 4 & 0 \\
0 & -1 & 1
\end{array}\right)-(1,2,0) \\
& =(-1 / 2,4,1 / 2) \Rightarrow x_{2} \text { enters } \\
& X_{B}=\left(\begin{array}{l}
x_{4} \\
x_{1} \\
x_{6}
\end{array}\right)=B^{-1} b=\left(\begin{array}{lll}
1 & -1 & 0 \\
0 & 1 / 4 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
12 \\
8 \\
8
\end{array}\right)=\left(\begin{array}{l}
4 \\
2 \\
0
\end{array}\right) \\
& \alpha^{2}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 / 4 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 \\
1 / y \\
-2
\end{array}\right) \\
& \theta=\min _{k=4,1,6}=\left\{\frac{4}{2}, \frac{2}{1 / 4},-\right\}=2, x_{4} \text { leaves } \\
& \mathcal{B}_{\text {next }}^{-1}=\left(\begin{array}{ccc}
3 & 4 & 0 \\
1 & 4 & 0 \\
-1 & 4 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 8 & 3 / 8 & 0 \\
1 & -2 & 1
\end{array}\right) \\
& x_{B}=\left(x_{2}, x_{1}, x_{6}\right)^{\top}, C_{B}=(1,2,0)
\end{aligned}
$$

Thind ithation: $\mathscr{B}^{-1}=(1 / 4,1 / 4,0)$
$(3,-5)_{j=3,4,5}=(1 / 4,1 / 4,0)\left(\begin{array}{lll}8 & 1 & 0 \\ 3 & 0 & 1 \\ 3 & 0 & 0\end{array}\right)-(2,40)$

$$
=(3,1 / 4,1 / 4) \Rightarrow \text { optimal. }
$$

Qetemabsolution:

$$
\begin{aligned}
& x_{B}=\left(\begin{array}{l}
x_{2} \\
x_{1} \\
x_{6}
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 8 & 3 / 8 & 0 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
12 \\
8 \\
8
\end{array}\right)=\left(\begin{array}{c}
2 \\
3 / 2 \\
4
\end{array}\right) \\
& z=2 \times 3 / 2+1 x^{2}+2 \times 0=5
\end{aligned}
$$

(c)

Addenig antificials, wie get $\min g=2 x_{1}+x_{2}+M x_{y}+M x_{5}$

$$
\begin{aligned}
& \min z=2 x_{1}+x_{2}+M x_{y}+M y \\
& \operatorname{s+0} \\
& \left(\begin{array}{lll|lll}
3 & 1 & 0 & 1 & 0 & 0 \\
4 & 3 & -1 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
x_{2} \\
\vdots \\
x_{6}
\end{array}\right)=\binom{6}{3}
\end{aligned}
$$

where x_{3} and x_{6} are relacted, and x_{4} and x_{5} ane aififutials.
starting oblition:

$$
\begin{aligned}
& X_{B}=\left(x_{4}, x_{5}, x_{6}\right), C_{B}=(M, M, 0) \\
& B=B^{-1}=I \\
& \text { Firstithation: } \mathcal{C}_{8} G^{-1}=(M, M, 0) \\
& \begin{array}{c}
\left(B_{j}-C_{j}\right)_{j=12}
\end{array}=(M, M, 0)\left(\begin{array}{ll}
3 & 1 \\
4 & \frac{3}{2} \\
1 & -1 \\
1
\end{array}\right)-(2,1,0) \\
& =(-2+7 M,-1+4 M,-M)
\end{aligned}
$$

Thas, x, enters.

$$
\begin{aligned}
& \theta=\operatorname{mix}_{K=4,5,6}\left\{\frac{3}{3}, \frac{6}{4}, \frac{3}{1}\right\}=1 \Rightarrow x_{4} \text { leaves } \\
& B_{\text {nexp }}^{-1}=\left(\begin{array}{lll}
3 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
-4 / 3 & 1 & 0 \\
-1 / 3 & 0 & 1
\end{array}\right) \\
& x_{B}=\left(x_{1}, x_{5}, x_{6}\right)^{T}, C_{B}=(2, M, 0)
\end{aligned}
$$

Seand itwation: $C_{B} S^{-1}=\left(\frac{2-4 M}{1}, M, 0\right)$

$$
\begin{aligned}
(3-5))_{j=33,4} & =\left(\frac{2-4 M}{3}, M, 0\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
3 & -1 & 0
\end{array}\right)^{3}-(1,0,0) \\
& =\left(\frac{5 M-1}{3},-M, \frac{2-4 M}{3}\right) \Rightarrow x_{2} \text { enters }
\end{aligned}
$$

$$
x_{B}=\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
1 / 3 & 0 & 1
\end{array}\right)\binom{3}{6}=\binom{1}{\frac{2}{2}}
$$

$$
\alpha^{2}=\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
-1 / 3 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{c}
1 / 3 \\
5 / 3 \\
5 / 3
\end{array}\right)
$$

$\theta=\min _{k=15,6}\left\{\frac{1}{1 / 3}, \frac{2}{5 / 3}, \frac{2}{5 / 3}\right\} \Rightarrow x_{5}$ leaves

$$
\begin{aligned}
& B_{\text {next }}^{-1}=\left(\begin{array}{lll}
3 & 1 & 0 \\
4 & 3 & 0 \\
1 & 2 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
3 / 5 \\
-4 / 5 & -1 / 5 & 0 \\
1 & -1 & 0
\end{array}\right) \\
& x_{B}=\left(x_{1}, x_{2}, x_{6}\right)^{\top}, 8=(2,1,0)
\end{aligned}
$$

orind itwation: $G_{B} \mathcal{B}^{-1}=(2 / 5,1 / 5,0)$

$$
\begin{aligned}
\left(z_{j}-c_{j}\right)_{j=3, ~} & =(2 / 5,1 / 5,0)\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)-(0, M, M) \\
& =(-1 / 5,2 / 5-M, 1 / 5-M)
\end{aligned}
$$

\Rightarrow optermal soluteni.
Qptimal soluters:

$$
X_{B}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{6}
\end{array}\right)=\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-1 / 5 & 3 / 5 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
6 \\
3
\end{array}\right)=\left(\begin{array}{c}
3 / 5 \\
6 / 5 \\
0
\end{array}\right)
$$

$$
z=2 \times \frac{3}{5}+1 \times \frac{6}{5}=12 / 5
$$

(d)

Minimize $z=5 x_{1}-4 x_{2}+6 x_{3}+8 x_{y}+M x_{8}$
suffict to

$$
\begin{aligned}
& \quad x_{1}+7 x_{2}+3 x_{3}+7 x_{4}+x_{6}=46 \\
& 3 x_{1}-x_{2}+x_{3}+2 x_{4}+x_{7}=20 \\
& 2 x_{1}+3 x_{2}-x_{3}+x_{4}-x_{5}+x_{8}=18 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \geqslant 0
\end{aligned}
$$

Iteration 0:

$$
\begin{aligned}
& \quad x_{B}=\left(x_{6}, x_{7}, x_{8}\right), C_{B}=(0,0, M), B_{0}=B_{0}^{-1}=7 \\
& \left\{Z_{j}-C_{j}\right\}_{j}=1,2,3,4,5 \\
& =(0,0, M)\left(\begin{array}{ccccc}
1 & 7 & 3 & 7 & 0 \\
3 & -1 & 1 & 2 & 0 \\
2 & 3 & -1 & 1 & -1
\end{array}\right)-(5,-4,6,8,0) \\
& =(2 M-5,3 M+4,-M-6, M-8,-M)
\end{aligned}
$$

x_{2} enters

$$
\begin{aligned}
& x_{2} \text { enters } \\
& {B^{\prime} P_{2}}_{-1}=\left(\begin{array}{c}
7 \\
-1 \\
3
\end{array}\right), B^{-1} b=\left(\begin{array}{c}
46 \\
20 \\
18
\end{array}\right), \theta=\min \left\{\frac{46}{7},-\left(\frac{18}{3}\right\}\right. \\
& x_{1} \text { le a }
\end{aligned}
$$

x_{8} leaves

$$
\begin{aligned}
& B_{1}=\left(\begin{array}{ccc}
1 & 0 & 7 \\
0 & 1 & -1 \\
0 & 0 & 3
\end{array}\right), B_{1}^{-1}=\left(\begin{array}{ccc}
1 & 0 & -7 / 3 \\
0 & 1 & 1 / 3 \\
0 & 0 & 1 / 3
\end{array}\right) \\
& x_{B_{1}}=\left(\begin{array}{l}
x_{6} \\
x_{7} \\
x_{2}
\end{array}\right)=B_{1}^{-1} b=\left(\begin{array}{c}
4 \\
26 \\
6
\end{array}\right)_{\text {continued... }}
\end{aligned}
$$

iteration 1:

$$
\begin{aligned}
& x_{B}=\left(x_{6}, x_{7}, x_{2}\right)^{\top}, C_{B}=(0,0,-4) \\
& C_{B} B^{-1}=(0,0,-4 / 3) \\
& \left\{2,-C_{j}\right\}_{1,3,4,5} \\
& =(0,0,-4 / 3)\left(\begin{array}{ccc}
1 & 3 & 0 \\
3 & 1 & 0 \\
2 & -1 & -1
\end{array}\right)-(5,6,8,0) \\
& =(-23 / 3,-30 / 3,-28 / 3,4 / 3)
\end{aligned}
$$

x_{5} enters

$$
B_{1}^{-1} P_{5}=\left(\begin{array}{c}
\overline{7 / 3} \\
-1 / 3 \\
-1 / 3
\end{array}\right), \quad B_{1}^{-1} b=\left(\begin{array}{c}
4 \\
26 \\
6
\end{array}\right)
$$

x_{6} leaves
Iteration 2:

$$
\begin{aligned}
& x_{B}=\left(x_{5}, x_{7}, x_{2}\right)^{\top}, C_{B}=(0,0,-4) \\
& B_{2}=\left(\begin{array}{ccc}
0 & 0 & 7 \\
0 & 1 & -1 \\
-1 & 0 & 3
\end{array}\right), B_{2}^{-1}=\left(\begin{array}{ccc}
3 / 7 & 0 & 0 \\
1 / 7 & 1 & 0 \\
1 / 7 & 0 & 1
\end{array}\right) \\
& x_{B_{2}}=\left(\begin{array}{l}
x_{5} \\
x_{7} \\
x_{2}
\end{array}\right)=B^{-1} b=\left(\begin{array}{c}
12 / 7 \\
186 / 7 \\
46 / 7
\end{array}\right) \\
& G B^{-1}=(-4 / 7,0,0) \\
& \left(z_{j}-c_{j}\right\}_{1,3}, 4,6 \\
& =(-4 / 7,0,0)\left(\begin{array}{cccc}
1 & 3 & 7 & 1 \\
3 & 1 & 2 & 0 \\
2 & -1 & 1 & 0
\end{array}\right)-(5,6,8,0) \\
& =(-39 / 7,-54 / 7,-12,-4 / 7) \text { optimum } \\
& x_{B_{2}}=\left(x_{5}, x_{7}, x_{2}\right)^{\top}=(12 / 7,186 / 7,46 / 7) \\
& Z=-184 / 7
\end{aligned}
$$

Steration 0:

$$
\begin{aligned}
& X_{B_{0}}=\left(x_{2}, x_{4}, x_{5}\right)^{\top}, C_{B}=(7,-10,0) \\
& B_{0}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), B_{0}^{-1}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{B}=\left(\begin{array}{l}
x_{2} \\
x_{4} \\
x_{5}
\end{array}\right)=B_{0}^{-1} b=\left(\begin{array}{l}
2 \\
6 \\
4
\end{array}\right) \\
& C_{B} B_{0}^{-1}=(7,-10,0)\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right)=(17,7,-17) \\
& \left\{z_{j}-C_{j}\right\}_{j=1,3,6} \\
& =(17,7,-17)\left(\begin{array}{ccc}
0 & -1 & 1 \\
0 & -1 & 3 \\
1 & -3 & 0
\end{array}\right)-(0,11,26) \\
& =(-17,16), 12) \quad x_{3} \text { enters } \\
& B_{0}^{-1} b=\left(\begin{array}{l}
2 \\
6 \\
4
\end{array}\right), B_{0}^{-1} P_{3}=\left(\begin{array}{c}
11 \\
-2 \\
-2
\end{array}\right) x_{2} \text { leaves }
\end{aligned}
$$

Iteration 1:

$$
\begin{aligned}
& x_{B_{1}}=\left(x_{3}, x_{4}, x_{5}\right)^{\top}, C_{B}=(11,-10,0) \\
& B_{1}=\left(\begin{array}{lll}
-1 & 0 & 1 \\
-1 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right), B_{1}^{-1}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 2 & -1 \\
2 & 1 & -1
\end{array}\right) \\
& X_{B}=B_{1}^{-1} b=\left(\begin{array}{c}
2 \\
10 \\
8
\end{array}\right) \\
& C_{B} B_{1}^{-1}=(11,-10,0)\left(\begin{array}{lll}
1 & 1 & -1 \\
1 & 2 & -1 \\
2 & 1 & -1
\end{array}\right)=(1,-9,-1) \\
& \left\{2 j-C_{j}\right\}_{1,2,6} \\
& =(1,-9,-1)\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 3 \\
1 & 1 & 0
\end{array}\right)-(0,7,26) \\
& =(-1,-16,-52) \Rightarrow \text { optimum } \\
& x_{B_{1}}=\left(x_{3}, x_{4}, x_{5}\right)^{\top}=(2,10,8)^{\top} \\
& z=-78 \\
& \text { (a) Minimize } z=2 x_{1}+x_{2}+M\left(x_{4}+x_{5}\right) \\
& \text { subject to } \\
& 3 x_{1}+x_{2}+x_{4}=3 \\
& 4 x_{1}+3 x_{2}-x_{3}+x_{5}=6 \\
& x_{1}+2 x_{2} \quad+x_{6}=3 \\
& \text { Phase I: } x_{1}, \ldots, x_{6} \geqslant 0
\end{aligned}
$$

Qevaton O:

$$
\begin{aligned}
& x_{B}=\left(x_{4}, x_{5}, x_{6}\right)^{\top}, C_{B}=(1,1,0) \\
& B_{0}^{-1}=I, C B^{-1}=(1,1,0)
\end{aligned}
$$

$\left\{z_{j}-c_{j}\right\}_{1,2,3}$
$=(1,1,0)\left(\begin{array}{ccc}3 & 1 & 0 \\ 4 & 3 & -1 \\ 1 & 2 & 0\end{array}\right)-(0,0,0)$
$=\left([7,4,-1), x_{1}\right.$ enters

$$
B_{0}^{-1} P_{1}=B_{0}^{-1}\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right), B_{0}^{-1} b=\left(\begin{array}{l}
3 \\
6 \\
3
\end{array}\right)
$$

$\theta=\min \left\{\frac{3}{3}, \frac{6}{4}, \frac{3}{1}\right\} \Rightarrow x_{4}$ leaves
Iteration 1:

$$
\begin{aligned}
& x_{B}=\left(x_{1}, x_{5}, x_{6}\right), \mathscr{B}_{B}=(0,1,0) \\
& B_{1}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), B^{-1}=\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
-4 / 3 & 1 & 0 \\
-1 / 3 & 0 & 1
\end{array}\right) \\
& x_{B}=\left(\begin{array}{l}
x_{1} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \\
& C_{B} B_{1}^{-1}=(-4 / 3,1,0) \\
& \left\{z_{j}-c_{j}\right\}_{2,3,4} \\
& =(-4 / 3,1,0)\left(\begin{array}{ccc}
1 & 0 & 1 \\
3 & -1 & 0 \\
2 & 0 & 0
\end{array}\right)-(0,0,1) \\
& =(\sqrt{5 / 3},-1,-7 / 3) \\
& B_{2}^{-1} P_{2}=B_{1}^{-1}\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{c}
1 / 3 \\
5 / 3 \\
5 / 3
\end{array}\right), \\
& B_{1}^{-1} b=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \\
& \theta=\text { min }\left\{\begin{array}{l}
1 \\
1 / 3
\end{array}, \frac{2}{5 / 3}, \frac{2}{5 / 3}\right\}, x_{5} \text { leaves }
\end{aligned}
$$

SHeraton 2:

$$
\begin{aligned}
& x_{B}=\left(x_{1}, x_{2}, x_{6}\right)^{\top}, C_{B}=(0,0,0) \\
& B_{2}=\left(\begin{array}{lll}
3 & 1 & 0 \\
4 & 3 & 0 \\
1 & 2 & 1
\end{array}\right), B_{2}^{-1}=\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-4 / 5 & 3 / 5 & 0 \\
1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Since X_{B} does not include the artificial X_{4} and X_{5}, we can use to start Phase II.

Phase II: objective max $z=2 x_{1}+x_{2}$
Iteration o:

$$
\begin{aligned}
& X_{B}=\left(x_{1}, x_{2}, x_{6}\right), \quad C_{B}=(2,1,0) \\
& B_{0}^{-1}=\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-4 / 5 & 3 / 5 & 0 \\
1
\end{array}\right) \\
& x_{B}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{6}
\end{array}\right)=B_{2}^{-1} b=\left(\begin{array}{ccc}
13 / 5 & -1 / 5 & 0 \\
-4 / 5 & 3 / 5 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
6 \\
3
\end{array}\right)=\left(\begin{array}{c}
3 / 5 \\
6 / 5 \\
0
\end{array}\right) \\
& C_{B} B^{-1}=(2,1,0)\left(\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-4 / 5 & 3 / 5 & 0 \\
1 & 1 & 1
\end{array}\right)=(2 / 5,1 / 5,0) \\
& \left\{z_{j}-C_{j}\right\}_{j=3}=(2 / 5,1 / 5,0)\binom{0}{-1}-0=-1 / 5 \\
& x_{3} \text { enters }
\end{aligned}
$$

x_{3} enters

$$
B_{0}^{-1} P_{3}=\left(\begin{array}{c}
1 / 5 \\
-3 / 5 \\
1
\end{array}\right), B_{0}^{-1} b=\left(\begin{array}{c}
3 / 5 \\
6 / 5 \\
0
\end{array}\right)_{x_{6}} \text { leaves }
$$

Iteration 1:

$$
\begin{aligned}
& x_{B}=\left(x_{1}, x_{2}, x_{3}\right), \mathscr{B}_{B}=(2,1,0) \\
& B_{1}=\left(\begin{array}{ccc}
3 & 1 & 0 \\
4 & 3 & -1 \\
1 & 2 & 0
\end{array}\right), B_{1}^{-1}=\left(\begin{array}{ccc}
2 / 5 & 0 & -1 / 5 \\
-1 / 5 & 0 & 3 / 5 \\
1 & -1 & 1
\end{array}\right) \\
&\left\{z_{j}-c_{j}\right\}_{j=6} \\
&=(3 / 5,0,1 / 5)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-0=1 / 5>0
\end{aligned}
$$

optennusa!

$$
x_{B}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
2 / 5 & 0 & -1 / 5 \\
-1 / 5 & 0 & 3 / 5 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
6 \\
3
\end{array}\right)=\left(\begin{array}{c}
3 / 5 \\
6 / 5 \\
0
\end{array}\right)
$$

$$
z=12 / 5
$$

minimize $z=3 x_{1}+2 x_{2}$
subject to

$$
\begin{aligned}
-3 x_{1}-x_{2}+x_{3} & =-3 \\
-4 x_{1}-3 x_{2}+x_{4} & =-6 \\
x_{1}+x_{2}+x_{5} & =3
\end{aligned}
$$

Iteration 0:

$$
x_{B}=\left(\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right), \quad B_{0}=B_{0}^{-1}=I
$$

$$
\begin{aligned}
& X_{B}=\left(\begin{array}{c}
-3 \\
6 \\
3
\end{array}\right) \Longrightarrow x_{4} \text { leaves } \\
& C_{B}=(0,0,0), C_{B} B^{-1}=(0,0,0) \\
& \left\{z_{j}-C_{j} \cdot\right\} 1,2 \\
& =(0,0,0)\left(\begin{array}{cc}
-3 & -1 \\
-4 & -3 \\
1 & 1
\end{array}\right)-(3,2)=(-3,-2) \\
& \text { (row } \left.2 \text { of } B_{0}^{-1}\right)\left(\begin{array}{l}
P_{1}
\end{array} P_{2}\right) \\
& =(0,1,0)\left(\begin{array}{cc}
-3 & -1 \\
-4 & -3 \\
1 & 1
\end{array}\right)=(-4,-3) \\
& \theta=\min _{j=1,2}\left\{\left|\frac{-3}{-4}\right|,\left|\frac{-2}{-3}\right|\right\}=2 / 3 \Rightarrow x_{2} \text { enters }
\end{aligned}
$$

Iteration 1:

$$
\begin{aligned}
& x_{B}=\left(\begin{array}{l}
x_{3} \\
x_{2} \\
x_{5}
\end{array}\right), B_{1}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & -3 & 0 \\
0 & 1 & 1
\end{array}\right), B_{1}^{-1}=\left(\begin{array}{ccc}
1 & -1 / 3 & 0 \\
0 & -1 / 3 & 0 \\
0 & 1 / 3 & 1
\end{array}\right) \\
& \begin{aligned}
x_{B} & =\left(\begin{array}{l}
x_{3} \\
x_{2} \\
x_{5}
\end{array}\right)
\end{aligned}=B_{1}^{-1} b \\
& \\
& =\left(\begin{array}{ccc}
1 & -1 / 3 & 0 \\
0 & -1 / 3 & 0 \\
0 & 1 / 3 & 1
\end{array}\right)\left(\begin{array}{l}
-3 \\
-6 \\
3
\end{array}\right)=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) \\
& x_{3} \text { tares } \\
& C_{B}
\end{aligned}=(0,2,0) .
$$

(now of $\left.B_{1}^{-1}\right)\left(P_{1} P_{4}\right)$

$$
\begin{gathered}
=(1,-1 / 3,0)\left(\begin{array}{cc}
-3 & 0 \\
-4 & 1 \\
1
\end{array}\right)=(-5 / 3,-1 / 3) \\
\Theta=\min _{j=1,4}\left\{\left|\frac{-1 / 3}{-5 / 3}\right|,\left|\frac{-2 / 3}{-1 / 3}\right|\right\}=1 / 5 \\
x, \text { enters }
\end{gathered}
$$

Iteration 2:

$$
\begin{aligned}
x_{B} & =\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{5}
\end{array}\right) \\
B_{2} & =\left(\begin{array}{ccc}
-3 & -1 & 0 \\
-4 & -3 & 0 \\
1 & 1 & 1
\end{array}\right) \\
B_{2}^{-1} & =\left(\begin{array}{ccc}
-3 / 5 & 1 / 5 & 0 \\
4 / 5 & -3 / 5 & 0 \\
-1 / 5 & 2 / 5 & 1
\end{array}\right) \\
x_{B} & =B_{2}^{-1} b \\
& =\left(\begin{array}{ccc}
-3 / 5 & 1 / 5 & 0 \\
4 / 5 & -3 / 5 & 0 \\
-1 / 5 & 2 / 5 & 1
\end{array}\right)\left(\begin{array}{c}
-3 \\
-6 \\
3
\end{array}\right) \\
& =\left(\begin{array}{c}
3 / 5 \\
6 / 5 \\
6 / 5
\end{array}\right)
\end{aligned}
$$

Feasible!

$$
2=3 \times 3 / 5+2 \times 6 / 5=21 / 5
$$

a)

b)

Iteration 1: x_{1} enters

	x_{1}	x_{2}	x_{3}	solution
z	-2	-1	0	0
x_{3}	1	1	1	3

$$
\theta=\min \{3 / 1,-, 2\}=2
$$

substitute x_{1} at it spice bound: $x_{1}=2-x_{1}^{\prime}$

	x_{1}^{\prime}	x_{2}	x_{3}	solution
z	2	-1	0	2
x_{3}	-1	1	1	1

this solution $\left(x_{1}=2, x_{2}=0\right)$ coincides with point B in th Solution space above. The solution now has $x_{1}^{\prime}=0$, which implies that $x_{1}=2$, then reducing the solution space to line segment BC. Iteration 2 $=x_{2}$ enters

$$
\theta=\min \{1 / 1,-, 2\}=1
$$

	x_{1}^{\prime}	x_{2}	x_{3}	solutani
z	1	0	1	3
x_{2}	-1	1	1	1

Optimum: $x_{1}^{\prime}=0 \Rightarrow x_{1}=2, x_{2}=1$ which is the same as point C.
c) As athous is (b) above, the substitution of the upper-bounding method recognizes. the extreme point implicitly by using the substitution

$$
x_{j}=\mu_{j} \cdot-x_{j}!
$$

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	1	1
8	-6	-2	-8	-4	-2	-10	0	0
x_{1}	8	1	8	2	2	4	1	13

x_{6} enters: $\theta=\min \{13 / 4 ;-1\}=1$

$$
x_{6}=1-x_{6}^{\prime}
$$

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}^{\prime}	x_{7}	
z	-6	-2	-8	-4	-2	10	0	10
x_{7}	8	1	8	2	2	-4	1	9
x_{3}								

x_{3} enters: $\theta=\min \{9 / 8,-, 1\}=1$
$x_{3}=1-x_{3}^{\prime}$

$x_{3}=$	x_{2}	x_{3}^{\prime}	x_{4}	x_{5}	x_{6}^{\prime}	x_{7}		
3	-6	-2	8	-4	-2	10	0	18
x_{1}	8	1	-8	2	2	-4	1	1

x_{4} enters: $\theta=\min \left\{\frac{1 / 8}{1 / 4},-1\right\}=1 / 2 ; x$, leaves

	x_{1}	x_{2}	x_{3}^{\prime}	x_{4}	x_{5}	x_{6}^{\prime}	x_{7}	
3	10	0	-8	0	2	2	2	20
x_{4}	4	$1 / 2$	-4	1	1	-2	$1 / 2$	$1 / 2$

x_{3}^{\prime} enters: $\theta=\min \left\{-, \frac{1 / 2-1}{(-4)}, 1\right\}=1 / 8$
x_{4} leaves, $x_{4}=1-x_{4}^{\prime}$

	x_{1}	x_{2}	x_{3}^{\prime}	x_{4}^{\prime}	x_{5}	x_{6}^{\prime}	x_{7}
3	2	-1	0	2	0	6	1
x_{3}^{\prime}	-1	$-1 / 8$	1	$1 / 4$	$-1 / 4$	$1 / 2$	$-1 / 8$

x_{2} enters : $\theta=\min \left\{-, \frac{1 / 8-1}{-1 / 8}, 1\right\}=1$

$$
x_{2}=1-x_{2}^{\prime}
$$

	x_{1}	x_{2}^{\prime}	x_{3}^{\prime}	x_{4}^{\prime}	x_{5}	x_{6}^{\prime}	x_{7}	
3	2	1	0	2	0	6	1	22
x_{3}^{\prime}	-1	$1 / 8$	1	$1 / 4$	$-1 / 4$	$1 / 2$	$-1 / 8$	$1 / 4$

Optisinumblution:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=1 \\
& x_{3}=3 / 4 \\
& x_{4}=1 \\
& x_{5}=0 \\
& x_{6}=1
\end{aligned}
$$

(a) Mininize

						x_{1}
x_{2}	x_{3}	x_{4}	x_{5}			
3	-6	2	3	0	0	0
x_{4}	2	4	2	1	0	8
x_{5}	1	-2	3	0	1	7

x_{3} enters: $\theta=\min \left\{\frac{7}{3},-1\right\}=1 ; x_{3}=1-x_{3}{ }^{\prime}$

	x_{1}	x_{2}	x_{3}^{\prime}	x_{4}	x_{5}	
3	-6	2	-3	0	0	-3
x_{4}	2	4	-2	1	0	6
x_{5}	1	-2	-3	0	1	4

x_{2} entens: $\theta=\min \left\{\frac{6}{4},-, 2\right\}=3 / 2 ; x_{4}$ leaves

	x_{1}	x_{2}	x_{3}^{\prime}	x_{4}	x_{5}	
z	-7	0	-2	$-1 / 2$	0	-6
x_{2}	$1 / 2$	1	$-1 / 2$	$1 / 4$	0	$3 / 2$
x_{5}	2	0	-4	$1 / 2$	1	7

Optimum: $x_{1}=0, x_{2}=3 / 2, x_{3}=1, z=-6$ b) Maximize

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
3	-3	-5	-2	0	0	0
x_{4}	1	2	2	1	0	10
x_{5}	2	4	3	0	1	15

x_{2} enters: $\theta=\min \left\{\frac{15}{4},-, 3\right\}=3 ; x_{2}=3-x_{2}^{\prime}$

	x_{1}	x_{2}^{\prime}	x_{3}	x_{4}	x_{5}	
z	-3	5	-2	0	0	15
x_{4}	1	-2	2	1	0	4
x_{5}	2	-4	3	0	1	3

x_{1} enters: $\theta=\min \left\{\frac{3}{2},-, 4\right\} ; x_{5}$ leaves

Optinum: $x_{1}=4, x_{2}=7 / 4, x_{3}=0, z=83 / 4$
(0) Subsfifuke $x_{1}-1+y_{1}, x_{3}=y_{3}+2$

Phase 1: $0 \leq y_{1} \leq 2,0 \leq x_{2} \leq 3, y_{3} \geq 0$

Phave 2:

	y_{1}	x_{2}	y_{3}	x_{4}	x_{5}	
z	-2	0	1	-1	0	3
x_{5}	$3 / 2$	0	$3 / 2$	$1 / 2$	1	2
x_{2}	$1 / 2$	1	$-1 / 2$	$-1 / 2$	0	2

y_{1} enters: $\theta=\min \left\{\frac{2}{3 / 2},-, 2\right\}=4 / 3 ; x_{5}$ letrves

	y_{1}	x_{2}	y_{3}	x_{4}	x_{5}	
z	0	0	3	$-1 / 3$	$4 / 3$	$17 / 6$
y_{1}	1	0	1	$1 / 3$	$2 / 3$	$4 / 3$
x_{2}	0	1	-1	$-2 / 3$	$-1 / 3$	$4 / 3$

x_{4} enters : $\theta=\min \left\{\frac{4 / 3}{1 / 3}, \frac{4 / 3-3}{-2 / 3},-\right\}=5 / 2$
x_{2} leaver, $x_{2}=1-x_{2}^{-}$

	y_{1}	x_{2}^{\prime}	y_{3}	x_{y}	x_{5}	
z	0	$1 / 2$	$7 / 2$	0	$3 / 2$	$13 / 2$
y_{1}	1	$-1 / 2$	$1 / 2$	0	$1 / 2$	$1 / 2$
x_{4}	0	$3 / 2$	$3 / 2$	1	$1 / 2$	$5 / 2$

optimum: $x_{1}=3 / 2, x_{2}=3, x_{3}=2, z=13 / 2$
b) $\operatorname{Set} x_{1}=1+y_{1}, 0 \leq y_{1} \leq 2,0 \leq x_{2} \leq 1$

Phase 1:

y_{1}	x_{2}	x_{3}	R	x_{4}	x_{5}		
z	-1	2	0	0	0	0	1
R	-1	2	-1	1	0	0	1
x_{4}	3	2	0	0	1	0	7
x_{5}	-1	1	0	0	0	1	2
z	-2	0	-1	1	0	0	0
x_{2}	$-1 / 2$	1	$-1 / 2$	$1 / 2$	0	0	$1 / 2$
x_{4}	4	0	1	-1	1	0	6
x_{5}	$-1 / 2$	0	$1 / 2$	$-1 / 2$	0	1	$6 / 2$

Phace 2:	y_{1}	x_{2}^{\prime}	x_{3}	x_{4}	x_{5}	
3	0	4	1	0	0	4
y_{1}	0	2	1	0	0	0
y_{1}	0	-8	-3	1	0	1
0	1	0	1	2		
optinum:	$x_{1}=2$,	$x_{2}=1$	$3=4$			

x_{2} enters: $\theta=\min \left\{\frac{25}{3}, \frac{5 / 4-2}{-1 / 4}, 5\right\}=3$
y_{1} leaves, $y_{1}=2-y_{1}^{\prime}$

	y_{1}^{\prime}	x_{2}	x_{3}^{\prime}	x_{4}	x_{5}	x_{6}	
	12	0	6	-2	0	0	30
x_{2}	4	1	0	-1	0	0	3
x_{5}	-3	0	-2	1	1	0	4
x_{6}	-1	0	-4	1	0	1	10

x_{4} enters: $\theta=\min \left\{4, \frac{3-5}{-1},-\right\}=2$
x_{2} leaver, $x_{2}=5-x_{2}^{\prime}$

	y_{1}^{\prime}	x_{2}^{\prime}	x_{3}^{\prime}	x_{4}	x_{5}	x_{6}	
z	4	2	6	0	0	0	34
x_{4}	-4	1	0	1	0	0	2
x_{5}	3	-1	-2	0	1	0	2
x_{6}	1	-1	-4	0	0	1	8

Optimum Solution:

$$
\begin{aligned}
& x_{1}=3 \\
& x_{2}=5 \\
& x_{3}=2 \\
& z=34
\end{aligned}
$$

Let X represent the basic and nonbasic variables in X that have been stibstitut

 by the matrices D_{2} and D_{n}, and let the vector C of the objective function beg pry toned correspondingly to give (C_{z}, C_{w}). The equations of the linear prograthining problem at any iteration then become

$$
\left(\begin{array}{rrr}
1 & -C_{z} & -C_{u} \\
0 & D_{z} & D_{u}
\end{array}\right)\left(\begin{array}{l}
z \\
X_{z} \\
X_{w}
\end{array}\right)=\binom{0}{b}
$$

Instead of dealing with two types of variables, X_{z} and X_{u}, X_{u} is put at zero level by
using the substitution

$$
\mathbf{X}_{u}=\mathbf{U}_{\mathbf{u}}-\mathbf{X}_{\mathbf{u}}^{\prime}
$$

where U_{μ} is a subset of U representing the upper bounds for the variables in X_{u}.
This gives

The optimality and the feasibility conditions can be developed more easily now, since all nonbasic variables are at zero level. However, it is still necessary to check hat no basic or nonbasic variable will exceed its upper, bound.
Define X_{B} as the basic variables of the current iteration, and let C_{m} represent the X_{3}. The corresponding to X_{B} in C. Also, let B be the basic matrix comesponiting to

$$
\left(\begin{array}{cc}
1 & -C_{g} \\
0 & B
\end{array}\right)\binom{z}{X_{n}}=\binom{C_{n} U_{u}}{b-D_{v} U_{w}}
$$

By inverting the partitioned matrix as in Section 4.1.3, the current basic solution is
given by

$$
\binom{z}{X_{B}}=\left(\begin{array}{cc}
1 & C_{B} B^{-1} \\
0 & B^{-1}
\end{array}\right)\binom{C_{\psi} U_{*}}{b-D_{*} U_{v}}=\binom{C_{m} U_{u}+C_{B} B^{-1}\left(b-D_{*} U_{v}\right)}{B^{-1}\left(b-D_{v} U_{w}\right)}
$$

By using

$$
b^{\prime}=b-D_{u} U_{w}
$$

the complete simplex tableau corresponding to any iteration is

Basic	$\cdots \mathbf{X}_{z}^{\boldsymbol{T}}$	$\mathbf{X}_{u}^{\prime \boldsymbol{T}}$	Solution
z	$\mathbf{C}_{B} \mathbf{B}^{-1} \mathbf{D}_{z}-\mathbf{C}_{x}$	$-\mathbf{C}_{B} \mathbf{B}^{-1} \mathbf{D}_{u}+\mathbf{C}_{\mu}$	$\mathbf{C}_{B} \mathbf{B}^{-1} \mathbf{b}^{\prime}+\mathbf{C}_{\boldsymbol{d}} \mathbf{D}_{\mathrm{E}}$
$\mathbf{X}_{\mathbf{B}}$	$\mathbf{B}^{-1} \mathbf{D}_{z}$	$-\mathbf{B}^{-1} \mathbf{D}_{u}$	$\mathbf{B}^{-1} \mathbf{b}^{\prime}$

(a)

$$
\begin{aligned}
b^{\prime} & =b-D_{u} u_{u} \\
& =\binom{7}{15}-\binom{1}{4}(3)=\binom{4}{3} \\
B^{-1} & =\left(\begin{array}{cc}
1 & -1 / 2 \\
0 & 1 / 2
\end{array}\right) \\
\binom{x_{y}}{x_{1}} & =B^{-1} b^{\prime}=\left(\begin{array}{cc}
1 & -1 / 2 \\
0 & 1 / 2
\end{array}\right)\binom{4}{3}=\binom{5 / 2}{3 / 2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
x_{B} & =\binom{x_{4}}{x_{2}^{\prime}}, \quad B=\left(\begin{array}{cc}
1 & -1 \\
0 & -4
\end{array}\right), B^{-1}=\left(\begin{array}{cc}
1 & -1 / 4 \\
0 & -1 / 4
\end{array}\right) \\
b^{\prime} & =b-D_{u} u_{u} \\
& =\binom{7}{15}-\left(\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right)\binom{4}{3}=\binom{0}{-5} \\
x_{B} & =\binom{x_{y}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & -1 / 4 \\
0 & -1 / 4
\end{array}\right)\binom{0}{-5}=\binom{5 / 4}{5 / 4} .
\end{aligned}
$$

minimize $z=6 x_{1}-2 x_{2}-3 x_{3}$
Subject t

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+2 x_{3}+x_{4}=8 \\
& x_{1}-2 x_{2}+3 x_{3}+x_{5}=7 \\
& 0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 2,0 \leq x_{3} \leq 1
\end{aligned}
$$

We use the tableau developed in
Problem 5 above.
Iteration 0:

$$
\begin{aligned}
& x_{B}=\binom{x_{4}}{x_{5}}, B=B^{-1}=I \\
& C_{B}=(0,0), \quad C_{B} B^{-1}=(0,0) \\
& \left\{z_{j}-C_{j}\right\}_{1,2,3} \\
& =(0,0)\left(\begin{array}{ccc}
2 & 4 & 2 \\
1 & -2 & 3
\end{array}\right)-(6,-2,-3) \\
& =(-6,2,3), \quad x_{3} \text { enters } \\
& B^{-1} P_{3}=B^{-1}\binom{2}{3}=\binom{2}{3} \\
& \binom{x_{4}}{x_{5}}=B^{-1} b=\binom{8}{7} \Longrightarrow \theta_{1}=7 / 3
\end{aligned}
$$

Since $B^{-1} P_{3}>0, \theta_{2}=\infty$

$$
\theta=\min \{7 / 3, \infty, 1\}=1
$$

Thus, x_{3} becomes nonbasic at its upper bound.
New Solution: $x_{2}=\left(x_{1}, x_{2}\right), x_{4}=x_{3}$

$$
\begin{aligned}
& U_{u}=1, C_{u}=-3 \\
& D_{2}=\left(\begin{array}{cc}
2 & 4 \\
1 & -2
\end{array}\right), D_{u}=\binom{2}{3}, C_{2}=(6,-2) \\
& b^{\prime}=\binom{8}{7}-\binom{2}{3}(1)=\binom{6}{4} \\
& \binom{x_{4}}{x_{5}}=B^{-1}\binom{6}{4}=\binom{6}{4}, z=-3
\end{aligned}
$$

Iteration 1: $C_{2}=(6,-2), C_{4}=C_{3}^{\prime}=3$

$$
\begin{aligned}
& P_{3}^{\prime}=\binom{-2}{-3}, B=B^{-1}=I, C_{B}=(0,0), \mathcal{B}_{B}^{-1}(0,0) \\
& \left\{z_{j}-c_{j}\right\}_{2(j=1,2)} \\
& =(0,0)\left(\begin{array}{cc}
1 & 4 \\
1 & -2
\end{array}\right)-(6,-2)=(-6,2)
\end{aligned}
$$

$\left\{z_{j}-c_{j}\right\}_{u(j=3)}$

$$
=(0,0)\binom{-2}{-3}-(3)=-3
$$

x_{2} enters

$$
\begin{aligned}
& B^{-1} P_{2}=\binom{4}{-2}, x_{B}=\binom{x_{4}}{x_{5}}=\binom{6}{4} \\
& \Theta_{1}=\frac{6}{4}=3 / 2, \theta_{2}=\infty\left(\text { le cause } u_{5}=\infty\right) \\
& \theta=\text { min }\{3 / 2, \infty, 2\}=3 / 2 \\
& x_{4} \text { leaves }
\end{aligned}
$$

Iteration 2: $C_{z}=\left(x_{1}, x_{4}\right), x_{u}=x_{3}$

$$
\begin{aligned}
& x_{B}=\binom{x_{2}}{x_{5}}, \quad P_{3}^{\prime}=\binom{-2}{-3}, \quad b^{\prime}=\binom{6}{4} \\
& B=\left(\begin{array}{cc}
4 & 0 \\
-2 & 1
\end{array}\right), \quad B^{-1}=\left(\begin{array}{cc}
1 / 4 & 0 \\
1 / 2 & 1
\end{array}\right) \\
& C_{B}=(-2,0), C_{B} B^{-1}=(-1 / 2,0) \\
& \left\{z_{j}-S^{\cdot} \cdot\right\}_{2(j=1,4)} \\
& =(-1 / 2,0)\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)-(6,0)=(-7,0) \\
& \left.\left\{z_{j}-C_{j}\right\}\right\}_{u(j=3)} \\
& =(-1 / 2,0)\binom{-2}{-3}-3=-2
\end{aligned}
$$

Optimum!

$$
\begin{gathered}
x_{B}=\binom{x_{2}}{x_{5}}=\left(\begin{array}{ll}
1 / 4 & 0 \\
1 / 2 & 1
\end{array}\right)\binom{6}{4}=\binom{3 / 2}{7} \\
x_{3}=1-0=1 \\
2=-6
\end{gathered}
$$

Set 7.3a
${ }^{(a)}$ To convert the problem Q into a dual feasible solution we use the folloiving substitutions:

$$
x_{1}=2-x_{1}^{\prime \prime}, \quad x_{2}=3-x_{2}^{\prime}
$$

Thus,
minimize $z=3 x_{1}^{\prime}+2 x_{2}^{\prime}+2 x_{3}-12$
subject to

$$
\begin{aligned}
& -2 x_{1}^{\prime}-x_{2}^{\prime}+x_{3} \leq 1 \\
& -x_{1}^{\prime}+2 x_{2}^{\prime}-x_{3} \leq-9 \\
& 0 \leq x_{1}^{\prime} \leq 2,0 \leq x_{2}^{\prime} \leq 3,0 \leq x_{3} \leq 1
\end{aligned}
$$

	x_{1}^{\prime}	x_{2}^{\prime}	x_{3}	x_{4}	x_{5}	
3	-3	-2	-2	0	0	-12
x_{4}	-2	-1	1	1	0	1
x_{5}	-1	2	-1	0	1	-9

x_{5} leaves and x_{3} enters

x_{5}	x_{1}^{\prime}	x_{2}^{\prime}	x_{3}	x_{4}	x_{5}	
z	-1	-6	0	0	-2	6
x_{4}	-2	1	0	1	1	-8
x_{3}	1	-2	1	0	-1	9

x_{3} above its upper bound, enbititite
$x_{3}=1-x_{3}^{\prime}$, then multiply the
second row by -1.

	x_{1}^{\prime}	x_{2}^{\prime}					
z	-1	-6	0	x_{3}^{\prime}	x_{4}	x_{5}	
x_{4}	-2	1	0	1	-2	6	
x_{3}^{\prime}	-1	2	1	0	1	-8	

x_{3}	x_{1}^{\prime}	x_{2}^{\prime}	x_{3}^{\prime}	x_{4}	x_{5}	
3	0	-8	-1	0	-3	14
x_{4}	0	-3	-2	1	-1	8
x_{1}^{\prime}	1	-2	-1	0	-1	8

seltaitite $x_{1}^{\prime}=2-x_{1}$ and multiply
second row by -1

X,-rowir shows that the problem has no feasible solution
(b) Let $x_{1}=2-x_{1}^{\prime}$

$$
x_{2}=3-x_{2}^{\prime} .
$$

This substitution will result si a dual feasible starting solution

	x_{1}^{\prime}	x_{2}^{\prime}	x_{3}	x_{4}	x_{5}	
2	1	5	2	0	0	17
x_{4}	-4	-2	2	1	0	12
x_{5}	1	3	-4	0	1	-6
2	$3 / 2$	$13 / 2$	0	0	$1 / 2$	14
x_{4}	$-7 / 2$	$-1 / 2$	0	1	$1 / 2$	9
x_{3}	$-1 / 4$	$-3 / 4$	1	0	$-1 / 4$	$3 / 2$

$$
\begin{aligned}
& x_{1}=2-0=2 \\
& x_{2}=3-0=3 \\
& x_{3}=3 / 2 \\
& z=14
\end{aligned}
$$

Primal:
Maximize $z=C X$
subject 6

$$
\begin{gathered}
A x=b \\
x \geqslant 0
\end{gathered}
$$

Dual:
Minimize $a=Y b$
subject to

$$
Y A \geqslant C
$$

Y unveaticted
Dual in equation form:
Minimize $\omega=Y b$
subject to

$$
\begin{aligned}
& Y A-I S=C \quad \leftarrow X \\
& Y \text { unrestricted } \\
& S \geqslant 0
\end{aligned}
$$

Dual of dual:
maximize $z=C X$
subject to

$$
\begin{aligned}
& A x=b \\
& -x \leq 0 \Rightarrow x \geqslant 0
\end{aligned}
$$

The first set g constraints is equation because Y is unrestricted

The last jacoblem shows that the dual of the dual is the prinial

Premial in equation form:
Minimize $z=C X$
sulyict to

$$
\begin{aligned}
& A X-I S=b \\
& X \geqslant 0 \\
& S \geqslant 0
\end{aligned}
$$

Dual:
Maximize $w=Y b$
subject to

$$
\begin{aligned}
& Y A \leq C \\
& -Y \leq 0 \Rightarrow Y \geq 0
\end{aligned}
$$

Primal in equation form:
Maximize $z=x_{1}+x_{2}$
subject to

$$
\begin{aligned}
& x_{1}-x_{2}+s_{1}=-1 \\
&-x_{1}+x_{2}+s_{2}=-1 \\
&-y_{2}
\end{aligned}
$$

Dual:
Minimize $w=-y_{1}-y_{2}$
subject t

$$
\begin{gathered}
y_{1}-y_{2} \geq 1 \\
-y_{1}+y_{2} \geq 1 \\
y_{1}, y_{2} \geq 0
\end{gathered}
$$

(a) Dual:

Minimize $u=y_{1}-5 y_{2}+6 y_{3}$
Sulyeit to

$$
\begin{aligned}
2 y_{1}+4 y_{3} & \geq 50 \\
y_{1}+2 y_{2} & \geq 30 \\
y & \geqslant 10
\end{aligned}
$$

y_{1}, y_{2}, y_{3} unrestricted.
(b) $2 x_{1}=-5 \Rightarrow x_{1}<0$, inferseble
(c) Inspection of the second dual constraint shows that y_{2} can be cricreaud indefinitely without violating any of the dual constraints Thus, $w=y_{1}-5 y_{2}+6 y_{3}$ is. unbounded.
(d)

Pumial unbounded \Rightarrow dual infeasible
(a) Minimize $w=2 y_{1}+5 y_{2}$
subject ω

$$
\begin{aligned}
2 y_{1}+y_{2} & \geq 5 \\
-y_{1}+2 y_{2} & \geq 12 \\
3 y_{1}+y_{2} & \geq 4 \\
y_{2} & \geq 0
\end{aligned}
$$

y, unceatricted
(b)
(i)

$$
\begin{aligned}
& B=\left(\begin{array}{ll}
P_{4} & P_{3}
\end{array}\right)=\left(\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right), B^{-1}=\left(\begin{array}{cc}
-1 / 3 & 1 \\
1 / 3 & 0
\end{array}\right) \\
& X_{B}=\left(\begin{array}{cc}
-1 / 3 & 1 \\
1 / 3 & 0
\end{array}\right)\binom{2}{5}=\binom{13 / 3}{2 / 3} \text { feasible } \\
& C_{B}=(0,4) \\
& Y=C_{B} B^{-1}=(0,4)\left(\begin{array}{cc}
-1 / 3 & 1 \\
1 / 3 & 0
\end{array}\right)=(4 / 3,0)
\end{aligned}
$$

Dual feasibility:

$$
2 y_{1}+y_{2}=2 \times 4 / 3+1 \times 0=8 / 3 \neq 5
$$

Dual infeasible \Rightarrow primal nonoptimal.
(ii)

$$
\begin{aligned}
& B=\left(P_{2} P_{3}\right)=\left(\begin{array}{cc}
-1 & 3 \\
2 & 1
\end{array}\right), B^{-1}=\left(\begin{array}{cc}
-1 / 7 & 3 / 7 \\
2 / 7 & 1 / 7
\end{array}\right) \\
& X_{B}=\left(\begin{array}{cc}
-1 / 7 & 3 / 7 \\
2 / 7 & 1 / 7
\end{array}\right)\binom{2}{5}=\binom{13 / 7}{9 / 7} \text { feasible }
\end{aligned}
$$

Dual feasibility:

$$
\begin{aligned}
Y=C_{B} B^{-1} & =(12,4)\left(\begin{array}{ll}
-1 / 7 & 3 / 7 \\
2 / 7 & 1 / 7
\end{array}\right) \\
& =(-4 / 7,40 / 7) \\
2 y_{1}+y_{2} & =2(-4 / 7)+40 / 7=\frac{32}{7} \nsupseteq 5
\end{aligned}
$$

x_{B} is not optimal
(iii) $B=\left(P_{1} P_{2}\right)=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right), B^{-1}=\left(\begin{array}{cc}2 / 5 & 1 / 5 \\ -1 / 5 & 4 / 5\end{array}\right)$
$X_{B}=\left(\begin{array}{cc}2 / 5 & 1 / 5 \\ -1 / 5 & 2 / 5\end{array}\right)\binom{2}{5}=\binom{9 / 5}{8 / 5}$ feasible
Dual feasibility:

$$
\begin{aligned}
y=C_{B} B^{-1} & =(5,12)\left(\begin{array}{cc}
2 / 5 & 1 / 5 \\
-1 / 5 & 2 / 5
\end{array}\right) \\
& =(-2 / 5,29 / 5)
\end{aligned}
$$

Y satisfies all dual constraints. Thus x_{B} is optimal.
(iv) $B=\left(P P_{4}\right)=\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$
$B^{-1}=\left(\begin{array}{cc}1 / 2 & 0 \\ -1 / 2 & 1\end{array}\right)$
$x_{B}=\left(\begin{array}{cc}1 / 2 & 0 \\ -1 / 2 & 1\end{array}\right)\binom{2}{5}=\binom{1}{4}$ feasible
Dual feasititity:

$$
y=c_{B} B^{-1}=(5,0)\left(\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 1
\end{array}\right)=(5 / 2,0)
$$

Y does not satisfy second dual
constraint. x_{B} is not optimum
(a) \&oual:

Minimize $w=4 y_{1}+8 y_{2}$
subject to

$$
\left.\begin{array}{rl}
y_{1}+y_{2} & \geq 2 \\
y_{1}+4 y_{2} & \geq 4 \\
y_{1} & \geq 4 \\
y_{2} & \geq-3
\end{array}\right\} \text { ally }
$$

(b)

$$
\begin{aligned}
x_{B} & =\left(x_{2}, x_{3}\right) \top \\
B & =\left(\begin{array}{ll}
1 & 1 \\
4 & 0
\end{array}\right), B^{-1}=\left(\begin{array}{cc}
0 & 1 / 4 \\
1 & -1 / 4
\end{array}\right) \\
C_{B} & =(4,4), C_{B} B^{-1}=(4,0) \\
Z_{1}-C_{1} & =C_{B} B^{-1} P_{1}-C_{1} \\
& =(4,0)\binom{1}{1}-2=2>0 \\
Z_{4}-C_{4} & =(4,0)\binom{0}{1}-(-3)=3>0
\end{aligned}
$$

X_{B} optimal
(c) X_{3} basic $\Rightarrow z_{3}-c_{3}=0$, σ

$$
Y P_{3}-c_{3}=\left(y, y y_{2}\right)\binom{1}{0}-4=0, \sigma
$$

$$
\begin{equation*}
y_{1}-4=0 \Rightarrow y_{1}=4 \tag{1}
\end{equation*}
$$

x_{2} basic $\Rightarrow z_{2}-c_{2}=0$, or

$$
Y P_{2}-c_{2}=\left(y_{1}, y_{2}\right)\binom{1}{4}-4=0,0
$$

$y_{1}+4 y_{2}=4$. Given (1), we get $y_{2}=0$.

$$
\begin{aligned}
& B^{-1} b=X_{B} \\
& \left(\begin{array}{ccc}
0 & -1 & 1 \\
0 & 1 & 0 \\
1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
6 \\
2
\end{array}\right) \Rightarrow \begin{array}{l}
b_{1}=4 \\
b_{2}=6 \\
b_{3}=8
\end{array}
\end{aligned}
$$

Dual objective value in

$$
w=Y b=(0,3,2)\left(\begin{array}{l}
4 \\
6 \\
8
\end{array}\right)=34
$$

From the dual:

$$
\begin{aligned}
& C_{B} B^{-1}=Y \\
& \left(C, C_{2}, 0\right)\left(\begin{array}{rrr}
0 & -1 & 1 \\
0 & 1 & 0 \\
1 & 1 & -1
\end{array}\right)=(0,3,2)
\end{aligned}
$$

or

$$
\left.\begin{array}{rl}
c_{2}-c_{1} & =3 \\
c_{1} & =2
\end{array}\right\} \Rightarrow c_{1}=2, c_{2}=5
$$

Primal objective value wi

$$
\begin{aligned}
& z=C_{B} X_{B}=(2,5,0)\left(\begin{array}{l}
2 \\
6 \\
2
\end{array}\right)=34 \\
& \sum_{i=1}^{m} C_{i}\left(B^{-1} P_{R}\right)_{i}=\left(C_{B} B^{-1} P_{R}\right. \\
&=Y P_{k} \\
&=\sum_{i=1}^{m} y_{i} a_{i k}
\end{aligned}
$$

minimize $w=Y b$
Subject to

$$
Y A=C
$$

Y unrestricted
Dual: minimize $Y_{1} b-Y_{2} L+Y_{3} U$ subject to

$$
\begin{gathered}
Y_{1} A-Y_{2}+Y_{3} \geq C \\
Y_{1}, Y_{2}, Y_{3} \geq 0
\end{gathered}
$$

Let $Y=Y_{3}-Y_{2} \Rightarrow Y$ unrestricted. Hence $Y_{1} A+\left(Y_{3}-Y_{2}\right) \geqslant C$ can be written as $Y_{1} A+Y \geqslant C$. Since Y is unrestricted, its value can always be selected such that $Y, A+Y \geqslant C$ is sathafied

$$
\begin{aligned}
& \text { For } X_{B_{0}}: \\
& \qquad\left\{z_{j}-c_{j}\right]_{j=1,4,5} \\
& \quad=(4+14 t, 1-t, 2+3 t) \geq(0,0,0)
\end{aligned}
$$

The inequalitis are satiofied for

$$
\begin{aligned}
& -2 / 7 \leq t \leq 1 \\
& \text { (a) } C_{B}(t) B_{0}^{-1}=(2,5-6 t, 0)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right) 2 \\
& =(1,2-3 t, 0) \\
& x_{B_{0}}=\left(x_{2}, x_{3}, x_{6}\right)^{T}=(5,30,10)^{T} \\
& \left\{z_{j}-c_{j}\right\}_{j=1,4,5} \\
& =(1,2-3 t, 0)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)-(3+3 t, 0,0) \\
& =(4-12 t, 1,2-3 t) \geqslant(0,0,0)
\end{aligned}
$$

$x_{B_{0}}$ remainis optimal for $t \leq 1 / 3$ at $t=1 / 3, x$ enters ofolition

$$
D_{0}^{-1} P_{1}=\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 4 \\
3 / 2 \\
2
\end{array}\right)
$$

x_{6} leaves.

$$
\begin{aligned}
& X_{B_{1}}^{6}=\left(x_{2}, x_{3}, x_{1}\right)^{\top} \\
& B_{1}=\left(\begin{array}{ccc}
2 & 1 & 1 \\
0 & 2 & 3 \\
4 & 0 & 1
\end{array}\right) \\
& B_{1}^{-1}=\left(\begin{array}{ccc}
1 / 4 & -1 / 8 & 1 / 8 \\
3 / 2 & -1 / 4 & -3 / 4 \\
-1 & 1 / 2 & 1 / 2
\end{array}\right) \\
& x_{B_{1}}=B_{1}^{-1} b=(25 / 4,90 / 4,5)^{\top} \\
& C_{B}(t) B_{1}^{-1}=(2,5-6 t, 3+3 t)\left(\begin{array}{ccc}
1 / 4 & -1 / 8 & 1 / 8 \\
3 / 2 & -1 / 4 & -3 / 4 \\
-1 & 1 / 2 & 1 / 2
\end{array}\right) \\
& =(5-12 t, 3 t,-2+6 t) \\
& \left\{z_{j}-c_{j}\right\}_{j}=4,5,6 \\
& =(5-12 t, 3 t,-2+6 t)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-(0,0,0) \\
& =(5-12 t, 3 t,-2+6 t)
\end{aligned}
$$

x_{B}, semains optimal for $1 / 3 \leqslant t \leqslant 5 / 12$
at $t=5 / 12$, xyenters

$$
B_{1}^{-1} P_{4}=\left(\begin{array}{ccc}
1 / 4 & -1 / 8 & 1 / 8 \\
3 / 2 & -1 / 4 & -3 / 4 \\
-1 & 1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 4 \\
3 / 2 \\
-1
\end{array}\right)
$$

x_{3} leaves

$$
\begin{aligned}
x_{B_{2}} & =\left(x_{2}, x_{4}, x_{1}\right)^{\top} \\
B_{2} & =\left(\begin{array}{ccc}
2 & 1 & 1 \\
0 & 0 & 3 \\
4 & 0 & 1
\end{array}\right) \\
B_{2}^{-1} & =\left(\begin{array}{ccc}
0 & -1 / 12 & 1 / 4 \\
1 & -1 / 6 & -1 / 2 \\
0 & 1 / 3 & 0
\end{array}\right) \\
x_{B_{2}} & =B_{2}^{-1} b=(5 / 2,15,20)^{\top} \\
C_{B}(t) B_{2}^{-1} & =(2,0,3+3 t) B_{2}^{-1} \\
& =(0,5 / 6+t, 1 / 2)
\end{aligned}
$$

$$
\begin{aligned}
& (z,-9 \cdot\}_{j}=3,5,6 \\
& \quad=(0,5 / 6+t, 1 / 2)\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-(5-6 t, 0,0) \\
& \quad=(-10 / 3+8 t, 5 / 6+t, 1 / 2)
\end{aligned}
$$

$x_{B_{2}}$ remainis aptimal for $5 / 12 \leq t<\infty$

$$
\text { (b) } \begin{aligned}
x_{B_{0}} & =\left(x_{2}, x_{3}, x_{6}\right)^{\top}=(5,30,10)^{\top} \\
C_{8}(t) B_{0}^{-1} & =(2+t, 5+2 t, 0)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1
\end{array}\right) \\
& =(1+t / 2,2+3 t / 4,0)
\end{aligned}
$$

$\left\{z_{j}-c_{j}\right\}_{j=1,4,5}$

$$
\begin{aligned}
& \left.-c_{j}\right\}_{j=1,4,5} \\
& =(1+t / 292+3 / 4 t, 0)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)-(3-2 t, 0,0) \\
& =(4+19 t / 4,1+t / 2)
\end{aligned}
$$

$$
=(4+19 t / 4,1+t / 2,2+3 t / 4) \geq(0,0,0)
$$

$X_{B_{0}}$ is optemal for all $t \geqslant 0$

$$
\begin{aligned}
& \text { (C) } \left.\begin{array}{rl}
x_{B_{0}} & =\left(x_{2}, x_{3}, x_{6}\right)^{\top}=(5,30,10)^{\top} \\
C_{B}(t) B_{0}^{-1} & =(2+2 t, 5-t, 0)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
-2 & 1 / 2 & 0
\end{array}\right) \\
& =(1+t, 2-t, 0)^{2} \\
\left\{\begin{array}{l}
1
\end{array}\right. & 1
\end{array}\right) \\
& =(1+t, 2-t, 0)\left(\begin{array}{ccc}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)-(3+t, 0,0) \\
& \\
& = \\
& =(4-3 t, 1+t, 2-t) \geqslant(0,0,0) \text { continued.... }
\end{aligned}
$$

$X_{B_{0}}$ remain optimal tithe range $t \leq 4 / 3$. At $t=4 / 3, x$, enters dilution.
As is Part (a) above, x_{6} leaves

$$
\begin{aligned}
& B_{1}^{-1}=\left(\begin{array}{ccc}
1 / 4 & -1 / 8 & 1 / 8 \\
3 / 2 & -1 / 4 & -1 / 4 \\
-1 & 1 / 2 & 1 / 2
\end{array}\right), x_{B_{1}}=\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}
\end{array}\right) \\
& x_{B_{1}}=B_{1}^{-1} b=(25 / 4,90 / 4,5)^{T} \\
& C_{B}(t) B_{1}^{-1}=(2+2 t, 5-t, 3+t) B_{1}^{-1} \\
& =(5-2 t, t / 2,-2+3 / 2 t) \\
& \left\{\left(z,-c_{j}\right\}_{j=4,5,6}\right. \\
& =(5-2 t, t / 2,-2+3 / 2 t)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-(0,0,0) \\
& =(5-2 t, \quad t / 2,-2+3 / 2 t) \geqslant(0,0,0)
\end{aligned}
$$

X_{B}, remains optimal for

$$
4 / 3 \leq t \leq 5 / 2
$$

af $t=5 / 2, x_{4}$ enters solutions. As si Part (a), we have x_{3} leaving.

$$
\text { and }{B_{2}^{-1}}^{-1}\left(\begin{array}{ccc}
0 & -1 / 12 & 1 / 4 \\
1 & -1 / 6 & -1 / 2 \\
0 & 1 / 3 & 0
\end{array}\right), x_{B_{2}}=\left(\begin{array}{l}
x_{2} \\
x_{4} \\
x_{1}
\end{array}\right)=\left(\begin{array}{c}
5 \\
2 \\
15 \\
20
\end{array}\right)
$$

$$
C_{B}(t) B_{2}^{-1}=(2+2 t, 0,3+t)\left(\begin{array}{ccc}
0 & -1 / 12 & 1 / 4 \\
1 & -1 / 6 & -1 / 2 \\
0 & 1 / 3 & 0
\end{array}\right)
$$

$$
=(0,5 / 6+t / 6,1 / 2+t / 2)
$$

$\left\{z_{j}-c_{j}\right\}_{j=3,5,6}$.

$$
\begin{gathered}
=(0,5 / 6+t / 6,1 / 2+t / 2)\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
-(5-t, 0,0) \\
=(-10 / 3+4 t / 3,5 / 6+t / 6,1 / 2+t / 2) \\
\geq(0,0,0)
\end{gathered}
$$

$x_{B_{2}}$ remain optimal for $\frac{5}{2} \leq t<\infty$
Minimize $z=(4-t) x_{1}+(1-3 t) x_{2}+(2-2 t) x_{3}$
Sulyiet ©

$$
\begin{aligned}
3 x_{1}+x_{2}+2 x_{3} & =3 \\
4 x_{1}+3 x_{2}+2 x_{3}-x_{4} & =6 \\
x_{1}+2 x_{2}+5 x_{3}+x_{5} & =4 \\
x_{1}, x_{2}, \ldots, x_{5} \geqslant 0 &
\end{aligned}
$$

$$
\begin{aligned}
& X_{B_{0}}=\left(x_{1}, x_{2}, x_{4}\right)^{\top}=(2 / 5,9 / 5,1) \\
& B_{0}^{-1}=\left(\begin{array}{ccc}
2 / 5 & 0 & -1 / 5 \\
-1 / 5 & 0 & 3 / 5 \\
1 & -1 & 1
\end{array}\right) \\
& \left.\begin{array}{rl}
C_{B}(t) B_{0}^{-1} & =(4-t, 1-3 t, 0) B_{0}^{-1} \\
& =\left(\frac{7+t}{5}, 0,-\frac{1+8 t}{5}\right.
\end{array}\right) \\
& \left\{Z_{j}-5 \cdot\right\}_{j=3,5} \\
& =\left(\frac{7+t}{5}, 0,-\frac{1+8 t}{5}\right)\left(\begin{array}{ll}
2 & 0 \\
2 & 0 \\
5 & 1
\end{array}\right)-(2-2 t, 0) \\
& =
\end{aligned}
$$

Bo remains optimal for all $t \geqslant 0$.
the dual simplex method requires that the $L P$ problem be put er the from :
minimize $z=C X$
Subject to

$$
-A x \leq-b, \quad x \geq 0
$$

Let B_{c} be the bari associated with critical value t_{i} in the parametric analysis. To obtain t_{i+1}, we consider
$\left\{z_{j}-c_{j} \cdot\right\}_{\text {nonbasic } x_{j}}$.

$$
=c_{\mathcal{B}}(t) B_{i}^{-1}\left(-P_{j}\right)-c_{j} \cdot(t) \leqslant 0
$$

where P_{j} is the j th column vector of A.
In the preset problem, the first two constraints are of the type \geqslant. Hence, only the first two constraints are multiplied by -1.

$$
\begin{aligned}
& x_{B_{0}}=\left(x_{3}, x_{2}, x_{6}\right)^{\top}=(3 / 2,3 / 2,0)^{\top} \\
& B_{0}^{-1}=\left(\begin{array}{ccc}
-3 / 2 & 1 / 2 & 0 \\
1 / 2 & -1 / 2 & 0 \\
1 & 0 & 1
\end{array}\right), C_{B_{0}}(t)=(1,2+4 t, 0)
\end{aligned}
$$

$$
\begin{aligned}
C_{B}(t) B_{0}^{-1} & =(-1 / 2+2 t,-1 / 2-2 t, 0) \\
\left\{z_{j}-C_{j}\right\}_{1,4,5} & =C_{B_{0}} B_{0}^{-1} P_{j}^{\prime}-C_{j}(t) \\
& =(-1 / 2+2 t,-1 / 2-2 t, 0)\left(\left.\begin{array}{ccc}
-3 & 1 & 0 \\
3 & 0 & 0 \\
1 & 0 & 1
\end{array} \right\rvert\,-(3+t, 0,0)\right. \\
& =(-13 t-3,-1 / 2+2 t, 0) \leq(0,0,0)
\end{aligned}
$$

Thus, $t_{1}=1 / 4 \Rightarrow x_{B_{0}}$ remains optimal for $0 \leq t \leq 1 / 4$.
At $t=1 / 4, x_{4}$ enters and x_{6} leaves.

$$
\begin{aligned}
& x_{B_{1}}=\left(x_{3}, x_{2}, x_{4}\right)^{T}=(3 / 2,3 / 2,0)^{\top} \\
& B_{1}^{-1}=\left(\begin{array}{ccc}
0 & 1 / 2 & 3 / 2 \\
1 & -1 / 2 & -1 / 2 \\
1 & 0 & 1
\end{array}\right), C_{B_{1}}(t)=(1,2+4 t, 0) \\
& C_{B_{1}}(t) B_{1}^{-1}=(0,-1 / 2-2 t, 1 / 2-2 t) \\
& \left\{z_{j}-G_{j}\right\}_{1,5,6}=(0,-1 / 2-2 t, 1 / 2-2 t)\left(\begin{array}{ccc}
-3 & 0 & 0 \\
3 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)-(3+t, 0,0) \\
& =(-4-9 t,-1 / 2-2 t, 1 / 2-2 t) \leq(0,0,0)
\end{aligned}
$$

conclitions are ratified bo $t \geq 1 / 4$. Thess, $X_{B_{1}}$ is optimal for all $t \geq 1 / 4$.
Summary:
$x_{B_{0}}\left(x_{3}, x_{2}, x_{6}\right)=(3 / 2,3 / 2,0)$ is optimal for $0 \leq t \leq 1 / 4$

$$
x_{B_{1}}=\left(x_{3}, x_{2}, x_{4}\right)=(3 / 2,3 / 2,0) \text { is optimal for } t \geqslant 1 / 4
$$

OR

$$
\left.\begin{array}{l}
x_{1}=0 \\
x_{2}=3 / 2 \\
x_{3}=3 / 2
\end{array}\right\} \text { for all } t \geq 0
$$

$$
\begin{aligned}
& x_{B_{0}}=\left(x_{2}, x_{3}, x_{6}\right)^{\top}=(5,30,10)^{\top}\left[\begin{array}{l}
B \\
C_{B_{0}}(t)
\end{array}\right)=\left(2-2 t^{2}, 5-t, 0\right) \\
& B_{0}^{-1}=\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right) \\
& C_{B}(t) B_{0}^{-1}=\left(2-2 t^{2}, 5-t, 0\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right) \\
& \quad=\left(1-t^{2}, t^{2} / 2-t / 2+2,0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{z_{j}-c_{j}\right\}_{j=1,4,5} \\
& =\left(1-t^{2}, t^{2} / 2-t / 2+2,0\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
& -\left(3+2 t^{2}, 0,0\right) \\
& \quad\left(4-\frac{3 t}{2}-\frac{3 t^{2}}{2}, 1-t^{2}, 2-\frac{t}{2}+\frac{t^{2}}{2}\right) \\
& \geqslant
\end{aligned}
$$

The graph below summarizes the optimality conditions.

$X_{B_{0}}$ remains optimal for $0 \leq t \leq 1$.
(a)

$$
\begin{aligned}
X_{B_{1}} & =\left(x_{2}, x_{3}, x_{6}\right)^{T} \\
& =\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
40+2 t \\
60-3 t \\
30+6 t
\end{array}\right) \\
& =\left(\begin{array}{c}
5+t / 4 \\
30-3 t / 2 \\
10-t
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
- & 20 \leq t \leq 10, \quad t=10
\end{aligned}
$$

x_{6} leaver at $t=10$.
(row of B_{0}^{-1} associated with $\left.x_{6}\right)\left(P_{1} P_{4} P_{5}\right)$

$$
\begin{aligned}
&=(-2,1,1)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=(2,-2,1) \\
&\left\{z_{j}-c_{j}\right\}_{j=1,4,5} \\
&=(2,5,0)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)-(3,0,0) \\
&=(4,1,2)
\end{aligned}
$$

	x_{1}	x_{4}
$z_{j}-c_{j}$	4	x_{5}
x_{6}	2	-2

x_{4} enters.

$$
\text { new } B_{1}=\left(P_{2} P_{3} P_{4}\right)=\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 0 \\
4 & 0 & 0
\end{array}\right)
$$

(b)

$$
\begin{aligned}
& x_{B_{0}}=\left(x_{2}, x_{3}, x_{6}\right)^{\top} \\
&=\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
40-t \\
60+2 t \\
30-5 t
\end{array}\right) \\
&=\left(\begin{array}{c}
5-t \\
30+t \\
10-t
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
&-30 \leq t \leq 5 \quad t=5
\end{aligned}
$$

x_{2} leaves when $t=5$.
(row of B_{0}^{-1} associated with $\left.x_{2}\right)\left(P P_{4} P_{5}\right)=$

$$
\begin{aligned}
& =(1 / 2,-1 / 4,0)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
& =(-1 / 4,1 / 2,-1 / 4) \\
& \left\{z_{j}-c_{j}\right\}_{j=1,4,5} \\
& =(2,5,0)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)-(3,0,0) \\
& =(4,1,2)
\end{aligned}
$$

	x_{1}	x_{4}	x_{5}
$z_{j}-c_{j}$	4	1	2
x_{6}	$-1 / 4$	$1 / 2$	$-1 / 4$

X_{5} enters

$$
\text { new } B_{1}=\left(\begin{array}{lll}
P_{5} & P_{3} & P_{6}
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
x_{B_{0}}=\left(x_{1}, x_{2}, x_{4}\right)^{\top}=(2 / 5,9 / 5,1)
$$

$x_{4}=$ surplus in constraint 2
$x_{5}=$ slack in constraint 3

$$
B_{0}^{-1}=\left(\begin{array}{ccc}
2 / 1 / 5 & 0 & -1 / 5 \\
-1 & 0 & 1 / 5 \\
1 & -1 & 1
\end{array}\right)
$$

$$
x_{B_{0}}(t)=B_{0}^{-1}\left(\begin{array}{cc}
3+3 t \\
6+2 t \\
4-t
\end{array}\right)=\left(\begin{array}{c}
2 / 5+7 / 5 t \\
9 / 5-6 / 5 t \\
1
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Thus, $0 \leq t \leq 3 / 2, t_{1}=3 / 2$
At $t=3 / 2, x_{2}$ leaves the solution. To determine the entering variable, we wee the dual diplex computation. (row of B_{0}^{-1} associated int $\left.x_{2}\right)\left(P_{3}, P_{5}\right)$

$$
=(-1 / 5,0,3 / 5)\left(\begin{array}{ll}
2 & 0 \\
5 & 0
\end{array}\right)=(13 / 5,3 / 5)
$$

Because $(13 / 5,3 / 5) \geqslant 0$, the problem has ne feairble solution for $t>3 / 2$ (per dual simplex conditions).
Summary:

$$
x_{1}=2 / 5, x_{2}=9 / 5, x_{3}=0 \text {, for } 0 \leq t \leq 3 / 2
$$

Nofcarible solution for $t>3 / 2$

For th dual simplex, theferibility condition is

$$
B^{-1} b^{\prime}(t) \geqslant 0
$$

where $b^{\prime}(t)$ is modified such that the element $b_{i}(t)$ associated with \geqslant constraint is replaced with - $b_{i}(t)$.

$$
\begin{aligned}
& x_{B_{0}}=\left(x_{3}, x_{2}, x_{6}\right)^{\top}=(3 / 2,3 / 2,0) \\
& B_{0}^{-1}=\left(\begin{array}{ccc}
-3 / 2 & 1 / 2 & 0 \\
1 / 2 & -1 / 2 & 0 \\
1 & 0 & 1
\end{array}\right) \\
& b_{0}^{\prime}(t)=\left(\begin{array}{c}
-3-2 t \\
-6+t \\
3-4 t
\end{array}\right)
\end{aligned}
$$

The top two elements appear with un opposite sign because th first tiro constraint are of the type ≥ 0, hence reversing then" signs in th dual simplex inethed.

$$
\begin{aligned}
B_{0}^{-1} G_{0}^{\prime}(t) & =\left(\begin{array}{ccc}
-3 / 2 & -1 / 2 & 0 \\
1 / 2 & -1 / 2 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
-3-2 t \\
-6+t \\
3-4 t
\end{array}\right) \\
& =\left(\begin{array}{c}
3 / 2+5 / 2 t \\
3 / 2-3 / 2 t \\
-6 t
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& x_{3}=3 / 2+5 / 2 t \geq 0 \text { give, } t \geq-\frac{3}{5} \\
& x_{2}=3 / 2-3 / 2 t \geq 0 \text { gives } t \leq 1
\end{aligned}
$$

$$
x_{6}=-6 t \text { gives } t \leq 0
$$

Thus, for $t \geq 0$, The solution $X_{B_{0}}$ is feasible for $t=0$ only. Else, the problem haw no feasible solution for $t>0$

$$
\begin{aligned}
& x_{B_{0}}=\left(x_{1}, x_{2}, x_{3}\right)^{\top} \\
& \left.\begin{aligned}
& x_{B_{t}}=B_{0}^{-1} b(t)=\left(\begin{array}{ccc}
2 / 5 & 0 & -1 / 5 \\
-1 / 5 & 0 & 3 / 5 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
3+3 t^{2} \\
6+2 t^{2} \\
4-t^{2}
\end{array}\right) \\
&=\left(\begin{array}{c}
2 / 5+7 / 5 t^{2} \\
9 / 5-6 / 5 t^{2} \\
1
\end{array}\right) \geq\binom{ 0}{0} \\
&-1.22 \leq t \leq 1.22 \frac{2+7 t^{2}}{5} \\
& x_{2} \text { leaves at } t=1.22
\end{aligned} \quad 1.2 \right\rvert\, \\
& \hline
\end{aligned}
$$ (Row o o B_{0}^{-1}) $\left(P_{4} P_{5}\right)$

$$
=(-1 / 5,0,3 / 5)\left(\begin{array}{cc}
0 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right)=(0,3 / 5)
$$

\Rightarrow no feasible solution exists for $t>1.22$

CHAPTER 8

Goal Programming

Additional constraint:

$$
.075 x_{g} \geqslant .1\left(550 x_{p}+35 x_{f}+55 x_{s}+.075 x_{g}\right)
$$

The constraint simplifies to
$55 x_{p}+3.5 x_{f}+5.5 x_{s}-.0675 x_{g} \leqslant 0$
Thus,
$55 x_{p}+3.5 x_{f}+5.5 x-0675 x_{g}+S_{5}^{-}-S_{5}^{+}=0$ G_{5} : Minimize S_{5}^{+}
$x_{1}=$ number of band concerts $/ y_{2}$
$x_{2}=$ number of ant shows $/ y_{r}$
G_{1} : Minimize S_{1}^{∞}
G_{2} : Minimize S_{2}^{-}
G_{3} : minuinize S_{3}^{-}
Constraints:

$$
\begin{aligned}
1500 x_{1}+3000 x_{2} & \leq 1500 \\
200 x_{1}+S_{1}^{-}-S_{1}^{+} & =1000 \\
100 x_{1}+400 x_{2}+S_{2}^{-}-S_{2}^{+} & =1200 \\
250 x_{2}+S_{3}^{-}-S_{3}^{+} & =800
\end{aligned}
$$ all variables are $\geqslant 0$

$x_{1}=$ instate freeliner
$x_{2}=$ out -g o stat freshmen
$x_{3}=$ international freshmen
(a) $x_{1}+x_{2}+x_{3} \geqslant 1200$
(b) $\frac{27 x_{1}+26 x_{2}+23 x_{3}}{x_{1}+x_{2}+x_{3}} \geqslant 25$
(c) $\frac{x_{3}}{x_{1}+x_{2}+x_{3}} \geq 1$
(d) $\frac{1 / 2 x_{1}+2 / 5 x_{2}+1 / 9 x_{3}}{1 / 2 x_{1}+3 / 5 x_{2}+8 / 9 x_{3}} \geq .75$
(e) $\frac{x_{2}}{x_{1}+x_{2}+x_{3}} \geqslant .2$

Goal program:
G_{1} : minuinize S_{1}^{-}
$G_{2}:$ minimize S_{2}^{-}
G3: Minimize S_{3}^{-}
G4: Minimize S_{4}
G5: minimize S_{5}

Constraints:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+s_{1}^{-}-s_{1}^{+}=1200 \\
& 2 x_{1}+x_{2}-2 x_{3}+s_{2}^{-}-s_{2}^{+}=0 \\
& -1 x_{1}-1 x_{2}+.9 x_{3}+5_{3}^{-} s_{3}^{+}=0 \\
& 1 / 8 x_{1}-\frac{1}{20} x_{2}-5 / 9 x_{3}+s_{4}^{-}-S_{4}^{+}=0 \\
& -2 x_{1}+.8 x_{2}-2 x_{3}+s_{5}^{-}-5_{5}^{+}=0
\end{aligned}
$$

all variable, $\geqslant 0$
$x_{1}=1 b$ of limestone per day
$x_{2}=16$ of corn per day
$x_{3}=16$ of soybean meal-perday

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3} \geq 6000 \\
& .38 x_{1}+.001 x_{2}+.002 x_{3} \leq .012\left(x_{1}+x_{2}+x_{3}\right) \\
& .38 x_{1}+.001 x_{2}+.002 x_{3} \geq .008\left(x_{1}+x_{2}+x_{3}\right) \\
& .09 x_{2}+.5 x_{3} \geq .22\left(x_{1}+x_{2}+x_{3}\right) \\
& .02 x_{2}+.08 x_{3} \leq .05\left(x_{1}+x_{2}+x_{3}\right)
\end{aligned}
$$

Goals:
G_{1} : minimize $S_{1}{ }^{-}$
G_{2} : minimize S_{2}^{+}
G3: minionize S_{3}^{-}
G_{4} : Minimize 5_{4}
Gs: $_{5}$: minimize S_{5}^{+}
Comptrain5.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+S_{1}^{-}-S_{1}^{+}=6000 \\
& .368 x_{1}-.011 x_{2}-.01 x_{3}+S_{2}^{-}-S_{2}^{+}=0 \\
& .372 x_{1}-.007 x_{2}-.006 x_{3}+5_{3}^{+}-S_{3}^{+}=0 \\
& \rightarrow .22 x_{1}-.13 x_{2}+.28 x_{3}+s_{4}^{-}-S_{4}^{+}=0 \\
& -.05 x_{1}-.03 x_{2}+.03 x_{3}+5_{5}-S_{5}^{+}=0
\end{aligned}
$$

all vauables $\geqslant 0$
Goal programming is not suitable for this problem because nutritional requirements moet be met. Atroveres. goal programming can apeist un deciding which nutritemal requirement are "demanding" from the standpoint of optimization. Th information may then be used to decide of allermative nutritional requirements can be specified in a manner that doe not adversely impact cost minisuzation.
continued.
$X_{j}=$ number of pioductox
ruins in flif $t, j=1,2,3$
$\frac{500 x_{1}+600 x_{2}+640 x_{3}}{300 x_{1}+280 x_{2}+360 x_{3}}=\frac{4}{2}$
or
$-100 x_{1}+40 x_{2}-80 x_{3}=0$
minimize $Z=5_{1}+5_{1}^{+}$
subject to

$$
\begin{aligned}
& -100 x_{1}+40 x_{2}-80 x_{3}+5_{1}^{-}-5_{1}^{+}=0 \\
& 4 \leq x_{1} \leq 5,10 \leq x_{2} \leq 20,3 \leq x_{3} \leq 5
\end{aligned}
$$

$x_{j}=$ nember of units of pant j, $j=1,2,3,4$
G: muminize S_{1}^{+}
G_{2} : minisivice S_{2}^{+}
G_{3} : miniméze $S_{3}+$
G4: munumize S_{4}^{+}
GS: muirmize S_{S}
G_{6} : minimize 5_{6}
G_{7} : minimize S_{7}^{-}
G_{8} : minivize S_{8}^{-}
G_{9} : mommee S_{9}^{+}
Cometrants:

G_{2} : minisnize S_{2}^{-}
G_{3} : minimize $S_{3}{ }^{+}$
G4: minimize S_{4}^{+}

Constraints.

$$
\begin{aligned}
& x_{1}+s_{1}-s_{1}^{+}=80 \\
& x_{2}+s_{2}^{-}-s_{2}^{+}=60 \\
& 5 x_{1}+3 x_{2}+s_{3}^{-}-s_{3}^{+}=480 \\
& 6 x_{1}+2 x_{2}+s_{4}-s_{4}^{+}=480 \\
& \text { all vauables } \geqslant 0
\end{aligned}
$$

$x_{j}=$ number of 1 -day stays admitted onday $j, j=1,2,3,4$

y_{j} : number of 2-day otays
admitted on day $j, j=1,2,3,4$
$w_{j}=$ number of $3-d a y$ ptays admitted on day $j, j=1,2,3,4$
G_{1} : minumize $S_{1}+$
G_{2} : minimize $S_{2}{ }^{+}$
G_{3} : mimimize $S_{3}{ }^{t}$
G4: munimize S_{4}^{+}
subject to
$x_{1}+x_{2}+x_{3}+x_{4}=30$
$y_{1}+y_{2}+y_{3}+y_{4}=25$
$w_{1}+w_{2}+w_{3}+w_{4}=20$
$x_{1}+y_{1}+\omega_{1}+s_{1}-5_{1}^{+}=20$
$x_{2}+y_{1}+y_{2}+w_{1}+w_{2}+s_{2}^{-}-s_{2}^{+}=30$
$x_{3}+y_{2}+y_{3}+w_{1}+w_{2}+w_{3}+s_{3}^{-}-s_{3}^{+}=30$
$x_{4}+y_{3}+y_{y}+w_{2}+w_{3}+w_{4}+s_{4}^{-}-s_{4}^{+}=30$
all variable, $\geqslant 0$
$(x, y)=$ deaired lome location

G: minimize 5_{1}^{+}
G_{2} : mumainze S_{2}^{*} $G_{3}:$ minimize S_{3}^{+}
subject to

$$
\begin{aligned}
& \sqrt{(x-1)^{2}+(y-1)^{2}}+S_{1}^{-}-S_{1}^{+}=25 \\
& \sqrt{(x-20)+(y-15)^{2}}+S_{2}^{-}-S_{2}^{+}=10 \\
& \sqrt{(x-4)^{2}+(y-7)^{2}}+S_{3}^{-}-S_{3}^{+}=1 \\
& \text { all vancable } \geq 0
\end{aligned}
$$

$\hat{y}=$ estimated value of y : 10 problem seduces t given the independent values $x_{j}, j=1,2, \ldots, n$

$$
=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{n} x_{n}
$$

The parameters bo, b_{1}, \ldots, b_{n} are determined by minimizing

$$
\sum_{i=1}^{m}\left|y_{i}-\hat{y}_{i}\right|
$$

where m is the number of obrewed points.

The equivalent goal programming model is given as
minimize $z=\sum_{i=1}^{m}\left(S_{i}^{-}+S_{c}^{+}\right)$
subject to

$$
\begin{aligned}
& \hat{y}_{c}^{+}+S_{c^{-}}^{-}-S_{c^{-}}^{+}=y_{i}, i=1,2, \ldots, m \\
& S_{i^{-}}^{-}, S_{i^{-}}^{+} \geqslant 0, i=1,2, \ldots, m
\end{aligned}
$$

the values of the untenown parameters b_{0}, b, \cdots, b_{n} are introduced in the optermiqation
problem by using the substisten

$$
\hat{y}_{i}=b_{1}+b_{1} x_{i 1}+b_{2} \dot{x}_{i 2}+\cdots+b_{n} x_{i n}
$$

Thus, the vanables of the model are $s_{i}^{-}, s_{i}^{+}, b_{0}, b_{1}, \ldots, b_{n}$.
Only S_{i}^{-}and $S_{i}+$ are required to be nonnegative.
$\operatorname{minimize}\left[\max _{i=1,3, \ldots m}\left\{\left|y_{i}-\hat{y}_{i}\right|\right\}\right] \quad 11$
Let

$$
\begin{aligned}
d=\max & \left\{\left|y_{1}-\hat{y}_{1}\right|,\left|y_{2}-\hat{y}_{2}\right|, \cdots,\right. \\
& \left.\left|y_{m}-\hat{y}_{m}\right|\right\}
\end{aligned}
$$

continued.

Set 8.2a

Minimize $Z=S_{1}^{+}+S_{2}^{-}+S_{5}^{-}+S_{4}^{+}+S_{5}^{+}$ st.
$550 x_{p}+35 x_{f}+55 x_{s}+.075 x_{g}+5_{1}^{-}-s_{1}^{+}=16$
$55 x_{p}-31.5 x_{f}+5.5 x_{s}+.0075 x_{g}+s_{2}^{-}-s_{2}^{+}=0$
$110 k_{p}+7 x_{f}-44 x_{s}+-615 x_{g}+s_{3}-s_{3}^{+}=0$
$x_{9}+s_{4}^{-}-s_{y} t=2$
$s_{5} x_{p}+3.5 x_{f}+5.5 x_{5}-.0675 x_{g}+s_{s}-s_{5}^{+}=0$
Solution: $x_{p}=-0201, x_{f}=-0457, x_{s}=-0582$
$x_{g}=2$ cents, $s_{s}^{+}=1.45$, all others $=0$
Gasoline tax goal is $\$ 1.45$ millionshort of its $\$ 1.6$ mil/ ion
Minimize $2=S_{1}^{-}+2 S_{2}^{-}+S_{3}^{-}$
Sot. $1500 x_{1}+3000 x_{2}$
$200 x_{1}$
$200 x_{1}+400 x_{2}+s_{1}^{-}-s_{1}^{+}=1000$
$100 x_{1}+s_{2}+s_{2}+1200$
$250 x_{2}+s_{3}-s_{3}^{+}=800$
Solution: $z_{1}=175, x_{1}=5, x_{2}=2.5$.
$s_{1}^{-}=s_{1}^{+}=0:$ Goal 1 satitified $s_{z}^{+}=300:$ goal 2 overachieved by 300 perron $s_{3}=175:$ goo 3 unduachieved hag 175 persons
(a) Minimize $Z=2 S_{2}^{-}+S_{3}^{-}+S_{4}^{-}+S_{5}^{+}$
s.t. $\quad x_{1}+x_{2}+x_{3} \geq 12 \sigma \sigma$
$2 x_{1}+x_{2}-2 x_{3}+s_{2}^{-}-s_{2}^{+}=0$
$125 x_{1}-.05 x_{2}-.556 x_{3}+s_{3}^{-}-s_{3}+=0$
$-1 x_{1}-.1 x_{2}+.9 x_{3}+54-54+4=0$
$-.2 x_{1}+.8 x_{2}-.2 x_{3}+s_{5}^{-}-s_{5}^{7}=0$
Solution: $z=0$: all goals ane satisfied
$x_{1} \cong 80, x_{2} \cong 240, x_{3}=\simeq 159$
$s_{2}^{+}=15225.6: \mathrm{AcT}$ score ovesach ied by 1.27ps/stwewt $S_{4}^{+}=38.59:$ Nbrof international students overachieved
by 39 students by 39 students
(b) Minimize $z=4 S_{1}^{-}+2 S_{2}^{-}+S_{3}^{-}+S_{5}^{-}$

$$
x_{1}+x_{2}+x_{3}+5_{1}-5_{2}^{+}=1200
$$

Solution vi (a) semunis the same
Minimize $2=S_{1}^{-}+S_{2}^{+}+S_{3}^{-}+S_{4}^{-}+S_{5}^{+}$ sot.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & +s_{1}^{-}-s_{1}+ \\
-368 x_{1}-011 x_{2}-.01 x_{3}+s_{2}-s_{2}^{+} & =0 \\
.372 x_{1}-007 x_{2}-.006 x_{3}+s_{3}^{-}-s_{3}^{+} & =0 \\
-.22 x_{1}-13 x_{2}+28 x_{3}+5_{4}=54+ & =0 \\
-.05 x_{1}-.03 x_{2}+.0 .3 x_{3}+s_{5}-55^{+} & =0
\end{aligned}
$$

$Z=0$: all goals are satisfied
$x_{1}=166.0816, x_{2}=2778.5616, x_{3}=3055.36 \mathrm{lb}$
$5_{3}^{+}=24: G 3$ overachieved $\frac{24}{6000}=-004$
$S_{4}^{+}=457.75$. G4 overacheived by $\frac{457.75}{6000}=.0763$
calcium $\%=1.2$ calcium $\%=1.2$
Protein $\%=22+7.63=29.63$, Fiber $\%=5$

Minimize $z=S_{1}^{-1}+S_{1}^{+}$
s.t. $-100 x_{1}+40 x_{2}-80 x_{3}+s_{1}-s_{1}^{+}=0$

$$
4 \leq x_{1} \leq 5,10 \leq x_{2} \leq 20,3 \leq x_{3} \leq 5 .
$$

Solution: $z=0$: all goal aresatified
$x_{1}=4, x_{2}=16, x_{3}=3$
$S_{1}=S_{1}+=0$: Production is balanced.
$\operatorname{Min} 2=S_{3}^{-}+S_{4}^{-}+2 S_{5}^{-}+2 S_{6}^{-}+2 S_{7}^{-}+2 S_{8}^{-}+2 S_{9}^{+}$
St.

$$
\begin{array}{rrr}
5 x_{1}+6 x_{2}+4 x_{3}+7 x_{4} & \leq 600 \\
3 x_{1}+2 x_{2}+6 x_{3}+4 x_{4} & \leq 600 \\
2 x_{1}+4 x_{2}-2 x_{3}+3 x_{4}+5_{3}^{-}-5_{3}^{+}=30 \\
-2 x_{1}-4 x_{2}+2 x_{3}-3 x_{4} & +5_{4}^{-}-5_{4}^{+}=30 \\
x_{1} & +5_{5}^{-}-5_{5}^{+}=10 \\
x_{2} & & +5_{6}^{-}-5_{6}^{4}=10 \\
x_{3} \quad & +5_{7}^{-}-5_{7}=10 \\
& +5_{8}^{-}-5_{8}^{+}=10 \\
& & +5_{9}^{-}-5_{9}^{+}=0
\end{array}
$$

$z=0$: all goals are satisfied
$x_{1}=10, x_{2}=10, x_{3}=30, x_{4}=10$
Assign a relatively large weight to the quota constraint.
$\operatorname{Min} z=100\left(S_{1}^{-}+S_{2}^{-}\right)+\left(S_{3}^{+}+S_{4}^{+}\right)$
SHf.

$$
\begin{array}{ll}
x_{1}+s_{1}^{-}-s_{1}+ & =80 \\
x_{2}+s_{2}-s_{2}+ & =60 \\
5 x_{1}+3 x_{2}+s_{3}-s_{3} & =480 \\
6 x_{1}+2 x_{2}+s_{4}-s_{4} & =480
\end{array}
$$

Solution: $x_{1}=80, x_{2}=60, s_{3}^{+}=100, S_{4}^{+}=120 \mathrm{~min}$ Production quota can be met with 100 m ur of overtime on machene'1 and 120 min on machine 2
$\operatorname{Min} Z=s_{1}^{+}+s_{2}^{+}+s_{3}^{+}+s_{4}^{+}$
set. $x_{1}+x_{2}+x_{3}+x_{4}$

$$
\begin{array}{ll}
y_{1} \hat{y}_{2}+y_{3}+y_{4} & =30 \\
w_{1}+w_{2}+w_{3}+w_{4} & =25 \\
x_{1}+y_{1}+w_{7}+s_{1}-s_{1}^{+} & =20 \\
x_{2}+y_{1}+y_{2}+w_{1}+w_{2}+s_{2}^{-}-s_{2}^{*} & =30 \\
x_{3}+y_{2}+y_{3}+w_{1}+w_{2}+w_{3}+s_{3}^{-}-s_{3}^{+}=30 \\
x_{4}+y_{3}+y_{4}+w_{2}+w_{3}+w_{4}+s_{4}^{-}-s_{4}^{+}=30
\end{array}
$$

Solution: $z=\sigma$: All goals are met

$$
x_{1}=5, x_{2}=15, x_{3}=10, x_{y}=0
$$

$\sum 1$ day stay $=30$

$$
y_{1}=10, y_{2}=0, y_{3}=15, y_{4}=0
$$

$\sum 2$-day stay p $=25$

$$
w_{1}=5, w_{2}=0, w_{3}=0, w_{4}=15
$$

$\sum 3$-day stay $=20$
The solution "shews that:

Nor. beds used on day 1

$$
=x_{1}+y_{1}+w_{1}=20(=\text { availabilt } 20)
$$

Nb. beds used monday $2=x_{2}+y_{2}+w_{2}=15(<30)$
NbC. beds used on day $3=x_{3}+y_{3}+w_{3}=25(<30)$
$N b_{r}$ beds used on dry $4=x_{y}+y_{4}+w_{4}=15(<30)$
Corichuin: all 1: 2; and 3-day stays. can be
met without over borteing
$y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}$
Minimize $z=\sum_{i=1}^{5}\left(S_{i}^{-}+S_{i}^{+}\right)$
subject ts
$b_{0}+30 b_{1}+4 b_{2}+5 b_{3}+\vec{s}_{1}-5_{1}^{+}=40$
$b_{0}+39 b_{1}+5 b_{2}+10 b_{3}+\bar{s}_{2}-s_{2}^{+}=48$
$b_{0}+48$
$b_{0}+44 b_{1}+2 b_{2}+14 b_{3}+5_{3}-s_{3}^{+}=38$
$b_{0}+48 b_{1} \quad+18 b_{3}+s_{4}^{-}-S_{4}^{+}=36$
$b_{0}+37 b_{1}+3 b_{2}+9 b_{3}+5_{5}^{-}-s_{5}^{+}=41$
$S_{c}, S_{i}^{-} \geqslant 0, i=1,2, \ldots, 5$
$b_{0}, b_{1}, b_{2}, b_{3}$ unrestricted
TORA Solution:
$b_{6}=.8571$
$b_{1}=1.0714$
$b_{2}=2.881$
$b_{3}=-.9048$
$S_{3}{ }^{-}=3.0952$
all other S_{i}^{-}and $S_{C}^{+}=0$
Thus, The least-square estirniator is guveri as
$\hat{y}=.8571+1.0714 x_{1}+2.881 x_{2}-.9048 x_{3}$
$y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}$
minimize $z=d$
subject to
$b_{0}+30 b_{1}+4 b_{2}+5 b_{3}+d \geqslant 40$
$b_{0}+39 b_{1}+5 b_{2}+10 b_{3}+d \geq 48$
$b_{0}+44 b_{1}+2 b_{2}+14 b_{3}+d \geqslant 38$
$b_{0}+48 b_{1}+18 b_{3}+d \geq 36$
$b_{8}+37 b_{1}+3 b_{2}+9 b_{3}+d \geq 41$
$b_{0}+30 b_{1}+4 b_{2}+5 b_{3}-d \leq 40$
$b_{0}+39 b_{1}+5 b_{2}+10 b_{3}-d \leqslant 48$
$b_{0}+44 b_{1}+2 b_{2}+14 b_{3}-d \leqslant 38$
$b_{0}+48 b_{1}+18 b_{3}-d \leqslant 36$ $b_{0}+37 b_{1}+3 b_{2}+9 b_{3}-d \leq 41$ $b_{0}, b_{1}, b_{2}, b_{3}$ unrestricted $d \geq 0$
TORA Solution:

$$
\begin{aligned}
& b_{0}=27.5536 \\
& b_{1}=-.0893 \\
& b_{2}=3.2679 \\
& b_{3}=.6429 \\
& d=1.1607
\end{aligned}
$$

Chebysher estimator:

$$
\begin{gathered}
\hat{y}=27.5536-.0893 \%+3.2679 x_{2} \\
+1.1607 x_{3}
\end{gathered}
$$

$$
\begin{aligned}
& \text { minimize } G_{1}=5_{1} \\
& \text { sulfict } 50 \\
& 4 x_{1}+8 x_{2}+\bar{s}_{1}-5_{1}^{+}=45 \\
& 8 x_{1}+24 x_{2}+5_{2}-5_{2}^{+}=110 \\
& x_{1}+2 x_{2} \leqslant 10 \\
& x_{1} \leq 6 \\
& x_{1}, x_{2}, \bar{s}_{1}, 5_{1}^{+}, \bar{s}_{2}, 5_{2}^{+} \geqslant 0
\end{aligned}
$$

TORA Solution:

$$
\begin{aligned}
& x_{1}=2.5, \quad x_{2}=3.75 \quad 5_{1}^{-}=5 \\
& 5_{1}^{+}=5_{2}=5_{2}^{+}=0
\end{aligned}
$$

Both goals are automatically satiefied.

$$
G_{1} \succ G_{2}>G_{3}>G_{4} \succ G_{5}
$$

G1-Problem soluton:

$$
\begin{aligned}
& x_{p}=.01745 x_{f}=.0457, x_{5}=.0582 \\
& x_{y}=21.33 \\
& \bar{s}_{1}=5_{1}^{+}=\bar{S}_{2}=S_{2}^{+}=\bar{S}_{3}=S_{3}^{+}=\bar{S}_{y} \\
& =s_{5}^{+}=0 \\
& s_{4}^{+}=19.33
\end{aligned}
$$

Goalo $G 1, G 2, G 3$, and G are Ratiafied.
G4-Problem:
minimize $z=5_{4}^{+}$
sulfect to Gl-constrainta \& $s_{1}=s_{2}=s_{3}^{-}=0$
Solution: $x_{1}=.0201, x_{2}=.0457, x_{3}=-0582, x_{y}=2$ $s_{s} t=1.45$. G G_{s} is ner Rnofified
G5-Problem: Minimize $z=5_{5}^{+}$sulyict ts same constraints in $G 44 S_{4}+=0$ Solution:
Same as in G4, which means that G5 cannot be satigited.
(a) $G 1>G 2>G 3$

Q1-lenelem:
Minimize $G 1=5$,
TORA Solution: $\overrightarrow{S_{1}}=0, \overrightarrow{S_{2}}=0, \overrightarrow{S_{3}}=362.5$

$$
x_{1}=5, x_{2}=1.75
$$

G2 is satigfied
G3-Roblem:
Minisize $G 3=5$

$$
S_{1}^{-}=0, S_{2}^{-}=0
$$

TORA solution: $S_{3}^{-}=175$

$$
x_{1}=5, \quad x_{2}=2.5
$$

G3 remains unsatiofied.
(b) $G 3 \succ G_{2} \succ G 1$

G3-Problem: minimize $G 3=5_{3}^{-}$
TORA Solution: $\overrightarrow{S_{1}}=280, \overrightarrow{S_{2}}=0, \bar{S}_{3}=0$

$$
x_{1}=3.6, x_{2}=3.2
$$

G2 is satiofied.
Gl-Problem: Minimize $G 1=5$,

$$
s_{2}=0,5_{3}=0
$$

TORA sculten: $x_{1}=3.6, x_{2}=3.2,5_{1}=280$
$G 1$ is not patiofied
Problem G1: minimize $G 1=S_{2}$
ToreA Solution: $x_{1}=0, x_{2}=1080, x_{3}=120$

$$
s_{9}^{+}=309.33, \vec{S}_{2}=\vec{S}_{5}=0
$$

G2 (minimize S_{3}) is astiefied.
G3-Problem: minimize $G_{3}=S_{4}^{+}$

$$
S_{2}=0, \quad S_{3}=0
$$

TORA Sluten: $x_{1}=1080, x_{2}=0, x_{3}=120$

$$
s_{4}^{t}=93.33, s_{5}^{+}=240
$$

G4-Problem: Minimize $G 4=55^{+}$

$$
S_{2}=0, S_{3}=0, S_{4}^{+}=9333
$$

TORA Solution :

$$
\begin{aligned}
& x_{1}=1080, x_{2}=0 \\
& x_{3}=120 \\
& s_{5}^{+}=240
\end{aligned}
$$

G3 and G4 are unsatified

CHAPTER 9

Integer Linear Programming

Set 9.1a

Max $z=20 x_{1}+40 x_{2}+20 x_{3}+15 x_{4}+30 x_{5}$
subject to
$\left(\begin{array}{ccccc}5 & 4 & 3 & 7 & 8 \\ 1 & 7 & 9 & 4 & 6 \\ 8 & 10 & 2 & 1 & 10\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{5}\end{array}\right) \leq\left(\begin{array}{c}25 \\ 25 \\ 25\end{array}\right)$
(a) $x_{1} \leq x_{5}, x_{3} \leq x_{5}$, all x_{j} binary

Solution: $x_{2}=x_{3}=x_{5}=1, z=90$
(b) $x_{2}+x_{3} \leqslant 1$, a $/ 1 x_{j}$ binary

Solution: $x_{2}=x_{4}=x_{5}=1, \quad z=85$
Note: When you use ToRA, add the upper bound $x_{j} \leqslant 1$ for all binary variables.
$x_{i}=$ number of units of item $i,_{i=1,2, \ldots, 5}$
Maximize $z=4 x_{1}+7 x_{2}+6 x_{3}+5 x_{4}+4 x_{5}$
subject to

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
5 & 8 & 3 & 2 & 7 \\
1 & 8 & 6 & 5 & 4
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{5}
\end{array}\right) \leq\binom{ 112}{109} \\
& x_{j} \geqslant 0 \text { and integer, } j=1,2, \ldots, 5
\end{aligned}
$$

Solution: $x_{1}=14, x_{4}=19$, all otter arezero, $z=151$
$x_{i j}=$ number of bottles of type i aragned to individual
where $i= \begin{cases}1, & \text { full } \\ 2, & \text { half-full } \\ 3, & \text { empty }\end{cases}$
Total available wire $=7+3 \frac{1}{2}=10 \frac{1}{2}$ share per individual $=\frac{10 \frac{1}{2}}{3}=3 \frac{1}{2}$ bottles Constraints:

$$
\left.\begin{array}{l}
x_{11}+x_{12}+x_{13}=7 \\
x_{21}+x_{22}+x_{23}=7 \\
x_{31}+x_{32}+x_{33}=7 \\
x_{11}+\frac{x_{21}}{2}=3.5 \\
x_{12}+\frac{x_{22}}{2}=3.5 \\
x_{13}+\frac{x_{23}}{2}=3.5
\end{array}\right\} \begin{aligned}
& \text { bottle } \\
& \text { by pe }
\end{aligned} \quad \begin{aligned}
& \text { amount of } \\
& \text { wine pea } \\
& \text { individual }
\end{aligned}
$$

$x_{11}+x_{21}+x_{31}=77$ battles
$x_{12}+x_{22}+x_{32}=7$ puinidual $x_{13}+x_{23}+x_{33}=7$ (redundant)
$x_{i j} \geqslant 0$ and integer
Use dummy objective function maximize $z=\sigma x_{11}+0 x_{12}+\cdots+\sigma x_{33}$
Feasible volution: (alternative solution o exist)
individual

$x_{1}=$ number of camels is Tarek
$x_{2}=$ number of camels to Sharif
$x_{3}=$ number of camels 5 maia
$X_{Y}=$ number of camels to charity $(=1)$
$r=$ dummy integer variable ≥ 0.
$y=\begin{aligned} & \text { total number of camels in the } \\ & \\ & \text { will }\end{aligned}$

Constraints:

$$
y=x_{1}+x_{2}+x_{3}+1
$$

$y=2 r+1 \Rightarrow y$ isodd
$x_{1} \geq 1 / 2 y, x_{2} \geq 1 / 3 y, x_{3} \geq \frac{1}{9} y$
Using a dummy objectere function, the
problem seduces G

y	x_{1}	x_{2}	x_{3}	r
\min	0	0	0	0
1	-1	-1	-1	0
1	0	0	0	-2
1	-2	0	0	0
1	0	-3	0	0
1	0	0	-9	0
1	≤ 0			

Solution: $y=27$ camels. Trek get 14, sharif gets 9 , and maia get 3. Note: of you enter the last two cons taints is the original fractional form, make pause dat $1 / 3$ and $1 / 9$ are accurnás to six decanal point $(-333333$ and - IIIIII). ElSe, TaRA fail to find abolition.
$x_{i j}=$ number of apples belonging
to child i and sold at price j.

$$
i=\left\{\begin{array}{l}
1 \rightarrow \text { Jim } \\
2 \rightarrow \text { Bill. } \\
3 \rightarrow \text { Jotin. }
\end{array} \quad j=\left\{\begin{array}{l}
1 \rightarrow \$ 1 / 7 \text { apples } \\
2 \rightarrow \$ 3 / \text { apple }
\end{array}\right.\right.
$$

allocation of apples to children.

$$
\begin{array}{ll}
x_{11}+x_{12}=50 & \text { (Jim }) \\
x_{21}+x_{22}=30 & \text { (Bill) } \\
x_{31}+x_{32}=10 & \text { (John) }
\end{array}
$$

allocate same money to each child:

$$
\begin{aligned}
& \frac{x_{11}}{7}+3 x_{12}=\frac{x_{21}}{7}+3 x_{22} \\
& \frac{x_{11}}{7}+3 x_{12}=\frac{x_{31}}{7}+3 x_{32}
\end{aligned}
$$

Objective functions:
maximize $z=\frac{x_{11}}{7}+3 x_{12}$
ILS:
maximize $z=x_{11}+21 x_{12}$
subject to

$$
\begin{aligned}
& x_{11}+x_{12}=50 \\
& x_{21}+x_{22}=30 \\
& x_{31}+x_{32}=10
\end{aligned}
$$

$$
x_{11}+21 x_{12}-x_{21}-21 x_{22}=0
$$

$$
x_{11}+21 x_{12}-x_{31}-21 x_{32}=0
$$

Solution:

Solution:	$\$ 1 / 7$ apples	$\$ 3 /$ apple
Jim	42 8 30 21 9 30 Bill 3 10 John 30	

Bach childreterns home with \$30.
$y=$ original sum of money
$x_{1}=$ amount taken the fist night
$x_{2}=$ amount taken the second nite,
$x_{3}=$ amount taken the third nugget
$x_{4}=$ amount given by first offices teach mariner
$\operatorname{minimize} z=y$
subject to

$$
\begin{aligned}
& x_{1}=\frac{y-1}{3}+1 \\
& x_{2}=\frac{y-x_{1}-1}{3}+1 \\
& x_{3}=\frac{y_{1}-x_{1}-x_{2}-1}{3}+1 \\
& x_{4}=\frac{y_{1}-x_{1}-x_{2}-x_{3}-1}{3}
\end{aligned}
$$

the ILP is gwen as
minimize $z=y$
subject to

$$
\begin{array}{rlrl}
3 x_{1} & -y & =2 \\
x_{1}+3 x_{2} & -y & =2 \\
x_{1}+x_{2}+3 x_{3}-y & =2 \\
-x_{1}-x_{2}-x_{3}-3 x_{4}+y & =1
\end{array}
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}, y \geq 0 \text { and integer }
$$

Solution: $y=79$ units
Resolve the problem after adding the constraint $y \geq 80$.
Solutes: $y=160$ units
Resolve th problem offer adding The constraint $y \geq 161$
Solution: $y=241$ units
General Solution:

$$
\begin{aligned}
y & =79+81 n, \\
n & =0,1,2, \ldots
\end{aligned}
$$

Given $A=1$ and $z=26$, let
$Y=1$ of wad j is selected and of
if in not selected.
$x_{j}=1$ if wood $;$ is selected and 0 if it is not selected.

j	Word	$\angle j$	$\angle 2$	$\angle 3 j$	Score
1 AFT	1	6	20	27	
2	FAR	6	1	18	25
3	TVA	20	22	1	43
4 ADV	1	4	22	27	
5	JOE	10	15	5	30
6 FIN	6	9	14	29	
7 OF	15	19	6	40	
8 KEN	11	5	14	30	

$\sum_{j=1}^{8} L_{1 j} X_{j}<\sum_{j=1}^{8} L_{2 j} X_{j} \operatorname{impheis}_{8}^{8}$ that $\sum_{j=1}^{\bar{B}_{1}^{\prime}}\left(L_{2 j}-L_{i j}\right)>0$, or $\sum_{j=1}^{8}\left(L_{2 j}-L_{i j}\right) \geqslant 1$ which Gauslateste
Which hauslatest $\quad 5 x_{1}-5 x_{2}+2 x_{3}+3 x_{4}+5 x_{5}+3 x_{6}+4 x_{7}-6 x_{8} \geqslant 1$ The objective function is equivalent to
Similarly, Constraint $\sum_{j=1}^{8} L_{2 j}<\sum_{j=1}^{8} L_{3 j} x_{j}$
translates to

$$
\begin{aligned}
& 14 x_{1}+17 x_{2}-21 x_{3}+18 x_{4}-14 x_{5}+5 x_{6}-13 x_{7}+9 x_{8} \geqslant 1 \\
& \begin{array}{l}
\text { LP: } \\
\text { maximize } z=
\end{array}=27 x_{1}+25 x_{2}+43 x_{3}+27 x_{4}+30 x_{5}+ \\
& \\
& 29 x_{6}+40 x_{7}+30 x_{8}
\end{aligned}
$$

Subject to

$$
5 x_{1}-5 x_{2}+2 x_{3}+3 x_{4}+5 x_{5}+3 x_{6}+4 x_{7}-6 x_{8} \geq 1
$$

$$
17 x_{1}+17 x_{2}-21 x_{3}+18 x_{y}-10 x_{5}+5 x_{6}-13 x_{7}+9 x_{g} \geqslant 1
$$

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{8}+x_{7}+x_{8}=5
$$

$$
x_{j}=(0,1), j=1,2, \cdots, 8
$$

Solution: $x_{1}=x_{3}=x_{4}=x_{7}=x_{8}=1$

Selected word $L_{1 j}$	$L_{2 j}$	$L_{5 j}$	Score	
$A F T$	1	6	20	27
TVA	20	22	1	43
ADV	1	4	22	27
SF	15	19	6	40
KEN	11	5	14	30
\sum	48	56	63	167

Because $\left.\sum_{j=1}^{8} L_{i j} x_{j}<\sum_{j=1}^{8} L_{2 j} x_{j}<\sum_{j=1}^{8} L_{3 j} x_{j},\right\}$
the new objective function
Maximize $z=\sum_{j=1}^{8} L_{j} x_{j}$
jurduces the desired reault, minding that of Problem 7 .
$C_{i k}=$ Nbr.of times letter i is repeated in group $k, k=1,2$
$x_{i j}=\left\{\begin{array}{l}1, \text { if letter } i \text { is assigned value } j \\ 0, \text { thenevisi }\end{array}\right.$

$$
\begin{aligned}
& \text { (0, thencurse } \\
& \text { Minimize } z=\left|\sum_{i=1}^{9}\left(C_{i i}-C_{i 2}\right) \sum_{j=1}^{9} j x_{i j}\right| \\
& \text { SIt. }{ }^{9}
\end{aligned}
$$

$\sum_{j=1}^{9} x_{i j}=1$, all i
$\sum_{i=1}^{9} x_{i j}=1$, all j s.t. Minimize $z=y$

$$
-y \leq \sum_{j=1}^{g}\left(c_{i}-c_{i 2}\right) \sum_{j=1}^{9} j x_{i j} \leq y
$$

Solution: $z=0$

$$
\begin{aligned}
& A=8, E=3, F=7, H=2,0=1, P=4, R=6, \\
& S=9, T=5
\end{aligned}
$$

$x_{i}=\left\{\begin{array}{l}1, \text { if song } i \text { is on side } j \\ 0, \text { if song } i \text { is not on side } j\end{array}\right.$
Minimize $z=\left|S_{1}-S_{2}\right|$
Subject to

$$
\begin{aligned}
8 x_{11} & +3 x_{21}+5 x_{31}+5 x_{41} \\
& +9 x_{51}+6 x_{61}+7 x_{71}+12 x_{81}+55_{1}=30 \\
8 x_{21} & +3 x_{22}+5 x_{32}+5 x_{42} \\
& +9 x_{52}+6 x_{62}+7 x_{72}+12 x_{82}+5_{2}=30 \\
x_{i 1} & +x_{62}=1, \quad i=1,2, \ldots, 8
\end{aligned}
$$

Let $y=\left|s_{1}-s_{2}\right| \Rightarrow\left\{\begin{array}{l}s_{1}-s_{2} \leqslant y \\ s_{1}-s_{2} \geqslant-y\end{array}\right.$

ILS:
minimize $z=y$
subject to

$$
\begin{aligned}
& \left.8 x_{11}+3 x_{21}+5 x_{31}+5 x_{4}\right)_{1} \\
& +9 x_{51}+6 x_{61}+7 x_{71}+12 x_{81}+51=30 \\
& 8 x_{12}+3 x_{22}+5 x_{32}+5 x_{42}+9 x_{52} \\
& +6 x_{62}+7 x_{72}+12 x_{82}+5_{2}=30 \\
& x_{i 1}+x_{i 2}=1, i=1,2, \ldots, 8 \\
& s_{1}-s_{2}-y \leq 0 \\
& s_{1}-s_{2}+y \geqslant 0 \\
& x_{i j}=(0,1), i=1,2, \ldots, 8 ; j=1,2 \\
& s_{1}, s_{2}, y \geq 0
\end{aligned}
$$

Solution:
Side 1: 5-6-8 (27 minutes)
side 2: 1-2-3-4-7 (28 minutes)
Problem has alternative optima.
Simpler Model:
minimize $z=y$
surfeit io

$$
\begin{aligned}
& 8 x_{11}+3 x_{21}+5 x_{31}+5 x_{41} \\
& +9 x_{51}+6 x_{61}+7 x_{71}+12 x_{81} \leq y \\
& 8 x_{12}+3 x_{22}+5 x_{32}+5 x_{42} \\
& +9 x_{52}+6 x_{62}+7 x_{12}+12 x_{82} \leq y \\
& x_{1 ;}+x_{12}=1, \quad \therefore=1,2, \ldots, 8 \\
& y \geqslant 0
\end{aligned}
$$

Solution:
side 1: $3-4-6-8$, time $=28$ minim es Side 2: $1-2-5-7$,. time $=27$ minutes add the constraints

$$
\begin{aligned}
& x_{31}+x_{41}=1 \\
& x_{32}+x_{42}=1
\end{aligned}
$$

Use the simpler model in Problem 10; that is,
minimize $z=y$
subject to

$$
\begin{aligned}
& 8 x_{11}+3 x_{21}+5 x_{31}+5 x_{41}+ \\
& 9 x_{51}+6 x_{61}+7 x_{71}+12 x_{81} \leq y \\
& 8 x_{12}+3 x_{22}+5 x_{32}+5 x_{y_{2}}+ \\
& 9 x_{52}+6 x_{62}+7 x_{72}+12 x_{82} \leq y \\
& x_{17}+x_{i 2}=1, \quad i=1,3, \ldots, 8 \\
& x_{31}+x_{41}=1 \\
& x_{32}+x_{42}=1 \\
& x_{i j}=(0,1) \text { for all } i \text { and } j \\
& y \geq 0
\end{aligned}
$$

Solution:
Side 1: 1-2-4-8, $\Sigma=28 \mathrm{~min}$ side 2: 3-5-6-7, $\sum=27 \mathrm{~min}$
the tape must be at least 28 minutes.
$x_{i j}=[1$, student, i selects conies j,
(0, otherwise
$P_{i j}=$ associated preference score
$\begin{aligned} & \text { Maximize } z \\ & \text { st. } 6\end{aligned}=\sum_{i=1}^{10} \sum_{j=1}^{6} p_{i j} x_{0 j}$
st. $\sum_{i=1}^{6} x_{i j}=2, i=1,3 \ldots, 10$
$\sum_{i=1}^{10} x_{j} \leq C_{j}, j=1,2, \cdots, 6$
Solution: Total score $=1775$

Course	Students
1	$2,4,9$
2	2,8
3	$5,6,7,9$
4	$4,5,7,10$
5	$1,3,8,10$
6	1,3

Solution: $x_{5}=x_{6}=1$, all others $=0$

$$
z=104
$$

Select routes $(1,4,2)$ and $(1,3,5)$. Customer 1 Should be visited once waingeither route
Suppose that the 10 miduriduals
are referred to by the code $k=$ a, b, \ldots, j. LeA

$$
x_{k}=\left\{\begin{array}{l}
1, \text { isidividual } k \text { isicluded } \\
0, \text { individual } k \text { not included. }
\end{array}\right.
$$

$$
k=a, b, c, \cdots, j
$$

$$
x_{a} x_{b} x_{c} x_{d} x_{e} x_{f} x_{g} x_{b} x_{c} x_{j}
$$

$\operatorname{minz} 1111111111$
subject a

Solution: Use individual a, d, and f. Problem Rasalternative qitema

Station	Towns it can serve
1	$1,3,5$
2	$2,4,6$
3	1,3
4	2,4
5	$1,5,6$
6	$2,5,6$

$x_{j}= \begin{cases}1, & \text { if station } j \text { is selected } \\ 0, & \text { if station } j \text { is not selected }\end{cases}$ assume that station j can be located in any of the town it serves. minimize $2=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$ Subject to
Station 1: x_{1}

$$
x_{j}=(0,1), j=1,2, \ldots ; 6
$$

Conetraris 3 and 4 are redundant Solution: Select stations 1 and 2.

$$
x_{i j}=1 \text { if guard }
$$ is posted between rooms i and;; z ere otheurise. One constrain c per room.

(1)	x_{15}	(5)
x_{12}	1	
(2)	x_{24}	x_{46}
(1)		
(3)	x_{34}	x_{47}
	x_{67}	

minimize $z=x_{12}+x_{15}+x_{24}+x_{34}+x_{46}+x_{47}+x_{56}+x_{67}$
sulfict a
Room 1:

$$
\begin{array}{llr}
1 m 1: & x_{12}+x_{15} & \geqslant 1 \\
2: & x_{12}+x_{24} & \geqslant 1 \\
3: & x_{34} & \geqslant 1 \\
41 & x_{24}+x_{34}+x_{46}+x_{47} \geqslant 1 \\
5: & x_{15}+x_{56} & \geqslant 1 \\
6: & x_{46}+x_{56}+x_{67} & \geqslant 1 \\
7: & x_{47}+x_{67} & \geqslant 1
\end{array}
$$

$$
2: \quad x_{12}+x_{24}
$$

Solution: $x_{12}=x_{34}=x_{56}=x_{67}=1$
Alternative optima $e x$ ist.

$$
\begin{aligned}
& X_{j}=\left\{\begin{array}{l}
1, \text { if town } j \text { in selected } \\
0, \text { otherwise }
\end{array}\right. \\
& I_{i}=\text { set of cities offering movie } i \\
& c_{j}=\text { cort/show in city } j \\
& d_{j}=\text { miles to city } j \\
& n_{j}=\text { number of movies in ait } j \\
& C_{j}=c_{j} n_{j}+d_{j} \times .75 \\
& \text { Minimize } z=\sum_{j=1}^{2} C_{j} x_{j}
\end{aligned}
$$

st.

$$
\sum_{j \in I_{i^{*}}} x_{j} \geqslant 1, \quad \because=1,2, \ldots, 7
$$

Note: The formulation assumes that Bill will see all the movies si a visited tran regardless of repititions.
Solution: Coot $=\$ 169.35$

visited tron	movies
A	$1,6,8$
C	$1,8,9$
D	$2,4,7$
E	$1,3,5,10$

Movie 1 will be sue n 3 times and movie 8 twice. al Bill wants 1 see there movies only once, then movie 1 shined be seen in $a t y E(\cos \$ \$ 5.25)$ and minis 8 should be seen in city $A($ coot $\$ 5.50)$

$$
N e t \cos t=167.35-(5.50+7.00)-7.00
$$

$$
=\$ 149.85
$$

$x_{j}=\left\{\begin{array}{l}1, \text { if community } j \text { is selected } \\ 0, \text { otherwise }\end{array}\right.$.
$P_{j}=$ population of community j
$C_{i}=$ set of communities inthin 25 miles fum community i
The idea of the model is that the larger the population of a community, the Lighten should be is preference for acquiring a new store. At the same
time, we need to minimize the total number of new stores. Thus, using $1 / P$. as a weight for x_{j} is an appropiciate way for modeling eta objective function minimize $z=\sum_{j=1}^{10} \frac{1}{P_{j}} x_{j}$
st.

$$
\begin{aligned}
\sum_{j \& C_{c}} x_{j} & \geqslant 1 \\
x_{j} & =(0,1), j=1,2, \ldots, 10
\end{aligned}
$$

Note: The determination of C_{i} can be cuutornated in AMPL. See amp/91b-6.txt
Solution: New stores should be located si Communities 6,8, and 9
$X_{t}=\left\{\begin{array}{l}1, \text { if transmitter } t \text { is selected }\end{array}\right.$
$C_{E}=$ construction coot of transmitter t

$$
x_{c}=\left\{\begin{array}{l}
1, \text { if community } c \text { is covered by } \\
\text { a tramomintie } \\
0, \text { otherwise }
\end{array}\right.
$$

$S_{c}=$ Set of transmitters covering community c
$P_{C}=$ population of community C
Maximize $z=\sum_{c=1}^{15} p_{c} x_{c}$
s.t.

$$
\begin{aligned}
& \sum_{t \varepsilon S_{C}} x_{t} \geq x_{C}, c=1,2, \ldots, 10 \\
& \sum_{t=1}^{7} c_{t} x_{t} \leq 15
\end{aligned}
$$

Examples of the determination of S_{C} :

$$
\begin{aligned}
& S_{1}=\{1,3\}, S_{2}=\{1,2\}, S_{3}=\{2\}, S_{4}=\{4\} \\
& S_{5}=\{2,6\}, S_{6}=\{4,5], S_{7}=\{3,5,6\}
\end{aligned}
$$

Solution:
Build transmitters $2,4,5,6$, and 7. All communities, except communing number I, are covered.

$$
x_{j}= \begin{cases}1, & \text { if receiver } j \text { is installed } \\ 0, & \text { otherwise }, \\ j=1,2, \ldots, 8\end{cases}
$$

$R_{i}=$ Set of receivers covering meter i°; $i=1,2, \ldots, 10$

$$
R_{1}=\{1,6,8\}, R_{2}=\{1,2\}, R_{3}=\{1,2,5\},
$$

$$
\begin{aligned}
& R_{1}=\{1,6,0\}, R_{2}=\left\{, 1,7, R_{6}=\{3,5\},\right. \\
& R_{4}=\{6,7,8\}, R_{5}=\{3,7\}, R_{0}=\{2,467
\end{aligned}
$$

$$
\left.R_{7}=\{3,4,6\}, R_{8}=\{5,8\}, R_{9}=\{2,4,6,7\}\right\}
$$

$$
R_{10}=\{4\}
$$

Minimize $z=x_{1}+x_{2}+\cdots+x_{8}$
sot.

$$
\begin{array}{r}
\sum_{j \in R_{i}} x_{j} \geq 1, i=1,2, \ldots, 10 \\
x_{j}=(0,1), j=1,2, \ldots, 8
\end{array}
$$

Solution: Install necewers 1, 4,5,

$$
\text { and } 7 .
$$

$$
x_{i j}= \begin{cases}1, & \text { if meter } i \text { uses receivers } j \\ 0, & \text { otherwise }\end{cases}
$$

$$
y_{j}=(0,1), \quad i=1,2, \cdots, 10, j=1,2, \cdots, 8
$$

Minimize $z=y_{1}+y_{2}+\cdots+y_{8}$
St

$$
\begin{aligned}
& \sum_{i \varepsilon S_{j}} x_{i j} \leqslant 3 y_{j}, j=1,2, \ldots, 8 \\
& \sum_{i \neq S_{j}} x_{i j}=0, j=1,2, \ldots, 8 \\
& \sum_{j=1}^{8} x_{i j} \geq 1, \quad i=1,2, \ldots, 10
\end{aligned}
$$

where
$S_{j}=\operatorname{Set} 8$ meters covered by receiver;

$$
S_{1}=\{1,2,3\}, S_{2}=\{2,3,9\}, \text { etc }
$$

Solution:
Receiver Covered meters

1	$1,2,3$
3	5,6
4	$7,9,10$
8	4,8
Install receivers	$1,3,4$ and 8.

Install receivers 1, 3, 4, and 8.
$x_{j}=$ Nor. of units of product $j, j=1,2,3$

$$
y_{j}= \begin{cases}1, & \text { if } x_{j}>0 \\ 0, & \text { if } x_{j}=0\end{cases}
$$

Maximize $z=(60-30) x_{1}+(40-20) x_{2}+(120-80) x_{3}$
St.

$$
\begin{aligned}
& 5 x_{1}+3 x_{2}+8 x_{3} \leq 3000 \\
& 4 x_{1}+3 x_{2}+5 x_{3} \leq 2500 \\
& x_{1} \geqslant 100, x_{2} \geqslant 150, x_{3} \geqslant 200 \\
& x_{1} \leq 5000 y_{1}, x_{2} \leq 5000 y_{2}, x_{3} \leq 5000 y_{3}
\end{aligned}
$$

Solution: $Z=\$ 16670$

$$
x_{1}=100, x_{2}=300, x_{3}=200
$$

$x_{j}=$ number of bridget produced
on machine $\dot{j}, j=1,2,3$

$$
y_{j}=\left\{\begin{array}{l}
1, \text { if machine } j \text { is used } \\
0, \text { if machine } j \text { is not used }
\end{array}\right.
$$

$\operatorname{Min} z=2 x_{1}+10 x_{2}+5 x_{3}+300 y_{1}+100 y_{2}+200 y_{3}$
subject σ

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3} \geq 2000 \\
& x_{1}-600 y_{1} \leq 0 \\
& x_{2}-800 y_{2} \leq 0 \\
& x_{3}-1200 y_{3} \leq 0
\end{aligned}
$$

$x_{1}, x_{2}, x_{3} \geqslant 500$ andindegen

$$
y_{1}, y_{2}, y_{3}=(0,1)
$$

Solution: $x_{1}=600, x_{2}=500, x_{3}=900$

$$
z=\$ 11300
$$

$x_{i j}=\left\{\begin{array}{l}1, \text { if site } i \text { is assigned to target } j \\ 0, \text { if othercirse }\end{array}\right.$

$$
\operatorname{Min} z=5 y_{1}+6 y_{2}+2 x_{11}+x_{12}+8 x_{13}+5 x_{14}
$$

$$
+4 x_{21}+6 x_{22}+3 x_{23}+x_{24}
$$

subject to.

$$
\begin{aligned}
& x_{11}+x_{21}=1 \\
& x_{12}+x_{22}=1
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{13}+x_{23}=1 \\
x_{14}+x_{24}=1 \\
x_{11}+x_{12}+x_{13}+x_{14} \leqslant M y_{1} \\
x_{21}+x_{22}+x_{23}+x_{24} \leqslant M y_{2}
\end{array}\right\} M>4
$$

Slution: $Z=18$

Site assigned targets	
1	1 and 2
2	3 and 4

The prodem can be fromulated as a regular tuaneportation model. Since total supply $=$ total demand, all three plants mince wok at full capacilis and th setup cor is immaterial mi this care This will not be the cave if total supply exceeds total demand.

The ILP formulation is

$$
\begin{aligned}
\operatorname{Min} z= & 12,000 y_{1}+11,000 y_{2}+12,000 y_{3} \\
& +10 x+15 x
\end{aligned}
$$

$$
+10 x_{11}+15 x_{12}+\cdots+11 x_{33}
$$

Subject 6

$$
\begin{array}{lll}
x_{11}+x_{12}+x_{13} & \leq 1800 y_{1} & \\
x_{21}+x_{22}+x_{23} & \leq 1400 y_{2} & x_{1 j} \geqslant 0 \text { and } \\
x_{31}+x_{32}+x_{33} & \leq 1300 y_{3} & \\
x_{11}+x_{21}+x_{31} & \geq 1200 & y_{i}=(0,1) \\
x_{12}+x_{22}+x_{32} & \geq 1700 & \\
x_{13}+x_{23}+x_{33} & \geq 1600 &
\end{array}
$$

Solution: $x_{11}=1200, x_{13}=600, x_{22}=1400$ $x_{32}=300, x_{33}=1000 . y_{1}=y_{2}=y_{3}=1$.
Total supply $>$ Total demand.
Modified constraints.

$$
\begin{aligned}
& x_{11}+x_{21}+x_{31} \geqslant 800 \\
& x_{12}+x_{22}+x_{32} \geqslant 800
\end{aligned}
$$

Solution: $x_{11}=1000, x_{13}=800, x_{21}=200, x_{22}=800$ $y_{1}=y_{2}=1, y_{3}=0$. Plant 3 is not used.

$$
\begin{aligned}
& x_{i j t}=\left\{\begin{array}{l}
1, \text { if product } i \text { uses line in } \\
\text { period } t \\
0, \text { other suse }
\end{array}\right. \\
& v_{i j t}=\left\{\begin{array}{l}
1, \text { ifchargeover is made to product i } \\
\text { on line } j \text { in period } t \\
0, \text { otheruvsi }
\end{array}\right.
\end{aligned}
$$

$$
I_{i t}=\text { End inventory of product } i \text { in' }
$$

$$
\text { period } t
$$

$I_{i_{0}}=$ Initial inventory of product i
$D_{i t}=$ Demand of product i in period t
$r_{i j}=$ production rate of product i on lire; (anits/month)
$S_{i j}=$ Switching cost of product i on line j
$c_{i j}=$ Production cost of product i on luseij ($\$ /$ units)
$h_{i}=$ Holding cost/ unit/ month of product i
Minimize $z=\sum_{i=1}^{3} \sum_{j=1}^{2} c_{i j} r_{i j}\left(\sum_{t=1}^{6} x_{i j} t\right) \neq$

$$
\begin{aligned}
& \sum_{i=1}^{3} \sum_{j=1}^{3} s_{i j}\left(\sum_{t=1}^{6} v_{i j t}\right)+ \\
& \sum_{i=1}^{3} h_{i}\left(\sum_{t=1}^{6} I_{i t}\right)
\end{aligned}
$$

St.

$$
\begin{aligned}
& \sum_{i=1}^{3} x_{i j t} \leqslant 1, \quad=1,2 \quad t=1,2, \cdots, 6 \\
& v_{i j t} \geqslant x_{i j t}-x_{i j t-1}\left\{\begin{array}{l}
i=1,2,3 \\
j=1,2 \\
t=2,3, \cdots, 6
\end{array}\right. \\
& I_{i t}=I_{i 0}+\sum_{k=1}^{t}\left(\sum_{j=1}^{2} r_{i j} x_{i j k}-D_{i k k}\right), \\
& i=1,2,3, \quad t=1,2, \cdots, 6
\end{aligned}
$$

Solution:

See file ampl9.1c-6.txt.
$w_{i j}=$ Line capacity in gal /h from T
acing i to potential plant j
$F_{i}=F_{i x}$ ed cost for plant located in airy i
$P_{c^{n}}=$ Population (in thousands) of city i
$y_{i}=\left\{\begin{array}{l}1, \text { if a plant is constructed in city } i \\ 0, \text { otherwise }\end{array}\right.$
$C_{i j}=$ construction cost of pipeline between cities i and j in $\$ / 1000 \mathrm{gal} / \mathrm{h}$

$$
\text { Minimize } Z=\sum_{i=1}^{7}\left(\sum_{j=1}^{7} c_{i j} \frac{w_{i j}}{1000}+F_{i} y_{i}\right)
$$

St.

$$
\begin{aligned}
& \sum_{j=1}^{7} w_{i j} \geqslant 500 P_{i}, i=1,2, \cdots, 7 \\
& \sum_{i=1}^{7} w_{i j} \leqslant 100,000 y_{j}, j=1,2, \cdots, 7 \\
& \sum_{i=1}^{7} y_{i} \leqslant 4
\end{aligned}
$$

Solution: See file amp/9.1C-7. $+x+$.

Plant 1 capacity $=60,000$ gall
6 capacity $=100,000$ gal $/ \mathrm{h}$
$7 \mathrm{capacity}=65,000$ gall $/ \mathrm{h}$
Total cost $=\$ 3,770,875$
$X_{t p c}=$ gal of product p in compartment
Con truck t
$y=\left\{\begin{array}{l}1, \text { if compartment } c \text { on truck } t \text { is } \\ \text { used for product } p\end{array}\right.$ used for product p 0, otherwise
$w_{p}=$ subcontracted gal of product p

variables definitions:

x_{11}	x_{12}	x_{13}
x_{21}	x_{22}	x_{23}
x_{31}	x_{32}	x_{33}

$$
1 \leq x_{i j} \leq 9
$$

and integer

$$
\begin{aligned}
& \sum_{j=1}^{3} x_{i j}=15, \quad i=1,2,3 \\
& \sum_{i=1}^{3} x_{i j}=15 ; j=1,2,3 \\
& x_{11}+x_{22}+x_{33}=15 \\
& x_{31}+x_{22}+x_{13}=15 \\
& x_{11} \geq x_{12}+1 \text { or } x_{11} \leq x_{12}-1 \\
& x_{11} \geq x_{13}+1 \text { or } x_{11} \leq x_{13}-1 \\
& x_{12} \geq x_{13}+1 \text { or } x_{12} \leq x_{13}-1 \\
& x_{11} \geq x_{21}+1 \text { or } x_{11} \leq x_{21}-1 \\
& x_{11} \geq x_{31}+1 \text { or } x_{11} \leq x_{31}-1 \\
& x_{21} \geq x_{31}+1 \text { or } x_{21} \leq x_{31}-1
\end{aligned}
$$

To remove "or" Constraints, note that, $x_{11} \geqslant x_{12}+1$ or $x_{11} \leq x_{1}-1$ can be replaced with th two imultancous constraints:

$$
\left.\begin{array}{l}
-x_{11}+x_{12}+15 y_{1} \leq 14 \\
-x_{11}+x_{12}+15 y_{1} \geq 1
\end{array}\right\} y_{1}=(0,1)
$$

\because Using a dummy objective function with all zero coefficients, the following solution's can be found

4	3	8
9	5	1
2	7	6

1 \& 5 \& 9

8 \& 3 \& 4

\hline\end{array}\right.\)
offer oolutions exist.
Note:
If you use TORA to solve th. problem, replace $y_{j}=(0,1)$ with $0 \leq y_{j} \leq 1$ for all j
$x_{1}=$ daily undid of product 1
$x_{2}=$ daily units of p induct 2
$\operatorname{maximize} z=10 x_{1}+12 x_{2}$ subject 5

$$
x_{1}+x_{2} \leq 35
$$

$$
\left(x_{1} \leq 20 \text { and } x_{2} \leq 10\right) \text { or }\left(x_{1} \leq 12 \text { and } x_{2} \leq 25\right)
$$

$x_{1}, x_{2} \geq 0$ and integer

$$
\operatorname{maximize} z=10 x_{1}+12 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 35 \\
& x_{1}-35 y \leq 20 \\
& x_{2}-35 y \leq 10 \\
& x_{1}+35 y \leq 47 \\
& x_{2}+35 y \leq 60 \\
& y \geq 0 \text { and integer } \\
& y=(0,1) \quad M=35
\end{aligned}
$$

$$
x_{1}, x_{2}, y \geq 0 \text { and integer }
$$

Solution: $x_{1}=10, x_{2}=25, y=1, z=\frac{b}{400}$ select setting 2 .
$x_{j}=$ daily number of units of products 3 $y= \begin{cases}0, & \text { if location } / \text { is elected } \\ 1, & \text { if location } 2 \text { is selected }\end{cases}$
maximize $z=25 x_{1}+30 x_{2}+22 x_{3}$ subject t

$$
\binom{3 x_{1}+4 x_{2}+5 x_{3} \leq 100}{4 x_{1}+3 x_{2}+6 x_{3} \leq 100} \circ\binom{3 x_{1}+4 x_{2}+5 x_{3} \leq 90}{4 x_{1}+3 x_{2}+6 x_{3} \leq 120}
$$

$$
x_{1}, x_{2}, x_{3} \geqslant 0 \text { and integer }
$$

Let $M=1000$, the "or" constraints are equivalent to

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+5 x_{3} \leq 100+M y \\
& 4 x_{1}+3 x_{2}+6 x_{3} \leq 100+M y \\
& 3 x_{1}+4 x_{2}+5 x_{3} \leq 90+M(1-y) \\
& 4 x_{1}+3 x_{2}+6 x_{3} \leq 120+M(1-y) \\
& x_{1}, x_{2}, x_{3} \geqslant 0 \text { and integer } y=(0,1)
\end{aligned}
$$

Solution: $x_{1}=26, x_{2}=3, x_{3}=0, y=1$ use locateri 2. $Z=\$ 740$

$$
\text { Solution: Total delay }=134 \text { (see file }
$$

$$
\operatorname{amp}(9.1 d-4 . t x+)
$$

Job	Start time
1	8
2	85
3	88
4	10
6	47
6	25
7	68
8	101
9	56
10	131

Optimal sequence: 1-4-6-5-9-7-2-3-8-10
Remove the last wo constraints in:
Problem 4. Add the following constraint:
Problem 4. Add the following constraints:

$$
\left.\begin{array}{l}
x_{3}+P_{3} \leqslant x_{4} \\
x_{7}+P_{7} \geqslant x_{8}-M w \\
x_{7}+P_{7} \leqslant x_{8}+M w \\
x_{8}+P_{8} \geqslant x_{7}-M(1-w) \\
x_{8}+P_{8} \leq x_{7}+M(1-w)
\end{array}\right\} \begin{aligned}
& \text { These four constraints } \\
& \text { translate } \\
& \text { athens } x_{7}+P_{7}=x_{8} \\
& \text { or } x_{8}+P_{8}=x_{7}
\end{aligned}
$$

$$
\text { Solution: Total delay }=170
$$

$$
\text { Optimal sequence: } 1-3-4-5-6-9-2-7-8-10
$$

$$
\begin{aligned}
& x_{j}=\text { start time of flt } j, j=12, \ldots, 10 \\
& y_{i j}=\left\{\begin{array}{l}
1, \text { it oof } i \text { precedes jot } j \\
0,
\end{array}\right. \\
& y_{i j}=\left\{\begin{array}{l}
1 \\
0, \text { othervice }
\end{array}\right. \\
& \omega=(0,1) \\
& P_{j}=\text { processing temp of oof } j \\
& d_{j}=\text { due date of job } j \\
& \text { Minimize } z=s_{1}^{+}+s_{2}^{+}+\cdots+s_{10}^{+} \\
& \text {set. }
\end{aligned}
$$

$$
\begin{aligned}
& X_{j} \text { = Daily production of product } J \\
& \operatorname{Max} z=25 x_{1}+30 x_{2}+45 x_{3} \\
& \text { subject } t_{0} \text {. } \\
& \begin{array}{l}
3 x_{1}+4 x_{2}+5 x_{3} \leq 100 \\
4 x_{1}+3 x_{2}+6 x_{3} \leq 100
\end{array} \\
& x_{3} \leqslant 0 \text { or } x_{3} \geqslant 5 \\
& x_{1}, x_{2}, x_{3} \geqslant 0 \text { and integer } \\
& \text { Let } y=(0,1) \text { and } M=100 \text {. Then, } \\
& \text { (} x_{3} \leqslant 0 \text { or } x_{3} \geqslant 5 \text {) } \\
& \text { is equivalent } \sigma \\
& \text { (} x_{3} \leq M y \text { and }-x_{3} \leq-5+M(1-y) \text {) } \\
& \text { which reduces } t \\
& x_{3}-100 y \leqslant 0 \text { and }-x_{3}+100 y \leqslant 95 \\
& \text { Solution: } \\
& x_{1}=0, x_{2}=11, x_{3}=11 \\
& y=1 \Rightarrow \text { prochuce products } \\
& z=\$ 825
\end{aligned}
$$

Set 9.1d

1. Straightforward formulation:

Let $x_{i t}=1$ if load i is assigned to trailer t, o otherwise
$L_{i}=$ linear feet of load i
$r_{i}=$ revenue from load i
Maximize $z=\sum_{i=1}^{10} \sum_{t=1}^{2} r_{i} x_{i t}$ subject to
$\sum_{i=1}^{10} L_{i} x_{i t} \leq 36, t=1,2$
$\sum_{t=1}^{2} x_{i t} \leq 1, i=1, \ldots, 10, x_{i t}=(0,1), i=1,2, \ldots 10$

2. Formulation using if-then:

Let $\mathrm{x}_{\mathrm{it}}=$ feet in trailer t assigned to load i
$y_{i}=(0,1), i=1,2, \ldots, 10, \mathrm{w}_{\text {it }}=(0,1), \mathrm{i}=1,2, \ldots, 10, \mathrm{t}=1,2$
Maximize $z=\sum_{i=1}^{10} \sum_{t=1}^{2} r_{i} x_{i t}$ subject to
$\sum_{i=1}^{10} x_{i t} \leq 36, t=1,2$
$x_{i 1} \leq L_{i} y_{i}, x_{i 2} \leq L_{i}\left(1-y_{i}\right), i=1,2, \ldots, 10$
(above constraint is not as efficient as $x_{i 1}+x_{i 2} \leq 1, i=1,2, \ldots, 10$ in formulation 1)
(if $x_{i t}>0$ then $x_{i t}=L_{i}$) translates to
$x_{i t} \leq M\left(1-w_{i t}\right), L_{i}-x_{i t} \leq M w_{i t},-L_{i}+x_{i t} \leq M w_{i t}, i=1,2, \ldots, 10, t=1,2$
$x_{i t}, w_{i t}, y_{i}=(0,1), i=1,2, \ldots, 10, t=1,2$
Solution: $z=\$ 7929$. Problem has several alternative optima. (See file ampl9.1d-7.txt.)

	Solution 1		Solution 2	
Trailer	Load	Feet	Load	Feet
1	1	5	1	5
	5	7	2	11
	6	9	6	9
	8	14	9	
		Total	35 ft	
	2	11	4	
2	4	15	5	
	9	10	8	
		Total	36 ft	
				Total

9-14

Formulation 1:

$$
\left(\begin{array}{c}
x_{1} \leqslant 1, x_{2} \leqslant 2 \\
\text { or } \\
x_{1}+x_{2} \leqslant 3, x_{1} \geqslant 2
\end{array}\right) \equiv\left(\begin{array}{l}
x_{1}-M y \leqslant 1 \\
x_{2}-M y \leqslant 2 \\
x_{1}+x_{2}-M(1-y) \leqslant 3 \\
x_{1}+M(1-y) \geqslant 2 \\
y=0,1, x_{1}, x_{2} \geq 0
\end{array}\right) M \geqslant 3
$$

Formulatior 2:

$$
\left(\begin{array}{c}
x_{1}+x_{2} \leqslant 3, x_{2} \leqslant 2 \\
\text { and } \\
\left(x_{1} \leqslant 1 \text { or } x_{1} \geqslant 2\right)
\end{array}\right)=\left(\begin{array}{l}
x_{1}+x_{2} \leqslant 3, x_{2} \leqslant 2 \\
x_{1}-M y \leqslant 1 \\
x_{1}+M(1-y) \geqslant 2 \\
y=0,1, x_{1}, x_{2} \leqslant 0
\end{array}\right) M \geq 2
$$

(b)

$$
\left(\begin{array}{l}
(c) \\
\left(\begin{array}{l}
x_{1}+x_{2} \leq 3 \\
\text { and } \\
\left(x_{1}+x_{2} \geq 2 \text { or } x_{2} \leq 1\right)
\end{array}\right) \equiv\left(\begin{array}{l}
x_{1}+x_{2} \leq 3 \\
x_{1}+x_{2}+M y \geq 2 \\
x_{2}-M(1-y) \leq 1 \\
y=0,1, x_{1}, x_{2} \geq 0
\end{array}\right) M \geqslant 3 \\
g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{i}+M y_{i} \\
i=1,2, \ldots, m \\
y_{1}+y_{2}+\cdots+y_{m}=k \\
y_{i}=(0,1), i=1,2, \ldots, m \\
g_{\left(x_{1}, x_{2}, \ldots, x_{m}\right) \leq b, y_{1}+b_{2} y_{2}+\cdots+b_{m} y_{m}} \\
y_{1}+y_{2}+\cdots+y_{m}=1 \\
y_{i}=(0,1), i=1,2, \cdots, m
\end{array}\right.
$$

Set 9.2a

Note: all subproblemis are 11
solved by TORA using the 1 Solved by TORA using the MODIFY option to create each problem.

(b) $\quad \begin{aligned} & 3=14.47 \\ & x_{1}=3.706 \quad \text { (c) }\end{aligned}$
$x_{1}=3.706$
$x_{2}=2.353$
$x_{2}=2.353$
(6)

fathomed by (5)

(3) $\begin{aligned} & z=14.4 \\ & x_{1}=4.2\end{aligned}$
$x_{2}=2$
(5)

$z=14$
$x_{1}=4$
$Z=14.28$
$x_{2}=2$
$x_{1}=5$
$x_{2}=1.4286$
optimum
fathomed by (S)
and the fact +he
heo ald-integer
coeffiainds
(c)

$$
\begin{align*}
& \text { (1) } \begin{array}{l}
z_{1}=4.85 \\
x_{1}=2.75 \\
x_{2}=2.1
\end{array} \\
& \begin{array}{lll}
& \\
& x_{1} \leqslant 2 & x_{1} \geqslant 3 \\
x_{1} & \\
z=4.4 & z=4.8 \\
x_{1}=2 & x_{1}=3 \\
x_{2}=2.4 & x_{2}=1.8
\end{array} \tag{2}\\
& x_{2}=2
\end{align*}
$$

(3)

Optimum
(4) and (5) are fathomed by (3) Fathoming of (5) requines the additional condition hat the corfficuents of 2 are allinteger.
A different thee will result if branch $x_{1} \leq 1$ af (1) is investigated effre $x_{1} \geq 2$

Set 9.2a
(d)
$z=9.8$
$x_{1}=2$
$x_{2}=2.2$

$z=11^{2 / 3}$
$x_{1}=1, x_{2}=1 \frac{2}{3}$

$x_{2} \leq$ N.S

(2)

$$
\begin{aligned}
& z=12 \\
& \begin{array}{l}
x_{1}=0 \\
x_{2}=3
\end{array} \\
& \begin{array}{l}
\text { New } \\
\text { upper } \\
\text { bound }
\end{array}
\end{aligned}
$$

Optimum solution: $x_{1}=0, x_{2}=3, z=12$ (e)
(2) $z=37.44$
$Z=38.3846$
$x_{1}=5.8462$
$x_{2}=1.3077$

$\begin{aligned} x_{1} & =5 \\ x_{2} & =1.778\end{aligned}$
$z=37$
$\begin{aligned} 2 x_{1} & =6 \\ x_{2} & =1\end{aligned}$
fathemed by (1)
Optimum : $x_{1}=6, x_{2}=1, z=37$
(a)

$z=7.31$	
x_{1}	$=1.69 \quad$ (0)
x_{2}	$=1.13$
$x_{2} \leq 1$	$x_{2} \geq 2$
(2) $\quad$$z$ x_{1} $=1.75$ x_{2} \quad N.S. (1)	

Opterrium: $z=7.25, x_{1}=1.75, x_{2}=1$
(b)

$$
\begin{align*}
& z=14.47 \\
& x_{1}=3.71 \tag{0}\\
& x_{2}=2.35 \tag{0}
\end{align*}
$$

$$
x_{2} \leqslant 2
$$

$$
x_{2} \geq 3
$$

(2)

$$
z=14.4
$$

$x_{2}=2$
Optimum

$$
z=13.5
$$

$$
\begin{equation*}
x_{1}=2.25 \tag{1}
\end{equation*}
$$

(c)

$$
\begin{align*}
& z=4.85 \\
& x_{1}=2.75 \\
& x_{2}=2.1
\end{align*}
$$

(1) $\begin{aligned} & z_{1}=4.83 \\ & x_{1}=2.83\end{aligned}$
$z=3.5$

$$
\begin{equation*}
x_{1}=2.5 \tag{2}
\end{equation*}
$$

$x_{2}=2$
lower bound
Optimum
$x_{2}=3$
fatformed
(d)

$$
\begin{align*}
& z=9.8 \quad 0 \tag{0}\\
& x_{1}=.2 \\
& x_{2}=2.2
\end{align*}
$$

(2)

$$
x_{2} \geqslant 3
$$

$\sigma_{p} x_{2}=$
(e) $\begin{aligned} & \\ & z=3.8 .38 \\ & x_{1}=5.85 \\ & x_{2}=1.31\end{aligned}$
$x_{2} \leq 1$
(1)

$$
\begin{array}{ll}
2=37 \\
x_{1}=6 \tag{2}\\
x_{2}=1
\end{array} \quad \therefore \begin{aligned}
& z=37 \\
& x_{1}=4.6 \\
& x_{2}=2
\end{aligned}
$$

upper bound

$$
\begin{equation*}
2=1.31 \tag{0}
\end{equation*}
$$

alternative optima.

$\left|-x_{1}+10 x_{2}-3 x_{3}\right| \geqslant 15 \Rightarrow\left\{\begin{array}{l}-x_{1}+10 x_{2}-3 x_{3} \geqslant 15 \\ a_{1}+10 x_{2}-3 x_{3} \leqslant-15 \\ -x_{1}\end{array}\right.$
Thepriblem is
$\max z=x_{1}+2 x_{2}+5 x_{3}$
Subject to

$$
\begin{aligned}
& -x_{1}+10 x_{2}-3 x_{3}+M y \geq 15 \\
& -x_{1}+10 x_{2}-3 x_{3}+M y \leq M-15 \\
& 2 x_{1}+x_{2}+x_{3} \leq 10 \\
& \left.x_{1}, x_{2}, x_{3} \geq 0, y=10,1\right)
\end{aligned}
$$

$$
z=50
$$

$$
\begin{gathered}
x_{1}=x_{2}=0 \\
x_{3}=10 \\
=-45 \\
y=0
\end{gathered}
$$

(a) Replacing $x_{j}=(0,1)$ with $0 \leq x_{j} \leq 1$ \square and $y=(0,1)$ with $0 \leq y \leq 1$, TORA'S ILS automated module determines the opternum in 9 subproblems and verifies optimality after examining 25,739 subproblems.
(b) See file solver $9.29-76 . \mathrm{XIs}$. Solver examined over 25,000 subproblems before verifying optionality.
Number of examined sulporoblems
with the objective function bound
activated $=29$
Number of examined subproblenas without the objective bound activated $=35$

Conversion to beniary variables:
$0 \leq x_{1} \leq 2 \Rightarrow x_{1}=y_{11}+2 y_{12}$
$0 \leqslant x_{2} \leqslant 3 \Rightarrow x_{2}=y_{21}+2 y_{22}$
$0 \leqslant x_{3} \leqslant 6 \Rightarrow x_{3}=y_{31}+2 y_{32}+4 y_{33}$
Max $z=18 y_{11}+36 y_{12}+14 y_{21}+28 y_{22}+8 y+16 y_{32}+32 y$
subject to

$$
15 y_{11}+30 y_{12}+12 y_{21}+24 y_{22}+7 y_{31}+14 y_{32}+28 y_{33} \leq 43
$$

$$
\text { all } y_{c j}=(0,1)
$$

Optarnum solution: $z=50$

$$
y_{12}=y_{21}=1 \Rightarrow x_{1}=2, x_{2}=1, x_{3}=0
$$

The solution takes 6 iterators to find the optimum and 41 to verify it. If the original problem is solved directly, it takes 4 iterations to find the optimum and 29 Lo vouffy optimality. The result poets io the possibilig that
bovary substitution may not binary substitution may not offer any computational advantages.

Set 9.2a

$$
\begin{array}{r}
\left.\begin{array}{l}
x_{1}=.97 \\
x_{2}=1 \\
x_{3}=0 \\
x_{4}=.45 \\
x_{5}=1
\end{array}\right\} z=7.02 \\
x_{1}=0 \quad x_{1} \leq 0
\end{array}
$$

(2)

$$
\begin{array}{ll}
z=-2 & \\
x_{1}=x_{2}=x_{3}=x_{5}=0 & 2=7 \\
x_{4}=1 & x_{1}=x_{2}=x_{5}=1 \\
& x_{3}=0
\end{array}
$$

lower bound $\quad x_{4}=.5$

(6)

$$
\begin{aligned}
& x_{1}=x_{2}=1 \\
& x_{3}=x_{4}=x_{5}=0
\end{aligned}
$$

lower bound
If the rearch requence is $(\mathbb{O} \rightarrow$ (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6), the lower bound will be succescively updated as $z=-2$ at (2), $z=4$ at (5) and $z=5$ at (6). In the case, only node (7) is fathomed without being unvistigated. If the search sequence is $(1) \rightarrow(3) \rightarrow$
(4) \rightarrow (6) . The frist lower bound. will be $Z=5$. However, even in thr case, the nemaining nodeo (2) and (5) must be examinied becouse Hey have the polential of producing a better solution with $z=7$ (at (1), ic cruld be an altermative sdution with $2=7$).
Onls nete (7) need rot be evamined.

(a) $x_{1}+2 x_{2} \leq 10$:

The cut is legitimate because it passes through an integer posit and doe not eliminate any feraible integer points.
(b) $2 x_{1}+x_{2} \leqslant 10$:

The cut is not legitemiat because it eliminates a feasible meter posit
(G) $3 x_{2} \leq 10$:

The cut is not legitimate because it does net pass though an inlier posit.
(d) $2 x_{1}+x_{2} \leq 12$:

The cut in legitimate because it paces through an integer posit. and dow s not exclude any ferrible integer points. Note that it does sot matter that the integer point trough which the cut pasoer is ital crifearite [namely, $(6,0)$].

Cut I produces Continuous at point@
Cut II (together with I) produces the integer optimum at point (6).

Cut I:

$$
-\frac{7}{22} x_{3}-\frac{1}{22} x_{4} \leq-\frac{1}{2}
$$

From the original conathainis,

$$
\begin{aligned}
& x_{3}=6+x_{1}-3 x_{2} \\
& x_{4}=35-7 x_{1}-x_{2}
\end{aligned}
$$

Thus,

$$
-\frac{7}{22}\left(6+x_{1}-3 x_{2}\right)-\frac{1}{22}\left(35-7 x_{1}-x_{2}\right) \leqslant-\frac{1}{2}
$$

02

$$
x_{2} \leq 3
$$

Cut II:

$$
\begin{aligned}
& -\frac{1}{7} x_{4}-\frac{6}{7} 5_{1} \leq-\frac{4}{7} \\
& 5_{1}=-\frac{1}{2}+\frac{7}{22} x_{3}+\frac{1}{22} x_{4}
\end{aligned}
$$

or

$$
-\frac{1}{7}\left(35-7 x_{1}-x_{2}\right)-\frac{6}{7}\left(-1 / 2+\frac{7}{22} x_{3}+\frac{1}{22} x_{4}\right) \leq \frac{-4}{7}
$$

a

$$
x_{1}+x_{2} \leq 7
$$

From the tableau of cut I, we have 4

$$
\begin{aligned}
& x_{3}+\frac{1}{7} x_{4}-\frac{22}{7} 5_{1}=1 \frac{4}{7} \\
& x_{3}+\frac{1}{7} x_{4}+\left(-4+\frac{6}{7}\right) 5_{1}=1+\frac{4}{7}
\end{aligned}
$$

cut: $-\frac{1}{7} x_{4}-\frac{6}{7} 5, \leq-\frac{4}{7}$
This cit happens to be the same as cut II is Example 9.2-2

Basic	x_{1}	x_{2}	x_{3}	solution
Z	-1	-2	0	0
x_{3}	1	$1 / 2$	1	$13 / 4$
z	3	0	4	13
x_{2}	2	1	2	$13 / 2$

The optimum conatiaint

$$
2 x_{1}+x_{2}+2 x_{3}=6 \frac{1}{2}
$$

producesth cut $5,=-1 / 2$, which us infeasible.

Next, convert the constraint to

$$
4 x_{1}+2 x_{2} \leq 13
$$

The associated simplex tableaus are

	Basin	x_{1}	x_{2}	x_{3}
0	z	-1	-2	0
	x_{3}	4	2	1
		3	0	1

From the optional constraint

$$
2 x_{1}+x_{2}+1 / 2 x_{3}=6 \frac{1}{2},
$$

the cut is

$$
5_{1}-(0) x_{1}-\frac{1}{2} x_{3}=-1 / 2
$$

The dual umplex produces the flowery iterations:

Bari	x_{1}	x_{2}	x_{3}	s_{1}	$1 / 2$
Z	3	0	1	0	13
x_{2}	2	1	$1 / 2$	0	$6 \frac{1}{2}$
s_{1}	0	0	$-1 / 2$	1	$-1 / 2$
z	3	0	0	2	12
x_{2}	2	1	0	$1 / 2$	6
x_{3}	0	0	1	-2	1

Optimum: $x_{1}=0, x_{2}=6, x_{3}=1, z=12$
(a) Continuous optimum tableau:

Basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$s_{0} 12$
z	0	0	0	2	2	2	30
x_{1}	1			$3 / 10$	$1 / 5$	0	$2 \frac{1}{2}$
x_{2}		1		$1 / 20$	$1 / 5$	0	$1 \frac{1}{4}$
x_{3}			1	$1 / 4$	0	1	$6 \frac{1}{4}$

From the x_{1}-now

$$
x_{1}+\frac{3}{10} x_{4}+\frac{1}{5} x_{5}=2 \frac{1}{2}
$$

the out is

$$
5_{1}-\frac{3}{10} x_{4}-\frac{1}{5} x_{5}=-\frac{1}{2} \quad(\text { cut } I)
$$

Adding cut I and solving, we get

Bosicic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	s_{1}	s_{0} / n
z	0	0	0	0	$2 / 3$	2	$20 / 3$	$80 / 3$
x_{1}	1				0	0	1	2
x_{2}		1			$1 / 6$	0	$1 / 6$	$1 \frac{1}{6}$
x_{3}			1		$-1 / 6$	1	$5 / 6$	$5 \frac{5}{6}$
x_{4}				1	$2 / 3$	0	$-10 / 3$	$1 \frac{2}{3}$

From the x_{3}-now

$$
x_{3}-\frac{1}{6} x_{5}+x_{6}+\frac{5}{6} S_{1}=5 \frac{5}{6}
$$

the cut is

$$
S_{2}-\frac{5}{6} x_{5}-\frac{5}{6} S_{1}=-\frac{5}{6} \quad(c h t I)
$$

Cut II produces the following
optimum tableau:

Bast	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	s_{1}	s_{2}

which is all optimum and inter

variable	rounded sols	Integer 6/0
x_{1}	$2($ or 3$)$	2
x_{2}	1	1
x_{3}	6	6
z	$26($ or 30$)$	26

of x, is sounded to 3 , The solution
$i s$ ingeaxible
(b)

Continuous gotimim tableau:

Basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	5019
2	0	0	0	2	3	5	29
x_{3}	0	0	1	$4 / 9$	$1 / 9$	$4 / 9$	$31 / 3$
x_{2}	0	1	0	$1 / 3$	$1 / 3$	$1 / 3$	3
x_{1}	1	0	0	$1 / 9$	$7 / 9$	$10 / 9$	$51 / 3$

From $x_{3}-200$, we get cut 1 :

$$
5_{1}-\frac{4}{9} x_{4}-\frac{1}{9} x_{5}-\frac{4}{9} x_{6}=-1 / 3
$$

New Tableau of ta y cut I:
Basic i
$x_{1}$$x_{2} x_{3} x_{y} x_{5}$:

From x_{2}-row, are get cut II:

$$
s_{2}-3 / 4 s_{1}=-3 / 4
$$

The table gives th number of distinct
employees who inter leave managers office when scutch is made fro project ito project.

1	1	2	3	4	5	6
2	-	4	4	6	6	5
3	4	-	6	4	6	3
4	6	-	4	8	7	
5	6	4	4	$\overline{1}$	6	5
6	6	6	8	6	-	5
5	3	7	5	5	-	

$$
x_{i j}= \begin{cases}1, & \text { if project } j \text { follows } i \\ 0, & \text { otherwise }\end{cases}
$$

minimize $z=M x_{11}+4 x_{12}+4 x_{13}+\cdots$

$$
+5 x_{64}+5 x_{65}+M x_{66}
$$

Sulyect a

$$
\begin{array}{ll}
\sum_{j=1}^{6} x_{i j}=1, & i=1,2, \cdots, 6 \\
\sum_{i=1}^{6} x_{i j}=1, & j=1,2, \ldots, 6
\end{array}
$$

Solution is a Lours

$$
x_{i j}=(0,1)
$$

Represent Basis, Wald, Bon, and Kiln by nodes $1,2,3,4$, and 5 , respectively.

$$
x_{i j}=\left\{\begin{array}{l}
1, \quad \text { if city } j \text { follows } \dot{\text { city } i} \\
0, \text { otherwise }
\end{array}\right.
$$

$$
\text { Minimize } z=M x_{11}+120 x_{12}+220 x_{13}+\cdots
$$

subject to

$$
+185 x_{53}+190 x_{54}+M x_{55}
$$

$$
\begin{aligned}
& \sum_{i j=1}^{5} x_{i j}=1, \quad j=1,2, \ldots, 5 \\
& \sum_{j=1}^{j} x_{i j}=1, \quad i=1,2, \ldots, 5 \\
& j_{0}=\ln t i n i n \\
& x_{i j}=(0,1)
\end{aligned}
$$

$$
x_{i j}=(0,1)
$$

continued.
$x_{i j}=\left\{\begin{array}{l}1, \text { if hole } j \text { follows hole } i \\ 0, \text { if otherwise }\end{array}\right\}$
Minimize $z=M x_{11}+1.2 x_{12}+\cdots+19 x_{65}+M x_{66}$
Subject to

$$
\begin{aligned}
& \sum_{i=1}^{6} x_{i j}=1, \quad j=1,2, \ldots, 6 \\
& \sum_{j=1}^{6} x_{i j}=1, \quad i=1,2, \ldots, 6 \\
& x_{i j}=(0,1)
\end{aligned}
$$

Solution is a Tour

(d)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
			1.2	0.5	2.6	4.1
$\mathbf{2}$	1.2		3.4	4.6	2.9	5.2
$\mathbf{3}$	0.5	3.4		3.5	4.6	6.2
$\mathbf{4}$	2.6	4.6	3.5		3.8	0.9
$\mathbf{5}$	4.1	2.9	4.6	3.8		1.9
$\mathbf{6}$	3.2	5.2	6.2	0.9	1.9	

Solution sumamry:

Start city	Tour	Length
1	$1-3-2-5-6-4-1$	12.2
2	$2-1-3-4-6-5-2$	10.9
3	$3-1-2-5-6-4-3$	10.9
4	$4-6-5-2-1-3-4$	10.9
5	$5-6-4-1-3-2-5$	12.2
6	$6-4-1-3-2-5-6$	12.2
Reversals		
$1-3$	$2-3-1-4-6-5-2$	12.2
$3-4$	$2-1-4-3-6-5-2$	18.3
$4-6$	$2-1-3-6-4-5-2$	15.5
$6-5$	$2-1-3-4-5-6-2$	16.1
$1-3-4$	$2-4-3-1-6-5-2$	16.6
$3-4-6$	$2-1-6-4-3-5-2$	16.3
$4-6-5$	$2-1-3-5-6-4-2$	13.7
$1-3-4-6$	$2-6-4-3-1-5-2$	17.1
$3-4-6-5$	$2-1-5-6-4-3-2$	15
$1-3-4-6-5$	$2-5-6-4-3-1-2$	10.9

Solutions: 1. (2-1-3-4-6-5-2)
2. (3-1-2-5-6-4-3)
3. (4-6-5-2-1-3-4)
4. (2-5-6-4-3-1-2)

Length $=10.9 \mathrm{~cm}$
Note: Tours 1 and 3 are the same. Tours 2 and 4 are the same (also, reverse order of 1 and $3)$.

Set 9.3d

Layout:

Distance matrix:

	1	2	3	4	5	6
1		40	60	40	80	110
2	40		20	40	40	70
3	60	20		60	40	50
4	40	40	60		40	70
5	80	40	40	40		30
6	110	70	50	70	30	

Cuts:

$$
\begin{array}{ll}
6^{*} x[2,3]+u[2]-u[3]<=5 ; & 6^{*} x[4,5]+u[4]-u[5]<=5 ; \\
6^{*} x[2,4]+u[2]-u[4]<=5 ; & 6^{*} x[4,6]+u[4]-u[6]<=5 ; \\
6^{*} x[2,5]+u[2]-u[5]<=5 ; & 6^{*} x[5,2]-u[2]+u[5]<=5 ; \\
6^{*} x[2,6]+u[2]-u[6]<=5 ; & 6^{*} x[5,3]-u[3]+u[5]<=5 ; \\
6^{*} x[3,2]-u[2]+u[3]<=5 ; & 6^{*} x[5,4]-u[4]+u[5]<=5 ; \\
6^{*} x[3,4]+u[3]-u[4]<=5 ; & 6^{*} x[5,6]+u[5]-u[6]<=5 ; \\
6^{*} x[3,5]+u[3]-u[5]<=5 ; & 6^{*} x[6,2]-u[2]+u[6]<=5 ; \\
6^{*} x[3,6]+u[3]-u[6]<=5 ; & 6^{*} x[6,3]-u[3]+u[6]<=5 ; \\
6^{*} x[4,2]-u[2]+u[4]<=5 ; & 6^{*} x[6,4]-u[4]+u[6]<=5 ; \\
6^{*} x[4,3]-u[3]+u[4]<=5 ; & 6^{*} x[6,5]-u[5]+u[6]<=5 ;
\end{array}
$$

Solution: See file ampl9.3d-1.txt.
1-2-3-6-5-4-1. Minimum length $=220$ meters

Cuts:
subject to cut[2,3]: $5^{*} \mathrm{X}[2,3]+\mathrm{u}[2]-\mathrm{u}[3]<=4$;
subject to cut $[2,4]: 5^{*} \mathrm{X}[2,4]+\mathrm{u}[2]-\mathrm{u}[4]<=4$;
subject to cut $[2,5]: 5 * X[2,5]+u[2]-u[5]<=4$;
subject to cut[3,2]: $5^{*} \mathrm{X}[3,2]-\mathrm{u}[2]+\mathrm{u}[3]<=4$;
subject to cut $[3,4]: 5^{*} \mathrm{X}[3,4]+\mathrm{u}[3]-\mathrm{u}[4]<=4$;
subject to cut $[3,5]: 5^{*} \mathrm{X}[3,5]+\mathrm{u}[3]-\mathrm{u}[5]<=4$;
subject to $\mathrm{cut}[4,2]: 5^{*} \mathrm{X}[4,2]-u[2]+u[4]<=4$;
subject to cut $[4,3]: 5^{*} X[4,3]-u[3]+u[4]<=4$;
subject to cut[4,5]: $5^{*} \mathrm{X}[4,5]+\mathrm{u}[4]-\mathrm{u}[5]<=4$;
subject to $\operatorname{cut}[5,2]: 5^{*} X[5,2]-u[2]+u[5]<=4$;
subject to $\operatorname{cut}[5,3]: 5 * X[5,3]-u[3]+u[5]<=4$;
subject to $\operatorname{cut}[5,4]: 5^{*} X[5,4]-u[4]+u[5]<=4$;
Solution: 1-5-2-3-4-1, length $=45$.

3

(a) See file ampl9.3d-3a.txt.
(b) See file amp19.3d-3b.txt

CHAPTER 10

Deterministic Dynamic Programming

$$
\begin{aligned}
f_{i}\left(x_{i}\right)= & \min _{\substack{f_{\text {feasible }}}}\left\{d\left(x_{i}, x_{i+1}\right)+f_{i+1}\left(x_{i+1}\right)\right\}, i=1,2 \\
& \text { routes }
\end{aligned}
$$

Stage 3:

$$
f_{3}\left(x_{3}\right)=\min _{f_{(\text {cesib/e }}\left(x_{3}, x_{4}\right)}\left\{d\left(x_{3}, x_{4}\right)\right\}
$$

x_{3}	$d\left(x_{3}, x_{4}\right)$	$0_{\text {ptimum sol }}$	
	$x_{4}=7$	$f_{3}\left(x_{3}\right)$	x_{4}^{*}
	8	8	7
6	9	9	7

Stage 2:

Stage 1:

Solution: distance $=21$

$$
\begin{array}{r}
\text { roves }=1-3-5-7 \\
f_{i}\left(x_{i}\right)=\max _{\substack{f_{\text {feasible }} \\
\left(x_{i}, x_{i+1}\right) \\
\text { routes }}}\left\{d\left(x_{i}, x_{i+1}\right)+f_{i+1}\left(x_{i+1}\right)\right\} \\
i=1,2,3,4
\end{array}
$$

Stage 5: $f_{5}=\max _{\substack{f(c a s), b l e \\\left(x_{5}, x_{6}\right)}}\left\{d\left(x_{5}, x_{6}\right)\right\}$

Stage 4:

$d\left(x_{4}, x_{5}\right)+f_{5}\left(x_{5}\right)$		opt. sol.		
x_{4}	$x_{5}=J_{5}$	$x_{5}=A_{5}$	$f_{4}(x u)$	x_{5}^{*}
W_{4}	$15+11=26$	$17+15=(32$	32	A_{5}
J_{4}	-	$10+15=(25$	25	A_{5}
A_{4}	$12+11=(23)$	-	23	J_{5}

Stage 3:

Stage 1:

	$d\left(x_{1}, x_{2}\right)+f_{2}\left(x_{2}\right)$		$0 p 1$.	$J_{0} /$.
x_{1}	$x_{2}=J_{2}$	$x_{2}=A_{2}$	$f_{1}\left(x_{1}\right)$	x_{2}^{*}
W_{1}	$15+57=72$	$17+55=72$	72	A_{2}, J_{2}

Solution:
Longest distance $=72$ miles

$$
\begin{array}{r}
J_{3} \rightarrow W_{4} \rightarrow A_{5} \rightarrow W_{6} \\
J_{4} \rightarrow A_{5} \rightarrow W_{6} \\
A_{2} \rightarrow W_{4} \rightarrow J_{5} \rightarrow W_{6}
\end{array}
$$

$$
W_{1} \rightarrow J_{2} \rightarrow A_{3} \rightarrow W_{4} \rightarrow A_{5} \rightarrow w_{6}
$$

Rates:

	1	2	3	4	5
Route 1:	W	A	J	W	A
Route 2:	W	A	W	J	A
Rooite 4:	W	A	W	A	J
Routes: W	J	A	W	A	

Set 10.3a

Stage 2: $\max m_{2}=\left[\frac{6}{1}\right]=6$

Stage 1: max $m_{1}=\left[\frac{6}{4}\right]=1$

x_{1}	$70 m_{1}+f_{2}\left(x_{1}-4 m_{1}\right)$		Opt.	Sol.
	$m_{1}=0$	$m_{1}=1$	f_{1}	m_{1}^{*}
	$0+120=120$	$70+40=110$	120	0

Optimism solutions:

$$
\begin{aligned}
\left(m_{1}, m_{2}, m_{3}\right) & =(0,0,3) \\
& =(0,2,2) \\
& =(0,4,1) \\
& =(0,6,0)
\end{aligned}
$$

Value $=120$
(b) Stage 3: max $m_{3}=\left[\frac{4}{3}\right]=1$

	$60 m_{2}+f_{3}\left(x_{2}-2 m_{2}\right)$				$0 p+$.
	$x_{2} 1$				
	$m_{2}=0$	$m_{2}=1$	$m_{2}=2$	f_{2}	m_{2}^{*}
	0	-	-	0	0
	0	-	-	0	0
2	0	60	-	60	1
3	80	60	-	80	0
4	80	60	120	120	2

Stage 1: max $m_{1}=[4 / 1]=4$

	$30 m_{1}+f_{2}\left(x_{1}-m_{1}\right)$					$0 p+. ~ S o l . ~$	
	$x_{1}=0$	1	2	3	4	f_{1}	$m_{1} *$
4	120	90	120	90	120	120	$0,2,4$

Alternative optima:

$$
\left.\begin{array}{rl}
\left(m_{1}, m_{2}, m_{3}\right) & =(0,2,0) \\
& =(2,1,0) \\
& =(4,0,0)
\end{array}\right\}=120
$$

$$
\text { Stage 3: } w_{3}=1, r_{3}=14, K_{3}=-4
$$

Stage 2: $w_{2}=3, r_{2}=47, k_{2}=-15$

Optimum solution:

$$
\begin{aligned}
& =4 \rightarrow\left(m_{1}=2\right) \rightarrow x_{2}=(4-2 \times 2=0) \rightarrow \\
& \quad\left(m_{2}=0\right) \rightarrow x_{3}=0 \rightarrow m_{3}=0 \\
& \text { value }=57
\end{aligned}
$$

$x_{1}=$ number of food items
$x_{2}=$ number of firot-aid items
$x_{3}=$ number of cloth prices
maximize $z=3 x_{1}+4 x_{2}+5 x_{3}$
subject to

$$
\begin{aligned}
& x_{1}+\frac{1}{4} x_{2}+\frac{1}{2} x_{3} \leq 3 \\
& x_{1} \geq 1,1 \leq x_{2} \leq 2, x_{3} \geq 1
\end{aligned}
$$

Define the state y_{c} as the volume assigned to items $\check{c}, i+1, \ldots$, and n

Recursive equations:
$f_{3}\left(y_{3}\right)=\max _{x_{3}=1, \cdots,\left[\frac{y_{3}}{2}\right]}\left\{s x_{3}\right\}$
$f_{2}\left(y_{2}\right)=\max _{x_{2}=1, \ldots, \min \left[\frac{y_{2}}{4}, 2\right]}\left\{4 x_{2}+f_{3}\left(y_{2}-\frac{x_{2}}{4}\right)\right\}$
$f_{1}\left(y_{1}\right)=\max _{x_{1}=1, \ldots, y_{1}}\left\{3 x_{1}+f_{2}\left(y_{1}-x_{1}\right)\right\}$
Stage 3: (Note: $[a, b) \equiv a \leqslant y<b$)

$x_{i}=$ number of courses allocated to departments $i ; i+1, \ldots$, and n. $m_{c}=1,2, \ldots, 7, i=1,2,3,4$ $x_{4}=1,2, \ldots, 7 \quad x_{2}=3,4, \cdots, 9$
$x_{3}=2,3, \ldots, 8 \quad x_{1}=4,5, \ldots, 10$

$$
f_{i}\left(x_{i}\right)=\max _{m_{i}}\left\{v\left(m_{i}\right)+f_{i+1}\left(x_{i}-m_{i}\right)\right\}
$$

where $v\left(m_{i}\right)=$ value of m_{i} courses

Set 10.3a

Set 10.3a

Solution:

$$
\begin{aligned}
& \left(y_{1}=10\right) \rightarrow x_{1}=2 \rightarrow\left(y_{2}=10-4=6\right) \rightarrow x_{2}=1 \\
& \quad \rightarrow\left(y_{3}=6-3=3\right) \rightarrow x_{1}=1
\end{aligned}
$$

Plant 2 now of tomatoes, 1 now I beans, and 1 now of coin.
$x_{j}=1$ if application j is selected, and 0 if otherurise.
maximize $z=78 x_{1}+64 x_{2}+68 x_{3}+62 x_{y}+85 x_{5}$ subject to

$$
\begin{aligned}
& 7 x_{1}+4 x_{2}+6 x_{3}+5 x_{4}+8 x_{5} \leqslant 23 \\
& x_{j}=(0,1), \quad j=1,2, \ldots, 5
\end{aligned}
$$

Stage 5: $f_{5}\left(y_{5}\right)=\max _{8 x_{5} \leq y_{5}}\left\{85 x_{5}\right\}$

y_{5}	$85 x_{5}$			Opt So.
	$x_{5}=0$	$x_{5}=1$	f_{5}	$x_{5}{ }^{*}$
0	0	-	0	0
1	0	-	0	0
\vdots	\vdots	\vdots	\vdots	\vdots
7	0			0
8	0	85	85	1
9	0	85	85	1
\vdots	\vdots	\vdots	\vdots	\vdots
23	0	85	85	1

Stage 4:

$$
f_{4}\left(y_{4}\right)=\max _{5 x_{4} \leq y_{4}}\left\{62 x_{4}+f_{5}\left(y_{4}-5 x_{4}\right)\right\}
$$

Stage 2:
$f_{2}\left(y_{2}\right)=\max _{4 x_{2} \leqslant y_{2}}\left\{64 x_{2}+f_{3}\left(y_{2}-4 x_{2}\right)\right\}$

Stage 1:
$f_{1}\left(y_{1}\right)=\max _{7 x_{1} \leqslant y_{1}}\left\{78 x_{1}+f_{2}\left(y_{1}-7 x_{1}\right)\right\}$

	$78 x_{1}+f_{2}\left(y_{1}-7 x_{1}\right)$		$0 p t, f_{0} 1$	
y_{1}	$x_{1}=0$	$x_{1}=1$	f_{1}	x_{1}^{*}
23	$0+279=279$	$78+194=272$	279	0
Solution : $(y=23) \rightarrow x_{1}=0 \rightarrow\left(y_{2}=23\right) \rightarrow$				

$x_{2}=1 \rightarrow\left(y_{3}=23-4=19\right) \rightarrow x_{3}=1 \rightarrow$
$\left(y_{4}=19-6=13\right) \rightarrow x_{4}=1 \rightarrow\left(y_{5}=13-5=8\right) \rightarrow x_{5}=1$
Clllbutth furstapplication ave
$x_{j}=1$ if precinct $;$ is adected, and 0 if othesurie.
Maximize $z=31 x_{1}+26 x_{2}+35 x_{3}+28 x_{4}+24 x_{5}$ subject to

$$
3.5 x_{1}+2.5 x_{2}+4 x_{3}+3 x_{4}+2 x_{5} \leq 10
$$

$$
x_{j}=(0,1), j=1,2, \cdots, 5
$$

Stage 5: $f_{5}\left(y_{5}\right)=\max _{\substack{2 x_{5} \leq y_{5} \\ x_{5}=(0,1)}}\left\{24 x_{5}\right\}$

Stage 4:
$f_{4}\left(y_{4}\right)=\max _{\substack{3 x_{4} \leq y_{4} \\ x_{4}=0,1}}\left\{28 x_{4}+f_{5}\left(y_{4}-3 x_{4}\right)\right\}$

Set 10.3a

$k_{j}=$ number of parallel units in component $j, j=1,2,3$
The problems can be written as maximize $r=r_{1}\left(k_{1}\right) \cdot r_{2}\left(k_{2}\right) \cdot r_{3}\left(k_{3}\right)$ subject to

$$
c_{1}\left(k_{1}\right)+c_{2}\left(k_{2}\right)+c_{3}\left(k_{3}\right) \leqslant 10
$$

where
$r_{j}\left(k_{j}\right)=$ nelialiligy of component j given k_{j} parallel units $C_{j}\left(k_{j}\right)=$ coot of component j gwen Fe parallel inuits
Define state as
$y_{j}=$ capital assigned to components $j, j+1, \ldots, 3$

Stage 3: $\quad f_{3}\left(y_{3}\right)=\max _{k_{3}=1 ; 2,3}\left\{R_{3}\left(k_{3}\right)\right\}$

	$\boldsymbol{R}_{3}\left(k_{3}\right)$				Optimal Solution	
	$k_{3}=1$	$k_{3}=2$	$k_{3}=3$			
y_{3}	$R=.5, c=2$	$R=.7, c=4$	$R=.9, c=5$	$f_{3}\left(y_{3}\right)$	k_{3}^{*}	
2	.5	-	-	.5	1	
3	.5	-	-	.5	1	
4	.5	.7	-	.7	2	
5	.5	.7	.9	.9	3	
6	.5	.7	.9	.9	3	

Stage 2: $f_{2}\left(v_{2}\right)=\max _{k_{3}=1,2,3}\left\{R_{2}\left(k_{2}\right) \cdot f_{3}\left[y_{2}-c_{2}\left(k_{2}\right)\right]\right\}$

Stage 1: $\quad f_{1}\left(y_{1}\right)=\max _{k_{1}=1,2,3}\left\{R_{1}\left(k_{1}\right) \cdot f_{2}\left[y_{1}-c_{1}\left(k_{1}\right)\right]\right\}$

Solatium:

$$
\left(K_{1}^{F}, K_{2}^{*}, K_{3}^{*}\right)=(2,1,3)
$$

Composite $r=.504$

State $y_{j}=$ portion of the quantity c allocated to variables j, $j+1, \ldots$, and n.

Stage $n: f_{n}\left(y_{n}\right)=\max _{x_{n} \leq y_{n}}\left\{x_{n}\right\}$

State	Opt.	
	f_{n}	$x_{n}{ }^{*}$
	y_{n}	y_{n}

Stage $n-1: f_{n-1}\left(y_{n-1}\right)=\max _{x_{n-1} \leq y_{n-1}}\left\{x_{n-1} f_{n}\left(y_{n-1}-x_{n-1}\right)\right\}$
Given $f_{n}\left(y_{n}\right)=y_{n}$, then

$$
f_{n}\left(y_{n-1}-x_{n-1}\right)=y_{n-1}-x_{n-1}
$$

Thus,

$$
\begin{aligned}
& f_{n-1}\left(y_{n-1}\right)=\max _{x_{n-1} \leq y_{n-1}}\left\{x_{n-1}\left(y_{n-1}-x_{n-1}\right)\right\} \\
& \frac{y_{n-1}^{2}}{2}+x_{n-1} \leq y_{n-1}
\end{aligned}
$$

$$
\begin{array}{c|c|c}
\text { State } & \text { Opt. } & S_{0} / . \\
\cline { 2 - 3 } & f_{n-1} & x_{n-1}^{*} \\
\hline y_{n-1} & \left(y_{n-1} / 2\right)^{2} & \left(y_{n-1} / 2\right) \\
\hline
\end{array}
$$

Stage $;$

$$
f_{j}\left(y_{j}\right)=\max _{x_{j} \leqslant y_{j}}\left\{x_{j} f_{j+1}\left(y_{j}-x_{j}\right)\right\}
$$

state	Opt. $^{2} \delta_{\sigma} /$	
	$\left(\frac{y_{j}}{n-j+1}\right)^{n-j+1}$	$\frac{x_{j}^{*}}{n-j+1}$

Solution: $\left(y_{1}=q\right) \rightarrow x_{1}=\frac{c}{n} \rightarrow\left(y_{2}=\frac{n-1}{n} c\right) \rightarrow$

$$
\begin{aligned}
& \cdots \rightarrow y_{j}=\frac{n-j+1}{n} c \rightarrow x_{j}=\frac{c}{n} \\
& x_{1}=x_{2}=\cdots=x_{n}=\frac{c}{n}, z=\left(\frac{c}{n}\right)^{n}
\end{aligned}
$$

Set 10.3a

$$
\begin{aligned}
& f_{n}\left(y_{n}\right)=\min _{x_{n}=y_{n}}\left\{x_{n}^{2}\right\} \\
& f_{i}\left(y_{i}\right)=\min _{x_{i}>0}\left\{x_{i}^{2}+f_{i+1}\left(\frac{y_{i}}{x_{i}}\right)\right\}
\end{aligned}
$$

Stage n :

$$
f_{n}\left(y_{n}\right)=y_{n}^{2}, \quad x_{n}^{*}=y_{n}
$$

$$
\begin{aligned}
& \frac{\text { stage } n-1}{f_{n-1}\left(y_{n-1}\right)}=\operatorname{mix}_{x_{n-1} \rightarrow 0}\left\{x_{n-1}^{2}+\left(\frac{y_{n-1}}{x_{n-1}}\right)^{2}\right\} \\
& \frac{\partial(\cdot\}}{\partial x_{n-1}}=2 x_{n-1}-2 \frac{y_{n-1}^{2}}{x_{n-1}^{3}}=0 \\
& \text { or } x_{n-1}^{*}=\sqrt{y_{n-1}}, f_{n-1}\left(y_{n-1}\right)=2 y_{n-1}
\end{aligned}
$$

Stage $n-2$:

$$
\begin{aligned}
& \frac{\text { stage } n-2:}{f_{n-2}\left(y_{n-2}\right)}=\operatorname{mixi}_{x_{n-2}>0}\left\{x_{n-2}^{2}+2\left(\frac{y_{n-2}}{x_{n-2}}\right)\right\} \\
& \frac{\partial\{\cdot\}}{\partial x_{n-2}}=2 x_{n-2}-2 \frac{y_{n-2}}{x_{n-2}}=0 \\
& \text { or } \quad x_{n-2}^{*}=\left(y_{n-2}\right)^{1 / 3}, f_{n-2}\left(y_{n-2}\right)=3 y_{n-2}^{2 / 3}
\end{aligned}
$$

Stage i :
Induction yields

$$
x_{c}^{*}=y_{i}^{\frac{1}{n-i+1}}, f_{i}\left(y_{i}\right)=(n-i+1) y_{i}^{\frac{2}{n-i+1}}
$$

Stage 1:

$$
x_{1}^{*}=c^{1 / n}, f_{1}\left(y_{1}\right)=n y_{1}^{2 / n}
$$

Thus, $y_{2}=\frac{y_{1}}{x_{1}}=c^{\frac{n-1}{n}} \Rightarrow x_{2}^{*}=c^{1 / n}$ en general, $y_{c}=\sqrt[n]{c}$
For perpen decomposition, let
$x_{1}=y_{1}, x_{2}=y_{4}, x_{3}=y_{2}$ and $x_{4}=y_{3}$
The problem wither witter as
Maximize $z=\left(x_{1}+2\right)^{2}+\left(x_{2}-5\right)^{2}+x_{3} x_{4}$
subject to

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4} \leqslant 5 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geqslant 0 \text { and integer }
\end{aligned}
$$

Rearrangement of valuables allows. mixing multeplicature andodditure decomposition
$z_{j}=$ amount fiche resource allocated'
Stage 4:: $f_{4}\left(z_{4}\right)=\max _{x_{4} \leq y_{4}}\left\{x_{4}\right\}$

z_{4}	x_{4}						$0 p t . ~ S o l . ~$	
	$x_{y}=0$	1	2	3	4	5	f_{4}	$x_{y}^{* *}$
	0	-	-	-	-	-	0	0
	0	1	-	-	-	-	1	1
	0	1	2	-	-	-	2	2
	0	1	2	3	-	-	3	3
4	0	1	2	3	4	-	4	4
5	0	1	2	3	4	5	5	5

stage 3: $f_{3}\left(z_{3}\right)=\max _{x_{3} \leq z_{3}}\left\{x_{3} f_{4}\left(z_{3}-x_{3}\right)\right\}$

Stage 2: $f_{2}\left(z_{2}\right)=\max _{x_{2} \leq z_{2}}\left\{\left(x_{2}-5\right)^{2}+f_{3}\left(z_{2}-x_{2}\right)\right\}$

$5|25+6=3116+4=20 \quad 9+2=11 \quad 4+1=5 \quad 1+0=00+0=0 \quad 31|_{0}$
stage 1: $f_{1}\left(z_{1}\right)=\max _{x_{1} \leq z_{1}}\left\{\left(x_{1}+2\right)^{2}+f_{2}\left(z_{1}-x_{1}\right)\right\}$

$$
\begin{aligned}
& \left(z_{1}=5\right) \rightarrow x_{1}=5 \rightarrow\left(z_{2}=0\right) \rightarrow x_{2}=0 \rightarrow\left(z_{3}=0\right) \rightarrow \\
& x_{3}=0 \rightarrow\left(z_{4}=0\right) \rightarrow x_{4}=0
\end{aligned}
$$

Optimum: $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(5,0,0,0)$. $z=74$

Define state as
13
$y_{i}=$ amount of the risoince allocated
to variable $i, i+1, \cdots$, and n
$g_{n}\left(y_{n}\right)=\min _{x_{3}=y_{3}}\left\{f_{3}\left(y_{3}\right)\right\}$
$g_{i}\left(y_{i}\right)=\min _{0 \leq x_{i} \leq y_{i}}\left\{\max \left[f_{i}\left(x_{i}\right), g_{i+1}\left(y_{i}-x_{i}\right)\right]\right\}$
stage 3: $g_{3}\left(y_{3}\right)=\min _{x_{3}=y_{3}}\left\{x_{3}-2\right\}$

Stale		
	$g_{3}\left(y_{3}\right)$	$x_{3}{ }^{*}$
y_{3}	$y_{3}-2$	y_{3}

Stage 2: $\operatorname{mix}_{0 \leq x_{2} \leq y_{2}}\left\{\max \left[\left(5 x_{2}+3\right),\left(y_{2}-x_{2}-2\right)\right]\right\}$

state	$g_{2}\left(y_{2}\right)$	$x_{2} k$
$y_{2}<5$	0	3
$y_{2} \geq 5$	$\frac{x_{2}-5}{6}$	$\frac{5}{6} x_{2}-\frac{7}{6}$

stage 1: $g_{1}\left(y_{j}\right)=\min _{x_{1} \leqslant y_{1}}\left\{\max \left[x_{1}+5, g_{2}\left(y_{1}-x_{1}\right)\right]\right\}$

State		
$y_{1} \leq \frac{37}{5}$	0	5
$y_{1}>\frac{37}{5}$	$\frac{5 y_{1}-37}{11}$	$\frac{5 y_{1}+18}{11}$

$\left(y_{1}=10\right) \rightarrow x_{1}=\frac{50-37}{11}=\frac{13}{11} \rightarrow$
$\left(y_{2}=\frac{97}{11}\right) \rightarrow x_{2}=\frac{9711-5}{6}=\frac{7}{11} \rightarrow$
$\left(y_{3}=\frac{90}{11}\right) \rightarrow x_{3}=\frac{90}{11}$
$g_{1}(10)=\frac{5 \times 10+18}{11}=\frac{68}{11}$

Set 10.3b

Let

$$
c_{3}\left(x_{i-1}-x_{i}\right)=100\left(x_{i-1}-x_{i}\right)
$$

be the severance cost of $x_{i-1}-x_{i}$. laborers, $x_{i-1}>x_{i}$.

$$
\begin{array}{r}
f_{i}\left(x_{i}\right)=\min _{x_{i} \geq b_{i}}\left\{C_{1}\left(x_{i}-b_{i}\right)+c_{2}\left(x_{i}-x_{i-1}\right)\right. \\
\left.+C_{3}\left(x_{i-1}-x_{i}\right)+f_{i+1}\left(x_{i}\right)\right\} \\
i=1,2, \ldots, n
\end{array}
$$

Stage $5\left(b_{s}=6\right):$

stage $3\left(b_{2}=8\right)$:

	$x_{2}\left(x_{3}-8\right)+c_{2}\left(x_{1}-x_{2}\right)+c_{3}\left(x_{2}-x_{3}\right)+f_{1}\left(x_{1}\right)$	optime solution	
7	$x_{1}=8$	$f_{3}\left(x_{2}\right)$	x_{1}^{*}
8	$0+4+2(1)+0+8=14$	14	8

The optimum solution is determined as
$\quad x_{0}=0 \rightarrow x_{1}{ }^{*}=5 \rightarrow x_{2}{ }^{*}=8 \rightarrow x_{3}{ }^{*}=8 \rightarrow x_{4}^{*}=6 \rightarrow x_{5}=6$.
The solution can be translated to the following plan:

Week 1	Minimum Labor Force b_{1}	Actual Labor Force x_{1}	
1	5	5	Hire 5 workers
2	7	8	Hire 3 workers
3	8	8	No change
4	4	6	Fire 2 workers
5	6	6	No change

Let
$x_{c}=$ number of cars rented is ate i
$C_{i}\left(x_{i}\right)=$ renal cost in wecte i

$$
\begin{aligned}
& =\left\{\begin{array}{l}
220 x_{i}, \quad \text { if } x_{i} \leq x_{i-1} \\
500+220 x_{i}, \text { if } x_{i}>x_{i}-1
\end{array}\right. \\
& f_{i}\left(x_{i-1}\right)=\min _{x_{i} \geq b_{i}} \cdot\left\{c_{i}\left(x_{i}\right)+f_{i+1}\left(x_{i} \cdot\right)\right\}
\end{aligned}
$$

$$
i=1,2,3,4
$$

Stage 4: $b_{4}=8$

x_{3}	$x_{4}=8$	Opt. sol.	
7	$500+220 \times 8=2260$	2260	8
8	$220 \times 8=1760$	1760	8

Stage 3: $\quad b_{3}=7$

stage 2: $b_{2}=4$

Stage 1: $b_{1}=7$

						Opt. Sol.
x_{0}	$x_{1}=7$	$x_{1}=8$	f_{1}	x_{1}^{*}		
0	$500+220(7)$ $+4900=6940$	$500+220(8)$ $+4900=7160$	6940	4		

Solution:

week	b_{i}	x_{i}	
1	7	7	Rent 7 cars
2	4	4	Return 3
3	7	8	Rent 4
4	8	8	

Set 10.3b

Stage 4:

Stage 3:

Stage 2:

Solution: $K \rightarrow R \rightarrow K \rightarrow K$, revenue $=\$ 72,800$

Set 10.3c

(c) 4

Since iricome from mowing is constant, it need not be taken into account.
where,

$$
\begin{aligned}
& f_{4} . f_{4}(t)=\operatorname{mex} \begin{cases}C(t)-s(t), & K \\
I(t)+c(1)-s(t), & R\end{cases} \\
& \text { here, } \quad f_{i}(t)=\operatorname{mex} \begin{cases}c(t)+f_{l+1}(t+1), & K \\
I(t)+c(1)-s(t)+f_{i+1}(t), & R\end{cases}
\end{aligned}
$$

$C(t)=$ operating $\cos t$ pen year for a t-yearold mower $I(t)=$ cost of a new mower after t years
$s(t)=$ salvage rale of a t-year old mower
$f_{i}(t)=$ minimum \cos for periods. $i, i+1, \ldots$, and 4 given t-year mower.

Stage 4:

stage 3:

Stage 2.

										Opt. Sol.
	K	R	f_{2}	Dec						
1	$144+239=338$	$220+120-150+202=392$	338	K						

Stage 1: The only option available at the start is $K . \operatorname{cost}=121+338=458$ Solution: $K \rightarrow K \rightarrow R \rightarrow K$, total cost $=\$ 458$

$$
\begin{aligned}
& f_{i}(t)=\min \begin{cases}c(t)+f_{i+1}(t+1), & k \\
I(t)+c(1)-s(t)+f_{i+1}(1), & R\end{cases} \\
& f_{s}(t)=\min \begin{cases}c(t)-s(t), & K \\
I(t)+c(1)-s(t), & R\end{cases}
\end{aligned}
$$

Set 10.3c

Set 10.3c
$\left.\begin{array}{rl}\text { (a) } \\ f_{N}\left(T_{N}\right) & =\max _{T_{N} \leq N}\left\{\begin{array}{l}N^{2}-T_{N}^{2}+N-\left(T_{N}+1\right), K \\ \left(N^{2}-0\right)+N-(0+1)-C+N-T_{N}, R\end{array}\right. \\ \ddots\end{array}\right\} \begin{aligned} & \left(N^{2}-T_{i}^{2}\right)+f_{i+1}\left(T_{i}+1\right) ; K \\ & f_{i}\left(T_{i}\right)=\max _{T_{i} \leq N}\left\{N^{2}-0\right)+\left(N-T_{i}\right)-C+f_{i+1}(1), R\end{aligned}$
For $N=3, C=10$,
$f_{3}\left(T_{3}\right)=\max _{T_{3} \leq 3} \begin{cases}11-T_{3}-T_{3}^{2}, & K \\ 4-T_{3}, & R\end{cases}$
$f_{i}\left(T_{i}\right)=\max _{T_{i} \leq 3} \begin{cases}9-T_{i}^{2}+f_{i+1}\left(T_{i}+1\right), & K \\ 2-T_{i}+f_{i+1}(1), & R\end{cases}$

(b)	$i=1,2$
stage 3	

Return $=13,(k, K, R)$ or (K, R, K)

$$
f_{4}\left(T_{4}\right)=\max _{T_{4}<4}\left\{\begin{array}{l}
\frac{4}{1+T_{4}}+4-\left(T_{4}+1\right),< \\
\frac{4}{1+0}+4-(0+1)+6+\left(4-T_{4}\right), R
\end{array}\right.
$$

$=\max _{4,44} \begin{cases}\frac{4}{1+T_{4}}-T_{4}+3, & K \\ 5-T_{4}, & R\end{cases}$
$f_{i}\left(T_{i}\right)=\max _{T_{i} \leq 4}\left\{\begin{array}{l}\frac{4}{1+T_{i}}+f_{i+1}\left(T_{i}+1\right), K \\ 2-T_{i}+f_{i+1}(1), R\end{array}\right.$
stage 4

T_{4}	K	R	f_{4}	$D e c$
	4.00	4	4	KR
	2.33	3	3	R
	1.00	2	2	R
	-0.20	1	1	R

Shage 3

$$
\begin{array}{rlrl|}
P_{1} & =5, \quad p_{2}=4, p_{3}=3, \quad p_{4}=2 \\
\alpha_{1} & =(1+.085) \\
& =1.085 \\
\alpha_{2} & =(1+.08) & & 1 \\
& =1.08 & q_{i j}=2 & 2 \\
& & 3.018 & .023 \\
\hline .017 & .022 \\
\hline .021 & .026 \\
\hline .025 & -030 \\
\hline
\end{array}
$$

Stage 4: $f_{4}\left(x_{4}\right)=\max _{0 \leq I_{4} \leq x_{4}}\left\{S_{4}\right\}$

$$
\begin{aligned}
S_{4}= & (1.085+.025-1.08-.03) I_{4} \\
& +(1.08+.03) \times y \\
= & 1.11 \times y
\end{aligned}
$$

State	$0_{p} . s_{\sigma} /$	
	$f_{4}\left(x_{4}\right)$	I_{4}^{*}
	$1.11 x_{4}$	$0 \leq I_{4} \leq x_{4}$

Stage 3: $f_{3}\left(x_{3}\right)=\max _{0 \leq I_{3} \leq x_{3}}\left\{S_{3}+f_{4}\left(x_{4}\right)\right\}$

$$
\begin{aligned}
S_{3} & =\left(1.085^{2}-1.08^{2}\right) I_{3}+1.08^{2} x_{3} \\
& =.010825 I_{3}+1.1664 x_{3} \\
x_{4} & =P_{4}+\left(q_{31}-q_{32}\right) I_{3}+q_{32} x_{3} \\
& =2000+(.021-.026) I_{3}+.026 x_{3} \\
& =2000-.005 I_{3}+.026 x_{3}
\end{aligned}
$$

$$
\begin{aligned}
f_{3}\left(x_{3}\right)= & \max _{0 \leq I_{3} \leq x_{3}}\left\{\begin{array}{l}
.010825 I_{3}+1.1664 x_{3}+ \\
\\
\\
\left.=\max _{0 \leq I_{3} \leq x_{3}}\left\{22000-.005 I_{3}+.026 x_{3}\right)\right\}
\end{array},\right.
\end{aligned}
$$

State	$f_{3}\left(x_{3}\right)$	$I \frac{4}{3}$
	$2220+$	5%

Stage 2: $f_{2}\left(x_{2}\right)=\max _{0 \leq I_{2} \leq x_{2}}\left\{S_{2}+f_{3}\left(x_{3}\right)\right\}$

$$
\begin{aligned}
S_{2} & =\left(1.085^{3}-1.08^{3}\right) I_{2}+1.08^{3} x_{2} \\
& =.0175771 I_{2}+1.259712 x_{2} \\
x_{3} & =3000+(.017-.022) I_{2}+.022 x_{2} \\
& =3000-.05 I_{2}+.022 x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& f_{2}\left(x_{2}\right)= \max _{0 \leq I_{2} \leq x_{2}}\left\{0.175771 I_{2}+1\right. \text { continued } \\
& 1.259712 x_{2}+2220+ \\
&\left.1.200535\left(3000-.05 I_{2}+.022 x_{2}\right)\right\} \\
&= \max _{0 \leq I_{2} \leq x_{2}}\left\{5821.61-.0424496 I_{2}\right. \\
&\left.+1.2861238 x_{2}\right\}
\end{aligned}
$$

State \begin{tabular}{c|c|c}
\multicolumn{2}{c}{ Opt. } \& $f_{2}(1$.

\cline { 2 - 3 } \& | 5821.61 |
| :---: | \& I_{2}^{*}

\hline
\end{tabular}

stage 1: $f\left(x_{1}\right)=\max _{0 \leq I_{1} \leq x_{1}}\left\{S_{1}+f_{2}\left(x_{2}\right)\right\}$

$$
S_{1}=\left(1.085^{4}-1.08^{4}\right) I_{1}+1.08^{4} x
$$

$$
=.0253697 I_{1}+1.360489 x_{1}
$$

$$
x_{2}=4000-.005 I_{1}+.023 x
$$

$$
\begin{aligned}
& f_{1}\left(x_{1}\right)= \max _{o \leq I_{1} \leq x_{1}}\left\{.0253697 I_{1}+\right. \\
& 1.360489 x_{1}+5821.61+ \\
&\left.1.2861238\left(4000=.005 I_{1}+.023 x_{1}\right)\right\} \\
&=\max _{o \leq I_{1} \leq x_{1}}\left\{10,966.11+.018939 I_{1}\right. \\
&\left.+1.3900698 x_{1}\right\}
\end{aligned}
$$

State	Opt.	
	$f_{1}\left(x_{1}\right)$	I_{1}^{*}
$\dot{x}_{1}=5000$	$10,966.11+$	

$$
\begin{aligned}
& x_{2}=4000-.005 \times 5000+.023 \times 500=\$ 4090 \\
& x_{3}=3000-.005 \times 0+.022 \times 4090 \cong \$ 3090 \\
& x_{4}=2000-.005 \times 3090+.026 \times 3090=\$ 2065
\end{aligned}
$$

Solution:
$I_{1}=x_{1}=5000$: Invest $\mathbb{K}_{5} 000$ in $F B$ $I_{2}=0 \quad: \quad$ Invest $\$ 4090 \mathrm{in} S B$ $I_{3}=3090$: Invest $\$ 3090$ in FB. $0 \leq I_{4} \leq{ }^{\$} 2065$: In vest 2065 in $F B, S B$, or both.
$x_{i}=$ cumulative amount avaclabh 2
at the end of period i before at the end of period i before

$$
\begin{aligned}
& f_{i}\left(x_{i}\right)=\max _{y_{i} \leq x_{i}}\left\{g\left(y_{i}\right)+f_{i+1}\left(\alpha\left(x_{i}-y_{i}\right)\right)\right\} \\
& f_{n}\left(x_{n}\right)=\max _{y_{n}=x_{n}}\left\{g\left(y_{n}\right)\right\}
\end{aligned}
$$

where,

$$
\alpha=1.09, g(y)=\sqrt{y}, x_{1}=10,000 \alpha
$$

Stage n :

$$
f_{n}\left(x_{n}\right)=\sqrt{x_{n}}, y_{n}^{*}=x_{n}
$$

Stage n-1:

$$
\begin{aligned}
& f_{n-1}\left(x_{n-1}\right)=\max _{y_{n-1} \leq x_{n-1}}\left\{\sqrt{y_{n-1}}+\sqrt{\alpha\left(x_{n-1}-y_{n-1}\right)}\right\} \\
& \frac{\partial l \cdot \xi}{\partial y_{n-1}}=\frac{1}{2 \sqrt{y_{n-1}}}-\frac{\alpha}{2 \sqrt{\alpha\left(x_{n-1}-y_{n-1}\right)}}=0 \\
& y_{n-1}^{*}=\frac{x_{n-1}}{1+\alpha}
\end{aligned}
$$

Because $\frac{\partial^{2}\{\cdot\}}{\partial y_{n-1}^{2}}<0, y_{n-1}^{*}$ is a maximum point.

$$
f_{n-1}\left(x_{n-1}\right)=\sqrt{(1+\alpha) x_{n-1}}
$$

Stage $n-2$:

$$
\begin{aligned}
& f_{n-2}\left(x_{n-2}\right)=\max _{y_{n-2} \leq x_{n-2}}\left\{\sqrt{y_{n-2}}+\sqrt{\alpha(1+\alpha)\left(x_{n-2} y_{n-2}\right)}\right\} \\
& y_{n-2}^{*}=\frac{x_{n-2}}{1+\alpha+\alpha^{2}} \\
& f_{n-2}\left(x_{n-2}\right)=\sqrt{\left(1+\alpha+\alpha^{2}\right) x_{n-2}}
\end{aligned}
$$

Stage i :
By induction, we can show that

$$
y_{i}^{*}=\frac{x_{i}}{\left(1+\alpha+\cdots+\alpha^{n-i}\right)}
$$

$$
f_{c}\left(x_{i}\right)=\sqrt{\left(1+\alpha+\cdots+\alpha^{n-i} x_{l}\right.} .
$$

Hence,

$$
\begin{aligned}
x_{1} & =\alpha c, \quad c=\$ 10,000 \\
y_{1}^{*} & =\frac{\alpha c}{\left(1+\alpha+\cdots+\alpha^{n-1}\right)} \\
& =\frac{c(1-\alpha)}{\left(1-\alpha^{n}\right)} \\
f_{1}\left(x_{1}\right) & =\sqrt{\left(1+\alpha+\cdots+\alpha^{n-1} x_{1}\right.}
\end{aligned}
$$

Gin $x_{1}=\alpha c$,

$$
\begin{aligned}
f_{1}(c) & =\sqrt{\alpha\left(1+\alpha+\cdots+\alpha^{n-1} c\right.} \\
& =\sqrt{\frac{\alpha\left(1-\alpha^{n}\right)}{(1-\alpha)} C} \\
x_{2} & =\bar{\alpha}\left(x_{1}-y_{1}\right) \\
& =\alpha^{2} c\left(1-\frac{1}{1+\alpha+\cdots+\alpha^{n-1}}\right) \\
& =\alpha^{3} c\left(\frac{1-\alpha^{n-1}}{1-\alpha^{n}}\right) \\
y_{2}^{*} & =\alpha^{3} C \frac{(1-\alpha)}{1-\alpha^{n}}
\end{aligned}
$$

In general, we have

$$
\begin{aligned}
& y_{c^{*}}^{*}=\alpha^{i+1} C\left(\frac{1-\alpha}{1-\alpha^{n-i+1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{n}\left(z_{n}\right)=\max _{y_{n}=z_{n} \leq 2_{k}^{n}}\left\{p_{n} y_{n}\right\} \\
& f_{i}\left(z_{i}\right)=\max _{y_{i} \leq z_{i} \leq 2 k}\left\{p_{i} y_{i}+f_{i+1}\left(2\left[z_{i}-y_{i}\right]\right)\right\} \\
& i=1,2, \cdots, n-1 \\
& \text { continued. }
\end{aligned}
$$

Set 10.3d
(b) Stage (year) 3:

Stage (year) 2:

Stage (year) 1:

z_{1}	$100 y_{1}+f_{2}(2[z,-y])$			2	Optimum	
	$y_{1}=0$	-	-	f_{1}	$y_{1} x$	
1	-	-	-	-		
2	$0+960=960$	$100+480=580$	$200+0=200$	960	0	

Solution:

$z_{1}=2 \rightarrow y_{1}=0 \rightarrow z_{2}=4 \rightarrow y_{2}=0 \rightarrow z_{3}=8 \rightarrow y_{3}=8$
Revenue $=\$ 960$

Set $10.4 a$

Optimal Solution :

$$
\left.\begin{array}{l}
v_{2}=10, w_{2}=9 \Rightarrow x_{2}^{*}=2 \\
v_{1}=10-2 x \cdot 2=9.6 \\
w_{1}=9+3 x \cdot 2=9.6
\end{array}\right\} \Rightarrow x_{1}^{*}=9.6
$$

Optimal dyeitwé value $=702.92$
maximize $z=r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}$
subject to

$$
\begin{aligned}
& w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n} \leqslant W \\
& v_{1} x_{1}+v_{2} x_{2}+\cdots+v_{n} x_{n} \leqslant V \\
& x_{j} \geqslant 0 \text { and integer }
\end{aligned}
$$

where

$$
x_{j}=\text { number of units of item } j
$$

D.P. backward formulation:

Let

$$
a_{j}=\text { weight allocated Gitemo } j, j+11, \ldots, \text { and } n
$$

$b_{j}=$ vole allocated to item $j, j+1, \cdots$, and n
$f_{j}\left(a_{j}, b_{j}\right)=$ optimum revenue f_{0} items $j, j+1$, and n, given a_{j} and b_{j}

$$
\begin{gathered}
f_{n}\left(a_{n}, b_{n}\right)=\max _{\substack{0 \\
0 \\
w_{n} x_{n} \leq a_{n} \\
0}}\left\{r_{n} x_{n}\right\} \\
v_{n} x_{n} \leqslant b_{n} \\
f_{j}\left(d_{j}, b_{j}\right)=\max _{\substack{0}} \leq v_{j} x_{j} \leq a_{j}\left(r_{j} x_{j}+f_{j+1}\left(a_{j}-w_{j} x_{j}, b_{j}-v_{j} x_{j}\right)\right\} \\
0 \leq v_{j} x_{j} \leq b_{j}
\end{gathered}
$$

Order of compentationis

$$
\begin{aligned}
& f_{n} \rightarrow f_{n-1} \rightarrow \cdots \rightarrow f_{1} \\
& a_{1}=W \\
& b_{1}=V
\end{aligned}
$$

CHAPTER 11

Deterministic Inventory Models

$$
y^{*}=\sqrt{\frac{2 K D}{h}}, t_{0}=\frac{y^{*}}{D}, T C U\left(y^{*}\right)=\sqrt{2 k D h} \quad \square
$$

a)

$$
\begin{aligned}
& y^{*}=\sqrt{\frac{2 \times 100 \times 30}{.05}}=346.4 \text { unit } \\
& t_{0}=\frac{346.4}{30}=11.55 \text { days } \\
& T C U\left(y^{*}\right)=\frac{100 \times 30}{346.4}+\frac{.05 \times 3664}{2}=\$ 17.32
\end{aligned}
$$

Policy: order 346.4 units whenever inventory drapes to 207.2 units Effective lead time $=6.91$ days
b)

$$
\begin{aligned}
& y^{*}=\sqrt{2 \times 50 \times 30} \cong 245 \text { units } \\
& t_{0}^{*}=\frac{245^{\circ 5}}{30}=8.16 \text { days } \\
& L_{e}=5.51 \text { days } \\
& T C U\left(y^{*}\right)=\frac{503030}{245}+\frac{.05 \times 245}{2}=12.25
\end{aligned}
$$

Policy: order 245 cenis whenever inventory de ops to 165.15 unis
c) $y^{*}=\sqrt{\frac{2 \times 100 \times 40}{.01}}=894.4$ unis

$$
\begin{aligned}
& t_{0}=\frac{894.4}{40}=22.36 \text { days } \\
& L_{p}=7.64 \text { days }
\end{aligned}
$$

$L_{e}=7.64$ days

$$
T C U\left(y^{*}\right)=\frac{100 \times 40}{894.4}+\frac{.01 \times 894.4}{2}=\$ 8.94
$$

Policy: Order 894.4 units cu Renewer inventory chops to 305.57 kmis .
d)

$$
\begin{aligned}
& y^{*}=\sqrt{2 \times 100 \times 20}=316.23 \text { units } \\
& t_{0}^{*}=\frac{316.23}{20}=15.81 \text { day p } \\
& L_{e}=14.19 \text { days } \quad \# \\
& T C \cup\left(y^{*}\right)=\frac{100 \times 20^{4}}{316.23+04 \times 316.23}=12.65
\end{aligned}
$$

Policy: Order 316.23 units whenever invention g chops to 283.8 units .

$$
D=300 \mathrm{lb} / \omega k, K=\$ 20, h=^{*} .03 / 1 \mathrm{l} / \mathrm{day}
$$

(a) $T C / w k=\frac{K D}{y}+\frac{h y}{2}$

$$
=\frac{20 \times 300}{300}+\frac{7 \times .03 \times 300}{2}=\$ 51.50
$$

(b)

$$
\begin{aligned}
& y^{*}=\sqrt{\frac{2 \times 20 \times 300}{(1.03 \times 7)}}=239 \mathrm{lb} \\
& \begin{aligned}
t_{0}^{*} & =\frac{239}{300 / 7}=.8 \omega k \\
\text { TC/wk } & =\sqrt{2 \times 20 \times 300 \times .03 \times 7} \\
& =50.20
\end{aligned}
\end{aligned}
$$

$L_{e}=0$ days
Policy: Order 239 16 wheneren inventory chops to zero level.

$$
\text { c) } \begin{aligned}
\text { cost difference } & =51.50-50.20 \\
& =\$ 1.30
\end{aligned}
$$

$9{ }^{9} h=\frac{.35}{7}=\$.05 /$ mit $/$ day
$D=50$ unis/day, $K=\$ 20$

$$
\begin{aligned}
& y^{*}=\sqrt{\frac{2 \times 20 \times 50}{.05}}=200 \text { units } \\
& t_{0}=\frac{210}{50}=4 \text { days } \\
& L=7 \text { days }, L_{e}=3 \text { days } \\
& R=3 \times 50=150 \text { unis }
\end{aligned}
$$

Policy: Order 200 units whenever.
inventory drops to 150 units.
b) Optimum number if orders $=\frac{365}{4}$

$$
\cong 91 \text { ovens }
$$

(a) Policy 1: $D=\frac{R}{L_{e}}=\frac{50}{10}=5$ unit/day $\mid 4$

$$
\begin{aligned}
\cos / / d a y & =\frac{K D}{y}+\frac{h y}{2} \\
& =\frac{20 \times 5}{150}+\frac{.02 \times 150}{2}=\$ 2.17
\end{aligned}
$$

Policy 2: $D=\frac{75}{15}=5$ unit/ day

$$
\operatorname{cost} / \text { day }=\frac{20 \times 5}{200}+\frac{.02 \times 200}{2}=\$ 2.50
$$

choose policy 1 .
(b)

$$
\begin{aligned}
& K=\$ 20, D=5 \text { unit/day } \\
& h=\$.02, L=22 \text { days } \\
& y^{*}=\sqrt{\frac{2 \times 20 \times 5}{102}}=100 \text { units } \\
& t_{0}=\frac{100}{5}=20 \text { days } \\
& L_{e}=22-20=2 \text { days }
\end{aligned}
$$

Render level $=2 \times 5=10$ units
Order 100 units whenever the level drops to 10 units

$$
\operatorname{Cost} / \text { day }=\frac{20 \times 5}{100}+\frac{.02 \times 100}{2}=\$ 2.00
$$

$$
T C / \text { day }=\frac{K}{y / D}+\frac{h_{1} y}{2}+\frac{h_{2} y}{2}+\cdot 6 D
$$

$$
=\frac{K D}{y}+\left(h_{1}+h_{2}\right) \frac{y}{2}+.6 D
$$

$$
y^{*}=\sqrt{\frac{21 K D}{\left(h_{1}+h_{2}\right)}}=\sqrt{\frac{2 \times 81 \times 600}{(.01+.02)}}=1800 \text { towels }
$$

$$
t_{0}=1800 / 600=3 \text { days }
$$

$$
\operatorname{Cost} / \text { day }=\frac{81 \times 600}{1800}+\frac{.03 \times 1800}{2}=\$ 54
$$

Optimal policy: Pick up soiled towels and deliver an equal batch of 7800 towels every 3 days

The basic assumption is that the employee will deposit sufficient funds in Europe to take advantage of the higher interest rate and periodically send lump sums to the US to take care of the obligations. This problem in the context of an application of the simple economic lot size formula with no shortages. The idea is that it may be more economical to hold funds longer in European banks to take advantage of their considerably higher interest rate. The cost of wiring funds from overseas $(=\$ 50)$ may be regarded as the "setup" cost and the lost interest per dollar per year ($=.065-.015=$ $\$.05$) can be treated as the "holding" cost. Using this information, the economic lot size formula will yield

$$
\begin{array}{r}
\text { Deposit amount }=\sqrt{\frac{2 k 0}{n}}=\sqrt{\frac{2 \times 501202000}{0.05}}=\$ 4899 \\
\text { Time between deposits }=t_{0}=\frac{4899}{\frac{42300}{1220}}=.408 \text { year } \\
=4.9 \text { months }
\end{array}
$$

Optimal policy: Send $\$ 4899(\approx \$ 5000)$ every $4.9(\approx 5)$ months to the US. The first installment occurs at the start of the year

a) From the geometry of the figure,

$$
z=t_{1}(a-D)=\frac{y}{a}(a-D)=y\left(1-\frac{D}{a}\right)
$$

b)

$$
\begin{aligned}
\operatorname{TCU}(y) & =\frac{K+(z / 2) t_{0} * h}{t_{0}} \\
& =\frac{K D}{y}+\frac{h}{2}\left(1-\frac{D}{a}\right) y
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } \frac{\partial T C U(y)}{\partial y}=0 \text { gives } \\
& -\frac{K D}{y^{2}}+\frac{h}{2}\left(1-\frac{D}{a}\right)=0 \\
& y^{*}=\sqrt{\frac{2 K D}{h\left(1-\frac{D}{a}\right)}} \\
& \text { (d) } \lim _{a \rightarrow \infty} \sqrt{\frac{2 K D}{h\left(1-\frac{D}{a}\right.}}=\sqrt{\frac{2 K D}{h}}
\end{aligned}
$$

Alternative 1: Produce

$$
\begin{aligned}
y^{*} & =\sqrt{\frac{2 K D}{h\left(1-\frac{D}{a}\right)}} \\
& =\sqrt{\frac{2 \times 20 \times \frac{26000}{365}}{.02\left(1-\frac{26000 / 365}{100}\right)}}=703.7 \text { units }
\end{aligned}
$$

Total coot/ day

$$
\begin{aligned}
& \text { al coot/day } \\
& =\frac{K D}{y^{*}}+\frac{h}{2}\left(1-\frac{D}{a}\right) y^{*} \\
& =\frac{200 \times \frac{2600}{365}}{703.7}+\frac{.02}{2}\left(1-\frac{26000}{100 \times 365}\right) \times 703.7 \\
& =\$ 4.05 \text { per day }
\end{aligned}
$$

alternative 2: Buy

$$
\begin{aligned}
y^{*} & =\sqrt{\frac{2 k D}{n}} \\
& =\sqrt{\frac{2 \times 15 \times \frac{26000}{365}}{.02}} \\
& =326.87 \text { units }
\end{aligned}
$$

Total coet/day

$$
\begin{aligned}
& =\frac{K D}{y^{*}}+\frac{h}{2} y^{*} \\
& =\frac{15 \times \frac{26000}{365}}{377.45}+\frac{.02}{2} \times 377.45 \\
& =\$ 6.54 / \text { day }
\end{aligned}
$$

The company should produce its own.

Partial derivatives $=0$ give

$$
\begin{aligned}
& -\frac{K D}{y^{2}}+h\left(\frac{1}{2}\left(1-\frac{D}{a}\right)-\frac{w^{2}}{2 y^{2}(1-D / a)}\right)-\frac{p w^{2}}{2 y^{2}\left(1-\frac{D}{a}\right)}=0 \\
& h\left(\frac{w}{y\left(1-\frac{D}{a}\right)}-1\right)+\frac{p w}{y(1-D / a)}=0
\end{aligned}
$$

this gives,

$$
y^{*}=\sqrt{\frac{2 k D(p+h)}{p h(1-D / a)}}, w^{*}=\sqrt{\frac{2 K D h\left(1-\frac{D}{h}\right)}{p(p+h)}}
$$

EOQ before quantity di-crust $=1800$ towels per Problem 6, ser $11.2 a$.
Total cost/day gwen bathe of 1800 Vowels

$$
\begin{aligned}
& =D C_{1}+\frac{K D}{y}+\frac{h_{1}+h_{2}}{2} y \\
& =600 \times \cdot 6+\frac{81 \times 600}{1800}+\frac{\cdot 03 \times 1800}{2}=\$ 414
\end{aligned}
$$

Total coot/ day given batches of 2500 trow eh

$$
\begin{aligned}
& =D C_{2}+\frac{K D}{y}+\frac{\left(h_{1}+h_{2}\right)}{2} y \\
& =600 \times .5+\frac{81 \times 600}{2500}+\frac{.03 \times 2500}{2}=356.94
\end{aligned}
$$

Take advantage of price discount.

$$
y_{m}=\sqrt{\frac{2 k D}{h}}=\sqrt{\frac{2 \times 100 \times 30}{.05}}=346.41 ?
$$

$$
q=500 \text { units }
$$

Because $y_{m}<q$, we need to compute Q.

$$
\begin{aligned}
T C U_{1}\left(y_{m}\right) & =D C_{1}+\frac{K D}{y_{m}}+\frac{h y_{m}}{2} \\
& =30 \times 10+\frac{100 \times 30}{346.91}+\frac{.05 \times 346.4)}{2} \\
& =317.32
\end{aligned}
$$

The equation for computing Q is

$$
Q^{2}+\left(\frac{2(8 \times 30-315.32)}{.05}\right) Q+\frac{2 \times 100 \times 30}{.05}=0
$$

or

$$
Q^{2}-3092.82 Q+120000=0
$$

This yields $Q=3053.52$ units,
Because $y_{m}<q<Q \Rightarrow y^{*}=q=510$ $t_{0}=\frac{500}{30}=16.67$ dayo $\Rightarrow L_{c}=4.33$
Order 500 units when inventory chop to 130.

$$
\begin{aligned}
y_{m}=\sqrt{\frac{2 K D}{h}} & =\sqrt{\frac{2 \times 50 \times 20}{3}} \\
& =81.65 \mathrm{units}
\end{aligned}
$$

Because $q>y_{m}$, we need to complete Q.

$$
\begin{aligned}
T C u_{1}\left(y_{m}\right) & =20 \times 25+\frac{50 \times 20}{81.65}+\frac{.3 \times 81.65}{2} \\
& =524.49
\end{aligned}
$$

$$
\begin{aligned}
& Q \text { - equation: } \\
& Q^{2}+\left(\frac{2(22.5 \times 20-524.49)}{3}\right) Q+\frac{2 \times 50 \times 20}{3}=0 \\
& Q^{2}-496.63 Q+6666.67=0
\end{aligned}
$$

Thus, $Q=482.83$
Because $y_{m}<q<Q \Rightarrow y^{*}=150$
Proles 150 units when inventory drape to 0

From the preceding figure, the discount is not advantageous if

$$
T C U_{1}\left(y_{m}\right) \leqslant T C U_{2}(q)
$$

σ

$$
D c_{1}+\frac{K D}{y_{m}}+\frac{h y_{m}}{2} \leq D c_{2}+\frac{K D}{q}+\frac{h q}{2}
$$

or

$$
\begin{aligned}
20 C_{1} & +\frac{50 \times 20}{81.65}+\frac{3 \times 81.65}{2} \\
& \leqslant 20 C_{2}+\frac{50 \times 20}{150}+\frac{.3 \times 150}{2}
\end{aligned}
$$

Thus, the condition reduces of

$$
c_{1}-c_{2} \leqslant-23359
$$

Let $d=$ discount factor (<1).
Then $c_{2}=(1-d) C_{1}, \quad a<d<1$ Given. $C_{1}=25$, we have

$$
\begin{array}{rl}
& 25 d \\
\text { or } & d \leq .233588 \\
d & .009344
\end{array}
$$

Thus, no advantage if the $\%$ divount $i \leq .9344 \%(\simeq 1 \%)$
continued.

$T C U_{1}(y)=\frac{K D}{y}+\frac{h_{1} y}{2}$

$$
T C C_{2}(y)=\frac{K D}{y}+\frac{h_{2}^{2} y}{2}
$$

Case 1: $q<y_{2 m}$

Solution:

$$
\begin{aligned}
& y^{*}=y_{2 m} \\
& \operatorname{TCU}\left(y^{*}\right)=\operatorname{TCU}\left(y_{2 m}\right)
\end{aligned}
$$

Case 2: $y_{2 m}<q \leqslant Q$
The value of Q is determined from se equation:

Solution: $y^{*}=q$

$$
T \subset U\left(y^{*}\right)=T \subset U_{2}(q)
$$

Care 3: $y_{2 m}<Q<q$

Solution: $y^{*}=y_{m}, T \operatorname{cu}\left(y^{*}\right)=T<u_{1}\left(y_{m}\right)$
$T \subset u\left(y^{*}\right)= \begin{cases}T C u_{2}\left(y_{2 m}\right), & q<y_{2 m} \\ T C u_{2}(q), y_{2 m}<q \leq Q \\ T C u_{1}\left(y_{1 m}\right), y_{2 m}<Q<q\end{cases}$

See file ampl11.3c-1.txt.
AMPL model will not converge unless

$K_{i} D_{i} / y_{i}$ is replaced with $K_{i} D_{i} /\left(y_{i}+\varepsilon\right)$, where $\varepsilon>0$ and very small.

SOLUTION:

Total cost $=568.11$
$y_{1}=4.42$
$y_{2}=6.87$
$y_{3}=4.12$
$y_{4}=7.20$
$y_{5}=5.80$
See file ampl11.3c-2.txt.
New constraint:
$(1 / 2)\left(y_{1}+y_{2}+y_{3}\right) \leq 25$

SOLUTION:

Total cost $=10.42$
$y_{1}=10.83$
$y_{2}=16.85$
$y_{3}=22.32$
See file ampl11.3c-3.txt.
New constraint:
Average inventory for item $\mathbf{i}=y_{i} / 2$.
$(1 / 2)\left(100 y_{1}+55 y_{2}+100 y_{3}\right) \leq 1000$
SOLUTION:
Total cost $=14.31$
$\mathrm{y} 1=5.58$
$\mathrm{y} 2=7.90$
$\mathrm{y} 3=10.07$
See file ampl11.3c-4.txt.
AMPL model will not converge unless
$K_{i} D_{i} / y_{i}$ is replaced with $K_{i} D_{i} /\left(y_{i}+\varepsilon\right)$, where $\varepsilon>0$ and very small.

New constraint:
$365\left(10 / y_{1}+20 / y_{2}+5 / y_{3}+10 / y_{4}\right) \leq 150$
SOLUTION:
Total cost $=54.71$
$\mathrm{y} 1=155.30$
$\mathrm{y} 2=118.81$
$\mathrm{y} 3=74.36$
$\mathrm{y} 4=90.09$

Set 11.4a

(b)

Set 11.4c

(a) No, because mventory
should not be held needlessly
at the end of planning horizon
(b)

$$
\begin{array}{ll}
0 \leq z_{1} \leq 5, & 1 \leq z_{2} \leq 5,
\end{array} \quad 0 \leq z_{3} \leq 4
$$

(ii)

$5 \leq z_{1} \leq 14,0 \leq z_{2} \leq 9,0 \leq z_{3} \leq 5$
$x_{1}=0,0 \leq x_{2} \leq 9,0 \leq x_{3} \leq 5$

$\frac{\text { Stage 2: }}{f_{2}\left(x_{3}\right)=} \underset{0 \leqslant z_{2} \leqslant D_{2}+x_{3}}{\min }\left\{\begin{array}{l}\left.K_{2}+C_{2}\left(z_{2}\right)+h_{2} x_{3}+f_{1}\left(x_{3}+D_{2}-z_{2}\right)\right\}\end{array}\right.$ $0 \leq Z_{2} \leq 8,0 \leq x_{3} \leq 6, \quad D_{2}=2$

Stage 4: $0 \leq z_{4} \leq 3, \quad x_{5}=0, \quad D_{4}=3$

	$K_{4}=7, h_{4}=1$	$0 p t . ~ S o l . ~$				
Z_{5}	0	1	2	3	f_{4}	z_{4}
0	33	39	37	35	33	6

Solution:
$\begin{aligned}\left(x_{5}=0\right) \rightarrow & z_{4}=0 \rightarrow\left(x_{4}=3\right) \rightarrow z_{3}=6 \rightarrow\left(x_{3}=0\right) \rightarrow \\ z_{2} & =0 \rightarrow\left(x_{2}=2\right) \rightarrow z_{1}=7\end{aligned}$

Total cost $=\$ 33$

$$
\begin{aligned}
& f_{1}\left(x_{2}\right)=\min _{0 \leq z_{1} \leq D_{1}+x_{2}}\left\{c_{1}\left(z_{1}\right)+k_{1}+h_{1}\left(\frac{x_{1}+z_{1}+x_{2}}{2}\right)\right\} \\
& =\min _{0 \leq z_{1} \leq D_{1}+x_{2}}\left\{k_{1}+c_{1}\left(z_{1}\right)+h_{1}\left(x_{2}+\frac{D_{1}}{2}\right)\right\} \\
& \therefore \begin{aligned}
f_{i}\left(x_{i+1}\right)= & \operatorname{man}_{0 \leq z_{i} \leq D_{i}+x_{i+1}}\left\{k_{i}+c_{i}\left(z_{i}\right)+h_{i}\left(x_{i+1}+\frac{D_{i}}{2}\right)\right. \\
& \left.+f_{i-1}\left(x_{i+1}+D_{i}-z_{i}\right)\right\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& f_{n}\left(x_{n}\right)= \min _{z_{n}+x_{n}=D_{n}}\left\{x_{n}+C_{n}\left(z_{n}\right)\right\} \\
& f_{i}\left(x_{i}\right)= \min \left\{x_{i}+c_{i}\left(z_{i}\right)+h_{i}\left(x_{i}+z_{i}-D_{i}\right)\right. \\
& D_{i} \leq x_{i}+z_{i} \leq D_{1}+\cdots+D_{n} \\
&\left.+f_{i+1}\left(x_{i}+z_{i}-D_{i}\right)\right\}
\end{aligned}
$$

Stages: $D_{3}=4 ; 0 \leq x_{3} \leq 4$

X_{3}							$O_{p t}$ Sol
0					56	56	4
1				36		36	3
2			26			26	2
3		16				16	1
4	0					0	0

Stage 2: $\quad D_{2}=2$

Stage 1: $D_{1}=3$

x_{1}	$z_{1}=2$	3	4	5	6	7	8	f_{1}	z_{1}
1	99	100	111	115	129	193	151	99	2

Solution:

$$
\begin{aligned}
& \left(x_{1}=1\right) \rightarrow z_{1}=2 \rightarrow\left(x_{2}=0\right) \rightarrow z_{2}=3 \rightarrow \\
& \left(x_{3}=1\right) \rightarrow z_{3}=3 \\
& \text { Coot }=\$ 99
\end{aligned}
$$

$$
\begin{aligned}
\text { Average inventory } & =\frac{x_{i}+z_{i}+x_{i}+1}{2} \\
& =\frac{x_{i}+z_{i}+x_{i}+z_{i}-D_{i}}{2} \\
& =x_{i}+z_{i}-\frac{D_{i}}{2}
\end{aligned}
$$

Replace $h_{i}\left(X_{i}+z_{i}-D_{i}\right)$ with $h_{i} \cdot\left(x_{i}+z_{i}-\frac{D_{i}}{2}\right)$ in the backward fromilation of problem 4 .

Set 11.4d

Set 11.4d

Period 5:

Coot $=\$ 3400$

Period 1:

Period 2

Period 4:

Périod 5:

Period 6

Set 11.4e

CHAPTER 12

Review of Probability Theory

$P\{$ no one shanes your b'day $\}=\frac{364}{365}$
P\{noone umong n persons a hanes your b'day\}

$$
=\left(\frac{364}{365}\right)^{n}
$$

(a) $P\{$ Eng'g student had math $\}=\frac{150}{1000}=15$

P\{at leut one perion among n skanes your bday\}
P\{Non-eng'g student had math $\}=\frac{250}{1000}=.25$
(b) $p\{$ Non-eng'g had ni math $\}=\frac{571}{1000}=.571$

Thue, for tro or more persons to share foom b'day with moce ohan 50% chance mean.

Let
$n=$ dosised sample sige
$\varphi_{n}=$ prob. n pusoss R Rave distinict b'day

$$
=\frac{365}{365} \cdot \frac{364}{365} \cdots \frac{365-n+1}{365}
$$

$1-p_{n}=$ prob at leaot two persons out of n havede pasme b'day
Thuo,

$$
1-P_{n}>1 / 2
$$

mears $t-P_{n}$ is moue likely to ocear then P_{n}.
Now,

$$
p_{n}<1 / 2
$$

$$
\text { or } \frac{(365)(364) \cdot .(365-n+1)}{(365)^{n}}<1 / 2
$$

A spreadshet eolution yields $n \geqslant 23$
$E=$ outcone of first toss
$F=$ outcome of second toss
(a) 5 um $=11$:

$$
\begin{aligned}
& (E 2 F)=(526) \text { or }(685) \\
& P\{\text { sum }=11\}=2\left(\frac{1}{6} \times \frac{1}{6}\right)=1 / 18
\end{aligned}
$$

(b) Sum $=$ even ralue

$$
\text { b) Sum }=\text { even racue } 5] \text { or }
$$

$$
\left(22^{2}[2 \text { or } 4 \text { or } 6]\right) \text { or }
$$

$$
(32[1 \text { or } 3 \text { or } 5]) \text { or }
$$

$$
(42[2 \text { or } 4 \text { or } 6]) \sigma
$$

$$
(52[1 \text { or } 3 \text { or } 5]) \sigma
$$

$$
(6 \&[2 \text { or } 4 \text { or } 6])
$$

$$
P\left\{E_{2} F\right\}=6 \times \frac{1}{6}\left(\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\right)=1 / 2
$$

(C) Sum $=$ oddvalue >3

$$
(E \& F)=(1 \&[4 \sigma r 6]) \text { or }
$$

$(22[30 r 5])^{\sigma}$
(3\&[2a4or6]) or
$(42[1$ or 3 or 5$]$) or
(5 \& [2 or 4 or 6$]$) or
($62[1$ or 3 or 5$]$)

$$
P\left\{E^{8} F\right\}=2 \times \frac{1}{6}\left(\frac{1}{6}+\frac{1}{6}\right)+4 \times \frac{1}{6}\left(\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\right)=\frac{4}{9}
$$

(d) $P\{(2 \circ 14) \&(3015)\}=\left(2 \times \frac{1}{6}\right)^{2}=\frac{1}{9}$
(e)
(f) $P\{4 \times[1$ or 3 or 5$])=\frac{1}{6}\left(\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\right)=\frac{1}{12}$

$$
\text { ca) }(P\{2,4,026\})^{2}=(1 / 2)^{2}=1 / 4
$$

(b) $P\{4 \& 6\}+P\{525\}+P\{644\}$

$$
=3 \times\left(\frac{1}{6} \times \frac{1}{6}\right)
$$

$$
=\frac{1}{12}
$$

$$
\text { (c) } \begin{aligned}
& P\{124\}+P\{125\}+P\{126\}+ \\
& +P\{285\}+P\{286\}+P\{386\} \\
& +P\{481\}+P\{5 \times 1\}+P\{681\} \\
& +P\{5 k 2\}+P\{682\}+P\{683\} \\
& =12 \times \frac{1}{6} \times \frac{1}{6}=\frac{12}{36}=\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& (E \& F)=(3 \&[1 \text { or } 2 \text { or } 3]) o r \\
& \text { (} 42 \text { [1 or } 2 \text { or } 3] \text {) a } \\
& \text { (52[1 or } 2 \text { or 3] })^{0} \\
& \text { (} 62 \times[1022,3] \text {) } \\
& P\{E \& F\}=4 \times \frac{1}{6}\left(\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\right)=\frac{1}{3}
\end{aligned}
$$

$\left.\begin{array}{ll}\text { Outcome } & \text { PrbabiliAy } \\ \hline \text { TTTH } & (1 / 2)^{4} \\ \text { HTTTH } & (1 / 2)^{5} \\ \text { HHTTTH } \\ \text { THTTTH } \\ \text { HTHTTTH } & 2 \times(1 / 2)^{6} \\ \text { THHTTTH } \\ \text { TTHTTTH } \\ \text { HH TTTH }\end{array}\right\}$

Probalility $=\left(\frac{1}{2}\right)^{4}\left[1+\frac{1}{2}+2\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)^{3}\right]$

$$
=\frac{5}{32}
$$

$y=$ probalility $L i z$ wis we have
$P\{L i z$, Jim, John, or Ann wins $\}$

$$
=p+3 p+3 p+6 p=1
$$

Thus, $p=\frac{1}{13}$
(a) $P\{$ Jim wins $\}=3 p=\frac{3}{13}$
(b)

$$
\begin{aligned}
P\{\text { Liz or Ann wins }\} & =p+6 p \\
& =\frac{7}{13}
\end{aligned}
$$

(c) $P\{$ no woman wins $\}$

$$
=1-\frac{7}{13}=\frac{6}{13}
$$

Set 12.1c

Joint probablities:

(a) $P\{$ WMs mp $\}=.6+.05=.65$
(b) $P\{$ \{wns ap \mid Dawup $\}=\frac{.6}{7}=6 / 7$
(c) $P\{$ wus dram / Dow dran $\}=\frac{.25}{3}=5 / 6$

$$
P\{A\}=.4 P\{B\}=.25 P\{A B\}=15[3
$$

(a) $P\{B \mid A\}=\frac{P\{B A\}}{P\{A\}}=\frac{.15}{4}=3 / 8$
(b) $P\{A \mid B\}=\frac{P\{A B\}}{P\{B\}}=\frac{.15}{.25}=3 / 5$

$$
P\{A \mid B\}=\frac{P\{A B\}}{P\{B\}}
$$

$$
\text { If } \frac{P\{A B\}}{P\{B\}}=P\{A\} \text { then }
$$

$P\{A B\}=P\{A\} P\{B\}$, which ahrivs that A and B must be independerr.

$$
\begin{aligned}
P\{A \mid B\} & =\frac{P\{A B\}}{P\{B\}} \\
& =\frac{P\{B \mid A\} P\{A\}}{P\{B\}}
\end{aligned}
$$

provided $P\{B\}>0$.

$$
\begin{aligned}
& \text { (a) } E=(2004) \\
& F=(10020 \text { or or } 4 \text { or } 5 \text {) } \\
& P\{E \mid F\}=\frac{P\{E F\}}{P\{F\}}=\frac{P\{E\}}{P(F\}}=\frac{2 / 6}{5 / 6}=2 / 5 \\
& \text { (b) } E=(3 \text { or } 5) \text {. } \\
& \begin{array}{l}
F=(1002 a=3004 a 5) \\
P\{E \mid F\}=\frac{P E F\}}{P L F\}}=\frac{P(E]}{P\{f\}}=\frac{2 / 6}{5 / 6}=2 / 5
\end{array}
\end{aligned}
$$

(a)

$$
\text { a) } \begin{aligned}
P\{D\} & =P\{B, A\}+P\{D, B\} \\
& =P\{D \mid A\} P\{A\}+P\{D \mid B\} P\{B\} \\
& =.1 \times .75+.2 \times .25 \\
& =.125
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\{A \mid D\} & =\frac{P\{D \mid A\} P\{A\}}{P\{D\}} \\
& =\frac{.1 \times .75}{.125}=.6
\end{aligned}
$$

$C \equiv$ cancen
$N C=$ no cancer
$+\equiv$ test poritive

$$
\begin{aligned}
& P\left\{c^{\prime} \mid\right.+\}=\frac{P\{c,+\}}{P\{+\}} \\
& \begin{aligned}
P\{+\} & =P\{+, C\}+P\{+, N C\} \\
& =P\{+\mid c\} P\{c\}+P\{+\mid N c\} P\{N c\} \\
& =9 \times .7+.1 \times .3 \\
& =.66
\end{aligned}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
P\{C \mid+\} & =\frac{P\{c, \pm\}}{P\{+\}}=\frac{P\{+1 c\} P\{c\}}{P\{+\}} \\
& =\frac{.9 \times .7}{.66} \\
& \simeq .9545
\end{aligned}
$$

$\begin{aligned} \text { (a) } p(x) & =k x, x=1,2,3,4,5 \\ \sum_{x=1}^{5} p(x) & =k(1+2+3+4+5)=15 k=1\end{aligned}$
Thus, $t=1 / 15$, and

$$
p(x)=\frac{x}{15}, x=1,2, \ldots, 5
$$

CDF:

$$
P(x)=\sum_{y=1}^{x} \frac{y}{15}=\frac{x(x+1)}{30}, x=1,2, \ldots, 5
$$

(b) $P\{x=2$ or $x=4\}=\frac{2+4}{15}=\frac{2}{5}$
(a)

$$
\begin{aligned}
& \int_{10}^{20} \frac{k}{x^{2}}=1 \\
& k\left(\frac{1}{10}-\frac{1}{20}\right)=\frac{k}{20}=1 \Rightarrow k=20 \\
& f(x)=\frac{20}{x^{2}}, \quad 10 \leqslant x \leqslant 20
\end{aligned}
$$

(b)

$$
\begin{aligned}
F(x) & =\int_{10}^{x} \frac{20}{t^{2}} d t \\
& =2-\frac{20}{x}
\end{aligned}
$$

(i)

$$
\begin{aligned}
P\{x>12\} & =P\{x \geqslant 12\} \\
& =1-\left(2-\frac{20}{12}\right) \\
& =\frac{2}{3}
\end{aligned}
$$

(ii) $P\{13 \leq x \leq 15\}$

$$
\begin{aligned}
& =P\{x \leq 15\}-P\{x \leq 13\} \\
& =2-\frac{20}{15}-\left(2-\frac{20}{13}\right) \\
& =.205
\end{aligned}
$$

$$
\begin{aligned}
P\{\text { Demand } & \left.=d\}=\frac{1}{500}, 750 \leqslant d \leqslant 1200\right\} \\
P\{d \geq 1100\} & =1-P\{d \leqslant 1100\} \\
& =1-\frac{1100-750}{500} \\
& =.3
\end{aligned}
$$

Set 12.3a

$$
\begin{aligned}
& h(x) \begin{cases}x-20, & x=21,22,23,24 \\
0, & x=10,11, \ldots, 20\end{cases} \\
& E\{h(x)\}=\sum_{x=10}^{20} 0\left(\frac{1}{15}\right)+\sum_{x=21}^{24}(x-20)\left(\frac{1}{15}\right) \\
& =\frac{2}{3} \text { stamp }
\end{aligned}
$$

There is no inconsistency P because the wo r caves ane mutually excluaciv. There can lu e either surplus or shortage. When surplus occurs, it average value is $3 \frac{2}{3}$ stamps. And when shortage occurs, its average value is $\frac{2}{3}$ stamp.
(a) $P\{50 \leq x \leq 70\}$

$$
\begin{aligned}
& =1-P\{35 \leqslant x \leqslant 49\} \\
& =1-\frac{15}{45}=\frac{2}{3}
\end{aligned}
$$

(b) Expected number of unsold copies

$$
\begin{aligned}
& =\sum_{x=35}^{49}(50-x) p(x)+\sum_{x=50}^{70} o p(x) \\
& =50 \sum_{x=35}^{49} p(x)-\sum_{x=35}^{49} x p(x) \\
& =50 \times \frac{15}{45}-\frac{1}{45}(35+\cdots+49) \\
& =\frac{1}{45}(750-630)=2.67
\end{aligned}
$$

(C) Expected net profit

$$
\begin{aligned}
& =(50-2.67) \times 1-50 \times .5 \\
& =\$ 22.33
\end{aligned}
$$

$$
\begin{aligned}
& x=1 \begin{array}{lllll}
2 & 3 & 4 & 5
\end{array} \\
& p(x): \frac{1}{15} \quad \frac{2}{15} \quad \frac{3}{15} \quad \frac{4}{15} \quad \frac{5}{15} \\
& E\{x\}=\sum_{x=1}^{5} x p(x) \\
& =1\left(\frac{1}{15}\right)+2\left(\frac{2}{15}\right)+3\left(\frac{3}{15}\right)+4\left(\frac{4}{15}\right)+5\left(\frac{5}{15}\right) \\
& =3 \frac{2}{3} \\
& \operatorname{Var}\{x\}=\sum_{x=1}^{5}\left(x-\frac{11}{3}\right)^{2} p(x) \\
& =\left(1-\frac{11}{3}\right)^{2}\left(\frac{1}{15}\right)+\left(2-\frac{11}{3}\right)^{2}\left(\frac{2}{15}\right)+ \\
& \left(3-\frac{11}{3}\right)^{2}\left(\frac{3}{15}\right)+\left(4-\frac{11}{3}\right)^{2}\left(\frac{4}{15}\right)+ \\
& \left(5-\frac{11}{3}\right)^{2}\left(\frac{5}{15}\right) \\
& \simeq 1.556 \\
& E\{x\}=\int_{10}^{20} \frac{20 x}{x^{2}} d x \\
& =\left(\left.\ln x\right|_{10} ^{20}\right)(20)=13.86 \\
& \operatorname{var}\{x\}=20 \int_{10}^{20} \frac{(x-13.86)^{2}}{x^{2}} d x \\
& =20\left[x-27.72 \ln x-\frac{197.10}{x}\right]_{10}^{20} \\
& =7.81
\end{aligned}
$$

(a) $f(x)=\frac{1}{b-a}, a \leqslant x \leqslant b$

$$
\begin{aligned}
E[x]=\int_{a}^{b} \frac{x}{b-a} d x & \left.=\frac{x^{2}}{2(b-a)}\right]_{a}^{b} \\
& =\frac{b^{2}-a^{2}}{2(b-a)}=\frac{b+a}{2}
\end{aligned}
$$

(b) $\int_{a}^{b} \frac{(x-\bar{x})^{2}}{b-a} d x=\frac{1}{b-a}\left[\frac{x^{3}}{3}-\bar{x} x^{2}+x \bar{x}^{2}\right]_{a}^{b}$

$$
\begin{aligned}
& =\frac{4 b^{2}+4 a^{2}+4 a b-3 b^{2}-3 a^{2}-6 a b}{12} \\
& =\frac{(b-a)^{2}}{12}
\end{aligned}
$$

$$
\begin{aligned}
& y=c x+d \\
& E\{y\}
\end{aligned} \begin{aligned}
& y=\int(c x+d) f(x) d x \\
&=c \int x f(x) d x+d \int f(x) d x \\
&=c E\{x\}+d
\end{aligned}
$$

$$
\operatorname{var}\{y\}=E\left\{(c x+d)^{2}\right\}-E^{2}\{c x+d\}
$$

$$
=E\left\{c^{2} x^{2}+d^{2}+2 c d x\right\}
$$

$$
-[c \in\{x\}+d]^{2}
$$

$$
=c^{2} E\left\{x^{2}\right\}+d^{2}+2 c d \in\{x\}
$$

$$
-c^{2} E^{2}\{x\}-d^{2}-2 c d E\{x\}
$$

$$
=c^{2}\left(E\left\{x^{2}\right\}-E^{2}\{x\}\right)
$$

$$
=c^{2} \operatorname{Var}\{x\}
$$

(b) No, because $p\left(x_{1}, x_{2}\right) \neq p\left(x_{1}\right) p\left(x_{2}\right)$
(c)

$$
\begin{aligned}
E\left\{x_{1}+x_{2}\right\} & =E\left\{x_{1}\right\}+E\left\{x_{2}\right\} \\
& =2(1 x \cdot 4+2 x \cdot 2+3 x \cdot 4) \\
& =4
\end{aligned}
$$

(d) $\operatorname{cor}\left(x_{1}, x_{2}\right)=E\left(x_{1} x_{2}\right)-E\left(x_{1}\right) E\left(x_{2}\right)$

$$
\begin{aligned}
E\left(x_{1} x_{2}\right)= & 1 \times \cdot 2+2 \times 0+3 x \cdot 2+2 \times 0 \\
& +4 x \cdot 2+6 \times 0+3 \times \cdot 2+6 \times 0 \\
& +3 \times .2+6 \times 0+9 \times .2 \\
= & 4.6 \\
E\left\{x_{1}\right\}= & 2, \quad E\left\{x_{2}\right\}=2 \\
\operatorname{Cov}\left(x_{1}, x_{2}\right)= & 4.6-2 \times 2=.6
\end{aligned}
$$

(e) $\operatorname{Var}\left\{5 x_{1}-6 x_{2}\right\}=25 \operatorname{Var}\left\{x_{1}\right\}+36 \operatorname{Var}\left\{x_{2}\right\}$

$$
\operatorname{Vav}\left\{x_{1}\right\}=\operatorname{Vav}\left\{x_{2}\right\}=E\left\{x_{1}^{2}\right\}-E^{2}\left\{x_{1}\right\}
$$

$$
=1 x \cdot 4+4 x \cdot 2+9 x \cdot y-2^{2}
$$

$$
=.8
$$

$$
\begin{aligned}
\operatorname{Var}\left\{5 x_{1}-6 x_{2}\right\} & =25(.8)+36(.8) \\
& +2(5)(-6)(.6) \\
& =12.8
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } \begin{array}{c}
1 \\
p\left(x_{1}, x_{2}\right)=\begin{array}{cc}
1 \\
2 & 2 \\
3
\end{array}\left[\begin{array}{ccc}
.2 & 0 & -2 \\
0 & -2 & 0 \\
02 & 0 & -2
\end{array}\right] \cdot 4 \\
4
\end{array} \\
& \begin{array}{llll}
P\left(x_{2}\right) & 4 & -2 & 4
\end{array} \\
& \begin{array}{c|ccc}
x_{1} & 1 & 2 & 3 \\
\hline p\left(x_{1}\right) & .4 & .2 & .4
\end{array} \\
& \begin{array}{c|ccc}
x_{2} & 1 & 2 & 3 \\
\hline p\left(x_{2}\right) & .4 & .2 & -4
\end{array}
\end{aligned}
$$

$P\{$ an even number in one throw\}

$$
\begin{aligned}
& =P\{2,4, \text { or } 6\} \\
& =3\left(\frac{1}{6}\right)=\frac{1}{2}
\end{aligned}
$$

$P\{0$ even number in 10 throws $\}$

$$
=C_{0}^{10}(1 / 2)^{0}(1 / 2)^{10}=(1 / 2)^{10}
$$

Probability $=P\left\{O_{n e}\right.$ head in 5 throw $\} ? 2$
$+P\{o n e$ tail in 5 therovo $\}$

$$
=2 C_{1}^{5}\left(\frac{1}{2}\right)^{\prime}\left(\frac{1}{2}\right)^{4}
$$

$$
=\frac{5}{16}
$$

Being a fluke is equivalent to 3
a 50-50 chance of being correct.

$$
\begin{aligned}
P\{\text { afluke }\}= & C_{8}^{10}\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{2}+ \\
& C_{9}^{10}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)^{1}+ \\
& C_{10}^{10}\left(\frac{1}{2}\right)^{10}\left(\frac{1}{2}\right)^{0} \\
= & \left(\frac{1}{2}\right)^{10}[45+10+1] \\
= & .0547
\end{aligned}
$$

Probability Passigle match

$$
=6 \times\left(\frac{1}{6} \times \frac{1}{6}\right)=\frac{1}{6}
$$

$P\{i$ matches out 83 dice $\}$

$$
=C_{i}^{3}\left(\frac{1}{6}\right)^{i}\left(\frac{5}{6}\right)^{3-i}, i=0,1,2,3
$$

i	0	1	2	3
P	$\frac{125}{216}$	$\frac{75}{216}$	$\frac{15}{216}$	$\frac{1}{216}$

Expected payoff $=-1\left(\frac{125}{216}\right)+1\left(\frac{75}{216}\right)+$
$2\left(\frac{15}{216}\right)+3\left(\frac{1}{216}\right) \cong-.08=-8$ cents

$$
2\left(\frac{15}{216}\right)+3\left(\frac{1}{216}\right) \cong-.08=-8 \text { cents }
$$

$$
\begin{aligned}
& \text { Prob.of a match }=\frac{1}{6} \\
& \text { Prob. of no match }=\frac{5}{6} \\
& \text { Expected payoff }=\operatorname{So}\left(\frac{1}{6}\right)-10\left(\frac{5}{6}\right)=0 \\
& E\{k\}=\sum_{k=}^{n} k\binom{n}{k} p^{k} q^{n-k} \\
& =\sum_{k=}^{n} k \frac{n!}{k!(n-k)!} p^{k} q^{n-k} \\
& =n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} q^{n-k} \\
& =n p\left(\sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-1-j)!} p^{j} q^{n-1-j}\right) \\
& \operatorname{var}\{k\}=E\left\{k^{2}\right\}-E^{2}\{k\} \\
& E\left\{k^{2}\right\}=\sum_{k=1}^{n} k^{2}\binom{n}{k} p^{k} q^{n-k} \\
& =n p \sum_{\substack{k=1 \\
n-1}}^{n-1} \frac{(n-i)!}{(k-1)!(n-k)!} p_{0}^{k-1} q^{n-k} \\
& =n p \sum_{k=0}^{n-1}(k+1) \frac{(n-1)!}{k!(n-k-1)!} p^{k} q^{n-1-j} \\
& =n p((n-1) p+1) \\
& =n p(n p+q) \\
& \operatorname{Var}\{k\}=n p(n p+q)-(n p)^{2} \\
& =n p q
\end{aligned}
$$

$$
\begin{aligned}
P\{n & \geq 1 \mid t=30 \mathrm{sec}\} \\
& =\sum_{n=1}^{\infty} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
& =1-\frac{(\lambda t)^{0} e^{-\lambda t}}{0!} \\
& =1-e^{-\lambda t} \\
& =1-e^{-4 \times .5}=1-e^{-2}=.8646
\end{aligned}
$$

Case 1: $p=.1$
Burionial:
$P\{$ oor 1 defective \}

$$
\begin{aligned}
& =C_{0}^{10}(.01)^{0}(.99)^{10}+C_{1}^{10}(.01)^{1}(.99)^{9} \\
& =.99^{10}+10 \times .01 \times .99^{9}=.9957
\end{aligned}
$$

Poisson:

$$
\begin{aligned}
& \lambda=n p=10 x \cdot 01=.1 \\
& p_{0}+p_{1}=\frac{1^{0} e^{-.1}}{0!}+\frac{11^{1} e^{-.1}}{1!} \\
& \\
& =e^{-.1}(1+.1) \simeq .9953
\end{aligned}
$$

Case2: $p=5$
Beriomial:
$P\{0$ or 1 deffective $\}$

$$
\begin{aligned}
& =C_{0}^{10}(.5)(.5)^{10}+C_{1}^{10}(.5)^{1}(.5)^{9} \\
& =.5^{10}+10 \times \cdot 5^{10}=.01074
\end{aligned}
$$

Porison:

$$
\begin{aligned}
\pi & =10 \times .5=5 \\
P_{0}+P_{1} & =\frac{5^{0} e^{-5}}{0!}+\frac{5^{1} e^{-5}}{1!} \\
& =.04043
\end{aligned}
$$

$\lambda=20$ customes $/ h_{1}$
(a) $p_{0}=\frac{20^{\circ} e^{-20}}{0!} \cong 0$
(b)

$$
\begin{aligned}
\varphi_{n \geqslant 3} & =1-p_{0}-p_{1}-p_{2} \\
& =1-\frac{20^{0} e^{-20}}{0!}-\frac{20^{\prime} e^{-20}}{1!}-\frac{20^{2} e^{-20}}{2!} \simeq 1
\end{aligned}
$$

Note:
$n \geqslant 3 \Rightarrow(1$ in sesvice and at leart 2 wailing)

$$
\begin{aligned}
E\{x\} & =\sum_{x=1}^{\infty} x \frac{(\lambda t)^{x} e^{-\lambda t}}{x!} \\
& =\sum_{x=1}^{\infty}(\lambda t) \frac{(\lambda t)^{x-1}}{(x-1)!} e^{-\lambda t} \\
& =(\lambda t) \sum_{x=0}^{\infty} \frac{(\lambda t)^{x}}{x!} e^{-\lambda t} \\
& =\lambda t
\end{aligned}
$$

$\operatorname{Var}\{x\}=E\left\{x^{2}\right\}-E^{2}\{x\}$

$$
\begin{aligned}
E\left\{x^{2}\right\} & =\sum_{x=1}^{\infty} x^{2} \frac{(\lambda t)^{x} e^{-\lambda t}}{x!} \\
& =\lambda t \sum_{x=1}^{\infty} x \frac{(\lambda t)^{x-1}}{(x-1)!} e^{-\lambda t} \\
& =\lambda t \sum_{x=0}^{\infty}(x+1) \frac{(\lambda t)^{x}}{x!} e^{-\lambda t} \\
& =\lambda t\left(\sum_{x=0}^{\infty} x \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}+\sum_{x=0}^{\infty} \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}\right) \\
& =\lambda t(\lambda t+1)
\end{aligned}
$$

$$
\operatorname{Var}\{x\}=(\lambda t)^{2}+\lambda t-(\lambda t)^{2}
$$

$$
=\lambda t
$$

$$
\begin{aligned}
& \lambda_{\text {twin }} 5 \text { customens/min } \\
& \lambda_{\text {sural }}=7 \text { customers } / \text { min } \\
& \lambda=5+7=12 \text { customers } / \text { min. } \\
& P\left\{t \leq \frac{5}{60}\right\}=1-e^{-12 \times \frac{5}{60}} \\
& =1-368 \\
& =.632 \\
& =\int_{0}^{\infty} e^{-\lambda x} d x^{2}-x^{2} e^{-\lambda x} \int_{0}^{\infty}-\frac{2}{\lambda}+\frac{1}{\lambda^{2}} \\
& =2 \int_{0}^{\infty} x e^{-\lambda x} d x-\left.x^{2} e^{-\lambda x}\right|_{0} ^{\infty}-\frac{2}{\lambda}+\frac{1}{\lambda^{2}} \\
& =\frac{2}{\lambda}-\frac{2}{\lambda}+\frac{1}{\lambda^{2}} \\
& =\frac{1}{\lambda^{2}} \\
& E\{x\}=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x \\
& =-\int_{0}^{\infty} x d e^{-\lambda x} \\
& =-\left[x e^{-\lambda x}-\int_{0}^{\infty} e^{-\lambda x} d x\right] \\
& =-\left[x e^{-\lambda x}-\frac{1}{\lambda} \int_{0}^{\infty} \lambda e^{-\lambda x} d x\right] \\
& =-\left[x e^{-\lambda x}-\frac{1}{\lambda}\right]_{0}^{\infty} \\
& =\frac{1}{\lambda} \\
& \operatorname{Var}\{x\}=\int_{0}^{\infty}(x-E\{x\})^{2} f(x) d x \\
& =\int_{0}^{\infty}\left(x-\frac{1}{\lambda}\right)^{2} \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} d x-2 \int_{0}^{\infty} x e^{-\lambda x} d x \\
& +\frac{1}{\lambda^{2}} \int_{0}^{\infty} \lambda^{0} e^{-\lambda x} d x \\
& =-\int_{0}^{\infty} x^{2} d e^{-\lambda x}-\frac{2}{\lambda}+\frac{1}{\lambda^{2}} \\
& =-\left[x^{2} e^{-\lambda x}-\int_{0}^{\infty} e^{-\lambda x} d x^{2}\right]-\frac{2}{\lambda}+\frac{1}{\lambda^{2}}
\end{aligned}
$$

(a)

$$
\begin{aligned}
P\{x & \geqslant 26\} \\
& =1-P\{x \leq 26\} \\
& =1-P\left\{z \leq \frac{26-22}{2}\right\} \\
& =1-P\{z \leq 2\} \\
& =1-.9772=.0228
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\{ & x \leqslant 17\} \\
& =P\left\{z \leqslant \frac{17-22}{2}\right\} \\
& =P\{z \leqslant-2.5\} \\
& =1-.9938 \\
& =.0062
\end{aligned}
$$

Distribution of the weight of 5 individuals is normal with

$$
\text { mean }=5 \times 180=900 \mathrm{lb}
$$

Standard deviation $=\sqrt{5 \times 15^{2}}=33.54$

$$
\begin{aligned}
P\{x \geqslant 1000\} & =1-P\left\{z \leq \frac{1000-900}{33.54}\right\} \\
& =1-P\{z \leq 2.98\} \\
& =1-.9986 \\
& =.0014
\end{aligned}
$$

$$
x_{1}=N(.99, .01)
$$

$$
x_{2}=N(1, .01)
$$

$$
P\left\{x_{1}>x_{2}\right\}=P\left\{x_{1}-x_{2} \geq 0\right\}
$$

$$
\text { mean }\left\{x_{1}-x_{2}\right\}=.99-1=-.01
$$

Standard deviation $\left\{x_{1}-x_{2}\right\}=\sqrt{.01^{2}+.01^{2}}$ $=.01414$

$$
\begin{aligned}
& P\left\{x_{1}-x_{2} \geqslant 0\right\} \\
& \quad=P\left\{z \geqslant \frac{0-(-.01)}{.01414}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =P\{z \geqslant .7072\} \\
& =1-P\{z \leq \cdot 7072\} \\
& \cong 1-.760283 \\
& \cong .239717
\end{aligned}
$$

Step 1: Use chi2SampleMeanVar.x/s to compute samplesfatititics and to

Step2: Opply Excol historam to the sampla abrve. The outport blow is oh bin widthol 1. Excel automntically prondes the output fullow, lecester columms tited n_{2}. and Chi-zahe. You cantrem augmentst pread shat with gromulas to arote dherikt moot columnt.

as cambeseen from the output above, oh spereadsher can be modified to compret the $x^{2}-$ value. Note that the yrouping is necusony to guarantie dhat $n_{i} \geqslant 5$. x^{2}-vahue $=31.69721, x_{9-1-1, .95}^{2}=14.067$, Reject Binsize $=.5$:

Set 12.5a

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
x^{2} \text { value }=26.92 \\
x_{7-1-1, .05}^{2}
\end{array}\right\} 11.07
\end{array}\right\} \text { Reject } .
$$

All three histogram call for

rejecting the hyprteas that the dimple is drain form an exponential distribution with an eatematel mean value of 3.92 .
Note the effect of bier size on the \sum^{2}-value. The larger the fris nyse, the smaller the number of deques of freedom for th Y^{2}, and te Iigita are the rejecter limits

x^{2}-value $=13.2, x_{10-1, .05}^{2}=16.9$
conclusion: accept-Aypottheris
(b) Hypothesis: $f(x)=\frac{1}{94.8-5.6}=\frac{1}{89.2}$ $5.6 \leq x \leq 94.8$

CHAPTER 13

Decision Theory and Games

$$
\begin{aligned}
& W_{A}=.5(.17 \times .129+.83 \times .5 \times 5)+.5(.3 \times .2+.7 \times .5)=44214 \\
& W_{B}=.5(.17 \times .277+.83 \times .273)+.5(.3 \times .3+.7 \times .2)=.25184 \\
& W_{C}=.5(.17 \times .594+.83 \times .182)+.5(.3 \times .5+.7 \times .3)=.30602
\end{aligned}
$$

Select A.

Set 13.1b

$$
\begin{aligned}
& A_{J W} \bar{W}=\left[\begin{array}{ccc}
1 & .5 & 4 \\
2 & 1 & 3 \\
.25 & .33 & 1
\end{array}\right]\left[\begin{array}{c}
.360 \\
.512 \\
.128
\end{array}\right]=\left[\begin{array}{c}
1.128 \\
1.616 \\
\cdot 3887
\end{array}\right] \\
& r_{\max }=\frac{[1333}{3.133}=\frac{.1333 / 2}{.66}=-100, \text { acceptable }
\end{aligned}
$$

Select house

$\begin{aligned} W_{A}= & .667(.25 \times .539+.75 \times .297) \\ & +.333(.8 \times .551+.2 \times .36)=4092\end{aligned}$
$W_{B}=.667(.25 \times .297+.75 \times .164)$
$+.333(.8 \times .277+.2 \times .512)=.2395$
$W_{c}=.667(.25 \times .164+.75 \times .539)$
$+.333(.8 \times 172+.2 \times .128)=.3513$
Select A.
$N=\left[\begin{array}{ccc}.167 & .143 & .172 \\ .167 & .143 & .138 \\ .667 & .714 & .690\end{array}\right] \begin{gathered}\bar{W} \\ .161 \\ .149 \\ .690\end{gathered} \quad 4$
$\begin{aligned} A \bar{w}=\left[\begin{array}{lll}1 & 1 & .25 \\ 1 & 1 & .20 \\ 4 & 5 & 1\end{array}\right]\left[\begin{array}{l}.161 \\ .149 \\ .690\end{array}\right] & =\frac{\left[\begin{array}{l}.4825 \\ 4.480 \\ 2.079\end{array}\right]}{3.0095}\end{aligned}$
$C R=\frac{.0095 / 2}{.66}=.007 \frac{2}{W}<.1$, acceptable
$N_{R}=\left[\begin{array}{ll}.667 & .667 \\ .333 & .333\end{array}\right] \quad \begin{array}{ll}.667 & (14) \\ .333 & (P)\end{array}$
$N_{M}=\left[\begin{array}{ll}.333 & .333 \\ .667 & .667\end{array}\right] \quad \begin{array}{ll}.333(\mathrm{H}) \\ .667(\mathrm{P})\end{array}$
$N_{A}=\left[\begin{array}{ll}.5 & .5 \\ .5 & .5\end{array}\right] \quad .5 \begin{array}{ll}1(1) \\ .5 & (P)\end{array}$
N_{R}, N_{M}, N_{A} are conaialent because they are 2-dimendroinal.

$W_{H}=.161 \times .667+.149 \times .333+.69 \times .5=.502$
$w_{p}=.161 \times .333+.149 \times .667+.69 \times .5=.498$ Choose H.
$N=\left[\begin{array}{ccc}.286 & .25 & .294 \\ .143 & .125 & .118 \\ .571 & .625 & .588\end{array}\right] \begin{gathered}.277 \\ .128 \\ .595\end{gathered}$
$\begin{aligned} A \bar{W}=\left[\begin{array}{lll}1 & 2 & .5 \\ .5 & 1 & .2 \\ 2 & 5 & 1\end{array}\right]\left[\begin{array}{c}.277 \\ .128 \\ .595\end{array}\right] & =\left[\begin{array}{l}.8305 \\ .3855 \\ 1.789\end{array}\right] \\ n_{\text {max }} & =\frac{3.005}{}\end{aligned}$
$R I=\frac{.005 / 2}{.66}=.0039<.1$, acceptable
$N_{L}=\left[\begin{array}{lll}.3 & .429 & .273 \\ .1 & .142 & .182 \\ .6 & .429 & .546\end{array}\right] \begin{aligned} & .334 \\ & .141 \\ & .525\end{aligned}$
$\begin{aligned} A_{L} \bar{W}=\left[\begin{array}{lll}1 & 3 & .5 \\ .333 & 1 & .333 \\ 2 & 3 & 1\end{array}\right]\left[\begin{array}{c}.334 \\ .141 \\ .525\end{array}\right] & =\left[\begin{array}{c}1.0195 \\ .427 \\ 1.6163\end{array}\right] \\ n_{\text {max }} & =3.06283\end{aligned}$
$R I=\frac{.06283 / 2}{.66}=.04<.1$, acceptable
$N_{C}=\left[\begin{array}{ccc}.5 & .5 & .5 \\ .25 & .25 & .25 \\ .25 & .25 & .25\end{array}\right] \quad \begin{array}{cc}\bar{W} & \\ .5 & \\ .25 & \text { consistent } \\ .25 & \bar{W}\end{array}$
$N_{R}=\left[\begin{array}{lll}.474 & .471 & .500 \\ .474 & .471 & .444 \\ .052 & .059 & .056\end{array}\right] \quad \begin{aligned} & .482 \\ & .463 \\ & .056\end{aligned}$

Set 13.1b

$$
\begin{aligned}
& N_{S}=\left[\begin{array}{ll}
.5 & .5 \\
.5 & .5
\end{array}\right] \\
& N_{P}=\left[\begin{array}{ll}
.667 & .667 \\
.333 & .333
\end{array}\right] \\
& N_{S B}=\left[\begin{array}{ll}
.333 & .333 \\
.667 & .667
\end{array}\right], N_{P B}=\left[\begin{array}{ll}
.25 & .25 \\
.75 & .75
\end{array}\right] \\
& N_{S N}=\left[\begin{array}{ll}
.25 & .25 \\
.75 & .75
\end{array}\right], N_{P N}=\left[\begin{array}{ll}
.667 & .667 \\
.333 & .333
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
W_{\epsilon}= & .5(.5 \times .333+.5 \times .25) \\
& +.5(.333 \times .25+.667 \times .667)=.4097 \\
W_{M}= & .5(.5 \times .667+.5 \times .75)+.5(.333 \times .75+ \\
& .667 \times .333)=5903
\end{aligned}
$$

Decision: Keep music program.

CarModel	PPIyr	MC	CD	RD
MI	6	1.8	4.5	1.5
M2	8	1.2	2.25	.75
MB	10	.6	1.125	.6
Sum	24	3.6	7.875	2.85

All the comparison matrices are developed bared on the average costs.

$$
\begin{array}{rl}
P P & M C\left(\begin{array}{cccc}
P P & M C & C D & R D \\
1 & \frac{24}{3.6} & \frac{24}{7.875} & \frac{24}{2.85} \\
\frac{3.6}{24} & 1 & \frac{3.6}{7.875} & \frac{3.6}{2.85} \\
\frac{7.875}{24} & \frac{7.875}{3.6} & 1 & \frac{7.875}{2.85} \\
\frac{2.85}{24} & \frac{2.85}{3.6} & \frac{2.85}{7.875} & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 6.67 & 3.048 & 8.421 \\
.15 & 1 & .457 & 1.263 \\
.328 & 2.188 & 1 & 2.763 \\
.119 & .792 & .362 & 1
\end{array}\right)
\end{array}
$$

$$
A_{P_{p}}=M_{1}\left[\begin{array}{ccc}
M_{3} & 6 / 8 & 6 / 10 \\
8 / 6 & 1 & 8 / 10 \\
1016 & 10 / 8 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & .75 & .6 \\
1.33 & 1 & .8 \\
1.67 & 1.25 & 1
\end{array}\right]
$$

$$
A_{M_{C}}=\begin{array}{ccc}
M_{2} & M_{3}
\end{array}\left[\begin{array}{ccc}
1 & 6 / 4 & 6 / 2 \\
4 / 6 & 1 & 4 / 2 \\
2 / 6 & 2 / 4 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1.5 & 3 \\
.667 & 1 & 2 \\
.333 & 15 & 1
\end{array}\right]
$$

$$
A_{C D}=\begin{aligned}
& M_{1} \\
& M 3 \\
& M 3
\end{aligned}\left[\begin{array}{ccc}
1 & \frac{4500}{2250} & \frac{4500}{1125} \\
\frac{250}{4500} & 1 & \frac{2250}{4500} \\
\frac{1125}{2250} & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 4 \\
.5 & 1 & 2 \\
.25 & 15 & 1
\end{array}\right]
$$

$$
A_{R D}=\left[\begin{array}{ccc}
1 & \frac{1500}{750} & \frac{1500}{600} \\
\frac{7500}{1500} & 1 & \frac{750}{600} \\
\frac{600}{1500} & \frac{600}{750} & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
1 & 2 & 2.5 \\
.5 & 1 & 1.25 \\
.4 & .8 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& A_{R} \bar{W}=\left[\begin{array}{lll}
1 & 1 & 9 \\
1 & 1 & 8 \\
1 / 9 & 1 / 8 & 1
\end{array}\right]\left[\begin{array}{l}
.482 \\
.463 \\
.056
\end{array}\right]=\left[\begin{array}{l}
1.449 \\
1.393 \\
.167
\end{array}\right] \\
& n_{\text {max }}=3.0094 \\
& R I=\frac{.0094 / 2}{.66}=.0071<.1 \text {, acceptable } \\
& W_{\text {I }}=.277(.334 x \cdot 1+.141 x \cdot 2+.525 x \cdot 3) \\
& +.128(.5 x .3+.25 x .5+.25 x .2) \\
& +.595(.482 x .7+.463 x \cdot 1+.056 x \cdot 3) \\
& =.3406 \\
& W_{B}=.277(.334 x \cdot 5+.141 x \cdot 4+.525 x \cdot 2) \\
& +.128(.5 x \cdot 4+.25 x \cdot 2+\cdot 25 x \cdot 4) \\
& +.595(.482 x \cdot 1+.463 x \cdot y+.056 x \cdot 2) \\
& =.28 / 3 \\
& W_{S}=.277(.334 x \cdot 4+\cdot 141 x \cdot 4+.525 x \cdot 5) \\
& +.128(.5 x \cdot 3+\cdot 25 x \cdot 3+\cdot 25 x \cdot 4) \\
& +.1595(.482 x .2+.463 x \cdot 5+.056 x \cdot 5) \\
& =3798 \Rightarrow \text { Select Smith }
\end{aligned}
$$

select model $\begin{aligned} W_{M_{1}}= & 626 \times .25+.094 \times .5+.205 \times .571 \\ & +.074 \times .526=.3595 \\ w_{M_{2}} & =626 \times .333+.094 \times .333+.205 \times .286 \\ & +.074 \times .263=3185 \\ w_{M_{3}}= & .626 \times \cdot 417+.094 \times \cdot 167 \times \cdot 205 \times 143 \\ & +.074 \times .211=.3217 \end{aligned}$ Since the compauson matrices are based on costo, the model with the amallest weight is selected. select M2.	

Set 13.2a

$\operatorname{EV}\{\operatorname{tand}\}=800 \times \cdot 3+200 \times \cdot 7=\$ 380$
$\operatorname{Ev}\{$ Soft $\}=-2500 \times \cdot 3+10.00 \times \cdot 7=-\$ 50$ Select "hand" button.

$E V($ com $)=30,000 \times \cdot 25+0 \times \cdot 3+(-35000) \times \cdot 45$

$$
=-\$ 8250
$$

$E V($ Soybean $)=10,000 \times \cdot 25+0 \times \cdot 3+(-5000) \times .45$

$$
=\$ 250
$$

Select Soybean

$E v($ utility $)=5 \times 1+7 \times \cdot 5+8 x \cdot 4=7.2 \%$
$E v($ aggressive $)=-10 x \cdot 1+5 x \cdot 5+30 x \cdot y=13.5 \%$
$E($ global $)=2 x \cdot 1+7 \times \cdot 5+20 x \cdot 4=11.7 \%$
Select agressive stock

EV(Aggressive)

$$
\begin{aligned}
& \text { gressive }) \\
& =P(.81 x .2+1.21 x .15+1.09 x .65) \\
& =1.052 \mathrm{P}
\end{aligned}
$$

Sheet Bond

$E V(a d v)=.850 \times \cdot 7+100 \times \cdot 3=\$ 625,000$ $\operatorname{EV}($ no adv. $)=400 \times \cdot 8+200 \times \cdot 2=\$ 360,000$

Set 13.2a

at node 4, no expansion 19 continued is secommended.
E (profit at node 1 | large plant)

$$
\begin{aligned}
& =(1000 \times .75+300 \times 25) \times 10-5000 \\
& =\$ 3,250,000
\end{aligned}
$$

E(prfif at node 1 | small plant)

$$
\begin{aligned}
& =(1900+2 \times 250) \times .75+10 \times 200 \times .25-1000 \\
& =\$ 1,300,000
\end{aligned}
$$

Decision: start with large plant
Node 4:

$$
\begin{aligned}
& \text { E(qnnualprfit (expanaion) } \\
& =900 \times \cdot 75+200 \times \cdot 25=\$ 725,000
\end{aligned}
$$

E (annual profit | no expanaion)

$$
\begin{aligned}
& =250 \times .75+200 x \cdot 25=\$ 237,500 \\
& \begin{aligned}
& E(\text { profit } / \text { expanaion })=725[\text { PeA }]_{8}^{10 \%}-4200 \\
&=725 \times 5.3349-4200 \\
&=-\$ 332,198
\end{aligned} \\
& \begin{aligned}
& E(\text { profit moexpanaion) } \\
&=237.5 \times[P \mid A]_{8}^{10 \%} \\
&=237.5 \times 5.3349=\$ 1,267,000
\end{aligned}
\end{aligned}
$$

Decision at [4]: noexpanaion
Node 1:
E(profit| largeplant)

$$
\begin{aligned}
& \text { (profit large plant) } \\
& =(1000 \times-75+300 \times .25)[\mathrm{P} / \mathrm{A}]_{10}^{10 \%}-5000 \\
& =\$ 69,295
\end{aligned}
$$

E(profit/small plant)

$$
\begin{aligned}
= & \left(1267[\mathrm{P} \mid \mathrm{S}]_{2}^{10 \%}+250[\mathrm{P} \mid \mathrm{A}]_{2}^{10 \%}\right) \times .75 \\
& +200[\mathrm{P} \mid \mathrm{A}]_{10}^{10 \%} \times \cdot 25-1000 \\
= & \$ 417,970
\end{aligned}
$$

Decision: Construct a small plant now and do not expand two years fum now.

Node 4:
E(profit/expansion)

$$
=(9.00 x \cdot 7+600 x \cdot 2+200 \times \cdot 1) \times 8-4200
$$

$$
=\$ 1,960,000
$$

E(profit/ no expansion)

$$
\begin{aligned}
& =(400 \times \cdot 7+280 \times \cdot 2+150 \times 1) \times 8 . \\
& =\$ 2,808,000
\end{aligned}
$$

Decision at node 4: Do not expand
Node 1:

$$
\begin{aligned}
& E \text { (profit (luge plant) } \\
& =(1000 \times \cdot 7+500 \times \cdot 2+300 \times 1) \times 10-5000 \\
& =\$ 3,300,00 \\
& E(\text { profit } / \text { aral plant }) \\
& =(2 \times 400+2808) \times 7+10 \times 280 \times .2+ \\
& 10 \times 150 \times \cdot 1)-1000 \\
& =\$ 2,235,600
\end{aligned}
$$

choose La ge plant now.

$E($ breakdown cost give $t)=4000 P_{t}$

$$
\frac{t=1}{C o o t}=20 \times 75=\$ 1500
$$

$t=2:$

$$
\begin{aligned}
\text { Exp. breakdown cost } & =4000 \times \cdot 03 \\
& =\$ 120
\end{aligned}
$$

$$
\text { Ar.cost/year }=\frac{1500+120}{2}=\$ 810
$$

$t=3:$
Exp. breakdown cost $=$

$$
120+4000 x \cdot 04=\$ 280
$$

Ar. cost/year $=\frac{1500+280}{3}=\$ 593.33$
$t=4:$
Exp. breakdoumcost $=$

$$
280+4000 \times .05=\$ 480
$$

Ar. cost/ year $=\frac{1500 \pi 480}{4}=\$ 495$
$t=5$:
Exp breakdouncost $=$

$$
480+4000 \times .06=\$ 720
$$

Ar. cootlyear $=\frac{1500+720}{5}=\$ 444$
$t=6:$
Exp.breakdrwn cost $=$

$$
\begin{aligned}
& 720+4000 \times \cdot 07=\$ 1000 \\
& \text { Ar.cost/year }=\frac{1500+1000}{6}=\$ 416.67 \\
& t=7:
\end{aligned}
$$

$\begin{aligned} \text { Exp. breakedrum cost } & =\$ \\ 1000+4000 \times \cdot 08 & =\$ 1320\end{aligned}$
Av. cost $/$ year $=\frac{1500+1320}{7}=402.86$
$t=8:$

$$
\begin{aligned}
\overline{A r} \cdot \cos t / y_{r} & =\frac{1500+1320+4000 \times .09}{8} \\
& =\$ 397.50
\end{aligned}
$$

Set 13.2a

(a) Decision tree

$$
\alpha
$$

$$
-E\{\text { profit } \mid \alpha\}
$$

(b) Profit given α

$$
\begin{aligned}
& =r \alpha(1-p)-c \alpha p \\
& =\alpha(r-[c+r] p)
\end{aligned}
$$

$C=\$ 50$ in the loss per defective item $r=\$ S$ is the profit per good item

$$
\begin{aligned}
& E\{\text { profit| } \alpha\}=\alpha[r-(c+n) E\{p\}\} \\
& E\{p\}=\int_{0}^{1} p \alpha p^{\alpha-1} d p=\frac{\alpha}{\alpha+1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\text { E\{profitla\} } & =\alpha \Omega-(c+r) \frac{\alpha^{2}}{\alpha+1} \\
\frac{\partial \text { E\{proit\} }}{\partial \alpha} & =\Omega-(c+r) \frac{2 \alpha(\alpha+1)-\alpha^{2}}{(\alpha+1)^{2}} \\
& =r-(c+r) \frac{\alpha(\alpha+2)}{(\alpha+1)^{2}}
\end{aligned}
$$

Equating the derivative to zero, we get

$$
c \alpha^{2}+2 c \alpha-r=0
$$

Using $c=\$ 50$ and $\Omega=\$ 5$, we get

$$
50 \alpha^{2}+100 \alpha-5=0
$$

Thus, $\alpha=.049$ or 49 prices per day.
Let $N=$ number of cylinders

$$
E\{\cos t\}=N\left\{c_{1} \int_{t_{u}}^{t_{L}} f(x) d x+c_{2} \int_{-\infty}^{t_{L}} f(x) d x\right\}
$$

Let $\Phi(2)$ be the standard normal.

$$
\left.E\{\cos t\}=N\left\{c_{1} \int_{\frac{t_{u}-d}{\sigma}}^{\sigma} \Phi(z) d z+c_{2} \int_{-\infty}^{\frac{t_{L}-d}{\sigma}} \Phi(z) d z\right\} \right\rvert\,
$$

$E\{$ Plan $\}=.5(.6 \times 6000+.4 \times 3000-3200)+.5(-1200)=\$ 200>-\$ 300$ Select "Plan".

	Expected value			
P\{good W\}	Node 3	Node 2	Node 1	Decision
0	$\$ 4,800.00$	$-\$ 1,200.00$	$-\$ 300.00$	postpone
0.1	$\$ 4,800.00$	$-\$ 920.00$	$-\$ 300.00$	postpone
0.2	$\$ 4,800.00$	$-\$ 640.00$	$-\$ 300.00$	postpone
0.3	$\$ 4,800.00$	$-\$ 360.00$	$-\$ 300.00$	postpone
0.4	$\$ 4,800.00$	$-\$ 80.00$	$-\$ 300.00$	plan
0.5	$\$ 4,800.00$	$\$ 200.00$	$-\$ 300.00$	plan
0.6	$\$ 4,800.00$	$\$ 480.00$	$-\$ 300.00$	plan
0.7	$\$ 4,800.00$	$\$ 760.00$	$-\$ 300.00$	plan
0.8	$\$ 4,800.00$	$\$ 1,040.00$	$-\$ 300.00$	plan
0.9	$\$ 4,800.00$	$\$ 1,320.00$	$-\$ 300.00$	plan
1	$\$ 4,800.00$	$\$ 1,600.00$	$-\$ 300.00$	plan

States of nature:
$m_{1}=$ took calculus
$m_{2}=$ didn't take calculus
Outcome o:
V_{1} : does well
$\sqrt[v]{2}$: doesn't do well.
$P\{m\}$

$$
\begin{aligned}
P\left\{v_{1}\right\} & =.3 x \cdot 75+.7 x \cdot 5 \\
& =.575
\end{aligned}
$$

Prior probabilities:

$$
P\{A\}=.75, P\{B\}=.25
$$

Let z represent the event of
having one defective in a sample of size fri.

$$
\begin{aligned}
& P\{z \mid A\}=C_{1}^{5}(.01)^{\prime}(.99)^{4}=.04803 \\
& P\{z \mid B\}=C_{1}^{5}(.02)^{1}(.98)^{4}=.09224 \\
& P\{z, A\}=.04803 \times .75=.036022 \\
& P\{z, B\}=.09224 x .25=.023059 \\
& P\{z\}=.036022+.023059=.059081 \\
& P\{A \mid z\}=\frac{.036022}{.059081}=.6097 \\
& P\{B \mid z\}=\frac{.023059}{.059081}=.3903
\end{aligned}
$$

$$
\begin{aligned}
E V(\text { stock }) & =74 \times 3110+.26 \times 731 \\
& =\$ 2491.46 \\
E V(C D) & =10,000 \times .08=\$ 800 .
\end{aligned}
$$

Decision: invest is stock
(a) $P\{$ Rices $\}=.7 \quad P\{$ failure $\}=3 \quad 4$

$$
\begin{aligned}
E\{\text { publisher offer }\}= & 20,000+.7(200,000 \times 1) \\
& +3(10,000 \times 1) \\
= & \$ 163,000
\end{aligned}
$$

$E\{$ revenue if you undertake publishing\} ~

$$
=-90,000+.7(200,000 \times 2)+
$$

$.3(10,000 \times 2)=\$ 196,000$
Decision: Publish it yowreff.
(b) Define
$m_{1}=$ novel is a recces
$m_{2}=$ novel is not a success
$v_{1}=$ survey predict success
$v_{2}=$ survey does not predict success

$$
P\left\{v_{j} \mid m_{1}\right\}=\begin{aligned}
& m_{1}\left[\begin{array}{cc}
v_{1} & v_{2} \\
m_{2} & .2 \\
.15 & .85
\end{array}\right], ~
\end{aligned}
$$

Prior probahities: $P\left\{m_{v_{1}}\right\}_{v_{2}}=-7 \quad P\left\{m_{2}\right\}=-3$

$$
\begin{aligned}
& P\left\{m_{i}, v_{j}\right\}=m_{m_{2}}^{m_{1}}\left[\begin{array}{ll}
.8 \times .7 & .2 x .7 \\
.15 \times .3 & .85 \times .3
\end{array}\right] \\
& =m_{1}\left[\begin{array}{cc}
v_{1} & v_{2} \\
.56 & .14 \\
.045 & .255
\end{array}\right]
\end{aligned}
$$

continued...

$$
\begin{aligned}
& P\left\{v_{1}\right\}=.56+.045=.605 \\
& P\left\{v_{2}\right\}=.14+.255=.395 \\
& P\left\{m_{i} \mid v_{j}\right\}=m_{1}\left[\begin{array}{ll}
\frac{.56}{.605} & \frac{.14}{.395} \\
\frac{.045}{.605} & \frac{.255}{.395}
\end{array}\right] \\
& \\
& =\left[\begin{array}{ll}
.926 & .354 \\
.074 & .646
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
E\{\text { revenue } \mid(1)\} & =.926 \times 200+.074 \times 10+20 \\
& =\$ 205,940
\end{aligned}
$$

$$
\begin{aligned}
E\{\text { revenue } \mid(2)\} & =.926 \times 400+.074 \times 20-90 \\
& =\$ 281,880
\end{aligned}
$$

$$
E\{\text { revenue } /(3)\}=.354 \times 200+.646 \times 10+20
$$

$$
=\$ 97,260
$$

$E\{$ revenue $/ 44\}=.354 \times 400+.646 \times 20-90$

$$
=\$ 64,520
$$

Decision: of survey predict success, publish the book yourself. Otherwise, use the publisher.

$$
\begin{aligned}
& \begin{array}{c}
a_{1} \\
s_{1} \\
s_{1} \\
P\{a \mid s\}= \\
s_{2} \\
s_{3}\left[\begin{array}{ll}
.85 & 15 \\
.5 & . s \\
.15 & .85
\end{array}\right] \quad P\left\{s_{i}\right\}=\left[\begin{array}{c}
.25 \\
.30 \\
.45
\end{array}\right], ~
\end{array} \\
& P\{s, q\}=\left[\begin{array}{ll}
.2125 & .0375 \\
.15 & .15 \\
.0675 & .3825
\end{array}\right] \\
& p\{a\}=(.43 \quad .57)
\end{aligned}
$$

(a) E \{value of poker game $\}$

$$
=5 \times 10+.5 \times 0=\$ 5
$$

No advantage
(b)

$$
U(x)=\{\begin{array}{ll}
0, & 0 \leq x<10^{100} \\
100, & x=10
\end{array} \underbrace{}_{0}, \frac{10}{}
$$

(C) Because $U(5)=0$ and $U(10)=100$, the decision is it ply y the poke game
Worst condition coot $=900,000+350,000$ $=\$ 1,250,000$
Best condition savings $=900,000$
Lottery:
$U(x)=p U(-1,250,000)+(1-p) U(900,000)$

$\begin{array}{r}0 \\ \\ \\ \\ \hline\end{array}$

$$
U_{A}(3000)=95, \quad U_{A}(-1000)=70
$$

$E U(I)=.4 \times 95+.6 \times 70=80$ Venture II:
$=p(0)+(1-p)(100)$
$=100(1-p)=100-100 p$
(a) $\log \dagger U(x)$
$\underbrace{1}_{-2} x$

$$
\frac{U(0)}{U(4)}=\frac{0-(-2)}{4-(-2)}=\frac{2}{6}=\frac{1}{3}
$$

$$
u(0)=\frac{1}{3}(100)=33.33
$$

Now, $U(0)=p U(-2)+(1-p) U(4)$

$$
=100(1-p)
$$

Thus, for $U(0)=33.33, p=.6667$

b) | X | $U(x)_{A}$ | $U(X)_{B}$ |
| :---: | :---: | :---: |
| -2 | 0 | 0 |
| -1 | 70 | 10 |
| 0 | 80 | 20 |
| 1 | 85 | 30 |
| 2 | 90 | 50 |
| 3 | 95 | 60 |
| 4 | 100 | 100 |

(a)

Laplace:

$$
\begin{aligned}
& E\left(a_{1}\right)=\frac{1}{3}(85+60+40)=61.67 \\
& E\left(a_{2}\right)=\frac{1}{3}(92+85+81)=86 \\
& E\left(a_{3}\right)=\frac{1}{3}(100+88+82)=90
\end{aligned}
$$

study all night.
maxumin:
Becanse this is a rewand matryc, we eve maximin

$$
\left[\begin{array}{ccc}
85 & 60 & 40 \\
92 & 85 & 81 \\
100 & 88 & 82
\end{array}\right] \begin{aligned}
& \min \\
& 40 \\
& 81 \\
& 82
\end{aligned}
$$

Deciovon: study all night
Savage:
"Cost"matrix $=\left[\begin{array}{ccc}-85 & -60 & -40 \\ -92 & -85 & -81 \\ -100 & -88 & -82\end{array}\right]$
Regret matuix $=\left[\begin{array}{ccc}15 & 28 & 42 \\ 8 & 3 & 1\end{array} \begin{array}{ccc}\text { Row max } \\ 42 \\ 0 & 0 & 0\end{array}\right]$
Devieion: stidy all might
fturwicz:

Deaizion: Study all night
(b)

$$
\text { (b) } \text { "oot" matux }=\left[\begin{array}{ccc}
-80 & -60 & 0 \\
-90 & -80 & -80 \\
-90 & -80 & -80
\end{array}\right]
$$

Saplace:

$$
\begin{aligned}
& E\left(a_{1}\right)=\frac{-1}{3}(80+60+0)=-46.67 \\
& \left.E\left(a_{2}\right)=-\frac{1}{3}(90+80+80)=-83.33\right) \\
& E\left(a_{3}\right)=\frac{-1}{3}(90+80+80)=-83.33
\end{aligned}
$$

Dewain : Selut second or thind.
mumax

$$
\left[\begin{array}{ccc}
-80 & -60 & 0 \\
-90 & -80 & -80 \\
-90 & -80 & -80
\end{array}\right]\left[\begin{array}{c}
0 \\
-80 \\
-80
\end{array}\right) \leftarrow
$$

Select either the secend a the thind option
Sarage:

$$
\left[\begin{array}{ccc}
10 & 20 & 80 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left(\begin{array}{l}
80 \\
0
\end{array} \leftarrow\right.
$$

Lelect cithes the second or the thind ptrori.
Hurwicz:

	Row min	Rax	$\alpha($ Row $)+(1-\alpha)\binom{$ Row }{ max }	$A t$ $\alpha=.5$ $a_{1}$$-80$
a_{2}	-90	-80	-80α	-40
a_{3}	-90	-80	$-80-10 \alpha$	-85

Sdect the secend or the thind option Laplace:

$$
\begin{aligned}
& E\left(a_{1}\right)=\frac{1}{4}(-20+60+30-5)=16.25 \\
& E\left(a_{2}\right)=\frac{1}{4}(40+50+35+0)=31.25 \\
& E\left(a_{3}\right)=\frac{1}{4}(-50+100+45-10)=21.25 \\
& E\left(a_{4}\right)=\frac{1}{4}(12+15+15+10)=13
\end{aligned}
$$

Plant wheat
minimax : Rowmax:
a_{1}
a_{2}
a_{3}
a_{4}\(\left[\begin{array}{cccc}20 \& -60 \& -30 \& 5

-40 \& -50 \& -35 \& 0

50 \& -100 \& -45 \& 10

-12 \& -15 \& -15 \& -10\end{array}\right]\)| 20 |
| :---: |
| 0 |
| 50 |
| -10 |

Recommend graging.
Savage:
a_{1}
a_{2}
a_{3}
a_{4}\(\left[\begin{array}{cccc}60 \& 40 \& 15 \& 15

0 \& 50 \& 10 \& 10

90 \& 0 \& 0 \& 20

28 \& 85 \& 30 \& 0\end{array}\right]\)| Row max |
| :--- |
| 60 |
| 50 minimay |
| 90 |
| 85 |

plant wheat

Set 13.4a

(a)

$$
\left[\begin{array}{llll}
8 & 6 & 2 & 8 \\
8 & 9 & 4 & 5 \\
7 & 5 & 3 & 5 \\
8 & 9 & 4 & 5
\end{array}{ }^{2}\right.
$$

saddle point ofolution at $(2,3)$
(b)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
4 & -4 & -5 & 6 \\
-3 & -4 & -9 & -2 \\
6 & 7 & -8 & -9 \\
7 & 3 & -9 & 5
\end{array}\right] \begin{array}{l}
-5 \\
-9 \\
-9 \\
7
\end{array} 7-\frac{15}{} 6}
\end{aligned}
$$

Saddle point solution at $(1,3)$
(a) $p \geqslant 5, q \leq 5$
(b) $p \leqslant 7, q \geqslant 7$
(a)

$$
\left.\left[\begin{array}{cccc}
1 & 9 & 6 & 0 \\
2 & 3 & 8 & 4 \\
-5 & -2 & 10 & -3 \\
7 & 4 & -2 & -5
\end{array}\right] \begin{array}{cc}
0 & 3 \\
7 & 9 \\
10 & 4
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{cccc}
-1 & 9 & 6 & 8 \\
-2 & 10 & 4 & 6 \\
5 & 3 & 0 & 7 \\
7 & -2 & 8 & 4
\end{array}\right] \begin{array}{ll}
-1 \\
-2 & 0<v<7 \\
0 & 0
\end{array}
$$

(7) $\begin{array}{lll}10 & 8 & 8\end{array}$
(c)

$$
\left[\begin{array}{ccc}
3 & 6 & 1 \\
5 & 2 & 3 \\
4 & 2 & -5
\end{array}\right] \underset{-5}{1} \quad 2<v<3
$$

(d)

$$
\left[\begin{array}{rrrr}
3 & 7 & 1 & 3 \\
4 & 8 & 0 & -6 \\
6 & -9 & -2 & 4
\end{array}\right] \begin{gathered}
1 \\
-6 \\
-9
\end{gathered} \quad 0<v<1
$$

Set 13.4b

Team / LP:
maximize $z=v$
$5 \cdot f$.

$$
\begin{aligned}
v-x_{1}+x_{6} & \leq 0 \\
v-x_{5} & \leq 0 \\
v-x_{3}+x_{4} & \leq 0 \\
v+x_{3}-x_{4}-x_{5} & \leq 0 \\
v+x_{2} & \leq 0 \\
v+x_{1}-x_{6} & \leq 1
\end{aligned}
$$

vunseatricted $x_{j} \geqslant 0$
$\left.\begin{array}{l}\text { Team / solution: } x_{1}=x_{6}=\cdot 5, \text { all otten }=0 \\ \text { Team } 2 \text { dolution: } y_{1}=y_{6}=5 \text {, all othen }=0\end{array}\right\}$ viso
(a) Maximize $z=v$
s.t.

$$
\begin{aligned}
v-3 x_{1}-2 x_{2}+x_{3}+x_{4} & \leq 0 \\
v+2 x_{1}-3 x_{2}-2 x_{3}+2 x_{4} & \leq 0 \\
v-x_{1}+3 x_{2}+2 x_{3}-4 x_{4} & \leq 0 \\
v-2 x_{1}-2 x_{3}-x_{4} & \leq 0 \\
x_{1}+x_{2}+x_{3}+x_{4} & =1
\end{aligned}
$$

(b) v unseatricted, all $x_{j} \geqslant 0$ Soluteon:
value of game $=.5$ in favor of $U A$
UA Stratigy: $x_{2}=x_{4}=\cdot 5$, allothus $=0$
DU strategy: $x_{2}=.58, x_{3}=.42$, all others $=0$
(c) Expected numberif points

$$
=60 \times \cdot 5=30
$$

en favor of $U A$
$\left(n_{1}, n_{2}\right)=$ Blottós allocation between thitwo poots

$$
=\{(2,0),(1,1),(0,2)\} .
$$

Enemy's allocation $=\{(3,0),(2,1),(1,2),(0,3)\}$
(a)
$(2,0)$
$(1,1)$

$(0,2)$ | -1 | $(2,1)$ | $(1,2)$ | $(0,3)$ |
| :---: | :---: | :---: | :---: |
| 0 | -1 | 0 | 0 |
| 0 | 0 | -1 | 0 |

Maximize $z=v$
S.t.

$$
\begin{aligned}
v+x_{1} & \leq 0 \\
v+x_{1}+x_{2} & \leq 0 \\
v+x_{2}+x_{3} & \leq 0 \\
v+x_{3} & \leq 0 \\
v & x_{1}+x_{2}+x_{3}
\end{aligned}
$$

(b) vunrestrictid, $x_{1}, x_{2}, x_{3} \geqslant 0$

Solution. $v=-1 / 2 \Rightarrow$ enemy wins

$$
\begin{aligned}
& x_{1}=.5, x_{2}=0, x_{3}=.5 \\
& y_{1}=.5, y_{2}=y_{3}=y_{4}=
\end{aligned}
$$

$(a, b)=$ (Nbr, shown, Nbr. guessed)

$(1,0)$	$(1,1)$	$(1,2)$	$(2,1)$
$(1,2)$	$(2,2)$		
$(2,1)$	2	-3	0
$(2,2)$	0	0	3
-2	0	0	-4
0	-3	4	0

Maximize $z=2$
s.t.

$$
\begin{aligned}
v & \leq 0 \\
v-2 x_{1}-3 x_{3} & +3 x_{4}
\end{aligned} \leq 0 .
$$

Solution: vuncreativited, $x_{y} \geq 0$

PlayerA:

$$
x_{1}=0, x_{2}=.571, x_{3}=.429, x_{4}=0
$$

Player B :

$$
y_{1}=0, y_{2}=.571, y_{3}=.429, y_{4}=0
$$

value of the garre $=0$

Chapter 14

Probabilistic Inventory Models

Set 14.1a
(a) Effective lead time L

$$
\begin{aligned}
& =15-10=5 \text { days } \\
& \mu_{L}=100 \times 5=50 \text { unit } \\
& \sigma_{L}=\sqrt{10^{2} \times 5}=22.36 \text { units. } \\
& B \geq 22.36 \times 1.645 \simeq 37 \text { units }
\end{aligned}
$$

Order 1000 unit whenever the inventory level dopes to 537 units
(b) Effective lead time $L=23-20=3$ days
$\mu_{L}=100 \times 3=300$ units
$\sigma_{L}=\sqrt{10^{2} \times 3}=17.32$ units

$$
B \geq 17.32 \times 1.645 \cong 29 \text { units }
$$

Order 1000 units wheneres the inventory level drops to 329 units
(c) Effective lead time $=8$ days
$\mu=100 \times 8=800$ units
$\sigma_{L}=\sqrt{10^{2} \times 8}=28.28$ units
$B \geq 28.28 \times 1.645 \cong 47$ units
(d) Effective lead Time $=0$

$$
\mu_{L}=\sigma_{L}=0, \quad B \geqslant 0
$$

Order 1000 units whenever the
inventory level chops to σ unit.
De mand $/$ day $=N(200,20)$
$h=\$.04 /$ day /unit, $K=\$ 100, L=7$ days
order quantity $=\sqrt{\frac{2 K D}{h}}=\sqrt{\frac{2 \times 100 \times 200}{.04}}$

$$
=1000 \text { units }
$$

Cycle length $=\frac{1000}{200}=5$ days
Effective lead time $=7-5=2$ days

$$
\begin{aligned}
& \mu_{L}=200 \times 100=200 \text { unit } \quad K_{.02}=2.06 \\
& \sigma_{L}=\sqrt{20^{2} \times 2}=28.28 \\
& B \geqslant 28.28 \times 2.06=58.27=59 \text { div co }
\end{aligned}
$$

Order 1000 discs whenever the sivent ry level diopot 459 units.

Demand/day $=N(30,5)$
$h=\$.02 /$ day $/$ unit, $K=\$ 30$
(a)

$$
\begin{aligned}
L & =\frac{80-20}{30} \\
& =2 \text { days }
\end{aligned}
$$

$\mu_{L}=60$ units

$\sigma_{L}=\sqrt{5^{2} \times 2} \simeq 7.07 \mathrm{inis}$
$P\{$ demand during $L \geq 80\}$

$$
\begin{aligned}
& =P\left\{z \geqslant \frac{80-60}{7.07}\right\} \\
& =P\{z \geqslant 2.83\} \\
& =1-.9977=.0023
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=\sqrt{\frac{2 \times 30 \times 30}{.02}}=300 \text { rolls } \\
& \text { Cycle length }=\frac{300}{30}=10 \text { days } \\
& \text { Lead time }=2 \text { days } \\
& M_{L}=2 \times 30=60 \text { units } \\
& \sigma_{L}=\sqrt{5^{2} \times 2}=7.07 \text { units } \\
& K_{.1}=1.28 \\
& B \geqslant 7.07 \times 1.28 \simeq 10
\end{aligned}
$$

Order 300 rolls whenever the inventory level chops is 70 rolls.
(a) $D / y=\frac{1000}{320}=3.125$ setups $\quad y_{3}=\sqrt{100,000+10,000 x \cdot 10112 y}=317.82$ 2cont inued
(b) $\frac{K D}{y}=100 \times 3.125=\$ 312.50 /$ month
(C) $h\left(\frac{y}{2}+R-E\{x\}\right)=2\left(\frac{320}{2}+94-50\right)$

$$
=\$ 408
$$

(d) ${ }_{p} S=10 \times 20397 \cong \$ 2.04$
(e) $\int_{R}^{\infty} f(x) d x=\int_{94}^{100} \frac{1}{100} d x=\frac{100-94}{100}=.06$
$D=1000$ gallono per morth
$K=\$ 100, h=\$ 2 / \mathrm{gal} /$ month
$p=\$ 10 / \mathrm{gal}$.
$f(x)=\frac{1}{50}, \quad 0 \leq x \leq 50, E\{x\}=25$
$\hat{y}=\sqrt{\frac{2 \times 1000(100+10 \times 25)}{2}}=591.6$
$\tilde{y}=\frac{P D}{h}=\frac{10 \times 1000}{2}=5000$
$\tilde{y}>\hat{y} \Rightarrow$ unique orlution exists

$$
S=\int_{R}^{50}(x-R) \frac{1}{50} d x=\frac{R^{2}}{100}-R+25
$$

$$
y_{i}^{R}=\sqrt{\frac{2 \times 1000(100+10 S)}{2}}=\sqrt{100,000+10,000 \mathrm{~S}}
$$

$$
\int_{R_{i}}^{50} \frac{1}{50} d x=\frac{2 y_{i}}{5000} \Rightarrow R_{i}=50-\frac{y_{i}}{100} .
$$

Iteration:

$$
\begin{aligned}
& 5=0 \\
& y_{1}=\sqrt{100,000}=316.23 \mathrm{gal} \\
& R_{1}=5 \frac{50-316.23}{100}=46.84 \mathrm{gal}
\end{aligned}
$$

Steration2:

$$
\begin{aligned}
& S=\frac{46.84^{2}}{100}-46.84+25=.099856 \\
& y_{2}=\sqrt{100,000+10,000 \times .099856}=317.80 \\
& R_{2}=50-\frac{317.80}{100}=46.82
\end{aligned}
$$

Itration 3:

$$
S=\frac{46.82^{2}}{100}-46.82+25=.101124
$$

$$
R_{3}=50-\frac{317.82}{100}=46.82
$$

Optirnumoblution:
$y^{*} \cong 318 \mathrm{gal}, \quad R^{*} \cong 47 \mathrm{gal}$

$$
\begin{aligned}
& f(x)=\frac{1}{20}, 40 \leqslant x \leqslant 60, E\{x\}=50 \\
& \hat{y}=\frac{\sqrt{2 \times 1000(100+10 \times 50)}}{2}=774.6 \mathrm{gal}
\end{aligned}
$$

$$
\tilde{y}=\frac{10 \times 1000}{2}=5000 \mathrm{gal}
$$

$\tilde{y}>\hat{y}^{2} \Rightarrow$ unique solution exiats

$$
\begin{aligned}
S=\int_{R}^{60}(x-R) \frac{1}{20} d x & =\frac{1}{20}\left[\frac{x^{2}}{2}-R x\right]_{R}^{60} \\
& =\frac{R^{2}}{40}-3 R+90
\end{aligned}
$$

$$
y_{c}=\sqrt{100,000+10,0005}
$$

$$
\int_{R_{i}}^{60} \frac{1}{20} d x=\frac{2 y_{i}}{10 \times 1000} \Rightarrow R_{i}=60-\frac{y_{i}}{250}
$$

Iteration 1:

$$
\begin{aligned}
& S_{=0} \\
& y_{1}=\sqrt{100,000}=316.23 \mathrm{gal} \\
& R_{1}=60-\frac{316.23}{250}=58.735
\end{aligned}
$$

Iteration 2:

$$
\begin{aligned}
& S=\frac{58.7}{40}-3 \times 58.735+90=.04 \\
& y_{2}=\sqrt{100,000+10,000 \times .04}=316.823 \\
& R_{2}=60-\frac{3 / 6.823}{250}=58.733 \mathrm{gal}
\end{aligned}
$$

Optimum solution:

$$
\begin{aligned}
& y^{*}=316.85 \simeq 317 \mathrm{gal} . \\
& R^{*}=58.73 \simeq 59 \mathrm{gal} .
\end{aligned}
$$

R^{*} is the present model is Emaller than R^{*} in Example becaure $f(x) R a s$ a emakler variance, and tence leso uncentainty.

For the normal distribution, 14
it can be shown that the
following approximation holds

$$
\begin{align*}
S & =\int_{R}^{\infty}(x-R) f(x) d x \\
& \simeq \sqrt{\operatorname{Var}\{x\}} L\left(R_{S}\right) \tag{1}
\end{align*}
$$

where
$\operatorname{var}\{x\}=$ varuance of x given $f(x)$

$$
\begin{aligned}
& R_{s}= \frac{R-E L x\}}{\sqrt{\operatorname{Var}\{x\}}} \\
& L\left(R_{s}\right)= \text { standard normal loses } \\
& \text { integral } \\
&= \int_{R_{s}}^{\infty}\left(z-R_{s}\right) \phi(z) d z
\end{aligned}
$$

$\phi(2)$ is $N(0,1)$. The values of $\angle($.$) can le found en standard$ statialical table r

$$
\begin{equation*}
\int_{R}^{\infty} f(x) d x=\frac{h y}{P D} \tag{3}
\end{equation*}
$$

or $\quad \int_{R}^{\alpha} \phi(z) d z=\frac{h y}{p D}$
Th slips of the solution algouthon one:

1. Compute first trial

$$
y=\sqrt{\frac{2 K D}{h}}
$$

2. Compute R_{s} from (3) waving the current value of y and th standard normal tables
3. Comport P from (2) using the current value of R_{S}; that is,

$$
R=E\{x\}+R_{s} \sqrt{\operatorname{var}\{x\}}
$$

of two succescure 4 continued values of R are approxematity equal, stop. Otherusse, go to step 4
4. Compute S from (1) using standard normal lass milegral tables. Then firid

$$
y=\sqrt{\frac{2 D(K+\beta)}{h}}
$$

Go to steps.

$$
\begin{aligned}
& \begin{array}{ll}
E\{C(y)]= & h \sum_{D=0}^{y}(y-D) f(D) \quad \\
& +p \sum_{D=y+1}^{\infty}(D-y) f(D) \\
\text { Confides } E\{C(y)\} \leq E\{C(y-1)\}: \\
E\{C(y-1)\}= & h \sum_{D=0}^{\infty}(y-1-D) f(D)
\end{array} \\
& +p \sum_{D=y}^{\infty}(D-y+1) f(D) \\
& =\cdot h \sum_{D=0}^{y-1}(y-D) f(D) \\
& +p \sum_{D=y}^{\infty}(D-y) f(D) \\
& -h \sum_{D=0}^{y-1} f(D)+p \sum_{D=y}^{\infty} f(D)-c \\
& =E\{C(y)\}+p-(h+p) \sum_{D=0}^{y-1} f(D)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
E\{C(y-1)\}-E\{C(y)\} & =p-(n+p) P\left\{D \leq y_{1}\right\} \\
& \geq 0
\end{aligned}
$$

Hence

$$
P\{D \leq y-1\} \leq \frac{p}{p+n}
$$

Similarly, it can be Blown drat

$$
P\{D \leq y\} \geq \frac{p}{p+h}
$$

Thus, y^{*} must beatify

$$
\begin{aligned}
& P\left\{D \leq y^{*}-1\right\} \leq \frac{P}{P+h} \leq P\left\{D \leq y^{*}\right\} \\
& f(D)=\frac{1}{5}, 10 \leq D \leq 15 \\
& \int_{10}^{y} f(D) d D \leq \cdot 1: \\
& \int_{0}^{y} \frac{1}{5} d D=\frac{y-10}{5} \leq .1 \Rightarrow y \leq 10.5 \\
& \int_{y}^{15} f(D) d D \leq \cdot 1: \\
& \int_{y}^{15} \frac{1}{5} d D=\frac{15-y}{5} \leq 1 \Rightarrow y \geq 14.5
\end{aligned}
$$

The two condition cannot be satigied sesmultaneausly.

$$
q=\frac{p}{p+h}=\frac{p}{p+1}
$$

y	0	1	2	3	4	5	6
$P\{D \leq y\}$.05	15	.25	.45	$\cdot 7$	$\cdot 85$.9

From the CDF,

$$
\begin{aligned}
& P\{D \leq 4-1\}=.45 \\
& P\{D \leq 4\}=.7
\end{aligned}
$$

$$
\text { Thus, } .45 \leq \frac{p}{p+1} \leq .7
$$

$$
\approx .43 \leq p \leq .82
$$

Maximize expected revenue.

$$
\begin{aligned}
E\{\text { revenue }\}= & -10 y+\int_{200}^{y} 25 D f(D) d D \\
& +\int_{y}^{250} 25 y f(D) d D \\
= & -10 y+\frac{25 D^{2}}{100} \int_{200}^{y}+\left.\frac{25 y}{50} D\right|_{y} ^{210} \\
= & -25 y^{2}+115 y-10,000
\end{aligned}
$$

$$
\frac{\partial E\{r e v e n u e\}}{\partial y}=-5 y+115=0
$$

$$
y=230 \text { copes }
$$

$E\{$ revenue $\}$

$$
\begin{aligned}
&=-7 y+\int_{90}^{y}[25 D+5(y-D)] f(D) d D \\
&+\int_{y}^{150} 25 y f(D) d D \\
&=-\frac{y^{2}}{6}+48 y-1350 \\
& \frac{\partial E\{\text { revenue }\}}{\partial y}=\frac{-y}{3}+48 \\
& y=144 \text { donuts }
\end{aligned}
$$

Deciacion: Stack 12 dozen

Use continuous $p d f$ as an approximation S
$E\{$ revenue $\}$

$$
\begin{aligned}
-50 y & +\int_{20}^{y}[110 D+55(y-D)] f(D) d D \\
& +\int_{y}^{30} 110 y f(D) d D \\
= & -50 y+\frac{1}{10}\left[55 y D+\frac{55 D^{2}}{2}\right]_{20}^{y}+110 y\left[\frac{D}{10}\right]_{y}^{30} \\
= & -2.75 y^{2}+175 y-1100
\end{aligned}
$$

$\frac{\partial E\{r e v e n u e\}}{\partial y}=-5.5 y+175=0$

Average holding inventory $=y-\frac{D}{2} \quad$ Average holding inventory $=\frac{y^{2}}{2 D}$
Average shortage inventory $=0$

$$
\begin{aligned}
E\{c(y)\}= & c(y-x)+h\left\{\int_{0}^{y}\left(y-\frac{D}{2}\right) f(D) d D\right. \\
& \left.+\int_{y}^{\infty} \frac{y^{2}}{2 D} f(D) d D\right\}+p \int_{y}^{\infty} \frac{(D-y)^{2}}{2 D} f(D) d D \\
\frac{\partial E\}}{r y}=c & \left.+\int_{0}^{y} f(D) d D+\int \frac{y}{D} f(D) d D\right) \\
& -p \int_{1}^{\infty}\left(\frac{D-y}{D}\right) f(D) d D=0 \\
y^{*} & \int^{\infty} f(D) d D+y^{*} \int_{y *}^{\infty} \frac{f(D)}{D} d D=\frac{p-c}{p+h}
\end{aligned}
$$

$$
\begin{aligned}
& f(D)=\frac{1}{100}, 0 S D S 100 \\
& \int_{0}^{y} f(D) d D+y \int_{y}^{100} \frac{f(D)}{D} d D=\frac{p-c}{p+h} \\
& \int_{0}^{y} \frac{1}{100} d D+y \int_{y}^{100} \frac{1}{100 D} d D=\frac{p-c}{p+h} \\
& \frac{y}{100}+\frac{y}{100}(\ln 100-\ln y)=\frac{p-c}{p+h} \\
& .056 y-.01 y \ln y=\frac{45-30}{45+25}=.2143
\end{aligned}
$$

Trail and error field $y^{*}=5.5$ units

$$
\begin{aligned}
& E\{C(s)\}=K+E\{C(S)\} \\
& .25 s^{2}-4.5 s+22.5=5+.25 S^{2}-4.5 S+22.5 \\
& .25 s^{2}-4.5 s+15.25=0 \quad(\text { for } S=9)
\end{aligned}
$$

Solution: $s=(4.53$ or 13.47$)$
Policy: of $x<4.53$, onder 9-x
$x \geqslant 4.53$, do not order

$$
E\{R(y)\}=-c(y-x)+
$$

$$
\int_{0}^{y}[r D-h(y-D)] f(D) d D+
$$

$$
\int_{y}^{0}[r y-p(D-y)] f(D d D
$$

$$
\begin{aligned}
\frac{\partial E\}}{\partial y}=-c & -\int_{0}^{y} h f(D) d D+n y f(D) \\
& +\int_{y}^{\infty}(n+p) f(D) d D-n y f(D)=0
\end{aligned}
$$

Theso,

$$
\int_{0}^{y^{*}} f(D) d D=\frac{n+p-c}{n+p-n}
$$

In the presence of retup coot, we have an is Splicy. Defenis s suchthat

$$
E\{R(s)\}=E\{R(S)\}-K
$$

For th numeni problem,

$$
E\{R(y)\}=4 y^{2}+5 y-20-2 x
$$

$$
\int_{0}^{S} f(D) d D=\frac{3+4-2}{3+4-1}=625
$$

Thus, $S=6.25$.
Neat, $-48^{2}+5 s-5.625=0$
Thus, $s=1.25$
Phicy:
If $x<1.25$, orden $6.25-x$
$x \geqslant 1.25$, do net ordu
$-\frac{8^{2}}{6}+48-1350$
$=-10-\frac{144^{2}}{6}+48 \times 144-1350$
Then,
$s^{2}-288 s+20676=0$

$$
s=\frac{136.25}{151.25}
$$

Optimal pohicy
If $x<136$, onden 144-x $x \geqslant 136$, do not orden

$$
\begin{aligned}
& L\left(y_{i}\right)= \int_{0}^{y_{i}}\left(r D-h\left(y_{i}-D\right)\right) f(D) d D \\
&+\int_{y_{i}}^{\infty}\left(r y_{i}+\left(\alpha r^{\prime}-p\right)\left(D-y_{i}\right) f(D) d D\right. \\
& i=1,2
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } r^{\prime}= \begin{cases}r & i=1 \\
r-c & i=L\end{cases} \\
& g_{2}\left(x_{2}\right)=\max _{y_{2} \geq x_{2}}\left\{-c\left(y_{2}-x_{2}\right)+L\left(y_{2}\right)\right\} \\
& g_{1}\left(x_{1}\right)=\max _{y_{1} \geq x_{1}}\left\{-\subset\left(y_{1}-x_{1}\right)+L\left(y_{1}\right)\right. \\
& \left.+\alpha E\left\{g_{2}\left(y_{1}-D\right)\right\}\right\}
\end{aligned}
$$

For period 2:

$$
\frac{\partial f_{2}\left(y_{2} \mid x_{2}\right)}{\partial y_{2}}=-c+L^{\prime}\left(y_{2}^{*}\right)=0
$$

$$
\begin{aligned}
& \text { or } \int_{0}^{y_{2}^{*}} f(D) d D=\frac{r+p-c-\alpha(r-c)}{2+p+h-\alpha(\Omega-c)} \\
& g_{2}\left(y_{1}-D\right)=\left\{\begin{array}{l}
L_{2}\left(y_{1}-D\right), \quad D \leq y_{1}-y_{2}^{*} \\
-C\left(y_{2}^{*}-y_{1}+D\right)+L\left(y_{2}^{*}\right), D \geqslant y_{1}-y_{2}^{*}
\end{array}\right. \\
& E\left\{\left(y_{1}-D\right)\right\}=\int_{0}^{y_{1}-y_{2}^{*}} L_{2}\left(y_{1}-D\right) f(D) d D \\
& \\
& +\int_{y_{1}-y_{2}^{*}}^{\infty}\left(-c\left(y_{2}^{*}-y_{1}+D\right)+L\left(y_{2}^{*}\right)\right) f(n) d D
\end{aligned}
$$

This, when substituted in the expression for $g_{!}\left(x_{1}\right)$, will yield total expected perfit in -terms of y_{1}. Hence, the value of y_{1}^{*} can the obtained. In terms of the gin numencial example, we have

$$
\frac{1}{10} \int_{0}^{y_{2}^{*}} d D=\frac{2+3-1-.8(2-1)}{2+3+.1-.8(2-1)}=.75
$$

Them, $y_{2}^{*}=7.5$

$$
\begin{aligned}
L(z)= & \frac{L}{10}\left\{\int_{0}^{z}(2 D-1(z-D)) d D\right. \\
& +\int_{z}^{10}\left(2 z+\left(.8 \Omega^{\prime}-3\right)(D-z) d D\right\}
\end{aligned}
$$

4 continued

$$
\begin{aligned}
= & \left(.04 r^{\prime}-.255\right) z^{2}+\left(5-.8 r^{\prime}\right) z \\
& +\left(4 r^{\prime}-15\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& L\left(y_{2}\right)=[.04(2-1)-.255] y_{2}^{2} \\
& +[5-.8(2-1)] y_{2}+[4(2-1)-15] \\
& =-215 y_{2}^{2}+4.2 y_{2}-11 \\
& L\left(y_{2}^{*}\right)=L(7.5)=8.4 \\
& g_{2}\left(y_{1}-D\right)= \begin{cases}-.215\left(y_{1}-D\right)^{2}+4.2\left(y_{1}-D\right)-11, & D \leq y_{1}-7.5 \\
.9-y+D, & D \geqslant y_{1}-7.5\end{cases} \\
& E\left\{g_{2}(y,-D)\right\}=\frac{1}{10}\left\{\int_{0}^{y_{0}-7.5} E-215(y,-D)^{2}\right. \\
& \left.+4.2(y,-D)-11] d D+\int_{y_{1}-7.5}^{10}(.9+y-D) d D\right\} \\
& =\frac{1}{10}\left(-.072 y_{1}^{3}+2.115 y_{1}^{2}-11 y_{1}-5\right. \\
& \left.-y_{1}^{2}-5.4 y_{1}-19.625\right) \\
& =\frac{1}{10}\left(-.012 y_{1}^{3}+1.115 y_{1}^{2}-16.4 y_{1}-24.625\right) \\
& L\left(y_{1}\right)=(.04 \times 2-.255) y_{1}^{2}+(5-.8 \times 2) y_{1} \\
& +(4 \times 2-15) \\
& =-.175 y_{1}^{2}+3.4 y, 7
\end{aligned}
$$

$$
\begin{aligned}
g_{1}\left(x_{1}\right)= & \max _{y_{1} \geqslant x_{1}}\left\{-1\left(y_{1}-x_{1}\right)-.175 y_{1}^{2}+3.4 y_{1}\right. \\
7 & +\frac{88}{10}\left(-.07 y_{1}^{3}+1.115 y_{1}^{2}-16.4 y_{1}\right. \\
& -24.625)\} \\
= & \max _{y_{1} \geqslant x_{1}}\left\{-.00576 y_{1}^{3}-.075 y_{1}^{2}+\right. \\
& \left..89 y_{1}-8.97+x_{1}\right\} \\
\frac{\partial\{\cdot\}}{\partial y_{1}}= & -.01728 y_{1}^{2}-.15 y_{1}+.89=0 \\
y_{1}^{*}= & 9.02
\end{aligned}
$$

optimal policy:
Period $1\left\{\begin{array}{l}\text { order } 9.02-x_{1}, \\ \text { order } 0,\end{array}\right.$
Period $2\left\{\begin{array}{l}\text { order } 7.5-x_{2} \text {, } \\ \text { order } 0,\end{array}\right.$ For the infinite model:

$$
\begin{array}{r}
\frac{1}{10} \int_{0}^{y^{*}} d D=\frac{3+.2(2-1)}{3+.1+.2 x_{2}}=.915 \\
y_{1}^{*}=9.15>y_{2}^{*}>y_{1}^{*} \\
\int_{0}^{y^{*}} f(D) d D=.08 \int_{0}^{y^{*}} D d D \\
=.04 y^{*^{2}}
\end{array}
$$

Thus,

$$
\begin{aligned}
.04 y^{* 2} & =\frac{p+(1-\alpha)(r-c)}{p+h+(1-\alpha) \Omega} \\
& =\frac{10+.1 \times 2}{10+1+.1 \times 10}=.85
\end{aligned}
$$

Thess, $y^{*}=4.61$
Policy:
order $4.61-x$, if $x \leqslant 4.61$ order 0 , if $x \geqslant 4.61$

$$
\begin{aligned}
& g(x)=\min _{y \geqslant x}\{(c(y-x)+ \\
& h \int_{0}^{y}(y-D)^{2} f(D) d D+ \\
& p \int_{y}^{\infty}(D-y)^{2} f(D) d D+ \\
&\left.\alpha \int_{0}^{\infty} g(y-D) f(D) d D\right\} \\
& \frac{\partial\{\cdot\}}{\partial y}= c+2 h \int_{0}^{y}(y-D) f(D) d D \\
&- 2 p \int_{y}^{\infty}(D-y) f(D) d D \\
&+\alpha E\left\{g^{\prime}(y-D)\right\}
\end{aligned}
$$

Continued

Hence chis is a coot function, $g^{\prime}(y-D)=-C$.
Now, $\frac{\partial\{\cdot\}}{\partial y}=0$ yields,

$$
\left\{\begin{aligned}
\{(1-\alpha) c & +2 h y^{*} \int_{0}^{y^{*}} f(D) d D \\
& -2 h \int_{0}^{y *} f(D) d D \\
& +2 P y^{*}\left(1-\int_{0}^{y^{*}} f(D) d D\right) \\
& -2 p E\{D\} \\
& \left.+2 p \int_{0}^{y} D f(D) d D\right\}=0
\end{aligned}\right.
$$

$$
\begin{align*}
& \text { This simplifies }{ }^{\circ} \text { to } \\
& \begin{array}{l}
\text { The simphfias to } \\
(h-p)\left\{y^{*} \int_{0}^{y *} f(D) d D-\int_{0}^{*} D f(D) d D\right\}+P y^{*},
\end{array} \\
& =\frac{2 P E\{D\}-(1-\alpha) C}{y^{*}} \tag{1}\\
& \begin{array}{l}
\text { or } y^{*}\left\{\frac{1}{h-p}+\int_{0}^{y^{*}} f(D) d D-\int_{0}^{y^{*}} D f(D) d D\right. \\
=\frac{2 p E\{D\}^{0}-(1-\alpha) c}{2(h-p)}
\end{array} \\
& \begin{array}{c}
\text { on } \begin{array}{r}
y^{*}\left\{\frac{1}{h-p}\right.
\end{array}+\int_{0}^{y^{*}} f(D) d D-\int_{0}^{2} y^{*} f(D) d D \\
\\
=\frac{2 p E\{D\}^{2}-(1-\alpha) c}{2(h-p)}
\end{array}
\end{align*}
$$

y^{*} can be determined freon the last equation. When $t=p$, (1) yeld

$$
y^{*}=\frac{2 p E\{D\}-(1-\alpha) c}{2 p}
$$

This sever is independent of $f(D)$ except in sofar as $E\{D\}$ is concerned.

Chapter 15

Queuing Systems

(a) Efficiency $=100-29=71 \%$
(b) For average waiting tami ≤ 3 minutes, at least 5 cashiins are needed
For efficiency $\geqslant 90 \%$, the associated idleness percentage is \leqslant 10%. The corresponding number of cashiers is at moot 2 .
Conclusion:
The two conditions cannot be reified sumul taneously. at least one of the to conditions must be related.
$C_{A}=\neq 18$ ph Rom
$C_{B}=\$ 25$ paton
Length of queue $A=4$ jobs
Length of queue $B=.7 \times 4=2.8$ fobs
Cost of $A=\$ 18+4 x+10=\$ 58$ per for
Coot of $B=\$ 25+2.8 x^{\$} 10=\$ 53$ pu ham
Decision:
Select Model B.

(a) Av. interarrival time (in time units) $=\frac{1}{\text { arrival rate } \lambda \text { (in customers/unit time) }}$
(b) Let $\bar{I}=a v$ interarrival time
(i) $\lambda=\frac{60}{10}=6$ arrivals /h
$\bar{I}=10$ minutes $=\frac{1}{6}$ hour
(ii) $\lambda=\frac{60}{3}=20$ arrivals $/ \mathrm{h}$
$\bar{I}=\frac{6}{2}=3$ minutes $=\frac{1}{20}$ her
(iii) $\lambda=\frac{10}{30} \times 60=20$ arrivals $/ h_{1}$ $\bar{I}=\frac{30}{10}=3$ minutes $=\frac{1}{20}$ hour
(iv) $\lambda=1 / 5=2$ arrivals/ hour $\bar{I}=.5$ hour
(c) Let $\bar{S}=$ av. service time
(i) $\mu=\frac{60}{12}=5$ services $/$ hour $\bar{S}=12$ minutes $=.2$ hour
(ii) $\mu=\frac{60}{7.5}=8$ services $/ h$

$$
\bar{S}=7.5 \mathrm{~min}=.125 \mathrm{~h}
$$

(iii) $\mu=\frac{5}{30} \times 60=10$ services $/ h_{1}$

$$
\bar{S}=\frac{30}{5}=6 \mathrm{~min}=1 / 10 \mathrm{hr}
$$

(iv) $\mu=\frac{1}{3}=3.33$ services /h $\bar{S}=.3$ hour
(a) $\lambda_{\text {hour }}=\cdot 2$ failures $/ h_{1}$
$\lambda_{\text {week }}=.2 \times 24 \times 7=33.6$ failures $/$ ut
(b) $P\{$ at least one failure in 2 hens $\}$ $=P\{$ time beth. failures $\leq 2\}$

$$
=P\{t \leq 2\}=1-e^{-.2 \times 2} \cong .33
$$

(c) $P\{t>3$ hrs $\}=1-P\{t \leq 3\}=e^{-2 \times 3}=55$
(d) $P\{t \leq 1$ han $\}=1-e^{-.2 \times 1}=.18$

$$
\lambda=\frac{1}{.05}=20 \text { arrivals } / h_{1}
$$

(a)

$$
\begin{aligned}
f(t) & =\lambda e^{-\lambda t} \\
& =20 e^{-20 t}, \quad t>0
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\left\{t>\frac{15}{60}\right\} & =P\{t>.25\} \\
& =e^{-20 x .25} \\
& =.00674
\end{aligned}
$$

(c)

$$
\begin{aligned}
& P\left\{t \leq \frac{3}{60}\right\}=P\{t \leq .05\} \\
& P\left\{t>\frac{5}{6 Q}\right\}=e^{-\frac{10 \times 5}{60}}=-189
\end{aligned}
$$

(d) $t=45-10=35$ minutes

Av. \# of arrivals in 35 min.

$$
=20 \times \frac{35}{60}=11.67 \text { arrivals }
$$

$\lambda=\frac{1}{6}$ arrivals/hr

$$
\begin{aligned}
P\{t \geqslant 1\} & =e^{-1 / 6 x 1}=.846 \\
P\{t \leqslant .5\} & =1-e^{-1 / 6 \times .5} \\
& =1-e^{-1 / 12}=.08
\end{aligned}
$$

(a) $\lambda=\frac{60}{10}=6$ arrivals $/ h_{2}$
(b) $P\left\{t \stackrel{10}{\geqslant} \frac{15}{60}\right\}=e^{-6 \times \frac{15}{60}}=.223$
(c) $P\left\{t \leq \frac{20}{60}\right\}=1-e^{-6 \times \frac{20}{60}}=.865$
(a) $P\left\{t \leq \frac{2}{60}\right\}=1-e^{-35(2 / 60)}$

$$
=.6886
$$

(b) $P\left\{\frac{2}{60} \leq t \leq \frac{3}{60}\right\}$

$$
\begin{aligned}
& =P\{t \leq 3 / 60\}-P\left\{t \leq \frac{2}{60}\right\} \\
& =\left(1-e^{-35 \times 3 / 60}\right)-\left(1-e^{-35 \times 2 / 60}\right) \\
& =e^{-70 / 60}-e^{-105 / 60}=.1376
\end{aligned}
$$

(c) $P\{t \geqslant 3 / 60\}=e^{-35(3 / 60)}$

$$
=.1738
$$

$$
\begin{aligned}
& \lambda=\frac{60}{1.5}=40 \text { arrivals } / h_{r} \\
& \text { Jim's Payoff } \mid-2 \not \subset+2 \not \subset \\
& \hline \text { Prob. } \quad P\{t \geqslant 1\} \quad P\{t \leqslant 1\} \\
& P\{t \geqslant 1\}=e^{-40(1 / 60)}=.5134 \\
& P\{t \leqslant 1\}=1-.5134=.4866
\end{aligned}
$$

Jim's exp. payoff/arriving customer

$$
\begin{aligned}
& =-2 \times .513 .4+2 \times .4866 \\
& =-.0536 \mathrm{cent}
\end{aligned}
$$

Jim's exp. payoff /8 hours

$$
\begin{aligned}
& =-.0536(8 \lambda) \\
& =-.0536 \times 8 \times 40 \\
& \cong-17.15 \text { cent }
\end{aligned}
$$

Conclusion: Jim will pay An an average of 17 cents every 8 hrs
8

Jim's payoff	2	0	-2
Probability	$P\{t \leqslant 1\}$	$P\{1 \leqslant t \leqslant 1.5\}$	$P\{t \geqslant 1.5\}$

$$
\begin{aligned}
P\{t \leq 1\} & =.4866 \\
P\{t \geqslant 1.5\} & =e^{-40(1.5 / 60)} \\
& =.3679 \\
\frac{2}{.4866} & .1455 \\
\hline & -3679
\end{aligned}
$$

Jim's expected payoff / 8 hours
$=[2 \times .4866+0 \times .1455-2 \times .3679] \times 40 \times 8$
$\cong 76$ cents

$$
\begin{array}{cccc}
2 \phi & 3 \phi & -5 \phi & -6 \phi \\
\hline t \leqslant 1 & 1 \leqslant t \leqslant 1.5 & 1.5 \leqslant t \leqslant 2 & t \geqslant 2
\end{array}
$$

$\lambda=40$ arrivals $/ h$

$$
\begin{aligned}
P\{t \leq 1\} & =1-e^{-40 / 60}=\cdot 4866 \\
P\{1 \leq t \leq 1.5\} & =e^{-40(1 / 60)}-e^{-40(1.5 / 60)} \\
& =.1455 \\
P\{1.5 \leq t \leq 2\} & =e^{-40(1.5 / 60)}-e^{-40(2 / 60)} \\
& =.1043 \\
P\{t \geq 2\} & =e^{-40(2 / 60)}=.2636
\end{aligned}
$$

Jim's exp. payoff /8 hours

$$
\begin{aligned}
& =8 \times 40(2 x \cdot 4866+3 x \cdot 1455 \\
& \simeq-222-5 x \cdot 1043-6 x \cdot 2636) \\
& =\operatorname{con} 5
\end{aligned}
$$

Sim pays Ans an average of $\$ 2.22 / 8$ hours .
(a) $\lambda=\frac{60}{6}=10$ cuatomors $/$ hr

$$
\begin{aligned}
P\{t \leq 4 \min \} & =1-e^{-10(4 / 60)} \\
& =.4866
\end{aligned}
$$

(b)

$$
\% \text { div count }= \begin{cases}10 \%, & \text { if } t \leq 4 \\ 6 \%, & \text { if } 4<t \leq 5 \\ 2 \%, & \text { if } t>5\end{cases}
$$

$$
\begin{aligned}
P\{t \leq 4\} & =4866 \\
P\{4<t \leq 5\} & =e^{-10(4 / 60)}-e^{-10(5 / 60)} \\
& =.0788 \\
P\{t>5\} & =e^{-10(5 / 60)}= \\
& =.4346
\end{aligned}
$$

Expected $\%$ discount

$$
\begin{aligned}
& =10 \times .4866+6 \times .0788+2 \times .4346 \\
& =6.208 \%
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\frac{365 \times 24}{9000}=.973 \text { faikne /gr } 11 \\
& P\{t \leq 1\}=1-e^{-.973 \times 1} \\
& =.622 \\
& =-\left[t^{2} e^{-\lambda t}-\frac{2}{\lambda_{0}} \int_{0}^{\infty} t \lambda e^{-\lambda t} d t\right]_{0}^{\infty} \\
& =+\frac{2}{\lambda^{2}}
\end{aligned}
$$

Lack-of-memory property 12 apples.
(a) the waiting time for the green bus is exponential with mean 10 minutes:

$$
f(t)=.1 e^{-1 / t}, \quad t \geqslant 0
$$

(b) Th waiting tine for the red bus is exponential with mean 7 misiutes:

$$
\begin{aligned}
f(t) & =\frac{1}{7} e^{-t / 7}, t \geqslant 0 \\
E\{t\} & =\int_{0}^{\infty} t \lambda e^{-\lambda t} d t \\
& =-\int_{0}^{\infty} t d e^{-\lambda t} \\
& =-\left(t e^{-\lambda t}-\int_{0}^{\infty} e^{-\lambda t} d t\right) \\
& \left.=-\left(t e^{-\lambda t}-\frac{1}{\lambda} e^{-\lambda t}\right)\right]_{0}^{\infty} \\
& =1 / \lambda \\
E\left\{t^{2}\right\} & =\lambda \int_{0}^{\infty} t^{2} e^{-\lambda t} d t \\
& =-\int_{0}^{\infty} t^{2} d e^{-\lambda t} \\
& =-\left[t^{2} e^{-\lambda t}-\int_{0}^{\infty} 2 t e^{-\lambda t} d t\right]
\end{aligned}
$$

$$
\begin{aligned}
\text { TORA input } & =(5,0,0, \infty, \infty) \\
\begin{aligned}
P_{n} \geq 5
\end{aligned}(t=1 \mathrm{hr}) & =1-\left[P_{p}(1)+\cdots+P_{4}(1)\right] \\
& =1-e^{-5}\left(1+5+\frac{5^{2}}{2!}+\frac{5^{3}}{3!}+\frac{5^{4}}{4!}\right) \\
& =1-.44049=.55951
\end{aligned}
$$

$\lambda=1$ tupi/month
(a) $\lambda t=3$: TORA input $=(3,0,0, \infty, \infty)$.

$$
P_{0}(3)=\frac{(1 \times 3)^{0} e^{-1 \times 3}}{0!}=.049787
$$

(6) $\lambda t=12:$ TORA isiput $=(12,0,0, \infty, \infty)$

$$
\begin{aligned}
p_{n \leqslant 8}(t=12) & =p_{0}(12)+\cdots+p_{8}^{(12)} \\
& =\frac{12^{0} e^{-12}}{0!}+\frac{12^{1} e^{-12}}{1!}+\cdots+\frac{12^{8} e^{-12}}{8!} \\
& =15503
\end{aligned}
$$

(c) $p_{6}(1)=\frac{1^{0} e^{-1}}{0!}=e^{-1}=.3679$

TORA ingut $=(1,0,0, \infty, \infty)$
$\lambda=2$ arrivals $/$ minute
(a) $\lambda t=2 \times 5=10$ arrivals
(b) $\lambda t=2 \times .5=1$

TORA impur $=(1,0,0, \infty, \infty)$

$$
P_{0}(t=5)=e^{-2 \times .5}=.3679
$$

(c) $1-p_{0}(t=.5)=1-.3679=.6321$
(d) $\lambda_{t}=2 \times 3=6$ arrivals TORA ixput $=(6,0,0, \infty, \infty)$ $P_{0}(t=3)=\frac{(2 \times 3)^{0} e^{-2 \times 3}}{0!}=.00248$

$$
\lambda=1 / 5=.2 \text { arrival } / \text { mex }
$$

(a) $P_{2}(t=7)=\frac{(.2 \times 7)^{2} e^{-.2 \times 7}}{2!}=.24167$

TORA irput $=(1.4,0,0, \infty, \infty)$
(b) $p_{1}(t=5)=\frac{(.2 \times 5)^{\prime} e^{-.2 \times 5}}{1!}=-36788$
$\lambda=25$ boofes per day
(a) $\lambda t=25 \times 30=7.50$ borko $=7.5$ shitues
(b) 10 bookcaslo $=10 \times 5 \times 100=5000$ books

$$
\begin{aligned}
P_{n>5000}(t=30) & =1-\left[P_{0}(30)+\cdots+P_{5000}(300)\right] \\
& \simeq 0
\end{aligned}
$$

(a) $\lambda_{\text {green }}=1$ stop $/ \mathrm{min}, \lambda_{\text {red }}=1 / 7 \mathrm{shop} / \mathrm{min}$

$$
\begin{gathered}
\lambda \text { combined }=1+\frac{1}{7}=.24286 \text { stop/min } \\
P_{2}(S)=\frac{(.24286 \times 5)^{2} e^{-.24286 \times 5}}{2!}=.219
\end{gathered}
$$

The two buses could be $2 G, 2 R$ on $1 G$ and $1 R$.

$$
\begin{aligned}
\text { (b) } \begin{aligned}
P\{t & \leq 2\}=1-e^{-243 \times 2}=3849 \\
E\{n \mid t\} & =\sum_{n=1}^{\infty} n \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
& =\lambda t e^{-\lambda t} \sum_{n=1}^{\infty} \frac{(\lambda t)^{n-1}}{(n-1)!} \\
& =\lambda t e^{-\lambda t} e^{+\lambda t}=\lambda t \\
E\left\{n^{2} \mid t\right\} & =\sum_{n=0}^{\infty} n^{2} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
& =\sum_{n=1}^{\infty} n^{2} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
& =\lambda t e^{-\lambda t} \sum_{n=1}^{\infty} \frac{n(\lambda t)^{n-1}}{(n-1)!} \\
& =\lambda t e^{-\lambda t} \frac{\partial}{\partial \lambda t}\left(\lambda t \sum_{n=1}^{\infty} \frac{(\lambda t)^{n-1}}{(n-1)!}\right) \\
& =\lambda t e^{-\lambda t} \frac{d}{\partial \lambda t}\left(\lambda t e^{\lambda t}\right) \\
& =\lambda t e^{-\lambda t}\left(\lambda t e^{\lambda t}+e^{\lambda t}\right) \\
& =(\lambda t)^{2}+\lambda t
\end{aligned}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{var}\{n \mid t\} & =(\lambda t)^{2}+\lambda t-(\lambda t)^{2} \\
& =\lambda t
\end{aligned}
$$

$$
-A L
$$

Set 15.4a

$$
\begin{aligned}
& P_{0}^{\prime}(t)=-\lambda P_{0}(t) \\
& P_{n}^{\prime}(t)=-\lambda P_{n}(t)+\lambda P_{n-1}(t)
\end{aligned}
$$

(1) 8

$$
\begin{aligned}
p_{i+1}(t) & =e^{-\int \lambda d t}\left\{\frac{\lambda(\lambda t)^{i} e^{-\lambda t} e^{\gamma \lambda t}}{i!} d t+C\right\} \\
& =\frac{e^{-\lambda t}(\lambda t)^{i+1}}{(i+1)!}+C
\end{aligned}
$$

From (1)

$$
d P_{P}(t)=-\lambda p_{0}(t) d t
$$

which yields

$$
p_{0}(t)=A e^{-\lambda t}
$$

Because $P_{0}(0)=1 \Rightarrow A=1, P_{0}(t)=e^{-\lambda t}$
For $n=1$:

$$
\begin{aligned}
p_{1}^{\prime}(t) & =-\lambda p_{1}(t)+\lambda p_{0}(t) \\
& =-\lambda p_{1}(t)+\lambda e^{-\lambda t}
\end{aligned}
$$

or

$$
P_{1}^{\prime}(t)+\lambda P_{1}(t)=\lambda e^{-\lambda t}
$$

This yields the solution:

$$
\begin{aligned}
P_{1}(t) & =e^{-\int \lambda d t}\left\{\int \lambda e^{-\lambda t} e^{-\int \lambda d t} d t+c\right\} \\
& =\lambda t e^{-\lambda t}+c
\end{aligned}
$$

Because $P_{1}(0)=0, C=0$, and

$$
P_{1}(t)=\frac{\lambda t e^{-\lambda t}}{1!}
$$

Induction proof:
Given

$$
P_{i}(t)=\frac{(\lambda t)^{i} e^{-\lambda t}}{i!}
$$

then

$$
y_{i+1}^{\prime}(t)+\lambda p_{i+1}(t)=\lambda \frac{(\lambda t)^{i} e^{-\lambda t}}{i!}
$$

The solution is

Because $\rho_{i+1}(0)=0, C=0$, and

$$
p_{i+1}(t)=\frac{e^{-\lambda t}(\lambda t)^{i+1}}{(i+1)!}
$$

$\mu=3$ dozens/day, $N=18$
TORA input data $=(0, \mu t, 1,18,18)$
(a) $\mu=3 \times 3=9$
$p_{0}(t=3)=.00532$ (from TORA)
(b)

$$
\begin{aligned}
& \mu t=3 \times 2=6 \\
& \sum_{n=0}^{18} n p_{n}(2)=11.955
\end{aligned}
$$

(c) This put cas be solved wing Possom on exponential dietibutions:
Poiscon: $\mu t=3 \times 1=3$

$$
\begin{aligned}
P_{r} b a h i l i t y & =P_{0}(1)+P_{1}(1)+\cdots+P_{17}(1) \\
& =.9502 \text { (from T.RRA) }
\end{aligned}
$$

Exponential: mean $=1 / 3$ day
$P\{$ purchasing at lener one dozen in' 1 dang $\}$
$=P\{$ Esmi between punchases $\leqslant 1\}$

$$
=1-e^{-3 \times 1}=.9502
$$

(d) Exponential: $P\{t \leqslant .5\}=1-e^{-3 x .5}=-7769$

Poisson: $P_{0}(.5)+P_{1}(\cdot 5)+\cdots+P_{17}(.5)=.7769$
(e) $P_{0}(1)=0 \quad(\mu t=3 \times 1=3)$
$N=40, \mu=10$ callo $/ \mathrm{h}$
TORA input ($0, \mu t, 1,40,40$)
(a) $p_{n>0}(t=4)=1-p_{0}(4)$

$$
=1-.521=.479
$$

(b) $\begin{aligned} E\{n \mid t=4\}=\sum_{n=0}^{40} n p_{n}(4) & \simeq 2.5 \text { blockes } \\ & \cong 25 \text { tickets }\end{aligned}$

$$
\begin{aligned}
& N=48, \mu=\frac{4 \times 10}{8}=5 \text { cano } / \mathrm{h}[A \\
& \mu t=5 \times 4=20 \mathrm{cans}
\end{aligned}
$$

$p_{0}(4) \cong .000005$ (From TORA)

$$
N=48, \mu t=5 \times 8=40, P_{1}(8)=.11958
$$

$\mu=1 / 1=1$ withdrawl/weak
$N=5, \mu t=4$

$$
p_{0}(4)=-37116
$$

$N=80$ items, $\mu=5$ items/day
(a) $\mu t=5 \times 2=10$ tiems

$$
P_{70}(2)=.1251
$$

(b) $\mu t=5 \times 4=20$ items

$$
P_{0}(4)=.00001
$$

(c) $\mu t=5 \times 4=20$ items

$$
E\{n / 4 \text { days }\}=\sum_{n=0}^{80} x p_{n}(4) \simeq 60 \text { itemo }
$$

Ar. \# of withdrawh $=80-60$

$$
=20 \text { iterns }
$$

$\mu=1 / 1=1$ breakedown /day

$$
N=10, \quad \mu t=1 \times 2=2
$$

From TaRA, $\rho_{0}(2)=00005$
(a) $N=25, \mu=3 /$ day
$t=6$ days, $\mu t=18$
Av. Stock nemaining aftes 6 days

$$
=E\{n \mid t=6\}=7 \cdot 11
$$

Ar. order size $=25-7.11$

$$
\simeq 18 \text { terms }
$$

(b)

$$
\begin{aligned}
& t=4, \mu t=3 \times 4=12 \\
& p_{0}(4)=.00069
\end{aligned}
$$

(c) $t=6, \mu t=3 \times 6=18$

$$
P_{n \leqslant 14}(6)=p_{0}(6)+\cdots+p_{14}(6)=.9696
$$

$P\{$ tumé betr. departures $>T\}$
$=P\left\{n_{0}\right.$ departures dusing $\left.T\right\}$
$=P\{N$ left after teme $T\}$
$=P_{N}(T)$

$$
\begin{aligned}
&=P_{N}(T) \\
& P\{t>T\}=P_{N}(T)=\frac{(\mu T)^{0} e^{-\mu T}}{0!} \\
&=e^{-\mu T}
\end{aligned}
$$

$$
\begin{align*}
& p_{N}^{\prime}(t)=-\mu P_{N}(t) \tag{1}\\
& P_{n}^{\prime}(t)=-\mu P_{n}(t)+\mu P_{n+1}(t), \quad 0<n<N \tag{2}
\end{align*}
$$

From (1), we get

$$
p_{N}(t)=C e^{-\mu t}
$$

Given $p_{N}(0)=1$, then $c=1$ and

$$
p_{N}(t)=e^{-\mu t}
$$

Next, consider (2) for $n=N-1$

$$
\begin{aligned}
P_{N-1}^{\prime}(t) & =-\mu P_{N-1}(t)+\mu P_{N}(t) \\
& =-\mu P_{N-1}(t)+\mu e^{-\mu t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& P_{N-1}(t)=e^{-\int \mu t}\left\{\int \mu e^{-\mu t} e^{\int \mu d t} d t+C\right\} \\
&=e^{-\mu t} \mu t+C
\end{aligned}
$$

Because $P_{N-1}(0)=0, C=0$ and $P_{N-1}(t)=(\mu t) e^{-\mu t}$ Induction proof:
Given $p_{n+1}(t)=\frac{(\mu t)^{N-n-1} e^{-\mu t}}{(N-n-1)!}$, then

$$
P_{n}^{\prime}(t)=-\mu p_{n}(t)+\frac{\mu(\mu t)^{N-n-1} e^{-\mu t}}{(N-n-1)!}
$$

Solution guess

$$
P_{n}(t)=\frac{(\mu t)^{N-n} e^{-\mu t}}{(N-n)!}
$$

(a) $P\{0$ counter open $\}=P_{0}=\frac{1}{55}$

$$
P\{1 \text { counter open }\}=P_{1}+P_{2}+P_{3}
$$

$$
=\frac{1}{55}(2++8)=\frac{14}{55}
$$

$P\{2$ cousiters open $\}=P_{4}+P_{5}+P_{6}$

$$
=\frac{1}{55}(8+8+8)=\frac{24}{55}
$$

$$
\begin{aligned}
P\{3 \text { countersopen }\} & =P_{7}+P_{8}+\cdots \\
& =1-\left(P_{0}+\cdots+P_{6}\right) \\
& =1-\left(\frac{1}{55}+\frac{14}{55}+\frac{24}{55}\right)=\frac{16}{55}
\end{aligned}
$$

(b) Av. \# buay counlès

$$
\begin{aligned}
& =0 \times \frac{1}{55}+1 \times \frac{14}{55}+2 \times \frac{24}{55}+3 \times \frac{16}{55} \\
& =2 \text { courlens }
\end{aligned}
$$

(c) Av. A idle connters $=3-2=1$

$$
\begin{aligned}
\lambda=1 / 5 & =-2 \text { arrival } / \mathrm{min} \\
& =12 \text { arrivals } / \text { th }
\end{aligned}
$$

(a)

From $\sum_{n=0}^{\infty} P_{n}=1$, we get $p_{0}=002587$

$$
\begin{aligned}
& P_{1}=.05421, P_{2}=.13010, P_{3}=.15612 \\
& P_{4}=.18735, P_{5}=.14988, P_{6}=.1199
\end{aligned}
$$

$$
P_{n \geq 7}=.1199(.6)^{n-6}
$$

(6) $P_{n \geqslant 7}=1-\left(P_{0}+P_{1}+\cdots+P_{6}\right)=.8$

$$
\begin{aligned}
& \mu_{n}= \begin{cases}5 \text { customers } / h_{1}, & n=0,1,2 \\
10 \text { cuptomers } / h_{1}, & n=3,4 \\
15 \text { cretomers } / R_{n}, & n=5,6 \\
20 \text { customers } / h, & n \geq 7\end{cases} \\
& P_{1}=\frac{12}{5} P_{0} \\
& =2.4 P_{0} \\
& P_{2}=\left(\frac{12}{5}\right)^{2} P_{0} \\
& =5.76 P_{0} \\
& P_{3}=\left(\frac{12}{5}\right)^{2}\left(\frac{12}{10}\right) P_{0} \\
& =6.912 P_{0} \\
& P_{4}=\left(\frac{12}{5}\right)^{2}\left(\frac{12}{10}\right)^{2} P_{0} \\
& =8.2944 \mathrm{P}_{0} \\
& P_{5}=\left(\frac{12}{5}\right)^{2} *\left(\frac{12}{10}\right)^{2}\left(\frac{12}{15}\right) P_{0} \\
& =6.63552 P_{0} \\
& P_{6}=\left(\frac{12}{5}\right)^{2}\left(\frac{12}{10}\right)^{2}\left(\frac{12}{15}\right)^{2} P_{0}=5.308416 P_{0} \\
& \begin{array}{l}
P_{6}=\left(\frac{12}{5}\right)^{2}\left(\frac{12}{10}\right)^{2}\left(\frac{12}{15}\right)^{2}\left(\frac{12}{20}\right)^{n-6} P_{0}=5.308416(\cdot 6)^{n-6} P_{0}
\end{array}
\end{aligned}
$$

(c) $P\{0$ counter $\} \rightarrow P_{0}=.002587$

$$
P\{1 \text { countu }\}=P_{1}+P_{2}=18431
$$

$$
P\{2 \text { counten }\}=P_{3}+P_{4}=.34347
$$

$P\{3$ counters $\}=P_{5}+P_{6}=.26978$
$P\{4$ counten $\}=P_{7}+P_{8}+\cdots=.199853$
Ar.\# iclle cormters

$$
\left.\left.\begin{array}{rl}
=4- & (1 \times .18431+2 \times .34347+3 \times .26978 \\
& +4 x .199853) \cong 1.52
\end{array}\right\} \begin{array}{l}
\mu_{n}=\left\{\begin{array}{l}
5 n, \quad n=1,2 \\
15, \quad n=3,4, \ldots
\end{array}\right. \\
P_{1}= \\
\left(\frac{10}{5}\right) P_{0}=2 P_{0} \\
P_{2}= \\
\left(\frac{10}{5}\right)\left(\frac{10}{10}\right) P_{0}=2 P_{0}
\end{array}\right\}
$$

Thens,

$$
P_{0}+2 p_{0}+2 P_{0}+\left[2\left(\frac{2}{3}\right)+2\left(\frac{2}{3}\right)^{2}+\cdots\right] p_{0}=1
$$

which gives $P_{0}=.1111$
(a) Prob that 3 counters avesiuse

$$
\begin{aligned}
=P_{n \geq 3} & =1-\left(P_{0}+P_{1}+P_{2}\right) \\
& =1-(\cdot 1111+.2222+.3622) \\
& =.4445
\end{aligned}
$$

(b) $P_{n \leqslant 2}=P_{0}+P_{1}+P_{2}=.5555$

$$
\begin{aligned}
\lambda_{n} & = \begin{cases}12 & \text { cars } / h, \\
0 & n \geqslant 11\end{cases} \\
\mu_{n} & =60 / 6=10, \ldots, 10 \text { cors } / h 1 \\
P_{n} & =\left(\frac{12}{10}\right)^{n} P_{0}, n=1,2, \ldots, 10 \\
& =0, \quad n \geqslant 11
\end{aligned}
$$

$$
P_{0}\left(1+1.2+1.2^{2}+\cdots+1 \cdot 2^{10}\right)=P_{0} \frac{1-1.2^{11}}{1-1.2}
$$

Thus, $p_{0}=.0311$
(a) $P_{10}=\left(\frac{12}{10}\right)^{10} P_{0}=.19259$
(b) $P_{n \geqslant 1}=1-p_{0}=1-.0311=.9689$
(c) Av. length of the line
$=O P_{0}+1 P_{1}+\cdots+10 P_{10}$
$=1 x .03732+2 x \cdot 04479+3 x .05375$
$+4 x .0645+5 x .0774+6 x .09288$
$+7 x \cdot 11145+8 x \cdot 13374+9 x \cdot 16049$ $+10 x \cdot 19259=6.71071$
$\lambda_{n}=6$ arrivalo/h, $n=0,1, \ldots, 8 \quad \infty$
$=5$ arrivalo/h, $n=9,10, \cdots 11,12$
$\mu_{n}=n / \cdot 5=2 n / \not /, n=1,2,3,4$
$=10 / h, n \geqslant 5$
$P_{1}=\frac{6}{2} P_{0}=3 P_{0}$
$P_{2}=\frac{6}{2} \cdot \frac{6}{4} P_{0}=4.5 P_{0}$
$P_{3}=\frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot P_{0}=4.5 P_{0}$
$P_{4}=\frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{5} P_{0}=3.375 P_{0}$
$P_{5}=\frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot \frac{6}{10} P_{0}=2.025 P_{0}$
$P_{6}=\frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot \frac{6}{10} \cdot \frac{6}{10} P_{0}=1.215 P_{0}$

n	P_{n}
0	0.049526
1	0.148578
2	0.222866
3	0.222866
4	0.16715
5	0.10029
6	0.060174
7	0.036104
8	0.021663
9	0.010831
10	0.005416
11	0.002708
120	0.001354

$P_{7}=\frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot \frac{6}{10} \cdot \frac{6}{10} \cdot \frac{6}{10} P_{1}=.729 P_{0}$
$P_{8}=\frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot\left(\frac{6}{10}\right)^{4} P_{0}=.4374 P_{0}$
$P_{n \geqslant 9}=\frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8}\left(\frac{6}{10}\right)^{4}\left(\frac{5}{10}\right)^{n-8} P_{0}=.4374(-5)^{n-8} P_{0}$
From $\sum_{n=0}^{12} p_{n}=1$, we get $p_{0}=.0495$
(a) $p_{12}=.4374 \times .5^{4} \times .0495=.00135$
(b) $y_{n \geq 5}=1-\left(P_{0}+P_{1}+\cdots+P_{4}\right)=.2385$
(c) Ar. \# bray tabled $=0 p_{0}+1 p_{1}+2 p_{2}+3 p_{3}$ $+4 P_{4}+5 P_{n \geqslant 5}=2.9768$
(d) $\begin{aligned} 1 P_{6} & +2 p_{7}+\cdots+7 P_{12} \quad[5 \text { continued } \\ = & 1 \times .0602+2 \times .0361+3 \times .0217 \\ & +4 \times .0108+5 \times \cdot 0054+ \\ & 6 \times .0027+7 \times .00135 \\ = & 2935 \text { pair } \\ \lambda= & 4 \text { cristomess } / h\end{aligned}$
$\lambda_{n}= \begin{cases}4, & n=0,1, \ldots, 4 \\ 0, & n \geq 5\end{cases}$
$\mu_{n}=\frac{60}{15}=4$ curtomers/h
(a) $p_{1}=\frac{4}{4} p_{0}$
$P_{2}=\left(\frac{4}{4}\right)^{2} P_{0}$
$P_{3}=\left(\frac{4}{4}\right)^{3} P_{0}$
$P_{4}=\left(\frac{4}{4}\right)^{4} P_{0}$
$P_{0}+P_{1}+\cdots+P_{4}=1 \Longrightarrow P_{0}=1 / 5$
$P_{0}=P_{1} \pm P_{2}=P_{3}=P_{4}=1 / 5$
(b) expected $\#$ is ishop $=$

$$
\begin{aligned}
& 0 p_{0}+1 p_{1}+2 p_{2}+3 p_{3}+4 p_{4} \\
& =\frac{1}{5}(1+2+3+4)=2
\end{aligned}
$$

(c) $p_{4}=\cdot 2$

(a) $5.5 P_{1}=10 P_{0}$

$$
10 P_{0}+6 P_{2}=(5.5+9) P_{1}
$$

$$
9 p_{1}+6.5 p_{3}=(6+8) P_{2}
$$

$$
8 p_{2}+7 p_{4}=(6.5+7) p_{3}
$$

(b) $P_{1}=1.82 P_{0}, P_{2}=2.727 P_{0}$
$P_{3}=3.3566 P_{0}, P_{4}=3.3566 P_{0}$
$P_{0}+P_{1}+\cdots+P_{4}=1 \Longrightarrow P_{0}=.088882$
$P_{1}=1614, P_{2}=.2422, P_{3}=.2981, P_{4}=$.
(a) $L_{q}=\sum_{n=6}^{8}(n-5) p_{n}$

$$
=1 p_{6}+2 p_{7}+3 p_{8}
$$

$$
=1 \times .05847+2 \times .03508+3 \times .02105
$$

$$
=.19177
$$

(b)

$$
\begin{aligned}
W_{q} & =\frac{L_{q}}{\lambda_{e f f}} \\
& =\frac{.1917}{5.8737}=.03265 \text { hocur } \\
W_{s} & =W_{q}+\frac{1}{\mu} \\
& =.03264+\frac{1}{2}=.53265 \text { Rour }
\end{aligned}
$$

(c)

$$
\begin{aligned}
\lambda_{\text {lost }} & =\lambda \rho_{8} \\
& =6 \times .02105=.1263 \mathrm{car} / \mathrm{hr}
\end{aligned}
$$

Number loot $/ 8$ trs $=.1263 \times 8=1.01 \mathrm{curs}$
(d) Average number of expsty spaces

$$
\begin{aligned}
= & C-\left(L_{s}-L_{q}\right) \\
= & C-\sum_{n=0}^{8} n p_{n}+\sum_{n=c+1}^{8}(n-c) p_{n} \\
= & \left(C \sum_{n=0}^{8} p_{n}-C \sum_{n=c+1}^{8} p_{n}\right) \\
& -\left(\sum_{n=0}^{8} n p_{n}-\sum_{n=c+1}^{8} n p_{n}\right) \\
= & C \sum_{n=0}^{c} p_{n}-\sum_{n=0}^{c} n p_{n} \\
= & \sum_{n=0}^{c-1}(c-n) p_{n}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \lambda_{n}=6 \text { cars } / h, n=0,1, \ldots, 6 \\
& \mu_{n}=\left\{\begin{array}{l}
\left(\frac{4}{3}\right) n, \quad n=1,2, \ldots, 6 \\
8, \quad n=7,8,9,10
\end{array}\right. \\
& p_{n}=\left(\frac{6}{4 / 3}\right)^{n} \frac{1}{n!} P_{0}, n=0,1, \ldots, 6
\end{aligned}
$$

$$
\begin{aligned}
& P_{n}=\frac{\left(\frac{6}{4 / 3}\right)^{n}}{6!6^{n-6}} P_{0}, n=7,8,9,10 \\
& P_{0}\left(1+\frac{9 / 2}{1!}+\frac{(9 / 2)^{2}}{2!}+\frac{(9 / 2)^{3}}{3!}+\frac{(9 / 2)^{4}}{4!}+\frac{(9 / 2)^{5}}{51}+\frac{(9 / 2)^{6}}{6!}\right. \\
& \left.\quad+\frac{(9 / 2)^{7}}{6!6}+\frac{(9 / 2)^{8}}{6!6^{2}}+\frac{(9 / 2)^{9}}{6!6^{3}}+\frac{(9 / 21010}{6!6^{4}}\right)=1
\end{aligned}
$$

Thus, $T_{0}=.0004$

n	p_{n}		n	p_{n}
	.00304		6	.10027
2	.01141		7	.12534
3	.02852		8	.15667
4	.05348		9	.19584
5	.08022		10	.29480

(b)

$$
\begin{aligned}
\lambda_{\text {eff }}=\lambda\left(1-P_{10}\right) & =10(1-.2448) \\
& =7.552 \mathrm{cars} / \mathrm{h}
\end{aligned}
$$

(c)

$$
\begin{aligned}
L_{s} & =0 p_{0}+1 p_{1}+2 p_{2}+\cdots+10 p_{10} \\
& =7.6941 \text { cars }
\end{aligned}
$$

(d)

$$
\begin{aligned}
W_{s} & =\frac{L_{s}}{\lambda_{e f f}}=\frac{7.6941}{7.552}=1.0155 \mathrm{cars} \\
W_{q} & =1.0155-\frac{1}{4 / 3}=.2655 \\
L_{q} & =\lambda_{e f f} W_{q} \\
& =.2655 \times 7.552 \\
& =2.005 \text { cars }
\end{aligned}
$$

(e)

Average number of occupied

$$
\begin{aligned}
\text { spaces } & =L_{s}-L_{q} \\
& =7.6941-2.005 \\
& =5.6891 \text { spaces }
\end{aligned}
$$

$$
\text { (a) } \begin{aligned}
\text { \% utilization } & =100\left(1-p_{0}\right) \\
& =100 \cdot \frac{\lambda}{\mu} \\
& =100\left(\frac{4}{6}\right)=66.67 \%
\end{aligned}
$$

(b) $p_{n \geqslant 1}=i-p_{0}=\frac{\lambda}{\mu}=\frac{4}{6}=.6667$
(c)

$$
\begin{aligned}
P_{n \leqslant 7} & =P_{0}+P_{1}+\cdots+P_{7} \\
& =1-\left(\frac{\lambda}{\mu}\right)^{8}=1-\left(\frac{4}{6}\right)^{8}=.961
\end{aligned}
$$

(d) $P_{0}+p_{1}+\cdots+P_{K} \geqslant .99$

From Figuse $17-6, K=11$ Also, we can delermenie K from

$$
\begin{aligned}
& 1-\rho^{K+1} \geqslant .99 \\
& (K+1) \geqslant \frac{\ln .01}{\ln (4 / 6)}=11
\end{aligned}
$$

σ

$$
K \geq 11.350-1=10.358
$$

Thus, $K \geqslant 11$
Note that the dexired number of partering apaces is almont doubled (fom 5 to (11) to accommedale- the increase in the acceptanca perientage from 90% t 99%.

$$
\begin{aligned}
& \lambda=1 / 5=.2 \text { job / day } \\
& \mu=1 / 4=.25 \text { job / day }
\end{aligned}
$$

From the Tore A outpunt on ohe next crlumn,
(a) $P_{0}=.2$
(b)

$$
\begin{aligned}
\text { Av. income } / \text { month } & =\$ 50 \mu t \\
& =50 \times .25 \times 30 \\
& =\$ 375
\end{aligned}
$$

(c) Av. number of jobs avating. completion $=L_{q}=3.2$ gols

$$
\text { Coot }=3.2 \times \$ 40=\$ 128 \text { continued... }
$$

$$
\lambda=1 / 4=.25 \text { case } / \omega \mathrm{wk}
$$

$$
\mu=1 / 1.5=-66667 \mathrm{cace} / \mathrm{wk}
$$

MMercsonk Queweing Moodel

(a) $L_{q}=.225$ case
(b) $1-P_{0}=1-.625=.375$ or 37.5%
(c) $W_{s}=2.4$ weetes

Present eifiratan:

$$
\begin{aligned}
& \lambda=90 \text { cars } / \mathrm{tr} \\
& \mu=\frac{3600}{38}=94.7368 \mathrm{cars} / \mathrm{hr}
\end{aligned}
$$

New ritwation:

$$
\begin{aligned}
& \lambda=90 \text { cars ypen hom } \\
& \mu=\frac{3600}{30}=120 \text { cans pen hour }
\end{aligned}
$$

Comparative Analysis
Scenario c Lambda
$\begin{array}{rrrrrrrrr}1 & 1 & 90.00000 & 94.7380 & 90.00000 & 0.05000 & \text { Ls } & \text { LG } & \text { W/ } \\ 2 & 1 & 90.000000 & 120.060000 & 90.00060 & 0.25000 & 3.00000 & 18.95017 & 0.2111\end{array}$
L_{s} (present $)=19$ cans
$\%$ of idle time $($ new $)=p_{0}($ new $) \times 100$

$$
=100 \times 25=25 \%
$$

The device can be justified based on the member of wailing customers, L_{S}, sis the prevent system, but not on th basis of yid le time in the neworre.

Scenario 1-(MMN1):(GDP/nfinity/infinity)
$\begin{array}{lll}\text { Lambda }=0.40000 & \text { Mu }= & 0.66667 \\ \text { Lambda } \text { eff }=0.40000 & \text { Rho/c }= & 0.60000\end{array}$
$\begin{array}{llll}\mathrm{Ls}= & 1.49998 & \mathrm{Lq}= & 0.89998 \\ \mathrm{Ws}= & 3.74995 & \mathrm{WQ}_{\mathrm{G}}= & 2.24996\end{array}$

(a) $P_{0}=-4$
(b) $L q=.9 \mathrm{car}$
(c) $w_{q}=2.25$ minutes
(d) $P_{n \geq 11}=1-C_{10}=1-.99637=.0036$

$\begin{array}{lll}L_{5}= & \left.\begin{array}{lll}500000 \\ W_{s} & 0.50000 & L_{9}= \\ W_{9}= & 4.16667 \\ 0.41667\end{array}\right]\end{array}$

(a) $p_{0}+p_{1}+p_{2}=.4213$
(b) $1-C P_{2}=1-4213=.5787$
(d) $\omega_{q}=.417$ hour
(d) Let $N=$ spaces (including cars being sew nd)

$$
C P_{N-1} \geqslant .9
$$

Because $C P_{11}=.88784$ and $C P_{12}=.90654$,

$$
N-1 \geqslant 12 \Rightarrow N \geq 13 .
$$

In general, $L_{s}<L q+1$. The reason \square is that $p_{0}>0$, usually. Consider

$$
\begin{aligned}
L_{q} & =\sum_{n=1}^{\infty}(n-1) P_{n} \\
& =\sum_{n=1}^{\infty} n P_{n}-\sum_{n=1}^{\infty} P_{n} \\
& =L_{s}-\left(1-P_{0}\right)
\end{aligned}
$$

The closer p_{0} is to zen, the moue likely $L_{S} \stackrel{O}{=} L_{q}+1$ will hold.

Consider

$$
\begin{aligned}
L_{q} & =\sum_{n=1}^{\infty}(n-1) \rho_{n} \\
& =\sum_{n=1}^{\infty}(n-1)(1-\rho) \rho^{n} \\
& =(1-\rho) \rho^{2} \frac{d}{d \rho}\left(\sum_{n=1}^{\infty} \rho^{n-1}\right) \\
& =(1-\rho) \rho^{2} \frac{d}{d \rho} \sum_{n=0}^{\infty} \rho^{n} \\
& =(1-\rho) \rho^{2} \frac{d}{d \rho}\left(\frac{1}{1-\rho}\right) \\
& =\rho^{2}(1-\rho) \frac{1}{(1-\rho)^{2}} \\
& =\frac{\rho^{2}}{1-\rho}
\end{aligned}
$$

(a) $P\{j$ in queue $\mid j \geq 1\}$

$$
\begin{aligned}
& =p\{n \text { in system } \mid n \geq 2\} \\
& =\frac{p_{n}}{\sum_{j=2}^{\infty} p_{j}}
\end{aligned}
$$

Thins,

$$
\begin{aligned}
& \text { expected number }=\sum_{n=2}^{\infty}(n-1) \frac{p_{n}}{\sum_{j=2}^{\infty} p_{j}} \\
&=\frac{\sum_{n=2}^{\infty} n p_{n}-\sum_{n=2}^{\infty} p_{n}}{\sum_{n=2}^{\infty} p_{n}} \\
&= \frac{\sum_{n=1}^{\infty} n p_{n}-p_{i}}{\sum_{n=2}^{\infty} p_{n}}-1 \\
&=\frac{\frac{\rho}{1-\rho}-\rho(1-\rho)}{1-[(1-\rho)+\rho(1-\rho)]}-1 \\
&= \frac{1}{1-\rho}
\end{aligned}
$$

(b) Exp. number inqquene given the system is not empty

$$
\begin{aligned}
& =\sum_{n=1}^{\infty}(n-1)\left(\frac{\rho_{n}}{\sum_{j=1}^{\infty} p_{j}}\right) \\
& =\frac{\sum_{n=1}^{\infty} n p_{n}-\sum_{n=1}^{\infty} p_{n}}{\sum_{j=1}^{\infty} \rho_{j}} \\
& =\frac{\left(\frac{\rho}{1-\rho}\right)-\rho}{\rho} \\
& =\frac{\rho}{1-\rho}
\end{aligned}
$$

Thun,
Exp. waiting time in queue for those who must want

$$
\begin{aligned}
& =\frac{\rho /(1-\rho)}{\lambda} \\
& =\frac{1}{\mu-\lambda}
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
\omega(\tau)=(\mu-\lambda) e^{-(\mu-\lambda) \tau}, \tau>0 \\
\lambda=1 / 4=.25 / \omega k \\
\mu=1 / 1.5=.667 / \omega k
\end{array}\right\}(\mu-\lambda)=.417\right] \quad \begin{aligned}
& \rho=\lambda / \mu=\frac{1.5}{4}=.375 \\
& \omega(\tau)=.417 e^{-.417 \tau}, \tau>0 \\
& P\{\tau>1\}=e^{-.417 \times i}=.659
\end{aligned}
$$

(a) standard deviation $=\frac{1}{\mu-\lambda}=\frac{1}{6-4}=.52$
(b) $\omega(\tau)=(\mu-\lambda) e^{-(\mu-\lambda) \tau}, \tau>0$

$$
\begin{aligned}
P\left\{\frac{1}{2(\mu-\lambda)}\right. & \left.\leq \tau \leq \frac{3}{2(\mu-\lambda)}\right\} \\
& =\left(1-e^{-1.5}\right)-\left(1-e^{-.5}\right) \\
& =e^{-5}-e^{-1.5} \\
& =3834
\end{aligned}
$$

$W_{S} \leqslant 10$ menules,$\lambda=4 / h \quad 3$

$$
\frac{1}{(\mu-\lambda)} \leqslant \frac{10}{60} h r
$$

or $\mu-\lambda \geqslant 6$

$$
\begin{aligned}
& a \mu \geq 6+\lambda=10 / h \\
& p\left\{\tau>\frac{10}{60}\right\} \leq .1, \sigma \\
& e^{-\frac{1}{6}(\mu-4)} \leq .1 \\
& \mu-4 \geqslant 13.8 \\
& \mu \geq 17.8 / h \\
& P\{\tau>5\}=e^{-(\mu-\lambda) t}=e^{-.267 \times 5}=.26
\end{aligned}
$$

where $\lambda=.4 / \mathrm{min}, \mu=.667 / \mathrm{min}$
Exp. \# customers in a 12 -h ray

$$
=\lambda \times 12 \times 60=.4 \times 12 \times 60^{\circ}=288 \text { ant. }
$$

Exp. coot $=288 \times .2636 \times .5=\$ 37.95$

Let
$\omega_{n+1}(t \mid n)=$ conditional pdf for wailing is queue given there are nastomers a heal
$=n$-fold convolution of th exponential pd f

$$
=\frac{\mu(\mu t)^{n-1} e^{-\mu t}}{(n-1)!}
$$

$W(t)=$ absolute pdf of waiting time in queue
$g(t, n)=$ joint $p d f$ of t and n

$$
\begin{aligned}
& =w_{n+1}(t \mid n) \rho_{n} \\
& =\frac{\mu(\mu t)^{n-1} e^{-\mu t}}{(n-1)!} \rho^{n}(1-\rho)
\end{aligned}
$$

(a) For $t>0$

$$
\begin{aligned}
\omega(t) & =\sum_{n=1}^{\infty} g(t, n) \\
& =\frac{\mu \rho e^{-\mu t}(1-\rho)}{e^{-\mu \rho t}} \sum_{n=1}^{\infty} \frac{(\mu \rho t)^{n-1} e^{-\mu \rho t}}{(n-1)!} \\
& =\mu \rho(1-\rho) e^{-\mu(1-\rho) t}, t>0
\end{aligned}
$$

For $t=0, \omega(0)=p_{0}=(1-\rho)$

$$
w(t)=\left\{\begin{array}{l}
1-\rho, t=0 \\
\mu \rho(1-\rho) e^{-\mu(1-\rho) t}, t>0
\end{array}\right.
$$

(b)

$$
\begin{aligned}
W_{q} & =E\{t\} \\
& =\int_{0}^{\infty} t \omega(t) d t \\
& =0 \omega(0)+\int_{\sigma^{+}}^{\infty} t \omega(t) d t \\
& =\int_{0^{+}}^{\infty} \mu \rho t(1-\rho) e^{-\mu(1-\rho) t} d t \\
& =\frac{\rho}{\mu(1-\rho)}
\end{aligned}
$$

(a) $p_{0}=3654$
(b) $W_{q}=.207$ tour
(c) Average number of empty spaces $=4-\operatorname{Lg}$

$$
=4-.788
$$

$$
=3.212 \text { spaces }
$$

(d) $p_{5}=.04812$
(e) $W_{s} \leq 10$ minutes

Desired service rate $=10$ cars /h Thus, the service time roust be reduced from $\frac{60}{6}=10$ minutes ts $\frac{60}{10}=6$ minutes, a 40% reduction
$m=$ number of patting spaces
An arriving car will not fund a race if the ne are $m+1$ can in' the system thane, find m ranch that $P_{m+1} \leq .01$ TORA input $=(4,6,1, m+1, \infty)$

m	$N=m+1$	p_{N}
4	5	.04812
5	6	.0311
6	7	.0203
7	8	.01335
8	9	.009

Select the number of parking space $m \geqslant 8$
$m=$ number of reata.
The $N=m+1$, and

$$
\lambda_{\text {eff }}=\lambda P_{N}=5 P_{N} \text { customers } / M
$$

TORA expect $=(6,5,1, N, \infty)$
Tum bize

m	$N=m+1$	$\lambda_{\text {eff }}$ (antomers/m)
1	2	3.63
2	3	4.07

Use two keats or lem
$\lambda=10$ generators pu hour
$\mu=\frac{60}{15}=4$ generators pen tom
$N=7+1=8$
The: 17.6.4.4
Scenario $1-(M / M / 1)$ (GD/8/ninitity)

(a) $p_{8} \cong .6$
(b) $\angle q=6.34$ generators
(c) Let $C=$ belt capacity. Thus, $N=c+1$. The assembly depantiont is kept is operators solons as at least one empty space remain on the belt; that is,

$$
\text { P\{empty space on belt }\}=p_{p}+p_{1}+\cdots+p_{c}
$$

$$
\begin{aligned}
& =\frac{1-\rho}{1-\rho^{c+2}} \sum_{n=0}^{c} \rho^{n} \\
& =\frac{1-\rho}{1-\rho^{c+2}} \cdot \frac{1-\rho^{c * 1}}{1-\rho} \\
& =\frac{1-\rho^{c+1}}{1-\rho^{c+2}}
\end{aligned}
$$

Set 15.6d

$$
\begin{aligned}
\lim _{c \rightarrow \infty} \frac{1-\rho^{c+1}}{1-\rho^{c+2}} & =\lim _{c \rightarrow \infty} \frac{-(c+1) \rho^{c}}{-(c+2) \rho^{c+1}} \\
& =\lim _{c \rightarrow \infty} \frac{c+1}{(c+2) \rho} \\
& =\lim _{c \rightarrow \infty}\left(\frac{1+1 / c}{1+2 / c}\right) \frac{1}{\rho} \\
& =\frac{1}{\rho}
\end{aligned}
$$

In the percent example, $\rho=10 / 4$ and $1 / \rho=4$. Tuns,
$\lim _{c \rightarrow \infty}\left(p_{0}+p_{1}+\cdots+p_{c}\right)=1 / p=.4$
this revue means that regarded of how la ge the belt is, the probabily of finding an empty face cannot exceed. 4. Thus, achieving a 95% utilization os the trembly dept. is impossible.
The result makes sense because the arrival rate $\lambda(=10 / \mathrm{h})$ is $2 \frac{1}{2}$ times lagger than the service rate $(=4)$. The only way we can accomplish the dined result is tor reduce λ and/ot increase μ.
(a) $P_{50} \cong .00002$
(b) $P\{$ wish is not fulfilled $\}$
$=P\{48$ or more in resturant $\}$
$=P_{48}+P_{49}+P_{50}$
$=1-\left(P_{0}+P_{1}+\cdots+P_{47}\right)$
$=1-.99993$
$=.00007$

TORA input $=(20,7.5,1,15, \infty)$

(b) $p_{n \leq 14}=P_{0}+\cdots+P_{14}=.375$
(c) $W_{s}=1.92$ hours
(a) $p_{n \leq 4}=p_{0}+p_{1}+\cdots+p_{4}$

(b) $\lambda_{\text {lost }}=\lambda P_{5}$

$$
=5 \times .038=.19 \text { cuot.th }
$$

(c) $L_{s}=0 \times \cdot 399+1 \times \cdot 249+2 \times \cdot 156$

$$
\begin{aligned}
& +3 \times .097+4 \times .061 \\
& +5 \times .038 \\
& =1.286
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } w_{q}=w_{s}-\frac{1}{\mu} \\
& \lambda_{\text {eff }}=5(1-.038)=4.81 \mathrm{conot} / \mathrm{h} \\
& W_{s}=\frac{L_{s}}{\lambda_{\text {eff }}} \\
& =\frac{1.286}{4.81} \\
& =.2675 \text { hour } \\
& w_{q}=.2675-1 / 8 \\
& =.1424 \text { fem } \\
& p_{n}=\frac{(1-\rho) \rho^{n}}{1-\rho^{N+1}} \\
& \lim _{\rho \rightarrow 1} \mu_{n}=\lim _{\rho \rightarrow 1} \frac{\rho^{n}-\rho^{n+1}}{1-\rho^{N+1}} \\
& =\lim _{\rho \rightarrow 1} \frac{n \rho^{n-1}-(n+1) \rho^{n}}{-(N+1) \rho^{N}} \\
& =\frac{1}{N+1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
L_{s} & =\sum_{n=0}^{N} n p_{n} \\
& =\frac{1}{N+1} \sum_{n=0}^{N} n \\
& =\frac{N(N+1)}{2(N+1)}=\frac{N}{2} \\
W_{S} & =W_{q}+\frac{1}{M} \\
\lambda_{\text {eff }} W_{S} & =\lambda_{\text {eff }} W_{q}+\frac{\lambda_{\text {eff }}}{\mu}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& L_{s}=L_{q}+\frac{\lambda_{\text {eff }}}{\mu} \\
& \lambda_{\text {eff }}=\mu\left(L_{s}-L_{q}\right)
\end{aligned}
$$

Titte: 17.6e-1
Scenaris $2-$ (M/M/4):(GD/infinity/infinity)

Lambda $\left.=\begin{array}{r}16.00000 \\ \text { Lambda eff }=16.00000\end{array}\right)$
$\begin{array}{ll}\text { Mu }= \\ \text { Rho/ } /= & 5.00000 \\ 0.80000\end{array}$
$\begin{array}{llll}\mathrm{Ls}_{\mathrm{s}}= & 5.58573 & \mathrm{Lq}_{\mathrm{q}}= & 2.38573 \\ \mathrm{~W}_{s}= & 0.34911 & \mathrm{Wq}= & \mathbf{0 . 1 4 9 1 1}\end{array}$

(a) $C=2$:

$$
\begin{aligned}
& \frac{C=2:}{P[\text { all sewers are busy }]}=(p / p \geqslant 2)^{2} \\
&=(1-.29)^{2} \\
&=.504 \\
& C=4:
\end{aligned}
$$

$$
\begin{aligned}
\text { P\{all pouvers are buay\} }\} & =1-P_{n} \leq 3 \\
& =1-.404 \\
& =.596
\end{aligned}
$$

$c=4$ yields a highen probalility that all revers are bury.
(b)

For $C=5, \omega_{q}=.032$ hour $\cong 2$ min
$c=4, w_{q}=149$ hour $\simeq 9 \mathrm{~min}$ Select $c \geqslant 5$
$C=2: \lambda=8$ callo $/$ h
$\mu=\frac{60}{14.5}=4.1379 \mathrm{call} / \mathrm{c}_{\mathrm{s}}$
$C=4: \lambda=16$ calls $/ \mathrm{h}$
的 $\mu=4.1379$ callo yon hom
uitilzation $=\lambda / \mu c=.967$

- : = = = = = min

$$
W_{q}=\left\{\begin{array}{l}
3.446 \text { Rours for } c=2 \\
1.681 \text { Rruss for } c=4
\end{array}\right.
$$

Consolidation veduce tes waiting time
by more then 51%. by more then 51%.
(a) $\lambda=\frac{60}{5}=12$ per hour $\mu \equiv 10 \mathrm{pen}$ fom

$$
c>\frac{\lambda}{\mu}=1.2 \Rightarrow c \geqslant 2
$$

(b)

$$
\begin{aligned}
& \lambda=\frac{60}{2}=30 \text { pen houn } \\
& \mu=\frac{60}{6}=10 \text { pen hom } \\
& c>\frac{\lambda}{\mu}=\frac{30}{10}=3 \Rightarrow c \geqslant 4
\end{aligned}
$$

(c) $\lambda=30$ pen Lom, $\mu=40$ per hr.

$$
c>\frac{30}{40}=.75 \Rightarrow c \geqslant 1
$$

$\lambda=45$ cuatomers $/ h_{2}$ $\mu=\frac{60}{5}=12$ curtomers/h $c>\frac{45}{12}$ or $c \geqslant 4$
Fevired $\mathrm{Wa} \leq 30$ seconds $=.0083 \mathrm{hr}$ Titlo: Es-4
Comparative Anabyisis

silect $C \geqslant 7$.

$m=$ aize of waiting roum.

$$
P_{1}+p_{1}+\cdots+p_{m+2} \geqslant .999 \Rightarrow m \geqslant 10
$$

$$
C=2, \lambda_{\text {windowo }}=8 \times \frac{60}{3}=16 / \mathrm{hh}
$$

$$
\mu=\frac{60}{5}=12 \text { per 总om }
$$

Thien 6
Scenatio 1-(MM/2):(GD/infinity/infinity)

(a)

$$
\begin{aligned}
P_{n \geq 2} & =1-\left(P_{0}+P_{1}\right) \\
& =1-.46667 \\
& =.5333
\end{aligned}
$$

(b) $p_{0}=.2$
(c) $L_{q}=1.067$
(d) NO, because $\lambda>\mu$. The minimum numiter of wardous ahould $\geqslant \frac{\lambda}{\mu}=\frac{16}{12}=1.33$
Number of arindow $\geqslant 2$
$\lambda=25 \times \frac{60}{15}=100$ gob $/$ hour
$\mu=\frac{60}{2}=30$ gobs $/ \mathrm{hrm}, c=4$

Rho/c $=0.83333$
\(\begin{array}{llll}L_{s}= \& 6.62194

W \& \& 0.06622\end{array} \quad\)| $\mathrm{Lq}=$ | 3.28861 |
| :--- | :--- |
| $\mathrm{Wq}=$ | 0.03289 |

(a) $P_{n \geqslant 4}=1-C P_{3}$

$$
=1-.34228=.65772
$$

(b) $W_{S}=.06622$ Rour
(c) $L q=3.29 \mathrm{jobs}$
(d) $p_{0}=.021 \Rightarrow 2.1 \%$ idlenen
(e) Av. \# of idle computere $=4-\left(L_{s}-L_{q}\right)$

$$
=4-(6.62-3.29)=.67
$$

$\lambda=15+10+20=45$ customas /heor $\mu=\frac{60}{6}=10$ curatomen / Roun $C>45 / 10=4.5 \Rightarrow C \geqslant 5$
Twe: Be-8
Comparativo Anabsis
(a) $w_{s} \leq 15 / 60=.25$ hour $\Rightarrow C \geqslant 6$
(b) $\%$ idle $=\frac{C-\left(L_{5}-L_{q}\right)}{c} \times 100$

C	L_{5}	$L_{9}{ }^{C}$	$c-\left(L_{5}-L_{q}\right)$	$\% i d l$
5	11.362	6.862	.5	10%
6	5.765	1.265	1.5	25%
Select $c=5$				

(c)

c	5	6	7
P_{0}	.00496	.00914	.01046

Shect $C \leqslant 6$

1. Lisitedspace inside a bank \mathbb{Q}
or a grocery store
2. Multiple queues appear to offer
more corteons Resivice.

Fa c parallel servers:

$$
L_{q}=\frac{\rho}{C-\rho}, \text { provided } \frac{\rho}{c} \rightarrow 1
$$

Thus,

$$
W_{q}=\frac{1}{\lambda_{c}} \frac{\rho}{c-\rho}=\frac{1}{\left(c \mu-\lambda_{c}\right)}
$$

For a serigle server

$$
W_{q_{1}}=\frac{\lambda_{1}}{\mu\left(\mu-\lambda_{1}\right)}
$$

Because $\lambda_{c}=C \lambda_{1}$, we have

$$
\left.\begin{array}{rl}
\frac{W q_{c}}{W_{q_{1}}}=\left(\frac{1}{c\left(\mu-\lambda_{1}\right)}\right. \\
\frac{\lambda_{1}}{\mu\left(\mu-\lambda_{1}\right)}
\end{array}\right)=\frac{1}{c\left(\frac{\lambda_{1}}{\mu}\right)}, \begin{aligned}
& c\left(\frac{\lambda c / \mu}{c}\right) \\
&=\frac{1}{c(\rho / c)}
\end{aligned}
$$

$$
\lim _{\frac{\infty}{c} \rightarrow 1} \frac{W_{q_{c}}}{W_{q_{1}}}=\frac{1}{c}
$$

Determination of p involves
the finite sene's sum $\infty \quad{ }^{j}$

$$
\sum_{n=c}^{\infty}\left(\frac{\rho}{c}\right)^{n-c}=\sum_{j=0}^{\infty}\left(\frac{\lambda}{\mu c}\right)^{j}
$$

The series will divenge if $\lambda \geqslant \mu c$.
The condition requires that customers
le serviced at a rate faster than the rate at which they arrive at th facility. Else, the queue will build up to infinity.

$$
\begin{aligned}
L_{q}= & \sum_{n=c}^{\infty}(n-c) p_{n} \\
= & \sum_{n=c}^{\infty} n p_{n}-c \sum_{n=c}^{\infty} p_{n}+\sum_{n=0}^{c-1} n p_{n}- \\
& \sum_{n=0}^{c-1} n p_{n}+\sum_{n=0}^{c-1} p_{n}-c \sum_{n=0}^{c-1} p_{n} \\
= & \sum_{n=0}^{\infty} n p_{n}-c \sum_{n=0}^{\infty} p_{n}+\sum_{n=0}^{c-1}(c-n) p_{n} \\
= & L_{s}-c+\left(\text { number } p_{\text {idle servers })}\right. \\
= & L s-c
\end{aligned}
$$

Now, by definition

$$
L_{s}=L_{q}+\frac{\lambda_{e} f f}{\mu}
$$

It follows that $\bar{C}=\frac{\lambda_{\text {eff }}}{\mu}$

$$
P_{n}= \begin{cases}\frac{\lambda^{n}}{n!\mu^{n}} P_{0}, & n \leqslant c \\ \frac{\lambda^{n}}{c!c^{n-c} \mu^{n}} \mathbb{P}_{0}, & n \geqslant c\end{cases}
$$

for $c=1$,

$$
p_{n}= \begin{cases}\frac{\lambda}{\mu} p_{0} & n=1 \\ \left(\frac{\lambda}{\mu}\right)^{n} p_{0} & n \geq 1\end{cases}
$$

Thus,

$$
P_{n}=\left(\frac{\lambda}{\mu}\right)^{n} \rho_{0} \quad, \quad n=1,2, \cdots
$$

$$
\begin{aligned}
L_{q} & =p_{0} \frac{1}{c!} \sum_{n=c+1}^{\infty}(n-c) \frac{(\lambda / \mu)^{n}}{c^{n-c}} \\
& =p_{0} \frac{(\lambda / \mu)^{c}}{c!} \sum_{n=c+1}^{\infty}(n-c)\left(\frac{\lambda}{\mu c}\right)^{n-c} \\
& =p_{0} \frac{(\lambda / \mu)^{c}}{c!} \sum_{j=1}^{\infty} j\left(\frac{\lambda}{\mu c}\right)^{j} \\
& =p_{0} \frac{(\lambda / \mu)^{c}}{c!} \frac{\lambda}{\mu_{c}} \frac{d}{d\left(\frac{\lambda}{\mu c}\right)} \sum_{j=0}^{\infty}\left(\frac{\lambda}{\mu_{c}}\right)^{j} \\
& \left.=p_{0} \frac{(\lambda / \mu)^{c}\left\{\frac{\lambda / \mu c}{c!}(1-\lambda / \mu c)^{2}\right.}{c!}\right\} \\
& =p_{c} \frac{\rho / c}{(1-\rho / c)^{2}}=\frac{\rho}{(c-\rho)^{2}} P_{c}
\end{aligned}
$$

(a) $P\{$ a arstorsen is waiting $\}$ Fist convert the c-channel
$=P\{$ at least $c+1$ in system $\}$

$$
\begin{aligned}
& =\sum_{n=c+1}^{\infty} p_{n} \\
& =\sum_{n=c}^{\infty} p_{n}-p_{c} \\
& =p_{0} \frac{\rho^{c}}{c!} \frac{1}{1-\frac{\rho}{c}}-P_{c} \\
& =p_{c}\left\{\frac{1}{1-\frac{\rho}{c}}-1\right\} \\
& =p_{c}\left(\frac{\rho}{c-\rho}\right)
\end{aligned}
$$

(b) Expected number in queue govern the queue is not empty

$$
\begin{aligned}
& =\sum_{i=c+1}^{\infty}(i-c) \frac{P_{i}}{\sum_{j=c+1}^{\infty} P_{j}} \\
& =\frac{L_{q}}{\sum_{j=c+1}^{\infty} P_{j}}=\frac{L_{q}}{P_{c}\left(\frac{\rho}{c-\rho}\right)}
\end{aligned}
$$

Now, $L_{q}=\frac{P_{0}}{c!} \sum_{n=c+1}^{\infty}(n-c) \frac{j^{n}}{c^{n-c}}$

$$
\begin{aligned}
& =p_{0} \frac{\rho^{c}}{c!} \sum_{j=1}^{\infty} j\left(\frac{\rho}{c}\right)^{j} \\
& =p_{0}^{0} \frac{\rho^{c}}{c!}\left(\frac{\rho / c}{(1-\rho / c)^{2}}\right), \frac{\rho}{c}<1 \\
& =p_{c}\left\{\frac{c \rho}{(c-\rho)^{2}}\right\}, \frac{\rho}{c}<1
\end{aligned}
$$

Substitution for $L q$ yield the denied result. (c) Exp waiting time for those who must wait = Exp. waiting time given there are c in

$$
\begin{aligned}
& \text { कhedyetm } \\
&=\frac{1}{\lambda} \sum_{i=c+1}^{a}(i-c) \frac{P_{c}}{\sum_{n=0}^{\infty} P_{n}} \\
&=\frac{L q / \lambda}{p_{c} /(1-p / c)}=\frac{1}{\mu(c-\rho)}
\end{aligned}
$$

case into an equivalent olga Chanel. Le the cuatomen just arriving be the j th is queue. Bean there are c channels in parallel, the service time, t, of each of the other $j-1$ customers and the (one) customer in service are determined as follows: Let $t_{1}, t_{2}, \ldots, t_{c}$ be the actual service imine in the c channels. Then,

$$
\begin{aligned}
P\{t>T\} & =P\left\{\min _{1 \leqslant i \leqslant c} t_{i}>T\right\} \\
& =\left(e^{-\mu T}\right)^{c}=e^{-\mu C T}
\end{aligned}
$$

This is true because if min $>T$, then every t_{i} mat be $>T$.

Now,

$$
\begin{aligned}
F_{t}(T) & =1-P\{t>T\} \\
& =1-e^{-\mu c T}, \quad T>0
\end{aligned}
$$

Thus,

$$
f(T)=\frac{\partial F_{t}(T)}{\partial T}=\mu c e^{-\mu c T}, T>0
$$

which is exponential with mean $\frac{1}{\mu c}$.
The c channels can be converted into an equivalent angle channel as customers j-1 customers

Equivalent single
channel $\underbrace{00 \cdots 0 \text { D Channel }}$
j services take place
before customer j
starts service
Before customer j starts reviria, j other customers each with a service time T must be processed guat.

The axeumption hive is that all c Channels are busy. If there are any idle Revers, arriving aistomer j will Rave zero waiting time in queue and the special case is treated seporatity. Let. τ-be the waiting timon in queue given there are j other customer yet o be serviced. Then

$$
\tau=T_{1}^{\prime}+T_{2}+\cdots+T_{j}
$$

where $T_{1}^{\prime}, T_{2}, \cdots, T_{1}$ are exponential with sean $1 / \mu c$. T' represents the remaining service time for the customer already in service. Th lack 8 memory youpenty endicale that T_{1} is aho exponential with mean $1 / \mu c$. Thus,

$$
W_{q}(\tau / j)=\frac{\mu c(\mu c \tau)^{j-1} e^{-\mu c \hat{\imath}}}{(j-1)!}, \tau>0
$$ Let $W_{q}(\tau)$ be the a solute $p d f$, then

$$
w_{q}(\tau)=\sum_{j=1}^{\infty} w_{q}(\tau \mid j) q_{j}
$$

where

$$
q_{j}= \begin{cases}\sum_{k=0}^{c-1} p_{k}, & j=0 \\ p_{c+j-1}, & j>0\end{cases}
$$

Hence, for $\tau>0$

$$
\begin{aligned}
W_{q}(\tau) & =\sum_{j=1}^{\infty} \frac{\mu c(\mu c \tau)^{j-1} e^{-\mu c \tau} \rho^{c+j-1}}{(j-1)!} \frac{\rho^{j-1}}{c} P_{0} \\
& =\frac{\rho^{c} \mu c e^{-\mu c \tau}}{c!} \rho_{0} \sum_{j=0}^{\infty} \frac{(\rho \mu c \tau / c)^{j}}{j!} \\
& =\frac{\rho^{c} \mu c e^{-\mu c \tau}}{c!} \rho_{0} e^{-\lambda \tau} \\
& =\frac{\rho^{c} \mu e^{-\mu c c-\rho) \tau}}{(c-1)!} P_{0}
\end{aligned}
$$

For $\tau=0$, the correspondent y probability is $\sum_{k=0}^{s-1} p_{k}$, or

$$
\begin{aligned}
1-\sum_{k=c}^{\infty} p_{k} & =1-\sum_{j=0}^{\infty} p_{c+j} \\
& =1-\sum_{j=0}^{\infty} \frac{\rho^{c+j}}{c!c^{j}} \rho_{0} \\
& =1-\frac{\rho^{c}}{c!}\left(\frac{p_{0}}{1-\frac{\rho}{c}}\right) \\
& =1-\left\{\frac{\rho^{c} p_{0}}{(c-1)!(c-\rho)}\right.
\end{aligned}
$$

Hence,

$$
w_{q}(\tau)=\left\{\begin{array}{cc}
1-\frac{\rho^{c} p_{0}}{(c-1)!(c-\rho)}, & \tau=0 \\
& \ddots \\
\frac{\mu \rho^{c} e^{-\mu(c-\rho) \tau}}{(c-1)!} \rho_{0}, \tau>0
\end{array}\right.
$$

$$
\begin{aligned}
P\{\tau>y\} & =\int_{y}^{\infty} w_{q}(\tau) d \tau \\
& =\frac{c \mu \rho^{c} p_{0}}{c!} \int_{y}^{\infty} e^{-(c \mu-\lambda) \tau} d \tau \\
& =\frac{\rho^{c} c \mu}{c!(c \mu-\lambda)} e^{-(c \mu-\lambda) y} P_{0} \\
& =\frac{\rho^{c} p_{0}}{c!\left(1-\frac{\rho}{c}\right)} e^{-(c \mu-\lambda) y} \\
& =P\{\tau>0\} e^{-(c \mu-\lambda) y}
\end{aligned}
$$

where $P\{\tau>0\}=1-P\{\widetilde{\tau}=0\}$

From problem 16 , the wailing time 18 in the system is computed as

$$
T=T_{1}^{\prime}+T_{2}+\cdots+T_{j}+t_{j}
$$

where
$t_{j}=$ actual service tine for customer j.
t_{j} is exponential with mean $1 / \mu$
Thus, T is the convolution of the waiting time in queue and the actual service time of customer; This means that wiT) is oh convolution of $\omega_{q}(\tau)$ and $g(t)$; that is,

$$
w(\tau)=\omega_{g}(\tau) * g(t)
$$

when

$$
\begin{aligned}
g(t) & =\mu e^{-\mu t}, \quad t>0 \\
\omega(T) & =\omega_{q}(0) g(T) \\
& +\int_{0+}^{T} w_{q}(\tau) g(T-\tau) d \tau \\
& =\left(1-\frac{\rho^{c} p_{0}}{(c-1)!(c-\rho)}\right) \mu e^{-\mu T} \\
& +P_{0} \int_{0+}^{T} \frac{\mu \rho^{c} e^{-\mu(c-\rho) \tau}}{(c-1)!} \mu e^{-\mu(T-\tau)} d \tau \\
= & \left(1-\frac{\rho^{c} p_{0}}{(c-1)!(c-\rho)}\right) \mu e^{-\mu T} \\
+ & \frac{\mu \rho^{c} e^{-\mu T}}{(c-1)!(c-1-\rho)} P_{0}\left\{1-e^{-\mu(c-1-\rho) T}\right\} \\
= & \mu e^{-\mu T}-\frac{\rho^{c} P_{0} \mu e^{-\mu T}}{(c-1)!(c-1-\rho)} \frac{(c-\rho-1)}{(c-\rho)} \\
+ & \frac{\mu \rho^{c} e^{-\mu T} p_{0}}{(c-1)!(c-1-\rho)}-\frac{\mu \rho^{c} e^{-\mu T} e^{-\mu(c-1-\rho) T}}{(c-1)!(c-1-\rho)}
\end{aligned}
$$

Continued..

Set $15.6 f$
(a)

$$
\begin{aligned}
c-\left(L_{s}-L_{q}\right) & =4-(4.24-1.54) \\
& =1.3 \text { Cab.5 }
\end{aligned}
$$

(b) $P_{q}=.04468$
(c)

$m=$ length of waiting list

$$
N=m+4
$$

m	N	$W_{q}(h r)$	$W_{q}(\min)$
6	10	.075	4.5
5	9	.064	3.83
4	8	.052	3.12
3	7	.039	2.33
2	6	.025	1.5

Select $m \leq 3$

$$
\begin{aligned}
& c=2, \lambda=20 / \mathrm{h}, N=5 \\
& \mu=60 / 6=10 / \mathrm{h}
\end{aligned}
$$

(a) $p_{5}=.1818$ or 18.18%
(b) $P_{1}=.1818$ or 18.18%
(c) $\%$ uliization $=100\left(\frac{L_{s}-L_{q}}{c}\right)$

$$
\begin{aligned}
& =\frac{2.727-1.091}{2} \times 100 \\
& =81.8 \%
\end{aligned}
$$

(d) $P_{\text {robobility }}=P_{2}+P_{3}+P_{4}=. \$ 4546$
(e) $P_{M} \leq-1$

| N | 5 | \cdots | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}P_{N} & .1818 & .1176 & .1053 & .0952\end{array}$
$N \geqslant 10$ spaces (including the pumps)
(f) $p_{0} \leq .05$

N	5	\cdots	8	9	10
P_{N}	.0909	.0588	.0526	.0476	

$$
N \geqslant 10
$$

$$
\begin{aligned}
& \lambda=60 / 10=6 / h \\
& \mu=60 / 30=2 / h, N=18
\end{aligned}
$$

(a) \# idle mechanics

$$
\begin{aligned}
& =c-\left(L_{s}-L_{q}\right) \\
& =3-(9.54-6.71)=.17
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P_{18}=.0559 \\
& \lambda_{\text {lost }}=.0559 \times 6=.3354 \mathrm{j} 06 / \mathrm{hr}
\end{aligned}
$$

\# lost jols wi $10 \mathrm{hrs}=3.354$ jobs
(c) $p_{n \leq 17}=p_{0}+p_{1}+\cdots+p_{17}$

$$
=.9441
$$

(d) $P_{n \leqslant 2}=P_{0}+P_{1}+P_{2}=.10559$
(e) $L_{q}=6.7081$ mower

$$
\text { (f) } \frac{L_{s}-L g}{c}=\frac{9.54-6.71}{3}=.944
$$

$$
N=40, \quad c=30, \lambda=20 / \mathrm{h}
$$

$$
\mu=60 / 60=1 / \operatorname{h~}
$$

(a) $p_{40}=.00014$
(b)

$$
\begin{aligned}
P_{30}+P_{31}+\cdots+P_{39} & =P_{n \leq 39}-P_{n \leq 29} \\
& =.99986-.97533 \\
& =.02453
\end{aligned}
$$

(c) $P_{29}=.01248$
(d) $L_{s}-L_{q}=20.043-046 \approx 20$ space
(e) $L_{q}=.046$
(f) If there are 30 cars on move in the lot, the student will not make it to class. Thus, P \{not finding a parking space\}

$$
\begin{aligned}
& =\rho_{30}+p_{1}+\cdots+\rho_{40}=1-P_{n} \leq 29 \\
& =1-.97533=.02467
\end{aligned}
$$

No. 8 students who cannot park during an 8 -hr penid $=20 \times .02467 \times 8$

$$
\cong 4 \text { students }
$$

$$
1=P_{0}\left\{\sum_{n=0}^{c-1} \frac{\rho^{n}}{n!}+\frac{\rho^{c}}{c!} \sum_{n=c}^{N}\left(\frac{\rho}{c}\right)^{n-c}\right\}
$$

$$
\begin{aligned}
& =P_{0}\left\{\sum_{n=0}^{c-1} \frac{\rho^{n}}{n!}+\frac{\rho c}{c!} \frac{1-(\rho / c)^{N-c+1}}{(1-\rho / c)}\right. \\
& P_{0}=\left\{\sum_{n=0}^{c-1} \frac{\rho \rho^{n}}{n!}+\frac{\rho^{c}}{c!}\left(\frac{1-(\rho /)^{N-c+1}}{1-\rho / c}\right)\right.
\end{aligned}
$$

$$
\bar{c}=L_{s}-L_{q}
$$

$$
=\lambda_{\text {eff }}\left(w_{s}-w_{q}\right)
$$

$$
=\lambda_{e f f}\left(\frac{1}{\mu}\right)
$$

$$
\begin{aligned}
I & \left.=\frac{P_{0}}{c!} \sum_{n=c}^{N} \frac{\rho^{n}}{c^{n-c}}+P_{0} \sum_{n=0}^{c-1} \frac{\rho^{n}}{n!}\right\rangle \\
& =\frac{P_{0} \rho^{\epsilon}}{c!} \sum_{n=0}^{N-c}\left(\frac{\rho}{c}\right)^{n}+P_{0} \sum_{n=0}^{c-1} \frac{\rho^{n}}{n!} \\
& =\frac{P_{0} \rho^{c}}{c!}(N-c+1)+P_{0} \sum_{n=0}^{c-1} \frac{\rho^{n}}{n!}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
P_{0} & =\left\{\sum_{n=0}^{c-1} \frac{\rho^{n}}{n!}+\frac{\rho^{c}}{c!}(N-c+1)\right\}^{-1} \\
L_{q} & =\sum_{n=c}^{N}(n-c) p_{n} \\
& =\sum_{j=0}^{N-c} j P_{j+c} \\
& =\frac{\rho}{c!} \frac{\rho}{c} \sum_{j=0}^{N-c} j\left(\frac{\rho}{c}\right)^{j-1} P_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\rho^{c}}{c!} \sum_{j=0}^{N-c} j p_{0}\left(\text { because } \frac{\rho}{c}=1\right) \\
& =\frac{\rho^{c}}{c!} \frac{(N-c)(N-C+1)}{2} p_{0} \\
& =\frac{\rho^{c}(N-c)(N-C+1)}{2 c!} p_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{n}=\left\{\begin{array}{l}
\lambda, n=0,1,2, \ldots, c-1 \\
0, n=c
\end{array}\right. \\
& \mu_{n}=n \mu, n=0,1, \ldots, c
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \rho_{n}=\frac{\rho^{n}}{n!} p_{0}, n=0,1,2, \ldots, c \\
& \sum_{n=0}^{c} p_{n}=\sum_{n=0}^{c} \frac{\rho^{n}}{n!} p_{0}=1 \\
& p_{0}=\left\{\sum_{n=0}^{c} \frac{\rho^{n}}{n!}\right\}^{-1}
\end{aligned}
$$

(a) $p_{0}=0$
(b) $p_{n \geqslant 10}=1-p_{n \leq 9}=1$

$$
\text { (c) } \begin{aligned}
P_{n \leqslant 40}-P_{n \leq 29} & =.7771-.13787 \\
& =.63923
\end{aligned}
$$

(d) $L_{S}=36$

Net annual equity

$$
\begin{aligned}
& \text { annual equity } \\
& =\$ 1000 \times 36\{.1(1-.3)+.9(1+.15)\} \\
& =\$ 39,780
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\frac{100}{8}=12.5 / h \\
& \mu=\frac{60}{30}=2 / \mathrm{h}
\end{aligned}
$$

(a) $L_{S}=6.25 \simeq 7$ seats
(b) $P_{n \geqslant 8}=1-\left(p_{0}+p_{1}+\cdots+p_{7}\right)$

$$
=1-.7089=.2911
$$

(c) $P_{0}=.00193$

$$
\rho=-1
$$

Ls
0.10025

1. For very small $\rho_{,}(M / M / \infty):(G D / \infty / \infty)$ provides reliable estimates for $(M / M / C):(C D / \infty / \infty)$.
2. For large $\rho_{\rho}(M / M / \infty)$ gives reliable estimates only if C is large
(a)

$$
\begin{aligned}
R=1: \lambda_{\text {eff }} & =\lambda\left(22-L_{S}\right) \\
& =.5(22-12.004) \\
& =4.998 \\
R=4: \lambda_{\text {eff }} & =.5(22-2.1)=9.95
\end{aligned}
$$

(b) No. 8 idle sepair persons

$$
\begin{aligned}
& =4-\left(L_{s}-L_{q}\right) \\
& =4-(2.1-.11)=2.01
\end{aligned}
$$

(c) $P_{0}=.10779$
(d) $R=3$:

$$
\begin{aligned}
P\{2 \text { or } 3 \text { areidle }\} & =P_{0}+p_{1} \\
& =34492
\end{aligned}
$$

The: 6h-1

Productivity of epani persons

$$
=\text { Ar. \#denoy repair persons }
$$

$$
=\frac{\angle s-\angle q}{R}
$$

R	Repaim prod.	shop prod.
1	100%	45.44%
2	88.2%	80.15%
3	65.1%	88.7%
4	49.7%	90.45%

$R=2$ yield 80.15% shop productint and also maintain nepaii producting

Increasing R, in effect, increases The number of macheries that remain opcrative, and hence Th chance of additional breatedrusis.
Stated differentty, if all machmes remain lisoken, there inil be no new calls for reair service, and

$$
\begin{aligned}
& \lambda_{\text {eff }}=0 \\
& \lambda=\frac{60}{45}=1.33 \text { macherés } / h_{1} \\
& \mu=\frac{60}{8}=7.5 \text { macheries } / h_{1} \\
& R=1, \quad K=5
\end{aligned}
$$

(a) $L_{S}=1.25$ macheres
(b) $p_{0}=.33341$
(c) $W_{S}=.25$ hour

$$
\begin{aligned}
& \lambda=60 / 45=1.33 / h_{1} \\
& \mu=60 / 20=3 / h_{2} \\
& R=4, K=4
\end{aligned}
$$

(a) $L_{s}=1.23$ worken
(b) $p_{0}=.22922$

$$
\begin{array}{rlrl}
\lambda & =\frac{60}{30}=2 \text { calls } / h / \text { baby } & \quad \bar{R} & =L_{s}-L_{q} \\
\mu & =\frac{60}{120}=.5 / h \\
& =\lambda_{\text {eff }}\left(W_{s}-W_{q}\right) \\
R & =5, \quad K=5 & & \lambda_{e f f}\left(\frac{1}{\mu}\right)
\end{array}
$$

(a) No. "awake" babies

$$
=5-L_{5}=5-4=1 \text { baby }
$$

(b) $p_{5}=.32768$
(c) $P_{n \leq 2}=p_{0}+p_{1}+P_{2}=.05792$

$$
P_{n}=\left\{\begin{array}{l}
\frac{k \lambda}{\mu} \frac{(k-1) \lambda}{2 \mu} \cdots \frac{(k-n) \lambda}{n \mu} P_{0}, 0 \leq n \leq R \\
\frac{K \lambda}{\mu} \frac{(k-1) \lambda}{2 \mu} \cdots \frac{(k-R) \lambda}{R \mu} \cdots \frac{k-n}{R \mu} \rho_{0} R \leq n \leq K
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
P_{n} & = \begin{cases}\frac{k(k-1) \cdots(k-n)}{1 \times 2 \times \cdots \times n}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}, 0 \leq n \leq R \\
\frac{C_{n}^{k} n!}{R!R^{n-R}}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}, & R \leq n \leq k\end{cases} \\
& = \begin{cases}C_{n}^{k} \rho^{n} \rho_{0}, & 0 \leq n \leq R \\
C_{n}^{k} \frac{n!\rho^{n}}{R!R^{n-R} P_{0}}, & R \leq n \leq k\end{cases}
\end{aligned}
$$

hence $\lambda_{\text {eff }}=\mu \bar{R}$

$$
\begin{aligned}
& p_{n}=\left\{\begin{array}{l}
C_{n}^{k} \rho^{n} n!p_{0}, n=0,1 \\
C_{n}^{k} n!\rho^{n} p_{0}, n=1,2, \ldots, k \\
\end{array}\right. \\
&=\frac{k!}{(k-n)!} \rho^{n} p_{0}, n=0,1,2, \ldots, k \\
& L_{S}=\sum_{n=0}^{k} n p_{n}
\end{aligned}=p_{0} k!\sum_{n=0}^{k} \frac{n \rho^{n}}{(k-n)!} .
$$

$$
\begin{aligned}
& \% \text { idle }=\frac{1-(L s-L g)}{1} \times 100 \\
& =\left[1-\left(L_{s}-L_{q}\right)\right] \times 100 \\
& =(1-1.333+.667) \times 100 \\
& =33.3 \% \\
& \text { (a) } E\{t\}=14 \text { min } \\
& \operatorname{Var}\{t\}=\frac{(20-8)^{2}}{12}=12 \mathrm{~min}^{2} \\
& \lambda=4 / \mathrm{h}^{2}=.0667 / \mathrm{min} \\
& L_{s}=7.867 \text { cars } \\
& W_{S}=118 \quad \text { min }=1.967 \text { fours } \\
& L_{q}=6.933 \text { cars } \\
& W_{q}=104 \quad \min =1.733 \text { hours } \\
& \text { (b) } E\{t\}=12 \text { mis } \\
& \operatorname{Var}\{t\}=9 \text { min }^{2} \\
& \lambda=.0667 / \min \\
& L_{S}=2.5 \text { cars } \\
& W_{S}=37.5 \text { misi }=625 \text { hoier } \\
& L_{q}=1.7 \text { cars } \\
& W_{q}=25.5 \text { mis }=.425 \mathrm{~h} \\
& \text { (c) } E\{t\}=4 \times \cdot 2+8 \times .6+15 \times .2=8.6 \mathrm{~mm} \\
& \operatorname{Var}\{t\}=(4-8.6)^{2}(.2)+(8-8.6)^{2}(.6) \\
& +(15-8.6)^{2}(.2)=12.64 \mathrm{~min}^{2} \\
& L_{5}=1.0244 \text { cars } \\
& w_{s}=15.3657 \text { mesi }=.256 \mathrm{hs} \\
& L q=.451 \mathrm{car} \\
& w_{q}=6.765 \mathrm{~min}=.113 \mathrm{~h} \\
& \text { Service tenc distilution: } \\
& f(t)=.5, \quad 2 \leq t \leq 4 \text { days } \\
& E\{t\}=3 \text { days } \\
& \operatorname{Var}\{t\}=\frac{4}{12}=-333 \text { days }^{2} \\
& \text { (a) } L_{q}=4.2 \text { Lomes } \\
& \text { (b) } W_{S}=17 \text { days } \\
& \text { (c) } E\{t\}=1.5 \text {, Var }\{t\}=\frac{1}{12}=.0833 \\
& L_{q}=.191 \text { Rome } \\
& W_{S}=2.14 \text { days } \\
& \lambda=\frac{30}{8 \times 60}=.0625 \text { prescr } . / \mathrm{min} \\
& E\{t\}=12+3=15 \text { mesi } \\
& \operatorname{Var}\{t\}=9+\frac{(4-2)^{2}}{12}=9.333 \mathrm{~min}^{2} \\
& \text { (a) } p_{0}=.0625 \\
& \text { (b) } L_{q}=7.3 \text { preacrijstions } \\
& \text { (c) } W_{s}=132.17 \text { mesi }=2.2 \text { hours } \\
& \lambda=1 / 45 / \mathrm{mu}^{\circ}=.0222 / \mathrm{min} 5 \\
& E\{t\}=28+4.5=32.5 \mathrm{~mm} \\
& \operatorname{Var}\{t\}=\frac{(6-3)^{2}}{12}=.75 \\
& \text { (a) } L_{q}=.9395 \text { item } \\
& \text { (b) } p_{0}=.278 \\
& \text { (c) } W_{S}=74.78 \mathrm{mmi} \\
& L_{S}=\lambda E\{t\}+\frac{\lambda^{2}\left(E^{2}(t)+\operatorname{Van}(t\}\right)}{2(1-\lambda E\{t\})} \\
& =\lambda E\{t\}+\frac{(\lambda E\{t\})^{2}}{2(1-\lambda E\{t])} \\
& =\rho+\frac{\rho^{2}}{2(1-\rho)}
\end{aligned}
$$

$$
\begin{aligned}
& L_{s}=\frac{m \lambda}{\mu}+\frac{\lambda^{2}\left(\frac{m^{2}}{\mu^{2}}+\frac{n}{\mu^{2}}\right)}{2\left(1-\frac{m \lambda}{\mu}\right)} \\
&=m \rho+\frac{m^{2} \rho^{2}+m \rho^{2}}{2(1-m \rho)} \\
&=m \rho+\frac{m(m+1) \rho^{2}}{2(1-m \rho)} \\
& E\{t\}=\frac{1}{\mu}, \operatorname{Var}\{t\}=\frac{1}{\mu^{2}} \\
& L_{s}=\frac{\lambda}{\mu}+\frac{\lambda^{2}\left(\frac{1}{\mu^{2}}+\frac{1}{\mu_{2}}\right)}{2(1-\lambda / \mu)} \\
&=\rho+\frac{\rho^{2}}{1-\rho} \\
&=\frac{\rho}{1-\rho}
\end{aligned}
$$

(a) Because each server recevies every $c^{\text {th }}$ customer and the enterarrival time at the channel is exponential with mean $1 / \lambda$, the interarrival time at each server is the convolutions of c exponential distributions each with mean $\frac{1}{\mu}$.
This meanosthat the interarisiral tine is gamma with mean c / λ and romance c / λ^{2}.
(b) The interarrival tinaie at the cHe sever is exponential with mean $\frac{1}{\alpha_{i} \lambda}$. This means that He arrivals at server i is Poidion with mean $\alpha_{1} \lambda, i=1,2$,

$$
\cdots, c
$$

$$
\text { (a) } \begin{aligned}
\mu_{2} & =\frac{24}{\left(\frac{1000}{36}\right) \frac{1}{60}}=5.184 \text { jabs/day } \quad L \\
\mu_{3} & =\frac{24}{\left(\frac{1000}{50}\right) \times \frac{1}{60}}=7.2 \text { jobs/day } \\
\mu_{4} & =\frac{24}{\left(\frac{1000}{66}\right) \times \frac{1}{60}}=9.5 \text { jobs/day }
\end{aligned}
$$

(6) $E T C_{i}=24 C_{1 i}+80 L q_{i}$,

Select model 3 .

$$
\begin{array}{ll}
\lambda=3 / h \\
\mu_{1}=5 / h, & G_{1}=\$ 15 \\
\mu_{2}=8 / h, & C_{2}=\$ 20
\end{array}
$$

coot $/$ Broken machine $=\$ 50 / \mathrm{h}$

$$
(M / M / 1):(G D / 10 / 10):
$$

$$
\lambda=3, \mu=5 \Rightarrow L_{S}=8.33
$$

$(M / M / 1):(G D / 10 / 10):$

$$
\begin{aligned}
\lambda=3, \mu=8 & \Rightarrow L_{S_{2}}=7.33 \\
T C_{1}=50 L_{S_{1}}+15 & =50 \times 8.33+15 \\
& =\$ 431.50 / \mathrm{h} \\
T C_{2}=50 L_{S_{2}}+20 & =50 \times 7.33+20 \\
& =\$ 386.50 / \mathrm{h}
\end{aligned}
$$

Here second repai person.

$$
\lambda=10 / \mathrm{h}=.167 / \mathrm{min}
$$

Scanser A :
Service time drahulntivas:

$$
f_{A}(t)=\frac{1}{\left(\frac{35}{10}\right)-\left(\frac{25}{10}\right)}=1,2.5 \leq t \leq 3.5
$$

$E_{A}\{t\}=3 \mathrm{~min}$
$\operatorname{Vav}_{A}\{t\}=\frac{1}{12} \min ^{2}$
Scanser B:

$$
\begin{aligned}
& f_{B}(t)=\frac{1}{\frac{35}{15}-\frac{25}{15}}=1.5, \quad 5 / 3 \leqslant t \leqslant 7 / 3 \\
& E_{B}\{t\}=2 \min ^{2} \\
& \operatorname{Var}_{B}\{t\}=\frac{(2 / 3)^{2}}{12}=1 / 27 \mathrm{~min}^{2}
\end{aligned}
$$

From Exce/file PKformula x / s,
$L_{S_{A}}=.755$ cuatomer
$L_{S_{B}}=.419$ cualomer

$$
\begin{aligned}
T C_{A} & =.2 L_{S_{A}}+C_{A} \$ \\
& =\left(.2 \times .755+\frac{10}{10 \times 60}\right) \times 60={ }^{\$} 10.06 / \mathrm{hu}
\end{aligned}
$$

$T C_{B}=2 L_{S B}+C_{B}$

$$
=\left(.2 \times .419+\frac{\$ 15}{10 \times 60}\right) \times 60=\$ 6.53 / \mathrm{h}
$$

Select scanner B
(a)
$\mu=$ number of filled orden/ts
$\lambda=$ number of requeated orders/th
$C_{1}=\cos t /$ unit incseare in production rate
$C_{2}=$ coot of waiting / wnot waiting teme/cuot.
$T C(\mu)=$ Total $\cos t /$ unnt waiting time geven μ
(b)

$$
\begin{aligned}
& =c_{1} \mu+c_{2} L_{S} \\
& =c_{1} \mu+c_{2} \frac{\lambda}{\mu-\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial T C(\mu)}{\partial \mu}=c_{1}-c_{2} \frac{\lambda}{(\mu-\lambda)^{2}}=0 \\
& \mu=\lambda+\sqrt{\frac{c_{2}}{c_{1}} \lambda}
\end{aligned}
$$

(c) $\lambda=3, c=-1 \times 500=\$ 50, c_{2}=\$ 100$

$$
\mu=3+\sqrt{\frac{100}{50} \times 3}=5.45 \text { ordeno } / h_{1}
$$

Optimuin production rali

$$
=500 \times 5.45 \simeq 2725 \text { pieces } / \mathrm{m}
$$

$$
\begin{aligned}
\lambda & =80 \mathrm{jobo} / \mathrm{\omega k} \\
c_{1} & =\$ 250 / \mathrm{wk} \quad c_{2}=\$ 500 / \mathrm{job} / \mathrm{wk} \\
\mu & =\lambda+\sqrt{\frac{C_{2}}{c_{1}} \lambda} \\
& =80+\sqrt{\frac{500}{250} \times 80}=92.65 \mathrm{jobo} / \mathrm{wk} \\
\lambda & =25 \text { groups } / \mathrm{h}
\end{aligned}
$$

Model A: $\mu_{A}=26 / h, N=20$
Operating coot $C_{A}=\$ 12000 / \mathrm{month}$
From TORA: $\mathcal{Y}_{20}=.03128$

$$
L_{q}=7.65 \text { groups }
$$

$\cos / t h=$ qearating $\cos / t / h+$ waiting cost $/ h_{1}$

$$
\begin{aligned}
& +\cos +q \text { lint customers } / e_{1} \\
= & \frac{c_{A}}{30 \times 10}+10 L_{q}+\lambda P_{N} \times 15 \\
= & \frac{12000}{30 \times 10}+10 \times 7.65+25 \times .03128 \times 15 \\
= & \$ 128.23 / h
\end{aligned}
$$

Model B: $\mu_{B}=29 / \mathrm{h}, N=30$
$C_{B}=\$ 16000 /$ month
From TORA: $p_{3}=.0016$

$$
L_{q}=5.07 \text { groups }
$$

cost $/ h_{1}=\frac{\$ 16000}{3 \times 10}+10 \times 5.07+25 \times .0016 \times 15$

$$
=7104.63
$$

Select model B
Let
$C_{3}=\cos t /$ unit timie/additional capacity unit.
The cost model in Problem 6 is modified by adding the term $\mathrm{C}_{3} \mathrm{~N}$ to the cost equation.
P_{0} is the perbability of running out of stock. Thus,
Coot of loot sales par Rom $=C, ~$ I po
$E\{\cos \}$ /unit time
$=E\{\operatorname{loot}$ sales coot $\}$ / init time
$+E\{$ holding cost $\} /$ init time

$$
=C_{1} \lambda P_{0}+C_{2} L_{s}
$$

For $(M / M / 1):(G D / \infty / \infty)$

$$
\begin{aligned}
& \rho_{\rho}=(1-\rho) \\
& L_{s}=\frac{\rho}{1-\rho}
\end{aligned}
$$

Thess,

$$
\begin{aligned}
& E\{\operatorname{cost}\} / \text { unitive }=C_{1} \lambda(1-\rho)+C_{2} \frac{\rho}{1-\rho} \\
& \frac{\partial E\{\cos t\}}{\partial \rho}=-C_{1} \lambda+\frac{c_{2}}{(1-\rho)^{2}}=0
\end{aligned}
$$

Thus,

$$
\rho=1 \pm \sqrt{\frac{c_{1} \lambda}{c_{2}}}
$$

undu steady state, ρ must be leas than 1. Thus,

$$
\rho=1-\sqrt{\frac{c_{1} \lambda}{c_{2}}}
$$

The solution sequires $\sqrt{\frac{C_{1} \lambda}{C_{2}}}<1$ in order for ρ not to assume a negatwi value. Note that $\rho=\frac{\lambda}{\mu}$, where λ is a constant. This mean that μ is the actual optimization valuable.

Use three clerks

$$
\begin{aligned}
& C_{00 t} / \mathrm{h}=C_{1} L_{S}+C_{2} C \\
& C_{1}=\$ 30, \quad C_{2}=\$ / 8 \\
& (M / M / C):(G D / 10 / 10): \lambda=1 / 20=0.05 / \mathrm{h} \\
& M=1 / 3=0.333 / \mathrm{h}
\end{aligned}
$$

$$
(\text { Cost } / \ln \text { for } c=2)=30 \times 1.68+18 \times 2=\$ 86.40
$$

$$
(\operatorname{cost} / \ln \operatorname{fnc} C=3)=30 \times 1.36+183=\$ 94.80
$$

(a) No, because the cost is higher
(b) Schedule $\cos A /$ breakedrum $=C_{1} W_{S}$
$C=2: W_{S}=4.037$ hours
Schedule loss $=30 \times 4.037=7 / 21.11$
$C=3: \quad W_{S}=3.155$ hours $\$ \%$
Schedule loss $=30 \times 3.155=94.65$
The problem is similar to the machine repair model. The executive are the "achene" and the WATS line is the "server" aural rate $/$ executive $=2$ call $/$ day Service rate $=\frac{480}{6}$

$$
=80 \text { calls / day }
$$

Continued...

Rate of breakdorex/machine, λ. 4 or

$$
\begin{aligned}
& =\frac{57.8}{8 \times 20}=.36125 / \mathrm{hr} \\
\mu & =\frac{60}{6}=10 / \mathrm{hr}
\end{aligned}
$$

TORA model: $(M / M / 3):(G D / 20 / 20)$ $W_{S}=$ loot time pu break e down $\lambda=$ number of break downs $/ h /$ mach loot time pen mach $/ h_{r}=\lambda W_{S}$
From TORA, $W_{S}=.10118 \mathrm{~h}$ Lost revenue/macheri/her

$$
\begin{aligned}
& =25 x(\cdot 36125 x \cdot 10118) x^{\$ 2} \\
& =\$ 1.83
\end{aligned}
$$

Lost revenue for all machines

$$
=20 \times 1.83=\$ 36.50^{\circ}
$$

Coot of 3 sepaijpersons $/ h_{1}$

$$
\begin{aligned}
& D=3 \times 20=\$ 60 \\
& T C(c)=c C_{1}+C_{2} L_{s}(c) \\
& T C(c-1)=(c-1) C_{1}+C_{2} L_{s}(c-1) \\
& T C(c+1)=(c+1) C_{1}+C_{2} L_{s}(c+1) \\
& T C(c-1)-T C(c) \\
&=-C_{1}+C_{2}\left\{L_{s}(c-1)-L_{s}(c)\right\} \\
& T C(c+1)-T C(c) \\
&= C_{1}-C_{2}\left\{L_{s}(c)-L_{s}(c+1)\right\}
\end{aligned}
$$

At a minimum point, we moat tare

$$
\begin{aligned}
& T C(c-1) \geqslant T C(c) \\
& T C(c+1) \geqslant T C(c)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& L_{s}(c-1)-L_{s}(c) \geq \frac{c_{1}}{c_{2}} \\
& L_{s}(c)-L_{s}(c+1) \leq \frac{c_{1}}{C_{2}}
\end{aligned}
$$

$\lambda=1 / 7=.1428$ breakedown $/ \mathrm{h}$ $\mu=.25$ repaii per Rour
TORA model: $(M / M / R):(G D / 10 / 10)$ Comparalive Anialsesis

(a) From TORA's output

$$
\angle_{s}<4 \Rightarrow R \geqslant 5
$$

(b) From TORA's output

$$
\begin{aligned}
& W_{q}<1 \Rightarrow R \geqslant 4 \\
& C_{1}=\$ 12 \\
& \frac{c}{2} L_{s} \\
& \hline 2 \quad 7.467 \\
& 4 \quad 2.217 \\
& 4 \quad 1.842 \\
& 2.217-1.842 \leq \frac{12}{C_{2}} \leq 7.467-2.217 \\
& .375 \leq \frac{12}{C_{2}} \leq 5.25 \\
& \text { on } \\
& \$ 2.29 \leq c_{2} \leq \$ 32
\end{aligned}
$$

Chapter 16

Simulation Modeling

Set 16.1a

Set 16.1a

Lead time:

$$
\begin{array}{ll}
0 \leq R \leq \cdot 5, & L=1 \text { day } \\
.5<R \leq 1, & L=2 \text { days }
\end{array}
$$

De mand/day:

$$
\begin{array}{ll}
0 \leqslant R \leq \cdot 2, & d=0 \text { unit } \\
\cdot 2<R \leq .9, & d=1 \text { unit } \\
\cdot 9<R \leq 1 . & d=2 \text { units }
\end{array}
$$

Let $p(d, L)$ be th i joint pdt of demand and lead lime. The procedure calls for constructing a frequency table of demand and lead time. The maximum demand during lend tine is $2 \times 2=4$ units, so that the demand $d=0,1,2,3,4$. We aril use the random numbers m Table 16-1 m' th following manner: First woe a indore number to generate x lead time. If $\angle=1$ day, use one
random number to general 7 continued Th demand in that day. If $\angle=2$ days, use two nandosn numbers to generate the demands for. the wo days. For example, $R=.058962$ yields $L=1$. Next, $R=.6733$ gives $d=1$. Thus, we expdate te frequency table by in creaking the frequency of the entry $(\alpha=1, L=1)$ by one. The. frequency table using the first two columns of R in Table 16-1 is d

Total $n=23$
Relative frequency table: $P(L)$

L| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $1 / 23$ | $7 / 23$ | $2 / 23$ | 0 | 0 | $\frac{10}{23}$ |
| $2 / 23$ | 0 | $7 / 23$ | $4 / 23$ | 0 | $\frac{13}{23}$ | |

$\begin{array}{lllll}p(d) & 3 / 23 & 7 / 23 & 9 / 23 & 4 / 23\end{array} 0$
Note hat

$$
\begin{aligned}
& p(d)=\sum_{L} p(d, L) \\
& p(L)=\sum_{d} p(d, L)
\end{aligned}
$$

Fromgraph, nadle will touch hive
or cross it is

$$
h \leq \frac{d}{2} \sin \theta
$$

(b) Generate $h=R_{1} \times D / 2$

$$
\theta=\pi \times R_{2}
$$

of $h \leq \frac{d}{2} \sin \theta=\pi \times R_{2}$
it doedode toucheo. E/se
Robahitingestimate $=\frac{\text { \#toucheo }}{\text { Dample aje }}$
(c) $B \quad B \quad C \quad D$

(d)

Exact probalility $=\frac{A_{1}+A_{2}}{\pi D}$

$$
\begin{aligned}
& =\frac{2 \int_{0}^{\pi} \frac{d}{2} \sin \theta d \theta}{\pi} \\
& =\frac{2 d}{\pi D}
\end{aligned}
$$

(c) From (c),

$$
\tilde{p}=\cdot 3
$$

Thus,

$$
\frac{2 d}{\pi D}=\cdot 3
$$

or $\begin{aligned} \pi & \cong \frac{2 d}{3 D} \\ & \simeq \frac{2 \times 10}{3 \times 20}\end{aligned}$

$$
\simeq 3.33
$$

(a) Discrete
(b) Continuous
(c) Discrete

In discrete simulation, there are two mavis events: astivals and departures. An arrival event may experience delay before starting service. When service has been completed, customer leaves the facility.

The decryption of the discrete simulation situation by arrival and departure events is the rearoms discrete simulation is associated with queues.

Events:
$A_{1}=$ cush job arrives
A_{2} = segular job arrives
$D_{1}=$ rush job departs
$D_{2}=$ regular job departs
$A_{0}=$ job arrives of carousel 2
$A_{1}=$ job arrives at station 1
$A_{2}=$ job arrives at station 2
$A_{3}=$ job arrives at station 3
$D_{1}=$ job departs station 1
$D_{2}=$ fol departs station 2
$D_{3}=$ fol departs station 3
$A_{1}=$ car enters lane 1
$A_{2}=$ car enters line 2
$A_{3}=$ car goes elsewhere
$D_{1}=$ car departs lane 1
$D_{2}=$ car departs lane 2 .

$$
t=-\frac{1}{\lambda} \ln (1-R)
$$

$\lambda=4$ customers $/$ h

$$
R=\frac{t-a}{b-a}
$$

$$
R=.0589, a_{1}=-.2 \ln (1-.0589)=.12 \mathrm{hr}
$$

(a)

$$
\begin{array}{ll}
0 \leq R<.2, & d=0 \\
.2 \leq R<.5, & d=1 \\
.5 \leq R<.9, & d=2 \\
.9 \leq R \leq 1 ., & d=3
\end{array}
$$

(b)		Demand	Stock level
Day R d 5 0 - - 5 1 .0589 0 3 2 .6733 2 2			

Replenish stock on day 3
Repaii/.2, Package/.8:
$\sigma \leqslant R<-2$, got Repair
$.2 \leq R \leq 1$, got Package.
Package 1.8, Repai/.2:

$$
t=a+(b-a) R
$$

$0 \leq R<.8$, got Package
$.8 \leq R \leq 1$, go to Repair.

$$
f_{1}\left(t_{1}\right)=.5 e^{-.5 t}, \lambda=1 / 2 \text { arrival } / \mathrm{hr}
$$

Example: $R=1$ leads to

$$
f_{2}(t)=\frac{1}{9}, \quad 1.1<t<2
$$ Repair in the frit case and to Package in the second case

$$
R=.6733, d_{1}=1.1+.9 \times .6733=1.71 h_{s}
$$

$$
\begin{aligned}
& 0 \leq R<.5: \quad H \\
& .5 \leq R \leq 1: \quad T
\end{aligned}
$$

$$
R=.4799, a_{2}=-2 \ln (1-.4799)=1.31 \mathrm{hrs}
$$

$$
R=.9486, a_{3}=-2 \ln (1-.9486)=5.94 \mathrm{hns}
$$

$$
R=.6139, d_{2}=1.1+.9 \times .6139=1.65 \mathrm{hms}
$$

$$
R=.5933, d_{3}=1.1+.9 \times .5933=1.63 \mathrm{hm}
$$

$$
R=.9341, a_{4}=-2 \ln (1-.9341)=5.44 h_{0}
$$

$$
R=.1782, d_{4}=1.1+.9 x .1782=1.26 \mathrm{hm}
$$

$$
R=.3473, d_{5}=1.1+.9 \times \cdot 3473=1.41 \text { his }
$$

(b) $a=1, b=3, c=7$

$$
\frac{b-a}{c-a}=\frac{3-1}{7-1}=-333
$$

Thus,

$$
X=\left\{\begin{aligned}
& 1+\sqrt{(3-1)(7-1) R} \\
&=1+\sqrt{12 R}, 0 \leq R \leq 333 \\
& 7-\sqrt{(7-3)(7-1)(1-R)} \\
&=7-\sqrt{24(1-R)},-333 \leq R \leq 1
\end{aligned}\right.
$$

R	x
.0589	1.84
.6733	4.20
.4799	3.47
.9486	5.89
.6139	3.96
$\frac{2}{d+c-b-a}$	

$$
F(x)=\left\{\left.\begin{array}{ll}
\frac{(x-a)^{2}}{(b-a)(d+c-b-a)} & a \leq x \leq b \\
\frac{1}{(b-a)(d+c-b-a)}+\frac{2(x-a)}{(d+c-b-a)} & b \leq x \leq c \\
1-\frac{(d-x)^{2}}{(d-c)(d+c-b-a)} & c \leq x \leq t
\end{array} \right\rvert\,\right.
$$

$$
\begin{aligned}
& R=\frac{(x-a)^{2}}{(b-a)(d+c-b-a)} g w^{2} \\
& X=a+\sqrt{(b-a)(d+c-b-a) R, 0 \leq R s \frac{b-a}{(d+c-b-w}} \\
& R=\frac{1}{(b-a)(d+c-b-a)}+\frac{2(x-b)}{(d+c-b-a)} g w n \\
& X=\frac{1}{2}\left(R-\frac{1}{(b-a)(d+c-b-a)}\right)(d+c-b-a), \\
& \quad \frac{b-a}{d+c-b-a} \leq R \leq 1-\frac{d-c}{(d+c-b-a)}
\end{aligned}
$$

$$
R=1-\frac{(d-x)^{2}}{(d-c)(d+c-b-a)}
$$

$$
x=d-\sqrt{(d-c)(d+c-b-a)(1-R)}
$$

$$
1-\frac{d-c}{(d+c-b-a)} \leq R \leq 1
$$

$$
\begin{aligned}
& \text { (b) } a=1, b=2, c=4, d=6 \\
& 1+\sqrt{(2-1)(6+4-2-1) R}=1+\sqrt{7 R}, \sigma \leq R \leq 143 \\
& 2+\frac{6+4-2-1}{2}\left(R-\frac{1}{(2-1)(6+4-2-1)}\right. \\
& =2+3 \cdot 5(R-143) \text {, } \\
& .143 \leq R \leq .714 \\
& 6-\sqrt{(6-4)(6+4-2-1)(1-R)} \\
& =6-\sqrt{14(1-R)} \\
& .714 \leqslant R \leqslant 1 \\
& f(x)=p q^{x}, \quad x=0,1,2, \ldots \\
& (p+q)=1 \\
& F(x)=p \sum_{i=0}^{x} q^{t} \\
& =1-q^{x+1}, x=0,1,2, \ldots
\end{aligned}
$$

Sampling procedure:
if $0 \leqslant R \leqslant p$, then $x=0$.
For $p<R \leq 1$, we have

$$
1-q^{n} \leq R \leq 1-q^{n+1}
$$

a $n \leq \frac{\ln (1-R)}{\ln q} \leq n+1$
Thus, for $p \leq R \leq 1$, compute

$$
x=\left[\frac{\ln (1-R)}{\ln q}\right]
$$

where $[a]$ is the largest integer less than or equal to a.
For $p=.6, q=.4$, we Lave

R	$\frac{\ln (1-R)}{\ln q}$	x
.0589	-	0
.6733	1.22	1
.4799	-	0
.9486	3.24	3
.6139	1.03	1

$$
\begin{aligned}
f(x) & =\alpha \beta^{-\alpha} x^{\alpha-1} e^{-(x / \beta)^{\alpha}}, x>0 \\
& =\frac{\alpha}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}, x>0 \\
F(x) & =1-e^{-\left(\frac{x}{\beta}\right)^{\alpha}}, x>0
\end{aligned}
$$

Thus,

$$
R=1-e^{-\left(\frac{x}{\beta}\right)^{\alpha}}
$$

σ

$$
x=\beta[-\ln (1-R)]^{1 / \alpha}
$$

$$
\begin{aligned}
& y=\frac{1}{5} \ln \{(.0589 x \cdot 6733 \times .4799 \times .9486\} \\
&=.803 \text { how } \\
& \lambda=5 \text { event h/h }, t=1 \\
& e^{-5 \times 1}=e^{-5}=.00673 \\
& i \quad R_{1} R_{2} \cdots R_{i} \\
& \frac{1}{l} \cdot .0589 \\
& 2.0589 \times .6733=.0397 \\
& 3 \quad .0397 \times .4799=.0190 \\
& 4 \quad .0190 \times .9486=.0181 \\
& 5 \quad .0181 \times .6139=.0111 \\
& 6 \quad .0111 \times .5933=.00656 \\
& 7 \quad .00656 \times .9341=.00614
\end{aligned}
$$

Hence $n=6$

$$
\mu=8, \quad \sigma=1, \quad N(8,1) \quad 3
$$

Convolution method:

$$
\begin{aligned}
& x=R_{1}+R_{2}+\cdots+R_{12}=6.1094 \\
& y=8+1(6.1094-6)=8.1094
\end{aligned}
$$

Box-Miller method::

$$
\begin{aligned}
x & =\sqrt{-2 \ln R}, \cos \left(2 \pi R_{2}\right) \\
& =\sqrt{-2 \ln .0589} \cos (2 \pi \times .6733) \\
& \cong-1.103 \\
y & =8+1(-1.103)=6.897
\end{aligned}
$$

$$
\lambda=6 / \text { day } \quad m=5
$$

$$
y=-\frac{1}{6} \ln (.0589 x .6733 x .4799 x
$$

$$
.9486 \times .6139)=.751 \text { hour. }
$$

$$
N(27,3): \mu=27, \quad \sigma=3
$$

Given R_{1} and R_{2}, we have

$$
\begin{aligned}
& x_{1}=\sqrt{-2 \ln R_{1}} \cos \left(2 \pi R_{2}\right) \\
& x_{2}=\sqrt{-2 \ln R_{1}} \sin \left(2 \pi R_{2}\right) \\
& y_{1}=\mu+\sigma x_{1} \\
& y_{2}=\mu+\sigma x_{2}
\end{aligned}
$$

The number of mice that exit de maze in so eecosids is 4 Let $x_{1}, x_{2}, \cdots, x_{r}$ be r mucconail random deviates obtained from the geomatuc durtibition as given in Problem 9, set 18.36. Then

$$
x_{i}=\left[\frac{\ln R_{i}}{\ln (1-p)}\right], i=1,2, \ldots, 1
$$

Because th negative hisiomial is The convolution of s evidependent geometric random valuables, it follows that a randoms negative.
binomial sample can be determined

$$
x=\sum_{i=1}^{n}\left[\frac{\ln R_{c}}{\ln (1-p)}\right]
$$

Note that. [a] represents the largest integer $\leq a$

Set 16.3d
step 1: $R=6139$

$$
x=.6139
$$

step 2: $R=.5933$

Step 1: $R=.9341, \quad x=-9341$
Step 2: $R=.1782$
step 3: $\frac{f(.9341)}{g(.9341)}=\frac{.3693}{1.5}=.246>1782$
step 1: $R=.3473, \quad x=.3473$
step: $R=.5644$
step 3: $\frac{f(.3473)}{g(.3473)}=.9067>.5644$ Reject x
Step 1: $R=.3529, x=.3529$
slop: $R=.3646$
Step 3: $\begin{array}{r}\frac{f(.3529)}{g(.3529)}=.913>.3646 \\ \text { Rect } x\end{array}$
Step 1: $R=.7676, x=.7676$
dep 2: $R=.8931$
Step 3: $\quad \frac{f(.7676)}{g(.7676)}=.7135<.8931$
$\operatorname{accept} x=.7676$

Step 1: $R=.4799, \quad x=.4831$
Step 2: $R=.9486$
step 3: $\frac{f(.4831)}{g(.4831)}=.9988>.9486$ Reject x
Step 1: $R=.6139, \quad x=.5974$
Step 2: $R=.5933$
Step 3: $\begin{aligned} \frac{f(.5974)}{g(.5974)}= & .9627 .59332 \text { continued } \\ & \text { reject } x\end{aligned}$
step: $R=.9341 \quad x=.8804$
step 2: $R=: 1782$
step 3: $\frac{f(.8804)}{g(.8804)}=\frac{.842>.1782}{\text { Reject } x}$
Step 1: $R=.3529, \quad x=.375$
Step 2: $R=-3646$
Step 3: $\frac{f(.375)}{g(.375)}=\begin{array}{r}.937>.3646 \\ \text { Reject } x\end{array}$
Reject x
$=.7286$
step 1: $P=.7676, x=.7286$
Step 2: $R=.8931$
$\begin{array}{r}\text { step 3: }\end{array} \frac{f(.7286)}{g(.7286)}=\frac{1186}{1.5}=.791<.8931$

$f(x)=\frac{\sin (x)+\cos ^{4}(x)}{2} \quad 0 \leqslant x \leqslant \frac{\pi}{2}$
$\max f(x)=.707$ at $x=\frac{\pi}{4}$

$$
\begin{aligned}
& g(x)=.707 \quad 0 \leqslant x \leqslant \pi / 2 \\
& h(x)=\frac{g(x)}{\text { area under } g(x)} \\
&=\frac{.707}{.707 \times \frac{\pi}{2}}=.637 \quad 0 \leqslant x \leqslant \frac{\pi}{2} \\
& \int_{12}^{20} \frac{k}{t} d t=k_{1} \ln \frac{20}{12}=1
\end{aligned}
$$

Thus, $K_{1}=1.96$

$$
\int_{18}^{22} \frac{k_{2}}{t^{2}} d t=k_{2}\left(\frac{1}{18}-\frac{1}{22}\right)=1
$$

Thun, $K_{2}=99$

$$
\begin{array}{ll}
f_{1}(t)=\frac{1.96}{t}, & 12 \leq t \leq 20 \\
f_{2}(t)=\frac{99}{t^{2}}, & 18 \leq t \leq 22
\end{array}
$$

continued..

$h_{1}(t)=\frac{.261-.008125 t}{1.044}$

$$
=.25-.007783 t
$$

$$
H_{1}(t)=0.25 x-\left.00778 \frac{x^{2}}{2}\right|_{12} ^{t}
$$

$$
=.25 t-.003892 t^{2}-2.44
$$

$$
h_{2}(t)=\frac{.7825-.02625 t}{1.03}
$$

$$
=.76-.0255 t
$$

$$
H_{2}(t)=.76 t-.01275 t^{2}-9.55
$$

Sample computations from $H_{2}(t)$:
Step 1: $R_{1}=.0589$

$$
\begin{aligned}
& .76 t-.01275 t^{2}-9.55=.0589 \\
& t^{2}-59.6 t+753.64=0 \\
& t=\frac{59.6 \pm \sqrt{(-59.6)^{2}-4 \times 753.64}}{2} \\
& =18.2
\end{aligned}
$$

Step 2: $R=.6733$

Step 3: $\frac{f_{2}(18.21)}{g_{2}(18.21)}=\frac{\left(\frac{99}{18.21^{2}}\right)}{7825-.02625 \times 18.21}$

$$
=.98>.6733
$$

Reject t.

$C=2$ barbers

$$
\begin{aligned}
& f_{1}(t)=.1 e^{-1 t}, \quad t>0 \\
& f_{2}(t)=\frac{1}{15}, \quad 15 \leqslant t \leqslant 30 \\
& t_{1}=-12 \ln R \\
& t_{2}=15+15 R
\end{aligned}
$$

A, at $T=0$:

$$
\begin{aligned}
& T\left(A_{2}\right)=0+(-10 \ln .0589)=28.3 \\
& T\left(D_{2}\right)=0+(15+15 \times .6733)=25.1
\end{aligned}
$$

Barber, buy
D_{2} at $T=25.1$:
Barber 1 idle
A_{2} at $T=28.3$:

$$
\begin{aligned}
& T\left(A_{3}\right)=28.3-10 \ln .4799=35.6 \\
& T\left(D_{2}\right)=28.3+(15+15 \times .9486)=57.5
\end{aligned}
$$

Barber 1 busy
A_{3} at $T=35.6:$

$$
\begin{aligned}
& T\left(A_{4}\right)=3.6 .10 \ln \cdot 6139=40.5 \\
& T\left(D_{3}\right)=35.6+(15+15 \times .5933)=59.5
\end{aligned}
$$

Babe 2 bung $A_{4} D_{2} D_{3}$
A_{4} at $T=40.5$:

$$
T\left(A_{5}\right)=40.5-10 \ln .9341=41.2
$$

A_{4} waits eriquene

$$
\begin{array}{|lll}
A_{5} & D_{2} & D_{3} \quad A_{4}
\end{array} \text {-queue }
$$

A_{5} at $T=41.2$:

$$
T\left(A_{6}\right)=41.2-10 \ln \cdot 1782=58.4
$$ A_{5} waits in queue

$\begin{array}{llll}D_{2} & A_{6} & D_{3} & A_{4}\end{array} A_{5} \leqslant$ queue
D_{2} at $T=5.7 .5$:
Barber / idle
Take A_{4} out of queue

$$
T\left(D_{4}\right)=57.5+15+15 \times 3473=77.7
$$

Barber / bury

$$
\begin{array}{|lll}
\hline A_{6} & D_{3} & D_{4} \\
\hline
\end{array}
$$

A_{5}-queue
A_{6} at $T=58.4$:

$$
T\left(A_{7}\right)=58.4-10 \ln .5644=64.1
$$

Put A_{6} in queue $D_{3} A_{7} D_{4}$
D_{3} at $T=59.5: \quad A_{5} A_{6}$-queue
Barber 2 idle
Take A_{5} out of queue

$$
T\left(D_{S}\right)=59.5+15+15 x-3529=79.8
$$

Barber 2 busy

$$
\begin{array}{lll}
A_{7} & D_{4} & D_{5}
\end{array}
$$

A6) -queue
A_{7} at $T=64.1$:

$$
T\left(A_{8}\right)=64.1-10 \ln .3646=74.2
$$

Put A_{7} in queue
$\begin{array}{llll}A_{8} & D_{4} & D_{5} & A_{6}\end{array} A_{7}$-queue
A_{8} at $T=74.2$:

$$
\begin{aligned}
T\left(A_{q}\right) & =74.2+(-10 \ln \cdot 7676) \\
& =76.8
\end{aligned}
$$

Place A_{8} in queue.

$$
\begin{array}{llll}
A_{9} & D_{4} & D_{5} & A_{6}
\end{array} A_{7} A_{8}-\text { queue }
$$

From the graph:
Eservicetimes $=10.76+11.08+98.64=120.48$
Equeur waiting times $=5.94+119.94=125.88$
(The esmall difference between these anvers and the emulation output is because of soundrff error.)

Av. facility utilization $=\frac{120.48}{177.62}=.6783$
Ar. queue length $=\frac{125.87}{177.62}=.7087$
Av. waiting tine en quece $=\frac{125.88}{10}=12.588$
Ar. waiting time in staten $=\frac{120.48+125.88}{10}=24.636$

Set 16.6a

Chapter 17

Markov Chains

Set 17.1a

Set 17.2a

(a) Using excelMarkovChains.xls, all the states of the chain are periodic with period 3 .

$$
\begin{aligned}
& \mathbf{P}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \mathbf{P}^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \\
& \mathbf{P}^{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \mathbf{P}^{4}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

(b) States 1, 2, and 3 are transient, State 4 is absorbing.
(c) State 1 is transient. States 2 and 3 form a closed set. State 4 is absorbing. States 5 and 6 form a closed set.
(d) All the states communicate and the chain is ergodic.

Set 17.4a

Set 17.4a

Set 17.5a

Set 17.5a

$P\{$ Joe wins in 3 tosses $\}=P\{3-2 \rightarrow 0-5\}=.125$
$\mathrm{P}\{\mathrm{Jim}$ wins in 3 tosses $\}=P\{3-2 \rightarrow 5-0\}=.175$
(c)

Output Results

State	Absolute (3-step)	Steady state	Mean return time
$3-2$.075	.257143	3.8888891
$2-3$.375	.171429	5.8333335
$1-4$	0	.085714	11.666665
$4-1$.25	.128571	7.7777801
$0-5$.125	.142857	7.0000019
$5-0$.175	.214286	4.6666665

P \{game ends in Jim's favor\} $=\pi_{5-0}=.214$
$P\{$ game ends in Joe's favor $\}=\pi_{5-0}=.143$
(d)

Matrix I:

$i=0-5$	I-N				
3-2	1	-1	0	-. 5	0
2-3	-. 5	1	-. 5	0	0
1-4	0	-1	1	0	0
4-1	-. 5	0	0	1	-1
5-0	-. 3	0	0	0	. 3

inv(I-N)					
$3-2$	6	4	2	3	5
$2-3$	4	4	2	2	3.3
$1-4$	2	2	2	1	1.7
$4-1$	6	4	2	4	6.7
$5-0$	6	4	2	3	8.3

Mu

	0-5	\leftarrow expected number of tosses till Joe wins
3-2	20 20	
2-3	15.3	
1-4	8.7	
4-1	22.7	
5-0	23.3	

$$
\begin{array}{r|rrrrr|}
i=5-0 & \mathbf{I}-\mathrm{N} \\
\cline { 2 - 6 } & 1 & -2 & -1 & 0 & -.5 \\
2-3 & -.5 & 1 & -.5 & 0 & 0 \\
1-4 & 0 & -1 & 1 & 0 & -1 \\
4-1 & -.5 & 0 & 0 & 1 & 0 \\
0-5 & -.3 & 0 & 0 & 0 & .3 \\
\cline { 2 - 6 } &
\end{array}
$$

Set 17.5a

Set 17.6a

Set 17.6a

Set 17．6a
（a）State $(\mathrm{i}-\mathrm{j})=$（Sets won by Andre－Sets won by John）
Matrix P ：

	0－0	0－1	0－2	1－0	1－1	1－2	2－0	2－1	2－2	2－3	3－0	0－3	1－3	3－1	3－2
0－0	0	4	0	6	0	0	0	0	0	0	0	0	0	0	0
0－1	0	0	4	0	\％ 6	\％ 0	【イ 0	\％ 0	0	0	0	0	0	0	0
0－2	0	0	0	0	\％ 0	\％ 6	\％	厄\％ 0	\％ 0	0	0	． 4	0	0	0
1－0	0	\％ 0	\％	0	4	0	【ك 6	【イ	【＂ 0	0	0	0	0	0	0
1－1	0	0	\％	0	0	4	0	6	0	0	0	0	0	0	0
1－2	0	0	0	\bigcirc	0	0	0	0	\％	0	0	0	． 4	0	0
2－0	0	0	\％	0	0	0	0	\％ 4	0	0	． 6	0	0	0	0
2－1	0	0	0	0	0	0	0	\％	4	0	0	0	0	． 6	0
2－2	0	0.	0.	0	0	0	\bigcirc	0	0	． 4	0	0	0	0	． 6
2－3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
3－0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0－3	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1－3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
3－1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3－2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

（b）
$\operatorname{inv}(1-N)$

	$0-0$	$0-1$	$0-2$		$1-0$		$1-1$		$1-2$		$2-0$		$2-1$
$0-0$	1	.4	.16	.6	.48	.3	.4	.4	.35				
$0-1$	0	1	.4	0	.6	.5	0	.4	.43				
$0-2$	0	0	1	0	0	.6	0	0	.36				
$1-0$	0	0	0	1	.4	.2	.6	.5	.29				
$1-1$	0	0	0	0	1	.4	0	.6	.48				
$1-2$	0	0	0	0	0	1	0	0	.6				
$2-0$	0	0	0	0	0	0	1	.4	.16				
$2-1$	0	0	0	0	0	0	0	1	.4				
$2-2$	0	0	0	0	0	0	0	0	1				

MU		2－3		3－0	0－3	1－3	3－1	32	$\mathrm{P}\{\mathrm{A}\}$	$\mathrm{P}\{\mathrm{J}\}$
0－0	4.07	0－0	． 1	，22	． 06	． 12	26	21	． 68	． 32
0－1	3.27	0－1	． 2	0	． 16	． 19	22	\％ 26	． 48	． 52
0－2	1.96	0－2	． 1		． 4	． 24	0	\％\％22	． 22	． 78
1－0	2.93	1－0	． 1	36	0	． 06	29	【． 17	． 82	． 18
1－1	2.48	1－1	． 2	【0	0	． 16	\36	29	． 65	． 35
1－2	1.6	1－2	． 2	【ك0	0	． 4	0	36	． 36	． 64
2－0	1.56	2－0	． 1	【תك 6	0	0	24	，1	． 94	． 06
2－1	1.4	2－1	． 2	【イ【． 0	0	0	6	24	． 84	． 16
2－2	1	2－2	． 4	ת．0	0	0	ת 0	【久 6	． 6	4

Average \＃of sets till end of match $=4.07$
Probability Andre will win $=\operatorname{sum}$ of $\left(\mathrm{P}_{3-0}+\mathrm{P}_{3-1}+\mathrm{P}_{3-2}\right)$ given 0－0 start $=.69$
（c） $\mathrm{P}\{$ Andre wins \mid current score $1-2\}=36$ ．
（d）The average number of sets till termination is 1.6 ．In ONE set the termination score can be 1－3（J＇s favor），or in TWO sets it can be 2－3（＇s＇s favor）or 3－2（A＇s favor）．The average number of sets to termination is thus more than 1 and less then $2(=1.6)$ ．

Set 17.6a

Set 17.6a

The last two columns (low=107, high=113) provide the answer as a function of the current voltage. For example, if current voltage is $109, \mathrm{P}\{$ low $\}=.67, \mathrm{P}\{$ high $\}=.33$
(c)

Setting current voltage at 110 guarantees an average time to failure of $13.5(15)=202.5$ minutes.

(a) \# years on dialysis $=3.54$ years.
(b) Longevity $=12.92$ years.
(c) Life expectancy $=16.46$ years
(d) 14 years.
(e) >1 yrSurvivor has the highest longevity $(=16.46$ years) and the least number of years on dialysis ($=1.7699$ years).

Chapter 18

Classical Optimization Theory

Set 18.1a

(a) $\frac{\partial f}{\partial x}=3 x^{2}+1=0$

$$
x= \pm \sqrt{-1 / 3}
$$

The necessary condition yueldo emagesiary rools. The problem Las no otationary points.
(b) $\frac{\partial f}{\partial x}=4 x^{3}+2 x=0$

$$
x=0, \quad x= \pm \sqrt{-1 / 2}
$$

For $x=0$,

$$
\frac{\partial^{2} f}{\partial x^{2}}=12 x^{2}+2=2>0 \Rightarrow \min
$$

(c) $\frac{\partial f}{\partial x}=16 x^{3}-2 x=0$

$$
x=0, .353,-.353
$$

$\frac{\partial^{2} f}{\partial x^{2}}=48 x^{2}-2$
$x=0: \quad \frac{\partial^{2} f}{\partial x^{2}}=-2 \Rightarrow$ max
$x=353: \frac{\partial^{2} f}{\partial x^{2}}=6 \Rightarrow$ men.
$x=-353: \frac{\partial^{2} f}{\partial x^{2}}=6 \Rightarrow$ min
(d) $f(x)=(3 x-2)^{2}(2 x-3)^{2}$

$$
=\left(6 x^{2}-13 x+6\right)^{2}
$$

$\frac{\partial f}{\partial x}=2\left(6 x^{2}-13 x+6\right)(12 x-13)=0$
$x=2 / 3,3 / 2,13 / 12$
$\frac{\partial^{2} f}{\partial x^{2}}=2\left(216 x^{2}-468 x+241\right)$
$x=2 / 3: \frac{\partial^{2} f}{\partial x^{2}}=50 \Rightarrow$ mun
$x=3 / 2: \frac{\partial^{2} f}{\partial x^{2}}=50 \Rightarrow \min$
$x=13 / 12: \frac{\partial^{2} f}{\partial x^{2}}=-25 \Rightarrow \max$
(e) $\frac{\partial f}{\partial x}=30 x^{4}-12 x^{2}=0 \Rightarrow x=(0, \pm .63)$
$\frac{\partial^{2} f}{\partial x^{2}}=120 x^{3}-24 x$

$x=.63: \frac{\partial^{2 f}}{\partial x^{2}}=14.88 \Rightarrow$ min
$x=-63: \frac{\partial^{2} f}{\partial x^{2}}=-14.88 \Rightarrow$ max
(a) $\frac{\partial f}{\partial x_{1}}=3 x_{1}^{2}-3 x_{2}=0$
$\frac{\partial f}{\partial x_{2}}=3 x_{2}^{2}-3 x_{1}=0$
$\left(x_{1}, x_{2}\right)=(0,0),(1,1)$
$H=\left(\begin{array}{cc}6 x_{1} & -3 \\ -3 & 6 x_{2}\end{array}\right)$
$\left(x_{1}, x_{2}\right)=(0,0):$
perincepal minor deleininants
$=(0,-9) \Rightarrow$ indefinite
$\Rightarrow(0,0)$ is not an extreme point
$\left(x_{1}, x_{2}\right)=(1,1)$:
Punicipal minio determinants
$=(6,27) \Rightarrow$ positive definite
$\Rightarrow(1,1)$ is a minimum point.
(b) $\frac{\partial f}{\partial x_{1}}=4 x_{1}+6+2 x_{2} x_{3}=0$
$\frac{\partial f}{\partial x_{2}}=2 x_{2}+6+2 x_{1} x_{3}=0$
$\frac{\partial f}{\partial x_{3}}=2 x_{3}+6+2 x_{1} x_{2}=0$
(3) - (2) yietdo $\left(x_{3}-x_{2}\right)-x_{1}\left(x_{3}-x_{2}\right)=0$
or $\left(x_{3}-x_{2}\right)\left(1-x_{1}\right)=0$
Thus, $x_{3}=x_{2}$ or $x_{1}=1$
For $x_{1}=1$:

$$
\begin{align*}
& \text { from (1), } 10+2 x_{2} x_{3}=0 \tag{4}\\
& \text { from (2), } 2 x_{2}+2 x_{3}+6=0 \tag{5}
\end{align*}
$$

Hence, $x_{2}=-\left(3+x_{3}\right)$. Substititing
in (4), then

$$
10-2 x_{3}\left(3+x_{3}\right)=0
$$

$$
x_{3}^{2}+3 x_{3}-5=0
$$

Thus, $x_{3}=1.2$ or $x_{3}=-4.2$

$$
x_{2}=-4.2 \text { or } x_{2}=1.2
$$

or,

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{l}
(1,-4.2,1.2) \\
(1,1.2,-4.2)
\end{array}\right.
$$

For $x_{2}=x_{3}:, 2 x_{2}+6+2 x_{1} x_{2}=0$
or, $\left(1+x_{1}\right)=\frac{-3}{x_{2}}$

From (1), $2 x_{1}+3+x_{2}^{2}=0 \quad$ 2 continue
Substituteng $\left(1+x_{1}\right)=-3 / x_{2}$, then

$$
-\frac{3}{x_{2}}+\frac{1}{2}+\frac{x_{2}^{2}}{2}=0
$$

02

$$
x_{2}^{3}+x_{2}-6=0
$$

This guis the folwtion $x_{2} \simeq 1.65$.
(The semaining two soots ane imageriay, Thus, $x_{1}=\frac{-3}{1.65}-1=-2.82$ and $\left(x_{1}, x_{2}, x_{3}\right)=(-2.82,1.65,1.65)$

$$
\begin{aligned}
& H=\left(\begin{array}{ccc}
4 & 2 x_{3} & 2 x_{2} \\
2 x_{3} & 2 & 2 x_{1} \\
2 x_{2} & 2 x_{1} & 2
\end{array}\right) \\
& \underline{x}=(1,-4.2,1.2):
\end{aligned}
$$

Puricupal menor delermenants (PMD) $=(4,2.24,-223) \Rightarrow$ indefirite

$$
\underline{x}=(1,1.2,-4.2):
$$

$$
P M D=(4,-62.56,-155.5) \Rightarrow \text { indginite }
$$

$$
x=(-2.82,1.65,1.65):
$$

$$
P M D=(4,2.25,-67.4) \Rightarrow \text { indefinute }
$$

$$
\frac{\partial f}{\partial x_{1}}=2 x_{2} x_{3}-4 x_{3}+2 x_{1}-2=0
$$

$$
\frac{\partial f}{\partial x_{2}}=2 x_{1} x_{3}-2 x_{3}+2 x_{2}-4=0
$$

$$
\frac{\partial f}{\partial x_{3}}=2 x_{1} x_{2}-4 x_{1}-2 x_{2}+2 x_{3}+4=0
$$

Solutions: $(0,3,1),(0,1,-1)$,

$$
(2,1,1),(1,2,0),(2,3,-1)
$$

$$
H=\left(\begin{array}{lll}
2 & 2 x_{3} & 2 x_{2}-4 \\
2 x_{3} & 2 & 2 x_{1}-2 \\
2 x_{2}-4 & 2 x_{1}-2 & 2
\end{array}\right)
$$

$P_{M D_{(0,3,1)}}=(2,0,-32)$ indeforite
$P M D_{(0,1,-1)}=(2,0,-32)$ indefinit
PMD $(2,1,1)=(2,0,-32)$ indefinitit
$P M D(1,2,0)=(2,4,8)$ positive of $f \Rightarrow$ men $\operatorname{PMD}(2,3,-1)=(2,0,-32)$ indefinit

The peroblem is equivalent t
Minimize $z=\left(x_{2}-x_{1}^{2}\right)^{2}+\left(x_{2}-x_{1}-2\right)^{2}$

$$
\begin{aligned}
& \frac{\partial z}{\partial x_{1}}=2\left(x_{2}-x_{1}^{2}\right)\left(-2 x_{1}\right)+2\left(x_{2}-x_{1}-2\right)(-1)=0 \\
& \frac{\partial z}{\partial x_{2}}=2\left(x_{1}-x_{1}^{2}\right)+2\left(x_{2}-x_{1}-2\right)=0
\end{aligned}
$$

Thus, solve

$$
\begin{align*}
2 x_{1}^{3}-2 x_{1} x_{2}+x_{1}-x_{2}+2 & =0 \tag{1}\\
x_{1}^{2}+x_{1}-2 x_{2}+2 & =0 \tag{2}
\end{align*}
$$

From (2),

$$
x_{2}=\frac{x_{1}^{2}+x_{1}+2}{2}
$$

Frorn (1), we get

$$
2 x_{1}^{3}-3 x_{1}^{2}-3 x_{1}+2=0
$$

Solutions: $\left(x_{1}, x_{2}\right)=(2,4)$ and $(-1,1)$
Mote: The gwein mettod complicates a Remple peroblem. Never the less the idea is interceting
From Taylor's theorem

$$
\begin{aligned}
f\left(y_{0}+h\right)=f\left(y_{0}\right) & +f^{\prime}\left(y_{0}\right) h+\frac{f^{\prime \prime}\left(y_{0}\right) h^{2}}{2!}+\cdots \\
& +\frac{f^{(n)}\left(y_{0}+\theta h\right) h^{n}}{n!} \\
\text { Let } f^{\prime}\left(y_{0}\right)= & f^{\prime \prime}\left(y_{0}\right)=\cdots=f^{(n-1)}\left(y_{0}\right)=0
\end{aligned}
$$ accolding th the asoumption. Then

$$
f\left(y_{0}+h\right)-f\left(y_{0}\right)=\frac{f^{(n)}\left(y_{0}+\theta h\right) h^{n}}{n!}
$$

Because $f(y)(\theta h)$ Las th! same sign as $f_{(}^{(n)}(y)$, then
(1) Ifnis even: $h^{n}>$ oand $f\left(y_{0}+h\right)-f(y)$ thas the wame ignas $f^{(n)}\left(y_{0}\right) \Rightarrow y_{0}$ is mixumum if $f^{(n)}\left(y_{0}\right)<0$, and y_{0} is min $f^{(n)}\left(y_{0}\right)>0$. (2) Y_{n} is odd: $x^{n}<0$ or >0, depenthing on Whethen $h<0$ or >0, respectively. Thus, at $y_{0}, f\left(y_{0}+h\right)-f\left(y_{0}\right)$ will change sign from negature (posithre)t poaitre (ngeative) deperdang on corkether $f\binom{(n)}{y_{0}}>0$ (<0). Thus, y is an influction point.

Set 18.1b

$f(x)=4 x^{4}-x^{2}+5$
$\frac{\partial f}{\partial x}=16 x^{3}-2 x=0$
$\square f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\quad$? $6\left(x_{1}+x_{2}+x_{3}\right)+2 x_{1} x_{2} x_{3}$
Cell c3otrmula : $\left(16 * A 3^{A} 3-2 * A B\right) /(48 * A \hat{32}-2)$
Solution:
(1) Initial $x_{0}=11 \Rightarrow x^{*}=0$
(2) Initial $x_{0}=10 \Rightarrow x^{*}=.35355$
(3) Initial $x_{0}=-10 \Rightarrow x^{*}=-.35355$

(note that B is the Hessian matrix)

$$
A=\left(\begin{array}{l}
4 x_{1}+2 x_{2} x_{3}+6 \\
2 x_{2}+2 x_{1} x_{3}+6 \\
2 x_{3}+2 x_{1} x_{2}+6
\end{array}\right)
$$

Let $X^{0}=(0,0,0)$ be the starting point.
$x^{\prime}=(0,0,0)-\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)^{-1}\left(\begin{array}{l}6 \\ 6 \\ 6\end{array}\right)$

$$
=(-1.5,-3,-3)
$$

$$
\begin{aligned}
& =(-1.3,-3,-3) \\
x^{2} & =(-1.5,-3,-3)\left(\begin{array}{ccc}
4 & -6 & -6 \\
-6 & 2 & -3 \\
-6 & -3 & 2
\end{array}\right)^{-1}\left(\begin{array}{l}
18 \\
9 \\
9
\end{array}\right) \\
& =(-2.68,-4.89,-4.89)
\end{aligned}
$$

We continue rsi the same manner until: $x^{k} \simeq x^{k+1}$ If the prevent sequence does not converge, choose another starting port

$$
\text { (a) } \begin{aligned}
& \partial_{c} f=-46 \partial x_{2} \\
&=-.046 \text { for } \partial x_{2}=001 \\
&\binom{\partial x_{1}}{\partial x_{3}}=-J^{-1} C \partial x_{2} \\
&=\binom{2.83}{-2.50} x .001 \\
&=(.00283 \\
&-.00250) \\
& x^{0}+\partial x=(1-.00283,2+.001,3+.0025) \\
&=(.99717,2.001,3.0025) \\
& f\left(x^{0}+\partial x\right)=57.9538 \\
& \partial_{c} f=58-57.9538=-.04618
\end{aligned}
$$

the appraximation is letter.
(b)

$$
\begin{aligned}
& \partial x_{1}=2.83 \partial x_{2} \\
& \partial x_{3}=-2.5 \partial x_{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \nabla_{y} f=\left(6 x_{2}, 10 x_{1} x_{3}\right) \\
& \nabla_{z} f=\left(2 x_{1}+5 x_{3}^{2}\right) \\
& J=\left(\begin{array}{cc}
2 x_{2}+2 & x_{1} \\
2 x_{1} & 2 x_{3}
\end{array}\right) \\
& C=\binom{x_{3}}{2 x_{1}+2 x_{2}}
\end{aligned}
$$

At $x^{0}=(1,2,3)$,

$$
\begin{aligned}
J^{-1} C & =\left(\begin{array}{ll}
6 & 1 \\
2 & 6
\end{array}\right)^{-1}\binom{3}{6} \\
& =\left(\begin{array}{cc}
6 / 34 & -1 / 34 \\
-2 / 34 & 6 / 34
\end{array}\right)\binom{3}{6}
\end{aligned}
$$

$$
=\binom{.353}{.882}
$$

$$
\partial_{c} f=\left[47-(12,30)\binom{.352}{.882}\right] \partial x_{1}
$$

$$
=16.316 \partial x_{1}
$$

For $\partial_{c} f=-.46$, we have

$$
16.316 \partial x_{1}=-.46
$$

$$
o r \quad \partial x_{1}=-.0282
$$

(a) No, the necessary and sufficient conditions are the same is both methods.
(b) He Jacobian method compentes The constrained gradient of the objective function directly. The new method computes the conathanid objective function from which we can compute the constrained gradient.

$$
\left.\begin{array}{l}
Y=\left(x_{2}, x_{3}\right) \quad Z=\left(x_{1}\right) \\
\nabla f(Y)=\left(6 x_{2}, 10 x_{1} x_{3}\right) \\
\nabla f(Z)=\left(2 x_{1}+5 x_{3}^{2}\right) \\
J=\left(\begin{array}{cc}
2 x_{2}+2 & x_{1} \\
2 x_{1} & 2 x_{3}
\end{array}\right) \\
=\left(\begin{array}{cc}
6 & 1 \\
2 & 6
\end{array}\right)_{\text {at }} x=(1,2,3) \\
C=\left(\begin{array}{cc}
x_{3} & 2 x_{1}+2 x_{2}
\end{array}\right)=\binom{3}{6}_{\text {at }} x=(1,2,3) \\
J^{-1} C=\left(\begin{array}{cc}
6 / 34 & -1 / 34 \\
-2 / 34 & 6 / 34
\end{array}\right)\binom{3}{6}=\binom{6 / 17}{15 / 17} \\
\nabla f(z)=47 \\
\nabla f(y)=(12,30) \\
\partial_{c} f=\left[\left(47-(12,30)\binom{6 / 17}{15 / 17}\right] \partial x_{1}\right. \\
=16.316 \\
\hline
\end{array}\right]
$$

From Example 20.3-1, gwen $\partial x_{2}=.01$, then $\partial x_{1}=-.0283$ and

$$
\partial_{c} f=16.316 \times(-.0283) \simeq-.46
$$

$$
\begin{aligned}
& Y=x_{n} \\
& Z=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \\
& \nabla f(Y)=2 x_{n} \\
& \nabla f(Z)=\left(2 x_{1}, 2 x_{2}, \cdots, 2 x_{n-1}\right) \\
& J=\nabla g(Y)=\prod_{i=1}^{n-1} x_{i}=\frac{C}{x_{n}}, \\
& C=\nabla g(Z)=\left(\frac{C}{x_{1}}, \frac{c}{x_{2}}, \ldots, \frac{C}{x_{n-1}}\right) \\
& x_{i} \neq 0, i=1,2, \ldots, n \\
& \nabla c f=\left(2 x_{1}, \ldots, 2 x_{n-1}\right)-2 x_{n}\left(\frac{x_{n}}{c}\right)\left(\frac{C}{x_{1}}, \ldots, \frac{C}{x_{n-1}}\right) \\
& \quad=0 \\
& i=1,2, \ldots, n-1
\end{aligned}
$$

Thus, necessary conditions ave

$$
2 x_{i}-\frac{2 x_{n}^{2}}{x_{i}}=0, \quad i=1,2, \ldots, n-1
$$

The oblutien' of these equations yields

$$
x_{1}=x_{2}=\ldots=x_{n}
$$

Hence, from the constraint

$$
x_{2}^{*}=\sqrt[n]{C}, \quad i=1,2, \cdots, n
$$

Sufficient conditions:

$$
\begin{aligned}
& \frac{\partial_{c} f}{\partial_{c} x_{i}}=2 x_{i}-\frac{2 x_{n}^{2}}{x_{i}}, i=1, \geqslant, \cdots, n-1 \\
& \frac{\partial_{c}^{2} f}{\partial_{c}^{2} x_{c}^{2}}=2+\frac{2 x_{n}^{2}}{x_{i}^{2}}=4 \text { at } x_{i}^{*} \\
& \text { for all } i
\end{aligned}
$$

Hence,

$$
H=\left(\begin{array}{lll}
4 & & 0 \\
0 & \ddots & 0
\end{array}\right)
$$

which is positive definite \Rightarrow min

$$
\begin{aligned}
& \frac{\partial f}{\partial g}=\nabla f(y) J^{-1} \text { at } x^{0} \\
&=2 \sqrt[n]{c} \quad \frac{\sqrt[n]{c}}{2}=2 \sqrt[n]{c^{2-n}} \\
& \text { For } \partial g=\delta, \\
& \partial f=2 \delta \sqrt[n]{c^{2-n}}=2 \delta\left(C^{\frac{2-n}{n}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Z=x_{1}, Y=x_{2} \\
& \nabla f(Z)=10 x_{1}+2 x_{2} \\
& \nabla f(Y)=2 x_{1}+2 x_{2} \\
& J=\nabla g(Y)=x_{1} \\
& C=\nabla g(Z)=x_{2} \\
& \nabla_{c} f=\left(2 x_{2}+10 x_{1}\right)-\left(2 x_{1}+2 x_{2}\right) \frac{1}{x_{1}} x_{2} \\
& =\frac{-2}{x_{1}}\left(x_{2}^{2}-5 x_{1}^{2}\right) \\
& \nabla_{c} f=0 \Rightarrow x_{2}= \pm \sqrt{5} x_{1} \\
& g(x)=0 \Rightarrow x_{1}^{2}=10 / \sqrt{5}
\end{aligned}
$$

The stationary points are (2.115, 4.729), (-2.115, -4.729)

Sufficiency condition:

$$
\frac{\partial}{\partial z} \nabla_{c} f=10+2\left(\frac{x_{2}^{2}}{x_{1}^{2}}\right)
$$

thus, both stationary points are min
(a)

$$
\begin{aligned}
\partial f & =\nabla f(Y) J^{\prime} \partial g \\
& =\left(2 x_{1}+2 x_{2}\right)\left(1 / x_{1}\right) \partial g
\end{aligned}
$$

$\partial g=-.01$, thus, $\partial f=-.0647$
(b)

$$
\begin{aligned}
\partial f & =\nabla f(Y) J^{-1} \partial g+\nabla_{c} f \partial z \\
& =14\left(\frac{1}{2}\right)(-.01)+ \\
& \left.=[30-14)\left(\frac{1}{2}\right)(5)\right](.01) \\
& =-.12
\end{aligned}
$$

$$
Y=\left(x_{2}, x_{3}\right), Z=x_{1}
$$

at $X^{0}=(1,1,1)$

$$
\begin{aligned}
\nabla f\left(y^{0}\right) & =\left(4 x_{2}+5 x_{1}, 20 x_{3}\right) \\
& =(9,20)
\end{aligned}
$$

$\nabla g\left(y^{\prime}\right)=\left(\begin{array}{cc}2 x_{2}+3 x_{3} & 3 x_{2} \\ 5 x_{1} & 2 x_{3}\end{array}\right)$

$$
=\left(\begin{array}{ll}
5 & 3 \\
5 & 2
\end{array}\right)
$$

$\nabla g\left(Z^{\circ}\right)=\binom{1}{2 x_{1}+5 x_{2}}=\binom{1}{7}$

$$
\partial_{\varepsilon} f=\nabla_{c} f\left(Y^{0}\right) J^{-1} \partial g+\nabla_{c} f\left(Y^{0} Z^{0}\right) \partial Z
$$

$$
\nabla_{c} f\left(Y^{0}\right) J^{-1}=(9,20)\left(\begin{array}{cc}
-2 / 5 & 3 / 5 \\
1 & -1
\end{array}\right)
$$

$$
=(82 / 5,-73 / 5)
$$

$$
\nabla_{c} f\left(Y_{,}^{0} Z^{0}\right)=\left[7-(9,20)\left(\begin{array}{cc}
-2 / 5 & 3 / 5 \\
1 & -1
\end{array}\right)\binom{1}{7}\right]
$$

$$
\begin{aligned}
& =92.8 \\
& --73 / 5)\binom{\gamma_{1}}{\lg _{2}}+92.80 x_{1}
\end{aligned}
$$

For $\left(\partial g_{1}, \partial g_{2}\right)=(-.01, .02), \partial x_{1}=.01$

$$
\partial_{c} f=-\frac{.82}{5}-\frac{1.46}{5}+.928=.472
$$

$$
Y=\left(x_{1}, x_{2}\right) \quad Z=\left(x_{3}, x_{4}\right)
$$

$J=\nabla g(Y)=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$, which

- is serigular. We must
(b) select a new set Y and Z

Let

$$
\begin{aligned}
& Y=\left(x_{2}, x_{4}\right), Z=\left(x_{1}, x_{3}\right) \\
& \nabla f(Z)=\left(2 x_{1}, 2 x_{3}\right) \\
& \nabla f(y)=\left(2 x_{2}, 2 x_{4}\right) \\
& \nabla g(y)=\left(\begin{array}{ll}
2 & 5 \\
2 & 6
\end{array}\right), J^{-1}=\left(\begin{array}{cc}
3 & -5 / 2 \\
-1 & 1
\end{array}\right) \\
& \nabla g(Z)=\left(\begin{array}{ll}
1 & 3 \\
1 & 5
\end{array}\right) \\
& \nabla f=\left(2 x_{1}, 2 x_{3}\right)-\left(2 x_{2}, 2 x_{4}\right)\left(\begin{array}{cc}
3 & -5 / 2 \\
-1 & 1
\end{array}\right) x \\
& \left(\begin{array}{ll}
1 & 3 \\
1 & 5
\end{array}\right) \\
& =\left(2 x_{1}-x_{2}, 2 x_{3}+7 x_{2}-4 x_{4}\right)
\end{aligned}
$$

$2 x_{1}-x_{2}=0$

$$
\begin{align*}
& 2 x_{3}+7 x_{2}-4 x_{4}=0 \tag{2}\\
& x_{1}+2 x_{2}+3 x_{3}+5 x_{4}-10=0 \tag{3}\\
& x_{1}+2 x_{2}+5 x_{3}+6 x_{4}-15=0 \tag{4}
\end{align*}
$$

From (1), $2 x_{1}=x_{2}$
Substitution si (3) and (4) yieldo

$$
\begin{aligned}
& 5 x_{1}+3 x_{3}+5 x_{4}=10 \\
& 5 x_{1}+5 x_{3}+6 x_{4}=15 \\
& 14 x_{1}+2 x_{3}-4 x_{4}=0
\end{aligned}
$$

The soluton is

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{-5}{74}, \frac{-10}{74}, \frac{155}{74}, \frac{60}{74}\right)
$$

$H=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right) \Rightarrow$ positive definiti Hho, The stationary point is a minimum point.
For $Y^{0}=(-10 / 74,60 / 74)$

$$
\nabla f\left(Y^{0}\right)=(-10 / 37,60 / 37)
$$

$$
\frac{\partial f}{\partial g}=\nabla f\left(Y^{0}\right) J^{-1}=\left(\frac{-10}{37}, \frac{60}{37}\right)\left(\begin{array}{cc}
3 & -5 / 2 \\
-1 & 1
\end{array}\right)
$$

$$
=\left(-\frac{90}{37}, \frac{85}{37}\right)
$$

$$
\partial_{c} f=\nabla f\left(Y_{0}\right) J^{-1} \partial g
$$

$$
=\left(-\frac{90}{37}, \frac{85}{37}\right)\binom{-.01}{-.02} \cong-.07
$$

Fo the LP problem,
sidep. rass $=$ nonbasic vanables
dep. vars = basic varcibles

$$
\begin{aligned}
& \nabla f(Y)=\left(c_{1}, c_{2}, \ldots, c_{m}\right)=C_{B} \\
& \nabla f(Z)=\left(c_{m+1}, c_{m+2}, \ldots, c_{n}\right) \\
& \nabla g(Y)=J=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \vdots \\
a_{m 1} & a_{m m}
\end{array}\right)=B \\
& \nabla g(Z)=\left(\begin{array}{lll}
a_{1, m+1} & \ldots & a_{t n} \\
a_{m, m+1} & \ldots & a_{m n}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \left(P_{m+1}, P_{m+2}, \ldots, P_{n}\right) \\
\nabla_{c} f= & \left\{\left(c_{m+1}, \ldots, c_{n}\right)-\right. \\
& \left(c_{1}, \ldots, c_{m}\right)\left(\begin{array}{cc}
a_{11} & \cdots \\
\vdots & a_{1 m} \\
a_{m 1}, \ldots & a_{m m}
\end{array}\right)^{-1} \times \\
& \left.\left(P_{m+1}, \ldots, P_{n}\right)\right\} \\
= & \left\{c_{j}-C_{B} B^{-1} P_{j}\right\}, j=m+1, \ldots ; n \\
= & \left\{c_{j}-z_{j}\right\}, \text { provided } B^{-1} \text { exists }
\end{aligned}
$$

The Jacobian methed carnot be apphid to LP dreictly without first accounting for ith nornegalivity consthaints. This $\stackrel{i}{ }$ accomphided by vaing Th substitition $x_{j}=\omega_{j}{ }^{2}$.

$$
\begin{aligned}
\nabla_{c} f & =(0,0)-\left(10 w_{1}, 6 w_{2}\right)\left(\begin{array}{cc}
-\frac{w_{3}}{5 w_{1}} & \frac{2 w_{3}}{5 w_{1}} \\
\frac{3 w_{3}}{5 w_{2}} & \frac{-w_{4}}{5 w_{2}}
\end{array}\right) \\
& =\left(-\frac{8}{2} w_{5}-14 w_{1}\right)
\end{aligned}
$$

$$
=\left(-\frac{8}{5} w_{3},-\frac{14}{5} w_{4}\right)=0
$$

$$
w_{3}=w_{4}=0
$$

From the constiairis,

$$
\begin{aligned}
& \text { From the consliainla, } \\
& \qquad\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)\binom{w_{1}^{2}}{w_{2}^{2}}=\binom{6}{9} \Rightarrow w_{1}^{2}=\frac{12}{5}, w_{2}^{2}=\frac{9}{5} \\
& f\left(w_{0}\right)=\left(5 \times \frac{12}{5}+3 \times \frac{9}{5}\right)=17.4
\end{aligned}
$$

To chuck if the posit is a max, cosinides

$$
H_{w_{0}}=\left(\begin{array}{cc}
-8 / 5 & 0 \\
0 & -14 / 5
\end{array}\right) \Rightarrow \text { negative def. }
$$

Thus,

$$
x_{0}=\left(\frac{12}{5}, \frac{9}{5}, 0,0\right)
$$

is a sxaxemiem point.

$$
\begin{aligned}
& f(\underline{w})=5 w_{1}^{2}+3 w_{2}^{2} \\
& \text { set. } \\
& g_{1}(\underline{w})=w_{1}^{2}+2 w_{2}^{2}+w_{3}^{2} \quad-6=0 \\
& g_{2}(w)=3 w_{1}^{2}+w_{2}^{2}+w_{4}^{2}-9=0 \\
& Y=\left(w_{1}, w_{2}\right), Z=\left(w_{3}, w_{4}\right) \\
& \nabla f(Y)=\left(10 w_{1}, 6 w_{2}\right) \\
& \nabla f(\underline{Z})=(0,0) \\
& \nabla \underline{g}(\underline{Y})=\left(\begin{array}{lll}
2 w_{1} & 4 w_{2} \\
6 w_{1} & 2 w_{1}
\end{array}\right) \\
& \nabla g(Z)=\left(\begin{array}{cc}
2 w_{3} & 0 \\
0 & 2 w_{4}
\end{array}\right) \\
& J^{-1}=\frac{1}{-20 w_{1} w_{2}}\left(\begin{array}{cc}
2 w_{2} & -4 w_{2} \\
-6 w_{1} & 2 w_{2}
\end{array}\right) \\
& =\frac{1}{10}\left(\begin{array}{cc}
-1 / w_{1} & 2 / w_{1} \\
3 / w_{2} & -1 / w_{1}
\end{array}\right) \\
& J^{-1} C=\frac{1}{10}\left(\begin{array}{cc}
\frac{-1}{w_{1}} & \frac{2}{w_{1}} \\
\frac{3}{w_{2}} & \frac{-1}{w_{2}}
\end{array}\right)\left(\begin{array}{cc}
2 w_{2} & 0 \\
0 & 2 w_{4}
\end{array}\right) \\
& =\frac{1}{10}\left(\begin{array}{cc}
\frac{-2 w_{3}}{w_{1}} & \frac{4 w_{4}}{w_{1}} \\
\frac{6 w_{3}}{w_{2}} & \frac{-2 w_{4}}{w_{2}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sensitivity coefficients: } \\
& \nabla f\left(Y_{0}\right) J^{-1}=\left(10 w_{1}, 6 w_{2}\right)\left(\begin{array}{ll}
\frac{1}{10 w_{1}} & \frac{2}{10 w_{1}} \\
\frac{3}{10 w_{2}} & \frac{-1}{10 w_{2}}
\end{array}\right) \\
& =(-8,1.4)
\end{aligned}
$$

Dual values:

$$
\mathscr{B} B^{-1}=(5,3)\left(\begin{array}{cc}
-1 / 5 & 2 / 5 \\
3 / 5 & -1 / 5
\end{array}\right)=(.8,1.4)
$$

Dual obj rahue $=6 \times .8+9 \times 1.4=17.4$ Lagrangian Method:

$$
\begin{aligned}
& L(\underline{w}, \lambda)=5 w_{1}^{2}+3 w_{2}^{2} \\
&-\lambda_{1}\left(w_{1}^{2}+2 w_{2}^{2}+w_{3}^{2}-6\right) \\
&-\lambda_{2}\left(3 w_{1}^{2}+w_{2}^{2}+w_{4}^{2}-9\right) \\
& \frac{\partial L}{\partial w_{1}}=10 w_{1}--2 \lambda_{1} w_{1}-6 \lambda_{2} w_{2}=0 \\
& \frac{\partial L}{\partial w_{2}}=6 w_{1}-4 \lambda_{1} w_{2}-2 \lambda_{2} w_{2}=0 \\
& \frac{\partial L}{\partial w_{3}}=-2 \lambda_{1} w_{3}=0 \\
& \frac{\partial L}{\partial w_{4}}=- 2 \lambda_{2} w_{4}=0 \\
& g_{1}(\underline{w})=0 \\
& g_{2}(\underline{w})=0
\end{aligned}
$$

The solution ni s

$$
\begin{aligned}
& \text { soluten iv } \\
& \left(W_{1}^{0}, \lambda^{\circ}\right)=\left(\frac{12}{5}, \frac{9}{5}, 0,0,8,1.4\right)
\end{aligned}
$$

Sufficiency condition:
$B=\left[\begin{array}{cc|cccc}0 & 0 & 2 w_{1} & 2 w_{2} & 2 w_{3} & 0 \\ 0 & 0 & 6 w_{1} & 2 w_{2} & 0 & 2 w_{4} \\ \frac{2 w_{1}}{} & 6 w_{1} & 10-2 \lambda-\lambda_{\lambda} & 0 & 0 & 0 \\ 2 w_{2} & 2 w_{2} & 0 & 6-4 \lambda_{1}-\lambda \lambda_{2} & 0 & 0 \\ 2 w_{3} & 0 & 0 & 0 & -2 \lambda_{1} & 0 \\ 0 & 2 w_{4} & 0 & 0 & 0 & -2 \lambda_{2}\end{array}\right]_{1}$

$$
=\left[\begin{array}{cccccc}
0 & 0 & 3 & 2.64 & 0 & 0 \\
0 & 0 & 9 & 2.64 & 0 & 0 \\
3 & 9 & 0 & 0 & 0 & 0 \\
2.64 & 2.64 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1.6 & 0 \\
0 & 0 & 0 & 0 & -1.6 & -2.8
\end{array}\right]
$$

the value of the $5^{\text {th }}$ prencipal minor detorminant $=-427$ and that of the 6th prinapal minor determiviait is 1130 , following tite sigins of $(-1)^{m+1}$ and $(-1)^{m+2}(-,+$, nappectively)
Hence $W^{0}, \lambda \lambda^{0}$ is a maxumim point

$$
\begin{align*}
& \frac{\partial}{\partial x_{1}}=2 x_{1}-\lambda_{1}-\lambda_{2}=0 \\
& \frac{\partial}{\partial x_{2}}=4 x_{2}-2 \lambda_{1} x_{2}-5 \lambda_{2}=0 \tag{2}\\
& \frac{\partial}{\partial x_{3}}=20 x_{3}-\lambda_{1}-\lambda_{2}=0 \tag{3}\\
& \frac{\partial}{\partial \lambda_{1}}=-\left(x_{1}+x_{2}^{2}+x_{3}-5\right)=0 \tag{4}\\
& \frac{\partial}{\partial \lambda_{2}}=-\left(x_{1}+5 x_{2}+x_{3}-7\right)=0 \tag{5}
\end{align*}
$$

(1) 2

From (1) and (3), $x_{1}=10 x_{3}$.
Substitution in (4) and (5) yuldo

$$
\begin{align*}
& x_{2}^{2}+11 x_{3}=5 \tag{6}\\
& 5 x_{2}+11 x_{3}=7 \tag{7}
\end{align*}
$$

(6) and (7) give

$$
x_{2}^{2}-5 x_{2}+2=0
$$

Solution:

$$
\begin{aligned}
& X_{1}^{0}=(-14.4,4.56,-1.44) \\
& X_{2}^{0}=(4.4, .44, .44)
\end{aligned}
$$

For x_{1}^{0}, from (2) and (3)

$$
\lambda_{1}^{\prime}=38.5, \quad \lambda_{2}^{\prime}=-67.3
$$

For X_{2}^{0}, from (2) and (3)

$$
\lambda_{1}^{2}=10.2, \quad \lambda_{2}^{2}=-1.4
$$

Stationarypoint:

$$
\begin{aligned}
& \left(x_{1}^{0}, \lambda_{1}^{0}\right)=(-14.4,4.65,-1.44,38.5,-67.3) \\
& \left(x_{2}^{0}, \lambda_{2}^{0}\right)=(4.4, .44, .44,10.2,-1.4)
\end{aligned}
$$

Both posits are minima

$$
\begin{aligned}
L(x, \lambda) & =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \\
& -\lambda_{1}\left(x_{1}+2 x_{2}+3 x_{3}+5 x_{4}-10\right) \\
& -\lambda_{2}\left(x_{1}+2 x_{2}+5 x_{3}+6 x_{4}-15\right)
\end{aligned}
$$

$$
\frac{\partial L}{\partial x_{1}}=2 x_{1}-\lambda_{1}-\lambda_{2}=0
$$

$$
\frac{\partial L}{\partial x_{2}}=2 x_{2}-2 \lambda_{1}-2 \lambda_{2}=0
$$

$$
\frac{\partial L}{\partial x_{3}}=2 x_{3}-3 \lambda_{1}-5 \lambda_{2}=0
$$

$$
\frac{\partial L}{\partial x_{4}}=2 x_{4}-5 \lambda_{1}-6 \lambda_{2}=0
$$

$$
\frac{\partial L}{\partial \lambda_{1}}=-\left(x_{1}+2 x_{2}+3 x_{3}+5 x_{4}-10\right)=0
$$

$$
\frac{\partial L}{\partial \lambda_{2}}=-\left(x_{1}+2 x_{2}+5 x_{3}+6 x_{4}-15\right)=0
$$

Solution:

$$
\left(x^{0}, \lambda^{0}\right)=\left(\frac{-5}{74}, \frac{-10}{74}, \frac{60}{74}, \frac{-90}{37}, \frac{85}{37}\right)
$$

the values of λ° are the same as ite sensitivity corfficiens obtaried in Problem 20.2b-6.

By definition

$$
\lambda=\frac{\partial f}{\partial g}
$$

of the right-hand side of $g(x) \geqslant 0$ is changed to $\partial g \geqslant 0$, the constraints become more restrictive. This means that thetralue of $f(x)$ can never improve. Thus,

$$
\frac{\partial f}{\partial g} \leqslant 0 \text { or } \lambda \leqslant 0
$$

Replace $g(x)=0$ with

$$
\begin{array}{r}
g(x) \leqslant 0 \\
-g(x) \leqslant 0
\end{array}
$$

Thus,

$$
\begin{array}{r}
L\left(x, \lambda_{1}, \lambda_{2}\right)=f(x)-\lambda_{1}\left(g(x)+s_{1}^{2}\right) \\
-\lambda_{2}\left(-g(x)+s_{2}^{2}\right)
\end{array}
$$

The $K-T$ conditions are then gwen by,

$$
\begin{align*}
& \quad \lambda_{1} \geqslant 0, \quad \lambda_{2} \geqslant 0 \tag{1}\\
& \frac{\partial L}{\partial x}=\nabla f(x)-\left(\lambda_{1}-\lambda_{2}\right) \nabla g(x)=0 \tag{2}\\
& \frac{\partial L}{\partial S_{1}}=-2 \lambda_{1} S_{1}=0 \tag{3}\\
& \frac{\partial L}{\partial S_{2}}=-2 \lambda_{2} S_{2}=0 \tag{4}\\
& \frac{\partial L}{\partial \lambda_{1}}=g(x)+S_{1}^{2}=0 \tag{5}\\
& \frac{\partial L}{\partial \lambda_{2}}=-g(x)+S_{2}^{2}=0 \tag{6}
\end{align*}
$$

From (5) and (6), $S_{1}^{2}+S_{2}^{2}=0$
Because $S_{1}^{2}, S_{2}^{2} \geqslant 0$, then

$$
S^{2}=S_{2}^{2}=0
$$

as should be expected. This means that conditions (3) and (4) are trivial and conditions (5) and (6) reduce to $g(x)=0$.
Let $\lambda=\lambda_{1}-\lambda_{2}$
Because $\lambda_{1}, \lambda_{2} \geqslant 0, \lambda$ is unrestricted in sign.
The K-T conditions become
(i) λ unrestricted in sign
(ii) $\nabla f(x)-\lambda \nabla g(x)=0$
(iii) $g(x)=0$
(a) $\max f(x)=x_{1}^{3}-x_{2}^{2}+x_{1} x_{3}^{2}$ set.

$$
\begin{aligned}
x_{1}+x_{2}^{2}+x_{3} & =5 \\
-5 x_{1}^{2}+x_{2}^{2}+x_{3} & \leq-2 \\
-x_{1} & \leq 0 \\
-x_{2} & \leq 0 \\
-x_{3} & \leq 0
\end{aligned}
$$

$$
\begin{aligned}
L(x, \lambda)=f(x) & -\lambda_{1}\left(x_{1}+x_{2}^{2}+x_{3}-5\right) \\
& -\lambda_{2}\left(-5 x_{1}^{2}+x_{2}^{2}+x_{3}+5_{1}^{2}+2\right) \\
& -\lambda_{3}\left(-x_{1}+5_{2}^{2}\right) \\
& -\lambda_{4}\left(-x_{2}+5_{3}^{2}\right) \\
& -\lambda_{5}\left(-x_{3}+5_{4}^{2}\right)
\end{aligned}
$$

The K-T conditoris are
(1) λ_{1} unrestricted
(2) $\lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5} \geqslant 0$
(3) $\left(3 x_{1}^{2}+x_{3}^{2},-2 x_{2}, 2 x_{1} x_{3}\right)$

$$
\begin{aligned}
& -\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{6}, \lambda_{5}\left(\begin{array}{ccc}
1 & 2 x_{2} & 1 \\
-10 x_{1} & 2 x_{2} & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\right. \\
& =(0,0,0,0,0)
\end{aligned}
$$

(4) $\left(\lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right)\left(\begin{array}{l}-5 x_{1}+x_{2}^{2}+x_{3}+2 \\ -x_{1} \\ -x_{2} \\ -x_{3}\end{array}\right)=0$
(5) $g(x)=0$
(b) max $-f(x)=-x_{1}^{4}-x_{2}^{2}-5 x_{1} x_{2} x_{3}$ st.

$$
\begin{array}{r}
x_{1}-x_{2}^{2}+x_{3}^{3}-10 \leq 0 \\
-x_{1}^{3}-x_{2}^{2}-4 x_{3}^{2}+20 \leq 0
\end{array}
$$

(1) $\lambda_{1}, \lambda_{2} \geqslant 0$
(2) $\left(-4 x_{1}^{3}-5 x_{2} x_{3},-2 x_{2}-5 x_{1} x_{3},-5 x_{1} x_{2}\right)$

$$
-\left(\lambda_{1}, \lambda_{2}\right)\left(\begin{array}{ccc}
1 & -2 x_{2} & 3 x_{3}^{2} \\
-3 x_{1}^{2} & -2 x_{2} & -8 x_{3}
\end{array}\right)=(0,0)
$$

(3) $\left(\lambda_{1}, \lambda_{2}\right)\binom{x_{1}-x_{2}^{2}+x_{2}^{3}-10}{-x_{1}^{3}-x_{2}^{2}-4 x_{3}^{2}+20} \equiv 0$
(4)

$$
\begin{aligned}
x_{1}-x_{2}^{2}+x_{3}^{3}-10 & \leq 0 \\
-x_{1}^{3}-x_{2}^{2}-4 x_{3}^{2}+20 & \leq 0
\end{aligned}
$$

Conarides

$$
\langle(x, \lambda)=f(x)-\lambda g(x)
$$

Because all the conatranits are equation, te elements of λ are unrestricted. However, because $g(x)$ is a linear function, $g(x)$ can be cither convex on concave. This, for $\lambda_{i}>0$, we take $g(x)$ as a convex function so that $-\lambda_{i} g_{i}(x)$ is concave. Similarly, if $\lambda_{i}<0, g_{c}(x)$ is assumed concave, in which case $-\lambda_{i} g_{i}(x)$ is also concave. Given $f(x)$ is concave hence $L(x, \lambda)$ is concave. of $g(x)$ is nonlinear, it cannot be both convex ad Concave, a central argument in the cave of
Crimean $g(x)$.

Maximize $f(x)$
sit. $g_{1}(x) \geqslant 0$

$$
g_{2}(x)=0
$$

$$
g_{3}(x) \leqslant 0
$$

continued.

Chapter 19

Nonlinear Programming Algorithms

（C）
Dichotomous：

Pe					
	0.05			ANALUE	
	1.5		25		
			\％		
，$\quad \mathrm{x}^{ \pm}=$	2.47500	$f(x)=$	2，50000		
	XR	$\times 1$	X2	$\left.\mathrm{ff}^{(1)}\right)^{4}$	（ $\times 2$
1.500000	2.500000	1.975000	2.025000	0.454967	0.15980
絟納	2.500090	2.212500	2.262500	1.369735	1．65i39
2212500	2.500000	2.331250	2.381250	2.011242	2.2145
2331250	2.500000	2390625	2440625	2.250874	2.358285
	2.500000	2.420313	2.470313	2344860	2.459575
2.420313	2.500000	2.435156	2.485156	2334799	2.482454
2.435156	2500000	2.442578	2.492578	2.402939	2.49190
2.442578	2.500000	2.446289	2.496289	2.411543	2.496119
楤，2．446289	2.500000	2.448145	2.498145	2.415728	2.488102
（4） 2.448145	2.500000	2.449072	2.499072	2.417791	2.49516
笅）2．449072	2.500000	2.449536	2.499536	2.418815	2.499535
	2.500000	2.4497681	2.499768	2.419325	2.499767
（3）V 2.449768	2.500000	2.449884	2.499884	2419560	2.493884
䍃 2.449884	2.500000	2.449942	2.499942	2419707	2.493942
坴紬 2.449942	2.500000	2.449971	2.499971	2.419770	2.489971
＊）2．449971	2.500000	2.449986	2.499986	2.419802	2.489986
2.449966	2.500000	2.449993	2.499993	2.419818	2.499993
\％${ }^{\text {a }}$ 2．449993	2.500000	2.449996	2.499996	2.419826	2.49998
紋絙 2449996	2.500000	2.449998	2.499988	2.419890	2.49999

Golden section：

－Golden section：

（e）
Dichotomous：

173 l						
U．asa－Dichotomousigolden Section Seach						
		0.05				
	Whimum ${ }^{\text {a }}$＝	0	\％ 11			
	0	Bututastert	Lithetemed：	\＄		
	$x^{*}=$	1.97500	fif $f\left(x^{2}\right)=$	7.99999		
	（amenlations＇					
，	xL	xR	x ¢ x －	12	（1） 1	
	0.000000	4.000000	1975000	2.025000	77.900	
	0.0000008	2.025000	0.987500	1.037500	3.550000	
	0.987500	2.025000	1.481250	1.531250	5.925000	\％in
	1.481250	2.025000	1.728125	1.778125	6.912500	711250］
－	1.728125	2.025000	1.851563	1.901563	7.406250	7630250
－	1.851563	2.025000	1.913281	1.963281	7.653125	7．653145
	1.913281	2.025000	1.944141	1.994141	7.776563	797665
緆	1.944141	2.025000	1.959570	2，009570	7.838281	1800431
街䜌	1.944141	2.009570	1.951885	2.001855	7.607422	1996145
	1944141	2.001855	1.947998	1.977998	7.791992	7.991992
	1.947998	2.001855	1.949927	1.999927	7.799707	7.999767
	1.949927	2.001855	1.950891	2.000091	7.803564	1999109
	1.949927	2.000891	1.950409	2.000409	7.801636	1899591
	1.949927	2.000409	1.950168	2.000169	7.800671	198983
絃	1.949927	2.000168	1.950047	2.000047	7.800189	185395
	1.949927	2000047	1.949987	1999987	7799949	7599948
选	1.949987	2.000047	1.950017	2.000017	7.000069	1.599983
炎	1.949997	2.000017	1.950002	2000002	7.800008	1998998
約納	1.949987	2.000002	1.949995	1.999995	7.799978	7539978
率嫘	1.949995	2.000002	1.949998	1，999998	7.799993	7959993
紋緆	1.949998	2.000002	1.950000	2.000000	7.800001	200000

Golden section：

36						
3 ${ }^{\text {a ch21DithotomousEoiden5ection }}$						
		0.05	［		\＃VALUEI	
	4imimax	0	Maximimi ${ }^{\text {a }}$	4		
	Sthlionrs		3ehboro			
	$x^{*}=$	2.00000	$\underline{f(x)}{ }^{\text {a }}$ ）$=$	7.97516		
	teultions					
－XL		xR	$\times 1$	${ }^{2}$	f（x）	
180	0.000000	4.000000	1.5278864	2.472136	6.111456	1527864
	0.000000	2.472136	0.944272	1.527884	3.77089	6.11145
	0.94272	2.472136	1.527864	1.888544	6.111456	7.55117
｜3	1.527864	2.472136	1.888544	2.111456	7.564175	188854
	1.578864	2：111456	1.750776	1.888544	7.003106	75
	1.750776	2.111456	1.888544	1.973689	7.554175	789475
	1.8889544	2.111456	1.973689	2.026311	7.894755	197368
	1.888544	2.026311	1．941166	1.973689	7.764665	789475
	1981166	2026311	1973689	1983789	78947565	191515
	197369^{4}	2025611	1993789	2002211	7785155	1983769
	1.978689	2006211	1gatII	1993789	794444	197515

Continued．

Because $f(x)$ is strictly concave, a sufficient condition for optimality is $\nabla f(x)=0$.
To solve $\nabla f(x)=0$ by the NewtonPapheon method, consider Taylors' expansion about an initial x°,

$$
\nabla f(x)=\nabla f\left(x^{0}\right)+H\left(x-x^{0}\right)
$$

The Hessian matrix H is sidelpentent of x be cause $f(x)$ is quadratic. The given expansion is exact because higher-orde derivatives are zero.

Given $\nabla f(x)=0$, we get

$$
x=x^{0}-H^{-1} \nabla f\left(x^{\circ}\right)
$$

Because x ratifies $\nabla f(x)=0$, x must be optimum regardless of the choice of initial x°

$$
\nabla f(x)=\left(4-4 x_{1}-2 x_{2}, 6-2 x_{1}-4 x_{2}\right)
$$

Let

$$
\begin{aligned}
& x^{0}=(5,5) \Rightarrow \nabla f\left(x^{0}\right)=(-26,-24)^{4} \\
& H=\left(\begin{array}{ll}
-4 & -2 \\
-2 & -4
\end{array}\right), H^{-1}=\left(\begin{array}{cc}
-1 / 3 & 1 / 6 \\
1 / 6 & -1 / 3
\end{array}\right)
\end{aligned}
$$

Thus, thoptimun is

$$
\begin{aligned}
& \text { w, the optiminn is } \\
& x=\binom{5}{5}-\left(\begin{array}{cc}
-1 / 3 & 1 / 6 \\
1 / 6 & -1 / 3
\end{array}\right)\binom{-26}{-24}=\binom{1 / 3}{4 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } f(x)=\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \\
& \nabla f(x)=\left[4\left(x_{1}^{3}-x_{1} x_{2}\right)+2\left(x_{1}-1\right), 2\left(x_{2}-x_{1}^{2}\right)\right] \\
& x^{0}=(0,0) \\
& \nabla f\left(x^{0}\right)=(-2,0)^{T} \\
& x=(-2 r, 0)^{T} \\
& h(r)=16 r^{4}+4 r^{2}+4 r+1 \\
& r^{*}=-2949 \\
& x^{\prime}=(0,0)+(-2949)(-2,0)=(-5898,0)
\end{aligned}
$$

(b)

2 cont inced

$$
\begin{aligned}
& \nabla f(x)= C+2 x^{\top} A \\
&=\left(1-10 x_{1}-6 x_{2}-x_{3},\right. \\
& 3-6 x_{1}-4 x_{2}, \\
&\left.5-x_{1}-x_{3}\right)
\end{aligned} \quad \begin{aligned}
x^{0}= & (0,0,0)^{\top}
\end{aligned}
$$

$$
\nabla f\left(x^{0}\right)=(1,3,5)
$$

$$
x=(1,3,5) r
$$

$$
h(r)=35 r+r^{2}(1,3,5) A\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right)
$$

Optimal $r=.299145$

$$
\begin{aligned}
& x^{\prime}=(.299145, .897436,1.495726) \\
& \nabla f\left(x^{\prime}\right)=(-15.88,2.84614,3.205129) \\
& x=x^{\prime}+r \nabla f\left(x^{\prime}\right)
\end{aligned}
$$

$f_{1}\left(x_{1}\right)=e^{-x_{1}}+x_{1}, g^{\prime}\left(x_{1}\right)=x_{1}^{2}$			
$f_{2}\left(x_{2}\right)=\left(x_{2}+1\right)^{2}, g^{2}\left(x_{2}\right)=x_{2}$			
k_{1}	$a_{1}^{k_{1}}$	$f_{1}\left(a_{1}^{k_{1}}\right)$	$g_{1}\left(a_{1}^{k_{1}}\right)$
1	0	1	0
2	.5	1.1	1.25
3	1.	1.37	1.
4	1.5	1.72	2.25
5	1.732	1.91	t_{1}^{\prime}
k_{2}	$a_{2}^{k_{2}}$	$f_{2}\left(a_{2}^{k_{2}}\right)$	$g_{2}\left(a_{2}^{\left.k_{1}\right)}\right.$
1	0	1.00	t_{1}^{3}
2	.5	2.25	0
3	1.	4.	1.5
4	1.5	6.25	1.5

Subject to

$$
\begin{aligned}
& .25 t_{1}^{2}+t_{1}^{3}+2.25 t_{1}^{4}+3 t_{1}^{5}+ \\
& .5 t_{2}^{2}+t_{2}^{3}+1.5 t_{2}^{4}+2 t_{2}^{5}+2.5 t_{2}^{6}+ \\
& +3 t_{2}^{7} \leqslant 3 \\
& 0 \leq t_{1}^{\prime} \leq y_{1}^{\prime} \\
& 0 \leq t_{1}^{2} \leq y_{1}^{\prime}+y_{1}^{2} \\
& \begin{array}{lc|l}
0 \leq t_{1}^{2} \leq y_{1}+y_{1} & 0 \leq t_{2} \leq y_{2}+y_{2}^{2} \\
0 \leq t_{1}^{3} \leq & y_{1}^{2}+y_{1}^{3} & 0 \leq t_{2}^{3} \leqslant \\
0 \leq t_{1}^{4} \leq & y_{2}^{2}+y_{2}^{3} \\
0 \leq t_{1}^{5} \leq & y_{1}^{3}+y_{1}^{4} & 0 \leq t_{2}^{4} \leqslant \\
& y_{1}^{4} & y_{2}^{3}+y_{2}^{4} \\
& & 0 t_{2}^{5} \leqslant \\
0 \leq t_{2}^{6} \leqslant & y_{2}^{4}+y_{2}^{5} \\
0 \leq t_{2}^{7} \leq & y_{2}^{5}+y_{2}^{6} \\
& & y_{2}^{6}
\end{array} \\
& t_{2}^{\prime}+t_{2}^{2}+t_{2}^{3}+t_{2}^{4}+t_{2}^{5}+t_{2}^{6}+t_{2}^{7}=1 \\
& t_{1}^{\prime}+t_{1}^{2}+t_{1}^{3}+t_{1}^{4}+t_{1}^{5}=1 \\
& \theta_{1} \dot{c}=(0,1) \quad i=1,2 \cdots, 5 \\
& y_{2}^{i}=(0,1) \quad i=1,2, \cdots, 7
\end{aligned}
$$

Usecthe formulation in Problem 1, less
all che constraint in y_{i}. We use
s, S_{1}, t_{1}^{\prime}, and t_{2}^{\prime} as the staining baric solution mainly for simplicity and to avoid Thing artificial standing basic avasoble' This can be achieved by aubitituting out 4 . in the z-equation using

$$
t_{1}^{\prime}=1, t_{2}^{7}=1
$$

Optimal solution: $x_{1}=0, x_{2}=3, z=17$ Let $y=x_{1} x_{2} x_{3}$. Because this is 3 a maximization problem, $y>0$.

$$
\ln y=\ln x_{1}+\ln x_{2}+\ln x_{3}
$$

$\operatorname{maximize} z=y$
subject to

$$
\begin{aligned}
-\ln y+\ln x_{1}+\ln x_{2}+\ln x_{3} & =0 \\
x_{1}^{2}+x_{2}+x_{3} & \leq 4
\end{aligned}
$$

Which is aepmable.

$$
\begin{array}{ll}
f_{1}(y)=y & g_{1}\left(y_{1}\right)=-\ln y \\
g_{1}^{\prime}\left(x_{1}\right)=\ln x_{1}, & g_{1}^{2}\left(x_{2}\right)=\ln x_{2} \\
g_{2}^{\prime}\left(x_{1}\right)=x_{1}^{2}, \quad g_{2}^{2}\left(x_{2}\right)=x_{2} \\
g_{1}^{3}\left(x_{3}\right)=\ln x_{3}, g_{2}^{3}\left(x_{3}\right)=x_{3}
\end{array}
$$

Use $0 \leq y \leq 7$ and $0 \leq x_{c} \leq 4$ todelermine the breaking points; then Solve using restricted basis

Separability requires vising the 4 en function to separate th products inter single-vaialle functions. That in, $y_{1}=x_{1} x_{2}$ and $y_{2}=x_{1} x_{3}$. However, to ensure that $\ln (0)$ will not be encountered, we crass the subelitition

$$
\left.\begin{array}{l}
w_{1}=x_{1}+1 \\
w_{2}=x_{2}+1 \\
w_{3}=x_{3}+1
\end{array}\right\} \Rightarrow w_{1}, w_{2}, w_{3}>0
$$

Thus,

$$
\begin{aligned}
& x_{1} x_{2}=w_{1} w_{2}-w_{1}-w_{2}+1 \\
& x_{1} x_{3}=w_{1} w_{3}-w_{1}-w_{3}+1
\end{aligned}
$$

Let $v_{1}=w_{1}, w_{2}, v_{2}=w_{1}, w_{3}$. Hence,

$$
\begin{aligned}
& x_{1} x_{2}=v_{1}-w_{1}-w_{2}+1 \\
& x_{1} x_{3}=v_{2}-w_{1}-w_{3}+1
\end{aligned}
$$

where

$$
\ln \left(\nu_{1}\right)=\ln \left(\omega_{1}\right)+\ln \left(\omega_{2}\right)
$$

$$
\ln \left(v_{3}\right)=\ln \left(w_{1}\right)+\ln \left(w_{3}\right)
$$

The problem is expressed as Maximize $z=v_{1}+v_{3}-2 w_{1}-w_{2}+1$
Subject ct to

$$
\begin{aligned}
v_{1}+v_{2}-2 w_{1}-w_{2} & \leq 9 \\
\ln \left(v_{1}\right)-\ln w_{1}-\ln w_{2} & =0 \\
\ln v_{2}-\ln w_{1}-\ln w_{3} & =0
\end{aligned}
$$

$v_{1}, v_{2}, w_{1}, w_{2}, w_{3} \geqslant 0$
Let $y=e^{2 x_{1}+x_{2}^{2}}>0$
$\ln y=2 x_{1}+x_{2}^{2}$
Maximize $z=y+\left(x_{3}-2\right)^{2}$
subject to

$$
\begin{aligned}
& \ln y-2 x_{1}-x_{2}^{2}=0 \\
& x_{1}+x_{2}+x_{3} \leq 6 \\
& y, x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& w_{1}=x_{1}+1 \\
& w_{2}=x_{2}+1 \\
& w_{3}=x_{3}+1 \\
& \text { Next, } y_{1}=e^{x_{1} x_{2}} \\
& \quad \ln y_{1}=x_{1} x_{2}
\end{aligned}
$$

Now,
whens

$$
\begin{aligned}
x_{1} x_{2} & =w_{1} w_{2}-w_{1}-w_{2}+1 \\
& =y_{2}-w_{1}-w_{2}+1
\end{aligned}
$$

$$
\ln y_{2}=\ln w_{1}+\ln w_{2}
$$

Thus,

$$
\left.\begin{array}{l}
\ln y_{1}=y_{2}-w_{1}-w_{2}+1 \tag{1}\\
\ln y_{2}=\ln w_{1}+\ln w_{2}
\end{array}\right\}
$$

Next,

Let

$$
\begin{aligned}
x_{2}^{2} x_{3} & =\left(w_{2}-1\right)^{2}\left(w_{3}-1\right) \\
& =w_{2}^{2} w_{3}+w_{3}-2 w_{2} w_{3}-w_{2}^{2}+2 w_{2}+1
\end{aligned}
$$

$$
y_{3}=w_{2}^{2} w_{3}, y_{4}=w_{2} w_{3}
$$

Then

$$
\begin{aligned}
& \ln y_{3}=2 \ln w_{2}+\ln w_{3} \\
& \ln y_{4}=\ln w_{2}+\ln w_{3}
\end{aligned}
$$

and

$$
\left.\begin{array}{l}
\text { and } \\
x_{2}^{2} x_{3}=y_{3}+w_{3}-2 y_{4}-w_{2}^{2}+2 w_{2}+1 \\
\ln y_{3}=2 \ln w_{2}+\ln w_{3} \\
\ln y_{4}=\ln w_{2}+\ln w_{3}
\end{array}\right\}
$$

also,

$$
\left.\begin{array}{rl}
\ln _{1} p_{1} & =w_{2} w_{3}-w_{2}-w_{2}+1 \tag{3}\\
x_{3} & =y_{3}-w_{2}-w_{3}+1 \\
\ln y & =\ln w_{2}+\ln w_{3}
\end{array}\right\}
$$

Finally,

$$
\begin{aligned}
& \text { anally, } \\
& x_{3} x_{4}=x_{3} x_{4}^{+}-x_{3} x_{4}^{-}, x_{4}^{+}, x_{4}^{-} \geqslant 0
\end{aligned}
$$

Put $y_{6}=x_{3} x_{4}^{+}$and $y_{7}=x_{3} x_{4}^{-}$
and let $w_{4}^{+}=1+x^{+}$

$$
w_{4}=1+x
$$

Thus,

$$
\left.\begin{array}{l}
x_{3} x_{4}^{+}=y_{8}-w_{3}-w_{4}^{+}+1 \tag{4}\\
\ln y_{8}=\ln w_{3}+\ln w_{4}^{+}
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
x_{3} x_{4}^{-}=y_{9}-w_{3}-w_{4}^{-}+1 \tag{s}\\
\ln y_{9}=\ln w_{3}+\ln w_{4}^{-}
\end{array}\right\}
$$

From (1) through (s), the problem becomes:
Maxininge $z=y_{1}+y_{3}+w_{2}-2 y_{4}-w_{2}^{2}+2 w_{1}+1$
subject ts

$$
\begin{aligned}
& \ln y_{1}=y_{2}-w_{1}-w_{2}+1 \\
& \ln y_{2}=\ln w_{1}+\ln w_{2} \\
& \ln y_{3}=2 \ln w_{2}+\ln w_{3} \\
& \ln y_{4}=\ln w_{2}+\ln w_{3} \\
& \ln y_{5}=\ln w_{2}+\ln w_{3} \\
& \ln y_{8}=\ln w_{3}+\ln w_{4}^{+} \\
& \ln y_{9}=\ln w_{3}+\ln w_{4}^{-} \\
& w_{1}+y_{5}-w_{2}-w_{3}+y_{8}-y_{9}-w_{4}^{+}-w_{4}^{-} \leq 10
\end{aligned}
$$

$y_{i} \geq 0, w_{i} \geq 0$, all i and j

$$
\begin{aligned}
& b=a_{k-1, i}-a_{k-2, i} \\
& \delta=\min \left\{b-x_{k-1, i}, x_{k i}\right\}
\end{aligned}
$$

It is fencible to eubtiatt δ from $x_{k_{i}}$ and add it to $x_{k-1,1}$. The net change in the value of the objective function is

$$
\Delta=\delta\left(\rho_{k-1, i}-\rho_{k_{i}}\right)>0
$$

Because $\rho_{k-1, i}<\rho_{k_{i}}$ (minimizent), $\Delta<0$. Thus, adding δ t $Y_{t-1, i}$ leads to a smaller value of the objective function.

The end result is that it is never optimal to have positive. $x_{k_{i}}$ if x_{k-1}, tao net attained is upper limit $a_{k-1, i}-a_{k_{i}}$.

Minimize $z=x_{1}^{4}+2 x_{2}^{+}-2 x_{2}^{-}+x_{3}^{2}$
sulyict to

$$
\begin{gathered}
x_{1}^{2}+x_{2}^{+}-x_{2}^{-}+x_{3}^{2} \leq 4 \\
x_{1}+x_{2}^{+}-x_{2}^{-} \\
-x_{1}-x_{2}^{+}+x_{2}^{-} \quad \leq 3 \\
x_{1}, x_{2}^{+}, x_{2}^{-}, x_{3} \geq 0 \\
f_{1}\left(x_{1}\right)=x_{1}^{4}: g^{\prime}\left(x_{1}\right)=x_{1}^{2}, g_{1}^{2}\left(x_{1}\right)=x_{1} \\
g_{1}^{3}\left(x_{1}\right)=-x_{1} \\
f_{3}\left(x_{3}\right)=x_{3}^{2}: g_{3}^{\prime}\left(x_{3}\right) x_{3}^{2}
\end{gathered}
$$

k_{1}	a_{1}	$f_{1}\left(k_{k}\right)$	$\rho_{k 1}$	g_{1}^{\prime}	$\rho_{k_{1}}^{1}$	g_{1}^{2}	$\rho_{k_{1}}^{2}$	g_{1}^{3}	$\rho_{k 1}^{3}$
0	0	0	-	0	-	0	-	0	-
-1	1	1	1	1	1	1	1	1	1
2	2	16	15	4	3	2	1	2	1
3	3	81	65	90	5	3	1	3	1
p_{2}	a_{k}		1	ρ_{1}	g_{3}	ρ_{k}			

| k_{3} | $a_{k_{3}}$ | $f_{3}\left(q_{k}\right)$ | $\rho_{k 3}$ | g_{3}^{1} | $\rho_{k 3}^{1}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | | |
| 1 | 1 | 1 | 1 | 1 | 1 | | |
| 2 | 2 | 4 | 3 | 4 | 3 | | |
| 3 | 3 | 9 | 5 | 9 | 5 | | |

$$
\begin{gathered}
\operatorname{Min} z=x_{11}+15 x_{12}+65 x_{13}+2 x_{2}+ \\
x_{13}+3 x_{23}+5 x_{33}
\end{gathered}
$$

Subject to

$$
\begin{array}{lr}
x_{11}+3 x_{12}+5 x_{13}+x_{2}^{+}-x_{2}^{-}+x_{13}+3 x_{23}+5 x_{33} \leq 4 \\
x_{11}+x_{12}+x_{13}+x_{2}^{+}-x_{2}^{-} & \leq 3 \\
-x_{11}-x_{12}-x_{13}-x_{2}^{+}-x_{2}^{-} & \leq 3
\end{array}
$$

$$
\begin{aligned}
& 0 \leq x_{i j} \leq 1 \\
& x_{2}^{+}, x_{2}^{-} \geq 0
\end{aligned} ; i=1,3, j=1,2,3
$$

Use simplex int upper founding to debisivne the approximate optimum solution.

$$
\begin{aligned}
& z=(6,3)\binom{x_{1}}{x_{2}}+\left(x_{1}, x_{2}\right)\left(\begin{array}{cc}
-2 & -2 \\
-2 & -3
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& D=\left(\begin{array}{ll}
-2 & -2 \\
-2 & -3
\end{array}\right)
\end{aligned}
$$

Priciapal minoe deleirminants: $-2,+2$ Negative definite $\Rightarrow \boldsymbol{z}$ is concave Conatiaints:
$\left(\begin{array}{cc}1 & 1 \\ 2 & 3 \\ -1 & 0 \\ 0 & -1\end{array}\right) X-\left(\begin{array}{l}1 \\ 4 \\ 0 \\ 0\end{array}\right) \leq 0, \lambda S=U X=0$

X^{\top}		λ^{\top}	U^{T}	S^{T}	$R H S$			
4	4	1	2	-1	0	0	0	6
4	6	1	3	0	-1	0	0	3
1	1	0	0	0	0	1	0	1
2	3	0	0	0	0	0	1	4

$$
\begin{array}{lll}
x_{1}=1, & \lambda_{1}=2, & \mu_{1}=0, \\
s_{1}=0 \\
x_{2}=0, & \lambda_{2}=0, & \mu_{2}=3, \\
z=4 & & \\
Z=0
\end{array}
$$

Let $w=-2$. Then, the
parolulem be comes
Maximize
$\omega=(-1,3,5) X+X^{T}\left(\begin{array}{ccc}-2 & -1 & 0 \\ -1 & -2 & -1 \\ 0 & -1 & -3\end{array}\right) X$
subject t
$\left(\begin{array}{ccc}-1 & -1 & -1 \\ 3 & 2 & 1\end{array}\right) X \leq\binom{-1}{6}$
$D=\left(\begin{array}{ccc}-2 & -1 & 0 \\ -1 & -2 & -1 \\ 0 & -1 & -3\end{array}\right)$
Puricipal munor determinanto $=$ $-2,3,-7 \Rightarrow$ negateve defirint $\Rightarrow w i s ~ c o n c a v e$

Neccasaiy conditions:

$$
x_{1}=0, x_{2}=\cdot 4, x_{3}=\cdot 7
$$

Transformed problem:
Maximize $z=x_{1}+2 x_{2}+5 x_{3}$
Subject 6

$$
\begin{aligned}
2 x_{1}+3 x_{2}+5 x_{3}+1.28 y & \leq 10 \\
9 x_{1}^{2}+16 x_{3}^{2}-y^{2} & =0 \\
7 x_{1}+5 x_{2}+x_{3} & \leq 12.4 \\
x_{1}, x_{2}, x_{3}, y \geqslant 0 &
\end{aligned}
$$

Transformed problem:
Maximize $z=x_{1}+x_{2}^{2}+x_{3}$
Subject to

$$
\begin{aligned}
& x_{1}^{2}+5 x_{2}^{2}+2 \sqrt{x_{3}}+1.28 y \leqslant 10 \\
& 16 x_{2}^{2}+25 x_{3}-y^{2}=0 \\
& x_{1}, x_{2}, x_{3}, y \geqslant 0
\end{aligned}
$$

Chapter 20

Additional Network and LP algorithms

Set 20.1a

20-2

Let

$$
x_{i j}=\left\{\begin{array}{l}
\text { Tons from node } \mathrm{i} \text { to node } j, i=1,3,5, j=4,6,8 \\
\text { Dollars from node i to node } j, i=2,4,6,8, j=3,5
\end{array}\right.
$$

$$
\mathrm{y}=\text { Total revenue }
$$

The associated LP is

$$
\text { Maximize } z=y-10\left(x_{13}+x_{35}+x_{57}\right)
$$

subjectto

$$
\begin{aligned}
& x_{13}+x_{14}=400 \\
& x_{13}+x_{23} / 200=x_{35}+x_{36} \\
& x_{35}+x_{45} / 190=x_{58}
\end{aligned}
$$

Set 20.1a

$$
\begin{aligned}
& x_{23}+x_{24}=100000 \\
& 1.01 x_{24}+250 x_{14}=x_{45} / 190+x_{46} \\
& 1.01 x_{46}+230 x_{36}=x_{68} \\
& 1.01 x_{68}+240 x_{58}=y \\
& x_{13} \leq 800 \\
& x_{35} \leq 800 \\
& x_{i j} \geq 0, \text { for all } i \text { and } j
\end{aligned}
$$

Optimum solution: $z=\$ 48,240,000$.

$$
\begin{aligned}
& x_{14}=400 \text { tons, } x_{58}=20,100 \text { tons } \\
& x_{24}=\$ 100,000, x_{45}=\$ 38,190,000
\end{aligned}
$$

 $z=\$ 440$
Cave 2: Lower bounds subetitutal duretty on nelavole using th following sub:

Applying this sule to the natusich we get:
[40]

	x_{12}^{\prime}	x_{13}^{\prime}	x_{24}^{\prime}	x_{32}^{\prime}	x_{34}^{\prime}	
min z	1	5	3	4	6	
mode 1	1	1				$=20$
node 2	-1		1	-1		$=-40$
node 3		-1		1	1	$=40$
node 4			-1		-1	$=-20$
upper bd	∞	10	∞	∞	∞	

$$
\begin{array}{ll}
x_{12}=x_{12}^{\prime} & x_{13}=x_{13}^{\prime}+30 \\
x_{24}=x_{2 y}^{\prime}+10 & x_{32}=x_{32}^{\prime}+10 \\
x_{34}=x_{34}^{\prime} &
\end{array}
$$

$$
\begin{aligned}
& \text { Optimum: } z=\neq 440 \\
& x_{12}=x_{12}^{\prime}=20 \quad x_{32}=x_{32}^{\prime}+10=10+10=20
\end{aligned}
$$

$$
x_{13}=x_{13}^{\prime 2}+30=30
$$

$$
x_{24}=x_{2 y}^{\prime}+10=10
$$

$x_{13}=20$: hire 20 at the start of January for termination at start of morel
$x_{23}=20$: hire 20 at the start of February of termination at the start of march
$x_{15}=80$: Live 80 at the stout of homely for terminates at the start of May
$x_{45}=90$: hui 90 at the start of April for termination at the part of May.
$x_{i j}=\#$ hived at the start of i and.
tirmenated at the start of V

$$
j \geq i+1
$$

	x_{13}	x_{14}	x_{15}	x_{24}	x_{25}	x_{35}	$S_{1} S_{2} S_{3} S_{y}$	
	130	180	220	130	180	130		$=100$
Jan	1	1	1			-1	$=120$	
Feb	1	1	1	1	1		-1	$=120$
Mar		1	1	1	1	1	-1	$=80$
Apr.			1		1	1		$-1=170$
Jan	1	1	1			-1	$=101$	
Fib				1	1	1	-1	$=20$
Mar	-1					1	$1-1$	$=-40$
Apr:	-1		-1			$1-1=90$		
May		-1		-1		$1=-170$		

Set 20.1b

Let a represent th total flow of incoming arcs at node i and 6 the trial flow of outgoing ass at node j.

$$
x_{i j} \leqslant u_{i j} \Rightarrow x_{i j}+x_{i j}^{\prime}=u_{i j}, x_{i j}^{\prime} \geqslant 0 \text { (1) }
$$

Node L 2 :

$$
\begin{equation*}
a+f_{i}=x_{i j} \tag{2}
\end{equation*}
$$

Node j:-

$$
\begin{equation*}
x_{i j}+f_{j}=6 \tag{3}
\end{equation*}
$$

Thus,

$$
u_{i j}-x_{i j}^{\prime}-b=-f_{j}
$$

or

$$
\begin{equation*}
x_{c j}^{\prime}+b=u_{i j}+f_{j} \tag{4}
\end{equation*}
$$

Lettering

$$
\begin{aligned}
& x_{i k}=x_{i j} \\
& x_{j k}=x_{i j}^{\prime}
\end{aligned}
$$

equations (1), (2), and (4) produce The following equivalent netivert $\left[f_{i}\right]$

Application of the transformation © the netivite in figure 6-42, we get

Optimum solution is obtained by using TORA's tranopestation model, and is strum in bold on the arcs. This erhuteri is tianslatid in terms of the original network as jollows:

$$
\text { Total coot }=\$ 490
$$

The Spanning tree shown by leary arcs gives a starting basic feasible solution. We compute the dual values ω_{c}., $i=0,1, \ldots, 4$ as follows:

$$
\begin{aligned}
& w_{0} \equiv 0 \\
& w_{0}-w_{1}=24 \Rightarrow w_{1}=-24 \\
& w_{1}-w_{2}=1 \Rightarrow w_{2}=-25 \\
& w_{0}-w_{3}=21 \Rightarrow w_{3}=-21 \\
& w_{3}-w_{4}=1 \Rightarrow w_{4}=-22
\end{aligned}
$$

Evaluation of the nonbasic arcs:

$$
\begin{aligned}
z_{02}-c_{02} & =\omega_{0}-\omega_{2}-c_{02} \\
& =0-(-25)-26=-1 \\
z_{04}-\delta_{04} & =0-(-22)-24=-2 \\
z_{23}-c_{23} & =-25-(-21)-2=-6
\end{aligned}
$$

He given spanning tree solution is optional.

Transshipment solution:

Since these are no finite upper bounds, the problem can be solved directly as a transshipment
model

$\operatorname{cost}=49,895$

$\omega_{0} \equiv 0$
$\omega_{1}=-24, \omega_{2}=-22.5, w_{3}=-21, w_{4}=-22$
$z_{02}-c_{02}=0-(-22.5)-26=-3.5$
$Z_{04}-\delta_{84}=0-(-22)-24=-2$
$z_{12}-c_{12}=-24-(-22.5)-1=-2.5$
$z_{12}-c_{12}=-24-(-22.5)-1=-2.5$
$z_{21}-c_{21}=-22.5-(-24)-15=0$
$z_{21}-c_{21}=-22 \cdot 5-(-24)-15=0$
$z_{23}-c_{23}=-2.5-(-21)-2=-3.5$ optimums!
Transolipment Solution:

$B=430$
$100+B 110+B 95+B \quad 125+B \quad$ cost $=\$ 9,620$
Summary of the optimums Soluttori :

This soktion is not baric because it does not compurie a spanning tree. To convent it into a spanning tie, substitute out arcs 0-1, 0-3, and 0-4 at upper found- that is,

$$
x_{01}=110-x_{10}, x_{03}=125-x_{30}, x_{04}=100-x_{40}
$$

aChes $x_{10}, x_{30} \times x_{40}$ are now nonbasic at zero level.

Optemusi shlutir because all $z_{j}-c_{j} \leqslant 0$
Optemuin solution summary:

Period	Production	Demand	Susphes	
1	110	100	10	10
2	95	$110<15$		
3	125	95	5	-15
4	100	125	30	

$$
\text { Total cost }=\$ 10,177.50
$$

Set 20.1c
 subetituting out oh lower bounds, th following eterations will nesult:

20-10

Set 20.1c

Loop: $(4,3) \rightarrow(1,3) \rightarrow(1,5) \rightarrow(4,5)$
$\begin{array}{llll}\text { sign }+ \\ \text { flow Entering } 40 & - & - & 90 \\ (1,3) \text { leave o }\end{array}$

Optimum solution:

$x_{15}=100$: Hire 100 at the start of pend, In the entice hanson
$x_{25}=20$: the 20 at itch start of peniditin the end of th Longan
$x_{45}=50$ tree 50 at t ch start 8 period 4 In one peusid only
$x_{43}=40$ means that period 4 (march) will carry a
cipher of 40 workers $(=120-80=40)$.
Total cost $=\$ 30,600$

Set 20.1c

Set 20.1c

Optimal solution:

$\mathrm{N} 1-\mathrm{N} 2=20, \mathrm{~N} 1-\mathrm{N} 3=30, \mathrm{~N} 1-\mathrm{N} 4=10$, $\mathrm{N} 2-\mathrm{N} 5=20, \mathrm{~N} 3-\mathrm{N} 4=10, \mathrm{~N} 3-\mathrm{N} 5=20$, N4-N5 $=20$. Maximum flow $=60$
(a) AMPL: See file amplProb6.5c-10a.txt. Solver:

Optimum solution:

Period 1: Produce 110, surplus 10
Period 2: Produce 95 , shortage 15
period 3: Produce 125, surplus 30
Period 4: Produce 100, shortage 25
Total shortage $=15+25=40$
Total surplus $=10+30=40$
Cost $=\$ 10,177.50$
(c) Solver

	A	6	C	D	E
1	Problem	5c.101c)			
2	capacity	n 4	155	n6	
3	n 1	10	10	10	8
4	n2	10	10	10	10
5	n3	10	10	10	18
6		16	6	14	
7	unitCost	$n 4$	n5	n6	
8	11	5	8	4	
9	n2	6	9	12	
10	n3	3	1	5	
11	solution	14	n5	n6	rowSum
12	11	0	,	0	0
13	n2	10	0	0	0
14	n3	6	6	6	0
15	colSum	0	0	0	
16		talCost	146		
$\frac{17}{18}$	Solver Parameters				
18					
$\frac{19}{20}$	Set Trget Cell tratcost [8]				
$\frac{21}{21}$	Equalto: Ousx gy Changing Celt:		$\bigcirc \mathrm{m}$	O	value of:
22					
23	solution				E]
$\frac{24}{25}$	Sibject to the Constrants:				
26	$\begin{aligned} & \text { colSun }=0 \\ & \text { rawsum }=0 \\ & \text { splution } 4=\text { capariy } \\ & \text { solution }>=0 \end{aligned}$				
27					
28					

Optimum solution:

$\mathrm{x} 16=8$
$\mathrm{x} 24=10$
$\mathrm{x} 34=6$
$\mathrm{x} 35=6$
$\mathrm{x} 36=6$
Cost $=\$ 146$

$\min _{\beta_{j}}\left\{z_{j},-c_{j}\right\}=-1050=-50 \sim M$, correspondato β_{2}
Thuo, β_{2} enters solution (ita extremepoint is $(50,0)$) Sterationi3:

$\operatorname{mex}_{i} \alpha_{i}\left\{z_{j}-c_{j}\right\}=-192=-\frac{12 M}{50}+48$, Corresponds to α $\operatorname{mini}_{\beta_{j}}\left\{z_{j}--G \cdot\right\}=-900=\frac{-9 M}{10}$, corrospondo to β_{1}

$$
0 \quad 22 \frac{1}{2} \quad 23 \quad 6 \quad 0 \quad 16 \quad 36 \quad 0 \geqslant 10
$$ $\left(z_{j}-c_{j}\right) f_{n} x_{8}=21$

Merateri 4: optimum.

Optimum Gidetion: $z=88$
$\left.\begin{array}{ll}\text { variable } & \text { Asoociated extreme print } \\ x_{1}=\alpha_{1}=0 & (0,0) \\ x_{2}=\alpha_{2}=0 & (12 / 5,0) \\ x_{3}=\alpha_{3}=1 & (0,12)\end{array}\right\} \Rightarrow x_{1}=0, x_{2}=12$
$\left.\begin{array}{ll}x_{4}=\beta_{1}=.4889 & (5,0) \\ x_{5}=\beta_{2}=.5111 & (50,0) \\ x_{6}=\beta_{3}=0 & (0,10) \\ x_{7}=\beta_{4}=0 & (0,5)\end{array}\right\} \Rightarrow x_{4}=28$
$D_{1}=\left(\begin{array}{ll}1 & 4 \\ 2 & 1\end{array}\right), x_{1}=\binom{x_{1}}{x_{2}}, b=\binom{8}{9}$

$$
D_{2}=\left(\begin{array}{cc}
1 & -5 \\
1 & 1
\end{array}\right), \underline{x}_{2}=\binom{x_{3}}{x_{4}}, \quad b=\binom{4}{10}
$$

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) & =\alpha_{2}(9 / 2,0)+\alpha_{3}(4,1)+\alpha_{4}(0,2) \\
& =\left(9 / 2 \alpha_{2}+4 \alpha_{3}, \alpha_{3}+2 \alpha_{4}\right) \\
\left(x_{3}, x_{4}\right) & =\beta_{2}(4,0)+\beta_{3}(9,1)+\beta_{4}(0,10) \\
& =\left(4 \beta_{2}+9 \beta_{3}, \beta_{3}+10 \beta_{4}\right)
\end{aligned}
$$

$\begin{array}{llllllll}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4}\end{array}$

$$
z=0 \begin{array}{llllllll}
& 9 / 2 & 7 & 6 & 0 & 20 & 47 & 20
\end{array}
$$

$\begin{array}{ll}111 & 1 \\ & 11\end{array}$

$$
\alpha_{i} \geq 0, \quad \beta_{i} \geq 0, \quad i=1,2,3,4
$$

TORA optimumcolution:

$$
\alpha_{3}=1, \quad \beta_{3}=1
$$

all othen vamaibles $=0$
Thus,

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=(4,1) \quad z=54 \\
& \left(x_{3}, x_{4}\right)=(9,1) \quad
\end{aligned}
$$

Sulproblem $i=1$:

$$
\begin{aligned}
& \underline{x}_{1}=\left(x_{1}, x_{2}\right), \quad c_{1}=(1,3), A_{1}=(5,3) \\
& D_{1}=\left(\begin{array}{ll}
1 & 4 \\
2 & 1
\end{array}\right), \quad b_{1}=\binom{8}{9}
\end{aligned}
$$

Subproblem $i=2$:

$$
x_{2}=\left(x_{3}, x_{4}\right), c_{2}=(5,2), A_{2}=(4,0)
$$

Stanting foluteri :
Usc R_{1}, R_{2}, R_{3} as otantingantificial vars.

$$
\begin{aligned}
& X_{B}=\left(R_{1}, R_{2}, R_{3}\right)^{\top}=(10,1,1)^{\top} \\
& B=B^{-1}=I, C_{B}=(-M,-M,-M)
\end{aligned}
$$

Steraten 1:

$$
j=1: M \text { in } w_{1}=-(5 M+1) x_{1}-(3 M+3) x_{2}-M
$$

Optimum: $\hat{X}_{11}=(4,1), \omega_{1}^{*}=-24 M-7$

$$
j=2: \text { Min } w r_{2}=-(4 M+5) x_{3}-2 x_{4}-M
$$

Optionum: $\hat{X}_{21}=(9,1), w_{2}^{*}=-37 M-47$

$$
Z_{S}-C_{S}=(-M,-M,-M) I\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)-0=M>0
$$

Continued...

Thur; β_{3} associated wish $\hat{x}_{21}=(9,1)$ enters the solution:

$$
\begin{aligned}
& P_{21}=\binom{A_{2} \hat{x}_{21}}{0}=\left(\begin{array}{c}
36 \\
0 \\
1
\end{array}\right), B^{-1} P_{21}=\left(\begin{array}{c}
36 \\
0 \\
1
\end{array}\right) \\
& \theta=\text { man }\left\{\frac{10}{36},-, \frac{1}{1}\right\}=\frac{10}{36}, R_{1} \text { leaves } \\
& B_{\text {next }}^{-1}=\left(\begin{array}{ccc}
1 / 36 & 0 & 0 \\
0 & 1 & 0 \\
1 / 36 & 0 & 1
\end{array}\right) \\
& X_{B}=\left(B_{3}, R_{2}, R_{3}\right)^{\top}=B_{\text {next }}^{-1}(10,1,1)^{\top} \\
& =(10 / 36,1,26 / 36) T \\
& C_{21}=C_{2} \hat{X}_{21}=(5,2)\binom{9}{1}=47
\end{aligned}
$$

Serration 2:

$$
\begin{aligned}
& C_{B}=(47,-M,-M) \\
& \frac{j=1:}{M \sin w_{1}}=\left(\frac{199}{36}+\frac{5 M}{36}\right) x_{1}+\left(\frac{33}{36}+\frac{3 M}{36}\right) x_{2}-M
\end{aligned}
$$

Optimum: $\hat{X}_{12}=(0,0), \omega_{1}^{*}=-M$
$j=2$:

$$
\min w_{2}=\left(\frac{8}{36}+\frac{4 M}{36}\right) x_{3}-2 x_{y}
$$

Optimum: $\hat{\underline{X}}_{22}=(0,10), w_{2}^{*}=-20-M$

$$
z_{S}-C_{S}=(47,-M,-M) B^{-1}\left(\begin{array}{l}
-1 \\
0 \\
0
\end{array}\right)-0=-\frac{47}{36}-\frac{M}{36}
$$

Thus, β_{4} assecialid with $\hat{X}_{22}=(0,10)$ enters the solution.

$$
P_{22}=\left(\begin{array}{c}
A_{2} \hat{\dot{x}}_{22} \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), B_{22}^{-1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$\theta=\min \left\{-,-, \frac{26 / 36}{1}\right\}=\frac{26}{36}, R_{3}$ leaves

$$
B_{\text {next }}^{-1}=\left(\begin{array}{ccc}
1 / 36 & 0 & 0 \\
0 & 1 & 0 \\
-1 / 36 & 0 & 1
\end{array}\right)
$$

$$
x_{B}=\left(\beta_{3}, R_{2}, \beta_{4}\right)^{\top}=B^{-1}\left(\begin{array}{l}
10 \\
1 \\
1
\end{array}\right)=\left(\frac{10}{36}, 1, \frac{26}{36}\right)^{\top}
$$

$$
C_{22}=C_{2} \hat{X}_{22}=(5,2)\binom{0}{10}=20
$$

Iteration'3:

$$
\begin{aligned}
& C_{B}=(47,-M, 20) \\
& j=1: M i n w_{1}=\frac{99}{36} x_{1}-\frac{27}{36} x_{2}-M
\end{aligned}
$$

Optimism: $\hat{X}_{13}=(0,2), w_{1}^{*}=\frac{3}{2}-M$
$j=2$: Min $w_{2}=-2 x_{3}-2 x_{4}+20$
Optimum: $\hat{x}_{23}=(9,1) T, \omega_{2}^{*}=0$
$Z_{S}-C_{S}=(47,-M, 20) B^{-1}\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)-0=-3 / 4$
Thus, α_{3} associated wist $\hat{X}_{13}=(0,2)$ enters
The oflutions.

$$
P_{13}=\left(\begin{array}{c}
A_{1} \hat{x}_{13} \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
(5,3)\binom{0}{2} \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
6 \\
1 \\
0
\end{array}\right)
$$

$B^{-1} P_{13}=(1 / 6,1,-1 / 6)^{\top}$
$\theta=\min \left\{\frac{10 / 36}{1 / 6}, \frac{1}{1},-\right\}=1, R_{2}$ leaves
$B_{\text {next }}^{-1}=\left(\begin{array}{ccc}1 / 36 & -1 / 6 & 0 \\ 0 & 1 & 0 \\ -1 / 36 & 1 / 6 & 1\end{array}\right)$

$$
\begin{aligned}
& x_{B}=\left(\beta_{3}, \alpha_{4}, \beta_{4}\right)^{\top}=\left(\frac{4}{36}, 1, \frac{32}{36}\right)^{\top} \\
& C_{13}=C, \hat{x}_{13}=(1,3)\binom{0}{2}=6
\end{aligned}
$$

Station' 4 :

$$
C_{B}=(47,6,20)
$$

$j=1: \quad \operatorname{Min} \omega_{1}=\frac{11}{4} x_{1}-\frac{3}{4} x_{2}+\frac{3}{}$
Optimum : $\hat{X}_{14}=(0,2), \omega_{1}^{*}=0$
$j=2: \operatorname{Min} \omega_{2}=-2 x_{3}-2 x_{4}+20$
Optimum: $\hat{x}_{24}=(0,10), w_{2}^{*}=0$

$$
z_{5}-C_{5}=(47,6,20) B^{-1}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)-0=-3 / 4
$$

Thus, 5 enters of solution.

$$
B^{-1} P_{s}=B^{-1}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)=\left(-\frac{1}{36}, 0, \frac{1}{36}\right)^{T}
$$

$\theta=\min \left\{-,-\frac{32 / 36}{1 / 36}\right\}=32, \beta_{4}$ leaves

$$
\begin{aligned}
& B_{\text {next }}^{-1}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 1 \\
-1 & 6 & 36
\end{array}\right) \\
& X_{B}=\left(\beta_{3}, \alpha_{4}, S\right)^{T}=B^{-1}\left(\begin{array}{c}
10 \\
1 \\
1
\end{array}\right)=(1,1,32)^{T}
\end{aligned}
$$

Iteration 5:

$$
C_{B}=(47,6,0)
$$

$j=1: \operatorname{Min} w_{1}=-x_{1}-3 x_{2}+6$
Optimum: $\hat{\underline{x}}_{15}=(4,1)^{\top}, w_{1}^{*}=-1$.
$j=2$: Min $\omega_{2}=-5 x_{3}-2 x_{4}+47$
Optimum: $\hat{\underline{x}}_{25}=(9,1) ; w_{2}^{*}=0$
Thus, α_{3} associated with $\hat{x}_{15^{\circ}}=(4,1)^{\top}$ enters ole solution:

$$
P_{15}=\left(\begin{array}{c}
(5,3)\binom{4}{1} \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
23 \\
1 \\
0
\end{array}\right)
$$

continued... $\hat{B P}^{-1} P_{15}=(0,1,-17)^{T}$
continued...

$$
\begin{aligned}
& \theta=\operatorname{man}\left\{-, \frac{1}{1},-\right\}=1, \alpha_{4} \text { leaves } \\
& B_{\text {next }}^{-1}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 23 & 36
\end{array}\right), C_{15}=(1,3)\binom{4}{1}=7 \\
& X_{B}=\left(\beta_{3}, \alpha_{3}, 5\right)^{T}=B^{-1}\left(\begin{array}{l}
10 \\
1 \\
1
\end{array}\right)=(1,1,49)
\end{aligned}
$$ Station 6:

$$
\mathcal{C}_{B}=(47,7,0)
$$

$j=1:$ mex $\omega_{1}=-x_{1}-3 x_{2}+7$
Optimum: $\hat{x}_{16}=(4,1), w_{1}^{*}=0$
$j=2$: mix $\omega_{2}=-5 x_{3}-2 x_{4}+47$
Optimum: $\hat{x}_{26}=(9,1), \omega_{2}^{*}=0$
Optianium is reached!
$\left(\beta_{3}, \alpha_{3}, 5\right)=(1,1,49)$ tauslatés
$\left(x_{1}, x_{2}\right)=(4,1)$ and $\left(x_{3}, x_{4}\right)=(9,1)$

$$
z=54
$$

$j=1$:

$$
\begin{array}{ll}
\underline{x}_{1}=\left(x_{1}, x_{2}\right)^{\top} & \\
\underline{C}_{1}=(6,7) & \underline{A}_{1}=(1,1) \\
D_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) & \underline{b}_{1}=\binom{10}{8}
\end{array}
$$

$j=2$:

$$
\begin{array}{ll}
\underline{x}_{2}=\left(x_{3}, x_{4}\right) & \\
C_{2}=(3,5) & \underline{A}_{2}=(1,1) \\
\underline{D}_{2}=(5,1) & \underline{b}_{2}=(12)
\end{array}
$$

$j=3$:

$$
\begin{array}{ll}
x_{3}=\left(x_{5}, x_{6}\right) & \\
C_{3}=(1,1), & \underline{A}_{3}=(1,1) \\
D_{3}=\left(\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right), & b_{3}=\binom{5}{50}
\end{array}
$$

Starting Solution:

$$
x_{B}=\left(S, R_{1}, R_{2}, R_{3}\right)^{\top}=(50,1,1,1)^{\top}
$$

S, ti the alack of x common onvthaint.
Deration 0:

$$
\begin{aligned}
& C_{B}=(0,-M,-M,-M) \\
& B=B^{-1}=I
\end{aligned}
$$

Iteration 1:
$j=1$;
minimize $w_{1}=-6 x_{1}-7 x_{2}-M$
Solution:

$$
\begin{aligned}
& \hat{x}_{11}^{*}=(2,8)^{\top} \\
& \omega_{1}^{*}=-68-M
\end{aligned}
$$

$j=2$:
minimize $\omega_{2}=-3 x_{3}-5 x_{4}-M$
Solution:

$$
\begin{aligned}
& \hat{X}_{21}=(0,12)^{\top} \\
& w_{2}^{*}=-60-M
\end{aligned}
$$

$j=3$:
minimize $\omega_{3}=-x_{5}-x_{6}-M$
Solution: $\hat{X}_{31}=(50,0)^{\top}$

$$
w_{3}^{*}=-50-M
$$

$\beta_{1 r}$ associated with \hat{Y}_{11} enters the solution

$$
\begin{aligned}
& P_{11}=\left(\begin{array}{c}
(1,1)(2,8) \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
10 \\
1 \\
0 \\
0
\end{array}\right) \\
& B^{-1} P_{11}=(10,1,0,0)^{\top} \\
& \theta=\min \left\{\frac{50}{10}, \frac{1}{1},-,-\right\}=1, R_{1} \text { leaven } \\
& B_{\text {next }}^{-1}=\left(\begin{array}{cccc}
1 & -10 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0
\end{array}\right) \\
& X_{B}=\left(S_{1}, \beta_{11}, R_{2}, R_{3}\right)=(40,1,1,1) \\
& C_{11}=C_{1} \hat{X}_{11}=68
\end{aligned}
$$

Iteration 2: $C_{B}=(0,68,-M,-M)$ $j=1$:
minimize $w_{1}=-6 x_{1}-7 x_{2}-M$
Solution: $\hat{X}_{12}=(2,8)^{\top}$

$$
w_{1}^{*}=0
$$

$j=2$:
minimize $w_{2}=-3 x_{3}-5 x_{4}-M$

Solution: $\hat{\gamma}_{22}=(0,12)^{\top}$

$$
w_{2}^{*}=-60-M
$$

$j=3:$
minimize $\omega_{3}=-x_{5}-x_{6}-M$
Solution: $\hat{X}_{32}=(50,0)^{\top}$

$$
w_{3}^{*}=-50-M
$$

β_{22} associated with \hat{Y}_{22} enters the solutions.

$$
P_{22}=\left(\begin{array}{c}
(1,1)(0,12)^{\top} \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
12 \\
0 \\
1 \\
0
\end{array}\right)
$$

$$
B^{-1} P_{22}=(12,0,1,0)^{\top}
$$

$\theta=\min \left\{\frac{40}{12},-, \frac{1}{1},-\right\} ; R_{2}$ leaves

$$
B_{\text {next }}^{-1}=\left(\begin{array}{cccc}
1 & -10 & -12 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$X_{B}=\left(s_{1}, \beta_{11}, \beta_{22}, R_{3}\right)^{\top}=(28,1,1,1)^{\top}$

$$
C_{22}=C_{2} \hat{\underline{x}}_{22}=60
$$

Iteration 3: $C_{\mathcal{B}}=(0,68,60,-M)$ $j=1$:
minimize $\omega_{1}=-6 x_{1}-7 x_{2}-M$
Solutes:

$$
\begin{aligned}
& \hat{X}_{3}=(2,8)^{\top} \\
& w_{1}^{*}=0
\end{aligned}
$$

$$
j=2:
$$

$$
\begin{aligned}
& \hat{X}_{23}=(0,12)^{\top} \\
& \omega_{2}^{*}=0
\end{aligned}
$$

$j=3$:
minimize $\omega_{3}=-x_{5}-x_{6}-M$
Solution:

$$
\begin{aligned}
& \hat{X}_{33}=(50,0)^{T} \\
& w_{3}^{*}=-50-M
\end{aligned}
$$

β_{33} associated with $\hat{\gamma}_{33}$ enter solution

$$
P_{33}=\left(\begin{array}{c}
(1,1)(50,0)^{\top} \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
50 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
B^{-1} P_{33}=(50,0,0,1)^{\top}
$$

$\theta=\operatorname{mis}\left\{\frac{28}{50},-,-\frac{1}{1}\right\}, 5_{1}$ leaves

$$
\begin{aligned}
& B_{\text {next }}^{-1}=\left(\begin{array}{cccc}
1 / 50 & -10 / 50 & -12 / 50 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 / 50 & 10 / 50 & 12 / 50 & 1
\end{array}\right) \\
& X_{B}=\left(\beta_{33}, \beta_{11}, \beta_{22}, R_{3}\right)^{T}=\left(\frac{14}{25}, 1,1, \frac{11}{25}\right) \\
& C_{33}=C_{3} \hat{X}_{33}=50
\end{aligned}
$$

Iteration 4: $C_{B}=(50,68,60,-M)$
$j=1$:
minimize $\omega_{1}=\left(\frac{m}{50}-5\right) x_{1}+\left(\frac{M}{50}-6\right) x_{2}+50-\frac{M}{5}$
Solution: $\hat{X}_{41}=(0,0)^{\top}$

$$
w_{1}^{*}=50-\mathrm{M} / \mathrm{5}
$$

$j=2$:
minimize $\omega_{2}=\frac{50+M}{50}\left(x_{3}+x_{4}\right)-540$
solution:

$$
\begin{aligned}
& \hat{X}_{42}=(0,0)^{\top} \\
& w_{2}^{*}=-540
\end{aligned}
$$

$j=3$:
minimize $\omega_{3}=\frac{M}{50}\left(x_{5}+x_{6}\right)-M$
Solution: $\hat{X}_{43}=(5,0)^{\top}$

$$
w_{3}^{*}=-.9 \mathrm{M}
$$

$\frac{S_{1}}{z_{S_{1}}}-C_{S_{1}}=C_{B} B^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)-0=i+m / s 0$
β_{43} associated with \hat{X}_{43} enters solution

$$
\begin{aligned}
& P_{43}=\left(\begin{array}{c}
(1,1)(5,0)^{\top} \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
5 \\
0 \\
0 \\
1
\end{array}\right) \\
& B^{-1} P_{43}=\left(\frac{1}{10}, 0,0, \frac{9}{10}\right)^{\top}
\end{aligned}
$$

$$
\theta=\min \left\{\frac{28 / 50}{1 / 10},-,-\frac{22 / 50}{9 / 10}\right\}
$$

$=22 / 45, R_{3}$ leave

$$
\begin{aligned}
B_{\text {hex }}^{-1} & =\left(\begin{array}{cccc}
1 / 45 & -10 / 45 & -1 / 2 / 45 & -5 / 45 \\
0 & 1 & 0 & 0 \\
-1 / 45 & 0 & 10 / 45 & 12 / 45 \\
50 / 45
\end{array}\right) \\
X_{B} & =\left(\beta_{33}, \beta_{11}, \beta_{22}, \beta_{43}\right) \\
& =(23 / 45,1,1,22 / 45) \\
C_{43} & =(1,1,0,0)(5,0 ; 0,45)^{T}=5
\end{aligned}
$$

Qt can be shown that iteration 5 will prove optimality.
Optimum oslintion:

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=1(2,8)=(2,8) \\
& \left(x_{3}, x_{4}\right)=1(0,12)=(0,12) \\
& \left(x_{5}, x_{6}\right)=\frac{23}{45}(50,0)+\frac{22}{45}(5,0)=(28,0) \\
& z=8 x_{8}=(50,68,60,5)\left(\frac{23}{45}, 1,1, \frac{22}{45}\right)=156
\end{aligned}
$$

Since the original problem is minimization, we must maximize w_{j}. for each sulprablemj.
$j=1$;

$$
\begin{aligned}
& \underline{x}_{1}=\left(x_{1}, x_{2}\right)^{\top} \\
& C_{1}=(5,3) \quad \underline{A}_{1}=(1,1) \\
& D_{1}=\left(\begin{array}{cc}
5 & 1 \\
5 & -1
\end{array}\right) \quad \quad b_{1}=\binom{20}{5} \\
& j=2: \\
& \underline{x}_{2}=\left(x_{3}, x_{4}\right) \\
& \underline{C}_{2}=(8,-5), A_{2}=(1,1) \\
& D_{2}=(1,1), \quad b_{2}=20
\end{aligned}
$$

Deration O :

$$
\begin{aligned}
& X_{B}=\left(R_{1}, R_{2}, R_{3}\right)^{T}=(25,1,1)^{\top} \\
& B=B^{-1}=I, C_{B}=(M, M, M)
\end{aligned}
$$

iteration 1:
$j=1$:
maximize $\omega_{1}=(-5+M) x_{1}+(M-3) x_{2}+M$
Solution: $\hat{\boldsymbol{X}}=(5 / 2,15 / 2)^{\top}, \omega_{1}^{*}=14 \mathrm{Mm-35}$
$j=2$:
maximize $\omega_{2}=(M-8) x_{3}+(M+5) x_{4}+M$
solution: $\hat{X}_{1}=(0,20)^{\top}$

$$
\begin{gathered}
w_{2}^{*}=21 M+100 \\
z_{s_{1}}-C_{S}=(M, M, M) I\left(\begin{array}{l}
-1 \\
0 \\
0
\end{array}\right)-0=-M
\end{gathered}
$$

β_{21} associated with \hat{X}_{1} enters solution

$$
\begin{aligned}
& P_{21}=\left(\begin{array}{c}
(1,1)(0,20)^{\top} \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
20 \\
0 \\
1
\end{array}\right) \\
& \mathcal{B}^{-1} P_{21}=(20,0,1)^{\top}
\end{aligned}
$$

$\theta=\min \left\{\frac{25}{20},-, \frac{1}{1}\right\}=1, R_{3}$ leaves

$$
\begin{aligned}
B_{\text {next }}^{-1} & =\left(\begin{array}{ccc}
1 & 0 & -20 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
X_{B} & =B^{-1}(25,1,1)^{\top}=(5,1,1)^{\top} \\
& =\left(R_{1}, R_{2}, \beta_{21}\right)^{\top} \\
C_{21} & =C_{2} \hat{X}_{21}=(8,-5)(0,20)^{\top}=-100
\end{aligned}
$$

Iteration 2: $C_{B}=(M, M,-100)$
$j=1$:
$\underset{\operatorname{maximize}}{\omega_{1}}=(-5+M) x_{1}+(M-3) x_{2}+M$
solution:

$$
\begin{aligned}
& \hat{X}_{2}=(5 / 2,15 / 2)^{T} \\
& w_{1}^{*}=11 M-35
\end{aligned}
$$

$j=2:$

$$
\underset{\text { maximize }}{ } \omega_{2}=(M-8) x_{3}+(M+5) x_{4}^{-20 M-100}
$$

solutes:

$$
\begin{aligned}
& \hat{X}_{22}=(0,20) \\
& \omega_{2}^{*}=0
\end{aligned}
$$

$$
Z_{S_{1}-}-C_{S_{1}}=-M
$$

β_{12} asarciated wist $\hat{X}_{12}\left(\frac{5}{2}, \frac{15}{2}\right)$ enters ofosolution.

$$
P_{12}=\left(\begin{array}{cc}
(1, & 1 \\
1 \\
0
\end{array}\right)\binom{5 / 2}{15 / 2}=\left(\begin{array}{c}
10 \\
1 \\
0
\end{array}\right)
$$

$$
B^{-1} P_{12}=(10,1,0)^{T}
$$

$\theta=\min \left\{\frac{5}{10}, \frac{1}{1},-\right\}=\frac{1}{2}, R_{1}$ leaves Continued...

Set 20.2a

$$
\begin{aligned}
& B_{\text {next }}^{-1}=\left(\begin{array}{ccc}
1 / 10 & 0 & -2 \\
-1 / 10 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) \\
& X_{B}=\left(\beta_{12}, R_{2}, \beta_{2}\right)^{T}=(1 / 2,1 / 2,1) \\
& c_{12}=C_{1} \hat{X}_{12}=(5,3)(5 / 2,15 / 2)^{T}=35
\end{aligned}
$$

Iteration $3: C_{B}=(35, M,-100)$ $j=1$:
maximize $w_{1}=-\left(\frac{M}{10}+\frac{3}{2}\right) x_{1}-\left(\frac{M}{10}-\frac{1}{2}\right) x_{2}+M$
Solution: $\hat{X}_{3}=(1,0)^{\top}$

$$
\omega_{1}^{*}=.9 M-3 / 2
$$

$j=2$:
maximize $w_{2}=-\left(\frac{9}{2}+\frac{M}{10}\right) x_{3}-\left(\frac{M}{10}-\frac{17}{2}\right) x_{4}-800$
solution: $\hat{X}_{23}=(0,20)$.

$$
\begin{aligned}
z_{s_{1}}-c_{s_{1}} & =(35, M,-100) B^{-1}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)-0 \\
& =M / 10-7 / 2
\end{aligned}
$$

β_{13} associated with \hat{x}_{3} enters sold
$P_{13}=\left(\begin{array}{c}(1,1)(1,0)^{\top} \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

$$
B^{-1} P_{13}=(1 / 10,9 / 10,0)^{\top}
$$

$\theta=\min \left\{\frac{1 / 2}{1 / 10}, \frac{1 / 2}{9 / 10},-\right\}=1 / 9, R_{2}$ leaves

$$
B_{n \times x E}^{-1}=\left(\begin{array}{ccc}
1 / 9 & -1 / 9 & -20 / 9 \\
-1 / 9 & 10 / 9 & 20 / 9 \\
0 & 0 & 1
\end{array}\right)
$$

$$
x_{B}=\left(\beta_{12}, \beta_{13}, \beta_{21}\right)^{T}=B^{-1}(25,1,1)^{\top}
$$

$$
=(4 / 9,5 / 9,1)^{\top}
$$

$$
c_{13}=C, \hat{X}_{13}=(5,3,)(1,0)^{\top}=5
$$

Iteration 4: $C_{B}=(35,5,-100)$ $j=1$:
maximize $\omega_{1}=-5 / 3 x_{1}+1 / 3 x_{2}+5$
Solution: $\hat{x}_{4}=(5 / 2,15 / 2)^{\top}, \omega_{1}^{*}=10 / 3$
$j=2$:
maximize $w_{2}=-\frac{14}{3} x_{3}+\frac{25}{3} x_{y}-800$
Solution: $\hat{\chi}_{4}=(0,20)^{\top}$

$$
w_{2}^{*}=-633 \frac{1}{3}
$$

$$
z_{s_{1}}-C_{s_{1}}=(35,5,-100) B^{-1}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)-0=-\frac{30}{9}
$$

β_{14} associated arch \hat{x}_{14} enters th solution After one iteration, we get.

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=1\left(\frac{5}{2}, \frac{15}{2}\right)+O(1,0)=\left(\frac{5}{2}, \frac{15}{2}\right) \\
& \left(x_{3}, x_{4}\right)=1(0,20)=(0,20), 2=195
\end{aligned}
$$

Dual Problem:
maximize $z=8 x_{1}+2 x_{2}+4 x_{3}+10 x_{y}$ st.

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}+x_{y} \leq 10 \\
& 4 x_{1}+x_{2} \leq 2 \\
&-x_{1}+x_{2} \leq 4 \\
& x_{3}+2 x_{4} \leq 8 \\
& x_{3}-x_{4} \leq 1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

$j=1$:

$$
\begin{array}{ll}
\underline{x}_{1}=\left(x_{1}, x_{2}\right)^{\top} & \\
\underline{C}_{1}=(8,2), & A_{1}=(1,2) \\
D_{1}=\left(\begin{array}{ll}
4 & 1 \\
-1 & 1
\end{array}\right) & \underline{b}_{1}=\binom{2}{4}
\end{array}
$$

$j=2$:

$$
\frac{J=2}{\underline{x}_{2}}=\left(x_{3}, x_{4}\right)^{T}
$$

$$
\underline{C}_{2}=(4,10)
$$

$$
\underline{A}_{2}=(3,1)
$$

$$
D_{2}=\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)
$$

$$
b_{2}=\binom{8}{1}
$$

Iteration O:

$$
\begin{aligned}
& X_{B}=\left(S_{1}, R_{1}, R_{2}\right)^{T}=(10,1,1) \\
& B=B^{-1}=I
\end{aligned}
$$

Iteration 1: $C_{B}=(0,-M,-M)$ $j=1$:
minimize $w_{1}=-8 x_{1}-2 x_{2}-M$
solution:

$$
\begin{aligned}
& \hat{x}_{1 \prime}^{\prime}=(1 / 2,0), \text { or } \\
& \hat{X}_{17}=(0,2) \\
& w_{1}=-4-M
\end{aligned}
$$

continued...
$J=2:$
Minimize $w_{2}=-4 x_{3}-10 x_{4}-M$
solution:

$$
\begin{aligned}
& \hat{X}_{21}=(0,4,0,5)^{\top} \\
& W_{z}^{*}=-40-M
\end{aligned}
$$

β_{2}, associated with \hat{Y}_{2}, enters

$$
\begin{aligned}
& P_{21}=\left(\begin{array}{c}
(3,1)(0,4)^{\top} \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right) \\
& B^{-1} P_{21}=(4,0,1)^{\top} \\
& \theta=\min \left\{\frac{10}{4},-, \frac{1}{1}\right\}=1, R_{2} \text { leave. }
\end{aligned}
$$

$$
B_{\text {next }}^{-1}=\left(\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$X_{B}=B^{-1}(10,1,1)^{\top}=(6,1,1)^{\top}=\left(5, R_{1}, \beta_{21}\right)$ $c_{21}=C_{2} X_{21}=(4,10,0,0)(0,4,0,5)=40$
Iteration 2: $C_{8}=(0,-M, 40)$
$j=1$:
minimize $\omega_{1}=-8 x_{1}-2 x_{2}-M$
solution:

$$
\begin{aligned}
& \hat{X}_{12}=(1 / 2,0)^{T} \quad \text { or } \\
& \hat{X}_{12}=(0,2)^{T} \\
& w_{1}^{*}=-4-M
\end{aligned}
$$

$j=2:$
minimize $\omega_{2}=-4 x_{3}-10 x_{4}+40$
solution:

$$
\begin{aligned}
& \hat{X}_{2}=(0,4)^{\top} \\
& w_{2}^{*}=0
\end{aligned}
$$

β_{12} associated with $\hat{Y}_{12}=(0,2)^{\top}$ $\left[O_{2}(1 / 2,0,0,9 / 2)\right]$ enters the solution.

$$
\begin{aligned}
& P_{12}=\left(\begin{array}{c}
(1,2)(0,2)^{\top} \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right) \\
& B^{-1} P_{12}=(4,1,0) T \\
& B=\min \left\{\frac{6}{4}, \frac{1}{1},-\right\}=1, R, \text { leaves }
\end{aligned}
$$

$$
\begin{aligned}
& B_{\text {mex }}^{-1}=\left(\begin{array}{ccc}
1 & -4 & -4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& X_{B}=\left(S, \beta_{12}, \beta_{21}\right)=(2,1,1)^{T} \\
& C_{12}=S_{1} \hat{X}_{12}=(8,2)(0,2)^{\top}=4
\end{aligned}
$$

iteration 3: $C_{B}=(0,4,40)$ $j=1$:
minimize $\omega_{1}=-8 x_{1}-2 x_{2}+4$
Solution: $\hat{X}_{13}=(1 / 2,0)^{\top}$

$$
w_{1}^{*}=0
$$

$j=2:$
minimize $\omega_{2}=-4 x_{3}-10 x_{4}+40$
Solution:

$$
\begin{aligned}
& \hat{X}_{3}=(0,4)^{T} \\
& w_{2}^{*}=0
\end{aligned}
$$

Solution is opotimeren!

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=1(0,2)=(0,2) \\
& \left(x_{3}, x_{4}\right)=1(0,4)=(0,4)
\end{aligned}
$$

The problem has an alternative solution, which can be determined using $\hat{Y}_{12}=(1 / 2,0)$ in place of $(0,2)$ in iteration 2. The alternative solution is

$$
x_{1}=1 / 2, x_{2}=0, x_{3}=0, \quad x_{y}=4
$$

To determine the perernel solution, note that the basic dual variables as given above are

$$
\begin{aligned}
& \left(x_{2}, x_{4}, s_{1}, s_{3}, s_{5}\right) \\
& \left(x_{1}, x_{4}, s_{1}, s_{3}, s_{5}\right)
\end{aligned}
$$

where S_{1} is the slack assorcinted with th common construiri, S_{3} is the slack fr constraint 3 , and s_{5} is x place for constraint' 5. Thus,

Dual	Premial conotravit equation		
variable		$=2$	
x_{2}	$2 y_{1}+y_{2}+y_{3}$		
x_{4}	y_{1}	$+2 y_{4}-y_{5}$	$=10$
s_{1}	y_{1}	y_{3}	$=0$
s_{3}			$=0$
s_{5}			
			$=0$

$$
\begin{aligned}
& \text { Solution: } y_{1}=0, y_{2}=2, y_{3}=0, y_{4}=5, y_{5}=0 \\
& \text { Consider the second alternative elution' }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solution: } y_{1}=0, y_{2}=2, y_{3}=0, y_{4}=5, y_{5}=0 \\
& \text { objective value }=2 \times 2+5 \times 8 \\
& =44
\end{aligned}
$$

the current basis of the master problem and \mathbf{C}_{B} the vector of the corresponding coefficients in the objective function. Thus, according to the revised simplex method, the current solution is optimal if for all nonbasic P_{j},

$$
z_{j}^{k}-c_{j}^{k}=\mathbf{C}_{B} \mathbf{B}^{-1} \mathbf{P}_{j}^{k}-c_{j}^{k} \geq 0
$$

where, from the definition of the master problem,

$$
c_{j}^{k}=C_{j} \mathbb{X}_{j}^{k} \quad \text { and } \quad P_{j}^{k}={ }_{n}\left\{\left(\begin{array}{c}
A_{j} \mathbb{X}_{j}^{k} \\
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)-\left(r_{0}+j\right)\right. \text { th place }
$$

The expression for $z_{j}^{k}-c_{j}^{k}$ can be simplified as follows. Let
$\mathbf{B}^{-1}=\left(\widetilde{\mathbf{R}_{0}} \mid \overrightarrow{\mathbf{V}_{1}} \mathbf{V}_{2}, \ldots, \mathbf{V}_{j}, \ldots, \mathbf{V}_{n}\right)$
where R_{0} is the matrix of size $\left(r_{0}+n\right) \times r_{0}$ consisting of the first r_{0} column of B^{-x}, and V_{f} is the ($r_{0}+f^{\text {th }}$ column of the same matrix B^{-1}. Thus

$$
\begin{aligned}
z_{j}^{k}-c_{j}^{k} & =\left(C_{B} R_{0} A_{j} \hat{X}_{k}^{k}+C_{B} V_{j}\right)-C_{f} \hat{X}_{j}^{k} \\
& =\left(C_{B} R_{0} A_{j}-C_{j}\right) \hat{X}_{j}^{k}+C_{B} V_{j}
\end{aligned}
$$

TORA optimal Solution: $(M=10) \quad \square \quad$ L
Final Iteration No.: 10
Objective Value $=0$

$y_{1}=(M+1) x_{1}=1 / \times \cdot 18182=2$
$y_{2}=(M+1) x_{2}=x 0=0$
$y_{3}=(M+1) x_{3}=11 \times 0=0$
$\omega_{1}=(M+1) x_{4}=11 \times .090909 \cong 1$
$w_{2}=(M+1) \times 5=11 \times 0=0$

Primal:

Maximize $z=2 y_{1}+y_{2}$
subject to

$$
\begin{aligned}
& y_{1}-y_{2} \leq 2 \\
& y_{1}+2 y_{2} \leq 4
\end{aligned}
$$

Dual:

$$
y_{1}, y_{2} \geqslant 0
$$

Minimize $\omega^{r}=2 \omega_{1}+4 \omega_{2}$ subject to

$$
\begin{gathered}
w_{1}+w_{2} \geq 2 \\
-w_{1}+2 w_{2} \geq 1 \\
w_{1}, w_{2} \geq 0
\end{gathered}
$$

Thus, conversion of the peril and dual constraint to equations guilds:
$2 y_{1}+y_{2}-2 w_{1}-4 \omega_{2}=0$
$y_{1}-y_{2}+y_{3}=2 \quad w_{1}+w_{2}+w_{3}=2$
$y_{1}+2 y_{2}+y_{4}=4 \quad-w_{1}+2 w_{2}-w_{4}=1$
all vanaifles $\geqslant 0$
Next,
$y_{1}-y_{2}+y_{3}-2 s_{2}=0 \quad w_{1}+w_{2}-w_{3}-2 s_{2}=0$
$y_{1}-2 y_{2}+y_{4}-4 s_{2}=0-w+2 w_{2}+w_{4}-s_{2}=0$
$2 y_{1}+y_{2}-2 \omega_{1}-4 \omega_{2}=0$
$y_{1}+y_{2}+y_{3}+y_{4}+w_{1}+w_{2}+w_{3}+w_{4}-M S_{2}+S_{1}=0$
$y_{1}+y_{2}+y_{3}+y_{4}+w_{1}+w_{2}+w_{3}+w_{4}+s_{1}+5_{2}$ =continued...
$\begin{array}{ll}y_{j}=(M+1) x_{j}, & j=1,2,3,4 \\ j=5,6,7,8\end{array}$
$\omega_{j}=(M+1) x_{j}, j=5,6,7,8$
$S_{1}=(M+1) x_{g}$
$S_{2}=(M+1) X_{10}$
Thurs, the equations become

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}-2 x_{10}=0 \\
& x_{1}+2 x_{2}+x_{4}-4 x_{10}=0 \\
& x_{5}+x_{6}-x_{7}-2 x_{10}=0 \\
& -x_{5}+2 x_{6}-x_{8}-x_{10}=0 \\
& 2 x_{1}+x_{2}-2 x_{5}-4 x_{6}=0 \\
& x_{1}+x_{2}+\cdots+x_{9}-M x_{10}=0 \\
& x_{1}+x_{2}+\cdots+x_{10}=1 \\
& \text { all } x_{j} \geqslant 0
\end{aligned}
$$

The completer problem thus becomes: minimize $z=x_{11}$
sulyict to

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}-2 x_{10}+x_{11}=0 \\
& x_{1}+2 x_{2}+x_{4}-4 x_{10}+0 x_{11}=0 \\
& x_{5}+x_{6}-x_{7}-2 x_{10}+x_{11}=0 \\
& -x_{5}+2 x_{6}-x_{8}-x_{10}+x_{11}=0 \\
& 2 x_{1}+x_{2}-2 x_{5}-4 x_{6}+3 x_{11}=0 \\
& x_{1}+x_{2}+\cdots+x_{9}-M x_{10}+(M-9) x_{11}=0 \\
& x_{1}+x_{2}+\cdots+x_{11}=1 \\
& \text { all } x_{1} \geq 0
\end{aligned}
$$

Chapter 21

Forecasting models

Set 21.1a

$$
y_{25}^{*}=\frac{54+42+64+60+70+66+57+55+52+62+70+72}{12}=60 \cdot 33
$$

Larger. n suppresses the fluctuations is data

The seasonal nature of the date makes the moving average unsintable as a prediction model. We need to select n male; e.g., $n=3$ yields $y_{25}^{*}=50$.

Data show an iparand trend. Select small $n=3$ for the moving average.
car: $y_{90}^{*}=1791.3$ individuals
Au: $\quad y_{90}^{*}=938.33$ individuals

Data ahoum hiviear trend. Use small $n=3$ for the moving average.

the data appear stable. The moving average showed apply nicely th this case. Similar analysis can be carricel ont for the remaining locations. Use $n=5$
At location 1: Term 1: $y_{95}^{*}=238.6$ students

$$
\begin{aligned}
& \text { Term } 2: y_{95}^{*}=260.2 \text { students } \\
& \text { Term } 3: y_{95}^{*}=117 \text { students }
\end{aligned}
$$

$$
\alpha=-2, y_{25}^{*}=59.63
$$

Car: $\alpha=.2, \quad y_{90}^{*}=1577.71$ indwiducals
ani: $\alpha=2, \quad y_{90}^{*}=797.75$ individualo
$\alpha=.2 \quad y_{90}^{*}=\$ 26.27$ mulhori
For location 1: $\alpha=2$.
Term1: $y_{95}^{*}=254.33$
Term 2: $y_{95}^{*}=256.13$
Term 3: $y_{95}^{*}=116.38$

The data Lave both seasonal variations and trend. Regression analysis can be used to detect the trend.

$$
\begin{aligned}
& y=39.23+1.262 x, \quad r=.394 \\
& y_{25}^{*}=70.77 \text { units }
\end{aligned}
$$

Can: $y=977.4+92.69 x, s=.9928$

$$
y_{90}^{*}=1997 \text { individuals }
$$

avi: $y=407.73+59.21 x, \quad r=.9895$
$y_{90}^{*}=1059.0 .7$ individual.

$$
\begin{aligned}
& y=20.6+.873 x, \quad r=.991 \\
& y_{90}^{*}=\$ 30.2 \text { milhon }
\end{aligned}
$$

Location 1:
Term 1: $y=272.73-7.4 x$,

$$
r=-.538
$$

Term 2: $y=247.4+3.03 x$,

$$
r=.247
$$

Term 3: $y=119.2-.6286 x$,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-b x_{i}-a\right) & =\sum_{i=1}^{n} y_{i}-b \sum_{i=1}^{n} x_{i}-n a \\
& =n \bar{y}-n b \bar{x}-n a \\
& =n(\bar{y}-b \bar{x}-a) \\
& =n(\bar{y}-b \bar{x}-\bar{y}+b \bar{x}) \\
& =0
\end{aligned}
$$

Chapter 22

Probabilistic Dynamic Programming

Set 22.1a

$$
\begin{aligned}
& f_{6}(j)=2 j \\
& f_{i}(j)=\text { max }\left\{\begin{array}{l}
\text { send: } 2 j \\
\text { spin }: \frac{1}{8} \sum_{k=1}^{8} f_{i+1}(k) \\
i=2,3,4,5
\end{array}\right. \\
& f_{1}(0)=\frac{1}{8} \sum_{k=1}^{8} f_{2}(k)
\end{aligned}
$$

Stage 6:

stage 5: $f_{5}(j)=\max \left\{2 j, \frac{1}{8}\left(f_{6}(1)+f_{6}(2)+\cdots+f_{6}(1)\right\}\right.$

$$
=\max \left\{2 j, \frac{72}{8}\right\}
$$

$$
=\max \{2 j, 9\}
$$

3 Continuity $\# 2$ produces $1 \rightarrow 6$,
4 Continue if \# 3 produces $1 \rightarrow 5$, else end.

$$
\begin{aligned}
f_{4}(j) & =\max \left\{2 j, \frac{1}{8}(9+9+9+9+10+12\right. \\
& +14+16)\} \\
& =\max \{2 j, 11\}
\end{aligned}
$$

Stage: $f_{2}(j)=\max \{2 j, 12.84375\}$

Let O_{j} represent the bot offer \sum Stage:
at the end of day i, where

$$
\left.\left.\begin{array}{l}
j=\left\{\begin{array}{l}
1, \text { high offer } \\
2, \text { medium offer } \\
3, \text { low offer }
\end{array}\right. \\
i=1,2,3
\end{array} \right\rvert\, \begin{array}{l}
f_{4}(j)=0_{j}
\end{array}\right\} \begin{aligned}
& \text { accept: } O_{j} \\
& f_{i}(j)=\max \left\{\begin{array}{l}
\text { continue }: \frac{1}{3}\left(f_{i+1}(1)+f_{i+1}(2)+f_{i+1}\right)
\end{array}\right) \\
& f_{1}(0)=\frac{1}{3}\left\{f_{2}(1)+f_{2}(2)+f_{3}(2)\right\}
\end{aligned}
$$

Stage 4:

Day 3 best-ofter	Opt. Sol.	
	$f_{4}(j)$	Decision
1	1050	Accept
2	1900	Accept
3	2500	Accept

Stage 3:

$$
\begin{aligned}
& \text { Stage 2: } \\
& f_{2}(j)=\max \left\{O_{j}, \frac{1}{3}\left(f_{3}(1)+f_{3}(2)+f_{3}(3)\right)\right\} \\
&=\max \left\{0_{j}, 2072.33\right\}
\end{aligned}
$$

Set 22.2a

Stage 4:

$$
\begin{aligned}
f_{4}\left(x_{4}\right) & =x_{4}(1+.8 \times .6+.4 \times .2+.2 \times .2) \\
& =1.6 x_{4}
\end{aligned}
$$

State	Opt. Sol. $^{y_{4}\left(x_{4}\right)}$	
	y_{4}	
x_{4}	$1.6 x_{4}$	x_{4} (invest-al1)

Stage 3:

$$
\begin{aligned}
f_{3}\left(x_{3}\right)=\max _{0 \leq y_{3} \leq x_{3}}\{ & +2 \times 1.6\left(x_{3}+4 y_{3}\right) \\
& +.4 \times 1.6\left(x_{3}-y_{3}\right) \\
= & \max _{0 \leq y_{3} \leq x_{3}}\left\{1.6 x_{3}\right\}
\end{aligned}
$$

State Optimum		
	$f_{3}\left(x_{3}\right)$	y_{3}
x_{3}	$1.6 x_{3}$	$0 \leq y_{3} \leq x_{3}$

Stage 2:

$$
\begin{array}{rl}
f_{2}\left(x_{2}\right) & =\max _{0 \leq y_{2} \leq x_{2}}\left\{.4 x 1.6\left(x_{2}+y_{2}\right)+.4 x 1.6 x_{2}\right. \\
& \left.+.2 \times 1.6\left(x_{2}-y_{2}\right)\right\} \\
& =\max _{0 \leq y_{2} \leq x_{2}}\left\{1.6 x_{2}+.32 y_{2}\right\} \\
& \text { state } \\
\cline { 2 - 3 } & f_{2}\left(x_{2}\right) \\
\hline x_{2} & 1.92 x_{2} \\
\hline
\end{array}
$$

Stage 1: $f_{1}\left(x_{1}\right)=\max _{0 \leq y_{1} \leq x_{1}}\left\{-1 \times 1.92\left(x_{1}+2 y_{1}\right)\right.$ $\left.\left.+.4 \times 1.92\left(x_{1}+y_{1}\right)+.5 \times 1.92\left(x_{1}+5.5\right)\right)\right\}$

$$
=\max _{0 \leq y_{1} \leq x_{1}}\left\{1.92 x_{1}+1.632 y,\right\}
$$

State	Opt. Sol.	
	$f_{1}\left(x_{1}\right)$	y_{1}
x_{1}	$3.552 x_{1}$	x_{1}

Solution: accumulation $=\$ 35,520$ Invest $\$ 10,000$ in year 1, all in year 2, none in year 3, and all is year 4.
$C_{c}=$ penalty coot/shortage unit of
$z_{i}=$ number of unis of item i
$v_{i}=$ volume per unit of item i
$x_{i}=m^{3}$ assigned to items i, \ldots, n
$P_{i j}=$ probilibity of j demand
 given x_{c}.
$f_{i}\left(x_{i}\right)=\min _{0 \leq z_{i} \in \leq \frac{K_{i}}{v_{i}}}\left\{c_{i} \sum_{j>z_{i}}\left(j-z_{i}\right) P_{i j}\right.$

$$
\left.+f_{i+1}\left(x_{i}-z_{i} \cdot v_{i}\right)\right\}
$$

$$
i=1,2, \ldots, n
$$

$f_{n+1}(.) \equiv 0$
Table for exp. shortage cost:

item i	$z_{i}=1$	$z_{i}=2$	$z_{i}=3$
	$8(1 \times .5)=4$	0	0
	$10(1 \times .4+2 \times .2+3 \times .1)=1$	$10(1 \times .2+2 \times .1)=4$	$10(1 \times .1)=1$
3	$15(1 \times .2+2 \times .5)=18$	$15(1 \times .5)=7.5$	0

Stage: $f_{3}\left(x_{3}\right)=\min _{z_{3} \leq\left[\frac{x_{3}}{r_{2}}\right]}\left\{15 \sum_{j>z_{3}}\left(j-z_{3}\right) p_{3 j}\right\}$

	$v_{3}=3$			Opt si l.	
x_{3}	$z_{3}=1$	$z_{3}=2$	$z_{3}=3$	$f_{3}\left(x_{3}\right)$	z_{3}
3	18	-	-	18	1
4	18	-	-	18	1
5	18	-	-	18	1
6	18	7.5	-	7.5	2
7	18	7.5	-	7.5	2
8	18	7.5	-	7.5	2
9	18	7.5	0	0	3
10	18	7.5	0	0	3

stage 2: $\quad v_{2}=1$

Stage 1: $f_{1}\left(x_{1}\right)=\operatorname{mix}_{z_{i} \leq\left[\frac{x_{1}}{v_{1}}\right]}\left\{8 \sum_{j>z_{1}}\left(j-z_{1}\right) p_{1 j}+f_{2}\left(x_{1}-2 z_{1}\right)\right.$

x_{1}	$z_{1}=1$	$z_{1}=2$	$z_{1}=3$	f_{1}	z_{1}
	$4+11.5=15.5$	$0+19=19$	$0+29=29$	15.5	1

Solution:

$$
\left(x_{1}=10\right) \rightarrow z_{1}=1 \rightarrow\left(x_{2}=8\right) \rightarrow z_{2}=2 \rightarrow\left(x_{3}=6\right) \rightarrow z_{3}=2
$$

$$
\begin{aligned}
& f_{n}\left(x_{n}\right)=\operatorname{mini}_{z_{n}}\left\{C\left(x_{n}\right)\right\} \\
& f_{i} \cdot\left(x_{i}\right)=\min _{z_{i}}\left\{C\left(x_{i}\right)+\sum_{d=0}^{3} f_{i+1}\left(x_{i}+z_{i}-d_{i}\right) p\left(d_{i}\right)\right\}, \quad C\left(x_{i}\right)= \begin{cases}x_{i}, & x_{i} \geq 0 \\
-2 x_{i}, & x_{i} \leq 0 \\
i=1,2, \ldots, n-1\end{cases}
\end{aligned}
$$

Stage 4:

x_{4}						
	$z_{y}=0$	1	2	3	${ }^{\prime}$	
-3	-	-	-	6	6	3
-2	-	-	-	-	4	2
-1	-	2	-	2	1	
0	0	-	-	0	0	
1	1	-	-	1	0	
2	2	-	-	2	0	
3	3	-	-	3	0	

Notice that negative x_{4} allows for the possibility of backeordering by producing for year 3 ingrid 4 .

Stage 3: $f_{3}\left(x_{3}\right)=\min _{z_{3}}\left\{C\left(x_{3}\right)+.5 f_{4}\left(x_{3}+z_{3}-1\right)+3 f_{4}\left(x_{3}+z_{3}-2\right)+\cdot 2 f_{4}\left(x_{3}+z_{3}-3\right)\right\} 3$ continued

Stage 2: $f_{2}\left(x_{2}\right)=\operatorname{mini}_{z_{2}}\left\{e\left(x_{2}\right)+.5 f_{3}\left(x_{2}+z_{2}-1\right)+\cdot 3 f_{3}\left(x_{2}+z_{2}-2\right)+\cdot 2 f_{3}\left(x_{2}+z_{2}-3\right)\right\}$

Stage 1: $f_{1}\left(x_{1}\right)=\min _{2}\left\{C\left(x_{1}\right)+.5 f_{2}\left(x_{1}+2_{1}-1\right)+\cdot 3 f_{2}\left(x_{1}+2_{1}-2\right)+\cdot 2 f_{2}\left(x_{2}+z_{2}-3\right)\right\}$

x_{1}								$z_{1}=0$	1	2	3	Opt. dol.
0	$0+.5 \times 3.8+.3 \times 6.4$ $+.2 \times 10.94=6.008$	$0+.5 \times 1.8+.3 \times 3.8+$	$0+.5 \times 2.8+.3 \times 1.8+$	$0+.5 \times 3.8+.3 \times 2.8$	f_{1}	z_{1}						

Solution:

$$
\left.\left(x_{1}=0\right) \rightarrow z_{1}=2\left\{\begin{array}{l}
\left(x_{2}=1\right) \rightarrow \\
\left(z_{2}=1\right. \\
\left(x_{2}=2\right) \rightarrow \\
z_{2}=2 \\
\left(x_{2}=-1\right) \rightarrow \\
z_{2}=3
\end{array}\right\} \xrightarrow{\left(x_{3}=0\right) \rightarrow z_{3}=2} \begin{array}{ll}
\left(x_{3}=1\right) \rightarrow & z_{3}=1 \\
\left(x_{3}=-1\right) \rightarrow & z_{3}=3
\end{array}\right\} \begin{aligned}
& \left(x_{4}=1\right) \rightarrow z_{4}=0 \\
& \left(x_{4}=0\right) \rightarrow \\
& z_{4}=0 \\
& \left(x_{4}=-1\right) \rightarrow z_{4}=1
\end{aligned}
$$

Stage $i=$ center i
alternative $y_{i}=$ number of bikes axaigned to conte i
State $x_{i}=$ number of bikes arraigned to centers $i ; i+1, \ldots$, and n

$$
d_{i}=\text { demand en center } i
$$

$f_{i}\left(x_{l}\right)=$ maximum expected revenue for atages $i ; i+1, \ldots$, and n given x_{1}.

$$
\begin{aligned}
& f_{n}\left(x_{n}\right)=\max _{y_{n} \leq x_{n}}\left\{C_{n} E\left\{d_{n} \mid y_{n}\right\}\right\} \\
& f_{i}\left(x_{i}\right)=\max _{y_{i} \leq x_{i}}\left\{C_{i} E\left\{d_{i} \mid y_{i}\right\}+f_{i+1}\left(x_{i}-y_{c}\right)\right\}, i=1,2 ; \ldots, n-1
\end{aligned}
$$

where
$E\left\{d_{i} \mid y_{i}\right\}=$ Average demand at center i given y_{i}. bikes are allocated

$$
=0 p_{0}+1 p_{1}+\cdots+y_{i-1} p_{y}+y_{i} \cdot\left(p_{y_{i}}+p_{y_{i+1}}+\cdots+p_{8}\right)
$$

Example calculations:

$$
\begin{aligned}
E\left\{d_{1} \mid y_{1}=2\right\} & =0 P_{1}+1 P_{1}+2\left(P_{2}+P_{3}+\cdots+P_{8}\right) \\
& =0+1 \times 1.5+2 \times .85=1.85
\end{aligned}
$$

Table for $C_{i} E\left\{d_{i} \mid y_{i}\right\}$:

i	c_{i}	$y_{i}=0$	1	2	3	4	5	6	7	8
1	5	0	5.40	9.60	12.00	13.20	13.80	13.80	13.80	13.8
2	7	0	6.86	13.51	19.46	23.66	25.76	26.81	27.51	27.86
3	6	0	5.00	9.25	18.25	19.75	20.50	20.75	20.875	20.875

Stage 3: $f_{3}\left(x_{3}\right)=\max _{y_{3} \leqslant x_{3}}\left\{C_{3} \in\left\{d_{3} \mid y_{3}\right\}\right\}$

x_{3}									$y_{3}=0$	1	2

Set 22.2a
Stage 2: $f_{2}\left(x_{2}\right)=\max _{y_{2} \leq x_{2}}\left\{C_{2} E\left\{d_{2} \mid y_{2}\right\}+f_{3}\left(x_{2}-y_{2}\right)\right\}$

Stage 1: $f_{1}(x)=,\max _{y, x,}\left\{c_{1} \in\left\{d_{1} \mid y_{1}\right\}+f_{2}\left(x,-y_{1}\right)\right\}$

Optimum solution:

$$
\left(x_{1}=8\right) \rightarrow y_{1}=2 \rightarrow\left(x_{2}=6\right) \rightarrow y_{2}=3 \rightarrow\left(x_{3}=3\right) \rightarrow y_{3}=3
$$

Stage 2:

Stage1:

Set 22.3a
Stage 3: $f_{3}\left(x_{3}\right)=\operatorname{miax}_{y_{3} \leq x_{3}}\left\{\cdot 25 P\left\{x_{3}+2 y_{3} \geqslant 4\right\}+.75 P\left\{x_{3}-y_{2} \geq 4\right\}\right\}$

Stage 2: $f_{2}\left(x_{2}\right)=\operatorname{mix}_{y_{2} \leq x_{2}}^{\operatorname{ax}}\left\{.25 f_{3}\left(x_{2}+2 y_{2}\right)+.75 f_{3}\left(x_{2}-y_{2}\right)\right\}$

Stage 1: $f_{1}\left(x_{1}\right)=\max _{y_{1} \leq x_{1}}\left\{.25 f_{2}\left(x_{1}+2 y_{1}\right)+75 f_{2}\left(x_{1}-y_{1}\right)\right\}$

Solution: maxprobablity $=.109375$

Bet $\$ 1$ in game 1, $\$ 1$ in game 2, and $\$_{1}$ or none in game 3

Chapter 23

Markovian Decision Process

Set 23.1a

Set 23.2a

Set 23.2a

(a) $P^{c}=$ travition matrux given i refry on ordh. Statej $\leq 2-i$
$P^{0}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 8 & -2 & 0 \\ 3 & -5 & -2\end{array}\right] \quad P^{\prime}=\left[\begin{array}{ccc}8 & -2 & 0 \\ -3 & -5 & -2 \\ - & - & -\end{array}\right]$
$P^{2}=\left[\begin{array}{lll}3 & \cdot 5 & 2 \\ \square & - & -\end{array}\right]$
(b)

det

d_{i}^{k} expected envientosy coot/month gwin atate i and deciarion t.
$d^{0}=(0 \times .2+1 x-5+2 x-3) \times 150=* / 65$
$d_{1}^{0}=5(1 x \cdot 2+0 x \cdot 5)+(0 x \cdot 5+1 x-3) \times 150=546$
$d_{2}^{0}=5(2 \times .2+1 \times .5+0 \times .3)+(0 \times .3) \times 150=\$_{4} .5$
$d_{0}^{\prime}=100+(1 \times \cdot 2+0 \times \cdot 5) \times 5+1 \times \cdot 3 \times 150$ $=7 / 46$
$d_{1}^{\prime}=100+(2 \times .2+1 \times-570 \times-3) \times 5$ $+0 \times .3 \times 150=\$ 104.5$
$d_{0}^{2}=100+(2 x \cdot 2+1 \times \cdot 5+0 \times \cdot 3) \times 10$ $=104.5$
(c)
Ahge 3:

ept					
i	$k=0$	$k=1$	$k=2$	$f_{8}(i)$	R^{\prime}
0	165	146	104.5	104.5	2
1	46	104.5	-	46	0
2	4.5	-	-	4.5	0

Stage 1:

Cptemimsolutiai: If stack level at tevo refrigenators; othewric otder nome.

or

$d_{i ; j}^{*}=\operatorname{expected}$ inventory coot given didet
$P_{j}^{k}=$ transition matryi given moveth $;$ and decicion alternatiri R.

$$
\begin{aligned}
P_{1}^{0}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
19 & -1 & 0 \\
-5 & -4 & -1
\end{array}\right] \begin{array}{l}
d_{0,1}^{0}=(1 \times .4+2 \times-5) \times 110=210 \\
d_{0,1}^{0}=(1 \times-1) \times 5+(1 \times-5) \times 10 \\
d_{2,1}^{0}(2 \times 1+1 \times .4) \times 5 \\
\\
\\
\end{array} \quad+(0 \times-5) \times 150=3
\end{aligned}
$$

$$
P_{1}^{\prime}=\left[\begin{array}{ccc}
\cdot 9 & -1 & 0 \\
.5 & .4 & -1
\end{array}\right] \begin{aligned}
& d_{g,}^{\prime}=100+(1 \times .1) \times 5 \\
& - \\
& -
\end{aligned}
$$

$$
P_{1}^{2}=\left[\begin{array}{ccc}
.5 & -4 & -1 \\
- & - & -
\end{array}\right] d_{0,1}^{2}=100+(2 x .1+1 \times-4) \times 5
$$

$$
\stackrel{\stackrel{P}{P_{2}}}{0}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\cdot 7 & -3 & 0 \\
\cdot 2 & \cdot 5 & \cdot 3
\end{array}\right] \begin{aligned}
& d_{0,2}^{0}=(1 \times .5+2 x+2) \times 150=135 \\
& \left.d_{1,2}^{0}=(1 \times .3) \times 5+(1 \times .2) \times 180=3 \times .3+1 \times .5\right) \times 5=5.5
\end{aligned}
$$

$$
\begin{gathered}
\left.P_{2}^{\prime}=\left[\begin{array}{ccc}
-7 & \cdot 3 & 0 \\
-2 & .5 & 13 \\
- & - & -3
\end{array}\right] \begin{array}{c}
d_{92}^{\prime}=100+(1 \times 3) \times 5+(1 \times .2) \times 150 \\
=131.5 \\
d_{32}^{\prime}=100+(2 x .3+1 \times-5) \times 5 \\
\\
=105.5
\end{array}\right] \\
\end{gathered}
$$

$$
P_{2}^{2}=\left[\begin{array}{ll}
.2 & -5.3 \\
= & -
\end{array}\right] d_{92}^{2}=100+(2 x \cdot 3+1 x \cdot 5) \times 5=1055
$$

$s=1$: do nut adrotivie
$s=2: \frac{\text { adventise regadleinof stich }}{} \begin{aligned} & \text { level. }\end{aligned}$
$s=3$: Qdventure wheneven in ohete 1
$S=4$: adventisei ahenever as state 2

$$
P^{\prime}=\left[\begin{array}{ll}
.9 & .1 \\
.6 & .4
\end{array}\right] \quad R^{\prime}=\left[\begin{array}{ll}
2 & -1 \\
1 & -3
\end{array}\right]
$$

$$
P^{2}=\left[\begin{array}{ll}
-7 & -3 \\
.2 & -8
\end{array}\right] \quad R^{2}=\left[\begin{array}{cc}
4 & 1 \\
2 & -1
\end{array}\right]
$$

$$
P^{3}=\left[\begin{array}{ll}
.7 & -3 \\
.6 & .4
\end{array}\right] \quad R^{3}=\left[\begin{array}{cc}
4 & 1 \\
1 & -3
\end{array}\right]
$$

$$
P^{4}=\left[\begin{array}{ll}
-9 & -1 \\
-2 & -8
\end{array}\right] \quad R^{4}=\left[\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right]
$$

S=1: $\left.9 \pi_{1}+6 \pi_{2}=\pi_{1}\right\} \pi_{1}=6 / 7$

$$
\left.\pi_{1}+\pi_{2}=1\right\} \pi_{2}=1 / 7
$$

$$
\pi_{1}+\pi_{2}=1>\pi_{2}=1 / 5
$$

s=3: $\left.\quad .7 \pi_{1}+6 \pi_{2}=\pi_{1}\right\} \begin{aligned} & \pi_{1}=2 / 3\end{aligned}$
$\pi_{1}+\pi_{2}=1$
S=4: $\left.\quad 9 \pi_{1}+2 \pi_{2}=\pi_{1}\right\} \pi_{1}=2 / 3$

$$
\left.\pi_{1}+\pi_{2}=1\right\} \pi_{2}=1 / 3
$$

5	π_{1}^{s}	π_{2}^{s}	E^{5}
1	$6 / 7$	$1 / 7$	1.3714
2	$2 / 5$	$3 / 5$	1.
3	$2 / 3$	$1 / 3$	1.8667
4	$2 / 3$	$1 / 3$	1.

Qetionumi decizion.
Adverfise whenever en' potel 1.

Appendix A

AMPL Modeling Language

Set A.2a


```set paint; set resource;``````param unitProfit\{paint\}; param ths \{resource\}; param aij \{resource,paint); \#-------------------------------------------variables var product \{paint\} \(>=0\);``````-model``````subject to limit \(\{\) in resources: undin paint rwsumellielta \(<=\) rhs \([i] ;\) data; set paint :- exterior interior; set resource \(:=m 1 \mathrm{~m} 2\) demand market; param unitProfit := exterior 5 interior 4; param rhs:= \(\begin{array}{ll}\mathrm{m} 1 & 24 \\ \mathrm{~m} 2 & 6 \\ \text { demand } & 1 \\ \text { market } & 2 ;\end{array}\) param aij: exterior interior := \(\begin{array}{lll}\mathrm{m} 1 & 6 & 4 \\ \mathrm{~m} 2 & 1 & 2 \\ \text { demand } & -1 & 1 \\ \text { market } & 0 & 1 ;\end{array}\) solve;``````display protit, product, war rotinesourets sith```				


set input;
set output;
\#-
param unitCost \{input\};
param yield\{output,input\};
param specs \{output\};
param minNeeds;

var feedStuff $\{$ input $\}>=0$;
var farmUse=sum\{j in input\}feedStufflj;
\#-
minimize cost:sum $\}$ in input\}unitCost[j]* feedStufflj]; subject to
aa: farmUse>=minNeeds;
bb\{i in output $\}$ :
sum $\{j$ in input $\}$ yield $[i, j]]^{*}$ feedStuff $[j]<=$ specs $[i]^{*}$ farmUse; data;
set imput $:=$ com soy,
set output:= protein fiber;
param minNeeds: $=800$;
param unitCost := com 3 soy .9;
param specs:= protein -.3 fiber .05 ; \#negative because of $<=$ param yield: corn soy $=$

protein	-.09	-.6
fiber	.02	$.06 ;$

solve;

display cost,feedStuff, feedStuff.rc>a.txt;
display aa.dual, bb.dual>a.txt;
OUTPUT
cost $=437.647$
: feedStuff feedStuff.rc :=
corn $470.588 \quad 8.32667 \mathrm{e}-17$
soy $\quad 329.412-1.11022 \mathrm{e}-16$
;
aa.dual $=0.547059$
bb.dual [ $\left.{ }^{*}\right]:=$
fiber $-2.05116 \mathrm{e}-15$
protein -1.17647
Reduced cost shows that both corn and soy assume positive values in the optimum solution.

Dual price for constraint aa shows that a 1 unit increase in minNeeds increases the total cost by $\$ .55$, approximately.

## Set A.3a

## 1

param n;

```
param c{1..n};
```

$\operatorname{var} \mathrm{x}\{1 . . \mathrm{n}\}$;
rest $\{i$ in $1 . . n\}$ (if $i<=n-1$ then $x[i]+x[i+1]$ else
$x[1]+x[n])>=c[i]$;
$\underline{2}$

$x_{1}=c, \quad x_{T+1}=0$
param T;
param c\{1..T\};
$\operatorname{var} \mathrm{x}\{1 . . \mathrm{T}\}$;
subject to
Period\{t in 1..T\}:
(if $t=1$ then $c$ else $x[t])+z[t]-d[t]-$
(if $t<T$ then $x[t+1]$ else 0$)=0$;

## (a)

## param m;

param n; param k; param p; param q; param c
\#............................................... 1 set $S 1=\{1$..m union $m+k . . n$ union $n+p .-q\}$ var $\mathrm{x}\{\mathrm{SI}\}$;

```
subject to limit: sum{j in sl)x[j]>=c;
```

\#................................................ 2
set $S 2=11 .$. diff $(m+1 . . m+k-1$ union
$n+1 . . n+p-1)\}$
var $x\{52\}$;
subject to limit: sum\{j in $s 2\} x[j]>=x$;
(b)
para m;
param n;
param $c$;
param k;
Var $x\{i$ in m..2*n+k\};
\#..................................................... 1
subject to cc:
sumil in m..2*n+k diff $n+1 . . n+k-1\}$
$\mathrm{x}[i]<=\mathrm{c}$;
\#.......................................................... 2
subject to cc:
sum\{i in m..2*n+k: $i<=n$ or $i>=n+k\} \times[i]$
$<=c$;

## (See file a.4a-2.txt)

set productsUsingComp $\{1 . .5$; ; param $\mathbf{c}\{1 . .5\}$; \#component cost param a\{1..5\}; \#min availability param d; \#maximum demand for each product $\operatorname{var} x\{1 . .10,1 . .5\}>=0$; \# units of product $i$ that use component $j$
minimize $z: ~ s u m\{j$ in $1 . .5\}\left(c[j]^{*}\right.$ (sum $\{i$ in productsUsingComp[j] $] x[i, j])$ ); subject to
$\mathrm{C}\{\mathrm{j}$ in 1.5$\}$ :sum $\{\mathrm{i}$ in productsUsingComp[j]\}$[\mathrm{i}, \mathrm{j}]>=\mathrm{a}[\mathrm{j}]$; D\{i in 1.10$\}$ : $\operatorname{sum}\{j$ in $1 . .5\} x[i, j\}=d$;
data;
set productsUsingComp[1]:=12510;
set productsUsingComp[2]:=36789;
set productsUsingComp[3]:=1235679;
set productsUsingComp[4]:=246810;
set productsUsingComp[5]:=134567910,
param $a=15002400390047005100$;
param $c:=1924364558$;
param d: $=300$;
display productsUsingComp; solve,display x ,

In the following code, the indexed set componentsInProduct is determined directly from the original data, which precludes the need to determine the elements of componentsInProduct $[\mathrm{i}], \mathrm{i}=1,2, \ldots, 10$, manually.
set productsUsingComp \{1..5\}; set componentsInProduct $\{\mathrm{i}$ in $1 . .10\}=$ $\{j$ in $1 . .5 \mathrm{i}$ in productsUsingComp[j];; param c $\{1 . .10\}$; \#component installation cost param a\{1..5\}; \#min availability param d; \#maximum demand for each product $\operatorname{var} x\{1 . .10,1 . .5\}>=0 ; \#$ units of product $i$ that use component $j$
minimize $z: \operatorname{sum}\{\mathrm{i}$ in 1.10$\} \mathrm{c}[\mathrm{i}]^{*}$ (sum $\{\mathrm{j}$ in componentsInProduct[i] $] \times[i, j]$; subject to
$C\{j$ in 1.5$\}$ :sum $\{\mathrm{i}$ in productsUsing $\operatorname{Comp}[j]\} x[i, j]>=a[j]$; $D\{i$ in 1..10\}: sum $\{j$ in $1 . .5\} \times[i, j]<=d$; data;
set productsUsingComp [1]:=1 25 10; set productsUsingComp[2]:=36789; set productsUsingComp[3]:=1235679; set productsUsingComp[4]:=246810; set productsUsingComp[5]:=134567910;
param a:=15002400390047005100; param $\mathrm{c}:=1123324654697285910107$; param d: $=300$,
display productsUsingComp,componentsInProduct; solve; display x ,

## Set A.5a

File RM3x.dat: The first row gives unitprofit. The first column in the remaining 4 rows defines rhs, and the second and third columns give aij.

54
2464
$6 \quad 1 \quad 2$
$\begin{array}{lll}1 & -1 & 1\end{array}$
$2 \quad 0 \quad 1$
2
File RM3xx.dat: Column 1 gives rhs. Coulmn 2 repeats unitprofit [1] as many times as the number of constraints. Coulmn 3 repeats unitprofit [2] as many times as the number of constraints. Columns 3 and 5 give aij. Convoluted data file!

245644
65142
1 5-141
25041
\#--------------------------------------------------2ets
set paint,
set resource;

param rhs \{resource\};
param aij \{resource,paint\};
\#----------------

$$
\text { maximize profit: sum }\{j \text { in paint }\} \text { unitprofit }[j]^{*} \text { product }[j]
$$

$$
\text { subject to limit }\{i \text { in resource }\}:
$$

sum\{j in paint $\}$ aij[i, $]^{*}$ product[j] $<$ rhs [i];
data;
set paint := exterior interior;
set resource $:=\mathrm{ml} \mathrm{m} 2$ demand market;
param unitprofit :=

$$
\text { exterior } 5
$$

interior 4;
param rhs:=

m 1	24
m 2	6
demand	1
market	$2 ;$

param aij: exterior interior :=

$m 1$	6	4
$m 2$	1	2
demand	-1	1
market	0	$1 ;$

solve;


OUTPUT:
Objective value $=21.00$

Product	Quantity	Profit (\$)
exterior	3.00	15.00
interior	1.50	6.00
Constraint	Slack amount	Dual price
$m 1$	0.00	0.75
$m 2$	0.00	0.50
demand	2.50	0.00
market	0.50	0.00



## Chapter 2 Cases

The cost distribution as figured
out by the Accounting Department is not suitable for economic analysis. The purchasing cost of $3,000,000 \mathrm{lb}$ of oranges $(=.19 \times 3,000,000=$ $\$ 570,000$ is fixed, and hence plays no role in the development of the model. The variable cost per 5 gallon can should be recomputed to exclude the fixed cost of purchasing the oranges--that is, For jam:

Sales price/can $=\$ 15.50$
Variable cost/can $=9.85-5 \times(25.61 / 100)$

$$
=\$ 8.57
$$

Gross profit per $\mathrm{lb}=(15.50-8.57) / 5$
$=\$ 1.39$
For concentrate:
Sales price/can $=\$ 30.25$
Variable cost/can $=21.05-30 \times(21.22 / 100)$

$$
=\$ 14.68
$$

Gross profit per lb $=(30.25-14.68) / 30$
$=\$ 0.52$
For juice:
Sales price/can $=\$ 20.75$
Variable cost/can $=13.28-30 \times(21.22 / 100)$

$$
=\$ 10.10
$$

Gross profit per $\mathrm{lb}=(20.75-10.10) / 15$ $=\$ 0.71$
LP Model:
$\mathrm{x}_{1}=\mathrm{lb}$ oranges used in jam
$\mathrm{x}_{2}=\mathrm{lb}$ oranges used in concentrate
$x_{3}=\mathrm{lb}$ oranges used in juice
Maximize $z=1.39 x_{1}+.52 x_{2}+.71 x_{3}-\$ 570,000$ subject to

$$
\begin{aligned}
& \begin{array}{ll}
x_{1} & \leq .3 \times 3,000,00 \\
x_{1} / 5 & \leq 10,000
\end{array} \\
& x_{1} / 5 \quad \leq 10,000 \\
& x_{2} / 30 \leq 12,000 \\
& x_{3} / 15 \leq 40,000 \\
& x_{2} / 30 \quad \geq 2\left(x_{3} / 15\right) \\
& x_{2}+x_{3} \quad \begin{array}{l}
\quad \leq .6 \times 3,000,000 \\
\\
x_{1}, x_{2}, \\
x_{3} \geqq 0
\end{array}
\end{aligned}
$$

The second constriant dominates the first constraint. This means that there is a definite surplus of at least $900,000-5 \times 10,000=850,000$ Ib of Grade I oranges. Because concentrate and juice can use Grade 1 , the last constraint should be changed to

$$
x_{2}+x_{3} \leq 1,800,000+850,000=2,650,000
$$

This means that the extra $850,000 \mathrm{lb}$ of grade I can be Used to produce concentrate and juice, if necessary.



Let
$x_{i j}=$ Rolls produced of type $i$ in month $j$
$\mathrm{s}_{\mathrm{ij}}=$ Rolls purchased of type in month
The objective function can be formulated to minimize the total cost of producing the rolls internally and/or purchasing them externally.

The maximum demand from the two mills can be summarized as:

	Roll 1	Roll 2	Roll 3
Month 1	700	300	400
Month 2	300	500	700
Month 3	100	400	500

LP Model:
$\begin{aligned} \text { Maximize } z= & 90\left(x_{11}+x_{12}+x_{13}\right)+130\left(x_{21}+x_{22}+\right. \\ & \left.x_{23}\right)+180\left(x_{31}+x_{32}+x_{33}\right)+\end{aligned}$

$$
\left.x_{23}\right)+180\left(x_{31}+x_{32}+x_{33}\right)+
$$

$$
108\left(s_{11}+s_{12}+s_{13}\right)+145\left(s_{21}+s_{22}+\right.
$$

subject to

$$
\left.s_{23}\right)+194\left(s_{31}+s_{32}+s_{33}\right)
$$

$x_{11}+x_{12}+x_{13}+5\left(x_{21}+x_{22}+x_{23}\right)+$
$7\left(x_{31}+x_{32}+x_{33}\right) \leq 3 \times 320 \times 10$
$4\left(x_{21}+x_{22}+x_{23}\right)+6\left(x_{31}+x_{32}+x_{33}\right) \leq 3 \times 310 \times 8$
$6\left(x_{11}+x_{12}+x_{13}\right)+3\left(x_{21}+x_{22}+x_{23}\right) \leq 3 \times 300 \times 9$
$3\left(x_{11}+x_{12}+x_{13}\right)+6\left(x_{21}+x_{22}+x_{23}\right)+$
$9\left(x_{31}+x_{32}+x_{33}\right) \leq 3 \times 320 \times 10$
$x_{11}+s_{11}=700, x_{12}+s_{12}=300, x_{13}+s_{13}=400$
$x_{21}+s_{21}=300, x_{22}+s_{22}=500, x_{23}+s_{23}=700$
$x_{31}+s_{31}=100, x_{32}+s_{32}=400, x_{33}+s_{33}=500$
all $x_{i j} s_{i j} \geq 0$
The solution of this model by TORA will show that it is cheaper to purchase alt the rolls from outside source than to produce them locally. on the other hand, if we try to limit outside purchases, $\mathrm{s}_{\mathrm{ij}}$, to $5 \%$ of the total demand, as specified by the company, the problem will have no feasible solution.

These results point to the possibility that the company should be studying whether or not its present operation is economically viable.

minimize $Z=100\left(I_{1}+I_{2}+I_{3}+I_{4}\right)$

$$
\begin{aligned}
& +60\left(y_{12}^{-}+y_{23}^{-}+y_{34}^{-}\right) \\
& +50\left(y_{12}^{+}+y_{23}^{+}+y_{34}^{+}\right)
\end{aligned}
$$

Subject 5

$$
x_{1}-I_{1}=400
$$

## Chapter 2 Cases

		700   500   200 $\begin{aligned} & y_{12}^{-}=0 \\ & y_{23}^{-}=0 \\ & y_{34}^{-}=0 \\ & 0 \geq 0 \end{aligned}$	$i=\left\{\begin{array}{l}1 \\ 2 \\ 2 \\ 3 \\ 3 \\ \text { sepreserent thent books bes }\end{array}\right.$   $x_{i j}=$ units of type $i$ produced is perid   $S_{i j}=$ units of type $i$ sold in peviods   $z_{i j}=$ inventoy units of type $i$ left at the end of periodj   The objectere function includes thee components:   1. Sales sevenue   2. Praductiori cost   3. Inventory cost   The constraints enclude   1. Prsduction capacity   2. Demand limit   3. Labor sequirement   4. Inventory balance equations $\begin{aligned} \text { Maximize } z= & \sum_{j=1}^{3}\left(45 S_{1 j}+100 S_{2 j}+20 S_{3 j}\right) \\ & -\left(25 x_{1 j}+65 x_{2 j}+10 x_{3 j}\right) \\ & -.02\left(25 z_{1 j}+65 z_{2 j}+10 z_{3}\right) \end{aligned}$   suljeck to $\begin{aligned} & x_{1 j} \leq 3000, x_{2 j} \leq 1000, x_{3 j} \leq 580, j=12,3 \\ & s_{11} \leq 2800, s_{12} \leq 2300, s_{13} \leq 3350 \\ & s_{2,} \leq 500, s_{22} \leq 800, s_{23} \leq 1400 \\ & s_{3,} \leq 320, S_{32} \leq 300, s_{33} \leq 600 \\ & 20 x_{1 j}+40 x_{2 j}+15 x_{3 j} \leq \frac{1500 \times 5 \times 4 \times 2 \times 8 \times 60}{j=1,2,3} \\ & z_{i j}=z_{i, j-1}+x_{i j}-s_{i j}, i=1,2,3 \\ & z_{1,0}=30, z_{2,0}=100, z_{3,0}=50 \end{aligned}$ $\text { all ranables } \geq 0$   the effect of leaves can be inivestigated by changing the sight-hand side of

## Chapter 3 Cases

 method solution the number of positive variables cannot exceed the number of constraints, the real issue in the presentation by the OR analyst is that the model is not complete. The fact that the manager insists that all five products must be produced indicates that some important restrictions are missing. In particular, the impact of the competition appears to be important, at least from the manager's standpoint. Such restrictions must then be taken into account.

Although the analyst is correct in stating that LP theory requires more constraints to produce a desired product mix, the argument should be made from the standpoint of formulating the model properly and realistically. Once this task is done, it would not be necessary to "bargain" with the manager about the need to add more constraints. Rather, the realistic model will indicate whether or not the production system is operating optimally.

Of course, when all the restrictions of the problem are taken into account, it may well be that the resulting model would not be a linear program at all.

The conclusion from the analysis of this situation is that one must always aim at formulating the model to represent the original system as realistically as possible.

## Consider a scald-doun model:

## 1. 3-day week

2. Each worker works 2 consecutive days jon 3-day well
3. Loads are asaumed constant oren eachs-hour shift
The situation can be depicted as follows:


The saturation arcumes
that the number of conure that can te tuned is limiter; that is,

$$
y_{i j} \leq C_{i j} \cdot \text { for all and }
$$

The inventory variables $I_{i}$ reprowent is the load amount left unfinished from the preceding period $i-1$

For the purpose of defining the objective function, we want 15 munisinze the number of bid. and casual workers used, we will assign the bid worker half the weight we assign to the casual waters. Then, the objective function is Minimize $z=\sum_{i=1}^{3} \sum_{j=1}^{3} x_{i j}+2 \sum_{i=1}^{3} \sum_{j=1}^{3} y_{i j}$ The conettainits cake into account the fact that a load is allowed to stay on the dock up to 16 Lours (or woo shifts). Thus, (see the chant)

$$
\begin{aligned}
& \left(x_{11}+x_{12}\right)+\left(x_{31}+x_{32}\right)+y_{11} \geq b_{11} \\
& \left(x_{12}+x_{13}\right)+\left(x_{32}+x_{33}\right)+y_{12} \geq b_{12} \\
& \left(x_{11}+x_{33}\right)+\left(x_{13}+x_{21}\right)+y_{13} \geq b_{13} \\
& \left(x_{11}+x_{12}\right)+\left(x_{21}+x_{22}\right)+y_{21} \geq b_{21} \\
& \left(x_{12}+x_{13}\right)+\left(x_{22}+x_{23}\right)+y_{22} \geqslant b_{22} \\
& \left(x_{13}+x_{21}\right)+\left(x_{23}+x_{31}\right)+y_{23} \geq b_{23} \\
& \left(x_{21}+x_{22}\right)+\left(x_{31}+x_{32}\right)+y_{31} \geqslant b_{31} \\
& \left(x_{22}+x_{23}\right)+\left(x_{32}+x_{33}\right)+y_{32} \geq b_{32} \\
& \left(x_{11}+x_{33}\right)+\left(x_{23}+x_{31}\right)+y_{3} \geq b_{33} \\
& x_{11}+x_{31}+y_{11}-I_{1}+I_{2}=b_{11} \\
& x_{12}+x_{32}+y_{12}-I_{2}+I_{3}=b_{12} \\
& x_{13}+x_{33}+y_{13}-I_{3}+I_{4}=b_{13} \\
& x_{11}+x_{21}+y_{21}-I_{4}+I_{5}=b_{21}
\end{aligned}
$$

## Chapter 3 Cases

$$
\begin{aligned}
& x_{12}+x_{22}+y_{22}-I_{5}+I_{6}=b_{22} \\
& x_{13}+x_{23}+y_{23}-I_{6}+I_{7}=b_{23} \\
& x_{21}+x_{31}+y_{31}-I_{7}+I_{8}=b_{31} \\
& x_{22}+x_{32}+y_{32}-I_{8}+I_{9}=b_{32} \\
& x_{23}+x_{33}+y_{33}-I_{9}+I_{1}=b_{33} \\
& y_{1 j} \leq c_{1 j} \\
& \text { all variables are nonnegative. }
\end{aligned}
$$

The model has been tested for
a 7-day week, three shifts pu day, with the loads held constant over 4-hour intervals (initial 88). The semites were encceesfully implements
$\begin{aligned} & x_{i j}= 61 \text { from h ne item } i \quad 3-3 \\ & \text { allocated to bidder } j\end{aligned}$

$$
\text { allocated to biden } j
$$

$b_{i j}=$ Bid for line item $i$ by bidden $j$
$C_{i}=$ capacity (bbl) op line tenn $i$
Maximize $z=\sum_{i=1}^{6} \sum_{j=1}^{8} b_{i j} x_{i j}$.
st.

$$
\begin{aligned}
& \sum_{i=1}^{\sigma} x_{i j} \leqslant 36,000, j=1,3 \cdots, 0 \\
& \sum_{i=1}^{i=1} x_{i j} \leqslant c_{i}, i=1,2, \cdots, 6 \\
& x_{i j} \geqslant 0
\end{aligned}
$$

Solution: (See file amplase 3-3. +xt)


Totals $419 \quad 36 \quad 013 \quad 36 \quad 36 \quad 36$
Revenue $=\$ 202,180$

## Ranking solution:



Revenue $=\$ 201,550$
LPsolution is better than the ranking sduteon by $\$ 630$.
To investigate the effect of setting th $120 \%$ limit, the associated constraints
(O)) yield th following dual prices:

Constraint	Dual price
1	0
2	0
3	03
4	0
5	0
6	.01
7	.02
8	.02

The fact that some of ot dual prices au e positive shows that there are advantages is raising the limit above $20 \%$ as this vil increase the total revenue- noted, de following table show o He change in revenue with the limit:


## Chapter 4 Cases



Ole new objective now thin ne ido as
$x_{1}$ $x_{2}$ $x_{3}$ $x_{4}$ $x_{5}$ $x_{6}$ $x_{7}$ $x_{8}$   2 0 0 0 0 $1 / 3$ 0 2$\| 10 / 3$

Thus, the last baxictoluteri remains optimal.
encluriond:

1. Th new conetivint $x_{3} \leq 210$ reduces the profit fem $\$ 1290$ is $\$ 1243.33$.
2. The $20 \%$ increase in the unit profit of $x_{3}$ increases the total profit to $\$ / 453.33$.
3. The proposal is acceptable because, in the end, the total profit incueces from $\$ 1290$ to $\$ 1453.33$
Question 2:
From TORA's pusitout, worth per unit of $R_{2}={ }^{+}{ }_{2}$
Because the unit price of additional mils of $R 2$ is $\$ 3$ higher oran the present supplier the additional cont is not justifiable economically.
Question 3:

Objective Coefficients -- simultaneous Changes d:
Nonbasic var optimal ivy Condition


TORA printout provide the effect of simultanem changes in th availability of the resources. We can get the sane result by considering

$$
\begin{aligned}
\left(\begin{array}{l}
x_{4} \\
x_{3} \\
x_{6} \\
x_{2}
\end{array}\right) & =\left(\begin{array}{cccc}
1 & 1 / 2 & 0 & -2 \\
0 & 1 / 2 & 0 & 0 \\
0 & 2 & 1 & -4 \\
0 & -1 / 2 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
430+D_{1} \\
460+D_{2} \\
420 \\
300
\end{array}\right) \\
& =\left(\begin{array}{cc}
60+D_{1}+.5 D_{2} \\
230+ & .5 D_{2} \\
140+ & 2 D_{2} \\
70- & .5 D_{2}
\end{array}\right)
\end{aligned}
$$

Thus, for $D_{1}=D_{2}=40$, the new Solution is

$$
\begin{aligned}
& x_{1}=0 \quad x_{2}=50, x_{3}=250, \\
& x_{4}=120, x_{5}=0, x_{6}=220, x_{7}=0
\end{aligned}
$$

which in feasible.

$$
\begin{aligned}
\text { New profit } & =3 \times 0+2 \times 50+5 \times 250 \\
& =\$ 1350
\end{aligned}
$$

Increase in profit $=1350-1290=\frac{*}{60}$ This result can also be computedfom the dual objective function as

$$
\begin{aligned}
\Delta Z & =D_{1} y_{1}+D_{2} y_{2} \\
& =40 \times 0+40 \times \frac{3}{2}=\$ 60
\end{aligned}
$$

Because the worth per unit of $F 1$ is zero, it means that resource FI is already a bundent (indeed, $x_{4}=60$ minutes). Hence, we need to increase $F^{2}$ only by $D_{2}=40 \mathrm{~min}$ at the cost of $\$ 35$, and the proposal is justifiable economically. Question 4:
th s quentin can be analyzed by addend the constraint $x_{2} \geqslant 100$ and applying the dual simplex method.

The new optimum tableau ni

Chapter 4 Cases

2	$x_{1}$	$x_{2}$	$x_{3}$	$x_{4}$	$x_{5}$	$x_{6}$	$x_{7}$	$x_{8}$	
2	2	0	0	3	0	0	0	5	1200
$x_{5}$	0	0	0	1	1	0	0	-1	30
$x_{6}$	1	0	0	-2	0	1	0	-2	60
$x_{7}$	1	0	0	4	0	0	1	0	20
$x_{3}$	1	0	1	1	0	0	0	1	200
$x_{2}$	0	1	0	-1	0	0	0	0	100

The new restriction seduces the polit by $\$ 90$.
We should have expected this rewuet even before the new tableau is computed. The reason is that the present soften doennot satisfy the new constraint. Hence, the value of the objective function must deteriorate.
Question 5
Decrease in the unit processing time of $P /$ on $F^{2}$ will produce the following reduced cont:

$$
\begin{aligned}
1 y_{1} & +(3-1) y_{2}+1 y_{3}+1 y_{4}-\$ 3 \\
& =1 \times 0+2 \times \frac{3}{2}+1 \times 0+1 \times 2-3 \\
& =2
\end{aligned}
$$

The, the seduction sis the processing still would not make PI profitable

The first proposal should 4-2 not produce the descried results because it is bared on an averaging procedure that does net Rave a valid theoretical basis. The second proposal may produce the denied result provided that the remaining tiro constraints are not voluted.
We can check both purposals by

$$
x_{B}=B^{-1} b^{*}
$$

Where $b^{*}$ is the new right-hand side; that is

$$
\begin{aligned}
b^{*} & =\left(\begin{array}{c}
32.4 \\
14.4 \\
1 \\
2
\end{array}\right) \text { for proposal 1 } \\
& =\left(\begin{array}{c}
30 \\
7.5 \\
1 \\
2
\end{array}\right) \text { for proposal } 2
\end{aligned}
$$

Proposal 1:

$$
X_{B}=\left(\begin{array}{cccc}
1 / 4 & -1 / 2 & 0 & 0 \\
-1 / 8 & 3 / 4 & 0 & 0 \\
318 & -5 / 4 & 1 & 0 \\
1 / 8 & -3 / 4 & 0 & 1
\end{array}\right)=\left(\begin{array}{c}
32.4 \\
14.4 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
-9 \\
6.75 \\
-4.85 \\
-4.75
\end{array}\right)
$$

The proposal does nut result is $25 \%$ encreare in $x_{1}$ and $x_{2}$. Moreover, the resulting solution is infacible.
Proposal 2:

$$
X_{B}=\left(\begin{array}{cccc}
1 / 4 & -1 / 2 & 0 & 0 \\
-1 / 8 & 3 / 4 & 0 & 0 \\
3 / 8 & -5 / 4 & 1 & 0 \\
1 / 8 & -3 / 4 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
30 \\
7.5 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
3.75 \\
1.875 \\
2.875 \\
.125
\end{array}\right)
$$

New solution is feasible. It also results is the desired $25 \%$ sicsenve in $x_{1}$ and $x_{2}$

## Chapter 5 Cases

First, we compute the $S-\operatorname{Let} P_{1}, P_{2}$, and $P_{3}$ represent $5-1$ continued percent dictibution of commodities to the different sites:

Site	Percent
$N 1$	$.6 \times .85=.51$
$M 2$	$.6 \times .15=$
$C 1$	$.15 \times .6=$
$C 2$	$.15 \times .4=$
$S 1$	$.25 \times .8=.09$
$S 2$	$.25 \times .2=.20$

Next, insisted of dealing with three different types of products, we convene all them to equivalent returnable bottles by wing the given transportaton cost factors of $60 \%$ for cans and $70 \%$ for nonsetivmables. The supply amount at the new factory equals the difference beteveen the demand and supply at the existing plelant.

the locations of the existing plant, He central plant, and the south plant. The generic transportation model for each period is given as

$a_{1}=$ supply of equivalent returnables at exisiting plant
$a_{2}=$ supply of equivalent returnables at new central plant
$=0$, if new plant is located south
$a_{3}=$ supply of equivalent returnables
at new south plant
$=0$, if plant is located conte $b_{j}=$ Total (equivalent returnables) demand for the year $x$ allocated propontiori for the site $(j=N 1$, $\mathrm{N}_{2}, \mathrm{Cl}_{1}, \mathrm{C}_{2}, \mathrm{~S}_{1}, 52$ )
For example, for year 1, we have $a_{1}=2795$
$a_{2}=\left\{\begin{array}{c}998, \text { if new plant is in center } \\ 0, \text { if new plant is in south }\end{array}\right.$ $a_{3}=\left\{\begin{array}{l}998, \text { if new plant is in south } \\ 0, \text { if new plant is in conte }\end{array}\right.$ $b_{N_{1}}=.51 \times 3795 \cong 1939$ $b_{N 2}=.09 \times 3795 气 342$
$\dot{b}_{S_{2}}=.05 \times 3795 \simeq 190$
Th following table gives all $a_{i}$ and $b_{j}$ continued...

## Appendix E

## Case Studies



From the transportation model, we obtain the following summary:

$y_{2}$	Minimum $\cos f(t)$   given $P_{2}$	Minimum n $\cos t(\phi)$   given $P_{3}$
1	4182.85	3653.10
2	3828.80	4039.20
3	4632.60	4341.20
4	5005.60	4665.70
5	4807.40	4922.80
Totals	$22,457.25$	$21,622.00$

By locating the plant in the south, we save

$$
22,457.25-21,622.00=\$ 835.25
$$ over a period of 5 years, or approximately $\$ 167.05$ per year.

The result shows that the transportation cost is not an important factor in the election of the location (a saving of $\$ 167.05$ is nor sigraificant). Thun, other factors must be considered in the determisatersiof the site of the new plant.
(a) Optimum tableau


The optemuin solution corresponds to $1,886,300\left(m^{3} \times 100 \mathrm{~m}\right)$. Thus,

$$
\begin{aligned}
\text { Cost savings } & =(2,495,000-1,886,300) \times \$ .65 \\
& =\$ 395,655
\end{aligned}
$$

(b) Divide the model into two phase: Phase / is dedicated to building the perimeter road, and Phase 2 is used to build the roads that can be constructed only often the perimeter road is built.

We cannot use the Gamportation model, but must use a regular linear program that permits building the perimeter roads phavel and the cross-soado wi Phased.
Phase I distances ( $d_{i j 1}$ )


Chapter 5 Cases


The LP model is then developed as follows: Define

$$
\begin{aligned}
x_{i j k}= & \text { amount in }\left(m^{3} \times 100 \mathrm{~m}\right) \\
& \text { moved from source } i \text { to }
\end{aligned}
$$ dectixatern $j$ during phase $k$

Minimize $z=\sum_{i} \sum_{j} \sum_{k} d_{i j k} x_{i j k}$ Subject to

$$
\begin{gathered}
\sum_{j} \sum_{k} x_{i j k}=a_{i}, i=1,2, \ldots, 5 \\
\sum_{i} \sum_{k} x_{i j k}=b_{j}, j=1,2, \ldots, 9 \\
x_{i j k} \geq 0 \text { for all } i ; j \& k
\end{gathered}
$$

## Optimum solution (Phase / movement)




## Chapter 5 Cases

## VIII $=$ raindthip stats in $B \quad 5-4$ continued



TORA optimum obluten :

$$
1-40,2-30,3-20,4-10
$$

The elution is interpreted as

$$
B \rightarrow A(40), A \rightarrow B(1)
$$

$$
A \rightarrow B(2), B \rightarrow A(30)
$$

$$
B \rightarrow A(20), A \rightarrow B(3)
$$

$$
B \rightarrow A(10), A \rightarrow B(4)
$$

the optimum oflutior calls for
stationing 1 crew mi A and stationing / crew en $A$ and 3 crews in $B$.

Chapter 6 Cases

Define node $i$ such that $i$ is the number of vacation days remaining. For example, Starting of SF (15), YO (12.5) means a $\frac{1}{2}$ day travel +2 days stay or $\div 0$, leaving $15-2.5=$ 12.5 vacation days


Optimum solution form TORA:

$$
\begin{aligned}
& \text { SF car } y 0 \text { air } Y E \xrightarrow{\text { car }} G T \xrightarrow{\text { car }} M R \xrightarrow{\text { car }} \text { SF } \\
& \text { Treptime }=(\cdot 5+15 * 1+2+3)+4 \times 2=15 \text { days } \\
& \text { Trip cont }=\$ 930
\end{aligned}
$$

Chapter 6 Cases
Arrange the books in 6-2 ascending order so that node 1 represent- the 6" books and rode 4 represent the 12 "books. The network start fem node 0 . An are fum node $i$ to node $j, i<j$, signifies that all the books of height $h_{i}, h_{i+1}, \ldots$, and $h_{j}$ are placed in a skiff of tight $h_{j}$. The length of the arc equals the asarciated fixed plus variable cost. Ti optimum shlutani is gwen by the shortest rout from node o to node 4 .


Total cost $=\$ 278.50$
Solution:
Produce 19 ft of height $8^{\prime \prime}$ and

Shipment	Shipping Routs	Delivery Dote
1	A to 0	10
2	A to E	15
3	B to D	4
4	E to E	5
5	EoE	18



The ships schedules can be summarized as shown below.
$0--1--2--3--4--5 \cdots-6-7--8--9--10--11--12-13-14-15-16--17-18-19--20--21-22$

$$
\begin{aligned}
& \text { 1) } A-\cdots \cdots-\cdots-\cdots-\cdots, B, C
\end{aligned}
$$

$$
\begin{aligned}
& \text { Precedence Relationships }
\end{aligned}
$$



Precedence Relationships


Flow Model


In the flow model, the flow in arcs $\left(i-i^{-}\right), i=1,2, \ldots, 5$ must equal 1 to sealuze a feasible solution. The different arcs of the model represent the precedence relationellpis of the feasible schedule.
The minimum flow from nodes $t$ node $T$ will provide the minimum number of ships requited to meet the proposed schedule.

The peroceduse for deterring the minimum flow in the rettivente consists of the following steps:
Step 1: Determine a feasible solution $T$ the flow model from $S \rightarrow E$
step 2: Determusie the residue network of the feasible dilution
step 3: Determine the maximin flow in the residue neturnk from $E \rightarrow 5$; that is, from the end nedefts the start node 5 .
Step 4: Determine the minusiuen flow from $S \rightarrow E$ as feasible flow $s \rightarrow E-$ maxflow $E \rightarrow 5$

Step 1:
The easiest way 5 fording a feasible Solution is to assume that each rout is served by a oxparatship. The network belour jeiovides such a solutero.


Step 2:


Step 3:- Maximum Hew in residue neturoik (all missing ares have zero flow) from $E \rightarrow S$


Step 4:


Soluteri:
Two ships are needed.

Chapter 6 Cases

Consider the case of from brokers. The actual situation for which the problem ias analyzed included a total of 254 brokers der
$P_{i}=$ parables by broker $i, i=1,2,3,4$
$R_{c j}=$ receivables by $i$ from $j$
$A_{i}=$ assets of broken $i, i=1,2,3,4$ The data of the problem mary be - unmanned os.

Th value of $\alpha_{i}$ may be $6-4$ continued determined by solving

$$
p_{i} \alpha_{i}-\sum_{i \neq j} R_{i j} \alpha_{j}=A_{i} \text {, foralli }
$$

Consider The following Lyportetical illustration:

$\alpha_{1}$	$\alpha_{2}$	$\alpha_{3}$	$\alpha_{4}$	assets	Deficit	
2	35	-5	-4	-1	20	5
2	-10	40	-5	-7	15	3
	-3	-4	20	-1	5	7
4	-5	-5	-5	30	10	5

Equations:

$$
\left(\begin{array}{cccc}
35 & -5 & -4 & -1 \\
-10 & 40 & -5 & -7 \\
-3 & -4 & 20 & -1 \\
-5 & -5 & -5 & 30
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right)=\left(\begin{array}{l}
20 \\
15 \\
5 \\
10
\end{array}\right)
$$

solution: $\alpha_{1}=.76, \alpha_{2}=.75, \alpha_{3}=.55, \alpha_{4}=68$
The net result of the prorating is that the total assets $(=20+15+5+10$ $=50$ ) will be distributed to investors The following table gives the promote cash:


# Chapter 6 Cases 


the next phase of the analysis call or eliminating the "loops" from the guensolution. Fo example, lows $2 \$ 7.6$ and 2 ours $1 \$ 3.25$. The net result is that 1 our 2 \$ $\$ 7.6-3.75$ $=\$ 3.85$. The idea is $\sigma$ eliminate all Lights level loops

I fuss proposed solving the problem of the "loops "by pooling all ore asses and chictiontang them to outside investors baked on le determined value of $\alpha_{c}$ - that i

the proposed solution did
6.4 continued not ratify the legal requirements of the case as a result, I proposed the following netwoth-based LP. Let
$x_{i j}=$ flow from $x$ rode $i$ it node $j$.
The minimization of $\sum x_{i j}$ suljeit T He following flow constraint should produce the minimum loops (see the neturath an opposite of column):


Th optimum LPodutioi is summanged below.


Comprehensive Problems
The problem reduces to finding $T$ Adjacent extreme pt B: a feasible solution of

$$
\begin{aligned}
& \alpha_{1} A+\alpha_{2} B+\alpha_{3} C=b \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}=1 \\
& \alpha_{1}, \alpha_{2} ; \alpha_{3} \geqslant 0
\end{aligned}
$$

(a) maximize $z=0 \alpha_{1}+0 \alpha_{2}+0 \alpha_{3}$

Subject to

$$
\begin{aligned}
& \alpha_{1}\left(\begin{array}{c}
6 \\
4 \\
6 \\
-2
\end{array}\right)+\alpha_{2}\left(\begin{array}{c}
4 \\
12 \\
-4 \\
8
\end{array}\right)+\alpha_{3}\left(\begin{array}{c}
-4 \\
0 \\
8 \\
4
\end{array}\right)=\left(\begin{array}{l}
3 \\
5 \\
4 \\
2
\end{array}\right) \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}=1, \quad \alpha_{j} \geqslant 0 \text { all j }
\end{aligned}
$$

Solution: $\alpha_{1}=1 / 2, \alpha_{2}=1 / 4, \alpha_{3}=1 / 4$
(b) maximize $z=0 \alpha_{1}+\sigma \alpha_{2}+\sigma \alpha_{3}$ subject t

$$
\alpha_{1}\left(\begin{array}{c}
6 \\
4 \\
6 \\
-2
\end{array}\right)+\alpha_{2}\left(\begin{array}{c}
4 \\
12 \\
-4 \\
8
\end{array}\right)+\alpha_{3}\left(\begin{array}{c}
-4 \\
0 \\
8 \\
4
\end{array}\right)=\left(\begin{array}{l}
5 \\
8 \\
4 \\
9
\end{array}\right)
$$

$\alpha_{1}+\alpha_{2}+\alpha_{3}=1, \quad \alpha_{1} \geqslant 0$ alp.


	$x_{1}$	$x_{2}$	$x_{3}$	$x_{4}$	$x_{5}$	Solution
2	0	0	$1 / 3$	$4 / 3$	0	$38 / 3$
$x_{2}$	0	1	$2 / 3$	$-1 / 3$	0	$4 / 3$
$x_{1}$	1	0	$-1 / 3$	$2 / 3$	0	$10 / 3$
$x_{5}$	0	0	-1	1	1	3

the optemin solution occurs at $A$. The adjacent extreme points $B$ and $C$ are determined by making $x_{3}$ and $x_{4}$ basic, one at a time continued...

## Comprehensive Problems

Iteration 2:
$\mathbf{P}_{2}=(1,2,0)^{\mathrm{T}}-$ associated variable $x_{2}$
$\mathbf{B}_{1}^{-1} \mathbf{P}_{2}=\left(\begin{array}{c}.25 \\ 2 \\ 0\end{array}\right) \Rightarrow y_{2}$ leaves
$\mathbf{B}_{2}=\left(\begin{array}{lll}4 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right), \mathbf{B}_{2}^{-1}=\left(\begin{array}{ccc}.25 & -.125 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & 1\end{array}\right)$
$\mathbf{x}_{B}=\left(x_{1}, x_{2} y_{3}\right)^{\mathrm{T}}=(150,200,300)^{\mathrm{T}}$
$\mathbf{c}_{B}=(1,1,1)$
$\mathrm{d}=\mathbf{c}_{\mathrm{B}} \mathbf{B}_{2}^{-1}=(.25, .375,1)$
Interactive AMPL solution:
let d[2]:=..375;
solve; display zj,a;
$z j=2$
a $[$ *] :=
10
$3 \quad 2$
Iteration 3:
$\mathbf{P}_{2}=(0,0,2)^{\mathrm{T}}-$ associated variable $x_{3}$
$\mathbf{B}_{2}^{-1} \mathbf{P}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right) \Rightarrow y_{3}$ leaves
$\mathbf{B}_{3}=\left(\begin{array}{lll}4 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right), \mathbf{B}_{3}^{-1}=\left(\begin{array}{ccc}.25 & -.125 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5\end{array}\right)$
$\mathbf{x}_{B}=\left(x_{1}, x_{2}, x_{3}\right)^{\mathrm{T}}=(12.5,100,150)^{\mathrm{T}}$
$\mathbf{c}_{B}=(1,1,1)$
$\mathrm{d}=\mathbf{c}_{B} \mathbf{B}_{3}^{-1}=(.25, .375, .5)$
Interactive AMPL solution:
let $d[3]:=$. 5 ;
solve; display zj,a;
No feasible solution - Process ends
Optimal solution: Cut 12.5 rolls using setting $(4,0,0)$,
100 rolls using $(1,2,0)$, and 150 rolls using $(0,0,2)$.
Maximize $z=C x$
Subject to

$$
\begin{gathered}
A x \geqslant L \\
A x \leq U \\
x \geqslant 0
\end{gathered}
$$

Let $Y=U-A x \geqslant 0$, the problem becomes
maximize $z=C X$
Subject to

$$
\begin{aligned}
A x+Y & =U \\
Y \quad & \leq U-L \\
x \geqslant 0 \quad Y & \geqslant 0
\end{aligned}
$$

maximize $z=5 x_{1}-4 x_{2}+6 x_{3}$ subject to

$$
\begin{aligned}
& x_{1}+7 x_{2}+3 x_{3}+y_{1}==46 \\
& 3 x_{1}-x_{2}+x_{3}+y_{2}=20 \\
& 2 x_{1}+3 x_{2}-x_{3}+y_{3}=35 \\
& y_{1} \leq 26, y_{2} \leq 20, y_{3} \leq 17 \\
& x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \geqslant 0
\end{aligned}
$$

Optimum solution:
$x_{1}=6.18, x_{2}=3.55, x_{3}=5$
$z=46.73$
$\left(\begin{array}{l}x_{2} \\ x_{1} \\ x_{5}\end{array}\right)=\left(\begin{array}{c}4 / 3 \\ 10 / 3+\theta \\ 3\end{array}\right) \geq\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
7.5

The increase in $x$, can be translated to increasing the right-hand side of th constraints by $D_{1}, D_{2}$, and $D_{3}$. The values of $D_{1}, D_{2}$, and $D_{3}$ can the compered from $B^{-1} b=X_{B}$; that is

$$
\left(\begin{array}{l}
x_{2} \\
x_{1} \\
x_{5}
\end{array}\right)=\left(\begin{array}{ccc}
2 / 3 & -1 / 3 & 0 \\
-1 / 3 & 2 / 3 & 0 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
6+D_{1} \\
8+D_{2} \\
1+D_{3}
\end{array}\right)=\left(\begin{array}{c}
4 / 3 \\
1 / 3+\theta \\
3
\end{array}\right)
$$

Thus,

$$
\left(\begin{array}{ccc}
2 / 3 & -1 / 3 & 0 \\
-1 / 3 & 2 / 3 & 0 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
D_{1} \\
D_{2} \\
D_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\theta \\
0
\end{array}\right)
$$

or $\quad\left(\begin{array}{l}D_{1} \\ D_{2} \\ D_{3}\end{array}\right)=\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & -1 & 1\end{array}\right)\left(\begin{array}{l}0 \\ \theta \\ 0\end{array}\right)=\left(\begin{array}{c}\theta \\ 2 \theta \\ -\theta\end{array}\right)$
$\theta=-10 / 3$ :

	$x_{1}$	$x_{2}$	$x_{3}$	$x_{4}$	$x_{5}$	$5 / n$
$z$	0	0	$1 / 3$	$4 / 3$	0	$8 / 3$
$x_{2}$	0	1	$2 / 3$	$-1 / 3$	0	$4 / 3$
$x_{1}$	1	0	$-1 / 3$	$2 / 3$	0	0
$x_{5}$	0	0	-1	1	1	3
$z$	1	0	0	2	0	$8 / 3$
$x_{2}$	2	1	0	1	0	$4 / 3$
$x_{3}$	-3	0	1	-2	0	0
$x_{5}$	-3	0	0	-1	1	3

## Comprehensive Problems

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{5}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -2 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
6+\theta \\
8+2 \theta \\
1-\theta
\end{array}\right)=\left(\begin{array}{c}
8+2 \theta \\
-10-3 \theta \\
-7-3 \theta
\end{array}\right) \geqslant\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& -4 \leq \theta \leq-10 / 3 \\
& \text { For } \theta<-4, \text { no feasible solution exists } \\
& \text { Summary: }
\end{aligned}
$$

$$
\begin{aligned}
&-\infty \leq \theta<-4: \quad \text { No feasible solution } \\
&-4 \leq \theta \leq-10 / 3: x_{1}=0, x_{2}=8+2 \theta \\
& z=16+4 \theta
\end{aligned}
$$

$$
-10 / 3 \leq \theta<\infty: x_{1}=10 / 3+\theta, x_{2}=4 / 3
$$

$$
z=\frac{3 \gamma}{3}+3 \theta
$$

at $t=2$ :
$B=\left(\begin{array}{ll}P_{2} & P_{3}\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right), B^{-1}=\left(\begin{array}{cc}0 & 1 / 2 \\ 1 & -1\end{array}\right)$
$C_{B}=(4 t-8,0)$
$C_{B} B^{-1}=(4 t-8,0)\left(\begin{array}{cc}0 & 1 / 2 \\ 1 & -1\end{array}\right)=(0,2 t-4)$
$z_{1}-c_{1}=(0,2 t-4)\binom{2}{4}-(10 t-4)$

$$
=-2 t-12
$$

$$
z_{4}-C_{4}=(0,2 t-4)\binom{0}{1}-0
$$

$$
=2 t-4
$$

$$
\binom{x_{2}}{x_{3}}=B^{-1} b=\left(\begin{array}{cc}
0 & 1 / 2 \\
1 & -1
\end{array}\right)\binom{8}{6-2 t}=\binom{3-t}{3+2 t}
$$

$$
\left.\begin{array}{l}
\text { at } t=2: z_{4}-c_{4}=0 \\
\text { at } t>2: z_{4}-c_{4}>0
\end{array}\right\} x_{4} \text { enters basis }
$$ $P_{4}$ replaces $P_{2}$ :

$$
\begin{aligned}
& B=\left(\begin{array}{ll}
P_{3} & P_{4}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=B^{-1} \\
& C_{B}=(0,0) \quad C_{B} B^{-1}=(0,0) \\
& Z_{1}-C_{1}=(0,0) P_{1}-(10 t-4)=-10 t-4 \leqslant 0 \\
& z_{2}-C_{2}=(0,0) P_{2}-(4 t-8)=-4 t+8 \leqslant 0 \\
& t \geq 5 / 2 \\
& \binom{x_{4}}{x_{4}}=B^{-1} b=\binom{8}{6-2 t} \geq\binom{ 0}{0} \Rightarrow t \leqslant 3
\end{aligned}
$$

Solution becomes infeasible for $t>3$. However, no feasible solution exists for $t>3$

## summary:

$2 \leq t \leq 3$ : optimal basis $B=\left(P_{3}, P_{4}\right)$ $t>3$ : nefraible ostution exists

## Let

$J^{+}\left(J^{-}\right)=\left\{j \varepsilon N B \mid \alpha_{i j}>0(<0)\right\}$


Then $x_{i} \leq e_{i}$ yields

$$
x_{i}=e_{i}+f_{i}-\sum_{j\{J} \alpha_{i j} \cdot x_{j}-\sum_{j \in J} \alpha_{i j} x_{j}
$$

Because $x_{i}-e_{i} \leqslant 0$, it follows that

$$
-\sum_{j \in J^{+}} \alpha_{i j} x_{j}-\sum_{j \leqslant J} \alpha_{i j} x_{j} \leq-f_{i} .
$$

Adding the esiequality to the simplex tableau and applying the amplex method, then, under the acrumption of no change in basis, the decrease in the value of $z$ is at least

$$
P_{d}=\min _{j \in J^{+}}\left\{\frac{\left(z_{j}-\xi_{i}\right) f_{i}}{\alpha_{i j}}\right\}
$$

The corresponding upper bourdon the value of $z$ is $C_{0}-P_{d}$.

In a similar manner, $x_{1} \geqslant d_{c}$ gives

$$
x_{i}-d_{i}=f_{c}-1-\sum_{j \leqslant J^{t}} \alpha_{i j} x_{j}-\sum_{j \leqslant J} \alpha_{i j} x_{j} .
$$

Thus,

$$
\sum_{j\left\{J^{+}\right.} \alpha_{i j} \cdot x_{j}+\sum_{j \in J^{-}} \alpha_{i j} \cdot x_{j} \leq f_{c}^{-1}
$$

and

$$
P_{u}=\min _{j \Sigma J}\left\{\frac{\left(z_{j}-c_{j}\right)\left(f_{1}-1\right)}{\alpha_{i j}}\right\}
$$

The associated upper bound on $z$ is $C_{0}-P_{u}$

Chapter 8 Cases
$X_{i j}=$ acres fim sit
alornative;
Sawlogs conetiaint:

$$
\begin{aligned}
& 7 x_{15}+6 x_{16}+5 x_{17}+ \\
& 5 x_{25}+4 x_{26}+ \\
& 4 x_{33}+3 x_{34}+5 x_{35}+\overrightarrow{5},-5,+350,000
\end{aligned}
$$

Pficwoond conotraint:

$$
6 x_{13}+7 x_{14}+5 x_{23}+4 x_{24}+4 x_{32}+\overrightarrow{5}_{2}-5_{2}=150,00
$$

Pefparod conethaint:

$$
\begin{aligned}
& 1 x_{11}+10 x_{12}+5 x_{13}+4 x_{14}+3 x_{15}+2 x_{16}+ \\
& 3 x_{17}+9 x_{21}+8 x_{22}+2 x_{23}+3 x_{24}+2 x_{25}+ \\
& 2 x_{26}+7 x_{31}+6 x_{32}+2 x_{33}+2 x_{34}+ \\
& x_{35}+s_{3}-53=200,000
\end{aligned}
$$

Sperentation Contrinit:-

$$
\begin{aligned}
& 1000 x_{11}+800 x_{12}+\cdots+1500 x_{17}+ \\
& 1000 x_{21}+800 x_{22}+\cdots+1200 x_{26}+ \\
& 1000 x_{31}+800 x_{32}+1500 x_{33}+ \\
& 1200 x_{34}+1300 x_{35}+\bar{S}_{4}-S_{4}^{+}=2,500,000
\end{aligned}
$$

Rotation Conetrauns:

$$
\begin{aligned}
& 20 x_{11}+25 x_{12}+40 x_{13}+15 x_{14} \\
&+40 x_{15}+40 x_{16}+50 x_{1} \leq 100,000 \\
& 20 x_{21}+25 x_{22}+40 x_{23}+15 x_{24} \\
&+40 x_{25}+40 x_{26} \leq 180,000 \\
& 30 x_{31}+25 x_{32}+40 x_{33}+15 x_{34} \\
&+40 x_{35} \leq 200,000
\end{aligned}
$$

Groal for total seturn from stumpage

$$
\begin{aligned}
& =100(1000,000+180,000+200,000) \\
& =\$ 48,000,000
\end{aligned}
$$

Total ueturn comehaint.

$$
\begin{aligned}
& (20 \times 160) x_{11}+(117 \times 25) x_{12}+(140 \times 40) x_{13}+ \\
& (195 \times 15) x_{14}+(182 \times 40) x_{15}+(180 \times 40) x_{16}+ \\
& (135 \times 50) x_{17}+(102 \times 20) x_{21}+(55 \times 25) x_{22}+ \\
& (25 \times 40) x_{23}+(120 \times 15) x_{24}+(100 \times 40) x_{25}+ \\
& (90 \times 40) x_{26}+(60 \times 0) x_{31}+(48 \times 25) x_{32}+ \\
& (60 \times 40) x_{33}+(65 \times 15) x_{34}+(35 \times 40) x_{35} \\
& +5_{5}-5 \pm 45,000,000
\end{aligned}
$$

Chapter 9 Cases
$x_{i y}=\left\{\begin{array}{l}1, \text { building } i \text { opens in yr y } \propto 1 \\ 0, \text { otherurice }\end{array}\right.$
$R_{i y}=\mathrm{ft}^{2}$ of building $i$ rented in year and thereafter:
$I_{i y}=$ operating sicome per ft of bulling $i$ in year
$C_{i y}=$ construction cost of building $i$ in year
$\theta=$ inflation sate applied to operating income and construction cost
$\tau=$ dio-count nato
$D_{1 y}=$ demand for high-rise $f t^{2}$ in $y_{r} y$
$D_{2} y=$ demand for garden space $\mathrm{ft}^{2} \mathrm{in}$. gary
$K=$ capitalization sate used for determining property vale in the year of sale
$B_{i} \cdot=$ maximum capacity of building $C^{\circ}$
the sake value of building is at the end of 7 years is catimatid as

$$
R_{i y} \times \frac{I_{i \gamma}}{K}
$$

His means that the orle is estimated. based on the net operating income. for year 7.
Model:

$$
\begin{aligned}
\text { Maximize } z & =\sum_{y=1}^{7}\left\{\left(\frac{1}{1+r}\right)^{y}\left(\sum_{i=1}^{7}\left(I_{i y} R_{i y}-C_{i y} x_{i y}\right)\right)\right\} \\
& +\sum_{y=1}^{7} \sum_{i=1}^{7}\left(\frac{1}{1+r}\right)^{7}\left(\frac{I_{i 7}}{k}\right) R_{i y}
\end{aligned}
$$

Subject to

$$
\begin{aligned}
& \sum_{i=1}^{3} R_{i y} \leqslant D_{i y}, \quad y=12, \cdots, 7 \\
& \sum_{i=4}^{7} R_{i y} \leqslant D_{2 y^{\prime}}, \quad y=1,2, \cdots, 7 \\
& \sum_{j=1}^{y} D_{1 j} x_{i j} \geqslant R_{i y}, \quad i=1,2,3 \\
& \sum_{j=1}^{y} D_{2 j} x_{i j} \geqslant R_{i y}, \quad i=3,2,4, \cdots, 7 \\
& \sum_{y=1}^{7} R_{i y} \leqslant B_{i}, \quad i=1,2, \cdots, 7 \\
& \sum_{y=1}^{7} x_{i y}=1, \quad i=1,2, \cdots, 7
\end{aligned}
$$

The rental sicome and expenses as gweri wi the problem apply to year/ of th planning hoszon. These values must he adjusted for yearly t allow for inflation. Asumising an inflation sate $\theta$, The amount for year $y$ is determined for year $y$ by multiplying the values for year' by $(1+\theta)^{y-1}$
$S_{i j}=$ expected scone of gymnast
$i$ in event $j, i=1,2, \ldots, N$, $j=1,2,3,4$.
$x_{i j}=\left\{\begin{array}{l}1, \text { if gymnast } i \text { is assigned to event } j \\ 0, \text { if otherwesi }\end{array}\right.$ $Y i=\left\{\begin{array}{l}1, \text { if gymnast } i \text { is an all-soundes } \\ 0, \text { if otherwise }\end{array}\right.$
Model:
Maximize $z=\sum_{i=1}^{N} \sum_{j=1}^{4} S_{i j} x_{j}+\sum_{i=1}^{N}\left(\sum_{j=1}^{1} s_{i j}\right) y_{i}$
Subject to

$$
\begin{array}{ll}
\sum_{i=1}^{N} x_{i j}+y_{i} \leqslant 6, & j=1,2,3,4 \\
x_{i j}+y_{i} \leqslant 1, & i=1,2, \ldots, N \\
\sum_{i=1}^{N} y_{i} \geqslant 4, & j=1,2,3,4
\end{array}
$$

continued..
$\sum_{j=1}^{4} x_{i j} \leqslant 3, \quad i=1,2, \cdots, N$ $y_{i}, x_{i j}=(0,1)$ for all and $^{\prime}$
$x_{i j}=$ fraction of traffic origurating form area code $i$ and handled by conter $j, i=1,2, \ldots, 8 ; j=1,2, \ldots, 7$
$y_{j}= \begin{cases}1, & \text { if center } j \text { is } c \text { osen } \\ 0, & \text { if otheruise }\end{cases}$
$c_{c j j}=$ Communication coost/he between area $i$ and area $j$
Define:
$\begin{array}{lllllllll}i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
$\begin{array}{llllllllll}\text { Area } & 501 & 918 & 316 & 417 & 314 & 816 & 502 & 606\end{array}$
$\begin{array}{llllllll}j & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
center Dallas Athata L'ville Dever LR Mepphis St. luis
Communication tiaffic conotraixts

$$
\begin{array}{rlrl}
x_{11}+x_{14}+x_{16} & =1 & \text { (area } 501) \\
x_{21}+x_{23} & =1 & (918) \\
x_{31}+x_{33}+x_{36} & =1 & (316) \\
x_{14}+x_{13}+x_{45}+x_{46} & =1 & (417) \\
x_{52}+x_{53}+x_{55}+x_{57} & =1 & (314) \\
x_{62}+x_{63}+x_{65}+x_{67} & =1 & (816) \\
x_{72}+x_{74}+x_{75}+x_{77} & =1 & & (502) \\
x_{64}+x_{64}+x_{86}+x_{87} & =1 & & (606) \tag{606}
\end{array}
$$

Centirs convathint:

$$
\begin{array}{ll}
x_{11}+x_{21}+x_{31}+x_{41} & \leq M y_{1} \\
x_{52}+x_{62}+x_{72}+x_{82} & \leq M y_{2} \\
x_{23}+x_{33}+x_{y_{3}}+x_{53}+x_{63} & \leq M y_{3} \\
x_{14}+x_{74}+x_{84} & \leq M y_{4} \\
x_{45}+x_{55}+x_{65}+x_{75} & \leqslant M y_{5} \\
x_{16}+x_{36}+x_{46}+x_{86} \leq M y_{6} \\
x_{57}+x_{67}+x_{77}+x_{87} & \leq M y_{7}
\end{array}
$$

Limit on number of centers

$$
3 \leq y_{1}+y_{2}+y_{3}+y_{1}+y_{5} \times y_{6}+y_{7} \leq 4
$$

objective function: Minimize $z=$
$500000 y_{1}+800,000 y_{2}+\cdots+550,000 y_{7}$
$+14 x_{11}+24 x_{14}+19 x_{16}$
$+35 x_{21}+25 x_{23}$

$$
+\cdots
$$

$+15 x_{82}+30 x_{84}+12 x_{86}+22 x_{87}$
Let
$x_{i j}=\left\{\begin{array}{l}1_{s i f} \text { if cluates } i \text { is acerved } \\ \text { by } C S L \text { in Greation } j \\ 0, \text { otherurise }\end{array}\right.$
$y_{j}=\left\{\begin{array}{l}1, \text { if candidate loc. } j \text { is selected } \\ 0, \text { otherusis }\end{array}\right.$
$p=$ number of facitities
$\omega_{i}=$ number of anetomers si cluator $i$ $d_{i j}=$ dustance beiveen cluata $i$. and CSL lecation $j$.
Model: Given $p$, determini $\min z=\sum_{i=1}^{5} \sum_{j=1}^{5} w_{i} \cdot d_{i j} \cdot x_{i j} \cdot$
suluict to

$$
\begin{aligned}
& \sum_{j=1}^{5} y_{j}=p \\
& \sum_{j=1}^{5} x_{i j}=1, i=1,2, \ldots, 5 \\
& \sum_{i=1}^{5} x_{i j} \leqslant M \quad y_{j},, j=1,2, \ldots, 5 \\
& y_{j} \text { and } x_{i j}=(0,1)
\end{aligned}
$$

The idea of the algovitim is to specify a value yos $p=1,2, \ldots$, or 5 . Then ithe model is opternigied t delermine athere the oqetcified p CSL centeñ ehould the localed.

Chapter 9 Cases

Fr e example, if $p=1$, the gotinum sOlution of the model (using TORA) will specify that th CSL should be located at $j=4$. This mean that all 5 clucleis will be Revved by the CSL located in location $j=4$. For th. arrangement, th average traveled distance from $j=4$ to all 5 clusters in

$$
\begin{aligned}
\bar{D} & =\frac{50+30+80+60+110}{5} \\
& =\frac{330 \text { miles }}{5} \\
& =66 \text { miles }
\end{aligned}
$$

Given that the Tercels travels at 45 miles pen Lover, the average tissue to mach a customer will be $\frac{66}{45}=1.47$ hour $=88$ minutes, which er is less than the deserved 90-minule neepmes times.

Another way of looking of the solution is to consides the maximum travel distance from location $j=4$; namely,

$$
D_{4}=\max \{50,30,80,60,110\}=110 \text { miles }
$$

The associated truck travel time is 2.44 fours or 147 minutes. Because it exceeds the limit of 90 minutes, the new
criterion calls for tying $p=2$. TORA will give two locations:
$j=3$ serving clusters 1 and $5^{\circ}$
$j=4$ Revving clusters 2,3 , and 4
Thus, $D_{3}=\max \{20,40\}=40$ and
$D_{4}=\max \{30,80,60\}=80$ miles. The
new solution is inthin the desired 90-mile limit.
18 possible configurations:

1	$4 C-A-4 D$	
2	$4 C-A-C$	
3	$4 C-A-W$	Testers Configurations
4	$4 C-S-4 D$	1
5	$4 C-S-C$	$4 C-S$
6	$4 C-S-W$	$8 C-C$
7	$6 C-A-4 D$	3
8	$6 C-A-C$	4
8	$8 C$	
9	$6 C-A-W$	5
10	$6 C-S-4 D$	6
11	$6 C-5-C-W$	
12	$6 C-5-W$	
13	$8 C-A-4 D$	
14	$8 C-A-C$	
15	$8 C-A-W$	
16	$8 C-5-4 D$	
17	$8 C-5-C$	
18	$8 C-S-W$	

Let $T_{i}=$ Set of testersuaing configuration $i$ $i=1,2, \ldots, 18$

$$
\begin{array}{ll}
T_{1}=T_{2}=T_{3}=\varnothing & T_{14}=\{2,4\} \\
T_{4}=T_{5}=\{1\} & T_{15}=T_{16}=\{4\} \\
T_{6}=\{1,5\} & T_{17}=\{2,4\} \\
T_{7}=T_{8}=\{6\} & T_{18}=\{4,5\} \\
T_{9}=\{3,6\} &
\end{array}
$$

$$
T_{10}=T_{11}=\varnothing
$$

$$
T_{12}=\{3,5\}
$$

$$
\frac{1 / 3}{1 / 3}=\{4\}
$$

$P_{i}=$ set of prototypes covering tester $i, i=1, \cdots, 6$
$P_{1}=\{4,5,6\}, P_{2}=\{14,17\}, P_{3}=\{9,12\}$,
$P_{4}=\{13,14,15,16,17,18\}$
$P_{5}=\{6,12,18\}, \quad P_{6}=\{7,8,9\}$
$x_{i j}=\left\{\begin{array}{l}1, \text { if tester } i \text { is covered by probtype } j \\ 0, \text { otlerucise }\end{array}\right.$
$y_{j}=\left\{\begin{array}{l}1, \text { if any tester uses prototype } j \\ 0, \text { otherwise }\end{array}\right.$ Minimize $z=\sum_{c=1}^{18} y_{c}$.
St.

$$
\begin{aligned}
& \sum_{i \varepsilon P_{i}} x_{i j}=1, i=1,2, \ldots, 6 \\
& \sum_{i \varepsilon T_{j}} x_{i j} \leqslant M * y_{j}, j=1,2, \ldots, 18
\end{aligned}
$$

Solution: See file ampllase 9-5. 1xt

Prototype	Nb made	testers
$9^{6}$	2	1,5
14	2	3,6
14	2	2,4

$F_{i j}=$ Feasiblepaiving $j$ of crew $i$ - 6
expressed in flight numbers
Examples: Pairing (C3, C6, C4, C8, C3) of crew $/$ is expressed as

$$
F_{11}=\{10,15,12,18\}
$$

Pairing ( $C_{3}, C_{2}, C 8, C_{3}$ ) of crew 1 is expressed as

$$
F_{12}=\{9,7,18\}
$$

$x_{i j}=\left\{\begin{array}{l}1, \text { if pairing } j \text { of crew } i \text { is used } \\ 0, \text { otherwise }\end{array}\right.$ $y_{k}=N b r$ of crews overallocated to flight $B(\geqslant 0)$

$$
\operatorname{Cand}\left(F_{i j}\right)=\text { Nbs. of elements of } F_{i j} \text {. }
$$

$$
N_{i}=N_{b r .} \text { of pairings for crew } i
$$

Minimize $z=\sum_{(i, j)} \operatorname{Card}\left(F_{i j}\right) x_{i j}$
Sot.

$$
\begin{equation*}
\sum_{j=1}^{N_{i}} x_{i j} \leqslant 1, i=1,2, \ldots, 10 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\substack{d_{e f i n e d}(i, j) \\ k \in F_{i j} j}} x_{i j}-y_{k}=1, k=1,2, \cdots, 18 \tag{2}
\end{equation*}
$$

Constraints (1) allow at most one pairing per crew and constraints (2) will give $y_{k} \geq 0$ if flight $k$ is covered by at least one crew. If flight $k$ cannot be covered by a crew, (2) is infeasible.
Solution: See file amplCase 9-6.txt.

crew	pairing
1	None
2	$1(C 3, C 6, C 4, C 8, C 3)$
3	$1(C 4, c 8, C 3, C 2, C 4)$
4	$1(C 1, C 8, C 3, C 6, C 4, C 1)$
5	$3(C 2, C 7, C 4, C 1, C 2)$
6	None
7	$1(C 5, C 2, C 8, C 3, C 1, C 5)$
8	$1(C 6, C 1, C 3, C 6)$
9	None
10	None


Flight, $k$	overallocation $\left(Y_{k}\right)$
3	1
10	1
11	2
17	2
18	2

All other flights are allocated one crew each.
of the parings doe not produce at least one crew allication/flight, the problem will not have a feasible solution

Chapter 9 Cases
$D_{k}=$ Demand for module $k$, $k=1,2,3$
$I_{j}=$ initial inventory of device $j, j=1,2, \ldots, 5$ $C_{i j}=\left\{\begin{array}{l}1, \text { if durice } i \text { can be used is module } j \\ 0, \text { otherwise }\end{array}\right.$

$$
\left\|C_{i j}\right\|=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

$P=$ Total number of wafers produced
$X_{j}=r_{j} \cdot P_{j}$, Nbrof binned devices of type j
$y_{j k}=$ Nbr.ofunits of device $j$ is module $k$ Minimize $z=P$
sot.

$$
\begin{aligned}
& I_{j}+x_{j}-\sum_{k=1}^{3} c_{j k} y_{j k} \geqslant 0, j=1,2, \ldots, 5 \\
& \sum_{j=1}^{5} C_{j k} y_{j k} \geqslant D_{k}, k=1,2,3
\end{aligned}
$$

Solution: See file amplCase9-7.xxt
PRODUCTION SCHEDULE:
Produced wafers $=85$ units

$X_{i}=\left\{\begin{array}{l}1, \text { if check } i \text { is cleared } \\ 0, \text { otherwise }\end{array}\right.$
Constraints:

$$
\begin{array}{r}
200 x_{1}+75 x_{2}+900 x_{3}+25 x_{4}+525 x_{5}+100 x_{6} \\
+675 x_{7} \leqslant 1200 \tag{1}
\end{array}
$$

If residual balance $\geqslant a m t$ of check; then check; an be cleared (2)
constraints (2) translate mathematically to

$$
\text { If } 1200-\sum_{i=1}^{7} c_{i} x_{i} \geqslant c_{j} \text { then } x_{j}=1
$$

$$
\begin{aligned}
& \text { or } 1200-\sum_{i=1}^{7} c_{i} \cdot x_{i}-c_{j} \geqslant 0 \text { then } x_{j} \geqslant 1 \\
& \text { or If } 1200-\sum_{i=1}^{7} c_{i} \cdot x_{i}-c_{j} \geqslant 0 \text { then }-x_{j}+1 \leqslant 0
\end{aligned}
$$

02

$$
\begin{equation*}
1200-\sum_{i=1}^{7} c_{i} \cdot x_{j}-c_{j} \leqslant M x_{j}-.0001 \tag{aa}
\end{equation*}
$$

$$
\begin{equation*}
-x_{j}+1 \leq M\left(1-x_{j}\right) \tag{2b}
\end{equation*}
$$

Actually ( $2 a$ ) miphis ( $2 b$ ) in this case because ( $2 a$ ) requires $x_{j}$ to equal , whenever the left-hand side allows it. (a) Minimize $z=\sum_{j=1}^{7} x_{j}$.

Solution: See file ampllase9-8.t $x 1$ Clear checks 5 and $7(=525$ $+675 \stackrel{*}{=} 1200$ )
(b) Maximize $Z=\sum_{j=1}^{7} x_{j}$

Solution: see same file
Clear checks $1,2,4,5$, and 6

$$
c=200+75+25+525+100
$$ $=\$ 925$ ) Remaining balance $=1200-925=\$ 275$, which is less than the amount of any of the uncleared checles ( 3 and 7).

$c_{i}=$ capacity of line $i(1000$ bbl) $\quad 9-9$
$x_{i j}=1000 \mathrm{bbl}$ allocated to bidder
from-linei
$r_{i j}=$ men coosbbl frombenci by bidder $j$
$y_{i j}=(0,1)$
$b_{i j}=$ bonus bid by bidder $i$ on line $j$

$$
\text { Maximize } z=\sum_{i=1}^{6} \sum_{j=1}^{8} b_{i j} ; x_{i j}
$$

st.

$$
\begin{aligned}
\sum_{i=1} x_{i j} & \leq 2 \sum_{k=1}^{m} c_{R}, j=1,2, \cdots, 8 \\
\sum_{j=1}^{8} x_{i j} & \leq c_{i}, \quad i=1,2, \cdots, 6 \\
x_{i j} & \left.\leq M y_{i j}\right\} i=1,2, \cdots ; 6, j=1,3 \cdots, 8 \\
x_{i j} & \geq r_{i j} y_{i j}
\end{aligned}
$$

Solution: we file ample Case 9-9. tot

$$
z=\$ 201,750
$$

Allocation:

1,	2	$3^{\text {Bidder }} 4$	5	6	7	8
1		20				
2		12			18	
3				25		
4	11				17	12
5	35					
6				11		19

all quantities are in 1000 bbl .

$$
\begin{aligned}
S_{i j} & =\text { intensity measure for } \\
& \text { manger i working on project } j \\
& =\left(t_{i j}+1\right) \times 6 \times \log \left(C_{j}\right)+1
\end{aligned}
$$

when
$t_{i j}=$ travel time in hairs by manager $i$ to project;
$c_{j}=\operatorname{cost~in~} 10^{6} \neq$ of project $j$
$x_{i j}=\left\{\begin{array}{l}1, \text { if manager } i \text { is assigned to } \\ \text { project } j\end{array}\right.$ 0, othenurse

$$
\begin{aligned}
& \text { Minimize } z=\sum_{i=1}^{5} \sum_{j=1}^{8} s_{i j} x_{i j} \\
& \text { s.t. } \\
& \sum_{i=1}^{5} x_{i j}=1, j=1,2, \ldots, 8 \\
& \sum_{j=1}^{8} x_{i j} \geq 1, i=1,2, \cdots, 6
\end{aligned}
$$

Each manager is assigned at
least one project.
Solution: See file ampl Case 9-10.1xt. on file solver Case 9-10.x1s

Manager	Assigned projects
$a$	6
$b$	3,4
$c$	$2,7,8$
$d$	1
$e$	5

Alternative solution from Solve:

$b$	3
$d$	1,4

## Chapter 10 Cases



Chapter 10 Cases


Stage2:


Stage 1:
$t=0$,

$$
I(1)+c(t)+f_{2}(t+1)=10+2-3.96=6.26 .
$$

Deciaion: $K$
Plicy:

$$
\begin{aligned}
K \rightarrow R & \rightarrow K \rightarrow K \rightarrow R \rightarrow R \rightarrow \\
K \rightarrow R & \rightarrow K \rightarrow S
\end{aligned}
$$

Economic lot size formula:

$$
y=\sqrt{\frac{2 K D}{h}}
$$

$h=$ annual holding cost/unit
$K=$ Setup coat
$D=$ annual demand
Given $L$ is a fixed proportion $\nabla^{\text {the }}$ unit cost $C$, we have

$$
y=\sqrt{\frac{2 K D}{L^{\prime} C}}
$$

Let
$T=$ average time period needed To consume the average supply on hand, $y / 2$
$S=$ annual dollar uringe of the items.
Then,

$$
\begin{aligned}
& T=\frac{y / 2}{D}=\frac{y}{2 D} \\
& S=D C
\end{aligned}
$$

Under optimal conditions, we have

$$
T=\sqrt{\frac{2 K D}{4 D^{2} i c}}=\sqrt{\frac{K}{2 i}} \sqrt{\frac{1}{D C}}=\alpha \sqrt{\frac{1}{S}}
$$

where $\alpha$ is a constant.
The selatiorishp between Tand 5 tor a typical inventory can be graphed as


Policy: if the annual dollar wage is $S_{1}$, ordn the quantity $y$ every $2 T$ time units

Inventory control should $\left\|\|_{-2}\right.$ be based on the data for the final product, be cause the demand bor the purchased component independent on the demand for the final product. Separate treatments of the two parts may result es shortage.

For the fencil product, we have

$$
\begin{aligned}
y & =\sqrt{\frac{2 k D(p+h)}{p h}} \\
& =\sqrt{\frac{2 \times 100 \times 20(5+8)}{5 \times 8}} \\
& \simeq 36 \text { units }
\end{aligned}
$$

time bets. orders $=\frac{30}{20}=1.8$ weetes
Ordering policy:
Order $36 \times 2=72$ units of purchased components every 12 dry. This policy leado to producing 36 units of the final product every 12 days.

Month	Syr Av. Demand   (rounded)
1	11
2	53
3	10
4	107
5	111

Th fluctuations withe average demand per month auggents that the
we of the EOQ based on He average monthly demand for the pant 2 years may had of prox underestimation or overestimation of demand. The gives data yeld $\overline{\bar{x}}=91$ units with $S_{\bar{x}}=67.6$ units, which reflects extreme vauaitions en demand.

A study of the data shows that with the exception of Nov. and Dec. (and possibly april), the average monthly demand taken over the 5 yer span is a good representation of the demand during the month. As for Nov. and Dec., there is a trend for increase en demand approximatty equal 512 units/ your for Nov: and 18 unit: year for Dec. A planning horizon of 12 months may this be used to solve the problem. For each new year, the demand yer month is taken equal to the averages given in the preceding table. n the cares of Nov and Dec., the demands are esicreased by approximately 12 and 18 units; Respectively, for each new year.
The following chart apply to. th next two years
Next year:


Yearofas:


The problem ann be solved by DP

Chapter 13 Cases


Initial cost (IC):
PF
CAD
$M C$$\left[\begin{array}{ccc}1 & 25 / 12 & 120 / 12 \\ 12 / 25 & 1 & 120 / 25 \\ 12 / 120 & 25 / 120 & 1\end{array}\right]$

Maintenance coot (MA):
PF
CAD
$M C$$\left[\begin{array}{ccc}1 & 4 / 2 & 15 / 2 \\ 2 / 4 & 1 & 15 / 4 \\ 2 / 15 & 4 / 15 & 1\end{array}\right]$

Training (TR)
PF
CAD
$M C$$\left[\begin{array}{ccc}1 & C A D & M C \\ 3 / 8 & 1 & 20 / 3 \\ 3 / 20 & 8 / 20 & 1\end{array}\right]$

13-2


Expected accuracy given "recount "is

$$
\begin{aligned}
\text { made }= & (10 \times .95+0 \times .05) \times p \\
& +(100 \times .8+0 \times .2)(1-p) \\
= & 15 p+80
\end{aligned}
$$

Expected accuracy given "recount" is not made $=100 \mathrm{p}$

Thu, recount
warrented if

$$
15 p+80>100 p
$$

or $p \leqslant .12 \%$
The present policy of using $13-3$ 2-707 or 1-747 crews between 5:00 and 17:00 and between 11:00 and 23:00 represents an overlap between 11:00 and 17:00. We can define the periods per day as
Period Number of crews
1(5:00-11:00) 2 (Service 4-707 departure)

2 (11:00-17:00) 4 (service 2-707\& 2-747)
3(17:00-23:00) 2 (service 1-747)
The corresponding probability of overnight delay is computed as follows. Let
$C_{i}=$ number of crews called in period $i, i=1,7,3$
Period 1:
$P\left\{C_{1}>4\right\}=0$, because there are 4 departures only
Period 2:

$$
\sum_{x=0}^{4} P\left\{C_{2}>4-x \mid C_{1}=x\right\} P\left\{C_{1}=x\right\}
$$

Examples of computation:

$$
\begin{aligned}
& P\left\{C_{2}>0 \mid C_{1}=4\right\} \\
&= 1-
\end{aligned} \quad\left[\begin{array}{rl} 
& P\{0 \text { call from } 707 \text { category } 2\} x \\
& P\{0 \text { call from } 707 \text { category } 4\} x \\
& P\{0 \text { call from } 747 \text { category } 4\} \times \\
& P\{0 \text { call from } 747 \text { category } 6\}] \\
=1- & {[(1-.019)(1-.006)(1-.016)(1-0)]} \\
= & .042406848 \\
P\left\{C_{1}=4\right\}= & P\{1 \text { call } 707-33 \times P\{1 \text { call } 707-6\} \\
& \times P\{1 \text { call } 707-2\} \times P\{1 \text { all } 707-3\}
\end{array}\right.
$$

Chapter 13 Cases


## Chapter 14 Cases

	Present Policy	Policy A1	Policy A2	Policy A3
Crews	$4-\mathrm{B} 707$	$3-\mathrm{B} 707$	$2-\mathrm{B} 707$	3 B 707
Allocation	$2(5: 00-17: 00)$	$1(5: 00-17: 00)$	$2(10: 00-22: 00)$	$1(6: 30-14: 30)$
	$2(11: 00-23: 00)$	$2(11: 00-23: 00)$		$2(14: 30-22: 30)$
Cost/year	$\$ 840,000$	$\$ 618,000$	$\$ 412,000$	$\$ 490,000$
Av. nbr delays	1 day $/ 166$ years	1 day $/ 9$ years	1 day $/ 6$ years	1 day/9 years
Delay cost	$\$ 350$	$\$ 5,500$	$\$ 8,500$	$\$ 5,500$
Total cost	$\$ 840,350$	$\$ 623,500$	$\$ 420,500$	$\$ 495,500$

Policy A2 has the least total expected cost. the decision is based on adopting a ling-term policy. If the data of the situation are changed, computations must be revised to see if the optimal policy changes.

## Let

$P(S)=$ probabilty of an idividual being schizophrenic
$P(S)=$ probabilty of an idividual not being schizophrenic
$P(S \mid B A)=$ probability of schizophrenia given brain atrophy
$P(B A \mid \underline{S})=$ probability of brain atrophy given schizophrenia
$P(B A \mid \bar{S})=$ probability of brain atrophy given no schizophrenia
In terms of the data, we have

$$
\begin{aligned}
& P(S)=.015 \\
& P(\bar{S})=.985 \\
& P(B A \mid S)=.3 \\
& P(B A \mid \bar{S})=.02
\end{aligned}
$$

It thus follows that $P(S \mid B A)=\frac{3 \times .015}{3 \times .015+.02 \times .985}=.186$
The result shows that, even though Hinkley's CAT scan shows brain atrophy, there is less than 20\% chance that he is schizophrenic. This is not a strong argument in support of Hinkley's claim of mental illness.

Probability tree:
\{ yes, probability $q$

$\{\mathrm{H}$ (real question)\|	
	\{ no, probability (1-q)
coin	
tossing --\|	
$\{\mathrm{T}$ (decoy question)\| $\mid$ des, probability (20/35)	
	\{ no, probability (15/35)

Per the results of the experiment, we have $P\{$ yes vote $\}=18 / 35$
From the probability tree, we have
$\mathrm{P}\{$ yes vote $\}=(1 / 2) \times \mathrm{q}+(1 / 2) \times(20 / 35)$
Thus,

$$
(1 / 2) \times q+(1 / 2) \times(20 / 35)=(18 / 35)
$$

Solving for q , we get

$$
\mathrm{q}=[(18 / 35)-(1 / 2) \times(20 / 35)\} \times 2=16 / 35=.457
$$

## Chapter 14 Case

The frequency histogram for the demand is given below. To be on the conservative side, we ignore the frequency of zero demand.

Nbr. of units	Frequency	Relative   frequency	Cumulative   relative   frequency
1	89	.7807	.7807
2	20	.17544	.9561
3	4	.3509	.9912
4	1	.00877	1.00

Assuming that the demand stays stationary for at least the next year (that is, no appreciable trend), the company's requirement that the demand be met $95 \%$ of the time is satisfied with two units in stock.

## Chapter 15 Cases

Because the teller is busy only $40 \%$ of the time, it is possible that one teller could attend to more than one customer. In fact, arriving customers may be served $b$ a pool of tellers. The problem with this proposal is that a teller will not have a fixed station, which may create administrative problems in the bank operation.
The data show that the number of calls reaches a peak between 12:00 and 17:00 daily. The design of the system should based on this extreme condition, rather than on the overall average number of arrivals per day. Thus, for the daily period from 12:00 to 17:00, we have

$$
\bar{x}=9.11 \mathrm{arrival} / \mathrm{hr}, s^{2}=7.81
$$

There is not reason to believe that arriving calls will follow anything but a Poisson distribution. Notice that $\bar{x}=9.11$ arrival/hr and $s^{2}=7.81$ are approximately equal, which supports the Poisson claim. (In general, we should use the chi-square to validate the Poisson assumption.)

Regarding the service time distribution (length of calls), the lack of data together with the principle of insufficient reason suggest once again that the service time distribution may also be exponential with mean 7 minutes.

We are now dealing with a Poisson queue with lambda $=9.11$ calls per hour and $\mathrm{mu}=$ $60 / 7=8.75$ phone answers per hour. The telephone lines represent the servers. Given lambda/mu $=1.06$, the system needs at least 2 lines. We know, however, that lambda must be larger than 9.11 because the available data do not reflect the calls that are lost when the lines are busy. We thus need to run a type of sensitivity analysis to give us some idea about the "adequacy" of the telephone service under extreme conditions. We must remember that the number of lost calls must be reduced to an absolute minimum because the facility deals with situations that could affect the sell-being of a abused child.

The following table provides the measures of performance given lambda $=9.11,13.7$, and 18.22 calls per hour. These values represent $100 \%, 150 \%$, and $200 \%$ of the estimated arrival rate.

Lambda	9.11				13.7				18.22			
Nbr. of lines	2	3	4	5	2	3	4	5	2	3	4	5
$\mathrm{~L}_{\mathrm{q}}$	.4	.06	.009	.001	2.8	.3	.06	.01	1.2	.23	.05	.01
$\mathrm{~W}_{\mathrm{q}}(\mathrm{sec})$	162	21.6	3.6	.36	720	72	14.4	3.6	216	36	10.8	2.52
$\mathrm{P}\{\mathrm{n}>\mathrm{c}\}$	.2	.03	.01	.002	.6	.15	.04	.01	.36	.11	.04	.01

$\mathrm{L}_{\mathrm{q}}$ could not be used as proper measure in this case. For example, for lambda $=9.11$, $L_{q}=.4$ waiting calls for $c=2$. This may appear quite small, but if we examine $W_{q}$, the average

## Chapter 15 Cases

waiting time until a call is acknowledged is 162 sec (about 3 min ). This is a long waiting time for an anxious person reporting an abuse case. A waiting time of about 10 seconds is the most that can be tolerated in these situations. For example, for lambda $=18.22$ calls per hour, 5 lines are needed.

An initial analysis of the situation can be made by comparing the rate of arrival of calls for truck service with the service rate. From the data

$$
\text { lambda }=(0 \times 30+1 \times 90+\ldots+12 \times 4) /(0+1+2+\ldots+12)=4.1 \text { calls per } \mathrm{hr}
$$

The average service time per call is computed from the second table as

$$
\mathrm{tBar}=(5 \times 61+15 \times 34+\ldots+95 \times 2) /(61+34+15+\ldots+2)=20.2 \mathrm{~min} \text { per call }
$$

Thus, the service rate is
$\mathrm{mu}=1 / 20.2=.05$ services per min per truck $=2.97$ services per hr per ruck
Given three trucks are in service, the total service rate is $3 \times 2.97=8.9$ services per hr. Thus, the utilization of the trucks is computed as

$$
\text { utilization }=1 \mathrm{ambda} /(3 \mathrm{mu})=4.1 / 8.9=.46
$$

The low utilization shows that the three trucks are sufficient to service the six departments adequately. The main drawback with the current setup is that the trucks do not have a "home" station, a basic assumption is calculation the utilization factor. In other words, the $46 \%$ utilization assumes that the trucks are available in one service pool. This difficulty is rectified by placing all calls for service to a common dispatcher who is in constant contact with the drivers of the trucks.

From the data of the problem, the average rate of breakdown per machine per hour is computed as
lambda $=(7+8+8) /(3$ mach $\times 8 \mathrm{hr})=.9583$ per machine per hr
The difference between the failure time and the completion of repair gives the anount of time a broken machine spends in the repair system. Thus,

$$
\begin{aligned}
\mathrm{W}_{s} & =[(10+12+10+13+10+12+9)+(8+8+13+8+9+13+12+10)+(13+11+10+12+8+11+8+10)] / 24 \\
& =10.46 \mathrm{~min}
\end{aligned}
$$

We can also estimate the number of machines in the system $\mathrm{L}_{\mathrm{s}}$ from the information in the second table. For simplicity, we take the average of all the given data points. Normally, we should treat $L_{s}$ as a time-based variable. However, this would require a complete history of the number of broken machines at all hours of the day.

$$
\mathrm{L}_{\mathrm{s}}=(6+6+9+6+\ldots+8+8+6) /(8 \text { data points } \times 5 \text { days })=6.73 \text { machines }
$$

E-39

## Chapter 15 Cases

If the data are correct, and if the situation behaves per the Poisson assumptions, then $L_{s}$ and $W_{s}$ must satisfy the formulas

$$
\begin{aligned}
\mathrm{L}_{\mathrm{s}} & =\operatorname{lambda}_{\mathrm{eff}} \mathbf{W}_{\mathrm{s}} \\
& =\operatorname{lambda}\left(\mathrm{N}-\mathrm{L}_{\mathrm{s}}\right) \mathrm{W}_{\mathrm{s}}
\end{aligned}
$$

From the data, we have

$$
\begin{aligned}
\text { lambda } & =.9583 \text { calls } / \text { machine } / \mathrm{hr} \\
\mathrm{~N} & =30 \text { machines } \\
\mathrm{L}_{\mathrm{s}} & =6.73 \text { machines } \\
\mathrm{W}_{\mathrm{s}} & =10.46 / 60=.1743 \mathrm{hr}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{lambda}\left(\mathrm{N}-\mathrm{L}_{\mathrm{s}}\right) \mathrm{W}_{\mathrm{s}} & =.9583(30-6.73)(.1743) \\
& =3.887 \text { machines }
\end{aligned}
$$

This result shows that the data for computing lambda and $L_{s}$ are not consistent. Hence is the conclusion reached by the manager.

Chapter 20Case


Chapter 22 Case
Consume that the machine starts new, and define,
$n=$ planning horizon $(=6$ years)
$I=$ initial purchase price
$T W_{i}=$ trade -in value of a working machine whose age guat turned " years
$T F_{i}=$ trade -si value of a filed machine whose age just tirol iyyar
$P_{i}{ }^{\prime \prime}=$ probability that an $i$-year old macheni in working order at th start of a year fails at the end of the year.
$S W_{i}=$ Salvage value at the end of the planning how ion of a working machine of age $i$.
$S F_{i}=$ Salvage value at the end if the planning horizon of a failed machine of age $i$
$f_{k}(i)=$ Minimum expected cost of the remaining periods of the Raizon given that we stir. year $t$ with a machine of age $i$ and en working order

$$
k=i, 2, \ldots, n ; i=1,2, \ldots, k-1
$$

$C_{i}=$ expected operating cost of a working macluni of age $i$
that a working machini

$$
f_{k}(i)=\min \left\{\begin{array}{c}
R: I-T w_{i}+C_{0}+P_{0}\left\{I-T w_{1}+f_{k+1}(0)\right\} \\
+\left(1-P_{0}\right) f_{k+1}(1) \\
K: C_{i}+P_{i}\left\{I-T w_{i+1}+f_{k+1}(0)\right\} \\
+\left(1-P_{i}\right) f_{k+1}(i+1) \\
k=1,2, \ldots, n-1 \\
i>0 \quad \text { continued. }
\end{array}\right.
$$

E-42

