

Buy three roundtrip tickets for the first three weeks only— $cost = 3 \times 400 = 1200$. Though the cost is cheaper, it is not feasible because it covers only three out of the required five weeks.

4 cont.

East	Crossing	West
5,10	$(1,2) \rightarrow (\mathbf{t} = 2)$	1,2
1,5,10	(t = 1)←(1)	2
1	$(5,10) \rightarrow (t=10)$	2,5,10
1,2	$(t=2)\leftarrow(2)$	5,10
none	$(1,2) \rightarrow (t=2)$	2.5.10
Total =	2+1+10+2+2=17 m	inutes

Given a string of length L:

(1)
$$h = .3L$$
, $w = .2L$, Area = $.06L^2$

(2)
$$h = .1L$$
, $w = .4L$, Area = $.04L^2$

Solution (2) is better because the area is larger

$$L = 2(w + h)$$
$$w = L/2 - h$$

$$z = wh = h(L/2 - h) = Lh/2 - h^2$$

$$\delta z/\delta h = L/2 - 2h = 0$$

Thus, h = L/4 and w = L/4.

Solution is optimal because z is a concave function

(a)

Let T = Total tie to move all four individuals to the other side of the river. the objective is to determine the transfer schedule that minimizes T.

(b)

Let t = crossing time from one side to the other. Use codes 1, 2, 5, and 10 to represent Amy, Jim, John, and Kelly.

		Jim		
		Curve	Fast	
Joe	Curve Fast	.500	.200	
(-)	Fast	.100	.300	

(a)

Alternatives:

Joe: Prepare for curve or fast ball. Jim: Throw curve of fast ball.

(b)

Joe tries to improve his batting score and Jim tries to counter Joe's action by selecting a less favorable strategy. This means that neither player will be satisfied with a single (pure) strategy.

The problem is not an optimization situation in the familiar sense in which the objective is maximized or minimized. Instead, the conflicting situation requires a compromise solution in which neither layer is tempted to change strategy. Game theory (Chapter 14) provides such a solution.

continued.

Recommendation: One joist at time gives the smallest time. The problem has other alternatives that combine 1, 2, and 3 joists. Cutter utilization indicates that cutter represents the bottleneck.

CHAPTER 2 Modeling with Linear Programming 2-1

(b)
$$x_1 + 2x_2 \ge 3$$
 and $x_1 + 2x_2 \le 6$

(e)
$$\frac{x_2}{x_1 + x_2} \le .5 \text{ or } .5x_1 - .5x_2 > 0$$

(a)
$$(X_1, X_2) = (1, 4)$$

$$(X_1,X_2) \geq 0$$

$$(x_1, x_1) = 0$$

 $6x1+4x4 = 22 < 24$
 $1x1+2x4 = 9 \neq 6$ infeasible

(b)
$$(x, x_1) = (2, 2)$$

$$(x_1, y_2) \ge 0$$

 $6xz + 4xz = 20 < 24$
 $1xz + 2xz = 6 = 6$ feasible

$$-1 \times 2 + 1 \times 2 = 0 < 1
 1 \times 2 = 2 = 2$$

$$Z = 5x2 + 4x2 = $18$$

(c)
$$(X_1, X_2) = (3, 1.5)$$

$$-1 \times 3 + 1 \times 45 = -1.5$$
 <1
 $1 \times 1.5 = 1.5$ <2

$$Z = 5 \times 3 + 4 \times 1.5 = $21$$

$$(d)(x_1,x_2)=(2,1)$$

$$X_1, X_2 \geq 0$$

$$x_1, x_2 \ge 0$$

 $6x^2 + 4x^1 = 16$ < 24
 $1x^2 + 2x^1 = 4$ < 6
 $-1x^2 + 1x^1 = -1$ < 1

$$1 \times 2 + 2 \times 1 = 4 < 6$$

$$-1 \times 2 + 1 \times 1 = -1 < 1$$

(e)
$$(x_1, x_2) = (27^{-1})$$

x, 30, x, <0, infearible

Conclusion: (c) gives the best feasible Solution

$$(X_1, X_2) = (2, 2)$$

Let S_1 and S_2 be the unused daily amounts of MI and M2.

amounts of MI and M2.

$$=6-(2+2xz)=0$$
 tons /day

quantity discount results in the 4 following nonlinear objective function:

$$Z = \begin{cases} 5X_1 + 4X_2, & 0 \le X_1 \le 2 \\ \\ 4.5X_1 + 4X_2, & X_1 > 2 \end{cases}$$

The setuation cannot be treated as a linear program. Nonlinearity can be accounted for in this case using mixed integer pergramming = 6 | feasible (chapter 9).

x, = number of units of A X2= number of units of B

Maximize Z = 20 x, + 50 Xz

 $\frac{x_1}{X_1 + X_2} \geqslant .8 \quad \text{or} \quad -.2X_1 + .8X_2 \leq 0$

x, < 100

 $2x_1 + 4x_2 \le 240$

X1, X2 ≥0

Optimal occurs at B:

x = 80 units

Xz = 20 units

Z = \$2,600

X, = number of sheets /day x2 = number of bars/day

Maximize $Z = 40X_1 + 35X_2$

X1 + X2 51 0 ≤ X, ≤ 550, 0 ≤ X, ≤ 580

Optimum solution:

X, = 550 sheets X2 = 187.13 bars

2 = \$28,549.40

6

X, = \$ invested in A

X2 = \$ invested in B

Maximize $Z = .05X_1 + .08X_2$

 $X_1 \geq .25(X_1 + X_2)$ 5.4.

 $X_2 \leq .5(X_1 + X_1)$

X, 3.5X2

X1 + X2 & 5000

X,, X2 ≥0

x, = number of practical courses X2 = number of humanistic courses

Maximize Z = 1500X, +1000X2

S.t. X, + X2 = 30

₹10

 $X_2 \ge 10$

x, , x, >0

ophmum:

 $X_{1} = 20$

Z=\$40,000

(b) Change x,+x2 ≤ 30 to x,+ x2 ≤ 31

Optimum Z = \$41,500

ΔZ= \$41,500 - 40,000 = \$ 1500

Conclusion: Any adolitional course will be free practical type.

 $X_1 = units of Solution B$ $X_2 = units of solution B$

 $maximize z = 8x_1 + 10x_2$ Subject 6

 $.5x_1 + .5x_2 \leq 150$.6x, + .4x2 \le 145 > 30 € 150 XZ > 40 ≤ 200 X1, X2 20

x = nbr. of grano boxes

X2 = nbr. of wheatie boxco

Maximize Z = X, + 1.35 X2

S.t. .2x, +.4x2 60

X, ≤ 200

X2 € /20

x,, x ≥ 0

Optimum: X, = 200, X, = 50 , Z = \$267.50

Area allocation: 67% grano, 33% whentie

x, = play hours per day X2 = work hours penday

Maximize Z = 2x1+x2

Optimum Solution: ;
x, = 4 Lours

X2 = 6 Lours

Z = 14 "pleasarits"

x, = Daily nbr. of type 1 hat X2 = Daily nbr. of type 2 Lat

Maximize Z= 8x,+5xz

 $2X_1 + X_2 \le 400$

≤ 150

X2 = 200

200

optimum:

X = 100 type 1

X2 = 200 Type 2

Z = \$1800

 \mathbf{x}_{l}

continued.

2-5

continued.

10

Set 2.2a

X₁ = radio minutes X₂ = TV minutes

Maximize $Z = X_1 + 25X_2$

S.t. 15×1 +300×2 ≤ 10,000

 $\frac{X_1}{X_2} \ge z$ or $-x_1 + 2x_2 \le 0$

 $X_1 \leq 400, X_1, X_2 \geqslant 0$

Optimum occurs at A:

x, = 60.61 minutes

X2 = 30.3 minutes

z = 8/8.18

X= tons of C, consumed per hour
X= tons of Cz consumed per hour
Maximize Z = 12000 X, + 9000 X2

S.t. $|800 \times_1 + 2100 \times_2 \le 2000 (X_1 + X_2)$

- 200 X1 + 100 X2 50

 $2.1 \times 1 + .9 \times 2 \le 20$

13 (a) Optimum occurs at A:

x, = 5.128 tons per hour

X2 = 10.256 tons per low

Z = 153,846 16 of Steam Optimal ratio = $\frac{5.128}{10.256} = .5$

(b) $2.1x_1 + .9x_2 \le (20+1) = 21$

Optimum Z = 16/538 16 of Steam

DZ = 161538 - 153846 = 7692 16

X, = Nbr. of radio commercials beyond the first

X2 = Nbr. of TV ands beyond the first

Maximize Z = 2000 X, + 300 0X2 + 5000 + 2000

s.t. $300(x_1+1) + 2000(x_2+1) \le 20,000$

300 (X,+1) 5.8x 20,000

2000 (X2+1) 6.8×20,000

 $X_1, X_2 \geqslant 0$

or $Maximize Z = 2000X_1 + 3000X_2 + 7000$

 $300 X_1 + 2000 X_2 \le 17700$

300X, < 15700

(2)

 $2000 x_2 \le 14000$

(3)

Optimum colation:

Radio Commercials = 52.33+1 = 53.33

TV ads = 1+1 = 2

Z = 107666.67+7000 = 114666.67

X,= number of shirts per hour X2= number of blouses per hour

Maximize Z= 8x,+ 12x2 s.t.

20x,+60 x2 ≤ 25 x60 = 1500 (1)

70x, +60x2 < 35x60 = 2100 (z)12x, +4x2 = 5x60 = 300 (3)

X1, X 20

X = Nbr. of desks pen day X2 = Nbr. of Chairs per day

Maximize Z = 50 x, + 100 x 2

$$\frac{X_1}{200} + \frac{X_2}{80} \le 1$$

$$\frac{X_1}{150} + \frac{X_2}{110} \le 1$$
 (2)

 $x_{1} \leq 120, X_{2} \leq 60$

Optimum:

X, = 90 deskes

x2 = 44 chairs

z = \$8900

X, = rumber of HiFi1 units X2 = rumber of HiFi2 units 16

Constraints:

6x, + 4x2 = 480x 9 = 432

 $5x_1 + 5x_2 \le 480 \times 86 = 4/2.8$

4x, +6x2 < 480x.88 = 422.4

6x, + 4x2 + 5,

 $5x_1 + 5x_2 + 5z = 412.8$

 $+ S_3 = 422.4$ 4x, +6x2

Objective function:

Minimize 5, +5, +5, = 1267.2-15x,-15x

Thus, min S,+Sz+S3 = MAX 15X,+15X2

Maximize Z = 15x,+15x2

5.7.

*≤ 43*2 6x, +4 x2

£412.8 5x, +5x2

4x, +6x2 < 422.4

X,, X, >0

Optimum: (Problem has alternative optima)

X, = 50.88 units

x2 = 31.68 units

Z = 1238.4 minutes

Set 2.2b

(a)

(b)

(c)

additional constraint: X \ \ 450 2

Optimum Solution:

$$x_1 = 450$$
 16

$$z = $450$$

continued..

Optimum: x, =0, xz=0, Z=0, which is nonsonsical

* = number of hours/week in store 1

X2 = number of hours/week in store 2

Minimize $Z = 8X_1 + 6X_2$ 5.t.

$$x_1 + x_2 \ge 20$$

$$5 \le x_1 \le 12$$

aptemum:

continued.

6

X1 = 10 bb1/day from Iran X2 = 10 bb1/day from Dubai

Refinery capacity = X,+X2 10 bb1/day

Minimize $Z = X_1 + X_2$ Subject to

$$X_{1} \geq 4(X_{1}+X_{2})$$
or
$$-6X_{1}+4X_{2} \leq 0$$

$$2X_{1}+1X_{2} \geq 14$$

$$25X_{1}+6X_{2} \geq 30$$

$$1X_{1}+15X_{2} \geq 10$$

$$15X_{1}+1X_{2} \geq 8$$

$$X_{1}, X_{2} \geq 0$$

Ophimum Solution from TORA:

LINEAR PROGRAMMING -- GRAPHICAL SOLUTION

5 24

X, = 10 # invested in blue chip stock X = 10 # invested in high-tell stocks

Minimize $Z = X_1 + X_2$ Subject to

> .1x, +.25x, ≥ 10 .6x, -.4 /2 20

> > $X_1, X_2 \geqslant 0$

TORA optimin solution:

LINEAR PROGRAMMING - GRAPHICAL SOLUTION

Ratio of scrap	A malloy					
Ratio of scrap Ratio of scrap	Bin alloy				•	
nurru 7						
Minimize Subject to	x1 100.00	x2 80.00				
(1)	0.06 0.06	0.03 0.03	>= <=	0.03 0.06		
(3) (4)	0.03 0.03	0.06 0.06	>= <=	0.03 0.05		
(5)	0.04 0.04	0.03 0.03	>= <=	0.03 0.07		
(6) (7)	1.00	1.00	=	1.00		
			7			
,	•					
Afti no destitutus di	(6)					
(1)						
	x2					
		_				
(5)			Summ	ary of Optima	I Solution:	
(7)	2		Ob x1	ojective Value = = 0.33	86.67	
			x2	= 0.67		
(4)						
7000000		\				
(3)		Ontin	ııım `			
(3)		Optim	ium			
(3)		Optin	num /			
(3)		Optim	num			
·-1	0		num		²2 x1	
	0		num		2 x1	
	0		num		2 x1	
	0		num		2 x1	

Xe = Nbr. of efficiency apartments Xd = Nbr. of duplexes Xs = Nbr. of engle-family homes
Xx = Retailspace in ft 2 Maximize Z = 600 xc+750 xd+1200 xx+100 xx S.t. Xe < 500, Xd < 300, Xs < 250 X2 = 10xe + 15xd + 18Xs X < 10000 $X_d \ge \frac{X_c + X_s}{2}$ $x_e, x_d, x_s, x_n \ge 0$ Optimal solution: Z = 1,595,714.29Xe = 207.14, Xd = 228.57 Xs = 250, Xn = 10,000 LP does not guarantel integer Solution. Use rounded Solution or apply integer LP algorithm. (Chapter 9). algorishm (Chapter 9). 2 x = Acquired portion of property i Each pite is represented by a separate LP. The site that yields the smaller objective value is selected. Site 1 LP: Minimize Z = 25+ X, + 2.1 x2+ 2.35 X3+1.85 X2+2.95 X3 s.t. xy ≥.75, all x, ≥0, i=1,2,..,5 20x,+50x2+50xg+30x4+60x5≥ 200 Ophinum: Z= 34.6625 million \$ $x_1 = .875, x_2 = x_3 = 1, x_4 = .75, x_5 = 1$ Site 2 LP: Minimize Z = 27+2.8x,+1.9x2+2.8x3+2.5x4 S.f. X3≥·5, X1, x2, X3, Xy≥0 80x,+60x2+50x3+70xy > 200 Ophinum: Z = 3435 million \$ $X_1 = X_2 = 1$, $X_3 = X_Y = .5$ Select Site 2.

Xii = portion of project i completed in year; 3 Maximize $Z = .05(4X_4 + 3X_{12} + 2X_{13}) +$ $\cdot 07(3x_{22} + 2x_{23} + x_{24})^{\dagger}$ 15(4x31+3x32+2x33+x34)+ $.02(2X_{43}+X_{44})$ S._f. $\sum_{i=1}^{3} x_{ij} = 1$, $\sum_{j=3}^{4} x_{4j} = 1$ $.25 \le \sum_{j=2}^{5} x_{2j} \le 1, .25 \le \sum_{j=1}^{5} x_{3j} \le 1$ 5×11+15×31 =3 5x12+8x22+15x32 = 6 5x13+8x23+15x33+1.2x43 = 7 8x24 + 15x34 + 1.2x44 ≤7 $8 \times_{25} + 15 \times_{35} \le 7$ Optimum: Z = \$523,750 $x_{11} = .6, x_{12} = .4$ X24 = . 225 , X25 = .025 $x_{32} = .267, x_{33} = .387, x_{34} = .346$ Xp = Nbr. of low in come units

4 Xm = Nbr. of middle income units Xy = Nor. of upper income units Xp=Nbr. of public housing units Xs = Nbr. of School rooms xx = Nbr. A retail units X = Nbr. of condemned homes Maximize 2 = 7x1+12x + 20x4+5xp+15x - 10 X5 - 7XC 100 ≤ X, ≤ 200, 125 ≤ Xm ≤ 190 75 ≤ Xu ≤ Z60, 300 ≤ xp ≤ 600 $0 \le x_5 \le 2/.045$.05 xe +.07 xm +.03xu +.025xpt .045x+.1x, 4.85(50+.25xc) $x_{r} \ge .023 x_{0} + .034 x_{m} + .046 x_{u} +$ ·023Xp+1034Xs

25 $X_S \ge 1.3 X_1 + 1.2 X_m + .5 X_u + 1.4 X_p$ Optimum: Z = 8290.30 thousand f $X_L = 100$, $X_m = 125$, $X_u = 227.04$ $X_p = 300$, $X_S = 32.54$, $X_h = 25$ $X_c = 0$

 $X_1 = Nbr.$ of single-family homes $X_2 = Nbr.$ of double-family homes $X_3 = Nbr.$ of triple-family homes $X_4 = Nbr.$ of recreation areas

Maximize $Z = 10,000 \, X_1 + 12000 \, X_2 + 15000 \, X_3$ S.t. $2 \times_1 + 3 \times_2 + 4 \times_3 + \times_4 \le .85 \times 800$ $\frac{X_1}{X_1 + X_2 + X_3} \ge .5$ or $.5 \times_1 - .5 \times_2 - .5 \times_3 \ge 0$ $X_4 \ge \frac{X_1 + 2 \times_3 + 3 \times_3}{2 \times 0}$ or $200 \times_4 - \times_1 - 2 \times_2 - 3 \times_3 \ge 0$ $1000 \times_1 + 1200 \times_2 + 1400 \times_3 + 800 \times_4 \ge 100,000$ $400 \times_1 + 600 \times_2 + 840 \times_3 + 450 \times_4 \le 200,000$ $X_1, X_2, X_3, X_4 \ge 0$ Optimum Solution:

 $X_1 = 339.15$ homes $X_2 = 0$ $X_3 = 0$ $X_4 = 1.69$ areas $Z = \frac{5}{3}39/521.20$ New land use constraint: $2x_1+3x_2+4x_3+x_4 \leq .85 (800+100)$ New Optimum Solutim: Z = 381.5461.35 $x_1 = 381.54$ homes $x_2 = x_3 = 0$ $x_4 = 1.91$ areas $\Delta Z = 3,815,461.35-3,391,521.20$ = 423,940.35 $\Delta Z < 450,000$, the purchasing cost of 100 acres. Hence, the

purchase of the new acreage is not recommended.

The constraints remain unchanged, but the objective function is changed to Maximize Z = y - commission where

Commission = .001 (all transactions in #)
= .001 [(
$$x_{12} + x_{13} + x_{14} + x_{15}$$
)+
 $\frac{1}{.769}$ ($x_{21} + x_{23} + x_{24} + x_{25}$)+
 $\frac{1}{.625}$ ($x_{31} + x_{32} + x_{34} + x_{35}$)+
 $\frac{1}{.05}$ ($x_{41} + x_{42} + x_{43} + x_{45}$)+
 $\frac{1}{.342}$ ($x_{51} + x_{52} + x_{53} + x_{54}$)

Optimum solution:

	Without	with
<u></u>	5.09032	5.06211
7	5.09032	5.08986
Return	1.8064%	1.2421%

Commission = 5.08986 - 5.06211 = # 27,750 or, .555% of the original invadiment of \$5 million

For specific p and q, she model below can be used to transform any fund to any other fund. In

The present problem, $p=1(\ddagger)$ and $q=2(\not\equiv)$, $3(\not\equiv)$, $4(\not\equiv)$, and 5(KD). General node i:

$$\sum_{\substack{j=1\\j\neq i}}^{n} \hat{y}_{i} \hat{x}_{ji} \longrightarrow \bigcup_{\substack{j=1\\j\neq i}} \sum_{j=i}^{n} x_{ij}$$

Maximize Z = y5.t. $I + \sum_{j=1}^{n} r_{jp} x_{jp} = \sum_{j=1}^{n} x_{pj}$

$$\sum_{\substack{j=1\\j\neq q}}^{n} \hat{y_{j}} \hat{q}^{x_{j}} \hat{q} = y + \sum_{\substack{j=1\\j\neq q}}^{n} x_{q_{j}}$$

 $\sum_{\substack{j=1\\j\neq i}}^{n} \hat{y}_{i} \hat{x}_{ji} = \sum_{\substack{j=1\\j\neq i}}^{n} x_{ij}, i \neq p \neq q$

 $0 \le x_{ij} \le Cop_i$, all i and j

Note: Solver or AMPL is ideal for solving this problem interactively. See files solver 2.36-2.xls and amy 2.36-2.txt.

Results: (No commission)

P	2	Rate of return
#	\$	1.8064%
\$	€	1.7966%
\$	£	1.8287%
#	\angle	2.8515%
#	KD	1.0471%

Wide discrepancy in \$\neq\$ and \$KD currencies may be attributed to the fact that their exchange rates may not be consistent with the remaining rates. Nevertheless, the problem show that there may be advantages in targeting accumulation in different currencies.

Maximize z= 7

S.+.

 $\frac{y}{j} = r_{14} x_{14} + r_{24} x_{24} + r_{34} x_{34} + r_{54} x_{54}$ $= \sum_{i=1}^{5} r_{ij} x_{ij} = \sum_{k=1}^{5} x_{jk} - \begin{cases} 2, & j=1 \\ 5, & j=2 \\ 4, & j=3 \\ -4, & j=4 \\ 0, & j=5 \end{cases}$

 $X_{ij} \leq C_i$, for all i and j $i \neq j$. $X_{ij} \geq 0$, for all i and j $i \neq j$.

Solution: y = 1584.91 million * Rate of return = . 8853%

(a) Xi = Undutaken portion of project i

Maximize

 $Z = 32.4 x_1 + 35.8 x_2 + 17.75 x_3 + 14.8 x_4 + 18.2 x_5 + 12.35 \times_6$

Subject to

 $10.5X_{1} + 8.3X_{2} + 10.2X_{3} + 7.2X_{4} + 12.3X_{5} + 9.2X_{6} \le 60$ $14.4X_{1} + 12.6X_{2} + 14.2X_{3} + 10.5X_{4} + 10.1X_{5} + 7.8X_{6} \le 70$ $2.2X_{1} + 9.5X_{2} + 5.6X_{3} + 7.5X_{4} + 8.3X_{5} + 6.9X_{6} \le 35$ $2.4X_{1} + 3.1X_{2} + 4.2X_{3} + 5.0X_{4} + 6.3X_{5} + 5.1X_{6} \le 20$ $0 \le X_{1} \le 1, \quad j = 1, 2, ..., 6$

TORA optimum Solution:

 $X_1 = X_2 = X_3 = X_4 = 1, X_5 = .84, X_6 = 0, Z = 116.06$

(b) Add the constraint X2 ≤ X6

TORA optimum Solution:

 $X_1 = X_2 = X_3 = X_4 = X_6 = 1, X_5 = .03, Z = 113.68$

(C) Let Si be the unused funds at the end of year i and change the right-hand sides of constraints 2, 3, and 4 to 70+5, 35+52, and 20+53, respectively.

TORA optimum solution:

 $x_1 = x_2 = x_3 = x_4 = x_5 = 1$, $x_6 = .71$

Z = 127.72 (thousand)

The Solution is interpreted as follows:

i Si Si-Si-i Decision

1 4.96

Z 7.62 +2.66 Don't borrow from yr 1

3 4.62 -3.00 Borrow \$3 from year 2

4 0 -4.62 Borrow \$4.62 from yr 2

The effect of availing excess money for use in later years is that the first five projected are completed and 71% of project 6 is undertaken. The total revenue increases from \$ 116,060 to 127,720.

(d) The elack Si in period i is treated as an unrestricted variable.

TORA optimum solution: 2=*131.30

Si = 2.3, Si = .4, Si = .5, Sy = -6.1

This means that additional funds are needed in years 3 and 4.

Increase in return = 131.30 - 116.06

= \$15.24

Ignoring the time value of money,

the amount borrowed 5 +6.1-(2.3+.4)

=\$8.4. Thus,

=\$8.4. 1hno, rate of return = 15.24-8.4 = 81%

2

Xi=doller investment in project
i, i=1, z, 3, 4
Y. = doller investment in bank in
year j, j=1, z, 3, 4, 5

Maximize Z = 75

Subject to

 $x_1 + x_2 + x_4 + y_1 \leq 10,000$ $5x_1 + 6x_2 - x_3 + 4x_4 + 1.065 = 0$

 $3X_1 + 2X_2 + 8X_3 + 6X_4 + 1.065 4_2 - 3_3 = 0$

1.8x,+1.5x2+1.9x3+1.8x4+1.06543-44=0

1.2x,+1.3x2+.8x3+.95x4+1.065y,-y=0 all variables ≥0

TORA optimal solution:

 $x_1=0$, $x_2=\frac{10,000}{3}$, $x_3=\frac{1000}{3}$, $x_4=0$

y=0, y=0, y3=\$6800, 44=\$33,642

2 = \$53,628.73 at the start of year 5

Pi = fraction undertaken of project | 3 i, 1=1,2 Bj = million dollars borrowed in quarter j, j = 1, 2, 3, 4 S; = surplus million dollars at the start of quarter j, j = 1, 2, 3, 4, 5

(a) Maximize Z = 55 subject to

P7+3P2+5,-B, 3.1 P+2.5 B-1.025, +52+1.025 B, -B=1 1.5 P-1.5P2-1.02 52+53+1.025 B2-B3 = 1 -1.8 P -1.8 P -1.02 53 + 54+1.025 B3 - B4 = 1 -5P-2.8P2-1.02 54+55+1.025B4 =1 0 < P_1 < 1, 0 < P_2 < 1 0 = B; = 1, j=1,2,3,4

Optimum Solution:

P= .7113 P= 0

Z = 5.8366 million dollars

B1 = 0, B2 = 9104 million dollars

B3 = 1 million dollars, B4 = 0

(b) B, = 0, S, = . 2887 million \$

 $B_2 = .9/04, S_2 = 0$

B3=1, S3=0

B4=0, S4 = 1.2553

The solution shows that Bi. Si = 0, meaning Hat you can't former and also end up with surplus in any quarter. The result makes sense fecause de cost of borrowing (2.5%) is higher then the return on surplus funds (2%)

Assume that The investment

perogram ends at the start of year 11. This, the 6-year bond option can be exercised in years 1,2,3,4, and 5 only Similarly, the 9-year bond can be word in years I and 2 only . Hence, from year 6 on , the only option available is moured savings at 7.5%.

Let

I, = insured savings invocloments on year i, i=1,2,...,10

G = 6-year bond investment in year i, i=1,2,...,5

Mi = 9-year bond investment in year i, i=1,2

The objective is to maximize total accumulation at the end of year 10; that is,

maximize Z = 1.075 I,0+1.079 Gs-+1.085M The constraints represent the balance equation for each year's cash flow.

I, +.98G, +1.02M, =2 Iz + .98G2 +1.02 M2

= 2+1.075 I, +.079 G, +.085 M,

I3 +.98 G3

 $= 2.5 + 1.075 I_2 + .079 (G_1 + G_2)$

+.085 (M, + M2)

 $I_{4} + .98G_{4} = 2.5 + 1.075I_{3} +$

·079 (G1+G2+G3) + ·085 (M, + Mz)

Is + .98 Gs = 3+1.075 I4+

·079 (G1+G2+G3+G4)+

.085(M,+M2)

 $I_6 = 3.5 + 1.075 I_5$

+.079(G,+Gz+G3+G4+G5)

+.085 (MHMZ)

continued.

$I_7 = 3.5 + 1.075 I_6 + 1.079 G_1$
+.079 (Gz+G3+G4+G5)
+.085 (M, + Mz)
$I_8 = 4 + 1.075I_7 + 1.079G_2$
+ ·079 (G3+G4+G5)
+.085 (M, + Mz)
Ig = 4 + 1.075 Ig + 1.079 G3
+ .079 (G4+G5)
+ ·085 (M, + Me)
In = 5+1.075 Ig + 1.079 Gy
+ 079 G5 +1.085 M, + .085 M,
all variables = 0

*** OPTIMUM SOLUTION SUMMARY ***

Final iteration	Final iteration No: 14 Objective value (max) = 46.8500				
Variable	Value	Obj Coeff	Obj Val Contrib		
x1 11	0.0000	0.0000	0.0000		
x2 12	0.0000	0.0000	0.0000		
v\$ 12	0.0000	0.0000	0.0000		

0.0000 0.0000 2.9053 3.1395 3.9028 1.9608 2.1242	0.0000 0.0000 0.0000 0.0000 1.0790 0.0000 1.0850	0.0000 0.0000 0.0000 0.0000 4.2111 0.0000 2.3047
0.0000 2.9053 3.1395 3.9028	0.0000 0.0000 0.0000 1.0790	0.0000 0.0000 0.0000 4.2111
0.0000 2.9053 3.1395 3.9028	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000
0.0000 2.9053 3.1395	0.0000	0.0000
0.0000 2.9053	0.0000	0.0000
	0.0000	0.0000
37.5201	1.0750	40.3341
24.6663	0.0000	0.0000
15.4678	0.0000	0.0000
9.6137	0.0000	0.0000
4.6331	0.0000	0.0000
	0.0000	0.0000
		0.0000
		0.0000
	0.0000	0.0000
	0.0000	0.0000
	9.6137 15.4678 24.6663	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.6331 0.0000 9.6137 0.0000 15.4668 0.0000

Constraint	RHS	Stack(-)/Surp	
1 (=)	2.0000	0.0000	
2 (=)	2.0000	0.0000	
3 (≖) ·	2.5000	0.0000	
4 (=)	2.5000	0.0000	
5 (=)	3.0000	0.0000	
6 (=)	3.5000	0.0000	
7 (=)	3.5000	0.0000	
8 (=)	4.0000	0.0000	
9 (=)	4.0000	0.0000	
10 (=)	5.0000	0.0000	

Year	Recommendation
1	Invest all in 9-yr bond
2	Invest all in 9-yr. bond
3	Investall in 6-yr bond
4	Investall in 6-yr bond
5	Invest all in 6-yr bond
7	Invest all in insured savings
8	Invest all in incured savings
9	Invest all in insured savings
10	brough all in mound saving

XiA = amount invested in year; 5

Maximize Z = 3 X2B + 1.7 X3A Subject to

$$X_{1A} + X_{1B}$$
 ≤ 100

$$-1.7 X_{1A} + X_{2A} + X_{2B} = 0$$

$$-3 X_{1B} - 1.7 X_{2A} + X_{3A} = 0$$

$$X_{1A}, X_{1B} \geq 0 \text{ for } i = 1, 2, 3$$

*** OPTIMUM SOLUTION SUMMARY ***

Title: Problem 2				
Objective value > ALTERNATIVE	(mex) = solution	510,0000 detected	at	x2

Variable	Value	Obj Coeff	Obj Val Contrib
x1 x1A x2 x1B x3 x2A x4 x2B x5 x3A	100,0000 0,0000 0,0000 170,0000 0,0000	0.0000 0.0000 0.0000 3.0000 1.7000	0.0000 0.0000 0.0000 510.0000
Constraint	RHS	Slack(-)/Surplus(+)	
1 (<) 2 (<) 3 (<)	100.0000 0.0000 0.0000	0.0000- 0.0000- 0.0000-	

Optimum solution: Invest \$100,000 in A in yr 1 and \$170,000 in B in yr 2. Alternative optimum: Invest \$100,000 in B in yr 1 and \$300,000 in A in yr 3.

Xi = dollars alterated to choice i, L=1,2,3,4

y = minimum return $X_1 + X_2 + X_3 + X_4 \le 500$

ings

X1, X2, X3, Xy \ge 0

vings

The problem can be converted to

ings a linear program as

Maximize Z = 4
subject to
$-3x_1 + 4x_2 - 7x_3 + 15x_4 \ge y$
5x, -3x2+9x3+4x4≥y
3x, -9x2+10x3-8x4 >y
$X_1 + X_2 + X_3 + X_4 \leq 500$
$X_1, X_2, X_3, X_4 \geqslant 0$
y unrestricted
*** OPTIMUM SOLUTION SUMMARY **

Title:

Final iteration No: 5

Objective value (max) = 1175.0000

Variable	Value	Obj Coeff	Obj Val Contrib	
x1	0.0000	0.0000	0.0000	
x2	0.0000	0.0000	0.0000	
x3	287.5000	0.0000	0.0000	
x4	212.5000	0.0000	0.0000	
x5 y	1175.0000	1.0000	1175.0000	
Constraint	RHS	Slack(-)/Surplus(+)		
1 (>)	0.0000	0.0000+		
2 (>)	0.0000	2262.50	000+	
3 (>)	0.0000	0.00	000 +	
4 (<)	500.0000	0.0000-		

Allocate \$287.50 to choice 3 and \$ 212.50 to choice 4. Return = \$1175.00

Xit = Deposit in plani at start of month t

$$t = \begin{cases} 1, 2, \dots, 12 & \text{if } i = 1 \\ 1, 2, \dots, 10 & \text{if } i = 2 \\ 1, 2, \dots, 7 & \text{if } i = 3 \end{cases}$$

y = initial amount on hand to insure a feasible solution

 $\gamma_{i} = \text{interest rate for plan } i=1,2,3$ $J_{i} = \begin{cases}
12, & i=1 \\
10, & i=2 \\
7, & i=3
\end{cases}$ continued

$$\overline{J_{i}} = \begin{cases} 12, & i=1\\ 10, & i=2\\ 7, & i=3 \end{cases}$$

continued.

$$P_{i} = \begin{cases} 1, & i=1 \\ 3, & i=2 \end{cases} \quad d_{t} = $ demand for period t \\ 6, & i=3 \end{cases}$$

$$Maximize Z = \sum_{t=1}^{12} \sum_{i=1}^{3} Y_{i} \times X_{i} - Y_{i}$$

$$t - P_{i} > 0$$

$$\begin{array}{l}
I_{i} = \begin{cases} 3, & i = 2 \\ 6, & i = 3 \end{cases} \\
Moximize Z = \sum_{t=1}^{|I|} \sum_{i=1}^{3} Y_{i} \times_{i,t-P_{i}} \\
t-P_{i} > 0
\end{array}$$

$$\begin{array}{l}
S.t. \\
Y_{i} - X_{i1} - X_{21} - X_{31} \geqslant d_{1} \\
1000 + \sum_{i=1}^{3} (1+Y_{i}) \times_{i,t-P_{i}} - \sum_{i=1}^{|I|} \sum_{i=1}^{|I|} d_{t} + \sum_{i=1}^{|I|} d$$

xit , y, ≥0

12

0

Solution: (see file amp/2.3c-7.txt)

J, = \$1200, Z = -1136.29 Interest amount = 1200-1136.29 = 63.71

Deposits	:		
t	×16	Xzt_	X3t
	0	0	0
2	0	200	0
3	286.48	313.53	0
	0	587.43	0
4 5	314.37	Z 89.30	0
6	0	734.69	0
7	Ø	98.20	0
7 8	0	294.60	
9	0	848.16	
10	σ	0	
1/	0		

XW1 = #Wrenches/wk using regular time

XW2 = # wrenches/wk using overtime

XW3 = # wrenches/wk using subcontracting

XC1 = # Chisclo/wk using regular time

XC2 = # chisclo/wk using overtime

XC3 = # chisclo/wk using subcontracting

Minimize Z = 2 × +2.8 × +3 × 4.1 × 1.1

Subject to

XW1 \leq 550, XW2 \leq 250

XC1 \leq 620, XC2 \leq 280

\[
\frac{\times 550}{\times 620}, \times \times \frac{\times 280}{\times 620}

\frac{\times 620}{\times 620}, \times \times \times \frac{\times 280}{\times 620}

\frac{\times 620}{\times 620}, \times \

or $2 \times_{W_1} + 2 \times_{W_2} + 2 \times_{W_3} - \times_{C_1} - \times_{C_2} - \times_{C_3} \le 0$ $\times_{W_1} + \times_{W_2} + \times_{W_3} \ge 1500$ $\times_{C_1} + \times_{C_2} + \times_{C_3} \ge 1200$ Oll variables ≥ 0

(a) Optimum from TORA: XWI = 550, XWI = 250, XWI = 700 XCI = 620, XCI = 280, XCI = 2100 Z = #14,918

(b) Increasing marginal cost ensures
that regular time capacity is used
before that of overtime, and that
overtime capacity is used before
that of subcontracting. If the
marginal cost function is not
monotonically increasing, additional
constraints are needed to ensure
that the capacity restriction is
satisfied.

Xj = number of units produced of product j, j=1,2,3,4 Profit per unit:

Product 1 = 75-2×10-3×5-7×4 = \$12 Product 2 = 70-3×10-2×5-3×4=\$18 Product 3 = 55-4×10-1×5-2×4=\$2 Product 4 = 45-2×10-2×5-1×4=\$11

Maximize $Z = \frac{12x_1 + 18x_2 + 2x_3 + 11x_4}{5 \cdot t}$ S.t. $2x_1 + 3x_2 + 4x_3 + 2x_4 \le 500$ $3x_1 + 2x_2 + x_3 + 2x_4 \le 380$ $7x_1 + 3x_2 + 2x_3 + x_4 \le 450$ $x_1, x_2, x_3, x_4 \ge 0$

TORA Solution: $x_1 = 0, x_2 = 133.33, x_3 = 0, x_4 = 50$ Z = \$2950

Xj = number of units of model j

Maximize $Z = 30X_1 + 20X_2 + 50X_3$ Subject to

- $0 \qquad 2 \times_1 + 3 \times_2 + 5 \times_3 \le 4000$

- $\frac{(4)}{3} = \frac{x_1}{2}, \text{ of } 2x_1 3x_2 = 0$
- (s) $\frac{X_2}{2} = \frac{X_3}{5}$, or $5X_2 2X_3 = 0$ $X_1 \ge 200$, $X_2 \ge 200$, $X_3 \ge 150$

*** OPTIMUM SOLUTION SUMMARY ***

Title: Problem 2.6a-12
Final iteration No: 4
Objective value (max) =41081.0820

Variable Value Obj Coeff Obj Val Contrib

x1 324.3243 30.0000 9729.7305
x2 216.2162 20.0000 4324.3242
x3 540.5405 50.0000 27027.0273

Constraint RHS Slack(-)/Surplus(+)

1 (<) 4000.0000 0.00002 (<) 6.000.0000 48.6.48653 (<) 1500.0000 887.38754 (=) 0.0000 0.0000
5 (=) 0.0000 0.0000
1.8-x1 200.0000 124.3243+
LB-x2 200.0000 124.3243+
LB-x3 150.0000 399.5405+

_	
	Xi = Nbr. Cartons in month i from supplier
	Ii = End inventory in period i , I = 0
	Cij = Prica per unit of xij
	h = Holding cost/unit/month
	C = Supplier capacity/month
	$d_i = Demand$ for month i i = 1, 2, 3, j = 1, 2
	(=1,2,3, J=1,2 3 2
	Minimize $Z = \sum_{i=1}^{3} \sum_{j=1}^{2} C_{ij} \times_{ij} +$
	$h(\frac{3}{5}(\frac{2}{5}x+I.+I:))$
	$\frac{h}{2} \left(\sum_{i=1}^{3} \left(\sum_{j=1}^{2} \chi_{ij} + I_{i-1} + I_{i} \right) \right)$
	S.t. Xii & C, all i and i
	$\sum_{i=1}^{2} x_{ij} + I_{i-1} - I_{i} = d_{i}, \text{ all } i$
	$\sum_{j=1}^{n} ij^{n-1} - i$
	Optimum solution:
	x_{i1} x_{i2} I

i	×iı	riz	
1	400	100	0
Z	400	400	200
3	200	0	0

Total cost = \$167,450.


```
X_{ij} = Qty of product i in morsk j,
i = 1, 2, j = 1, 2, 3
I_{ij} = End inventory of product i in morsk j
Minimize Z = 30 (X_{11} + X_{12} + X_{13}) + 28 (X_{21} + X_{21} + X_{23}) + 9 (Z_{11} + Z_{12} + Z_{13}) + .75 (Z_{21} + Z_{22} + Z_{23})
5.t.
(X_{11} | 1.75 + X_{2j} \leq \begin{cases} 3000, j = 1 \\ 3500, j = 2 \\ 3000, j = 3 \end{cases}
I_{1,j-1} + X_{1j} - I_{ij} = \begin{cases} 500, j = 1 \\ 5000, j = 2 \\ 750, j = 3 \end{cases}
I_{2,j-1} + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1200, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1000, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1000, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1000, j = 3 \end{cases}
X_{ij} - 1 + X_{2j} - I_{2j} = \begin{cases} 1000, j = 2 \\ 1000, j = 3 \end{cases}
```


 $X_{j} = Unito \ \partial_{j} \ peroduct \ j, \ j = 1, 2$ $Y_{i}^{-} = Unused \ hours \ f \ machine \ i \ i = 1, 2$ $Y_{i}^{+} = Overtime \ hours \ f \ machine \ i \ i = 1, 2$ $Y_{i}^{+} = Overtime \ hours \ f \ machine \ i \ i = 1, 2$ $Y_{i}^{+} = Overtime \ hours \ f \ machine \ i \ i = 1, 2$ $Y_{i}^{+} = Overtime \ hours \ f \ machine \ i \ i = 1, 2$ $Y_{i}^{+} = Overtime \ hours \ f \ machine \ i \ i = 1, 2$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} = 8$ $X_{i}^{+} + \frac{x_{i}}{y_{i}^{+}} + \frac{y_{i}^{-}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} - \frac{y_{i}^{+}}{y_{i}^{+}} - \frac{y_{i}^$

y-, y-=0

Xs = tono A strawberry / day	
×g = tons of grapes / day	
xa = tono of apples /day	
XA = cans of drink A / day Each can XB = cans of drink B / day holds one 16 Xc = cans of drink C / day	
Xc = Cans of drink C/day	
1 SA - 10 of strawborry need in drunk A / day	
XSB = 16 of Stramberry weed in drink B/day. XgA = 16 of grapes used in drink A/day.	
XgB= 16 of grapes used in drink Blday	
I A - a - a - a - a - a - a - a - a - a -	
- Ih it about man with the	
XaB = 16 of apples used in drink C/day	
Maximize Z = 1.15x + 1.25x +1.2x - 200xs	
MAY GOV	
$X_{5} \leq 200$, $X_{g} \leq 100$, $X_{a} \leq 150$	
134, V28 - 1 3	
×94+ ×98+ ×9 = 1200×9	
Xa8 + Xac = 1000 Xa	
$X_A = X_{SA} + X_{9A}$	
XB = X _{SB} + X _{gB} + X _{aB}	
$x_{c} = x_{gc} + x_{ac}$ $x_{sA} = x_{gA}$	
XSB = X9B, X9B = .5 XAB	
3x _{9c} = 2 x _{4c}	
all variables ≥ 0	
Optimum Solution:	
XA = 90,000 cans, Xg = 300,000 cans, Xc = 0	
\times_{ij} :j	
i A B C	
S 45,000 75,000 0 9 45,000 75,000 0	
9 45,000 75,000 0	

s=tons of strawberry / day	X5= 16 of screws purpackage 2
g = tons of grapes / day	Xb = 16 of bolts per package
a = tono of apples /day	Xn = 16 of nuts per package
q= cans of drink 1 (down	Xw = 16 of wasters per package
= cans of drink B/day Each can	Minaminge Z = 1.1 X + 1.5 X + 70 X + 20 X W
q = cans of drink A /day Each can q = cans of drink B /day holds one 16 = cans of drink C /day	S.t. Y=Xs+Xb+Xn+Xw
= 16 A strawberry need in drink A / day	$X_{s} \ge \cdot 1 Y$
a = 1h o) Strowbury ward in drunk B/ddus	$X_b \ge .25Y$, $\frac{X_b}{50} \le X_W$, $\frac{X_b}{10} \le X_n$
a= 16 of grapes used in drunk A/day	x _n ≤ .15 y 50 W 10
- Ih a granger used in druk Black	Xw = ·1Y
= 16 of grapes used in drink C/day	Y ≥ 1
- Ih about much in the	all variables are nonnegative
C = 16 of apples used in drink C/day	Optimum solution:
Kimize $Z = 1.15X_A + 1.25X_B + 1.2X_C - 200X_S$	Y=1, Xs=.5, X6=.25, X6=.15, X6=.1
1100 Xg - 90 Xa	Cost = \$1.12
$X_{s} \leq 200$, $X_{g} \leq 100$, $X_{a} \leq 150$	
XSA+XSB = 1500 XS	X = 16 of oats in cereals A,B,C 3
×94+ ×98+ ×9 € 1200×9	Xr, (A, C) = 16 of raisins in cereals A, C
$X_{aB} + X_{aC} = 1000 X_{a}$	
$X_{A} = X_{SA} + X_{9A}$ $X_{B} = X_{SB} + X_{9B} + X_{aB}$	c,(B,C)
x _c = x _{gc} + x _e c	X c, (B, C) = 16 of coconuts in cereals B, C X a, (A, B, C) = 16 of almost in cereals A, B, C
$x_{SA} = x_{gA}$	YO = XOA + XOB + YOC
xs8 = xg8, xg8 = .5 xa8	$Y_r = X_{rA} + X_{rC}$
$3x_{gc} = 2x_{qc}$	
all variables > 0	Yc = XcB + XcC
Himum Solution:	$Y_a = X_{aA} + X_{aB} + X_{aC}$
XA = 90,000 cans, X8 = 300,000 cans, Xc = 0	$W_A = X_{OA} + X_{FA} + X_{AA}$
\times_{ij} j	WB = XB + XB + XB
i A B C	'- · · · · · · · · · · · · · · · · · ·
S 45,000 75,000 0	4C = XOC + XC + XCC + XOC
i A B C S 45,000 75,000 0 9 45,000 75,000 0	Maximize Z = 1 (2WA+2.5WB+3WC)
90,000 300,000 0	- 1/2000 (100 /0 + 120/ + 110/ + 200/)
	•
$X_S = 80$ tens, $X_g = 100$ tens, $X_a = 150$ tens	5.t. WA & 500 x5 = 2500 WB & 600 x5 = 3000
z = \$439,000/day	W = 500x5 = 4000
	continued

Y = 5x2000 = 10,000 Yn = 2 x 2000 = 4,000 Y = 1 x 2000 = 2,000 Y < 1 × 2000 = 2,000 XOA = 50 X,A, XOA = 50 X AA $X_{0B} = \frac{60}{2} X_{CB}$, $X_{B} = \frac{60}{3} X_{AB}$ $X_{0}C = \frac{60}{3}X_{C}, X_{0}C = \frac{60}{4}X_{C}, X_{0}C = \frac{60}{2}X_{0}C$ all variables are nonnegative. Optimum Solution: Z = \$5384.84/day Wa = 2500 lb or 500 boxes/day WB = 3000 lb or 600 boxes W = 5793.4516 or ~1158 boxes X = 10,000 16 or 5 tom / day X = 471.19 16 or .236 ton Xc = 428.16 16 or . 214 ton Xa = 394.11 16 or .197 ton

 $X_{Ai} = bbl \mathcal{J}$ gasoline A sin fuel i $X_{Bi} = bbl \mathcal{J}$ gasoline B sin fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini C in fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini D sin fuel i $X_{Di} = bbl \mathcal{J}$ gasolini D sin fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini D sin fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini D sin fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini D sin fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini D sin fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini D sin fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini D sin fuel i $X_{Ci} = bbl \mathcal{J}$ gasolini C in fuel i $X_{Ci} = bbl \mathcal{J}$

S.t. $X_{A1} = X_{B1}, X_{A2} = .5X_{C1}, X_{A1} = .25X_{D1}$ $X_{A2} = X_{B2}, X_{A2} = 2X_{C2}, X_{A2} = \frac{2}{3}X_{D2}$ $Y_{A} \leq 1000, Y_{B} \leq 1200, Y_{C} \leq 900, Y_{C} \leq 1500$ $F_{1} \geq 200, F_{2} \geq 400$ Optimum delution: Z = 495,416.67 $Y_{A} = 958.33$ bb1/day $Y_{B} = 958.33$ bb1/day $Y_{C} = 1500$ bb1/day $Y_{C} = 1500$ bb1/day $Y_{D} = 1500$ bb1/day $Y_{D} = 200$ lb1/day $Y_{D} = 3733.33$ bb1/day

A = bb1 of crude A / day

B = bb1 of crude B / day

R = bb1 of regular gasoline / day

P = bb1 of peremum gasoline / day

J = bb1 of jet gasoline / day

Maximize Z = 50(R-R) + 70(P-P)

+ 120(J-J+)-(10R+15P+20J)

- (2R+3P+4J+)-(30A+40B)

S.E. A \(\) 2500, \(B \) \(\) 3000

R \(\) 1A+3B, \(P+P-P+200)

J = .25A+.1B, \(J+J-J+200)

All variables \(\) 0

Optimum dolution:

Z = \$21,852.94 A = 1176.47 bb1/day B = 1058.82 bb1/day R = 500 bb1/day P = 435.29 bb1/day J = 400 bb1/day

NR = bb 1/day of naphta word in regular NP= bbl/day of naphta used in premium NJ = 661/day of naphta word mi Jet LR = bb1/day of light used in regular LP = bb1/day of light used in premium LJ = bbi /day of light used in jet Using the other notation in Problem 5, Maximize Z = 50(R-R)+70(P-P+)+12(J-J+) -(10R+15P+20J)-(2R+3P+4J+) - (30A+40B) 5.7. A < 2500, B < 3000 $R + R^{T} - R^{T} = 500$ P+P-P+ = 700 J+J-J"=400 ·35A+.45B= NR+NP+NJ $\cdot 6A + \cdot 5B = LR + LP + LJ$ R=NR+LR P=NP+LP J=NJ+レJ all variables are nonnegative Optimum dolution: Z = \$71,473.68 A=1684.21, B=0 R= 500, P=700, J=400 X1 = tono of brown sugar per week X2 = tons of white sugar per check X3 = tons of porvolend engar per week X4 = tons of molasses per week

Maximize $Z = 150 \times_1 + 200 \times_2 + 230 \times_3 + 35 \times_4$ s.t. $X4 \le 4000 \times .1$ or $X_4 \le 400$ $X_1 + \left(\frac{X_2 + \frac{X_3}{.95}}{.8}\right) \le .3 \times 4000$ or $.76 \times_1 + .95 \times_2 + X_3 \le 9/2$ $X_1 \ge 25$, $X_2 \ge 25$ $X_3 \ge 25$, $X_4 \ge 0$ Optimize Solution from TORA: $X_1 = 25$ tons per week $X_2 = 25$ tons per week $X_3 = 869.25$ tons per week $X_4 = 400$ tons per week $X_4 = 400$ tons per week $X_4 = 400$ tons per week $X_5 = 400$ tons per week

A = 661/An of stock A

B = 661/An of stock B

YAi = 661/An of A weed in goodini i 7

Bi = 661/An of B wood in goodini i 7

Bi = 661/An of B wood in goodini i 7

Bi = 661/An of B wood in goodini i 7

I = 1, 2

Maximize Z = 7(YAI+YBI)+10(YAZ+YBZ)

S.t. A = YAI+ YAZ, A < 450

B = YBI+ YBZ, B < 700

98 YAI+89Y > 91 (YAI+YBI)

98 YAZ+89YBZ > 93 (YAZ+YBZ)

10 YAI+8 YBZ = 12 (YAI+YBI)

10 YAZ+8 YBZ = 12 (YAZ+YBZ)

all variables are nonnegative

Optimum oblition:

Z = \$10,675

A= 450 661/h B= 700 661/h Gusolni 1 production = 1/A+1/B1 = 61.11+213-89=27566||h

Gasdine 2 production = YAZ+YBZ = 388.89+486.0=875 66/hr

S=0, A=38.2, C= 1489.41 Ab = Sb = 0I, = 130, I2 = 250 a = 36.29, g = 223.79, s= 119.92

Xij = tons of one i allocated to alloy & We = tons of alloy & produced

Maximize Z = 200 WA + 300 WB

- 30 (XIA+ XIB)

10

-40 (X2A + X2B)

-50 (X3A + X3B)

Subject to

Specification constraints:

·2 X1A + · 1 X2A + · 05 X3A ≤ · 8 WA (1)

· 1 X1A + · 2 X2A + · 05 X3A ≤ · 3 WA (2)

· 3 X,A + · 3 X2A + · 2 X3A ≥ · 5 WA 3

· 1 ×18 + · 2 ×28 + · 05 ×38 ≥ · 4 W8 @

1 x1B + 2 x2B + 05 X3B 5 .6 WB 5

·3 ×18 + ·3 ×18 + ·7 ×38 ≥ ·3 WB 6

·3 ×18 + ·3 ×2B + ·2 ×38 ≤ ·7 WB (7)

Ose constraints.

XIA + XIB ≤ 1000

X2A + X2B ≤ 2000

X3A + K3B = 3000

*** OPTIMUM SOLUTION SUMMARY ***

Title: Problem 26a-17 Final iteration No: 12 Objective value (max) =400000.0000

Variable	Value	Obj Coeff	Obj Val Contrib
지 1 MA 지문 14명 지금 지기A 지수 X1B 지수 X2A 지수 X2B 지구 X3A 지금 X3B	1799,9999 1000,0001 1000,0000 0,0000 0,0000 2000,0001 3000,0000 0,0000	200,0000 300,0000 -30,0000 -30,0000 -40,0000 -50,0000 -50,0000	359999.9688 300000.0312 -30000.0000 -0.0000 -0.0000 -80000.0078 -150000.0000
Constraint	RHS	Slack(-)	/Surplus(+)
1 (<)	0.0000		

		Stack(-)/Surj
1 (<)	0.0000	1090.0000-
\$ (<)	0.0000	290.0000-
3 (>) 4 (>)	0.0000	0.0000+
5 (4)	0.000	0.0000+
6 (>)	0.0000	200.0000- 300.0002+
7 (4)	0.0000	100.0002+
8 (<) 9 (<)	1000.0000	0.0000-
10 (<)	2000.0000	0.0000-
	3000.0000	0.0000-

Solution:

Produce 1800 tons of alloy A and 1000 tons of alloy B.

```
h = Regular pay Low
                                                      Solution: Z = 32 volunteers
                                                      X_1 = 4, X_3 = 2, X_4 = 6, X_6 = 2, X_7 = 4, X_{10} = 6, X_1 = 8
 8-hr pay = 8h
                                                       all other Xi = 0
 12-hr pay = 12h+4h=14h
                                                      Same formulation as in Problem ?
 Xi = Nbr 8-hr bruses starting in penale
                                                     with the added constraints X5=0, X, =0
                                                     Optimum solution remains she same
Ji = Nbr. of 12-hr buses a tarting in period i
                                                     Xi=Nbr. of casuals starting on day: (i=1: Monday, i=7: Sunday)
Minimize Z = h(8 \( x_1 + 14 \( x_2 \)
                                                     Minimize Z = X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7
                                                     5.4.
                                                              x<sub>2</sub> x<sub>3</sub> x<sub>4</sub> x<sub>5</sub> x<sub>6</sub> x<sub>7</sub>
                                              ≥7
                                              2/≤
                                                                                              ≥ 10
                                                    Th
 Solution: Z = 196h
                                                                                              ≥18
                                                    Sat
     x, = 4, x= 4, x4= 2, x=4, x3=x6=0
                                                                                              210
                                                    Sun
     73=6, 7,= 7,= 44= 75= 46=0
                                                                                              ≥/2
For 8-hr only buses, solution is
                                                     Solution: Z = 20 workers
                                                         X_1 = 8, X_4 = 6, X_5 = 4, X_6 = 1, X_7 = 1
     Z = 208h
     X_1 = X_2 = 4, X_3 = 6, X_y = 1, X_5 = 11, X_6 = 0
                                                     Xi=Nbr. Students starting at hour i
i=1(8:01), i=9(4:01), x5=0
(8-hr + 12-hr) buses is cheaper.
 Xi = Nbr. of volunteers Starting in Lour i
                                                    Minimize Z = x_1 + x_2 + x_3 + x_4 + x_6 + x_7 + x_8 + x_9
Minimize Z = ZXi
                                                     S.L.
S.J.
(8:00) X,
                                                    8:01
(9:00) X_1 + X_2
(10:0) X1 + X2 + X3
                                                    9:01
                                                                                            32
(11:00)
            X_1 + X_2 + X_3
                                                    10:01
                                                                                            ≥3
(12:00)
                X3 + X4 + X5
                                                    11:01
                                                                                            24
(1:00)
                     Xy + X5 + X6
                                                    12:01
                                                                                            ≥4
(2:00)
                         X5 + X6 + X7
                                         ≥ 6
                                                    1:01
                             x6+x7+8≥6
(3:00)
                                                                                            ≥3
                                                    2:01
(4:0°)
                             x7+x8+x9 ≥4
                                                                                            ≥3
(5:00)
                                                    3:01
                                                                                            ≥ 3
(6)00)
                                                    4:01
                                                                                            33
(7:01)
                                                     Solution: Z = 9 students
(8:00)
(9:00)
                                                      X_1 = 2, X_2 = 5, X_4 = 3, X_7 = 3
        All Xj ≥0
                                         continued
```

Let $x_i = Nbr$. starting on day i and lasting for 7 days

 y_{ij} = Nbr. starting shift on day i and starting their 2 days off on day j, $i\neq j$

Thus, of the x_1 workers who start on Monday, y_{12} will take T and W off, y_{13} will take W and Th off, and so on, as the following table shows.

	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	x ₅	x_6	\boldsymbol{x}_7
1	start on Mon	<i>y</i> 12	<i>y</i> ₁₂ + <i>y</i> ₁₃	<i>y</i> ₁₃ + <i>y</i> ₁₄	<i>y</i> 14 ⁺ <i>y</i> 15	y 15 +y 16	y 16
2	y27	Tue	y23	y23+y24	y24+y25	y25+y26	y26+y27
3	y31+y37	y31	Wed	y34	y34+y35	y35+y36	y36+y37
4	y41+y47	y41+y42	y42	Th	y45	y45+y46	y46+y47
5	y51+y57	y51+y52	y52+y53	y53	Pd	y56	y56+y57
6	y61+y67	y61+y62	y62+y63	y63+y64	y64	Sat	y67
7	y71	y71+y72	y72+y73	y73+y74	y74+y75	y75	Su

Minimize $z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

Each employee has 2 days off: $x_i = \text{sum}\{j \text{ in } 1...7, j\neq i\}y_{ij}$

Mon (1) constraint: s - (y27 + y31 + y37 + y41 + y47 + y51 + y57 + y61 + y67 + y71) >= 12

Tue (2) constraint: $s - (y_{12} + y_{31} + y_{41} + y_{42} + y_{51} + y_{52} + y_{61} + y_{62} + y_{71} + y_{72}) = 18$

Wed (3) constraint: s - (y12 + y13 + y23 + y42 + y52 + y53 + y62 + y63 + y72 + y73 >= 20

Th (4) constraint: $s - (y_{13} + y_{14} + y_{23} + y_{24} + y_{24} + y_{53} + y_{63} + y_{64} + y_{73} + y_{74}) = 28$

Fri (5) constraint: $s - (y_14 + y_15 + y_24 + y_25 + y_34 + y_35 + y_45 + y_64 + y_74 + y_75) = 32$

Sat(6) constraint: s-(y15+y16+ y25 +y26+ y35 + y36 + y45+y46+ y56+y75>= 40

Sun(7) constraint: s - (y16 + y26 + y27 + y36 + y37 + y46 + y47 + y56 + y57 + y67) >= 40

continued

Start	ing				Nbr of	ff		
On	Nbr	М	Tu	Wed	Th	Fri	Sat	Sun
M	16		16	16		•	-	
Tu	8		7.0000000000000000000000000000000000000		8	8		
Wed	8	8	8		- 196 9 8 7 5 ° 10 ° 11 -			
Th	0							
Fri	6			6	6			
Sat	2	2				\$.XM		2

Solution: 42 employees

Sun

Nbr off

Nbr at work

Surplus above minimum

	Setting		Number	Surplus		
	1	3	produced	rolls		
5'	0	٢	200	50		
7'	. 1	0	200	0		
9'	4	/	300	0		
Loss/	4	1				
No- rolls	200	100				

Trum loss area = L (200×4 + 100×1 + 50×5) = 1150L ft2

(b) 15' standard roll:

		Setting		
	1	2	3	4
5'	3	1	1	0
7'	0	1	0	2
9'	0	0		0
trim lass perft	0	3	1	1

New Solution calls for decreasing the number of standard 20' rolls by 30 (d) $X_1 + X_3 + 2X_6 \ge 240$

New Solution Calls for increasing the number of standard 20-2011s by 50

Xi = Space (in2) allocated to cereal c

Maximize z=1.1x,+1.3x,+1.08x3+1.25x4+1.2x5

 $16x_1 + 24x_2 + 18x_3 + 22x_4 + 20x_5 \le 5000$ $x_1 \le 100, x_2 \le 85, x_3 \le 140, x_4 \le 80, x_5 \le 90$ $x_1 \ge 0$ for all i = 1, 2, ..., 5

Solution:

Z = \$314/day $X_1 = 100, X_2 = 140, X_5 = 44$ $X_2 = X_4 = 0$ $X_i = Nbr. of ads for issue i, i=1,2,3,4$

Minimize $Z = S_1 + S_2 + S_3 + S_4$ S.t.

 $\begin{array}{l} (-30,000+6,0000+30,000)X_1+S_1-S_1^{+}=.S1\times400,0000\\ (80,000+30,000-45,000)X_2+S_2^{-}=.S1\times400,000\\ (40,000+10,000)X_3+S_3^{-}=.S_1^{+}=.S1\times400,000\\ (90,000-2S,000)X_4+S_3^{-}=.S_1^{+}=.S1\times400,000\\ (90,000-2S,000)X_1+S_1^{-}=.S_1^{+}=.S1\times400,000\\ (90,000-2S,000)X_1+S_1^{-}=.S_1^{+}=.S1\times400,000\\ (90,000-2S,000)X_1+S_1^{-}=.S_1^{+}=.S1\times400,000\\ (90,000-2S,000)X_1+S_1^{-}=.S_1^{+}=.S1\times400,000\\ (90,000-2S,000)X_1+S_1^{-}=.S1\times400,000\\ (90,000-2S,000)X_1+S1\times400,000\\ (90,000-2S,000)X_1+S1$

 $X_1, X_2, X_3, X_4 \geqslant 0$

Solution:

 $X_1 = 3.4$, $X_2 = 3.14$, $X_3 = 4.08$, $X_4 = 3.14$

X = Units of part i produced by department i, i=1,2,3, i=1,2

Maximize Z = min { X11+ 121 , X12+ x22 , X13+ x23}

Maximize Z = y

 $S.J. \qquad \mathcal{J} \leq X_{11} + X_{21}$

 $y \leq x_{12} + x_{22}$ $x \leq x_{13} + x_{23}$

 $\frac{\chi_{11}}{5} + \frac{\chi_{12}}{5} + \frac{\chi_{13}}{10} \le 100$

 $\frac{X_{21}}{7} + \frac{X_{22}}{12} + \frac{X_{23}}{4} \le 80$

all xi; >0

Solution:

Nbr. of assembly units = y = 556.2 ~ 557

 $x_{11} = 354.78, x_{12} = 0$

 $X_{21} = 556.52, X_{22} = 201.74$

 $X_{31} = 556.52, X_{32} = 0$

Xi = tons of coal i, i=1,2,3

Minimize $z = 30X_1 + 35X_2 + 33X_3$

S.f. 2500 X +1500 X2 +1600 X3 ≤ 2000 (X+X2+X3) X, ≤ 30, X2 ≤ 30, X3 ≤ 30

x1+x2+x3 ≥ 50

Solution: Z= \$1361.11

x, = 27.22 tono, x2 = 0, x3 = 27.78 tons.

6 ti = Green time in secs for highway i, Maximize $Z = 3\left(\frac{500}{3600}\right)t_1 + 4\left(\frac{600}{3600}\right)t_2 + 5\left(\frac{400}{3600}\right)t_3$ $\left(\frac{500}{3600}\right) t_1 + \left(\frac{600}{3600}\right) t_2 + \left(\frac{400}{3600}\right) t_3 \le \frac{510}{3600} \left(2.2 \times 60 - 3 \times 10\right)$ £, + t2 + t3 + 3×10 ≤ 2.2×60, t, ≥ 25, t≥ 25, t≥ 25, t≥ 25 Solution: Z = \$58.04/h t,=25, t2 = 43.6, t3=33.4 Sec

V:= Observation i Define Straight line as F. = a +b, a, b unrestricted Minimize $Z = \sum_{i=1}^{\infty} y_i - \hat{y}_i$

= \(\frac{1}{2} \left| \gamma_i - ai - b \right|

det di = | y - ai - b|

Minimize Z = di+di+...+dio

y. - ai - b ≤ di y .- ai -b ≥ -di a, b, unrestricted

Solution: J. = 2.85714 i + 6.42857

Al = 2x1760x10x50 = 1760 (thousand) Yd A2 = 3520 , A3 = 1760, A4 = 3520 Distances (center to center) in miles:

Set 2.3g Cost (\$) per cubic yd: (6) A4 ·20+7x.15= 1.25 .2+2x-15=:50 m Al .20+3x.15=.65 .20+2×.15=.50 (2) A3 1.70 +3x-15= 2.15 1.70+8x-15=2.90 (4) P3 \ 2.10+7x.15=3.15 2.10+2x.15=2.40 Using the corde A1=1, A3=2, P1=3, P2=4, A2 = 5, A4 = 6, let $x_{ij} = 10^3 \text{ yd}^3$ from source i to destination j i = 1,2,3,4, j = 5,6Minimize Z = 1000 (.5 X15 +1.25 X16+ .5 X5+ .65 X26 + 2.15 X35 + 2.9 X36 + 3.15 X45+2.4X) s.t. x15 + x16 ≤ 1760 x35+ x36 ≤ 20,000 X25+ X26 ≤ 1760 X45+X46 ≤ 15,000 x15 + X25 + X35 + x45 ≥ 3520 X16 + X26 + X36 + X46 = 3520 Solution:

Al-AZ: XIS = 1760 (1000 Cu Yd)

A1-A4: X16= 0 A3→A2: ×25= 0 A3 - A4: X26 = 1760 PI-A2: X35 = 1760

Pl-A4: X36 = 0 P2-A2: X45 = 0 P2-A4: ×46 = 1760 Cost =\$10,032,000

Xij = Blue regulars on front i m' defense line j, i=

Hij = Blue reserves on front i in defense line j.

tij = Delay days on front i m défense line s:

Maximize Z = min { t, + t, + t, + t, + t, + t, + t, 2 } 02

Set 2.3g

Solution: ω, = 20.59 Kips ω, = 29.41 Kips

Xij = Nor fancraft of type i allocated to route j (i=1,2,3,4, j=1,2,3,4)

5; = Nbr. of passengers not servedon route j, j=1,2,3,4

Minimize $Z = 1000 (3X_{11}) + 1100 (2X_{12})$ + $1200 (2X_{13}) + 1500 (X_{14})$ + $800 (4X_{21}) + 900 (3X_{22})$ + $1000 (3X_{23}) + 1000 (2X_{24})$ + $600 (5X_{31}) + 800 (5X_{32})$ + $800 (4X_{33}) + 900 (2X_{34})$ + 405, +505, +455, +705, +705, +705

Subject to $\frac{4}{\sum_{j=1}^{4} X_{1j}} \le 5, \sum_{j=1}^{4} X_{2j} \le 8, \sum_{j=1}^{4} X_{3j} \le 10$

 $So(3X_{11}) + 3o(4X_{21}) + 2o(5X_{31}) + 5_{1} = 1000$ $So(2X_{12}) + 3o(3X_{22}) + 2o(5X_{32}) + 5_{2} = 2000$ $So(2X_{13}) + 3o(3X_{23}) + 2o(4X_{33}) + 5_{3} = 900$ $So(X_{14}) + 3o(2X_{24}) + 2o(2X_{34}) + 5_{4} = 1200$ $All X_{13} and S_{1} \ge 0$

*** OPTIMUM SOLUTION SUMMARY ***

Solution:

Aircraf Type	Route	Nbr. aircraft
1	ı	5
Z	4	8
3	ŧ	2.5
3	2	7.5

1000.0000

Fractional solution must be rounded. Cost = \$ 221,900

CHAPTER 3

The Simplex Method and Sensitivity Analysis

 $(x_1, x_2) = (3, 1)$

M1: S, = 24-(6x3+4x1) = 2 tons/day

M2: $S_2 = 6 - (1x3 + 2x1) = 1 \text{ ton/doy}$

5, = x, + x2 - 800 = 500+600-800 = 300 lb

 $10X_1 - 3X_2 \ge -5 = -10X_1 + 3X_2 \le 5$

Thus, -10x, +3x2 + 5, =5 0

Also, $10X_1 - 3X_2 \ge -5 = 10X_1 - 3X_2 - S_2 = -5$

Thus, -10×1+3×2+52 =5

1 and 2 are the same

Xij = number of units of product 4

LP model

MAXIMIZE Z = 10(X11+X12)+15(X21+X22) Subject to

 $|(X_{11}+X_{21})-(X_{12}+X_{22})| \leq 5$

X11 + X21 ≤ 200

X/2 + X22 \le 250

Xij ≥o for alli¢j

Equation form:

 $|(X_{11}+X_{21})-(X_{12}+X_{22})| \leq 5$

 $X_{11} + X_{21} - X_{12} - X_{21} \leq 5$

X11 + X21 - X12 - X22 3-5

Moximize Z = 10 X11 + 10 X12 + 15 X21 + 15 X21

Subject to

 $X_{11} + X_{21} - X_{12} - X_{22} + S_1$ = 5

- X11 - X21 + X12 + X22 + S2

X11 + X21 = 200

X,+ X22 + Sy = 250

Xij 20 for all i and j

Si ≥0 for all i

continued.

7=max { | x,-x2+3x3|, |-x, +3x2-x3| }

Hence

|x1-x2+3x3| ≤ y

 $\left|-x_1+3x_2-x_3\right| \leq \gamma$

LP model:

minimize Z=y

Subject to

 $x_1 - x_2 + 3x_3 \leq y$

 $x_1 - x_2 + 3x_3 \geq -y$

 $-x_1+3x_2-x_3 \leq \gamma$

 $-x_1 + 3x_2 - x_3 \ge -y$

X,, X2, X3, 720

Equation form:

Minimize Z= 4

Subject to

 $-y+x_1-x_2+3x_3+5_1$

-y-x,+x2-3x3 +S2

 $-y-x_1+3x_2-x_3+s_3$

-4+x1-3x2+x3

 $x_{1}, x_{2}, x_{3}, y, s_{1}, s_{2}, s_{3}, s_{4} \ge 0$

 $\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \iff \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & \text{if } \\ \sum_{i=1}^{n} a_{ij} x_{j} \geq b_{i} & \text{if } \end{cases}$

From @, for i=1,2,..., m, we have

 $\underbrace{\sum_{i=1}^{n}a_{ij}x_{j}} \geq b_{i} \Leftrightarrow \underbrace{\sum_{i=1}^{n}\left(\sum_{j=1}^{n}a_{ij}x_{j}\right)} \geq \underbrace{\sum_{i=1}^{n}b_{i}}.$

 $\Leftrightarrow \frac{\mathcal{Z}}{\mathcal{Z}}(\tilde{\mathcal{Z}}a_{ij})x_{j} \geq \tilde{\mathcal{Z}}b_{i}$

Thus, @ and @ are equivalent to

£ 1; x; ≤ bi, i=1, z, ..., m

 $\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}\right) x_{j} \geq \sum_{i=1}^{n} b_{i}$

2 = \$173.35 $X_1 = 900, X_2 = 0, X_3^+ = 2516$

(a) $X_j = \#units$ of product j perday, j=1,2 2 $X_3^{\dagger} = unused minules of machine time / day | X_3^{\dagger} = machine overtime per day inminutes$

Maximize $z = 6x, +7.5x_2 - .5x_3$ Subject to $10x_1 + 12x_2 + x_3^{+} - x_3^{-} = 2500$ $150 \le x_1 \le 200$ $x_2 \le 45$ $x_1, x_2 \ge 0$ $x_3^{+}, x_3^{-} \ge 0$

TORA getimum Solution:

X, = 200 units/day X2 = 45 units/day X3 = overtime minutes = 40 minutes/day 2 = \$1517.50

(b) Overtime at \$1.50/min spields x=0, which means no overtime is needed

 $X_j = \# \text{ funits of products 1, 2, and 3}$ Maximize $2 = 2 \times 1 + 5 \times 2 + 3 \times 3 - 15 \times 1 - 10 \times 5$ Subsoit 5

Subject 6 $2 \times_1 + \times_2 + 2 \times_3 + \times_4^7 - \times_7^7 = 80$ $\times_1 + \times_2 + 2 \times_3 + \times_5^7 - \times_5^7 = 65$ all variable, ≥ 0

Solution: Z = \$325 Xz = 65 units, X4 = 15

All other variables = 0

Formulation 1:

Maximize $Z = -2X_1 + 3X_2 - 3X_2 - 2X_3 + 2X_3$ Subject to $4X_1 - X_2^{\dagger} + X_2^{\dagger} - 5X_3^{\dagger} + 5X_3^{\dagger} = 10$ $2X_1 + 3X_2^{\dagger} - 3X_2^{\dagger} + 2X_3^{\dagger} - 2X_3^{\dagger} = 12$ All variables ≥ 0

Optimum solution:

 $X_{1} = 0$ $X_{2}^{+} = 6.75^{-}$ $X_{2}^{-} = 0$ $X_{3}^{+} = 0$ $X_{3}^{-} = 3.23$ $X_{3}^{-} = 3.23$ $X_{3}^{-} = 3.23$

Formulation 2:

Maximize Z = -2X, +3X2 - 2X3 - W Subject to

 $4x_1 - x_2^{+} - 5x_3^{+} + 6w = 10$ $2x_1 + 3x_2^{+} + 2x_3^{+} - 5w = 12$ all variables ≥ 0

Optimiem solution:

 $X_1 = 0$ $X_2^{\dagger} = 9.38$ W = 3.23 $X_2 = 9.38 - 3.23 = 6.15$ $X_3^{\dagger} = 0$ $X_3 = 6 - 3.23 = -3.23$ $X_3 = 3.23$ $X_3 = 3.23$

continued

(a)

Equation form:

Maximize $Z = 2X_1 + 3X_2$ Subject to $X_1 + 3X_2$

 $X_1 + 3X_2 + X_3 = 6$ $3X_1 + 2X_2 + X_4 = 6$ $X_1, X_2, X_{3,5} X_4 \ge 0$

(6) Basic (x, xe) (Point B):

X, +3x2 = 6 3X, +2x2 = 6 Solution: (X, x2) = (6, 12), Z = 6 7 Basic(X, X3)(Point E):

 $x_1 + x_3 = 6$ $3x_1 = 6$ Solution: $(x_1, x_3) = (2, 4), Z = 4$ Basic $(x_1, x_4)(Point C)$:

 $\frac{x_1}{x_1} = 6$ $3x_1 + xy = 6$ Solution: $(X_1, X_2) = (6, -12)$

Solution: (X1, X4) = (6,-12) Unique but infeasible

Bacic (X2, X2) (Point A):

Solutions (X2, X3) = (39-3) Umique but infeaselle

Basic (Xz, XY) (Point D):

 $3x_2 = 6$ $2x_2 + x_4 = 6$

Solution: (x2, x4) = (2,2), 2=6

Bacic (X3, X4) (Point F):

 $X_3 = 6$ $X_4 = 6$

Solution: (X3, X4) = (6,6), Z = 0

(c) Optimum solution occurs at B: $(x_1, x_2) = (\frac{6}{7}, \frac{12}{7})$ with $Z = 6\frac{7}{7}$

(e) from the graph in (d), we have

 $A: X_2 = 3, X_3 = -3$

C: X, = 6, Xy = -12

(a) Maximize $Z = 2X_1 - 4X_2 + 5X_3 - 6X_4$ Subject G

 $X_1 + 4X_2 - 2X_3 + 8X_9 + X_5 = 2$ $-X_1 + 2X_2 + 3X_3 + 4X_9 + X_6 = 1$ $X_{13} \times 2_{23} \times 3_{3} \times 4_{3} \times 5_{3} \times 6_{3} = 0$

Combination	Solution	Status z
XisXi	0,1/2	Feasible -2
X, , X3	8,3	Fasible 31
X, y Xy	0,1/4	Feasible -3/2
x,, x5	-1, 3	Infeasible _
×, > ×6	2,3	Feasible 4
X_2, X_3	1/2 9 0	Feasible -2
x_2, x_4	1/2,0	Feasible -2
X_2, X_S	1/2,0	Feasible -2
X2, X6	1/2,0	Feasible -2
x3, Xy	0,44	Feasible -3/2
×3, ×5	1/3,8/3	Feasible 5/3
X3, X6	-1,4	Infeasible -
×4,×5	1/4,0	Fearible -3/2
×4,×6	1/4 > 0	Fearible -3/2
X5,X6	1,5	Feeith 0

Optimum Solution:

 $X_1 = 8$, $X_2 = 6$, $X_3 = 3$, $X_V = 0$ Z = 31

continued.

continued

(b) Minimize
$$Z = X_1 + 2X_2 - 3X_3 - 2X_4$$

Subject to

$$X_1 + 2X_2 - 3X_3 + X_4 = 4$$

 $X_1 + 2X_2 + X_3 + 2X_4 = 4$
 $X_1, X_2, X_3, X_4 \ge 0$

Combination	Solution	Status	Z
. x, x	infinity	of Solutions	
x_1, x_3	4,0	Feasible	
x_1, x_4	4,0	Feasible	4
X2 , X3	2,0	Feasible	4
Xz, Xy	2,0	Feasible	4
X ₃ , X _Y	-솩, 뜩	Infeasible	_

alternative optima:

<u>×, </u>	x, x ₂	×3	Χy	Z
4	0	0	0	4
0	2	0	0	4

maximize $Z = X_1 + X_2$ Subject to

$$X_1 + 2Y_2 + X_3 = 6$$

 $2X_1 + X_2 - X_4 = 16$
 $X_1, X_2, X_3, X_4 \ge 0$

_(am bination	Solution	Status
	X ₁ , X ₂	26/3,-4/3	Infeasible
	X13 X3	8,-2	Infeasible
	XID XY	6, -4	Infeasible
	X_2 , X_3	16, -26	Infeasible
1 4	X ₂ , X _y	3, -13	Infeasible
	×3, ×4	6, -16	Infeasible

Maximize $Z = 2x_1 + 3x_2^2 - 3x_2^2 + 5x_3$ Subject to

$$(x_2, x_2)$$
:
 $7x_2^- - 7x_2^+ = 4$
 $x_2^- - x_2^+ = 10$

Since $(7x_2 - 7x_2^+)$ and $(x_2^- - x_2^+)$ are dependent, it is impossible for x_2^- and x_2^+ to be basic simultaneously. This means that at least x_2^- and x_3^+ must be nonbasic at zero level; thus making it impossible for x_2^- and x_2^+ to assume positive values simultaneously in any basic solution.

maximize Z = X, + 3 Xz Subject to

$$x_1 + x_2 + x_3 = 2$$
 $-x_1 + x_2 + x_4 = 4$
 x_1 unrestricted
 $x_2, x_3 \ge 0$

Combination	Solution	Status	Z
×,, ×2	-1, 3	Feasible	[8]
×1, ×3	-4,6	Fearible	-4
×1.XV	2, 6	Fearible	2
X2, X3	2- و 4	Infeasible	
X ₂ , X4	2, 2	Feasible	6
X3, X4	2, 4	Feasible	٥
· ·		6	,

Optimum: $X_1 = -1$, $X_2 = 3$, Z = 8(c) $X_2 = 3$

Set 3.3a

Extreme Point	Basic	Nonbasic
A	5,,5,	X, , X2
В	X,,5	x_{i}, S_{i}
C	X_1 , X_2	2,25

Extreme po	int Basic	Nonbasic
A	5,,52,53,54	XXXX
B	x,,5,,53,54	S, xz
C	X, , X, , 53,54	<i>5,</i> , <i>5</i> ₂

- (a) (A, B) adjacent, hence can be on a simplex path. Remaining pairs cannot be on a simplex path because they are not adjacent.
- (b) (i) Yes, because connects adjacent extreme points
 - (ii) No, because C and I are not adjacent.
 - (iii) No, lecause de path returns to a previous extreme point.

Extreme Paint	Basic	Nembasic
Α	5, 52, 53, 54	XIJ XZJX 3
В	S1, X1, S3, S4	52, X2, 53
C	X2, 52, 53,54	5,, X,,X3
D	S, , 52, X3,54	x_1, x_2, S_3
E	x,, x2,53,54	5,, 52, 43
F	X2, S2, X3, 54	x1,5,5
G	5,, x,, x3, Sy	52, X2,53
H	5, , X, , X2, X3	52, 53, 54
I	x, , x2 , x3,53	5, , 5, 54
Ī	x,, S,, X,, X3	S1, S3, Sq

- (a) \times_3 enters at value 1 $Z = 0 + 3 \times 1 = 3$
- (b) \times , enters at value 1 $Z = 0 + 5 \times 1 = 5$
- (c) X_2 enters at value 1 $Z = 0 + 7 \times 1 = 7$
- (d) The broken arbitarily between X_1, X_2 , and X_3 Entering value = 1 Z = 0 + |X| = 1

	•							
Basic	z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	s_2	S 3	S 4	Sol
Z	1	-5	-4	0	0	0	0	0
\mathbf{s}_1	0	6	4	1	0	0	0	24
s_2	0	1	2	0.	1	0	0	6
S ₃	0	-1	1	0	0	1	0	1
S ₄	0	0	1	0	0	0	1	2
Z	1	0	6	0	5	0	. 0	30
s_1	0	0	-8	1	-6	0	0	-12
\mathbf{x}_1	0	1	2	0	1	0	0	6
S 3	0	0	3	0	1	1	0	7
S4	0	0	11	0.	0	0	1	2

(a)

,								7
Basic	x 1	x2	х3	х4	sx5	sx6	sx7	Solution
z	-2.00	-1.00	3.00	-5.00	0.00	0.00	0.00	0100
1)sx5 2)sx6	1.00	2.00	2.00	4.00	1.00	0.00	0.00	40,00
3)sx7	4.00	-2.00	1.00 1.00	2.00 -1.00	0.00 0.00	1.00 0.00	0.00 1.00	8.00 10.00
z	3.00	-3.50	5.50	0.00	0.00	2.50	0.00	20.00
1)sx5	-3.00	4.00	0.00	0.00	1.00	-2.00	0.00	24,00
2)x4 3)sx7	1.00 5.00	-0.50 -2.50	0.50 1.50	1.00 0.00	0.00	0.50	0.00	4.00
	3.00	-2.30				0.50	1.00	14.00
z	0.38	0.00	5.50	0.00	0.88	0.75	0.00	41.00
1)x2	-0.75	1.00	0.00	0.00	0.25	-0.50	0.00	6,00
2)x4 3)sx7	0.62 3.12	0.00	0.50 1.50	1.00 0.00	0.12 0.62	0.25 -0.75	0.00	7.00 29.00
(b) Basic) x1	x2	x3	x4	sx5	sx6	sx7	Solution
2	*8.00	-6.00	-3.00	2.00	0.00	0.00	0.00	0.00
1)sx5	1.00	2.00	2.00	4.00	1.00	0.00	0.00	40.00
2)sx6	2.00	-1.00	1.00	2.00	0.00	1.00	0.00	8.00 10.00
3)sx7	4.00	-2.00	1.00	-1.00	0.00	0.00	1.00	10.00
2	0.00	-10.00	-1.00	0.00	0.00	0.00	2.00	20.00
1)sx5	0.00	2.50	1.75	4.25	1.00	0.00	-0.25	37.00
2)sx6	0.00	0.00	0.50	2.50 -0.25	0.00	1.00	-0.50 0.25	3.00 2.50
3)x1	1.00	-0.50	0.25	-0.25	0.00	5.00		1

17.00

1.70 2.50 0.60

0.70 0.50 0.60

1.00 0.00 0.00

0.00 0.00 1.00

(c) Basic	×1	x2	x3	×4	sx5	sx6	sx7	Solution
z	-3.00	1.00	-3.00	-4.00	0.00	0.00	0.00	0.00
1)sx5 2)sx6 3)sx7	1.00 2.00 4.00	2.00 -1.00 -2.00	2.00 1.00 1.00	4.00 2.00 -1.00	1.00 0.00 0.00	0.00 1.00 0.00	0.00 0.00 1.00	40.00 8.00 10.00
z	1.00	-1.00	-1.00	0.00	0.00	2.00	0.00	16,00
1)sx5 2)x4 3)sx7	-3.00 1.00 5.00	4.00 -0.50 -2.50	0.00 0.50 1.50	0.00 1.00 0.00	1.00 0.00 0.00	-2.00 0.50 0.50	0.00 0.00 1.00	24.00 4.00 14.00
z	0.25	0.00	-1.00	0.00	0.25	1.50	0.00	22.00
1)x2 2)x4 3)sx7	-0.75 0.62 3.12	1.00 0.00 0.00	0.00 0.50 1.50	0.00 1.00 0.00	0.25 0.12 0.62	-0.50 0.25 -0.75	0.00 0.00 1.00	6.00 7.00 29.00
z	1.50	0.00	0.00	2.00	0.50	2.00	0.00	36.00
1)x2 2)x3 3)sx7	-0.75 1.25 1.25	1.00 0.00 0.00	0.00 1.00 0.00	0.00 2.00 -3.00	0.25 0.25 0.25	-0.50 0.50 -1.50	0.00 0.00 1.00	6.00 14.00 8.00

4.00

0.00

0.00 1.00 0.00 1.00

170.00

(d) Basic	*1	x2	x 3	*4	sx5	sx6	sx7	Solution
Z	-5.00	4.00	-6.00	8.00	0.00	0.00	0.00	0.00
1)sx5 2)sx6 3)sx7	1.00 2.00 4.00	2.00 -1.00 -2.00	2.00 1.00 1.00	4.00 2.00 -1.00	1.00 0.00 0.00	0.00 1.00 0.00	0.60 0.00 1.00	40:00 8:00 10:00
z	-13.00	8.00	-10.00	0.00	0.00	-4.00	0.00	-32.00
1)sx5 2)x4 3)sx7	-3.00 1.00 5.00	4.00 -0.50 -2.50	0.00 0.50 1.50	0.00 1.00 0.00	1.00 0.00 0.00	-2.00 0.50 0.50	0.00 0.00 1.00	24.00 4.00 14.00
2	-7.00	0.00	-10.00	0.00	-2.00	0.00	0.00	-80.00
1)x2 2)x4 3)sx7	-0.75 0.62 3.12	1.00 0.00 0.00	0.00 0.50 1.50	0.00 1.00 0.00	0.25 0.12 0.62	-0.50 0.25 -0.75	0.00 0.00 1.00	6.00 7.00 29.00

	Ratios						
Basic	\mathbf{x}_1	$\mathbf{x_2}$	X3	X4			
X5	4/1	4/2		(4/5)			
\mathbf{x}_{6}	8/5			8/6			
X7.	3/2	3/3		3/3			
X8			0/1				
Value	1.5	1	0	0.8			
Leaving var	X7	X7	X.8	X5			

(a) Nonbasic X, will improve solution.

 $X_1 = \frac{4}{5} = .8$, $X_3 = 8 - 6x.8 = 3.6$, $X_4 = 3 - 3x.8 = .6$ $X_2 = 0$, $Z = .8 \times 1 = .8$

(b) x, remains nonbasic at zoo. Current solution, x2 = 4, x3 = 8, x4 = 3, Z = 0 is optimum

Basic solutions consist of one variable each. Thus,

$$X_1 = 90/1 = 90$$
, $Z = 5\times90 = 450$
 $X_2 = 90/3 = 30$, $Z = -6\times30 = -180$

$$x_3 = 90/5 = 18$$
, $Z = 3x/8 = 54$

$$x_y = 90/6 = 15$$
, $Z = -5x15 = -75$

$$X_5 = 90/3 = 30$$
, $Z = 12 \times 30 = 360$

Optimum solution:

(4) Basic: (Xg, X3, X1) = (12,6,0), Z = 620 Nonbasic: (Xz, X4, X5, X6, X7) = (0,0,0,0,0)

(b) X2, X5, X6 will improve solution.

 X_2 enters: $X_2 = \min(\frac{12}{3}, \frac{6}{1}, -) = 4$. Thus, X_3 leaves, $\Delta Z = 4 \times 5 = 20$

2

 X_S enters: $X_S = min(-, \frac{6}{1}, \frac{0}{6}) = 0$. Thus,

 $\Delta Z = 1 \times 0 = 0 (x, leaves)$

X6 contero: X6 = min (-, -, -). Thus, no leaving variable and X6 can

be increased to so. DZ=+00

(C) X4 can improve solution.

<u>X4 enters</u>: X₄ = min(-, 6/3, -) = 2. Thus, X₃ leaves. Δz = -4x2 = -8

(d) As shown in (b), X_5 cannot change Z because it enters the Solution a level zero. X_7 cannot change Z either because its objective equation Coefficient = 0. $\Delta Z = 0 \times min(\frac{12}{5}, \frac{6}{3}, -) = 0$

(a) Maximize Z= 3x, +6x2:

Xz is the first entering variable.

Resulting path is A = G > F > E.

(b) Maximize Z = 4x, + xz:

Entering variable x, = (min intercept with)

$$X_1 = min(2,3,5) = 2$$
 at B
 $\Delta Z = 4 \times 2 = 8$

(c) Maximize $Z = X_1 + 4X_2$: Entering variable $X_2 = \begin{pmatrix} min & intercept \\ cirth & X_2 - a xis \end{pmatrix}$ $X_2 = min (1, 2, 4) = 1$ $\Delta Z = 4 \times 1 = 4$

(a) X, will enter first and the ilerations will follow the path A→B→C→D

(b) X2 enters first and the ilerations will follow the path A→E→D

(c) The most-regative criterion requires more ilerations (4 20.3). This criterion is only a kernistic, and although it does not guarantel the smallest number of

iterations, computational experience demonstrates short, on the average, the most-regative criterion is more efficient.

(d) Iterations are identical, with should appear with an opposite sign

Optimum tableau:									
Basic	\mathbf{x}_1	\mathbf{x}_2	s_1	s_2	S 3	S ₄			
Ź.	0	0	3 4	1/2	0	0	21		
	1	0	1/4	-1/2	. 0	0 .	3		
\mathbf{x}_2	0	1	-1/8	3/4	0	0	3/2		
s_3	0	0	3/8	-5/4	1	0	5/2		
S ₄	.0	0	1/8	-3/4	0	1	1/2		

If s, enters, its value = min {3 , -5/2 , 1/2 } = 4 New Z = 2! - 3/4 × 4 = 18 If szenters, its value = min {-, 3/2 , -, -} = 2 New Z = 2! - Y2 × 2 = 20. The second best Z is associated with Szentenip the basic solution

Not easily extendable because the third beat solution may not be an adjacent Corner point of the current optimum point.

X, = number of purses per day
X2 = number of bago per day
X3 = number of backpacks per day

Maximize $Z = 24X_1 + 22X_2 + 45X_3$ Subject to

 $2x_1 + x_2 + 3x_3 \le 42$ $2x_1 + x_2 + 2x_3 \le 40$ $x_1 + 5x_2 + x_3 \le 45$ $x_1, x_2, x_3 \ge 0$

TORA's optimum Solution:

X,=0, X2 = 36, X3 = Z, Z= \$882 Status of resources:

Resource slack Status

Seather O Scarce

Sewing O Scarce

Finishing 25 abundant

8

From TORA Iterations module, 2 Click [All Iterations], then go to the optimal iteration and click any of the associated nontainic variables (X4, 5X6, 5X7, 5X8). Now, chick [Next Iteration] to produce the new iteration in which the selected variable becomes basic. The associated value of 2 will deteriorate.

Solution, follows the next-best Solution, follows the procedure in Froblem 1. First, let X4 enter the basic solution and record the associated value of Z. Next, click View/Modify Input Data and re-solve the problem to produce the same optimum tableau that was used before X4 was entered into the basic solution. Now, enter 5X6 into the basic solution and record the associated value of Z. Repeat the percedure of 5X7 and 5X8. You will get the following results:

Entering variable	Z
X4	2.63
SX6	1.00
SX7	6.40
<u> </u>	1.90

The next best solution is associated with entering SX7 into the basic Solution. Associated values of the ranables are

 $X_1 = 1.6$

X2 = 0

×3=1.6

 $X_4 = 0$

Z=6.40

			•					
Iteration	Basic	<i>x</i> ₁	x ₂	<i>x</i> ₃	R,	R ₂	X 4	Solution
0 (starting)	z	-4 + 7M	-1 + 4M	М	Ó	0	0	9М
x ₁ enters	Ř,	3	1	0	1	0	0	3
R ₁ leaves	R ₂	. 4	3	-1	0	1	0	6
	X4	1	.2	0	0.	0	1	4
1	z	0	$\frac{1+5M}{3}$	-М	$\frac{4-7M}{3}$	0	0	4 + 2M
x_2 enters	x_i	1	1/3	0	1/3	0	0	1
R ₂ leaves	R ₂	0	5/3	·1	-4/3	1	0	2
	x4	0	5/3	. 0	-1/3	0	.1	3
2	z	0	0	1/5	8/5 — M	1/5 - M	0	18/5
x ₃ enters	х,	1	0	1/5	-3/5	1/5	0	3/5
x4 leaves	x ₂	0	1	-3/5	-4/5 .	3/5	0	6/5
	x4	0	0	1	1	-1	1	1
3	z	0	0	0	7/5 M	-M	-1/5	17/5
(optimum)	х,	1	0	0	2/5	0	1/5	2/5
,	x2	0 .	1	0	-1/5	0	3/5	9/5
	x _a	0	0	1	1	-1.	1	1

M=1:

Optimin Solution: X,=0, X2=2, XR4=1

Solution is infeasible because XR4 is positive. The reason M=1 produces an infeasible solution is that it does not play the role of a penally relative to the objective conficients of the real variables, X, and X2. Using M=1 makes XR4 more attractive than X, from the standpoint of minimizate. M=10:

Optimism solution: X,= .4, Xz=1.8, Z=3.4

The solution is feasible because it does not include artificials at positive level. M=10 is relatively much larger than the Objective Coefficients of X, and X2, and hence properly plays the role of a penalty.

M=1000:

If produces the optimum dolution as with M=10. The conclusion is shat it suffices to elect M reasonably larger than the objective coefficients of the real variables. Actually, M=1000 in an "over kill" in this case, and relacting such huge values could result in adverse round off error.

(a) Minimize $Z = 4x_1 + x_2 + M(R_1 + R_2 + R_3)$.
Subject to

 $3x_1 + x_2 + R_1 = 3$ $4x_1 + 3x_2 - S_2 + R_2 = 6$ $x_1 + 2x_2 - S_3 + R_3 = 4$ $x_1, x_2, x_2, x_3, x_1, x_2, x_3 \ge 0$

Basic	×ı	Χz	ح	Sз	RI	Rz	R	ł
Z	-4	-1			(M)	(-M)		0
R	3	1			(I)		-	3
RZ	4	3	-1			\bigcirc		6
R ₃	1	2		-1			(1)	4
_ Z	-4+8M	-1+6M	-M	-M	0	0	0	10 M
R_1	3	. 1			ſ			3
Re	4	3	-1		•	1		6
R3		ર		-1			1	4

(b) Minimize $Z = 4x_1 + x_2 + M R_1$ Subject to

3x, + x2 4x1 +3x2 +52 XI + ZXZ Basic x 53 Sz Z (FM) \bigcirc 3 R_1 3 3 Sz 6 4 R3 2 -4+3M -1+ M Z 0 BM R, 3 1 3 52 4 6 3 R3 2 4 1

(c) Minimize $Z = 4x_1 + x_2 + M(R_1 + R_2)$ Subject to $3x_1 + x_2 + R_1 = 3$ $4x_1 + 3x_2 + R_2 = 6$ $x_1 + 2x_3 + s_3 = 9$

Basic	¥į	Χz	R,	R.	<i>5</i> 3	1.
Z	-4	-1	(EM)	(M)	0	0
R ₁ R ₂	3	1	0			3
Rz	4	3		\mathbf{O}	•	6
<u>S3</u>	i	_2			1 '	4
	-4+7M	-1+yM	0	0	0	9 M
R ₁	3	1	1			3
K.	4	3		(6
33	1				l	4

continued.

(d) M	laximiz 0 · · ·	e Z= 4	$X_1 + X_2$	-M(K	2, +Ri)		
S	ubject i							
	3 X, +	<i>X</i> 2	+ 1	ا ک	=	3	•	
	4 X, +	3X2 -	J ₂ .	+ R	+ S3 =	6		
Basic		X ₂	5≥	RI	R ₂	7 53	1	
Z	-4	-1	0	(H)	M	6	0	
R,	3	1.		0			3	
Rz	4	3	-1				6	
53	- 1	2 .	•			ı	4	
Z	-4-7M	-1-4M	М	0	0	0	-9M	
RI	3	1		1			3	
R ₂	4	3	-1		1		6	
53	1	2				ı	4	
(a) Max	ximize	2 = 5X	+ 6 Xz	-MR	<u> </u>		A	
sul	yect to					L	-	_
	-2×,	+3Xz +2Xz	+(R)	.5-	= 3 = 5	(i) (3)		
	6 x,	+7X2	7	- U3 + S	= 5 5 ₄ = 3	(4)		
Z-	(5-2 M) x1 - (6	(+3M)	X ₂ =	- 3M			
(b) Ma	ximize	Z=2.	x, -7x	_M(R,+R	2+R5)	
Sul	yect to				-		(1)	
		Xz		_	ند	= 3 = 10		
	4K,+5 6K,+7)	X ₂ - S	2 +	R ₂	S.,	= 3		
	9x, + 8x	(5 - 2	S		+ Rs	= 5	3	
		M)X-(-		u) X ₂ +			1	
1		z = 3x				3		
	bjeit to		•			_		
	X ₁ +2	X ₂	+5,			.	(3)	
	6 X1 +7		•	+ 52		,	4)	
	4 X, +8	PX2 - 55	5		+ Rs =	:5	5)	
Z-((3-4M) X, - (6	5-8M) X2- A	455 =	5M		
(d) M	nimize:	$Z = 4x_1 +$	6X2+M	(R,+R,	+ R _r)			
Suly	ict to				•			
	-2x, +		4	$\cdot R_{l}$		= 3	(1)	
	$4X_1 +$	5 X2	S ₂	+R	2	= 10	(2)	
	4X, +	8 X2	-22		+K5	= 5 (ردي	
Z-	(4-6	M)-(6	-16M)	W-sx	5 ₂ - M	S ₅ = 1	8M	
		. Z = 3	X, +2	X _Z +M	1(R,+	Rs)		
Subje				_	_	g = 1		
		+ 3X2 +8X2 -			5 = 3 7 = 7			
Z-		1)X1 - (

								171 779 779 7
-	Basic	Х,	X,	×3	52	R,	R	•
	3	-2 -3M	-3 +4M	-SM	M	0	0	-17M
Ø	Ri	ŧ	(ı	0	1	0	7
	Rz	2	-5	1 ,	-1	0	ı	10
	ż	0	-8 -7M -2	- <u>M</u>	-) - <u>M</u>	0.	1 3M	16 -2M
J	R,	0	[7/2]	1/2	1/2	ı	-1/2	Ž
	X,	1	-5/2	1/2	-1/2	0	1/2	5
	3	0	Ø	50/7	1/7	16/7 +M	-//7 +M	102
11	X٤	0	1	1/7	1/7	47	-1/7	4/7
	X,	1	0	6/7	-1/7	5/7	1/7	45/7
	V-14-00						- /	- 12

	Basic	×ı	Χz	<i>Y</i> ₃	5,	R,	R	so/a
	3	-2 +3M	-3 -4M	5 +2M	-M	0	`0	IT M
0	R,	1	1	1	0	1	0	7
	RL	2,	<i>-</i> 5	1	-1	ø	1	10 .
1	3	0	-8 +7M/2	6 +11/2	-1 +N/2	0.	1 3M/2	MS
I	$ R_1 $	O	7/2	1/2	1/2	1	-1/2	2
	X	1	-5/2	1/2	-1/z	0	1/2	5
	8	0	0	50/7	1/7	147 -M	-1/7 -M	102
I	Χz	0	I	1/7	47	2/	7 -1/7	4/7
-	X)	ı	0	6/7	-1/7	5/	7 1/2	45/7
A	3	0	-50	0	-7	-12	- ,	-14
עו	X 3	0	7	1	I	z	-1	4
-	×ı	1	-6	0	-1	-1	1	3

continued.

continued.

(b)

	(c)			•				٠.
	Beri	Х,	Χı	X3	$\mathcal{S}_{\mathbf{L}}$	R,	L,	Sels
	3	-1	-2	-1	0	m	M	_
	R,	1	I	J	0	- 1	0	9
0	Rz	2	-5	1	-1 , .	0	1	10
	8	-1 -3 M	-2 '	-2M	m	0	O	-17M
-	R,	ì	1		0	1	0	7
1	Ri	2	-5	1.	-1	0	}	10
	3		-9/2 7M/2	-1/2 - M/2	-1/2 -M/2	0	1/2 +3M/2	5 m
II.	Ř,	Ø	7/2	1/2	1/2	1	-1/2	2
	X,	1	-5/2	1/2	-1/2	0	1/2	5
	ъ	0	0	1/7	1/7	4/7 +M	-1/7 +M	ड्ड
W	Χ'n	o	ı	1/7	1/7	24	-14	4/7
	×,	1	0	617	-1/7	5/7	47	誓
_	(d)							area an
ı	Basic	X,	YL	X 3	s,	R_l	Rz	JAS
	З	-4	8	-3	0	-M		, 0
o	R,	1	1	1	0	i	0	7
	Rz	2	-5	1 .	-1	0	1	10
	z	-4 +3m	8' -4m	-3 +2M	-m	0	6	17M
I	0	1	,	1	0	1	σ	7
	Ru	2	-5	1	- /	o	1	10
-	3	0	-2	-1	-2		2	20
	-		+7M/2					+2.M
T	1	O .	1/2	1/2	1/	2 1	-1/2	2
_	×ı	1	-5/2	1/2	-1/	120		5
,	3	0	O	-5/7	-12/	/7 -m	147 -M	等
M		0	1	1/7	17.	٦/.	-1/-	417
	1 1/2	1)	- 47	1/7	3/7	' / ງ	717

In the first iteration, we must 6 substitute out the starting Solution variables, x_3 and x_4 , in the z-equation, exactly as we do with the artificial variables

,	Basic	×	Xz	×3	Χų	Solution
	Z	-2	-4	-4)	3	
0	× ₃	- 1	1	<u>()</u>	0	4
	X4	1	4	0	①	8
	Z	-1	-12	0	0	-8
I	×з	1	. 1		0	4
	Xy	1	4	0	1	8
	Z	2	0	0	3	16
I	×3	3/4	0	1	-1/4	2
_	Χz	1/4		0	1/4	2

after adding surplus 5, and 5, 5 substitute out \times_3 in the Z-equation

	Basic	×,	×χz	رچ	ړک	X ₃	Xy.	Solution
	Z	-3	-۷	0	0	<u>3</u>	O	
0	×₃	1	4	-1	0	0	O	7
	X4	2	1	0	-1	0	1	10
	Z	٥	10	-3	0	0	0	21
1	X ₃	1	4	-1	0	1	0	7
_	Xy	2		0	-/	0	1	10
	Z	-5/2	. 0	-1/2	0	-5/2	0	7/2
I	Χz	1/4	1	-1/4	0	1/4	0	7/4
	X4	7/4	0	1/4	-1	-1/4	1	33/4

Both X3 and R (the starting Solution variables) must be substituted out in the Z-equation

· ·	Basic) x,	XL	×3	R	Solution
	3	-1	-5	E 3	(M)	-
0	×3 R	2	2 -1	0,	ů	3 4
	3	2-2m	1+M	0	0	9-4M
1	Хз	1	2	1	0	3
	R	2	-1	0	1	4
_	3	0	2	0	-1+M	5
I	×β	8	5/2	1	-1/2	1
	Х,	1	-1/2	Ø	1/2	2

Maximize Z = 2x1+5x2-MR, subject to

 $3x_1 + 2x_2 - S_1 + R_1 = 6$ $2x_1 + x_2 + S_2 = 2$ $x_1, x_2, S_1, R_1, S_2 \ge 0$

Basic	X,	Χz	5,	R	. Se	1
Z	-2	-5	0	M		-
R,	3	2	-1		0	6
S2	2	1 :	0	. 0	1	2
Z	-2-3M	-5-2M	M	0	0	-6M
RI	3	2	-1	· 1	0	6
52	2	1	O	0	1	2
Z	0	-4-M/2	M	0	1+3M/2	-2 +3M
R	0	1/2	-1	1	- 3/z	3
×,	1	1/2	0	0	1/2	١
Z	8+M	. 0	M	0	StzM	10 -2M
R,	-1	0	-1	1	- Z	2
XZ	2	<u> </u>	6	0		2

The 2-row shows that the solution is optimal (all nonbasic coefficients in the Z-row are ≥ 0). However, the solution is infeasible because the artificial variety R, assumes a positive value thaving a positive value for the artificial variety R, is the parke as regarding the constraint 3x, +2x, ≥ 6 as 3x, +2x, ≤ 6 , which violates the constraints of the original model.

In Phase I, we always	(c) Phase I is the same as in (a)
minimize the sum of the artificial variables because the sum represents	Phase II:
variables because the sum represents	Buic X, X2 X3 S2 Set 2
a measure of infeasibility in	· Constitution of the cons
the problem	X2 0 1 1/7 1/7 4/7
(a) Mimmige P = R, 2	x, 1 0 6/7 -1/7 45/7
(b) Minimige r = R1+R2+R1-	3 0 0 1/7 1/7 53/7
(c) Minumize r = R5	XL 0 1 1/7 1/7 4/7
(d) Minimize r = R1 + R2 + R5	X ₁ 1 0 6/7 - 17 45/9
(e) Minimge r= R,+R-	(d) Phase I is the same as in (a)
(a) Phase 1: Basic X1 X2 X3 S2 R1 R2	Phase II:
Bosic X ₁ X ₂ X ₃ S ₂ R ₁ R ₂	
R, 1 1 0 1 0 7	Baric X1 X2 X3 X4 Sola Z -4 8 -3 0 0
R2 2 -5 1 -1 0 1 10	X2 0 1 1/7 1/7 4/7
A 3 -4 2 -1 0 0 17	×1 1 0 6/7 -1/7 45/7
R ₁ 1 1 0 1 0 7 R ₂ 2 -5 1 -1 0 1 10	2 0 0 -5/7 -12/7 211/7
	X2 0 1 1/7 1/7 4/7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
-5/2 1/2 -1/2 0 1/2 5	X ₁ 1 0 6/7 -1/7 45/7
10000-1-10	Minimize $r = R_1$
X2 0 1 1/7 1/7 2/7 - 1/7 4/7	Subject to
Record V V -1/7 5/7 1/7 45/7	$3x_1+2x_2-5_1+R_1 = 6$
Basic x_1 x_2 x_3 5 $50/5$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2X_1 + X_2 + S_2 = 2$
X ₂ 0 1 1/7 1/7 4/7	$X_1, X_2, S_1, R_1, S_2 \ge 0$
l 🛶 🗼 . l	Solution of Phase I by TORA
1 7 7 7 48 7	yields r=2, which indicates.
3 0 0 50/7 1/7 102/7	that the problem has no feasible
E XL 0 1 1/7 1/7 4/7	space
x, 1 0 6/7 - 1/7 45/7	Minumize Z = Rz
(b) Phase I is the same as in (a)	Subject to
Basic X1 X2 X3 52 50 0	$2x_1 + x_2 + x_3 + 5$, = 2
	$3X_1 + 4X_2 + 2X_3 - 5_2 + R_2 = 8$
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$X_1, X_2, X_3, S_2, S_2, R_2 \ge 0$
3 0 0 50/7 1/7 45/7	Phase I Optimal solution:
H X2 0 1 1/7 1/7 4/7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
y x, 1 0 6/7 -1/7 45/7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X_2 2 1 1 0 1 0 2 R_2 -5 0 -2 -1 -4 1 0
1 X3 0 7 1 1 4 X1 1 -6 0 -1 3	
continued	R2 = 0 is basic in the Phase I Solwhim continued
3-	14

(b)

Phase I (continued): R2 leaves, x1 enters (also x3, s2, and s1 are candidates for the entering variable).

		x1	x2	x 3	s2	s1	R2	Sol
	r	-5	0	-2	-1	-4	0	0
	x2	2	1	1	0	1	0	2
_F	₹2	-5	0	-2	-1	-4	1	0
	r	0	0	0	0	0	-1	
	x2	0	1	1/5	-2/5	-3/5	2/5	2
	x1	1	0	2/5	1/5	4/5	-1/5	0 -

Drop R2-column.

Phase II:

		x1	x2	x 3	s2	s1	Sol.
Г							
L	<u>Z</u>	-2	-2	4	0	0	0
	x2	0	1	1/5	-2/5	-3/5	2
_	x1	1	0	2/5	1/5	4/5	0
	Z	0	0	-14/5	-2/5	2/5	4
	x2	0	1	1/5	-2/5	-3/5	2
	x1	1	0	2/5	1/5	4/5	0
	z	7	0	0	1	6	4
	x2	-1/2	1	0	-1/2	-1	2
_	х3	5/2	0	1	1/2	2	0

Optimum solution:

$$x_1 = 0, x_2 = 2, x_3 = 0, z = 4$$

Phase I:

6

	x1	x2	x 3	R1	R2	R3	Sol
r	-10	0	-4	-8	0	0	0
x2	2	1	1	1	0	0	2
R2	-5	0	-2	-3	1	0	0
_R3	-5	0	-2	-4	0	1	0
r	0	0	1	-2	-2	0	0
x2	0	1	1/5	-1/5	2/5	0	2
x1	1	0	2/5	3/5	-1/5	0	0
_R3	0	0	0	-1	-1	1	0

Remove R1- and R2 columns, which gives

	x1	x2	x3	R3	Sol
<u> </u>	0	0	1	0	0
x2	0	1	1/5	0	2
x1	1	0	2/5	0	0
R3	0	0	0	1	0

The R3-row is R3 = 0, which is redundant. Hence the R3-row and R3-column can be dropped from the tableau with no consequences.

Phase II:

	x1	x2	x3	Sol
Z	-3	-2	-3	0
x2	0	1	1/5	2
_x1	1	00	2/5	0
Z	0	0	-7/5	4
x2	0	1	1/5	2
x1	1	0	2/5	0
Z	7/2	0	0	4
x2	-1/2	1	0	2
x1	5/2	0	1	О

Optimum solution:

$$x_1 = 0$$
, $x_2 = 2$, $x_3 = 0$, $z = 4$

a positive value, the value of the objective function at the end of Phase I must necessarily become positive. This follows because these variables have nonzero z-row coefficients in the optimal Phase I tableau. A positive objective value at the end of Phase I means that Phase I solution is infeasible. Since Phase II was the same constraints as in Phase I, it follows that Phase II must have $X_1 = X_2 = X_4 = X_5 = 0$ as well.

Phase II:

Basic	X ₂	R	50/2
Z	(2)	0	0
Χz	(0	2
R	0	. 1	O
Z	0	Ø	4
X2	1	0	2
R	O		0

Optimim Solution:

$$X_1 = 0$$
 $X_2 = 2$ $X_3 = X_y = X_T = 0$
 $Z = 4$

- SX	1+0	6X2 - 8	2×3 +	Xy		= -5	
-		- 5X	,-	+X	5	=-8	
2×1	+ 5	X2-	4 ×3		+×6	= 9	
X,	Χz	×з	Χy	×5-	X6	R	
0	0	0	0	0	0	-)	
-5	6	-2	1	0	0	-1	-5
1	~3	-5	Ø	1	Ō		-8
2	5	-4	0	0	ı	0	9
-1	3	5	0	-1	٥	0	8
-6	9	3	1	-1	0	0	3
-1	3	5	0	-1	0	ı	8
2	5	-4	0	0	1	0	9

Phase I problem:

mirimize r = R Subject to

$$-6x_1 + 9x_2 + 3x_3 + x_4 - x_5 = 3$$

$$-x_1 + 3x_2 + 5x_3 - x_5 + R = 8$$

$$2x_1 + 5x_2 - 4x_3 + x_6 = 9$$

all variables ≥ 0

The logic of the procedure is as follows:
In the R-column, enter -1 for any constraint with negative RHS

and o for all other constraints.

Next, use the R-column as a privat column and select the privat element as the one corresponding to the most negative RHS. This persedure will always require one artificial variable regardless of the number of constraints.

(6) Three iterations: In iteration 2, degeneracy is removed because basic SXS = 0 corresponds to a negative constaint coefficient in the entering variable column (x2).

(c) In part (a), solution encounters 2 degenerate basic solution at the same corner point. In part (b), only one basis delution was encountered.

	Basic	X,	X ₂	Х3	S,	S.	S,	Salution
	3	-1	-z	-3	Ó	Ø.	b	o
o	s,	1	2.	[3]	ı	0	0	10
	52	1	ŀ	-, O	0	1	0	5
	Sz	-1	D	0	0	0	1	, ,
	3	0	0	0	1	Ö	0	10
I	×3	1/3	2/3	ı	1/3	0	0	10/3
	25	1		0	0	1	0	5
	ಿತ	1	0	b	Ò	0	1	1
	3	0	0	0)	0	0	10
A	Хз	-1/3	0	1	1/3	-2/3	0	0
I	Xz	1	ı	0	0	1	0	5
-	ડ્યુ		0	0	O	ö	0	1
	3	0.	0	٥	1	0	O	10
	<i>x</i> ₃	0	0	1	1/3	-2/3	1/3	1/3
邚	ΧŁ	0	1	0	0		-1	4
	×ι	J	0	0	0	0	- 1	1
	з	o	0	o	1	0	0	10
V	×3	0	2/3	١	1/3	0	-1/3	3
	52	0	i	0	6	ı	~1	4
	×,	l	6	0	ø	0	ı	1 .

Three alternative facic optima:

$$(x_1,x_2,x_3) = \begin{cases} (0,0,10/3) \\ (0,5,0) \\ (1,4,1/3) \end{cases}$$

The associated nonbasic alternative optima are

$$\widehat{X}_1 = \lambda_3$$

$$\widehat{X}_2 = 5\lambda_2 + 4\lambda_3$$

$$\widehat{X}_3 = 10/3\lambda_1 + 1/3\lambda_3$$

where

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

 $0 \le \lambda_i \le 1, i = 1, 2, 3$

Basic	×,	Xz	×з	2,	5,	2
	-2	-1	3	0	O	0
S	ı	-1	[5]	1	O	10
S ₂	2	-1	3	0	1 .	40
Z	-7/5	2/5	0	3/2	0	6
X3	T.	-115	1	1/5	0	2
<u>S2</u>	7/5	-2/5	0	-3/5	1	34
Z	0	~1	7	2	0	20
×ı	1	1	S	1	0	10
Sz	B		-7	-2	1	20
Z	0	0	o	0	1	40
Χı	1	0	-2	-1	0	30
×2	0		-7	-2	1	20

ophima. However, because all
skin constraint coefficients are
negative (in general, <0), none
Cen yield an alternative (corner point) basic
solution.

	B.	I						3
	Nic	×ı	Xz	X ₃	S,	Sz	Ş	301 0.
	8	-3	-1	0	0	•	Ø	0
٨	Sı	1	2	0	1.	0	0	5
0	52		1	-1	0	1	0	2
	Sz	7	3	-5	0	0	j,	20
	3	0	2	-3	. 0	3	0	6
K.	Sı	Ð	J	П	1	-1	0	3
7	X,	,	1	-7	0	1	Ø	2
,	Sz	٥	-4	ż	0	-7	1	6
	3	0	5	٥	3	0	0	15
Ŋ	Хз	0	1	1	1	-/	٥	3
	X,	1	2	0	1	0	0	5
	53	0	-6	0	-2	-5	İ	0

The optimism colution is degenerate fecause 53 is basic and equal to zno. Also, it has alternative nonfassic solutions be cause 52 has a zero coefficient, in the Z-row and all its constraint coefficients are ≤ 0 .

Baric	×,	X ₂	S,	Sz	, L
Z	-2	-/	0	0	6
S,	1	-1	1	0	10
Są	· Z	. 0	o	1	40
Z	0	~3	2	0	20
X,	1		1	ø	10
S.ª	0	2	-2	1	20
Z	0	D	1/1/	3/2	50
×,	ı	0	0	1/2	20
XZ	0	1 .	71	1/2	10
	unbou	nded _	1		l

(b) Objective value is unbounded because each unit increase in X2 increases Z by 10

Solution coefficients of a variable are ≤ 0 , then ite solution apace is unbounded in the direction of that variable. A more "fool proof" way of accomplishing this task is to solve a sequence of LPS in which the objective function is Maximize $Z = X_j$, j = 1, 2, ..., n Subject to the constraints of the problem. For the unbounded variables, $Z = \infty$.

 X_1 = number of units of T1 X_2 = number of units of T2 X_3 = number of units of T3

Constraints:

 $3X_{1} + 5X_{2} + 6X_{3} \leq 1000$ $5X_{1} + 3X_{2} + 4X_{3} \leq 1200$ $X_{1} + X_{2} + X_{3} \geq 500$ $X_{1}, X_{2}, X_{3} \geq 0$

We can use Place I to see whether the problem has a feasible solution; that is,

minimize $r = R_3$ subject to $3X_1 + 5X_2 + 6X_3 + S_1 = 1000$ $5X_1 + 3X_2 + 4X_3 + S_2 = 1200$ $X_1 + X_2 + X_3 = S_3 + R_3 = 500$ $X_1, X_2, X_3, S_1, S_2, S_3, R_3 \ge 0$

Optimum Solution from TORA: R3= r= 225 units

This is interpreted as a deficiency of 225 units. The most Hat can be produced is 500-225 = 275 units

							No.
Basic	×,	XZ	x ₃	S,	Sį	R,	Sola
	-3	-2	-3				
	-3M	-4M	−sM	М	٥	0	-8 M
5,	2		1	0	1	0	2
R	3	4	2	-1	0	İ	8
	-1		-1		2		
Z	+5M	0	45 M	M	+4M	0	4
-X2	2	1	I	0	. 1	0	2
Ri	-5	0	-2	-1	-4	1	0

Because R, = 0 in the optimal tableau, the problem has a feasible solution. The optimum solution is

X=0, X=2, Z=4

Note that in the first iteration, R, could have been used as the leaving variable, in which can it would not be basic in the optimum iteration.

X_=Nbr. units of product A
Xz=Nbr. units of product B
Maximize Z = 2x, + 3xz
S.L.

 $3x_1 + 2x_2 \le 8$ (M1) $3x_1 + 6x_2 \le 18$ (M2)

1 ×1, ×2 ≥0		MI	M2	Z
B	A= (4,0)		12	8
C MI Optimum	B=(0,4)	_	24	12
6 (2,2), Z=10	C = (0,3)	6		9
	D= (6,0)	12		/2
WS	/			

(a) MI at
$$C = 2(0) + 2(3) = 6$$

MI at $D = 2(6) + 2(0) = 12$
Z at $C = 2(0) + 3(3) = 9$
Z at $D = 2(6) + 3(0) = 12$
Dual price = $\frac{12-9}{6} = \frac{4}{50}$ (be an interpretable range = $(6 \le MI \le 12)$)
M2 at $A = 3(4) + 6(0) = 12$
M2 at $A = 3(0) + 6(4) = 24$
Z at $A = 2(4) + 3(0) = 8$
Z at $A = 2(0) + 3(4) = 12$
Dual price = $\frac{12-8}{24-12} = \frac{4}{5} \cdot 33 / 4$ unit
Range: $12 \le M2 \le 24$

- (b) Dual price = \$.50/unit volid in the range 6 ≤ MI ≤ 12 Increase in revenue = .5×4 = \$2.00 Increase in cost = .3×4 = \$1.20 Cost < Revenue - purchase recommended
- (c) Dual price = \$.33/write valid m'

 The range 12 ≤ M2 ≤ 24

 Purchase price / unit < .33
- (d) Dual puce = \$.33/unit valid m'

 *b. large 12 ≤ M2 ≤ 24. M2 ii

 vicreased from 18 to 23 units

 Increase in perence

 = 5 × · 33 = \$1.65

New optimum revenue = 10+1.65=\$11.65

 X_1 = daily number of type 1 fat X_2 = daily number of type 2 fat X_3 = daily number of type 2 fat X_4 = X_5 =

(a) Optimum
occurs at B:

X1 = 100 Type 1 hats

X2 = 200 Type 2 hats

E = \$1800

×,, x,≥∪

(b) A = (0,200), C = (150,200)

	Capacity	Z `
A	2×0+ /×200 = 200	8×0+5×200 = 1000
c	2×150 +1×200 = 500	8 x 150 + 5 x Zoo = 2 ZOU

Worth/capacity unit = 2200-1000 500-200 = \$4 -per type 2 hat

Range: (200, 500)

(c) Dual price = 0 in the range (100, 0)

Thus, change from X, \le 150 to X, \le 120

has no effect on optimum Z.

(d) Let d = demand lamit for type 2 hat

 $\frac{Q}{D(150,100)} = \frac{Q}{100} = \frac{Z}{100} = \frac{1700}{100} = \frac{1700$

Dual price = 2000-1700 = \$1.00 400-100 Range (100, 400) Maximum increase in demand limit for type 2 hat = 400-200 = 200 hats

(a)
$$\frac{3}{6} \le \frac{CA}{CB} \le \frac{2}{2}$$
, or $.5 \le \frac{CB}{CB} \le 1$ or $1 \le \frac{CB}{CA} \le 2$

(b) Maximize Z = 2xp + 3xB

$$C_{B}=3: 3x.5 \leq C_{A} \leq 3x1$$

 $1.5 \leq C_{A} \leq 3$

CA=2: 2x.5 < CB < 2x2

$$1 \le c_8 \le 4$$

(c) $\frac{CA}{Ca} = \frac{5}{4} = 1.25$, which falls outside the range . 5 = $\frac{CA}{CB}$ = 1. Ophimum Solution changes and must be computed anew. New Solution: X=4, XB=0, Z= \$20.

(d) Case 1: Z = 5 XA + 3 XB G=5 falls outside de range (1.5,3), hence the optimum changes. New Optimum in XA=4, X8=0, Z=120.

Case 2: Z = 2 X + 4 KB G= 4 fallo mi oh range (1, 4), hence optimum is unchanged at Xq=Xg=2,

Z=2(z)+4(a)=12 $\frac{1}{2} \leq \frac{G}{G} \leq \frac{6}{4}$, or

$$5 \le \frac{C_1}{C_2} \le 1.5$$
 or $\frac{2}{3} \le \frac{C_2}{C_1} \le 2$

(b) Given C, = 5, then $5(\frac{2}{3}) \le C_2 \le 5(2), \text{ or } \frac{10}{3} \le C_2 \le 10$

(c) $\frac{C_1}{C_2} = \frac{5}{3} = 1.67$, which falls outside He range $.5 \le \frac{G}{C_2} \le 1.5$. Hence the solution changes

 $(a) \frac{o}{i} \leq \frac{c_i}{c_s} \leq \frac{z}{i}, \sigma$ $0 \le \frac{c_1}{c_2} \le 2$

(b) $\frac{C_1}{c_2} = 1$, which falls in the range 0 = 9 = 2. Hence, ife solution is unchanged.

Feasibility conditions?

$$X_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2$$

$$x_3 = 230 + \frac{1}{2}D_2$$

$$X_6 = 20 - 2D_1 + D_2 + D_3$$

$$X_2 = 100 + \frac{1}{2}(8) - \frac{1}{4}(40) = 94 > 0$$

$$X_3 = 230 + \frac{1}{2}(40) = 250 > 0$$

$$X_6 = 20 - 2(8) + 40 - 10 = 34 > 0$$

Dual prices:

$$D_2 = 440 - 460 = -20$$

$$X_2 = 100 + \frac{1}{2}(30) - \frac{1}{4}(-20) = 120 > 0$$

$$x_3 = 230 + \frac{1}{2}(-20) = 220 > 0$$

(4) Overtime cost
$$\frac{50}{60} = *.83$$
/min

Revenue (dual price) for operation ! is \$1/min.

Cost & Revenue => advantageous

(b) Duel price for operation 2 = \$2/min volid in the range - 20 ≤ D ≤ 400 Uz = 120 minutes Revenue increase = 120 x2 = 240 Cost increase = 2 (\$55) = 110 Revenue > cost => accept.

(c) No, resource 3 is already abundant. This is the reason its dual price = 0

(d) Dual price for operation 1 is \$1/min, valid in the range - 200 \le D, \le 10

$$Cost = \frac{10}{6} \times 40 = 6.67$$

Not recommended.

$$X_{j} = units of product i = 1, 2, 3$$

Maximize Z= 20X, +50Xz+35X3

$$-.5X_1 + .5X_2 + .5X_3 \leq 0$$

$$2x_1 + 4x_2 + 3x_3 \le 240$$

$$X_1 = X_2 = 40, X_3 = 0$$

	ж,	Xz	×3	S,		23	
Z	6	٥	10/3	20/3	O	35/3	2.800
Χz	0	6	5/6	2/3	0	1/6	40
Sz.	1	٥	116	4/3	1 .		35
×,	Ò	. 1	-1/6	-4/3	0	1/6	40

(b) Z + 10/3 x3 + 20/3 S, + 0 S2 + 35/3 S3 = 2800

Dual-price for naw material = 35/3 /16

$$X_2 = 40 + D_3/6$$

 $S_2 = 35 - D_3/6$ $\Rightarrow -240 \le D_3 \le 2/0$

en solution:

$$X_1 = 40 + \frac{120}{6} = 60$$
 units

$$X_2 = 40 + \frac{120}{6} = 60$$
 units

3-23

(c) Dual price = 0, -35 ≤ D, < 0 ±107875 = ±7.5 a Change has no effect on the Solution

Xj = units of productj, j= 1,2,3,

4

Maximize Z = 4.5x, + 5x2 + 4x3 5.4.

10x, +5x2+6x3 = 600 $6x_1 + 8x_2 + 9x_3 \le 600$ 8x, +10x2+12x3 \ 600 X, , x 2 , X 3 2 0

(a) Solution: Z = \$325 $X_1 = 50, X_2 = 20, X_3 = 0$

(b) Optimum tableau

	×,	ΧŁ	×3	5,	5,	وک ي	
Z	0	0	2	-083	0	.458	325
X,	1	0	0	-167	0	083	50
Si		0	6	.067	ı	833	140
Xz	σ	1	1.2	/33	0	./67	20

Z+2x3+.0835, +052+.45853 = 325

Dual prices:

Process 1: \$.083/min

2: \$0/min 3 : \$.458/min

Process > Process 1.

(C) Process 1: 60x.083 = \$4.98

3: 60x.458 = \$27.48

X, = Nbr. of practical courses X2 = Nbr. of humanistic courses

Maximize Z = 1500x, +1000 Xz

(1) $X_1 + X_2 + S_1 = 30$

 $-S_2 = 10$ (5)

 $X_2 - S_3 = 10$ (3)

X, 1/2, 5, ,5,,53 70

(a) Solution:

Z = \$40,000

X, = 20 courses

X2 = 10 Courses

(b) From Tora,

Z+15005,+052+50053 = 40,000

S, is a slock, Sz and Sz are surplus

Deal prices:

constraint 1: \$ 1500 /course

Constraint 2: \$0/min limit course Constraint 3: -\$500/min limit course

Dual price for constraint I equals the revenue per practical course. Hence, an additional course must necessarily be of the practical type.

(C) From TORA,

 $S_z = 10 + D_1 \ge 0$ $X_1 = 20 + D_1 \ge 0$ $-10 \le D_1 < \infty$

Thus, It dual price of \$1500 for constraint I is valid for any number of courses = 30-10 = 20.

(d) Dual price = - \$500. To determine the range when it apphies, we have for TORA

S = 10 - D3 =07 x, = 20-D3 20 \ -10 \ D3 \ 10 $X_2 = 10 + D_3 \ge 0$

A unit increase in lower limit on humanistic course offering (i.e. from 10 to 11) decreases nevenue by \$500

X, = Radio minutes

Xz=TV minutes

X3 = Newspaper ads

Maximile Z = X, +50 x2 + 5 x3

s.t. 15x, +300x2 + 50x3 \(10000 (1)

(5) X3 > 5

(3) ≤ 400

(4)-x, +2x2

 $X_1, X_2, X_3 \geq 0$ Solution: Z = 1561.36

X, = 59.09 min, X2 = 29.55 min, X3 = 5 ods

continued.

(b) 5,53,54 = blacks accordated with constraints 1, 3, and 4 Sz = Surplus associated with constraint Z From TORA's optimum tableau: 59.091 +.006D, -. 303D2 --909Da ≥0 340.909-.006D,+.303D2 + D3 +.909D4=0 29.545+.003D,-152D2 +.045D430 Constraint Dual Price RHS RangeT (250, 66250) -2.879* (0, 2000) 0 (59.09,00) 1.3636 (-375, 65)* Negative because Sz in a surplus ramable + These results are taken from TORA output. They differ from these computed from the given Di- Conditions because of roundoff croor Conclusions: 1. Increasing the lower limit on the number of newspaper ads is not advantageous because the associated 2. Increasing the upper limit on radio minutes is not warranted because its dual price is zero (the current limit is already.

abundant).

(c) Dual price = .158/budget \$ volid in the range 250 \$ \$ 66250.

50% budget in crease = \$5000, or budget will be increased to 15,000.

Encrease in Z = .158 × 5000 = 790

(4) $X_1 = Nbr. Shirts / week$ $X_2 = Nbr. blowson / week$ Maximize $Z = 8X_1 + 12X_2$ S.t. $20X_1 + 60X_2 \le 25 \times 60 \times 40 = 60,000$ $70X_1 + 60X_2 \le 35 \times 60 \times 40 = 84,000$ $12X_1 + 4X_2 \le 5 \times 60 \times 40 = 12,000$ $X_1, X_2 > 0$

Set 2.30

Set 3.30

Set 3.40

Set 3.40

Set 2.30

Set 3.40

Set 3

(c) Breakeven wages are \$7.20/hr for cutting and \$4.80 for sewing

(a) $X_1 = unit_0 f$ solution A $X_2 = unit_0 f$ solution B $Maximize Z = 8X_1 + 10X_2$ $S.t. \quad .5X_1 + .5X_2 \le 150 \qquad (1)$ $.6X_1 + .4X_2 \le 145 \qquad (2)$

 $30 \le X_1 \le 150$ (3) $40 \le X_2 \le 200$ (4) Solution: $Z = {}^{4}2800$

 $X_1 = 100 \text{ units}, X_2 = 200 \text{ units}$ (b) Define $S_1, S_2, S_3, S_4 = \text{slacks in constraints}, Z_3, 4$ $S_5, S_6 = \text{surplus variables associated}$

25, S6 = surplus variables associated with the love bounds of constraints 3 and 4.

From TORA's optimum tafliau: Z+165,+05z+05z+25z+05z+05z=2800

Conolting: $S_{z} = 70 + 2D_{1} - D_{2} - D_{5} \ge 0$ $S_{z} = 5 - 1.2D_{1} + D_{2} + .2D_{4} \ge 0$ $S_{3} = 50 - 2D_{1} + D_{3} + D_{4} \ge 0$ $X_{1} = 100 + 2D_{1} - D_{4} \ge 0$ $X_{2} = 200 + D_{4} \ge 0$ $S_{3} = 160 + D_{4} - D_{6} \ge 0$

continued.

Constraint	Dual price	RHS-range
1	16	(115, 154.17.
2	0	(140,00)
3 (upper)	0	(100,00)
3 (lower)	0	(-00,100)
4 (upper)	2	(175, 270)
H(lowa)	0	(-00,200)
Increase a	i raw mater	ial I and in

advantageous because their dual prices (16 and 2) are positive.

(c) Increase in revenue /unit = \$16 Increase in cost/unit = \$20 Not recommended!

(d) Qual price for raw material 2 is zero because it is abundant. No increase is warrented.

X = Nbr. DiGi-1 X2 = Nbr. DiGi-Z Si=Idle minutes for station i, i=1,2,3 The objective is to minimize S,+Sz+Sz. To express the objective function in terms of X, and X, consider $6x_1 + 4x_2 + 5_1 = .9x480 = 432$ 5x, + 4x2 +52 = .86x480 = 412.8 4x, +6x2 +53 = . 88x480 = 422.4

Thus, 5,+5+5= 1267.2-15x,-14x2 Maximize Z= 15X1+14X2 5.7.

= 4326x, + 4x2+51 5x, + 4x2 +52 = 412.8 $+S_3 = 472.4$ 4x, + 6x2 $X_1, X_2, X_3, X_5, X_5 \geq 0$

I represents the total used time in the three stations in minutes. Solution: Z=1241.28 minutes $X_1 = 45.12 \text{ units}, X_2 = 40.32 \text{ units}$

Utilizatin = 124,28 x 100 = 97.95 % cont

(b) From TORA, Z+1.75, +052+1.253 = 1241.28 Conditions: $X_1 = .3D_1 - .2D_3 + 45.12 \ge 0$ $S_2 = -.7D_1 + D_2 - .2D_3 + 25.92 \ge 0$ $X_2 = -2D_1 + .3D_3 + 40.32 \ge 0$ Station Dual Price RYSKange 281.6,469.03 2 386.88,00 3 288, 552

1% decrease in maintenance time is equivalent to D, = Dz = D3 = 4.8 minutes. This is equivalent to having Daily minutes

436.8 417.6

All three daily minutes fall within the allowable ranges. Thus Increase in utilized time I day 4.8 x 1.7 = 8.16 minutes 48 x0 =0 4.8x1.2 = 5.76

(c) D, = ·9 (600-480) = 108 min $D_2 = .86(600 - 480) = 103.2$ D3 = .88 (600-480) = 105.6

From the conditions in (b) x, = .3x 108 - .2 × 105.6 + 45.12 = 56.4 S2 = -. 7x 108 + 103.2 -. Zx 105.6 + 25.9= 32.4

X2 = -. 2 x /08 +. 3 x /05.6 + 40.32 = 50.4 Solution is fearible. Hence dual prices remain applicable and the net utilization is micreased by 1.7×108 + 0×103.2 + 1.2×105.6 = 310.32 minutes. Because station 2 has zero dual price, its capacity need not be increased. The associated cost Shus equals 1.5 (600-480+0+1.5 (600-480) = \$360.

The proposal can be improved by recommending that Station 2 time remain unchanged.

X, = Nbr. purses / day	10
X2 = Nbr. bags /day	-
X3 = Nbr. backpacks/day	
Maximize Z = 24x, +22x2 + 45 x3	
1 3.F.	
$2X_1 + X_2 + 3X_3 \leq 42$	
$2x_1 + x_2 + 2x_3 \le 40$	
$\frac{X_1 + SX_2 + X_3}{2} \leq 45$	
$X_1, X_2, X_3 \geq 0$	
Solution: Z = #882, X1=0, X2 = Z, X3 = 30	6
Letting 5, , 5, , 53 be the slacks in	
constraints 1, 2, and 3, we get	
Z+20x, + S, +2152+053 = 882	
Conditions:	
$X_3 = 2 + D_1 - D_2 \geq 0$	
$X_2 = 36 - 2D_1 + 3D_2 \ge 0$	
$S_3 = 2S - SD_2 + D_3 \geq 0$	
Resource Dualprice RHS Ranges	
Seather 1 (40,60)	•
Sewing 21 (28, 42)	
Finishing 0 (20,00)	,
(a) Available leather = 45 ft falls in d	4
RHS range. Solution remains feasible.	
D, = 45-42 = 3. New solution:	
X,= 0	
x ₂ = 36-2x3 = 30	
X3 = Z+3 = 5	1
$Z = 882 + 1 \times D$, = $882 + 1 \times 3 = 885	
(6) Available leather = 41 ft falls in the	
KHS range and the Solution remains	
Jeauble. D, = 41 - 42 = -1	
$X_2 = 36 - (2x - 1) = 38$	
$X_3 = 2 - 1 = 1$	
Z = 882 + (x-1) = 881	.
(c) Severy Lours = 38 falls within the RH	2
range. Dz = 38-40 = - Z. Dual priu =	51
$X_2 = 36 + 3x - z = 30$	
$x_3 = 2 - (-z) = 4$	
Z = 882 + (21x - 2) = \$840	
	. 1

(d) Sewing hours = 46 hours fallo outsich the RHS range. Thus, the current optimum basic solution is infamille. To obtain the new solution, either solve the problem anew or use the algorithms in chapter 4.

(e) Finishing hours = 15, which falls outside the RHS range, Hence, resolve the problem

(f) Sewing hours = 50, which falls in the RHS range. D3 = 50-45 = 5. Solwhon remains unchanged because dual price is zero and D3 does not appear in the expression for X2 or X3.

(d) Dual price = \$21/hr, which is higher than the cost of an additional worker per hour. Hiring is recommended.

X. = Nbr. model 1 units

 $X_1 = Nb_1$ model 1 units $X_2 = Nbr$. model 2 units $Maximize z = 3X_1 + 4X_2$ S.f. $2X_1 + 3X_2 \le 1200$ $2X_1 + X_2 \le 1000$ $4X_2 \le 800$ $X_1, X_2 \ge 0$ Solution: z = \$1750 $X_1 = 450, X_2 = 100$

(a) S, = 0 ⇒ Resistors scarce S2=0 ⇒ Capacitors scarce S3=400 ⇒ Chips abundant

(b) $Z + \frac{5}{4}S_1 + \frac{1}{4}S_2 = 1750$

Resource	Dual price
Resistors	\$ 1.25 / recistor
Capacitors	\$.25/capacitor
Chips	\$ 0/chip

(C) Conditions:

 $X_1 = 450 - \frac{1}{4}D_1 + \frac{3}{4}D_2 \ge 0$ $S_3 = 400 - 2D_1 + 2D_2 + D_3 \ge 0$ $X_2 = 100 + \frac{1}{2}D_1 - \frac{1}{2}D_2 \ge 0$ Feasibity ranges:

450 - :25 D, 20 } - 200 < P, < 200 100 + .5 D, 20 } - 200 < P, < 200

continued..

continued.

 $450 + .75D_2 \ge 0$ $400 + 2D_2 \ge 0$ => $-200 \le D_2 \le 200$ $100 - .5D_2 \ge 0$

 $400+D_3 \ge 0 \implies -400 \le D_3 < \infty$ (d) $D_1 = 1300 - 1200 = 100 \text{ in the allowable range } -200 \le D_1 \le 200$. $\Delta Z = 100 \times 1.25 = 7/25$ $X_1 = 450 - .25 \times 100 = 425$ $X_2 = 100 + .5 \times 100 = 150$

 $X_2 = 100 + .5 \times 100 = 150$ New $Z = 1750 + \Delta Z = $^{\frac{1}{2}} 1875$

(e) D₃ = 350 - 800 = -450, which falls outside allowable range -400 ≤ D₃. Thus, basic dolution and dual price charge and the problem must be solved anew.

(f) $-200 \le D_z \le 200$, detalpria = .25. Thus, $-200 \times .25 \le \Delta Z \le 200 \times .5$ $-50 \le \Delta Z \le 50$ \$ 1700 \le Z \le \$ 1800

 $450 - .75 \times 200 \le X_1 \le 450 + .75 \times 200$ $100 - \frac{1}{2}(-200) \le X_2 \le 100 - \frac{1}{2}(+200)$

(9) Cost of punchasing 500 additional resistors = 500×.40 = \$200
D, = 500 resistors

Dual price of \$1.25 is valid in -200 ≤ D, ≤ 200. Thus, for observate 200 resistors alone, HiDec will get an additional revenue of 200 × 1.25 = \$250, which is more than the cost of all 500 resistors. Accept.

From Example 3.6-2, we have for the TOYCO model

 $-200 \le D_1 \le 10$ $-20 \le D_2 \le 400$ $-20 \le D_3 < \infty$

(9) D, = 8, Dz = 40, D3 = -10

All Di, i=1, 2, 3 fall within the feasibility ranges. Thus continue

r, = $\frac{8}{10}$, $r_2 = \frac{40}{400}$, $r_3 = \frac{-10}{-20}$ $r_1 + r_2 + r_3 = .8 + .1 + .5 = 1.4 > 1$ Hence, no conclusion can be made about the feasibility of the new RHS (438,500,410). Frob lem 1(a) shows that these new values do pro-duce a feasible solution.

(b) D,=30, Dz=-20, Dz=-40.

Because D, and Dz fall outside the
given feasibility ranges, the 100%

rule cannot be applied in this case.

(a) From TORA, $X_1 = 2 + \frac{2}{3}D_1 + \frac{1}{3}D_2 \ge 0$

 $X_2 = 2 - \frac{1}{3}D_1 + \frac{2}{3}D_2 \ge 0$

Feasibility rangeo: -3 ≤ D, ≤ 6 -3 ≤ D, ≤ 6

(b) $D_1 = D_2 = \triangle > 0$. Thus $X_1 = 2 + \triangle/3 > 0$ for all $\triangle > 0$ $X_2 = 2 + \triangle/3 > 0$

 $\chi_2 = 2 + 2/3$ 100% rule for $0 < \Delta \le 3$:

 $r_1 = r_2 = \frac{\Delta}{6} \le \frac{3}{6} \Rightarrow r_1 + r_2 < 1$, which confirms feasibility for 0 < D < 3

100 % rule for $3 < \Delta \le 6$: $\Gamma_1 = \Gamma_2 = \frac{\Delta}{6} \Rightarrow \frac{3}{6} \le \Gamma_1, \Gamma_2 \le \frac{6}{6}$ $\Gamma_1 + \Gamma_2 \ge 1 \Rightarrow \text{cannot confirm feasibily}.$

100 % rule for △>6:

 \triangle is outside $-3 \le D$, $D_z \le 6$. Thus, the rule is not applicable.

	,
From Section 3.6.3, we have the	1
following optimality conditions for	
Le TOYCO model:	
X,: 4-4d2+3d3-d, ≥0	
xy: 1+ 1/2 d2 ≥0	
X5: 2- 1/4 d2+ 1/2 d3 ≥0	٠
(i) $Z = 2x_1 + x_2 + 4x_3$	
$d_1 = 2-3 = -1$, $d_2 = 1-2 = -1$, $d_3 = 4-$	S=-1
$x_1: 4-\frac{1}{4}(-1)+\frac{3}{2}(-1)-(-1)=3.75$	0
X4: 1+ (-1) = .5 >0	
x5:2-4(-1)+1(-1)=1.75>0	
Conclusion: Solution is unchange	d
$(ii) Z = 3X_1 + 6X_2 + X_3$ $d = 3 - 3 - 0 \text{of} -6 \text{of} 1 = 3 - 4 = 6$	-),
$d_1 = 3-3 = 0, d_2 = 6-2 = 4, d_3 = 1-5$ $x_1: 4-\frac{1}{4}(4) + \frac{3}{2}(4) - (0) = -3 < 0$	=-4
Conclusion: solution changes	
(iii) $Z = 8x_1 + 3x_2 + 9x_3$	
$d_1 = 8-3=5, d_2 = 3-2=1, d_3 = 9-5$	= 4
$X_i: 4-\frac{1}{4}(i)+\frac{3}{2}(4)-(5)=4.75$	0
x4: 1+1(1) = 1.5 >0	
$X_5: 2 - \frac{1}{4}(1) + \frac{1}{2}(4) = 3.75 > 0$	1
Conclusion: Solution is unchange	
I see all married III	

X, = Nbr. cars of	A	
X = Nbr. cans of X = Nbr. cans of X3 = Nbr. cans	QAZ	
V - Nbr. cano	A BK	
Maximize Z = 8	20 X, +70X, +	60 XZ
-		_
XI+XZ+	X3 5 500	€ Si
1 -	≥ 100	$\neq S_2$
ì		
4x, -2x2	-6 ^3 \times 0	∠ S ₃
X, , X2	.×. ≥0	
1 712727	, , , , , , , , , , , , , , , , , , , ,	

TORA optionum tableau.

Basic	x,	Xz	Х3				Solution
Z		0	10	73,33	0	1.67	36666.67
X ₂		<u> </u>	1				333.33
x,	•	0	0	•33	0	.17	166.67
Sz		O ²	Ö	.33	1	-17	66.67

(a) Z = 4366.67X, = 166.67, X2 = 333.33, X3 = 0

(b) Reduced cost for X3 = 10 cents. Price Should be increased by more shan 10 cents/can

(c) $d_1 = d_2 = d_3 = -5$ cents From the optimum tableaug reduced costs: x3: 10+d2-d3=10-5-(-5)=10>0 S,: 73.33 +. 67 dz +. 33 d, = 73.33+.67(-5)+.33(-5)=68.33>0

S3: 1.67-.17d2+.17d,=1.67-.17(-5)+.17(-5)

conclusion: Solution is unchanged.

(a) Available carpenter Lours on a 10-day period = 4 x 10 x 8 = 320 X, = Nbr. chains assembled in 10 days X2 = Nbr. tables assembled in 10 days Maximize Z = 50x, + 135 Xz

.5 x, +2x2 < 320 $4 = \frac{x_1}{x_2} \le 6 \Rightarrow \begin{cases} x_1 - 4x_2 \ge 0 \\ x_1 - 6x_2 \le 0 \end{cases}$ X,, X2 30

Solution: Z = \$27,840, X, = 384, X, = 64 (b) Optimum tableau:

27840 6.5

64 384 1.2 128 Optimality conditions:

5,: 87+1.2d, +.2d2 >0 S3: 6.5 +.4d, -.1d2 ≥0 For d, = -5, d2 = -13.5: S,: 87+1.2(-5)+.2(-13.5) = 78.3>0 S3: 6.5+.4(-5)-.1 (-135)= 5.85>0 Solution remains The same (c) d,= 25-50 = -25, d2= 120-135=-15 5:87+1.7(-25)+.2(-15)=58.5>0 53:6.5+4(-25)-1(-15) = -2 < 0

continued.

Solution changes

(a) x, = Amt. of personal loan (\$) X2 = Amt. Of car loan (4)

Maximize $Z = .14(X_1 - .03X_1) + .12(X_2 - .02X_2)$ - · 03 X, - · 02 X2

= .1058x, + .0976Xz

5.4.

X, + X2 = 200,000

 $\frac{X_2}{X} \ge 2 \text{ or } 2X_1 - X_2 \le 0$ X, , X2 >0

Solution: Z = \$20,067

 $X_1 = {}^{\#}66,667, X_2 = {}^{\#}/33,333$

Rate Greturn = 20,067 x 100 = 10.03/

(b) Optimum tableau:

	X,	Χz	Sı	چ.	Solution
Z	0	σ	- /003		20066.67
X_2	0	1	. 6667	3333	/33333.33
×,	1	0	.3333	•3333	66666.67

Optimality conditions:

S,: . 1003 + . 333d, + . 6667 d2 >0

 S_2 : .0027 +.3333d, -.3333d2 ≥ 0

New x,- dijective coefficient = .14(1-.04)-.04

New Xz - objective coefficient = . 12 (1-.03)-03

d,= .0944-.1058 = -.0114

 $d_2 = .0864 - .0976 = -.0112$

S;: · 1003 + · 3333 (- · 0114) + · 6667 (- · 0112)

=·08907 >0

Sz: .0027 +.3333 (-.0114) -. 3333 (-.0112) = .00267 >0

Solution does not change

(a) Xi = Non of units of motor i, i=12,34 Maximize $Z = 60X_1 + 40X_2 + 25X_3 + 30X_4$

5.t. 8x1+5x2+4x3+6x4 X, £500, X2 £500, X3 £800, X4 £750

X1, X2, X3, X4 ≥0

Solution: Z= \$59,375, X=500, x,=500, x3=375 price per case of sauce remains

(b) Optimality constitions (from TORA):

 $X_4: 7.5 + 1.5 d_3 - d_4 \ge 0$

S,: 6.25 + .25 d3 ≥0

Sz: 10-2d3+d, 20

S3: 8.75-1.25 d3+d2 ≥0

From 53, 8.75+d2>0 => -8.75 \le d2 <00 Thus, price of type 2 motor can be reduced by at most \$8.75 without Causing a solution change.

(C) $d_1 = -15$, $d_2 = -10$, $d_3 = -6.25$, $d_4 = -7.5$ Solution remains the same because $x_4: 7.5+1.5(-6.25)-(-7.5)=5.625>0$

S,: 6.25 +.25(-6.25) = 4.6875 >0

52: 10-2(-6.25)+(-15)=75 >0

53: 8.75 - 1.25(-6.25) + (-10) = 6.5625 >0

(d) Reduced cost for Xy = 7.5. Increase

price of type 4 motor by more than \$7.50.

(9) X, = Case of juice / day

X2 = Cases of sauce / day x3 = cases of paste/day

Maximize $Z = 21X_1 + 9X_2 + 12X_3$

5.4. $(1 \times 24) \times 1 + (\frac{1}{2} \times 24) \times 2 + (\frac{3}{4} \times 24) \times 3 \le 60,000$ X, \$2000, X2 = 5000, X3 = 6000

X1, X2, X3 20

Solution: Z = \$51,000

 $X_1 = 2000, X_2 = 1000, X_3 = 0$

(b) From TORA, optimally conditions gwen dz:

X2:1.5+1.5d2≥0 => d2≥-1

S,:.75 +.083 d, >0 => d2 = -9

Sz: 3-2d2 >0 => d2 <1.5

Thus, -1 = d2 = 1.5, or

9-1 & price/case of same & 9+1.5 Solution mix remains the same if the

between \$ 8 and \$ 10.50.

(4) X, = Nbr. regular cabinets /day

X= Nbr. deluxe Cabinets /day

Maximize Z = 100 X, + 140 X2

5+. 5x. + X. \leq 180

$$5x_1 + x_2 \le 180$$

 $x_1 \le 200$
 $x_2 \le 150$

Solution: Z = \$31,200 $X_1 = 200$ regular

$$X_2 = 80$$
 delaxe

(b) From TORA, optimality conditions:

Solution remains the same

(a) For the original TOYCO model,

TORA gives (also see Section 3.6.3)

-00 < d < 4 2 < 1 < 2 < 1

 $-\infty < d_1 \le 4, -2 \le d_2 \le 8, -8/3 \le d_3 < \infty$

(ii) Original Z = 3x,+2x2+5x3 Now Z = 3x,+6x2+x3

i	di	21c-	Vi.	r.
1	0		4	0/4=0
2	4		8	4/8 = 1/2
3	-4	-8/3		$-4/-\frac{8}{3} = 3/2$

The 100% rule is nonconclusive in The 100% rule is nonconclusive in this case. The solution in Problem 1 (ii) Shows that the tolution will change

(iii) Original Z=3x,+2x2+5X3 New Z=8x,+3x2+9X3

$$r_1 + r_2 + r_3 = \frac{5}{4} + \frac{1}{8} = \frac{11}{8} > 1$$
 continued

7 The 100% rule is nonconclusive. Yet Problem 1 (iii) Show that the solution remains unchanged.

The two cases demonstrate that the 100% rule is too weak to be effective in decision making, and that it is more reliable to utilize the simultaneous optimality conditions given in Section 3.6.3.

(b) $-30 \le d_1 < \infty$, $-140 \le d_2 \le 60$ New $Z = 80 \times_1 + 80 \times_2$

Original $Z = 100X_1 + 140X_2$

 $\gamma_1 + \gamma_2 = \frac{2}{3} + \frac{3}{7} = \frac{23}{21} > 1$

The 100% rule is nonconclusive. Yet, Problem 7(6) shows that the Solution remains unchanged. See file solver 3.6e-1. XIs in ch3 Files

Dual prices for years 1,2,3, and 4 are
0,0,0,2.89. Thus, for year 4, one
(Howard) additional dollars in creases Z
by \$2.89 thousand. It is worthwhile to
increase the funding for year 4.

See file to	ra 3.6e-2.+x	t C
Constraint		
1	5.36	(0,00)
Z	-3.73	(-00,6000)
3	-1.13	(-00, 6800)
4 5	-1.07	(-00,33642)
3	-1-00	(-0,53628.73)

(a) Constraint 1: X,+Xz+Xy+J ≤ 10,000 Dual price = \$5.36/mivested \$ Rate freturn = 536%

(b) Constraint 2: \$1000 spendon pleasure

.5x, +.6x2-x3 +.4x4+1.065y-y=1000

Dual price = -3.73/pleasure \$
Range = (-0, 6000)

Spending \$1000 at end of year 1

reduces total return by \$3,730.

See file to	ra 3.6e-3.t	xt in ch3 Files
Quarter	Dual price	Range
1	1.2488	·6647, 2·5806
Z	1.2443	-6580, 2.6122
3	1.1945	2646,1.1245
4_	1-0200	2553,00
5	1.0000	-4.8366,00

(a) An additional & available at the start of quarter 1 is worth \$1.24888 at the end of 4 quarters. Similarly, an additional dollar at the stook of preciods 2,3, and 4 is worth \$1.2443, \$1.1945, \$nd \$1.02, respectively. The dual price for quarter 4 (= \$1.02) shows that all we can do with the money then is to invest it at 2% for the greater.

We can use the dust price to determine

the rate of return for each quarter - namely, quarter 1: $1.2488 = 1.2243(1+i) \implies i_1 = .02$ quarter 2: 1.2243 = 1.1945 (1+i) => i2 = .025 quarter3: 1.1945 = 1.02 (1+1) => quarter 4: 1.02 = 1.0 (1+14) => (b) The dual price associated with the upper bound on B3 (UB-X10) is 4. 149. It represents the networth per dollar borrowed in period 3. also, an extra dollar in period 3 is worth \$1.1945 at the end of the Rougon However, if that dollar is borrowed, it must be repaid as \$1.025 in the next quarter. The nepayment is equivalent to forgoing making 2% in interest. Thus, the networth of borrowing in period 3 $1.1945 - 1.025 \times 1.02 = .149$

This result is consistent with the deal price for the upper bound on By

onstraint	Current RMS	Min RHS	Max RHS	Dual Price
(=)	2.0000	0.0000	infinity	2.1756
(=)	2,0000	-0.1667	infinity	2.0173
(=)	2,5000	-0.3472	infinity	1,8647
(=)	2.5000	-0.5767	infinity	1.7296
(≑)	3.0000	-0.8248	infinity	1.6044
(=)	3.5000	-1.1331	infinity	1.4356
(=)	3.5000	-6.1137	infinity	1.335
(=)	4.0000	-11.4678	infinity	1,242
(=)	4.0000	-20.6663	infinity	1.155
0 6=N	5.0000	-32,5201	infinity	1,0750

The deal price provides the worth per additional \$ at the end of year 10.

Annual rate of return:

Period 1: 2.1756 = 2.0173(1+i₁) \Rightarrow i₁ = .0785

Period 2: 2.0173 = 1.8647(1+i₂) \Rightarrow i₂ = .0818

Period 3: 1.8647=1.7296(1+i₃) \Rightarrow i₃ = .0781

Period 4: 1.7296 = 1.6044(1+i₄) \Rightarrow i₄ = .0780

etc...

10

See file tora 3.6e-5. txt in Ch3files

The dual price for constraint 1

XIA + XIB = 100,000

is \$5.10. Thus, each invested \$ is

worth \$5.10 at the end of the investment

hougin. Range (0,00)

Dual pice for the constraint $X_1 + X_2 + X_3 + X_4 \leq 500$ is \$2.35 per \$ invested, range $(0, \infty)$ The gambles should bet the largest amount possible

See file toro 3.6e-7. txt in chatikes 7

For, Xw1 + Xw2 + Xw3 ≥ 1500, the

dual price is \$11.4, range (800,00)

One extra wrench automatically

requires the production of two chirels, thus

leading to the following changes:

Cost fore wrench using subcont. = \$3.00

Cost 2 chisels using subcont. = 2x \$4.20

Cost 2 chisels using subcont. = \$11.40

Xw1 ≤ 550, dual price = -\$1, range

(-0, 1250). If regular time capacity

for wrenches is increased by 1 unit,

one less wrench will be produced by

val	. 4	Rang	ge	
2	(Z.	53.	33,570	0)
1			750	

subcontractor, which paves \$3-\$2=\$1.

for the remaining dual prices

Similar interpretations can be given

The company should pay less than \$2/hr for machine I and less than \$12/hr for machine 2.

See file tora 3.60-9. txt in Ch3 Files

Constraint 2x, +3x2 +5x3 \le 4000

Corresponds to raw material A. Its dual

price in \$10.27/16. For a purchase

price of \$12/16, acquisition of adoltional

raw material A is not recommended.

(b) Constraint 4x, +2x2+7x3 \le 6000

is associated with raw material B. Its

dual price is \$0/16. Resource B is

abready abundant. Thus, no additional

purchase is recommended.

(a) See file	tora3.6e-10.tx+
Constraint	Dual price
1	0
2	0
3	-400
4	-750
4 S	o
6	0
7	O

Constraints 3 and 4 have negative dual price. These correspond respectively to the third specification for alloy A and She first specification for alloy B. Changes in these specifications affects profit adversely (b) for the one constraints, the dual prices are \$90, \$110, and \$30 per additional ton of ones 1, 2, and 3, respectively. These are the maximum prices the company should pay.

·		CHAPTER	R 4		
	Duality and	d Post-Opt	imal Analy	rsis	
		4-1			

Primal: Minimize Z = 5x, + 12x2 + 4x3 Subject to

 $\begin{array}{rcl}
 x_1 + 2x_2 + x_3 + S_1 &= 10 \\
 2x_1 - x_2 + 3x_3 &= 8 \\
 x_1, x_2, x_3, S_1 \ge 0
 \end{array}$

Dual: Maximize w=104, +8 yz Subject to

 $y_1 + 2y_2 \le 5$ $2y_1 - y_2 \le 12$ $y_1 + 3y_2 \le 4$ $y_1 = 0$ $y_2 = 0$

Primal: Minimize Z = 15x, +12x2

subject to

$$x_1 + 2x_2 - x_3 = 3$$

 $2x_1 - 4x_2 + x_3 = 5$
 $3x_1 + x_2 = 4$
 $x_{1,2}x_{2,1}x_{3,1}x_{4,2}0$

Dual:

Maximize Z = 33, +5 1/2 + 4 1/3

Subject to

$$y_1 + 2y_2 + 3y_3 \le 15$$

 $2y_1 - 4y_2 + y_3 \le 12$
 $-y_1 \qquad \le 0 \Rightarrow y_1 \ge 0$
 $y_2 \qquad = 0$
 $y_3 \quad \text{Moreotricted}$

Primal,

Minimize Z= 5x, -5x, +6x2

Subject to x+ --

$$x_1^+ - x_1^- + 2x_2 = 5$$

 $-x_1^+ + x_1^- + 5x_2 - x_3 = 3$
 $4x_1^+ - 4x_1^- + 7x_2 + x_4 = 8$
 $x_1^+ \cdot x_1^- \cdot x_2 \cdot x_3 \cdot x_4 \ge 0$

Dual:

Maximize
$$Z = SY_1 + 3J_2 + 8Y_3$$

Subject to $Y - Y + 4Y_2 \le 57 \rightarrow 1$

$$y_{1}-y_{2}+4y_{3} \le 5$$
 => $y_{1}-y_{2}+4y_{3}=5$
 $-y_{1}+y_{2}-4y_{3} \le -5$ => $y_{1}-y_{2}+4y_{3}=5$
 $y_{1}+5y_{2}+7y_{3} \le 6$
 $-y_{2} \le 0 \Rightarrow y_{2} \ge 0$
 $y_{3} \le 0$
 y_{1} unrestricted

(a) Primal:

Maximize $z = -5X_1 + 2X_2$ s.t.

$$X_1 - X_2 - X_3 = 2$$

 $2X_1 + 3X_2 + X_4 = 5$
 $X_1, X_2, X_3, X_4 \ge 0$

4

Firal:

Minimize w= 2 y, +5y2

Subject to
$$y_1 + 2J_2 \ge -5$$

 $-y_1 + 3y_2 \ge 2$
 $-y_1 \ge 0 \Rightarrow J_1 \le 0$
 $y_2 \ge 0$

(b) Primal:

Minimize $Z = 6X_1 + 3X_2$ Subject to

$$6x_1 - 3x_2 + x_3 - x_4 = 2$$

$$3x_1 + 4x_2 + x_3 - x_5 = 5$$

Durl:

2

3

Maximire w = 27,+5 y2 Subject to

$$6y_1 + 3y_2 \le 6$$

$$-3y_1 + 4y_2 \le 3$$

$$y_1 + y_2 \le 0$$

$$-y_1 \le 0$$

$$-y_2 \le 0$$

(c) Primal:

Maximize Z = X, + X2 Subject to

$$2x_1 + x_2 = 5$$

$$3x_1 - x_2 = 6$$

$$x_1, x_2 \text{ unrestricted}$$

Dual:

minimize w = 5 y, + 6 y z Subject to

Primal:

Maximize Z=5x,+/2x2+4x3-MR2 $X_1 + 2X_2 + X_3 + S_1 = 10$ 2x1 - x2 +3x3 + R2= 8 X1, X2, X3, 51, R2 20

Dual Minimize w = 10 8, + 8 82 Subject to J,+24 25

27, - 3/2 ≥12 y, +3 % = 4 y, ≥0 y₂ ≥-M} same y₂ unrestricted} same

all parts, (a) through (e), are true

(1) max + (≥ constraints):

 $\sum a_{ij} x_{j} \left[-S_{i} \right] = b_{i} \Rightarrow y_{i} \geqslant 0 \Rightarrow y_{i} \leqslant 0$

(2) min + (= constraints):

Iaij xi [-Si] = bi => -yi <0 => yi >0

(3) max + (& constraints):

 $Za_{ij}x_{j}[+S_{i}]=b_{i}\Rightarrow y_{i} \ge 0$

(4) min + (≤ constraints):

 $\sum a_{ij}x_{j}+S_{i}=b_{i} \implies \partial_{i} \leq 0$

(5) max or min + (= constraint)

Zaij xj = bi ⇒ y unrestricted

(6) max + (x, ≥0):

$$\begin{vmatrix} c_j x_j \\ a_{i,j} x_j \end{vmatrix} \Rightarrow \sum_{i=1}^m a_{i,j} y_i \ge c_j$$

(7) max + (X; ≤0):

$$\frac{\det x_j = -x_j', x_j' \geq 0}{-c_j x_j'} \Rightarrow \frac{m}{\sum_{i=1}^{m} a_{ij} y_i' \geq -c_j} \\
\Rightarrow \frac{m}{\sum_{i=1}^{m} a_{ij} y_i' \leq c_j'}$$

(8) min + (x; ≥0):

$$\begin{vmatrix} c_{j} \cdot x_{j} \\ a_{ij} \cdot x_{j} \end{vmatrix} \Rightarrow \sum_{i=1}^{m} a_{ij} \cdot y_{i} \leq c_{j}.$$

(9)
$$min + (x_i \le 0)$$
:
 $\mathcal{L}_{i} + (x_j \le 0)$:
 $-\zeta_j \cdot x_j \cdot = -x_j \cdot , \quad x_j \cdot \ge 0$

$$= -\frac{\sum_{i=1}^{m} a_{ij} y_i \le -\zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j} = -\frac{\sum_{i=1}^{m} a_{ij} y_i \ge \zeta_j}{\sum_{i=1}^{m} a_{ij} y_i} \ge \zeta_j}$$

(10) max or min + (x; unrestricted)

$$\begin{bmatrix} c_{j} \cdot X_{j'} \\ a_{ij} \cdot X_{j'} \end{bmatrix} \Rightarrow \sum_{i=1}^{m} a_{ij} y_{i} = c_{j'}$$

- (a) A3x2 VIX2 undefined
- (6) $AP1 = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 12 \\ 15 \end{pmatrix}_{3\times 1}$

- (c) $A P_{3x_{2}}^{2} \xrightarrow{3x_{1}}$ undefined (d) $V_{1}^{1} A$ undefined (e) $V_{2}^{2} A = (-1, -2, -3) \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$ $=(-14, -32)_{1x2}$
- (f) P1 P2 undefined
- (g) $\bigvee_{i \neq \underline{z}} \mathcal{P}_{zx_i}^1 = (I_i, z_2) \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1/4 & -1/2 & 0 & 0 \\ -1/8 & 3/4 & 0 & 0 \\ 3/8 & -5/4 & 1 & 0 \\ 1/8 & -3/4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 24 \\ 6 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 3/2 \\ 5/2 \\ 1/2 \end{pmatrix}$$

$$inverse = \begin{pmatrix} 1/3 & 0 & 0 \\ -4/3 & 1 & 0 \\ -1/3 & 0 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1/3 & 0 & 0 \\ -4/3 & 1 & 0 \\ -1/3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Sual: Maximize $\omega = 50y$ S.t. $5y_1 \leq 10, -7y_1 \leq 4, 3y_1 \leq 5, y_2 \geq 0$ The constraints simplify to $0 \leq y_1 \leq 5/3$

Thue, max $W = 50 \times \frac{5}{3} = \frac{250}{3} = \min Z$

Sual:

Maximize $\omega = 50J + 20J + 30J + 35J + 10J + 90J + 20J$ S.t. $5J + J_2 + 7J_3 + 5J_4 + 2J_5 + 12J_6$ $5J + J_2 + 6J_3 + 5J_4 + 4J_5 + 10J_6 + J_7 \le 6$ $3J_1 - J_2 - 9J_3 + 5J_4 - 15J_5 - 10J_7 \le 3$ $-J_1 \le 0 \Rightarrow J_1 \ge 0, j = 1, 2, ..., 7$ From TORA, optimal objective equation in $Z + 50J_1 + 0J_2 + 90J_3 + 65J_4 + 70J_5 + 40J_7 + 0J_7 + 90J_7

(51, 52, 53) are slack variables.

Thuo, $x_1 = 0$, $x_2 = 20$, $x_3 = 0$ Obtaining the solution from the dual is advantageous computationally because the dual has a sonaller number of constraints.

<u>Sual</u>: Minimize ω=30 y+40 y₂ 5.t. y+ y₂ ≥ 5 5y, -5y₂ ≥ 2 2y, -6y₂ ≥ 3 y₂ ≥ 0, y unrestricted

mother 1: $Z + 0X_1 + 23X_2 + 7X_3 + 10SX_4 + 0X_5 = 150$ Coefficient of $X_4 = 10S \Rightarrow Z_1 = 10S + (-100) = 5$ Coefficient of $X_5 = 0 \Rightarrow Z_2 = 0$

Method 2:

 $(\mathcal{J}_1, \mathcal{J}_2) = (5, 0) \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ = (5, 0) $\omega = 30 \times 5 + 40 \times 6 = 150$

Sual: Maximize $\omega = 3y_1 + 6y_2 + 4y_3$ $5.t. 3y_1 + 4y_2 + y_3 \leq 4$ $y_1 + 3y_2 + 2y_3 \leq 1$ $-y_2 \leq 0 \Rightarrow y_2 \geq 0$ $y_3 \leq 0$ $y_1 = 0$ $y_2 = 0$ $y_3 \leq 0$ $y_4 = 0$ $y_3 \leq 0$ $y_4 = 0$ $y_3 \leq 0$

Method 1: $Z - 98.6 \times_{4} - 100 \times_{5} - 12 \times_{6} = 3.4$ Coefficient of $X_{4} = -98.6 \Rightarrow Z_{3} = -98.6 + 100 = 1.4$ Coefficient of $X_{5} = -100 \Rightarrow Z_{2} = -100 + 100 = 0$ Coefficient of $X_{6} = -.2 \Rightarrow Z_{3} = -.2$

 $\frac{Method a:}{(4, 1, 0)} \begin{pmatrix} .4 & 0 & -.2 \\ -.2 & 0 & .6 \\ 1 & -1 & 1 \end{pmatrix} \\
= (1.4, 0, -.2) \\
\omega = 3 \times 1.4 + 6 \times 0 + 4 \times -.2 = 3.4$

Such. Minimize $w = 4y_1 + 8y_2$ 5.t. $y_1 + y_2 \ge 2$ $y_1 + 4y_2 \ge 4$ $y_1 \ge 4$ $y_2 \ge -3$

Method!: $Z+2x_1+0x_2+0x_3+3x_4=16$ Coefficient of $x_3=0 \Rightarrow y_1=0+4=4$ Coefficient of $x_4=3 \Rightarrow y_2=3+(-3)=0$

 $\frac{\text{Method 2}}{(3,3)} = (4,4)\begin{pmatrix} 1 & -.25 \\ 0 & .25 \end{pmatrix} = (4,0)$ W = 4x4 + 8x0 = 16

Sual: Minimize w=34, +44, s.t. y, +24,≥1 24, - 4, ≥5 y, ≥3, y, unrestricted

 $\frac{\text{Method } 1: Z + 2x_2 + 0x_3 + 99x_4 = 5}{\text{Coefficient of } x_3 \neq 0 \Rightarrow J_1 = 0 + 3 = 3}$ Coefficient of $x_4 = 99 \Rightarrow y_2 = 99 + (-100) = -1$

 $\frac{me/Edd^{2}}{(y_{1},y_{2})=(3,1)\binom{1}{0} \cdot \frac{...}{...}=(3,-1)}$ $\omega=3\times 3+4(-1)=5$

(c) Maximize Z = X1 + X2 min w = 10 y, + 40 y, max Z = 2x,+x2 -3X, +3X2 612 $X_1 - X_2 \leq 10$ y, + 2 y ≥ ≥ 2 $-3X_1 + 2X_2 \le -4$ ex, ≤40 3x, -5x2 \le 2 メッな 30 ≥0 X, unrestricted, X, ≥0 J2 30 TORA solution: Fraible Solution: x, = 3.4737, x2 = 1.6842, Z= 5.1579 No feasible X, = 20, X2 = 20 Dud: Minimize w= 12y -4y,+2y3 solution. Z = 60 Primal is unbounded Because the primal $y_1 - 3y_2 + 3y_3 = 1$ is feasible and the dual has no feasible solution. 3y +2y -5y =1 y, y, y, >0 (d)From TORA, & sphool objective row is min w=3y,+12y2 $max Z = 3x_1 + 2x_2$ W-3.052642-1.6844 -96.526375-98.315876 24,+382 = 3 $2X_1 + X_2 \leq 3$ (Is and I'm are artificial variables) 3x, +4x2 512 y, + 4 y = 2 X1, X2 20 y, 2, ≥ 0 Coefficient of $y_s = -96.5263 \Rightarrow x_1 = -96.5263 + 100$ = 3.4737 Feasible Solutions: Coefficient of \$ =-98.3158 => X2 =-98.3158+100 x, = x=1 8,=2, 3,=0 2=5 = 1.6842 w= 6 (4) 5≤ optimum value ≤ 6 Range: Dual Primes MAX W=33,+54, max w = 37,+572 min Z = 5x, + 2/2 min Z = 5x, +2x2 5.t. S.t. 5.t. y,+2 y, ≤5 y, + 2 y2 =5 X, -X2 ≥ 3 $X_1 - X_2 \geq 3$ 2x1+3x2 25 - y, +3y2 ≤2 - y, +3 y2 ≤ 2 2x, +3x2 =5 $X_1, X_2 \geq 0$ 4, 3, 20 X13 X2 ≥0 ≥0 (A) $(X_1=3, X_2=1, Y_1=4, Y_2=1)$: Fearible Solutions: Both primal and dual are x1=3, x2=0, Z=15 infeasible y, = 3, y = 1, W=14 Range: 14 = Ophmum value = 15 (b) $(X_1=4, X_2=1; Y_1=1, Y_2=0)$: Primal pasible, Z = 22 (6) Dual feasible, w= 3 $7710 \times Z = X_1 + 5X_2 + 3X_3$ min w = 34, +442 S.E. 4,+242 =1 Since Z + w, Solutionsaire $X_1 + 2X_2 + X_3 = 3$ not optimal. 2y, - y2 ≥5 $2x_1 - x_2$ x1, X, , x3 ≥0 y unrestricted (c) $(X_1 = 3, X_2 = 0; Y_1 = 5, Y_2 = 0)$: Frasible Solutions: Primal-feasible, Z = 15 $X_1 = 2$, $X_2 = 0$, $X_3 = 1$ Dual fearible, w=15 y,=3, 42=0, Z = 5 Since Z = W, Solutions are Range: 5≤ optimum value ≤ 9 continued optimal

OUT TIEG	
From TORA using M = 100:	(X2) - (0 1/2) (21) = (10.5)
X, X2 X3 X4 X5	$\begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 1/2 \\ 1 & -7/2 \end{pmatrix} \begin{pmatrix} 21 \\ 21 \end{pmatrix} = \begin{pmatrix} 10.5 \\ -\underline{105} \end{pmatrix} \Rightarrow \text{mfeasible}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Opteniality:
×4 / 2 / / 0 /0	(y, y) = (14,0) (0 1/2) = (0,7)
$\frac{x_5}{z}$ $\frac{2}{\sqrt{3}}$ $\frac{-1}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}$ $\frac{32}{\sqrt{3}}$	(0,302) -(1750) (1-7/2) - (0,17
	obj coeft of x1: 24,+74,-4=2x0+7x7-4=45 >0
	object \$X4: 4, -0 = 7-0 >0
	Solution is optimal but infearable
Primal Dual	(c) Ferralalalalai:
Maximize Z = 5 x, +12x2 +4x3 Minimize w=10y+8y	$\begin{pmatrix} x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 7/45 & -2/45 \\ -2/45 & 1/45 \end{pmatrix} \begin{pmatrix} 21 \\ 21 \end{pmatrix} = \begin{pmatrix} 7/3 \\ -1/3 \end{pmatrix} \Rightarrow \text{ feasible}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\binom{\Lambda^2}{V} = \binom{-2/45}{1/45} \binom{1/45}{21} \binom{7/3}{7/3}$
$2x_1 - x_2 + 3x_3 = 8$ $y_1 + 3y_2 \ge 4$	Optimality
$X_1, X_2, X_3 \ge 0$ Y_2 unrestricted	(1/45 -2/45) = (2 0)
	Optimality: (2, , y2) = (14, 4) (7/45 -2/45) = (2, 0)
Steration 1: X5 artificial, M=100	Obj coeff of x3: 4-0=2-0>0} ophimal Obj coeff of x4: 42-0=0-0=0} ophimal
Inverse = $\begin{pmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{pmatrix}$, $C_{8} = (0, 4)$	0 bj coeff of x4: 42-0= 0-0=0]
\ 0	or optimal and reachle
$\frac{Constraints}{LHS = \begin{pmatrix} 1 & -1/3 \\ 0 & 1/3 \end{pmatrix} \begin{pmatrix} 1 & Z & 1 & 1 & 0 \\ 2 & -1 & 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1/3 & 7/3 & 0 & 1 & -1/3 \\ 2/3 & -1/3 & 1 & 0 & 1/3 \end{pmatrix}}$	(a) remaining:
$\angle HS = \begin{pmatrix} 1 & -\sqrt{3} \\ 0 & 1/3 \end{pmatrix} \begin{pmatrix} 2 & -1 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 2/3 & 1/3 & 1 & 0 & \sqrt{3} \end{pmatrix}$	$\begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 21 \\ 21 \end{pmatrix} = \begin{pmatrix} \frac{21}{2} \\ -\frac{105}{2} \end{pmatrix} \Rightarrow infeasible$
$RHS = \begin{pmatrix} 1 & -\sqrt{3} \\ 0 & \sqrt{3} \end{pmatrix} \begin{pmatrix} 10 \\ 8 \end{pmatrix} = \begin{pmatrix} 22/3 \\ 8/3 \end{pmatrix}$	
Objective row: (1-43)-(046)	Optimality: (V)
Objective row: Dual values (7, 1/2) = (0,4) (1 - 1/3) = (0,4/3)	Optimality: $(J_1, J_2) = (4, 0) \begin{pmatrix} V_2 & 0 \\ -7/2 & 1 \end{pmatrix} = (2, 0)$ This could be a 7 to 2 to 2
Variable Objective Coefficient	Obj Coeff of x : 7 x +24 = 14 = 07 , 0
x_1 $y_1+2y_2-5=0+2(4/3)-5=-7/3$	Obj coeff of x2: 74, +242-14= 07 optimal Obj coeff of x3: 4,-0= 2-0=2
x_2 $2y_1 - y_2 - 12 = 2(6) - (4/3) - 12 = -40/3$	Chitical Part interille
x_3 $y_1 + 3y_2 - 4 = 0 + 3(4 3) - 4 = 0$ x_4 $y_1 - 0$ = 0 - 0 = 0	Solution optimal but infeasible
x_5 $y_2 - (-M) = 4/3 - (-100) = 304/3$	Sual:
	Sual: minimize $\omega = 30y + 60y + 20y_3$ subject to $y_1 + 3y_2 + y_3 \ge 3$
Sual:	Subject to
Minimize w = 214, + 2142	2.4. +44. 22
Subject !	$\begin{array}{ccc} 2y_1 & +4y_3 \ge 2 \\ y_1 + 2y_2 & \ge 5 \end{array}$
$24, +74, \geq 4$	$y_1, y_2, y_2 \geq 0$
73,7 = 3, E17	(a) Feasibility:
(a) (x) (1/2 0) (3) (3)	(a) Feasility: $\begin{pmatrix} x_4 \\ x_3 \\ x_L \end{pmatrix} = \begin{pmatrix} 1 - 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 30 \\ 60 \\ 20 \end{pmatrix} = \begin{pmatrix} 0 \\ 50 \\ 20 \end{pmatrix}$ feathly
	$\begin{pmatrix} x_3 \\ - x_3 \end{pmatrix} = \begin{pmatrix} 0 & 1/2 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 30 \\ 20 \end{pmatrix}$
(1) (1) (1) (2 0)	1000 1/101
$(\mathcal{J}_1,\mathcal{J}_2)=(\mathcal{I}_1,\sigma)\begin{pmatrix} 1/1 & \sigma \\ -1/1 & 1 \end{pmatrix}=(Z,\sigma)$	Oplimality: (4, 4, 1/3) = (0,5,0) (1 -1/2 0) = (0,5/2,0)
obj coeff x, = 24, +7 42-4	$(y_1, y_2, y_3) = (0, 5, 0) (0, y_2, 0) (0, y_2, 0)$
= 2×2+7×0-4=07	Obj coeff of X1: 4, +34, +43 - 3 = 0+3(\frac{5}{2}) + 0-3 = 9/2 Obj coeff of X2: 24, +44, -2 = 2x0+4x0-2 = -2<0
obj coeff of x2 = y, -0 = 2 -0 = 2 => optimal	Obj Coeff of X2: 24, +44, -2 = 2x0+4x0-2 = -2<0
	Chaten do a 10 0 1 100 - F
(b) Feasibility: continued	Solution Jeaselle but not plimal continued

6

b) Feasility:

$$\begin{pmatrix} x_2 \\ x_3 \\ x_1 \end{pmatrix} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 30 \\ 60 \\ 20 \end{pmatrix} = \begin{pmatrix} 5/2 \\ 15 \\ 10 \end{pmatrix} \Rightarrow \text{feasible}$$

Optimality: (1/4 -1/8 1/8) (3, 3, 3, 1/3) = (2,5,3) (3/2 -1/4 -3/4) = (5,0,-2) chicae(1) x : 2

obj. coeff of $x_4: 3, -0 = 5^{-1}$ obj. coeff of $x_5: 3, -0 = 0$ obj. coeff of $x_6: 3, -0 = -2 \Rightarrow nest optimal$

(c) Fearility:
$$\begin{pmatrix}
X_2 \\
X_3 \\
X_4
\end{pmatrix} = \begin{pmatrix}
V_2 & -V_4 & 0 \\
0 & V_2 & 0 \\
-2 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
30 \\
60 \\
20
\end{pmatrix} \Rightarrow \text{fearible}$$
(b)
$$y_1, y_2 = (12, 5) \begin{pmatrix} 2/5 & -V_5 \\
1/5 & 2/5 \end{pmatrix} = \begin{pmatrix} \frac{29}{5}, -\frac{2}{5} \\
0 & 0 & 0 & 0 \\
20
\end{pmatrix}$$
Object of 0×2 : $y + 3y = (12^2)$

Obj coeff of x, : y, +3y +4 -3 = Obj coeff of x4: 7-0 = 1-0 = 1 Obj coeff of x5: 2-0 = 2-0 = 2

Constraints:

$$LHS = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 & 0 & 0 \\ 4 & 3 & 0 & -1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -3/5 & 1/5 & 0 \\ 0 & 1 & 4/5 & -3/5 & 0 \\ 0 & 0 & -1 & 1 & 1 \end{pmatrix}$$

$$RHS = \begin{pmatrix} 3/5 & -1/5 & 0 & 1/3$$

 $RHS = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 6/5 \\ 0 \end{pmatrix}$

Objective coefficients: (3/5 - 1/5) $(3/5, 3/2, 3/3) = (2, 1, 0) \begin{pmatrix} 3/5 - 1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ = (2/5, 1/5, 0)

Obj coeff of x3 = - 4, -0 = - 2/5 Obj coeff 1x4= -4-0= -1/5 2=2x35+1x6/5 = 12/5

	×ı	X ₂	×3	×4	X5	1
2	0	0	-2/5	-1/5	0	12/5
X _I	}	0	-3/5	1/5	٥	3/5
XZ	0	1	4/5	-3/5	٥	6/5
ΧS	0	0	-1	1	t	0
					conti	nued

Z = 4x2/3 = 8/3

$$(ji)\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{pmatrix} \begin{pmatrix} 10 \\ 2 \end{pmatrix} = \begin{pmatrix} 18/5 \\ 14/5 \end{pmatrix}$$

$$Z = 5 \times \frac{14}{2} + 12 \times \frac{18}{2} = \begin{pmatrix} 57.2 \end{pmatrix}$$

 $Z = 5 \times \frac{14}{5} + 12 \times \frac{18}{5} = \underbrace{57.2}_{57.2}$ (iii) $\binom{x_2}{x_3} = \binom{3/7}{1/7} = \binom{10}{2} = \binom{4}{2}$

Z = 12x4+4x2 = 56

Optimality: $(3, 3, 3) = (2, 5, 0) \begin{pmatrix} y_2 & -1/4 & 0 \\ 0 & y_2 & 0 \\ -2 & 1 & 1 \end{pmatrix} = (1, 2, 0)$ Objected $(3, 3) = (2, 5, 0) \begin{pmatrix} y_2 & -1/4 & 0 \\ 0 & y_2 & 0 \\ -2 & 1 & 1 \end{pmatrix} = (1, 2, 0)$ Objected $(3, 3) = (2, 5, 0) \begin{pmatrix} y_2 & -1/4 & 0 \\ 0 & y_2 & 0 \\ -2 & 1 & 1 \end{pmatrix} = (1, 2, 0)$ Solution is optimal.

1+6+0-3=4) eptimal showerse = (10)

 $\boxed{4} \begin{pmatrix} x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 30 \\ 10 \end{pmatrix}$ Thus, b, = 30, b2 = 40

> (b) Optimal dual solution: $(3,3) = (2,0) \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} = (2,0)$

(c) (d, e) = (y, y) = (5,0) 9=57,-54-2=5x5-5x0-2=23 $\binom{b}{c} = \binom{1}{-1} \binom{0}{1} \binom{5}{-5} = \binom{5}{-10}$

Objective value:

midual = b, y, + b2 y, + b3 y2 in primal = C, X, + C2 X2

$$\begin{pmatrix} x_{3} \\ x_{z} \\ x_{1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} c \\ 6 \\ c \end{pmatrix}$$
Thus, $b_{1} = 4$, $b_{2} = 6$, $b_{3} = 8$

continued.

 $(Y_1, Y_2, Y_3) = (0, C_2, C_1) \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ = (0, 02-01, 0,)

Obj conff of x5 = 2 = 43-0-

Thus, Cz=C,=3 and C,=2=>C,=2,C,=5

How we can determine the objective value as follows:

Duel = 6, y, + b, y, + b3 y3 =4x0+6x3+8x2=34

Trimal = C, X, +C, X, =2x2+5x6=34

Duel:

Munimize W = 4 y + 8 yz Subject to

J,+ 32 = 2 y+4 y = 4 y, y = 4 2 = -3

For basic (X, X2), we have

 $y_1 + y_2 - 2 = 0$ $\Rightarrow y_1 = \frac{4}{3}, y_2 = \frac{2}{3}$

Obj coeff of x3 = 4 - 4 = 4 - 4 = - 8 <0

The result shows Hat the Solution is not opplinal.

For a slack starting basic variable, the dual constraint is of the from

Obj coeff of $x_3 = 0 = y_{-0}$ $y_{1} = 0$, $y_{2} = 3$, $y_{3} = 2$ (assuming primal maximization). Thus,

> Optimal do j coeff of basic variable = y-0 For artificial starting basic variable, The dual constraint is y = -M if The primal is max inization, and y < M if the primal is minimization. Thus,

8 Optimal obj Coeff = { y+M, for maximgation

From TORA output: 94 Range: (20,36) (4,67) (-1.5,00) (1.5,00)

 $(a)^{\frac{1}{4}}750\times(22-24)=-41500$

(b) AZ = \$500 (4.5-6) = - \$750

(c) AZ = \$0 (10-2) = \$0

X1, X2, X3, X4 = daily units of calles 2 320, 325, 340, and 370

(a) Maximize $Z = 9.4X_1 + 10.8X_2 + 8.75X_3 + 7.8X_4$ subject to

 $10.5 \times 1 + 9.3 \times 2 + 11.6 \times 3 + 8.2 \times 4 \le 4800$ $20.4 \times_{1} + 24.6 \times_{2} + 17.7 \times_{3} + 26.5 \text{ yy} \leq 9600$ $3.2x_1 + 2.5x_2 + 3.6x_3 + 5.5x_4 \le 4700$ $5x_1 + 5x_2 + 5x_3 + 5x_4 \le 4500$

 $x_1 \ge 100$, $x_2 \ge 100$, $x_3 \ge 100$, $x_4 \ge 100$

*** OPTIMUM SOLUTION SUMMARY ***

Title: Final iteration Objective Value	No: 3 (max) = 4011.15	B2	•
Variable	Value	Obj Coeff	Obj Val Contrib
x1	100.0000	9.4000	939.9999
x2	100.0000	10.8000	1080.0000
x3	138.4181	8.7500	1211.1582
x4	100.0000	7.8000	780.0000
Constraint	RHS	Slack(-)	/Surplus(+)
1 (<)	4800,0000		503-
2 (<)	9600.0000	0.0	000-
3 (<)	4700.0000	3081.6	948-
4 (<)	4500,0000	2307.9	097-
LB-x1	100.0000	0.0	000+
LB-x2	100.0000	0.0	9000+
LB-x3	100.0000	38.4	181+
LB-x4	100,0000	0.0	000+

*** SENSITIVITY ANALYSIS *** Objective coefficients -- Single Changes:

Variable	Current Coeff	Min Coeff	Max Coeff	Reduced Cost
x1	9.4000	-infinity	10.0847	0.6847
x2	10.8000	-infinity	12,1610	1.3610
x3	8.7500	8.1559	infinity	0.0000
x4	7.8000	-infinity	13.1003	5.3003

Constraint	Current RHS	Min RHS	Max RHS	Dual Price
1 (<)	4800.0000	4405 . 6497	infinity	0.0000
2 (<)	9600.0000	8919,9999	10201.7242	0.4944
3 (<)	4700,0000	1618.3052	infinity	0.0006
4 (<)	4500,0000	2192.0903	infinity	0.0000
LB-x1	100,0006	0.0000	133.3333	-0.6847
LB-x2	108,0000	42,1946	127.6423	-1.3616
L9-x3	100.0000	-infinity	138.4181	0.0000
LB·x4	100,0000	56,9826	125.6604	-5.300

(b) Only soldering capacity can be increased because its dual price is positive. (c) The fact that the dual prices of the lower bounds on X1, X2, and X4 are negative shows that the lower bounds have adverse effect on profitability. Specifically, one unit decrease in de production of cables 5€320, SC325, and SC370 will respectively increase the perofit by \$.68, \$1.36, and \$5.30 per cable. These values are valid considering the cables one at a time. (d) Dual price for soldering is \$.49 per minute, valid in the range (8920, 10201.7) minutes. additional Hence, the \$.49 profit per minute is guaranteed only for up to 10201-9600 = 6.26% capacity increase. 9600

x, = number of jackets per week x2 = number of handbags per week

Maximize z = 350x, + 120 X2

Subject to

8x, +2x2 = 1200

12x, +5x2 <1850

X, , X, ≥0

TORA optimism solution: x, € 144, x, = 25, Z = \$ 53312.50

Dual price Resource \$ 19.38/m2 (740,1233.33) Leather # 16.25/h (1800, 3000) Labor

Bag Co should not pay more skan \$19.38/m2 of leather and \$16.25/h of labor time .

Qual prices: y,=1, y=2, y3=0 all in #/min

(1-12,) y, +1.25 y + y3 = 3

Reduced cost of X2 = (1-12,)x1+1.25x2+1x0-3

For X, to be just profitable, its reduced cost must be (at least) zero; that is, .5-r, <0 or r, \ge 5.

This means a reduction of at least 50%

Dual constraint for fire trucks: 2 y + 3 y ≥ 4

Reduced cost = $f_z + 3f_3 - 4$ = $1 \times 2 + 3 \times 0 - 4 = -2 < 0$

New toy is recommended.

X;= number of units of PP, j=1,2,3,4 3

Maximize Z=3x,+6x2+5x3+4x4 Subject to

 $2x_1 + 5x_2 + 3x_3 + 4x_4 \le 5300$ $3x_1 + 4x_2 + 6x_3 + 4x_4 \le 5300$ $x_1, x_2, x_3, x_4 \ge 0$

*** OPTIMUM SOLUTION SUMMARY ***

Title: Problem 4.4b-3 Final iteration No: 4 Objective value (max) = 6814.2856

Variable	Value	Obj Coeff	Obj Val Contrib
x1	757,1429	3.0000	2271.4287
x2	757.1428	6.0000	4542.8569
x3	0.0000	5,0000	0.0000
x4	0.0000	4.0000	0.0000
Constraint	RHS	Slack(-)	/Surplus(+)
1 (<)	5300.0000	0.0	1000-
2 (<)	5300,0000		000-

*** SENSITIVITY ANALYSIS ***

Variable	Current Coeff	Min Coeff	Max Coeff	Reduced Cost
x1	3.0000	2.9444	4.5000	0.0000
x2	6.0000	4.0000	6.3333	0.0000
x3	5.0000	-infinity	5.1429	0.1429
x4	4.0000	-infinity	5.1429	1.1429
Right-hand S	ide Single Chan	ges:		
Constraint	Current RHS	Min R#S	Max RHS	Dual Price
1 (<)	5300.0000	3533.3334	6625.0000	
2 (<)	5300.0000	4240.0000	7949.9998	0.8571 0.4286

From TORA solution:

Variable	Reduced cost
×3	.1429
Xu	1.1429

Thus,

(Rate of deterioration in 3) = \$.14

(Rate of deterioration in) = \$1.14

Resource Duelprice Range

Sathe \$.8571 (5233.33,6625)

Drill \$.4286 (4240,7950)

Reduced coet for x3 = .8 (34, +64)-5 = .8 (3x.8571+6x.4286)-5 = -.8857 < 0

Reduced cost for Xy
= .8 (47, +472) - 4
= .8 (4x.8571+4x.4286)-4
= .1142 >0

Only PB will be profitable. PB needs more than

 $1 - \frac{4}{4x \cdot 857 + 4x \cdot 4286} = 22.2\%$

improvement to be profitable

(a) NO, because A is feasible. (b) No, because E is feasible. Dual	1
simplex iterations remain infeasi until the last iteration is reached.	
(c) L → I → F.	

2 (a) Minimize Z = 2x, + 3xz Xz subject to

$2X_1 + 2X_2 \le 30$ $-X_1 - 2X_2 \le -10$ $X_{1,1} X_2 \ge 0$	1
11) X2 = 0	X

Basic	×ı	Χz	×3	Xy	5014
Z	- 2	-3	0	0	0
×3	2	2	1	0	30
Υy	-/	-2	O	I	-10
Z	-1/2	0	0	-3/2	15
ХЗ	1	0	1	1	20
XZ	1/2	1	0	-1/2	5

Minimize z = 5x, + 6x2 Subject to $-x_1-x_2 \leq -2$ -4x, - K2 = -4 X1, X2 ≥0

2	aric	Χ,	Χz	× ₃	Χy	Sof 2
_	Z	-5	-6	0	o	O.
	Χ ₃	-1	-1	1	0	- ک
	Ху	[-4]	-1	O	1	-4
-	Z	0	-19/4	0	-5/4	\$
-	× ₃	0	-3/4	1	-1/4	-1
	×ı	1	1/4	0	-1/4	1
_	Z	0	-1	-5	0	10
	Хų	0	3	-4	ı	4
	Χı	-1	1	-1	0	2

(C) Minimize Z = 4x,+2x2 Subject to $x_1 + x_2 \leq 1$ $X_1 + X_2 \ge 1$ 3x,-x2 ≥2 X, , X2 ≥0

(Convert the equation into two inequalities to fit the dual simpley format.)

Basic	×	Χz	X ₃	Ху	x3-	sol 1
Z	-4	-2	O	O	Ø	0
X3	1	1	1	0	0	1
Χψ	-1	-1	O	1	o	-1
X5	-3	1	0	0	1	- Z
2	0	- 4/3	0	0	-4/3	8/3
×3	0	4/3	1	0	1/3	1/3
Χų	0	-4/3	0	1	-1/3	-1/3
×,		-1/3	٥	_ 0	-1/3	2/3
Z	0	0	0	-5/2	-1/2	7/2
×3	0	0	1	1	O	0
ΧŁ	0	1	0	-3/4	1/4	1/4
_ x,	1	0	0	-1/4	-1/4	3/4

(d) Minimize Z= 2x,+3x2 Subject to

Basic	Χι	X ₂	<i>x</i> ₃	Χv	XS	50/2
_Z	- 2	- 3	0	0	0	σ
Хз	-2	-1	1	Ó	O	-3
Хy	1	1	0	1	0	2
X2	-1	-1	0	0	1	-2
Z	0	-2	-1	٥	0	3
×ı	1	1/2	-1/2	0	0	3/2
χγ	0	1/2	1/2	4	0	1/2
χζ	O	-1/2	-1/2	0	1	-1/2
ζ.	0	-1	0	0	-2	4
x	1	1	0	0	-1	Z
Χų	0	0	0	1	1	0
_X3	0	· ·	l	0	-2	1

add the constraint x, + x3 & M

Basic	X,	Xح	Χ3	S,	SŁ	S3	Sy.	i
Z	-2	. 1	-1	Ü	O	Ċ	0	o
S,	-5	-3	5	i	0	0	0	-4
Sz	1	-9	1	0	ţ	0	0	-3
23	4	6	3	٥	0	ı	0	8
54		0	1	o	o	0	1	М
Z	0	0	1	0	0.	0	2	MS
S	0	-3	7	1	O	. 0	2	-4 +2M
S_z	0	-9	6	0	1.	O	-1	-3-M
Sa	0	6	-1	0	0	11	-4]	8-4M
<u>×1</u>	1	0	. 1	0	0	0	ł	М

The second tableau is now optimal but infeasible. We can Thus apply the dual simplex to the second tableau Optimal solution is:

x, = 1.286, x2 = .476, x3 = 0

z = 2.095

(a)) 0	edd Ih	e com	strain	+ x	3 ≤	м	A
Basic						-		
	71	X2	X 3	×4	X5-	X۷	¥7	
Z	0	0	-2	0	0	0	0	0
Хy	1	-2	2	i	0	0	0	-8
XS	-1	l	1	0	1	0	0	4
×6	2	-1	4	0	0	1	Ø	10
×7	0	0		0	0	0	1	M
Z	0	0	0	0	0	0	2	2 M
Χų	1	-2	0	1	0	0	-2.	Ms-8-
x2_	-)	1	0	0	ì	0	-1	4-M
Χ'n	9	[-1]	Ø	0	0	1	-4	10-4 M
X,	6	~	1	0	0	0	1	М

Last tableau is optimal but infeasible application of the dual simplex method yields the Solution:

 $X_1 = 56/q$, $X_2 = 26/3$, $X_3 = 14/q$ Z = 28/q

(b) add the constraint X, SM

	X	×2	5,	Sz	S	Sy	1
8	-1	3	0	0	. 0	0	0
S,	-	-1	1	0	0	0	2
Sz	-1	-)	0	1	0	0	-4
53	-2	2	0	. : 0	ı	0	-3
يدي.		0	0	0	0	- 1	M
3	0	3	0	0	0	1	M
5,	0	-1.	1	0	0	-1	2-M
52	0	-1	0	- 1	0	1	-4+M
53	0	2	0	0	1	2	-3+2M
XI:		0	0	0	0	1	m

Optimum: X,=3, X2=1 3=0

(C) add the constraint X, &M

-	X,	× ₂	S,	S	53	54	ľ
3	1	-1	0	0	O	0	0
2 ^r	-1	4	ţ	. 0	0	0	-5
	1	-3	0	l	0	0	1
S ₃	-2	5	0	0	i	0.	-1
Sy		0	0	0	0	1	M
3	0	-1	0	0	0	-1	- M
Sı	0	4	1	0	0	1	-5+M
Sz	0	-3	0	1	0	-1	1-M
S ₃	0	5	0	0	1	2	-1+2M
×		0	0	0	0	1	М

Problem has no feasible solution

(d) add the constraint x3 5M

	×,	٨ ₂	X3	s,	52	53	Sej	
3	0	0	-2	0	0	0	0	0
3,	1	-3	7	1	0	0	0	-5
Sz	-1	1	<u>-1</u>	0	1	0	0	7
Sz	3	1	-10	0	0	1	0	8
54	0	0	_/	0	0	0	1	m
3	0	0	0	0	0	0	2	2M
5,	ı	[-3]	0	1	0	0	-7	-5-7M
SŁ	-1	1	0	0	I	0	1	1+ M
$\mathcal{S}_{\mathfrak{z}}$	3	1	0	0	0	1	10	8+10M
54	0	0	1	0	0	0	1	M

Solution is unbounded

centinued..

		OGI 7.4a
mekod 1: M-technique (or two-		
Starting tableau:		
Basic X1 X2 X3 X4 S1 S2 S3 R1 R2 R3 S6/1		
2 -6-7 -3 -5 0 0 0 -M-M-M-		
R ₁ 5 6 -3 4 -1 0 0 1 0 0 17		
R ₂ 0 1 -5 -6 0 -1 0 0 1 0 10 R ₃ 2 5 1 1 0 0 -1 0 0 1 8		
method 2: Solve the dual problem		
Starting Coblean:		
Basic y, y, y, s, s, s, s, sy		
w -12 -10 -8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
5 6 1 5 0 1 0 0 7		
S ₃ -3 -5 1 0 0 1 0 5		
34 7 -6 1 0 0 1		
method3: Dual simplex		
Starting tableau: Basic X, X2 X3 X4 S, S2 S3 Solt		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5, -5 -6 3 -4 1 0 0 -12		
S ₂ 0 -1 5 6 0 1 0 -10 S ₃ -2 -5 -1 -1 0 0 1 -8		
Optimal Solution: x, =0, x = 10, x = x = 0		
Method Number of iterations		
1 5		
3 3		
The dual simplex is the best. It		
bollows because it requires the		
smallest number of devations		
and has the smallest number of		
CONALAL	•	

sic	X,	X2	X ₃	Хч	Х5-	Ι.
<u>Z_</u>	1	-1	0	σ	0	0
3	回	4 .	J	Ø	0	-5

Xy 1 -3 0 1 0 1 XS -2 5 0 0 1 -1 Z X₁ 1 -4 -1 0 0 5

Xy 0 1 1 1 0 -4 XS 0 -3 -2 0 1 9

In the second iteration, row 2 has all nonnegative coefficients on the left-hand side. This means that the infeasibility of xy cannot be removed, and the problem has no feasible solution.

2

	X,	X2	×з	Χy	X3-	XL	l
2	0	0	-2	O	0	0	٥
Χy	1	-3	7	I	0	0	-5
Χς	-1	1	-1	0	1	0	1
X6	3	i	-10	0	0	l	8
Z	0	C	-2	0	0	0	0
X2	-1/3	ţ	-7/3	-1/3	0	0	5/3
X5	-2/3	0	4/3	1/3)	0	-5/3
x6	10/3	0	-23/3	1/3	0	- 1	19/3
Z			-2				0
×ı			-4/3				2
×ı			-2				١
×G			1				3

Iteration 3 is feasible but nonoptimal. However, ×3 shows that she solution is unbounded.

	/430\
new RHS =	480
NEW INIS	(430) 480 400)

Theo

$$\begin{pmatrix} x_{1} \\ x_{3} \\ x_{6} \end{pmatrix} = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 430 \\ 480 \\ 400 \end{pmatrix} = \begin{pmatrix} 45 \\ 240 \\ 20 \end{pmatrix}$$

The new solution is fearible with X, = 0, X2 = 95, X3 = 240. Z = 3×0+ 2×95+5×240 = \$1390, which is letter than the current value of Z

Solution is infeasible

	×	×z	×3	Xy	×5-	x6	l
Z	4	0	0	1	ح	0	1460
Χz	-1/4	i	0	1/2	-1/4	0	105
X³	3/2	0	1	O	1/2	0	250
X6	Z	0	0	-2	1	i	-20
Z	5	0	٥	0	5/2	1/2	1450
Χz	1/y	1	0	0	0	1/4	100
Х3	3/2	0	1	0	1/2	0	250
Χų	-1	0	0	1	-1/2	-1/2	10

$$\begin{pmatrix} X_2 \\ X_3 \\ X_6 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 500 \\ 400 \\ 600 \end{pmatrix} = \begin{pmatrix} 150 \\ 200 \\ 0 \end{pmatrix}$$

New Solution is feasible Z=#1300

$$\begin{pmatrix} (2) \\ \chi_{3} \\ \chi_{6} \end{pmatrix} = \begin{pmatrix} 1/2 & -1/4 & 6 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3\sigma_{0} \\ 8\sigma_{0} \\ 2\sigma_{0} \end{pmatrix} = \begin{pmatrix} -50 \\ 4\sigma_{0} \\ 4\sigma_{0} \end{pmatrix}$$

,	1 %	Χz	X3	Χy	ХJ	XG	L
Z	4	0	0	1	2	0	1900
Kz	-1/4	1	0	1/2	-1/4	O	-50
X ₃	3/2	0	ł	0	1/z	0	400
XG	2	0	0	-2	i	1	400
Z	2	8	0	5	0	0	1500
×s	1	-4	0	-2	1	0	200
x ₃	1	2	1	}	0	0	300
X6		4	٥	6	0	1	200
						conti	nued

$$\begin{pmatrix}
X_2 \\
X_3 \\
X_4
\end{pmatrix} = \begin{pmatrix}
1/4 & -1/2 & 0 & 0 \\
-1/8 & 3/4 & 0 & 0 \\
3/8 & -5/4 & 1 & 0 \\
1/8 & -3/4 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
28 \\
8 \\
1 \\
2
\end{pmatrix} = \begin{pmatrix}
3 \\
5/2 \\
3/2 \\
-1
\end{pmatrix}$$

	Xı	Χį	<u>s,</u>	2.5	53	Sφ	ľ
Z	0	0	3/4	1/2	0	0	25
×ı	1	0	1/4	-1/2	o	0	3
ΧŁ	0	1 -	-1/8	3/4	0	0	5/2
ડ્ય	0	0	3/8	-5/4	ł	0	3/2
Sφ	0	0	1/8	-3/4	0	1	-1
Z	٥	0	5/6	0	0	2/3	243/3
X,	J	0	1/6	0	0	-2/3	10/3
Χ'n	0	t	0	0	0	1	2
53	0	0	1/6	0	1	-5/2	7/3
Sz	0	0	-1/6		٥	-4/3	2/3

X₁ = 16 limestone in weekly mix X₂ = 16 corn in weekly mix X₃ = 16 soybean meal in weekly mix Minimize Z = .12 X₁ + .45 X₂ + 1.6 X₃ 5.t.

 $X_1 + X_2 + X_3 \ge Q$ $\cdot 38X_1 + \cdot 001X_2 + \cdot 002X_3 \ge \cdot 008(X_1 + X_2 + X_3)$ $\cdot 38X_1 + \cdot 001X_2 + \cdot 002X_3 \le \cdot 0/2(X_1 + X_2 + X_3)$ $\cdot 09X_2 + \cdot 5X_3 \ge \cdot 22(X_1 + X_2 + X_3)$ $\cdot 02X_2 + \cdot 08X_3 \le \cdot 05(X_1 + X_2 + X_3)$

Q= weekly mix
The constraints simplify to

 $X_1 + X_2 + X_3 \ge Q$ $.372X_1 - .007X_2 - .006X_3 \ge 0$ $.368X_1 - .061X_2 - .01X_3 \le 0$ $-.22X_1 - .13X_2 + .28X_3 \ge 0$ $-.05X_1 - .03X_2 + .03X_3 \le 0$

Aleck 1 Z 3 4 5 6 7 8
Q (16) 5200 9600 15000 20000 20000 32000 38000 42000

continued.

First, we solve the problem using Q=5200 16, feed requirements for week 1. Then we use senistivity analysis for the remaining weeks. Week 1 Solution (using TORA)

$$\begin{pmatrix} Basic \\ vector \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \\ Sx_5 \\ x_3 \\ SX_4 \end{pmatrix}, Z = $4224.74$$

$$inverse = \begin{pmatrix} .649 & 0 & -3.216 & -2.431 & 0 \\ .028 & 0 & 2.637 & -.016 & 0 \\ .004 & -1 & 1.010 & .000 & 0 \\ .323 & 0 & .579 & 2.438 & 0 \\ .011 & 0 & .018 & .146 & 1 \end{pmatrix}$$

Solution given Q:

General solution:

$$X_1 = .028Q$$

 $X_2 = .649Q$
 $X_3 = .323Q$

$$Z = (.12 \times .028 + .45 \times .649 + 1.6 \times .323) \bigcirc$$

$$= .81221 \bigcirc$$

B= mierae D:= change in RHS of constraint i,

Simultaneons peachtig conditions: $B^{-1}\begin{pmatrix} b_1+b_1\\ \vdots\\ b_m+D_m \end{pmatrix} \ge \begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix}$

Let $p_i \leq D_i \leq q_i$ be the feasibility range computed from the <u>single</u>-change conditions: $B \begin{pmatrix} b_i \\ b_i + D_i \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Define $\Delta_i = \{ q_i, i \in D_i < 0 \}$

Condition (3 holds true for D. = D; also. Now, define r. ≥0, i=0,1,2,..., m

must also be feasible. The last

expression reduces to $\mathcal{B}^{-1}\left[\begin{pmatrix}b_1\\\vdots\\b_m\end{pmatrix} + \begin{pmatrix}r_i & \Delta_i\\\vdots\\r_m & \Delta_m\end{pmatrix}\right] \geq \begin{pmatrix}0\\\vdots\\0\end{pmatrix} \qquad \boxed{3}$

Next, Select $r_i = \frac{D_i}{\Delta_i}$, i = 1, 2, ..., m. Then 3 is the same as condition (1). However, because $r_0 + r_1 + ... + r_m = 1$, it much be true that $r_1 + r_2 + ... + r_m = 1$. The condition

thus implies that 3, and hence O, is feasible. The condition is not sufficient because 3 can be satisfied for arbitrary values of 7, 1, ..., and r.

(a)

6

The simplex tableau is

	- 1	_		•			
	Χı	Χ _Ł	X3	Χų	×3-	X6	Soluti
Z	0	0	-1/4	5/2	0	0	13
X,	1	0	1/4	-1/2	0	6	3
X, Xz	0	1	-1/8	3/4	0	0	5/2
X5 X6		0	3/8	-5/4	1	O	3/2
×6	0	0	1/8	-3/4	0	ì	-1/2

The tableau is both nonoptimal and unfeasible.

(6) apply the primal simples to the tableau above, disregarding the X6-how in the ratio test. The x3 outers the basic Lowton and x5 haves. The resulting tableau is

	Χ,	Xz	X	Χư	X5-	X6	
Z	0	0	0	5/3	2/3	0	14
Xi	1	0	0	1/3	-5/3	0	Z
X ₂ X ₃ X ₆	0		0	1/3	1/3	0	3
X3	0	0	1	-10/3	8/3	0	4
×6	0	0	0	-1/3	-1/3	1	-1

The tableau is now optimal but infeasible. Application of the dual simplex method should then lead to feasibility while maintaining the tableau optimal.

continued.

 $X_1 = 0$, $X_2 = 100$, $X_3 = 230$

(a) $4x_1 + x_2 + 2x_3 \le 570$:

Since $4\times0+1\times100+2\times230=560 <$ 570, the additional constraint is redundant and the solution' remains unchanged.

 $(6) \ 4x_1 + x_2 + 2x_3 \le 548$

The current solution violates the new constraints we use the dual simplex method to determine the new Solution.

70	en	Oou	wy,	•				
	×ı	XZ	×,	Хy	_x_	×6	×7	}
Z	4	0	0		2	O	0	1350
Χz	-1/4	1	0	1/2	-1/4	0	0	100
xz	3/2	0	1	0	1/2	0	0	230
X	2	0	٥	_ ~ Z		1	0	20
<u>×7</u>	4	II	2	0	0	0	1	548
2	4	٥	ပ	1	Z	ø	0	1350
×	-1/4	1	0	1/2	-1/4	0	0	100
×3	3/2	0	1	0	1/2	0	ð	230
ΧŁ	2	0	٥	-2	ı	1	а	20
×7	5/4	0	Ò	-1/2	-3/4	0	i	-12
Z	13/2	0	0	0	1/2	0	2	1326
Χz	-1/4	í	0	0	- I	0	ı	88
X3	3/2	0	1	0	1/2	0	0	230
X6	-3	0	0	0	4	1	-4	68
X4	-5/2	0	Ó	i	3/2	0	-2	24

Optimum Solution:

$$X_1 = 0$$
, $X_2 = 88$, $X_3 = 230$
 $Z = 1326

Maximize $Z = 5X_1 + 6X_2 + 3X_3$ Subject to

$$\begin{aligned}
SX_1 + 5X_2 + 3X_3 &\leq SO & (1) \\
X_1 + X_2 - X_3 &\leq 2O & (2) \\
7X_1 + 6X_2 - 9X_3 &\leq 3O & (3) \\
SX_1 + 5X_2 + 5X_3 &\leq 3S & (4) \\
(2X_1 + 6X_2 &\leq 9O & (5) \\
X_2 - 9X_3 &\leq 2O & (6) \\
X_1, X_2, X_3 &\geq O
\end{aligned}$$

Start with constraints (1), (3), and (4). The associated solution is

This solution automatically satisfies the remaining constraints (2), (5), and (6). Hence these constraints are discarded as redundant and the optimism solution for the problem is as given above.

$\begin{pmatrix} Basic \\ vector \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ x_4 \end{pmatrix} Inverse = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$	
Nonbasic variables: X_1 , X_4 , X_5 - (a) $Z = 2X_1 + X_2 + 4X_3$	
$(y_1, y_2, y_3) = (1, 4, 0) \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$	
$=(\frac{1}{2},\frac{7}{4},0)$	

Reduced costs:

$$X_{1}: (\frac{1}{2}, \frac{7}{4}, 0) (\frac{3}{3}) = 2 = \frac{15}{4}$$

$$X_{2}: (\frac{1}{2}, \frac{7}{4}, 0) (\frac{1}{0}) = 0 = \frac{1}{2}$$

$$X_{5}: (\frac{1}{2}, \frac{7}{4}, 0) (\frac{0}{0}) = 0 = \frac{7}{4}$$
current Solution remains optimal
$$(6) \ Z = 3X_{1} + 6X_{2} + X_{3}$$

$$(\frac{1}{2}, \frac{7}{4}, \frac{7}{3}) = (6, 1, 0) (\frac{1}{2}, \frac{7}{4}, \frac{9}{4})$$

$$= (3, -1, 0)$$

Reduced costs.

 $X_1: 1 \times 3 + 3 \times -1 + 1 \times 0 - 3 = -3 < 0$ $X_2: 1 \times 3 + 0 \times -1 + 0 \times 0 - 0 = 3$ $X_5: 0 \times 3 + 1 \times -1 + 0 \times 0 - 0 = -1 < 0$ Solution is not optimal.

				•			
	X	Xz	×3	Хy	×ς	X6	l
Z	-3	0	0	3	-1	0	830
ΧŁ	-1/4	1	0	1/2	-1/4	0	100
X3	3/z	0	1	0	1/2	0	230
X6	2	0	0	-2	i	1	20
Z	0	0	0	0	Y2	3/2	860
Χz	0	1	1/4	1/4	-1/4	1/8	102上
X3	0	0	o	o'	1/z	0	215
X	1	0	-1	-1	1/2	1/2	10

Ophimum Solution: $X_1 = 10, X_2 = 102\frac{1}{2}, X_3 = 215$ Problem Las alternative optima. $Z = \frac{1}{2}$ 60

(C) $Z = 8X_1 + 3X_2 + 9X_3$ (Y_1, Y_2, Y_3) = (3, 90) $\begin{pmatrix} V_2 & -1/4 & 0 \\ 0 & V_2 & 0 \end{pmatrix} = \begin{pmatrix} \frac{3}{2}, \frac{15}{4}, 0 \end{pmatrix}$ Reduced Goots: $X_1 : 1X = \frac{3}{2} + 3X = \frac{15}{4} + 1 \times 0 - 8 = 19/4$

 $x_4: 1x_{\frac{3}{2}} + 3x_0 + 1x_0 - 0 = 3/2$ continued.

X5: 0x3/2+1x15/4+0x0-0=15/4 Solution remains optimal

Basic
$$\begin{pmatrix} X_1 \\ X_2 \\ Ye U_{00} \end{pmatrix}$$
 yinverse = $\begin{pmatrix} 1/4 & -1/2 & 0 & 0 \\ -1/8 & 3/4 & 0 & 0 \\ 3/8 & -5/4 & 1 & 0 \\ 1/8 & -3/4 & 0 & 1 \end{pmatrix}$

Dual problem:

Thinimize $\omega = 24J_1 + 6J_2 + J_3 + 2J_4$ Subject to $6J_1 + J_2 - J_3 \ge 5$ $4J_1 + 2J_2 + J_3 + J_4 \ge 4$ $J_1, J_2, J_3, J_4 \ge 0$

(a)
$$Z = 3x_1 + 2x_2$$
 (1/4 -1/2 0 0)
(3/3, 3/2, 3/4) = (3, 2, 0, 0) (-1/8 3/4 0 0)
= (1/2, 0, 0, 0)
(1/8 -3/4 0 1)

Reduced costs:

x3: 2-0= 42-0= 42 x4: 4: -0= 0-0 = 0 Solution remains optimal.

$$(6) Z = 8X_1 + 10X_2
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 - 1/2 0)
(1/4 0)
(1/4 0)
(1/4 0)
(1/4 0)
(1/4 0)
(1/4 0)
(1/4 0)
(1/4 0)
(1/4 0)
(1/4 0)
(1/$$

Reduced costs:

×3: 4, -0 = 3/4 -0 = 3/4 ×4: 42-0 = 7/2-0 = 7/2 Solution remains opetimel

$$(c) \ Z = 2x_1 + 5x_2 \qquad ||4 - ||_2 \qquad 0 \\ (y_1, y_2, y_3, y_4) = (2,5,6) \qquad ||4 - ||_2 \qquad 0 \\ ||4 - ||_2 \qquad 0 \qquad 0 \\ ||4 - ||_2$$

Reduced costs:

$$x_3: y_1 - 0 = -1/8 - 0 = -1/8 < 0$$

 $x_4: y_2 - 0 = 11/4 - 0 = 11/4$

current solution is not optimal.

continued..

Set 4.5c

	x,	Xz	×3	Xy	X	X6	1
Z	0	0	-1/8	11/4	0	0	27/2
X)	-	0	1/4	-1/2	0	. 0	3
X	0	1	-1/8	3/4	0	0	3/2
X5	0	0	3/8	-5/4	1	0	5/2
X6	0	0	1/8	-3/4	0	1	1/2
Z	σ	0	0	2	o	1	14
X	1	0	0	1	0	-2	2
XZ	0	ł	0	0	0	ı	2
Xs	0	0	0	j	. 1	-3] }
ХЗ	O	0	1	-6	0	8	4

Optimum colution: $X_1 = 2$, $X_2 = 2$, $X_3 = 4$, Z = 14

Let dj = change in the objective 3 coefficient cj, j=1,2,..., n The simultaneous changes yield the same optimism if (for maximization)

$$(Z_{j}, -c_{j}, -d_{j}) \ge 0, j = 1,2,...,n$$
 (1)

where z; = left-hand of constraint dual; = \sum_{i=1}^{2} a_{ij} d_{i}.

Let U, & d; & V; be the optimality range computed from the single-change condition

$$Z_j - c_j \cdot - c_j \cdot \ge 0 \tag{2}$$

and define
$$u_j$$
, if $d_j < 0$

$$S_j = \begin{cases} v_j, & \text{if } d_j < 0 \\ v_j, & \text{if } d_j > 0 \end{cases}$$

Condition (2) holds true also for d; = 5. Define $r_j \ge 0$, j=0,1,2,...,n, such that $r_0 + r_1 + \cdots + r_n = 1$. Then

$$r_0(z_1-c_1,...,z_n-c_n) + r_1(z_1-c_1-\delta_1,...,z_n-c_n) + ...+r_n(z_1-c_1...,z_n-c_n-\delta_n)$$

the last expression reduces to $(z_1-c_1,...,z_n-c_n)-(r_1\delta_1,...,r_n\delta_n)\geq 0$ or z;-g-y-6; ≥0, j=1,2,...,n (3) Now, set $y = \frac{di}{s}$, then (3) is identical to (1), the desired condition. However, since & + ri+ ... + rn = 1 and 6 ≥0, then for optimality we must have

1,+ 12+...+m <1

Di.	ial	one	train	t for	toy.	trains		(6)	Redi
so			12+ 2		_				kau
		•	_					Col	umn
3			1, 4			13 = 0	l	ı	×ı
new	redu	ued c	ear fo	n X, a	۵			Z	4
	$\frac{p}{la}$	(2,7	+ 342	+ 1/3)-	-3.			Χ ₂	-1/4
F	- I I I I I I								
we	For toy trains to be just properable, $\frac{7}{2}$ we must have								
	P	11	3X2+	IXO)-	-3-≥	0			13/4 -1/4
								X3	
or			42.	86 10	·			Χŋ	
X	reduce	d cost	± ·5	<i>y</i> + <i>y</i> +	··54	.3	2	1	3 = 6
			= ·5×					1	nax
							_	Su	fje
X,-4	olum	777 =	(1/2 - 0 1, -2	1- 0	i	= 1/2	.]		
			1-2	11	1.5/	(1/2	1		
	X,	XL	Х3	Хy	<u>x</u> 5-	X6			
	-1/2	0	0	1	2	0	1350	. ~	'ew
i 1	0			1/2		0	100		nal
x ₃	1/2	0	I	0	1/2	0	230	1 4	ced as
×6	1/2	0	0		ı		20		traint numa
2	0	0	0		3	1	1370	\	/
XL	0	j	0	1/2	-1/4	0	100		I V
X ₃	0	0	7	2	-1/2	-1	210	Z	ν _ι
×,	1	0	0	-4	2	2	40	X,	0
2	Ø	0	1/2	0	11/4	1/2	1475	XL	0
X2	0	1	-1/4	0	-1/8	1/4	472	X6	0
Xy	0	0	1/2	ŧ	-1/4	-1/2	105	X7 Z	0
X,	1	0	ર	0	}	0	460	x,	H
(a)	N/o.	a de	al con		-1- P	- /40		X ₃	0
en	anl	0 44	val con			•		- ¥6	0 -
•	engines is $3y_1 + 2y_2 + 4y_3 \ge 5$, $y_1 = 1$, $y_2 = 2$, $y_3 = 0$ $x_7 = 0$								
Ros	Padwood cont = 3x1+2x2+4x0-5 Option								
	= 2 > 0							X,	
F.,	e. Baro	ing A	are not	-	able				Z
	7	-,		1 0		CC	ontinued	22	

							S	et 4	5d
1	(6)	Redi	rude	100 f =	3×1+	2X2+	7×0-	10 =	-3
1	•			_		//3/	1	11	
	TOB	leau 'umn) = (0 1	/z 0	12	= (1	
'	Coi	u mi	y (2	1 1	1/4/	1	01	
		×ı	Χz	<u>, </u>	(3)	Ky X5	X	X7	
	Z	4	0	. 0		3 1	5	0 1	350
	- 1	-1/4	1	0	' i	1 1/2	-1/4	0	100
		3/2	0	. 1	ı	0	1/2	1	230
		2	, 3				-/-	1	20
		13/4		0					1650
		-14		0	1	1/2	,,	1	100
١	^3 X7	7/4	-1 D	0	C	, ,	3/4	0	130
4		<u> </u>			<u> </u>				
		3 = (my		g ren	exter	or p	aung 2 CX-	4
		Liz	ch to			X, + 4.	_		
	سب		y to			4X2+			_
					-	$2X_1 + 3$			•
				- X		Y2 + Y2 +	^3	≤ ≤ 2	
				×	, Y ₂	, X ₃ :	≥0		
Ì	. 🗡	lew.	dual	Cons	han	1.3	1 _ 3	¥ + ¥.	≥3.5
	$\boldsymbol{\mathcal{D}}$	MA	Com	ven:	c7, = 2	Æ 1 7.=	: 1/s .	٧. =	0
	Redu	iced on	$t=\frac{3}{4}$	(3/4+1)	(2) +	0-3.5		41/16	
	+0113	L. Maril	/114	-1/2	0	3/4	1-	3/16	\
.	Col	HITTIRA	1 2/X	-5N	0 6		= 113	5/32 3/1/6)
•	-		118	-3/٧	ò t	1/91	/-	الا/3ك. 15/3ك.	<i> </i>
		X,	XL	×3	¥y	×5	X6	X7	1
	Z	0	0	-41/16	3/4	1/2	0	g	21
	X	1	0	-3/16	1/4	-1/2	0	0	3
:	XL	0	1	15/32	-1/8	3/4	Ò	O	3/2
-	Х6	0	0	13/16	3/8	-5/4	(0	5/2
	X7	0		-15/32	1/8	-3/4	٥		1/2
		ļ	5.47		.07	4.6	0	0	54.5
_	×	1	.4	0	- 2	2	0	0	3.6
	X3		2·13 - :73	1 -	- 27	1.6	0	0	3.2
:0	¥7		-·13	0	.47	-1.8	1	0	1.4
-0		<u> </u>			0	0	0		2.0
	Optimum solution:								
		X,	= 3.	6 tor	15,	X2 = 0	, X3	=3.2	tono
	Z = \$29,200								

CHAPTER 5

Transportation Model and its Variants

					Se	et 5	5.1a
\mathbf{S}	nit a	rets	in sh	rusana	1 \$ p	n	110
	uu or	r ga	llons:				
0	m re	finer =	\$ 1.50x	blums 106	ny		
fro	r e	/	100 X	703	- 15		
		mer	y 2 to	Dum.			
		=	\$ 2.20 x	103 =	22		
		12	2 18	3	Dum	my	
Ref.	4		2		•	13	6
2	-	30	5 /0	8		22	E
3		20	25	A 12	2	0	9
				4	3		O
/ >	4		8	4	3		
			3 dive			on	
			use := \$20				
(a) To!	M Supp	N = /9	*d+ 200 1	<u> </u>		T	
1 Pot	ential of	vertin	e Swabin) + 400 +16 \	70 = 800 C	ntes	
1-3		oren Z	ado 1 \$ 2		9-600 u <i>mmy</i>	= & 00	crates
Orch 1	1	(150)	2 3	2	0		
	2	(30)	4 /	2 (2	00 150	7+20	0
2		,	400		20	0+2	00
3	(So)	3	5	100)	MAS	0	
	150	150	400	100 2	00		
(6)	J.						
Cost=	*1150	4	((2)	(3))	
150		1					
1	(2)	150	(3)	o Cu	\$100	為	00
	lem 7	las i	alter	. ∕~ . ⁄~'	ノ <i>ナ</i> ー*		
(c) C	Ircha	d 1	altern	vertin	puna		
0	rchad	'z	= 200	overti	me cra	tes	

Superfue Laboret	NO DEE LA
Supply/demand quantities are	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
determined by divide as	
of cars by 18 and rounding the number	
result up, if necessary. For example,	\$ 5 3
supply amount at center 1 is	- p//////oc//////////
400 = 22.22 or 23 truckloads.	# 1
Expressing unit transport from	2 (1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1
\$ 1000 per truck load, we get	Se Se Se Se Se Se Se Se Se Se Se Se Se S
	2 0 00 000
2.5 3.75 S 3.5 875	000
(6) 9 8 23	\$
2 3 9 1.625 2 12	
1 2.25 25 275 3.00	3 13: 11 3
3 9 3.3 3.25 9	
6 12 9 9 8	7 6 2 3
(b) alternative Solution exists	و تا الله الله الله الله الله الله الله ا
Coot = \$92,500	25 S S S S S S S S S S S S S S S S S S S
	3 3 3 3
· ·	S S S S S S S S S S S S S S S S S S S
	4 8 8 5
·	500 500 400
	Optimim Solution:
	LA-Denver M4 = 300 cars
	DetDenver M1 = 500 Cars DetDenver M2 = 450 Cars
	Det Denver MI/M2 = 70 cars
	DetMiami M2 = 75 cars
	DetMiami M2/4 = 5 cars
	DetDenver M4 = 180 cars
	Det Denver $M3/4 = 100$ cars
	DetMiami M4 = 95 Cars DetMiami M2/4 = 25 Cars
	N.o Denver MI = 130 cars
	N.ODenver M1/2 = 50 cars
	N.O Miami MI = 540 cars
	N.O Miami M1/3 = 80 Cars N.O Miami MZ = 400 CArs
	Total cost = \$343,620
P	24

Task	
	270 345 645 450 450 .
Machine 10 2 3 15 9	
1 (25) 1 ZS	200 150 300 250 400
5 10 15 2 4	400
2 (20) (10) 30	2100 104 108 112 116 1
3 15 5 14 7 15	K1 (180) 180
(20)	0 150 154 158 162 166 0
4 20 15 5 13 M (25) 30	[9] (20) 70 90
	R ₂ // (150) (80) 104 108 0 930
	144 148 152 156 0 230
Total cost = \$560	0, 115 115
	1/1/11/16 120 124 0
(1) (2) (3) (4)	R ₃ // (220) So (60) 430
25	0 // 174 178 182 0
20 25 25 10	215 2/3
(1) (2) (3) 5 (4) (5)	Ry 102 106 0 300
500 600 200 300	1 / / / / / / / / / / / / / / / / / / /
5	04//////// 13 150 150
400 300 420 320	D / / / 106 0
	R _S ////////////////////////////////////
C: \$100 \$140 \$120 \$150 h: \$3 \$3 \$3 \$3	05/ 159 150
h: \$3 \$3 \$3	1/1////////////////////////////////////
_1 2 3 4 Surpho	200 150 300 250 400 860
100 103 106 M 0	Cost = #137,720
400 000 500	alternative solution exists.
2 M 140 143 146 600	
M M /20 /23 0	Period Production schedule
3 200 200	1 Regular - 180 engines Overtime - 20 engines
M M M /50 0	Overame - 20 engines
4 200 100 300	2 Regular: 230 engines
400 300 420 380 100	3 Regular 270 engines
Cost = \$190,040, alternative Solution	
Pariod Canacity Ant Co. 1. Delivery	4 Regular 300 engines
Period Capacity Amb Prod. Delivery 1 500 500 400 for 1	
2 600 600 100 for 2	5 Regular 300 engines
220 for 3	
3 200 200 200 for 3	
4 300 200 200 for 4	
5-	

		1	2	3	4	5	6	Dis	Posal
Neu	J.	200	(89) 510	(40)	231.53	243.1	\$2:56	878	1398
	1 1		120	121.5	(88) 37	36.5	38	6	200
	2			<u>₹</u>	121.5	35	36.5	0	180
3	3				(3) (3)	121.5	35 290	0	300
	4					120	151-2	0	198
ک	-						120	230	230
6								290	290
		200	180	300	198	236	290	1398	

Cost = \$ 170,698 alternative Solution exists

Month	New	1-day	3-day	Dispual
1	200	12	188	0
2	180	148	32	0
3	140	10	290	6
4	0	198	0	0
5	0	0	0	230
6	0	σ	0	290

(a)	Use ne	gatwé co Bidd	ot Wali	res	8
Loc		2.	3	4	
1	-520	, n	10	-180	10
2	-210	20-510	М	-430	20
3	-570	-495	-540	-710 30	30
Dumy	30°	10 "	20°	0	60
· '	30	30	30	30	
163	0.11	_			

(b) Bidder 1 = 0 acre

Bidder 2 = 20 acres (location)

Bidder 3 = 10 acres (location 2)

Bidder 4 = 30 acres (location 3)

Set 5.3a

Set 5.3D	
Method (i) Nbr. of iterations	u 1 3
(ii) (iii) (iii)	5 1 7
deapt cost 2 3	0 -2 10 -4 10
Vogel 2	6 4 6
Least-cost 5 tarting solution . 6	³ 20 10 50 80
u v 2 1 2	0 15 3 2 5 15
5 1 7	19 -1 -2 19
-3 (10) -5 10	-3 40 '' 40
70 - 11 - 80	75 20 50
3 9 5	Total cor = \$515. Dest. 1 in 40 units
5 10 -2 15	Short.
5 3 40 40	Vogel method:
	4
75 20 50	1 2 1 5 0
u 3 1 3	3 4 5 M
0 0 1 (10) 1 10	
6 4 6	2 3 3 203
3 60 10 10 80	1 1 2 2
0 (IS) 3 2 5 IS	
E 3	2 20
-1 <u>-3</u> -3 40 40	3 4 5
75 20 50	2 3 3
Destination 3 will be 40 units	
Short Optimum cost = \$595	1 1 2
act-cont-starting Solution:	
u v 2 1 1	3 4 5
And the continues of th	
0 -3 10 -6 10	2 3 0 3
4 30 0 4 50 6 80	1 1 2
3 2 5	
5 10 3 15	
2 40° ° M 40	203 204
	102 3
7 5 20 50	

y V		1		ı	•
O	_1 _1	-1 2	20	3	20
3	20 ³	204	-1 S	M 4-M	40
2	102	0)	0 3	20 ³	30
	30	20	20	20	

Cost = \$240- alternative solution exists

ul	2	5	10	(2.8 Margar)
- 2	(S) C11	CIZ	^C /3	15
3	(S) (C21	(25)"	C13	30
5	C3/	(S) C32	(80) C31	85
	20	30	80	

(a) Cij = Ui + Vj. for basic xij Thus,

$$C_{11} = 2 - 2 = 0$$

$$C_{21} = 3 + 2 = 5$$

$$Q_2 = 3 + 5 = 8$$

$$C_{32} = 5+5 = 10$$

$$C_{33} = 5 + 10 = 15$$

Cot = 15x0 + 5x5+25x8+5x10 + 80 x 15 = \$1475

(b) 21c+vj-Cij ≤0 for nonbasic xij

Problems 6 and 7 on next page

(a) For basic Xij, Cij = Ui+Vj.
u 2 2 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Coot = 3×10+1×20+4×20 = \$130
(b) For nonbasic Xi; : Ui+VjCij ≤0
to saliefy optimality. Hence
$2+1-(1+2\theta) \le 0 \implies \theta \ge 1$
$5+1-(1+3\theta) \le 0 \implies \theta \geqslant 5/3$ $2-1-(2+\theta) \le 0 \implies \theta \ge -1$
Take $\theta = \frac{5}{3}$ to yield $x_{13} = 0$ as
the zero basic variable.
7
Min Z= 1 1 2 6 5 1
l a .
3.€. ≥5
/ / ≥2
/ / /
/ / ≥7
/ / ≥1
/ / ≥1 Xij≥o for alliandj
Xi; ≥0 for all i and j Optimim LP Solution using TORA:
$x_{ij} \ge 0$ for all i and j Optimize LP Solution using TORA: $Z = 15$, $x_{11} = 2$, $x_{12} = 7$, $x_{23} = 6$
Xij \ge of or all i and j Optimim LP Solution wairy TORA: Z=15, X1, =2, X12=7, X23=6 If we replace the first two constraints with equations, we
Xij \ge of or all i and j Optimim LP Solution waing TORA: Z=15, X11 = 2, X12 = 7, X23 = 6 If we replace the first two constraints with equations, we get the optimum solution:
$x_{ij} \ge 0$ for all i and j Optimism LP Solution wairy TORA: $Z = 15$, $x_{11} = 2$, $x_{12} = 7$, $x_{23} = 6$ If we replace the first two constraints with equations, we get the optimism Solution: $Z = 27$, $x_{11} = 2$, $x_{12} = 3$,
Xij \ge of or all i and j Optimim LP Solution waing TORA: Z=15, X11 = 2, X12 = 7, X23 = 6 If we replace the first two constraints with equations, we get the optimum solution:

Max 15 25 10 5 15 15 15
s.t.
1 ≤10
≤ 20 ≤
1 / 12
1
1
1 ≤14
≤ 16 ≤ 18
From Table 5-25:
$u_1 = 0, u_2 = 5, u_3 = 7$
$v_1 = -3$, $v_2 = 2$, $v_3 = 4$, $v_4 = 11$
Optimum W = 15x0 + 25x5 + 10x7
+ 5x-3+1/cx 2+
15x4+15x11 (
= \$435
minimize $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ 2
subject to
0
$\sum_{j=1}^{\infty} x_{ij} = \alpha_{ij}, i=1,2,,m$
m
$\sum_{i=1}^{n} x_{ij} = b_{j}, j=1,2,,n$
Next, consider
$Z' = \sum_{i=1}^{m} \sum_{j=1}^{n} (C_{ij} + K) \chi_{ij}$
• • · · · · · · · · · · · · · · · · · ·
$= \sum_{i=j}^{m} \sum_{j=i}^{n} c_{ij} x_{ij} + K \sum_{i=j}^{m} \left(\sum_{j=i}^{n} x_{ij} \right)$
$= \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + K \sum_{j=1}^{m} a_{i}$
- (=) (=) (1) + \ (=)

Set 5.3c = \(\sum_{i=1} \sum_{j=1} C_{ij} \times_{ij} + K, Kio a constant This result shows that optimization cesing Z and Z' yield the same optimum values of xij. To show why the dual values associated with a given primal basic Solution are not unique, note that, for any constant K, (Dual) = (Original basic) x Inverse + Values) = (Original basic) x Inverse This means that even though the optimal primal solution is unique for all K, there are infinity of dual values, each corresponding to a given value of K. The conclusion is that an arbitrary value assigned to one of the dual variables (c.g., u,=0) implies a specific value for the constant K.

(a-i)	
(4-1) 3 8 2 10 3 27	10 7 0 0 5 Optimum:
872972	
	4 0 4 4 5 2-2
6 4 2 7 5 2 Row	2-2
8 4 2 3 5 2 min	1 0 0 11-4
	0 4 3 0 0 5-3
9 10 6 9 10 6)	6 4 0 1 4 Cost = \$11
7	
	55 M 2 3 3 M-2 0 2
16081	7423 5201
65075	935 M 60 Z M-3
	7267 5045
4 2 0 5 3	(All entries are divided by 10 for convenience)
62013	Jo pr convenence)
3 4 0 3 4	0 3 M-2 0 0 5 M-2 0
	12 2 0 1 2 4 10 1
Cal min - 1 2 0 1 1	3 0 2 M-3 1 101 0 M-5
Acron	2 0 4 5 0 0 4 5
Assignment: 0 4 2 7 0	Optimum: 1-4, 2-3, 3-2, 4-1
1-8 3 1 0 4 z	Cost = \$140
3-2 3 0 2 4 2	Job
	1 2 3 4 5
50202	1 50 50 M 20 0
Cont= \$21 0 0 0 0 1	2 70 40 20 30 0 Job 5 is
	Worker 3 90 30 50 M 0 dummy
(a-ii) 3 9 2 2 7 2	4 70 20 60 70 0 5 60 45 30 80 0
	1 2 3 4 5 0 30 M-20 0 D
9 4 7 10 3 3	
254211	70
962462	3 40 10 30 M-20 0 4 20 0 40 50 0
	5 10 25 10 60 0
	1 2 3 4 5 000
17015	1 0 30 M-20 0 10 1-4
50455	2 20 20 0 10 10 2-3
	3 30 0 20 M-30 0 3-50
	4 20 0 40 50 10 4-2
1 4 3 1 0	5 0 15 0 50 0 5-1
74024	Worker 3 is assigned to dummy job 5.
Calmin 1 0 0 1 0 continued	Worker 3 is assigned to dummy job 5. hus, worker 5 must replace worker 3.
30)ktil@00:	The state of the s
5-13	

add a "dummy" operator with zero assignment cost to each job (including the fifth). The optimal solution will show the replacement by indicating which of the current jobs (1 show 4) is assigned to the dummy operator. If the dummy operator is assigned to the new job, then the new job must assume lower priority to the current four jobs.

(all assignment cost are divided by

10 for convenience.)

1 2 3 4 5

1 5 5 M 2 2

2 7 4 2 3 1

Operator 3 9 3 5 M 2

4 7 2 6 7 8

5 0 0 0 0 0 0 Dummy

3 3 M-3 0 0 6 3 1 2 0 7 1 3 M-2 0 5 0 4 5 0

2 2 M-4 0 0 1-4 5 2 0 2 0 2-3 6 0 2 M-2 0 3-5 5 0 4 6 7 4-2 0 0 0 1 0 5-1

Since dummy operator is assigned to job 1, new job 5 has higher priority over job 1.

Define the following two sets:

Set 1: (DA, 3), (DA, 10), (DA, 17), (DA, 25)

Set 2: (AT, T), (AT, 12) AT, 21), (AT, 28). The idea is to match one element from Set 1 with another element from Set 2. The matching automatically decides the date and location for the purchase of each ticket. For example, consider the following assignment:

(DA,3) - (AT,21) (DA,10) - (AT,7) (DA,17) - (AT,28)(DA,25) - (AT,12)

This accignment can be interpreted as follows:

Ticket 1: June 3 DA → AT June 21 AT → DA

Ticket 2: June 7 AT → DA June 10 DA → AT

Ticket 3: June 17 DA -> AT

June 28 AT -> DA

Ticket 4: June 12 AT → DA

June 25 DA → AT

The complete assignment model is given below

A,12 A, 28 A,21 D,3 400 300 300 (280) D,10 (300) 400 300 300 D,17 (300) 300 400 300 D,25 -300 300 (300) 400

Optimum:

(P,3) - (A,28) (A,21) - (D,25) (A,7) - (D,10) (A,12) - (D,17) Problem has alternative optima.

5-14

Distance	matri	x in	meter	0	G
		a	candi b	tate as	d
	- 1	50	50	95	45
existing	Z	30	30	55	65
centers	3	70	50	25	55
	4	100	60	55	25

a measure of the optimal assignment of new centers to candidate locations must reflect both distance and frequency of trips; that is

	, ,	cxi. 2	shing 3	4	candidate a b c d
1		7		• _	SO SO 95 45
Ø	2	1	8	4	30 30 55 65
new III	4	9	6	0	70 50 25 55
W.	3	5	2	7_	100 60 55 25

		a	Ь	C	d
New	Ľ	1810	b 1370	1940	(180)
	II	1090	770	665	695
	亚	1140	770	1025	1095
	区	1140	820	995	745

TORA optimum assignment:

I-d II-C m-a四-6

The ranking of the projects by the different teams can use the following numeric score 1: Highest preference 1 : lowest preference A tie in preference between two or more projects is indicated by assigning the projects the same score. For example, the scores Project 1 2 3 4 5 6 7 8 9 Score 9 9 8 7 3 5 4 1 indicate that project 8 is the most preferred and projects 1 and 2 tie for the least preferred status. For the development of the model, eve use de following numeric designations for the projects Project nor. Project name Boing-F15 Boing - F18 Boing Simulation Cargil Cobb-Vantress ConAgra Cooper Dayspung (layout) 8 Dayspring (Materials) JB Hunt 10 Raytheon

Tyson fouth

Tyson East

WAL-MART

Yellow

11 12

13

14

15

The following	is a type	ial	Su.	mmary	
of profesence s	cores Sub	mile	led t	by sa	
11 teams:	Team	34			

•••		,,,,,				Tea.						
		/*	2		3	1 E a s	5	6	* 7	ໍ	9	10
	0	_	0) ;	2	S	T	_		Ť		2 19
2	8 -	-	1		5 (2 D	Z			i	- 1	10 13
3	1		Z	5		3	2	13	5	ı		2 ([
4	3)	3	6	4	4	10	S		S		4 14
5	13		5	4	5	•	q	4	12			3 13
6			4	Z	5	•	9	8	-		7	
7	4		6	(1)	12	2	8	9	, –			2 5
8	5			フ	N		7	9	10	4 (3	15
9	4			9	14		7	1	() i	· 1	15	1
10	1_		}		15	(, .	3	9 5	4		5
	1								- 7		. 6	7
1/8	7 -	9		3	6	5		3				
12	13	10	1	4	7	4				15		9
13	14	11	ı		8	3	13	_	78			9
14	15	12	S	5	9	0	10	!	76	Z	9	10
1.1	15	13	7	•	10	2	15	5	61	3	(1)	u

* Team does not meet at izonship requirements

8 project requiring us citizenthip

The problem is modeled as an assignment model. Entries — are replaced by M. a very large value. The model is unbalanced. Thus, 4 artificial teams must be added to balance the model. In its end four projects will not be assigned.

TORA Solution:

Project	Team	Score
1	2	1
2	4	j .
3	, 11	1

_		
Project	Team	Score
4	1	1
5	None	-
6	8	.
7	3	1
8	None	_
9	7	ı
10	None	
- 11	None	-
12	6	Z
13	10	1
14	5	1
15	10	1
7	Total score	13

Average score = $\frac{13}{11} = 1.18$ The average score is close to 1, meaning that all preferences are well met.

Xij = number of laborers lived at the start of period i and terminated at the start of period j.

8

Define nodes 1, 2, 3, 4, and 5 to correspond to the five months of the Rougon Node 6 is added to allow defining the variables xi6 that terminate at the end of the five-month planning horizon. The associated LP is defined below.

	x _{1,2}	x ₁₃ .	x ₁₄	X15	x ₁₆	x ₂₃	x ₂₄	x25	x ₂₆	x ₃₄	x35	x ₃₆	X45	X ₄₆	x ₅₆	
	100	130	180.	220	250	100	130	180	220	100	130	180	100	130	100	min
(1)	1	1	1	1	1											≥ 100
(2)	l	1	1	1	1	1	1	1	1							≥ 120
(3)	1		1	1	1		1	1	1	1	1	1				≥ 80
(4)				1	1			1	1		1	1	- 1	1		≥ 170
(5)					1				1			1		1	1	≥ 50

Let S,, S2, S3, S4, and S5 be the surplus variables associated with constraints 1, 2, 3, 4, and 5, respectively. The LP after adding the surplus variables show appears as

x,2	X ₁₃	x ₁₄	x15	x 16	x ₂₃	x ₂₄	x ₂₅	x_{26}	x ₃₄	x35	x36	X45	X46	x 56	S_1	S ₂	S_3	S ₄	s,	ı
100	130	180	220	250	100	120	180	220	100	130	180	100	130	100				····		min
1	1	1	1	1							3 1 200000									
	1	1	1	1	1	1	1	1							1					100
		1	1	1		1	1	i	1	1	,					I				120
		_	1	1		-	•	•	•	:	1						-1			80
			•	•			1	1		ı	1	1	1					-1		170
				1				1			1		1	1					-1	50

Next, perform the following transformation:

- 1. Leave equation (1) unchanged.
- 2. Replace equation (2) with (2) -(1).
- 3. Replace equation (3) with (3) (2).
- 4. Replace equation (4) with (4) (3).
- 5. Replace equation (5) with (5)-(4)
- 6. Add a new equation that equals -(5).

These transformations lead to the following LP

12	X13	X14	x 15	x16	x 23	X24	x25	x26	X34	X 35	x36	X45	XAS	x 56	S,	S_2	S3	S.	S,	
00	130	180	220	250	100	130	180	220		130	180		130	100	<u> </u>					min
1	1	1	1	1											_1					100
-1					1	1	1	1							1	-1				20
	— I				-1				1	1	, 1					1	-1			4
		1				-1			-1			1	1				1	-1		9
			-1				-1			1		1		1				1	-1	- 12
	_			1				-1			-1		-1	-1					1	

B = 550

The last LP has the structure of a transhipment model (See Problem 7). Let

$$S_2 = X_{32}$$

Then the LP above can be translated as a network as follows:

The transshipment model thus appears as

	1			>			
	· ·	2	-3	4	5	6	
2	0	100	130	180	7 220	7	1
	0	0	100		220	250	100 + B
3	M	0	0	130	180	220	20 + B
4.	M	М		100	130	180	В
5	М	M	0	0	100	130	
6	M		M	0	0		90 + B
L		M	M	M	0	100	В
	В	В	40 + B	В	120 + B	50 + R	В

The optimien solution from TORA is (Problem has alternative optime)

This solution can be interpreted as follows

- 1. Hire 100 laborers at the start of period I and terminate them at the start of period 5.
- 2. Hire 20 workers at the start of period 2 and terminale them at the start of periods.
- 3. Hire so workers at the start of period 4 and Terminate them at the start of period 6.

The Solution satisfies the labor requirements exactly, except for period 3 where there is a surplus of 40 workers (x43 = 40).

CHAPTER 6 Network Models 6-1

Set 6.1a

- (i)
- (a) Path: 1-3-4-2
- (b) Cycle: 1-3-4-5-1
- (c) Tree

(d) Spanning tree:

- (ii)
- (a) Path: 1-2-3
- (b) Cycle: 1-2-3-1
- (c) Tree

(d) Spanning Tree:

(i) N= {1,2,3,4,5}

 $A = \{1-2, 1-3, 2-5, 3-4, 3-5, 4-2, 4-5, 5-1\}$

(ii) $N = \{1, 2, 3, 4\}$ $A = \{1-2, 1-3, 2-3, 2-4, 3-4\}$

3

4

The notwork shows that nodes connected by an arc cannot hold consecutive numbers. Nodes D and E each has 6 emanating arcs. Whereas all the remaining nodes have at most 4 emanating arcs. Because I and 8 each can have 6 nonconsecutive neighbors (Namely, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8 or 8-6, 8-5, 8-4, 8-3, 8-2, 8-1) and no other number has this perspectly, I and 8 must be assigned to D and E. Setting D=1 and E=8, we must assign C=7 and F=2 because 2 and 7 can't be assigned anywhere clse without rool ating the sequence condition. Next, we have the following precipilities:

Two possible solutions indicated by the solid and dasked arcs:

	4	6	
7	1	8	2
	3	5	_

	3	5	}
7	_	do	Z
	4	6	

Switch D=1 and E=8 to two mirror arrangements.

Let i = inmate

g = guard

For each node, top half represents the number of i's and g's on the mainland side. The bottom talf is Kat of alcatraz.

Set 6.2a

				Set 6.2a
(-J	nij	mij	dij	(b) Spanning tree
2-3	1	/0	.91	
2-4	5	4	.44	(3) (2)
2-5	1	· //	.92	
2-6	da .	- 11	.92	/-2 /-6 /-6
2-7	4 2	6 7	·78	(8)
2-8		10	1	
	<i>0</i> 3	7	.7	. 63
2-10	J			6
3-4	0	10	1	.6
3-5	4	1	. 2	_/
3-6	2	5	.71	(1) (9)
3-7	2	6	.75	(C) a 2-cell solution is formed by removing
3-8	i	5	. 83	(C) a 2-cell solution is formed by removing the highest link in the minimal
3-9	1	4	.8	spanning tree.
3-10	3	J	.5	(3) (10) (2)
4-5	,	9	. 9	
4-6	Ġ	11	, ,	
4-7	3	6	. 67	
4-8	0	g	1	(S) (8) (7)
4-9	0	8	1	
4-10	ı	9	.9	6
5-6	2	6	.75	()
5-7	2	7	.78	
5-8 5-9	1	5	.86 .83	3- all solution:
5-10	3	4	.57	
3-10		•		(3) (0) (2)
6-7	3	5	.63	
6-8	1	6	86	
6-9	2	6 3 8	.60	(5) (8) (7)\
6-10	1	8	-89	8) (7)
70	0	9		
7-8 7-9	ı		.86	
7-10	,	6 9	.9	
	1		• 1	
8-9	t	:3	.75	
8-10	2	4 5	.67	
9-10	1	5	. 83	
			continued	continued

Optimal route: 1-4-6 Decision: Buy new cars in 2001 & 2004

max (PP...Pn) = max (logp + logp + ... + logp) = min (- lagp-logp- -- logp)

Optimum Solution by TORA:

Solog P = . 28/286. Thus,

I log P. = - 281286. Hence

$$40 = 10^{-.28/28} = .52326$$

Defene (i, i, k) = number of sides toasted of slices 1, 2, and 3

The two time charts below provides a summary of the times between the successive nodes.

Problem 4 on P. 6-7

The associated network is show guer as

The optimal sequence is (0,0,0) -(1,1,0) -> (2,1,1) -> (2,2,2). Lt is interpreted as follows:

- Toast both sides of slice 1 successibly (without interruption) in Side A.
- Toust side I of slice 2 in side B, then remove slice 2.
- Toust both sides of slice 3 in side B Toust side 2 of slice 2 in side A after slice 1 is tousted.

Total time = 106 seconds.

Summary of the problem data 3 \$1.20 h: C: \$15 \$12 \$14 100 210 180 Setup cost = \$200

continued.

continued

Set 6.3b

Shortest distance = 8: alternative roules: 1-3-6-8

> 1-3-5-6-8 1-2-3-5-6-8

b) From part (a), shortest distance between () and (6) is 6. alternative routes: 1-3-6

1-3-5-6 1-2-3-6 1-2-3-5-6

shortest distance = 8
alternative routes: 4-5-6-8
4-6-8

shortest distance = 5

alternative = { 2-3-6 } 2-3-5-6 routes

Shortest routes: Length

1-2: 1-3-2 3 1-3: 1-3

1-4: { 1-3-4 } 7

1-5: 1-3-2-5 4

 $1-6: \begin{cases} 1-3-2-5-6 \\ 1-3-2-6 \end{cases}$

 $1-7: \begin{cases} 1-3-2-5-6-7 \\ 1-3-2-6-7 \end{cases}$

Shortest route: 1-4-6. Cost=\$ 8900 Buy in 2001 \$ 2004

teration 5													·	
			•					Iteration 0						7
Array D5								Array D0						
	N1:	N2:	N3:	N4:	N5:	N6:	N7:	•	N1:	N2:	N3:	N4:	N5:	N6
N1:		4.00	3.00	9.00	6.00	7.00	12.00	N1:		700.00	200.00	infinity	infinity	infinit
N2:	4.00	1.00	1.00	5.00 6.00	2.00 3.00	3.00 4.00	8.00 9.00	N2: N3:	infinity 200.00	300.00	300.00	200.00 700.00	infinity	400.0
N3: N4:	3.00 9.00	5.00	6.00	0.00	3.00	4.00	3.00	N4:	infinity	200.00	700.00		600. 00 300. 00	infinit 100.00
N5:	6.00	2.00	3.00	3.00	4.00	1.00	6.00	N5: N6:	infinity infinity	infinity 400.00	600.00 infinity	300.00 100.00	500.00	500.0
N6: N7:	7.00 12.00	3.00 8.00	4.00 9.00	1.00 3.00	1.00 6.00	4.00	4.00			100.00	y	100.50	300.00	
rray S5	.2.00							Array S0	M4.	NO.	No.	N4.		
iray 33		NO.	NO.	NIA.	NE.	NG.	A17.	N14.	N1:	N2:	N3:	N4:	N5:	N6
	N1:	N2:	N3:	N4:	N5:	N6:	N7:	N1: N2:	1	2	3	4	5 5	(
N1:		3	3	3	3	5	4	N3: N4:	1 1	2 2	3	4	5 5	(
N2: N3:	3 1	2	3	4 2	5 2	5 5	4 4	N5:	. 1	2	3	4		
N4:	3	2	2		5	5	7	N6:	1_	2	3	4	5	
N5:	3 5	2 5	2 5	4 4	5	6	4	Iteration 1						
N6: N7:	4	4_	4	4	4	6								
								Array D1						
eration 6									N1:	N2:	N3:	N4:	N5:	N6
rray D6								N1: N2:	infinity	700.00	200.00 300.00	infinity 200.00	infinity infinity	infinity 400.00
	ki4.	N2:	N3:	N4:	N5:	N6:	N7:	N3: N4:	200.00 infinity	300.00 200.00	700.00	700.00	600.0 0 300.0 0	infinity 100.00
	N1:	INZ:	143.	144.	140.	NO.	147.	N5:	infinity	infinity	600.00	300.00		500.0
N1:		4.00	3.00	8.00	6.00	7.00	11.00	N6:	infinity	400.00	infinity	100.00	500.00	
N2: N3:	4.00 3.00	1.00	1.00	4.00 5.00	2.00 3.00	3.00 4.00	7.00 8.00	Array S1						
N4:	9.00	5.00	6.00	2.00	3.00	4.00	3.00		N1:	N2:	N3:	N4:	N5:	Ne
N5: N6:	6.00 7.00	2.00 3.00	3.00 4.00	2.00 1.00	1.00	1.00	5.00 4.00	N1:		2	3	4	. 5	1
N7:	11.00	7.00	8.00	3.00	5.00	4.00		N2:	1		3	4	5	(
rray S6								N3: N4:	1	2 2	3	4	5 5	1
,	N14.	N2:	N3:	N4:	N5:	N6:	N7.	N5: N6:	1	2 2	3 3	4 4	5	1
	N1:						N7:							
N1: N2:	3	3	3 3	6 6	3 5	5 5	6 6	Iteration 2						
N3:	1	2		6	2	5	6	Array D2						
N4:	3		2			5	.7							
		2	2	6	5				N14.	No.	NO.	114.		
N5: N6:	3 5	.5	2	6 4	5	6	6 4		N1:	N2:	N3:	N4:	N5:	N6 :
N5:	3	2					6	N1: N2:		N2: 700.00	200.00	900.00	infinity	1100.00
N5: N6: N7:	3 5 6	.5 .6	2 5 6	4	5	6	6	N2: N3:	infinity 200.00	700.00 300.00	200.00 300.00		infinity infinity 600.00	1100.00 400.00 700.00
N5: N6: N7: (a) [[-	3 5 6	2 5 6 duita	2 5 6	= //	5 6	6	4	N2: N3: N4: N5:	infinity 200.00 infinity infinity	700.00 300.00 200.00 infinity	200.00 300.00 500.00 600.00	900.00 200.00 500.00 300.00	infinity infinity 600.00 300.00	1100.00 400.00 700.00 100.00
N5: N6: N7: (a) [[-	3 5 6	2 5 6 duita	2 5 6	= //	5 6	6	4	N2: N3: N4:	infinity 200.00 infinity	700.00 300.00 200.00	200.00 300.00 500.00	900.00 200.00 500.00	infinity infinity 600.00	N6: 1100.00 400.00 700.00 100.00 500.00
N5: N6: N7: (a) [[-	3 5 6	2 5 6 duita	2 5 6	= //	5 6	6	4	N2: N3: N4: N5:	infinity 200.00 infinity infinity	700.00 300.00 200.00 infinity	200.00 300.00 500.00 600.00	900.00 200.00 500.00 300.00	infinity infinity 600.00 300.00	1100.00 400.00 700.00 100.00
N5: N6: N7: (a) [1- /-3	3 7 6-7 -2-5-	2 5 6 dista ⇒ 1- 6-7=	2 5 6 • 5-6 • 5-6	- // - // -7=> 3-2-5	5 /-3-5 5-6-	6	4	N2: N3: N4: N5: N6:	infinity 200.00 infinity infinity	700.00 300.00 200.00 infinity	200.00 300.00 500.00 600.00	900.00 200.00 500.00 300.00	infinity infinity 600.00 300.00	1100.00 400.00 700.00 100.00 500.00
N5: N6: N7: (a) [1- /-3	3 7 6-7 -2-5-	2 5 6 dista ⇒ 1- 6-7=	2 5 6 • 5-6 • 5-6	- // - // -7=> 3-2-5	5 /-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2	infinity 200.00 infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00	200.00 300.00 500.00 600.00 700.00 N3:	900.00 200.00 500.00 300.00 100.00	infinity infinity 600.00 300.00 500.00 N5:	1100.00 400.00 700.00 100.00 500.00
N5: N6: N7: (a) [1- 1-3	3 6 7 6-7 -2-5-	2 5 6 dista ⇒ 1- 6-7=	2 5 6 • 5-6 • 5-6	- // - // -7=> 3-2-5	5 /-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3:	infinity 200.00 infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2	200.00 300.00 500.00 600.00 700.00 N3:	900.00 200.00 500.00 300.00 100.00	infinity infinity 600.00 300.00 500.00 NS:	1100.00 400.00 700.00 100.00 500.00 N6:
N5: N6: N7: (a) [1- 1-3	3 7 6-7 -2-5-	2 5 6 dista ⇒ 1- 6-7=	2 5 6 • 5-6 • 5-6	- // - // -7=> 3-2-5	5 /-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2	infinity 200.00 infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2:	200.00 300.00 500.00 600.00 700.00 N3:	900.00 200.00 500.00 300.00 100.00 N4:	infinity infinity 600.00 300.00 500.00 N5:	1100.00 400.00 700.00 100.00 500.00 N6:
N5: N6: N7: (a) [7- 1-3 (b) [7-	3 6 7 6-7 -2-5-	2 5 6 dista	2 5 6 • 5-6 • 5-6	- // - // -7=> 3-2-5	5 /-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4:	infinity 200.00 infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2	200.00 300.00 500.00 600.00 700.00 N3:	900.00 200.00 500.00 300.00 100.00 N4:	infinity infinity 600.00 300.00 500.00 NS:	1100.00 400.00 700.00 100.00 500.00 N6:
N5: N6: N7: (a) [7- 1-3 (b) [7- 7-	3 5 6 7 6-7 -2-5- -1 6-1 6-5-	$\frac{2}{5}$ $\frac{2}$	2 5 6 • 5-6 • 5-6	- // - // -7=> 3-2-5	5 /-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4: N5:	infinity 200.00 infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2	200.00 300.00 500.00 600.00 700.00 N3:	900.00 200.00 500.00 300.00 100.00 N4:	infinity infinity 600.00 300.00 500.00 N5:	1100.00 400.00 700.00 100.00 500.00 N6:
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 5 6 7 6-7 -2-5- -1 6-1 6-5- 6-5-	25.56 distance distance distance 1 -3-1	2 5 6 9 5-6- 2 1-3 tan (a	- // - // -7=> 3-2-5	5 /-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4: N5:	infinity 200.00 infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2	200.00 300.00 500.00 600.00 700.00 N3:	900.00 200.00 500.00 300.00 100.00 N4:	infinity infinity 600.00 300.00 500.00 N5:	1100.00 400.00 700.00 100.00 500.00 N6:
N5: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 5 6 7 6-7 -2-5- -1 6-1 6-5-	25.56 distance distance distance 1 -3-1	2 5 6 9 5-6- 2 1-3 tan (a	- // - // -7=> 3-2-5	5 /-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4: N5: N6: Iteration 3	infinity 200.00 infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2	200.00 300.00 500.00 600.00 700.00 N3:	900.00 200.00 500.00 300.00 100.00 N4:	infinity infinity 600.00 300.00 500.00 N5:	1100.00 400.00 700.00 100.00 500.00
N5: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4: N5: N6: Iteration 3 Array D3	infinity 200.00 infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2	200.00 300.00 500.00 600.00 700.00 N3: 3 3 2 3 2	900.00 200.00 500.00 300.00 100.00 N4: 2 4 2 4 4 4	infinity infinity 600.00 300.00 500.00 NS: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1100.00 400.00 700.00 100.00 500.00 N6: 2 6 6 6 6
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4: N5: N6: Iteration 3	infinity 200.00 infinity infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 2 2	200.00 300.00 500.00 600.00 700.00 N3: 3 3 2 3 2	900.00 200.00 500.00 300.00 100.00 N4: 2 4 2 4 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	infinity infinity 600.00 300.00 500.00 N5: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1100.00 400.00 700.00 100.00 500.00 N6: 2 6 2 6 6 2 6 6 6
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4: N5: N6: Iteration 3 Array D3	infinity 200.00 infinity infinity infinity N1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 2 3 0 0 300.00 300.00	200.00 300.00 500.00 600.00 700.00 N3: 3 3 2 2 3 2 2 N3: 200.00 300.00	900.00 200.00 500.00 300.00 100.00 N4: 2 4 2 4 4 4	infinity infinity 600.00 300.00 500.00 NS: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1100.00 400.00 700.00 100.00 500.00 N6: 2 6 2 6 6 8 N6: 900.00 400.00 700.00
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4: N5: N6: Iteration 3 Array D3	infinity 200.00 infinity infin	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 2 3	200.00 300.00 500.00 600.00 700.00 N3: 3 3 2 3 2 2 N3:	900.00 200.00 500.00 300.00 100.00 N4: 2 4 2 4 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Infinity infinity 600.00 300.00 500.00 NS: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1100.00 400.00 700.00 100.00 500.00 N6: 2 6 2 6 6 6 8 8 900.00 400.00 700.00
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N6: Iteration 3 Array D3 N1: N2: N3: N4: N5: N6: N6: N6: N6: N6: N7: N8: N8: N8: N8: N8: N8: N8: N8: N8: N8	infinity 200.00 infinity infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 3 N2: 500.00 300.00 300.00 900.00	200.00 300.00 500.00 600.00 700.00 N3: 3 3 2 3 2 2 3 2 2 3 2 2 3 3 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900.00 200.00 500.00 300.00 100.00 N4: 2 4 4 2 4 4 700.00 200.00 500.00 300.00	Infinity infinity 600.00 300.00 500.00 N5: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1100.00 400.00 700.00 100.00 500.00 N6: 2 6 2 6 6 8 N6: 900.00 400.00 700.00
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N6: N6: Iteration 3 Array D3 N1: N2: N3: N4: N5: N6: N6: N6: N6: N6: N6: N6: N6: N6: N6	infinity 200.00 infinity infinity infinity infinity N1:	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 3 N2: 500.00 300.00 300.00 900.00	200.00 300.00 500.00 600.00 700.00 N3: 3 3 2 3 2 2 3 2 2 3 2 2 3 3 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900.00 200.00 500.00 300.00 100.00 N4: 2 4 4 2 4 4 700.00 200.00 500.00 300.00	Infinity infinity 600.00 300.00 500.00 N5: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1100.00 400.00 700.00 100.00 500.00 N6: 2 6 2 6 6 6 8 900.00 400.00 700.00 100.00 500.00
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N6: N6: Iteration 3 Array D3 N1: N2: N3: N4: N5: N6: N6: N6: N6: N6: N6: N6: N6: N6: N6	infinity 200.00 infinity infin	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 2 3 0 00.00 300.00 200.00 900.00 400.00	200.00 300.00 500.00 600.00 700.00 N3: 3 3 2 2 3 2 2 200.00 300.00 500.00 600.00 700.00	900.00 200.00 500.00 300.00 100.00 N4: 2 4 2 4 4 4 700.00 200.00 500.00 300.00 100.00	Infinity infinity 600.00 300.00 500.00 N5: 5 5 5 5 5 N5: 800.00 900.00 600.00 300.00 500.00	1100.00 400.00 700.00 100.00 500.00 N6: 2 6 6 2 6 6 6 8 900.00 400.00 700.00 100.00 500.00
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N6: Iteration 3 Array D3 Array D3 Array D3 N1: N2: N3: N4: N5: N6: N6: N6: N7: N6: N7: N8: N8: N8: N8: N8: N8: N8: N8: N8: N8	infinity 200.00 infinity infin	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 2 3 N2: 500.00 300.00 200.00 400.00 N2: 3	200.00 300.00 500.00 600.00 700.00 N3: 3 3 3 2 2 3 2 2 00.00 300.00 600.00 600.00 700.00	900.00 200.00 500.00 300.00 100.00 N4: 2 4 2 4 4 700.00 200.00 500.00 100.00 N4: 3 4	Infinity infinity 600.00 300.00 500.00	1100.00 400.00 700.00 100.00 500.00 N6: 2 6 6 6 6 8 900.00 400.00 100.00 500.00
N5: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N6: N6: Iteration 3 Array D3 N1: N2: N3: N4: N5: N6: Array S3	infinity 200.00 infinity infin	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 2 3 N2: 500.00 300.00 400.00 N2: 3 2 2 2 2	200.00 300.00 500.00 600.00 700.00 N3: 3 3 2 200.00 300.00 500.00 600.00 700.00 N3: 3 3 2	900.00 200.00 500.00 300.00 100.00 N4: 2 4 4 2 4 4 700.00 200.00 500.00 300.00 100.00 100.00	Infinity infinity 600.00 300.00 500.00 N5: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1100.00 400.00 700.00 500.00 500.00 N6: 2 6 6 6 6 900.00 700.00 100.00 500.00
N5: N6: N7: (a) [7- 1-3 (b) [7- 7- 7- 7-	3 6-7 6-7 -2-5- -1 6-1 6-5- 6-5-	$\frac{2}{6}$ $dista$ $\Rightarrow 1$ $6-7 = $ $disi$ $\cdot 1$ $-3-1$ $2-3$	2 5 6 2 5-6- ⇒ 1-3 tance	4 = // -7=> 3-2-5 = //	5 6 7-3-5 5-6-	6	4	N2: N3: N4: N5: N6: Array S2 N1: N2: N3: N4: N5: N6: Array D3 N1: N2: N3: N4: N5: N6: Array S3	infinity 200.00 infinity infin	700.00 300.00 200.00 infinity 400.00 N2: 2 2 2 2 2 2 2 2 2 3 00.00 300.00 200.00 900.00 400.00 N2: 3	200.00 300.00 500.00 600.00 700.00 N3: 3 3 3 2 2 3 3 2 N3: 200.00 300.00 600.00 700.00 N3:	900.00 200.00 500.00 300.00 100.00 N4: 2 4 2 4 4 700.00 200.00 500.00 100.00 N4: 3 4	Infinity infinity 600.00 300.00 500.00 N5: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1100.00 400.00 700.00 500.00 500.00 N6: 2 6 6 2 6 6 6 6 8 900.00 400.00 700.00 100.00 500.00

Set 6.3c

OGL	0.56	,								·			
Iteration 4							5	4		300.0	nn <i>e</i>	j- 4	-
Array D4	•						5	6					
	N1:	N2:	N3:	N4:	N5:	N6:	6			400.0		-4-6	_
N1:		500.00	200.00	700.00	800.00	800.00	_	1		800.0		- 4- 2- 3-	1
N2: N3:	500.00 200.00	300.00	300.00	200.00 500.00	500.00 600.00	300.00 600.00	6	2		300.0	-	- 4- 2	
N4:	700.00	200.00	500.00		300.00	100.00	6	3		600.0		- 4- 2- 3	
N5: N6:	800.00 800.00	500.00 300:00	600.00 600.00	300.00 100.00	400.00	400.00	6	4		100.0	00 6	- 4	
Array S4		-					6	5		400.0	00 6	- 4- 5	
	N1:	N2:	N3:	N4:	N5:	N6:						,	
N1:		3	3	3		4	Iteration	10					
N2: N3:	3	2	, š	4 2	3 4	4							4
N4:	3	2	2		5 5	4 6	Array Do)					L
N5: N6:	3 4	4	3 4	4	. 4	4							
				٠.				N1:joel	N2:bob	N3:kay	N4:JIM	N5:rae	N6:kir
eration 5							Nation		1.00	infinity	infinity	infinity	1.0
rray D5							N1:joe N2:bob	infinity	1.00			infinity	
	N1:	N2:	N3:	N4 :	N5:	N6:	N3:kay		1.00	1.00	1.00		
N1:		500.00	200.00	700.00	800.00	800.00		infinity		1.00		infinity	
N2: N3:	500.00 200.00	300.00	300.00	200.00 500.00	500.00 600.00	300.00 600.00	N5:rae	infinity	infinity			•	1.0
N4: N5:	700.00 800.00	200.00 500.00	500.00 600.00	300.00	300.00	100.00 400.00	N6:kim	1.00	1.00	infinity	infinity	infinity	
N 6:	800.00	300.00	600.00	100.00	400.00			_					
rray S5							Array S	U					
	N1:	N2:	N3:	N4:	N5:	N6:		N1:ioo	N2·hoh	N3·kav	N4:iim	N5:rae	N6 ki
N1:		3	3	3	3	4	ļ	141.,00	142.000	140.Kuy	141.3	11000	
N2: N3:	3 1	2	3	4 2	4 5	. 4	N1:joe		2	3	4	. 5	*
N4: N5:	3 3	2 4	2 3	4	5	6 4	N2:bob			3			
N6;	4	4	4	4	4	-	N3:kay	1	2		4	_	
Short	test n	outes	• •		• .		N4:jim		2			5	
						_	N5:rae		2				
From	· To		Distan	ce	Rout	<u>e</u>	N6:kim	1	2	3	. 4	5	
1	2		500.0	00 -	1- 3- 2								
1	3		200.0		I- 3		Iteratio	n 1					
1	4		700.0		I- 3- 2- 4								
1	5		800.0		1- 3- 2- 4 1- 3- 5		Array E)1					
1	6								NO.b.	NOde	. N.(4.11m	. NE.	New
1	1		800.0		I-3-2-4-6	•		N1:j06	NZ:DOD	N3:Kay	/ 194:jiii	n N5:ra€	NO.K
2	•		500.0		2- 3- 1		N1:joe	<u>.</u>	1 00	infinity	/ infinit	y infinity	1 1.
2	3		300.0		2- 3		1	o infinity		1.00	infinit	y infinity	
2	4		200.0		2- 4			y infinit			1.0		infin
2	5		500.0	00 2	2- 4- 5		N4:jin	n infinit	/ infinity	/ 1.00		infinity	/ infin
2	6		300.0	00 2	2- 4- 6		N5:rae	e infinit					1.
3	1		200.0	00 3	3- 1	,	N6:kin	n 1.00	1.00) infinit	y infinit	y infinit	/
3	2		300.0	00 3	J- 2		1 .						
3	4		500.0	00 3	3- 2- 4		Array	S1					
3	5		600.0	00 3	J- 5			Natio	- N12-hal	n NIZ-ka	v NA-iir	n N5:ra	≥ NIG∙k
3	6		600.0		J- 2- 4- 6			N 1.JO	BINZ.DO	u No.ka	y 144.jii	11 NJ.1a	5 14Q.N
4	1		700.0		- 2- 3- 1		N1:jo	e	,	2	3	4	5
4	2		200.0		- 2- 3- 1 - 2		N2:bo		1			4	5
							N3:ka		1	2 .			5
4	3		500.0		- 2- 3		N4:jir		1	2	3		5
4	5		300.0		- 5		N5:ra	е	1	2	3	4	_
4	6		100.0		- 6		N6:kir	n	1	2	3	4	5
5	1		800.0	00 5	i- 3- 1		1						

continued...

continued..

800.00

500.00

600.00

5

5

2

3

5-3-1

5- 4- 2

5-3

(a) Surplus capacités:

2-3: 40-0 = 40 units

2-5: 30-20=10 units

4-3: 5-0 = 5 units

all other arcs have zero surplus Capacities.

(b)

Flow through node 2 = 20 units
Flow through node 3 = 30 units
Flow through node 4 = 20 units

(c)
No, because the arcs out of
node 1 have zero surplus capacity

continued

continued.

Set 6.4b

Set 6.5a

(b) For B: Pelay = 3, FF = 2. Thus, the start of E and F must be delayed by at least 3-2 = 1.

For C: Delay = 7-5 = 2, FF = 0. Thus, start of E and F must be delayed by at loss t 2.

For B2 C combined: Start of E and F must be delayed by max(1, 2) = 2.

(c) Delayin B = 6. Because FF of B = 2, the start of E and F must be

delayed by 4. Next, a delay of 4 m E will delay critical H by I because FFE = 3 also, a delay of 4 m E will not impact other activities in the project Thus, the proposed delay in B will delay the entire project by 1 (because of the delay in critical H).

(b) Red-flagged activities are A, D, and E.

(c) FF = 0: Delay = 5 will delay each

of C and D by 5.

FF = 0: Delay = 5 will delay G

by 5.

FF = 12: Delay = 5 does not affect

other activities

Conclusion: Start of C, D, and G is delayed by S.

Note: If you use TORA to experiment with the effect of Delay = 5, the chart will only show address in C and D;

but not in G The effect of C and D on

with the effect of Belay = 5, the chart will only show a delay in C and D? but not in G The effect of C and D on succeeding activities must be done manually. To effect that after Delay = 5 is implemented, select E with A delay = 0 and D with delay = 0. Delay = 0 produces no action, but delay = 0 will delay G and Dummy property to match delay = 5.

Two unit-of equipment are required.

Set 6.5c

Size: 7 nodes x 13 activities

		Ear	liest	·La	test	Total	Free
Activity	Duration	start	Compl.	start	compl.	float	float
c 1-2	. 10.0	0.0	10.0	0.0	10.0	0.0	0.0
1-4	1.0	0.0	1.0	21.0	22.0	21.0	21.0
1-5	5.0	0.0	5.0	15.0	20.0	15.0	13.0
c 2-3	9.0	10.0	19.0	10.0	19.0	0.0	0.0
2-5	8.0	10.0	18.0	12.0	20.0	2.0	0.0
2-6	10.0	10.0	20.0	17.0	27.0	7.0	7.0
c 3-4	3.0	19.0	22.0	19.0	22.0	0.0	0.0
3-6	4.0	19.0	23.0	23.0	27.0	4.0	4.0
c 4-6	5.0	22.0	27.0	22.0	27.0	0.0	0.0
4-7	4.0	22.0	26.0	31.0	35.0	9.0	9.0
5-6	7.0	18.0	25.0	20.0	27.0	2.0	2.0
5-7	3.0	18.0	21.0	32.0	35.0	14.0	14.0
c 6-7	8.0	27.0	35.0	27.0	35.0	0.0	0.0

(b)

Size: 7 nodes x 13 activities

		Ear	liest	La	test	Total	free
Activity	Duration	start	Compt.	start	compl.	float	float
1-2	3.0	0.0	3.0	1.0	4.0	1.0	0.0
1-3	1.0	0.0	1.0	11.0	12.0	11.0	10.0
c 1-4	15.0	0.0	15.0	0.0	15.0	0.0	0.0
1-6	7.0	0.0	7.0	23.0	30.0	23.0	23.0
2-3	8.0	3.0	11.0	4.0	12.0	1.0	0.0
2-5	10.0	3.0	13.0	15.0	25.0	12.0	12.0
3-4	3.0	11.0	14.0	12.0	15.0	1.0	1.0
3-7	10.0	11.0	21.0	27.0	37.0	16.0	16.0
c 4-5	10.0	15.0	25.0	15.0	25.0	0.0	0.0
: 4-7	22.0	15.0	37.0	15.0	37.0	0.0	0.0
c 5-6	5.0	25.0	30.0	25.0	30.0	0.0	0.0
5-7	12.0	25.0	37.0	25.0	37.0	0.0	6.0
c 6-7	7.0	30.0	37.0	30.0	37.0	0.0	0.0

Project (a):

Redflagged activities:

(1-5), TF=15, FF=13

(2-5), TF=2, FF=0

Project (b) 3

The following activities are sed-flagged:

Activity	TF	FF
1-2	1	0
1 - 3	11	10
2 - 3	1	0

In project (a), note the delay in the start of activity 5-6 to account for the effect of starting (1-5) at time 14.

.	x_{12}	<i>x</i> ₁₃	<i>x</i> ₂₄	<i>x</i> ₃₄	<i>x</i> ₃₅	<i>x</i> ₄₅	<i>x</i> ₄₆	x ₄₇	<i>x</i> ₅₆	<i>x</i> ₅₇	<i>x</i> ₆₇		Optimal:
Maximize z =	3	3	2	3	2	0	3	2	7	5	6		
Node 1	-1	-1	•	•								= -1	x13 = X34 X45 X56= X
Node 2	. 1		-1									= 0	Z=19
Node 3		1		-1	-1							= 0	
Node 4			1	1		-1	-1	-1				= 0	
Node 5					1	1			-1	-1		= 0	•
Node 6							1		1		-1	= 0	
Node 7	İ							1		1	1	= 1	

(a)

2

	x_{12}	<i>x</i> ₁₄	x_{15}	<i>x</i> ₂₃	x ₂₅	x ₂₆	<i>x</i> ₃₄	<i>x</i> ₃₆	<i>x</i> ₄₆	x ₄₇	<i>x</i> ₅₆	<i>x</i> ₅₇	<i>x</i> ₆₇		
Maximize z =	10	1	5	9	8	10	3	4	5	4	7	3	8		
Node 1	-1	-1	-1											=	-1
Node 2	1			-1	-1	-1								=	0
Node 3				1			-1	-1						=	0
Node 4		1					1		-1	-1				=	0
Node 5			1		-1				1		-1	-1		=	0
Node 6						1		1			1		-1	=	0
Node 7										1		1	1	=	1

Optimum: X12 = X23 = X34 = X46 = X67 = 1, Z = 35

(3)

	x ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₆	<i>x</i> ₂₃	<i>x</i> ₂₅	<i>x</i> ₃₄	<i>x</i> ₃₇	<i>x</i> ₄₅	<i>x</i> ₄₇	<i>x</i> ₅₆	<i>x</i> ₅₇	x ₆₇	·.
Maximize z =	3	1	15	7	8	10	3	10	10	22	5	12	7	
Node 1	-1	-1	-1											= -1
Node 2	1			-1	-1	-1								= 0
Node 3	ļ	1			1		-1	-1						= 0
Node 4			1				1		-1	-1				= 0
Node 5						1			1		-1	-1		= 0
Node 6				1						1	1		-1	= 0
Node 7				1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1				1	1	= 1

Optimum:
$$X_{14} = X_{47} = 1$$

 $X_{14} = X_{45} = X_{57} = 1$ alternative optima $Z = 37$
 $X_{14} = X_{45} = X_{56} = X_{67} = 1$

Project (a)

i itie:	***	
Activity Mea	n Duration	Variance
1 - 2	4.00	0.11
1 - 4	2.83	0.25
l - 5	3.83	0.25
2 - 3	5.00	0.11
2 - 5	8.17	0.25
· 2 - 6	9.50	0.69
3 - 4	10.00	5.44
3 - 6	4.00	0.11
l - 6	7.67	1.00
- 7	6.17	0.25
5 - 6	10.67	1.00
5 - 7	6.00	0.44
3 - 7	4.00	0.11

Title:

Node	Longest Path	Path Mean	Path Std. Dev.
2 3	1-2	4.00	0.33
4	1- 2- 3 1- 2- 3- 4	9.00 19.00	0.47 2.38
5 6	1- 2- 5 1- 2- 3- 4- 6	12.17 26.67	0.60 2.58
7	1- 2- 3- 4- 6- 7	30.67	2.60

Event	Latest occurrence time,LC	P{gaurrence \(LC \)
2	4	•5
3	9	٠5
4	19	٠5
5	16	1.0
6	26.67	٠5
7	30.67	·\$

LC is determined by carrying out CPM calculations using average duration time Example of probability calculations: For rode 5:

$$P\{T \le 16\} = P\{Z \le \frac{16 - 12.17}{.6}\}$$

= $P\{Z \le 6.38\} \simeq 1$

Project (b)

ctivity 1	Mean Duration	Variance
- 2	2.83	0.25
- 3	6.83	0.25
- 4	7.17	0.25
- 6	2.00	0.11
- 3	4.00	0.11
- 5	8.00	0.11
- 4	15.00	2.78
- 7	13.00	0.11
- 5	12.17	0.69
- 7	10.00	0.44
6 - 6	8.33	0.44
5 - 7	4.33	1.00
3 - 7	6.00	0.11

Title:	·		
Node	Longest Path	Path Mean	Path Std. Dev.
2	1- 2	2.83	0.50
3	1- 3	6.83	0.50
4	1- 3- 4	21.83	1.74
5	1- 3- 4- 5	34.00	1.93
6	1- 3- 4- 5- 6	42.33	2.04
7	1- 3- 4- 5- 6- 7	48.33	2.07

Event	Latest occurrence time, LC	P { dawronu & Lc}
2	2. 83	•5
3	6.83	.5
4	21.83	.5
5	34.00	-5
6	42.33	-5
7	48-33	.5

All events happen to fall on the critical path (using average durations). This is the reason all probabilities = .5

CHAPTER 7

Advanced Linear programming

D= $\{X_1, X_2 \mid X_1+X_2\leq 1, X_1\neq 0, X_2\neq 0\}$ Let $(\vec{X}_1, \vec{X}_2) \geq 0$ and $(\vec{X}_1, \vec{X}_2) \geq 0$ be two distinct points in Q and defini for $0 \leq \lambda \leq 1$: $(X_1, X_2) = \lambda(\vec{X}_1, \vec{X}_2) + (1-\lambda)(\vec{X}_1, \vec{X}_2) \geq 0$ Then, $X_1+X_2=\lambda\vec{X}_1+(1-\lambda)\vec{X}_1+\lambda\vec{X}_2+(1-\lambda)\vec{X}_2$ $=\lambda(\vec{X}_1+\vec{X}_2)+(1-\lambda)(\vec{X}_1+\vec{X}_2)$ $\leq \lambda(1)+(1-\lambda)(1)=1$ Which shows that Q is convex. The result is true even without the normagalisty restrictions.

Q = {x1, x2 | x1 = 1 or x2 = 2}

Let
$$(\bar{X}_1, \bar{X}_2) = (1,0) \in Q$$

 $(\bar{X}_1, \bar{X}_2) = (0,2) \in Q$

Consider

$$(x_1, x_2) = \lambda (1,0) + (1-\lambda)(0,2)$$
$$= (\lambda, 2-2\lambda) \quad 0 \le \lambda \le 1$$

For 0< \ < 1 s we have

$$X_{1} = \lambda < 1$$

$$X_{2} = 2 - 2\lambda < 2$$

Thuo, (x,, x2) & Q

 $Q = \{x_1, x_2 | x_1 + x_2 \le 2, x_1, x_2 \ge 0\}$ $(\vec{x}_1, \vec{x}_2) = \lambda_1 (0, 0) + \lambda_2 (2, 0) + \lambda_3 (0, 2)$ $= (2 \lambda_2, 2 \lambda_3)$ where $\lambda_1, \lambda_2, \lambda_3 \ge 0$ $\lambda_1 + \lambda_2 + \lambda_3 = 1$

$$E = \frac{1}{2}A + \frac{1}{2}D$$

$$G = \frac{5}{6}B + \frac{1}{6}C$$

$$F = \frac{1}{2}E + \frac{1}{2}G$$

$$= \frac{1}{2}(\frac{1}{2}A + \frac{1}{2}D) + \frac{1}{2}(\frac{5}{6}B + \frac{1}{6}C)$$

$$= \frac{1}{4}A + \frac{1}{4}D + \frac{5}{12}B + \frac{1}{12}C$$

$$= \frac{1}{4}(2,0) + \frac{1}{4}(0,2) + \frac{5}{12}(6,0) + \frac{1}{12}(0,6)$$

$$= (3,1)$$

(a)

Unique solution: $(x_1, x_2) = (7/8, 3/8)$, left-side vectors \mathbf{P}_1 and \mathbf{P}_2 are independent (basis)

(b)

Unique solution: $(x_1, x_2) = (7/8, -1/4),$ P_1 and P_2 form a basis

(c)

Infinity of solutions:

P₁ and P₂ are dependent
(no basis); b is also
dependent

No solution: P₁ and P₂ are dependent (no basis), but b is independent

(a)
$$\begin{pmatrix} 5 & 4 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

b) $\begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

Urique Solution: $X_1, X_2 > 0$ $X_1 > 1, X_2 < 1$

Unique solution: X, <0, X2=0

(d) $\begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$

Infinity of solutions

(e) $\begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

No Solution

 $\begin{pmatrix} f \end{pmatrix} & \begin{pmatrix} 1 & -z \\ 0 & o \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

No Solution

(a) det(P1, P2, P3)= det (101)

= -4 #0, basis

(b) $\det(P_1, P_2, P_4) = \det\begin{pmatrix} 1 & 0 & 2 \\ 2 & 2 & 0 \\ 3 & 1 & 0 \end{pmatrix}$

=-8 \(\dagger \) 0, basis

(c) det $(P_2, P_3, P_4) = det \begin{pmatrix} 0 & 1 & 2 \\ 2 & 4 & 0 \\ 1 & 2 & 0 \end{pmatrix}$

=0, net a basis

(d) In this problem, a basis must include exactly 3 independent vectors.

(a) True

4

- (6) True
- (c) True

_	
	$B=(P_3,P_4)=\begin{pmatrix} 2 & 4 \\ -2 & 6 \end{pmatrix}$
	$B' = \begin{pmatrix} .3 &2 \\ .1 & .1 \end{pmatrix}$, $X_B = \begin{pmatrix} X_3 \\ X_4 \end{pmatrix}$, $G_B = (7.5)$
	$X_{\theta} = \overline{B}^{-1} b = \begin{pmatrix} \cdot 3 & -\cdot 2 \\ \cdot 1 & \cdot 1 \end{pmatrix} \begin{pmatrix} 10 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \cdot 5 \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
	$\mathcal{C}_{\mathcal{B}}^{-1} = (7, 5) \begin{pmatrix} .3 &2 \\ .1 & .1 \end{pmatrix} = (3.6,9)$
	$\{Z, -G, \}$ = $(2.6,9) \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} - (1, 4)$
	= (1.5,5)
	$\mathcal{B}'(P_1, P_2) = \begin{pmatrix} 0.3 & -0.2 \\ 0.1 & 0.1 \end{pmatrix} \begin{pmatrix} 2.1 \\ 0.5 & 0.1 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0.5 & 0.1 \end{pmatrix}$
	XB is feasible but not optimal.
	lableau:
	Z 1.55 0 0 Z1.5
	(0 .5 1 0 0

Maximize $Z = (5, 12, 4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ Subject to $\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & -2 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix}$ $P_1 \quad P_2 \quad P_3 \quad P_4$ $\det (P_1 P_2) = \det \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}$ =-6 #0 => basis det (P2 P3) = det (2 1) = 0 => not a basis det (P3 P4) = det (-1 0) =1 ±0 => basis

$$X_{g} = (x_{1}, x_{2}, x_{5})^{T}, G_{g} = (z, 1, 0)$$

$$B = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

$$G_{g}B = (2, 1, 0) \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

$$= (2/5, 1/5, 0)$$

$$(z_{3}-c_{3}, z_{4}-c_{4})$$

$$= (2/5, 1/5, 0)$$

$$(z_{3}-c_{3}, z_{4}-c_{4})$$

$$= (-2/5, -1/5) \Rightarrow \text{optimal}$$

$$B \begin{pmatrix} P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & | & 0 \\ 1 & -1 & 1 & | & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 3/5 & -1/5 & 0 & | & 3 & | & -1 & 0 & | & 3 \\ -4/5 & 3/5 & 0 & | & 4 & 3 & 0 & -1 & 0 & | & 3 \\ 1 & -1 & 1 & | & 1 & 2 & 0 & 0 & | & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -3/5 & 1/5 & 0 & | & 3/5 \\ 0 & 1 & 4/5 & -3/5 & 0 & | & 6/5 \\ 0 & 0 & -1 & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 0 & | & 6/5 \\ 0 & 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & -1 & | & 1 & | & 0 & | & 0 & | & 0 & | & 0 &$$

Hence, Optimum Z = C, X, +C, X, + C3X3 $= 2 \times 2 + 5 \times 6 + 0 \times 2 = 34$ To construct the original problem, $B'(P, P_2) = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ Thus, (P, P2) = B (0 0) $=\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$ Similarly , $b = B\begin{pmatrix} 2 \\ 6 \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 6 \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ R \end{pmatrix}$ Original model: Maximize Z = 2x, +5x2 Subject to All that is needed is to Show that the computations lead to the column under XII.

For X_{II} , we have, $\{Z_{1}, -C_{2}\} = C_{B}B^{T} - C_{II}$ $= C_{B}B^{T} - C_{II}$ Constraint coefficients $= B^{T} = B^{T}$

- (a) current B = (P, P2)

 P, must leave so that

 b is enclosed between P2 and
 P3, hence yielding feasible values
 of X2 and X3
- (b) B = (P2 P4) is a feasible basis

$$Z_j - \zeta_j = \zeta_B B^{-1} P_j - \zeta_j$$

assume for convenience that

B= (P, P2, ..., Pm)
Then, for the basic vectors P,
P2,..., and Pm, we have

 $\{Z_{j}, -C_{j}, Z_{j-1}, z_{$

Let NB represent the set of nonbasic variables at any iteration. Then

 $Z = Z^* - \sum_{j \in NB} (z_j - c_j) x_j$

(a) Since

2j-cj (<0 for max

2j-cj (<0 for min

it follows that all X; =0, jENB

because if any X;, jENB becomes

positive Z < Z* for max and

Z > Z* for min, which is not

optimal. Thus, X_B = B'b and

X; =0, jENB shows that the solution
is unique.

(b) If 2,-c; =0 for at least one jeNB, then x; can become basic at a value other than zero without changing the optimism value of Z. Thus, alternative optima exist.

Starting tableau (max):

at the starting iteration:

B = I', G = 0

Hence $Z_j - C_j = C_B B^j P_j - C_j$ $= Q(B^j P_j) - C_j$ $= -C_j$

Starting tableau (assuming max): 5

 $B = \hat{B} = I$, G = (-M, -M, ..., -M)

 $GB^{-1}=(-M,-M,\dots,-M)$

 $\{Z_{j}, -C_{j}\} = (-M_{j}, -M_{j}, -M_{j}) (P_{j}, -P_{n} \mid I)$ $-(C_{j}, C_{2}, -M_{j}, -M_{j}, -M_{j}, -M_{j})$

=(-M,-M,..,-M)P,-e,,...

(-M,-M,...,-M) Pn-Cn, o, ..., o) which yields the following tableau

... X, Rm ... (-M, -, -M) P, -C; ... 0 ... 0 (-M, -, -M) b

ued...

2

The vectors

correspond to x_k^- and x_k^+ , respectively. Assume that both x_k^- and x_k^+ are nonbsic, and let **B** and **c**_B correspond to the current solution. Then

$$z_k^- - c_k^- = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{P}_k - c_k$$

$$z_k^+ - c_k^+ = -\mathbf{c}_B \mathbf{B}^{-1} \mathbf{P}_k + c_k = -(z_k^- - c_k^-)$$

Thus, if x_k^- is a candidate for entering the basic solution, then x_k^+ cannot be an entering candidate, and vice versa.

If $z_k^+ - c_k^+ = (z_k^- - c_k^-) = 0$, then possibly one of the two variables may enter the basic solution to provide an alternative optimum. The two variables cannot be basic simultaneously because a basis **B** cannot include two dependent vectors \mathbf{P}_k and $-\mathbf{P}_k$

To show that the two variables cannot replace one another in alternative optima, assume that x_k^- is basic in the optimum solution. Then

$$\mathbf{B}^{-1}\mathbf{P}_{k} = (0,...,1,...,0)^{T}$$
$$\mathbf{B}^{-1}(-\mathbf{P}_{k}) = (0,...,-1,...,0)^{T}$$

According to the feasibility condition, x_k^+ cannot replace x_k^- because the corresponding pivot element $\mathbf{B}^{-1}(-\mathbf{P}_k)$ is negative, unless $x_k^- = 0$, which is a trivial case.

6

7

Number of nonbasic variables = n - m. In the case of *nondegeneracy*, each entering nonbasic variable will be associated with a *distinct* adjacent extreme point. In the case of *degeneracy*, an entering nonbasic variable can result in a different basic solution without changing the extreme point itself. In this situation, the number of adjacent extreme points in less than n - m.

8

Let $x_k = d_k \ (\ge 0)$ represent the current basic solution. Then, the new basic solution after x_j enters and x_r leaves is

$$x_{j} = \frac{d_{r}}{(\mathbf{B}^{-1}\mathbf{P}_{j})_{r}} = \frac{0}{(\mathbf{B}^{-1}\mathbf{P}_{j})_{r}} = 0, \text{ provided } (\mathbf{B}^{-1}\mathbf{P}_{j})_{r} \neq 0$$

$$x_{k}^{2} = d_{k} - x_{j}(\mathbf{B}^{-1}\mathbf{P}_{j})_{k}, \text{ all basic } x_{k}, k \neq j$$

The last equation is independent of $(\mathbf{B}^{-1}\mathbf{P}_j)_k$ for all k, because $x_j = 0$. Hence, x_k^* remains feasible for all k.

9

- 1. If the minimum ratio corresponds to more than one basic variable, the next iteration is degenerate.
- 2. If x_j is the entering variable and if the basic variable x_j is zero, the next iteration will continue to be degenerate if $(\mathbf{B}^{-1}\mathbf{P}_i)_k > 0$.
- 3. If for every zero basic variable, xk, the pivot element $(\mathbf{B}^{-1}\mathbf{P}j)_k \leq$, then the next iteration will not be degenerate.

Under nondegeneracy:

number of extreme points

= number of basic solutions

Under degeneracy:

number of extreme points

< number of basic solutions

(a)
$$X_{j} = \Theta = \frac{X_{n}}{(\vec{B}'\vec{P}_{j})_{n}}, (\vec{B}'\vec{P}_{j})_{n} > 0$$

For Pi, we have

$$\frac{\text{new } x_{j}}{\text{old } x_{j}} = \frac{\frac{x_{n}}{\propto (B^{-1}P_{j})_{n}}}{\frac{x_{n}}{(B^{-1}P_{j})_{n}}} = \frac{1}{\propto}$$

$$\frac{\beta(Bb)n}{\alpha(AX)} = \frac{\beta(B'b)n}{\alpha(B'P_s)n}$$

(B"b)n (B'P.)~

=
$$\frac{1}{B}$$
 (& $BP_{5} - G_{5}$)
= $\frac{1}{B}$ (old z₁ - G₅), B>0

Conclusion: X; remains nonbasic

a variable x; can be made propitable either by increasing G: or by decreasing & (which is the unit usage of resources by activity 1). Of course, a combination of the two changes will work as well.

11

For the basic variables

$$z_{s}-c_{s}=G_{B}^{-1}(P_{s},...,P_{m})-(c_{s},...,c_{m})$$

= $G_{B}^{-1}B-G_{B}$

Thus, for the basic variable, Z,-C,=0 regardless of the

specific assignment to the vector GB (e.g., DB).

This result implies that changes in Co cannot affect the optimality of the basic variables since Here variables are already basic. It may, however, cause a nonbasic variable to become

basic.

	ابخ	XZ	×3	Xv Xs	×6	11
z	0	-2/3	5/6	0 0	0	20
Xı		2/3	······································			4
Xy		4/3		*		2
X5		5/3	****			5
X6		1.1.	·			2
د اه	Star	ting iter	ation'.			

Starting iteration: Let X_4 and X_5 be the alacko. $X_8 = (X_4, X_5)^T$, $C_8 = (0,0)$, B = B = I. First iteration:

$$C_{B}B^{-1} = (0,0)$$

$$(3,-5)_{j=1,2,3} = (0,0) {2 -1 2 \choose 1 0 4} - (6,-2,3)$$

$$= (-6,2,-3) \Rightarrow x_1 \text{ enters}$$

$$X_{B} = B b = Ib = b = {2 \choose 4}$$

$$\alpha' = B P = P = {1 \choose 1}$$

$$\Theta = \min_{k=4,5} {2/2,4/1} = 1$$

$$k = 4,5 \Rightarrow x_3 \text{ leaves}$$

$$B_{next} = {2 \choose 1} = {1/2 \choose 1} = {1/2 \choose 1}$$

$$X_{B} = (x_1, x_5)^T = (1,3)^T$$

Second iteration:

$$C_{B}B = (6,0) \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} = (3,0)$$

$$(3,-5)_{3=2,3,4} = (3,0) \begin{pmatrix} -1 & 2 & 1 \\ 0 & 4 & 0 \end{pmatrix} - (-2,3,0)$$

$$= (-1,3,3) \implies x_{2} \text{ enters}$$

$$X_{B} = \begin{pmatrix} x_{1} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 3 \end{pmatrix}$$

$$X_{B} = \begin{pmatrix} x_{1} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 1/2 \end{pmatrix}$$

$$X_{B} = \begin{pmatrix} x_{1} \\ x_{3} \end{pmatrix} \xrightarrow{X_{2}} \xrightarrow{X_{3}} = 6 \implies x_{6} \text{ leaves}$$

$$X_{B} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \xrightarrow{X_{2}} \xrightarrow{X_{3}} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$$

$$X_{B} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \xrightarrow{X_{2}} \xrightarrow{X_{3}} = (4, 6)^{T}, G_{B} = (6, -2)$$

Third iteration: BB' = (6,-2)(-12) = (2,2) $(3;-5)_{j=3,4,5} = (2,2)(210) - (3,0,0)$ $= (9,2,2) \Rightarrow \text{ optimal}$ Optimal station $X_B = (x_1) = (-12)(2) = (4)$ $3 = GX_B = 6x4 + (-2)(6) = 12$

Starting iteration: Let x4, x5, and x be the slack variables. XB = (x4, x5, x6), G=(0,0,0), B=B=1 First steration: GB = (0,0,0) (3,-6) j=1,2,3 $= (0,0,0) \begin{pmatrix} 4 & 3 & 8 \\ 4 & 1 & 12 \end{pmatrix} - (2,1,2)$ = (-2,-1,-2) => x, enters $X_0 = Bb = Ib = b = (12, 8, 8)^T$ $\alpha' = BP = P = (4, 4, 4)^T$ 0= min { 12, 8, 8} = 2 ⇒ X, laves $\vec{B}_{next} = \begin{pmatrix} 1 & 4 & 0 \\ 0 & 4 & 0 \\ 0 & 4 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1/4 & 0 \\ 0 & 1 \end{pmatrix}$ (XB=(X4, X1, X6), CB=(0, 2,0) Lecond iteration: GB'- (0, 16,0) (3,-cj) = (0,1/2,0) (0 1/4 0) - (1,2,0) = (-1/2, 4, 1/2) => x2 enters $X_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \mathcal{B}^{-1}b = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1/4 & 0 \end{pmatrix} \begin{pmatrix} 1/2 \\ x \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $\alpha' = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1/4 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1/4 \\ -2 \end{pmatrix}$ $\theta = \min_{k=4,1,6} = \left\{ \frac{4}{2}, \frac{2}{1/4}, -\frac{2}{3} = 2, x_4 \right\} = 2$ $\mathcal{B}_{next} = \begin{pmatrix} 3 & 4 & 0 \\ 1 & 4 & 0 \\ -1 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 & 0 \\ -1/8 & 318 & 0 \end{pmatrix}$ 18=(x2, X1, X6)T, G=(1, 2, 0)

Third iteration: &B = (1/4, 1/4,0) (3,-G;); = 3,4,5 = (1/4, 1/4, 0) (1201)-(2, 9,0) =(3, 1/4, 1/4) => optimal. Optimal tolition: 3=2x3/2+1x2+2x0=5 adding artificials, we get min = 2x, + x2+Mxy + Mx5 where x3 and x6 are stacks, and x4 and x- are artificials. starting Shiten: X8= (x4,x5,x6), &= (M,M,0) First iteration: 86 = (M, M, 0) (3,-9);=13,3 = (M,M,0)(3,3 -1)-(3,1,0) = (-2+7M, -1+4M,-M) Thus, x, enters. $\vec{B}_{next} = \begin{pmatrix} 3 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/3 & 0 & 0 \\ -4/3 & 1 & 0 \\ -1/3 & 0 & 1 \end{pmatrix}$ $X_{8} = (x_{i}, x_{5}, x_{6})^{T}, G = (2, M, 0)$ Second iteration: GB = (2-4M, M, 0) (3,-5) = $(\frac{2-4M}{3}, M, 0)(\frac{1}{2}, \frac{0}{0})^{-}(1,0,0)$ = $\left(\frac{5M-1}{3}, -M, \frac{2-4M}{5}\right) \Rightarrow x_2$ enten $X_{\mathcal{B}} = \begin{pmatrix} \sqrt{3} & 0 & 0 \\ -\sqrt{3} & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ $\mathcal{A} = \begin{pmatrix} 1/2 & 0 & 0 \\ -4/3 & 1 & 0 \\ -1/3 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 5/3 \\ 5/3 \\ 5/3 \end{pmatrix}$

Set 7.2b $B_{next} = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & 0 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 3/5 & -4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ $X_8 = (X_1, X_2, X_6)^T, G = (2, 1, 0)$ Third steration: 8 8 = (45, 15,0) (3,-5);=3,45 = (2/5, 1/5,0) (-101)-(0, M,M) = (-1/5, 2/5-M, 1/5-M) => optimal solution. Optimal solution: $\chi_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 6/5 \\ 6 \end{pmatrix}$ 3 = 2x3 + 1x6 = 12/5 (d) Minimize Z = 5x, -4x2+6x3+8xy + Mxg Subject to $X_1 + 7X_2 + 3X_3 + 7X_9$ 3 x1 - x2 + x3 + 2 Xy 2x1 + 3x2 - x3 + x4 -x5 X1, X2, X3, X4, X5, X6, X7, X8 > 0 Iteration 0: $X_{B} = (X_{6}, X_{7}, X_{8}), G = (0, 0, M), B = B = 1$ {z,-5;};=1,2,3,4,5 $= (0,0,M) \begin{pmatrix} 1 & 7 & 3 & 7 & 0 \\ 3 & -1 & 1 & 2 & 0 \\ 2 & 3 & -1 & 1 & -1 \end{pmatrix} - (5,-4,6,8,0)$ = (2M-5, 3M44),-M-6, M-8,-M) X2 enters $\vec{\mathcal{B}}P_{2} = \begin{pmatrix} 7 \\ -1 \\ 3 \end{pmatrix}, \vec{\mathcal{B}}b = \begin{pmatrix} 46 \\ 20 \\ 18 \end{pmatrix}, \theta = \min \left\{ \frac{46}{7}, \frac{18}{3} \right\}$ X8 leaves $B_{1} = \begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{pmatrix}, B_{1}^{-1} = \begin{pmatrix} 1 & 0 & -7/3 \\ 0 & 1 & 1/3 \\ 0 & 0 & 1/2 \end{pmatrix}$ $X_{\mathcal{B}_{i}} = \begin{pmatrix} X_{i} \\ X_{7} \\ X_{3} \end{pmatrix} = \mathcal{B}_{i}^{-1} b = \begin{pmatrix} 4 \\ 26 \\ 6 \end{pmatrix}$

Iteration 1:

$$X_{B} = (X_{6}, X_{7}, X_{7})^{T}, C_{B} = (0, 0, -4)$$

$$C_{B} = (0, 0, -4/3)$$

$$\begin{aligned} & \{Z_{3} \cdot -C_{3} \cdot \}_{1,3,4,5} \\ &= (0,0,-4/3) \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 2 & -1 & -1 \end{pmatrix} - (5,6,8,0) \\ &= \left(-23/3, -30/3, -28/3, \boxed{4/3} \right) \end{aligned}$$

$$B_{1}^{-1}P_{5} = \begin{pmatrix} 7/3 \\ -1/3 \\ -1/3 \end{pmatrix}, B_{1}^{-1}b = \begin{pmatrix} 4 \\ 26 \\ 6 \end{pmatrix}$$

X6 leaves

I teration 2:

$$X_{B} = (X_{5}, X_{7}, X_{2})^{T}, G = (0, 0, -4)$$

$$B_{2} = \begin{pmatrix} 0 & 0 & 7 \\ 0 & 1 & -1 \\ -1 & 0 & 3 \end{pmatrix}, B_{2} = \begin{pmatrix} 3/7 & 0 & 0 \\ 1/7 & 1 & 0 \\ 1/7 & 0 & 1 \end{pmatrix}$$

$$X_{B_2} = \begin{pmatrix} X_5 \\ X_7 \\ X_2 \end{pmatrix} = \hat{B}^{1}b = \begin{pmatrix} 17/7 \\ 18617 \\ 4617 \end{pmatrix}$$

$$= (-4/7,0,0) \begin{pmatrix} 1 & 3 & 7 & 1 \\ 3 & 1 & 2 & 0 \\ 2 & -1 & 1 & 0 \end{pmatrix} - (5,6,8,0)$$

$$=(-39/7,-54/7,-12,-4/7)$$
 ophimum

$$X_{B_2} = (X_5, X_7, X_2)^T = (12/7, 186/7, 46/7)$$

2 =- 184/7

$$X_{B_0} = (X_2, X_4, X_5)^T, G_0 = (7, -10, 0)$$
 $B_0 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, B_0 = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$

$$X_{B} = \begin{pmatrix} X_{2} \\ X_{4} \end{pmatrix} = B_{0}^{-1}b = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}$$

$$C_{B}B_{0} = (7, -10, 0) \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} = (17, 7, -17)$$

$$\begin{cases} Z_{3} - C_{3} \\ J_{3} = 1, 3, 6 \end{cases}$$

$$= (17, 7, -17) \begin{pmatrix} 0 & -1 & 3 \\ 1 & -3 & 0 \end{pmatrix} - (0, 11, 26)$$

$$= (-17, 16 \\ J_{1} = 3, 12) \qquad X_{3} \text{ enters}$$

$$B_{0}^{-1}b = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}, B_{0}^{-1}B_{3} = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} \times_{2} \text{ leaves}$$

$$A \text{ teration } 1:$$

$$X_{B} = (X_{3}, X_{Y}, X_{5})^{T}, G_{B} = (11, -10, 0)$$

$$X_{B} = (-1 & 1 & 0 \\ -3 & 1 & 0 \end{pmatrix}, B_{1}^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

$$X_{B} = B_{1}^{-1}b = \begin{pmatrix} 2 \\ 10 \\ 8 \end{pmatrix}$$

$$C_{B}B_{1}^{-1} = (11, -10, 0) \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix} = (1, -9, -1)$$

$$\{2j - C_{3}\}_{1,2,6}$$

$$= (1, -9, -1) \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & 3 \end{pmatrix} - (0, 7, 26)$$

$$= (-1, -16, -52) \Rightarrow \text{optimum}$$

$$X_{B} = (X_{3}, X_{Y}, X_{5})^{T} = (2, 10, 8)^{T}$$

$$X_{\mathcal{B}_{j}} = (X_{3}, X_{4}, X_{5})^{T} = (2, 10, 8)^{T}$$

(a) Minimize Z = 2x1+x2+M(x4+x5)

Subject to
$$3x_1 + x_2 + x_4 = 3$$

 $4x_1 + 3x_2 - x_3 + x_5 = 6$

Phase I: X, Steration O: X, 3 --- , X6 ≥0

$$\begin{aligned} & = (1,1,0) \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & -1 \\ 2 & 0 \end{pmatrix} - (0,0,0) \\ & = (1,1,0) \begin{pmatrix} 4 & 3 & -1 \\ 4 & 3 & -1 \end{pmatrix} - (0,0,0) \\ & = (1,1,0) \begin{pmatrix} 4 & 3 & -1 \\ 4 & 2 & 0 \end{pmatrix}, & \text{where} \\ & = (1,1,0) \begin{pmatrix} 3 & 2 \\ 4 & 3 & 0 \\ 3 & 4 \end{pmatrix}, & \text{where} \\ & = (2,1,2,2,2) \begin{pmatrix} 3 & 4 \\ 4 & 3 & 0 \\ 4 & 1 & 0 \end{pmatrix}, & \text{where} \\ & = (2,1,2,2,2) \begin{pmatrix} 3 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, & \text{where} \\ & = (2,1,2,2,2) \begin{pmatrix} 3 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, & \text{where} \\ & = (2,1,2,2) \begin{pmatrix} 3 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, & \text{where} \\ & = (2,2,2,2) \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \\ & = (-4/3,1,0) \begin{pmatrix} 3 & -1 & 0 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix} - (0,0,1) \\ & = (5/3),-1,-7/3) & \text{where} \\ & = (2,2,2,2) \\ & = (3,2,2,2) \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix} - (0,0,1) \\ & = (5/3),-1,-7/3) & \text{where} \\ & = (2,2,2,2) \\ & = (2,2,2,2) \\ & = (2,2,2,2) \end{pmatrix} \\ & = (2,2,2,2) \\ & = (2,2,2,2) \end{pmatrix}$$

$$& = (2,2,2,2) \\ & = (2,$$

Steration 2:

$$X_B = (X_1, X_2, X_6)^T$$
, $G_B = (0, 0, 0)$
 $B_z = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & 0 \\ 1 & 2 & 1 \end{pmatrix}$, $B_z = \begin{pmatrix} 3/5 & -1/5 & 0 \\ -4/5 & 3/5 & 0 \\ 1 & -1 & 1 \end{pmatrix}$
Since X_B does not include the attificials X_Y and X_S , we can use to start Phase II .

Continued

Phase II: objective max z = 2x, +xe Iteration o:

Steration 1:

$$X_{B} = (X_{1}, X_{2}, X_{3}), g = (2, 1, 0)$$

 $B_{1} = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & -1 \\ 1 & 2 & 0 \end{pmatrix}, g_{1} = \begin{pmatrix} 2/5 & 0 & -1/5 \\ -1/5 & 0 & 3/5 \\ 1 & -1 & 1 \end{pmatrix}$
 $\{Z_{1} - G_{2}\}_{J=6}$
 $= (3/5, 0, 1/5) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - 0 = 1/5 > 0$

optemum !

$$X_{B} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} -1/2 & 0 & -1/2 \\ -1/2 & 0 & 3/2 \\ -1/2 & 0 & -1/2 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 6 \\ 6 \\ 6 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 6/2 \\ 0 \end{pmatrix}$$

Minimize $z = 3x_1 + 2x_2$ Subject to

$$\begin{array}{rcl}
-3x_1 - x_2 + x_3 & = -3 \\
-4x_1 - 3x_2 + x_y & = -6 \\
x_1 + x_2 + x_5 & = -3
\end{array}$$

Iteration 0:

$$X_{\mathcal{B}} = \begin{pmatrix} X_3 \\ X_4 \\ X_5 \end{pmatrix}, \quad \mathcal{B}_0 = \mathcal{B}_0^{-1} = \mathcal{I}$$

Set 7.2b

$$\mathcal{E} = \begin{pmatrix} -3 \\ -6 \end{pmatrix} \implies xy \text{ leaves}$$

$$\mathcal{E} = (0,0,0), \quad \mathcal{C} \mathcal{B}^{-1} = (0,0,0)$$

$$\{Z_{3} - C_{3}\}^{2}_{1,2} = (0,0,0) \begin{pmatrix} -3 & -1 \\ -4 & -3 \end{pmatrix} - (3,2) = (-3,-2)$$

$$(\text{row 2 d} \overrightarrow{B}_{0}^{-1})(P_{1}P_{2})$$

$$= (0,1,0) \begin{pmatrix} -3 & -1 \\ -4 & -3 \end{pmatrix} = (-4,-3)$$

$$\theta = \min_{j=1,2} \left\{ \begin{vmatrix} -3 & -1 \\ -4 \end{vmatrix}, \begin{vmatrix} -2 \\ -3 \end{vmatrix} \right\} = 2/3 \implies x_{2} \text{ enters}$$

$$\frac{1}{2} = \left(\frac{x_{3}}{x_{2}} \right), \quad \mathcal{B}_{1} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{1} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{1} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{2} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{3} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{4} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{5} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{7} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{7} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{7} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{7} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{7} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{7} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{B}_{7} = \left(\frac{1}{2} - \frac{1}{3} \right), \quad \mathcal{$$

Iteratum2:

$$\begin{array}{lll}
X_{B} &= \begin{pmatrix} X_{1} \\ X_{2} \\ X_{5} \end{pmatrix} \\
B_{2} &= \begin{pmatrix} -3 & -1 & 0 \\ -4 & -3 & 0 \\ 1 & 1 & 1 \end{pmatrix} \\
B_{2} &= \begin{pmatrix} -3/5 & 1/5 & 0 \\ 4/5 & -3/5 & 1 \end{pmatrix} \\
X_{B} &= B_{2} & b \\
&= \begin{pmatrix} -3/5 & 1/5 & 0 \\ 4/5 & -3/5 & 0 \\ -1/5 & 2/5 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ -6 \\ 3 \end{pmatrix} \\
&= \begin{pmatrix} 3/5 \\ 6/5 \\ 6/5 \end{pmatrix}$$

Fearible!

x, enters

Steration 1: ×, enters

•	X,	X2	ХЗ	solution
3	-2	-1	0	0
X3	}	. 1 .	1	3

 $\theta = \min \{3/1, -, 2\} = 2$ Substitute X_1 at its upper bound: $X_1 = 2 - X_1'$

	x ₁ '	. X2	ХЗ	Solution
3	2	-1	0	2
X3	-1	1	ı	1

this solution (X, = 2, X2 = 0)
coincides with point B in the
Solution space above. The solution
now has X' = 0, which implies
that X, = 2, this reducing the
solution space to line signent BC.
Iteration 2: X2 enters

$$\theta = \min \{1/1, -, 2\} = 1$$
 $X_1' \quad Y_2 \quad \times 3 \quad \text{Solution}$
 $X_2 \quad -1 \quad 1 \quad 1 \quad 1$

optimum: X'=0 => X, =2, X2=1 which is the same as point C.

c) as shown in (b) above, the substitution of the upper lounding method secognizes the extreme point implicitly by using the substitution

X, = M, -X;

		معد ا	٠.	4		-	a de		2
	3	-6	-2	-8	<u> </u>	. (A) 1 5 1/2 (Market 1994, David, 1975	X6_	A LANGE AND D	
	¥7	The second second	1	8	distance to the second	AT A STATE OF THE STATE OF	1 10 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	12
	7.07 (1983)								- 1 - 2 -
			$s:\theta$		ردا ع ۸	4 > -	-, 1	3 = 1	
			- ×6'		χĊ	Y	X/	Ya	ı
	8	-6	-2	-8	-4	-2	10	0	10
		8	1	8	2	2	-4	<u> </u>	9
ĺ	THE RESERVE TO		s: 0						
	20 -	- 1	~ /		_				
	-	X,	XZ_	<u>x3′</u>	Xy	<i>Y</i> _	X ₆	X7	
	<u> 7</u>	-6	-2	8	-4	-2	10	0	18
	*1	<u> </u>	1 .	-8 -: []/a	_	. 2	-7		
	A) CIN	LYJ: I X.	0 = mi	~ 278. V~	と、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	- 1/8	ر کر در ا مر	y-cea	ves
	3	0	×2 -5/v	<u>^3</u> -	-5/2	<u> </u>	X6	3/11	183/4
	×,	1	1/8		1/	141	-1/-	1/2	18 14
					5 V8	19	72	78	78
	My on	l x	· 0 -	- ("" 1)	1/4	> '.	3 = 7 i	2) 4,	leaves
	3,	10	X ₁	~8 ~8	0	2	<u> </u>		
	¥4	4	1/2	-4	1	1	-2	1/2	20 1/2
			r: 0 =						
							9 15	=1/8	
	~4	l X.	vea,	, ~4= x!	v.'	:	. ,		
	3	2	-I	0	2	0	6	- ^7	15
	¥3′	-1	-1/8					•	12
		<u> </u>	- 0		74	-74	12	1 .78	1/8
	×2.	entes	1-x2	, = m	un į	—,	-1/	ارچ	5 = 1
	~ 2			x3'	X4	٧_	y.)	V	I o
	-3.	2	<u>χ</u> ,	6	2	$\frac{\chi^2}{2}$		X7	-
	-0-	1-,				-1/4	6	11	22
		4				-74	1/2	-118	1/4
	•		msol	ulion	7				
		X, = 0							• .
		(2 = 1		•	-				
		(₃ =		•	Z = :	12			
		4 =							
	,	رک ۽ ر)						

X6=1

	AND THE RESERVE OF THE PROPERTY OF THE PROPERT
(a) Minimize	(U) Substitute x, = 1+4, , x3 = 43+2
X, X2 X3 X4 X5	Phase 1: 05 y, 52, 05 x, 53, y, 20
3 -6 2 3 0 0 0	1 X2 93 X4 X5 R
×4 2 4 2 1 0 8	3 2 -1 -1 0 0 4
X5 1 -2 3 0 1 7	X5 2 1 1 0 1 0 4 R1 1 2 -1 -1 0 1
	3 0
X3 enters: 0 = min { \frac{7}{3}, -, }=1; X3=1-X3'	V- 21 6 21 11
x1 x2 x3 x4 x5	
3 -6 2 -3 0 0 -3	1 12 12
X4 2 4 -2 1 0 6	Phase 2.
×5 1 -2 -3 0 1 4	y, x ₂ y ₃ x ₄ x ₅
X2 enters: G=min{6, -, 2} = 3/2; xy leaves	3/2 0 1 -1 0 3 Xs 3/2 0 3/2 1/2 \ 7
$ X_1 $	
3 -7 0 -2 -1/2 0 -6	
X2 1/2 1 -1/2 1/4 0 3/2	y_i enters: $\theta = min\{\frac{2}{3/2}, -, 2\} = 4/3; x_5 leaves$
X5 2 0 -4 1/2 1 7	3 0 0 3 -1/3 4/3 1716
Optimum: $x_1 = 0$, $x_2 = 3/2$, $x_3 = 1$, $x_3 = -6$	8 0 0 3 -1/3 4/3 1716 9 1 0 1 1/3 2/3 4/3
b) Maximize	$\frac{X_2}{2} = \frac{1}{2} - \frac{1}{3} - \frac{1}{3} = $
X, X2 X3 X4 X5	xy enters: 0 = min { 4/3, 4/3-3, -? = 5/2
3 -3 -5 -2 0 0 0	X_2 leaves, $X_2 = 1 - X_2$
×4 1 2 2 1 0 10	13, X2 Y3 XY X5
X5 2 4 3 0 1 15	3 0 1/2 7/2 0 3/2 13/2
Xzenters: 8=min { 15, -, 3 } = 3; X2 = 3 - X2'	81 1 -1/2 1/2 0 1/2 1/2
X ₁ X ₂ X ₃ X ₄ X ₅	X4, 0 3/2 3/2 1 1/2 5/2
3 -3 5 -2 0 0 15	optimum: X1 = 3/2, X2 = 3, X3 = 2, 3 = 13/2
X4 1 -2 2 1 0 4	b) Set x, = 1+8, , 0 = 4, = 2, 0 = x = 1
45 2 -4 3 0 1 3	Phase 1: y
X_1 enters: $\theta = \min\left\{\frac{3}{2}, -, 4\right\}$; X_5 leaves	3 -1 2 0 0 0 0 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R -1 2 -1 1 0 0 1
3 0 -1 5/2 0 3/2 39/2 Xy 0 0 1/2 1 -1/2 5/2	R -1 2 -1 1 0 0 1 14 3 2 0 0 1 0 7 x5 -1 1 0 0 0 1 2
	3-20-11000
+ 3/2-2 -27 1/4	X2 -1/2 1 -1/2 1/2 0 0 1/2 Xy 4 0 1 -1 1 0 6 X5 -1/2 0 1/2 -1/2 0 1 3/2
X , leaves, $X_1 = 4 - X_1'$	
3 V2 0 7/4 0 5/4 83/4	Phase 2: 1/21 X2 ×3 ×4 ×5
X4 0 0 1/2 1 -1/2 5/2	3 0 4 1 0 0 4 y 1 2 1 0 0 1
1 1/2 1 -3/4 0 -1/4 S/4	3 0 -9 -3
Optimum: x1=4, x2=1/4, x3=0, 3=83/4	Optimum: X1=2, X2=1, 3=4
7-	16

1	16552450
3	
3	Selection .
1	200
1	75.89
ı	Chican .
ï	100 mm. 100

C)	Let X	(₁ = / +	\mathcal{J}_{l}		•	
	o ≤ y,	€2,	0 5	X25	5, o	£ x3 ≤ 2

	Χ,	Χz	ХЗ	X4	_5x	X6	
3	-4	-2	-6	0	0	0	4
Χų	4	-1	0	1	0	0	5
*4 *5	-1	1	2	. 0	1 -	0	9
×c	-3	ir	4	0	0	1	15

	١٤,	XZ	X3	Xy	x 5	X6	4
3	-4	-۷	6	0	0	0	16
X4	4	-1	0	1	0	0	5
×s	-1	ł	-2	6	1	0	5
X6	-3		-4	۵	0	1	7

J, enters: θ = min { 5/4, -, 2} = 5/4; ×4 leaves

	4,	Χz	×3'	X4	X5	×6	
3	0	-3	6	1	0	0	21
ال		-1/4	0	1/4	Ò	Ö	5/4
×s	0	3/4	-2	1/4	1	0	25/4
X6	0	1/4	-4	3/4	٥		43/4

¥,	leaves ,	y,	=2-	¥,'

	y,'	Xz	x3	X4	X5	X ₆	
	12	0	6	-2	0 :	0	30
X ₂	4	1	0	-1	0	0	3
XS	-3	0	-2	1	1	0	4
×6	-1	0	-4	1	0	. /	10

$$x_4$$
 enters: $\theta = \min \{4, \frac{3-5}{-1}, -\frac{7}{3} = 2$
 x_2 leaves, $x_2 = 5 - x_2'$

$$x_2$$
 leaves, $x_2 = 5 - x_2$

		٧,′	Χź	X3	Хy	×5-	X۵	
	3	4	2	6	0	ð	O	34
•	Хч	-4	1	0	}	0	0	2
u	X5	3	-1	-2	0	1	0	2
	XL	Ĭ	~	-4	0	Ø	1	8

Optimum Solution:

$$X_i = 3$$

$$x_3 = 2$$

$$Z = 34$$

Let X, represent the basic and nonbasic variables in X that have been substituted at their upper bound. Also, let X, be the remaining basic and nonbasic variables. Suppose that the order of the vectors of (A, I) corresponding to X, and X, are given by the matrices D, and D, and let the vector C of the objective function be partimed correspondingly to give (C, C,). The equations of the linear program

$$\begin{pmatrix} 1 & -\mathbf{C}_{x} & -\mathbf{C}_{u} \\ 0 & \mathbf{D}_{x} & \mathbf{D}_{w} \end{pmatrix} \begin{pmatrix} z \\ \mathbf{X}_{x} \\ \mathbf{X} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{b} \end{pmatrix}$$

using the substitution

$$\mathbf{X}_{\mathbf{u}} = \mathbf{U}_{\mathbf{u}} - \mathbf{X}_{\mathbf{u}}'$$

where U, is a subset of U representing the upper bounds for the variables in X,

$$\begin{pmatrix} 1 & -\mathbf{C}_{z} & \mathbf{C}_{u} \\ \mathbf{0} & \mathbf{D}_{z} & -\mathbf{D}_{w} \end{pmatrix} \begin{pmatrix} z \\ \mathbf{X}_{z} \\ \mathbf{X}' \end{pmatrix} = \begin{pmatrix} \mathbf{C}_{u} \mathbf{U}_{u} \\ \mathbf{b} - \mathbf{D}_{u} \mathbf{U}_{w} \end{pmatrix}$$

The optimality and the feasibility conditions can be developed more easily now, since all nonbasic variables are at zero level. However, it is still necessary to check that no basic or nonbasic variable will exceed its upper bound.

Define X_B as the basic variables of the current iteration, and let C_B represent the dements corresponding to X, in C. Also, let B be the basic matrix corresponding to X_B. The current solution is determined from

$$\begin{pmatrix} 1 & -\mathbf{C}_B \\ 0 & \mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{z} \\ \mathbf{X}_B \end{pmatrix} = \begin{pmatrix} \mathbf{C}_u \mathbf{U}_u \\ \mathbf{b} - \mathbf{D}_u \mathbf{U}_u \end{pmatrix}$$

By inverting the partitioned matrix as in Section 4.1.3, the current basic solution is

$$\begin{pmatrix} z \\ \mathbf{X}_{B} \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{C}_{B} \, \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{C}_{w} \, \mathbf{U}_{w} \\ \mathbf{b} - \mathbf{D}_{w} \, \mathbf{U}_{w} \end{pmatrix} = \begin{pmatrix} \mathbf{C}_{w} \, \mathbf{U}_{w} + \mathbf{C}_{B} \, \mathbf{B}^{-1} (\mathbf{b} - \mathbf{D}_{w} \, \mathbf{U}_{w}) \\ \mathbf{B}^{-1} (\mathbf{b} - \mathbf{D}_{w} \, \mathbf{U}_{w}) \end{pmatrix}$$

By using

$$\mathbf{b'} = \mathbf{b} - \mathbf{D}_{\mathbf{a}} \mathbf{U}_{\mathbf{a}}$$

the complete simplex tableau corresponding to any iteration is

Basic	X_z^T	X;**	Solution
	$C_BB^{-1}D_x - C_x$	$-\mathbf{C}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{D}_{\mathbf{u}}+\mathbf{C}_{\mathbf{u}}$	37-25-
X,	$\mathbf{B}^{-1}\mathbf{D}_{z}$	-B-1D,	B-1b'

$$= \begin{pmatrix} 7 \\ 15 \end{pmatrix} - \begin{pmatrix} 1 \\ 4 \end{pmatrix} (3) = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix}$$

$$\begin{pmatrix} x_y \\ x_1 \end{pmatrix} = \vec{\beta}^1 b' = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 5/2 \\ 3/2 \end{pmatrix}$$

(b)
$$X_{B} = \begin{pmatrix} X_{4} \\ X_{2} \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 0 & -4 \end{pmatrix}$, $\tilde{B}^{\dagger} = \begin{pmatrix} 1 & -1/4 \\ 0 & -1/4 \end{pmatrix}$

$$b' = b - D_u V_u$$

$$= \binom{7}{15} - \binom{1}{2} \binom{4}{4} \binom{4}{3} = \binom{6}{-5}$$

$$X_{B} = \begin{pmatrix} X_{Y} \\ X_{2} \end{pmatrix} = \begin{pmatrix} 1 & -1/4 \\ 0 & -1/4 \end{pmatrix} \begin{pmatrix} 0 \\ -5 \end{pmatrix} = \begin{pmatrix} 5/4 \\ 5/4 \end{pmatrix}$$

Minimize $Z = 6X_1 - 2X_2 - 3X_3$ Subject to 2x, +4x2 +2x3 +x4 $+x_5=7$ $X_1 - 2X_2 + 3X_3$ 0 = X1 = 2 , 0 = X2 = 2 , 0 = X2 = 1 We use the tableau developened in Problem 5 above. Iteration 0: $X_{\mathcal{B}} = \begin{pmatrix} x_{\mathcal{U}} \\ x_{\leftarrow} \end{pmatrix}, \ \mathcal{B} = \mathcal{B}^{-1} = \overline{L}$ CB = (0,0), GB= (0,0) {z, - 5,} $= (0,0)\begin{pmatrix} 2 & 4 & 2 \\ 1 & -2 & 3 \end{pmatrix} - (6,-2,-3)$ $=(-6,2,3), X_3$ enters $\vec{B}P_3 = \vec{B}(\frac{2}{3}) = (\frac{2}{3})$ $\begin{pmatrix} x_4 \\ x_r \end{pmatrix} = B^{-1}b = \begin{pmatrix} 8 \\ 7 \end{pmatrix} \Longrightarrow \theta_1 = \frac{7}{3}$ Since BP, >0, Oz = 00 0= min { 1/3,00, 1]=1 Thus, X3 becomes nonbasic at its upper bound. New Solution: Xz = (X1, X2), Xu = X3 U,=1, Cu=-3 $\mathcal{D}_{z} = \begin{pmatrix} 2 & 4 \\ 1 & -2 \end{pmatrix}, \quad \mathcal{D}_{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \zeta = (6, -2)$ $b' = {8 \choose 1} - {2 \choose 3} (1) = {6 \choose 4}$ $\begin{pmatrix} x_4 \\ x_5 \end{pmatrix} = B^{-1} \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$, Z = -3Iteration 1: $C_2 = (6, -2)$, $C_4 = C_3' = 3$ $P_3' = \begin{pmatrix} -2 \\ -3 \end{pmatrix}, B = B = I, G = (0,0), GB = (0,0)$ {Z, -G.}Z(j=1,2)

= (0,0)(14)-(6,-2)=(-6,2)

(Zj-G·3u(j=3) $= (0,0)\binom{-2}{-2} - (3) = -3$ X2 enters $\tilde{\mathcal{B}}_{z} = \begin{pmatrix} 4 \\ -z \end{pmatrix}, \chi_{\tilde{\mathcal{B}}} = \begin{pmatrix} x_{\tilde{y}} \\ x_{\tilde{y}} \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$ $\Theta_1 = \frac{6}{4} = \frac{3}{2}$, $\Theta_2 = \infty$ (because $U_5 = \infty$) 0 = min { 3/2,00, 2} = 3/2 Xy leaves Steration 2: G= (x, x4), Xu = x3 $X_{\mathcal{B}} = \begin{pmatrix} X_{2} \\ X_{3} \end{pmatrix}, P_{3} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}, b' = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$ $B = \begin{pmatrix} 4 & 0 \\ -2 & 1 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} 1/4 & 0 \\ 1/2 & 1 \end{pmatrix}$ (R = (-2,0), CBB= (-1/2,0) {z,-g,} z(j=1,4) =(-1/2,0)(2-1)-(6,0)=(-7,0) $\left\{Z_{j} - G_{j}\right\}_{u (j=3)}$ =(-1/2,0)(-2)-3=-2Optimum! $X_{\mathcal{B}} = \begin{pmatrix} X_2 \\ X_{\mathcal{S}} \end{pmatrix} = \begin{pmatrix} 1/4 & 0 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 7 \end{pmatrix}$ X2=1-0=1 2 = -6

continued..

	(a)		7 .			
	10	convert	the	prof	lem	
.	into	a dual	Lead	uble s	olution	υ
	موء	a dual use the	fold	owing .	Sulshtu	tions.
ŀ				0	,	

 $X_1 = 2 - X_1'$, $X_2 = 3 - X_2$

Thus,

minimize $Z = 3X_1' + 2X_2' + 2X_3 - 12$

Subject to

 $-2x_1' - x_2' + x_3 \le 1$ $-x_1' + 2x_2' - x_3 \le -9$ $0 \le x_1' \le 2, 0 \le x_2' \le 3, 0 \le x_3 \le 1$

	X,	X2	X3	Xy	X5-	Ł /
3	-3	-2	-2	0	0	-12
Xy	-2	-1	1	ı	0	1
X5	-1	2		0.	1	-9

x5 leaves and x3 enters								
-	×,'	ן	×₃	Хy	X5	1		
3-	-1	-6	0	0	-2	6		
Xy	-2	1	0	1		-8		
х3	1	-2	1	0	-1	9		

X3 above its upper bound, substitute X3 = 1- X3', Then multiply the second row by -1.

	X,'	χ ₁ '	X3.	Χy	Χſ	1 /
3	-1	-6	O'	0	-2	6
Хy	-2	1	0	1	7	-8
X3	-1	2	1	O	1.	-8

X's leaves and X' enters

X,'	XZ	ΧŚ	Χų	XS	1
0	-8	-1	0	-3	14
0	-3	-2	1.	-1	8
1	-2	-1	0	-1	8
	x,' 0 0	x ₁ ' x ₂ 0 -8 0 -3 1 -2	x_1' x_2' x_3' 0 -8 -1 0 -3 -2 1 -2 -1	x_1' x_2' x_3' x_4' 0 -8 -1 0 0 -3 -2 1 1 -2 -1 0	x_1' x_2' x_3' x_4 x_5' 0 -8 -1 0 -3 0 -3 -2 1 -1 1 -2 -1 0 -1

substitute x1'=2-x, and multiply second row by -1

	(1 X		Xy	75	1
3	s -8	-1	ø	-3	14
Χų	o -3	- ž	. 1	-1	T _P
X,	1 2	1	٥	1.	-3
			Charles of the same of the same of		CONTRACTOR OF THE PARTY OF THE

X,- row shows that the problem has no feasible solution

(b) Let
$$x_1 = 2 - x_1'$$

 $x_2 = 3 - x_2'$

This substitution will result in a dual feasible starting

	x,'	Xz'	×3	Xy	×5	1
<u>z</u>	7,	5	2	0	Ø	17
Xy	-4	-2	2	1	`0	12
X5-		3	-4	0	1	-6
Z	3/2	13/2	0	G	1/2	14
Хy	-7/2	-1/2	. 0	١	1/2	9
Хз	~1/4	-3/4	l .	0	-1/4	3/2

Optimum!

$$X_1 = 2 - 0 = 2$$

$$X_2 = 3 - 0 = 3$$

$$x_3 = 3/2$$

$$Z = 14$$

Premal:

maximize z = CX

Subject to

Ax = b $x \ge 0$

Dual:

Minimize w = Yb

Subject to

YA > C

Y unrestricted

Dual in equation form:

Minimire W= Yb

Subject to

YA-IS = C ←X

Yunrestricted

S ≥ 0

Dual of dual:

Maximize Z = CX

Subject to

Ax = 6

 $-X \leq 0 \Rightarrow X \geq 0$

The first set of constraints is equation because Y is unrestricted

The last problem shows that

the dual of the dual is he primal

Primal in equation form:

Minimize z = CX

Subject to

AX-IS = b

-13 = 6

X ≥ 0

S ≥0

Dual:

Maximize w= Yb

Subject to

 $YA \leq C$

-Y ≤0 => Y ≥0

Primal in equation form:

Maximize Z = X, + X2

Subject to

$$X_1 - X_2 + S_1 = -1$$
 $-Y_1$ $-X_1 + X_2 + S_2 = -1$ $-Y_3$

Dual:

Minimize w = - 7, - 72 Subject to

 $3_1 - 3_2 \ge 1$ $-3_1 + 3_2 \ge 1$

3, 3, ≥0

(a) Dual:

Minimize w= y, -5/2+6 y3

Subject to

2
$$y_1$$
 + 4 $y_3 \ge 50$
 y_1 + 2 y_2 ≥ 30
 $y_3 \ge 10$
 y_1 , y_2 , y_3 unrestricted.

(b) 2x, =-5 ⇒ x, <0, infeasible

(C) Inapartion of the second dual constraint shows that I've can be increased indefinitely without violating any of the dual constraints Thus, w = y (5/2) + 6/3 is unbounded.

(d)Primal infeasible => { dual infeasible or dual unbounded

Primal unbounded => dual infeasible

(a) Minimize W= 24,+542 Subject to

 $-y_1 + 2y_2 \ge 12$ $3y_1 + y_2 \ge 4$

y, unrestricted

(b) (i) $B = (P_4, P_3) = \begin{pmatrix} 0.3 \\ 1.1 \end{pmatrix}, \bar{B} = \begin{pmatrix} -1/3 & 1 \\ 1/3 & 0 \end{pmatrix}$

 $X_{\mathcal{B}} = \begin{pmatrix} -1/3 & 1 \\ 1/2 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 13/3 \\ 2/3 \end{pmatrix}$ feasible

G= (0,4)

 $Y = G_B R^{-1} = (0, 4) \begin{pmatrix} -1/3 & 1 \\ 1/3 & 0 \end{pmatrix} = (4/3, 0)$

Dual feasibility:

27,+y2=2×4/3+1x0=8/3 \$5

Dual infeasible - primal nonophimal.

(ii) $B = (P_2 P_3) = \begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} -1/7 & 3/7 \\ 2/7 & 1/7 \end{pmatrix}$

 $X_{\mathcal{B}} = \begin{pmatrix} -1/7 & 3/7 \\ 2/7 & 1/7 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 13/7 \\ 9/7 \end{pmatrix} \text{ feasible}$

Dual feasibility: Y=&B= (12,4) (-1/7 3/7)

=(-4/7,40/7)

24,+4= 2(-4/7)+40/7=32 \$5

XB is not optimal

(iii) $B = (P_1 P_2) = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}, \tilde{B} = \begin{pmatrix} 2/5 & 1/5 \\ -1/5 & 1/5 \end{pmatrix}$

 $X_B = \begin{pmatrix} 2/5 & 1/5 \\ -1/5 & 2/5 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 9/5 \\ 8/5 \end{pmatrix}$ feasible

Dual feasibility: Y= &B= (5,12) (-1/5 2/5)

= (-2/5, 29/5)

Y satisfies all dual constraints. Thus AB is optimal.

(iv)
$$B = (P_1P_4) = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$$
 $B' = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix}$
 $X_B = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ feasible

Dual feasibility:

 $Y = Q_B B' = (5,0) \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} = (5/2,0)$

Y does not salofy second dual constraint: X_B is not optimum

(a) Dual: Minimize w = 4%, +8%Subject to $y, +y_2 \ge 2$ $y, +4\% \ge 4$ $y, +4\% \ge 4$ unrestr. $y, +2\% \ge 4$ $y, +2\% \ge 4$

 $B = (A_{2}, X_{3})^{2}$ $B = (A_{4}, A_{0})^{2}, B = (A_{1}, A_{1})^{2}$ $C_{8} = (A_{1}, A_{1})^{2}, G_{8} = (A_{2}, A_{1})^{2}$ $Z_{1} - C_{1} = G_{8}^{2} P_{1} - C_{2}$ $= (A_{1}, A_{1})^{2} (A_{1}^{2})^{2} - Z_{2} = 2 > 0$ $Z_{4} - C_{4} = (A_{1}, A_{1})^{2} (A_{1}^{2})^{2} - (A_{2}^{2})^{2} = 3 > 0$ $X_{1} - C_{2} = (A_{2}, A_{2})^{2} (A_{1}^{2})^{2} - (A_{2}^{2})^{2} = 3 > 0$ $X_{2} - C_{3} = (A_{2}^{2})^{2} + (A_{3}^{2})^{2} + (A_{3}^{2})^{2} = 3 > 0$ $X_{3} - C_{4} = (A_{3}^{2})^{2} + (A_{3}^{2})^{2}$

(c) X_3 basic $\Rightarrow Z_3 - C_3 = 0$, or $YP_3 - C_3 = (Y_1, Y_2) {1 \choose 0} - 4 = 0$, or $Y_1 - 4 = 0 \Rightarrow Y_1 = 4$ (1) Y_2 basic $\Rightarrow Z_2 - C_2 = 0$, or $YP_2 - C_2 = (Y_1, Y_2) {1 \choose 4} - 4 = 0$, or $Y_1 + 4Y_2 = 4$. Given 0, we get $Y_2 = 0$.

B b = x_{8} (o -1 1) $\begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} \Rightarrow b_{2} = 6$ (o 1 0) $\begin{pmatrix} b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} \Rightarrow b_{2} = 6$ Dual objective salue in $w = Y b = (0, 3, 2) \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} = 34$ From the dual: $\begin{pmatrix} B \\ 7 \\ 7 \end{pmatrix} = Y$ (c, $(c_{2}, 0) \begin{pmatrix} 0 \\ 6 \\ 1 \end{pmatrix} = (0, 3, 2)$ or $(c_{2} - c_{1}) = (0, 3, 2)$ or $(c_{2} - c_{1}) = (0, 3, 2)$ Primal objective value in $(c_{1}, c_{2}, 0) \begin{pmatrix} 0 \\ 6 \\ 1 \end{pmatrix} = 34$

 $\sum_{k=1}^{m} c_{k} (B P_{k})_{k} = (c_{B} B) P_{k}$ $= Y P_{k}$ $= \sum_{k=1}^{m} y_{k} q_{k}$

Minimize w = YbSubject to YA = CYunrestricted

Subject to

Y, A - Y2 + Y3 & C

Y, A - Y2 + Y3 & C

Y, Y2, Y3 & O

Set Y = Y3 - Y2 => Y unrestricted.

Hence Y, A + (Y3 - Y2) & C can be

written as Y, A + Y & C. Since Y

is unrestricted its value can
always be selected such that

Y, A + Y & C is satisfied

For
$$X_{80}$$
:
$$\left\{ \vec{z}_{3} - c_{3} \right\}_{s=1,4,5} = (4+14t) \cdot 1 - t, 2+3t) \geq (0,0,0)$$

$$\text{He inequalities are satisfied for } -2/7 \leq t \leq 1$$

$$\left(a \right) \left\{ g(t) B_{0}^{-1}(2,5-6t,0) \begin{pmatrix} 0 & 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \right\} = (1, 2-3t,0)$$

$$X_{80} = (X_{1}, X_{2}, X_{4})^{T} = (5, 30, 10)^{T}$$

$$\left\{ Z_{3} - c_{3} \right\}_{3=1,4,5} = (1, 2-3t,0) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} - (3+3t,0,0) \\ = (4-12t, 1, 2-3t) \geq (0,0,0) \\ X_{8} \text{ remains optimal for } t \leq 1/3$$

$$At \quad t = 1/3, \quad x_{1} \text{ entries obstation}$$

$$A_{1} = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1/4 \\ 3/2 \end{pmatrix}$$

$$X_{8} = (X_{2}, X_{3}, X_{1})^{T}$$

$$X_{9} = (X_{2}, X_{3}, X_{1})^{T}$$

$$X_{9} = (X_{2}, X_{3}, X_{1})^{T}$$

$$X_{9} = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 1 \end{pmatrix} \begin{pmatrix} 1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/8 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/8 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/8 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/8 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/4 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/8 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/4 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/8 \end{pmatrix}$$

$$X_{9} = \begin{pmatrix} 1/4 & -1/4 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1$$

at t=5/12, Xy enters X3 leaves XB2 = (X2) X4) X1) T $\vec{B_2} = \begin{pmatrix} 0 & -1/12 & 1/4 \\ 1 & -1/6 & -1/2 \\ 0 & 1/3 & 6 \end{pmatrix}$ $X_{B_2} = B_z^{-1}b = (5/2, 15, 20)^T$ G(+)B2=(2,0,3+3+) B2-1 r = (0, 5/6 + t, 1/2)(Z) -G:31=356 = $(0, \frac{5}{6}, \frac{1}{2}, \frac{1}{2}) \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - (5-6t, 0, 0)$ = (-10/3 +8t, 5/6+t, 1/2) XB2 remains optimal for S/12 & t < 0 (b) XB = (X2, X3, X6) T= (5, 30, 10) T CB(+)Bo=(2+t,5+2t,0)(1/2-1/4 0) =(1+t/2,2+3t/4,0){Z, -C, };=1,4,5 $= (1+t/292+3/4t,0)\begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} - (3-2t,0,0)$ = (4+19t/4,1+t/2,2+3t/4) > (0,0,0) XB is optimal for all t >0 (C) $X_{B_0} = (X_2, X_3, X_6)^T = (5, 30, 10)^T$ $C_{B}(t) B_{0}^{-1} = (2+2t, 5-t, 0) \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 \end{pmatrix}$ = (1+t, 2-t, 0) $\begin{cases}
2j - Cj \cdot \hat{j} = 1, 4, 5 \\
= (1+t, 2-t, 0) \begin{pmatrix} 1 & | & 6 \\ 3 & 0 & | \\ 1 & 0 & 0 \end{pmatrix} - (3+t, 0, 0)$ = $(4-3t, 1+t, 2-t) \ge (0, 0, 0)_{\text{continued}}$

XB, remains optimal for the range t = 4/3. at t=4/3, x, enters solution as in Part (a) above, X6 leaves $B_{i}^{-1} = \begin{pmatrix} 1/4 & -1/8 & 1/8 \\ 3/2 & -1/4 & -3/4 \\ -1 & 1/2 & 1/2 \end{pmatrix}, X_{B_{i}}^{-1} = \begin{pmatrix} X_{2} \\ X_{3} \\ X \end{pmatrix}$ XB = B, b = (25/4, 90/4,5)T G(t)B,= (2+2t,5-t,3+t) B, = (5-2t, t/2, -2+3/2t){Z, -- G;},=4,5,6 $= (5-2t, t/2, -2+3/2t) \begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - (0,0,0)$ = $(5-2t, t/2, -2+3/2t) \ge (0,0,0)$ X_B , remains optimal for $4/3 \le t \le 5/2$ at t=5/2, X4 enters solution. as in Part (a), we have X3 leaving and $B_{2} = \begin{pmatrix}
0 & -1/12 & 1/4 \\
1 & -1/6 & -1/2
\end{pmatrix},
\chi_{B_{2}} = \begin{pmatrix}
\chi_{2} \\
\chi_{4} \\
\chi_{1}
\end{pmatrix}$ $C_{B}(t) B_{z}^{-1} = (2+2t, 0, 3+t) \begin{pmatrix} 0 & -1/12 & 1/4 \\ 1 & -1/6 & -1/2 \\ 0 & 1/3 & 0 \end{pmatrix}$ = (0, 5/6 + t/6, 1/2 + t/2)12, -c; 3; = 3,576 =(0,5%+t/6,1/2+t/2)(2 1 0) -(5-t, 0, 0) $=(-10/3+4t/3, 5/6+t/6, \frac{1}{2}+t/2)$ XB2 remains optimal for \$ 5 t < 00 Minimize $z=(4-t)X_1+(1-3t)X_2+(2-2t)X_3$

Minimize $z=(4-t)X_1+(1-3t)X_2+(2-2t)X_3$ Subject to $3X_1 + X_2 + 2X_3 = 3$ $4X_1 + 3X_2 + 2X_3 - X_4 = 6$ $X_1 + 2X_2 + 5X_3 + X_5 = 4$ $X_1, X_2, ..., X_5 \ge 0$

 $X_{B_{\alpha}} = (x_1, x_2, x_4)^T = (2/5, 9/5, 1)$ $B_{0}^{-1} = \begin{pmatrix} 2/5 & 0 & -1/5 \\ -1/5 & 0 & 3/5 \end{pmatrix}$ &(+) Bo= (4-t, 1-3t,0) Bo $=(7+t,0,-\frac{1+8t}{5})$ {Z,-G,};=3,5 $= \left(\frac{7+t}{5}, 0, -\frac{1+8t}{5}\right) \left(\frac{2}{5}, 0, -\frac{2-2t}{5}, 0\right)$ $=\left(-\frac{1+28t}{5},-\frac{1+8t}{5}\right)\leq(0,0)$ Bo remains optimal for all t ≥0. The dual simplex method requires that the LP problem be put in the form: Minimize Z = CX Subject to -AX ≤ -b, X≥0 Let Bi be the basis associated with critical value to in the parametric analysis. To obtain tit, we consider {Zj:-G·} nonbasic Xj. $= C_{g}(t) B_{i}^{-1}(-P_{i}) - C_{j}(t) \leq 0$ where P. is the jth column vector of A In the present problem, the first two constraints are of the type 2. Hence, only the first two constraints are multiplied $X_{\mathcal{B}_6} = (X_3, X_2, X_6)^T = (3/2, 3/2, 0)^T$ $\vec{B_0} = \begin{pmatrix} -3/2 & 1/2 & 0 \\ 1/2 & -1/2 & 0 \\ 1 & -1/2 & 1 \end{pmatrix}, \ C_B(t) = (192+4t,0)$

Continued..

$$\begin{aligned} \mathcal{B}_{0}^{(t)} & \mathcal{B}_{0}^{-1} = (-1/2 + 2t, -1/2 - 2t, 0) \\ & \{2j - G_{2}^{2}\} = G_{2}^{2} B_{0}^{-1} P_{2}^{-1} - G_{2}^{-1}(t) \\ & = (-1/2 + 2t, -1/2 - 2t, 0) \begin{pmatrix} -3 & 1 & 0 \\ 3 & 0 & 0 \end{pmatrix} - (3+t, 0, 0) \\ & = (-13t - 3, -1/2 + 2t, 0) \leq (0, 0, 0) \\ & Thus, t, = 1/4 \Rightarrow \times_{B_{0}} \text{ remains optimal} \\ & \text{for } 0 \leq t \leq 1/4. \\ & \text{At } t = 1/4, \times_{4} \text{ enters and } \times_{6} \text{ leaves}. \\ & \times_{B_{1}} = (\times_{3}, \times_{2}, \times_{4})^{T} = (3/2, 3/2, 0)^{T} \\ & B_{1}^{-1} = \begin{pmatrix} 0 & 1/2 & 3/2 \\ 0 & -1/2 & -1/2 \end{pmatrix}, G_{B}(t) = (1, 2+4t, 0) \\ & G_{B}(t) B_{1}^{-1} = (0, -1/2 - 2t, 1/2 - 2t) \begin{pmatrix} -3 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} - (3+t, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t) \begin{pmatrix} -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - (3+t, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t) \begin{pmatrix} -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - (3+t, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t) \begin{pmatrix} -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - (3+t, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t) \begin{pmatrix} -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - (3+t, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t) \begin{pmatrix} -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - (3+t, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t) \begin{pmatrix} -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - (3+t, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 - 2t) \leq (0, 0, 0) \\ & \{2j - G_{1}^{2}\} = (0, -1/2 - 2t, 1/2 - 2t, 1/2 -$$

Summary:

18=(X3,X,X6)=(3/2,3/2,0) is optimal for 0 = t= 14 XB = (x3, x2, x4)= (3/2,3/2,0) isoptimal for t > 1/4 $\begin{array}{l} x_1 = 0 \\ x_2 = 3/2 \\ x_3 = 3/2 \end{array}$ for all $t \ge 0$

$$X_{B_0} = (X_2, X_3, X_6)^T = (5, 30, 10)^T$$

$$C_{B_0}(t) = (2-2t^2, 5-t, 0)$$

$$C_{B_0}(t) = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$

$$C_{B_0}(t) B_0^{-1} = (2-2t^2, 5-t, 0) \begin{pmatrix} 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$

$$= (1-t^2, t^2/2 - t/2 + 2, 0)$$
continued...

$$\begin{aligned} \{z, -c, \}_{j=1,4,5} \\ &= (1-t^2, t^2/2 - t/2 + 2, 0) \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \\ &- (3 + 2t^2, 0, 0) \\ &= \left(4 - \frac{3t}{2} - \frac{3t^2}{2}, 1 - t^2, 2 - \frac{t}{2} + \frac{t^2}{2}\right) \\ &\geq (0, 0, 0) \end{aligned}$$

The graph below summarizes the optimality conditions

XB remains optimal for 0 ≤ t ≤ 1.

(a)
$$X_{B} = (X_{2}, X_{3}, X_{6})^{T}$$

$$= \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 40 + 2b \\ 60 - 3b \\ 30 + 6b \end{pmatrix}$$

$$= \begin{pmatrix} 5 + \frac{1}{4} \\ 30 - 3 \frac{1}{2} \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 10 - t \end{pmatrix}$$

$$-20 \leq t \leq 10, \quad t, = 10$$

$$X_{6} \text{ leaves at } t = 10.$$

$$(\text{row of } B_{0} \text{ associated with } X_{6})(P_{1} P_{4} P_{5})$$

$$= (-2, 1, 1) \begin{pmatrix} \frac{1}{3} & 0 \\ 1 & 0 \end{pmatrix} = (2, -2, 1)$$

$$\{Z_{3} - C_{3}\}_{3=1, 4, 5}$$

$$= (2, 5, 0) \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 \end{pmatrix} - (3, 0, 0)$$

$$\begin{array}{c|ccccc} & x_1 & x_2 & x_3 \\ \hline Z_j - C_j & 4 & 1 & 2 \\ \hline x_6 & 2 & -2 & 1 \\ \hline \end{array}$$

Xy enters.

=(4,1,2)

new
$$B_1 = (P_2 P_3 P_4) = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ 4 & 0 & 0 \end{pmatrix}$$

(b) $X_{B_0} = (X_2, X_3, X_6)^T$

$$= \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 40 - t \\ 60 + 2t \\ 30 - 5t \end{pmatrix}$$

$$= \begin{pmatrix} 5 - t \\ 30 + t \\ 10 - t \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

X, leaves when t = 5.

-30 ≤ t ≤

Continued..

(row of B₀-lassociated with
$$x_2$$
) ($P_1P_2P_3$) =
$$= (\frac{1}{2}, -\frac{1}{4}, 0) \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$= (-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4})$$

$$\{z_1 - c_1^2\}_{j=1,4,5}$$

$$= (2,5,0) \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} - (3,0,0)$$

$$= (4,1,2)$$

$$\frac{x_1}{z_1 - c_j} \xrightarrow{A} \xrightarrow{1} \xrightarrow{X_4} \frac{x_5}{2}$$

$$x_6 \xrightarrow{-\frac{1}{4}} \xrightarrow{\frac{1}{2}} \begin{pmatrix} x_5 \\ -\frac{1}{4} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_5 \text{ enters}$$

$$x_6 = \begin{pmatrix} p_5 & p_3 & p_6 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$X_B = (X_1, X_2, X_4)^T = (2/5, 9/5, 1)$$
 $X_4 = \text{surplus in constraint } 2$
 $X_5 = \text{Slack in constraint } 3$
 $B_1 = \begin{pmatrix} 2/5 & 0 & -1/5 \\ -1/5 & 0 & 3/5 \end{pmatrix}$
 $X_B(t) = B_0 \begin{pmatrix} 3+3t \\ 6+2t \\ 4-t \end{pmatrix} = \begin{pmatrix} 2/5+7/5t \\ 9/5-6/5t \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Thus, $0 \le t \le 3/2$, $t_1 = 3/2$

At $t = 3/2$, X_2 leaves the solution.

To determine the entering variable, we nee the dual simplex computations.

(1500 $0 \setminus B_0$ associated with X_1) (P_3, P_5)
 $= (-1/5, 0, 3/5) \begin{pmatrix} 2 & 0 \\ 5 & 1 \end{pmatrix} = (13/5, 3/5)$

Because $(13/5, 3/5) \ge 0$, the problem has no fearable solution for $t > 3/2$ (per dual simplex conditions).

Summary:

 $X_1 = 2/5, X_2 = 9/5, X_3 = 0$, for $0 \le t \le 3/2$

No fearable solution for $t > 3/2$

For the dual simplex, the fearibility condition is $B'b'(t) \ge 0$ where b'(t) is modified such that the element $b_i(t)$ associated with \ge constraint is replaced with $-b_i(t)$.

$$\begin{array}{ll}
X_{B_0} = (X_3, X_2, X_6)^T = (\sqrt[3]{2}, \sqrt[3]{2}, 0) \\
B_0^{-1} = \begin{pmatrix} -3/2 & 1/2 & 0 \\ 1/2 & -1/2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$b_o'(t) = \begin{pmatrix} -3-2t \\ -6+t \\ 3-4t \end{pmatrix}$$

The top two elements appear with an opposite sign because the first two constraint are of the type ≥ 0 , hence reversing their signs in the dual simplex method.

$$= \begin{pmatrix} 3/2 + 5/2 t \\ 3/2 - 3/2 t \\ -6t \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Thus, $X_3 = 3/2 + 5/2 t \ge 0$ gives $t \ge -\frac{3}{5}$

 $X_2 = \frac{3}{2} - \frac{3}{2} t \ge 0$ gives $t \le 1$

Thus, for t \ge 0, The solution

XBo is feasible for t = 0 only.

Else, the problem has no fearible solution for t > 0

$$X_{B_0} = (X_1, X_2, X_3)^T$$

$$X_{B_1} = B_0 b(t) = \begin{pmatrix} 2/5 & 0 & -1/5 \\ -1/5 & 0 & 3/5 \end{pmatrix} \begin{pmatrix} 3+3t^2 \\ 6+2t^2 \\ 4-t^2 \end{pmatrix}$$

$$= \begin{pmatrix} 2/5 & +7/5t^2 \\ 9/5 - 6/5t^2 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -1\cdot22 & \leq t \leq 1\cdot22 \\ 2 & \leq t \leq 1\cdot22 \end{pmatrix}$$

$$(Row 2 & B_0') \begin{pmatrix} P_4 & P_5 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1/5, 0, 3/5 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0, 3/5 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow no \text{ feasible solution excets}$$

$$\text{for } t > 1\cdot22$$

continued

CHAPTER 8

Goal Programming

additional constraint:

.075 $X_g \ge .1(550X_p + 35X_p + 55X_p + .075X_g)$ The constraint simplifies to $55 \times p + 3.5X_p + 5.5X_s - .0675X_g \le 0$ Thus, $55X_p + 3.5X_f + 5.5X_s - .0675X_g + 5.5 = 0$ Gs: Minimize 5_5^+

X₁ = Number of band converts/yr

X₂ = number of art shows/yr

G₁: Minimize 5;

G₂: Minimize 5;

G₃: Minimize 5;

Constraints: $1500X_1 + 3000X_2$ $200X_1 + 5_1 - 5_2 = 1000$ $100X_1 + 400X_2 + 5_2 - 5_2 = 1200$ $250X_2 + 5_3 - 5_3 = 800$ all variables are ≥ 0

X₁= in-state freshmen X₂= out- of- state freshmen X₃ = international freshmen

(a) $X_1 + X_2 + X_3 \ge 1200$

(b) $\frac{27x_1 + 26x_2 + 23x_3}{x_1 + x_2 + x_3} \ge 25$

 $(C) \quad \frac{x_3}{x_1 + x_2 + x_3} \geq \cdot 1$

(d) $\frac{1/2 \times_1 + 2/5 \times_2 + 1/9 \times_3}{1/2 \times_1 + 3/5 \times_2 + 8/9 \times_3} \ge .75$

 $(e) \quad \frac{\chi_{\nu}}{\chi_{1} + \chi_{2} + \chi_{3}} \geqslant .2$

Goal program:

Gi: minimize 5, =

G: minimige Sz

G3: Minimize S3 G4: Minimize S4

Gs: minimize S5

Constraints:

 $X_1 + X_2 + X_3 + S_1 - S_1^{\dagger} = 1200$ $2X_1 + X_2 - 2X_3 + S_2 - S_2^{\dagger} = 0$ $-1X_1 - 1X_2 + 9X_3 + S_3^{-} - S_3^{-} = 0$ $1/9X_1 - \frac{1}{10}X_2 - \frac{5}{4}X_3 + S_4^{-} - S_4^{+} = 0$ $-2X_1 + 8X_2 - 2X_3 + S_2^{-} - S_3^{+} = 0$ all variables ≥ 0

X₁ = 16 of limestone per day

X₂ = 16 of corn per day

X₃ = 16 of soybean meal-per day

 $X_1 + X_2 + X_3 \ge 6000$ $\cdot 38X_1 + \cdot 001X_2 + \cdot 002X_3 \le \cdot 012(X_1 + X_2 + X_3)$ $\cdot 38X_1 + \cdot 001X_2 + \cdot 002X_3 \ge \cdot 008(X_1 + X_2 + X_3)$ $\cdot 09X_2 + \cdot 5X_3 \ge \cdot 22(X_1 + X_2 + X_3)$

 $.02X_2 + .08X_3 \le .05(x_1 + x_2 + x_3)$

Goals:

G: minimize S, G: minimize S,

G3: minimize 53 G4: minimize 54

Gs: minimize 55+

Constraint: $X_1 + X_2 + X_3 + S_1^{-} - S_1^{+} = 6000$ $\cdot 368X_1 - .011X_2 - .01X_3 + S_2^{-} - S_2^{+} = 0$

1372X, -1007X2-1006X3+S3-S3=0 +122X, -1/3X2+128X3+Sy-Sy=0

-.05x, -.03x2+03x3+5=-5,+=0

Goal programming is not suitable for this problem because nutritional requirements must be met. However, goal programming can assist in deciding which nutritional requirement, are "demanding" from the standpoint efoptimization. The information may then be used to decide of alternative nutritional requirements can be specified in a manner that does not adversely impact cost minimization.

X; = number of production runs in skift jo j=1, 2,3

500 X1 + 600 X2 + 640 X3 300 X, +280 X2 + 360 X3

 $-100X_1 + 40X_2 - 80X_3 = 0$

Minimize Z = 5, + 5, +

Subject to

-100 x, + 40x2-80x3 + 5, - 5, = 0 $4 \le X_1 \le 5$, $10 \le X_2 \le 20$, $3 \le X_3 \le 5$

X; = member of units of part i,

G: minimize 5,

Gz: minimize 52

G3: minimize 5,+

Gy: minimize 50

Gs: minimize S

G6: minimize 5

Gj: minimize 57

Go: minimize Sp

Eng: minimize Sa

Cometraints:

 $5x_1 + 6x_2 + 4x_3 + 7x_4 + 5, -5, = 600$ $3x_1 + 2x_2 + 6x_3 + 4x_4 + 5x_5 - 5x_5^{+} = 600$ $2x_1 + 4x_2 - 2x_3 + 3x_4 + 5x_5^{-} - 5x_5^{+} = 30$ $-2x_1 - 4x_2 + 2x_3 - 3x_4 + 5y - 5y = 36$ +55 - 5+ = 10 X, XZ +56-56=10 *x*₃ +57-5, = 10 X4 + 58 - 5 = 10 + 59 - 59 = 0 $X_1 - X_2$

all variables 20 x;= units of product j, j=1,2

G: minimize S;

Gz: minimize Sz G3: minimize S.

G4: minimize Sit

X, +5, -5, + =80 X2 + S2 - S2 = 60 $5x_1 + 3x_2 + 53^7 - 53^4 = 480$

 $6X_1 + 2X_2 + S_y^{-} - S_y^{+} = 480$ all variables 20

Xj=number of 1-day stays admitted on day j,j=1,2,3,4

j: number of 2-day stays
admitted on day j, j=1, z, 3, y
w = number of 3-day stays
admitted on day j, j=1, z, 3, y

G: minimize 5,+

G2: minimize S2t G3: minimize S3+

Gry: minimize sit

Subject to

X1 + X2 + X3 + X4 = 30

4, + 12+ 1/3 + 1/4 W1 + W2 + W3 + W4 = 20

x, + y, + w, + s, -s, = 20

X2+ y, + y2 + W, + W2 + S2 - S2 = 30

X3+ 72+ 43+ W1+W2+W3+53-53=30

Xy+ J3+ dy + W2+W3+ W4+5-5+30 all variables = 0

(x, y) = desired home location

G: minimize 5,+

Gz: minimize 52

G3: minimize 5;

Subject to

 $\sqrt{(x-1)^2+(y-1)^2}+S_1^+-S_2^+=25$

 $\sqrt{(x-20)+(y-15)^2}+S_2^+-S_2^+=10$

 $\sqrt{(x-4)^2+(x-7)^2}+S_{7}^{-}-S_{2}^{+}=1$

all variables =0

y = estimated value of y 10 given the independent values X; , j = 1,2,...,n

 $=b_0+b_1X_1+b_2X_2+\cdots+b_nX_n$

The parameters bo, b, ..., bn are determined by minimizing

 $\sum_{i=1}^{m} | \mathcal{Y}_i - \hat{\mathcal{Y}}_i |$

where m is the number of observed points.

The equivalent goal programming model is given as

minimize $Z = \sum_{i=1}^{m} (S_i + S_i^{\dagger})$

Subject to $\hat{J}_{i} + S_{i} - S_{i}^{+} = \hat{J}_{i}, i = 1, 2, ..., m$ $S_{i}^{-}, S_{i}^{+} \geq 0, i = 1, 2, ..., m$

The values of the unknown parameters bo, b, ..., bn are entroduced in the optimization problem by using the substitution $\hat{Y} - b + b \times + b \times + \cdots + b \times \cdots$

i. = 6+6, xi, + 62 xiz+ ... + 6, xin

Thus, the variables of the model are 5; 5; b, b, b, b, bn.
Only 5; and 5; + are required to be nonnegative.

minimize [max { | y_i - ŷ_i | }]

11

Let $d = \max \{|y_1 - \hat{y}_1|, |y_2 - \hat{y}_2|, \dots, |y_m - \hat{y}_m|\}$ continuo The problem reduces to

the following goal program:

minimize Z = dSubject to $\hat{y_i} + d \ge \hat{y_i}$ $\hat{y_i} - d \le \hat{y_i}$ $d \ge 0$

```
Minimize z = 5, +5,7
Minimize Z = 5, + 5, +5, +5, +5, +5, +
                                                 5.t. -100 x, +40x2-80x3+5,-5,=0
s.t.
 550xp +35xx +55x + .075xg + 5,-5, = 16
                                                     45x55, 105x520, 35x355
  S5 xp -31.5xf +5.5x5 +.0075xg +5= 0
                                                 Solution: Z=0: all goal are satisfied
 110Kp + 7Kf -44Ks + 015 Kg + 53 - 53 = 0
                                                  x,=4, X=16, X3=3
                      xg + 54 - 54 = 2
                                                 S= S, t=0: Production is balanced.
  55xp+3.5xx+5.5x-.0675xg+55-55+=0
                                                Min Z=5+5+25+25+25+25+25+25+25+
Solution: xp = .0201, xq = .0457, x5 = -0582
                                                                                            6
          xg = 2 cents, S_5^+ = 1.45, all others = 0
                                                S+.
                                                                                  ≤ 600
                                                      5x,+6x2+4x3+7x4
                                                                                   ≤600
Gasoline to x good is 1.45 million short of its $ 1.6 million
                                                      Minimize Z = 5 + 25 + 53
                                                    -2x1-4x2+2x3-3x4+54-54=30
S.t. 1500 x, + 3000 x2
                       +5,-5,+=1000
                                                                         + 55- 55+ = 10
     200 \times, + 400 \times, + 52 - 5.7 = 1200

250 \times, + 53 - 5.7 = 800
                                                                         +55-567=10
+57-577=10
                                                                         +58-58+= 10
                                                                    Χų
Solution: 2=175, X=5, X2=2.5.
                                                                          +53-50+=0
       5,=5, +=0: Good 1 satisfied
                                                 Z=0: all goals are satisfied
X, =10, X2=10, X3=30, X4=10
       52+ = 300: good 2 overachieved by 200 persons
      5, = 175: goal 3 unduachieved by 175 persons
                                                 Assign a relatively large weight to the gnota
(a) Minimize Z= 25=+ 5=+ 5=+ 5=+
                                                 Constrount.
                                                Min z = 100(S_1^T + S_2^T) + (S_3^T + S_4^T)
S.t. X1+X2+X3 = 1201
    2x,+x2-2x3+52-52+=0
                                                       x, +5, -5,+
   125x,-.05x2-.556x3+53-53+=0
                                                                           = 60
                                                       x_2 + S_2^- - S_2^+
  -1x_1 - 1x_2 + 9x_3 + 5y - 5y = 0
                                                       5x_1 + 3x_2 + 5y - 5y^2 = 480

6x_1 + 2x_2 + 5y - 5y^2 = 480
  -.2x, +.8x2-.2x3 +5--5+ = 0
Solution: Z = 0: all goals are satisfied
                                                Solution: x = 80, x2 = 60,5 = 100, S= 120 min
x, = 801, X2=240, X3 = ~ 159
                                                Production quota can be met with 100 min of
52 = 15225.6: ACT score werached by 1.27 pts/stun
                                                overtime on machine 1 and 120 min on machine 2
52 = 38.59: Norof international students overachiered
          by 39 students
                                                Min Z= S,++S2++ S++ S+
(b) Minimize Z = 45, +25, + 5, + 5
                                                S.t. X1+ X2 + X3 + X4
                                                                                      = 30
           x_1 + x_2 + x_3 + 5, -5^2 = 1200
                                                     3,+ 32+ 33 + 34
                                                                                       = 20
                                                      W,+Wz+W3+W4
Solution in (a) remains the same
                                                                                       = 20
                                                      x++++ + w; + s, -s, +
Minimize Z = 5, +5++5=+5y+5+
                                                     X2+ 4+ 42+ W1+ W2+ 52- 52*
                        +5,-5,+ = 6000
                                                     x3+7+73+W1+W2+W3+53-53+ =30
        X1+X2+X3
    ·368x, -. 011x2 -. 01x3 +5-5+ = 0
                                                     x_4 + y_3 + y_4 + w_2 + w_3 + w_4 + s_y - s_y^{\dagger} = 30
     372x - - 007x - - 006x + 5 -5+ =0
   -.22x, -. 13x2+.28x3 +54-5f =0
                                                 Solution: Z = 0: all goals are met
   -.05x,-.03x2+.03x3 +55-55+ =0
                                                  X,=5, X2=15, X3=10, X4=0
 Z=0: all goods are satisfied
                                                 2 1day Stry = 30
 x = 166.08 16, x=2778.5616, x3 = 3055.36 15
                                                  J,=10, Y2=0, Y3=15, Y4=0
 53+ = 24: G3 overachieved by 6000 = . 004
                                                 Σ2-day stays = 25
 54 = 457.75: G4 overachieved by 457.75 = .0763
                                                  W, =5, W2=0, W3=0, W4=15
                                                 53.day stayp=20
 calcium % = 1.2
Patein 7 = 22 +7.63 = 29.63, Fiber 7 = 5
                                                   The solution shows that:
                                                                                       continued.
```

Nbr. beds used on day 1

= X,+Y,+W, = 20 (= availability 20)

Nbr. beds weed moday 2 = X2+Y2+W2 = 15 (<30)

Nbr. beds weed on day 3 = X3+Y3+W3 = 25 (<30)

Nbr beds weed on day 4 = Xy+Yy+W4= 15 (<30)

Conclusion: all 1-2; and 3-day stays can be met without overbooking

 $g = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$ Minimize $Z = \sum_{i=1}^{5} (\bar{S_i} + \bar{S_i}^+)$ Subject to

 $b_0 + 30b_1 + 4b_2 + 5b_3 + 5, -5,^{\dagger} = 40$ $b_0 + 39b_1 + 5b_2 + 10b_3 + 5, -5,^{\dagger} = 48$ $b_0 + 44b_1 + 2b_2 + 14b_3 + 5, -5,^{\dagger} = 38$ $b_0 + 48b_1 + 18b_3 + 5, -5,^{\dagger} = 36$ $b_0 + 37b_1 + 3b_2 + 9b_3 + 5, -5,^{\dagger} = 41$

 S_i , $S_i \geq 0$, i=1,2,...,5be, b_1 , b_2 , b_3 unrestricted

TORA Solution:

 $b_0 = .857/$ $b_1 = 1.07/4$ $b_2 = 2.88/$ $b_3 = -.9048$ $c_3 = 3.0952$

all other Si and Sit = 0

Thus, the least-square estimator is given as

g= 8571+1.0714x,+2.881x2-.9048x3

= $b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$ minimize Z = dSubject to $b_0 + 30b_1 + 4b_2 + 5b_3 + d \ge 40$ $b_0 + 39b_1 + 5b_2 + 10b_3 + d \ge 48$ $b_0 + 49b_1 + 2b_2 + 19b_3 + d \ge 36$ $b_0 + 48b_1 + 18b_3 + d \ge 36$ $b_0 + 37b_1 + 3b_2 + 9b_3 + d \ge 41$ $b_0 + 30b_1 + 4b_2 + 5b_3 - d \le 40$ $b_0 + 39b_1 + 5b_2 + 10b_3 - d \le 48$ $b_0 + 44b_1 + 2b_2 + 19b_3 - d \le 48$ $b_0 + 49b_1 + 18b_3 - d \le 36$ $b_0 + 37b_1 + 3b_2 + 9b_3 - d \le 41$ $b_0 + b_0 +$

TORA Solution:

 $b_0 = 27.5536$ $b_1 = -0893$ $b_2 = 3.2679$

 $b_3 = .6429$ d = 1.1607

Chebysher estimator:

J= 27.5536-0893× +3.2679X,

Minimize G, = 5, subject to

 $4x_{1} + 8x_{2} + 5_{1} - 5_{1}^{+} = 45$ $8x_{1} + 24x_{2} + 5_{2} - 5_{2}^{+} = 110$ $x_{1} + 2x_{2} \leq 10$

≤ 6

х,

 $X_{1}, X_{2}, \bar{S}_{1}, S_{1}^{\dagger}, \bar{S}_{2}^{\dagger}, S_{2}^{\dagger} \geq 0$

TORA Solution:

 $X_1 = 2.5, X_2 = 3.75$ $S_1^2 = 5$ $S_1^2 = S_2^2 = S_2^2 = 0$

Both goals are automatically satisfied.

 $G_1 > G_2 > G_3 > G_4 > G_5$

$G_2 > G_3 > G_4 > G_5$

GI- Problem Solution:

 $x_p = .01745 \ x_f = .0457, x_s = .0582$ $x_g = 21.33$

 $\vec{S_1} = \vec{S_1} = \vec{S_2} = \vec{S_2} = \vec{S_3} = \vec{S_3} = \vec{S_3}$ = $\vec{S_3} = \vec{S_3} = \vec{S_3}$ = $\vec{S_1} = \vec{S_3}$

Goals G1, G2, G3, and G are satisfied.

G4 - Problem:

Minimize Z = 54 Subject to G1-constraints & 5, = 5, = 5, = 0 Solution: X = .0201, X = .0457, X = .0582, X = 2 St = 1.45. Gs is not pateful

G5-Problem: Minimize Z = 5, I subject to same constraints in G4 & 5, I = 0 Solution:

Same as in G4, which means that G5 cannot be satisfied.

(a) G1>G2>G3

GI-Problem: Minimize GI=5, TORA Solution: 5, = 0, 5, = 0, 5, = 362.5 $x_1 = 5$, $x_2 = 1.75$

G2 is satisfied

G3-Rablem:

minimize G3 = 53

S1 = 0, 52 = 0

TORA solution: $5\overline{3} = 175$ $X_1 = 5$, $X_2 = 2.5$

G3 remains unsatisfied.

G3-Problem: minimize G3 = 53 TORA Solution: S, = 280, S2 =0, 53 =0 x, = 3.6, ×2=3.2

G2 is satisfied.

G1-Problem: minime e G1=5,

52 = 0, 53 = 0

TORA Solution: X,= 3.6, Xz=3.2, 5, = 280 GI is not satisfied

Problem G1: minimize G1 = S_z TORA Solution: $X_1 = 0$, $X_2 = 1080$, $X_3 = 120$ $S_y^{\dagger} = 309.33$, $S_z^{\dagger} = \tilde{S}_y = 0$

G2 (minimize S₃) is satisfied. G3-Problem: minimize G3=S₄[†] S₂ =0, S₃ =0

TORA Solution: X,=1080, X2=0, X3=120 SJ = 93.33, SJ=240

<u>G4-Problem</u>: Minimige G4 = 55[†] S₂ = 0, S₃ = 0, S₄ = 9333

TORA solution: X, = 1080, X2=0

X3 = 120

S5 = 240

G3 and G4 are unsatisfied

CHAPTER 9

Integer Linear Programming

Max Z = 20x, +40x2 + 20x3 +15x4 +30x5

subject to

 $\begin{vmatrix} 5 & 4 & 3 & 7 & 8 \\ 1 & 7 & 9 & 4 & 6 \\ 8 & 10 & 2 & 1 & 10 \end{vmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_S \end{pmatrix} \leq \begin{pmatrix} 25 \\ 25 \\ 25 \end{pmatrix}$

 $X_1 \leq X_5$, $X_3 \leq X_5$, all X_j binary

Solution: Xz = X3 = X5 = 1, Z = 90

(b) $x_2 + x_3 \le 1$, all x_3 binary

Solution: $X_2 = X_4 = X_5 = 1$, Z = 85

Note: When you use TORA, add the upper bound x; < 1 for all binary variables.

xi = number of units of item i, 2

Maximize Z = 4x, +7x, +6x3+5x4+4x5 Subject to

 $\begin{pmatrix} 5 & 8 & 3 & 2 & 7 \\ 1 & 8 & 6 & 5 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \leq \begin{pmatrix} 112 \\ 109 \end{pmatrix}$ x; ≥0 and integer, j=1,2,..., 5

Solution: X,=14, X4=19, all others are zero , Z = 151

i assigned to individual;

where $i = \begin{cases} 1, & \text{full} \\ 2, & \text{half-full} \\ 3, & \text{empty} \end{cases}$

Total available wine = 7+3/2 =10/5 Share pu individual = 10/2 = 31/2 bottles

Constaints:

 $X_{11} + X_{12} + X_{13} = 7$ X21+X22+X23 = 7 / Type $X_{31} + X_{32} + X_{33} = 7$ $X_{11} + \frac{X_{21}}{2} = 3.5$ amount of wine per midiridual $x_{13} + \frac{x_{23}}{x_{23}} = 3.5$

 $x_{11} + x_{21} + x_{31} = 7$ buttles X12 + X22 + X32 = 7 (mdurdual X13 + X23 + X33 = 7) (redundant)

Xij ≥0 and integer

Use dummy objective function maximize Z = 0x11 + 0x12 + ... + 0 x33

Feosible Solution: (alternative solutions oxist) individual

		/	2	3	Sum
	F	3	3	1	7
type	Н	1	/	5	7
	Ĕ		3	1	7
Su	1 50	7	7	7	` ` `
OF	у.	3.5	3.5	3.5	• .

X, = number of camelo to Tarek X2 = number of camelo to Sharif

X3 = number of camelo to Maisa

Xy = number of carnels to charity (=1) Y = dummy integer variable >0.

y = total number of camels in the

constraints:

y = x, + x2+ x3+1

y = 2r+1 => y isodd

X, ≥ 1/2 y, X2 ≥ 1/3 y, X3 ≥ 1/2 y

Using a dummy objective function, the problem reduces to

	Ý	X_{I}	Xz	X3	r	
min	o	0	0	0	0	
	1	-1	-1	-1	0	= /
	l	0	0	0	-2	= 1
	1	-2	0	ပ	0	≤0
•	1	0	-3	0	0	50
	1	0	0	-9	0	€0

continued.

Solution: J=27 camelo. Tarek get 14, Sharif gets 9, and mais a gets 3. Note: If you enter the last two constraints in the original fractional form make sure that 1/3 and 1/9 are accurate to six decimal points (.3333333 and .11111). Else, TORA fails to find abolition.

Xij = number of apples belonging to child i and sold at price j.

 $i = \begin{cases} 1 \rightarrow Jim \\ 2 \rightarrow Bill \end{cases} \quad j = \begin{cases} 1 \rightarrow $1/7 apple \\ 2 \rightarrow $3/apple \end{cases}$

Allocation of apples to children.

 $x_{11} + x_{12} = 50$ (Jim)

X21 + X22 = 30 (Bill)

x3, + x32 = 10 (John)

Allocate same money to each child:

 $\frac{X_{11}}{7} + 3X_{12} = \frac{X_{21}}{7} + 3X_{22}$ $\frac{X_{11}}{7} + 3X_{12} = \frac{X_{31}}{7} + 3X_{32}$

Objective function:

 $maximize Z = \frac{XII}{7} + 3X_{12}$

ILP.

maximize Z = X11 + 21X12

Subject to

 $X_{11} + X_{12} = 50$

X21 + X22 = 30

 $X_{31} + X_{32} = 10$

 $x_{11} + 21 x_{12} - x_{21} - 21 x_{22} = 0$

 $X_{11} + 21X_{12} - X_{31} - 21X_{32} = 0$

Xi; >0 and intiger

Solution: \$1/7apples \$3/apple \$ 30

Jim 42 8 30

Bill 21 9 30

John 0 10 30

Each child returns home with \$30.

y = original sum of money

X₁ = amount taken the first night

X₂ = amount taken the second night

X₃ = amount taken the shird night

X₄ = amount given by first officer

to each mariner

Minimize Z = ySubject to

 $X_{1} = \frac{3^{-1}}{3} + 1$ $X_{2} = \frac{y - x_{1} - 1}{3} + 1$ $X_{3} = \frac{y - x_{2} - 1}{3} + 1$

 $x_4 = \frac{3}{3} - x_1 - x_2 - x_3 - 1$

The ILP is given as minimize z = ysubject to

> $3x_1$ -y = 2 $x_1 + 3x_2$ -y = 2 $x_1 + x_2 + 3x_3$ -y = 2

 $x_1 + x_2 + 3x_3 - y = 2$ - $x_1 - x_2 - x_3 - 3x_4 + y = 1$

×1, ×2, ×3, ×4, y ≥0 and integer

Solution: y = 79 units

Resolve the problem after adding the constraint $y \geq 80$.

Solution: y = 160 units

Resolve the problem after adding the constraint $y \ge 161$

Solution: y = 24/ units

General Solution: y = 79 + 81 n, n = 0, 1, 2, ...

Given $A=1$ and $Z=26$,	let	
1 = 1 if word is selected	and o if	
it is not selected.		

xj = 1 if word i is selected and o if it is not selected.

j Word	Lij	L21.	L35	Score
I AFT	- /	6	20	
Z FAR		,		27
		, ,	. 18	25
3 TVA		22	/	43
4 ADV	1	4	22	
5 JOE	10	15	5	27
6 FIN				30
Sec.		9	14	29
7 OSF		19	6	40
8 KEN		5	14	30
🥏 / -x	(/ 3	- / .		100
F Lijx),	15 P2	impues	shat
€(/	1.1.		5//.	-Lij)>1
£ 1425	- 601	0,00	-C-1	(i) // 1
which h	a san la l	Tasta		
-	worken	LU U		6V -1

Similarly, Constraint & Lz, < & Lz, x. S.t. Minimize z = of

14x, + 17x2-21X3 + 18x4-14x5 + 5x6-13x7+9x21-4= (Ci,-Ci) = jxis = 7

ILP:

Maximize Z = 27x, +25x2+93x3+27x4+30x5+ 29x6+40x7+30x8

Subject to

5x,-5x2+2x3+3x4+5x5+3x6+4x7-6x8=1 144, +17x2-21x3 +18x4-10x5+5x6-13x7+9x8=1

X, + X2 + X3 + X4 + X5 + X6 + X7 + X8 = 5

x = (0, 1), j= 12...,8

Solution: X	, = X ₃ =	. X4 =	×7 = X8	- =1
Selected wor	d Lis	Lzj	435	Score
AFT	1	6	20	27
TVA	20	22	1	43
ADV	1	4	25	27
OSE	15	19	6	40
KEN	//	5	14	30
Σ	48	56	63	167

Because \(\sum_{i=1}^{\mathcal{Z}} \L_{ij} \tilde{\sum_{i=1}^{\mathcal{Z}}} \L_{2j} \tilde{\tilde{\sum_{i=1}^{\mathcal{Z}}} \L_{2j} \tilde{\tilde{\tilde{\sum_{i=1}^{\mathcal{Z}}}} \L_{2j} \tilde{\ti The new objective function

Maximize $Z = \sum_{i=1}^{8} L_{ij} X_{i}$ produces the desired result, michaling Stat of Problem 7.

Cik = Nbr. of times letter i is repeated in group k, k=1,2

 $X_{ij} = \begin{cases} 1, & \text{if letter } i \text{ is assigned value} \end{cases}$ $\begin{cases} 0, & \text{therwise } q \\ 0, & \text{therwise } q \end{cases}$ $Minimize Z = \left| \sum_{i=1}^{J} \left(C_{ij} - C_{ir} \right) \sum_{j=1}^{J} X_{ij} \right|$

S.t. $\frac{9}{\sum_{j=1}^{n} x_{ij}} = 1$, all i $\sum_{i,j}^{q} x_{i,j} = 1$, all j

5x,-5x2+2x3+3x4+5x5+3x6+4x7-6x8 ≥1 The objective function is equivalent to

Solution: Z=0 A=8, E=3, F=7, H=2, O=1, P=4, R=6, 5=9, T=5

(1, if song i is on side i
(0, if song i is not on side i Minimize z = 15, - 52 Subject to

8x1, +3X2, +5X3, +5X4, +9x5, +6X6, +7x7, +/2x8, + 5, =30

8 X21 + 3X22 +5X32+5X42 +9x52+6x62+7x72+12x82+52=30

*ij + Kiz = 1, i=1,2,...,8 det y = |S, -S2| => {S, -S2 ≥ y

12

ILP:

minimize Z = ySubject to $8x_{11} + 3x_{2} + 5x_{3} + 5x_{4} + 5x_{1} + 6x_{6} + 7x_{1} + 12x_{8} + 5 = 30$ $8x_{11} + 3x_{2} + 5x_{3} + 5x_{4} + 5 = 30$

 $8X_{32} + 3X_{22} + 5X_{32} + 5X_{42} + 9X_{52} + 6X_{62} + 7X_{72} + 12X_{82} + S_2 = 30$

 $x_{i,1} + x_{i,2} = 1, i = 1, 2, ..., 8$ $x_{i,1} - x_{i,2} - y \le 0$ $x_{i,1} - x_{i,2} - y \ge 0$

 $x_{ij} = (0,1), i = \sqrt{2}, ..., 8, j = \sqrt{2}$ $S_{ij}S_{2}, y \ge 0$

Solution:

Side 1: 5-6-8 (27 minutes) Side 2: 1-2-3-4-7 (28 minutes) Problem has alternative optima.

Simpler Model:

Minimize Z = ySubject to $8X_{11} + 3X_{21} + 5X_{31} + 5X_{41}$ $+ 9X_{51} + 6X_{61} + 7X_{71} + 12X_{81} \le y$ $8X_{12} + 3X_{22} + 5X_{32} + 5X_{42}$ $+ 9X_{52} + 6X_{62} + 7X_{72} + 12X_{82} \le y$

Xi, + Xi2 = 1, 1= 12, ..., 8

Solution:

Side 1: 3-4-6-8, time = 28 minutes Side 2: 1-2-5-7, time = 27 minutes

Add the constraints

X31 + X41 = 1

X32 + X42 = 1

Use the simple model in

Problem 10; that is,

Frincinize Z = ySubject to $8X_{11} + 3X_{21} + 5X_{31} + 5X_{41} + 9X_{51} + 6X_{61} + 7X_{71} + 12X_{81} \le y$ $8X_{11} + 3X_{22} + 5X_{32} + 5X_{42} + 9X_{52} + 6X_{62} + 7X_{72} + 12X_{82} \le y$ $X_{12} + X_{12} = 1$ $X_{31} + X_{41} = 1$ $X_{32} + X_{42} = 1$ $X_{13} = (0,1)$ for all i and j

Solution:

y=0

Side 1: 1-2-4-8, $\Sigma = 28$ min side 2: 3-5-6-7, $\Sigma = 27$ min

The tape must be at least 28 minutes.

Xij = Student i selects course j.

Pij = associated proference score

Maximize $Z = \sum_{i=1}^{10} \sum_{j=1}^{6} P_{ij} \times \sigma_{j}$ St. 6 $X_{ij} = 2, i = 1, 2, ..., 10$ $\sum_{j=1}^{10} X_{ij} \leq C_{j}, j = 1, 2, ..., 6$

Solution: Total score = 1775

Course	Students
1	2,4,9
Z	2,8
3	5,6,7,9
4	4,5,7,10
5	1,3,8,10
6	1,3

Route Delivery distance
1,2,3,4 10+32+14+15+9 = 80
4,3,5 9+15+18+8 = 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1,3,5 10+8+18+8 = 44
All routes Startandend at ABC.
X = SI, if route j is selected
xj= \ o, if otherwise
min Z = 80 50 70 52 60 44
Subject to
Customer () 0 0 1 ≥ 1
@ 1 0 1 1 0 31 @ 1 1 0 1 0 1 31
@ 0 0 3 @ 0 0 0 2
501110121
xj = (0,1), j=1,2,,6
Solution: $x_5 = x_6 = 1$, all others = 0
Z = 10 4 Select routes (1,4,2) and (1,3,5). Customer 1 Should be in the
- couled once using either route
suppose that the 10 individuals
are referred to by the code &=
X = { 1, individual & included }
R= a, b, c,, j.
Xa Yb Xe Xd Xe Xf Xg Yh Xc Xj
min 2
subject to
1 >1 (Students
≥1 (admin
Solution: Use individuals a, d, and f.
Poblan for alto
Problem has alternative optima

Station	Towns it can serve		
1	1, 3, 5	Ĺ	
2	2, 4, 6		
. 3 . 4	1, 3		
4	2,4		
5	1,5,6		
6	2,5,6		

X; = {0, if station j is selected X; = {0, if station j is not selected assume that station j can be located in any of the towns its serves. minimize 2 = X, +X2 + X3 + Xy + X5 + X6 Subject to

Station 1:
$$X_1$$
 + X_3 + X_5 ≥ 1
2: X_2 + X_4 + X_6 ≥ 1
3: X_1 + X_3 ≥ 1
4: X_2 + X_4 ≥ 1
5: X_1 + X_5 + X_6 ≥ 1
6: X_2 + X_5 + X_6 ≥ 1
 X_1 = $(0,1)$, $J = 1,2,...,6$

Constraints 3 and 4 are redundant Solution: Select stations 1 and 2.

Xij = 1 of guard is posted between	0	×ıs	©
rooms i and;;	(2)	Xzy	×46 ®
One constraint per noom.	3	X34	X ₁₇ ①

Minimize $Z = x_{12} + x_{15} + x_{24} + x_{34} + x_{46} + x_{47} + x_{56} + x_{67}$ Subject to

com 1:	X12 + X15	≥ /	
2:	X12 + X24	≥ I	
3:	X3Y	≥/	X(j = (0,1)
4:	X24 + X34 + X46 + X		_^(J =(6)/ :
5:	×15 + ×56	≥1	
6:	X46 + X56 + X67	<u>≥</u> /	
7:	X47 + X67	≥/	

Solution: X12 = X34 = X67 = 1 Alternative optima cxist. X; = { 1, if town j is selected

I = set of cities offering movie i

C: = cost/show in city j

di = miles to city 1

n; = number of movies in city j

C; = C; n; +d; x.75

Minimize Z = & C; x;

 $\sum_{i \in I} x_i \ge 1, \quad i = 1, 2, ..., 7$

Note: The formulation assumes that Bill will see all the movies in a visited town regardless of repitations.

Solution: Cost = 169.35

Visited town	movies
A	1,6,8
C	1,8,9
D	2,4,7
E	1,3,5,10

Movie I will be seen 3 times and movie 8 twice . If Bill wants to see these movies only once, then move ! should be seen in aly E (cost \$ 5.25) and movie 8 should be seen in city A (cost \$5.50) Net cost = 169.35- (5.50+7.00) - 7.00

X; = {1, if community j is selected 6

V: = population of community; C = Set of communities within 25 miles from community i

The idea of the model is that the larger the population of a community, We higher should be its preference for acquiring a new store. at the same continued

time, we need to minimize the total number of new stores. Thus, using 1/p. as a weight for X; is an appropriate way for modeling the objective function mining Z = \(\frac{1}{p} \times_{\frac{1}{p}} \tim S.t.

≥ X. ≥ 1

X1 = (0,1), 1=1,2,...,10

Note: The determination of Ci can be customated in AMPL. See ampl 9.16-6.txt

Solution: New Stores should be located us Communities 6, 8, and 9

X= { !, if transmitter t is relected

C = construction cost of transmitter t

X = { 1, if community c is covered by a transmitter o, otherwise

S = set of transmitters covering community

P = population of community C

Maximize Z = Z PX

≥ X_t ≥ X_c, c=1,2,...,10

 $\sum_{t}^{r} C_{t} x_{t} \leq 15$

Examples of the determination of So:

 $S_{1} = \{1,3\}, S_{2} = \{1,2\}, S_{3} = \{2\}, S_{4} = \{4\}$ S= { 2, 63, S= {4,5}, S= {3,5,6}

Solution:

Build transmitters 2, 4, 5, 6, and 7. All Communities, except community, number 1, are covered.

Set 9.1b

$X_{j} = \begin{cases} 1, & \text{if receiver } j \text{ is installed} \\ 0, & \text{otherwise}, & j=1,2,,8 \end{cases}$	8
$R_i = Set of receivers covering med$ $i = 1, 2,, 10$	eri,
$R_1 = \{1,6,8\}, R_2 = \{1,2\}, R_3 = \{1,2\}$	2,5}, 5},

 $174 = \{6,1,8\}, K_5 = \{5,1\}, K_6 = \{5,5\},\$ $R_7 = \{3,4,6\}, R_8 = \{5,8\}, R_9 = \{2,4,6\}\}$ Install receivers 1, 3, 4, and 8. R10= {4}

Minimize Z = X,+ X2+ ··· + X8 S.F.

$$\sum_{j \in R_{i}} X_{j} \geq 1, i = 1, 2, ..., 10$$

$$X_{j} = (0, 1), j = 1, 2, ..., 8$$

Solution: Install receivers 1, 4,5, and 7.

$X_{i} = \begin{cases} 1, \\ 1 \end{cases}$	if meter	i uses	receveri
4 (0	, ominura	الل	

Y:= (0,1), =12,...,10, j=12,...,8

Minimize Z = y, + y, + ··· + y8

 $\sum_{i \in S_{j}} x_{ij} \leq 3 \gamma_{i}, j = 1, 2, ..., 8$

> Xij = 0, j=1,3...,8

 $\sum_{i=1}^{g} x_{ij} \geq 1, \quad i=1,2,...,10$

S:= Set of meters covered by receiver;

S,= {1, 2,3}, S= {2,3,9}, etc

. 4 1	
Solution	•
Soumin	٠
	•

Receiver	Covered meters
1	1, 2, 3
3	5,6
4	7, 9, 10
8	4,8

 $X_{j}=Nbr. of units of product j, j=1,2,3$ $y = \{1, if x_{j} > 0$ $y = \{0, if x_{j} = 0\}$ Maximize $Z=(60-30)x_{1}+(40-20)x_{2}+(120-80)x_{3}$ $-100y_{1}-80y_{2}-150y_{3}$ 5.+ $5x_{1}+3x_{2}+8x_{3} \leq 3000$ $4x_{1}+3x_{2}+5x_{3} \leq 2500$ $x_{1} \geq 100, x_{2} \geq 150, x_{3} \geq 200$ $x_{1} \leq 5000y_{1}, x_{2} \leq 5000y_{2}, x_{3} \leq 5000y_{3}$ Solution: $Z = \frac{16670}{16670}$ $x_{1} = 100, x_{2} = 300, x_{3} = 200$

 X_j = number of widget produced on machine j, j = 1, 2, 3 $J_j = \begin{cases} 1, & \text{if machine } j \text{ is used} \\ 0, & \text{if machine } j \text{ is not used} \end{cases}$ Min $Z = 2X_1 + 10X_2 + 5X_3 + 300Y_1 + 100Y_2 + 200Y_3$ subject to $X_1 + X_2 + X_3 \ge 2000$ $X_1 - 600Y_1 \le 0$ $X_2 - 800Y_2 \le 0$ $X_3 - 1200Y_3 \le 0$ $X_1, X_2, X_3 \ge 500$ and integer $X_1, X_2, X_3 \ge 500$ and integer $X_1, X_2, X_3 = (0, 1)$

Z = \$ 11300

Z = \$ 11300

Xij = { 0, if otherwise

Solution: X, = 600, X2 = 500, X3 = 900

Min Z = 57, +672 + 2x11+ x12+8x13+5x14 + 4x21+6x22+3x23+x24

Subject to

 $X_{11} + X_{21} = 1$ $X_{12} + X_{22} = 1$

continued.

 $X_{13} + X_{23} = 1$ $X_{14} + X_{24} = 1$ $X_{11} + X_{12} + X_{13} + X_{14} \le M y_1$ $X_{21} + X_{22} + X_{23} + X_{24} \le M y_2$ $A_{i} = (0, 1)$ for all i $X_{ij} = (0, 1)$ for all i and jSolution: Z = 18Site caseigned targets

1 and 2.

2 3 and 4

The problem can be formulated as a regular transportation model. Since total supply = total demand, all shree plants must work at full capacity and the setup cost is immaterial in this case. This will not be the case if total supply exceeds total demand.

The ILP formulation is

The ILP formulation in

Min Z= 12,000 y, +11,000 y, +12,000 y,

+10 x11+15 x12+... +11 x33

Subject to

Epit 6 $X_{11} + X_{12} + X_{13} \leq 1800 \, y,$ $X_{21} + X_{22} + X_{23} \leq 1400 \, y_2 \quad X_{ij} \geq 0 \, \text{and}$ $X_{31} + X_{32} + X_{33} \leq 1300 \, y_3$ $X_{11} + X_{21} + X_{31} \geq 1200 \quad y_i = (0,1)$ $X_{12} + X_{22} + X_{32} \geq 1700$ $X_{13} + X_{23} + X_{33} \geq 1600$

Solution: X11 = 1200, X13 = 600, X22 = 1400 X32 = 300, X33=1000. Y1=Y2=Y3=1.

Total supply > Total demand. Modified constraints:

 $x_{11} + x_{21} + x_{31} \ge 800$ $x_{12} + x_{22} + x_{32} \ge 800$ $\underbrace{Solution}_{y_1 = y_2 = 1}, y_3 = 0. Plant 3 is not used.$

S, if product i uses line; in period t Wij = Jane capacity in gal/he from city i to potential plant j (o, otherwise Fi = Fixed cost for plant located in airy i [1, if change over is made to product i on line i in period t Pi = Population (in thousands) of city i (a, otherwise Iit = End inventory of product i in period t y:= {1, if a plant is constructed in city i Iio = Initial inventory of product i Cij = construction cost of pipeline between Dit = Demand of product i in period t cities i and j in \$/1000 gal/he Vij = production rate of product i on line j (units/month) Minimize $Z = \sum_{ij} \left(\sum_{ij} \frac{w_{ij}}{1000} + F_i y_i \right)$ Sij = Suntching cost of product i on S.t. $\sum_{j=1}^{7} \omega_{ij} \geq 500 \hat{P}_{i}, i = 1, 2, ..., 7$ Cij = Production cost of product i on ₹ wij ≤ 100,000 y, j=1,2,..,7 lone j (\$/unit) hi = Holding cost /unit / month of producti Minimize Z= = E Cij rij (xijt) 4 $\sum_{i=1}^{n} \beta_i \leq 4$ Solution: See file amp/9.1C-7. txt. Sij (Sij (Sijt) + (cop=60) Ehr (ETib) 12.5 $\sum_{i=1}^{\infty} x_{ijt} \leq 1, i=1,2, t=1,2,...,6$ $V_{ijt} \ge X_{ijt} - X_{ijt-1} \begin{cases} i = 1,2,3 \\ j = 1,2 \\ t = 2,3,...,6 \end{cases}$ Plant I capacity = 60,000 gal/ki $I_{it} = I_{io} + \sum_{k=1}^{L} \left(\sum_{j=1}^{L} r_{ij} \times_{ijk} - D_{ik} \right),$ 6 capacity = 100,000 gal/h 7 capacity = 65,000 gal/h Total cost = \$3,770,875 i = 1, 2, 3,Solution: Xtpc = gal of product p in comparitment 8 Line 1 Con truckt y first compartment contrack t is text of otherwise Linea Wp = Subcontracted gal of product p See file ampl9.1c-6.txt. continued. 9-10

Minimize $z = 5\omega_1 + 12\omega_2 + 8\omega_3 + 10\omega_4$ S.t. $\frac{4}{5}\sum_{t=1}^{5}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 15,000, & p=2\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 15,000, & p=2\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 15,000, & p=2\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 15,000, & p=2\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 15,000, & p=2\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 15,000, & p=2\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=3\\ 8,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=3\\ 21,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=4 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=1 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=1 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 10000, & p=1\\ 12,000, & p=1 \end{cases}$ $\frac{4}{5}\sum_{t=1}^{7}X_{tpc} + \omega_p = \begin{cases} 100$

Solution: See file amp/9.10-8. txt Z = \$ 148,000

2 - 1110,000						
Truck	Product	500	750	1200	1500	1750
1	2		X		×	×
	4	×		×		
2	2		×		-	×
	4	X		x	×	
3	2		×		×	×
	4	×		×		
4	2	×	×		×	×
	4			×		

Subcontracting:

Product 1 = 10,000 gal

3 = 12,000 gal

4 = 2,000 gal

 $\begin{aligned} r_{ij} &= \text{Weight i of cost function } j, \\ &\quad \iota = 0, 1, 2; j = 1, 2, 3 \\ &\quad \mathcal{W}_{ij} &= (0, 1) \; i = 0, 1, 2, j = 1, 2, 3 \\ &\quad \mathcal{Y}_{ij} &= \begin{cases} 1, & \text{if Company } j \text{ is used} \\ 0, & \text{otherwise} \end{cases} \end{aligned}$

Minimize $Z = 50r_1 + 130r_2 + 20r_2 + 120r_2 + 50r_3 + 120r_2 + 10f_1 + 20f_2 + 25f_3$ S.t. $\leq \omega$

$$\begin{array}{ccc}
\gamma_{0j} & \leq \omega_{0j} \\
\gamma_{1j} & \leq \omega_{0j} + \omega_{1j} \\
\gamma_{2j} & \leq \omega_{1j}
\end{array}$$

$$j = 1,2,3$$

$$rac{r_{ij} + r_{ij} + r_{2j} = 1, j = 1, 2, 3}{\omega_{0j} + \omega_{ij} = 1, j = 1, 2, 3}$$

$$x_{ij} \leq 3000 \, y_{ij}, j = 1, 2, 3$$

$$\sum_{j=1}^{3} x_{j} \geq 3000$$

Solution: See file amp19.16-9
Use company A. Total cost = \$140

Xe = Nbr. of Eastern hickets Xu = Nbr. of USAir hickets

Xc = Nbr. of Continental tickets

 $e_1, e_2 = (0,1)$

U, c = nonnegativé intégers

Maximize $Z = 1000 (X_c + 1.5X_u + 1.8X_c + 5C_1 + 5C_2 + 10u + 7c)$

S.t.
$$X_e + X_u + X_c = 12$$

$$C_1 \le \frac{X_e}{2}$$

$$C_2 \le \frac{X_e}{6}$$

$$U \le \frac{X_u}{6}$$

$$C \le \frac{X_c}{6}$$

Solution: Z= 39,000 miles

variables definitions:

XII	Xu	X ₁₃
Xzı	XZZ	Xzz
X31	X32	X33

15 Xij = 9 and integer

 $\frac{3}{\sum_{j=1}^{3}} x_{i,j} = 15, \quad i = 1, 2, 3$ $\frac{3}{\sum_{j=1}^{3}} x_{i,j} = 15, \quad j = 1, 2, 3$ $x_{i,1} + x_{22} + x_{33} = 15$ $x_{31} + x_{22} + x_{13} = 15$ $x_{i,1} \ge x_{12} + 1 \quad \text{or} \quad x_{1,1} \le x_{12} - 1$ $x_{1,1} \ge x_{1,3} + 1 \quad \text{or} \quad x_{1,2} \le x_{13} - 1$ $x_{1,2} \ge x_{1,3} + 1 \quad \text{or} \quad x_{1,2} \le x_{1,3} - 1$

x, ≥ x1+1 or x11 € X21-1

 $X_{11} \ge X_{31} + 1$ or $X_{11} \le X_{31} - 1$ $X_{21} \ge X_{31} + 1$ or $X_{21} \le X_{31} - 1$

To remove "or" constraints, note that $X_{1} \geq X_{12} + 1$ or $X_{1} \leq X_{2} - 1$ can be replaced with the two simultaneous constraints:

 $\begin{array}{l} -\chi_{11} + \chi_{12} + 15 \, \mathcal{Y}_1 & \leq 14 \\ -\chi_{11} + \chi_{12} + 15 \, \mathcal{Y}_1 & \geq 1 \end{array} \right\} \quad \mathcal{Y}_1 = (0,1)$

Using a dummy objective function with all zero coefficients, the following solutions can be found

4	3	8
9	5	1
2	フ	6

6 7 2 1 5 9 8 3 4

Other solutions exist.

Note:

If you use TORA to solve the problem, replace y = (0,1) with $0 \le y \le 1$ for all j

X, = daily units of product 1 X2 = daily units of product 2

2

 $maximize Z = 10 x, + 12 x_2$ Subject to

 $(X_1 \le 20 \text{ and } X_2 \le 10) \text{ or } (X_1 \le 12 \text{ and } X_2 \le 25)$ $(X_1, X_2 \ge 0) \text{ and inliger}$

Maximize Z = 10x, + 12x2 Subject to

 $x_1 + x_2 \le 35$ $x_1 - 35y \le 20$ $x_2 - 35y \le 10$ $x_1 + 35y \le 47$ $x_2 + 35y \le 60$

 $X_1, X_2, y \ge 0$ and integer y = (0, 1) M = 35

Solution: X, = 10, X2 = 25, J=1, Z= 400 Select setting 2.

X; = daily number of units of product; 3

y = {0, if location 1 is selected

1, if location 2 is selected

Maximize z = 25x, +30x, +22x3

Subject to

 $\begin{pmatrix} 3X_1 + 4X_2 + 5X_3 \le 100 \\ 4X_1 + 3X_2 + 6X_3 \le 100 \end{pmatrix} \circ \mathcal{L} \begin{pmatrix} 3X_1 + 4X_2 + 5X_3 \le 90 \\ 4X_1 + 3X_2 + 6X_3 \le 100 \end{pmatrix} \circ \mathcal{L} \begin{pmatrix} 3X_1 + 4X_2 + 5X_3 \le 90 \\ 4X_1 + 3X_2 + 6X_3 \le 100 \end{pmatrix}$ $X_1, X_2, X_3 \ge 0 \text{ and integer}$

Let M = 1000, The "or" constraints are equivalent to

 $3x_1 + 4x_2 + 5x_3 \le 100 + My$ $4x_1 + 3x_2 + 6x_3 \le 100 + My$ $3x_1 + 4x_2 + 5x_3 \le 90 + M(1-y)$ $4x_1 + 3x_2 + 6x_3 \le 120 + M(1-y)$ $x_{1,2}x_{2,1}x_{3,3} \ge 0$ and inleger y = (0,1)

Solution: x, = 26, x2 = 3, x3 = 0, y = 1 Use location 2. Z = \$740

x; = Start time of jot j, j=12,...,10 y = S1. if job i precedes job i

W= (0,1)

P = processing time of job j d; = due date of job j

Minimize Z = 5,++5+++++5

 MJ_{ij} + $x_i - x_j \ge P_j$. $\gamma i=1,2,...,10$ $M(1-y_{ij}) + x_j - x_i \ge P_i$ (j=1,2,...,10)X; +P; +5,-5,+=d;

x3- (x4+f4) ≤ M (1-w)- € } € <<< X9+8- X7 & MW

Solution: Total delay = 134 (see file emp19.1d-4.tx+)

Job	Start time
<u>1</u>	0
Z	<i>85</i>
3	88
4	10
23456	47 25 6 8
6	25
/	68
8	101
7	56
10	131

Optimal sequence: 1-4-6-5-9-7-2-3-8-10

Remove the last two constraints in Problem 4. Add the following constraints:

X3+P3 ≤ X4 These four constraints X7+P7 ≥ X8-MW translate X7+ P7 = X8+MW X7+P7 = X8+MW (ethen x7+P7=X8 X8+P8 = X7-M(1-W) or X8+P8=X7 X8+P8 = X7+M(1-W)

Solution: Total delay = 170

optimal sequence: 1-3-4-5-6-9-2-7-8-10

Xj = Daily production of product j $Max Z = 25 X_1 + 30 X_2 + 45 X_3$ Subject to

3x, + 4x2 +5x3 $4x_1 + 3x_2 + 6x_3 \leq 100$ X3 ≤0 or X3 ≥5

K,, x2, x3 20 and integer

det y = (0,1) and M = 100. Then,

 $(X_3 \le 0 \text{ or } X_3 \ge 5)$ is equivalent to

(x3 ≤ My and -x3 ≤ -5+M(1-y))

which reduces to

x3 - 100 y ≤ 0 and - x3 + 100 y ≤ 95

Solution: x,=0, x2=11, X3=11 y=1 ⇒ produce product 3 Z = #825

Set 9.1d

7

1. Straightforward formulation:

Let $x_{it} = 1$ if load i is assigned to trailer t, o otherwise

 L_i = linear feet of load i

 r_i = revenue from load i

Maximize
$$z = \sum_{i=1}^{10} \sum_{t=1}^{2} r_i x_{it}$$
 subject to

$$\sum_{i=1}^{10} L_i x_{it} \le 36, t = 1, 2$$

$$\sum_{t=1}^{2} x_{it} \le 1, i = 1, ..., 10, x_{it} = (0,1), i = 1, 2, ... 10$$

2. Formulation using if-then:

Let x_{it} = feet in trailer t assigned to load i

$$y_i = (0, 1), i = 1, 2, ..., 10, w_{it} = (0, 1), i = 1, 2, ..., 10, t = 1, 2$$

Maximize
$$z = \sum_{i=1}^{10} \sum_{t=1}^{2} r_i x_{it}$$
 subject to

$$\sum_{i=1}^{10} x_{it} \le 36, t = 1, 2$$

$$x_{i1} \le L_i y_i, \ x_{i2} \le L_i (1 - y_i), i = 1, 2, ..., 10$$

(above constraint is not as efficient as $x_{i1} + x_{i2} \le 1, i = 1, 2, ..., 10$ in formulation 1)

(if $x_{it} > 0$ then $x_{it} = L_i$) translates to

$$x_{it} \le M(1 - w_{it}), L_i - x_{it} \le Mw_{it}, -L_i + x_{it} \le Mw_{it}, i = 1, 2, ..., 10, t = 1, 2$$

$$x_{it}, w_{it}, y_i = (0,1), i = 1, 2, ..., 10, t = 1, 2$$

Solution: z = \$7929. Problem has several alternative optima. (See file ampl9.1d-7.txt.)

	Solution	1	Solution 2			
Trailer	Load	Feet	Load	Feet		
1	1	5	1	5		
	5	7	2	11		
	6	9	6	9		
	8	14	9	10		
	Total	35 ft	Total	35 ft		
2	2	11	4	15		
	4	15	5	7		
	9	10	8	14		
	Total	36 ft	Total	36 ft		

[a) Formulation 1:

$$\begin{pmatrix}
X_{1} \leq 1, X_{2} \leq 2 \\
0 & Y_{1} + X_{2} \leq 3, X_{1} \geq 2
\end{pmatrix} = \begin{pmatrix}
X_{1} - M & Y \leq 1 \\
X_{2} - M & Y \leq 2 \\
X_{1} + X_{2} - M(1 - Y) \geq 2
\end{pmatrix} M \geq 3$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3, X_{2} \leq 2 \\
0 & Y_{2} + X_{2} \leq 3
\end{pmatrix} = \begin{pmatrix}
X_{1} + X_{2} \leq 3, X_{2} \leq 2 \\
X_{1} - M & Y \leq 1 \\
X_{1} + M & (1 - Y) \geq 2
\end{pmatrix} M \geq 2$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3, X_{2} \leq 2 \\
0 & Y_{2} + M(1 - Y) \geq 2
\end{pmatrix} = \begin{pmatrix}
X_{1} + M & Y \geq 1 \\
X_{2} + M & (1 - Y) \geq 2
\end{pmatrix} M \geq 3$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
0 & Y_{2} + Y_{2} + Y_{2} = 1
\end{pmatrix} = \begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1 \\
X_{1} + X_{2} \leq 3
\end{pmatrix} M \geq 3$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
0 & Y_{2} + X_{2} = 1
\end{pmatrix} = \begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1 \\
X_{1} + X_{2} \leq 3
\end{pmatrix} M \geq 3$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \geq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1} + X_{2} \leq 3 \\
X_{2} - M & (1 - Y) \leq 1
\end{pmatrix} Y = 0, 1, X_{1}, X_{2} \geq 0$$

$$\begin{pmatrix}
X_{1}$$

(3)

Problem has no feasible solution.

 $|-x_1+10x_2-3x_3| \ge 15 \Rightarrow \begin{cases} -x_1+10x_2-3x_3 \ge 15 \\ er \\ -x_1+10x_2-3x_3 \le -15 \end{cases}$ The problem is Max Z = X, + 2X2+5 X3 Subject to - x, +10x2-3x3+M7 ≥15 (M = 100) -x1+10x2-3x3+My = M-15 $2x_1 + x_2 + x_3 \le 10$ X1,1×2, ×3 >0, y=(0,1) Z=50メーメショロ ×3=10 = .45 y=1 Z=39.62 Z=50 $X_1 = 3.46$ X, = X2 = 0 X2 = 6.54 X3=10 J = 0 **Y** = 1 optimum

(a) Replacing X; = (0,1) with 0≤ x; ≤1 and y = (0,1) with 0 ≤ y ≤1, TORA'S ILP automated module determines the optimism in 9 subproblems and verifies optimality after examining 25,739 subproblems. (b) See file Solver 9.29-76.XIS. Solver examined over 25,000 subproblems before verifying optimality.

Number of examined subproblems & with the objective function bound activated = 29
Number of examined subproblems without the objective bound activated = 35

Conversion to being variables: $0 \le x_1 \le 2 \Rightarrow x_1 = y_1 + 2y_2$ 0 = X2 = 3 => X2 = 2/21 + 2 y22 $0 \in X_3 \le 6 \Rightarrow X_3 = Y_{3,1} + 2Y_{3,2} + 4Y_{3,3}$ Max Z = 187, +367, +147, +287, 87, +167, +327 Subject to 15 /1 +30 /2 + 12 / +24 / +7 / +14/+28/ 643 all of: = (0,1) Optimium Solution: Z = 50 y12 = y2,=1 ⇒ x,=2, x2=1, x3=0 The solution takes 6 iterations to find the optimum and 41 to verify it. If the original problem is solved derictly, it takes 4 iterations to find the optimum and 29 to verify optimality. The result points to the possibility that ben'ary substitution may not offer any computational advantages.

(a) $x_1 + 2x_2 \le 16$:

The cut is legitimate because it passes through an integer point and does not eliminate any feasible integer points.

(4) $2x_1 + x_2 \leq 10$:

The cut is not legitimate because it climinates a feasible integer point

(c) $3x_2 \leq 10$:

The cut is not legitimate because it does not pass through an inleger point.

(d) $2x_1 + x_2 \le 12$:

The cut is legitimate because it passes through an integer point and does not exclude any ferrible integer points. Note that it does not matter that the integer point through which the cut passes is itself infeasible [namely, (6,0)].

Cut I produces the optimum at point @ ^ Cut II (together with I) produces The integer optimum at point B.

Cut I:

From the original constraints, $X_3 = 6 + X = 3x$

$$X_3 = 6 + X_1 - 3X_2$$

 $X_4 = 35 - 7X_1 - X_2$

Thus,

 $-\frac{7}{22}(6+x_1-3x_2)-\frac{1}{22}(35-7x_1-x_2)\leq -\frac{1}{2}$

$$x_2 \leq 3$$

Cut II.

$$-\frac{1}{7}x_y - \frac{6}{7}S_i \le -\frac{4}{7}$$

or

$$-\frac{1}{7}(35-7x_1-x_2)-\frac{6}{7}(-\frac{1}{2}+\frac{7}{22}x_3+\frac{1}{22}x_4)\leq \frac{-4}{7}$$

Basic	ж,	X2	×з	Selution
Z	-)	-2	σ	0
X3	ı	1/2	1	13/4
Z	3	0	4	13
Xz	2	1	Z	13/2

The optimum constraint $2x_1 + x_2 + 2x_3 = 6\frac{1}{2}$ produces the cut 5, = -1/2, which us infeasible.

Next, convert the constraint to $4x_1 + 2x_2 \le 13$

The associated simplex tableaus are

	Bosis	x,	X2	x ₃	5012
	3	-1	- ک	0	0
0	×3	4	2	1	13
I	-	3	0	ı	13
_	x2	2		1/2	61/2

From the optimal constraint $2x_1 + x_2 + \frac{1}{2}x_3 = 6\frac{1}{2}$, the cut is $5, -(0)x_1 - \frac{1}{2}x_3 = -\frac{1}{2}$. The dual simplex produces the following iterations:

	Besig	* 1	×.	×	S,	1012
- Anna	3	3	ø	1	0	13
I	7 2	2	1	1/2	0	61/2
	S,	0	0	-1/2	1.	-1/2
_	3	3	0	o	2	12
W	2 2	2	į	0	1/2	6
-1100	* 3	0	0	1.	-2	1

Ophmum: X, = 0, X2 = 6, X3 = 1, Z= 12

(a) Continuous optimum tableau:

.1.6							
Bosic	Xi	XZ	×3	×γ	×5	X6	15012
Z	٥	O	0	2	2	2	30
X,	t			3/10	1/5	0	2 1/2
ΧZ		ı		420	1/5	0	14
Хз	Silver		i	1/4	ø	}	64

From the X-how $X_1 + \frac{3}{10} X_4 + \frac{1}{5} X_5 = 2\frac{1}{2},$ the cut is $5_1 - \frac{3}{10} X_4 - \frac{1}{5} X_5 = -\frac{1}{2} \quad (\text{cut } 1)$ Adding cut I and solving, we get

Bosic	x,	Χz	Χ3	УЧ	×5	×6	Sı	50 12
Z	0	٥	٥	0	2/3	2	20/3	80/3
X,	j				O	0	1	
X ₂		1			1/6	Ò	1/6	1 =
X3			1	•	-1/6	-1	516	5 E
Χų				ı	2/3	Ø	-10/3	1 }

From the X_3 -row $X_3 - \frac{1}{6}X_5 + X_6 + \frac{5}{6}S_1 = 5\frac{5}{6},$ The cut is $S_2 - \frac{5}{6}X_5 - \frac{5}{6}S_1 = -\frac{5}{6} \quad (\text{cut I})$

continued.

continued

Cut II produces the following optimism tableau:

Basit	Xı	_X _L	X3	Χų·	×c	<i>x</i>	· <	٠ _ ١	Sa M
	0	0	0	0	0	- x	6 51	<u>رد</u> -//-	26
Χı	- 1 -					0	$\frac{\cup}{i}$	0	2
Xz		1	* •			0	σ	1/5	1
Х3			1 .			1	1	-1/c	6
X4				1	•	0	-4	4/5	1
X5		·			1	0	1 -	615	

Which is all optimum and integer

variable	rounded sole	Integer Sola		
$\boldsymbol{x_l}$	2 (or 3)	2		
X2	1	· 1		
X3	. 6	6		
Z	26 (or 30)	26		

If x, is rounded to 3, the solution in infeasible

(6)

Continuous optimism tableau:

Basic	l v.	Χı					
7			X3	Xy	X_	X6	Sola
Z	0	0	0	2	3		
X ₃	O	0	1	4/9	1/9	4/9	3 1/3
X ₃ X ₂ X ₁	0	1	O	1/3	1/3	1/3	3
× ₁	1	0	0	1/9	7/9	10/9	51/2

From X3-row, we get cut I:

$$S_1 - \frac{4}{9} x_4 - \frac{1}{9} x_5 - \frac{4}{9} x_6 = -\frac{1}{3}$$

New tableau ofter cut I:

	ı	Leur	· of	æ	cuf I	<i>T</i> :		
Basic	х,	X2	X3	Χy	15	×6	5,	1
-					5/2	3	9/2	· 55/2
73			1		.0	0	1	3
X		1			-1	0	3/4	2 3/4
X,	1				3/4	1	1/4	5 1/4
51				1	1/4	1	-9/4	3/4

From X2-row, we get cut II:

$$S_2 - 3/4S_1 = -3/4$$

continued

New tableau after cut II is added:

Basic	X,	X	Xz	Χv	X _r	- X		, 52	l . in
<u>z</u>	O	Ø	0	0	5/2	3	6 3	6	301-
Хз	0	0	1	0	0	-		4/3	23
XZ	0	1		Ó	-1	6	0	1	2
· ×,	1 .		0	ọ	3/4	•	o	1/3	4
Xy	0	0	0	1	1/4		0	-3	์ 3
s_i	0	0	0	0	6			-4/3	

Variable	rounded Solution	intera C/A
х,	5	- 10ger 301 =
Xz	3	2
X ₃	3	2
<u>Z</u>	27	23

The rounded solution is infearable.

	/	2	ं उ	4	5	6
/	-	4	4	6		5
Z	4 4 6 6 5	- : .	6	4	6	5 3 7 5 5
3	4	6 4 6 3		4	8	. 7
4	6	4	4 8 7	-	6	5
S	6	6	8	6	-	5
6	5	3	7	5	5	_

minimize $Z = Mx_{11} + 4x_{12} + 4x_{13} + \cdots + 5x_{64} + 5x_{65} + Mx_{66}$

Subject to $\sum_{j=1}^{6} x_{ij} = 1, \quad i = 1, 2, ..., 6$ $\sum_{i=1}^{6} x_{ij} = 1, \quad j = 1, 2, ..., 6$

Solution is a lower $X_{ij} = (0, 1)$

Represent Basin, Wald, Bon, 2 and Kiln by nodes 1, 2, 3, 4, and 5, respectively.

Xij = { 1, if aty j follows aty i

Minimize 2 = MX,, +120X,2 + 220X,3 + ... + 185 X53 + 190 X54 + MX55

Subject to

\[
\begin{align*}
\left \text{Xij'} = \frac{1}{2}, & \frac{1}{2} = \frac{1}{2}, \dots, \dots \\
\frac{1}{2} = \frac{1}{2} & \frac{1}{2} = \frac{1}{2}, \dots, \dots \\
\frac{1}{2} = \frac{1}{2} & \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\
\frac{1}{2} = \frac{1}{2} & \dots \\\
\f

Xij = { 0, if otherwise.

Minimize $Z = MX_{11} + 1.2X_{12} + ... + 191X_{65} + MX_{66}$ Subject to

 $\sum_{i=1}^{6} x_{ij} = 1, \quad j = 1, 2, ..., 6$

 $\sum_{j=1}^{6} x_{ij} = 1, \quad i = 1, 2, ..., 6$ $X_{ij} = (0, 1)$

Solution is a tour

(a)

	1	2	3	4
1		10	17	15
2	20		19	18
3	50	44		25
4	45	40	20	

Solution sumamry:

Oolation Sumanny.				
Start city	Tour	Length		
1	1-2-4-3-1	98		
2	2-4-3-1-2	98		
3	3-4-2-1-3	102		
4	4-3-2-1-4	99		
Reversals				
2-4	1-4-2-3-1	124		
4-3	1-2-3-4-1	99		
2-4-3	1-3-4-2-1	102		

Solution: (1-2-4-3-1).

Min setup cost = \$98

(b)

	1	2	3	4	5	6
1		4	4	6	6	5
2 3	4		6	4	6	3
3	4	6		4	8	7
4	6	4	4		6	5
5	6	6	8	6		5
6	5	3	7	5	5	

Solution sumamry:					
Start city	Tour	Length			
1	1-3-4-2-6-5-1	26			
2	2-6-5-4-3-1-2	26			
3	3-4-2-6-5-1-3	26			
4	4-3-1-2-6-5-4	26			
5	5-6-2-4-3-1-5	26			
6	6-2-4-3-1-5-6	26			
Reversals					
3-4	1-4-3-2-6-5-1	30			
4-2	1-3-2-4-6-5-1	30			
2-6	1-3-4-6-2-5-1	28			
6-5	1-3-4-2-5-6-1	28			
3-4-2	1-2-4-3-6-5-1	30			
4-2-6	1-3-6-2-4-5-1	30			
2-6-5	1-3-4-5-6-2-1	26			
3-4-2-6	1-6-2-4-3-5-1	30			
4-2-6-5	1-3-5-6-2-4-1	30			
3-4-2-6-5	1-5-6-2-4-3-1	26			

Solution: (1-3-4-2-6-5-1). Alternative solutions Min traffic = 26 employees

continued....

continued

Set 9.3b

(c)						
		1	2	3	4	5
	1		120	220	150	210
	2	120		80	110	130
	3	220	80		160	15
	4	150	110	160		190
	5	210	130	185	190	

Solution sumamry:				
Start city	Tour	Length		
1	1-2-3-5-4-1	555		
2	2-3-5-4-1-2	555		
3	3-5-2-4-1-3	625		
4	4-2-3-5-1-4	565		
5	5-2-3-4-1-5	730		
Reversals				
2-3	1-3-2-5-4-1	770		
3-5	1-2-5-3-4-1	745		
5-4	1-2-3-4-5-1	760		
2-3-5	1-5-3-2-4-1	735		
3-5-4	1-2-4-5-3-1	825		
2-3-5-4	1-4-5-3-2-1	725		

Solutions: 1. (2-3-4-1-5-2) 2. (5-2-3-4-1-5) 3. (2-5-1-4-3-2) Length = 730 miles

Note: Tours 1 and 2 are the same. Tour 3 is the reverse order of tours 1 and 2 because the distance matrix is symmetrical.

(d)						
	1	2	3	4	5	6
1		1.2	0.5	2.6	4.1	3.2
2	1.2		3.4	4.6	2.9	5.2
3	0.5	3.4		3.5	4.6	6.2
4	2.6	4.6	3.5		3.8	0.9
5	4.1	2.9	4.6	3.8		1.9
6	3.2	5.2	6.2	0.9	1.9	

Solution sumamry:				
Start city	Tour	Length		
1	1-3-2-5-6-4-1	12.2		
2	2-1-3-4-6-5-2	10.9		
3	3-1-2-5-6-4-3	10.9		
4	4-6-5-2-1-3-4	10.9		
5	5-6-4-1-3-2-5	12.2		
6	6-4-1-3-2-5-6	12.2		
Reversals				
1-3	2-3-1-4-6-5-2	12.2		
3-4	2-1-4-3-6-5-2	18.3		
4-6	2-1-3-6-4-5-2	15.5		
6-5	2-1-3-4-5-6-2	16.1		
1-3-4	2-4-3-1-6-5-2	16.6		
3-4-6	2-1-6-4-3-5-2	16.3		
4-6-5	2-1-3-5-6-4-2	13.7		
1-3-4-6	2-6-4-3-1-5-2	17.1		
3-4-6-5	2-1-5-6-4-3-2	15		
1-3-4-6-5	2-5-6-4-3-1-2	10.9		

Solutions: 1. (2-1-3-4-6-5-2)

2. (3-1-2-5-6-4-3)

3. (4-6-5-2-1-3-4)

4. (2-5-6-4-3-1-2)

Length = 10.9 cm

Note: Tours 1 and 3 are the same. Tours 2 and 4 are the same (also, reverse order of 1 and 3).

Layout:

60	<u> </u>				(6)	
50	(3))——				
40				(5))	
30	(2)					
20						
10			(4)			
(1)	10	20	30	40	50	60

Distance matrix:

Cuts:

$$6*x[2,3] + u[2] - u[3] \le 5$$
;

$$6*x[2,4] + u[2] - u[4] \le 5$$
;

$$6*x[2,5] + u[2] - u[5] \le 5;$$

$$6*x[2,6] + u[2] - u[6] \le 5;$$

$$6*x[3,2] - u[2] + u[3] \le 5;$$

$$6*x[3,4] + u[3] - u[4] \le 5;$$

$$6*x[3,5] + u[3] - u[5] \le 5;$$

$$6*x[3,6] + u[3] - u[6] \le 5;$$

$$6*x[4,2] - u[2] + u[4] \le 5$$
;

$$6*x[4,3] - u[3] + u[4] \le 5;$$

$$6*x[4,5] + u[4] - u[5] \le 5;$$

$$6*x[4,6] + u[4] - u[6] \le 5;$$

$$6*x[5,2] - u[2] + u[5] \le 5$$
;

$$6*x[5,3] - u[3] + u[5] \le 5$$
;

$$6*x[5,4] - u[4] + u[5] \le 5;$$

$$6*x[5,6] + u[5] - u[6] \le 5;$$

$$6*x[6,2] - u[2] + u[6] \le 5;$$

$$6*x[6,3] - u[3] + u[6] <= 5;$$

$$6*x[6,4] - u[4] + u[6] \le 5$$
;

$$6*x[6,5] - u[5] + u[6] \le 5;$$

Solution: See file ampl9.3d-1.txt.

1-2-3-6-5-4-1. Minimum length = 220 meters

```
Cuts:
```

```
subject to cut[2,3]: 5*X[2,3] + u[2] - u[3] \le 4; subject to cut[2,4]: 5*X[2,4] + u[2] - u[4] \le 4; subject to cut[2,5]: 5*X[2,5] + u[2] - u[5] \le 4; subject to cut[3,2]: 5*X[3,2] - u[2] + u[3] \le 4; subject to cut[3,4]: 5*X[3,4] + u[3] - u[4] \le 4; subject to cut[3,5]: 5*X[3,5] + u[3] - u[5] \le 4; subject to cut[4,2]: 5*X[4,2] - u[2] + u[4] \le 4; subject to cut[4,3]: 5*X[4,3] - u[3] + u[4] \le 4; subject to cut[4,5]: 5*X[4,5] + u[4] - u[5] \le 4; subject to cut[5,2]: 5*X[5,2] - u[2] + u[5] \le 4; subject to cut[5,3]: 5*X[5,3] - u[3] + u[5] \le 4; subject to cut[5,4]: 5*X[5,4] - u[4] + u[5] \le 4; Solution: 1-5-2-3-4-1, length = 45.
```

3

- (a) See file ampl9.3d-3a.txt.
- (b) See file ampl9.3d-3b.txt

CHAPTER 10

Deterministic Dynamic Programming

Set 10.1a

Stage 1:

To aty	shortest distance	from aty
Z	5	1
3.	9	\$
4	8	1

Stage 2:

To city	Shortest distance	I from aly
	min {5+10, 9+4, 8+9] = 13	3
6	musi {5+17, 9+10, 8+9}=17	4

Stage 3:

To city	Shortest distance	from city
7	min { 13+8, 17+9} = 21	S

Optimum Solution: Shortest distance = 21 miles

Route: 1→3 →5 → 7

Define node Ni ao:

N= W, I, and A for Washington,

Jefferson, and Adams

i = day on which N is visited

	Stage 1:		
┨.	TO	Longest distance	From
	J_{z}	15	W,
	Az	17	W,

Stage 2:

To	Longest distance	From
W3	max [15+11, 17+15] = 32	Az
\mathcal{J}_3	17+12 = 29	Az
Аз	15+10 = 25	J ₂

Stages:

To	Longest distance	From
W4	max {29+11, 25+15} = 40	J3 or A3
J_4	max {32+15,25+12 } = 47	W ₃
A ₄	$max \{ \frac{29+11}{5}, \frac{25+15}{5} \} = 40$ $max \{ \frac{32+15}{5}, 25+12 \} = 47$ $max \{ \frac{32+17}{5}, 29+10 \} = 49$	W3

Stage 4:

To	Longest distance	From
J_5	max {40+15, 49+12} = 61	A4
A_S	max {40+17, 47+10} = 57	Wy or Jy

Stage 5:

TO		From
W6	max {61+11, 57+15} = 72	Js or As

Solution: 72 miles or 144 miles / day

To determine the optimum routes, start from stage 5.

$$J_{5} \longrightarrow A_{4} \longrightarrow W_{3} \longrightarrow A_{2} \longrightarrow W_{1}$$

$$J_{4} \longrightarrow W_{3} \longrightarrow A_{2} \longrightarrow W_{1}$$

$$W_{6} \longrightarrow A_{5} \longrightarrow W_{4} \longrightarrow A_{3} \longrightarrow J_{2} \longrightarrow W_{1}$$

$$J_{3} \longrightarrow A_{2} \longrightarrow W_{1}$$

The routes can be summarized as:

Do	ıy	/	2	3	4	5
Ro	ute 1	W	A	W	A	\mathcal{J}
Ro	ite 2	W	A	W	\mathcal{J}	A
Rou	ite3	W	${\mathcal J}$	A	W	A
Ro	ute 4	W	A	${\cal J}$	W	A

All routes visit Jonce and each of Wand A twice

$f_i(x_i) = min \begin{cases} f_{ii}(x_i) = min \end{cases}$	$\{d(x_i, x_{i+1}) + \hat{f}_{i+1}(x_{i+1})\}, i=1,2$	1
(x_i, x_{i+1}))	

 $f_3(x_3) = \min_{\substack{\text{feasible} \\ (x_3, x_4)}} \left\{ d(x_3, x_4) \right\}$

٠.	$d(X_3, X_4)$	Optimum sol	
X3	X4 = 7	f3 (x3)	Xy*
5	8	8	7 .
6	9	9	7

 $f_{2}(x_{2}) = \min_{\text{feasible}} \left\{ d(x_{2}, x_{3}) + f_{3}(x_{3}) \right\}$

	$d(x_1,x_3)+$	Opt. So	11-	
Χz	X3 = 5	×з = 6	fe (Xz)	X3*
2	10+8 = (18)	17+9 = 26	18	5
3	4+8 = (Z)		12	5
4	9+8=(17)	9+9=18	17	5

 $f_1(X_1) = \min_{\substack{\text{feasible} \\ (X_1, X_2)}} \left\{ d(X_1, X_2) + f_2(X_2) \right\}$

	$d(X_1,X_2)+f_2(X_2)$			Opt. Sol.	
X	X2 = 2	X2 = 3	X2 = 4	$f_1(x_i)$	X ₂ *
1	5+18=23	9+12=(21)	8+17=25	21	3

$$f_{i}(x_{i}) = \max_{\substack{f \in A \text{ sible} \\ (x_{i}, x_{i+1}) \\ \text{noutes}}} \left\{ d(x_{i}, x_{i+1}) + f_{i+1}(x_{i+1}) \right\} 2$$

Stage 5: fs = max { d (x5, x6)}

	$d(x_5, x_6)$	Opt.	Opt. Sal.		
X _S	x6 = W6	fs (xs)	X6*		
J_s	11	11	W6		
As	15	15	W6		
-		C	ntinued		

Stags 4:

	d(x4,x5)	Opt. Sol.		
Xy	X5 = J5	X5 = A5	fy(XU)	X5*
W4	15+11=26	17+15 =32)	32	As
J_4		10+15=25)	25	A5
Ây	12+11=(23)	_	23	J5

Stace 3.

		$d(x_3, x_4) + f_4(x_4)$				Opt. Sol.		
I	X3	x4= W4	$X_4 = J_4$	X4= A4	f3(X3)	Xy*		
	W3	_	15+25=90	17+23 = 40	40	J4, Ay		
	刀。	11+32=43	-	10+23 = 33	43	W4		
-	A ₃	15+32=47	17+25=42		47	Wy		

Stage 2: d(x, x3) + f3(x3)				Opt. So1.	
ΧΣ	X3 = W3	$X_3 = J_3$	$X_3 = A_3$	f2(X2)	X3*
J_z	11+40=51	-	10+47=57)	57	A ₃
Az	15+40=55	12+43 =55		55	W3 ,J

Stage 1:

	d(x,,x2)+	$f_{z}(x_{i})$	Opt. Sol.	
Χ'	$X_2 = J_2$	X2 = A2	fi(XI)	X2*
Wı	15+57 = 72	17+55=72	72	A, J_2

Solution:

Longest chistance = 72 miles $J_3 \longrightarrow W_4 \longrightarrow A_5 \longrightarrow W_6$

Routes:

	Day				
•	1	Z	3	4	5
Route 1:	W	A	J	W	A
Route 2:	W	A	W	${\cal J}$	Α
Route 4:	W	A	W	A	J
Routes:	W	J	A	W	A

Set 10.2a

$$f_{i}(x_{i}) = \min_{\substack{\text{feasible} \\ (x_{i}, x_{i+1}) \\ \text{routes}}} \left\{ d(x_{i}, x_{i+1}) + f_{i+1}(x_{i+1}) \right\}$$

Stage 4:

	$d(x_4, x_5)$	Opt. Sol.		
Χų	Xs = 7	f4 (x4)	X5*	
5	4	. 4	7	
6	4	4	7	

Stage 3:

<u> </u>	d(x3, x4) + fa(x4)			Opt. Sol.		
X3	l	×4 = 6	f4	Xax		
2'	12+4 = 16 2+4 = 6	12+4=16	16	5,6		
3'	2+4=6	3+4 = 7	6	5		
4'		9+ 4 = (3)	/3	6		

Stage 2:

	$d(x_2, x_3) + f_3(x_3)$				Sø/.
Xz	X3 = 2'			fz	X3*
2	0+16=16	6+6= (2)	-	12	3'
3	1	0+6=6			3′
4	-	7+6=(13)	0+13=(3)	13	3,4

Stage 1:

	d(x1, X2) + f2 (x2)			Opt. Sol.	
Xı	X2 = 2	$X_2 = 3$	X2 = 4	fice)	XX
1	5+12=17	14+6=20	6+13=19	17	2

Solution:

Distance = 17

Route: 1-2-3-5-7

Since 3 is the same as (3'), the optimal route is

1-2-3-5-7.

	$(X_1=3) \rightarrow m_1=0 \rightarrow (X_2=3) \rightarrow m_2=1 \rightarrow$	
	$(x_3 = 3 - 3 = 0) \rightarrow m_3 = 0$.	Paratoni i Ma
	(13 10 11)	
į		

Solution:

 $(m_1, m_2, m_3) = (0, 3, 0)$

Revenue = 47

(a)	•		- 6 -	
Stage 3:	max mg	=	[2]=3	3

		40n	73		Opt.	Sol.
У3	m3 = 0	m3=1	m3 = 2	$m_3 = 3$	f3	m*
0	0	_	_		0	0
1	0	-	_		0	0
2	0	40	- ,	_	40	1
3	0	10	_	_	40	. 1
4	0	40	80	_	80	2
5	0	40	80	_	80	2
6	0	40	80	(120)	120	3

	l .	2	o mz	+ f3	(X ₂ -	mz)	, .	Opt.	So1.
XZ	Ws=0	, ,	. 2	3	4	, 5	6	fz	m#
0	0	_	_	-	_	_		0	0
1	0	20	_		_	-		20	1
2	(40)	20	40	_	_	-	~	40	0,2
3	40	60	40	60	_	_	_	60	1,3
4	80	60	80	60	80	_	-	80	2,4,5
5	80	(O)	80	(00)	80	(00)	_	100	1,3,5
6	120	100	120)	100	(20)	100	120	120	4,6

Stage 1: max m, = [6] =1

	70 m, +	$f_{z}(x_{1}-4m_{1})$	Opt.	So/.
X	$m_1 = 0$	m,=1	fi.	m,*
6	0+120=(20)	70+40=110	120	0

Optimim Solutions:

$$(m_1, m_2, m_3) = (0, 0, 3)$$

 $= (0, 2, 2)$
 $= (0, 4, 1)$
 $= (0, 6, 0)$

Value = 120

(b) Stage 3: max m3 = [4]	= /
---------------------------	------------

	80,	n ₃	Opt	50/.
×3	m3 = 0	1 = 8 cm	f3	m3*
0	0	_	0	0
1	0	-	0	0
Z	0	<u>2</u>	0	0
3	0	30	80	1
4	0	(80)	80	1

Stage 2: max m2 = [4/2] = 2

	6	$om_2 + f_3$	(x_2-2m_2)	10pt.	501.
X2	m _{2 = 0}	m2=1	m2 = 2	f2	mz*
0	0	_	-	0	0
1	0	_		0	0
2	0	60	_	60	1
3	(80)	60	1=	80	0
4	80	60	(120)	120	2

Stage 1: max m, = [4/1] = 4

		30 m	1 + F	, (x, –	$m_l)$	Opt S	60/.
XI	m,=0	· 1	2	· 3	4	fi	m,*
4	(20)	90	170	90	120	120	0, 2, 4

alternative optima:

$$(m_1, m_2, m_3) = (0, 2, 0)$$
 value
= $(2, 1, 0)$ = (20)

Stages: W3=1, r3=14, K3=-4

Stage 2. W2=3, Y2=47, K2=-15

Lenunga	(ecstro	200		Ties.		-	COLOR	333772	10.00	Y TEL			٠.		m	x 1	
citions a	355500	2	1/25	ma 3 . 6		47	5.2	-15	-					tage 3	-1		
30 mi2-1	alizes so	rect	. 1455	V:si			$\mathbb{L}^{\leq -}$		L"			Stage	0	0	0		
	****	100	0	1				- 4				Optimum	1	10	1		
Stage3	12	m2=	9	32			4 . 2	13.7		1.4		Solution	2	24	2		
V	W	*m2=	0	3					T .			12 m2	3	38	3		
0	×2=	0	0	111111			1		1			0 0	4	52	4		
10	x2=	1	16	1111111			1	l	1			10 0		tage 2	- 1		
10 24 38 52	x2=	2	24	711111			1	1		ľ		24 0	0	0	8		
38	x2=	3	38	32			ı	1	1	ł	1	39 0	1	10	0		
52	x2=	4	52	42	•	1	ı	ì		1	1	52 D	2	24	0		
	-			-	1	1	1	1	1	1	1	1	à	24 36	0		
			1	1	1	1	1	1	1	1	1	1	l à	52	n I		

Set 10.3a

Stage 1:	W,	= 2,	r	w,	3/,	K,	=	-5

1	rt blik at					100,000,000	1000	BEERROO	500000	10 3 10 20	HE20491	CONT.		Ι×	f m	l x		m
			1	V/10	2		31		- 6				1		Stage 3	1	Stage I	-
					,Vasc.	Ves		178	41.0				Stage	Ð	0 0	l٥	0.000	٥
						1.0	_/_			1000	AT 13	1 6	Optimum	ιā	10 1	17	10	ň
MP (m) 0 2 4 ff m 3 38 3 39 0 0 xi	13962		mile	0	26	57						-	Solution	2		10	DB.	- 7
0	100	W.P	miji	. 0	2 .	-4-						1	fi mi	l ā		۱ã	90	'n
38 81= 3 38 36 1111111 20 38 0 1 10 0		xl≃	1	10	111111	111911	2	- 3 f S.		11.97,131	500	175	0 0 10 0	4	52 4	4		2
		%1= x1=	3			111111		7.	5	1.1		٠		0		ĺ		

Optimum solution:

$$(m_1=2) \rightarrow X_2=(4-2\times2=0) \rightarrow (m_2=0) \rightarrow X_3=0 \rightarrow m_3=0$$

value = 57

X, = number of food items

Xz = number of first-aid items

X3 = number of cloth prices

Maximize Z = 3x, + 4x2 + 5x3

Subject to

 $X_1 + \frac{1}{4}X_2 + \frac{1}{2}X_3 \le 3$

 $X_1 \ge 1, 1 \le X_2 \le 2, X_3 \ge 1$

Sefine the State of as the volume assigned to items i, i+1, ..., and is

Recursive equations:

$$f_3(y_3) = \max_{x_3 = 1, ..., \left[\frac{y_3}{2}\right]} \left\{ s x_3 \right\}$$

$$f_2(y_2) = \max_{x_2=1,...,\min[\frac{y_2}{4},2]} \left\{ 4x_2 + \int_3 (y_2 - \frac{x_2}{4}) \right\}$$

$$f_i(y_i) = \max_{x_i = 1, \dots, y_i} \left\{ 3x_i + f_2(y_i - x_i) \right\}$$

Stage 3: (Note: [a,b) = a < y < b)

			5 X3				Opt.	lo!
<i>y</i> ₃	¥3=1	2	3,	4,	5	6	fs	X3*
[5,1)	(\$)	_		_		-	5	3
[1,1.5)	5	10			-	~	10	2_
[15,2)	5	10	S		-	_	15	3
[2,25)	5	ID	15	20	_	_	20	4
[2.5,3)	5	10	15	20	(25)	_	25	5
3	5	10	15	20	25	(3 ₀)	30.	6

Sta	ge 2:	~ / /		
1	$4x_2 + f_3(3)$	y2 - x2/4)	Opt.	501.
J ₂	X2 = 1	Xz=2	f ₂	X2*
.25		-	-	~
-50		-	_	
.75	4+5 = 9		9	1
1.00	4+5 = 9	8+ 5 = (13)	13	Z
1.25	4+10 = 14	8+5 = 13	14	1
1.50	4+10 = 14	8+10=18	18	2
1.75	4+15=19	8+10 = 18	19	1
2.00	4+15=19	8+15 = 23	23	2
2.25	4+20=24	8+15 = 23	24	1
2.50	4+20=24	8+20 =28	28	2
2.75	4+25=29	8+20 = 28	29	1
3.00	4+25 = 29	8+25 = (33)	33	2

Stage	$\frac{21}{3}$ $3\times_1 + f_2$	$(\mathcal{Y}_{i}-x_{i})$	Opt.	Sol.
4,	$X_I = I$	$x_1 = 2$	f,	X, *
3	3+23=26) 6+13=19	26	1

Solution:

$$(y_1 = 3) \rightarrow x_1 = 1 \rightarrow (y_2 = 3 - 1 = 2) \rightarrow x_2 = 2 \rightarrow (y_1 = 2 - \cdot 5 = 1 \cdot 5) \rightarrow x_3 = 3$$

$$(X_1, X_2, X_3) = (1, 2, 3)$$

 $X_i = number of courses allocated to departments i, i+1, ..., and n.$

$$m_{i'}=1, z, \cdots, 7$$
, $i=1, z, 3, 4$

$$X_4 = 1, 2, ..., 7$$
 $X_2 = 3, 4, ..., 9$
 $X_3 = 2, 3, ..., 8$ $X_1 = 4, 5, ..., 10$

$$f_i(x_i) = \max_{m_i} \left\{ v(m_i) + f_{i+1}(x_i - m_i) \right\}$$

4 | 1 ·

									: .
S-	tage	4:							
			ν	(m4)	, .		1	Opt.	Sol.
X 4	m4=1	, 2	, З	, 4	5	6	7	f4	my
ı	10							10	1
2		२०						20	2
3			30		*	-		30	3
4				40				40	4
5	7.				50			50	5
6						60		60	6
7							70	70	7
St	age 3	:		_	· • •				
	<u> </u>	U		+ f4				Opt.	
х з	W3=1	2	<u>, 3</u>	4	5	6	7	f3	m3*
2	(50)		-	-		_		50	
3	60	10						90	3
4	70	80	(90)	_		_	_	1	4
5	80	90			110	_	-	110	1
6	90	100		$ \begin{array}{c} (120) \\ (130) \end{array} $		110	_	130	4
7	100	(10 120	120 130	140		120	110	140	1 .
8	110			<u> </u>				1	
<u>St</u>	age 2	: v	(m_2)	+ f3 (Xz-	mz.)	Opt	Sol.
Χz	m2 = 1	2	3	4	5	6	.7	fz	m ₂ *
3	70					_		70	1
4	_	(120)			_	_	_	120	2
5		(40)	(140)	_		_	_	140	7,3
6	l l	(160)		150	-	_	_	160	7,3
7	140	(180)	180	170	150		_	180	, ,
8	150	190	200	190				20	1
9	160	200	(210)	210) 190	17	0 150	2/0	3,4
	tage	<i>!</i> :	~ / Ma) + f2	(X.	- m	,)	. ^_	f. Sel.
	m _{j=1}		3	4	5				m#
		5 (25)						1 ''	
		m · r							
7	otol	numl	er ot	poin	6=	250	7	٠,	
									- 25
	×; =	num	ber d	f (2)) row	s 07	Tamat Inn	0	65
١.	X2 =	rum	ver o	f (3)	now	o of	0000		States
	,x ₃ =	num	ver o	なしマン	ruru	,	•		
	ma	xum	ize	Z =	10×,	+ 3	X ₂ +	/X3	
	Subje	ut to	9	X, +3	х. л	2 X -	< 1	0	
			ä,	4 +3	12 +	~~3	-2 /	U	

		•				Se	et 10).3	a	
		fine t					(7]	
	ن کی	= mu	mber	of a	idth-fi	eet as.	signed i	to con	n	
	Fz	= mur to d	oin	and	bean	ura	eeign	RO.		
	∂_i	= nu	mber	of wid	112-fee	t are	rgned	6		
	. 1	4 = 10	n, be. U	an, a = 2.	end to	mato a H	(,* -	7	.	
								<i>ا</i> ر…		
	270	rge3:	t3 (¥3,) = "ג'ב ג'ב	(3 ± 43 {	/ X ₃ }	•			
	,,			7 X3				Opt.	Søl.	
	y ₃	X3 = 0		2	3	4	5-	F3	X3*	
	0	<u>@</u>		-	-		-		0	
	2	($\overline{0}$	-	_			7		
	3	0	D	-	_		_	7	1	
	4	် <u>ပ</u>	7	(4)	. —	-	_	14	2	
	6	0	7	(4) 14	<u> </u>	_	<u></u>	14	3	
	7	0	7	14	<u>(1)</u>	_	_	21	3	
	st	oge 2: 1	C(X)	- m	1× {3.	x2 + f	(4 - 3	3X5)	2	
		<i>d</i> '	2021	3 X2 X2:	≤ પ્રૄ ષ ≥ <i>I</i>	- 3	2	-		
		l	3 X s		y,-3x	·,)		10pt	ci	
	y _z	X2 =		X2 =			= 3		X**	
	3	3+0	-3				_	3	1	
	4	3 + 0	_					3	4	
	5	3+7		6+0	= 6			10	1	
	7	3 +14		6+0	= 6		_	17	1	
	8	3+14						17	1	
-	9				= /3 = 20			24	1	
								<u> </u>		
_	<u>s</u> t	age 1: f	(Y,)=	max.	[10x,+/	(y,-2x ₁₎]			
•				2×, ≤ y ×, ≤ z			٠.			
_	y ,			X, + 7	? (Y, -			Opt	I	
				, X,	,=1		(, = 2	f, 30	<u>×</u> †	
	10	INTX.	ナースプ	107	17=27	, 20	TIU=50	1 30	~	

continued.

Solution
$(y_1 = 10) \rightarrow X_1 = 2 \rightarrow (y_2 = 10 - 4 = 6) \rightarrow X_2 = 1$
$- \times (3 = 6 - 3 = 3) \rightarrow X_1 = 1$
Plant 2 rows of tomatoes, I row
of beans, and I row of corn.

X, = 1 if application j is selected, and o if otherwise.

maximize z = 78x, +64x2+68x3+62x4+85x5
Subject to

 $7x_1 + 4x_2 + 6x_3 + 5x_4 + 8x_5 \le 23$ $x_j = (0,1), j = 1,2,...,5$

Stages: fs (ys) = max {85 xs}

ا ر	85 X5-			Opt. Sol.	
75	X5 = 0	X5 =1	f5	Χs¥	
0	. 0		0	٥	
	0		0	0	
	i	:		:	
7	0		0	0	
8	0	85	85	1	
9	O	85	85	1	
:	:		:	;	
23	0	85	85	1	

Stage 4: $f_4(y_4) = \max_{x \in Y_y} \left\{ 62x_4 + f_5(y_4 - 5x_4) \right\}$

1	62 Xy + 1	5 (yy-5xy)	Opt.	Sol.
y_q	Xy = 0	X y = /	fy	Xy*
0	0+0= 0	_	0	0
1	0+0=0	_	0	0
		: ,•		:
5	0+0 = 0	62+0=62	62	1
6	0+0 = 0	62+0=62	62	1
7	0+0 = 0	62+0=62	62	1
8	0+85=85	62+0=62	85	0
1				
12	0+85 = 85	62+0=62	85	0
13	0+85 =85	62+85=147	147	,
14	0+85 = 85	62+85=147	147	1
•		; ;	;	:
23	0+85 = 85	62+85=147	147	

Stage 3: f3 (y3) = max {68x3+f4(y3-6x3)}

1	68×3+f4(y3-6×3) Opt. Sol.							
<i>y</i> ₃	X3 = 0	X3 = 1	f ₃	X3**				
0	0+0=0		0	0				
-	0+0=0	_	0	0				
2	0+0=0		0	0				
3	0+0=0		0	ð				
4	0+0=0		0	Ò				
5	0 + 62 = 62	· .	62	0				
6	0 + 62 = 62	68 + 0 = 68	68	1				
, 7	0 +62 =62	68 + 0 = 68	68	1				
8	0 + 85 = 85	68 + 0 = 68	85	0				
9	0 + 85 = 85	68 + 0 = 68	85	0				
10	0 + 85 = 85	68 + 0 = 68	85	0				
#	0 + 85 = 85	68 + 62 = 130	130	1				
12	0 + 85 = 85	68 + 62 = 130	130	1				
13	0 + 147 = 147	68 + 62 = 130	147	0				
14	0 + 147 = 147	68 + 85 = 153	153	D.				
15	0 + 147 = 147	68 + 85 = 153	123	1				
16	0 +147 = 147	68 + 85 = 153	183	1				
17	0 +147 =147	68 +85 = 153	153	1				
18	0 + 147 = 147	68 + 85 = 153	153	1				
19	0 +147 = 147	68 +147 = 215	215	1				
20	0 +147 = 147	68 +147 = 215	215	1				
21	{	68 + 147 = 215	215	1				
22	1	68+147= 215	215	1				
23	0 +147=147	68+147=215	1215 ontinu	/ ed				

Stage 2:		, ,
$f_2(y_2) = \max_{4x_2 \in \mathcal{Y}_2}$	$\left\{64X_2+f_3\right\}$	(2-4x2) S

ı	64x2+f3	$(y_2 - 4x_2)$	Opt.	Sol.
y2	X2 = 0	$X_2 = 1$	fz	X*
0	0+0 = 0	· 	0	0
- 1	0+0 = 0	-		
2	0+0 = 0	_	0	0
3	0+0 = 0	_	0	0
4	0+0 = 0	64+0=64	64	1
5	0 + 62 = 62	64 + 0 = 64	64	1
6	o + 68 = 68	64 + 0 = 64	63	0
7	0+68 = 68	64 + 0 = 64	68	0
8	0 + 85 = 85	64+0 = 64		
9	0 + 85 = 85	64 + 62 = 126	156	1
10	0+85 = 85	64+68 = 132	132	1
11	0+130 = 130	64+68 = 132	132	1
12	1 120 - 130	64 + 85 = 149	149	1
13		64 + 85 - 149		
14	1 - 1 - 1	64+85=149		
15	0+153 = 153	64 + 130 = 194		
16	0+153 = 153	64+130=194	194	1
17	0+153 = 153	64 +147 =211	211	1
18	0 + 153 = 153	64 + 153 = 217	21	1 1
19	0+215 = 215	64 + 153 = 217		1
20	0+215 = 215	64 + 153 = 217	21	1
2		64 + 153 = 217	121	1 1
2		64 +153 = 217	2/1	7
2	3 0+215 = 215	64 + 215 = 279	27	9/1

Stage 1: $f_1(y_i) = \max_{x \in y_i} \{78x_i + f_2(y_i - 7x_i)\}$

	$ 78x_1 + f_2(y_1 - 7x_1) Opt$				
У,	X, = 0	X1 = 1	fi	X,*	
23	0+279=279	78+194=272	279	0	

Solution: $(y=23) \rightarrow x_1=0 \rightarrow (y_2=23) \rightarrow x_2=1 \rightarrow (y_3=23-4=19) \rightarrow x_3=1 \rightarrow (y_4=19-6=13) \rightarrow x_4=1 \rightarrow (y_5=13-5=8) \rightarrow x_5=1$ Cll but the first application are accepted.

X; = 1 if precinct j is selected, and 0 if otherwise.

maximize z = 31x, +26x2+35x3+28x4+24x

subject to $3.5X_1 + 2.5X_2 + 4X_3 + 3X_4 + 2X_5 \le 10$ $X_3 = (0,1), j = 1,2,...,5$

Stages: $f_s(y_s) = \max_{\substack{2x_s \in y_s \\ x_s = (v, 1)}} \{24x_s\}$

- 1	24 X5		Opt. Sol.	
y _s	X5 = 0	X5 =1	f5-	X5*
0	. 0	_	0	0
.5	0	_	0	0
<i>[</i> -	0	.—	0	o
1.5	0		0	o
2.	0	24	24	1
2.5	0	24	24	1
J	↓	1	1	+
10	0	24	24	1

 $\frac{\text{Stage 4:}}{f_4(y_4) = \max_{\substack{3x_4 \in y_4 \\ x_4 = 0,1}} \left\{ 28x_4 + \int_5 (y_4 - 3x_4) \right\}$

1	28x4+f5(J4-3x4)			Sol.
J4	×y = 0	Xy = /	f4	Xv*
0	0 + 0 = 0	-	ø	ò
.5	0 + 0 = 0	-	0	Ò
1.	0 + 0 = 0		0	0
1.5	0+0=0	_	0	0
2.	0+24=24	_	24	d
2.5		_	24	0
3.		28 + 0 = 28	28	1
3.5		28 + 0 = 28	28	1
4.		28 + 0 = 28	28	1
4.5		28+0=28	28	1
5.		28 +24 = 52	52	ı
+			1	1
10	0+24 = 24	28+24 = 52	52	1

continued..

Set 10.3a

Stage 3:	
f(y) = max	$\left\{35x_3+f_4(y_3-4x_3)\right\}$
4x3 \ y.	(2 , 33 3,1
X3 = 0,1	
	0

	35×3+ f4(y3-4×3) 10pt. Sol.					
<i>y</i> 3	X3 = 0	X3 = 1	f3	X3*		
0	0+0 = 0	_	0	0		
.5	0+0 = 0	_	0	0		
1.	0+0=0	_	0	ð		
1.5	0+0 = 0	<u> </u>	0	U		
2.	0+24 = 24		24	0		
2.5	0+24=24	_	24	0		
3.	0+28 = 28		28	0		
3.5	0+28 = 28	_	28	0		
4.	0+28 = 28	35 +0=35	35	0		
4.5	0+28 = 28	35 + 0 = 35	35	0		
5.	0+52 = 52	35 + 0 = 35	52	0		
5.5		35 + 0 = 35	52	0		
6.		35-+24=59	59	1		
6.5		35+24=59	59	1		
7.	1	35+28=63	63	1		
7.5		35+28=63	63	1		
8.		35+28=63	63	1		
8.5		35 +28 = 63	63	1		
9.		35 +52 = 87	87	1.		
9.5		35 +52=87	87	1		
10.	0+52=52	35 +52=87	87	1		

Stage 2:

$$f_2(y_z) = \max_{\substack{2.5 X_z \leq y_z \\ X_z = 0,1}} \{26x_z + f_3(y_z - 2.5x_i)\}$$

	26xz + 1	f3 (Y2-2.5x2)	Opt.	Sol.
y2	X ₂ = 0	X2 = 1	fz	X2*
0	0+0=0	_	0	Ø
.5	0+0=0	_	0	0
1.	0+0=0	- پ -	0	ð
1.5	0+0=0	_	0	ð
2.	0+24=24		24	0
2.5	0 +24 = 24	26+0=26	26	/
3.	0 +28 = 28	26+0=26	28	0
35	0+28 = 28	26 + 0 = 26	28	0
4.	0 +35 = 35	26+0=26	35	0
4.5	0 +35 = 35	26+24=50	50	1
5.	0 +35 = 35	26+24=50	50	1
5.5	0 +35=35	26+28=54	54	١
6.	0 +59=59	26+28=54	59	0
6.5	0 +59 = 59	26+35 = 61	61	1
7.	0 +63 = 63	26+35=61	63	0
7.5	0 +63 = 63	26+35 = 61	63	0
8.	0 +63=63	26+35=61	63	0
8.5		26+59=85	85	1
9.	0 +87 = 87	26+59 = 85	87	1 .
9.5	1	26+63 =89	89	11
10.	0 +87 = 87	26+63 = 89	89	1

 $\frac{\text{Stage 1:}}{f_i(y_i) = \max_{\substack{3.5 \times i = y_i \\ x_i = 0, 1}} \left\{ \frac{31x_i + f_2(y_i - 3.5x_i)}{x_i + x_i} \right\}$

	31x1+ /21	(Y,-3.5X1)		
y_i	X1 = 0	X1 = /	f,	X,*
10	0+89 = 89	31+61= 92	92	/

Solution:

$$(y_1 = 10) \longrightarrow X_1 = 1 \longrightarrow (y_2 = 10 - 35 = 65)$$

$$\longrightarrow X_2 = 1 \longrightarrow (y_3 = 6.5 - 2.5 = 4) \longrightarrow$$

$$X_3 = 1 \longrightarrow (y_4 = 4 - 4 = 0) \longrightarrow X_4 = 0 \longrightarrow$$

$$(y_5 = 0) \longrightarrow X_5 = 0$$

allocate fundo to precincts 1, 2, and 3. Total population peached is 3100 + 2600 + 3500 = 9200.

continued

kj = number of parollel units in component j, j=1,2,3 The problem can be written as

 $maximize r = r_1(k_1) \cdot r_2(k_1) \cdot r_3(k_3)$ Subject to

 $C_1(k_1) + C_2(k_2) + C_3(k_3) \leq 10$

r; (k;) = reliability of component i given k; parallel units

C; (k;) = cost of component j given k; parallel units

Define State as

of = capital assigned to components j, j+1, ..., 3

Stage 3: $f_3(y_3) = \max_{k_3=1, 2, 3} \{R_3(k_3)\}$

		$R_3(k_3)$	• •	Optin Soluti	
	$k_3 = 1$ $k_3 = 2$ $k_3 = 3$				
<i>y</i> ₃	R = .5, c = 2	R = .7, c = 4	R = .9, c = 5	$f_3(y_3)$	k*
2	.5			.5	1
3	.5	_	l –	.5	1
4	.5	.7 •		.7	2
5	.5	.7	.9	.9	3
6	.5	.7	.9 .	.9	3

<u>Stage 2</u>: $f_2(y_2) = \max_{k_3=1,2,3} \{R_2(k_2) \cdot f_3[y_2 - c_2(k_2)]\}$

	R ₂	Optin Soluti				
	$k_2 = 1$	$k_2 = 1$ $k_2 = 2$ $k_2 = 3$				
y ₂	R = .7, c = 3	R = .8, c = 5	R = .9, c = 6	$f_2(y_2)$	k*	
5	$.7 \times .5 = .35$	_	_	.35	1	
6	$.7 \times .5 = .35$		_	.35	1	
7	$.7 \times .7 = .49$.8 × .5 = .40		.49	1	
8	$.7 \times .9 = .63$	$.8 \times .5 = .40$	$.9 \times .5 = .45$.63	1	
9	$.7 \times .9 = .63$	$.8 \times .7 = .56$	$.9 \times .5 = .45$.63 ⋅	1	

 $f_1(y_1) = \max_{k_1 = 1, 2, 3} \{R_1(k_1) \cdot f_2[y_1 - c_1(k_1)]\}$

	R	Optimal Solution			
y 1	R = .6, c = 1	R = .8, c = 2	R = .9, c = 3	$f_1(y_1)$	k ₁ *
6	$.6 \times .35 = .210$.210	1
7	$.6 \times .35 = .210$	$.8 \times .35 = .280$.280	2
8	$.6 \times .49 = .294$.8 × .35 = .280	$.9 \times .35 = .315$.315	3
	$.6 \times .63 = .378$.8 × .49 = .392	$.9 \times .35 = .315$.392	2
10	$.6 \times .63 = .378$.8 × .63 = .504	.9 × .49 = .441	.504	2

 $\frac{Solation:}{(K,^*, K_2^*, K_3^*) = (2,1,3)}$

Composite r= .504

State y = portion of the quentity c 10 allocated to variables j,

Stage n: $f_n(y) = \max_{x_n \leq y_n} \{x_n\}$

	Opt.	50/.
State	fn	Xn*
Yn	\mathcal{Y}_n	. Yn

Stage n-1: f (y) = max {xn-1 f (y-xn)}

Given fn (yn) = yn, then

Thus, fn-1 (yn-1) = max { xn-1 (yn-1-xn-1)}

	Opt.	501.
State	fn-1	X,*,
Yn-1	$(y_{n-1}/z)^2$	(yn-1/z)

Stage j $f_{i}(y_{i}) = \max_{x_{j} \in \mathcal{Y}_{j}} \left\{ x_{j} f_{j+1}(y_{j} - x_{j}) \right\}$

	Opt. Sol.	
State	f,	<i>x</i> _J .*
	/ y, \n-j+1	<i>Ys</i>
\mathcal{J}_{j}	$\left(\frac{3}{n-j+1}\right)$	n-j+1

Solution: $(y_1 = q_1) \rightarrow x_1 = \frac{c}{n} \rightarrow (y_2 = \frac{n-1}{n}c) \rightarrow y_1 = \frac{n-j+1}{n}c \rightarrow x_2 = \frac{c}{n}$ $X_1 = X_2 = \dots = X_n = \frac{C}{n}$, $Z = \left(\frac{C}{n}\right)^n$

$f_n(Y_n) =$		1
f; (y;) =	$\min_{X_i > 0} \left\{ X_i^2 + \int_{C+1} \left(\frac{y_i}{x_i} \right) \right\}$	

Stage n:

$$f_n(y_n) = y_n^2, \quad x_n^* = y_n$$

$$\frac{\text{Stage } n-1}{f_{n-1}(y_{n-1}) = \min_{X_{n-1} > 0} \left\{ \chi_{n-1}^2 + \left(\frac{y_{n-1}}{\chi_{n-1}} \right)^2 \right\}}$$

$$\frac{\partial \{\cdot\}}{\partial \chi_{n-1}} = 2 \chi_{n-1} - 2 \frac{y_{n-1}^2}{\chi_{n-1}^3} = 0$$

or
$$x_{n-1}^{*} = \sqrt{y_{n-1}}$$
, $f_{n-1}(y_{n-1}) = 2y_{n-1}$

Stage n-z:

$$\frac{f_{n-2}(y_{n-2})}{f_{n-2}(y_{n-2})} = \min_{x_{n-2}>0} \left\{ x_{n-2}^2 + 2\left(\frac{y_{n-2}}{x_{n-2}}\right) \right\}$$

$$\frac{\partial \left\{ \cdot \right\}}{\partial x_{n-2}} = 2 x_{n-2} - 2 \frac{y_{n-2}}{x_{n-2}} = 0$$

$$\sigma \times_{n-2}^{*} = (y_{n-2})^{1/3}, f_{n-2}(y_{n-2}) = 3y_{n-2}^{1/3}$$

Stage i:
Induction yields
$$X_{i}^{*} = y_{i}^{\frac{1}{n-i+1}}, f_{i}(y_{i}) = (n-i+1) y_{i}^{n-i+1}$$

$$4 | 0x4 = 0 | 1x3 = 3 | 2x2 = 4 | 3x1 = 3 | 4x0 = 0 | - | 4 | 5x0 = 0 | 1x3 = 3 | 2x2 = 4 | 3x1 = 3 | 4x0 = 0 | - | 4 | 5x0 = 0 | 1x3 = 3 | 2x2 = 4 | 3x1 = 3 | 4x0 = 0 | - | 4 | 5x0 = 0 | 1x3 = 3 | 2x2 = 4 | 3x1 = 3 | 4x0 = 0 | - | 4 | 5x0 = 0 | 1x3 = 3 | 2x2 = 4 | 3x1 = 3 | 4x0 = 0 | - | 4 | 5x0 = 0 | 1x3 = 3 | 2x2 = 4 | 3x1 = 3 | 4x0 = 0 | - | 4 | 5x0 = 0 | - | 4 | 5x0 = 0 | - | 4 | 5x0 = 0$$

Stage 1:

$$x_{i}^{+} = c^{m}$$
, $f_{i}(y_{i}) = n y_{i}^{2/n}$
Thus, $y_{2} = \frac{y_{i}}{x_{i}} = c^{\frac{n-i}{n}} \Rightarrow x_{2}^{*} = c^{\frac{i}{n}}$
In general, $y_{i} = \sqrt[n]{c}$

For proper decomposition, let $x_1 = y_1, x_2 = y_4, x_3 = y_2 \text{ and } x_4 = y_3$ The problem ridher witten as Maximize Z = (X+2)2+ (X2-5)2+ X3X4 $X_1 + X_2 + X_3 + X_4 \le 5$ $X_1, X_2, X_3, X_4 \ge 0$ and integer Subject to

Rearrangement of variables allows mixing multiplicative and additive decomposition

Z = amount of the resource allocated to variables j, j+1, ..., 4.

	1	× 4						50/.
Z_q	Xy = 0	1	2	3	4	_ ک	fy	Xy*
0	0				- '		0	ø
,	0	1		_	-	_	1	1
2	0	1	2	_			2	2
3	0	1	2	3		· —	3	3
4	0	1	2	3	4	_	4	4
5	0	1	2	3	4	5	5	5

or
$$z_{n-1}^{*} = \sqrt{y_{n-1}}$$
, $f_{n-1}(y_{n-1}) = 2y_{n-1}$ $\frac{5+age3}{x_3 \le z_3} \cdot f_3(z_3) = \max_{x_3 \le z_3} \left\{ x_3 f_4(z_3 - x_3) \right\}$

		X	3 f4(Z3 - X3)		Op.	Sol
Zz	X3=0	1	Z	3	4	5	F3	X3
0	0×0:0	_	_		_	_``	o	0
	l .	lxo=o		_	_	_	0	1
	1	x = 1	2x0= º	_	_	_	1	1,2
3	0X3=0	11/2=2	2×1= 2	3X0=0		_	2	1,2
4	02420	1x3= 3	2x2=4	3x1=3	4x0=0		4	2
5	0×5=0	124=4	2×3=6	3x2=6	4x1=4	5×1=0	6	2,3

$(x_2-5)^2+f_3(z_2-x_2)$					Opt.	Sol.		
Zz	X2 = 0	1		3	4	S	fz	X ⁵ *
0	25+0=25		_	_	_	_	25	0
	25+6=25	16+0=16	_	. ••••	_	_	25	0
	25+1=26		9+0=9	_	_	_	26	0
3	25+2=27	16+1=17	9+0=9	4+0=4	_	_	27	0
	25+4=29		9+1=10	4+0=4	1+0=0		29	0
5	25+6=31	16+4=20	9+2=11	4+1=5	1+0=0		31	0

Stage 1: $f_1(z_1) = \max_{x_1 \leq z_1} \{(x_1+z)^2 + f_2(z_1-x_1)\}$

_	Ĺ	(X1+3	2)2+ /2	(Z, -)	(₁)		Opt.	
Z_1	X,=O	1	Z	. 3	4	5	f_i	X,*
5	4+31	9+29	16+27	25+26	36+25	49+25	74	5

 $(Z_1=5) \rightarrow X_1=5 \rightarrow (Z_2=0) \rightarrow X_2=0 \rightarrow (Z_3=0) \rightarrow$ x3=0 → (Z4=0) -> x4=0

Optimum: (4,, 3,, 3, 34) = (5,0,0,0) Z = 74

Define state as

y = amount of the resource allocated to variable i, i+1, ..., and n

$$g_n(y_n) = \min_{X_3 = y_3} \{f_3(y_3)\}$$

$$g_{i}(y_{i}) = \min_{0 \le x_{i} \le y_{i}} \{ \max_{x_{i} \in Y_{i}} \{ f_{i}(x_{i}), g_{i+1}(y_{i}-x_{i}) \} \}$$

Stage 3:
$$g_3(y_3) = \min_{X_3 = y_3} \{x_3 - 2\}$$

	Ì	
State	93 (Ys)	X3*
<i>Y</i> ₃	y3-2	<i>y</i> ₃

Stage 2: min { max [(5x2+3),(42-x2-2)]}

State	9z (Yz)	Xz*
¥2<5	0	3
¥2=5	×2-5-	$\frac{5}{6} X_2 - \frac{7}{6}$

Stage 1:
$$g(y) = min \left\{ \max \left[x_1 + 5, g_2(y_1 - x_1) \right] \right\}$$

1		
State	9, (4,)	×,*
$y \leq \frac{37}{5}$	0	5
4,>37	58, -37	54, +18

$$(y_1 = 10) \longrightarrow X_1 = \frac{50-37}{11} = \frac{13}{11} \longrightarrow$$

$$(y_2 = \frac{97}{11}) \longrightarrow X_2 = \frac{97/1-5}{6} = \frac{7}{11} \longrightarrow$$

$$(y_3 = \frac{90}{11}) \longrightarrow X_3 = \frac{90}{11}$$

$$g_1(10) = \frac{5 \times 10 + 18}{11} = \frac{68}{11}$$

Set 10.3b

OCT 10:0D	
(a) Stage 5: $b_s = 8$	(b) Stage 5: b5 = 2
Opt. 501.	Opt. Sol.
$X_{5} = 8$ f_{5} X_{5}^{*}	Xq $X_5 = 2$ f_5 X_5 *
6 0 + 4 + 2(2) = 8 8 8	0+0 0 2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Stage 4: 64=8
8 0 + 0 = 0 0 8	Opt. Sol.
Stage 4: 64=6	X_3 $X_Y = 8$ f_4 X_4
Opt. Sol.	7 0+(4+2)+1 6 8
$x_3 x_4 = 6 x_4 = 7 x_4 = 9 f_4 x_7^*$	8 0+0+0 0 8
3 0+(4+6)+8 3+(4+8)+6 6+(4+10)+0 18 6	Stage 3: b3=7
4 0 +(4+4) +8 3+(4+6)+6 6+(4+8)+0 16 6	Opt. Sol.
5 0+(4+2)+8 3+(4+4)+6 6+(4+6)+0 14 6	X_2 $X_3 = 7$ $X_3 = 8$ f_3 X_3^*
6 0+0 +8 3+(4+2)+6 6+(4+4)+0 8 6	4 0+4+6+6 3+4+8+0 15 8
7 0+0 +8 3+0+6 6+(4+2)+0 8 6	5 0+4+4+6 3+4+6+0 13 8
	6 0+4+2+6 3+4+4+0 11 8
$\frac{\text{Stage 3}}{1}: b_3 = 3$	7 0+0+6 3+4+2+0 6 7
x_2 $x_3 = 3$ 4 5 6 7 8 f_3 x_3^*	8 0 to t 6 3 to t 0 6 7
5 0+0 3+0 6+0 9+4 12+4 15+4	Stage 2: $b_2 = 4$
+18 +16 +14 +2+8 +4+8 +6+6 18 3	10pl. Sol.
6 0+0 3+0 6+0 9+0 12+4 5+4 17 6	$x_1 \ x_2 = 4 \ 5 \ 6 \ 7 \ 8 \ f_2 \ x_2^*$
17,0 4,0 111 40 1210	8 0+0 3+0 6+0 9+0 12+0 15 4,7
7 0+0 3+0 6+0 9+0 12+0 15+4 17 6	Stage 1: b=8
8 0+0 3+0 6+0 9+0 12+0 15+0	1 Opt. Sol.
+18 +16 +14 +8 +8 +6 17 6	x_0 $x_1 = S$ f_1 $x_1 \neq 0$
Stage 2: 62 = 5	0 0+(4+2x8)+15 35 8
Opt. 301.	
X ₁ X ₂ =5 6 7 8 f ₂ X ₂ *	Optimum solution:
6 6+0+18 3+0+17 6+4+2+17 9+44+17 18 5 7 0+0+18 3+0+17 6+0+17 9+4+2+17 18 5	Week i bi Xi
7 0+0+18 3+0+17 6+0+17 9+4+2+17 18 5 8 0+0+18 3+0+17 6+0+17 9+0+17 18 5	1 8 8 Hire 8
	2 4 7 Fire 1 3 7 7 —
Stage 1: 6, = 6 10pt. Sol.	3 7 7 — 4 8 8 Hire 1
$x_0 \ x_1 = 6 \ 7 \ 8 \ f_1 \ x_2^*$	_5 2 2 Fire 6
0 0+(4+12) 3+(4+14) 6+(4+16) 34 6	alternative optimum:
Weeki bi Xi	Week i bi Xi. 1 8 8 Hire 8
1 6 6 Hire 6 2 5 5 Fire 1	
3 3 3 Fire 2	2 4 4 Fire 4 7 8 Hire 4 5 2 8
4 6 6 Hire 3	3 7 8 Hire 4 5 2 7 Fire 6
5 8 8 Hire 2 continued	- FIVE D

Let			
$C_3(X_{i-1}-X_{i})$	= 100 (X	1-1-Xi)	
be the sever	ance Cor	t of xi-1 - Xi	•
laborers, Xi-1	$> x_{\iota}$		

$$f_{i}(x_{i}) = \min_{\substack{x_{i} \geq b_{i} \\ x_{i} \geq b_{i}}} \left\{ G_{i}(x_{i} - b_{i}) + C_{2}(x_{i} - x_{i-1}) + C_{3}(x_{i-1} - x_{i}) + f_{i+1}(x_{i}) \right\}$$

$$c = 1, 2, ..., n$$

	$C_1(x_4 - 6) + C_2(x_5 - x_4) + C_3(x_4 - x_5)$	Optimum	solution
×4	x, = 6	f ₅ (x ₄)	X5*
4	3(0) + 4 + 2(2) + 0 = 8	8	6
5	3(0) + 4 + 2(1) + 0 = 6	6	6
٠.	3(0) + 0 + 0 = 0	0	6

				1.1
C1(X4	4) + C2(x4 - x3) + C3(x4 - x	$(s) + f_s(x_s)$	Optimum s	olution
x, x, = 4	x4 = 5	x, = 6	f,(x3)	×.*
8 3(0) + 0 + 4 + 8 =	12 3(1) + 0 + 3 + 6 = 12	3(2) + 0 + 2 + 0 = 8	8	6

ige 3 10; ==	$C_1(x_1 - 8) + C_2(x_1 - x_2) + C_3(x_2 - x_3) + f_4(x_3)$	Optimum	solution
ж,	X ₃ = 8	f ₃ (x ₂)	×,*
7	0 + 4 + 2(1) + 0 + 8 = 14	16	8
	9+0 +0+8=8	8	. 8

Stage	2 (b ₂ = 7):			
	$C_1(x_2 - 7) + C_2(x_3 - x_4)$	Optimum saluti		
×,	x ₂ = 7	x, = 8	f ₂ (x ₁)	×2*
5	0 + 4 + 2(2) + 0 + 14 = 22	3(1) + 4 + 2(3) + 0 + 8 = 21	21	8
6	0 + 4 + 2(1) + 0 + 14 = 20	3(1) + 4 + 2(2) + 0 + 8 = 19	19	8
7	0 + 0 + 0 + 14 = 14	3(1) + 4 + 2(1) + 0 + 8 = 17	14	7
	0+0 +1+14 = 15	3(1) + 0 + 0 + 8 = 11	11	8

Stage	1 (b ₁ = 5):	(x ₁ - 5) + C ₂ (x ₁ - x ₀)	+ C ₃ (x ₀ - x ₁) + f ₂ (x ₁)		Opt is	
Х,	x ₁ = 5	x, = 6	x₁ = 7	x, = 8	f _i (x _o)	×,*
0	0 + 4 + 2(5) + 0 + 21 = 35	3(1) + 4 + 2(6) + 0 + 19 = 38	3(2) + 4 + 2(7) + 0 + 14 = 38	3(2) + 4 + 2(8) + 0 + 11 = 37	35	5

	Week i	Minimum Labor Force b _i	Actual Labor Force X ₁	Decision
-	1	5	5	Hire 5 workers
	ż	7	8	Hire 3 workers
	3	8	8	No change
	4	4	6	Fire 2 workers
	5	6	6	No change

Xc = number of cars rented in whi $C_{i}(x_{i}) = \text{Renal cost in week } i$ $= \begin{cases} 220 \times i, & \text{if } x_{i} \leq x_{i+1} \\ 500 + 220 \times i, & \text{if } x_{i} > x_{i-1} \end{cases}$

$$f_{i}(x_{i-1}) = \min_{x_{i} \ge b_{i}} \left\{ C_{i}(x_{i}) + f_{i+1}(x_{i}) \right\}$$

$$i = 1, 2, 3, 4 \quad \text{continue}$$

	- 8	64	Stage 4:	
--	-----	----	----------	--

Ū		Opt.	Søl.
X ₃	Xy=8	fu	XŢ
7	500 + 220 ×8 = 2260	2260	8
8	22018 = 1760	1760	8

Stage 3: 63 = 7

	<u></u>		Opt.	Sol.
Χz	X3=7	X3 = 8	f3	X3*
4	500 + 220(7) +2260 = 4300	500 + 220(8) + 1760=4020	4020	8
5	500 + 220 (7) + 2260 = 4300	500 + 220(8) + 1760 = 4020	4070	8
6	500 + 220(7) + 2260 = 4300	500 + 220 (8) + 1760 = 4020	4020	8
7	220X7 + 2260 = 3 800	500 + 220 (8) + 1760 = 4020	3800	7
8	220x7+2260 =3800	220×8+1760 = 3520	3520	8

Stage 2: b = 4

-		2			Į.	Opt.	Sol.
x,	X2 = 4	5	. 6	7	8	f2	Xx
7	+4020	+4026	220(6) +4020 =5340	+3800	500 + 220(8)+ 3520 =5780	4900	4
-	+4020	+4020	zzo (6) +4020 = 5340	+3800	+3520		4

Stage 1: b = 7

<u>St</u>	$2ge 1: D_1 = 1$		Opt. S	•/.
Χo	X ₁ = 7	X ₁ = 8	f	X,*
0	500 + 220(7) + 4900 = 6940	500 + 220 (8) + 4900 = 7160	6940	4

Solution.

WeeKi	ь.	Χ	•
1	7	7	Rent 7 cars
٤	4	4	Return 3
3	7	8	Rent 4
4	8	8	-

Set 10.3b

(ap: 5		4	? 5	- 1
z		Z ₂	z ₃ z	4 4
X,=1	Xz	, ×3	Xų.	,
	D ₁ = 4	D ₂ =4	D ₃ =4	D ₁₁ =4
C/wat	\$3A	3.3	35	42

c/unit \$30 33 35 42 h/unit \$2 3 4 -

Zi = amount produced in period i

 $X_i = 1$, $0 \le Z_i \le 5$

 $0 \le X_2 \le 2$, $0 \le Z_2 \le 6$

 $0 \le x_3 \le 4$, $0 \le z_3 \le 3$

 $0 \le X_q \le 3$, $0 \le Z_q \le$

Stage 4: f4 (X4) = min {42 Z4} Z4>0 Z4+X4=4

						Opt.	Sol.
X4	Z4=0	1	2	3	4	f4	24
o	_	_		1	42X4	168	4
1	~			42×3		126	3
S	_		42x2	-	_	84	2
3	·	42×1	-	_	_	42	1
4	0			_		0	0

Stage 3: $f_g(x_3) = \min_{\substack{z_3 \ge 0 \\ z_3 + x_3 \ge 4}} \left\{ 35z_3 + 4(x_3 + z_3 - 4) + f_4(x_3 + z_3 - 4) \right\}$

V							
^3	$Z_3 = 0$		2	, 3	4	<i>f</i> 3	Z*
0	-	_	_	_	140+0 +/68 =308	308	4
1	-	_		105+0 + 168 = 273	140+4 +126 = 270	270	4
2		_	70+0 +168 =238	105 +4 + 126 = 23 5	14018 +84 =232	232	4
3	-	35+0 +/68 = 203	70+4 +/26 = 200	105+8 +84 =193	140+12 + 42 = 194	193	3
4	0+0 + 168 = 168	35+4 +126 =165			140+16 +0 =156	156	4
	2 3	1 - 2 - 3 - 4 0+0 +168	1 2 3 - 35+0 +168 = 203 4 0+0 35+4 +168 +126	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Stage 2:

 $f_{2}(X_{2}) = \min_{\substack{Z_{2} \geq 0 \\ Z_{2}+X_{2} \geq 4}} \left\{ 33Z_{2} + 3(X_{2}+Z_{2}-4) + \int_{3}(X_{2}+Z_{2}-4) \right\}$

1	·		• .				4	Opt.	Sol.
Χz	22=0	1	2	. 3	4	5-	6	fz	72
0	_		_	· —	132 +308 =440		198 +6 232 =436	43 (6
1	-		-	99 +308 = 407	132 +3 +270 =405	/65 + 6 +232 =403	LIA	400	96
2	, 	- .	66 +308 =374	99 + 3 +270 =372	+ 6	165 +9 +193 =367	+12	360	66

Stage 1: $f_1(X_1) = min \begin{cases} 30Z_1 + 2(X_1 + Z_1 - 4) + f_2(X_1 + Z_1 - 4) \\ Z_1 \ge 0 \\ Z_1 + X_1 \ge 4 \end{cases}$

	L						1001.501.		
x_1	Z,=0	1	2	3	4	5	fi	Z,*	
1				90 +436 = 526	/20 + 2 +400 =522	150 + 4 +366 =520	520	5	

Solution: Cost = \$520

 $(X_1 = 1) \rightarrow Z_1 = 5 \rightarrow (X_2 = 1 + 5 - 4 = 2) \rightarrow$ $Z_2 = 6 \rightarrow (X_3 = 2 + 6 - 4 = 4) \rightarrow Z_3 = 4 \rightarrow$ $(X_4 = 4 + 4 - 4 = 4) \rightarrow Z_4 = 0$

Summary

Z₁=5 Z₂=6 Z₃=4 Z₄=0

X₁=1 2 4 4 4

2.22

Opt. 501.

72.8 K

R

continued.

Stage 1:

18.5-1.2+55.5 = 72.8

Solution: K-R -> K -> K, sevenue = \$72,800

20+50-100.2+85.7 = 55.5

20+60-100.2+85.5=65.3

Set 10.3c

Since income from mowing is constant, it need not be taken into account.

$$f_{4} = f_{4}(t) = min \begin{cases} C(t) - S(t), & K \\ I(t) + C(t) - S(t), & R \end{cases}$$

$$f_{i}(t) = min \begin{cases} C(t) + f_{i+1}(t+1), & K \\ I(t) + C(t) - S(t) + f_{i+1}(t), & R \end{cases}$$
where,

((t) = operating cost per year for a t-year old mower I(t) = cost of a new mower after t years

S(t) = Salvage value of a t-year old mower $f_i(t) = minimum (ost for periods (, (+1, ..., and 4 givin t-year mower.$

Stage 4:

		Opt. Sul.		
t	K	/ R	f4	Dec.
1	144-130 = 14	260 +120 -150 -150 = 80	14	K
2	168-110 = 58	260 + 120-135-150 = 95	28	K
3	192-90 = 102	260 + 120-120 -150 = 110	102	K

Stage.	<u>ऽ :</u> 	Opt. Sal.		
t	K	R	f3	Dec.
1	144+58 = 202	240+120-150+14 = 224	202	K
2	168 +102 = 270	240+120-135+14 = 239	239	R

Stage 2. Opt. Sol. Dec 144+239 = 338 220 +120 -150 +202 = 338

Stage 1: The only option available at the start is K. Cost = 120+338 = 458 Solution: K - K - R - K, total cost = \$ 458

$$f_{i}(t) = \min \begin{cases} c(t) + f_{i+1}(t+1), & K \\ I(t) + c(i) - s(t) + f_{i+1}(1), & R \end{cases}$$

$$f_{s}(t) = \min \begin{cases} c(t) - s(t), & K \\ I(t) + c(i) - s(t), & R \end{cases}$$

$$continued$$

	Oet 10.36
(a) $(N^2-T_N^2+N-(T_N+1)), K$	= max \ \frac{4}{1+T_4} - T_4 + 3, K
$f_N(T_N) = \max_{T_N \leq N} \left\{ (N^2 - 0) + N - (0 + 1) - C + N - T_N, R \right\}$	Ty=4 (5-T4, R
N=N ((N-0)+N-(0+1)-C+N-TN, R	(3-14)
$(N^2 - T_i^2) + f_{i+1}(T_i + 1)$, K	$\int \frac{4}{1+T_U} + \int_{i+1} (T_i+1), K$
$f_{i}(T_{i}) = \max \left\{ \right.$	(T) mark
$f_i(T_i) = \max_{T_i \in N} \left\{ (N^2 - 0) + (N - T_i) - C + f_i(1), R \right\}$	$T_{i\leq 4} \cup \lambda - I_{i} + t_{i+1}(I), K$
For N=3, C=10,	Stage 4
$f_3(T_3) = \max_{T_3 \le 3} \begin{cases} 11 - T_3 - T_3 \end{cases}, K$	Ty K R fy Dec
$T_3 (T_3) - T_3 \le 3 (4 - T_3), R$	1 4.00 4 4 5,8
1(T) - max) 9-Ti2+fix(Ti+1), K	2 2.33 3 R
$f_{i}(T_{i}) = \max_{T_{i} \leq 3} \begin{cases} q - T_{i}^{2} + f_{i+1}(T_{i} + 1), & K \\ 2 - T_{i} + f_{i+1}(1), & R \end{cases}$	3 1.00 2 2 R 4 -0.20 1
(b) L=1,2	Stage 3
Stage 3 T3 K R P3 Dece	Opt Cu
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tg K R F3 Dec.
2 5 2 5 K	$\frac{1}{2} + 3 = 5$ $1 + 4 = 5$ 5 K,R
3 -1 1 1 R	3 1.00+1 = 2.00 -1+4 = 3 2 8
Stage 2: Optimum	$\frac{4}{9} = \frac{1}{1000} = \frac{1}{1$
Tz K R fz Deca	stage2:
1 8+5=13 1+9=10 13 K	T2 K R Fr Dec.
5+1=6 0+9=1 1	1 2 +4 =6 1+5 =6 6 4
	3 100 2 - 3 1 15 - 4 5 8
Stage 1: Gotimum	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
T, K R f, Deca	Opt Sol.
1 8+9=17 1+13=14 17 K 2 5+8=13 0+13=13 13 K,R	T ₁ K R F ₁ Dec
31+13=12 12 R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Optimum solution:	3 1807 3 = T. 176 = 5 5 R
T ₂ T ₁ (2) K	Solutions:
T3 R (I) K	- RHIVE
(2)X(E)-(3)(1)(1)	7 [KH(2)-1R]-(1)
Return = 13, (K, K, R) or (K, R, K)	
$(\frac{4}{4} + 4 - (T_0 + 1)) \times 5$	R-(1) (E-(2)-R-(1)-(B)
P(-)	R-(1)-12-12
$f_4(T_4) = \max_{T_4 \le 4} \left\{ \frac{4}{1+0} + 4 - (0+1) + 6 + (4-T_4), R \right\}$	
continued	18-(1)-(K)
Continuea	

Set 10.3d

P=5, P=4, P=3,	Py	, = 2	• .	1
a, = (1+.085)		1	2	
	1	-018	-023	
= 1.085			.022	
$q_2 = (1 + .08)$.026	
= 1.08	4	-015	-030	
0				-

$$S_4 = (1.085 + .025 - 1.08 - .03) I_4 + (1.08 + .03) X_y$$
$$= 1.11 \times y$$

	Opt.	50/.
State	f4 (X4)	I4*
Χų	1-11 X4	0 = I4 = Xy

$$S = (1.085^{2} - 1.08^{2})I_{3} + 1.08^{2}X_{3}$$
$$= .010825 I_{3} + 1.166 4 X_{3}$$

$$x_4 = P_4 + (q_1 - q_2) I_3 + q_3 x_3$$

=
$$2000 + (-021 - .026)I_3 + .026X_3$$

= $2000 - .005I_3 + .026X_3$

$$f_3(X_3) = \max_{0 \le I_3 \le X_3} \left\{ 0.010825 I_3 + 1.1664X_3 + 0.11 \left(2000 - 0.005 I_3 + 0.026 X_3 \right) \right\}$$

	Opt. 50%.	
State	$f_3(X_3)$	ĒΊ
×3	1.200533 X3	×з

Stage 2:
$$f_2(x_1) = \max_{0 \le I_2 \le X_2} \{S_2 + f_3(x_3)\}$$

$$S_{2} = (1.085 - 1.08) I_{2} + 1.08 X_{2}$$

$$= .0175771 I_{2} + 1.259712 X_{2}$$

$$X_3 = 3000 + (.017 - .022)I_2 + .022X_2$$

= $3000 - .05I_2 + .022X_2$

continued...

$$f_{2}(X_{2}) = \max_{0 \le I_{2} \le X_{2}} \left\{ \begin{array}{l} 0.0175771I_{2} + \\ 0 \le I_{2} \le X_{2} \end{array} \right. \left. \begin{array}{l} 1 \text{ continued} \\ 1.259712X_{2} + 2220 + \\ 1.200535 \left(3000 - .05I_{2} + .022X_{2} \right) \end{array} \right\} \\ = \max_{0 \le I_{2} \le X_{2}} \left\{ 5821.61 - .0424496I_{2} \\ + 1.2861238X_{2} \right\}$$

• .	Opt.	56/	•
State	fz(X2)	I.*	
	5821.61	0	
	1.2861238Xz		

stage!
$$f(x_1) = \max_{0 \le I_1 \le x_1} \left\{ \int_{I_2} + \int_{I_2} (x_1) \right\}$$

$$X_2 = 4000 - .005 I, +.023 X,$$

$$f_i(x_i) = \max_{0 \le I_i \le X_i} \left\{ -0.253697 I_i + 0.253697 I_i \right\}$$

$$\left. (-360489X_i + 5821.61 + 0.2545) \right\}$$

	Opt.	Sol.	
State	$f_i(x_i)$	I,×	
X,=5000	10,966.11+ 1.4090088X1	5000	٠.

 $X_2 = 4000 - .005 \times 5000 + .023 \times 5000 = 4090$ $X_3 = 3000 - .005 \times 0 + .022 \times 4090 = 3090$ $X_4 = 2000 - .005 \times 3090 + .026 \times 3090 = 2065

Solution:

I= x, = 5000; Invest 5000 in FB

Iz=0: Invest \$4090 in SB T== 3090: Invest \$3090 in FB

I3 = 3090 : Invest \$3090 in FB.
0 ≤ I4 ≤\$2065 : Invest \$3065 in FB, SB,

or both.

Xi = cumulative amount available 2 at the end of period i before a decision is made.

$$f_{i}(x_{i}) = \max \left\{ g(y_{i}) + f_{i+1}(x(x_{i}-y_{i})) \right\}$$

$$f_{n}(x_{n}) = \max \left\{ g(y_{n}) \right\}$$

$$f_{n}(x_{n}) = \max_{y_{n}=x_{n}} \left\{ g(y_{n}) \right\}$$

where,

Stage n:

$$f_n(x_n) = \sqrt{x_n}$$
, $\mathcal{J}_n^* = x_n$

$$\frac{\text{Stage } n-1:}{f_{n-1}(x_{n-1}) = \max_{x_{n-1}} \left\{ \sqrt{y_{n-1}} + \sqrt{\alpha(x_{n-1} - y_{n-1})} \right\}}$$

$$\frac{\partial \{\cdot\}}{\partial y_{n-1}} = \frac{1}{2|y_{n-1}|} - \frac{\alpha}{2(\alpha(x_{n-1} - y_{n-1}))} = 0$$

$$y_{n-1}^* = \frac{x_{n-1}}{1+\alpha}$$

Because
$$\frac{\partial^2 \{i\}}{\partial y_{n-1}^2} < 0$$
, y_{n-1}^+ is a

maximum point.

Stage n-2:

$$y^* = \frac{\chi_{n-2}}{1 + \alpha + \alpha^2}$$

Stage 1:

By induction, we can show that

$$J_i^* = \frac{\chi_i}{(1+\alpha+\dots+\alpha^{n-i})}$$

f.(x,) = /(1+2+...+2)-ix Hence,

$$=\frac{C(1-\alpha)}{(1-\alpha)}$$

$$= \sqrt{\frac{\alpha(1-\alpha^n)}{(1-\alpha)}}$$

$$X_2 = \bar{\alpha}(X_1 - Y_1)$$

$$= \alpha^2 C \left(1 - \frac{1}{1 + \alpha + \dots + \alpha^{n-1}} \right)$$

$$= \alpha^3 c \left(\frac{1 - \alpha^{n-1}}{1 - \alpha^n} \right)$$

$$J_z^* = a^3 C \frac{(1-\alpha)}{1-\alpha^n}$$

In general, we have

$$\alpha_i^{*} = \alpha_i^{i+1} \left(\frac{1-\alpha_i^{*}}{1-\alpha_i^{*}n-i+1} \right)$$

$$(a)^{X_0=K} \xrightarrow{\int_{Y_1}^{Y_1} \frac{1}{Z_2} \frac{1}{X_2} \frac{1}{X_{n-1}} \frac{1}{Z_n} \frac{1}{X_{n=0}} \frac{3}{X_{n-1}}$$

$$f_{i}(z_{i}) = \max_{y_{i} \leq z_{i} \leq 2 \kappa} \left\{ P_{i} y_{i} + f_{i+1} \left(2[z_{i} - y_{i}] \right) \right\}$$

$$i = 1, 2, \dots, n-1$$

Set 10.3d

Solution:

7			120) <i>Y</i> 3					• .	Optin	num
Zz	¥3=0	1	Z	3	4	5	6	7	8	fa	<i>y</i> *
0	0									0	0
1	,	120	· · ·	•	'					120	1
Z			240					1		240	Z
3				360						360	3
4					480					480	4
5						600				600	5
6			٠.				720			720	6
7			٠.					840		840	7
8									960	960	8

5tag	e (year) 2:	1305/2+	f3 (2[Zz-y,	ן)			
Z ₂	Y2 = 0	1	2	3	4	fz	<i>Y₂</i> *
2	0+480=480	/30+0 = 130 130+240= 370 130+480= 610	260+240=500			240 480 720	0000
4	0+960=960	130+720=850	260+480=740	390+240=630	520+0=520	960	0

Sta	ge (year) 1:				
	l	100 y, + f2 (2[Z,-	<i>4,1)</i>	Option	num
Z,	J, = 0	1	2	f,	y,×
0		_			-
I		-			_
2	0+960=960	100+480=580	200 + 0 = 200	960	0

$Z_1 = 2 \longrightarrow J_1 = 0 \longrightarrow Z_2 = 4 \longrightarrow J_2 = 0 \longrightarrow Z_3 = 8 \longrightarrow J_3 = 8$ Revenue = \$960

(a)
$$f_{2}(v_{2}, \omega_{1}) = max$$
 $\{14x_{2}\}$
 $0 \le 7x_{2} \le U_{2}$
 $0 \le 2x_{1} \le W_{2}$
 $= 14 min \{ \frac{T_{2}}{7}, \frac{W_{2}}{2} \}$
 $X_{1}^{*} = min \{ \frac{U_{2}}{7}, \frac{W_{2}}{2} \}$
 $X_{2}^{*} = min \{ \frac{U_{2}}{7}, \frac{W_{2}}{2} \}$
 $X_{3}^{*} = max \{ 4x_{1} + f_{2}(v_{1} - 2x_{1}, w_{1} - 7x_{1}) \}$
 $0 \le 2x_{1} \in V_{1}$
 $0 \le 7x_{1} \in W_{1}$
 $0 \le 7x_{1} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in W_{2}$
 $0 \le 7x_{2} \in$

 $= \max_{X_{i}=0,1,2,3} \left\{ 8X_{i} + 7\left[\frac{15-5X_{i}}{2}\right] \right\}$ = 49 at x = 0 Vz = U, -2x, = V, = 8 Wz = W, -5x, = W, = 15 X2 = min } [8], [15] = 7 Optimum: (X1, X2) = (0,7), Z = 49 Forward formulation: $f_i(v_i, w_i) = \max_{0 \le X_i \le V_i} (7X_i^2 + 6X_i)$ = min {75, 265, 7w, +6W,} where x, *= min { Vi, wi} fr (vz, wz) = max (5 x2 + min [7(vz-xz)2+6(vz-xz)] 7(Wz-Xz)2+6(Wz-Xz) Now, Vz=10: 0= V= 10-2X2 => 0 = X2 = 5 $0 \le \sqrt{1-x_1} \implies 0 \le x_1 \le \sqrt{1}$ 0 = W, = 9+3X2 => X2 = U OEW,-X, => OEX, EW, With Uz=10 and Wz=9, we get $f_{2}(v_{2}, w_{2})$ =max {5x2+min[28x2-292x2+760, = max \ min [$33X_2^2 - 292X_2 + 760$, $0 \le X_2 \le 5$ 68 x2 + 39 6x2+621] { Pt. (x2=.5) 68x2+396x2+651 33x2-292x2+760 -3 -2 -1 0 1 2 3 Y J

Optimal solution: $V_z = 10$, $W_z = 9 \Rightarrow X_z^* = 2$ $V_y = 10 - 2x \cdot 2 = 9.6$ $\Rightarrow x_y^* = 9.6$ $W_y = 9 + 3x \cdot 2 = 9.6$ $\Rightarrow x_y^* = 9.6$ Optimal objective value = 702.92

CHAPTER 11

Deterministic Inventory Models

 $y^* = \sqrt{\frac{2KD}{h}}$, $t_0 = \frac{y^*}{D}$, $TCU(y^*) = \sqrt{2KDh}$ a) $y = \sqrt{\frac{2 \times 110 \times 30}{.05}} = 346.4$ units to= 346.4 = 11.55 days $TCU(y*) = \frac{100 \times 30}{346.4} + \frac{05 \times 346.4}{2} = 17.32 Policy: order 346.4 units whenever inventary drops to 207.2 units Effective lead time = 6.91 days b) y = /2x50x30 = 245 units to = 245 = 8.16 days Le = 5.51 days TCU(y*) = \frac{50x30}{24s} + \frac{05x245}{2} Molicy: order 245 units whenever inventory deeps to 165.15 units c) x= \(2x100x40 = 894.4 unils $t_0 = 894.4 = 22.36 days$ Le = 7.64 days $TCU(4) = \frac{100 \times 40}{894.4} + \frac{01 \times 894.9}{2} = 8.94 Policy: Order 894.4 units whenever inventory draps to 305.57 units. d) y= 2x100x20 = 316.23 units to = 316.23 = 15.81 days Le = 14.19 days TCU(y+) = \frac{100x20 + 04x31623 = 12.65 Policy: Order 316.23 units whenver inventory dropes to 283.8 units.

 $D = 300 \text{ lb/wk}, K = $20, h = $03/16/day}$ $(a) TC/wk = \frac{KD}{3} + \frac{hJ}{2}$ $= \frac{20\times300}{300} + \frac{7\times03\times300}{2} = 51.50 $(b) y = \sqrt{\frac{2\times20\times300}{(.03\times7)}} = 239 \text{ lb}$ $t_0^* = \frac{239}{300/7} = .8 \text{ wk}$ $TC/wk = \sqrt{2\times20\times300\times03\times7}$ = \$50.20

Le = 0 days Policy: Order 239 16 whenever inventory draps to zero level. c) Cost difference = 51.50-50.20 a) h = :35 = \$.05/unit/day 3 D = 50 units /day, K = \$20 7 = \2x20x50 = 200 units to = 200 = 4 days L = 7 days, Le = 3 days R = 3x50 = 150 units Policy: Order 200 units whenever. b) Optimum number of orders = 365 = 97 orders (a) Policy 1: D= R = 50 =5 units/day Cost/day = KD + hy $=\frac{20x5}{150} + \frac{02x150}{2} = 2.17 Policy 2: D = 75 = 5 units/day Cost/day = 20x5 + 02x200 = \$2.50 choose policy 1. (b) K=\$20, D = 5 units/day h= \$.02, L = 22 days 4 = \2x20x5 = 100 units to = 100 = 20 days Le = 22-20 = 2 days Renderlevel = 2x5 = 10 units Order 100 units whenever the level drops to 10 units Cost/day = $\frac{20\times5}{100} + \frac{.02\times100}{2} = 2.00

$$TC/day = \frac{K}{3/D} + \frac{h_1 y}{2} + \frac{h_2 y}{2} + .6D$$

$$= \frac{KD}{y} + (h_1 + h_2) \frac{y}{2} + .6D$$

$$y = \sqrt{\frac{2 KD}{(h_1 + h_2)}} = \sqrt{\frac{2 \times 81 \times 600}{(.01 + .02)}} = 1800 \text{ towels}$$

$$t_0 = \frac{1800}{600} = 3 \text{ days}$$

$$Cost/day = \frac{81 \times 600}{1800} + \frac{.03 \times 1800}{2} = $54$$

$$Optimal policy : Pick up soiled towels and deliver an equal batch of 1800 towels cvery 3 days$$

The basic assumption is that the employee will deposit sufficient funds in Europe to take advantage of the higher interest rate and periodically send lump sums to the US to take care of the obligations. This problem in the context of an application of the simple economic lot size formula with no shortages. The idea is that it may be more economical to hold funds longer in European banks to take advantage of their considerably higher interest rate. The cost of wiring funds from overseas (= \$50) may be regarded as the "setup" cost and the lost interest per dollar per year (=.065 - .015 = \$.05) can be treated as the "holding" cost. Using this information, the economic lot size formula will yield

Deposit amount =
$$\sqrt{\frac{2kD}{h}} = \sqrt{\frac{2 \times 50 \times 12000}{.05}} = $4899$$

Time between deposits = $t_0 = \frac{4899}{12000} = .408$ year

= 4.9 mo

Optimal policy: Send \$4899 (\approx \$5000) every 4.9 (\approx 5) months to the US. The first installment occurs at the start of the year

a) From the geometry of the figure, $3 = t_1(a-D) = \frac{y}{a}(a-D) = y(1-\frac{D}{a})$ b) $TCU(y) = \frac{K+(3/2)t_0 \times h}{t}$

$$= \frac{KD}{y} + \frac{h}{2}(1 - \frac{D}{a})y$$

(e)
$$\frac{\partial TCU(y)}{\partial y} = 0$$
 gives
$$-\frac{KD}{y^2} + \frac{h}{2}(1 - \frac{D}{a}) = 0$$

$$y^* = \sqrt{\frac{2KD}{h(1 - \frac{D}{a})}}$$
(d) $\lim_{a \to \infty} \sqrt{\frac{2KD}{h(1 - \frac{D}{a})}} = \sqrt{\frac{2KD}{h}}$

alternative 1: Produce
$$J^{*} = \sqrt{\frac{2KD}{h(1-\frac{D}{a})}}$$

$$= \sqrt{\frac{2\times20\times\frac{26000}{365}}{02\left(1-\frac{26000/365}{100}\right)}} = 763.7 \text{ units}$$

Total cost /day
$$= \frac{KD}{3} + \frac{h}{2} \left(1 - \frac{D}{a}\right) y^{*}$$

$$= \frac{200 \times \frac{2600}{365}}{703.7} + \frac{02}{2} \left(1 - \frac{26000}{100 \times 365}\right) \times 703.7$$

$$= ^{2}4.05 \text{ for day}$$

continued..

Set 11.3a

alternative 2: Buy

$$y'' = \sqrt{\frac{2KD}{n}}$$

$$= \sqrt{\frac{2XISX\frac{26000}{365}}{02}}$$

$$= 326.87 units$$
Total cost/day

$$= \frac{KD}{y*} + \frac{h}{z} y*$$

$$= \frac{15x}{365} + \frac{02}{2}x377.45$$

$$= $6.54/day$$

The company should produce its own.

$$3 = 4(1 - \frac{D}{a}) - w$$

$$T(U(1, w)) = \left[K + \frac{h\{4(1 - \frac{D}{a}) - w\}^{2} + pw^{2}}{2D(1 - D/a)}\right]/t_{0}$$

$$= \frac{KD}{4} + \frac{h\{4(1 - \frac{D}{a}) - w\}^{2} + pw^{2}}{24(1 - D/a)}$$

Partial derivatives = 0 give

$$-\frac{KD}{y^{2}} + h\left(\frac{1}{2}(1-\frac{D}{a}) - \frac{w^{2}}{2y^{2}(1-D/a)}\right) - \frac{pw^{2}}{2y^{2}(1-\frac{D}{a})}$$

$$h\left(\frac{w}{y(1-\frac{D}{a})} - 1\right) + \frac{pw}{y(1-D/a)} = 0$$

This gives,
$$\frac{2kD(\rho+h)}{ph(1-D/a)}, \quad w' = \sqrt{\frac{2kDh(1-\frac{D}{a})}{p(\rho+h)}}$$

EOQ before quantity chi-count = 1800 | towels per Problem 6, Let 11.2a.

Total cost/day quen batches of 1800 towels

= D.C. + \frac{KD}{y} + \frac{h_1 + h_2}{2} \frac{1}{2}

= 600 \times 6 + \frac{81 \times 600}{1800} + \frac{.03 \times 1800}{2} = \frac{414}{2}

Total coot/day given batches of 2500 towels $= DC_2 + \frac{KD}{y} + \frac{(h_1 + h_2)}{2}y$

= 600x.5 + 81x600 + .03x2500 = \$356.94 Take advantage of price discount.

 $f_m = \sqrt{\frac{2KD}{h}} = \sqrt{\frac{2\times100\times30}{05}} = 346.41$ 2 q = 500 units

Because $y_m < q$, we need to compute \mathbb{R} .

 $TCU_{1}(y_{m}) = DC_{1} + \frac{KD}{y_{m}} + \frac{hy_{m}}{2}$ $= 30 \times 10 + \frac{100 \times 30}{346.41} + \frac{.05 \times 346.41}{2}$ = 317.32

The equation for computing Q is $Q^{2} + \left(\frac{2(8\times30 - 317.32)}{.05}\right) Q + \frac{2\times100\times30}{.05} = 0$

 Q^2 - 3092.82 Q + 120000 = 0 This yields Q = 3053.52 units Because $y_m < q < Q \Rightarrow y^* = q = 500$ $t_0 = \frac{500}{30} = 16.67$ days $\Rightarrow L_c = 4.33$ Order 500 units when inventory dup to 130.

 $y_m = \sqrt{\frac{2KD}{h}} = \sqrt{\frac{2 \times 50 \times 20}{3}}$ = 81.65 units

Because $q > y_m$, we need to compete Q. $TCU_1(y_n) = 20 \times 25 + \frac{50 \times 20 + .3 \times 81.65}{81.65}$ = $\frac{$524.49}{}$

Q-equation: Q2+ $\left(\frac{2(22.5\times20-524.49)}{3}\right)$ Q+ $\frac{2\times50\times20}{3}$ =0 Q2-496.63Q+6666.67 = 0

continued

Thus, Q = 482.83Because $y_m < q < Q \Rightarrow y^* = 150$ Order 150 units when inventory drops to 0

From the preceding figure, He discount is not advantageous if $TCU_2(q) \leq TCU_2(q)$

 $DC_1 + \frac{KD}{y_m} + \frac{hy_m}{z} \le DC_2 + \frac{KD}{q} + \frac{hq}{z}$

 $20C_1 + \frac{50\times20}{81.65} + \frac{.3\times81.65}{2}$ $\leq 20C_2 + \frac{50\times20}{150} + \frac{.3\times150}{2}$ Thus, the condition reduces to

 $C_1-C_2 \leq -23359$ Let d= discount factor (<1). Then $C_2=(1-d)C_1$, 0 < d < 1Given $C_1=25$, we have

25 d ≤ · 233598

or d ≤ .009344 Thus, no advantage if the

Thus, no advantage if the 7 discount is < .9344/v (= 1%)

$$Tcu_{i}(y) = \frac{KD}{y} + \frac{h_{i}y}{2}$$

$$Tcu_{i}(y) = \frac{KD}{y} + \frac{h_{i}y}{2}$$

$$Case i: q < y_{em}$$

Solution:

y* = ym

TCU(y*) = TCU2(ym)

Case 2: J2m < 9 = Q The value of Q is determined from the equation:

TCU, (dim) = TCU2(Q)

Solution: $y^* = q$ $TCU(y^*) = TCU_2(q)$

Ceae 3: Yzm < Q < q

Solution: Y = Jm, TCU(Y*) = TCU, (Ym)

$$TCU(y^*) = \begin{cases} TCU_2(Y_{2m}), & q < y_{2m} \\ TCU_2(q), & y_{2m} < q \le Q \\ TCU_1(y_{1m}), & y_{2m} < Q < q \end{cases}$$

See file ampl11.3c-1.txt.

AMPL model will not converge unless K_iD_i/v_i is replaced with $K_iD_i/(v_i+\varepsilon)$ where

 K_iD_i/y_i is replaced with $K_iD_i/(y_i+\varepsilon)$, where $\varepsilon>0$ and very small.

SOLUTION:

Total cost = 568.11

 $y_1 = 4.42$

 $y_2 = 6.87$

 $y_3 = 4.12$

 $y_4 = 7.20$

 $y_5 = 5.80$

See file ampl11.3c-2.txt.

New constraint:

 $(1/2)(y_1 + y_2 + y_3) \le 25$

SOLUTION:

Total cost = 10.42

 $y_1 = 10.83$

 $y_2 = 16.85$

 $y_3 = 22.32$

See file ampl11.3c-3.txt.

New constraint:

Average inventory for item $i = y_i/2$.

 $(1/2)(100y_1 + 55y_2 + 100y_3) \le 1000$

SOLUTION:

Total cost = 14.31

y1 = 5.58

y2 = 7.90

y3 = 10.07

See file ampl11.3c-4.txt.

AMPL model will not converge unless

 K_iD_i/y_i is replaced with $K_iD_i/(y_i+\varepsilon)$, where $\varepsilon > 0$ and very small.

New constraint:

 $365(10/y_1 + 20/y_2 + 5/y_3 + 10/y_4) \le 150$

SOLUTION:

Total cost = 54.71

y1 = 155.30

y2 = 118.81

y3 = 74.36

y4 = 90.09

Set 11.4a

Set 11.4c

(a) No, because inventory Should not be held needlessly at the end of planning horizon

0 \ Z, \ S, 1 \ Z_2 \ S, 0 \ Z_3 \ \ 4 $x_1 = 4$, $1 \le x_2 \le 6$, $0 \le x_3 \le 4$

\$ \le Z_ \le 14, 0 \le Z_2 \le 9, 0 \le Z_3 \le 5 $x_1 = 0, \quad 0 \le x_2 \le 9, \quad 0 \le x_3 \le 5$

X,20 X		Z _z	Z ₃		Zy	;
	5	2		3	3	

Stage 1: $f_1(x_2) = \min\{K_1 + C_1(z_1) + h_1x_2\}$ $Z_1 = D_1 + x_2$ where $G_2(z_1) = \{1Z_1, 0 \leq Z_2 \leq 6\}, i = 1, 2, ..., 4$

				_		•	~ ~.,	•	マンノ	')		
	١٧.	K_{i}	=5	s h	,=1						Opt.	. 501
	X5/	5	6	7	8	9	10	11	12	13	f,	Z,
	٥	10									10	5
	1		12								/2	,6
	2			15		·.					12	7
	3				18						18	8
	4					21					21	.9
	5						24				24	
	6							27			27	11
٠	7								30		30	12
	8									33	33	/3
											h	l

Stage 2: f(x3)= min { K2+C2(2)+12x3+f(x3+2-2)} 0 = Z = P + X3 0 \ Zz \ 8, 0 \ X3 \ 6, Pz = Z

\Z ₂	$ z K_2 = 7, h_2 = 1$									Opt.	Opt. Sol.		
<u>x</u>	O		2	3	4	5	6	7	8	fz	Zı		
٥	15	20	19	,			٠.			15	0		
1	19	24	22	21						19	0		
2	23	28	26	24	23					23	0,4		
3	27	3 Z	30	28	26	25				25	5		
4	31	36	34	32	30	28	27			27			
5	35	40	38	36	34	32	3с	30		30	_		
6					38	36	34	33	33	33	7.8		

Stage 3: 0 = Z3 = 6, 0 = X4 = 3, D3 = 3

て	L K3	= 9	, h3	=1				Opt.	Sol.
X	0	71	2	3	4	5-	6	f ₃	Z ₃
0	25	33	<i>3</i> 0	27				25	
1	28	36	35	32	29			28	0
Z	32	39	38	37	34	31		3/	5
3	36	43	41	40	39	36	33	<i>3</i> 3	6

Stage 4: 0 = Z4 = 3, X5 = 0,

\ Z	K4=7	1, h4=	1		Opt.	Sol.
X5 4	0)	2	3	f4	Zy
0	<i>3</i> 3	39	37	35	33	6

Solution:

$$f_{1}(X_{2}) = \min \left\{ C_{i}(z_{i}) + K_{i} + h_{i} \left(\frac{X_{i} + Z_{1} + X_{2}}{2} \right) \right\}$$

$$= \min \left\{ K_{i} + C_{i}(z_{i}) + h_{i} \left(X_{2} + \frac{D_{i}}{2} \right) \right\}$$

$$0 \le z_{i} \le D_{i} + X_{2}$$

$$f_{i}(X_{i+1}) = \min \left\{ K_{i} + C_{i}(2_{i}) + h_{i}(X_{i+1} + \frac{Di}{2}) \right. \\ \left. = \sum_{0 \leq Z_{i} \leq D_{i} + X_{i+1}} \left\{ K_{i} + C_{i}(2_{i}) + h_{i}(X_{i+1} + \frac{Di}{2}) \right. \\ \left. + f_{i-1}(X_{i+1} + D_{i} - Z_{i}) \right\} \right. \\ \left. (X_{3} = 1) \rightarrow Z_{3} = 3$$

$$\left. (X_{3} = 1) \rightarrow Z_{3} = 3$$

5#	age /	: D,	= 3						
] _{x.}	Z,=2							OP	501.
							8	$f_{I_{i}}$	Z_{I}
1	99	/00	111	115	129	193	151	99	2

Solution:

$$(X_1=1) \rightarrow Z_1=2 \rightarrow (X_2=0) \rightarrow Z_2=3 \rightarrow (X_3=1) \rightarrow Z_3=3$$

$$Cool = $99$$

$f_n(x_n) = \min_{\substack{z_n + x_n = D}} \left\{ k_n + C_n(z_n) \right\}$

 $f_{i}(x_{i}) = \min \left\{ k_{i} + c_{i}(z_{i}) + h_{i}(x_{i} + z_{i} - \lambda_{i}) \right\}$ $\mathcal{D}_{i} \leq x_{i} + z_{i} \leq D_{i} + \cdots + D_{i}$

+ f (x,+z, -Di)}

Stage3: D3=4, 0≤×3≤4

	1					Opt.	501.
<u>X3</u>	$Z_3 = b$	1	2	3	4	f3	Z_3
٥					56	56	4
I				36		3.6	3
2			26			26	2
3		16				16	1,1
4	O			WAIR-00777777		0	0

Stage 2: D2 = 2

							Opt .	Sa 1.
<u></u> 20	1	z	3	4	-ی	6	1/2	Z
		83	76	89	102	109	76	3
	73	66	69	82	89		66	2
6	56	59	62	69			56	0,1
9	49	52	49				34	0
2	42	39					32	0
5	29						25	0
2							12	0
	6 9 2 5 2	73 6 56 9 49 2 42 5 29	\$3 73 66 6 56 59 9 49 52 2 42 39 5 29	\$3 76 73 66 69 6 56 59 62 9 49 52 49 2 42 39 5 29	\$3 76 89 73 66 69 82 6 56 59 62 69 9 49 52 49 2 42 39 5 29	\$3 76 89 102 73 66 69 82 89 6 56 59 62 69 9 49 52 49 2 42 39 5 29	\$3 76 89 102 109 73 66 69 82 89 6 56 59 62 69 9 49 52 49 2 42 39 5 29	\$3 76 89 102 109 76 73 66 69 82 89 66 6 56 59 62 69 56 9 49 52 49 34 2 42 39 32 55

average inventory = xi+Zi+Xi+1 $= \frac{3}{\chi^{r} + \zeta^{r} + \chi^{r} + \zeta^{r} - \beta^{r}}.$ $= \chi_{i} + Z_{i} - \frac{D_{i}}{2}$

Replace h: (Xi+Zi-Di) with hi (xi + Zi - Di) in the backward formulation of problem 4.

961 11. <u>4</u>	<u>'U</u>															
Period 1:					Stage	<u>. 1</u> :	<i>D</i> ₁ =	= 150	X	= S	0			· ,		
	is H agner Whitin (Forward) Dynam			1 1 1	Z2 2:	110 2	00 2	20 26	. 22/	dan	Te.		. 102	T	19	Ŧ
2 Number of periods, N 4 3 Period 1 2 3	4	S coldas			0 70	1 - 2 - 2 - 2 - 2 - 2		- -0	1 330	720	133	0 13	1 1 10	920	700	
5 P K(1 (s.4) = 28 114 185		_		i Selution Imary	100	14		40					1	1	1400	细胞
6 U h(tur4) = 1 1 1 7 T D(tur4) = 0 22 90	67	Current	x f z	x f z	120		. '3						ŀ		154	1
Feriod 0 zi= 0	765 fts yes 22 112 179	optimum Period 1	0 0 0 22 164 22		230			182	2310			1	1		1120	
10 11 C1(z1)= 0 11	142 322 456	0 0			320				12 310	2940	,				2110	1
x2= 22 111111 x2= 112 111111	1 164 111111111111111111111111111111111	164 22 434 112			450				1		3857	ا			21% 3150	×.
44 G x2= 179 111111		635 179			630			ľ				5110			2110	2003
Period 2:					770	1							6410		6990	and a
A B C C W	gner-Whitin (Forward) Dynami Current period= 2	c Programming Invent	G R 1 S ory Model		3 20			L_	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	6940	6940	
Ferrod 1 2 3 4 4 4 4 1 1 2 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		Cythours	Selution	Sta	re a		D, =	100)					Opt.	S
5 P K(1 to 4) = 38 114 185 6 U h(1 to 4) = 1 1 1 Z I D(1 to 4) = 0 22 96	70 1 1 67	Current		x f z	43 3 ·	100	12	0 160	230	320	450	630	770	The same of the same of	i. I	7
5 East Constitute correct Co. 5 Period 1 22 0 Stat F1 C2(x2)= 0	22 112 179 158 336 472	optimum Period 2	0 0 0 22 164 22	0 158 22 90 428 112	0 140	140	1							+	11.	
S 0 x3= 0 164			112 434 112 179 635 179	157 629 179	20 156	1	154	i							A. 精竹	17
254 x3≠ 157 792 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	629 179			130 244	1		1520	2310					2	310	. %
Period 3:		1 ar 1 ar -		1 1 1	220 3160	1			1	2990			- 1	- 1	940	#7
	F G H gner-Whitin (Forward) Dynamic			U.S. P.	351 420		4				3151			10		4
Humber of periods, N= 4	Current period= 3		ory monei		530 569	4						5110.				61
Period 4 2 3 4 c) to 4 2 2 2 2	2		Optimum		670 6760	- F	1	•			I		1099	17		77 00
5.P 8(104)= 98 114 185 5.U h(104)= 1 1 1	1		x f z	naty SP 55	720 7160		<u>L</u>							440 6	sec.	
7:17 D(10:4) = 0 22 90 4 Am 214 photography yes	59 15	Current optimum		period 2 0 158 22	Sh	<u> ۱</u> ۹۲	<i>"</i>	D.	= 2	0				171-		7
3 Period 2 23= 0 10 12 C3(23)= 0	98 157 365 499	Ø 23	112 434 112	90 428 112 157 629 179	y 22	1	T	- T -	1-	T	1	T	ı —	UP,	A Sai	4
\$ 158 x4= 0 428 2 1 428 x4= 67 696 3 A 629	523 1111111 111111 724	428 0 696 0	179 635 179 period 3		X4 = 0		1	130	220	350	530	670	720	f ₃	2,	
			0 428 0 67 696 0		90 190		182	0	ľ			ĺ		15.80		
Period 4:	1 1 1 1 1		i i i		10 253	1		2240						2240	13	ō
V13 * X V = 67	F 100 H 10	w c n			200 334	0		1	2780					2780 3560	35	1
War Manuber of periods, N= 4	gner-Whitin (Forward) Dynamic Current period= 4	Programming Invento	ry Model		350 4510					3560				4640		_
Period 1 2 3	4 2	rup at			570 6134 650 7394						4640	5480		1	67	lo
S P 5(5:04 = 98 114 185 5 U M D 4 = 1 1 1	70			iary	780 1841		İ	1					5780	รายก	72	Ω
B(fin 4) = 0 22 90 Amadicalus cornel? est	67	Current	x 1 z period 1 0 0 0	period 2	. <u>S+</u> a	9e -	¥ :	D_{i}	=40	,				The second	ingent and and	egy-y-c
Period 3 zi= 0 13 CA(z4)= 0	67 ·	Period 4	22 164 22 9	90 429 112	25	24		ri					of the last of the	Opt.	PROPERTY OF THE	₹.
1 S 428 x5= 0 696	602		179 635 179	57 629 179		=0	40	110	200	330	310	20		łų	₽ ,	_
2 696 1 4 1 6 -				9 632 67	70	1820 2310	7 Q.U	2250					- 1	2750	110	
nger					290	2990 3850			2700	3)20			- 1	701	200 330	
Optimum se	lution:					5110 6010				14	1250	4910	4			
	. 4			_	660	6440							5200	100	700	
Ophimum se Z4 X4 . 67 0	Z3 X3	Zz	XZ	۲,	Stag		: 	D ₅ =	70	•	•		100	of. I	61.	
_	0 90	112	0'	0		= +	70	160	290	470	610	660	1	5	2,	-
67 0						310	2440	3160					22	70	0	
											1					
	(39				210 3	790			4200	5(40			37		0	
67 0 Cost = \$1	632				210 3 400 5 540 6	790 •50			4200	5(40	676)	505 60	0	0 0 0	

Stag	<u>n6</u> :.	D6 =	90	9						
1_	. •				• •			14	opt.	50%.
267 2	60 90	220	1	400	5	40	590	,	f6	26
0 2	880 3170		T		1				880	6
	180 980	4600		580					1180	0
	180		1	000	812	20	1	7	380	0
500 7	ppo		<u>L</u>		1_		8676	2/	PP 0	0
Stag	c7: D) = 130	0						•	•
		/						10	0pt.	-
28	27 = 0	130	3	10	45	0	500	,	f_{7}	Zy
0	4/80	3700	46	00	٠.				3700 600	3/0
180 320	7700		,		530	0		5	300	450
370	8250						5550	1 5	550	500
Stage	<u>e 4</u> 5	Dg = 1	P	0				06	t. 2	, I.
Zq	5 L = 0	180	-,	3.	20	3	70	F	8	2,
0	4600	4720	0		• / • •			46		0
140	5860			58	40	؍		58		120
190	63/0	<u> </u>		<u> </u>		62	240	6.2	40	370
Stag	e 9:	$D_q =$	/	40		1	Op	f. :	ŞΙ.	
	29=0	14	0	/	90		f		3	9
0	5840	5180	0			T	518	9	1	40
50	6340			53	80		538	0	1	90
Stage	e 10 :	\mathcal{D}_{lo}	=	50						
	1					1	Opt	. S	61.	

\boldsymbol{x}_{n}	2,0 = 0
0	5380
Soluti	771 :

Period	Order amount
1	100
2	120
3	0
4	200
5	0
6	0
7	310
8	0
9	190
10	0

50

5780

Minimum cost = \$5380

Period 1:

2	Vile Value of			Wat	ner Wi	idn (Fo	rward) [ynamic	Program	nming l	nvent	ory k	lodel	- 	establishes a	and her or the finds	arterior a
	Numbere	i peri	ads, N=	5		Current	pario d=		5<5150 c	Militarities:							
	Perior	1	2	3	4	5	,	6			1.6						
	c(1 to 5) •	10	10	10	10	18							0	p i linur	Solo	tim.	
	K(1 to 5) =	80	70	60	80	60									eniary		
80	h(1 to 5) =	1	1	1	1	1						X		7	X	- 1	1 2
2 8	D(1 to 5) -	59	70	100	30	60		1		Curre	end		period 1	Г		1	1
23	dia di con	100	ne i	100		98	988	9		optim	UM.	0	580	50		1	T
22	Period 0		y le	50	120	220	250	310	- 1	Perio	d 1	70	1350	120			1
	10		C1(z1)=		1280	2280	2580	3180		fi	71	170	2450	220			1
8		x2≃		580	111111	1111111	1111111	1111111	1	580	50	200	2780	250			T
		x2=	70	1111111	1350	1111111	1111111	1111111	Ĺ		120	260	3440	310		1	1
		x2=		1111111	111111	2450	1111111	1111111			220		İ				T
Æ		x2=	·	1111111	111111	3111111	2780	1111111	1	2780	250	<u> </u>	<u> </u>				1
38		x2=	260	1111111	111111	1111111	1111111	3440		3440	310	1		T	T		1

Period 2:

З.,	-			170					Program	nming i	mea	UIY H	10851				e interes
	Number o	peri	ds, N	5		Current	enod=	2	005/82								400
	Period	1	2	3	4	5											
30	e(1 to 5) +	10	10	10	10	10							- 0	otimu	n Solu	fine 's	
	Kit to 5) •	80	70	60	88	68					-				mmary		
"	Ming.	.1	1	1	1	1						X	1	Z	x	7	ī
i Ü	Ditte Sie	50	70	100	30	68				Curre	rit	$\overline{}$	period 1	T -		1100	1
	Air State		39738	V/E		784	100			optim	um	0	580	50	†		
	Period 1		7)-		78	178	200	260		Perio	d 2	70	1350	120	·	T	
T	11	1	C2(z2)=	.0	770	1770	2070	2670		2	12	170	2450	220	†	·	_
8	580	x3=	0	1350	1350	1111111	1111111	111111		1350	0	200	2780	250	†		
ħ.	1350	x3=	100	2550	111111	2450	1111111	111111		2450	170	260	3440	310	t	·	
Į,	2450	x3=	130	2910	111111	1111111	2780	111111		2780	200		period 2	•	†		-†
	2780	x3=	190	3630	111111	1111111	1111111	3440		3440	260	0	1350	0	l	†	_
¥.	3440				1						1	100	2450	170	†		
ij					1					***************************************	ļ	130	2780	200	†*****	†******	~~~
ž.		********			1	·		***************************************			†	190			†"····	ļ	

Period 3:

					logei	ery N	wen	nming la	c Program	ynami	rward U	ntan (t-os	nes-m	11.9				L.,
Comparison Com									ck\lbs	3	penlad	Current		5	ids, H	peri	Homber of	
R(1 to 5) = 00 70 68 00 68												5	4	3	2	1	Period	
		don .	ı Salı	timun	. Op							10	10	10	10	10	c(1 ta 5) =	
			шагу	Sun								68	80	68	76	80	KN ta 5) =	
	Z		X	2	1	X						1	1	_1	1	1	141 to 5) =	
Period 2 23 0 100 130 190 Period 3 70 120 30 2740 17)	penod 3			period 1		nt	Curre			L	60	30	100			8019 N.Deutson 5865	411
	100	2410	0	50	580	0	m	oplimi					yes		rest.	800		
1950 x4= 0 2450 2410 111111 111111 2410 100 200 2780 2450	130	2740	30	120	1350	70	13	Period			190	130	190	0	2}=		Period 2	Q E
2450 x4= 30 2810 111111 2740 1111111 27740 130 230 3440 310 310 340 340 340 340 340 340 340 340 340 34	190	3400	90	220	2450	170	23	ß			1960	1360	1060	0	C3(z3)=	•	200000000000000000000000000000000000000	1
2780 x4= 90 3530 11111 111111 3400 3400 99 pend 2	T			250	2780	200	100	241D			1111111	1111111	2410	2450	0	x4=		
348 · 0 150 0 545 170 100 2450 170	T			310	3440	260	130	2740			1111111	2740	111111	2810	30	x4=		
100 2450 170	Ţ				period 2		190	3400	·		3400	1111111	111111	3530	90	χ 4 =		
	T		[0	1350	0											3446	16
130 7790 200	T		l	170	2450	100				L								ij,
	1	1	· · · · · ·	200	. 2780	130												

Period 4:

210

0.

5380

L	on the	_		₩a	ner Wi	uitin (Fa	ward) (ynami	: Progran	nming h	vent	ory N	odel	12.7		1	
	Humber of	perio	ds, II	5		Correct	period-	4	565 301								
	Period	1	2	3	4	5											
1	d165)=	10	10	10	18	10							0:	dina.	Sak	See 1	K.
P	Kitusi -	80	70	68	89	68									om ar v		
H	NI to 5 =	1	1	1	1	1						X	1	2	X		2
T	Of to 5) =	50	70	100	30	60				Сите	nt		period 1			period 3	
1	te angle	- 4	ed!	163	100	125				optim	ım	0	580	50	0	2418	100
	Period 3		24=	8	30	98				Perior	4	70	1350	120	30	2740	130
	13	(A(24)=	. 0	390	980				ű.	24	170	2450	220	90	3400	198
	2410	x5=	0	2740	2790	1111111				2740	0	200	2780	250		period 4	********
ij,	2740	χ5=	60	3460	111111	3450				3450	90	260	3440	310	0	2740	O
	3400												period 2		60	3450	90
0					[0	1350	0			
					1		,			***************************************		100	2450	170			
					T			·				130	2780	200			
					T							190	3440	260			
Ő				·	1	1	·	Ī	1			1			T		

continued

Set 11.4d

				Wa	gner V	hitin (Fa	rward) D	vnami	c Propra	mmine	lovei	lary	dodel.		econ:	anahii.	
2	Numbera	l peri	06, H				period=				100						
331	Period	1	2	3	4	- 5	2.5	A SHE THE	1	1	16	W	. 16000	****	4.2	<i>***</i>	
П	c(1 to 5) =	10	10	10	10	10							O	offinia	n Sole	ation	
	K(1 to 5) *	80	78	68	80	60				g, i . i ·					mmary		
20	h(1 to 5) =	1	1	_1	1	1	1.5					¥	ſ	7	Y	f	
	0(1 to 5) =	50	, 70	100	.30	60				Cum	ent	-	period 1	Ť	 ^-	period 3	-
	Om Allenda	60 giği	nell.		963				1000	optim	um	To	580	50	10	2410	100
	Period 4		<i>1</i> 5=	0	60					Perio	d5	70	1350	120	30	2740	130
	(1		35(z5)=	0	660		- 1	-		6	z5	170	2450	220	90	3400	190
15	2740	x6≃	0	3450	3400					3400	60	200	2780	250		period 4	
20	3450											260	3440	310	Ō	2740	Ó
								*********					period 2		60	3450	90
16												0	1350	Ó	w	period 5	
										********		100	2450	170	0	3400	60
			7								,	130	2780	200		3900	-04
											-	190	3440	260		 	

Period 1:

1	Humber er	884	8 14	6		Jurrent	oeriod-		cella:								
	Period	1	2	3	4	5	6						1				
	dian-	2	2	2	2	2	2						0	im un	i Sola	tion	131
	K(1 to 6) =	20	17	10	18	5	50							Sun	in ary		
	bil to 6) =	1	1	1	3	1	41					X	f	2	X	ſ	Z
	0(168+	10	15	7	20	13	25			Curre	nl		period 1				
								105		optim	um	0	40	10			I
	Period 8		zi=	10	25	32	52	65	90	Period	11	15	85	25			Ī
6	18		C1(z1)=	40	70	84	124	150	200	ff	z1	22	106	32			
K		x2=	0	40	111111	1111111	1111111	1111111	1111111	40	10	42	166	52	[
		x2=	15	1111111	85	1111111	1111111	1111111	1111111	85	25	55	205	65	l	Ī	
		x2=	22	1111111	111111	106	1111111	1111111	1111111	106	32	80	280	90			
ŝ		x2=	42	1111111	111111	1111111	166	1111111	1111111	166	52						Ţ
N		x2=	55	1111111	11111	1111111	1111111	205	1111111	205	65						I
300		x2=	80	444444	111444	444444	111111	1111111	290	280	90	1	·	•		```	7

Period 2

繎	in.	Contract Con						Program	many 11	ITCIIL	QI J.M	UMGE				
8	perio	ds, 🌬	6		urrent		2	<=lefate:								
ä	1.	2	3	4	5	6										
	2	2	2	2	2	2						Op		n Selut	on	177.12
漪	20	17	10	18	. 5	50							Sun	nmary		
		1	1	3	1	1					X	ſ	2	X	ſ	Z
	10	15	7	20	13	25			Curre	nt :		period 1				
	32	100	w. 65	404	les.		100	31654	oplim	um	0	40	10			T
		22+	0	15	22	42	55	80	Perior	12	15	85	25			-
	7.04	C2(z2)=	0	47	61	101	127	177	12	72	22	106	32			T
T	x3=	0	85	87	1111111	1111111	1111111	1111111	85	0	42	166	52		***********	
77	х3≕	7	113	111111	108	1111111	1111111	1111111	108	22	55	205	65			T
Ĭ	x3=	27	193	111111	111111	168	1111111	1111111	168	42	80	280	90			
	x3=	40	245	111111	111111	1111111	207	1111111	207	55	T	period 2				
B	x3=	65	345	111111	111111	1111111	111111	282	282	80	0	85	0			
í.				1	-					1	7	108	22		,	1
n				1	!		F			1	27	168	42	1		7
18				†	1	·	l				40	207	55	1		1
14		44		1	l		†	1		T-	65	282	80	†		1

		3	

	San Spine in St.	ada a	List Colonia	Wa	gner W	hitle (Fe	rward) l	Dynamic	Program	nming l	nyeni	ory I	lodel		Acres o		-	Г
24	Rumber o	l peri	ods, H			Corrent	period-	1	celdad	BHEREN								Ť
3.4	Period		2	3	1	5	6		nica-in No									1
11	G[06]=	7	7	2	2	2	2		A114-7-19				0	diaur	. Sela	ton.		-
5 P	K#1 to 6] =	20	17	10	18	5	50							Sur	amary			1-
6 H	M106 =	1	1.	1	3		1					X	1	2	X	T	1	r
<u> I</u> JT	0(168)=	10	15	1	20	13	25			Cune	ent .		period 1			period 3		r
34	And 2 leads	85 CO	rect?	100	786	γ35	785	986		optim	um	0	40	10	0	106	0	r
	Period 2		7 3=	8	7	27	40	65		Perio	d3	15	85	25	20	189	27	r
10	12		C3(z3)=	0	24	64	90.	140	9	ß	13	22	106	32	-33	208	40	t
<u> </u>	86	x4=		108	109	1111111	1111111	1111111		108	0	42	166	52	58	283	65	1-
	106	x4=		188	111111	169	1111111	1111111		169	27	55	205	65			_	T
13.4	168	x4=		240	111111	1111111	208	1111111		208	40	80	280	90			·	T
	207	X4=	50	340	111111	1111111	1111111	283		283	65		period 2					T
	262	<u> </u>			ļ			ļ				6	85	0				Г
10					ļ			ļ			<u> </u>	7	108	22				Г
		ļ			ļ	ļ	ļ		ļ			27	168	42				L
WV.							ļ	ļ	ļ			40	207	55				L
		ļ			ļ	ļ	ļ		L			65	282	80				L
四把	1				i	1	l				ī . l	ł	, ,		1			T."

Period 4:

M _	National			Wa	gner-W	hitin (Fo	rward) [lynami	c Progran	oming l	nvent	l yra	lodel			1	O'R T GOOD
	Number of	peri	0 ds, N=	6		Current	perlo#	4	edfo:								
	Period	1	2	3	4	5	6										
	c(1 to 6) =	2	2	2	2	2	2		T				Û	dimur	a Soli	dien	
	K(1 to 6) =	20	17	10	18	5	50		1						man		
a i	M1 to 61 -	1	1	1	3	1	1				********	X	f	1	X	1	7
	财物的-	10	15	1	20	13	25			Cum	ent		period 1			period 3	
	Vestelli	er tu	recli	180	707	198	160			optim	um	0	40	10	0	100	0
	Period 3		24=	•	20	33	58			Perio	d 4	15	85	25	20	160	27
	- 13		C4(z4)=	0	58	84	134			14	z4	22	106	32	33	208	46
10	108	x5=	0	169	166	1111111	1111111			166	20	42	166	52	58	283	65
	169	x5=	13	247	111111	231	1111111			231	33	55	205	65	·	period 4	
	209	x5=	38	397	111111	111111	356			356	58	80	280	90	Q	166	20
	283											l	period 2		13	231	39
16												0	86	0	36	356	58
												7	108	22	I	T	-
2											T	27	168	42			
ø									1			40	207	55			
8									1		1	65	282	80	1	1	

Period 5:

	Humber o		4. 1					3 S	Program	mining i	114646	wy .	HUUE)	000000			
	Period	1	7	3		Current 5	6 6	3	<# dispressions of the second								
	-M to G.	2	2	3	1 2	2	2		-								
	Kill to G =	20	17	18	18	5	50						ų		n Soli		
	hft to 61 =	-	-11	10	3	-	30							Zu	uman		
	missis.	40	40	-		1	1					X		2	X		7
. 4	Ultra di	18	15	-	20	13	25			Cun	******		period 1			period 3	
23		50	reci!		16					optin		0	40	10	0	108	0
íZ	Period 4		ti-	0	13	38			1	Peno	d 5	15	85	25	20	169	27
	a 1 54	. 1	05(න්)≠	0	31	81				15	25	22	106	32	33	208	40
ŝ	166	x6=	0	231	197	1111111				197	13	42	166	52	58	283	65
	291	x6=	25	381	111111	272			Ī	272	38	55	205	85		period 4	
	356		,,,, , ,,,,,,								-	80	280	90	0	166	20
											1	ļ	period 2		13	231	33
											1	0	85	0	38	356	58
											-	7	108	22		period 5	
					<u> </u>						T	27	168	42	0	197	13
IÇ					1						T	40	207	55	25	272	38
											T	65	282	80	†	1	<u>7</u>

Period 6

i i	Attai	********		110					Progran	iming i	nveni	ory #	logei			James	2006.64
88	Hamber o	реги	ids, H=	6		uneat	period⊨	6	écidon							100	
	Period	1	2	3	4	5	6										
a	c[to 6] =	2	2	2	2	2	2						0:	e in un	n Sofi	dios.	
ğ	K(1 to 6) +	28	17	10	18	5	50								eman		
Ш	Mang-	1	1	1	3	1	1					X	ſ	7	¥		-
	Daro.	19	15	7	20	13	25			Cum	ent	_	period 1	-	-	period 3	redir.
		- 1	real P	125	795					oplim	um	0	40	10	n	108	0
	Period 5		Ę,	0	25				1	Perio		15	85	25	20	189	27
	- 15	. (C6(z6)=	0	100					16	zδ	22	106	30	33	208	40
S	197	x/=	0	272	297					272	0	42	166	52	58	283	65
Ū	272						1				-	55	205	65		period 4	
Ø,		,,				_,	_ ⊀	a 7	2	***********	1	80	280	90	Ď	186	20
Œ	UP	71				71	- ×	<i>71</i>	-				period 2		13	231	
	Z,=	1	0	Zz	= 2	2,	Z3	= 0				0	86	0	38	356	33 58
					-		3	***************************************	1	***************************************		7	108	22		period 5	
X.	Z,		20	Z	2 س	3	8	7/3	0	******		27	168	42	0	197	13
0	7				3	***********	T	Train Contract	1			40	207	55	25	272	38
8				•					tl			65	282	80	-20	period 6	
					1				11		3 (1		202	w		: USHIOR D	

L=1, K, = 250:	i=4, K=200:
Period, t D_t $TC(1,t)$ $TCU(1,t)$	t Dt TC(4,t) TCU(4,t)
1 60 250 250/1 = 250	4 70 200 200/1 = 200
$\frac{2}{320}$ $\frac{70}{250+1270} = \frac{320}{320/2} = \frac{160}{100}$	5 90 200+1.2×90=308 308/2=154
3 80 320+2×80=480 480/3=\frac{160}{160}*	6 105 308+2x1.2x105=560 560/3=186.67
4 90 480+3×98=750 750/4=187.50	i=6, K=\$200:
Produce 60+70+80=210 for 1,2, and 3	$\frac{t}{t} D_t TC(6,t) TCU(6,t)$
L=4, K4=300	6 105 200 200/1 = 200
	7 115 200+1.2x115=338 338/2=169
Perial, t Dt $TC(4,t)$ $TCU(4,t)$	8 95 338+2x1.2x95=566 566/3=188.67
4 90 300 5 85 800+85 = 385 385/2 = 192.5	i=8, K=\$200:
$6 85 385 + 2 \times 80 = 545 385/2 = 181.67$	
7 75 545+3×75=770 770/4=192.5	8 95 200 200/1 = 200
	9 80 200+1-2×80 = 296 198/2 = 148
Produce 90+85+80 = 255 for 4,5, and 6	10 85 296+2x1.2x85=500 500/3=166.67
i=7, K7=\$250:	i=10, K=\$200:
Period t D_t $TC(7,t)$ $TCU(7,t)$	$ \begin{array}{cccc} t & D_t & TC(10,t) & TCU(10,t) \end{array} $
7 75 250 250/1 = 250	10 85 200 200/1 = 200
8 70 250+70=320 320/2= 160	11 100 200+1.2x100=320 320/2=160
9 65 320+2x65=450 450/3=150	12 110 320+2x1.2x110=584 548/3=194.67
10 60 400+3×60=636 630/4=157.50	Schedule:
Produce 75+70+65 = 210 for 7, 8, and 9	Screen.
i=10, K, \$250:	Produce For periods
	270 1,2, and3
Period t De TC(10,t) TCU(10,t) 10 60 250 250/1 = 250	160 4, and 5
10 60 250 250/1 = 250 11 55 250+1x55 = 305 305/2=152.50	220 6 and 7
a 2001 200 - 110 dath - 125	175 8 and 9
	185 10 and 11
Produce 60+55+50=165 for 10, 11, and 12	110 12
L=1, K=200:	
t De TC(1,t) TCU(1,t)	
1 100 200 200/1 = 200	1
2 120 200+144=344 344/2=172	
3 50 344+2×1.2×50=464 464/3=154.6	?
4 70 464+3x1.2x70=716 716/4=179	
	1
Continued	i.
	1-15

CHAPTER 12

Review of Probability Theory

Set 12.	1a			
math [Eng'g 150	Non-Engig	Sum 400	
Non-math	29	57/	Tota 600	1=1000
4		821	102 150	. /5
			$H_{3} = \frac{150}{1000} =$	
		• •	$\frac{1}{16} = \frac{250}{1000}$	
(b) P {Non-e			1000	į
(c) P { Stude	mt is n	ion-engly}	= 821	821
Let				2
n= desi		•		
b'day	ys		ve distinct	-
= 365 365	. <u>364</u> 365	365 - 365	<u>n+1</u>	
1-p=p	robat. togn	least two have He	persons pame b'da	4
/huo,	ク > !	1/2		
means t-	-Pa is	more li	kely to occi	ur
Mar Ta	< 1/2			
on (365)(•	365-11)	2</td <td>-</td>	-

A spreadshet solution yields n > 23

 $P\{no \text{ one shares your biday}\} = \frac{364}{365}$ P{no one among n pensons shares your b'day} $=\left(\frac{364}{365}\right)^n$ Pfat lest one person among no skares your boday $=1-\left(\frac{364}{365}\right)^{\eta}$ Thus, for two or more persons to Share your b'day with more shan 50% chance means 1- (364)" > 1/2 or $n \ln\left(\frac{364}{365}\right) < \ln(1/2)$ $n > \frac{\ln(1/2)}{\ln(\frac{364}{36})} \approx 253$ The direction of the inequality has been reversed because In X <0 for 0<x<1

E = outcome of first toss	
	1
F = outcome of second toss	•
(9) $Sum = 11$:	
(E2F) = (526) or (625)	
$P\{Sum=11\}=2(\frac{1}{6}\times\frac{1}{6})=\frac{1}{18}$	
(b) Sum = even value	
(E&F) = (12[10r30r5]) or (22[20r40r6]) or	-
(32[10r30r5]) or	
1/2 2/2 or 4 or 61) or	
152[10x30x5])0c	
(6 & [2 or 4 or 6])	
P{E&F} = 6 x \(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} \) = 1/2	1
(c) Sum = odd value >3	
$(E \circ F) = (1 \circ [4 \circ G]) \circ G$ $(2 \circ [3 \circ G]) \circ G$	
120, 120, 400 631	
(4 2 [1 or 3 or 5]) or (5 2 [2 or 4 or 6]) or	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ŋ
$P\{E2F\} = 2 \times \frac{1}{6} (\frac{1}{6} + \frac{1}{6}) + 4 \times \frac{1}{6} (\frac{1}{6} + \frac{1}{6} + \frac{1}{6})$)= =
(d) $P\{(z \text{ or } 4) & (3 \text{ or } 5)\} = (2 \times \frac{1}{6})^2 = \frac{1}{9}$	•
(a) $P_{1}(z_{0}, z_{1}, z_{1}, z_{2}, z_{3})$	
(e) (E2F) = (3& [10+20+3]) or (42[10+20+3]) or	
$r = r \cdot r \cdot r \cdot r \cdot r \cdot r \cdot r \cdot r \cdot r \cdot $	
(c) (a)	لب
PIFEF(= 4x+(+++++) - 3	
1 20 - 7 6 10	
$P\{E\&F\} = 4 \times \frac{1}{6} \left(\frac{1}{6} + \frac{1}{6} + \frac{1}{6}\right) = \frac{1}{3}$ $(f) P\{4 \& [1 \text{ or 3 or 5}]\} = \frac{1}{6} \left(\frac{1}{6} + \frac{1}{6} + \frac{1}{6}\right) = \frac{1}{3}$	12
(f) P{4&[1003005])===================================	12
$(f) P\{4 \times [1 \text{ or } 3 \text{ or } 5]\} = \frac{1}{6} (\frac{1}{6} + \frac{1}{6} + \frac{1}{6}) = (a) (P\{2,4,026\})^2 = (\frac{1}{2})^2 = \frac{1}{4}$	2
(f) $P\{4 \times [1 \text{ or } 3 \text{ or } 5]\} = \frac{1}{6} (\frac{1}{6} + \frac{1}{6} + \frac{1}{6}) =$ (a) $(P\{2,4,0.6\})^2 = (\frac{1}{2})^2 = \frac{1}{4}$ (b) $P\{4 \times 6\} + P\{5 \times 5\} + P\{6 \times 4\}$	2
$(f) P\{4 \times [1 \text{ or } 3 \text{ or } 5]\} = \frac{1}{6} (\frac{1}{6} + \frac{1}{6} + \frac{1}{6}) = (a) (P\{2,4,026\})^2 = (\frac{1}{2})^2 = \frac{1}{4}$	2
(f) $P\{4 \times [1 \text{ or } 3 \text{ or } 5]\} = \frac{1}{6} (\frac{1}{6} + \frac{1}{6} + \frac{1}{6}) =$ (a) $(P\{2,4,0.6\})^2 = (\frac{1}{2})^2 = \frac{1}{4}$ (b) $P\{4 \times 6\} + P\{5 \times 5\} + P\{6 \times 4\}$	2
(f) $P\{4 \times [1 \text{ or } 3 \text{ or } 5]\} = \frac{1}{6} (\frac{1}{6} + \frac{1}{6} + \frac{1}{6}) =$ (a) $(P\{2,4,0.6\})^2 = (\frac{1}{2})^2 = \frac{1}{4}$ (b) $P\{4 \times 6\} + P\{5 \times 5\} + P\{6 \times 4\}$ $= 3 \times (\frac{1}{6} \times \frac{1}{6})$ $= \frac{1}{12}$	2
(f) $P\{4 \times [1 \text{ or } 3 \text{ or } 5]\} = \frac{1}{6} (\frac{1}{6} + \frac{1}{6} + \frac{1}{6}) =$ (a) $(P\{2,4,0.6\})^2 = (\frac{1}{2})^2 = \frac{1}{4}$ (b) $P\{4 \times 6\} + P\{5 \times 5\} + P\{6 \times 4\}$ $= 3 \times (\frac{1}{6} \times \frac{1}{6})$ $= \frac{1}{12}$ (c) $P\{1 \times 4\} + P\{1 \times 5\} + P\{1 \times 6\} + P\{2 \times 5\} + P\{2 \times 6\} + P\{3 \times 6\}$	2
(f) $P\{4 \times [1 \text{ or } 3 \text{ or } 5]\} = \frac{1}{6} (\frac{1}{6} + \frac{1}{6} + \frac{1}{6}) =$ (a) $(P\{2,4,\infty6\})^2 = (\frac{1}{2})^2 = \frac{1}{4}$ (b) $P\{4 \times 6\} + P\{5 \times 5\} + P\{6 \times 4\}$ $= 3 \times (\frac{1}{6} \times \frac{1}{6})$ $= \frac{1}{12}$ (c) $P\{1 \times 4\} + P\{1 \times 5\} + P\{1 \times 6\} + \frac{1}{6}$	2

 $= 12 \times \frac{1}{6} \times \frac{1}{6} = \frac{12}{36} = \frac{1}{3}$

Outcome	Probability	7
TTTH	(1/2)4	3
HTTTH	(1/2)5	
HHTTTH } THTTTH }	2×(42)6	
HTHTTTH	$4\times\left(\frac{1}{2}\right)^{7}$	
TTHTTTH S HHHTTTH		
Cathalit = (1)4/	$1 + \frac{1}{2} + 2(\frac{1}{2})^2 + 4(\frac{1}{2})^2$)37

Probability =
$$(\frac{1}{2})^4 [1 + \frac{1}{2} + 2(\frac{1}{2})^2 + 4(\frac{1}{2})^3]$$

= $\frac{5}{32}$
 $p = \text{probability Liz wins}$
We have

$$P\{Liz, Jim, John, or Ann wins \}$$

$$= 70 + 3p + 3p + 6p = 1$$

Thus,
$$p = \frac{1}{13}$$

(a) $P\{\text{Jim wins}\} = 3 P = \frac{3}{13}$

(c)
$$P\{no \ woman \ wins\}$$

= $1 - \frac{7}{13} = \frac{6}{13}$

Set 12.1c

(a) E = (2n4) F = (1n2n3n4n5)
$P\{E F\} = \frac{P\{EF\}}{P\{F\}} = \frac{P\{E\}}{P\{F\}} = \frac{2/6}{5/6} = 2/5$
(b) $E = (3 \text{ or } 5)$
$F = (1 \text{ p. 2 o. 3 o. 4 o. 5})$ $P\{E F\} = \frac{P\{E\}}{P\{F\}} = \frac{P\{E\}}{P\{F\}} = \frac{2/6}{5/6} = 2/5$

Joint pro	bablities:		2
D 4	was up	WMS down	Col. Sum
Dow up	.6	• 1	.7
Dow down	.05	. 25	٠3
Roy allow	10	~ ~	

(a)
$$P\{WMs up\} = .6 + .05 = .65$$

(b) $P\{WMs up \mid Downp\} = \frac{.6}{.7} = .6/7$
(c) $P\{WMs drum \mid Down drum\} = \frac{.25}{.3} = .5/6$

$$P\{A\} = .4 \ P\{B\} = .25 \ P\{AB\} = .15 \ 3$$
(a) $P\{B|A\} = \frac{P\{BA\}}{P\{A\}} = \frac{.15}{.4} = \frac{3}{8}$
(b) $P\{A|B\} = \frac{P\{AB\}}{P\{B\}} = \frac{.15}{.25} = \frac{3}{5}$

$$P\{A|B\} = \frac{P\{AB\}}{P\{B\}}$$

If $\frac{P\{AB\}}{P\{B\}} = P\{A\}$ then

 $P\{AB\} = P\{A\} P\{B\}$, which shrins

that A and B must be independent.

$$P\{AB\} = \frac{P\{AB\}}{P\{B\}}$$

$$= \frac{P\{B|A\}P\{A\}}{P\{B\}}$$
provided $P\{B\} > 0$.

(a)
$$P\{D\} = P\{D, A\} + P\{D, B\}$$

= $P\{D|A\}P\{A\} + P\{D|B\}P\{B\}$
= $\cdot |x \cdot 75 + \cdot 2x \cdot 25^{-}$
= $\cdot |z5^{-}$
(b) $P\{A|D\} = \frac{P\{D|A\}P\{A\}}{P\{D\}}$
= $\frac{\cdot |x \cdot 75^{-}}{\cdot |z7^{-}} = \cdot 6$

C = cancer

NC = no cancer

+ = test positive

$$P\{C'|+3 = P\{C, +\}$$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{+\}$
 $P\{-\}$
 5

(a)
$$p(x) = kx$$
, $x = 1, 2, 3, 4, 5$

$$\sum_{x=1}^{5} p(x) = k(1+2+3+4+5) = 15k=1$$
Thus, $k = 1/15$, and

CDF:
$$X = \frac{X}{y_{-1}} \frac{y}{15} = \frac{X(x+1)}{30}, x = 1, 2, ..., 5$$

 $\gamma_{D(X)} = \frac{x}{x}, x = 1, 2, ..., 5$

(b)
$$P\{x=2 \text{ or } x=4\} = \frac{2+4}{15} = \frac{2}{5}$$

(a)
$$\int_{10}^{20} \frac{k}{x^2} = 1$$

$$k(\frac{1}{10} - \frac{1}{20}) = \frac{k}{20} = 1 \implies k = 20$$

$$f(x) = \frac{20}{x^2}, \quad 10 \le x \le 20$$
(b)
$$\int_{10}^{20} \frac{k}{x^2} = 1$$

(b)
$$F(x) = \int_{10}^{x} \frac{20}{t^2} dt$$

= $2 - \frac{20}{x}$

(i)
$$P\{x>/2\} = P\{x \ge /2\}$$

= $1 - (2 - \frac{20}{/2})$
= $\frac{2}{3}$

(ii)
$$P\{13 \le x \le 15\}$$

= $P\{x \le 15\} - P\{x \le 13\}$
= $2 - \frac{20}{15} - (2 - \frac{20}{13})$
= $.205$

$$P\{Demand = d\} = \frac{1}{500}, 750 \le d \le 1250$$

$$P\{d \ge 1100\} = 1 - P\{d \le 1100\}$$

$$= 1 - \frac{1100 - 750}{500}$$

$$= 3$$

$$h(x) \begin{cases} x-20, & x=21, 22,23,24 \\ 0, & x=10, 11, ..., 20 \end{cases}$$

$$E\{h(x)\} = \sum_{x=10}^{20} o(\frac{1}{15}) + \sum_{x=21}^{24} (x-20)(\frac{1}{15})$$

$$= \frac{2}{3} \text{ Stamp}$$

There is no inconsistency because the two cases are mutually exclusive. There can be either surplus or shortage. When surplus occurs, its average value is $3\frac{2}{3}$ otamps. And when shortage occurs, its average value is $\frac{2}{3}$ stamp.

(a)
$$P\{50 \le x \le 70\}$$

= $1 - P\{35 \le x \le 49\}$
= $1 - \frac{15}{45} = \frac{2}{3}$

(b) Expected number of unadd capies

$$= \sum_{49}^{70} (50-x) p(x) + \sum_{70}^{70} op(x)$$

$$= \sum_{50}^{70} (50-x) p(x) + \sum_{50}^{70} op(x)$$

$$= 50 \sum_{50}^{70} p(x) - \sum_{50}^{70} x p(x)$$

$$= 50 \times \frac{15}{45} - \frac{1}{45} (35 + \dots + 49)$$

$$= \frac{1}{45} (750 - 630) = 2.67$$

 $(3-\frac{11}{3})^2(\frac{3}{15})+(4-\frac{11}{3})^2(\frac{4}{15})+$

(5-4)2(5)

$$E\{x\} = \int_{10}^{20} \frac{20x}{x^{2}} dx$$

$$= \left(\ln x \Big|_{10}^{20}\right) (20) = 13.86$$

$$Var\{x\} = 20 \int_{10}^{20} \frac{(x-13.86)^{2}}{x^{2}} dx$$

$$= 20 \left[x-27.72 \ln x - \frac{197.10}{x}\right]_{10}^{20}$$

$$= 7.81$$

(a)
$$f(x) = \frac{1}{b-a}$$
, $a \le x \le b$

$$\begin{bmatrix} x \\ x \end{bmatrix} = \int_{b-a}^{b} \frac{x}{b-a} dx = \frac{x^{2}}{2(b-a)} \Big|_{a}^{b}$$

$$= \frac{b^{2} - a^{2}}{2(b-a)} = \frac{b+a}{2}$$
(b) $\int_{a}^{b} \frac{(x-\bar{x})^{2}}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{3}}{3} - \bar{x}x^{2} + x\bar{x}^{2} \right]_{a}^{b}$

$$= \frac{4b^{2} + 4a^{2} + 4ab - 3b^{2} \cdot 3a^{2} \cdot 6ab}{12}$$

$$= \frac{(b-a)^{2}}{12}$$

$$Var\{x\} = \int_{0}^{\infty} (x - E(x))^{2} dx$$

$$= \int_{0}^{\infty} x^{2} f(x) dx - 2E(x)^{2} \int_{0}^{\infty} x f(x) dx$$

$$+ (E\{x\})^{2} \int_{0}^{\infty} f(x) dx$$

$$= E\{x^{2}\} - 2(E\{x\})^{2} - (E\{x\})^{2}$$

$$= E\{x^{2}\} - (E\{x\})^{2}$$

$$\begin{aligned}
\xi &= Cx + d \\
&= \{y\} = \int (Cx + d) f(x) dx \\
&= C \int x f(x) dx + d \int f(x) dx \\
&= C E \{x\} + d \\
Var \{y\} &= E \{(Cx + d)^2\} - E^2 \{Cx + d\} \\
&= E \{C^2x^2 + d^2 + 2Cdx\} \\
&- \{C E \{x\} + d\}^2 \\
&= C^2 E \{x^2\} + d^2 + 2Cd E \{x\} \\
&- C^2 E^2 \{x\} - d^2 - 2Cd E \{x\} \\
&= C^2 \left(E \{x^2\} - E^2 \{x\}\right) \\
&= C^2 Var \{x\}
\end{aligned}$$

Set 12.3c

(a)
$$P(x_1)$$

$$P(x_1)$$

$$P(x_2) = \begin{cases} 1 & 2 & 3 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{cases}$$

$$P(x_2) \cdot 4 \cdot 2 \cdot 4$$

$$Y_2 = \begin{cases} 1 & 2 & 3 \\ 1 & 2 & 3 \end{cases}$$

$$P(x_1) \cdot 4 \cdot 2 \cdot 4$$

(b) No, because
$$p(x_1, x_2) \neq p(x_1)p(x_2)$$

(c)
$$E\{x_1 + x_2\} = E\{x_1\} + E\{x_2\}$$

= $2(1x \cdot 4 + 2x \cdot 2 + 3x \cdot 4)$
= 4

(d)
$$Cor(X_1, X_2) = E(X_1X_2) - E(X_1) E(X_2)$$

 $E(X_1, X_2) = 1X \cdot 2 + 2X0 + 3X \cdot 2 + 2X0$
 $+4X \cdot 2 + 6X0 + 3X \cdot 2 + 6X0$
 $+3X \cdot 2 + 6X0 + 9X \cdot 2$
 $= 4 \cdot 6$
 $E[X_1] = 2$, $E[X_2] = 2$

(e)
$$Var\{5X_1 - 6X_2\} = 25Var[X_1\} + 36Var\{X_1\}$$

 $Var\{X_1\} = Var\{X_1\} = E\{X_1^2\} - E^2\{X_1\}$
 $= 1 \times .4 + 4 \times .2 + 9 \times .4 - 2^2$

$$Var{5x, -6x_2} = 25(.8) + 36(.8) + 2(5)(-6)(.6)$$

= 12.8

Pfan even number in one throws
$$= P\{2, 4, \text{ or } 6\}$$

$$= 3(\frac{1}{6}) = \frac{1}{2}$$

P{0 even number in 10 throws}
$$= C_0^{10} (1/2)^0 (1/2)^{10} = (1/2)^{10}$$

Probability =
$$P\{0 \text{ ne head in 5 throwo}\}$$

+ $P\{\text{ one tail in 5 throwo}\}$
= $2 C_1^5 (\frac{1}{2})^4 (\frac{1}{2})^4$
= $\frac{5}{16}$

Being a fluke is equivalent to
$$3$$
 a 50-50 chance of being correct.

$$P\{a \text{ fluke}\} = \binom{10}{8} \binom{1}{2}^8 \binom{1}{2}^2 + \binom{10}{9} \binom{1}{2}^9 \binom{1}{2}^4 + \binom{10}{9} \binom{1}{2}^9 \binom{1}{2}^9 \binom{1}{2}^9$$

$$= \left(\frac{1}{2}\right)^{10} \left[45 + 10 + 1\right]$$

Probability of a single match
$$= 6 \times (\frac{1}{6} \times \frac{1}{6}) = \frac{1}{6}$$

$$P\{i \text{ matcheo out } 0\} \text{ 3 dia}\}$$

$$= \binom{3}{i} \binom{1}{6}^{i} \binom{5}{6}^{3-i}, i=0,1,2,3$$

$$\frac{i}{7} \binom{3}{6}^{i} \binom{5}{6}^{3-i}, i=0,1,2,3$$

$$\frac{i}{7} \binom{3}{216} \binom{7}{216} rob. of a match =
$$\frac{1}{6}$$

Prob. of no match = $\frac{5}{6}$

Expected payoff = $50(\frac{1}{6}) - 10(\frac{5}{6}) = 0$

$$\begin{split} E\{k\} &= \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} \\ &= \sum_{k=1}^{n} \frac{n!}{k!(n-k)!} p^{k} q^{n-k} \\ &= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{n-k} q^{n-k} \\ &= np \left(\sum_{j=0}^{n-1} \frac{(n-j)!}{j!(n-j)!} p^{n-1-j} \right) \\ Var \{k\} &= E\{k^{2}\} - E^{2}\{k\} \\ E\{k^{2}\} &= \sum_{k=1}^{n} k^{2} \binom{n}{k} p^{k} q^{n-k} \\ &= np \sum_{k=1}^{n-1} \frac{(n-j)!}{(k-1)!(n-k)!} p^{k} q^{n-k-1} \\ &= np \sum_{k=0}^{n-1} \frac{(n-j)!}{k!(n-k-n)!} p^{k} q^{n-1-j} \\ &= np (np+q) \\ Var \{k\} &= np (np+q) - (np)^{2} \end{split}$$

= npg

$$P\{n \ge 1 \mid t = 30 \sec 3\}$$

$$= \sum_{n=1}^{\infty} \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$= 1 - \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$= 1 - e^{-\lambda t}$$

$$= 1 - e^{-\lambda t}$$

$$= 1 - e^{-\lambda t} = 1 - e^{-\lambda t}$$
Case 1: $p = 1$
Buirmual:

P{o or 1 defective } $= C''(\cdot 01)^{0}(\cdot 99)^{10} + C_{1}^{10}(\cdot 01)^{1}(\cdot 99)^{9}$ $= .99^{10} + 10 \times .01 \times .99^{9} = .9957$

Pouson:

$$\lambda = np = 10 \times .01 = .1$$

$$t_{o}^{o} + p_{i} = \frac{.1^{o} e^{-1}}{o!} + \frac{.1^{i} e^{-1}}{!!}$$

$$= e^{-1}(1+.1) \approx .9953$$

Binomial:

$$P\{0 \text{ or } 1 \text{ defective}\}\$$

$$= C_0^{10}(.5)(.5)^{10} + C_1^{10}(.5)^{1}(.5)^{9}$$

$$= .5^{10} + 10 \times .5^{10} = .01074$$

Poisson:

$$7 = 10x.5 = 5$$

$$P_0 + P_1 = \frac{5^0 e^{-5}}{0!} + \frac{5! e^{-5}}{1!}$$

$$= .04043$$

$$\lambda = 20 \text{ customers } / h$$

$$(a) P_0 = \frac{20}{0!} \stackrel{=}{=} 0$$

$$(b) P_0 = 1 - P_0 - P_1 - P_2$$

$$= 1 - \frac{20e^{20}}{0!} - \frac{20e^{20}}{1!} - \frac{20e^{20}}{2!}$$

$$Note:$$

$$n \ge 3 \Rightarrow (1 \text{ in service and at least 2 waiting})$$

$$E\{x\} = \sum_{x=1}^{\infty} x \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$$

$$= \sum_{x=1}^{\infty} \frac{(\lambda t)^{x} e^{-\lambda t}}{(x-1)!} e^{-\lambda t}$$

$$= (\lambda t) \sum_{x=0}^{\infty} \frac{(\lambda t)^{x} e^{-\lambda t}}{x!} e^{-\lambda t}$$

$$= \lambda t$$

$$Var \{x\} = \sum_{x=1}^{\infty} x^{2} \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$$

$$= \lambda t \sum_{x=0}^{\infty} x \frac{(\lambda t)^{x} e^{-\lambda t}}{x!} e^{-\lambda t}$$

$$= \lambda t \sum_{x=0}^{\infty} (x + 1) \frac{(\lambda t)^{x}}{x!} e^{-\lambda t}$$

$$= \lambda t \left(\sum_{x=0}^{\infty} x \frac{(\lambda t)^{x} e^{-\lambda t}}{x!} + \sum_{x=0}^{\infty} \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}\right)$$

$$= \lambda t \left(\lambda t + 1\right)$$

$$Var \{x\} = (\lambda t)^{2} + \lambda t - (\lambda t)^{2}$$

Set 12.4c

$$\lambda = 5 \text{ customers /min}$$

$$\lambda_{\text{numl}} = 7 \text{ customers /min}$$

$$\lambda = 5 + 7 = 12 \text{ customers /min}.$$

$$P\{t \le \frac{5}{60}\} = 1 - e^{-12 \times \frac{5}{60}}$$

$$= 1 - \cdot 368$$

$$= \cdot 632$$

$$E\{x\} = \int_{-\infty}^{\infty} x \, dx \, dx$$

$$= -\int_{-\infty}^{\infty} x \, de^{\lambda x} \, dx$$

$$= -\left[x e^{\lambda x} - \frac{1}{\lambda} \int_{0}^{\infty} x e^{\lambda x} dx\right]$$

$$= -\left[x e^{\lambda x} - \frac{1}{\lambda} \int_{0}^{\infty} x e^{\lambda x} dx\right]$$

$$= -\left[x e^{\lambda x} - \frac{1}{\lambda} \int_{0}^{\infty} x e^{\lambda x} dx\right]$$

$$= \int_{-\infty}^{\infty} (x - E\{x\})^{2} f(x) \, dx$$

$$= \int_{-\infty}^{\infty} (x - \frac{1}{\lambda})^{2} \lambda e^{\lambda x} dx$$

$$= \int_{-\infty}^{\infty} (x - \frac{1}{\lambda})^{2} \lambda e^{\lambda x} dx$$

$$= -\int_{-\infty}^{\infty} x^{2} de^{\lambda x} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}}$$

$$= -\left[x^{2} e^{\lambda x} - \int_{0}^{\infty} e^{\lambda x} dx^{2} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}} dx\right]$$

$$= -\left[x^{2} e^{\lambda x} - \int_{0}^{\infty} e^{\lambda x} dx^{2} - \frac{2}{\lambda} + \frac{1}{\lambda^{2}} dx\right]$$

$$= \int_{0}^{2\pi} e^{-\lambda x} dx^{2} - x^{2} e^{-\lambda x} \left| \frac{2}{\lambda} + \frac{1}{\lambda^{2}} \right|$$

$$= 2 \int_{0}^{2\pi} x e^{-\lambda x} dx - x^{2} e^{-\lambda x} \left| \frac{2}{\lambda^{2}} + \frac{1}{\lambda^{2}} \right|$$

$$= \frac{2}{\lambda^{2}} - \frac{2}{\lambda^{2}} + \frac{1}{\lambda^{2}}$$

$$= \frac{1}{\lambda^{2}}$$

Set 12.4d

(a)
$$P\{x \ge 26\}$$

= $1 - P\{x \le 26\}$
= $1 - P\{z \le \frac{26 - 22}{2}\}$
= $1 - P\{z \le 2\}$
= $1 - 9772 = .0228$

(b)
$$P\{x \le 17\}$$

= $P\{Z \le \frac{17-22}{2}\}$
= $P\{Z \le -2.5\}$
= $1-.9938$
= .0062

Distribution of the weight of 5
individuals is normal with

mean = $5 \times 180 = 900 \text{ lb}$ Standard deviation = $\sqrt{5 \times 15^2} = 33.5 \text{ y}$ $P\{x \ge 1000\} = 1 - P\{Z \le \frac{1000 - 900}{33.5 \text{ y}}\}$ $= 1 - P\{Z \le 2.98\}$ = 1 - 9986 = .0014

$$X_1 = N(.99,.01)$$

 $X_2 = N(1,.01)$
 $P\{X_1 > X_2\} = P\{X_1 - X_2 \ge 0\}$
 $mean \{X_1 - X_2\} = .99 - 1 = -.01$
 $Standard deviation \{X_1 - X_2\} = \sqrt{.01 + .01^2}$
 $= .01414$
 $P\{X_1 - X_2 \ge 0\}$
 $= P\{Z \ge \frac{0 - (-.01)}{.01414}\}_{continued.}$

=
$$P\{z \ge .7072\}$$

= $I - P\{z \le .7072\}$
 $\cong I - .760283$
 $\cong .239717$

Step 1: Use chi2 Sample Mean Var. XIs to compute sample statistics and to prepare for creating the histogram as shown

1		Histogram	Variance +	ole Mean and	Sam
********	\$2000 (NO.00)				Output
	3,9219	io I	Mea	96	Sample size
	6.8809	ance	Van	0.1000	Minimum
	2.6231	Dev.	Sta	15,9000	Maximum
KING BURNIN					mpuit:
Bin				E100	Enter data in A8
0.5		2.7	5.8	0.9	4,3
1 1		5.1	3.4	4.4	4.4
1.5	1	2.1	15.9	4.9	0.1
2		2.1	2.8	3.8	2,5
2.5		4.5	0.9	0.4	3.4
.7.3		7.2	2.9	1.1	6.1
3.5		11.5	4.1	4.9	2.6
4	-	4.1	4.3	4.3	0.1
4.5	- 1	2.1	1.1	5.2	2.2
5		5.8	5.1	7.9	3.5
5,5		3.2	2.1	6.4	0.5
6	İ	2.1	3.1	7.1	3.3
6.5	-	7.8	3.4	0.7	3.4
7		1.4	3.1	1.9	0.8
7.5	· [2.3	6.7	4.8	4.1
. 8	·	2.8	5.9	6.1	3.3
8.5	ĺ	3.8	2.9	2.7	3.1
9	ŀ	5.1	4.6	4.2	3.4
9.5		2.6	5.1	2.4	0.9
10	i	6.7	1.1	5.1	10.3
10.5	!	7.3	3.3	8.2	2.9
11	1	1.4	6.2	0.9	3.1
11.5	1	2.3	10.7	1.2	4.5
	1	1.9	1.6	6.9	3.3

Step 2: apply Excel histogram to the sample above. The output blow is the bin width of 1. Excel automatically provides the output below, less the columns titled No and Chi-value. You canthen augmentath foreadsheet with framulas to create the right most columns.

ł	CO WISH SE MINE MAN			- Company	vurma.	
۱	Bin Oi		Cpi	ni	Chi-value	Revised X
I	1	10	0.10417	21.60641	6.234669	
1	2	9	0.19792	16.74353	3.581217	
l	3 .	19	0.39583	12.97511	2.797605	
I	4	17	0.57292	10.05485	4.797204	
l	5	15	0.72917	7.791835	6.668217	
۱	6	9	0.82292	6.038151	1.452853	25,53176
1	7	7	0.89583	4.679164	1.15112	1.643731
l	8	_5	0.94792	3.626039	0.520614	
١	9	1	0.95833	2.809938	1.165818	2.02322
1	10	0	0.95833	2.177515	2.177515	,
1	11	2	0.97917	1.687428	0.057899	
١	12		0.98958	1.307644	0.072378	2.498492
l	13	0	0.98958	1.013337	1.013337	
l	14	0	0.98958	0.785268	0.785268	,
I	15	0	0.98958	0.608531	0.608531	
I	100	1	1.00000	2.095247	0.572518	
١	sum	96		96		31.69721
			ŧ/			
	20		1 20000	C/41	16	13.92

as can be seen from the output above, oh Spreadsheet can be modified to compute the E-value. Note that the grouping is necessary to guarantee that $n_i \geq 5$. 12-value = 31.69721, 2 = 14.667, Reject

Binsize = · 5:

Bin	Oi	Срі	ni	Chi-value	Revised
0.5	4	0.04167	11.49092	4.883325	Section Contraction
1	. 6	0.10417	10.11549	1.674389	
1.5	6	0.16667	8.904697	0.947507	
2	3	0.19792	7.83883	2.986961	
2.5	10	0.30208	6.900545	1.392154	
3	9	0.39583	6.07457	1.408847	
3.5	15	0.55208	5.347461	17.4235	13.29318
4	2	0.57292	4.707386	1.557114	1.944528
4.5	111	0.68750	4.143925	11.34329	
5	[4]	0.72917	3.647909	0.033983	1.438188
5.5	6	0.79167	3.211265	2.4218	
6	[3]	0.82292	2.826886	0.010601	0.533896
6.5	141	0.86458	2.488516	0.918051	
7	[3]	0.89583	2.190648	0.299021	0.819514
7.5	3	0.92708	1.928434	0.595434	
8	12.	0.94792	1.697606	0.053865	
8.5	M	0.95833	1.494407	0.163569	1.541192
9	0	0.95833	1.315531	1.315531	s.
9.5	0	0.95833	1.158066	1.158066	
10	0	0.95833	1.019449	1.019449	
10.5	1	0.96875	0.897424	0.011725	
11	11	0.97917	0.790005	0.05582	
11.5	11	0.98958	0.695443	0.133375	
100	1	1.00000	5.114583	3.310103	3.310103
Sum	96		96		22.8806

continued

continued.

Set 12.5a

all three histogram call for rejecting the hypothesis that the sample is drawn from an exponential distribution with an estimated mean value of 3.92.

Note the effect of kin size on the 2-value. The large the bin size, the smaller the number of deques of freedom for the 2°, and the tighter are the rejection limits

		Histogram	l Variance +	ple Mean and	Samı
********					Эцирен
	50,7620	n .	Mear	50	Sample size
	639,0783	ance	Varia	5.6000	Vinimum
	25,2800	Dev.	Std E	94,8000	Vlaximum
					nput
2 B					Emler data in A8
10	58.7	36.4	35.2	67.3	25.8
20	93.4	59.3	61.3	94.8	47.9
30	48.1	22.1	56.4	34.7	17.8
40	72.5	30.1	65.3	35.8	48.2
50	17.3	76.4	88.9	70.9	5.8
60	36.8	23.8	23.9	66.1	77.4
70	76.7	36.4	93.5	36.4	5.6
	63.6	51.9	78.7	39.2	89.3
90	82.7	28.6	12.8	58.6	89.5
100	29.2	35.9	21,1	71.3	38.7

В		Oi	Cpi	ni	chi-value revised ch
e in a second	10	2	0.04000	5	1.8
	20	3	0.10000	5	0.8
	30	7	0.24000	5	0.8
	40	11	0.46000	5	7.2
	50	3	0.52000	5	0.8
	60	5.	0.62000	5	0
	70 80	5 7	0.72000	5	0
	90	4	0.86000	5	0.8
	100	3	0.94000 1.00000	5 5	0.2
um	100	50	1.00000	5	0.8 13.2
Frequency	10 8 - 6 - 4 - 2 0			1.20000 1.00000 0.80000 0.60000 0.40000 0.20000 0.00000	Frequency
	10 30	୫ ଏ Bin	00		\

1/- 2	ratue = /i	3.2, X2	1,.05	16.9
Conce	ucion: ac	CENL Rue	- Alle - 1	
(b) Hy	potkesis:	f(x) =		
			14.8-5.6	89.2
į		ა. છ :	5 x 5 9	4.P

Control of the Contro			and the second second	• •	-
Bín	Oi	Cpi	ní .	chi-value	revised chi
10	121	0.04000	12.466368	0.088186	1.168971
20	[3]	0.10000	5.605381	1.210981	
30	7	0.24000	5.605381)	0.346981	
40	11	0.46000	5.605381	5.191781	
50	3	0.52000	5.605381	1.210981	7.227487
60	5	0.62000	5.605381	0.065381	
70	5	0.72000	5.605381	0.065381	
80	7	0.86000	5.605381	0.346981	
90	[4]	0.94000	5.605381	0.459781	0.202451
100	3	1.00000	2.690583	0.035583	
um	50		50	9.022018	8 598909

	Histo	gram	
Frequency	12 10 8 6 4 2 0 N N N N N	1.20000 - 1.00000 - 0.80000 - 0.60000 - 0.40000 - 0.20000 - 0.00000	Frequency ————————————————————————————————————
			All control of the co

CHAPTER 13	
Decision Theory and Games	
13-1	

$$W_{A} = is(.17x.129 + .83x.545) + .5(.3x.2 + .7x.5) = .44214)$$

$$W_{B} = is(.17x.277 + .83x.273) + is(.3x.3 + .7x.2) = .25184$$

$$W_{C} = .5(.17x.594 + .83x.182) + .5(.3x.5 + .7x.3) = .30602$$

Select A.

L	-K		M			9		L K		90.00	A N		and the same of the same of	1000	-
		A⊧	IP-An	alytic H			ess						341		
2				Solution		ary		1							
3	MJ:		MLR.		JLR:			.							
	M	0.5	R	0.17	밁	0.3 0.7							<u> </u>		
13/4	J	0.5	R	0.83	R	0.7									
6			£ 41 U .												
			MUL:	0.129	JUL: UA	0.2									
			UA UB	0.129	UB	0.2					······································		-		
100			UC	0.594	UC	0.5		-					-		
			00	0.334				-			***************************************				
12			MUR:		JUR:			-			***************************************				
			UA	0.545		0.5					·······				
			UB	0.273	UB	0.2		-			***************************************		1		
			ÜC	0.182	ÜC	0.3			<u> </u>			_			
								1					-		
								1				1	<u> </u>		
		•											<u> </u>		
10				Final	ranking					_					
20					0.44214				•	Formu	ila a	iven on t	E40		
127		,			0.25184						U		T		
222				UC=1	0.30602										
22.8															
24															
72.5															

T F R

$$T \begin{bmatrix} 1 & 2 & .25 \\ .5 & 1 & .2 \\ R & 4 & 5 & 1 \end{bmatrix}$$
 $A = E \begin{bmatrix} .182 & .25 & .172 \\ .091 & .125 & .138 \\ .727 & .625 & .690 \end{bmatrix}$
 $A = \begin{bmatrix} .182 & .25 \\ .201 \\ .182 & .681 \end{bmatrix}$
 $A = \begin{bmatrix} .182 & .25 \\ .201 \\ .182 & .681 \end{bmatrix}$

$$A\widetilde{W} = \begin{bmatrix} 1 & 2 & .25 \\ .5 & 1 & .2 \\ 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} .201 \\ .118 \\ .681 \end{bmatrix} = \begin{bmatrix} .60725 \\ .3547 \\ 2.075 \end{bmatrix} \qquad CI = \frac{3.5655 - 3}{2} = .28275$$

$$RI = \frac{1.98(1)}{3} = .66$$

$$CI = \frac{3.073 - 3}{3 - 1} = .0185$$

$$RI = \frac{1.98(1)}{3} = .66$$

$$CR = \frac{.0185}{3.037} = .028 < .1$$
, acceptable

$$N = \begin{bmatrix} .632 & .333 & .769 \\ .211 & .111 & .038 \\ .158 & .556 & .192 \end{bmatrix} .302$$

$$A_{I}\widetilde{W} = \begin{bmatrix} 1 & 3 & 4 \\ .33 & 1 & .2 \\ .25 & 5 & 1 \end{bmatrix} \begin{bmatrix} .578 \\ .120 \\ .326 \end{bmatrix} = \begin{bmatrix} 2.146 \\ .373 \\ 1.0465 \end{bmatrix}$$

$$CI = \frac{3.5655 - 3}{2} = .28275$$

$$RI = \frac{1.98(1)}{3} = .66$$

$$QR = \frac{.28275}{.66} = .428 > .1$$
, not acceptable

$$N_{E} = \begin{bmatrix} .222 & .100 & .571 \\ .667 & .300 & .143 \\ .111 & .600 & .286 \end{bmatrix} \begin{array}{c} \widetilde{W} \\ .370 \\ .332 \end{array}$$

Continued.

$$A_{E}^{W} = \begin{bmatrix} 1 & .33 & 2 \\ 3 & 1 & .5 \\ .5 & 2 & 1 \end{bmatrix} \begin{bmatrix} .298 \\ .370 \\ .332 \end{bmatrix} = \begin{bmatrix} 1.085 \\ 1.430 \\ 1.221 \end{bmatrix}$$

$$m_{max} = 3.736$$

$$CI = \frac{3.736-3}{2} = .368 , RI = .66$$

$$CR = \frac{.368}{.66} = .558 \times .1, not acceptable$$

$$N_{R} = \begin{bmatrix} .25 & .143 & .400 \\ .50 & .286 & .200 \\ .25 & .571 & .400 \end{bmatrix} \quad .407$$

$$A_R W = \begin{bmatrix} 1 & .5 & 1 \\ 2 & 1 & .5 \end{bmatrix} \begin{bmatrix} .264 \\ .329 \end{bmatrix} = \begin{bmatrix} .8355 \\ 1.0605 \\ 1.329 \end{bmatrix}$$

$$\mathcal{H}_{max} = 3.225$$

$$m_{max} = 3.225$$
 $CI = \frac{3.225 - 3}{2} = .1125$, $RI = .66$
 $CR = \frac{.1125}{.66} = .17 > .1$, not acceptable

$$W_S = .201x.578 + .118x.298 + .681x.26y$$
$$= .33$$

$$W_{J} = .201 \times .12 + .118 \times .37 + .681 \times .329$$
$$= .292$$

$$W_{M} = .201x.302 + .118x.332 + .681x.407$$
$$= (.377)$$

Select Maisa

$N = \begin{bmatrix} .667 & .667 \\ .333 & .333 \end{bmatrix} \begin{array}{c} \overline{W} \\ .667 \\ .333 \end{array}$
$N_k = \begin{bmatrix} .25 & .25 \\ .75 & .75 \end{bmatrix}$.25
$N_{J} = \begin{bmatrix} \cdot 8 & \cdot 8 \\ \cdot 2 & \cdot 2 \end{bmatrix} \qquad \cdot 8$
$N_{ey} = \begin{bmatrix} .546 & .571 & .500 \\ .272 & .286 & .333 \\ .182 & .143 & .167 \end{bmatrix} .164$
$A_{ky} \overline{W} = \begin{bmatrix} 1 & 2 & 3 \\ .5 & 1 & 2 \\ .333 & .5 & 1 \end{bmatrix} \begin{bmatrix} .539 \\ .297 \\ .164 \end{bmatrix} = \begin{bmatrix} 1.625 \\ .8945 \\ .4922 \end{bmatrix}$
$n_{\text{max}} = 3.01167$ $RI = \frac{.01167/2}{.66} = .0088 < .1, \text{ acceptable}$
$N_{KW} = \begin{bmatrix} .286 & .333 & .273 \\ .143 & .167 & .182 \\ .571 & .500 & .545 \end{bmatrix} & .164$
$A_{kw}W = \begin{bmatrix} 1 & 2 & 5 \\ .5 & 1 & .333 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} .297 \\ .164 \\ .539 \end{bmatrix} = \begin{bmatrix} .8945 \\ .4922 \\ 1.625 \end{bmatrix}$ $71 = 3.0117$
$RI = \frac{.0117/2}{.66} = .008 < .1, acceptable$
N = [.571 .750 .333] .SS1 N = [.143 .188 .500] .277 [.286 .062 .167] .172
$A_{JY}W = \begin{bmatrix} 1 & 4 & z \\ .25 & 1 & 3 \\ .5 & .333 & 1 \end{bmatrix} \begin{bmatrix} .SS1 \\ .277 \\ .172 \end{bmatrix} = \begin{bmatrix} 2.003 \\ .93075 \\ .5398 \end{bmatrix}$ $m_{max} = 3.476$
$RI = \frac{.476/z}{.66} = .3576 > 1$, not acceptable
$N_{JW} = \begin{bmatrix} .308 & .273 & .500 \\ .615 & .546 & .375 \\ .077 & ./82 & ./25 \end{bmatrix} \qquad .5/2 \\ ./28$

$$A_{JW}^{W} = \begin{bmatrix} 1 & .5 & 4 \\ 2 & 1 & 3 \\ .25 & .33 & 1 \end{bmatrix} \begin{bmatrix} .360 \\ .512 \\ .128 \end{bmatrix} = \begin{bmatrix} 1.128 \\ 1.616 \\ .3887 \end{bmatrix}$$

$$RI = \frac{.1333/2}{.66} = .100, acceptable$$

$$W_{B} = .667(.25 \times .297 + .75 \times .164) + .333(.8 \times .277 + .2 \times .512) = .2395$$

$$W_c = .667(.25 \times .164 + .75 \times .539) + .333(.8 \times .172 + .2 \times .128) = .35/3$$

$$N = \begin{bmatrix} .167 & .143 & .172 \\ .167 & .143 & .138 \\ .149 & .690 \end{bmatrix} .149$$

$$A \overline{W} = \begin{bmatrix} 1 & 1 & 25 \\ 1 & 1 & 20 \\ 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} .161 \\ .149 \\ .690 \end{bmatrix} = \begin{bmatrix} .4825 \\ .4480 \\ 2.079 \end{bmatrix}$$

nmay= 3.0095

 $CR = \frac{.0095/2}{.66} = .0072 < .1$, acceptable

$$N_R = \begin{bmatrix} .667 & .667 \\ .333 & .333 \end{bmatrix}$$
 $\begin{bmatrix} w \\ .667 & (H) \\ .333 & .333 \end{bmatrix}$

$$N_{\rm M}^{2} = \begin{bmatrix} .333 & .333 \\ .667 & .667 \end{bmatrix}$$
 .333 (H)

NR, Nm, NA are consistent because they are 2-dimensional.

 $W_{H} = .161 \times .667 + .149 \times .333 + .69 \times .5 = .502$ $W_{P} = .161 \times .333 + .149 \times .667 + .69 \times .5 = .498$ Choose H.

$$N = \begin{bmatrix} .286 & .25 & .294 \\ .143 & .125 & .118 \\ .571 & .625 & .588 \end{bmatrix} .128$$

$$A\overline{W} = \begin{bmatrix} 1 & 2 & .5 \\ .5 & 1 & .2 \\ 2 & 5 & 1 \end{bmatrix} \begin{bmatrix} .277 \\ .128 \\ .595 \end{bmatrix} = \begin{bmatrix} .8305 \\ .3855 \\ 1.789 \end{bmatrix}$$

$$m_{max} = 3.005$$

$$RI = \frac{.0.05/2}{.66} = .0039 < 1, acceptable$$

$$N_{L} = \begin{bmatrix} \cdot 3 & .429 & .273 \\ \cdot 1 & .142 & .182 \\ .6 & .429 & .546 \end{bmatrix} \cdot .525$$

$$A_{L}\overline{W} = \begin{bmatrix} 1 & 3 & 5 \\ .333 & 1 & .333 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} .334 \\ .141 \\ .525 \end{bmatrix} = \begin{bmatrix} 1.0195 \\ .427 \\ 1.6163 \end{bmatrix}$$

$$N_{max} = 3.06283$$

$$N_{c} = \begin{bmatrix} .5 & .5 & .5 \\ .25 & .25 & .25 \end{bmatrix} \begin{array}{c} \widetilde{W} \\ .5 \\ .25 & .25 & .25 \end{bmatrix} \begin{array}{c} \widetilde{W} \\ .25 & .25 & .25 \end{array}$$

$$N_{R} = \begin{bmatrix} .474 & .471 & .500 \\ .474 & .471 & .444 \\ .052 & .059 & .056 \end{bmatrix}$$

Continued..

· Control of the cont
$A_{R}^{W} = \begin{bmatrix} 1 & 1 & 9 \\ 1 & 1 & 8 \\ 1/9 & 1/8 & 1 \end{bmatrix} \begin{bmatrix} .482 \\ .463 \\ .056 \end{bmatrix} = \begin{bmatrix} 1.449 \\ 1.393 \\ .167 \end{bmatrix}$
max = 3.0094
$RI = \frac{.0094/2}{.66} = .007/ < .1, acceptable$
W_T = .277 (.334x.1+.141x.2+.525x.3)

$$W_{\underline{I}} = .277 (.334 \times .1 + .141 \times .2 + .525 \times .3)$$

$$+ .128 (.5 \times .3 + .25 \times .5 + .25 \times .2)$$

$$+ .595 (.482 \times .7 + .463 \times .1 + .056 \times .3)$$

$$= .3406$$

$$W = .277(.334 \times 5 + .141 \times .4 + .525 \times .2)$$

$$+ .128(.5 \times .4 + .25 \times .2 + .25 \times .4)$$

$$+ .595(.482 \times .1 + .463 \times .4 + .056 \times .2)$$

$$= .28/3$$

$$N_{S} = \begin{bmatrix} .5 & .5 \\ .5 & .5 \end{bmatrix}$$

$$N_{p} = \begin{bmatrix} .667 & .667 \\ .333 & .333 \end{bmatrix}$$

$$N_{SB} = \begin{bmatrix} .333 & .333 \\ .667 & .667 \end{bmatrix}, N_{pB} \begin{bmatrix} .25 & .25 \\ .75 & .75 \end{bmatrix}$$

$$N_{SN} = \begin{bmatrix} .25 & .25 \\ .75 & .75 \end{bmatrix}, N_{pN} = \begin{bmatrix} .667 & .667 \\ .333 & .333 \end{bmatrix}$$

$$N_{SN} = \begin{bmatrix} .25 & .25 \\ .75 & .75 \end{bmatrix}, N_{pN} = \begin{bmatrix} .667 & .667 \\ .333 & .333 \end{bmatrix}$$

5 Deal	sion) p
B SN	B .5 N E .333 E .667 M
333 667 25 .75	.25 .75 .667 .333

$$W_{e} = \cdot 5 (\cdot 5 \times \cdot 333 + \cdot 5 \times \cdot 25)$$

$$+ \cdot 5 (\cdot 333 \times \cdot 25 + \cdot 667 \times \cdot 667) = \cdot 4097$$

$$W_{M} = \cdot 5 (\cdot 5 \times \cdot 667 + \cdot 5 \times \cdot 75) + \cdot 5 (\cdot 333 \times \cdot 75) + \cdot 5$$

Decision: Keep music program.

CarModel	PPlyr	MC	CD	RD	
MI	6	1.8	4.5	1.5	
M2	8	1.2	2.25	.75	Contract of the Contract of th
M3	10	.6	1 125	.6	1
Sum	24	3.6	7.875	2.85	

all the comparison matrices are developed based on the average costs

$$A_{MC} = Mz \begin{bmatrix} 1 & 6/4 & 6/2 \\ 4/6 & 1 & 4/2 \\ 2/6 & 2/4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1.5 & 3 \\ .667 & 1 & 2 \\ .333 & .5 & 1 \end{bmatrix}$$

$$A_{CD} = M_{2} \begin{bmatrix} 1 & \frac{4500}{2250} & \frac{4500}{1125} \\ \frac{2250}{4500} & 1 & \frac{2250}{1125} \\ \frac{1125}{4500} & \frac{1125}{2250} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ .5 & 1 & 2 \\ .25 & .5 & 1 \end{bmatrix}$$

$$A_{RD} = \begin{bmatrix} 1 & \frac{1500}{750} & \frac{1500}{600} \\ \frac{7500}{1500} & 1 & \frac{750}{600} \\ \frac{600}{1500} & \frac{600}{750} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 2.5 \\ .5 & 1 & 1.25 \\ .4 & .8 & 1 \end{bmatrix}$$

continued.

Set 13.2a

EV{\fortigmax\} = 800x.3 + 200x.7 = \$380 EV{\softigmax\} = -2500x.3 + 1000x.7 = -\$50 Select "Land" button.

 $EV(Gm) = 30,000 \times .25 + 0 \times .3 + (-35000) \times .45$ = - \$8250

EV(Soybean) = 10,000x.25 + 0x.3+(-5000) x.45
=(\$250)

Select Soybean

 $EV(utility) = 5x\cdot1+7x\cdot5+8x\cdot4 = 7\cdot2\%$ $EV(aggressive) = -10x\cdot1+5x\cdot5+30x\cdot4 = (13.5\%)$

E(global) = 2x.1+7x.5+20x.4= 11.7%

Select agressive Stock

$$P = Amount invested$$

$$E \cdot 2 (-10\%) \cdot 9P + 075P$$

$$R \cdot 15 (5\%) \cdot 1 \cdot 05P + 075P$$

$$Un \cdot 65 (0\%) \cdot P + 075P$$

$$Aggressive R \cdot 15 (20\%) \cdot 8P + 01P$$

$$Un \cdot 65 (8\%) \cdot 1 \cdot 08P + 01P$$

EV (Bond) = P(.975x.2+1.125x.15+1.075x.65) = (1.0625P)

EV(Aggressive)= P(.81x.2 + 1.21x.15 + 1.09x.65)= 1.052 P

Select Bond

EV (adv.) = 850x.7+100 x.3 = \$625,000) EV (no adv.) = 400x.8+200x.2 = \$360,000

Play

HHH

$$3+2\times\cdot 25=3.50$$

HHT

 $2+-25-1.10=$1.15$

HTH

 $2-1.10=$.90$

HTT

 $1-2\times1.10=-$1.20$

THH

 $-1.10+2\times1+3=$1.15$

THT

 $-2\times1.10+1=-$1.20$

TTH

 $-3\times1.10=-$3.30$

Don't play

\$\delta\$0

$$EV(play) = \frac{1}{8} \left\{ 3.5 + 1.15 + .90 - 1.20 + 1.15 - 1.20 - 1.20 - 3.30 \right\}$$

= -\$.025

EV(no play) = 0

Continued.

 $(even/even) = \{(z,z), (4,4), (6,6)\}$ $(odd/odd) = \{(1,1), (3,3), (5,5)\}$ (odd /even or even lodd) $= \{(1,2), (1,4), (1,6), (3,2), (3,4), (3,6)\}$ (5,2), (5,4), (5,6), (2,1), (2,3),(2,5) (4,3), (4,5), (4,1), (6,1), (6,3),(6,5)} $P\{e/e\} = 3x(\frac{1}{6})^2 = 1/12$ $P\{0/0\} = 3 \times (\frac{1}{6})^2 = 1/12$ (outcome 2) $P\{e|0 \text{ or } 0|e\} = 18\left(\frac{1}{6}\right)^2 = \frac{1}{2}$ (Outcome 3) P} others } = 1/3 (Outcome 4) V12 +2 Select 1/12 \$1.95 outcomes (1, 2) 5/6 1/12 \$2 Select (1,3) 1/2 \$1.95 5/12 0 1/12 \$2 Select (1,4) 1/3 \$150 7/12 0 Don't play game 1/12 \$1.95 1/2 \$1.95 Select (2,3) 5/12 0 1/12 \$1.95 1/3 \$1.50 7/12 $EV(1,2) = \frac{1}{12}(2+1.95) - 2 = -1.67 $EV(1,3) = \frac{1}{12}x_2 + \frac{1}{2}x_1.95 - 2 = -\$.86$ EV (1,4) = /2x2+ / x1.50-2 = - \$1.33 EV(2,3) = 12x1.95 +121.95 -2 = -\$,86

EV(7,4) = 12x1.95 + 12x1.50-2 = -\$1.34

EV(3,4)= 1x1.95+1x1.50-2=-4.53

Don't play the game

Penalty matrix: Lot defective % 1% 1.2% 1.4% 200 400 600 A (.8%) 200 100 200 B (1.2%) C (1.4%) 300 200 100 0 ship,8% .4 0 10% 3 \$200 A < 8 ·25 \$400 ·05 **\$**600 ·4 \$200 B = 1.2 3 \$100 .25 0 14% .05 \$ 200 .4 \$300 C = 1.4 ·3 \$200 25 \$100 .05 0 14% EV(A)=0x.4+200x.3+400x.25+600x.05 = \$ 190 EV(B) = 200x.4+100x.3+0x.25+200x.05=(\$120) EV(C) = 300 x.4 + 200x.3 + 100x. 25 + 0x.05=\$205 Select customer (a) (b) E { profit at node 4 | expansion } =(900×.75+200×.25)×8-4200=\$1,600,000 E { profit at node 4 | no expansion } = (250x.75+200x.25)x8

= (\$1,900,000)

at node 4, no expansion

9 continued

10

is recommended.

E(profit at node1 | large plant)

= (1000x.75+300X-25)X10-5000 = (\$3,250,000)

E (profit at node 1 | small plant)

= (1900+2 x250)x-75+10x200 x-25-1000

= \$1,300,000

Decision: Start with large plant

Node 4:

E(gennual profit | expansion)

= 900x 75+200x 25 = \$725,000

E (annual profit | no expansion) = 250x.75 + 200x.25 = \$237,500

E(profit | expansion) = 725 [PIA] " - 4200

= 725x 5.3349-4200

=-# 332,198

E (profit noexpansion)

= 237.5x [PIA] 8

= 237.5 x 5.3349 = \$1,267,000

Decision at 4: no expansion

Node 1:

E(profit | largeplant)

= (1000 x.75 +300x.25) [P/A] -5000

= \$69,295

E (profit | small plant)

= $(1267 [P]S]_{2}^{10\%} + 250 [P]A]_{2}^{10\%}) x.75$ + 200 [P]A] $_{10}^{10\%} x.75$ - 1000

= \$417,970

Decision: Construct a small plant now and do not expand two years from now.

-5000 Full 400 400 Small 280 150 -1000 280 150

Node 4:

E (profit expansion)

= (900x-7 + 600x-2 + 200x-1) x8-4200

= \$1,960,000

E (profit | no expansion)

= (400X.7+280 X.Z+150X.1) X 8

= (\$ 2,808,000)

Decision at node 4: Do not expand

Node 1:

E(projet (large plant)

= (1000x.7+500x.2+300x.1) x10-5000

= (\$ 3,360,00)

E (profit / small plant)

= (2x400 + 2808)x.7+19x280x.2 +

10x 150x.1) -1000

= \$ 2,235,600

choose lage plant now.

E(breakdown cost givent) = 4000 Pt Cost = 20x75 = \$1500 t = 2: Exp. breakdown cost = 4000x.03 Av. cost/year = 1500 + 120 = \$810 t = 3: Exp. breakdown cost = 120+4000x .04 = \$280 Av. cost/year = 1500 + 280 = \$593.33 Exp. breakdown cost = 280+4000x.05 = \$480 Av. cost/year = 1500 * 480 = \$495 Exp. breakdown cost = 480 + 4000 x.06 = \$720 Av. cost/year = 1500 + 720 = \$444 Exp. breakdown cost = 720 + 4000x.07 = \$1000 Av. cost/year = 1500 +1000 = \$416.67 Exp. breakdown cost = \$
1000 + 4000x.08 = 1320 Av. cost/year = 1500+1320 = 402.86 Av. cost/yr = 1500 + 1320 + 4000x.09 = (\$397.50) continued..

Av. coot/ $fr = \frac{1500 + 1680 + 4000 \times .1}{9} = \frac{$397.78}{$97.78}$ Decision: Optimum cycle length = 8 , Cot/ $fr = 397.50$ 2
Optimum Cycle length = 8 -2 100 4120 -25 (150) 120 -3 (201) 120 -455 15 (250) 120 -1 (304) 120 -2 (100) 120+.25 x 50 = 132.50 -3 (201) 180 -482.50 .15 (250) 180 -15 (250) 180 -100 120+100 x 25 = 145 -25 (150) 180+50 x 25 = 192.5 -200 .3 (201) 200+200 x 25 = 192.5 -200 .3 (201) 200+200 x 25 = 192.5 -200 .3 (201) 200+200 x 25 = 192.5
Order 100 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Order 100 -\$55 (Coot) -\$55 (Coot) -\$55 (Coot) -\$15 (250) /20 -\$2 (100) /20+.25 \(\text{25} \) 50 = /32.50 -\$25 (/50) /80 -\$82.50 -\$15 (250) /80 -\$82.50 -\$15 (250) /80 -\$100) /20+/00 \(\text{25} \) = /97.5 -\$200 -\$3 (200) 240
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
200 (150) 180 + 50x.25 = 192.5
200 (3 (201) 240
27
13 (230) 200
.1 (300) 240
$\frac{.2 (100)}{.25 (150)} 120 + 150 \times .25 = \frac{5}{7} \times 57.50$
250 3 (200) 2 1/0 + 50 x 25 = 252 50
-\$137.50 \(\frac{15}{250}\) 300
1.1 (360) 300
$\frac{2}{125} \frac{(100)}{(150)} \frac{120 + 200 \times 25}{100} = 170$
300 3 (3-1)
-\$165 (200) San + 50x25 = 3/2 (3)
1 (300) 360
E(profit 100 loaves)
= 120-55 = \$65
= (profit 150 loaves) = 132.50x.2+ 180 x.8-82.50= \$88
E(prof. 1 200 boares) = 145x.2 + 192.50x.25 + 240x-55 -110=99.13)
= (profit 250 loaves) = 157.50 x.2+ 205 x.25+ 252.50 x.3+300 x.25 = \$96
= \$96 = (prof.+ 300 (corre) = 170x.2+217.50x.25+ 265x.3+3/2.50x.15+360x.1 = \$85.75
1 265 x · 3 + 3/2·50x·15+360x·1 = \$85.75

(a) Decision tree

15

E{profit | x}

(b) Profit given \(\alpha \) = \(\alpha \) (1-p) - C \(\alpha \) = \(\alpha \) (\(\alpha - \) (c + \(\alpha \)] p)

C = \$50 is the loss per defective item r = \$5 is the profit per good item

 $E\{profit|\alpha\} = \alpha [n-(c+n)E\{p\}\}$

 $E\{p\} = \int p \, \alpha \, p^{\alpha-1} dp = \frac{\alpha}{\alpha+1}$ Hence

 $E\{profit | \alpha\} = \alpha R - (C+R) \frac{\alpha^2}{\alpha+1}$

 $\frac{\partial E\{pajit\}}{\partial \alpha} = R - (c+r) \frac{2\alpha(\alpha+1) - \alpha^2}{(\alpha+1)^2}$

 $= \mathcal{N} - (C+\mathcal{N}) \frac{\alpha(\alpha+2)}{(\alpha+1)^2}$

Equating the derivative to zero, we get $C \alpha^2 + 2C\alpha - 12 = 0$

Using C= \$50 and r = \$5, we get

50 x2+ 100 x-5 =0

Thus, $\alpha = .049$ or 49 prieces you day

Let N= number of cylinders

(a) \Box d $E\{cost\}$ (b) $\frac{\partial E\{cost\}}{\partial d}$ $= -\frac{Cz}{\sigma} \phi(\frac{t_L-d}{\sigma}) + \frac{Cz}{\sigma} \phi(\frac{t_U-d}{\sigma})$

Thus, $\frac{C_2}{C_1} = \frac{\phi\left(\frac{t_u-d}{\sigma}\right)}{\phi\left(\frac{t_L-d}{\sigma}\right)}$ $= \frac{1}{2}e^{\frac{1}{2}\left(\frac{t_u-d}{\sigma}\right)^2} + \frac{1}{2}e^{\frac{1}{2}\left(\frac{t_L-d}{\sigma}\right)^2}$

On simplification, we get

d*= \(\frac{1}{2}\left(\frac{t_1}{t_2} + \frac{t_1}{t_2} - \frac{20^2}{t_2} \left(\frac{C_2}{c_1}\right)\)

 $E{Plan} = .5(.6 \times 6000 + .4 \times 3000 - 3200) + .5(-1200) = \$200 > -\$300$ Select "Plan".

P{good W}	Node 3	Node 2	Node 1	Decision
0	\$4,800.00	-\$1,200.00	-\$300.00	postpone
0.1	\$4,800.00	-\$920.00	-\$300.00	postpone
0.2	\$4,800.00	-\$640.00	-\$300.00	postpone
0.3	\$4,800.00	-\$360.00	-\$300.00	postpone
0.4	\$4,800.00	-\$80.00	-\$300.00	plan
0.5	\$4,800.00	\$200.00	-\$300.00	plan
0.6	\$4,800.00	\$480.00	-\$300.00	plan
0.7	\$4,800.00	\$760.00	-\$300.00	plan
8.0	\$4,800.00	\$1,040.00	-\$300.00	plan
0.9	\$4,800.00	\$1,320.00	-\$300.00	plan
1	\$4,800.00	\$1,600.00	-\$300.00	plan

$$E{A1} = .4 \times 400 + .6 \times 295.5 = \$337,300$$

 $E{A2} = .4 \times 372 + .6 \times 350 = \$358,800$
Use mix A2.

Expected probability of price increase = $.58 \times .9 + .42 \times .3 = .648$ continued.

 $E\{A1\} = .352 \times 400 + .648 \times 295.5 = \$332,284$ $E\{A2\} = .352 \times 372 + .648 \times 350 = \$357,744$ Use mix A2.Decision remains the same. Hence, additional cost is not warranted.

19

E{shortage} =
$$\int_{I}^{200} (x - I) \frac{200}{x^2} dx = 200(\ln \frac{200}{I} + \frac{I}{200} - 1) \le 40$$

$$E\{\text{surplus}\} = \int_{100}^{I} (I - x) \frac{200}{x^2} dx = 200 (\ln \frac{100}{I} + \frac{I}{100} - 1) \le 20$$

Simplifying, we get

$$\ln I - \frac{I}{200} \ge 4.098 \tag{1}$$

$$\ln I - \frac{I}{100} \ge 3.505 \tag{2}$$

Using a spreadsheet, the two aspiration levels are satisfied for

$$99 \le I \le 151$$

States of nature.

m, = took calculus m2 = didn't take calculus

Outcomeo:

V, does well

Vz: doesn't do well

Pini

$$P\{Y_i\} = .3x.75 + .7x.5^{-1}$$

Prior probabilities:

P{A} = .75, P{B}=.25

Let 3 represent the event of having one defective in a sample of size fix

P{3/A}=C5(01)(99) = .04803 P[3/B] = C,5(.02) (.98) = .09224

P{3, A}= .04803x.75 = .036022

P{3,B}= .09224x.25 = .023059

P{3}=.036022+.023059=.059081

P{A/3} = \frac{.036022}{.059081} = .6097

P[B|3] = -023059 = .3903

EV(Stock) = . 74x3110+.26x731 = \$ 2491.46

EV(CD) = 10,000 x 08 = \$800

Decision: invest in Stock

(a) P{sucess} = .7 P{failme} = .3

E{publisheroffer} = 20,000 +.7(200,000x1) +.3(10,000x1).

= \$ 163,000

E { revenue if you undertake publishing } =-90,000 + ·7(200,000x2)+

·3 (10,000X2) = \$196,000

<u>Decision</u>: Publish it yourself.

(b) Define

m, = novel is a success

m2 = novel is not a success

U, = survey predicts success
Uz = survey does not predict succes

 $P\{v_j | m_i = m_j \begin{bmatrix} .8 & .2 \\ .15 & .85 \end{bmatrix}$

Prior probabilités: P[m,]=7 P{m,}=3

P{m;, vj.} = [-8x.7 m2 15X.3

m, 1.56 m. 1045 .255

continued.

$$P\{v_{i}\} = .56 + .045 = .605$$

$$P\{v_{i}\} = .14 + .255 = .395$$

$$P\{m_{i}|v_{j}\} = \begin{bmatrix} .56 & .14 \\ .605 & .395 \end{bmatrix}$$

$$m_{i} \begin{bmatrix} .605 & .255 \\ .605 & .395 \end{bmatrix}$$

$$= \begin{bmatrix} .926 & .354 \\ .074 & .646 \end{bmatrix}$$

 $E\{revenue | O\} = .926x200 + .074x10 + 20$ = \$205,940

E{Nevenue | 2} = .926x400+.074x20-90 =(\$281,880)

E{revenue (3)} = .354x200+.646x10+20 = (\$97,260)

 $E\{\text{revenue} | \emptyset\} = .354 \times 400 + .646 \times 20 - 90$ = \$64,520

Decision: If survey predicts success, publish the book yourself. Otherwise, use the publisher.

Set 13.2b .15 P{5;} = 1.30 P{a|s}=52 .0375 .15 .3825 ,57) P{a} = (.43 P{S|a}= a| 1 . 4942 .3488 · 1570 .2632 .6710-4942 30,000 COYM .3488 .1570 _35,000 Favorable .43 .4942 10,000 Soy bean .3488 .1570 -5000 Plant .0658 _ 30,000 . 2 632 COTA .6710 -35,000 un favorable 0658 **'57** - 10,000

E{revenue 0} = 30x.4942 + 0x.3488-35x.1570 = \$933) E{revenue 0} = 10x.4942 + 0x.3488-5x.1570 = \$4157

Soubean

.2632

.6710

-5000

E{revenue|6)}=30x.0658+0x.2632≠35x.6710 = -\$21,511

= -\$21,511 = (152 - 5x · 67) = (-\$2697)

= (-7097) x 57=2478

E{revenue (S)} = . 43x 9331 + (-2697) x 57=2478

Decision: Choose grazing

Graze

Set 13.2b

P{a|v} =
$$v_1 \begin{bmatrix} a_1 & a_1 \\ 3 & 7 \end{bmatrix}$$
, $p_1^2 v_2^2 = \frac{1}{3}$

P{a|v} = $v_1 \begin{bmatrix} a_1 & a_1 \\ 3 & 7 \end{bmatrix}$, $p_1^2 v_2^2 = \frac{1}{3}$

P{v, a} = $v_1 \begin{bmatrix} .665 & .035 \\ .055 & .045 \end{bmatrix}$ $p_1^2 v_2^2 = \frac{1}{3}$

P{v, a} = $v_1 \begin{bmatrix} .665 & .035 \\ .052 & .040 \end{bmatrix}$ $p_1^2 v_2^2 = \frac{1}{3}$

P{v, a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .114 & .857 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .114 & .857 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .114 & .22 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_2 \begin{bmatrix} .881 & .143 \\ .052 & .163 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .123 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

P{u|a} = $v_1 \begin{bmatrix} .881 & .143 \\ .052 & .143 \end{bmatrix}$

E{nevenue (@)} = 400x.889+200x.111=\$377.80 E | sevenue | 33 = 850 x . 143+180x . 857 = 207.25 E{nevenue | 0} = 400x571 +200x.429 = \$314.70 Decision: advertise if test is good, else do not advertise

E{revenue | 0} = 850x.881+100x.119 = \$760.75

(a) 0, = lot is good (4% afectives) Oz = lot is bad (15% defectives) Z, = both items of the sample are good
Z= one item is good
Z_3 = both items are lad P{0,3 = 95 P{6,3 = 05 P{z, 10,3 = C,2 (.96) (.04) = 922 $P\{Z_{2} | \theta_{i}\} = C_{i}^{2} (.96)^{2} (.04)^{2} = .0768$ $P\{Z_{3} | \theta_{i}\} = C_{0}^{2} (.96)^{0} (.04)^{2} = .0016$ $P\{Z_{1} | \theta_{2}\} = C_{2}^{2} (.85)^{2} (.15)^{0} = .7225$ P{Z} = (.9/2025 .08571 .002645) $P\{\theta|z\} = \begin{cases} 0, [.96039 .85124 .57467] \\ 0, [.03961 .14876 .42533] \end{cases}$ Case 1: Two good items (Z,) 5% A \$50 \$1000 E(cost/customer A) 86/ B \$200 \$700 = 50x.96039+1000x.0396/=(787.63) E (cost | customer B) = 200 X.96039+700x.0396/=\$219.81 Decision: Ship lot to A Case 2: One good item (22) E (cost | customer A) = 50x .85124+1000x.14876=\$191.32 E (Got / customer B) = 200x.85/24+700x.14876 = 27438 Decision: Ship lot to A Case 3: Both items bad (Z3) [{Gol | A} = 50x.57467+1000x.42533 - \$454.06 $E\{cold \mid B\} = 200 \times .57467 + 700 \times .42533 = 442.67$ Decision: Ship to R

No advantage

(b)
$$U(x) = \begin{cases} 0, & 0 \le x < 10 \\ 100, & x = 10 \end{cases}$$

Worst condition cost = 900,000 + 350,000 2 =\$1,250,000

Best condition savings = 900,000

Lottery:

$$U(x) = PU(-1,250,000) + (1-p)U(900,000)$$

$$= P(0) + (1-p)(100)$$

$$= 100(1-p) = 100 - 100p$$

$$\frac{U(0)}{U(4)} = \frac{o - (-2)}{4 - (-2)} = \frac{2}{6} = \frac{1}{3}$$

$$U(0) = \frac{1}{3}(100) = 33.33$$

Now,
$$U(0) = -p U(-z) + (1-p)U(4)$$

= 100(1-p)

رط		U(x) _A	U(x) _B
	-2	O 1	0
*	~	70	10
	0	80	20
	1	85	30
	2	90	50
	3	95	60
	4	100	100

Venture I:

Venture II:

Decision: Select II

$$E$$
 { \$ venture II } = $\frac{84-80}{85-80} = \frac{X-0}{1-0}$
=> $X = .8$ or \$800

(d) Venture I:

Venture II.

$$EU(II) = .6 \times 50 + .4 \times 20 = 38$$

Decision: Select I.

(a) Laplace:

 $E(a_1) = \frac{1}{3}(85+60+40) = 61.67$

 $E(a_2) = \frac{1}{3} (92 + 85 + 81) = 86$

E(93) = \frac{1}{3}(100+88+82) = 90

Study all night.

maximin:

Because this is a neward matry, we use maximin

Decision: Study all night

Savage:

 $Cost matrix = \begin{bmatrix} -85 & -60 & -40 \\ -92 & -85 & -81 \\ -100 & -88 & -82 \end{bmatrix}$

Regret matrix = $\begin{bmatrix} 15 & 28 & 42 \\ 8 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ Row max

Decision: study all night

Hurwicz:

ROW (ROW) + (1-a) (ROW) ROW -85 -40

-92 -81 -81-11 d = -86.5

43 -100 -82 -82-184 = -91

Decision: Study all night

Laplace:

 $E(a_i) = \frac{-1}{3}(80 + 60 + 0) = -46.67$

 $E(a_2) = \frac{-1}{3} (90 + 80 + 80) = (-83.33)$

E(03) = = (90 + 80 + 80) = (-83.33)

Decision: Select second on third.

Minimax

 $\begin{bmatrix} -80 & -60 & 0 \\ -90 & -80 & -80 \\ -90 & -80 & -80 \end{bmatrix} \begin{pmatrix} -80 \\ -80 \end{pmatrix}$

Select either the second or the third option

Sarage:

10 20 80 80 0 0 0 0 0 0

Select cities the second on the shind option.

Hurwicz:

ROW ROW a (Row)+(1-4) (Row) a, -80° 0 az -90 -80 -80-10×

93 -90 -80 - 80 - 100

Select the second or the third option

Laplace:

 $E(a_1) = \frac{1}{4}(-20+60+30-5) = 16.25$

E(02) = 1/4 (40+50+35+0) = (31.25) E(a3) = 4 (-50+100+45-10) = 21.25

 $E(a_4) = \frac{1}{4}(12+15+15+10) = 13$

Plant Wheat

minimax:

Row max

 0_{2} $\begin{vmatrix} -40 & -50 & -35 & 0 & 0 \\ 0_{3} & 50 & -100 & -45 & 10 & 50 \\ -12 & -15 & -15 & -10 & -10 & minimax \end{vmatrix}$

Recommend grazing.

Savage

Rowmax a, [60 40 15 15] 50 minimay az 0 50 10 10 20 ay 28 85 30 Plant Wheat

continued.

Ho	INWICZ:			2 continued
	(Row)	(Row)	d(Ran)+(1-a)	$\begin{pmatrix} R_{\text{RW}} \end{pmatrix} \alpha = 5$
a	-60	20	20+80	- 20
az	-50	0	-50 d	(-25)
	-100	50	50 - 1500C	(-25)
-	-15	-10	-10-5d	7.51-

Select wheat or soybeans.

Japlace: 50** Min
min = = = = = = = = = = = = = = = = = = =
$= \min_{Q_i} \left\{ K_i + \frac{C_i}{2} \left(Q^{*+} Q^* \right) \right\}$
$E\{a_i\} = 100 + \frac{5}{2}(3000) = 7600
$E(a_2) = 40 + \frac{12}{2}(3000) = $18,040$
$E(a_3) = 150 + \frac{3}{2}(3000) = 4650$ $E(a_4) = 90 + \frac{8}{2}(3000) = $12,090$
Select machine 3
miniman

Minimax:

Savage:

min $\max_{a_i} \begin{cases} K_i + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = Q^* \leq q \leq q$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - \min_{a_i} (K_i + \zeta_i q) \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + \zeta_i q - C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \begin{cases} R_{ij} + C_0 \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \end{cases}$ $\alpha_i = \frac{c_0 + c_0}{q_i} \end{cases}$

Hurwicz:

min
$$\{ \alpha (K_i + C_i \cdot Q^*) + (1-\alpha) (K_i + C_i \cdot Q^{**}) \}$$

= min $\{ K_i + C_i \cdot (\alpha Q^* + (1-\alpha) \cdot Q^{**}) \}$

For $\alpha = V_2$, we have

 $\alpha_i : 100 + 5 \cdot (\frac{1000}{2} + \frac{4000}{2}) = $12,600$
 $\alpha_2 : 40 + 12 \times 2500 = $30,040$
 $\alpha_3 : 150 + 3 \times 2500 = 7600
 $\alpha_4 : 90 + 8 \times 2500 = $20,090$

Select machine 3.

(a)	[8	6	2	8]	2	
•	8	9	4	5	4 4 3	
	17	5	3	5	3	
	8	9	4	5	e	

Saddle point solution at (2,3)

Saddle point Solution at (1,3)

(a)
$$p \ge 5$$
, $q \le 5$

(b)
$$p \le 7, q \ge 7$$

(a)
$$\begin{bmatrix} 1 & 9 & 6 & 0 \\ 2 & 3 & 8 & 4 \\ -5 & -2 & 10 & -3 \\ 7 & 4 & -2 & -5 \end{bmatrix} -5$$

$$7 \quad 9 \quad 10 \quad \boxed{4}$$

(c)
$$\begin{bmatrix} 3 & 6 & 1 \\ 5 & 2 & 3 \\ 4 & 2 & -5 \end{bmatrix} \stackrel{1}{\bigcirc} 2 < v < 3$$
5 6 3

(d)
$$\begin{bmatrix} 3 & 7 & 1 & 3 \\ 4 & 8 & 0 & -6 \\ 6 & -9 & -2 & 4 \end{bmatrix} - 9$$

$$6 & 8 & \textcircled{9} \quad 4$$

Define	the	follow	ring s	trategic	T.
		17	•		

1 - no campaign

2

3 - Newspaper

4 - Radio

5 - TV + newspaper

6 - TV + radio

7 - Radio + newspaper

8 - TV + radio + newspaper

The payoff is the additional percentage of customers reached by Company A.

ı •									
		ع	3	4	<u></u>	. 6	7	8	
1	0	-50	-30	-20	-80	-70	-50	-100	- 100
2	50	0	20	30	-30	-20	0	-50	-50
									-70
4	So	-30	-10	0	-60	- 50	-30	-80	-80
5	80	30	50	60	o	10	30	-20	-20
6	70	20	40	50	-10	0	50	-30	-30
7	ડ Ъ	0	20	30	-30	-50	0	-50	-50
8	100	50	70	80	20	30	50	0	0
						30			•

100 50 70 80 20 30 50 @ The game has a saddle point at (8,8), meaning that both companies [-1 9 6 8] -1
[-2 10 4 6] -2
[5 3 0 7] O
[7 -2 8 4] -2
[Conganical (8,8); meaning that both companies

[8,8); meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies

[8,8]; meaning that both companies equals zero.

min aij = aij, all izj 5

max min aij < max aij, all j

< min max aij

i i		У	1-9
	·	Вн	β_{T}
X	A _H	1	-1
I-X	A_{τ}	-1	1

B's pure stralegy	A's expected payoff		
$\mathcal{B}_{\mathcal{H}}$	X + (-1)(1-x) =-1+2X		
\mathcal{B}_{r}	-x + 1(1-x) = 1-2x		

B's game:

$$y - (1-y) = -y + (1-y) \Rightarrow y^* = \frac{1}{2}$$

Value of the game = -1+2(\frac{1}{2}) = 0

Robin's Payoff matrix:

		100-A	50/50-N/B	loo B	
X	Α	-100	-50	٥٦	
(1-x)	В	o	-30	-100	

Police strategy Robin's expeded payoff

1 -100 X

2 -50x + (-30)(1-x) = -30-20X

3 -100 +100 X

Robin's strategy: mix A and B 50-50.

Game cot = \$50

Police Strategy: $-100 y = -100(1-3,) \Rightarrow y = .5$ Solution: 3, = .5, 3 = 0, 3 = .5

·	Set 13.40
	(a) B's strategy A's exp. payoff
<u> </u>	1 -X + 2
	3 -7x +4 3 13x - 6
• •	
	4 D 0 V= 1/2
yoff	2 0 = 1/2
X5+1-	-2
X2-	$=4$ $-7x + 4 = 13x - 6 \Rightarrow x - 11$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	A's game: x, = x2 = 5, V= 5 B's game: mix B's @ and @
	$-10y_2+7=10y_2-6 \implies y_2=\frac{13}{20}, y_3=\frac{1}{20}$
	(b) A's pure strategy B's exp. payoff
:/:	1 -34+8 2 4+5
,	3 - 2y+7
= 1/2	8 V=5.75
O	y = 3/4
6	Ĩ
	6 1/2 3/4 1
	Bs game: mix B's () and (2)
	$-x_1 + 6 = 3x_1 + 5 \Rightarrow x_1 = 1/y, x_2 = 3/y, x_3 = 0$
ff_	(A) A's Strategy B's exp. payoff
<i>I.E.</i>	$2(\frac{24}{40}) + 20(\frac{24}{2}) + 20(0) = \frac{6}{22}$
XoS-O	$\frac{2}{1(\frac{49}{54}) + 1(\frac{1}{54}) + 1(0) = 1}$
,	3 $10\left(\frac{49}{54}\right) + 1\left(\frac{5}{54}\right) + 10(0) = \frac{55}{6}$
	max (exp. poyoffs) = 55/6)
×	B's strategy A's exp. poyeff
	$\frac{1}{5(\frac{1}{6})+1(0)+10(\frac{5}{6})=\frac{55}{5}}$
ė.	2 50(6)+1(0)+1(5%)=55/6
	$3 \qquad 50(\%) + 1(0) + 10(5\%) = \frac{100\%}{6}$
0 -	min (exp. payoffs) = (55/6)
,	value of the game = 55/6
٠. ر	(b) $V = (5(\frac{1}{6}) + 1 \times 0 + 10 \times \frac{5}{6})(\frac{49}{54})$
د-	
	$+(20x\frac{9}{4}+1x0+1x\frac{9}{4})(2/24)$
	$+ (50 \times 1\% + .1 \times 0 + 10 \times 5\%) \times 0 = \frac{6}{55}$

Set 1	3.4c						
	Team						
1	AB AC AD		7				
AB AC		0 0 -1					
40	0 0 1	-1 0 0					
Team BC	0 0 -1	1 0 0					
BD	0 -1 0	0 1 0					
CD	-1 0 0	001					
Team 1	ρ,		.				
Maxi	mize Z = 1	S					
S.F.	×,	4	KK € O				
v	-Xz	*~5 <u>~</u>	rk fo				
υ υ	_		€ 0				
ע	1. 1	- ×4	≤ 0				
7	+X,	•	×6 ≤ 0				
	X, + X2 + X3	+ xx+x2+	x6 = 1				
	sunrestrice		ر م				
Team / So	lution: X =	X6 = · 5, all of	V=0				
Jeam Z	USWMON : U,=	= 36-3, 411 01	WW 20 J				
(9) Maz	imize Z =	U .	2				
S.t.							
1	·3X1 -2X2 + 2X1 -3X2 -		≤ 0				
15-	x. +3 x, +	2X2-4X4	€0				
V-	24, -	2X3 - X4	≤0				
	x, +x, +	$x_3 + x_4$	=/				
(b) v us	restricted,	$all x_j \ge 0$					
COT			0.114				
valu	of game:	= .5 in favor $= .5 c$	raj Um				
UHS	tralegy · ^	·	•				
DU S	trategy: Xz	= .58, X3	= . 45,				
	DU strategy: Xz = .58, X3 = .42, all others = 0						
(C) Expected number of points							
	= 60x.5 =	: 30					
en fe	ivar of l		•				

	(n, n,)= Blothe's allocation between	3
	= $\{(2,0), (1,1), (0,2)\}$ Enemy's allocation = $\{(3,0), (2,1), (1,2)\}$	(0.21)
•	(a) $(3,0)$ $(2,1)$ $(1,2)$ $(0,3)$ $(2,0)$ -1 -1 0 0	1
	(1,1) 0 -1 -1 0 (0,2) 0 0 -1 -1	
, _s ,	Maximize Z = v	J
	V +X2 + X3 = 0 V +X3 = 0 X, +X2 + X3 = 1	
• 0	(b) vunrestricted, x, x, x, x3 ≥ 0 Solution: v=-1/2 => enemy wins	
= 0	$x_1 = .5, x_2 = 0, x_3 = .5$ $y_1 = .5, y_2 = y_3 = y_4 = y_5$	
7		
2	(a,b) = (Nbr. shown, Nbr. gnessed)	4
2	(a,b) = (Nbr. shown, Nbr. gnessed) $(1,1) (1,2) (2,1) (2,2)$ $(1,0) 0 2 -3 0$ $A(1,2) -2 0 0 3$	4
2	(a,b) = (Nbr. shown, Nbr. gnessed) $(1,1) (1,2) (2,1) (2,2)$ $(1,1) 0 2 -3 0$ $A(1,2) -2 0 0 3$ $(2,1) 3 0 0 -4$ $(2,2) 0 -3 4 0$	4
2	(a,b) = (Nbr. shown, Nbr. gnessed) $(1,1) (1,2) (2,1) (2,2)$ $(1,0) 0 2 -3 0$ $A(1,2) -2 0 0 3$ $(2,1) 3 0 0 -4$ $(2,2) 0 -3 4 0$ $(2,2) 0 -3 4 0$ $(3,2) 0 -3 4 0$ $(3,2) 0 -3 4 0$	4
2	$(a,b) = (Nbr. shown, Nbr. gnessed)$ $(1,1) (1,2) (2,1) (2,2)$ $(1,0) 0 2 -3 0$ $A(1,2) -2 0 0 3$ $(2,1) 3 0 0 -4$ $(2,2) 0 -3 4 0$ $Maximize 3 = V$ $S.t.$ $V 2x_2 -3x_3 \leq 0$ $V -2x_1 +3x_1 \leq 0$ $V +3x_1 -4x_2 \leq 0$	o
2	(a,b) = (Nbr. shown, Nbr. gnessed) (1,1) (1,7) (2,1) (2,2) (1,0) 0 2 -3 0 A(1,2) -2 0 0 3 (2,1) 3 0 0 -4 (2,2) 0 -3 4 0 Maximize $3 = V$ 5.t. $V = 2x_2 - 3x_3 \le 0$ $V - 2x_1 + 3x_4 \le 0$ $V + 3x_1 - 4x_4 \le 0$ $X_1 + X_2 + X_3 + X_4 = 0$	0
2	(a,b) = (Nbr. shown, Nbr. gnessed) (1,1) (1,2) (2,1) (2,2) (1,0) 0 2 -3 0 A (1,2) -2 0 0 3 (2,1) 3 0 0 -4 (2,2) 0 -3 4 0 Maximize $3 = V$ 5.t. $V = 2x_2 - 3x_3 \leq V$ $V + 3x_1 + 3x_2 \leq V$ $V + 3x_1 + 4x_3 + 3x_2 \leq V$ Solution: Playor A:	0
2	(a,b) = (Nbr. shown, Nbr. gnessed) (1,1) (1,2) (2,1) (2,2) (1,0) 0 2 -3 0 A (1,2) -2 0 0 3 (2,1) 3 0 0 -4 (2,2) 0 -3 4 0 Maximize $3 = V$ 5.+. $V = 2X_2 - 3X_3 \leq V$ $V - 2X_1 + 3X_2 \leq V$ $V + 3X_1 + 4X_3 + 4X_4 \leq V$ Solution: Playor A: $X_1 = 0, X_2 = .571, X_3 = .429, X_4 = V$ Player R:	0
	(a,b) = (Nbr. shown, Nbr. gnessed) (1,1) (1,2) (2,1) (2,2) (1,0) 0 2 -3 0 A(1,2) -2 0 0 3 (2,1) 3 0 0 -4 (2,2) 0 -3 4 0 Maximize $3 = V$ S.t. $V = 2X_2 - 3X_3 \le V$ $V - 2X_1 + 3X_1 \le V$ $V + 3X_1 - 4X_1 \le V$ $V + 3X_1 + X_2 + X_3 + X_4 = V$ Solution: Player A: $X_1 = 0, X_2 = .571, X_3 = .429, X_4 = V$	0

(a) Effective lead time L = 15-10 = 5 days M = 100 x5 = 500 units OL = 1102xs = 22.36 units B ≥ 22 36×1.645 ~ 37 units Order 1000 units whenever the inventory level dropes to 537 units (b) Effective lead time L=23-20=3 days M = 100 x3 = 300 units 0, = \102x3 = 17.32 unito B≥ 17.32×1.645 = 29 units Order 1000 units whenever the inventory level drops to 329 units (c) Effective lead time = 8 days M = 100×8 = 800 units 02 = \102x8 = 28.28 units B≥ 28.28x1.645= 47 (d) Effective lead time = 0 1= 0 = 0, B=0 Order 1000 units whenever the inventory level drops to o unit. De mand / day = N (200, 20) h = \$.04/day/unit, K=\$100, L=7 days order quantity = \(\frac{2KD}{h} = \frac{\frac{9\times 100\times 200}{04}}{} = 1000 units Cycle length = $\frac{1000}{200}$ = 5 days Effective lead time = 7-5=2 days M = 200 × 100 = 200 units K = 2.06 $\sigma_{L} = \sqrt{20^{2} \times 2} = 28.28$

B ≥ 28 18 x 2 06 = 58. 27 = 59 dwcs Order 1000 diocs whenever the

inventory level dropo to 459 units.

Semand/day = N(30,5) h = \$.02/day/unit, K= \$30 (a) $L = \frac{80-20}{30}$ = z days 20 7/17/17/ ML = 60 units OL = 152x2 = 7.07 umb P{demand during L = 80} $= P\{z \ge \frac{80-60}{7.07}\}$ $= P\{z \geq 2.83\}$ $= / - \cdot 9977 = \cdot 0023$ (b) $y = \sqrt{\frac{2 \times 30 \times 30}{100}} = 300 \text{ rolls}$ Cycle length = $\frac{300}{30}$ = 10 days Lead time = 2 days M = 2 x 30 = 60 units 0/ = 1/52x2 = 7.07 units K., = 1.28 B = 7.07 x1.28 = 10 Order 300 rolls whenever the enventory level drops to 70 rolls.

(a)
$$D/y = \frac{1000}{320} = 3.125$$
 setups

(c)
$$h\left(\frac{y}{2} + R - E\{x\}\right) = 2\left(\frac{320}{2} + 94 - 50\right)$$

$$= $408$$
(d) $pS = 10 \times .20397 \cong 2.04

(e)
$$\int_{R}^{\infty} f(x) dx = \int_{100}^{100} \frac{1}{100} dx = \frac{100-99}{100} = .06$$

$$f(x) = \frac{1}{50}$$
, $0 \le x \le 50$, $E\{x\} = 25$

$$\hat{y} = \sqrt{\frac{2 \times 1000 (100 + 10 \times 25)}{2}} = 591.6$$

$$\hat{y} = \frac{PD}{h} = \frac{10 \times 1000}{2} = 5000$$

$$\hat{y} > \hat{y} \Rightarrow unique solution exists$$

$$S = \int_{(x-R)}^{s_0} (x-R) \frac{1}{s_0} dx = \frac{R^2}{s_0} - R + 2s$$

$$\frac{y}{2} = \sqrt{\frac{2 \times 1000 (100 + 105)}{2}} = \sqrt{100,000 + 100005}$$

$$\int_{R_i}^{50} \frac{1}{50} dx = \frac{2y_i}{500} \Rightarrow R_i = 50 - \frac{y_i}{100}$$

Iteration 1.

$$y = \sqrt{100,000} = 3/6.23$$
 gal

Iteration 2:

Steration 3:
$$S = \frac{46.82}{100} - 46.82 + 25 = .101124$$
 continued...

$$y_2 = \sqrt{100,000 + 19,000 \times -101/2} = 317.82$$
 2 continued

$$R_3 = 50 - \frac{317.82}{100} = 46.82$$

Optimum delution:

$$f(x) = \frac{1}{20}$$
, $40 \le x \le 60$, $E\{x\} = 50$

$$y = \sqrt{\frac{2 \times 1000(100 + 10 \times 50)}{2}} = 774.6 \text{ gel}$$

$$\hat{y} = \frac{10 \times 1000}{100} = 5000 \text{ gal}$$

$$\tilde{y} > \hat{y} \Rightarrow \text{unique solution exists}$$

$$S = \int_{R}^{60} (x - R) \frac{1}{20} dx = \frac{1}{20} \left[\frac{x^2}{2} - Rx \right]_{R}^{60}$$
$$= \frac{R^2}{40} - 3R + 90$$

$$\int_{R_{i}}^{60} \frac{1}{z_{0}} dx = \frac{2y_{i}}{10x 1000} \Rightarrow R_{i} = 60 - \frac{y_{i}}{250}$$

Iteration 1:

2

$$R_1 = 60 - \frac{316.23}{250} = 58.735$$

Iteration 2:

$$5 = \frac{58.7}{40} - 3x58.735 + 90 = .04$$

$$G_2 = \sqrt{100,000 + 10,000 \times .04} = 316.823$$

$$R_2 = 60 - \frac{316.823}{2.17} = 58.733$$
 gal

Optimum Solution:

$$y^* = 316.85 \approx 317 \text{ gal}$$
.
 $R^* = 58.73 \approx 59 \text{ gal}$.

R* in the present model is emaller Han R* in Example because f(x) has a smaller variance,

and hence less uncertainty.

For the normal distribution, I it can be shown that the following approximation holds $S = \int (x-R) f(x) dx$ $\sum_{n=1}^{\infty} \sqrt{|x|^2 |x|^2} L(R_s) \qquad 0$

where

 $Var\{x\} = variance of x given f(x)$ $R_s = \frac{R - E\{x\}}{\sqrt{Var\{x\}}}$

 $L(R_s) = Standard normal loss integral$ $= \int_{R_s}^{\infty} (z - R_s) \Phi(z) dz$

\$\(\mathcal{P}(Z)\) is \$N(0,1). The values of \$\(\mathcal{L}()\) can be found in standard statistical tables

 $\int_{R}^{\infty} f(x) dx = \frac{hy}{PD}$ $\int_{R}^{\infty} \varphi(z) dz = \frac{hy}{PD}$

The slipes of the solution algorithm are:

- 1. Compute first trul

 y=\frac{2KD}{h}
- 2. Compute Ry from & using the current value of y and the standard normal tables
- 3. Compute R from @ using the current value of Rs; thatis, R=E{x}+R, Vvan{x}

If two successive 4 continued values of R are approximately equal, stop Otherwise, go to stop 4

4. Compute S from D using standard normal loss integral tables. Then find $y = \sqrt{2D(K+pS)}$ Go to stop 9.

$$E\{C(y)\} = h^{\sum}_{D=0}(y-D)f(D)$$

$$+ p^{\sum}_{D=y+1}(D-y)f(D)$$
Consider $E\{C(y)\} \le E\{C(y-1)\}:$

$$E\{C(y-1)\} = h^{\sum}_{D=0}(y-1-D)f(D)$$

$$+ p^{\sum}_{D=0}(D-y+1)f(D)$$

$$+ p^{\sum}_{D=0}(D-y)f(D)$$

$$+ p^{\sum}_{D=0}(D-y)f(D)$$

$$- h^{\sum}_{D=0}(y-D)f(D)$$

$$- h^{\sum}_{D=0}f(D) + p^{\sum}_{D=0}f(D) - c$$

$$= E\{C(y)\} + p^{\sum}_{D=0}f(D)$$

$$= e^{\sum}_{D=0}f(D)$$

Thus, $E\{C(y-1)\}-E\{C(y)\}=p-(h+p)\{\{D\leq y\}\}$ ≥ 0 Hence

 $P\{D \leq y-1\} \leq \frac{p}{p+h}$ Similarly, it can be shown that $P\{D \leq y\} \geq \frac{p}{p+h}$

Thus, y^* must patisfy $P\{D \le y^* : J \le \frac{P}{P+h} \le P\{D \le y^*\}$

$$f(D) = \frac{1}{5}, \quad 10 \le D \le 15$$

$$\int_{0}^{y} f(D) dD \le \cdot 1:$$

$$\int_{0}^{y} \frac{1}{5} dD = \frac{y-10}{5} \le \cdot 1 \Rightarrow y \le 10.5$$

$$\int_{0}^{y} f(D) dD \le \cdot 1:$$

$$\int_{0}^{y} \frac{1}{5} dD = \frac{15-y}{5} \le \cdot 1 \Rightarrow y \ge 14.5$$
The two conditions cannot be satisfied simultaneously.

Maximize expected revenue. $E\{\text{revenue}\} = -10y + \int 25Df(D)dD$ $+ \int 25yf(D)dD$ $= -10y + \frac{25D}{100}\int_{200}^{y} \frac{25y}{50}Df(D)$ $= -25y^{2} + 115y - 10,000$ $\frac{\partial E\{\text{revenue}\}}{\partial y} = -5y + 115 = 0$ y = 230 copies

E { revenue}
= -7y +
$$\int_{90}^{y} [25D + 5(y-D)] f(D) dD$$

+ $\int_{90}^{150} 25y f(D) dD$
= $-\frac{y^{2}}{6} + 48y - 1350$
 $\frac{\partial E \{ \text{revenue} \}}{\partial y} = \frac{-y}{3} + 48$
 $y = 144 \text{ denulo}$
Decision: Stock 12 dozeno

Average holding inventory = $y - \frac{D}{2}$ Average holding inventory = $\frac{y^2}{2D}$ $E\{c(y)\} = c(y-x) + h\{\int_{-\frac{\pi}{2}}^{x}(y-\frac{\pi}{2})f(x)dx$

$$f(D)dD + y^* \int_{D}^{\infty} f(D)dD + p \int_{D}^{\infty} f(D)dD$$

$$\frac{\partial E}{\partial y} = c + \left(\int_{D}^{\infty} f(D)dD + \int_{D}^{\infty} f(D)dD\right)$$

$$- p \int_{D}^{\infty} \left(\frac{D-y}{D}\right) f(D)dD = 0$$

$$\int_{D}^{\infty} f(D)dD + y^* \int_{D}^{\infty} f(D)dD = \frac{p-c}{D}$$

$$\int f(D)dD + y^* \int_{y+D} \frac{f(D)}{D}dD = \frac{P-c}{P+h}$$

f(D) = 1 , 0 = D = 100 $(f(D)dD + y \int_{y}^{100} \frac{f(D)}{D}dD = \frac{P-c}{P+b}$ $\int_{0}^{2} \frac{1}{100} dD + y \int_{0}^{100} \frac{1}{100D} dD = \frac{P-C}{P+h}$ $\frac{y}{100} + \frac{y}{100}(\ln 100 - \ln y) = \frac{p-c}{p+b}$.056y - .01y lny = 45-30 = .2143 Truel and error juild y+=55 units

 $E\{C(s)\}=K+E\{C(S)\}$

.25 82-4.5 & +22.5 = 5 + .255-4.5 S+22.5 .25 82-4.5 8 + 15.25=0 (for S=9)

Solution: 8 = (4.53 or 13.47)

Policy: If x < 4.53, order 9-x $x \ge 4.53$, do not order

 $E\{R(y)\} = -c(y-x) +$

\(\bigg[rD-h(y-D)] \ift(D)dD+\(\bigg) \bigg[ry-p(D-y)] \ift(DdD) \\ \frac{1}{3} \]

DE{3} =- c- Sh f(D)dD+ ryf(D) + S(r+p)f(D)dD-ryf(D)=

Thus, $\int_{0}^{\infty} f(D) dD = \frac{n + p - c}{n + p - h}$

In the presence of setup cost, we have an S-S policy. Define S such Hat

 $E\{R(s)\} = E\{R(S)\} - K$

For the numeric problem,

 $E\{R(y)\} = .4y^{2} + 5y - 20 - 2x$ $\int_{A}^{S} f(D) dD = \frac{3 + 4 - 2}{3 + 4 - 1} = .625$

 $\int_{0}^{4} f(D) dD = \frac{1}{3+4-1} = .62$ Thus, S = 6.25

Next, -482 +58-5.625 =0

Thus, 8 = 1.25

Policy:

If x<1.25, order 6.25-x

x >, 1.25, do not ordu

 $-\frac{3^{2}}{6} + 48 - 1350$ $= -10 - 144^{2} + 48x144 - 136$

 $= -10 - \frac{144^2}{6} + 48x144 - 1350$ Thus,

J2-288 S+20676 =0

8 = (136.25)

Optimal policy

If X < 136, order 144 - X $X \ge 136$, do not order

L(y.) = \((nD-h(y.-D)) f(D) dD + \(\(\text{Ny} \) + \(\text{N'} - p \) \(D - \text{y} \) \(\text{D} \) \(\text{D} \) \(\text{D} \) where $r' = \begin{cases} r & i=1 \\ r-c & i=1 \end{cases}$ $\mathcal{G}(\mathbf{x}_{l}) = \max_{\mathbf{y}_{l} \geq \mathbf{x}_{l}} \left\{ -C(\mathbf{y}_{l} - \mathbf{x}_{l}) + L(\mathbf{y}_{l}) \right\}$ $g_{i}(x_{i}) = \max_{y_{i} \geq x_{i}} \left\{ -c(y_{i}-x_{i}) + L(y_{i}) + \alpha E\left\{g_{i}(y_{i}-D)\right\}\right\}$ For period 2: of_ (y2 |x2) =-C+L'(y*) =0 $\int_{a}^{4^{2}} f(D) dD = \frac{n+p-c-\alpha(n-c)}{n+p+h-\alpha(n-c)}$ $g_{2}(y,-D) = \begin{cases} L_{2}(y,-D), & D \leq y,-y_{2}^{*} \\ -c(y_{2}^{*}-y,+D)+L(y_{1}^{*}), D \geq y,-y_{2}^{*} \end{cases}$ $E\{(y,-D)\} = \int_{L_2}^{y,-y_2^*} (y,-D)f(D)dD$ + \ (-c(\frac{y}{2} - \frac{y}{4} + D) + L(\frac{y}{2}) \frac{1}{2} f(D) dD This, when substituted in the expression for g (x,), will yield total expected profit in terms of y, . Hence, the value of y * can be obtained. In terms of the given numerical example, we have $\frac{1}{10} \int_{0}^{82} dD = \frac{2+3+1-8(2-1)}{2+3+1-8(2-1)} = .75$ Thus, 2 = 7.5

L(3)=/ { [3-0] dD

+, 5'(23+(.8x-3)(D-3) dD}

= (.04 /2 - .255) 32+ (5- .8/2) 3 L(y) = [04(2-1) - 255] y + [5- .8(2-1)] *,+[4(2-1)-15] = -. 215 y + 4.27,-11 $\angle (y_2^*) = \angle (7.5) = 8.4$ $(-.215(y_1-D)^2 + 4.2(y_1-D) - 11, D \le y_1-7.5$ $|E\{g_{2}(y,-D)\}=\frac{1}{10}\}\int \left(E\cdot z |S(y,-D)|^{2}\right)$ +4.2(y,-D)-11]dD+ 5(.9+y-D)dD} = $\frac{1}{10} \left(-.072 y_1^3 + 2.115 y_2^2 - 11 y_1 - 5 \right)$ - y,2 - 5.44, -19.625) = 1 (-.072 y3+ 1.115 y2-16.4 y,-24.625) L(y,) = (.04x2-.255)y,2+(5-.8x2)y +(4x2-15) = -·175 x,2+3.47, -7 g(x1) = max {-1(x-x1)-.1757, +3.4y; 7+18 (-.07x3+1.115x,2-16.44, = $\max_{y, \geq x_i} \left\{ -.00576y_i^3 - .075y_i^2 + y_i \geq x_i \right\}$ <u>∂ξ.}</u> = -.017284,2-.154,+.89 =0 y, * = 9.02

continued

continued optimal policy: Period 1 {order 0, x, ≥ 9.02 order 0, x, ≥ 9.02 Period 2 { order 0, X2 = 7.5 For the infinite model: $\frac{1}{10}\int_{0}^{1}dJ=\frac{3+\cdot 2(2-1)}{3+\cdot 1+\cdot 2\times 2}=\cdot 915$ y, *= 9.15 > 4, * > 4, *

 $\int_{A}^{A} f(D) dD = 08 \int_{A}^{A} D dD$ Thus, $.04y^{*2} = \frac{p + (1-\alpha)(r-c)}{p + h + (1-\alpha)r}$ Thus, y = 4.61

order 0, if x = 4.61

g(x)=min { ((y-x) + 4) (y-D) f(D) dD+ p 5 (D-y)2f(D)dD+ a [g (y-D) f (D) dD } $\frac{\partial x \cdot y}{\partial x} = c + zh \int_{x}^{z} (x-D)f(D)dD$ -2p 5 (D-y) F(D) dD + ~ E { g'(y-D)} Continued. 3 continued

Since this is a cost function, g'(y-D) = -C. Now, of = 0 yields, {(1-a)c+2hy* f(D)dD -2h SDf(D) dD +2Py*(1-\f(D)dD) +zp (yDfcD)dD} = 0 This simplifies to

(h-p) { y * f(D) dD - SDf(D) dD }+Py* $=\frac{2pE\{D\}-(1-\alpha)C}{2}$ $= \frac{10 + .1 \times 2}{10 + 1 + .1 \times 10} = .85$ $y * \left\{ \frac{1}{h-p} + \int f(D) dD - \int Df(D) dD \right\}$ $= \frac{2p E \{D\} - (1-\alpha)C}{3(h-p)}$

y can be determined from the last order 4.61-X, if X = 4.61 equation. When h=p, 1 yields x = 2pE{D}-(1-4)c This result is independent of f(D) except in sofar as E{D} is concerned.

- (a) Efficiency = 100-29 = 71%
- (b) For average waiting time ≤ 3 minutes, at least 5 cashiers are needed

For efficiency \ge 90%, the associated idleness percentage is \le 10%. The corresponding number of cashiers is at most of.

Conclusion:

The two conditions cannot be satisfied simultaneously. at least one of the two conditions must be relaxed.

CA = \$18 per Lour

G = \$25 per Lour

Length of queue A = 4 jobs

Length of quene B = .7×4 = 2.8 jobs

Cost of A = \$18 + 4 x \$10 = \$58 per four

Cost of B = \$25 + 2.8 x \$10 = \$53 per Low

Decision:

Select Model B.

				3
	Situation	Customer	Server	# Queueing situation austomore
	abcdef g	Plane Passenger Machinist Letter Student Cases Shopper	Runway Taxi Clerk at tool Crib Clerk Registrar's office Judge Cashier	1 Arrival of orders Orders 2 Processing (single machine) Rush orders 3 Processing (single machine) Regular jobs 4 Processing (Prod. line) Rush jobs 5 Processing (Prod. line) Regular jobs 6 Receipt of completed jobs Completed orders 7 Tools
	h	Car	Parking space	8 Machine breakdown machines
•	Situation	Calling Source	Customers arrival	# Servers Discipline Service Queue Source Foreman Priority Sorting 00 00
	a	∞	Individual	2 Machine FIFO Prod. time 00 00
	Ь	Ø	Individual	3 machine FIFO Rod time as as
	c d	∞	Individual	4 Rod line FIFO Rod time 00 00
		⊘	Bulk Individual	5 Prod. line F1FO Prod. time of as
	e	<i>∞</i> 5 <i>∞</i> 5	Individual	6 Shipping FIFO Loading time finite as facilities
	g	& &	Individual	7 Tool Crib Priority Exchange time finite finite
	h	Ø	Individual	8 Repair persons Paronty Repair time finite finite
	Situation	Interarrival t	ine Servicetime	(a) T. (b) T. (c) T.
	a	Probablistic	Time to clear runway	(5) 1. (5) 14
	6	Probabilistic	Ride time	(a) None
	C	Probabilistic	Time to receive tout	(b) None.
	d	Deferministic	Time to process letter	(c) None
	e	Probabilistic	Time to process registr 1	(d) None
	f a	Probabilistic	Trial time	(e) Jrckey or balk
	g	Probabilistic Probabilistic	check-out time	(f) None
	h Situation	Queue Capacity	Parking time. Queue Discipline	(g) Jockery
	-7			(h) None
	a b	∞	FIFO FIFO	
	C	<i>∞</i>		
	d	∞	FIFO Random	
	e	⊘ \$ ⊘ 3	F1F0	·
	f	∞ ⊗	FIFO FIFO	
	. 9	0	FIFO	
	h	0	None	
Щ.				

(a) Av. interactival time (in time units)

7 = 10 = 20 arrivals/kg

5

arrival rate & (in customers / unit time)

(b) Let I = av interarrival time

(i) 7 = 60 = 6 arrivals/km

I = 10 minutes = 1/2 Lour

(ii) $\lambda = \frac{60}{3} = 20 \text{ arrivals / km}$ $\overline{I} = \frac{6}{3} = 3 \text{ minutes} = \frac{1}{20} k r$

(ii) $\lambda = \frac{10}{20} \times 60 = 20 \text{ arrivals / Ru}$ $\overline{I} = \frac{30}{10} = 3 \text{ minutes} = \frac{1}{20} \text{ hour}$

(iv)) = 1/5 = 2 arrivals / Rour T = 15 Rour

(c) Let 5 = av. service time

(1) M = 60 = 5 services/four 5 = 12 minutes = . 2 hour

(11) M = 60 = 8 services / hr S= 7.5 min = .125 h

(iii) $u = \frac{5}{30} \times 60 = 10$ services/fly 5= 30 = 6 min = 1/0 hr

(iv) $\mu = \frac{1}{3} = 3.33$ Services/Ar 5 = .3 hour

(a) $\lambda_{R} = .2$ farlures /hr $\lambda_{\text{week}} = .2x24x7 = 33.6 \text{ failures /wh}(b) P\{\frac{2}{60} \le t \le \frac{3}{60}\}$

(b) P{at least one failure in 2 hours} = P} time betn. failures < 2} (c) $P\{t>3hn\}=1-P\{t\leq 3\}=e^{-2x^3}$

(d) P{t \le 1 km} = 1- \vec{e}^{.2\times 1} = .18

(a) $f(t) = \lambda e^{\lambda t}$ $= 20e^{-20t}$

(b) P{t > 15 }= P{t> 25} = .00674

(c) $P\{t \leq \frac{3}{60}\} = P\{t \leq .05\}$ $P\{t > \frac{5}{60}\} = e^{\frac{20 \times 5}{60}} = .189$

(d) t = 45-10 = 35 minutes Av. #garrivals in 35 min. = 20 x 35 = 11.67 arrivals

) = 1/6 arrivals/hr $P\{t > 1\} = e^{1/6 \times 1} = .846$ P{t ≤.5}=1-e/6x.5

 $= 1 - e^{-1/12} = .08$ (a) $\lambda = \frac{60}{10} = 6 \text{ arrivals / fix}$ (b) $P\{t \ge \frac{15}{60}\} = e^{-6 \times \frac{15}{60}} = .223$ (c) $P\{t \le \frac{20}{60}\} = 1 - e^{-6 \times \frac{20}{60}} = .865$

(a) $P\{t \leq \frac{2}{60}\} = 1 - \epsilon$ = .6886

= P{t = 3/60} - P{t < 2} $= (1 - e^{-35 \times 3/60}) - (1 - e^{-35 \times 2/60})$ $= e^{-70/60} - e^{-105/60} = .1376$

(c) $P\{t > \frac{3}{60}\} = e^{35(3/60)}$.1738

10

Jim's Payoff
$$-2 + 2 + 2$$

Prob. $P\{t \ge 1\}$ $P\{t \le 1\}$

$$= -2 \times \cdot 5134 + 2 \times \cdot 4866$$

Conclusion: Jim will pay Ann an average of 17 cents every 8 krs

Jim's payoff	2	o ,	- 2
Probability	Pft≤13	P{1<+<1.5}	P{+>1;5}
		_	7

$$P\{t \ge 1.5\} = e^{-40(1.5/60)}$$

Jim's expected payoff /8 Rows

$$= [2x.4866 + 0x.1455 - 2x.3679] \times 40x8$$

15 + 51.5 1.55 + 52

$$= .1455$$

$$-40(1.5/60) -40(2/60)$$

$$P\{1.5 \le t \le 2\} = e - e$$

$$P\{t \ge 2\} = e^{-40(2/60)} = .2636$$

$$= 8\times40 (2\times.4866 + 3\times.1455$$

$$= 8 \times 40 (2 \times 1000)$$
 $= -2.22 conto$

Jim payo Ann an average of \$2.22/8 Rours.

(a)
$$\lambda = \frac{60}{6} = 10$$
 customors / fr -10(4/10

$$P\{t \leq 4 \min\} = 1 - e^{-10(4/60)}$$

% discount =
$$\begin{cases} 10\%; & \text{if } t \leq 4 \\ 6\%; & \text{if } q \leq t \leq 5 \\ 2\%; & \text{if } t > 5 \end{cases}$$

$$P\{t \le 4\} = .4866$$

$$-10(4/60) - 0(5/60)$$

$$P\{4 < t \le 5\} = e$$

$$= .0788$$

$$P\{t>5\} = e^{-10(5/60)} =$$

Expected of discount

$$= 10 \times .4866 + 6 \times .0788 + 2 \times .4346$$

$$\lambda = \frac{365 \times 24}{9000} = .973 \text{ failure /yr}$$

$$P\{t \le 1\} = 1 - e$$

$$= .622$$

Lack of memory property applies.

(a) The waiting time for the green bus is exponential with mean 10 minutes:

$$f(t) = 1 e^{-t}, \ t \ge 0$$

(b) The waiting time for the red bus is exponential with mean 7 minutes: $f(t) = \frac{1}{7} e^{-t/7}, \quad t > 0$

$$E\{t\} = \int_{t}^{\infty} \lambda e^{\lambda t} dt$$

$$= -\int_{t}^{\infty} de^{\lambda t} dt$$

$$= -\int_{t}^{\infty} de^{\lambda t} dt$$

$$= -\int_{t}^{\infty} de^{\lambda t} dt$$

$$= -\int_{t}^{\infty} e^{\lambda t} dt$$

$$E\{t'\} = \lambda \int_{0}^{\infty} t^{2} e^{\lambda t} dt$$

$$= -\int_{0}^{\infty} t^{2} de^{\lambda t}$$

$$= -\int_{0}^{\infty} t^{2} de^{\lambda t} dt$$

$$= -\int_{0}^{\infty} t^{2} e^{\lambda t} dt$$

$$= -\left[t^{2}e^{\lambda t} - \frac{2}{\lambda}\int t \lambda e^{-\lambda t} dt\right]^{2}$$

$$= +\frac{2}{\lambda^{2}}$$

$$= \lambda^{2} - \left(\frac{1}{\lambda}\right)^{2}$$

$$= \frac{1}{\lambda^{2}}$$

$$= \frac{1}{\lambda^{2}}$$

TORA input = $(5, 0, 0, \infty, \infty)$ $P_{n \ge 5}(t = 1 hr) = 1 - [P_0(1) + \cdots + P_4(1)]$ $= 1 - e^{5}(1 + 5 + \frac{5^{2}}{2!} + \frac{5^{3}}{3!} + \frac{5^{4}}{4!})$ $= 1 - \cdot 44049 = \cdot 55951$

7 = 1 tryp/month

(a) $\lambda t = 3$: Total input = $(3, 0, 0, \infty, \infty)$ $f_0(3) = \frac{(1 \times 3)^0 e^{-1 \times 3}}{0!} = .049787$

(6) $\lambda t = 12$: TORA input = (12, 0, 0, 0, 0, 0) $P(t=12) = P(12) + \cdots + P(12)$ $= \frac{12 \cdot e}{0!} + \frac{12' \cdot e^{-12}}{1!} + \cdots + \frac{12^8 \cdot e^{-12}}{8!}$ = .15503

(c) $f_0(1) = \frac{1^{\circ}e^{-1}}{0!} = e^{-1} = .3679$ TORA inequal = (1, 0, 0, 00, 00)

7 = 2 arrivals/minute

(a) It = 2x5=10 arrivals

(b) $\lambda t = 2x.5 = 1$ TORA input = (1,0,0,00,00) $f_0(t=.5) = e^{-2x.5} = .3679$

(c) 1-10 (t=.5) = 1-.3679 = .6321

(d) $\lambda t = 2 \times 3 = 6$ arrivals $TORA input = (6, 0, 0, \infty, \infty)$ $P_0(t=3) = \frac{(2 \times 3)^0 e^{2 \times 3}}{0!} = .00248$

7 = 1/5 = . 2 arrival / min

(a) $p(t=7) = \frac{(2x7)^2}{2!} = .24167$ TORA input = (14.0.0.00)

TORA input = (1.4, 0, 0, 00, 00) (b) $f(t=5) = \frac{(.2\times5)'e^{-.2\times5}}{1!} = .36788$

7 = 25 books per day

(a) It = 25x30 = 750 books = 75 shelve

(b) 10 bookcases = 10x5x100 = 5000 books

 $P_{n>5000}$ = $1-[P_0(30)+\cdots+P_{5000}(30)]$

(a) $\lambda_{green} = 1 \frac{1}{5} \frac{1}{5} \frac{1}{7} \frac{1}{5} \frac{1}{7} \frac{1}{5} \frac{1}{9} \frac{1}{10} \frac{1}{6}$ $\lambda_{combined} = .1 + \frac{1}{7} = .24286 \frac{1}{5} \frac{1}{10$

and 1R. (b) $P\{t \le 2\} = 1 - e^{-243x^2} = 3849$

 $E\{n|t\} = \sum_{n=1}^{\infty} n \frac{(\lambda t)^n e^{\lambda t}}{n!}$ $= \lambda t e^{\lambda t} + \sum_{n=1}^{\infty} \frac{(\lambda t)^n e^{\lambda t}}{(n-1)!}$ $= \lambda t e^{\lambda t} + \sum_{n=1}^{\infty} \frac{(\lambda t)^n e^{\lambda t}}{n!}$ $= \sum_{n=1}^{\infty} n^2 \frac{(\lambda t)^n e^{\lambda t}}{n!}$ $= \lambda t e^{\lambda t} + \sum_{n=1}^{\infty} \frac{n (\lambda t)^{n-1}}{(n-1)!}$ $= \lambda t e^{\lambda t} \frac{\partial}{\partial \lambda t} \left(\lambda t e^{\lambda t} + e^{\lambda t}\right)$ $= \lambda t e^{\lambda t} \frac{\partial}{\partial \lambda t} \left(\lambda t e^{\lambda t} + e^{\lambda t}\right)$ $= \lambda t e^{\lambda t} \left(\lambda t e^{\lambda t} + e^{\lambda t}\right)$ $= (\lambda t)^2 + \lambda t$

Thus,

3

 $var\{n|t\} = (\lambda t)^{3} + \lambda t - (\lambda t)^{2}$ $= \lambda t$

$$f_{0}'(t) = -\lambda f_{0}(t) \qquad (1)$$

$$f_{n}'(t) = -\lambda f_{n}(t) + \lambda f_{n-1}(t) \qquad (2)$$

$$dP_0(t) = -\lambda P_0(t) dt$$
which yields
 $P_0(t) = A e^{-\lambda t}$

Because
$$f(0)=1 \Rightarrow A=1$$
, $f(t)=\bar{e}^{\lambda t}$
For $n=1$:

$$\gamma'(t) = -\lambda f(t) + \lambda f(t)$$

$$= -\lambda f(t) + \lambda e^{-\lambda t}$$

$$P_{i}(t) + \lambda P_{i}(t) = \lambda e^{-\lambda t}$$
This yields the solution:
$$P(t) = e^{-\int \lambda dt} \left\{ \int \lambda e^{-\lambda t} e^{-\int \lambda dt} dt + c \right\}$$

$$P(t) = e^{\int \lambda dt} \left\{ \int \lambda e^{\lambda t} e^{-\int \lambda dt} dt + c \right\}$$

$$= \lambda t e^{-\lambda t} + C$$

Because
$$f(0) = 0$$
, $C = 0$, and $f(t) = \frac{\lambda t}{1!}$

Fiven
$$P_{i}(t) = \frac{(\lambda t)^{i} e^{\lambda t}}{i!}$$

then
$$p(t) + \lambda p(t) = \lambda \frac{(\lambda t)^{i} - \lambda t}{i!}$$

(1)
$$\begin{cases} P(t) = e^{\int \lambda dt} \left\{ \frac{\lambda(\lambda t)}{i!} e^{-\lambda t} e^{\int \lambda dt} dt + C \right\} \\ = \frac{e^{-\lambda t} (\lambda t)}{(i+1)!} + C \\ Because P(0) = 0, C = 0, and \\ P(t) = \frac{e^{-\lambda t} (\lambda t)}{(i+1)!} \end{cases}$$

M= 3 dozens/day, N=18 TORA input data = (0, Mt, 1, 18, 18)

(a) $\mu = 3x3 = 9$

10(t=3) = .00532 (from TORA)

(b) Mt = 3x2 = 6

Enp(2) = 11.955

(c) This part can be solved using Porsion or exponential distributions.

Youan: Ut = 3x1 = 3

Probability = P(1) + P(1) + ... + P, (1) = . 9502 (from TORA)

Exponential: mean = 1/3 day

Pf purchasing at least one dozen in Iday) = P{ time between purchases \$ 1} $=1-e^{-3x/}=.9502$

(d) Exponential: $P\{t \le .5\} = 1 - e = .7769$ <u>Poisson</u>: $P(.5) + P(.5) + ... + P_{17}(.5) = .7769$

(e) Po(1) = 0 (Mt = 3x1 = 3)

N=40, M=10 Callo/R TORA input (0, Mt, 1, 40,40)

(a) p(t=4) = 1 - p(4)

=1 - .521 = .479

(b) E{n|t=4} = \int n p(4) \sim 2.5 blocks

N=48, M = 4x10 = 5 cano/h

ut = 5 x 4 = 20 cans

10(4) = .000005 (from TORA) N=48, ME=5x8=40, P(8)=.11958

N = 1/1 = 1 withdrawl/week

N=5, Mt=4

P(4) = · 37116

N=80 items, M=5 items/day

(a) Mt = 5x2 = 10 lims

P(2) = .1251

(b) Mt = 5 x4 = 20 items P(4) = .00001

(c) Mt = 5x4 = 20 items

E{n/4days} = \(\sum_{n}p(4) \simes 60 items

Av. # of withdrawls = 80-60 = 20 items

M = 1/1 = 1 breakdown /day N=10, Mt=1x2=2

From TORA, PO(2) = .00005

(a) N=25, M = 3/day t = 6 days, Mt = 18

Av. Stock remaining after 6 days $= E\{n|t=6\} = 7.11$

Av. order size = 25-7.11 ~ 18 dems

(b) t=4, $\mu t=3x4=12$ P(4) = .00069

(c) t = 6, $\mu t = 3x6 = 18$ $p(6) = p(6) + \dots + p(6) = .9696$

P{time betn. departures > T}

= P{ no departures during T} = P{N left after time T}

 $= f_{ij}(T)$ $P\{t>T\} = P_N(T) = \frac{MT)^0 e^{-MT}}{\sigma I}$

$$P_{N}'(t) = -M P_{N}(t)$$

$$P_{N}'(t) = -M P_{N}(t) + M P_{N+1}(t), \quad 0 \le n < N$$

$$P_{N}'(t) = C e$$

$$P_{N}(t) = C e$$

$$Given \quad P_{N}(0) = 1, \quad \text{then } c = 1 \text{ and}$$

$$P_{N}(t) = e$$

$$Next, \quad \text{consider } (2) \text{ for } n = N - 1$$

$$P_{N-1}'(t) = -M P_{N}(t) + M P_{N}(t)$$

$$= -M P_{N-1}(t) + M e$$

$$Thus, \quad P_{N-1}(t) = e$$

$$P_{N-1}(t) $

(a) P{0 counter open} = P_0 =
$$\frac{1}{55}$$

P{1 counter open} = P_1 + P_2 + P_3

= $\frac{1}{55}$ (2+ +8) = $\frac{14}{55}$

P{2 counters open} = P_4 + P_5 + P_6

= $\frac{1}{55}$ (8+8+8) = $\frac{24}{55}$

$$P\{3 \text{ counters open}\} = P_7 + P_8 + \cdots$$

$$= 1 - (P_0 + \cdots + P_6)$$

$$= 1 - (\frac{1}{55} + \frac{14}{55} + \frac{24}{55}) = \frac{16}{55}$$

(b) Av. # busy counters
=
$$0 \times \frac{1}{55} + 1 \times \frac{14}{55} + 2 \times \frac{24}{55} + 3 \times \frac{16}{55}$$

= 2 counters

(a)
$$M = \begin{cases} 5 \text{ customers } / h_1, & n = 0, 1, 2 \\ 10 \text{ customers } / h_1, & n = 3, 4 \\ 15 \text{ customers } / k_1, & n = 5, 6 \\ 20 \text{ customers } / h_1, & n \ge 7 \end{cases}$$

$$P_{1} = \frac{12}{5}P_{0} = 2.4P_{0}$$

$$P_{2}^{2} = (\frac{12}{5})^{2}P_{0} = 5.76P_{0}$$

$$P_{3} = (\frac{12}{5})^{2}(\frac{12}{10})P_{0} = 6.912P_{0}$$

$$P_{4} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}P_{0} = 8.2944P_{0}$$

$$P_{5} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})P_{0} = 6.63552P_{0}$$

$$P_{6} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}P_{0} = 5.308416P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{20})P_{0} = 5.308416(6)P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{10})P_{0} = 5.308416(6)P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = 5.308416(6)P_{0}$$

$$P_{2} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{10})P_{0} = 5.308416(6)P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = 5.308416(6)P_{0}$$

$$P_{2} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = 5.308416(6)P_{0}$$

$$P_{2} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = 5.308416(6)P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = \frac{1}{5.308416(6)P_{0}}$$

$$P_{2} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = \frac{1}{5.308416(6)P_{0}}$$

$$P_{3} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = \frac{1}{5.308416(6)P_{0}}$$

$$P_{3} = (\frac{12}{5})^{2}(\frac{12}{15})^{$$

$$f_{n\geq 7} = \cdot 1199 (.6)^{n-6}$$
(6) $f_{n\geq 7} = 1 - (E + P_1 + \dots + P_r) = .8$

$$\mathcal{L}_{n} = \begin{cases} 5n, & n = 1,2 \\ 15, & n = 3,4, \dots \end{cases}$$

$$\mathcal{L}_{1} = \left(\frac{10}{5}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{2} = \left(\frac{10}{5}\right) \left(\frac{10}{10}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \left(\frac{10}{10}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \left(\frac{10}{10}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \left(\frac{10}{10}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \left(\frac{10}{10}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \left(\frac{10}{10}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \left(\frac{10}{10}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \mathcal{L}_{n} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \mathcal{L}_{n} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \mathcal{L}_{n} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \mathcal{L}_{n} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \mathcal{L}_{n} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} =$$

(b)
$$P_{n \leq 2} = P_0 + P_1 + P_2 = .5555$$

$$\lambda_n = \begin{cases} 12 & \text{cars } / - k_1, \ n = 0, 1, ..., 10 \end{cases}$$

$$M_n = \begin{cases} 60/6 = 10 & \text{cars } / - k_1 \end{cases}$$

$$P_n = \left(\frac{12}{10}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

$$P_n = \left(\frac{12}{10}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

$$P_n = \left(\frac{12}{10}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

$$P_n = \left(\frac{12}{10}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

$$P_n = \left(\frac{1}{12}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

 $P_0(1+1.2+1.2^2+...+1.2^{10})=P_0\frac{1-1.2^{10}}{1-1.2}$ Thus, $P_0=.0311$

Continued..

(9)	Po=	(12)10g	2 = .	. 19	259

0.148578

0.222866

0.10029

2 0.222866

9 0.010831

10 0.005416

(b) $f_{n>1} = 1 - f_0 = 1 - .0311 = .9689$

(c) Av. length of the lane
=
$$0P_0 + 1P_1 + \cdots + 10P_{10}$$

= $1 \times 03732 + 2 \times 04479$

= 1x.03732 + 2x.04479 + 3x.05375 + 4x ·0645+5×·0774+6×-09288 +7x.11145+8x.13374+9x.16049 $+10 \times .19259 = 6.71071$

$$\lambda_n = 6 \text{ arrivalo/fi, } n = 0,1,...,8$$
 5 $M_n = \frac{60}{15} = 4 \text{ customers/fi}$
= 5 arrivalo/fi, $n = 9,10,...11,12$ (a) $f = \frac{4}{4}p$

$$M_n = \frac{n}{5} = \frac{2n}{6}, n = 1, 23, 4$$

= $10/2, n > 5$

$$P_4 = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} P_8 = 3.375 P_8$$

$$P_7 = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot \frac{6}{10} \cdot \frac{6}{10} \cdot \frac{6}{10} \cdot \frac{6}{10} = .729 P_0$$

$$P_8 = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot \frac{(6)^4}{(70)^4} P_0 = .4374 P_0$$

$$P_{n \geq 9} = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \left(\frac{6}{10}\right)^{4} \left(\frac{5}{10}\right)^{n-8} = .4374(5)^{n-8}$$

(b)
$$f_{n \geq 5}^{p} = 1 - (f_0 + f_1 + \dots + f_4^p) = .2385$$

= 1x.0662 + 2x.0361 + 3x.0217 +4x.0108 +5x.0054 + 6x.0027 + 7x.00135

λ= 4 customers/ha

$$n = 0, 1, \dots$$

$$\lambda_{n} = \begin{cases} 4, & n = 0, 1, \dots, 4 \\ 0, & n \ge 5 \end{cases}$$

$$M_n = \frac{60}{15} = 4$$
 customers / La

$$P_{3} = (\frac{4}{4})^{3} P_{0}$$

$$=\frac{1}{5}(1+2+3+4)=2$$

(c)
$$f_4 = .2$$

$$(a) M P_1 = \lambda P_0$$

$$P_1 = \frac{\lambda}{M} P_0$$

(b)
$$f_0 + \frac{\lambda}{\mu} p_0 = 1$$

 $f_0 = \frac{1}{1+p}$, $f = \frac{\lambda}{\mu}$
 $f_1 = \frac{\rho}{1+p}$

(c)
$$L_s = op + ip = \frac{p}{1+p}$$

(c)
$$W_q = \frac{L_s}{\lambda c_{ff}} - \frac{1}{M}$$

$$= \frac{P/(1+P)}{\lambda/(1+P)} - \frac{1}{M} = 0$$

$$\lambda_{n-1} P_{n-1} + M_{n+1} P_{n+1} = \lambda_{n-1} \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \frac{\lambda_{n-2}}{M_{n-1}} \right) + M_{n+1} \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \frac{\lambda_n}{M_{n+1}} \right) = M \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \frac{\lambda_{n-1}}{M_n} \right) + \lambda_n \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \frac{\lambda_n}{M_n} \right) + M_n \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \frac{\lambda_n}{M_n} \right) = M_n P_n + \lambda_n P_n$$

$$= \left(M_n + \lambda_n \right) P_n$$

(a)
$$L_q = \sum_{n=6}^{8} (n-5) P_n$$

= $17_6^0 + 2P_7 + 3P_8$
= $1 \times .05847 + 2 \times .03508 + 3 \times .02105$
= $.19177$

(b)
$$W_q = \frac{L_q}{\lambda_{eff}}$$

= $\frac{.19/7}{5.8737} = .03265$ from $W_s = W_q + \frac{1}{M}$

$$= .03264 + \frac{1}{2} = .53265 \text{ four}$$

(c)
$$\lambda_{lost} = \lambda P_g$$

= $6 \times .02105 = .1263$ car/fn

(d) Average number of empty spaces
$$= C - (L_S - L_g)$$

$$= C - \sum_{n=0}^{g} np + \sum_{n=c+1}^{g} (n-c)p$$

$$= \left(C \sum_{n=0}^{g} f_n - C \sum_{n=c+1}^{g} p_n\right)$$

$$= \left(\sum_{n=0}^{g} p_n - \sum_{n=c+1}^{g} np\right)$$

$$= C \sum_{n=0}^{g} p - \sum_{n=0}^{g} np$$

$$= \sum_{n=0}^{g} (c-n) p_n$$

$$\lambda_{n} = 6 \text{ cavs / h, } n = 0, 1, ..., 6$$

$$M_{n} = \begin{cases} (\frac{4}{3})n, & n = 1, 2, ..., 6 \\ 8, & n = 7, 8, 9, 10 \end{cases}$$

$$P_{n} = \begin{pmatrix} \frac{6}{413} & \frac{1}{n!} & P_{0}, n = 0, 1, ..., 6 \\ & & \text{continued...} \end{cases}$$
continued...

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 10 110 110
	(<u>6</u>)n		2.continued
-	$f_n = \frac{(4/3)}{(1/(n-6))}$	P, n=7,8,9	טוקי
	6.6.	$(9/2)^3 (9/2)^4$	1915 1915
	$f_0\left(1+\frac{9/2}{1!}+\frac{(9/2)^2}{2!}+\right)$	$\frac{79}{3!} + \frac{72}{4!} +$	51 + (18)
	$+\frac{(9/2)^{7}}{6!6^{2}}+\frac{(9/2)^{9}}{6!6^{2}}$	+ (9/2) + (9/	$\left(\frac{1}{2}\right)^{10} = 1$
	616 6162	6!63 6!	64 1
	Thus. +0 = .0004	•	

$$n$$
 f_n n f_n

1 .00304 6 .10627

2 .01141 7 .12539

3 .02852 8 .15667

4 .05348 9 .19584

5 .08022 10 .24480

(b)
$$\lambda_{eff} = \lambda (1 - p_0) = 10 (1 - 2448)$$

= 7.552 cars/k

(d)
$$W_s = \frac{L_s}{2eff} = \frac{7.694}{7.552} = 1.0155 \text{ ans}$$

 $W_q = 1.0155 - \frac{1}{4/3} = .2655$

Average number of occupied
spaces =
$$L_S$$
- L_Q
= 7.6941 - 2.005
= 5.6891 spaces

(a) of utiliza	hon = 100 (1-p)	
	= 100 2	
	$= 100 \left(\frac{4}{6}\right) =$	66.67%

(b)
$$p_{n\geq 1} = 1 - p_0 = \frac{\lambda}{M} = \frac{4}{6} = .6667$$

(c)
$$f_{n \le 7} = f_0 + f_1 + \dots + f_7$$

= $1 - \left(\frac{\lambda}{4}\right)^8 = 1 - \left(\frac{4}{6}\right)^8 = .961$

From Figure 17-6, K = 11Also, we can determine K from $1-f^{K+1} \ge .99$

$$(K+1) \ge \frac{ln \cdot 01}{ln (4/6)} = 11.$$

K ≥ 11.350-1 = 10.358

Thus, K ≥ 11

Note that the desired number of parking spaces is almost doubled (from 5 to 11) to accommodate the increase in the acceptance percentage from 90% to 99%.

(a)
$$P_0 = .2$$

= 50x.25x30 =\$375

			·				Salar Salar France
Lambda Lambda	1 = 1 eff =	0.20000 0.20000	Mu = Rho/c =	0.25000 0.80000		1.	*
Ls = Ws =		0000 00000	Lq = Wq =	3.20000 16.00000			
			· .				a linkal minda
	n	Probability, pn	Cumulative,	Pn	n	Probability, pn	Cumulative, Pn
	0	0.20000	0.200	00 -	23	0.00118	0.99528
	. 1	0.16000	0.360	00	24	0.00094	0.99622
	` 2	0.12800	0.488		25	0.00076	0.99698
	3	0.10240	0.590		26	0.00069	0.99758
	2 3 4 5	0.08192	0.672		27	0.00048	0.99807
	5	0.06554	0.737	86	28	0.00039	0.99845
	6	0.05243	0,790	28	29	0.00031	0.99876
	6 7 8	0.04194	0.832		30	0.00025	0.99901
	8	0.03355			31	0.00020	0.99921
	9	0.02684	0.892		32	0.00016	0.99937
	10	0.02147	0.914	10 .	33	0.00013	0.99949
	11	0.01718	0.931		34	0.00010	0:99959
	12	0.01374	0.945		35	0.00008	0,99968
	13	0.01100	0.956		36	0.00006	0.99974
	14	0.00880	0.964		37	0.00005	0.99979
	15	0.00704	0.971	85	38	0.00004	0.99983
	16	0.00563	0.977		39	0.00003	0.99987
	17	0.00450	0.981		40	0.00003	0.99989
	18	0.00360	0.985		41	0.00002	0.99991
	19	0.00288	0.988		42	0.00002	0.99993
	20	0.00231	0.990	78	43	0.00001	0.99995
	21	0.00184	0.992	62	44	0.00001	0.99996
	22	0.00148				3.0000	3.35550

7 = 1/4 = .25 case/wk N=1/1.5 = .66667 case/wk

M/M/c/GD/N/K Queueing Model								
	Input	Data						
λ=	0.25		0.66667					
c =	1							
Sys. Lim., N≍		urce limit, K =	infinity					
	Output F	lesults						
$\lambda_{ij} =$	0.2500		0.3750					
` Ls =	0.6000	Lq =	0.2250					
Ws =	2.4000	Wq =	0.9000					
n	Pn	CPn	1-CPn					
0	0.625002	0.625002	0.374998					
1	0.234375	0.859376	0.140624					
. 2	0.087890	0.947266	0.052734					
3	0.032959	0.980225	0.019775					
4	0.012359	0.992584	0.007416					
5	0.004635	0.997219	0.002781					
6	0.001738	0.998957	0.001043					
7.	0.000652	0.999609	0.000391					
8	0.000244	0.999853	0.000147					
9	0.000092	0.999945	0.000055					
10	0.000034	0.999979	0.000021					
11	0.000013	0.999992	0.000008					
12	0.000005	0.999997	0.000003					
13	0.000002	0.999999	0.000001					
14	0.000001	1.000000	0.000000					

(a) Lq = .225 case (b) 1-B = 1-.625 = .375 or 37.5% (c) Ws = 2.4 weeks

Present setuation:

 $\lambda = 90 \text{ cars/hr}$ $M = \frac{3600}{39} = 94.7368 \text{ cars/hr}$

New situation:

7 = 90 cars per hour

M = 3600 = 120 caro per hour

Continued..

Lambda Lambda	eff =	0.40000 0.40000	Mu = Rho/c =	0.66667 0.60000			
Ls = Ws =	1.49 3.7	998 4995	Lq = Wq =	0.89998 2.24996			
	n	Probability, pn	Cumulative, F	on o	ņ	Probability, pn	Cumulative, Pn
	0	0.40000	0.4000	00	11	0.00145	0,99782
	1	0.24000	0.6400		12	0.00087	0.99869
	2	0.14400	0.7840	30	13	0.00052	0.99922
	3	0.08640	0.8704	10	14	0.00031	0.99953
	1 2 3 4	0.05184	0.9222		15	0.00019	0.99972
	5	0.03110	0,9533		16	0.00011	0.99983
	6	0.01866	0.9720		17	0.00007	0,99990
	7	0.01120	0.9832	20	18	0.00004	0.99994
	8	0.00672	0,9899		19	0.00002	0.99996
	8 9 10	0.00403	0.9939	95	20	0.00001	0.99998
	10	0.00242	0.9963	37			2,000,000
		4					
1) 7	0	- 7					
> 4	/_	- 9	CAL				* :
, ,	-q.	/	UUL				•
٠.	,,	_ 9	9 ~ >~.	inuli	7		.0036
) W	9	= ~	23 ""		~		
							~ ~

1 0.13889 0.30556 28 0.00101 0.9 2 0.11574 0.42130 29 0.00004 0.9 3 0.09648 0.51775 30 0.00007 0.9 4 0.00548 0.51775 32 0.00004 0.9 5 0.06698 0.66510 32 0.00004 0.9 6 0.05502 0.72092 33 0.00004 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03876 0.06510 35 0.00026 0.9 9 0.03220 0.33849 36 0.00024 0.9 10 0.02692 0.66541 37 0.00002 0.9 11 0.02692 0.66541 37 0.00002 0.9 11 0.02692 0.66541 37 0.00002 0.9 11 0.02692 0.46591 40 0.00016 0.9 12 0.01869 0.00524 40 0.00016 0.9 13 0.01555 0.00524 40 0.00016 0.9 14 0.01288 0.03509 41 0.00009 0.9 15 0.00001 0.95493 43 0.00007 0.9 16 0.0001 0.95493 43 0.00007 0.9 17 0.00751 0.95493 43 0.00007 0.9 18 0.00525 0.96541 44 0.00009 0.9 19 0.00525 0.96570 45 0.00000 0.9 19 0.00525 0.96670 45 0.00005 0.9 19 0.00525 0.96670 45 0.00005 0.9 19 0.00525 0.96670 45 0.00005 0.9 21 0.00362 0.98491 49 0.00005 0.9 22 0.00362 0.98491 49 0.00005 0.9 21 0.00362 0.98491 49 0.00005 0.9 22 0.00362 0.98491 49 0.00003 0.9	a = 10.00000 a eff = 10.00000	Mu = 12.00000 Rho/c = 0.83333			
0 0.16667 0.16667 27 0.00121 0.9 1 0.13889 0.30556 28 0.00101 0.9 2 0.11574 0.42130 29 0.00004 0.9 3 0.11574 0.42130 29 0.00004 0.9 4 0.08036 0.68512 31 0.00079 0.9 5 0.06698 0.66510 32 0.00049 0.9 6 0.05582 0.72092 33 0.00041 0.9 7 0.44651 0.76743 34 0.00034 0.9 8 0.33876 0.80519 35 0.00024 0.9 9 0.03220 0.83849 36 0.00024 0.9 10 0.02682 0.86341 37 0.00024 0.9 12 0.01869 0.90554 39 0.0016 0.9 12 0.01868 0.92211 40 0.00011 0.9 13 <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>					
0 0.16667 0.16667 27 0.00121 0.9 1 0.13889 0.30556 28 0.00101 0.9 2 0.11574 0.42139 29 0.05004 0.9 3 0.11574 0.42139 29 0.05004 0.9 4 0.08038 0.68612 31 0.00079 0.9 5 0.06698 0.68510 32 0.00049 0.9 6 0.05582 0.72092 33 0.00041 0.9 7 0.04681 0.76743 34 0.0034 0.9 9 0.03230 0.83849 38 0.00024 0.9 10 0.02682 0.86541 37 0.00024 0.9 11 0.02243 0.88784 38 0.0016 0.9 42 0.01869 0.90554 39 0.0014 0.9 13 0.01558 0.92211 40 0.00011 0.9 14					
1 0.13889 0.30556 28 0.00101 0.9 2 0.11574 0.42130 29 0.00084 0.9 3 0.00845 0.51775 30 0.00070 0.9 4 0.08038 0.58612 31 0.00059 0.5 5 0.06698 0.66510 32 0.00044 0.9 6 0.05582 0.72092 33 0.00041 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03876 0.80619 35 0.00028 0.9 9 0.03230 0.83849 36 0.00024 0.9 10 0.02692 0.86541 37 0.00020 0.9 11 0.02692 0.86541 37 0.00000 0.9 11 0.02692 0.86541 39 0.00016 0.9 12 0.013696 0.90251 49 0.00014 0.9 13 0.01558 0.92211 49 0.00011 0.9 14 0.01258 0.93509 41 0.00001 0.9 15 0.01258 0.93509 41 0.00009 0.9 16 0.00901 0.95493 43 0.00009 0.9 16 0.00901 0.95493 43 0.00007 0.9 16 0.00756 0.95243 44 0.00000 0.9 16 0.00756 0.95243 43 0.00007 0.9	n Probability, pn Cu	mulative, Pn	n	Probability, pn	Cumulative, Pn
2 0.11574 0.42130 29 0.00004 0.9 3 0.09645 0.51775 30 0.000070 0.9 4 0.08038 0.58612 31 0.00059 0.9 5 0.06598 0.56510 32 0.000049 0.9 6 0.05582 0.72092 33 0.000041 0.9 7 0.04681 0.72092 33 0.000041 0.9 8 0.03876 0.80619 35 0.00028 0.9 9 0.03230 0.83849 36 0.00024 0.9 10 0.02692 0.86541 37 0.00020 0.9 11 0.02692 0.86541 37 0.00020 0.9 12 0.01889 0.80519 35 0.0016 0.9 13 0.01558 0.92541 30 0.0016 0.9 14 0.01288 0.92541 40 0.00011 0.9 15 0.01288 0.92541 40 0.00011 0.9 15 0.01288 0.93509 41 0.00001 0.9 15 0.01288 0.93509 41 0.00001 0.9 16 0.00901 0.95493 43 0.00007 0.9 16 0.00901 0.95493 43 0.00007 0.9 17 0.00756 0.95244 44 0.00009 0.9 18 0.00556 0.95249 44 0.00009 0.9 19 0.00576 0.95249 44 0.00000 0.9 19 0.00756 0.95252 45 0.00000 0.9 19 0.00756 0.95552 45 0.00000 0.9	0 0.16667	0.16667	27	0.00121	0.99393
2 0.11574 0.42130 29 0.00004 0.9 3 0.09645 0.51775 30 0.000070 0.9 4 0.08038 0.58612 31 0.00059 0.9 5 0.06598 0.56510 32 0.000049 0.9 6 0.05582 0.72092 33 0.000041 0.9 7 0.04681 0.72092 33 0.000041 0.9 8 0.03876 0.80619 35 0.00028 0.9 9 0.03230 0.83849 36 0.00024 0.9 10 0.02692 0.86541 37 0.00020 0.9 11 0.02692 0.86541 37 0.00020 0.9 12 0.01889 0.80519 35 0.0016 0.9 13 0.01558 0.92541 30 0.0016 0.9 14 0.01288 0.92541 40 0.00011 0.9 15 0.01288 0.92541 40 0.00011 0.9 15 0.01288 0.93509 41 0.00001 0.9 15 0.01288 0.93509 41 0.00001 0.9 16 0.00901 0.95493 43 0.00007 0.9 16 0.00901 0.95493 43 0.00007 0.9 17 0.00756 0.95244 44 0.00009 0.9 18 0.00556 0.95249 44 0.00009 0.9 19 0.00576 0.95249 44 0.00000 0.9 19 0.00756 0.95252 45 0.00000 0.9 19 0.00756 0.95552 45 0.00000 0.9	1 0.13889	0.30556	28	0.00101	0.99494
6 0.05582 0.72092 33 0.00041 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03576 0.80519 35 0.00026 0.9 9 0.03280 0.80541 37 0.00026 0.9 10 0.02282 0.86541 37 0.00020 0.9 11 0.02243 0.86541 38 0.00014 0.9 12 0.01589 0.90551 39 0.0014 0.9 13 0.01589 0.90551 39 0.0014 0.9 14 0.01589 0.90551 39 0.0014 0.9 15 0.01589 0.90551 0.90000 0.9 16 0.00000 0.9 17 0.00000 0.9 18 0.00000 0.9 18 0.00000 0.9 19 0.00000 0.9	2 0.11574		29		0.99579
6 0.05582 0.72092 33 0.00041 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03576 0.80519 35 0.00026 0.9 9 0.03280 0.80541 37 0.00026 0.9 10 0.02282 0.86541 37 0.00020 0.9 11 0.02243 0.86541 38 0.00014 0.9 12 0.01589 0.90551 39 0.0014 0.9 13 0.01589 0.90551 39 0.0014 0.9 14 0.01589 0.90551 39 0.0014 0.9 15 0.01589 0.90551 0.90000 0.9 16 0.00000 0.9 17 0.00000 0.9 18 0.00000 0.9 18 0.00000 0.9 19 0.00000 0.9	3 0.09645	0.51775	30	0.00070	0.99649
6 0.05582 0.72092 33 0.00041 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03370 0.50549 35 0.00026 0.9 10 0.02582 0.86844 37 0.00026 0.9 11 0.02243 0.86844 38 0.00014 0.9 12 0.0389 0.90551 39 0.0014 0.9 13 0.01589 0.90551 39 0.0014 0.9 14 0.0003 0.9 15 0.01589 0.90551 40 0.00014 0.9 16 0.00010 0.95493 43 0.00007 0.9 17 0.00761 0.95493 43 0.00007 0.9 18 0.0052 0.95493 43 0.00007 0.9 17 0.00761 0.95493 43 0.00007 0.9 18 0.0052 0.95494 44 0.00005 0.9 19 0.0052 0.95493 45 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0053 0.97326 47 0.00003 0.9	4 0.08038				0.99707
11 0.02243 0.88784 38 0.00016 0.99 12 0.01869 0.90654 39 0.00014 0.99 13 0.01558 0.92211 40 0.00011 0.99 14 0.01298 0.93509 41 0.00000 0.99 15 0.01082 0.94591 42 0.00008 0.99 16 0.00901 0.95493 43 0.00007 0.99 17 0.00751 0.95244 44 0.00006 0.99 18 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.97392 46 0.00006 0.99 20 0.00435 0.97826 47 0.00003 0.99	5 0.06698	0.66510	32		0.99756
11 0.02243 0.88784 38 0.00016 0.99 12 0.01869 0.90654 39 0.00014 0.99 13 0.01558 0.92211 40 0.00011 0.99 14 0.01298 0.93509 41 0.00000 0.99 15 0.01082 0.94591 42 0.00008 0.99 16 0.00901 0.95493 43 0.00007 0.99 17 0.00751 0.95244 44 0.00006 0.99 18 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.97392 46 0.00006 0.99 20 0.00435 0.97826 47 0.00003 0.99	6 0.05582				0.99797
11 0.02243 0.88784 38 0.00016 0.99 12 0.01869 0.90654 39 0.00014 0.99 13 0.01558 0.92211 40 0.00011 0.99 14 0.01298 0.93509 41 0.00000 0.99 15 0.01082 0.94591 42 0.00008 0.99 16 0.00901 0.95493 43 0.00007 0.99 17 0.00751 0.95244 44 0.00006 0.99 18 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.97392 46 0.00006 0.99 20 0.00435 0.97826 47 0.00003 0.99	7 0.04651		34		0.99831
11 0.02243 0.88784 38 0.00016 0.91 12 0.01869 0.90654 39 0.00014 0.91 13 0.01558 0.92211 40 0.00011 0.91 14 0.01298 0.93509 41 0.00000 0.91 15 0.01082 0.94591 42 0.00008 0.91 16 0.00901 0.95493 43 0.00007 0.91 17 0.00751 0.95244 44 0.00006 0.91 18 0.00626 0.96870 45 0.00006 0.91 19 0.00525 0.97392 46 0.00006 0.93 20 0.00435 0.97826 47 0.00003 0.93	8 0.03876				0.99859
11 0.02243 0.88784 38 0.00016 0.91 12 0.01869 0.90654 39 0.00014 0.91 13 0.01558 0.92211 40 0.00011 0.91 14 0.01298 0.93509 41 0.00000 0.91 15 0.01082 0.94591 42 0.00008 0.91 16 0.00901 0.95493 43 0.00007 0.91 17 0.00751 0.95244 44 0.00006 0.91 18 0.00626 0.96870 45 0.00006 0.91 19 0.00525 0.97392 46 0.00006 0.93 20 0.00435 0.97826 47 0.00003 0.93	9 0.03230			0.00024	0.99882
	10 0.02692	0.86541	37	0.00020	0.99902
19 0.01558 0.92211 40 0.00011 0.9 14 0.01238 0.93509 41 0.00009 0.9 15 0.01082 0.94591 42 0.00008 0.9 16 0.00901 0.95493 43 0.00007 0.9 17 0.00751 0.96244 44 0.00005 0.9 18 0.00625 0.96870 45 0.00005 0.9 19 0.00622 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9	11 0.02243				0.99918
15 0.01082 0.94591 42 0.00008 0.9 16 0.00901 0.95243 43 0.00007 0.9 17 0.00751 0.95244 44 0.00005 0.9 18 0.00625 0.96870 45 0.00005 0.9 19 0.00622 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9	12 0.01869				0.99932
15 0.01082 0.94591 42 0.00008 0.9 16 0.00901 0.95243 43 0.00007 0.9 17 0.00751 0.95244 44 0.00005 0.9 18 0.00625 0.96870 45 0.00005 0.9 19 0.00622 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9	19 0.01558				0.99943
16 0.00901 0.95493 43 0.00007 0.9 17 0.00751 0.95244 44 0.00005 0.9 18 0.00625 0.96670 45 0.00005 0.9 19 0.00625 0.97522 46 0.00004 0.9 20 0.00435 0.97526 47 0.00003 0.9	14 0.01298		41		0.99953
17 0.00751 0.98244 44 0.00005 0.9 18 0.00652 0.96870 45 0.00005 0.9 19 0.0052 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9				0.00008	0.99961
17 0.00751 0.96244 44 0.00005 0.8 18 0.00625 0.96870 45 0.00005 0.9 19 0.00522 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9	16 0.00901		43	0.00007	0.99967
20 0.00435 0.97826 47 0.00003 0.9	17 0.00751		44	0.00005	0.99973
20 0.00435 0.97826 47 0.00003 0.9	18 0.00626		45	0.00005	0,99977
20 0.00435 0.97826 47 0.00003 0.9	19 0.00522		46	0.00004	0.99981
21 0.00362 0.98189 48 0.00003 0.91 22 0.00302 0.98491 49 0.00002 0.91	20 0.00435	0.97826	47	0.00003	0.99984
22 0.00302 0.98491 49 0.00002 6.98	21 0.00362	0.98189	48		0.99987
	22 0.00302	0.98491	49	0.00002	0.99989
23 9.99252 0.98742 50 0.00002 0.9	23 0.00252	0.98742	50 51	0.00002	0.99991
24 0.00210 0.98952 51 0.00002 0.9	24 0.00210		51	0.00002	0.99992
and the second s		0.99126	52	0.00001	0.99994
26 0.00146 0.99272 53 0.00001 0.99	26 0.00146	0.99272	53	0.00001	0.99995

(b) $1-CP_2=1-4213=.5787$ (c) Wq=.417 hour

(d) Let N= spaces (including car being served) $CP_{N-1} \ge .9$ Because $CP_1=.88784$ and $CP_1=.90659$, $N-1 \ge 12 \implies N \ge 13$.

In general, $L_S < Lq + 1$. The reason 7

is that P>0, usually. Consider $L_q=\sum_{n=1}^{\infty}(n-1)P_n$ $=\sum_{n=1}^{\infty}(n-1)P_n$ $=L_S-(1-P_0)$ The closer P is to zero, the more likely $L_S \cong L_q + 1$ will hold.

Consider

Consider $L_q = \sum_{n=1}^{\infty} (n-1) f_n$ $= \sum_{n=1}^{\infty} (n-1) (1-p) f^n$ $= (1-p) f^2 \frac{d}{dp} \left(\sum_{n=1}^{\infty} f^{n-1} \right)$ $= (1-p) f^2 \frac{d}{dp} \sum_{n=0}^{\infty} f^n$ $= (1-p) f^2 \frac{d}{dp} \left(\frac{1}{1-p} \right)$ $= f^2 (1-p) \frac{1}{(1-p)^2}$ $= \frac{p^2}{1-p}$

9

(a)
$$P\{j \text{ in queue} | j = i\}$$

$$= p\{n \text{ in system} | n \ge 2\}$$

$$= \frac{r_n}{\sum_{j=2}^{\infty} p_j}$$

Thus,
expected number =
$$\sum_{n=2}^{\infty} (n-1) \frac{f_n}{\sum_{j=2}^{\infty} f_j}$$

= $\sum_{n=2}^{\infty} np - \sum_{n=2}^{\infty} f_n$
 $\sum_{n=2}^{\infty} f_n$

$$= \frac{\sum_{n=1}^{\infty} n\rho_{n} - \rho_{n}}{\sum_{n=2}^{\infty} \rho_{n}}$$

$$= \frac{f}{1-f} - f(1-f)$$

$$= \frac{1}{1-f}$$

(b) Exp. number in queue given

the system is not empty

$$= \sum_{n=1}^{\infty} (n-1) \left(\frac{f_n}{s^2} + f_n \right)$$

$$= \sum_{n=1}^{\infty} n \rho_n - \sum_{n=1}^{\infty} f_n$$

$$= \frac{f_n}{f_n}$$

$$= \frac{f_n}{f_n}$$

Thus,

Exp. waiting time in quew for

Shose who must want

= \frac{f(1-5)}{\chi}

= \frac{1}{-1}

$\omega(\tau) = (M-\lambda)e^{-(M-\lambda)\tau}$
7 = 1/4 = .25/wh } (M-7)=41
$f = \lambda/\mu = \frac{1.5}{2} = .375$
$W(T) = .417e^{417T}, T>0$ $P\{T>1\} = e^{417\times 1} = .659$
1 (1) 1 - E = :634

(a) Standard deviation = $\frac{1}{M-7} = \frac{1}{6-4} = .5$ 2 g(t,n) = jointer polition to the political to the

 $W_s \le 10$ minutes $\lambda = 4/h$ $\frac{1}{(M-\lambda)} \le \frac{10}{60} \text{ hr}$ or $M-\lambda \ge 6$ or $M \ge 6+\lambda = 10/h$

 $P\{c>\frac{10}{60}\}\leq 1$, or $-\frac{1}{6}(M-4)$ ≤ 1 $M-4 \geq 13.8$ $M \geq 17.8/m$

 $P\{T>5\} = e^{(M-\lambda)t} = .267x5$ where $\lambda = .4/min$, M = .667/minExp. # customers in a 12-hr day $= \lambda \times 12 \times 60 = .4 \times 12 \times 60 = 288$ aust.

Exp. cost = 288 x. 2636 x.5 = \$37.95

Wn+(t/n) = conditional pdf for waiting in queue given there are nawstomers ahead = n-fold convolution of the exponential pd/ $=\frac{u(ut)^{n-1}e^{-\mu t}}{(n-1)!}$ W(t) = absolute pdf of waiting time in queve = <u>u(nt)"-1ent</u> f"(1-9) (a) For t>0 $\omega(t) = \frac{8}{2} g(t,n)$ = Mpe-Mt (1-9) = (MPt) e MPt = Mg(1-f) = M(1-f)t t.>0 For t=0, W(0) = Po = (1-9) $\omega(t) = \begin{cases} 1-\beta, t=0 \\ \mu \rho(1-\beta)e^{-\mu(1-\beta)t}, t>0 \end{cases}$ (b) Wq = E { + }

b)
$$W_q = E\{t\}$$

$$= \int_0^\infty t \, \omega(t) \, dt$$

$$= \int_0^\infty \omega(0) + \int_0^\infty t \, \omega(t) \, dt$$

$$= \int_0^\infty u(1-p) \, e^{-u(1-p)t} \, dt$$

$$= \frac{p}{u(1-p)}$$

(c) Average number of empty
spaces =
$$4-L_g$$

= $4-.788$

$$= 3.2/2$$
 Spaces (d) $+0 = .048/2$

5	1 4.00000 1 4.00000	9.00000 10.00000	3,93651 3,96116 3,97532	0,50794 0,55987 0.60247	0.90476 0.75340 0.64199	0.41270 0.31327 0.24446	0.22984 0.19020 0.16149	0.10484 0.07908 0.06149
м	(cars/	(L)	,	V5 (hrs)	١	Ws	(min)
	6			.37	736		S	2.4
	7			. 28	77		17	1.16
	8			. z	3		13	.80
_	9			.19	•			40
-	(0)			16	-			70

Beained service rate = 10 cars/for Thus, the service time must be reduced from $\frac{60}{60}$ = 10 minutes to $\frac{60}{10}$ = 6 minutes, a 40% reduction

m = number of parking spaces An arriving car will <u>not</u> find a space if there are m+1 cars in the system Thus, find m such that $f_{m+1} \leq .01$ TORA input = $(4,6,1,m+1,\infty)$

233	N=m+1	PN
4	5	.04812
5	6	.0311
6	7	.0203
7	8	.01335
8	9	(.009)

Lebect the number of parking spaces m ≥ 8

m = number of reats.			
The $N=m+1$, and		* * * .	-
For the second s	Cus	tomera	/Ry
TORA imput = (6,5,)	_		

emario c Lambda Mu L'da eff po La t.g Wa Mug 1 1 6.00000 5.00000 3.65037 0.27473 1.12088 0.35500 0.36908 0.10000 2 1 6.00000 5.00000 4.25010 0.1301 1.1208 0.35500 0.36908 0.10000 3 1 6.00000 5.00000 4.25210 0.1348 2.35340 4.1349 0.42419 0.22418 4 1 6.00000 5.00000 4.36617 0.10074 2.35400 0.7712 2.12188 0.67150 0.7712 5 1 6.00000 5.00000 4.9667 0.10074 3.02117 2.12188 0.67150 0.37

_m	N=m+1	Arff (austomers/ fn)
1	Z	3.63
Z	3	(4.07)

Use two reals or less

Title: 17.6d-4 Scenario 1-- (M/M/1):(GD/8/Infinity)

: •	Lambda		10.00000 3.99843	Mu = Rho/c =	4.00000 = 2.50000		``.	
_	Ls = Ws =		3569 33464	Lq = Wq =	6.33609 1.58464			
		п	Probability, pn	Cumulative,	, Pn	п	Probability, pn	Cumulative
		0	0.00039	0.00	039	5	0.03841	0.063

- (a) P = .6
- (b) Lq = 6.34 generators
- (c) Let C = belt capacity. Thus,

 N = C + 1. The assembly department
 is kept in operation so long as
 at least one empty space remains
 on the belt; that is,

$$P\{empty space on belt\} = p + p + \dots + p$$

$$= \frac{1-p}{1-p^{c+2}} \sum_{n=0}^{\infty} p^n$$

$$= \frac{1-p}{1-p^{c+2}} \cdot \frac{1-p^{c+1}}{1-p}$$

$$= \frac{1-p^{c+1}}{1-p^{c+2}}$$

Continued..

$$\lim_{C \to \infty} \frac{1 - \beta^{c+1}}{1 - \beta^{c+2}} = \lim_{C \to \infty} \frac{-(c+1)\beta^{c}}{-(c+2)\beta^{c+1}}$$

$$= \lim_{C \to \infty} \frac{C+1}{(c+2)\beta}$$

$$= \lim_{C \to \infty} \left(\frac{1 + \frac{1}{c}}{1 + \frac{2}{c}}\right) \frac{1}{\beta}$$

$$= \frac{1}{\beta}$$

In the peresent example, f = 10/4 and 1/p = .4. Thus,

lim (p+p+...+p) = 1/p = .4

This result means that regardless of how large the left is, the probability of finding an empty space cannot exceed 4. Threes, achieving a 95% utilization for the assembly depting in impossible.

The result makes sense because the arrival rate λ (=10/hr) is 2½ times larger than the service rate (= 4). He only way we can accomplish the desired result is to reduce λ and/or increase M.

(b)
$$P\{\text{wish is not fulfilled}\}$$

= $P\{48 \text{ or more in restarant}\}$
= $P_{48} + P_{49} + P_{50}$
= $I - (P_1 + P_2 + \cdots + P_{47})$

= 1 - .99993

= · 00007

TORI	9 6	mput = (10,12,1,5	0,-0)	
Lambda Lambda		10.00000 9.99982	Mu = 12.0000 Rho/c = 0.83333	9		
Ls = Ws =		9533 19954	Lq = 4.16201 Wq = 0.41621			
	n	Probability, pn (Cumulative, Pn	n	Probability, pn	Cumulative, P
	0	0.16668	0.16668	26	0.00146	0.9928
	1	0.13890	0.30558	27	0.00121	0.9940
	2	0.11575	0.42133	28	0.00101	0.9950
***	3	0.09646 0.08038	0.51779	29	0.00084	0.9958
	2 3 4 5	0.06699	0.59818 0.66516	30 31	0.00070 0.00059	0:9965 0:9971
	6	0.05582	0.72098	32	0.00049	0.9976
	7 8 9	0.04652	0.76750	33	0.00041	0.9980
	8	0.03876	0.80627	34	0.00034	0.9984
	10	0.03230 0.02692	0.83857 0.86549	. 35 36	0.00028 0.00024	0,9986 0,9989
	11	0.02243	0.88792	37	0.00020	0.9991
	12	0.01869	0.90662	38	0.00016	0.9992
	13	0.01558	0.92220	39	0.00014	0.9994
	14 15	0.01298 0.01082	0.93518 0.94600	40 41	0.00011 0.00009	0.9995 0.9996
	16	0.00902	0.95501	42	0.00008	0.9997
	17	0.00751	0.96253	43	0.00007	0.9997
	18 19	0.00626	0.96879	44	0.00005	0.9998
	20	0.00522 0.00435	0.97401 0.97835	45 46	0.00005 0.00004	0.9998 0.9999
	21	0.00362	0.98198	47	0.00003	0.9999
	22	0.00302	0.98500	48	0.00003	0.9999
	23	0.00252	0.98751	49	0.00002	0.9999
	24 25	0.00210 0.00175	0.98961 0.99136	50	0.00002	1.0000

ORAMP Title: 17.6d-6 Scenario 1- (M/I	•	ty)	5, 40)		
Lambda = Lambda eff =	20,00000 7.50000		50000 .66667		
	40000 92000		.40000 78667		
n	Probability, pn	Cumulative, Pn	n	Probability, pn	Cumulative, Pn
0	0.00000	0.00000	8	0.00065	0.00104
1 2 3 4 5	0.00000 0.00000 0.00000 0.00001 0.00003	0.00000 0.00000 0.00001 0.00002 0.00005	9 10 11 12 13	0.00174 0.00463 0.01236 0.03296 0.08789	0.00278 0.00742 0.01978 0.05273 0.14062
6 7	0.00009 0.00024	0.00015 0.00039	14 15	0.23438 0.62500	0:37500 1.00000

(a)
$$P_{n \le 4} = P_0 + P_1 + \dots + P_4$$

= .962

(b)
$$\lambda_{lost} = \lambda P_s$$

= $5 \times .038 = .19$ cust./flx

(r)
$$L_s = 0 \times .399 + 1 \times .249 + 2 \times .156$$

+ $3 \times .097 + 4 \times .061$
+ $5 \times .038$
= 1.286

continued.

(d)
$$W_q = W_s - \frac{1}{\mu}$$
 $\lambda_{eff} = 5(1 - .038) = 4.81 \text{ cmother}$
 $W_s = \frac{L_s}{\lambda_{eff}}$
 $= \frac{1.286}{4.81}$
 $= .2675 \text{ how}$
 $W_q = .2675 - \frac{1}{8}$
 $= .1424 \text{ how}$

$$f_{n} = \frac{(1-p) p^{n}}{1-p^{n+1}}$$

$$\lim_{S \to 1} f_{n} = \lim_{S \to 1} \frac{f^{n} - f^{n+1}}{1-p^{n+1}}$$

$$= \lim_{S \to 1} \frac{n p^{n-1} (n+1) p^{n}}{-(N+1) p^{n}}$$

$$= \frac{1}{N+1}$$
Thuo,
$$L_{S} = \sum_{n=0}^{N} n p_{n}$$

$$= \frac{1}{N+1} \sum_{n=0}^{N} n$$

$$= \frac{N(N+1)}{2(N+1)} = \frac{N}{2}$$

Ws = Wq +
$$\frac{1}{M}$$

Thus,

 $Ls = Lq + \frac{2eff}{M}$

on

 $2eff = M(Ls - Lq)$

TORA input = (8,5,2,00,00)	(b) Tile: 17.5e-1
Title: 17-56-1 Scenario 1- (MM/2):(GD/infinity/infinity)	Title: 17.5e-1 Comparative Analysis
Guerrano 1- (www.z); (GD/mtinity/infinity)	Scenario c Lambda Mu L'da eff p0 La Lq Ws 1 4 16.00000 5.000000 18.00000 0.02730 5.59573 2.38573 0.34951 0
Lambda = 8.00000 Mu = 5.00000 Lambda eff = 8.00000 Rho/c = 0.80000	3 8 16.00000 5.00000 16.00000 0.03977 3.34526 0.14528 0.20908 0.
Ls = 4.44444	For C = 5, Wq = .032 hour = 2 min C = 4, Wq = .149 hour = 9 min
n Probability, pn Cumulative, Pn n Probability pn Cumulative Pn	6=4, Wq = .149 hour ~ 9 min
0 0.11111 0.11111 23 0.00131 0.99475	Select C = 5
1 0.17778 0.28889 24 0.00105 0.99580 2 0.14222 0.43111 25 0.00084 0.99664 3 0.11378 0.54489 25 0.00067 0.99731	C=2: 7 = 8 callo/b
5 0.07282 0.70873 28 0.00043 0.99828	M = 60 = 4.1379 Calls/th
7 0.04660 0.81359 30 0.00028 0.99890 0.05028 0.99890 0.02983 0.88070 31 0.00022 0.99912	C=4: 7 = 16 calls/An
10 0.02386 0.90456 33 0.00014 0.99934 11 0.01909 0.92365 34 0.00014 0.99934	M = 4.1379 callo per hour
13 0.01227 0.95092 35 0.00009 0.99964 14 0.00977 0.96091 37 0.00007 0.99977 15 0.00007 0.99977	utilization = 7/UC = . 967
16 0.00625 0.97498 39 0.00004 0.99982 17 0.00500 0.97998 40 0.00004	Title: Ga-2 Comparative Analysis
18	Scenario c Lambda Mu L'da eff p0
21 0.00205 0.99180 44 0.00001 0.99995 22 0.00164 0.99344	1 2 8.00000 4.13790 8.00000 6.01686 29.49805 27.58471 3.89728 3.44559 4 16.09000 4.13790 16.09000 0.00332 36.72867 28.69167 1.32241 1.38672
10RA input = (16,5,4,0)	1.1 13.446 Rours for C=2
i me: 17.56-1 Scenario 2- (M/M/4):(GD/infinity/infinity)	Wg = { 3.446 hours for C = 2 1.681 hours for C = 4
Lambda = 16.00000 Mu = 5.00000 Lambda eff = 16.00000 Rho/c = 0.80000	Consolidation reduces the waiting time
Ls = 5.58573	by more than 51%.
0 0.02730 0.02730 24 0.00138 0.99450	(a) $\lambda = \frac{60}{5} = 12$ per hour 3
1 0.08737 0.11467 25 0.00110 0.99560 2 0.13979 0.25446 26 0.00088 0.99648 3 0.14911 0.40357 27 0.00070 0.99718 4 0.11929 0.52285 28 0.00056 0.99775	M = 10 per Lour
5 0.09543 0.61828 29 0.00045 0.99820 6 0.07634 0.69463 30 0.00036 0.99856	$C > \frac{\lambda}{\lambda 1} = 1.2 \implies C \ge 2$
7 0.08107 0.75570 31 0.00029 0.99885 8 0.04886 0.80455 32 0.00023 0.99908 9 0.03909 0.84365 33 0.00018 0.99928	1
11 0.02502 0.89994 35 0.00012 0.99953 12 0.02001 0.91995 36 0.00009 0.91962	(b) $\gamma = \frac{60}{2} = 30 \text{ per kom}$
13 0.01601 0.93596 37 0.00008 0.99970 14 0.01281 0.94877 38 0.00006 0.99976 15 0.01025 0.95901 39 0.00005 0.99981	$u = \frac{60}{6} = 10 \text{ per how}$
16 0.00820 0.96721 40 0.00004 0.99985 17 0.00856 0.97377 41 0.0003 0.99988 18 0.00925 0.97901 42 0.00002 0.99990	$c > \frac{\lambda}{M} = \frac{30}{10} = 3 \implies c \ge 4$
19 0.00420 0.98321 43 0.00002 0.99992 20 0.00336 0.98657 44 0.00002 0.99994	
21 0.00269 0.98926 45 0.00001 0.99995 22 0.00215 0.99140 46 0.00001 0.99996 23 0.00172 0.99312	(c)) = 30 per Lour, 1=40 per h
$\frac{a}{C} = 2$	C> 30 = ·75 ⇒ C>1
$P[allservers are busy] = (10)^{2}$	40
= (1-,47)	7 = 45 customers/fr
C=4: = .504	11 = 60 = 12 customers/h
$\frac{C=4:}{P\{all \text{ servers are busy}\}} = 1 - P_{n \leq 3}$ $= 1 - 404$	
= 1 404	$C > \frac{45}{12}$ or $C \ge 4$
±·59 6	Secured Way = 30 seconds = .0083 hr
Canada las in I little that	Scenario c Lambda Me L'da aff ed la la Wa
C=4 yields a higher probability that	1 4 45,00000 12,00000 45,00000 0,0055 18,72545 12,97545 0,37158 0,28834 2 5 45,00000 12,00000 45,00000 0,01655 5,15575 13,8537 0,11412 0,03075 4 5,00000 12,00000 45,00000 0,01655 5,15575 13,8537 0,11412 0,03075 4 5,00000 12,00000 45,00000 0,02584 6,00000 0,02584 6,00000 12,00000 45,00000 0,02584 6,00000 0,02585 6,02589 3,04673 0,01673 0,08587 0,002584
all servers are busy.	7 45.00000 12.00000 45.00000 0.02309 3.66873 0.11875 0.08597 0.00264 Select C≥ 7.
Continued	

	Set 15.6e
TOKA input: (20,12,3,00,0) Itle: 1766-5 cenare 1- (M/M/3): (GD/infinity)	7 = 25 x 60 = 100 jobs / Rour 7
y many	M = 60 = 30 jobs/ Rom, C=4
Lambda = 20.0000 Mu = 12.00000 Lambda eff = 20.00000 Rho/c = 0.55556	Title: 6e-7
Ls = 2.04137	Seenario 1 (M/M/4):(GDfinfinity/infinity)
0.01014	Lambda = 100.00000 Mu = 30.00000 Lambda eff = 100.00000 Rho/c = 0.83333
n Probability, pn Cumulative, Pn n Probability, pn Cumulative, P	, , , , , , , , , , , , , , , , , , , ,
1 0.28777 0.46043 11 0.0021 0.0021	8
3 0.13323 0.83347 13 0.00037 0.9991 4 0.07401 0.90748 14 0.00037 0.9995	n Probability, pn Cumulative, Pn n Probability, pn Cumulative, Pn
6 0.02284 0.97144 16 0.00000 0.99984	6 1 0.07103 0.09234 29 0.00115 0.99425
7 0.01269 0.98414 17 0.00004 0.33534 8 0.00705 0.99119 18 0.00002 0.99394	3 0.13154 0.34228 31 0.00080 0.99604 4 0.10962 0.45190 32 0.00066 0.99668
0.00001 0.99998	6 0.07613 0.61937 34 0.00046 0.99789 7 0.06344 0.68281 35 0.00038
p waing room.	8 0.05286 0.73568 36 0.00032 0.98840 9 0.04405 0.77973 37 0.00027 0.99840 10 0.03671 0.81644 38 0.00022 0.99889
$m = \text{size } g \text{ waiting room.}$ $f_0 + f_1 + \dots + f_{m+2} \ge .999 \Rightarrow m \ge 10$	11 0.03059 0.84703 39 0.00019 0.95907
C=2, Twindows = . 8 x 60 = 16 /h 6	15 0.62152 0.89377 41 0.00015 6.99928 14 0.01770 0.91148 42 0.0001 0.99936 15 0.01475 0.92623 43 0.00009 0.999365
	16 0.01229 0.93853 44 0.00007 0.99953
u = 60 = 12 per Rom	17 0.01025 0.94877 45 0.00006 0.9995 18 0.00854 0.95731 46 0.00005 0.99978 19 0.00711 0.96443 47 0.0004 0.99978 20 0.00593 0.97035 48 0.00004 0.99882
Title: 6e-6 Scenario 1 (M/M/2):(GD/infinity/infinity)	21 0.00494 0.97530 49 0.00003 0.99985 22 0.00412 0.97941 50 0.0002 0.99985 23 0.00345 0.98284 50 0.00002 0.99986 24 0.00286 0.98670 57 0.00002 0.999890
Lambda = 16,00000 Mu.= 12,0000	25 0.00238 0.98809 53 0.00001 0.98993
Lambda eff = 16.00000 Rho/c = 0.66667	26 0.00199 0.99007 54 0.00001 0.99994 27 0.00165 0.99173 55 0.00001 0.99995
Ls = 2.40000	$(a) \int_{n=4}^{p} = 1 - C\rho$
n Probability, pn Cumulative, Pn n Probability, pn Cumulative, Pn	=134228 = .65772
0 0.20000 0.20000 14 0.00137 0.99726 1 0.26667 0.46667 15 0.0003	
2 0.17778 0.64444 16 0.00061 0.99877 3 0.11852 0.76296 17 0.00061 0.99878 4 0.07901 0.84198 18 0.00927	(b) Ws = .06622 Kow
0.09267 0.89465 19 0.00018 0.99964	(c) Lq = 3.29 jobs (d) p = .021 => 2.1% ideners
8 0.01561 0.96879 21 0.00008 0.99984	(d) p = .021 => 2.1% idener
11 0.00462 0.00075	(e) Av # of idle computers = 4-(Ls-Lq)
13 0.00206 0.99589 26 0.00001 0.99998	(e) Av. # of idle computers = 4-(Ls-Lq) = 4-(6.62-3.29)=.67
(a) B=2 = 1- (B+P)	7= 15+10+20= 45 customers / Kour
=146667	20 - 6 = 10 sacriment/ Notes
= . 5 3 3 3	C>45/10=4.5 => C>5
	I ner, op-5 Comparative Analysis
b) R = ·2	Scenario c Lambda Mu Lida eff p0 Ls Lq Ws Wdg
c) Lg = 1.067	1 5 45.00000 10.000000 45.000000 10.00000 11.30224 5.88244 0.22550 1.32550 2.3
_	(a) W ₅ ≤ 15/60 = .25 hour => C ≥ 6
d) NO, because I > M. The	(b) % idle = C-(Ls-Lq) x 100
mine num number of windows	C Ls Lq C-(Ls-Lq) % idle 5 11.362 6.862 .5 10% 6 5.765 1.265 1.5 25%
minimum numba of windows	6 5.765 1.265 1.5
should $\geq \frac{\lambda}{\mu} = \frac{16}{12} = 1.33$	Select C = 5
, =	1
Number of windows ≥ 2	(c) C 5 6 7 Po .00496 .00914 .01046
I	Select C \le 6

1. Timited Space inside a bank or a grocery store

2. Multiple queues appear to offer more corteous service.

For C parallel servers:

$$Lq = \frac{f}{c-f}$$
, provided $\frac{f}{c} \rightarrow 1$

$$W_{\mathcal{L}} = \frac{1}{\lambda_{c}} \frac{\rho}{c - \rho} = \frac{1}{(c\mu - \lambda_{c})}$$

For a single server

$$W_{q} = \frac{\lambda_1}{M(M-\lambda_1)}$$

Because $\lambda_c = c \lambda_i$, we have

$$\frac{Wq_{c}}{Wq_{i}} = \left(\frac{\frac{1}{C(\mu - \lambda_{i})}}{\frac{\lambda_{i}}{M(\mu - \lambda_{i})}}\right) = \frac{1}{C(\frac{\lambda_{i}}{M})}$$

$$= \frac{1}{c\left(\frac{\lambda c/\mu}{c}\right)}$$

$$= \frac{1}{c\left(\frac{\beta}{c}\right)}$$

11

Setermination of pinvolves
She finite series sum
$$\infty$$

 $\sum_{n=c}^{\infty} \left(\frac{\rho}{c}\right)^{n-c} = \sum_{j=0}^{\infty} \left(\frac{\lambda}{\mu c}\right)^{j}$

The series will diverge if 7 ≥ MC. The condition requires that customers le serviced at a rate faster Han the rate at which they arrive at the facility. Else, the queue will build up to infinity.

$$L_{q} = \sum_{n=c}^{\infty} (n-c) p_{n}$$

$$= \sum_{n=c}^{\infty} n p_{n} - c \sum_{n=c}^{\infty} p_{n} + \sum_{n=o}^{c-1} n p_{n}$$

$$= \sum_{n=o}^{c-1} n p_{n} + (\sum_{n=o}^{c-1} p_{n} - c \sum_{n=o}^{c-1} p_{n} + \sum_{n=o}^{c-1} (c-n) p_{n}$$

$$= \sum_{n=o}^{\infty} n p_{n} - c \sum_{n=o}^{c} p_{n} + \sum_{n=o}^{c-1} (c-n) p_{n}$$

$$= L_{s} - c + (number of idle servers)$$

Now, by definition $L_s = L_q + \frac{\lambda eff}{h}$

 $= L_S - \overline{C}$

It follows that c = noth

$$p = \begin{cases} \frac{\lambda^n}{n! \, \mu^n} \, f_o, & n \leq c \\ \frac{\lambda^n}{c! \, c^{n-c} \, \mu^n} \, f_o, & n \geq c \end{cases}$$

$$f_n = \begin{cases} \frac{\lambda}{m} f_0 & n = 1 \\ \left(\frac{\lambda}{m}\right)^n f_0 & n \ge 1 \end{cases}$$

$$f_n = \left(\frac{\lambda}{\omega}\right)^n f_0$$
, $n = 1, 2, \dots$

$$\mathcal{L}_{q} = \int_{0}^{1} \frac{\sum_{n=c+1}^{\infty} (n-c) \frac{(\lambda/m)^{n}}{C^{n-c}}}{C^{n-c}}$$

$$= \int_{0}^{0} \frac{(\lambda/m)^{c}}{C!} \sum_{n=c+1}^{\infty} (n-c) \frac{(\lambda}{Mc})^{n-c}$$

$$= \int_{0}^{0} \frac{(\lambda/m)^{c}}{C!} \sum_{j=1}^{\infty} \frac{(\lambda/m)^{j}}{Mc}$$

$$= \int_{0}^{\infty} \frac{(\lambda/m)^{c}}{C!} \frac{\lambda}{Mc} \frac{d}{d(\frac{\lambda}{Mc})} \sum_{j=0}^{\infty} \frac{(\lambda/m)^{j}}{Mc}$$

$$= \int_0^\infty \frac{(\lambda/\mu)^c}{c!} \left\{ \frac{\lambda/\mu c}{(1-\lambda/\mu c)^2} \right\}$$

$$= \int_{C} \frac{S/C}{(1-S/C)^{2}} = \frac{S}{(C-S)^{2}} \int_{C}$$

(a)
$$P \left\{ a \text{ customen is latenting } \right\}$$

$$= P \left\{ at \text{ least } c+1 \text{ in system } \right\}$$

$$= \sum_{n=c+1}^{\infty} f_n - f_c$$

$$= \int_0^{\infty} \frac{1}{c!} - \frac{1}{c!}$$

$$= \int_0^{\infty} \frac{1}{c!} - \frac{1}{c!}$$

$$= \int_0^{\infty} \left(\frac{1}{c-s} \right)$$

(b) Expected number in quene given the greene is not empty

$$= \sum_{i=c+1}^{\infty} \left(i-c \right) \frac{1}{c!} + \frac{1}{c$$

Set 15.6e First convert the c-channel. case into an equivalent single channel. Let the customer just arriving be the jth in queue. Because there are c channels in parallel, the service time, t, of each of the other j-1 customers and the (one) customer in service are determined as follows: Let t, t, ..., to be the actual service times in the c channels. Then, P{t>T} = P{min ti >T} = (e-MT) = e-MCT This is true because if min>T, then every to must be >T NOW. F_(T) = 1- P{t>T} =1-e-MCT, T>0 $f(T) = \frac{\partial F_{\epsilon}(T)}{\partial T} = \mu c e^{-\mu cT}$ which is exponential with mean wo

The c channels can be converted into an equivalent single channel as Customers

j-1 customers Equivalent single & O O ... O O Channel I services take place before customer j Starts service

Before customer , otarto service , , other customers each with a service time T must be processed first.

The assumption here is that all c channels are busy. If there are any idle servers, arriving austoner I will have zero waiting time in queue and the special case is treated separately. Let The the waiting time in queue guen there are I other customer yet to be serviced. Hen $C = T_1 + T_2 + \cdots + T_r$

Where Ti, To, ..., To are exponential with mean Yuc . T, represents the remaining service time for the customer already in service. The lack of memory property indicate that Ti've also exponential with mean YMC. Thus, Wa (2/j) = NC (NC 2) 1-1 @ MCT, 2>0 Let Wq (?) be the aboute pdf,

Wa (8) = 5 Wa (7/1) 9. Where

Hen

$$q_{j} = \begin{cases} \frac{c-1}{k} & c \\ \frac{c}{k} & c \end{cases}, \quad j = 0$$

Hence, for T>0

$$W_{q}(\tau) = \sum_{j=1}^{\infty} \frac{\mu_{c}(\mu_{c}\tau)^{j-1} - \mu_{c}\tau}{(j-1)!} \frac{\rho^{+j-1}}{c!} \frac{\rho^{+j-1}}{c!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{j!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{j!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{\rho^{-j}} \frac{\rho^{-j}}{c!}$$

For ~=0, the corresponding probability is 5-1 p, or $1 - \sum_{k=c}^{\infty} f_k = 1 - \sum_{j=0}^{\infty} f_{c+j}^{j}$ = 1 - 2 pc+1 to $= I - \frac{f^{c}}{c!} \left(\frac{f_{o}}{I - \frac{f}{2}} \right)$ $= 1 - \left\{ \frac{p^{c} p_{o}}{(c-1)!(c-p)} \right\}$ Hence, 1- pc Po (c-1)/(c-p), 7=0 Wa(2) =

P{T>y}= Sug(T)dT $= \frac{CMS^{c}P_{o}}{c!} \int_{c}^{c} \frac{-(c\mu-\lambda)T}{dT}$ $= \frac{S^{c}M}{c!(c\mu-\lambda)} = \frac{-(c\mu-\lambda)y}{f_{o}}$ $=\frac{p^{c} P_{o}}{c! \left(1-\frac{p}{c}\right)} - \frac{e^{(c\mu-\lambda)} y}{e}$ = P{T>0} = (CM-X)7 ashere P(T>0} = 1-P{7=0}

From Problem 16, the waiting time 18 in the system is computed as $T = T_1 + T_2 + \dots + T_r + t_r'$

culere

t; = actual service time for customer j.

t; is exponential with mean / H.
Thus, T is the convolution of the

waiting time in queue and its actual service time of customer j. This means that w(T) is the

convolution of way (2) and g(t);

 $\omega(\tau) = \omega_{\overline{q}}(\tau) * g(t)$

Where

g(t) = Me-ut, t>0

 $w(T) = w_{\overline{q}}(0)g(T)$ $+ \int w_{\overline{q}}(\overline{r})g(T-\overline{r})d$

+ \int_{\cup(\tau)}g(T-\tau)d\tau

 $= \left(1 - \frac{9^{c} R}{(c-1)! (c-f)}\right) M e^{-MT}$

+P. J. M.S. e. M(C-S)T -M(T-T) +P. J. M.S. e. M(C-S)T -M(T-T) (C-1)! HE dT

= (1- \frac{\rho^c f_0}{(c-0)!(c-p)}) Me^{-MT}

+ Mge-MT + (C-1)!(C-1-9) To {1-e

= Me - P P, Ne MT (C-P-1)

1 MPENTR _MFE-MT-M(C-1-9)T (C-1)!(C-1-9) (C-1)!(C-1-9)

nued...

Set 15.6f

(a) $C - (L_S - L_q) = 4 - (4.24 - 1.54)$

= 1.3 Cabs

- (b) 19 = . 04468
- (C) Title: 6f-1 Comparative Anal

ario	c	Lambda	Mυ	L'da eff	p0	Ls	Lq	Ws	Wg
1 2 3 4 5	4 4 4 4	16,00000 16,00000 16,00000 16,00000	5.00000 5.00000 5.00000 5.00000 5.00000	15.42815 15.25869 15.02834 14.70690 14.24151	0.03121 0.03236 0.03393 0.03613 0.03931	4.23984 4.02634 3.78470 3.51216 3.20550	1.15421 0.97460 0.77903 0.57078 0.35719	0.27481 0.26387 0.25164 0.23881 0.22508	0.07481 0.06387 0.05184 0.03881 0.02508

m = length of wanting list

m	\sim	Wa(hr)	Wa (min
6	10	.075	4.5
5	9	.064	3.83
4	8	.052	3.12
3 2	7	.039	2.33
' ~	6	.025	1.5

Illect m≤3

(c) % uhlization =
$$100\left(\frac{L_s - L_q}{c}\right)$$

= $\frac{2.727 - 1.091}{3} \times 100$

N = 10 spaces (including the pumps)

$$\lambda = 60/10 = 6/h$$

$$= C - (L_S - L_{q'})$$

= 3 - (9.54 - 6.71) = .17

(c)
$$p_{n \leq 17} = p_0 + p_1 + \dots + p_{17}$$

$$= .9441$$

$$(f) \frac{L_5 - L_9}{c} = \frac{9.59 - 6.71}{3} = .944$$

(a)
$$p_{40} = .00014$$

continued.

continued...

No. of students who cannot park during an 8-hr period = 20x.02467x8

$$I = P_0 \left\{ \sum_{n=0}^{c-1} \frac{f^n}{n!} + \frac{f^c}{c!} \sum_{n=c}^{N} \left(\frac{f}{c} \right)^{n-c} \right\}$$

$$= P_0 \left\{ \sum_{n=0}^{c-1} \frac{f^n}{n!} + \frac{f^c}{c!} \frac{1 - (f/c)^{N-c+1}}{(1 - f/c)} \right\}$$

$$= P_0 \left\{ \sum_{n=0}^{c-1} \frac{f^n}{n!} + \frac{f^c}{c!} \left(\frac{1 - (f/c)^{N-c+1}}{1 - f/c} \right) \right\}$$

$$\overline{c} = L_s - L_q$$

$$= \lambda_{eff} (W_s - W_q)$$

$$= \lambda_{eff} (\frac{l}{M})$$

$$I = \frac{p_{0}}{c!} \sum_{n=c}^{N} \frac{p^{n}}{c^{n-c}} + p_{0}^{0} \sum_{n=o}^{c-1} \frac{p^{n}}{n!}$$

$$= \frac{p_{0} p^{0}}{c!} \sum_{n=o}^{N-c} (\frac{p}{c})^{n} + p_{0}^{0} \sum_{n=o}^{c-1} \frac{p^{n}}{n!}$$

$$= \frac{p_{0} p^{0}}{c!} (N-c+i) + p_{0}^{0} \sum_{n=o}^{c-1} \frac{p^{n}}{n!}$$

Thue,
$$P_{0} = \left\{ \sum_{n=0}^{c-1} \frac{p^{n}}{n!} + \frac{p^{c}}{c!} (N-c+1) \right\}^{-1}$$

$$Lq = \sum_{n=c}^{N-c} (n-c) \cdot p_{n}$$

$$= \sum_{j=0}^{N-c} j \cdot p_{j} \cdot p_{j}$$

$$= \frac{p}{c!} \sum_{j=0}^{N-c} j \cdot p_{j} \cdot p_{j}$$

$$= \frac{\int_{C}^{C} \frac{N-c}{c!} \int_{J=0}^{J=0} \int_{0}^{J=0} \left(\frac{hcause S}{c} = 1 \right)}{\frac{C!}{c!} \frac{(N-c)(N-c+1)}{2} \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{$$

$$\lambda_n = \begin{cases} \lambda, n = 0, 1, 2, ..., C-1 \\ 0, n = C \end{cases}$$

$$p_n = \frac{p^n}{n!} p_0, n = 0, 1, 2, ..., c$$

$$\sum_{n=0}^{c} f_n = \sum_{n=0}^{c} \frac{p^n}{n!} f_0 = 1$$

$$y_0 = \left\{ \sum_{n=0}^{c} \frac{p^n}{n!} \right\}^{-1}$$

(c)
$$f_{n \le 40} - f_{n \le 29} = .7771 - .13787$$

= .63923

(d)
$$L_S = 36$$

$$N = \frac{60}{30} = 2/h$$

(b)
$$f_{n \geq 8} = 1 - (f_0 + f_1 + \dots + f_7)$$

(c)
$$P_0 = .00193$$

- 1. For very small $f_{g}(M/M/\infty)$: (GD/ ∞/ω) provides reliable estimates for (M/M/c): (GD/ ∞/∞).
- (M/M/c): (GD/00/00).

 2. For large P. (M/M/00) gives rebable estimates only if C is large

(9)
$$R = 1$$
: $\lambda_{eff} = \lambda(22-L_S)$
= $.5(22-12.004)$
= 4.998
 $R = 4$: $\lambda_{eff} = .5(22-2.1) = 9.95$

(d)
$$R = 3$$
:
 $P\{2 \text{ or } 3 \text{ are idle}\} = 70 + 7$

$$= .34492$$

Lambda Lambda		0.50000 9.76696	Mu = Rho/c =	5.00000 0.03333			
Ls = Ws =		6596 25248	Lq = Wq =	0.51257 0.05248			
	n	Probability, pn	Cumulative, F	'n	n	Probability, pn	Cumulațive, i
	0	0.10779	0.1077	79	8	0,00953	0.992
	1 2 3	0.23713 0.24899 0.16599	0.3449 0.5939 0.7599	90	9 10 11	0.00445 0.00193 0.00077	0.996 0.998 0.999
	4	0.10513 0.06308	0.8650 0.9281		12 13	0.00028 0.00009	0.999 0.999
	8	0.03574 0.01906	0.9638 0.9829		14	0.00003	0.999

Productivity of repair persons

= Av. # Leway repair persons

R

= \frac{L_s - Lq}{R}

R

Repair prod. Shop prod.

R	Repair prod.	Shop prod
1	100%	45.44%
2	88.2%	80.15 %
3	65.1%	88.7 %
4	49.7%	90.45%

R=2 yield 80.15% shop producting and also maintain repair producting at 88.2%

Increasing R, in effect, increases 3
The number of machines that
remain operative, and hence the
chance of additional breakdowns.
Stated differently, if all machines
remain broken, there will be no
new calls for upair service, and
heff = 0

$$\lambda = \frac{60}{45} = 1.33$$
 machines /h
 $M = \frac{60}{8} = 7.5$ machines /h
 $R = 1$, $K = 5$

Title: 6h-4 Scenario 1	(M/M	/1):(GD/5/5)					
Lambda Lambda		.33333 1.99939	Mu = Rho/c =	7:50000 0.17778			
Ls = 1.25045 Ws = 0.25012		Lq= Wq=	0.58386 0.11679		` ` `		
4.							
	n	Probability, pn	Cumulative, F	Pn Pn	п	Probability, pn	Cumulative, Pn
	0	0.33341	0.3334	и	3	0.11240	0.95293
	1 2	0.29637 0.21075	0.6297 0.8405		4 5	0.03996 0.00710	0.99290
(a) L	,	= 1.25	- ma	R			,
	3	- 1 - 0	* * * * * * * * * * * * * * * * * * * *	un	es		
(b) y	Ø :	= . 33,	34/				
(c) V	vs .	= . 25	Lou	~			

7=	60/45	=	1.33/h
Ju =	60/20	=	3/Kr
-		K=	4
Title: 6h-5	(M/M/4):(GD/4/-	4)	

	Lambda Lambda		1.33333 3.69230	Mu = Rho/c =	3.00000 0.11111			
_	Ls = Ws =		3077 3333	Lq = Wq =	0.00000			
		n	Probability, pn	Cumulative, I	Pn	n	Probability, pn	Cumulative, Pn
		0	0.22972	0.229	72	3	0.08067	0.99104
		1 2	0.40839 0.27226	0.638 0.910		4	0.00896	1.00000

Set 15.6h

$\lambda = \frac{60}{30} = 2 \text{ calls/h/baby}$	
$\mu = \frac{60}{120} = .5 / \text{R}$	
R=5, $K=5$	

Title: 6h-6 Scenario 1-- (M/M/5):/GD/5/5

Lambda	a = 2.00000	Mu = 0.50000		
Lambda	a eff = 2.00000	Rho/c = 0.80000		
Lş≃	4.00000	Lq =	0.00000	
Ws≃	2.00000	Wq =	0.00000	

 n
 Probability, pn
 Cumulative, Pn
 n
 Probability, pn
 Cumulative, Pn

 0
 0.00032
 0.00032
 3
 0.20480
 0.26272

 1
 0.00640
 0.00672
 4
 0.40960
 0.67232

 2
 0.05120
 0.05792
 5
 0.32768
 1.06060

(a) No. "awake" babies = 5-L_S = 5-4=1 baby (b) p = . 32768

(c) Pn=2 = 10+1,+P==.05792

$$P_{n} = \begin{cases} \frac{K\lambda}{M} \frac{(K-1)\lambda}{2\mu} \cdots \frac{(K-n)\lambda}{n\mu} & P_{0}, 0 \leq n \leq R \\ \frac{K\lambda}{M} \frac{(K-1)\lambda}{2\mu} \cdots \frac{(K-R)\lambda}{R\mu} \cdots \frac{K-n}{R\mu} & R \leq n \leq K \end{cases}$$

Thus,

$$P_{n} = \begin{cases} \frac{K(K-1)\cdots(K-n)}{I\times 2\times\cdots\times n} \left(\frac{\lambda}{N}\right)^{n} P_{0}, 0 \le n \le R \\ \frac{C_{n}^{k} n!}{R! R^{n-R}} \left(\frac{\lambda}{N}\right)^{n} P_{0}, R \le n \le K \end{cases}$$

$$= \begin{cases} C_{n}^{k} S^{n} P_{0}, & 0 \le n \le R \\ C_{n}^{k} S^{n} P_{0}, & 0 \le n \le R \end{cases}$$

$$C_{n}^{k} \frac{n! p^{n}}{n! n^{n-R}} P_{0}, R \le n \le K$$

R= Ls-Lq = reff (Ws-Wq) = reff (L) hence reff = MR

 $P_{n} = \begin{cases} C_{n}^{k} \rho^{n} n! \, \rho_{0}, \, n = 0, 1 \\ C_{n}^{k} n! \, \rho^{n} \rho_{0}, \, n = 1, 2, \dots, K \end{cases}$ $= \frac{K!}{(K-n)!} \rho^{n} \rho_{0}, \, n = 0, 1, 2, \dots, K$ $L_{s} = \sum_{n=0}^{K} n \rho_{n} = \rho_{K}! \sum_{n=0}^{K} \frac{n \rho^{n}}{(K-n)!}$ $= K - \left(\frac{1-\rho_{0}}{\rho}\right)$

% idle =
$$\frac{1 - (L_S - L_q)}{1} \times 100$$

= $\left[1 - (L_S - L_q)\right] \times 100$
= $\left(1 - 1.333 + .667\right) \times 100$
= 33.3%

(a)
$$E\{t\} = 14 \text{ min}$$
 $Var\{t\} = \frac{(20-8)^2}{1^2} = 12 \text{ min}^2$
 $\lambda = 4/Rr = .0667/\text{min}$
 $L_S = 7.867 \text{ cars}$
 $W_S = 118 \text{ min} = 1.967 \text{ fours}$
 $L_Q = 6.933 \text{ cars}$
 $W_Q = 104 \text{ min} = 1.733 \text{ fours}$

(b) $E\{t\} = 12 \text{ min}$

$$Var\{t\} = 9 min^2$$

 $\lambda = .0667 / min$
 $L_S = 2.5 cars$
 $Ws = 37.5 min = .625 hour$
 $L_S = 1.7 cars$
 $L_S = 25.5 min = .425 hour$

(c)
$$E\{t\} = 4x \cdot 2 + 8x \cdot 6 + 15x \cdot 2 = 8.6 \text{ min}$$

 $Var\{t\} = (4 - 8.6)^{2}(\cdot 2) + (8 - 8.6)^{2}(\cdot 6)$
 $+(15 - 8.6)^{2}(\cdot 2) = 12.64 \text{ min}^{2}$
(c) $W_{S} = 74.78 \text{ min}^{2}$

$$L_S = 1.0244$$
 cars
 $W_S = 15.3657$ min = .256 kr
 $L_Q = .451$ car
 $W_Q = 6.765$ min = .113 kr

$$\lambda = .3 \text{ job/day}$$

Service time distribution:
 $f(t) = .5$, $2 \le t \le 4$ days
 $E\{t\} = 3 \text{ days}$
 $\text{Var}\{t\} = \frac{4}{12} = .333 \text{ days}^2$
(a) $L_q = 4.2$ Lomes

(b)
$$W_S = 17$$
 days
(c) $E\{t\} = 1.5$, $Var\{t\} = \frac{1}{12} = .0833$
 $Lq = .191$ frome
 $W_S = 2.14$ days

$$\lambda = \frac{30}{8\times60} = .0625 \text{ prescr./min}$$

$$E\{t\} = 12 + 3 = 15 \text{ min}$$

$$Var\{t\} = 9 + \frac{(4-2)^2}{12} = 9.333 \text{ min}^2$$
(a) $\rho = .0625$

$$\lambda = \frac{45}{mn} = .0222 / min$$
 5

$$E\{t\} = 28 + 4.5 = 32.5 min$$

$$Var\{t\} = \frac{(6-3)^2}{12} = .75$$
(a) $L_q = .9395$ item
(b) $p_0 = .278$

$$L_{S} = \lambda E\{t\} + \frac{\lambda(E'(t) + Van\{t\})}{2(1 - \lambda E\{t\})}$$

$$= \lambda E\{t\} + \frac{(\lambda E\{t\})^{2}}{2(1 - \lambda E\{t\})}$$

$$= \beta + \frac{\beta^{2}}{2(1 - \beta)}$$

$$E\{t\} = \frac{1}{M}, Var\{t\} = \frac{1}{M^2}$$

$$L_S = \frac{\lambda}{M} + \frac{\lambda^2 \left(\frac{1}{M^2} + \frac{1}{M^2}\right)}{2\left(1 - \frac{\lambda}{M}\right)}$$

$$= f + \frac{f^2}{1 - f}$$

$$= \frac{g}{1 - f}$$

receives every ct customer and the interarrival time at the channel is exponential with mean /2, the interarrival time at each server is the convolution of c exponential distributions each with mean 1. This means that the interarrival time is gamma with mean c/2 and variance c/2:

(b) The interarrival time at the it server is exponential with mean at the its server is exponential with mean at the original at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is exponential with the arrivals at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at the inter

(a)	$M_2 = \frac{24}{(1000)} = 5.184 \text{ jobs /day}$
/	$M_3 = \frac{24}{\frac{1000}{50} \times \frac{1}{60}} = 7-2 \text{ jobs /day}$
	$M = \frac{24}{(\frac{1000}{66}) \times \frac{1}{60}} = 9.5 \text{ jobs /day}$
(6)	ETC = 24 C1: +80 Lq:
i	hi Mi Lqi Ci ETCi
1	4 4.32 11.57 \$15 \$1285.60
2	4 5.18 2.62 20 689.60 4 7.20 .69 24 631.20
4	4 9.50 .31 27 672.80
_ Sel	ect model 3.
, ג	= 3/h
	1=5/h, G=\$15
ىر	1 = 8/h, C2 = \$20
Co	ot/Broken machine = \$50/hr
M/	M/1) : (GD/10/10) :
(2.1	$\lambda = 3$, $\mu = 5 \implies L_5 = 8.33$
(M/N	1/1):(GD/10/10): \(\tau = 3, \mu = 8 \infty \tau_{S_2} = 7.33
TC	= 50/ ₅ , +15 =50x8.33+15
	= \$431.30/M
7C,	$= 50L_{S_2} + 20 = 50x7.33 + 70$
Her	= \$386.50 /hr e second repair person.
1 _	10/hr = . 167/min 3
1	nner A:
	wice time dishibition:
f _A	$(t) = \frac{1}{\frac{35}{10} - \frac{25}{10}} = 1, 2.5 \le t \le 3.5$ Continued
L	Continueu

E_{{t}} = 3 min Vary [+] = 1/2 min2 Scanner B: $\frac{5}{f_{B}(t)} = \frac{35}{15} = 1.5, \frac{5}{3} \le t \le \frac{7}{3}$ Ep[t] = 2 min $Var_{g}\{t\} = \frac{(2/3)^{2}}{12} = \frac{1}{27} \min^{2}$ PK Formula. XIS, From Excel file $L_{S_A} = .755$ customer $L_{S_B} = .419$ customer $TC_A = .2L_{SA} + C_A + C_{A} + C_{A$ TC = . 2 LSB + CB = (.2x.419+ \$15)x60 = \$6.53/h Select scanner B M = number of filled orders / hr 7 = number of requested orders/h. C, = cost/unit increase in production rate C2 = cost of waiting / unit waiting time / cust. TC(M) = Total cost/unit waiting time
given u = C, M + C, Ls = C, M + C, A $\frac{\partial TC(\mu)}{\partial \mu} = C_1 - C_2 \frac{\lambda}{(\mu - \lambda)^2}$ $\mu = \lambda + \sqrt{\frac{C_2}{C_1}} \lambda$ (c) $\lambda = 3$, $G = -1 \times 500 = 50$, $C_2 = 100$ $M = 3 + \sqrt{\frac{100}{50}} \times 3 = 5.45$ orders/h Optimism production rate

= 500 x 5.45 = 2725 pieces/&

 $\lambda = 80 \text{ jobo/wk}$ $C_1 = $250/\text{wk}$ $C_2 = $500/\text{job/wk}$ $M = \lambda + \sqrt{\frac{C_2}{C_1}}$ $= 80 + \sqrt{\frac{500}{250}} \times 80 = 92.65 \text{ jobo/wk}$

Descripto/h.

Model A: μ = 26/h, N = 20

Operating cost C_A = \$12000 /month

From TORA: P₂₀ = .03/28

Lq = 7.65 groups

Cost/h = operating cost/h + waiting cost/h

+ cost glost customers/h

= CA/30×10 + 10Lq + λ P_N × 15

= 12000 + 10×7.65 + 25×.03128×15

= \$128.23/h

Model B: M = 29/h, N = 30 $G_B = $16000/month$ From $TORA: P_3 = .0016$ $L_q = 5.07$ groups $G_{OO} + 1000$

C3 = cost/unit time / additional capacity unit.
The cost model in Problem 6 is modified by adding the term C3 N to the cost equation.

Let

5 % is the probability of running out of stock. Thus, Cost of lost sales per how = C, 7 Po E{cot}/unittime = E{lost sales cost}/unit time + E{ holding cost} / unit time = C, 2P + Cz Ls For (M/M/1): (GD/00/0) Po = (1-P) $L_S = \frac{f}{1-p}$ Thus, E{(0)}/unittime = C, 2(1-1)+(2) $\frac{\partial E\{\omega t\}}{\partial \rho} = -C_1 \lambda + \frac{C_2}{(1-f)^2} = 0$ Thus, $\beta = 1 \pm \sqrt{\frac{C_i \lambda}{C}}$ Under steady state of must be less Kan I. Thus, $P = 1 - \sqrt{\frac{c_i \lambda}{c}}$ The Solution sequires [C,] </ in order for p not to assume angative value. Note that $P = \frac{\lambda}{M}$, where λ is a constant. This means that u is the actual

optimization variable.

C, = \$20, C2 = \$45, TORA input: 2 = 17.5/h, N = 10/h R=1: (2,80,1,100,100) R=2: (2,80,2,100,100) ETC(c) = 20c + 45 Lc Ls (c) ETC(c) (a) NO WATS: 7.467 20x2+45x7.467= 376.03 Cost/month = (2 callo /8 hrs /cxec) x 2.217 20x3+45x2.217=\$159.77 (100 exec) x (6 min/call) x 20x4+45x1.842=\$162.89 1.842 (50 \$ /min) x (200 hrs /month) 1.770 20x5+45x1.770=\$179.65 =\$15000 /month Use three clerks One WATS Line: Lq=59 Cost/kn = GLS+C2C Cost/month = cost of WATS line + C, = \$30, Cz = \$18 (M/M/c):(GD/10/10): 7 = 1/20 = 0.05/h = \$2000/month +59(14x60x200) M=1/3=0.333/h = \$ 9080 2 0.05000 0.33300 0.41603 0.21439 1.67942 0.43010 4.03683 1.03383 0.05000 0.33300 0.43167 0.24268 1.36246 0.06554 3.15476 0.15175 Savings = 15,000-9080 (Cost/In for c=2) = 30x1.68+18x2=\$86.40 = \$5920 /month (cot/h fn C=3) = 30x1.36+183 = \$94.80 (b) Two WATS lines: Lg=18.4 (a) No, because the cost is higher Cost/month = 2 x 2000 + (b) Schedule loss/breakdown = C, Ws 18.4(14 x 200 x 60) C=2: Ws = 4.037 Lours Schedule loss = 30x4.037 = \$121.11 = \$6200 C=3: Ws = 3.155 Rours Schedule loss = 30 x 3.155 = 94.65 Additional savings = 9080-6200 = \$2880 The problem is similar to the 5 Lease a second WATS line machine repair model. The execution are the machines and the WATS line is the "server" arrival rate / executive = 2 calls / day Service rate = 480 = 80 calls /day
Continued

Rate of breakdown machine, 7	4
$= \frac{57.8}{8 \times 20} = .36/25 / \text{Rm}$	
$M = \frac{60}{6} = 10 / h$	
TORA model: (M/M/3): (GD/20/20)	
Ws = lost time per breakdown	
7 = member of breakdowns /he/mach	P
lost time pen mach /h= > W5	
From TORA, Ws = . 10118 h	
Lost revenue /machine / hr	
$= 25 \times (.36125 \times .10118) \times^{4} 2$	
≒ 1.85	
Lost revenue for all machines	

$$TC(c) = CC_1 + C_2 L_S(c)$$
 $TC(c-1) = (c-1)C_1 + C_2 L_S(c-1)$
 $TC(c+1) = (c+1)C_1 + C_2 L_S(c+1)$
 $TC(c-1) - TC(c)$
 $= -C_1 + C_2 \{L_S(c-1) - L_S(c)\}$
 $TC(c+1) - TC(c)$
 $= C_1 - C_2 \{L_S(c) - L_S(c+1)\}$

At a minimum point, we must have

 $TC(c-1) \ge TC(c)$

$$TC((+1) \ge TC(c)$$
 $Thus,$
 $L_s(c-1) - L_s(c) \ge \frac{C_1}{C_2}$
 $L_s(c) - L_s(c+1) \le \frac{C_1}{C_2}$

on 	- رۍ (د,)-Ls(c+1) =	C, ≤ Ls(c-1)-Ls(c)
•		$= \frac{12}{50} =$	
		•	Ls(c)-Ls(C+1)
	2	L _s (c) 7.467	
	3	2.217	5.25
	4	1.842	·375
<u>}</u> -	5	1.764	$ \begin{array}{c} \cdot 375 \\ \leftarrow \frac{C_1}{C_2} = \cdot 24 \\ \cdot 078 \end{array} $

Ç*= 4

7 = 1/7 = .1428 breakdown/ki

M = . 35 repair per Lour

TORA model: (M/M/R): (GD/10/10)

(a) From TORA's output L₅ < 4 ⇒ R ≥ 5

(b) From TORA's output

$$W_q < 1 \implies R \ge 4$$

$$C_{i} = $12$$

C	Ls
2	7.467
3	2.217
4	1.842

 $2.217 - 1.842 \le \frac{12}{C_2} \le 7.467 - 2.217$

$$375 \le \frac{12}{C_2} \le 5.25$$

R1	R2	X	Υ	(X-1)^2+(Y-2)^2	1=in. 0=out
0.0589	0.6733	-3.411	3.733	22,46021	1
0.4799	0.9486	0.799	6.486	20.164597	1
0.6139	0.5933	2.139	2.933	2.16781	1
0.9341	0.1782	5.341	-1.218	29.199805	o O
0.3473	0.5644	-0.527	2.644	2.746465	1
0.3529	0.3646	-0.471	0.646	3.997157	. 1
0.7676	0.8931	3.676	5.931	22.613737	1
0.3919	0.7876	-0.081	4.876	9,439937	1
0.5199	0.6358	1.199	3.358	1.883765	1
0.7472	0.8954	3.472	5.954	21.7449	1
				Total=	9
xact area =				Area estimate=	90

Exact area = 78.54 cm2. Estimate from Figure 18-2 = 78.56 cm2 for a sample size of n=30,000. Current estimate = 90 cm2, which is unreliable because the sample size is too small.

(a) $X = -7 + 8R_1$ Y = -2+8R2

$$f(x) = \frac{1}{8}, \quad -7 \le x \le 1$$

 $f(y) = \frac{1}{8}, \quad -2 \le x \le 6$

(b)

	Input data		
Nbr. Replications, N =	10		
Sample size, n =	100,000	Steps =	
Radius, r =	4		
Center, cx =	-3		
Center, cy =	2		
	Output resu	its	
Exact area =	50.265		
Press to Execute Mar			

A STATE OF THE PROPERTY OF	
	n=100000
Replication 1	50.223
Replication 2	50.378
Replication 3	50.113
Replication 4	50.260
Replication 5	50.244
Replication 6	50.330
Replication 7	50.327
Replication 8	50.252
Replication 9	50.236
Replication 10	50.467
Mean =	50.283
Std. Deviation =	0.099
95% lower conf. limit =	50.212
95% upper conf. limit =	50.354

R,	R2	<i>x</i>	<u> </u>	in?
-0589	. 6733	· 4123	2.6932	No
.4799	.9486	3.3593	3.7944	yes
.6139	.5933	4.2973	9.3732	Yes
.93 41	.1782	6.5387	.7128	NO
.3 473 ₅	.5644	2.4311	2.2576	Yes
. 3529	. 3646	2.4703	1.4584	Yes
.7676	.8931	5.3732	3.5724	No
.3919	. 7876	2.7433	3.1504	Yes
.5199	. 6358	3.6393	2.5432	No
.7472	. 8954	5.2304	3.5816	No

points in = 5

Area estimate = $\frac{5}{10} \times (4 \times 7) = 14 \text{ miles}^{(4)}$ $P\{H\} = .5$ PfT = .5

If $0 \le R \le .5$, Juni gets \$10

.5 < $R \le 1$, Jan gets \$10

b) R	Jan's pay	l R	Jan's pay
.0589	-10	.3529	-10
6733	10	·3646	-10
4799	- 10	.7676	10
9486	10	.8931	10
.6139	10	.3919	-10
.5933	10	. 7876	10
. 9341	10	5 199	1.0
.1782	-10	.6358	10
. 3473	-10	.7472	10
.5644	10	.8954	10
ڒ .	(, = \$2	<i>X</i> ₂ =	\$4

continued.

	Jans		Jans	1_	Jans		
R	pay	R	pay	R	pay		
-5861	10	.345	-10	.7900	10		
.1281	-10	· 4871	-10	.7698	10		
.2867	-10	-8111	10	,2871	-10		
.8216	10	.8912	16	.9534	10		
. 3866	-10	.4291	-10	.1394	-10		
.7/25	10	. 2302	-/0	.9025	10		
.2/08	-10	• 5 423	10	.1605	-10		
,3575°	-10	.4208 .6975	-10 10	3567	-10		
12926	-10	.5954	10	3670	-10		
·8261	10			·22/3	70		
x3 =	- \$2	$\overline{X}_{Y} =$	70	X5=\$			
(b) Av.	Jans	pay ba	eed on	5 repl	s .		
		4-2+		•			
	= \$.8						
	1	012 (11	.0)2+	(-28)2	26 8		
S = 1	\ (\2 - \	8)~+(4-	-87 +0	(-28)2+	- 10-19		
	00	0	S-/				
	•	<u>8</u> =					
Confide	ince.	interv	al:	÷;			
.8	2.28 4	<u>'</u>	u ≤ ·8	+2.28	<i>t</i>		
)	5	25,4		+ 2.28 V5	025, y		
Give	n E	==	2.77	6, He	95%		
2-1:1	40	25,4	0 .	6, He			
confia	mu	ince	var ~	" 3 / 3			
				3.63			
(1) Theo	retical	Jans	payof.	f = \$0	· .		
Estin	Estimate \(\frac{1}{x^2} d \times \)						
6							
	7						
1 7							
		75	//				
		1117	1/4				
	ككصار	TTTTT	77	x			

Let x=R1 and y=R2.
Experiment: If R2<R1^2, count point "in".
Estimate of integral = (1x1)(Points "in")/5

				···./·
(b)		R1	R2	1=in, 0=out
·	Rep 1	0.0589	0.6733	0
<i>.</i>		0.4799	0.9486	. 0
		0.6139	0.5933	, 0
	• .	0.9341	0.1782	1
•		0.3473	0.5644	0
		Integral est	imate =	0.2
	Rep 2	0.3529	0.3646	0
		0.7676	0.8931	0
		0.3919	0.7876	0
		0.5199	0.6358	0
		0.7472	0.8954	0
		integral est	imate =	0
	Rep 3	0.5869	0.1281	1
		0.2867	0.8216	0
		0.8261	0.3866	- 1
* •		0.7125	0.2108	1
		0.3575	0.2926	0
		0.6		
	Rep 4	0.3455	0.4871	0
		0.8111	0.8912	0
_		0.4291	0.2302	0
1		0.5954	0.5423	• . 0
		0.4208	0.6975	0
		Integral est		` <u> </u>
₩.		gral estimat	te =	0.2
	Std. Deviat			0.244949
		confidence		-0.189714
		confidence	limit =	0.5485706
1.	Exact integ			0.3333
			not "good" wi	
			alue because	sample
	size (n = 5) is too sma	u.	

7= (6,1), (5,2), (4,3), (3,4), (2,5), (1,6)

Monte Carlo experiment:

The cours	spennun
R	outcome
0 = R= 1/6	ſ
1/6 < R ≤ 1/3	ح
1/3 < R ≤ 1/2	3
1/2 < R < 43	4
3/3 < R < 5/6	5
5/6 < R < 1	6 .
0 & R & . 167	1 1
.167 < R ≤ .333	_
.337< R < .5	3
.5 < R < .63	5 7 4
.667< R ≤ 83	33 3
.833 < R & 1	6

Continued..

Continued..

R,	Rz	Sum	Payoff
.0589	6733	1+5=6 paint	•
.4799	.9486	3+6=9	
.6139	·5933	4+4-8	• •
.9341	1782	6+2=8	
·3473	.5644	3+4=7→	-\$10
3529	.3646	3+3=6 point	f
.7676	.8931	5+6=11	
.3919	7876	3+5=8	
.5199	.6358	4+4=8	
.7472	.8954	5+6=11	
.5869	.1281	4+1=5	
.2867	.8216	2+5=7→	- \$10
.8261	.3866	5+3=8 point	•
.7/25	.2108		-\$10
.3575	-2926	3+2=5 point	-
.3455	4871	3+3=6	
.8111	. 8912	5+6=11	
.4291	· 5305	3+2=5-	\$10
.5954	\$542.	4+4 = 18 point	
·4 208	-6975	3+5 = 8 →	\$10
9 , ,			165

Lead time:

 $0 \le R \le .5$, L = 1 day $.5 < R \le 1$, L = 2 days

Demand / day:

 $0 \le R \le 2$, d = 0 unit $2 \le R \le 9$, d = 1 unit

.9 < R ≤ 1. d = 2 units

Let p(d, L) be the joint pdf of demand and lead time. The procedure callo for constructing a frequency table of demand and lead time.

The maximum demand during lead time is 2 x 2 = 4 units, so that the demand d = 0,1,2,3,4. We will use the random numbers in Table 16-1 in the following manner: First use a random number to generate a lead time. If L=1 day, use one continued...

random number to general 7 continued the demand in that day. If L=2 days, use two random numbers to generate the demands for the two days. For example, R=.058962 yields L=1. Next, R=.6733 gives d=1. Thus, we expedde the frequency table by increasing the frequency of the entry (d=1, L=1) by one. The frequency table using the frist two columns of R in Table 15-1 is

		0	1	2	3	4
,	1	*	 -	//	0	0
L	Z	<#1	0	 	1111	Ò
				4	LON	<u> </u>

				3	4
, 1	/	7	2	0	0
Lz	2	0	7	4	0

Total n = 23

Relative frequency table: (KL)

	, ,	1/23	7/23	2/23	0	0	10
_	2	2/23	0	7/23	4/23	0	13
		,		,	,		. 25

p(d) 3/23 7/23 9/23 4/23 0

$$p(d) = \sum p(d, L)$$

$$p(L) = Z p(d, L)$$

From graph, needle will touch line or cross it is

h = 2 (b) Generale h = R, × D/2 $\theta = TC \times R_2$ of h < $\frac{d}{d}$ sin θ , needle touches. Elsc it doesn't. Probability estimate = $\frac{4}{\text{touches}}$ Eample aige. D = E

CAA	. D			.
	D=	20	d≒	10
3	(RAND()*\$C\$1)*0.5	RAND()*PI()	\$E\$1*0.5*SIN(C4)	IF(B4<=D4,1,0)
	A	theta	d*sin(theta)/2	1=touch, 0=else
Rep 1	8.396953573	1.3165558	4.839272983	0
	7.107859045	2.9048959	1.172463622	. 0
	0.27542965	0.8440783	3,736795168	1
	1.267504547	2.8354706	1.506816139	1
	9.237262421	0.7436482	3.38488765	ò
	2.495379696	2.9719552	0.844125326	Ō
	4.253169953	2.8396976	1.486650397	ō
	8.516662244	1.4161445	4.940326141	ō
	4.224254495	0.7887632	3.547410981	Õ
	3.690266876	3.0811599	0.301979787	0
		Estimate of p		0.2
Rep 2	0.712918949	1.5238102	4.994481772	1
1,00	9.381794079	2.5979258	2.586388239	Ó
	1.360072144	2.0189288	4.506289193	1
	8.477675064	1.9724771	4.60202594	Ó
	0.99443686	1.300734	4.81877136	1
	5.170438974	1.4568612	4.967582038	0
	5.056822846	1.6844549	4.967739087	Ö
	5,864264693	0.0683356	0.341412027	ō
	6.87137267	2.6283793	2.454895584	ŏ
	1.092023022	2.6522347	2,350296303	1
		Estimate of p		0.4
Rep3	9.712756211	1.694489	4.961799031	Ö
· inter	6.686447356	1.2243834	4.702983326	ŏ
	6.436673778	2.4581589	3.157296664	Ö
	1.324134345	2.2441568	3.908652279	1
	1.775706228	2.255079	3.874363448	1
	0.090587765	2.7080167	2.100592855	<u>i</u>
	4.979938633	2.5138689	2.936520016	ò
	8.678634219	2.7348178	1.978247037	ő
	2,179672677	1.8339609	4.827857959	1
	9.640572895	1.2431615	4.734030551	ó
	0.0100.2000	Estimate of p		0.4
Rep 4	8.227016322	2.6999829	2.136976805	0.4
	8.757368267	2.1537385	4.174233356	Ö
	4.203914479	0.1860064	0.92467824	. 0
	6.098369885	2.1672345	4.13670754	. 0
•	4.960185836	0.7841548	3.531135292	ŏ
	3.899078191	1.8047989	4.863730557	1
	5.840727605	0.727722	3.325852126	ò
	6,645324046	0.498725	2.391531067	Ö
	5.361422671	0.89898	3,91346242	Ö
	3.223016816	1.6715052	4.974665749	
	5.2250 100 10	Estimate of		1
	with the control of t	Estimate of t		0,2
			Mean value =	0.3
	Std. Deviation = 0.1155 95% LCL = 0.4163			
			95%UCL =	0.1163
		·	9970UUL -	0.4837

AI///
d sind MI/AZ///
0 Θ π
Exact probability = A+ Az
2 5 4 Sm 0 d6
$=\frac{2\sqrt{23m^{3}}}{\pi}$
= 2d
π_D
(c) From (c),

$$\tilde{p} = .3$$

Thus,
$$\frac{2d}{\pi D} = .3$$
or $\pi \approx \frac{2d}{.3D}$

$$\approx \frac{2 \times 10}{.3 \times 20}$$

$$\approx 3.33$$

- (a) Discrete
- (b) Continuous
- (c) Discrete

In discrete simulation, there 2 are two main events: assivals and departures. On arrival event may experience delay before starting service. When service has been completed, customer leaves the facility.

The description of the discrete simulation situation by arrival and departure events is she reason discrete simulation is associated with queues.

Events:

A, = rush jol arrives

Az = regular job arrives

D = rush job departs

Dr = regular job departs

Ao = job arrives of carousel 2

A = job arrives at station)

Az = job arrives at station 2

A3 = job arrives at station 3

D, = job departs station 1

D= job departs station 2

D3 = job departs station 3

A = car enters lane 1

Az= car enters lane 2

A3 = Car goes elsewhere

D, = car departs lane 1

D2 = car departs lane 2.

3

Set 16.3b

11/1/11/11			
L		ln (1.	1
<i>L</i> =		Km (1.	- R 1
-	\sim	~,,,	
	_		

7 = 4 customers/kr

Customer	R	t(hrs)	Arrival time
1			0
A	.0589	.015	0+.015 = .015
3	.6733	.280	.015+.28= .295
4	.4799	.163	.295+.163=.458
AI AZ		Аз	Au
			<u> </u>
0 .015		.295	. 458

$$f(t) = \frac{1}{b-a}, \quad a \le t \le b$$

$$F(t) = \int_{b-a}^{t} \frac{1}{b-a} dx = \frac{t-a}{b-a}, \quad a \le t \le b$$

 $R = \frac{E-a}{b-a}$

t = a + (b-a)R

$$f_1(t_1) = .5 e^{-.5t}$$
, $\lambda = \frac{1}{2} \arcsin \frac{3}{hr}$
 $f_2(t) = \frac{1}{.9}$, $1.1 < t < 2$

R = 0589, a, = -2 ln (1-.0589) = .12hr

R = .6733, d, =1.1+.9x.6733=1.71 Rs R = .4799, az = -2 ln(1-.4799)=1.31 krs

R= .9486, a3 = -2 ln (1- .9486) = 5.94 hrs

R = . 6139, dz = 1.1+.9x.6139 = 1.65 Km

R = .5933, d3 =1.1+9x.5933 = 1.63 km

R= .9341, ay=-2h(1-.9341)=5.44 ho

R= 1782, dy=1-1+.9x.1782 =1.26 hrs

R= 13473, d5=1.1+.9x.3473= 1.41 fro

Ai Az	A3 2 1:11	Q3	4 94	A4 A4	A5 14.22
12		d ₂ d ₃	7. D ₃	<u> </u>	2.8 ds Ds

0 < R < . 2 , (a)

25R<5,

,5 ≤ R < .9, d=2

.9 < R<1., d=3

(b) Day	R	Demand	Stock level
. 0		-	5
1	.0589	0	5
2	.6733	2	3
3	4799	. 1	2

Replenish stock on day 3

Repair/2, Package/8:

0 ≤ R < · 2, goto Repair .2 ≤ R ≤ 1., goto Package 5

Package 1.8, Repair 1.2:

0 & R < . 8, got Package .8≤ R≤1, go to Repair

Example: R = . 1 leads to Repair in the first case and to Package in the second case

0 SR <.5: .5≤R ≤1. :

n	R	outcome	Payoff
1	.0589	H	\$2
	.6733	$-\tau$	0
2	.4799	Н	2= \$4

	(a)	(X-a)2 (b-a)(c-a	, a € x ≤	b 17con	tinued
	F(x)=)			
		$1-\frac{(c-x)}{(c-b)^2}$	$\frac{()^2}{(c-a)}$, be	x < C	
	* .				
,	£ .	$2 = \frac{(x-b-1)^2}{(b-1)^2}$	~ <i>y</i> C		
	x= a+	R(b-a)(c	-a), o≤	$R \leq \frac{b}{c}$.a .a
	For R	$\hat{c} = 1 - \frac{C}{C}$	(-x)2	,	
	X= C-	√(c-b)(c	(1-R)	$\frac{b-q}{c-a} \le 1$	R ≤ I
•	(b) a =	1, 6=3,	C = 7		. /
	6-9	$=\frac{3-1}{7-1}$	= -333	3	
	Thus,	·			
	ſ	1+1(3-1)(7-1)R		
	1	= /	+ \(\bar{12R}\)	OSK	? ≲ · 333
	$x = \begin{cases} 1 & \text{if } x = 1 \end{cases}$	7 (
		/- Y(7-3)	(7-1) (1-R) {24(1-R)	222 <	011
				, -353 >	K = I
	R	<i>X</i>			
	-0589 -6733	1.8 4.2	•	-1	
	.4799	3.4	7		
	.9486 .6139	5.8 3:9			,
	ı.	<u> </u>	0		a
	1 2 d+c-b	<u> </u>		\	0
	atc-0				
		Λ		Λ	

	$R = \frac{(x-a)^2}{(b-a)(d+c-b-a)}$ gives
	$X = a + \sqrt{(b-a)(d+c-b-a)R}, o \leq R = \frac{b-a}{(a+c-b-a)R}$
	$R = \frac{1}{(b-a)(d+c-b-a)} + \frac{2(x-b)}{(d+c-b-a)} \text{ gives}$
	$X = \frac{1}{2} \left(R - \frac{1}{(b-a)(d+c-b-a)} \right) (d+c-b-a),$
	$\frac{b-a}{d+c-b-a} \le R \le 1 - \frac{d-c}{(d+c-b-a)}$
	$R = 1 - \frac{(d-x)^2}{(d-c)(d+c-b-a)}$
	$X = d - \sqrt{(d-c)(d+c-b-a)(1-R)}$,
	$1 - \frac{d - c}{(d + c - b - a)} \le R \le 1$
	(b) $a=1,b=2, c=4, d=6$
3	1+ ((2-1) (6+4-2-1) R=1+ \(7R \), 0 = R < .143
	$2+\frac{6+4-z-1}{z}(R-\frac{1}{(z-1)(6+4-z-1)}$
	= 2 + 3.5(R143),
	.143 ER E.714
	$6 - \left (6-4)(6+4-2-1)(1-R) \right = 6 - \left \sqrt{14(1-R)} \right $
	.714 € R € 1
-	R X
-	·0589
	.4799 3.18 .9486 5.15
	.6139 3.65
	$f(x) = pq^{x}, x = 0,1,2,$ (p+q) = 1
	$F(x) = p \sum_{t=0}^{\infty} q_t^t$

 $F(x) = p \sum_{t=0}^{x} q^{t}$ = $1 - q^{x+1}$, x = 0, 1, 2, ...

1		9 contin
1		• • • • • • • • • • • • • • • • • • • •
1-93	· · · · · · · · · · · · · · · · · · ·	
1-92	3 pg2	
1-9,	{ pq	
\{P		1
0	l s	X

Jampling procedure:

if
$$0 \le R \le 10$$
, then $X = 0$.

For p<R ≤ 1, we have

$$1-q^n \le R \le 1-q^{n+1}$$

$$n \leq \frac{\ln(1-R)}{\ln q} \leq n+1$$

Thus, for p < R < 1, compute

$$X = \left[\frac{\ln(1-R)}{\ln q}\right]$$

where [a] is the largest integer less than or equal to a.

For p=.6, q=.4, we have

R	ln (1-R) ln q	X
.0589		0
.6733	1.22	1
.4799		0
.9486	3.24	3
.6139	1.03	/

$f(x) = \alpha \beta^{-\alpha} x^{\alpha-1} e^{-(x/\beta)^{\alpha}} x > 0$
$= \frac{\alpha}{\beta} \left(\frac{x}{\beta} \right)^{\alpha - 1} - \left(\frac{x}{\beta} \right)^{\alpha} \times > 0$
$F(x) = 1 - e^{-\left(\frac{X}{B}\right)^{\alpha}}, x > 0$ Thus, $-\left(\frac{X}{B}\right)^{\alpha}$
Thus, $-\left(\frac{x}{\beta}\right)^{q}$ $R = 1 - e$
or x=B[-ln(1-R)] 1/a
1 .

	y====ln}(.0589	x·6783x·4799x·	1486} 🗀
	0		
	= .803 hou	1	
,		consistence and the contract of the contract o	مقتحا

7:	= 5	5 e	vend	5/	ki,	t = 1
ė	5×/	=	ē	=	.00	673

i	RIRZ Ri		
1	.0589		
2	.0589×.6733	=	.0397
3	·0397x · 4799	=	.0190
4	.0190x 9486	=	.0181
5	·0181 X ·6/39	=	.0/11
6	10111 x . 5933	=	.00656
7	·00656x.9341	=	.00614

Hence	n =	6	
u = 8,	o=	Ι,	N(8,1)

onvolution method:	
X = R,+R2++R12 =	6.1094
4 = 8+1(6.1094-6) =	

DUX	(-Miller mena:	
•	$X = \sqrt{-2 \ln R_1} \cos (2\pi R_2)$	
	=√-2 lm.0589 coo(211× 6733) ≈ -1.103)

7 = 6/day m =5	4
y = - 1 ln (.0589x.6733x.4799x	
QUECV. (129) = .751	hour

N(27,3): M=27, 0 = 3
Given R, and Rz, we have
$X_1 = \sqrt{-2 \ln R_1} \cos (2\pi R_2)$
X2 = \-2lnR, Sin (217R2)
y = M+0 x,
4 - 4 + 6

R1	R2	x1	- X2	V4	v2
0.0589	0.6733	-1.1030306		23.69091	20.6735
0.4799	0.9486	1.149111	-0.384576	30.44733	25.8462
0.6139	0.5933	-0.8229152	-0.546495	24.53125	25.3605

Formula	S:
L5=	SQRT(-2*LN(J5))*COS(2*PI()*K5
M4=	SQRT(-2*LN(J5))*SIN(2*PI()*K5)
N4=	\$K\$1+L4*\$M\$1
04=	SK\$1+M4*SM\$1

$X_i = 10 + (20 - 10) R_i$ = 10 + 10 R_i , $i = 1, 2, 3, 4$	5
t = X1+X2+X3+X4 = 40+10(R1+R2+R3+R4)	

J.	-	RI	Rz	R3	Ry	t (sec)	It 7
	1	.0589	·6733	. 4799	9486	61.61	61.60
	Z	.6139	.5933	.934/	1782	63.20	124.81
	3	3473	.7676	.8931	.3919	64.00	188.81
	4	.7876	15199	.6358	.7472	66.91	Or 35)
	5	18954	.5867	.1281	.2867	58.94	314.64

The number of mice that exit the maze in 300 seconds is 4

Let X, X2, ..., X be a successive random deviates obtained from the geometric distribution as given in Problem 9, Set 18.36. Then

$$K_i = \left[\frac{\ln R_i}{\ln (i-p)}\right], i=1,2,..., \Lambda$$

Because the negative binomial is the convolution of a independent geometric random variables, it follows that a random negative binomial sample can be determined as

$$X = \sum_{i=1}^{n} \left[\frac{\ln R_i}{\ln (i-p)} \right]$$

Note that [a] represents the largest integer < a

Set 16.3d

Set 10.30	
<u>step 1:</u> R = .6139	Step 3: f(.5974)
X = .6139	9(·5974) = .962 7=.5933 12 continued
Step 2: R = . 5933	Step 3: $\frac{f(.5974)}{g(.5974)} = .962 \approx .5933$ 2 continued reject X
84p3: T(.6/37) = .948 > .5933	<u>Step 1</u> : R = 9341 X = 8804
$\frac{Step 1: R = .9341}{Step 1: R = .9341}$	8tp2: R = .1782
Hup2: K = . 1782	Step 3: \frac{f(.8804)}{g(.8804)} = .842 \tau .1782 Step 1: R= .3570
$\frac{step 3: f(.9341)}{g(.9341)} = \frac{.3693}{1.5} = .246 > .1782$	7(.8804) Resict X
- Specific	84p1: R=. 3529, x=.375
Step 1: R = 3473, x = 3473	Step2: R = 3646
step2: R = .5644	84p3: $f(.375) = .937 > .3646$
$\frac{84p3}{g(.3473)} = .9067 > .5644$	$\frac{84p3}{9(.375)} = .937 > .3646$
. Septer A	$ \frac{247}{5} N = .7676, X = .7286$
Step1: R = .3529, X = .3529	8tip2: R = .8931
Stip 2: R = .3646	$\frac{8 \text{tip 3:}}{9(7286)} = \frac{1186}{15} = .791 < .8931$
$\frac{Step 3: f(.3529)}{g(.3529)} = .913 > .3646$ Reject x	$\frac{g(.7286)}{g(.7286)} = \frac{1.186}{1.5} = .791 < .893/$
	<u> </u>
<u>Stip1</u> : R = .7676, x = .7676	.5
step 2: R = 8931	
8tep3: f(.7676) = .7135 < .8931	· T T
$\frac{1}{g(.7676)}$ accept $x = .7676$	$f(x) = \frac{\sin(x) + \cos(x)}{2} 0 \le x \le \frac{\pi}{2}$
H\(\alpha\)	$\frac{2}{\pi}$
1	$\max x f(x) = .707 \text{ at } x = \frac{\pi}{4}$
9144	$g(x) = .707 0 \le x \le \pi/2$
.8	h(x) = g(x)
.6	area under qui
4	= \frac{.707}{.701 \pi} = .637 0 \leq x \leq \frac{\pi}{2}
2	701× 1/2
.086	$\int_{-\frac{1}{t}}^{20} \frac{K_1}{t} dt = K_1 \ln \frac{20}{12} = 1$
Step 1: R = . 4799 X = 4831	المساح المساح المساح المساح المساح المساح المساح المساح المساح المساح المساح المساح المساح المساح المساح المساح
Step 1: R = . 4799, X = . 4831	Thus, K, = 1.96
Step 2: R = . 9486	$\int_{1}^{2} \frac{K_{2}}{h^{2}} dt = K_{2} \left(\frac{1}{18} - \frac{1}{22} \right) = 1$
$\frac{\text{stip 3}}{g(.4831)} = .9988 > .9486$ $\frac{g(.4831)}{g(.4831)} = .8988 > .9486$ Reject X $\frac{\text{Stip 1:}}{g(.4831)} = .5974$	Thun, Kz = 99
y (.4831) Reject X	$f_i(t) = \frac{1.96}{t}, 12 \le t \le 20$
Step 2: $R = .5933$ continued	$f_2(t) = \frac{99}{t^2}, \qquad 18 \le t \le 72$ continued
1.0	

Set 16.3d

$$A = 1.03$$

$$A = 1.03$$

$$h_{1}(t) = \frac{.261 - .008125}{1.044}t$$

$$= .25 - .007783$$

$$H_{1}(t) = .0.25X - .00778 \frac{x^{2}}{2} \Big|_{12}^{t}$$

$$= .25t - .003892t^{2} - 2.44$$

$$h_{3}(t) = \frac{.7825 - .02625t}{1.03}$$
$$= .76 - .0255t$$

$$H_2(t) = .76t - .01275t^2 - 9.55$$

Sample computations from H2(t):

$$t = \frac{59.6 \pm \sqrt{(-59.6)^2 - 4 \times 753.64}}{2}$$

$$\frac{\text{Step 3:}}{9_2(18.21)} = \frac{\left(\frac{99}{18.21^2}\right)}{.7825 - .02625 \times 18.21}$$
$$= .98 > .6733$$

	1 1			
		•		
		4	R=RAND() E	in
Multiplicative Congruential Met	hod		0.813455).1
Input data			0.21757 (0.2
b=	17			0.3
c=	111			0.4
C= U0=	 7			0.5
m=	103			0.6
How many numbers?	50).7
Output results				
Press pr Generate Sequence				0.8
				0.9
Generated random numbers:			0.965781	1
	3301		0.808752	İ
	3883		0.957601	
	3786		0.502469	1
	2136	,	0.620944	. 1
	34078		0.992405	
	7087		0.97218	
	8252		0.051905	į
	8058		0.144368	I
	4757		0.129308	1
	'8641		0.676603	. *
	14660	1 7	0.140868	
	66990] '	0.486705	İ
	16602	1	0.466705	
· · · · · · · · · · · · · · · · · · ·	00000			
	7767	,	0.821802	
	39806		0.954853	•
	34466		0.301267	
	13689		0.827929	
	50485	*	0.917179	
	6019		0.07369	į
	80097		0.462159	
	19417		0.333902	
	37864		0.390604	
	51456	·	0.723163	
	32524 10680		0.041401	ļ
	39320		0.805603	
	26214		0.556012	
	53398	Bin Fre	quency umulative %	* ** *** v · · · · · · · · · · · · · · ·
	15534	0.1		
	71845	0.2		
	29126	0.2	105 0.22	
	02913		105 0.32	
	57282	0.4	86 0.41	
	31553	0.5	108 0.52	Sample
	94175	0.6	101 0.62	Sample Size=1000
	08738	0.7	95 0.71	5/7e=/000
	56311	0.8	90 0.80	
	65049	0.9	101 0.90	- '
	13592	1	97 1.00	
	38835	More	0 1.00	
	67961			
43 0.6	63107		Histogram	
44 0.8	80583			1 1
45 0.7	77670	120	1.20	
46 0.2	28155	100	1.00	
47 0.8	86408			.
48 0.7	76699	9 80	- 0.80	Frequency
	11650	Frequency 60 - 80 - 80 - 80 - 80 - 80 - 80 - 80 -	- 0.60	- Cumulative %
50 0.0	05825	문 40 H	- 0.40	- Cumulative %
		20 -	- 0.20	
		0	0.00	
			6 4 0	
		0,, 0,3	0,5 0,1 0,5 More	
			Bin	
	· ·		DIII	

C= 2 barbers

$$f_i(t) = ./e^{-i/t}, t>0$$

$$f_{z}(t) = \frac{1}{15}$$
, $15 \le t \le 30$

A, at T=0:

$$T(D_2) = 0 + (15 + 15 \times 6733) = 25.1$$

Barber 1 busy

De at T= 25.1:

Barber 1 idle

A, at T = 28.3:

T(A3) = 28.3-10 lm. 4799 = 35.6

T(D2) = 28.3+ (15+15x.9486)=57.5

Barber 1 busy

A3

A3 at T=35.6:

T(A4) = 35.6-10 ln . 6139 = 40.5

 $T(D_3) = 35.6 + (15 + 15 \times .5933) = 59.5$

Barber 2 brief A4 D2 D3

Ay at T=40.5:

T(As) = 40.5-10 ln. 9341 = 41.2

Ay waits in queue

As Dz D3

A4 Jaguene

As at T = 41.2:

T(A6) = 41.2-10 ln. 1782 = 58.4

A- waits in queue

D2 A6 D3

A4 A5 equem

 \mathcal{D}_{2} at T = 57.5:

Barber 1 idle

Take A4 out of queue

 $T(D_4) = 57.5 + 15 + 15 \times 3473 = 77.7$

Barber 1 busy

AG D3 Dy

A5 +quene

A6 at T = 58.4:

T(An) = 58.4-10 ln.5644 = 64.1

Put Ag in queue D3 A7 D4

As A6 - quene

D3 at T= 59.5:

Barber 2 idle

Take As out of queue

 $T(D_c) = 59.5 + 15 + 15 \times 3529 = 79.8$

Barber 2 fusy

A7 D4 D5

A6 = quene

Agat T=64.1:

T(Ag) = 64.1-10 ln . 3646 = 74.2

Put A7 in queue

As Dy Ds A6 A7 - quene

A at T= 74.2:

T(Ag) = 74.2 + (-10 ln.7676)

= 76.8

Place Az in queue.

A6 A7 A8 - quene

Set 16.5a

Av. queue langth =
$$\frac{63.59}{75}$$
 = .8 customer
Av. waiting time in queue = $\frac{63.59}{8}$
= 7.45 min

Av. waiting time for slove who must wait = $\frac{63.59}{5}$ = 12.72 min

- (a) Observation.
- (b) Time.
- (c) Observation.
- (d) Observation
- (c) Observation.
- (f) Time.

- (a) $\bar{Q} = \frac{37}{25} = 1.48$ customers
- (b) Number of waiting austoners = 5 $\overline{W} = \frac{37}{5} = 7.4$ Lours

- (a) Average utilization $= \frac{110}{100} = 1.1 \text{ barber}$
- (b) Average idle time $= \frac{10 + (40 35) + (100 90)}{3}$ $= \frac{25}{3}$ = 8.33 minutes

(br of arrivals = 10	kinādovaistijas vilija					lation Calc			
Enter x in column A to se	lect interarrival	pdf:	Nbr	InterArvITime	ServiceTime	ArrylTime	DepartTime	Wq	Ws
Constant =			1	31.74	10.76	0.00	10.76	0.00	10.76
Exponential: $\lambda =$	0.0667		2	47.24	11.07	31.74	42.82	0.00	11.07
Uniform: a =	8 b =	9	3	4.25	10.19	78.98	89.17	0.00	10.19
Triangular: a =	b∍	C=	4	17.78	13.96	83.23	103.14	5.94	19.91
Enter ≭ in column A to se	lect service tim	e pdf:	5	0.99	12.45	101.01	115.59	2.13	14.58
Constant =			6	7.51	13.82	102.00	129.41	13.59	27.41
Exponential: $\mu =$			7	12.94	10.33	109.51	139.74	19.90	30.23
c Uniform: a =	10 b =	15	8	2.51	14.13	122.45	153.87	17.29	31,42
Triangular: a =	b=	C =	9	3.74	12.90	124.95	166.78	28.92	41.82
- V	utput Summary		10	9.02	10.84	128.70	177.62	38.08	48.92
Av. facility utilization =	0.68		7						
Percent idleness (%) =	32.17								
Maximum queue length=	4								
Av. queue length, Lq =	0.71	Press F9 to							
Av. nbr in system, Ls =	1.39	trigger a							
Av. queue time, Wq =	12.58	new simulation run.							
Av. system time, Ws =	24.63			,					
Sum(ServiceTime) =	120,47	*/					٠.		
Sum(Wot)⇒	125.85								

Av. waiting time in System = 120.48 + 125.88 = 24.636

	More and wife the 500 < <ms< th=""><th></th><th>Summary:</th></ms<>		Summary:
	ZneskangedungPatescics	merkid	lutiliz La 45 Mg Wa
	Constant = 10 154	1000 P	mem .64 1.146 1.786 .29 .452
and Care	x Exponential: $\chi = -\frac{1000}{1000}$		Std. Dev 0339 . 2388 . 2598 . 0608 . 0642
	Triangular: a =		1.0307 0000 0010
	Enter x in column A to select	3 3 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95% confidence limits:
New	Constant =		t _{4,025} = 2.776
	x Exponential: // =	6	4,.025
99224	Uniform: a =		$UCL = \overline{X} + \frac{2.7765}{2.7765} = X + 1.245$
	Triangular: a =	i lo	$UCL = \overline{X} + \frac{2.7765}{\sqrt{n}} = \overline{X} + 1.245$ $LCL = \overline{X} - 1.245$
3	and the property of the contract of the contra	Summar	
	Av. facility utilization =	0.66	LCL .598 .850 1.464 .215 .372
	Percent idleness (%) =	33.84	i i
<i>-</i>	Maximum queue length= Av. queue length, Lq =	0 1.42	UCL .682 1.442 2.108 .365 .531
- /	Av. nbr in system, Ls =	2.08	
	Av. queue time, Wq =	0.37	Pouson queue output:
	Av. system time, Ws =	0.54	Scenario 1 (M/M/1):(GD/infinity/infinity)
	Av. facility utilization =	0.61 38.65	attended to a minimum for the street of the the Kill of
	Percent idleness (%) = Maximum queue length=	ან.ნმ 0	Lambda = 4.00000 Mu = 6.00000 Lambda eff = 4.00000 Rho/c = 0.66667
\sim	Av. queue length, Lq =	0.91	Lambda eff = 4.00000 Rho/c = 0.66667
(3)	Av. nor in system, Ls =	1.52	Ls = 2.00000 Lg = 1.33333 Ws = 0.50000 Wa = 0.33333
	Av. queue time, Wq =	0.24	Ws = 0.50000 Wq = 0.33333
	Av. system time. Ws =	0.40	
	Av. facility utilization =	0.65	
•	Percent idleness (%) =	35.11	SEE 200 < <maximum 500<="" td=""></maximum>
	Maximum queue length=	0	umn A to select interarrival pdf:
(3)	Av. queue length, Lq =	0.91	= 11.5
, O	Av. nbr in system, Ls =	1.56	ial: $\lambda =$
	Av. queue time, Wq =	0.22	a = b = c = b =
	Av. system time, Ws =	0.38	r: a = b = c = 6
	Av. facility utilization =	0.68	=
	Percent idleness (%) =	31.70	ae // //
	Maximum queue length=	0	a= b=
(4)	Av. queue length, Lq =	1.35	r, a= 9 p= 1// 9.5 g= 1// 1
	Av. nbr in system, Ls =	2.03	
	Av. queue time, Wq =	0.32	Av. facility utilization = 0.96
	Av. system time, Ws =	0.48	Av. facility utilization = 0.96 Percent idleness (%) = 4.20
	Av. facility utilization =	0.60	Maximum queue length= 2
	Percent idleness (%) =	39.83	Av. queue length, Lq = 0.12
	Maximum queue length=	0	Av. nbr in system, Ls = 1.08
(2)	Av. queue length, Lq =	1.14	Av. queue time, Wq = 1.36
©	Av. nbr in system, Ls =	1.74	Av. system time, Ws = 12.38
	Av. queue time, Wq =	0.30	
	Av. system time, Ws =	0.46	

* .				
	Av. facility utilization =	0.96		
	Percent idleness (%) =	3.85		
	Maximum queue length=	2		
(2)	Av. queue length, Lq =	0.12		
	Av. nbr in system, Ls =	1.08		
	Av. queue time, Wq =	1.33		٠.
	Av. system time, Ws =	12.39		
		1200	Y.,	٠.
	Av. facility utilization =	0.97		
	Percent idleness (%) =	2.98		
(3)	Maximum queue length=	2		
(3)	Av. queue length, Lq =	0.19		
	Av. nbr in system, Ls =	1.16		
	Av. queue time, Wq =	2,14		
	Av. system time, Ws =	13.33		
	Av. facility utilization =	0.96		
	Percent idleness (%) =	3.58		
	Maximum queue length=	2		
(4)	Av. queue length, Lq =	0.16	7	
	Av. nbr in system, Ls =	1.13		
	Av. queue time, Wq =	1.88		
	Av. system time, Ws =	12.97	٧.	
	-			
	Av. facility utilization =	0.97		
	Percent idleness (%) =	3.39		
	Maximum queue length=	2		
(S)	Av. queue length, Lq =	0.17		
	Av. nbr in system, Ls =	1.14		
	Av. queue time, Wq =	2.00	•	
	Av. system time, Ws =	13.12		
util	ization:	,		
1	rean = 96+.96+.97+.96	+.97		
	= .964			
57	der. = .0311			
			,	
1				

Set 16.6a

W1 =	14 = 4-67 (time units)
Wz=	$\frac{10}{4} = 2.5$
W3 =	$\frac{11}{3} = 3.67$
W4 =	$\frac{6}{3}$ = 2
W5-=	15 = 3.75°
	4.67+2.5+3.67+2+3.75

$$\overline{W} = \frac{4.67 + 2.5 + 3.67 + 2 + 3.75}{5}$$
= 3.32 time units

Dis-card observations during the transient period (0, 100)

$$W_1 = \frac{12 + 30 + 10 + 14 + 16}{5} = 16.4$$
 time units

$$W_2 = \frac{15 + 17 + 20 + 2?}{4} = 18.5$$

$$W_3 = \frac{10 + 20 + 30 + 15 + 25 + 31}{6} = 21.83$$

$$W_4 = \frac{15+17+20+14+13}{5} = 15.8$$

$$W_5 = \frac{25 + 30 + 15}{3} = 23.33$$

$$\bar{W} = 19.19$$
 $S = 3.3$

Confidence interval

$$\overline{W} \pm \frac{5}{0.25, 4 \sqrt{n}}$$
= 19.17 ± 2.776 $\frac{3.3}{\sqrt{5}}$

15.07 ≤ µ ≤ 23.27

Batch	a _i -	bi	y.	
1	6	7	.869	
ż	10	7	1.369	
3	6	9	.584	
	\bar{a} = 7.33	B=7.67	y= .941	
			Sy = .397	

$3 \times 7.33 (3-1)(3 \times 7.33 - 9c)$ 3 continued
$\frac{4}{7} = \frac{3 \times 7.33}{7.67} \frac{(3-1)(3 \times 7.33 - 9c)}{3 \times 7.67 - bc}$
= 9.867 - 43.98-296
$= 2.867 - \frac{43.98 - 296}{23.01 - 66}$
95% confidence enterval:
$.941 - 2.776 \frac{.397}{\sqrt{3}} \le \mu \le .941 + 2.776 \frac{.397}{\sqrt{3}}$
1.441-2.116 V3 5/15.1417 2116 V3
.305 ≤ N ≤ 1.577
1 303 = 10 = 1

- 1 14	V -X- (2)	*	- -3-)
1/1/ 1/	1 7/	1//	1///	1/		71
_	20 30	40	50	60	70	80
-@-+ ©) 1			,		
Y//	1					
90	100		71)	me	` \	
*.,		·				Α.

(a) Start points are 15, 25, 35,70,90

Batch ac bi Je	
, , , , , , , , , , , , , , , , , , , ,	
- 1571	
2 5 10 54	
3 25 35 .94	
4 10 20 .45	
5 5 10 .54	
$\hat{a} = 10$ 17 $\hat{a} = 10$	602
Sy=	193

(4)
$$t = \frac{90}{5} = 18$$

,	
Chapter 17	
	,
Markov Chains	

1

States: Models M1, M2, and M3

	M1	M2	M3
M1	0.65	0.2	0.15
M2	0.6	0.15	0.25
M3	0.5	0.1	0.4

2

- s1: car on patrol
- s2: car responding to a call
- s3: car at call scene
- s4: apprehension made.
- s5 transport to police station

	S1	S2	S 3	S4	S 5
S1	0.4	0.6	0	0	0
S2	0.1	0.3	0.6	0	0
S 3	0.1	0	0.5	0.4	0
S4	0.4	0	0	0	0.6
S 5	1	0	0	0	0

3

States: Q0, Q1, Q2, Q3, Q4, paid, bad debt p{bad,bad}=P{paid,paid}=1 P{Q0,paid}=2000/10000, P{Q0,Q1}=3000/10000, P{Q0,Q2}=3000/10000, P{Q0,Q3}=2000/10000, P{Q1,paid}=4000/25000, P{Q1,Q2}=12000/25000, P{Q1,Q3}=6000/25000, P{Q1,Q4}=3000/25000,

Input Markov chain:

	Q0	Q1	Q2	Q3	Q4	PAID	BAD
Q0	.00	.30	.30	.20	.00	.20 .16 .15 .84 .50	.00
Q1	.00	.00	.48	.24	.12	.16	.00
Q2	.00	.00	.00	.30	.55	.15	.00
Q3	.00	.00	.00	.00	.16	.84	.00
Q4	.00	.00	.00	.00	.00	.50	.50
PAID	.00	.00	.00	.00	.00	1.00	.00
BAD	.00	.00	.00	.00	.00	.00	1.00

4

States: dialysis, cadaver transplant, living donor transplant, >1year survivors, death

	Dialysis	CTransp	LTransp	>1yrS	Death
Dialysis	0.5	0.3	0.1	0	0.1
CTransp	0.3	0	0	0.5	0.2
LTransp	0.15	0	0	0.75	0.1
>1yrS	0.05	0	0	0.9	0.05
Death	0	0	0	0	1

1	

	Input Markov chain:						
	M1	M2	МЗ	_			
M1	0.65	0.2	0.15				
M2	0.6	0.15	0.25				
M3	0.5	0.1	0.4				
	Output (2- matrix P ²	step or 4 y	rs.) trans	ition			
	M1	M2	М3				
M1	0.6175	0.175		0.2075			
M2	0.605	0.1675		0.2275			
M3	0.585	0 155		0.26			

M3 0.585 P{M1|M1}=.6175 P{M2|M2}=.1675 P{M3|M3}=.26

2

Initial probabilities:

Input Markov chain:							
S1		S2	S 3	S4	S 5		
	0.4	0.6	0	0	0		
	0.1	0.3	0.6	0	0		
	0.1	0	0.5	0.4	0		
	0.4	0	0	0	0.6		
	1	0	0	0	0		

S2 S3

S4

0

Output (2-step or 2 patrols) transition matrix P²

	S1	S2	S 3	S4	S5
S1	0.22	0.42	0.36	0	0
S2	0.13	0.15	0.48	0.24	0
S 3	0.25	0.06	0.25	0.2	0.24
S4	0.76	0.24	0	0	0
S 5	0.4	0.6	0	0	0

Absolute 2-step probabilities = $(0 \ 0 \ 1 \ 0 \ 0)\mathbf{P}^2$

Absolute	
(2-step)	
0.25	
0.06	
0.25	
0.2	
0.24	
ension, S4,	in 2 patrols}=.2
	0.25 0.06 0.25 0.2 0.24

•

Initial probabilities:

Q0	Q1	Q2	Q3	Q4	PAID	BAD
0.2	0.1	0.3	0.2	0	0	0.2

Input Markov chain:

	Q0	Q1	Q2	Q3	Q4	PAID	BAD
Q0	.00	.30			.00	0.20	.00
Q1	.00	.00	.48	.24	.12	0.16	.00
Q2	.00	.00	.00	.30	.55	0.15	.00
Q3	.00	.00	.00	.00	.16	0.84	.00
Q4	.00	.00	.00	.00	.00	0.50	.50
PAID	.00	.00	.00	.00	.00	1.00	.00
BAD	.00	.00	.00	.00	.00	0.00	1.

Output (2-step) transition matrix

	Q0	Q1	Q2	Q3	Q4	PAID	BAD
Q0	.00	.00	.14	.16	.23	0.46 0.49 0.68 0.92 0.50 1.00 0.00	0.00
Q1	.00	.00	.00	.14	.30	0.49	0.06
Q2	.00	.00	.00	.00	.05	0.68	0.28
Q3	.00	.00	.00	.00	.00	0.92	0.08
Q4	.00	.00	.00	.00	.00	0.50	0.50
PAID	.00	.00	.00	.00	.00	1.00	0.00
BAD	.00	.00	.00	.00	.00	0.00	1.00

	Absolute							
State	(2-step)	\$500,000p						
Q0	0	0						
Q1	0	0						
Q2	0.0288	14400						
Q3	0.0468	23400						
Q4	0.09124	45620						
PAID	0.52866	264330						
BAD	0.3045	152250						
		\$500,000						

\$500,000

Set 17.2a

4

(a)

Initial probabilities:

Dialy	CTrans	LTrans	>1yrS	Death
1	0	0	0	0

Input Markov chain:

	Dialy	CTrans	LTrans	>lyrS	Death
Dialy	0.5	0.3	0.1	0	0.1
CTrans	0.3	0	0	0.5	0.2
LTrans	0.15	0	0	0.75	0.1
>1yrS	0.05	0	0	0.9	0.05
Death	0	0	0	0	1

Output (2-step) transition matrix

	Dialy	1stYrC	1stYrL	>1yrS	Death
Dialy	0.355	0.15	0.05	0.225	0.22
CTrans	0.175	0.09	0.03	0.45	0.25
LTrans	0.1125	0.045	0.015	0.675	0.15
>1yrS	0.07	0.015	0.005	0.81	0.1
Death	0	0	0	0	1

	Absolute	
State	(2-step)	
Dialy	0.355	
CTrans	0.15	
LTrans	0.05	
>1yrS	0.225	
Death	0.22	

P{transplant}=.15+.05=.2

(b)

Initial probabilities:

Dialy	CTrans	LTrans	>lyrS		Death
0	0	0		1	0
Input I	Markov cl	hain:			

	Dialy	CIrans	Lirans	>lyrS	Death
Dialy	0.5	0.3	0.1	0	0.1
CTrans	0.3	0	0	0.5	0.2
LTrans	0.15	0	0	0.75	0.1
>1yrS	0.05	0	0	0.9	0.05
Death	0	0	. 0	0	1

Output (4-step) transition matrix

	Dialy	CTrans	LTrans	s >	>lyrS	Death
Dialy	0.173	7 0.07	24 0	.024	0.363	0.37
CTrans	0.112	8 0.04	25 (0.014	0.465	0.37
LTrans	0.096	7 0.03	17 0	.011	0.602	0.26
>1yrS	0.084	7 0.02	42 0	.008	0.682	0.2
Death		0	0	0	0	1

	Absolute
State	(4-step)
Dialy	0.08474
C Trans	0.02423
LTrans	0.00807
>1yrS	0.68197
Death	0.20099

P{surviving 4 more years} = .68197

continued.

1

(a) Using excelMarkovChains.xls, all the states of the chain are periodic with period 3.

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \mathbf{P}^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$
$$\mathbf{P}^3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{P}^4 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- (b) States 1, 2, and 3 are transient, State 4 is absorbing.
- (c) State 1 is transient. States 2 and 3 form a closed set. State 4 is absorbing. States 5 and 6 form a closed set.
- (d) All the states communicate and the chain is ergodic.

Set 17.4a

(b)

Population=150,000xP{1-step}

	ADSOIUTE	
State	(1-step)	Population
inner	0.106667	16000
sub	0.54	81000
rural	0.353333	53000

Population=150,000xP{2-step}

DSO	

State	(2-step)	Population
inner	0.098667	14800
sub	0.417667	62650
rural	0.483667	72550

(c)

Long-run population=150,000xπi

	Steady	
State	state	Population
inner	0.07389	2 11084
sub	0.27586	2 41379
rural	0.65024	7 97537

8

(a)

Initial probabilities:

Equal initial probabilities

Phx	Den	Chi	Ati
0.25	0.25	0.25	0.25

Input Markov chain:

	Phx	Den	Chi	Ati
Phx	0.7	0.06	0.18	0.06
Den	0	0.7	0.18	0.12
Chi	0	0.15	0.7	0.15
Atl	0.03	0.03	0.24	

(b)

-	Absolute	No. of
State	(2-step)	cars
Phx	0.1355	54
Den	0.2319	93
Chi	0.3645	146
Atl	0.2681	107
	total=	400

(c)

		No.	
	Steady	of	
State	state	cars	
Phx	0.0311	12	
Den	0.2442	98	
Chi	0.4139	166	>110
Atl	0.3108	124	>110
	total=	400	

Chicago and Atlanta will have space availability problem

(d)

	Mean return time
State	(wks)
Phx	32.17
Den	4.09
Chi	2.42
Ati	3.22

(a)

Ć

Tally of i followed by j

		1	2	3	sum
0	2	2	1	3	8
1	2	1	2	2	7
2	2	3	1	1	7
3	2	0	4	1	7

Input Markov chain:

-	0	11	2	3
0	0.25	0.25	0.125	0.375
1	0.28571	0.142857	0.285714	0.28571
2	0.28571	0.428571	0.142857	0.14286
3	0.28571	0	0.571429	0.14286

(b)

Output Results

	Steady	Mean return
State	state	time
0	0.275862	3.6249995
1	0.215779	4.6343799
2	0.270638	3.6949792
3	0.237722	4.2065916

 $\pi_0 = \textbf{0.275862}$

continued.

continued

Set 17.4a

14

(a) State=(i,j,k)=(# in yr -2,# in yr-1,# in cur yr) i, j, k = (0 or 1)

Example: (1-0-0) this yr links to (0-0-1) if a contract is secured next yr.

	0- 0-	1- 0-	0- 1-	0- 0-	1- 1-	1- 0-	0- 1-	1- 1-
	0	0	0	1	0	1	1	1
0-0-0	.1	0	0	.9	0	0	0	0
1-0-0	.2	0	0	.8	0	0	0	0
0-1-0	0	.2	0	0	0	.8	0	0
0-0-1	0	0	.2	0	0	0	.8	0
1-1-0	0	.3	0	0	0	.7	0	0
1-0-1	0	0	.3	0	0	0	.7	0
0-1-1	0	0	0	0	.3	0	0	.7
1-1-1	0	0	0	0	.5	0	0	.5

(b)

	Steady
State	state
0-0-0	.014859
1-0-0	.066865
0-1-0	.066865
0-0-1	.066865
1-1-0	.178306
1-0-1	.178306
0-1-1	.178306
1-1-1	.249629

Expected # contracts in 3 yrs =

1(.066865+.066865+.066865)+

2(.178306+.178306+.178306)+

3(.249629)= 2.01932

Expected # contracts/yr=2.01932/3=.67311

(a) States:0, 1, 2, 3, 4

15

Input Markov chain

	0	1	2	3	4
0	.5	.5	0	0	0
0 1 2 3 4	.5 0 0 0	.5 .6 0	.4 .7	0	0 0 0 .2
2	0	0	.7	0 .3 .8	0
3	0	0	0	.8	.2
4	1	0	0	0	0

(b)

Output Results Mean Steady return \$tate time 0 .144578 6.9166613 1 .180723 5.5333285 2 .240964 4.1499977 3 .361446 2.7666647 4 .072289 13.833323

Av. # stops bet. suspensions=13.83

- (c) P{losing license}=.072289
- (d) Fines paid=\$400

continued..

1	ſ

(a) Initial probabilities:

1	2	3	4	5
1	0	0	0	0

Input Markov chain:

1	2	3	4	5
0	.3333	.3333	.3333	0
.3333	0	.3333	0	.3333
.3333	.3333	0	0	.3333
.5	0	0	0	.5
0	.3333	.3333	.3333	0

	Absolute	Steady
State	(3-step)	state
1	.07407	.214286
2	.2963	.214286
3	.2963	.214286
4	.25926	.142857
5	.07407	.214286

- (b) $a_5 = .07407$
- (c) $\pi_5 = .214286$

Matrix I:

	1	2	3	4	5
1	1	0	0	0	0
2	0	1	0	0	0
3	0	0	1	0	0
4	0	· 0	0	1	0
5	0	0	0	0	1

Matrix P:

	1	2	3	4	5
1	0	.3333	.3333	.3333	0
2	.3333	0	.3333	0	.333
3	.3333	.3333	0	0	.333
4	.5	0	0	0	.5
5	0	.3333	.3333	.3333	0

Perform first passage time calculations below:

I-N

i=5	1	2	3	4
_				-
1	1	333	333	.3333
2	333	1	333	0
3	333	333	1	0
4	5	0	0	1
				antimusad

	inv(I-N)			
	1	2	3	4
1	2	1	1	.6667
2	1	1.625	.875	.3333
3	1	.875	1.625	.3333
4	1	.5	.5	1.3333
	3.5			~~~~

Mu

	•
1	4.6666
2	3.8333
3	3.8333
4	3.3333

$\mu_{15} = 4.6666$	μ_{15}	=	4.	66	56	6
---------------------	------------	---	----	----	----	---

Matrix I:

	1	2	3	4	5
1	1	0	0	0	0
2	0	1	0	0	0
3	0	0	1	0	0
4	0	0	0	1	0
5	0	0	0	0	1

Matrix P:

_	1	2	3	4	5
1	0	.3333	.3333	.3333	0
2	.3333	0	.3333	0	.333
3	.25	.25	0	.25	.25
4	.3333	0	.3333	0	.333
5	0	.3333	.3333	.3333	0

Perform first passage time calculations below:

I-N

i=5	1	2	3	4
1	1	333	333	3333
2	333	' 1	333	0
3	25	25	1	25
4	333	0	333	1

inv(I-N)

	inv(I-N)				Mu
	1	2	3	5	5
1	2	1	1.3333	5.3333	5.3333
2	1	1.6	1.0667	4.2666	4.2666
3	1	.8	1.8667	4.4666	4.4666
4	1	.6	1.0667	4.2666	4.2666

 $\mu_{15} = 5.3333$

(as opposed to 4.6666 in Part (d) of Problem 1)

Set 17.5a

(a)

		1-4			5-0
1	0	0	0	0	0

Input Markov chain:

	3-2	2-3	1-4	4-1	0-5	5-0
3-2	0	.5	0	.5	0	0
2-3	.5	0	.5	0	0	0
1-4	0	.5	0	0	.5	0
4-1	.5	0	0	0	0	.5
0-5	.3	0	0	0	.7	0
5-0	.3	0	0	0	0	.7

(b)

Output (3-step) transition matrix

	3-2	2-3	1-4	4-1	0-5	5-0
3-2	.075	.375	0	.25	.125 .175 .37 0 .343	.175
2-3	.45	0	.25	0	.175	.125
1-4	.105	.325	0	.2	.37	0
4-1	.355	.075	.125	.075	0	.37
0-5	.297	.105	.075	.105	.343	.075
5-0	.297	.105	.075	.105	0	.418

P{Joe wins in 3 tosses}= $P{3-2\rightarrow0-5}=.125$ P{Jim wins in 3 tosses}= $P{3-2\rightarrow5-0}=.175$

(c)

Output Results							
State	Absolute (3-step)	Steady state	Mean return time				
3-2	.075	.257143	3.8888891				
2-3	.375	.171429	5.8333335				
1-4	0	.085714	11.666665				
4-1	.25	.128571	7.7777801				
0-5	.125	.142857	7.0000019				
5-0	.175	.214286	4.6666665				

 $P\{\text{game ends in Jim's favor}\}=\pi_{5-0}=.214$ $P\{\text{game ends in Joe's favor}\}=\pi_{5-0}=.143$

4		
	-	,
	-	
7		

Matrix I:

(d)

	1	2	3	4	5	6
1	1 0 0 0 0	0	0	0	0 0 0 0 1	0
2	0	. 1	0	0	0	0
3	0	0	1	0	0	0
4	0	0	0.	1	0	0
5	0	0	0	0	1	0
6	0	0	0	0	0	1

Matrix P:

	3-2	2-3	1-4	4-1	0-5	5-0
3-2	0	.5	0	.5	0	0
2-3	.5	0	.5	0	0	0
1-4	(0 .5	0	0	.5	0
4-1		5 0	0	0	0	.5
0-5		3 0	0	0	.7	0
5-0		3 0	0	0	0	.7

i=0-5 I-N

3-2	1 5 0 5 3	-1	0	5	0
2-3	5	1	5	0	0
1-4	0	-1	1	0	0
4-1	5	0	0	1	-1
5-0	3	0	0	0	.3

inv(I-N)

3-2		4	2	3	5
2-3		4	2	2	3.3
1-4	2	2	2	1	1.7
4-1	6	4	2	4	6.7
5-0	6	4	2	3	8.3

Mu

0-5

3-2 2-3	20 15.3	←expected number of tosses till Joe wins
1-4	8.7	, , , , , , , , , , , , , , , , , , , ,
4-1	22.7	
5-0	23.3	

i=5-0 I-N

3-2	1	-1	0	5	0
2-3	5	1	5	0	0
2-3 1-4 4-1	0	-1	1	0	-1
4-1	5	0	0	1	0
0-5	_ 3	Ω	Λ	Ω	2

continued..

Set 17.5a

	inv(I-N))			
3-2	4	2.7	1.33	2	2.2
2-3	4	4	2	2	3.3
1-4	4	3.3	2.67	2	4.4
4-1	2	1.3	.67	2	1.1
5-0	4	2.7	1.33	2	5.6

Mu

	0-5	
3-2	12.2	←expected number of
2-3	15.3	tosses till Jim wins
1-4	16.4	
4-1	7.1	
5-0	15.6	

(a)

Input Markov chain:

-	pink	red	orange	white
pink	.6	0	0	.4
red	.5	.4	.1	0
orange	.5	0	.25	.25
white	.5	0	0	.5
h)				

(b)

Initial probabilities:

pink	red	orange	white
.25	.25	.25	.25

	Absolute	Steady
State	(5-step)	state
pink	0.55555	0.555556
red	0.00256	0
orange	0.00179	0
white	0.4401	0.444445

After 5 years, 56% pink, 44% white. Red and orange will vanish. Approximately same result in the long run.

(c)

j=4(white)	pink	red	orange
pink	.4	0	0
red	5	.6	1
orange	5	. 0	.75

inv(I-N) Mu pink red orange white pink 2.5 0 2.5 red 2.36111 1.66667 .22222 4.25 orange | 1.66667 0 1.33333 3 It takes 4.25 years from red to white

(a) Input Markov chain:

	A	В	С
Α	.75	.1	.15
В	.2	.75	.05
C	.125	.125	.75

(b)

	Steady		
State	state		
Α	.394737		
В	.307018		
С	.298246		

A: 39.5%, B: 30.7%, C: 29.8%

(c)

inv(I-N)

inv(I-N)				Mu
	A	C	_	В
Α	5.71429	3.42857	Α	9.14286 8.57143
C	2.85714	5.71429	С	8.57143

	1	2	_	С
Α	5.88235	2.35294	Α	8.23529
В	4.70588	5.88235	В	1.5882

A→B: 9.14 years A→C: 8.23 years

continued.

Set 17.6a

1

$$(\mathbf{I} - \mathbf{N})^{-1} = \begin{pmatrix} 1.07 & 1.02 & .98 & 0.93 \\ 0.07 & 1.07 & 1.03 & 0.98 \\ 0 & 0 & 1.07 & 1.02 \\ 0 & 0 & 0.07 & 1.07 \end{pmatrix}$$

$$(\mathbf{I} - \mathbf{N})^{-1} \mathbf{A} = \begin{pmatrix} .16 & .84 \\ .12 & .88 \\ .08 & .92 \\ .04 & .96 \end{pmatrix}$$

Labor cost={\$20×[1.07(30/60)+.98(20/60)] + \$18[1.02(10/60)+.93(10/600]]}/(.84) =\$27.48

2

(a)

States: 1wk, 2wk, 3wk, Library

Matrix P:

	1_	2	3	lib
1	0	0.3	0	0.7
2	0	0	0.1	0.9
3	0	0	0	1
lib	0	0	0	11

(b)

	inv	(I-N)		Mu	
	1	2	3		lib
1	1	0.3	.03	1	1.33
2	0	1	.01	2	1.1
3	0	0	1	3	1

I keep the book 1.33 wks on the average.

(a) Matrix P:

3

	1	2	3	4	5	6	0	
1	0	.4	0	0	0	0	.6	
2	.6	0	.4	0	0	0	0	
3	0	.6	0	.4	0	0	0	
4	0	0	.6	0	.4	0	0	
5	0	0	0	.6	0	.4	0	
6	0	0	0	0	0	1	0	
0	0	0	0	0	0	0	1	

inv(I-N)

	1	2	3	4	5
1	1.5865	0.9774	0.5714	0.3008	0.1203
2	1.4662	2.4436	1.4286	0.7519	0.3008
3	1.2857	2.1429	2.7143	1.4286	0.5714
4	1.0150	1.6917	2.1429	2.4436	0.9774
5	0.6090	1.0150	1.2857	1.4662	1.5865

MU P{i to j}
Absorption 6

	Ansorbtion	_		U
1	3.556391	1	0.048	0.952
2	6.390977	2	0.12	0.88
3	8.142857	3	0.229	0.771
4	8.270677	4	0.391	0.609
5	5.962406	5	0.635	0.365

- (b) Average # of bets to termination =8.14286
- (c) P{win double}=..229, P{lose all}=.771

(a) Matrix P:

1

1 2 3 4 5(D) M	
1 0.5 0.5 0 0 0	0
2 0 0.5 0.5 0 0	0
3 0 0 0.2 0.5 0	0.3
4 0 0 0 0.5 0.5	0
5(D) 0 0 0 0 1	0
M 0 0 0 0	1

(b)

	inv	(I-N)				Mu
	1	2	3	4		absorption
1	2	2	1.25	1.25	1	6.5
2	0	2	1.25	1.25	2	4.5
3	0	0	1.25	1.25	3	2.5
4	0	0	0	2	4	2
~~~	- 00	a at.	ident - 4	5 E	-	

Years as a student = 6.5 years

continued.

(c)			******	***************************************		***************************************	·			
		P{i to	i}=in	v(I-N)	Α .					ĺ
		D		M	<del></del>					ĺ
1	0	.625		0.375						
2	1	.625	< 0.00 × 0.000	0.375	744-1-1777-17					
3	0	.625		0.375						
4	L	1		0						
ŧ	{Ma	ster}=	=.37	<b>'</b> 5						
(d)										
Ex		ed pay								
	3	\$15,00	00(5:	×.625-	+3×.3	75)={	63,7	50		
										_
									- 5	
(a) S	State	s:55,	56.	, 62	2. aui	t				_
		rix P	,	,	-, <b>-1</b>	•				
	55	56	57	58	59	60	61	62	Q	
55	0	.9	0	0	0	0	0	0	.1	
56	0	0	.89	0	0	0	0	0	.11	
57	0	0	0	.88	0	0	0	0	.12	
58	0	0	0	0	.87	0	0	0	.13	
59	0	0	0	0	0	.86	0	0	.14	
60	0	0	0	0	0	0	.85	0	.15	
61	0	0	0	0	0	0	0	1	0	
62	0	0	0	0	0	0	0	1	0	
Q	0	0	0	0	0	0	0	0	1	
(b)	in.	/1 AIN								
	55	v(I-N) 5 56	<u>.</u>	57	E0	50		20	61	
55	A			.8	<u>58</u> .7	.61		30 53	61 .448	
56	•			.89	.78	.68		59	.440	3
57				1	.88	.77		36	.56	1
58				Ò	1	.87		75	.636	- 1
59	0	) (	)	0	0	1		36	.731	1
60	0	) (	)	0	0	0		1	.85	
61		0	)	0	0	0		0	1	_
Μι		P{i to								
62		6			Q					
	.99		.448		.55					
1	.44		.498		.50					
	.86 . <b>25</b>		.56		.4					
	.59		.636 .731		.36					
	.85		.73		.26 1.					
'	1		.00		. •	0				
P{reti		62}=.4				لــّــا				
-		-								- 1

- (c)  $P{\text{quit at } 57}=.44$
- (d) P{off payroll}=3.25 years

(a)							<u>6</u>
	Mat	rix P					
	Q0	Q1	Q2	Q3	Q4	PAID	BAD
Q0	0	.3	.3	.2	0	.2	0
Q1	0	0	.48	.24	.12	.16	0
Q2	0	0	0	.3	.55	.15	0
Q3	0	0	0	0	.16	.84	0
Q4	0	0	0	0	0	.5	.5
PAID	0	0	0	0	0	1	0
BAD	٥	0	0	0	0	0	1
	inv	(I-N)					Mu

	(					
	Q0	Q1	Q2	Q3	Q4	
Q0	1	.3	.44	.41	.35	2.49
Q1	0	1	.48	.38	.45	2.31
Q2	0	0	1	.3	.6	1.9
Q3	0	0	0	1	.16	1.16
Q4	0	0	0	0	1	1

Expected # qrtrs till absorption= 2.49

(	b)	_
	P{i to j	}
	PAID	BAD
	.83	.17
	.78	.22
	.7	.3
	.92	.08
	.5	.5
P	{Q0→t	ad = .17
ъ	COO T	nation o

 $P{Q0 \rightarrow bad}=.17$  $P{Q0 \rightarrow Paid}=.83$ 

(c)

	****
Q0	2.49
Q1	2.31
Q2	1.9
Q3	1.16
Q4	1

Mu

Nbr. of qrtrs till settled = 1.9

continued...

	(a) State (i-j)=(Sets won by Andre-Sets won by John)  Matrix P:														
	0-0	0-1	0-2	1-0	1-1	1-2	2-0	2-1	2-2	2-3	3-0	0-3	1-3	3-1	3-2
0-0	0	.4	0	.6	0	0	0	0	0	0	0	0	0	0	0
0-1	0	0	.4	0	.6	0	0	0	0	0	0	0	0	0	0
0-2	0	0	0	0	0	.6	0	0	0	0	0	.4	0	0	0
1-0	0	0	0	0	.4	0	.6	0	0	0	0	0	0	0	0
1-1	0	0	0	0	0	.4	0	.6	0	0	0	0	0	0	0
1-2	0	0	0	0	0	0	0	0	.6	0	0	0	.4	0	0
2-0	0	0	0	0	0	0	0	.4	0	0	.6	0	0	0	0
2-1	0	0	0	0	0	0	0	0	.4	0	0	0	0	.6	0
2-2	0	0	0	0	0	0	0	0	0	.4	0	0	0	0	.6
2-3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
3-0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0-3	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1-3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
3-1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(b)															
inv(															
_	0-0		0-1	0-2		I-O	1-1	***************************************	-2	2-0	2-	1	2-2	<del></del>	
0-	1	1	.4		.16	.6		.48	.3		.4	.4	.35		
0-	ŧ	0	1		.4	0		.6	.5		0	.4	.43	3	
0-	1	0	0		1	0		0	.6		0	0	.36	1	
1-	i	0	0		0	1		.4	.2		.6	.5	.29	)	
1-		0	0		0	0		1	.4		0	.6	.48	3	
1-		0	0		0	0		0	1		0	0	.€	- 1	
2-	1	0	0		0	0		0	0		1	.4	.16	3	
2-		0	0		0	0		0	0		0	1	.4	1	
2-	2	0	0		0	0	· h	0	0	<del></del>	0	0	1		
					V8339	78974800000			(i to j)		200000000000000000000000000000000000000				
	MU			2-3		-0	0-3		-3	3-1	3-		P{A}	P{.	
0-0	1	1.07	0-0		.1	.22	5	06	.12		26	.21	.6		.32
0-1	ł	3.27	0-1		.2	0		16	.19		22	.26	.4		.52
0-2	1	1.96	0-2		.1	0		.4	.24		0	.22	.2:		.78
1-0	i	2.93	1-0		.1	.36		0	.06		29	.17	.82		.18
1-1		2.48	1-1		.2	0		0	.16		36	.29	.6		.35
1-2	1	1.6	1-2		.2	0		0	.4		0	.36	.30	6	.64
2-0	1	.56	2-0		.1	.6		0	0	Appropriate Comments	24	.1	.94		.06

Average # of sets till end of match= 4.07

1.4

2-1

Probability Andre will win = sum of  $(P_{3-0}+P_{3-1}+P_{3-2})$  given 0-0 start= .69

.2

2-1

0

0

0

.6

0

.24

.84

.6

.16

.4

0

0

⁽c)P{Andre wins | current score 1-2}=.36.

⁽d) The average number of sets till termination is 1.6. In **ONE** set the termination score can be 1-3 (J's favor), or in **TWO** sets it can be 2-3 (J's favor) or 3-2 (A's favor). The average number of sets to termination is thus more than 1 and less then 2 (= 1.6).

(a)

8

#### Matrix P:

1	2	3	4	F
.2	.8	0	0	0
0	.22	.78	0	0
0	0	.25	.75	0
0	0	0	.3	.7
0	0	0	0	1

(b)

	inv(l-	N)				Mu
,	1	2	3	4		F
1	1.25	1.282	1.333	1.429	1	5.29
2	0	1.282	1.333	1.429	2	4.04
3	0	0	1.333	1.429	3	2.76
4	0	0	0	1 429	4	1 43

(c) To be able to take Cal II, the student must finish in 16 weeks (4 transitions) or less. Average number of transitions needed = 5.29. Hence, an average student will not be able to finish Cal I on time.

(d) No!

(a)

States: 0, 1, 2, 3, 4, 5, promotion

Matrix	P:
--------	----

	0	1	2	3	4	5	Р
0	.2	.7	.1	0	0	0	0
1	0	.2	.7	.1	0	0	0
2	0	0	.2	.7	.1	0	0
3	0	0	0	.2	.7	.1	0
4	0	0	0	0	.2	.7	.1
5	0	0	0	0	0	0	1
Р	0	0	0	0	0	0	1

(b) inv(I-N)

	1110/1-	14/						wu
	0	1	2	3	4	5	_	Р
0	1.25	1.094	1.113	1.11	1.1	.89	0	6.57
1	0	1.25	1.094	1.11	1.1	.89	1	5.46
2 3	0	0	1.25	1.09	1.1	.89	2	4.35
3	0	0	0	1.25	1.1	.89	3	3.23
4	0	0	0	0	1.3	.88	4	2.13
5	0	0	0	0	0	1	5	1

It takes 6.57 on the averages to be promoted.

(a)

10

#### Matrix P:

	0	1	2	3	D
0	.5 .4	.5	0	0	0
0 1 2 3 D	.4	0	.6	0	0
2	.3	0	0	.7	0
3	.4 .3 .2	0	0	0	.8
D	0	0	0	0	1

2

3

States: 0, 1, 2, 3, Delete

inv(I-N) 0

Mu D 1 12 1 9.96

0	5.952	2.976	1.786	1.25	0	12
1	3.952	2.976	1.786	1.25	1	9.96
2	2.619	1.31	1.786	1.25	2	6.96
3	1.19	.595	.357	1.25	3	3.39

(b)

A new customer stays 12 years on the list (c) 6.96 years

(a)

9

11

states: 108, 109, 110, 111, 112, 107,113

	108	109	110	111	112	107	113
108	.33	.33	0	0	0	.33	0
109	.33	.33	.33	0	0	0	0
110	0	.33	.33	.33	0	0	0
111	0	0	.33	.33	.333	0	0
112	0	0	0	.33	.333	0	.33
107	0	0	0	0	0	1	0
113	0	0	0	0	0	0	1

(b)

k#..

#### inv(I-N)

	108	109	110	111	112
108	2.5	2	1.5	1	.5
109	2	4	3	2	1
110	1.5	3	4.5	3	1.5
111	1	2	3	4	2
112	.5	1	1.5	2	2.5

continued..

## **Set 17.6a**

	MU	P{i to j}			
	absorb	107	113		
108	7.5	108	.83	.17	
109	12	109	.67	.33	
110	13.5	110	.5	.5	
111	12	111	.33	.67	
112	7.5	112	.17	.83	

The last two columns (low=107, high=113) provide the answer as a function of the current voltage. For example, if current voltage is 109, P{low}=.67, P{high}=.33

(c) Setting current voltage at 110 guarantees an average time to failure of 13.5(15)= 202.5 minutes.

12

	Dialysis	1stYrC	1stYrL	>1yrS	Death
Dialysis	.5	.3	.1	0	.1
1stYrC	.3	0	0	.5	.2
1stYrL	.15	0	0	.75	.1
>1yrS	.05	0	0	.9	.05
Death	0	0	0	0	1

	inv(I-N)			Mu
	Dialysis	1stYrC	>1yrS 1stYrl	_ death
	3.5398	1.0619	7.96 .35	4 12.92
1stYrC	1.9469	1.5841	9.38 .194	7 13.11
1stYrL	1.8584	.5575	11.71.185	8 15.28
>1yrS	1.7699	.531	<b>14</b> .17	7 16.46

- (a) # years on dialysis=3.54 years.
- (b) Longevity = 12.92 years.
- (c) Life expectancy = 16.46 years
- (d) 14 years.
- (e) >1yrSurvivor has the highest longevity (= 16.46 years) and the least number of years on dialysis (= 1.7699 years).



17,671	3 <i>C</i>	<del>-p-charas</del>	— > ·	
(a)	<u>07</u>	=	3x +1	= 0
	eX.			
			<del></del>	

x = ± 1-1/3

The necessary condition yields imaginary roots. The problem has no stationary points.

(b) 
$$\frac{\partial f}{\partial x} = 4x^3 + 2x = 0$$

$$X = 0$$
,  $X = \pm \sqrt{-1/2}$ 

For X=0

$$\frac{\partial^2 f}{\partial x^2} = 12x^2 + 2 = 2 > 0 \Rightarrow min$$

(c) 
$$\frac{\partial f}{\partial x} = 16x^3 - 2x = 0$$

$$X = 0,.353,-.353$$

$$\frac{\partial^2 f}{\partial x^2} = 48x^2 - 2$$

$$X=0: \frac{\partial^2 f}{\partial x^2} = -2 \implies max$$

$$X = -353$$
:  $\frac{\partial x}{\partial x^2} = 6 \implies min$ 

(d) 
$$f(x) = (3x-2)^2(2x-3)^2$$
  
=  $(6x^2-13x+6)^2$ 

$$\frac{\partial f}{\partial x} = 2(6x^2-13x+6)(12x-13) = 0$$

$$X = 2/3, 3/2, 13/12$$

$$\frac{\partial^2 f}{\partial x^2} = 2 \left( 216 \, \chi^2 - 468 \, \chi + 241 \right)$$

$$x = \frac{2}{3}$$
:  $\frac{\partial f}{\partial x^2} = 50 \implies min$ 

$$X = 3/2 : \frac{\partial^2 f}{\partial x^2} = 50 \implies min$$

$$x = 13/2$$
:  $\frac{\partial^2 f}{\partial x^2} = -25 \implies max$ 

(e) 
$$\frac{\partial x}{\partial x} = 30x^4 - 12x^2 = 0 \Rightarrow x = (0, \pm .63)$$

$$0x$$

$$\frac{\partial^2 f}{\partial x} = \frac{120x^3 - 24x}{2x^3 - 24x}$$

$$x = 0: \frac{\partial^2 f}{\partial x^3} = 0, \frac{\partial^2 f}{\partial x^3} = \frac{360x^2 - 24}{360x^2} \Rightarrow \inf_{x = 0}^{2} \inf_{x = 0}^{2} f_{x}$$

(a) 
$$\frac{\partial f}{\partial x} = 3x_1^2 - 3x_2 = 0$$

$$\frac{\partial f}{\partial x_2} = 3X_2^2 - 3X_1 = 0$$

$$(X_1, X_2) = (0,0) \cdot (1,1)$$

$$H = \begin{pmatrix} 6x_1 & -3 \\ -3 & 6x_2 \end{pmatrix}$$

 $(X_1, X_2) = (0, 0)$ :

principal minor determinants = (0, -9) = indefinite ⇒(0,0) is not an extreme point

 $(X_1, X_2) = (1, 1)$ :

Principal minos determinants = (6, 27) => positive definite  $\Rightarrow (1,1)$  is a minimum point.

(b) 
$$\frac{\partial f}{\partial x_i} = 4x_1 + 6 + 2x_2 x_3 = 0$$
 (1)

$$\frac{\partial f}{\partial x_2} = 2X_2 + 6 + 2X_1 X_3 = 0$$
 (2)

$$\frac{\partial f}{\partial x_3} = 2x_3 + 6 + 2x_1 x_2 = 0$$
 (3)

or 
$$(X_3 - X_2)(1 - X_1) = 0$$

Thus, 
$$x_3 = x_2$$
 or  $x_1 = 1$ 

## For X, =1:

from (1), 
$$10 + 2 \times_2 \times_3 = 0$$
 (4)

Hence, X2 = - (3+ X3). Substituting in (4), then

$$10-2x_3(3+x_3)=0$$

$$x_3^2 + 3x_3 - 5 = 0$$

$$X_2 = -4.2$$
 or  $X_2 = 1.2$ 

$$(X_1, X_2, X_3) = \begin{cases} (1, -4.2, 1.2) \\ (1, 1.2, -4.2) \end{cases}$$

$$\frac{\text{For } X_2 = X_3:}{\text{from (2), }} 2X_2 + 6 + 2X_1X_2 = 0$$

$$from (2), 2 = \frac{-3}{X_L}$$

From (1),  $2 \times 1 + 3 + 2 = 0$  [2 continue Substituting (1+x₁) = -3/x₂, then  $-\frac{3}{x_2} + \frac{1}{2} + \frac{x_2^2}{2} = 0$ or  $x_2^3 + x_2 - 6 = 0$ 

This gives the solution  $X_2 \simeq 1.65$ . (The remaining two roots are imaginary.) Thus,  $X_1 = \frac{-3}{1.65} - 1 = -2.82$  and  $(X_1, X_2, X_3) = (2.82, 1.65, 1.65)$ 

$$H = \begin{pmatrix} 4 & 2x_3 & 2x_2 \\ 2x_3 & 2 & 2x_1 \\ 2x_2 & 2x_1 & 2 \end{pmatrix}$$

X = (1, -4.2, 1.2):

Punicipal minor determinants (PMD) =  $(4, 2.24, -223) \Rightarrow indefinite$ X = (1, 1.2, -4.2):

PMD = (4, -62.56, -155.5) => indefinite

X = (-3.82, 1.65, 1.65):  $PMD = (4, 2.25, -67.4) \Rightarrow indefinite$ 

 $\frac{\partial f}{\partial x_i} = 2x_2x_3 - 4x_3 + 2x_1 - z = 0$ 

 $\frac{\partial F}{\partial x_2} = 2x_1x_3 - 2x_3 + 2x_2 - 4 = 0$ 

 $\frac{\partial f}{\partial x_3} = 2x_1 x_2 - 4x_1 - 2x_2 + 2x_3 + 4 = 0$ 

Solutions: (0,3,1), (0,1,-1), (2,1,1), (1,2,0), (2,3-1)

 $H = \begin{pmatrix} 2 & 2x_3 & 2x_2-4 \\ 2x_3 & 2 & 2x_1-2 \\ 2x_2-4 & 2x_1-2 & 2 \end{pmatrix}$ 

PMD = (2, 0, -32) indefinite PMD (0,3,1) = (2, 0, -32) indefinite PMD (2,1,1) = (2,0,-32) indefinite PMD (1,2,0) = (2,4,8) possitive def  $\Rightarrow$  minimal pmD (2,3,-1) = (2,0,-32) indefinite The problem is equivalent to Minimize  $Z = (x_1 - x_1^2)^2 + (x_2 - x_1 - z_1)^2$ 

 $\frac{\partial z}{\partial x_i} = 2\left(x_z - x_i^z\right) \left(-2x_i\right) + 2\left(x_z - x_i - z\right) \left(-1\right) = 0$ 

 $\frac{\partial z}{\partial x_{z}} = 2(x_{1} - x_{1}^{2}) + 2(x_{2} - x_{1} - z) = 0$ 

Thus, Solve

 $2 x_1^3 - 2 x_1 x_2 + x_1 - x_2 + 2 = 0 \quad \textcircled{2}$   $x_1^2 + x_1 - 2 x_2 + 2 = 0 \quad \textcircled{2}$ 

From (2),  $X_2 = \frac{{X_1}^2 + X_1 + 2}{2}$ 

From (1), we get  $2x_1^3 - 3x_1^2 - 3x_1 + 2 = 0$ 

Solutions: (x, , x2) = (2, 4) and (-1, 1)

<u>Note</u>: The gwin method complicates a simple problem. Nevertheless the idea is interesting

From Taylor's theorem  $f(y_0+h) = f(y) + f'(y)h + \frac{f'(y_0)h^2}{2} + \frac{f''''}{2}(y_0+\theta h)h^2 + \frac{f''''}{2}(y_0+\theta h)h^2$ 

Let  $f'(y_0) = f''(y_0) = \cdots = f(y_0) = 0$ according to the assumption. Then  $f(y_0+h)-f(y_0) = f^{(n)}(y_0+\theta h)h^n$ 

Because  $f(y+\theta h)$  has the same sign as f(y), then

(1) If n is even:  $h^n$  ) and  $f(y_0+h)-f(y)$  has the same sign as  $f^{(n)}(y_0) \Longrightarrow y_0$  is maximum if  $f^{(n)}(y_0) < 0$ , and y is min  $f^{(n)}(y_0) > 0$ .

(2) of n is odd:  $f^{n}<0$  or >0, depending on whether h<0 or >0, respectively. Thus, at yo,  $f(y_0+h)-f(y_0)$  will charge sign from regative (positive) to positive (negative) depending on whether f(y)>0 (<0). Thus,  $y_0$  is an inflection point.

T		
$f(x) = 4 x^4 - x^2 +$	5	
$\frac{\partial f}{\partial x} = 16x^3 - 2x = 0$	•	- Annual Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t
Cell C3 formula: (16	0 * A3 A 3 -2 * 1	43)/(48+A3 ² 2-2)
Solution:		

(1) Initial Xo = 1 =>	X×=0
(2) Initial x = 10 =>	X*= .35355
(3) Initial x0 = -10 =>	X = - · 32327

-0.021053 0.000151 -0.021203 	ch20	lewtonRaphson		
Injust date: Type f(A3)/f (A3) in C3, where A3 represents x in #VALUEI				
A	70	Newton-R	aphson (One-Varial	ole) Method
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 Inp	ut data: Type f(A)	3)/I (A3) in C3, where	A3 représents x in f
Salution:	52			#VALUE!
Solution:	<i>A</i>			
x*=         0.00000           8 Craculations:         2 0.00000           x(k)         x(k+1)         f(x(k))/f (x(k))           10         0.100000         -0.021053         0.1210526           12         0.00150         0.000151         -0.021203           2         0.000151         0.000000         0.000150	5		0.1	
8 Cislentations: Exhibiting SURDIAL Graphs (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	S Sol			1.4
(x(k))   x(k+1)   (x(k))/f (x(k))   (x(k))/f (x(k))   (x(k))/f (x(k))   (x(k))/f (x(k))   (x(k))/f (x(k))/f (x(k))   (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (x(k))/f (		x*=	0.00000	
x(k)   x(k+1)   f(x(k))/f (x(k))   0.100000   -0.021053   0.1210526   -0.021053   0.000151   -0.021203   0.000151   0.000000   0.0001506	G Cla	léulations:	200	ama etrorime
13	98	0.60	x(k+1)	f(x(k))/f '(x(k))
0.000151 0.00000 0.0001500	101	0.100000	-0.021053	0.1210526
	100	-0.021053	0.000151	-0.0212039
0.000000 0.000000 -5.49757E-	12	0.000151		0.00015089
	122	0.000000	0.000000	-5.49757E-1

Title Section	sittema in diamenta di constanti di constanti di constanti di constanti di constanti di constanti di constanti		
	SEC A	⊕ 8	C
	Newton-F	laphson (One-Varial	ole) Method
2	Input data: Type f(A	GVf (A3) in C3, where	A3 represents x in (x)
200			#VALUE!
	3 = · Δ =	0.0001	
	Initial x0=	10	
	Solution: Excelero	may result it selected x0 i	Lauses divergence) (1)
100	x*=	0.35355	
		2000	
	Clairulations:	Manage	
	x(k)	X(K+1)	Material (MIN)
	10.000000	6.669446	3.330554398
2000	6.669446	4.450466	2.218979699
	4.450466	2.973232	1.477233933
1.34	2.973232	1.991542	0.981690459
	1.991542	1.341790	0.64975121
8.6	1.341790	0.915719	0.42607095
16	0.915719	0.642400	0.273319294
	0.642400	0.476363	0.166036563
216	0.476363	0.389003	0.087360433
10	. 0,389003	0.357876	0.031127068
	0.357876	0.353630	0.004245528
200	0.353630	0.353553	7.705E-05
140			

		hson (One Varial	
2 10	put data: Type ((A3)/	f (A3) in C3, where	A3 represents x in fig
	542		#VALUEI
4.4	$\Delta = \Delta$	0.0001	Fig. 3 of the state of the con-
5	Initial x0=	-10	
65 St	ilittlon: (Ekcelenci ma	y result if detected x0	causee divisiónnos) - 🔆
	x*=	-0.35355	<i>y</i>
9 0	afculations:	10070	
g d	x(k)	x(k+1)	f(x(k))/f '(x(k))
10	-10.000000	-6.669446	-3.33055429
110	-6.669446	-4.450466	-2.21897969
12	4.450466	-2.973232	-1.47723393
131	-2.973232	-1,991542	-0.98169045
14	-1,991542	-1.341790	-0.6497512
151	-1.341790	-0.915719	-0.4260709
16	-0.915719	-0.642400	-0.27331929
12	-0.642400	-0:476363	-0.16603656
184	-0.476363	-0:389003	-0.08736043
19.	-0.389003	-0.357876	-0.03112706
201	-0.357676	-0.353630	-0.00424552
21	-0.353630	-0.353553	-7.705E-0

$$f(x,x_1) = 2x_1^2 + x_2^2 + x_3^2 + 6(x_1 + x_1 + x_3) + 2x_1 x_2 x_3$$

$$\frac{\partial f}{\partial x_1} = 4x_1 + 2x_2 x_3 + 6 = 0 \quad (=F_1)$$

$$\frac{\partial f}{\partial x_2} = 2x_1 + 2x_1 x_3 + 6 = 0 \quad (=F_2)$$

$$\frac{\partial f}{\partial x_3} = 2x_3 + 2x_1 x_2 + 6 = 0 \quad (=F_3)$$

$$\nabla F_1 = (4,2x_3,2x_2)$$

$$\nabla F_2 = (2x_3,2,2x_1)$$

$$\nabla F_3 = (2x_2,2x_1,2)$$
Thuo,
$$\begin{pmatrix} 4 & 2x_3 & 2x_2 \\ 2x_2 & 2x_1 & 2 \end{pmatrix}$$

$$(note Hat B = sold Hessian matrix)$$

$$A = \begin{pmatrix} 2x_3 & 2 & 2x_1 \\ 2x_2 & 2x_1 & 2 \end{pmatrix}$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_2 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_2 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_3 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_2 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_2 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_2 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_2 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_2 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_2 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 x_2 + 6$$

$$2x_1 + 2x_1 + 2x_1 + 6$$

$$2x_2 + 2x_1 + 2x_1 + 2x_1 + 6$$

$$2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1 + 2x_1$$

(a) 
$$\partial_c f = -46 \partial X_2$$
  
= -.046 for  $\partial X_2 = .001$ 

$$\begin{pmatrix} \partial x_1 \\ \partial x_3 \end{pmatrix} = -\int_{-\infty}^{-1} \int_{-\infty}^{\infty} \partial x_2$$

$$= \begin{pmatrix} 2.83 \\ -2.50 \end{pmatrix} \times .001$$

$$= \begin{pmatrix} .00283 \\ -.00250 \end{pmatrix}$$

$$X^{0} + \partial X = (1 - .00283, 2 + .001, 3 + .0025)$$

$$= (.99717, 2.001, 3.0025)$$

$$f(x^{\circ}+\partial x) = 57.9538$$
 $\partial_{c}f = 58 - 57.9538 = -.04618$ 
The approximation is letter.

(b) 
$$\partial x_1 = 2.83 \ \partial x_2$$
  
 $\partial x_3 = -2.5 \ \partial x_2$ 

(c) 
$$\nabla_{y} f = (6x_{2}, 10x_{1}x_{3})$$

$$\nabla_{z} f = (2x_{1} + 5x_{3}^{2})$$

$$J = \begin{pmatrix} 2x_{2} + 2 & x_{1} \\ 2x_{1} & 2x_{3} \end{pmatrix}$$

$$C = \begin{pmatrix} x_{3} \\ 2x_{1} + 2x_{2} \end{pmatrix}$$

$$A \neq x^{0} = (1, 2, 3),$$

$$J = \begin{pmatrix} 6 & 1 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 6/34 & -1/34 \\ -2/34 & 6/34 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} .353 \\ .882 \end{pmatrix}$$

$$= \begin{pmatrix} .353 \\ .882 \end{pmatrix}$$

$$= (6.316 0 \times 1)$$

$$= 16.316 0 \times 1$$
For  $\partial_{c} f = -.46$ , we have
$$16.316 0 \times 1 = -.46$$

$$0 \times 1 = -.46$$

(a) No, the necessary and sufficient conditions are the same in both methods.

(b) The Jacobian method computes
the constrained gradient of the
objective function directly. The
new method computes the
constrained objective function
from which we can compute
the constrained gradient.

$$Y = (X_{2}, X_{3}) Z = (X_{1})$$

$$\nabla f(Y) = (6X_{2}, 10X_{1}X_{3})$$

$$\nabla f(Z) = (2X_{1} + 5X_{3}^{2})$$

$$J = \begin{pmatrix} 2X_{2} + 2 & X_{1} \\ 2X_{1} & 2X_{3} \end{pmatrix}$$

$$= \begin{pmatrix} 6 & 1 \\ 2 & 6 \end{pmatrix} a_{1} X = (1, 2, 3)$$

$$C = \begin{pmatrix} X_{3} \\ 2X_{1} + 2X_{2} \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} a_{1} X = (1, 2, 3)$$

$$J = \begin{pmatrix} 6/34 & -1/34 \\ -2/34 & 6/34 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} 6/17 \\ 15/17 \end{pmatrix}$$

$$\nabla f(Z) = 47 \quad \nabla f(Y) = (12, 30)$$

$$\partial_{C} f = \begin{pmatrix} 47 - (12, 30) \begin{pmatrix} 6/17 \\ 15/17 \end{pmatrix} \partial_{X_{1}} X_{1}$$

Frem Example 20.3-1, given  $\partial X_2 = .01$ , then  $\partial X_1 = -.0283$  and  $\partial_C f = 16.316 \times (-.0283) \simeq -.46$ 

= 16.316 DX

 $Z = (X_1, X_2, ..., X_{n-1})$ VF(Y) = 2 xn  $\nabla f(z) = (2x_1, 2x_2, ..., 2x_{n-1})$  $J = \nabla g(Y) = \overrightarrow{TTx}_i = \frac{C}{x_n},$  $C = \nabla g(Z) = \left(\frac{C}{x_1}, \frac{C}{x_2}, \dots, \frac{C}{x_{n-1}}\right)$  $X_i \neq 0, i=1,2,\cdots,n$  $\nabla_{c}f = (2x_{1},...,2x_{n-1}) - 2x_{n}\left(\frac{x_{n}}{c}\right)\left(\frac{C}{x_{1}},...,\frac{C}{x_{n}}\right)$ L=1,2,..., n-1 Thus, necessary conditions are  $2x_i - \frac{2x_n^2}{x_n} = 0, i = 1, 3, ..., n-1$ The Solution of these equations yields  $X_1 = X_2 = \dots = X_n$ Hence, from the constraint X.*= VC, 1=12..., n Sufficient conditions:  $\frac{\partial f}{\partial x_{i}} = 2x_{i} - \frac{2x_{n}^{2}}{x_{i}}, i = 1, 7, ..., n-1$  $\frac{\partial_{c} f}{\partial_{c}^{2} x_{c}^{2}} = 2 + \frac{2 x_{n}^{2}}{x_{c}^{2}} = 4 \text{ at } x_{c}^{*}$ Hence,  $H = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ which is positive definite => min

Of =  $\nabla f(Y)J$  at X $=2\sqrt[n]{c} \frac{\sqrt[n]{c}}{2}=2\sqrt[n]{c^{2-n}}$ For  $\partial g=\delta$ ,  $\partial f = 2 \delta \sqrt[n]{C^{2-n}} = 2 \delta \left( C^{\frac{2-n}{n}} \right)$ 

 $Z=X_1$ ,  $Y=X_2$  $\nabla f(Z) = 10x, +2x_2$ Vf(Y) = 2x, +2x2 J = Vg(Y) = x, C = Vg(Z) = X2  $\nabla_c f = (2X_2 + 10X_1) - (2X_1 + 2X_2) \frac{1}{X_1} X_2$  $=\frac{-2}{x}(X_2^2-5X_1^2)$  $\nabla_c f = 0 \Rightarrow x_2 = \sqrt{5} x_1$ g(x)=0=> x,2= 10/15 The stationary points are (2.115, 4.729), (-2.115, -4.729) Sufficiency condition:  $\frac{\partial}{\partial z} \sqrt{f} = 10 + 2\left(\frac{X_2}{X_1^2}\right)$ Thus, both stationary points are min (a) Of= Pf(Y) Jog  $= (2x_1 + 2x_2)(\frac{1}{x}) \partial 9$ 09 = -· 01, Thus, of = -. 0647 (b) of= Vf(Y) Jag+ Vf 02  $= 14 \left(\frac{1}{2}\right) \left(-.01\right) +$ [30-14)(1)(5)(01)

 $Y = (X_2, X_3), Z = X_1$ at  $X^0 = (1, 1, 1)$   $\nabla f(Y^0) = (4X_2 + 5X_1, 20X_3)$  = (9, 20)

Set 18.2b  $\begin{array}{c|c}
\mathbf{A} & \nabla g(Y) = \begin{pmatrix} 2x_2 + 3x_3 & 3x_2 \\ 5x_1 & 2x_2 \end{pmatrix}
\end{array}$  $= \begin{pmatrix} S & 3 \\ S & 2 \end{pmatrix}$  $\nabla g(Z^\circ) = \begin{pmatrix} 1 \\ 2x_1 + 5^*x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ of = Vf(Y) Jog + Vf(Y,z) 02  $\nabla_{c} f(Y') J^{-1} = (9, 20) \begin{pmatrix} -2/5 & 3/5 \end{pmatrix}$ =(82/5, -73/5) $\nabla f(Y, ^{\circ}Z^{\circ}) = [7 - (9,20)(-35)(1)]$  $\frac{2}{3} f = (82/5, -73/5) \begin{pmatrix} 79, \\ 79, \\ 79 \end{pmatrix} + 92.80x,$ For (29, 29,) = (-.01, .02), 24, = .01  $\partial_c f = -\frac{82}{5} - \frac{1.46}{5} + 928 = .472$  $Y = (X_1, X_2) Z = (X_3, X_4)$ J= Vg(Y) = ( 1 2 ), which (b) select a new set Y and Z  $Y = (x_1, x_4), Z = (x_1, x_3)$  $| Tf(Z) = (2x_1, 2x_3)$  $\nabla f(Y) = (2x_2, 2x_4)$   $\nabla g(Y) = \begin{pmatrix} 2 & 5 \\ 2 & 6 \end{pmatrix}, J = \begin{pmatrix} 3 & -5/2 \\ -1 & 1 \end{pmatrix}$  $\nabla g(z) = \begin{pmatrix} 1 & 3 \\ 1 & 5 \end{pmatrix}$  $\nabla_{c} f = (2X_{1}, 2X_{3}) - (2X_{2}, 2X_{V}) \begin{pmatrix} 3 & -5/2 \\ -1 & 1 \end{pmatrix} X$ 

 $\begin{pmatrix} 1 & 3 \\ 1 & 5 \end{pmatrix}$ 

 $=(2x_1-x_2,2x_3+7x_2-4x_4)$ 

 $\nabla_{c} f = 0$  yields 18-7

 $2x_1 - x_2 = 0$ 

$2x_3 + 7x_2 - 4x_4 = 0$
x, + 2x2+3x3+5x4-10=0
$x_1 + 2x_2 + 5x_3 + 6x_4 - 15 = 0$
From (1), 2x, = X2
Substitution in 3 and 9 yields
$5X_1 + 3X_3 + 5X_4 = 10$
$5X_1 + 5X_3 + 6X_4 = 15$
$14X_1 + 2X_3 - 4X_4 = 0$
The solution is
$(X_1, X_5, X_3, X_4) = (\frac{-5}{74}, \frac{-10}{74}, \frac{155}{74}, \frac{60}{74})$
$H = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \Rightarrow positive definite$
Thus, the stationary point is
a minimum point.
a minimum point. For Y = (-10/74,60/74)
$\nabla f(Y') = (-10/37, 60/37)$
$\frac{\partial f}{\partial g} = \nabla f(\gamma) \vec{J}' = \begin{pmatrix} -10 \\ \overline{37} \end{pmatrix}, \frac{60}{\overline{37}} \begin{pmatrix} 3 - 5/2 \\ -1 \end{pmatrix}$ $= \begin{pmatrix} 90 & 85 \end{pmatrix}$
100 001
37, 37
?f=Vf(%)J'g
$=\left(-\frac{90}{37},\frac{85}{37}\right)\left(-\frac{01}{02}\right)=-\frac{07}{2}$
For the LP problem, 7
dep. vars = nonbasic variables  dep. vars = basic variables
$\nabla f(Y) = (c, c_1,, c_m) = C_B$
$\nabla f(Z) = (C_{m+1}, C_{n+2}, \dots, C_n)$

 $\nabla g(Y) = J = \begin{pmatrix} q_{11} & \dots & q_{1m} \\ \vdots & & \vdots \\ q_{m1} & q_{mm} \end{pmatrix} = B$   $\nabla g(Z) = \begin{pmatrix} a_{1,m+1} & \dots & a_{1m} \\ a_{m,m+1} & \dots & a_{mn} \end{pmatrix}$ continued

6 continued

7 continued  $= \left( P_{m+1}, P_{m+2}, \dots, P_n \right)$ Vef = { (cm+1, ..., cn) - $(C_1, \ldots, C_m)$   $\begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix} \times$  $\{P_{m+1},...,P_n\}$ = { c; - C, B P, 3, j= m+1, ..., n = {C, -Z, }, provided Blexists The Jacobian method cannot be applied to LP derectly without first accounting for the nonnegativity constaints. This is accomplished by using the substitution x; = w.

continued.

$$f(W) = 5 \omega_1^2 + 3 \omega_2^2$$

$$S.t. \quad g_1(W) = \omega_1^2 + 2\omega_2^2 + \omega_3^2 \quad -6 = 0$$

$$g_2(W) = 3\omega_1^2 + \omega_2^2 \quad + \omega_4^2 - 9 = 0$$

$$Y = (\omega_1, \omega_2), \quad Z = (\omega_3, \omega_4)$$

$$\nabla f(Y) = (10 \omega_1, 6 \omega_2)$$

$$\nabla f(Z) = (0, 0)$$

$$\nabla g(Y) = \begin{pmatrix} 2\omega_1 & 4\omega_2 \\ 6\omega_1 & 2\omega_1 \end{pmatrix}$$

$$\frac{1}{20\omega_1\omega_2} \begin{pmatrix} 2\omega_2 & -4\omega_2 \\ -6\omega_1 & 2\omega_2 \end{pmatrix}$$

$$\frac{1}{10} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_1 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_1 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_1 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_1 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_1} \begin{pmatrix} -1/\omega_1 & 2/\omega_1 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1/\omega_2 \end{pmatrix}$$

$$\frac{1}{2\omega_2} \begin{pmatrix} -1/\omega_1 & 2/\omega_2 \\ 3/\omega_2 & -1$$

2m+1=5

|| continued

The value of the 5th principal minor determinant = - 427 and that of the 6th principal minor determinant is 1130, following the signs of (-1) m+2 (-, +, respectively) Hence W, & is a maximum point

$$\frac{\partial}{\partial x_1} = 2x_1 - \lambda_1 - \lambda_2 = 0$$

0 2

$$\frac{\partial}{\partial X_1} = 4X_2 - 2\lambda_1 X_2 - 5\lambda_2 = 0$$

$$\frac{\partial}{\partial x_3} = 20x_3 - \lambda_1 - \lambda_2 = 0 \quad \textcircled{3}$$

$$\frac{2}{2}$$
 = - (x' + x' + x3-z) = 0 (a)

$$\frac{\partial}{\partial \lambda_2} = -(X_1 + SX_2 + X_3 - 7) = 0$$

From ( and ( ),  $X_1 = 10 X_3$ . Substitution in 4 and 5 yeldo

$$X_{2}^{2} + 11X_{3} = 5$$

6 and 7 give

$$X_2^2 - 5X_2 + 2 = 0$$

Solution:

For X, from @ and @

$$\lambda_{1}' = 38.5$$
,  $\lambda_{2}' = -67.3$ 

For X2, from @ and @

$$\lambda_1^2 = 10.2, \quad \lambda_2^2 = -1.4$$

Stationary points:

(x1, 7, 1) = (-14.4, 4.65, -1.44, 38-5, -67-3)

 $(x_2^0, \lambda_2^0) = (4.4, 44, 44, 10.2, -1.4)$ 

Both points are minima

 $L(X,\lambda) = x_1^2 + x_2^2 + x_3^2 + x_4^2$ 

 $-\lambda (X_1 + 2X_2 + 3X_3 + 5X_4 - 10)$ 

$$-\lambda_{2}(x_{1}+2x_{2}+3x_{3}+5x_{4}-15)$$

$$\frac{\partial L}{\partial x_i} = 2x_i - \lambda_i - \lambda_2 = 0$$

$$\frac{\partial L}{\partial x_2} = 2x_2 - 2\lambda_1 - 2\lambda_2 = 0$$

$$\frac{\partial L}{\partial x_3} = 2x_3 - 3\lambda, -5\lambda_2 = 0$$

$$\frac{\partial L}{\partial x_0} = 2x_4 - 5\lambda_1 - 6\lambda_2 = 0$$

$$\frac{\partial L}{\partial \lambda} = -(X_1 + 2X_2 + 3X_3 + 5X_4 - 10) = 0$$

$$\frac{\partial L}{\partial \lambda_1} = -(x_1 + 2x_2 + 5x_3 + 6x_4 - 15) = 0$$

Solution:

$$(X, \lambda) = (\frac{-5}{74}, \frac{-10}{74}, \frac{60}{74}, \frac{-90}{37}, \frac{85}{37})$$

He values of 2° are the same as the sensitivity coefficients obtained in Problem 20.26-6.

By definition

If the right-hand side of g(x) ≥0 is changed to 29 20, the constraints become more restrictive. This means that the value of f(x) can never improve. Thus,

$$\frac{\partial f}{\partial g} \le 0$$
 or  $\lambda \le 0$ 

Replace g(x) = 0 with

$$-g(x) \leq 0$$

Thus,

$$\angle(x,\lambda_1,\lambda_2)=f(x)-\lambda_1(g(x)+S_1^2)$$

$$-\lambda_{2}(-g(x)+S_{2}^{2})$$

The K-T conditions are then given by,

$$\lambda_1 \geq 0, \quad \lambda_2 \geq 0$$

$$\frac{\partial L}{\partial x} = \nabla f(x) - (1, -\lambda_2) \nabla g(x) = 0$$
 ©

$$\frac{\partial L}{\partial S_2} = -2 \lambda_2 S_2 = 0 \qquad \qquad \textcircled{4}$$

$$\frac{\partial \lambda_{i}}{\partial L} = g(X) + S_{i}^{2} = 0$$

$$\frac{\partial L}{\partial \lambda_2} = -g(x) + S_2^2 = 0 \qquad \qquad \boxed{6}$$

Because 
$$S_1^2$$
,  $S_2^2 \ge 0$ , then  $S_2^2 = S_2^2 = 0$ 

as should be expected. This means that conditions 3 and 4 are trivial and conditions (5) and 6 reduce to g(X)=0.

Let 
$$\lambda = \lambda, -\lambda_2$$

Because 1,, 2, ≥0, 2 is unrestricted in Sign.

The K-T conditions become

(1) I unrestricted in sign

(ii) 
$$\nabla f(x) - \lambda \nabla g(x) = 0$$

(iii) 
$$g(x) = 0$$

(a) 
$$\max_{x \in X_1} f(x) = x_1^3 - x_2^2 + x_1 x_3^2$$
  
s.t.

$$X_1 + X_2^2 + X_3 = 5$$

$$-5x_1^2 + x_2^2 + x_3 \le -2$$

$$-X_2 \leq 0$$

$$L(X,\lambda) = f(X) - \lambda, (X_1 + X_2^2 + X_3 - S)$$

$$-\lambda_{2}(-5X_{1}^{2}+X_{2}^{2}+X_{3}+S_{1}^{2}+2)$$

$$-\lambda_{3}(-x_{1}+5_{2}^{2})$$

$$-\lambda 4(-x_2+5_3^2)$$

$$-\lambda_5(-X_3+S_4^2)$$

3 1 The K-T conditions are

$$@\lambda_2,\lambda_3,\lambda_4,\lambda_{\Gamma} \geq 0$$

$$\textcircled{4}$$
  $\textcircled{3} (3x_1^2 + x_3^2) - 2x_2, 2x_1x_3)$ 

$$-(\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{6},\lambda_{5}) \left( \begin{array}{cccc} 1 & 2 & x_{2} & 1 \\ -10x_{1} & 2 & x_{2} & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

From (5) and (6), 
$$S_1^2 + S_2^2 = 0$$
 ( $\lambda_2, \lambda_3, \lambda_4, \lambda_5$ )  $\begin{pmatrix} -5X_1^4 X_2^2 + X_3 + 2 \\ -X_1 \\ -X_2 \end{pmatrix} = 0$ 

Recause  $S_1^2$ ,  $S_2^2 \ge 0$ , Hen

g(x) = 0

3 continued

(b)  $max - f(x) = -x_1^4 - x_2^2 - 5x_1x_2x_3$  $X_1 - X_2^2 + X_3^3 - 10 \le 0$  $-x_1^3 - x_2^2 - 4x_2^2 + 20 \le 0$ 

O  $\lambda_1, \lambda_2 \geq 0$ 

(2) (-4x,3-5x,x3,-5x,x2)  $-(\lambda_{1},\lambda_{2})\begin{pmatrix}1&-2\chi_{2}&3\chi_{3}^{2}\\-3\chi_{1}^{2}&-2\chi_{2}&-7\chi_{3}\end{pmatrix}=(0,0)\underbrace{\partial L}_{\partial Y}=\nabla f(X)+\lambda_{1}\nabla f(X)$ 

3  $(\lambda_1, \lambda_2)$   $\begin{pmatrix} x_1 - x_2^2 + x_2^3 - 10 \\ -x_1^3 - x_2^2 + 4x_3^2 + 20 \end{pmatrix} = 0$ 

 $X_1 - X_2^2 + X_3^3 - 10 \le 0$  $-X_1^3 - X_2^2 - 4X_3^2 + 20 \leq 0$ 

Consider

 $L(X,\lambda) = f(x) - \lambda g(X)$ 

Because all the constraints are equations, the elements of a are unrestricted. However, because g(x) is a linear function, g(x) can be cither convex or concave. Thus, for 2; >0, we take g(x) as a convex function so that - Tigi(X) is concave. Similarly, if  $\lambda_i < 0$ ,  $g_i(x)$  is assumed concave in which case - 7; g. (x) is also concave. Given f(x) is concave hence L(X, 2) is concave. If g(X) is nonlinear, it cannot be both convex and Concave, a centralargument in the case of linear g(X).

maximize f(x) 5.t. g(X) >0 g_(X) =0  $g_3(x) \leq 0$ 

 $L(X, \lambda_1, \lambda_2, \lambda_3)$ 5 continued  $= f(x) - \lambda, (-g(x) + s^2)$ - 72 (3,(x))  $-\lambda_{3}(g_{3}(X)+5_{3}^{2})$ 

K-T conditions:  $D \lambda_1 \ge 0$ ,  $\lambda_2$  unrestricted,  $\lambda_3 \ge 0$ 

- 73 Vg2(X)

 $3 \frac{\partial L}{\partial s} = 2 \lambda, s, = 0$ 

 $\frac{\partial}{\partial S_2} = -2 \lambda_3 S_3 = 0$ 

@ 3L = - g (x) = 0

Sufficient conditions:

f(x) concave

g(X) concave

g (x) linear or h g (x) convex

92(X) convex



## **Set 19.1a**

		anni matemia kale	antianomet a co.	red man half to produce a com-	and the same of the same of	
	A	8 0	0			
2	Input data: Ty	pe MCTI in FT	hotomous/Gold where C3 represi	en Section S	earch	
	Δ=	0.01	(a)	ama a maga	#VALUE!	
	Minimum x =	0	Maximum x =	3	Maria Loui,	
	Solution:	firster x to select»	Dichatamous		Golden Section:	×
	χ*=	2.00443	f(x*) =	5.99912		
	Claiculations:				220701000	(vilkini)
	хL	xR	x1	х2	f(x1)	f(x2)
	0.000000	3.000000	1.110000;	1.854102	3.437694	5.56230
	1.145898	3.000000	1.854102	2.291796	5.562306	5.90273
Щ	1.854102	3.000000	2.291796	2.562306	5.902735	5.81256
26	1.854102	2.562306	2.124612	2.291796	5.958463	5.90273
4	1.854102	2.291796	2.021286	2.124612	5.992905	5.95846
	1.854102	2.124612	1.957428	2.021286	5.872283	5.99290
	1.957428	2.124612	2.021286	2.060753	5.992905	5.97974
	1.957428	2.060753	1.996894	2.021286	5.990683	5.99290
	1.996894	2.060753	2.021286	2.036361	5.992905	5.98788
	1.996894	2.036361	2.011969	2.021286	5.996010	5.99290
8	1.996894	2.021286	2.006211	2.011969	5.997930	5.99601
■.	1.996894	2.011969	2.002653	2.006211	5.999116	5.99793
▓.	1.996894	2.006211	2.000453	2.002653	5.999849	5.99911
2		. 1	Ī			

(a)

2

### Dichotomous:

	***************************************	***************************************				
7.	I A	B Dic	C hotomous/Gold	D len Section S	oàrch	
7 In	put data: Ty		where C3 repres		edical	
3.	Δ=	0.05			#VALUE!	
Control of Control	nimum x =	2	Maximum x =	4		
5 80	lution:	Enter x to selecta	Dichotomous	x2	GoldenSection:	
6.1	χ* =	3,00000	f(x*) =	64000.00000		
i la	alculations:				Pellinger	ielkoji k
	хL	хR	x1	x2	f(x1)	f(x2)
	2.000000		2.975000	3.025000		64000,000000
Ш	2.975000	3.025000	2.975000	3.025000	64000.000000	

### Golden section:

	lai.	Dic	hotomous/Gold	en Section S	earch	Summer of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat
	input data: /y Δ=		vhere C3 repres	ents x in f(x)		1486
		0.05			#VALUEI	
	minimum x =	2	Maximum x =	4		
2	Solution:	Enter w to select»	Dichetemens:		GoldenSertion I	
	x*=	3,00000	f(x*) =	annunuumun	**************************************	
	Claiculations:				100000000000000000000000000000000000000	
	ХL	xR	x1	x2	f(x1)	f(x2)
2	2 000000	4.000000	2.763932	3,236068		76.0131
ш	2.763932	3.236068	2.944272	3.05572A	5777 999827	5777 9998
Ø	2.944272	3.055728	2.986844		439204.000002	
34	2.986844	3.013156	2 996894		#################	HJJZUH ULUU

(b)

## Dichotomous:

	E3 <b>≱</b>	=C3*C	OS(03)	and the second		
∄ c	h21Dichotomou	sGoldenSection				and the same economic
	A	8	C C	- 0	. E	
		Dic	notomous/Gold	en Section S	earch	
	Input data: Ty	pe f(C3) in E3, v	where C3 repres	ems v in f(x)		
22	- Δ=	0.05	(3)		#VALUEI	**************************************
	Minimum x =	0~	Maximum x =	3.14159		
A	Solution:	Enter wito selects	Dichotomous	×	Golden Section:	
	x*=	0.86027	f(x*)=	0.56045		
	Calculations					Night State of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co
	xl_	xR	x1	x2	f(x1)	
	0.000000		1,545795	1.595795	0.038643	()(2) -0.039889
	0.000000		0.772898		0.0500#3	0.559652
	0.772898	1.595795	1.159346	1.209346	0.463668	0.427662
	0.772898	1.209346	0.966122	1.016122	0.403000 0.549235	0.535157
77	0.772898		0.869510	0.919510	0.561009	0.557416
7	0.772898		0.821204	0.871204	0.559519	0.550973
17	0.821204	0.919510	0.845357	0.895357	0.560864	0.569813
	0.821204	0.895357	0.833280	0.883280	0.560341	0.560547
	0.833260		0.839318	0.889318	0.560640	0.560219
	0.833280	0.889318	0.836299			0.560392
10	0.833280	0.886299	0.834790		0.560422	0.560472
	0.834790	0.886299	0.835544	0.885544	0.560461	0.560433
	0.834790	0.885544	0.835167	0.885167	0.560442	0.560453
111	0.835167	0.885544	0.835356	0.885356	0.560452	0.560443
	0.835157		0.835261	0.885261	0.560447	0.560448
2	0.835261	0.885356	0.835309	0.885309	0.560449	0.560445
	0.835261	0.885309			0.560448	
	0.835261	0.885285	0.835273	0.885273	0.560448	0.560447
27	0.835261	0.885273	0.835267	0.885267	0.560447	0.560447
	0.835267		0.835270		0.560447	0.560447
	0.835267	0.885270	0.835269	0.885269	0.560447	0.560447
٦.	aldon C	antina			-	

#### Golden Section

М,			hotomous/Golde		arch	Accessors on
341			where C3 represe	nta x in f(x)		100
	Δ=	0.05	(3)		#VALUE!	
	ilnimum x =	0 .	Maximum x =	3.14159		
	Solution:	Enter a to select»	Dichotomous		SoldenSection:	×
	x*=	0.84194	f(x*) =	0.56098		
	Dalculations:				San San San San San San San San San San	
	xL	xR	x1	х2	f(x1)	(02)
1	0.000000	3.141590	1.199981	1.941609	0.434844	0.703588
	0.000000	1.941609	0.741629	1.199981	0.546854	0.434844
	0.000000	1.199981	0.458352	0.741629	0.411042	0.546854
W	0.458352	1.199981	0.741629	0.916704	0.546854	0.557759
	0.741629	1.199981	0.916704	1.024906	0.557759	0.532110
	0.741629	1.024906	0.849831	0.916704	0.560982	0.557759
	0.741629	0.916704	0.809501	0.849831	0.558337	0.560982
	0.806501	0.916704	0.849831	0.875374	0:560982	0.560861
	0.808501	0.875374	0.834044	0.849831	0.560383	0.560982
	0.834044	0.875374	0.849831	0.859588	0.560982	0.561096

continued...

continued.

# (C) Dichotomous:

	. A	8	- C	D	E	F. C.
	Contractory	Dic	hotomous/Gold	en Section S	earch	
	Input data: Ty	pe f(C3) in E3.	where C3 repres	ents x in f(x)		
	Δ=	0.05	- C3 - 1		#VALUE!	
	Minimum x =	1.5	Maximum x =	2.5		
	Solution:	Enter & to select»	Dichotomous:	×	GoldenSection:	
	x*=	2,47500	f(x*) =	2.50000		
	Claiculations				e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	
	XI XI	xR	<b>4</b> '''	-0	and a transfer of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the	dominion de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la compa
	1,500000		x1 1,975000	x2	f(x1)	f(x2)
	~ <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	***************************************		2.025000	-0.154967	0.158869
	1,975000	2.500000	2.212500	2.262500	1.369735	1.661395
	2.212500	2.500000	2.331250	2.381250	2.011242	2.217450
922	2,331250	2.500000	2.390625	2.440625	2.250874	2.398285
	2.390625	2.500000	2.420313	2.470313	2.344860	2.459575
	2,420313	2.500000	2.435156	2.485156	2.384799	2.482454
	2.435156	2.500000	2.442578	2.492578	2.402939	2.491900
	2.442578	2.500000	2.446269	2.495289	2.411543	2.496119
	2,446289	2.500000	2.448145	2.498145	2.415728	2.498102
	2,448145	2.500000	2.449072	2,499072	2.417791	2.499062
	2,449072	2.500000	2.449536	2,499536	2.418815	2.499533
28	2.449536	2.500000	2.449768	2.499768	2.419325	2.499767
	2.449768	2.500000	2.449884	2.499884	2.419580	2.499884
	2,449884	2.500000	2.449942	2.499942	2.419707	2.499947
73	2.449942	2.500000	2.449971	2.499971	2.419770	2.499971
24	2.449971	2.500000	2.449986	2.499986	2.419802	2.499996
	2.449986	2.500000	2.449993	2.499993	2.419818	2.499993
	2,449993	2.500000	2.449996	2.499996	2.419826	2.499996
24	2.449996	2.500000	2.449998	2.499998	2.419830	2.499998

### Golden section:

	7000	6		the second		Control Programme
	iù.	Dic	hotomous/Gold	en Section S	earch	
	Input data: Ty	pe ((C3) in E3.1	where C3 repres	ents x in f(x)		
	Δ=	0.05			#VALUE!	
	Minimum x =	1.5	Maximum x =	2.5		
	Salution:	Enter wito select»	Dichetemeus:		GoldenSection:	X of
	x*=	2.47214	f(x*) =	2.47317		
	Claiculations				STATE OF	
33	хL	xR	x1	x2	f(x1)	f(x2)
	1.500000	2.500000	1.881966	2.118034	-0.681986	0.767511
	1.881966	2.500000	2.118034	2.263932	0.767511	1.669344
	2.118034	2.500000	2.263932	2.354102	1.669344	2.111112
	2.263932	***************************************	2.354102	2.409830	2.111112	2.313781
	2.354102		2.409830	2.444272	2.313781	2.406905
	2.409830	***************************************		2.465558	2.406905	2.451137
	2.444272		***************************************	2.478714	2.451137	2.473172
	2.465558	2.500000	2.478714	2.486844	2.473172	2.484720
					1	

## (d) Dichotomus:

No. of Control	inches in the Paris	000316433500				
	A'	E)	4.C	· D · y	6 B	File
2.5			otomous/Gold		earch	YEAR OF
2 Inpu	data: Typa	f(C3) in E3, w	here C3 represa	ents x in f(x)		17.3
31	Δ=	0.05	90		#VALUE!	
A. Mini	num x =	2 🐎 🗎	Maximum x -			
5 Solu	tion: Er	ter a to select-	Dichotomous:	ж	GoldenSection:	19.03
	+x* = ***	3.00000	(x)=	0.00062		
Clair	ulations				a Commu	
0.130	xL	xR 🌷	x1 🖫	x2	f(x1) 💱	f(x2)
	2.000000	4.000000	2.975000	3.025000	0.000625	0.000625
	2.975000	3.025000	2.975000	3.025000	0.000625	0.000625

## Golden section:

	e sa A	B				10.00
		Dic	notomous/Gold	en Section S	earch	
201	nput data: Ty		where C3 represi			-
	A=	0.05			#VALUEI	
	Minimum x =	2	Maximum x =	4		
5	Solution:	Enter w to select»	Dichotomous		GoldenSection:	. ж
	χ*=	3.00000	f(x*) =	0.00017		
7 (	Calculations					
8	xL	хR	x1	x2	- sf(x1)***	= f(x2)
9	2.000000		2.763932	3.236068	0.055728	0.055728
101	2.763932		2,944272	3.055728	0.003106	0.003106
111	2.944272			3.013156	0.000173	0.000173
12	2.986844	3.013156	2.996894	3.003106	0.000010	0.000010

Continued..

## (e) Dichotomous:

	A	8.0	0.0	Dř		
	S. A	». Dic	hotomous/Gold	en Section S	earch	
	Input data: Ty	pe ((C3) in E3.	where C3 represi	enls x in f(x)		
0	Δ=	0.05			#VALUEI	
40	Minimum x =	. 0	Maximum x =	10 All 1		
5)	Solution:	Enter wito select-	Dichotomous:	×	GoldenSection:	
	x*≒	1.97500	f(x*) =	7.99999	·	
¥.	Calculations					
	xL		4		Section 6	
	0.000000	xR 4.000000	x1	x2	f(x1)	f(x2)
	0.000000	2.025000	1,975000	2.025000	7.900000	1.975000
	0.987500		0.987500	1.037500	3.950000	4.150000
	1.481250	2.025000	1.481250	1.531250	5.925000	6.125000
	1.728125	2.025000	1.728125	1.778125	6.912500	7.112500
×	1.851563	2.025000	1.851563	1.901563	7.406250	7.606250
	1.913281	2.025000	1.913281	1.963281	7.653125	7.853125
æ	1.913261	2.025000	1.944141	1.994141	7.776563	7.976563
1/2 1/2	1.944141	2.025000	1.959570	2.009570	7.838281	1,990430
		2.009570	1.951855	2.001855	7.807422	1.996145
	1.944141	2.001855	1.947998	1.997998	7.791992	7.991992
	1.947998	2.001855	1.949927	1.999927	7.799707	7.999707
	1.949927	2.001855	1.950891	2.000891	7.803564	1.999109
2//	1.949927	2.000891	1.950409	2.000409	7.801636	1,999591
	1.949927	2.000409	1.950168	2.000168	7.800671	1.999832
	1.949927	2.000168	1.950047	2.000047	7.800189	1.999953
	1.949927	2:000047	1.949987	1.999987	7.799940	7.999948
	1.949987	2.000047	1.950017	2.000017	7.800069	1.999963
×	1.949987	2.000017	1.950002	2.000002	7.800008	1.999996
4	1.949987	2.000002	1.949995	1.999995	7.799978	7 999978
	1.949995	2.000002	1.949998	1.999998	7.799993	7.999993
	1.949998	2.000002	1.950000	2.000000	7.800001	2.000000

## Golden section:

		# = IF(C	3<=2,4*C3,4-C3)			
🖺 chi	21Dichotomou	sGoldenSection				100000000000000000000000000000000000000
	2 A T	А	6			osmer.
	-	Dic	hotomous/Golde	n Sortion S	arch	
216	oput data: Ty	pe (C3) in F3	where 🖾 represe	nte v in fly)	वाधा	
	· <u>A</u> =	0.05		usa a mangay	#VALUEI	
	linimum x =	0	Maximum x =	4	# 17 NEOEL	
5 5	olution:	Enter a to select»	Dichotomous.		GoldenSection	W.3
	x* <i>=</i>	2.00000	f(x*) =	7.97516		
9.	lalculations					(C) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S
8	y	xR	x1	x2	2 A	
	0.000000			2.472136	f(x1)	f(x2)
7	0.000000	7.00000	0.944272	2.472136 1.527864	6.111456	1.52786
	0.944272	2.472136	1.527864	1.888544	3.777088	6.11145
	1.527864				6.111456	7.55417
<b>-</b>	1.527864			2.111456	7.554175	1.88854
	1.750776			1.888544	7.003106	7.55417
-	1.888544		1.888544	1.973689	7.554175	7.89475
-	***************************************	2.111456	7,07000	2.026311	7.894755	1,97368
	1.888544	2.026311	1,941166	1.973689	7.764665	7.89475
ш.	1.941166		1.973689	1.993789	7.894758	7,97519
Ш.	1.973689	2 026311	1.993789	2.006211	7.975155	1 99378
	1.973609	2.006211	1,986111	1.993789	7.944445	7.97515

Because f(X) is strictly concave, a sufficient condition for optimality is  $\nabla f(x) = 0$ . To solve Vf(X) = 0 by the Newton Raphson method, consider Taylor's expansion about an initial X.  $\nabla f(x) = \nabla f(x^0) + H(X - x^0)$ The Heasian matrix H is independent of x because f(x) is quadratic. The given expansion is exact because higher-order derivatives au zero. Given Vf(x) = 0, we get x = xº- H-1 \(\nabla f(x)\) Because X satisfies  $\nabla F(x) = 0$ , X must be optimum regardless of the choice of initial XO Tf(X) = (4-4x,-2x, 6-2x,-4x) Let X = (5,5) => Vf(X)=(-26,-24)  $H = \begin{pmatrix} -4 & -2 \\ -2 & -4 \end{pmatrix}, H = \begin{pmatrix} -1/3 & 1/6 \\ 1/6 & -1/3 \end{pmatrix}$ Thus, the optimum is

X = (5) - (-1/3 1/6) (-26) = (1/3)

4/3) (a)  $f(X) = (X_2 - X_1^2)^2 + (1 - X_1)^2$  $\nabla f(x) = \left[ 4(x_1^3 - x_1 x_1) + 2(x_1 - 1), 2(x_2 - x_1^2) \right]$ X = (0,0)  $\nabla f(x^0) = (-2, 0)^T$  $X = (-2R, o)^T$ 

h(n)=162+42+42+1

X' = (0,0) + (-.2949)(-2,0) = (.5898,0)

(b)  $\nabla f(x) = C + 2x^{T}A$ =  $(1-10x, -6x_{2}-x_{3}, 3-6x_{1}-4x_{2}, 5-x_{1}-x_{3})$   $X^{0} = (0,0,0)^{T}$   $\nabla f(X^{0}) = (1,3,5)$  X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5) X = (1,3,5)X =

fice	x,) = e	+ x1, go	$(X_i) = X_i^2$	
	$(X_2) = (2$	(2+1)2, g	$(X_2) = X_2$	
k,	a,k	f, (a,ki)	$\mathcal{G}_{i}(q_{i}^{k_{i}})$	Var
1 2	0 .5		0 .25	t,
3	1.	1.37	1.	t,2 t,3 t,4
5	1.5 1.732	1.72	2.25 3.00	
kz	92 162	fi (a,th)	92 (9, 61)	ti. Var
1	0	1.	0 2 (-13 )	$\frac{rar}{t_z^!}$
3	.5	2.25 4.	.S 1.	t,
4	1. 1.5	6.25	1.5	t _s /
5	2. 2.5	9. 12.25	2. 2.5	16 F2
7	3.	16.	<i>3</i> .	f;
ma	ximize	z = t/-	1/./t,2+1.37	7 t,3+
		1.72	t,4 + 1-91 t	;s +
		t2+	$2.25 t_1^2 + 4$ $t_2^4 + 9 t_1^5 +$	1225 66+
		16 t ₂ 7		
Sa	light to	2	·// T	•
•	25 t,2+	$t_1 + 2.25$	t,4+3t,5 2t2+2.5t	<i>+</i>
1	$+3t_2^7$	£ 7.3 € 7 ≤ 3	262	2 ''
050	£.' < ¥'		05t2 542	
o≤t	$\frac{1}{y} \leq \frac{y}{t} + \frac{1}{t}$	y, ²	0 ≤ t2 ≤ y2+	$y_{i}^{1}$
•	i,3 ≤ ∂, 1,4 ≤	1,2 + 3,3 -43, 2,4	0 <t2 <<="" td=""><td>χ²+Υ, Υε³+Υ^γ</td></t2>	χ²+Υ, Υε³+Υ ^γ
	5, - 6,5≤	y, 101	0 \ t_2 \ \	7.4.4.7.2
	•		0 \ \ \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ર્જો. ૠું•ગેં•
t'z	+ t2+ t	3+t2+t	5+ 46+ 47	= /
b,'	'+ t,2 +	t,3+ t,4+	t,5	= /
1 2	1 i = 0	(1) 1 =	1,2,5	

OCL 13.2a
Week formulation in Problem 1, less 9
all the constraints in y. We use
o, o, and to as the starting trace Solution
mainly for simplicity and to avoid
This can be achieved by substituting out to
In the Z-culation wains
$E_i = 1 - E_i - E_i - E_i$
t' t' t' t' t' t' t' t' t' t' t' t' t'
Z 0 -1 -37 -72 -91 0 -1.25 -3 -5.25 -8 -11.25 -15 0 Z
5,0.25 1 2.25 3 0 .5 1 15 2 25 3 1 3
[ [
ti 0000011111101
2 0 -1 -37-72 -91 15 13.75 12 9.75 7 3.75 0 0 17
5,0 45 1 2,26 2 -3 -2.5 -2 -15 2 60 1
t
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tio 0 0 0 0 1 1 1 1 1 1 0 1
2 0 0 .03 .18 .29 13.8 1275 122 9.15 66 3.550 .4 17
t2 0 1 4 9 12 -12 -10 -8 -6 -4 -2 0 4 0
1 1 0 -3 -8 -11 12 10 8 6 4 2 0 -4 1
1200000111111011
$t_1' = 1$ , $t_2^7 = 1$
Optimal solution: X1 = 0, X2 = 3, Z=17
Let y=x,x,x,3. Because this is 3
a maximization problem, y >0.
$ln f = ln x_1 + ln x_2 + ln x_3$
Maximize Z = y
subject to $- \ln y + \ln x_1 + \ln x_2 + \ln x_3 = 0$ $x_1^2 + x_2 + x_3 \le 4$
$X_1^2 + X_2 + X_3 \le 4$
Which is separable.
$f_i(y) = y$ $g_i(y_i) = -\ln y$
$g_{i}(x_{i}) = \ln x_{i}, g_{i}^{2}(x_{i}) = \ln x_{2}$
$g_1'(X_1) = X_1^2,  g_2'(X_1) = X_2$
$g^3(x_3) = \ln x_3$ , $g_2^3(x_3) = x_3$
Use 05 y ≤ 7 and 0 ≤ x; ≤ 4
todelermine the breaking points; then
solve using restricted basis
•

Separability requires using the lin function to separate It products into single-variable functions. That is, y = x, x2 and y2 = x, x3. However, to ensure that ln(0) will not be encountered, we use the substitution  $W_{1} = X_{1} + 1$   $\Rightarrow$   $W_{1}, W_{2}, W_{3} > 0$ W= X3+1 Thus, x, x, = w, w2-w, -w2+1 x, x3 = w, w3 - w, -w3 +1 Let U, = w, wz, vz = w, w3. Hence, Next,  $X_1 X_2 = V_1 - W_1 - W_2 + 1$ 

 $X_1X_3 = U_2 - W_1 - W_3 + 1$ where ln(vi) = ln(wi)+ln(wz)  $ln(v_s) = ln(w_i) + ln(w_i)$ 

The problem is expressed as Maximize Z = V, + V2 - 2W, - W2 +1 Subject to

V, + V2-2 W, - W2 ≤ 9 ln(vi)-ln wi, -lnw2 =0 lin 02 - lin wi - lin w3 = 0 V1, V2, W1, W2, W3 ≥0

Let y= ex1 + x22 lny = 2x1 + X2 Maximize  $z = y + (x_3 - z)^2$ 

Subject to lny-2x,-x2=0  $X_1 + X_2 + X_3 \leq 6$ 

y, X1, X2, X3 ≥0

 $W_i = X_i + 1$ WZ=Xz+1 W3 = X3+1 Next, & = exix2 lny = X, X2 Now,  $X_1 X_2 = \omega_1 \omega_2 - \omega_1 - \omega_2 + 1$ = 70 - WI - WE +1 when In y = lnw; + lnwr

Thus,

en y= y2-w,-w2+12 lnyz=lnw,+lnwz

 $X_2^2 X_3 = (\omega_2 - 1)^2 (\omega_3 - 1)$ = wz w3+w3-2w2w3-W2+2w2+1

y = w2 w3, y = w2 w3 Then lny = 2 lnwz + ln w3 lng = lnwz + lnw3

x22x3=33+W3-24y-W2+2W2+1  $\ln y_3 = 2 \ln w_2 + \ln w_3$   $\ln y_4 = \ln w_2 + \ln w_3$ 

also, x2 x3 = w2 w3 -w3 -w2+17  $= y_3 - w_2 - w_3 + 1$   $\ln y_5 = \ln w_2 + \ln w_3$ 

Finally, X3 X4 = X3 X4-X3 X4, X4, X4 >0 Put y = x3 xy and y = x3 xy

and let  $w_{ij}^{\dagger} = 1 + X^{\dagger}$   $w_{ij}^{\dagger} = 1 + X^{\dagger}$ 

Thus, X3Xy = 78-W3-Wy+1 } 4 In /8 = ln w3 + ln w4+

$x_3x_4 = y_9 - w_3 - w_4 + 17$ (5)
$\ln y_q = \ln w_3 + \ln w_4 $ (5)
From (1) through (5), the problem
becomes:
Maximize Z = y + y + wz - zy - wz + zw, +1 + wz - wq
+ wy - wy
Subject to
ln y = y - w, - w +1
lny = lnw; + lnw
lny = 2 lnw2 + lnw3
lny = lnw2 + lnw3 } same
ln y= ln w3 + ln w4+
ln y = ln w 3 + ln w 4
W+ 14 - WE - WE 17 21 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5
W,+ y,-wz-w3+ /3-y-w4-w4 610
J. ≥0, Wi ≥0, all i and j
b = q - a - 2, i 7
b= q
$b = q$ $k = 1, i - q$ $k = 2, i$ $S = min \{b - x_{k-1}, i \times x_{k}\}$
b= q k-1, i - ak-2, i S= min {b-xk-1, i xki} It is feasible to subtract 5 from
b= q k-1, i - ak-2, i  8 = min {b- xk-1, i * xk i}  St is feasible to subtract s from xk; and add it to xk-1, i . The
S=min {b-Xk-1, i xki}  S=min {b-Xk-1, i xki}  It is feasible to subtract & from Xki and add it to Xk-1, i The net change in the value of the
S=min {b-Xk-1, i xki}  S=min {b-Xk-1, i xki}  It is feasible to subtract & from Xki and add it to Xk-1, i The net change in the value of the
S=min {b-X _{k-1} , i × ki}  S=min {b-X _{k-1} , i × ki}  It is feasible to subtract s from X _k ; and add it to X _{k-1} , i The net change in the value of the objective function is
b= a k-1, i - ak-2, i  S= min {b-xk-1, i * xk i}  It is feasible to subtract s from  Xk i and add it to Xk-1, i The  net change in the value of the  objective function is $\Delta = S\left(\int_{k-1, i}^{\infty} - \int_{k i}^{\infty}\right) > 0$
S= min {b- Xk-1, i xki}  S= min {b- Xk-1, i xki}  It is feasible to subtract s from Xki and add it to Xk-1, i The net change in the value of the objective function is $\Delta = S\left(\int_{R-1, i}^{-1} - \int_{R_i}^{-1} \right) > 0$ Because $\int_{R-1, i}^{-1} \left(\int_{R_i}^{-1} \left(\int_{R$
S= min {b-Xk-1, i xki}  S= min {b-Xk-1, i xki}  It is feasible to subtract & from Xki and add it to Xk-1, i The net change in the value of the objective function is $\Delta = S\left(\int_{k-1, i} - \int_{ki}\right) > 0$ Because $\int_{k-1, i} \left(\int_{ki} \left(minimization\right)\right)$ $\Delta < 0. Thus, adding S to X$
S=min {b-Xk-1, i xki}  S=min {b-Xk-1, i xki}  It is feasible to subtract & from  Xki and add it to Xk-1, i The  net change in the value of the  objective function is $\Delta = S\left(\int_{k-1, i}^{-1} - \int_{ki}^{-1} \right) > 0$ Because $\int_{k-1, i}^{-1} \left(\int_{ki}^{-1} \left$
S=min {b-Xk-1, i xki}  S=min {b-Xk-1, i xki}  It is feasible to subtract & from Xki and add it to Xk-1, i The net change in the value of the objective function is $\Delta = S\left(\int_{k-1, i}^{-1} - \int_{ki}^{-1} \right) > 0$ Because $\int_{k-1, i}^{-1} < \int_{ki}^{-1} (minimizator)$ $\Delta < 0. Thus, adding S to Xk-1, i leads to a smaller value of the objective function.$
S=min {b-Xk-1, i xki}  S=min {b-Xk-1, i xki}  It is feasible to subtract & from  Xki and add it to Xk-1, i The  net change in the value of the  objective function is $\Delta = S\left(\int_{k-1, i}^{-1} - \int_{ki}^{-1} \right) > 0$ Because $\int_{k-1, i}^{-1} \left(\int_{ki}^{-1} \left$

								OC.	LIZ	7.Zd		
	m	linis	niz	e Z	= X,	! +2X;	+ -2X	- + X	<b>2</b> 3	8		
	1	lyė	4 1	•		• • • •						
							K3 =	44				
		,	×, +	XZ	*- X	- 2	•	<b>≤</b> 3				
	1	>	Κ, -	- X2	' <b>+</b>	(2 )		≤ 3				
		,	۲,	X2+	, X2	`, X ₃	≥ 0					
	f,	(X,)	= X	<i>;</i> ;	9'0	<b>(,)</b> =	x,2,	g, (x,	) = <i>X</i>	١,		
	$f_i(x_i) = x_i^4$ ; $g_i(x_i) = x_i^2$ , $g_i^2(x_i) = x_i$											
			= ×	(3 _{, 5} ;	9,1	(x ₃ )	X32					
	k,	a,	f.(9)	Sp.	3'	Je,	9,2	Je.	93	D3 /4/		
	0	0	0	-	0	-	Ó	<del>~</del>	0	-		
	7	71	1	1	1	1	1	1	1	1		
ס	3	3	16	15	4	3	3		3			
٠	Ŕ3	$a_{k_3}$	If	(2)	Pes	93						
-	0	0	0		0	0	JE3					
	1	1	1		ı	}	1					
	3	3	4	- 1	3 5	4	<b>м</b> 5					
	Mi	, н Z :	= X,	,+/	'5X ₁₂	,+6.	5X13 -	+2X5	+			
			X	, 3 +	- 3X	23+	5X33	•	•			
	Suf	geci	tto									
								3+3X	+5X	3354		
						X2 -				<b>53</b>		
	-X _[]	ر	1/2	- X	/3 -	XZT	- 12			≤3		
		4	2 ≤ 4	×	;' ≤	1 ,	i=1,	3,3	= 1, 7	3		
		ز	$X_{2}^{T}$	, X ₂	>	0						
	Us	e a	am	peli	y i	nth	m	ppe				
							min					
							mun			n.		
					/					-		
1	• i.									[		

$Z = (6,3) {\binom{x_1}{x_2}} + (x_1, x_2) {\binom{-2}{-2}} {\binom{x_1}{x_2}}$	
$\mathbb{D} = \begin{pmatrix} -2 & -2 \\ -2 & -3 \end{pmatrix}$	
Principal minor determinants: -2	+2

Negative définite => Z is concave Constraints:

$$\frac{\begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}}{\begin{pmatrix} 1 \\ 2 & 3 \\ 0 & 0 \end{pmatrix}} X - \begin{pmatrix} 1 \\ 4 \\ 0 \\ 0 \end{pmatrix} \leq 0 , \quad \lambda \leq 0 \leq 0$$

	Χ	T		7	T		U		Ų	57		RH.
4		4			2		-1	O	a	)	0	6
4		6	,		3		đ	-/	0			3
;		ī	0		0		0	0	1		0	1
Z		3	0		0		0	0		٠		4
Basis	۲	X,	73	2	ر2.	и,	и,	e,	R,	5,	S,	50
۴	0	8			5	-1		0	0	•	0	9
R.	0	4	4	1	2	-1	0	(1)	0	0	0	16

Basis	r	X	X	3 7	), ) <u>.</u>	и,	u,	P.	K,	5,	3,	741
۴	0	8	10	2	5	-1	-1	0	0	0	ø	9
R,	0	4	4	1	2	-1	0	(1)		0	0	6
R.	0	u	6	1	3	0	-1	0	0	0	•	3
5,	0	1	1	O	0	0	0	0	o (	$\mathcal{O}$	O	1
52	0	z	3	0	0	0	D	0	0	0	<b>(</b>	4
r	0	4/3	0	1/3	0	-1	43	0	-5/3	0	0	4
R.	0	4/3	0	1/3	0	-1	2/3	0	-2/3	0	. 4	4
X ₂	0	2/3	(1)	1/6	1/2	0	-1/6	0	1/6	0	0	1/2
S,	0	1/3		-1/6	-1/2	0	1/6	0		(1)	ø	1/2
\$	0	0			-3/2	0	1/2	٥.	-1/2	•	0	8/2
1	0	0	-2	0	- <b>1</b>	-1	1	O	-2	0	0	3
£,	0	0	-2	0	-1	-1	-	(	-1	0	0	3
2,	0	(1)	3/2	1/4	3/4	0	- 1/4	0	1/4	0	0	3/4
S,	0	$\sim$	-1/2		-3/4	0	74	0	-1/4	0	•	44
5,	Ø	0	0	-1/2			1/2	0	-1/2	0	0	5/2
7	U	0	0	ł	2	-1	0	0	-1	-4	0	2
R,	0	0	0	١	2	-1	0	0	0	-4	0	2
×.			1	_	_	_				1	0	1

0-2 0-1-1 () 1-1 0 0

Optimum solution:

$$X_1 = 1$$
,  $\lambda_1 = 2$ ,  $M_1 = 0$ ,  $S_1 = 0$   
 $X_2 = 0$ ,  $\lambda_2 = 0$ ,  $M_2 = 3$ ,  $S_2 = 0$ 

$$Z = 4$$

Let w = - Z. Then, the problem be comes

$$W = (-1, 3, 5)X + X^{T}\begin{pmatrix} -2 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix}X$$

Subject to

$$\binom{-1}{3} = \binom{-1}{2} \times \binom{-1}{6}$$

$$\mathbb{D} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & -1 & -3 \end{pmatrix}$$

Punicipal minor determinanto = -2, 3, -7 ⇒ negative definite ⇒ w is concave

Necessary conditions:

$$\begin{bmatrix}
4 & 2 & 0 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\
2 & 4 & 2 & -1 & 2 & 0 & -1 & 0 & 0 & 0 \\
0 & 2 & 6 & -1 & 1 & 0 & 0 & -1 & 0 & 0 \\
-1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X \\
\lambda \\
S
\end{bmatrix} =
\begin{bmatrix}
-1 \\
3 \\
5 \\
-1 \\
6
\end{bmatrix}$$

 $\lambda S = 0$  UX = 0

Optimal Solution:

$$X_1 = 0$$
,  $X_2 = .4$ ,  $X_3 = .7$ 

Transformed peroblem:

Maximize  $Z = X_1 + 2X_2 + 5X_3$ Subject to

$$2x_{1} + 3x_{2} + 5x_{3} + 1.28 \neq \le 10$$

$$9x_{1}^{2} + 16x_{3}^{2} - 2^{2} = 0$$

$$7x_{1} + 5x_{2} + x_{3} \le 12.4$$

$$x_{1}, x_{2}, x_{3}, y \ge 0$$

Transformed problem:

Maximize Z= X,+ X2+ X3









Let

$$x_{ij} = \begin{cases} \text{Tons from node i to node } j, i = 1, 3, 5, j = 4, 6, 8 \\ \text{Dollars from node i to node } j, i = 2, 4, 6, 8, j = 3, 5 \end{cases}$$

y = Total revenue

The associated LP is

Maximize 
$$z = y - 10(x_{13} + x_{35} + x_{57})$$

subjectto

$$x_{13} + x_{14} = 400$$

$$x_{13} + x_{23} / 200 = x_{35} + x_{36}$$

$$x_{35} + x_{45} / 190 = x_{58}$$

continued...

## Set 20.1a

$$x_{23} + x_{24} = 100000$$

$$1.01x_{24} + 250x_{14} = x_{45}/190 + x_{46}$$

$$1.01x_{46} + 230x_{36} = x_{68}$$

$$1.01x_{68} + 240x_{58} = y$$

$$x_{13} \le 800$$

$$x_{35} \le 800$$

$$x_{ij} \ge 0, \text{ for all } i \text{ and } j$$

Optimum solution: 
$$z = \$48,240,000$$
  
 $x_{14} = 400 \text{ tons}, x_{58} = 20,100 \text{ tons}$   
 $x_{24} = \$100,000, x_{45} = \$38,190,000$ 

Trock 1: 1 = 50  Trock 3: -1   -1 = -40  Trock 3: -1   1 = 20  Trock 4: -1   -1 = -30  Trock 4: -1   -1 = -30  Trock 4: -1   -1 = -30  Trock 4: -1   -1 = -30  Trock 4: -1   -1 = -30  Trock 4: -1   -1 = -30  Trock 4: -1   -1 = -30  Trock 3: -1   1 = 30  Trock 3: -1   1 = 30  Trock 4: -1   -1 = -40  Trock 3: -1   1 = 40  Trock 3: -1   1 = 40  Trock 3: -1   1 = 40  Trock 3: -1   1 = 40  Trock 3: -1   1 = 40  Trock 4: -1   -1 = -20  Trock 3: -1   1 = 40  Trock 4: -1   -1 = -20  Trock 4: -1   -1 = -20  Trock 3: -1   1 = 40  Trock 4: -1   -1 = -20	nin Z 1 5 3 4 6  rode 1: 1
Thoole 1: 1 = 50  Thoole 2: -1	node 1: 1
rode 2: -1   -1   = 20  rode 3: -1   1   = 20  rode 4: -1   -1   = -30  rower bd: 0 30 10 10 0  pper bd: 0 40 00 00 00  Tophimum: $X_{12} = 20$ , $X_{13} = 30$ , $X_{24} = 10$ , $X_{32} = 30$ , $X_{34} = 20$ There is a sum of the following with the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	rode 3: -1
Figure 3: -1     = 20  Rode 4: -1     = -30  Rode 4: -1     = -30  Roper bd: 0 30 10 10 0  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 40 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  Roper bd: 0 10 00 00  R	node 4: -1 / / = 2 node 4: -1 -/ = -3
Toole 4:   -1	nade 4: -1 -1 = -3
There bd: 0 30 10 10 0  Apper bd: 0 40 00 00 00  There bd: 0 40 00 00 00  There bd: 0 40 00 00 00  There bd: 0 40 00 00 00  There bd: 0 40 00 00 00  There bd: 0 40 00 00 00  There bounds substituted directly on returns using the following rule:  (0, u; - l; )  (1, u; )  (1, u; )  (2, u; )  (3)  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40]  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40	
Optimum: $x_{12} = z_0$ , $x_3 = 3_0$ , $x_{24} = 1_0$ , $x_{32} = 3_0$ , $x_{34} = 2_0$ The second substituted directly on the problem of the following rule:  (0, Uij - lij)  (1, Uij)  (1, Uij)  (1, Uij)  (2, Uij - lij)  (3)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40)  (40	swer bd: 0 30 10 10 0
Take 2: Lower bounds substituted directly on returnsk using the following rule:  [(1ij, uij)] $\Rightarrow$ (0, uij - lij)  [fil] [fil] [fi-lij] [fi+lij]  [Applying this rule to the network  [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20]  [20] [40]  [20]  [20] [40]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20	pper bd: 05 40 00 00 00
Take 2: Lower bounds substituted directly on returnsk using the following rule:  [(1ij, uij)] $\Rightarrow$ (0, uij - lij)  [fil] [fil] [fi-lij] [fi+lij]  [Applying this rule to the network  [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20] [40]  [20]  [20] [40]  [20]  [20] [40]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20]  [20	Primum: X12 = 20, X, = 30, X24 = 10, X32=30, X24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z=7440
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	network using the following rule:
Applying this rule to the network we get:  [40]  (0,0) \$4 (0,0) (0,0) [-20] $\frac{x_{12}}{x_{13}} = \frac{x_{13}}{x_{24}} = \frac{x_{32}}{x_{32}} = \frac{x_{13}}{x_{34}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = x_{14$	$(l_{ii}, u_{ii}) \qquad \qquad (o, u_{ii} - l_{ij})$
Applying this rule to the network we get:  [40]  (0,0) \$4 (0,0) (0,0) [-20] $\frac{x_{12}}{x_{13}} = \frac{x_{13}}{x_{24}} = \frac{x_{32}}{x_{32}} = \frac{x_{13}}{x_{34}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{13}}{x_{24}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = \frac{x_{14}}{x_{14}} = x_{14$	$0 \longrightarrow 0 \longrightarrow 0$
Applying this rule to the network.  Let get:  [40]  [40]  [3]  [20]  [-40]  [-20] $x_{12}$ $x_{13}$ $x_{24}$ $x_{32}$ $x_{34}$ Min Z  1  1  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  2	$[f_{i}] \qquad [f_{i}] \qquad [f_{i}-I_{ij}] \qquad [f_{i}+I_{ij}]$
Je get: [40]  3  (0,0) \$4 (0,0) (0,0) [-20]  [20] $X_{12} \times X_{13} \times X_{24} \times X_{32} \times X_{34}$ Min Z 1 5 3 4 6  Mede 2 -1 1 = -40  Mede 3 -1 1 = 40  Mode 4 -1 -1 = -20  Where $X_{12} = X_{12} \times X_{13} = X_{13} + 30$ $X_{24} = X_{24} + 10 \times 3_2 = X_{34} + 10$ Ophymum: $Z = 740$ $X_{12} = X_{12} = 20$ $X_{13} = 20$ $X_{13} = 20$ $X_{24} = 20$ $X_{34} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$ $X_{32} = 20$	
$\begin{bmatrix} 40 \end{bmatrix}$ $\begin{bmatrix} 3 \\ (0, 0) \end{bmatrix} \begin{bmatrix} 4 \\ (0, 0) \end{bmatrix} \begin{bmatrix} (0, 0) \\ (0, \infty) \end{bmatrix} \begin{bmatrix} -20 \end{bmatrix}$ $\begin{bmatrix} 20 \end{bmatrix} \begin{bmatrix} -40 \end{bmatrix} \begin{bmatrix} -20 \end{bmatrix} \begin{bmatrix} -20 \end{bmatrix}$ $\begin{bmatrix} x_{12} \\ x_{13} \\ x_{2y} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3y} \end{bmatrix}$ $\begin{bmatrix} 20 \\ x_{12} \\ x_{13} \\ x_{2y} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3y} \end{bmatrix}$ $\begin{bmatrix} -20 \\ x_{3z} \\ x_{3y} \\ x_{3z} \\ x_{3y} \\ x_{3z} \\ x_{13} \\ x_{2y} \\ x_{2y} \\ x_{2y} \\ x_{3y} \end{bmatrix}$ $\begin{bmatrix} -20 \\ x_{3y} \\ x_{3y} \\ x_{3z} \\ x_{3y} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{3z} \\ x_{$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[40]
[20]	3
[20]	
[20]	(0,4)
[20] $\begin{bmatrix} -40 \end{bmatrix}$ $\begin{bmatrix} -20 \end{bmatrix}$ $X_{12}$ $X_{13}$ $X_{24}$ $X_{32}$ $X_{34}$ Min Z 1 5 3 4 6  wede 1 1	\$1 \$ \$3
[20] $\begin{bmatrix} -40 \end{bmatrix}$ $\begin{bmatrix} -20 \end{bmatrix}$ $X_{12}$ $X_{13}$ $X_{24}$ $X_{32}$ $X_{34}$ Min Z 1 5 3 4 6  wede 1 1	(0,00) (0,00)
$x_{12}$ $x_{13}$ $x_{24}$ $x_{32}$ $x_{34}$ Min Z $t$ 5 3 4 6  Wede 1 1 1 = 20  Mede 2 -1   -1 = -40  Mode 3 -1   1 = 40  Mode 4   -1   -1 = -20  Mode 4   -1   -1 = -20  Mode 4   x ₁₂ = $x_{12}$   $x_{13}$ = $x_{13}$ + 30 $x_{12}$ = $x_{12}$   $x_{13}$ = $x_{13}$ + 30 $x_{24}$ = $x_{24}$ + 10 $x_{32}$ = $x_{32}$ + 10 $x_{34}$ = $x_{34}$ Ophmum: $z = 740$ $x_{12}$ = $x_{12}$ = 20 $x_{32}$ = $x_{32}$ + 10 = 10+10=1	[20] [-40] [-20]
rade $1$ $1$ $1$ $20$ rade $2$ $-1$ $1$ $-1$ $2$ $-40$ rade $3$ $-1$ $1$ $1$ $2$ $40$ rade $4$ $-1$ $-1$ $2$ $20$ upper bd $\infty$ $10$ $\infty$ $\infty$ $\infty$ where $X_{12} = X_{12}$ $X_{13} = X_{13} + 30$ $X_{24} = X_{24} + 10$ $X_{32} = X_{3}^{2} + 10$ $X_{34} = X_{34}$ Ophmum: $Z = 740$ $X_{12} = X_{12}^{2} = 20$ $X_{32} = X_{32}^{2} + 10 = 10 + 10 = 10$	X12 X13 X24 X32 X34
mode 2 -1   -1 = -40 mode 3 -1     = 40 mode 4 -1   -1 = -20 Ipper 6d $\infty$ 10 $\infty$ $\infty$ $\infty$ where $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
rode 3 -1   1 = 40 rode 4 -1   -1 = -20 Apper bd $\infty$ 10 $\infty$ $\infty$ $\infty$ where $X_{12} = X_{12}$ $X_{13} = X_{13} + 30$ $X_{24} = X_{24} + 10$ $X_{32} = X_{32} + 10$ $X_{34} = X_{34}$ Ophmum: $Z = 740$ $X_{12} = X_{12} = 20$ $X_{32} = X_{32} + 10 = 10 + 10 = 10$	
Inside 4 $-1$ $-1 = -20$ Ipper by $0 = 0$ $0 = 0$ $0 = 0$ where $X_{12} = X_{12}$ $X_{13} = X_{13} + 30$ $X_{24} = X_{24} + 10$ $X_{32} = X_{3} + 10$ $X_{34} = X_{34}$ Ophmum: $Z = 440$ $X_{12} = X_{12} = 20$ $X_{32} = X_{32} + 10 = 10 + 10 = 10$	
Ipper bd $\infty$ 10 $\infty$ $\infty$ $\infty$ where	
$X_{12} = X_{12} \qquad X_{13} = X_{13} + 30$ $X_{24} = X_{24} + 10 \qquad X_{32} = X_{32} + 10$ $X_{34} = X_{34}$ $Ophmum: Z = 4440$ $X_{12} = X_{12} = 20 \qquad X_{32} = X_{32} + 10 = 10 + 10 = 10$	,
$X_{12} = X_{12} \qquad X_{13} = X_{13} + 30$ $X_{24} = X_{24} + 10 \qquad X_{32} = X_{32} + 10$ $X_{34} = X_{34}$ $Ophmum: Z = 4440$ $X_{12} = X_{12} = 20 \qquad X_{32} = X_{32} + 10 = 10 + 10 = 10$	where
$X_{34} = X_{34}$ Ophmum: $Z = $440$ $X_{12} = X_{12}' = 20$ $X_{32} = X_{32} + 10 = 10 + 10 = 10$	$X_{12} = X_{12}$ $X_{13} = X_{13} + 30$
Ophmum: $Z = \#440$ $x_{12} = X_{12} = 20$ $x_{32} = X_{32} + 10 = 10 + 10 = 10$	,
$x_{12} = X_{12} = 20$ $X_{32} = X_{32} + 10 = 10 + 10 = 1$	X24 = X24 + 10 X32 = X31 + 10
$x_{12} = x_{12} = 20$ $x_{32} = x_{32} + 10 = 10 + 10 = 10$	$x_{24} = x_{24} + 10  x_{32} = x_{32} + 10$ $x_{34} = x_{34}$
	X34= X34 Ophmum: Z = \$440

		:0			₈₀ 2
			_		X
-	(1)	2 20	-3	4 90	-5
-	[loo]	[05]	[-40]	[90]	[-170]
>	Dem	and: Jan	ruary = 140	• • • ₁₀	
	200	Max	R = 80	17	<u>'</u> 0
1.	160	W.F.	•	V//	77)
-	120 - 100	120	- 4 80	1///	
-	80 -///	アナブ	7 77	<del></del> /-/7	<i>( <del>                                    </del></i>
-	40-///	////	//////	//////	
'	1-/-/-	<u> </u>	<u>/-/1///</u>	1/1//	///
	J	F	, ,	۸ ۴	, pr
	X, = 20	. Line	20 at	the sta	I of
	75	Janua	my for a	termine	ation at
		Stav	t a mo	nch	
1	X23 = 20	: Kuri	200	de otas	14
	- 23	Febi	wary A	r termi	nation
	€.	at t	he star	ed) Mian	eh
	X, = 80	, . hre	80 at	Li otant	of January
-	,,,	Ar (	ermeno	clien at	I start
		7	May		1 1 april
	X45 = 9	o: Ku	e goat	of wron	t of april
		for		ation o	at the
		pta	MgN	Tay.	
			V	•	

	XI3	XIY	xis	Xzy	X25	X ₃₀	- 5,	کے دک	Sy
	130	180	220						
Jan	1	1	1				-1		= 10
Fel	1	1	1	1	/		٠	-1	= 120
mer	4	1	,	1	1	1		-1	= 80
Apr.					/	,		•	-/=17
lan	1	,				-	-/		= /0
	l			,	•		1	-1	= 20
76				,	4		•	4	



 $\begin{array}{c|cccc}
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & &$ 

Let a represent the total flow of incoming arcs at node i and be total flow of outgoing arcs at node i.

$$x_{ij'} \leq u_{ij'} \Rightarrow x_{ij'} + x_{ij'} = u_{ij'}, x_{ij'} \geq 0$$

Node i:

Node j.

$$x_{i'j} + f_{j'} = b \qquad \qquad \boxed{3}$$

Thus,  $u_{ij} - x'_{ij} - b = -f_j$ .

or

$$\chi_{ij}' + b = u_{ij} + f_j$$

Letterig

cquations (1), (2), and (4) produce the following equivalent network



Application of the transformation to the network in Figure 6-42, we get



Optimum solution is obtained by using TORA's transportation model, and is shown in bold on the arcs. This solution is translated in terms of the original network as follows:



Total coot = \$490



The spanning tree shown by heavy arcs gives a starting basic feasible solution. We compute the dual values wis i = 0,1, ..., 4 as follows:

$$\omega_0 = 0$$
 $\omega_0 - \omega_1 = 24 \implies \omega_1 = -24$ 
 $\omega_1 - \omega_2 = 1 \implies \omega_2 = -25$ 
 $\omega_0 - \omega_3 = 21 \implies \omega_3 = -21$ 
 $\omega_3 - \omega_4 = 1 \implies \omega_4 = -22$ 

Evaluation of the nonlossic arcs.

$$Z_{02} - C_{02} = \omega_0 - \omega_2 - C_{02}$$

$$= 0 - (-25) - 26 = -1$$

$$z_{04} - g_{4} = o_{-}(-22) - 24 = -2$$
  
 $z_{23} - c_{23} = -25 - (-21) - 2 = -6$ 

The given spanning tree solution is optimal.

## Transalipment Solution:

Since there are no finite upper bounds, the problem can be solved directly as a transhipment model

	1	2	3	4	B=430
٥	24	26	21 220	sy	430
1	320	(E)	М	М	B
2	M	430	2	m	В
3	æ	m	305	(Z)	B
	00+B	110 + B.	95+B	125	continued





$$W_{0} = 0$$
 $W_{1} = -24$ ,  $W_{2} = -22.5$ ,  $W_{3} = -21$ ,  $W_{4} = -22$ 
 $Z_{02} - C_{02} = 0 - (-22.5) - 26 = -3.5$ 
 $Z_{04} - C_{4} = 0 - (-22) - 24 = -2$ 
 $Z_{12} - C_{12} = -24 - (-22.5) - 1 = -2.5$ 
 $Z_{21} - C_{21} = -22.5 - (-24) - 15 = 0$ 
 $Z_{23} - C_{23} = -22.5 - (-21) - 2 = -3.5$ 

optimum.

Transolipment Solution:

	,	Z	3	4	
0	24 (100)	26	21 (330)	24	430
1	430	1	М	М	B B = 430
2	1.5	430	2	М	В
3	М	1.2	195	(25)	В
4	М	м	1.5	430	В
1	00+B	110+B	95+B	125+B	Cost = 9,620

Summary of the optimum Solution:





This solution is not basic because it does not comprise a spanning tree. To convert it into a spanning tree, substitute out arcs 0-1, 0-3, and 0-4 at upper bound-that is,

X0,=110-X10, X03=125-X30, X04=100-X40 anco X10, X30 \$ X40 are now nonbasic at zero level.



Optimim solution because all 2; -c; 50

### Optimim Solution summary:

Period	Production	Demand	Surplus
1	110	100 10	10
2	95	110	= -15
3	125	95 25	<u>&gt; 30 :</u>
4	100	125	-25

Total cost = \$10,177.50









Total cost = \$30,600

### **Set 20.1c**



#### Optimal solution: N1-N2 = 20, N1-N3 = 30, N1-N4 = 10, N2-N5 = 20, N3-N4 = 10, N3-N5 = 20, N4-N5 = 20. Maximum flow = 60 (a) AMPL: See file amplProb6.5c-10a.txt. Solver: totalCost # =SUMPRODUCT(unitCost, solution) D E Solver Minimum-Cost Capacitated Model (Example 6.5.4) N2 N3 N4 2 capacity NO 100 430 110 95 125 M1 9999 N2 9999 9999 6 N3 9999 Range Cells 9999 114 Capacity B3:E7 100 110 95 125 unitCost B10:E14 9 unitCost NI N2 N3 144 solution B17:E21 10 NO 24 26 21 netFlow H17:H21 11 M1 totalCost G22 12 112 1.5 13 N3 1.5 14 14 1.5 15 MI N3 16 solution N2 114 outFlow inFlow netFlow 17 110 MO 95 125 -7.5E-10 100 -8E-10 18 N1 10 10 10 5.1E-11 19 N2 0 Ü 0 0 -8E-11 7 8E-11 20 113 0 5 0 25 30 30 4 5E-10 21 114 -2E-10 1.7E-10 10 -8E-11 22 30 -2E-10 totalCost= 10177.5 Solver Parameters Set Target Cell: totalCost 14. Solve Equal To: O Max () Min () Yakue of: Close By Changing Cells: solution <u> 3.</u> Guess Subject to the Constraints: Options neiFlow = 0 Add solution <= Capacity solution >= 0 ⊈hange

Optimum solution:

Period 1: Produce 110, surplus 10

Period 2: Produce 95, shortage 15

period 3: Produce 125, surplus 30

Period 4: Produce 100, shortage 25

Total shortage = 15+25=40

Total surplus = 10+30=40

Cost = \$10,177.50

(c) Solver

*****	A	8	С	D	E
4	Problem	6.5e-10(c)			
	capacity	n4	n5	n6	
	n1	10	10	10	8
	n2	10	10	10	10
	n3	10	10	10	18
A COMPANSAGE AND A SECOND		16	6	14	
	unitCost	n4	n5	n6	
A	n1	5	8	4	
	n2	6	9	12	
	n3	3	1	5	
	solution	n4	n5	n6	rowSum
NAME OF TAXABLE PARTY.	n1	0	0	8	0
	n2	10	0	0	0
	n3	6	6	6	0
	colSum	0	0	0	
		totalCost	146		
	<b>F</b>	r.			
	BUNG	r Param	ieters		i kalenda ya
	Set Targe	t Celle	tota Cost	FEE	
	Equal To:		Beenverenning		
		277 77	<b>⊙</b> M ₁	1 ()	<u>Y</u> alue of:
	By Chang	ing Leis:			
	solution	***************************************			<b>3</b> .
	Subject t	o the Constra	einta:		
	grademannianum.	*******************************			***************************************
	colSum : rowSum				<u></u>
	1 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
	solution	<= capacity			

Optimum solution:

x16 = 8

x24 = 10

x34 = 6

x35 = 6

x36 = 6

Cost = \$146

continued..



$$(x_1, x_2) = \alpha_1(0,0) + \alpha_2(0,1) + \alpha_3(1,2) + \alpha_4(2,2) + \alpha_5(10/3,4/3) + \alpha_6(4,0)$$

$$\alpha_1 + \alpha_2 + \dots + \alpha_6 = 1$$
  
 $\alpha_j \ge 0, \ j = 1, 2, \dots, 6$ 





$$(X_1, X_2) = \alpha_1(0,0) + \alpha_2(10,0) + \alpha_3(20,10) + \alpha_4(20,M) + \alpha_5(0,M)$$

$$\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} = 1$$
  
 $\alpha_{j} \ge 0, j = 1, 2, ..., 5$ 



min {z; -c; } = -1060 = -60-M, corresponds to d; ai min {z; -c; } = -1050 = -50-M, corresponds to Bz A; Bi, d; entire solution (its extreme pt in (0,02)) Heration 2:



min [z,-c, ]=0, corresponds to d3

continued.

min {z, -C, } = -1050 = -50-M, correspondeto A

Thus, Bz enters Solution (its extreme point is (50,0)) Steration 3:

	Iterat Basic	alfa1	alfa2	alfa3 x3	beta1	beta2 x5	beta3
	z (max)	192 00	-148.80	0.00	-900.00	0.00	-800.00
	X5	-0.24	-0.19	0:00	0.10	1.00	0.20
	x3	1.00	1.00	1.00	0.00	0.00	0.00
	Rx10	0.24	0.19	0.00	0.90	0.00	0.80
	Basic	beta4 x7	SX8	Rx9	Rx10	Solution	
1	z (max)	-900.00	21.00	808.00	0.00	-352.00	
- !	XO	0.10	0.02	-0.24	0.90	0.56	-
	*3	0.00	0.00	1,00	0.00	1.00	
	Deta	n en	0.00	0.24	1.60	0.44	

men { Z; -C;} = -192 = -12M + 48, Corresponds to a min { z.-g. } = -900 = -9M, corresponds to B, B;

(Z,-c,) for x = 21

Iteration 4: Optimum.

Iterat Basic	alfa1	alfa2 x2	alfa3	beta1 x4	beta2 x5	beta3
z (max)	48.00	43.20	0.00	0.00	0.00	0.00
X5	-0.27	-0.21	0.00	0.00	1.00	0.11
х3	1.00	1.00	1.00	0.00	0.00	0.00
x4	0.27	0.21	0.00	1,08	0.00	0.89
	beta4	-	64,035		de estimate	
Basic	x7	sx8	Rx9	Rx10	Solution	
z (max)	0.00	1.00	1048.00	1000.00	88.00	
x5	0,00	0.02	-0.27	-0.11	0.51	
×3	0.00 0. <b>00</b>	0.02 0.00	1.00	0.00	1.00	
x4	1.00	-0.02	0.27	1.11	0.49	,

Optimum Solution: Z=88

	Variable	associated extreme print
X,=	Q, =0	(0,0) 7
X =	N0	$(12/6 \text{ a}) = 2 \times 12 \text{ a} \times 2 \times 12$

$$X_2 = \alpha_2 = 0$$
 (1/5,0)  $\Rightarrow X_1 = 0, X_2$   
 $X_3 = \alpha_3 = 1$  (0,12)

$$x_4 = \beta_1 = .4889$$
 (5,0)  
 $x_5 = \beta_2 = .5111$  (50,0)  
 $x_6 = \beta_3 = 0$  (0,10)  
 $x_6 = \beta_3 = 0$  (0,10)

$$x_7 = \beta_4 = 0$$
 (0,5)

$$D_{1} = \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix}, X_{1} = \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix}, b = \begin{pmatrix} 8 \\ q \end{pmatrix}$$

$$D_{2} = \begin{pmatrix} 1 & -5 \\ 1 & 1 \end{pmatrix}, X_{2} = \begin{pmatrix} X_{3} \\ X_{4} \end{pmatrix}, b = \begin{pmatrix} 4 \\ 10 \end{pmatrix}$$

$$X_{2} = \begin{pmatrix} A_{1} \\ A_{2} \end{pmatrix}, X_{3} = \begin{pmatrix} A_{1} \\ A_{2} \end{pmatrix}, A_{4} = \begin{pmatrix} A_{1} \\ A_{2} \end{pmatrix}$$

$$(a_{1} a_{2}) = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}, A_{4} = \begin{pmatrix} A_{1} \\ A_{2} \end{pmatrix}$$

$$(a_{1} a_{2}) = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}, A_{4} = \begin{pmatrix} A_{1} \\ A_{2} \end{pmatrix}$$

$$(a_{1} a_{2}) = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}, A_{4} = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}$$

$$(a_{1} a_{2}) = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}, A_{4} = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}$$

$$(a_{2} a_{3}) = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}, A_{4} = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}$$

$$(a_{2} a_{3}) = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}, A_{4} = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}$$

$$(a_{3} a_{3}) = \begin{pmatrix} A_{2} \\ A_{3} \end{pmatrix}, A_{3} = \begin{pmatrix} A_{3} \\ A_{3} \end{pmatrix}$$

$$(a_{3} a_{3}) = \begin{pmatrix} A_{3} \\ A_{3} \end{pmatrix}, A_{3} = \begin{pmatrix} A_{3} \\ A_{3} \end{pmatrix}$$

 $(X_1, X_2) = \alpha_2 (9/2, 0) + \alpha_3 (4, 1) + \alpha_4 (0, 2)$ = ( %202+403, 03+204)

$$(x_3, x_y) = \beta_2(4, 0) + \beta_3(9, 1) + \beta_4(0, 10)$$
$$= (4\beta_2 + 9\beta_3, \beta_3 + 10\beta_4)$$

a, az az ay BI Bz Bz By 2=0 1/2 7 6 0 20 47 0 22 2 23 6 0 16 36

«i≥0, B.: ≥0, i=1,3,3,4

TORA optimum colution:

$$\alpha_3 = 1$$
,  $\beta_3 = 1$  all other variables = 0  
Thus,

$$(X_1, X_2) = (4,1)$$
  
 $(X_3, X_4) = (9,1)$  Z=54

Subproblem j=1:

$$\frac{\text{subproblem } J=1:}{X_1 = (X_1, X_2), C_1 = (1, 3), A_1 = (5, 3)}$$

$$D = \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix}, b_1 = \begin{pmatrix} 8 \\ 9 \end{pmatrix}$$

Subproblem j=2:  $X_2 = (X_3, X_4), C_2 = (5, 2), A_2 = (4, 0)$ 

Starting solution : Use Ri, Rz, Rz as starting artificial vars.

 $X_{B} = (R_{1}, R_{2}, R_{3})^{T} = (10, 1, 1)^{T}$ B=B= I, CB = (-M,-M,-M)

Steration 1: j=1: Min w = - (5M+1)X, - (3M+3)X, -M Optimum: \$ = (4,1) W = -24M-7

j=2: Min Wz = - (4M+5) X3 - 2x4 - M Optimum: \( \hat{\chi}_{21} = (9,1), \omega_2^* = -37M-47

 $Z_{S}$ - $C_{S}$  =  $(-M, -M, -M)I\begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$ -0 = M > 0

Continued.

Thus, By associated with \$2 = (9, 1) enters  $P_{21} = \begin{pmatrix} A_2 \hat{X}_{21} \\ 0 \end{pmatrix} = \begin{pmatrix} 36 \\ 0 \\ 1 \end{pmatrix}, \hat{B}_{21} = \begin{pmatrix} 10 \\ 0 \\ 1 \end{pmatrix}$  $\theta = \min \left\{ \frac{10}{36}, -, \frac{1}{1} \right\} = \frac{10}{36}, R, \text{ leaves}$   $B_{\text{next}} = \begin{pmatrix} 1/36 & 0 & 0 \\ 0 & 1 & 0 \\ -1/36 & 0 & 1 \end{pmatrix}$ XB = (B3, R2, R3)T = Bnext (10, 1, 1)T = (10/36,1, 26/36)7  $C_{21} = C_{2}\hat{X}_{21} = (5, 7)\binom{9}{1} = 47$ Steration 2: G= (47, -M, -M)  $J=1: \frac{1}{Min} \omega_1 = \left(\frac{199}{36} + \frac{5M}{36}\right) X_1 + \left(\frac{33}{36} + \frac{3M}{36}\right) X_8 - M$ Optimum:  $\hat{X}_{12} = (0,0), \ W_1^* = -M$ Min Wz = (8 + 4M) x3 - 2x4 Optimum: X2= (0,10), w= -20-M  $Z_s - C_s = (47, -M, -M) B^{-1} {\binom{-1}{0}} - 0 = -\frac{47}{36} - \frac{M}{36}$ Thus,  $\beta_y$  associated with  $\hat{X}_{2z} = (0, 10)$  enters the solution  $P_{22} = \begin{pmatrix} A_2 \hat{X}_{21} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{B} P_{22} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$  $\theta = \min \left\{ -, -, \frac{26/36}{1} \right\} = \frac{26}{36}, R_3 \text{ leaves}$  $\vec{B}_{\text{nex}_f}^{1} = \begin{pmatrix} 1/36 & 0 & 0 \\ 0 & 1 & 0 \\ -1/36 & 0 & 1 \end{pmatrix}$  $X_{B} = (\beta_{3}, R_{2}, \beta_{4})^{T} = \vec{B}^{1} \begin{pmatrix} 10 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 36 \end{pmatrix}, \frac{26}{36} \end{pmatrix}^{T}$  $C_{zz} = C_z \stackrel{?}{\underset{zz}{\stackrel{}}} = (S, z) \begin{pmatrix} 0 \\ 10 \end{pmatrix} = 20$ Iteration'3: CB = (47, -M, 20) <u>J=1:</u> Min W = 99 x - 27 x - M Optimim: X13 = (0,2), W, = 3 - M J=2: Min Wz = -2xg -2x4+20 Optimum: \( \hat{X}_2 = (9,1)^T, \omega_2 *= 0

Zs-Cs = (47,-M, 20) B (-1)-0 = -3/4 Thus, of associated with  $\hat{X}_{13}=(0,2)$  enters The Johntoni.  $P_{43} = \begin{pmatrix} A_1 \hat{X}_{13} \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} (5,3) \begin{pmatrix} 0 \\ z \end{pmatrix} \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix}$ BP3 = (1/6, 1, -1/6)T 0= min { \frac{10/36}{1/6}, \frac{1}{1}, -} = 1, R_2 leaves  $\vec{B}_{next}^{1} = \begin{pmatrix} 1/36 & -1/6 & 0 \\ 0 & 1 & 0 \\ -1/36 & 1/6 & 1 \end{pmatrix}$  $X_{B} = (\beta_{3}, \alpha_{4}, \beta_{4})^{T} = (\frac{4}{36}, 1, \frac{32}{36})^{3}$  $C_{13} = C_1 \hat{X}_{13} = (1,3)\binom{0}{2} =$ Stration 4: G= (47, 6, 20) J=1: Min W = 1/4 X1 - 3/2+3 Optimum: X,4 = (0,2), w, +=0 j=2: Min  $\omega_2 = -2x_3 - 2x_4 + 20$ Optimum: \$24 = (0,10), W= 0  $Z_{S}-C_{S}=(47,6,20)B^{-1}(-1)-0=-3/4$ Thus, 5 enters the solution.  $B'S = B'(\frac{1}{0}) = (-\frac{1}{36}, 0, \frac{1}{36})^{T}$   $G = \min\{-, -, \frac{32/36}{1/36}\} = 32, \beta_{4} \text{ leaves}$   $B_{\text{mix}+} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 6 & 36 \end{pmatrix} - \begin{pmatrix} 10 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$   $A = (\beta_{3}, \alpha_{4}, S)^{T} = B(\frac{1}{1}) = (1, 1, 32)^{T}$   $A = (\beta_{3}, \alpha_{4}, S)^{T} = B(\frac{1}{1}) = (1, 1, 32)^{T}$ Steration: 5: j=1: Min  $\omega_1 = -x_1 - 3x_2 + 6$ Optimum:  $x_{15} = (4,1)^T$ ,  $\omega_1^* = -1$ J=2: Min Wz = -5x3-2x4+47 Ophinum: \$25 (9,1), W= = 0 Thus,  $\alpha_3$  associated with  $\hat{X}_{15} = (4, 1)^T$  enters of solution:  $P_{15} = \begin{pmatrix} (5,3) \begin{pmatrix} 4 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 23 \\ 1 \end{pmatrix}$ BP15 = (0, 1, -17)T continued

$$\theta = \min \left\{ -\frac{1}{1}, -\frac{1}{3} = 1, \alpha_{y} \text{ leaves} \right\}$$
 $B_{nex_{f}} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 23 & 36 \end{pmatrix}, C_{15} = \begin{bmatrix} 1,3 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{bmatrix} = 7$ 
 $X_{g} = \begin{pmatrix} \beta_{3}, \alpha_{3}, 5 \end{pmatrix}^{T} = B \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1, 1, 49 \end{pmatrix}$ 

Iteration: 6:

 $B = (47, 7, 0)$ 
 $j = 1$ :  $min \ W_{1} = -x_{1} - 3x_{2} + 7$ 

Optimium:  $\hat{X}_{16} = (4, 1), \ U_{1}^{*} = 0$ 

Optimium:  $\hat{X}_{26} = (9, 1), \ U_{2}^{*} = 0$ 

Optimium:  $\hat{X}_{26} = (9, 1), \ U_{2}^{*} = 0$ 

Optimium:  $\hat{X}_{26} = (9, 1), \ U_{2}^{*} = 0$ 

Optimium:  $\hat{X}_{26} = (9, 1), \ U_{2}^{*} = 0$ 

Optimium:  $\hat{X}_{26} = (9, 1), \ U_{2}^{*} = 0$ 

Optimium:  $\hat{X}_{26} = (9, 1), \ U_{2}^{*} = 0$ 
 $(\beta_{3}, \alpha_{3}, S) = (1, 1, 49) \ \text{translates}$ 
 $(\beta_{3}, \alpha_{3}, S) = (4, 1) \ \text{and} \ (x_{3}, x_{4}) = (9, 1)$ 
 $Z = 54$ 

$$\frac{j=1}{X_{1}} : \frac{X_{1}}{X_{1}} = (X_{1}, X_{2})^{T}$$

$$C_{1} = (6, 7) \qquad A_{1} = (1, 1)^{T}$$

$$D_{2} = (1, 1) \qquad b_{1} = (1, 1)^{T}$$

$$D_{3} = (1, 1) \qquad b_{2} = (1, 1)$$

$$D_{4} = (1, 1) \qquad b_{5} = (1, 1)$$

$$D_{5} = (1, 1) \qquad b_{7} = (1, 1)$$

$$D_{7} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{8} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{1} = (1, 1) \qquad D_{2} = (1, 1)$$

$$D_{3} = (1, 1) \qquad D_{3} = (1, 1)$$

$$D_{5} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{7} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{1} = (1, 1) \qquad D_{2} = (1, 1)$$

$$D_{1} = (1, 1) \qquad D_{2} = (1, 1)$$

$$D_{3} = (1, 1) \qquad D_{3} = (1, 1)$$

$$D_{5} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{7} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{1} = (1, 1) \qquad D_{2} = (1, 1)$$

$$D_{2} = (1, 1) \qquad D_{3} = (1, 1)$$

$$D_{3} = (1, 1) \qquad D_{3} = (1, 1)$$

$$D_{5} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{7} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{8} = (1, 1) \qquad D_{7} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

$$D_{9} = (1, 1) \qquad D_{1} = (1, 1)$$

Iteration 1: minimize W, = -6x, -7x2 -M Solution: X, = (2,8)T w. = - 68-M minimize Wz = -3x3-5xy-M Solution: X2 = (0, 12)T.  $W_2^* = -60 - M$ minimize  $W_3 = - \times_5 - \times_6 - M$ Solution:  $X_{31} = (50,0)^T$ w, *= -50 -M By accordated with Vin enters the Solution  $P_{11} = \begin{pmatrix} (1,1)(2,8) \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ 0 \\ 0 \end{pmatrix}$  $\bar{B}^{1}P_{11} = (10,1,0,0)^{T}$ 0 = min { 50, 1, -, -} = 1, R, leaver  $\vec{B}_{\text{next}} = \begin{pmatrix} 1 & -10 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$  $X_{R} = (S_{1}, \beta_{11}, R_{2}, R_{3}) = (40, 1, 1, 1)$  $c_{\mu} = C_{\mu} \hat{\mathbf{X}}_{\mu} = 68$ Iteration 2: G = (0,68,-M,-M) minimize W, = -6x, -7 /2 - M Solution: X, = (2,8) W, * = 0  $\frac{J=2:}{\text{minimize}} \quad \omega_z = -3x_3 - 5x_4 - M$ 

#### Set 20.2a

Solution: 
$$\hat{Y}_{22} = (0, 12)^T$$
 $W_2^* = -60 - M$ 
 $\hat{J} = 3$ :

Thin imize  $W_3^* = -50 - M$ 

Solution:  $\hat{X}_{32} = (50, 0)^T$ 
 $W_3^* = -50 - M$ 
 $\hat{B}_{22}$  associated with  $\hat{Y}_{22}$  entire

The Johnson:

 $P_{22} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T = \begin{pmatrix} 12 \\ 0 \end{pmatrix}^T$ 
 $P_{22} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{23} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{24} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0, 1, 0 \end{pmatrix}^T$ 
 $P_{25} = \begin{pmatrix} 12, 0$ 

$$\beta_{33} = \begin{pmatrix} (1,1)(50,0)^{T} \\ 0 \end{pmatrix} = \begin{pmatrix} 50 \\ 0 \\ 1 \end{pmatrix} \\
B \mid \beta_{33} = (50,9,0,1)^{T} \\
G = min \begin{cases} \frac{28}{50}, -, -, \frac{1}{1} \end{cases}, 5, leaves$$

$$\beta_{1} = \begin{pmatrix} 1/50 & -10/50 & -12/50 & 0 \\ 0 & 1 & 0 & 0 \\ -1/50 & 10/50 & 12/50 & 1 \end{pmatrix}$$

$$X_{8} = \begin{pmatrix} \beta_{33}, \beta_{11}, \beta_{22}, R_{3} \end{pmatrix}^{T} = \begin{pmatrix} 14 \\ 25 \end{pmatrix}, \frac{1}{1}, \frac{11}{25} \end{pmatrix}$$

$$C_{33} = C_{3} \hat{X}_{33} = 50$$

$$Iteration 4: C_{8} = (50,68,60,-M)$$

$$\frac{1}{2} = 1: \\
minimize W_{1} = (9,0)^{T}$$

$$W_{1} = 50 - M/5$$

$$\frac{1}{3} = 2: \\
minimize W_{2} = \frac{50+M}{50}(X_{3}+X_{4}) - 540$$

$$\frac{1}{3} = 2: \\
minimize W_{2} = \frac{50+M}{50}(X_{3}+X_{4}) - 540$$

$$\frac{1}{3} = 3: \\
minimize W_{3} = \frac{M}{50}(X_{5}+X_{6}) - M$$

$$\frac{1}{3} = 3: \\
minimize W_{3} = \frac{M}{50}(X_{5}+X_{6}) - M$$

$$\frac{1}{3} = 3: \\
\frac{1}{3} = -9M$$

$$\frac{1}{3} = -9M$$

continued.

8=min {28/50, -, -, 22/50} = 22/45, R3 leaves  $\vec{B}_{next}^{-1} = \begin{pmatrix} 1/45 & -10/45 & -11/45 & -5/45 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1/45 & 10/45 & 12/45 & 50/45 \end{pmatrix}$ XB = (B33, B11, B22, B43) = (23/45, 1, 1, 22/45)  $C_{43} = (1,1,0,0)(5,0,0,45)^T = 5$ It can be shown that steration 5 will prove optimality. Optimum Slution:  $(X_1, X_2) = I(2,8) = (2,8)$  $(X_3, X_4) = I(0, 12) = (0, 12)$  $(x_5, x_6) = \frac{23}{45}(50, 0) + \frac{22}{45}(5, 0) = (28, 0)$ Z= 6 x8 = (50, 68, 695) (23/45, 1, 1, 22/2)=156 Since the original problem is minimization, we must aximize w. for each sulproblem  $X_1 = (X_1, X_2)^T$  $C_{i} = (5,3) \qquad A_{i} = (1,1)$   $D_{i} = \begin{pmatrix} 5 & 1 \\ 5 & -1 \end{pmatrix} \qquad b_{i} = \begin{pmatrix} 2 \\ 3 & 1 \end{pmatrix}$  $b_1 = \begin{pmatrix} 20 \\ 5 \end{pmatrix}$  $X_2 = (X_3, X_4)$  $C_2 = (8, -5), A_2 = (1, 1)$  $D_2 = (1, 1), b_2 = 20$ Steration 0:  $X_{R} = (R_{1}, R_{2}, R_{3})^{T} = (25, 1, 1)^{T}$  $B = B^{-1} = I$ ,  $C_R = (M, M, M)$ Iteration 1: maximize W, = (-S+M)x,+(M-3)x,+M Solution:  $\hat{X}_{i} = (5/2, 15/2), \omega_{i}^{*} = UM - 35$ 

maximize Wz = (M-8) X3 + (M+5) Xy+M Solution:  $\hat{\mathbf{X}}_{i} = (0, 20)^{T}$ W = 21M+100  $Z_{S_1}-C_S=(M,M,M)I\left(\begin{smallmatrix} -1\\0\\0\end{smallmatrix}\right)-o=-M$ Bz, associated with Ki, enters solution  $\mathcal{P}_{z} = \begin{pmatrix} (1,1) & (0,20)^T \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 20 \\ 0 \\ 1 \end{pmatrix}$ BP. = (20,0,1)T 0= min { 25, -, 1}=1, R3 leaves  $\mathcal{B}_{nex_{j}}^{-1} = \begin{pmatrix} 1 & 0 & -20 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$  $X_{R} = B^{1}(25,1,1)^{T} = (5,1,1)^{T}$  $= (R_1, R_2, \beta_2)^T$  $C_{21} = C_2 \hat{X}_{21} = (8, -5)(0, 20)^T = -100$ Iteration 2: G = (M, M, -100) maximize WT = (-5+M)X, + (M-3)X2 + M Solution: X= (5/2, 15/2)T w, *=11M-35 maximize W= = (M-8)X3+(M+5)X-201-100 Solution: \$ = (0,20) W2 = 0 3,-G,= -M B12 associated with \$ (\$ , 15) enters  $P_{12} = \begin{pmatrix} (1, 1) \begin{pmatrix} 5/2 \\ 15/2 \end{pmatrix} = \begin{pmatrix} 10 \\ 1 \end{pmatrix}$  $\vec{S}P_{12} = (10, 1, 0)^T$  $G = min \{ \frac{5}{10}, \frac{1}{1}, -\frac{2}{3} = \frac{1}{2}, R, leaves$ Continued.

OCI ZU.Za	
$B_{next}^{-1} = \begin{pmatrix} 1/10 & 0 & -2 \\ -1/10 & 1 & 2 \end{pmatrix}$	
XB=(B12, R2, B2,) T=(1/2, 1/2, 1)	
$c_{/2} = C_{/2} = (5,3)(5/2,15/2)^T = 35$	
Iteration 3: G = (35, M, -100)	
j=1:	
maximize $w_1 = -(\frac{M}{10} + \frac{3}{5})X_1 - (\frac{M}{10} - \frac{1}{2})X_2 + M$	
Solution X3 = (1,0)T	
$\omega_{i}^{*} = .9M - 3/2$	
maximize Wz = - ( \frac{9}{2} + \frac{M}{10} ) \text{X}_3 - (\frac{M}{10} - \frac{17}{2}) \text{X}_y - 800	0
<u>Solution</u> : $\chi_3 = (0, 20)$	
$w_{z}^{*} = -630 - 2M$ $Z_{s, -C_{s, = (3s, M, -100)}} B^{-1} {\binom{-1}{0}} - 0$	
$Z_{S,-C_{S,}} = (3S, M, -100)B \begin{pmatrix} 0 & -0 \\ 0 & -1/2 \end{pmatrix}$ = $M/10 - 1/2$	
By associated with & contens solution	
$P_{13} = \begin{pmatrix} (1,1)(1,0)^{T} \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	
B-1P13 = (1/10, 9/10, 0)T	
A = min { 1/2, 1/2, -3=1/9, R2 leaves	
$\vec{B} = \begin{pmatrix} 1/q & -1/q & -20/q \\ -1/q & 10/q & 20/q \\ 0 & 0 & 1 \end{pmatrix}$	
10/9 20/9   10/9 20/9	
$X_{B} = (\beta_{12}, \beta_{13}, \beta_{21})^{T} = B^{1}(25, 1, 1)^{T}$	
$=(4/q,5/q,1)^{T}$	
$C_{13} = C_1 \hat{X}_{13} = (S_1, 3) (1, 0)^T = S$	
Iteration 4: G = (35, 5, -100)	
<u>j=1</u> :	
$maximize \ \omega_{1} = -5/3 x_{1} + 1/3 x_{2} + 5$	
Solution: $\hat{\chi}_{4} = (5/2, 15/2)^{T}$ , $\omega_{1}^{*} = 10/3$ continued.	

maximize WE = - 14 x 3+ 25 xy - 800 Solution: \$24 = (0,20) T  $W_2^* = -633\frac{1}{3}$   $Z_5, -G_5 = (35, 5, -100)B(\frac{-1}{9}) - 0 = -\frac{30}{9}$ By associated with X14 enters the tolertion After one iteration, we get.  $(x_1, x_2) = 1\left(\frac{5}{2}, \frac{15}{2}\right) + O(1, 0) = \left(\frac{5}{2}, \frac{15}{2}\right)$  $(X_3, X_4) = I(0, 20) = (0, 20), Z = 195$ Dual Problem: maximize Z = 8x, +2x2+4x2+10x4 S.t. X1 + 2x2 + 3x3 + xy £ 8  $X_1, X_2, X_3, X_4 \geq 0$  $\overline{X_1} = (X_1, X_2)^T$  $C_{1} = (8, 2), \qquad A_{1} = (1, 2)$   $D_{1} = \begin{pmatrix} 4 & 1 \\ -1 & 1 \end{pmatrix} \qquad D_{1} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$  $\frac{J=z}{X_2} = (X_3, X_4)^T$  $C_z = (4,10) \qquad A_z = (3,1)$   $D_z = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \qquad b_z = \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ Steration 0:  $X_B = (S_1, R_1, R_2)^T = (10, 1, 1)$  $\tilde{\mathcal{B}} = \tilde{\mathcal{B}}^{-1} = \tilde{\mathcal{I}}$ Steration 1: G = (0, -M, -M) minimize w, = -8x, -2xz-M Solution: X = (1/2,0); or X1 = (0,2) W. = -4-M continued.

J = 2: Minimize W2 = -4X3-10X4-M Solution: X = (0, 4, 0, 5) T W= - 40-M Bz, associated with Vz, enters  $P_{2r} = \begin{pmatrix} (3,1)(0,4)^T \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$  $\vec{B}P_{1} = (4,0,1)^{T}$ 0 = min { 10, -, +3 = 1, Rz leaves  $B_{next}^{-1} = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & 0 \end{pmatrix}$  $X_{R} = \bar{B}^{1}(10,1,1)^{T} = (6,1,1)^{T} = (S_{1},R_{1},\beta_{21})$  $c_{21} = C_2 \times (4,10,0,0)(0,4,0,5) = 40$ Iteration 2: G= (0, -M, 40) minimize W, = -8X, -2 /2 -M solution:  $\hat{\chi}_2 = (1/2, 0)^T$  $\chi = (0, 2)^T$ W. *= - 4-M minimize Wz = -4Xz - 10Xy+40 Solution: \$, = (0,4) w; *= 0 Biz associated with Yiz = (0, 2) [or (1/2,0,0,9/2)] enters the Solution.  $P_{12} = \begin{pmatrix} (1,2)(0,2)^T \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$  $\vec{BP}_{l,2} = (4,1,0)^T$ 0 = min { \frac{6}{4}, \frac{1}{1}, - \frac{5}{2} = 1, R, leaves

 $\mathcal{B}_{\text{nex}}^{-1} = \begin{pmatrix} 1 & -4 & -4 \\ 0 & 1 & 0 \end{pmatrix}$  $X_{\beta} = (S_1, \beta_{12}, \beta_{21}) = (z, 1, 1)^T$ C12 = C1 X12 = (P, 2)(0, 2)= 4 Iteration 3. G = (0, 4, 40)  $\overline{Minimize} \ \omega_{1} = -8X_{1} - 2X_{2} + 4$ Solution:  $\hat{X} = (1/2, 0)^T$ w, *= 0 minimize Wz = -4x3-10x4+40 Solution:  $\hat{X}_{23} = (0,4)^T$ w, * = 0 Solution is optimum!  $(X_1, X_2) = 1(0, 2) = (0, 2)$  $(X_3, X_4) = I(0,4) = (0,4)$ The problem has an alternative solution, which can be determined using Y = (1/2,0) en place of (0,2) in steration 2. The alternative solution is X=1/2, X2=0, X3=0, Xy=4 To determine the primal solution, note that the basic dual variables as given above are ( K, X4, 5, , S3, 55) or (x1, x4, S1, S3, S5) where 5, is the slack associated with the common constraints, 53 is the slack for constraint 3, and 5, is the slack for constraint 5. Thus, Dual Variable Primal constraint equation 27, + 75+ A3 + 5 A7 - A2 Xz Xy y3 y = 0 Continued.

Solution: 7, =0, 7 = 2, 73 =0, 74 = 5, 3 =0 Consider the second alternative teleprin

Donal Variable	Primal constraint equation
X ₁	$y_1 + 4y_2 - y_3 = 8$ $y_1 + 2y_4 - y_5 = 10$
s _i	y, 70 = 10
	y ₃ = 0

Solution: 7,=0, 4,=2, 3,=0, 4,=5, 4,=0

Objective value = 2x2+5x8
= 44



Let B be

the current basis of the master problem and  $C_n$  the vector of the corresponding coefficients in the objective function. Thus, according to the revised simplex method, the current solution is optimal if for all nonbasic  $P_{j_1}^{p_1}$ 

$$z_j^k - c_j^k = \mathbf{C}_B \mathbf{B}^{-1} \mathbf{P}_j^k - c_j^k \ge 0$$

where, from the definition of the master problem

$$c_j^k = C_j \hat{X}_j^k$$
 and  $\mathbf{P}_j^k = \prod_{n \in \mathbb{N}} \left\{ \begin{array}{c} A_j \hat{X}_j^k \\ 0 \\ \vdots \\ \vdots \\ 0 \end{array} \right\} \leftarrow (r_0 + j) \text{th place}$ 

The expression for  $z_i^k - c_i^k$  can be simplified as follows. Let

$$B^{-1} = (\widehat{R_0} \mid \widehat{V_1, V_2, \ldots, V_j, \ldots, V_n})$$

where  $R_0$  is the matrix of size  $(r_0 + n) \times r_0$  consisting of the first  $r_0$  columns of  $B^{-1}$ , and  $V_j$  is the  $(r_0 + j)$ th column of the same matrix  $B^{-1}$ . Thus

$$\begin{aligned} z_j^k - c_j^k &= (C_B R_0 A_j \hat{X}_j^k + C_B V_j) - C_j \hat{X}_j^k \\ &= (C_B R_0 A_j - C_j) \hat{X}_j^k + C_B V_j \end{aligned}$$

# TORA optimal solution: (M = 10)

Final Iteration No.: 10 Objective Value = 0

Variable	Value
( x1·	0.18182
y ₹x2:	0.00000
(x3:	0.00000
w 5x4:	0.09091
χ ₅ :	0.00000
<b>x</b> 6:	0.63636
x7:	0.09091
x8:	0.00000

$$\mathcal{Y}_{1} = (M+1)X_{1} = 1/x \cdot 18182 \stackrel{?}{=} 2$$

$$\mathcal{Y}_{2} = (M+1)X_{2} = X0 = 0$$

$$\mathcal{Y}_{3} = (M+1)X_{3} = 1/X \cdot 0 = 0$$

$$\mathcal{U}_{1} = (M+1)X_{4} = 1/X \cdot 090909 \stackrel{?}{=} 1$$

$$\mathcal{U}_{2} = (M+1)X_{5} = 1/X \cdot 0 = 0$$

#### Primal:

maximize Z = 21, + 12

Subject to

$$y_1 - y_2 \le 2$$
  
 $y_1 + 2y_2 \le 4$   
 $y_1, y_2 \ge 0$ 

Minimize w= 2w, +4Wz

Subject to

$$\omega_1 + \omega_2 \ge 2$$
  
-  $\omega_1 + 2\omega_2 \ge 1$   
 $\omega_1, \omega_2 \ge 0$ 

Thus, Conversion of the perimitand dual constraint to equations yilds: 24, + 42 - 2w; - 4w = 0 3, - 3 + 43 = 2 W; + W3 + W3 = 2

 $W_1 + W_2 + W_3 = 2$ 7,+272+yy=4 -w,+2w2-wy=1

all variables =0

Next,

 $y_1 - y_2 + y_3 - 2S_2 = 0$   $\omega_1 + \omega_2 - \omega_3 - 2S_2 = 0$ 9,+24,+4-452=0 -w+2w2+w4-52=0

24, + 72-2WI-4WZ=0 y, + y2 + y3 +y4 + w1+w2+w3+w4-M52+5=0

J,+ y2+ y3+ y4+ w,+w,+w,+wy+5,+5 = M+1

$$S_1 = (M+1)X_q$$

$$S_2 = (M+1)X_{10}$$

Thus, The equations become

$$X_1 + 2X_2 + X_4 - 4X_{10} = 0$$

$$X_5 + X_6 - X_7 - 2X_{10} = 0$$

$$X_1 + X_2 + \dots + X_q - M X_{10} = 0$$

$$X_1 + X_2 + \cdots + X_{10} = 1$$

all 
$$x_j \ge 0$$

The complete problem thus becomes:

minimize z = X11 Subject to

 $X_1 - X_2 + X_3 - 2X_{10} + X_{11} = 0$ 

$$X_1 + 2X_2 + X_y - 4X_{10} + 0X_{11} = 0$$

$$-x_5+2x_6-x_8-x_{10}+x_{11}=0$$

$$2x_1 + x_2 - 2x_5 - 4x_6 + 3x_{11} = 0$$

$$X_1 + X_2 + \cdots + X_q - MX_{10} + (M-q) X_{11} = 0$$

$$X_{i} + X_{1} + \cdots + X_{I} = I$$

Chapter 21 Forecasting models 21-1

 $y_{25}^* = \frac{54+42+64+60+70+66+57+55+52+62+70+72}{12} = 60.33$ Larger n suppresses the flactuations in data



The seasonal nature of the data makes the moving average unsuitable as a prediction model. We need to select n small; e.g., n=3 yields  $y_{25}^{+}=50$ .



Dato show an upward trend. Select small n = 3 for the moring average.

Car: 2 = 1791.3 individuals

ai: 4 = 938.33 individuals



Data show linear trend. Use small n = 3 for the moving average.



The data appear stable. The moving average should apply nicely to this case. Similar analysis can be carried out for the remaining locations. Use n=5

At location 1: Term 1:  $y_{95}^* = 238.6$  students Term 2:  $y_{95}^* = 260.2$  students Term 3:  $y_{95}^* = 117$  students

## Set 21.2a

A=-2, 17 = 59.63

Car:  $\alpha = .2$ ,  $y_{90}^* = 1577.71$  individuals

an:  $\alpha = .2$ ,  $f_{90}^* = 797.75$  individuals

4 = \$26.27 million d = .2

For location 1:  $\alpha = 2$ 

Term 1:  $y_{95}^* = 254.33$ Term 2:  $y_{95}^* = 256.13$ 

Term 3: y+ = 116.38

The data have both seasonal variations and a trend. Regression analysis can be used to detect the trend.



$$y=39.23+1.262 \times$$
,  $\lambda=.399$ 
 $y_{25}^{*}=70.77$  units



Location 1:



$$\frac{\sum_{i=1}^{n} (y_i - bx_i - a)}{\sum_{i=1}^{n} d_i - b} = \sum_{i=1}^{n} x_i - na$$

$$= n \overline{y} - nb \overline{x} - na$$

$$= n (\overline{y} - b \overline{x} - a)$$

$$= n (\overline{y} - b \overline{x} - \overline{y} + b \overline{x})$$

$$= 0$$



# Set 22.1a

6				1			3		
$f_6(j) =$	ع				Spin 3			Opt. So	J.
f _c (j) = m	ar jend:	2)			outcome	End	Spin	f4(j)	Dension
$T_{i}(J) = M$	מומצ)	.15f	(k)		ı	2	//	/1	Spin
•	- C-P///				<b>Z</b> 5	4	1	H .	Spin
•	8	i = 2,	3,4,5		3	6	11	11	Spin
$f_i(o) = \frac{1}{8}$	- If (k	·)			4	8	11	. //	Spin
8	R=1				5	10	l ii	11	Spin
Stage 6: 5.	pin 5	<u> </u>	· Soln.		6	12	11	12	End
	utcome	f ₆ (j)	Decis		- 7	14	11	14	End
- -	- 1	2	En		8	16	n	16	End
	2	4	En		Stage ?	f (i)-m	a-x {zj, /2.	/2 5?	
*	3	8	1			/3 \ <i>U/ - */</i> \	יאן נניין איי.	1 Ook	Sol.
	4 5	10	Ena	1	Spin 2 outcome	End	spin	f3(j)	Decision
	. 6	12	En	1		1	12.125		1
	7	14	En		1≤j≤6	2)	12.125	12.185	Spin
	8	16	<u> </u>		J=7,8	a j	12.125	2 <i>j</i>	End
Stage 5: f(j)	- max {	21.1(+	f(1)+f(2)	++ [(8)]	Stage2:	fo(j)= m	AX {2j , 12.	84375 }	***************************************
15.57		(a) 722	6 6	7,00	Spin 1	1	-	Opt	. Sol.
		(2), 72 g			outcome	End	spin	fecis	Decisim
•	= max{	? zj, 9}	:		1≤ j≤ 6	2 j	12.84375	12.84375	Spin
Spin 4 outcome	, r , ,	Spin		Sol. Decision	j=7,8	2 j	12.84375	zj	End
1	2	9	9	Spin	<u> </u>	((a) =	1 ((x12 04)		1 - 12 28
2	4	9	9	Spin	- Juger.	7(0)-8	(6x12.843	315719716	5/-13.30
3	6	9	9	Spin	Solutio	<u> </u>			
4	8	9	9	Spin	Spin	-44	Strategy		
5	10	9	10	End	39111	<del></del>	97	<del></del>	<del></del>
6	12	9	12	End	/		ontinue to	•	
7	14	9	14	End	2		tinue if #1	produce	eo 1→6,
8	16	9	16	End	_		e and	andul.	eo 1→6
				,	3		tinue if # 2 re cond	100000	, , , ,
Stage 4:				•	4		time if #	13 parodu	ices 1-5
	١	1/2 -	3 . 0	4.5	1	el	re end.	- /	
$f_4(j) = n$	7ax {2]	· <del>*</del> (4+9+	1+7+10	ナリと	5	Con	rtime of	#4 pro	duces/-4
		+14	+16)}			el	se and	•	
= 7	nax {2	j , 11}			6	E	nd		
					Exp	ected ret	tun = \$	13.38	
L	<u></u>		C	ontinued					
				^	2-2				

Let O, represent the best offer Z at the end of day 1, where

$$f_4(j) = O_j$$

$$f_{i}(j) = max \begin{cases} accept: O_{j} \\ continue: \frac{1}{3} \left( f_{i}(1) + f_{i}(2) + f_{i}(3) \right) \\ f_{i}(0) = \frac{1}{3} \left\{ f_{i}(1) + f_{i}(2) + f_{i}(3) \right\} \end{cases}$$

## Stage 4:

Day 3 best ofter	1 Opt. Sol.		
	$f_{\psi}(j)$	Decision	
1	1050	Accept	
2	1900	•	
. 3	2500	Accept Accept	

#### Stage 3:

$$f_{3}(j) = \max \left\{ O_{j}, \frac{1}{3} \left( f_{y}(1) + f_{y}(2) + f_{y}(3) \right) \right\}$$

$$= \max \left\{ O_{j}, 1816.67 \right\}$$

Day 2			Opt.	Sol.,
best offer	Accept	Continue	f3(j)	Decision
1	1050	1816.67	1 816.67	Continue
2	1900	1816.67		Accept
3	2500	1816.67	2500	Accept

### Stage 2: $f_2(j) = \max\{0_j, \frac{1}{3}(f_3(i) + f_3(i) + f_3(3))\}$ $= \max\{0_j, 2072.33\}$

Day 1			Opt.	Sol.
best offer	Accept	Continue	fe(j)	Decision
1	1050	2072.33	2072.33	Continue
2	1900	2072.33	2072.33	Continue
3	2500	2072.33	2072-33	accept

#### Stage 1:

$$f_1(0) = \frac{1}{3} (2x2072.33 + 2500)$$

$$= $2214.82$$

#### Solution:

Day 1: Accept if offer is high

Day 2: Accept if offer is medium or

Day 3: Accept any offer.

<l< th=""><th>40</th><th>11</th><th></th></l<>	40	11	
Sta	y.c	7	٠
7	7		

fy(x4) = x4 (1+ 8x.6+ .4x.2 +.2x.2) = 1.6 ×4

	Opt. J	Tal.
State	f4 (X4)	Jy
X ₄	1.6 X4	Xy (investall)

Stage 3:

$$f_3(x_3) = \max \left\{ .2 \times 1.6 \left( x_3 + 4 y_3 \right) \\ 0 \le y_3 \le x_3 + .4 \times 1.6 \left( x_3 - y_3 \right) \\ + .4 \times 1.6 \left( x_3 - y_3 \right) \right\}$$

= max {1.6 x3 }

	Opt	mum
State	f3(X3)	<i>Y</i> 3
X ₃	1.6×3	0 < Y ₃ < X ₃

$$f_{z}(x_{z}) = \max_{0 \le y_{z} \le X_{z}} \left\{ .4x1.6(x_{z} + y_{z}) + .4x1.6x_{z} + .2x1.6(x_{z} - y_{z}) \right\}$$

State	Opt. Sol.					
State	f2 (X1)	y ₂				
X	1.92 Xz	Xz				

Stage 1: f, (x,) = mux { 1x1.92(x,+24,)

+ -4x1.92 (x,+y,)+.5x1.92(x,+5y) = max {1.92 x, +1.6324}

	1 Opt	. Sol.
State	ficx1)	У,
Χ,	3.552 X,	х,

Solution: accumulation = \$35,520 Invest \$10,000 in year 1, all in year 2, none in year 3, and all in year 4.

Ci = penalty cost/shortage unit of 2

Zi = number of units of item i

Vi = volume per unit of item i

X; = m3 assigned to items i,..., n
P:= probability of j demand
units of item i

f: (xi) = minimum expected penally cot for items i; i+1, ..., and n,

 $f_{i}(x_{i}) = min \{c_{i} \geq (j-z_{i})\rho_{ij} \cdot \sum_{0 \leq z_{i} \in [v_{i}]} \{c_{i} \geq (j-z_{i})\rho_{ij} \cdot \sum_{j>z_{i}} + f_{i+1}(x_{i}-z_{i},v_{i})\}$ i=1,2, ..., n

 $f_{n+1}(\cdot) = 0$ 

Table for exp. shortage cost:

item i	Z'=1	$Z_{\ell} = 2$	Z ₂ ≈ 3
	8(1x·5) = 4	0	0
2	10 (1x.4+5x.5+ 3x.1)=11	10 (1x.2+2x-1)=4	10(1X-1)=1
3	15(1x.5+5x.2)= 18	15(1×.5)=7.5	0

 $\leq tage3: f_3(x_3) = mvn \left\{ |S \sum_{j>Z_3} (j-Z_3)|_{3j} \right\}$ 

	L	<i>[3 = 3</i>	Opt Sol.		
_X ₃ _	23 = 1	2 = در2	Z3 =3	f3(X3)	
3	18			18	1
4	18	_	_	18	1
5	18	_	_	18	1
6	18	7.5	-	7:5	2
7	18	7.5	.—	7.5	2
8	18	7.5	<u> </u>	7.5	2
9	18	7.5	O	0	3
10	18	7.5	0	O	3

 $\frac{1}{\int_{2}^{2} (X_{2})^{2}} \min_{Z_{2} \leq \left[\frac{X_{2}}{V_{1}}\right]} \left\{ 10 \sum_{j>Z_{2}} (j-Z_{2}) p_{j} + \int_{3}^{2} (X_{2}-Z_{2}) \right\}$ 

.,				**			2.0	ontinued
X ₂	$Z_2 = 1$	2	\$	4	5	6	7	f3 23
4	11+18=29		<del></del>	<u> </u>	_	_	•	29
5	11+18=29	4+18=35		_	<b>-</b> .	_		22 2
6		4+18=22	1+18=19			_	_	19 3
7	11+7.5=18.5	4+18=22	1+18=19	0+18=18				18 4
8	11+7.5=18.5			0+18=18	0+18=18			11.5 2
9	11+7.5=18.5	4+7.5=11.5	1+7.5=8.5	0+18=18	0+18=18	0+18=18	_	8.5 3
10	11+0=11	4+7.5=11.5	1+7.5=8.5	0+7.5=7.5	0+18=18	0+18=18		7.5 4

Stage 1: 
$$f_{1}(x_{1}) = \min_{Z_{1} \in \left[\frac{X_{1}}{V_{1}}\right]} \left\{ \begin{array}{l} 8 \sum_{J>Z_{1}} (J-Z_{1}) P_{1J} + f_{2} (x_{1}-2Z_{1}) \\ | J>Z_{1} | | J>Z_{1} | | J>Z_{1} | | J>Z_{1} | | J>Z_{1} | | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>Z_{1} | J>$$

Solution:

$$(x_1 = 10) \rightarrow Z_1 = 1 \rightarrow (x_2 = 8) \rightarrow Z_2 = 2 \rightarrow (x_3 = 6) \rightarrow Z_3 = 2$$

$$X_1=0$$
 $X_2$ 
 $X_3$ 
 $X_4$ 
 $X_4$ 
 $X_5$ 
 $X_4$ 
 $X_5$ 
 $X_4$ 
 $X_5$ 
 $X_4$ 
 $X_5$ 
 $X_5$ 
 $X_4$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_4$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_5$ 
 $X_$ 

$$f_{n}(x_{n}) = \min_{Z_{n}} \left\{ C(x_{n}) \right\}$$

$$f_{i}(x_{i}) = \min_{Z_{i}} \left\{ C(x_{i}) + \sum_{d=0}^{3} f_{i+1}(x_{i} + Z_{i} - d_{i}) p(d_{i}) \right\}, \quad C(x_{i}) = \begin{cases} x_{i}, & x_{i} \geq 0 \\ -2x_{i}, & x_{i} \leq 0 \end{cases}$$

Stage 4:

,			`	Opt. Sol.		
X ₄	Zy=0	/	2	3	fy	Zy
-3	_	_		6	6	3
-2		_	4	_	4	2
-1	· —	2	~	_	2	1
0	0	_	. <del>-</del>	_	0	0
1	1	<del></del> ,	· _		)	0
2	2	_	_	_	2	0
<u> </u>	3		_		3	0

Notice Hat negative X4 allows for the possibility of backordering by producing for year 3 in period 4.

continued

	. <b>22.2</b> a					
Sta	$19e3: f_3(x_3) = mu$	$n \left\{ C(x_3) + \cdot 5 \right\}_q(x_3)$	3+Z3-1) + · 3f4(X3+	Z=2)+.2f4(X3+Z3	-3)} [3.	ont inued
<b>~</b>					Opt.	Sal.
X ₃	23 = 0	/	2	3	f3	Z ₃
-3		_		6+.5x2+.3xy+.2x6=9.y		3
- 2	-	_	4+.5x2+.3x4+.2x6=7.4	4+.5x0+.3x2+.2x4=5.4	<b>5.</b> y	3
-7	i	Z+.5x2+.3x4+.2x6=5.4	2+.5x0+.3x2+.2x4=3.4	2+.5x1+.3x0+.2x2=2.9		3
0	0 +.5x2+.3x4+.5x6=3.4	0+5x0+3x2+2x4=1.4	14.5x2+.3x6+.2x2=.9	O+.5x2 +.3x1+.2x0=1.3	•9	2
1		1+5x1+.3x0+.2x2=1.9 2+5x2+.3x1+2x0=3.3	-	_	1.9	1
Z	Z+.5x1+.3x0+.2x2=2.9				29	0
_3	3+.5x2+.3x1+.2x0=4.3			·	4.3	O
	<u>ge 2</u> : f ₂ (%)= mun Z ₂	{e(x2)+ 5f3(x2+2)	2-1) + · 3/3 (X2+ Z2-2)	)+ 2 f3 (x2+Z2-3)	Opt	Sal.
χ,	$Z_2 = 0$	/	- 2	3	Fz	Zz
- 3				6+.5x7.9+.3x5.4		
		· .		+ .2×9.4 = 10.94	10.94	3
-2	-	<u> </u>	4+ 5x7.9+ .3x5.4	4+.5x.9+.3x2.9+		
		,	+.2x9.4 = 8.94	.2x5.4 = 6.4	6.4	3
-1	_	2+ 5x2.9+.3x5.4+	2+.5x.9+.3x2.9+	2+.5x1.9+.3x.9	]	
		·2 x9. Y= 6.94	·2x54= 4.4	+2x7.9=3.8	3.8	3
0	0+.5x2.9+.3x5.4+ - 2x9.4 = 4.94	1	0+.5x1.9+.3x.9+	0+ .5x2.9+.3x1.9		
		.2x5.4=2.4	-2x2.9= /.8	+.2x.9=2.2	1.8	2
1	$1 + .5 \times .9 + .3 \times 2 .9 + .2 \times 5 .9 = 3 .9$	1+.5x1.9+.3x.9 +2x2.9= 2.8	1+.5x2.9+.3x1.9 +.2x.9=3.2			
2			27589.3+.387.9+		2.8	. l
	2+,5x1.9+.3x.9+ .2x2.9= 3.8	9+.5x2.9 +3x1.9 +.2x.9= 4.2	·2x1.9=5.4	<b>—</b> .		
3	3+·5x2·9+·3x1·9+	3+5×4.3+.3×2.9+	7		3.8	0
	.2x.9 = 5.2	·2×1.9 = 6.4			5.2	0
Sh	1. (U) - mu	Source	· · · · · · · · · · · · · · · · · · ·	266		
-	pel: fi(x1) = my	" / C CADT 13 /2(A)	76,-177.372 (2,7)	2,-2)+.2% (X2+2)	-3)}	
x,	7 - ^	, , , , , , , , , , , , , , , , , , ,	<del></del>		1 Optic	Sol.
	$Z_1 = 0$	A + 12 × 1 = 2	2	3	f,	Z,
0	+.2x/0.94 = 6.008	12×1/8+.3×3.8+		0 + . 5 x 3 · 8 + · 3 x 7 · 8	9 7	2
		1.246.9 = 3.02	$1.2 \times 3.8 = 2.7$	+.2×1.8=3.1	2.7	
John	ution:					
(×,	$= 0) \rightarrow Z_1 = 2 \begin{cases} (X_2 = 0) \\ (X_3 = 0) \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(X_3=1) \longrightarrow Z_3=1$ $(X_3=0) \longrightarrow Z_3=2$ $(X_3=1) \longrightarrow Z_3=3$	$(X_{y} = 1) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow (X_{y} = 0) \longrightarrow $	Zy = 0 Zy = 0 Zu = 1	
				( ) ) -		ontinued
					C	au.u.u

Stage i = center i

alternative  $j_i = mimber of bikes assigned to center i$ State  $x_i = mimber of bikes assigned to centers i, i+1, ..., and n$  $<math>d_i = demand in center i$ 

f. (Xi) = maximum expected revenue for stages i, i+1, ..., and n given x,.

$$f_n(x_n) = \max_{y \leq x_n} \left\{ C_n E \left\{ d_n \mid y_n \right\} \right\}$$

 $f_{i\cdot}(x_{i\cdot}) = \max_{x_{i\cdot}} \left\{ C_{i\cdot} E \left\{ d_{i\cdot} | y_{i\cdot} \right\} + f_{i+1}(x_{i\cdot} - y_{i\cdot}) \right\}, \ i = 1, 2, ..., n-1$ 

Where

 $E \{d_i | y_i\} = \text{Average demend at Center } i \text{ given } y_i \text{ like are allocated}$  to center i  $= O_0^2 + I_1^2 + \cdots + J_{i-1}^2, P_y + J_i^2 (P_y + P_y + \cdots + P_s)$ 

Example calculations:  $E\{d, |y| = 2\} = 0P_1 + 1P_1 + 2(P_2 + P_3 + \dots + P_8)$  $= 0 + 1 \times 1.5 + 2 \times .85 = 1.85$ 

Table for Ci E {dilyi}:

-				• .						
	$C_{\mathfrak{t}}$	y:= 0	1	2	3	4	5	6	7	9
1	5	0	5.40	9.60	12.00	13.20	13.80	13.80	13.80	13.8
2	7	σ	6.86	13.51	19.46	23.66	257/	2/ 81	27.51	27.86
3	6	0	5.00	9.25	18.25	19.75	20.50	20.75	20.875	20.875

Stage 3: 
$$f_3(X_3) = \max_{X_3 \leq X_3} \left\{ C_3 E \left\{ d_3 \middle| y_3 \right\} \right\}$$

										Opt. Sol.	
X3	Y3 = 0	1	2	3	Ý	5	6	7	8	f ₃	
o	0	_		, i					1		93
1	0	5								0	0
2	0	5	9.25							5.00	1
3	0	5	9.25	18.25						9.25	2
4	0	5	9.25	18.52	19.75					18.75	3
5	O	~	9.25	18.32	19.75	20.50			ŀ	19.75	4
6	o	<i>-</i>	9.25	18.56			20.75			20.50	5
7	Ō	ر ر	0 -		19.75	20.50		24.03-			6
, X	0	ک	9.25	18.25	19.75	20.50		20.875	1 1	20.875	7
		<u> </u>	1 , 23	18.25	19.75	20.50	20.75	20.875	20.875	20.85	8

Continued...

# Set 22.2a

Stage 2: $f_2(x_2) = m$	X { C E {	d2 1 /2 3 + f3 (x2 - y2) }
-------------------------	-----------	----------------------------

										Opt	2
X2	y2 = 0	/	2	3	Ч	-ر	6	7	8	f,	y.
0	0 + 0=0									0	0
. <i>I'</i>	0+5=5	=6.86	_								
2	0+9.25 =9.25	6.86+5	13.51+0							6.86	1
3	0+18.25	686+9.25	= 13·S/ 13·S/+5	19.46+0	×6 ,					13.51	2
4	= 18.25	= 16.11	=18.51	=19.46	· <u>—</u>					19.46	3
7	=19.75	= 25.11	13:51+9.25 = 22.76	= 54.46 = 54.46	23.66 +0 = 23.66	_				1.70	
5	0+20.50 =20.50	6-86+19.75 = 26.61	13.51+18.25	19.46+9.25 =28.71	23.66+5° = 28 · 66	25-76+0				25.11	1
6	0+20.75	6.86+20.5	13.51+19.75	-	i		26.81+0			31.76	2
	= 20.78	= 21.56	=33.26	= 37.7/	=32.91	=30.76	-26.81			37.71	3
7	= 20.875	= 27.61	1	=39.21	= 41.91	= 35.01	- 21.21	27.51+0 = 27.51		400.	,,
8	0+20.875	6·86+21. <b>2</b> 75	1351+20.75 = 34. 20	19.46+20.5	23·66+/9.75	25.76+18. Is	26.81+8.20	>7 :/+ "		41-91	4
	= 20.875	= 27.735	=34. 70	39.96	=43.41	= 44.01	=36.06	=32.51	27+ · 86	44.01	5

· 🗸	<b></b>									Opt	-
	y, = 0		2	3	Y,	7-	6	7	x	$f_{i}$	у.
8	0+44.01	5.4 + 41.9	96+37.71	12+31.76	13.7+ 25.11	13.8+ 19.46	13.8+13.5	13.8+6.86	13.8+0		<b>3</b> /
0	= 44.01	= 47.3	= 47.31	=43.76	=38.31	= 33.26		= 20.66		47.31	2
			<del></del>	<u>'</u>	<u> </u>		<u> </u>				1 1

## Optimum dolution:

$$(x_1=8) \rightarrow y_1=2 \rightarrow (x_2=6) \rightarrow y_2=3 \rightarrow (x_3=3) \rightarrow y_3=3$$



Sta	ge 3:	.6 P{x3+Y3≥3	3} + +4 P{ X3	-Y3 ≥ 3}		Opt.	2
<u> </u>	J3=0	J	ے ا	3	4	f ₃	¥3
0	·6×0+.4%=0	-		_		0.	0
1 .	.6x0+.4x0 = 0	.6x0+.4x0 = 0				0	0
2	.6x0+.4x0 = 0	6x1 + .4x0 = .6	.6×1+.4×0=.6		<b></b>	.6	1
3	·6x1+.4*1=1	·6x1+·4x0=·6	.6x1+.4x0=.6	.6x1+.4x0=.6	· .	1	0
4	.6x1+ 4x1 =1	·6×1+·4×1=1	$.6 \times 1 + .4 \times D = .6$	.6x1+.4x0=.6	.6x1+.4x0=.6	1	0

Stage 2:		. 6 7	f3 (x2+y2) +.4	f3 (x2- y2)	1 Opt. S	el.
_	Xz	Y2 = 0	1	2	fe	<i>y</i> ₂
	0	.6x0+.4 x0 = 0			0	o
	1	.6x0+.4x0 =0	.6x-6+.4x0=36	<u>.</u>	٠36	1
_	2	·6×0+·4×0 = 0	$-6 \times 1 + -9 \times 0 = -6$	.6x1+.4x0=.6	-6	ı

X ₁	¥,=0	y, = 1	f,	y,
١	·6×-36+·4×-36=·36	·6x·64·4x0 = ·36	.36	0

$$(X_1=1) \rightarrow Y_1=0 \rightarrow (X_2=1) \rightarrow Y_2=1)$$

$$(X_3=2) \rightarrow Y_3=1$$

$$(X_3=2) \rightarrow Y_3=1$$

$$(X_3=0)$$
Return = 1

Stage	$\frac{2.3a}{3}$		max d3≤X3	{ ·25 F	){ <i>X</i> ;+2\	1 ₃ ≥4}+	.75 P {	X3-Y3	, ≥ 4}}			3
•		•								• .	- पर्कार	<del>Caretyn</del>
X ₃	$y_3 = 0$	· /	2	3	4	5~	6	7	8	9	Opt Jol	
0	0		•	· · ·						7		13
1	0	O				* ***					0 0	
2 3	0	-25	25			· .					25- 1,	Z
4	D	25	.25	.25	. <del></del>			•			.25 1,2	73
5	1	. 23	.25	.25	.25		·			٠,	1 0	) 2,1
6	1	1 .	1	.25	.25	.25	.25		44		1 0,	•
7	,	1	!	1	.25	.25	SI	- 52			1 09	1,2
ģ		1	1 '		1	- ZJ	-52	.52. 52.	-52 -52	.55	1 0-	2.
Stoge	<b>2</b> : <i>f</i> ,	(X2) =	max Yz≤X	{.25	f. (x,+	2 y _z ) 1					1 1 10	
-/-	. / 2	. ( - 2 )	y _z ≤x	2 (	73 (*	-2	·	5 ( 72 (	ر ر عر	ı	Opt. Sol.	
Xz	42	= 0		1		Ž	<b>?</b> < 2		3		$f_{z}$ y	
0	(	,										0
1	6		-25	X.52:= ·	06 25					y67,	.0625	ı
2	l .	25		1 +.75×0=		·25X1+.	75 xo = · 25	•			-0 75.	-
3	و.	· S	-52X)	+.75X.25	= . 4375	·25×1+.	75×0 =-25	. 50	(1+75×0 =	.57	.4375	}
Stage,	1: fic	X()=	max y≤x,	8.25	f. (x,+	24)+.	75 £ (	Y-4	۶ ر	7 <b>3</b>		
•	•	,	$\mathcal{J}_{i} \leq X_{i}$	<b>L</b> ,	, ,	1.2	151	1 01	Opt. J	r. /		
		x, –	<del>ال</del> ع	: 0			· !		fi	у, У,	•	
	-	ي ا	25 x.062	5+.75x.0	625 .25	5x.4379	5+ .75	× 0			•	
			= .06	25	······································	=			-109375	1		
00	<i>L</i> .									3.	Return =	: 7
John	llon:	maxip	mobahl	ity = ,	10937	5						41
						•	25- 1	( ₃ = 5)	<del>- y</del>	3 = 14	Keturn =	4
	$(X_i = I)$	·) -> ,	y,=1-	*> (x ₂ :	=3)	7,=1			(2)	3 =0 +	Return= 4	چ ٰ
							·75 4()	(3 = 2)-	→ J ₃ =	1	PRETUN= 4	ł
•	Bet \$	1 in g	y = 1 - ame1,	*1 in	n game	2, and	\$1 or	none	in gar	ne 3		
		•			V	•						
											1	ı
									• 4 /	-	gotina	)



		è	
	- 1		
	3		
	-4		

$$P = \begin{bmatrix} .2 & .5 & .3 \\ .1 & .6 & .3 \\ .05 & .4 & .55 \end{bmatrix}$$

$$R = \begin{bmatrix} 7 & 6 & 3 \\ 7 & 4 & 0 \\ 6 & 3 & -2 \end{bmatrix}$$

2

S	tationary	policy	action
	1	<del></del>	Do not fertilize
	2		Fertilize when instate 1
	3		Fortilize when in state 2
	4	•	Fertilize when in State 3
	5	,	Fertilize when m 1 or 2
	6		Fortilize when in 1 or 3.
	7		Fertilize when in 2 or3
	8		Fertilize regardless of State

ti i ta ang kanggang ang kanggang ang kanggang ang kanggang ang kanggang ang kanggang ang kanggang ang kanggan	1				The second second second	AND THE STORY
1 = .9x2+.1x-1 + 1.7	v.	N=400X-2+	30 x ·5 4 · 31	9.0.		Sallagi /
V'= -6x1+-4x-3 =6	] '		£258	'''Y <b>- 3</b> 00	ं क िंश्री	MANAGE C
1 - 17×4 + 13×1 = 3·1	,,				3	
1 2 1 1 A T 1 3 A T 1 3 A T 1			7 + 800x.3 .			
$w_2^2 = -2 \times 2 + 8 \times -1 = -4$	U	= 400 X	2+650x.	8-300 = 5	t 300	
$f_N(i) = \max_{k} \{v_i^k\}$	Si	ages:	. 1-	·	_	
1 11 may lank 50 ((i)?			Vi	·	Gof!	<b>2</b>
$f_n(i) = \max_{k} \left\{ v_i^k + \sum_{j} f_{ij} f_{n+j}(j) \right\}$	-	R	7	~	Fin)	0.5262130.00
	1	280	220	258	280	
Stage 31 Vik   Opt 20	2	250	110	255	522.	₩ . W
**************************************	3	220	-130	300	300	<u>~_</u>
$i  k = 1  k = 2  f_3(i) \not k^{\mu}$	8.	tage 2:				
1 1.7 3.1 3.1 2		•				
26442					Opt !	
etra e.	6	R	T	$\sim$	$f_2(\mathcal{L})$	Dep
Stage 2:	1		220+.7x280			
Vi + til f3(4) + tok f3(2) Opto		1X300	+·2×255 + ·1×300 = 497	+·5x255 + ·3×300 =531-5	549.5	R
$k = 1 \qquad k = 2 \qquad k_2 \vec{o} k^2$		=549.5				
1 17+ 9x3-1+ 1x-4 31+ 7x3-1+ 3x-4	2	250+·1×280	110+-3×280	215 4.7x215		
= 4.45 = 5.15 \$.15 2		+:7x255 +	+ 6x255 +	+·3×300	523.5	N
26+.6x3.1+.4x44+.2x3.1+.8x-4		=516.5	= 377	-523.5		
= 1.1 =1 1.1	3	220+-11280	-130 +·1 xz80	300 + 0x280		
Stage 1:		+.3X255	+•7×255+	+.2×255	,	
Vik + Pit (20) + Pik f2 (2) Opt		+.7x 300	·2 × 300	+.2×300	-a.	1.,
		=534.5	= 136.5	= 59/	59/	<b>1</b> ~
$k = 1 \qquad k = 2 \qquad f(0) k^{2}$	1	tage 1:		<u> </u>		A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH
1 17+.9x5.15+ 34+.7x5.15+ 7.85 Z					Opt	•
5/1/1/ 28/473	i	R	ア	. N	f, cc)	Chicago de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la
2 6 +- 6x5-15+ 4 +- 2x5-15 4x11 = 2-93 +- 8x11 = 1-81	1	580+ .4x546	220 + -7×549.5	258+.2x549.	d	
.4x1.1 = 2.93 +.8x1.1 = 1.51 293.1	•	+·54523.5	+ - 5x253-7_	+.2×253.5	820-6	CR
- 1 - ·		+.1×59/ =820.65	+.1×59/ = 768.45	+.8×591		1
Solution:	2	250+45455			]	1
Hears 122: Don't advertise if product		+.3x523.5	+.6×523.5	255 +0×549 +.7×523.5	1	l _M
is auccessful; Otherwise, advertise		+1×591 =845.7	++1×591	+.3×591	7987	1
	3	2.7 c) 4. 1. com =	±648.05	=798-75		1
Year 3 : Don't advertise		220 +-1X5475	+130+1x541	4.5×253-2	877.5	l _N
V= 400x,4+520x.5+600x-1-200		+7×541	4-2×591	+-8×241	P. 1,3	1
= \$280	-	*845.7	=409.6	=877.5		1
UZ = 300x.1 + 400x.7+700x.2 - 200 = \$ 250	닛	10 0	<u> </u>	L		4-
	12	Himum Solu				
200x.1+250x.2+500x.7-200 = \$220			io adver			
# #	1	he sales	volume	is poor	- ; "	
V= 1000 x-7 + 1300 x-2 + 1600 x-1 - 900 = \$220	0		use rew		. 3	
UST = 800x -3 +1000 x - 6 + 1700x -1 - 900 = \$110	1,	edvertime.		17		
1 = 600x.1+700x.7+NOOx.2-900 =- \$13	, "	WWW WY FERNY				
						- :
continued	L					
25	) ·	2				

(a)	pi =	tra	mation	matrix	given	i	reforg.	
6-11		on.	orden.	State	≤ 2 - €	•	U	

$$P^{\circ} = \begin{bmatrix} .8 & .2 & 0 \\ .8 & .2 & 0 \end{bmatrix} P_{=} \begin{bmatrix} .8 & .2 & 0 \\ .3 & .5 & .2 \end{bmatrix}$$

$$P^{2} = \begin{bmatrix} .3 & .5 & .2 \\ - & - & - \end{bmatrix}$$

**(b)** 

Let

di = expected inventory cost/month given

etate i and decision k.

do = (0x.2 + 1x.5 + 2x.3) x 150 = \$165

di = 5 (1x.2 + 0x.5) + (0x.5 + 1x.3) x 150 = \$46

do = 5 (2x.2 + 1x.5 + 0x.3) + (0x.3) x 150 = \$4.5

 $d_0' = 100 + (1x.2+0x.5)x5 + 1x.3x150$  = \$146  $d_1' = 100 + (2x.2+1x.5 + 0x.3)x5$  + 0x.3x150 = \$104.5

 $d_0^2 = 100 + (2x \cdot 2 + 1x \cdot 5 + 0x \cdot 3) \times 50$   $= {}^{4}104.5$ 

(c)

shape 3:

- <del></del>				OP	13
Ĺ	K 2.0	Kal	K=2	$f_{z}(i)$	R.
0	165	146	104.5	104.5	2
,	46	104.5	-	46	0
2	4.5	_	-	4.5	0

	k=0	fg(0) + P, fg(	K(i)	i k
D	165+1x 104-5 = 269-5	146+.8×104.5 +.2×46 = 238.8	 15 <b>9.</b> K	2
t	#6+.8x1045 +2x46 =138.8	1045+341645 +5×46+ •2×4·5 =159·75	 138-1	Ç
2	4.5+.3x104.5 +.5x46+ .2x4.5 = 59.75	-	 59.75	c

Stage 1.

(di+16.5)	10+8, 5(10+ A	34 fe(2)	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th
£30	<b>/2 = /</b>	Ross	fice) k
0 165+1×159.75 =324.75	146+-8x1597) +2x 13\$-8 =301.56	10415 + -3×159.75 + .5×138.8 +.2×59.75 = 233.75	233.75 2
# # + 18 x 15 9.75 # - 2 x 13 8 8 8 2 20 1 . 5 6	104.5+ -3X /59.75" + ·5X /38-8 + ·3X 59.75 = 239.75		701.5 <b>↓</b> €
2 45+3x159.7 +.5x138.8 +.2x59.75 = 13.775	- -		/3.7 <b>8</b> ¢

Cottomismoslution: If stock level at beginning of month is zero, order two refrigerators; otherwise order none.

dit = expected inventory coot given state; decision & and month;

Pt = transition matry given month;
and decision alternative &.

$$P_{1}^{0} = \begin{bmatrix} 1 & 0 & 0 \\ 1q & 1 & 0 \\ -5 & .4 & .1 \end{bmatrix} d_{0,1}^{0} = (1x.1)x5 + (1x.5)x150 = 210$$

$$P = \begin{bmatrix} .5 & .4 & .1 \\ - & - & - \end{bmatrix} d_{0,1}^{2} = 100 + (2x.1+1x.4) *5$$

$$P_{2} = \begin{bmatrix} 1 & 0 & 0 \\ .7 & .3 & 0 \\ d_{1,2}^{0} = (1x.5+2x.2)x150 = 135 \\ d_{1,2}^{0} = (1x.3)x5+(1x.2)x150 = 31-5 \\ d_{2,3}^{0} = (2x.3+1x.5)x5 = 5.5 \end{bmatrix}$$

$$P_{2} = \begin{bmatrix} .7 & .3 & 0 \\ -2 & .5 & .3 \\ -3 & -3 \end{bmatrix} d_{92}^{12} = 100 + (1x3)x5 + (1x.5)x55$$

$$= 105.5$$

continued.

· · · · · · · · · · · · · · · · · · ·			a aprilation				
$P_{3}^{0} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \end{bmatrix} d_{0,3}^{0} = (1x.5 + 1x.4) \times 10 = 195$ $d_{0,3}^{0} = (1x.2)x5 + 1x.4 \times 150 = .61$ $d_{2,3}^{0} = (2x.2 + 1x.4) \times 5 = .4$							
$\int_{-4}^{4} \cdot 4 \cdot 5 \int_{-3}^{4} \int_{-3}^{3} \frac{(x \cdot 5)(x + 1x \cdot 4)(x + 2x \cdot 5)}{(x \cdot 5)(x + 1x \cdot 4)(x + 2x \cdot 5)} = \frac{4}{5}$							
0 [-8 .2 0] do, = 100 + (1x.2)x5 +							
$P_{3} = \begin{bmatrix} -8 & .2 & 0 \\ -4 & .4 & .2 \end{bmatrix} d_{1,3}^{1} = 100 + (1x \cdot 2) \times 5 + (1x \cdot 4) \times 5 = 161$ $= \begin{bmatrix} -4 & -4 & -4 \\ -4 & -4 & -4 \end{bmatrix} d_{1,3}^{1} = 100 + (2x \cdot 2 + 1x \cdot 4) \times 5 = 104$							
2.							
P3=[-4.4.2]do,2=100+(2x-2+1x-4)*5							
Stoge 3:	dis		Opt 2	•			
i k=0	K=1	K=2	610	Ē'			
0 210	175.5	'	103 755				
2 3 - 3 0 Stage 2: k + Pok f (w) + Pok f (v) + Pok f (v) Optor							
1 /2=0	0,2,13 (0)+ /il	2/3(1)+/ / (1) R=2	Got Keis	P			
0 135+103 =238	13/54-7x103 + .3x75-5 = 226.25	105.5 4.2x/0 + .5x75.5 + .3x3	S. Marier Street Court of				
1345 +.7×103 +.3×75.5	1855+.2×103	=164.70	126-75				
=126.25	· 3x 3 = 164.75						
Z 5.5+.7x103 +.5x75.5 +.3x3	_	. –	ckiz	0			
* 64.75				-			
disi+t		(1) + Piz, f2 (2)	Cpi	7			
E REU	12=1		fices	E			
0 195+103 = 298	161+.8x164.75 +.2x/26.25 = 318.05	+.2 x 6 4.75 +.4 x 126.25 +.2 x 6 4.75	23	2.			
1 61+.8x164.75		28.8.5					
######################################	144+.4x164.75 +4* 126.25 +12x64.75	<u></u>	218.0	0			
	= 233.35						
2 4+.4X164.73 +.4 x126-25 +.2 x64.75			133.]5	0			
selection. Order 2 if in wate 0; otherwise, don't order.							
omenione, nont order.							

Lit

Sol: do not adoration

5= 2 ! advertise regardless of stock

S=3! advertise whenever in state !

5=4: adventure abeneva in state 2

$$P' = \begin{bmatrix} -9 & -1 \\ -6 & -4 \end{bmatrix}$$
  $R' = \begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$ 

$$p^{2} = \begin{bmatrix} .7 & .3 \\ .2 & .4 \end{bmatrix}$$
  $p^{2} = \begin{bmatrix} 4 & 1 \\ 2 & -1 \end{bmatrix}$ 

$$P = \begin{bmatrix} .7 & .3 \\ .6 & .4 \end{bmatrix}$$
  $R = \begin{bmatrix} 4 & 1 \\ 1 & -3 \end{bmatrix}$ 

-	l	F. 3
<i>S</i> '	C'= 1	ં=૨
1	1.7	6
2	3.1	4
3	3.1	6
4	1.7	Y

$$S=1: 9\pi_1 + 6\pi_2 = \pi_1$$
  $\pi_1 = 6/7$   $\pi_1 + \pi_2 = 1$   $\pi_2 = 1/7$ 

$$\frac{S=4!}{\pi_1+\pi_2} = \frac{\pi_1}{\pi_2} = \frac{\pi_2}{\pi_3}$$

S	$\pi_{i}^{s}$	77 ₂ S	ES
1	6/7	1/7	1.3714
2.	3/5	3/5	1.
3	2/3	<b>1/3</b>	1.8667
4	2/3	Y3	1.

Betimum decision:

advatise whenever in

potate 1.



# Set A.2a

	data; param m = 4;
1	set paint := exterior interior,
#sets	param unitprofit :=
set paint;	exterior 5
set resource;	interior 4;
#parameters	param rhs:=
param unitprofit{paint};	1 24
param rhs {resource};	2 6
param aij {resource,paint};	3 1
#variables	4 2;
<pre>var product{paint} &gt;= 0;</pre>	param aij: exterior interior :=  1 6 4
var product{paint} >= 0; #model maximize profit: sum{j in paint} unitprofit[j]*product[j];	2 1 2
subject to	3 -1 1
limit{i in resource}:	2 1 2 3 -1 1 4 0 1;
sum{j in paint} aij[i,j]*product[j] <= rhs[i];	
marineDemand1: product["marine"]<=1.5;	solve; #output results
marineDemand2 product["marine"]>= 5,	display profit, product;
data;	2
set paint := exterior interior marme;	#sets <b>3</b>
set resource := m1 m2 demand market;	set paint;
param unitprofit :=	set resource;
exterior 5	#parameters
interior 4	param upper{paint},
marine 3.5; param rhs:=	param lower{paint},
ml 24	param unitprofit{paint};
m2 6	param rhs {resource};
demand 1	param aij {resource,paint}; #variables
market 2;	var product{i in paint} >= lower[i].<=upper[i].
	#model
param aij: exterior interior marine :=	maximize profit: sum {j in paint} unitprofit[j]*product[j];
m1 6 4 5	subject to limit{i in resource}:
m1 6 4 5 m2 1 2 75 demand -1 1 0 market 0 1	<pre>sum{j in paint} aij[i,j]*product[j] &lt;= rhs[i];</pre>
market () 1 A	data;
	set paint := exterior interior;
solve; #output results	set resource := m1 m2 demand market;
display profit, product;	param upper = "exterior" 2 "interior" 2.5; param lower = "exterior" 1 "interior" 0;
	param unitprofit :=
2	exterior 5
<u> </u>	interior 4;
#sets	param rhs:=
set paint;	m1 24
#parameters	m2 6
param m,	demand 1
param unitprofit{paint};	market 2;
param rhs {1 m};	param aij: exterior interior :=
param aij {1 .m.paint}; #variables	ml 6 4
var product{paint} >= 0;	m2 1 2
#model	demand -1 1
maximize profit: sum{j in paint} unitprofit[j]*product[j];	market 0 1;
subject to limit{i in 1 m}:	solve;
<pre>sum{j in paint} aij[i,j]*product[j] &lt;= rhs[i];</pre>	#output results
	display profit, product;
continued	1 71
Continued	2

4

```
set paint;
set resource;
                                     -parameters
param unitProfit{paint};
param rhs {resource};
param aij {resource,paint};
                                  ----variables
var product{paint} >=0;
var varProfit{j in paint}=unitProfit[j]*product[j].
var resourceUse{i in resource j in paint}=aij[i,j]*product[j].
                                        --model
maximize profit: sum{j in paint} varProfit[j].
subject to limit{i in resource}:
             sum{j in paint} resourceUse[i,j] <= rhs[i];
set paint := exterior interior,
set resource := m1 m2 demand market;
param unitProfit :=
                      exterior 5
                      interior 4;
param rhs:=
                      m1
                                 24
                      m2
                      demand
                      market
                                 2;
param aij: exterior interior :=
          m1
                      6
          m2
                                 2
           demand
                     -1
                                 1
           market
                                 1;
solve:
                         -----output results
display profit, product, varProfit, resourceUse,
display {j in paint}(resourceUse["m1",j].resourceUse["m2",j]);
```

____

```
set input;
set output;
                                     parameters
param unitCost{input};
param yield{output,input};
param specs{output};
param minNeeds;
                                     -variables
var feedStuff{input} >=0;
var farmUse=sum{j in input}feedStuff[j];
minimize\ cost:sum\{j\ in\ input\}unitCost[j]*feedStuff[j];
subject to
aa: farmUse>=minNeeds;
bb{i in output}:
  sum{j in input}yield[i,j]*feedStuff[j]<=specs[i]*farmUse;</pre>
set input := corn soy;
set output := protein fiber;
param minNeeds:=800;
param unitCost := corn .3 soy .9;
param specs:= protein -.3 fiber .05; #negative because of <=
param yield: corn soy :=
         protein -.09
                             -.6
         fiber
                   .02
                             .06;
solve;
                                -output results
display cost, feedStuff, feedStuff.rc>a.txt;
display aa.dual,bb.dual>a.txt;
OUTPUT
cost = 437.647
  feedStuff feedStuff.rc :=
corn 470.588 8.32667e-17
soy 329.412 -1.11022e-16
aa.dual = 0.547059
```

Reduced cost shows that both corn and soy assume positive values in the optimum solution.

Dual price for constraint as shows that a 1 unit increase in minNeeds increases the total cost by \$.55, approximately.

bb.dual [*] := fiber -2.05116e-15 protein -1.17647

### Set A.3a

```
param n;
param c{1..n};
var x{1..n};
rest{i in 1..n}:(if i<=n-1 then x[i]+x[i+1] else
    x[1]+x[n])>=c[i];
```

2



```
 \begin{array}{l} x_1 = c, \; x_{T+1=0} \\ \\ \text{param T;} \\ \text{param c} \{1..T\}; \\ \text{var x} \{1..T\}; \\ \text{subject to} \\ \text{Period} \{\text{t in 1..T}\}: \\ \text{(if t=1 then c else x[t])} \; + \; \text{z[t]} \; - \; \text{d[t]} \; - \\ \text{(if t<T then x[t+1] else 0)=0;} \\ \end{array}
```

```
(a)
param m;
param n;
param k;
param p;
param q;
param c
#.....method 1
set S1={1..m union m+k..n union n+p..q}
var x{S1};
subject to limit: sum{j in S1}x[j]>=c;
#.....method 2
set S2=\{1..q \text{ diff } (m+1..m+k-1 \text{ union }
n+1..n+p-1)
var x{S2};
subject to limit: sum{j in S2}x[j]>=c;
(b)
para m;
param n;
param c;
param k;
var x{i in m..2*n+k};
#.....method 1
subject to CC:
  sum\{i in m..2*n+k diff n+1..n+k-1\}
  x[i] <= c;
#.....method 2
subject to CC:
  sum\{i \text{ in } m..2*n+k: i \le n \text{ or } i \ge n+k\}x[i]
```

#### (See file a.4a-2.txt)

set productsUsingComp{1..5};

param c{1..5}; #component cost param a{1..5}; #min availability

param d; #maximum demand for each product

var  $x\{1..10,1..5\}$ >=0; # units of product i that use component j

minimize z: sum{j in 1..5}(c[j]*(sum{i in productsUsingComp[j]}x[i,j])); subject to

 $C_{ij}^{x}$  in 1..5}:sum{i in productsUsingComp[j]}x[i,j] = a[j];  $D_{ij}^{x}$  in 1..10}: sum{j in 1..5}x[i,j] < -d;

1951 m 1...103. sum() m 1... lata;

set productsUsingComp[1]:=1 2 5 10; set productsUsingComp[2]:=3 6 7 8 9;

set productsUsingComp[3]:=1 2 3 5 6 7 9;

set productsUsingComp[4]:=2 4 6 8 10;

set productsUsingComp[5]:=1 3 4 5 6 7 9 10;

param a:=1 500 2 400 3 900 4 700 5 100;

param c:=1 9 2 4 3 6 4 5 5 8;

param d:=300;

display productsUsingComp;

solve;display x;

In the following code, the indexed set components InProduct is determined directly from the original data, which precludes the need to determine the elements of components InProduct[i], i = 1, 2, ..., 10, manually.

set productsUsingComp{1..5};
set componentsInProduct{i in 1..10}=
{j in 1..5:i in productsUsingComp[j]};
param c{1..10}; #component installation cost
param a{1..5}; #min availability
param d; #maximum demand for each product
var x{1..10,1..5}>=0;# units of product i that use component j
minimize z: sum{i in 1..10}c[i]*(sum{j in

componentsInProduct[i]x[i,j]; subject to C{j in 1..5}:sum{i in productsUsingComp[j]}x[i,j] >= a[j]; D{i in 1..10}: sum{j in 1..5}x[i,j] <= d; data; set productsUsingComp[1]:=1 2 5 10; set productsUsingComp[2]:=3 6 7 8 9; set productsUsingComp[3]:=1 2 3 5 6 7 9; set productsUsingComp[4]:=2 4 6 8 10;

param a:=1 500 2 400 3 900 4 700 5 100; param c:=1 1 2 3 3 2 4 6 5 4 6 9 7 2 8 5 9 10 10 7; param d:=300; display productsUsingComp,componentsInProduct;

set productsUsingComp[5]:=1 3 4 5 6 7 9 10;

solve; display x;

1

File RM3x.dat: The first row gives unitprofit. The first column in the remaining 4 rows defines rhs, and the second and third columns give aij.

2

File RM3xx.dat: Column 1 gives rhs.
Coulmn 2 repeats unitprofit[1] as many times as the number of constraints. Coulmn 3 repeats unitprofit[2] as many times as the number of constraints. Columns 3 and 5 give aij. Convoluted data file!

24 5 6 4 4 6 5 1 4 2 1 5 -1 4 1 2 5 0 4 1

set paint; set resource; param unitprofit{paint}; param rhs {resource}; param aij {resource,paint}; -----variables  $\text{var product}\{\text{paint}\} >= 0;$ -----madel maximize profit: sum{j in paint} unitprofit[j]*product[j]; subject to limit{i in resource}: sum{j in paint} aij[i,j]*product[j]<=rhs[i];</pre> set paint := exterior interior; set resource := m1 m2 demand market; param unitprofit := exterior 5 interior 4: param rhs:= ml 24 m2 6 demand 1 market param aij: exterior interior := m1m2 1 2 demand -1 market 0 solve: ----output results printf "Objective value = %5.2f\n".profit>a1 txt; printf "Product Quantity Profit(\$)\n">al.txt. printf "-----'n">al txt. paint}"⁰/65%11,2f%15.2f\n",j.product[j],unitprofit[j]*product[j]>a1.txt; printf"----\n">a11xi; printf "Constraint Slack amount Dual price n" -al txt, printf "-----'n">al.txt; printf (i in resource]"%s%12.2f%15.2f\n",i.limit[i].slack_limit[i].dual>a1.txt. printf "-----\n">a1.txt; **OUTPUT:** Objective value = 21.00 Product Quantity Profit(\$) exterior 3.00 15.00 interior 1.50 6.00 Constraint Slack amount Dual price m1 0.00 0.75 m2 0.00 0.50 demand 2.50 0.00 market 0.50 0.00

1

Sets paint and resource cannot be read from the double-subscripted table RM4aij, and hence will not be defined for unitprofit and rhs.

```
set resource:
set paint;
                                -----parameters
param unitprofit{paint};
param rhs {resource};
param aij {resource,paint};
                                          -variables
\text{var product}\{\text{paint}\} \ge 0;
                                  ----model objective
maximize profit: sum {j in paint}
unitprofit[j]*product[j];
                                  -model constraints
subject to limit {i in resource}:
         sum {j in paint} aij[i,j]*product[j] <= rhs[i];</pre>
                                    ----read tables
table RM4profit IN: paint <- [COL1], unitprofit~COL2;
table RM4rhs IN: resource <- [constrName].
rhs-availability:
table RM4aij IN: [resource, paint], aij;
#table RM4arrayAij IN:[i~resource],{j in
paint}<aij[i,j]~(j)>;
                                    ----write tables
table varData OUT:[paint],product,product.rc;
table conData
OUT:[resource],limit.slack~slack,limit.dual~DUal;
read table RM4profit;
read table RM4rhs;
read table RM4aij;
#read table RM4arrayAij;
                           -----Solution command
solve:
                           -----write table files
write table varData;
write table conData;
                                   ---output results
display profit, product, limit.dual, product.rc;
```

1

```
(a)
let rhs["m1"]:=20;
for {i in 1..100000}
  solve;
  display rhs["m1"], product;
  if rhs["m1"]=35 then break;
  let rhs["m1"]:=rhs["m1"]+5;
  }
(b)
let rhs["m1"]:=20;
repeat while rhs["m1"]<=35
       solve:
       display rhs["m1"], product;
       let rhs["m1"]:=rhs["m1"]+5;
(c)
let rhs["m1"]:=20;
repeat until rhs["m1"]>35
       solve;
       display rhs["m1"],product;
       let rhs["m1"]:=rhs["m1"]+5;
```

The cost distribution as figured

out by the Accounting Department is not suitable for economic analysis. The purchasing cost of 3,000,000 lb of oranges (= .19 x 3,000,000 = \$570,000 is fixed, and hence plays no role in the development of the model. The variable cost per 5-gallon can should be recomputed to exclude the fixed cost of purchasing the oranges--that is, for iam:

For concentrate:

Sales price/can = \$30.25 Variable cost/can = 21.05 - 30x(21.22/100) = \$14.68 Gross profit per lb = (30.25 - 14.68)/30 = \$0.52

For juice:

Sales price/can = \$20.75

Sales price/can = 13.28 - 30x(21.22/100)
= \$10.10

Gross profit per lb = (20.75 - 10.10)/15
= \$0.71

LP Model:

 $x_1$  = lb oranges used in jam  $x_2$  = lb oranges used in concentrate  $x_3$  = lb oranges used in juice

Maximize  $z = 1.39x_1 + .52x_2 + .71x_3 - $570,000$  subject to

The second constriant dominates the first constraint. This means that there is a definite surplus of at least  $900,000-5 \times 10,000 \approx 850,000$  th of Grade I oranges. Because concentrate and juice can use Grade I, the last constraint should be changed to

 $x_2 + x_3 \le 1,800,000 + 850,000 = 2,650,000$  This means that the extra 850,000 lb of grade I can be used to produce concentrate and juice, if necessary.

Solution:

Final iteration No: 5 Objective value (max) =320603.4688

/ariable	Value	Obj Coeff	Obj Val Contrib
1	50000.0000	1.3900	69500.0000
2	360003.5938	0.5200	187201.8594
2 3	90002.2500	0.7100	63901.5938

Let

 $x_{ij}$  = Rolls produced of type i in month j  $s_{ij}$  = Rolls purchased of type i in month j

The objective function can be formulated to minimize the total cost of producing the rolls internally and/or purchasing them externally.

The maximum demand from the two mills can be summarized as:

		Roll	1	Roll 2	Roll 3
Month	1	700		300	400
Month	2	300		500	700
Month	3	100		400	500

LP Model:

Maximize  $z = 90(x_{11} + x_{12} + x_{13}) + 130(x_{21} + x_{22} + x_{23}) + 180(x_{31} + x_{32} + x_{33}) + 108(s_{11} + s_{12} + s_{13}) + 145(s_{21} + s_{22} + s_{23}) + 194(s_{31} + s_{32} + s_{33})$ 

The solution of this model by TORA will show that it is cheaper to purchase all the rolls from outside source than to produce them locally. On the other hand, if we try to limit outside purchases,  $\mathbf{s}_{ij}$ , to 5% of the total demand, as specified by the company, the problem will have no feasible solution.

These results point to the possibility that the company should be studying whether or not its present operation is economically viable.



Minimize 
$$Z = 100 (I_1 + I_2 + I_3 + I_4)$$
  
  $+ 60 (J_{12} + J_{23} + J_{3y})$   
  $+ 50 (J_{12} + J_{23} + J_{2y})$ 

Subject to  $X_1 - I_1 = 400$ 

$$X_{2} + I_{1} - I_{2} = 700$$
 $X_{3} + I_{2} - I_{3} = 500$ 
 $X_{4} + I_{3} - I_{4} = 200$ 
 $X_{1} - X_{2} - y_{12}^{+} + y_{12}^{-} = 0$ 
 $X_{2} - X_{3} - y_{23}^{+} + y_{23}^{-} = 0$ 
 $X_{3} - X_{4} - y_{34}^{+} + y_{34}^{-} = 0$ 

all variables  $\geq 0$ 

Title: Comprehensive Problem 2-3 Final iteration No: 8 Objective value (min) =32500.0000

Variable	Value	Obj Coeff	Obj Val Contrib
x1 x1	550.0000	0.0000	0.0000
k2 x2	550.0000	0.0000	0.0000
K3 x3	200.0000	0.0000	0.0000
K4 X4	200.0000	0.0000	0.0000
<b>65</b> 11	150.0000	100.0000	15000.0000
6 12 67 13	0.0000	100.0000	. 0.0000
	0.0000	100.0000	0.0000
49 14	0.0000	100,0000	0.0000
Ø y12+	0.0000	50.0000	0.000
v10 y12-	0.0000	60.0000	0.0000
(11 y23+	350.0000	50,0000	17500,0000
c12 y23-	0.0000	60.0000	0.0000
c13 y34+	0.0000	50.0000	0.0000
c14 y34-	0.0000	60.0000	0.0000

Constraint	RHS	Slack(-)/Surplus(+)
1 (=)	400.0000	0.0000
2 (=)	700.0000	0.0000
3 (+)	200.0000	0.0000
4 (=)	200.0000	0.0000
5 (#)	0.0000	0.0000
6 ( <del>=</del> )	0.0000	0.0000
7 (≄)	0.0000	0.0000

i = { 1 represent chairs | 2 represent tables | 3 represent bookshelves

Xij = units of type i produced in period;
Sij = units of type i sold in period;
Zij = inventory units of type i left at
the end of period;

The objective function includes three components:

- 1. Sales sevenue
- 2. Production cost
- 3. Inventory cost

The constraints include

- 1. Production capacity
- 2. Demand limit
- 3. Labor requirement
- 4. Inventory balance equations

Maximize  $Z = \sum_{j=1}^{3} (45 S_{ij} + 100 S_{2j} + 20 S_{3j})$   $-(25 x_{ij} + 65 x_{2j} + 10 x_{3j})$  $-02 (25 Z_{ij} + 65 Z_{2j} + 10 Z_{3j})$ 

Subject to

 $x_{1j} \leq 3000$ ,  $x_{2j} \leq 1000$ ,  $x_{3j} \leq 580$ , j=1,2,3  $S_{11} \leq 2800$ ,  $S_{12} \leq 2300$ ,  $S_{13} \leq 3350$   $S_{21} \leq 500$ ,  $S_{22} \leq 800$ ,  $S_{23} \leq 1400$   $S_{31} \leq 320$ ,  $S_{32} \leq 300$ ,  $S_{33} \leq 600$   $20x_{1j} + 40x_{2j} + 15x_{3j} \leq 150x5x4x2x8x60$ j=1,2,3

 $Z_{ij} = Z_{i,j-1} + X_{ij} - S_{ij}, i = 1,2,3$  j = 1,2,3 $Z_{j0} = 30, Z_{20} = 100, Z_{30} = 50$ 

all ranables = 0

The effect of leaves can be investigated by changing the right-hand side of labor requirement constraint.

Although LP theory says that in a simplex method solution the number of positive variables cannot exceed the number of constraints, the real issue in the presentation by the OR analyst is that the model is not complete. The fact that the manager insists that all five products must be produced indicates that some important restrictions are missing. In particular, the impact of the competition appears to be important, at least from the manager's standpoint. Such

Although the analyst is correct in stating that LP theory requires more constraints to produce a desired product mix, the argument should be made from the standpoint of formulating the model properly and realistically. Once this task is done, it would not be necessary to "bargain" with the manager about the need to add more constraints. Rather, the realistic model will indicate whether or not the production system is operating optimally.

restrictions must then be taken into account.

Of course, when all the restrictions of the problem are taken into account, it may well be that the resulting model would not be a linear program at all.

The conclusion from the analysis of this situation is that one must always aim at formulating the model to represent the original system as realistically as possible.

Consider a scaled-down model:

- 1. 3-day week
- 2. Each worker works 2 consecutive days per 3-day week
- 3. Loads are assumed constant over each 8-hour shift

The situation can be depicted as follows:

$$Bid \begin{cases} Day 1 & \frac{x_{11} \ x_{12} \ x_{13} \ x_{11} \ x_{12} \ x_{13}}{x_{21} \ x_{22} \ x_{23} \ x_{21} \ x_{21} \ x_{22}} \\ Day 2 & \frac{x_{21} \ x_{22} \ x_{23} \ x_{21} \ x_{21} \ x_{23}}{x_{21} \ x_{22} \ x_{23}} \\ Day 3 & \frac{x_{31} \ x_{32} \ x_{33}}{x_{31} \ x_{32} \ x_{33}} & \frac{x_{31} \ x_{32} \ x_{33}}{x_{31} \ x_{32} \ x_{33}} \\ Casua/s & \frac{y_{11} \ y_{12} \ y_{13} \ y_{21} \ y_{22} \ y_{23} \ y_{31} \ y_{32} \ y_{33}}{x_{31} \ x_{32} \ x_{33}} \\ \end{cases}$$

The setuation assumes that the number of casuals that can be kired is limited; that is,

Jij = Cij for alli and j The inventory variables I represent is the load amount left unfinished from the preceding period i-1

For the purpose of defining the objective function, we want to minimize the number of bid and casual workers used, we will assign the bid worker half the weight we assign to the casual workers. Thus, the objective function is 3 the objective function is 3 the objective function is 3 the objective function is 3 the objective function is 3 the objective function is 3 the objective function is 3 the objective function is 3 the objective function is 3 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 1

The constrainty take into account the fact that a load is allowed to stay on the dock up to 16 hours (or two shifts). Thus, (see the chart)

$$\begin{aligned} &(X_{11} + X_{12}) + (X_{31} + X_{32}) + Y_{11} \ge b_{11} \\ &(X_{12} + X_{13}) + (X_{32} + X_{33}) + Y_{12} \ge b_{12} \\ &(X_{11} + X_{33}) + (X_{13} + X_{21}) + Y_{13} \ge b_{13} \\ &(X_{11} + X_{12}) + (X_{21} + X_{22}) + Y_{21} \ge b_{21} \\ &(X_{12} + X_{13}) + (X_{22} + X_{23}) + Y_{22} \ge b_{22} \\ &(X_{13} + X_{21}) + (X_{23} + X_{31}) + Y_{23} \ge b_{23} \\ &(X_{21} + X_{22}) + (X_{31} + X_{32}) + Y_{31} \ge b_{31} \\ &(X_{22} + X_{23}) + (X_{32} + X_{31}) + Y_{32} \ge b_{32} \\ &(X_{11} + X_{33}) + (X_{23} + X_{31}) + Y_{3} \ge b_{33} \\ &(X_{11} + X_{31}) + (X_{21} + X_{21}) + (X_{22} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} + X_{21}) + (X_{23} +$$

					4.5	
×12	+ X22	+ Yzz	-I ₅ +	L6 =	602	1
				· <i>I</i> , =		<b>3</b>
				8 = b	2 FF 44	Ž.
X22	+ X32	+ y ₃₂ -	- I _g + .	$I_q = b$ $I_1 = b$	)3 z 1.	
				-, -	033	
•	$f_{ij} \leq$				11.0	
a	ll var	eables	aren	ionneg	anve.	٠

The model has been tested for a 7-day week, three shifts per day, with the loads held constant over 4-hour intervals (instead 98). The results were successfully implemented.

Xij = bbl from line item i
allocated to bedden j
bij = Bid for line item i by bidden j
Ci = capacity (bbl) of line item i
Maximize z = \( \frac{6}{2} \) \( \frac{8}{2} \) bij Xij

S.t.  $\sum_{i=1}^{n} x_{ij} \leq 36,000, j=1,3...,6$  ①  $\sum_{j=1}^{n} x_{ij} \leq Q_{i}, i=1,2,...,6$  ②

Solution: (See file amp Case 3-3.+xt)

	/	z	3	4	5	6	7	8	
1	,		20		<del></del>	***			720
2					13		17		30
3						6	19		52
4	4					•	• •	36	40
ک		19	16						35
6					3	σ			30
Tata Ia	1	19	36	0 /	3 3	6	36	36	

Revenue = \$202,180

Ranking Solution	?

1	_/	2	3	4	5	6	7	8
1			20					
2			16				14	
3						3	22	
4	4							36
5		35						
6	30							
Tatal	34	35	36	0	0	3	36	36

Revenue = \$201,550 LP solution is better than the ranking

Solution by \$630. To investigate the effect of setting the 20% limit, the associated constraints

(1) yield the following dual price:

Constraint Dual price

Constraint	Dualprice
7	0
Z	0
3	۰٥3
<del>4</del>	0
7	0
<b>S</b>	-0/
6	.02
	.02

The fact that some of the dual prices are positive shows that there are advantages in raising the limit above 20% as this will increase the total revenue breteed, the following table show the change in sevenue with the limit:

Percentage	Revenue (4)
20	202,180
30	203,110
40	203,320
≥ 48	203,450

Thus, it is advantageous in this case to raise the limit to 48%, as this will raise the revenue from \$202,180 at 20% to \$203,450. The best percentage is data dependent.

be a larger than the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of			
Maximize	$Z = 3X_1 + 2X_2 +$	543 4	-[
Subject to		<u> </u>	100
(F1)	$X_1 + 2X_2 + X_3$	≤430	0
	x1 + 2 x3	≤ 460	3
(RI)	x, +4 x2	≤420	3
(RZ)	$X_1 + X_2 + X_3$	≤300	<b>(4)</b>
	<i>x</i> ₃	≤240	<b>©</b>
	X1, X2, X3 ≥0		

# Optimum Solutioni (excluding 5)

Objective value	(max) = 1290.00	00	
Variable	Value	Obj Coeff	Obj Val Contrib
x1 P1	0.0000	3.0000	0.0000
x2 P2	70.0000	2.0000	140.0000
x3 P3	230.0000	5.0000	1150.0000
Constraint	RHS	Slack(-)	/Surplus(+)

Constraint	RHS	Slack(-)/Surplus(+)				
1 (<) 2 (<)	430.0000 460.0000	60.0000- 0.0000-				
3 (<)	420.0000	140.0000-				
4 (%)	300,0000	0.0000-				

		*** SE	NSITIVITY	ANALYSIS	***
Objective	coefficients	 Single	Changes:		

Vaniable	Current Coeff	Min Coeff	Max Coeff	Reduced Cost
x1 P1 x2 P2 x3 P3	3.0000 2.0000 5.0000	-infinity 0.0000 2.6667	6.5000 5.0000 infinity	3.5000 0.0000 0.0000
Dinktskand	Side Single Cha-			

Right-hand S	ide Single Change	8:		2
Constraint	Current RHS	Min RHS	Max RHS	Dual Price
1 (<)	430.0000	370.0000	infinity	0.0000
2 (<)	460.0000	390.0000	600.0000	1.5000
3 (*)	420.0000	280.0000	infinity	0.0000
4 (<)	300,0000	230,0000	330,0000	2 0000

The given optimum solution satisfies constraint @ Hence @ is nedwordent

The associated applical surverse B is

$$X_{B} = \begin{pmatrix} X_{4} \\ X_{3} \\ X_{6} \\ X_{2} \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} 1 & 1/2 & 0 & -2 \\ 0 & 1/2 & 0 & 0 \\ 0 & 2 & 1 & -4 \\ 0 & -1/2 & 0 & 1 \end{pmatrix}$$

#### Question 1:

H. additional constraint
X3 ≤ 210

is not satisfied the given optimal solution. We use the dual simplex method to recover the new fearible continued...

Solution. Then, we study the effect of the 20% increase in profitability on the optimality of the resulting feasible solution.

								1.5	
		Хz	Xз	Хy	Xs	×6	Xη	X8	Solution
Z	7/2	0	0	0	3/2	0	2	0	1290
Xy	1/2	٥	0.	ı	1/2	0	-2	0	60
×3	3/2	0	1	0	1/2	0	O	0	230
×6	3	0	0	0	2	1	_4	10	140
×z	-1/2	1	0	0	-1/2	0	1	10	70
Χp	o	0	ī	0	0	0	0	1	210
Z	7/2	0	0	0	3/2	0	2	0	1290
γK	1/2	0	٥	1	1/2	0	-2	٥	60
Χ³	3/2	0	1	0	1/2	0	0	0	230
X6	3	0	0	0	2	1	-4	0	140
X2	-1/2	1	0	0	-1/2	Ó	I	0	70
X8	-3/2	0	٥	0	-1/2	0	0	1	-20
Z	0	0	0	0	1/3	O	۷	7/3	1243/3
Χy	0	0	0	ı	1/3	0	- 2	1/3	53 1/3
*3	Ø.	0	. 1	٥	0	0	0	ı	ZIO
X6	Ö	O	0	0	1	i	-4	2	100
XS	0	1	0	0	-1/3	O	ſ	-1/3	762/3
×ı	<u>                                     </u>	0	٥	0	1/3	0	0	-2/3	131/3
i i									· indonination

Next, we study the effect of changing the unit projet by +20% for variable X3

New dual values

$$Y = (0, 6, 0, 2, 3) \begin{bmatrix} 1 & 1/3 & 0 & -2 & 1/3 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & -4 & 2 \\ 0 & -1/3 & 0 & 1 & -1/3 \\ 0 & 1/3 & 0 & 0 & -2/3 \end{bmatrix}$$

= (0, 1/3, 0, 2, 10/3)

He ,	ew o	bject	tire's	ew	Hus	N	edo i	as
<u>           </u>	Xz	83	X4	X5		X7	Xa	
20	0	0	0	1/3	0	Z	10/3	1453

Thus, she last basic solution remains optional. Conclusions:

1. He new constraint ×3 ≤ 210 reduces the profit from \$1290 to \$1243.33.

2. He 20% increase in the unit profit of x3 increases the total profit to \$1453.33.

3. The proposal is acceptable because, in the end, the total profit increases from \$ 1290 to \$1453.33

#### Question 2.

From TORA's printout,
worth per unit of R2 = \$2

Because The unit price of additional units of R2 is \$3 higher Han the present supplier, The additional cost is not justifiable economically.

Question 3:

Objective	Coefficients	Simultaneous Chan	ges d:	
Monbasic \	ar Optimality	Condition		
x1 P1 sx5 sx7	3.5000 + 1.5000 + 2.0000 +	0.5000 d3 +	-0.5000 d2 >=	
Right-hand	d Side Ranging -	- Simultaneous Cha	inges D:	
Basic Var	Value/Feasib	ilty Condition		
sx4	60.0000 + >= 0	1.0000 D1 +	0.5000 D2 +	-2.0000 D4
x3 P3 sx6	230.0000 + 140.0000 +	0.5000 D2 >= 0 2.0000 D2 +	1.0000 D3 +	-4.0000 D4
x2 P2	>= 0 70.0000 +	-0.5000 D2 +	1.0000 D4 >= 0	

of simultaneous charges in the availability of the resources. We can get the same result by considering

$$\begin{pmatrix}
x_4 \\
x_3 \\
x_6 \\
x_2
\end{pmatrix} = \begin{pmatrix}
1 & 1/2 & 0 & -2 \\
0 & 1/2 & 0 & 0 \\
0 & 2 & 1 & -4 \\
0 & -1/2 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
430 + D_1 \\
460 + D_2 \\
420 \\
300
\end{pmatrix}$$

$$\begin{pmatrix}
60 + D_1 + .5 D_2
\end{pmatrix}$$

$$= \begin{pmatrix} 60 + D_{1} + .5 D_{2} \\ 230 + .5 D_{2} \\ 140 + 2 D_{2} \\ 70 - .5 D_{2} \end{pmatrix}$$

Thus, for  $D_1 = D_2 = 40$ , the new Solution is

$$X_1 = 0$$
  $X_2 = 50$ ,  $X_3 = 250$ ,  
 $X_4 = 120$ ,  $X_5 = 0$ ,  $X_6 = 220$ ,  $X_7 = 0$   
which is feasible.

Hew projet = 3x0 + 2x50 + 5x250 = \$7.350 Increase in projet = 1350 - 1290 = 60 This result can also be computed from the dual objective function as

$$\Delta Z = D_1 y_1 + D_2 y_2$$
=  $40 \times 0 + 40 \times \frac{3}{2} = $60$ 

Because the worth per unit of FI is zero, it means that resource FI is already abundant (indeed, X4 = 60 minutes). Hence, we need to increase F2 only by Dz = 40 min at the cost of \$35, and the proposal is justifiable conomically

### Question 4:

This question can be analyzed by adding the constraint X2 = 100 and applying the dual simplex method.

The new optimum tableau is

unio (pilik) at	Xı	Xz	Xz	Хy	Xs	XL	X7	X8	l
Z	2	0	Ø	3	0	0	Ø	5	1200
X5	O	0	0	. 1	T	0	0	-1	30
X6	1	0	0	<b></b> Z	0	I,	0	-2	60
X7	1	0	0	4	0	Ö	1	O	20
X ₃	ł	0	` <b>}</b>	1	0	0	0	1	200
Xz	0	<u> </u>	0	-1	0	0	0	0	100

The new restriction reduces the profit by \$90.

We should have expected this result even before the new tableau is computed. The reason is that the present solution does not satisfy the new constraint. Hence, the value of the objective function must deteriorate.

#### Question 5

Decrease in the unit processing time of PI on FZ will produce the following reduced cost:

$$13/+(3-1)3/+13/+13/-53$$

$$=1x0+2x\frac{3}{2}+1x0+1x2-3$$

Thus, she reduction in the processing still would not make PI profitable

The first proposal should 4-2 not produce the descret results because it is based on an averaging procedure that closs not have a valid theoretical basis. The second proposal may produce the descret result provided that the semaining two constraints are not violated we can check both proposals by computing

Where  $b^*$  is the new right-hand side; that is  $b^* = \begin{pmatrix} 32.4 \\ 14.4 \end{pmatrix} \quad \text{for persposal 1}$   $= \begin{pmatrix} 30 \\ 7.5 \end{pmatrix} \quad \text{for proposal 2}$ 

 $X_{B} = \begin{pmatrix} 1/y & -1/z & 0 & 0 \\ -1/8 & 3/4 & 0 & 0 \\ 3/8 & -5/y & 1 & 0 \\ 1/8 & -3/4 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 32.4 \\ 14.4 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -9 \\ 6.75 \\ -4.85 \\ 2 \end{pmatrix}$ 

The proposal does not result in 25% increase in X, and X2. Moreover, the resulting solution is impassible. Proposal 2:

$$X_{B} = \begin{pmatrix} 1/4 & -1/2 & 0 & 0 \\ -1/8 & 3/4 & 0 & 0 \\ 3/8 & -5/4 & 1 & 0 \\ 1/8 & -3/4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 30 \\ 7.5 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3.75 \\ 1.875 \\ 2.875 \\ 1.125 \end{pmatrix}$$

New solution is feasible. It also results in the desired 25% moresse in X, and X2

First, we compute the 5-1
percent distribution of commodities
to the different sites:

Site	Percent	Percent						
NI	·6 × · 85 =	.51						
NZ	.6 x.15 =	.09						
ČI	.15x.6 =	.09						
CZ	.15 x .4 =	.06						
51	.25x.8 =	.20						
Sz	25 x .2 =	.05						

Hext, instead of dealing with three chifferent types of products, we convert all them to equivalent returnables bottles by using the given transportation cost factors of 60% for cans and 70% for nonreturnables. The supply amount at the new factory equals the difference between the demand and supply at the existing plant.

l	, ,		0	• /	•
Уr	,	Returnables	Cans	Non- returnable	Equivalent es neturnable
	Demand	2400	1750	490	3795
1	Supply				
•	Corrent	1800	1250	350	2795
	new	600	500	140	998
	Demand	2450	2000	500	4000
2	Supply Current	1850	1350	380	2926
	new	600	650	120	1074
	Demand	2600	2300	600	4400
3	Supply	_			
٦	current	1900	1400	400	3020
	new	700	900	200	1380
	Demand	2800	2650	650	4845
4	Supply			•	
7	current	2050	1500	400	3230
	new	750	1150	250	1615
	Demand	3100	3050	720	5434
5	Supply				, - ,
	Current	2150	1800	450	3545
	new	950	1250	270	1889
				· co	ontinued

Let P, P2, and B represent 5-1 continued the locations of the existing plant, the central plant, and the south plant. The generic transportation model for each period is given as

	NI	NZ		CS	51	25	
P	.8	1.2				5.1	9,
P	1.3	1.9	1.05	.8	1.5	1.7	a
P3	1.9	2.9	1-2	1.6	.9.	.8	<i>a</i> 3
•	b,	PNZ	bei	bc2	bsi	bsz	

a, = Supply of equivalent returnables at exisiting plant

at new central plant is located south

as = Supply of equivalent returnables at new south plant

= 0, if plant is located center

b; = Total (equivalent returnables)

demand for the year × allocated

proportion for the site (j=N1,
N2, C1, C2, S1, S2)

For example, for year I, we have

 $a_1 = 2795$ 

 $a_z = \begin{cases} 998, & \text{if new plant is in center} \\ 0, & \text{if new plant is in south} \end{cases}$ 

a3 = \ 998, if new plant is in south o, if new plant is in center

b_{N1} = .51 x 3795 € 1939 b_{N2} = .09 x 3795 € 342

bs, = .05×3795 ≈ 190

The following table gives all a; and b;



S-1 continued   (a) Optimum tableau   Yr   a,   a2 or a3     2 3 4 5 6														Chi	ap
2795 998   2 3 4 5 6   2 3 29 6   1074   3 30 20   1380   4 3230   1615   5 3545   1889   2 62   7   70 tol   4   4   4   4   4   4   4   4   4		Ул.		a,				ntinued	10	0	pti	ทแท	n ta	blea	eu
2 2926 1074 3 3020 1380 4 3230 1615 5 3545 1889  2 62 7  Total  Solution of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy		1					~	•		1	2	3	4	5	6
4 3230 1615 5 3545 1889  2 62 7  Total Syr dimend by by by be, be be by dimend by by by demand by by by be, be be by dimend by by by demand by by by demand by by by demand by by by demand by by by demand by by by demand by by by demand by by by demand by by by demand by by by demand by by by demand by by by demand by by by demand by by by by by by by by by by by by by			2	926		107	4		1		192	444	216		
1 3793 1934 341 341 228 759 190 2 4000 2040 360 360 240 800 200 3 4400 2244 396 396 264 880 220 4 4845 2471 436 436 291 969 242 5 5434 2771 489 489 326 1087 272  From the transportation model, we obtain the following summary:  Minimum coof (\$\$) Minimum cost (\$\$)  1 4182.85 3653.10 2 3828.80 4039.20 3 4632.60 4341.20 4 5005.60 4665.70 5 4807.40 4922.80  4 4 4  4 4 4  4 4 4  4 4 4  4 4 4  4 5 500 560 240 800 200  5 190 200  6 2 217 444 315 50 7  The optimum coof (\$\$) 6 1,886,300 (m x 100  Cost Savings = (2,495,000  = \$395,60  Phase 1 is dedicated to perimeter road, and used to build the road.		4	3	230		161	5		2	62					7.
2 4000 2040 360 360 240 800 200 3 4400 2244 396 396 264 880 220 4 4845 2471 436 436 291 969 242 5 5434 2771 489 489 326 1087 272  From the transportation model, we obtain the following summary:  Minimum coof (\$\$) Minimum cost (\$\$)  1 4182.85 3653.10 2 3828.80 4039.20 3 4632.60 4341.20 4 5005.60 4665.70 5 4807.40 4922.80  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	yn	To to l demand	b _{NI}	b _{N2}	bci	601	bsi	bsz	3	T-y	21			50	
3 4400 2244 396 396 264 880 220 5 999 999 999 999 999 999 999 999 999		4.		_					4		4				
5 5434 2771 489 489 326 1087 272 62 217 444 315 50 7  From the transportation model, we obtain the following summary:  Minimum coof (\$\frac{1}{2}\$) Minimum cost (\$\frac{1}{2}\$)  Minimum coof (\$\frac{1}{2}\$) Minimum cost (\$\frac{1}{2}\$)  Year Biven B  1 4182.85 3653.10  2 3828.80 4039.20  3 4632.60 4341.20  4 5005.60 4665.70  5 4807.40 4922.80  62 217 444 315 50 7  The optimum tolule  6 1,886,300 (m × 100  Cost Savings = (2,495,000  = \$395,6  Phase 1 is dedicated to perimeter road, and used to build the road	1	4400	-	•		264		220	5				99		
obtain the following aummary:  Minimum cost (\$) Minimum cost (\$)  The given R2 given R3  1 4182.85 3653.10  2 3828.80 4039.20  3 4632.60 4341.20  4 5005.60 4665.70  5 4801.40 4922.80  [6 1,886,300 (m x 100  Cost savings = (2,495,000  [6 2,495,000  [7 886,300 (m x 100  Cost savings = (2,495,000  Phase I in dedicated to perimeter node, and used to build the road.	ı	-			-					62	217	444	315	50	7
Minimum coof (\$)   Minimum cost (\$)   Cost Savings = (2,495,000     1   91 ven R2   91 ven R3   = \$395,6     2   3828.80   4039.20   Phase 1 is dedicated to 4632.60   4341.20     4   5005.60   4665.70   The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the s									6	/,	886,	300	(n	n'x	100
1 4182.85 3653.10 (b) Divide the model 2 3828.80 4039.20 3 4632.60 4341.20 Phase 1 is dedicated to 4 5005.60 4665.70 perimeter road, and 5 4801.40 4922.80 used to build the roa									Ca	15 <i>†</i> .	Savii	ngs = =	=( <i>2,</i> :   \$	495, <i>3</i> 93	100
2 3828.80 40 39.20 Phase 1 is dedicated to 4632.60 4341.20 perimeter road, and 5005.60 4665.70 used to build the road	1		418.	2.85					(6)	8	ivid		•		
4 5005.60 4665.70 perimeter road, and 5 4807.40 4922.80 used to build the road	2	•							i _						
5 4807.40 4922.80 used to build the roa	1				* *				10	eri	mel	ter s	000	1,a	nd
										,					

By locating the plant in the south,
we save
22,457.25-21,672.00 = \$835.25
over a period of 5 years, or
approximately \$167.05 per year.
The result shows that the
transportation cost is not an
important factor in the selection
of the location (a saving of \$167.05
is not significant). Thus, other
factors must be considered in
the determination of the site
of the new plant.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

22,457.25

Totals

1		1						L		45
	1	2	3	4	5	6	7	8	9	
1		192	444	216					108	960
2	62					7		90	42	201
3		21	•		50					7/
4		4					20			24
5				99						99
	62	217	444	315	50	7	20	90	150	
				_		_				

The optimiem solution corresponds 6 1,886,300 (m3x 100m) . Thus, Cost savings = (2,495,000-1,886,300) x \$.65 = \$395,655

(b) Divide the model into two phases: Phase 1 is dedicated to building the perimeter road, and Phase 2 is used to build the roads that can be constructed only after the perimeter road is built.

We cannot use the hansportation we cannot use a regular model, but must use a regular linear program that permits building the perimeter road in Phase I and the cross-roads in Phased.

### Phase 1 distances (dij1)

	1	2	3		5	6	7	8	9
1			12	10		18	11	85	20
2			14	12		20	13	/0	25
3	16	20		20	1.5	,	6	22	18
4	20	22		22	6		14		18
5			10	4				14	15
'	- 0.0			1			1		

all empty squeres have a distance M = 9999999

21,622.00

Phase 2 distances (dij2)	5-2 continued	Optimum Solution (Phase II) 5-2 continued
1 2 3 4 5 1 7	R 9	
1 2 3 4 5 6 7	11 8-5	
'		1 143 143
2 20 28 14 12 20 20	13 10	26249
3 16 20 26 20 15 28	6 22	
3 3 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		3
4 20 22 26 22 6	2 21	4
22 26 10 4 16	24 14	
5		5
7.10 11.10	velened or	62 192
The LP model is thus de	vergren us	Schedule: 5-3
follows: Define	(moon)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Xijk = amount in (m'x moved from dource	i to	(CI) 58
destination i dure	ng phase k	125 CW 30
<b>.</b>		15/ 20 C2 + 49
Minimize Z = Z E Z dijk	e Xijk	
Subject to		(C3) → 23
$\sum_{j} \sum_{k} x_{ijk} = a_i,$	1= 1,2, 5	34 WI) 15
		(4) × 15
E Z Xijk = bj,	J=1/2,··; 9	
Xijk ≥0 for all	lisjak	32 WZ 6 CS 24
		$\begin{array}{c c} 32 & \longrightarrow & CS & \longrightarrow 24 \end{array}$
Optimum Solution (Phase 1	movements)	
1234567	7 8 9	(6) > 22
1 444 216 7	150 9	n associated van-miles
	90 9	= 20x5+15x45+ 0 48x50+30x30+12x30+
2	70	10 48x50 +30x30 + /2x30 + 10x38 + 11x30 + /5x8+18x10 +
3 21 50		19 19 19 19 19 19 19 19 19 19 19 19 19 1
4 4 2	20 2	= 8132
	`	
5   99		Next, we solve the problem as a transshipment model, using the
0 25 444 315 50 7 2	continued	same supply / demand amounts continued

1 8	3≡.	191			:'.			5-3	conti	nued	Γ
,	. ,		· · · .			C3		c5	<b>C6</b>		
	1	2	3 45	50	30	30	7 60	8	9	1	
1	·		,,,							125 B	
2	5	0	80	38	70	30	8	10	60	34 # B	
3	45	- 80	o	85	35	60	\$\$	7	90	32 B	
4	50	38	85	0	20	40	25	30	70	В	
5	30	70	35	20	0	40	90	15	10	В	
6	∌0	30	60	40	40	0	10	6	90	B	1
7	60	8	SS	25	90	10	0	80	40	В	
8	75	/0	7	30	15	6	80	o	15	В	
9	80	60	90	70	10	90	40	15	ō	В	
-	B	B	$\mathcal{B}$	58 + B	49 B	23 B	15 tB	24 B	22 + B		•
2	PHIN	num	Solu			m 7	ORI	4			
								C	1)-	58	
13	25	cw						(	2)+	49	
34	4	12	5				58	(0	3) t	>23	
		WI		_	_	7.	3	$\frac{1}{c}$	4	<b>→</b> 15	
3	2	W2).							[[بر	19	,
	· ·		-					22 ]	5)-1	<b>-</b> 24	
	Van	-mi	les =	- 4	946	<u>,</u>		<u>(</u>	<u>6</u> )	<b>&gt;</b> ²²	

Sayover times are computed 5-4
depending on whether the roundtrip
starts from A or from B. If the
departure time from one city is
not at least 90 minutes lates
than the arrival time of the crew
at the same city, the crew must
wait till the next day. For example,
flight I arrives in city B at 8:30
and flight 10 leaves B at 7:30
If the crew of flight I is to return
on flight 10, it must have a
layover of 23 hours.

### 1. Layover time when roundling starts at A

Flight	10	20	30	40
1.	23	24.75	8.00	11.50
2	20.75	22.50	5.75	9.25
3	15.50	17.25	24.50	4.00
4	14.00	15.75	23.00	2.50

### 2. Layover time whon roundingstarts at B

	10	20	30	40
j	20.5	18.75	11.50	8.00
2.	22.75	2)	.15	
3	4.00	1.75	19	15.50
4	5.50	3.75	20.50	17.00

The two tables are combined such that the base with the smaller layover time is used. The result is the following combined matrix:

<b>////</b> =	roundtry	s stants	mB L	5-4. conti	nued
	10	20	30	40	. I
1	20.5	1875	8	<b>/8</b> //	1
2	20.75	<b>21</b> //	5.75	9.25	1
3		175	19//	4	1
4	5.5	375/	20/5/	2.5	1
	1	1	1	(	ì

TORA optimum Solution:
1-40, 2-30, 3-20, 4-10
The solution is interpreted as

$$B \rightarrow A(40), A \rightarrow B(1)$$

$$A \rightarrow B(2)$$
,  $B \rightarrow A(30)$ 

$$B \rightarrow A(20), A \rightarrow B(3)$$

The optimin solution calls for stationing I crew in A and 3 crews in B.



Arrange the books in 6-2 accending order so that node 1 represent the 6" books and node 4 represent the 12" books and node 4 represent the 12" books of the network starts from node 0. An arc from node i to node j, i < j, aignifies that all the books of heights hi, him, and hi are placed in a shelf of height hi. The length of the arc equals its associated fixed plus variable costs. The ophimum solution is given by the shortest route from node 0 to node 4.



Total cost = \$278.50

#### Solution:

Produce 19 ft of height 8" and 30ft of height 12"



Sh i pment	Shipping Route	Delivery Date
1	A to D	18
2	A to E	- 15
3	B to D	. 4
4	B to E	5
5	C to E	18

	Ą	В	Ç	D	E
A				3	4
В		9		3	2
C				3	5
D	2	2	2	7.	
E	3	1	4		

The ships schedules can be summarized as shown below

1--1--2--3--4--5--6--7--8--9--10--11--12--13--14--15--16--17--18--19--20--21--22

Precedence Relationships



Precedence Relationships



Flow Model



In the flow model, the 6-3 continued flow in arcs (i-i'), i=1,2,...,5 must equal 1 to realize a feasible Solution. The different arcs of the model represent the precidence relationships of the feasible schedule. The minimum flow from node 5 to node T will provide the minimum number of ships required to meet the proposed schedule.

The perocedure for determing the minimum flow in the network consists of the following steps:

Step 1: Determine a feasible solution to the flow model from S -> E

step 2: Determine the residue network of the feasible thatton

Step 3: Determine the maximum flow in the residue networks from E → 5; that is, from the end nede Eto the start

Step 4: Determine He minimum flow from S -> E as feasible flow S -> E - max flow E -5

Step1:

The easilest way to funding a feasible solution is to assume that each route is served by a separate ship. The network below provides such a solution.



Step2:



Step 3: Maximum flow in reactive network (all missing arcs fave zero flow) from E - 5



Step4:



Solution: Two ships are needed.

Consider the case of four brokers. The actual situation for which the problem was analyzed included a total of 254 brokers

P = payables by broker i, i=1,2,34

Rij = receivables by i from i

 $A_i = assets g broken i, i=1,7,3,4$ 

The date of the problem may be

	1	S	3	4	assets
}	P	RIZ	R ₁₃	R14	A,
Z	Rzi	P	R23	Rzy	Az
3	R ₃₁	R32	Pm	R3#	$A_3$
4	R41	Ryz	Ryz	P4	Ay

a broken is solvent if its net debt does not exceed its assets - that is, broker is solvent if

$$P_i \leq A_i + \sum_{i \neq j} R_{ij}$$

The problem deals with & brokers whose total assets are less than their debt - that is,

$$P_{i} > A_{i} + \sum_{j \neq i} R_{ij}$$

The proposed solution calls for prorating all adebts such that for broker ,

prorated payables - provated receivables

det

di = prorating factor for brokeri

continued.

He value of de may be 6-4 continued determined by solving

Pai - I Rijaj = Ai, for alli

Company of the second

Consider the following hypothetical illustration:

	4,	αz	0/3	qy	assets	Defiat
1	35	-5	-4	-1	20	5
2	-10	40	-5	-7	15	3
3	-3	-4	20	-1	5	7
4	-5	-5	-5*	30	10	5
,	17-	26	6	21	- Pag	yables
	guate	ons:			`	,

$$\begin{pmatrix} 35 & -5 & -4 & -1 \\ -10 & 40 & -5 & -7 \\ -3 & -4 & 20 & -1 \\ -5 & -5 & -5 & 30 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 20 \\ 15 \\ 5 \\ 10 \end{pmatrix}$$

solution: a, = .76, dz= .75, dz= .55, dz= .68 The net result of the provating is that the total assits (= 20+15+5+10 = 50) will be distributed to investors The following table gives the promited cash:

	η.				<i>a</i> ,	A / ;
	.76	75	.22	.68	Clearts	Defiat
1	26.6	-3.75	- 5-5	68	20	, 0
2	-7.6	30	-7.75	-4.76	15	0
3	-7.28	-3	11	68	5	0
4	-3.8	-3.75	-7-75	20.4	10	0
	12.95	19.61	3.26	14.28	a Pay	ables



The next phase of the analysis calls for eliminating the "loops" from the given solution. For example, lows 2 \$7.6 and 2 orvs 1 \$3.75. The net result is that I orvo 2 \$7.6-3.75 = \$3.85. The idea is 6 climinate all higher level loops

I first proposed solving the problem of the loops" by pooling all the assets and distributing them to outside investors based on the determined value of of the that in



The proposed tolution did 6-4 continued not satisfy the legal requirements of the case. as a result, I proposed the following network - based LP. Let Xij = flow from node i to node j. The minimization of ZXij subject to the following flow constraint should produce the minimum number of loops (see the network in opposite column):

	XI	Z XI	3 X14	X21	X23	X34	X31	X32	X34	X	X42	X43	RHSVALUE
OBJ (Min)		1	1	1	1	1	1	1	1	1	1	1	
Node1	′	,	1	-/			-/			-/			7.05
NODE2	-/			1	1	1		-/			-/		-4.61
Nodes	<u> </u>	-1		L	-1 .		1	1	1			-1	1.74
Node4			-/						-1	1	1	,	-4.18
Bound	7.6	2.28	3.8	3.75	3.	3.75	2.2	2.75	2.75	-68	4.7	6 -68	

The optimum LP solution is summarized below.



**Comprehensive Problems** 

The problem reduces to finding 7a feasible solution of a, A + a2 B + a3 C = b

$$\alpha_{1} A + \alpha_{2} B + \alpha_{3} C = b$$
 $\alpha_{1} + \alpha_{2} + \alpha_{3} = 1$ 
 $\alpha_{1}, \alpha_{2}, \alpha_{3} \ge 0$ 

(a) maximize Z = Od, +Od, +Od3 Subject to

$$\alpha_1 \begin{pmatrix} 6 \\ 4 \\ 6 \\ -2 \end{pmatrix} + \alpha_2 \begin{pmatrix} 4 \\ 12 \\ -4 \\ 8 \end{pmatrix} + \alpha_3 \begin{pmatrix} -4 \\ 0 \\ 8 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 4 \\ 2 \end{pmatrix}$$

 $\alpha_1 + \alpha_2 + \alpha_3 = 1$ ,  $\alpha_1 \ge 0$  all Solution: 0, = 1/2, d, = 1/4, d, = 1/4

(b) maximize Z = 0 d, + 0 d, + 0 x3 Subject &

$$\alpha_{1} \begin{pmatrix} 6 \\ 4 \\ 6 \\ -2 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 4 \\ 12 \\ -4 \\ 8 \end{pmatrix} + \alpha_{3} \begin{pmatrix} -4 \\ 0 \\ 8 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \\ 4 \\ 9 \end{pmatrix}$$

 $\alpha_1 + \alpha_2 + \alpha_3 = 1$ ,  $\alpha_1 \ge 0$  all j



	Χı	Χz	× ₃	Χy	X5-	Solution
Z	0	0	<b>//3</b>	4/3	0	38/3
XZ	0	1	2/3	-1/3	0	4/3
×ı	1	0	-1/3	2/3	0	10/3
X5	0	0	-1	1	1	3

The optimism solution occurs at A. The adjacent extreme points B and c are determined by making x3 and X4 basic, one at a time

Adjacent extreme pt B: Introduce X3 into the basis vector

-	X,	Χz	X3	Χų	X5	h. T
Z		-1/2	0	3/2	0	12
X3 X1 X5	0	3/z	Ī	-1/2	0	2
XI	1	1/2	0	1/2	0	1
X5	0	3/2	0	1/2		5

Adjacent extreme point C: Introduce Xy into the basic sector

	Į X _i	Xz	Хз	Χý	X5	ľ
Z	0	O	5/3	0	-4/3	26/3
X	0	1	1/3	0	1/3	7/3
X, Xy		0	1/3	0	-2/3	4/3
Xy	0	0	-1	1	1	3

He next best extreme point is B with Z = 12.

Iteration 0:

 $\mathbf{B}_0 = \mathbf{I}$ 

 $\mathbf{B}_0^{-1} = \mathbf{I}$ 

 $\mathbf{x}_B = (y_1, y_2, y_3)^T = (150, 200, 300)^T$   $\mathbf{c}_B = (1, 1, 1)$ 

 $d=c_BB_0^{-1}=(1,1,1)I=(1,1,1)$ 

Interactive AMPL solution (amplProb7-3.txt):

solve; display zj,a;

zj = 4

a [*] :=

<u>Iteration 1:</u>  $\mathbf{P}_1 = (4,0,0)^T$  -- associated variable  $x_1$ 

$$\mathbf{B}_{o}^{-1}\mathbf{P}_{1} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} \Rightarrow y_{1} \text{ leaves}$$

$$\mathbf{B}_{1} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B}_{1}^{-1} = \begin{pmatrix} .25 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\mathbf{x}_B = (x_1, y_2, y_3)^T = (37.5, 200, 300)^T$ 

 $d=c_B B_1^{-1}=(.25,1,1)$ 

Interactive AMPL solution:

let d[1]:=.25;

solve; display zj,a;

 $z_{j} = 2.25$ 

a [*] :=

2

Comprehensive Problems

Iteration 2  $\overline{\mathbf{P}_2 = (1,2,0)^{\mathrm{T}}}$  -- associated variable  $x_2$ 

$$\mathbf{B}_{1}^{-1}\mathbf{P}_{2} = \begin{pmatrix} .25 \\ 2 \\ 0 \end{pmatrix} \Rightarrow y_{2} \text{ leaves}$$

$$\mathbf{B}_{2} = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B}_{2}^{-1} = \begin{pmatrix} .25 & -.125 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\mathbf{x}_B = (x_1, x_2, y_3)^{\mathrm{T}} = (150, 200, 300)^{\mathrm{T}}$ 

 $\mathbf{c}_{B}=(1,1,1)$ 

 $d=c_B B_2^{-1}=(.25, .375, 1)$ 

Interactive AMPL solution: let d[2]:=...375;

solve; display zj,a;

zj = 2

a [*] :=

1 0

0

Iteration 3:  $P_2=(0,0,2)^T$  -- associated variable  $x_3$ 

$$\mathbf{B}_{2}^{-1}\mathbf{P}_{3} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \Rightarrow y_{3} \text{ leaves}$$

$$\mathbf{B}_{3} = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \mathbf{B}_{3}^{-1} = \begin{pmatrix} .25 & -.125 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \end{pmatrix}$$

 $\mathbf{x}_B = (x_1, x_2, x_3)^{\mathrm{T}} = (12.5, 100, 150)^{\mathrm{T}}$ 

 $\mathbf{c}_{B}=(1,1,1)$ 

 $d=c_B B_3^{-1}=(.25, .375, .5)$ 

Interactive AMPL solution:

let d[3] := .5;

solve; display zj,a;

No feasible solution --- Process ends

Optimal solution: Cut 12.5 rolls using setting (4,0,0), 100 rolls using (1,2,0), and 150 rolls using (0,0,2).

Maximize Z = CX

 $X \ge 0$ Let Y= U-AX ≥ 0, the problem

Maximize Z = CX

Subject to

Ax + Y = U  $Y \leq U - L$ 

continued.

maximize  $Z = 5x_1 + 4x_2 + 6x_3$ Subject to

$$X_1 + 7X_2 + 3X_3 + Y_1 = 46$$
  
 $3X_1 - X_2 + X_3 + Y_2 = 20$   
 $2X_1 + 3X_2 - X_3 + Y_3 = 35$   
 $3X_1 + 3X_2 + X_3 + 3$ 

 $X_1, X_2, X_3, Y_1, Y_2, Y_3 \ge 0$ 

. Optimism solution:

 $X_1 = 6.18, X_2 = 3.55, X_3 = 5$ 

The increase in X, can be translated to increasing the right-hand side of the constraints by D, D, and D3. The rolues of D, D, and D3 can be computed from B'b = XB; that is

$$\begin{pmatrix} x_2 \\ x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} z/3 & -1/3 & 0 \\ -1/3 & z/3 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 6+D_1 \\ 8+D_2 \\ 1+D_3 \end{pmatrix} = \begin{pmatrix} 4/3 \\ 19/3 + \theta \\ 3 \end{pmatrix}$$

 $\begin{pmatrix} 2/3 & -1/3 & 0 \\ -1/3 & 2/3 & 0 \end{pmatrix} \begin{pmatrix} D_1 \\ D_2 \\ D_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \theta \\ 0 \end{pmatrix}$ 

 $\begin{pmatrix} D_1 \\ D_2 \\ D_3 \end{pmatrix} = \begin{pmatrix} Z & 1 & 0 \\ 1 & Z & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \theta \\ 0 \end{pmatrix} = \begin{pmatrix} \Theta \\ Z \Theta \\ -\Theta \end{pmatrix}$ 

O= -10/3:

-	X,	Xz	×3	Χy	XJ	Sa/2
	0	0	1/3	4/3	0	8/3
XZ	0	1	2/3	-1/3	0	4/3
×,	1	0	-1/3	2/3	0	ا م
Xs	0	0	-1	1	1	3
	1	0	0	2	0	8/3
XS	2	1	0	1	0	4/3
X3	-3	0	1 ~	-2	0	0
Xs	-3	0	0	-1		3

### **Comprehensive Problems**

$$\begin{pmatrix} X_2 \\ X_3 \\ X_5 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 6+\theta \\ 8+2\theta \\ 1-\theta \end{pmatrix} = \begin{pmatrix} 8+2\theta \\ -10-3\theta \\ -7-3\theta \end{pmatrix} \geqslant \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$-4 \le \theta \le -10/3$$

For 0<-4, no feasible solution exists

Summary:

$$-\infty \le 6 \le -4$$
: No feasible solution  
 $-4 \le 6 \le -10/3$ :  $X_1 = 0$ ,  $X_2 = 8 + 20$   
 $Z = 16 + 46$   
 $= 10/2 \le 9 \le \infty$ :  $X_1 = 10/2 + 9$ ,  $X_2 = 4/3$ 

-10/3 50 < 00: X1 = 10/3+0, X2 = 4/3  $Z = \frac{38}{5} + 30$ 

at t = 2:

$$H = 2:$$

$$B = (P_1 P_3) = {\binom{2}{2}}, \vec{\beta} = {\binom{0}{1-1}}$$

$$G = (4t-8.0)$$

$$C_{B}B^{-1} = (4t-8,0)\binom{0}{1}\binom{1/2}{1-1} = (0,2t-4)$$

$$Z_1 - C_1 = (0, 2t - 4) {2 \choose 4} - (10t - 4)$$

$$Z_4 - C_4 = (0, 2t - 4) {6 \choose 1} - 0$$
  
= 2t - 4

$$\begin{pmatrix} \chi_2 \\ \chi_3 \end{pmatrix} = \mathcal{B}^{-1}b = \begin{pmatrix} 0 & 1/2 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 8 \\ 6-2t \end{pmatrix} = \begin{pmatrix} 3-t \\ 3+2t \end{pmatrix}$$

at t = 2:  $Z_4 - C_4 = 0$   $X_4$  enters basis at t > 2:  $Z_4 - C_4 > 0$   $X_4$  enters basis

$$\mathcal{B} = (P_3 P_4) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathcal{B}$$

$$Z_1 - C_1 = (0,0) P_1 - (10t - 4) = -10t - 4 \le 0$$
  
 $Z_2 - C_3 = (0,0) P_1 - (4t - 8) = -4t + 8 \le 0$ 

$$Z_2-C_2 = (0,0)P_2-(4t-8) = -4t+8 \le 0$$
  
 $t \ge 5/2$ 

$$\begin{pmatrix} x_{\psi} \\ x_{\psi} \end{pmatrix} = B^{-1}b = \begin{pmatrix} 8 \\ 6-2t \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow t \leq 3$$

Solution becomes infeasible for t >3. However, no fearible solution exists for t >3 Summary:

2 L t < 3: optimal basis B = (P, Py) t >3: ne facille solution exists

Let  $J^{\dagger}(J) = \left\{ \int \delta |a_{ij}| > 0 (< 0) \right\}$ Then  $X_i \leq e_i$  yields

 $X_i = e_i + f_i - \sum_{j \in J} \alpha_{ij} x_j - \sum_{j \in T} \alpha_{ij} x_j$ 

Because X, - e, <0, it follows that

 $-\sum_{j\in J^+} \alpha_{ij} x_j - \sum_{j\in J^-} \alpha_{ij} x_j \le -f_i.$ adding this inequality to the simplex tablian and applying the simplex method, shen, under the assumption

of no change in basis, the decrease in the value of Z is at least

$$P_{d} = \min_{j \in J^{+}} \left\{ \frac{(z_{j} - g_{j}) f_{i}}{\alpha_{i,j}} \right\}$$

The corresponding upper bound on the value of z is Co-Pd

In a similar manner, X, & di gues

$$x_{c}-d_{i}=f_{c}-1-\sum_{j\in J+1}\alpha_{ij}x_{j}-\sum_{j\in J-1}\alpha_{ij}x_{j}.$$

 $\sum_{j \in T+} \alpha_{ij} x_j + \sum_{j \in T-} \alpha_{ij} x_j \leq f_c - 1$ 

and
$$P_{ij} = \min_{j \in J^{-}} \left\{ \frac{(z_j - \zeta_j)(f_i - 1)}{\alpha_{i,j}} \right\}$$

The associated upper bound on Z is Co-Pu

E-21

Xij = acres from site i using 8 - 1

### Sawlogs constraint:

7x15 + 6x16 +5x17 +

5 x 25 + 4 x 26 + 4 x 33 + 3 x 34 + 5 x 35 + 5, - 5, = 350,000

### Plywood constraint:

6×13+7×14+5×23+4×24+4×32+52-5=150,000

### Pulpwod constraint:

 $\begin{array}{l} 1 \quad X_{11} + 10X_{12} + 5X_{13} + 4X_{14} + 3X_{15} + 2X_{16} + \\ 3 \quad X_{17} + 9X_{21} + 8X_{22} + 2X_{23} + 3X_{24} + 2X_{25} + \\ 2X_{26} + 7X_{31} + 6X_{32} + 2X_{33} + 2X_{34} + \\ X_{35} + S_{3} - S_{3}^{+} = 200,000 \end{array}$ 

### Referentation Constraint:

 $1000 \times_{11} + 800 \times_{12} + \dots + 1500 \times_{17} + 1000 \times_{21} + 800 \times_{22} + \dots + 1200 \times_{26} + 1000 \times_{31} + 800 \times_{32} + 1500 \times_{33} + 1200 \times_{34} + 1300 \times_{35} + \bar{S}_{4} - \bar{S}_{4}^{\dagger} = 2,500,000$ 

### Rotation Constraints:

 $20X_{11} + 25X_{12} + 40X_{13} + 15X_{14}$   $+40X_{15} + 40X_{16} + 50X_{1} \leq 100,000$   $20X_{21} + 25X_{22} + 40X_{23} + 15X_{24}$   $+ 40X_{25} + 40X_{26} \leq 180,000$ 

 $30 \times_{31} + 25 \times_{32} + 40 \times_{33} + 15 \times_{34} + 40 \times_{35} \leq 200,000$ 

Good for total return from stumpage =100(1000,000 + 180,000 + 200,000) = \$48,000,000

### Total return constraint:

 $\begin{array}{l} (20 \times 160) \, X_{11} + (117 \times 25) \, X_{12} + (140 \times 40) \, X_{13} + \\ (195 \times 15) \, X_{17} + (182 \times 40) \, X_{15} + (180 \times 40) \, X_{16} + \\ (135 \times 50) \, X_{17} + (102 \times 20) \, X_{21} + (55 \times 25) \, X_{22} + \\ (95 \times 40) \, X_{23} + (120 \times 15) \, X_{37} + (100 \times 40) \, X_{25} + \\ (90 \times 40) \, X_{26} + (60 \times 0) \, X_{31} + (48 \times 25) \, X_{32} + \\ (60 \times 40) \, X_{33} + (65 \times 15) \, X_{34} + (35 \times 40) \, X_{35} + \\ + \, S_{5} - \, S_{7}^{+} = 48,000,000 \end{array}$ 

Gaals: min Si min Si min Si min Sit min Si

This = number of volunteers starting 8-2

at hour h and continuing for
i successive fours



#### Constraints:

$$X_8(2) + X_8(3) + X_8(4) + X_8(6) + 5, -5, = 18$$

$$X_g(2) + X_g(3) + X_g(4) + X_g(6) + \frac{1}{S_2 - S_2} = 16$$

$$X_8(3) + X_8(4) + X_8(6) + X_9(2) + X_{10}(4) + \overline{5} = 5 = 18$$

$$X_9(3) + X_9(5) + X_{10}(2) + X_{10}(4) + \overline{5} = 5 = 18$$

$$X_{g}(4) + X_{g}(6) + X_{q}(3) + X_{q}(5)$$
  
+  $X_{10}(2) + X_{10}(4) + X_{11}(3) + \overline{S}_{y} - \overline{S}_{y}^{+} = 20$ 

$$x_8(6) + x_9(3) + x_{10}(4) + x_{11}(3) + S_5 - S_5 = 16$$

### Objective function: Minimize Z = S, + S, + S, + S, + S,

continued.

Xiy = { 1, building i opens in yry. 9-1

Rig = ft of building i rented in year y and skereafter

Fig = operating income per ft of building i in yeary

City = construction cost of building in year of

& = inflation rate applied to operating income and construction cost

2 = dis-count rate

Dig = demand for kigh-rise ft in yo y

Dig = demand for garden space ft in

K = capitalization rate used for determining property value in the year of sale

Bi = maximum capacity of building i

the sale value of building i at the end of 7 years is continuated as

Riy X Ii7 K

He means that the sale is estimated based on the net operating income for year 7.

Model:

Maximize  $z = \sum_{y=1}^{7} \left\{ \left( \frac{1}{1+h} \right)^{y} \left( \sum_{i=1}^{7} \left( I_{iy} R_{iy} - C_{iy} x_{iy} \right) \right) \right\}$   $+ \sum_{y=1}^{7} \sum_{i=1}^{7} \left( \frac{1}{1+h} \right)^{7} \left( \frac{I_{ij}}{\kappa} \right) R_{iy}$ 

Subject to

 $\frac{1}{\sum_{i=1}^{2}} R_{iy} \leq D_{iy}, \quad y=1,2,...,7$   $\frac{1}{\sum_{i=4}^{2}} R_{iy} \leq D_{iy}, \quad y=1,2,...,7$   $\frac{1}{\sum_{i=1}^{2}} D_{ij} x_{ij} \geq R_{iy}, \quad i=1,2,3$   $\frac{1}{\sum_{i=1}^{2}} D_{2j} x_{ij} \geq R_{iy}, \quad i=3,4,...,7$   $\frac{1}{\sum_{i=1}^{2}} R_{iy} \leq B_{i}, \quad i=1,2,...,7$   $\frac{1}{\sum_{i=1}^{2}} R_{iy} \leq B_{i}, \quad i=1,2,...,7$   $\frac{1}{\sum_{i=1}^{2}} X_{iy} = 1, \quad i=1,2,...,7$ 

The rental income and expenses as given in the problem apply to year I of the planning horizon. These values must be adjusted for year y to allow for inflation. assuming an inflation rate O, the amount for year y is determined for year y by multiplying the values for year I by (1+0)3-1

 $S_{ij} = \text{expected score of gymnast}$  i in event j, i = 1, 2, ..., N, j = 1, 2, 3, y.

Xij = { 1 , if gymnast i is assigned to event j

He = { 1, if gymnast i is an all-rounder o, if otherwise

Model:

Maximize Z = \( \sum_{i=1}^{N} \sum_{j=1}^{4} S_{ij} \times_{ij} + \sum_{i=1}^{N} \big( \frac{1}{2} S_{ij} \big) \dagger_{i}.

Subsoit to

Subject to N  $\sum_{i=1}^{N} x_{ij} + y_{i} \leq 6, \quad j=1,2,3,4$   $X_{ij} + y_{i} \leq 1, \quad i=1,2,...,N$   $y_{i} = 1,2,3,4$   $y_{i} \geq 4,$ 

4						
₹ J=1	Kej	4	3,	l =	1,2,.	٠, ٨
<b>U </b>		•			*	
	_					

Fiskij = (0,1) for all i and j

Xij = fraction of traffic originating 9-3
from area code i and handled by
center j, i=1,2,...,8; j=1,2,...,7

y = {1, if center j is chosen
0, if otherwise

e; = Communication cost/fr between area i and area j

Define:

i 1 2 3 4 5 6 7 8

Area 501 918 316 417 314 816 502 606

i 1 2 3 4 5 6 7

center Dallas Atlanta L'ville Daver LR Maghis St.luis

### Communication traffic constraints

X11 + X14 + X16	=	(area 501)
X21 + X23	= 1	(918)
X31 + X33 +X36	e l	(316)
X41 + X43 + X45 + X	(46 = 1	(417)
X2+X3+X1+X1	7=1	(314)
X62 + X63 + X65 + X6	67 = 1	(816)
*72 + ×74 + ×75 + ×7	7 = 1	(502)
X82 + X84 + X86+ X8	7 = 1	(606)
Part	<b>/</b>	

#### Centers constraints:

 $X_{11} + X_{21} + X_{31} + X_{41} \leq MY_1$   $X_{52} + X_{62} + X_{72} + X_{82} \leq MY_2$   $X_{23} + X_{33} + X_{43} + X_{53} + X_{63} \leq MY_3$   $X_{14} + X_{74} + X_{84} \leq MY_4$   $X_{45} + X_{55} + X_{65} + X_{75} \leq MY_5$   $X_{16} + X_{36} + X_{46} + X_{86} \leq MY_6$  $X_{57} + X_{67} + X_{77} + X_{87} \leq MY_7$  Limit on number of centers

3 = y, + y + y + y + y + y + y + y + 4

Objective function: Minimize z =

500,000 x, + 800,000 x + ··· + 550,000 y y

+ 14x1, + 24x14 + 19x16

+ 35x21 + 25x23

+ ···

+ 15x82 + 30x84 + 12x86 + 22x87

Lij = { by CSL in location i of served by CSL in location i

y = {1, if candidate loc. j no selected }

p = number of facilités

Wi = number of customers in chater i

dij = dutance between chater i

and CSL location j.

Model: Given p, determine

Min  $Z = \sum_{i=1}^{5} \sum_{j=1}^{5} \omega_i \cdot d_{ij} \cdot \chi_{ij}$ .

Subject to  $\sum_{j=1}^{5} y_j = p$   $\sum_{j=1}^{5} \chi_{ij} = 1$ , i = 1, 2, ..., 5  $\sum_{j=1}^{5} \chi_{ij} \leq M y_j$ , j = 1, 2, ..., 5  $y_j$  and  $\chi_{ij} = (0, 1)$ 

The idea of the algorithm is to specify a value for p=1,2,..., or 5. Then the model is optimized to determine where the Specified p CSL centers should be located.

continued.

For example, if p=1, the optimum solution of the model (using TORA) circle Specify Hat the CSL Should be located at j=4. This means that all 5 clusters will be served by the CSL located in location j=4. For this arrangement, it average traveled distance from j=4 to all 5 clusters in

$$\overline{D} = \frac{50 + 30 + 80 + 60 + 110}{5}$$
= \frac{330 \text{ miles}}{5}

= 66 miles

Given that the truck travels at 45 miles per Lours, the arrange time to reach a customer will be  $\frac{66}{45} = 1.47$  hour = 88 minutes, which is less than the desired 90-minutes response time.

Another way of looking at the solution is to consider the maximum travel distance from location j = 4; namely,

D₄ = max {50, 30, 80, 60, 110} = 110 miles
The associated truck travel time is
2.44 Lours or 147 minutes. Because it
exceeds the limit of 90 minutes, the new

criterion calls for trying p=Z. TORA will give two locations:

j=3 serving clusters 1 and 5
j=4 serving clusters 2,3, and 4
Thus, D3 = max {20, 40} = 40 and
D4 = max {30, 80, 60} = 80 miles. The
new solution is within the desired
90-mile limit.

18 possible configurations:

9-5

.0 /	is a single	0011070	"   <b>7</b> -3
1	4c-A-4D		
2	4C-8-C		
3	4 C-A-W	To	sters configuration
4	4,C-5-4D	Ī	4c-5
5	4c-5-C	2	8C - C
6	4c-5-W	3	6c - W
7	6C-A-4D		8'C
8	6C-A-C	4	
9	6 C-A-W	5	5-W
10	6C-5-4D	6	6c - A
//	6C-5-C		
12	6C-5-W 8C-A-4D		
12	70 - 11		

13 8C-A-C 14 8C-A-C 15 8C-A-W 16 8C-5-4D

17 8C-S-C 18 8C-S-W

Let Ti = Set of lecters using configuration i

i=1,2,...,18

$$T_{1} = T_{2} = T_{3} = \emptyset$$
 $T_{14} = \{2, 4\}$ 
 $T_{4} = T_{5} = \{1\}$ 
 $T_{15} = T_{16} = \{4\}$ 
 $T_{7} = T_{8} = \{6\}$ 
 $T_{7} = T_{8} = \{6\}$ 
 $T_{19} = \{3, 6\}$ 
 $T_{10} = T_{11} = \emptyset$ 
 $T_{12} = \{3, 5\}$ 
 $T_{13} = \{4\}$ 

Pi = Set of prototypes covering tester i, i=1,2,	; Æ
P,= {4,5,63, P= {14,173, P3= {9,12},	
P4 = {13,14,15,16,17,18}	
P= {6, 12, 18}, P= {7, 8, 9}	
Xij = {1, if tester i is covered by probtype j	
J. = { 1, if any texter was prototype j	
Minimize $Z = \sum_{C=1}^{18} y_C$ . S.f.	
$\sum_{i \in P_i} X_{ij} = 1, i = 1, 2,, 6$	1
∑ X _{ij} ≤ M* y, , j=1,2,,18	
Solution: See file amplace 9-5. 1xt	
Prototype Nbr. made testors	
l	

Fij = feasible pairing i of crowi gexpressed in flight numbers	-6
expressed in flight numbers	
Examples: Pairing (C3, C6, C4, C8, C3)	L
crew 1 is expressed as	17
F ₁₁ = {10,15,12,18}	/
Pairing (C3, C2, C8, C3) of crew 1	uj.
expressed as	
$F_{12} = \{9, 7, 18\}$	
Xij={1, if pairing j of crew i is a	sed
$J_R = Nbr. $ $g$ crews overallocated to blight $R (\ge 0)$	
Card (Fig) = Nbr. of elements of Fig.	
Ni = Nbr. of pairings for crew i	
conti	inued

Minimize z = Card (Fig.) Xij	
(1,1)	
S. t.,	
Ni Ni	
$\sum_{i=1}^{n} X_{ij} \leq I_{j} i = 1, 2,, 10$ (1)	
(2)	
$\sum_{i,j} - y_{i,j} = 1, k = 1, 2,, 18$ (2)	
defined(i,i)	
KEF.	
Constraints (1) allow at most one pouring	
per crew and constraints (2) will give	
y ≥0 if flight k is covered by	
at least one crew. If flight the	
at least of the signer (2) is	
cannot be covered by a crew, (2) is	
infeauble.	
Solution. See file amplicase 9-6. 1x1.	
crew paring	
1 None	
2 1 (C3, C6, C4, C8, C3)	
3 1 (C4,C8,C3,C2,C4)	
4 1 (C1, C8, C3, C6, C4, C1)	
5 3 (Cz,C7,C4,C1,C2)	
6 None 7 1(C5,C2,C8,C3,C1,C5)	
7 1(C5, C2, C8, C5, C5, C5, C5, C5, C5, C5, C5, C5, C5	
8 1(C6,C1,C3,C6) 9 None	
10 None	
Flight, k overallocation ( )k)	
3 /	
, ii 2	
17 1	
18 2	
All other flights are allocated one	
New each.	
of the parings does not produce at	
least one crew allocation/flight, the	
problem will not have a feasible solution	

D_ =	Demand for module &
*	Demand for module k, $k=1,2,3$

I; = initial inventory of device j, j=1,2,...,5 Cij = { 0, otherwise

$$||C_{ij}|| = \begin{cases} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 3 & 1 & 1 & 0 \\ 4 & 0 & 0 & 1 \\ 5 & 1 & 1 & 1 \end{cases}$$

P = Total number of waters produced

Y = Nbr. Junits of device j in module k

Minimize 
$$z = P$$
  
s.t.
$$I_{j} + x_{j} - \sum_{k=1}^{3} C_{jk} y_{jk} \ge 0, j = 1, 2, ..., 5$$

$$\sum_{k=1}^{5} C_{jk} y_{jk} \ge D, k = 1, 2, 3$$

Solution: See file amplCase9-7.txt

#### PRODUCTION SCHEDULE: Produced wafers = 85 units

Device 1 2 3 4 5	Initial inventory 10 4 8 0 3	Produced units 17 16 8 25 17	Total available 27 20 16 25 20	End inventory 0 0 · 13 0
Module 1	Demand units 20	Devices used	Nbr. of units	*
	*	2	20	
2	30			
		1	27	
		3	3	
3	45			
		4	25	
		5	20	

Constraints:

200x, +75x2+900x3+25x4+525x5+100x6  $+675X_7 \le 1200$  (1)

If recidual balance >, amt of check; then check; can be cleared (2) Constraints (2) translate mathematically

41200-ZCiXi >C; then X; =1

Xj = Y. F., Nbrog binned devices of type; I 1200 - ZG: Xi-C; >0 then X; >1 or \$1200 - \frac{7}{2} c_i \cdot x_i - c_j \ge 0 thm - x_j + 1 < 0

or 1200- ₹ C; X; -C; < MX; -.0001 (24)

(4S)  $-x_i+1 \leq M(1-x_i)$ 

Actually (2a) miphies (2b) in this case because (2a) requires x; to equal 1 whenever the left-hand side allows it.

(a) Minimize Z = Z Xj.

Solution: See file amplease 9-8. +X1 clear checks 5 and 7 (=525 +675=1200)

(b) Maximize  $Z = \sum X_j$ 

Solution: See same file

Clear checks 1, 2, 4,5, and 6 (= 200 + 75 + 25 + 525 + 100 = 925) Remaining balance = 1200-925 = \$275, which is les shan she amount of any of the uncleased checks (3 and 7).

Ci = Capacity of line i (1000 bbl)

Xii= 1000 bbl allocated to bidderj

from line i Tij = min 1000 bbl from line i by bidderj

bij = bonus bid by bidder i on line j

Maximize z = & & bij xij.

 $\sum_{i=1}^{m} x_{ij} \leq .2 \sum_{k=1}^{m} c_{k}, j=1,2,...,8$ 

 $\sum_{i=1}^{8} X_{ij} \leq C_i$ , i = 1, 2, ..., 6 $X_{ij} \leq M \mathcal{A}_{ij} \cdot \{i=1,3,-;6,j=1,3-;8\}$  $x_{ij} \geq r_{ij} y_{ij}$ 

Solution: See fite ampl Case 9-9. +x+ z = \$201.750

Allocation	<u>!</u> :		B	rdde	r			
;		Z	3	4	5	6	7	8
1			20					
2			12				18	
3						25		
4	11						17	/ <b>2</b> ,
5		35						,
6						11		19

all quantities are in 1000 bbl.

Sij = intensity measure for manger i working on project j =(t;+1)×6× log(G)+1

tij = travel time in haurs by manager i to project j cj = cost in 10 \$ of project j

Xij = { if manager i is assigned to O, otherwise

Minimize Z = 5 8 5; Xij

5.1.  $5 \times 10^{-1}$  1 = 1, 2, ..., 8₹xij ≥1, i=13...6

Each manager is assigned at least one project.

Solution: Lee file compléase 9-10. +xt, or file solver Case 9-10. x15

Manager	assigned projects
a	6
Ь	3,4
C	2,7,8
d	, ,
e	5

Alternative Solution from Solver:

3 d 1,4

	Chapter to Cases
(C(+) + fin (t+1), K 10-1	Stage 8:
$f_{i}(t) = min\{I(i) + c(0) - S(i) + f_{i+1}(i), R$	K R OFF?
(310) + (10) - 3(17) + (17)	t c(t) + fq (t+1) I(8)+c(0)-S(+)+fq(1) fg Dec
$f_N(t) = min \begin{cases} C(t) + S(t+1), & K \\ I(N) + C(0) - S(t), & R \end{cases}$	1 17-12.84 = -12.17 15.2 + 43-14-13.84
N(t) = (I(N) + C(0) - S(t), R	2 · 7-12·14=-12·07 15·2+·43-13·2-13·84
	= -11.41 12.07 K
N S	3 must replace 15.2 +.43 -/2-13.84
	= -10.21 -10.21 R
	Stage 7:
2	R Opt m
0 0	t O(t)+ fg(t+1) I(7)+C(0)-S(t)+fg(1) f7 poc
	1 .6-12.07 = -11.47 14.8 + 4. 13.5
	$2 \cdot 62 - 10.21 = -9.59    14.8 + 41 - 12.9 - 12.21 = -9.9 R$
0 0	=-99
	3 must replace 14.8+.41-11.9-12-21 -8.9 R
	Training Conference
	Stage 6:
0 0	K R Op+**
X PX	t c(t) + f7(t+1) t(6)+c(6)-s(+)+f7(1) f6 De
Tw Tm	1 .62 - 9.9 = -9.28 14.2 +.39 -12.5 -11.47
× (2)	=-9.38 -9.38 R
addings to the street, and	2 .7-8.9 = -8.2 14.2 +39-12.0 -9.9 -8.2 K
2 2 - 04	/-3/
Stage 10:	3 must replace 14.2+39-112-89=-551 -551 R
	Stage S
K R Optimum	1 K R Opt
t (t)-S(t+1) I(10)+C(0)-S(t) f10 Dec	t c(t)+f6(t+1) I(s)+c(0)-S(t)+f6(1) fs per
1 -71-15 = -14.29 16+·5-15.8 = ·7 -14.29 K	1 -59-8.2=-7.61 13.8+-35-12-9.38
2 .72-14.5=-13.78 16+.5-15 = 1.5 -13.78 K	=-7.23
3 Replace 16+.5-14.5=2.0 2.0 R	2 ·63 -5·SI=-4-88 13.8 +35-11.8-9.38 -7.03 R
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	3 - 13.8 + .35 - 11.2 - 9.38 - 6.43 R
Stage 9:	Gh an II
t $C(t) + f_{10}(t+1)$ $I(q)+c(o)-S(t)+f_{10}(t)$ $f_{10}$ Dec	Stage 4:    R   Opt 10
	t c(+) + f5(t+1) I(4)+c(0)-5(+)+f5(1) fy pre
1 .7 - 13.78 = -13.08 15.5+.45-15.5 -14.29 -13.84 R	[200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200]
2 .73 +2 = 2.73 15.5 +.45-14.5-	1 -65-7.03=-6.38 13.5+.32-12-7.61=-5.79 -6.38
14.29 = -12.84	2 .7 -6.46=-5.76 13.5 +.32-11.5-7.61 = -5.29
3 must replace 15.5 + 45-13.8-14.4 -12.14 R	= - 5.27
	3 - 13.54.32-11-7.61 =-4.79 -4.79 R
continued	continued

- 3	K	R	Opt	2)
t	C(+)+f4(++1)	I(3)+(0)-S(t)+fy(1)	<i>f</i> 3	Pe (
1	·55-5.76 =-5.21	13+.28-12-6.38 = -5.1	-S.21	K
2	·60-4.79 =-4.19	13+-28-11-6.38 =-4.1	- 4.19	K
3		13+.28-10-6.38=-3.1	-3.1	R

	K	R	Opt 4	2
t	$c(t) + f_3(t+1)$	$I(z)+c(0)-S(t)+f_3(1)$	fæ	Dec
1	-6-4.19=-3.59	12+.25-11-5.21 =-3.96	-3.96	R
2	·68 -3·1= -2·42	12-9.5-5.21 = -2.46	-2.46	R
3		12+.25-8-5.21=96		

### Stage 1:

$$I(1)+c(t)+f_1(t+1)=10+.z-3.96=6.26$$
.  
Decision: K

# Policy:

### Economic let size formula:

	·
11	/2KD
7=	y ———
	· ^

h = annual holding coot / unit

K = Setup cost

D = annual demand

Given L is a fixed proportion of the unit cost C, we have

$$y = \sqrt{\frac{2\kappa D}{ic}}$$

Let

T= average time period needed to consume the average supply on hand, 4/2

S = annual dollar wage of the item.

Then,

$$T = \frac{y/2}{D} = \frac{y}{2D}$$

S = Dc

Under optimal conditions, we have

$$T = \sqrt{\frac{2KD}{4D^{2}ic}} = \sqrt{\frac{K}{2i}}\sqrt{\frac{1}{Dc}} = \alpha\sqrt{\frac{1}{S}}$$

where & is a constant.

The relationship between T and S for a typical inventory can be graphed as

(yrs)

Ty

Understocking

ideal

Sy

TS

Policy: If the annual dollar usage is S, , order the quantity y every 2T, time units

# 1-1 Inventory control should 11-2

be based on the data for the final product, because the demand for the punchased component independent on the demand for the final product. Leparate treatments of the two parts may result in shortage.

For the final product, we have  $N = \sqrt{2 \times D(\rho + h)}$ 

$$y = \sqrt{\frac{2 \times D(\rho + h)}{\rho h}}$$
$$= \sqrt{\frac{2 \times 100 \times 20(5 + 8)}{5 \times 8}}$$

2 36 units

time both. orders =  $\frac{30}{20}$  = 1.8 weeks  $\approx$  12 days.

Ordering policy:

Order 36x2 = 72 units of purchased components every 12 days This policy leads to producing 36 units of the final product every 12 days

Month	5-yr Av. Demand (rounded)	11-3
1	11	<del>-</del> , , , , , , , , , , , , , , , , , , ,
2	<i>5</i> 3	
3	10	. *
4	$107$ $\overline{\overline{X}}$	<i>≅ 91</i>
- 5	1/1 5	= 67-6
6	100 X	- 07-0
7	129	
8	76	
9	52	
10	146	
11	254	
12	42	

The fluctuations in the average demand per month suggest that the

the average monthly demand for the past 2 years may lead to grow underestimation or overestimation of demand. The given data yields  $\bar{x} = 91$  units with  $5\bar{x} = 67.6$  units, which reflects extreme variations in demand.

a Sludy of the data shows that with the exception of Nov. and Dec. (and possibly april), the average monthly demand taken over the 5 year span is a good representation of the demand during the month as for Nov. and Dec., there is a trent for increase in demand approximately egnal to 12 units /year for Nov. and 18 units/year for Dec. A planning horizon of 12 months may thus be used to solve the problem. For each new year, the demand yes month is taken equal to the averages given in the preceding table In the cases of Nov. and Dec., the demands are increased by approximately 12 and 18 units, respectively, for each new year. The following charle apply to the next two years Next year:

12 3 4 5 6 7 8 9 10 11 12

Year of to:

1 2 3 4 5 6 7 8 9 10 11 12

11 53 10 107 111 100 129 76 52 204 336 43

The problem can be solved by DP



#### Initial cost (IC):

13 - 1 continued

	PF	CAD	MC
PF	[1	25/12	120/12
CAD	12/25	1	120/25
MC	12/120	25/120	1 ]

### Maintenance Coot (MA):

	PF	OAD	MC
PF	[ /	4/2	15/2
CAD	2/4	1	15/4
MC	2/15	4/15	, ]

### Training (TR)

	PF	CAD	MC
PF	[1	8/3	20/3
CAD		ı	20/8
	3/20	8/20	. 11

# 13-2 Period 1:



Expected accuracy given recount is made = (10x.95+0x.05)xp + (100 X.8+0 x.2) (1-P)

= 1510+80

Expected accuracy given recount is not made = 100 p

Thus, "recount" is 13-2 continued warrented if 15 p +80 > 100 p or up < 12%

The present policy of using 2-707 or 1-747 crews between 5:00 and 17:00 and between 11:00 and 23:00 represents an overlap between 11:00 and 17:00. We can define the periods per day as

Period Number of crews 1 (5:00-11:00) 2 (Servece 4-707 departure) 4 (Service 2-707& 2-747) 2 (11:00-17:00) 3(17:00-23:00) 2 (Service 1-747)

The corresponding probability of overnight delay is computed as C. = number of crews called in period i, i=1,7,3

P{C, >4} = 0, because there are 4 departuresonly

#### Period 2:

 $\sum_{x=0}^{7} P\{C_2 > 4 - x | C_1 = x\} P\{C_1 = x\}$ 

Examples of computations:

$$P\{C_2 > 0 | C_1 = 4\}$$
=  $1 - [P\{0 \text{ Call from 707 category } 2] \times P\{0 \text{ Call from 707 category } 4] \times P\{0 \text{ Call from 747 category } 4] \times P\{0 \text{ Call from 747 category } 6\}]$ 
=  $1 - [(1 - .019)(1 - .006)(1 - .016)(1 - .016)]$ 
=  $0.042406848$ 

P{C1 = 4} = P{I call 707-3}x P{1 call 707-6} XP{1all 707-23xp{1all 707-3}

continued.

13 - 3 continued In a similar manner, 13-3 continued = . 006 x . 003 x . 019 x . 006 we compute the probabilities for = .000000002052 period 3, which must depend now on what happens in both periods P{C,>1|9=3} I and 2. These computations jield = P{c2=1|C1=3}+P{C2>0|C1=4} P{overnight delay for period 3) = P{1,707-2/10,707-4/10,707-6/1 = .00001513 0,747-47 +P{0, 707-2/1,707-4/10,747-6/ Thus, Total overnight delay probability 0, 747-43 + P{ C2701 G=4} = 0+.0000234+.00001513 = (.019x.994x.998x.984)+ (.006 x 981 x 998 x 984) + Average number of delays peryear .042406848  $= 365 \times .000017 = .006$ € .01808 This is equivalent to having one P{C,=3}=P{1,707-3/1,707-61 delay every 166 years. 1,707-210,707-3} associated annual cost of reserve crows +P{1, 707-31, 707-61 = \$30,000 x 28 members 0, 707-2/1, 707-3} = \$840,000 per year +P{1,707-3 NO,707-6 N Expected coot of delay peryear 1,707-2/1,707-3} = \$50,000 x .006 = \$350 /year +P{0,707-311,707-61 These costs indicate that the use 1, 707-2/1,707-3} of four receive crews is perhaps  $= (.006 \times .003 \times .019 \times .994) +$ unwarrented. The idea is to attempt (.006x.003x.981x.006)+ (.006 x. 997 x.019 x.006) + to reduce the number of crears (.994 x .003 X.019 X.006) ~ .000002 with possible reallocation to The The probabilities for period (conservatively rounded up) are given as hours of the day. The following policies are typical of the new proposals  $P\{C_2>4-x|C_1=x\}$   $P\{C_1=x\}$ Product . 000001 .966356 -00000097 made for this situation: .000035 .033291 .00000116 .000 478 .000351 .00000017 .01808 .000002 .00000004 . 0*4240*7 .00 0000 002 ·00000000008 Total .0000234 continued... continued.

	Present Policy	Policy A1	Policy A2	Policy A3		
Crews	4 <b>-</b> B707	3-B707	2-B707	3B707		
Allocation	2(5:00-17:00)	1(5:00-17:00)	2(10:00-22:00)	1(6:30-14:30)		
	2(11:00-23:00)	2(11:00-23:00)		2(14:30-22:30)		
Cost/year	\$840,000	\$618,000	\$412,000	\$490,000		
Av. nbr delays	1 day/166 years	1 day/9 years	1 day/6 years	1 day/9 years		
Delay cost	\$350	\$5,500	\$8,500	\$5,500		
Total cost	\$840,350	\$623,500	\$420,500	\$495,500		

Policy A2 has the least total expected cost. the decision is based on adopting a ling-term policy. If the data of the situation are changed, computations must be revised to see if the optimal policy changes.

#### Let

P(S) = probabilty of an idividual being schizophrenic

P(S) = probabilty of an idividual not being schizophrenic

 $P(S \mid BA)$  = probability of schizophrenia given brain atrophy

 $P(BA \mid S)$  = probability of brain atrophy given schizophrenia

 $P(BA \mid S)$  = probability of brain atrophy given no schizophrenia

In terms of the data, we have

$$P(S) = .015$$

$$P(\overline{S}) = .985$$

$$P(BA|S) = .3$$

$$P(BA | \overline{S}) = .02$$

It thus follows that  $P(S \mid BA) = \frac{.3 \times .015}{.3 \times .015 + .02 \times .985} = .186$ 

The result shows that, even though Hinkley's CAT scan shows brain atrophy, there is less than 20% chance that he is schizophrenic. This is not a strong argument in support of Hinkley's claim of mental illness.

#### Probability tree:



Per the results of the experiment, we have  $P{\text{yes vote}}=18/35$ From the probability tree, we have

$$P{\text{yes vote}} = (1/2) \times q + (1/2) \times (20/35)$$

Thus,

$$(1/2) \times q + (1/2) \times (20/35) = (18/35)$$

Solving for q, we get

$$q = [(18/35) - (1/2) \times (20/35)] \times 2 = 16/35 = .457$$

### **Chapter 14 Case**

14-1

The frequency histogram for the demand is given below. To be on the conservative side, we ignore the frequency of zero demand.

Nbr. of units	Frequency	Relative frequency	Cumulative relative frequency		
1	89	.7807	.7807		
2	20	.17544	.9561		
3	4	.3509	.9912		
4	1	.00877	1.00		

Assuming that the demand stays stationary for at least the next year (that is, no appreciable trend), the company's requirement that the demand be met 95% of the time is satisfied with two units in stock.

15-1

Because the teller is busy only 40% of the time, it is possible that one teller could attend to more than one customer. In fact, arriving customers may be served b a pool of tellers. The problem with this proposal is that a teller will not have a fixed station, which may create administrative problems in the bank operation.

The data show that the number of calls reaches a peak between 12:00 and 17:00 daily. The design of the system should based on this extreme condition, rather

15-2

than on the overall average number of arrivals per day. Thus, for the daily period from 12:00 to 17:00, we have

$$\bar{x} = 9.11 \text{ arrival/hr}, s^2 = 7.81$$

There is not reason to believe that arriving calls will follow anything but a Poisson distribution. Notice that  $\bar{x} = 9.11$  arrival/hr and  $s^2 = 7.81$  are approximately equal, which supports the Poisson claim. (In general, we should use the chi-square to validate the Poisson assumption.)

Regarding the service time distribution (length of calls), the lack of data together with the principle of insufficient reason suggest once again that the service time distribution may also be exponential with mean 7 minutes.

We are now dealing with a Poisson queue with lambda = 9.11 calls per hour and mu = 60/7 = 8.75 phone answers per hour. The telephone lines represent the servers. Given lambda/mu = 1.06, the system needs at least 2 lines. We know, however, that lambda must be larger than 9.11 because the available data do not reflect the calls that are lost when the lines are busy. We thus need to run a type of sensitivity analysis to give us some idea about the "adequacy" of the telephone service under extreme conditions. We must remember that the number of lost calls must be reduced to an absolute minimum because the facility deals with situations that could affect the sell-being of a abused child.

The following table provides the measures of performance given lambda = 9.11, 13.7, and 18.22 calls per hour. These values represent 100%, 150%, and 200% of the estimated arrival rate.

Lambda	9.11			13.7			18.22					
Nbr. of lines	2	3	4	5	2	3	4	5	2	3	4	5
$\mathbf{L}_{\mathbf{q}}$	.4	.06	.009	.001	2.8	.3	.06	.01	1.2	.23	.05	.01
$W_q(sec)$	162	21.6	3.6	.36	720	72	14.4	3.6	216	36	10.8	2.52
$P\{n \ge c\}$	.2	.03	.01	.002	.6	.15	.04	.01	.36	.11	.04	.01

 $L_q$  could not be used as proper measure in this case. For example, for lambda = 9.11,  $L_q$  = .4 waiting calls for c = 2. This may appear quite small, but if we examine  $W_q$ , the average

waiting time until a call is acknowledged is 162 sec (about 3 min). This is a long waiting time for an anxious person reporting an abuse case. A waiting time of about 10 seconds is the most that can be tolerated in these situations. For example, for lambda = 18.22 calls per hour, 5 lines are needed.

An initial analysis of the situation can be made by comparing the rate of arrival of calls for truck service with the service rate. From the data

15-3

lambda = 
$$(0x30 + 1x90 + ... + 12x4)/(0 + 1 + 2 + ... + 12) = 4.1$$
 calls per hr

The average service time per call is computed from the second table as

$$tBar = (5x61 + 15x34 + ... + 95x2)/(61 + 34 + 15 + ... + 2) = 20.2 \text{ min per call}$$

Thus, the service rate is

$$mu = 1/20.2 = .05$$
 services per min per truck = 2.97 services per hr per ruck

Given three trucks are in service, the total service rate is 3x2.97 = 8.9 services per hr. Thus, the utilization of the trucks is computed as

utilization = 
$$lambda/(3mu) = 4.1/8.9 = .46$$

The low utilization shows that the three trucks are sufficient to service the six departments adequately. The main drawback with the current setup is that the trucks do not have a "home" station, a basic assumption is calculation the utilization factor. In other words, the 46% utilization assumes that the trucks are available in one service pool. This difficulty is rectified by placing all calls for service to a common dispatcher who is in constant contact with the drivers of the trucks.

From the data of the problem, the average rate of breakdown per machine per hour is computed as

15-4

$$lambda = (7 + 8 + 8)/(3 \text{ mach } x \text{ 8 hr}) = .9583 \text{ per machine per hr}$$

The difference between the failure time and the completion of repair gives the anount of time a broken machine spends in the repair system. Thus,

$$W_s = [(10+12+10+13+10+12+9) + (8+8+13+8+9+13+12+10) + (13+11+10+12+8+11+8+10)]/24$$
  
= 10.46 min

We can also estimate the number of machines in the system  $L_s$  from the information in the second table. For simplicity, we take the average of all the given data points. Normally, we should treat  $L_s$  as a time-based variable. However, this would require a complete history of the number of broken machines at all hours of the day.

$$L_s = (6+6+9+6+...+8+8+6)/(8 \text{ data points } \times 5 \text{ days}) = 6.73 \text{ machines}$$

If the data are correct, and if the situation behaves per the Poisson assumptions, then  $L_{\rm s}$  and  $W_{\rm s}$  must satisfy the formulas

$$L_s = lambda_{eff} W_s$$
  
=  $lambda(N - L_s)W_s$ 

From the data, we have

 $lambda = .9583 \ calls/machine/hr$   $N = 30 \ machines$   $L_s = 6.73 \ machines$   $W_s = 10.46/60 = .1743 \ hr$ 

Thus,

lambda(N - 
$$L_s$$
)W_s = .9583(30 - 6.73)(.1743)  
= 3.887 machines

This result shows that the data for computing lambda and  $L_{\rm s}$  are not consistent. Hence is the conclusion reached by the manager.

Chapter 20 Case



assume that the machine starts new, and define,

n = planning kouzon (= 6 years)

**22-1** 

I = initial punchase price

= trade-in value of a working madine whose age just

turned i years = trade-in value of a failed machini whose age just turned i years

= probability that an i-year old machine in working order at the start of a year Jails at the end of the year.

= Salvage value at the end of the planning houson of a working machine of age i.

= Salvage value at the end of the planning Lorigon of a failed machine of age i

fre (i) = Minimum expected cost of the remaining periods of the Resign given That we start year k with a machine of age i and in working order R=1,2,...,n; i=1,2,.., k-1

Ci = expected operating cost of a working machine of age i Shat a working machine

 $\begin{cases} R: I-TW_{i}+C_{0}+P_{0}\{1-TW_{i}+f_{0}(0)\}\\ +(1-P_{0})f_{k+1}(1) \end{cases}$   $K: C_{i}+P_{i}\{1-TW_{i+1}+f_{k+1}(0)\}$ + (1-P.) fx+1 (i+1) R= 1,2, ..., n-1

(10) = G+P (I-TW,+f (0))+(1-p) f (1)

R: I-TW; + G-POTF, - (1-Pg) TW,  $f_n(i) = min$ 

 $K: C_i - P_i T F_{i+1} - (I-P_i) T W_{i+1}$ 

fn(0) = G-POTF-(1-PO)TW,