

Oracle® Fusion Middleware
Administrator's Guide for Oracle HTTP Server

11g Release 1 (11.1.1)

E10144-06

April 2012

Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server, 11g Release 1 (11.1.1)

E10144-06

Copyright © 2002, 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Srinivas Sudhindra

Contributors: Jeff Trawick, Ken Vincent, Maria Choudhary

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

Part I Understanding Oracle HTTP Server

1 Introduction to Oracle HTTP Server

1.1 What is Oracle HTTP Server ... 1-1
1.1.1 Key Features of Oracle HTTP Server .. 1-2
1.2 Understanding Oracle HTTP Server Directory Structure... 1-5
1.3 Understanding Configuration Files ... 1-5
1.4 Oracle HTTP Server Support ... 1-6

2 Management Tools for Oracle HTTP Server

2.1 Overview of Oracle HTTP Server Management .. 2-1
2.2 Accessing Fusion Middleware Control ... 2-1
2.3 Accessing the Oracle HTTP Server Home Page ... 2-2
2.3.1 Navigating Within Fusion Middleware Control... 2-2
2.4 Using the opmnctl Command-line Tool .. 2-3

3 Understanding Oracle HTTP Server Modules

3.1 List of Included Modules ... 3-1
3.2 mod_certheaders... 3-3
3.3 mod_dms.. 3-3
3.4 mod_onsint .. 3-4
3.5 mod_oradav... 3-4
3.6 mod_ossl... 3-5
3.7 mod_osso.. 3-5
3.8 mod_perl .. 3-5
3.8.1 Using mod_perl with a Database .. 3-5
3.9 mod_reqtimeout.. 3-8
3.10 mod_plsql... 3-8

iv

3.10.1 Creating a DAD.. 3-8
3.10.2 Configuration Files for mod_plsql .. 3-10
3.10.3 Configuration Files and Parameters .. 3-32
3.11 mod_wl_ohs.. 3-33

Part II Managing Oracle HTTP Server

4 Getting Started with Oracle HTTP Server

4.1 Starting, Stopping, and Restarting Oracle HTTP Server... 4-1
4.1.1 Understanding the PID File.. 4-2
4.1.2 Starting Oracle HTTP Server.. 4-3
4.1.3 Stopping Oracle HTTP Server.. 4-4
4.1.4 Restarting Oracle HTTP Server.. 4-4
4.2 Creating an Oracle HTTP Server Component .. 4-5
4.3 Specifying Server Properties ... 4-6
4.3.1 Using Fusion Middleware Control to Specify Server Properties 4-6
4.3.2 Editing the httpd.conf File to Specify Server Properties.. 4-7
4.4 Configuring Oracle HTTP Server ... 4-8
4.4.1 Configuring Secure Sockets Layer .. 4-8
4.4.2 Configuring MIME Settings ... 4-9
4.4.3 Configuring the mod_perl Module.. 4-10
4.4.4 Configuring mod_wl_ohs.. 4-12
4.4.5 Modifying an Oracle HTTP Server Configuration File ... 4-12
4.4.6 Disabling the Options Method ... 4-12
4.4.7 Updating the Configuration for Oracle HTTP Server Instances on a Shared Filesystem.

4-13
4.5 Deleting an Oracle HTTP Server Component ... 4-14

5 Managing and Monitoring Server Processes

5.1 Oracle HTTP Server Processing Model ... 5-1
5.1.1 Request Process Model ... 5-1
5.1.2 Single Unit Process Model.. 5-2
5.2 Monitoring Oracle HTTP Server Performance ... 5-2
5.2.1 Viewing Oracle HTTP Server Performance Metrics ... 5-2
5.2.2 Understanding Oracle HTTP Server Performance Metrics ... 5-3
5.3 Configuring Oracle HTTP Server Performance Directives... 5-4
5.3.1 Using Fusion Middleware Control to Set the Request Configuration......................... 5-5
5.3.2 Using Fusion Middleware Control to Set the Connection Configuration................... 5-6
5.3.3 Using Fusion Middleware Control to Set the Process Configuration.......................... 5-6
5.4 Understanding Process Security... 5-7

6 Managing Connectivity

6.1 Viewing Port Number Usage .. 6-1
6.1.1 Using the Fusion Middleware Control to View Port Number Usage.......................... 6-2
6.2 Managing Ports ... 6-2
6.2.1 Using Fusion Middleware Control to Create Ports ... 6-3

v

6.2.2 Using Fusion Middleware Control to Edit Ports ... 6-3
6.2.3 Updating the Registration of Oracle HTTP Server with a WebLogic Domain After

Changing the Administration Port 6-4
6.3 Configuring Virtual Hosts ... 6-4
6.3.1 Using Fusion Middleware Control to Create Virtual Hosts.. 6-5
6.3.2 Using Fusion Middleware Control to Configure Virtual Hosts 6-6

7 Managing Oracle HTTP Server Logs

7.1 Overview of Server Logs ... 7-1
7.1.1 About Error Logs ... 7-2
7.1.2 About Access Logs... 7-2
7.1.3 Log Rotation ... 7-3
7.2 Configuring Oracle HTTP Server Logs.. 7-4
7.2.1 Using Fusion Middleware Control to Configure Error Logs .. 7-4
7.2.2 Using Fusion Middleware Control to Configure Access Logs 7-6
7.3 Log Directives for Oracle HTTP Server ... 7-8
7.3.1 Oracle Diagnostic Logging Directives .. 7-8
7.3.2 Apache HTTP Server Log Directives ... 7-10
7.4 Viewing Oracle HTTP Server Logs ... 7-11

8 Managing Application Security

8.1 About Oracle HTTP Server Security .. 8-1
8.2 Classes of Users and Their Privileges .. 8-2
8.3 Resources Protected.. 8-2
8.4 Authentication, Authorization and Access Control .. 8-3
8.4.1 Access Control.. 8-3
8.4.2 User Authentication and Authorization .. 8-3
8.4.3 Support for FMW Audit Framework.. 8-4

9 Configuring mod_oradav

9.1 Introduction to the mod_oradav Module.. 9-1
9.1.1 WebDAV ... 9-2
9.1.2 OraDAV .. 9-2
9.1.3 OraDAV Architecture ... 9-3
9.1.4 OraDAV Usage Model .. 9-4
9.1.5 PROPFIND Security .. 9-4
9.2 Configuring mod_oradav .. 9-5
9.2.1 OraDAV Configuration Parameters ... 9-5
9.2.2 Using Fusion Middleware Control to Configure mod_oradav 9-11
9.2.3 Editing mod_oradev.conf .. 9-11
9.3 WebDAV Security Considerations .. 9-12
9.4 OraDAV Performance Considerations ... 9-12
9.4.1 Using Disk Caching with OraDAV.. 9-12
9.4.2 Bypassing Oracle Web Cache for WebDAV Activities ... 9-13
9.5 Globalization Support Considerations with OraDAV ... 9-13
9.6 Location of DAV Files ... 9-14

vi

Part III Appendixes and Glossary

A Using Oracle Plug-Ins for Third-Party Web Servers

A.1 Using Oracle Proxy Plug-In.. A-1
A.1.1 Overview of Oracle Proxy Plug-In... A-2
A.1.2 Installing Oracle Proxy Plug-In .. A-2
A.1.3 Configuring Oracle Proxy Plug-In ... A-3
A.1.4 Configuring Sun Java System Web Server to Use Oracle Proxy Plug-In A-7
A.1.5 Configuring Microsoft IIS 6.0 Listener to Use Oracle Proxy Plug-In.......................... A-8
A.1.6 Configuring Microsoft IIS 7.0 Listener to Use Oracle Proxy Plug-In........................ A-10
A.1.7 Oracle Proxy Plug-In Usage Information.. A-12
A.1.8 Troubleshooting Oracle Proxy Plug-In.. A-13
A.2 Using Oracle SSO Plug-In... A-15
A.2.1 Overview of Oracle SSO Plug-In .. A-15
A.2.2 Installing Oracle SSO Plug-In ... A-16
A.2.3 Registering with the Oracle Single Sign-On Server ... A-17
A.2.4 Configuring the Oracle SSO Plug-In.. A-17
A.2.5 Configuring Microsoft IIS 6.0 Listener to Use Oracle Single Sign-On A-18
A.2.6 Configuring Microsoft IIS 7.0 Listener to Use Oracle Single Sign-On A-21
A.2.7 Troubleshooting Oracle SSO Plug-In... A-22

B Frequently Asked Questions

B.1 How Do I Create Application-Specific Error Pages? .. B-1
B.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS? B-2
B.3 Can I Use Oracle HTTP Server As Cache? ... B-2
B.4 Can I Use Different Language and Character Set Versions of Document? B-2
B.5 Can I Apply Apache Security Patches to Oracle HTTP Server? ... B-2
B.6 Can I Upgrade the Apache Version of Oracle HTTP Server?.. B-3
B.7 Can I Compress Output From Oracle HTTP Server? ... B-3
B.8 How Do I Create a Namespace That Works Through Firewalls and Clusters? B-3
B.9 How do I Protect the Web Site from Hackers? .. B-4
B.10 Do I Need to Re-register Partner Applications with the SSO Server If I Disable or Enable

SSL? B-4
B.11 Why REDIRECT_ERROR_NOTES is not set for file-not-found errors? B-4
B.12 How can I hide information about the Web Server Vendor and Version B-5

C Troubleshooting Oracle HTTP Server

C.1 Oracle HTTP Server Unable to Start Due to Port Conflict ... C-1
C.2 System Overloaded by Number of httpd Processes ... C-1
C.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024 C-2
C.4 Oracle HTTP Server May Fail To Start If PM Files Are Not Located Correctly C-2
C.5 Using Log Files to Locate Errors.. C-2
C.5.1 Rewrite Log.. C-2
C.5.2 Script Log ... C-3
C.5.3 Error Log .. C-3
C.6 Client IP Address not used in a configuration with Oracle Web Cache............................ C-3

vii

Glossary

Index

viii

ix

Preface

This guide describes how to manage Oracle HTTP Server, including how to start and
stop Oracle HTTP Server, how to manage network components, configure listening
ports, and extend basic functionality using modules.

Audience
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server is intended for
application server administrators, security managers, and managers of databases used
by application servers. This documentation is based on the assumption that readers
are already familiar with Apache HTTP Server.

Unless otherwise mentioned, the information in this document is applicable when
Oracle HTTP Server is installed with Oracle WebLogic Server and Oracle Fusion
Middleware Control. It is assumed that readers are familiar with the key concepts of
Oracle Fusion Middleware as described in the Oracle Fusion Middleware Concepts Guide
and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone mode, see
“Installing Oracle Web Tier in Stand-Alone Mode” in the Oracle Fusion Middleware
Installation Guide for Oracle Web Tier."

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

x

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
11g Release 1 (11.1.1) documentation set:

■ Oracle Fusion Middleware Concepts

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware High Availability Guide

■ Apache documentation included in this library

Conventions
The following text conventions are used in this document:

Note: Readers using this guide in PDF or hard copy formats will
be unable to access third-party documentation, which Oracle
provides in HTML format only. To access the third-party
documentation referenced in this guide, use the HTML version of
this guide and click the hyperlinks.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Understanding Oracle HTTP Server

This part presents introductory and conceptual information about Oracle HTTP
Server. It contains the following chapters:

■ Chapter 1, "Introduction to Oracle HTTP Server"

■ Chapter 2, "Management Tools for Oracle HTTP Server"

■ Chapter 3, "Understanding Oracle HTTP Server Modules"

1

Introduction to Oracle HTTP Server 1-1

1Introduction to Oracle HTTP Server

Oracle HTTP Server is the Web server component for Oracle Fusion Middleware. It
provides a listener for Oracle WebLogic Server and the framework for hosting static
pages, dynamic pages, and applications over the Web.

This chapter includes the following sections:

■ Section 1.1, "What is Oracle HTTP Server"

■ Section 1.2, "Understanding Oracle HTTP Server Directory Structure"

■ Section 1.3, "Understanding Configuration Files"

■ Section 1.4, "Oracle HTTP Server Support"

1.1 What is Oracle HTTP Server
Oracle HTTP Server 11g, Release 1 (11.1.1.6.0) is based on Apache HTTP Server 2.2.21
(with critical bug fixes from higher versions) infrastructure, and includes modules
developed specifically by Oracle. The features of single sign-on, clustered deployment,
and high availability enhance the operation of the Oracle HTTP Server. Oracle HTTP
Server has the following components to handle client requests:

■ HTTP listener, to handle incoming requests and route them to the appropriate
processing utility.

■ Modules (mods), to implement and extend the basic functionality of Oracle HTTP
Server. Many of the standard Apache HTTP Server modules are included with
Oracle HTTP Server. Oracle also includes several modules that are specific to
Oracle Fusion Middleware to support integration between Oracle HTTP Server
and other Oracle Fusion Middleware components.

■ Perl interpreter, a persistent Perl runtime environment embedded in Oracle HTTP
Server through mod_perl.

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier in Stand-Alone Mode” in the
Oracle Fusion Middleware Installation Guide for Oracle Web Tier.

What is Oracle HTTP Server

1-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Oracle HTTP Server enables developers to program their site in a variety of languages
and technologies, such as the following:

■ Perl (through mod_perl and CGI)

■ C (through CGI and FastCGI)

■ C++ (through FastCGI)

■ PHP (through mod_php)

■ Oracle PL/SQL

Oracle HTTP Server can also be a proxy server, both forward and reverse. A reverse
proxy enables content served by different servers to appear as if coming from one
server.

Figure 1–1 shows an example of an Oracle home and a farm (farm1) consisting of an
Oracle instance and an Oracle WebLogic Server domain. The Oracle instance in this
example includes two components: Oracle HTTP Server (ohs1) and Oracle Web Cache
(webcache1). The Oracle WebLogic Server domain includes two managed servers.

Figure 1–1 Oracle Fusion Middleware Farm

1.1.1 Key Features of Oracle HTTP Server
The following sections describe some of the key features of Oracle HTTP Server:

■ Section 1.1.1.1, "Security: Encryption with Secure Sockets Layer"

■ Section 1.1.1.2, "Security: Single Sign-On"

■ Section 1.1.1.3, "Distributed Authoring and Versioning (DAV) Support"

■ Section 1.1.1.4, "URL Rewriting and Proxy Server Capabilities"

■ Section 1.1.1.5, "Oracle Process Manager and Notification Server"

■ Section 1.1.1.6, "Oracle Plug-Ins"

■ Section 1.1.1.7, "PL/SQL Server Pages"

■ Section 1.1.1.8, "Server-Side Includes"

Note: For more information about Fusion Middleware concepts, see
the Oracle Fusion Middleware Concepts.

What is Oracle HTTP Server

Introduction to Oracle HTTP Server 1-3

■ Section 1.1.1.9, "Perl"

■ Section 1.1.1.10, "PHP"

■ Section 1.1.1.11, "C / C++ (CGI and FastCGI)"

■ Section 1.1.1.12, "Load Balancing"

1.1.1.1 Security: Encryption with Secure Sockets Layer
Secure Sockets Layer (SSL) is required to run any Web site securely. Oracle HTTP
Server supports SSL encryption based on patented, industry standard, algorithms. SSL
works seamlessly with commonly-supported Internet browsers. Security features
include the following:

■ SSL hardware acceleration support uses dedicated hardware for SSL. Hardware
encryption is faster than software encryption.

■ Variable security per directory allows individual directories to be protected by
different strength encryption.

■ Oracle HTTP Server and Oracle WebLogic Server communicate using the HTTP
protocol to provide both encryption and authentication. You can also enable HTTP
tunneling for the T3 or IIOP protocols to provide non-browser clients access to
WebLogic Server services.

1.1.1.2 Security: Single Sign-On
Basic authentication for HTTP servers uses a flat file with encrypted passwords. Oracle
HTTP Server supports standard authentication as well as single sign-on. The mod_
osso module is included to support single sign-on across sites and across applications.
This security feature provides a better end user experience because users only have to
log in once. It also helps the development cycle because most of the security is
declarative.

1.1.1.3 Distributed Authoring and Versioning (DAV) Support
WebDAV is an HTTP based protocol that allows DAV enabled clients, such as
Microsoft Office and Microsoft Windows Explorer, to edit files on a server. Oracle
HTTP Server enhances DAV support with the mod_oradav module. This module
enables WebDAV clients to connect to an Oracle database, read and write content,
query, and lock documents in various schemas.

1.1.1.4 URL Rewriting and Proxy Server Capabilities
Active Web sites usually update their Web pages and directory contents often, and
possibly their URLs as well. Oracle HTTP Server makes it easy to accommodate the
changes by including an engine that supports URL rewriting so end users do not have
to change their bookmarks.

Oracle HTTP Server also supports reverse proxy capabilities, making it easier to make
content served by different servers to appear from one single server.

See Also: Oracle Fusion Middleware Security Guide

See Also:

■ Oracle Fusion Middleware Security Guide

■ Section 3.7, "mod_osso"

What is Oracle HTTP Server

1-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

1.1.1.5 Oracle Process Manager and Notification Server
Oracle Fusion Middleware provides a high availability infrastructure integration with
Oracle Process Manager and Notification Server (OPMN), for process management,
failure detection, and failover for Oracle HTTP Server processes.

1.1.1.6 Oracle Plug-Ins
Oracle provides the following plug-ins to enable third-party web servers to work with
Oracle HTTP Server:

■ Oracle Proxy Plug-In is a separately-available component that enables
Microsoft IIS and Sun Java System Web Server to route requests to Oracle HTTP
Server.

■ Oracle SSO Plug-In is a separately-available component that enables Microsoft IIS
to be integrated with Oracle Fusion Middleware Single Sign-On.

For more information about these plug-ins, see Appendix A, "Using Oracle Plug-Ins
for Third-Party Web Servers."

1.1.1.7 PL/SQL Server Pages
PL/SQL Server Pages are similar in concept to the JavaServer Pages. The mod_plsql
module enables PL/SQL to be used as the scripting language within an HTML page.
PL/SQL Server Pages get translated into a stored procedure, which then uses the
module to send the output to the browser.

1.1.1.8 Server-Side Includes
Server-Side Includes provide an easy way of adding dynamic or uniform static content
across all pages on a site. It is typically used for header and footer information. Oracle
HTTP Server supports special directives to enable these only for certain types of files,
or for specified virtual hosts.

1.1.1.9 Perl
Perl is a scripting language often used to provide dynamic content. Perl scripts can
either be called as a CGI program, or directly through the mod_perl module. Oracle
Fusion Middleware uses Perl version 5.10.

1.1.1.10 PHP
PHP (Hypertext Preprocessor) is a scripting language capable of being embedded in
HTML, which makes it well-suited for Web development.

1.1.1.11 C / C++ (CGI and FastCGI)
CGI programs are commonly used to program Web applications. Oracle HTTP Server
enhances the programs by providing a mechanism to keep them alive beyond the
request lifecycle.

See Also:

■ Oracle Fusion Middleware High Availability Guide

■ Oracle Fusion Middleware Oracle Process Manager and Notification
Server Administrator's Guide

See Also: Section 3.8, "mod_perl"

Understanding Configuration Files

Introduction to Oracle HTTP Server 1-5

1.1.1.12 Load Balancing
Oracle HTTP Server includes the mod_wl_ohs module, which routes requests to
Oracle WebLogic Server. The mod_wl_ohs module provides the same load balancing
functionality as the Oracle WebLogic Server plug-in for Apache HTTP Server (mod_
wl). Note that the modules mentioned in this section are different from the plug-ins
described in Section 1.1.1.6, "Oracle Plug-Ins."

For more information, see "The Dynamic Server List" section of Using Web Server
Plug-Ins with Oracle WebLogic Server.

1.2 Understanding Oracle HTTP Server Directory Structure
Oracle HTTP Server directories are divided between the Oracle home and the Oracle
instance. The Oracle home directories are read-only, and contain the Oracle Fusion
Middleware binaries. The Oracle instance directories contain the module configuration
files and content pages for Oracle HTTP Server. Table 1–1 shows the subdirectories for
Oracle HTTP Server in the Oracle home directory.

Table 1–2 shows the subdirectories for Oracle Fusion Middleware in the Oracle
instance directory.

1.3 Understanding Configuration Files
Configuration for Oracle HTTP Server are specified through directives in
configuration files in the exact same manner as Apache HTTP Server configuration
files. For more information about Apache HTTP Server configuration files, see the
Apache HTTP Server 2.2 Users Guide.

Table 1–1 Oracle Home Directories

Directory Contents

ohs/bin Oracle HTTP Server binary files.

ohs/conf Oracle HTTP Server template configuration files, which get
provisioned to an Oracle instance when an Oracle HTTP
Server component is configured.

Note: These files should only be edited by advanced Oracle
HTTP Server users.

ohs/modules Oracle HTTP Server modules

Table 1–2 Oracle Instance Directories

Directory Name Contents

config/OHS/component_
name

Oracle HTTP Server configuration files.

config/OHS/component_
name/htdocs

Static content and CGI scripts for Oracle HTTP Server.

config/OHS/component_
name/moduleconf

Configuration files that are automatically included in Oracle
HTTP Server configuration. Be careful not to create any files
with a .conf extension in this directory that you do not
want to be included in the configuration.

diagnostics/logs/OHS/com
ponent_name

Oracle HTTP Server component instance log files.

Oracle HTTP Server Support

1-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

1.4 Oracle HTTP Server Support
Oracle provides technical support for the following Oracle HTTP Server features and
conditions:

■ Modules included in the Oracle distribution. Oracle does not support modules
obtained from any other source, including the Apache Software Foundation.
Oracle HTTP Server will still be supported when non-Oracle-provided modules
are included. If it is suspected that the non-Oracle-provided modules are
contributing to reported problems, customers may be requested to reproduce the
problems without including those modules.

■ Problems that can be reproduced within an Oracle HTTP Server configuration
consisting only of supported Oracle HTTP Server modules.

■ Use of the included Perl interpreter with the supported Oracle HTTP Server
configuration.

2

Management Tools for Oracle HTTP Server 2-1

2Management Tools for Oracle HTTP Server

Oracle provides the following management tools for Oracle HTTP Server:

■ Fusion Middleware Control, which is a browser-based management tool

■ opmnctl, which is a command-line management tool.

This chapter includes the following sections:

■ Section 2.1, "Overview of Oracle HTTP Server Management"

■ Section 2.2, "Accessing Fusion Middleware Control"

■ Section 2.3, "Accessing the Oracle HTTP Server Home Page"

■ Section 2.4, "Using the opmnctl Command-line Tool"

2.1 Overview of Oracle HTTP Server Management
The main tool for managing Oracle HTTP Server is Fusion Middleware Control, which
is a browser-based tool for administering and monitoring the Oracle Fusion
Middleware environment.

2.2 Accessing Fusion Middleware Control
To display Fusion Middleware Control, you enter the Fusion Middleware Control
URL, which includes the name of the WebLogic Administration Server host and the
port number assigned to Fusion Middleware Control during the installation. The
following shows the format of the URL:

http://hostname.domain:port/em

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see "Installing Oracle Web Tier in Stand-Alone Mode" in the
Oracle Fusion Middleware Installation Guide for Oracle Web Tier.

See Also: Oracle Fusion Middleware Administrator's Guide

Accessing the Oracle HTTP Server Home Page

2-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

If you saved the installation information by clicking Save on the last installation
screen, the URL for Fusion Middleware Control is included in the file that is written to
disk.

1. Display Fusion Middleware Control by entering the URL in your Web browser.
For example:

http://host1.acme.com:7001/em

The Welcome page is displayed:

2. Enter the Fusion Middleware Control administrator user name and password and
click Login.

The default user name for the administrator user is weblogic. This is the account
you can use to log in to the Fusion Middleware Control for the first time. The
weblogic password is the one you supplied during the installation of Fusion
Middleware Control.

2.3 Accessing the Oracle HTTP Server Home Page
The Oracle HTTP Server Home page in Fusion Middleware Control contains menus
and regions that enable you to manage the server. Use the menus for monitoring,
managing, routing, and viewing general information.

2.3.1 Navigating Within Fusion Middleware Control
When you select a target, such as a WebLogic Managed Server or a component, such as
Oracle HTTP Server, the target's home page is displayed in the content pane and that
target's menu is displayed at the top of the page, in the context pane. For example, if
you select an Oracle HTTP Server instance from the Web Tier folder, the Oracle HTTP
Server menu is displayed. You can also view the menu for a target by right-clicking the
target in the navigation pane.

Figure 2–1 shows the target navigation pane and the home page of Oracle HTTP
Server.

Using the opmnctl Command-line Tool

Management Tools for Oracle HTTP Server 2-3

Figure 2–1 Oracle HTTP Server Home Page

The Oracle HTTP Server home page contains the following regions:

■ Response and Load Region: Provides information such as the number of active
requests, how many requests were submitted, and how long it took for Oracle
HTTP Server to respond to a request. It also provides information about the
number of bytes processed with the requests.

■ CPU and Memory Usage Region: Shows how much CPU (by percentage) and
memory (in megabytes) are being used by an Oracle HTTP Server instance.

■ Virtual Hosts Region: Shows the virtual hosts for Oracle HTTP Server.

■ Module Request Statistics Region: Shows the modules for Oracle HTTP Server.

■ Resource Center: Provides links to books and topics related to Oracle HTTP
Server.

2.4 Using the opmnctl Command-line Tool
You can use the opmnctl command-line interface to start and stop system
components, monitor system components, and perform many other tasks related to
process management.

The following are some of the opmnctl operations that you can perform with Oracle
HTTP Server components:

■ Create additional components.

■ Delete existing components.

■ Start and/or stop components.

See Also: The Oracle Fusion Middleware Administrator’s Guide
contains detailed descriptions of all the items on the target navigation
pane and the home page.

Using the opmnctl Command-line Tool

2-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Check a component's status.

■ Check a component's port usage (see Chapter 6, "Managing Connectivity").

The opmnctl command is located in the ORACLE_HOME/opmn/bin directory in an
Oracle home and in the ORACLE_INSTANCE/bin directory in an Oracle instance.

The following example demonstrates using opmnctl in a command shell to start an
Oracle HTTP Server component, and to then verify the status of that component.

> $ORACLE_INSTANCE/bin/opmnctl startproc ias-component=ohs1
> $ORACLE_INSTANCE/bin/opmnctl status
Processes in Instance: instance1
---------------------------------+--------------------+---------+---------
ias-component | process-type | pid | status
---------------------------------+--------------------+---------+---------
webcache1 | WebCache-admin | 19556 | Alive
webcache1 | WebCache | 19555 | Alive
ohs1 | OHS | 7249 | Alive

See Also: Oracle Process Manager and Notification Server

Note: Oracle recommends running opmnctl from the same
ORACLE_INSTANCE in which Oracle HTTP Server is running, unless
that instance is unavailable.

If an ORACLE_INSTANCE has not been created, then run opmnctl
from ORACLE_HOME/opmn/bin.

3

Understanding Oracle HTTP Server Modules 3-1

3Understanding Oracle HTTP Server Modules

Modules (mods) extend the basic functionality of Oracle HTTP Server, and support
integration between Oracle HTTP Server and other Oracle Fusion Middleware
components.

This chapter discusses the modules developed specifically by Oracle for Oracle HTTP
Server. It includes the following sections:

■ Section 3.1, "List of Included Modules"

■ Section 3.2, "mod_certheaders"

■ Section 3.3, "mod_dms"

■ Section 3.4, "mod_onsint"

■ Section 3.5, "mod_oradav"

■ Section 3.6, "mod_ossl"

■ Section 3.7, "mod_osso"

■ Section 3.8, "mod_perl"

■ Section 3.10, "mod_plsql"

■ Section 3.11, "mod_wl_ohs"

3.1 List of Included Modules
This section lists all of the modules bundled with Oracle HTTP Server.

Oracle-developed Modules for Oracle HTTP Server
The following modules have developed specifically by Oracle for Oracle HTTP Server:

■ mod_certheaders

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier in Stand-Alone Mode” in the
Oracle Fusion Middleware Installation Guide for Oracle Web Tier.

List of Included Modules

3-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ mod_dms

■ mod_onsint

■ mod_oradav

■ mod_ossl

■ mod_osso

■ mod_plsql

■ mod_wl_ohs

Apache HTTP Server and Third-party Modules in Oracle HTTP Server
Oracle HTTP Server also includes the following Apache HTTP Server and third-party
modules out-of-the-box. These modules are not developed by Oracle.

■ mod_authz_host

■ mod_actions

■ mod_alias

■ mod_asis

■ mod_auth_basic

■ mod_auth_dbm

■ mod_authn_anon

■ mod_autoindex

■ mod_authn_dbm

■ mod_authn_file

■ mod_authz_groupfile

■ mod_authz_host

■ mod_authz_user

■ mod_cern_meta

■ mod_cgi

■ mod_cgid (Unix only)

■ mod_deflate

■ mod_dir

■ mod_env

■ mod_expires

■ mod_fastcgi

■ mod_headers

■ mod_imagemap

■ mod_include

■ mod_info

See Also: For information about Apache HTTP Server modules, see
the Apache documentation.

mod_dms

Understanding Oracle HTTP Server Modules 3-3

■ mod_log_config

■ mod_logio

■ mod_mime

■ mod_mime_magic

■ mod_negotiation

■ mod_perl

■ mod_proxy

■ mod_proxy_balancer

■ mod_proxy_connect

■ mod_proxy_ftp

■ mod_proxy_http

■ mod_rewrite

■ mod_reqtimeout

■ mod_setenvif

■ mod_speling

■ mod_status

■ mod_unique_id

■ mod_userdir

■ mod_usertrack

3.2 mod_certheaders
The mod_certheaders module enables reverse proxies that terminate Secure Sockets
Layer (SSL) connections in front of Oracle HTTP Server to transfer information
regarding the SSL connection, such as SSL client certificate information, to Oracle
HTTP Server and the applications running behind Oracle HTTP Server. This
information is transferred from the reverse proxy to Oracle HTTP Server using HTTP
headers. The information is then transferred from the headers to the standard CGI
environment variable. The mod_ossl module or the mod_ssl module populate the
variable if the SSL connection is terminated by Oracle HTTP Server.

The mod_certheaders module also enables certain requests to be treated as HTTPS
requests even though they are received through HTTP. This is done using the
SimulateHttps directive.

SimulateHttps takes the container it is contained within, such as <VirtualHost>
or <Location>, and treats all requests received for this container as if they were
received through HTTPS, regardless of the real protocol used by the request.

3.3 mod_dms
The mod_dms module enables you to monitor the performance of site components
using Oracle Dynamic Monitoring Service (DMS).

For more information about DMS, see the "Oracle Dynamic Monitoring Service"
chapter in the Oracle Fusion Middleware Performance and Tuning Guide.

mod_onsint

3-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

3.4 mod_onsint
The mod_onsint module provides integration support with Oracle Notification Service
(ONS) and Oracle Process Manager and Notification Server (OPMN). It is an Oracle
module and provides the following functionality.

■ Provides a subscription mechanism for ONS notifications within Oracle HTTP
Server. mod_onsint receives notification for all modules within an Oracle HTTP
Server instance.

■ Publishes PROC_READY ONS notifications so that OPMN knows that the listener is
up and ready. It also provides information such as DMS metrics and information
about how the listener can be contacted. These notifications are sent periodically
by mod_onsint as long as the Oracle HTTP Server instance is running.

mod_onsint runs as a thread within a Oracle HTTP Server parent process on UNIX
and within a child process on Windows. This thread is responsible for sending and
receiving ONS messages.

There is an optional directive called OpmnHostPort that can be configured for mod_
onsint. This directive enables you to specify a hostname and port that OPMN should
use for pinging the Oracle HTTP Server instance that mod_onsint is running in. If
OpmnHostPort is not specified, mod_onsint chooses an HTTP port automatically. In
certain circumstances, you may want to choose a specific HTTP port and hostname
that OPMN should use to ping the listener with.

OpmnHostPort has the following syntax that specifies the values to pass to OPMN:

OpmnHostPort [<http> | <https>://]<host>:<port>

For example, the following line would specify that OPMN should use HTTP, the
localhost interface and port 7778 to ping this listener:

OpmnHostPort http://localhost:7778

For more information about ONS and OPMN, see the "Oracle Process Manager and
Notification Overview" chapter in the Oracle Fusion Middleware Oracle Process Manager
and Notification Server Administrator's Guide.

3.5 mod_oradav
The mod_oradav module is an Oracle Call Interface (OCI) application written in C that
extends the implementation of mod_dav. The mod_oradav directive can read and
write to local files or to an Oracle database. The Oracle database must have an
OraDAV driver (a stored procedure package) for the mod_oradav module to map
WebDAV activity to database activity. Essentially the mod_oradav module enables
WebDAV clients to connect to an Oracle database, read and write content, and query
and lock documents in various schemas.

You can configure the mod_oradav module using standard Oracle HTTP Server
directives. Use the Advanced Server Configuration page of Fusion Middleware
Control to configure the mod_oradav module. The mod_oradav directive can
immediately leverage other module code (such as mime_magic) to perform content
management tasks. Most OraDAV processing activity involves streaming content to
and from a content provider. The mod_oradav directive uses OCI streaming logic
directly within Oracle HTTP Server.

mod_perl

Understanding Oracle HTTP Server Modules 3-5

3.6 mod_ossl
The mod_ossl module enables strong cryptography for Oracle HTTP Server. This
Oracle module is a plug-in to Oracle HTTP Server that enables the server to use SSL. It
is very similar to the OpenSSL module, mod_ssl. The mod_ossl module is based on the
Oracle implementation of SSL, which supports SSL version 3 and TLS version 1, and is
based on Certicom and RSA Security technology.

3.7 mod_osso
The mod_osso module enables single sign-on for Oracle HTTP Server by examining
incoming requests and determining whether the requested resource is protected. If the
resource is protected, then the module retrieves the Oracle HTTP Server cookie.

The module is disabled by default. You can enable mod_osso module on the Server
Configuration Properties page of Fusion Middleware Control. For more information
see Section 4.3.1, "Using Fusion Middleware Control to Specify Server Properties."

3.8 mod_perl
The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This
eliminates start-up overhead and enables you to write modules in Perl. Oracle Fusion
Middleware uses Perl version 5.10.

The module is disabled, by default. To enable the mod_perl module, follow the
instructions in Section 4.4.3, "Configuring the mod_perl Module".

3.8.1 Using mod_perl with a Database
This section provides information for mod_perl users working with databases. It
explains how to test a local database connection and set character forms.

See Also:

■ Chapter 9, "Configuring mod_oradav"

■ Oracle Portal Administrator's Guide

■ For information about using the mod_oradav module to access
database schemas for access by third-party tools, such as Adobe
GoLive, Macromedia Dreamweaver, and Oracle interMedia, go
to the OraDAV information available on OTN at:

http://www.oracle.com/technology/index.html

See Also: For more information, see the "Configuring SSL for the
Web Tier" section of the Oracle Fusion Middleware Administrator’s Guide.

See also: For information about forced authentication, see the Oracle
Fusion Middleware Application Developer's Guide for Oracle Identity
Management.

For information about single sign-on, see the Oracle Fusion Middleware
Security Guide.

See Also: mod_perl documentation at
http://perl.apache.org/docs/index.html

mod_perl

3-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

3.8.1.1 Using Perl to Access the Database
Perl scripts access databases using the DBI/DBD driver for Oracle. The DBI/DBD
driver is part of Oracle Fusion Middleware. It calls Oracle Call Interface (OCI) to
access the databases.

Once mod_perl is enabled, DBI must be enabled in the mod_perl.conf file to
function. To enable DBI, perform the following steps:

1. Edit the mod_perl.conf file:

a. In Fusion Middleware Control, navigate to the Oracle HTTP Server Advanced
Server Configuration page.

b. Select the mod_perl.conf file from the menu and click Go.

c. Add the following line to the mod_perl.conf file:

PerlModule Apache::DBI

2. Click Apply to save the file.

3. Restart Oracle HTTP Server as described in Section 4.1.4, "Restarting Oracle HTTP
Server."

Place the Perl scripts that you want to run in the ORACLE_
INSTANCE/config/OHS/component_name/cgi-bin directory.

Example 3–1 Using a Perl Script to Access a Database

#!ORACLE_HOME/perl/bin/perl -w
 use DBI;
 my $dataSource = "host=hostname.domain;sid=orclsid;port=1521";
 my $userName = "userid";
 my $password = "password";
 my $dbhandle = DBI->connect("dbi:Oracle:$dataSource", $userName, $password)
 or die "Can't connect to the Oracle Database: $DBI::errstr\n";
 print "Content-type: text/plain\n\n";
 print "Database connection successful.\n";
 ### Now disconnect from the database
 $dbhandle->disconnect
 or warn "Database disconnect failed; $DBI::errstr\n";
 exit;

To run the DBI scripts, the URLs would look like the following:

http://hostname.domain:port/cgi-bin/scriptname
http://hostname.domain:port/perl/scriptname

If a script specifies "use Apache::DBI" instead of "use DBI", then it can only run
from the URL http://hostname.domain:port/perl/scriptname.

3.8.1.2 Testing a Database Connection
Example 3–2 shows a sample Perl script for testing a database connection. Replace the
instance name, user ID, and password in the connect statement with proper values
for the target database.

Example 3–2 Sample Perl Script For Testing Connection for Local Seed Database

use DBI;
print "Content-type: text/plain\n\n";
$dbh = DBI->connect("dbi:Oracle:instance_name", userid/password, "") ||

 die $DBI::errstr;

mod_perl

Understanding Oracle HTTP Server Modules 3-7

$stmt = $dbh->prepare("select * from emp order by empno")|| die $DBI::errstr;
$rc = $stmt->execute() || die $DBI::errstr;
while (($empno, $name) = $stmt->fetchrow()) {

print "$empno $name\n";
}
warn $DBI::errstr if $DBI::err;
die "fetch error: " . $DBI::errstr if $DBI::err;
$stmt->finish() || die "can't close cursor";
$dbh->disconnect() || die "cant't log off Oracle";

3.8.1.3 Using SQL NCHAR Data Types
SQL NCHAR data types (NCHAR, NVARCHAR2 and NCLOB) are reliable Unicode
data types. SQL NCHAR data types enable you to store Unicode characters regardless
of the database character set. The character set for those data types is specified by the
national character set, which is either AL16UTF-16 or UTF8.

Example 3–3 shows an example of accessing SQL NCHAR data.

Example 3–3 Sample Script to Access SQL NCHAR Data

declare to use the constants for character forms
use DBD::Oracle qw(:ora_forms);
connect to the database and get the database handle
$dbh = DBI->connect(...);

prepare the statement and get the statement handle
$sth = $dbh->prepare('SELECT * FROM TABLE_N WHERE NCOL1 = :nchar1');

bind the parameter of a NCHAR type
$sth->bind_param(':nchar1', $param_1);
set the character form to NCHAR
$sth->func({ ':nchar1' => ORA_NCHAR } , 'set_form');

$sth->execute;

As shown in Example 3–3, the set_form function is provided as a private function
that you can invoke with the standard DBI func method. The set_form function
takes an anonymous hash that enables you to set the character form for parameters.

The valid values of character form are either ORA_IMPLICIT or ORA_NCHAR. Setting
the character form to ORA_IMPLICIT causes the application's bound data to be
converted to the database character set, and ORA_NCHAR to the national character set.
The default is ORA_IMPLICIT.

The constants are available as ora_forms in DBD::Oracle.

set_default_form sets the default character form for a database handle. The
following example shows its syntax:

specify the default form to be NCHAR
$dbh->func(ORA_NCHAR, 'set_default_form');

This syntax causes the form of all parameters to be ORA_NCHAR, unless otherwise
specified with set_form calls. Unlike the set_form function, the set_default_
form functions on the database handle, so every statement from the database handle
has the form of your choice.

mod_reqtimeout

3-8 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Example 3–4 Sample for set_form

a declaration example for the constants ORA_IMPLICIT and ORA_NCHAR
use DBD::Oracle qw(:ora_forms);

set the character form for the placeholder :nchar1 to NCHAR
$sth->func({ ':nchar1' => ORA_NCHAR } , 'set_form');

set the character form using the positional index
$sth->func({ 2 => ORA_NCHAR } , 'set_form');

set the character form for multiple placeholders at once
$sth->func({ 1 => ORA_NCHAR, 2 => ORA_NCHAR } , 'set_form');

3.9 mod_reqtimeout
mod_reqtimeout sets timeout and minimum data rate for receiving requests. mod_
reqtimeout module provides protection against some DOS attacks and related issues.
For more information, see:

http://httpd.apache.org/docs/2.2/mod/mod_reqtimeout.html

3.10 mod_plsql
The mod_plsql module connects Oracle HTTP Server to an Oracle database, enabling
you to create Web applications using Oracle stored procedures.

To access a Web-enabled PL/SQL application, configure a PL/SQL database access
descriptor (DAD) for the mod_plsql module. A DAD is a set of values that specifies
how the module connects to a database server to fulfill an HTTP request. Besides the
connection details, a DAD contains important configuration parameters for various
operations in the database and for the mod_plsql module in general. Any Web-enabled
PL/SQL application which makes use of the PL/SQL Web ToolKit needs to create a
DAD to invoke the application.

This section contains the following topics:

■ Section 3.10.1, "Creating a DAD"

■ Section 3.10.2, "Configuration Files for mod_plsql"

■ Section 3.10.3, "Configuration Files and Parameters"

3.10.1 Creating a DAD
To create a DAD, perform the following steps:

1. Open the dads.conf configuration file.

For the locations of mod_plsql configuration files, see Table 3–1.

2. Add the following:

Note: You can also open and edit the dads.conf file by using
Oracle Fusion Middleware Control, on the Oracle HTTP Server
Advanced Server Configuration page, as described in Section 4.4.5,
"Modifying an Oracle HTTP Server Configuration File."

mod_plsql

Understanding Oracle HTTP Server Modules 3-9

a. The <Location> element, which defines a virtual path used to access the
PL/SQL Web Application. This directive groups a set of directives that apply
to the named Location.

For example, the following directive defines a virtual path called /myapp that
will be used to invoke a PL/SQL Web application through a URL such as
http://host:port/myapp/.

<Location /myapp>

b. The SetHandler directive, which directs Oracle HTTP Server to enable the
mod_plsql module to handle the request for the virtual path defined by the
named Location:

SetHandler pls_handler

c. Additional Oracle HTTP Server directives that are allowed in the context of a
<Location> directive. Typically, the following directives are used:

Order deny,allow
Allow from all

d. One or more specific mod_plsql directives. For example:

PlsqlDatabaseUsername scott
PlsqlDatabasePassword tiger
PlsqlDatabaseConnectString orcl
PlsqlAuthenticationMode Basic

e. The </Location> tag to close the <Location> element.

3. Save the edits.

4. Obfuscate the DAD password by running the dadTool.pl script located in the
ORACLE_HOME/bin directory.

5. Restart Oracle HTTP Server as described in Section 4.1.4, "Restarting Oracle HTTP
Server."

You can create additional DADs by defining other uniquely named <Location>
elements in dads.conf.

Example DADs
The following DAD connects as a specific user and has a default home page:

<Location /pls/mydad>
SetHandler pls_handler
Order allow,deny
Allow from All
PlsqlDatabaseUsername scott
PlsqlDatabasePassword tiger
PlsqlDatabaseConnectString prod_db

Note: Earlier releases of the mod_plsql module were always
mounted on a virtual path with a prefix of /pls. This restriction is
removed in later releases but might still be a restriction imposed by
some of the earlier PL/SQL applications.

See Also: "PlsqlDatabasePassword" on page 3-20 for instructions on
performing the obfuscation.

mod_plsql

3-10 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

PlsqlDefaultPage scott.myapp.home
</Location>

The following DAD uses HTTP Basic Authentication and supports document
upload/download operations:

<Location /pls/mydad2>
SetHandler pls_handler
Order allow,deny
Allow from All
PlsqlDatabaseConnectString prod_db2
PlsqlDefaultPage scott.myapp.my_home
PlsqlDocumentTablename scott.my_documents
PlsqlDocumentPath docs
PlsqlDocumentProcedure scott.docpkg.process_download
</Location>

3.10.2 Configuration Files for mod_plsql
The mod_plsql configuration parameters reside in the configuration files that are
located in the ORACLE_INSTANCE directory, as described in Table 3–1.

The mod_plsql configuration parameters are described in these sections:

■ Section 3.10.2.1, "plsql.conf"

■ Section 3.10.2.2, "dads.conf"

■ Section 3.10.2.3, "cache.conf"

3.10.2.1 plsql.conf
The plsql.conf file resides in the ORACLE_
INSTANCE/config/OHS/config/OHS/component_name/moduleconf directory
and Oracle HTTP Server automatically loads all .conf files under this location. The
plsql.conf file contains the LoadModule directive to load the mod_plsql module
into Oracle HTTP Server, any global settings for the mod_plsql module, and include
directives for dads.conf and cache.conf.

The following parameters are used with the plsql.conf file:

■ PlsqlDMSEnable

■ PlsqlLogEnable

■ PlsqlLogDirectory

■ PlsqlIdleSessionCleanupInterval

Table 3–1 mod_plsql Configuration Files In an Oracle Instance

Directory Name Contents

config/OHS/component_
name/moduleconf

plsql.conf configuration file.

config/OHS/component_
name/mod_plsql

dads.conf and cache.conf configuration files.

See Also: The plsql.README file, located in ORACLE_
HOME/ohs/mod_plsql, for a detailed description of plsql.conf

mod_plsql

Understanding Oracle HTTP Server Modules 3-11

PlsqlDMSEnable
Enables Dynamic Monitoring Service (DMS) for the mod_plsql module.

PlsqlLogEnable
Enables debug level logging for the mod_plsql module. Debug level logging is meant
to be used for debugging purposes only.

When logging is enabled, Oracle HTTP Server log files are typically created in the
ORACLE_INSTANCE/diagnostics/logs/OHS/config/OHS/component_name
directory. However, the location specified in PlsqlLogDirectory determines the final
location.

This parameter should be set to Off unless recommended by Oracle support to debug
problems with the mod_plsql module.

To view more details about the internal processing of the mod_plsql module, set this
directive to On. This causes the mod_plsql module to start logging every request that is
processed. The log files are generated as specified by the PlsqlLogDirectory directive.

PlsqlLogDirectory
Specifies the directory where debug level logs are written.

Set the directory name of the location where log files should be generated when
logging is enabled. To avoid possible confusion about the location of this directory, an
absolute path is recommended.

On UNIX, this directory must have write permissions by the owner of the child httpd
processes.

PlsqlIdleSessionCleanupInterval
Specifies the time (in minutes) in which the idle database sessions should be closed
and cleaned by the mod_plsql module.

This directive is used in conjunction with connection pooling of database connections
and sessions in the mod_plsql module. When a session is not used for the specified

Category Value

Syntax PlsqlDMSEnable {On | Off}

Default On

Example PlsqlDMSEnable On

Category Value

Syntax PlsqlLogEnable {On | Off}

Default Off

Example PlsqlLogEnable Off

Category Value

Syntax PlsqlLogDirectory directory

Default None

Example PlsqlLogDirectory ORACLE_
INSTANCE/diagnostics/logs/OHS/component_name

mod_plsql

3-12 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

amount of time, it is closed and freed. This is done so that unused sessions can be
cleaned, and the memory is freed on the database side.

Setting this time to a low number helps in faster cleanup of unused database sessions.
If this number is too low, then this may adversely affect the performance benefits of
connection pooling in the mod_plsql module.

If the number of open database sessions is not a concern, you can increase the value of
this parameter for best performance. In such a case, if the site is accessed frequently
enough that the idle session cleanup interval is never reached for a session, then the
DAD configuration parameter PlsqlMaxRequestsPerSession can be modified so that it
is guaranteed that a pooled database session gets recycled on a regular basis.

For most installations, the default value is adequate.

3.10.2.2 dads.conf
The dads.conf file contains the configuration parameters for the PL/SQL database
access descriptor. (See Table 3–1 for the file location.) A DAD is a set of values that
specifies how the mod_plsql module connects to a database server to fulfill a HTTP
request.

The following parameters are used with the dads.conf file:

■ PlsqlAfterProcedure

■ PlsqlAlwaysDescribeProcedure

■ PlsqlAuthenticationMode

■ PlsqlBeforeProcedure

■ PlsqlBindBucketLengths

■ PlsqlBindBucketWidths

■ PlsqlCGIEnvironmentList

■ PlsqlConnectionTimeout

■ PlsqlConnectionValidation

■ PlsqlDatabaseConnectString

■ PlsqlDatabasePassword

■ PlsqlDatabaseUserName

■ PlsqlDefaultPage

■ PlsqlDocumentPath

■ PlsqlDocumentProcedure

■ PlsqlDocumentTablename

■ PlsqlErrorStyle

■ PlsqlExclusionList

Category Value

Syntax PlsqlIdleSessionCleanupInterval number

Default 15 (minutes)

Example PlsqlIdleSessionCleanupInterval 10

mod_plsql

Understanding Oracle HTTP Server Modules 3-13

■ PlsqlFetchBufferSize

■ PlsqlInfoLogging

■ PlsqlMaxRequestsPerSession

■ PlsqlNLSLanguage

■ PlsqlPathAlias

■ PlsqlPathAliasProcedure

■ PlsqlRequestValidationFunction

■ PlsqlSessionCookieName

■ PlsqlSessionStateManagement

■ PlsqlTransferMode

■ PlsqlUploadAsLongRaw

PlsqlAfterProcedure
Specifies the procedure to be invoked after calling the requested procedure. This
enables you to put a hook point after the requested procedure is called. This is useful
in doing SQL*Traces/SQL Profiles while debugging a problem with the requested
procedure. This is also useful when you want to ensure that a specific call is made after
running every procedure.

■ This parameter should only be used for debugging purposes. In addition, you
could use this parameter to stop SQL trace/SQL profiling.

PlsqlAlwaysDescribeProcedure
Specifies whether the mod_plsql module should describe a procedure before trying to
run it. If this is set to On, then the mod_plsql module will always describe a procedure
before invoking it. Otherwise, the mod_plsql module will only describe a procedure
when its internal heuristics have interpreted a parameter type incorrectly.

■ This parameter should only be used for debugging purposes.

PlsqlAuthenticationMode
Specifies the authentication mode to use for allow access through the DAD.

Category Value

Syntax PlsqlAfterProcedure string

Default None

Example PlsqlAfterProcedure portal.mypkg.myafterproc

Category Value

Syntax PlsqlAlwaysDescribeProcedure {On | Off}

Default Off

Example PlsqlAlwaysDescribeProcedure On

mod_plsql

3-14 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ If the DAD is not using the Basic authentication, then you must include a valid
username/password in the DAD configuration. For the Basic mode, to perform
dynamic authentication, the DAD username/password parameters must be
omitted.

■ The SingleSignOn mode is supported only for Oracle Fusion Middleware releases,
and is used by Oracle Portal and Oracle Single Sign-On. Most customer
applications use Basic authentication. Custom authentication modes (GlobalOwa,
CustomOwa, and PerPackageOwa) are used by very few PL/SQL applications.

PlsqlBeforeProcedure
Specifies the procedure to be invoked before calling the requested procedure. This
enables you to put a hook point before the requested procedure is called. This is useful
in doing SQL*Traces/SQL Profiles while debugging a problem with the requested
procedure. This is also useful when you want to ensure that a specific call be made
before running every procedure.

■ This parameter should only be used for debugging purposes. In addition, you
could use this parameter to start SQL Trace/SQL Profiling.

PlsqlBindBucketLengths

Specifies the rounding size to use while binding the number of elements in a collection
bind. While executing PL/SQL statements, the Oracle database maintains a cache of
PL/SQL statements in the shared SQL area, and attempts to reuse the cached
statement if the same statement is run again. Oracle's matching criteria requires that
the statement texts be identical, and that the bind variable data types match.
Unfortunately, the type match for strings is sensitive to the exact byte size specified,
and for collection bindings is also sensitive to the number of elements in the collection.
Since the mod_plsql module binds statements dynamically, the odds of hitting the
shared cache are low, and it may fill up with near-duplicates and lead to contention for
the latch on the shared area. This parameter reduces that effect by bucketing bind
lengths to the nearest level.

All numbers specified should be in ascending order. After the last specified size,
subsequent bucket sizes will be assumed to be twice the last one.

Category Value

Syntax PlsqlAuthenticationMode {Basic | SingleSignOn |
GlobalOwa | CustomOwa | PerPackageOwa}

Default Basic

Example PlsqlAuthenticationMode CustomOwa

Category Value

Syntax PlsqlBeforeProcedure string

Default None

Example PlsqlBeforeProcedure portal.mypkg.mybeforeproc

Note: This configuration property is rarely ever changed, and system
defaults suffice in almost all cases.

mod_plsql

Understanding Oracle HTTP Server Modules 3-15

■ This parameter is relevant only if you are using procedures with array parameters,
and passing varying number of parameters to the procedure.

■ The default should be sufficient for most PL/SQL applications.

■ To see if this parameter needs to be changed, check the number of versions of a
SQL statement in the SQL area.

■ After the higher configured value, mod_plsql starts auto-generating bucket sizes
of larger values by doubling the last value, as needed. Therefore, after 400, the next
bucket value becomes 800, then 1600, and so on.

■ Consider using flexible parameter passing to reduce the problem.

PlsqlBindBucketWidths

Specifies the rounding size to use while binding the number of elements in a collection
bind. While executing PL/SQL statements, the Oracle database maintains a cache of
PL/SQL statements in the shared SQL area, and attempts to reuse the cached
statement if the same statement is run again. Oracle's matching criteria requires that
the statement texts be identical, and that the bind variable data types match.
Unfortunately, the type match for strings is sensitive to the exact byte size specified,
and for collection bindings is also sensitive to the number of elements in the collection.
Since the mod_plsql module binds statements dynamically, the odds of hitting the
shared cache are low, and it may fill up with near-duplicates and lead to contention for
the latch on the shared area. This parameter reduces that effect by bucketing bind
widths to the nearest level.

All numbers specified should be in ascending order. After the last specified size,
subsequent bucket sizes will be assumed to be twice the last one.

The last bucket width must be equal to or less than 4000. This is due to the restriction
imposed by OCI where array bind widths cannot be greater than 4000.

Category Value

Syntax PlsqlBindBucketLengths number multiline

Default 4,20,100,400

Example PlsqlBindBucketLengths 4

PlsqlBindBucketLengths 25

PlsqlBindBucketLengths 125

Note: This configuration property is rarely ever changed, and system
defaults suffice in almost all cases.

Category Value

Syntax PlsqlBindBucketWidths number multiline

Default 32,128,1450,2048,4000

Example PlsqlBindBucketWidths 40

PlsqlBindBucketWidths 400

PlsqlBindBucketWidths 2000

mod_plsql

3-16 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ This parameter is relevant only if you are using procedures with array parameters,
and passing varying number of parameters to the procedure.

■ The default should be sufficient for most PL/SQL applications.

■ To see if this parameter needs to be changed, check the number of versions of a
SQL statement in the SQL area.

■ After the higher configured value, mod_plsql starts auto-generating bucket sizes
of larger values by doubling the last value, as needed. Therefore, after 400, the next
bucket value becomes 800, then 1600, and so on.

■ Consider using flexible parameter passing to reduce the problem.

PlsqlCGIEnvironmentList
Specifies overrides and additions of CGI environment variables to the default set of
environment variables passed to a PL/SQL procedure. This is a multi-line directive of
name-value pairs to be added, overridden or removed. You can only specify one
environment variable for each directive.

You can add CGI environment variables from the Oracle HTTP Server environment by
specifying the variable name. To remove a CGI environment variable, set it equal to
blank. To add your own name-value pair, use the syntax myname=myvalue.

■ Environment variables added here are available in the PL/SQL application
through the function owa_util.get_cgi_env.

PlsqlConnectionTimeout
Specifies the timeout in milliseconds for testing a connection pool in the mod_plsql
module.

When PlsqlConnectionValidation is set to Automatic or AlwaysValidate, the
mod_plsql module attempts to test pooled database connections. This parameter
specifies the maximum time the mod_plsql module should wait for the test request to
complete before it assumes that the connection is not usable.

Category Value

Syntax PlsqlCGIEnvironmentList string multiline

Default None

Example ■ To add a new environment variable from the Oracle HTTP Server
environment:

PlsqlCGIEnvironmentList DOCUMENT_ROOT

■ To remove an environment variable:

PlsqlCGIEnvironmentList MYENVAR2=

■ To override from the Oracle HTTP Server environment:

PlsqlCGIEnvironmentList REQUEST_PROTOCOL=HTTPS

■ To add your own environment variable:

PlsqlCGIEnvironmentList MY_VARNAME=MY_VALUE

Category Value

Syntax PlsqlConnectionTimeout number

Default 10000 (milliseconds)

mod_plsql

Understanding Oracle HTTP Server Modules 3-17

PlsqlConnectionValidation
Specifies the mechanism the mod_plsql module should use to detect terminated
connections in its connection pool.

For performance reasons, the mod_plsql module pools database connections. If a
database instance goes down, and the mod_plsql module was maintaining a pool of
connections to the instance, then each pooled database connection results in an error
when it is next used to service a request. This can be a concern in high availability
configurations such as RAC where even if one node goes down, other nodes servicing
the database might have been able to service the request successfully. The mod_plsql
module provides for a mechanism whereby it can self-correct after it detects a failure
that could be caused by a database node going down. This mechanism to self-correct is
controlled by the parameter PlsqlConnectionValidation.

The following are the valid values for PlsqlConnectionValidation:

■ Automatic: The mod_plsql module tests all pooled database connections which
were created prior to the detection of a failure that could mean an instance failure.

■ ThrowAwayOnFailure: The mod_plsql module throws away all pooled database
connections which were created prior to the detection of a failure that could mean
an instance failure.

■ AlwaysValidate: The mod_plsql module always tests all pooled database
connections which were created prior to issuing a request. Since this option has an
associated performance overhead for each request, this should be used with
caution.

■ NeverValidate: The mod_plsql module never pings any pooled database
connection.

When the mod_plsql module encounters one of the following errors, it assumes that
the database may have been down.

■ 00443 — background process <string> did not start

■ 00444 — background process <string> failed while starting

■ 00445 — background process did not start after <x> seconds

■ 00447 — fatal error in background processes

■ 00448 — normal completion of background process

Example PlsqlConnectionTimeout 5000

Note: This configuration property is rarely ever changed, and system
defaults suffice in almost all cases.

Category Value

Syntax PlsqlConnectionValidation {Automatic | ThrowAwayOnFailure
| AlwaysValidate | NeverValidate}

Default Automatic

Example PlsqlConnectionValidation ThrowAwayOnFailure

Category Value

mod_plsql

3-18 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ 00449 — background process <string> unexpectedly terminated
with error

■ 00470 — LGWR process terminated with error

■ 00471 — DBWR process terminated with error

■ 00472 — PMON process terminated with error

■ 00473 — ARCH process terminated with error

■ 00474 — SMON process terminated with error

■ 00475 — TRWR process terminated with error

■ 00476 — RECO process terminated with error

■ 00480 — LCK* process terminated with error

■ 00481 — LMON process terminated with error

■ 00482 — LMD* process terminated with error

■ 00484 — LMS* process terminated with error

■ 00485 — DIAG process terminated with error

■ 01014 — ORACLE shutdown in progress

■ 01033 — ORACLE initialization or shutdown in progress

■ 01034 — ORACLE not available

■ 01041 — internal error. hostdef extension doesn't exist

■ 01077 — background process initialization failure

■ 01089 — immediate shutdown in progress- no operations
permitted

■ 01090 — shutdown in progress- connection is not permitted

■ 01091 — failure during startup force

■ 01092 — ORACLE instance terminated. Disconnection forced

■ 03106 — fatal two-task communication protocol error

■ 03113 — end-of-file on communication channel

■ 03114 — not connected to ORACLE

■ 12570 — TNS: packet reader failure

■ 12571 — TNS: packet writer failure

PlsqlDatabaseConnectString
Specifies the connection to an Oracle database.

mod_plsql

Understanding Oracle HTTP Server Modules 3-19

■ If the database is running in the same Oracle home, or the environment variable
TWO_TASK is set, then this parameter need not be specified.

■ If the database is running in a separate Oracle home, then this parameter is
mandatory.

Category Value

Syntax PlsqlDatabaseConnectString string {ServiceNameFormat |
SIDFormat | TNSFormat | NetServiceNameFormat}

The string parameter depends on the second argument:

■ If the second argument is ServiceNameFormat, string is
HOST:PORT:SERVICE_NAME, where HOST is the host name running the
database, PORT is the port number the TNS listener is listening at, and
SERVICE_NAME is the database service name.

An IPv6 address can be specified using the format [IPv6_
ADDRESS]:PORT:SERVICE_NAME.

■ If the second argument is SIDFormat, string is HOST:PORT:SID where HOST
is the host name running the database, PORT is the port number the TNS
listener is listening at, and SID is the database SID.

An IPv6 address can be specified using the format [IPv6_
ADDRESS]:PORT:SID.

■ If the second argument is TNSFormat, string is a valid TNS alias that can be
resolved using Net8 utilities like tnsping and SQL*Plus.

■ If the second argument is NetServiceNameFormat, string is a valid net
service name that can be resolved to a connect descriptor. A connect
descriptor is a specially formatted description of the destination for a
network connection. A connect descriptor contains destination service and
network route information.

If the format argument is not specified, then the mod_plsql module assumes the
string is either in the HOST:PORT:SID format, or resolvable by Net8. The
differentiation between the two is made by the presence of the colon in the
specified string.

It is recommended that newer DADs do not use the SIDFormat syntax. This
exists only for backward compatibility reasons. Use the new two argument
format for newly created DADs.

Default None

Example ■ PlsqlDatabaseConnectString
example.com:1521:myhost.iasdb.inst ServiceNameFormat

■ PlsqlDatabaseConnectString
[2001:DB8:f1ff:f1ff]:1521:myhost.iasdb.inst
ServiceNameFormat

■ PlsqlDatabaseConnectString example.com:1521:iasdb
SIDFormat

■ PlsqlDatabaseConnectString
[2001:DB8:ff1ff:f1ff]:1521:iasdb SIDFormat

■ PlsqlDatabaseConnectString myhost_tns TNSFormat

■ PlsqlDatabaseConnectString cn=oracle,cn=iasdb
NetServiceNameFormat

■ PlsqlDatabaseConnectString
(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(Host=example.com)(Po
rt= 1521))(CONNECT_DATA=(SID=iasdb))) TNSFormat

■ PlsqlDatabaseConnectString myhost_tns

■ PlsqlDatabaseConnectString example.com:1521:iasdb

mod_plsql

3-20 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ If you have problems connecting to the database:

■ Check the username and password information in the DAD.

■ Make sure that you run tnsping db_connect_string, and commands such as:

sqlplus DADUsername/DADPassword@db_connect_string

■ Ensure that TNS_ADMIN is configured properly.

■ Verify that the HOST:PORT:SERVICE_NAME format works correctly.

■ Ensure that the TNS listener and database are up and running.

■ Ensure that you can ping the host from this machine.

■ From a the mod_plsql module perspective, TNSFormat and
NetServiceNameFormat are synonymous and denote connect descriptors that
are resolved by Net8. The TNSFormat is provided as a convenience so that
end-users use this to signify that the name resolution happens through the local
tnsnames.ora. For situations where the resolution is through an LDAP lookup as
configured in sqlnet.ora, it is recommended that the format specifier of
NetServiceNameFormat be used.

If your database supports high availability, for example, Oracle Real Application
Clusters database, it is highly recommended that you use the
NetServiceNameFormat such that the resolution for the net service name is
through LDAP. This enables you to add or remove RAC nodes accessible through
the mod_plsql module by changing Oracle Internet Directory with the new or
deleted node information. In such situations, hard-coding database listener
HOST:PORT information in dads.conf or in the local tnsnames.ora is not
recommended.

PlsqlDatabasePassword
Specifies the password to use to log in to the database.

Notes:

■ This is a mandatory parameter, except for a DAD that sets
PlsqlAuthenticationMode to Basic and uses dynamic authentication.

■ For DADs using SingleSignOn authentication, this parameter uses the name of the
schema owner.

After making manual configuration changes to DAD passwords, it is recommended
that the DAD passwords are obfuscated by running the dadTool.pl script located in
ORACLE_HOME/bin.

To obfuscate DAD passwords:

1. If necessary, change the user to the Oracle software owner user, typically oracle,
using the following command:

$ su - oracle

Category Value

Syntax PlsqlDatabasePassword string

Default None

Example PlsqlDatabasePassword tiger

mod_plsql

Understanding Oracle HTTP Server Modules 3-21

2. Set the ORACLE_HOME environment variable to specify the path to the Oracle
home directory for the current release, and set the PATH environment variable to
include the directory containing the Perl executable and the location of the
dadTool.pl script.

Bourne, Bash, or Korn shell:

$ ORACLE_HOME=new_ORACLE_HOME_path;export ORACLE_HOME
$ PATH=ORACLE_HOME/bin:ORACLE_HOME/perl/bin:$PATH;export PATH

C or tcsh shell:

% setenv ORACLE_HOME new_ORACLE_HOME_PATH
% setenv PATH ORACLE_HOME/bin:ORACLE_HOME/perl/bin:PATH

On Microsoft Windows, set the PATH and PERL5LIB environment variable:

set PATH=ORACLE_HOME\bin;ORACLE_HOME\perl\bin;%PATH%
set PERL5LIB=ORACLE_HOME\perl\lib

3. On UNIX platforms, set the shared library path environment variable.

Include the ORACLE_HOME/lib or lib32 directory in your shared library path.
Table 3–2 shows the appropriate directory and environment variable for each
platform.

For example, on HP-UX PA-RISC systems, set the SHLIB_PATH environment to
include the ORACLE_HOME/lib directory:

$SHLIB_PATH=$ORACLE_HOME/lib:$SHLIB_PATH;export SHLIB_PATH

4. Change directory to the mod_plsql configuration directory for the current release
of Oracle HTTP Server:

cd ORACLE_HOME/bin

5. Invoke the following Perl script to obfuscate DAD password:

perl dadTool.pl -f dadfilename

where dadfilename is the filename for dads.conf, which includes the full path
to the DAD file.

For example:

perl dadTool.pl -f /u01/app/oracle/as11gr1/ORACLE_
INSTANCE/config/OHS/component_name/mod_plsql/dads.conf

PlsqlDatabaseUserName
Specifies the username to use to log in to the database.

Table 3–2 Shared Library Path Environment Variable

Platform Environment Variable Include Directory

AIX Based Systems LIBPATH ORACLE_HOME/lib

HP-UX PA-RISC SHLIB_PATH ORACLE_HOME/lib

Solaris Operating System LD_LIBRARY_PATH ORACLE_HOME/lib32

Other UNIX platforms, including
Linux and HP Tru64 UNIX

LD_LIBRARY_PATH ORACLE_HOME/lib

mod_plsql

3-22 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ This is a mandatory parameter, except for a DAD that sets
PlsqlAuthenticationMode to Basic and uses dynamic authentication.

■ For DADs using SingleSignOn authentication, this parameter is the name of the
schema owner.

PlsqlDefaultPage
Specifies the default procedure to call if none is specified in the URL.

■ You can also use Oracle HTTP Server Rewrite rules to achieve the same effect as
you get by setting this configuration parameter.

PlsqlDocumentPath
Specifies a virtual path in the URL that initiates document download from the
document table. For example, if this parameter is set to docs, then the following URLs
will start the document downloading process for URLs of the format:

/pls/dad/docs
/pls/plsqlapp/docs

■ Omit this parameter for applications that do not perform document uploads or
downloads.

PlsqlDocumentProcedure
Specifies the procedure to call when a document download is initiated. This procedure
is called to process the download.

Category Value

Syntax PlsqlDatabaseUsername string

Default None

Example PlsqlDatabaseUsername scott

Category Value

Syntax PlsqlDefaultPage string

Default None

Example PlsqlDefaultPage myschema.mypackage.home

Category Value

Syntax PlsqlDocumentPath string

Default docs

Example PlsqlDocumentPath docs

Category Value

Syntax PlsqlDocumentProcedure string

Default None

mod_plsql

Understanding Oracle HTTP Server Modules 3-23

■ Omit this parameter for applications that do not perform document uploads or
downloads.

PlsqlDocumentTablename
Specifies the table in the database to which all documents are uploaded.

■ Omit this parameter for applications that do not perform document uploads or
downloads.

PlsqlErrorStyle
Specifies the error reporting mode for mod_plsql errors.

PlsqlExclusionList
Specifies a pattern for procedures, packages, or schema names which are forbidden to
be directly run from a browser. This is a multi-line directive in which each pattern is
on a separate line. The pattern is not case sensitive and can accept a wildcard such as
an asterisk (*). The default patterns disallowed from direct URL access are as follows:

■ sys.*

Example PlsqlDocumentProcedure portal.wwdoc_process.process_
download

Category Value

Syntax PlsqlDocumentTablename string

Default None

Example PlsqlDocumentTablename myschema.document_table

Category Value

Syntax PlsqlErrorStyle {ApacheStyle | ModplsqlStyle |
DebugStyle}

■ ApacheStyle: The mod_plsql module indicates to Oracle
HTTP Server the HTTP error that was encountered. Oracle
HTTP Server then generates the error page. This can be used
with the Oracle HTTP Server ErrorDocument directive to
produce customized error messages.

■ ModplsqlStyle: The mod_plsql module generates the error
pages, usually a short message indicating the PL/SQL error
encountered and PL/SQL exception stack, if any. For example:

scott.foo PROCEDURE NOT FOUND

■ DebugStyle: This mode provides more details than
ModplsqlStyle. The mod_plsql module provides more
details about the URL and parameters, and also produces
server configuration information. This mode is for debugging
purposes only. Do not use this in a production system, since
displaying internal server variables could be a security risk.

Default ApacheStyle

Example PlsqlErrorStyle ModplsqlStyle

Category Value

mod_plsql

3-24 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ dbms_*

■ utl_*

■ owa_util*

■ owa.*

■ htp.*

■ htf.*

■ wpg_docload.*

Setting this directive to #NONE# will disable all protection. This is strongly
discouraged for an active site and should not be done. It may be used for debugging
purposes.

If this parameter is overridden, the defaults still apply, which means that you do not
have to explicitly add the default list to the list of excluded patterns.

■ In addition to the patterns specified with this parameter, the mod_plsql module
disallows any procedure name which contains the following special characters:

■ tabs

■ new lines

■ carriage-return

■ single quotation mark

■ reverse slash

■ form feed

■ left parenthesis

■ right parenthesis

Category Value

Syntax PlsqlExclusionList {string | "#NONE#" multiline}

Default sys.*

dbms_*

utl_*

owa_util*

owa.*

htp.*

htf.*

wpg_docload.*

Example PlsqlExclusionList myschema.private.*

PlsqlExclusionList myschema.private1.*

will disallow access to URLs which contain one of:

sys.*, dbms_*, utl_*, owa_util*, owa.*, htp.*, htf.*,
wpg_docload.*, myschema.private.*,
myschema.private1.*

PlsqlExclusionList "#NONE#"

will disable all protection. Its use is strongly discouraged for an
active site.

mod_plsql

Understanding Oracle HTTP Server Modules 3-25

■ space

This cannot be changed.

PlsqlFetchBufferSize
Specifies the number of rows of content to fetch from the database for each trip, using
either owa_util.get_page or owa_util.get_page_raw.

By default, the mod_plsql module attempts to fetch 200 response lines of output where
each line is of 255 bytes. In situations where the response bytes are single-bytes, the
response buffer is populated to the maximum and can pack 255*200=51000 bytes for
each round trip. For responses containing multi-byte data, the byte packing for each
row could be less than ideal resulting in lesser bytes getting transferred for each round
trip. If your application generates large pages frequently and the response does not fit
in one round trip, then consider setting this parameter higher. The memory usage for
the mod_plsql module will increase.

■ This parameter is changed only for performance reasons. The minimum value for
this parameter is 28, but it is seldom reduced.

■ Change this parameter only under the following circumstances:

■ The average response page is large and you want to reduce the number of
round-trips the mod_plsql module makes to the database to fetch the
response.

■ The character set in use is multi-byte, and you want to compensate for the
problem of get_page or get_page_raw fetching fewer bytes for each row.
Calculations in the PL/SQL Web ToolKit are character-based and in the case of
multi-byte characters, OWA packages assume a worst-case character byte size
and do not attempt to pack each row to its maximum.

PlsqlInfoLogging
Specifies what mode the mod_plsql module should use to do extra performance
logging.

InfoDebug mode: This logs more information to the Apache's error_log. This is used in
conjunction with Apache's info logging level. If the Apache's logging level is not at
least set to this high, this setting will be ignored.

The logging setting is useful for debugging problems in your PL/SQL application.

Category Value

Syntax PlsqlFetchBufferSize number

Default 200

Example PlsqlFetchBufferSize 256

Category Value

Syntax PlsqlInfoLogging InfoDebug

Default Empty

Example PlsqlInfoLogging InfoDebug

mod_plsql

3-26 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

PlsqlMaxRequestsPerSession
Specifies the maximum number of requests a pooled database connection should
service before it is closed and re-opened.

■ This parameter helps relieve memory and resource problems that may occur due
to prolonged session reuse by a PL/SQL application.

■ This parameter should not need to be changed. The default is sufficient in most
cases.

■ Setting this parameter to a low number can degrade performance. A case for a
lower value might be an infrequently-used DAD whose performance is not a
concern, and for which limiting the number of requests provides some benefit.

PlsqlNLSLanguage
Specifies the NLS_LANG variable for this DAD. This parameter overrides the NLS_
LANG environment variable. When this parameter is set, the PL/SQL Gateway uses
the specified NLS_LANG to connect to the database. Once connected, an alter session
command is issued to switch to the specified language and territory. If the middle tier
character set matches that of the database, then no alter session call is issued by the
mod_plsql module.

■ Most applications have PlsqlTransferMode set to CHAR which means that the
character set in PlsqlNLSLanguage needs to match the character set of the
database. In one special case, where the database and the mod_plsql module are
both using fixed-size character sets, and the character set width matches, the
character set can be different. The response character set is always the mod_plsql
module character set.

■ If PlsqlTransferMode is set to RAW, then this parameter can be ignored.

PlsqlPathAlias
Specifies a virtual path alias to map to a procedure call. This is application-specific.
This directive is used with PlsqlPathAliasProcedure.

Category Value

Syntax PlsqlMaxRequestsPerSession number

Default 1000

Example PlsqlMaxRequestsPerSession 500

Category Value

Syntax PlsqlNLSLanguage string

Default None

Example PlsqlNLSLanguage America_America.UTF8

Category Value

Syntax PlsqlPathAlias string

Default None

Example PlsqlPathAlias url

mod_plsql

Understanding Oracle HTTP Server Modules 3-27

■ For applications that do not use path aliasing, this parameter may be omitted.

PlsqlPathAliasProcedure
Specifies the procedure to call when the virtual path in the URL matches the path alias
as configured by PlsqlPathAlias.

■ For applications that do not use path aliasing, this parameter may be omitted.

PlsqlRequestValidationFunction
Specifies an application-defined PL/SQL function which gives you the opportunity to
allow and disallow further processing of the requested procedure. This is useful in
implementing tight security for your PL/SQL application by blocking out package and
procedure calls that should not be allowed to run from a DAD.

The function defined by this parameter must have the following prototype:

boolean function_name (procedure_name IN varchar2)

The procedure_name parameter will contain the name of the procedure that the request
is trying to run.

For example, if all the PL/SQL application procedures callable from a browser are
inside the package mypkg, then an implementation of this function can be as follows:

boolean my_validation_check (procedure_name varchar2)
is
begin
 if (upper (procedure_name) like upper ('myschema.mypkg%')) then
 return TRUE
 else
 return FALSE
 end if;
end;

■ By default, the mod_plsql module already disallows direct URL access to certain
schemas and packages. For more information, refer to PlsqlExclusionList.

■ It is highly recommended that you provide an implementation for this function
such that it only allows requests that belong to your application, and are callable
from a browser.

Category Value

Syntax PlsqlPathAliasProcedure string

Default None

Example PlsqlPathAliasProcedure portal.wwpth_api_
alias.process_download

Category Value

Syntax PlsqlRequestValidationFunction string

Default none

Example PlsqlRequestValidationFunction myschema.mypkg.my_
validation_check

mod_plsql

3-28 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Since this function will be called for every request, be sure to make this function as
optimized as possible. Suggested recommendations are:

– Name your PL/SQL packages in a fashion such that the implementation of
this function can be similar to the previous example.

– If your implementation performs a table lookup to determine what packages
and procedures should be allowed, then performance can be improved if you
pin the cursor in the shared pool.

PlsqlSessionCookieName
Specifies the cookie name when PlsqlAuthenticationMode is set to SingleSignOn. This
parameter is supported only for Oracle Fusion Middleware releases, and is used by
Oracle Portal and Oracle Single Sign-On.

■ For DADs not using SingleSignOn authentication, this parameter can be omitted.
In most other cases, the session cookie name should be omitted (and this
parameter automatically defaults to the DAD name).

■ A session cookie name must be specified only for Oracle Portal instances that need
to participate in a distributed Oracle Portal environment. For those Oracle Portal
nodes you want to seamlessly participate as a federated cluster, ensure that the
session cookie name for all the participating nodes is the same.

■ Independent Oracle Portal nodes need to use distinct session cookie names.

PlsqlSessionStateManagement
Specifies how package and session state should be cleaned up at the end of each the
mod_plsql request.

■ StatelessWithResetPackageState causes the mod_plsql module to call
dbms_session.reset_package_state at the end of each mod_plsql request.
This is the default.

■ StatelessWithPreservePackageState causes the mod_plsql module to call
htp.init at the end of each mod_plsql request. This cleans up the state of session
variables in the PL/SQL Web ToolKit. The PL/SQL application is responsible for
cleaning up its own session state. Failure to do so causes erratic behavior, in which
a request starts recognizing or manipulating state modified in previous requests.

■ StatelessWithFastResetPackageState causes the mod_plsql module to
call dbms_session.modify_package_state(dbms_
session.reinitialize) at the end of each mod_plsql request. This API is
faster than the mode of StatelessWithResetPackageState, and avoids some
latch contention issues, but exists only in Oracle database releases 8.1.7.2 and later.
This mode uses slightly more memory than the default mode.

Category Value

Syntax PlsqlSessionCookieName cookie_name

Default Same as DAD name

Example PlsqlSessionCookieName mycookie

mod_plsql

Understanding Oracle HTTP Server Modules 3-29

■ The earlier values of stateful=no or stateful=STATELESS_RESET corresponds to
StatelessWithResetPackageState.

■ The earlier value of stateful=STATELESS_FAST_RESET corresponds to
StatelessWithFastResetPackageState.

■ The earlier value of stateful=STATELESS_PRESERVE corresponds to
StatelessWithPreservePackageState.

The mod_plsql module does not support stateful mode of operation. To allow PL/SQL
applications stateful behavior, save the state in cookies and/or in the database.

PlsqlTransferMode
Specifies the transfer mode for data from the database back to the mod_plsql module.
Most applications use the default value of CHAR.

■ This parameter only needs to be changed to enable sending back responses in
different character sets from the same DAD. In such a case, the CHAR mode is
useless, since it always converts the response data from the database character set
to the mod_plsql character set.

PlsqlUploadAsLongRaw
Specifies the file extensions to be uploaded as LONGRAW data type, as opposed to
using the default BLOB data type. The default can be overridden by specifying
multi-line directives of file extensions for field. A value of asterisk (*) in this field
causes all documents to be uploaded as LONGRAW.

■ For applications that do not upload or download documents, this parameter may
be omitted.

Category Value

Syntax PlsqlSessionStateManagement
{StatelessWithResetPackageState |
StatelessWithFastResetPackageState |
StatelessWithPreservePackageState}

Default StatelessWithResetPackageState

Example PlsqlSessionStateManagement
StatelessWithPreservePackageState

Category Value

Syntax PlsqlTransferMode {CHAR | RAW}

Default CHAR

Example PlsqlTransferMode CHAR

Category Value

Syntax PlsqlUploadAsLongRaw string multiline

Default None

Example PlsqlUploadAsLongRaw jpg

PlsqlUploadAsLongRaw gif

mod_plsql

3-30 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

3.10.2.3 cache.conf
The cache.conf file contains the configuration settings for the file system caching
functionality implemented in the mod_plsql module. This configuration file is relevant
only if PL/SQL applications use the OWA_CACHE package to cache dynamically
generated content in the file system.

The following parameters are specified in the cache.conf file:

■ PlsqlCacheCleanupTime

■ PlsqlCacheDirectory

■ PlsqlCacheEnable

■ PlsqlCacheMaxAge

■ PlsqlCacheMaxSize

■ PlsqlCacheTotalSize

PlsqlCacheCleanupTime
Specifies the time to start the cleanup of the cache storage.

This setting defines the exact day and time in which cleanup should occur. The
frequency can be set as daily, weekly, and monthly.

■ To define daily frequency, the keyword Everyday is used. The cleanup starts
every day at the time defined. For example, Everyday 2:00 causes the cleanup
to happen everyday at 2:00 a.m. (local time).

■ To define weekly frequency, the days of the week, (Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday) are used. For example, Wednesday
15:30 causes the cleanup to happen every Wednesday at 3:30 p.m. (local time).

■ To define monthly frequency, the keyword Everymonth is used. The cleanup
starts on the Saturday of the month at the time defined. For example, Saturday
Everymonth 23:00 causes the cleanup to happen the first Saturday of every month
at 11:00 p.m. (local time).

PlsqlCacheDirectory
Specifies the directory where cache files are written out by the mod_plsql module. This
directory must exist or Oracle HTTP Server will not start.

On UNIX, this directory must have write permissions by the owner of the child httpd
processes.

Category Value

Syntax PlsqlCacheCleanupTime {Sunday-Saturday | Everyday
| Everymonth} {hh:mm}

Default Saturday 23:00

Example PlsqlCacheCleanupTime Monday 20:00

Category Value

Syntax PlsqlCacheDirectory directory

Default none

Example PlsqlCacheDirectory ORACLE_INSTANCE/OHS/component_
name

mod_plsql

Understanding Oracle HTTP Server Modules 3-31

PlsqlCacheEnable
Enables mod_plsql caching.

■ If an application does not make use of the OWA_CACHE package in the PL/SQL
Web Toolkit, then you can choose to disable caching. In such situations, there will
be a minor performance benefit.

PlsqlCacheMaxAge
Specifies the maximum time, in days, a cache file can reside in a file system cache, after
which the cached file will be removed for cache maintenance.

This setting is to ensure that the cache system does not contain old content. This
setting removes old cache files and makes space for new ones.

PlsqlCacheMaxSize
Specifies the maximum possible size of a cache file.

This setting prevents the case in which one file can fill up the entire cache. In general,
it is recommended that this be set to about 1-3 percent of the total cache size, which is
specified by PlsqlCacheTotalSize.

PlsqlCacheTotalSize
Specifies the total size of the cache directory. The default is 20 MB.

This setting limits the amount of space the cache is allowed to use. Both PL/SQL cache
and Session Cookie cache share this cache space. This setting is not a hard limit. It
might exceed the limit temporarily during normal processing. This is normal behavior.

The cleanup algorithm uses this setting to determine how much to reduce the cache
files. Therefore, the real space limit is the physical storage's available size.

This parameter takes bytes as values:

■ 1 megabytes = 1048576 bytes

■ 10 megabytes = 10485760 bytes

Category Value

Syntax PlsqlCacheEnable {On | Off}

Default Off

Example PlsqlCacheEnable On

Category Value

Syntax PlsqlCacheMaxAge number

Default 30 (days)

Example PlsqlCacheMaxAge 20

Category Value

Syntax PlsqlCacheMaxSize number

Default 1048576

Example PlsqlCacheMaxSize 1048576

mod_plsql

3-32 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

3.10.3 Configuration Files and Parameters
Table 3–3 lists the mod_plsql files and their corresponding configuration parameters
that were described in the preceding sections.

While specifying a value for a configuration parameter, follow Oracle HTTP Server
conventions for specifying values. For instance, if a value has white spaces in it,
enclose the value with double quotes. For example:

PlsqlNLSLanguage "TRADITIONAL CHINESE_TAIWAN.UTF8"

Multi-line directives enable you to specify same directive multiple times in a DAD.

Category Value

Syntax PlsqlCacheTotalSize number

Default 20971520 (bytes)

Example PlsqlCacheTotalSize 20971520

Table 3–3 mod_plsql Configuration Files and Parameters

Configuration File Parameters

plsql.conf PlsqlDMSEnable

PlsqlLogEnable

PlsqlLogDirectory

PlsqlIdleSessionCleanupInterval

mod_wl_ohs

Understanding Oracle HTTP Server Modules 3-33

3.11 mod_wl_ohs
The mod_wl_ohs module enables requests to be proxied from Oracle HTTP Server 11g
to Oracle WebLogic Server.

For information about the prerequisites and procedure for configuring mod_wl_ohs,
see "Configuring the mod_wl_ohs Plug-In for Oracle HTTP Server" in Using Web Server
1.1 Plug-Ins with Oracle WebLogic server.

dads.conf PlsqlAfterProcedure

PlsqlAlwaysDescribeProcedure

PlsqlAuthenticationMode

PlsqlBeforeProcedure

PlsqlBindBucketLengths

PlsqlBindBucketWidths

PlsqlCGIEnvironmentList

PlsqlConnectionTimeout

PlsqlConnectionValidation

PlsqlDatabaseConnectString

PlsqlDatabasePassword

PlsqlDatabaseUserName

PlsqlDefaultPage

PlsqlDocumentPath

PlsqlDocumentProcedure

PlsqlDocumentTablename

PlsqlErrorStyle

PlsqlExclusionList

PlsqlFetchBufferSize

PlsqlInfoLogging

PlsqlMaxRequestsPerSession

PlsqlNLSLanguage

PlsqlPathAlias

PlsqlPathAliasProcedure

PlsqlRequestValidationFunction

PlsqlSessionCookieName

PlsqlSessionStateManagement

PlsqlTransferMode

PlsqlUploadAsLongRaw

cache.conf PlsqlCacheCleanupTime

PlsqlCacheDirectory

PlsqlCacheEnable

PlsqlCacheMaxAge

PlsqlCacheMaxSize

PlsqlCacheTotalSize

Table 3–3 (Cont.) mod_plsql Configuration Files and Parameters

Configuration File Parameters

mod_wl_ohs

3-34 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Note: mod_wl_ohs is similar to the mod_wl plug-in, which you can
use to proxy requests from Apache HTTP Server to Oracle WebLogic
server. However, while the mod_wl plug-in for Apache HTTP Server
should be downloaded and installed separately, the mod_wl_ohs
plug-in is included in the Oracle HTTP Server installation.

Part II
Part II Managing Oracle HTTP Server

This part presents information about management tasks for Oracle HTTP Server. It
contains the following chapters:

■ Chapter 4, "Getting Started with Oracle HTTP Server"

■ Chapter 5, "Managing and Monitoring Server Processes"

■ Chapter 6, "Managing Connectivity"

■ Chapter 7, "Managing Oracle HTTP Server Logs"

■ Chapter 8, "Managing Application Security"

■ Chapter 9, "Configuring mod_oradav"

4

Getting Started with Oracle HTTP Server 4-1

4Getting Started with Oracle HTTP Server

This chapter provides information on getting started with Oracle HTTP Server. It
discusses the procedures needed to configure and use Oracle HTTP Server in your
environment.

This chapter includes the following sections:

■ Section 4.1, "Starting, Stopping, and Restarting Oracle HTTP Server"

■ Section 4.2, "Creating an Oracle HTTP Server Component"

■ Section 4.3, "Specifying Server Properties"

■ Section 4.4, "Configuring Oracle HTTP Server"

■ Section 4.5, "Deleting an Oracle HTTP Server Component"

4.1 Starting, Stopping, and Restarting Oracle HTTP Server
You can use Fusion Middleware Control or the opmnctl command to start, stop, and
restart Oracle HTTP Server.

The Fusion Middleware Control home page shows the status of all installed
components, including Oracle HTTP Server, as illustrated in the following figure:

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier in Stand-Alone Mode” in the
Oracle Fusion Middleware Installation Guide for Oracle Web Tier.

Note: Do not use the apachectl utility to manage Oracle HTTP
Server.

Starting, Stopping, and Restarting Oracle HTTP Server

4-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

You can determine the status of Oracle HTTP Server components using opmnctl:

> $ORACLE_INSTANCE/bin/opmnctl status

Processes in Instance: instance1
---------------------------------+--------------------+---------+---------
ias-component | process-type | pid | status
---------------------------------+--------------------+---------+---------
webcache1 | WebCache-admin | 19556 | Alive
webcache1 | WebCache | 19555 | Alive
ohs1 | OHS | 7249 | Alive

4.1.1 Understanding the PID File
When Oracle HTTP Server starts up, it writes the process ID (PID) of the parent httpd
process to the httpd.pid file located, by default, in the following directory:

ORACLE_INSTANCE/diagnostics/logs/OHS/component_name

The process ID can be used by the administrator when restarting and terminating the
daemon. If a process stops abnormally, it is necessary to stop the httpd child processes
using the kill command.

The PidFile directive in httpd.conf specifies the location of the PID file.

Note: On UNIX/Linux platforms, if you edit the PidFile directive,
you also have to edit the ORACLE_HOME/ohs/bin/apachectl file
to specify the new location of the PID file.

See Also: PidFile directive in the Apache HTTP Server
documentation.

Starting, Stopping, and Restarting Oracle HTTP Server

Getting Started with Oracle HTTP Server 4-3

4.1.2 Starting Oracle HTTP Server
This section describes how to start Oracle HTTP Server using Fusion Middleware
Control and opmnctl.

4.1.2.1 Using Fusion Middleware Control to Start Oracle HTTP Server
To start Oracle HTTP Server using Fusion Middleware Control:

1. Navigate to the Oracle HTTP Server home page.

2. Select Control from the Oracle HTTP Server menu.

3. Select Start Up from the Control menu.

4.1.2.2 Using opmnctl to Start Oracle HTTP Server
To start all Oracle HTTP Server components in an Oracle instance using opmnctl:

> $ORACLE_INSTANCE/bin/opmnctl startproc process-type=OHS

To start a specific Oracle HTTP Server component using opmnctl:

> $ORACLE_INSTANCE/bin/opmnctl startproc ias-component=component_name

To get detailed information about the start process, include the verbose option with the
command, as follows:

> $ORACLE_INSTANCE/bin/opmnctl verbose startproc ias-component=component_name

The following is an example of the information provided using the verbose option:

HTTP/1.1 200 OK
Content-Length: 656
Content-Type: text/html
Response: 1 of 1 processes started.

<?xml version='1.0' encoding='WINDOWS-1252'?>
<response>
<opmn id="stadk58:6701" http-status="200" http-response="1 of 1 processes
started.">
 <ias-instance id="inst1">
 <ias-component id="ohs1">
 <process-type id="OHS">
 <process-set id="OHS">
 <process id="699033550" pid="11366" status="Alive" index="1"
log="/scratch/oracle/product/11110/test090306/instances/inst1/diagnostics/logs/OHS
/ohs1/console~OHS~1.log" operation="request" result="success">
 <msg code="0" text="">
 </msg>
 </process>
 </process-set>
 </process-type>
 </ias-component>
 </ias-instance>
</opmn>
</response>

4.1.2.3 Starting Oracle HTTP Server on a Privileged Port
On a UNIX system the TCP/IP port numbers below 1024 are special in that only
processes with root privileges are allowed to listen on those ports.

Starting, Stopping, and Restarting Oracle HTTP Server

4-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

By default, Oracle HTTP Server runs as a non-root user (the user that installed Oracle
Fusion Middleware). Therefore, on UNIX systems, if you plan on running Oracle
HTTP Server on a privileged port (for example, port 80), you must enable Oracle
HTTP Server to run as root, as follows:

1. Stop Oracle HTTP Server using Fusion Middleware Control, or with the following
opmnctl command:

> $ORACLE_INSTANCE/bin/opmnctl stopproc ias-component=component_name

2. Change to the root user.

3. Navigate to ORACLE_HOME/ohs/bin and run the following commands:

chown root .apachectl
chmod 6750 .apachectl

4. Exit as the root user.

5. Add or uncomment the User and Group directives in the httpd.conf file and set
them to the user and group that were used to install and configure Oracle Fusion
Middleware. On the Unix operating system, ensure the user and group in the
httpd.conf file is set to the user and group who has performed the installation.

6. Start Oracle HTTP Server using Fusion Middleware Control, or with the following
command:

> $ORACLE_INSTANCE/bin/opmnctl startproc ias-component=component_name

4.1.3 Stopping Oracle HTTP Server
This section describes how to stop Oracle HTTP Server using Fusion Middleware
Control and opmnctl. Other services may be impacted when Oracle HTTP Server is
stopped.

4.1.3.1 Using Fusion Middleware Control to Stop Oracle HTTP Server
To stop Oracle HTTP Server using Fusion Middleware Control:

1. Navigate to the Oracle HTTP Server home page.

2. Select Control from the Oracle HTTP Server menu.

3. Select Shut Down from the Control menu.

4.1.3.2 Using opmnctl to Stop Oracle HTTP Server
To stop all Oracle HTTP Server components in an Oracle instance using opmnctl:

> $ORACLE_INSTANCE/bin/opmnctl stopproc process-type=OHS

To stop a specific Oracle HTTP Server component using opmnctl:

> $ORACLE_INSTANCE/bin/opmnctl stopproc ias-component=component_name

To get detailed information about the stop process, include the verbose option with the
command, as follows:

> $ORACLE_INSTANCE/bin/opmnctl verbose stopproc ias-component=component_name

4.1.4 Restarting Oracle HTTP Server
Restarting Oracle HTTP Server causes the Apache parent process to advise its child
processes to exit after their current request (or to exit immediately if they are not

Creating an Oracle HTTP Server Component

Getting Started with Oracle HTTP Server 4-5

serving any requests). Upon restarting, the parent process re-reads its configuration
files and reopens its log files. As each child process exits, the parent replaces it with a
child process from the new generation of the configuration file, which begins serving
new requests immediately.

The following sections describe how to restart Oracle HTTP Server using Fusion
Middleware Control and opmnctl.

4.1.4.1 Using Fusion Middleware Control to Restart Oracle HTTP Server
To restart Oracle HTTP Server using Fusion Middleware Control:

1. Navigate to the Oracle HTTP Server home page.

2. Select the Control from the Oracle HTTP Server menu.

3. Select Restart from the Control menu.

4.1.4.2 Using opmnctl to Restart Oracle HTTP Server
To restart all Oracle HTTP Server components in an Oracle instance using opmnctl:

> $ORACLE_INSTANCE/bin/opmnctl restartproc process-type=OHS

To restart a specific Oracle HTTP Server component using opmnctl:

> $ORACLE_INSTANCE/bin/opmnctl restartproc ias-component=component_name

To get detailed information about the start process, include the verbose option with the
command, as follows:

> $ORACLE_INSTANCE/bin/opmnctl verbose restartproc ias-component=component_name

4.2 Creating an Oracle HTTP Server Component
When you install Oracle Web Tier, you can choose one of the following approaches:

■ Install the software and configure an Oracle instance with an Oracle HTTP Server
component.

■ Install only the software.

If you choose to install only the software, you should subsequently configure an
Oracle instance by running the configuration tool (config.sh on UNIX and
config.bat on Windows), which is located in the ORACLE_HOME/bin directory. For
more information, see the Oracle Fusion Middleware Installation Guide for Oracle Web Tier.

In either approach, you can create additional Oracle HTTP Server components in an
Oracle instance by using the opmnctl command available in the ORACLE_
INSTANCE/bin directory, as described in this section. Note that you cannot create
Oracle HTTP Server components by using Fusion Middleware Control.

To create an Oracle HTTP Server component by using opmnctl, run the following
command:

> $ORACLE_INSTANCE/bin/opmnctl createcomponent -componentType OHS -componentName
component_name

For example, to create an Oracle HTTP Server component named ohs2, use the
following command:

> $ORACLE_INSTANCE/bin/opmnctl createcomponent -componentType OHS -componentName
ohs2

Specifying Server Properties

4-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

When you create the Oracle HTTP Server component, ports are automatically
assigned. However, you can use the following parameters to specify the ports of your
choice:

■ -listenPort: HTTP listening port

■ -sslPort: HTTPS (SSL) listening port

■ -proxyPort: Proxy MBean port internally used by Oracle HTTP Server to
communicate with Fusion Middleware Control

4.3 Specifying Server Properties
Server properties for Oracle HTTP Server can be set using Fusion Middleware Control
or direct editing of the Oracle HTTP Server configuration files. You cannot specify the
server properties using opmnctl commands.

■ Using Fusion Middleware Control to Specify Server Properties

■ Editing the httpd.conf File to Specify Server Properties

4.3.1 Using Fusion Middleware Control to Specify Server Properties
To specify the server properties using the Fusion Middleware Control:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Server Configuration from the Administration menu. The Server
Configuration page appears.

3. Enter the documentation root directory in the Document Root field that forms the
main document tree visible from the Web site.

4. Enter the e-mail address in the Administrator's E-mail Address field that the
server will includes in error messages sent to the client.

5. Enter the directory index in the Directory Index field. The is the main (index) page
that will be displayed when a client first accesses the Web site.

Specifying Server Properties

Getting Started with Oracle HTTP Server 4-7

6. Enter the user name in the Operating System User field.

This is the user name for the server, when sending and responding to requests.
The user should not have privileges that allow it to access files or run programs
that are for internal-use only. For example, when a request comes from Oracle
Portal, Oracle HTTP Server will respond as the user defined in this field, and
should have privileges to access the content in Oracle Portal. However, the user
should not have privileges to access company-confidential content.

Oracle recommends that you set up a user specifically for running the server.
Oracle also recommends that you do not set the user to root.

7. Enter the group name in the Operating System Group field. This is the group for
the server, when sending and responding to requests. The user defined for Oracle
HTTP Server must be a member of this group.

Oracle recommends that you set up a group specifically for running the server.
Oracle also recommends that you do not set the group as root.

8. The Modules region is used to enable or disable modules. There are three modules
that you can enable or disable: mod_perl, mod_fcgi, and mod_osso.

For instructions on configuring the mod_perl module, see "Configuring the mod_
perl Module" on page 4-10.

9. Create an alias, if necessary in the Aliases table. An alias maps to a specified
directory. For example, to use a specific set of content pages for a group you can
create an alias to the directory that has the content pages.

10. Review the settings. If the settings are correct, then click Apply to apply the
changes. If the settings are incorrect, or you decide to not apply the changes, then
click Revert to return to the original settings.

11. Restart Oracle HTTP Server as described in Section 4.1.4.

The server properties are saved, and shown on the Server Configuration page.

4.3.2 Editing the httpd.conf File to Specify Server Properties
To specify the server properties using the httpd.conf file:

1. Open the httpd.conf file using either a text editor or the Advanced Server
Configuration page in Fusion Middleware Control. (See Section 4.4.5, "Modifying
an Oracle HTTP Server Configuration File.")

2. In the DocumentRoot section of the file, enter the directory that stores the main
content for the Web site. The following is an example of the syntax:

DocumentRoot "${ORACLE_INSTANCE}/config/${COMPONENT_TYPE}/${COMPOENT_
NAME}/htdocs"

3. In the ServerAdmin section of the file, enter the administrator's e-mail address.
This is the e-mail address that will appear on client pages. The following is an
example of the syntax:

ServerAdmin WebMaster@example.com

4. In the DirectoryIndex section of the file, enter the directory index. This is the
main (index) page that will be displayed when a client first accesses the Web site.
The following is an example of the syntax:

DirectoryIndex index.html index.html.var

Configuring Oracle HTTP Server

4-8 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

5. In the User and Group section of the file, enter the user name and group. The
following is an example of the syntax:

User nobody
Group nobody

The user name is for the server, when sending and responding to requests. The
user should not have privileges that allow it to access files or run programs that
are for internal-use only. For example, when a request comes from Oracle Portal,
Oracle HTTP Server will respond as the user defined in this field, and should have
privileges to access the content in Oracle Portal. However, the user should not
have privileges to access company-confidential content.

Oracle recommends that you set up a group specifically for running the server.
The user defined for Oracle HTTP Server must be a member of this group. Oracle
also recommends that you do not set the group as root.

6. Create aliases, if needed. An alias maps to a specified directory. For example, to
use a specific set of icons, you can create an alias to the directory that has the icons
for the Web pages. The following is an example of the syntax:

Alias /icons/ "${ORACLE_HOME}/config/${COMPONENT_TYPE}/${COMPONENT_
NAME}/icons/"

<Directory "${ORACLE_HOME}/content/${COMPONENT_TYPE}/${COMPONENT_NAME}/icons/">
 Options MultiViews
 Order allow, deny
 Allow from all
</Directory>

7. Save the file.

8. Restart Oracle HTTP Server as described in Section 4.1.4.

4.4 Configuring Oracle HTTP Server
This section includes the following sections:

■ Section 4.4.1, "Configuring Secure Sockets Layer"

■ Section 4.4.2, "Configuring MIME Settings"

■ Section 4.4.3, "Configuring the mod_perl Module"

■ Section 4.4.4, "Configuring mod_wl_ohs"

■ Section 4.4.5, "Modifying an Oracle HTTP Server Configuration File"

■ Section 4.4.6, "Disabling the Options Method"

4.4.1 Configuring Secure Sockets Layer
Secure Sockets Layer (SSL) is an encrypted communication protocol that is designed to
securely send messages across the Internet. It resides between Oracle HTTP Server on
the application layer and the TCP/IP layer, transparently handling encryption and
decryption when a secure connection is made by a client.

Note: User and Group are relevant only when running Oracle
HTTP Server as root on UNIX.

Configuring Oracle HTTP Server

Getting Started with Oracle HTTP Server 4-9

One common use of SSL is to secure Web HTTP communication between a browser
and a Web server. This case does not preclude the use of non-secured HTTP. The
secure version is simply HTTP over SSL (HTTPS). The differences are that HTTPS uses
the URL scheme https:// rather than http://.

By default, an SSL listen port is configured and enabled using a default wallet during
installation. Wallets store your credentials, such as certificate requests, certificates, and
private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for
testing purposes only. A real wallet must be created for your production server. The
default wallet is located in the ORACLE_INSTANCE/config/OHS/component_
name/keystores/default directory. You can either place the new wallet in this
location, or change the SSLWallet directive in ORACLE_
INSTANCE/config/OHS/component_name/ssl.conf to point to the location of
your real wallet.

For the changes to take effect, you should restart the Oracle HTTP Server components
as described in Section 4.1.4.

For information about configuring wallets and SSL using Fusion Middleware Control,
see "Enabling SSL for Oracle HTTP Server Virtual Hosts" in the Oracle Fusion
Middleware Administrator's Guide.

4.4.2 Configuring MIME Settings
Multipurpose Internet Mail Extension (MIME) settings are used by Oracle HTTP
Server to interpret file types, encodings, and languages. MIME settings for Oracle
HTTP Server can only be set using Fusion Middleware Control. You cannot specify the
MIME settings using opmnctl commands.

The following tasks can be completed on the MIME Configuration page:

■ Configuring MIME Types

■ Configuring MIME Encoding

■ Configuring MIME Languages

4.4.2.1 Configuring MIME Types
MIME type maps a given file extension to a specified content type. The MIME type is
used for filenames containing an extension.

4.4.2.1.1 Using Fusion Middleware Control to Configure MIME Types To configure a MIME
type using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears.

3. Click Add Row in MIME Configuration region. A new, blank row is added to the
list.

4. Enter the MIME type.

5. Enter the file extension.

6. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

Configuring Oracle HTTP Server

4-10 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

7. Restart Oracle HTTP Server, as described in Section 4.1.4.

The MIME configuration is saved, and shown on the MIME Configuration page.

4.4.2.2 Configuring MIME Encoding
MIME encoding enables Oracle HTTP Server to determine the file type based on the
file extension. You can add and remove MIME encodings. The encoding directive
maps the file extension to a specified encoding type.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears.

3. Expand the MIME Encoding region by clicking the plus sign (+) next to MIME
Encoding.

4. Click Add Row in MIME Encoding region. A new, blank row is added to the list.

5. Enter the MIME encoding, such as x-gzip.

6. Enter the file extension, such as .gx.

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server as described in Section 4.1.4.

4.4.2.3 Configuring MIME Languages
The MIME language setting maps file extensions to a particular language. This
directive is commonly used for content negotiation, in which Oracle HTTP Server
returns the document that most closely matched the preferences set by the client.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears.

3. Expand the MIME Languages region by clicking the plus sign (+) next to MIME
Languages.

4. Click Add Row in MIME Languages region. A new, blank row is added to the list.

5. Enter the MIME language, such as en-US.

6. Enter the file extension, such as en-us.

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server as described in Section 4.1.4.

4.4.3 Configuring the mod_perl Module
The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This
eliminates start-up overhead and enables you to write modules in Perl. The module is
disabled, by default.

To enable the mod_perl module using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

Configuring Oracle HTTP Server

Getting Started with Oracle HTTP Server 4-11

2. Select mod_perl Configuration from the Administration menu. The mod_perl
configuration page appears.

3. Enter the switch information in the Switches field.

4. Enter the environment variables to be passed to the scripts in the Environment
field.

5. Enter the required script names in the Require field.

6. Click Add Row to create a new row.

7. Configure mod_perl directives for a Location in the Perl Locations table. The
Location assigns a number of rules that the server should follow when the
request's URI matches the Location.

a. Enter the base URI for the Perl scripts in the Locations field. Just as it is the
widely accepted convention to use /cgi-bin for your mod_cgi scripts, it is
also conventional to use /perl as the base URI of the Perl scripts that are
running under mod_perl.

b. Enter options in the Options field. The PerlOptions directive provides
fine-grained configuration by providing control over which class of Perl
interpreter pool to be used. Options are enabled by prepending them with a
plus sign (+) and are disabled by prepending them with a minus sign (-).

c. If you want to send headers, then click the Send Header check box. The
PerlSendHeader directive is for mod_perl 1.0 backwards-compatibility.
When enabled, the server sends an HTTP header to the browser on every
script invocation. You should disable this option for NPH
(non-parsed-headers) scripts.

d. Enter the environment in the Environment field. The PerlSetEnv directive
allows you to specify system environment variables and pass them into your
mod_perl handlers.

e. Enter the response handler in the Response Handler field. The
PerlResponseHandler directive tells mod_perl which callback is going to
do the job.

f. Enter the authentication handler in the Authentication Handler field. The
PerlAuthenHandler directive is used to set the handler to verify a user's
identification credentials.

8. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

9. Restart Oracle HTTP Server as described in Section 4.1.4.

The mod_perl module configuration is saved and shown on the mod_perl
Configuration page.

Note: If mod_perl has not been enabled, then you will be redirected
to the Server Configuration page. Select mod_perl and click Apply to
enable mod_perl. After the confirmation page has been displayed,
restart Oracle HTTP Server, and then return to the mod_perl
Configuration page.

Configuring Oracle HTTP Server

4-12 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

4.4.4 Configuring mod_wl_ohs
You can configure mod_wl_ohs either by using Fusion Middleware Control or by
editing the mod_wl_ohs.conf configuration file manually.

For information about the prerequisites and procedure for configuring mod_wl_ohs to
proxy requests from Oracle HTTP Server to Oracle WebLogic Server, see "Configuring
the mod_wl_ohs Plug-In for Oracle HTTP Server" in Using Web Server 1.1 Plug-Ins with
Oracle WebLogic server.

4.4.5 Modifying an Oracle HTTP Server Configuration File
To modify an Oracle HTTP Server configuration file using Fusion Middleware Control,
do the following:

1. Select Administration from the HTTP Server menu.

2. Select Advanced Configuration from the Administration menu item. The
Advanced Server Configuration page appears.

3. Select the configuration file from the list, such as the httpd.conf file.

4. Edit the file, as needed.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server as described in Section 4.1.4.

The file is saved and shown on the Advanced Server Configuration page.

4.4.6 Disabling the Options Method
The Options method enables clients to determine which methods are supported by a
web server. If enabled, it appears in the Allow line of HTTP response headers.

For example, if you send a request such as:

---- Request -------
OPTIONS / HTTP/1.0
Content-Length: 0
Accept: */*
Accept-Language: en-US
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Win32)
Host: host123:80

you might get the following response from the web server:

---- Response --------
HTTP/1.1 200 OK
Date: Wed, 23 Apr 2008 20:20:49 GMT
Server: Oracle-Application-Server-11g/11.1.1.0.0 Oracle-HTTP-Server
Allow: GET,HEAD,POST,OPTIONS
Content-Length: 0

Note: If you are manually editing the mod_perl configuration
instead of using Fusion Middleware Control, then all directives must
be defined within the <IfModule mod_perl.c> block of the mod_
perl.conf file. Any mod_perl related directives defined outside of
this block might be ignored.

Configuring Oracle HTTP Server

Getting Started with Oracle HTTP Server 4-13

Connection: close
Content-Type: text/html

Some sources consider exposing the Options method a low security risk because
malicious clients could use it to determine the methods supported by a web server.
However, because web servers support only a limited number of methods, disabling
this method will just slow down malicious clients, not stop them. In addition, the
Options method may be used by legitimate clients.

If your Oracle Fusion Middleware environment does not have clients that require the
Options method, you can disable it by including the following lines in the
httpd.conf file:

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^OPTIONS
RewriteRule .* – [F]
</IfModule>

4.4.7 Updating the Configuration for Oracle HTTP Server Instances on a Shared
Filesystem

Functional or performance issues may be encountered when an OHS instance is
created on a shared filesystem, including NFS (Network File System). In particular,
lock files or Unix sockets used by OHS may not work or may have severe performance
degradation; WLS requests routed by mod_wl_ohs may have severe performance
degradation due to filesystem accesses in the default configuration.

Table 4-1 provides information about the Lock file issues and the suggested changes in
the httpd.conf file specific to the operating systems.

Table 4–1 Lock File issues

Operating System Description httpd.conf changes

Linux Lock files are not required. The
Sys V semaphore is the preferred
cross-process mutex
implementation.

Change AcceptMutex fcntl to
AcceptMutex sysvsem (two places).

Comment out the LockFile directive
(three places).

Solaris Lock files are not required. The
cross-process pthread mutex is
the preferred cross-process
mutex implementation.

Change AcceptMutex fcntl to
AcceptMutex pthread (two places).

Comment out the LockFile directive
(three places).

Other Unix
platforms

Change the LockFile directive to point
to a local filesystem (three places).

Unix socket issues mod_cgid - is not enabled by
default. If enabled, use the
ScriptSock directive to place
mod_cgid's Unix socket on a
local filesystem.

mod_fastcgi - is not enabled
by default. If enabled, use the
FastCgiIpcDir directive to place
mod_fastcgi's Unix sockets on a
local filesystem.

Deleting an Oracle HTTP Server Component

4-14 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

4.5 Deleting an Oracle HTTP Server Component
This section describes how to delete an Oracle HTTP Server component using
opmnctl. You cannot delete an Oracle HTTP Server component using Fusion
Middleware Control.

To delete an Oracle HTTP Server component using opmnctl:

> $ORACLE_INSTANCE/bin/opmnctl deletecomponent -componentName component_name

For example, to delete an Oracle HTTP Server component named ohs2 use the
following command:

> $ORACLE_INSTANCE/bin/opmnctl deletecomponent -componentName ohs2

5

Managing and Monitoring Server Processes 5-1

5Managing and Monitoring Server Processes

This chapter describes how to manage and monitor Oracle HTTP Server. It discusses
the procedures and tools to manage Oracle HTTP Server in your environment.

This chapter includes the following sections:

■ Section 5.1, "Oracle HTTP Server Processing Model"

■ Section 5.2, "Monitoring Oracle HTTP Server Performance"

■ Section 5.3, "Configuring Oracle HTTP Server Performance Directives"

■ Section 5.4, "Understanding Process Security"

5.1 Oracle HTTP Server Processing Model
The following sections explain the processing model for Oracle HTTP Server.

5.1.1 Request Process Model
After Oracle HTTP Server is started, it is ready to listen for and respond to HTTP(S)
requests. The request processing model on Microsoft Windows systems differs from
that on UNIX systems.

■ On Microsoft Windows, there is a single parent process and a single child process.
The child process creates threads that are responsible for handling client requests.
The number of created threads is static and can be configured for performance.

■ On UNIX, there is a single parent process that manages multiple child processes.
The child processes are responsible for handling requests. The parent process
brings up additional child processes as necessary, based on configuration.
Although the server has the ability to dynamically bring up additional child

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier Without Oracle WebLogic
Server” in the Oracle Fusion Middleware Installation Guide for Oracle Web
Tier.

Monitoring Oracle HTTP Server Performance

5-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

processes, it is best to configure the server to start enough child processes initially
so that requests can be handled without having to spawn more child processes.

5.1.2 Single Unit Process Model
Oracle HTTP Server provides functionality that allows it to terminate as a single unit if
the parent process fails. The parent process is responsible for starting and stopping all
the child processes for an Oracle HTTP Server instance. The failure of the parent
process without first shutting down the child processes leaves Oracle HTTP Server in
an inconsistent state that can only be fixed by manually shutting down all the
orphaned child processes. Until all the child processes are closed, a new Oracle HTTP
Server instance cannot be started because the orphaned child processes still occupy the
ports the new Oracle HTTP Server instance needs to access.

To prevent this from occurring, the DMS instrumentation layer in child processes on
UNIX and monitor functionality within WinNT MPM on Windows monitor the parent
process. If they detect that the parent process has failed, then all of the remaining child
processes are shut down.

When this functionality is combined with OPMN, it means that Oracle HTTP Server is
easily restarted in case of a parent process failure. The DMS instrumentation layer on
UNIX and a monitor within WinNT MPM on Windows ensures that all of the Oracle
HTTP Server child processes are shut down, leaving the ports open for a new Oracle
HTTP Server instance. OPMN ensures that a new instance is started once the failure of
the original instance is detected.

5.2 Monitoring Oracle HTTP Server Performance
Oracle Fusion Middleware automatically and continuously measures run-time
performance for Oracle HTTP Server. The performance metrics are automatically
enabled; you do not need to set options or perform any extra configuration to collect
them. If you encounter a problem, such as an application that is running slowly or is
hanging, you can view particular metrics to find out more information about the
problem.

Note that Fusion Middleware Control provides real-time data. If you are interested in
viewing historical data, consider using Grid Control.

5.2.1 Viewing Oracle HTTP Server Performance Metrics
You can view metrics from the Oracle HTTP Server home menu of Fusion Middleware
Control:

1. Select the Oracle HTTP Server that you want to monitor.

The Oracle HTTP Server home page is displayed.

2. From the Oracle HTTP Server menu, choose Monitoring, and then select
Performance Summary.

The Performance Summary page is displayed. It shows performance metrics, as
well as information about response time and request processing time for the
Oracle HTTP Server instance.

3. To see additional metrics, click Show Metric Palette and expand the metric
categories.

Tip: Oracle HTTP Server port usage information is also available
from the Oracle HTTP Server home menu.

Monitoring Oracle HTTP Server Performance

Managing and Monitoring Server Processes 5-3

The following figure shows the Oracle HTTP Server Performance Summary page
with the Metric Palette displayed:

4. Select additional metrics to add them to the Performance Summary.

5.2.2 Understanding Oracle HTTP Server Performance Metrics
This section lists some of the most commonly-used metrics that can help you analyze
Oracle HTTP Server performance.

OHS Server Metrics
The OHS Server Metrics folder contains performance metric options for Oracle HTTP
Server. The following table describes the metrics in the OHS Server Metrics folder:

Element Description

CPU Usage CPU usage and idle times

Memory Usage Memory usage and free memory, in MB

Processes Busy and idle process metrics

Request Throughput Request throughput, as measured by requests per second

Request Processing Time Request processing time, in seconds

Response Data Throughput Response data throughput, in KB per second

Response Data Processed Response data processed, in KB per second

Active HTTP Connections Number of active HTTP connections

Connection Duration Length of time for connections

HTTP Errors Number of HTTP 4xx and 5xx errors

Configuring Oracle HTTP Server Performance Directives

5-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

OHS Virtual Host Metrics
The OHS Virtual Host Metrics folder contains performance metric options for virtual
hosts, also known as access points. The following table describes the metrics in the
OHS Virtual Host Metrics folder:

OHS Module Metrics
The OHS Module Metrics folder contains performance metric option for modules. The
following table describes the metrics in the OHS Module Metrics folder.

5.3 Configuring Oracle HTTP Server Performance Directives
Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies
the maximum number of HTTP requests that can be processed simultaneously, logging
details, and certain limits and timeouts. Oracle HTTP Server supports and ships with
the following three Multi-Processing Modules (MPMs) which are responsible for
binding to network ports on the machine, accepting requests, and dispatching children
to handle the requests:

■ Worker - This is the default MPM for Oracle HTTP Server on UNIX/Linux
platforms. This MPM implements a hybrid multi-process multi-threaded server.
By using threads to serve requests, it is able to serve a large number of requests
with fewer system resources than a process-based server. However, it retains much
of the stability of a process-based server by keeping multiple processes available,
each with many threads.

■ WinNT - This is the default MPM for Oracle HTTP Server on Windows platforms.
It uses a single control process which launches a single child process which in turn
creates threads to handle requests.

■ Prefork - This MPM implements a non-threaded, pre-forking server that handles
requests in a manner similar to Apache 1.3. It is appropriate for sites that need to
avoid threading for compatibility with non-thread-safe libraries. It is also the best
MPM for isolating each request, so that a problem with a single request will not
affect any other.

Element Description

Request Throughput for a
Virtual Host

Number of requests per second for each virtual host

Request Processing Time for
a Virtual Host

Time to process each request for each virtual host

Response Data Throughput
for a Virtual Host

Amount of data being sent for each virtual host

Response Data Processed
for a Virtual Host

Amount of data being processed for each virtual host

Element Description

Request Handling
Throughput

Request handling throughput for a module, in requests per
second

Request Handling Time Request handling time for a module, in seconds

Module Metrics Modules including active requests, throughput, and time for
each module

Configuring Oracle HTTP Server Performance Directives

Managing and Monitoring Server Processes 5-5

The discussion and recommendations in this section are based on the use of Worker or
WinNT MPM, which uses threads. The thread-related directives listed below are not
applicable if you are using the Prefork MPM.

The Performance Directives page allows you to tune performance-related directives
for Oracle HTTP Server, as illustrated in the following figure:

Performance directives management consists of three areas: request configuration,
connection configuration, and process configuration. You can set these configurations
using the Performance Directive page of Fusion Middleware Control and by following
the instructions in the following sections:

■ Using Fusion Middleware Control to Set the Request Configuration

■ "Using Fusion Middleware Control to Set the Connection Configuration"

■ Using Fusion Middleware Control to Set the Process Configuration

5.3.1 Using Fusion Middleware Control to Set the Request Configuration
To specify the Oracle HTTP Server request configuration using Fusion Middleware
Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum number of requests in the Maximum Requests field
(MaxClients directive). This setting limits the number of requests that can be
dealt with at one time. The default and recommended value is 150. This is
applicable for all Linux/Unix platforms.

4. Set the maximum requests per child process in the Maximum Request per Child
Process field (MaxRequestPerChild directive). You can choose to have no limit,
or a maximum number. If you choose to have a limit, enter the maximum number
in the field.

5. Enter the request timeout value in the Request Timeout (seconds) field (Timeout
directive). This value sets the maximum time, in seconds, Oracle HTTP Server
waits to receive a GET request, the amount of time between receipt of TCP packets

Configuring Oracle HTTP Server Performance Directives

5-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

on a POST or PUT request, and the amount of time between ACKs on
transmissions of TCP packets in responses.

6. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

7. Restart Oracle HTTP Server. See Section 4.1.4.

The request configuration settings are saved, and shown on the Performance
Directives page.

5.3.2 Using Fusion Middleware Control to Set the Connection Configuration
To specify the connection configuration using Fusion Middleware Control, do the
following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum connection queue length in the Maximum Connection Queue
Length field (ListenBacklog directive). This is the queue for pending
connections. This is useful if the server is experiencing a TCP SYN overload,
which causes numerous new connections to open up, but without completing the
pending task.

4. Set the Multiple Requests per Connection field (KeepAlive directive) to indicate
whether or not to allow multiple connections. If you choose to allow multiple
connections, enter the number of seconds for timeout in the Allow With
Connection Timeout field.

The Allow With Connection Timeout value sets the number of seconds the server
waits for a subsequent request before closing the connection. Once a request has
been received, the specified value applies. The default is 15 seconds.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server. See Section 4.1.4.

The connection configuration settings are saved, and shown on the Performance
Directives page.

5.3.3 Using Fusion Middleware Control to Set the Process Configuration
The child process and configuration settings impact the ability of the server to process
requests. You may need to modify the settings as the number of requests increase or
decrease to maintain a well-performing server.

For UNIX, the default number of child server processes is 2. For Microsoft Windows,
the default number of threads to handle requests is 150.

To specify the process configuration using Fusion Middleware Control, do the
following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

Understanding Process Security

Managing and Monitoring Server Processes 5-7

3. Enter the number for the initial child server processes in the Initial Child Server
Processes field (StartServers directive). This is the number of child server
processes created when Oracle HTTP Server is started. The default is 2. This is for
UNIX only.

4. Enter the number for the maximum idle threads in the Maximum Idle Threads
field (MaxSpareThreads directive). An idle thread is a process that is running,
but not handling a request.

5. Enter the number for the minimum idle threads in the Minimum Idle Threads
field (MinSpareThreads directive).

6. Enter the number for the threads per child server process in the Threads per Child
Server Process field (ThreadsPerChild directive).

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server. See Section 4.1.4.

The process configuration settings are saved, and shown on the Performance
Directives page.

5.4 Understanding Process Security
By default, Oracle HTTP Server runs as a non-root user (the user that installed Oracle
Fusion Middleware). Therefore, on UNIX systems, if you plan on running Oracle
HTTP Server on a privileged port (for example, port 80), you must enable Oracle
HTTP Server to run as root. See "Starting Oracle HTTP Server on a Privileged Port" on
page 4-3.

For additional security on UNIX, you can change the User directive in the
httpd.conf configuration file to nobody. Be sure that the child processes can
accomplish their tasks as the user nobody.

If your PL/SQL application is using the file system caching functionality in mod_
plsql, then the httpd processes should have read and write privileges to the cache
directory, specified through the parameter PlsqlCacheDirectory in ORACLE_
INSTANCE/config/OHS/component_name/mod_plsql/cache.conf. By default,
this parameter points to ORACLE_INSTANCE/OHS/component_name.

Finally, given that the cached content might contain sensitive data, the contents of the
file system cache should be protected. So, although Oracle HTTP Server might run as
nobody, access to the system as this user should be well-protected.

See Also: Section 3.10, "mod_plsql"

Understanding Process Security

5-8 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

6

Managing Connectivity 6-1

6Managing Connectivity

Oracle HTTP Server comes configured with two listen ports: a non-SSL port (http) and
an SSL port (https). The default, non-SSL port is 7777. If port 7777 is occupied, the next
available port number, within a range of 7777-7877, is assigned. The default SSL port is
4443. Similarly, if port 4443 is occupied, the next available port number, within a range
of 4443-4543, is assigned.

You can set these ports during installation or when creating a new Oracle HTTP Server
component. For specifying ports at installation time, see the Oracle Fusion Middleware
Installation Guide for Oracle Web Tier. For information about specifying ports when
creating a new Oracle HTTP Server component using opmnctl, see Section 4.2,
"Creating an Oracle HTTP Server Component".

This chapter includes the following sections:

■ Section 6.1, "Viewing Port Number Usage"

■ Section 6.2, "Managing Ports"

■ Section 6.3, "Configuring Virtual Hosts"

6.1 Viewing Port Number Usage
This section describes how to view ports using Fusion Middleware Control.

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier Without Oracle WebLogic
Server” in the Oracle Fusion Middleware Installation Guide for Oracle Web
Tier.

Note: An additional SSL port (9999) is configured to run
out-of-the-box in the admin.conf file. It is called Proxy MBean or
Admin port and is used internally by Oracle HTTP Server to
communicate with Fusion Middleware Control.

Managing Ports

6-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

6.1.1 Using the Fusion Middleware Control to View Port Number Usage
To view the port number usage using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Port Usage from the Oracle HTTP Server menu.

The Port Usage detail page shows the component, the ports that are in use, the IP
address the ports are bound to, and the protocol being used, as illustrated in the
following figure:

6.2 Managing Ports
The ports used by Oracle HTTP Server can be set during and after installation. In
addition, you can change the port numbers, as needed. This section describes how to
create, edit, and delete ports using Fusion Middleware Control.

■ Using Fusion Middleware Control to Create Ports

■ Using Fusion Middleware Control to Edit Ports

■ Updating the Registration of Oracle HTTP Server with a WebLogic Domain After
Changing the Administration Port

Caution: The Oracle HTTP Server administration (proxy MBean)
virtual host and its configuration, defined in the admin.conf file,
must not be edited with the WebLogic Scripting Tool (WLST).

See Also: "Changing the Oracle HTTP Server Listen Ports" in the
Oracle Fusion Middleware Administrator's Guide.

Note: When deleting a port, if there is a virtual host configured to
use the port you want to delete, you must first delete that virtual host
before deleting the port.

Managing Ports

Managing Connectivity 6-3

6.2.1 Using Fusion Middleware Control to Create Ports
To create ports using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Ports Configuration from the Administration menu.

4. Click Create.

5. Use the IP Address menu to select an IP address for the new port. Ports can listen
on a local IP Address of an associated host or on any available network interfaces.

SSL for a port can be configured on the Virtual Hosts page, as described in
Section 6.3.2, "Using Fusion Middleware Control to Configure Virtual Hosts".

6. Use the Port field to enter the port number.

7. Click OK.

8. Restart Oracle HTTP Server. See Section 4.1.4.

6.2.2 Using Fusion Middleware Control to Edit Ports
To create the ports using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Ports Configuration from the Administration menu.

4. Select the port for which you want to change the port number.

Note that the Admin port cannot be edited using Fusion Middleware Control.
Although this is a port Oracle HTTP Server uses for its internal communication
with Fusion Middleware Control, in most of the cases it does not need to be
changed. If you really want to change it, manually edit the ORACLE_
INSTANCE/config/OHS/component_name/admin.conf file. For information
about the additional steps to be performed after changing the Admin port, see

Note: If you change the port or make other changes that affect the
URL, such as changing the host name, enabling or disabling SSL, you
need to re-register partner applications with the SSO server using the
new URL. For more information, see "Registering Oracle HTTP Server
mod_osso with OSSO Server 10.1.4" in the Oracle Fusion Middleware
Application Security Guide.

Configuring Virtual Hosts

6-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Section 6.2.3, "Updating the Registration of Oracle HTTP Server with a WebLogic
Domain After Changing the Administration Port"

5. Click Edit.

6. Edit the IP Address and/or Port number for the port.

SSL for a port can be configured on the Virtual Hosts page, as described in
Section 6.3.2, "Using Fusion Middleware Control to Configure Virtual Hosts".

7. Click OK.

8. Restart Oracle HTTP Server. See Section 4.1.4.

6.2.3 Updating the Registration of Oracle HTTP Server with a WebLogic Domain After
Changing the Administration Port

In an Oracle Instance that is registered with a WebLogic domain, if the Oracle HTTP
Server administration port (proxy MBean port in the admin.conf file) is changed
after creating the component, then you must update the component registration with
the WebLogic domain using the opmnctl updatecomponentregistration
command, as follows:

> $ORACLE_INSTANCE/bin/opmnctl updatecomponentregistration -componentType OHS
-componentName component_name -proxyPort port

For example, if the proxy port of an Oracle HTTP Server component named ohs2 has
been changed to 8787, then use the following command:

> $ORACLE_INSTANCE/bin/opmnctl updatecomponentregistration -componentType OHS
-componentName ohs2 -proxyPort 8787

6.3 Configuring Virtual Hosts
You can create virtual hosts to run more than one Web site (such as
www.company1.com and www.company2.com) on a single machine. Virtual hosts
can be IP-based, meaning that you have a different IP address for every Web site, or

Note: If you change the port or make other changes that affect the
URL, such as changing the host name, enabling or disabling SSL, you
need to re-register partner applications with the SSO server using the
new URL. For more information, see "Registering Oracle HTTP Server
mod_osso with OSSO Server 10.1.4" in the Oracle Fusion Middleware
Application Security Guide.

Configuring Virtual Hosts

Managing Connectivity 6-5

name-based, meaning that you have multiple names running on each IP address. The
fact that they are running on the same physical server is not apparent to the end user.

This section describes how to create and edit virtual hosts using Fusion Middleware
Control.

■ Using Fusion Middleware Control to Create Virtual Hosts

■ Using Fusion Middleware Control to Configure Virtual Hosts

6.3.1 Using Fusion Middleware Control to Create Virtual Hosts
To create a virtual Host using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Click Create.

Caution: The Oracle HTTP Server administration (proxy MBean)
virtual host and its configuration, defined in the admin.conf file,
must not be edited with the WebLogic Scripting Tool (WLST).

See Also: For more information about virtual hosts, refer to the
Apache HTTP Server documentation.

Configuring Virtual Hosts

6-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

5. Enter a name for the virtual host field and then choose whether to enter a new
listen address or to use an existing listen address.

■ New listen address - use this option when you want to create a virtual host
that maps to a specific hostname or IP address, for example
mymachine.com:8080. This will create following type NameVirtualHost and
VirtualHost directives:

NameVirtualHost mymachine.com:8080
<VirtualHost mymachine.com:8080>

■ Use existing listen address - use this option when you want to create a virtual
host using an existing listen port and the one that maps to all IP addresses.
This will create following type VirtualHost directive:

<VirtualHost *:8080>

6. Enter the remaining attributes for the new virtual host.

7. Use the Type field to select whether the virtual host will be IP-based or
name-based.

8. Click OK.

9. Restart Oracle HTTP Server. See Section 4.1.4.

6.3.2 Using Fusion Middleware Control to Configure Virtual Hosts
You can use the options on the Configure menu to specify Server, MIME, Log, mod_
perl, SSL, and mod_wl_ohs configuration for a selected virtual host.

To configure a virtual host using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Highlight an existing virtual host in the table.

5. Click Configure.

Configuring Virtual Hosts

Managing Connectivity 6-7

6. Select one of the following options from Configure menu to open its
corresponding configuration page. The values on these pages apply only to the
virtual host. If the fields are blank, the virtual host uses the values configured at
the server level.

■ Server Configuration – Configure basic virtual host properties, such as
document root directory, installed modules, and aliases. See Section 4.3.1,
"Using Fusion Middleware Control to Specify Server Properties."

■ MIME Configuration – Configure MIME settings, which are used by Oracle
HTTP Server to interpret file types, encodings, and languages. Section 4.4.2,
"Configuring MIME Settings."

■ Log Configuration – Configure access logs that will record all requests
processed by the virtual host. The logs contain basic information about every
HTTP transaction handled by the virtual host. See Section 7.2, "Configuring
Oracle HTTP Server Logs."

■ mod_perl Configuration – Configure the mod_perl module to embed the Perl
interpreter into the virtual host, thereby eliminating startup overhead and
enabling you to write modules in Perl. This module is disabled, by default. See
Section 4.4.3, "Configuring the mod_perl Module."

■ SSL Configuration – For instructions on configuring SSL using Fusion
Middleware Control, see "Enabling SSL for Oracle HTTP Server Virtual Hosts"
in the Oracle Fusion Middleware Administrator's Guide.

■ mod_wl_ohs Configuration – Configure the mod_wl_ohs module to allow
requests to be proxied from an Oracle HTTP Server to Oracle WebLogic Server.
See Section 4.4.4, "Configuring mod_wl_ohs."

7. Review the settings on each configuration page. If the settings are correct, click
OK to apply the changes. If the settings are incorrect, or you decide to not apply
the changes, click Cancel to return to the original settings.

8. Restart Oracle HTTP Server. See Section 4.1.4.

Configuring Virtual Hosts

6-8 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

7

Managing Oracle HTTP Server Logs 7-1

7Managing Oracle HTTP Server Logs

Oracle HTTP Server generates log files containing messages that record all types of
events, including startup and shutdown information, errors, warning messages, access
information on HTTP requests, and additional information. This chapter describes
how to find information about the cause of an error and its corrective action, to view
and manage log files to assist in monitoring system activity and to diagnose problems.

This chapter includes the following sections:

■ Section 7.1, "Overview of Server Logs"

■ Section 7.2, "Configuring Oracle HTTP Server Logs"

■ Section 7.3, "Log Directives for Oracle HTTP Server"

■ Section 7.4, "Viewing Oracle HTTP Server Logs"

7.1 Overview of Server Logs
You can view Oracle Fusion Middleware log files using either Fusion Middleware
Control or a text editor. The log files for Oracle HTTP Server are located in the
following directory:

ORACLE_INSTANCE/diagnostics/logs/OHS/component_name

There are two types of logs for Oracle HTTP Server:

■ Error logs, which record server problems.

■ Access logs, which record which components and applications are being accessed
and by whom.

This section contains the following topics:

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier Without Oracle WebLogic
Server” in the Oracle Fusion Middleware Installation Guide for Oracle Web
Tier.

Overview of Server Logs

7-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Section 7.1.1, "About Error Logs"

■ Section 7.1.2, "About Access Logs"

■ Section 7.1.3, "Log Rotation"

7.1.1 About Error Logs
Oracle HTTP Server enables you to choose the format in which you want to generate
log messages. You can choose to generate log messages in the legacy Apache message
format, or use Oracle Diagnostic Logging (ODL) to generate log messages in text or
XML-formatted logs, which complies with Oracle standards for generating error log
messages.

By default, Oracle HTTP Server error logs use ODL for generating diagnostic
messages. It provides a common format for all diagnostic messages and log files, and a
mechanism for correlating the diagnostic messages from various components across
Oracle Fusion Middleware.

The default name of the error log file is component_name.log.

7.1.2 About Access Logs
Access logs record all requests processed by the server. The logs contain basic
information about every HTTP transaction handled by the server. The access log
contains the following information:

■ Host name

■ Remote log name

■ Remote user and time

■ Request

■ Response code

■ Number of transferred bytes

The default name of the access log file is access_log.

Access Log Format
You can specify the information to include in the access log, and the manner in which
it is written. The default format is the Common Log Format (CLF).

The CLF format contains the following fields:

host ident authuser date request status bytes

■ host: This is the client domain name or its IP number. Use %h to specify the host
field in the log.

■ ident: If IdentityCheck is enabled and the client system runs identd, this is the
client identity information. Use %i to specify the client identity field in the log.

■ authuser: This is the user ID for the authorized user. Use %a to specify the
authorized user field in the log.

■ date: This is the date and time of the request in the
day/month/year:hour:minute:second format. Use %t to specify date and time in
the log.

■ request: This is the request line, in double quotes, from the client. Use %r to specify
request in the log.

Overview of Server Logs

Managing Oracle HTTP Server Logs 7-3

■ status: This is the three-digit status code returned to the client. Use %s to specify
the status in the log. If the request will be forwarded from another server, use %>s
to specify the last server in the log.

■ bytes: This is the number of bytes, excluding headers, returned to the client. Use
%b to specify number of bytes in the log. Use %i to include the header in the log.

7.1.3 Log Rotation
Oracle HTTP Server supports two types of log rotation policies: size-based and
time-based. You can configure the Oracle HTTP Server logs to use either of the two
rotation polices, by using the odl_rotatelogs command. By default, Oracle HTTP
Server uses odl_rotatelogs for both error and access logs.

odl_rotatelogs supports all the features of Apache’s rotatelogs command and
the additional feature of log retention.

The following is the general syntax of the odl_rotatelogs command:

odl_rotatelogs [-u:offset] logfile {size-|time-based-rotation-options}

Table 7–1 describes the size- and time-based rotation options:

Syntax and Examples for Time- and Size-Based Rotation
■ Time-based rotation

Syntax:

$ odl_rotatelogs logfile frequency retentionTime startTime

Example:

$ odl_rotatelogs /varlog/error.log-%Y-%m-%d 21600 172800 2012-03-10T08:30:00

See Also: Access Log in the Apache HTTP Server documentation.

Table 7–1 Options of the odl_rotatelogs command

Option Description

-u The time (in seconds) to offset from UTC.

logfile The path and name of the log file, followed by a hyphen (-) and then the
timestamp format.

The following are the common timestamp format strings:

■ %m: Month as a two-digit decimal number (01-12)

■ %d: Day of month as a two-digit decimal number (01-31)

■ %Y: Year as a four-digit decimal number

■ %H: Hour of the day as a two-digit decimal number (00-23)

■ %M: Minute as a two-digit decimal number (00-59)

■ %S: Second as a two-digit decimal number (00-59)

It should not include formats that expand to include slashes.

frequency The time (in seconds) between log file rotations.

retentionTime The maximum time for which the rotated log files are retained.

startTime The time when time-based rotation should start.

maxFileSize The maximum size (in MB) of log files.

allFileSize The total size (in MB) of files retained.

Configuring Oracle HTTP Server Logs

7-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

This command configures log rotation to be performed every 21600 seconds (6
hours) starting from 8:30 a.m. on March 10, 2012, and it specifies that the rotated
log files should be retained for 172800 seconds (2 days).

■ Size-based rotation

Syntax:

$ odl_rotatelogs logfile maxFileSize allFileSize

Example:

This command configures log rotation to be performed when the size of the log file
reaches 10 MB, and it specifies the maximum size of all the rotated log files as 70
MB (up to 7 log files (=70/10) will be retained).

$ odl_rotatelogs /var/log/error.log-%Y-%m-%d 10M 70M

7.2 Configuring Oracle HTTP Server Logs
You can use Fusion Middleware Control to configure error and access logs. The
following logging tasks can be set from the Log Configuration page:

■ Using Fusion Middleware Control to Configure Error Logs

■ Using Fusion Middleware Control to Configure Access Logs

7.2.1 Using Fusion Middleware Control to Configure Error Logs
To configure an error log for Oracle HTTP Server using Fusion Middleware Control,
do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

The Log Configuration page is displayed, as shown in the following figure.

3. The following error log configuration tasks can be set from this page:

Configuring Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 7-5

■ Configuring the Error Log Format and Location

■ Configuring the Error Log Level

■ Configuring Error Log Rotation Policy

7.2.1.1 Configuring the Error Log Format and Location
Oracle HTTP Server by default uses ODL-Text as the error log format and creates the
log file with the name component_name.log under the ORACLE_
INSTANCE/diagnostics/logs/OHS/ component_name directory. To use a
different format or log location, do the following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select the desired file format. Although both ODL-Text and ODL-XML formats
provide the same information, the ODL-XML file includes XML elements and
wrappers, and so may be easier to read.

■ ODL-Text – the format of the diagnostic messages conform to an Oracle
standard and are written in text format.

■ ODL-XML – the format of the diagnostic messages conform to an Oracle
standard and are written in XML format.

■ Apache – the format of the diagnostic messages conform to the legacy Apache
HTTP Server message format.

3. Enter a path for the error log in the Log File/Directory field. This directory must
exist before you enter it here.

4. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

5. Restart Oracle HTTP Server. See Section 4.1.4.

7.2.1.2 Configuring the Error Log Level
You can configure the amount and type of information written to log files by
specifying the message type and level. Error log level for Oracle HTTP Server by
default is configured to WARNING:32. To use a different error log level do the
following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select a level for the logging from the Level menu. The higher the log level, the
more information that is included in the log.

3. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

4. Restart Oracle HTTP Server. See Section 4.1.4.

Configuring Oracle HTTP Server Logs

7-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

7.2.1.3 Configuring Error Log Rotation Policy
Log rotation policy for error logs can either be time-based, such as once a week, or
sized-based, such as 120MB. By default, the error log file is rotated when it reaches 10
MB in size and a maximum of 7 error log files will be retained. To use a different
rotation policy, do the following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select a rotation policy.

■ No Rotation – if you do not want to have the log file rotated ever.

■ Size Based – rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the
maximum number of error log files to retain in Maximum Files to Retain field.

■ Time Based – rotate the log file whenever configured time is reached. Set the
start time, rotation frequency, and retention period.

3. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

4. Restart Oracle HTTP Server. See Section 4.1.4.

7.2.2 Using Fusion Middleware Control to Configure Access Logs
To configure an access log for Oracle HTTP Server using Fusion Middleware Control,
do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

The following access log configuration tasks can be set from this page:

■ Configuring the Access Log Format

■ Configuring the Access Log File

7.2.2.1 Configuring the Access Log Format
Log format specifies the information included in the access log file and the manner in
which it is written. To add a new access log format or to edit or remove an existing
format, do the following:

1. From the Log Configuration page, navigate to the Access Log section.

2. Click Manage Log Formats.

Note: The log levels are different for the Apache log format from
ODL-Text and the ODL-XML log format.

■ For details on ODL log levels, refer to "Setting the Level of
Information Written to Log Files" in the Oracle Fusion Middleware
Administrator's Guide.

■ For details on Apache log levels, refer to the LogLevel Directive in
the Apache HTTP Server documentation.

Configuring Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 7-7

The Manage Custom Access Log Formats page is displayed, as shown in the
following figure.

3. Select an existing format to change or remove, or click Add Row to create a new
format.

4. If you choose to create a new format, then enter the new log format in the Log
Format Name field and the log format in the Log Format Pattern field.

5. Click OK to save the new format.

7.2.2.2 Configuring the Access Log File
To configure an access log for file Oracle HTTP Server, do the following:

1. From the Log Configuration page, navigate to the Access Log section.

2. Click Create to create a new access log, or select a row from the table and click
Edit button to edit an existing access log file.

The Create or Edit Access Log page is displayed.

3. Enter the path for the access log in the Log File Path field. This directory must
exist before you enter it.

4. Select an existing access log format from the Log Format menu.

5. Select a rotation policy.

■ No Rotation – if you do not want to have the log file rotated ever.

■ Size Based – rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the
maximum number of error log files to retain in Maximum Files to Retain field.

See Also: Refer to the Apache HTTP Server documentation for
information about log format directives.

Log Directives for Oracle HTTP Server

7-8 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Time Based – rotate the log file whenever configured time is reached. Set the
start time, rotation frequency, and retention period.

6. Click OK to continue.

Note that you can create multiple access log files.

7.3 Log Directives for Oracle HTTP Server
This section discuss Oracle HTTP Server error and access log-related directives in the
httpd.conf file. The directives discussed are:

■ Oracle Diagnostic Logging Directives

■ Apache HTTP Server Log Directives

7.3.1 Oracle Diagnostic Logging Directives
Oracle HTTP Server by default uses Oracle Diagnostic Logging (ODL) for generating
diagnostic messages. The following directives are used to setup logging using ODL:

■ OraLogMode

■ OraLogDir

■ OraLogSeverity

■ OraLogRotationParams

7.3.1.1 OraLogMode
Enables you to choose the format in which you want to generate log messages. You
can choose to generate log messages in the legacy Apache, ODL text, or ODL XML
format.

OraLogMode Apache | ODL-Text | ODL-XML

Default value: ODL-Text

For example: OraLogMode ODL-XML

7.3.1.2 OraLogDir
Specifies the path to the directory that contains all log files. This directory must exist.

This directive is used only when OraLogMode is set to either ODL-Text or ODL-XML.
When OraLogMode is set to Apache, OraLogDir is ignored and ErrorLog is used
instead.

OraLogDir <path>

Default value: ORACLE_INSTANCE/diagnostics/logs/OHS/component_name

For example: OraLogDir /tmp/logs

Note: The Apache log directives ErrorLog and LogLevel are only
effective when OraLogMode is set to Apache. When OraLogMode is
set to either ODL-Text or ODL-XML, the ErrorLog and LogLevel
directives are ignored.

Log Directives for Oracle HTTP Server

Managing Oracle HTTP Server Logs 7-9

7.3.1.3 OraLogSeverity
Enables you to set message severity. The message severity specified with this directive
is interpreted as the lowest desired message severity, and all messages of that severity
level and higher are logged.

This directive is used only when OraLogMode is set to either ODL-Text or ODL-XML.
When OraLogMode is set to Apache, OraLogSeverity is ignored and LogLevel is
used instead.

OraLogSeverity <msg_type>[:msg_level]

Default value: WARNING:32

For example: OraLogSeverity NOTIFICATION:16

msg_type
Message types can be specified in upper or lower case, but appear in the message
output in upper case. This parameter must be of one of the following values:

■ INCIDENT_ERROR

■ ERROR

■ WARNING

■ NOTIFICATION

■ TRACE

msg_level
This parameter must be an integer in the range of 1–32, where 1 is the most severe, and
32 is the least severe. Using level 1 will result in fewer messages than using level 32.

7.3.1.4 OraLogRotationParams
Enables you to choose the rotation policy for an error log file. This directive is used
only when OraLogMode is set to either ODL-Text or ODL-XML. When OraLogMode is
set to Apache, OraLogRotationParams is ignored.

OraLogRotationParams <rotation_type> <rotation_policy>

Default value: S 10:70

For example: OraLogRotationParams T 43200:604800
2009-05-08T10:53:29

rotation_type
This parameter can either be S (for sized-based rotation) or T (for time-based rotation).

rotation_policy
When rotation_type is set to S (sized-based), set the rotation_policy parameter to:

maxFileSize:allFilesSize (in MB)

For example, when configured as 10:70, the error log file is rotated whenever it
reaches 10MB in size and a total of 70MB is allowed for all error log files (a maximum
of 70/10=7 error log files will be retained).

When rotation_type is set to T (time-based), set the rotation_policy parameter to:

frequency(in sec) retentionTime(in sec) startTime(in
YYYY-MM-DDThh:mm:ss)

Log Directives for Oracle HTTP Server

7-10 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

For example, when configured as 43200:604800 2009-05-08T10:53:29, the
error log is rotated every 43200 seconds (that is, 12 hours), rotated log files are retained
for maximum of 604800 seconds (7 days) starting from May 5, 2009 at 10:53:29.

7.3.2 Apache HTTP Server Log Directives
Although Oracle HTTP Server uses ODL by default for error logs, you can configure
the OraLogMode directive to Apache to generate error log messages in the legacy
Apache HTTP Server message format. The following directives are discussed in this
section:

■ ErrorLog

■ LogLevel

■ LogFormat

■ CustomLog

7.3.2.1 ErrorLog
The ErrorLog directive sets the name of the file where the server logs any errors it
encounters. If the file-path is not absolute then it is assumed to be relative to the
ServerRoot.

This directive is used only when OraLogMode is set to Apache. When OraLogMode is
set to either ODL-Text or ODL-XML, ErrorLog is ignored and OraLogDir is used
instead.

7.3.2.2 LogLevel
The LogLevel directive adjusts the verbosity of the messages recorded in the error
logs.

This directive is used only when OraLogMode is set to Apache. When OraLogMode is
set to either ODL-Text or ODL-XML, LogLevel is ignored and OraLogSeverity is
used instead.

7.3.2.3 LogFormat
The LogFormat directive specifies the format of the access log file. By default, Oracle
HTTP Server comes with the following four access log formats defined:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

7.3.2.4 CustomLog
The CustomLog directive is used to log requests to the server. A log format is
specified and the logging can optionally be made conditional on request characteristics

See Also: For information about the ErrorLog directive, see the
Apache HTTP Server documentation .

See Also: Refer to the Apache HTTP Server documentation for
information about the LogLevel directive.

See Also: Refer to the Apache HTTP Server documentation for
information about the LogFormat directive.

Viewing Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 7-11

using environment variables. By default, the access log file is configured to use the
common log format.

7.4 Viewing Oracle HTTP Server Logs
You can search, view, and list Oracle HTTP Server log files using Fusion Middleware
Control, or you can download a log file to your local client and view the log files using
another tool.

You can also use the text editor of your choice to view Oracle HTTP Server log files
directly from the ORACLE_INSTANCE directory. By default, Oracle HTTP Server log
files are located in the ORACLE_INSTANCE/diagnostics/logs/OHS/component_
name directory.

As discussed in Section 7.1, "Overview of Server Logs", there are mainly two types of
log files for Oracle HTTP Server: error logs and access logs. The error log file is an
important source of information for maintaining a well-performing server. The error
log records all of the information about problem situations so that the system
administrator can easily diagnose and fix the problems. The access log file contains
basic information about every HTTP transaction that the server handles. This
information can be used to generate statistical reports about the server's usage
patterns.

See Also: Refer to the Apache HTTP Server documentation for
information about the CustomLog directive.

See Also: For information about searching and viewing log files,
see the Oracle Fusion Middleware Administrator's Guide

Viewing Oracle HTTP Server Logs

7-12 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

8

Managing Application Security 8-1

8Managing Application Security

This chapter contains an overview of Oracle HTTP Server security features, and
provides configuration information for setting up a secure Web site.

This chapter includes the following sections:

■ Section 8.1, "About Oracle HTTP Server Security"

■ Section 8.2, "Classes of Users and Their Privileges"

■ Section 8.3, "Resources Protected"

■ Section 8.4, "Authentication, Authorization and Access Control"

8.1 About Oracle HTTP Server Security
Security can be organized into the three categories of authentication, authorization,
and confidentiality. Oracle HTTP Server provides support for all three of these
categories. It is based on the Apache Web server, and its security infrastructure is
primarily provided by the Apache modules, mod_auth_basic, mod_authn_file, mod_
auth_user, and mod_authz_groupfile, and the Oracle modules, mod_ossl and mod_
osso. The mod_auth_basic, mod_authn_file, mod_auth_user, and mod_authz_
groupfile modules provide authentication based on user name and password pairs,
while mod_authz_host controls access to the server based on the characteristics of a
request, such as host name or IP address, mod_ossl provides confidentiality and
authentication with X.509 client certificates over SSL, and mod_osso enables single
sign-on authentication for Web applications.

Oracle HTTP Server provides access control, authentication, and authorization
methods that can be configured with access control directives in the httpd.conf file.
When URL requests arrive at Oracle HTTP Server, they are processed in a sequence of
steps determined by server defaults and configuration parameters. The steps for

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier Without Oracle WebLogic
Server” in the Oracle Fusion Middleware Installation Guide for Oracle Web
Tier.

Classes of Users and Their Privileges

8-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

handling URL requests are implemented through a module or plug-in architecture that
is common to many Web listeners.

Figure 8–1 shows how URL requests are handled by the server. Each step in this
process is handled by a server module depending on how the server is configured. For
example, if basic authentication is used, then the steps labeled "Authentication" and
"Authorization" in Figure 8–1 represent the processing of the Apache mod_auth_basic,
mod_authn_file, mod_auth_user, and mod_authz_groupfile modules.

Figure 8–1 Steps for Handling URL Requests in Oracle HTTP Server

8.2 Classes of Users and Their Privileges
Oracle HTTP Server authorizes and authenticates users before allowing them to
access, or modify resources on the server. The following are three classes of users that
access the server using Oracle HTTP Server, and their privileges:

■ Users that access the server without providing any authentication. They have
access to unprotected resources only.

■ Users that have been authenticated and potentially authorized by modules within
Oracle HTTP Server. This includes users authenticated by Apache HTTP Server
modules like mod_auth_basic, mod_authn_file, mod_auth_user, and mod_authz_
groupfile modules and Oracle's mod_ossl. Such users have access to URLs defined
in http.conf file.

■ Users that have been authenticated through mod_osso and Single Sign-On server.
These users have access to resources allowed by Single Sign-On.

8.3 Resources Protected
Oracle HTTP Server may be configured since these resources are not protected out of
the box:

■ Static content such as static HTML pages, graphics interchange format, .gif, files,
and other static files that Oracle HTTP Server provides directly.

See Also: Section 8.4, "Authentication, Authorization and Access
Control".

See Also: Oracle Fusion Middleware Security Guide

Authentication, Authorization and Access Control

Managing Application Security 8-3

■ CGI/FastCGI scripts, simple scripts or programs that Oracle HTTP Server invokes
directly.

■ Content generated by modules within Oracle HTTP Server. Modules such as
mod_perl, mod_dms generate responses that are returned to the client.

■ Oracle Application Server components that exist behind Oracle HTTP Server,
including servlets and JSPs running with Oracle WebLogic Server that are accessed
through mod_wl_ohs. Oracle HTTP Server forms the first line of authentication
and authorization for these components, although further authentication may
occur at the component level.

8.4 Authentication, Authorization and Access Control
Oracle HTTP Server provides user authentication and authorization at two stages:

■ Access Control (stage one): This is based on the details of the incoming HTTP
request and its headers, such as IP addresses or host names.

■ User Authentication and Authorization (stage two): This is based on different
criteria depending on the HTTP server configuration. The server can be configured
to authenticate users with user name and password pairs that are checked against
a list of known users and passwords. You can also configure the server to use
single sign-on authentication for Web applications or X.509 client certificates over
SSL.

8.4.1 Access Control
Access control refers to any means of controlling access to any resource.

8.4.2 User Authentication and Authorization
Authentication is any process by which you verify that someone is who they claim
they are. Authorization is any process by which someone is allowed to be where they
want to go, or to have information that they want to have.

8.4.2.1 Using Apache HTTP Server Modules to Authenticate Users
Access control refers to any means of controlling access to any resource.

8.4.2.2 Using mod_osso to Authenticate Users
 mod_osso enables single-sign on for Oracle HTTP Server. mod_osso examines
incoming requests and determines whether the resource requested is protected, and if
so, retrieves the Oracle HTTP Server cookie for the user.

Through mod_osso, Oracle HTTP Server becomes a single sign-on (SSO) partner
application enabled to use SSO to authenticate users and obtain their identity using
Oracle Single Sign-On, and to make user identities available to Web applications as an
Apache header variable.

Using mod_osso, Web applications can register URLs that require SSO authentication.
When Oracle HTTP Server receives URL requests, mod_osso detects which requests

See Also: Refer to the Apache HTTP Server documentation for more
information on how to configure access control to resources.

See Also: Refer to the Apache HTTP Server documentation for more
information on how to authenticate users.

Authentication, Authorization and Access Control

8-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

require SSO authentication and redirects them to the SSO server. Once SSO server
authenticates the users, it passes the user's authenticated identity back to mod_osso in
a secure token, or cookie. mod_osso retrieves the user's identity from the cookie and
propagates the user's identity information to applications running in Oracle HTTP
Server instance. mod_osso can propagate the user's identity information to
applications running in CGI, and those running in Oracle WebLogic Server, and it can
also authenticate users for access to static files.

8.4.3 Support for FMW Audit Framework
Oracle HTTP Server supports a directive called OraAuditEnable. The purpose of
this directive is to enable auditing of authentication and authorization using the FMW
Common Audit Framework. This directive takes on two values, ON and OFF. When
the value is set to ON, all the audit events reported by Oracle HTTP Server are
recorded into an audit framework specific file. By default, the value is ON. If
OraAuditEnable is set to OFF or is not present, then audit is disabled. The default
httpd.conf file that is provided with Oracle HTTP Server sets it to ON. For more
information, see

http://download.oracle.com/docs/cd/E14571_
01/core.1111/e10043/audintro.htm#JISEC2372

See Also: Oracle Fusion Middleware Security Guide

9

Configuring mod_oradav 9-1

9Configuring mod_oradav

This chapter describes distributed authoring and versioning (DAV) concepts, and
explains how to configure OraDAV using the mod_oradav module. The mod_oradav
module enables you to use OraDAV to access content in files from a Web browser or a
WebDAV client.

This chapter includes the following sections:

■ Section 9.1, "Introduction to the mod_oradav Module"

■ Section 9.2, "Configuring mod_oradav"

■ Section 9.3, "WebDAV Security Considerations"

■ Section 9.4, "OraDAV Performance Considerations"

■ Section 9.5, "Globalization Support Considerations with OraDAV"

■ Section 9.6, "Location of DAV Files"

9.1 Introduction to the mod_oradav Module
The mod_oradav module is an extended implementation of the Apache
implementation of the WebDAV specification. The mod_oradav module is an OCI
application written in C and is integrated with Oracle HTTP Server. The mod_oradav
module enables WebDAV clients to connect to files, read and write content, and query
and lock documents.

This section includes the following subsections:

■ Section 9.1.1, "WebDAV"

■ Section 9.1.2, "OraDAV"

■ Section 9.1.3, "OraDAV Architecture"

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier Without Oracle WebLogic
Server” in the Oracle Fusion Middleware Installation Guide for Oracle Web
Tier.

Introduction to the mod_oradav Module

9-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Section 9.1.4, "OraDAV Usage Model"

■ Section 9.1.5, "PROPFIND Security"

9.1.1 WebDAV
WebDAV is a protocol extension to HTTP that supports distributed authoring and
versioning. With WebDAV, the Internet becomes a transparent read and write medium,
where content can be checked out, edited, and checked in to a URL address.

WebDAV enables collaboration among authors building Web sites. WebDAV also
serves as universal read and write access protocol to arbitrary hierarchies of content,
not necessarily Web sites. With WebDAV, you can save content to a URL provided by
an Internet Service Provider (ISP), and then access and optionally change that content
from various devices.

9.1.2 OraDAV
OraDAV refers to the set of capabilities available through the mod_oradav module to
Oracle Fusion Middleware users. Some OraDAV-specific terms include:

■ OraDAV: Code in the Oracle HTTP Server that supports file-based DAV access.
Apache DAV directives can be used with OraDAV.

■ OraDAV API: Stored procedure calls that are used by the OraDAV driver to
provide support for the following WebDAV functions over the Internet:

■ Reading and writing documents

■ Locking and unlocking documents

■ Managing, such as creating, populating, and deleting, hierarchies of
information

■ Retrieving properties associated with documents

■ Associating properties with specific documents

■ OraDAV driver: Stored procedure implementation of the OraDAV driver API that
runs in Oracle and manages a repository.

The primary users of OraDAV are Oracle HTTP Server Web administrators and
content editors. End users interact only indirectly with OraDAV through Web

Note: When a WebDAV client first connects to Oracle HTTP
Server, it must use the full ServerName string in the URL for the
connection. Do not use an abbreviated form of the server name.

For example, if the server name value is server1.example.com,
then connect to Oracle HTTP Server using the string
http://server1.example.com:7778, not an abbreviated form
such as http://server1:7778.

If you use an abbreviated form, the connection might succeed, but
COPY and MOVE operations will fail to run, and generate BAD_
GATEWAY errors.

See Also: For more information about DAV directives, see the article
written by Greg Stein (gstein@lyra.org) available at

http://www.webdav.org/mod_dav/install.html#apache

Introduction to the mod_oradav Module

Configuring mod_oradav 9-3

browsers or WebDAV client tools. OraDAV interaction requires the following
proficiency:

■ The Web administrator needs to know how to start and stop Oracle HTTP Server,
and how to configure Oracle HTTP Server to direct URL traffic to an OraDAV
driver.

■ The content editors need to know how to connect to the server, and upload and
retrieve files.

9.1.3 OraDAV Architecture
The mod_oradav module, which includes OraDAV, is part of the Oracle HTTP Server
architecture. A simple form of the architecture is illustrated in Figure 9–1.

Figure 9–1 OraDAV Architecture

Figure 9–1 shows a WebDAV client, such as Web folders, passing HTTP requests to
Oracle HTTP Server. If the request is for content stored in the file system, the mod_
oradav module handles the access. If the request is for content stored in Oracle Portal,
the OraDAV API handles the access.

The OraDAV API capabilities are equivalent to using the mod_oradav module running
with a file system. The following HTTP methods are supported by the OraDAV API:

■ COPY: Copies files within a Web site folder.

■ DELETE: Deletes files within a Web site folder.

■ MOVE: Moves files within a Web site folder.

■ MKCOL: Makes a new directory.

■ GET: Retrieves a file from the server. This method is not supported by Oracle Web
Cache.

■ PUT: Puts a file back to the server. This method is not supported by Oracle Web
Cache.

Introduction to the mod_oradav Module

9-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ HEAD: Gets the header content of a file without retrieving the file.

■ LOCK: Locks a file when the file is checked out. This method is not supported by
Oracle Web Cache.

■ UNLOCK: Unlocks a file after check in. This method is not supported by Oracle
Web Cache.

■ PROPFIND: Gets properties defined for a file.

■ PROPPATCH: Sets the properties for a file.

The OraDAV API supports shared and exclusive locking, retrieving basic DAV
properties, and defining and retrieving server-defined properties or client-defined
properties. Set-based operations such as COPY, MOVE, DELETE can be done
completely by a single call to an OraDAV driver.

9.1.4 OraDAV Usage Model
OraDAV usage can involve any combination of the following activities:

■ Browsing: Read-only activity which uses WebDAV to access content on the file
server. Its usage model is typical of a read-only Web site.

The DAVOraReadOnly directive specifies whether or not WebDAV should be used
in a read-only mode by WebDAV clients. A value of Off specifies that WebDAV
clients function normally. A value of On prevents WebDAV clients from
performing write operations while using WebDAV. It does allow read-only activity
by Web browsers and WebDAV clients. The default is Off.

■ Restructuring: Deleting, moving, and copying content. Restructuring is usually
done infrequently by a restricted set of individuals who have write access to the
WebDAV content.

Restructuring has the same limitations and complications that one encounters
when restructuring a file directory. In some cases, this directory hierarchy is
owned and managed by one user. If the directory is shared, then the client doing
restructuring is given sole access to the hierarchy through WebDAV exclusive
locks.

■ Editing: Modifying one or a small subset of resources in a hierarchy. Properly
designed WebDAV clients use shared or exclusive locks on such resources to
coordinate these activities.

■ Property Management: Associating properties and attributes (for example, author)
with documents for ease of lookup and for categorization. WebDAV clients assign
properties to documents using the PROPPATCH directive and retrieve properties
using the PROPFIND directive.

9.1.5 PROPFIND Security
The PROPFIND method can be used to list all the files in the DAV-enabled directory.
For security reasons, it is probably best to protect the list of files from general read
access.

An alternative is to limit the PROPFIND to a group of people, a set of domains, or a set
of hosts, while the methods that modify content are limited to just a few authors. This
scenario allows, for example, your company's employees to browse the files on the
server, yet only a few people can change them. Anonymous (non-authenticated)
visitors cannot browse or modify.

Configuring mod_oradav

Configuring mod_oradav 9-5

Finally, you can simply omit PROPFIND from the limits if your Web server is intended
as a general, read-only repository of files. This allows anybody to arbitrarily browse
the directories and to fetch the files.

9.2 Configuring mod_oradav
Use the Advanced Server Configuration page of Fusion Middleware Control to
configure the mod_oradav module.

This section includes the following subsections:

■ Section 9.2.1, "OraDAV Configuration Parameters"

■ Section 9.2.2, "Using Fusion Middleware Control to Configure mod_oradav"

9.2.1 OraDAV Configuration Parameters
When Oracle Fusion Middleware is installed, all required OraDAV parameters are set
to their default values. If the default values do not meet your needs, you can modify
the values for required parameters and specify values for optional parameters. The
OraDAV parameters in the mod_oradav.conf file start with "DAV" and
"DAVParam".

The DAV parameter indicates that a URL location is DAV-enabled. The DAV keyword is
followed by one of the following values:

■ On – indicates that mod_oradav is to use the local file system for content.

■ Oracle – indicates that mod_oradav is to use OraDAV for all content.

The DAVParam parameters are used to specify name-value pairs. The required pairs
are those that enable Oracle HTTP Server to connect to an Oracle database. These
include the names OraService, OraUser, and OraPassword or OraAltPassword.

Each OraDAV driver can use the DAVParam mechanism to create its own
driver-specific settings. All DAVParam name-value pairs are passed to the OraDAV
driver. In addition to the OraDAV parameters, you should consider whether to specify
additional DAV parameters, such as DavMinTimeout.

Example 9–1 shows the syntax to configure access to files on the local system. It
specifies that the directory dav_portal under the Web server documents directory is to
be DAV-enabled, along with all directories under dav_portal in the hierarchy. There
must not be any symlinks defined on the dav_portal directory or any of its
subdirectories.

Example 9–1 Configuring File System Access

<Location /dav_portal>
 DAV On
</Location>

The following recommendations should be considered when mapping containers
under the root location:

Note: To configure the parameters use Fusion Middleware Control.
Do not edit the mod_oradav.conf file directly. Doing so may harm
your installation.

Configuring mod_oradav

9-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Do not map the root itself. For example, do not specify <Location / > in the
mod_oradav.conf file.

■ Do not map a container as a subelement in the hierarchy to another container. For
example, do not specify the containers <Location /project1> and
<Location /project1/project2>. It is acceptable to specify <Location
/project1> and <Location /project2>.

■ Do not create any symbolic links to the container or any location under the
container in the hierarchy.

The OraDAV parameters are described in the following sections:

■ ORAAllowIndexDetails

■ ORAAltPassword

■ ORACacheDirectory

■ ORACacheMaxResourceSize

■ ORACachePrunePercent

■ ORACacheTotalSize

■ ORAConnect

■ ORAConnectSN

■ ORAContainerName

■ ORAException

■ ORAGetSource

■ ORALockExpirationPad

■ ORAPackageName

■ ORAPassword

■ ORARootPrefix

■ ORAService

■ ORATraceEvents

■ ORATraceLevel

■ ORAUser

9.2.1.1 ORAAllowIndexDetails
In an Oracle HTTP Server environment that is not OraDAV-enabled, mod_dav does
not respond to HTTP GET requests. Instead, normal Oracle HTTP Server mechanisms
are used to respond to GET requests.

The ORAAllowIndexDetails parameter controls how OraDAV responds when a
GET request is performed on a DAV collection and no index.html file is found in the
directory. In a typical Oracle HTTP Server environment, a separate module takes
control, automatically generating and returning to the client HTML that represents an
"index" of the resources (files) in that collection.

An OraDAV-enabled Oracle HTTP Server performs similar actions when responding
to a GET request on a collection. A description column containing links to more
detailed information about each resource is included in the generated index when
ORAAllowIndexDetails is set to TRUE.

Configuring mod_oradav

Configuring mod_oradav 9-7

The default is FALSE, in which case no description column appears in the generated
index. If ?details is used in a URL, it is ignored and the URL contents are returned.

9.2.1.2 ORAAltPassword
Specifies the password for the user specified by the ORAUser parameter. The
OraAltPassword uses a base-64 encoded character string. This parameter provides
an alternative if you do not want the password to appear in unencoded plain text with
the ORAUser parameter.

If the ORAPassword parameter is not specified, ORAAltPassword parameter is used
for the password.

9.2.1.3 ORACacheDirectory
Specifies the directory to use for disk caching operations. If you do not use this
parameter, disk caching is not performed for OraDAV operations.

The specified directory must exist and be readable by Oracle HTTP Server, but cannot
be visible to normal GET requests. If the directory is visible to normal GET requests,
security measures could be bypassed by users accessing the cache directory.

The directory should be located on a file system that supports a last accessed time. On
Microsoft Windows systems, this means using NTFS, not FAT, formatted partitions.

Do not use the cache directory for anything other than caching. Any files in the cache
directory are subject to deletion.

If you use the ORACacheDirectory parameter, you must also use the
ORACacheTotalSize parameter.

9.2.1.4 ORACacheMaxResourceSize
Specifies the maximum cacheable resource size for disk caching operations. You can
specify KB (for kilobytes) or MB (for megabytes) after an integer. If you do not specify
a unit after the integer, then the default unit is bytes.

This parameter enables Web administrators to prevent large media files from
dominating the cache. The performance benefit of caching a large file is greater than
from caching a small file.

Example 9–2 shows an example for ORACacheMaxResourceSize.

Example 9–2 ORACacheMaxResourceSize Parameter

DAVParam ORACacheMaxResourceSize 1024KB

The setting in Example 9–2 prevents OraDAV from caching any resource larger than 1
MB.

9.2.1.5 ORACachePrunePercent
Specifies the percentage of disk cache usage to be freed when the cache is full. When
the disk cache is full, the oldest files in the cache are deleted until the cache disk usage
is reduced by the ORACachePrunePercent value. The default value is 25.

See Also: Section 9.4.1, "Using Disk Caching with OraDAV"

See Also: Section 9.4.1, "Using Disk Caching with OraDAV"

See Also: Section 9.4.1, "Using Disk Caching with OraDAV"

Configuring mod_oradav

9-8 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

9.2.1.6 ORACacheTotalSize
Specifies the size of the cache to use for disk caching operations. You can specify MB
(for megabytes) or GB (for gigabytes) after an integer. If you do not specify a unit after
the integer, the default unit is bytes.

Example 9–3 ORACacheTotalSize Parameter

DAVParam ORACacheTotalSize 1GB

If you use the ORACacheDirectory parameter, you must also use the
ORACacheTotalSize parameter.

The ORACacheTotalSize value should be large enough to hold either a significant
amount of your Web site, or all of the most frequently accessed files plus 25 percent
more space. If the value is too small, overall performance degrades because of the
extra work of writing BLOB data to the file system and deleting files to make room for
newer cache requests.

The actual space utilized by the disk cache might sometimes exceed the
ORACacheTotalSize value, possibly by as much as the ORACacheMaxResourceSize
value. You should also be aware of file system block size issues that could cause the
cache to use more disk space than the ORACacheTotalSize value.

9.2.1.7 ORAConnect
Specifies the Oracle database to connect to. The ORAConnect parameter lets you
connect to a database that is not included in the tnsnames.ora file. The value must
use the following format:

database_host:database_port:database_sid

Example 9–4 shows an example:

Example 9–4 ORAConnect Parameter

DAVParam ORAConnect my-pc.example.com:1521:mysid

To connect to an Oracle database, you must specify one, and no more than one, of the
parameters ORAConnect, ORAConnectSN, or ORAService. To connect to a database
included in the tnsnames.ora file, use the ORAService parameter.

9.2.1.8 ORAConnectSN
Specifies the Oracle database to connect to. The ORAConnectSN parameter lets you
connect to a database that is not included in the tnsnames.ora file. The value for this
parameter is a character string.The value must use the following format:

database-host:database-port:database-service-name

To connect to an Oracle database, you must specify one, and no more than one, of the
parameters ORAConnect, or ORAService. To connect to a database included in the
tnsnames.ora file, use the ORAService parameter.

9.2.1.9 ORAContainerName
Within the database user (schema) specified by the ORAUser parameter, there must
exist a container, which is a set of PL/SQ packages and database tables that allow the
storage of files in the database within a hierarchical structure. The

See Also: Section 9.4.1, "Using Disk Caching with OraDAV"

Configuring mod_oradav

Configuring mod_oradav 9-9

ORAContainerName parameter specifies the name of the container to use for the
location. The value for this parameter is a character string, up to 20 characters. For
example, <Location/project1>.

9.2.1.10 ORAException
Writes PL/SQL stack dumps in the Oracle HTTP Server log file, error_log, in the event
of an exception in the PL/SQL package. The values are RAISE or NORAISE. Default
value is NORAISE.

9.2.1.11 ORAGetSource
Applies only to file system access. It specifies one or more file extensions to identify
types of files that are not to be run, but rather opened for editing. Include periods (.)
with the file extension and use a comma to separate file extensions. The value for this
parameter is enclosed within double quotation marks. For example:

".htm, .html, .jsp1, .jsp2"

The ORAGetSource parameter lets you open files for editing that are usually run as a
result of a GET operation.

9.2.1.12 ORALockExpirationPad
Intended to be used in high-latency network environments to adjust the refresh lock
behavior in Microsoft Office. Microsoft Office attempts to refresh locks on DAV
resources just before the lock is set to expire. If there is network congestion between
the Microsoft Office client and the DAV server, the refresh request might arrive after
the lock has expired. The value is the number of seconds. The default value is 0.

OraDAV periodically looks for locks on resources that have expired and deletes those
locks. The ORALockExpirationPad parameter can be used to provide some
additional time between when a lock expires and when that lock is deleted. For
example, if ORALockExpirationPad is set to 120, OraDAV does not actually delete
locks for at least two minutes after the expiration time.

9.2.1.13 ORAPackageName
Identifies the OraDAV driver implementation that is to be called when issuing
OraDAV commands. The default is the OraDAV driver, which is the ORDSYS.DAV_
API_DRIVER package.

9.2.1.14 ORAPassword
Specifies the password for the user specified by the ORAUser parameter.

If you do not want to specify the password as an unencoded text string with the
ORAPassword parameter, you can specify the password as a base-64 encoded string
with the ORAAltPassword parameter.

Note: Although this parameter is useful for debugging purposes, it
can use a large amount of disk space and can slow the performance of
your system.

Note: The .jsp and .sqljsp files are by default opened for
editing; you do not need to specify them in the ORAGetSource
parameter.

Configuring mod_oradav

9-10 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

9.2.1.15 ORARootPrefix
Specifies the directory within the database repository to use as the root. If this
parameter is specified, WebDAV clients see this directory as the root and are not be
able to see the repository directories that lead up to it. Do not include a trailing slash
(/) in the value.

In Example 9–5, assume that the database repository contains the directory
/first/second/third/fourth.

Example 9–5 ORARootPrefix Parameter

DAVParam ORARootPrefix /first/second

WebDAV clients can view the /third directory and can navigate to the /third/fourth
directory, but will not be able to view or navigate to the /first or /first/second
directories.

9.2.1.16 ORAService
Specifies the Oracle database to connect to. The specified value must match a SID
value in the tnsnames.ora file.

To connect to an Oracle database, you must specify one, and no more than one, of the
parameters ORAConnect, ORAConnectSN, or ORAService. To connect to a database
that is not included in the tnsnames.ora file, use the ORAConnect or ORAConnectSN
parameter.

9.2.1.17 ORATraceEvents
Specifies the types of events to be recorded in the Oracle HTTP Server error log for
debugging. The value for this parameter is one of the following:

■ getsource: traces GET activity against the file system

■ hreftoutf8: traces the HREF conversion from the native character set to UTF-8

■ request: traces DAV requests, responses, and status values handled by mod_
oradav

9.2.1.18 ORATraceLevel
Specifies the level of debugging (trace statements) that will be entered in the Oracle
HTTP Server error log. The lowest level is 0 (the default), which performs no tracing.
The highest level is 4, which performs maximum tracing. The value for this parameter
is an integer between 0 and 4.

The higher the number for the debugging level, the more information is written to the
error log file.

Note: Although this parameter is useful for debugging purposes, it
can use a large amount of disk space and can slow the performance of
your system.

Note: Although setting this parameter to a high number is useful for
debugging purposes, it can use a large amount of disk space and can
slow the performance of your system.

Configuring mod_oradav

Configuring mod_oradav 9-11

9.2.1.19 ORAUser
Specifies the database user (schema) to use when connecting to the service specified by
the ORAConnect, ORAConnectSN, or ORAService parameter.

This user must have the following privileges:

■ CONNECT

■ RESOURCE

■ CREATE TABLESPACE

■ DROP TABLESPACE

■ CREATE ANY TRIGGER

9.2.2 Using Fusion Middleware Control to Configure mod_oradav
On the Advanced Server Configuration page of Fusion Middleware Control, you can
enter parameters within a <Location> container directive in the mod_oradav.conf
file. The <Location> container directive specifies the DAV-enabled URL. The DAV
keyword is followed by the parameter On, which instructs mod_dav to use the local
file system for content.

The following example specifies that the directory myfiles under the Web server
documents directory (htdocs by default) to be DAV-enabled, along with all
directories under myfiles in the hierarchy. There must not be any symbolic links
defined on the myfiles directory or any of its subdirectories.

<Location /myfiles>
 DAV On
</Location>

9.2.3 Editing mod_oradev.conf
Create the mod_oradev.conf file at the following location:

<oracle_instance>/config/OHS/ohs1/moduleconf/mod_oradav.conf

Insert the below mentioned entries in the mod_oradev file.

LoadModule oradav_module "${ORACLE_HOME}/ohs/modules/mod_oradav.so"

#<Location /dav/lsn>
#DAV oracle
#DAVDepthInfinity Off
#DavParam ORACONTAINERNAME LSNDAV
#DavParam ORALockExpirationPad 0
#DavParam ORAException RAISE
#DavParam ORATraceLevel 0
#DavParam OraTraceEvents "request"
#DavParam ORASERVICE psgprod
#DavParam ORACONNECTSN db-host
#DAVParam ORAUser lsn
#DAVParam ORAPassword psg_lsn
#DAVParam ORAPackageName ordsys.dav_api_driver
#DAVParam OraWebCacheReadOnly On
#</Location>

WebDAV Security Considerations

9-12 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Save the file, and restart Oracle HTTP Server as described in Section 4.1.4, "Restarting
Oracle HTTP Server." The option for editing mod_oradev.conf file is displayed on
the Advanced Server Configuration page of Fusion Middleware Control.

9.3 WebDAV Security Considerations
Because WebDAV enables read/write capabilities, Internet users can write to your
Web site or to an Oracle repository. A major concern is preventing users from placing
an inappropriate file, such as a Trojan horse, that can run on the Web server system. If
the WebDAV configuration and authorization is not set up properly, an inappropriate
file from the file system can be run. However, mod_oradav is disabled by default in
new installations of Oracle HTTP Server so that your system is secure out-of-the-box.

Be sure to apply the standard Basic or Digest authentication and authorization
mechanisms supported by Oracle HTTP Server. Generally, you do this for the default
location, such as dav_public, in the supplied mod_oradav.conf file. This restricts
who can use your system for remote storage, preventing unauthorized users from
filling up your disks.

In addition, you should always apply Oracle HTTP Server authentication and
authorization to authors of the Web site. You should also provide both an execution
context and an editing context, so that Web authors, after being properly authenticated
and authorized, can edit a JSP file or other executable file and then see how it runs. To
do this, create an alias for the directory associated with the execution context, and then
DAV-enable the aliased location.

9.4 OraDAV Performance Considerations
This section provides information that can help you optimize the performance of
various operations. It contains the following subsections:

■ Section 9.4.1, "Using Disk Caching with OraDAV"

■ Section 9.4.2, "Bypassing Oracle Web Cache for WebDAV Activities"

9.4.1 Using Disk Caching with OraDAV
The performance benefit from disk caching is greatest with medium to large-size files
(approximately 50 KB and larger). With smaller files, the performance benefit is less,
and with very small files the performance can be worse with disk caching than
without disk caching. For example, if the file myfile.dat is requested and if the file size
is only 24 bytes, the time required for copying the file from the server to the local
system is very small compared to the time required for accessing the server to check if
the file has changed. If disk caching is not used, there is no check of the server to see if
the file has changed, and the file is copied in all cases.

You can set the following OraDAV parameters to control disk caching for OraDAV
operations:

■ ORACacheDirectory

■ ORACacheTotalSize

■ ORACacheMaxResourceSize

■ ORACachePrunePercent

See Also: Apache Module mod_dav Security Issues in the
Apache HTTP Server documentation.

Globalization Support Considerations with OraDAV

Configuring mod_oradav 9-13

If you specify ORACacheDirectory, disk caching for OraDAV operations is enabled.
You must also specify a value for ORACacheTotalSize, and you can specify values
for ORACacheMaxResourceSize and ORACachePrunePercent parameters. If you
do not specify ORACacheDirectory, disk caching for OraDAV operations is not
enabled, and other disk cache-related parameters are not relevant.

9.4.2 Bypassing Oracle Web Cache for WebDAV Activities
Oracle Web Cache enhances performance for most Web activity that involves client
read-only operations of data on the Web server system. Oracle Web Cache does not
cache OraDAV operations for GET, PUT, LOCK and UNLOCK, which are designed for
read/write capability. For better performance, WebDAV clients can connect directly to
Oracle HTTP Server.

To bypass Oracle Web Cache for WebDAV clients, you can send requests directly to the
Oracle HTTP Server listen port, which is set in the httpd.conf file. By doing this,
WebDAV clients will connect directly to Oracle HTTP Server, resulting in better
performance than if Oracle Web Cache is used.

9.5 Globalization Support Considerations with OraDAV
The DAVOraUseNLSLang directive provides globalization support for access to the
local file systems. This directive specifies whether or not the file names in the file
system need to go through conversion using the NLS_LANG setting. A value of Off
specifies that no conversion is needed. A value of On specifies that the character set for
the file system provides for conversion of all possible characters in client requests. The
default is Off.

For access to the local file system, the character set for the file system must be the same
as, or compatible with, the character set for URLs embedded in client requests. The
character set for the file system must provide for conversion of all possible characters
in client requests. The NLS_LANG parameter value must represent the character set of
both the client and the OraDAV server. You must also specify a value of On for the
parameter DAVOraUseNLSLang.

For example, assume that you are using Web folders on a system where the files have
ShiftJIS characters and that the file system under dav_public is represented by the
operating system in the JAPANESE_JAPAN.JA16SJIS character sets shown in
Figure 9–2.

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Web Cache

Location of DAV Files

9-14 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Figure 9–2 OraDAV Access to File System with ShiftJIS Characters

You must do the following:

1. Set the NLS_LANG value to JAPANESE_JAPAN.JA16SJIS.

2. Include the following in the mod_oradav.conf file:

<Location /dav_public>
 DAV On
 DAVOraUseNLSLang On
</Location>

9.6 Location of DAV Files
When the ORACLE_HOME/ohs/cas/templates/default/moduleconf/mod_
oradav.conf file is configured to use file storage, it places the files by default in:

ORACLE_INSTANCE/config/OHS/component_name/moduleconf

Oracle Fusion Middleware Backup and Recovery Service backs up this default
location. If you change the location where the files are stored, and you want Oracle
Fusion Middleware Backup and Recovery Service to backup the files, then you must
register the new location.

Note: If you use Microsoft Internet Explorer with OraDAV and a
multibyte character set, you must disable the Internet option
Always send URLs as UTF-8, located under the Advanced tab in
the Internet Options section. By default, this option is enabled. The
requirement to disable this option applies to both database access
and file system access.

Part III
Part III Appendixes and Glossary

This part contains the following appendixes and a glossary:

■ Appendix A, "Using Oracle Plug-Ins for Third-Party Web Servers"

■ Appendix B, "Frequently Asked Questions"

■ Appendix C, "Troubleshooting Oracle HTTP Server"

■ "Glossary"

A

Using Oracle Plug-Ins for Third-Party Web Servers A-1

AUsing Oracle Plug-Ins for Third-Party Web
Servers

This appendix explains how the Oracle Proxy Plug-In and Oracle SSO Plug-In enable
you to use Oracle Fusion Middleware components in conjunction with a third-party
HTTP listener.

This appendix includes the following sections:

■ Section A.1, "Using Oracle Proxy Plug-In"

■ Section A.2, "Using Oracle SSO Plug-In"

Documentation from the Apache Software Foundation is referenced when applicable.

A.1 Using Oracle Proxy Plug-In
Oracle Proxy Plug-In enables you to proxy/send requests from a third-party HTTP
listener to Oracle Fusion Middleware. The Oracle Proxy Plug-In is provided and
certified to work with Sun Java System Web Server Enterprise Edition on UNIX and
Microsoft Windows systems, or Microsoft Internet Information Server (IIS) v6.0 and
7.0.

For other third-party HTTP listeners, you can use the respective listener's native proxy
functionality.

This section includes the following topics:

Note: Unless otherwise mentioned, the information in this document
is applicable when Oracle HTTP Server is installed with Oracle
WebLogic Server and Oracle Fusion Middleware Control. It is
assumed that readers are familiar with the key concepts of Oracle
Fusion Middleware, as described in the Oracle Fusion Middleware
Concepts Guide and the Oracle Fusion Middleware Administrator's Guide.

For information about installing Oracle HTTP Server in standalone
mode, see “Installing Oracle Web Tier in Stand-Alone Mode” in the
Oracle Fusion Middleware Installation Guide for Oracle Web Tier.

See Also:
http://www.oracle.com/technology/software/products/i
as/files/fusion_certification.html for complete
certification information.

Using Oracle Proxy Plug-In

A-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Section A.1.1, "Overview of Oracle Proxy Plug-In"

■ Section A.1.2, "Installing Oracle Proxy Plug-In"

■ Section A.1.3, "Configuring Oracle Proxy Plug-In"

■ Section A.1.4, "Configuring Sun Java System Web Server to Use Oracle Proxy
Plug-In"

■ Section A.1.5, "Configuring Microsoft IIS 6.0 Listener to Use Oracle Proxy Plug-In"

■ Section A.1.6, "Configuring Microsoft IIS 7.0 Listener to Use Oracle Proxy Plug-In"

■ Section A.1.7, "Oracle Proxy Plug-In Usage Information"

■ Section A.1.8, "Troubleshooting Oracle Proxy Plug-In"

A.1.1 Overview of Oracle Proxy Plug-In
Oracle Proxy Plug-In is a reverse HTTP proxy. The plug-in forwards incoming HTTP
requests from a Sun Java System or Microsoft IIS server HTTP listener to an Oracle
Fusion Middleware instance, as shown in Figure A–1.

Figure A–1 Oracle Proxy Plug-In

The proxy logic is provided as a plug-in, shared library that is loaded by the
third-party HTTP listeners. The plug-in uses APIs provided with the third-party
listeners to directly handle HTTP requests, in much the same way that modules are
used with Oracle HTTP Server.

Oracle HTTP Server can mimic the address and port used by the third-party listener.
When sending a request to Oracle HTTP Server, the proxy can be configured to send a
different Host: HTTP header than the actual host name and port that the request is
being sent to, so that other applications are safeguarded from the reverse proxy.

Oracle Proxy Plug-In does not perform load balancing; it only forwards requests to a
single back-end Oracle HTTP Server for a given URL. Also, Oracle Proxy Plug-In does
not support SSL between a third-party listener and Oracle HTTP Server.

A.1.2 Installing Oracle Proxy Plug-In
The Oracle Proxy Plug-Ins for Sun Java System Web Server and Microsoft IIS are
available in the Oracle Fusion Middleware Web Tier and Utilities installer (11.1.1.2 and
later full installers, not on patch-set installers). Place the appropriate definition file and
shared library in directories that are accessible to the third-party listener.

Table A–1 contains information about the shared libraries for the OracleAS Proxy
Plug-In.

Using Oracle Proxy Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-3

A.1.3 Configuring Oracle Proxy Plug-In
There is one definition file for the Oracle Proxy Plug-In that controls the proxy
functionality. The presence of the file in the Web server file system makes the proxy
functionality active. You also need to modify the configuration file(s) specific to the
third-party listener, such as the Sun Java System Web Server or Microsoft IIS
configuration file, to enable the plug-in on these listeners. The definition file for the
Oracle Proxy Plug-In can have any name.

A.1.3.1 Proxy Server Definition File
The proxy server definition file must reside in a directory that is readable by the
third-party listener. For example, you could create a directory called proxy in a
directory on your system, and place the proxy server definition file, the proxy shared
library file, and proxy log files in it.

The proxy server definition file contains the following parameters:

■ Name-value pairs that describe the servers that will be used to proxy requests to
Oracle Fusion Middleware

■ Options for communicating with the servers

■ A set of rules that map URLs to the servers

You can create this file with the text editor of your choice.

A.1.3.2 Proxy Definition File Parameters
The following proxy parameters are used in the proxy definition file:

■ oproxy.serverlist

■ oproxy.servername.hostname

■ oproxy.servername.port

■ oproxy.servername.alias

■ oproxy.servername.resolveall

■ oproxy.servername.urlrule

A.1.3.2.1 oproxy.serverlist Lists all the server names recognizable to the plug-in.

Table A–1 Oracle Proxy Plug-In Shared Libraries

Listener Location and Description

Sun Java System Web
Server

Location on CD-ROM:

■ UNIX: /Disk1/plugins/sjsws/oracle_proxy.so

■ Microsoft Windows: \Disk1\plugins\sjsws\oracle_proxy_
nes.dll

To install the plug-in for the listener, copy the .dll file to a directory
that the listener has read and execute privileges for UNIX, or a
directory that the listener can access for Microsoft Windows.

Microsoft IIS Location on CD-ROM: \Disk1\plugins\iis\oracle_proxy.dll

To install the plug-in for the listener, copy oracle_proxy.dll to a
directory the listener can access.

Using Oracle Proxy Plug-In

A-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

A.1.3.2.2 oproxy.servername.hostname Defines the host name to use when
communicating with a specific server.

A.1.3.2.3 oproxy.servername.port Defines the port to use when communicating with a
specific server.

A.1.3.2.4 oproxy.servername.alias Supports the alias feature of the proxy by defining the
host name and port that clients use to access the third-party HTTP listener. If defined,
then this value will be passed as the Host: HTTP header. If not defined, then the host
name and port of the system actually being communicated with will be sent.

A.1.3.2.5 oproxy.servername.resolveall Directs the proxy plug-in to resolve the host
name to the backend server on every request. This enables DNS based failover or
routing between the proxy plug-in and backend servers. The use of this parameter
requires going to the DNS server for every incoming request, and should only be used
if the mapping from host name to IP address will change dynamically.

Category Value

Allowable Values Comma-separated list of server names, one for each Oracle HTTP Server to
which requests will be sent. All servers in the server list must also be
defined in the file.

Note: Oracle Proxy Plug-In does not do load balancing; therefore, if you
define two servers with same urlrule, it will forward requests to only
one of those servers.

Default Value None. At least one server name must be provided for the proxy to be
functional.

Example oproxy.serverlist=ohs1,ohs2

Category Value

Allowable Values A valid host name

Default Value None

Example oproxy.ohs1.hostname=host1.acme.com

Category Value

Allowable Values A port value

Default Value 80

Example oproxy.ohs1.port=7777

Category Value

Allowable Values host:port

Example oproxy.ohs1.alias=www.example.com:80

Category Value

Allowable Values true | false

Default Value false

Example oproxy.ohs1.resolveall=true

Using Oracle Proxy Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-5

A.1.3.2.6 oproxy.servername.urlrule Describes a URL or set of URLs that are redirected to
this server. A given server can have any number of urlrule properties assigned to it.

The following types of rules can be used:

■ Exact matches: One URL is mapped to a server. For example:

oproxy.ohs1.urlrule=/foo/bar/foo.html

maps only the URL /foo/bar/foo.html. This would be the proxy for the server
with the name ohs1.

■ Context matches: A set of URLs with a common prefix or context are mapped to a
server. For example:

oproxy.ohs1.urlrule=/foo/*

maps URLs beginning with /foo to the server with the name ohs1.

For context matches, you can use the stripcontext option with the urlrule
parameter to send only the portion of the URL following the wildcard to the
server. The default for the stripcontext option is false, so you do not need to
include it unless you are setting it to true. It is shown for completeness of the
example.

■ Suffix matches: All files with a common file extension are mapped to a server.

For example:

oproxy.ohs1.urlrule=/*.jsp

maps all the URLs that end in .jsp to the server ohs1. This can be combined with
the context rule to have /foo/bar/*.jsp so that only URLs that start with
/foo/bar and end in .jsp would be proxied.

Category Value

Example oproxy.ohs1.urlrule=/foo/*

Parameters URL Request Result

oproxy.ohs1.urlrule=/foo/*
oproxy.ohs1.stripcontext=true

http://hostname/foo/hea
der1.gif

ORACLE_
INSTANCE/config/OHS/compo
nent_
name/htdocs/header1.gif

oproxy.ohs1.urlrule=/foo/*
oproxy.ohs1.stripcontext=false

http://hostname/foo/hea
der1.gif

ORACLE_
INSTANCE/config/OHS/compo
nent_
name/htdocs/foo/header1.g
if

Using Oracle Proxy Plug-In

A-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

A.1.3.3 Defining Oracle Proxy Plug-In Behavior
In the proxy server definition file, you define which servers and URLs to use as proxy
to the plug-in.

1. In the first line of the file, specify the list of all the servers that can be used by the
plug-ins, such as the following:

oproxy.serverlist=ohs1,ohs2

2. View the Oracle HTTP Server ports using Fusion Middleware Control or the
opmnctl command-line utility. The port number will be used in the next step.

3. Set the relevant properties (host name, port, and server alias) for each server. For
example:

oproxy.ohs1.hostname=host1.acme.com.us.example.com
oproxy.ohs1.port=7777
oproxy.ohs1.alias=www.example.com

The host name must be provided. If an alias value is not given, the combination of
the host name and port is used. The alias enables the backend server to receive
requests that have an HTTP Host header that looks exactly like the one the client
delivers to the third-party listener.

4. Set the urlrule parameter to specify redirection between servers. For example,
this rule maps all incoming requests to proxy to the Web server on the server
ohs1:

oproxy.ohs1.urlrule=/*

Example A–1 is a sample proxy server definition file.

Example A–1 Sample Proxy Server Definition File

This file defines proxy server behavior.
#
Server names that the proxy plug-in will recognize.
oproxy.serverlist=ohs1

Hostname to use when communicating with a specific server.
oproxy.ohs1.hostname=host1.acme.com

Port to use when communicating with a specific server.
oproxy.ohs1.port=7777

URL(s) that will be redirected to this server.

Note: For oproxy.servername.urlrule, when multiple rules
apply to the same URL, the following precedence applies:

1. Exact matches

2. Longest context match plus suffix match

3. Longest context match

Some examples of the precedence are as follows:

■ /foo/bar/index.html would take precedence over /foo/bar/*

■ /foo/bar/*.jsp would take precedence over /foo/bar/*

■ /foo/bar/* would take precedence over /foo/*

Using Oracle Proxy Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-7

oproxy.ohs1.urlrule=/*

A.1.4 Configuring Sun Java System Web Server to Use Oracle Proxy Plug-In
This section provides proxy plug-in configuration information for Sun Java System
Web Server on UNIX and Microsoft Windows platforms.

The default configuration files for Sun Java System Web Server route all incoming
requests for the URI /servlet to the Sun Java System servlet handler. The Oracle Proxy
Plug-In does not override the Sun Java System server configuration settings. You must
ensure that the URL mappings to the Oracle Proxy Plug-In are distinct from the URL
mappings to the Sun Java System servlet engine.

If you are configuring the Sun Java System Web Server on Microsoft Windows, use
forward slashes (/) in all paths.

1. Open the magnus.conf file located in the /config directory for the Sun Java
System Web Server version 6.1 or version 7.0.

2. Add the following load-modules line, depending on the operating system:

■ For UNIX:

Init fn="load-modules" shlib="/path/oracle_proxy.so" funcs=op_init,op_
objecttype,op_service

■ For Microsoft Windows:

Init fn="load-modules" shlib="/path/oracle_proxy_nes.dll" funcs=op_init,op_
objecttype,op_service

In the preceding lines, path is the path to the shared library for the plug-in. This
tells the listener where the proxy shared library is, and which functions are
exposed by this library.

3. Add the following configuration parameters:

Init fn="op_init" server_defs="/path/to/proxy/definition/file" log_
file="/path/to/proxy/log/file" log_level=loglevel

For example:

Init fn="op_init" server_defs="/oracle/proxyplugin/proxydefs" log_
file="/oracle/proxyplugin/oproxy.log" log_level=error

The proxy server definition file contains all the configuration information for the
servers that can communicate with the proxy plug-in. The definition file can have
any name.

A log file and log level can be specified to log messages from the plug-in. This is
optional.

4. Add the following line to the <Object name=default> section of the
obj.conf file, before all other lines beginning with the word ObjectType:

ObjectType fn=op_objecttype

5. Add the following line before all other lines that begin with the word Service:

See Also: See Section A.1.3.1, "Proxy Server Definition File" for a
complete description and example

Using Oracle Proxy Plug-In

A-8 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Service type="oracle/proxy" fn="op_service"

6. Save the file.

7. Start the listener using the Sun Java System Web Server GUI or the shell script.

A.1.5 Configuring Microsoft IIS 6.0 Listener to Use Oracle Proxy Plug-In
This section provides proxy plug-in configuration instructions for the Microsoft IIS 6.0
listener on Microsoft Windows platforms. The procedure involves creating Microsoft
Windows registry entries and using the Microsoft IIS 6.0 management console to add
directories and filters. You must restart the listener after configuring the plug-in.

To configure the plug-in, perform the following steps:

1. Use the Microsoft Windows Registry Editor to create new registry entries.

a. From the Start menu, Select Run, and the type regedit in the dialog box, and
click OK. The Registry Editor window opens

b. Expand the HKEY_LOCAL_MACHINE folder by clicking the plus sign (+)
preceding its name In the Registry Editor window.

c. Expand the SOFTWARE folder by clicking the plus sign (+) preceding its
name, and then Click the ORACLE folder.

d. From the Edit menu, select New > Key. A new folder is added under the
ORACLE folder with the name New Key #1.

e. Enter IIS Proxy Adapter for the key name.

f. From the Edit menu, select New > String Value. A new value is added in the
right window pane with the name New Value #1. Enter server_defs for the
value name.

g. From the Edit menu, select Modify. The Edit String dialog box appears.

h. In the Value data field, enter the full path of your proxy server definition file,
and then click OK.

i. Optionally, you can specify log_file and log_level using the procedure
specified in steps d.) – h.).

– Add a string value with the name log_file and the desired location of
the log file, such as d:\proxy\proxy.log.

– Add a string value with the name log_level and a value for the desired
log level. Valid values are debug, inform, error, and emerg.

j. Close the Registry Editor window by selecting Exit from the File menu.

2. Use the Microsoft IIS management console to add a new virtual directory to your
Microsoft IIS Web site with the same physical path as that of the oracle_
proxy.dll.

a. Open the IIS Manager by clicking Start -> Programs -> Administrative Tools
-> Internet Information Services (IIS) Manager.

b. Expand the server folder by clicking the plus sign (+) preceding the server
name.

c. Right-click the Default Sites folder, and then select the New -> Virtual
Directory option from the menu.

Using Oracle Proxy Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-9

d. In the Virtual Directory Creation Wizard window, enter oproxy for the Alias.
Then, enter the path or browse to the directory containing the oracle_
proxy.dll file (e.g., c:\OProxy) and select the Execute (such as ISAPI
applications or CGI) check box.

e. Click Finish to close the Virtual Directory Creation Wizard.

3. Use the Microsoft IIS management console to add oracle_proxy.dll as a filter
in your Microsoft IIS Web site. The name of the filter should be oproxy and its
executable must point to the directory containing the oracle_proxy.dll file.

a. Right-click the Default Sites folder, and then select the Properties option from
the menu.

b. In the Default Web Site Properties window, select the ISAPI Filters tab.

c. Click Add to add a new filter.

The Add/Edit Filter Properties window is displayed.

d. Enter oproxy for the filter name. Then, enter the path or browse to the
directory containing the oracle_proxy.dll file (e.g.,
c:\OProxy\oracle_proxy.dll).

e. Click OK to close the Add/Edit Filter Properties window.

f. Click OK to close the Default Web Site Properties window.

4. Under the server name folder, click the Web Service Extensions folder to open the
Web Service Extensions page. Select All Unknown ISAPI Extensions in the right
panel and click Allow. The status of this item should change from Prohibited to
Allowed.

5. Select the Application Pools folder, and then right-click the Properties option
from the menu. On the Application Pools Properties window, select the Identity
tab and change the Predefined identity to Local System. A confirmation dialog
box displays asking Are you sure you want to do this? Select Yes.

6. Stop and restart the Microsoft IIS 6.0 server.

Using Oracle Proxy Plug-In

A-10 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

7. Make sure the newly created oproxy filter is marked with a green upward arrow.

A.1.6 Configuring Microsoft IIS 7.0 Listener to Use Oracle Proxy Plug-In
This section provides proxy plug-in configuration instructions for the Microsoft IIS 7.0
Listener on Microsoft Windows platforms. The procedure involves creating Microsoft
Windows registry entries and using the Microsoft IIS 7.0 management console to add
directories and filters. You must restart the listener after configuring the plug-in.

To configure the plug-in, perform the following steps:

1. Complete step 1 in Section A.1.5, "Configuring Microsoft IIS 6.0 Listener to Use
Oracle Proxy Plug-In" to use the Registry Editor to create new registry entries for
the plug-in.

2. Use the Microsoft IIS management console to add the proxy plug-in filter:

a. Open the IIS Manager by clicking Start -> Programs -> Administrative Tools
-> Internet Information Services (IIS) Manager.

b. Expand the server folder by clicking the plus sign (+) preceding the server
name (for example, DSCDAA10-VM6).

c. Expand the Sites folder by clicking the plus sign (+) preceding its name.

d. Click the Default Web Site icon to open the Default Web Site Home page.

e. Double-click the ISAPI Filters icon to open the ISAPI Filters page, and then
complete the following tasks:

– In the Actions pane, click Add to open the Add ISAPI Filter dialog box.

– In the Filter Name field, enter a user-friendly name for the ISAPI filter.

– In the Executable field, enter the file system path for the location of ISAPI
filter file, or click the ellipsis button (...) to navigate to the folder that
contains the ISAPI filter file.

Note: To restart Microsoft IIS, you must stop all the Microsoft IIS
services through the control panel or restart the computer. This is the
only way to ensure that the .dll is reloaded. Restarting Microsoft IIS
6.0 through the management console is not sufficient.

Using Oracle Proxy Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-11

– Click OK.

3. Follow these steps to configure the newly added ISAPI filter:

a. Click the Default Web Site icon in the navigation panel to view all the settings
related to the application that can be modified.

b. Click the Handler Mappings option to set the mappings for the handler for a
particular MIME type.

c. Click the StaticFile option in the Handler Mappings page, and in the Edit
Module Mapping dialog box, change the Request path to *.*.

d. In the Actions area of the Handler Mappings page, click the Add Script Map
option.

e. In the Edit Script Map dialog box: enter * for the Request path. Use the
Executable field to browse to the oracle_proxy.dll file and add it as the
executable. Name it as proxy.

f. Click the Request Restrictions button to open the Request Restrictions dialog
box. Clear the Invoke handler only if the request is mapped to check box and
then click OK to add this Handler mapping.

g. Click Yes on the Add Script Map dialog box.

When you click the Root node of the IIS manager tree, and then click on the ISAPI
and CGI Restrictions, you should see an entry for the oracle_proxy.dll, as
shown here:

[No Description] Allowed C:\proxy\oracle_proxy.dll

4. Restart the Microsoft IIS server by opening the Services Control Panel, and then
stopping and restarting the World Wide Web Publishing Service.

Note: To restart Microsoft IIS, you must stop all the Microsoft IIS
services through the control panel or restart the computer. This is the
only way to ensure that the .dll is reloaded. Restarting Microsoft IIS
7.0 through the management console is not sufficient.

Using Oracle Proxy Plug-In

A-12 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

A.1.7 Oracle Proxy Plug-In Usage Information
This section highlights development and usage practices to consider when developing
an application that runs behind the Oracle Proxy Plug-In. Some of the practices also
apply when enabling an application to run behind Oracle Web Cache.

■ Check for configurations based on Oracle HTTP Server being the entry point into
the network.

This is usually only relevant if an application has a module that plugs directly into
Oracle HTTP Server. Specifically, look for dependencies on obtaining information
about the client based on the connection made to Oracle HTTP Server, such as
using the SSL certificate for authentication. Currently, Secure Socket Layer (SSL) is
not supported, so even if the client uses SSL to connect to the third-party listener,
an unencrypted HTTP message will be sent from the third-party listener to Oracle
HTTP Server. This means that client certificates will not be available to
components that reside behind the plug-in. The environment variable REMOTE_
ADDR has been specifically preserved when Oracle Proxy Plug-In and Oracle Web
Cache are used, but other client information may, in practice, represent the system
on which the proxy resides rather than the actual client host. These behaviors must
be discovered and eliminated in cases where Oracle HTTP Server is not the
external listener for Oracle Fusion Middleware.

■ Avoid embedding host names into HTML unless the link is external to the Web
site.

This includes static HTML pages, dynamic pages generated by servlets, JSPs,
PL/SQL, and so on. Examine all code that obtains the server name of Oracle HTTP
Server to ensure that the code is not embedding the server name into pages that
are sent back to the client. To test for this behavior, use a Web crawler application
(also known as a spider) to traverse all links in a Web site. Open source tools with
this functionality are available.

■ Avoid returning host and port information in applications (such as applets or
javascript) downloaded to the client.

If you have an application that uses browser-based code, ensure that the code does
not contain the host name and port of Oracle HTTP Server that actually delivers
the content. Instead, it must have the actual client-accessible address used by the
third-party listener.

■ Ensure that all URLs within an application can be easily mapped to a set of rules
that the proxy can use.

To successfully proxy all requests for an application, the Oracle Proxy Plug-In
must have a complete description of the URL space for that application. Each
Oracle Fusion Middleware application must describe the set of rules necessary to
configure the plug-in for that application. This set of rules must include all URLs
that the application could generate. If an application generates a URL that is not
described by the proxy urlrule parameters, then the request will be served by
the third-party HTTP listener, and a "document not found" error may occur, or a
different document may be delivered to the client.

Developers of applications that use common top-level directories, such as a
reliance on mapping /images, should be prepared to the following:

■ Change these common links to something that will not conflict with
applications that might already be deployed on the third-party listener.

■ Instruct the user to copy the necessary content to the third-party listener
directory structure. For performance reasons, it is a good idea to have the

Using Oracle Proxy Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-13

third-party listener handle static .gif and .jpg files, but it requires that the
files be copied to the third-party listener.

A.1.8 Troubleshooting Oracle Proxy Plug-In
This section describes common problems and solutions related to Oracle Proxy
Plug-In.

Listener Fails to Start
■ Check for problems in the proxy server definition file. Each server in the server list

line must be defined later in the file, and you must define at least one server. If a
server name is listed but not defined, then the listener may not start. Ensure that
there are no typographical errors or missing quotes in the proxy server definition
file.

■ For Sun Java System Web Server 6.1 or 6.0: Ensure that Init lines are added to the
magnus.conf file, and the ObjectType and Service lines are added to the
obj.conf file.

Listener Returns Incorrect URLs
■ Verify that changes to the proxy server definition file were saved and the listener

was restarted.

■ Ensure that there are no typographical errors in the proxy server definition file.

■ Ensure that the urlrule parameter is set up correctly, and determine whether the
stripcontext option should be set to true.

■ Verify that the serverlist line in the proxy server definition file specifies the
back-end server you are trying to reach.

■ Verify that the back-end server is running, and that the file you are attempting to
retrieve exists and is accessible on the back-end server.

■ Verify that the host, port and urlrule parameters in the proxy server definition file
target the correct area on the back-end server.

■ Ensure that client requests are being sent to the correct port on the third-party
listener machine.

■ Check the listener log files, the proxy log, and the back-end server logs to verify
that requests are getting through. The proxy log may need to be set to debug mode
You may need to restart the listener.

Changes Made to Proxy Server Definition File are Not Reflected
■ Verify that changes to the proxy server definition file were saved and the listener

was restarted.

■ For Microsoft IIS, verify that WWW Publishing Service was stopped and started
from the Control Panel. This may take a few minutes.

Microsoft IIS Listener Displays Incomplete Pages or Garbled Characters
Do not display Microsoft IIS pages with a Sun Java System browser.

Parsing Error Occurs with Sun Java System Web Server 6.1 or 7.0
If you try to change the ports or turn on security (for SSL), the server may return the
error message "Unable to parse magnus.conf."

Using Oracle Proxy Plug-In

A-14 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Remove any comments and added lines preceding and following the Init lines in the
magnus.conf file.

File Not Found Error Occurs
If you are using a context-based urlrule parameter to retrieve a file that is known to
exist, and the listener returns "Not Found," you probably need to set
stripcontext=true.

Sun Java System Web Server Returns Server Error with /servlet Request
The default Sun Java System Web Server configuration maps any URL requests to
/servlet to its own servlet handler. You must edit the proxy server definition file, or
change the Sun Java System Web Server configuration to correct this.

Partial URL Requests Return Unexpected Results
The Microsoft IIS and Sun Java System servers auto-complete URLs differently than
others. Requests to http://example, http://example/, and
http://example/index.html do not necessarily return the same results on
different platforms. Use the oproxy.servername.urlrule parameter to work
around this problem.

Server Returns Page with Broken Image Links
If you use an exact urlrule parameter in the proxy server definition file, such as
urlrule=/*.html, the server retrieves the specified page. All other links are
forbidden to the user, including inline images on the page. If you use an exact
urlrule with stripcontext=true, a server error is returned.

Unexpected Pages are Displayed
Clear the memory cache in your client browser. Earlier versions of Sun Java System
and Microsoft Internet Explorer use cached pages even when set to retrieve the page
every time and when no memory is allocated for caching. You may need to restart the
browser to get this behavior to work. If you see a page you are not expecting, try
refreshing the browser or reloading the page.

REMOTE_ADDR Contains Unexpected IP Address
The REMOTE_ADDR field usually contains the IP address of the client system. In
some URL request cases, if there is a proxy server in the environment, the field may
contain the IP address of the proxy server.

Redirects Go To Network Entry Point
If the back-end server returns a redirect to the entry point of the network, the host and
port information should be updated. Choose one of the following options, based on
your installation. The first option is the preferred method.

■ Use the Advanced Server Configuration page of Fusion Middleware Control to set
the following directives in the httpd.conf file:

UseCanonicalName On
ServerName name of listener host
Port port of listener host

See Also: Section A.1.3.2.6, "oproxy.servername.urlrule"

See Also: Section A.1.3.2.6, "oproxy.servername.urlrule"

Using Oracle SSO Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-15

■ Use the Advanced Server Configuration page of Fusion Middleware Control to set
the following directives in the httpd.conf file:

UseCanonicalName port
Port port of listener host

Edit the proxy plug-in server definition file to use the following:

oproxy.serverName.alias=name of listener host:port of listener host

A.2 Using Oracle SSO Plug-In
Oracle SSO Plug-In is designed to protect native third-party listener applications using
the Oracle single sign-on (SSO) infrastructure. The Oracle SSO Plug-In is provided and
certified to work with Microsoft Internet Information Server (IIS) v6.0 and v7.0 on
Microsoft Windows systems.

This chapter includes the following topics:

■ Section A.2.1, "Overview of Oracle SSO Plug-In."

■ Section A.2.2, "Installing Oracle SSO Plug-In."

■ Section A.2.3, "Registering with the Oracle Single Sign-On Server."

■ Section A.2.4, "Configuring the Oracle SSO Plug-In."

■ Section A.2.4.2, "Rules to Protect Resources."

■ Section A.2.5, "Configuring Microsoft IIS 6.0 Listener to Use Oracle Single
Sign-On."

■ Section A.2.6, "Configuring Microsoft IIS 7.0 Listener to Use Oracle Single
Sign-On."

■ Section A.2.7, "Troubleshooting Oracle SSO Plug-In."

A.2.1 Overview of Oracle SSO Plug-In
Oracle SSO Plug-In is the Oracle single sign-on (SSO) solution for Microsoft IIS. The
plug-in is designed to protect native third-party listener applications using the SSO
infrastructure. With the help of the Oracle SSO Plug-In, users can be authenticated to
different third-party listener applications using only one SSO password. You can
integrate these SSO-protected third-party listener applications with SSO-enabled
Oracle HTTP Server applications or legacy Oracle SSO enabled applications as long as
they are all protected on the same SSO server.

Oracle SSO Plug-In is a simple version of mod_osso, and only implements some of its
basic functionality. Features such as dynamic authentication, global logout, idle
timeout, global timeout, and basic authentication for legacy application are not
implemented in the current Oracle SSO Plug-In release.

Figure A–2 illustrates the process when a user requests a URL protected by the Oracle
SSO Plug-In.

See Also:
http://www.oracle.com/technology/software/products/i
as/files/fusion_certification.html for complete
certification information

Using Oracle SSO Plug-In

A-16 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Figure A–2 Oracle SSO Plug-In

1. The user requests a URL through a Web browser.

2. The Web server looks for an Oracle SSO Plug-In cookie for the user. If the cookie
exists, the Web server extracts the user's information and uses it to log the user in
to the requested application.

3. If the cookie does not exist, the Oracle SSO Plug-In redirects the user to the single
sign-on server.

4. The single sign-on server looks for its own cookie in the browser. If a cookie exists,
then the single sign-on server authenticates using the cookie. If authentication is
successful, then the single sign-on server creates a cookie in the browser as a
reminder that the user has been authenticated. If it finds none, it tries to
authenticate the user with a user name and password.

5. The single sign-on server returns the user's encrypted information to the Oracle
SSO Plug-In.

6. Oracle SSO Plug-In creates its own cookie for the user in the browser and redirects
the user to the requested URL.

During the same session, if the user again seeks access to the same or to a different
application, the user is not prompted for a user name and password. The
application uses an HTTP header to obtain this information from the Oracle SSO
Plug-In session cookie.

A.2.2 Installing Oracle SSO Plug-In
The Oracle SSO Plug-In for Microsoft IIS is available in the Oracle Fusion Middleware
Web Tier and Utilities installer (11.1.1.2 and later full installers, not on patch-set
installers).

Location: \Disk1\plugins\iis\oracle_osso.dll

To install the plug-in for the listener, copy oracle_osso.dll to a directory the
listener can access. For security reasons, ensure that the plug-in library is given
minimum privileges.

See Also: Oracle Fusion Middleware Security Guide

Using Oracle SSO Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-17

Install Oracle SSO Plug-In on a system that has an Oracle Fusion Middleware
installation. This installation is required only for the network and security dependent
libraries and the single sign-on registration tool. It is not required to be running.

A.2.3 Registering with the Oracle Single Sign-On Server
The single sign-on registration process enables the single sign-on server and the
listener to share information such as server location, protocol version, and common
encryption key, before they communicate. After the registration process, this
information is stored on the single sign-on server side as a single sign-on partner
application entry. On the listener side, a single sign-on file called osso_conf is
created. The osso_conf file is obfuscated for security purposes. Copy the file to an
appropriate location so the listener can access it.

A.2.4 Configuring the Oracle SSO Plug-In
To configure Oracle SSO Plug-In, you must create a configuration file such as the
osso_plugin.conf file. This file must reside in a directory that is readable by the
third-party listener. You define all the plug-in functionality within the file. It can also
be referred as the osso property file. The file contains the following:

■ Plug-in directives such as LoginServerFile and IpCheck

■ A set of rules that match resources to be protected.

A.2.4.1 Oracle SSO Plug-In Directives
Table A–2 lists the configuration directives for the Oracle SSO Plug-In.

A.2.4.2 Rules to Protect Resources
To ensure resource protection via the Oracle SSO Plug-In, a set of rules must be
defined. The rules are defined according to the following format:

See Also: Oracle Fusion Middleware Security Guide for details on
how to register with Oracle Single Sign-On.

Table A–2 Oracle SSO Plug-In Configuration Directives

Directive Function

LoginServerFile Specifies the location of the single sign-on server configuration file such
as the osso.conf file that is attained from the SSO registration process.

This is a global parameter and should not be used on a per-resource
basis. You must provide one and only one single sign-on server
configuration file.

■ Value: The full path of your Single Sign-On Server configuration file

■ Default: None

■ Example: LoginServerFile=c:\OSSO\config\osso.conf

IpCheck Specifies whether the Oracle SSO plug-in should check the IP address of
each request when it examines the cookie. Setting it to true prevents
cookies from being accessed by another person.

■ Values: true | false

■ Default: false

■ Example: IpCheck=true

Note: Set it to false if you have a proxy server or firewall between your
Sun Java System server and your client browsers.

Using Oracle SSO Plug-In

A-18 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

<OSSO url-matching-rule>
 SSO_configuration_directives
</OSSO>

Use the following rules to define the url-matching-rule:

When multiple rules apply to the same URL, the following precedence applies:

1. Exact matches

2. Longest context match plus suffix match

3. Longest context match

Some examples of the precedence are:

■ /foo/bar/index.html would take precedence over /foo/bar/*

■ /foo/bar/*.jsp would take precedence over /foo/bar/*

■ /foo/bar/* would take precedence over /foo/*

Example A–2 shows a simple file with the commands for resource protection. In the
example, the IpCheck directive is set to false for the /private/hello.html file,
but it is set to true for /private2/*.jsp. This setting ensures the cookies used
with requests to the /private2/*.jsp files are not accessed by another user.

Example A–2 Simple Single Sign-on Configuration File, osso_plugin.conf

LoginServerFile=c:\OSSO\conf\osso.conf
<OSSO /private/hello.html>
 IpCheck=false
</OSSO>
<OSSO /private1/*>
</OSSO>
<OSSO /private2/*.jsp>
 IpCheck=true
</OSSO>

A.2.5 Configuring Microsoft IIS 6.0 Listener to Use Oracle Single Sign-On
This section provides instructions on configuring the Microsoft IIS 6.0 Listener to use
Oracle SSO Plug-In. The plug-in consists of a single .dll file, oracle_osso.dll. To
install the plug-in, copy the .dll to the host on which Microsoft IIS 6.0 resides and
perform the following steps:

1. Use the Microsoft Windows Registry Editor to create new registry entries.

a. From the Start menu, Select Run, and the type regedit in the dialog box, and
click OK. The Registry Editor window opens

Rule Name Description

Exact Match This option identifies an exact file as a protected resource, for example:
/examples/hello.html

Context Match This option identifies a directory as a protected resource, for example:
/examples/*

Extension Match This option identifies files with a certain extension in a particular
directory as a protected resource, for example: /examples/*.jsp

Using Oracle SSO Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-19

b. Expand the HKEY_LOCAL_MACHINE folder by clicking the plus sign (+)
preceding its name In the Registry Editor window.

c. Expand the SOFTWARE folder by clicking the plus sign (+) preceding its
name, and then Click the ORACLE folder.

d. From the Edit menu, select New > Key. A new folder is added under the
ORACLE folder with the name New Key #1.

e. Enter IIS OSSO Adapter for the key name.

f. From the Edit menu, select New > String Value. A new value is added in the
right window pane with the name New Value #1. Enter cfg_file for the
value name.

g. From the Edit menu, select Modify. The Edit String dialog box appears.

h. In the Value data field, enter the full path of the OSSO plug-in configuration
file you created (e.g., c:\osso\osso_plugin.conf).

i. Optionally, you can specify log_file and log_level using the procedure
specified in steps d.) through h.).

– Add a string value with the name log_file and the desired location of
the log file, such as c:\osss\osso_plugin.log.

– Add a string value with the name log_level and a value for the desired
log level. Valid values are debug, inform, error, and emerg.

j. Close the Registry Editor window by selecting Exit from the File menu.

2. Use the Microsoft IIS management console to add a new virtual directory to your
Microsoft IIS Web site with the same physical path as that of the osso.dll.

a. Open the IIS Manager by clicking Start -> Programs -> Administrative Tools
-> Internet Information Services (IIS) Manager.

b. Expand the server folder by clicking the plus sign (+) preceding the server
name.

c. Right-click the Default Sites folder, and then select the New -> Virtual
Directory option from the menu.

d. In the Virtual Directory Creation Wizard window, enter osso for the Alias.
Then, enter the path or browse to the directory containing the oracle_
osso.dll file (e.g., c:\osso) and select the Execute (such as ISAPI
applications or CGI) check box.

e. Click Finish to close the Virtual Directory Creation Wizard.

3. Use the Microsoft IIS management console to add oracle_osso.dll as a filter in
your Microsoft IIS Web site. The name of the filter should be osso and its
executable must point to the directory containing the oracle_osso.dll file.

a. Right-click the Default Sites folder, and then select the Properties option from
the menu.

b. In the Default Web Site Properties window, select the ISAPI Filters tab.

c. Click Add to add a new filter.

Note: This is the plug-in configuration file and not the encrypted
osso.conf file generated by the SSO registration process.

Using Oracle SSO Plug-In

A-20 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

The Add/Edit Filter Properties window is displayed.

d. In the Filter Name field, enter osso for the filter name.

e. In the Executable field, enter the path for the location containing the oracle_
osso.dll (e.g., c:\osso\oracle_osso.dll), or click the ellipsis button
(...) to navigate to the folder that contains the oracle_osso.dll file.

f. Click OK to close the Add/Edit Filter Properties window.

g. Click OK to close the Default Web Site Properties window.

4. Configure security settings for Oracle Home directory. Make sure you login to
machine as an administrator user.

a. In Windows Explorer, right-click the ORACLE_HOME\bin folder, select
Properties from the menu, and then click the Security tab.

b. Add the IIS_WPG, NETWORK and NETWORK SERVICE groups with Read
and Execute permissions.

c. Click OK.

5. Stop and restart the Microsoft IIS 6.0 Server.

Using Oracle SSO Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-21

A.2.6 Configuring Microsoft IIS 7.0 Listener to Use Oracle Single Sign-On
This section provides instructions on configuring the Microsoft IIS 7.0 Listener to use
Oracle SSO Plug-In. The plug-in consists of a single .dll file, oracle_osso.dll. To
install the plug-in, copy the .dll to the host on which Microsoft IIS 7.0 resides and
perform the following steps:

1. Complete step 1 in Section A.2.5, "Configuring Microsoft IIS 6.0 Listener to Use
Oracle Single Sign-On" to use the Microsoft Windows Registry Editor to create
new registry entries for the plug-in.

2. Use the Microsoft IIS management console to add the oracle_osso.dll as a
filter in your Microsoft IIS Web site:

a. Open the IIS Manager by clicking Start -> Programs -> Administrative Tools
-> Internet Information Services (IIS) Manager.

b. Expand the server folder by clicking the plus sign (+) preceding the server
name (e.g, DSCDAA10-VM6).

c. Expand the Sites folder by clicking the plus sign (+) preceding its name.

d. Click the Default Web Site icon to open the Default Web Site Home page.

e. Double-click the ISAPI Filters icon to open the ISAPI Filters page, and then
complete the following tasks:

– In the Actions pane, click Add to open the Add ISAPI Filter dialog box.

– In the Filter Name field, enter osso.

– In the Executable field, enter the file system path for the location
containing the oracle_osso.dll (e.g., c:\osso\oracle_osso.dll),
or click the ellipsis button (...) to navigate to the folder that contains the
oracle_osso.dll file.

Notes:

■ To restart Microsoft IIS 6.0, you must stop all the Microsoft IIS 6.0
services through the control panel or restart the computer. This is
the only way to ensure that the .dll file is reloaded. Restarting
Microsoft IIS 6.0 through the management console is not
sufficient.

■ If you want multiple Oracle installations on the same home, then
the ORACLE_HOME\bin PATH entry for the installation that you
plan to use in conjunction with the Oracle SSO Plug-In must
appear first in your PATH.

■ Make sure the newly added ISAPI filter is marked with a green
upward arrow.

Using Oracle SSO Plug-In

A-22 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

– Click OK.

3. Configure security settings for Oracle Home directory. Make sure you log in to
machine as an administrator user.

a. In Windows Explorer, right-click the ORACLE_HOME\bin folder, select
Properties from the menu, and then click the Security tab.

b. Add the IIS_WPG, NETWORK and NETWORK SERVICE groups with Read
and Execute permissions.

c. Click OK.

4. Restart the Microsoft IIS server by opening the Services Control Panel, and then
stopping and restarting the World Wide Web Publishing Service.

A.2.7 Troubleshooting Oracle SSO Plug-In
This section describes common problems and solutions.

Oracle Dependency Libraries Not Found
You may not have included ORACLE_HOME in your path.

Notes:

■ To restart Microsoft IIS 7.0, you must stop all the Microsoft IIS 7.0
services through the Services Control Panel or restart the
computer. This is the only way to ensure that the .dll file is
reloaded. Restarting Microsoft IIS 7.0 through the management
console is not sufficient.

■ If you want multiple Oracle installations on the same home, then
the ORACLE_HOME\bin PATH entry for the installation that you
plan to use in conjunction with the Oracle SSO Plug-In must
appear first in your PATH.

Using Oracle SSO Plug-In

Using Oracle Plug-Ins for Third-Party Web Servers A-23

Solution
Check to see that you have ORACLE_HOME/lib included in your library path variable
on UNIX. On Microsoft Windows, ensure that you have ORACLE_HOME\bin in your
path.

If you continue to receive this message in your osso.log file, then verify that all
configuration files are properly configured, as described in Section A.2.4, "Configuring
the Oracle SSO Plug-In".

Microsoft IIS Oracle SSO Plug-In Does not Work with HTML Authentication
The Oracle SSO Plug-In is designed not to work with other authentication modules.
Authentication is either a native listener authentication module or a third-party
module.

Using Oracle SSO Plug-In

A-24 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

B

Frequently Asked Questions B-1

BFrequently Asked Questions

This appendix provides answers to frequently asked questions about Oracle HTTP
Server. It includes the following topics:

■ Section B.1, "How Do I Create Application-Specific Error Pages?"

■ Section B.2, "What Type of Virtual Hosts Are Supported for HTTP and HTTPS?"

■ Section B.3, "Can I Use Oracle HTTP Server As Cache?"

■ Section B.4, "Can I Use Different Language and Character Set Versions of
Document?"

■ Section B.5, "Can I Apply Apache Security Patches to Oracle HTTP Server?"

■ Section B.6, "Can I Upgrade the Apache Version of Oracle HTTP Server?"

■ Section B.7, "Can I Compress Output From Oracle HTTP Server?"

■ Section B.8, "How Do I Create a Namespace That Works Through Firewalls and
Clusters?"

■ Section B.9, "How do I Protect the Web Site from Hackers?"

■ Section B.10, "Do I Need to Re-register Partner Applications with the SSO Server If
I Disable or Enable SSL?"

■ Section B.11, "Why REDIRECT_ERROR_NOTES is not set for file-not-found
errors?"

■ Section B.12, "How can I hide information about the Web Server Vendor and
Version"

Documentation from the Apache Software Foundation is referenced when applicable.

B.1 How Do I Create Application-Specific Error Pages?
Oracle HTTP Server has a default content handler for dealing with errors. You can use
the ErrorDocument directive to override the defaults.

Note: Readers using this guide in PDF or hard copy formats will
be unable to access third-party documentation, which Oracle
provides in HTML format only. To access the third-party
documentation referenced in this guide, use the HTML version of
this guide and click the hyperlinks.

See Also: ErrorDocument directive in the Apache HTTP Server
documentation

What Type of Virtual Hosts Are Supported for HTTP and HTTPS?

B-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

B.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
For HTTP, Oracle HTTP Server supports both name-based and IP-based virtual hosts.
Name-based virtual hosts are virtual hosts that share a common listening address (IP
plus port combination), but route requests based on a match between the Host header
sent by the client and the ServerName directive set within the VirtualHost.
IP-based virtual hosts are virtual hosts that have distinct listening addresses. IP-based
virtual hosts route requests based on the address they were received on.

For HTTPS, only IP-based virtual hosts are possible with Oracle HTTP Server. This is
because for name-based virtual hosts, the request must be read and inspected to
determine which virtual host is used to process the request. If HTTPS is used, an SSL
handshake must be performed before the request can be read. In order to perform the
SSL handshake, a server certificate must be provided. In order to have a meaningful
server certificate, the host name in the certificate must match the host name the client
requested, which implies a unique server certificate per virtual host. However, because
the server cannot know which virtual host to route the request to until it has read the
request, and it can't properly read the request unless it knows which server certificate
to provide, there is no way to make name-based virtual hosting work with HTTPS.

B.3 Can I Use Oracle HTTP Server As Cache?
Oracle recommends using Oracle Web Cache instead. Oracle Web Cache is a
content-aware server accelerator and secure reverse proxy server that improves the
performance, scalability, and availability of Web sites. For more details, refer to the
Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache.

B.4 Can I Use Different Language and Character Set Versions of
Document?

Yes, you can use multiviews, a general name given to the Apache server's ability to
provide language and character-specific document variants in response to a request.

B.5 Can I Apply Apache Security Patches to Oracle HTTP Server?
No, you cannot apply the Apache HTTP Server security patches to Oracle HTTP
Server for the following reasons:

■ Oracle tests and appropriately modifies security patches before releasing them to
Oracle HTTP Server users.

■ In many cases, the Apache HTTP Server alerts, such as OpenSSL alerts, may not be
applicable because Oracle has removed those components from the stack.

The latest security related fixes to Oracle HTTP Server are performed through the
Oracle Critical Patch Update (CPU). For more details, refer to Oracle's Critical Patch
Updates and Security Alerts Web page.

See Also: Multiviews in the Apache HTTP Server documentation

Note: After applying a CPU, the Apache HTTP Server-based version
may stay the same, but the vulnerability will be fixed. There are
third-party security detection tools that can check the version, but do
not check the vulnerability itself.

How Do I Create a Namespace That Works Through Firewalls and Clusters?

Frequently Asked Questions B-3

B.6 Can I Upgrade the Apache Version of Oracle HTTP Server?
No, you cannot upgrade only the Apache HTTP Server version inside Oracle HTTP
Server. Oracle provides a newer version of Apache HTTP Server that Oracle HTTP
Server is based on, which is part of either a patch update or the next major or minor
release of Oracle Fusion Middleware.

B.7 Can I Compress Output From Oracle HTTP Server?
In general, Oracle recommends using Oracle Web Cache for this purpose. Oracle Web
Cache provides efficient delivery of contents by using on-the-fly compression,
dynamically learning which MIME types are compressible, and throttling responses to
slower network clients. Another compression solution is mod_deflate, which is
included with Oracle HTTP Server. For more information pertaining to mod_deflate
module, see http://httpd.apache.org/docs/2.2/mod/mod_deflate.html

For additional information, refer to the Oracle Fusion Middleware Administrator's Guide
for Oracle Web Cache.

B.8 How Do I Create a Namespace That Works Through Firewalls and
Clusters?

The general idea is that all servers in a distributed Web site should use a single URL
namespace. Every server serves some part of that namespace, and is able to redirect or
proxy requests for URLs that it does not serve to a server that is closer to that URL. For
example, your namespaces could be the following:

/app1/login.html
/app1/catalog.html
/app1/dologin.jsp
/app2/orderForm.html
/apps/placeOrder.jsp

You could initially map these name spaces to two Web servers by putting app1 on
server1 and app2 on server2. The configuration for server1 might look like the
following:

Redirect permanent /app2 http://server2/app2
Alias /app1 /myApps/application1
<Directory /myApps/application1>
 ...
</Directory>

The configuration for Server2 is complementary.

If you decide to partition the namespace by content type (HTML on server1, and JSP
on server2), then you can change server configuration and move files around, but you
do not have to make changes to the application itself. The resulting configuration of
server1 might look like the following:

RedirectMatch permanent (.*) \.jsp$ http://server2/$1.jsp
AliasMatch ^/app(.*) \.html$ /myPages/application$1.html
<DirectoryMatch "^/myPages/application\d">
 ...
</DirectoryMatch>

How do I Protect the Web Site from Hackers?

B-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

The amount of actual redirection can be minimized by configuring a hardware load
balancer like F5 system BIG-IP to send requests to server1 or server2 based on the
URL.

B.9 How do I Protect the Web Site from Hackers?
There are many attacks by hackers, and new attacks are invented everyday. The
following are some general guidelines for securing your site. You can never be
completely secure, but you can avoid being an easy target.

■ Use a commercial firewall, such as Checkpoint FW-1 or Cisco PIX between your
ISP and your Web server. Remember not all hackers are outside your organization.

■ Use switched Ethernet to limit the amount of traffic a compromised server can
detect. Use additional firewalls between Web server machines and highly sensitive
internal servers running the database and enterprise applications.

■ Remove unnecessary network services such as RPC, Finger, and telnet from your
server.

■ Carefully validate all input from Web forms. Be especially wary of long input
strings and input that contains non-printable characters, HTML tags, or javascript
tags.

■ Encrypt or randomize the contents of cookies that contain sensitive information to
prevent a hacker from hijacking a valid session. For example, it should be difficult
to guess a valid sessionID.

■ Check often for security patches for all your system and application software, and
install them as soon as possible. Be sure these patches come from reliable sources.
Only download patches from trusted sites and verify the cryptographic checksum.

■ Use an intrusion detection package to monitor for defaced Web pages, viruses, and
presence of rootkits that indicate hackers have broken into your site. If possible,
mount system executables and Web content on read-only file systems.

■ Have a forensic analysis package on hand to capture evidence of a break in as soon
as detected. This aids in prosecution of the hackers.

B.10 Do I Need to Re-register Partner Applications with the SSO Server If
I Disable or Enable SSL?

Yes, if you enable or disable SSL, you have to re-register partner applications with the
SSO server. When you make any changes that affect the URL (for example, changing
the host name or port, or enabling or disabling SSL), you have re-register partner
applications with the SSO server because the old URL registered with the SSO server is
no longer valid. You have to re-register the partner applications with the new URL.

B.11 Why REDIRECT_ERROR_NOTES is not set for file-not-found errors?
The REDIRECT_ERROR_NOTES CGI environment variable is not set for file not
found errors in Oracle HTTP Server 11g because the Apache HTTP Server 2.0 and
above do not make that information available to CGI and other applications for this
condition.

How can I hide information about the Web Server Vendor and Version

Frequently Asked Questions B-5

B.12 How can I hide information about the Web Server Vendor and
Version

Specify "ServerSignature Off" to remove this information from web server generated
responses. Specify "ServerTokens Custom some-server-string" to disguise the web
server software when Oracle HTTP Server generates the web Server response header.
(When a backend server generates the response, the Server response header may come
from the backend server depending on the proxy mechanism.)

Note: <code>ServerTokens Custom some-server-string</code> is a
replacement for the <code>ServerHeader Off</code> setting in
Oracle HTTP Server 10g.

How can I hide information about the Web Server Vendor and Version

B-6 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

C

Troubleshooting Oracle HTTP Server C-1

CTroubleshooting Oracle HTTP Server

This appendix describes common problems that you might encounter when using
Oracle HTTP Server, and explains how to solve them. It includes the following topics:

■ Section C.1, "Oracle HTTP Server Unable to Start Due to Port Conflict"

■ Section C.2, "System Overloaded by Number of httpd Processes"

■ Section C.3, "Permission Denied When Starting Oracle HTTP Server On a Port
Below 1024"

■ Section C.4, "Oracle HTTP Server May Fail To Start If PM Files Are Not Located
Correctly"

■ Section C.5, "Using Log Files to Locate Errors"

■ Section C.6, "Client IP Address not used in a configuration with Oracle Web
Cache"

C.1 Oracle HTTP Server Unable to Start Due to Port Conflict
You can get the following error if Oracle HTTP Server is unable to start due to port
conflict:

[VirtualHost: main] (98)Address already in use: make_sock: could not bind to
address [::]:7777

Solution
Determine what process is already using that port, and then either change the IP:port
address of Oracle HTTP Server or the port of the conflicting process.

C.2 System Overloaded by Number of httpd Processes
When too many httpd processes are running on a system, the response time degrades
because there are insufficient resources for normal processing.

Solution
Lower the value of MaxClients to a value the machine can accommodate.

Permission Denied When Starting Oracle HTTP Server On a Port Below 1024

C-2 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

C.3 Permission Denied When Starting Oracle HTTP Server On a Port
Below 1024

You will get the following error if you try to start Oracle HTTP Server on a port below
1024:

[VirtualHost: main] (13)Permission denied: make_sock: could not bind to address
[::]:443

Oracle HTTP Server will not start on ports below 1024 because root privileges are
needed to bind these ports.

Solution
Follow the steps in Section 4.1.2.3, "Starting Oracle HTTP Server on a Privileged Port"
to start Oracle HTTP Server on a Privileged Port.

C.4 Oracle HTTP Server May Fail To Start If PM Files Are Not Located
Correctly

If Oracle HTTP Server is not able to locate Perl module (PM) files in the path defined
in the PERL5LIB variable, Oracle HTTP Server may encounter the following errors,
and fail to start:

[error] Can't locate mod_perl.pm in @INC (@INC contains:$ORACLE_HOME/perl/...)

or:

[error] Can't locate Apache::Registry.pm in @INC (@INC contains: $ORACLE_
HOME/perl/...)

Solution
Check that ORACLE_HOME/ohs/bin/apachectl is correctly defined in the
PERL5LIB variable. It should point to the path(s) containing the PM files. By default,
it points to PM files in the following directories:

ORACLE_HOME/ohs/mod_perl/lib/site_perl/5.10.0
ORACLE_HOME/perl/lib/5.10.0
ORACLE_HOME/perl/lib/site_perl/5.10.0

C.5 Using Log Files to Locate Errors
You can use the following log files to help locate errors:

■ Rewrite Log

■ Script Log

■ Error Log

C.5.1 Rewrite Log
This log file is necessary for debugging when mod_rewrite is used. The log file
produces a detailed analysis of how the rewriting engine transforms requests. The
level of detail is controlled by the RewriteLogLevel directive.

Client IP Address not used in a configuration with Oracle Web Cache

Troubleshooting Oracle HTTP Server C-3

C.5.2 Script Log
This log file enables you to record the input to and output from the CGI scripts. This
should only be used in testing, and not for production servers.

C.5.3 Error Log
This log file records overall server problems. Refer to Chapter 7, "Managing Oracle
HTTP Server Logs" for details on configuring and viewing error logs.

C.6 Client IP Address not used in a configuration with Oracle Web Cache
The UseWebCacheIp directive allows Oracle HTTP Server to use the Client IP address
for logging and mod_authz_host access control when the client connects to Oracle
HTTP Server through Oracle Web Cache. This feature may be usable with other
front-end proxy servers, if the proxy sets the ClientIP request header to the Client IP
address. When UseWebCacheIp is not enabled and a client connects to Oracle HTTP
Server through Oracle Web Cache or other proxy, the client address used for logging
and mod_authz_host access control will be that of Oracle Web Cache or other proxy.

Solution
Set UseWebCacheIp to ON in your httpd.conf file.

Also, if you do not set UseWebCacheIp to ON, the address of the host connecting to
Oracle HTTP Server will be used for logging and host-based access control. In some
cases this will be a proxy instead of the client.

See Also: Rewrite Log in the Apache HTTP Server
documentation.

See Also: Script Log in the Apache HTTP Server documentation.

Note: The UseWebCacheIp directive is not available in Oracle HTTP
Server versions 11.1.1.4.0 and 11.1.1.5.0.

Client IP Address not used in a configuration with Oracle Web Cache

C-4 Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Glossary-1

Glossary

Apache

Apache HTTP Server is an open source web server originally derived from the
National Center for Supercomputing Applications (NCSA).

authentication

The process of verifying the identity of a user, device, or other entity in a host system,
often as a prerequisite to granting access to resources in a system. A recipient of an
authenticated message can be certain of the message's origin (its sender).
Authentication is presumed to preclude the possibility that another party has
impersonated the sender.

availability

The percentage or amount of scheduled time that a computing system provides
application service.

certificate

Also called a digital certificate. An ITU x.509 v3 standard data structure that securely
binds an identity to a public key.

A certificate is created when an entity's public key is signed by a trusted identity, a
certificate authority The certificate ensures that the entity's information is correct and
that the public key actually belongs to that entity.

A certificate contains the entity's name, identifying information, and public key. It is
also likely to contain a serial number, expiration date, and information about the
rights, uses, and privileges associated with the certificate. It also contains information
about the certificate authority that issued it.

certificate authority

A trusted third party that certifies that other entities—users, databases, administrators,
clients, servers—are who they say they are. When it certifies a user, the certificate
authority first seeks verification that the user is not on the certificate revocation list
(CRL), then verifies the user's identity and grants a certificate, signing it with the
certificate authority's private key. The certificate authority has its own certificate and
public key which it publishes. Servers and clients use these to verify signatures the
certificate authority has made. A certificate authority might be an external company
that offers certificate services, or an internal organization such as a corporate MIS
department.

CGI

Glossary-2

CGI

Common Gateway Interface (CGI) is the industry-standard technique for transferring
information between a Web server and any program designed to accept and return
data that conforms to the CGI specifications.

ciphertext

Data that has been encrypted. Ciphertext is unreadable until it has been converted to
plain text (decrypted) with a key. See decryption.

cleartext

See plaintext.

cryptography

The art of protecting information by transforming it (encrypting) into an unreadable
format. See encryption.

DAD

See database access descriptor.

database access descriptor

A database access descriptor (DAD) is a set of values that specify how an application
connects to an Oracle database to fulfill an HTTP request. The information in the DAD
includes the username (which also specifies the schema and the privileges), password,
connect-string, error log file, standard error message, and national language support
(NLS) parameters such as NLS language, NLS date format, NLS date language, and
NLS currency.

decryption

The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

digital certificate

See certificate.

digital wallet

See wallet.

encryption

The process of converting a message thereby rendering it unreadable to any but the
intended recipient. Encryption is performed by converting data into code that cannot
be understood by unauthorized people or systems. There are two main types of
encryption: public-key encryption (also known as asymmetric-key encryption) and
symmetric-key encryption.

entry

In the context of a directory service, entries are the building blocks of a directory. An
entry is a collection of information about an object in the directory. Each entry is
composed of a set of attributes that describe one particular trait of the object. For
example, if a directory entry describes a person, that entry can have attributes such as
first name, last name, telephone number, or e-mail address.

plug-in

Glossary-3

failover

The ability to reconfigure a computing system to utilize an alternate active component
when a similar component fails.

Fusion Middleware Control

See Oracle Enterprise Manager Fusion Middleware Control.

HTTP

See Hypertext Transfer Protocol.

Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) is the underlying format used by the Web to
format and transmit messages and determine what actions Web servers and browsers
should take in response to various commands. HTTP is the protocol used between
Oracle Fusion Middleware and clients.

LDAP

See Lightweight Directory Access Protocol.

Lightweight Directory Access Protocol

A standard, extensible directory access protocol. It is a common language that LDAP
clients and servers use to communicate. The framework of design conventions
supporting industry-standard directory products, such as the Oracle Internet
Directory.

modules

Modules extend the basic functionality of a Web server, and support integration
between Oracle HTTP Server and other Oracle Fusion Middleware components.

Oracle Enterprise Manager Fusion Middleware Control

Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware Control)
provides Web-based management tools designed specifically for Oracle Fusion
Middleware. Using Fusion Middleware Control, you can monitor and configure the
components of your application server, such as deploy applications, manage security,
and create and manage Oracle Fusion Middleware clusters.

PEM

Privacy-enhanced Electronic Mail. An encryption technique that provides encryption,
authentication, message integrity, and key management.

PL/SQL

PL/SQL is the Oracle proprietary extension to the SQL language. PL/SQL adds
procedural and other constructs to SQL that make it suitable for writing applications.

plaintext

Also called cleartext. Unencrypted data in ASCII format.

plug-in

A module that adds a specific feature or service to a larger system. For example,
Oracle Proxy Plug-in or Oracle SSO Plug-in.

port

Glossary-4

port

A port is a number that TCP uses to route transmitted data to and from a particular
program.

private key

In public-key cryptography, this key is the secret key. It is primarily used for
decryption but is also used for encryption with digital signatures. See public/private
key pair.

proxy server

A proxy server typically resides on a network firewall and allows clients behind the
firewall to access Web resources. All requests from clients go to the proxy server rather
than directly to the destination server. The proxy server forwards the request to the
destination server and passes the received information back to the client. The proxy
server channels all Web traffic at a site through a single, secure port; this allows an
organization to create a secure firewall by preventing Internet access to internal
systems, while allowing Web access.

public key

In public-key cryptography, this key is made public to all. It is primarily used for
encryption but can be used for verifying signatures. See public/private key pair.

public-key cryptography

Encryption method that uses two different random numbers (keys). See public key
and public-key encryption.

public-key encryption

The process where the sender of a message encrypts the message with the public key
of the recipient. Upon delivery, the message is decrypted by the recipient using its
private key.

public/private key pair

A set of two numbers used for encryption and decryption, where one is called the
private key and the other is called the public key. Public keys are typically made
widely available, while private keys are held by their respective owners. Though
mathematically related, it is generally viewed as computationally infeasible to derive
the private key from the public key. Public and private keys are used only with
asymmetric encryption algorithms, also called public-key encryption algorithms, or
public-key cryptosystems. Data encrypted with either a public key or a private key
from a key pair can be decrypted with its associated key from the key-pair. However,
data encrypted with a public key cannot be decrypted with the same public key, and
data encrypted with a private key cannot be decrypted with the same private key.

RSA

A public-key encryption technology developed by RSA Data Security. The RSA
algorithm is based on the fact that it is laborious to factor very large numbers. This
makes it mathematically unfeasible, because of the computing power and time
required to decode an RSA key.

scalability

A measure of how well the software or hardware product is able to adapt to future
business needs.

X.509

Glossary-5

Secure Sockets Layer

Secure Sockets Layer (SSL) is a standard for the secure transmission of documents over
the Internet using HTTPS (secure HTTP). SSL uses digital signatures to ensure that
transmitted data is not tampered with.

single sign-on

Single sign-on enables a you to authenticate once, combined with strong
authentication occurring transparently in subsequent connections to other databases
or applications. It lets you access multiple accounts and applications with a single
password, entered during a single connection.

SSL

See Secure Sockets Layer.

wallet

Also called a digital wallet. A wallet is a data structure used to store and manage
security credentials for an individual entity. It implements the storage and retrieval of
credentials for use with various cryptographic services. A Wallet Resource Locator
(WRL) provides the necessary information to locate the wallet.

Wallet Resource Locator

A wallet resource locator (WRL) provides all necessary information to locate a wallet.
It is a path to an operating system directory that contains a wallet.

WRL

See Wallet Resource Locator.

X.509

A standard for creating digital certificates.

X.509

Glossary-6

Index-1

Index

A
access log, 7-2
accessing

Fusion Middleware Control, 2-1
Al16UTF-16, 3-7
Apache, Glossary-1

security patches, B-2
version, 1-1

Apache HTTP Server, 1-1
Apache OraDAV, 9-2
apachectl, 4-1
ApacheStyle, 3-23
application-specific error pages, A-1, B-1
authentication, 8-1, Glossary-1
authorization, 8-1
availability, Glossary-1

B
browsing database content

with OraDAV, 9-4

C
cache, B-2
cache.conf, 3-30
caching

disk
OraDAV and, 9-12

certificate, Glossary-1
digital, Glossary-2

certificate authority, Glossary-1
CGI, Glossary-2
ciphertext, Glossary-2
cleartext, Glossary-2
confidentiality, 8-1
configuration files

cache.conf, 3-30
dads.conf, 3-12
oracle_osso.dll, A-18, A-21
osso_plugin.conf, A-17
plsql.conf, 3-10
syntax, 1-5

configuring
mod_oradav, 9-1

Sun Java System
proxy plug-in, A-7

creating
DAD, 3-8

cryptography, Glossary-2

D
DAD, Glossary-2

creating, 3-8
password

obfuscation, 3-20
dads.conf, 3-12
dadTool.pl, 3-20
database access descriptor, 3-12, Glossary-2
database connection

OraDAV and, 9-8
database usage notes, 3-5
DAV, 9-1
DAV directives

DAVOraNLS, 9-14
DAV parameter, 9-5
DAVOraNLS directive, 9-14
DAVParam parameter

for OraDAV, 9-5
DebugStyle, 3-23
decryption, Glossary-2
digital certificate, Glossary-2
digital wallet, Glossary-2
directives

create name space, B-3
PlsqlCacheDirectory, 5-7
RewriteLogLevel, C-2
UseWebCacheIp, C-3

directory structure, 1-5
disk caching, 9-7

OraDAV and, 9-12
size, 9-7, 9-8

distributed authoring and versioning, 9-1
Dynamic Monitoring Service, 3-11

E
encryption, 1-3, Glossary-2
entry, Glossary-2
error log, C-3

Index-2

mod_oradav and, 9-10
events

OraDAV and, 9-10
exceptions

OraDAV and, 9-9

F
failover, Glossary-3
FAQ, A-1, B-1

Apache security patches, B-2
compressing

output, B-3
offering HTTPS to ISP customers, A-15, B-2
protecting Web site

hackers, B-4
features, 1-1
file system access

OraDAV and, 9-5
frequently asked questions, A-1, B-1
Fusion Middleware Control, Glossary-3

accessing, 2-1
managing, 2-1

Oracle HTTP Server, 2-2
Oracle HTTP Server Home page, 2-2

G
globalization support

OraDAV considerations, 9-13

H
hackers, B-4
HTTP, Glossary-3
HTTP listener, 1-1
Hypertext Transfer Protocol, Glossary-3

I
identd, 7-2
IdentityCheck, 7-2
IIS

proxy plug-in, A-1
SSO plug-in, A-15

InfoDebug, 3-25
IpCheck, A-17

L
LDAP, Glossary-3
lightweight directory access protocol, Glossary-3
listener addresses, 6-1
listener ports, 6-1
LoadModule directive, 3-10
locking

OraDAV and, 9-9
log files, C-2

locations, C-2
log formats

authuser, 7-2

bytes, 7-3
Common Log Format, 7-2
data, 7-2
host, 7-2
ident, 7-2
request, 7-2
status, 7-3

log rotation, 7-6
LoginServerFile, A-17

M
managing

Fusion Middleware Control, 2-1
Oracle HTTP Server, 2-2

mod_certheaders, 3-3
mod_dav

OraDAV
disk caching, 9-12
Oracle Web Cache, 9-13
performance considerations, 9-12

usage notes
globalization support, 9-13

mod_dms, 3-3, 8-3
mod_onsint, 3-4
mod_oradav, 3-4, 9-1

concepts
OraDAV, 9-2
WebDAV, 9-2

error log, 9-10
Get requests and, 9-6
OraDAV

administration, 9-3
Apache OraDAV, 9-2
architecture, 9-3
configuration parameters, 9-5
OraDAV driver, 9-2
OraDAV driver API, 9-2
usage model, 9-4

parameters
ORAAllowIndexDetails, 9-6
ORAAltPassword, 9-7
ORACacheDirectory, 9-7
ORACacheMaxResourceSize, 9-7
ORACachePrunePercent, 9-7
ORACacheTotalSize, 9-8
ORAConnect, 9-8
ORAConnectSN, 9-8
ORAContainerName, 9-8
ORAException, 9-9
ORAGetSource, 9-9
ORALockExpirationPad, 9-9
ORAPackageName, 9-9
ORAPassword, 9-9
ORARootPrefix, 9-10
ORAService, 9-10
ORATraceEvents, 9-10
ORATraceLevel, 9-10
ORAUser, 9-11

mod_ossl, 3-5, 8-1

Index-3

mod_osso, 3-5, 8-1, 8-3, A-15
mod_perl, 1-1, 3-5, 8-3

database usage notes, 3-5
testing database connection, 3-6

mod_plsql, 3-8
configuration files, 3-10

cache.conf, 3-30
dads.conf, 3-12
plsql.conf, 3-10

configuration parameters, 3-32
CustomOwa, 3-14
PerPackageOwa, 3-14

mod_reqtimeout, 3-3
mod_ssl, 3-5
mod_wl_ohs, 8-3
ModplsqlStyle, 3-23
modules, 1-1, Glossary-3

mod_certheaders, 3-3
mod_dms, 3-3
mod_onsint, 3-4
mod_oradav, 3-4
mod_ossl, 3-5
mod_osso, 3-5
mod_perl, 3-5
mod_plsql, 3-8
mod_ssl, 3-5

Multipurpose Internet Mail Extension, 4-9
multiviews, B-2

N
NLS_LANG environment variable

OraDAV considerations, 9-13

O
oproxy.serverlist, A-3
oproxy.servername.alias, A-4
oproxy.servername.hostname, A-4
oproxy.servername.port, A-4
oproxy.servername.urlrule, A-5

matches
context, A-5
exact, A-5
suffix, A-5

ORA_IMPLICIT, 3-7
ORA_NCHAR, 3-7
ORAAllowIndexDetails parameter, 9-6
ORAAltPassword parameter, 9-7
ORACacheDirectory parameter, 9-7, 9-12
ORACacheMaxResourceSize parameter, 9-7, 9-12
ORACachePrunePercent parameter, 9-7, 9-12
ORACacheTotalSize parameter, 9-8, 9-12
Oracle Enterprise Manager Application Server

Control, Glossary-3
Oracle HTTP Server

cache, B-2
C/C++, 1-4
components

HTTP listener, 1-1

modules, 1-1
Perl interpreter, 1-1

compressing
output, B-3

configuration files syntax, 1-5
directory structure, 1-5
Distributed Authoring and Versioning

Support, 1-3
FAQ, A-1, B-1
features, 1-1
load balancing, 1-5
managing, 2-2
OPMN, 1-4
overview, 1-1
Perl, 1-4
PHP, 1-4
PL/SQL server pages, 1-4
process model

security considerations, 5-7
proxy plug-in, 1-4
restarting, 4-4
security, 1-3
server side include, 1-4
single sign-on, 1-3
sso plug-in, 1-4
starting, 4-3
stopping, 4-4
support, 1-6
URL rewriting and proxy server, 1-3

Oracle HTTP Server Home page, 2-2
Oracle Web Cache

OraDAV and, 9-13
WebDAV, 9-13

oracle_osso.dll, A-18, A-21
oracle_proxy_sunone.dll, A-3
oracle_proxy.dll, A-3, A-16
oracle_proxy.so, A-3
ORAConnect parameter, 9-8
ORAConnectSN parameter

database connection
OraDAV and, 9-8

ORAContainerName parameter, 9-8
OraDAV, 9-1, 9-2

administration, 9-3
description, 9-2
globalization support considerations, 9-13
usage model, 9-4
WebDAV

security considerations, 9-12
OraDav, 3-4
OraDAV and, 9-7
OraDAV configuration parameters, 9-5
OraDAV driver, 9-2
OraDAV driver API, 9-2
OraDAV users, 9-11
ORAException parameter, 9-9
ORAGetSource parameter, 9-9
ORALockExpirationPad parameter, 9-9
ORAPackageName parameter, 9-9
ORAPassword parameter, 9-9

Index-4

ORARootPrefix parameter, 9-10
ORAService parameter, 9-10
ORATraceEvents parameter, 9-10
ORATraceLevel parameter, 9-10
ORAUser parameter, 9-11
osso_plugin.conf, A-17
overview, 1-1

P
passwords

OraDAV and, 9-7, 9-9
PEM, Glossary-3
Perl

access database, 3-6
Perl interpreter, 1-1
PID file, 4-2
plaintext, Glossary-3
PL/SQL, Glossary-3
PlsqlAfterProcedure, 3-13
PlsqlAlwaysDescribeProcedure, 3-13
PlsqlAuthenticationMode, 3-13
PlsqlBeforeProcedure, 3-14
PlsqlBindBucketLengths, 3-14
PlsqlBindBucketsWidth, 3-15
PlsqlCacheCleanupTime, 3-30
PlsqlCacheDirectory, 3-30
PlsqlCacheEnable, 3-31
PlsqlCacheMaxAge, 3-31
PlsqlCacheMaxSize, 3-31
PlsqlCacheTotalSize, 3-31
PlsqlCGIEnvironmentList, 3-16
plsql.conf, 3-10
PlsqlConnectionTimeout, 3-16
PlsqlConnectionValidation, 3-17
PlsqlDatabaseConnectString, 3-18
PlsqlDatabasePassword, 3-20
PlsqlDatabaseUserName, 3-21
PlsqlDefaultPage, 3-22
PlsqlDMSEnable, 3-11
PlsqlDocumentPath, 3-22
PlsqlDocumentProcedure, 3-22
PlsqlDocumentTablename, 3-23
PlsqlErrorStyle, 3-23

ApacheStyle, 3-23
DebugStyle, 3-23
ModplsqlStype, 3-23

PlsqlExclusionList, 3-23
PlsqlFetchBufferSize, 3-25
PlsqlIdleSessionCleanupInterval, 3-11
PlsqlInfoLogging, 3-25

InfoDebug, 3-25
PlsqlLogDirectory, 3-11
PlsqlLogEnable, 3-11
PlsqlMaxRequestsPerSession, 3-26
PlsqlNLSLanguage, 3-26
PlsqlPathAlias, 3-26
PlsqlPathAliasProcedure, 3-27
PlsqlRequestValidationFunction, 3-27
PlsqlSessionCookieName, 3-28

PlsqlSessionStateManagement, 3-28
PlsqlTransferMode, 3-29
PlsqlUploadAsLongRaw, 3-29
plug-in, A-2, A-15, Glossary-3
port, Glossary-4
private key, Glossary-4
privileges

ORAUser, 9-11
property management

with OraDAV, 9-4
PROPFIND directive, 9-4
PROPFIND method

security considerations, 9-4
PROPPATCH directive, 9-4
protecting

Web site, B-4
proxy plug-in

behavior, A-6
configuring

oproxy.serverlist, A-3
oproxy.servername.alias, A-4
oproxy.servername.hostname, A-4
oproxy.servername.port, A-4
oproxy.servername.urlrule, A-5
proxy configuration file parameters, A-3
proxy server definition file, A-3

IIS, A-1
Sun Java System Web Server

proxy plug-in, A-1
troubleshooting

"file not found" error, A-14
broken image links page, A-14
garbled characters, A-13
incomplete pages, A-13
incorrect URLs, A-13
listener fails to start, A-13
parsing error, A-13
partial URL requests errors, A-14
proxy server definition file, A-13
redirects, A-14
REMOTE_ADDR, A-14
Sun Java One "server error", A-14
unexpected pages displayed, A-14

proxy server, A-3, Glossary-4
proxy server definition file, A-3
public key, Glossary-4
public-key cryptography, Glossary-4
public-key encryption, Glossary-4
public/private key pair, Glossary-4

R
restarting, 4-4
restructuring content

with OraDAV, 9-4
rewrite log, C-2
RewriteLogLevel, C-2
root prefix

OraDAV and, 9-10
RSA, Glossary-4

Index-5

S
scalability, Glossary-4
script log, C-3
Secure Sockets Layer, Glossary-5
secure sockets layer, 4-8
security

authentication, 8-1
authorization, 8-1
confidentiality, 8-1
PROPFIND method, 9-4
WebDAV, 9-12

service name
OraDAV and, 9-10

SID value
OraDAV and, 9-10

single sign-on, 8-1, Glossary-5
partner application, 8-3
sso_conf, A-17

specifying
listener addresses, 6-1
listener ports, 6-1
log file locations, C-2
log files, C-2

access log, 7-2
error log, C-3
lot rotation, 7-6
PID file, 4-2
rewrite log, C-2
script log, C-3

SQL NCHAR datatypes, 3-7
SSL, 4-8, Glossary-5
SSL HW Acceleration Support, 1-3
SSO plug-in

configuring
directives, A-17

directives
IpCheck, A-17
LoginServerFile, A-17

IIS, A-15
troubleshooting

HTML authentication, A-23
Oracle dependency libraries, A-22

sso_conf, A-17
starting, 4-3
stopping, 4-4
support, 1-6
symbolic links

avoiding use with containers, 9-6
symlinks, avoiding use with containers, 9-6

T
trace levels

OraDAV and, 9-10
troubleshooting, C-1

Oracle HTTP Server may fail to start if PM files are
not located correctly, C-2

permission denied, C-2

U
urlrule, A-5
users

OraDAV, 9-11
UseWebCacheIp, C-3
UTF8, 3-7

W
wallet, Glossary-5

digital, Glossary-2
Wallet Resource Locator, Glossary-5
WebDAV, 9-1

connecting to HTTP Server, 9-2
protocol, 9-2
security considerations, 9-12

WRL, Glossary-5

X
X.509, Glossary-5

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Understanding Oracle HTTP Server
	1 Introduction to Oracle HTTP Server
	1.1 What is Oracle HTTP Server
	1.1.1 Key Features of Oracle HTTP Server
	1.1.1.1 Security: Encryption with Secure Sockets Layer
	1.1.1.2 Security: Single Sign-On
	1.1.1.3 Distributed Authoring and Versioning (DAV) Support
	1.1.1.4 URL Rewriting and Proxy Server Capabilities
	1.1.1.5 Oracle Process Manager and Notification Server
	1.1.1.6 Oracle Plug-Ins
	1.1.1.7 PL/SQL Server Pages
	1.1.1.8 Server-Side Includes
	1.1.1.9 Perl
	1.1.1.10 PHP
	1.1.1.11 C / C++ (CGI and FastCGI)
	1.1.1.12 Load Balancing

	1.2 Understanding Oracle HTTP Server Directory Structure
	1.3 Understanding Configuration Files
	1.4 Oracle HTTP Server Support

	2 Management Tools for Oracle HTTP Server
	2.1 Overview of Oracle HTTP Server Management
	2.2 Accessing Fusion Middleware Control
	2.3 Accessing the Oracle HTTP Server Home Page
	2.3.1 Navigating Within Fusion Middleware Control

	2.4 Using the opmnctl Command-line Tool

	3 Understanding Oracle HTTP Server Modules
	3.1 List of Included Modules
	3.2 mod_certheaders
	3.3 mod_dms
	3.4 mod_onsint
	3.5 mod_oradav
	3.6 mod_ossl
	3.7 mod_osso
	3.8 mod_perl
	3.8.1 Using mod_perl with a Database
	3.8.1.1 Using Perl to Access the Database
	3.8.1.2 Testing a Database Connection
	3.8.1.3 Using SQL NCHAR Data Types

	3.9 mod_reqtimeout
	3.10 mod_plsql
	3.10.1 Creating a DAD
	3.10.2 Configuration Files for mod_plsql
	3.10.2.1 plsql.conf
	3.10.2.2 dads.conf
	3.10.2.3 cache.conf

	3.10.3 Configuration Files and Parameters

	3.11 mod_wl_ohs

	Part II Managing Oracle HTTP Server
	4 Getting Started with Oracle HTTP Server
	4.1 Starting, Stopping, and Restarting Oracle HTTP Server
	4.1.1 Understanding the PID File
	4.1.2 Starting Oracle HTTP Server
	4.1.2.1 Using Fusion Middleware Control to Start Oracle HTTP Server
	4.1.2.2 Using opmnctl to Start Oracle HTTP Server
	4.1.2.3 Starting Oracle HTTP Server on a Privileged Port

	4.1.3 Stopping Oracle HTTP Server
	4.1.3.1 Using Fusion Middleware Control to Stop Oracle HTTP Server
	4.1.3.2 Using opmnctl to Stop Oracle HTTP Server

	4.1.4 Restarting Oracle HTTP Server
	4.1.4.1 Using Fusion Middleware Control to Restart Oracle HTTP Server
	4.1.4.2 Using opmnctl to Restart Oracle HTTP Server

	4.2 Creating an Oracle HTTP Server Component
	4.3 Specifying Server Properties
	4.3.1 Using Fusion Middleware Control to Specify Server Properties
	4.3.2 Editing the httpd.conf File to Specify Server Properties

	4.4 Configuring Oracle HTTP Server
	4.4.1 Configuring Secure Sockets Layer
	4.4.2 Configuring MIME Settings
	4.4.2.1 Configuring MIME Types
	4.4.2.1.1 Using Fusion Middleware Control to Configure MIME Types

	4.4.2.2 Configuring MIME Encoding
	4.4.2.3 Configuring MIME Languages

	4.4.3 Configuring the mod_perl Module
	4.4.4 Configuring mod_wl_ohs
	4.4.5 Modifying an Oracle HTTP Server Configuration File
	4.4.6 Disabling the Options Method
	4.4.7 Updating the Configuration for Oracle HTTP Server Instances on a Shared Filesystem

	4.5 Deleting an Oracle HTTP Server Component

	5 Managing and Monitoring Server Processes
	5.1 Oracle HTTP Server Processing Model
	5.1.1 Request Process Model
	5.1.2 Single Unit Process Model

	5.2 Monitoring Oracle HTTP Server Performance
	5.2.1 Viewing Oracle HTTP Server Performance Metrics
	5.2.2 Understanding Oracle HTTP Server Performance Metrics

	5.3 Configuring Oracle HTTP Server Performance Directives
	5.3.1 Using Fusion Middleware Control to Set the Request Configuration
	5.3.2 Using Fusion Middleware Control to Set the Connection Configuration
	5.3.3 Using Fusion Middleware Control to Set the Process Configuration

	5.4 Understanding Process Security

	6 Managing Connectivity
	6.1 Viewing Port Number Usage
	6.1.1 Using the Fusion Middleware Control to View Port Number Usage

	6.2 Managing Ports
	6.2.1 Using Fusion Middleware Control to Create Ports
	6.2.2 Using Fusion Middleware Control to Edit Ports
	6.2.3 Updating the Registration of Oracle HTTP Server with a WebLogic Domain After Changing the Administration Port

	6.3 Configuring Virtual Hosts
	6.3.1 Using Fusion Middleware Control to Create Virtual Hosts
	6.3.2 Using Fusion Middleware Control to Configure Virtual Hosts

	7 Managing Oracle HTTP Server Logs
	7.1 Overview of Server Logs
	7.1.1 About Error Logs
	7.1.2 About Access Logs
	7.1.3 Log Rotation

	7.2 Configuring Oracle HTTP Server Logs
	7.2.1 Using Fusion Middleware Control to Configure Error Logs
	7.2.1.1 Configuring the Error Log Format and Location
	7.2.1.2 Configuring the Error Log Level
	7.2.1.3 Configuring Error Log Rotation Policy

	7.2.2 Using Fusion Middleware Control to Configure Access Logs
	7.2.2.1 Configuring the Access Log Format
	7.2.2.2 Configuring the Access Log File

	7.3 Log Directives for Oracle HTTP Server
	7.3.1 Oracle Diagnostic Logging Directives
	7.3.1.1 OraLogMode
	7.3.1.2 OraLogDir
	7.3.1.3 OraLogSeverity
	7.3.1.4 OraLogRotationParams

	7.3.2 Apache HTTP Server Log Directives
	7.3.2.1 ErrorLog
	7.3.2.2 LogLevel
	7.3.2.3 LogFormat
	7.3.2.4 CustomLog

	7.4 Viewing Oracle HTTP Server Logs

	8 Managing Application Security
	8.1 About Oracle HTTP Server Security
	8.2 Classes of Users and Their Privileges
	8.3 Resources Protected
	8.4 Authentication, Authorization and Access Control
	8.4.1 Access Control
	8.4.2 User Authentication and Authorization
	8.4.2.1 Using Apache HTTP Server Modules to Authenticate Users
	8.4.2.2 Using mod_osso to Authenticate Users

	8.4.3 Support for FMW Audit Framework

	9 Configuring mod_oradav
	9.1 Introduction to the mod_oradav Module
	9.1.1 WebDAV
	9.1.2 OraDAV
	9.1.3 OraDAV Architecture
	9.1.4 OraDAV Usage Model
	9.1.5 PROPFIND Security

	9.2 Configuring mod_oradav
	9.2.1 OraDAV Configuration Parameters
	9.2.1.1 ORAAllowIndexDetails
	9.2.1.2 ORAAltPassword
	9.2.1.3 ORACacheDirectory
	9.2.1.4 ORACacheMaxResourceSize
	9.2.1.5 ORACachePrunePercent
	9.2.1.6 ORACacheTotalSize
	9.2.1.7 ORAConnect
	9.2.1.8 ORAConnectSN
	9.2.1.9 ORAContainerName
	9.2.1.10 ORAException
	9.2.1.11 ORAGetSource
	9.2.1.12 ORALockExpirationPad
	9.2.1.13 ORAPackageName
	9.2.1.14 ORAPassword
	9.2.1.15 ORARootPrefix
	9.2.1.16 ORAService
	9.2.1.17 ORATraceEvents
	9.2.1.18 ORATraceLevel
	9.2.1.19 ORAUser

	9.2.2 Using Fusion Middleware Control to Configure mod_oradav
	9.2.3 Editing mod_oradev.conf

	9.3 WebDAV Security Considerations
	9.4 OraDAV Performance Considerations
	9.4.1 Using Disk Caching with OraDAV
	9.4.2 Bypassing Oracle Web Cache for WebDAV Activities

	9.5 Globalization Support Considerations with OraDAV
	9.6 Location of DAV Files

	Part III Appendixes and Glossary
	A Using Oracle Plug-Ins for Third-Party Web Servers
	A.1 Using Oracle Proxy Plug-In
	A.1.1 Overview of Oracle Proxy Plug-In
	A.1.2 Installing Oracle Proxy Plug-In
	A.1.3 Configuring Oracle Proxy Plug-In
	A.1.3.1 Proxy Server Definition File
	A.1.3.2 Proxy Definition File Parameters
	A.1.3.2.1 oproxy.serverlist
	A.1.3.2.2 oproxy.servername.hostname
	A.1.3.2.3 oproxy.servername.port
	A.1.3.2.4 oproxy.servername.alias
	A.1.3.2.5 oproxy.servername.resolveall
	A.1.3.2.6 oproxy.servername.urlrule

	A.1.3.3 Defining Oracle Proxy Plug-In Behavior

	A.1.4 Configuring Sun Java System Web Server to Use Oracle Proxy Plug-In
	A.1.5 Configuring Microsoft IIS 6.0 Listener to Use Oracle Proxy Plug-In
	A.1.6 Configuring Microsoft IIS 7.0 Listener to Use Oracle Proxy Plug-In
	A.1.7 Oracle Proxy Plug-In Usage Information
	A.1.8 Troubleshooting Oracle Proxy Plug-In

	A.2 Using Oracle SSO Plug-In
	A.2.1 Overview of Oracle SSO Plug-In
	A.2.2 Installing Oracle SSO Plug-In
	A.2.3 Registering with the Oracle Single Sign-On Server
	A.2.4 Configuring the Oracle SSO Plug-In
	A.2.4.1 Oracle SSO Plug-In Directives
	A.2.4.2 Rules to Protect Resources

	A.2.5 Configuring Microsoft IIS 6.0 Listener to Use Oracle Single Sign-On
	A.2.6 Configuring Microsoft IIS 7.0 Listener to Use Oracle Single Sign-On
	A.2.7 Troubleshooting Oracle SSO Plug-In

	B Frequently Asked Questions
	B.1 How Do I Create Application-Specific Error Pages?
	B.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
	B.3 Can I Use Oracle HTTP Server As Cache?
	B.4 Can I Use Different Language and Character Set Versions of Document?
	B.5 Can I Apply Apache Security Patches to Oracle HTTP Server?
	B.6 Can I Upgrade the Apache Version of Oracle HTTP Server?
	B.7 Can I Compress Output From Oracle HTTP Server?
	B.8 How Do I Create a Namespace That Works Through Firewalls and Clusters?
	B.9 How do I Protect the Web Site from Hackers?
	B.10 Do I Need to Re-register Partner Applications with the SSO Server If I Disable or Enable SSL?
	B.11 Why REDIRECT_ERROR_NOTES is not set for file-not-found errors?
	B.12 How can I hide information about the Web Server Vendor and Version

	C Troubleshooting Oracle HTTP Server
	C.1 Oracle HTTP Server Unable to Start Due to Port Conflict
	C.2 System Overloaded by Number of httpd Processes
	C.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024
	C.4 Oracle HTTP Server May Fail To Start If PM Files Are Not Located Correctly
	C.5 Using Log Files to Locate Errors
	C.5.1 Rewrite Log
	C.5.2 Script Log
	C.5.3 Error Log

	C.6 Client IP Address not used in a configuration with Oracle Web Cache

	Glossary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

