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Foreword

I remember quite clearly the first time I met the JRockit team. It was JavaOne 1999 
and I was there representing WebLogic. Here were these Swedish college kids in 
black T-shirts describing how they would build the world's best server VM. I was 
interested in hearing their story as the 1.2 release of HotSpot had been delayed again 
and we'd been running into no end of scalability problems with the Classic VM. 
However I walked away from the booth thinking that, while these guys were smart, 
they had no idea what they were biting off.

Fast-forward a few years. BEA buys JRockit and I become the technical liaison 
between the WebLogic and JRockit teams. By now JRockit has developed into an 
excellent offering—providing great scalability and performance on server-side 
systems. As we begin working together I have the distinct pleasure of getting to 
know the authors of this book: Marcus Lagergren and Marcus Hirt.

Lagergren is a remarkably prolific developer, who at the time was working on the 
compiler.  He and I spent several sessions together examining optimizations of 
WebLogic code and deciphering why this method or that wasn't getting inlined or 
devirtualized.  In the process we, along with the rest of the WebLogic and JRockit 
teams, were able to produce several SPECjAppServer world records and cement 
JRockit's reputation for performance.

Hirt, on the other hand, is extremely focused on profiling and diagnostics. It was 
natural, therefore, that he should lead the nascent tooling effort that would become 
JRockit Mission Control. This was an extension of an early observation we had, that 
in order to scale the JRockit engineering team, we would have to invest in tooling to 
make support and debugging easier.

Fast-forward a few more years. I'm now at Oracle when it acquires BEA. I have the 
distinct pleasure of again welcoming the JRockit team into a new company as they 
joined my team at Oracle. The core of the JRockit team is still the same and they now 
have a place among the small group of the world's experts in virtual machines.



Lagergren is still working on internals—now on JRockit Virtual Edition—and is 
as productive as ever. Under Hirt's leadership, Mission Control has evolved from 
an internal developer's tool into one of the JRockit features most appreciated by 
customers. With this combination of long experience and expertise in all layers of 
JRockit, it is difficult for me to imagine a better combination of authors to write  
this book. 

Therefore, as has been the case many times before, I'm proud to be associated in some 
small way with the JRockit team. I trust that you will enjoy reading this book and hope 
that you will find the topic to be as satisfying as I have found it to be over the years.

Adam Messinger
Vice President of Development,  Oracle Fusion Middleware group 
February 14, 2010 
San Francisco, CA
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Preface
This book is the result of an amazing series of events.

In high school, back in the pre-Internet era, the authors used to hang out at the same 
bulletin board systems and found each other in a particularly geeky thread about 
math problems. Bulletin board friendship led to friendship in real life, as well as 
several collaborative software projects. Eventually, both authors went on to study  
at the Royal Institute of Technology (KTH) in Stockholm.

More friends were made at KTH, and a course in database systems in our third year 
brought enough people with a similar mindset together to achieve critical mass. The 
decision was made to form a consulting business named Appeal Software Solutions 
(the acronym A.S.S. seemed like a perfectly valid choice at the time). Several of us 
started to work alongside our studies and a certain percentage of our earnings was 
put away so that the business could be bootstrapped into a full-time occupation 
when everyone was out of university. Our long-term goal was always to work with 
product development, not consulting. However, at the time we did not know what 
the products would turn out to be.

In 1997, Joakim Dahlstedt, Fredrik Stridsman and Mattias Joëlson won a trip to 
one of the first JavaOne conferences by out-coding everyone in a Sun sponsored 
competition for university students. For fun, they did it again the next year with  
the same result.

It all started when our three heroes noticed that between the two JavaOne 
conferences in 1997 and 1998, the presentation of Sun's adaptive virtual machine 
HotSpot remained virtually unchanged. HotSpot, it seemed at the time, was the 
answer to the Java performance problem. Java back then was mostly an interpreted 
language and several static compilers for Java were on the market, producing code 
that ran faster than bytecode, but that usually violated the language semantics in 
some fundamental way. As this book will stress again and again, the potential power 
of an adaptive runtime approach exceeds, by far, that of any ahead-of-time solution, 
but is harder to achieve.



Preface

[ 2 ]

Since there were no news about HotSpot in 1998, youthful hubris caused us to ask 
ourselves "How hard can it be? Let's make a better adaptive VM, and faster!" We 
had the right academic backgrounds and thought we knew in which direction to go. 
Even though it definitely was more of a challenge than we expected, we would still 
like to remind the reader that in 1998, Java on the server side was only just beginning 
to take off, J2EE hardly existed and no one had ever heard of a JSP. The problem 
domain was indeed a lot smaller in 1998.

The original plan was to have a proof of concept implementation of our own JVM 
finished in a year, while running the consulting business at the same time to finance 
the JVM development. The JVM was originally christened "RockIT", being both rock 
'n' roll, rock solid and IT. A leading "J" was later added for trademark reasons.

Naturally, after a few false starts, we needed to bring in venture capital. Explaining 
how to capitalize on an adaptive runtime (that the competitors gave away their own 
free versions of) provided quite a challenge. Not just because this was 1998, and 
investors had trouble understanding any venture not ultimately designed to either 
(1) send text messages with advertisements to cell phones or (2) start up a web-based 
mail order company.

Eventually, venture capital was secured and in early 2000, the first prototype of 
JRockit 1.0 went public. JRockit 1.0, besides being, as someone on the Internet put it 
"very 1.0", made some headlines by being extremely fast at things like multi-threaded 
server applications. Further venture capital was acquired using this as leverage. The 
consulting business was broken out into a separate corporation and Appeal Software 
Solutions was renamed Appeal Virtual Machines. Sales people were hired and we 
started negotiations with Sun for a Java license.

Thus, JRockit started taking up more and more of our time. In 2001, the remaining 
engineers working in the consulting business, which had also grown, were all finally 
absorbed into the full-time JVM project and the consulting company was mothballed. 
At this time we realized that we both knew exactly how to take JRockit to the next 
level and that our burn rate was too high. Management started looking for a suitor in 
the form of a larger company to marry.

In February 2002, BEA Systems acquired Appeal Virtual Machines, letting nervous 
venture capitalists sleep at night, and finally securing us the resources that we 
needed for a proper research and development lab. A good-sized server hall for 
testing was built, requiring reinforced floors and more electricity than was available 
in our building. For quite a while, there was a huge cable from a junction box on  
the street outside coming in through the server room window. After some time,  
we outgrew that lab as well and had to rent another site to host some of our servers.
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As part of the BEA platform, JRockit matured considerably. The first two years at 
BEA, plenty of the value-adds and key differentiators between JRockit and other 
Java solutions were invented, for example the framework that was later to become 
JRockit Mission Control. Several press releases, world-beating benchmark scores, 
and a virtualization platform quickly followed. With JRockit, BEA turned into one of 
the "big three" JVM vendors on the market, along with Sun and IBM, and a customer 
base of thousands of users developed. A celebration was in order when JRockit 
started generating revenue, first from the tools suite and later from the unparalleled 
GC performance provided by the JRockit Real Time product.

In 2008, BEA was acquired by Oracle, which caused some initial concerns, but 
JRockit and the JRockit team ended up getting a lot of attention and appreciation.

For many years now, JRockit has been running mission-critical applications all over 
the world. We are proud to have been part of the making of a piece of software 
with that kind of market penetration and importance. We are equally proud to have 
gone from a pre-alpha designed by six guys in a cramped office in the Old Town of 
Stockholm to a world-class product with a world-class product organization.

The contents of this book stems from more than a decade of our experience with 
adaptive runtimes in general, and with JRockit in particular. Plenty of the information 
in this book has, to our knowledge, never been published anywhere before.

We hope you will find it both useful and educational!

What this book covers
Chapter 1: Getting Started. This chapter introduces the JRockit JVM and JRockit 
Mission Control. Explains how to obtain the software and what the support matrix 
is for different platforms. We point out things to watch out for when migrating 
between JVMs from different vendors, and explain the versioning scheme for  
JRockit and JRockit Mission control. We also give pointers to resources where  
further information and assistance can be found.

Chapter 2: Adaptive Code Generation. Code generation in an adaptive runtime is 
introduced. We explain why adaptive code generation is both harder to do in a  
JVM than in a static environment as well as why it is potentially much more 
powerful. The concept of "gambling" for performance is introduced. We examine 
the JRockit code generation and optimization pipeline and walk through it with 
an example. Adaptive and classic code optimizations are discussed. Finally, we 
introduce various flags and directive files that can be used to control code  
generation in JRockit.
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Chapter 3: Adaptive Memory Management. Memory management in an adaptive 
runtime is introduced. We explain how a garbage collector works, both by looking 
at the concept of automatic memory management as well as at specific algorithms. 
Object allocation in a JVM is covered in some detail, as well as the meta-info needed 
for a garbage collector to do its work. The latter part of the chapter is dedicated to the 
most important Java APIs for controlling memory management. We also introduce 
the JRockit Real Time product, which can produce deterministic latencies in a Java 
application. Finally, flags for controlling the JRockit JVM memory management 
system are introduced.

Chapter 4: Threads and Synchronization. Threads and synchronization are very important 
building blocks in Java and a JVM. We explain how these concepts work in the Java 
language and how they are implemented in the JVM. We talk about the need for a Java 
Memory Model and the intrinsic complexity it brings. Adaptive optimization based on 
runtime feedback is done here as well as in all other areas of the JVM. A few important 
anti-patterns such as double-checked locking are introduced, along with common 
pitfalls in parallel programming. Finally we discuss how to do lock profiling in JRockit 
and introduce flags that control the thread system.

Chapter 5: Benchmarking and Tuning. The relevance of benchmarking and the 
importance of performance goals and metrics is discussed. We explain how to create 
an appropriate benchmark for a particular problem set. Some industrial benchmarks 
for Java are introduced. Finally, we discuss in detail how to modify application 
and JVM behavior based on benchmark feedback. Extensive examples of useful 
command-line flags for the JRockit JVM are given.

Chapter 6: JRockit Mission Control. The JRockit Mission Control tools suite is 
introduced. Startup and configuration details for different setups are given. We 
explain how to run JRockit Mission Control in Eclipse, along with tips on how 
to configure JRockit to run Eclipse itself. The different tools are introduced and 
common terminology is established. Various ways to enable JRockit Mission  
Control to access a remotely running JRockit, together with trouble-shooting tips,  
are provided.

Chapter 7: The Management Console. This chapter is about the Management Console 
component in JRockit Mission Control. We introduce the concept of diagnostic 
commands and online monitoring of a JVM instance. We explain how trigger rules 
can be set, so that notifications can be given upon certain events. Finally, we show 
how to extend the Management Console with custom components.
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Chapter 8: The Runtime Analyzer. The JRockit Runtime Analyzer (JRA) is introduced. 
The JRockit Runtime Analyzer is an on-demand profiling framework that produces 
detailed recordings about the JVM and the application it is running. The recorded 
profile can later be analyzed offline, using the JRA Mission Control plugin. 
Recorded data includes profiling of methods and locks, as well as garbage collection 
information, optimization decisions, object statistics, and latency events. You will 
learn how to detect some common problems in a JRA recording and how the latency 
analyzer works.

Chapter 9: The Flight Recorder. The JRockit Flight Recorder has superseded JRA 
in newer versions of the JRockit Mission Control suite. This chapter explains the 
features that have been added that facilitate even more verbose runtime recordings. 
Differences in functionality and GUI are covered.

Chapter 10: The Memory Leak Detector. This chapter introduces the JRockit Memory 
Leak Detector, the final tool in the JRockit Mission Control tools suite. We explain  
the concept of a memory leak in a garbage collected language and discuss several  
use cases for the Memory Leak Detector. Not only can it be used to find unintentional 
object retention in a Java application, but it also works as a generic heap analyzer. 
Some of the internal implementation details are given, explaining why this tool  
also runs with a very low overhead.

Chapter 11: JRCMD. The command-line tool JRCMD is introduced. JRCMD enables 
a user to interact with all JVMs that are running on a particular machine and to 
issue them diagnostic commands. The chapter has the form of a reference guide and 
explains the most important available diagnostic commands. A diagnostic command 
can be used to examine or modify the state of a running JRockit JVM

Chapter 12: Using the JRockit Management APIs. This chapter explains how to 
programmatically access some of the functionality in the JRockit JVM. This is  
the way the JRockit Mission Control suite does it. The APIs JMAPI and JMXMAPI 
are introduced. While they are not fully officially supported, several insights can be 
gained about the inner mechanisms of the JVM by understanding how they work. 
We encourage you to experiment with your own setup.

Chapter 13: JRockit Virtual Edition. We explain virtualization in a modern 
"cloud-based" environment. We introduce the product JRockit Virtual Edition. 
Removing the OS layer from a virtualized Java setup is less problematic than  
one might think. It can also help getting rid of some of the runtime overhead  
that is typically associated with virtualization. We go on to explain how potentially 
this can even reduce Java virtualization overhead to levels not possible even on 
physical hardware.
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What you need for this book
You will need a correctly installed JRockit JVM and runtime environment. To get full 
benefits from this book, a JRockit version of R28 or later is recommended. However, 
an R27 version will also work. Also, a correctly installed Eclipse for RCP/Plug-in 
Developers is useful, especially if trying out the different ways to extend JRockit 
Mission Control and for working with the programs in the code bundle.

Who this book is for
This book is for anyone with a working knowledge of Java, such as developers or 
administrators with experience from a few years of professional Java development  
or from managing larger Java installations. The book is divided into three parts.

The first part is focused on what a Java Virtual Machine, and to some extent any 
adaptive runtime, does and how it works. It will bring up strengths and weaknesses 
of runtimes in general and of JRockit more specifically, attempting to explain good 
Java coding practices where appropriate. Peeking inside the "black box" that is the 
JVM will hopefully provide key insights into what happens when a Java system 
runs. The information in the first part of the book will help developers and architects 
understand the consequences of certain design decisions and help them make better 
ones. This part might also work as study material in a university-level course on 
adaptive runtimes.

The second part of the book focuses on using the JRockit Mission Control to 
make Java applications run more optimally. This part of the book is useful for 
administrators and developers who want to tune JRockit to run their particular 
applications with maximum performance. It is also useful for developers who want  
to tune their Java applications for better resource utilization and performance. It 
should be realized, however, that there is only so much that can be done by tuning  
the JVM—sometimes there are simple or complex issues in the actual applications, 
that, if resolved, will lead to massive performance increases. We teach you how the 
JRockit Mission Control suite suite assists you in finding such bottlenecks and helps 
you cut hardware and processing costs.

The final part of the book deals with important JRockit-related technologies that  
have recently, or will soon, be released. This chapter is for anyone interested in  
how the Java landscape is transforming over the next few years and why. The 
emphasis is on virtualization.

Finally, there is a bibliography and a glossary of all technical terms used in the book.
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Conventions
This book will, at times, show Java source code and command lines. Java code 
is formatted with a fixed width font with standard Java formatting. Command-
line utilities and parameters are also be printed with a fixed width font. Likewise, 
references to file names, code fragments, and Java packages in sentences will use a 
fixed width font.

Short and important information, or anecdotes, relevant to the current section of text 
is placed in information boxes.

The contents of an information box—this is important!

Technical terms and fundamental concepts are highlighted as keywords. Keywords 
also often appear in the glossary for quick reference.

Throughout the book, the capitalized tags JROCKIT_HOME and JAVA_HOME should be 
expanded to the full path of your JRockit JDK/JRE installation. For example, if you 
have installed JRockit so that your java executable is located in:

C:\jrockits\jrockit-jdk1.5.0_17\bin\java.exe

the JROCKIT_HOME and JAVA_HOME variables should be expanded to:

C:\jrockits\jrockit-jdk1.5.0_17\

The JRockit JVM has its own version number. The latest major version of JRockit is 
R28. Minor revisions of JRockit are annotated with point release numbers after the 
major version number. For example R27.1 and R27.2. We will, throughout the book, 
assume R27.x to mean any R27-based version of the JRockit JVM, and R28.x to mean 
any R28-based version of the JRockit JVM.

This book assumes that R28 is the JRockit JVM being used, where 
no other context is supplied. Information relevant only to earlier 
versions of JRockit is specifically tagged.

JRockit Mission Control clients use more standard revision numbers, for example 
4.0. Any reference to 3.x and 4.0 in the context of tools mean the corresponding 
versions of the JRockit Mission Control clients. At the time of this writing, 4.0 is the 
latest version of the Mission Control client, and is, unless explicitly stated otherwise, 
assumed to be the version in use in the examples in this book.
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We will sometimes refer to third-party products. No deeper familiarity with them  
is required to get full benefits from this book. The products mentioned are:

Oracle WebLogic Server—the Oracle J2EE application server.

http://www.oracle.com/weblogicserver

Oracle Coherence—the Oracle in-memory distributed cache technology.

http://www.oracle.com/technology/products/coherence/index.html

Oracle Enterprise Manager—the Oracle application management suite.

http://www.oracle.com/us/products/enterprise-manager/index.htm

Eclipse—the Integrated Development Environment for Java (and other languages).

http://www.eclipse.org

HotSpot™—the HotSpot™ virtual machine.

http://java.sun.com/products/hotspot

See the link associated with each product for further information.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send  
us a note in the SUGGEST A TITLE form on www.packtpub.com or 
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.
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Downloading the example code for the book
Visit http://www.packtpub.com/site/default/
files/8068_Code.zip to directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text 
or the code—we would be grateful if you would report this to us. By doing so, you 
can save other readers from frustration and help us improve subsequent versions 
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected 
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Getting Started
While parts of this book, mainly the first part, contain generic information on the 
inner workings of all adaptive runtimes, the examples and in-depth information 
still assume that the JRockit JVM is used. This chapter briefly explains how to obtain 
the JRockit JVM and covers porting issues that may arise while deploying your Java 
application on JRockit.

In this chapter, you will learn:

•	 How to obtain JRockit
•	 The platforms supported by JRockit
•	 How to migrate to JRockit
•	 About the command-line options to JRockit
•	 How to interpret JRockit version numbers
•	 Where to get help if you run into trouble

Obtaining the JRockit JVM
To get the most out of this book, the latest version of the JRockit JVM is required. For 
JRockit versions prior to R27.5, a license key was required to access some of the more 
advanced features in JRockit. As part of the Oracle acquisition of BEA Systems, the 
license system was removed and it is now possible to access all features in JRockit 
without any license key at all. This makes it much easier to evaluate JRockit and 
to use JRockit in development. To use JRockit in production, a license must still be 
purchased. For Oracle customers, this is rarely an issue, as JRockit is included with 
most application suites, for example, any suite that includes WebLogic Server will 
also include JRockit. 
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At the time of writing, the easiest way to get a JRockit JVM is to download and  
install JRockit Mission Control—the diagnostics and profiling tools suite for JRockit. 
The folder layout of the Mission Control distribution is nearly identical to that of any 
JDK and can readily be used as a JDK. The authors would very much like to be able 
to provide a self-contained JVM-only JDK for JRockit, but this is currently beyond 
our control. We anticipate this will change in the near future.

Before JRockit Mission Control is downloaded, ensure that a supported platform 
is used. The server part of Mission Control is supported on all platforms for which 
JRockit is supported.

Following is the platform matrix for JRockit Mission Control 3.1.x:

Platform Java 1.4.2 Java 5.0 Java 6
Linux x86 X X X
Linux x86-64 N/A X X
Linux Itanium X (server only) X (server only) N/A
Solaris SPARC (64-bit) X (server only) X (server only) X (server only)
Windows x86 X X X
Windows x86-64 N/A X (server only) X (server only)
Windows Itanium X (server only) X (server only) N/A

Following is the platform matrix for JRockit Mission Control 4.0.0:

Platform Java 5.0 Java 6
Linux x86 X X
Linux x86-64 X X
Solaris SPARC (64-bit) X (server only) X (server only)
Windows x86 X X
Windows x86-64 X X 

Note that the JRockit Mission Control client is not (yet) supported on Solaris, but  
that 64-bit Windows support has been added in 4.0.0.

When running JRockit Mission Control on Windows, ensure that 
the system's temporary directory is on a file system that supports 
per-user file access rights. In other words, make sure it is not on a 
FAT formatted disk. On a FAT formatted disk, essential features 
such as automatic discovery of local JVMs will be disabled.



Chapter 1

[ 13 ]

The easiest way to get to the JRockit home page is to go to your favorite search 
engine and type in "download JRockit". You should end up on a page on the 
Oracle Technology Network from which the JVM and the Mission Control suite 
can be downloaded. The installation process varies between platforms, but should  
be rather self explanatory. 

Migrating to JRockit
Throughout this book, we will refer to the directory where the JRockit JVM is installed 
as JROCKIT_HOME. It might simplify things to make JROCKIT_HOME a system variable 
pointing to that particular path. After the installation has completed, it is a good idea to 
put the JROCKIT_HOME/bin directory on the path and to update the scripts for any Java 
applications that should be migrated to JRockit. Setting the JAVA_HOME environment 
variable to JROCKIT_HOME is also recommended. In most respects JRockit is a direct 
drop in replacement for other JVMs, but some startup arguments, for example 
arguments that control specific garbage collection behavior, typically differ between 
JVMs from different vendors. Common arguments, however, such as arguments for 
setting a maximum heap size, tend to be standardized between JVMs.

For more information about specific migration details, see the 
Migrating Applications to the Oracle JRockit JDK Chapter in the 
online documentation for JRockit.

Command-line options
There are three main types of command-line options to JRockit—system properties, 
standardized options (-X flags), and non-standard ones (-XX flags).

System properties
Startup arguments to a JVM come in many different flavors. Arguments starting 
with –D are interpreted as a directive to set a system property. Such system 
properties can provide configuration settings for various parts of the Java class 
libraries, for example RMI. JRockit Mission Control provides debugging information 
if started with –Dcom.jrockit.mc.debug=true. In JRockit versions post R28, the use 
of system properties to provide parameters to the JVM has been mostly deprecated. 
Instead, most options to the JVM are provided through non-standard options and the 
new HotSpot style VM flags.
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Standardized options
Configuration settings for the JVM typically start with -X for settings that are 
commonly supported across vendors. For example, the option for setting the 
maximum heap size, -Xmx, is the same on most JVMs, JRockit included. There 
are a few exceptions here. The JRockit flag –Xverbose provides logging with 
optional sub modules. The similar (but more limited) flag in HotSpot is called  
just –verbose.

Non-standard options
Vendor-specific configuration options are usually prefixed with -XX. These options 
should be treated as potentially unsupported and subject to change without notice.  
If any JVM setup depends on -XX-prefixed options, those flags should be removed 
or ported before an application is started on a JVM from a different vendor.

Once the JVM options have been determined, the user application can be started. 
Typically, moving an existing application to JRockit leads to an increase in runtime 
performance and a slight increase in memory consumption.

The JVM documentation should always be consulted to determine if non-standard 
command-line options have the same semantics between different JVMs and  
JVM versions.

VM flags
In JRockit versions post R28, there is also a subset of the non-standard options called 
VM flags. The VM flags use the -XX:<flag>=<value> syntax. These flags can also be 
read and, depending on the particular flag, written using the command-line utility 
JRCMD after the JVM has been started. For more information on JRCMD,  
see Chapter 11.

Changes in behavior
Sometimes there is a change of runtime behavior when moving from one JVM to 
another. Usually it boils down to different JVMs interpreting the Java Language 
Specification or Java Virtual Machine Specification differently, but correctly. In 
several places there is some leeway in the specification that allows different vendors 
to implement the functionality in a way that best suits the vendor's architecture. If an 
application relies too much on a particular implementation of the specification, the 
application will almost certainly fail when switching to another implementation.

For example, during the milestone testing for an older version of Eclipse, some of  
the tests started failing when running on JRockit. This was due to the tests having 
inter-test dependencies, and this particular set of tests were relying on the test 
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harness running the tests in a particular order. The JRockit implementation of the 
reflective listing of methods (Class#getDeclaredMethods) did not return the 
methods in the same order as other JVMs, which according to the specification 
is fine. It was later decided by the Eclipse development team that relying on a 
particular method ordering was a bug, and the tests were consequently corrected.

If an application has not been written to the specification, but rather to the behavior 
of the JVM from a certain vendor, it can fail. It can even fail when running with a 
more recent version of the JVM from the same vendor. When in doubt, consult the 
Java Language Specification and the documentation for the JDK.

Differences in performance may also be an issue when switching JVMs for an 
application. Latent bugs that weren't an issue with one JVM may well be an issue 
with another, if for example, performance differences cause events to trigger earlier 
or later than before. These things tend to generate support issues but are rarely the 
fault of the JVM.

For example, a customer reported that JRockit crashed after only a day. Investigation  
concluded that the application also crashed with a JVM from another vendor, but 
it took a few more days for the application to crash. It was found that the crashing 
program ran faster in JRockit, and that the problem; a memory leak, simply came to 
light much more quickly.

Naturally, any JVM, JRockit included, can have bugs. In order to brand itself "Java", 
a Java Virtual Machine implementation has to pass an extensive test suite—the Java 
Compatibility Kit (JCK). 

JRockit is continuously subjected to a battery of tests using a distributed test system. 
Large test suites, of which the JCK is one component, are run to ensure that JRockit 
can be released as a stable, Java compatible, and certified JVM. Large test suites 
from various high profile products, such as Eclipse and WebLogic Server, as well as 
specially designed stress tests, are run on all supported platforms before a release 
can take place. Continuous testing against performance regressions is also done as a 
fundamental part of our QA infrastructure. Even so, bugs do happen. If JRockit does 
crash, it should always be reported to Oracle support engineers.

A note on JRockit versioning
The way JRockit is versioned can be a little confusing. There are at least three version 
numbers of interest for each JRockit release:

1. The JRockit JVM version.
2. The JDK version.
3. The Mission Control version.
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One way to obtain the version number of the JVM is to run java –version from the 
command prompt. This would typically result in something like the following lines 
being printed to the console:

java version "1.6.0_14"

  Java(TM) SE Runtime Environment (build 1.6.0_14-b08)

  Oracle JRockit(R) (build R28.0.0-582-123273-1.6.0_ 
    14-20091029-2121-windows-ia32, compiled mode)

The first version number is the JDK version being bundled with the JVM. This 
number is in sync with the standard JDK versions, for the JDK shipped with 
HotSpot. From the example, we can gather that Java 1.6 is supported and that it is 
bundled with the JDK classes from update 14-b08. If you, for example, are looking  
to see what JDK class-level security fixes are included in a certain release, this would 
be the version number to check.

The JRockit version is the version number starting with an 'R'. In the above example 
this would be R28.0.0. Each version of the JRockit JVM is built for several different 
JDKs. The R27.6.5, for instance, exists in versions for Java 1.4, 1.5 (5.0) and 1.6 (6.0). 
With the R28 version of JRockit, the support for Java 1.4 was phased out.

The number following the version number is the build number, and the number 
after that is the change number from the versioning system. In the example, the  
build number was 582 and the change number 123273. The two numbers after the 
change number are the date (in compact ISO 8601 format) and time (CET) the build 
was made. After that comes the operating system and CPU architecture that the JVM 
was built for.

The version number for JRockit Mission Control can be gathered by executing 
jrmc -version or jrmc -version | more from the command line. 

On Windows, the JRockit Mission Control launcher (jrmc) 
is based on the javaw launcher to avoid opening a console 
window. Console output will not show unless explicitly 
redirected, for example to more.
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The output should look like this:

Oracle JRockit(R) Mission Control(TM) 4.0 (for JRockit R28.0.0)
  java.vm.version = R28.0.0-582-123273-1.6.0 
    _14-20091029-2121-windows-ia32
  build = R28.0.0-582
  chno = 123217
  jrmc.fullversion = 4.0.0
  jrmc.version = 4.0
  jrockit.version = R28.0.0
  year = 2009

The first line tells us what version of Mission Control this is and what version of 
JRockit it was created for. The java.vm.version line tells us what JVM Mission 
Control is actually running on. If Mission Control has been launched too "creatively", 
for example by directly invoking its main class, there may be differences between  
the JVM information in the two lines. If this is the case, some functionality in  
JRockit Mission Control, such as automatic local JVM discovery, may be disabled.

Getting help
There are plenty of helpful resources on JRockit and JRockit Mission Control 
available on the Oracle Technology Network, such as blogs, articles, and forums. 
JRockit developers and support staff are continuously monitoring the forums, so 
if an answer to a particular question cannot be found in the forums already, it is 
usually answered within a few days. Some questions are asked more frequently  
than others and have been made into "stickies"—forum posts that will stay at the  
top of the topic listings. There is, for example, a "sticky" available on how to acquire 
license files for older versions of JRockit.

The JRockit Forum can, at the time of writing, be found here:
http://forums.oracle.com/forums/forum.jspa?forumID=561 
Here are the locations of some popular JRockit blogs:

http://blogs.oracle.com/jrockit/

http://blogs.oracle.com/hirt/

http://blogs.oracle.com/staffan/
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Summary
This chapter provided a short guide for getting started with the JRockit JVM and for 
migrating existing applications to the JRockit JVM. We covered installing JRockit and 
provided insights into common pitfalls when migrating a Java application from one 
JVM to another.

The different categories of command-line flags that JRockit supports were explained, 
and we showed examples of how to find the version numbers for the different 
components of the JRockit JDK.

Finally, we provided pointers to additional help.



Adaptive Code Generation
This chapter covers code generation and code optimization in a JVM runtime 
environment, both as a general concept as well as taking a closer look at the JRockit 
code generation internals. We start by discussing the Java bytecode format, and how 
a JIT compiler works, making a case for the power of adaptive runtimes. After that, 
we drill down into the JRockit JVM. Finally, the reader learns how to control code 
generation and optimization in JRockit.

You will learn the following from this chapter:

•	 The benefits of a portable platform-independent language such as Java.
•	 The structure of the Java bytecode format and key details of the Java Virtual 

Machine specification.
•	 How the JVM interprets bytecode in order to execute a Java program.
•	 Adaptive optimizations at runtime versus static ahead-of-time  

compilation. Why the former is better but harder to do. The  
"gambling on performance" metaphor.

•	 Why code generation in an adaptive runtime is potentially very powerful.
•	 How Java can be compiled to native code, and what the main problems are. 

Where should optimizations be done—by the Java programmer, by the JVM, 
or at the bytecode level?

•	 How the JRockit code pipeline works and its design rationales.
•	 How to control the code generator in JRockit.
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Platform independence
The main selling point for Java when it first came out, and the main contributor to its 
success as a mainstream language, was the write once/run everywhere concept. Java 
programs compile into platform-independent, compact Java bytecode (.class files). 
There is no need to recompile a Java application for different architectures, since all 
Java programs run on a platform-specific Java Virtual Machine that takes care of the 
final transition to native code.

This widely enhanced portability is a good thing. An application, such as a C++ 
program, that compiles to a platform-dependent format, has a lot less flexibility.  
The C++ compiler may compile and heavily optimize the program, for example for 
the x86 architecture. Then x86 will be the only architecture on which the program 
can run. We can't readily move the program, optimizations and all, to SPARC. It has 
to be recompiled, perhaps by a weaker compiler that doesn't optimize as well as for 
x86. Also if the x86 architecture is upgraded with new instructions, the program will 
not be able to take advantage of these without being recompiled. Portability can of 
course be achieved by distributing source code, but that may instead be subject to 
various license restrictions. In Java, the portability problem is moved to the JVM,  
and thus becomes third-party responsibility for the programmer.

In the Java world, all platforms on which a JVM exists can execute Java. 
Platform-independent bytecode is not a new concept per se, and has been used in 
several languages in the past, for example Pascal and Smalltalk. However, Java was 
the first language where it was a major factor in its widespread adoption.

When Java was new, its applications were mainly in the form of Applets, designed 
for embedded execution in a web browser. Applets are typical examples of client 
side programs. However, Java is not only platform-independent, but it also has 
several other nice intrinsic language properties such as built-in memory management 
and protection against buffer overruns. The JVM also provides the application with 
a secure sandboxed platform model. All of these things make Java ideal not only for 
client applications, but also for complex server side logic.

It took a few years before the benefits of Java as a server-side language were 
fully acknowledged. Its inherent robustness led to rapidly shorter application 
development times compared to C++, and to widespread server adoption. Shorter 
development cycles matter a lot when the application being developed is fairly 
complex, such as is typically the case for the server side.
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The Java Virtual Machine
While platform-independent bytecode provides complete portability between 
different hardware platforms, a physical CPU still can't execute it. The CPU  
only knows to execute its particular flavor of native code.

Throughout this text, we will refer to code that is specific to a certain 
hardware architecture as native code. For example, x86 assembly language or 
x86 machine code is native code for the x86 platform. Machine code should 
be taken to mean code in binary platform-dependent format. Assembly 
language should be taken to mean machine code in human-readable form.

Thus, the JVM is required to turn the bytecodes into native code for the CPU on 
which the Java application executes. This can be done in one of the following two 
ways (or a combination of both): 

•	 The Java Virtual Machine specification fully describes the JVM as a state 
machine, so there is no need to actually translate bytecode to native code.  
The JVM can emulate the entire execution state of the Java program, 
including emulating each bytecode instruction as a function of the JVM  
state. This is referred to as bytecode interpretation. The only native code 
(barring JNI) that executes directly here is the JVM itself.

•	 The Java Virtual Machine compiles the bytecode that is to be executed to 
native code for a particular platform and then calls the native code. When 
bytecode programs are compiled to native code, this is typically done one 
method at the time, just before the method in question is to be executed for 
the first time. This is known as Just-In-Time compilation (JIT).

Naturally, a native code version of a program executes orders of magnitude  
faster than an interpreted one. The tradeoff is, as we shall see, bookkeeping  
and compilation time overhead.

Stack machine
The Java Virtual Machine is a stack machine. All bytecode operations, with few 
exceptions, are computed on an evaluation stack by popping operands from the 
stack, executing the operation and pushing the result back to the stack. For example, 
an addition is performed by pushing the two terms to the stack, executing an add 
instruction that consumes the operands and produces a sum, which is placed on  
the stack. The party interested in the result of the addition then pops the result.

In addition to the stack, the bytecode format specifies up to 65,536 registers or  
local variables.
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An operation in bytecode is encoded by just one byte, so Java supports up to 256 
opcodes, from which most available values are claimed. Each operation has 
a unique byte value and a human-readable mnemonic.

The only new bytecode value that has been assigned throughout the 
history of the Java Virtual Machine specification is 0xba—previously 
reserved, but about to be used for the new operation invokedynamic. 
This operation can be used to implement dynamic dispatch when a 
dynamic language (such as Ruby) has been compiled to Java bytecode. 
For more information about using Java bytecode for dynamic languages, 
please refer to Java Specification Request (JSR) 292 on the Internet.

Bytecode format
Consider the following example of an add method in Java source code and then in 
Java bytecode format:

public int add(int a, int b) {
  return a + b;
}

public int add(int, int);
  Code:
     0:   iload_1   // stack: a
     1:   iload_2   // stack: a, b
     2:   iadd      // stack: (a+b)
     3:   ireturn   // stack: 
}

The input parameters to the add method, a and b, are passed in local variable 
slots 1 and 2 (Slot 0 in an instance method is reserved for this, according to the 
JVM specification, and this particular example is an instance method). The first  
two operations, with opcodes iload_1 and iload_2, push the contents of these 
local variables onto the evaluation stack. The third operation, iadd, pops the two 
values from the stack, adds them and pushes the resulting sum. The fourth and  
final operation, ireturn, pops the sum from the bytecode stack and terminates 
the method using the sum as return value. The bytecode in the previous example  
has been annotated with the contents of the evaluation stack after each operation  
has been executed.

Bytecode for a class can be dumped using the javap command with 
the –c command-line switch. The command javap is part of the JDK.
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Operations and operands
As we see, Java bytecode is a relatively compact format, the previous method  
only being four bytes in length (a fraction of the source code mass). Operations  
are always encoded with one byte for the opcode, followed by an optional number 
of operands of variable length. Typically, a bytecode instruction complete with 
operands is just one to three bytes.

Here is another small example, a method that determines if a number is even or not. 
The bytecode has been annotated with the hexadecimal values corresponding to the 
opcodes and operand data.

public boolean even(int number) {
  return (number & 1) == 0;
}

public boolean even(int);
  Code:
    0:   iload_1     // 0x1b            number
    1:   iconst_1    // 0x04            number, 1
    2:   iand        // 0x7e            (number & 1)
    3:   ifne    10  // 0x9a 0x00 0x07
    6:   iconst_1    // 0x03            1
    7:   goto    11  // 0xa7 0x00 0x04
    10:  iconst_0    // 0x03            0
    11:  ireturn     // 0xac
}

The program pushes its in-parameter, number and the constant 1 onto the evaluation 
stack. The values are then popped, ANDed together, and the result is pushed on 
the stack. The ifne instruction is a conditional branch that pops its operand from 
the stack and branches if it is not zero. The iconst_0 operation pushes the constant 
0 onto the evaluation stack. It has the opcode value 0x3 in bytecode and takes no 
operands. In a similar fashion iconst_1 pushes the constant 1. The constants are 
used for the boolean return value.

Compare and jump instructions, for example ifne (branch on not equal, bytecode 
0x9a), generally take two bytes of operand data (enough for a 16 bit jump offset).

For example, if a conditional jump should move the instruction pointer 
10,000 bytes forward in the case of a true condition, the operation would 
be encoded as 0x9a 0x27 0x10 (0x2710 is 10,000 in hexadecimal. All 
values in bytecode are big-endian).

Other more complex constructs such as table switches also exist in bytecode with  
an entire jump table of offsets following the opcode in the bytecode.
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The constant pool
A program requires data as well as code. Data is used for operands. The operand 
data for a bytecode program can, as we have seen, be kept in the bytecode instruction 
itself. But this is only true when the data is small enough, or commonly used (such as 
the constant 0).

Larger chunks of data, such as string constants or large numbers, are stored 
in a constant pool at the beginning of the .class file. Indexes to the data in 
the pool are used as operands instead of the actual data itself. If the string 
aVeryLongFunctionName had to be separately encoded in a compiled method 
each time it was operated on, bytecode would not be compact at all.

Furthermore, references to other parts of the Java program in the form of method, field, 
and class metadata are also part of the .class file and stored in the constant pool.

Code generation strategies
There are several ways of executing bytecode in a JVM, from just emulating the 
bytecode in a pure bytecode interpreter to converting everything to native code  
for a particular platform.

Pure bytecode interpretation
Early JVMs contained only simple bytecode interpreters as a means of executing  
Java code. To simplify this a little, a bytecode interpreter is just a main function  
with a large switch construct on the possible opcodes. The function is called with 
a state representing the contents of the Java evaluation stack and the local variables. 
Interpreting a bytecode operation uses this state as input and output. All in all,  
the fundamentals of a working interpreter shouldn't amount to more than a  
couple of thousand lines of code.

There are several simplicity benefits to using a pure interpreter. The code generator 
of an interpreting JVM just needs to be recompiled to support a new hardware 
architecture. No new native compiler needs to be written. Also, a native compiler  
for just one platform is probably much larger than our simple switch construct.

A pure bytecode interpreter also needs little bookkeeping. A JVM that compiles  
some or all methods to native code would need to keep track of all compiled code.  
If a method is changed at runtime, which Java allows, it needs to be scheduled  
for regeneration as the old code is obsolete. In a pure interpreter, its new bytecodes  
are simply interpreted again from the start the next time that we emulate a call to  
the method.
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It follows that the amount of bookkeeping in a completely interpreted model is 
minimal. This lends itself well to being used in an adaptive runtime such as a  
JVM, where things change all the time.

Naturally, there is a significant performance penalty to a purely interpreted language 
when comparing the execution time of an interpreted method with a native code 
version of the same code. Sun Microsystems' Classic Virtual Machine started out as  
a pure bytecode interpreter.

Running our previous add method, with its four bytecode instructions, might easily 
require the execution of ten times as many native instructions in an interpreter 
written in C. Whereas, a native version of our add most likely would just be two 
assembly instructions (add and return).

int evaluate(int opcode, int* stack, int* localvars) {
  switch (opcode) {
    ...
    case iload_1:
    case iload_2:
      int lslot = opcode - iload_1;
      stack[sp++] = localvars[lslot];
      break;
    case iadd:
      int sum = stack[--sp] + stack[--sp];
      stack[sp++] = sum;
      break;
    case ireturn:
      return stack[--sp];
    ...
  }
}

The previous example shows simple pseudo code for a bytecode interpreter with 
just enough functionality to execute our add method. Even this simple code snippet 
amounts to tens of assembly instructions in the natively compiled JVM. Considering 
that a natively compiled version of the add method would just be two instructions, 
this illustrates the performance problem with pure bytecode interpretation.

JIT compiling the add method on x86 yields us:

add eax, edx  // eax = edx+eax

ret           // return eax
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Note that this book will sometimes show assembly code examples in 
places, to illustrate points. No prior knowledge of assembly code on 
any platform is needed to reap the full benefits of the text. However, the 
concept of low level languages should be familiar to the reader. If you 
feel yourself breaking out in a cold sweat over the assembly listings that 
are displayed in a few places throughout the text, don't worry too much. 
They are not necessary to understand the big picture.

Static compilation
In the early days of Java, several simple "brute force" approaches to getting around the 
bytecode performance problem were made. These usually involved static compilation 
in some form. Usually, an entire Java program was compiled into native code before 
execution. This is known as ahead-of-time compilation. Basically, ahead-of-time 
compilation is what your average C++ compiler does all the time.

As a limited subset of the problem of static compilation for Java is easy to solve, 
a row of products appeared in the late nineties, using methodologies like turning 
bytecodes into naive C code and then passing it to a C compiler. Most of the time,  
the resulting code ran significantly faster than purely interpreted bytecode. 
However, these kinds of products rarely supported the full dynamic nature of the 
Java language and were unable to graciously handle things like code being replaced 
at runtime without large workarounds.

The obvious disadvantage of static compilation for Java is that the benefits of platform 
independence immediately disappear. The JVM is removed from the equation.

Another disadvantage is that the automatic memory management of Java has  
to be handled more or less explicitly, leading to limited implementations with 
scalability issues.

As Java gradually moved more and more towards server side applications, where its 
dynamic nature was put to even more use, static solutions became impractical. For 
example, an application server generating plenty of Java Server Pages (JSPs) on the 
fly reduces a static compiler to a JIT compiling JVM, only slower and less adaptive.
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Note that static ahead-of-time solutions, while unsuitable for 
implementing Java, can be useful in certain other contexts, for example 
ahead-of-time analysis. Program analysis is a time consuming 
business. If some of it can be done offline, before program execution, and 
communicated to the JVM, there may be performance benefits to be had. 
For example, .class files may be annotated with offline profiling data, 
perhaps in the form of Java Annotations.

Total JIT compilation
Another way to speed up bytecode execution is to not use an interpreter at all, and JIT 
compile all Java methods to native code immediately when they are first encountered. 
The compilation takes place at runtime, inside the JVM, not ahead-of-time. 

Unlike completely static ahead-of-time compilation, on the fly compilation fits better 
into the Java model with a mobile adaptive language.

Total JIT compilation has the advantage that we do not need to maintain an 
interpreter, but the disadvantage is that compile time becomes a factor in the total 
runtime. While we definitely see benefits in JIT compiling hot methods, we also 
unnecessarily spend expensive compile time on cold methods and methods that  
are run only once. Those methods might as well have been interpreted instead.

A frequently executed method is said to be hot. A method that is not 
frequently executed and doesn't contribute to the overall program 
performance regardless of its implementation is said to be cold.

This can be remedied by implementing different levels of compiler quality in the  
JIT compiler, starting out with every method as a quick and dirty version. When  
the JVM knows that a method is hot, for example if the number of invocations of  
the method reaches a certain threshold value, it can be queued for recompilation 
with more optimizations applied. This naturally takes longer.
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The main disadvantage of total JIT compilation is still low code generation speed.  
In the same way that an interpreted method executes hundreds of times slower than 
a native one, a native method that has to be generated from Java bytecodes takes 
hundreds of times longer to get ready for execution than an interpreted method. 
When using total JIT compilation, it is extremely important to spend clock cycles on 
optimizing code only where it will pay off in better execution time. The mechanism 
that detects hot methods has to be very advanced, indeed. Even a quick and dirty JIT 
compiler is still significantly slower at getting code ready for execution than a pure 
interpreter. The interpreter never needs to translate bytecodes into anything else.

Another issue that becomes more important with total JIT compilation is the large 
amounts of throwaway code that is produced. If a method is regenerated, for 
example since assumptions made by the compiler are no longer valid, the old code 
takes up precious memory. The same is true for a method that has been optimized. 
Therefore, the JVM requires some kind of "garbage collection" for generated code 
or a system with large amounts of JIT compilation would slowly run out of native 
memory as code buffers grow.

JRockit is an example of a JVM that uses an advanced variant of total JIT compilation 
as its code generation strategy.

Mixed mode interpretation
The first workable solution that was proposed, that would both increase 
execution speed and not compromise the dynamic nature of Java, was mixed 
mode interpretation.

In a JVM using mixed mode interpretation, all methods start out as interpreted when 
they are first encountered. However, when a method is found to be hot, it is scheduled 
for JIT compilation and turned into more efficient native code. This adaptive approach 
is similar to that of keeping different code quality levels in the JIT, described in the 
previous section.

Detecting hot methods is a fundamental functionality of every modern JVM, 
regardless of code execution model, and it will be covered to a greater extent later  
in this chapter. Early mixed mode interpreters typically detected the hotness of a 
method by counting the number of times it was invoked. If this number was large 
enough, optimizing JIT compilation would be triggered for the method.

Similar to total JIT compilation, if the process of determining if a method is hot is 
good enough, the JVM spends compilation time only on the methods where it makes 
the most difference. If a method is seldom executed, the JVM would waste no time 
turning it into native code, but rather keep interpreting it each time that it is called.
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Bookkeping JIT code is a simple problem with mixed mode interpretation. If a version 
of a compiled method needs to be regenerated or an assumption is invalidated, its code 
is thrown out. The next time the method is called, it will once again be interpreted. If 
the method is still hot, it will eventually be recompiled with the changed model of the 
world incorporated.

Sun Microsystems was the first vendor to embrace mixed mode 
interpretation in the HotSpot compiler, available both in a client 
version and a server side version, the latter with more advanced code 
optimizations. HotSpot in turn, was based on technology acquired 
from Longview Technologies LLC (which started out as Animorphic).

Adaptive code generation
Java is dynamic in nature and certain code generation strategies fit less well than 
others. From the earlier discussion, the following conclusions can be drawn:

•	 Code generation should be done at runtime, not ahead of time.
•	 All methods cannot be treated equally by code generator. There needs to 

be a way to discern a hot method from a cold one. Otherwise unnecessary 
optimization effort is spent on cold methods, or worse, not enough 
optimization effort on hot methods.

•	 In a JIT compiler, bookkeeping needs to be in place in order to keep  
up with the adaptive runtime. This is because generated native code 
invalidated by changes to the running program must be thrown away  
and potentially regenerated.

Achieving code execution efficiency in an adaptive runtime, no matter what JIT  
or interpretation strategy it uses, all boils down to the equation:

Total Execution Time = Code Generation Time + Execution Time

In other words, if we spend lots of effort carefully generating and optimizing every 
method to make sure it turns into efficient native code, we contribute too much code 
generation time to the total execution time. We want the JVM to execute our Java 
code in every available clock cycle, not use the expensive cycles to garbage collect  
or generate code.

If we spend too little time preparing methods for execution, their runtime performance 
is likely to be bad and thus contribute too many "inefficient" cycles to the total 
execution time. 

The JVM needs to know precisely which methods are worth the extra time spent  
on more elaborate code generation and optimization efforts.
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There are, of course, other aspects of total execution time, such as time spent in 
garbage collection. This, however, is beyond the scope of this chapter and will be 
covered in more detail in the chapter on memory management. Here it is sufficient 
to mention that the code optimizer sometimes can help reduce garbage collection 
overhead by generating efficient code, that is less memory bound. One example  
would be by applying escape analysis, which is briefly covered later in 
this chapter.

Determining "hotness"
As we have seen, "one size fits all" code generation that interprets every method, 
or JIT compiling every method with a high optimization level, is a bad idea in an 
adaptive runtime. The former, because although it keeps code generation time 
down, execution time goes way up. The latter, because even though execution is fast, 
generating the highly optimized code takes up a significant part of the total runtime. 
We need to know if a method is hot or not in order to know if we should give it lots 
of code generator attention, as we can't treat all methods the same.

Profiling to determine "hotness" can, as was hinted at in the previous sections, be 
implemented in several different ways. The common denominator for all ways of 
profiling is that a number of samples of where code spends execution time is collected. 
These are used by the runtime to make optimization decisions—the more samples 
available, the better informed decisions are made. Just a few isolated samples in 
different methods won't really tell us much about the execution profile of a program. 
Naturally, collecting samples always incurs some overhead in itself, and there is a 
tradeoff between having enough samples and the overhead of collecting them.

Invocation counters
One way to sample hot methods is to use invocation counters. An invocation counter 
is typically associated with each method and is incremented when the method is 
called. This is done either by the bytecode interpreter or in the form of an extra add 
instruction compiled into the prologue of the native code version of the method.

Especially in the JIT compiled world, where code execution speed doesn't  
disappear into interpretation overhead, invocation counters may incur some  
visible runtime overhead, usually in the form of cache misses in the CPU. This  
is because a particular location in memory has to be frequently written to by the  
add at the start of each method.
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Software-based thread sampling
Another, more cache friendly, way to determine hotness is by using thread 
sampling. This means periodically examining where in the program Java threads are 
currently executing and logging their instruction pointers. Thread sampling requires  
no code instrumentation.

Stopping threads, which is normally required in order to extract their contexts is, 
however, quite an expensive operation. Thus, getting a large amount of samples 
without disrupting anything at all requires a complete JVM-internal thread 
implementation, a custom operating system such as in Oracle JRockit Virtual Edition, 
or specialized hardware support.

Hardware-based sampling
Certain hardware platforms, such as Intel IA-64, provides hardware instrumentation 
mechanisms that may be used by an application. One example is the hardware IP 
sample buffer. While generating code for IA-64 is a rather complex business, at least 
the hardware architecture allows for collecting a large amount of samples cheaply, 
thus facilitating better optimization decisions.

Another benefit of hardware-based sampling is that it may provide other data, not 
just instruction pointers, cheaply. For example, hardware profilers may export data 
on how often a hardware branch predictor makes an incorrect assumption, or on 
how often the CPU caches miss in particular locations. The runtime can use this 
information to generate more optimal code. Inverting the condition of the jump 
instruction that caused the branch prediction miss and prefetching data ahead  
of the instruction that caused the cache miss would solve these issues. Thus, efficient 
hardware-based sampling can lay an excellent groundwork for further adaptive  
code optimizations in the runtime.

Optimizing a changing program
In assembly code, method calls typically end up as call instructions. Variants of 
these exist in all hardware architectures. Depending on the type of call, the format  
of the call instruction varies.

In object-oriented languages, virtual method dispatch is usually compiled as indirect 
calls (that is the destination has to be read from memory) to addresses in a dispatch 
table. This is because a virtual call can have several possible receivers depending on 
the class hierarchy. A dispatch table exists for every class and contains the receivers 
of its virtual calls. A static method or a virtual method that is known to have only 
one implementation can instead be turned into a direct call with a fixed destination. 
This is typically much faster to execute.
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In native code, a static call would look something similar to:
call 0x2345670 (a jump to a fixed location)
A virtual call would look something similar to:
mov eax, [esi]   (load type info from receiver in esi)
call [eax+0x4c]  (eax + 0x4c is the dispatch table entry)
As we have to dereference memory twice for the virtual call, it is slower 
than just calling a fixed destination address.

Consider a static environment, such as a compiled C++ program. For the code 
generator, everything that can be known about the application is known at 
compile time. For example, we know that any given virtual method with a single 
implementation will never be overridden by another, simply because no other  
virtual method exists. New code cannot enter the system, so the overrider also will 
never exist. This not only removes the need for the extra bookkeeping required for 
throwing out old code, but it also allows for the C++ compiler to generate static calls 
to the virtual method.

Now, consider the same virtual method in a Java program. At the moment it exists 
only in one version, but Java allows that it can be overridden at any time during 
program execution. When the JIT compiler wants to generate a call to this method,  
it would prefer that the method remained a single implementation forever. Then,  
the previous C++ optimization can be used and the call can be generated as a fast 
fixed call instead of a slower virtual dispatch. However, if the method is not declared 
final, it can be overridden at any time. It looks like we don't dare use the direct call 
at all, even though it is highly unlikely that the method will ever be overridden.

There are several other situations in Java where the world looks good right now  
to the compiler, and optimizations can be applied, but if the world changes in the 
future, the optimizations would have to be immediately reverted. For compiled Java, 
in order to match compiled C++ in speed, there must be a way to do these kinds of 
optimizations anyway.

The JVM solves this by "gambling". It bases its code generation decisions on 
assumptions that the world will remain unchanged forever, which is usually 
the case. If it turns out not to be so, its bookkeeping system triggers callbacks if 
any assumption is violated. When this happens, the code containing the original 
assumption needs to be regenerated—in our example the static dispatch needs to be 
replaced by a virtual one. Having to revert code generated based on an assumption 
about a closed world is typically very costly, but if it happens rarely enough, the 
benefit of the original assumption will deliver a performance increase anyway.
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Some typical assumptions that the JIT compiler and JVM, in general, might bet on are:

•	 A virtual method probably won't be overridden. As it only exists only in one 
version, it can always be called with a fixed destination address like a  
static method.

•	 A float will probably never be NaN. We can use hardware instructions 
instead of an expensive call to the native floating point library that is 
required for corner cases.

•	 The program probably won't throw an exception in a particular try 
block. Schedule the catch clause as cold code and give it less attention 
from the optimizer.

•	 The hardware instruction fsin probably has the right precision for most 
trigonometry. If it doesn't, cause an exception and call the native floating 
point library instead.

•	 A lock probably won't be too saturated and can start out as a fast spinlock. 
•	 A lock will probably be repeatedly taken and released by the same thread,  

so the unlock operation and future reacquisitions of the lock can optimistically 
be treated as no-ops.

A static environment that was compiled ahead of time and runs in a closed world 
can not, in general, make these kinds of assumptions. An adaptive runtime, however, 
can revert its illegal decisions if the criteria they were based on are violated. In 
theory, it can make any crazy assumption that might pay off, as long as it can be 
reverted with small enough cost. Thus, an adaptive runtime is potentially far more 
powerful than a static environment given that the "gambling" pays off.

Getting the gambling right is a very difficult problem. If we assume that relatively 
rare events will occur frequently, in order to avoid regenerating code, we can 
never achieve anything near the performance of a static compiler. However, if very 
frequent events are assumed to be rare, we will instead have to pay the penalty in 
increased code generation time for reoptimizations or invalidations. There is a fine 
area of middle ground here of what kinds of assumptions can be made. There is a 
significant art to finding this middle ground, and this is where a high performance 
runtime can make its impact. Given that we find this area—and JRockit is based on 
runtime information feedback in all relevant areas to make the best decisions—an 
adaptive runtime has the potential to outperform a static environment every time.
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Inside the JIT compiler
While it is one thing to compile bytecodes to native code and have it executed within 
the JVM, getting it to run as efficiently as possible is a different story. This is where 
40 years of research into compilers is useful, along with some insight into the Java 
language. This section discusses how a JIT compiler can turn bytecode into efficient 
native code.

Working with bytecode
A compiler for a programming language typically starts out with source code, 
such as C++. A Java JIT compiler, in a JVM, is different in the way that it has to 
start out with Java bytecode, parts of which are quite low level and assembly-like. 
The JIT compiler frontend, similar to a C++ compiler frontend, can be reused on 
all architectures, as it's all about tokenizing and understanding a format that is 
platform-independent—bytecode.

While compiled bytecode may sound low level, it is still a well-defined format 
that keeps its code (operations) and data (operands and constant pool entries) 
strictly separated from each other. Parsing bytecode and turning it into a program 
description for the compiler frontend actually has a lot more in common with 
compiling Java or C++ source code, than trying to deconstruct a binary executable. 
Thus, it is easier to think of bytecode as just a different form of source code—a 
structured program description. The bytecode format adds no serious complexities 
to the compiler frontend compared to source code. In some ways, bytecode helps  
the compiler by being unambiguous. Types of variables, for instance, can always  
be easily inferred by the kind of bytecode instruction that operates on a variable.

However, bytecode also makes things more complex for the compiler writer. 
Compiling byte code to native code is, somewhat surprisingly, in some ways  
harder than compiling human-readable source code.

One of the problems that has to be solved is the evaluation stack metaphor that 
the Java Virtual Machine specification mandates. As we have seen, most bytecode 
operations pop operands from the stack and push results. No native platforms are 
stack machines, rather they rely on registers for storing intermediate values. Mapping 
a language that uses local variables to native registers is straightforward, but mapping 
an evaluation stack to registers is slightly more complex. Java also defines plenty of 
virtual registers, local variables, but uses an evaluation stack anyway. It is the authors' 
opinion that this is less than optimal. One might argue that it is strange that the 
virtual stack is there at all, when we have plenty of virtual registers. Why isn't an add 
operation implemented simply as "x = y+z" instead of "push y, push z, add, pop x". 
Clearly the former is simpler, given that we have an ample supply of registers.
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It turns out that as one needs to compile bytecodes to a native code, the stack 
metaphor often adds extra complexity. In order to reconstruct an expression, such  
as add, the contents of the execution stack must be emulated at any given point in 
the program.

Another problem, that in rare cases may be a design advantage, is the ability of Java 
bytecodes to express more than Java source code. This sounds like a good thing 
when it comes to portability—Java bytecode is a mobile format executable by any 
JVM. Wouldn't it make sense to decouple the Java source code from the bytecode 
format so that one might write Java compilers for other languages that in turn can 
run on Java Virtual Machines? Of course it would, and it was probably argued 
that this would further help the spread and adoption of Java early in its design 
stage. However, for some reason or other, auto-generated bytecode from foreign 
environments is rarely encountered. A small number of products that turn other 
languages into Java bytecode exist, but they are rarely used. It seems that when the 
need for automatic bytecode generation exists, the industry prefers to convert the 
alien source code to Java and then compile the generated Java code. Also, when  
auto generated Java code exists, it tends to conform pretty much to the structure  
of compiled Java source code.

POWER OF EXPRESSION

JAVA BYTECODE

POWER OF EXPRESSION - JAVA SOURCE CODE

The problem that bytecode can express more than Java has led to the need 
for bytecode verification in the JVM, a requirement defined by the Java 
Virtual Machine specification. Each JVM implementation needs to check 
that the bytecode of an executing program does no apparently malicious 
tricks, such as jumping outside the method, overflowing the evaluation 
stack, or creating recursive subroutines.

Though bytecode portability and cross compiling several languages to bytecode 
is potentially a good thing, it also leads to problems. This is especially because 
bytecode allows unstructured control flow. Control flow with gotos to arbitrary 
labels is available in bytecode, which is not possible in the Java language. Therefore, 
it is possible to generate bytecodes that have no Java source code equivalent.
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Allowing bytecodes that have no Java equivalent can lead to some other problems. 
For example, how would a Java source code debugger handle bytecode that cannot 
be decompiled into Java?

Consider the following examples:

•	 In bytecode, it is conceivable to create a goto that jumps into the body of a 
loop from before the loop header (irreducible flow graphs). This construct is 
not allowed in Java source code. Irreducible flow graphs are a classic obstacle 
for an optimizing compiler.

•	 It is possible to create a try block that is its own catch block. This is not 
allowed in Java source code.

•	 It is possible to take a lock in one method and release it in another method. 
This is not allowed in Java source code and will be discussed further in 
Chapter 4.

Bytecode obfuscation
The problem of bytecode expressing more than source code is even more complex. 
Through the years, various bytecode obfuscators have been sold with promises of 
"protecting your Java program from prying eyes". For Java bytecode this is mostly 
a futile exercise because, as we have already discussed, there is a strict separation 
between code and data. Classic anti-cracking techniques are designed to make it 
hard or impossible for adversaries to find a sensitive place in a program. Typically, 
this works best in something like a native binary executable, such as an .exe file, 
where distinctions between code and data are less clear. The same applies to an 
environment that allows self-modifying code. Java bytecode allows none of these.  
So, for a human adversary with enough determination, any compiled Java program 
is more vulnerable by design.

Bytecode obfuscators use different techniques to protect bytecode. Usually, it boils 
down to name mangling or control flow obfuscation.

Name mangling means that the obfuscator goes over all the variable info and field 
and method names in a Java program, changing them to short and inexplicable 
strings, such as a, a_, and a__ (or even more obscure Unicode strings) instead of 
getPassword, setPassword, and decryptPassword. This makes it harder for an 
adversary to crack your program, since no clues can be gleaned from method and 
field names. Name mangling isn't too much of a problem for the compiler writer,  
as no control flow has been changed from the Java source code.
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It is more problematic if the bytecode obfuscator deliberately creates unstructured 
control flow not allowed in Java source code. This technique is used to prevent 
decompilers from reconstructing the original program. Sadly though, obfuscated 
control flow usually leads to the compiler having to do extra work, restructuring 
the lost control flow information that is needed for optimizations. Sometimes it isn't 
possible for the JVM to do a proper job at all, and the result is lowered performance. 
Thus control flow obfuscation should be avoided.

Bytecode "optimizers"
Various bytecode "optimizers" are also available in the market. They were especially 
popular in the early days of Java, but they are still encountered from time to time. 
Bytecode "optimizers" claim performance through restructuring bytecodes into  
more "efficient" forms. For example, divisions with powers of two can be replaced  
by shifts, or a loop can be inverted, potentially saving a goto instruction.

In modern JVMs, we have failed to find proof that "optimized" bytecodes are 
superior to unaltered ones straight out of javac. A modern JVM has a code 
generator well capable of doing a fine job optimizing code, and even though 
bytecode may look low level, it certainly isn't to the JVM. Any optimization  
done already at the bytecode level is likely to be retransformed into something  
else several times over on the long journey to native code.

We have never seen a case where a customer has been able to demonstrate a 
performance benefit from bytecode optimization. However, we have frequently  
run into customer cases where the program behavior isn't the expected one and 
varies between VMs because of failed bytecode optimization.

Our advice is to not use bytecode optimizers, ever!
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Abstract syntax trees
As we have seen, Java bytecode has its advantages and disadvantages. The authors 
find it helpful just to think of bytecode as serialized source code, and not as some 
low level assembler that needs to run as fast as possible. In an interpreter, bytecode 
performance matters, but not to a great extent as the interpretation process is so  
slow anyway. Performance comes later in the code pipeline.

While bytecode is both compact and extremely portable, it suffers from 
the strength of expression problem. It contains low-level constructs such 
as gotos and conditional jumps, and even the dreaded jsr (jump to 
subroutine, used for implementing finally clauses) instruction. As of 
Java 1.6, however, subroutines are inlined instead by javac and most 
other Java compilers.

A bytecode to native compiler can't simply assume that the given bytecode is 
compiled Java source code, but needs to cover all eventualities. A compiler whose 
frontend reads source code (be it Java, C++, or anything else) usually works by 
first tokenizing the source code into known constructs and building an Abstract 
Syntax Tree (AST). Clean ASTs are possible only if control flow is structured and 
no arbitrary goto instructions exist, which is the case for Java source code. The AST 
represents code as sequences, expressions, or iterations (loop nodes). Doing an  
in-order traversal of the tree reconstructs the program. The AST representation  
has many advantages compared to bytecode.

For example, consider the following method that computes the sum of the elements 
in an array:

public int add(int [] series)  {
  int sum = 0;
  for (int i = 0; i < series.length; i++) {
    sum += series[i];
  }
  return sum;
}
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When turning it to bytecode, the javac compiler most likely creates an abstract 
syntax tree that looks something like this:

SEQUENCE

LOOP=

sum sum

sum

sum

<

RETURN

+

1

=

=

=

+

init

iter

cond

body

series

series

length

aload

i

i

i

i

i

0

0

Several important prerequisites for code optimization, such as identifying loop 
invariants and loop bodies require expensive analysis in a control flow graph.  
Here, this comes very cheap, as loops are given implicitly by the representation.
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However, in order to create the bytecode, the structured for loop, probably already 
represented as a loop node in the Java compiler's abstract syntax tree, needs to be 
broken up into conditional and unconditional jumps.

public int add(int[]);
  Code:
    0: iconst_0
    1: istore_2        //sum=0
    2: iconst_0
    3: istore_3        //i=0
    4: iload_3         //loop_header:
    5: aload_1
    6: arraylength
    7: if_icmpge 22    //if (i>=series.length) then goto 22
    10: iload_2
    11: aload_1
    12: iload_3
    13: iaload
    14: iadd
    15: istore_2       //sum += series[i]
    16: iinc 3, 1   //i++
    19: goto 4      //goto loop_header
    22: iload_2
    23: ireturn        //return sum

Now, without structured control flow information, the bytecode compiler has to 
spend expensive CPU cycles restructuring control flow information that has been 
lost, sometimes irretrievably.

Perhaps, in retrospect, it would have been a better design rationale to directly use  
an encoded version of the compiler's ASTs as bytecode format. Various academic 
papers have shown that ASTs are possible to represent in an equally compact or  
more compact way than Java bytecode, so space is not a problem. Interpreting an  
AST at runtime would also only be slightly more difficult than interpreting bytecode.

The earliest versions of the JRockit JIT used a decompiling frontend. 
Starting from byte code, it tried to recreate the ASTs present when 
javac turned source code into bytecode. If unsuccessful, the 
decompiler fell back to more naive JIT compilation. Reconstructing 
ASTs, however, turned out to be a very complex problem and the 
decompiler was scrapped in the early 2000s, to be replaced by a unified 
frontend that created control flow graphs, able to support arbitrary 
control flow directly from bytecode.
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Where to optimize
Programmers tend to optimize their Java programs prematurely. This is completely 
understandable. How can you trust the black box, the JVM below your application, 
to do something optimal with such a high-level construct as Java source code? 
Of course this is partially true, but even though the JVM can't fully create an 
understanding of what your program does, it can still do a lot with what it gets.

It is sometimes surprising how much faster a program runs after automatic adaptive 
optimization, simply because the JVM is better at detecting patterns in a very large 
runtime environment than a human. On the other hand, some things lend themselves 
better to manual optimization. This book is in no way expressing the viewpoint that all 
code optimizations should be left to the JVM; however, as we have explained, explicit 
optimization on the bytecode level is probably a good thing to avoid.

There are plenty of opportunities for writing efficient programs in Java and 
situations where an adaptive runtime can't help. For example, a JVM can never turn 
a quadratic algorithm into a linear one, replacing your BubbleSort with a QuickSort. 
A JVM can never invent its own object cache where you should have written one 
yourself. These are the kinds of cases that matter in Java code. The JVM isn't magical. 
Adaptive optimization can never substitute bad algorithms with good ones. At most, 
it can make the bad ones run a little bit faster.

However, the JVM can easily deal with many constructs in standard object-oriented 
code. The programmer will probably gain very little by avoiding the declaration of 
an extra variable or by copying and pasting field loads and stores all over the place 
instead of calling a simple getter or setter. These are examples of micro-optimizations 
that make the Java code harder to read and that don't make the JIT compiled code 
execute any faster.
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Sometimes, Java source code level optimizations are downright 
destructive. All too often people come up with hard-to-read Java 
code that they claim is optimal because some micro benchmark 
(where only the interpreter was active and not the optimizing JIT) 
told them so. An example from the real world is a server application 
where the programmer did a lot of iterations over elements in 
arrays. Believing it important to avoid using a loop condition, he 
surrounded the for loops with a try block and catch clause for the 
ArrayIndexOutOfBoundsException, that was thrown when the 
program tried to read outside the array. Not only was the source very 
hard to read, but once the runtime had optimized the method, it was 
also significantly slower than a standard loop would have been. This is 
because exceptions are very expensive operations and are assumed to 
be just that—exceptions. The "gambling" behavior of the JVM, thinking 
that exceptions are rare, became a bad fit.

It is all too easy to misunderstand what you are measuring when you are looking 
for a performance bottleneck. Not every problem can be stripped down into a small 
self contained benchmark. Not every benchmark accurately reflects the problem 
that is being examined. Chapter 5 will go into extensive detail on benchmarking and 
how to know what to look for in Java performance. The second part of this book will 
cover the various components of the JRockit Mission Control Suite, which is an ideal 
toolbox for performance analysis.

The JRockit code pipeline
Given that the frontend of the JIT compiler is finished with the bytecode, having 
turned it into some other form that is easier to process, what happens next? Typically, 
the code goes through several levels of transformations and optimizations, each level 
becoming increasingly platform-dependent. The final level of code is native code 
for a particular platform. The native code is emitted into a code buffer and executed 
whenever the function it represents is called.

Naturally, it makes sense to keep the JIT compiler portable as far as possible. So, 
most optimizations are usually done when the intermediate code format is still 
platform-independent. This makes it easier to port the JIT compiler to different 
architectures. However, low-level, platform-specific optimizations must naturally  
be implemented as well to achieve industrial strength performance.

This section describes how the JIT compiler gets from bytecode to native code and 
the stages involved. We concentrate on the JRockit JIT compiler, but in general terms 
the process of generating native code is similar between JVMs.
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Why JRockit has no bytecode interpreter
JRockit uses the code generation strategy total JIT compilation.

When the JRockit project started in 1998, the JVM architects realized early on that 
pure server-side Java was a niche so far unexploited, and JRockit was originally 
designed to be only a server-side JVM. Most server-side applications, it was argued, 
stay running for a long time and can afford to take some time reaching a steady state. 
Thus, for a server-side-only JVM, it was decided that code generation time was a 
smaller problem than efficient execution. This saved us the trouble of implementing 
both a JIT compiler and a bytecode interpreter as well as handling the state 
transitions between them.

It was quickly noted that compiling every method contributed to additional startup 
time. This was initially not considered to be a major issue. Server-side applications, 
once they are up and running, stay running for a long time.

Later, as JRockit became a major mainstream JVM, known for its performance,  
the need to diversify the code pipeline into client and server parts was recognized. 
No interpreter was added, however. Rather the JIT was modified to differentiate even 
further between cold and hot code, enabling faster "sloppy" code generation the first 
time a method was encountered. This greatly improved startup time to a satisfying 
degree, but of course, getting to pure interpreter speeds with a compile-only approach 
is still very hard.

Another aspect that makes life easier with an interpreter is debuggability. Bytecode 
contains meta information about things like variable names and line numbers. These 
are needed by the debugger. In order to support debuggability, the JRockit JIT had to 
propagate this kind of information all the way from per-bytecode basis to per-native 
instruction basis. Once that bookkeeping problem was solved, there was little reason 
to add an interpreter. This has the added benefit that, to our knowledge, JRockit is the 
only virtual machine that lets the user debug optimized code.

The main problems with the compile-only strategy in JRockit are the code bloat 
(solved by garbage collecting code buffers with methods no longer in use) and 
compilation time for large methods (solved by having a sloppy mode for the JIT).
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The compile-only strategy is sometimes less scalable than it should 
be. For example, sometimes, JRockit will use a lot of time generating a 
relatively large method, the typical example being a JSP. Once finished, 
however, the response time for accessing that JSP will be better than 
that of an interpreted version.
If you run into problems with code generation time using JRockit, 
these can often be worked around. More on this will be covered in the 
Controlling code generation in JRockit section at the end of this chapter.

Bootstrapping
The "brain" of the JRockit JVM is the runtime system itself. It keeps track of what 
goes on in the world that comprises the virtual execution environment. The 
runtime system is aware of which Java classes and methods make up the "world" 
and requests that the code generator compiles them at appropriate times with 
appropriate levels of code quality.

To simplify things a bit, the first thing the runtime wants to do when the JVM 
is started, is to look up and jump to the main method of a Java program. This is 
done through a standard JNI call from the native JVM, just like any other native 
application would use JNI to call Java code.

Searching for main triggers a complex chain of actions and dependencies. A lot of 
other Java methods required for bootstrapping and fundamental JVM behavior need 
to be generated in order to resolve the main function. When finally main is ready and 
compiled to native code, the JVM can execute its first native-to-Java stub and pass 
control from the JVM to the Java program.

To study the bootstrap behavior of JRockit, try running a simple Java 
program with the command-line switch –Xverbose:codegen. It may 
seem shocking that running a simple "Hello World" program involves JIT 
compiling around 1,000 methods. This, however, takes very little time. On 
a modern Intel Core2 machine, the total code generation time is less than 
250 milliseconds.

Runtime code generation
Total JIT compilation needs to be a lazy process. If any method or class referenced from 
another method would be fully generated depth first at referral time, there would be 
significant code generation overhead. Also, just because a class is referenced from the 
code doesn't mean that every method of the class has to be compiled right away or 
even that any of its methods will ever be executed. Control flow through the Java 
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program might take a different path. This problem obviously doesn't exist in a mixed 
mode solution, in which everything starts out as interpreted bytecode with no need 
to compile ahead of execution.

Trampolines
JRockit solves this problem by generating stub code for newly referred but not yet 
generated methods. These stubs are called trampolines, and basically consist of a few 
lines of native code pretending to be the final version of the method. When the method 
is first called, and control jumps to the trampoline, all it does is execute a call that 
tells JRockit that the real method needs to be generated. The code generator fulfils the 
request and returns the starting address of the real method, to which the trampoline 
then dispatches control. To the user it looks like the Java method was called directly, 
when in fact it was generated just at the first time it was actually called.

0x1000: method A
  call method  B @ 0x2000

0x2000: method B (trampoline)
  call JVM.Generate(B) -> start
  write trap @ 0x2000
  goto start @ 0x4000

0x3000: method C 
  call method B @ 0x2000

0x4000: The "real" method B
  ...

Consider the previous example. method A, whose generated code resides at 
address 0x1000 is executing a call to method B, that it believes is placed at address 
0x2000. This is the first call to method B ever. Consequently, all that is at address 
0x2000 is a trampoline. The first thing the trampoline does is to issue a native call 
to the JVM, telling it to generate the real method B. Execution then halts until this 
code generation request has been fulfilled, and a starting address for method B is 
returned, let's say 0x4000. The trampoline then dispatches control to method B by 
jumping to that address.

Note that there may be several calls to method B in the code already, also pointing 
to the trampoline address 0x2000. Consider, for example, the call in method C 
that hasn't been executed yet. These calls need to be updated as well, without 
method B being regenerated. JRockit solves this by writing an illegal instruction at 
address 0x2000, when the trampoline has run. This way, the system will trap if the 
trampoline is called more than once. The JVM has a special exception handler that 
catches the trap, and patches the call to the trampoline so that it points to the real 
method instead. In this case it means overwriting the call to 0x2000 in method C 
with a call to 0x4000. This process is called back patching.
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Back patching is used for all kinds of code replacement in the virtual machine, not 
just for method generation. If, for example, a hot method has been regenerated to a 
more efficient version, the cold version of the code is fitted with a trap at the start 
and back patching takes place in a similar manner, gradually redirecting calls from 
the old method to the new one.

Again, note that this is a lazy approach. We don't have time to go over the entire 
compiled code base and look for potential jumps to code that has changed since  
the caller was generated.

If there are no more references to an older version of a method, its native code buffer 
can be scheduled for garbage collection by the run time system so as to unclutter 
the memory. This is necessary in a world that uses a total JIT strategy because the 
amount of code produced can be quite large.

Code generation requests
In JRockit, code generation requests are passed to the code generator from 
the runtime when a method needs to be compiled. The requests can be either 
synchronous or asynchronous.

Synchronous code generation requests do one of the following:

•	 Quickly generate a method for the JIT, with a specified level of efficiency
•	 Generate an optimized method, with a specified level of efficiency

An asynchronous request is:

•	 Act upon an invalidated assumption, for example, force regeneration of a 
method or patch the native code of a method

Internally, JRockit keeps synchronous code generation requests in a code generation 
queue and an optimization queue, depending on request type. The queues are 
consumed by one or more code generation and/or optimization threads, depending 
on system configuration.

The code generation queue contains generation requests for methods that are needed 
for program execution to proceed. These requests, except for special cases during 
bootstrapping, are essentially generated by trampolines. The call "generate me" that 
each trampoline contains, inserts a request in the code generation queue, and blocks 
until the method generation is complete. The return value of the call is the address in 
memory where the new method starts, to which the trampoline finally jumps.
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Optimization requests
Optimization requests are added to the optimization queue whenever a method is 
found to be hot, that is when the runtime system has realized that we are spending 
enough time executing the Java code of that method so that optimization is warranted.

The optimization queue understandably runs at a lower priority than the code 
generation queue as its work is not necessary for code execution, but just for code  
performance. Also, an optimization request usually takes orders of magnitude  
longer than a standard code generation request to execute, trading compile time  
for efficient code.

On-stack replacement
Once an optimized version of a method is generated, the existing version of the 
code for that method needs to be replaced. As previously described, the method 
entry point of the existing cold version of the method is overwritten with a trap 
instruction. Calls to the old method will be back patched to point to the new, 
optimized piece of code.

If the Java program spends a very large amount of time in a method, it will be 
flagged as hot and queued for replacement. However, consider the case where the 
method contains a loop that executes for a very long time. This method may well 
be hotspotted and regenerated, but the old method still keeps executing even if the 
method entry to the old method is fitted with a trap. Obviously, the performance 
enhancement that the optimized method contributes will enter the runtime much 
later, or never if the loop is infinite.

Some optimizers swap out code on the existing execution stack by replacing the code 
of a method with a new version in the middle of its execution. This is referred to as 
on-stack replacement and requires extensive bookkeeping. Though this is possible 
in a completely JIT-compiled world, it is easier to implement where there is an 
interpreter to fall back to.

JRockit doesn't do on-stack replacement, as the complexity required to do so is 
deemed too great. Even though the code for a more optimal version of the method 
may have been generated, JRockit will continue executing the old version of the 
method if it is currently running.

Our research has shown that in the real world, this matters little for achieving 
performance. The only places we have encountered performance penalties because 
of not doing on-stack replacement is in badly written micro benchmarks, such as 
when the main function contains all the computations in a very long loop. Moving the 
bulk of the benchmark into a separate function and calling this repeatedly from main 
will resolve this problem. We will thoroughly discuss the most important aspects of 
benchmarking in Chapter 5.
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Bookkeeping
The code generator in the JVM has to perform a number of necessary bookkeeping 
tasks for the runtime system.

Object information for GC
For various reasons, a garbage collector needs to keep track of which registers and 
stack frame locations contain Java objects at any given point in the program. This 
information is generated by the JIT compiler and is stored in a database in the runtime 
system. The JIT compiler is the component responsible for creating this data because 
type information is available "for free" while generating code. The compiler has to deal 
with types anyway. In JRockit, the object meta info is called livemaps, and a detailed 
explanation of how the code generation system works with the garbage collector is 
given in Chapter 3, Adaptive Memory Management.

Source code and variable information
Another bookkeeping issue in the compiled world is the challenge of preserving 
source code level information all the way down to machine language. The JVM  
must always be able to trace program points back from an arbitrary native 
instruction to a particular line of Java source code. We need to support proper 
stack traces for debugging purposes, even stack traces containing optimized code. 
This gets even more complicated as the optimizer may have transformed a method 
heavily from its original form. A method may even contain parts of other methods 
due to inlining. If an exception occurs anywhere in our highly optimized native 
code, the stack trace must still be able to show the line number where this happened.

This is not a difficult problem to solve—bookkeeping just involves some kind of 
database, as it is large and complex. JRockit successfully preserves mappings between 
most native instructions and the actual line of Java source code that created them. 
This, obviously, is much more work in a compiled world than in an interpreted one. 
In the Java bytecode format, local variable information and line number information 
are mapped to individual bytecodes, but JRockit has to make sure that the mapping 
survives all the way down to native code. Each bytecode instruction eventually turns 
into zero or more native code instructions that may or may not execute in sequence.

Assumptions made about the generated code
Finally, as we have already discussed, remembering what assumptions or "gambles" 
have been made while generating methods is vital in Java. As soon as one of the 
assumptions is violated, we need to send asynchronous code regeneration requests 
for whatever methods are affected. Thus, an assumption database is another part of 
the JRockit runtime that communicates with the code generator.
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A walkthrough of method generation in 
JRockit
Let us now take a look at what happens on the road from bytecode to native code in 
the JRockit JIT compiler. This section describes how a small method is transformed 
to native code by the JRockit JIT. Large parts of this process are similar in other JIT 
compilers (as well as in other static compilers), and some parts are not. The end 
result, native code, is the same.

Let us, consider the following Java method as an example:

public static int md5_F(int x, int y, int z) {
  return (x & y) | ((~x) & z);
}

This is part of the well known MD5 hash function and performs bit operations on 
three pieces of input.

The JRockit IR format
The first stage of the JRockit code pipeline turns the bytecode into an Intermediate 
Representation (IR). As it is conceivable that other languages may be compiled 
by the same frontend, and also for convenience, optimizers tend to work with a 
common internal intermediate format. 

JRockit works with an intermediate format that differs from bytecode, looking 
more like classic text book compiler formats. This is the common approach that  
most compilers use, but of course the format of IR that a compiler uses always  
varies slightly depending on implementation and the language being compiled.

Aside from the previously mentioned portability issue, JRockit also doesn't work 
with bytecode internally because of the issues with unstructured control flow and 
the execution stack model, which differs from any modern hardware register model.

Because we lack the information to completely reconstruct the ASTs, a method in 
JRockit is represented as a directed graph, a control flow graph, whose nodes are 
basic blocks. The definition of a basic block is that if one instruction in the basic 
block is executed, all other instructions in it will be executed as well. Since there are 
no branches in our example, the md5_F function will turn into exactly one basic block. 

Data flow
A basic block contains zero to many operations, which in turn have operands. 
Operands can be other operations (forming expression trees), variables (virtual 
registers or atomic operands), constants, addresses, and so on, depending on  
how close to the actual hardware representation the IR is.
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Control flow
Basic blocks can have multiple entries and multiple exits. The edges in the graph 
represent control flow. Any control flow construct, such as a simple fallthrough to  
the next basic block, a goto, a conditional jump, a switch, or an exception, 
produces one or more edges in the graph.

When control enters a method, there is a designated start basic block for the execution. 
A basic block with no exits ends the method execution. Typically such a block ends 
with a return or throw clause.

A word about exceptions
A small complication is the presence of exceptions, which, if consistent to this model, 
should form conditional jumps from every bytecode operation that may fault to an 
appropriate catch block, where one is available.

This would quickly turn into a combinatorial explosion of edges in the flow graph 
(and consequently of basic blocks), severely handicapping any O(|V||E|) (nodes 
x edges) graph traversal algorithm that needs to work on the code. Therefore, 
exceptions are treated specially on a per-basic block basis instead.

This figure shows the basic block graph of a slightly larger example. Method entry is 
at Block 0 that has three exits—two normal ones, as it contains a conditional branch, 
and an exception edge. This means that Block 0 is a try block, whose catch starts 
at Block 3. The same try block spans Block 1 and Block 2 as well. The method can 
exit either by triggering the exception and ending up in Block 3 or by falling through 
to Block 5. Both these blocks end with return instructions. Even though the only 
instruction that can trigger an exception is the div in Block 2 (on division by zero), 
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the try block spans several nodes because this is what the bytecode (and possibly 
the source code) looked like. Optimizers may choose to deal with this later.

JIT compilation
This following figure illustrates the different stages of the JRockit code pipeline:

BC2HIR HIR2MIR MIR2LIR RegAlloc EMIT

Generating HIR 
The first module in the code generator, BC2HIR, is the frontend against the bytecode 
and its purpose is to quickly translate bytecodes into IR. HIR in this case stands for 
High-level Intermediate Representation. For the md5_F method, where no control 
flow in the form of conditional or unconditional jumps is present, we get just one 
basic block.

The following code snippet shows the md5_F method in bytecode form:

public static int md5_F(int, int, int);
      Code:      Stack contents:               Emitted code:
  0:  iload_0    v0
  1:  iload_1    v1
  2:  iand       (v0&v1)
  3:  iload_0    (v0&v1), v0
  4:  iconst_m1  (v0&v1), v0, -1
  5:  ixor       (v0&v1), (v0^-1)
  6:  iload_2    (v0&v1), (v0^-1), v2
  7:  iand       (v0&v1), ((v0^-1) & v2)
  8:  ior        ((v0&v1) | ((v0^-1) & v2))
  9:  ireturn                                  return ((v0&v1) |  
                                               ((v0^-1) & v2));

The JIT works by computing a control flow graph for the IR by examining where 
the jumps in the bytecode are, and then filling its basic blocks with code. Code is 
constructed by emulating the contents of the evaluation stack at any given location  
in the program. Emulating a bytecode operation results in changes to the evaluation 
stack and/or code being generated. The example has been annotated with the 
contents of the emulated evaluation stack and the resulting generated code after each 
bytecode has been processed

Bit negation (~) is implemented by javac as an xor with -1 
(0xffffffff), as bytecode lacks a specific not operator.
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As we can see, by representing the contents of a variable on the evaluation stack with 
a variable handle, we can reconstruct the expressions from the original source code. 
For example, the iload_0 instruction, which means "push the contents of variable 
0" turns into the expression "variable 0" on the emulated stack. In the example, the 
emulator gradually forms a more and more complex expression on the stack, and 
when it is time to pop it and return it, the expression in its entirety can be used to 
form code.

This is the output, the High-level IR, or HIR:

params: v1 v2 v3

block0: [first] [id=0] 

 10 @9:49    (i32)    return {or {and v1 v2} {and {xor v1 -1} v3}}

In JRockit IR, the annotation @ before each statement identifies its 
program point in the code all the way down to assembler level. The 
first number following the @ is the bytecode offset of the expression 
and the last is the source code line number information. This is part 
of the complex meta info framework in JRockit that maps individual 
native instructions back to their Java program points.

The variable indexes were assigned by JRockit, and differ from those in the 
bytecode. Notice that operations may contain other operations as their operands, 
similar to the original Java code. These nested expressions are actually a useful 
byproduct of turning the bytecode stack back into expressions. This way we get a 
High-level Representation instead of typical "flat" compiler code with temporary 
variable assignments, where operations may not contain other operations. The HIR 
lends itself well to some optimizations that are harder to do on another format; for 
example, discovering if a sub-expression (in the form of a subtree) is present twice 
in an expression. Then the sub-expression can be folded into a temporary variable, 
saving it from being evaluated twice.

Emulating the bytecode stack to form HIR is not without problems though. Since 
at compile time, we only know what expression is on the stack, and not its value, 
we run into various problems. One example would be in situations where the stack 
is used as memory. Take for example the construct result = x ? a : b. The 
bytecode compiles into something like this:

/* bytecode for: "return x ? a : b" */

static int test(boolean x, int a, int b);

  0:  iload_0    //push x

  1:  ifeq    8  //if x == false then goto 8

  4:  iload_1    //push a
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  5:  goto  9

  8:  iload_2    //push b

  9:  ireturn    //return pop

When the emulator gets to the ireturn instruction, the value popped can be either 
a (local variable 1) or b (local variable 2). Since we can't express "either a or b" as a 
variable, we need to replace the loads at offsets 4 and 8 with writes to one and the 
same temporary variable, and place that on the stack instead.

The BC2HIR module that turns bytecodes into a control flow graph with expressions 
is not computationally complex. However, it contains several other little special 
cases, similar to the earlier one, which are beyond the scope of this book. Most of 
them have to do with the lack of structure in byte code and with the evaluation stack 
metaphor. Another example would be the need to associate monitorenter bytecodes 
with their corresponding monitorexit(s), the need for which is explained in great 
detail in Chapter 4.

MIR
MIR or Middle-level Intermediate Representation, is the transform domain where 
most code optimizations take place. This is because most optimizations work best 
with three address code or rather instructions that only contain atomic operands, 
not other instructions. Transforming HIR to MIR is simply an in-order traversal  
of the expression trees mentioned earlier and the creation of temporary variables.  
As no hardware deals with expression trees, it is natural that code turns into 
progressively simpler operations on the path through the code pipeline.

Our md5_F example would look something like the following code to the JIT 
compiler, when the expression trees have been flattened. Note that no operation 
contains other operations anymore. Each operation writes its result to a temporary 
variable, which is in turn used by later operations.

params: v1 v2 v3 

block0: [first] [id=0] 

   2 @2:49*        (i32)  and         v1 v2 -> v4

   5 @5:49*        (i32)  xor         v1 -1 -> v5

   7 @7:49*        (i32)  and         v5 v3 -> v5

   8 @8:49*        (i32)  or          v4 v5 -> v4

  10 @9:49*        (i32)  return      v4

If the JIT compiler is executing a code generation request from the optimizer, most 
optimizations on the way down to native code are carried out on MIR. This will be 
discussed later in the chapter.
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LIR
After MIR, it is time to turn platform dependent as we are approaching native code. 
LIR, or Low-level IR, looks different depending on hardware architecture.

Consider the Intel x86, where the biggest customer base for JRockit exists. The x86 
has legacy operations dating back to the early 1980s. The RISC-like format of the 
previous MIR operations is inappropriate. For example, a logical and operation on 
the x86 requires the same first source and destination operand. That is why we need 
to introduce a number of new temporaries in order to turn the code into something  
that fits the x86 model better.

If we were compiling for SPARC, whose native format looks more like the JRockit IR, 
fewer transformations would have been needed.

Following is the LIR for the md5_F method on a 32-bit x86 platform:

params: v1 v2 v3 
block0: [first] [id=0] 
   2 @2:49*        (i32)  x86_and     v2 v1 -> v2
  11 @2:49         (i32)  x86_mov     v2 -> v4
   5 @5:49*        (i32)  x86_xor     v1 -1 -> v1
  12 @5:49         (i32)  x86_mov     v1 -> v5
   7 @7:49*        (i32)  x86_and     v5 v3 -> v5
   8 @8:49*        (i32)  x86_or      v4 v5 -> v4
  14 @9:49         (i32)  x86_mov     v4 -> eax
  13 @9:49*        (i32)  x86_ret     eax 

A couple of platform-independent mov instructions have been inserted to get the 
correct x86 semantics. Note that the and, xor, and or operations now have the same 
first operand as destination, the way x86 requires. Another interesting thing is that 
we already see hard-coded machine registers here. The JRockit calling convention 
demands that integers be returned in the register eax, so the register allocator that 
is the next step of the code pipeline doesn't really have a choice for a register for the 
return value.

Register allocation
There can be any number of virtual registers (variables) in the code, but the physical 
platform only has a small number of them. Therefore, the JIT compiler needs to do 
register allocation, transforming the virtual variable mappings into machine registers. 
If at any given point in the program, we need to use more variables than there are 
physical registers in the machine at the same time, the local stack frame has to be used 
for temporary storage. This is called spilling, and the register allocator implements 
spills by inserting move instructions that shuffle registers back and forth from the 
stack. Naturally spill moves incur overhead, so their placement is highly significant  
in optimized code.
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Register allocation is a very fast process if done sloppily, such as in the first JIT  
stage, but computationally intensive if a good job is needed, especially when  
there are many variables in use (or live) at the same time. However, because of  
the small number of variables, we get an optimal result with little effort in our  
example method. Several of the temporary mov instructions have been coalesced 
and removed.

Our md5_F method needs no spills, as x86 has seven available registers (15 on the 
64-bit platforms), and we use only three.

params: ecx eax edx
block0: [first] [id=0]
   2 @2:49*        (i32)  x86_and     eax ecx -> eax
   5 @5:49*        (i32)  x86_xor     ecx -1 -> ecx
   7 @7:49*        (i32)  x86_and     ecx edx -> ecx
   8 @8:49*        (i32)  x86_or      eax ecx -> eax
  13 @9:49*        (void) x86_ret     eax 

Every instruction in our register allocated LIR has a native instruction equivalent 
on the platform that we are generating code for.

Just to put spill code in to perspective, following is a slightly longer example. The  
main method of the Spill program does eight field loads to eight variables that 
are then used at the same time (for multiplying them together).

public class Spill {
  static int aField, bField, cField, dField;
  static int eField, fField, gField, hField;
  static int answer;

  public static void main(String args[]) {
    int a = aField;
    int b = bField;
    int c = cField;
    int d = dField;
    int e = eField;
    int f = fField;
    int g = gField;
    int h = hField;
    answer = a*b*c*d*e*f*g*h;
  }
}
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We will examine the native code for this method on a 32-bit x86 platform. As  
32-bit x86 has only seven available registers, one of the intermediate values has 
to be spilled to the stack. The resulting register allocated LIR code is shown in the 
following code snippet:

Assembly or LIR instructions that dereference memory typically annotate 
their pointers as a value or variable within square brackets. For example, 
[esp+8] dereferences the memory eight bytes above the stack pointer 
(esp) on x86 architectures.

block0: [first] [id=0]

  68         (i32)  x86_push ebx           //store callee save reg

  69         (i32)  x86_push ebp           //store callee save reg

  70         (i32)  x86_sub  esp 4 -> esp  //alloc stack for 1 spill

  43 @0:7*   (i32)  x86_mov  [0xf56bd7f8] -> esi  //*aField->esi (a)

  44 @4:8*   (i32)  x86_mov  [0xf56bd7fc] -> edx  //*bField->edx (b)

  67 @4:8    (i32)  x86_mov  edx -> [esp+0x0]     //spill b to stack

  45 @8:9*   (i32)  x86_mov  [0xf56bd800] -> edi  //*cField->edi (c)

  46 @12:10* (i32)  x86_mov  [0xf56bd804] -> ecx  //*dField->ecx (d)

  47 @17:11* (i32)  x86_mov  [0xf56bd808] -> edx  //*eField->edx (e)

  48 @22:12* (i32)  x86_mov  [0xf56bd80c] -> eax  //*fField->eax (f)

  49 @27:13* (i32)  x86_mov  [0xf56bd810] -> ebx  //*gField->ebx (g)

  50 @32:14* (i32)  x86_mov  [0xf56bd814] -> ebp  //*hField->ebp (h)

  26 @39:16  (i32)  x86_imul esi [esp+0x0] -> esi //a *= b

  28 @41:16  (i32)  x86_imul esi edi -> esi       //a *= c

  30 @44:16  (i32)  x86_imul esi ecx -> esi    //a *= d

  32 @47:16  (i32)  x86_imul esi edx -> esi    //a *= e

  34 @50:16  (i32)  x86_imul esi eax -> esi    //a *= f

  36 @53:16  (i32)  x86_imul esi ebx -> esi    //a *= g

  38 @56:16  (i32)  x86_imul esi ebp -> esi    //a *= h

  65 @57:16* (i32)  x86_mov  esi -> [0xf56bd818]  //*answer = a 

  71 @60:18* (i32)  x86_add  esp, 4 -> esp        //free stack slot

  72 @60:18  (i32)  x86_pop  -> ebp        //restore used callee save

  73 @60:18  (i32)  x86_pop  -> ebx        //restore used callee save

  66 @60:18  (void) x86_ret                //return
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We can also note that the register allocator has added an epilogue and prologue to 
the method in which stack manipulation takes place. This is because it has figured 
out that one stack position will be required for the spilled variable and that it also 
needs to use two callee-save registers for storage. A register being callee-save means 
that a called method has to preserve the contents of the register for the caller. If the 
method needs to overwrite callee-save registers, they have to be stored on the local 
stack frame and restored just before the method returns. By JRockit convention on 
x86, callee-save registers for Java code are ebx and ebp. Any calling convention 
typically includes a few callee-save registers since if every register was potentially 
destroyed over a call, the end result would be even more spill code.

Native code emission
After register allocation, every operation in the IR maps one-to-one to a native 
operation in x86 machine language and we can send the IR to the code emitter. The last 
thing that the JIT compiler does to the register allocated LIR is to add mov instructions 
for parameter marshalling (in this case moving values from in-parameters as defined 
by the calling convention to positions that the register allocator has picked). Even 
though the register allocator thought it appropriate to put the first parameter in ecx, 
compilers work internally with a predefined calling convention. JRockit passes the first 
parameter in eax instead, requiring a shuffle mov. In the example, the JRockit calling 
convention passes parameters x in eax, y in edx, and z in esi respectively.

Assembly code displayed in figures generated by code dumps from 
JRockit use Intel style syntax on the x86, with the destination as the first 
operand, for example "and ebx, eax" means "ebx = ebx & eax".

Following is the resulting native code in a code buffer:

[method is md5_F(III)I [02DB2FF0 - 02DB3002]]

  02DB2FF0:  mov    ecx,eax

  02DB2FF2:  mov    eax,edx

  02DB2FF4:  and    eax,ecx

  02DB2FF6:  xor    ecx,0xffffffff

  02DB2FF9:  and    ecx,esi

  02DB2FFC:  or     eax,ecx

  02DB2FFF:  ret
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Generating optimized code
Regenerating an optimized version of a method found to be hot is not too dissimilar 
to normal JIT compilation. The optimizing JIT compiler basically piggybacks on the 
original code pipeline, using it as a "spine" for the code generation process, but at each 
stage, an optimization module is plugged into the JIT.

BC2HIR HIR2MIR MIR2LIR RegAlloc EMIT

Optimize HIR Optimize MIR Optimize LIR
Graph Fusion

Based Regalloc

Optimize Native

Code

A general overview
Different optimizations are suitable for different levels of IR. For example, HIR 
lends itself well to value numbering in expression trees, substituting two equivalent 
subtrees of an expression with one subtree and a temporary variable assignment.

MIR readily transforms into Single Static Assignment (SSA) form, a transform 
domain that makes sure that any variable has only one definition. SSA transformation 
is part of virtually every commercial compiler today and makes implementing many 
code optimizations much easier. Another added benefit is that code optimizations in 
SSA form can be potentially more powerful.

if (x > 0) if (x > 0)
1

result = 1

result =
3

result = 1
1

result =0
2result =0

resultreturn (r )esult result
1, 2

return result
3

0

The previous flow graph shows what happens before and after transformation to 
SSA form. The result variable that is returned by the program is assigned either 
1 or 0 depending on the value of x and the branch destination. Since SSA form 
allows only one assignment of each variable, the result variable has been split into 
three different variables. At the return statement, result can either be result

1
 

or result
2
. To express this "either" semantic, a special join operator, denoted 

by the Greek letter phi (Φ), is used. Trivially, no hardware platform can express 
this ambiguity, so the code has to be transformed back to normal form before 
emission. The reverse transform basically replaces each join operator with preceding 
assignments, one per flow path, to the destination of the join instruction.
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Many classic code optimizations such as constant propagation and copy propagation 
have their own faster SSA form equivalents. This mostly has to do with the fact that 
given any use of a variable, it is unambiguous where in the code that variable is 
defined. There is plenty of literature on the subject and a thorough discussion on  
all the benefits of SSA form is beyond the scope of this book.

LIR is platform-dependent and initially not register allocated, so transformations 
that form more efficient native operation sequences can be performed here. 
An example would be replacing dumb copy loops with specialized Intel SSE4 
instructions for faster array copies on the x86.

When generating optimized code, register allocation tends to be very 
important. Any compiler textbook will tell you that optimal register 
allocation basically is the same problem as graph coloring. This is 
because if two variables are in use at the same time, they obviously 
cannot share the same register. Variables in use at the same time can 
be represented as connected nodes in a graph. The problem of register 
allocation can then be reduced to assigning colors to the nodes in the 
graph, so that no connected nodes have the same color. The amount of 
colors available is the same as the number of registers on the platform. 
Sadly enough, in computational complexity terms, graph coloring is 
NP-hard. This means that no efficient (polynomial time) algorithm 
exists that can solve the problem. However, graph coloring can be 
approximated in quadratic time. Most compilers contain some variant 
of the graph coloring algorithm for register allocation.

The JRockit optimizer contains a very advanced register allocator that is based 
on a technique called graph fusion, that extends the standard graph coloring 
approximation algorithm to work on subregions in the IR. Graph fusion has the 
attractive property that the edges in the flow graph, processed early, generate fewer 
spills than the edges processed later. Therefore, if we can pick hot subregions before 
cold ones, the resulting code will be more optimal. Additional penalty comes from 
the need to insert shuffle code when fusing regions in order to form a complete 
method. Shuffle code consists of sequences of move instructions to copy the  
contents of one local register allocation into another one.

Finally, just before code emission, various peephole optimizations can be applied to 
the native code, replacing one to several register allocated instructions in sequence 
with more optimal ones.



Adaptive Code Generation

[ 60 ]

Clearing a register is usually done by XORing the register with itself. 
Replacing instructions such as mov eax, 0 with xor eax, eax, 
which is potentially faster, is an example of a peephole optimization that 
works on exactly one instruction. Another example would be turning a 
multiplication with the power of two followed by an add instruction into 
a simple lea instruction on x86, optimized to do both.

How does the optimizer work?
A complete walkthrough of the JRockit code pipeline with the algorithms and 
optimizations within would be the subject for an entire book of its own. This  
section merely tries to highlight some of the things that a JVM can do with code, 
given adequate runtime feedback.

Generating optimized code for a method in JRockit generally takes 10 to 100 times  
as long as JITing it with no demands for execution speed. Therefore, it is important 
to only optimize frequently executed methods.

Grossly oversimplifying things, the bulk of the optimizer modules plugged into the 
code pipeline work like this:

do {
  1) get rid of calls, exposing more control flow 
     through aggressive inlining.
  2) apply optimizations on enlarged code mass, try to shrink it.
} while ("enough time left" && "code not growing too fast");

Java is an object-oriented language and contains a lot of getters, setters, and other 
small "nuisance" calls. The compiler has to presume that calls do very complex things 
and have side effects unless it knows what's inside them. So, for simplification, small 
methods are frequently inlined, replacing the call with the code of the called function. 
JRockit tries to aggressively inline everything that seems remotely interesting on 
hot execution paths, with reasonable prioritization of candidates using sample and 
profiling information.

In a statically compiled environment, too aggressive inlining would be total 
overkill, and too large methods would cause instruction cache penalties and slow 
down execution. In a runtime, however, we can hope to have good enough sample 
information to make more realistic guesses about what needs to be inlined.

After bringing in whatever good inlining candidates we can find into the method, the 
JIT applies optimizations to the, now usually quite large, code mass, trying to shrink 
it. For example, this is done by folding constants, eliminating expressions based on 
escape analysis, and applying plenty of other simplifying transforms. Dead code 
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that is proved never to be executed is removed. Multiple loads and stores that access 
the same memory location can, under certain conditions, be eliminated, and so on.

Surprisingly enough, the size of the total code mass after inlining and then optimizing 
the inlined code is often less than the original code mass of a method before anything 
was inlined.

The runtime system can perform relatively large simplifications, given relatively 
little input. Consider the following program that implements the representation  
of a circle by its radius and allows for area computation:

public class Circle {

  private double radius;

    public Circle(int radius) { 
      this.radius = radius;
    }

  public double getArea() { 
    return 3.1415 * radius * radius; 
  }

  public static double getAreaFromRadius(int radius) { 
    Circle c = new Circle(radius);    
    return c.getArea();
  }

  static int areas[] = new int[0x10000];
  static int radii[] = new int[0x10000];
  static java.util.Random r = new java.util.Random();
  static int MAX_ITERATIONS = 1000;

  public static void gen() {
    for (int i = 0; i < areas.length; i++) {
      areas[i] = (int)getAreaFromRadius(radii[i]);
    }
  }

  public static void main(String args[]) {
    for (int i = 0; i < radii.length; i++) {
      radii[i] = r.nextInt();
    }
    for (int i = 0; i < MAX_ITERATIONS; i++) {    
      gen(); //avoid on stack replacement problems   
    }
  }
}
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Running the previous program with JRockit with the command-line  
flag –Xverbose:opt,gc, to make JRockit dump all garbage collection 
and code optimization events, produces the following output:
hastur:material marcus$ java –Xverbose:opt,gc Circle

[INFO ][memory ] [YC#1] 0.584-0.587: YC 33280KB->8962KB (65536KB), 
  0.003 s, sum of pauses 2.546 ms, longest pause 2.546 ms

[INFO ][memory ] [YC#2] 0.665-0.666: YC 33536KB->9026KB (65536KB), 
  0.001 s, sum of pauses 0.533 ms, longest pause 0.533 ms

[INFO ][memory ] [YC#3] 0.743-0.743: YC 33600KB->9026KB (65536KB), 
  0.001 s, sum of pauses 0.462 ms, longest pause 0.462 ms

[INFO ][memory ] [YC#4] 0.821-0.821: YC 33600KB->9026KB (65536KB), 
  0.001 s, sum of pauses 0.462 ms, longest pause 0.462 ms

[INFO ][memory ] [YC#5] 0.898-0.899: YC 33600KB->9026KB (65536KB), 
  0.001 s, sum of pauses 0.463 ms, longest pause 0.463 ms

[INFO ][memory ] [YC#6] 0.975-0.976: YC 33600KB->9026KB (65536KB), 
  0.001 s, sum of pauses 0.448 ms, longest pause 0.448 ms

[INFO ][memory ] [YC#7] 1.055-1.055: YC 33600KB->9026KB (65536KB), 
  0.001 s, sum of pauses 0.461 ms, longest pause 0.461 ms

[INFO ][memory ] [YC#8] 1.132-1.133: YC 33600KB->9026KB (65536KB), 
  0.001 s, sum of pauses 0.448 ms, longest pause 0.448 ms

[INFO ][memory ] [YC#9] 1.210-1.210: YC 33600KB->9026KB (65536KB), 
  0.001 s, sum of pauses 0.480 ms, longest pause 0.480 ms

[INFO ][opt    ][00020] #1 (Opt) 
  jrockit/vm/Allocator.allocObjectOrArray(IIIZ)Ljava/lang/Object;

[INFO ][opt    ][00020] #1 1.575-1.581 0x9e04c000-0x9e04c1ad 5 
  .72 ms 192KB 49274 bc/s (5.72 ms 49274 bc/s)

[INFO ][memory ] [YC#10] 1.607-1.608: YC 33600KB->9090KB 
  (65536KB), 0.001 s, sum of pauses 0.650 ms, longest pause 0.650 ms

[INFO ][memory ] [YC#11] 1.671-1.672: YC 33664KB->9090KB (65536KB), 
  0.001 s, sum of pauses 0.453 ms, longest pause 0.453 ms.

[INFO ][opt    ][00020] #2 (Opt) 
  jrockit/vm/Allocator.allocObject(I)Ljava/lang/Object;

[INFO ][opt    ][00020] #2 1.685-1.689 0x9e04c1c0-0x9e04c30d 3 
  .88 ms 192KB 83078 bc/s (9.60 ms 62923 bc/s)

[INFO ][memory ] [YC#12] 1.733-1.734: YC 33664KB->9090KB 
  (65536KB), 0.001 s, sum of pauses 0.459 ms, longest pause 0.459 ms.

[INFO ][opt    ][00020] #3 (Opt) Circle.gen()V

[INFO ][opt    ][00020] #3 1.741-1.743 0x9e04c320-0x9e04c3f2 2 
  .43 ms 128KB 44937 bc/s (12.02 ms 59295 bc/s)

[INFO ][opt    ][00020] #4 (Opt) Circle.main([Ljava/lang/String;)V

[INFO ][opt    ][00020] #4 1.818-1.829 0x9e04c400-0x9e04c7af 11 
  .04 ms 384KB 27364 bc/s (23.06 ms 44013 bc/s)

hastur:material marcus$

No more output is produced until the program is finished.
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The various log formats for the code generator will be discussed in more detail at the 
end of this chapter. Log formats for the memory manager are covered in Chapter 3.

It can be noticed here, except for optimization being performed on the four hottest 
methods in the code (where two are JRockit internal), that the garbage collections 
stop after the optimizations have completed. This is because the optimizer was able 
to prove that the Circle objects created in the getAreaFromRadius method aren't 
escaping from the scope of the method. They are only used for an area calculation. 
Once the call to c.getArea is inlined, it becomes clear that the entire lifecycle of the 
Circle objects is spent in the getAreaFromRadius method. A Circle object just 
contains a radius field, a single double, and is thus easily represented just as that 
double if we know it has a limited lifespan. An allocation that caused significant 
garbage collection overhead was removed by intelligent optimization.

Naturally, this is a fairly trivial example, and the optimization issue is easy for the 
programmer to avoid by not instantiating a Circle every time the area method is 
called in the first place. However, if properly implemented, adaptive optimizations 
scale well to large object-oriented applications.

The runtime is always better than the programmer at detecting certain 
patterns. It is often surprising what optimization opportunities the 
virtual machine discovers, that a human programmer hasn't seen. It 
is equally surprising how rarely a "gamble", such as assuming that a 
particular method never will be overridden, is invalidated. This shows 
some of the true strength of the adaptive runtime.

Unoptimized Java carries plenty of overhead. The javac compiler needs to do 
workarounds to implement some language features in bytecode. For example, 
string concatenation with the + operator is just syntactic sugar for the creation of 
StringBuilder objects and calls to their append functions. An optimizing compiler 
should, however, have very few problems transforming things like this into more 
optimal constructs. For example, we can use the fact that the implementation of  
java.lang.StringBuilder is known, and tell the optimizer that its methods 
have no harmful side effects, even though they haven't been generated yet.

Similar issues exist with boxed types. Boxed types turn into hidden objects  
(for example instances of java.lang.Integer) on the bytecode level. Several 
traditional compiler optimizations, such as escape analysis, can often easily strip 
down a boxed type to its primitive value. This removes the hidden object allocation 
that javac put in the bytecode to implement the boxed type.
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Controlling code generation in JRockit
JRockit is designed to work well out of the box, and it is generally discouraged to 
play around too much with its command-line options. Changing the behavior of 
code generation and optimization is no exception. This section exists mostly for 
informational purposes and the user should be aware of possible unwanted side 
effects that can arise from changing the behavior of the code generators.

This section applies mainly to the versions of JRockit from R28 and later. 
For earlier versions of JRockit, please consult the JRockit documentation 
for equivalent ways of doing the same thing. Note that all R28 
functionality does not have equivalents in earlier versions of JRockit.

Command-line flags and directive files
In the rare case that the code generator causes problems in JRockit, or an application 
behaves strangely or erroneously, or it just takes too long time to optimize a particular 
method, the JRockit code generator behavior can be altered and controlled. Naturally, 
if you know what you are doing, code generation can be controlled for other purposes 
as well.

Command-line flags
JRockit has several command-lines flags that control code generation behavior in 
a coarse grained way. For the purpose of this text, we will only mention a few.

Logging
The –Xverbose:codegen (and –Xverbose:opt) options make JRockit output two 
lines of information per JIT compiled (or optimized) method to stderr.

Consider the output for a simple HelloWorld program. Every code generation event 
produces two lines in the log, one when it starts and one when it finishes.

hastur:material marcus$ java –Xverbose:codegen HelloWorld

[INFO ][codegen][00004] #1 (Normal) jrockit/vm/RNI.transitToJava(I)V

[INFO ][codegen][00004] #1 0.027-0.027 0x9e5c0000-0x9e5c0023 0 
  .14 ms (0.00 ms)

[INFO ][codegen][00004] #2 (Normal) 
  jrockit/vm/RNI.transitToJavaFromDbgEvent(I)V

[INFO ][codegen][00004] #2 0.027-0.027 0x9e5c0040-0x9e5c0063 0 
  .03 ms (0.00 ms)

[INFO ][codegen][00004] #3 (Normal) jrockit/vm/RNI.debuggerEvent()V
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[INFO ][codegen][00004] #3 0.027-0.027 0x9e5c0080-0x9e5c0131 0 
  .40 ms 64KB 0 bc/s (0.40 ms 0 bc/s)

[INFO ][codegen][00004] #4 (Normal) 
  jrockit/vm/ExceptionHandler.enterExceptionHandler() 
    Ljava/lang/Throwable;

[INFO ][codegen][00004] #4 0.027-0.028 0x9e5c0140-0x9e5c01ff 0 
  .34 ms 64KB 0 bc/s (0.74 ms 0 bc/s)

[INFO ][codegen][00004] #5 (Normal) 
  jrockit/vm/ExceptionHandler.gotoHandler()V

[INFO ][codegen][00004] #5 0.028-0.028 0x9e5c0200-0x9e5c025c 0 
  .02 ms (0.74 ms)

...

[INFO ][codegen][00044] #1149 (Normal) java/lang/Shutdown.runHooks()V

[INFO ][codegen][00044] #1149 0.347-0.348 0x9e3b4040-0x9e3b4106 0 
  .26 ms 128KB 219584 bc/s (270.77 ms 215775 bc/s)

hastur:material marcus$

The first log line of a code generation request (event start) contains the following 
information from left to right:

•	 Info tag and log module identifier (code generator).
•	 The thread ID of the thread generating the code: Depending on the system 

configuration, there can be more than one code generator thread and more 
than one code optimizer thread.

•	 The index of the generated method: The first method to be generated starts 
at index 1. As we notice, at the beginning of the output, code generation is 
single threaded, and the order between the start and end of a code generation 
event is maintained, forming consecutive entries. This doesn't have to be  
the case if multiple code generation and optimization threads are working.

•	 The code generation strategy: The code generation strategy tells you how 
this particular method will be generated. As it is too early to have received 
runtime feedback information, all methods are generated using a normal 
code generator strategy, or even a quick one that is even sloppier. The quick 
strategy is applied for methods that are known to be of exceedingly little 
importance for the runtime performance. This can be, for example, static 
initializers that will run only once and thus make no sense to even register 
allocate properly.

•	 The generated method: This is uniquely identified by class name, method 
name, and descriptor.
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The second line of a code generation request (event end) contains the following 
information from left to right:

•	 Info tag and log module identifier (code generator).
•	 The thread ID of the thread generating the code.
•	 The index of the generated method.
•	 Start and end time for the code generation event: This is measured in 

seconds from the start of the JVM.
•	 The address range: This is where the resulting native code is placed 

in memory.
•	 Code generation time: The number of milliseconds it took for the code 

generator to turn this particular method into machine language (starting 
from bytecode).

•	 Maximum amount of thread local memory used: This is the maximum 
amount of memory that the code generator thread needed to allocate in  
order to generate the method.

•	 Average number of bytecodes per second: The number of bytecodes 
processed per second for this method. 0 should be interpreted as  
infinity—the precision was not good enough

•	 Total code generation time: The total number of milliseconds this thread has 
spent in code generation since JVM startup and average bytecodes compiled 
per second for the thread so far. 

Turning off optimizations
The command-line flag -XnoOpt, or –XX:DisableOptsAfter=<time> turns off all 
optimization in the compiler, optionally after a specified number of seconds after  
the start of the JVM. The flag -XnoOpt makes programs compile faster, but run 
slower, and can be used if there is a suspected problem with the JRockit optimizer  
or if compile time turns out to be a very big issue, for example in application 
response time.

Changing the number of code generation threads
Depending on the machine configuration, it might make sense to change the number 
of code generation and optimization threads that the JVM should use. Code generation 
and code optimization is a process that can, with the exception of emitting code into 
native code buffers and some aspects of class loading, be parallelized. The number 
of JIT compiler threads can be changed with the –XX:JITThreads=<n> option. The 
number of optimizing threads can be changed with the –XX:OptThreads=<n> option. 
Note that optimizations typically are quite memory and CPU intensive, even if the 
machine has plenty of cores.
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Directive files
A more versatile method for code generation control is provided by directive files. 
Here, wild card patterns for interesting methods can be specified, for which the code 
generator should customize its behavior. The amount of available customizations is 
very large, and this section serves merely to introduce the concept of directive files, 
not serve as a reference of any kind.

Warning! Directive files are a completely unsupported way of controlling 
JRockit code generation. The directives in the files are undocumented 
externally and are subject to change without notice. Oracle will not give 
support to JRockit configurations that use directive files.

A directive file is passed to JRockit by the flag –XX:OptFile=<filename>. It can also 
be added to or removed from the runtime state using JRCMD or through the JRockit 
Java API, both of which will be covered later in this book. In order to be able to use 
directive files, the command-line switch -XX:+UnlockDiagnosticVMOptions needs 
to be passed on the command line as well. Diagnostic VM options are subject to 
change without notice between releases and should be used at your own risk.

A directive file is a tuple of directives in a format compatible with the JavaScript 
Object Notation (JSON) format. An example would be:

{
     //pattern to match against class+method+signature

  match: "java.dingo.Dango.*",
  enable: jit
}

This is a very simple file that forbids the optimization of any method whose descriptor 
matches java.dingo.Dango.*. This is because the enable directive only contains 
the word jit, not the word hotspot, which would allow the matched methods to be 
selected for optimization through sampling.

If, on the other hand, we want to force optimization of the matched methods on their 
first code generation, we'd use something like this:

{
  match: "java.dingo.Dango.*",
  //types of "reasons" for codegen we allow 
  enable: jit,
  jit: {
    preset : opt
  }
}
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This means that we only allow the JIT strategy for the method, but when it is 
compiled we should use the preset optimization strategy on it. JRockit contains a 
number of preset strategies that are also directives, and opt means "immediately 
generate this method with full optimization". 

Applying full optimization to a method the first time it is generated by 
the system doesn't necessarily produce the same code or performance as 
it would have done if that method was detected to be hot and queued for 
normal optimization by the runtime. If a method is optimized too early, 
the risk is that we don't know enough about the program yet to do a good 
enough job. The fact is that the method might even have been queued for 
optimization, since the runtime has learned new things about the running 
program, but not optimized yet. Forcing the immediate optimization 
of many methods is not only expensive in clock cycles, but it is also not 
guaranteed to perform as well as it would by just letting things run their 
natural course.

The code generation strategy can be overridden in a more fine-grained way as well, 
for example, by turning off individual optimizations that are normally run, or by 
forbidding the inlining of a particular method.

The following is an example of a directive file with multiple directives:

//Using more than one directive, should use an array '['.                                                                
[
  //directive 1                                                                                                     
  {
    match: "java.dingo.Dango.*",
    enable: [ jit, hotspot ], //allow both jit and optimization                                                   
    hotspot: {
      fusion_regalloc : false; //forbid graph fusion for opt                                                     
    },
    jit_inline : false, //forbid jit inlining                                                                     
  },
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  //directive 2                                                                                                    
  {
    match: [ "java.lang.*", "com.sun.*" ],
    enable: jit ,
    jit: {
      //copy the opt preset, i.e. force optimization                                                           
      //for jit, but disable inlining                                                                          
      preset : opt,
      opt_inline : false,
     },
  },

  //directive 3                                                                                                    
  {
    match: "com.oracle.*",
    //force optimizer to always inline java.util methods
    //force optimizer to NEVER inline com.sun.methods
    inline: [ "+java.util.*", "-com.sun.*" ],
  }
]

Practically, any part of compilation to native code for each kind of code 
generation strategy in JRockit, down to individual optimizations, can be 
controlled through a directive file. All aspects of directive files and names 
of directives are generally not documented. While directive files are a 
great instrument for helping you track down problems in a dialogue with 
JRockit support, playing around too much with them on your own is 
generally discouraged.

When using a directive file, it is a good idea to run with the –Xverbose:opt 
command-line flag enabled, in order to make sure that the file is actually read  
and understood by the JVM.
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Summary
This chapter discussed code generation in a runtime environment. The topic  
was introduced as a general problem, comparing adaptive compilation to static 
compilation. We also explained special situations that apply to code generation  
in a Java Virtual Machine.

We have discussed some aspects of the Java bytecode format, its pros and cons, 
and the challenges of making Java code run fast, using different techniques from 
interpretation to total JIT compilation.

Furthermore, we have discussed the challenges of an adaptive runtime, where new 
code can enter the system at any time, and how to overcome them by "educated 
guesses", or "gambling". This means that JVM takes the optimistic approach when 
optimizing that made assumptions rarely change. We also mentioned the equation 
compilation speed versus execution speed, depending on method "hotness".

Finally, the chapter introduced the code pipeline in the JRockit Virtual Machine and 
its state of the art optimizations, using a comprehensive example with snapshots of a 
method generation cycle, all the way to native code. At the end of the chapter, some 
ways of modifying JRockit code generation behavior through command-line flags 
and directive files were explained.

The next chapter covers another fundamental aspect of adaptive runtimes; the 
memory management system, and techniques for efficient garbage collection, both as 
an overview, for garbage collected languages in general and specifically for Java with 
the JRockit JVM.



Adaptive Memory 
Management

This chapter is an introduction to automatic and adaptive memory management 
in the Java runtime. It provides a background on techniques for garbage collection 
and looks at the history of automatic memory management. It also discusses the 
advantages and disadvantages of automatic memory management compared to 
static solutions.

You will learn the following from this chapter:

•	 The concepts of automatic and adaptive memory management and 
understanding the problems and possibilities associated with these

•	 How a garbage collector works, including algorithms for garbage collection 
and implementation details

•	 How a garbage collector must be implemented in order to perform well and 
be scalable

•	 About the latency versus throughput equation
•	 The problems of object allocation in a runtime and algorithms for doing 

efficient object allocation
•	 The most important Java APIs for memory management, for example, the 

java.lang.ref package
•	 How the JRockit Real Time product and deterministic garbage collection works
•	 How to write Java code that plays well with the garbage collector, and 

common pitfalls and false optimizations
•	 How to use the most fundamental command-line flags associated with the  

memory subsystem
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The concept of automatic memory  
management
Automatic memory management is defined as any garbage collection technique 
that automatically gets rid of stale references, making a free operator unnecessary. 
This is quite an old idea—implementations have been with us for almost as long as 
the history of modern computer science, probably starting out as reference counting 
methods in early Lisp machines. After that, other heap management strategies were 
developed. Most are refinements of tracing techniques, which involve traversing live 
object graphs on the heap in order to determine what can be garbage collected.

We will use the term heap throughout this chapter to mean all 
the non-thread local memory available for objects in a garbage 
collected environment.

Adaptive memory management
As we have already seen in the previous chapter, basing JVM behavior on 
runtime feedback is a good idea. JRockit was the first JVM to recognize that  
adaptive optimizations based on runtime feedback could be applied to all 
subsystems in the runtime and not just to code generation. One of these  
subsystems is memory management.

We will use the term adaptive memory management to describe a memory 
management system whose behavior is based heavily on runtime feedback. 
Adaptive memory management is a special case of automatic memory management. 
Automatic memory management should be taken to mean just that some kind  
of garbage collection technique is employed. Garbage collection means, of course,  
that the user does not have to explicitly remove objects that are no longer in use.  
The system will automatically detect and free those resources.

Adaptive memory management must correctly utilize runtime feedback for optimal 
performance. This can mean changing GC strategies, automatic heap resizing, getting 
rid of memory fragmentation at the right intervals, or mainly recognizing when it is 
most appropriate to "stop the world". Stopping the world means halting the executing 
Java program, which is a necessary evil for parts of a garbage collection cycle.
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Advantages of automatic memory 
management
The first and foremost advantage of automatic memory management is its 
contribution to the speed of the software development cycle. Any support 
organization knows that, with the possible exception of erroneous multi-threaded 
behavior, some of the most common causes for problems in software are memory 
allocation bugs, buffer overruns, and memory leaks. All of these are fairly hard to 
debug. It may not be a trivial matter to spot a one-byte-off allocation that leads to  
a crash much later in the program lifetime, when, for example, a totally different 
object is freed.

Both memory allocation bugs and buffer overruns are impossible in Java due to the 
intrinsic properties of the Java language. Memory allocation bugs can't occur because 
automatic memory management exists and buffer overruns can't occur because the 
runtime does not allow them. For example, whenever the program tries to write 
outside an array, an ArrayIndexOutOfBoundsException is thrown.

While memory leaks are still possible in a garbage collected world, modern JVMs 
provide ways of detecting them. There are also constructs in the Java language  
that can help the developer work around them. In the case of JRockit, the JRockit 
Mission Control suite contains a tool that can, with very low overhead, detect 
memory leaks in a running application. This is possible, as the garbage collector  
in the JVM already collects a lot of useful information that can be used for multiple 
purposes. The Memory Leak Detector tool is covered in detail in Chapter 10 
of this book. It is a prime example of a value add, stemming from automatic  
memory management.

It is the authors opinion that built-in automatic memory management 
and the shorter development cycles it enabled, was one of the main 
factors behind today's widespread Java adoption. Complex server 
applications crash less often with automatic memory management.

An additional advantage is that an adaptive memory manager may pick the 
appropriate garbage collection strategy for an application based on its current 
behavior, appropriately changing the number of garbage collecting threads or fine 
tuning other aspects of garbage collection strategies whenever needed. This might 
be compared to the adaptive behavior of the code generator, as explained in the 
previous chapter. The code generator can use runtime feedback to, for example, 
optimize only hot parts of methods and leave cold parts alone until they become  
hot at some later stage.
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Disadvantages of automatic memory 
management
It is often argued that automatic memory management can slow down execution 
for certain applications to such an extent that it becomes impractical. This is because 
automatic memory management can introduce a high degree of non-determinism to a 
program that requires short response times. To avoid this, extensive workarounds may 
be needed to get enough application performance. 

In truth, giving up control of memory management to the runtime may result in 
slowdowns, but this is rarely the case anymore, at least for well written applications.

The main bottleneck for a garbage collector tends to be the amount of live data on  
the heap, not the actual heap size. Any garbage collection algorithm will break down  
given too large an amount of live data. This could indeed be less of a problem in a  
non-garbage collecting system, but humans are fallible and there is no guarantee  
that manual memory management would fare any better with a large live data set.

Finally, there may still be memory leaks in a garbage collected environment. If the 
program erroneously holds on to references that should have been garbage collected, 
these will be treated as live. A common example is a broken cache implementation, for 
example in the form of a java.util.HashMap that doesn't throw away all old objects 
as it should. The system has no way of knowing that a forgotten object, still referenced 
by a key/value pair in a HashMap that is still in use, should be reclaimed.

Fundamental heap management
Before addressing actual algorithms for garbage collection, we need to talk about 
allocation and deallocation of objects. We will also need to know which specific 
objects on the heap to garbage collect, and we need to briefly discuss how they  
get there and how they are removed.

Allocating and releasing objects
Allocation on a per-object basis normally, in the common case, never takes place 
directly on the heap. Rather, it is performed in thread local buffers or similar 
constructs that are promoted to the heap from time to time. However, in the  
end, allocation is still about finding appropriate space on the heap for the newly 
allocated objects or collections of objects.

In order to put allocated objects on the heap, the memory management system must 
keep track of which sections of the heap are free (that is, those which contain no live 
objects). Free heap space is usually managed by maintaining a free list—a linked list 
of the free memory chunks on the heap, prioritized in some order that makes sense. 
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A best fit or first fit can then be performed on the free list in order to find a heap 
address where enough free space is available for the new object. There are many 
different algorithms for this, with different advantages. 

Fragmentation and compaction
It is not enough to just keep track of free space in a useful manner. Fragmentation is 
also an issue for the memory manager. When dead objects are garbage collected all 
over the heap, we end up with a lot of holes from where objects have been removed.

Fragmentation is a serious scalability issue for garbage collection, as we can have a 
very large amount of free space on the heap that, even though it is free, is virtually 
unusable. This is because there is not enough contiguous space for the allocation of 
new objects—no hole is big enough. Typically, this will lead to the runtime system 
triggering more and more GCs in order to attempt clean up of the mess, but still isn't 
able to reclaim enough contiguous space for new objects. Untreated fragmentation is 
a classic performance death spiral.

The following figure shows a heap occupied by several objects:

A E F C G DB H

0 1 2 3 4 5 6 7 8

The heap section shown is completely occupied by live objects. The object A is two 
heap units in size and the other objects are just one heap unit in size. The application 
has two objects reachable from a program point where garbage collection takes place, 
A that references the object graph ABCD and E that references the object graph 
EFGH, where ABCD and EFGH are mutually independent.

If E is assigned null and thus removed from the scope of the program, E and its 
children can be garbage collected. The resulting heap after garbage collection will 
look like in the following figure:

A C DB

0 1 2 3 4 5 6 7 8
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There is now free space on the heap, but even though there is a total amount of four 
free heap units, there is no place on the heap with more than one free unit in sequence. 
If the memory manager now attempts to find space for a new object that is, say, two 
heap units in size, an OutOfMemoryError will be thrown, even though there are four 
free units on the heap. This illustrates why fragmentation is problematic.

It follows that a memory management system needs some logic for moving objects 
around on the heap, in order to create larger contiguous free regions. This process is 
called compaction, and involves a separate GC stage where the heap is defragmented 
by moving live objects so that they are next to one another on the heap.

The following figure shows the heap from our example after compaction has  
taken place:

A C DB

0 1 2 3 4 5 6 7 8

Now, we have four consecutive free heap units, and so we are able to allocate larger 
objects than before with the same amount of free space.

Compaction is difficult to do without stopping the world, but we will discuss some 
ways of making it more efficient later in this chapter (and to some extent in Chapter 5 
and 13).

By looking at the object reference graph and by gambling that objects referencing 
each other are likely to be accessed in sequence, the compaction algorithm may  
move these objects so that they are next to one another on the heap. This is beneficial 
for the cache, and hopefully, the object lifetimes are similar so that larger free heap 
holes are created upon reclamation.

Intrinsic properties of different garbage collection algorithms also prevent some 
degree of fragmentation (generational GCs) or allow for automatic compaction  
(stop and copy). These are discussed later in this chapter.

Garbage collection algorithms
All techniques for automatic memory management boil down to keeping  
track of which objects are being used by the running program,  in other words, 
which objects are referenced by other objects that are also in use. Objects that  
are no longer in use may be garbage collected. We will use the terms live and 
in use interchangeably.
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It is hard to exactly place garbage collection techniques in different categories. With 
the risk of drawing fire from the academic community, we will use the term "tracing 
garbage collection" for everything except reference counting. Tracing garbage 
collection means building a graph of live objects at a collection event and 
discarding unreachable ones. The only other kind of technique that we will  
cover is reference counting.

Reference counting
Reference counting is a memory management technique where the runtime keeps 
track of how many live objects point to a particular object at a given time.

When the reference count for an object decreases to zero, the object has no referrers 
left, and trivially, the object is available for garbage collection. This approach was 
first used in Lisp implementations and is fairly efficient, except for the obvious flaw 
that cyclic constructs can never be garbage collected. If two objects refer to each other 
but have no outside referrers, their reference counts are obviously non-zero but they 
are still unreachable by the GC, consequently turning into a memory leak.

The main advantage of reference counting, aside from its obvious simplicity, is that 
any unreferenced object may be reclaimed immediately when its reference count 
drops to zero.

However, keeping the reference counts up to date can be expensive, especially in a 
parallel environment where synchronization is required. There are no commercial 
Java implementations today where reference counting is a main garbage collection 
technique in the JVM, but it might well be used by subsystems and for simple 
protocols in the application layer.

Tracing techniques
The concept of a tracing garbage collector is very simple. Start by marking all objects 
currently seen by the running program as live. Then recursively mark all objects 
reachable from those objects live as well.

Naturally, the variations to this theme are endless.

From now on, we will use the term root set to mean the initial input set for this kind 
of search algorithm, that is the set of live objects from which the trace will start. 
Typically, the root set includes all Java objects on local frames in whatever methods 
the program is executing when it is halted for GC. This includes everything we can 
obtain from the user stack and registers in the thread contexts of the halted program. 
The root set also contains global data, such as static fields. Or even simpler—the root 
set contains all objects that are available without having to trace any references.
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We will discuss how to identify the root sets in more detail later in this chapter.

Mark and sweep
The mark and sweep algorithm is the basis of all the garbage collectors in all 
commercial JVMs today. Mark and sweep can be done with or without copying  
or moving objects (see the section on Generational garbage collection and the section 
on Compaction for details). However, the real challenge is turning it into an efficient 
and highly scalable algorithm for memory management. The following pseudocode 
describes a naive mark and sweep algorithm:

Mark:
  Add each object in the root set to a queue
    For each object X in the queue
      Mark X reachable
      Add all objects referenced from X to the queue
Sweep:

For each object X on the heap
    If the X not marked, garbage collect it

As can be inferred from the previous algorithm and the explanation of tracing 
techniques, the computational complexity of mark and sweep is both a function of 
the amount of live data on the heap (for mark) and the actual heap size (for sweep).

The following figure shows a heap before the mark phase:

 

A B C D

E F

root set

before mark

First, the live object graph needs to be traversed for marking. Then the entire heap 
needs to be traversed to identify unmarked objects. This is not necessarily optimal 
and there are several ways that have been addressed in research over the years to 
make faster and more parallelizable variants.

In the following figure, the mark phase is done. All objects that are reachable from 
the root set have been marked. Only E is not reachable from the root set.
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A B C D

E F

root set

after mark

The simplest version of mark and sweep assumes that the object graph doesn't change 
during the mark phase. This means that all code execution that may modify the object 
graph through, for example, field reassignments, must be halted when the mark takes 
place. This is never good enough for modern applications with large data sets.

The following figure shows the heap after the sweep phase has taken place and  
E has been garbage collected:

A B C D

F

root set

after sweep

In naive mark and sweep implementations, a mark bit is typically associated with 
each reachable object. The mark bit keeps track of if the object has been marked or 
not. Objects are typically allocated so that they are aligned on even addresses in 
memory. Thus, the lowest bit in an object pointer is always zero. This is one example 
of a good place to keep the mark bit.

A variant of mark and sweep that parallelizes better is tri-coloring mark and 
sweep. Basically, instead of using just one binary mark bit per object, a color, or 
ternary value is used. The color associated with each object in the object graph is 
conventionally referred to as white, grey, or black. White objects are considered 
dead and should be garbage collected. Black objects are guaranteed to have no 
references to white objects. Initially, there are no black objects—the marking 
algorithm needs to find them. No black object is ever allowed to reference a white 
object. Grey objects are live, but with the status of their children unknown. Initially, 
the root set is colored grey to make the algorithm explore the entire reachable object 
graph. All other objects start out as white.
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The tri-color algorithm is fairly simple:

Mark:
   All objects are White by default.
   Color all objects in the root set Grey.
   While there exist Grey objects
     For all Grey Objects, X 
       For all White objects (sucessors) Y, that X references
         Color Y Grey.
       If all edges from X lead to another Grey object, 
         Color X black.
Sweep:
Garbage collect all White objects

The main idea here is that as long as the invariant that no black nodes ever point 
to white nodes is maintained, the garbage collector can continue marking even 
while changes to the object graph take place. These changes may be caused by, for 
example, allocations and field assignments in the executing program. Typically, the 
marking is "outsourced" so that many parts of the memory manager help maintain 
the coloring while the program is running. For example, objects may be marked 
immediately upon allocation.

There are several variants to parallelizing mark and sweep beyond the scope of this 
chapter. This section merely serves as an example of how mark and sweep can be 
improved for incremental and parallel garbage collection.

Stop and copy
Stop and copy can be seen as a special case of tracing GC, and is intelligent in its 
way, but is impractical for large heap sizes in real applications.

Stop and copy garbage collection requires partitioning the heap into two regions of 
equal size. Only one region is in use at a time, which is quite wasteful and ensures 
that only a maximum of half the available heap memory can be utilized for live data. 
In its simplest form, stop and copy garbage collection goes through all live objects 
in one of the heap regions, starting at the root set, following the root set pointers to 
other objects and so on. The marked live objects are moved to the other heap region. 
After garbage collection, the heap regions are switched so that the other half of the 
heap becomes the active region before the next collection cycle.

This approach is advantageous as fragmentation can't become an issue. Surviving 
objects are laid out first-fit in the new heap section on each garbage collection. As 
objects are laid out in their referencing order as the object graph is explored, stop and 
copy can significantly decrease cache overhead for the running program by keeping 
objects and the objects they reference close on the heap.
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The obvious disadvantage of this approach is of course that all live data must be 
copied each time a garbage collection is performed, introducing a serious overhead 
in GC time as a function of the amount of live data, not to mention the very serious 
cache performance issues for the GC itself. More importantly, only using half of the 
heap at a time is an unforgivable waste of memory.

A B

C D

root set

A C

FREE

before after

R 1 R 1

R 2 R 2

FREE

This figure illustrates a stop and copy cycle. The heap is divided into two regions. The 
root set contains only the object A at the start of garbage collection. A references C and 
no other objects. The mark phase of the GC cycle determines that A and C are the only 
live objects, and they are moved to the new region, R2. B and D are garbage collected. 
A and C were not adjacent in memory in R1, but will be automatically adjacent in R2 
as objects are laid out first-come-first-serve from tracing the object graph.

Stopping the world
Stopping the world, that is halting all executing Java threads for garbage collection, is 
the main Achilles' heel of automatic memory management. Even though an algorithm 
such as mark and sweep may run mostly in parallel, it is still a complicated problem 
that references may change during actual garbage collections. If the Java program is 
allowed to run, executing arbitrary field assignments and move instructions at the 
same time as the garbage collector tries to clean up the heap, mutual bookkeeping 
between the program and the garbage collector is needed. Ultimately this means 
synchronization, and synchronization, even in a smart algorithm, means stopping 
the world. Stopping the world for short periods of time is necessary for all languages 
where garbage collection and heap management is involved. This is one of the main 
sources of latencies and non-determinism in a runtime.
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Garbage collection may move objects around on the heap, for example by compaction. 
If a register in a thread context of a running program contains a pointer to an object 
and that object is moved to another location in memory, it is easy to realize that the 
program will break if it is just allowed to continue running without the GC updating 
the register contents in the thread context. This is done by synchronously modifying 
the thread context of the executing thread. The same applies to any object reference 
that points out an object on the heap whose address has changed as an effect of the 
garbage collection.

The easy way out would be to stop the world for a long period of time and just 
brute force garbage collect as much as possible with as many threads as possible. 
Before resuming the threads, all registers are updated. Normally, however, this 
isn't possible because low latencies are usually the main requirement for a modern 
server-side application. It doesn't do to halt execution for hundreds of milliseconds 
at a time. Thus, for low latency environments, which seek to minimize application 
response time, the garbage collector needs to do as much work as it can while the 
Java program is still running, and still handle these possible pointer reassignments. 
This is the difficult part. However, there is no getting around stopping the world 
completely at some point, unless the application has very special behavior. The real 
challenge is keeping these pauses as short as possible.

Conservative versus exact collectors
As we have discussed earlier, the virtual machine needs to provide some information 
to the memory system so that it can identify which positions on a local stack frame 
contain objects. This is needed to build the root set of objects that will form the first 
nodes of the live object graph. Every thread that is executing Java code handles 
objects, and if the thread is stopped, we need to know where in its context they are.

It is easy to identify objects in fields of other objects, as all object layouts are known 
to the garbage collector. If all instances of object X contain a field of type Y, the 
pointer to the field contents of Y for all X instances is always at the same offset 
from the start of an X instance. An object is little more than a C struct to the JVM. 
However, the GC doesn't automatically know where objects are on a stack frame.
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Finding the method in which a particular thread has stopped is simple. We can just use 
a lookup table or search tree to find out in which Java method an instruction pointer 
belongs. Objects occur in the scope of this method, either present from the beginning 
of its execution as in-parameters, or as the result of field loads or function calls in the 
method. Move instructions may also copy objects from one register to another. Given 
an arbitrary point in the code of the method, the point where the execution has been 
halted, there is no way to backtrack the context where the thread is stopped to the 
context in which these objects were created. We have no way of knowing which code 
was just executed to get us to this particular address. However, the GC must, given a 
stack frame, know where objects are stored to form a correct root set.

Trivially, one might tell the compiler to only use certain registers and positions  
on the local stack frame for objects and certain other registers and positions for  
non-objects, such as integers. For example on x86, one might force the code  
generator to place objects only in the registers esi and edi and integers only in all 
other registers. One might spill objects only to stack positions whose offsets are even 
multiples of the pointer size ([esp+0*4], [esp+2*4] and so on) and integers only 
to stack positions that are odd multiples ([esp+1*4], [esp+3*4] and so on). This 
makes it simple for the GC, as our "objects only" locations can only contain a valid 
object or null. Other locations need not be processed by the GC at all, as they never 
contain objects. However, limiting the number of registers for generic use by the 
compiler requires the register allocator to produce more spills. This is completely 
impractical for performance reasons, especially on architectures like x86, where the 
amount of available general purpose registers is limited.

One way to get around this is to use a conservative garbage collector, treating 
every location that looks like an object pointer as an object pointer. Trivially, values 
like 17 and 4711 can be disregarded and are known to be integers, but values that 
look like addresses must be examined and checked against the heap. This produces 
overhead, and is necessary if we want to add automatic memory management to 
some languages, such as C, which is weakly typed. Conservative garbage collectors 
also have problems with unintentional object retention to varying degrees and with 
moving objects in memory.

In Java, however, we can get by with an exact garbage collector that knows precisely 
where object pointers are and where they are not. We only need a way to get this 
information to the garbage collector. Typically, this is done by generating meta info 
along with code for a Java method.
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Livemaps
In JRockit, a piece of meta info that consists of a collection of registers and stack 
positions containing objects at a given program point is called a livemap. An 
additional bit of info per object pointer tells us whether it is an internal pointer 
or the actual start of an object. Internal pointers refer to some piece of information 
inside an object, thus pointing to the heap, but not to an object header. Internal 
pointers need to be tracked as they must be updated along with their base object 
if it is moved in memory, but they cannot be treated as base objects themselves.

A typical example of the use of internal pointers is when iterating through an array. In 
Java no internal pointers to objects may exist, but compiled code may well run faster if 
a sequence like:

for (int i = 0; i < array.length; i++) {
  sum += array[i];
}

were to be compiled to native code equivalent to:

for (int ptr = array.getData();
  ptr < sizeof(int) * array.length;
  ptr += sizeof(int)) {
    sum += *ptr;
}

In this case, the GC has to know that ptr is an internal pointer to the array so that 
it can be updated as well if array is moved to another position in memory. The 
code potentially runs faster since the pointer to the array element data need not be 
computed at every iteration in the loop.

So, it is clear that object pointers and internal object pointers need to be stored in 
meta info, livemaps, for the garbage collector. To illustrate how this information 
looks to the memory system, the following is a small example of compiled Java code 
in JRockit annotated with livemap info. The code example is a simple method that 
computes the sum of the elements of an array.

public static Integer sum(Integer array[]) {
  Integer sum = 0;
  for (int i = 0; i < array.length; i++) {
    sum += array[i];
  }
  return sum;
  }
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Letting JRockit generate the method on a 64-bit x86 platform produces the following 
assembly code:

[SumArray.sum([Ljava/lang/Integer;)Ljava/lang/Integer; 

7a8c90: push   rbx
7a8c91: push   rbp
7a8c92: sub    rsp,8
7a8c96: mov    rbx,rsi
  *----- [rsib, rbxb]
7a8c99: test  eax,[0x7fffe000]
  *--B-- [rsib, rbxb]
7a8ca0: mov    ebp,[rsi+8]
7a8ca3: test   ebp,ebp
7a8ca5: jg     7a8cb1
  *----- [nothing live]
7a8ca7: xor    rax,rax
  *----- [nothing live]
7a8caa: call Integer.valueOf(I)
  *C---- [rsib]
7a8caf: jmp    0x7a8cf7
  *--B-- [rsib, rbxb] 
7a8cb1: mov    r9d,[rsi+16]
  *----- [r9b, rbxb] 
7a8cb5: mov    eax,[r9+8]
  *----- [rbxb] 
7a8cb9: call Integer.valueOf(I)
  *C---- [rsib, rbxb] 
7a8cbe: mov    r9d,1
7a8cc4: cmp    rbp,1

7a8cc7: jle    0x7a8cf7
  *----- [rsib, rbxb] 
7a8cc9: mov    [rsp+0],rbx
7a8ccd: mov    ebx,r9d
  *----- [rsib, [rsp+0]b] 
7a8cd0: mov    r9d,[rsi+8]
  *--B-- [[rsp+0]b] 
7a8cd4: test   eax,[0x7fffe000]
7a8cdb: mov    r11,[rsp+0]
  *----- [r11b, [rsp+0]b] 
7a8cdf: mov ecx,[r11+4*rbx+16]
  *--B-- [rcxb, [rsp+0]b] 
7a8ce4: add    r9d,[rcx+8]
7a8ce8: mov    eax,r9d
  *----- [[rsp+0]b] 
7a8ceb: call Integer.valueOf(I)
  *C-B-- [rsib, [rsp+0]b]
7a8cf0: add    ebx,1
7a8cf3: cmp    ebx,ebp
7a8cf5: jl     7a8cd0
  *--B-- [rsib] 
7a8cf7: pop    rcx
7a8cf8: pop    rbp
7a8cf9: pop    rbx
7a8cfa: ret

Though it is not important to understand what the code generator has done here 
in detail, the main idea is that several program points in the assembly code are 
annotated with liveness information. In this case, the optimization level is not 
sufficiently high to generate the inner pointer pattern described earlier. Also, the 
calls to Integer.valueOf have not been inlined.

The livemap information under annotated operations tells the garbage collector 
which registers and stack positions contain objects at the given program point. 
Notice, for example, that the calls to Integer.valueOf, by calling convention 
always return a new integer object in rsi (the b after rsi means "base pointer" 
as opposed to "internal pointer").
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The livemaps also tell us that rsi and rbx contain objects after the frame entry at the 
beginning of the method. This follows from the mov rbx, rsi at address 7a8c96, 
which is a register allocator artifact that shuffles the in-parameter from register rsi to 
register rbx.

As rbx, in the JRockit calling convention is callee save (not destroyed 
over calls), the compiler chooses, for efficiency reasons, to keep the object 
alive in a register over the calls to Integer.valueOf. This way, the 
register allocator avoids doing a spill.

So, where can the garbage collector stop the world? Intuitively, it is too expensive  
to tag every single native instruction, each being a potential thread suspension point, 
with liveness information. As can be seen from the previous example, this is neither 
the case.

In JRockit, only certain instructions are tagged with livemaps, for example loop 
headers or headers of basic blocks with multiple entries, where it isn't possible to 
know which way control flow took to get there. Another example of instructions 
annotated with livemaps are call instructions. This is because liveness information 
must, for execution speed, be available immediately when computing a stack trace.

Recall from Chapter 2 that JRockit performs tasks like back patching calls. This 
means that the JVM must be equipped with a mechanism to understand and 
decompile native code. Originally, this mechanism was extended to make it 
possible to also emulate all native instructions from an address, given an operating 
system thread context as a starting point. If a livemap wasn't available at a certain 
instruction pointer in the context of a stopped thread, JRockit simply emulated the 
code, instruction by instruction, from that position until a livemap was reached.  
This is called rollforwarding. 

Rollforwarding was abandoned with JRockit R28. JRockit now uses 
a more traditional safepoint-based approach.

The advantages to this approach were that threads could be stopped anywhere. 
This was implemented using the signaling mechanisms of the underlying  
operating system. No extra instructions in the generated code were required.

The disadvantages were that emulation still took time and that large emulation 
frameworks needed to be in place, one for each supported hardware architecture. This 
was extremely difficult to test, as the set of inputs was virtually infinite, and emulation 
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itself was very error prone. In addition, porting to a new hardware architecture became 
very expensive, requiring the implementation of a new complete emulation framework 
for that particular piece of silicon. Bugs in the emulators were usually subtle and 
generated intermittent and hard-to-find problems.

Throughout the years, there were also several problems with the signaling approach to 
stopping threads. It turns out that certain operating systems, especially Linux, seem to 
be poorly tested when it comes to applications that use a lot of signals. There were also 
issues with third-party native libraries that did not respect signal conventions, causing 
signal collisions. The external dependency on signals proved too error-prone to be 
completely reliable.

Newer versions of JRockit use a more traditional safepoint approach instead. 
Throughout the code, safepoint instructions that dereference a certain guard page 
in memory are inserted. At these instruction pointers, a complete livemap is always 
guaranteed to be in place. Whenever a Java thread is to be stopped, the runtime 
protects the guard page from access. This makes the safepoint instruction trigger a 
fault when executed. Variants of this technique are, as far as we know, employed in  
all commercial JVMs today. Loop headers are a typical example of program points 
where it makes sense to place safepoint instructions. We cannot allow a situation 
where the program will continue executing without ever trying to dereference a  
guard page. Thus, constructs like potentially infinite loops cannot be left without 
safepoint instructions.

The disadvantage here is that explicit code for dereferencing the guard page has to 
be inserted in the generated code, contributing to some execution overhead. But the 
advantages easily pay for this small inconvenience.

By now we have covered a lot of material on garbage collection, but only the basic 
concepts and algorithms. We've also discussed the surprisingly difficult problem of 
generating root sets for our garbage collectors. We will now attempt to cross the bridge 
to the "real world" and move on to discuss how garbage collection can be optimized 
and made more scalable.

Generational garbage collection
In object-oriented languages, a very important observation is that most objects are 
temporary or short-lived.

For temporary objects, escape analysis at compile time might be able to stop them from 
being allocated on the heap altogether, but in an imperfect world this is not always 
possible. Especially in a language like Java.
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However, performance improvements for handling short-lived objects on the heap can 
be had if the heap is split into two or more parts called generations. New objects are 
allocated in the "young" generations of the heap, that typically are orders of magnitude 
smaller than the "old" generation, the main part of the heap. Garbage collection is then 
split into young and old collections, a young collection merely sweeping the young 
spaces of the heap, removing dead objects and promoting surviving objects by moving 
them to an older generation.

Collecting a smaller young space is orders of magnitude faster than collecting the 
larger old space. Even though young collections need to happen far more frequently,  
this is more efficient because many objects die young and never need to be promoted. 
Ideally, total throughput is increased and some potential fragmentation is removed.

JRockit refers to the young generations as nurseries.

Multi generation nurseries
While generational GCs typically default to using just one nursery, sometimes it can 
be a good idea to keep several small nursery partitions in the heap and gradually age 
young objects, moving them from the "younger" nurseries to the "older" ones before 
finally promoting them to the "old" part of heap. This stands in contrast with the 
normal case that usually involves just one nursery and one old space.

Multi generation nurseries may be more useful in situations where heavy object 
allocation takes place.

We assume that the most freshly allocated objects will live for a very short period of 
time. If they live just a bit longer, typically if they survive a first nursery collection, the 
standard behavior of a single generation nursery collector, would cause these objects to 
be promoted to the old space. There, they will contribute more to fragmentation when 
they are garbage collected. So it might make sense to have several young generations 
on the heap, with different age spans for young objects in different nurseries, to try to 
keep the heap holes away from the old space where they do the most damage.

Of course the benefits of a multi-generational nursery must be balanced against the 
overhead of copying objects multiple times.

Write barriers
In generational GC, objects may reference other objects located in different generations 
of the heap. For example, objects in the old space may point to objects in the young 
spaces and vice versa. If we had to handle updates to all references from the old space 
to the young space on GC by traversing the entire old space, no performance would  
be gained from the generational approach. As the whole point of generational garbage 
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collection is only to have to go over a small heap segment, further assistance from the 
code generator is required.

In generational GC, most JVMs use a mechanism called write barriers to keep track 
of which parts of the heap need to be traversed. Every time an object A starts to 
reference another object B, by means of B being placed in one of A's fields or arrays, 
write barriers are needed. Write barriers consist of a small amount of helper code 
that needs to be executed after each field or array store in the executing Java code.

The traditional approach to implementing write barriers is to divide the heap into a 
number of small consecutive sections (typically about 512 bytes each) that are called 
cards. The address space of the heap is thus mapped to a more coarse grained card 
table. Whenever the Java program writes to a field in an object, the card on the heap 
where the object resides is "dirtied" by having the write barrier code set a dirty bit.

Now, the traversion time problem for references from the old generation to the 
nursery is shortened. When doing a nursery collection, the GC only has to check  
the portions of the old space represented by dirty cards.

A

B C

root set

EF

HG I

BEFORE NURSERY GC

nursery

Consider the previous figure. The runtime is about to do a nursery collection. If the 
root set contains object A only, at the start of the collection, we would easily detect 
A and B as live by pointer tracing A to B. The pointer trace from B to C would be 
ignored, as C is in the old space. However, for the GC to work, we must add E in the 
old space to the root set, as it references an object in the nursery. With write barriers, 
we don't have to go over the entire old space to find E, but we just have to check the 
areas of the old space that correspond to dirty cards. In this example, the card for E 
was dirtied by the write barrier code after a previous assignment of F to a field in E. 
Thus, we can add F to the set of objects to be traced by the nursery GC.
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A and B are root reachable and will be promoted to the old space after the nursery 
collection. G and H are not, and will be garbage collected. E and F were root 
reachable, and thus F will be promoted. While I is dead, it is part of the old space 
and won't be handled until the next old collection. The following figure shows the 
heap after the completed nursery collection and promotion. The objects in the old 
space are untouched, as this was a nursery collection.

Throughput versus low latency
Recollect from Chapter 2 that the main factor that the JVM wants to minimize is the 
total runtime. In code generation, the total runtime is defined by the time to compile 
the code plus the time to execute the code. As we saw, we can only minimize one 
factor at the cost of another.

In memory management, the equation is simpler. All time spent in GC is of course 
detrimental to runtime. Minimizing the time spent in GC might seem the proper  
and only solution to lower the total runtime.

However, recollect that garbage collection requires stopping the world, halting 
all program execution, at some stage. Performing GC and executing Java code 
concurrently requires a lot more bookkeeping and thus, the total time spent in GC 
will be longer. If we only care about throughput, stopping the world isn't an issue 
—just halt everything and use all CPUs to garbage collect, one part of the heap per 
CPU. However, to most applications, latency is the main problem, and latency is 
caused by not spending every available cycle executing Java code.

Thus, the tradeoff in memory management is between maximizing throughput and 
maintaining low latencies. In an imperfect world, we can't expect to have both.
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Optimizing for throughput
In some cases, latencies do not matter at all in an application, for example, in offline 
jobs that do large amounts of object crunching. A batch job running overnight may 
not be as vulnerable to response times as a client/server application.

If pause times up to several seconds are permissible, throughput can be maximized 
to a degree that is not possible if low latency is critical.

There are many variants of high throughput GC. The simplest approach is to  
stop the world and then garbage collect the heap with as many threads as possible,  
at least as many as the number of cores on the platform, each handling a separate 
part of the heap. Naturally, some synchronization between GC threads is still 
required for references that point to other heap parts. JRockit refers to this as  
parallel garbage collection.

We can still achieve levels of throughput not attainable in a low latency environment 
with other, less intrusive variants of this parallel approach. One example would be 
by using generations in the heap.

Optimizing for low latency 
Optimizing for low latencies is basically a matter of avoiding stopping the world, 
and therefore also Java execution, by any means necessary. But naturally, if the 
garbage collector gets too little total CPU time and it can't keep up with the allocation 
frequency, the heap will fill up and an OutOfMemoryError will be thrown by the JVM. 
We need a GC that performs large parts of its work when the program is running.

JRockit refers to this kind of GC as concurrent garbage collection, using a term from 
one of the first scientific papers describing this technique, by Boehm and others. Later, 
the term mostly concurrent was introduced for improved versions of this algorithm.

There is a slight degree of confusion in the terminology here. The parallel, 
throughput oriented GC, described in the previous section, does not run 
at the same time as the Java program executes. It is known as "parallel" 
because it uses as many threads as possible in parallel to garbage collect 
the heap. Garbage collection that runs at the same time as the Java program 
executes, as described in this section, is known as concurrent GC.
The concurrent garbage collector is also parallel, in the traditional 
meaning of the word, because it uses several worker threads. However, 
the terms concurrent and parallel used in the manner of this book are not 
just specific to JRockit. This is often the standard way of referring to these 
respective GC techniques in academic research and other commercial 
implementations.
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Many stages of a mark and sweep garbage collection algorithm can be made to run 
concurrently with the executing Java program. Marking is the most critical of the 
stages, as it usually takes up around 90 percent of the total garbage collection time. 
Fortunately, marking is very parallelizable and large parts of a mark phase can also be 
run concurrently with executing Java code. Sweeping and compaction, however, tend 
to be more troublesome, even though it is fairly simple to compact parts of the heap 
while others are swept, thus achieving better throughput.

The main idea behind mostly concurrent garbage collection is to spend as much 
time running garbage collection as possible, while the Java program still executes. 
Throughout the GC cycle, several shorter stop the world phases are used, where some 
merely seek to synchronize the GC with the object graph, as the running Java program 
continuously makes changes to it. This is trivially not an issue if no Java execution is 
allowed to take place during GC. As far as we know, all commercial JVMs use variants 
of the mostly concurrent approach for low latency garbage collection.

The section on Near-real-time garbage collection, later in this chapter, goes into further 
details on how to achieve both performance and low latencies. And specifically, how 
JRockit does it. 

Garbage collection in JRockit
The backbone of the GC algorithm used in JRockit is based on the tri-coloring 
mark and sweep algorithm described earlier in this chapter. However, several 
optimizations and improvements have been made to make it more parallel, both 
to enable it to run at the same time as the Java program is executing and to use an 
optimal number of threads. For nursery collections, heavily modified variants of  
stop and copy are used.

Garbage collection in JRockit can work with or without generations, depending 
on what we are optimizing for. Garbage collection strategies and adaptive 
implementation thereof is covered later in this chapter.

The JRockit garbage collector can chose to tag any object on the 
heap as pinned for a shorter or longer period of time. This makes 
concurrent garbage collection algorithms more flexible. It can also 
enable I/O performance in that things like buffers can be kept in 
the same place on the heap for an entire I/O operation. This makes 
memory-intensive operations significantly faster. Pinned objects are a 
relatively simple concept in a GC, but for some reason, JRockit seems 
to be one of the few commercial JVMs that implements it.
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Old collections
The mark and sweep algorithm that is the fundament of all JRockit garbage 
collectors, parallel or concurrent, uses two colors and not three, for its objects, but 
still allows for efficient parallelization in the manner described in the section on Mark 
and sweep earlier in this chapter. Objects belong to one of two sets. One set is used 
to mark live objects. JRockit calls this set the grey bits, even though it is actually the 
semantic equivalent of a mix of grey and black objects in traditional tri-coloring. 
The distinction between grey and black objects is instead handled by putting grey 
objects in thread local queues for each garbage collecting thread. This approach has 
two advantages. First of all it allows parallel threads to work on thread local data 
instead of competing for a synchronized common set. Furthermore, it is possible 
to efficiently use prefetching on the contents of the queues as their elements are 
accessed both in FIFO order and close in time to one another. The general advantages 
of prefetching in memory management will be discussed later in this chapter.

For concurrent collectors in JRockit, an additional set called the live bits is used. It 
keeps track of all live objects in the system, including the newly created ones. This 
makes it possible for JRockit to quickly find objects that have been created during a 
concurrent mark phase, that is one running at the same time as the Java application.

JRockit uses a card table not only for generational GCs, but also to avoid searching 
the entire live object graph when a concurrent mark phase cleans up. This is because 
JRockit needs to find any new objects that may have been created by the running 
program during that mark phase. Recollect that write barriers in the running code 
continuously update the card table. The card table also has one card per region in the 
live object graph. As described, a card can be dirty or clean and all cards where objects 
have been newly created or have had their object references modified are marked as 
dirty. At the end of a concurrent mark phase, JRockit only needs to look at the dirty 
cards and scan the objects in the corresponding heap regions that have their live bit set. 
This guarantees that all objects, freshly allocated and old ones, are found even after a 
concurrent mark phase.

Nursery collections
For nursery collections, JRockit uses a variant of stop and copy. All threads are halted, 
and all objects in the nursery are copied or promoted to the old space.

The copying is done hierarchically in breadth first manner, which increases cache 
locality (objects that reference each other should be stored close to each other 
in memory for maximum cache efficiency). The breadth-first copy algorithm is 
parallelizable in a way that automatically contributes to good load balancing.
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Only live objects are copied to the old space. Instead of having to scan the entire heap 
to find out what objects in the nursery are live, the young collection uses the live bits 
and the card table that were mentioned in the previous section. As we start out with 
an empty nursery and because all objects that have their references updated get the 
corresponding card in the card table marked as dirty by write barrier code, all live 
objects in the nursery can be found by merely scanning objects that have their live  
bit set in a region corresponding to a dirty card.

Nursery collections in JRockit are always parallel but never concurrent. However, for 
efficiency reasons, young collections may occur at any time during a concurrent old 
collection. This complicates matters, especially because both the young collection and 
the old collection depend heavily on the same data structures.

However, it turns out that these data structures, the bit sets and the card table, can 
be shared as long as an old collection is guaranteed to see all cards that have become 
dirty during a concurrent phase. This is achieved by having an extra card table that 
records all dirty cards from the original card table. JRockit calls this union of all card 
table changes the modified union set. The nursery collection is free to process and 
clear dirty cards as long as the modified union set is kept intact for the old collection. 
So the young and old collector can operate at the same time without getting in the 
way of each other.

JRockit also uses a concept called keep area. The keep area is a region in the nursery 
where objects are not copied to old space during a young collection. By making sure 
that the youngest objects are allocated in the keep area, JRockit can ensure that newly 
created objects have an extra chance to become garbage collected before they are 
considered long lived, and copied to old space. This is the rough, simpler, equivalent 
to a multi-generational approach.

Permanent generations
One thing that sets JRockit apart from the HotSpot VM is the lack of a permanent 
generation on the heap. In HotSpot, a heap part of predefined size, the permanent 
generation, is used to store metadata about, for example, class objects. Once the 
data is in the permanent generation, the default behavior is that it remains there 
forever (this might vary between garbage collection policies). This means that if 
a large amount of classloading takes place, the permanent generation will fill up 
and OutOfMemoryErrors will be thrown. We have seen customer cases, where 
the problem with a permanent generation gets so bad that the JVM and the Java 
application have to be restarted regularly.
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JRockit is different in that it stores metadata off the heap in native memory 
instead. Code buffers for generated methods along with metadata pointed to by 
ClassLoaders that are no longer used are also constantly garbage collected. The 
problem of running out of memory for metadata in JRockit is not that different from 
the same problem in HotSpot, except for the fact that it is native memory instead  
of heap memory. There are, however, two significant differences. Firstly, in JRockit, 
cleaning up stale metadata is always enabled by default and secondly, there is no 
fixed size limit for the space used to store metadata. One of the larger problems with 
HotSpot is probably that intuitively, it is very hard to pick a size for the permanent 
generation. Is 128 MB enough? No? What about 256 MB? It is really very difficult to 
know for any given application. JRockit, being completely dynamic in its metadata 
allocation, need not consider size limits. It will, out of the maximum amount of 
native memory, allocate as much space as it needs for its metadata at any given time.

Compaction
In JRockit, compaction is always single-threaded and non-concurrent. However, 
for parallel collectors, compaction runs at the same time as the sweep phase. As 
compaction is always done with a single thread, it is important that it is fast and that 
the time spent doing compaction can be controlled. JRockit limits compaction time 
by only compacting a part of the heap in each garbage collection. Most of the time, 
heuristics are used for choosing where on the heap to compact, and how much. The 
heuristics are also used to decide between different types of compactions—internal 
compaction just within one heap partition or external compaction (also referred to 
as evacuation) between different areas on the heap.

In order to make it more efficient to update all references to an object when it is 
moved, JRockit lets the mark phase keep track of all references that point to objects 
inside a heap region that is to be compacted. This information can also be used to 
determine if it is possible to do any compaction at all or if certain popular objects 
should be excluded from compaction as too many other objects reference them.

Speeding it up and making it scale
This section addresses what a modern runtime can do to speed up memory 
management, going from impractical and "academic" algorithms to real  
world performance.
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Thread local allocation
One technique, used in JRockit, that significantly speeds up object allocation is the 
concept of thread local allocation. It is normally much cheaper to allocate an object 
locally in a buffer in the running Java thread than going through the synchronized 
process of placing it directly on the heap. A naive garbage collector doing direct heap 
allocations would need a global heap lock for each allocation. This would quickly be 
the site for a nightmarish amount of contention. On the other hand, if each Java thread 
keeps a thread local object buffer, most object allocations may be implemented simply 
as the addition of a pointer, one assembly instruction on most hardware platforms. We 
refer to these thread local buffers as Thread Local Areas (TLA). The TLAs naturally 
have to processed by the garbage collector as well.

For cache and performance reasons, each TLA is typically between 16 and 128 
kilobytes, but this can be modified from the command line. Whenever a thread local 
buffer is full, everything in it is promoted to the heap. We can think of a thread local 
buffer as a small thread local nursery.

Whenever a new operator in Java is compiled and the JIT set to a sufficiently high level 
of optimization, the allocation code turns into a construct that can be illustrated by the 
following pseudocode:

Object allocateNewObject(Class objectClass) {
  Thread current = getCurrentThread();
  int objectSize = alignedSize(objectClass);
  if (current.nextTLAOffset + objectSize > TLA_SIZE) {
     current.promoteTLAToHeap(); //slow and synchronized
     current.nextTLAOffset = 0;
  } 
  Object ptr = current.TLAStart + current.nextTLAOffset;
  current.nextTLAOffset += objectSize;
   
  return ptr;
}

The pseudocode just seen presents a somewhat simplified view of the 
world, in order to illustrate the point. Objects that are larger than a 
certain threshold value or that are too big to fit in any available TLA are 
still allocated directly on the heap. As of JRockit R28, a measurement 
used to better optimize TLA usage, called the TLA waste limit, has 
been introduced. This is discussed to a greater extent in Chapter 5.
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In certain architectures where registers are plentiful, further performance gains can be 
achieved by always keeping the nextTLAOffset, and possibly the pointer to the TLA 
itself, in registers for the thread that is currently executing Java code. On x86 with its 
limited register set, however, this is a luxury we can't afford.

Larger heaps
As the complexity of a well written GC is mostly a function of the size of the live 
data set, and not the heap size, it is not too costly to support larger heaps for the 
same amount of live data. This has the added benefit of it being harder to run into 
fragmentation issues and of course, implicitly, the possibility to store more live data.

32-Bits and the 4-GB Barrier
On a 32-bit system, a maximum 4 GB of memory can be addressed. This is the 
theoretical maximum size of any heap, but of course there are other things that need 
to be kept in memory as well, such as the operating system. Some operating systems, 
for example Windows, are very picky about how they lay out kernel and libraries in 
memory. On Windows, the kernel often lies almost in the middle of the address space, 
making it difficult to fully utilize all available memory as one contiguous Java heap. 
Most JVMs only support heaps that consist of contiguous chunks of memory, so this 
can be a problem.

To our knowledge, JRockit is the only JVM that supports non-contiguous heaps and 
is able to utilize the memory both above and below the operating system kernel and 
any other external libraries for its heap space.
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In the previous figure, the OS resides roughly in the middle of the address space, 
effectively limiting the maximum virtual address space for a process. The memory 
areas A and B come before and after the operating system respectively. A is slightly 
larger than B, so A corresponds to the largest heap that we can use without support 
for non-contiguous heaps. A non-contiguous heap implementation would allow us 
to use the combined memory in A and B for our heap at the price of a small bit of 
extra bookkeeping overhead. This is implemented by basically pretending that the 
OS area is a large pinned object in the middle of the address space.

While 32-bit architectures tend to grow less and less common with the 64-bit 
revolution, there are still scenarios where they are used a lot. Currently, virtualized 
environments seem to be such a place, and so it still makes sense to maximize 
performance for 32-bit platforms, with the limited address space that entails.

The 64-bit world
On a 64-bit system, even when running a 32-bit JVM, the larger available virtual 
address space can be tweaked so that we don't need to work around occupied  
areas of the address space.

Most modern architectures are 64-bit, and the theoretical amount of data that fits 
into a 64-bit address range, 16 exabytes, is staggeringly huge. Currently, it is not 
affordable to populate that large an address space with physical memory.

There are both benefits and disadvantages to using a 64-bit architecture for automatic 
memory management, unlike with code generation, which tends to see only benefits 
(such as more registers, wider registers, and lager data bandwidth).

Pointers on a 64-bit machine are 8 bytes wide instead of 4 bytes. This consumes more 
bandwidth and CPU cache space. Simplifying a bit, dereferencing a 32-bit pointer is 
faster than dereferencing a 64-bit one, so a 64-bit 4.1 GB heap, although only slightly 
larger than a 32-bit 4 GB one, may actually be a lot slower to use.

Compressed references
A fair compromise is the compressed reference optimization that JRockit was the 
first JVM to implement. If a JVM running on a 64-bit system uses less than 4 GB of 
heap space, it obviously makes no sense to represent objects as 64-bit pointers. 32 bits 
are enough, and consequently all object access will be a lot quicker.
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Native pointers outside the heap that are still part of the runtime environment must be 
system wide, 64 bits, on a 64-bit system. The typical example is handles that represent 
JNI references to Java objects. Transitions to and from native code through JNI may 
occur in any Java program. For the sake of native code and to some extent the GC, 
which needs to operate on native pointers internally, we need ways to go from the 
transform domain of compressed references to that of ordinary system wide pointers. 
We refer to these transforms as reference compression and reference decompression.

Following is the pseudocode for compression and decompression of a 4 GB heap  
on a 64-bit platform. The virtual address of the heap base can be placed anywhere  
in memory.

CompRef compress(Ref ref) {

  return (uint32_t)ref; //truncate reference to 32-bits

}

Ref decompress(CompRef ref) {

  return globalHeapBase | ref;

}

When compressed references are 32-bit, it suffices to use a logical or with the actual 
(64-bit) heap base to decompress them into system-wide pointers. This operation has 
the added benefit that it can be applied an arbitrary number of times without further 
changing the pointer. However, depending on the number of bits in a compressed 
reference, this representation isn't always possible and strict state machines must 
therefore be maintained so we know when a reference is compressed and when it isn't, 
for example in stubs to and from native code or when the code refers to actual 64-bit 
handles to objects.

Note that 4-GB heaps aren't the only application of compressed references. For 
example, consider a 64-GB heap, where instead of using all 64 bits to represent an 
object, we can use 4 + 32 bits, where four of the bits are used to point out which  
of sixteen possible 4-GB heap sections an object resides in. Note that this requires  
four free bits in the object, which in turn requires that allocated objects are aligned  
on 16-byte boundaries. This may waste some heap space, but can still be a win 
performance-wise.

CompRef compress(Ref ref) {
  return (uint32_t)(ref >> log

2
(objectAlignment));

}

Ref decompress(CompRef ref) {
  return globalHeapBase | (ref << log

2
(objectAlignment));

}



Adaptive Memory Management

[ 100 ]

The method can be made even simpler, if we keep the 16-byte object alignment and 
make sure that the virtual address space starts at address 0 and ends at address "64 
GB". Then a reference may be decompressed by just shifting it four bits left, and 
compressed by shifting it four bits right, not needing to involve a global heap base. 
This is how JRockit does it, thereby maintaining 32-bit wide compressed references 
for the general case. JRockit, for convenience, still wants address 0 to be used for 
null pointers, so the lowest 4 GB of the virtual space is not used for anything else, 
effectively reducing the 64 GB of heap to 60 GB, but this is of little importance for 
performance. If the difference between a 64-GB heap and a 60-GB heap matters  
to you, you are in trouble anyway.

This method is generic as it works for all heap sizes larger than or equal to 4 GB. 
The generic approach, however, has a new drawback. The attractive property that 
decompression can be applied an infinite number of times, to both uncompressed and 
compressed references, disappears.

Naturally, 64 GB isn't a theoretical limit but just an example. It was mentioned 
because compressed references on 64-GB heaps have proven beneficial compared 
to full 64-bit pointers in some benchmarks and applications. What really matters, is 
how many bits can be spared and the performance benefit of this approach. In some 
cases, it might just be easier to use full length 64-bit pointers.

JRockit R28 supports compressed references in different configurations 
that can support theoretical heap sizes up to 64 GB. Parts of the 
compressed references framework is adaptive.
Some variant of compressed references is always enabled by default in 
JRockit if the maximum heap size is either unspecified or set to a value 
less than or equal to 64 GB. The required object alignment (and therefore 
implementation) varies depending on maximum heap size. Compressed 
references can be explicitly disabled from the command line.

In JRockit, what we are mostly trying to maximize with the compressed reference 
approach is the available heap space and the amount of objects that fit in the L1 
cache. To avoid a number of problematic special cases, references on a local stack 
frame in a method are never compressed. Basically, code inserted after every 
field load decompresses a reference and code inserted before every field store re-
compresses it. The overhead from doing this is negligible.

Cache friendliness
It is also important for the garbage collector to care about other aspects of the 
underlying system architecture. The most important issue to consider is cache 
friendliness. Repeated cache misses can cause significant performance degradation.
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CPUs contain both instruction and data caches (along with several 
specialized caches for other purposes). In this section we are addressing 
data cache issues. A cache consists of several cache-lines of data, which is 
the smallest accessible cache unit. When data is retrieved from memory, 
it is placed into the caches so that it can be quickly accessed again in the 
near future. Accessing data in a cache is orders of magnitude faster than 
retrieving it from memory.
A CPU cache is usually hierarchical and multi level (for example, with 
three levels). The first level of cache is the fastest, smallest, and closest 
to the CPU. On modern architectures, each core tends to have its own 
L1 cache, while higher level caches may or may not be shared between 
cores. An L1 cache is usually on the order of kilobytes and an L2 cache 
on the order of megabytes. Accessing an L2 cache is more expensive than 
an L1 cache, but still much cheaper than having to go to memory, which 
will be the case if the highest level cache in the hierarchy misses.
Intelligent prefetching of data into a cache before it is to be accessed 
can both reduce the number of cache misses if it is the correct data, or 
destroy cache performance if cache contents are replaced by irrelevant 
data. An adaptive runtime seems like an ideal environment to find out 
what data is likely to be relevant.

In code generation, this can be remedied by using runtime feedback to determine 
which object accesses in Java code cause cache misses and compensate by generating 
code that does intelligent prefetching. In the memory system, we need to care about 
things like object placement on the heap, alignment, and allocation strategies.

Prefetching
Using software prefetching to load data that is soon to be accessed, thus getting 
it into the cache during cycles of other activity, can be very beneficial. This  
is because when the data is accessed "for real", the cache won't miss.

Explicit prefetching done by the program is known as software 
prefetching. It should be noted that modern hardware architectures 
also have advanced hardware prefetching built in that can do an 
excellent automatic prefetching job if any memory access pattern is 
regular and predictable enough.
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One example of when intelligent prefetching improves garbage collection speed in 
JRockit stems from the fact that the thread local areas for allocation are divided into 
many small chunks. When a chunk is first to be used, the next chunk is heuristically 
prefetched. This means that the following allocations will already have the next chunk 
of the TLA in the cache.

Done correctly, there are significant performance improvements in using prefetching 
to improve cache hits.

The downside is of course that every time an item is loaded into the cache, other 
cached data is destroyed. Prefetching too often may decrease cache functionality. 
Also, a prefetch retrieves an entire cache line, which takes time, so unless the prefetch 
operation can be pipelined, or hidden in parallel with other actions before its data is 
to be used, it has no or even negative effects.

Data placement
If we know certain data accesses to be sequential or close in time, it makes a lot of 
sense for the GC to try to place the objects involved on the same cache line—spatial 
locality follows temporal locality. An example is that a java.lang.String and the 
char array which it contains are almost always accessed in sequence. The more 
runtime feedback the memory system has, the better guesses it can make which  
data should belong together.

There are of course good static guesses as well, that usually pay off, such as trying to 
best-fit an object on the heap next to other objects that it may reference and an array 
next to its elements.

NUMA
Modern Non-Uniform Memory Access (NUMA)  architectures provide even more 
challenges for a garbage collector. Typically, in a NUMA architecture, the address 
space is divided between processors. This is in order to avoid the bus (and possibly 
cache) latency bottleneck when several CPUs try to access the same memory. Each 
CPU owns a part of the address space and memory on a CPU-specific bus. A CPU  
that wants to access its own memory handles this very quickly, while the further  
away that the memory is that it wants to access, the longer it takes (depending on  
the configuration). The traditional approach is Uniform Memory Access (UMA), 
where all CPUs uniformly access memory and where access time to a particular 
memory location is independent of which CPU requests it.
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Two of the modern NUMA architectures that are used in several server-side 
environments are the AMD Opteron and the newer Intel Nehalem architecture.

The following figure illustrates a NUMA node configuration:
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Here, any CPU, or NUMA node, has to perform at most two communication hops with 
the other NUMA nodes in the system to get at arbitrary memory. The ideal (and the 
fastest) memory access consists of zero hops (the node's own memory). There is not 
necessarily be a one-to-one mapping between CPUs and NUMA nodes. For example, 
one NUMA node may contain several CPUs who share local memory.

So, to perform well on a NUMA architecture, the garbage collector threads should 
be structured in a beneficial way. If a CPU is executing a mark thread in the GC 
it should be the one working on the parts of the heap memory that belong to the 
CPU itself. This way NUMA performance is maximized. As referenced objects may, 
in worst case, appear anywhere on the heap, on NUMA the GC usually needs an 
additional object moving heuristic. This is to make sure that objects referenced near 
other objects in time appear near them in memory as well, evacuating them from 
suboptimal NUMA nodes. If this works correctly, there are substantial performance 
gains to be had. The main problem is keeping objects from being moved back and 
forth, "ping ponging", between memory sections that are the responsibilities of 
different NUMA nodes. Theoretically, an adaptive runtime could be very good at this.
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This is another example of an optimization that can work well in an adaptive runtime, 
but perhaps not so much in a static environment. Command-line flags that modify 
memory allocation behavior in the JVM and change NUMA node affinity for the JVM 
process will be discussed in greater detail in Chapter 5.

NUMA is a challenging architecture to implement good memory 
management for. However, research on JRockit shows that it is 
still possible to get pretty good performance without specific 
NUMA optimizations as long as prefetching and cache behavior 
is intelligent enough in the JVM.

Large pages
At the base of all memory allocations lies the operating system and its page table. 
An OS divides the physical memory into pages, a page typically being the smallest 
possible memory allocation unit. Traditionally, a page is somewhere in the order 
of 4 KB. A process in an OS only sees a virtual address space, not a physical one. In 
order for a CPU to map a virtual page to the actual physical page in memory, a cache 
called the Translation Lookaside Buffer (TLB) is used to speed things up. If pages 
are too small, TLB misses are consequently more common.

This problem can be remedied if pages were several orders of magnitude larger; 
megabytes instead of kilobytes. All modern operating systems tend to support  
large pages in some form.

Obviously, in an OS where many processes allocate memory in separate address 
spaces and where pages are much larger than a couple of KB, fragmentation becomes 
a bigger problem because more page space is wasted. An allocation that requires 
slightly more memory than the size of a page suddenly carries a lot of dead weight. 
This doesn't matter to a runtime that does its own memory management in one 
process and owns a large part of the memory, but even if it were a problem it could 
be remedied by providing abstraction for many different page sizes on an underlying 
large page.

A performance increase of at least 10 percent can usually be gained for a 
memory intensive application if it runs on large pages instead of normal 
ones. JRockit has support for this and can use large pages if enabled on 
the underlying operating system.
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Typically, on most operating systems, enabling large page support is a privileged 
operation that requires administrator access, which makes it slightly harder to just 
"plug and play".

Adaptability
As we have discussed to a great extent in the chapter on code generation, 
adaptability is the key to success in a runtime for a mobile language such as Java. 
Traditionally, only code was adaptively reoptimized and was subject to hotspot 
analysis. However, the JRockit designers recognized from the start that all aspects  
of the runtime system should be made adaptive if possible.

So, JRockit may heuristically change garbage collection behavior at runtime, based on 
feedback from the memory system and adjust parameters such as heap size, number of 
generations in the heap, and even the overall strategy used to garbage collect.

Here is an example output generated by running JRockit with the 
-Xverbose:gc flag:

marcusl@nyarlathotep:$ java -Xmx1024M -Xms1024M -Xverbose:gc 
  -cp dist/bmbm.jar com.oracle.jrpg.bmbm.minisjas.server.Server                                                                                                                    

[memory] Running with 32 bit heap and compressed references.                                                                                                        

[memory] GC mode: Garbage collection optimized for throughput, 
  initial strategy: Generational Parallel Mark & Sweep.                                                

[memory] Heap size: 1048576KB, maximal heap size: 1048576KB, 
  nursery size: 524288KB.                                                                                

[memory] <s>-<end>: GC <before>KB-><after>KB (<heap>KB), <pause>ms.                                                                                                 

[memory] <s/start> - start time of collection (seconds since jvm start).                                                                                            

[memory] <end>     - end time of collection (seconds since jvm start).                                                                                              

[memory] <before>  - memory used by objects before collection (KB).                                                                                                 

[memory] <after>   - memory used by objects after collection (KB).                                                                                                  

[memory] <heap>    - size of heap after collection (KB).                                                                                                            

[memory] <pause>   - total sum of pauses 
  during collection (milliseconds).                                                                                          

[memory]             run with -Xverbose:gcpause to see 
  individual pauses.                                                                                           

[memory] [YC#1] 28.298-28.431: YC 831035KB->449198KB

  (1048576KB), 132.7 ms

[memory] [OC#1] 32.142-32.182: OC 978105KB->83709KB 
  (1048576KB), 40.9 ms
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[memory] [OC#2] Changing GC strategy to Parallel Mark & Sweep

[memory] [OC#2] 39.103-39.177: OC 1044486KB->146959KB 
  (1048576KB), 73.0 ms

[memory] [OC#3] Changing GC strategy to Generational 
  Parallel Mark & Sweep

[memory] [OC#3] 45.433-45.495: OC 1048576KB->146996KB 
  (1048576KB), 61.8 ms

[memory] [YC#2] 50.547-50.671: YC 968200KB->644988KB 
  (1048576KB), 124.4 ms

[memory] [OC#4] 51.504-51.524: OC 785815KB->21012KB 
  (1048576KB), 20.2 ms

[memory] [YC#3] 56.230-56.338: YC 741361KB->413781KB 
  (1048576KB), 108.2 ms

...

[memory] [YC#8] 87.853-87.972: YC 867172KB->505900KB 
  (1048576KB), 119.4 ms

[memory] [OC#9] 90.206-90.234: OC 875693KB->67591KB 
  (1048576KB), 27.4 ms

[memory] [YC#9] 95.532-95.665: YC 954972KB->591713KB 
  (1048576KB), 133.2 ms

[memory] [OC#10] 96.740-96.757: OC 746168KB->29846KB 
  (1048576KB), 17.8 ms

[memory] [YC#10] 101.498-101.617: YC 823790KB->466860KB 
  (1048576KB), 118.8 ms

[memory] [OC#11] 104.832-104.866: OC 1000505KB->94669KB 
  (1048576KB), 34.5 ms

[memory] [OC#12] Changing GC strategy to Parallel Mark & Sweep

[memory] [OC#12] 110.680-110.742: OC 1027768KB->151658KB 
  (1048576KB), 61.9 ms

[memory] [OC#13] Changing GC strategy to Generational 
  Parallel Mark & Sweep

[memory] [OC#13] 116.236-116.296: OC 1048576KB->163430KB 
  (1048576KB), 59.1 ms.

[memory] [YC#11] 121.084-121.205: YC 944063KB->623389KB 
  (1048576KB), 120.1 ms
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JRockit versions from R28 tend not to change garbage collection 
strategies at runtime. Default values will be picked depending on 
configuration. This, along with better garbage collectors, was  
found to provide a larger degree of determinism for customers.
The previous output is from the R27 line of JRockit releases. For R28, 
non-standard GC strategies should be explicitly specified on the 
command line. R28 defaults to a generational parallel mark and sweep 
(optimized for throughput). The R28 memory management system 
still adaptively modifies many aspects of the garbage collection 
behavior, but to a lesser extent than R27.

All garbage collections in the previous example take place using a parallel mark and 
sweep algorithm, optimized for throughput. However, the JVM heuristically decides 
whether nurseries should be used or not depending on feedback from the runtime 
system. In the beginning, these changes are fairly frequent, but after a warm-up 
period and maintained steady-state behavior, the idea is that the JVM should settle 
upon an optimal algorithm. If, after a while, the steady-state behavior changes from 
one kind to another, the JVM may once again change strategies to a more optimal one.

Near-real-time garbage collection
Real-time systems tend to fit badly in a garbage collecting world. No matter how 
well a garbage collector performs, we still have a non-deterministic runtime 
overhead. Even if the latencies introduced by the GC are few and stopping the world 
completely is a rare event, a certain degree of non-determinism cannot be avoided.

So what do we mean by real-time? The terminology suffers from a certain degree of 
misuse. To avoid some of the confusion associated with real-time, we will divide the 
concept into hard real-time and soft real-time.

Hard and soft real-time
Hard real-time should be understood as the more traditional real-time 
system—perhaps a synthesizer or a pacemaker, a system where 100 percent 
determinism is an absolute requirement. There are few runtimes with automatic 
memory management that can work for this kind of environment, at least not 
without extensive modifications to the application and some kind of program 
language constructs for controlling the garbage collection.
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A typical example is the Java real-time effort as specified in Java Specification 
Request (JSR) 1, which specifies an API (javax.realtime) for interacting with the 
runtime and for controlling the occurrence of garbage collection at certain program 
points. When using Java to develop a new application, this might be a feasible way to 
go ahead, but porting an existing Java production system to use a new API with new 
semantics is often very challenging or downright impossible. Even if it is technically 
feasible, modifying the key aspects of an existing system is very costly. Hence, the 
concept soft real-time.

We use the term soft real-time to mean a runtime system where it is possible to specify 
a quality of service level for latencies, and control pause times so that, even though 
they are non-deterministic, no single pause will last longer than a certain amount of 
time. This is the technique that is implemented in the product JRockit Real Time.

JRockit Real Time
It turns out that guaranteeing a quality of service level in the form of a maximum 
pause time setting is sufficient for most complex systems that require a certain 
degree of determinism. It is enough for the system to guarantee that latencies stay 
below the given bound. If this works as it should, the immediate benefit is of course 
that more deterministic and lower latencies can be gained without modifying an 
existing application.

The main selling point of JRockit Real Time is that getting deterministic latencies 
requires no modifications to the application—it just plugs in. The only thing that  
needs to be specified from the user side is the pause time target in milliseconds. 
Current JRockit releases have no problems maintaining single millisecond pause  
time targets on modern CPU architectures.

No world is perfect, however, and as we have discussed in the section about 
concurrent GC, the price of low latencies has to be paid for with longer total garbage 
collection time. Recollect that it is more difficult to garbage collect efficiently when 
the application is running, and if we have to interrupt GC more often, it might be 
even more problematic. In practice, this has turned out not to be a problem. It is 
more important to most customers who want JRockit Real Time that the degree of 
predictability and latency is deterministic, than that the total garbage collection time 
goes down. Most customers feel that response times is their main problem and that 
a sudden increase in pause time while large garbage collections take place is more 
harmful than if the total time spent in GC increases.

The following graph illustrates response times over time for a running application. 
The application in question is a benchmark for WebLogic SIP Server, a product for the 
telecom industry. JRockit Real Time is not enabled. As can be seen, the deviation in 
response times is large.
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Does the soft real-time approach work?
The soft real-time approach in JRockit Real Time has turned out to be a major winner. 
But how can a non-deterministic system like a garbage collector provide the degree 
of determinism required to never have longer than single millisecond pause times? 
The complete answer is that it can't, but the boundary cases are rare enough so that it 
doesn't matter.

Of course there is no silver bullet, and there are indeed scenarios when a pause 
time target cannot be guaranteed. It turns out, however, that practically all standard 
applications, with live data sets up to about 30 to 50 percent of the heap size, can be 
successfully handled by JRockit Real Time with pause times shorter than, or equal to, 
the supported service level. This fits the majority of all Java applications that customers 
run.  The live data set bound of 30 to 50 percent is constantly being improved by 
tuning and gets better with each new JRockit Real Time release. The minimum 
supported pause time is also continuously made lower.

In the event that JRockit Real Time isn't a perfect first fit for an application, several 
other things can be done to tune the behavior of the garbage collector. When looking 
for the cause of latencies in a Java program, there are frequently non GC-related user 
issues involved. For example, it is common that a lock in the Java code is so contended 
that it is actually contributing more to program latencies than the GC itself. JRockit 
Mission Control contains a set of diagnostic tools that can fairly easily point out 
problems like this from a runtime recording.
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We often hear success stories from the field, such as when a trading 
system started making tens of thousands of dollars more per day 
because of lower latencies and consequently faster response times. The 
system could complete a significant number of more trades per day on 
the same hardware. No other action than switching VMs to JRockit Real 
Time was required.

The following graph shows the same benchmark run as before, with JRockit Real 
Time enabled and a maximum latency service level set to 10 milliseconds using  
the –XpauseTarget flag. Note that after the initial warm-up spikes, there is 
virtually no unpredictability left in the latencies.

One might easily theorize that the spikes in the beginning of the run are 
caused by the VM aggressively trying to reach a steady state, for example 
through large amounts of code optimization. This can be true, and indeed 
this kind of pattern can show up. For this particular benchmark run, 
however, the initial latencies were actually caused by a bug in the Java 
application, unrelated to GC or adaptive optimization. The problem was 
subsequently fixed.

We also note that JRockit Real Time has no trouble fulfilling the 10 millisecond 
guarantee it was given. All of this comes at the affordable price of a slightly longer 
total time spent in garbage collection.
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How does it work?
So how can JRockit deliver this kind of garbage collection performance? There are 
three key issues at work here:

•	 Efficient parallelization
•	 Splitting garbage collection work into work packets, transactions that may be 

rollbacked or aborted if they fail to complete in time
•	 Efficient heuristics

Efficient parallelization isn't a novel concept. There are several concurrent garbage 
collectors in existing literature, and there are few conceptual changes or technological 
leaps in how JRockit Real Time handles concurrency. Performance is, as always, in the 
details—synchronize efficiently, avoid locks if possible, make sure existing locks aren't 
saturated, and schedule the worker threads in an efficient manner.

The key to low latency is still to let the Java program run as much as possible, and 
keep heap usage and fragmentation at a decent level. We can think of JRockit Real 
Time as a greedy strategy for keeping Java programs running. The basic strategy 
is postponing stopping the world for as long as possible, hoping that whatever 
problem that caused us to want to stop the world in the first place will resolve 
itself, or that the time required to stop the world will go down once it is inevitable. 
Hopefully, there are fewer objects to compact or sweep when we finally pause.

All garbage collector work in JRockit Real Time is split up into work packets. If we 
start to execute a work packet, for example a compaction job for part of the heap, 
with the Java program halted, and it takes too long, we can throw away whatever 
work it has done so far and restart the application. Sometimes the partial work 
can be kept, but the entire transaction doesn't have time to complete. The time to 
completion while the world is stopped is governed by the quality of service level for 
latencies that the user has specified. If a very low latency bound has been specified 
we might have to throw away more of a partially completed transaction in order to 
keep the Java program running than with a higher one.

The mark phase is, as has already been covered, simple to modify, so that it runs 
concurrently with the Java program. However, both the sweep phase and compaction 
need to stop the world at times. Luckily, mark time tends to make up around 90 
percent of the total garbage collection time. If the phases that need stopping the world 
take too long, we just have to make sure we can terminate what they are doing and 
restart the concurrent phase, hoping that the problem goes away in the meantime.  
The work package abstraction makes it easier to implement this functionality.
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There are, of course, several heuristics involved. Slight modifications to the runtime 
system helps JRockit Real Time make more informed decisions. One example is a 
somewhat more complex write barrier that keeps track of the number of cards dirtied 
on a per-thread basis. The code takes a little bit more time to execute than that of a 
traditional generational GC write barrier, but provides more adequate profiling data 
to the GC. If one thread is much more active at dirtying cards than others, it probably 
needs special attention. JRockit also uses the sum of all executed write barriers in a 
thread as a heuristic trigger.

The Java memory API
This section covers some of the unique constructs of the Java language, related to 
memory management.

Dreaming of delete or free operators for Java or trying to explicitly control the 
garbage collection behavior in a JVM by, for example, hanging on to objects longer 
than their natural lifespans is a sure way of shooting yourself in the foot. There are, 
however, some mechanisms in the Java language that make it possible to help the 
GC by giving it "hints". Some of the available mechanisms are good and some are 
bad. Some should be used with caution to avoid unwanted side effects.

Finalizers
In Java, since Java 1.0, every object contains a method called finalize that may be 
freely overridden by any implementer. The contract is that the finalize method is 
called just before the object in question is about to be garbage collected.  This might 
seem like a good idea, making it possible to do cleanups before the object goes away, 
such as closing any open file handles that the object may hold on to. 

However, since a finalize method can contain arbitrary code, there are several 
potentially bad scenarios to consider as well, for example, the case that a finalizer 
resurrects the object, or clones a new object from the dying one, in effect preventing 
an object from being garbage collected. In addition, placing code that releases limited 
resources, such as file handles, in a finalizer may cause resource starvation. This is 
because there is never a predictable point in time where finalizers are guaranteed to 
be run. System resources should always be released explicitly in a situation where 
the programmer has control.

Furthermore, finalizers can also be called at any time in any thread, no matter  
which locks the thread is holding. This is extremely bad and can lead to all kinds  
of unintended deadlock situations and violations of mutual exclusion semantics. 
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It is not just the authors' opinion, but that of the Java community in general, that 
finalizers are a bad design choice and that their use should be avoided at any cost.

References
When programming Java, one might think that there is only one kind of object 
reference. An object is either live or unreachable, eventually leading to it being 
garbage collected and removed from the system. There are, however, several kinds 
of references in Java, which may be thought of as references with varying degrees 
of liveness. We refer to the normal references or standard object references, as 
strong references.

The package java.lang.ref contains several classes that wrap Java objects and 
thereby provide a classification for the object's reference type. The different reference 
classes all extend java.lang.ref.Reference. All Reference objects in Java have 
a get method that will return the actual object being referenced or null if that 
particular object isn't reachable, i.e. if the object has been garbage collected.

Java also provides the class java.lang.ref.ReferenceQueue, where objects 
that change reachability or scope are enqueued, for example when the object a 
Reference points to gets garbage collected. A Reference object can be bound to 
a java.lang.ref.ReferenceQueue at instantiation. By polling an instance of the 
ReferenceQueue, a small amount of insight into what the memory management 
system is doing can be gained programmatically.

There are four main types of references in Java—strong, weak, soft and 
phantom references.

Weak references
A weak reference that points to an object isn't strong enough to force that object to 
remain in memory. The java.lang.ref.WeakReference class is in effect a wrapper 
around a strong reference, tagging it as weak.

WeakReference weak = new WeakReference(object);

In the example, to get the actual object the reference points to, use weak.get(). As 
object may be garbage collected at any time, this call returns null when object is 
no longer in memory. 
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A typical application for weak references is the java.util.WeakHashMap class, 
which gets rid of an entry if its key is no longer referenced. This is ideal for 
caches. Using weak references in the memory leak prone HashMap cache example, 
introduced in the first section of this chapter, would prevent leaks caused by 
forgotten objects left in the hash table. It would also have the added benefit of not 
requiring that hash table contents are cleared out in order for it to ever be garbage 
collected. Weak references can provide an intrinsic protection against memory leaks.

Soft references
A soft reference is a weak reference that the garbage collector is more reluctant to 
throw away. Typically, the garbage collector tries to keep them around as long as 
possible, but they are the first to go if memory is running low.

How much stronger a soft reference should be, than a weak reference, is left to  
the JVM implementation. In theory, a soft reference may behave exactly like a  
weak reference and not violate the Java semantics.

Phantom references
Phantom references are the preferred way of implementing finalization. They are 
designed to supersede the use of finalizers that, as we have seen, are deeply flawed. 
Phantom references wrap ordinary objects similar to weak and soft references, but 
their get method always returns null.

Phantom references are accessed through the java.lang.ref.ReferenceQueue 
class mentioned earlier, by polling an instance to which the phantom references  
one is interested in are bound. Polling the reference queue at regular intervals  
(or doing a blocking remove) reveals if a new phantom reference is available for 
garbage collection. If this is the case, as the get method of phantom references 
always returns null, there is no possible way to get hold of a handle to the object 
in question and resurrect it. This avoids the problems with finalizers and provides  
all the benefits of a similar mechanism.

Here is a code example that prints the number of finalized TestObjects in the 
system using finalizers:

/**
 * Prints the number of finalized objects
 */
public class Finalize {
  static class TestObject { 
    static int nObjectsFinalized = 0;

    protected void finalize() throws Throwable {
      System.err.println(++nObjectsFinalized);
    }
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  }

  public static void main(String[] args) {
    for (;;) {
      TestObject o = new TestObject();
      doStuff(o);
      o = null;    //clear any remaining refs to "o"
      System.gc(); //try to force gc
    }
  }
}

The equivalent approach with PhantomReferences in a ReferenceQueue might look 
something like this:

/**
 * Prints the number of finalized objects using PhantomReferences
 */
import java.lang.ref.*;

public class Finalize {
  static class TestObject { 
    static int nObjectsFinalized = 0; 
  }

  static ReferenceQueue<TestObject> q =
    new ReferenceQueue<TestObject>();

  public static void main(String[] args) {
    Thread finalizerThread = new Thread() {
      public void run() {
        for (;;) {
          try {
            //block until PhantomReference is available
            Reference ref = q.remove();
            System.err.println(++TestObject.nObjectsFinalized);
          } catch (InterruptedException e) {
          }
        }
      }
    };
    finalizerThread.start();

    for (;;) {
      TestObject o = new TestObject();
      PhantomReference<TestObject> pr = 
        new PhantomReference<TestObject>(o, q);
      doStuff(o);
      o = null; //clear any remaining refs to "o"
      System.gc(); //try to force GC
    }
  }
}
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Differences in JVM behavior
The most important thing to remember is that all of the above language constructs 
merely provide hints to the GC. The Java language, by design, gives no exact control 
over the memory system. It is a bad practice to assume, for example, that just because 
soft references are alive in a cache for a certain amount of time in one VM vendor's 
implementation, the same will be true for another vendor's implementation too.

Another example, which recurs quite frequently among customers, is misuse of the 
System.gc method. The System.gc method is only defined as a hint to the runtime 
that "now will be a good time to garbage collect". In some VMs this hint is taken 
almost all the time, leading to extensive GCs and the possible freeing of massive 
amounts of memory. In other VMs it is ignored most of the time.

In the authors' old line of work as performance consultants, we have time and 
time again seen this function abused. More than once, the simple removal of a 
couple of calls to System.gc has led to immense speedups for quite a few customer 
applications. This is the story behind the JRockit –XX:AllowSystemGC=false flag 
that basically just tells JRockit to ignore all System.gc calls.

Pitfalls and false optimizations
As with code generation, it is fairly common to see false optimizations in Java 
applications, implemented with the belief that they will assist the garbage collector. 
Again, premature optimization is the root of all evil. At the Java level there is really 
very little to be known about how the GC will treat the program. The general sin is 
believing that the garbage collector will always behave in a certain way and try to 
manipulate it.

We have already discussed the case of System.gc that is not required to do anything at 
all, or might do a full-heap-GC stopping the world every time, or anything in between.

Another false optimization is different types of object pooling. Keeping a pool of 
objects alive and reusing them, instead of allocating new objects, is often believed 
to increase garbage collection performance. But not only does this add complexity 
to the Java application, it is also easy to get wrong. Using the java.lang.ref.
Reference classes for caching or simply making sure to set object references to null 
as soon as they aren't needed anymore is usually sufficient enough for any modern 
garbage collector. Keeping objects alive longer than their natural lifespan can 
backfire. Generational GC usually takes care of temporary objects quickly, but  
if they are artificially kept alive and reused, they will eventually clog up the old 
space instead.
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Java is not C++
Frequently, people express the belief that there should be a static way to control all 
aspects of Java garbage collection, complete with free or delete operators as well as 
the ability to turn off and on garbage collection at arbitrary intervals. Another example 
is wishing for ways to get at and modify objects as native pointers directly in the JVM.  
Both these strategies would be extremely dangerous if introduced in Java, and 
successful usage would, in the authors' opinion, be very hard or impossible.

There are several advantages of automatic memory management, and some 
disadvantages, chief of which is non-determinism. JRockit Real Time has tried  
to provide good enough ways around this without the need for modifying  
an application or interfacing with the GC.

We still recall with horror the "Java should have a free operator" 
discussion that swamped the entire HotSpot session at JavaOne 1999. 
The guy who started it raised his hand and opened up with the now 
classic line "Many of my friends are C++ programmers…"

In truth, a well-written Java program that uses all the allowed tricks in the book 
correctly, such as the correct java.lang.ref.Reference classes, and takes heed 
of the dynamic nature of Java, should run fine on a modern JVM. If a program has 
real-time needs that require further manipulation, maybe it shouldn't have been 
written in Java to begin with, but rather in a static language where the programmer's 
control over the memory system is more absolute.

Automatic memory management, while being a helpful tool that shortens 
development cycles and reduces program complexity, isn't a golden hammer  
that can be applied to all programmatic problems.

Controlling JRockit memory  
management
This section covers the most fundamental command-line switches that control 
garbage collection in JRockit. For more advanced manipulation of the memory 
system, for example tuning compaction, please refer to Chapter 5, Benchmarking 
and Tuning.
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Basic switches
Following are the most fundamental command-line switches for interacting with the 
JRockit memory system.

Outputting GC data
Running JRockit with –Xverbose:gc will, similar to –Xverbose:codegen, output 
plenty of verbose information on what the JVM memory management system is doing. 
This information includes garbage collections, where they take place (nurseries or old 
space), changes of GC strategy, and the time a particular garbage collection takes.

-Xverbose:gc (or -Xverbose:memory) is, except for JRockit Mission Control, the 
main information provider when it comes to studying garbage collector behavior for 
an application.

Here is an example of the output generated by –Xverbose:gc:

hastur:material marcus$ java –Xverbose:gc GarbageDemo

[INFO ][memory ] GC mode: Garbage collection optimized for 
  throughput, strategy: Generational Parallel Mark & Sweep.

[INFO ][memory ] Heap size: 65536KB, maximal heap size: 
  382140KB, nursery size: 32768KB. 

[INFO ][memory ] [YC#1] 1.028-1.077: YC 33232KB->16133KB 
  (65536KB), 0.049 s, sum of pauses 48.474 ms, longest pause 48.474 ms.

[INFO ][memory ] [YC#2] 1.195-1.272: YC 41091KB->34565KB 
  (65536KB), 0.077 s, sum of pauses 76.850 ms, longest pause 76.850 ms.

[INFO ][memory ] [YC#3] 1.857-1.902: YC 59587KB->65536KB 
  (65536KB), 0.045 s, sum of pauses 45.122 ms, longest pause 45.122 ms.

[INFO ][memory ] [OC#1] 1.902-1.912: OC 65536KB->15561KB 
  (78644KB), 0.010 s, sum of pauses 9.078 ms, longest pause 9.078 ms.

[INFO ][memory ] [YC#4] 2.073-2.117: YC 48711KB->39530KB 
  (78644KB), 0.044 s, sum of pauses 44.435 ms, longest pause 44.435 ms.

Typically, the log shows things such as garbage collection strategy changes and heap 
size adjustments, as well as when a garbage collection take place and for how long.

OC or YC means Old Collection or Young Collection (nursery), followed by 
the sequence number of the particular collection. Sequence numbers start at 1.

After the OC and YC identifier comes the time span in seconds, since the start of the 
JVM, that was spent in this particular GC.
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Then JRockit reports how much live data the particular heap region that was 
collected contained before and after the GC, the total size of the region, and the time 
that particular garbage collection took. We can see that the GC chooses to gradually 
grow the heap in this particular example.

Finally, the sum of pauses, that is for how long the world was stopped during the 
last garbage collection, is reported along with the longest individual pause. In the 
previous example, we can infer that as these values are the same, we are dealing  
with complete stop-the-world-collections, i.e. parallel GC. They each consist of one 
large pause.

For advanced users, as has been covered, each garbage collection consists of several 
phases, and if you want more granularity on them, a flag called –Xverbose:gcpause 
will provide it. It should be noted, however, that JRockit Mission Control with its 
graphic illustration of garbage collection behavior probably provides more insight 
into application behavior.

Set initial and maximum heap size
The –Xms and –Xmx flags are standard and variants are available in all JVMs. They 
specify initial and maximum heap size to be allocated to the JVM. If no arguments 
are given, the heap will grow and shrink heuristically during runtime. Consider  
the following example:

java –Xms1024M –Xmx2048M <application>

The code shown in the previous example will force the initial heap size to 1 GB  
and prevent it from ever growing above 2 GB. If enough heap to accommodate  
the demands isn't available, an OutOfMemoryError will be thrown.

Controlling what to optimize for
Unless you really know what you are doing, the –XgcPrio flag is the preferred 
way to tell JRockit what garbage collection strategies to run. Instead of fixing a 
GC strategy, JRockit will heuristically determine what is best for the application, 
depending on what the user thinks is important and change strategies at runtime 
when appropriate.

•	 –XgcPrio:throughput: This optimizes for throughput, not caring about 
pause times

•	 –XgcPrio:pausetime: This optimizes for low latency
•	 -XgcPrio:deterministic: This activates the JRockit Real Time 

functionality, striving for extremely short pauses at the cost of some 
additional runtime overhead
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The maximum pause time target for the GC (not applicable for –XgcPrio:throughput) 
can be set with the flag –XpauseTarget. Depending on the amount of live data 
on the heap and system configuration, JRockit may or may not be able to keep  
up. Experimenting with different pause time targets for a particular application  
is encouraged.

Following is command-line example for enabling deterministic GC (JRockit Real 
Time) with an upper pause time target of five milliseconds:

java –XgcPrio:deterministic –XpauseTarget:5ms <application>

Specifying a garbage collection strategy
For even further control over GC behavior, a more fine grained garbage collection 
strategy can be set from the command line using the –Xgc flag. This fixes a garbage 
collection strategy for the JVM and prevents it from being changed at runtime. The 
strategy can be made more fine grained than with one of the three -XgcPrio choices. 
Again, we use the terms concurrent and parallel to describe if we are optimizing 
for low latencies or throughput. The possible options are –Xgc:singlecon (single 
generational concurrent), -Xgc:gencon (generational concurrent), -Xgc:singlepar 
(single generational parallel) and –Xgc:genpar (generational parallel). "Generational", 
as opposed to "single generational", means that a nursery is used.

Compressed references
As already mentioned, given a maximum heap size smaller than 64 GB, JRockit will 
use some form of compressed references by default. But the usage of compressed 
references can also be explicitly controlled with the –XXcompressedRefs flag. The 
flag takes two arguments—whether compressed references should be enabled at all 
and in that case the maximum size of the heap that they should support.

The following command-line example disables compressed references, and forces 
JRockit to use native size pointers for all objects:

java –XXcompressedRefs:enable=false <application>

This following command-line example enables compressed references that can 
support up to 64-GB heaps:

java –XXcompressedRefs:enable=true,size=64GB <application>
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Advanced switches
It should be noted that playing around too much with JVM switches doesn't 
necessarily lead to increased performance and might interfere with more optimal 
runtime behavior.

If memory performance is believed to be an application bottleneck, it is recommended 
to use the JRockit Mission Control suite for instrumentation. Chapters in the second 
part of this book will explain how to do a runtime recording with JRockit and how 
to analyze it. Collecting as much information as possible about an application before 
starting to modify non-standard parameters is strongly recommended.

Almost any aspect of the garbage collector can be tuned from the command line  
—everything from the size of the thread local buffers used for allocation to  
the strategies used for heap compaction.

Some less fundamental switches that control memory management are covered in 
Chapter 5. Please study the JRockit documentation for a more in-depth description 
of all memory management options.

Summary
This chapter covered automatic memory management in detail, concentrating 
on adaptive memory management, where feedback from the runtime system is 
continuously used to optimize GC performance.

We explained the mark and sweep as well as the stop and copy strategies for garbage 
collection and discussed how more advanced variants of these can work in a modern 
runtime, especially JRockit. We discussed how to implement fast scalable GC on all 
levels from software to hardware.

Every GC needs to stop the world at some point, for example when sweeping or 
compacting. Stopping the world introduces latencies. The main lesson is that we  
can optimize either for throughput or for low latencies, one at the cost of the other.

We introduced the product JRockit Real Time, that provides a degree of determinism 
and pause time targets for the JVM. JRockit Real Time can massively improve 
response times and decrease their deviation for most applications without the need 
to modify the applications.
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Some of the constructs available in the Java language that can help control garbage 
collection and memory management were introduced, followed by a section on false 
optimizations. It is dangerous to believe that complete deterministic control can be 
exerted over as non-deterministic a system as a garbage collector.

Finally, the most common command-line options used to control memory 
management in JRockit were explained. 

Now code generation and memory management in an adaptive runtime environment 
have been introduced. In the next chapter, we will cover the final fundamental 
building block that makes up a Java runtime—threads and synchronization.



Threads and Synchronization
This chapter covers threads and synchronization in Java and in the Java Virtual 
Machine. Threads are the de facto mechanism for running several parallel tasks in a 
process. Locks are the de facto mechanism for constraining access to a critical section 
of code to one thread at a time. These are the building blocks we need in order to 
implement parallelism in software.

You will learn the following from this chapter:

•	 How fundamental parallel concepts such as threads and synchronization 
work in Java and how the Java APIs can be used for synchronization. This 
includes concepts like wait, notify, and the often misunderstood volatile 
keyword. We will also briefly look at the java.util.concurrent package.

•	 The concept of the Java Memory Model, and why it is required. 
Understanding the memory model is the key to writing working 
multithreaded Java programs.

•	 How the JVM can efficiently implement threads and synchronization  
and a discussion about a few different models.

•	 How the JVM can optimize threads and synchronization using different 
types of locks, locking policies, and code optimizations, all based on  
adaptive runtime feedback.

•	 How to avoid common pitfalls and false optimizations in parallel Java 
programming—learning to stay clear of things like deprecated java.lang.
Thread methods and double checked locking.

•	 How to work with JRockit to modify thread and synchronization behavior  
as well as an introduction on how to do lock profiling.
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Fundamental concepts
Java was, from its inception, a language designed for parallelism. It has  
intrinsic mechanisms like the java.lang.Thread class as an abstraction for 
threads, a synchronized keyword and wait and notify methods in every 
object. This made it fairly unique at the time of its release, at least outside  
academia. The most common approach for commercially proven languages so far  
was to use platform-dependent OS library calls for thread management. Naturally, 
Java needed a platform-independent way to do the same, and what can be better  
than integrating the mechanisms for parallelism and synchronization into  
the language itself?

Java is a nice language to work with, when it comes to synchronization. Not only 
does it have explicit constructs that can be used for threads, locks, and semaphores 
but it was also designed so that every object in a Java program can conveniently 
be used as the limiting resource, or monitor object, constraining access to code in a 
critical section. As of Java 1.5, the JDK also contains a package full of useful parallel 
data structures, java.util.concurrent.

The term monitor is used to represent a handle to a synchronized 
resource—only one thread can hold the monitor at a time, thus being 
allowed exclusive access to the resource.

The advantages of this are obvious—Java synchronization involves no third-party 
library calls and the semantics for locking are well-defined. It is easy to use locks  
and threads when programming Java.

A disadvantage may be that it is too easy. It is simple to add synchronization 
anywhere and everywhere "just to be sure", resulting in possible performance loss.

There are, of course, also questions of implementation overhead. As every object 
is allowed to be a monitor, every object also needs to carry synchronization 
information (for example whether the object is used in a lock right now, how that 
lock is implemented, and so on). Typically, to enable quick access, this information 
is stored in a lock word that exists in the header of every object. For more than the 
simplest form of automatic memory management, similar performance concerns also 
exist. Therefore, fundamental GC info, such as what GC state an object is in, must 
also be available for quick access. Recollect, for example, the discussion about mark 
bits from the section on tracing garbage collection in Chapter 3. Thus, both locking 
and GC need certain kinds of information to be quickly available on a per-object 
basis. Consequently, JRockit also uses a few bits in the lock word to store garbage 
collection state information. However, we will still refer to this word as the "lock 
word" for convenience throughout this text.
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Naturally, too compact a meta info representation in every object header introduces 
extra execution overhead for decoding and encoding the information. A too large 
representation introduces extra memory overhead in every object instead. Thus, 
some care has to be taken when choosing a representation for the lock and GC bits 
for the object.

Another thing that needs to go into every object header is a pointer to its type 
information. JRockit calls this the class block.

The following figure shows the layout of a Java object in JRockit. All words in 
the header are 32-bit wide on all platforms to save memory and provide faster 
dereferencing. The class block is a 32-bit pointer to an external structure, with  
type information for the object and virtual dispatch tables.

In JRockit, and as far as we know in most JVMs, a complete object header is 
represented by two 32-bit words. JRockit stores type information at the 0th offset of 
an object pointer and the lock word four bytes into the object. On SPARC, the layout 
is reversed because there it is cheaper to execute atomic instructions that manipulate 
pointers with no offset. As the class block, unlike the lock word, is not subject to any 
atomic operations, it can be placed later in the header on SPARC.

We define an atomic instruction as a native instruction that can only be 
either fully executed or not executed at all. When it is fully executed, its 
results are guaranteed to be visible to all potential accessors.

Atomic operations are required for reads and writes to the lock word, as they have to 
be exclusive—they are the most fundamental building block of the synchronization 
state machine in the JVM.

Various academic research has shown that there is relatively little to 
be gained by compressing an object header further, for example into 
a single 32-bit word. The extra processing overhead does not make it 
worthwhile, even though it saves some more memory per object.



Threads and Synchronization

[ 126 ]

Hard to debug
True for most platforms and programming languages is that a single concurrency 
problem may manifest itself in many different ways such as deadlocks, livelocks, or 
plain crashes. The common denominator is usually non-determinism. This is a classic 
challenge. As concurrency problems tend to depend on timing, attaching a debugger 
to the running program before it breaks might not necessarily reproduce the issue. 
Timing changes with the added debugger overhead.

A deadlock occurs when two threads are sleeping, both waiting for the 
other to finish using a resource that each of them needs. Obviously, they 
never wake up. A livelock is similar, but involves active processing 
from the threads. One can liken it to the case when two people meet in a 
narrow corridor and step out of each other's way, but happen to do it in 
the same direction so that they end up blocking each other again.

Because of these kinds of issues, debugging parallel systems is generally difficult. 
The greatest help comes from visualization aids and debuggers that can untangle 
thread and lock dependencies.

JRockit, like all major JVMs, supports dumping stack traces from all threads in a 
running Java application to the console, along with lock holder information. This is 
enough to resolve simple deadlock problems, where it is possible to determine which 
mutually dependent threads are stuck waiting for a single resource. Examples will be 
given later in this chapter.

The JRockit Mission Control suite can also be used to visualize lock information in a 
more convenient way.

Difficult to optimize
It is also very common that performance issues arise from using synchronization. 
Every lock is a bottleneck, as it introduces a critical section that can only be accessed 
by one thread at a time. The more threads trying to get at a critical section, the more 
contention will arise as threads have to wait their turn. If a lock is badly placed 
or covers too wide a section in the interest of easier debugging (or just because of 
general laziness) performance penalties will almost certainly occur.
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Sadly enough, it seems to be quite a common case in commercial software that 
a single lock or a just a few locks cause the majority of the latency in a program. 
We have seen this more than once when debugging third-party applications. The 
programmer is normally not aware of this. Luckily, if the problematic locks are few 
and can be identified, the latency problem is simple to fix. Again, the JRockit Mission 
Control suite can be used to easily establish which locks are most contended in a 
running program.

A lock is said to be contended when many threads spend 
significant time competing to acquire it

Latency analysis
The JRockit Mission Control suite comes with a unique component for latency 
analysis that, given a JRockit flight recording of a Java program, visualizes latency 
data for the program. Latency analysis can be the programmer's best friend when 
optimizing concurrent programs with plenty of synchronization. Instead of taking 
the traditional profiler's approach of displaying where the program spends its  
active runtime, the latency analyzer provides information on where it does not. 
Any nanosecond where a thread isn't executing Java code is mapped and laid out  
in a thread graph. This way, it can be determined if the idle time is spent waiting 
for I/O or the network, or, which is potentially more serious, in Java locks, i.e. code 
waiting to enter synchronized blocks or methods.

Latency analysis with JRockit Mission Control is covered in greater 
detail in the next section of this book, where the JRockit Mission Control 
suite is introduced, specifically in Chapter 8, The Runtime Analyzer and 
Chapter 9, The Flight Recorder.
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The following screenshot shows the latency analysis tab in the JRockit Runtime 
Analyzer. The data comes from a recording of a running server application and the 
recording is now about to be examined offline. One colored bar per thread in the 
program represents where the program spent its time during the recording. The 
time axis goes from left to right. A different color is used for each latency generating 
activity. In the following screenshot, all thread bars are mostly the same color. In this 
case red, meaning "blocked in Java". This is bad, as it means almost all program time 
was spent waiting for a Java lock, for example in a synchronized block. To be precise, 
all colors except green mean "not executing Java". This might entail native threads 
waiting for I/O or network traffic or any other source of latency. 

Recollect our intuitive latency argument on memory management from Chapter 3—if 
the JVM spends clock cycles garbage collecting, these cannot be used to execute Java 
code. Similarly, if the clock cycles are spent waiting for file I/O or Java locks, latency 
arises. This is the same kind of latency—time spent outside Java execution. It affects 
response times and is the root of most performance problems.

JRockit Flight Recorder can help locate sources of latency in your Java 
programs. In the example above, it turns out that virtually all latency 
comes from a single badly placed Java lock in a logging module. 



Chapter 4

[ 129 ]

Java API
This section covers the built-in synchronization mechanisms in Java. These are 
convenient to have as intrinsic mechanisms in the language. There are, however, 
potential dangers of misusing or overusing Java synchronization mechanisms.

The synchronized keyword
In Java, the keyword synchronized is used to define a critical section. Both code 
blocks inside a method and entire methods can be synchronized. The following  
code example illustrates a synchronized method:

public synchronized void setGadget(Gadget g) {
  this.gadget = g;
}

As the method is synchronized, only one thread at a time can write to the gadget 
field in a given object.

In a synchronized method, the monitor object is implicit. Static synchronized 
methods use the class object of the method's class as monitor object, while 
synchronized instance methods use this. So, the previous code would be 
equivalent to:

public void setGadget(Gadget g) {
  synchronized(this) {
    this.gadget = g;
  }
}

The java.lang.Thread class
The built-in thread abstraction in Java is represented by the class java.lang.
Thread. This class is a somewhat more generic thread representation than that of 
corresponding OS implementations. It contains, among other things, fundamental 
methods for starting threads and for inserting the thread payload code. This is 
symmetrical with typical OS thread implementations where payload is passed as 
a function pointer to the main thread function by the creator of the thread. Java 
uses an object-oriented approach instead, but the semantics are the same. Any class 
implementing the java.lang.Runnable interface can become a thread. The run 
method inherited from the interface must be implemented and filled with payload 
code. java.lang.Thread can also be subclassed directly. 
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There is also a simple priority mechanism in the java.lang.Thread class that may 
or may not be efficiently mapped to the underlying OS variant. The setPriority 
method can be used to change the priority level of a thread, hinting to the JVM that 
it's more important (real-time) or less important. Normally, for most JVMs, little is 
gained by setting thread priorities explicitly from Java. The JRockit JVM may even 
ignore Java thread priorities when the runtime "knows better".

Threads can be made to yield the rest of their scheduled time slice to other threads, 
go to sleep or join (that is, wait for this thread to die).

Threads can be arranged in java.lang.ThreadGroups, a *NIX process like abstraction, 
which can also contain other thread groups. Thread operations may be applied to all 
threads in a thread group.

A thread may hold thread local object data, represented by the java.lang.
ThreadLocal class. Each thread will own a copy of any ThreadLocal it contains. 
This is a very useful mechanism that has been around since Java 1.2. Even though it 
is a somewhat clumsy retrofit for a language without the concept of stack local object 
allocation, it can be a performance life saver. Given that the programmer knows 
what he is doing, explicitly declaring data thread local in Java may lead to significant 
speed ups.

The java.lang.Thread class has suffered some changes and deprecations to its API 
during its lifetime. Originally, it came with methods for stopping, suspending, and 
resuming threads. These turned out to be inherently unsafe. They still occur from 
time to time in Java programs, and we will discuss why they are dangerous in the 
section Pitfalls and false optimizations, later in this chapter.

The java.util.concurrent package
The java.util.concurrent package, introduced in JDK 1.5, contains several classes 
that implement data structures useful for concurrent programming. One example is 
the BlockingQueue that halts execution and waits for space to become available in 
the queue before storing elements and for elements to be inserted before retrieving 
them. This is the classic synchronized producer/consumer pattern.

The java.util.concurrent package helps the programmer spend less effort 
on re-implementing the most fundamental building blocks of synchronization 
mechanisms. Effort has also been made to ensure that the concurrent classes are  
optimized for scalability and performance.

Possibly, even more useful is the child package java.util.concurrent.atomic 
that contains lightweight thread safe mechanisms for modifying fields. For example, 
representations of integers (java.util.concurrent.atomic.AtomicInteger) and 
longs (java.util.concurrent.atomic.AtomicLong) that can be atomically 
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incremented and decremented and have native-style atomic compares applied to 
them. Using the atomic package, when applicable, can be a good way of avoiding 
explicit heavyweight synchronization in the Java program.

Finally, the concurrent package includes the sub package java.util.concurrent.
locks that contains implementations of data structures with common locking 
semantics. This includes reader/writer locks, another useful pattern that the 
programmer no longer has to implement from scratch.

A reader/writer lock is a lock that allows unsynchronized reads from 
the data it protects, but enforces exclusiveness for writes to the data.

Semaphores
A semaphore is a synchronization mechanism that can come in handy when one 
thread tries to acquire a resource and fails because the resource is already being held 
by another thread. In case of failure, the thread that wanted the resource may want 
to go to sleep until explicitly woken up when the resource has been released. This 
is what semaphores are for. Semaphores are a common locking mechanism with 
abstraction and library calls present in every operating system, modern as well as 
antique. They are also enabled by an integral feature of the Java language.

In Java, each object contains methods named wait, notify, and notifyAll that 
may be used to implement semaphores. They are all inherited from the java.
lang.Object class. The methods are meant to be used in the context of a monitor 
object, for example in a synchronized block. If there is no monitor available in the 
context they are called from, an IllegalMonitorStateException will be thrown at 
runtime.

Calling wait suspends the executing thread. It will be woken up as soon as a 
notification is received. When notify is called, one of the threads waiting for the 
synchronized resource will be arbitrarily selected and woken up by  
the thread scheduler in the JVM. The executing thread will go to sleep and block. 
When notifyAll is called, all threads waiting for the lock will be woken up. Only 
one of them will succeed in acquiring the lock and the rest will go to sleep again.  
The notifyAll method is safer than notify, as everyone will get a chance to acquire 
the lock, and deadlock situations are easier to avoid. The downside to notifyAll is 
that it carries a greater overhead than notify. So, if you know what you are doing, 
notifyAll should probably be avoided.

The wait method also comes with an optional timeout argument, which, when 
exceeded, always results in the suspended thread being woken up again.
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To exemplify how semaphores work in Java, we can study the following code. 
The code is a component that can be used in a classic producer/consumer example, 
a message port, with the instance this used as an implicit monitor object in its 
synchronized methods.

public class Mailbox {
  private String  message;
  private boolean messagePending;

  /**
   * Places a message in the mailbox 
   */
  public synchronized void putMessage(String message) {
    while (messagePending) { //wait for consumers to consume
      try { 
        wait(); //blocks until notified
      } catch (InterruptedException e) {
      }
    }

    this.message = message;    //store message in mailbox
    messagePending = true;     //raise flag on mailbox
    notifyAll();               //wake up any random consumer
  }

  /**
   * Retrieves a message from the mailbox
   */
  public synchronized String getMessage() {
    while (!messagePending) { //wait for producer to produce
      try { 
        wait(); //blocks until notified
      } catch (InterruptedException e) { 
      }
    }

    messagePending = false; //lower flag on mailbox
    notifyAll();            //wake up any random producer

    return message;
  }
}
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Multiple producer and consumer threads can easily use a Mailbox object for 
synchronized message passing between them. Any consumer wanting to retrieve a 
message from an empty Mailbox by calling getMessage will block until a producer 
has used putMessage to place a message in the Mailbox. Symmetrically, if the 
Mailbox is already full, any producer will block in putMessage until a consumer 
has emptied the Mailbox.

We have deliberately simplified things here. Semaphores can be either 
binary or counting. Binary semaphores are similar to the Mailbox 
example described above—there is an explicit "true or false" control over 
a single resource. Counting semaphores can instead limit access to a 
given number of accessors. This is exemplified by the class java.util.
concurrent.Sempahore, which is another excellent tool that can be 
used for synchronization.

The volatile keyword
In a multi-threaded environment, it is not guaranteed that a write to a field or a 
memory location will be seen simultaneously by all executing threads. We will get into 
some more details of this in the section on The Java Memory Model, later in this chapter. 
However, if program execution relies on all threads needing to see the same value of a 
field at any given time, Java provides the volatile keyword.

Declaring a field volatile will ensure that any writes to the field go directly to 
memory. The data cannot linger in caches and cannot be written later, which is  
what may cause different threads to simultaneously see different values of the  
same field. The underlying virtual machine typically implements this by having  
the JIT insert memory barrier code after stores to the field, which naturally is bad  
for program performance.

While people usually have trouble with the concept that different threads can  
end up with different values for a field load, they tend not to suffer from the 
phenomenon. Usually, the memory model of the underlying machine is strong 
enough or the structure of the program itself isn't too prone to causing problems 
with non-volatile fields. However, bringing an optimizing JIT compiler into the 
picture might wreak some additional havoc on the unsuspecting programmer. 
Hopefully, the following example explains why it is important to think about 
memory semantics in all kinds of Java programs, even (especially) in those  
where problems do not readily manifest themselves:
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public class MyThread extends Thread {
  private volatile boolean finished;

  public void run() {
    while (!finished) {
      //
    }
  }

  public void signalDone() {
    this.finished = true;
  }
}

If finished isn't declared volatile here, the JIT compiler may theoretically choose, 
as an optimization, to load its value from memory only once, before the while loop 
is run, thus breaking the thread ending criterion. In that case, as finished starts out 
as false, the while loop condition will be forever true and the thread will never 
exit, even though signalDone is called later on. The Java Language Specification 
basically allows the compiler to create its own thread local copies of non-volatile 
fields if it sees fit to do so.

For further insight about volatile fields, consider the following code:

public class Test {
  volatile int a = 1;
  volatile int b = 1;

  void add() {
    a++;
    b++;
  }

  void print() {
    System.out.println(a + " " + b);
  }
}

Here, the volatile keyword implicitly guarantees that b never appears greater 
than a to any thread, even if the add and print functions are frequently called in 
a multithreaded environment. An even tougher restriction would be to declare the 
add method synchronized, in which case a and b would always have the same 
value when print is called (as they both start at 1). If none of the fields are declared 
volatile and the method is not synchronized, it is important to remember that Java 
guarantees no relationship between a and b!
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volatile fields should be used with caution, as their implementation 
in the JIT usually involves expensive barrier instructions that may ruin 
CPU caches and slow down program execution.

Naturally, synchronized mechanisms incur runtime overhead to a greater degree 
than unsynchronized ones. Instead of readily using volatile and synchronized 
declarations, with their potential slowdowns, the programmer should sometimes 
consider other ways of propagating information if it doesn't change the semantics  
of the memory model.

Implementing threads and  
synchronization in Java
Once again, it's time to look inside the JVM. This section covers some of the issues 
implementing threads and synchronization in a Java runtime. The aim is to provide 
enough insight and technical background so that the reader will be better equipped 
to handle parallel constructs and understand how to use synchronization without 
too much performance loss.

The Java Memory Model
On modern CPU architectures, data caches exist, which is a necessary mechanism 
for speeding up data access for loads and stores and for reducing contention on the 
processor bus. As with any cache mechanism, invalidation issues are a problem, 
especially on multiprocessor systems where we often get the situation that two 
processors want to access the same memory at the same time.

A memory model defines the circumstances under which different CPUs will and 
won't see the same data. Memory models can be strong (x86 is fairly strong), where 
multiple CPUs almost automatically see the same, newly stored, data after one of 
them does a write to memory. In strong memory models, multiple writes to memory 
locations as good as always occur in the same order as they were placed in the 
code. Memory models can also be weak (such as IA-64), where there is virtually no 
guarantee (unless the CPU writing the data executes a special barrier instruction) 
when field accesses and, more generally, all Java induced memory accesses should 
be visible to all.
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Subtle differences handling read-after-write, write-after-read and write-after-
write dependencies of the same data exist on different hardware platforms. Java, 
being a hardware agnostic language, needs to define strict semantics for how these 
dependencies should be interpreted for threads in the JVM. This is a complication 
not present in a static language like C++ that compiles to hardware specific code 
and lacks a memory model per se. Although there is a volatile keyword in C++ as 
well as in Java, parts of the C++ program behavior are still impossible to decouple 
from that of the hardware architecture for which it is compiled. Parts of the "de facto" 
memory model in a C++ program also reside outside the language itself—in thread 
libraries and in the semantics of operating system calls. On architectures with weak 
memory models such as Intel IA-64, the programmer may even have to explicitly put 
calls to memory barrier functions in the C++ program. Anyway, once compiled, the 
behavior of the native code generated from the C++ will remain the same within the 
chosen architecture.

But how can the programmer make sure that the same behavior applies to a 
compiled Java program, no matter if it is running on x86, Itanium, PowerPC,  
or SPARC? There are no explicit memory barriers in Java, and probably shouldn't  
be either, because of its platform independence.

Early problems and ambiguities
The need for a unified memory model for Java that guarantees identical behavior 
across different hardware architectures was acknowledged from the start. Java 
1.0 through 1.4 implemented the memory model as specified in the original Java 
Language Specification. However, the first Java Memory Model contained several 
surprising issues that were counter-intuitive and even made standard compiler 
optimizations invalid.

The original memory model allowed volatile and non-volatile writes to be reordered 
interchangeably. Consider the following code:

volatile int x;
int y;
volatile boolean finished;

/* Code executed by Thread 1 */
x = 17;
y = 4711;
finished = true;
/* Thread 1 goes to sleep here */

/* Code executed by Thread 2 */
if (finished) {
  System.err.println(x):
  System.err.println(y);
}
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In the old memory model, the previous code was guaranteed to print out  17, but not 
necessarily 4711, once Thread 2 was woken up. This had to do with the semantics 
for volatile. They were clearly defined, but not in relation to non-volatile reads or 
writes. To a person used to working closer to hardware than a Java programmer, this 
might not be too surprising, but often Java programmers intuitively expected that 
constructs like the assignment to finished shown earlier would act as a barrier, and 
commit all earlier field stores to memory, including the non-volatile ones. The new 
memory model has enforced stricter barrier behavior for volatile, also with respect 
to non-volatile fields.

Recollect from our "infinite loop" example in the introduction to volatile earlier in 
this chapter, that the JIT compiler may optimize code by creating thread local copies 
of any non-volatile field.

Consider the following code:

int operation(Item a, Item b) {
  return (a.value + b.value) * a.value;
}

The compiler might choose to optimize the previous method to the assembly 
equivalent of:

int operation(Item a, Item b) { 
  int tmp = a.value;
  return (tmp + b.value) * tmp;
}

Notice how two field loads turned into one. Depending on CPU architecture, this 
will lead to a smaller or larger performance increase if the method is hot. However, it 
is almost certainly a good idea for the JIT compiler to try to eliminate loads wherever 
possible, as memory access is always orders of magnitude more expensive than 
register access. The equivalent optimization is performed by compilers in virtually 
all statically compiled languages, and not being able to perform it in Java would lead 
to severe performance loss in comparison.

Originally, through some oversights in the original Java Memory Model, this kind 
of optimization wasn't guaranteed to be allowed (if it couldn't be proven that a and 
b were the same object). Luckily, the new Java Memory Model allows this kind of 
optimization as long as the value field isn't declared volatile. The new memory 
model allows any thread to keep local copies of non-volatile field values, as was  
also illustrated with the potentially infinite loop on the field finished earlier in 
this chapter.
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Immutability
One of the most surprising problems in the original Java Memory Model was that 
objects that were declared final were sometimes not in fact final (immutable) at 
all. final objects were defined to require no synchronization, intuitively through 
their immutability, but there were problems. These manifested themselves to the 
ordinary user in unexpected ways. A final instance field in a Java object is assigned 
its one and only value in a constructor, but as all uninitialized fields, it also has 
an implicit default value (0 or maybe null) before the constructor is run. Without 
explicit synchronization, the old memory model could allow a different thread 
to temporarily see this default value of the field before the assignment in the 
constructor had been committed to memory.

This issue typically led to problems with String instances. A String instance 
contains a char array with its text, a start offset in the array for where the text begins 
and a length. All these fields are final and immutable, just like Strings themselves 
are guaranteed to be in the Java language. So, two String objects can save memory 
by reusing the same immutable char array. For example, the String "cat" may 
point out the same char array as the String "housecat", but with a start offset of 5 
instead of 0. However, the old memory model would allow the String object for 
"cat" to be visible with its uninitialized (zeroed) start offsets for a very short period 
of time, before its constructor was run, basically allowing other threads to think it 
was spelling out "housecat" very briefly until it became "cat". This clearly violates the 
immutability of a java.lang.String.

The new memory model has fixed this problem, and final fields without 
synchronization are indeed immutable. Note that there can still be problems if  
an object with final fields is badly constructed, so that the this reference is allowed 
to escape the constructor before it has finished executing.

JSR-133
Redesigning the memory model in Java was done through the Java community 
process, in Java Specification Request (JSR) 133. It was ready as of Sun's reference 
implementation of Java 1.5, which was released in 2004. The JSR document itself, 
and the updated Java Language Specification, are fairly complex, full of precise and 
formal language. Getting into the details of JSR-133 is beyond the scope of this book. 
The reader is, however, encouraged to examine the documents, to become a better 
Java programmer.
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There are also several great resources on the Internet about the Java 
Memory Model that are easier to read. One example is the excellent JSR-
133 FAQ by Jeremy Manson and Brian Goetz. Another is Fixing the Java 
memory Model by Brian Goetz. Both are referenced in the bibliography of 
this book.

For this text, it suffices to say that JSR-133 cleaned up the problem with reordering 
fields across volatiles, the semantics of final fields, immutability, and other  
visibility issues that plagued Java 1.0 through 1.4. Volatiles were made stricter,  
and consequently, using volatile has become slightly more expensive.

JSR-133 and the new Java Memory Model was a huge step in making sure that intrinsic 
synchronized semantics were simpler and more intuitive. The intuitive approach 
to using volatile declarations in Java became the approach that also provided 
correct synchronization. Of course, a Java programmer may still stumble upon 
counterintuitive effects of memory semantics in the new memory model, especially 
if doing something stupid. But the worst unpredictable issues are gone. Maintaining 
proper synchronization discipline and understanding locks and volatiles will keep the 
number of synchronization bugs (or races) down to a minimum. 

Implementing synchronization
Now that we have covered specification and semantics, we'll see how synchronization 
is actually implemented, both in Java bytecode and inside the JVM.

Primitives
On the lowest level, i.e. in every CPU architecture, are atomic instructions which 
are used to implement synchronization. These may or may not have to be modified 
in some way. For example on x86, a special lock prefix is used to make instructions 
maintain atomicity in multiprocessor environments.

Usually, standard instructions such as increments and decrements can be made 
atomic on most architectures.

A compare and exchange instruction is also commonly available, for atomically 
and conditionally loading and/or storing data in memory. Compare and exchange 
examines the contents of a memory location and an input value, and if they are 
equal, a second input value is written to the memory location. The compare and 
exchange may write the old memory contents to a destination operand or set a 
conditional flag if the exchange succeeded. This way, it can be used to branch on. 
Compare and exchange can, as we shall see later, be used as a fundamental building 
block for implementing locks.
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Another example is memory fence instructions that ensure that reads or writes from 
memory can be seen by all CPUs after execution of the fence. Fences can be used, for 
example, to implement Java volatiles by having the compiler insert a fence after each 
store to a volatile field.

Atomic instructions introduce overhead, as they enforce memory ordering, 
potentially destroy CPU caches, and disallow parallel execution. So, even though 
they are a necessary ingredient for synchronization, the runtime should use them 
with care.

A simple optimization in the JVM is to use atomic instructions as intrinsic calls for 
various JDK functions. For example, certain calls to java.util.concurrent.atomic 
methods can be implemented directly as a few inline assembly instructions if the 
virtual machine is programmed to recognize them. Consider the following code:

import java.util.concurrent.atomic.*;

public class AtomicAdder {
  AtomicInteger counter = new AtomicInteger(17);

  public int add() {
    return counter.incrementAndGet();
  }
}

public class AtomicAdder {
  int counter = 17;

  public int add() {
    synchronized(this) {
      return ++counter;
    }
  }
}

Given the first case, the virtual machine knows what is intended and uses an atomic 
add instruction in the generated code instead of even contemplating generating 
whatever code is inside AtomicInteger.incrementAndGet. We can do this because 
java.util.concurrent.AtomicInteger is a system class that is part of the JDK. Its 
semantics are well defined. In the case without atomics, it is possible, but a little bit 
harder, to deduce that the synchronization contains a simple atomic add.
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Trivially, using synchronization to gain exclusive access to a resource is expensive, as 
a program that might have been running faster in parallel doesn't anymore. But beside 
from the obvious issue that the code in a critical section can be run only by one thread 
at a time, the actual synchronization itself might also add overhead to execution.

On the micro-architecture level, what happens when a locking atomic instruction 
executes varies widely between hardware platforms. Typically, it stalls the dispatch 
of the CPU pipeline until all pending instructions have finished executing and their 
memory writes have been finalized. The CPU also typically blocks other CPUs from 
the particular cache line with the memory location in the instruction. They continue 
to be blocked until the instruction has completed. A fence instruction on modern 
x86 hardware may take a large amount of CPU cycles to complete if it interrupts 
sufficiently complex multi-CPU execution. From this it can be concluded that not 
only are too many critical sections in a program bad for performance, but the lock 
implementation of the platform also matters—especially if locks are frequently  
taken and released, even for small critical sections.

Locks
While any lock may be implemented as a simple OS call to whatever appropriate 
synchronization mechanism the native platform provides, including one that puts 
threads to sleep and handles wait queues of monitor objects competing for the lock, 
one quickly realizes that this one-size-fits-all approach is suboptimal.

What if a lock is never contended and is acquired only a small number of times? 
Or what if a lock is severely contended and many threads compete for the resource 
that the particular lock protects? It is once more time to bring the power of the 
adaptive runtime into play. Before we discuss how the runtime can pick optimal 
lock implementations for a particular situation, we need to introduce the two 
fundamental types of lock implementations—thin locks and fat locks.

Thin locks are usually used for fast uncontended locks that are held for a short time 
only. Fat locks are used for anything more complex. The runtime should be able to 
turn one kind of lock into the other, depending on the current level of contention.

Thin locks
The simplest implementation of a thin lock is the spinlock. A spinlock spends its 
time in a while loop, waiting for its monitor object to be released—that is, burning 
CPU cycles. Typically, a spinlock is implemented with an atomic compare and 
exchange instruction to provide the basic exclusivity, and a conditional jump  
back to the compare and exchange if the test failed to acquire the lock.
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Following is the pseudocode for a very simple spinlock implementation:

public class PseudoSpinlock {
  private static final int LOCK_FREE = 0;
  private static final int LOCK_TAKEN = 1;

  //memory position for lock, either free or taken
  static int lock;

  /**
   * try to atomically replace lock contents with
   * LOCK_TAKEN.
   *
   * cmpxchg returns the old value of [lock].
   * If lock already was taken, this is a no-op.
    *
    * As long as we fail to set the taken bit,
    * we spin
    */
  public void lock() {
    //burn cycles, or do a yield
    while (cmpxchg(LOCK_TAKEN, [lock]) == LOCK_TAKEN);
  }

  /**
   * atomically replace lock contents with "free".
   */
  public void unlock() {
    int old = cmpxchg(LOCK_FREE, [lock]);
    //guard against recursive locks, i.e. the same lock 
    //being taken twice
    assert(old == LOCK_TAKEN);
  }
}

Due to the simplicity and low overhead of entering a spinlock, but because of the 
relatively high overhead maintaining it, spinlocks are only optimal if used in an 
implementation where locks are taken for very short periods of time. Spinlocks do 
not handle contention well. If the lock gets too contended, significant runtime will 
be wasted executing the loop that tries to acquire the lock. The cmpxchg itself is also 
dangerous when frequently executed, in that it may ruin caches and prevent any 
thread from running at maximum capacity.

Spinlocks are referred to as "thin" if they are simple to implement and take up 
few resources in a contention free environment. Less intrusive varieties can be 
implemented with slightly more complex logic (for example adding a yield or  
CPU pause to the spin loop), but the basic idea is the same.
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As the implementation is nothing but a while loop with an atomic check, spinlocks 
cannot be used to support every aspect of Java synchronization. One example is the 
wait/notify mechanism that has to communicate with the thread system and the 
scheduler in order to put threads to sleep and wake them up when so required.

Fat locks
Fat locks are normally an order of magnitude slower than thin locks to release or 
acquire. They require a more complex representation than the thin lock and also have 
to provide better performance in a contended environment. Fat lock implementations 
may, for example, fall back to an OS level locking mechanism and thread controls.

Threads waiting for a fat lock are suspended. A lock queue for each fat lock is 
typically maintained, where the threads waiting for the lock are kept. The threads  
are usually woken up in FIFO order. The lock queue may be rearranged by the 
runtime as the scheduler sees fit or based on thread priorities. For objects used in 
wait / notify constructs, the JVM may also keep a wait queue for each monitor 
resource where the threads that are to be notified upon its release are queued.

A word on fairness
In scheduling, the term fairness is often used to describe a scheduling policy where 
each thread gets an equally sized time quantum to execute. If a thread has used its 
quantum, another thread gets an opportunity to run.

If fairness is not an issue—such as when we don't need a certain level of even thread 
spread over CPUs and threads perform the same kind of work—it is, in general, faster 
to allow whatever thread that gets a chance to run to keep running. Simply put, if we 
are just concerned about maximizing Java execution cycles, it can be a good idea to 
let a thread that just released a lock reacquire it again. This avoids expensive context 
switching and doesn't ruin the caches. Surprisingly enough, unfair behavior like this 
from the scheduler can, in several cases, improve runtime performance.

When it comes to thin locks, there is actually no fairness involved by design.  
All locking threads race with each other when attempting to acquire a lock.

With fat locks, in principle, the same thing applies. The lock queue is ordered, but 
threads will still have to race for the lock if several threads at once are awoken from 
the queue.

The lock word in JRockit
Recollect the 2 x 32-bit word header of any object in JRockit. One word is the class 
block that contains a pointer to type information for the object. The other word is the 
lock and GC word. Of the 32 bits in the lock and GC word, JRockit uses 8 bits for GC 
information and 24 bits for lock information.
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The lock word and object header layout described in this section 
reflects the current state of the implementation in JRockit R28 and 
is subject to change without notice between releases. The bit-level 
details are only introduced to further help explaining lock states 
and their implementation.

In JRockit, every lock is assumed to be a thin lock when first taken. The lock bits 
of a thin locked object contain information about the thread that is holding the lock, 
along with various extra information bits used for optimization. For example for 
keeping track of the number of lock transfers between threads to determine if a  
lock is mostly thread local, and thus mostly unnecessary.

A fat lock requires a JVM internal monitor to be allocated for lock and semaphore 
queue management. Therefore, most of the space in the lock word for fat locks is 
taken up by an index (handle) to the monitor structure.

Fat lock

Thin lock

8-bit GC

8-bit GC

21-bit Monitor index

7-bit transfers 14-bit Holder Thread ID
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The JRockit lock bits are one example of an implementation of helper data structures 
for thin and fat locks, but of course both object header layout and contents vary 
between different vendors' JVM implementations. The various state diagrams that 
follow, go into some more detail on how thin locks and fat locks are converted to 
each other in JRockit and how lock words are affected by the state transitions.
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The previous figure shows the relatively simple transitions between a locked and 
unlocked state if only thin locks are involved. An unlocked object is locked when 
thread T1 executes a successful lock on the object. The lock word in the object header 
now contains the thread ID of the lock taker and the object is flagged as thin locked. 
As soon as T1 executes an unlock, the object reverts back to unlocked state and the 
lock holder bits are zeroed out in the object header.

 

If we add fat locks to the picture, things get a little bit more complex. Recollect that 
a thin lock can be inflated into a fat lock if it is determined that it is too contended 
or if a call to wait is applied to it, such as a call to wait. The object can go directly to 
fat locked if thread T1 attempts to acquire it and it is known to be contended. There 
is also a path from the thin locked version of the lock to the fat locked version in the 
event of a wait call. As a fat lock keeps its allocated JVM internal monitor, along 
with the handle to it, in the lock word, unlocking a fat lock without finding the  
need to deflate it will retain the monitor ID in the lock word, reusing the  
monitor structure.

The section on Pitfalls and false optimizations later in this chapter will further discuss 
how the runtime adaptively turns thin locks and fat locks into one another using 
contention based heuristics.
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The Java bytecode implementation
Java bytecode defines two opcodes for controlling synchronization—monitorenter 
and monitorexit. They both pop a monitor object from the execution stack as their 
only operand. The opcodes monitorenter and monitorexit are generated by 
javac when there are synchronized regions with explicit monitor objects in the 
code. Consider the following short Java method that synchronizes on an implicit 
monitor object, in this case this, as it is an instance method:

public synchronized int multiply(int something) {
  return something * this.somethingElse;
}

The bytecode consists of the seemingly simple sequence shown as follows:

public synchronized int multiply(int);

  Code:

    0:  iload_1

    1:  aload_0

    2:  getfield #2; //Field somethingElse:I

    5:  imul

    6:  ireturn

Here, the runtime or JIT compiler has to check that the method is synchronized by 
examining an access flag set for this particular method in the .class file. Recollect 
that a synchronized method has no explicit monitor, but in instance methods this 
is used and in static methods a unique object representing the class of the object is 
used. So, the earlier source code is trivially equivalent to:

public int multiply(int something) {
  synchronized(this) {
    return something * this.somethingElse; 
  }
}

But, the previous code compiles to this rather more complex sequence:

public int multiply(int);

  Code:

    0:  aload_0

    1:  dup

    2:  astore_2

    3:  monitorenter



Chapter 4

[ 147 ]

    4:  iload_1

    5:  aload_0

    6:  getfield #2; //Field somethingElse:I

    9:  imul

    10:  aload_2

    11:  monitorexit

    12:  ireturn

    13:  astore_3

    14:  aload_2

    15:  monitorexit

    16:  aload_3

    17:  athrow

  Exception table:

    from   to  target type

     4    12    13   any

    13    16    13   any

What javac has done here, except for generating monitorenter and monitorexit 
instructions for this, is that it has added a generic catch-all try block for the entire 
code of the synchronized block, bytecode 4 to bytecode 9 in the previous example. 
Upon any unhandled exception, control will go to bytecode 13, the catch block, 
which will release the lock before re-throwing whatever exception was caught.

Compiler intervention in this fashion is the standard way of solving the issue of 
unlocking a locked object when an exception occurs. Also notice that if there are 
exceptions in the catch block from bytecode 13 to bytecode 16, it will use itself as the 
catch-all, creating a cyclic construct that isn't possible to express in Java source code. 
We explained the problems with this in Chapter 2.

Naturally, we could treat this as unstructured control flow, but as the recursive catch 
is a common pattern, and as we don't want it to complicate control flow analysis, it is 
treated specially by the JRockit compiler. Otherwise it would be considered obfuscated 
code, and a number of optimizations would be forbidden from being done.

JRockit internally translates all methods with an implicit monitor object into methods 
with an explicit one, similar to what is shown in the second part of example, in order 
to avoid the special case with the synchronized flag.
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Lock pairing
Other than the previous bytecode issue there is a more serious one—monitorenter 
and monitorexit are not paired. It is simple to generate weird bytecode where, for 
example, a monitorexit is executed on an unlocked object. This would lead to an 
IllegalMonitorStateException at runtime. However, bytecode where a lock is 
taken in one method and then released in another is also possible (and perfectly legal 
at runtime). The same applies to various many-to-many mappings of monitorenter 
and monitorexit for the same lock. Neither of these constructs have Java source 
code equivalents. The problem of the power of expression comes back to bite us.

For performance reasons, in a JIT compiler, it is very important to be able to identify 
the matching lock for a particular unlock operation. The type of the lock determines 
the unlock code that has to be executed. As we shall soon see, given even more kinds 
of locks than just thin and fat ones, this becomes increasingly important. Sadly, 
we cannot assume that locks are nicely paired, because of the non-symmetrical 
semantics of the bytecode. Unpaired locks don't occur in ordinary bytecode and in 
ordinary programs, but as it is possible, JRockit needs to be able to handle unpaired 
synchronization constructs as well.

The JRockit code generator does control flow analysis upon method generation and 
tries to match every monitorenter to its corresponding monitorexit instruction(s). 
For structured bytecode that was compiled from Java source, this is almost always 
possible (if we treat the anomalous catch produced by synchronized blocks as a 
special case). The match is done when turning the stack-based metaphor into a 
register-based one, piggybacking on the BC2HIR pass of the code generator, which, 
as explained in Chapter 2, has to do control flow analysis anyway.

JRockit uses a mechanism called lock tokens to determine which monitorenter and 
monitorexit instructions belong together. Each monitorenter is translated into an 
instruction with a lock token destination. Its matching monitorexit is translated 
into an instruction with that particular lock token as a source operand.

Following is a pseudocode example of the transformation of a Java synchronized 
region to JRockit matched (or paired) locks:
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In the rare case that a monitorenter can't be mapped to a particular monitorexit, 
JRockit tags these instructions with a special "unmatched" flag. While, this is still 
supported by the runtime, and needs to be for full bytecode compliance, we shall 
soon see that handling unmatched locks is orders of magnitude more expensive than 
handling tokenized locks.

From a practical perspective, unmatched locks never occur in standard compiled 
bytecode, but may show up in obfuscated code or as the result of various bytecode 
profilers. Running JRockit with verbose code generator output (-Xverbose:codegen) 
will display information about unmatched locks if they are detected. In JRockit 
versions from R28, there is also special JRockit Flight Recorder event for unmatched 
locks that can be used for performance profiling. If unmatched locks show up in your 
Java program, all performance bets are off. You probably need to get rid of them.

A special case, where lock pairing can never be done is in native code. Calls from 
native code, accessed through JNI, to monitorenter and monitorexit equivalents 
will always be treated as unmatched locks, as once the program is executing native 
code, we have no control over the stack. However, JNI marshalling overhead, i.e. 
executing the stub code to get from Java code to native code, is orders of magnitude 
slower than taking locks anyway. So, the key to lock performance may lie elsewhere 
if we enter and exit native code frequently.

So what is a lock token? JRockit implements a lock token as a reference to a monitor 
object, the operand to monitorenter, with a couple of bits added at the end. As we 
have seen in Chapter 3, objects are typically aligned on even addresses, in practice on 8 
byte boundaries (or more for compressed references with larger heaps). So, we always 
have the lowest bits of any object pointer available for storing arbitrary information. 
Whenever any of the three lowest bits in an object pointer are non-zero, JRockit takes 
this to mean that the object is used as a monitor, locked with a lock token. The seven 
different possible non-zero bit configurations can be used to communicate different 
information about the lock, for instance if it is thin, taken recursively by the same 
thread, fat, or unmatched. Lock tokens can only exist in local stack frames, never on 
the heap. Since JRockit doesn't use compressed references in local frames, we are 
guaranteed to be able to claim the alignment bits of any object for token information.

Recollect from the previous chapter that all live registers at any given time are 
explicitly determined by the compiler and stored as livemaps, metadata accessible to 
the code generator. The same thing applies to lock tokens.
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Trivially, because of the implicit lock pairing in structured Java code, one lock 
cannot be released before another one, taken inside that lock. It is easy to look at an 
object in a livemap and determine whether it is a lock token or not, but in order to 
be able to unlock tokens in the correct order upon, for example, an exception being 
thrown, nesting information is required as well. If many locks are taken when an 
exception occurs, the runtime needs to know the order in which they were locked. 
Consequently, the livemap system also provides the nesting order of lock tokens.

For unmatched unlocks, an expensive stack walk is required in order to discover the 
matching lock operation and update the lock state in its lock token reference. The 
JVM needs to look for it on all previous frames on the stack. This requires stopping 
the world and is several orders of magnitude slower than with perfect lock pairing 
that can be immediately handled by modifying a lock token on the local stack frame. 
Luckily, unmatched locks are rare. No code that is compiled with javac is likely to 
contain unmatched locks.

Implementing threads
This section briefly covers some different types of thread implementations. It is fairly 
brief, as unmodified OS threads are the preferred way of implementing threads in a 
JVM these days.

Green threads
Green threads usually refers to implementing threads with some kind of multiplexing 
algorithm, using one OS thread to represent several or all Java threads in the JVM. This 
requires that the runtime handle the thread scheduling for the Java threads inside the 
OS thread. The advantages to using green threads is that the overhead is a lot smaller 
than for OS threads when it comes to things like context switches and starting a new 
thread. Many early JVMs tended to favor some kind of green thread approach.

However, aside from the added complexity of having to implement lifecycle and 
scheduling code for the green threads, there is also the intrinsic problem of Java 
native code. If a green thread goes into native code that then blocks on the OS level, 
the entire OS thread containing all the green threads will be suspended. This most 
likely causes a deadlock issue by preventing any other Java thread contained in the 
same OS thread from running. So, a mechanism for detecting this is needed. Early 
versions of JRockit used green threads and solved the OS-level suspension problem 
with a mechanism called renegade threads, basically branching off a native thread 
from the main OS thread whenever a native operation was to be performed. If this 
happened frequently, the green thread model incrementally turned into a model 
where Java threads were one-to-one mapped to OS threads.
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N x M threads
A variety of the green thread approach is to use several OS threads that in turn 
represent several green threads—sort of a hybrid solution. This is referred to as  
an n x m thread model. This can somewhat alleviate the green thread problem of 
blocking in native code.

In the early days of server-side Java, certain kinds of applications lent themselves 
well to this model—applications where thread scalability and low thread start 
overhead was everything. Several of the first paying JRockit customers had setups 
with the need for a very large number of concurrent threads and for low thread 
creation overhead, the prime example being chat servers. JRockit 1.0 used the n 
x m model and was able to provide massive performance increases in these very 
specialized domains.

As time went by and Java applications grew more complex, the added complexity of 
multiplexing virtual threads on OS threads, the common reliance on native code, and 
the refinement of other techniques such as more efficient synchronization, made the 
n x m approach obsolete.

To our knowledge, no modern server-side JVM still uses a thread implementation 
based on green threads. Because of their intrinsic simplicity and the issues 
mentioned earlier, OS threads are the preferred way of representing Java threads.

OS threads
Naturally, the most obvious implementation of a java.lang.Thread is to use an 
underlying operating system thread, for example a POSIX thread on *NIX, one-to-
one-mapped against each java.lang.Thread object. This has the advantage that 
most of the semantics are similar and little extra work needs to be done. Thread 
scheduling can also be outsourced to the operating system.

This is the most common approach and as far as we know, it is used in all modern 
JVM implementations. Other approaches often aren't worth the complexity anymore, 
at least not for standard server-side applications. In, for example, embedded 
environments, it may still make sense to use other approaches, but then, on the  
other hand, implementation space is constrained.
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Thread pooling
If we can rely on threads being OS threads, optimization techniques with slightly 
bad reputations, such as thread pooling, also make a certain amount of sense. The 
creation and starting of OS threads introduces a significantly larger overhead than 
if the VM uses some kind of green thread model. Under special circumstances, in 
a java.lang.Thread implementation based on OS threads, it might make sense to 
reuse existing thread objects in a Java program, to try to reduce this overhead. This 
is typically done by keeping finished threads in a thread pool and reusing them 
for new tasks instead of allocating new threads. The authors of this book generally 
frown upon trying to outsmart the JVM, but this is a case where it might sometimes 
pay off. However, serious profiling should be done before trying thread pooling to 
determine if it is really necessary.

Also, if the underlying thread implementation is not using pure OS threads,  
thread pooling may be disruptive and counterproductive. In a green thread  
model, starting a thread is extremely cheap. While to our knowledge no other  
JVM thread implementation than OS threads exists today, Java is still supposed  
to be a platform-independent language. So, proceed with caution.

Optimizing threads and synchronization
This section discusses how threads and synchronization can be optimized in an 
adaptive runtime environment.

Lock inflation and lock deflation
As was mentioned when the different types of locks were introduced, one of the 
most important optimizations in an adaptive runtime is the ability to convert 
thin locks to fat locks and vice versa, depending on load and contention. Both the 
code generator and the lock implementation will attempt to solve this problem as 
efficiently as possible.

In an adaptive environment, the runtime has the benefit of free lock profiling 
information (at least a small amount of free lock profiling information, as, we shall see, 
doing complete in-depth lock profiling incurs some runtime overhead). Whenever a 
lock is taken or released, information can be logged about who is trying to get the lock 
and how many times it has been contended. So, if a single thread has failed to acquire 
a thin lock in too many subsequent attempts, it makes good sense for the virtual 
machine to convert it to a fat lock. The fat lock is better suited for handling contention, 
in that waiting threads sleep instead of spin and therefore use less CPU cycles. We 
refer to the practice of converting a thin lock to a fat lock as lock inflation.
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JRockit, by default, also uses a small spinlock to implement a fat 
lock while it has been recently inflated and held only for a very 
short time. This might seem counterintuitive, but is generally 
beneficial. This behavior can be turned off from the command 
line (with the flag –XX:UseFatSpin=false), if deemed too 
slow—for example, in an environment with highly contended 
locks with long waiting periods. The spinlock that is part of 
the fat lock can also be made adaptive and based on runtime 
feedback. This is turned off by default, but can be enabled with 
the command-line flag –XX:UseAdaptiveFatSpin=true.

In the same manner, when many subsequent unlocks of a fat lock have been done 
without any other thread being queued on its lock or wait queue, it makes sense to 
turn the fat lock into a thin lock again. We refer to this as lock deflation.

JRockit uses heuristics to perform both inflation and deflation, thus adapting to the 
changed behavior of a given program where, for example, locks that were contended 
in the beginning of program execution stop being contended. Then these locks are 
candidates for deflation.

The heuristics that trigger transitions between thin and fat locks can be overridden and 
modified from the command line if needed, but this is generally not recommended. 
The next chapter will briefly discuss how to do this.

Recursive locking
It is permissible, though unnecessary, for the same thread to lock the same object 
several times, also known as recursive locking. Code that does so occurs, for 
example, where inlining has taken place or in a recursive synchronized method. 
Then the code generator may remove the inner locks completely, if no unsafe code 
exists within the critical section, (such as volatile accesses or escaping calls between 
the inner and outer locks).

This can be combined with optimizing for the recursive lock case. JRockit uses a 
special lock token bit configuration to identify recursive locks. As long as a lock 
has been taken at least twice by one thread without first being released, it is tagged 
as recursive. So, forced unlock operations upon exceptions can still be correctly 
implemented, resetting the recursion count to the correct state, with no extra 
synchronization overhead.
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Lock fusion
The JRockit optimizing JIT compiler also uses a code optimization called lock fusion 
(sometimes also referred to as lock coarsening in literature). When inlining plenty of 
code, especially synchronized methods, the observation can be made that frequent 
sequential locks and unlocks with the same monitor object are common.

Consider code that, after inlining, looks like:

synchronized(x) { 
  //Do something...
}

//Short snippet of code...
x = y;

synchronized(y) {
  //Do something else...
}

Classic alias analysis by the compiler trivially gives us that x and y are the same object. 
If the short piece of code between the synchronized blocks carries little execution 
overhead, less than the overhead of releasing and reacquiring the lock, it is beneficial 
to let the code generator fuse the lock regions into one.

synchronized(x) { 
  //Do something...
  //Short snippet of code...
  x = y;
  //Do something else...
}

Additional requirements are of course that there are no escaping or volatile 
operations in the code between the synchronized blocks, or the Java Memory Model 
semantics for equivalence would be violated. There are of course a few other code 
optimization issues that have to be handled that are beyond the scope of this chapter. 
An example would be that any exception handlers for the regions that are to be fused 
need to be compatible.

Naturally, it might not be beneficial just to fuse every block of code we see, but we 
can avoid some overhead if the blocks to fuse are picked cleverly. And if enough 
sampling information is available for the short snippet of code, we can make clever 
adaptive guesses to whether a lock fusion would be beneficial or not.
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To summarize, this code optimization all boils down to not releasing a lock 
unnecessarily. The thread system itself can, by making its state machine a little 
bit more complicated, implement a similar optimization, independent of the code 
generator, known as lazy unlocking.

Lazy unlocking
So what does the previous observation really mean, if it can be showed that there 
are many instances of thread local unlocks and re-locks that simply slow down 
execution? Perhaps this is the case almost all the time? Perhaps the runtime should 
start assuming that each individual unlock operation is actually not needed?

This gamble will succeed each time the lock is reacquired by the same thread, almost 
immediately after release. It will fail as soon as another thread tries to acquire the 
seemingly unlocked object, which semantics must allow it to do. Then the original 
thread will need to have the lock forcefully unlocked in order to make it seem as if 
"nothing has happened". We refer to this practice as lazy unlocking (also referred 
to as biased locking in some literature).

Even in the case that there is no contention on a lock, the actual process of  
acquiring and releasing the lock is expensive compared to doing nothing at all. 
Atomic instructions incur overhead to all Java execution in their vicinity.

In Java, sometimes it is reasonable to assume that most locks are thread local. 
Third-party code often uses synchronization unnecessarily for a local application,  
as the authors of third-party libraries cannot be sure if the code is to run in a parallel 
environment or not. They need to be safe unless it is explicitly specified that thread 
safety is not supported. There are plentiful examples of this in the JDK alone, for 
example the java.util.Vector class. If the programmer needs vector abstraction 
for a thread local application, he might pick java.util.Vector for convenience, not 
thinking about its inherent synchronization, when java.util.ArrayList virtually 
performs the same job but is unsynchronized.

It seems sensible that if we assume most locks are thread local and never shared, we 
would gain performance in such cases, taking a lazy unlocking approach. As always, 
we have a trade off—if another thread needs to acquire a lazy unlocked object, more 
overhead is introduced than in a non-lazy model, as the seemingly free object must 
be located and released.

It seems reasonable to assume that, as an overall approach, always gambling that 
an unlock won't be needed, isn't such a safe bet. We need to optimize for several 
different runtime behaviors.
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Implementation
The semantics of a lazy unlocking implementation are fairly simple.

For the lock operation, monitorenter:

•	 If the object is unlocked, the thread that locks the object will reserve the lock, 
tagging the object as lazily locked.

•	 If the object is already tagged as lazily locked:
	° If the lock is wanted by the same thread, do nothing (in 

principle a recursive lock).
	° If the lock is wanted by another thread, we need to stop the 

thread holding the lock, detect the "real" locking state of 
the object, i.e. is it locked or unlocked. This is done with an 
expensive stack walk. If the object is locked, it is converted to 
a thin lock, otherwise it is forcefully unlocked so that it can be 
acquired by the new thread.

For the unlock operation, monitorexit:

•	 Do nothing for a lazily locked object and leave the object in a locked state, 
that is, perform lazy unlocking.

In order to revoke a reservation for a thread that wants the lock, the thread that did 
the reservation needs to be stopped. This is extremely expensive. The actual state of 
the lock to be released is determined by inspecting the thread stack for lock tokens. 
This is similar to the approach of handling unmatched locks described earlier. Lazy 
unlocking uses a lock token of its own, whose bit configuration means "this object is 
lazily locked".

If we never had to revert a lazy locked object, that is if all our locks are in fact thread 
local, all would be well and we would see immense performance gains. In the real 
world, however, we cannot afford to take the very steep penalty of releasing lazy 
locked objects time and time again, if our guess proves to be wrong. So, we have to 
keep track of the number of times a lazy lock is transferred between threads—the 
number of penalties incurred. This information is stored in the lock word of the 
monitor object in the so called transfer bits.

If the number of transfers between threads is too large, a particular object or its entire 
type (class) and all its instances can be forbidden from further lazy locking and will 
just be locked and unlocked normally using standard thin and fat lock mechanisms.
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Object banning
When a transfer limit is hit, the forbid bit in a JRockit object lock word is set. This bit 
indicates that a specific object instance is unsuitable for lazy unlocking. If the forbid 
bit is set in an object header, this particular object cannot be used for lazy unlocking 
ever again.

Also, if a lock is contended, regardless of other settings, lazy unlocking is 
immediately banned for its monitor object.

Further locking on a banned object will behave as ordinary thin and fat locks.

Class banning
Just banning certain instances from being used in lazy unlocking may not be enough. 
Several objects of the same type often use locks similarly. Thus an entire class can 
be tagged so that none of its instances can be subject to lazy unlocking. If too many 
instances of a class are banned or too many transfers take place for instances of a 
class, the entire class is banned.

A dynamic twist to class bans and object bans can be introduced by letting the bans 
"age"—the runtime system gets a new chance to retry lazy unlocking with a certain 
object if a significant amount of time has been spent since the last ban. If we end up 
with the same ban in effect again, the aging can be set to be restarted, but run more 
slowly, or the ban can be made permanent. 

The following figure tries to better illustrate the complexities of states involved in 
lazy unlocking:
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Now, we have three lock domains, as opposed to two (thin and fat) shown in the 
state graphs earlier in this chapter. The new domain "lazy" is added, which is where 
locking of hitherto unseen objects starts—we hope our "gamble" that locks are mostly 
thread local pays off.

Just as before, starting at the unlocked, previously untouched object, a monitorenter 
by thread T1 will transition it to lazy locked state (just as with the thin locked state 
before). However, if T1 performs a monitorexit on the object, it will pretend to be 
unlocked, but really remain in a locked state, with the thread ID for T1 still flagging 
ownership in the lock bits. Subsequent locks by T1 will then be no-ops. 

If another thread, T2 now tries to lock the object, we need to respect that, take the 
penalty for our erroneous guess that the lock was taken mostly by T1, flush out T1 
from the thread ID bits and replace them with T2. If this happens often enough, the 
object may be subject to banning from lazy unlocking and then we must transfer the 
object to a normal thin locked state. Pretending that this was the case with the first 
monitorenter T2 did on our object, this moves the state diagram to the familiar 
thin locked domain. Objects that are banned from lazy unlocking in the figure  
are denoted by (*). If thread T3 tries to lock a banned (but unlocked) object, 
we notice that we remain in the thin locked section of the picture. No lazy  
unlocking is allowed.

In similar fashion as before, thin locks are inflated to fat locks if they get contended 
or their objects are used with wait / notify, which requires wait queues. This is true 
for objects in the lazy domain as well.

Results
Most commercial JVM implementations maintain some kind of mechanism for lazy 
unlocking. Somewhat cynically, this may have its origin in the popular SPECjbb2005 
benchmark, which has many thread local locks and where small optimization efforts 
towards hanging on to locks result in huge performance gains.

SPEC and the benchmark name SPECjbb2005 are trademarks 
of the Standard Performance Evaluation Corporation.

However, there are also several real-world applications, for example, application 
servers where it turns out that lazy unlocking can deliver performance. This is just 
because the sheer complexity and many abstraction layers has made it hard for 
developers to see if synchronization across threads needs be used at all.
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Some versions of JRockit, such as the x86 implementation running JDK 1.6.0, come 
with lazy unlocking and banning heuristics enabled out of the box. This can be 
turned off from the command line if needed. To find out if a particular shipment of 
JRockit uses lazy unlocking as a default option, please consult the section on locks in 
the JRockit documentation.

Pitfalls and false optimizations
As in previous chapters, we will finish up with a discussion of obvious  
caveats. This section discusses things to be aware of when working with threads 
and synchronization in Java.

Thread.stop, Thread.resume and Thread.
suspend
The single most dangerous part of the Java thread API, are the methods in the java.
lang.Thread class called stop, resume, and suspend. They were included in Java 
1.0, but immediately found unsafe and deprecated. This however, was a bit too late, 
and, even today, they are widely used both in legacy code and new applications, 
despite the deprecation warnings. We are sad to report that we've come across them 
in commercial code that was developed as late as 2008.

The stop method (meant to halt the execution of a thread) is unsafe. This is because 
stopping the execution of a thread that is modifying global data would possibly 
leave the global data in an inconsistent, broken state. A thread that receives a stop 
signal will unlock all of the locks that it was holding, thus making the data under 
modification by these locks briefly visible to the rest of the world, which violates  
the Java sandbox model.

Stopping threads should instead be handled by wait / notify or (volatile) variables, 
properly synchronized when this needs to be the case.

What about suspension? Suspending a thread is inherently deadlock prone. That is, 
if a thread is holding a lock and then is suspended, no other thread can access the 
resource protected by the lock until the suspended thread is resumed. If the thread 
responsible for the resume call, waking up the suspended thread, tries to acquire that 
lock, a deadlock will occur. Thus, Thread.resume and Thread.suspend are deemed 
too dangerous to leave to the user and were deprecated as well.

Consequently, never use Thread.stop, Thread.resume or Thread.suspend in any 
program and be aware of their issues when working with legacy code.
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Double checked locking
Lack of understanding of the underlying memory model and CPU architecture, can 
cause trouble in the highest levels of platform-independent Java as well. Consider 
the following thread safe code that returns a singleton object, instantiated once only 
upon demand:

public class GadgetHolder {

  private Gadget theGadget;

  public synchronized Gadget getGadget() {
    if (this.theGadget == null) {
      this.theGadget = new Gadget();
    }
    return this.theGadget;
  }
}

The previous example works fine for multiple threads, as the method is synchronized, 
using the GadgetHolder instance itself as the monitor. However, when the Gadget 
constructor has run once, further synchronization might seem unnecessary and 
expensive. Therefore, one might be tempted to optimize the method as:

public Gadget getGadget() {
  if (this.theGadget == null) {
    synchronized(this) {
      if (this.theGadget == null) {
        this.theGadget = new Gadget();
      }
    }
  }
  return this.theGadget;
}

The previous optimization might seem like a clever trick. If the object exists, which 
will be the usual case, we can return it immediately without synchronization. 
The singleton instantiation is still synchronized, including the original null check, 
retaining thread safety.

The problem here is that we have created a common anti-pattern known as double 
checked locking. Now, one thread can start initializing the Gadget field upon 
completing the inner null check in the synchronization. This thread might start 
allocating and writing the object to the Gadget field, which may well be a non-atomic 
process, containing several writes to memory without guaranteed ordering. If this 
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happens in the middle of a context switch, another thread can come in, see the partially 
written object in the field and thus fail the first null check. Then the partially allocated 
object may be returned. The same thing can happen not just with objects, but with 
other field types as well. For example, longs on a 32-bit platform often need to 
be initialized by two 32-bit writes to memory. A 32-bit int, on the other hand 
(just one memory write on initialization) would slip past the trap.

The problem may, though only in the new version of the Java Memory Model, be 
gotten around by declaring the theGadget field volatile, but this incurs overhead 
anyway. Possibly less overhead than the original synchronization, but still overhead. 
For clarity, and because underlying memory model implementations may not be 
correct, double checked locking should be avoided! There are several good web 
pages explaining why double checked locking should be considered an anti-pattern 
in several languages, not just Java.

The danger with problems like this is that on strong memory models 
they rarely break down. Intel IA-64 deployment is a typical real-world 
scenario where Java applications that previously have been running 
flawlessly start malfunctioning. Intel IA-64 has a notoriously weak 
memory model. It is all too easy to suspect a bug in the JVM instead of 
in the Java program if it runs fine on x86 but breaks on IA-64.

For static singletons, initialization can be performed with initialize on demand, 
providing the same semantics and avoiding double checked locking.

public class GadgetMaker {
  public static Gadget theGadget = new Gadget();
}

Java guarantees that the class initialization is atomic, and as the GadgetMaker class 
has no other contents, theGadget will always be atomically assigned when the class 
is first referenced. This works both in the old and the new memory model.

In conclusion, there are plenty of caveats when programming parallel Java, but most 
of them can be avoided by understanding the Java Memory Model. Furthermore, 
even if you don't care about the underlying hardware, not understanding the Java 
Memory Model can still be a sure way of shooting yourself in the foot.
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JRockit flags
This section covers the most important command-line flags that can be used to 
control and instrument JRockit lock behavior.

While plenty of information can be gleaned from log files using some of these flags, 
synchronization is a complex business and the preferred and best way to visualize 
multithreaded behavior is through the JRockit Mission Control suite.

Examining locks and lazy unlocking
This section explains the most important flags for studying and manipulating  
lock behavior.

Lock details from -Xverbose:locks
This flag makes JRockit report information related to synchronization in the running 
program. Most of the information that the –Xverbose:locks flag produces has to 
do with the lazy unlocking optimization. This is a good way to see, for example, 
which types and objects are temporarily or permanently banned for lazy unlocking, 
or if lazy unlocking performs as efficiently as it should, without having to revert its 
assumptions all the time.

Following is a sample output from –Xverbose:locks. We can see that lazy 
unlocking is determined inappropriate for a couple of classes, whose instances  
are competed for by different threads. These classes are banned from further  
lazy unlocking.

hastur:SPECjbb2005 marcus$ java -Xverbose:locks -cp jbb.jar:check. 
  jar spec.jbb.JBBmain -propfile SPECjbb.props >/dev/null

[INFO ][locks  ] Lazy unlocking enabled

[INFO ][locks  ] No of CPUs: 8

[INFO ][locks  ] Banning spec/jbb/Customer for lazy unlocking. 
  (forbidden 6 times, limit is 5)

[INFO ][locks  ] Banning spec/jbb/Address for lazy unlocking. 
  (forbidden 6 times, limit is 5)

[INFO ][locks  ] Banning java/lang/Object for lazy unlocking. 
  (forbidden 5 times, limit is 5)

[INFO ][locks  ] Banning spec/jbb/TimerData for lazy unlocking. 
  (forbidden 6 times, limit is 5)

[INFO ][locks  ] Banning spec/jbb/District for lazy unlocking. 
  (forbidden 6 times, limit is 5)
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Controlling lazy unlocking with 
–XX:UseLazyUnlocking
Depending on the platform and JRockit version, lazy unlocking may or may not be 
enabled out of the box. Please refer to the JRockit Documentation to find out what 
applies to a particular platform or study the output from –Xverbose:locks. Given 
that adaptive reversion strategies form part of the lazy unlocking algorithm, it is  
more often the case than not, that when enabled, lazy unlocking will contribute to 
increased performance.

The default lazy unlocking behavior can be overridden with the flag:

     -XX:UseLazyUnlocking=false or –XX:UseLazyUnlocking=true.

Finally, -Xverbose:codegen will, as mentioned earlier in the chapter, output warnings 
for any method where the compiler failed to create matched locks and unlocks.

Using SIGQUIT or Ctrl-Break for Stack Traces
Issuing a SIGQUIT signal to a JRockit process, typically by executing kill –QUIT 
<PID> or kill -3 <PID> in *NIX environments or by pressing Ctrl-Break in a console 
window on Windows, will dump complete stack traces (where available) for all the 
threads in the JVM, both native and Java threads. The locks taken by the threads 
are also displayed, along with their types. This is a "poor man's way" of quickly 
detecting deadlocks, by finding out if a thread is waiting for a resource held by 
another suspended thread.

Following is an example thread dump including lock holders, what type of lock they 
are holding and where on the execution stacks the locks were taken:

===== FULL THREAD DUMP ===============
Tue Jun 02 14:36:39 2009
BEA JRockit(R) R27.6.3-40_o-112056-1.6.0_11-20090318-2104-windows-ia32

"Main Thread" id=1 idx=0x4 tid=4220 prio=5 alive, 
  in native, sleeping, native_waiting
    at java/lang/Thread.sleep(J)V(Native Method)
    at spec/jbb/JBButil.SecondsToSleep(J)V(Unknown Source)
    at spec/jbb/Company.displayResultTotals(Z)V(Unknown Source)
    at spec/jbb/JBBmain.DoARun(Lspec/jbb/Company;SII)V(Unknown Source)
    at spec/jbb/JBBmain.runWarehouse(IIF)Z(Unknown Source)
    at spec/jbb/JBBmain.doIt()V(Unknown Source)
    at spec/jbb/JBBmain.main([Ljava/lang/String;)V(Unknown Source)
    at jrockit/vm/RNI.c2java(IIIII)V(Native Method)
    -- end of trace
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"(Signal Handler)" id=2 idx=0x8 tid=1236 prio=5 alive, in native, daemon

"(GC Main Thread)" id=3 idx=0xc tid=5956 prio=5 alive, 
  in native, native_waiting, daemon

"(GC Worker Thread 1)" id=? idx=0x10 tid=5884 prio=5 alive, 
  in native, daemon

"(GC Worker Thread 2)" id=? idx=0x14 tid=3440 prio=5 alive, 
  in native, daemon

"(GC Worker Thread 3)" id=? idx=0x18 tid=4744 prio=5 alive, 
  in native, daemon

"(GC Worker Thread 4)" id=? idx=0x1c tid=5304 prio=5 alive, 
  in native, daemon

"(GC Worker Thread 5)" id=? idx=0x20 tid=5024 prio=5 alive, 
  in native, daemon

"(GC Worker Thread 6)" id=? idx=0x24 tid=3632 prio=5 alive, 
  in native, daemon

"(GC Worker Thread 7)" id=? idx=0x28 tid=1924 prio=5 alive, 
  in native, daemon

"(GC Worker Thread 8)" id=? idx=0x2c tid=5144 prio=5 alive, 
  in native, daemon

"(Code Generation Thread 1)" id=4 idx=0x30 tid=3956 prio=5 alive, 
  in native, native_waiting, daemon

"(Code Optimization Thread 1)" id=5 idx=0x34 tid=4268 prio=5 alive, 
  in native, native_waiting, daemon

"(VM Periodic Task)" id=6 idx=0x38 tid=6068 prio=10 alive, 
  in native, native_blocked, daemon

"(Attach Listener)" id=7 idx=0x3c tid=6076 prio=5 alive, 
  in native, daemon

...

"Thread-7" id=18 idx=0x64 tid=4428 prio=5 alive

  at spec/jbb/infra/Util/TransactionLogBuffer.privText 
    (Ljava/lang/String;IIIS)V(UnknownSource)[optimized]

  at spec/jbb/infra/Util/TransactionLogBuffer.putText 
    (Ljava/lang/String;IIIS)V(Unknown Source)[inlined]

  at spec/jbb/infra/Util/TransactionLogBuffer.putDollars 
    (Ljava/math/BigDecimal;III)V(Unknown Source)[optimized]

  at spec/jbb/NewOrderTransaction.processTransactionLog() 
    V(Unknown Source)[optimized]

  ^-- Holding lock: spec/jbb/NewOrderTransaction@0x0D674030[biased lock]

  at spec/jbb/TransactionManager.runTxn(Lspec/jbb/Transaction;JJD) 
    J(Unknown Source)[inlined]

  at spec/jbb/TransactionManager.goManual(ILspec/jbb/TimerData;) 
    J(Unknown Source)[optimized]
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  at spec/jbb/TransactionManager.go()V(Unknown Source)[optimized]

  at spec/jbb/JBBmain.run()V(Unknown Source)[optimized]

  at java/lang/Thread.run(Thread.java:619)[optimized]

  at jrockit/vm/RNI.c2java(IIIII)V(Native Method)

  -- end of trace

"Thread-8" id=19 idx=0x68 tid=5784 prio=5 alive, 
  in native, native_blocked

  at jrockit/vm/Locks.checkLazyLocked(Ljava/lang/Object;) 
    I(Native Method)

  at jrockit/vm/Locks.monitorEnterSecondStage(Locks.java:1225)

  at spec/jbb/Stock.getQuantity()I(Unknown Source)[inlined]

  at spec/jbb/Orderline.process(Lspec/jbb/Item;Lspec/jbb/Stock;) 
    V(Unknown Source)[optimized]

  at spec/jbb/Orderline.validateAndProcess(Lspec/jbb/Warehouse;) 
    Z(Unknown Source)[inlined]

  at spec/jbb/Order.processLines(Lspec/jbb/Warehouse;SZ) 
    Z(Unknown Source)[inlined]

  at spec/jbb/NewOrderTransaction.process()Z(Unknown Source)[optimized]

  ^-- Holding lock: spec/jbb/Orderline@0x09575D00[biased lock]

  ^-- Holding lock: spec/jbb/Order@0x05DDB4E8[biased lock]

  at spec/jbb/TransactionManager.runTxn(Lspec/jbb/Transaction;JJD) 
    J(Unknown Source)[inlined]

  at spec/jbb/TransactionManager.goManual(ILspec/jbb/TimerData;) 
    J(Unknown Source)[optimized]

  at spec/jbb/TransactionManager.go()V(Unknown Source)[optimized]

  at spec/jbb/JBBmain.run()V(Unknown Source)[optimized]

  at java/lang/Thread.run(Thread.java:619)[optimized]

  at jrockit/vm/RNI.c2java(IIIII)V(Native Method)

  -- end of trace

"Thread-9" id=20 idx=0x6c tid=3296 prio=5 alive, 
  in native, native_blocked

  at jrockit/vm/Locks.checkLazyLocked(Ljava/lang/Object;) 
    I(Native Method)

  at jrockit/vm/Locks.monitorEnterSecondStage(Locks.java:1225)

  at spec/jbb/Stock.getQuantity()I(Unknown Source)[inlined]

  at spec/jbb/Orderline.process(Lspec/jbb/Item;Lspec/jbb/Stock;) 
    V(Unknown Source)[optimized]
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  at spec/jbb/Orderline.validateAndProcess(Lspec/jbb/Warehouse;) 
    Z(Unknown Source)[inlined]

  at spec/jbb/Order.processLines(Lspec/jbb/Warehouse;SZ) 
    Z(Unknown Source)[inlined]

  at spec/jbb/NewOrderTransaction.process()Z(Unknown Source)[optimized]

  ^-- Holding lock: spec/jbb/Orderline@0x09736E10[biased lock]

  ^-- Holding lock: spec/jbb/Order@0x09736958[biased lock]

  at spec/jbb/TransactionManager.runTxn(Lspec/jbb/Transaction;JJD) 
    J(Unknown Source)[inlined]

  at spec/jbb/TransactionManager.goManual(ILspec/jbb/TimerData;) 
  J(Unknown Source)[optimized]

  at spec/jbb/TransactionManager.go()V(Unknown Source)[optimized]

  at spec/jbb/JBBmain.run()V(Unknown Source)[optimized]

  at java/lang/Thread.run(Thread.java:619)[optimized] 

===== END OF THREAD DUMP ===============

Lock profiling
JRockit can produce extensive profiling information about each lock in a running 
program at the cost of some overhead. Typically, running with lock profiling adds 
about three percent or possibly more to the total runtime, depending heavily on  
the application.

For more information about analyzing lock profiling info, please see the chapters on 
JRockit Mission Control.

Enabling lock profiling with -XX:UseLockProfiling
For more extensive information about where a Java application spends its time, the 
flag –XX:UseLockProfiling=true can be used. This will instrument all locks and 
unlocks in the Java program and store information under which condition it was 
taken and the number of times it has been in use. Lock profiling can be augmented 
with information on native locks inside the JVM, such as code buffer locks or locks 
taken by the garbage collector. In order to get this information as well, use the  
flag –XX:UseNativeLockProfiling=true.

JRockit Mission Control can be used to analyze any JRockit Flight Recording with 
lock profiling information. Any lock in the Java program (or JVM) can be studied 
in detail, revealing, for example, how many times it was thin, fat, contended, lazily 
reserved, recursive, and so on.
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Following is a screenshot of the lock profiling tab in JRockit Mission Control:

For further information about generating and using lock profiling information, 
please consult the JRockit Documentation.

JRCMD
The lock profile can also be controlled through the JRCMD command-line 
instrumentation tool that is part of the JRockit JDK. Whenever JRockit is run  
with the lock profiling flag enabled, JRCMD will respond to the commands 
lockprofile_reset and lockprofile_print that will respectively clear all 
lock performance counters and dump them to the console.

A detailed explanation on how to use JRCMD and its diagnostic commands  
is given in Chapter 11, JRCMD.
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Setting thread stack size using -Xss
The -Xss flag specifies how much stack each thread should be allocated. Thread 
stacks are the memory areas allocated for each Java thread for their internal use. 
This is where the thread stores its execution state. It normally makes little sense to 
increase this size, unless there is plenty of recursion or a large amount of stack local 
information. For example, –Xss:256k will set the thread stack size to 256 KB. 

The default stack size varies between platforms. Please refer to the official JRockit 
Documentation to find the default stack size for a particular platform.

StackOverflowError(s) in a Java program might be resolved by using larger thread 
stacks, unless they are the product of infinite recursion.

Controlling lock heuristics
Finally, there are several flags for controlling heuristics for the JRockit locks. 
One example would be the ability to disable the spinlock part of a fat lock 
(-XX:UseFatSpin=false) that is otherwise enabled by default. Another would 
be –XX:UseAdaptiveFatSpin=true that enables adaptive runtime feedback to 
adjust the behavior of the spinlock part of a fat lock. It is disabled by default. 

There are also several default values for lazy unlocking heuristics, lock inflation, 
and lock deflation heuristics that can be modified. This is generally not needed. To 
satisfy the curious readers, some more advanced JRockit lock tweaks are described 
in Chapter 5, Benchmarking and Tuning. The JRockit documentation also contains 
information on all applicable command-line flags.

Summary
It is hard to code and debug in a parallel environment. Java can give us some help 
here, with its built-in mechanisms for synchronization and the data structures in the 
JDK. As synchronization is integrated into the Java language, using it comes naturally. 
Every object in Java may be a monitor object and used for synchronization. The 
downside is that if it is too easy to use synchronization, it might be used unnecessarily.

This chapter also covered the Java Memory Model that is meant to unify the parallel 
behavior of multithreaded Java across all hardware architectures, as well as the 
problems therein.

We covered the implementation of synchronization and threads in a virtual machine  
and went over the most common ways of implementing adaptive locks, using thin 
locks and fat locks. In an adaptive runtime, locks can be inflated or deflated, based 
on runtime feedback, turning one into another depending on contention level.
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Some basic optimizations were explained; most notably the lazy unlocking framework 
and the shortcuts the code generator can provide, by running lock fusion.

At the end of the chapter, some common caveats were reviewed, the most important 
ones being the usage of the deprecated methods Thread.stop, Thread.suspend 
and Thread.resume and the anti-pattern known as double checked locking. The 
biggest trap of all when writing complex multithreaded Java applications is to not 
understand the Java Memory Model.

Finally, common JRockit command-line flags for instrumenting and examining threads 
and synchronization, as well as modifying the behavior of the JVM were introduced.

The next chapter will talk about the necessity of benchmarking an application, both 
in order to guard against regressions and to provide information that can be used for 
performance improvements. Benchmarking and instrumentation can only be done 
well if you are equipped with a good understanding of JVM internals and of how 
Java works. Hopefully, enough fundamentals for this, on code generation, memory 
management, and threads and synchronization has been provided by the chapters  
so far.





Benchmarking and Tuning
This chapter introduces benchmarking as a fundamental method to measure  
the performance of a Java application. It also covers the JVM side of performance, 
discussing how the virtual machine can be made to execute Java faster.

Benchmarking can, and should, be used to regression test an application during 
development, to ensure that new code modifications do not impact performance. 
Time and time again during our careers, we have seen unexpected performance 
regressions crop up from seemingly innocent changes. Continuous, preferably 
automated, benchmarking is the best way to prevent this from happening. Each 
software project should have a performance goal and benchmarking is the way  
to make sure that this goal is achieved.

Once we have discussed the hows and whys of good benchmarks, we will go on to 
discuss how to draw conclusions from what is measured and when there is a need 
to change the application or to just reconfigure the JVM by tuning parameters and 
setup. Tuning will be discussed in general terms, but concrete examples will be 
JRockit specific.

You will learn the following from this chapter:

•	 The relevance of benchmarking an application for finding bottlenecks, in 
order to avoid regressions and in order to make sure that performance goals 
for your software are achieved.

•	 How to create a benchmark appropriate for a particular problem set. This 
includes deciding what to measure and making sure that the benchmark 
actually does that. This also includes correctly extracting core application 
functionality into a smaller benchmark.

•	 How some of the various industry-standard benchmarks for Java work.
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•	 How to use benchmark results to tune an application and the JVM for 
increased runtime performance.

•	 How to recognize bottlenecks in a Java program and how to avoid them.  
This includes standard pitfalls, common mistakes, and false optimizations.

Throughout this chapter, we will, among other things, discuss the 
SPEC benchmarks. SPEC (www.spec.org) is a non-profit organization 
that establishes, maintains, and endorses standardized benchmarks to 
evaluate performance for the newest generation of computing systems. 
Product and service names mentioned within this chapter are SPEC's 
intellectual property and are protected by trademarks and service marks.

Reasons for benchmarking
Benchmarking is always needed in a complex environment. There are several 
reasons for benchmarking, for example making sure that an application is actually 
usable in the real world or to detect and avoid performance regressions when new 
code is checked in. Benchmarking can also help optimize a complex application by 
breaking it down into more manageable problem domains (specialized benchmarks) 
that are easier to optimize. Finally, benchmarking should not be underestimated as  
a tool for marketing purposes.

Performance goals
Benchmarking is relevant in software development on all levels, from OEM or 
Java Virtual Machine vendors to developers of standalone Java applications. It is 
too often the case in software development that while the functionality goals of 
an application are well specified, no performance goals are defined at all. Without 
performance goals and benchmarks in place to track the progress of those goals, the 
end result may be stable but completely unusable. During our careers we have seen 
this many times, including during the development of business critical systems. If a 
critical performance issue is discovered too late in the development cycle, the entire 
application may need to be scrapped.

Performance benchmarking needs to be a fundamental part of any 
software development process—set a performance goal, create 
benchmarks for it, examine the benchmarking results, tune the 
application, and repeat until done.
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Typically, in order to avoid these kinds of embarrassments, performance must be a 
fundamental requirement of a system throughout the entire software development 
process, and it needs to be verified with regular benchmarking. The importance of 
application performance should never be underestimated. Inadequate performance 
should be treated as any other bug.

Performance regression testing
An application that is developed without a good Quality Assurance (QA) 
infrastructure in place from day one is likely to be prone to bugs and instabilities. 
More specifically, an application without good functional unit tests that run whenever 
new code is checked in, is likely to break, no matter how well the new code has been 
reviewed. This is conventional wisdom in software engineering.

The first and foremost purpose of regression testing is to maintain stability. 
Whenever a new bug is discovered along with its fix, it is a good practice to check-in 
a regression test in the form of a reproducer, possibly based on code left over from 
debugging the problem. The ideal reproducer is a program with a few lines of code 
in a main function that breaks whatever was wrong with the system, but reproducers 
can also be more complex. It is almost always worth it to spend time turning a more 
complex reproducer into a regression test. Keeping the regression test running upon 
new source code check-ins will prevent the particular problem from recurring, 
potentially saving future hours of debugging an issue that has been fixed at least 
once already. Naturally, all functionality tests don't easily break down into simple 
regression tests or self-contained reproducers. Extensive runs of large, hard-to-setup 
applications are still often needed to validate stability.

The other side of regression testing is to maintain performance. For some reason this 
has not been as large a part of the conventional wisdom in software engineering as 
functionality testing, but it is equally important. New code might as easily introduce 
performance regressions as functional problems. The former is harder to spot, as 
performance degradations normally don't cause a program to actually break down and 
crash. Thus, including performance tests as part of the QA infrastructure makes a lot 
of sense. Discovering too late that application performance has gone down requires 
plenty of detective work to figure out exactly where the regression happened. Possibly 
this involves going over a large number of recent source code check-ins, recompiling 
the application at different changes and rerunning the affected application until the 
guilty check-in is spotted. Thus, integrating simple performance regression tests into 
the source code check-in criteria to guard against regressions makes as much sense as 
with unit tests or regression tests for functionality.
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A good QA infrastructure should contain benchmarking for the purpose 
of detecting slowdowns as well as traditional functionality tests for the 
purpose of detecting bugs. A performance regression should be treated 
as no less serious than any other traditional bug.

Performance regression testing is also good for detecting unexplained performance 
boosts. While this might seem like a good thing, sometimes this indicates that a bug 
has been introduced, for example important code may no longer be executed. In 
general, all unexpected performance changes should be investigated and performance 
regression tests should trigger warnings both if performance unexpectedly goes up as 
well as if it goes down.

A cardinal rule when regression testing performance is to have as many points of 
measurements as possible, in order to quickly detect regressions. One per source 
control modification or check-in is ideal, if the infrastructure and test resources  
allow for it.

Let us, for a moment, disregard large and complex tests in the QA infrastructure 
and concentrate on simple programs that can serve as unit tests. While a unit test for 
functionality usually takes the form of a small program that either works or doesn't, 
a unit test for performance is a micro benchmark. A micro benchmark should be 
fairly simple to set up, it should run only for a short time, and it can be used to 
quickly determine if a performance requirement is reached. We will extensively 
discuss techniques for implementing micro benchmarks as well as more complex 
benchmarks later in this chapter.

Easier problem domains to optimize
Another reason for keeping a collection of relevant benchmarks around is that 
performance is a difficult thing to quantify—are we talking about high throughput  
or low latency? Surely we can't have both at the same time, or can we? If so, how  
can we ensure that our application is good enough in both these problem domains?

While running an application with a large set of inputs and workloads is a good idea 
for the general QA perspective, it might provide too complex a picture to illustrate 
where the application performs well and where it requires improvements.

A lot of trouble can be avoided if a program can be broken down into sub-programs 
that can be treated as individual benchmarks and if it can be made sure that all of 
them perform well. Not only is it easier to understand the different aspects of the 
performance of the program, it is also easier to work on improving these aspects on  
a simpler problem domain that only measures one thing at a time. Furthermore, 
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it is also simpler to verify that code optimizations actually result in performance 
improvements. It should be common sense for an engineer that the fewer factors that 
are affected at once, the easier it is to measure and draw conclusions from the results.

Also, if a simple and self-contained benchmark correctly reflects the behavior of a 
larger application, performance improvements to the benchmarks will most likely be 
applicable to the larger application as well. In that case, working with the benchmark 
code instead of with the complete application may significantly speed up the 
development process.

Commercial success
Finally, a large number of industry-standard benchmarks for various applications 
and environments exist on the Internet. These are useful for verifying and measuring 
performance in a specific problem domain, for example, XML processing, decoding 
mp3s, or processing database transactions.

Industry benchmarks also provide standards with which to measure the performance 
of an application against competing products. Later in this chapter, we will introduce 
a few common industrial benchmarks, targeting both the JVM itself as well as Java 
applications on various levels in the stack.

Marketing based on standard benchmark scores is naturally a rather 
OEM centric (or JVM centric) practice. It can also be important when 
developing a competing product in a market segment with many 
vendors. It is not as relevant for more unique third-party software.

Being the world leader on a recognized benchmark makes for good press release 
material and excellent marketing.

What to think of when creating a  
benchmark
Creating a benchmark, large as well as small, for an application without knowing 
much about the application behavior is a fairly futile exercise. In order to understand 
which benchmarks may be relevant for performance testing an application, the 
application needs to be well profiled.
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There are several tools available for examining Java applications that either work by 
creating a special version of the application by inserting instrumentation code in the 
bytecode or through online analysis of an unmodified program. The JRockit Mission 
Control suite is an example of the latter. The next part of this book extensively 
explains how to use the JRockit Mission Control suite for profiling purposes.

Profiling an application will reveal things such as in which methods most of the 
run time is spent, common patterns in garbage collection, and which locks are often 
contended versus those that do not matter for overall performance.

Naturally, profiling or instrumenting an application does not necessarily require 
advanced tools. In some cases, it can be as simple as using System.out.println to 
occasionally output statistics to the console and examine them.

Once enough data about an application has been collected, suitable subsets of the 
application can hopefully be isolated for benchmarking. However, before creating  
a benchmark, we need to determine if it is relevant, and whether the benchmark  
and the application are subject to the same kind of performance issues or not.

When normalizing a benchmark against an application, warm-up time is an important 
factor to consider. If an application requires warm-up time to reach a steady state, 
as most server-side applications do, the benchmark might require this as well. Can 
the application be turned into a small self-contained benchmark with lower startup 
time, for the sake of simplicity? Is it still a case of comparing apples with apples if the 
benchmarking time is shrunk to five minutes from an application runtime of an hour, 
including warm-up, or does this kind of scaledown not work? Has the benchmark 
turned into an application with a completely different kind of behavior?

An example of a complex application that needs to be broken 
down into benchmark domains is an application server, which 
typically is a collection of a vast number of subcomponents with 
varying functions.

The ideal benchmark is a small self-contained program that emulates a relevant part 
of an application. If this isn't easy to implement, maybe individual subsystems of 
the application can still be broken out as "black boxes" that can be fed with limited 
subsets of the input data. Then the subsystems may still form a simpler basis for 
measurements than the entire application, which might be hard to set up and require 
multiple input sources.
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Measuring outside the system
For anything but very small benchmarks and small pieces of proof of concept code, 
it is usually a good idea to measure "outside the system". By that, we mean running 
the benchmark with some kind of external driver. The driver is an application 
independent of the actual benchmark code on which the performance evaluation  
is to take place.

Working with a driver usually means that the driver injects a workload into  
the benchmark, for example over the network. The entire response time,  
including network traffic, for the benchmark to run its payload code and  
respond is then measured.

Using a driver has the benefit that response times can be accurately measured 
without mixing up the measurements with the data generation or load generation. 
The driver can also be moved to another machine, and can be run under lower total 
load, to make sure that neither data generation nor load generation is a bottleneck in 
the benchmark.

The need for externalizing certain measurements can perhaps be more  
simply illustrated by a smaller example. Consider the following benchmark  
that measures how fast an implementation of the MD5 message digest algorithm 
runs on random data:

import java.util.Random;
import java.security.*;

public class Md5ThruPut {
  static MessageDigest algorithm;
  static Random r = new Random();
  static int ops;

  public static void main(String args[]) throws Exception {  
    algorithm = MessageDigest.getInstance("MD5");
    algorithm.reset();
    long t0 = System.currentTimeMillis();
    test(100000);
    long t1 = System.currentTimeMillis();
    System.out.println((long)ops / (t1 - t0) + " ops/ms");
  }

  public static void test(int size) {
    for (int i = 0; i < size; i++) {
      byte b[] = new byte[1024];
      r.nextBytes(b);
      digest(b);
    }
  }
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  public static void digest(byte [] data) {
    algorithm.update(data);
    algorithm.digest();
    ops++;
  }
}

If our goal was to only measure the performance of the MD5 algorithm, the previous 
benchmark is less than optimal, as the generation of the random input data is part  
of the time of an operation being measured. So, the total runtime will not only reflect 
the performance of the MD5 algorithm, but it will also reflect the performance  
of the random number generator. This was probably not intended. A better  
version of the MD5 benchmark would look like the following program:

import java.util.Random;
import java.security.*;

public class Md5ThruPutBetter {
  static MessageDigest algorithm;
  static Random r = new Random();
  static int ops;
  static byte[][] input;

  public static void main(String args[]) throws Exception { 
    algorithm = MessageDigest.getInstance("MD5");
    algorithm.reset();
    generateInput(100000);
    long t0 = System.currentTimeMillis();
    test();
    long t1 = System.currentTimeMillis();
    System.out.println((long)ops / (t1 - t0) + " ops/ms");
  }

  public static void generateInput(int size) {
    input = new byte[size];
    for (int i = 0; i < size; i++) {
      input[i] = new byte[1024];
      r.nextBytes(input[i]);
    }
  }

  public static void test() {
    for (int i = 0; i < input.length; i++) {
      digest(input[i]);
    }
  }
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  public static void digest(byte [] data) {
    algorithm.update(data);
    algorithm.digest();
    ops++;
  }
}

Measuring several times
It is also of the utmost importance to collect a large amount of statistics before 
drawing any conclusions from a benchmark. The simplest way to do this is to repeat 
the measurements many times—do multiple benchmark runs. This way, a better 
grasp of the standard deviations in benchmark results can be obtained. Relevant 
benchmark scores can only be recorded if the size of deviation for the score in your 
benchmarking setup is known.

If possible, multiple runs should also be spread over multiple equivalent machines. 
That way, configuration errors can be discovered and removed from the data. For 
example, a forgotten load generator may be running on one of the benchmarking 
machines, contributing to lower scores. If all runs take place on that machine, 
erroneous measurements will be recorded.

Micro benchmarks
Micro benchmarks are benchmarks that contain a very small amount of code 
and only measure a small piece of functionality, for example, how quickly the 
JVM multiplies instances of java.math.BigInteger or how quickly it does AES 
encryption. Micro benchmarks are simple to write and often require just a single  
or a few function calls that contain the algorithmic payload.

Micro benchmarks are convenient, as they are simple to write and 
simple to run. They may prove invaluable in understanding a particular 
bottleneck in a very large application. They form an excellent backbone 
both for regression testing against performance loss and for optimizing 
the execution of known problems in the code, as discussed in the first 
section of this chapter.
We strongly encourage any application developer to keep a number of 
micro benchmarks around for regression testing, the same way as we 
encourage creating and keeping unit tests around when fixing bugs. 
In both cases, this is to verify that a resolved issue doesn't ever happen 
again and causes a regression.
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If any large application could be reduced to a number of micro benchmarks, or at 
least "mini benchmarks", life would be easier. Sadly, for modern complex applications 
this is rarely the case. However, almost always, a fair (but for industrial purposes, 
incomplete) amount of micro benchmarks can be created from the understanding 
gained by profiling an application and figuring out what it does. The following code is 
a function from a real world micro benchmark that is used as a performance regression 
test for the JRockit JVM:

public Result testArrayClear(Loop loop, boolean validate) {
  long count = 0;

  OpsPerMillis t = new OpsPerMillis("testArrayClear");
  t.start();
  loop.start();

  while (!loop.done()) {
    int[] intArray = new int[ARRAYSIZE];
    System.arraycopy(this.sourceIntArray, 0, intArray, 0, ARRAYSIZE);

    //Introduce side effects: 
    //This call prevents dead code elimination
    //from removing the entire allocation.
    escape(intArray); 
    count++;
  }
  t.end();
  return new OpsPerMillis(count, t.elapsed());
}

Java requires that objects are cleared on allocation, so that all their fields are initiated 
to their default values. The code optimizer in JRockit should be able to detect that 
the newly allocated array intArray is immediately and completely overwritten by 
data, and so, as it is non-volatile, need not be cleared. If, for some reason, this code 
optimization starts to fail, this benchmark will take longer to complete, and the QA 
infrastructure will trigger a warning while examining the result database.

Micro benchmarks can (and should) also be created from scratch for problems 
that are known to be performance-critical in an application. For example for an 
XML parser, it makes sense to create a small benchmark that operates on a set of 
auto-generated XML files of different sizes. For a math package that wants to use 
java.math.BigDecimal, it makes sense to write a couple of small self-contained 
applications that operate on BigDecimal instances.
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Creating micro benchmarks that aren't valid or that don't produce useful results 
for the problem set is not just a waste of time and effort, but it is also potentially 
harmful if the benchmark is believed to accurately measure all important aspects  
of a problem. For example, testing an implementation of java.util.HashMap by 
just creating a HashMap and filling it up with data might not be good enough. How 
long does rehashing take? Extracting elements? What about collisions in HashMaps 
of different sizes?

Similarly, testing a java.math.BigDecimal implementation by just performing a 
large number of additions is almost certainly not good enough. What if there is a 
fatal performance flaw in the division algorithm?

When creating a micro benchmark, the main rule is always to 
understand what you are measuring. Verify that the benchmark 
is valid and that the result is useful.

While the previous two examples might seem somewhat artificial, they are  
still examples of the kind of thinking that can lead you astray when creating 
benchmarks. A somewhat more relevant example might be the case of  
benchmarking an important synchronized operation in a class library. If the lock 
in the synchronized operation is contended in an application, this obviously won't 
show up in a single threaded micro benchmark. It may seem trivial that reducing the 
load from many to fewer threads fundamentally changes the lock behavior, but this 
is one of the main reasons that benchmarks fail to represent the real workload. Make 
sure that any lock in a benchmark is actually stressed by many threads, if this is the 
case in the real application.

Finally, it might make sense to try to eliminate parts of the runtime that aren't relevant 
to the problem from the benchmark. If you want to measure pure code performance 
for some algorithm, it probably makes little sense to create large numbers of objects 
and stress the garbage collector at the same time. Or at least, pick a good garbage 
collection strategy that won't interfere too much with the execution of the algorithm 
(large heap, no nursery, and optimized for throughput).

Micro benchmarks and on-stack replacement
Another common benchmarking mistake is to assume that any JVM will perform 
on-stack replacement, i.e. that any method can be optimized and replaced in the 
middle of its execution. As was also mentioned in Chapter 2 on adaptive code 
generation, all VMs do not perform on-stack replacement. Thus, if the entire payload 
of the benchmark exists in a loop in the main function, code replacement may never 
have a chance to take place, even though all relevant methods are flagged as hot and 
reoptimized into more optimal versions.
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The following benchmark executes some kind of complex operation in each iteration 
of a loop in main. A JVM that, like JRockit, doesn't use on-stack replacement may 
well select main for optimization and make the operation in the loop execute a lot 
faster. However, since main never returns during the execution of the benchmark, 
the new code is never run. Moving the main benchmark operation into a separate 
method, and calling that method each iteration in the loop would solve the problem.

public class BadMicro {
  public static void main(String args[]) {
    long t0 = System.currentTimeMillis();
    for (int i = 0; i < 1000000; i++) {
      // complex benchmarking operation
    }

 long t1 = System.currentTimeMillis();
  System.out.println("Time: " + (t1 - t0) + " ms");

  }
}

Micro benchmarks and startup time
Recall, from the chapter on code generation, that JVM startup time is dependent on 
the time it takes to load initial classes and generate bootstrap code.  If the intention 
is to measure only the runtime of the benchmark payload, startup time needs to be 
subtracted from the overall runtime. The problem can also be solved by having the 
benchmark perform enough operations so that startup time won't be a factor.

It is important to realize that if a micro benchmark does its work quickly and then 
exits, the JVM startup time contributes significantly to the overall benchmark runtime. 
A micro benchmark that measures the time it takes to multiply 100 floating point 
numbers will be all startup time and nothing else, but if it multiplies trillions of  
floating point numbers instead, startup time won't matter.

This point is somewhat more relevant for JVMs, such as JRockit, that lack interpreters 
and consequently start up slightly slower than JVMs that use bytecode interpretation 
for cold or previously unseen code.

So, it is important to start timing the micro benchmark only when the main workload 
function is called, and not from the start of main. Similarly, using an external library 
for timing that measures the time a Java program takes from start to finish will also 
implicitly factor in startup time.

There may of course be cases where startup time is a very 
relevant thing to measure, even in a micro benchmark.
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The runtime of the benchmark in the following example will almost certainly only 
be startup time, since the required time to get the VM up and running significantly 
exceeds the time required to add 1,000 random numbers.

import java.util.Random;

public class AnotherBadMicro {

  static Random r = new Random();
  static int sum;

  public static void main(String args[]) {
    long t0 = System.currentTimeMillis();
    int s = 0;
    for (int i = 0; i < 1000; i++) {
      s += r.nextInt();
    }
    sum = s;
    long t1 = System.currentTimeMillis();
    System.out.println("Time: " + (t1 - t0) + " ms");
  }
}

Give the benchmark a chance to warm-up
Different VMs use different optimization heuristics that trigger at different times. 
So, it might be possible to improve the quality of measurements and decrease 
deviation by doing a small amount of "dry runs" or warm-up rounds before starting 
the actual measurements. The warm-up gives the VM a chance to retrieve runtime 
feedback from the executing code and perform optimizations in relevant places, 
before measurements start. This ensures that the measurements are done in a steady 
optimized state.

Many industry standard benchmarks, such as the SPECjvm2008 suite mentioned 
later in this chapter, come with warm-up rounds built into the benchmark.

Deciding what to measure
Deciding what a benchmark should measure depends on the kind of application for 
which it should assist performance tuning.
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Throughput
An application that is optimized for throughput has relatively simple needs. The 
only thing that matters is performing as many operations as possible in a given 
time interval. Used as a regression test, a throughput benchmark verifies that the 
application still can do x operations in y seconds on the baselined hardware. Once 
this criterion is fulfilled, the benchmark can be used to verify that it is maintained.

Again, as we have learned from the chapter on memory management, throughput 
alone is not usually a real life problem (except in, for example, batch jobs or offline 
processing). However, as can be easily understood, writing a benchmark that 
measures throughput is very simple. Its functionality can usually be extracted from  
a larger application without the need for elaborate software engineering tricks.

Throughput with response time and latency
Throughput benchmarks can be improved to more accurately reflect real life use 
cases. Typically, throughput can be measured with a fixed response time demand. 
The previously mentioned and easily extractable throughput benchmark can usually, 
with relatively small effort, be modified to accommodate this.

If a fixed response time is added as a constraint to a throughput benchmark, the 
benchmark will also factor in latencies into its problem set. The benchmark can then 
be used to verify that an application keeps it service level agreements, such as preset 
response times, under different amounts of load.

The internal JRockit JVM benchmark suite used by JRockit QA contains 
many throughput benchmarks with response time requirements. These 
benchmarks are used to verify that the deterministic garbage collector 
fulfils its service level agreements for various kinds of workloads.

Low latency is typically more important to customers than high throughput, at 
least for client/server type systems. Writing relevant benchmarks for low latency  
is somewhat more challenging.
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Normally, simple web applications can get through with response times  
on the order of a second or so. In the financial industry, however, 
applications that require pause time targets of less than 10 milliseconds, 
all the way down to single digits, are becoming increasingly common.  
A similar case can be made for the telecom industry that usually 
requests pause times of no more than 50 milliseconds. Both the 
customer and the JVM vendor need to do latency benchmarking in 
order to understand how to meet these challenges. For this, relevant 
benchmarks are required.

Scalability
Benchmarking for scalability is all about measuring resource utilization. Good 
scalability means that service levels can be maintained while the workload is 
increasing. If an application does not scale well, it isn't fully utilizing the hardware. 
Consequently, throughput will suffer. In an ideal world, linearly increasing load on  
the application should at most linearly degrade service levels and performance.

The following figure illustrates a nice example of near linear scalability on a  
per-core basis. It shows the performance in ops per second for an older version  
of the JRockit JVM running the well-known SPECjbb2005 benchmark. SPECjbb2005 
is a multithreaded benchmark that gradually increases load on a transaction 
processing framework.
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A SPECjbb run starts out using fewer load generating worker threads than cores 
in the physical machine (one thread per virtual warehouse in the benchmark). 
Gradually, throughout the run, threads are added, enabling more throughput  
(sort of an incremental warm-up). From the previous graph, we can see that  
adding more threads (warehouses) makes the throughput score scale linearly  
until the number of threads equals the number of cores, that is when saturation  
is reached. Adding even more warehouses maintains the same service level until  
the very end. This means that we have adequate scalability. SPECjbb will be  
covered in greater detail later in this chapter.

A result like this is good. It means that the application is indeed scalable on the JVM. 
Somewhat simplified, if data sets grow larger, all that is required to ensure that the 
application can keep up is throwing more hardware at it. Maintaining scalability is a 
complex equation that involves the algorithms in the application as well as the ability 
of the JVM and OS to keep up with increased load in the form of network traffic, CPU 
cycles, and number of threads executing in parallel.

While scalability is a most desirable property, as a target goal, it is 
usually enough to maximize performance up to the most powerful 
hardware specification (number of cores, and so on) that the application 
will realistically be deployed on. Optimizing for good scalability on 
some theoretical mega-machine with thousands of cores may be wasted 
effort. Focusing too much on total scalability may also run the risk 
of decreasing performance on smaller configurations. It is actually 
quite simple to construct a naive but perfectly scalable system that has 
horrible overall performance.

Power consumption
Power consumption is a somewhat neglected benchmarking area that is becoming 
increasingly more important. Power consumption matters, not only in embedded 
systems, but also on the server side if the server cluster is large enough. Minimizing 
power consumption is becoming increasingly important due to cooling costs and 
infrastructure issues. Power consumption is directly related to datacenter space 
requirements. Virtualization is an increasingly popular way to get more out of 
existing hardware, but it also makes sense to benchmark power consumption on  
the general application level.

Optimizing an application for low power consumption may, for example, involve 
minimizing used CPU cycles by utilizing locks with OS thread suspension instead 
of spin locks. It may also be the other way around—doing less frequent expensive 
transitions between OS and application can be the key to low power usage instead.
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One might also take a more proactive approach by making sure during development 
that performance criteria can be fulfilled on lower CPU frequencies or with the 
application bound only to a subset of the CPUs in a machine.

Other issues
Naturally, these are just a few of the possible areas where application performance 
might need to be benchmarked. If performance for an application is important in 
a completely different area, another kind of benchmark will be more appropriate. 
Sometimes, just quantifying what "performance" should mean is surprisingly difficult.

Industry-standard benchmarks
The industry and the academic community continuously strive to provide generic 
benchmarks that emulate many common programmatic problems for Java. This is, 
of course, is of interest to JVM vendors and hardware vendors (to make sure that the 
JVM itself performs well and also for marketing purposes). However, the standardized 
benchmarks often provide some insights on tuning the JVM for a specific problem.  
It is recommended to have a look at some of the things that the industry tries  
to benchmark in order to understand how Java can be applied to different  
problem domains.

Naturally, standard benchmarks for anything and everything exists. Many software 
stacks are subject to performance measurement standardization, with organizations 
releasing benchmarks for everything from application servers down to network 
libraries. Finding and using industry-standard benchmarks is a relevant exercise  
for the modern Java developer.

This section is written from a somewhat JVM centric perspective. We 
are JVM developers and it has been in our interest to make sure that the 
JVM performs as well as possible on many configurations. So, we have 
chosen to highlight many standard benchmarks that JVM vendors tend 
to use. However, a lot of the effort we have spent optimizing the JVM 
has had very real impact on all kinds of Java applications. This is exactly 
the point that this chapter has tried to make so far—optimizing for good 
benchmarks that accurately represent real-world applications leads to 
real-world application performance.
Some of the benchmarks we mention, such as SPECjAppServer also work 
well as generic benchmarks for larger software stacks.
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The SPEC benchmarks
The Standard Performance Evaluation Corporation (SPEC) is a non-profit 
organization that strives to maintain and develop a set of benchmarks that can be used 
to measure performance in several runtime environments on modern architectures. 
This section will quickly introduce the most well known SPEC benchmarks that are 
relevant to Java.

None of the SPEC benchmarks mentioned in this section are available for free, with 
the sole exception of SPECjvm2008.

The SPECjvm suite
SPECjvm—its first incarnation released in 1998 as SPECjvm98 (now retired)—was 
designed to measure the performance of a JVM/Java Runtime Environment. The 
original SPECjvm98 benchmark contained almost only single-threaded, CPU-bound 
benchmarks, which indeed said something about the quality of the code optimizations 
in a JVM, but little else. Object working sets were quickly, after a few years, deemed 
too small for modern JVMs. SPECjvm98 contained simple problem sets such as 
compression, mp3 decoding, and measuring the performance of the javac compiler.

The current version of SPECjvm, SPECjvm2008, is a modification of the original 
SPECjvm98 suite, including several new benchmarks, updated (larger) workloads, 
and it also factors in multi-core aspects. Furthermore, it tests out of the box settings 
for the JVM such as startup time and lock performance.

Several real-life applications have recently been added to SPECjvm, such as the Java 
database Derby, XML processors, and cryptography frameworks. Larger emphasis 
than before has been placed on warm-up rounds and on measuring performance 
from a steady state.

The venerable scientific computing benchmark SciMark has also been integrated into 
SPECjvm2008. The original standalone version of SciMark suffered from the on-stack 
replacement problem in that the main function contained the main work loop for 
each individual benchmark, which compromised, for example, the JRockit JVM and 
made it hard to compare its results with those of other virtual machines. This has 
been fixed in the SPECjvm2008 implementation.



Chapter 5

[ 189 ]

The SPECjAppServer / SPECjEnterprise2010 suite
SPECjAppServer is a rather complex benchmark, and a rather good one, though hard 
to set up. It started its life called ECPerf and has gone through several generations—
SPECjAppServer2001, SPECjAppServer2002, and SPECjAppServer2004. The latest 
version of this benchmark has changed names to SPECjEnterprise2010, but the basic 
benchmark setup is the same.

The idea behind this benchmark is to exercise as much of the underlying infrastructure, 
hardware, and software, as possible, while running a typical J2EE application. 
The J2EE application emulates a number of car dealerships interacting with a 
manufacturer. The dealers use simulated web browsers to talk to the manufacturer, 
and stock and transactions are updated and kept in a database. The manufacturing 
process is implemented using RMI. SPECjEnterprise2010 has further modernized the 
benchmark by introducing web services and more Java EE 5.0 functionality.

The SPECjAppServer suite is not just a JVM benchmark but it can also be used to 
measure performance in everything from server hardware and network switches to  
a particular brand of an application server. The publication guidelines specify that 
the complete stack of software and hardware needs to be provided along with the 
score. SPECjAppServer / SPECjEnterprise2010 is an excellent benchmark in that any 
part of a complete system setup can be measured against a reference implementation. 
This makes it relevant for everyone from hardware vendors to application server 
developers. The benchmark attempts to measure performance of the middle tier of the 
J2EE application, rather than the database or the data generator (driver).

The benchmark is quite complicated to set up and hard to tune. However, theoretically, 
once set up, it can run self-contained on a single machine, but is rather resource heavy, 
and this will not produce any interesting results.

A typical setup requires a System Under Test (SUT), consisting of network 
infrastructure, application servers, and a database server, all residing on different 
machines. A driver, external to the test system, injects load into the setup. This is 
an example of the technique for measuring outside the system that was explained 
earlier in this chapter. In SPECjEnterprise2010, one of the more fundamental changes, 
compared to earlier versions, is that database load has been significantly reduced so 
that other parts of the setup (the actual application on the application server) becomes 
more relevant for performance.
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In a complete setup, the performance of everything, from which network switch to 
which RAID solution the disk uses, matters. For a JVM, SPECjAppServer is quite a 
good benchmark. It covers a large Java code base and the execution profile is spread 
out over many long stack traces with no particular "extra hot" methods. This places 
strict demands on the JIT to do correct inlining. It can no longer look for just a few 
bottleneck methods and optimize them.

System Under Test

Application Servers

Database Server(s)

Switch

Drivers

/ Emulators

As of SPECjAppServer2004, in order to successfully run the benchmark, a transaction 
rate (TxRate) is used for work packet injection. This is increased as long as the 
benchmark can keep up with the load, and as soon as the benchmark fails, the 
maximum TxRate for the benchmark system can thus be determined. This is used  
to compute the score.

The realism is much better in newer generations of the benchmark. Application 
servers use more up-to-date standards and workloads have been increased to fit 
modern architectures. Support for multiple application servers and multiple driver 
machines has also been added. Measurements have also been changed to more 
accurately reflect performance.

The SPECjbb suite
SPECjbb is probably one of the most widespread Java benchmarks in use today. 
It is interesting because it has been used frequently in academic research, and has  
been a point of competition between the big three JVM providers, Oracle, IBM,  
and Sun Microsystems. The big three, in cooperation with hardware vendors,  
have taken turns publishing press releases announcing new world records.

SPECjbb has existed in two generations, SPECjbb2000 (retired), and lately 
SPECjbb2005, that is still in use. SPECjbb, similar to SPECjAppServer, emulates  
a transaction processing system in several tiers, but is run on one machine in a  
self-contained application.
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SPECjbb has done the Java world some good in that a lot of optimizations that 
JVMs perform, especially code optimizations, have been driven by this benchmark, 
producing beneficial spin-off effects. There are also many examples of real-life 
applications that the quest for SPECjbb scores has contributed performance  
to—for example, more efficient garbage collection and locks.

Here are some examples of functionality and optimizations 
in the JRockit JVM that are a direct result of trying to achieve 
high scores on SPECjbb. There are many more. All of these 
optimizations have produced measurable performance 
increases for real-world applications, outside the benchmark:
•	 Lazy unlocking (biased locking)
•	 Better heuristics for object prefetching
•	 Support for large pages for code and heap
•	 Support for non-contiguous heaps
•	 Improvements to array handling such as System.

arraycopy implementations, clear-on-alloc 
optimizations, and assignments to arrays

•	 Advanced escape analysis that runs only on parts  
of methods

A downside of SPECjbb is that it is, in fact, quite hardware-dependent. SPECjbb is very 
much memory bound, and just switching architectures to one with a larger L2 cache 
will dramatically increase performance.

Another downside to SPECjbb is that it is possible to get away with only caring 
about throughput performance. The best scores can be achieved if all execution is 
occasionally stopped and then, massive amounts of parallel garbage collection is 
allowed to take place for as long as it takes to clean the heap.

SPECjbb2005 has also been used as the basis for the SPECpower_ssj2008 benchmark 
that utilizes the same transaction code, but with an externalized driver. It is used 
to quantify transactions per Watt at different levels of load, to provide a basis for 
measuring power consumption.
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Here's another benchmarking anecdote. Sometimes an optimization 
designed for a benchmark is only that and has no real world applications. 
An example from JRockit is calls to System.currentTimeMillis. 
This is a Java method that goes to native and finds out what the system 
time is, expressed in milliseconds since January 1, 1970. Because this 
typically involves a system call or a privileged operation, very frequent 
calls to System.currentTimeMillis could be a bottleneck on several 
platforms.
Irritatingly enough, it turned out that calls to System.
currentTimeMillis made up several percent of the total runtime of 
SPECjbb2000. On some platforms, such as Windows and Solaris, quick 
workarounds to obtain system time were available, but not on Linux. 
On Linux, JRockit got around the bottleneck by using its own signal-
based OS timers instead. The Linux JVM uses a dedicated thread to catch 
an OS-generated signal every 10 milliseconds. Each time the signal is 
caught, a local time counter is increased. This makes timer granularity a 
little worse than with the system timer. However, as long as the timer is 
safe (that is, it cannot go backwards) this maintains Java semantics and 
SPECjbb runs much faster.
Today on JRockit versions for Linux, native-safe timers are disabled. 
If you, for some weird reason, have problems with the performance of 
System.currentTimeMillis in your application, they can still be 
enabled with the hidden flag -XX:UseSafeTimer=true. We have 
never heard of anyone who needs this. 

SipStone
SipStone (www.sipstone.org) provides a suite of benchmarks that are interesting 
for the telecom industry, making it possible to benchmark implementations of the 
Session Initiation Protocol (SIP).

Real life scenarios for testing telecom applications are provided. One of  
the benchmarks used is Proxy200, where the SIP application is provided by  
the benchmark user. Typically, the benchmark user is a SIP server provider.  
This benchmark is interesting as it provides a standardized proxy for testing  
SIP performance.

The DaCapo benchmarks
The DaCapo (www.dacapobench.org) suite is a free benchmark suite created by 
the DaCapo group, an academic consortium that does JVM and runtime research. 
The idea behind the initiative is to create a benchmark with more GC-intensive  
loads and more modern Java applications.



Chapter 5

[ 193 ]

The benchmark suite includes, for example, a parser generator, a bytecode optimizer, 
a Java based Python interpreter, and some of the non-GUI unit tests for the Eclipse 
IDE. It is fairly simple to run and makes for an interesting collection of benchmarks 
that stresses some typical applications of Java.

Real world applications
Of course, one should not underestimate the usefulness of keeping a library of real 
world applications around for benchmarking, if they can exercise relevant areas of 
your code. For example, for developers of a Java web server, including a couple of 
free Java web servers in the benchmarking matrix is probably a good idea to make 
sure that competitive advantage is maintained over them.

The authors of this book, and their JVM development teams use, with kind 
permission, a collection of customer applications that have caused performance 
issues with JRockit over the years. This enables us to better understand performance 
and make sure that no regressions appear. These applications have been turned 
into benchmarks that are executed in known environments in nightly or weekly 
performance runs. Smaller benchmarks are run more often.

Having "thrashatons" for a development team every now and then 
is a fun and useful activity. Have the developers spend a few days 
deploying their product on every kind of relevant (and not so relevant) 
compatible application platform downloaded from the web. This helps 
weed out bugs and performance problems. While, naturally, finding 
thrashaton fodder for a JVM or a compiler is easy (the input is any 
Java program), there is still plenty of source out there for testing more 
specialized platforms. Also look for load generators, network tests, and 
other platform-agnostic products that can stress an application until 
unknown issues pop up.

Our recommendation is always to keep a large "zoo" of applications around, 
for platform testing. If your platform is a J2EE application, deploy it on several 
application servers. If it is a mathematical package, run it with several JVMs and 
different java.lang.math implementations, and so on. Storage is cheap—so never 
throw anything away. Test, benchmark, improve, and repeat!

The dangers of benchmarking
It is sometimes all too easy to focus too much on the results of a particular 
benchmark and let this "tunnel vision" take over all performance work.
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It is very important that a wide selection of standard industry benchmarks exists, as 
they will be used by anyone from hardware vendors to undergraduate researchers, for 
ultimately increasing performance for various runtimes and applications. Conclusions 
drawn, given a benchmark setup, can have wide-ranging implications.

One danger is, of course, if a mainstream benchmark gets too well adopted. Classic 
examples here are the SPECjvm benchmark suite and later the SPECjbb benchmark.

To put it bluntly, if a graduate student can run a benchmark from his workstation with 
a simple command line, the problems it addresses will get much love and research. 
If not, they won't. SPECjbb has a simple command line, SPECjAppServer doesn't. 
SPECjAppServer, in itself, is an excellent benchmark that pretty much stresses any 
desired portion of a Java platform stack and can be used to test everything from 
application servers to network cards in a realistic environment. SPECjAppServer 
requires quite a lot of hardware and has an extensive hard-to-configure setup.  
Consequently, few relevant publications have been released using SPECjAppServer  
in the academic world, but plenty of SPECjbb results are still published, even though  
it may not be that relevant for all aspects of modern performance research.

Tuning
Once a working benchmark is in place in your test infrastructure, be it a version of an 
application that can be run in a controlled environment or a subset of the algorithmic 
problem that an application tries to solve, regression testing can be performed. This 
ensures that no performance is lost during future code alterations.

Another purpose of the benchmark is to provide a small self-contained sandbox that 
can be used to tune the runtime environment in order to provide optimal performance 
for that particular application and to make sure that performance goals set for the 
software project are reached.

Whereas, in some cases, it may be obvious from benchmarking that parts of  
an application need to be rewritten using more efficient algorithms, sometimes  
it may just be enough to provide a more optimal runtime environment by tuning  
the JVM parameters.

Out of the box behavior
The previous three chapters on code generation, memory management, and threads 
and synchronization have all, quite strongly, made the case for adaptive runtime 
environments. All the feedback that a runtime collects can be put to powerful use  
by the JVM for optimization.
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Indeed, in Utopia, an adaptive runtime would never need tuning at all, as the runtime 
feedback alone would determine how the application should behave for any given 
scenario at any given time. Sadly enough, a human always knows more about some 
aspects of application runtime and lifecycles than a machine can deduce. The machine 
may beat the human at things such as picking the hottest methods to optimize 
first, and at inflating and deflating locks depending on the current contention level. 
However, if the human knows, for example, that the heap never needs to be resized, 
as it is large enough for the application, or that heap compaction should never take 
place because fragmentation won't ever become much of an issue, the JVM may need 
to be told that from the start for optimal performance. On the other hand, the human 
may think he knows more than the machine and misguidedly change the runtime 
configuration for the worse. Playing around with a JVM configuration with too little 
information is always dangerous and strongly discouraged.

In-depth data about application behavior can (and should) be collected by running 
thorough profiling analyses on the application. JRockit provides an excellent selection 
of tools for non-intrusive profiling of Java programs that can be used to do low cost 
live recordings of an application. The recordings can then be analyzed offline.

Before attempting to tune the performance of an application, it is important to 
know where the bottlenecks are. That way no unnecessary effort is spent on adding 
complex optimizations in places where it doesn't really matter. Again, this is a 
lesson learned from our previous discussions on adaptive runtimes. For example, 
if network overhead is the main performance bottleneck (as revealed by latency 
analysis in a JRockit Flight Recorder), it might be too early to turn the ten lines  
of code that comprise a very readable search algorithm into one hundred lines  
of "more optimal" code. Low hanging fruit should always be handled first, to  
avoid introducing unnecessary complexity to the application.

In some cases, when the analysis is finished, no actual modification of the application 
needs to be done. The analysis might reveal that the problem is such that some 
runtime option can be added to handle it, helping our imperfect non-out of the box 
world a bit. However, before we introduce command-line flags that can modify 
anything and everything, we want to stress that good out of the box behavior is a 
research area that always gets plenty of attention, both by Oracle and by other JVM 
vendors. For JRockit, dramatic improvements have taken place for each new release.  
It makes sense to optimize out of the box behavior to make it easier for the customer 
to achieve the performance he needs and to off-load support, who instead should be 
concentrating on actual bugs. 
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A final word of warning—modifying JVM behavior through command-
line switches may produce unexpected results and functionality lock-ins 
and should always be done with plenty of caution. A combination of 
switches that work well for performance in a particular version of a JVM 
may very well be harmful instead in a new version of the same JVM. 
Typically, JRockit flags that start with –XX can never be relied on to be 
unchanged between releases.

What to tune for
Recollect from Chapter 3 that no matter what tasks the underlying JVM performs, 
tuning is universal. We can, for example, tune for throughput, low pause times,  
or real-time performance, the latter being a stronger variant of low pause times.

While the general aspects of this have already been covered in previous chapters, 
we will proceed to go over a selection of important JVM parameters that may be 
beneficial to use for reconfiguration. This section covers JRockit parameters only,  
as the innermost workings of other JVMs are beyond the scope of this book. 
However, while parameters vary between different JVMs, some of the techniques 
presented below, such as modifying heap size, are relevant on all runtimes.

Before attempting to use any of the switches, the JRockit Documentation, particularly 
the JRockit Diagnostics Guide, should be consulted to ensure that their full implications 
are understood. Much insight can also be gained by using the JRockit Mission Control 
suite to do recordings before and after a parameter change, to understand how the 
overall runtime behavior was affected.

In the interest of keeping this section fairly short, extensive examples of using  
the mentioned flags will not be included. Extensive examples, along with default 
values for different configurations, are available in the JRockit Documentation and 
the JRockit Diagnostics Guide.

Flags and options presented here are specific to the R28 versions of 
the JRockit JVM. Earlier versions may have different flags for doing 
the same thing, or lack the functionality altogether. Please consult the 
JRockit Documentation to find out what is supported for a particular 
JRockit version.

Tuning memory management
This section covers command-line parameters specific to the memory management 
system and garbage collector.
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Heap sizes
Recollect from Chapter 3 that the most fundamental way to tune the memory 
system is to specify initial heap size using the –Xms flag and maximum heap size 
using the –Xmx flag.

While tuning for real time, it is usually helpful to set both values to a fixed maximum 
size that the system has enough resources to allocate. Thus, unnecessary heap resizing, 
a somewhat costly process, will be prevented from occurring during run time.

Example: java –Xms1024M –Xmx1024M <application> (set both the initial and 
maximum heap size to 1 GB)

The GC algorithm
Furthermore, pick a GC algorithm that makes sense for the current application. 
For real-time performance targets, do not forget to specify a service level agreement, 
using the –XpauseTarget option.

For batch processing and throughput optimization, –XgcPrio:throughput is the 
way to go.

Example: java –XgcPrio:pausetime –XpauseTarget:250ms (set up GC optimizing 
for low pause times with a pause time target of maximum 250 milliseconds)

Compaction
It is inevitable that a heap gets fragmented over time. Traditionally, the "stone age" 
approach to handling fragmentation for a long running program has been to restart 
the server during a nightly service interval. This contributes to latencies, generates 
downtime, and costs CPU cycles. However, experience has shown that by using 
partial compaction, which is the default in JRockit, the problem is handled very  
well. The JRockit compaction heuristics are mostly self-tuning.

One of the worst GC bottlenecks is compaction. Since compaction is not a fully 
concurrent operation, if anything is known about fragmentation and object sizes  
(for example from JRockit Flight Recorder data), it might be beneficial to tune 
compaction as well. In JRockit, this can be done through the –XXcompaction flag 
and its arguments.

The compaction algorithm in JRockit divides the heap into a number of equally large 
parts. Each of these is subject to separate compaction that occasionally may stop the 
world. The default is to use 4,096 heap parts, but it might be beneficial to increase this 
number if compaction is too disruptive or decrease it if compaction fails to keep up 
with fragmentation. Typically, for strategies other than throughput, GC compaction 
areas are dynamically sized depending on how busy they are. Setting the number  
of heap parts is done by passing the subcommand heapParts to –XXcompaction.
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Compaction in JRockit is divided into internal and external compaction (the latter 
also referred to as evacuation). Internal compaction never moves objects outside 
a heap part, but completely compacts that heap part by moving objects to its 
beginning. External compaction works on several heap parts and strives to move 
objects to the start of the heap as is needed to keep overall fragmentation down. 
Consequently, external compaction is less concurrent and requires stopping the 
world for longer periods of time.

Compaction takes place inside a sliding window that gradually moves over 
the entire heap. Currently, JRockit interleaves the use of internal and external 
compaction between GCs. If one GC does internal compaction, the next does  
external compaction, and so on.

The maximum percentages of the heap to compact for internal and external 
compaction per GC compaction event can be set with the internalPercentage 
flag for internal compaction and externalPercentage flag for external compaction.

If the object allocation strategies in the program are well known and latencies need 
to be decreased, the flag –XXcompaction:enable=false will turn off all compaction 
in the JRockit garbage collector. Before enabling this option, JRockit Mission 
Control should be used to establish that fragmentation is not an issue. Turning off 
compaction will dramatically reduce the need for memory management to halt Java 
execution. However, death by fragmentation is a likely outcome for large and long 
running applications that run with compaction switched off. This will manifest itself 
as OutOfMemoryErrors.

If, on the other hand, latencies aren't an issue and optimizing for throughput is the 
only concern, -XXcompaction:full will force full heap compaction at every GC, 
keeping fragmentation at a minimum but at the cost of large pause times. Enabling  
full compaction may be a dangerous experiment. Performing full compaction for  
every GC can, in some cases, be so slow and cause such long pauses that throughput  
is reduced to unusable levels anyway.

Full compaction is also sometimes referred to as exceptional 
compaction in the JRockit Mission Control suite.

In GCs that optimize for short pausetimes, compaction can be aborted if the world 
has been stopped for too long. The default in throughput GC is not to allow this, in 
the interest of battling fragmentation. Abortable compactions can be forced by using 
the –XXcompaction:abortable flag.
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There are several additional ways to tune compaction that are beyond the scope 
of this chapter. Please refer to the JRockit Diagnostics Guide for in-depth guidance. 
Finally, note that playing around with compaction parameters when tuning for real-
time, might result in larger performance deviations and in less deterministic pause 
times. Some of the ways to tune compaction are: 

Example: java –XXcompaction:enable=false <application> (turn off 
all compaction)

Example: java –XXcompaction:full <application> (compact as much as 
possible, optimizing for throughput)

Example: java –XXcompaction:internalPercentage=1.5,
externalPercentage=2,heapParts=512 <application> (use 512 heap parts. 
Use up to two percent of the heap per external compaction and up to 1.5 percent of 
the heap per internal compaction)

Example: java –XgcPrio:throughput –XXcompaction:abortable=true 
(use throughput oriented GC, but soften the latency blow somewhat by allowing 
abortable compaction)

Tweaking System.gc
The flag –XX:AllowSystemGC may be used to turn calls to System.gc into no-ops. 
For example java –XX:AllowSystemGC=false <application> is used to turn any 
System.gc call into a no-op. This can be a quick fix for applications that frequently call 
System.gc in ways detrimental to their performance. The default is to allow System.
gc, which may or may not do full heap garbage collections when invoked. Please see 
Chapter 3, Adaptive Memory Management, and the section Common bottlenecks and how to 
avoid them at the end of this chapter for more information.

For high throughput setups, on the other hand, System.gc can be made to force 
the JVM to do a full heap garbage collection each time it is called. This is done  
with the –XX:FullSystemGC flag. This flag should be used with caution

Example: java –XX:FullSystemGC=true <application> (force any System.gc 
to perform a full heap garbage collection)
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Nursery size
Recall from Chapter 3 that nurseries are the young generations of short-lived objects 
on the heap. Nurseries are normally adaptively resized by the JVM. Specifying the 
size of the nursery in the heap, by using the –Xns (nursery size) parameter, may be 
an option if the application uses generational GC and produces large amounts of 
temporary objects. In that case the size of the nursery should be increased. When 
tuning for high throughput, it is most likely a good idea to skip generational GCs 
altogether and run with -XgcPrio:throughput.

Example: java –Xns:10M <application> (set the nursery size to 10 MB of heap)

GC strategies
If, for some reason, the adaptive garbage collection strategy changes are too frequent 
and incur an overhead, strategy changes can be disabled altogether by using the 
command-line option –XXdisableGCHeuristics. Compaction and nursery size 
heuristics aren't affected.

This flag works for JRockit versions prior to R28 only. As of JRockit R28, 
GC heuristic changes are disabled altogether or are far less intrusive, so 
this flag has been deprecated.

Thread local area size and large objects
Recollect that each thread allocates objects in a thread local area that is promoted to 
the heap when full. The size of the TLA can be controlled by the flag -XXtlaSize. 
The JVM may allocate larger objects directly on the heap, if they don't fit into a TLA 
or would lead to too much waste of space within the TLA. This is to prevent the 
thread local areas from filling up too quickly and incurring extra overhead.

Large objects can be a problem for an application, and, sometimes, if something is 
known about common object sizes in the running application, it helps to play around 
with various TLA settings.

Example: java –XXtlaSize:min=2k,preferred=8k <application> (allocate 
a preferred size of 8 KB for the TLAs, but down to 2 KB is also acceptable)
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In JRockit versions earlier than R28, large objects were allocated 
immediately on the heap and never in a TLA. A flag called  
–XXlargeObjectLimit was provided to tell JRockit the minimum 
number of bytes an object should be of in order to be treated as "large". 
The default was 2 KB. JRockit post R28 uses a waste limit for TLA space 
instead. This constrains the amount of TLA space that can be thrown 
away for each TLA when large objects are allocated and is a more flexible 
solution.
The R28 allocation algorithm now works like this—JRockit tries to 
allocate every object regardless of its size in the current TLA. If it doesn't 
fit and the waste limit is less than the space left in the TLA, the object 
goes directly on the heap. Otherwise, JRockit will "waste" the rest of this 
TLA and try to allocate the object in a new TLA or directly on the heap, 
depending on the size of the object.

Example: java –XXlargeObjectLimit:16k <application> (raise the large object 
limit to 16 KB, only pre R28) 

Example: java –XXtlaSize:min=16k,preferred=256k,wasteLimit=8k 
<application> (TLAs should be 256 KB, but down to 16 KB is acceptable. Never 
waste more than 8 KB of a TLA—rather allocate too large objects directly on the heap)

Tuning for large objects will be covered in further detail in the "Common Bottlenecks" 
section of this chapter. It suffices to say that there is a natural trade-off between heap 
fragmentation and the overhead of frequently allocating new TLAs—constantly 
promoting objects to the heap from TLAs with lots of space left in them is wasteful  
and defeats the lock-free purpose of TLA allocation.

Number of GC threads
JRockit, out of the box, tends to assume that it has the computer all to itself, and 
strives to increase the number of parallel GC threads to a limit bounded by the OS 
and the physical hardware. Typically, JRockit uses as many GC threads as there are 
cores in the machine. If this is inappropriate for some reason, for example if other 
applications need CPU time on the machine as well, the number of GC threads can 
be explicitly set with the –XXgcThreads option.

Using too few GC threads introduces the risk that the garbage collector cannot 
keep up with the growing set of dead objects. In extreme cases, this will lead to 
OutOfMemoryErrors being thrown. However, it is more likely that in order to 
save itself, the GC repeatedly needs to do emergency full heap garbage collections. 
This leads to stalls and unacceptable latencies.

Example: java –XXgcThreads:4 <application> (use four GC threads)
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NUMA and CPU affinity
Most modern operating systems have some notion of changing or setting processor 
affinity for a process, making it possible to lock that process to one or more particular 
CPUs. In NUMA environments, this might be most important, as better locality can 
be achieved by binding the JVM process to a small number of NUMA nodes. The 
trade-off is of course less dynamism and not being able to use some of  
the memory efficiently. The application behavior must be very well understood 
before trying to modify the process affinity.

The flag –XX:BindToCPUs can be used to force JRockit to only use certain CPUs in 
the machine.

Example: java –XX:BindToCPUs=0,2 <application> (used to set JRockit CPU 
affinity to CPU 0 and 2 only)

For NUMA, a separate affinity flags exists for NUMA nodes (–XX:BindToNumaNodes) 
as well as a flag that can control the NUMA memory allocation policy. This enables 
the user to specify if JRockit should interleave allocated pages evenly across all 
NUMA nodes or bind them in the local node where the memory allocation takes 
place. A "preferred local" policy can also be selected, that is JRockit should try to use 
the local node, but interleaved allocation is also fine.

Example: java –XX:NumaMemoryPolicy=strictlocal <application> (force local 
NUMA allocation. Other values are preferredlocal and interleave)

Tuning code generation
This section covers parameters specific to the code generator.

Call profiling
By using the flag –XX:UseCallProfiling, the JRockit code generator can be told to 
add additional instrumentation to code while it is JITed, in order to collect data for 
more intelligent decisions about inlining once a method is found to be a candidate 
for optimization.

Normally, the execution overhead in JIT code is deemed too large to efficiently  
allow arbitrary instrumentation code. However, if the application will run for a  
long time, most methods where runtime is spent are likely to be optimized and  
won't have any instrumentation code left in them. The resulting optimized methods  
will potentially run faster if the optimizer has extra call profiling information to  
base inlining decisions on.
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This flag is disabled by default, but may be enabled by default for future versions  
of JRockit. It is especially beneficial for an application with long call chains.

Example: java –XX:UseCallProfiling=true <application> (enable call profiling 
as an additional way of collecting hotness information)

Changing the number of optimization threads
Code optimization in JRockit is a fairly aggressive operation that uses plenty of CPU 
time and memory. However, it might not make sense to spend too many CPU cycles 
doing it. Recall from Chapter 2 that the number of code generation threads and the 
number of optimization threads in the JRockit JIT compiler can be controlled.

If there are CPU cycles to spare and the application is to be deployed on a large 
multi-core platform, steady state might be achieved faster by enabling a larger 
number of code optimization threads.

The number of code optimization threads can be set with the –XX:OptThreads option.

The default is one optimization thread only. Benchmarking should be made to 
establish if more optimization threads are more efficient. Eventually, the application 
will reach a steady state anyway. The number of JIT compiler threads can be modified 
in similar fashion.

Example: java –XX:JITThreads=2 <application> (use two JIT compiler threads 
instead of one, which is the default) 

Example: java –XX:OptThreads=2 <application> (use two optimization threads 
instead of one, which is the default)

Turning off code optimizations
Sometimes, code optimization, being a fairly CPU-intensive operation, may 
incur unacceptable overhead, either in the form of too long warm-up periods  
or by introducing latency spikes. All code optimizations can be switched off 
with the –XnoOpt flag. This will lead to a much more predictable JVM behavior. 
However, severe performance penalties for the executing code should be expected. 
Optimizations can also be turned off after a specific amount of time (in seconds),  
by using the –XX:DisableOptsAfter switch.

Example: java –XnoOpt <application> (disable all code optimizations) 

Example: java –XX:DisableOptsAfter=600 <application> (disable all code 
optimization after 10 minutes of runtime)
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Tuning locks and threads
When it comes to lock tuning, it is often a good idea to leave well enough alone 
and not modify the default behavior. It is rare that the user can add anything by 
modifying lock heuristics. It is more often the case that performance gains can come 
from modifying the application. However, for the sake of completeness, this section 
presents some switches that control lock behavior in JRockit.

Lazy unlocking
Recall from Chapter 4 that lazy unlocking is beneficial in an environment where a 
particular lock is frequently taken and released by the same thread. If we know that 
the same thread will soon reacquire the lock, it makes little sense to release it for just a 
short period of time.

Lazy unlocking is enabled by default in JRockit (except when running with 
deterministic GC on versions earlier than Java 1.6). It can be explicitly turned  
on and off with the flag –XX:UseLazyUnlocking.

Example: java –XX:UseLazyUnlocking=false <application> (explicitly turn 
off lazy unlocking)

Class banning, i.e. the heuristic that stops a certain class from being used for lazy 
unlocking after too many erroneous guesses, can be switched off with the flag  
–XX:UseLazyUnlockingClassBan=false.

Enforcing thread priorities
The java.lang.Thread class supports different priorities for thread execution, but 
they are rarely implemented by the VM by default. This is because the potential for 
trouble tends to be greater than the gain. Messing around with thread scheduling 
policies at the Java level might lead to unforeseen problems.

JRockit supports forcing the VM to respect thread priorities set through the 
setPriority method of java.lang.Thread. The default is to ignore thread 
priorities, but they can be enabled with the –XX:UseThreadPriorities flag.

Example: java –XX:UseThreadPriorities=true <application> (enable thread 
priority changes)

Thresholds for inflation and deflation
Finally, advanced users may find it useful to tune the heuristic thresholds for lock 
deflation and lock inflation, i.e. the criteria with which a lock is turned from thin to 
fat or vice versa.
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Example: java –XX:ThinLockConvertToFatThreshold=100 <application> 
(no more than 100 iterations are allowed to run in the thin lock spin loop before a 
lock is inflated)

The JRockit spin loop isn't pure CPU wastage, as it does some kind of micropause  
or yield each iteration. Naturally, specifying a limit for the number of iterations in the 
spinlock loop modifies timing in completely incomparable ways between  
architectures and CPUs.

Example: java –XX:UseFatLockDeflation=false <application> (never deflate a 
fat lock. The default is true) 

Example: java –XX:FatLockDeflationThreshold=10 <application> (deflate a fat 
lock to thin again after 10 uncontended entries)

Recall from the last chapter that a spinlock is part of the JRockit fat lock 
implementation. It is used as a "second chance" when a lock is inflated, but  
only for a short period of time before entering the real fat lock. This behavior  
can be modified as well.

Example: java –XX:UseFatSpin=false <application> (never use a spinlock as part 
of a fat lock) 

Example: java –XX:UseAdaptiveFatSpin=false <application> (never try to 
adaptively change the spinlock part of a fat lock based on runtime feedback)

There are several other advanced flags for controlling lock heuristics. For more 
information, please refer to the JRockit Diagnostics Guide. In general, be careful when 
messing around with lock settings—it can produce strange and unexpected results.

Generic tuning
Finally, we present some switches and aspects that have to do with tuning and don't 
fit into a particular category or span several.

Compressed references
Recall from the chapter on memory management that compressed references are 
enabled by default on 64-bit platforms for most heap sizes. So, they shouldn't need 
to be configured manually. JRockit will, by default, enable different flavors of 
compressed references depending on maximum heap size for all heap sizes up to 64 
GB. This can be explicitly overridden. Consult the documentation to decide whether 
this is appropriate or not.

Example: java -XXcompressedRefs:enable=false <application> (never use 
compressed references)
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Example: java –XXcompressedRefs:enable=true,size=64GB <application> 
(enable compressed references supporting heaps up to 64 GB)

Large pages
Large pages can be used for both code buffers and for the heap. This can be controlled 
by using the –XX:UseLargePagesForCode and –XX:UseLargePagesForHeap options. 
The default is to not use large pages for anything.

If appropriate support for large pages is enabled and available in the underlying OS, 
having the JVM use large pages reduces TLB misses to a large extent. On memory 
intensive applications, it is not unusual to achieve a performance gain of 10-15 percent.

We definitely recommend trying out large pages for any large long running 
application to see if there is a performance gain. If the underlying operating  
system doesn't support large pages, JRockit will print a warning and fall back  
to normal behavior.

Example: java –XX:UseLargePagesForCode=true <application> (use large 
pages for code buffers)

Example: java –XX:UseLargePagesForHeap=true <application> (use large 
pages for the heap)

Common bottlenecks and how to  
avoid them
As in most of our chapters so far, we will finish by reviewing a few common 
mistakes and false optimizations. In the benchmarking world, this is all about 
understanding the bottlenecks and the anti patterns that frequently show up in 
application code and how they can be avoided.

Care should be taken that any instrumentation is not too intrusive. If, 
for example, the chosen instrumentation tool inserts extra bytecode 
operations all over the application code, the overall timing of the 
program can change completely. This may make the resulting profile 
useless for drawing any kinds of conclusions about the original program 
behavior. While small bytecode instrumenters may be handy for things 
like implementing counters for specific kinds of events, they rarely 
produce a true execution profile. Bytecode instrumenters also make it 
necessary to recompile and restart the application. The JRockit Mission 
Control suite, on the other hand, can plug in at runtime and profiles the 
application with virtually no extra overhead.
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A benchmark or instrumentation result can provide great insights into why  
an application contains performance bottlenecks. Over the years, the authors of  
this book have examined many applications to determine why they aren't running  
as fast as they should. Some findings keep recurring, and the following section 
provides information on several common areas that cause performance problems and 
what practices should be avoided or used with caution when programming Java.

The –XXaggressive flag
From one time to another we discover customers using the undocumented and 
experimental –XXaggressive flag for JRockit. This flag is a wrapper for other 
flags that tell JRockit to perform at high speed and try to reach a stable state as  
soon as possible. The cost of this is more resource use at startup. The parameters  
that this option modifies are subject to change from release to release. Because  
of its experimental nature, the frivolous use of –XXaggressive is discouraged. 
However, it can be useful to try as one of many different setups when doing 
profiling. Use this flag at your own risk.

Too many finalizers
Finalizers are, as we have already discussed in Chapter 3, unsafe in that they can 
resurrect objects and interfere with the GC. They usually incur processing overhead 
in the JVM as well.

Objects waiting for finalization have to be kept track of separately by the garbage 
collector. There is also call overhead when the finalize method is invoked (not to 
mention the execution time of the finalize method itself, if it does something fairly 
complex). Finalizers should simply be avoided.

Too many reference objects
As with finalizers, the garbage collector has to treat soft, weak, and phantom 
references specially. Although all of these can provide great aid in, for example, 
simplifying a cache implementation, too many live Reference objects will make 
the garbage collector run slower. A Reference object is usually a magnitude more 
expensive than a normal object (strong reference) to bookkeep.
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To get information on Reference object processing along with garbage collections, 
JRockit can be started with the flag –Xverbose:refobj. Following is an example of 
its output:

hastur:material marcus$ java –Xverbose:refobj GarbageCollectionTest
  [INFO ][refobj ] [YC#1] SoftRef: Reach:  25 Act: 0 PrevAct: 0 Null: 0
  [INFO ][refobj ] [YC#1] WeakRef: Reach: 103 Act: 0 PrevAct: 0 Null: 0
  [INFO ][refobj ] [YC#1] Phantom: Reach:   0 Act: 0 PrevAct: 0 Null: 0
  [INFO ][refobj ] [YC#1] ClearPh: Reach:   0 Act: 0 PrevAct: 0 Null: 0
  [INFO ][refobj ] [YC#1] Finaliz: Reach:  12 Act: 3 PrevAct: 0 Null: 0
  [INFO ][refobj ] [YC#1] WeakHnd: Reach: 217 Act: 0 PrevAct: 0 Null: 0
  [INFO ][refobj ] [YC#1] SoftRef: @Mark: 25 
    @Preclean: 0 @FinalMark:   0
  [INFO ][refobj ] [YC#1] WeakRef: @Mark: 94 
    @Preclean: 0 @FinalMark:   9
  [INFO ][refobj ] [YC#1] Phantom: @Mark:  0 
    @Preclean: 0 @FinalMark:   0
  [INFO ][refobj ] [YC#1] ClearPh: @Mark:  0 
    @Preclean: 0 @FinalMark:   0
  [INFO ][refobj ] [YC#1] Finaliz: @Mark:  0 
    @Preclean: 0 @FinalMark:  15
  [INFO ][refobj ] [YC#1] WeakHnd: @Mark:  0 
    @Preclean: 0 @FinalMark: 217
  [INFO ][refobj ] [YC#1] SoftRef: SoftAliveOnly: 24 SoftAliveAndReach:1
  [INFO ][refobj ] [YC#1] NOTE: This count only 
    applies to a part of the heap.

The program in the previous example seems to have only a small number of 
Reference objects and the GC has no trouble keeping up. Beware of applications 
where each GC needs to handle hundreds of thousands of soft references.

Object pooling
As was discussed in the chapter on memory management, object pooling, 
the practice of keeping a collection of objects alive for reuse in order to reduce  
allocation overhead, is usually a bad idea.

Apart from interfering with GC workloads and heuristics, pooling objects will 
also cause objects to live longer, and thus eventually force their promotion to 
the old generation on the heap. This introduces extra overhead and contributes 
to fragmentation. Recall from Chapter 3 that large amounts of live data is a GC 
bottleneck and the GC is optimized to handle many objects with short life spans. 
Object pooling contributes both to more live data and to longer object life spans.

Also, allocating fresh objects instead of keeping old objects alive, will most likely  
be more beneficial to cache locality.
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No rule without exception, however. In very specific applications, allocation time 
is actually a program bottleneck, especially the clearing part of allocations. As Java 
guarantees that every new object is initialized with null, freshly allocated objects 
have to be cleared. Performance in an environment with many large objects, for 
example large arrays, may therefore occasionally benefit from object pooling. JRockit 
tries to remove unnecessary object clearings if it can prove that they are not needed.

In general, though, it is probably a good idea to just keep things simple.

Bad algorithms and data structures
It should be fairly obvious that a hash table is a better data structure for fast element 
lookups than a linked list. It should also be clear that a QuickSort algorithm of runtime 
complexity O(n log n) is better than a naively implemented BubbleSort of O(n2). We 
assume that the reader is fairly proficient in picking the correct algorithms and data 
structures in order to minimize algorithm complexity.

Classic textbook issues
However, when working with a poorly written third-party application, bad data 
structures can still be a problem. By benchmarking and by working backwards  
from where the program spends its time, serious runtime improvements can 
sometimes be made.

public List<Node> breadthFirstSearchSlow(Node root) {

  List<Node> order = new LinkedList<Node>();

  List<Node> queue = new LinkedList<Node>();

  queue.add(root);

  while (!queue.isEmpty()) {

    Node node = queue.remove(0);

    order.add(node);

    for (Node succ : node.getSuccessors()) {

      if (!order.contains(succ) && !queue.contains(succ)) {

        queue.add(succ);

      }

    }

  }

  return order;

}
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The previous code is a standard breadth first search algorithm for (possibly cyclic) 
graphs. Given a root node, the algorithm uses a queue to traverse its successors in 
breadth first order. In order to avoid duplicates and potentially infinite loops, a check 
to see if a node has been already processed is done before adding it to the queue.

The method contains, used for finding an element in a linked list, is implemented 
in the JDK as a linear scan of the entire list. This means that in the worst case, our 
search algorithm is quadratic to the number of nodes, which will be very slow for 
large data sets.

public List<Node> breadthFirstSearchFast(Node root) {
  List<Node> order   = new LinkedList<Node>();
  List<Node> queue   = new LinkedList<Node>();
  Set<Node>  visited = new HashSet<Node>();

  queue.add(root);
visited.add(root);

  while (!queue.isEmpty()) {
    Node node = queue.remove(0);
    order.add(node);

    for (Node succ : node.getSuccessors()) {
      if (!visited.contains(succ)) {
        queue.add(succ);
        visited.add(succ);
      }
    }
  }

  return order;
}

The previous code corrects the problem by adding a HashSet type data structure to 
keep track of visited nodes. Constant time lookups replace the linear traversion  
when checking if a node already has been visited. The potential difference for  
large data sets is enormous.

Unwanted intrinsic properties
There are however other, more subtle problems caused by picking the wrong data 
structure. Consider a queue implementation in the form of a linked list. This is 
seemingly a good general purpose data structure that can be used as a queue without 
any modifications. It provides the ability of inserting elements last in the list and 
removing elements from the list head. These are both constant time operations and 
no other functionality is required. So, what can go wrong? First of all, even if your 
program never iterates over the entire linked list, the garbage collector still has to.
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If the queue contains large amounts of data, many objects are kept alive as long as 
they are referenced from the linked list. As the linked list elements consist of object 
references that both point out the next list element and wrap a payload of data, the 
queue elements may exist anywhere on the heap. Thus, accessing objects in a linked 
list may actually lead to bad cache locality and long pause times. Bad cache locality 
can ensue because payloads or element wrappers aren't guaranteed to be stored next 
to each other in memory. This will cause long pause times as, if the object pointers 
are spread over a very large heap area, a garbage collector would repeatedly miss  
the cache while doing pointer chasing during its mark phase.

So, seemingly innocent data structures with low complexities for the operations 
involved can turn out to introduce intrinsic problems in systems with automatic 
memory management.

Misuse of System.gc
There is no guarantee from the Java language specification that calling System.gc 
will do anything at all. But if it does, it probably does more than you want or doesn't 
do the same thing every time you call it. To reiterate, don't confuse the garbage 
collector by trying to tell it what to do. To be safe, don't call System.gc.

Too many threads
While it is a good thing to be able to break up a problem into many computational 
threads with little inter-thread communication, context switches always incur 
overhead anyway. We have been over the different thread implementations, from 
green threads to OS threads in Chapter 4. However, true for all thread implementation 
is that some kind of context switch, during which no useful program execution can 
be performed, takes place while shifting execution from one thread to another. The 
number of context switches grows proportionally to the number of fairly scheduled 
threads, and there may also be hidden overhead here.

A worst-case example from real life is the Intel IA-64 processor, 
with its massive amount of registers, where a native thread context 
is on the order of several KB. Every memory copy performed 
in order to initiate a new thread context after a context switch 
contributes to the overhead. This makes many threads executing in 
parallel particularly expensive as their contexts are large.
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One contended lock is the global bottleneck
Contended locks are bottlenecks, as their presence means that several threads want to 
access the same resource or execute the same piece of code at the same time. It is not 
uncommon that one lock is the main source of all contention in a program. A typical 
example is an application using some third-party library for logging that acquires 
a global lock each time log file information is to be written. When many, mutually 
independent, threads are trying to log output at the same time, the log lock might be 
the one bottleneck that brings an otherwise well written application to its knees.

Unnecessary exceptions
Handling exceptions takes time and interrupts normal program flow. Using 
exceptions for the common case in a program as means of communicating results  
or implementing control flow is definitely bad practice.

It is useful to try to create some kind of exception profile of the program to find out 
what exceptions are thrown and from where. Unnecessary hardware exceptions 
such as null pointers and divisions by zero should be removed wherever possible. 
Hardware exceptions are the most expensive type of exception, as they are triggered 
by an interrupt at the native level, whereas throwing a Java exception explicitly 
from code keeps most of the (though still expensive) work of handling the exception 
inside the JVM.

We have seen cases with customer applications throwing tens of 
thousands of unnecessary NullPointerExceptions every second, 
as part of normal control flow. Once this behavior was rectified, 
performance gains of an order of magnitude were achieved.

The simplest way to discover which exceptions, both caught and uncaught, are 
thrown by JRockit, is to use the flag –Xverbose:exceptions. An example of its 
output is shown as follows:

hastur:~ marcus$ java -Xverbose:exceptions Jvm98Wrapper _200_check

  [INFO ][excepti][00004] java/io/FileNotFoundException: 
    /localhome/jrockits/R28.0.0_R28.0.0-454_1.6.0/jre/classes

  [INFO ][excepti][00004] java/lang/ArrayIndexOutOfBoundsException: 6

  [INFO ][excepti][00004] java/lang/ArithmeticException: / by zero

  [INFO ][excepti][00004] java/lang/ArithmeticException: fisk

  [INFO ][excepti][00004] java/lang/ArrayIndexOutOfBoundsException: 11

  [INFO ][excepti][00004] java/lang/RuntimeException: fisk
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Each line in the log corresponds to a thrown exception. To get stack traces along with 
the exceptions, use –Xverbose:exceptions=debug. The JRockit Mission Control suite 
also contains frameworks for profiling exceptions and for introspecting them in a more 
user friendly way. The following is an example output that shows exceptions along 
with their stack traces, as they are thrown by the JVM:

hastur:~ marcus$ java -Xverbose:exceptions=debug Jvm98Wrapper _200_check

  [DEBUG][excepti][00004] java/lang/ArrayIndexOutOfBoundsException: 6

    at spec/jbb/validity/PepTest.testArray()Ljava/lang/String; 
      (Unknown Source)

    at spec/jbb/validity/PepTest.instanceMain()V(Unknown Source)

    at spec/jbb/validity/Check.doCheck()Z(Unknown Source)

    at spec/jbb/JBBmain.main([Ljava/lang/String;)V(Unknown Source)

    at jrockit/vm/RNI.c2java(JJJJJ)V(Native Method)

    --- End of stack trace

  [DEBUG][excepti][00004] java/lang/ArithmeticException: / by zero

    at jrockit/vm/Reflect.fillInStackTrace0(Ljava/lang/Throwable;) 
      V(Native Method)

    at java/lang/Throwable.fillInStackTrace()Ljava/lang/Throwable; 
      (Native Method)

    at java/lang/Throwable.<init>(Throwable.java:196)

    at java/lang/Exception.<init>(Exception.java:41)

    at java/lang/RuntimeException.<init>(RuntimeException.java:43)

    at java/lang/ArithmeticException.<init>(ArithmeticException.java:36)

    at jrockit/vm/RNI.c2java(JJJJJ)V(Native Method)

    at jrockit/vm/ExceptionHandler.throwPendingType()V(Native Method)

    at spec/jbb/validity/PepTest.testDiv()Ljava/lang/String; 
      (Unknown Source)

    at spec/jbb/validity/PepTest.instanceMain()V(Unknown Source)

    at spec/jbb/validity/Check.doCheck()Z(Unknown Source)

    at spec/jbb/JBBmain.main([Ljava/lang/String;)V(Unknown Source)

    at jrockit/vm/RNI.c2java(JJJJJ)V(Native Method)

    --- End of stack trace

  [DEBUG][excepti][00004] java/lang/ArithmeticException: fisk

    at spec/jbb/validity/PepTest.testExc1()Ljava/lang/String; 
      (Unknown Source)

    at spec/jbb/validity/PepTest.instanceMain()V(Unknown Source)

    at spec/jbb/validity/Check.doCheck()Z(Unknown Source)

    at spec/jbb/JBBmain.main([Ljava/lang/String;)V(Unknown Source)
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    at jrockit/vm/RNI.c2java(JJJJJ)V(Native Method)

    --- End of stack trace

  [DEBUG][excepti][00004] java/lang/ArrayIndexOutOfBoundsException: 11

    at spec/jbb/validity/PepTest.testExc1()Ljava/lang/String; 
      (Unknown Source)

    at spec/jbb/validity/PepTest.instanceMain()V(Unknown Source)

    at spec/jbb/validity/Check.doCheck()Z(Unknown Source)

    at spec/jbb/JBBmain.main([Ljava/lang/String;)V(Unknown Source)

    at jrockit/vm/RNI.c2java(JJJJJ)V(Native Method)

    --- End of stack trace

  [DEBUG][excepti][00004] java/lang/RuntimeException: fisk

    at spec/jbb/validity/PepTest.testExc2()Ljava/lang/String; 
      (Unknown Source)

    at spec/jbb/validity/PepTest.instanceMain()V(Unknown Source)

    at spec/jbb/validity/Check.doCheck()Z(Unknown Source)

    at spec/jbb/JBBmain.main([Ljava/lang/String;)V(Unknown Source)

    at jrockit/vm/RNI.c2java(JJJJJ)V(Native Method)

    --- End of stack trace

Any JRockit Flight Recording contains an exception profile of the running program 
that can be examined using JRockit Mission Control.

Large objects
Large objects sometimes have to be allocated directly on the heap and not in thread 
local areas. The rationale is that they would mostly contribute to overhead in a small 
TLA and cause frequent evacuations. In JRockit versions prior to R28, an explicit 
large object size could be given and objects that were larger were never allocated in a 
TLA. Post R28, the waste limit for a TLA is instead the modifiable property, allowing 
large objects to be allocated in a TLA if they fit well enough.

Large objects on the heap are bad in that they contribute to fragmentation more 
quickly. This is because they might not readily fit in most spaces provided by the 
free list, where smaller "normal" objects have been previously garbage collected.

Allocation time increases dramatically on a fragmented heap, and juggling many 
large objects extensively contributes to fragmentation. As large objects may be 
allocated directly on the heap and not in the TLA, large object allocation in JRockit also 
contributes to overhead because it may require taking a global heap lock on allocation.

The worst case scenario is that an overuse of large objects leads to full heap 
compaction being done too frequently, which is very disruptive and requires 
stopping the world for large amounts of time.
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As it is hard to pick a "one size fits all" value as an explicit large object limit, for any 
given application, the large object limit in JRockit (or the TLA waste limit in R28) 
can be changed. This is useful if analysis shows that there are, for example, a large 
number of fixed size objects slightly larger than the default, or if many direct-to-heap 
allocations take place as the TLAs want to be too tightly packed. In that case, it might 
be beneficial to increase the large object limit or TLA waste limit, depending on 
JRockit version.

The bad corner cases, the large object death spirals, occur when objects frequently  
are on the orders of several megabytes. The real world examples are typically 
database query results or very large arrays. Avoid them at all costs. Do whatever  
it takes to keep them off the heap, even implement a native layer for them, but do  
not let your Java Virtual Machine juggle a large number of humongous objects.

Native memory versus heap memory
To the JVM, all memory that exists is system memory, available from the underlying 
operating system. Some of this system memory is used by the JVM to allocate the 
Java heap. The amount of memory used for the heap can be controlled by the –Xms 
(initial heap size) and –Xmx (maximum heap size) flags.

The JVM will throw OutOfMemoryError both from inside the JVM, when there is not 
enough memory available to complete some internal operation, and from Java, when 
a program tries to allocate more objects than will fit on the current heap.

A JVM is a native application that also consumes system memory for its own purposes, 
for example, to allocate data structures used for code optimization. Internal JVM 
memory management is, to a large extent, kept off the Java heap and allocated natively 
in the operating system, through system calls like malloc. We refer to non-heap 
system memory allocated by the JVM as native memory.

While heap memory can be reclaimed when the JVM garbage collects objects in 
running program, native memory can't. If all native memory management was 
handled by the JVM alone, and the JVM was economic enough in its native  
memory usage, all would be well. However, there are complications.

In certain scenarios, we can run out of native memory. One example is when several 
parallel threads perform code optimizations in the JVM. Code optimization typically 
is one of the JVM operations that consumes the largest amounts of native memory, 
though only when the optimizing JIT is running and only on a per-method basis. 
There are also mechanisms that allow the Java program, and not just the JVM, to 
allocate native memory, for example through JNI calls. If a JNI call executes a native 
malloc to reserve a large amount of memory, this memory will be unavailable to the 
JVM until it is freed.
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Mechanisms for tracking native memory usage are available in 
JRockit, and can be accessed through the JRockit Mission Control 
suite or JRCMD. Histograms that show the native memory usage 
of individual JVM modules are also available.

If the heap is too large, it may well be the case that not enough native memory is 
left for JVM internal usage—bookkeeping, code optimizations, and so on. In that 
case, the JVM may have no other choice than to throw an OutOfMemoryError from 
native code. For JRockit, increasing the amount of available native memory is done 
implicitly by lowering the maximum Java heap size using –Xmx.

Wait/notify and fat locks
Recall from the last chapter that wait and notify always inflates thin locks to fat 
locks in JRockit. Locks that are frequently taken and released, but are only held for a 
short time might do better as thin locks. So, immediately using wait or notify on 
a new object will create a new monitor and consequently a fat lock that might lead  
to performance overhead.

Wrong heap size
Another common problem that causes performance issues is using the wrong heap 
size for the JVM. Too small heaps trigger frequent and time consuming garbage 
collections. Too large heaps lead to longer mean GC times and may cause the JVM 
to run out of native memory. It makes sense to do profiling runs to figure out the 
memory requirements of your application and try to find an optimal maximum heap 
size. JRockit Mission Control will almost always provide good data on the memory 
requirements for a particular application.

Too much live data
As we have discussed in the chapter on garbage collection, the main contributor to 
runtime complexity in memory management is not the heap size per se, but rather 
the amount of live data on the heap. Large amounts of live data almost certainly 
create garbage collection overhead. Again, profiling can help figure out if there  
are any large object clusters kept in memory even though there shouldn't be.

The Memleak tool, which is part of the JRockit Mission Control suit is ideal for this 
kind of analysis.
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Java is not a silver bullet
Finally, Java is a powerful and versatile language that contributes to short application 
development time because of its friendly semantics and built-in memory management. 
However, Java is not a silver bullet. The last caveat this chapter will warn of is trying 
to use Java to solve a problem that in fact is totally inappropriate for Java.

•	 Is the application a telecom application with virtually tens of thousands of 
concurrent threads that need near-real-time support?

•	 Does the application contain a database layer that frequently returns 20 MB 
query results of binary data in the form of byte arrays?

•	 Is the application completely dependent on the underlying OS scheduler 
for performance and determinism, with bad overhead problems if the 
scheduling semantics change even slightly?

•	 Is the application a device driver?
•	 Has the development team implemented a C/Fortran/COBOL-to-Java 

automatic translator, so that those 100,000 lines of legacy code can "easily"  
be deployed on a modern Java runtime?

•	 Is the program highly concurrent or embarrassingly parallel, that is, it tries 
to use a divide and conquer strategy that branches off tens of thousands of 
threads that run computations for a short period of time before fusing the 
partial results?

In these cases, and there are probably plenty of others, it might be considered doubtful 
if using Java is the correct approach. Java is highly attractive in that the JVM provides 
an abstract layer on top of the operating system and in that Java programs can be 
compiled once, and run everywhere. But, stretching it a bit, so can ANSI C. Just ship 
the source code and make sure it is portable. Choose your tool with care. Java is a 
lovely multi-purpose hammer, but not every problem is a nail!
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Summary
This chapter has covered benchmarking and tuning. We have motivated the need 
for benchmarking, mostly since having a benchmark framework in place prevents 
performance regressions, but also because well understood and easy-to-setup  
sub-problems are simpler to work with than complex applications. We also stressed 
the importance of having performance goals for commercial software development, 
another area where benchmarking is of a great help. It can also be useful to maintain 
a set of third-party applications as part of a benchmark suite.

We have discussed micro benchmarks to some extent and explained why they  
are useful and when they are not. We also talked about the importance of knowing 
what you are measuring.

Profiling always needs to be done to understand where the bottlenecks are in 
an application and to make sure that external benchmarks really address these 
bottlenecks. Profiling can be done with several levels of complexity, and with  
several levels of intrusiveness. For JRockit, low cost profiling is easily facilitated  
by the JRockit Mission Control suite.

We went on to present some industrial standard benchmarks, most famously 
the SPEC suite, and discussed where they can do some good for everyone from 
hardware vendors to application developers.

Once an application is well understood, it is time to decide if tuning JVM parameters 
alone can improve performance or if rewriting certain parts of the program is required. 
Using JRockit as an example JVM, we covered the parameters that can be used to tune 
application behavior in the memory system, in the code generator, and elsewhere.

Finally, we presented a section on common bottlenecks or anti-patterns that are 
frequently seen in Java applications and taught the reader how to avoid them.

This concludes the first part of this book. The next part of the book will go over the 
versatile and powerful tools in JRockit Mission Control in great detail. Hopefully  
this chapter contained enough philosophy on benchmarking and tuning to provide 
an excellent primer for understanding how to apply the necessary tools to solve  
your performance problems.



JRockit Mission Control
JRockit, as a Java runtime, is required to constantly monitor the running Java 
application. As has been explained in previous chapters, JRockit must, among 
other things, be able to find out in which methods the Java application is spending 
the most time executing code. JRockit is also responsible for keeping track of the 
memory usage and memory allocation behavior of the application—it would be 
fairly upsetting if JRockit forgot a few objects, or if memory was not reclaimed  
when objects were no longer referenced.

The wealth of data that JRockit already collects is, of course, a very good source of 
information when profiling your Java program or when doing diagnostics.

In this, the second part of the book, the JRockit tools suite is presented. The  
following chapters introduce four of the tools that are included in the JRockit 
distribution—the JRockit Mission Control Console, the JRockit Runtime Analyzer 
(which was superseded by the JRockit Flight Recorder in R28), the JRockit Memory 
Leak Detector, and JRCMD.

The first three tools are included in the JRockit Mission Control tools suite. The last 
one, JRCMD, is a command-line tool that ships as part of the JRockit JDK. A common 
denominator for the tools is their ability to interact with an already running JVM. 
There is no need to pre-configure the JVM or the application to be able to later attach 
the tools. Also, the tools add virtually no overhead, making them suitable for use in 
live production environments.

In this chapter you will learn:

•	 How to start JRockit Mission Control, both as a standalone application and 
inside the Eclipse IDE

•	 How to configure JRockit JVM instances so that they can be managed by 
JRockit Mission Control from remote locations
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•	 How to make JRockit Mission Control automatically discover remotely 
running JRockit instances

•	 How to configure the management agent that is part of the JRockit JVM
•	 How to use JRockit Mission Control and the JRockit Management Agent in  

a secure environment
•	 How to troubleshoot connections between JRockit Mission Control  

and JRockit
•	 Various ways to get more debug information from JRockit Mission Control
•	 About the Experimental Update Site for JRockit Mission Control and how 

to extend JRockit Mission Control with plug-ins from the Experimental 
Update Site

While not necessary for the bigger picture, parts of this chapter assume various 
degrees of familiarity with Eclipse IDE. For more information about Eclipse,  
see the Eclipse homepage at http://www.eclipse.org.

Background
JRockit Mission Control started out as a set of internal tools used by the JRockit team 
to monitor and tune the JRockit JVM in order to make it a better Java runtime. The 
early analysis tools were initially not available to end customers. However, after we 
used the tools to resolve a couple of high profile customer issues, the word started  
to spread. We realized that customers found the tools useful when tuning and  
profiling their Java applications, and consequently the tools were made more  
user friendly, packaged together, and released as the Java tools suite known as  
JRockit Mission Control.

Today, the JRockit Mission Control tools suite is a set of tools for monitoring, 
managing and profiling Java applications running on JRockit. It also includes a 
powerful tool for tracking down memory leaks. The JRockit Mission Control tools 
can, with very little overhead, retrieve a profile that is a fair approximation of the 
actual runtime behavior of an application. Most other profilers cause significant 
slowdowns which, in turn, can alter the behavior of the running application. As 
mentioned in Chapter 5, Benchmarking and Tuning, if a lot of overhead is incurred 
from the actual profiler, it is fair to say that what is being observed is no longer a  
true representation of the application behavior. It is rather the behavior of the 
application, plus that of the profiler itself, that is being profiled.
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Behavior change in an application due to profiling is sometimes 
referred to as the observer effect—when the act of observation 
alters what is being observed. The term Heisenberg effect is also 
sometimes used. The Heisenberg Uncertainty Principle is related to, 
and often conflated with, the observer effect.
In a BEA internal study, before the Oracle acquisition, the BEA 
performance team was benchmarking different profilers. They were 
looking for a low overhead tool to profile a J2EE benchmark on 
WebLogic Server. Several different profilers were examined, and the 
overhead as a function of change in response time was calculated. 
For this particular benchmark, the overhead for Mission Control was 
0.5 percent. The second best tool, a leading Java profiler, incurred 
93.8 percent (!)  overhead on that very same benchmark.

Sampling-based profiling versus exact 
profiling
Naturally, different tools have different strengths and weaknesses. The data  
captured by JRockit Mission Control aims to provide a statistically accurate 
representation of what is going on in the JRockit JVM. It will not always be exact,  
but it will usually provide the information required to solve important problems.  
We call this sampling-based profiling. Sampling-based profiling lends itself well 
to when a statistical approach can be used to periodically record a state. The most 
common variants in JRockit Mission Control are time-based sampling and sampling 
based on a subset of state changes. The JVM, being a large state machine, can cheaply 
provide a large amount of samples and events. The data can be readily exposed by 
the JVM to a consumer, for example Mission Control. Sampling-based profiling has 
the additional benefit that it is much easier to estimate the profiling overhead.

For example, the best way to find out where an application is spending the most 
execution time is to use the JRockit Flight Recorder tool to look at the hot methods list. 
The list provides a statistically representative view of what methods JRockit spent the 
most time executing, using information from the code profiling thread in the JRockit 
code generator. It will, however, not provide information about every single method 
call or exactly how much wall clock time was spent executing the method.
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There are some exact profiling alternatives in JRockit Mission Control, as well, that 
can provide such metrics. These, however, may incur a much larger overhead if 
enabled. It is, for instance, possible (but please don't try this at home) to connect the 
JRockit Management Console to a running application and enable exact timing and 
invocation counters for each and every method in the system. Doing exact profiling 
always incurs extra runtime overhead. Enabling exact profiling for every method 
in the system will require the JVM to both generate and execute a large amount of 
extra profiling code. This will not only adversely affect performance, but it is also 
quite difficult to determine the exact performance implications. Some of the JRockit 
code is written in Java. Instrumenting all allocation and locking code would almost 
certainly bring the application to its knees. If the aim is to determine what parts of 
the application would benefit most from improvements and optimization, the  
sampling-based approach is superior.

One might think that the cost of overhead for exact profiling is paid for in better 
measurements. For example, given exact data, the timing values for all the methods 
in the system can then be measured, and the one with the highest invocation count 
multiplied by execution time would be the natural one to target for optimization 
first, wouldn't it?

It might, but in a sufficiently complex system the data will be misleading and 
distorted. The overhead of the methods on the critical paths in the system will 
quite likely increase drastically and the overall system performance will degrade. 
Furthermore, applying the exact method profiler to every single method in the 
system would most likely severely change the behavior of the application,  
rendering the measurements inaccurate. 

Using the JRockit Mission Control Management Console to retrieve exact 
method timings and invocation counts is one of the rare cases where the 
overhead of running the JRockit tools suite is very difficult to estimate. 
The time it takes to calculate the profiling data can be considered to 
be constant. Invocation counting code is mainly placed at method 
entries and method exits. So, the distortion caused by the profiling 
is proportional to how often the method is invoked and inversely 
proportional to the time the method takes to execute. If the method is 
frequently called, the overhead will add up. If the method already takes 
a long time to execute, the overhead may be less noticeable. In multi-
threaded scenarios, the non-determinism of exact profiling with the 
Management Console is even greater.
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A different animal to different people
JRockit Mission Control is used in very different ways by different people. Outside 
Oracle, it is most commonly used as a very capable profiling tool.

Some people use JRockit Mission Control to track down application problems.  
This is the main use case for Oracle Support. The authors also find it enlightening 
to turn JRockit Mission Control on itself during the development phase to find both 
performance issues and bugs.

There are also the ultra nerds, the authors included, who use the JRockit Mission 
Control tools suite to squeeze out that extra percentage of performance from JRockit  
by doing benchmarking and by tuning the JVM for a very specific application.

Here are a few typical JRockit Mission Control use cases:

•	 Finding hotspots: Where should we start optimizing an application? Is the 
application even computationally bound or is it experiencing latency related 
issues? Which method is being executed the most and would thus be the 
most important to improve for better performance?

•	 Tracking latencies: Finding out why application throughput is worse 
than expected or why response times are too long. In applications with  
latency-related throughput problems, the CPU is typically not saturated.  
Over-reliance on synchronization may cause thread stalls. Why are all the 
worker threads blocking most of the time? Why is the system starting to  
time out on requests while utilizing only 20 percent of the CPU?

•	 Memory profiling: Useful when trying to find out what is causing all those 
garbage collections. Where is the pressure on the memory system created? 
What part of the program is causing all those garbage collections? How much 
time is spent doing garbage collections? What phase of a garbage collection is 
making them take so long? How badly fragmented is the heap?

•	 Exception profiling: Throwing and handling a lot of unnecessary exceptions 
can be taxing on a system. How many exceptions are being thrown? Where 
do they originate? Tracking down and eliminating the sources of unnecessary 
exceptions often leads to significant increases in runtime performance.

•	 Heap analysis: Finding out what type of data is on the heap in various 
phases of a running program can provide insight on how to choose, for 
example, garbage collector strategies or compaction strategies. It can also 
identify and help get rid of situations where too many Reference objects 
are used.
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"George, why does your ticker quote cache contain a HashMap holding on to 
96 percent of the heap? It is still growing by the way, and I expect the server 
will throw an OutOfMemoryError in two hours at this rate. We need to restart 
our server twice a week. Otherwise we will get an OutOfMemoryError. But 
that's okay. Everyone does that..."

•	 Tuning the memory system: The out of the box behavior for the memory 
system is usually good enough, but some extra performance can usually 
be gained by tuning it a little. For some corner case applications, tuning  
may even be necessary to get the required performance. In those cases, 
JRockit Mission Control can quickly reveal why the garbage collector  
fails to keep up.

Mission Control overview
The different tools currently available in JRockit Mission Control 4.0 are:

•	 The JRockit Management Console: Usually referred to as just the console, 
this tool is used for monitoring the JVM and the application running in the 
JVM. The Management Console supports customizable graphs, trigger rules 
(so that actions can be taken on user-defined conditions), and more.

•	 JRockit Flight Recorder: Normally referred to as the Flight Recorder or JFR. 
A low overhead, always on, recorder that creates a profile of what JRockit 
has been up to lately. The recording can be dumped from the JRockit Mission 
Control GUI and the contents analyzed offline. JRockit Flight Recorder is the 
main profiling tool in the suite and supersedes the old  
(prior to R27.x/3.x) JRockit Runtime Analyzer (JRA).

•	 The JRockit Memory Leak Detector: Memleak for short. A powerful, online, 
heap analyzer that visualizes memory usage trends, relationships between 
instances of different classes on the heap, and more. Memleak can quickly 
detect quite slow memory leaks that only become problematic over time. It 
accomplishes this by doing trend analysis on the live set for each type in  
the system.

Mission Control consists of two major parts—a set of APIs, agents and protocols 
built into the JRockit JVM and the JRockit Mission Control client. The different tools 
rely on different sets of APIs, but they all initiate communication with the JRockit 
JVM using JMX.
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A full discussion on JMX is beyond the scope of this book, but we'll briefly discuss 
the basic concepts. The JMX standard is a three-layered architecture. It consists of:

•	 The Instrumentation Level: This is where applications running in the JVM 
expose resources for manageability through Managed Beans (MBeans). An 
MBean is a type of Java Bean that is defined by its attributes, its operations, 
and the notifications it can emit.

•	 The Agent Level: The agent is the component managing the MBeans. 
The most important agent-level component is the MBean server, which is a 
container where MBeans are registered and managed.

•	 The Remote Management Level: This level provides protocol 
adapters that enable communication with the MBean server from  
outside the JVM process.

The following figure shows how the different architectural levels of JMX apply  
in a typical JRockit deployment:
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Mission Control server-side components
From a high-level Mission Control perspective, the monitored JRockit JVM  
consists of:

•	 A set of server-side APIs:
	° JMXMAPI: JRockit JVM-specific extensions to the MBeans 

available in the platform MBean server. MBeans and the 
platform MBean server will be discussed in the next chapter.

	° JRockit internal local Java APIs: For example the JRockit 
Management API (JMAPI).

	° Server-side native APIs: APIs that are built into JRockit and 
not implemented in Java. For example, the native API used 
by Memleak.

•	 Agents exposing the previously mentioned APIs and miscellaneous services:
	° The default JMX agent
	° The Memleak server: A native server that exposes the native 

Memleak API over the proprietary Memleak Protocol (MLP)
	° The JRockit Discovery Protocol (JDP) server: An optional 

service that broadcasts the locations of JVM instances on the 
network

Mission Control client-side components
As of JRockit Mission Control 2.0, the JRMC client is based on Eclipse RCP (Rich 
Client Platform) Technology. This provides a series of architectural advantages, such 
as an OSGi-based component model and being able to run JRockit Mission Control 
both as a standalone application and inside the Eclipse IDE.

Mission Control 2.0 was internally codenamed Energy, as 
E=mc2. Yes, we're nerds!
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The Rich Client Platform is the base platform for the Eclipse IDE. It 
contains, among other things, the Standard Widget Toolkit (SWT), 
JFace, the Eclipse OSGi implementation (Equinox), and an integrated 
mechanism to deliver and update RCP applications. OSGi is a 
standardized dynamic module system for Java, backed by numerous 
large corporations. RCP provides an excellent base platform for writing 
and delivering highly modular applications with a look and feel that is 
native to the host operating system.
For more information on RCP, please see http://www.eclipse.org/
home/categories/rcp.php.
For more information on OSGi, please see http://www.osgi.org/.

The client-side of JRockit Mission Control is highly modular—new tools can easily  
be plugged in, and the tools themselves can be extended.

From a high-level Mission Control perspective, the Mission Control Client  
consists of:

•	 RCP: The Eclipse Rich Client Platform
•	 Client-side APIs:

	° RJMX: Extended JMX services, such as an MBean attribute 
subscription framework, triggers, proxies for the old 
proprietary, and obsolete RMP protocol (used in 1.4 versions 
of JRockit)

	° Memleak API: For communicating with the Memleak server
	° Flight Recorder Model: For parsing JRockit Flight Recorder 

recordings
	° JDP Client API: For detecting JRockit instances running on 

the network

•	 JRockit Mission Control core: Contains the core framework for the JRockit 
Mission Control client and defines the core extension points

•	 The JVM Browser: Keeps track of the detected and/or user-defined 
connections to JVMs

•	 The Tools: The various tools that can be launched from the JVM browser— 
the Management Console, the Flight Recorder, and Memleak
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The following figure shows a simplified breakdown of the plug-ins in the 4.0.0 
version of JRockit Mission Control:

The rest of this chapter will focus on how to get JRockit Mission Control up and 
running and how to troubleshoot JRockit Mission Control. The different tools in 
JRockit Mission Control will be explained in detail in the chapters that follow.

Terminology
In order to efficiently communicate about the JRockit Mission Control client, a 
common terminology is needed. The terms discussed here apply when running 
Mission Control standalone as well as inside Eclipse.

The reader familiar with Eclipse may note that we use the same 
terminology as with Eclipse and the Eclipse Workbench.

In an Eclipse RCP application, the main window is called the workbench. Inside the 
workbench there are two types of windows—views and editors. The editors occupy 
the center of the workbench—the editor area. The views are normally located around 
the editor area.

As shown in the following screenshot, the JVM Browser is the view to the left:
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Views are normally used to show a specialized presentation of the contents of the 
selected editor, to manipulate the contents of an editor, or to launch new editors. 
Several views can be docked on each other by dragging a view on top of another 
view into the same view folder.

A certain configuration of which views to show, along with how they should be 
located, is called a perspective. In the screenshot, the Mission Control perspective is 
used, that shows the JVM Browser view and the Event Types view co-located in the 
same view folder to the left. Should you ever lose a view or mistakenly rearrange the 
views in a way you are not satisfied with, the perspective can easily be reset from the 
workbench menu (Window | Reset Perspective).

The editor currently opened in the editor area in the screenshot above is a JRockit 
Mission Control Console. It is being used to monitor a locally running application 
where the main class is called LoadAndDeadlock.

In Eclipse parlance, the JRockit tools are built as editors—any tool that is started 
will open up in the editor area. Several editors can be open at the same time. They  
will show as multiple tabs in the editor area. Several editors can also be viewed  
side-by-side by dragging an editor by the tab and docking it at any side of another 
editor. Views, such as the JVM Browser, cannot be docked into the editor area.  
They can, however, be docked to any side of the editor area.
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To the left in the Management Console (in the editor area) is the tab group toolbar 
that selects tabs that are currently visible in the tab container at the bottom of the 
editor. A tab group toolbar is available in other JRockit Mission Control tools as 
well. In JRockit Mission Control 3.1, the General tab group, which is automatically 
selected when a Management Console is started, contains only a single tab—the 
Overview tab.

Running the standalone version of Mission 
Control
JRockit Mission Control exists both as a standalone executable and as a plug-in for 
the Eclipse IDE. The version of JRockit Mission Control included in the JRockit JDK 
is the standalone version.

Starting Mission Control in standalone mode is simple. Just run the  
executable named jrmc (or jrmc.exe on Windows) in the bin directory 
of the JRockit distribution.

Do not attempt to start JRockit Mission Control in standalone mode 
through any mechanism other than running the jrmc executable. 
Sometimes we run into homegrown customer setups where Mission 
Control is started by running the jar files in the Mission Control 
directory with some elaborate class path configuration. This is 
generally a very bad idea and is strongly discouraged. The jrmc 
launcher ensures, among other things, that the correct version of 
JRockit is being used to launch JRockit Mission Control, and that the 
class path is correctly configured.

For example:

JROCKIT_HOME/bin/jrmc

On Windows systems, JRockit Mission Control, when installed, will also be available 
in the start menu.

Once JRockit Mission Control has been started, an empty workspace (JRockit Mission 
Control 3.x), or a welcome screen (JRockit Mission Control 4.0) is displayed. If 
everything is correctly set up, JRockit Mission Control will automatically discover 
JVMs running on the local system. Even if there are no other Java applications 
running, the JRockit JVM used to execute the JRockit Mission Control client will be 
discovered and displayed as This Mission Control in the JVM Browser. 

From the JVM Browser, the different JRockit Mission Control tools can be launched 
against a selected JVM.
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Most of the tools require the JVM to be a JRockit JVM, as they are relying 
on JRockit specific APIs. The Management Console is currently the only 
exception among the tools, as it can be connected to any JMX compliant 
JVM. Some functionality will however be unavailable if connected to 
anything but a JRockit JVM.

Finding and monitoring locally running JVMs is simple and convenient—no additional 
setup is required. However, having the Mission Control client running on the same 
machine as the monitored JVM is usually a bad idea, especially in an enterprise 
configuration. The resources required by the client will be taken from whatever 
mission critical application executing on the JVM that is to be profiled. Of course, in 
a testing or development environment, this may be acceptable. Also, changes made 
to the settings, for instance the addition of an attribute to a graph in the JRockit 
Management Console, are stored on a per-connection basis. They are, however, not 
stored at all for local connections.

To add a user-defined connection, simply click on the Connectors folder and click 
on the Create Connection button.
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The Connection Wizard, as shown in the previous screenshot, will open. Here, the 
details of the connection can be specified. It is usually enough to enter the Host and 
Port, but the following is worth noting:

•	 If connecting to a JDK 1.4 version of JRockit, select the JDK 1.4 radio button.
•	 Selecting the Custom JMX service URL radio button will allow full control 

over the JMX Service URL. The JMX Service URL is a URL that specifies how 
to connect to a JMX agent. Specifying a custom URL is useful if a protocol 
other than JMX over RMI is required by the agent.
The protocol used by the default agent is JMX over RMI (JMXRMI). 
Other possible protocols include JMXMP (as described in the Java SE 
documentation) and IIOP. There are also proprietary protocols, such as 
WebLogic Server's t3. If using a custom agent and a custom protocol, see  
the agent documentation for more information.

•	 Passwords can be stored by checking the Store password in settings 
file (encrypted) check box. If storing passwords is enabled, a master 
password will be used each time the password is encrypted or decrypted. 
If no master password is set, one will be asked for. The master password  
can be reset by clicking on the Reset Master Password button in the 
JRockit Mission Control preferences.

•	 The Test connection button is very useful for validating that a connection 
is correctly configured before leaving the wizard.

Running JRockit Mission Control inside 
Eclipse
There are some advantages to running JRockit Mission Control inside the Eclipse 
IDE, there are however no fundamental differences in functionality. One advantage, 
if the source code for the application being monitored is in the Eclipse workspace, 
is that it is possible to jump directly to the corresponding source whenever a class, 
method, or stack frame is shown in the JRockit Mission Control client.

If you are unfamiliar with Eclipse, or if you do not plan to use it for Java 
development, you can safely skip this section, as it assumes some familiarity with the 
Eclipse IDE.

In order to start JRockit Mission Control inside Eclipse, the JRockit Mission Control 
plug-ins from the JRockit Mission Control update site must first be installed. The 
latest version of the update site will be available from the JRockit Mission Control 
home page on Oracle Technology Network. At the time of writing, the JRockit 
Mission Control homepage is located at http://www.oracle.com/technology/
products/jrockit/missioncontrol/index.html.
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As that's a handful to remember, it can also be reached at http://www.tinyurl.
com/missioncontrol.

Installation instructions can be found at the update site and will not be discussed 
in detail here. To fully take advantage of all of the features in the JRockit Mission 
Control plug-ins, Eclipse should be run on a JRockit JVM. Most of the functionality 
is available, even if Mission Control is running in an Eclipse instance executing on 
another JVM, but features such as local JVM discovery and some JRockit specific 
functionality in the Management Console will not work.

There are additional benefits of running Eclipse on JRockit. JRockit Real Time, 
discussed in Chapter 3, Adaptive Memory Management can be used to make any 
interactive application more responsive.

In the Eclipse home folder, there is a configuration file, eclipse.ini, that can be 
altered to change the command-line flags of the JVM running Eclipse. Here is an 
example eclipse.ini file that the authors use:

-showsplash

org.eclipse.platform

-framework

plugins\org.eclipse.osgi_3.4.3.R34x_v20081215-1030.jar

-vm

d:\jrockits\R27.6.3_R27.6.3-16_1.5.0\bin

-vmargs

-Xms512m

-Xmx512m

-XgcPrio:deterministic

-XpauseTarget:20

The previous example is for Eclipse 3.4 and JRockit R27, but it is very similar in 
Eclipse 3.5 and JRockit R28. To make it work with R28, simply specify the path  
to the R28 JVM after the –vm argument, and keep everything after the –vmargs.

There are differences in command-line flags between R27 and 
R28, and the JRockit Documentation should be consulted for 
more elaborate JVM configurations.
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To start JRockit Mission Control once it is installed in Eclipse, the Mission Control 
perspective must be opened. There are two Mission Control perspectives available 
in 3.x—the Mission Control main perspective and the Mission Control Latency 
perspective. The latter is used to study JRA recordings containing latency data. In  
the 4.0 version of JRockit Mission Control, there is only one perspective optimized  
to work with all the tools.

As shown in the following screenshot, the Mission Control perspectives can be found 
in the Window | Open Perspective | Other... menu:

Once the Mission Control perspective has been opened, things will look pretty 
much the same as when using the standalone version of JRockit Mission Control.  
As mentioned, one benefit of running JRockit Mission Control from within Eclipse  
is the ability to open up the corresponding application source code from most  
places where JRockit Mission Control shows a class or method, as shown in  
the following screenshot:
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Starting JRockit for remote management
To enable a JRockit JVM for remote management, the external management agent 
must be started. It can either be started with the –Xmanagement command-line 
switch, or JRCMD can be used. JRCMD is discussed in detail in Chapter 11.

The following example starts up a JRockit JVM with a simple test program and 
enables it for remote monitoring on port 4712. Authentication and SSL support 
for the connection are turned off.

JROCKIT_HOME/bin/java  
  –Xmanagement:ssl=false,authenticate=false,port=4712 –cp . HelloJRMC

For now, let's ignore the security flags and focus on the port. Examples of how to 
set up JRockit Mission Control with security turned on will be shown in the section 
Running in a Secure Environment, later in this chapter.
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As mentioned, the default management agent uses the JMX over RMI protocol for 
communication. This has been a source of some grief to people trying to establish 
connections through firewalls as RMI usually requires communication over an 
anonymous port. A full discussion on RMI is outside the scope of the book, but  
this is how it used to work in versions prior to R28:

•	 -Xmanagement:port=<port> opens up a single entry, read only, RMI 
registry on the specified port (default 7091)

•	 The RMI registry contains a single entry: jmxrmi—the stub for 
communicating with the RMI server

•	 The port of the RMI server is anonymous with no way to override it

In R28, things have improved. The RMI registry and the RMI server ports are the 
same by default, making firewall configuration much easier.

The JRockit Discovery Protocol
The JRockit JVM comes with a network auto discovery feature called JRockit 
Discovery Protocol (JDP). The JDP Server works like a beacon that broadcasts the 
presence of the JRockit instance to the network. This makes it easier for JRockit 
Mission Control to automatically discover remote JVMs. The following example 
shows how to enable auto discovery.

JROCKIT_HOME/bin/java  
  –Xmanagement:ssl=false,authenticate=false,port=4712, 
  autodiscovery=true –cp . HelloJRMC

The following table lists the various system properties that can be used to control the 
JDP server in R28. Use the standard –D syntax for setting system properties on the 
command line when starting up the JRockit JVM.

For example:

–Dcom.oracle.management.autodiscovery.period=2500

System property Explanation
com.oracle.management.autodiscovery.
period

Time between broadcasts 
(milliseconds). Default is 5000.

com.oracle.management.autodiscovery.ttl Time to live for the broadcast 
packages. Default is 1 hop.

com.oracle.management.autodiscovery.
address

The multicast address to use 
for autodiscovery. Default is 
232.192.1.212.
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System property Explanation
com.oracle.management.autodiscovery.
targetport

Override the port used to broadcast 
autodiscovery information. Default 
is 7095.

com.oracle.management.autodiscovery.
name

Hierarchical name. See the 
following example.

To use the properties in the previous table for JRockit versions prior to 
R28, the com.oracle.management.autodiscovery namespace in 
the properties must be replaced by jrockit.managementserver.
discovery, as it was called earlier.

When a JDP server transmits the location of a running JRockit JVM, the JVM 
Browser in the JRockit Mission Control client can use the hierarchical name in 
three different ways.

•	 Simple name:
Example: -Djrockit.managementserver.discovery.name=MyJVM

Result: The name of the connection when it appears in the browser will  
be MyJVM.

•	 Full path:
Example: -Djrockit.managementserver.discovery.name=/MyJVMs/MyJVM

Result: The connection will appear under a MyJVMs folder in the browser, and 
the name will be MyJVM.

•	 Path ending with path delimiter:

Example:-Djrockit.managementserver.discovery.name=/MyJVMs/

Result: The connection will appear under MyJVMs, the name will be the result 
of a reverse DNS lookup of the host reported by the JDP packet.

Advanced tip for plug-in developers
System properties starting with the string com.oracle.management.
autodiscovery.property will be automatically picked up by the JDP 
server and broadcast to the client. For the R28.0.0 version, no such extra 
properties are actually used by the client. The properties will, however, 
be present in the IConnectionDescriptor of the Mission Control 
client—a fact that can be used by authors of plug-ins for Mission Control.
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For reference, the following table lists the various –Xmanagement arguments in 
JRockit R28:

Flag Explanation Default
port = <int> The port of the RMI registry. 7091

ssl = 
[true|false]

Enables secure monitoring over SSL. Note that 
this only enables server-side SSL. If you also 
want clients to authenticate themselves, set 
com.sun.management.jmxremote.ssl.
need.client.auth=true. Also note that 
SSL communication with the registry will not 
be enabled by default. See registry.ssl.

true

registry.ssl = 
[true|false]

Binds the RMI connector stub to an RMI 
registry protected by SSL. 

false

authenticate = 
[true|false]

If this is set to false, JMX does not use 
passwords or access files—all users are allowed 
full access.

true

autodiscovery = 
[true|false]

Enables autodiscovery service for the remote 
JMX connector. Autodiscovery allows other 
machines on the same subnet to automatically 
detect a JVM with remote management 
enabled. Note that the autodiscovery service 
will only start if remote JMX management  
is enabled.

false

local = 
[true|false]

Explicitly enables or disables the local 
management agent. 

true

rmiserver.port 
= <int>

Binds the RMI server to the specified port. 
Default behavior is to bind to the same port as 
the RMI registry if possible. However, if the 
RMI server is using SSL and the registry is not, 
an arbitrary free port will instead be selected.

Same as port

remote = 
[true|false]

Explicitly enables or disables the remote 
management agent.

false

config.file = 
<path>

Specifies a file from which to load additional 
management configuration properties. 

JRE_HOME/lib/
management/
management.
properties



Chapter 6

[ 239 ]

There are also system properties available in JRockit R28 for controlling  
specific settings. The following table lists the relevant system properties  
with their default values:

Property Explanation Default
com.oracle.management.
jmxremote = 
[true|false]

Enables JMX local monitoring 
through a JMX connector. The 
connector is published on a private 
interface used by local JMX clients 
through the Attach API (see the 
Java Documentation for com.sun.
tools.attach). Clients can use 
this connector if it is started by the 
same user as the one that started the 
agent. No password or access files 
are checked for requests coming 
through this connector. If explicitly 
set to false, no local connector is 
started even if jmxremote.port 
is specified.

true

com.oracle.management.
jmxremote.port = <int>

Same as 
-Xmanagement:port=<int>

7091

com.oracle.management.
jmxremote.rmiserver.
port = <int>

Same as 
-Xmanagement:rmiserver.
port=<int>

7091

com.oracle.management.
jmxremote.ssl = 
[true|false]

Same as -Xmanagement:ssl 
=[true|false]

true

com.oracle.management.
jmxremote.registry.ssl 
= [true|false]

Same as 
-Xmanagement:registry.ssl = 
[true|false]

false

com.oracle.management.
jmxremote.ssl.enabled.
protocols = <values>

A comma-delimited list of SSL/TLS 
protocol versions to enable. Used in 
conjunction with the SSL flags.

Default SSL/TLS 
protocol version.

com.sun.management.
jmxremote.ssl.enabled.
cipher.suites = 
<values>

A comma-delimited list of SSL/
TLS cipher suites to enable. Used in 
conjunction with the SSL flags.

Default SSL/TLS 
cipher suites.
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Property Explanation Default
com.oracle.management.
jmxremote.ssl.
need.client.auth = 
[true|false]

If this property is true and SSL is 
enabled, client authentication will be 
performed.

false

com.oracle.management.
jmxremote.authenticate 
= [true|false]

Same as –
Xmanagement:authenticate = 
[true|false]

true

com.oracle.management.
jmxremote.password.file 
= <path>

Specifies the location of the 
password file. If com.sun.
management.jmxremote.
authenticate is false, this 
property and the password and 
access file are ignored. Otherwise, 
the password file must exist and be 
in the valid format. If the password 
file is empty or nonexistent, no 
access is allowed.

JRE_HOME/lib/
management/
jmxremote.
password

com.oracle.management.
jmxremote.access.file = 
<path>

Specifies the location for the access 
file. If com.sun.management.
jmxremote.authenticate is 
false, then this property and 
the password and access file are 
ignored. Otherwise, the access 
file must exist and be in the valid 
format. If the access file is empty or 
nonexistent, no access is allowed.

JRE_HOME/lib/
management/
jmxremote.
access

com.oracle.management.
jmxremote.login.config 
= <config entry>

Specifies the name of a Java 
Authentication and Authorization 
Service (JAAS) login configuration 
entry to use when the JMX agent 
authenticates users. When using 
this property to override the default 
login configuration, the named 
configuration entry must be in a file 
that is loaded by JAAS. In addition, 
the login modules specified in 
the configuration should use the 
name and password callbacks 
to acquire the user's credentials. 
For more information, see the 
API documentation for javax.
security.auth.callback.
NameCallback and javax.
security.auth.callback.
PasswordCallback

Default login 
configuration 
is file-based 
password 
authentication
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Property Explanation Default
com.oracle.management.
jmxremote.config.file

Same as -Xmanagement:config.
file=<file name>

JRE_HOME/lib/
management/
management.
properties

com.oracle.management.
snmp.port = <int>

Enables the built-in SNMP agent on 
the specified port.

No default

com.oracle.management.
snmp.trap = <int>

Remote port to which the built-in 
SNMP agent sends traps.

162

com.oracle.management.
snmp.acl = [true|false]

Enables Access Control Lists (ACL) 
for the built-in SNMP agent.

true

com.oracle.management.
snmp.acl.file = <path>

Path to a valid ACL file. After the 
agent has started, modifying the 
ACL file has no further effect.

JRE_HOME/lib/
management/
snmp.acl

com.oracle.
management.snmp.
interface=<inetaddress>

The inetAddress of the local host. 
This is used to force the built-in 
SNMP agent to bind to the given 
inetAddress. This is for 
multi-home hosts if one wants to 
listen to a specific subnet only.

No default

com.oracle.management.
autodiscovery = 
[true|false]

Same as 
–Xmanagement: 
autodiscovery=true

false

Running in a secure environment
The best way to ensure a secure environment with JRockit Mission Control is to first 
use standard networking techniques, such as firewalls, to ensure that only a very 
limited set of machines are allowed to even attempt a connection to the management 
agent. Setting up routers and firewalls is beyond the scope of this book.

In versions prior to the JRockit R28, using firewalls with the 
management agent was complicated, as communication with the RMI 
server was done on an anonymous port. That is, after establishing a 
connection with the RMI registry, there was no way of influencing 
on what port the communication with the RMI server would take 
place. In R28, the same port is used for the registry and the server by 
default, which makes firewall configuration much easier.
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For secure communication, the management agent should be configured to only 
allow SSL encrypted connections. The management agent can be configured to use 
SSL both for the RMI registry and the RMI server. For a secure environment, both 
should use SSL. By default, secure server authentication over SSL is enabled,  
but client authentication is not.

Following is an example of the options used to enable SSL on the server and the 
registry, as well as for enabling secure client authentication:

JROCKIT_HOME\bin\java –Xmanagement:ssl=true,registry.ssl=true,port=4711 
  -Dcom.oracle.management.jmxremote.ssl.need.client.auth=true MyApp

For SSL to work, certificates must be set up. In most Java environments, a keystore is 
used to store the private keys, and a truststore to store the trusted certificates. 

For more information on using keystores, please see the J2SE 
SDK Documentation, on the Internet, especially the JSSE section 
on creating keystores. 

Next, authentication and roles need to be configured to ensure that only authorized 
entities have access to sensitive functionality. Access rights are controlled by the 
jmxremote.password and jmxremote.access files. These are normally placed in 
the directory JROCKIT_HOME/jre/lib/management/. The password file contains 
the passwords for the different roles, and the access file specifies the access rights of 
each role. A role must have an entry in both files in order to work.

To facilitate easy setup, there is a jmxremote.password template file included with 
the JRockit JRE. To get started with this template, copy the file JROCKIT_HOME/jre/
lib/management/jmxremote.password.template to JROCKIT_HOME/jre/lib/
management/jmxremote.password.

To be able to initiate JMXMAPI, which is necessary for all Mission 
Control tools to work, the user must have the permission to create 
the JRockitConsole MBean. 

Following is an example of granting permission to create the JRockitConsole 
MBean to the control role (see the jmxremote.access file):

controlRole readwrite \ 

create oracle.jrockit.management.JRockitConsole
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The JRockitConsole MBean will in turn initiate the rest of JMXMAPI.

In a multi-user environment, that is, in an environment where different users will 
use the same Java installation, the custom is to copy the jmxremote.password 
file to each user's home directory and use the com.sun.management.jmxremote.
password.file system property to specify the location of the file.

As the password file contains unencrypted passwords, Java will rely on the file 
permissions of the underlying operating system to ensure that the file can only be 
read by the user executing the JVM. If an error is shown about the password file not 
being restricted, steps must be taken to ensure that the password file is only readable 
by the user that is executing the Java process. On a *NIX system, this can be done 
by executing something like chmod 600 <password file name> from a shell. On a 
Windows system, the process is slightly more complicated.

There is a good guide for setting file access permissions on Windows 
in the Java 1.5.0 documentation, available at http://java.sun.
com/j2se/1.5.0/docs/guide/management/security-
windows.html.

To top things off, all communication can be done over an encrypted SSH tunnel, 
instead of by opening an additional port in the firewall. Access to the SSH tunnel 
is commonly enabled through a port on localhost. The stub transmitted when 
a connection to the JMX agent is established normally contains the address of the 
computer to connect to. We want to trick the computer running the agent into 
transmitting a stub containing the loopback address or localhost instead. This 
can either be done by editing the hosts file, or by setting the java.rmi.server.
hostname system property on startup. Both these techniques should be used with 
caution, as they may cause problems for other software running in the system  
and/or on the same JVM.

Troubleshooting connections
If you are having problems connecting to locally discovered JRockit JVMs, you 
should check:

•	 If you are running on Windows, verify that the system temporary directory 
is on a file system that supports file permissions (for example NTFS). This is 
required. Local connections will create artifacts that rely on file permissions 
to work, and will simply fail if running on a FAT file system.

•	 Are you really attempting to connect to a JRockit JVM, and is the Mission 
Control client (or Eclipse, if running in Eclipse) running on a JRockit JVM?
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•	 If a local connection is attempted, are both your JRockit Mission Control 
Client and the JRockit JVM that you are attempting to connect to, using  
a JDK version of 1.5 or later?

•	 Is the JVM you are trying to connect to executing as your user?

To connect to a locally executing 1.4 version of the JRockit JVM, create 
a connection manually in the JRockit Mission Control JVM Browser. 
Then start the management agent explicitly on the JRockit JVM that 
you want to monitor. This is because 1.4 versions of the JVM really do 
not have a platform MBean server. JRockit 1.4 versions did, however, 
implement a proprietary management protocol called RMP that is 
translated to JMX on the client. Starting the agent can either be done 
by using the command-line options as described earlier, or by using 
the JRCMD tool, described in Chapter 11.

If you are having problems connecting to an external management agent (usually, 
but not necessarily, one running on a remote machine) you should check:

•	 Is the connection properly configured? There is a test button in the 
connection wizard that will verify the settings for you. If you are trying  
to connect to a JDK 1.4 version of the JRockit JVM, you should be using  
a 3.x client.

•	 Is the correct version of the client being used? The easiest way to be sure is to 
use the version that came with the JVM. If attempting to connect to a JDK 1.4 
version of the JRockit JVM, a 3.x version should be used.

•	 Is the 1.4/1.5 setting correct in the Connection Wizard?
•	 Is the firewall configured to let the traffic through on the appropriate ports?
•	 If SSL is being used, are the SSL settings correct on both the server and  

the client?
•	 If authentication is enabled, is the jmxremote.access file properly set up, as 

described in the Java SE documentation?
•	 Verify the hosts file of the machine to which you are trying to connect.

While troubleshooting connections to the remote management agent, first make 
sure that the connection works with SSL and that authentication is turned off. If that 
works, make sure that all the steps in the Running in a Secure Environment section 
have been followed, that the certificate is valid, that the keystore password is correct, 
and that the password.properties file has been properly configured.
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If the Management Console tells you that a certain MBean, for instance the Profiling 
MBean, cannot be found, it may be due to a misconfigured jmxremote.access file. 
To be able to initialize JMXMAPI, the user must have authorization to create the 
JRockitConsole MBean that, in turn, will initialize the rest of the JMXMAPI. See the 
Running in a Secure Environment section for more information. 

Hostname resolution issues
Trouble connecting Mission Control to a remote machine can sometimes stem from the 
hostname resolving to the wrong address, for example to 127.0.0.1 (or localhost). 
An exception looking something like this would normally be shown in such a case:

Could not open Management Console for sthx6454:7094. 
  java.rmi.ConnectException: Connection refused to host: 
    127.0.0.1; nested exception is: java.net.ConnectException: 
    Connection refused: connect  
  at sun.rmi.transport.tcp.TCPEndpoint.newSocket(TCPEndpoint.java:574)  
  at sun.rmi.transport.tcp.TCPChannel.createConnection 
    (TCPChannel.java:185)

  at sun.rmi.transport.tcp.TCPChannel.newConnection(TCPChannel.java:171)

  at sun.rmi.server.UnicastRef.invoke(UnicastRef.java:94)

  at javax.management.remote.rmi.RMIServerImpl_Stub.newClient 
    (Unknown Source)

  at javax.management.remote.rmi.RMIConnector.getConnection 
    (RMIConnector.java:2239)

  at javax.management.remote.rmi.RMIConnector.connect 
    (RMIConnector.java:271)

  at javax.management.remote.rmi.RMIConnector.connect 
    (RMIConnector.java:229)

  at com.jrockit.console.rjmx.RJMXConnection.setupServer 
    (RJMXConnection.java:504)

The RMI registry exports a stub relying on a hostname to establish a connection  
to the RMI server. In the previous example, we have successfully connected to the 
RMI registry and retrieved a stub for connecting to the RMI server. However, the 
default behavior when creating the stub is to use InetAddress.getLocalHost().
getHostAddress(), to find out what host name to use. This will of course be a 
problem if the machine is multi-homed (that is, has several network interfaces)  
or if it is badly configured. In the previous example, the information provided in  
the stub tells us to connect to localhost instead of sthx6454.
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The most common problem is that the hosts file (/etc/hosts on Linux systems, 
%SYSTEMROOT%\system32\drivers\etc\hosts on Windows) is not properly 
configured. On a Linux system, hostname –i can be used to see what the 
hostname resolves to.

A workaround is to set the java.rmi.server.hostname system property on the 
server to whatever name the client should use to locate the machine. Note that this 
can affect other applications running on the JVM.

Another workaround is to use SSH tunneling where the fact that the hostname 
resolves to localhost can be used to an advantage. This workaround is only 
possible using JRockit R28, where the RMI server port can be explicitly specified.

The Experimental Update Site
Since JRockit Mission Control 3.1, there is an Experimental Update Site from which 
plug-ins for Mission Control can be installed. The plug-ins either extend JRockit 
Mission Control, or facilitate building extensions for JRockit Mission Control. The 
homepage for the update site for 3.1 versions of JRockit Mission Control can be 
found here:

http://www.oracle.com/technology/software/products/jrockit/ 
   missioncontrol/updates/experimental/3.1.0/eclipse/index.html

The update site for the 4.0 release can be found here:

http://www.oracle.com/technology/software/products/jrockit/ 
   missioncontrol/updates/experimental/4.0.0/eclipse/index.html

When using the update site URLs in Eclipse, the ending index.html must 
be removed.

Both the JRockit and reference J2SE distributions contain a reference JMX console 
called JConsole. The 3.1.0 release of the update site included a plug-in that allowed 
JConsole plug-ins to be run within JRockit Mission Control. It also contained a set 
of Plug-in Development Environment (PDE) plug-ins that allows the development 
of custom plug-ins for the JRockit Mission Control Console. More information on 
creating plug-ins for JRockit Mission Control can be found at the end of Chapter 7 
(The Management Console), in Chapter 9 (The Flight Recorder), and in Chapter 10 
(The Memory Leak Detector).

http://www.oracle.com/technology/software/products/jrockit/missioncontrol/updates/experimental/3.1.0/eclipse/index.html
http://www.oracle.com/technology/software/products/jrockit/missioncontrol/updates/experimental/4.0.0/eclipse/index.html
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After the 4.0 release of JRockit Mission Control, Oracle plants to make additional 
plug-ins for Mission Control available. New experimental plug-ins will be 
announced on the blog at http://blogs.oracle.com/hirt.

Debugging JRockit Mission Control
JRockit Mission Control can be started in debugging mode to provide more 
information. Simply add the –debug flag when launching the jrmc executable. 
Starting in debug mode will cause various subsystems to behave differently. For 
example, the console charts will start showing rendering information and log levels 
will be changed to display more verbose output.

To view the log messages sent to the console on Windows systems, stderr must be 
redirected somewhere. This is because the jrmc launcher is derived from the javaw 
launcher. Following is an example:

D:\>%JROCKIT_HOME%\bin\jrmc –consoleLog -debug 2>&1 | more

To only change the logging levels, select a Logging settings file in the Preferences. 
The logging settings file is a file on standard java.util.logging format. After 
changing the logging settings, JRockit Mission Control must be restarted.
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The following example shows the debug settings used when starting with  
the –debug flag:

############################################################

# JRockit Mission Control Logging Configuration File

#

# This file can be overridden by setting the path to another

# settings file in the Mission Control preferences.

############################################################

############################################################

# Global properties

############################################################

# "handlers" specifies a comma separated list of log Handler

# classes. These handlers will be installed during ApplicationPlugin

# startup.

# Note that these classes must be on the system classpath.

handlers= java.util.logging.FileHandler,  
  java.util.logging.ConsoleHandler

# Default global logging level.

# This specifies which kinds of events are logged across

# all loggers.  For any given facility this global level

# can be overridden by a facility specific level

# Note that the ConsoleHandler also has a separate level

# setting to limit messages printed to the console.

.level= ALL

############################################################

# Handler specific properties.

# Describes specific configuration info for Handlers.

############################################################

# Default file output is in user's home directory.

java.util.logging.FileHandler.pattern = %h/mc_%u.log

java.util.logging.FileHandler.limit = 50000
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java.util.logging.FileHandler.count = 1

java.util.logging.FileHandler.formatter =  
  java.util.logging.SimpleFormatter

java.util.logging.FileHandler.level = FINE

java.util.logging.ConsoleHandler.formatter =  
  java.util.logging.SimpleFormatter

java.util.logging.ConsoleHandler.level = FINE

############################################################

# Facility specific properties.

# Provides extra control for each logger.

# For example setting the warning level for logging from the

# JRockit Browser, add the following line:

# com.jrockit.mc.browser.level = INFO

############################################################

sun.rmi.level = INFO

javax.management.level = INFO

Summary
This chapter explained how to get started with the JRockit Mission Control 
tools suite. We briefly went over the background for the product and its various 
subcomponents—the Management Console, the Memory Leak Detector, and the 
Flight Recorder. For completeness, we also mentioned JRCMD, the command-line 
tool that is part of the JRockit JDK.

We showed how to run both the standalone version of Mission Control and  
the plug-in version for the Eclipse IDE. We explained how to enable the JRockit 
management agent for remote management and how to troubleshoot the  
connection when Mission Control fails to connect. Additional tips and tricks  
on how to debug the Mission Control client were also presented.

We outlined how to secure access to the server-side Mission Control components. 
Finally, the Experimental Update Site, where additional content for Mission Control 
can be found, was introduced.

The next few chapters will focus on the various tools in the JRockit Mission  
Control suite.





The Management Console
The oldest tool in the JRockit Mission Control tools suite is the JRockit Management 
Console. The Management Console can be used to monitor the JRockit JVM and  
any application running in the JVM. It can also be used to alter the runtime state  
of certain parameters in JRockit. This chapter assumes some prior familiarity with 
Java Management Extensions (JMX) and the JMX terminology.

For more information on JMX go to http://java.sun.com/javase/
technologies/core/mntr-mgmt/javamanagement/

The Management Console relies on the JMX standard and provides a way to 
monitor any application that exposes manageability features through JMX,  
including the JRockit JVM.

In this chapter you will learn:

•	 How to start up the Management Console
•	 How to monitor and plot arbitrary MBean attributes
•	 How to invoke arbitrary MBean operations
•	 How to create trigger rules
•	 How to enable deadlock detection
•	 How to perform per-thread memory allocation and CPU profiling
•	 About the diagnostic commands
•	 How to extend the Management Console
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A JMX Management Console
The JRockit Management Console predates the JRockit Mission Control tools suite. It 
even predates JMX. 

The first few versions of JRockit were made available as "Virtual 
Machines for Java", not JVMs. The key difference is that only a virtual 
machine certified by Sun (now Oracle) to be compliant with the Java 
standard is allowed to be called a JVM. Furthermore, if the VM is not 
certified, it may not use the Java trademark. At that time, in order 
to be accepted as a Sun certified JVM, a key differentiator, known as 
"value add" was required. In our first attempt to become a proper Java 
licensee, we had specified "superior performance" as our value add. 
While technically true, it was not deemed to be a valid value add, so we 
exposed some of the online manageability aspects of the JVM instead. 
This is what became the JRockit Management Console.

The primary use of the Management Console is to provide detailed monitoring of one 
or more JRockit instances. As each monitored JVM has its own Management Console 
(editor), more than a few JVM instances are rarely monitored at a time. To monitor 
large installations for longer periods of time, a distributed solution that scales well  
over large amounts of JVMs should be used, such as Oracle Enterprise Manager.

The Management Console and JRockit use standard JMX technology for 
communication. As of Java 5.0, some aspects of using JMX to expose manageability 
features of the JVM are standardized through JSR-174.

JSR-174 enhanced the manageability of the JVM by adding the java.
lang.management classes and providing the platform MBean server.
For more information on the platform MBean server, see the Java APIs 
and Documentation on SDN on the Internet and search for java.lang.
management.ManagementFactory.getPlatformMBeanServer()

Since the advent of JSR-174 and the platform MBean server, most Java applications 
and frameworks are publishing their monitoring and management MBeans to the 
platform MBean server, which in effect means that the Management Console can 
monitor most parts of the software stack running in the JVM.
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As JRockit had a Management Console well before the start of JSR-174, the JRockit 
Management Console can also connect to pre 1.5.0 versions of JRockit. In these 
setups, everything still looks like JMX to the client, but underneath a proprietary 
protocol is used.

The rest of this chapter is dedicated to discussing the JRockit Mission Control 
Console and its various uses. The chapter is divided into sections corresponding 
to the different tabs in the Management Console, so that it can also be used as a 
reference to quickly check on details for a specific tab. 

Using the console
Starting a JRockit Management Console is quite easy—simply select the JVM to 
connect to from the JVM Browser and either click on the Management Console 
button from the toolbar, or click on Start Console from the context menu.

There is a trick available for starting the console—connections can be dragged and 
dropped into the editor area. The default action for dragging a connection to the 
editor area is to open up the Console on the connection. Recollect from Chapter 6 , 
JRockit Mission Control, that connections are either remote or local—the difference 
being that the local connections are automatically discovered JVMs running on the 
local machine. This particular trick does not work with local connections, as they 
cannot be used as sources in drag-and-drop operations. 

For more information on the different types of connections and how to establish 
remote connections, see the previous chapter.
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General
The tabs in the Management Console are grouped into different tab groups, the first 
one being the General tab-group. The different tab groups are accessible through 
the vertical toolbar to the left in the Management Console editor, as shown in the 
following screenshot:

 

The General tab group only contains one tab—the Overview. The tab folder 
where the visible tab can be changed is located at the bottom of the JRockit Mission 
Control editor.

The Overview
This tab shows an overview of some key characteristics of the JVM and its operating 
environment. The tab is highly configurable and should you require other information 
than the chosen key characteristics; it can be adapted to your needs.
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The following screenshot shows the Overview tab of the JRockit Management Console:

The tabs in JRockit Mission Control are divided into section parts. At the top of 
the Overview tab is a section part called Dashboard. The Dashboard contains an 
array of dials. Each dial can plot the current and maximum value obtained for an  
attribute that is being monitored. The lighter of the two indicators in a dial shows  
the watermark, which indicates the maximum value attained since a subscription to 
the attribute started. The darker indicator shows the current value. Both the current  
and maximum values are also shown as numbers below the dial.
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In the Management Console, most section parts can be folded away to allow more 
space for the other sections in the same tab. Simply click on the little triangle (  ) 
at the top left of the section part to fold it. The section parts also contain a toolbar 
with various actions. Some commonly used actions are: 

•	  Accessibility mode toggle: Toggles the contents of the section part 
between the default graphical representation and an alternative, text-based 
representation.

•	  Updates toggle: Toggles updates for the contents of the section part.

•	  Help: Provides context sensitive help for the section part when clicked.

•	  Remove: Removes the section part altogether.

•	  Add: Adds a component of the kind that the section part contains. In the 
case of a dial section part, a dial will be added.

•	  Delete: Deletes one of the enclosed components from the section part.

•	  Table settings: This action provides a dialog for configuring a table. Most 
tables only show a selection of columns by default, and more columns can be 
made visible, as needed, by using the table configuration dialog.

It is possible to revert any changes by clicking the Reset to default button (  ) in 
the upper right corner of the toolbar for the tab.

The Dashboard can be reconfigured in various ways. It is possible to add dials, 
remove dials, and change the attributes that each dial displays. The entire dial 
section part can be removed altogether. As the dial has a resettable watermark that 
shows the maximum value attained for an attribute, dials are useful for attributes 
that may peak very intermittently, but that you still want to keep an eye on.

Changes made to automatically discovered connections are not 
saved. If you suspect you will want to keep the adjustments made 
in the console user interface, make sure that you use a user-defined 
connection as described in the previous chapter.

The default attributes shown in the dial dashboard are the Current and Max 
values for heap usage, the CPU usage of the JVM process, and the live set and 
fragmentation as a percentage of the heap size. The last value is a good measure 
of how full the heap is and it is only calculated and updated on every garbage 
collection. If no indicator is shown for the Live Set + Fragmentation dial, it means 
that no garbage collection has taken place yet.
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One way to force a garbage collection is to press the little garbage can 
icon (  ) in the Runtime | Memory tab.

A JVM process that is constantly saturating the CPU (maxing out the CPU load) 
can be a good thing. For instance, for a batch application that is computationally 
bound, it would normally be a best case scenario for it to complete as soon as 
possible. Normally, however, some over-provisioning is needed to keep an 
application responsive. If the CPU usage is very high, you may want to invest in 
better hardware, or look over the data structures and algorithms employed by the 
application. One very good way to proceed is to capture a JRockit Flight Recording 
to find out where all those cycles are being spent.

Having a very large percentage of the heap filled with live objects will increase the 
garbage collector overhead, as GCs will have to be run more frequently. If the Live 
Set + Fragmentation dial remains steady on a high level and garbage collection 
performance is an issue, increasing the heap size will improve performance. If the 
trend is for the Live Set + Fragmentation dial instead to steadily increase over time, 
there is probably a memory leak in the application. We will give memory leaks more 
attention in Chapter 10, The Memory Leak Detector.
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As any attribute available in the platform MBean server can be subscribed to. This 
includes attributes from any domain, such as application server MBeans or even 
your own MBeans that you have registered in the platform MBean server. An 
example of such an attribute is the OpenSessionsCurrentCount in WebLogic Server.

WebLogic Server does not use the platform MBean server by default. 
However, if you wish to monitor the WebLogic Server MBeans together 
with the MBeans provided by the rest of the platform, it may be 
convenient to make WebLogic Server add the MBeans to the platform 
MBean server. Consult your WebLogic Server documentation for 
information on how to do this.
The recommendation from WebLogic Server is to not use the platform 
MBean server, as there are potential security implications, especially if the 
applications running in the JVM cannot be trusted. If you use the platform 
MBean server, make sure you understand the security implications, as all 
code running in the JVM will have access to the WebLogic MBeans.

The two charts under the Dashboard show CPU usage information and memory 
information, one below the other. The CPU usage is listed as a percentage of full 
CPU saturation and is an average across all available cores. It is shown for both the 
entire machine and the JVM process. For the memory chart, the used heap is shown 
as a percentage of the total heap size and used physical memory is shown as a 
percentage of the total physical memory available.

One way to track the live set and fragmentation is to check how the heap usage 
changes over time in the memory chart.

Consider the following screenshot. An imaginary line is drawn through each point in 
time where a garbage collection has finished and where memory has been reclaimed. 
This gives us a good indication as to what is happening to the live set. 

An even better way to watch live set and fragmentation is of course to simply add the 
Live Set + Fragmentation attribute to the chart, as shown in the following screenshot. 
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As can be seen from the growing live set in the screenshot, the monitored application 
probably has a memory leak. If left unchecked, the application will eventually throw 
an OutOfMemoryError.

The charts can also be configured. It is possible to add or remove attributes to subscribe 
to. The colors used to visualize attributes, the text labels, and various other properties 
can also be changed.

Another useful, but often overlooked, feature is that additional info can be gained 
when the chart is frozen. If a chart is frozen by toggling the updates button (  ), 
context sensitive tooltips will be shown with detailed information when the pointer 
is hovered near a point in a data series. This is shown in the following screenshot:

A chart will automatically be frozen when zooming in on a selection. To make a 
selection in a chart, simply left click and drag with the mouse to select the time 
period to zoom in on. To zoom in, select Zoom | Selection from the context menu.
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The default value range selected for the Y-axis of new charts and most of the default 
charts in the user interface is between 0 and 100. This setting must be changed when 
adding an attribute that has values outside this range. In the following screenshot, 
the Total Loaded Class Count attribute has been added. It will always be outside the 
0 to 100 range. To configure the Y-axis range to automatically select the correct range, 
select one of the auto range alternatives, for instance Y-axis Range | Auto, always 
show zero, from the context menu.
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None of the range choices will alter the input data in any way. The 
Percent range will simply set the range to 0-100% and add a percent sign 
to the Y-axis title. An attribute value of 1 will not be rendered as 100%.

An attribute that has a value range of 0 to 1 can still be rendered correctly in 
the Percent (0-100%) range by adding a pre-multiplier to the attribute. Both 
CPU usage attributes have a pre-multiplier setting of 100. To change the 
pre-multiplier, right click on the attribute and then, click on Edit Pre-multiplier 
as shown in the following screenshot:

The charts are quite useful and there are more options available for charts than 
described here. A tip (certainly valid for most components in JRockit Mission 
Control) is to examine the choices available in the context menus for a component. 

MBeans
The MBeans tab group contains tabs with general tools for viewing, manipulating, 
subscribing, and creating trigger rules for various aspects of the MBeans. It contains 
two tabs—the MBean Browser that can be used for browsing the different attributes 
in the MBeans registered in the platform MBean server, and the Triggers tab that can 
be used to create rules that trigger when user specified conditions occur.
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MBean Browser
The first tab in the MBeans tab group is the MBean Browser. This is where all the 
attributes available in the platform MBean server can be browsed. Primitive values 
as well as collections, arrays, composite data, and tabular data can be viewed. To 
make it easier to view large collections, the MBean Browser will automatically group 
values into subgroups. How the values are grouped can be controlled by changing the 
preferences.

If an attribute in the list is rendered in a bold faced font, it means it is writable. 
Simple MBean attributes can be changed directly in the MBean browser table. It is, 
for example, possible to go to the GarbageCollector MBean under the oracle.jrockit.
management domain and change the allocated heap size of JRockit. Simply double 
click on the AllocatedHeapSizeTarget, and change the value. Don't worry if the 
value of the AllocatedHeapSize does not follow suit immediately, as JRockit may 
have to choose another heap size for various reasons, including memory alignment 
and currently occupied memory.
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The attribute table in the MBean Browser contains more information than is shown 
by default. In the following screenshot, the table settings have been updated to show 
the update interval for the attributes:

The default update interval is once every second (1,000 milliseconds). To change the 
default update interval for an attribute, select the attribute in the table and click on 
the Updates... button.

This will open the update interval dialog, where the appropriate update interval can 
be selected, as shown in the following screenshot:
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The update interval for an attribute can be set to:

•	 Once: The attribute will only be fetched once if subscribed to. This is good 
for attributes that are not expected to change, such as the number of CPUs.

•	 Default: The default update interval setting. The default update interval is 
normally set to 1,000 milliseconds, but that can be changed in the preferences.

•	 Custom: A custom update interval specified in milliseconds.

In the following screenshot, the update interval has been changed for the CPU 
load—it will only be fetched once every two seconds:

The MBean Browser can also be used to invoke MBean operations dynamically. 
This feature is very useful when prototyping a JMX API or when simply trying out 
someone else's JMX API.

For example:

A diagnostic command can be invoked by browsing to the DiagnosticCommand 
MBean under the oracle.jrockit.management domain. Diagnostic commands are 
explained in detail later in this chapter, as well as in Chapter 11, JRCMD.

Select the Operations tab and then select the execute(String p1) operation and click 
on invoke. Click on the p1 button to set the parameter and enter print_threads. 
Click on OK to set the parameter and then OK again to execute the operation. You 
should now see a thread stack dump. There is, of course, a much easier way to do 
this. Simply use the Diagnostic Commands tab under the Advanced tab group.

One thing that sets aside the Mission Control Management Console from other  
JMX consoles is that it is able to subscribe to many different kinds of values, or  
even part of values. It is, for instance, possible to subscribe to sub-values of a 
composite data attribute.
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For example:

1. Go to the java.lang | MemoryPool | Old Space MBean (The java.
lang:type=MemoryPool:name=Old Space MBean to be precise).

2. Expand the Usage attribute and select a key in the composite data, for 
instance # used.

3. Right click and select Visualize....
4. Select a chart to add the attribute to, or click on Add Chart to add a 

new chart.

Go back to Overview to check out your chart. Remember to change the Y-axis to 
auto, as the chart defaults to a fixed range between 0 and 100.

The subscription engine can also handle subscriptions based on JMX notifications and 
synthetic attributes. Synthetic attributes have a corresponding, client side, class that 
implement the value retrieval. As the class can be implemented in whatever way the 
implementer desires, it can be used to retrieve the value from any source at all, not 
even necessarily JMX. The LiveSet attribute is an example of a synthetic attribute that 
relies on the notification-based GC attribute and some additional calculations. There 
is also a Notification tab, where you will find the JMX notifications available on the 
selected MBean. Most MBeans do not have notifications.

For example:

1. Go to the GarbageCollector MBean under the oracle.jrockit.management 
domain.

2. Select the Notifications tab.
3. Check the Subscribe check box.
4. Go to the Operations tab.
5. Invoke the gc operation.
6. Go back to the Notifications tab and check the result.

Depending on which garbage collector you have selected and which version 
of JRockit you are using, you may have one or several notifications listed in 
notifications tab.

For other examples on notifications available, see the Java documentation on java.
lang.management.MemoryPoolMXBean and the java.lang:Memory MBean.
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The Notification tab is not very interesting—it is mostly meant for trying out 
notification-based JMX APIs. It is much more useful to weave the notifications into 
the subscription service in the Management Console, so that they can participate in 
the attribute visualization framework.

There is, unfortunately, currently no officially documented way 
of adding your own synthetic or notification based attributes. To 
see how it works today, search the attributes.xml file in the 
com.jrockit.mc.rjmx plugin for flavour="synthetic" and 
flavour="Notification" respectively. If you would like to see 
official support for this, please let the authors know.

Triggers
With the Management Console, rules can be built that trigger when a certain user-
defined condition occurs. Such a rule consists of three different parts:

1. A trigger condition: This specifies when to trigger. An example of a trigger 
condition can be that CPU Load exceeds 90 percent.

2. An action: The action defines what to do when the rule triggers. An example 
of an action is to send an e-mail with information about the condition that 
caused the rule to trigger.

3. A set of constraints: This is a set of constraints that, in addition to the trigger 
condition, must be fulfilled for the rule to trigger. An example of such a set 
of constraints can be a day and a time, for instance "only weekdays" and 
"between 9:00 AM and 6:00 PM".

In the Triggers tab, you can add, remove, activate, deactivate, and edit such rules. As 
of JRockit Mission Control 3.1, these rules can be added to a set of rules that can be 
exported and imported.
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As shown in the following screenshot, the rules already defined are listed in the 
Trigger Rules tree to the left, and the details for a selected rule are shown to the right:

 

Note that simple modifications to an existing rule, such as changing what action to 
take, or changing the trigger value, can be done by directly editing the rule in the Rule 
Details section. In the earlier example, no trigger rule is currently active. To activate a 
rule, simply click on the check box next to rule name in the Trigger Rules tree.
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For example: 

JRockit Mission Control comes pre-packaged with various example rules. For the 
sake of clarity, let's create a duplicate rule of one of the pre-existing ones.

1. Click on Add.... This will bring up the Add New Rule Wizard.

2. Expand the oracle.jrockit.management | Runtime MBean.
3. Select the CPULoad attribute.

The little N (  ) in the icon indicates that this is a numeric attribute.  
It is possible to build rules that are not based on numeric attributes;  
for string attributes there is a string matching expression instead of  
a numeric evaluator.

4. Click on Next and choose the Max trigger value—this is the boundary value 
upon which the trigger will take action. In this case we can, for example, 
choose 0.25. Triggers operate on the raw value from the subscription, so 
the pre-multiplier will not be active. The CPULoad attribute gives us the 
CPU load as a fraction, and so 0.25 would mean 25 percent. With the default 
settings, this means that action will be taken once the CPU load passes 25 
percent and once when the trigger recovers and goes below 25 percent. 
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5. There are other options available to us, that we won't change for  
this example: 

	° Sustained [s]: This decides for how long the value must be 
sustained above the threshold before triggering.

	° Limit period [s]: The period after which to throttle the events, 
that is events will not trigger more often than this. Events that 
do trigger more often will simply be discarded.

	° Trigger when condition is met: In our case, when the 
attribute goes from less than 0.25 to greater than or equal 
to 0.25.

	° Trigger when recovering from condition: In our case, when 
the attribute goes from greater than or equal to 0.25 to less 
than 0.25.

6. Click on Next and select the Application alert action.
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The Application alert action requires no settings. When a rule triggers with 
the application alert action, the triggered event is logged and optionally 
displayed in a log dialog window. There are a few default actions available, 
but the fun part is that it is possible to write your own actions. We'll show 
you how at the end of this chapter.

7. Click on Next and optionally select one or more constraints.

For this example, it really isn't necessary, but it is nice to be able to have 
constraints that limit when the rule may trigger, such as only on weekdays. 
You can write your own constraints too. It works pretty much the same way 
as the actions.

8. Click on Next and review the group and rule names.
It is usually a good idea to put in an informative description of the rule as 
well as to explain in a little more detail what the rule does and how it is 
supposed to be used. You can use the standard <b>, </b>, and <br/> HTML 
tags in your description for formatting.

9. Click on Finish.
10. Enable the new rule by checking the check box next to the rule name in the 

Trigger Rules tree.
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11. Add some CPU load to make the rule trigger. You can usually peak the load 
by forcing the UI to redraw itself a lot, for example by frantically resizing the 
UI for a little while.
The Trigger Alerts dialog should pop up and show you the details of why 
one of your rules triggered, as shown in the following screenshot:

It is possible to extend the Management Console with custom-made actions 
and constraints. This is done by creating custom-made plug-ins that use a few  
well-defined extension points. Please see the end of this chapter for details on  
how to do this.

Runtime
The Runtime tab group contains a few tabs that visualize information about 
the JRockit runtime. The first tab in the Runtime tab group is the System tab.
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System
The most useful thing in this tab is the filterable System Properties table. System 
properties can either be filtered by key or by property. For example, to show the 
properties that start with java.vm, simply write java.vm in the filter text box.

It is possible to use regular expressions in the JRockit Mission Control 
filter textboxes by prefixing the filter string with "regexp:". For example, 
to filter out all properties starting with "sun." and ending with "path", 
the following expression can be used: regexp:sun\..*path

Some useful default properties have been added to an attribute table named System 
Statistics. Most tables in JRockit Mission Control only show a few selected columns 
by default. To show more columns, either select the column to show from the table 
context menu (Visible Columns | <column name>), or click on the little table icon 
in the section toolbar (  ) to bring up the Table Settings dialog. In the previous 
screenshot, the Updated column has been added to the table, which shows when 
the attribute was last updated. Note that different tables will have different 
information available.
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As you can see from the example, different attributes may have different update 
policies. Attributes that are not likely to change very often will be requested less 
often than other attributes. The JVM version can be expected to not change at all.  
The number of CPUs in the machine will also probably not change during a 
particular run. How often an attribute is to be updated can be changed in the  
MBean Browser. 

Memory
This tab contains memory-related information. At the top is the familiar memory 
chart from the Overview tab, followed by two attribute tables. The first attribute 
table contains memory statistics, and the second one GC-related attributes. The most 
interesting part here is that there are actually a few of these that can be changed at 
runtime—the allocated heap size, the garbage collector strategy, and the garbage 
collector heuristic.
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The GC heuristic is the rule set that the garbage collector currently uses to adaptively 
alter the GC strategy and other GC parameters. Such a heuristic can, for instance, be 
throughput that optimizes for maximum memory system throughput or pausetime, 
that optimizes for lowest possible pause times. 

The rules for valid heuristic changes are somewhat different for different  
releases of JRockit. The rules for changing GC heuristic in R28 are quite versatile. 
Heuristics can be changed freely with one exception—it is not possible to change 
another heuristic to deterministic. This is because a lot of special data structures 
and configuration settings are created at JVM startup when starting with the 
deterministic garbage collector (JRockit Real Time).

The garbage collection strategy is defined by nursery, mark strategy and sweep 
strategy. The nursery can either be present or not present. The mark and sweep 
phases can either be concurrent or parallel, using the terms as defined in Chapter 3.

The strategy can also be changed freely in R28, with one exception—if JRockit  
was started explicitly with the singlepar strategy (-Xgc:singlepar), the strategy 
cannot be changed at all. However, if starting with any other strategy, it is possible  
to change back and forth from singlepar.

An example of a complete strategy name is Concurrent Mark & Sweep, 
generational=false, sweep=concurrent, mark=concurrent. The names are 
unfortunately quite long and also a bit redundant. As was mentioned in Chapter 
3, when explicitly setting the same strategy with the –Xgc command-line option, 
the same strategy is simply named singlecon. The best way to get the input value 
right when attempting to change these attributes is to first look it up in the oracle.
jrockit.management:GarbageCollector MBean. There is one attribute for 
strategies and and one for heuristics. Each contains an array of CompositeData, 
and each CompositeData entry contains a name and description. Each name value 
is valid input to change the corresponding Strategy or Heuristic attribute.

It is worth noting that changing strategies can implicitly change the heuristic as 
well. A change to any strategy with a concurrent part will result in a change to 
the heuristic pausetime. Any purely parallel strategy will result in a change to 
throughput. Changing the heuristic can, in the same manner, result in an implicit 
strategy change.

Also worth noting is that changing to a new heuristic or strategy will not exactly  
be the same thing as starting with that heuristic or strategy because of the  
following reasons:

•	 Changing the heuristic to pausetime will not set up some necessary 
data structures for abortable compaction, if it wasn't previously enabled. 
Abortable compaction will not be available to the garbage collector.
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•	 TLA sizes will be calculated based on the startup arguments. They will not be 
recalculated upon strategy or heuristic change.

Threads
The Threads tab contains information about the running threads. All available 
threads are listed in a table, together with information related to each thread, such 
as the thread state. If a thread is selected, the stack trace for the thread will appear 
in the trace tree, as shown in the following screenshot. CPU profiling, deadlock 
detection, and allocation profiling can be enabled by checking the appropriate 
checkboxes. As usual, more information can be enabled in the table by clicking on 
the table properties icon in the section toolbar.

In the previous screenshot, we've added the Lock Owner Name attribute to the table, 
and enabled Deadlock Detection.

Deadlock detection is a very useful feature in the JRockit Management 
Console, which can make debugging parallel programs easier.
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As can be seen, the icon used for deadlocked threads (  ) is different. We can infer 
that two of the threads are in a deadlock, waiting for each other.

Another easy-to-miss feature in the Threads tab is the CPU profiling check box. 
When it is enabled, the total CPU usage per thread will be shown in the Total CPU 
Usage column, and a normalized bar chart will be shown in the background of the 
cells in that column. 

Enabling allocation profiling will show how much memory has been allocated in 
each thread. Note that this value is the amount of memory that has been allocated 
by the thread in total since it started, not how much memory the thread is currently 
keeping live.

Advanced
The Advanced tab group contains tabs that can be somewhat complex to use as they 
may either have performance implications, or require knowledge about the JRockit 
JVM internals. After reading this book, you should be able to put most of the tabs in 
the Advanced tab group to good use.
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Method Profiler
The Method Profiler in the JRockit Management Console can be used to do exact 
method profiling, for a selected set of methods. This is not the same thing as sample 
based method profiling. Exact method profiling means that the profiler will report 
exact invocation counts for the selected methods and the total time spent executing 
them. Sample-based method profiling will be discussed in Chapter 8, The Runtime 
Analyzer and Chapter 9, The Flight Recorder.

To add a method for profiling, first make sure that the profiler is turned off. Then 
select a template to which to add the method, or create a new template by clicking  
on the Add… button in the Templates section. The templates are very useful, not 
only for saving commonly profiled methods for easy access later, but also to quickly 
turn on and off profiling for groups of methods in the method profiler.

Next click on the Add… button in the methods section for the selected template 
(My New Template in the following screenshot). In the dialog box, select the 
class that declares the method you want to profile.
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The Method Profiler will fetch information about the class from the JVM that the 
console is connected to, and display the methods available for profiling in the 
method tree as shown in the following screenshot: 

If the template to which the method was added is active, it should now show up 
in the Profiling Information table to the right in the Method Profiler tab. If it is 
not, simply activate it by checking the check box next to the template name in the 
Templates section.

To start the profiler, simply press the play (  ) button.

To stop the profiler, press the stop (  ) button.

The following screenshot shows a few of the methods on the critical path in one of 
the Java2D demos that come with the JDK (located in the demo/jfc folder):
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There are a few caveats worth mentioning when using the Method Profiler in the 
Management Console. These are the top three culprits:

•	 The profiler requires you to select the exact set of methods you want to 
profile: This is somewhat of a chicken and egg problem, as it's hard to know 
which methods to profile until you've done some profiling. And once you've 
done that profiling (for example using JRockit Flight Recorder), you usually 
have the answers you were looking for anyway.

•	 The overhead of gathering the exact profiling information is hard to 
estimate: This particular Method Profiler is not sampling-based, like the one 
in the JRockit Flight Recorder. The overhead, especially for a method that does  
not take long to execute and that is being executed a lot, such as the hot  
parts of a rendering engine, may be hard to predict. This is especially true  
for method timing information. If all hot methods in the system are profiled, 
the overhead can be quite large.

•	 There is currently no class loader information available when selecting the 
class: The profiler will use the first matching class it can find. So, there is no 
way to know which is the exact version of the class that is being profiled if it 
has been loaded by multiple class loaders.
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We have been at various customer sites and customer meetings when 
developers have been certain a particular method is the main performance 
bottleneck. Usually, plenty of exact measurements on that particular 
method have been made, and after optimization it runs a magnitude 
faster. Unfortunately, the performance of the application as such, has still 
not been improved. After performing a JRockit Flight Recording, before 
and after the change, it is usually concluded that the method in question 
is not even among the top 50 hot spots in the application, and that, in 
practice, the optimization effort was a waste of time.

When profiling an application, the JRockit Flight Recorder is usually the best place 
to start. If you still believe there is a need for online exact method profiling after 
doing a recording, you should convince yourself that the need is valid. Maybe you 
have already done a recording so that you know that the method you are spending 
time on tuning is worth the effort. You may be curious as to how the timing 
information changes for a certain optimization (fully realizing that, if the method is 
on the critical path, the difference in overhead of the measurements themselves may 
actually change after the optimizations have been implemented). Or perhaps you are 
simply wondering if a certain method is called at all. This is probably, in the authors' 
humble opinion, one of the most valid reasons for using the method profiler in the 
Management Console.

Exception Count
The exception tab can be used to count the number of exceptions thrown. You can 
either count all the exceptions of a specific type or count the exceptions of a specific 
type including subclasses of that type.
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The functionality is somewhat limited, as it will not show the stack traces for the 
exceptions. If you not only want to know how many exceptions are thrown, but  
also where they are thrown, you should instead use JRockit Flight Recorder or enable 
verbose logging for exceptions. For more information on JRockit Flight Recorder, see 
Chapter 9. For more information on how to do verbose logging, please see Chapter 5, 
Benchmarking and Tuning or Chapter 11, JRCMD.

Diagnostic Commands
The Mission Control Console also provides a tab that facilitates access to the diagnostic 
commands in JRockit. The diagnostic commands is a set of commands that can be sent 
to JRockit through the JRockit Management APIs and the command-line tool JRCMD.

For more information on individual diagnostic commands and 
on JRCMD, see Chapter 11. For more information about the 
management APIs, see Chapter 12, Using the JRockit Management APIs.

The list in the upper left corner of the Diagnostic Commands tab shows the available 
commands classified in three different groups—normal, advanced, and internal. The 
ones in the "normal" class are usually the easiest to understand. They are also the ones 
that can be executed without any risk of affecting the runtime in adverse ways. Of 
course, no truth without exceptions, for example invoking the runsystemgc command 
over and over again may incur a performance overhead. The print_object_summary 
command can also be fairly expensive as it will, in effect, cause a garbage collection 
(gathering info on all objects on the heap requires traversing the heap).

The diagnostic commands in the "advanced" group are more complicated; they are 
either more complex, requiring a lot of low level JRockit or JVM knowledge, or have 
security or performance implications. For example, the heap_diagnostic command 
can be expensive to execute and there may be security implications of starting up the 
external management agent with start_management_server. 
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The filter box above the command list helps finding specific commands, and to the 
right of the command list the parameters of a selected command can be configured.

Clicking on the Execute button invokes the diagnostic command in the JVM that the 
Management Console is connected to. When the command completes, the result is 
displayed in the Diagnostic Command Output box at the bottom of the tab. Note 
that not all commands have output, but some of them simply instruct the JRockit 
runtime to take some action.

The output of several commands can be appended by clicking on the Append result 
button in the Diagnostic Command Output section toolbar. 
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Other
The last tab group is the Other group. This tab group will only be visible if you 
have installed custom tabs—either your own, or custom tabs from the experimental 
update site. As the JConsole Meta Plug-in tab is easily installed from the 
experimental update site, we will briefly explain it here.

JConsole
In the JDK, a JMX management console named JConsole is included. In 6.0 versions 
of the JDK, JConsole has its own plug-in interface, through which additional tabs  
can be added. The JConsole plug-in for JRockit Mission Control allows such plug-ins 
to run inside the JRockit Management Console, as shown in the following screenshot:

To be able to run the JConsole plug-in, JRockit Mission Control (or Eclipse, if using 
the plug-in version of JRockit Mission Control), must be running on a JDK 6.0 
version of JRockit. The plug-in will automatically attempt to find the JTop plug-in 
delivered with the JDK (located in the demo/management/JTop folder), and to use 
that folder as the JConsole plug-in directory. Any jar file containing a JConsole 
plug-in found in the JConsole plug-in directory will be added under its own tab in 
the JConsole plug-ins tab.
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The JConsole plug-in directory and update interval, that is how often the  
plug-ins should be refreshed, can be changed in the Console preferences  
(Window | Preferences), as shown in the following screenshot:

Extending the JRockit Mission Control 
Console
This section is for developers interested in extending the JRockit Mission Control 
Management Console with custom tabs. It assumes some familiarity with the Eclipse 
platform and terminology, such as extension point and form page. 

There is an extension point available for the console that can be used to implement 
custom tabs. This extension point was, for instance, used when creating the JConsole 
plug-in tab available from the JRockit Mission Control experimental update site. See 
the previous chapter for more information on the experimental update site.

The easiest way to get started building your own JRockit Mission Control Console 
plug-in is to use the PDE wizard available from the experimental update site. First 
make sure that Eclipse for RCP/Plug-in Developers (Eclipse 3.5/Ganymede or later 
versions) is installed. Next install the JRockit Mission Control Plug-in into Eclipse. 
Finally install the PDE Integration Plug-in from the experimental update site.



Chapter 7

[ 285 ]

PDE is short for Plug-in Development Environment, which is a set 
of tools built into Eclipse to help create, develop, test, debug, build, 
and deploy Eclipse plug-ins. The PDE Integration Plug-in from the 
experimental update site provides specialized wizards and templates 
that make it easier to write plug-ins for JRockit Mission Control.

The available console PDE wizards can be used to generate the boilerplate code 
needed to contribute custom tabs to the JRockit Mission Control Console. They  
also serve as examples on how custom tabs can be implemented.

There are two different wizards for creating JRockit Mission Control tabs available in 
the PDE plug-in—simple and advanced. The simple wizard will generate an example 
tab that shows a label with the CPU load. The advanced wizard will use various 
components built into the JRockit Mission Control console to show three selected 
attributes in various different ways.

This section walks you through how to create a new tab project:

1. Select File | New | Project...
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2. In the New Project dialog box, select Plug-in Project and click on Next.

3. Name your project. It is common practice to name the plug-in project after 
the main package of your plug-in, for example com.example.mc.console.
myplugin.
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4. Ensure that the correct target platform is selected (Eclipse 3.4 for JRockit 
Mission Control 3.1 and Eclipse 3.5 for JRockit Mission Control 4.0).

5. Click on Next and optionally change plug-in property details. When 
satisfied, click on Next again.
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6. If the PDE plug-in is correctly installed, you should now be presented with 
numerous templates, two of which should be the advanced and simple 
console tab ones. Select either the advanced or the simple one and then click 
on Next. 

7. Change the details to match your plug-in and then click on Finish.
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The end result should be a plug-in project with all the necessary code for an 
additional tab in the JRockit Mission Control Console. To try out your new tab, 
simply go to Run | Run Configurations... In the Run Configurations Dialog, 
right click on Eclipse Application and select New. This will create a new run 
configuration for launching Eclipse. By default, it should be using the Eclipse  
in which you are developing as a target platform and include all the plug-ins  
in your workspace. As your Eclipse includes the JRockit Mission Control  
plug-in, everything should be fine. Select the new configuration and press  
the Run button in the lower right corner. 

A new Eclipse should be launched with your brand new plug-in deployed. Open up 
the Mission Control perspective the way you normally would and start the console. 
Your tab will show up under the Other tab group.

If the advanced wizard was used, a class containing the code for creating a  
tab looking much like the standard Overview tab should have been created. 
It displays three different attributes in various different ways.
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Setting up the tab is done programmatically and the code for it is rather simple. 
The extension point only requires us to subclass org.eclipse.ui.forms.editor.
FormPage. So, there are really no dependencies on JRockit or JRockit Mission 
Control specific classes for the extension point itself. The editor input from the form 
page can be adapted to an IMBeanService, which is a communication helper service 
for the console available in the com.jrockit.mc.rjmx.core package. 

private IMBeanService getMBeanService() {
  return (IMBeanService) 
    getEditorInput().getAdapter(IMBeanService.class);
}

This allows access to the JRockit Mission Control specific MBean layer residing in the 
com.jrockit.mc.rjmx* plug-ins. RJMX provides, among other things, access to the 
subscription engine and the proxy layer in JRockit Mission Control.

The proxy layer can be used to access JRockit specific attributes and operations 
in a version neutral way with respect to the API. Use getMBeanService().
getProxyNames() for the attributes and getMBeanService().
getProxyOperations() for the operations.

For example, the location of the attribute for the CPU load is different in JRockit 
versions R26.4 , R27.x, and R28.x. To get the location of the CPU load, regardless  
of JRockit version, the proxy layer can be used like this:

getMBeanService().getProxyNames(). 
  getAttributeDescriptor(IProxyNames.Key.OS_CPU_LOAD);

This will return an attribute descriptor containing the MBean ObjectName 
and attribute name needed to locate the attribute. Most of RJMX makes use  
of attribute descriptors that are objects encapsulating the MBean ObjectName 
and the attribute name.

This is how we create an attribute descriptor directly pointing to the CPU load where 
it is located in R28 versions of JRockit:

new AttributeDescriptor( 
  "oracle.jrockit.management:type=Runtime","CPULoad");

To invoke a garbage collection, regardless of JRockit version, the proxy layer can be 
used in the following way:

getMBeanService().getProxyOperations().gc();
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As can be seen from the advanced template code, adding a table for a collection of 
attributes is very easy.

builder.setProperty( 
  AttributeVisualizerBuilder.TITLE, "Chart");
builder.setProperty( 
  AttributeVisualizerBuilder.TITLE_AXIS_Y, "%");
builder.setProperty( 
  AttributeVisualizerBuilder.TITLE_AXIS_X, "Time");
  addAttributesToVisualizer(builder.createChart());

The simple template is actually a little bit more complex than it seems, as it uses the 
different services directly and does not rely on the standard Mission Control GUI 
components. The resulting GUI is, however, much simpler. The tab generated from 
the simple template provides a good example for how to use the RJMX subscription 
service. The subscription service allows subscribing to the values of one or more 
attributes using the same subscription mechanism as the rest of the console. Adding 
a subscription to the CPU load is done by using the SubscriptionService.

getMBeanService().getAttributeSubscriptionService()
  .addAttributeValueListener(getMBeanService().getProxyNames(). 
    getAttributeDescriptor(IProxyNames.Key.OS_CPU_LOAD),
    new LabelUpdater(valueLabel));

The LabelUpdater is a simple implementation of the IAttributeValueListener 
interface defined in the com.jrockit.mc.rjmx.subscription package. Each time a 
new value is retrieved, the valueChanged method is called with an event containing 
the value. Note that there are no guarantees as to which thread is delivering the event. 
In the current implementation, it will either be the subscription thread (most events) 
or the JMX subsystem (notification based events). It will very likely never be the GUI 
thread, which means that any updates to the GUI will need to be posted to the GUI 
thread, as done by using DisplayToolkit.safeAsyncExec in the LabelUpdater 
example code:

public static class LabelUpdater
implements IAttributeValueListener {
  private final Label label;

  public LabelUpdater(Label label) {
    this.label = label;
  }

  public void valueChanged(final AttributeValueEvent event) {
    DisplayToolkit.safeAsyncExec(label, new Runnable(){
      public void run() {
        Double latestValue = (Double) event.getValue();



The Management Console

[ 292 ]

        label.setText("CPU Load is: "
          + (latestValue.doubleValue() * 100) + "%");
      }
    });
  }
}

Creating an extension for a trigger action is done in the same way. Simply select the 
Mission Control Trigger Action Wizard template from the plug-in project wizard 
in step 6.

Summary
This chapter has demonstrated how to use the Management Console to monitor 
any application running on JRockit. The information and functionality available in 
the different tabs of the JRockit Management Console was described together with 
examples and various use cases.

We have also shown how the Management Console can easily be extended with 
custom tabs with specialized user interfaces as well as custom actions to be used 
with the trigger rules.

The next chapter will explain how to use the JRockit Runtime Analyzer to profile  
and diagnose both the JRockit runtime as well as the applications running in JRockit.



The Runtime Analyzer
The JRockit Runtime Analyzer, or JRA for short, is a JRockit-specific profiling tool 
that provides information about both the JRockit runtime and the application running 
in JRockit. JRA was the main profiling tool for JRockit R27 and earlier, but has been 
superseded in later versions by the JRockit Flight Recorder. Because of its extremely 
low overhead, JRA is suitable for use in production.

In this chapter you will learn:

•	 Different ways to create a JRA recording
•	 How to find the hot spots in your application
•	 How to interpret memory-related information in JRA
•	 How to hunt down latency-related problems
•	 How to detect indications of a memory leak in an application
•	 How to use the operative set in the JRA latency analyzer component

This chapter is mainly targeted at R27.x/3.x versions of JRockit and 
Mission Control. The next chapter covers performing and analyzing 
runtime recordings in R28/4.0 using JRockit Flight Recorder. As 
several of the components for recording analysis in Mission Control 
are similar in R28, they are introduced in this chapter. Where 
applicable, the next chapter covers new components and the most 
important differences between R27.x/3.x and R28/4.0.
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The need for feedback
In order to make JRockit an industry-leading JVM, there has been a great need 
for customer collaboration. As the focus for JRockit consistently has been on 
performance and scalability in server-side applications, the closest collaboration 
has been with customers with large server installations. An example is the financial 
industry. The birth of the JRockit Runtime Analyzer, or JRA, originally came from 
the need for gathering profiling information on how well JRockit performed at 
customer sites.

One can easily understand that customers were rather reluctant to send us, for 
example, their latest proprietary trading applications to play with in our labs. And, 
of course, allowing us to poke around in a customer's mission critical application in 
production was completely out of the question. Some of these applications shuffle 
around billions of dollars per week. We found ourselves in a situation where we 
needed a tool to gather as much information as possible on how JRockit, and the 
application running on JRockit, behaved together; both to find opportunities to 
improve JRockit and to find erratic behavior in the customer application. This was a 
bit of a challenge, as we needed to get high quality data. If the information was not 
accurate, we would not know how to improve JRockit in the areas most needed by 
customers or perhaps at all. At the same time, we needed to keep the overhead down 
to a minimum. If the profiling itself incurred significant overhead, we would no longer 
get a true representation of the system. Also, with anything but near-zero overhead, 
the customer would not let us perform recordings on their mission critical systems  
in production.

JRA was invented as a method of recording information in a way that the customer 
could feel confident with, while still providing us with the data needed to improve 
JRockit. The tool was eventually widely used within our support organization to 
both diagnose problems and as a tuning companion for JRockit.

In the beginning, a simple XML format was used for our runtime recordings. A 
human-readable format made it simple to debug, and the customer could easily 
see what data was being recorded. Later, the format was upgraded to include data 
from a new recording engine for latency-related data. When the latency data came 
along, the data format for JRA was split into two parts, the human-readable XML 
and a binary file containing the latency events. The latency data was put into JRockit 
internal memory buffers during the recording, and to avoid introducing unnecessary 
latencies and performance penalties that would surely be incurred by translating the 
buffers to XML, it was decided that the least intrusive way was to simply dump the 
buffers to disk.

To summarize, recordings come in two different flavors having either the .jra 
extension (recordings prior to JRockit R28/JRockit Mission Control 4.0) or the .jfr 
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(JRockit Flight Recorder) extension (R28 or later). Prior to the R28 version of JRockit, 
the recording files mainly consisted of XML without a coherent data model. As 
of R28, the recording files are binaries where all data adheres to an event model, 
making it much easier to analyze the data.

To open a JFR recording, a JRockit Mission Control of version 3.x must be used. To 
open a Flight Recorder recording, JRockit Mission Control version 4.0 or later must 
be used.

Recording
The recording engine that starts and stops recordings can be controlled in several 
different ways:

•	 By using the JRCMD command-line tool. For more information on JRCMD,  
see Chapter 11, JRCMD.

•	 By using the JVM command-line parameters. For more information on this, 
see the -XXjra parameter in the JRockit documentation.

•	 From within the JRA GUI in JRockit Mission Control.

The easiest way to control recordings is to use the JRA/JFR wizard from within 
the JRockit Mission Control GUI. Simply select the JVM on which to perform a JRA 
recording in the JVM Browser and click on the JRA button in the JVM Browser 
toolbar. You can also click on Start JRA Recording from the context menu. Usually, 
one of the pre-defined templates will do just fine, but under special circumstances 
it may be necessary to adjust them. The pre-defined templates in JRockit Mission 
Control 3.x are:

•	 Full Recording: This is the standard use case. By default, it is configured to 
do a five minute recording that contains most data of interest.

•	 Minimal Overhead Recording: This template can be used for very 
latency-sensitive applications. It will, for example, not record heap statistics, 
as the gathering of heap statistics will, in effect, cause an extra garbage 
collection at the beginning and at the end of the recording.

•	 Real Time Recording: This template is useful when hunting latency-related 
problems, for instance when tuning a system that is running on JRockit 
Real Time. This template provides an additional text field for setting the 
latency threshold. The latency threshold is explained later in the chapter in 
the section on the latency analyzer. The threshold is by default lowered to 5 
milliseconds for this type of recording, from the default 20 milliseconds, and 
the default recording time is longer.
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•	 Classic Recording: This resembles a classic JRA recording from earlier 
versions of Mission Control. Most notably, it will not contain any latency 
data. Use this template with JRockit versions prior to R27.3 or if there is no 
interest in recording latency data.
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All recording templates can be customized by checking the Show advanced options 
check box. This is usually not needed, but let's go through the options and why you 
may want to change them:

•	 Enable GC sampling: This option selects whether or not GC-related 
information should be recorded. It can be turned off if you know that you 
will not be interested in GC-related information. It is on by default, and it is a 
good idea to keep it enabled.

•	 Enable method sampling: This option enables or disables method sampling. 
Method sampling is implemented by using sample data from the JRockit 
code optimizer. If profiling overhead is a concern (it is usually very low, but 
still), it is usually a good idea to use the Method sample interval option to 
control how much method sampling information to record.

•	 Enable native sampling: This option determines whether or not to attempt 
to sample time spent executing native code as a part of the method sampling. 
This feature is disabled by default, as it is mostly used by JRockit developers 
and support. Most Java developers probably do fine without it.

•	 Hardware method sampling: On some hardware architectures, JRockit 
can make use of special hardware counters in the CPU to provide higher 
resolution for the method sampling. This option only makes sense on such 
architectures. Chapter 2, Adaptive Code Generation discusses hardware-based 
sampling to a greater extent.

•	 Stack traces: Use this option to not only get sample counts but also stack traces 
from method samples. If this is disabled, no call traces are available for sample 
points in the methods that show up in the Hot Methods list.

•	 Trace depth: This setting determines how many stack frames to retrieve 
for each stack trace. For JRockit Mission Control versions prior to 4.0, this 
defaulted to the rather limited depth of 16. For applications running in 
application containers or using large frameworks, this is usually way too 
low to generate data from which any useful conclusions can be drawn. A tip, 
when profiling such an application, would be to bump this to 30 or more.

•	 Method sampling interval: This setting controls how often thread samples 
should be taken. JRockit will stop a subset of the threads every Method 
sample interval milliseconds in a round robin fashion. Only threads 
executing when the sample is taken will be counted, not blocking threads. 
Use this to find out where the computational load in an application takes 
place. See the section, Hot Methods for more information.
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•	 Thread dumps: When enabled, JRockit will record a thread stack dump at 
the beginning and the end of the recording. If the Thread dump interval 
setting is also specified, thread dumps will be recorded at regular intervals 
for the duration of the recording.

•	 Thread dump interval: This setting controls how often, in seconds, to record 
the thread stack dumps mentioned earlier.

•	 Latencies: If this setting is enabled, the JRA recording will contain latency 
data. For more information on latencies, please refer to the section Latency 
later in this chapter.

•	 Latency threshold: To limit the amount of data in the recording, it is possible 
to set a threshold for the minimum latency (duration) required for an event to 
actually be recorded. This is normally set to 20 milliseconds. It is usually safe 
to lower this to around 1 millisecond without incurring too much profiling 
overhead. Less than that and there is a risk that the profiling overhead will 
become unacceptably high and/or that the file size of the recording becomes 
unmanageably large. Latency thresholds can be set as low as nanosecond 
values by changing the unit in the unit combo box.

•	 Enable CPU sampling: When this setting is enabled, JRockit will record the 
CPU load at regular intervals.

•	 Heap statistics: This setting causes JRockit to do a heap analysis pass at the 
beginning and at the end of the recording. As heap analysis involves forcing 
extra garbage collections at these points in order to collect information, it is 
disabled in the low overhead template.

•	 Delay before starting a recording: This option can be used to schedule the 
recording to start at a later time. The delay is normally defined in minutes, 
but the unit combo box can be used to specify the time in a more appropriate 
unit—everything from seconds to days is supported.

Before starting the recording, a location to which the finished recording is to be 
downloaded must be specified. Once the JRA recording is started, an editor will open 
up showing the options with which the recording was started and a progress bar. 
When the recording is completed, it is downloaded and the editor input is changed 
to show the contents of the recording.

Analyzing JRA recordings
Analyzing JRA recordings may easily seem like black magic to the uninitiated, so 
just like we did with the Management Console, we will go through each tab of the 
JRA editor to explain the information in that particular tab, with examples on when 
it is useful.

Just like in the console, there are several tabs in different tab groups.
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General
The tabs in the General tab group provide views of key characteristics and recording 
metadata. In JRA, there are three tabs—Overview, Recording, and System.

Overview
The first tab in the General tab group is the Overview tab. This tab contains an 
overview of selected key information from the recording. The information is useful  
for checking the system health at a glance.

The first section in the tab is a dial dashboard that contains CPU usage, heap, and 
pause time statistics.

What to look for depends on the system. Ideally the system should be well utilized, but 
not saturated. A good rule of thumb for most setups would be to keep the Occupied 
Heap (Live Set + Fragmentation) to half or less than half of the max heap. This keeps 
the garbage collection ratio down. 
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All this, of course, depends on the type of application. For an application with 
very low allocation rates, the occupied heap can be allowed to be much larger. An 
application that does batch calculations, concerned with throughput only, would 
want the CPU to be fully saturated while garbage collection pause times may not be 
a concern at all.

The Trends section shows charts for the CPU usage and occupied heap over time 
so that trends can be spotted. Next to the Trends section is a pie chart showing 
heap usage at the end of the recording. If more than about a third of the memory  
is fragmented, some time should probably be spent tuning the JRockit garbage 
collector (see Chapter 5, Benchmarking and Tuning and the JRockit Diagnostics Guide 
on the Internet). It may also be the case that the allocation behavior of the application 
needs to be investigated. See the Histogram section for more information.

At the bottom of the page is some general information about the recording, such 
as the version information for the recorded JVM. Version information is necessary 
when filing support requests.

In our example, we can see that the trend for Live Set + Fragmentation is constantly 
increasing. This basically means that after each garbage collection, there is less free 
memory left on the heap. It is very likely that we have a memory leak, and that, if  
we continue to let this application run, we will end up with an OutOfMemoryError.

Recording
This tab contains meta information about the recording, such as its duration and the 
values of all the recording parameters used. This information can, among other things, 
be used to check if information is missing from a recording, or if that particular piece of 
information had simply been disabled for the recording. 
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System
This tab contains information about the system the JRockit JVM was running on, 
such as the OS. The JVM arguments used to start the JVM can also be viewed here.
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Memory
The Memory tab group contains tabs that deal with memory-related information, such 
as heap usage and garbage collections. In JRA there are six such tabs, Overview, GCs, 
GC Statistics, Allocation, Heap Statistics, Heap Contents, and Object Statistics.

Overview
The first tab in the Memory tab group is the Overview tab. It shows an overview of 
the key memory statistics, such as the physical memory available on the hardware  
on which the JVM was running. It also shows the GC pause ratio, i.e. the time spent 
paused in GC in relation to the duration of the entire recording.

If the GC pause ratio is higher than 15-20%, it usually means that there is significant 
allocation pressure on the JVM.

At the bottom of the Overview tab, there is a listing of the different garbage 
collection strategy changes that have occurred during recording. See Chapter 3, 
Adaptive Memory Management, for more information on how these strategy changes 
can occur.

GCs
Here you can find all the information you would ever want to know about the 
garbage collections that occurred during the recording, and probably more.

With the GCs tab, it is usually a good idea to sort the Garbage Collections table on 
the attribute Longest Pause, unless you know exactly at what time from the start of 
the JVM you want to drill down. You might know this from reading the application 
log or from the information in some other tab in JRA. In the following example, the 
longest pause also happens to be the first one.

It is sometimes a good idea to leave out the first and last garbage collections from the 
analysis, depending on the recording settings. Some settings will force the first and 
last GC in the recording to be full garbage collections with exceptional compaction, 
to gather extra data. This may very well break the pausetime target for deterministic 
GC. This is also true for JRockit Flight Recorder
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At the top of the screen is the Range Selector. The Range Selector is used to 
temporally select a set of events in the recording. In this case, we have zoomed in 
on a few of the events at the beginning of the recording. We can see that throughout 
this range, the size of the occupied heap (the lowest line, which shows up in green) is 
around half the committed heap size (the flat topmost line, which shows up in blue), 
with some small deviations.

In an application with a very high pause-to-run ratio, the occupied heap would have 
been close to the max heap. In that case, increasing the heap would probably be a good 
start to increase performance. There are various ways of increasing the heap size, but 
the easiest is simply setting a maximum heap size using the –Xmx flag on the command 
line. In the example, however, everything concerning the heap usage seems to be fine.

In the Details section, there are various tabs with detailed information about a 
selected garbage collection. A specific garbage collection can be examined more 
closely, either by clicking in the GC chart or by selecting it in the table.

Information about the reason for a particular GC, reference queue sizes, and heap 
usage information is included in the tabs in the Details section. Verbose heap 
information about the state before and after the recording, the stack trace for the 
allocation that caused the GC to happen, if available, and detailed information  
about every single pause part can also be found here.
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In the previous screenshot, a very large portion of the GC pause is spent handling 
the reference queues. Switching to the References and Finalizers chart will reveal 
that the finalizer queue is the one with most objects in it. 

One way to improve the memory performance for this particular application would 
be to rely less heavily on finalizers. This is, as discussed in Chapter 3, always a good 
idea anyway.

The recordings shown in the GCs tab examples earlier were created 
with JRockit R27.1, but are quite good examples anyway, as they are 
based on real-life data that was actually used to improve a product. As 
can be seen from the screenshot, there is no information about the start 
time of the individual pause parts. Recordings made using a more recent 
version of JRockit would contain such information. We are continuously 
improving the data set and adding new events to recordings. JRockit 
Flight Recorder, described in the next chapter, is the latest leap in 
recording detail.
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Following is a more recent recording with an obvious finalizer problem. The reasons 
that the pause parts differ from the previous examples is both that we are now using 
a different GC strategy as well as the fact that more recent recordings contain more 
detail. The finalizer problem stands out quite clearly in the next screenshot.

The data in the screenshot is from a different application, but it nicely illustrates 
how a large portion of the garbage collection pause is spent following references in 
the finalizers. Handling the finalizers is even taking more time than the notorious 
synchronized external compaction. Finalizers are an obvious bottleneck. 
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To make fewer GCs happen altogether, we need to find out what is actually causing 
the GCs to occur. This means that we have to identify the points in the program 
where the most object allocation takes place. One good place to start looking is the 
GC Call Trees table introduced in the next section. If more specific allocation-related 
information is required, go to the Object Allocation events in the Latency tab group.

For some applications, we can lower the garbage collection pause times by tuning  
the JRockit memory system. For more about JRockit tuning, see Chapter 5.

GC Statistics
This tab contains some general statistics about the garbage collections that took 
place during the recording. One of the most interesting parts is the GC Call Trees 
table that shows an aggregated view of the stack traces for any garbage collection. 
Unfortunately, it shows JRockit-specific internal code frames as well, which means 
that you may have to dig down a few stack frames until the frames of interest are 
found—i.e., code you can affect.

Prior to version R27.6 of JRockit, this was one of the better ways of 
getting an idea of where allocation pressure originated. In more recent 
versions, there is a much more powerful way of doing allocation 
profiling, which will be described in the Histogram section.

In the interest of conserving space, only the JRockit internal frames up to the first 
non-internal frame have been expanded in the following screenshot. The information 
should be interpreted as most of the GCs are being caused as the result of calls to 
Arrays.copyOf(char[], int) in the Java program.
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Allocation
The Allocation tab contains information that can be used mainly for tuning the 
JRockit memory system. Here, relative allocation rates of large and small objects are 
displayed, which affects the choice of the Thread Local Area (TLA) size. TLAs are 
discussed to a great extent in Chapter 3 and Chapter 5. Allocation can also be viewed 
on a per-thread basis, which can help find out where to start tuning the Java program 
in order to make it stress the memory system less.

Again, a more powerful way of finding out where to start tuning the allocation 
behavior of a Java program is usually to work with the Latency | Histogram tab, 
described later in this chapter.
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Heap Contents
Information on the memory distribution of the heap can be found under the Heap 
Contents tab. The snapshot for this information is taken at the end of the recording. 
If you find that your heap is heavily fragmented, there are two choices—either try to 
tune JRockit to take better care of the fragmentation or try to change the allocation 
behavior of your Java application. As described in Chapter 3, the JVM combats 
fragmentation by doing compaction. In extreme cases, with large allocation pressure 
and high performance demands, you may have to change the allocation patterns of 
your application to get the performance you want.

Object Statistics
The Object Statistics tab shows a histogram of what was on the heap at the beginning 
and at the end of the recording. Here you can find out what types (classes) of objects 
are using the most memory on the heap. If there is a large positive delta between the 
snapshots at the beginning and at the end of the recording, it means that there either is 
a memory leak or that the application was merely executing some large operation that 
required a lot of memory.
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In the previous example, there is actually a memory leak that causes instances 
of Double to be held on to forever by the program. This will eventually cause an 
OutOfMemoryError.

The best way to find out where these instances are being created is to either check 
for Object Allocation events of Double (see the second example in the Histogram 
section) or to turn on allocation profiling in the Memory Leak Detector. The Memory 
Leak Detector is covered in detail in Chapter 10, The Memory Leak Detector. 

Code
The Code tab group contains information from the code generator and the 
method sampler. It consists of three tabs—the Overview, Hot Methods, 
and Optimizations tab.

Overview
This tab aggregates information from the code generator with sample information 
from the code optimizer. This allows us to see which methods the Java program 
spends the most time executing. Again, this information is available virtually  
"for free", as the code generation system needs it anyway.

For CPU-bound applications, this tab is a good place to start looking for 
opportunities to optimize your application code. By CPU-bound, we mean  
an application for which the CPU is the limiting factor; with a faster CPU,  
the application would have a higher throughput.
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In the first section, the amount of exceptions thrown per second is shown. This 
number depends both on the hardware and on the application—faster hardware  
may execute an application more quickly, and consequently throw more exceptions. 
However, a higher value is always worse than a lower one on identical setups.  
Recall that exceptions are just that, rare corner cases. As we have explained, the  
JVM typically gambles that they aren't occurring too frequently. If an application 
throws hundreds of thousands exceptions per second, you should investigate why. 
Someone may be using exceptions for control flow, or there may be a configuration 
error. Either way, performance will suffer.
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In JRockit Mission Control 3.1, the recording will only provide 
information about how many exceptions were thrown. The only 
way to find out where the exceptions originated is unfortunately 
by changing the verbosity of the log, as described in Chapter 5 and 
Chapter 11. As the next chapter will show, exception profiling using 
JRockit Flight Recorder is both easier and more powerful.

An overview of where the JVM spends most of the time executing Java code can be 
found in the Hot Packages and Hot Classes sections. The only difference between 
them is the way the sample data from the JVM code optimizer is aggregated. In Hot 
Packages, hot executing code is sorted on a per-package basis and in Hot Classes on 
a per-class basis. For more fine-grained information, use the Hot Methods tab.

As shown in the example screenshot, most of the time is spent executing code in the 
weblogic.servlet.internal package. There is also a fair amount of exceptions 
being thrown.

Hot Methods
This tab provides a detailed view of the information provided by the JVM code 
optimizer. If the objective is to find a good candidate method for optimizing the 
application, this is the place to look. If a lot of the method samples are from one 
particular method, and a lot of the method traces through that method share the 
same origin, much can potentially be gained by either manually optimizing that 
method or by reducing the amount of calls along that call chain.
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In the following example, much of the time is spent in the method com.bea.wlrt.
adapter.defaultprovider.internal.CSVPacketReceiver.parseL2Packet(). 
It seems likely that the best way to improve the performance of this particular 
application would be to optimize a method internal to the application container 
(WebLogic Event Server) and not the code in the application itself, running inside the 
container. This illustrates both the power of the JRockit Mission Control tools and a 
dilemma that the resulting analysis may reveal—the answers provided sometimes 
require solutions beyond your immediate control.
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Sometimes, the information provided may cause us to reconsider the way we use data 
structures. In the next example, the program frequently checks if an object is in a java.
util.LinkedList. This is a rather slow operation that is proportional to the size of the 
list (time complexity O(n)), as it potentially involves traversing the entire list, looking 
for the element. Changing to another data structure, such as a HashSet would most 
certainly speed up the check, making the time complexity constant (O(1)) on average, 
given that the hash function is good enough and the set large enough.

Optimizations
This tab shows various statistics from the JIT-compiler. The information in this tab is 
mostly of interest when hunting down optimization-related bugs in JRockit. It shows 
how much time was spent doing optimizations as well as how much time was spent 
JIT-compiling code at the beginning and at the end of the recording. For each method 
optimized during the recording, native code size before and after optimization is 
shown, as well as how long it took to optimize the particular method
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Thread/Locks
The Thread/Locks tab group contains tabs that visualize thread- and lock-related 
data. There are five such tabs in JRA—the Overview, Thread, Java Locks, JVM 
Locks, and Thread Dumps tab.
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Overview
The Overview tab shows fundamental thread and hardware-related information, 
such as the number of hardware threads available on the system and the number 
of context switches per second.
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A dual-core CPU has two hardware threads, and a hyperthreaded core also counts 
as two hardware threads. That is, a dual-core CPU with hyperthreading will be 
displayed as having four hardware threads.

A high amount of context switches per second may not be a real problem, but better 
synchronization behavior may lead to better total throughput in the system.

There is a CPU graph showing both the total CPU load on the system, as well as 
the CPU load generated by the JVM. A saturated CPU is usually a good thing—you 
are fully utilizing the hardware on which you spent a lot of money! As previously 
mentioned, in some CPU-bound applications, for example batch jobs, it is normally a 
good thing for the system to be completely saturated during the run. However, for a 
standard server-side application it is probably more beneficial if the system is able to 
handle some extra load in addition to the expected one.

The hardware provisioning problem is not simple, but normally 
server-side systems should have some spare computational 
power for when things get hairy. This is usually referred to as 
overprovisioning, and has traditionally just involved buying faster 
hardware. Virtualization has given us exciting new ways to handle 
the provisioning problem. Some of these are discussed in Chapter 13, 
JRockit Virtual Edition.

Threads
This tab shows a table where each row corresponds to a thread. The tab has more 
to offer than first meets the eye. By default, only the start time, the thread duration, 
and the Java thread ID are shown for each thread. More columns can be made visible 
by changing the table properties. This can be done either by clicking on the Table 
Settings icon, or by using the context menu in the table.
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As can be seen in the example screenshot, information such as the thread group  
that the thread belongs to, allocation-related information, and the platform thread  
ID can also be displayed. The platform thread ID is the ID assigned to the thread by 
the operating system, in case we are working with native threads. This information  
can be useful if you are using operating system-specific tools together with JRA.

Java Locks
This tab displays information on how Java locks have been used during the 
recording. The information is aggregated per type (class) of monitor object.  
For more information regarding the different kind of locks, please refer to  
Chapter 4, Threads and Synchronization. 
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This tab is normally empty. You need to start JRockit with the system property 
jrockit.lockprofiling set to true, for the lock profiling information to be 
recorded. This is because lock profiling may cause anything from a small to a 
considerable overhead, especially if there is a lot of synchronization.

With recent changes to the JRockit thread and locking model, it would 
be possible to dynamically enable lock profiling. This is unfortunately 
not the case yet, not even in JRockit Flight Recorder.
For R28, the system property jrockit.lockprofiling has been 
deprecated and replaced with the flag -XX:UseLockProfiling.
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JVM Locks
This tab contains information on JVM internal native locks. This is normally useful 
for the JRockit JVM developers and for JRockit support.

Native locks were discussed to some extent in Chapter 4. An example 
of a native lock would be the code buffer lock that the JVM acquires 
in order to emit compiled methods into a native code buffer. This is 
done to ensure that no other code generation threads interfere with 
that particular code emission.

Thread Dumps
The JRA recordings normally contain thread dumps from the beginning and the 
end of the recording. By changing the Thread dump interval parameter in the JRA 
recording wizard, more thread dumps can be made available at regular intervals 
throughout the recording.
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Latency
The latency tools were introduced as a companion to JRockit Real Time. The 
predictable garbage collection pause times offered by JRockit Real Time made 
necessary a tool to help developers hunt down latencies introduced by the Java 
application itself, as opposed to by the JVM. It is not enough to be able to guarantee 
that the GC does not halt execution for more than a millisecond if the application 
itself blocks for hundreds of milliseconds when, for example, waiting for I/O.

When working with the tabs in the Latency tab group, we strongly recommend 
switching to the Latency perspective. The switch can be made from the menu 
Window | Show Perspective. In the latency perspective, two new views are 
available to the left—the Event Types view and the Properties view. The Event 
Types view can be used to select which latency events to examine and the 
Properties view shows detailed information on any selected event.
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Similar to in the GCs tab, at the top of all the latency tabs is the Range Selector. The 
range selector allows you to temporarily select a subset of the events and only examine 
this subset. Any changes either to the Event Types view or the range selector will be 
instantly reflected in the tab. The graph in the backdrop of the range selector, normally 
colored red, is the normalized amount of events at a specific point in time. The range 
selector also shows the CPU load as a black graph rendered over the event bars. It is 
possible to configure what should be displayed using the range selector context menu.

The operative set is an important concept to understand when examining latencies 
and subsets of latencies. It is a set of events that can be added to and removed from, 
by using the different tabs in the latency tab group. Think of it as a collection of 
events that can be brought from one tab to another and which can be modified using 
the different views in the different tabs. Understanding and using the operative set is 
very important to get the most out of the latency analysis tool.

Overview
The Overview tab provides an aggregated view of the latency events in the 
recording. At the top, just under the range selector, the Latency Threshold used 
during the recording can be seen. As potentially very large volumes of data can be 
recorded, the Latency Threshold is normally used to limit the amount of events so 
that only the ones longer than a certain threshold are actually recorded. The default 
is to only record latency events that are longer than 20 milliseconds.

A latency event is any time slice longer than a preset value that 
the JVM spends not executing Java code. For example, it may 
instead be waiting for data on a socket or performing a phase of 
garbage collection that stops the world.

The Event Types histogram and accompanying pie chart show breakdowns per 
event type. This is useful to quickly get a feel for what kind of events were recorded 
and their proportions. Note that the pie chart shows the number of events logged, not 
the total time that the events took. A tip for finding out where certain types of events 
are occurring is to use the context menu in the Event Types histogram to add the 
events of a certain type to the operative set. This causes the events of that type to be 
colored turquoise in the range selector.
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Another tip is to go to the Traces view and click on Show only Operative Set, to see 
the stack traces that led up to the events of that particular type.

Log
The latency Log tab shows all the available events in a table. The table can be used 
for filtering events, for sorting them, and for showing the events currently in the 
operative set. It is mostly used to quickly sort the events on duration to find the 
longest ones. Sometimes, the longest latencies may be due to socket accepts or 
other blocking calls that would actually be expected to take a long time. In such 
cases, this table can be used to quickly find and remove such events from the 
operative set, concentrating only on the problematic latencies.
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Graph
The latency Graph tab contains a graph where the events are displayed, aggregated 
per thread. In the following example, we only show the events from the Java and 
Garbage Collector event types. The normal rendering procedure for the graph is that 
each event producer gets its own per-thread lane where the events for that particular 
producer are displayed. For each thread, only one event can occur in a lane at any 
given time. Garbage collection events are drawn in a slightly different way—they are 
always shown at the top of the latency event graph, and each GC is highlighted as 
a backdrop across all the other threads. This is useful for seeing if a certain latency 
event was caused by a garbage collection. If part of a lane in the latency graph is 
green, it means that the thread is happily executing Java code. Any other color means 
that a latency event is taking place at that point in time. To find out what the color 
means, either hover the mouse over an event and read the tooltip, or check the colors 
in the Event Types view.

The latency Graph can also show thread transitions. The application in the next 
screenshot has an exaggerated pathological behavior, where all threads in an 
application are sharing a logger through a static field, and where the logger is  
using a synchronized resource for writing log data. As can be seen, the worker 
threads are all waiting on the shared resource. The worker threads that are there  
to execute parts of the work in parallel, rely on the shared logger. This actually 
causes the entire application to execute the work in a sequential fashion instead.
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If you see an event that you want to get more information on, you can either select it in 
the graph and study it in the properties view, hover the mouse pointer over it and read 
the tooltip that pops up, or add it to the operative set for closer examination in one of 
the other views.

To summarize, the Graph view is good for providing an overview of the latency and 
thread behavior of the application.

Threads
The Threads tab is basically a table containing the threads in the system, much 
like the threads tab in the Management Console, as described in Chapter 7. The most 
useful properties in this table tend to be the event Count and the Allocation Rate 
per thread.

This view is mainly used to select a specific thread, either based on an attribute, such 
as the one with the highest allocation rate, or for finding a specific thread by name. 
The operative set is then used to select the events for that particular thread, so that 
the events can be studied in the other views. Sets of threads can also be selected.
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Traces
This is where the stack traces for sets of events get aggregated. For instance, if the 
operative set contains the set of allocation events for String arrays, this is the tab 
you would go to for finding out where those object allocations take place. In the  
next example, only the traces for the operative set are visible. As can be seen, the 
Count and Total Latency columns have bar chart backdrops that show how much 
of the max value, relative to the other children on the same level, the value in the  
cell corresponds to. Everything is normalized with respect to the max value.

Normally, while analyzing a recording, you end up in this tab once you have used 
the other tabs to filter out the set of events that you are interested in. This tab reveals 
where in the code the events are originating from.
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Histogram
This very powerful tab is used to build histograms of the events. The histogram can 
be built around any event value. A few examples of useful ones are:

•	 Object Allocation | Class Name: For finding out what types of allocations 
are most common

•	 Java Blocked | Lock Class: For finding out which locks are most frequently 
blocking in the application

•	 Java Wait | Lock Class: For finding out where the application spends the 
most time in wait()

Once the interesting events have been found, they are usually added to the operative 
set and brought to another tab for further investigation.

Using the Operative Set
Sadly, one of the most overlooked features in JRA is the operative set. This example 
will explain how the operative set can be used to filter out a very specific set of events 
to solve a specific problem. In this example, we have been given a JRA recording from 
another team. The team is unhappy with the garbage collections that take place in an 
application. Garbage collections seem to be performed too frequently and take too long 
to complete. We start by looking at the GCs tab in the Memory section.
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The initial reaction from examining the garbage collections is that they are indeed quite 
long, tens of milliseconds, but they do not happen all that often. For the duration of 
the recording only five GCs took place. We could probably ask the clients to switch 
to deterministic GC. This would cause more frequent but much shorter garbage 
collections. However, as we are curious, we would like to get back to them with more 
than just a GC strategy recommendation. We would still like to know where most of 
the pressure on the memory system is being created.

As this is an example, we'll make this slightly more complicated than necessary, just 
to hint at the power of JRA. We switch to the latency data thread tab and look for the 
most allocation intensive threads. Then we add these events to the Operative Set. It 
seems that almost all allocation is done in the top three threads.
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We have now added all the events for the three threads to our Operative Set, but 
we are only interested in studying the allocation behavior. In order to do this, we 
move to the Histogram tab and build a histogram for the allocation events in our 
Operative Set.

Note that object allocations are weird latency events, as we are normally not 
interested in their duration, but rather the number of occurrences. We therefore sort 
them on event count and see that most of the object allocation events in our three 
threads are caused by instantiating Strings. As we're eager to find out where these 
events take place, we limit the operative set to the String allocation events.
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We proceed to the Traces view with our trimmed Operative Set, and once again 
check the Show only Operative Set button.

We quickly see that almost all the String instances in our three most allocation-
intensive threads are allocated by the same method  
—readPaddedASCIIString(char [], int). If we also add char arrays, 
we can see that the char arrays are mostly created as a result of allocating 
the String objects in the same method. This makes sense as each String 
wraps one char array.

We can now recommend the team not only to change GC strategies, but we can also 
say for sure, that one way to drastically reduce the pressure on the memory system in 
this particular application would be to either create less strings in the method at the 
top in the Traces view, or to reduce the number of calls along the path to that method.
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Troubleshooting
Sometimes, there will be no data in the Code | Hot methods tab, even if the method 
sampling was enabled. The most common reason is that the application did not 
generate enough load to provide the method sampler with data. The method sampler 
only samples threads that are actively running Java code. If the recording is short 
and the threads are spending most of their time waiting and doing nothing, chances 
are that no samples will be recorded at all. If you aren't profiling a production 
system, try to stress your application during profiling, if possible in a manner that  
is close to the real deployment scenario.

When using native method sampling, all samples will be stored. Normally, only 
the samples for threads executing Java will be stored. Don't be surprised if you 
find almost all of the native samples to be in some native method, such as ntdll.
dll#KiFastSystemCallRet, even when the system is mostly idle.

Summary
In this chapter, we showed how to use the JRockit Runtime Analyzer to analyze  
the behavior of the JRockit runtime and the application running in JRockit.

We showed various different ways to create recordings. We also discussed  
the information available in JRA recordings with examples.

Several use cases were demonstrated, such as:

•	 How to find methods that would make good candidates for manual 
optimization, also known as hot spots

•	 How to interpret memory-related information, such as the live set, garbage 
collection-related information, fragmentation, the object summary, and the 
heap histogram

•	 How to hunt down latency-related problems

We also provided an example on how to use the Operative Set in the latency 
analyzer to quickly narrow down the amount of data being studied and to  
focus on the data of interest.

The next chapter covers JRockit Flight Recorder, which has superseded JRA as of 
JRockit R28 and JRockit Mission Control 4.0. Most of what has been covered in this 
chapter works in similar ways and is still applicable. 





The Flight Recorder
The overhead of using JRA proved so low that we started considering the notion of 
always having it enabled when the JVM is running. The project to implement such a 
recording engine was internally first known as continuous JRA. In the R28 version 
of JRockit, this has finally been productized and named JRockit Flight Recorder.

As near-zero overhead data is continuously stored about JVM behavior, the 
JRockit Flight Recorder allows us to go back in time and analyze the behavior of 
the application and the JVM even after something has gone wrong. This is a very 
powerful feature for JVM and application forensics—the recording being the "black 
box" that contains information on all events leading up to a problem. Naturally, the 
framework still works well as a profiling and instrumentation tool, which will likely 
remain the most common use case.

In this chapter, you will learn:

•	 How JRockit Flight Recorder works
•	 About the Flight Recorder event model
•	 How to start a continuous recording
•	 How to start a JRA-style recording
•	 How recordings interact in JRockit Flight Recorder
•	 How to configure the various aspects of JRockit Flight Recorder
•	 The main differences between JRockit Flight Recorder and the JRockit 

Runtime Analyzer
•	 How to record custom events
•	 How to design custom extensions to the JRockit Flight Recorder client
•	 About future tools, APIs, and projects around JRockit Flight Recorder
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The evolved Runtime Analyzer
Just like the JRockit Runtime Analyzer, the JRockit Flight Recorder consists of two 
parts—a recording engine built into the JRockit JVM and an analysis tool built into 
the JRockit Mission Control client. The recording engine produces a recording file 
that can be analyzed. The file does not require an active connection; the format is self 
describing, that is, all metadata that the recording needs is part of the recording and 
can be saved for later or sent to a third party for further analysis.

Throughout this chapter, we will use the terms JRockit Flight 
Recorder and Flight Recorder interchangeably.

With JRockit Flight Recorder, recordings are no longer in XML format. Everything  
is recorded as time-stamped events in internal memory buffers and written to a 
binary file, which constitutes the recording. There is also a public Java API available 
for providing custom events to the JRockit recording engine, and a design mode 
that allows the creation of custom designed user interfaces from within the analysis 
tool itself.

Recall from Chapter 8, The Runtime Analyzer, that a JRA recording is 
in XML format and the files are suffixed .jra. With Flight Recorder, 
the files are suffixed .jfr and are in a binary format. Because of 
the immense amount of events produced, there is a need to avoid 
unnecessary overhead and consequently to store events in a more 
compact way. JRA recordings are not forward-compatible and cannot 
be opened with JRockit Flight Recorder.

A word on events
As mentioned, data is recorded as events. An event is simply data recorded at a 
specific time.

There are four different types of events:

•	 Duration events: Duration events are events that last over a duration of time 
or, in other words, events with a start time and an end time. The Garbage 
Collection event is an example of a duration event.

•	 Timed events: The timed events are duration events for which a threshold 
can be set. The concept of a threshold is discussed in detail later in this 
chapter. The Java Wait and Java Sleep events are examples of timed events.
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•	 Instant events: Instant events have no duration, only a start time. The 
Exception and the Event Settings Changed events are examples of instant 
events.

•	 Requestable events: Requestable events can be configured to be polled 
periodically by the recording engine. The event implements a callback that 
a separate thread in the recording engine will call at specified intervals. An 
example of a requestable event is the CPU Load Sample event.

Events are produced by event producers. An event producer defines the types of 
events being produced, also known as event types, as well as the actual events. An 
event type contains metadata that describes how the events of that type will look. 
The metadata contains information such as what attributes (also known as fields) the 
event contains, of what types the attributes are, and human-readable descriptions of 
the attributes. Every recording file contains information about its event producers.

An event producer with the imaginative and thought-provoking name "JRockit JVM" 
is already built into JRockit. The main advantage of the JRockit JVM producer, just 
as with JRA, is that it cheaply records information that the runtime already needs 
to collect as part of doing its job. Using the Java API, which will be discussed later, 
anyone can contribute events to bring additional context to the lower level events 
created by the JRockit JVM producer.

The recording engine
The recording engine, also known as the recording agent, is part of the JVM itself 
and provides highly optimized services for the event producers. A few examples are:

•	 A recording facility: Of course, the main purpose of the recording engine 
is to record events. It does this highly efficiently by providing thread local 
buffers where the events are recorded and a scheme to transfer these to a 
global buffer when the thread local buffers are full. Once the global buffer is 
full, it is either emitted to disk in the previously mentioned compact binary 
format, or reused in a circular fashion depending on the configuration. See 
the next figure.

•	 Stack traces: If the event producer sets the appropriate options, the stack 
trace that generated the event will be recorded along with the event.  
This is useful for finding where, in the source code of a Java application,  
an event originated.

•	 Threshold: The recording engine can be configured to only include duration 
events that last longer than a specified amount of time. This is used to both 
limit the amount of data in the recording, and to filter out data that would be 
of no interest anyway. The threshold can be configured per event type.
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•	 Highly optimized time stamping of events: As was briefly discussed in 
Chapter 5, Benchmarking and Tuning, using System.currentTimeMillis() 
for getting the system time can be a much more expensive operation than 
one would think. The recording engine provides a highly optimized native 
implementation for timestamping events.

As JRockit R28 is released as part of a patch release of the application 
stack, it was decided that enabling the default recording was too 
big a change. The recording engine is enabled in R28, but there is 
no recording running from the start of the JVM. Both the recording 
engine and the JRockit JVM event producer have been designed and 
tested for always being enabled. As a matter of fact, all of the testing, 
including the stress testing of JRockit R28, was performed with the 
default recording enabled. The default recording will most likely be 
enabled out of the box in future releases of JRockit.

Ongoing recordings in the JVM have an associated recording ID, which is unique, 
and a recording name, which does not have to be. The recording ID is automatically 
assigned to the recording when it is created, and can be used for identifying a 
recording. The recording ID can, for example, be used when referring to a  
recording from JRCMD.

To enable the Flight Recorder and to configure it to continuously record data with 
the default settings, simply start JRockit with the following option:

-XX:FlightRecorderOptions=defaultrecording=true
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This will create a recording with recording ID 0 and the name JRockit default.

There can be an arbitrary amount of recordings running in JRockit Flight Recorder 
at any given time. If more than one recording is active, the recorded data will contain 
events from the union of the enabled event types and use the threshold found for 
each type. For users new to the Flight Recorder, this can be quite confusing, as there 
may actually be more events in the recording than asked for.

To configure the engine to record more detailed information, you can either change 
the event settings of the default recording, or start a new recording with different 
settings. To record less information, the event settings of any ongoing recording 
must be changed.

Startup options
There are various ways to configure the different aspects of the recording engine, 
some of which are only available from the command line when starting the JVM.

There are two main command-line parameters. As previously mentioned, the first 
one turns on (+) or off (-) the Flight Recorder altogether:

-XX:[+|-]FlightRecorder

The second is for controlling the Flight Recorder:

-XX:FlightRecorderOptions=parameter1=value1[,parameter2=value2] 

The available parameters are:

Parameter Description
settings=[name|filepath] Loads additional event settings from this server-

side template. The default templates available under 
JROCKIT_HOME/jre/lib/jfr can be referred to by 
name. More information on server-side templates is 
available after this table.

repository=[dir] The base directory where the Flight Recorder will emit 
chunks of data. This can be seen as the temporary 
directory of the Flight Recorder. The default is a 
directory under java.io.tmpdir with a name 
generated in the format yyyy_mm_dd_hh_mm_ss_
pid. For example, a repository created at the time 
of writing for a process with a process ID of 4711 
would have the repository base directory name 
2010_04_21_16_28_59_4711. 
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Option Description
threadbuffersize=[size] The size to use for the thread local buffers. The default 

is 5 KB.
globalbuffersize=[size] The size to use for a single global buffer. The default is 

64 KB.
numglobalbuffers=[num] There may be more than one global buffer. This sets the 

number of global buffers to use. The default is 8.
maxchunksize=[size] The maximum size of a single data chunk in the 

repository. The default is 12 MB.
continuous=[true|false] Enable the default continuous recording, that is the 

built-in continuous recording with recording ID 0. 
This does not enable or disable continuous recording 
as a concept. No matter what value this attribute has, 
continuous recordings can still be started from JRockit 
Mission Control as long as the Flight Recorder engine 
itself is enabled. As mentioned, the default recording is 
disabled in JRockit R28.0, but is likely to be enabled by 
default in future versions of JRockit.

disk=[true|false] Emit data to disk. This is disabled by default, meaning 
that circular in-memory buffers will be used instead. 
The contents of the buffers can be dumped to disk, 
either from Mission Control or by using JRCMD.

maxage=[nanotime] Defines the maximum age of the data kept on disk. 
Data younger than this is retained. The time is specified 
in nanoseconds by default. The default value is 0, 
which means the age check is ignored and that all data 
is retained.

maxsize=[size] The maximum size of the data to keep on disk. The 
default value is 0, which means the size check is 
ignored.

When using either JRCMD or the command-line options, specifying what 
information will actually be recorded is done through JSON-based template files.  
The JRockit distribution comes with several example templates available under 
JROCKIT_HOME/jre/lib/jfr. These templates are also known as server-side 
templates, as they differ from the ones used by the JRockit Mission Control client. 
The templates in the JRockit distribution serve as good examples, should you want  
to create your own server-side template.
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An in-depth discussion on the server-side templates is beyond the 
scope of this book. See the example templates for further information 
on server-side templates and Chapter 11, JRCMD, for information 
about using JRCMD to control the recording life cycle.

Starting time-limited recordings
Just like with JRA, it is possible to use command-line options to start  
time-limited recordings. In the Flight Recorder, the parameter is called –
XX:StartFlightRecording. This parameter is useful when wanting to do 
several recordings and compare them. It is for instance possible to delay a  
recording to give the application and the JVM time to warm up. The following 
example starts a recording after two minutes. The recording will last for one minute 
and will be named MyRecording. The resulting recording file ends up as C:\tmp\
myrecording.jfr. Just like with -XX:FlightRecorderOptions, 
a server-side template can be referred to by name. The example uses the  
profile.jfs template.

-XX:StartFlightRecording=delay=120s,duration=60s, 
  name=MyRecording,filename=C:\tmp\myrecording.jfr,settings=profile

See the command-line reference for JRockit R28 for more information 
about the available parameters to the StartFlightRecording option.

The rest of this chapter focuses on using the JRockit Mission Control client for 
controlling the Flight Recorder and for viewing recordings.
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Flight Recorder in JRockit Mission  
Control
The easiest way to both control the life cycle of recordings and transfer whole or 
parts of recordings to JRockit Mission Control, is to do everything from inside the 
JRockit Mission Control client.

Starting a JRA-style time-bound recording is quite similar to how it was done in 
previous JRockit versions, using JRA—simply right click on the JVM in the JVM 
Browser, and then click on Start Flight Recording....

In JRockit Mission Control 4.0, two things will happen:

1. The Start Flight Recording wizard dialog box will open.
2. The Flight Recorder Control view will open.

The Flight Recorder Control view is new for JRockit Mission Control 4.0. It shows the 
recordings available for one or more connections, and can also be used for controlling 
the recordings. It is quite useful for checking if any recordings are already running in 
the JVM. In the following screenshot, the continuous recording is already running:
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Similar to JRA, this wizard contains a few built-in templates to choose from, and if 
none of the provided templates records the information of interest, new templates 
can be created. These templates differ from the server-side templates in that they are 
fully resolved (no wildcards anywhere), and in that they support metadata for the 
user interface.

The default built-in client-side templates are:

•	 Default Profiling: A good, general-purpose profiling template with low 
profiling overhead.

•	 Profiling with Locks: Same as the previous one, but with lock profiling 
enabled. This requires the JRockit instance that is to be profiled to be started 
with -XX:+UseLockProfiling. This, in turn, causes some additional 
overhead, even when not recording.
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•	 Profiling with Exceptions: Same as the Default Profiling template, but with 
exception profiling enabled. For most applications, the overhead of this 
template will not be different from that of the Default Profiling template. 
However, for some pathological applications, where a large number of 
exceptions are thrown, the overhead can be considerable.

•	 Real-Time: Focuses on garbage collection related events, but leaves out some 
of the most resource hungry events.

Worth noting is that both the default client-side and server-side templates omit  
exception events by default, as it is difficult to estimate their performance impact  
on a pathological application. To include exception profiling, select the built-in 
Profiling with Exceptions template. Exception profiling will be further discussed 
later in this chapter.

Once a suitable template is selected, a destination file must be specified, and an 
appropriate name chosen. Some event producers, such as the ones from the WebLogic 
Diagnostics Framework, have their own recordings running. In a large system, there 
can be quite a few recordings running in parallel. Naming the recording properly will 
make it easier to find it later.

Not only the JVM can record events in the Flight Recorder. There 
are already event producers for the Oracle WebLogic Diagnostics 
Framework (WLDF) and the Oracle Dynamic Monitoring System 
(DMS). We expect more Oracle products to provide producers in 
the future, such as JRockit Virtual Edition.

It is possible to perform either a time-limited recording or a continuous one. For a 
time-limited recording, a duration must be chosen. In order to limit the resource 
usage of continuous recordings, it is possible to limit the amount of data to store, 
either by time, size, or both.

Once the recording wizard is filled out, clicking on Continue will start the recording.
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The Flight Recorder Control view is updated to show the newly started recording. 
For time-limited recordings, the remaining time until the recording is done is shown 
and periodically updated. Continuous recordings show an infinity (∞) sign instead of 
the remaining time.

Note that there is a table settings action (  ) in the toolbar of the Flight Recorder 
control view. The table can be configured to show more information, if needed.

For a time-limited recording, the recording will be downloaded automatically once it 
is complete.

As can be seen in the previous screenshot, recordings are left on the server by default 
when completed, even after they have been downloaded. In the screenshot, My 
Recording has just been downloaded. It is also displayed as being finished (  ) in 
the Flight Recorder Control view, with no time remaining. Such finished recordings 
can be removed by right clicking on the recording in the Flight Recorder Control 
view and then clicking on Close.
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As mentioned, it is possible to see the recording activities of more than one JVM at a 
time in the Flight Recorder Control view. To add a connection to monitor, simply right 
click on the connection in the JVM Browser and then click on Show Recordings. The 
following screenshot shows the recordings for three different JVMs at once:

To use the control view to dump data from an ongoing recording, simply right click 
on it and select Dump.... This brings up the Dump Recording dialog, as shown in 
the following screenshot:
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There are three different ways to select what part of the recording to dump:

•	 Whole recording: Dumps all available data.
•	 Last part of recording: Dumps the last data in the recording, given a 

specified period of time. Note that it is possible to get more data than was 
specified, as only whole data chunks will be dumped.

•	 Interval of recording: Dumps recording data for a specified interval of 
time. Note that the time is specified in server time. If the client is running in 
Stockholm and the server in Tokyo, make sure you specify the correct time.  
If there is no data within the specified time, an error message is displayed.

Again, what is actually dumped may be more than you were asking for. 

The data is dumped in whole data chunks of a fixed size. Each chunk of data 
contains a constant pool that the events in the chunk use to resolve the data. For 
instance, there is a pool containing the stack traces for the events. When an event 
contains a stack trace, the event will refer to the stack trace by index in the pool. This 
way, the format can be streamed and used on a per-chunk basis, each chunk being 
self-contained.

Advanced Flight Recorder Wizard concepts
The Flight Recording Wizard lets you create custom templates. Clicking on the 
Advanced... button next to a template name brings up a dialog box where the 
template settings can be edited.
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To the left in the wizard is an event type tree similar to the one in the Event Types 
view. Selecting a parent node will allow the settings to be changed recursively 
for all the descendants of that node. If there are different settings for the different 
children, no value is shown for that of the parent node. For example, in the previous 
screenshot, the settings for the events under the Java Application node vary, so no 
values are shown for the Request Period and Threshold. Also, it would seem that 
some events in the selection are disabled as well, as there is no check mark in the 
check box for Enabled. To enable all of the Java Application events, click on the 
Enabled check box.

In our example, the check box under the event type tree has been unchecked to allow 
event types that are not a part of the current template to be shown. Nodes with 
children that are part of a template are rendered in a bold faced font. Consequently, 
we can see that no event types under Log are part of the current template.

The event types shown in the tree depend both on what application is running in the 
JVM (the application may also utilize the Flight Recorder API) and on the settings in 
the template. This allows the user to change settings for event types originating in 
producers other than the default JRockit JVM producer. In the following example,  
an event producer with event types with a path beginning with Log is available in 
the running JVM.

Updating the settings for event types will make them bold, indicating that they are 
now part of the template.
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It is possible to import server-side templates from the advanced wizard. A good 
idea when doing so is to first clear the template from any interfering settings. To 
clear the template of all settings, click on the Clear button. The import functionality 
is additive, as the server-side templates are meant to be used in an additive fashion. 
This means that it is possible to, for example, start out with the settings for a default 
recording and then add lock profiling, by first importing the default template, and 
then importing the locks template. The next screenshot shows the import dialog:

Entering the advanced dialog creates a temporary working copy of the template. 
Clicking on OK will save the settings to this temporary copy. An asterisk (*) next to 
the template name indicates that the copy has not yet been stored. If the changes to 
the template were done for only this particular recording, the template changes need 
probably not be stored.
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Simply clicking on OK in the Start Flight Recording dialog box allows the recording 
to commence without the template first being saved. The template will be available for 
the rest of the session, but gone the next time that JRockit Mission Control is started.

To save the template and give it a name and description, click on Save….

Once the recording is saved, it can be reused, even on JVMs that do not support all 
the event types for which the template has settings. For instance, when connecting 
to a JVM not supporting the log event types, a template containing settings for the 
log event types will render the log event types in italics, as shown in the following 
screenshot. As the template can be applied anyway, it is easy to store your favorite 
settings for a lot of different producers and scenarios in a small set of templates. 

Differences to JRA
Due to the change to an event-based data model, some things are radically different 
compared to JRA. For instance, almost every tab now has a range selector. As 
everything now is an event, it almost always makes sense to be able to filter out data 
for a specific period of time. Another major change is that the data in general is much 
more fine-grained and there is a large number of new data sources.

We will discuss some of the more fundamental differences in detail.
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The range selector
The following screenshot shows the General | Overview tab in the Flight Recorder 
GUI. This can be compared with the way it looked in JRA, as introduced in Chapter 8, 
The Runtime Analyzer.

As mentioned, the range selector (available at the top of the window) can now be 
found in almost every tab in the Flight Recorder. The backdrop for the range selector 
in a tab normally shows the amount of events active during the time of recording for 
the events used in that particular tab. For example, the Overview tab uses various 
heap, garbage collection, CPU usage, and general information events.
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One effect of the event-based data model is that it is possible to select a range that 
does not include an event where such data is available. Recall from Chapter 8 that 
some of the general information is written at the end of the recording. In the Flight 
Recorder, some events are written at the end of a chunk. If a range is selected that 
does not include the needed event, N/A is displayed, as shown in the following 
screenshot. Thus, care should be taken when modifying the range so that events  
of interest are actually included for the active view.

As the range selector is used in so many places, it is now possible to synchronize 
the selected range between all range selectors in all tabs. Check the Synchronize 
Selection check box to make the other range selectors follow the selection made.

Just as before, in JRA, the Operative Set will be highlighted in turquoise if any of the 
events are added to the Operative Set.
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The Operative Set
The Operative Set has also been improved. It is now possible to manipulate the 
Operative Set from most views, even the ones mimicking the old JRA-style tabs.

In the screenshot, we are adding the code samples found in the javax.swing 
package that, in this case, is the hottest package to the operative set. The 
corresponding events are highlighted in the range selector.

The relational key
Event attributes can now have a relational key. The relational key is globally unique, 
and is used to associate events of different types with each other. One such example 
is the GCID of the GC events. The GCID is specified to have the relational key 
http://www.oracle.com/jrockit/jvm/vm/gc/id. This makes it easy to find all 
events that are related to a specific garbage collection.



JRockit Flight Recorder

[ 352 ]

The relational key is on an URI format, much like name spaces in XML.

The user interface provides menu alternatives on the Operative Set context menu for 
events having attributes with relational keys. In the next screenshot, we do this for 
garbage collection number 239: 

Third-party event producers use the relational key to associate events across 
producers. For instance, WLDF and DMS use the Execution Context ID (ECID) 
relational key to associate events across probes and producers all over WebLogic 
Server. It is, for example, possible to add all the events associated with a certain 
database call to the Operative Set.

These producers also provide relational keys for other attributes. The following 
example screenshot uses the experimental WebLogic Tab Pack to illustrate this by 
adding all the events with a matching SQL statement to the operative set.
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The experimental plug-ins used in some of the examples in this book, 
such as the WebLogic Tab Pack, are only available for JRockit Mission 
Control 4.0.1 or later. Chances are that this book is published before 
the release of 4.0.1, and that the plug-ins will not be available for a little 
while. The good news is that the experimental plug-ins are available 
for download from within the JRockit Mission Control 4.0.1 GUI. As 
soon as version 4.0.1 (or later) of Mission Control is out, the authors' 
advice is to upgrade immediately. 
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What's in a Latency?
Now that everything is an event, it is no longer wise to assume that all events are 
latency-related, as was the case in JRA. By latency-related, we mean any event 
directly involved in stalling the execution of a thread. There are specific tabs in the 
Flight Recorder GUI that deal with latency-related events, and latency-related Java 
events may still be used in a fashion similar to the old latency analyzer in JRA.

The Events tab group now contains general-purpose tabs for visualizing events, 
similar to how the Latency tab group was used in JRA. The following screenshot 
shows a synchronization problem:

 

If only the Java Application events are selected in the Event Types view, the result 
will be very similar to the way things looked in the old latency analyzer in JRA.
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The specialized tabs related to latencies can be found under the CPU | Threads tab 
group. There are new tabs in the Flight Recorder that aggregate the latency-related 
events in several interesting ways. The Latencies tab will, for instance, show an 
aggregation per event type, and the aggregated stack traces for the selected event type. 
In the next example, which is a recording from the Java 2D demo shipped with the 
JDK, we can see that the threads are mostly halted by (explicit/voluntary) sleeps.

This is as would be expected, as there is probably a lot of thread sleeps going on 
between each rendering pass in the rendering loops. Note that the pie chart to the left 
is based on the event count, and not on the max duration, on which the table is sorted.

In Mission Control 4.0.0, the pie chart is bound to a pre-defined 
column. It is possible to change which column by using the design 
mode, as is explained later in this chapter. In the next minor version 
of the Flight Recorder, we're exploring the option to bind the pie 
chart to whichever numerical column was sorted last.
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The Contention tab, introduced in JRockit Flight Recorder, is specialized for showing 
the Java Blocking (threads blocked, waiting on acquiring monitors) events. In the 
example recording from WebLogic Server shown in the next screenshot, we can see 
that the longest total time a thread had to wait for acquiring a monitor was spent 
waiting on an instance of weblogic.servlet.internal.HttpServer, trying to 
execute the method loadWebApp(…).

It is also possible to see which threads were blocked the most, as well as which 
threads were blocking other threads the most.

Just like in JRA, it is possible to enable very detailed lock profiling, and just 
like in JRA, lock profiling comes with a small additional runtime overhead, 
even when not recording. To enable lock profiling, start JRockit with the flag 
-XX:+UseLockProfiling and use the Profiling with Locks template. More 
information on the lock profiling flags was given in Chapter 4, Threads 
and Synchronization.
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Exception profiling
In JRA, the only available exception profiling information was the total number 
of exceptions being thrown. The only way to correlate that to where in the code 
the exceptions were thrown, was to change the log settings for the JVM to enable 
the logging of exceptions. For example, through JRCMD or by restarting the JVM 
with –Xverbose:exceptions=debug, and then checking the output. With the Flight 
Recorder, there are now events containing the necessary information, and a tab that 
allows for easy browsing. Remember to use the Profiling with Exceptions template 
when creating a recording that is to use exception profiling. The tab is located under 
Code | Exceptions.
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In the example recording from the Java 2D demo, we can see that most of the 
exceptions are InterruptedExceptions thrown from java2d.AnimatingSurface.
run(). The range selector shows us two main bursts of exceptions, one at the 
beginning of the recording and one at the end. The burst of exceptions at the 
beginning of the recording is mostly due to ClassCastExceptions, and the burst at 
the end is due to NoSuchMethodExceptions. This can easily be determined by using 
the range selector to home in on the peaks, as shown in the following screenshot:

The Java 2D demo does not throw that many exceptions, so the exception data in 
the recording merely serves as an example on how to use the user interface. If an 
application throws more than several hundred exceptions per second, the cause 
should be investigated.
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Memory
Even though the memory tabs, and the information in them, are quite similar to the 
old JRA layout there are a few things worth pointing out.

In the Memory | Overview tab, the Total Physical Memory and Used Physical 
Memory both refer to the physical memory on the machine and not the Java process! 
In the Java2D Demo recording earlier, the recording was done on a machine with 4 
GB of physical memory, and at the point of recording, approximately 2.2 GB was in 
use. The committed Java heap was as small as 128 MB, as can be seen from both the 
graph and the GC Configuration section part. To see graphs of the Java heap usage, 
use the Heap Contents tab.
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In the Heap Contents tab are two graphs, one focusing on the contents of the heap, 
and one focusing on how the free space of the heap is distributed. Worth noting in 
the Heap Contents tab, is that what was previously referred to as dark matter is now 
called Fragmentation, which is a more descriptive name.

The used memory is simply rendered grey in the Free Memory Distribution chart, 
with a line delimiting the used and fragmented parts. The charts in the example 
show a very healthy heap, with lots of free memory and with fragmentation under 
control. In the following screenshot, most of the free contiguous heap blocks are 
huge. If the heap were instead made up of a lot of smaller free blocks, an allocation 
of, for example, a large array would fail and cause the garbage collector to need to 
perform costly compactions and possibly stop the world.
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In the next screenshot, a recording from the memory leaking demo application 
further studied in Chapter 10 is shown. As can be seen, the live set is steadily 
increasing over time and the free parts of the heap are split into smaller free blocks:

Adding custom events
There is a simple Java API that can be used to contribute custom events to flight 
recordings. It is located under the package com.oracle.jrockit.jfr and is 
distributed as part of the JRockit JDK. It is located in the JRockit rt.jar.

The com.oracle.jrockit.jfr API is under development, and not 
currently supported outside Oracle. Some internal Oracle products, like 
WebLogic Server already use it to plug into JRockit Flight Recorder.

To create a custom event using the API, first decide what kind of event is needed. 
You may recall from the start of this chapter that there are four main event types. 
Depending on what kind of event is needed, a different event class will need to  
be extended. There are four different ones, each corresponding to a different kind  
of event:

•	 com.oracle.jrockit.jfr.InstantEvent

•	 com.oracle.jrockit.jfr.DurationEvent

•	 com.oracle.jrockit.jfr.TimedEvent

•	 com.oracle.jrockit.jfr.RequestableEvent
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Events can also be created dynamically, which will be discussed later.

Our next example creates a simple event that will be logged every time a hypothetical 
logging service is called. We choose to make this a timed event, as we want to know 
the duration of the logging calls. We also want to be able to set a threshold so that only 
the longest lasting events are logged.

Creating the event is easy. Following is the full source code:

import com.oracle.jrockit.jfr.EventDefinition;
import com.oracle.jrockit.jfr.TimedEvent;
import com.oracle.jrockit.jfr.ValueDefinition;

@EventDefinition(name = "logentry")
public class LogEvent extends TimedEvent {
  @ValueDefinition(name = "message")
  private String text;

  public LogEvent(String text) {
    this.text = text;
  }

  public String getText() {
    return text;
  }
}

To use the event from our Java application, we simply create a new event instance, 
and use it like this in our logging method:

public synchronized void log(String text) {
  LogEvent event = new LogEvent(text);
  event.begin();
  // Do logging here
  event.end();
  event.commit();
}

Before we can use the event, however, we need to create and register an event 
producer:

private static Producer registerProducer() {
  try {
    Producer p;
    p = new Producer("Log Producer (Demo)",
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      "A demo event producer for the demo logger.",
      "http://www.example.com/logdemo");
    p.addEvent(LogEvent.class);
    p.register();
    return p;
  } catch (Exception e) {
    // Add proper exception handling.
    e.printStackTrace();
  }
  return null;
}

The Producer reference that is returned needs to be kept alive for as long as we want 
the producer to be available.

That is really all that is needed. However, the previous code is not very efficient. 
Whenever one of our events is created, a lookup is implicitly made to find the 
corresponding event type. The addEvent() call when registering our event with our 
producer actually returns an event token that, if provided to the event constructor, 
avoids these global lookups altogether.

We would also like the recording engine to provide stack traces and thread 
information for each event. Also, to be a good event producing citizen, the event 
should be self documenting. Consequently, we modify the event slightly as follows:

import com.oracle.jrockit.jfr.EventDefinition;
import com.oracle.jrockit.jfr.EventToken;
import com.oracle.jrockit.jfr.TimedEvent;
import com.oracle.jrockit.jfr.ValueDefinition;

@EventDefinition(path = "log/logentry", name = "Log Entry", 
  description = "A log call in the custom logger.", 
  stacktrace = true, thread = true)
public class LogEvent extends TimedEvent {
  @ValueDefinition(name = "Message", description = 
    "The logged message.")
  private String text;

  public LogEvent(EventToken eventToken, String text) {
    super(eventToken);
    this.text = text;
  }

  public String getText() {
    return text;
  }
}
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This means we would need to save the event token when registering the producer:

static EventToken token;
static Producer producer;

static {
  registerProducer();
}

static void registerProducer() {
  try {
    producer = new Producer("Log Producer (Demo)", 
      "A demo event producer for the demo logger.", 
      "http://www.example.com/logdemo");
    token = producer.addEvent(LogEvent.class);
    producer.register();
  } catch (Exception e) {
    // Add proper exception handling.
    e.printStackTrace();
  }
}

And then use the stored event token like this:

public synchronized void log(String text) {
  LogEvent event = new LogEvent(token, text);
  event.begin();
  // Do logging here
  event.end();
  event.commit();
}

Also, if the event is guaranteed to only be used in a thread safe manner, the text 
attribute can be made writable, and the event instance stored and reused like this.

private LogEvent event = new LogEvent(token);

public synchronized void log(String text) {
  event.reset();//clear the instance for reuse 
  event.setText(text);
  event.begin();
  // Do logging here
  event.end();
  event.commit(); 
}
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The events are disabled by default. To start recording the events, remember to 
enable them in the template used to start the recording. It is also possible to enable 
the events programmatically by creating a recording with the event enabled. The 
following code snippet shows how to enable all events for a producer with the 
URI PRODUCER_URI (for our example, that would be http://www.example.com/
logdemo/) by creating a recording and then enabling the events for the recording:

FlightRecorderClient fr = new FlightRecorderClient();
FlightRecordingClient rec = fr.createRecordingObject("tmp");

for (CompositeData pd : fr.getProducers()) {
  if (!PRODUCER_URI.equals(pd.get("uri"))) {
    continue;
  }

  CompositeData events[] = (CompositeData[]) pd.get("events");
  for (CompositeData d : events) {
    int id = (Integer) d.get("id");
    rec.setEventEnabled(id, true);
    rec.setStackTraceEnabled(id, true);
    rec.setThreshold(id, 200);
    rec.setPeriod(id, 5);
    System.out.println("Enabled event " + d.get("name"));
  }
}

rec.close();
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Extending the Flight Recorder client
The Flight Recorder contains a GUI builder that allows anyone to modify the Flight 
Recorder user interface, as well as creating and exporting custom-designed user 
interfaces. This functionality was used by the Mission Control team to radically 
reduce development time and turn-around time for bugfixes when developing the 
Flight Recorder user interface.

The current GUI builder was designed by the JRockit Mission Control 
team to be "good enough" for Oracle internal use. It is not intended 
for use outside of Oracle in JRockit R28. Thus, using the GUI builder 
is unsupported in R28/4.0. We mean it! You are on your own. We are 
planning on supporting the GUI builder at some point, but the exact 
release date for this has not been decided yet.

Even though the GUI builder is unsupported, it can be quite useful for modifying the 
things you want to change the most in the user interface. It can also be used to add 
custom tabs for your own event producers. The best part is that any customizations 
can be exported directly from within the user interface. Such plug-ins can easily be 
shared with colleagues by simply dropping the plug-in into the JROCKIT_HOME/
missioncontrol/plug-in folder of a JRockit installation.

To gain access to the GUI builder, JRockit Mission Control must be started with 
the designer option, JROCKIT_HOME\bin\jrmc –designer.

This will enable the Designer View under the Window | Show View menu, as 
shown in the following screenshot. The view appears in the same view folder as  
the JVM Browser view and the Event Types view by default.
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Once a flight recording is opened, the Designer View enables switching back and 
forth between design mode and run mode.
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When in run mode, the only available operation is to stop the recording and enter 
design mode. To stop and enter design mode, simply click on the red rectangular 
stop button (  ).

When in the design mode, any part of the Flight Recorder user interface can be 
modified, even the tabs that were delivered as part of the Flight Recorder. This is 
quite powerful, but also means it is potentially very easy to mess up pretty much 
every part of the Flight Recorder user interface. Fortunately, it is simple to reset the 
user interface to factory settings. In Window | Preferences under Flight Recorder, 
there is a button for resetting the user interface.

Reverting to factory settings through the GUI is only available in 
JRockit Mission Control 4.0.1 or later. This can be accomplished in 
4.0.0 by erasing the <user.home>/.jrmc folder. However, this will 
unfortunately also erase any other custom JRockit Mission Control 
settings you may have.
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Once satisfied with the changes, press the play button (  ) to see how the changes 
play out in the recording. To add new tabs and tab groups, the recording must first be 
closed. This will change the design view to show a tree of available tabs, as illustrated 
in the next screenshot.

To add a new group, right click on the root and select New | New Group from the 
context menu. 
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The tab group Placement Path, in the Properties Tab Group, is used to determine 
where on the toolbar the tab group will appear. Two icons are needed—the smaller 
one is used when there is not enough space for the larger one.

New tabs are created by right clicking on the tab group under which the tab shall be 
created, and selecting New | New Tab.

To design the newly-created tab, first load a recording containing events of the kind 
you want to visualize. As an example, we will design a new tab for examining the 
total amount of memory allocation in the JVM.

First navigate to the tab to design. Since it currently is empty, it will be blank and 
show an Unknown Component message in the upper left corner.

Now, we take care of the layout of our tab. We want a standard range selector at the 
top, and a chart under the range selector.
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To add a space for a range selector at the top, do the following:

1. Vertically split the area by right clicking in the editor and selecting Vertical 
Split from the context menu.

2. Use the sliders in the Design View to set the minimum and maximum size of 
the topmost area to 100 pixels. All range selectors are exactly 100 pixels high.

Next, we want to add a chart to the large remaining area below the range selector. 
Right click on this area and select Assign Component | Graphics | Chart from 
the context menu. This brings up the chart configuration dialog box. To add a total 
allocation attribute to the chart, do the following:

1. Select the tab for the axis with which to associate the attribute. In this case, 
we select the Left Y Axis.

2. Select the Data Series tab to configure the data series that is to be shown.
3. Click the Add… button to open the attribute browser dialog box. For the 

4.0.0 version of JRockit Mission Control, all attributes are listed in a flattened 
hierarchy of event types (in human-readable form) with all attributes for a 
certain event type listed as children.

4. Select the attribute to use. In this case, Allocated by All Threads/
Total Allocated.
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That is all that is required. The chart can be configured to look better by selecting 
various options. In the following screenshot, the content type for the axis was  
modified to "Memory". Fill colors for the data series were also chosen, and the  
axis was given a name.



Chapter 9

[ 373 ]

Creating the range selector for the custom tab is slightly more complicated. Start by 
assigning the correct component to the topmost area by selecting Assign Component 
| Other | Range Selector from the context menu.

This brings up a dialog box where the properties for the range selector can be 
configured. The range selector contains a chart, so configuring it is quite similar to 
configuring a standard chart. If we want it to look like the other range selectors, 
we must remove the tick marks and the visibility for each axis by unchecking the 
corresponding check boxes.
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As we want a backdrop of events to make up the tab, we need to configure it to 
show the number of ongoing events. We do this by adding the duration attribute 
for the event types used in our other components. In this case, this is the same event 
type as in the chart. We use the Integrating Point Density style. The range selectors 
actually contain two stacked series with different colors for each event attribute 
being shown—one for the events in the operative set, and one for the ones that are 
not in the operative set. This is to allow visual feedback when events used in the tab 
are included in the operative set. We must therefore add the attribute twice, with 
different colors and with In Operative Set set to No and Yes respectively.
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This concludes the example. The resulting tab can be seen in the following 
screenshot, with a few of the events added to the operative set:

The easiest way to find out how to use other components available in 
the Flight Recorder designer is to enter design mode and see how they 
are being used in the original Flight Recorder user interface.
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To export the newly designed tab to a plug-in, so that it can be shared with others, 
first close the tab. This will make the tree view of the different tabs visible again.

From the root node, select Export UI to Plug-In. This brings up a dialog where the tabs 
available for export are listed.

Normally, only the tabs changed and/or added should be selected. In our example, 
we will only add the Test tab. After clicking OK, we will be presented with a dialog 
where the plug-in ID and version can be selected. Take care to always increase the 
plug-in version for newer releases of your additions, as they will otherwise  
be overridden by older versions.
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After clicking on OK, a file dialog will be presented where you can choose where to 
store the new plug-in. The plug-in will be saved as a jar file.

The resulting jar file can be shared with friends and colleagues, either through an 
update site, or by simply dropping the file in the JROCKIT_HOME/missioncontrol/
plugins folder.

Summary
In this chapter, JRockit Flight Recorder was introduced. The new data model and the 
notion of events and data producers were explained. It was shown how to capture 
flight recordings, and various ways to control the Flight Recorder itself were explained. 
Advanced concepts in the flight recording wizard were shown, such as how to control 
the enablement and the options of any single event type. The main differences to the 
old JRockit Analyzer were discussed, such as:

•	 The new range selector
•	 New event types such as the exception event
•	 Changes to the operative set
•	 The relational key
•	 How to do old JRA (LAT) style latency analysis in Flight Recorder
•	 Changes to some of the memory-related tabs

We also explained how anyone can add custom events to flight recordings through  
a standard Java API available in the JRockit runtime jar.

Finally, the unsupported design mode was introduced, where the user interface of the 
Flight Recorder can be customized and even extended. We also showed how to use the 
design mode to export customizations to plug-ins that can be shared with others.

In the next chapter, we will discuss how the JRockit Mission Control Memory Leak 
Detection Tool can be used for hunting down memory leaks in Java applications.





The Memory Leak Detector
As described in the chapter on memory management, the Java runtime provides 
a simplified memory model for the programmer. The developer does not need to 
reserve memory from the operating system for storing data, nor does he need  
to worry about returning the memory once the data is no longer in use.

Working with a garbage collected language could easily lead to the hasty conclusion 
that resource management is a thing of the past, and that memory leaks are impossible. 
Nothing could be further from the truth. In fact, memory leaks are so common in Java 
production systems that many IT departments have surrendered. Recurring scheduled 
restarts of Java production systems are now all too common.

In this chapter, you will learn:

•	 What we mean by a Java memory leak
•	 How to detect a memory leak
•	 How to find the cause of a memory leak using the JRockit Memory  

Leak Detector

A Java memory leak
Whenever allocated memory is no longer in use in a program, it should be returned 
to the system. In a garbage collected language such as Java, quite contrary to static 
languages such as C, the developer is free from the burden of doing this explicitly. 
However, regardless of paradigm, whenever allocated memory that is no longer 
in use is not returned to the system, we get the dreaded memory leak. Eventually, 
enough memory leaks in a program will cause it to run out of memory and break.
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Memory leaks in static languages
In static languages, memory management may be even more complex than just 
recognizing the need to explicitly free allocated memory. We must also know when 
it is possible to deallocate memory without breaking other parts of the application. 
In the absence of automatic memory management, this can sometimes be difficult. 
For example, let's say there is a service from which address records can be retrieved. 
An address is stored as a data structure in memory for easy access. If modules A, B, 
and C use this address service, they may all concurrently reference the same address 
structure for a record.

If one of the modules decides to free the memory of the record once it is done, all the 
other modules will fail and the program will crash. Consequently, we need a firm 
allocation and deallocation discipline, possibly combined with some mechanism to let 
the service know once every module is done with the address record. Until this is the 
case, it cannot be explicitly freed. As has been previously discussed, one approach is 
to manually implement some sort of reference counting in the record itself to ensure 
that it can be reclaimed once all modules are finished with it. This may in turn require 
synchronization and will add complexity to the program. To put it simply, sometimes, 
in order to achieve proper memory hygiene in static languages, the programmer may 
have to implement code that behaves almost like a garbage collector.

Memory leaks in garbage collected languages
In Java, or any garbage collected language, this complexity goes away. The 
programmer is free to create objects and the garbage collector is responsible for 
reclaiming them. In our hypothetical program, once the address record is no longer 
in use, the garbage collector can reclaim its memory. However, even with automatic 
memory management, there can still be memory leaks. This is the case if references 
to objects that are no longer used in the program are still kept alive.

The authors once heard of a memory leak in Java being referred to as an 
unintentional object retention. This is a pretty good name. The program is keeping 
a reference to an object that should not be referenced anymore. There are many 
different situations where this can occur.

Perhaps the leaked object has been put in a cache, but never removed from the cache 
when the object is no longer in use. If you, as a developer, do not have full control over 
an object life cycle, you should probably use a weak reference-based approach. As has 
previously been discussed, the java.util.WeakHashMap class is ideal for caches.
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Be aware that weak references is not a one-size-fits-all answer to 
getting rid of memory leaks in caches. Sometimes, developers misuse 
weak collections, for instance, by putting values in a WeakHashMap 
that indirectly reference their keys. 

In application containers, such as a J2EE server, where multiple classloaders are 
used, special care must be taken so that classes are not dependency injected into 
some framework and then forgotten about. The symptom would typically show  
up as every re-deployment of the application leaking memory.

Detecting a Java memory leak
It is all too common to find out about a memory leak by the JVM stopping due to an 
OutOfMemoryError. Before releasing a Java-based product, it should generally be 
tested for memory leaks. The standard use cases should be run for some duration, 
and the live set should be measured to see that no memory is leaking. In a good test 
setup, this is automated and tests are performed at regular intervals.

We got overconfident and failed to heed our own advice in JRockit 
Mission Control 4.0.0. Normally, we use the Memory Leak Detector 
to check that editors are reclaimed properly in JRockit Mission 
Control during end testing. This testing was previously done by the 
developers themselves, and had failed to find its way into the formal test 
specifications. As a consequence, we would leak an editor each time a 
console or a Memleak editor was opened. The problem was resolved, of 
course, using the Memory Leak Detector.

A memory leak in Java can typically be detected by using the Management Console 
to look at the live set attribute. It is important to know that a live set increase over 
a shorter period of time does not necessarily have to be indicative of a memory 
leak. It could be the case that the load of the Java application has changed, that the 
application is serving more users than before, or any other reason that may trigger 
the need to use more memory. However, if the trend is consistent, there is very  
likely a problem that should be investigated.

There are primarily two different ways of doing detailed heap analysis:

•	 Online heap analysis, using the JRockit Memory Leak Detector
•	 Offline heap analysis from a heap dump
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For online analysis, trend analysis data is collected by piggybacking on the garbage 
collector. This is virtually without overhead since the mark phase of a GC already 
needs to traverse all live objects on the heap. The resulting heap graph is all the data 
we need to do a proper trend analysis for object allocation.

The heap dump format used by JRockit is the same as produced by 
the Java Virtual Machine Tool Interface (JVMTI) based heap profiler 
HPROF, included with the JDK. Consequently, the dumps produced by 
JRockit can be analyzed in all tools supporting the HPROF format. For 
more information about HPROF, see the following file in the JRockit JDK:
JROCKIT_HOME/demo/jvmti/hprof/src/manual.html

For more information about JVMTI, see the JDK Documentation:
http://java.sun.com/javase/6/docs/platform/jvmti/
jvmti.html

Memleak technology
The JRockit Mission Control Memory Leak Detector, or Memleak for short, is a 
dynamic tool that can be attached to a running JRockit instance. Memleak can be used 
to track how heap memory usage in the Java runtime changes over time for each type 
(class) in the system. It can also find out which types have instances pointing to a 
certain other type, or to find out which instances are referring a certain other instance. 
Allocation tracing can be enabled to track allocations of a certain type of object. This 
all sounds complicated, but it is actually quite easy to use and supported by a rich 
graphical user interface. Before we show how to use it to resolve memory leaks, we 
need to discuss some of the architectural consequences of how Memleak is designed.

•	 Trend analysis is very cheap: Data is collected as part of the normal garbage 
collection mark phase. As mentioned, this is a surprisingly fast operation. 
When the tool is running, every normal garbage collection will collect the 
necessary data. In order to ensure timely data collection, the tool will also, by 
default, trigger a garbage collection every ten seconds if no normal garbage 
collection has taken place. To make the tool even less intrusive, this setting 
can be changed in the preferences.

•	 Regardless of client hardware, you will be able to do the analysis: 
Connecting to a server with a multi-gigabyte heap from a puny laptop  
is not a problem.
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•	 Events and changes to the heap can be observed as they happen: This is 
both a strength and a weakness. It is very powerful to be able to interact with 
the application whilst observing it, for example to see which operation is 
responsible for certain behavior, or to introspect some object at the same time 
as performing operations on it. It also means that objects can become eligible 
for garbage collection as they are being studied. Then further operations 
involving the instances are impossible.

•	 No off-line analysis is possible: This can be a problem if you want to get a 
second opinion on a memory leak from someone who can't be readily given 
access to your production system. Fortunately, the R28 version of JRockit can 
do standard HPROF heap dumps that can be analyzed in other tools, such as 
Eclipse MAT, if required.

Note that HPROF dumps contain the contents of the heap. If the system 
from which the HPROF dump was generated contains sensitive data, that 
data will be readily accessible by anyone getting access to the dump. Be 
careful when sharing dumps.

Tracking down the leak
Finding the cause of memory leaks can be very tricky, and tracking down complex 
leaks frequently involves using several tools in conjunction. The application is 
somehow keeping references to objects that should no longer be in use. What's worse, 
the place in the code where the leaked instance was allocated does not necessarily have 
to be co-located with the place in the code pertaining to the leak. We need to analyze 
the heap to find out what is going on.

To start Memleak, simply select the JVM to connect to in the JVM Browser and choose 
Memleak from the context menu.

Only one Memleak instance can be connected to any given JVM 
at a time.
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In Memleak, the trend table can help detect even slow leaks. It does this by building a 
histogram by type (class), and by collecting data points about the number of instances 
of every type over time. A least squares approximation on the sizes over time is then 
calculated, and the corresponding growth rate in bytes per second is displayed.

In JRockit Mission Control 4.1.0, this algorithm will be a little bit more 
sophisticated, as it will also incorporate the correlation to the size of the 
live set over time. The types that have the highest tendency to grow as 
the live set is growing are more likely to be the ones causing a leak.

The trend table can usually be helpful in finding good candidates for memory leaks. 
In the trend table, classes with a high growth rate are colored red—higher color 
intensity means higher growth rate. We can also see how many instances of  
the class there are, and how much memory they occupy.

In the program being analyzed in the following example, it would seem that char 
arrays are leaking. Not only are they colored deep red and at the top of the trend 
analysis table, signifying a suspected memory leak, but they also have the one of  
the highest growth rates of any type in the system.
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It would also seem, to a lesser extent, that classes related to the types 
Leak$DemoObject and Hashtable are leaking.

In total, we seem to be leaking about 7.5 KB per second.

(6.57*1,024+512+307+71+53+11)/1,024 ≈ 7.5

The JVM was started with a maximum heap size of 256 MB, and the used live  
set was about 20 MB (the current size of the live set was checked with the 
Management Console).

(256 – 20) *1,024 / 7.5 ≈ 32,222 seconds ≈ 537 minutes ≈ 22 hours

If left unchecked, this memory leak would, in about 22 hours, result in an 
OutOfMemoryError that would take down the JVM and the application it is running.

This gives us plenty of time to find out who is holding on to references to the 
suspected leaking objects. To find out what is pointing to leaking char arrays, right 
click on the type in the trend table and click on Add to Type Graph, as shown in the 
following screenshot:
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This will add the selected class to the Type Graph tab and automatically switch to 
that tab. The tab is not a type graph in the sense of an inheritance hierarchy, but 
rather a graph showing how instances of classes point to other classes. The Type 
Graph will appear with the selected class, as shown in the following screenshot:

Clicking on the little plus sign (  ) to the left of the class name will help us find 
out what other types are referring to this type. We call this expanding the node. 
Every click will expand another five classes, starting with the ones that leak the  
most memory first.

In the Type Graph, just like in the trend table, types that are growing over time will 
be colored red—the redder, the higher the leak rate.

As we, in this example, want to find out what is ultimately holding on to references 
to the character arrays, we expand the char[] node.
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Expanding the char[] node reveals that there is only one other type (or rather 
instances of that type) that also seem to be leaking and have references to char 
arrays—the inner class DemoObject of the conspicuously named Leak class.

Expanding the Leak$DemoObject node until we don't seem to be finding any 
more leaking types reveals that the application seems to be abusing some sort  
of Hashtable, as shown in the next screenshot:

The next step would be to find the particular instance of Hashtable that is being 
misused. This can be done in different ways. In this example, it would seem that  
the leaking of the char arrays is due to the leaking of the Leak$DemoObjects. 
We would therefore like to start by listing the Hashtable$Entry instances that 
point to Leak$DemoObject.

Classes declared inside other classes in Java, for example 
the Entry class in Hashtable, have the naming format 
OuterClass$InnerClass in the bytecode, and this is the way they 
show up in our profiling tools—in our example, Hashtable$Entry 
and Leak$DemoObject. This is because when inner (nested) classes 
were introduced in the Java language, Sun Microsystems didn't want 
to change the JVM specification as well.
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To list instances that are part of a particular relationship, simply right click on the 
relation and select List Referring Instances, as shown in the following screenshot:

This brings up the instances view, to the left of the Memleak editor, where the 
instances pointing from Hashtable entries to demo objets are listed. An instance can 
be added to the instance graph by right clicking on the instance, and selecting Add 
to Instance Graph from the context menu. This will bring up a graph similar to the 
Type Graph, but this time showing the reference relationships between instances. 
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Once the Instance Graph is up, we need to find out what is keeping the instance 
alive. In other words, who is referring the instance, keeping it from being garbage 
collected? In previous versions of Memleak, this was sometimes a daunting task, 
especially when searching in large object hierarchies. As of JRockit Mission Control 
4.0.0, there is a menu alternative for letting JRockit automatically look for the path 
back to the root referrer. Simply right click on the instance and click on Expand to 
Root, as shown in the next screenshot. This will expand the graph all the way back 
to the root.

As shown in the following screenshot, expanding to root for our example reveals 
that there is a thread named Thread-2 that holds on to an instance of the inner class 
DemoThread of the class Leak. In the DemoThread instance, there is a field named 
table that refers to a Hashtable containing our leaked DemoObject. 
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When running in Eclipse, it is possible to view the code that manipulates the 
table field, by selecting View Type Source from the context menu on the 
Leak$DemoThread nodes. In this example, we'd find a programming error:

for (int i = 0; i <= 100; i++) {
  put(total + i);
}

for (int i = 0; i < 100; i++) {
  remove(total + i);
}

As an equals sign is missing from the second loop header, more objects are placed 
in the Hashtable than are removed from it. If we make sure that we call remove as 
many times as we call put, the memory leak would go away. 

The complete examples for this chapter can be found 
in the code bundle that comes with this book.

To summarize, the text book recipe for hunting down memory leaks is:

1. Find one of the leaking instances.
2. Find a path to the root referrer from the leaking instance.
3. Eliminate whatever is causing the reference to be kept alive.
4. If there still is a leak, start over from 1.

Of course, finding an instance that is unnecessarily kept alive can be quite tricky. 
One way to home in on unwanted instances is to only look at instances participating 
in a certain reference relationship. In the previous example, we chose to look at char 
arrays that were only being pointed to by DemoObjects. Also, the most interesting 
relationships to look for are usually found where leaking types and non-leaking 
types meet. In the Type Graph for the example, we can see that once we expand 
beyond the Hastable$Entry array, object growth rates are quite neutral. Thus, 
the leak is quite likely due to someone misusing a Hashtable.

It is common for collection types to be misused, thereby causing memory leaks. 
Many collections are implemented using arrays. If not dealt with, the memory leak 
will typically cause these arrays to grow larger and larger. Therefore, another way of 
quickly homing in on the offending instance is to list the largest arrays in the system. 
In the example, we can easily find the Hashtable holding on to the DemoObjects by 
running the leaking application for a while. Use the List Largest Arrays operation on 
the array of Hashtable entries, as shown in the next screenshot.
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If all else fails, statistics will be on your side the longer you wait, as more and more 
heap space will be occupied by the leaking objects.

Both of the largest Hashtable$Entry arrays are leaking. Adding any one of them 
to the Instance Graph and expanding it to the root referrer will yield the same 
result, implicating the instance field table in the Leak$DemoThread class. 
This is illustrated in the following screenshot:
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A look at classloader-related information
In our next example, there are actually three different classloaders running almost the 
same code—two with the memory leak and one that actually behaves well. This is  
to illustrate how things can look in an application server, where different versions 
of the same application can be running. In Memleak, just like with the other tools in 
JRockit Mission Control, the tables can be configured to show more information. To  
see classloader-related information in the table, edit the Table Settings as shown in 
the following screenshot:

Memleak will, by default, aggregate classes with the same name in the same row. To 
make Memleak differentiate between classes loaded by different classloaders, click 
on the Individually show each loaded class (  ) button.

In the next screenshot, the trend table is shown for all classes with names containing 
the string Demo. As can be seen, there are three classloaders involved, but only two of 
them are leaking instances of Leak$DemoObject.
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The option of splitting the classes per classloader is also available in the Type Graph. 
The Type Graph can be configured to use a separate node for each loaded class, 
when expanding a node. Simply click on the Use a separate node for each loaded 
class icon (  ) in the Type Graph. Following is a screenshot showing the first 
expansion of the char[] node when using separate nodes for each class. The bracket 
after the class name contains the classloader ID.

It is possible to switch back to aggregating the nodes again by clicking on the 
Combine classes with same class name button (  ). Note that the setting will not 
change the state of the currently visible nodes. Only nodes that are expanded after 
changing the setting are affected.
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Interactive memory leak hunting
Another way of using the Memleak tool is to validate a hypothesis about memory 
management in an application. Such a hypothesis could for example be "when I 
remove all contacts from my contact list, no Contact objects should be left in the 
system". Because of the interactive nature of the Memleak tool, this is a very powerful 
way of finding leaks, especially in an interactive application. A huge amount of such 
scenarios can be tested without interruptions caused by, for example, dumping heaps 
to files. If done well and with enough systems knowledge, finding the leaks can be a 
very quick business.

For example, consider a simple address book application. The application is a 
self-contained Swing application implemented in a single class named AddressBook. 
The class contains a few inner classes, of which one is the representation of a  
contact—AddressBook$Contact. In the application, we can add and remove 
contacts in the address book. One hypothesis we may want to test is that we  
do not leak contacts.

The Memleak tool normally only shows types that occupy more than 0.1 percent of 
the heap, or the amount of data in the general case would be overwhelming. We are 
normally not interested in types not heavily involved in leaks, and as time passes, 
the interesting ones tend to occupy quite a lot of the heap anyway. However, most 
leaks usually only occupy a tiny fraction of the heap until the leaking application has 
run for quite some time. In order to detect memory leaks earlier, this setting can be 
changed to 0 so that all types are shown, regardless of their used heap space. This 
can be done in the preferences, as shown in the following screenshot:
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We then filter out the classes related to the hypothesis that we want to test and watch 
how they behave while we run the application.

Remember from Chapter 7, The Management Console, that the filter 
boxes in JRockit Mission Control can use regular expressions by 
entering the prefix regexp.

In the following screenshot, three addresses have been removed from the 
AddressBook, but the number of Contact instances remain at the original eight:

Removing all of them will still leave all eight of the original AddressBook$Contact 
instances in the system. There is indeed a memory leak.

To get the Memleak tool to react faster to the changes on the heap, 
the trend refresh interval (shown in the preference screenshot 
earlier) can be lowered.
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Now, as all the remaining instances are unintentionally retained, drilling down into 
any of them will be sufficient for tracking down the leak. Simply click on List all 
instances from the context menu in the trend table and then add any of the instances 
to the Instance Graph. The path to root referrer in the example reveals that the contacts 
are retained in some sort of index map named numberToContact. The developer of the 
application should be familiar with this structure and know where to look for it in the 
code. If we ensure that we remove the Contact objects from the index map as well as 
from the contact list, the leak will go away.

The recipe for interactively testing for memory leaks is:

1. Formulate a hypothesis, such as "When I close my Eclipse PHP Editor, I 
expect the editor instance and the instances associated with it to go away".

2. Filter out the classes of interest in the trend table.
3. See how they are freed and allocated as the hypothesis is tested.
4. If a memory leak is found, it is usually quite easy to find a leaking instance 

and locate the problem by tracing the path to the root referrer.



Chapter 10

[ 397 ]

The general purpose heap analyzer
Yet another way to use the Memleak tool is as a general purpose heap analyzer. 
The Types panel shows relationships between the types (classes) on the Java heap. 
It can also list the specific instances in such a relationship. In the next example, we've  
found a peculiar cycle in our Type Graph. We can see that there are instances of 
Hashtable entries that are actually pointing back to their Hashtable. To list just 
the instances of Hashtable$Entry pointing to Hashtable, we simply right click on 
the number in the reference relation (see the following screenshot), and select List 
referring instances.

We have now, with a few clicks, been able to list all the Hashtable instances in the 
system that contain Hashtables. It is also easy to determine exactly where they are 
located in the system. Simply select an instance, add it to the Instance Graph and 
trace the shortest path back to the root referrer. Doing this for the first instance will 
reveal that it is located in the com.sun.jmx.mbeanserver.RepositorySupport. Of 
course, having Hashtables that contain Hashtables is not a crime; this merely serves 
as an example of the versatility of the Memleak tool.

You need a 1.5-based JDK to see the Hashtables containing Hashtables 
for this example. In a 1.6-based JDK, the design has changed.
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Any instance can be inspected in Memleak. Next, we inspect the instance of com.
sun.jmx.mbeanserver.RepositorySupport to verify that it indeed contains 
Hashtable instances.

Allocation traces
The last major feature in Memleak to be discussed in this book, is the ability to 
turn on allocation tracing for any given type. To, for instance, find out where the 
Leak$DemoObjects are being allocated in our previous example, simply right click 
on the type and then click on Trace Allocations. The example has been tailored to 
do allocations in the vicinity of the code that causes the actual leak (note that this is 
normally not the case).
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As can be readily seen from the screenshot, we are invoking put more often than 
remove. If we are running Memleak from inside Eclipse, we can jump directly 
to the corresponding line in the Leak class by right clicking on the stack frame 
and then clicking on Open Method from the context menu. 

Allocation traces can only be enabled for one type (class) at a time.

A word of caution: Enabling allocation traces for types with a 
high allocation pressure can introduce significant overhead. For 
example, it is, in general, a very bad idea to enable allocation traces 
for java.lang.Strings. 

Troubleshooting Memleak
If you have trouble connecting to your JVM with Memleak, it is probably due to 
Memleak requiring an extra port. Communication using Memleak, unlike other tools 
in the JRockit Mission Control suite, is only initiated over JMX. Memleak requires the 
internal MemLeak Server (MLS) to be running in the JVM. 

When starting Memleak, a run request is sent over JMX. The MLS will then be started 
and a communication port is returned. The client stops communicating over JMX 
after startup and instead uses the proprietary Memory Leak Protocol (MLP) over the 
communication port.



The Memory Leak Detector

[ 400 ]

The MLS was built as a native server in JRockit, as the original idea was to be able 
to run the MLS when running out of Java heap, similar to the way that a heap dump 
can be triggered when running out of memory. We wanted to introduce a flag that 
would suspend the JVM on OutOfMemoryErrors and then launch the MLS. This was 
unfortunately never implemented.

It is possible to specify which port to use for MLS in the initial request over JMX. 
This can be set in the preferences, as shown in the following screenshot:

Also worth noting is:

•	 There can only be one client connected to MLS at any given time
•	 When a client disconnects, the MLS will automatically shut down
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Summary
In this chapter, we have shown how to use the JRockit Mission Control Memory 
Leak Detector to detect and find the root cause for Java memory leaks. We have also 
discussed the advantages and disadvantages of the Memory Leak Detector in various 
use cases.

It has been demonstrated how the Memory Leak Detector can be used to detect even 
quite slow memory leaks. We have also shown how the Memory Leak Detector 
can be used in an interactive manner to quickly test particular operations in an 
application that may be prone to memory leaks.

We have explained how the Memory Leak Detector can also be used as an interactive 
general purpose heap analyzer to both find relationships between different types on 
the heap, as well as for inspecting the contents of any instance on the heap.

Finally, we showed how to troubleshoot the most common problems associated with 
using the tool.





JRCMD
This chapter is dedicated to JRCMD—one of the simplest tools in the JRockit 
distribution. JRCMD is a small command-line tool that can be used to interact with 
a running JRockit instance. It can also be used to list all running instances of the 
JRockit JVM on a system.

In this chapter, you will learn:

•	 How to use JRCMD to list the locally running JVMs on your machine
•	 How to use JRCMD to execute diagnostic commands on one or all JVMs 

running locally on your machine
•	 How to override the SIGQUIT signal handler to make JRockit run diagnostic 

commands of your choice instead of printing stack dumps, which is the 
default action

•	 How to utilize JRCMD to solve various tasks such as:
	° Heap analysis
	° Exception profiling
	° Native memory tracking
	° Controlling the management server lifecycle
	° Controlling JRockit Flight Recorder from the command line

The last part of this chapter is in a format that makes it usable as a JRCMD reference. 
The reference part lists the various diagnostic commands in alphabetical order, 
complete with examples.
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Introduction
Sometimes a command-line utility is exactly the right tool for the job. You may 
want to send commands to JVMs in batch scripts, or you may be operating in a very 
secure environment and only have a command line at your disposal through SSH. 
Whatever the reason, JRCMD is a small and powerful tool for sending commands to 
locally running instances of the JRockit JVM from the command line.

The basic usage pattern is to first execute JRCMD with no arguments to list the 
JVMs currently running on the system. The JVMs will be listed by operating system 
Process ID (PID) followed by the class name of the main class of the Java application 
running in the JVM.

For example:

C:\>JROCKIT_HOME\bin\jrcmd

2416 com.jrockit.mc.rcp.start.MCMain

19344 jrockit.tools.jrcmd.JrCmd

In the previous example, there were two JVM instances running when JRCMD  
was executed—an instance running JRockit Mission Control and, as JRCMD is  
a Java application too, the JVM running JRCMD itself.

The JRockit instance on which to execute the command is selected by passing its  
PID as the first argument to JRCMD. A special case is passing PID 0, in which case 
JRCMD will attempt to execute the command on all the JVMs it can find. As different  
versions of JRockit may be running at the same time and may support different sets  
of commands, not all commands may be available for all versions of JRockit. Normally,  
a specific PID should be selected. In addition, two instances of the same JRockit version 
may also export different sets of diagnostic commands depending on command-line 
parameters and configuration.

To list the commands available in a specific instance of JRockit, the help command 
is used, as illustrated by the following example:

C:\>JROCKIT_HOME\bin\jrcmd 2416 help

2416:

The following commands are available:

       kill_management_server
       start_management_server
       print_object_summary
       memleakserver
       ...

For more information about a specific command use 'help <command>'.

Parameters to commands are optional unless otherwise stated.
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The following examples assume that the bin directory in JROCKIT_HOME is on 
the path.

The commands that JRCMD can execute are commonly referred to as the JRockit 
Diagnostic Commands, as that is what they are called when accessed through 
the JRockit Management API (JMAPI) or the custom JRockit JMX MBeans 
(JMXMAPI).

The diagnostic commands can be invoked in several different ways. JMAPI  
and JMXMAPI can be used to invoke them programmatically, from Java.  
This will be discussed in Chapter 12, Using the JRockit Management APIs.

Overriding SIGQUIT
Diagnostic commands can also be invoked by overriding the default behavior of the 
SIGQUIT process signal. Recollect from Chapter 4 that the default behavior of a JVM 
receiving a SIGQUIT is to write a thread dump containing the current state of all the 
threads to the console. One way of sending a SIGQUIT signal to the JVM process is  
to press Ctrl + Break (Windows), or Ctrl + \ (Linux), in the shell where the Java 
process was started. On *NIX-systems, executing kill -3 <PID> or kill -QUIT 
<PID> from a shell is an alternative way of issuing a SIGQUIT to a process with a 
given ID.

To override the SIGQUIT behavior of JRockit with a custom command sequence; 
put the list of commands to be executed in a plain text file and name it ctrlhandler.
act. The file needs to be placed into the lib folder of JRockit distribution or the 
current directory of the JVM process. The presence of a crtlhandler.act file 
overrides the behavior of the SIGQUIT signal and makes it execute your diagnostic 
commands instead of producing the normal thread stack dump. Following is an 
example of a ctrlhandler.act file:

version
print_threads
print_object_summary

A ctrlhandler.act file can be passed to JRCMD using the –f option. This option 
causes JRCMD to read the commands to execute from the ctrlhandler.act file. 

The diagnostic commands were originally dubbed 
"control break handlers". 
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Following is an example using the –f option with the ctrlhandler.act file from the 
previous example:

C:\>jrcmd 7736 -f c:\tmp\ctrlhandler.act
7736:
Oracle JRockit(R) build R28.0.0-670-129329-1.6.0_17 
  -20100219-2122-windows-ia32,
compiled mode
GC mode: Garbage collection optimized for short pausetimes, 
  strategy: genconcon

===== FULL THREAD DUMP ===============
Mon Mar 01 15:53:40 2010
Oracle JRockit(R) R28.0.0-670-129329-1.6.0_17-20100219-2122-windows-ia32

"Main Thread" id=1 idx=0x4 tid=7420 prio=6 alive, in native
  at org/eclipse/swt/internal/win32/OS.WaitMessage()Z(Native Method)
  at org/eclipse/swt/widgets/Display.sleep(Display.java:4220)
  at org/eclipse/ui/application/WorkbenchAdvisor.eventLoopIdle 
    (WorkbenchAdviso
r.java:364)
  at org/eclipse/ui/internal/Workbench.runEventLoop(Workbench.java:2385)
  at org/eclipse/ui/internal/Workbench.runUI(Workbench.java:2348)

  -- end of trace

===== END OF THREAD DUMP ===============

--------- Detailed Heap Statistics: ---------
39.1% 8232k   140800  +8232k [C
13.5% 2840k   121192  +2840k java/lang/String
10.1% 2135k     2933  +2135k [Ljava/util/HashMap$Entry;
 5.5% 1161k    49568  +1161k java/util/HashMap$Entry
 4.2%  889k     8136   +889k java/lang/Class
 4.1%  869k    18430   +869k [I
 4.0%  841k    15322   +841k [Ljava/lang/Object;
 2.0%  414k      299   +414k [B
 1.3%  281k    12015   +281k java/util/ArrayList
 1.2%  256k     4698   +256k org/eclipse/core/internal 
    /registry/ReferenceMap$Soft
Ref
 1.1%  241k     1843   +241k [[C
 0.6%  136k     2907   +136k java/util/HashMap
 0.6%  130k      275   +130k [Ljava/util/Hashtable$Entry;
 0.6%  116k     2407   +116k [Ljava/lang/String;
    21054kB total ---

--------- End of Detailed Heap Statistics ---
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Special commands
Not all the diagnostic commands are available by default. There are, for example, 
commands to force JRockit to crash (and dump core) and for instantiating any class 
in the system implementing the java.lang.Runnable interface and then calling 
the start method of the instances. For added security, these kinds of commands 
are disabled by default and must be enabled by setting command-specific system 
properties in JRockit on startup.

A command can be enabled by specifying the system property jrockit.ctrlbreak.
enable<command>=[true|false]. For example:

-Djrockit.ctrlbreak.enableforce_crash=true

-Djrockit.ctrlbreak.enablerun_class=true

Limitations of JRCMD
The tools.jar in the JDK contains an API for attaching to a running JVM—the 
Java Attach API. This is the API used by Mission Control to automatically detect 
the locally running JVMs. The same framework is also utilized by JRCMD to invoke 
diagnostic commands.

When a JVM is started, an entry will be created in the temporary directory of the  
user starting the JVM process. These entries can then be used by JRCMD, through  
the Java Attach API, to find the JVMs started by the same user as the one running 
JRCMD. For this to be secure, the Attach API relies on a properly set up temporary 
directory on a file system with per-file access rights. This means that if the folder  
is on an insecure file system, such as FAT; JRCMD will not work. It also means  
that the user running JRCMD and the user running the Java process must be the 
same. Another implication is that a Java process running as a service on Windows 
will not be reachable from a JRCMD started from the desktop—they are running  
in different environments.

When a JRockit process is started as root and then has its ownership changed to a 
less privileged user, JRCMD will not be able to communicate properly with that 
process anymore due to security restrictions. Root will be able to list the process, but 
any attempt to send a command will be interpreted as a SIGQUIT and print a thread 
dump instead. The less privileged user will not be able to list the process, but if the 
PID of the process is known, commands can still be sent to it.

The rest of this chapter is dedicated to explaining some commonly used  
diagnostic commands.
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JRCMD command reference
The commands are presented in alphabetical order to make it easier to use the  
following section as a standalone reference. If a command is specific to either  
JRockit R28 or JRockit R27, its section header is annotated with version information. 
No version information is given for commands that work on both R27 and R28.

check_flightrecording (R28)
This command is used to check the state of the JRockit Flight Recorder engine. 
For more information on JRockit Flight Recorder, see Chapter 8, The Runtime 
Analyzer, and Chapter 9, The Flight Recorder. The corresponding command for R27 is 
checkjrarecording. This command normally always returns at least one ongoing 
recording. This is because most versions of R28 run with a low overhead recording 
always enabled. As there can be multiple recordings running in parallel, the 
command takes as argument the ID of the recording for which to retrieve the status. 
If -1 or no argument is supplied, the status of all ongoing recordings will be shown. 
The recordings can also be referenced by name through the name parameter. The 
continuously running recording, where available, can for example be referred  
to by the name continuous.

For example:

C:\>jrcmd 6328 check_flightrecording name=continuous verbose=true

6328:

Recording : id=0 name="continuous" duration=0s (running)

http://www.oracle.com/jrockit/jvm/:

java/alloc/accumulated/thread : disabled period=1000

java/alloc/accumulated/total : enabled period=0

java/alloc/object/in_new_tla : disabled threshold=10000000

java/alloc/object/outside_tla : disabled threshold=10000000

java/exception/stats : enabled period=1000

java/exception/throw : disabled period=1000

java/file/read : disabled threshold=10000000

java/file/write : disabled threshold=10000000

java/monitor/enter : disabled threshold=10000000

java/monitor/profile : disabled period=1000

java/monitor/wait : disabled threshold=10000000

java/socket/read : disabled threshold=10000000

java/socket/write : disabled threshold=10000000
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java/thread/end : enabled period=0

java/thread/park : disabled threshold=10000000

java/thread/sleep : disabled threshold=10000000

java/thread/start : enabled period=0

vm/class/load : disabled threshold=10000000

vm/class/memory/free : enabled threshold=0

If the verbose argument is set to false, the listing simply consists of one line per 
recording, with recording id, name, and duration. The verbose listing, as shown in 
this example, lists all the active event producers, and for each producer the status 
for each event type. The listing starts with the recording name and the status for the 
recording. In the previous example, it can be seen that the continuous recording 
is active and that its ID is 0. We can see that for the http://www.oracle.com/
jrockit/jvm/ producer, there are quite a few event types available, and that only 
some of them are enabled.

See start_flightrecording, stop_flightrecording and dump_flightrecording.

checkjrarecording (R27)
This is a very simple command that is useful together with the startjrarecording 
command. It is used for checking if there is already an active ongoing recording in a 
JRockit instance. If a JRA recording is currently in progress, the options used when  
that recording was initiated will be shown. The following example shows the result  
of running the checkjrarecording command nine seconds into a JRA recording. 

C:\>jrcmd 5516 checkjrarecording

5516:

JRA is running a recording with the following options:

filename=D:\myrecording.jra, recordingtime=120s, methodsampling=1, 
gcsampling=1, heapstats=1, nativesamples=0, methodtraces=1, 
  sampletime=5,zip=1, hwsampling=0, delay=0s, tracedepth=64 
  threaddump=1, threaddumpinterval=0s, latency=1, 
  latencythreshold=20ms, cpusamples=1, cpusampleinterval=1s

The recording was started 9 seconds ago.

There are 111 seconds left of the recording.

The JRA recording was started using the command line from the startjrarecording 
example, given later in this chapter 

See startjrarecording and stopjrarecording.
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command_line
Sometimes it can be useful to be able to examine the command line that launched 
a particular JVM. Perhaps a JVM subsystem, like the garbage collector, is behaving 
peculiarly because a parameter was set to a suboptimal value at startup. Or maybe 
we want to find out how the management agent was initialized on the command 
line—for example, was SSL really enabled, and if so, was the keystore really the  
right one?

The command_line command shows the parameters a JVM was started with. Note 
that the command line is reconstructed from what was actually supplied to the JVM 
from the launcher, and may include parameters that were not explicitly passed to the 
JVM by the user.

Following is an example of what can be shown if the command is executed on 
an instance of JRockit running JRockit Mission Control, with some additional 
parameters set:

C:\>jrcmd 2416 command_line

2416:

Command Line: -Denv.class.path=.;C:\Program Files\ 
  Java\jre6\lib\ext\QTJava.zip -Dapplication.home=C:\jrockits\R28.0.0_ 
  R28.0.0-547_1.6.0 -client -Djrockit.ctrlbreak.enableforce_crash=true 
  -Dsun.java.launcher=SUN_STANDARD com.jrockit.mc.rcp.start.MCMain 
  -Xmx512m -Xms64m -Xmanagement:port=4712,ssl=false,authenticate=false

dump_flightrecording (R28)
This command is useful for retrieving the contents of an ongoing recording without 
having to halt it. The idea is to never stop the continuous recording that is enabled 
by default in the JVM (for most versions of R28). The command basically clones the 
recording, stops the cloned recording, and writes it to disk.

For example:

C:\>jrcmd 7420 dump_flightrecording recording=0 
  copy_to_file=my_continuous_snapshot.jfr.gz compress_copy=true

This example takes the JRockit Flight Recorder recording with ID 0, clones it, stops 
the clone, and writes the contents to the file my_continous_snapshot.jfr.gz, as 
specified by the copy_to_file argument. The recording with ID 0 is normally the 
continuous recording that is always running in the JVM. The recording to clone 
can also be specified by name using the name parameter, in this case, we would use 
name=continuous. As the compress_copy argument was set to true, the resulting 
file will be gzip compressed.
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See start_flightrecording, stop_flightrecording, and check_flightrecording.

heap_diagnostics (R28)
The heap_diagnostics command provides detailed information about the 
heap usage in a virtual machine, including information on reference object 
usage. Executing the command triggers a full garbage collection during which 
the information is gathered. The command takes no arguments and returns the 
diagnostic information.

The output contains three main sections.

The first section in the diagnostic dump lists some general information about the 
system, such as available memory and heap usage.

C:\>jrcmd 7420 heap_diagnostics

7420:

Invoked from diagnosticcommand

======== BEGIN OF HEAPDIAGNOSTIC =========================

Total memory in system: 3706712064 bytes

Available physical memory in system: 1484275712 bytes

-Xmx (maximal heap size) is 1073741824 bytes

Heapsize: 65929216 bytes

Free heap-memory: 8571400 bytes

The next section, Detailed Heap Statistics, is basically the same output as 
from the print_object_summary command, but without the optional points-to 
information. Also, there is no cut-off for this summary—all classes in the system will 
be listed, so expect the result to be quite long. There is one line of output per class in 
the system.

•	 The first column is how large a part of the heap all instances of the  
class occupies.

•	 The second column is the amount of memory in kilobytes that instances of 
this class take up.

•	 The third column is the total number of instances of the class currently live  
in the system.

•	 The fourth column is the delta from the last invocation of the command.
•	 The fifth and last column is the name of the class. In our example, most of  

the heap is occupied by char arrays ([C).
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--------- Detailed Heap Statistics: ---------

25.9% 3179k    37989     +0k [C 
 9.6% 1178k     2210     +0k [I 
 7.4%  912k    38943     +0k java/lang/String 
 7.4%  906k      265     +0k [B 
 6.2%  764k     6994     +0k java/lang/Class

...

     12257kB total ---

--------- End of Detailed Heap Statistics ---

The next section, Reference Objects statistics, contains detailed information 
on the use of reference objects, such as weak references. The reference objects are 
also listed per type (class). Under each type, there is a listing grouped by what 
objects they point to, or in the case of finalizers, their declaration type.

•	 The first column states how many instances there are in total.
•	 The second column states how many instances are still reachable.
•	 The third column shows how many instances are unreachable and thus 

eligible for garbage collection.
•	 The fourth column states how many reference objects were activated, or 

found non-reachable, during this GC.
•	 The fifth column shows how many reference objects were activated before 

this GC. This usually refers to the last GC before the one triggered by the 
command, but if the reference objects are put in reference queues, they 
can hang around for quite some time and will remain in this group until 
removed from the queue.

•	 The sixth column shows how many instances are pointing to null.
•	 The seventh and last column shows what type of instances the reference object 

is pointing to, or in the case of finalizers, where the finalizer was declared.

----- Reference Objects statistics separated per class -----

    Total Reach Act PrevAct Null

    ----- ----- --- ------- ----

Soft References:

      637    81   0       4  552 Total for all Soft References

java/lang/ref/SoftReference =>

      559     7   0       0  552 Total
      552     0   0       0  552 => null
        2     2   0       0    0 => [Ljava/lang/reflect/Constructor;
        1     1   0       0    0 => 
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  org/eclipse/osgi/internal/baseadaptor/DefaultClassLoader

        1     1   0       0    0 => [Ljava/lang/String;

        1     1   0       0    0 => java/util/jar/Manifest

        1     1   0       0    0 => java/lang/StringCoding$StringDecoder

        1     1   0       0    0 => sun/font/FileFontStrike

java/util/ResourceBundle$BundleReference =>

       44    42   0       2    0 Total

       31    31   0       0    0 => java/util/ResourceBundle$1

       11    11   0       0    0 => java/util/PropertyResourceBundle

        2     0   0       2    0 => null

org/eclipse/core/internal/registry/ReferenceMap$SoftRef =>

       21    20   0       1    0 Total

       20    20   0       0    0 => 
  org/eclipse/osgi/framework/internal/core/BundleHost

        1     0   0       1    0 => null

sun/misc/SoftCache$ValueCell =>

        1     0   0       1    0 Total

        1     0   0       1    0 => null

Weak References:

     3084  2607   0     236  241 Total for all Weak References

java/lang/ref/WeakReference =>

     1704  1463   0       0  241 Total

      765   765   0       0    0 => java/lang/String

      330   330   0       0    0 => java/lang/Class

      241     0   0       0  241 => null

Phantom References:

        6     6   0       0    0 Total for all Phantom References
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java/lang/ref/PhantomReference =>

        6     6   0       0    0 Total
        5     5   0       0    0 => java/lang/Object
        1     1   0       0    0 => sun/dc/pr/Rasterizer

Cleared Phantom:

        9     9   0       0    0 Total for all Cleared Phantom

jrockit/vm/ObjectMonitor =>

        9     9   0       0    0 Total

        2     2   0       0    0 => 
  org/eclipse/osgi/framework/eventmgr/EventManager$EventThread

        1     1   0       0    0 => java/util/TaskQueue

Finalizers:

      197   197   0       0    0 Total for all Finalizers
       88    88   0       0    0 => java/util/zip/ZipFile
       55    55   0       0    0 => java/util/zip/Inflater
       18    18   0       0    0 => java/awt/Font
       14    14   0       0    0 => java/lang/ClassLoader$NativeLibrary

Weak Handles:

    12309 12309   0       0    0 Total for all Weak Handles

     9476  9476   0       0    0 => 
  org/eclipse/osgi/internal/baseadaptor/DefaultClassLoader

     1850  1850   0       0    0 => java/lang/String

Soft reachable referents not used for at least 198.332 s cleared.

4 SoftReferences were soft alive but not reachable 
  (when found by the GC), 
  0 were both soft alive and reachable, and 633 were not soft alive.

----- End of Reference Objects statistics -----

======== END OF HEAPDIAGNOSTIC ==========================

In this example, we can see that most of the weak references in the system point 
to Strings. The weak references are the ones referenced by java.lang.ref.
WeakReference. There are in total 3,084 weak references in the system, of which 
2,607 are reachable. For soft references, we can see that the current objects pointed 
out by soft references survived for at least 198 seconds.
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The heap_diagnostics command is quite useful for doing coarse grained analysis 
of the use of reference objects and for getting statistics on heap usage. However, it 
is usually easier to use the JRockit Mission Control Memleak Tool and/or JRockit 
Flight Recorder.

See print_object_summary. 

hprofdump (R28)
Sometimes it can be useful to dump the heap for offline analysis, as opposed to the 
online analysis available through the Memleak tool in JRockit Mission Control. As of 
version R28, JRockit can produce heap dumps in the popular HPROF format. There 
are quite a few memory analysis tools available that operate on HPROF dumps, for 
instance the excellent Eclipse Memory Analyzer Tool (MAT).

For example:

C:\>jrcmd 7772 hprofdump filename=mydump.hprof

  segment_threshold=2G segment_size=1G

7772:

Wrote dump to mydump.hprof

The segment_threshold and segment_size arguments can be used to split the 
dump into several smaller files whenever the heap usage is larger than convenient. 
In the previous example, the split would occur if the heap usage was more than 
two gigabytes, and JRockit would then attempt to dump the memory in several one 
gigabyte chunks.

Note that the segment_threshold and segment_size 
arguments should only be used with a tool that supports JAVA 
PROFILE 1.0.2 HPROF dumps.

The files will be written to the JROCKIT_HOME directory. The filename is optional—if 
no filename is provided, a date-stamped file name will be provided, for example:

C:\>jrcmd 7772 hprofdump

7772:

Wrote dump to heapdump_Tue_Sep_22_19_09_16_2009

See memleakserver and oom_diagnostics.
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kill_management_server
This command is used to shut down the external management server. Note that the 
command is not called "stop_management_server". This is purely for legacy reasons. 
Once upon a time any command name that began with "stop" was interpreted as a 
command to stop parsing the ctrlhandler.act file.

The kill_management_server command takes no arguments.

C:\>jrcmd 7772 kill_management_server

7772:

See start_mangement_server.

list_vmflags (R28)
Certain JVM parameters can be set on the command line using the  
–XX:<Flag>=<value> syntax. As explained in Chapter 1, these parameters 
are known as VM flags, and can be listed using the list_vmflags command.

For example:

C:\>jrcmd 7772 list_vmflags describe=true alias=true

Global:

  UnlockDiagnosticVMOptions = false (default, writeable)

    - Enable processing of flags relating to field diagnostics

  UnlockInternalVMOptions = false (default)

    - Enable processing of internal, unsupported flags

Class:

  FailOverToOldVerifier = true (default, writeable)

    - Fail over to old verifier when split verifier fails

  UseVerifierClassCache = true (default)

    - Try to cache java.lang.Class lookups for old verifier.

  UseClassGC = true (default)

    (Alias: -Xnoclassgc)

    - Allow GC of Java classes

...

Threads:

  UseThreadPriorities = false (default)

    - Use native thread priorities

  DeferThrSuspendLoopCount = 4000 (default, writeable)

    - Number of iterations in safepoint loop until we try blocking

...
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There are quite a lot of flags available, so only a short subset is shown in this example. 
Some of the flags are writable and can be changed at runtime using the set_vmflag 
command. Other VM flags can only be set at startup.

For advanced users, access to JVM internal flags can be enabled by 
adding –XX:UnlockInternalVMOptions=true to the JVM startup 
parameters. Use at your own risk.

See set_vmflag.

lockprofile_print
This command is only available if the JVM is running with lock profiling enabled, by 
using –XX:UseLockProfiling=true and/or –XX:UseNativeLockProfiling=true, 
as described in Chapter 4. It outputs a lock profile similar to the one available in 
JRockit Mission Control.

C:\>jrcmd 1442 lockprofile_print

1442:

Class, Lazy Banned, Thin Uncontended, Thin Contended, Lazy Reservation, 
  Lazy lock, Lazy Reverted, Lazy Coop-Reverted, Thin Recursive, Fat 
  Uncontended, Fat Contended, Fat Recursive, Fat Contended Sleep, 
  Reserve Bit Uncontended, Reserve Bit Contended

[B, false, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

java/lang/Thread, false, 11, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

java/security/Permissions, false, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/util/Hashtable, false, 0, 0, 34, 524, 1, 0, 0, 0, 0, 0, 0, 0, 0
java/lang/Class, false, 0, 0, 24, 77, 2, 0, 0, 0, 0, 0, 0, 0, 0
java/lang/Object, false, 1, 0, 11, 139572, 1, 0, 0, 1, 0, 0, 0, 6, 0
java/lang/StringBuffer, false, 0, 0, 137, 773, 0, 0, 0, 0, 0, 0, 0, 0, 0
sun/nio/cs/StandardCharsets, 
  false, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/util/Properties, false, 0, 0, 5, 479, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/lang/ThreadGroup, false, 0, 0, 3, 16, 1, 0, 0, 0, 0, 0, 0, 0, 0
java/lang/ref/Reference$ReferenceHandler, 
  false, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
sun/security/provider/Sun, 
  false, 0, 0, 39, 5589, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/io/PrintStream, false, 0, 0, 7, 7818, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/net/URL, false, 0, 0, 70, 68, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/io/ByteArrayInputStream, 
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  false, 0, 0, 47, 1115, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/util/logging/Logger, false, 0, 0, 2, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0
jrockit/vm/CharBufferThreadLocal, 
  false, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
java/security/Provider$Service, 
  false, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/lang/Runtime, false, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/lang/reflect/Field, false, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0
java/util/Random, false, 0, 0, 6, 18556549, 1, 0, 0, 0, 0, 0, 0, 0, 0

See lockprofile_reset. 

lockprofile_reset
This command is only available if the JVM is running with lock profiling enabled, by 
using –XX:UseLockProfiling=true and/or –XX:UseNativeLockProfiling=true, as 
described in Chapter 4. It resets all profile counters to zero for the current lock profile.

See lockprofile_print.

memleakserver
This command is for starting and stopping the native Memory Leak Server 
(MLS). The JRockit Memory Leak Detector uses its own native server, the MLS, for 
communication. This server is normally automatically started over JMX, but sometimes 
it may make sense to start the server explicitly. It may, for instance, be necessary to 
start only the MLS without starting the JMX agent. The memleakserver command 
can be used to control the lifecycle of the MLS. The command works as a toggle; 
executing the command twice will first start the MLS and then shut it down.

The following example starts the MLS on port 7899:

C:\>jrcmd 5516 memleakserver port=7899

5516:

Memleak started at port 7899.

Executing the command again will shut down the server.

C:\>jrcmd 5516 memleakserver port=7899

5516:

Stopping the server does not produce any output.

See hprofdump.
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oom_diagnostics (R27)
This command was renamed heap_diagnostics in R28.

See heap_diagnostics.

print_class_summary
Sometimes it can be helpful to know if a certain class has been loaded by the JVM. 
For example, dynamic class loading may be used with an SPI framework, and 
when it fails to work as expected, a useful start may be to find out if the classes that 
should have been contributed by the framework were even loaded at all. One way of 
finding this out would be to have the JVM dump the names of all the loaded classes 
in the system and grep for the specific class being sought. Executing print_class_
summary simply dumps the names of the classes like this:

C:\>jrcmd 5516 print_class_summary

5516:

 - Class Summary Information starts here

class java/lang/Object

*class java/util/Vector$1

*class sun/util/calendar/CalendarUtils

*class sun/util/calendar/ZoneInfoFile$1

*class sun/util/calendar/ZoneInfoFile

*class sun/util/calendar/TzIDOldMapping

*class java/util/TimeZone$1

*class java/util/TimeZone

**class java/util/SimpleTimeZone

**class sun/util/calendar/ZoneInfo

*class sun/util/calendar/CalendarDate

**class sun/util/calendar/BaseCalendar$Date

***class sun/util/calendar/Gregorian$Date

*class sun/util/calendar/CalendarSystem

**class sun/util/calendar/AbstractCalendar

***class sun/util/calendar/BaseCalendar

****class sun/util/calendar/Gregorian

...
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As can be seen from the previous example, the output is sorted in the form of an 
inheritance tree, with the stars denoting the depth in the tree. The following example 
shows how to find all loaded classes containing the string LoadAnd on a *NIX system:

$ jrcmd 5516 print_class_summary | grep LoadAnd

*class LoadAndDeadlock

**class LoadAndDeadlock$LockerThread

**class LoadAndDeadlock$AllocThread

print_codegen_list
This command shows the length of the code generation queue and the optimization 
queue in a JVM at the current time. An optional boolean argument, list, can 
be given to also show the contents of the queues, i.e. a list of methods and their 
generation order for the optimizer and the JIT.

C:\>jrcmd 1442 print_codegen_list list=true

1442:

-------------------------------------------------------

     format: <position> <directive no> <method description>

     strategies: q=quick, n=normal, o=optimize

  JIT queue: 0 methods in queue

  OPT queue: 

  0: 1 java/math/BigDecimal.<init>(Ljava/math/BigInteger;JII)V

  1: 1 java/math/BigDecimal.add 
     (Ljava/math/BigDecimal;)Ljava/math/BigDecimal;

  2: 1 java/lang/String.<init>([C)V

  3: 1 java/util/TreeMap$NavigableSubMap.size()I

  4: 1 java/util/TreeMap$NavigableSubMap.setLastKey()V

  5: 1 jrockit/vm/Strings.compare(Ljava/lang/String;Ljava/lang/String;)I

  6: 1 com/sun/org/apache/xerces/internal/dom/CharacterDataImpl. 
     setNodeValueInternal(Ljava/lang/String;Z)V

  7: 1 com/sun/org/apache/xerces/internal/dom/ 
     CoreDocumentImpl.changed()V

  8: 1 java/lang/String.getChars(II[CI)V

  9: 1 com/sun/org/apache/xerces/internal/dom/NodeImpl.appendChild 
     (Lorg/w3c/dom/Node;)Lorg/w3c/dom/Node;

 10: 1 spec/jbb/Warehouse.getAddress()Lspec/jbb/Address;

 11: 1 jrockit/vm/ArrayCopy.copy_checks_done2 
     (Ljava/lang/Object;ILjava/lang/Object;II)V

 12 methods in queue
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print_memusage (R27)
As has been explained in previous chapters, JRockit uses memory for things other  
than just the Java heap. Sometimes, when too much memory is in use by the Java 
heap, JRockit can run out of native memory. The print_memusage command is very 
useful for finding out how JRockit is utilizing system memory. Here is an example of 
the memory usage for a JRockit JVM running an Eclipse instance:

C:\>jrcmd 484536 print_memusage

484536:

[JRockit] memtrace is collecting data...

[JRockit] *** 0th memory utilization report

(all numbers are in kbytes)

Total mapped                         ;;;;;;;1298896

; Total in-use                        ;;;;;; 438768

;;  executable                         ;;;;;  28460

;;;   java code                         ;;;;   5952;   20.9%

;;;;    used                             ;;;   5647;   94.9%

;;  shared modules (exec+ro+rw)        ;;;;;  35912

;;  guards                             ;;;;;    528

;;  readonly                           ;;;;;  25936

;;  rw-memory                          ;;;;; 376392

;;;   Java-heap                         ;;;; 262144;   69.6%

;;;   Stacks                            ;;;;   3472;   0.9%

;;;   Native-memory                     ;;;; 110775;   29.4%

;;;;    java-heap-overhead               ;;;   8206

;;;;    codegen memory                   ;;;    896

;;;;    classes                          ;;;  43008;   38.8%

;;;;;     method bytecode                 ;;   4477

;;;;;     method structs                  ;;   3895    (#83104)

;;;;;     constantpool                    ;;  18759

;;;;;     classblock                      ;;   1596

;;;;;     class                           ;;   3041    (#8403)

;;;;;     other classdata                 ;;   8280

;;;;;     overhead                        ;;     34

;;;;    threads                          ;;;     24;   0.0%

;;;;    malloc:ed memory                 ;;;  22647;   20.4%

;;;;;     codeinfo                        ;;   1231
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;;;;;     codeinfotrees                   ;;    429

;;;;;     exceptiontables                 ;;    125

;;;;;     metainfo/livemaptable           ;;   5883

;;;;;     codeblock structs               ;;      2

;;;;;     constants                       ;;     14

;;;;;     livemap global tables           ;;    994

;;;;;     callprof cache                  ;;      0

;;;;;     paraminfo                       ;;    146    (#1979)

;;;;;     strings                         ;;   8376    (#148622)

;;;;;     strings(jstring)                ;;      0

;;;;;     typegraph                       ;;   2009

;;;;;     interface implementor list      ;;     40

;;;;;     thread contexts                 ;;     19

;;;;;     jar/zip memory                  ;;   5378

;;;;;     native handle memory            ;;     19

;;;;    unaccounted for memory           ;;;  36017;   32.5%;1.59

---------------------!!!

From the listing, we can see that the JRockit process has reserved more than a gigabyte 
of memory. This may sound excessive, but JRockit is only using less than 429 MB of the 
allocated gigabyte. Out of those, around 60 percent is used for the Java heap.

The listing is hierarchical—each allocation node has sub-nodes (for example "malloc:ed 
memory" is used for native structure inside the JVM: livemaps, the type graph, and 
so on). The percentage notation listed in the margin may seem a little bit confusing 
at first, as it is calculated as a percentage of the total of the parent node. There is no 
percentage calculated for the topmost nodes—the 60 percent used by the Java heap 
mentioned in the previous example was calculated manually and not given by the 
printout (262,144/438,768 * 100 = 59.7%)

This command may come in handy for tracking down a native memory leak. Such  
a memory leak can, for example, be caused by a native agent like a third party  
JVMTI agent.

print_memusage (R28)
Similar to the R27 version of this command, print_memusage in R28 is used for finding 
out how JRockit is utilizing its memory. In R28, the command has been improved.
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This command is very useful to find out why the JRockit process is running out of 
memory. The cause is usually unintentional object retention, as described in Chapter 
10, but sometimes the reason is not directly related to objects on the Java heap. 
Mismanagement of native resources can also cause leaks. Common examples are 
having an excessive number of java.util.zip.GZIPOutputStreams open, class 
loaders holding on to classes, or leaks in third-party JNI code

For example:

C:\>jrcmd 7772 print_memusage
7772:
Total mapped                  1281284KB       (reserved=1002164KB)
-              Java heap      1048576KB       (reserved=932068KB)
-              GC tables        35084KB
-          Thread stacks        11520KB       (#threads=27)
-          Compiled code         5696KB       (used=5490KB)
-               Internal          840KB
-                     OS        67712KB
-                  Other        48048KB
-         JRockit malloc        29184KB       (malloced=27359KB #275574)
- Native memory tracking         1024KB       (malloced=537KB #11)
-        Java class data        33600KB       (malloced=33471KB #41208)

The first column contains the name of a memory space and the second column shows 
how much memory is mapped for that space. The third column contains details. In the 
previous example, we can conclude that most of the memory is occupied by the Java 
heap, which would normally be the case.

When tracking native memory leaks, it is useful to look at how much the memory 
usage changes over time. The argument baseline is used to establish a point from 
which to start measuring.

The scale argument modifies the unit of the amounts of memory in the printout. 
The default is kilobytes.

For example, use scale=M to get the units in megabytes instead:

C:\>jrcmd 7772 print_memusage scale=M baseline
7772:
Total mapped                     1252MB       (reserved=978MB)
-              Java heap         1024MB       (reserved=910MB)
-              GC tables           34MB
-          Thread stacks           11MB       (#threads=27)
-          Compiled code            5MB       (used=5MB)
-               Internal            0MB
-                     OS           66MB
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-                  Other           47MB

-         JRockit malloc           28MB       (malloced=26MB #275601)

- Native memory tracking            1MB       (malloced=0MB #11)

-        Java class data           32MB       (malloced=32MB #41208)

The baseline argument can be used to perform differential analysis. Once print_
memusage is executed with the baseline argument, subsequent calls will include 
differentials against the baseline. For example:

C:\>jrcmd 7772 print_memusage scale=M

7772:

Total mapped               1282MB   +30MB (reserved=984MB +6MB)

-              Java heap   1024MB         (reserved=910MB)

-              GC tables     34MB

-          Thread stacks     14MB    +3MB (#threads=35 +8)

-          Compiled code      6MB    +1MB (used=6MB)

-               Internal      0MB

-                     OS     70MB    +4MB

-                  Other     49MB    +2MB

-         JRockit malloc     41MB   +13MB (malloced=34MB 
                                           +8MB #330019 +54418)

- Native memory tracking      2MB         (malloced=1MB #21 +10)

-        Java class data     38MB    +6MB (malloced=38MB 
                                           +6MB #48325 +7117)

In this case we can see that, after the baseline was set, the process mapped in 
another 30 MB of memory, of which six more were reserved. We added another 
eight threads, and JRockit allocated an additional 8 MB. There is now in total 330,019 
malloc objects on the JRockit native heap, an increase of 54,418. This resulted in a 13 
MB increase in virtual memory usage.

A malloc object is the result of a native memory allocation mechanism 
from within the JVM similar to the malloc system call. For example, 
code like the following might create a malloc object on the native heap, 
increasing the number of malloc objects by one. 

void * foo = malloc(512);

Symmetrically, a call like free(foo) will decrease the number of 
malloc objects by one, thus returning the number of malloc objects to the 
original count.
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To reset baseline and continue getting the readouts without the comparisons, the 
reset argument is used:

C:\>jrcmd 7772 print_memusage reset

The argument trace_alloc_sites enables tracing of allocation sites where native 
allocations are made. Set trace_alloc_sites to 1 to enable tracing, and to 0 to 
disable it. To trace all allocations, even the ones occurring during startup of the JVM, 
the environment variable TRACE_ALLOC_SITES can be set to 1, as an override.

Once tracing has been enabled, memory allocations can then be displayed with 
different levels of detail using the level argument. If a baseline has been set, 
only the sites where changes have occurred are listed. For example:

C:\>jrcmd 5784 print_memusage level=1

5784:

Total mapped               1300092KB  +25040KB (reserved= 
                                               1090888KB -7496KB)

-              Java heap   1048576KB           (reserved= 
                                               1008068KB -11020KB)

-              GC tables     35084KB

-          Thread stacks     14336KB   +3840KB (#threads=32 +9)

-          Compiled code      4928KB   +1152KB (used=4774KB +1209KB)

-               Internal      1416KB   +256KB

-                     OS     83040KB   +2048KB

-                  Other     50312KB   +2448KB

-         JRockit malloc     27200KB   +7424KB (malloced=25807KB 
                                               +6236KB #266150 +63919)

                 balance        44KB      +9KB (#23 +5)

             breakpoints         9KB      -8KB (#37 -255)

              breaktable         8KB      +2KB (#13 +3)

               codealloc        56KB     +25KB (#1037 +502)

               codeblock       143KB     +39KB (#2567 +686)

                codeinfo      1224KB    +351KB (#22300 +6404)

            codeinfotree       400KB    +126KB (#74 +18)

                dynarray       116KB     +30KB (#2058 +392)

            finalhandles         3KB      +2KB (#14 +7)

               hashtable        32KB     +32KB (#5 +3)

              implchange       982KB    +354KB (#20920 +7556)

                javalock       279KB    +266KB (#4477 +4092)
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                libcache       245KB     +47KB (#9473 +1840)

          libconstraints        22KB      +3KB (#464 +75)

               lifecycle        14KB      +4KB (#33 +9)

          livemap_system      1083KB    +305KB (#25117 +5207)

          memleak_trends       544KB    +544KB (#5809 +5809)

           memleakserver        96KB     +96KB (#2906 +2906)

                metainfo      7669KB   +1916KB (#21935 +6416)

In the previous example, the JRockit Mission Control Memleak tool was started on 
a JVM monitoring itself between the invocations of the command. It can be seen  
how the Memleak modules have allocated a small amount of native memory.  
Raising the level to 4, even the source code lines in the JVM responsible for the 
allocations can be determined:

C:\>jrcmd 5784 print_memusage level=4

5784:

Total mapped     1310708KB     +35656KB    (reserved=1083664KB -14720KB)

-                Java heap    1048576KB    (reserved=1002572KB -16516KB)

-                GC tables      35084KB

108KB

    +32KB (#27 +8)

    update_trends                     memleak_trends.c: 364        592KB

    +592KB (#3612 +3612)

    update_trends                     memleak_trends.c: 365         84KB

    +84KB (#3612 +3612)

    create_id_from_object             memleakserver.c: 170          25KB

    +25KB (#1 +1)

    create_id_from_classp             memleakserver.c: 217         116KB

Finally, the print_memusage command can be used to display a memory map of 
various JVM subsystems and libraries that are loaded, including third-party libraries. 
This is done by passing the displayMap argument. 

C:\>jrcmd 5784 print_memusage displayMap

5784:

Total mapped               1311220KB  +36168KB (reserved=1083664KB - 
                                               14720KB)

-              Java heap   1048576KB           (reserved=1002572KB - 
                                               16516KB)

-              GC tables     35084KB
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-          Thread stacks     14592KB   +4096KB (#threads=33 +10)

-          Compiled code      5824KB   +2048KB (used=5634KB +2069KB)

-               Internal      1160KB

-                     OS     83180KB   +2188KB

-                  Other     52660KB   +4796KB

-         JRockit malloc     30464KB  +10688KB (malloced=29618KB 
                                               +10047KB #302842 +100611)

- Native memory tracking      2112KB   +1088KB (malloced=1035KB  
                                               +582KB #672 +308)

-        Java class data     37568KB  +11264KB (malloced=37537KB 
                                               +11243KB #45413 +14104)

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  CODE                 Compiled code  rwx 0x0000000007ef0000 (128KB)

...

   MSP      JRockit malloc (179/266)  rw  0x0000000008150000 (64KB)

THREAD                    Stack 6952  rwx 0x0000000008d80000 (12KB)

...

   INT                  TLA memcache  rw  0x000000000e330000 (64KB)

  HEAP                     Java heap  rw  0x0000000010040000 (46004KB)

  HEAP            Java heap reserved      0x0000000012d2d000.(1002572KB)

    OS                       *awt.dll r x 0x000000006d0b1000 

...

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Lowest accessible address 00010000

Highest accessible address 7FFEFFFF

Amount free virtual memory 786016KB

    6 free vm areas in range   4KB -   8KB totalling > 24KB

    7 free vm areas in range   8KB -  16KB totalling > 76KB

   24 free vm areas in range  16KB -  32KB totalling >528KB

  281 free vm areas in range  32KB -  64KB totalling > 15MB

    3 free vm areas in range  64KB - 128KB totalling >236KB

    9 free vm areas in range 128KB - 256KB totalling >  1MB

    5 free vm areas in range 256KB - 512KB totalling >  1MB

    7 free vm areas in range 512KB -   1MB totalling >  4MB

    8 free vm areas in range   1MB -   2MB totalling > 11MB
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    2 free vm areas in range   2MB -   4MB totalling >  4MB

    5 free vm areas in range   4MB -   8MB totalling > 30MB

    1 free vm areas in range   8MB -  16MB totalling > 11MB

    5 free vm areas in range  16MB -  32MB totalling >103MB

    1 free vm areas in range  32MB -  64MB totalling > 51MB

    1 free vm areas in range  64MB - 128MB totalling > 67MB

    1 free vm areas in range 128MB - 256MB totalling >135MB

    1 free vm areas in range 256MB - 512MB totalling >326MB

As can be seen in the previous example, the chunks of memory are categorized as: 

•	 THREAD: Thread related, for example thread stacks.
•	 INT: Internal use, for example pointer pages.
•	 HEAP: Chunk used by JRockit for the Java heap.
•	 OS: Mapped directly from the operating system, such as third party DLLs 

or shared objects.
•	 MSP: Memory space. A memory space is a native heap with a specific 

purpose, for example native memory allocation inside the JVM.
•	 GC: Garbage collection related, for example live bits.

print_object_summary
This command shows how memory on the heap is used on a per-class basis. It can 
be used as a simple memory leak detection tool. Of course, the JRockit Mission 
Control Memory Leak Detector is far superior to this command, but it can still be 
useful when it, for some reason, is not feasible to use the Memory Leak Detector. 
There could, for instance, be a policy restriction which forbids the opening of an  
MLS server (see Chapter 10, The Memory Leak Detector).

The print_object_summary command prints a histogram of all the instances on the 
heap on a per-class basis, together with a differential value of how the memory usage 
has changed since the last invocation of the command.

C:\>jrcmd 6328 print_object_summary

6328:

--------- Detailed Heap Statistics: ---------

22.1% 2697k    34813  +2697k [C

14.3% 1744k      373  +1744k [B

14.2% 1736k     3220  +1736k [Ljava/lang/Object;

11.8% 1443k     2177  +1443k [I
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 6.9%  839k    35833   +839k java/lang/String

 5.6%  682k     6240   +682k java/lang/Class

 2.6%  314k    13429   +314k java/util/HashMap$Entry

 2.0%  242k     3218   +242k [Ljava/util/HashMap$Entry;

 1.2%  149k     3185   +149k java/util/HashMap

 1.0%  126k     5406   +126k java/util/Hashtable$Entry

 0.9%  106k     2844   +106k [Ljava/lang/String;

 0.8%   98k     1396    +98k java/lang/reflect/Field

 0.5%   65k      844    +65k java/lang/reflect/Method

 0.5%   64k      190    +64k [S

     12192kB total ---

--------- End of Detailed Heap Statistics ---

The output contains one line per class that has instances on the heap.

•	 The first column shows how large a part of the heap all instances of the  
class occupies.

•	 The second column lists the total size occupied by the instances of the  
specific class.

•	 The third column lists the number of instances of the specific class.
•	 The fourth column shows the change in size from the first invocation of the 

command. For the first invocation, the second and fourth columns should be 
the same.

•	 The fifth column contains the name of the class.

The types are listed in the formal Java descriptor format. For more information on 
this format, please see The Java Language Specification on the Internet.

Normally, only types occupying more than 0.5 percent of the heap will be listed.  
To change this cutoff value, set the cutoff option to a value equal to the percentage 
value times 1,000. For example, to set it to 1.2 percent, set the cutoff to 1,200.

The print_object_summary command can do other tricks. The "points-to" 
parameters can be used to find out who is referring to all those char arrays in the 
previous example. A maximum of eight "points-to" parameters specifying different 
types are supported. They are somewhat unimaginatively named name1 through 
name8, and are called "points-to" as the type entered as argument will list the types 
having instances that in turn points to the argument type.
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The following example lists all the types that have instances that point to char arrays 
and strings that occupy more than 0.1 percent of the heap:

C:\>jrcmd 6352 print_object_summary cutoffpointsto=100 
  name1=[C name2=java/lang/String

The result would look something like this:

--------- Detailed Heap Statistics: ---------

42.0% 10622k   116820     +0k [C

11.3% 2851k    121648     +0k java/lang/String

 6.0% 1520k      3676     +0k [Ljava/util/HashMap$Entry;

 4.1% 1033k     18906    +12k org/eclipse/core/internal/ 
   registry/ReferenceMap$SoftRef

 3.5%  890k     38001     +0k java/util/HashMap$Entry

 3.2%  800k      7323     +0k java/lang/Class

 3.0%  747k     19820     +0k [Ljava/lang/String;

 2.9%  741k     10063     +0k [I

 2.9%  738k     15765     +0k org/eclipse/core/internal/ 
   registry/ConfigurationElement

 2.8%  699k     15469     +0k [Ljava/lang/Object;

 1.1%  284k       262     +0k [B

 1.0%  241k      4411     +1k org/eclipse/osgi/internal/ 
   resolver/ExportPackageDescriptionImpl

 0.7%  173k      7408     +0k org/osgi/framework/Version

 0.7%  171k      3653     +0k java/util/HashMap

 0.6%  148k       734     +0k [Ljava/util/Hashtable$Entry;

 0.5%  129k         2     +0k [Lorg/eclipse/core/internal/ 
   registry/ReferenceMap$IEntry;

     25273kB total ---

   [C is pointed to from:

      99.6%    121713 java/lang/String

       0.2%       270 [[C

   java/lang/String is pointed to from:

      37.2%     98288 [Ljava/lang/String;

      15.6%     41274 java/util/HashMap$Entry

      11.9%     31530 org/eclipse/core/internal/registry/
ConfigurationElement

       7.2%     19067 [Ljava/lang/Object;

--------- End of Detailed Heap Statistics ---
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In the previous example, we can see that most of our char arrays are being 
referenced by strings, and that our strings are mostly being referenced by  
string arrays. No surprise there.

This command is usually employed to give an idea of the heap usage distribution. It 
can also be used to keep track of the types growing over time and for doing points-to 
analysis on such growing types to find memory leaks. However, if possible, the JRockit 
Mission Control Memory Leak Detector (Memleak) should be used for this kind of 
analysis, being both easier and more powerful to use.

See heap_diagnostics.

print_properties
This command prints the initial properties from when the JVM was started, a set 
of JRockit specific VM properties, and the current state of the system properties.  
The output is in three sections, one for each property type. Each section has a header 
and a footer. Following is an example:

C:\>jrcmd 6012 print_properties
6012:
=== Initial Java properties: ===
java.vm.specification.name=Java Virtual Machine Specification
java.vm.vendor.url.bug=http://edocs.bea.com/ 
  jrockit/go2troubleshooting.html
java.home=D:\demos_3.1\jrmc_3.1\jre
java.vm.vendor.url=http://www.bea.com/
java.vm.specification.version=1.0
file.encoding=Cp1252
java.vm.info=compiled mode
...
=== End Initial Java properties ===

=== VM properties: ===
jrockit.alloc.prefetch=true
jrockit.alloc.redoprefetch=true
jrockit.vm=D:\demos_3.1\jrmc_3.1\jre\bin\jrockit\jvm.dll
jrockit.alloc.pfd=448
jrockit.alloc.pfl=64
jrockit.alloc.cs=512
jrockit.vm.dir=D:\demos_3.1\jrmc_3.1\jre\bin\jrockit
jrockit.alloc.cleartype=0
=== End VM properties ===
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=== Current Java properties: ===

java.vm.vendor.url.bug=http://edocs.bea.com/ 
  jrockit/go2troubleshooting.html

java.runtime.name=Java(TM) 2 Runtime Environment, Standard Edition

sun.boot.library.path=D:\demos_3.1\jrmc_3.1\jre\bin

java.vm.version=R27.6.3-40_o-112056-1.5.0_17-20090318-2104-windows-ia32

java.vm.vendor=BEA Systems, Inc.

java.vendor.url=http://www.bea.com/

path.separator=;

java.vm.name=BEA JRockit(R)

file.encoding.pkg=sun.io

user.country=SE

...

=== End Current Java properties ===

Duplicates may be found when using grep or similar tools to filter 
out properties. This is because the sought property may be in both 
the initial and current section.

print_threads
This is the default SIGQUIT handler. It prints the stack trace for all threads. There 
are many different tools in the market for analyzing such thread dumps, but the 
most powerful way to analyze thread latency and blocking behavior is to either 
use the Latency Analysis part of the JRockit Runtime Analyzer or JRockit Flight 
Recorder. Even the JRockit Management Console can be used for simple analysis  
and for discovering deadlocked threads and information about them. This was 
covered in the previous chapters.

For example:

C:\>jrcmd 7420 print_threads

7420:

===== FULL THREAD DUMP ===============

Mon Sep 28 00:08:56 2009

Oracle JRockit(R) R28.0.0-547-121310-1.6.0_14-20090918-2121-windows-ia32
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"Main Thread" id=1 idx=0x4 tid=7776 prio=6 alive, in native

  at org/eclipse/swt/internal/win32/OS.WaitMessage()Z 
    (Native Method)[optimized]

  at org/eclipse/swt/widgets/Display.sleep(Display.java:4220)[inlined]

  at org/eclipse/ui/application/WorkbenchAdvisor.eventLoopIdle 
    (WorkbenchAdvisor.java:364)[optimized]

  at org/eclipse/ui/internal/Workbench.runEventLoop(Workbench.java:2385)

  at ...

    -- end of trace

"State Data Manager" id=13 idx=0x38 tid=7596 
  prio=5 alive, sleeping, native_waiting, daemon

  at java/lang/Thread.sleep(J)V(Native Method)[optimized]

  at org/eclipse/osgi/internal/baseadaptor/ 
    StateManager.run(StateManager.java:297)

  at java/lang/Thread.run(Thread.java:619)

  at jrockit/vm/RNI.c2java(IIIII)V(Native Method)[optimized]

  -- end of trace

...

"JFR request timer" id=34 idx=0x84 tid=2624 
  prio=5 alive, waiting, native_blocked, daemon

  -- Waiting for notification on: java/util/ 
    TaskQueue@0x1202F238[fat lock]

  at jrockit/vm/Threads.waitForNotifySignal 
    (JLjava/lang/Object;)Z(Native Method)[optimized]

  at java/lang/Object.wait(J)V(Native Method)

  at java/lang/Object.wait(Object.java:485)

  at java/util/TimerThread.mainLoop(Timer.java:483)

  ^-- Lock released while waiting: java/util/ 
    TaskQueue@0x1202F238[fat lock]

  at java/util/TimerThread.run(Timer.java:462)

  at jrockit/vm/RNI.c2java(IIIII)V(Native Method)[optimized]

  -- end of trace

===== END OF THREAD DUMP ===============
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The default version of the command prints the normal thread stack dump, that 
is a stack dump with no native frames. To include native frames in the thread 
dumps, pass the argument nativestack=true. To include information about locks 
implemented by classes in the java.util.concurrent package, pass the argument 
concurrentlocks=true.

print_utf8pool
This command lists all the UTF-8 constants currently in the JVM, for example class 
names, method names and string constants.

The following example lists the URLs in the constant pool.

$ jrcmd 3824 print_utf8pool | grep http

"http://www.w3.org/TR/xinclude": refs=2, len=29

"http://apache.org/xml/properties/internal/ 
  symbol-table": refs=12, len=54

refs is the number of references to the constant and len is the length of the constant 
in bytes.

print_vm_state
The print_vm_state command outputs the state of the JVM in a format similar 
to the dump file that is normally emitted when a JRockit instance crashes.

For example:

C:\>jrcmd 7420 print_vm_state  
7420:
Uptime       : 0 days, 02:35:53 on Tue Sep 22 19:14:39 2009
Version      : Oracle JRockit(R) R28.0.0-547-121310 
               -1.6.0_14-20090918-2121-windows-ia32
CPU          : Intel Core 2 SSE SSE2 SSE3 SSSE3 SSE4.1 Core Intel64
Number CPUs  : 2
Tot Phys Mem : 3706712064 (3534 MB)
OS version   : Microsoft Windows Vista version 6.0 Service Pack 2 
               (Build 6002) (32-bit)
Thread System: Windows Threads
Java locking : Lazy unlocking enabled (class banning) (transfer banning)
State        : JVM is running
Command Line : -Denv.class.path=.;C:\Program Files\ 
               Java\jre6\lib\ext\QTJava.zip -Dapplication.home=C:\
jrockits\R28.0.0_R28.0.0-547_1.6.0 -client - 
  XX:UnlockInternalVMOptions=true -Dsun.java.launcher= 



Chapter 11

[ 435 ]

  SUN_STANDARD com.jrockit.mc.rcp.start.MCMain
java.home    : C:\jrockits\R28.0.0_R28.0.0-547_1.6.0\jre
j.class.path : C:\jrockits\R28.0.0_R28.0.0- 
  547_1.6.0/missioncontrol/mc.jar
j.lib.path   : C:\jrockits\R28.0.0_R28.0.0-
...
StackOverFlow: 0 StackOverFlowErrors have occured
OutOfMemory  : 0 OutOfMemoryErrors have occured
C Heap       : Good; no memory allocations have failed
GC Strategy  : Mode: pausetime, with strategy: singleconcon 
               (basic strategy: singleconcon)
GC Status    : OC is not running. Last finished OC was OC#369.
Heap         : 0x10040000 - 0x17207000  (Size: 113 MB)
Compaction   : (no compaction area)
CompRefs     : References are 32-bit.

Loaded modules:
0000000000400000-000000000043afff  C:\jrockits\ 
  R28.0.0_R28.0.0-547_1.6.0\bin\jrmc.exe
0000000077d30000-0000000077e56fff  C:\Windows\ 
  system32\ntdll.dll
00000000763f0000-00000000764cbfff  C:\Windows\system32\kernel32.dll
0000000077a30000-0000000077accfff  C:\Windows\system32\USER32.dll
0000000077400000-000000007744afff  C:\Windows\system32\GDI32.dll
0000000077ea0000-0000000077f65fff  C:\Windows\system32\ADVAPI32.dll
...
00000000764e0000-00000000765a2fff  C:\Windows\system32\RPCRT4.dll
000000006d3e0000-000000006d3fefff  C:\jrockits\ 
  R28.0.0_R28.0.0-547_1.6.0\jre\bin\java.dll

The dump contains diagnostic information about the state of the JVM, such as 
version information, locking paradigm, thread system, various paths, and the 
addresses of the loaded modules and libraries.

See heap_diagnostics.

run_optfile (R27)
As described in the code generation chapter, directive files can be used to start the 
JVM with a set of directives to the JVM optimization manager. The directive files can 
also be applied at run time by issuing the run_optfile diagnostic command. The 
command takes a single argument, filename—the file name of the directive file to be 
loaded. The directive file format for R27 differs from the one in R28. The R27 format 
is undocumented, and the only use case scenario where you are likely to encounter 
the run_optfile command in R27 is in interaction with JRockit support.
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run_optfile (R28)
The R28 version of run_optfile for R28 can take several arguments. The most 
important one is the filename argument that specifies a directive file for the JVM 
as in R27. The directive file format for R28 is undocumented and subject to change 
without notice. Some limited examples of how to use directive files are given in 
Chapter 2, but this should by no means be considered complete.

The run_optfile command can also be used to re-compile selected methods with 
a given compilation strategy.

The following example will re-generate the java.util.ArrayList.get method 
using the optimized code generation strategy:

C:\>jrcmd 7736 run_optfile method=java.util.ArrayList.get* 
  strategy=opt disass=false

runfinalization
This command forces the JVM to execute a call to java.lang.System.
runFinalization(), that is, hints to the runtime that any available finalizers should 
be run.

runsystemgc
This command forces a full garbage collection.

Forcing a garbage collection is very rarely necessary. The JVM is good at deciding 
when to garbage collect. If the user interferes, the most probable result is a 
performance penalty. There are, however, rare cases when explicitly invoking 
the garbage collector may be helpful. Such cases may, for example, include using 
verbose GC logs to look at memory usage or live set usage, and not wanting to wait 
for a GC to occur.

If executed with no arguments, the runsystemgc command defaults to performing 
only a nursery collection. No compaction of the heap will take place.

To do a full garbage collection, the full argument needs to be set to true, as shown 
in the following example. When forcing a full garbage collection, an exceptional 
compaction will take place, which means that the entire heap will be compacted.

C:\>jrcmd 4748 runsystemgc full=true

4748:

The runsystemgc command does not return any result.
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set_vmflag (R28)
This command sets an individual VM flag. It takes the name of the VM flag and its 
new value.

For example:

C:\>jrcmd 7772 set_vmflag flag=DumpOnCrash value=false

7772:

Upon successful completion, the command does not return any message. Only 
writeable VM flags can be changed this way. If an attempt to change the value  
of a read-only flag is made, an error message is returned. For example:

C:\>jrcmd 7772 set_vmflag flag=DisableAttachMechanism value=true

7772:

Not a writeable flag "DisableAttachMechanism"

To set the value of a VM flag that is not writeable at runtime, use the  
–XX:<Flag>=<value> syntax when starting the JVM.

See list_vmflags.

start_flightrecording (R28)
The start_flightrecording command starts a JRockit Flight Recorder recording. 
It can be used to start a continuous recording, that is a recording with no end time,  
or a timed recording that lasts for a specific duration. The recording can be 
configured using a number of named templates located in the JROCKIT_HOME/jre/
lib/jfr folder. The files are in JSON format and can be copied and altered to create 
new templates.

For example:

C:\>jrcmd 7420 start_flightrecording name=MyRecording settings= 
  jra.jfs duration=30s filename=my_recording.jfr.gz compress=true

7420:

Started recording 5

The previous example starts a recording using the jra.jfs template. The recording 
will last for 30 seconds, after which a file will be emitted to the JROCKIT_HOME 
directory, named my_recording.jfr.gz. The file will be gzip compressed.
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Using the check_flightrecording command to check on the recording after it has 
started, should look something like this:

C:\>jrcmd 7420 check_flightrecording
7420:
Recording : id=0 name="continuous" duration=0s (running)
Recording : id=5 name="MyRecording" duration=30s 
  dest="my_recording.jfr.gz" compress=true (running)

Once the 30 seconds have passed, the state of the recording will go from running  
to stopped and the recording file will be emitted.

Some templates are meant to be additive, that is they contain settings that are 
supposed to be used in addition to one of the base templates. The only way to 
identify such a template is currently by looking at the comment at the top of the  
file. If it starts with "Additional settings", the file is meant to be used together  
with one of the base settings. For instance, using the default template with  
additional lock information would look like this:

C:\>jrcmd 7420 start_flightrecording name=DefaultAndLocks 
  settings=default.fls settings=lock.fls duration=30s 
  filename=defaultAndLocks.jfr.gz compress=true

The simplest way of starting, configuring, and retrieving JRockit Flight Recorder 
(JFR) recordings for analysis is to use the JRockit Mission Control client. For more 
information on how to do this, please refer to Chapter 9, The Flight Recorder.

Compressing files may cause additional overhead, but will 
reduce the size of the resulting file.

See check_flightrecording, dump_flightrecording, and stop_flightrecording

start_management_server
This command starts the external management agent without having to edit startup 
scripts and then restarting the JVM. It works almost exactly the same way as the  
–Xmanagement JVM parameters used to start up the management agent.

Starting up an application server and deploying a J2EE application can take a 
considerable amount of time. There is usually a warm-up period involved to get 
everything properly optimized. Once everything is up and running, it is usually 
very annoying to realize that the necessary flags to start up the management agent 
were forgotten in the startup script. If the server is running in production, the next 
opportunity to take the server offline to restart it with a modified set of startup 
parameters may be quite far away.
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The following example starts up the external management agent on port 4711 with 
SSL and authentication turned off and autodiscovery (JDP) turned on. Note that 
for SSL and authentication to work properly with this command, the password.
properties file and a key store must be set up in advance. Please see the document 
Monitoring and Management Using JMX Technology on the Oracle Sun Developer 
Network website.

C:\>jrcmd 473528 start_management_server ssl=false 
  authenticate=false port=4711 autodiscovery=true 
2416:

If everything goes well, this command will produce no output.

The start_management_server command will always start the 
local management agent, and the local management agent cannot be 
shut down once it has been started.

See kill_management_server.

startjrarecording (R27)
The simplest way of starting and retrieving JRockit Runtime Analyzer (JRA) 
recordings for analysis is to use the JRockit Mission Control client. For more 
information on how to do this, please see Chapter 8, The Runtime Analyzer.

Sometimes, however, using the JRockit Mission Control client may not be an 
option. The environment may not allow JMX connections, or perhaps  a JDK 1.4 
based version of JRockit is used. In those cases, the startjrarecording diagnostic 
command is very useful. The following example starts a JRA-recording on the 
JRockit process with PID 5516. The duration of the recording will be two minutes 
and it will start after an initial delay of 30 seconds.

When sampling an application that utilizes a large framework or runs in an 
enterprise container, such as WebLogic Server, call stack depths can be quite large.  
In such cases, increasing the trace depth is usually a good idea. The trace depth in  
the following example has been increased to 64.
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The sampletime option denotes how often the threads should be sampled. As this 
is a relatively short recording, the sample time has been compressed to every five 
milliseconds. The latency recording has been turned on to provide latency events.

C:\>jrcmd 5516 startjrarecording filename=C:\myrecording.jra  
  recordingtime=120 delay=30 tracedepth=64 sampletime=5 latency=true

5516:

JRA recording started.

When the recording command has been sent, the JVM upon which the recording has 
been started should print something like the following to the console (stdout):

[INFO ][jra    ] Delaying JRA recording for 30 seconds.

[INFO ][jra    ] Starting JRA recording with these options:

filename=D:\myrecording.jra, recordingtime=120s, methodsampling=1, 
  gcsampling=1, heapstats=1, nativesamples=0, methodtraces=1, 
  sampletime=5, zip=1, hwsampling=0 delay=30s, tracedepth=64 
  threaddump=1, threaddumpinterval=0s, latency=1, 
  latencythreshold=20ms, cpusamples=1, cpusampleinterval=1s

Once the recording is done, it should print something similar to this:

[INFO ][jra    ] Zipped the recording file.

[INFO ][jra    ] Finished recording. Results written to 
  C:\myrecording.jra.

See checkjrarecording and stopjrarecording.

stop_flightrecording (R28)
This command stops an ongoing JRockit Flight Recorder recording. The recording  
to stop can either be identified by name (name) or ID (recording).

For example:

C:\>jrcmd 7420 stop_flightrecording recording=10

7420:

By default, the data will be saved to file when the recording is stopped. If the data is 
unwanted, pass the argument discard=true. The stop_flightrecording command 
will remove the recording from the listed recordings in check_flightrecording. So, 
the command can be used to clean out information about old recordings that are no 
longer of interest.

See check_flightrecording, dump_flightrecording, start_flightrecording.
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timestamp
This command prints a timestamp for a JVM and displays how long it has 
been running.

C:\>jrcmd 6012 print_properties 
6012:
==== Timestamp ==== uptime: 0 days, 00:04:39 time: 
  Sun Jan 24 15:47:42 2010

verbosity
This is a command for controlling the logging for the different logging modules in 
JRockit. The command can be used to change the logging level for a specific module, 
to redirect the output stream of the logger and to decorate the logging output. 
Running the verbosity command without arguments will list all the available 
logging modules with their current status.

C:\demos_3.1>jrcmd 4504 verbosity
4504:
Current logstatus:
        jrockit : level=WARN, decorations=201, sanity=NONE
        memory (gc) : level=WARN, decorations=201, sanity=NONE
        nursery (yc) : level=WARN, decorations=201, sanity=NONE
        model : level=WARN, decorations=201, sanity=NONE
        devirtual : level=WARN, decorations=201, sanity=NONE
        codegen (code) : level=WARN, decorations=201, sanity=NONE
        native (jni) : level=WARN, decorations=201, sanity=NONE
        thread : level=WARN, decorations=201, sanity=NONE
        opt : level=WARN, decorations=201, sanity=NONE

The first word on a line is the module name. The word in parenthesis after the 
module name, if there is one, is an alias that can also be used to refer to the module.

The following example shows how to enable verbose logging for the code generator 
in a similar fashion as described at the end of Chapter 2. This is equivalent to the 
output generated by starting the JVM with the flag -Xverbose:codegen.

C:\>jrcmd 5556 verbosity set=codegen=INFO
5556:
Current logstatus:
        jrockit : level=WARN, decorations=201, sanity=NONE
        memory (gc) : level=WARN, decorations=201, sanity=NONE
        nursery (yc) : level=WARN, decorations=201, sanity=NONE
        model : level=WARN, decorations=201, sanity=NONE
        devirtual : level=WARN, decorations=201, sanity=NONE     
        codegen (code) : level=INFO, decorations=201, sanity=NONE



As can be seen from the previous example, verbosity responds by listing the 
new log status.

The verbosity command can also be used to do exception profiling. Exception 
profiling is used to find out where the exceptions in an application occur. 

Prior to the R28 version of JRockit and the exception profiling capabilities of the 
Flight Recorder, logging was the only possible, if somewhat tedious, way of doing 
exception profiling. As can be realized, this is just a somewhat more flexible way  
of running JRockit with –Xverbose:exceptions as described in Chapter 5.

The following example shows how to enable and disable exception profiling. It also 
shows how to use decorations. Leaving decorations empty will default to decorating 
the output with timestamp, module, and PID.

C:\>jrcmd 6064 verbosity set=exceptions=info decorations=module

6064:

Current logstatus:

The resulting log for the JRockit process on which the diagnostic command is 
executed will contain an entry for every exception thrown. The example simply 
throws an ExceptionThrowerException every now and then with the message 
"Throw me!".

[excepti] ExceptionThrowerException: Throw me!

[excepti] ExceptionThrowerException: Throw me!

JRockit can also display the stack traces for thrown exceptions. Simply set the 
logging level to debug as shown in the following command-line execution:

D:\>jrcmd 6064 verbosity set=exceptions=debug decorations=module

6064:

Current logstatus:

This will result in each exception line being followed by the stack trace showing 
exactly where the exception was thrown. This is the same behavior as is achieved  
by running JRockit with –Xverbose:exceptions=debug.

[excepti] ExceptionThrowerException: Throw me!

  at jrockit/vm/Reflect.fillInStackTrace0 
    (Ljava/lang/Throwable;)V(Native Method)

  at java/lang/Throwable.fillInStackTrace() 
    Ljava/lang/Throwable;(Native Method)

  at java/lang/Throwable.<init>(Throwable.java:196)

  at java/lang/Exception.<init>(Exception.java:41)
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  at ExceptionThrowerException.<init>(ExceptionThrowerException.java:5)

  at ExceptionThrower.throwMe(ExceptionThrower.java:24)

  at ExceptionThrower.doStuff(ExceptionThrower.java:20)

  at ExceptionThrower.loop(ExceptionThrower.java:11)

  at ExceptionThrower.main(ExceptionThrower.java:4)

  at jrockit/vm/RNI.c2java(IIIII)V(Native Method) 
  --- End of stack trace

This can be done at runtime, even in production systems. If log level is reverted  
to its original form after the analysis is complete, no overhead will remain.

version
This command is quite useful when there is a need to find out what exact version  
of JRockit an application is running on, without having to restart it. When, for  
example, the JRockit JVM has been started as a service, and no console is available,  
this command is probably one of the easiest ways to find out the version number.  
The version command takes no arguments.

C:\>%JAVA_HOME%\bin\jrcmd 2416 version 
2416: 
BEA JRockit(R) (build R27.6.2-20_o-108500-1.6.0_05- 
  20090120-1116-windows-ia32, compiled mode)

Summary
This chapter showed how the JRCMD command-line utility can be used for listing 
and sending diagnostic commands to one or more locally running instances of the 
JRockit JVM.

Examples introducing basic usage patterns as well as detailed examples for the most 
common commands were presented.

Most of this chapter can readily be employed as an alphabetical reference guide  
to the JRCMD commands.





Using the JRockit 
Management APIs

There are various ways to access the JRockit management features programmatically, 
all of them more or less unsupported. As the APIs in question are unsupported, 
they are subject to change between JRockit releases or even to disappear entirely. 
This means that dependencies on these APIs may break between releases of JRockit. 
Because the APIs can be quite useful, this chapter will nevertheless show a few 
different ones, with their applications.

In this chapter, you will learn:

•	 How to use the JRockit Management API (JMAPI) to access runtime 
information in the JRockit JVM

•	 How to instantiate and access the JMX-based JRockit Management API 
(JMXMAPI) for various versions of JRockit

JMAPI is partly deprecated as of JRockit R28 and JMXMAPI is 
unsupported in all JRockit versions. This chapter is for informational 
purposes only—illustrating that having the power of the JVM at your 
fingertips can be great fun.

JMAPI
The first API we will discuss is called JMAPI, short for the JRockit Management 
API. It is a lightweight Java-only API which provides in-process access to various 
management features. This API has existed since very early versions of JRockit. 
However, parts of the API were marked as deprecated in R28.0.0 and its future  
is uncertain.
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JMAPI was the JVM-side API that enabled the functionality of the earliest versions of 
the JRockit Management Console. In fact, even today, if a connection is established to 
a 1.4 version of JRockit, a proprietary internal protocol called the Rockit Management 
Protocol (RMP) will be used. This protocol will, in turn, use JMAPI to gather data and 
change the various runtime parameters of the JVM.

The next few pages contain various examples of things that can be done using JMAPI. 
The easiest way to compile the examples is to use the JRockit JDK. This requires no 
special configuration, as the necessary classes are available in the JRockit rt.jar that 
is part of the JRockit JDK. The examples can also be compiled by including jmapi.jar, 
that contains all the interface declarations, in your class path. The jmapi.jar is not 
part of the JDK, but is distributed by Oracle on request.

Using JMAPI for simple tasks is very easy. Use the com.bea.jvm.JVMFactory class 
to get an instance implementing the JVM interface. From the JVM interface a number 
of different subsystems can be reached.

JVM

ClassLibrary CompilationSystem DiagnosticCommand LoggingSystem Machine

MemorySystem OperatingSystem ProfilingSystem ThreadSystem

GarbageCollector

For readers who reacted on the com.bea part in the package 
name—JMAPI predates the 2008 Oracle acquisition of BEA 
Systems, and is used in other Oracle products as well as in 
third-party products. As JMAPI was supported in JRockit R27 
and earlier releases, the package name cannot be changed 
without breaking existing products utilizing JMAPI.

Let us begin with a simple example that writes the current CPU load on the console 
ten times with a one second delay between each printout:

import com.bea.jvm.JVMFactory;

public class JMAPITest {
  public static void main(String[] args) throws InterruptedException {
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    for (int i = 0; i < 10; i++) {
      System.out.println( 
        String.format("CPU load is %3.2f%%", 
        JVMFactory.getJVM().getMachine().getCPULoad() * 100.0));
      Thread.sleep(1000);
    }
  }
}

Access permissions to JMAPI are very coarse-grained; access is either permitted 
or not allowed at all. If the code needs access to JMAPI when a security manager 
is active, it must be granted the com.bea.jvm.ManagementPermission 
"createInstance".

The following security policy statement grants access to JMAPI for all code:

grant { 
  permission com.bea.jvm.ManagementPermission "createInstance";
};

For more information on how to use permissions and policies, see:
http://java.sun.com/j2se/1.5.0/docs/guide/security/
permissions.html

JMAPI examples
JMAPI can be used to gather a lot of information about the operating 
environment. The following code example prints some information about  
the available network interfaces:

for (NIC nic : JVMFactory.getJVM().getMachine().getNICs()) {
  System.out.println( 
    nic.getDescription() + " MAC:" +  
    nic.getMAC() + " MTU:" + nic.getMTU()); 
}

It is also possible to change various aspects of the runtime parameters using  
JMAPI. The following piece of code will attempt to change the JRockit process 
affinity to only one CPU:

private static void bindToFirstCPU(JVM jvm) {
  Collection<CPU> cpus = jvm.getProcessAffinity();
  CPU cpu = cpus.iterator().next();
  Collection<CPU> oneCpu = new LinkedList<CPU>();
  oneCpu.add(cpu);
  jvm.suggestProcessAffinity(oneCpu);
}
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This can be compared to using the command-line flag –XX:BindToCPUs, for 
controlling CPU affinity. The flag was introduced in Chapter 5, Benchmarking and 
Tuning. 

Other aspects such as the pause time target, the heap size, and the nursery size can 
also be changed as follows:

MemorySystem ms = JVMFactory.getJVM().getMemorySystem();
ms.suggestHeapSize(1024*1024*1024);
ms.getGarbageCollector().setPauseTimeTarget(30);
ms.getGarbageCollector().setNurserySize(256*1024*1024);

Some features in JMAPI are a result of direct demands from customers with 
specialized setups. There is, in particular, one peculiar feature that comes to mind—it 
is possible to force the JRockit process to instantly terminate if it runs out of memory, 
instead of throwing an OutOfMemoryError.

ms.setExitOnOutOfMemory(true);

It is also possible to do simple method profiling using JMAPI. The following example 
enables profiling for the method java.io.StringWriter.append(CharSequence). 
The example executes it for a number of String instances, after which the number of 
invocations and the average time it took to invoke the method will be printed.

import java.io.StringWriter;
import java.lang.reflect.Method;

import com.bea.jvm.JVMFactory;
import com.bea.jvm.MethodProfileEntry;
import com.bea.jvm.ProfilingSystem;

public class MethodProfilerExample {
  public static void main(String[] args) throws Exception {
    String longString = generateLongString();
    ProfilingSystem profiler = JVMFactory.getJVM() 
      .getProfilingSystem();
    Method appendMethod = StringWriter.class.getMethod(
      "append", CharSequence.class);
    MethodProfileEntry mpe = profiler 
      .newMethodProfileEntry(appendMethod);
    mpe.setInvocationCountEnabled(true);
    mpe.setTimingEnabled(true);

    String total = doAppends(10000, longString);
    long invocationCount = mpe.getInvocations();
    long invocationTime = mpe.getTiming();
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    System.out.println("Did " + invocationCount 
      + " invocations");
    System.out.println("Average invocation time was " 
      + (invocationTime * 1000.0d) 
      / invocationCount + " microseconds");
    System.out.println("Total string length " 
      + total.length());
  }

  private static String doAppends(int count, String longString) {
    StringWriter writer = new StringWriter();
    for (int i = 0; i < count; i++) {
      writer.append(longString);
    }
    return writer.toString();
  }

  private static String generateLongString() {
    StringWriter sw = new StringWriter(1000);
    for (int i = 0; i < 1000; i++) {
      // Build a string containing the characters 
      // A to Z repeatedly.
      sw.append((char) (i % 26 + 65));
    }
    return sw.toString();
  }
}

The previous example is slightly simplified. Normally, profiling could already have 
been enabled for the method, and thus the counter and timing information already 
available in the MethodProfileEntry should be stored before the profiling run is 
started and subtracted from the total when it is finished.

Recall the diagnostic commands that were introduced in Chapter 7, The Management 
Console and Chapter 11, JRCMD. All diagnostic commands are available through 
JMAPI, and can be accessed through the DiagnosticCommand subsystem. Here is 
an example that prints the object summary histogram on stdout, in effect 
programmatically executing the diagnostic command print_object_summary:

import com.bea.jvm.DiagnosticCommand;
import com.bea.jvm.JVMFactory;

public class ObjectSummary {
  public static void main(String[] args)
  throws InterruptedException {
    DiagnosticCommand dc = JVMFactory.getJVM()
      .getDiagnosticCommand();
    String output = dc.execute("print_object_summary");
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    System.out.println(output);
  }
}

Finally, JMAPI also contains powerful class pre-processing and redefinition features. 
The following example redefines the bytecode of the classes as they are loaded, by 
calling transformByteCode for each class:

ClassLibrary cl = JVMFactory.getJVM().getClassLibrary();
cl.setClassPreProcessor(new ClassPreProcessor() {
  @Override
  public byte[] preProcess(ClassLoader cl, 
    String className,  
    byte[] arg) {
    System.out.println("Pre-processing class " + className);
    return transformByteCode(arg);
  }
});

There can only be one active preprocessor in use at any given time. By using the 
method redefineClass in the class library, it is also possible to redefine already 
loaded classes.

JMAPI can be used for much more than the examples listed here. In 
the interest of not spending too much time on describing deprecated 
and unsupported features, we have chosen to keep this chapter short. 
The full javadocs for JMAPI can be requested by Oracle customers.

JMXMAPI
The other management API available in JRockit is JMXMAPI. JMXMAPI can be seen 
as a JMX-based version of JMAPI, even though there is not a one-to-one mapping 
between the two. JMXMAPI is currently not supported and is subject to change 
between releases, without notice.

The name space (domain) of the MBeans for JMXMAPI has changed with every major 
JRockit release. With R28, it was changed once again due to the Oracle acquisition. 
Even though it is highly unlikely that Oracle will be acquired, as we have the luxury of 
not yet supporting the API, expect it to continue to change for a while. The JMXMAPI 
MBeans were originally co-located with the java.lang.management MBeans (see 
Chapter 7) in R26.x, but were later relocated to the bea.jrockit.management domain 
and finally moved to the oracle.jrockit.management domain. The best version-
independent way to access a certain feature of JMX is by using the RJMX proxy layer 
introduced at the end of the Management Console chapter.
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To access JMXMAPI, the JRockitConsoleMBean must first be loaded. This can easily 
be done programmatically, by using the MBeanServerConnection.

For R27.x versions of JRockit:

someMBeanServerConnection.createMBean 
  ("bea.jrockit.management.JRockitConsole", null);

For R28.x versions of JRockit:

someMBeanServerConnection.createMBean 
  ("oracle.jrockit.management.JRockitConsole", null);

With the Management Console proxy layer, this is done automatically.

The set of MBeans are organized as one per functional area. For the R28 
version of JRockit, MBeans are also dynamically created for each ongoing  
JRockit Flight Recording.

Following is a table describing the different MBeans available:

JMXMAPI MBeans
MBean name Description
Compilation Information from the JIT compiler.
DiagnosticCommand Enables access to the JVM internal diagnostic commands, see 

Chapter 11, JRCMD.
GarbageCollector Information from the garbage collector, allows some degree of 

control over the garbage collector.
JRockitConsole Functionality specifically for the Management Console, such as 

the "dump heap" operation. Creating this MBean will instantiate 
and register the rest of the API.

Log Controlling and getting information from the JRockit logging 
subsystem.

Memleak For controlling the Memleak server.
Memory For accessing information about physical memory.
PerfCounters A dynamically generated MBean listing all of the internally 

available performance counters, described later in this chapter.
Profiler For controlling the method profiler.
Runtime For reading CPU information, CPU load, and for controlling CPU 

affinity.
Threading Thread-related information. Currently only contains MBean 

operations, that is no MBean attributes.
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In R28, there is also a supported JMX-based API for starting and controlling JRockit 
Flight Recordings. This is located under com.oracle.jrockit. The entry point for 
that API is the FlightRecorder MBean. This API is not part of JMXMAPI.

The JRockit internal performance counters
Most of JMXMAPI exposes MBeans implementing static interfaces. There is 
however one that is dynamically generated—the PerfCountersMBean. JRockit 
uses a number of internal performance counters for profiling and diagnostic 
purposes.The PerfCountersMBean contains an attribute for every internal 
performance counter in JRockit.

As JMXMAPI is not yet supported, the dynamically generated 
PerfCountersMBean is not supported either. However, there 
is an internal distinction between the counters. The jrockit.* 
counters can be considered to be even less supported than the 
oracle.* counters.

The following table describes some of the most important counters available in  
4.0/R28.x (at the time of writing, there are 139 different counters available):

Counter Description
java.cls.loadedClasses The number of classes loaded since the start of 

the JVM.
java.cls.unloadedClasses The number of classes unloaded since the start 

of the JVM.
java.property.java.class.path The class path of the JVM.
java.property.java.endorsed.
dirs

The endorsed dirs. See the Endorsed Standards 
Override Mechanism on the Internet at 
http://java.sun.com/javase/6/docs 
/technotes/guides/standards/index.
html.

java.property.java.ext.dirs The extension dirs that are searched for JAR 
files that should be automatically put on the 
classpath. See the Java Documentation for 
java.ext.dirs. More information on the 
Extension Mechanism can be found here: 
http://java.sun.com/j2se/1.4.2/docs 
/guide/extensions/spec.html

java.property.java.home The root of the JDK or JRE installation.
java.property.java.library.path The library path used to find user libraries.

http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
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Counter Description
java.property.java.vm.version The JRockit version.
java.rt.vmArgs The list of VM arguments.
java.threads.daemon The number of running daemon threads.
java.threads.live The total number of running threads.
java.threads.livePeak The peak number of threads that have been 

running since JRockit was started.
java.threads.nonDaemon The number of non-daemon threads running.
java.threads.started The total number of threads started since the 

start of JRockit.
jrockit.gc.latest.heapSize The current heap size in bytes.
jrockit.gc.latest.nurserySize The current nursery size in bytes.
jrockit.gc.latest.
oc.compaction.time

How long, in ticks, the last compaction lasted. 
Reset to 0 if compaction is skipped.

jrockit.gc.latest.
oc.heapUsedAfter

Used heap at the end of the last OC, in bytes.

jrockit.gc.latest.
oc.heapUsedBefore

Used heap at the start of the last OC, in bytes.

jrockit.gc.latest.oc.number The number of OCs that have occurred so far.
jrockit.gc.latest.
oc.sumOfPauses

The pause time for the last OC, in ticks.

jrockit.gc.latest.oc.time The time the last OC took, in ticks.
jrockit.gc.latest.
yc.sumOfPauses

The pause time for the last YC, in ticks.

jrockit.gc.latest.yc.time The time the last YC took, in ticks.
jrockit.gc.max.
oc.individualPause

The longest OC pause so far, in ticks.

jrockit.gc.max.
yc.individualPause

The longest YC pause so far, in ticks.

jrockit.gc.total.oc.compaction.
externalAborted

Number of aborted external compactions so 
far.

jrockit.gc.total.oc.compaction.
internalAborted

Number of aborted internal compactions so far.

jrockit.gc.total.oc.compaction.
internalSkipped

Number of skipped internal compactions so 
far.

jrockit.gc.total.oc.compaction.
time

The total time spent doing compaction so far, 
in ticks.
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Counter Description
jrockit.gc.total.oc.ompaction.
externalSkipped

Number of skipped external compactions so 
far.

jrockit.gc.total.oc.pauseTime The sum of all OC pause times so far, in ticks.
jrockit.gc.total.oc.time The total time spent doing OC so far, in ticks.
jrockit.gc.total.pageFaults The number of page faults that have occurred 

during GC so far.
jrockit.gc.total.yc.pauseTime The sum of all YC pause times, in ticks.
jrockit.gc.total.
yc.promotedObjects

The number of objects that all YCs have 
promoted.

jrockit.gc.total.
yc.promotedSize

The total number of bytes that all YCs have 
promoted.

jrockit.gc.total.yc.time The total time spent in YCs, in ticks.
oracle.ci.jit.count The number of methods JIT compiled.
oracle.ci.jit.timeTotal The total time spent JIT compiling, in ticks.
oracle.ci.opt.count The number of methods optimized.
oracle.ci.opt.timeTotal The total time spent optimizing, in ticks.
oracle.rt.counterFrequency Used to convert ticks values to seconds.

Many of these counters are excellent choices for attributes to plot in the Management 
Console. Also, be aware that many values are in ticks. To convert them to seconds, 
divide by the value in the oracle.rt.counterFrequency counter.

To find out which counters are in ticks, enable the Description column in the MBean 
Browser by editing the table properties as shown in the following screenshot:
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The unit will be listed at the end of the description, as can be seen (you may need a 
magnifier) in the rightmost column in the attribute table behind the Table Settings 
dialog in the screenshot.

An example—building a remote version of 
JRCMD
JMXMAPI is accessed through standard JMX mechanisms (as described in Chapter 
7). Consequently, the API is easily accessed remotely through the platform MBean 
server and the standard remote JMX agent. As described in Chapter 11, a limitation 
of JRCMD is that it can only attach to JRockit instances running locally on the same 
machine as where JRCMD is executed. It can also only access JRockit instances 
running as the same user as the one invoking JRCMD. Using JMXMAPI, we can 
write a remote version of JRCMD that overcomes these limitations.

import java.lang.management.ManagementFactory;
import java.net.MalformedURLException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
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import javax.management.Attribute;
import javax.management.InstanceNotFoundException;
import javax.management.MBeanAttributeInfo;
import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

/**
 * Simple code example on how to execute
 * ctrl-break handlers remotely.
 * 
 * Usage:
 * RemoteJRCMD -host -port -user -pass -command []
 * 
 * All arguments are optional. If no command is
 * specified, all performance counters and their
 * current values are listed.
 * 
 * @author Marcus Hirt
 */
public final class RemoteJRCMD {
  private final static String KEY_CREDENTIALS = 
    "jmx.remote.credentials";
  private final static String JROCKIT_PERFCOUNTER_MBEAN_NAME = 
    "oracle.jrockit.management:type=PerfCounters";
  private final static String JROCKIT_CONSOLE_MBEAN_NAME = 
    "oracle.jrockit.management:type=JRockitConsole";
  private final static String[] SIGNATURE = 
    new String[] {"java.lang.String"};
  private final static String DIAGNOSTIC_COMMAND_MBEAN_NAME = 
    "oracle.jrockit.management:type=DiagnosticCommand";

  public static void main(String[] args)
    throws Exception {
      HashMap<String, String> commandMap = 
        parseArguments(args);
      executeCommand( 
        commandMap.get("-host"), 
        Integer.parseInt(commandMap.get("-port")), 
        commandMap.get("-user"), 
        commandMap.get("-password"), 
        commandMap.get("-command")); 
  }
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private static HashMap<String, String> parseArguments( 
  String[] args) {
    HashMap<String, String> commandMap = 
      new HashMap<String, String>();
    commandMap.put("-host", "localhost");
    commandMap.put("-port", "7091");
    for (int i = 0; i < args.length; i++) {
      if (args[i].startsWith("-")) {
        StringBuilder buf = new StringBuilder();
        int j = i + 1;
        while (j < args.length && !args[j].startsWith("-")) {
          buf.append(" ");
          buf.append(args[j++]);
        }
        commandMap.put(args[i], buf.toString().trim());
        i = j - 1;
      }
    }
    return commandMap;
}

@SuppressWarnings("unchecked")
public static void executeCommand(
  String host, int port, String user,
  String password, String command)
  throws Exception {
    MBeanServerConnection server = null;
    JMXConnector jmxc = null;
    Map<String, Object> map = null;
    if (user != null || password != null) {
      map = new HashMap<String, Object>();
      final String[] credentials = new String[2];
      credentials[0] = user;
      credentials[1] = password;
      map.put(KEY_CREDENTIALS, credentials);
  }
  // Use same convention as Sun. localhost:0 means
  // "VM, monitor thyself!"
  if (host.equals("localhost") && port == 0) {
    server = ManagementFactory.getPlatformMBeanServer();
  } else {
    jmxc = JMXConnectorFactory.newJMXConnector(
      createConnectionURL(host, port), map);
    jmxc.connect();
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    server = jmxc.getMBeanServerConnection();
  }

  System.out.println("Connected to " + host+ ":" + port);

  try {
    server.getMBeanInfo(new ObjectName(
      JROCKIT_CONSOLE_MBEAN_NAME));
  } catch (InstanceNotFoundException e1) {
      server.createMBean(
        "oracle.jrockit.management.JRockitConsole", null);
  }

  if (command == null) {
    ObjectName perfCounterObjectName = new ObjectName(
      JROCKIT_PERFCOUNTER_MBEAN_NAME);
    System.out.println("Listing all counters...");
    MBeanAttributeInfo[] attributes = server.getMBeanInfo(
      perfCounterObjectName).getAttributes();
    System.out.println("Counter\tValue\n=======\t====");

    String[] attributeNames = new String[attributes.length];
    for (int i = 0; i < attributes.length; i++) {
      attributeNames[i] = attributes[i].getName();
    }
    Iterator valueIter = server.getAttributes(
      perfCounterObjectName,
      attributeNames).iterator();
    while (valueIter.hasNext()) {
      Attribute attr = (Attribute) valueIter.next();
      System.out.println(attr.getName() + "\t=\t"  
        + attr.getValue());
    }
  } else {
    System.out.println("Invoking the ctrl-break command '"
      + command + "'...");
    ObjectName consoleObjectName = new ObjectName(
    DIAGNOSTIC_COMMAND_MBEAN_NAME);
    Object[] params = new Object[1];
    params[0] = command;
    System.out.println("The CtrlBreakCommand returned: \n"
      + server.invoke(consoleObjectName,
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      "execute", params,
      SIGNATURE));
  }

  if (jmxc != null) {
    jmxc.close();
  }
}

private static JMXServiceURL createConnectionURL(
  String host, int port)
  throws MalformedURLException {
    return new JMXServiceURL("rmi", "", 0,
      "/jndi/rmi://" + host + ":"
      + port + "/jmxrmi");
  }
}

The command uses the following syntax:

java RemoteJRCMD –command <command string> -host <host>  
  -port <port>

Where: 

•	 <command string> is the diagnostic command as you would write it using 
JRCMD, for example "start_flightrecording name=MyRecording 
duration=30s".

•	 <host> is the name of the host where the JVM that we want to connect to 
is running, for instance localhost.

•	 <port> is the port number on the JRockit machine where the remote JMX 
agent (the RMI Registry) is listening. See the section Starting JRockit for remote 
management in Chapter 6, JRockit Mission Control. The default port is 7091.

The following command-line example would list all the performance counters and 
their values on localhost using the default port (7091):

java RemoteJRCMD

The following command-line example would list all available commands  
on a JRockit running on the host bitsy, using port 4711:

java RemoteJRCMD -command help -host bitsy -port 4711
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The following command-line example would start a 30 second flight recording on 
a JRockit running on localhost on the default port (7091), writing the resulting 
recording to the designated file:

java RemoteJRCMD -command start_flightrecording 
  name=myrecording filename=c:\tmp\myrecording.jfr 
  duration=30s

Summary
In this chapter, two of the JRockit internal management APIs were described. Both 
APIs grant access to internal JRockit functionality, such as performance metrics.  
They also make it possible to programmatically manipulate a running JRockit JVM.

JMAPI is a local Java API that was fully supported in JRockit versions prior to R28. 
Parts of JMAPI was deprecated in R28, and the future of JMAPI is undecided at the 
time of this writing.

JMXMAPI is an unsupported JMX-based API consisting of several MBeans deployed 
in the platform MBean server. As the API is JMX-based, standard JMX mechanisms 
can be used to allow remote access.

Even though the APIs are currently (mostly) unsupported, there are situations  
where they can be quite useful. An example implementing a remote version of 
JRCMD was demonstrated.



JRockit Virtual Edition
Virtualization, the practice of running software on emulated hardware, has 
emerged rapidly as an important concept in the last few years. The main benefits  
of virtualization are that hardware resource utilization can be maximized and that 
resource management is made simpler. However, as virtualization is yet another 
abstraction layer between the application and the actual hardware, it may also 
introduce extra overhead.

This chapter deals with the product JRockit Virtual Edition; a new piece of technology 
that is part of the JRockit product family. Throughout this chapter, the terms JRockit 
Virtual Edition and the short form JRockit VE are used interchangeably.

JRockit VE enables the user to run Java in a virtualized environment without an 
operating system, removing large amounts of the overhead typically associated 
with virtualization. JRockit VE is a separate product that contains the minimum 
components necessary to run a Java application in a virtualized environment—a 
small lightweight OS-like kernel and a JRockit JRE.

JRockit VE can run any Java application, but initially, the most likely way in which 
users will encounter JRockit VE is as part of the WebLogic Server on JRockit Virtual 
Edition product (WLS on JRockit VE). WLS on JRockit VE is basically a prepackaged 
instance of a WebLogic Server installation, in virtual machine image form. A virtual 
machine image is a binary image that contains a virtual machine configuration, 
software, and a file system. The image is intended for deployment on a specific 
virtualization platform, such as Oracle VM Server.

This chapter, being a technical introduction to JRockit VE, concentrates on the 
virtualization layer and the technology behind the JRockit VE product. It will  
not discuss specific software stacks built on top of JRockit VE.
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As this is a chapter about recently productized or emerging technology, 
details, names, concepts, and implementations can be counted on to 
change more rapidly than technology covered in other chapters of this 
book. The chapter may also contain forward-looking statements that 
will not be implemented. The fundamental concepts, however, remain 
the same. Online documentation should always be consulted for the 
freshest information on any product.

From this chapter you will learn:

•	 About virtualization as a concept and some common terms used for different 
kinds of virtualization.

•	 What a hypervisor is, the different types of hypervisors, and the most 
important hypervisors in the market today.

•	 The advantages and disadvantages of virtualizing a software stack and how 
to get the most out of the advantages.

•	 About specific issues with virtualizing Java and how the JRockit  
Virtual Edition product simplifies the virtualization process and  
enhances performance.

•	 About the concept of virtual machine images.
•	 What the future has in store—can virtualization overhead be reduced  

further or even removed, making virtualization an even more powerful tool?  
Can a virtualized application even run faster than on physical hardware, 
given the right environment?

Introduction to virtualization
Virtualization is a word that has been used in many contexts over the years. 
However, it always concerns abstracting a physical resource as a virtual one. It is 
not a new concept. Virtual memory on a per-process basis is the main schoolbook 
example, present in all operating systems. Partitions on a single hard drive that 
each look like separate physical drives to an operating system are also technically 
virtualization. But the buzz the last few years has been about virtualizing everything 
in a physical machine. This is not a new concept either, it goes back at least as far as 
to IBM in the 1960s. Not until recently, however, has virtualization proven itself as  
a way to increase resource utilization and manageability in the server room.



Chapter 13

[ 463 ]

Virtualization, for the purposes of this book, is the practice of running a platform (such 
as an operating system) or an individual application on virtual hardware, emulated 
in software. The virtual hardware typically looks like actual physical hardware to 
the running platform or application. An entity deployed on a virtual system is often 
referred to as a guest. The piece of software that enables multiple guests, for example 
operating systems, to run on a single system is called a hypervisor. A hypervisor can 
help the guest by, for example, supplying device drivers that are tailored to run in a 
virtualized environment and thus improve performance for the guest. 

What actually hides behind the physical hardware camouflage varies, 
depending on the type of resource being virtualized. For example, what 
looks like a physical hard drive is typically a file, or collection of files 
on a server somewhere. What looks like four available physical CPUs 
is actually an amount of timeshare on an unknown number of existing 
CPUs. What looks like 1 GB of memory is actually the claim to part of 
a larger amount of physical memory. Some hypervisors even allow the 
guests to overcommit memory within their limited allocation space. 
But to the guest this does not matter, it only sees what it believes to be 
physical hardware (with some exceptions).

Virtualization is becoming increasingly important, mainly because it makes it 
possible to use existing physical machines more efficiently. If the CPU on a physical 
machine is idle, for example while waiting for I/O, those CPU cycles that could 
have been used for execution are wasted in the idle time. Multiplexing several 
guests on the same hardware makes it possible for those idle CPU cycles to be used 
for other guests until the I/O request returns. Naturally, when several guests (for 
example operating systems) run at the same time, another performance penalty 
may result from additional context switching. However, it is an undeniable fact that 
virtualization makes more efficient use of the available hardware. This is attractive 
also from the power consumption angle, in a world that is becoming increasingly 
environmentally conscious.

Virtualization falls into several categories, mostly having to do with the layer of 
exposure to the underlying platform. While there is some confusion in terminology 
here, let us start by introducing some common concepts and explain how they will 
be used in this book. Virtualization is a complex area—the following is a simplified 
version of the world.
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Full virtualization
Full virtualization means that all sensitive functionality of an underlying platform is 
emulated by the hypervisor—for example device interaction and memory mapping. 
This makes it possible to deploy any unmodified software as a guest, the guest 
believing that it is actually executing on physical hardware.

This is implemented on a platform that lacks explicit hardware support for 
virtualization, by letting the hypervisor trap sensitive (privileged) instructions 
executed by the guest and emulate them in a sandboxed environment.

Full virtualization can also be hardware-assisted, for example the Intel VT or  
AMD-V technologies have CPU-specific support for running several operating 
systems at once. Hardware-supported virtualization dramatically reduces the 
emulation overhead in a hypervisor. Lately, other pieces of hardware than the  
CPU have also been equipped with virtualization support. One example would  
be network cards with built-in hardware support for virtualization. 

Large performance benefits to virtualization have been achieved with hardware 
support. This seems to indicate that full virtualization is rapidly becoming the main 
virtualization paradigm in the market.

Paravirtualization
Paravirtualization is used to refer to a virtualized environment where the guest needs 
to know about the underlying hypervisor. Typically, in a paravirtualized environment, 
privileged actions need to be explicitly requested by the guest through calls to a 
public hypervisor API. This means that the guest has to communicate with a lower 
abstraction layer and consequently needs to know that it is virtualized.

Paravirtualization removes some of the flexibility of virtualization, as the guest 
(for example an operating system) needs to be modified before virtual deployment. 
An advantage might be that unnecessary layers of abstraction can be scaled away, 
enabling additional performance improvements at the price of less flexibility. 
Also, the end user rarely has to worry about the implementation of the underlying 
hypervisor. For example, on Xen, which originally was a paravirtualization-only 
hypervisor, the main use case is to run pre-packaged operating systems that 
have already been modified for paravirtualization. The user typically deploys his 
application on top of these.

With the emergence of high-performance hardware support for full virtualization,  
it is the authors' opinion that paravirtualization is becoming less important.
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Other virtualization keywords
There are several other keywords in the virtualization area that have many 
different meanings, for example partial virtualization. Partial virtualization and 
paravirtualization are sometimes used interchangeably, but partial virtualization 
may also mean virtualizing only specific parts of the underlying hardware. For 
example, the term has been used to describe binary translation tools such as Rosetta 
on the Macintosh, enabling software compiled for PowerPC to run on Intel hardware. 
Partial virtualization may or may not require hardware support. Concepts like virtual 
memory in an operating system can also fall under the category partial virtualization.

Operating system level virtualization is another term that pops up from time to 
time. This typically describes some kind of isolation mechanism built into an OS for 
dividing the OS into separate instances, protected from one another, making them 
look like they are running on different physical machines. Solaris Containers is 
probably the most well-known example. 

Hypervisors
Recall that the hypervisor is the software layer that makes virtualization possible 
(optionally with the aid of explicit hardware support). The hypervisor provides an 
idealized view of a physical machine. All "dangerous operations" that would break 
the abstraction, such as device interaction and memory mapping, are trapped and 
emulated by the hypervisor.

Just as there are different types of virtualization, there are different types of 
hypervisors. Again, terminology is rather complicated. For the purposes of this  
book, we will discriminate only between hosted hypervisors and native hypervisors.

Hosted hypervisors
A hosted hypervisor typically runs as a standard process in an ordinary operating 
system. As mentioned earlier, sensitive (kernel mode) operations performed by 
the guest are typically emulated or JIT-interpreted by the hypervisor. User mode 
operations can often execute directly as part of the hosted hypervisor process, but 
may also be emulated or JIT-interpreted when applicable.

The main advantage with a hosted hypervisor is that it is typically very easy to 
install and use—just another application in your operating system. Usually, the 
performance of a hosted hypervisor is not up to server-side requirements, but  
this is not its main purpose.
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Real world example—large parts of this book were developed and 
written on a Macintosh, where no JRockit version currently exists. 
For the purpose of producing JRockit examples, the author has used 
the hosted hypervisor VMware Fusion to run a Linux version of 
JRockit on his home computer.

VMware Player is an example of a simple hosted hypervisor. Oracle VirtualBox  
is another.

Native hypervisors
A native hypervisor requires no host operating system. It can be installed directly on 
physical hardware out of the box. Hardware device drivers can be provided by the 
hypervisor, either in a special virtual machine for isolation (for example in Oracle  
VM- and Xen-based solutions) or as part of the hypervisor itself (for example in 
VMware ESX).

Typically, a native hypervisor is much more efficient than a hosted hypervisor.

Oracle VM and the VMware ESX product suite are two examples of native 
hypervisors, who, although their approaches to virtualization are different,  
both fulfill the criterion that they install directly on physical hardware. 

Hypervisors in the market
There are several mature hypervisors available in the quickly-changing market.

Xen is an open source hypervisor, originally developed at the University of 
Cambridge. Xen later turned into the company XenSource Inc., and was acquired  
by Citrix Corporation in 2007. Citrix release their own commercial server-grade Xen 
systems with extra APIs, along with several management tools. The Xen hypervisor 
itself continues to be available for free, under public open source license.

Xen has, because of its free nature, been widely used in several virtualization 
frameworks, and has been turned into native hypervisors, Oracle VM being one  
of them. Oracle VM is an Oracle Enterprise Linux-based operating system with  
Xen at the bottom, and a native hypervisor.

Xen was originally a paravirtualized solution. In other words, it required that  
the guests know that they are virtualized so that they can interact with the 
hypervisor. For example, Linux kernels that should run on paravirtualized Xen  
need to be specially compiled. The trend lately, however, seems to be that Xen is 
moving away from the paravirtualized metaphor towards an environment with 
support for unmodified guests. This requires hardware virtualization support.
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VMware corporation, one of the first players in the virtualization field, has several 
virtualization products, both native and hosted hypervisors. Most notable are 
VMware Workstation (VMware Fusion on Macintosh), VMware ESX and VMware 
ESXi. These are commercial products. VMware also makes a stripped-down version 
of VMware Workstation available for free, called VMware Player that does not 
provide support for creating and configuring your own virtual machines, but 
allows you to run an existing virtual guest. VMware also has a hosted virtualization 
platform called VMware Server. It is available for free.

Microsoft corporation has developed the Hyper-V virtualization framework, 
designed to work with Windows Server that is already a widely adopted technology. 
Hyper-V requires hardware virtualization support.

KVM (Kernel-based Virtual Machine) is an open source hypervisor project, licensed 
under the GNU Public License, driven by RedHat.

Parallels Inc. produces desktop and server virtualization software for Macintosh, 
Windows, and Linux.

Also worth mentioning is VirtualBox, an independent virtualization package 
containing its own hypervisor. It is targeted at desktop, server, and embedded use. 
VirtualBox was originally developed by the German company Innotek, who were 
acquired by Sun Microsystems, who in turn are now part of Oracle Corporation. 

Advantages of virtualization
The main advantage of virtualization is, as we have mentioned, more efficient 
resource utilization. Several guests can compete for all resources of one physical 
machine. When one guest is idle, another guest may run. Virtualization may 
substantially decrease the idle time in the server room.

Another advantage is that virtualization further enables the "cloud computing" 
metaphor. As virtualized guests may be suspended, migrated to other physical 
machines, and resumed, an entire machine park can be abstracted as a cloud of 
computational power, on which deployments of applications may be made. This  
is usually facilitated through different management frameworks.
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Another, somewhat overlooked, but very important application 
for virtualization is keeping legacy applications alive. A common 
nightmare in IT is having to retire old hardware on which legacy 
applications with no forward compatibility are hosted. This 
requires porting the applications to new platforms, either requiring 
complete rewrites or ending up with Frankenstein-type solutions 
such as COBOL to (unreadable) Java converters. Virtualizing the 
old hardware instead will make it possible to continue running the 
legacy application for some time, while figuring out how to replace 
it in a less stressful manner.

Disadvantages of virtualization
The main problem with virtualization is, of course, the extra overhead introduced 
by another abstraction layer, the hypervisor, in the stack between application and 
hardware. While hardware resource usage indeed gets more optimal in a virtualized 
environment, there are costs associated both with running several guests at once 
on a piece of physical hardware as well as with the extra overhead incurred by the 
hypervisor abstraction layer.

Now consider the case of a Java application in a virtual environment. For a standard, 
non-virtualized local Java application, the JVM provides one layer of abstraction 
against the hardware. The operating system on which the JVM runs provides 
another. The hypervisor layer that is responsible for emulating the virtual hardware 
below the OS adds yet another zone of abstraction between the application and its 
actual execution as native code.

We can try to make each layer of abstraction as thin and efficient as possible, but 
we can't make them go away altogether. For example, using hardware support to 
implement the hypervisor will decrease the virtualization overhead. However, we 
are still dealing with emulating physical hardware for the virtualized application. 
This naturally incurs overhead anyway. 

Virtualizing Java
Let us now discuss the implications of running an industrial strength Java 
application server in a virtualized environment. Consider the following figure 
that illustrates the entire stack from the application server down to the hardware. 
Between the Java application and the hardware on which it ultimately executes,  
we have a JVM, a general purpose OS (for example Oracle Enterprise Linux), and  
a Hypervisor (such as Oracle VM).
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Triple Virtualization

Application Server

JVM

OS

Hypervisor

Hardware

General purpose OS

The application server, for example Oracle WebLogic, is a typical Java application 
that needs a JVM to execute. The JVM provides abstraction against the operating 
system on which the application server is deployed. This is obviously because the 
same WebLogic shipment should run equally as well on Linux as on Windows or 
Solaris—this is the whole point of Java. The price of the convenience of write  
once / run anywhere is thus paid for by the JVM abstraction layer.

Under the JVM is an operating system that the JVM must know how to interact with. 
This requires multiple JVM back-ends for multiple operating systems. For example, 
on *NIX-style operating systems, pages in memory are allocated differently than 
on Microsoft Windows, with different system calls (mmap versus VirtualAlloc). 
The thread API typically also differs between operating systems (POSIX threads 
versus Windows threads). Thus, the JVM needs OS-specific modules in order to 
facilitate the execution of the same Java application on different operating systems. 
Consequently, the operating system itself forms another abstraction layer under the 
virtual machine.

So, what is the role of a general purpose operating system? The OS abstracts the 
hardware, making it easier to interact with it programmatically. We can hardly 
expect a C++ application developer to implement his own synchronization for a 
particular chipset using atomic assembly instructions or to write his own thread  
representation. Instead, the OS provides library calls for these kinds of tasks.  
Thus, the OS forms a second level of abstraction under the JVM.

And finally, in a virtualized world, the hypervisor—while making it possible to 
run multiple sandboxed operating systems on the same machine—forms a third 
abstraction layer before we get to the actual hardware.
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All these abstraction layers need to communicate with each other. There is overhead 
here, especially as talking to a lower layer usually requires some kind of privileged 
action that takes time, destroys caches, and preempts other tasks.

However, if the sole responsibility of the virtualized operating system is to run the 
JVM, whose sole responsibility in turn is to run the Java application server, don't the 
various levels of abstraction seem unnecessary and quite wasteful? Why would we 
need a full-fledged OS such as Microsoft Windows in the middle of our stack, when 
all we do is run a Java program? The Java program, assuming that it is 100 percent 
pure Java, doesn't know anything about Microsoft Windows and doesn't use any  
OS-specific mechanisms. If the Java program is an application server with no GUI,  
do we even need the functionality to display graphics on screen? If all users and 
access controls necessary to interact with the system are handled by a model inside 
the application server, do we even need an OS?

We can make the observation that a JVM is not so far removed from an OS as one 
might think. It implements JDK library calls to support threads and synchronization. 
It handles memory management and so on. Without stretching the metaphor too 
tightly, a JVM is just like a special-purpose virtual operating system.

Maybe a direct-to-hypervisor JVM isn't such a bad idea?

Introducing JRockit Virtual Edition
The case can be made that if there was a way to reap the benefits of virtualized 
Java without the overhead, much would be gained. If the layers between Java and 
hardware are kept small enough, there is not just performance to be had, but also 
the added benefit of simplicity and security. The solution proposed by the JRockit 
architects is the product JRockit Virtual Edition, or JRockit VE for short.

As a proof of concept back in 2005, we wrote a linker that told us 
what symbols a JVM deprived of its operating system was missing. 
The discovery that the list was really quite short was the start of the 
JRockit VE project.

JRockit VE consists of the JRockit JRE, a collection of pure Java services (for example 
an SSH daemon), and finally a thin OS-like layer that runs on top of the hypervisor. 
This layer provides all of the very limited amount of OS functionality that a JVM 
needs. It is known as the JRockit VE kernel. 

JRockit VE is currently available only on x86 platforms.
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The commercial versions of the JRockit VE virtualization framework 
currently only ship with support for running on top of the Oracle VM 
native hypervisor (and consequently on top of Xen). JRockit VE may, 
however, also support other hypervisors in the future.
It has always been our design philosophy, as it should be in a virtualization 
stack, that the target platform for the JRockit VE kernel is hardware and not 
a hypervisor. The JRockit VE kernel with a small built-in E1000 network 
driver can boot from a USB stick and run Java applications on any x86 
machine out of the box (It is doubtful, however, why this demo, except for 
the fact that it is really cool, would illustrate any benefits of JRockit VE in 
cloud computing, but we'll get to that).

JRockit VE also comes with a tool for creating and manipulating Java applications 
that are to run in a virtualized environment, the Image Tool. When a Java 
application is virtualized and packaged for use with JRockit VE, it is referred  
to as a virtual machine image. 

The previous figure illustrates the stack, as it looks for a Java application deployed 
on JRockit VE. Services like SSH run in Java land, along with the Java application. 
The JRockit JVM sits on top of the JRockit VE kernel layer that provides all OS 
functionality needed by the JVM.

Let us now look closely at the JRockit VE kernel to understand both why 
implementing it is a much smaller undertaking than writing a complete OS,  
and what functionality we need to make available to the layers above.
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The JRockit VE kernel
JRockit Virtual Edition removes the need for an OS under the JVM and makes 
it possible to run Java directly on top of a hypervisor. Currently, an unmodified 
Linux version of the JRockit JVM can run directly on top of the JRockit VE kernel. 
This is, however, expected to change for future releases and the JRockit VE kernel 
is expected to turn into its own JVM platform, requiring a special version of the 
JVM. This is to further decrease the number of abstraction layers in the stack and to 
provide additional simplicity of implementation. The only reason that the JRockit VE 
kernel currently emulates a Linux API upwards has been the lack of development 
time to create an additional platform for the JRockit JVM.

The fact that the JRockit JVM currently is a Linux distribution does 
not impact performance negatively or constrain it to Java-on-Linux 
levels. The JRockit VE kernel can do plenty with the OS layer to 
provide a much more ideal execution environment for the Linux JVM. 
With a specialized JVM, performance will improve even further.

The JRockit VE kernel is conceptually very much like an OS, but far from the real 
deal. It contains its own thread implementation, scheduler, support for file systems, 
memory allocation mechanisms, and so on, but is vastly less complex than an 
operating system.

For one thing, the JRockit VE kernel can run only one process—the JRockit JVM. 
Also, as a JVM is an inherently secure sandboxed execution environment, we do 
not need to worry about malicious Java code causing, for example, deliberate buffer 
overruns. Bytecode verification and all other security aspects of validating executing 
Java code is handled for us by the JVM already.

An important constraint here is that JRockit VE needs to disallow the execution 
of arbitrary native code, as there is no way to determine what it does. This is both 
a functionality and a security concern. Native code can contain operating system 
calls that only work on a standard operating system and it may also perform any, 
potentially insecure, task. Disallowing native code, however, tends to be a small 
price to pay in a modern Java-based server environment. Therefore, JNI is not 
supported on JRockit VE.

Another example of the limited functionality is the lack of advanced paging 
mechanisms that would be present in any general purpose OS. The JRockit VE  
kernel runs just one process and needs just one virtual address space.

The following figure illustrates the various modules in the JRockit VE kernel. They 
include, among other things, file system implementations, device driver stubs 
that communicate with the hypervisor, block cache mechanisms, a self-contained 
network stack, simple memory management systems, and a thread scheduler.
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The JRockit VE kernel, in its exposed APIs is very *NIX-like. As stated, a distribution 
of JRockit for Linux can run unmodified on top of the JRockit VE kernel, but this 
only means that the very limited amount of Linux APIs that JRockit needs have 
been implemented in the kernel, not that the kernel is Linux-compatible in any way. 
Typically, the APIs available to the JVM look like POSIX system calls, but have less 
generic functionality. Given that future JRockit versions become JRockit VE aware, 
we could avoid most kludges caused by pretending to be Linux. One example of this 
would be not having to emulate parts of /proc file system in the kernel, as this is the 
way JRockit on Linux collects information on memory layout. We would also like 
to remove some OS calls, such as mmap, that look like POSIX calls in JRockit VE, but 
are not. The standard POSIX version of mmap is very complex, but in JRockit VE only 
the specific use cases that JRockit for Linux needs have to be implemented. Porting 
JRockit to an explicit JRockit VE platform would not be too complex an undertaking 
as all operating system calls in the JVM already exist in a well-defined platform 
abstraction layer.

In conclusion, it is important not to be taken aback by thinking about the concept  
of the JRockit VE kernel as a small lightweight OS. It is much less than that and  
large parts of the complexities required for an operating system are not needed  
in our kernel. The need to implement and maintain a set of device drivers, in  
operating systems such as Linux, which is a much larger task than maintaining  
the actual kernel code, is made unnecessary as JRockit VE requires a hypervisor  
to run on. The hypervisor will take care of device drivers where necessary and  
abstract physical hardware for us. The complete JRockit VE kernel module is  
only around 130,000 lines of C code, large parts making up the network stack.
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The virtual machine image concept and 
management frameworks
The "virtual cloud" is a hot buzzword right now. It is a fairly simple concept 
to understand—a vast blob of Internet-connected computing resources that  
can be harnessed without the need to care about individual configurations  
and individual machines.

A Java application installed on a physical machine is also a well-known concept.

Most cloud solutions today use some kind of management framework that handles 
application deployments in the cloud, removing the need for individual machines 
through abstraction, which makes plenty of sense—"the cloud is the computer". 
Typically, management frameworks are used to deploy entire self-contained guest 
operating systems, for example virtual Linux distributions, in a server cloud.

A concrete example of a management framework in cloud computing 
is the Oracle VM Manager software that is part of the Oracle VM native 
hypervisor. Oracle VM Manager allows the administrator to configure 
and group clusters of servers in the cloud and deploy virtual machine 
images on them.

JRockit Virtual Edition originally started out with an ambition to look like "local 
Java". This meant starting the virtual application and deploying it in the cloud with 
command line on a local machine. On the local machine, it would look like the virtual 
application was executing locally, instead of remotely. This was accomplished by, 
among other things, feeding back JVM console output to the local console. It turned 
out that this was a very complicated concept to understand and it also led to some 
degree of confusion: where is an application actually running?

After alpha releases, and user testing, the JRockit VE team decided to go the other 
way instead—local Java applications should be turned into virtual machine images. 
These are binary blobs ready for cloud deployment through existing management 
frameworks like Oracle VM Manager. Controlling the virtual machine image, such 
as changing its virtual hardware layout and migrating it across server pools, are 
examples of functionality provided already by the management framework.

Virtual machine images, in the general case, can contain any machine configuration 
with any operating system. A JRockit VE virtual machine image consists of a 
complete virtual machine specification and setup for a Java application along with  
a file system containing said Java application.
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We can think of distributing a virtual machine image containing, for example, 
WebLogic Server to a customer, as shipping the customer a physical machine. On its 
hard disk is a preinstalled version of WebLogic Server good to go, and all the user 
needs to do is plug the machine into a power outlet, attach a network cable, and start it 
up. The main difference in the case of the virtual machine image is that we don't ship 
the physical machine along with the installed software. We only ship the specification of 
the machine—how much memory does it have, how many CPUs—and a cloned image 
of its hard disk. The cloud will provide the resources necessary for emulating the 
machine in order to run the application. This is what virtualization is all about.

Thus, virtual machine images also remove the need for installing software. Preinstalled 
software in virtual machines can be deployed directly. This is one of the reasons that 
virtualization can help reduce IT costs in an organization.

A virtual machine image can be generated from scratch, or assembled, by 
applying the Image Tool that ships with JRockit VE to a locally installed 
application. Instances of this image can then be deployed directly into 
your server cloud. We call this the "physical to virtual" use case. Another 
use case, however, is for the customer to run software that is shipped in 
the form of an already assembled virtual machine image (for example 
WLS on JRockit VE), available from an OEM or software vendor, and not 
create images of his own.

Many aspects of the machine specification for an existing virtual machine image, for 
example the amount of memory available to the virtual machine, can be manipulated 
offline with the JRockit VE Image Tool as well as from the management framework. 
The virtual machine environment for the virtualized application can vary from being 
very simple to very complex.

A JRockit VE virtual machine image with a minimum configuration can simply be 
auto-generated. Typically, the Image Tool only needs to know things like disk size, 
number of CPUs, and amount of memory in the virtual machine. The JRockit VE 
kernel requires at least one network interface to work. When booting, the kernel 
will try to use the DHCP protocol, if available, to configure networking. This makes 
setup very simple and portable. If DHCP is unavailable on your network, explicit 
configuration of the virtual network cards needs to be done.

The local file system in the virtual machine image is part of the generated disk image 
and available to the virtualized Java application once it runs.
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The following example shows a very simple, but fully sufficient, configuration file 
for a JRockit VE virtual machine specification. It describes a virtual machine image 
that executes a HelloWorld Java program. The virtual machine image can be created 
using the Image Tool. Similar configuration files can be obtained by querying an 
existing virtual machine image for its specification.

The JRockit VE config file format is totally hypervisor agnostic.

<?xml version="1.0" encoding="UTF-8"?>

<!-- helloworld.xml -->
<jrockitve-imagetool-config xmlns:xsi="http:// 
  www.w3.org/2001/XMLSchema-instance"xsi:noNamespaceSchemaLocation=
  "jrockitve-imagetool-config.xsd" version="5.1">
  <jrockitve-config memory="512 MB" cpus="1">
    <storage>
      <disks>
        <disk id="root" size="256 MB"/>
      </disks>
      <mounts>
        <mount>
          <mount-point>/</mount-point>
          <disk>root</disk>
        </mount>
      </mounts>
    </storage>
    <vm-name>helloworld-vm</vm-name>
    <java-arguments>-Xmx256M HelloWorld</java-arguments>
    <network>
      <nics>
        <nic/>
      </nics>
    </network>
  </jrockitve-config>
  <jrockitve-filesystem-imports>
    <copy from="~/myLocalApp/HelloWorld/*" to="/"/>
  </jrockitve-filesystem-imports>
</jrockitve-imagetool-config>

The configuration describes a machine with 512 MB of RAM and one CPU. The 
machine contains one hard drive that is 256 MB in size. The virtual machine, once 
the image is deployed, will show up as helloworld-vm in various management 
frameworks. At boot time, the JRockit VE kernel will invoke JRockit. JRockit then 
executes the HelloWorld program, whose .class file (and possibly other resources) 
are placed in the root directory of the hard drive in the virtual machine. The virtual 
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machine contains one network card (NIC). As no explicit configuration other than 
that which exists is given, the JRockit VE kernel will use DHCP to establish things 
like the IP address for the virtual machine when it boots.

Following are a few command-line examples, illustrating using the Image Tool to 
assemble a virtual machine image and to modify it before deployment. The default 
behavior is to create a standard Xen or Oracle VM configuration, consisting of a 
hypervisor-specific vm.cfg file and a system image, system.img, with the virtual 
hard drive containing the Java application, the JRockit JRE, and the JRockit VE  
kernel. The following example creates a virtual machine image from the  
previous specification:

hastur:marcus$ java -jar jrockitve-imagetool.jar

Usage: java -jar jrockitve-imagetool.jar [options]

-h,  --help                 [<option_name>]

-c,  --create-config        [<config_file.xml>] [<vm_name>]

     --create-full-config   [<config_file.xml>] [<vm_name>]

-r,  --reconfigure          <vm_cfg> <op> <field> [<parameter>]*

     --reconfigure-service  <vm_cfg> <service-name> 
       <op> <field> [<parameter>]*

-f,  --file                 <vm_cfg> <operation> [<parameter>]*

     --get-log              <vm_cfg> [<output file>]

     --repair               <vm_cfg> [<auto|prompt|check>]

-p,  --patch                <vm_cfg> <patch_file>

-a,  --assemble             <config.xml> <output_dir> [<hypervisor>]

-d,  --disassemble          <vm_cfg> <output_dir>

-v,  --version              [<vm_cfg>|<jrockitve_image>]

-l,  --log (#)              <quiet|brief|verbose|debug>

     --force (#)

Options marked "#" are not standalone. 
  They must be used together with other options

hastur:marcus$ java -jar jrockitve-imagetool.jar 
  --assemble helloworld.xml /tmp/outputdir

Assembling the image...
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|                            |

.............................

Wrote 127 MB

Done

hastur:marcus$ ls -lart /tmp/outputdir/

total 327688

drwxrwxrwt  18 root  612         Aug 29 11:09

-rw-r--r--   1 marcus  270         Aug 29 11:10 vm.cfg

-rw-r--r--   1 marcus  268435456   Aug 29 11:10 system.img

drwxr-xr-x   4 marcus  136         Aug 29 11:10

hastur:marcus$ java -jar jrockitve-imagetool.jar 
  --reconfigure /tmp/outputdir/vm.cfg get java-arguments

-Xmx256M HelloWorld

hastur:marcus$ cat /tmp/outputdir/vm.cfg

# OracleVM config file for 'helloworld-vm'.

# Can be used with 'xm <start|create> [-c] vm.cfg'

#

# note that Xen requires an absolute path to the image!

name="helloworld-vm"
bootloader="/usr/bin/pygrub"
memory=512
disk=['tap:aio:/OVS/seed_pool/helloworld-vm/system.img,sda1,w']
vif=['']
on_crash="coredump-destroy"

Given an assembled virtual machine image, we can use the JRockit VE Image Tool 
to query and reconfigure its virtual machine specification. In the following example, 
we retrieve and change the number of virtual CPUs that should be available in the 
virtual machine. This will cause changes to the underlying hypervisor specific config 
file and possibly to the contents of the image (in our example system.img). An 
assembled image is always uniquely identified by its hypervisor specific config file 
(in our case vm.cfg for Oracle VM or Xen). 
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hastur:marcus$ java -jar jrockitve-imagetool.jar 
  --reconfigure /tmp/outputdir/vm.cfg get cpus

1

hastur:marcus$ java -jar jrockitve-imagetool.jar 
  --reconfigure /tmp/outputdir/vm.cfg set cpus 4

Done

hastur:marcus$ cat /tmp/outputdir/vm.cfg

# OracleVM config file for 'helloworld-vm'.

# Can be used with 'xm <start|create> [-c] vm.cfg'

#

# note that Xen requires an absolute path to the image!

name="helloworld-vm"

bootloader="/usr/bin/pygrub"

memory=512

disk=['tap:aio:/OVS/seed_pool/helloworld-vm/system.img,sda1,w']

vif=['']

vcpus=4    #<--- we now have 4 virtual CPUs

on_crash="coredump-destroy"

An assembled virtual machine image can also be reduced to its 
component parts and disassembled by the Image Tool, but this 
use case (virtual to physical), exactly like the assembly use case 
(physical to virtual), is not the only one available to end customers. 
We also assume that end customers, to some extent, will work with 
prepackaged virtual machine images that can be reconfigured and 
manipulated with the Image Tool. 

Aside from manipulating a virtual machine image, the Image Tool can also be  
used to patch an image, with bugfixes or upgrades to the software within, such 
as the JRockit VE kernel or WebLogic Server. Thus, a pre-packaged virtual machine 
image can be upgraded by vendor fixes without the need for taking it apart.
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The Image Tool can also be used for a number of other common offline manipulation 
tasks such as extracting log file information from the virtual application or enabling 
services such as SSH that come pre-installed in every JRockit VE image. Even though 
the patch framework fully supports patch version control and rollbacks, an implicit 
safety mechanism in patching machine images is apparent given that an image is just 
a couple of files on disk: backing up the image is just a matter of copying the files 
somewhere. Should anything go wrong, they can be easily restored.

Following is another example of querying a JRockit VE virtual machine image for its 
installed services and enabling one of them—the previously mentioned SSH daemon:

hastur:marcus$ java -jar jrockitve-imagetool.jar -r 
  /tmp/outputdir/vm.cfg get installed-services

sshd (An SSH2 implementation with SCP and SFTP support)

jmxstat (JRockitVE kernel statistics MBean)

sysstat (JRockitVE kernel sysstat statistics)

hastur:marcus$ java -jar jrockitve-imagetool.jar -r 
  /tmp/outputdir/vm.cfg get enabled-services

None

hastur:marcus$ java -jar jrockitve-imagetool.jar -r 
  /tmp/outputdir/vm.cfg enable service sshd

Done

hastur:marcus$ java -jar jrockitve-imagetool.jar -r 
  /tmp/outputdir/vm.cfg get enabled-services

sshd (An SSH2 implementation with SCP and SFTP support)

When the SSH service is enabled in a running virtual machine image, the 
virtual machine will answer SCP and SFTP requests, given some preconfigured 
authentication policy.

Finally, the Image Tool can be used to manipulate the file system of a virtual machine 
image, for example by allowing creation and removal of files and directories. The 
Image Tool also supports that files from a local file system can be placed in the image 
and conversely, that files from the image can be copied to a local file system.
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hastur:marcus$ java -jar jrockitve-imagetool.jar 
  --file /tmp/outputdir/vm.cfg ls /

 [Feb 04  2010]                          boot/

 [Feb 04  2010]                          jrockitve/

 [Feb 04  2010]                          lost+found/

 [Feb 04 16:00       498 bytes]          HelloWorld.class

 [Feb 04 16:00       358 bytes]          VERSION

Done

hastur:marcus$ java -jar jrockitve-imagetool.jar 
  --file  /tmp/outputdir/vm.cfg get HelloWorld.* /tmp

Done

hastur:marcus$ ls –l /tmp/HelloWorld* 

-rw-r--r-- marcus wheel 489 Feb 14 15:36 /tmp/HelloWorld.class

Benefits of JRockit VE
There are several advantages to using JRockit VE as a specialized virtualization 
solution for Java. The main ones are:

•	 Performance and better resource utilization
•	 Simplicity
•	 Manageability
•	 Security

We will discuss them in order.

Performance and better resource utilization
Increased performance in JRockit VE stems from two general areas, the first one 
being (as we have already mentioned), the removal of unnecessary abstraction 
layers. With a specialized Java environment for virtualization, some of the "triple 
virtualization" caused by a combination of JVM, OS, and hypervisor is removed.
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The other side to virtual Java performance with JRockit VE is even more 
interesting—there are several areas where being the link between the hypervisor  
and the JVM can provide us with information that, if correctly used, may outperform 
standard virtualized operating systems or even in the right environment (although 
it might sound too good to be true), physical hardware. We will address these 
intriguing issues in the section A look ahead—can virtual be faster than real at the end 
of this chapter.

Getting rid of "Triple virtualization"
In a normal operating system, certain operations, such as system calls, need to run 
in more privileged modes on the hardware. Modern hardware typically has some 
kind of hierarchical protection domains. All code executes in one of these domains. 
They go from least privileged access (userland) to most privileged (kernel). On x86 
hardware, these protection domains are referred to as rings, and a more privileged 
operation is said to be running in a ring with lower ring number. Ring 0 is the most 
privileged level and corresponds to kernel access. Non-trusted user code, on the 
other hand, must run in a less privileged ring. As soon as the user code needs to 
execute a privileged operation, such as a system call, the CPU needs to change rings, 
which is a very expensive operation, requiring synchronization and potentially 
destroying all caches.

As the JRockit VE kernel contains OS-like subsystems of its own and because it 
relies on the hypervisor for hardware interaction, there is nothing stopping it from 
executing mostly in Ring 3, userland on x86, reducing (but not altogether removing) 
the need for ring transitions.

Here is a hypervisor implementation detail, that may provide 
further insight into how protection domains work—a virtualized 
guest operating system on x86 typically runs its kernel operations 
in Ring 1, leaving the more privileged Ring 0 to the hypervisor. This 
doesn't matter to the guest.

The following figure illustrates the execution path of a network system call in a JVM 
running on a normal Linux operating system compared to doing the same in the 
JRockit VE kernel. The dashed vertical lines are the time axes.
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The system call starts with Java code calling a function in the java.net package. 
Control is then transferred gradually through the layers, down to the actual 
hardware, where the network driver executes assembly instructions. The dashed 
lines correspond to expensive privileged operations, such as ring changes, needing  
to take place. The overhead for doing the same thing in JRockit VE is vastly smaller.

Hopefully, this makes a case that virtualization overhead can be aggressively 
reduced if the OS is replaced with a more specialized layer. This is what gives 
JRockit VE a unique and attractive selling point. One of the biggest problems 
with implementing cloud computing, as discussed early in this chapter, is the 
performance loss incurred from going virtual. By replacing the operating system 
layer, JRockit VE can significantly reduce that overhead, when compared to 
traditional virtualization solutions.

Memory footprint
The JRockit VE kernel is a self-contained boot image that is just a few megabytes in 
size. This small amount of storage, except for a few configuration files and the JRE,  
is all the space in a JRockit VE-based virtual machine image not taken up by user 
code. A modern operating system, even a JeOS (Just enough OS) implementation,  
is on the order of several hundred megabytes in its simplest install.

The small size of a JRockit VE system and its kernel ensures that the amount of 
system memory in the virtual machine that can be used for running the actual Java 
application (i.e. resources available to the JVM) is maximized. This is most important 
on 32-bit setups, which still is a fairly common virtual machine representation in a 
cloud configuration.
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Manageability
Manageability comes in two flavors—offline manageability, on the virtual machine 
image level, and online manageability, the ability to deploy and control a running 
virtual machine image in a cloud computing environment.

For an undeployed JRockit VE virtual machine image, all interaction with its "outside 
world" is handled by the Image Tool that is shipped with the JRockit VE product and 
its derived products, such as WLS on JRockit VE. Any aspect of a JRockit VE virtual 
machine image, file system, virtual machine configuration, enabled services, and so on, 
can be manipulated offline with the Image Tool in a hypervisor agnostic way.

The other very visible aspect of manageability is the virtual machine image concept. 
Given that a JRockit VE virtual machine image conforms to a known hypervisor 
format, it may be introduced into another resource management system, such as 
Oracle VM Manager.

Oracle VM Manager already exists as a product today. The typical use case is that 
it enables the administrator to work with several virtualized versions of Oracle 
Enterprise Linux. It requires little or no modification to work with other kinds of 
virtual appliances in virtual machine images—for example instances of WLS on 
JRockit VE, that are packaged on top of JRockit VE. To the management framework, 
one of these "WebLogic blobs" will look the same as any other virtualized guest. The 
ability to fit into existing virtualization management frameworks makes adoption 
problems for JRockit VE a non-issue. We have seamlessly removed the standard 
operating system layer from the virtual machine image.

Simplicity and security
It may not be a universal truth that security follows simplicity, but with JRockit VE 
we shall see that this is the case.

A full-fledged operating system is a complex beast. It needs to be, as it contains a 
jungle of system daemons and user applications such as web browsers and e-mail 
programs. It also has to provide a generic multi-tasking environment and enable 
multiple processes to co-exist. There are usually several entry points to a remote 
workstation running a standard OS, such as open ports for network services, login 
protocols, and so on.

As the kernel layer in JRockit VE provides only the bare necessities required to 
run a JVM, the inherent complexity of the system is orders of magnitude smaller. 
As mentioned, there is only one preinstalled service, sitting on top of the kernel, 
allowing remote access—a 100 percent pure Java SSH daemon. This service is also 
disabled by default. It needs to be explicitly enabled by the creator of a JRockit VE 
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virtual machine image in order to work. With the low number of entry points from 
the outside world, no native code allowed, and the JVM handling verification of all 
potentially malicious Java code, security is by design much better than that which 
can be provided in a more complex environment.

Also, as previously mentioned, the "OS" itself, the JRockit VE kernel, can only run 
one process—the JVM. So, we have no process and resource separation problems 
that can make JRockit VE more insecure.

The JVM maintains the security of an executing Java application according to the 
Java Virtual Machine specification. Given that native code is banned, the sandboxed 
JVM model can fully protect us against buffer overruns and malicious code. No other 
memory protection is needed for the running Java program than the intrinsic one 
provided by the JVM. So, by excluding native code from our execution model, we get 
both simplicity and security at the same time.

A generic operating system also normally allows several users with different access 
control levels. This has to be supported down to the process and file system levels. The 
JRockit VE "OS" allows zero users. The only user is the implicit process owner of the 
JVM. Managing users is left to the Java application. The typical use case, running an 
application server, is ideal, as it usually contains an intrinsic implementation for user 
accounts and access rights. Outsourcing user access controls to the Java application 
server neither causes a restriction for our common use cases nor a security problem.

Configuring a generic operating system requires several utilities or configuration 
files. Configuring JRockit VE virtual machine images requires modifying and 
applying changes from just one configuration file that works auto-generated out of 
the box, or using an existing management framework.

Approximate number of JRockit VE      JeOS            Linux
Config Files 1 100 1,000
Commands 10 500 3,000
Command/Kernel Params 100 10,000 50,000
Admin tools 1 200 500
Size (MB) 3(*) 200 1,000
Average ratio to JRockit VE 1 50 500

Consider the previous table that presents a very rough comparison of the complexity 
between a full-fledged OS (a server Linux distribution), a stripped down "Just 
Enough OS" Linux distribution (or JeOS), and an application running on JRockit VE. 
Keeping a small system secure is feasible, but it gets exponentially more difficult 
when size and complexity grows.
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*We need to ship the JRE as well, but let us for the sake of argument consider it a 
userland application on the same level as the Java application. This is technically true.

Constraints and limitations of JRockit VE
The two major limitations of JRockit VE are lack of JNI support and lack of GUI.

As has been mentioned, the JRockit VE kernel supports only pure Java. This is 
because allowing arbitrary native code would obviously require massive security 
efforts and a more "complete" operating system. This is not too much of a problem, 
as these days most well-written Java applications for the server side are 100 percent 
pure Java and perform well on modern JVMs to boot. The lack of JNI support turns 
out to be a non-issue. While we still execute native code in the form of libraries 
that the JVM may need, this is native code known not to perform any dangerous or 
unimplemented operations.

JRockit VE can currently only export information through its console, not through a 
GUI. The console is limited to text output only, i.e. writes to System.out and System.
err. Console output can also be redirected to log files in the local file systems or to NFS 
shares on the network. Applications with graphical user interfaces are consequently 
not supported. Again, for the server side this turns out not to be much of a problem.

A look ahead—can virtual be faster than 
real?
Performance potential doesn't just end with successfully removing or slimming down 
unnecessary layers. If we control the operating system layer and the JVM knows how 
to talk to it, several previously unavailable pieces of information can be propagated to 
the JVM, vastly extending the power of an adaptive runtime.

This section is more speculative in nature than the rest of the chapter. 
While not all of the techniques described herein have been proven 
feasible in the real world, they still form part of the basis of our belief 
that high performance virtualization has a bright future indeed.

Quality of hot code samples
One example of where performance potential can be had would be in the increased 
quality of samples for hot code. Recall from Chapter 2, Adaptive Code Generation that 
the more samples; the better the quality of code optimizations. When we run our own 
scheduler and completely control all threads in the system, such as is the case in the 
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JRockit VE kernel, the sampling overhead goes down dramatically. There is no longer 
a need to use expensive OS calls (and ring transitions) to halt all threads in order to 
find out where in Java their instruction pointers are. Compare this to using green 
threads for the thread implementation in the JVM, as introduced in Chapter 4. Starting 
and stopping green threads carries very little overhead as OS threads are not part of 
the equation. That way, the JRockit VE thread implementation has a lot in common 
with a green thread approach.

The quality of samples for JRockit VE is potentially comparable to hardware-based 
sampling, also discussed in the chapter on code generation. This helps the JVM make 
more informed optimization decisions and enables it to work with higher precision in 
the number of samples required for different levels of reoptimization.

Adaptive heap resizing
Another example of performance potential in the virtual stack would be enabling 
adaptive heap resizing for the JVM.

Most hypervisors support the concept of ballooning. Ballooning provides a way for 
the hypervisor and the guest to communicate about memory usage, without breaking 
the sandboxing between several guests running on one machine. This is typically 
implemented with a balloon driver showing up to the guest as a fake virtual device. 
This can be used by the hypervisor to hint to a guest that it needs more memory. 
This can be done by "inflating" the balloon driver, making it take up more memory. 
Through the balloon driver, the guest can efficiently get and interpret the message, 
"release some more memory, or I'll swap you" from the hypervisor, when memory is 
scarce and needs to be claimed for other guests.

Ballooning may also enable overcommitment of memory, i.e. the appearance that the 
guests together actually use more memory than is physically available to the hardware. 
This can be a powerful mechanism given that this leads to no actual swapping.

As the Java heap part of the total memory of the virtual machine is orders of 
magnitude larger than the native memory taken up by the JRockit VE kernel, it follows 
that the most efficient way to release or claim memory from the hypervisor is to shrink 
or grow the Java heap. If our hypervisor reports, via the balloon driver, that memory 
pressure is too high, the JVM should support shrinking its heap through an external 
API call ("external" meaning exported to the JRockit VE kernel from the JVM). Possibly, 
this needs to involve triggering a heap compaction first.

The other way around, if too much time is spent in GC, the JVM should ask the kernel 
if it is possible to claim more memory from the hypervisor. These "memory hint" 
library calls that are no-ops on platforms outside JRockit VE, are unique to JRockit and 
JRockit VE. They will be part of the platform abstraction layer that the JVM uses for the 
JRockit VE platform.
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Traditional operating systems have no way of hinting to a process that it should 
release memory or use more. This opens a whole new chapter in adaptive memory 
management. JRockit VE is thus able to make sure that the running JVM (its single 
process) uses exactly the right amount of memory, returns unused memory quickly  
so other guests on the same hardware can claim it, and avoids swapping by 
dramatically reducing heap size if resources start to be scarce. This makes JRockit VE 
ideal for Java in a virtualized environment—it quickly adapts to changing situations 
and maximizes memory utilization even between different guests.

Inter-thread page protection
Removing a traditional operating system from the layer between the JVM 
and the hardware can also bring other, perhaps rather surprising, benefits.

Consider the standard OS concepts of threads versus processes. It is, by definition, 
the case that threads share the same virtual memory in a process. There is no 
inherent memory protection between threads in the same process. Different 
processes, however, cannot readily access each others' memory. Now, assume  
that instead, each thread could reserve memory that would be protected from 
other threads in the same process as well as from other processes. If a thread tried 
to access another process-local thread's protected memory with such a mechanism 
in place, a page fault could be generated. This is similar to when trying to access 
protected memory in a standard OS. This, more fine-grained, level of page protection 
is not available in any normal operating system. However, JRockit VE can easily 
implement it by changing the concept of what a thread is.

Implementing a quick and transparent process-local page protection scheme in the 
JVM is impossible in a standard operating system, but quite simple when the JVM 
is tightly integrated with an OS layer like JRockit VE kernel. Oracle has filed several 
patents on this technology.

To illustrate why this would be useful, we can come up with at least two use cases, 
where inter-thread (intra-process) page protection would be a very powerful feature 
for a Java platform.

Improved garbage collection
As we have already discussed in Chapter 3, there are plenty of benefits to thread 
local object allocation in Java, partly because we avoid repeatedly flushing out new 
Java objects to the heap, which requires synchronization.

Also recall that many objects in Java die young and can be kept in a nursery for 
added garbage collection throughput. However, it turns out that several Java 
applications also tend to exhibit a behavior where many objects are allocated locally 
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in one thread, and then garbage collected before they are seen by (or made available 
to) other threads in the executing Java program.

It follows that if we had a low-overhead way of extending the thread local allocation 
areas to smaller self-contained thread local heaps, for objects that have not been seen 
by other threads yet, immense performance benefits might theoretically be gained. 
Trivially, a thread local heap could be garbage collected in a lock free manner—the 
problem is maintaining the contract that only thread local objects may exist inside 
it. If all objects were thread local, a complete latency-free and pauseless GC would 
be possible. Obviously, this is not the case. Thread local heaps could also be garbage 
collected independently of each other, which would further decrease latency.

Along with the thread local heaps, a global heap (as usual, taking up the largest 
part of the system memory) would exist for objects that can be seen by more than 
one thread at the same time. The global heap would be subject to standard garbage 
collection. Objects in the global heap would be allowed to point out objects in the 
thread local heaps as long as the GC is extended to keep track of any global to  
local references.

The main problem with this approach would be to detect if an object changes 
visibility. Any field store or field load involving a thread local object can make it 
visible to another thread, and consequently to the rest of the system. This would 
disqualify it from its thread local heap and it would have to be promoted to the 
global heap. For necessary simplicity, no two objects on different thread local  
heaps can be allowed to refer to each other.

In order to maintain this contract in a standard JVM, running on a standard OS, we 
would need some kind of expensive read and write barrier code each time we try to 
access a field in an object. The barrier code would check if the accessor is a different 
thread than the object creator. If this is the case, and if the object has not been seen by 
other threads before, it would have to be promoted to the common global heap. If the 
object is still thread local, that is just being accessed by its creating thread, it can still 
remain in the thread local heap.

The pseudocode for the barriers might look something like this:

//someone reads an object from "x.field"
void checkReadAccess(Object x) {
  int myTid = getThreadId();

  //if this object is thread local & belongs to another
  //thread, evacuate it to global heap
  if (!x.isOnGlobalHeap() && !x.internalTo(myTid)) {
    x.evacuateToGlobalHeap();
  }
}
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//someone writes object "y" to "x.field"
void checkWriteAccess(Object x, Object y) {
  if (x.isOnGlobalHeap() && !y.isOnGlobalHeap()) {
    GC.registerGlobalToLocalReference(x, y);
  }
}

At least on a 64-bit machine, where address space is vast and readily available, a 
simple way to identify objects belonging to a particular thread local heap would be 
to use a few bits in the virtual address of an object to tag it with a thread ID. Read 
and write barriers would then be only a few short assembly instructions for the fast 
case—check that the object is still thread local. However, even if all accesses were 
thread local, the check would still incur a code overhead, and make use of precious 
registers. Each read and write barrier, i.e. each Java field access, would require the 
execution of extra native instructions. Naturally, the overhead for the slow case 
would be even more significant.

Research by Österdahl and others has proven that the barrier overhead makes it 
impractical to implement thread local garbage collection in a JVM running in a 
general purpose OS. However, if we had access to a page protection mechanism 
on a thread level instead of a process level, at least the read barrier would become 
extremely lightweight. Accessing an object on a thread local heap from a different 
thread could be made to trigger a fault that the system can trap. This would require 
no explicit barrier code.

Naturally, even with much more efficient read and write barriers, 
thread local GC would also increase the total performance overhead in 
applications where objects need to be frequently promoted to the global 
heap. The classic producer/consumer example, where objects created 
by one thread are continuously exported to another would be the 
simplest, completely inappropriate application for thread local GC.
However, hopefully, it turns out that in the same way that many 
applications lend themselves well to generational GC, many 
applications contain large numbers of thread local objects that are  
never exposed to the rest of the system before being garbage collected.

The approach described in this section seems nice, in that it fits well with the 
"gambling" approach used in many areas of an adaptive runtime—assume thread 
locality that is cheap, and take the penalty if proven wrong. Although this all sounds 
well and good, an industrial strength implementation of thread local garbage collection 
would be fairly complex, and not enough research has been done to determine if it 
would be of practical use.



Chapter 13

[ 491 ]

Concurrent compaction
Another application of inter-thread memory protection would be for jobs that are 
hard to parallelize without massive amounts of synchronization. One example would 
be heap compaction in the garbage collector. Recall that compaction is an expensive 
operation as it involves working with objects whose references potentially span the 
entire heap. Compaction using several threads also requires synchronization to do an 
object trace, and thus is hard to parallelize properly. Even if we split the heap up into 
several parts and assign compaction responsibilities to different threads, continuous 
checks are needed when tracing references to see that one compacting thread doesn't 
interfere with the work of another.

A concurrent compaction operation would potentially be a lot easier and faster if 
the interference check was handled implicitly by inter-thread page protection. In  
the event that one compacting thread tried to interfere with the work of another,  
this could be communicated by a page protection fault rather than with an explicit  
check compiled into the GC code. Then the compaction algorithm would potentially 
require less synchronization.

Summary
This chapter briefly covered virtualization and hypervisors to provide a background 
for understanding the JRockit Virtual Edition product family. Virtualization is the 
practice of running software on emulated, virtualized, hardware, and may potentially 
increase the resource utilization of a machine park. Virtualization also typically 
comes with some overhead because of the hardware emulation. A virtualized 
piece of software, for example an operating system, is called a guest. The two most 
important types of virtualization are full virtualization, where the guest does not 
know it is virtualized and can run unmodified in the virtualized environment, and 
paravirtualization that requires the guest to use a communication layer with the 
underlying system.

The piece of code making it possible to run multiple guests on a single piece of 
hardware is called a hypervisor. Except for "faking" the hardware to the guest and 
handling context switching between guests, it can help provide services like device 
drivers. Hypervisors are either hosted, running as standard operating system 
applications, or native, installed on bare metal hardware.

JRockit Virtual Edition works by removing the need for a standard general  
purpose operating system layer in a virtual application stack. Thereby, it increases 
the performance of a virtualized system. JRockit Virtual Edition can be likened to 
an operating system that is only able to run a single process—the JVM. Having to 
provide only the functionality the JVM needs, JRockit VE is vastly simpler than  
any general purpose operating system. This provides both speed and security.
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Offline manageability of virtualized software running on top of JRockit VE is 
handled by the Image Tool that is part of the JRockit VE product suite. Online 
manageability and deployment is handled by a hypervisor-specific management 
framework, such as Oracle VM Manager.

Finally, this chapter discussed how to potentially gain even more power and 
performance in virtualized Java environments, given the prerequisite that we 
completely control everything between the hypervisor and the Java application.  
Our longterm goal is to provide virtual environments for Java that actually  
perform better than physical ones. We believe this can be done. 
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Glossary
Abstract syntax tree
An Abstract Syntax Tree (AST) is a representation that the compiler frontend can 
derive from code, provided that it is structured and unobfuscated. Each node in the 
AST represents a high-level language construct, such as a loop or an assignment. The 
AST contains no cycles.

Java bytecode is unstructured and can express more than Java source code, sometimes 
making it impossible to use it to derive an AST. Thus, the JRockit IR representations 
are always graphs instead of trees.

See also IR.

Access file
In JMX, an access file specifies the access rights of different roles. It is normally 
located in JROCKIT_HOME/jre/lib/management/jmxremote.access.

See also Password file and JMX.

Adaptive code generation
Adaptive code generation is the practice of generating code in an adaptive 
environment, such as just in time or as part of mixed mode interpretation.  
Typically, this involves reoptimizing code for performance using runtime  
feedback. A Java Virtual Machine can be an adaptive environment for code 
generation while a statically compiled system cannot. 

See also JIT compilation and Mixed mode interpretation.
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Adaptive memory management
Automatic memory management is the concept of using some kind of runtime 
memory management, such as a garbage collector. Adaptive memory management, 
the way the term is used in this book, extends this further by using runtime feedback 
to control the behavior of the garbage collector for optimum performance.

Agent
In this book, "agent" either refers to the JMX agent or the flight recorder engine 
depending on context.

See also JMX and JRockit Flight Recorder. 

Ahead-of-time compilation
Usually, ahead-of-time compilation is the process of compiling all or several 
methods in a system way before they are to be executed. An example would  
be a C++ compiler that generates a binary executable.

See also JIT compilation.

Allocation profiling
This is a JRockit Management Console feature that allows the user to view in real-time 
how much memory the different threads in an application are allocating. There are also 
allocation profiling events in the JRockit Flight Recorder, allowing the user to  
view things like the amount of allocation per thread and allocation histograms on a 
per-type basis.

AST
See Abstract syntax tree.

Atomic instructions
An atomic instruction is guaranteed to be either fully executed or not executed at 
all, with respect to any consumer of its result. Compared to a normal instruction, 
which may be executed out-of-order and with weaker memory semantics depending 
on hardware model, an atomic instruction is usually orders of magnitude slower to 
execute. An example of a common atomic instruction on many CPU architectures is 
compare and swap.

See also compare and swap. 
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Automatic memory management
For our purposes, automatic memory management is the concept of using a garbage 
collector in a runtime system.

Balloon driver
In a virtual environment, the hypervisor can sometimes use a mechanism called a 
balloon driver, in the form of a virtual device driver, to implicitly communicate the 
amount of memory available in the outside system to the guest. This way hints that a 
guest should release memory or risk being swapped out, can be delivered across the 
virtualization abstraction barrier.

See Virtualization, Guest, Hypervisor. 

Basic block
A basic block is the smallest control flow unit in an intermediate representation of a 
compiler. Typically, the basic block contains zero or more instructions and has the 
characteristic that if one of the instructions in the basic block is executed, the others 
are guaranteed to be executed as well.

See also Control flow graph.

Benchmark driver
A benchmark driver is usually a machine or collection of machines that injects load 
into a benchmark, but its work is not measured as part of the actual transaction time 
of the main operation in the benchmark.

Biased locking
See Lazy unlocking.

Bytecode
Bytecode is a platform-independent binary representation of source code. In Java, 
the format of compiled Java is known as Java bytecode. Java bytecode consists of 
operations that are one byte in length, together with their operands of variable size. 
Bytecode is less structured than Java source code, in that it can use arbitrary gotos 
and other constructs not available in Java source code. Consequently, it can also 
express more programs than Java source code.
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Bytecode interpretation
Bytecode interpretation is the process of executing a program in bytecode form by 
emulating the bytecode instructions on a virtual execution stack, along with the 
current state of the VM, such as contents of local variables. Interpreted bytecodes 
get to execution faster than if bytecode has to be compiled to native code first, but 
runtime performance is very poor.

Call profiling
Call profiling typically involves inserting invocation counters in the JIT code to figure 
out how often a method call is executed, or inserting code that helps to compute a call 
graph. The collected profiling information is used to aid various code optimizations, 
for example to help pick better inlining candidates. 

See also Adaptive code generation and JIT compilation.

Card
For our purposes, typically, a structure representing a section of the heap. The entire 
heap is represented by a number of cards—the card table. The card table is used in 
generational GC to determine which parts of the old space are dirtied, that is, may 
have references pointing back to the young space. 

See also Write barrier and Generational garbage collection.

Card Table
See Card. 

CAS
See Compare and swap.

Class block
A class block is JRockit-specific terminology referring to the piece of type information 
that has to be pointed out by each object header.

See also Object header. 

Class garbage collection
Class garbage collection is the process of getting rid of class information in the JVM. 
This happens if a class has been unloaded and no java.lang.ClassLoader or piece 
of code references the class or its methods anymore.
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Client-side template
JRockit Mission Control client-side templates are in Java property file format. They are 
used to control the event settings of a recording. The templates are fully resolved, that 
is they do not contain wildcards. The templates are also versioned. 

See also Event settings and Server-side template.

Cloud
A cloud is a somewhat fuzzy concept describing a large amount of (possibly 
virtualized) distributed computing power on which applications can be deployed. 
Instead of a fixed number of "beige boxes" of different varieties, a collection of 
servers may be viewed as one large resource pool of computing power. 

See also Virtualization.

Code generation queue
The code generation queue is JRockit-specific terminology for the ordered code 
generation requests that need to be executed by the JVM in order to keep a Java 
program running. The queue is consumed by one or several code generator threads 
depending on configuration.

See also Optimization queue. 

Color
For our purposes, a color is an identifying characteristic of a node in either register 
allocation or in tracing GC algorithms.

In a graph coloring register allocator, variables in use at the same time are represented 
as adjoining nodes in a graph. The problem of assigning a limited number of registers 
to a potentially very large set of virtual variables can be reduced to coloring this graph 
so that no adjoining nodes have the same color. The number of available colors in this 
case equals the number of available physical registers.

Color can also refer to node characteristics in the search graph in a tracing GC. Mark 
and sweep typically uses a set of colors to identify which parts of the object graph 
have been traversed in a GC. 

See also Register allocation and Tracing garbage collection.
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Compaction
Compaction is a method to reduce heap fragmentation. Through compaction, objects 
are moved to form contiguous "live regions" of heap space, so that the case where there 
are plenty of small "holes" of free space disappears. Full heap compaction is hard to do 
without stopping the execution of a concurrently running Java program. 

See also Fragmentation.

Compare and swap
This is a common atomic instruction that exists on many CPU architectures. 
(x86: cmpxchg, SPARC: cas). It compares a value in memory with a value in a register, 
and if they match, overwrites the value in memory with a third value. If successful, 
the operation sets a status flag that can be used for branching. This can be used to 
efficiently implement spinlocks.

See also Atomic instruction and Spinlock.

Compressed references
For our purposes, compressed references refer to an implementation of the Java 
object model where references to objects in the executing application are smaller  
than system-wide pointers. For example, if a heap is less than 4 GB on a 64-bit 
machine, it can still be fully addressed by 32 bits, making it unnecessary to use 64 
bits for each object reference in the runtime. This generally creates less overhead 
loading and dereferencing pointers to Java objects and can provide significant 
speedups to a program.

See also Reference compression and Reference decompression. 

Concurrent garbage collection
Concurrent GC is a term used in this book to refer to any kind of garbage collection 
that can largely take place at the same time as a Java program is executing. 

See also Parallel garbage collection. 
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Conservative garbage collection
This is the approach of treating everything that looks like an object pointer as an actual 
object pointer in the GC, avoiding the need to store metainfo about object liveness. 
The downside to this approach is that it is slow, because extra checks are needed. For 
example, we trivially know that 17 is not a pointer, since it is outside the heap space, 
but 0x471148 might well be an object, if it is in the heap range, but could equally 
well be a constant. Conservative GC also potentially suffers from unintentional object 
retention if a constant happens to point to an object on the heap. It also severely limits 
the ability to move objects in memory.

See also Exact garbage collection, Livemap, and Safepoint.

Constant pool
The constant pool is the section of a Java .class file where constants such as strings 
and large integers are stored for all methods in the class.

Continuous JRA
The concept name for JRockit Flight Recorder was "continuous JRA" during its 
early development.

See also JRockit Flight Recorder.

Control flow graph
A Control Flow Graph (CFG), is a program description that shows the possible paths 
through a program as a graph (usually with nodes being basic blocks). An edge 
between nodes in a control flow graph is some kind of jump, for example a goto, a 
conditional jump, a table switch, or just a fallthrough.

See also Basic block.

CPU profiling
CPU profiling is a feature that can be enabled in the JRockit Management Console. It 
makes CPU usage information available on a per-thread basis.

Critical section
A critical section is a piece of code that can only be executed by one thread at a 
time. Locks (such as a synchronized block) around the critical section are used 
to implement this.
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Dead code
Code that exists in a program but will never be executed is dead. If the compiler can 
prove this, it usually removes the dead code from the compiled program.

Deadlock
If two threads are blocked, each holding part of a resource and each needing the other 
part of the resource to unblock, a deadlock has occurred. In this situation, none of 
the threads will ever wake up, since they are both blocked waiting for the rest of the 
resource to become available. While always fatal, a deadlock, at least when the locks 
involved are fat, consumes no CPU cycles.

See also Fat lock and Livelock.

Deadlock detection
Deadlock detection is a feature in the JRockit Management Console. It can be used 
for detecting deadlocked threads.

See also Deadlock.

Design mode
Design mode is an unsupported mode of running the JRockit Flight Recorder client. 
It allows direct access to the tools used to build the user interface. Design mode can 
be used to customize the GUI, make additions to it, and to export the changes as 
plug-ins that can be shared with others.

See also Run mode.

Deterministic garbage collection
This book uses the term deterministic GC to refer to the low latency garbage collector 
that comes as part of the JRockit Real Time product.

See also Latency and Soft real-time.

Diagnostic command
Diagnostic commands can be sent to the JRockit JVM using JRCMD, the 
DiagnosticCommand MBean and/or JMAPI.

See also JRCMD and JMAPI. 
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Double-checked locking
Double-checked locking is the attempt to avoid lock acquisition overhead by first 
checking the locking criterion in an unsafe manner before taking the lock. This is 
strongly discouraged, since it may behave differently, or not work at all, across 
memory models. 

See also Java memory model.

Driver
See Benchmark driver. 

Editor
A fundamental concept in the Rich Client Platform, the editor normally occupies the 
central part of the RCP application and provides the central view of the data opened.

See also Rich client platform.

Escape analysis
Escape analysis is a code optimization that determines how wide the scope for 
a particular object is, and potentially removes that object. If it can be proven that  
an object only exists in a finite scope and doesn't "escape" from it, for example by 
being passed as a parameter to method calls within the scope, the object need not  
be allocated and can be represented as its fields as local variables instead. This saves 
allocation overhead. This is equivalent to allocating an object on the stack instead of 
on the heap in languages like C++.

Event
In the JRA latency analysis tool and in JRockit Flight Recorder, an event is a set of data 
associated with a point in time. Some events also have a duration, that is an end time 
as well as a start time. An event also has an event type describing the event.

See also Event type.

Event attribute
An event contains a number of named values. Each of these named values is called 
an attribute. Event attributes are also referred to as event fields.

See also Event.

Event field
See Event attribute. 
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Event settings
Event settings control which event types to record, and other properties such as what 
threshold to use and whether or not to record stacktraces and thread information. 

See also Client-side template and Server-side template.

Event type
An event type describes a type of event in JRockit Flight Recorder. The event type 
contains information about the different event fields and other metadata such as the 
event path, name and description. The relationship between event types and events 
can be thought of as the relationship between classes and instances.

Exact garbage collection
This is the opposite of conservative garbage collection. In exact garbage collection, the 
runtime needs to provide enough metadata so that it is known which registers and 
positions on the local stack frames contain object pointers. Then the garbage collector 
doesn't need to guess if a pointer-like value really is a pointer or not, trading some 
memory overhead for the metainfo for faster and more complete GC execution. 

See also Conservative garbage collection.

Exact profiling
Exact profiling means instrumenting code to get exact profiling results, such as 
timing every single method invocation or counting every single method call in  
an application. This typically incurs runtime overhead. 

See also Sample-based profiling.

Extension point
In Eclipse Equinox (OSGi) terminology, an extension point defines a way that 
another plug-in can contribute functionality. For example, there is an extension point 
in the JRockit Management Console that allows third-party plug-ins to implement  
new tabs. An entity that contributes to an extension point is called an extension.

Fairness
When all threads in a system receive an equal share of the time quantas in which to 
execute, they are said to be scheduled fairly. This may not necessarily be an attractive 
property, since frequent context switches incur overhead. However, in many cases, it 
is important that thread spread for processing is evenly distributed.
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Fat lock
A fat lock is a more intelligent, and consequently more complex, lock implementation 
than a thin lock. The implementation usually involves putting threads to sleep when 
they are waiting for the lock and keeping a priority queue of candidates who want the 
lock. Fat locks are more optimal for frequently contended locks or locks that are held 
for a long time, since they are less CPU-intensive.

See also Thin lock.

Fragmentation
Fragmentation is the degradation in allocation behavior and available allocation 
space that is caused by lots of small heap "holes" where objects have been previously 
garbage collected. If the heap is full of holes and all of them are fairly small, it might 
be the case that there is no place to put a freshly allocated larger object, even if the 
total amount of free space is a significant part of the total heap size. Fragmentation is 
one of the hardest problems to solve concurrently and efficiently in modern garbage 
collectors. It is always addressed with some kind of compaction.

See also Compaction.

Free list
The free list is the structure that the runtime uses to keep track of available heap 
space. Typically, the free list points to holes in the heap where new objects can be 
allocated. The free list keeps track of the holes in a manner that can range from a 
simple linked list to more priority and size-based approaches. Each time a new  
object goes on the heap, the free list is used to find a hole of free space where it fits.

See also Fragmentation.

Full virtualization
Full virtualization is the practice of using a virtual machine that looks like physical 
hardware to a guest, and requires no modification of the guest in question. 

See also Virtualization and Guest.

GC heuristic
A GC heuristic is a set of rules determining how the settings for the garbage collector 
should look. Examples of heuristics are throughput and pausetime.

See also GC strategy.
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GC pause ratio
The term GC pause ratio is used in JRockit Mission Control to refer to the total time 
quota between running application code and stopping the world in the garbage 
collector. Note that the application runtime is wall clock time and may include 
latencies such as swapping to disk.

GC strategy
In the JRockit garbage collector, especially in versions prior to R27, this refers to the 
GC behavior used to best fulfill a heuristic. In JMAPI the strategy is defined as the 
triple: nursery (on/off), mark phase behavior (parallel/concurrent) and sweep phase 
behavior (parallel/concurrent).

See GC heuristic, Parallel garbage collection, and Concurrent garbage collection. 

Generation
A generation is a part of the total heap. Typically, objects are placed in a particular 
generation depending on their age (time since they were created). 

See also Heap and Generational garbage collection.

Generational garbage collection
Generational GC is the practice of splitting the heap into two or more regions, or 
generations. Objects are allocated in a "young generation" or "nursery" that is typically 
smaller than the main part of the heap. The nursery is frequently garbage collected, 
and because of its small size, this is quicker than garbage collecting the "old space". 
Given that most objects are temporary in nature and die young, generational GC is a 
good memory management optimization. However, generational GC usually adds 
some kind of overhead for write barriers, which are needed to keep track of references 
from the old space to the nursery during nursery GC. 

See also Nursery, Old space, Young space, and Write barrier.

Graph coloring
Graph coloring is an algorithm used in register allocation for computing register 
assignments. Variables in use (live) at the same time are treated as connected nodes in 
a graph. The register allocator tries to color the graph using as few colors as possible, 
so that no adjoining nodes have the same color. If the number of colors used at any 
given point exceeds the number of available physical registers in the machine, spill 
code needs to be generated. Graph coloring is NP-hard but can be approximated in 
quadratic time, still making it one of the most computationally intensive algorithms in 
a code generation pipeline.

See also Color, Register allocation, Graph fusion, and Spilling.
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Graph fusion
Graph fusion is an extended variant of graph coloring. The IR is split into 
sub-regions by some heuristic (typically hotness). The regions are then graph-colored 
independently and fused afterwards. This process needs to produce shuffle code on 
the edges between the regions, so that the register assignments of one region map 
to those of another. If the hotness criteria are good enough, so that the algorithm 
can start with the hottest parts of the code, this becomes a powerful algorithm. This 
is because it has the property that less spill code/shuffle code is generated at nodes 
that are processed early. 

See also Color, Register allocation, Graph coloring, and Spilling.

Green threads
Green threads is the practice of using one instance of an underlying thread 
representation (such as an OS thread) to represent several threads of a higher 
abstraction layer (such as java.lang.Threads). While this is simple and fast for 
uncomplicated applications, there are plenty of problems with this approach. The 
most serious one has to do with handling threads and the acquisition of locks. In 
native code, where no control can be exerted over the threads, or when threads are 
waiting for I/O, deadlocks can occur. If the need arises to put a green thread to  
sleep, usually the entire OS thread below it has to go to sleep as well, trapping all 
other green threads in that particular OS thread.

See also NxM threads.

Guard page
A guard page is a special page in memory that has its OS-level page protection bit 
set. Thus, trying to dereference the page will throw an exception. This is used, for 
example, as a mechanism to detect stack overflows by keeping guard pages at the 
end of the stack. It can also be used for implementing safepoints, by protecting a 
previously unprotected guard page that is dereferenced from the generated code 
at a given safepoint. This makes the runtime throw an exception the next time that 
safepoint is reached, and control can be halted in a structured manner.

See also Safepoint and Livemap. 

Guest
A self-contained system, such as an operating system, that runs on top of a hypervisor 
is referred to as a guest. Several guests can run on top of one hypervisor, but this setup 
is normally not visible to the guests, who, in the case of full virtualization, each believe 
themselves to be running directly on physical hardware. 

See also Virtualization and Hypervisor.
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Hard real-time
The qualifier "hard" in "hard real-time" is used to refer to environments with real-time 
requirements that require exact control over latencies. This is often not necessary for 
a Java server-side application, where soft real-time demands, i.e. a quality of service 
levels of latencies rather than explicit control over the GC typically is enough.

See also Soft real-time.

Hardware prefetching
Hardware prefetching is prefetching implemented in the underlying hardware, 
typically when a CPU heuristically tries to prefetch appropriate data before it is 
accessed, without interaction from the running program. 

See also Prefetching and Software prefetching.

Heap
For our purposes, the heap is the space in memory reserved for Java objects in the 
Java Virtual Machine.

See also Native memory.

HIR
HIR stands for High Level Intermediate Representation. In JRockit, this is what the 
bytecode first turns into, when generating native code from bytecode. JRockit HIR  
is a directed control flow graph with basic blocks as nodes. Each basic block contains 
zero or more operations, which in turn may use other operations as operands. 
JRockit HIR is, like Java, completely platform-independent.

See also MIR, LIR, IR, Register allocation, and Native code.

Hosted hypervisor
A hosted hypervisor is a hypervisor that runs as a user application in an existing 
operating system.

See also Hypervisor.

Hypervisor
A hypervisor is a piece of software that enables multiple operating systems, also 
known as guests, to run concurrently on a physical machine, providing some  
degree of physical hardware abstraction to each of the guests. 

See also Virtualization, Guest, Native hypervisor, and Hosted hypervisor.
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Inlining
Inlining is a code optimization that saves call overhead by copying callee code into 
a caller. Done right, this is a very powerful mechanism. However, if inlining is done 
overoptimistically or for too many cold calls, problems such as instruction cache 
misses will arise.

Intermediate representation
Intermediate Representation (IR) is the format that a compiler uses to represent 
code internally. Typically, this is neither the compiled language, nor the native code, 
but something more generic in between. An IR format should lend itself well to 
optimization and transforms. In JRockit, the intermediate representation has several 
tiers, the top tiers looking more like Java code, and the bottom tiers looking more like 
native code. This is a fairly standard approach. 

See also HIR, MIR, LIR, Register allocation, and Native code.

Internal pointer
For our purposes, an internal pointer is a Java object reference that has been offset 
so that it points into an object rather than to the actual object header where the object 
starts in memory. While this construct needs to be treated specially by the garbage 
collector, it is useful when generating high-performance code, to implement things 
like array traversal. Internal pointers are also necessary on platforms with limited 
addressing modes, such as IA-64.

IR
See Intermediate representation.

Invocation counters
Invocation counters are an instrumentation mechanism for the detection of hot 
code. Typically, an invocation counter is implemented as a piece of code, compiled 
into a method header, that increments a value in memory. Thus, each invocation 
of the method will lead to the counter being incremented. An adaptive runtime 
can regularly scan the counters to see if they have reached threshold values, which 
would qualify the method for reoptimization. Invocation counters are quite a  
coarse tool for hotspot detection and should probably be combined with some  
other mechanism, for example thread sampling. 

See also Exact profiling and Thread sampling.
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Java bytecode
See Bytecode.

Java Memory Model
Since Java is a platform-independent language, care has to be taken when executing 
the same Java program on different CPU architectures. If bytecode loads and stores 
were simply mapped to native loads and stores, the semantics of the Java program 
would change between platforms, usually because some platforms impose stronger 
memory ordering than others.

In order to guarantee that memory operations in Java are interpreted the same way 
on different architectures, a Java Memory Model exists. It specifies the semantics of 
memory accesses in Java. When Java first came out, this model was rather broken, 
but was later made consistent, through the work of JSR-133.

See also JSR-133.

JFR
See JRockit Flight Recorder.

JIT compilation
JIT compilation stands for Just In Time Compilation. This is the process of compiling 
a method to native code only just before it is to be executed for the first time. 

See also Static compilation and Ahead-of-time compilation.

JMAPI
JMAPI stands for the JRockit Management API. This is a proprietary JVM management 
API, used to monitor the JVM and modify its behavior at run time. It was the very first 
JVM management API in existence, well before any standardization had taken place in 
this area. JMAPI was partially deprecated in JRockit R28 and will be phased out and 
replaced by JMXMAPI.

See also JMXMAPI.

JMX
Java Management Extensions (JMX) is a standard for monitoring and managing  
Java applications.

See also MBean.
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JMXMAPI
JSR-174 introduced a standardized, JMX-based, management API for JVMs. The 
JRockit specific extensions to that API are known internally as the JMXMAPI. It is a 
set of MBeans that expose JRockit-specific behavior that is used by JRockit Mission 
Control. In JRockit, JMXMAPI has been around since R27, where it superseded the 
JSR-174 implementation from R26. JMXMAPI is not yet officially supported and has 
so far changed with every major release of JRockit.

See also JMX, JSR-174, and MBean.

JRA
See JRockit Runtime Analyzer.

JRCMD
JRCMD is a small command-line utility distributed with the JRockit runtime. It is 
used to send diagnostic commands to locally running instances of JRockit. JRCMD 
can be found in the JROCKIT_HOME/bin folder. The name JRCMD is short for 
JRockit CoMmanD.

See also Diagnostic command.

JRMC
See JRockit Mission Control.

JRockit
JRockit is the umbrella name for a number of different technologies aimed at 
improving the runtime performance and manageability of Java applications. The 
JRockit JVM is the flagship product under the JRockit brand. Other products that are 
included under the JRockit brand are JRockit Virtual Edition, JRockit Real Time, and 
JRockit Mission Control.

JRockit Flight Recorder
JRockit Flight Recorder (JFR) is the main profiling and diagnostics tool in JRockit 
R28/JRockit Mission Control 4.0 and later. The flight recorder can continuously 
record profiling data both in memory buffers and to disk.

JRockit Memory Leak Detector
The JRockit Memory Leak Detector (also known as Memleak) is the memory leak 
detection and cause analysis tool in the JRockit Mission Control tools suite. The 
memory leak detector can also be used for other kinds of more general heap analysis.
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JRockit Mission Control 
JRockit Mission Control (JRMC) is the JRockit tools and manageability suite. It can 
be used to manage, monitor, and profile applications running on the JRockit JVM. It 
also includes a tool for tracking down memory leaks.

See also JRockit Memory Leak Detector, JRockit Runtime Analyzer, and JRockit 
Flight Recorder. 

JRockit Runtime Analyzer
The JRockit Runtime Analyzer (JRA) is the main profiling tool in JRockit R27 and 
earlier versions. Since R27.3, JRA also contains a powerful latency analyzer. This is 
useful for understanding why a program is idle at certain points during its runtime. 
The JRockit Runtime Analyzer was superseded by JRockit Flight Recorder in  
JRockit R28. 

See also JRockit Flight Recorder.

JSR
A JSR is a Java Specification Request. The Java language and its APIs are subject 
to change by means of a semi-open process, called the Java Community Process. 
Whenever a change is to be implemented to the Java standard, it is described in a  
JSR and subject to a community process with votes. Things like the new Java 
Memory Model (JSR-133) and support for dynamic languages (JSR-292) are  
examples of well-known JSRs.

JSR-133
JSR-133 is the now-completed JSR that aimed to solve the initial problems with the 
Java Memory Model.

See also JSR and Java Memory Model.

JSR-174
JSR-174 was created to improve and standardize monitoring and management of 
the Java runtime. JSR-174 resulted in the java.lang.management package and the 
platform MBean server. The JSR is now completed and is implemented in Java 5.0 
and later.

See also JSR, MBean server.
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JSR-292
JSR-292 proposes modifications to the Java language and the bytecode specification 
in order to better support compiling dynamic languages (for example Ruby) to 
bytecode and executing them in a JVM. 

See also JSR.

JVM Browser
The tree view to the left in JRockit Mission Control is called the JVM Browser. 
It shows the JVMs that Mission Control can connect to.

See also JRockit Mission Control.

Keystore
A keystore is used in public key cryptography. It contains both public and private 
keys and is protected by a passphrase.

See also Truststore.

Lane
A lane is a track in the JRockit Flight Recorder Events | Graph tab. JRockit Flight 
Recorder places all event types with the same parent in the same lane. Thus, it is  
a good idea to ensure that the events of event types under the same parent in the 
event path do not overlap in time in the same thread.

See also Event.

Large pages
Large pages is a mechanism available in all modern operating systems. With large 
pages, a virtual address page is increased from the order of several kilobytes to the 
order of several megabytes. The benefit is that virtual address translation gets sped 
up, since there are less misses in the translation lookaside buffer. The downside 
is that the size of the smallest addressable unit increases dramatically, which may 
cause native memory fragmentation. 

See also Native memory.
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Latency
Latency is the cost of performing a transaction, not useful to the transaction itself. This 
can be, for example, code generation costs and memory management costs in the VM, 
required for a transaction in a Java application to complete. Unpredictable latencies 
cause trouble, since it is hard to determine load levels over time. Sometimes, it is better 
to pay for predictable latencies with lower total throughput.

See also Stopping the world, Deterministic garbage collection, Concurrent garbage 
collection, and Parallel garbage collection. 

Latency threshold
Timed events in JRockit Flight Recorder have a threshold setting. If the duration of 
the event is lower than this threshold, it will not be recorded.

See also JRockit Flight Recorder.

Lazy unlocking
Lazy unlocking is also sometimes known as biased locking. This is an optimization of 
lock behavior that works if the assumption is valid that many locks are thread local, 
albeit possibly frequently taken and released. In lazy unlocking, the runtime gambles 
that locks are likely to remain thread local. When a lock is released for the first time, 
the runtime may choose not to unlock it, treating the unlock as a no-op. When the lock 
is later reacquired by the same thread, that lock also becomes a no-op. The worst case 
is, of course, if another thread tries to acquire the lazy locked monitor. In that case, it 
needs to be converted to a normal lock or forcefully unlocked to preserve semantics. 
Consequently, locks that are "ping ponging" back and forth, repeatedly being acquired 
and released by different threads are ill-suited for lazy unlocking.

A lazy unlocking implementation typically contains various heuristics to make it 
perform more optimally in a changing environment, for example, by banning its 
application on certain objects or certain object types that have too frequently needed  
to be forcefully unlocked.

LIR
LIR stands for Low Level Intermediate Representation. This is the lowest tier 
of the JRockit internal representation of Java code. LIR contains constructs like 
hardware registers and hardware-specific addressing modes. LIR may or may  
not be register-allocated. Register-allocated LIR maps directly to native code for  
the current platform.

See also HIR, MIR, Register allocation, Native code, and IR.
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Livelock
When two threads actively compete to acquire an entire resource, where both 
already hold parts of it without releasing it, we get a livelock. A livelock costs  
CPU time since the threads competing for the resource do not sleep, but rather  
make repeated failed attempts to acquire the resource.

See also Deadlock.

Livemap
A livemap is a piece of compiler-generated metainfo. It keeps track of which registers 
and positions on a local stack frame contain objects at a given program point. This is 
used for exact garbage collection.

See also Exact garbage collection.

Live object
An object that is in the root set or referred to by other live objects is live. The terms 
"live" and "in use" are used interchangeably. A live object may not be garbage 
collected.

See also Root set.

Live set
Live set usually refers to the space in memory that live objects are occupying on 
the heap.

See also Live object.

Live Set + Fragmentation
In effect, this is the amount of heap space that is "in use". This term is used in JRockit 
Mission Control and determines the lower boundary of the amount of heap memory 
required to run an application at all.

Lock deflation
Lock deflation is the practice of, possibly heuristically and based on runtime feedback, 
turning a fat lock into a thin lock. Normally, this is done because a lock previously 
flagged as contended isn't anymore.

See also Lock inflation, Fat lock, and Thin lock. 
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Lock fusion
Lock fusion is the process of having the code generator turn two lock/unlock regions 
that use the same monitor, into a wider one. This is optimal if just a small amount 
of side-effect-free code exists between them. Lock fusion is one way of reducing the 
overhead from many frequent acquisitions and releases of a particular monitor. Lazy 
unlocking is another.

See also Lazy unlocking.

Lock inflation
Lock inflation is the practice of, possibly heuristically and based on runtime 
feedback, turning a thin lock into a fat lock. Normally, this is done because a  
lock previously thought to be uncontended isn't anymore. 

See also Lock deflation, Fat lock, and Thin lock.

Lock pairing
In Java bytecode, there no implicit way of keeping track of which particular 
monitorenter instruction(s) (locks) are paired with which particular monitorexit 
instruction(s) (unlocks), even though this is explicit and undeniable in Java source 
code. In order to perform some lock operations quickly and in order to support, for 
example lazy unlocking and recursive locking with low overhead, it is a good idea 
to let the code generator try to figure out which locks correspond to which unlocks. 
This is done in JRockit and is referred to as lock pairing. Lock pairing involves 
associating lock and unlock instructions with a "lock token", uniquely identifying  
the lock/unlock pair. 

See also Lazy unlocking, Recursive locking, and Lock token.

Lock token
A lock token is a unique token associated with a lock/unlock pair (or tuple), as 
determined by lock pairing. Typically, a lock token consists of the object pointer to  
the Java monitor object with a few extra bits of information at the least significant byte, 
keeping track of how this monitor is currently locked. Examples of information that 
is stored can be "thin locked", "fat locked", or "locked recursively". The lock token can 
also flag the lock or unlock instruction as "unmatched" if it isn't possible to determine 
where the other half of the lock/unlock tuple is. This is unusual but possible, due to 
the nature of Java bytecode, and makes for slower synchronization than with paired 
lock tokens.

See also Lock pairing.
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Lock word
The lock word is the bits in an object header that contain lock acquisition information 
about the particular object. In JRockit some GC information resides here as well.

See also Object header.

Mark and sweep
Mark and sweep is a tracing garbage collector algorithm that follows live object 
references in order to establish a live set. Then it removes all untraversed objects  
that are known not to be live after all references have been traced. The phases of  
mark and sweep can be parallelized with varying degrees of efficiency. Mark and 
sweep is the basis of virtually all garbage collectors in commercial JVMs today. 

See also Tracing garbage collection.

Master password
The master password is used to encrypt and decrypt the passwords stored in JRockit 
Mission Control.

MBean
MBeans are part of the instrumentation-level JMX specification. An MBean is a 
managed bean—a Java object representing a resource to be managed. An MBean  
has attributes that can be read, operations that can be invoked, and notifications  
that can be emitted.

See, for example, the J2SE management documentation for more information 
on MBeans at http://java.sun.com/j2se/1.5.0/docs/guide/management/
overview.html#mbeans.

MBean server
The MBean server is a core component of the JMX infrastructure, managing the life 
cycle of MBeans and exposing them to consumers through connectors.

See also JMX and MBean.

MD5
MD5 is a well-known hash function.
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Memleak
Memleak is short for the JRockit Memory Leak Detector included in JRockit 
Mission Control.

See also JRockit Memory Leak Detector.

Memory Model
See Java memory model.

Method garbage collection
Method garbage collection is also known as garbage collection of code throughout 
this book. This refers to the process of getting rid of code buffers full of native  
code that is no longer in use, for example since the methods in question have  
been reoptimized or regenerated due to invalidated assumptions.

Micro benchmark
A micro benchmark has a small and well-understood workload. Micro benchmarks 
can be used for testing performance improvements or for performance  
regression testing.

MIR
MIR stands for Middle Level Intermediate Representation. In JRockit, this is what the 
bytecode turns into before most platform-independent optimizations are applied. MIR 
is a directed control flow graph with basic blocks as nodes. Each basic block contains 
zero or more operations that may only use variables as operands. This is similar to 
"three address code", the main IR form for most classic compilers. JRockit MIR  
is, like Java, completely platform-independent.

See also HIR, LIR, Register allocation, Native code, and IR. 

Mixed mode interpretation
Mixed mode interpretation is the act of using bytecode interpretation to execute most 
parts of a Java program in a JVM, but with added firepower from a JIT compiler. The 
compiler optimizes methods that the runtime knows are hot, i.e. called frequently or 
where the program spends large amounts of its time.

See also Bytecode interpretation, Java bytecode, and JIT compilation. 
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Monitor
A monitor is a class object or a generic instance object that can be used for 
synchronization. This means using it as the constraining resource when  
several threads want to access a critical section.

See also Critical section.

Name mangling
Name mangling is a bytecode obfuscation technique that replaces names of methods 
and fields in compiled code with auto generated, less meaningful ones, to prevent an 
adversary from decompiling the program.

See also Obfuscation.

Native code
Native code, in this book, is used interchangeably to mean either assembly language 
or machine code. Native code is the specific language of a particular hardware 
architecture, such as x86.

Native hypervisor
A native hypervisor is a hypervisor that installs directly on bare metal hardware.

See also Hypervisor.

Native memory
Native memory, the way the term is used in this book, means the parts of memory 
used by the runtime for purposes other than Java heap. This can be space for code 
buffers or system memory that is "malloced" when the runtime needs to acquire 
space for internal data structures. 

See also Heap.

Native threads
Native threads (sometimes referred to as OS threads) is the thread implementation 
provided by a particular platform or operating system. One example is POSIX 
threads on Linux.
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Non-contiguous heaps
This is the practice of keeping the Java heap in several non-adjacent chunks of system 
memory. Non-contiguous heaps require additional bookkeeping, but can vastly 
increase the amount of available heap space in environments where, for example,  
the operating system resides in the middle of the address space. This is mostly 
relevant on 32-bit architectures where the amount of address space is limited.

NxM threads
NxM threads are a variant of green threads, where several native threads (n) contain 
several green threads (m). This implementation fares a little better than green threads 
when it comes to issues like deadlocks and blocking I/O, but it is generally not 
improvement enough to be used in modern commercial JVM environments. 

See also Green threads.

NUMA
NUMA stands for Non-Uniform Memory Architecture and is a relatively new 
concept in computer hardware. In order to save bus bandwidth, a NUMA 
configuration divides the responsibility for parts of the physical address space 
between several CPUs. A memory operation on a CPU's own part of memory is 
faster than a memory operation on a different CPU's part of memory which has  
to be marshalled one or more hops across the bus to the other CPU. 

NUMA presents a challenge for adaptive memory management, since object 
placement on the heap placement becomes much more of an issue.

Nursery
See Young space.

Obfuscation
Java code obfuscation is the act of deliberately modifying bytecode so that it will 
be harder to reverse engineer. Changing names (name mangling) is not harmful  
to performance, but may of course still cause problems for debuggers. Changing 
control flow to use constructs not available in Java source code, however, may 
confuse or break JIT compilers and optimizers. This should be avoided.

See also Name mangling.
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Object header
In a JVM, each object needs to keep track of some meta info, such as its class, its GC 
state and if it is used as a monitor in a lock operation. This information is referenced 
so frequently that it makes little sense to store it anywhere other than in the header 
of the object itself, accessible by dereferencing the object pointer. Typically, an object 
header contains lock state, garbage collection state, and type information.

See also Lock word and Class block. 

Object pooling
Object pooling is the practice of avoiding allocation overhead by not allowing 
objects to be garbage collected. Typically, this is done by having the program reuse 
objects instead of allocating new ones. This is accomplished by keeping dead object 
references in a pool to prevent them from being garbage collected. Object pooling  
is generally discouraged since it interferes with GC heuristics and will make  
short-lived objects seem like long-lived ones to the memory system.

Old space
In generational GC, the main part of the heap, where objects are placed after being 
evacuated from the young space(s) when they grow too old, is called the old space.

On-stack replacement
On-stack replacement is the process of switching out code while it is being executed, 
and replacing it with new code (possibly because of optimization or invalidation). 
JRockit does not support on-stack replacement. Rather, it waits until the method in 
question has finished executing until exchanging it for new code. This can lead to 
some surprising behavior in badly written benchmarks, but turns out to be not much 
of an issue in "the real world".

Operative set
The operative set is a user-defined set of events in JRockit Mission Control. It is 
mainly used to filter and to carry the results of a search from one tab to another.  
The operative set is also used when finding events related to each other through 
event attributes with a relational key.

See also Relational key.
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Optimization queue
The optimization queue is JRockit-specific terminology for the queue of code 
generation requests that need to be executed by the JVM in order to generate new 
(and better) code for hot methods. The queue is consumed by one to several code 
optimizer threads, depending on configuration.

See also Code generation queue.

Out of the box behavior
Starting a program with default or no extra configuration should ideally be the only 
thing required in an adaptive runtime. Runtime feedback should provide the system 
with whatever extra information it needs, making it possible for it to achieve a steady 
state, optimum behavior, and correct heap size without user intervention. This is 
sadly enough not always the case in the real world, so good out of the box behavior 
is a hot research topic for JVMs.

Overprovisioning
Overprovisioning is the practice of deploying applications on more hardware than 
strictly needed, in order to be able to handle usage spikes.

OS threads
See Native threads.

Page protection
Page protection is the practice of making a page in virtual memory unreadable or 
non-executable (if it contains code). Accessing the page in the forbidden manner 
triggers an exception. Page protection can be used for all manner of applications, 
such as detecting stack overflows, enabling cheap safepoints in Java code where 
threads can be halted, and for switching out old code that is no longer in use  
instead of executing it..

See also Guard page and Safepoint.

Parallel garbage collection
Parallel GC, in this book, is a term used to refer to any kind of garbage collection 
that tries to maximize throughput, without considering latency. This typically leads 
to unpredictable pauses, since garbage collection when a Java program is halted is 
algorithmically very much simpler and more parallelizable than when optimizing  
for low latencies. 

See also Latency, Deterministic garbage collection, and Concurrent garbage collection.
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Paravirtualization
Paravirtualization is virtualization where the guest needs to know about the 
underlying hypervisor, and typically uses an agreed-upon API to communicate  
with the hypervisor.

See also Full virtualization and Virtualization. 

Password file
In JMX, the password file contains the definitions and passwords for different roles. It 
is normally located in JROCKIT_HOME/jre/lib/management/jmxremote.password.

See also Access file.

PDE
PDE is short for Plug-in Development Environment, an Eclipse IDE feature facilitating 
the development of Equinox (OSGi) plug-ins. The PDE provides wizards and 
templates for generating boilerplate code for new plug-ins, as well as extension points 
for adding new templates and wizards.

See also Extension point.

Perspective
A perspective is RCP terminology for a predefined configuration of views. For 
example, there is a JRockit Mission Control perspective with the views most  
commonly used from JRockit Mission Control. Window | Reset Perspective 
from the main menu can be used to revert to the default configuration.

See also Rich client platform.

Phantom References
See Soft references. 

Prefetching
Prefetching is the act of retrieving memory into cache lines ahead of time, before the 
memory is to be accessed. While a prefetch is a slow operation, this doesn't necessarily 
matter if enough time (unrelated instructions to be executed) exists between the 
prefetch and the memory access in question. Then, the latency caused by the prefetch 
will be hidden, and the memory access will be orders of magnitude faster, since the 
memory is guaranteed to be in the cache upon access.

Prefetching can be done implicitly by the CPU (hardware prefetching) or explicitly by 
the programmer, by placing prefetch instructions in the code (software prefetching).
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Software prefetching is often done heuristically by the compiler. In JRockit it is used, 
for example, to access TLA space for object allocation and in optimized code before 
large amounts of field accesses take place. Placing prefetch instructions in the wrong 
locations can be detrimental to performance.

See also Thread local area, Hardware prefetching, and Software prefetching. 

Producer
In JRockit Flight Recorder terminology, a producer (or event producer) is an entity 
that provides a namespace and type definitions for events. 

See Event and Event type. 

Promotion
Promotion is the act of moving an object reference to a different, more permanent, 
area of memory. The term is used, for example, both for moving objects from a 
Thread Local Area (TLA) to the heap and from a younger generation to an older 
generation on the heap. 

See also Generational garbage collection and Thread local area.

RCP
See Rich client platform.

Read barrier
A read barrier is usually a small piece of code generated by the compiler next to that 
of a field load. This might be needed for certain kinds of garbage collectors or, for 
example, to determine if an object that started out thread local is still thread local, or if 
the field load was executed by a different thread than the one who created the object.

See also Write barrier.

Real-time
For our purposes, "real-time" refers to the need to control latencies in a runtime 
environment, i.e. soft real-time. 

See also Soft real-time and Hard real-time.

Recording agent
See Recording engine.
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Recording engine
The recording engine is the part of JRockit Flight Recorder that is built into JRockit. 
It handles I/O, memory buffers, and provides an API for controlling the lifecycle of 
recordings. It is also known as the recording agent.

Recursive lock
Java permits a lock to be acquired multiple times before being unlocked. Consider, for 
example, the case where one synchronized method in an object inlines another. The 
synchronization mechanisms in the VM must handle this, and consequently keep some 
kind of flag or reference count in order to determine which lock or unlock is the "real" 
one and which should be treated as a no-op. 

See also Lock pairing and Lock token.

Reference compression
Reference compression is the function that turns a native size reference into a smaller 
one in an environment where compressed references are used. 

See also Compressed references and Reference decompression.

Reference counting
Reference counting is a method of garbage collection that works by keeping a 
reference count in each object, tracking the number of referrers to that particular 
object. Trivially, when there are zero referrers left, the object may be garbage 
collected. Reference counting is simple to implement but has the intrinsic  
weakness that cyclic data structures, where several objects have mutual  
references, can never be garbage collected.

See also Tracing garbage collection.

Reference decompression
Reference decompression is the function that turns a compressed reference back 
into its native form (unpacking the reference) in an environment where compressed 
references are used. 

See also Compressed references and Reference compression.
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Register allocation
Register allocation is the process of turning IR into a more platform-dependent 
representation by assigning hardware registers to virtual registers/variables. 
Normally, there exist fewer hardware registers than variables in the program, and if 
more registers than available have to be in use at the same time, the register allocator 
will have to "spill" some of them to memory (typically, the user stack). This adds 
execution overhead to the generated code since additional instructions are used for 
the spills. Optimal register allocation is a non-trivial and computationally intensive 
problem.

See also Spilling.

Relational key
The relational key is metadata for event type attributes, specifying a relationship 
between different event types. The value of the relational key for an event type 
attribute is in URI format. The value of the actual attribute is then used to  
link the events together.

Rich client platform
This is the Eclipse-based rich client application platform. The core of the Eclipse 
platform can be used to build applications other than IDEs, using technologies  
such as the Eclipse OSGi implementation Equinox and the Standard Widget  
Toolkit (SWT). The JRockit Mission Control client is built on Eclipse RCP.

Role
A role is part of the security framework in JMX for remote monitoring and 
management. A role is associated with access rights. To be functional, a role  
must have an entry in both the password and access files.

See also JMX, Password file, and Access file.

Rollforwarding
Rollforwarding is a mechanism used in older versions of JRockit (pre R28) to bring a 
halted thread to a safepoint by emulating the instructions that remain before the next 
safepoint, modifying the context of the stopped thread. 

See also Livemap and Safepoint.
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Root set
Any tracing garbage collector starts out with a set of objects that are reachable "from 
the beginning". This usually means the objects present in registers and on the local 
stack frame in the thread context of the Java threads that are stopped for garbage 
collection. The root set also contains global data, such as objects in static fields.

See also Livemap and Tracing garbage collection.

Run mode
Run mode is the default mode of running the JRockit Flight Recorder user interface.

See also Design mode.

Safepoint
A safepoint is a place in Java code where a Java thread may halt its execution. The 
safepoint contains information for the runtime that isn't available in other places, 
such as which registers contain objects (needed by the GC). The safepoint also 
guarantees that everything in the thread context is either an object, an internal 
pointer to an object or not an object. No intermediate states exist.

See also Livemap.

Samples
Samples are data collected over a period of time that, with enough resolution, 
accurately describe the behavior of a program, i.e. where the program spends its 
time. A fundamental building block for adaptive runtimes is a system that  
produces enough samples of high enough quality.

Sample-based profiling
Sample-based profiling is the practice of using a statistically representative subset of 
all possible data, or samples, to profile an application. If done right, this usually leads 
to much less profiling overhead and better information than alternative techniques.

See also Exact profiling.

Semaphore
A semaphore is a synchronization mechanism that provides functionality built on 
the semantics of wait and notify. Every object in Java is equipped with wait and 
notify methods. 
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Executing wait in a synchronized context tells the executing thread to go to sleep and 
wait to be woken up by a notification request. Executing notify in a synchronized 
context tells the scheduler to wake any other thread waiting on the monitor. 
notifyAll in Java does the same, but wakes up all waiting threads—whoever gets 
to the monitor first gets to execute, the rest must go back to sleep. notifyAll is 
generally safer to use since it avoids deadlocks better. Naturally, it comes with  
some additional overhead.

See also Deadlock and Monitor.

Server-side template
A server-side template is information in JSON format, used to control the event 
settings of a JRockit Flight Recorder recording.

See also Event settings and Client-side template.

Soft real-time
The qualifier "soft" in soft real-time is used to refer to real-time environments that 
require some kind of control over latencies, but not an exact bound for every pause. 
Typically, soft real-time involves specifying a quality of service level for latencies 
that is not to be exceeded. The JRockit Real Time garbage collection policies support 
this (deterministic GC).

See also Hard real-time.

Soft references
Soft references are Java object classes that are to be treated specially by the garbage 
collector. Besides from standard "strong" references, there are soft references, weak 
references, and phantom references, all of which provide different levels of reachability 
than a standard reference. Soft and weak references are allowed to be garbage collected 
if memory is scarce, and are typically referenced by a wrapper object. A wrapper object 
is normally a Reference instance. Thus, soft and weak references may automatically 
be removed from a wrapper object by the GC if no other references exist. Phantom 
references, never reachable from their wrapper objects, can be used to implement 
finalization with safer semantics.

Software prefetching
Software prefetching is prefetching implemented by explicitly placing prefetch 
instructions in program code. 

See also Hardware prefetching and Prefetching.
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Spilling
A register allocator needs to map a large number of variables to a smaller number of 
physical registers. If a larger number of variables are in use at the same time than the 
number of available registers, spilling needs to take place, i.e. some variables have 
to be moved to memory. Typically, they are moved to positions on the stack frame 
of the method that is being generated. Spill move instructions to and from memory 
are inserted at appropriate places in the code. Large amounts of spill code leads to 
performance loss. 

See also Register allocation and Atomic instructions.

Spinlock
A spinlock is a small lock implementation that typically consists of an atomic check 
and a conditional jump, forming a small loop that burns CPU cycles as long as 
the lock is blocking thread execution. Spinlocks are a good and a simple way to 
implement uncontended locks that are known to be held for a short time only. For 
most other applications, spinlocks are suboptimal. 

See also Thin lock and Fat lock.

SSA form
SSA (Single Static Assignment) form is a transform domain for intermediate code 
where each variable can be written to only once. This makes several optimizations 
and data flow analyses easier. The transform is possible since SSA form defines a 
join operator, Φ, that takes an arbitrary number of sources and one destination. The 
operator defines the destination to be "any of the source variables". Since Φ cannot  
be expressed as native code on any hardware architecture, SSA form has to be 
transformed back to normal form before code emission.

Static compilation
Static compilation refers to compilation in a static environment, typically before 
the program is run and no runtime feedback is available. Static compilation is the 
way languages like C++ are compiled, ahead of time. Static compilation has the 
advantage that whole program analyses are known to be true forever because the 
runtime cannot change the program adaptively and that compile time overhead may 
be large (since compile time doesn't impact total execution time). Thus, the compiler 
becomes more efficient. The disadvantage is that an adaptive runtime can provide 
far better information to base optimization decisions on and optimize for changing 
program behavior over time. 

See also Ahead-of-time compilation, Adaptive code generation, and JIT compilation.
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Stop and copy
Stop and copy is a tracing garbage collector technique that partitions the heap into 
two equally sized halves that are never in use at the same time. The tracing algorithm 
that computes the live set incrementally moves the live objects to the other heap half 
during garbage collection, providing the intrinsic property of compaction. After the 
GC, the other heap half, with the freshly moved objects, is used as the new heap. This 
algorithm is fairly simple to implement, but obviously wasteful of memory.

See also Tracing garbage collection, Compaction, and Fragmentation. 

Stopping the world
Stopping the world refers to the need to halt a thread that is executing application 
code. This may be needed for internal runtime work. An example of such work is 
non-concurrent garbage collection. This is a major source of latency in an application. 
Another source of latency is the application itself when it does things other than 
execute code, such as waiting for I/O.

See also Latency.

Strong references
This is the standard object reference in Java. The qualifier "strong" is rarely used. If it 
is, this is just to contrast normal (strong) references to soft/weak references.

See also Soft references.

SWT
SWT stands for Standard Widget Toolkit. This is the user interface toolkit library 
used by the Eclipse RCP platform, and consequently also by JRockit Mission Control.

See also RCP.

Synthetic attribute
A synthetic attribute does not correspond to a real attribute in a JMX MBean. The 
synthetic attribute is a client-side construct in the JRockit Mission Control console. 

See also JMX and MBean.

Tab group
A tab group is a set of tabs in the JRockit Mission Control GUI, grouped together.

See also Tab group toolbar.
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Tab group toolbar
The tab group toolbar is to the left in the JRockit Mission Control Console, JRA, and 
JRockit Flight Recorder editors.

See also Tab group.

Thin lock
A thin lock is a small and simple lock implementation, designed to be optimal 
for locks that are never contended and quickly released. Thin locks are often 
implemented as spinlocks.

See also Fat lock and Spinlock. 

Thread local allocation
Thread local allocation is the concept of first allocating new objects in a thread local 
area, and then promoting them to the heap en masse when the area is full or when 
otherwise optimal. 

See also Thread local area.

Thread local area
A Thread Local Area (TLA) is a small thread local buffer used for allocation in the 
runtime. The use of TLAs may significantly decrease object allocation overhead, 
since allocating objects in the TLA requires no synchronization. When a thread  
local buffer is full, it has to be promoted to the ordinary heap.

Thread local heap
A thread local heap is an extension of the thread local area concept. GC can be 
implemented with several largish thread local heaps and a global heap. This is 
beneficial if most objects are temporary as well as thread local. In that case, they 
never need to be put on the global heap, which is subject to more synchronization. 
Usually, the cost of a thread local garbage collection policy is quite high for 
everything but quite specific applications. This is because both read barriers and 
write barriers are required to keep track of if an object is still thread local or if it  
has been exposed to other threads. There are however environments, such as in  
a specialized OS layer, where this overhead can be somewhat reduced. 

See also Generational garbage collection and Thread local area.
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Thread pooling
Thread pooling is the practice of keeping a number of threads alive in a resource 
pool and reusing them when they finish executing instead of allocating new threads. 
This may or may not be a good idea depending on the situation and underlying  
thread model.

Thread sampling
Thread sampling is a hotspot detection method that works by periodically examining 
where in a program the executing threads spend their time. Typically, threads are 
stopped and their instruction pointers are cross-referenced against a table of known 
methods/regions. Enough samples in a given method means that the method is hot 
and should be optimized. Thread sampling can, if the number of samples is large 
enough, also be used on a more fine-grained level, determining which code paths  
or regions inside a method are hotter than others.

Throughput
Throughput is usually a measurement of the average number of transaction units per 
time unit. No heed is usually taken to deviations in this value as long as the average 
is maximized.

See also Latency and Parallel garbage collection.

TLA
See Thread local area.

Tracing garbage collection
Tracing garbage collection is any GC technique that uses an algorithm to traverse 
object references on the heap, following them from one object to another. This is done 
in order to establish the set of live objects. After the trace, unreachable objects are  
known to be dead and can be garbage collected. 

See also Mark and sweep and Stop and copy.
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Trampoline
A trampoline is a mechanism used, for example, in JIT compilation without 
interpretation. A trampoline is usually a piece of native code placed in memory that 
"pretends" to be a fully compiled method. When the method is called, the trampoline 
is executed. The trampoline contains code that makes the called method generate 
itself and then dispatches control to the freshly generated code. Future calls to the 
trampoline are back patched to go directly to the real method. When no more calls 
are relayed through the trampoline, its code buffer can be reclaimed. 

See also Method garbage collection and JIT compilation.

Trigger action
A trigger action is simply a custom or predefined action to take when a trigger rule 
is invoked in the JRockit Management Console.

See also Trigger rule.

Trigger condition
A trigger condition is what makes a trigger rule fire. It may contain an attribute 
value and a condition, for example "trigger when the CPU load is over 90% for  
two minutes".

See also Trigger rule.

Trigger constraint
A trigger constraint limits when a trigger rule may fire, for example only between 
8 AM and 5 PM.

See also Trigger rule.

Trigger rule
A trigger rule in the Management Console consists of a trigger condition, a trigger 
action, and optionally, one or more trigger constraints. 

See also Trigger condition, Trigger action, and Trigger constraint.

Truststore
The truststore is a repository for the certificates of trusted parties.

See also Keystore.
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Virtualization
Virtualization is the process of running a guest (such as an operating system) on top 
of virtualized/emulated hardware through the use of a hypervisor. This enables the 
concurrent execution of several operating systems on one piece of physical hardware. 
Potentially, this makes machine resource usage more efficient. Virtualization is also 
used to turn a server room of physical machines into an abstract "computing cloud", 
accessible through some unifying management framework. 

See also Guest, Hypervisor, Full virtualization, and Paravirualization.

Virtual machine image
For our purposes, a virtual machine image is a preinstalled application and a 
hardware description—a setup ready for virtualization. It typically consists of a 
hypervisor-specific configuration file and one or more disk images containing a  
pre-installed application to run. Sometimes, the virtual machine image is referred  
to as virtual image or virtual appliance.

See also Virtualization.

Volatile fields
A volatile qualifier on a field in Java imposes stricter memory semantics. Declaring 
a field volatile guarantees that all threads immediately see the same contents of the 
field after it has been written to. 

See also Java Memory Model.

Warm up round
A benchmark warm up round executes a (possibly smaller) run of the main benchmark 
payload operation. This is used in benchmarking to give adaptive runtimes enough 
time to achieve a steady state and to eliminate deviation from the main measurements. 
The main measurements are done later, when warm up is complete.

Weak reference
See Soft references.
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Write barrier
A write barrier is usually a small piece of code generated by the compiler next to that 
of a field store. This is needed when the semantics of a field store affect other parts of 
the system. For example, in generational GCs, it is common to use some kind of write 
barrier to flag which parts of the entire heap have been written to, or "dirtied". This is 
because the GC not only needs to trace references pointing from a young generation 
to the old generation, but the other way around as well. Trivially, there would be no 
performance benefit from generational GC if the entire old space had to be traversed 
for each nursery collection. Better instead to pay the price of a few extra instructions 
of write barrier code for each field store. 

See also Read barrier, Generational GC, Old space, and Young space. 

Young space
A young space is a partition (or several partitions) of the heap, typically orders of 
magnitude smaller than the entire heap, where new objects are allocated. The young 
space is garbage collected separately. This works well when there are plenty of 
temporary or short-lived objects, which is often the case. This is because the smaller 
young space can be garbage collected more frequently than the rest of the heap. If 
objects live longer than a preset amount of time, for example, if they survive one 
young space collection, they are promoted to another partition of the heap that is  
less frequently garbage collected.

In this book, the terms "young space" and "nursery" are used interchangeably.

See also Generational garbage collection.
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com.oracle.jrockit.jfr API  361
com.oracle.jrockit.jfr.DurationEvent  361
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com.oracle.jrockit.jfr.InstantEvent  361
com.oracle.jrockit.jfr.RequestableEvent  361
com.oracle.jrockit.jfr.TimedEvent  361
com.oracle.management.autodiscovery. 

address property  236
com.oracle.management.autodiscovery.

name property  237
com.oracle.management.autodiscovery.

period property  236
com.oracle.management.autodiscovery.

targetport property  237
com.oracle.management.autodiscovery  

= [true|false] property  241
com.oracle.management.autodiscovery.ttl 

property  236
com.oracle.management.jmxremote.access.

file = <path> property  240
com.oracle.management.jmxremote. 

authenticate = [true|false] property  
240

com.oracle.management.jmxremote.login.
config = <config entry> property  240

com.oracle.management.jmxremote. 
password.file = <path> property  240

com.oracle.management.jmxremote.port  
= <int> property  239

com.oracle.management.jmxremote.registry.
ssl = [true|false] property  239

com.oracle.management.jmxremote. 
rmiserver.port = <int> property  239

com.oracle.management.jmxremote.ssl.
need.client.auth = [true|false]  
property  240

com.oracle.management.jmxremote.ssl  
= [true|false property  239

com.oracle.management.jmxremote  
= [true|false] property  239

com.oracle.management.snmp.acl.file  
= <path> property  241

com.oracle.management.snmp.acl  
= [true|false] property  241

com.oracle.management.snmp.
interface=<inetaddress> property  241

com.oracle.management.snmp.port = <int> 
property  241

com.oracle.management.snmp.trap = <int> 
property  241

compaction. See fragmentation
compaction  76, 508
Compare And Swap. See CAS
compressed references. See also reference 

compression
compressed references. See also reference 

decompression
compressed references  508
com.sun.management.jmxremote.ssl. 

enabled.cipher.suites = <values> 
property  239

concurrent garbage collection  508
conservative garbage collection. See exact 

garbage collection
conservative garbage collection. See also 

livemap
conservative garbage collection. See also 

safepoint
conservative garbage collection  508
control flow graph. See CFG
constant pool  509
constant propagation  59
contended lock  127
continuous JRA. See also JRockit Flight 

Recorder
continuous JRA  333, 509
continuous=[true|false] option  338
copy propagation  59
CPU profiling  509
critical section  509
crtlhandler.act file  405
custom events

creating  361-365

D
Dead code  60, 510
deadlock. See also fat lock
deadlockv. See also livelock 
deadlock  126, 510
deadlock detection. See also deadlock
deadlock detection  275, 510
debuggability  43
debug problems

deadlocks  126
livelocks  126
plain crashes  126
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design mode. See also run mode
design mode  510
determininstic garbage collection. See  

also latency
determininstic garbage collection. See also 

soft real-time,
determininstic garbage collection  510
diagnostic commands. See also JMAPI
diagnostic commands. See also JRCMD
diagnostic commands  510
direct call  31
disk=[true|false] option  338
dispatch table  31
DMS  342
double-checked locking. See also Java 

memory model  511
double checked locking  160, 161
driver. See benchmark driver
dump_flightrecording command  410
duration events

Garbage Collection event  334

E
ECID  352
editor. See also rich client platform
editor  511
Entry class  387
escape analysis  30, 511
event producers  335
events. See also event type
events

about  334, 511
duration events  334
event producer  335
event types  335
instant events  335
requestable events  335
timed events  334

event attribute
event Field. See event attribute
event Field  511
event settings. See also client-side template
event settings. See also server-side template
event settings  512
event types  335, 512

exact garbage collection. See also 
conservative garbage collection

exact garbage collection  512
exact profiling. See also sample-based 

profiling
exact profiling  512
executing Java threads, halting

conservative garbage collector  83
exact garbage collector  83
livemaps  84-86

Execution Context ID. See ECID
Experimental Update Site  246, 247
extension point  512
externalPercentage flag  198

F
fairness, 512
fat lock. See also thin lock
fat lock  513
false optimization

object pooling, types  116
Flight Recorder. See also JRockit Flight 

Recorder
Flight Recorder

client, extending  366
enabling  336
GUI builder, accessing  366, 368
in design mode  368
in JRockit Mission Control  340
in run mode  368
new group, adding  369
Placement Path group  370
properties tab group  370
range selector, adding space to  371
recording engine  337

Flight Recorder, in JRockit Mission Control
about  340
advanced wizard concept  345-348
client-side templates  341
Dump Recording dialog  344
Flight Recorder Control view  340, 343
interval of recording  345
ast part of recording  345
whole recording  345

forbid bit  157 
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fragmentation. See also compaction
fragmentation  75, 513
full virtualization. See also guest
full virtualization. See also virtualization
full virtualization  513

G
GadgetMaker class  161
garbage collection

executing Java threads, halting  81
generational garbage collections  88
in JRockit  92
low latency, optimizing for  91
real-time  107
reference counting  77
throughput, optimizing for  91
tracing  77
tracing, techniques  77
tracing techniques, mark and sweep  78, 80
tracing techniques, stop and copy  80, 81
write barriers  88, 89

garbage collection, in JRockit
external compaction  95
internal compaction  95
nursery collections  93
old collections  93
permanent generations  94

generational garbage collections
multi generation nurseries   88

GC heuristic. See also GC strategy
GC heuristic  513
GC pause ratio  514
GC strategy. See concurrent garbage 

collection
GC strategy. See parallel garbage collection
GC strategy. See also GC heuristic
GC strategy  514
generation. See also generational garbage 

collection
generation. See also heap
generation  514
generational garbage collection. See also 

Nursery
generational garbage collection. See also 

young space

generational garbage collection. See also 
write barrier

generational garbage collection  514
generic tuning

compressed references  205
large pages  206

getAreaFromRadius method  63
globalbuffersize=[size] option  338
graph coloring. See also spilling
graph coloring. See also graph fusion
graph coloring. See also register allocation
graph coloring. See also color
graph coloring  59, 514
graph fusion. See also spilling
graph fusion. See also graph coloring
graph fusion. See also register allocation
graph fusion. See also color
graph fusion.  59, 515
global heap  489
green threads. See also NxM threads
green threads  515
guard page. See also livemap
guard page. See also safepoint
guard page  515
guest. See also hypervisor
guest. See also virtualization
guest  515

H
hard real-time. See also soft real-time
hard real-time  516
hardware prefetching. See also prefetching
hardware prefetching. See also software 

prefetching.
hardware prefetching  516
heap. See also native memory
heap

about  72, 516
non-contibuous heap 
spliting, into memory addresses  75, 76

heap_diagnostics command  411- 415
heap management

compaction  76
fragmentation  75
objects, allocating  74, 75
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objects, releasing  74, 75
Heisenberg effect  221
help command  404
High Level Intermediate Representation. 

See HIR
HIR  516
hosted hypervisor. See also hypervisor
hosted hypervisor  516
hot method  27
hot methods list  221
hotness, determining

hardware-based sampling  31
invocation counters  30
thread sampling, using  31

hprofdump command  415
hypervisor. See also guest
hypervisor. See also virtualization
hypervisor. See also hosted hypervisor
hypervisor. See also native hypervisor
hypervisor

about  463, 465, 516
hosted hypervisor  465
Hyper-V virtualization framework  467
KVM  467
native hypervisor  466
Parallels Inc  467
VirtualBox  467
VMware corporation  467
Xen  466

I
indirect calls  31
industry standard benchmarks

about  187
DaCapo  192
real world applications  193
SipStone  192
SPEC  188

inlining  48
instance graph  388
instant events

Event Settings Changed  events  335
Exception events  335

Intermediate Representation. See JRockit IR 
format

inter-thread page protection, JVM
about  488

concurrent compaction  491
improved garbage collection  488-490

internal pointer  517
invocation counters. See also exact profiling
invocation counters. See also thread 

sampling
invocation counters  517
IR. See also Intemediate representation
IR. See also native code
IR. See also register allocation
IR. See also LIR
IR. See also MIR
IR. See also HIR
IR  517

J
JAAS  240
Java

memory leak  379
synchronization  124
synchronization, implementing  139
virtualizing  468, 469

Java API
java.lang.Thread class  129, 130
java.util.concurrent package  130, 131
semaphore  131, 132
synchronized keyword  129
volatile keyword  133, 134

Java Authentication and Authorization 
Service. See  JAAS

Java Blocking  356
Java bytecode implementation

about  146, 147
lock, pairing  148-150
monitorenter  146
montorexit  146

java.cls.loadedClasses  452
java.cls.unloadedClasses  452
Java Compatibility Kit. See JCK
java.lang.Object class  131
java.lang.ref.WeakReference class  113
java.lang.Thread class  124, 129, 130
Java Management Extensions. See JMX
Java memory API

about  112
finalize method  112
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JVM behavior, differences  116
phantom references   114, 115
references   113, 115
soft reference  114
weak reference  113

Java memory leak
about  379
classloader-related information  392, 393
detecting  381, 382
in garbage collected languages  380, 381
in static languages  380
testing, recipe  396
tracking  383-391

Java Memory Model
about  135, 136
immutability  138
issues  136, 137
JSR-133  138, 139

javap command  22
java.property.java.class.path  452
java.property.java.endorsed.dirs  452
java.property.java.ext.dirs  452
java.property.java.home  452
java.property.java.library.path  452
java.property.java.vm.version  453
java.rt.vmArgs  453
JavaScript Object Notation. See JSON
Java Specification Request. See JSR
java.threads.daemon  453
java.threads.live  453
java.threads.livePeak  453
java.threads.nonDaemon  453
java.threads.started  453
java.util.concurrent package

about  130, 131
BlockingQueue  130

java.util.Vector class  155
java.util.WeakHashMap class  114
Java virtualization

about  468, 469
assembled virtual machine  475
disassembled virtual machine  479
JRockit Virtual Edition  470
management framework  474-479
virtual machine image concept  474

Java Virtual Machine. See JVM

Java Virtual Machine Tool Interface. See 
JVMTI

JConsole
about  283
running  283

JDP
about  226, 236
system properties  239

JIT  21
JIT compilation. See also ahead of time 

compilation.
JIT compilation. See also static compilation
JIT compilation  518
JIT compiler

bytecode optimizers  37
bytecode, working with  34, 35
optimization location  41

JMAPI
about  226, 405, 445
example  446-450
using  446

JMX. See also MBean
JMX

about  25, 518
Management Console  252

JMX, architecture
agent level  225
diagrammatic representation  225
instrumentation level  225
remote management level  225

JMX Management Console  252, 253
JMXMAPI. See also JMAPI
JMXMAPI

about  405, 450, 519
accessing  451
internal performance counters  452-455
MBeans  451
remote JRCMD, building  455-459

jmxremote.access file  245
join operator  58
JRA

.jfr extension  295
analysing  298
customer collaboration  294
differences  348
jra extension  294
recordings, controlling  295
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JRA analysis
code tab  310
code tab, hot methods tab  312, 314
code tab, optimization tab  314, 315
code tab, overview tab  310-312
general tab  299
general tab, overview tab  299
general tab, recording tab  300
general tab, system tab  301
latency tab  321
memory tab  302
memory tab, Garbage Collection statistics  

306, 308
memory tab, Garbage Collection table   

302-305
memory tab, heap contents  309
memory tab, Object Statistics  309, 310
memory tab, overview tab  302
Operative Set, using  327-330
Thread/Locks tab  315
Thread/Locks tab, Java locks tab  318, 319
Thread/Locks tab, JVM locks tab  320
Thread/Locks tab, overview tab  316, 317
Thread/Locks tab, Threads tab  317-320

JRA, differences
exception profiling  357, 358
latency  354-356
memory  359, 360
operative set  351
range selector  349, 350
relational key  351-353

JRCMD
about  404
command reference  408
limitations  407

JRCMD, command reference
check_flightrecording command  408, 409
checkjrarecording command  409
command_line command  410
dump_flightrecording command  410
heap_diagnostics command  411-415
hprofdump command  415
kill_management_server command  416
list_vmflags command  416
lockprofile_print  417, 418
lockprofile_reset  418
memleakserver command  418

oom_diagnostics command  419
print_class_summary command  419, 420
print_codegen_list  420
print_memusage command  421-427
print_object_summary command  428-431
print_properties command  431, 432
print_threads command  432, 434
print_utf8pool command  434
print_vm_state command  434, 435
runfinalization  436
run_optfile command  435, 436
runsystemgc command  436
set_vmflag command  437
tart_flightrecording command  437
startjrarecording command  439
start_management_server command  438
stop_flightrecording command  440
timestamp  441
verbosity command  441, 442
version command  443

JRE
adaptive memory management  72

JRMC. See also JRockit Flight Recorder
JRMC. See also JRockit Runtime Analyzer
JRMC. See also JRockit Memory Leak Detector
JRMC 519
JRockit

about  219
code generation, controlling  64
command-line flags  162
command line options  13
external compaction  198
forbid bit   157
garbage collection  92
help options  17
internal compaction  198
Java object layout design  125
JDK version  16
JMAPI  445
JMXMAPI  450
JRCMD  403
JVM version  16
lock token  148
lock word  143-145
memory management  117
migrating to  13, 14
Mission Control version  16
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SIGQUIT, overriding  405
versions  15, 16
virtualization  461

JRockit code pipeline
about  42
bootstrapping  44
byte code interpreter, non availability  43
compile-only strategy, problem  43
HIR, generating  51-53
Low-level IR (LIR)  54
method generation  49
Middle-level IR (MIR)  53
native code emission  57
register allocation  54-57
runtime code generation  44
stages  51

JRockit Diagnostic Commands. See JRCMD
JRockit Discovery Protocol. See JDP
JRockit Flight Recorder

about  333, 519
analysis tool  334
design mode  334
recording engine  334

jrockit.gc.latest.heapSize  453
jrockit.gc.latest.oc.compaction.time  453
jrockit.gc.latest.oc.heapUsedAfter  453
jrockit.gc.latest.oc.heapUsedBefore  453
jrockit.gc.latest.oc.number  453
jrockit.gc.latest.oc.sumOfPauses  453
jrockit.gc.latest.oc.time  453
jrockit.gc.latest.yc.sumOfPauses  453
jrockit.gc.latest.yc.time  453
jrockit.gc.max.oc.individualPause  453
jrockit.gc.max.yc.individualPause  453
jrockit.gc.total.oc.compaction.external 

Aborted  453
jrockit.gc.total.oc.compaction.internal 

Aborted  453
jrockit.gc.total.oc.compaction. 

internalSkipped  453
jrockit.gc.total.oc.compaction.time  453
jrockit.gc.total.oc.ompaction. 

externalSkipped  454
jrockit.gc.total.oc.pauseTime  454
jrockit.gc.total.oc.time  454
jrockit.gc.total.pageFaults  454
jrockit.gc.total.yc.pauseTime  454

jrockit.gc.total.yc.promotedObjects  454
jrockit.gc.total.yc.promotedSize  454
jrockit.gc.total.yc.time  454
JRockit IR format

about  49
control flow  50
data flow  49
exceptions  50

JRockit JMX MBeans. See JMXMAPI
JRockit JVM

enabling, for remote management  235, 236
obtaining  11
optimizations  191
supported platform matrix  12, 13

JRockit Management API. See JMAPI
JRockit memory management

advanced switches  121
basic command-line switches  118
compressed references  120

JRockit Mission Control
classical recording  296
client-side components  226, 227
connections, hostname issues  245, 246
connections, troubleshooting  243-245
debugging  247-249
exact profiling  222
exception profiling  223
Experimental Update Site  246
Flight Recorder  340
full recording  295
heap analysis  223
history  220
hotspots, finding  223
JMX, architecture  225
JRockit Flight Recorder, tools  224
JRockit Management Console, tools  224
latencies, tracking  223
Memory Leak Detection, tools  224
memory profiling  223
memory system, tuning  224
minimal overhead recording  295
plug-in version 4.0.0 breakdown  228
real time recording  295
recordings, customizing  297, 298
running, in secure environment  241, 242
running, inside Eclipse  232-235
running, on Windows  12
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sampling-based profiling  221, 222
server-side APIs  226
standalone version, running  230-232
terminology  228, 229
using  223

JRockit Mission Control Console
extending  284-291

JRockit Mission Control Memory Leak  
Detector. See Memleak

JRockit R28
compressed references  100

JRockit Real Time
about  108, 109
soft real-time approach  109, 110
working  111

JRockit Runtime Analyzer. See JRA
JRockit Virtual Edition

about  470, 471
benefits  481
constraints  486
Image Tool  471
kernel  472, 473
virtual machine image  471

JRockit Virtual Edition, benefits
manageability  484
performance  481, 483
resource utilization  481
security  485
simplicity  484

JSON  67
JSR  22
JSR-133. See also Java Memory Model
JSR-133. See also JSR
JSR-133  138, 139, 520
Just-In-Time compilation. See JIT
JVM

about  21
adaptive heap resizing  487
bytecode format  22
bytecodes, converting to native codes  21
bytecodes, executing  24
hot code samples quality  486
inter-thread page protection  488
recording engine  335
stack machine  21

JVMTI  382

K
keep area  94
Kernel-based Virtual Machine. See KVM
Keystore. See also truststore
Keystore  521
kill_management_server command  416
KVM  467

L
lane. See also native memory
lane  521
latency. See also concurrent garbage 

collection.
latency.. See also deterministic garbage 

collection
latency. See also parallel garbage collection
latency

about  354, 522
Java latencies  355
traces  355

latency event  322
latency tab, JRA analysis

about  321
Graph tab  324, 325
histogram tab  327
latency event  322
log tab  323
operative set  322
overview tab  322
Range Selector  322
Threads tab  325
Traces tab  326

latency threshold 522
lazy unlocking

about  155, 158, 523
class, banning  157
complexity  157, 158
controlling, -XX:UseLazyUnlocking  

used  163
implementing  156
object, banning  157
results  158

LIR. See also HIR
LIR. See also register allocation
LIR. See also MIR
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LIR. See also IR
LIR. See also native code
LIR  522
list_vmflags command  416, 417
livelock  126
live set. See also live object
live object. See also deadlock
live object  523
livemaps. See also exact garbage collection
livemaps

about  48, 84, 85, 523
rollforwarding  86

live set attribute  381
loadWebApp(…) method  356
local variables  21
lock coarsening. See lock fusion
lock deflation  153
lock fusion. See lazy unlocking
lock fusion  154
lock heuristics

-XX:UseAdaptiveFatSpin, using  168
controlling  168

lock inflation. See also lock deflation
lock inflation. See also thin lock
lock inflation. See also fat lock
lock inflation  152, 524
lock pairing. See also lock token
lock pairing. See also recursive locking
lock pairing. See also lazy unlocking
lock pairing  524
lockprofile_print  command  167, 417, 418
lockprofile_reset command  167
lock profiling

about  166
enabling, -XX:UseLockProfiling used   

166, 167
JRCMD, using  167

lock queue
spinlock  141

lock token
lock token. See also lock pairing
lock token. See also object header
lock token  524
Low Level Intermediate Representation. 

See LIR
LIR  522

locks
about  123
examining, -Xverbose:locks used  162
fairness  143
lock word  143-145

locks, synchronization implementation
fat locks  143
thin locks  141
thin locks, spin locks  141, 142

lock token  148, 149
lock word  124

M
malloc object  424
Management Console

about  251
Advanced tab group  276
extension point  284
form page   284
General tab group  254-261
General tab group, actions  256
MBeans tab group  261
Other group tab  283
Other group tab, JConsole  283
Runtime tab group  271
using  253

Mark and sweep. See tracing garbage 
collection

master password  525
MBean

about  23
URL  23

MBean server. See also MBean
MBean server. See also JMX
MBean server  525
MD5 hash function  525
Memleak. See also JRockit Memory Leak 

Detector
Memory Model. See Java memory model
method garbage collection  23
micro benchmark  23
Middle Level Intermediate Representation. 

See MIR
MIR. See also IR
MIR. See also native code
MIR. See also register allocation
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MIR. See also LIR
MIR. See also HIR
MIR  526
mixed mode  526
maxage=[nanotime] option  338
maxchunksize=[size] option  338
maxsize=[size] option  338
MBeans

about  261
MBeans Browser  262-265
triggers  266-271

md5_F method
in bytecode format  51, 52

md5 hash function  49
measure area, selecting

other issues  187
power consumption  186
scalability  185, 186
throughput  184
throughput, with latency  184
throughput, with response time  184

Memleak
about  382
allocating traces, turning on  398, 399
architectural consequences  382, 383
feature  397, 398
trend table  384
troubleshooting  399, 400
using  394, 395
using, as general purpose heap analyzer  

397, 398
Memleak Protocol. See MLP
memleakserver command  418
Memory Leak Detector tool  73
memory management, tuning

compaction algorithm  197-199
CPU affinity  202
GC algorithm  197
GC strategies  200
GC threads  201
heap sizes  197
large objects  200
NUMA  202
nursery size  200
System.gc, tweaking  199
thread local size  200

message port  132

micro benchmarks
about  174-181
on-stack replacement  181
startup time  182

MLP  226, 399
MLS  399
modified union set  94
monitor  124

N
name mangling. See also obfuscation
name mangling  36 
Non-Uniform Memory Access. See NUMA
NUMA

about  102, 104
node configuration  103

native code  24
native hypervisor. See hypervisor
native memory. See also heap
native threads  25
non-contiguous heaps  25
nursery. See young space
NxM threads. See also green threads
NxM threads  528
numglobalbuffers=[num] option  338
nurseries  88

O
observer effect  221
obfuscation. See also name mangling
obfuscation  36
object header. See also class block
object header. See also lock word
object header  529
object pooling  26
old space  26
on-stack replacement  27
operative set. See also relational key
operative set  529
on-stack replacement  47
oom_diagnostics command  419
opcode  22
optimization problems

about  126
latency analysis   127, 128

optimization queue  46
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optimized code
HIR  58
LIR  59
MIR  58
overview  58
working  60-63

oracle.ci.jit.count  454
oracle.ci.jit.timeTotal  454
oracle.ci.opt.count  454
oracle.ci.opt.timeTotal  454
Oracle Dynamic Monitoring System. 

See   DMS
Oracle Enterprise Manager  252
oracle.rt.counterFrequency  454
Oracle WebLogic Diagnostics Framework. 

See WLDF
overprovisioning  317

P
page protection. See also safepoint
page protection. See also guard page
page protection 530
parallel garbage collection  530
password.properties file  244
password file. See also access file
password file  531
PDE. See also extension point
perspective. See also rich client platform
Phantom References. See soft references
prefetching. See also software prefetching
prefetching. See also hardware prefetching
prefetching. See also Thread Lock Area
prefetching  531
PDE  246, 285
PDE Integration Plug-in  284
performance issues, problems

Java, not siver bullet  217
live data in large amounts  216
wrong heap size  216

perspective  229
PID  404
plain crashes  126
platform independence language

benefit  20
Plug-in Development Environment. See PDE
pre-multiplier  261

print_class_summary command  419
print_codegen_list  420
print_memusage command  421-428
print_object_summary command  428, 431
print_properties command  431
print_threads command  432, 434
print_utf8pool command  434
print_vm_state command  434, 435
Process ID. See PID

R
reader/writer lock  131
real-time garbage collection

hard real-time  107
JRockit Real Time  108
oft real-time  109

recording agent. See  recording engine
recording engine

about  335, 336
configuring, options used  337, 338
highly optimized time stamping of events, 

examples  336
recording facility, examples  335
stack traces, examples  335
threshold, examples  335

recursive locking  153
redefineClass method

example  450
register allocation  54
relational key

about  351-353
GCID, URL  351

renegade threads  150
repository=[dir] option  337
requestable events

CPU Load Sample event  335
Reset to default button  256
Rockit Management Protocol. See RMP
RMP  446
rollforwarding

advantage  86
disadvantage  87

root set  77
runfinalization  436
run_optfile command  435
runsystemgc command  436
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runtime code generation
bookkeeping, tasks  48
on-stack replacement  47
optimization requests   47
synchronous requests  46
trampolines  45, 46

Runtime tab group
about  271
memory  273
memory, GC heuristic  274
system properties  272, 273
Threads tab  275, 276

S
safe point  535
semaphore

about  131
working, in Java  132, 133

server-side templates  338
Session Initiation Protocol. See SIP
settings=[name|filepath] option  337
set_vmflag command  437
SIGQUIT

overriding  405, 406
software prefetching  536
soft real-time  536
soft references  536
Single Static Assignment. See SSA
SIP  192
SPEC

about  158, 188
SPECjAppServer  189, 190
SPECjbb suite  190, 191
SPECjbb suite, downsides  191
SPECjEnterprise2010 suite  189, 190
SPECjvm suite  188

spilling  54
spinlock  33
SSA  58
stack traces

Ctrl-Break, using  163-165
SIGQUIT, using  163-165

Standard Performance Evaluation  
Corporation. See SPEC

start_flightrecording command  437, 438
StartFlightRecording option  339

startjrarecording command  439, 440
start_management_server command  438
static compilation. See also adaptive code 

generation
static compilation. See also JIT compilation.
static compilation. See also ahead-of-time 

compilation
static compilation  537
stop_flightrecording command  440
SUT  189
stop and copy  538
synchronization

cavets  159, 160
optimizing  152

synchronization implementation, in Java
about  139
compare and exchange instruction  139
intrinsic calls  140
Java bytecode implementation  146
lock prefix, using  139
locks  141
memory fence instructions  140
on micro-architecture level  141

synchronization optimiztion
about  152
lazy unlocking  155
lock deflation  153
lock fusion  154
lock inflation  152
recursive locking  153

synchronized keyword
using  129

synthetic attributes  265
System.currentTimeMillis  192
System.gc method  116
System Under Test. See SUT

T
tab group toolbar  230
thin lock  216
trampoline. See also JIT compilation
trampoline. See also method garbage 

collection
trampoline  541
thread

about  123



[ 560 ]

cavets  159, 160
double checked locking  160, 161
optimizing  152
stack size setup, -Xss flag using  168
Thread.resume  159
Thread.stop  159
Thread.suspend  159

threadbuffersize=[size] option  338
thread implementation, in Java

green threads  150
green threads, n x m thread model  151
Java bytecode implementation  146
Java Memory Model  135
OS threads  151
OS threads, thread pooling  152

Thread Local Areas. See TLA
thread sampling  540
thread local queues  93
timed events

Java Sleep  334
Java Wait  334

timestamp  441
TLA  96
TLB  104
tracing garbage collection. See also stop 

and copy.
tracing garbage collection. See also mark 

and sweep
tracing garbage collection  540
trampolines  45
transfer bits  156
Translation Lookaside Buffer. See TLB
trigger action. See also trigger rule
trigger action  541
trigger condition. See also trigger rule
trigger condition  541
trigger constraint. See also trigger rule
trigger rule  541
trigger constraint  541
triple virtualization

getting rid of  482, 483
tuning

about  194
code generation  202
generic tuning  205
memory management  196

out of box behavior  194, 195
selecting  196

U
UMA  102
Uniform Memory Access. See UMA
unintentional object retention  380
user defined connection  256

V
valueChanged method  291
verbosity command  441, 442
version command  443
virtualization

about  462, 463
advantages  467
disadvantages  468
full virtualization  464
guest  463
hypervisor  463, 465
operating system level virtualization  465
paravirtualization  464
partial virtualization  465
virtual hardware  463
virtual memory  462

Virtual memory  462
volatile fields. See also Java Memory Model
volatile fields  542
volatile keyword  133, 134

W
wait queue  143
warm-up time  176
weak references  412
Weblogic Server on JRockit Virtual Edition. 

See WLS on JRVE
WLDF  342
WLS on JRVE  461
write barrier. See also young space
write barrier. See also old space
write barrier. See also generational garbage 

collection
write barrier. See also read barrier
write barrier 87,  543
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workbench
about  228
editors window  228
views window  228

X
XXcompaction:abortable flag  198
XXcompaction flag  197
XX:DisableOptsAfter=<time>  66
XXgcThreads option  201

Y
young space. See also generational garbage 

collection
young space  543
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