PAWS Smartphone Application Manual

I. Setup

Before running the application, copy the "SEUS" folder into your phone's "Download" folder. This folder contains the machine learning models used in the application.

II. Using the Application

After launching the application, you will arrive at the screen shown below.

₽₽9…	∦ %i \$5.16	🐮 📽 🛸1 62% 🗳 7:15 PM			
PAWS		6			
Not Connected to a	iny device.				
Direction and Dista	nce:				
	(A))				
	(+)				
	START				
	CONNECT				

To connect the smartphone application to a PAWS headset via Bluetooth, press the "Connect" button and select the appropriate connection (generally "Nordic_UART_0"). The headset provides car direction estimates to the smartphone application.

To begin running the application, press the "Start" button. If a car is detected, a quadrant in the polar graph will light up. If the headset is connected to the smartphone application, this quadrant will correspond to the relative direction of the car estimated by the headset. If there is no headset, then this will just be a random quadrant. Press the same button again to stop the system.

III. Training a New Detection Model

You may want to train your own model for car detection. To do so you must:

1. Create an "Audio" folder inside the "SEUS" folder you placed in your phone's "Download" folder from part I, as shown below.

Vly Files	>irnal storage > Down	nload > SEU
0	Audio Nov 4 7:59 PM	2 item
	Feature_classifier_ Oct 22 6:09 PM	logging 28 item
J	carDirModel.ser Sep 9 2:27 PM	1.48 M
	carDistModel.ser Sep 9 2:27 PM	5.62 M
TXT	hello.txt Oct 22 6:10 PM	5.88 K
тхт	helloHorn.txt Oct 22 6:10 PM	1
J	model.ser Sep 9 2:27 PM	1.38 M

2. Record audio clips of cars and non-car street sounds using a free recording application such as "Easy Voice Recorder". Make sure to set the sampling frequency to 48 kHz, as the PAWS application uses 48 kHz, and save the files inside the "Audio" folder that you just created. Car sounds should have "car" somewhere in the name, and non-car sounds should not contain "car" anywhere in the name. An example is shown below.

3. Inside the application, tap the triple-dot icon in the upper right corner and select "Train Classifier"

4. On the new screen shown below, first tap the "Calculate Features" button to extract the features from the audio files.

5. Wait until some text shows up in the display telling you how many files were processed and number of features extracted. The text will show up in the area marked in red below.

CALCULATE FEATURES
TRAIN DETECTION CLASSIFIER
TRAIN DIRECTION CLASSIFIER
TRAIN DISTANCE CLASSIFIER
CONVERT FEATURES TO READABLE
TEST DETECTION CLASSIFIER
TEST DIRECTION CLASSIFIER
⊲ 0 □

- 6. Next, press the "Train Detection Classifier" button to train the models and wait for the display to update, which will signify that the training is finished.
- 7. Restart the application to use the new models.

IV. Viewing and Logging Features from PAWS Headset

Sometimes it is helpful to view and log the features computed from the headset. There are two ways to do this. You can either log and view features, in real time, computed from the headset using the *SEUS Features* application, or you can just log features by using the *PAWS* application.

a. <u>Logging and Viewing Features using the SEUS Features Application</u>: Install the SEUS Features application (Android Studio project files located: <u>https://github.com/Columbia-ICSL/PAWS-</u> Smartphone/tree/master/PAWS_Features/SEUS_Features).

Before starting the application, make sure to give *SEUS Features* the "Location" permission to access Bluetooth and the "Storage" permission to log outputs.

Additionally, you must create a folder named "HEADDATA" in the "/mnt/sdcard/" folder on your phone.

Once these folders are created, turn on SEUS Features and the headset and connect.

Once connected, send the command: *SEUSS* to the headset and you will begin to see a live update of the features computed from the headset (the three relative powers, four zero delays, and three relative delay values). You will also see the status of each microphone ("ON" or "OFF"), which will notify if you need to change the batteries that power the microphone.

• • • <u>+</u> <u>+</u>	±±:	<u> </u>		11:55				
SEUS FEA	TURES							
Disconnect								
[11:55:14 PM] Connected to: Nordic_UART_0								
SELISS				Send				
Device: Nordic U/	ART 0 - rea	adv						
			000	-				
2 SEUSS	4 _5	vi3	3EE	US \$				
QWEF	₹Т	γι	JI	0 P				
A S D	FG	Н	J	ΚL				
🛨 Z X	C V	В	Ν	M 🗵				
?123 , 😳				. 🔶				
\bigtriangledown	С)						
	ŦŦŦ	<u>k</u> *		12:00				
SEUS FEA	TURES							
	Discor	nect						
Mic 1:0N								
Mic 2:0N								
Mic 4:0N								
Delay 2: 4								
Delay 3: 1								
Delay 4: -4								
Power 2: -2849840								
Power 3: -2566892								
Power 4: -2378309								
Zcr 1: 1400								
Zcr 2: 1401								
Zcr 3: 1400								
ZCF 4: 1399								
				Send				
Devices by the second	DT C							
Device: Nordic_UA	ικι_0 - rea	ady		_				
\triangleleft	С)	٢					

To stop the transmission, either hit the disconnect button or send the command: *SEUSE* to the headset.

All windows of features will be stored in the "/mnt/sdcard/HEADDATA" folder, that you created before running the application, as .txt files in .csv format using the UNIX time of when you first connected to the headset as the file name. Each time you connect to the headset and collect data, four files are generated.

1547182828086.txt
1547182828086ccr.txt
1547182828086power.txt
📄 1547182828086zcr.txt

- [UNIX TIME].txt: Raw byte stream received from headset
- [UNIX TIME]ccr.txt: Relative delays between microphones computed from the headset; each row is one window and each window will have three relative delays (three columns)
- [UNIX TIME]power.txt: Relative microphone powers computed from the headset; each row is one window and each window will have three relative powers (three columns)
- [UNIX TIME]zcr.txt: Zero crossing rate of each microphone computed from the headset; each row is one window and each window will have four values, corresponding to each of the four microphones (four columns)

b. Logging Features using the PAWS Application:

A second way to log the output from the headset is using the *PAWS* application. Unlike using the *SEUS Features* application, the *PAWS* application will not only log output from the headset, but it will also log output of the detection classifier, output of the direction classifier, output of the distance classifier, as well as the vector of features computed on the smartphone used for detection.

To enable logging, make sure that the "LOGGING_FLAG" is set to "1"; set it to "0" to disable logging. The "LOGGING_FLAG" can be found in the file

"app/src/main/java/bashima/cs/unc/seus/constant/Constant.java". By default, this flag is set high, so you will not have to modify the project files if you have a fresh download of the project.

Connect to the headset and start running the application. Once you disconnect or stop the application, a new folder named "Feature_classifier_logging" will be created in the "SEUS" folder. The .csv file containing the features and classifier outputs will be stored in this folder with the UNIX time as the file name. Each row contains one window of information (e.g. one window of features and classifier outputs) with the following structure:

- Columns 1 4: Zero crossing rate of each microphone computed from the headset; These values will be "-Inf" if not connected to headset
- Columns 5 7: Relative microphone powers computed from the headset; These values will be "-Inf" if not connected to headset
- Columns 8 10: Relative delays between microphones computed from the headset; These values will be "-Inf" if not connected to headset
- Column 11: Detection classifier output; This value will be "1" if car is detected and "0" otherwise.
- Column 12: Direction classifier output; Value mapped to direction is shown below

- Column 13: Distance classifier output;
 - "1" if car is close (between 0 30 m)
 - \circ "2" if car is between (30 60 m)
 - "3" if car is 60 meters or greater away.
- Columns 14 end (33 by default): Detection feature vector computed on smartphone

V. Training a New Direction Classification Model

It may be useful to train or retrain the direction classifier in certain cases (e.g. after changing the configuration of the microphones).

To do this, you need labeled feature data, which you can obtain using either the *SEUS Features* or the *PAWS* application, as explained in Section III.

Generating labeled data using SEUS Features:

Once you have logged your data using the *SEUS Features* application, copy the contents in the file named "[UNIX TIME]ccr.txt" into a file named "carWeka.csv" and place it inside the "SEUS" folder. The new .csv file should contain three columns (each column corresponding to a relative delay feature), and in the fourth column label each window. The label that should be applied for each direction is shown below.

An example of the "carWeka.csv" file is shown below.

	А	В	С	D	
1	11	-5	13	f	
2	9	-10	12	f	
3	6	-12	12	f	
4	7	-11	12	f	
5	-2	-13	12	f	
6	-2	-15	10	f	
7	-2	-15	9	f	
8	-3	-15	9	f	
9	-5	-17	7	f	
10	-8	-18	7	f	
11	11	-4	13	f	
12	13	-4	13	f	
13	11	-2	13	f	
14	9	-8	13	f	
15	8	-8	12	f	
16	6	-10	11	f	

Generating labeled data using PAWS:

Once you have logged your data using the *PAWS* application, copy columns 8 - 10 in the file named "[UNIX TIME].csv" into a file named "carWeka.csv" and place it inside the "SEUS" folder. The rest of the steps are the same as the process of labeling data using *SEUS Features*.

Training the model:

Once the "carWeka.csv" file is generated and placed in the "SEUS" folder, open the *PAWS* application and tap the triple-dot icon in the upper right corner and select "Train Classifier". In the new menu, select the "Train Direction Classifier" button and wait until the application is finished training. When the application finishes training, you will receive a message that says that the direction classifier was successfully built. To use the newly trained model, restart the *PAWS* application.

VI. Training a New Distance Classification Model

It may be useful to train or retrain the distance classifier in certain cases.

To do this, you need labeled feature data, which you can obtain using either the *SEUS Features* or the *PAWS* application, as explained in Section III.

Generating labeled data using SEUS Features:

Once you have logged your data using the *SEUS Features* application, copy the following contents in the data files into a file named "carDistWeka.csv":

- Copy "[UNIX TIME]zcr.txt" into columns 1 4 in "carDistWeka.csv"
- Copy "[UNIX TIME]power.txt" into columns 5 7 in "carDistWeka.csv"
- Copy "[UNIX TIME]ccr.txt" into columns 8 10 in "carDistWeka.csv"

Place "carDistWeka.csv" inside the "SEUS" folder. The new .csv file should contain 10 columns, and the 11th column should contain the label of each window. The label that should be applied for each distance is listed below:

- "a" if car is close (between 0 30 m)
- "b" if car is between (30 60 m)
- "c" if car is 60 meters or greater away.

An example of the "carDistWeka.csv" file is shown below.

	Α	В	С	D	E	F	G	н	I.	J	К
1	1071	1205	402	828	62482	-96574	37214	17	16	17	с
2	1120	1217	367	881	75538	-77028	-12566	15	12	17	с
3	912	1233	348	775	125600	-46541	22102	15	13	18	с
4	829	1146	426	706	121865	-27628	73814	19	13	16	с
5	744	990	412	626	66863	-8221	40471	16	13	18	с
6	632	1013	400	572	78684	11126	35048	18	13	18	с
7	396	908	308	446	121855	26387	62348	17	13	18	с
8	329	841	299	394	99101	15114	53526	18	14	18	с
9	397	832	346	427	56881	-13907	23040	19	14	18	с
10	386	734	328	414	83479	-13527	54195	19	14	18	с
11	296	625	282	427	55866	-25752	15407	19	14	17	с
12	375	683	277	444	45508	-16916	17064	18	15	18	с
13	523	882	347	522	192364	19368	136111	16	15	17	с
14	1088	1382	693	1189	343906	-123716	237353	15	16	17	с
15	1356	1727	816	1421	882081	-255672	323526	11	15	17	с
16	906	1232	569	806	678753	-171119	250359	16	15	-3	с
17	590	784	446	486	28337	-56689	78347	18	14	17	с
18	677	996	467	745	150660	-13750	85593	18	16	16	с

Generating labeled data using PAWS:

Once you have logged your data using the *PAWS* application, copy columns 1 - 10 in the file named "[UNIX TIME].csv" into a file named "carDistWeka.csv" and place it inside the "SEUS" folder. The rest of the steps are the same as the process of labeling data using *SEUS Features*.

Training the model:

Once the "carDistWeka.csv" file is generated and placed in the "SEUS" folder, open the *PAWS* application and tap the triple-dot icon in the upper right corner and select "Train Classifier". In the new menu, select the "Train Distance Classifier" button and wait until the application is finished training. When the application finishes training, you will receive a message that says that the distance classifier was successfully built. To use the newly trained model, restart the *PAWS* application.

