
W0i f^l'.t- ''2--iij ; -
r:r-p^! fife?' ••:f-'5i

!
-

r

«^i^ lfe$3 Itllljii lilM IpJlli l»if «ifjt*. j''*||fi$ ®|li l%i£- jifft^ ''sUNt il'i'"'r
r

. M&ji. .j^i-Jv ^ -
'.^

TRS-80 MODEL PG-3
: ppn Jiiillj Hi;

SrunMI *- J

m^s^H fff»»H3$ isragsaii frdu^wh tmmmtth mmm
mi mm Ca hj l3j Fit

i earasQsiiBimcKiiDS 09
m m m n ra ijti p n rS] h

fssaa

f?SiK^3f£i>3&

s

msm

•^3Mjj fJfcMi^^gl ^i||S^K»i8s

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

I. CUSTOMER OBLIGATIONS

LIMITED WARRANTY

A CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the "Equipment"), and any copies of Radio

Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities,

versatility, and other requirements of CUSTOMER.
B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software

are to function, and for its installation.

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of -the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing

defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS

AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been

subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer

for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of

a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole

expense. RADIO SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this

paragraph. Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a

Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,

participating Radio Shack franchisee or Radio Shack dealer along with the sales document
C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf

of RADIO SHACK.
D Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE.
E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE-
INVOLVED.

not apply to CUSTOMER.

,V. RADIO SHACK SOFTWARE LICENSE
SHACK Software on one computer, subject to tffe following

RADIO SHACK grants to CUSTOMER a non-exclusn/e, paid-up license to

, „.,m

°;:
r

: : PUte and_

«

so«« re ft™ one or mw .- « «.—--
;

C CUSTOMER may use Software on one

^ ^ ^^ ^ as |$ spec ,folly

Software License to CUSTOMER or to a transacts w ^^^^ Qf the

- r-i.*:-- ———-- •• "•—™™e
"-"" " " "™

from state to state.

j&M

SERVICE POLICY
Radio Shack's nationwide network of service facilities provides quick, convenient,

and reliable repair services for all of its computer products, in most instances.

Warranty service will be performed in accordance with Radio Shack's Limited
Warranty. Non-warranty service will be provided at reasonable parts and labor

costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the services

offered by Radio Shack:

1 If any of the warranty seals on any Radio Shack computer products are broken.
Radio Shack reserves the nght to refuse to service the equipment or to void any
remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that it is not
within manufacturer's specifications, including, but not limited to, the installation

of any non-Radio Shack parts, components, or replacement boards, then Radio
Shack reserves the right to refuse to service the equipment, void any remaining
warranty, remove and replace any non-Radio Shack part found in the equip-
ment, and perform whatever modifications are necessary to return the equip-
ment to ongmal factory manufacturer's specifications.

3. The cost for the labor and parts required to return the Radio Shack computer
equipment to onginal manufacturer's specifications will be charged to the
customer in addition to the normal repair charge.

CONTENTS ^
... 7

INTRODUCTORY NOTE
g

CHAPTER 1. HOW TO USE THIS MANUAL
'

^
CHAPTER 2. INTRODUCTION TO THE PC-3 ' " ' " "

^
Description of System

12

Description of Keys - ^
Description of Display

17

ALL RESET Button .

19

Installing the Batteries
23

CHAPTER 3. USING THE PC-3 AS A CALCULATOR "

^
Start Up 23

Shut Down *

24

Auto Off
" ' '

24

Some Helpful Hints
. . 25

Simple Calculations 26

Recalling Entries
'

.... 31

Errors 32

Serial Calculations
'

. . 34

Negative Numbers
. . 36

Compound Calculations and Parentheses -

1

Page

Using Variables in Calculations 37

Chained Calculations • 39

CHAPTER 4. CONCEPTS AND TERMS OF BASIC 41

Numeric Constants 41

Scientific Notation 41

Limits 43

Hexadecimal Numbers 43

String Constants 44

Variables • 45

Simple Numeric Variables • 45

Simple String Variables 45

Numeric Array Variables 46

String Array Variables 47

Preallocated Variables 47

Expressions 49

Numeric Operators 49

String Expressions -
• 50

Relational Expressions 51

Logical Expressions • 52

Parentheses and Operator Precedence 55

Calculator Mode 56

2

Page

56

Functions 59

CHAPTER 5. PROGRAMMING THE PC-3 •

59

Programs 59

BASIC Statements 59

Line Numbers 60

BASIC Verbs 60

BASIC Commands "

61

Modes 61

Beginning to Program on the PC-3 62

Example 1 - Entering and Running a Program • ' ' " '

"

63

Example 2 - Editing a Program
'

66

Example 3 - Using Variables in Programming ' " "
"

6Q

Example 4 - More Complex Programming • •

70

Storing Programs in the PC-3's Memory 73

CHAPTER 6. SHORTCUTS 73

The DEF Key and Labelled Programs * '

*

74

ReSerVe Mode • 76

Templates _* 77

CHAPTER 7. USING THE PC-3 PRINTER/CASSETTE INTERFACE '

\\\\\\\\\ 77

Description of System 77

Introduction of the Machine
3

Page

Power 7^

Connecting the PC-3 Pocket Computer to the PC-3 Printer/Cassette Interface 81

Loading the Paper 83

Using the Printer 85

Using a Cassette Recorder •
• 87

Care and Maintenance 90

Errors 9^

CHAPTER 8. BASIC REFERENCE 95

Commands 96

Verbs 97

Functions -
•

98

Pseudovariables -
174

Numeric Functions • * /0

String Functions .

183

CHAPTER 9. PROGRAMMING EXAMPLES 187

187
Loan Payments -

Sort
189

190
Slot Machine Simulation .

-

193
Federal Tax Estimator

198
Relationship of Two Variables •

,i30

201
Minefield Game

Page

. . . .207
CHAPTER 10. TROUBLESHOOTING

Machine Operation "
' '

'

208
BASIC Debugging

CHAPTER 11. MAINTENANCE OF THE PC-3 POCKET COMPUTER 211

APPENDICES
213

Appendix A: Error Messages

Appendix B: ASCII Character Code Chart
918

Appendix C: Formatting Output
223

Appendix D: Expression Evaluation and Operator Priority

Appendix E: Feature Comparison of the PC-1, PC-2, and PC-3

234
Appendix F: Specifications

237
'NDEX

'
M1

PROGRAM EXAMPLES * ' '

"

INTRODUCTORY NOTE
Welcome to the world of Radio Shack owners!

Few industries in the world today can match the rapid growth and technological advances being made in the field of personal

computing. Computers which just a short time ago would have filled a huge room, required a Ph.D. to program, and cost thousands

of dollars, now fit in the palm of your hand, are easily programmed, and cost so little that they are within the reach of nearly

everyone.

Your new Radio Shack PC-3 was designed to bring you all of the latest state of the art features of this computing revolution. As

one of the most sophisticated hand-held computers in the world today, it incorporates many advanced capabilities:

MEMORY SAFEGUARD -the PC-3 remembers stored programs and variables even when you turn it off.

Battery-powered operation for true portability.

AUTO POWER OFF function which conserves the batteries by turning the power off if no activity takes place within a

specified time limit.

Programmable functions which allow the PC-3 to be used as a "smart"' calculator.

An expanded version of BASIC which provides formatted output, two-dimensional arrays, variable length strings, program

chaining and many other advanced features.

An optional Printer/Cassette Interface (Model PC-3) for long-term storage and hard-copy printout of programs and data.

Congratulations on entering an exciting and enjoyable new world. The Radio Shack PC-3 is a powerful tool, designed to meet your

specific mathematical, scientific, engineering, business and personal computing needs. With the Radio Shack PC-3 you can begin

NOW providing the solutions you'll need tomorrow!

7

CHAPTER 1 HOW TO USE THIS MANUAL

This manual is designed to introduce you to the capabilities and features of your PC-3 and to serve as a «' u* te^" n^
Whether you are a 'first time user" or an "old hand" with computers, you should acquamt yourse.f w.th the PC-3 by readmg

and working through Chapters 2 through 6.

* Chapter 2 describes the physical features of the PC-3.

* Chapter 3 demonstrates the use of the PC-3 as a calculator.

*
Chapter 4 defines some terms and concepts which are essential for BASIC programming, and tells you about the specal

considerations of these concepts on the PC-3.

*
Chapter 5 introduces you to BASIC programming on the PC-3, showing you how to enter, correct, and run programs.

*
Chapter 6 discusses some shortcuts that make using your new computer easier and more enjoyable.

programming.

Chapter 8 is a reference section covering all the verbs, commands, and functions of BASIC arranged in convenient alphabets,

groupings.

Chapter 9 provides examples of useful and interesting programs that illustrate some of the techniques of using BAS.C on the

PC-3.

If you have never programmed in BASIC before, we suggest that you buy a separate book on ^7
,n«

h

B^' C^»^
a

m2
or Lend a BASIC class, before trying to work through these chapters. This manual is not intended to teach you how to program.

The remainder of the manual consists of:

* Chapter 7 - Basic information on the optional PC-3 Printer/Cassette Interface.

*
Chapter 10 - A troubleshooting guide to help you solve some operating and programming problems.

* Chapter 1 1 - The care and maintenance of your new computer.

Detailed Appendices, at the end of the manual, provide you with useful charts, comparisons, and special discussions concerning

the use and operation of the PC-3.

10

CHAPTER 2 INTRODUCTION TO THE PC-3

The Radio Shack PC-3 Pocket Computer

system consists of:

* 52-character keyboard

.

* 24-character display.

* Powerful BASIC in 24K ROM.

* 8-bit CMOS processor.

* 2.2KB RAM.

* Optional PC-3 Printer/Cassette

Interface.

(
) DEL INS ON M=l „ I

[Qj0(ii0ri][ij0[bi£]0

ElEJEJEJElElGDEllDli)
SPC P~»NP

mOGDEJlUOElD ' ENTER

Figure 1. PC-3 (Front View)

To familiarize you with the placement and functions of parts of the PC-3 keyboard, we will now study each section of the

keyboard. For now, just locate the keys and read the description of each. In Chapter 3, we will begin using your new machine.

11

DEL INS

HO CD CD H CD [S]

EJEl(|][R](T][7)[UJ[t]E][F]
! i»

EJE][£j|3[G][H](j](K)[r]g]

00EJEIEI00D P++NP

Figure 2.

(A>CD Alphabet keys. You are probably familiar with these keys from the standard typewriter keyboard On the PC-3display, the characters always appear in upper case.

®
,

Er": ; ,°:.t
PM ,his kev is nM used *° indiM,e ,he e-d °< •-»— * «s.c«—*» «. „,whas a special function.

SPCO SPaCe key. Pressing this key advances the cursor, leaving a blank space. Pressing (spc) while the cursor i

over a character erases that character.
is positioned

P< >NP

m^l mm key. When you press this key, whatever you previously typed is "entered • into the computer's memory. This
12

key is simi.ar to the Carriage Return key on a typewriter. You must press G9 ^^^^Z
numeric input from the keyboard. Pressing (HE) before pressmg th,s key will cause the PC-3 Pocket Computer

to switch on and off the printing of calculations on the PC-3 printer.

(def) ® key. This is a special key used to execute BASIC programs.

fSmFTl (SHU© key Press this key before pressing any key which has a character above it and the character above is displayed.

(Note- Not used to capitalize letters as all alphabet keys on the PC-3 are in upper case)

.

Down Arrow key. Press this key to display the next program line. Pressing @ft) before pressing this key produces

a left parenthesis.

Up Arrow key. Press this key to display the previous program line. Pressing (» before pressing this key produces

a right parenthesis.

Backspace key. This key allows you to move the cursor to the left without erasing previously typed characters. Pressing

(SHJFT) before pressing this key will DELete whatever character the cursor is "on top of
.

fS Forward key. This key allows you to move the cursor to the right without erasing previouslytypec
I

character. Pressing

@jft) before pressing this key makes a space directly before the character the cursor ,s on top of
.

You can

INSert new characters into this space.

HR) BREAK key. The (brk) key temporarily interrupts a program which is being executed. Pressing this key after an AUTO

OFF turns the computer back on.

«
" #

These symbols are found above the top row of alphabet keys. Pressing (sSEl) and then the alphabet key under

$ % &
the character desired displays these symbols.

CD

<±>

DEL

13

ON
RSV
PRO
RUN .
OFF

Use this power slide switch to turn the PC-3 ON and OFF. Notice that the machine is ON when this switch is positioned

in any one of three modes: RUN, PROgram, and ReSerVe.

QD ~ C9D CZD Nurr|ber keys. The layout of these keys is similar to that found on the standard calculator.
CA

(CL) Clear key. Pressing Clear erases the characters you have just typed in and "releases" errors. Pressing (shift) before

pressing this key activates the CA (reset) function. CA clears the display and resets the computer.

14

CD

>

EXP

C+3

o « remind and then this key will

„• • •

I,.* Pros this k,v .0 include the division operator in calculations. PreSSm. SEE) odd

Mu „ip,io«ion ,ov. P,.SS ,U kev.oioolode.e mU ,.,plioatioooF,ra,orioo„oo,a
,ion,« iB

thiQ kpv disolavs the "less than" character.

displays the "greater than" character.

Addition key. Pre ss this kev to indude the addition operator in caption, Pressing « and then this key

dispiavs the exponentiation character used in scientific notatior,. ^
V « These three characters are found above the zero, decimal po.nt and 3 keys. v

and then thecharacter under the symbol desired^^^^

n[f»in SHIFT E

BUSY P DEF DEGRAD .BUST r
- |i" i

5
,,

t • .3 ! » ! a a* a |

.

".
S""i « T F s:'.:i

'::.::. 1 H I I™ I ^^i^J^^J Figure 4. Sample PC-3 Display

right.

The display consists of:
nrompt disappears and is

The prompt. This symbol appears when the computer is awa.tmg input. As you press, the promp

replaced by the cursor.

15

The cursor This symbol (the underline) tells you the location of the next character to be typed in. As you begin

typing, the'cursor replaces the prompt. The cursor is also used to position the computer over certain characters when

using the INSert and DELete functions.

BUSY Program Execution Indicator. When the PC-3 is executing a program, this indicator is lit (except when characters are

displayed). The PC-3 will not undergo AUTO OFF while the BUSY indicator is on. BUSY disappears from the d,splay

when execution is completed.

Printer Indicator. This indicator appears whenever you elect the print option when using the PC-3 as a calculator.

Definable Mode Indicator. This symbol lights up whenever you press the DEF key.

DEGRAD Angular Measurement Indicator. This indicator displays the current unit of angles for the inpul * ^™met

^
OEG\ functions Depending on the mode in use, the display will read DEC (degrees), RAD (radians), or GRAD (grad,ents).

p

DEF

RAD
,GRAD/

SHIFT Shift Key Indicator. This indicator lights up when the <§hjfj) key has been depressed. Remember, the (smFr) key

must be released before depressing any other key.

E Error indicator. Whenever an error is encountered, this indicator is displayed.

16

RESET button

Figure 5. PC-2 (Rear Panel)

ALL RESET: Reset button. This button is used to reset the computer when CLear or CA is not sufficient to correct the problem.

NOTE
To reset the PC-3, hold down any key on the keyboard and simultaneously press the RESET button on the back.

This preserves all programs, variables, and reserve memory.

Hold down
any key

Press the ALL RESET button with any pointed object

RESET button- f ; <^1I1H 4T^ such as a Da ""P°'nt Pen -
Do not use easily broken

points such as mechanical pencils or the tips of needles.

PC-3 Pocket Computer

Figure 6

17

If you get no response from any key, even when the above operation is performed, push the RESET button without any key.

With this operation, the program, data and all reserved contents are cleared , so do not press the RESET button without any key

unless the above trouble occurs.

RESET button

Figure

PC-3

Contrast Control

Figure 8.

Turn the control in the direction of the arrow for a brighter

display, and turn it in the opposite direction for a dimmer

display.

Adjust it so that the display is easy to see.

18

BATTERY REPLACEMENT FOR THE PC-3

The PC-3 Pocket Computer operates on the lithium battery alone. When connected to the PC-3 Printer/Cassette Interface, the

PC-3 can also be supplied from the PC-3 Printer/Cassette Interface if it has enough power voltage and the lithium battery power
decrease. This minimizes the power consumption of the lithium battery.

When replacing the batteries, these precautionary instructions will eliminate many problems:

• Always replace both of the batteries at the same time.

• Do not mix a new battery with a used battery.

• Use only: Lithium battery (type CR-2032) x 2

INSTALLING THE BATTERIES

The display is dim and difficult to see when viewed from the front, even after turning the contrast control on the right of the

computer counterclockwise as far as it goes. This indicates that the battery power is depleted. In this case, replace the battery

promptly. (Using the optional PC-3 Printer/Cassette Interface peripheral equipment, record programs and data on tape in advance.)

19

(1) Turn off the computer by setting the power

slide switch to the OFF position.

(2) Remove the screws from the back cover with a

small screwdriver. (Fig. 9)

(3) Remove the battery cover by silding it in the

direction of the arrow shown in figure 10.
Figure 9 Screw

Figure 10

Battery cover

20

(4) Replace the two batteries observing the correct

polarity. (Fig. 11)

(5) Replace the battery cover by sliding it in the
reverse direction of the arrow shown in figure 2.

(6) Hook the claws of the back cover into the slits

of the computer proper. (Fig. 12)

Figure 11

Lithium Battery

Battery cover

(7) Push the back cover in slightly while replacing the screws.

(8) Turn on the computer by setting the power slide switch to the ON position and press the RESET button to clear the computer.

Then check the following display.

' Prompt symbol

Figure 13. Sample Display On Start-Up

If the display is blank or displays any symbol other than the prompt " y- ", remove the batteries and install them again.

Then check the display again.

NOTE:

Keeping a dead battery may result in damage to the computer due to solvent leakage of the battery. Remove a dead battery

promptly.

CAUTION: Keep battery out of reach of children.

22

CHAPTER 3 USING THE PC-3 AS A CALCULATOR
Now that you are familiar with the layout and components of the Radio Shack PC-3, we will begin investigating the exciting

capabilities of your new computer.

Because the PC-3 allows you the full range of calculating functions, plus the increased power of BASIC programming abilities

(useful in more complex calculation), it is commonly referred to as a "smart" calculator. That, of course, makes you a "smart"

user!

(Before using the PC-3, be sure that the batteries are correctly installed.)

Start Up

To turn ON the PC-3, slide the power switch up and select one of three modes: RUN, PRO, or RSV. For use as a calculator, the

PC-3 must be in the RUN mode. When the machine is ON, the prompt (» will appear on the display.

Shut Down

To turn OFF the PC-3, slide the power switch to the OFF position.

When you turn OFF the machine, you clear (erase) the display. However, the PC-3 does remember all programs, reserve keys, and

mode settings which were in use when the computer was turned OFF. All of these settings are still in effect when the machine is

turned back ON.

When the BEEP instruction or CLOAD command is executed, stop the execution by pressing the (brk) key and slide the power

switch to the OFF position.

23

Auto Off

min°ut

r

w T'rl ZT-n
aner

"
W6ar

'

the "C-3 aUt0matical| V P°wers down when no keys have been pressed for about 1

1

minutes. (Note: The PC-3 will not AUTO OFF while you are executing a program.)

occurred"
' """""'^ '" AUT° 0FF

'^ *' ^ ^ M """^ Wi " be 6XaCtly as the* «•» when the AUTO OFF

Some Helpful Hints

Wat'rjzzs~
vou

:rrhine
' you are bound to make mistakes whne entering data - Lat- - *«» <*«»« «™-P.eways to co rect thes retakes. For now, if you get an Error Message, press CLear and retype the entry. If the computer "hangsup - you cannot get it to respond at all - press the ALL RESET button (See Chapter 2)

The PROMPT (» tells you that the PC-3 is awaiting input. As you enter data the prompt disappears and the CURSOR <-) movesto the right, indicating the next available location in the display.

The right () and left G*) arrows move the cursor within a line.

^JuS^pmq^S I™
3re finiSh6d emering "^ and Si9nalS the COmpUter to Perform the ind'^ed operations

UP^DN BY THECOMAS ^ ^^ ""* " "^ °R Y0UR CALCULAT,0NS WILL^ BE ACTED

When performing numeric calculations, input appears on the left of the screen, the results appear on the right of the display.

When using the (Sjjg) key in conjunction with another key (to access square root, for example), press @jf£) release theGEE® key, then press the other key. ^ft) is active for only one key at a time.
-

release the

24

Do not use dollar signs or commas when entering calculations into the PC-3. These characters have special meanings in the BASIC

programming language.

In this manual we use the to indicate zero, so that you can distinguish between the number (0) and the letter (0).

To help get you started entering data correctly, we will show each keystroke necessary to type in the example calculations. When

(shift) is used, we will represent the desired character in the following keystroke. For example, pressing (shift) and CD will

produce the (character. These keystrokes are written (shift) QD .

Be sure to enter CLear after each calculation (unless you are performing serial calculations). CLear erases the display and resets

the error condition. It does not erase anything stored in the computer's memory.

Simple Calculations

The PC-3 performs calculations with ten-digit precision. If you have not already done so, turn ON your computer by setting it

in the RUN mode. Now try these simple arithmetic examples. Remember to CLear between calculations.

Input

CA)C03(+3CA)C0D (ENTER)

(T3CE)CE)Q CADC03 (§NTEg)

C1D C0D C*3 (3D C0D (iNiEg)

C3lC0)C0)CDC5r) (ENTER)

Display

100.

50.

600.

60.

25

QDCE) (SHIFT) QQD (ENTER)

CD® (SHIFT) (71) (ENTER)

(SHIFT) CZ3 (A)GD (ENTER)

100.

6. 283185307

Recalling Entries

Even after the PC-3 has displayed the results of your calculaiton, you can redisplay your last entry. To recall, use the left G*) and

right (} arrows.

The left arrow Q^) recalls the last entry with the cursor positioned over the last character.

The right arrow (+^) recalls the entry with the cursor positioned "on top of" the first character.

Remember that the left and right arrows are also used to position the cursor along a line. The right and left arrows are very helpful

in editing (or modifying) entries.

You will become familiar with the use of the right and left arrows in the following examples. Now, take the role of the manager

and perform the calculations as we discuss them.

As the head of personnel in a large marketing division, you are responsible for planning the annual sales meeting. You expect

300 people to attend the three day conference. For part of this time, the sales force will meet in small groups. You believe that

26

groups of six would be a good size. How many groups would this be?

. . Display
Input —-

—

-

CD C0) CE CZ3 CS (Inter)

On second throught you decide that groups containing an

entry using the C^D .

Input

50.

odd number of participants might be more effective. Recall your last

Display

s> 300/6_

To ca,cu,ate the new number of groups you must replace the six with an odd number. Five seems to make ™"™*£m™
Because you recalied the last entry by using the S> . the cursor is positioned at the end of the d,sPlay. Use the S> to move

the cursor one space to the left.

Display
Input

3 00/1

Notice that after you move the cursor it becomes a flashing block 1. Whenever you position the cursor "on top of" an existing

character, it will be displayed as the flashing cursor.

27

Type in a 5 to replace the 6. One caution in replacing characters - one you type a new character over an existing character, the

original is gone forever! You cannot recall an expression that has been typed over.

Input Display

300/5.

60.

Sixty seems like a reasonable number of groups, so you decide that each small group will consist of five participants.

Recall is also useful to verify your last entry, especially when you results do not seem to make sense. For instance, suppose you

had performed this calculation:

DisplayInput

GDQDGQGD dHlIE>
6.

Even a tired, overworked manager like you realizes that 6 does not seem to be a reasonable result when you are dealing with hund-

reds of people! Recall your entry using the Q^D

Input

®
Display

10/5

28

Because you recalled using the () , the flashing cursor is now positioned over the first character in the display. To correct this

entry, you need to insert another zero. Using the () , move the cursor until it is positioned over the zero. When making an

INSert, position the flashing cursor over the character before which you wish to make the insertion.

Input

<S

Display

31/5

Use the INSert key no make space for the needed character.

Input

(shift) Cms)

Display

3^0/5

Pressing INSert moves all the characters one space to the right, and inserts a bracketed open slot. The flashing cursor is now posi-

tioned over this open space, indicating the location of the next typed input. Type in your zero. Once the entry is corrected,

display your new result.

Input

(T)

(ENTER)

Display

301/5

60.

29

On the other hand, suppose that you had entered this calculation:

Input Display

QD (ID CE> CD CD C1D ^nter) 600.

The results seem much too large. If you only have 300 people attending the meeting, how could you have 600 "small groups'?

Recall your entry using the (]) .

Input

<s

Display

1000/5

The flashing cursor is now positioned over the first character in the display. To correct this entry, eliminate one of the zeros.

Use the () to move tne cursor t0 tne first zer0 (or anY zero) *
When de,etin9 a character, position the cursor "on top of" the

character to be deleted.

Input

®
Display

3|00/5

Now the DELete key to get rid of one of the zeros.

30

Input Display

(shift) (del) 310/5

Pressing DELete causes all the characters to shift one space to the left. It deletes the character that the cursor is "on top of" and

the space the character occupies. The flashing cursor stays in the same position indicating the next location for input. Since you

have no other changes to make, complete the calculation.

Input

(ENTER)

Display

60.

(Note: Pressing the SPaCe key, when it is positioned over a character, replaces the character leaving a blank space. DELete

eliminates the character and the space it occupies.)

Errors

Recalling your last entry is essential when you get the dreaded ERROR message. Let us image that, unintentionally, you typed

this entry into the PC-3:

Input

(A)C0lCW)CDC71Cs^ (enter)

Display

ERROR 1

31

Naturally you are supprised when this message appears! ERROR 1 is simply the computer's way of saying. "I don't know what

you want me to do here". To find out what the problem is, recall your entry using either the G*3 or (} .

Input

s>

Display

300/15

Whether you use the 0^) or C*^) key, the flashing cursor indicates the point at which the computer got confused. And no

wonder, you have too many operators! To correct this error, use the DELete key.

Input

(shift) (del) (enter)

Display

60.

If, upon recalling your entry after an ERROR 1, you find that you have omitted a character, use the INSert sequence to correct it.

When using the PC-3 as a calculator, the majority of the errors you encounter will be ERROR 1 (an error in syntax). For a com-

plete listing of error messages, see APPENDIX A.

Serial Calculations

The PC-3 allows you to use the results of one calculation as part of the following calculation.

You are planning a special conference and are expecting 300 people to attend. Part of your responsibility in planning this confe-

rence is to draw up a detailed budget for approval. You know that your total budget is $150.00 for each attendant. Figure your

total budget:

32

Input

r^)(W)CW)C*T)CT)C5-)CW) (ENTER)

Display

45000.

Of this amount you plan to use 15% for the final night's awards presentation. (When performing serial calculations, it is not ne-

cessary to retype your previous results, but DO NOT CLear between entries.) What is the awards budget?

Input

CSOQDOD

Display

45000. *. 15_

Notice that, as you type in the second calculation (*. 15), the computer automatically displays the result of your first calculation

at the left of the screen and includes it in the new calculation. In serial calculations, the entry must begin with an operator. As

always, you end the entry with (enter
) .

NOTE: The (%) key can not be used in the calculation. The (j%) key should be used as a character only.

Example: 45000 C*D 15 (shift) (%) - ERROR 1

Input

(ENTER)

Display

6750.

Continue allocating your budget. The hotel will cater your dinner for $4000:

33

Input Display

OODC03CI3C0D 6750. -4

(ENTER)

Decorations will be $1225:

Input

GDCT)CT)C^)C5l (ENTER)

Display

Finally, you must allocate $2200 for the speaker and entertainment:

Input Display

CDC2)CW)CW) (ENTER)

2750.

1525.

-675.

Obviously, you will have to change either your plans or your allocation of resources!

Negative Numbers

Since you want the awards dinner to be really special, you decide to stay with the planned agenda and spend the additional money.

34

However, you wonder what percentage of the total budget will be used up by this item, First, change the sign of the remaining

sum:

Input

® CZ)QD

Display

-675. *-1_

(ENTER)

Now add this result to your original presentation budget:

Input Display

C+) C© CD CA3 C0D (ENTig)

Dividing by 45000 gives you the percentage of the total budget this new figure represents:

Input Display

CVJ(^)CT)CW)CW)CW) (enter)

Fine, you decide to allocate 16.5% to the awards presentation.

675.

7425.

0.165

35

Compound Calculations and Parentheses

In performing the above calculations, you could have combined several of these operations into one step. For instance, you might

have typed both these operations on one line:

675+6750/45000

Compound calculations, however, must be entered very carefully:

675+6750/45000 might be interpreted as

675 + 6750 ^ c 6750
675 +

45000 45000

When performing compound calculations, the PC-3 has specific rules of expression evaluation and operator priority (see APPEN-

DIX D). Be sure you get the calculation you want by using parentheses to clarify your entries:

(675+6750) /45000 or 675+ (6750/45000)

To illustrate the difference that the placement of parentheses can make, try these two examples:

Input Display

(shift)CD® CT) CED t±) CE (U d3 (0D

dHUSCDO C33C£> (3D CE> (3D ds®
0.165

36

CD CD CD CD (shift)CDCD CD CD (D
CD CD CD CD CD CD dmED(D (§nt|^

675. 15

Using Variable in Calculations

The PC-3 can store up to 26 simple numeric variables under the alphabetic characters A to Z. If you are unfamiliar with the con-

cept of variables, they are more fully explained in Chapter 4. You designate variables with an Assignement Statement.

A
B

5

-2

You can also assign the value of one variable (right) to another variable (left):

C = A + 3

D = E

A variable may be used in place of a number in any calculation.

Now that you have planned your awards dinner, you need to complete arrangements for your conference. You wish to allocate

the rest of your budget by percentages also. First you must find out how much money is still available. Assign a variable (R)

to be the amount left from the total:

Input

GD®CIDCE)CECE)C!DCE)CZ)C5D

Display

R=45000-7425_

37

(ENTER)
37575.

As you press (enter) the PC-3 performs the calculation and displays the new value of R. You can display the current value of

any variable by entering the alphabetic character it is stored under:

Input Display

CW) (ENTER) 37575.

You can then perform calculations using your variable. The value of (R) will not change until you assign it a new value.

You wish to allocate 60% of the remaining money to room rental:

Input

CBDC*3CZ)C63(S

Display

R*. 60.

22545.

Similarly, you want to allocate 25% of your remaining budget to conduct management training seminars:

38

input Display

CD® CD (X)O dSHD 9393. 75

Variables will retain their assigned values even if the machine is turned OFF or undergoes an AUTO OFF. Variables are lost only

when:

* You assign a new value to the same variable.

* You type in CLEAR (ENTER) (not the CLear key).

* You clear the machine using the ALL RESET button.

* The batteries are changed.

There are certain limitations on the assignment of variables, and certain programming procedures which cause them to be changed.

See Chapter 4 for a discussion of assignment. See Chapter 5 for a discussion of the use of variables in programming.

Chained Calculations

In addition to combining several operators in one calculation, the PC-3 also allows you to perform several calculations one after

the other - without having to press Center) before moving on. You must separate the equations with commas. Only the result

of the final calculation is displayed. (Remember, too, that the maximum line length accepted by the computer is 80 characters,

including (enter) .)

You wonder how much money would have been available for rooms if you had kept to your original allocation of 15% for the

awards dinner:

39

Input Display

CS ©CDS) (X)C*DC©CD®®
C0D (srjft) mtinGonore^rpi R=. 85*45000 , R*.60.

Although the computer performs all the calculations in the chain, it displays only the final result.

Input Display

(ENTER)

To find the value of $ used in this calculation, enter R.

Input

QD Center)

22950.

Display

38250.

Now It's Your Turn

The concludes our discussion of using the PC-3 as a calculator. Undoubtedly, as you become more familiar with your machine's

capabilities and special features, you will find many new and useful applications for this "smart" calculator.

But calculating is only one of the many potential uses of the PC-3. In the next chapter we will examine the concepts and terms

of the BASIC language, as it is used by the PC-3. Then you can begin to create your own, unique, problem-solving programs.

40

CHAPTER 4 CONCEPTS AND TERMS OF BASIC

In this chapter we will examine some concepts and terms of the BASIC language. Because the PC-3 uses many features of BASIC

when used as a calculator, some of these concepts are also useful for advanced calculator functions.

Numeric Constants

In Chapter 3 you entered simple numbers for use in calculations, without worrying about the different ways that numbers can be

represented, or the range of numbers that the Radio Shack PC-3 can process. Some of you, however, may need to desire to know

more about how this computer uses numbers.

The Radio Shack PC-3 recognizes three different ways to represent numbers:

* Decimals.

* Exponential or scientific notation.

* Hexadecimal numbers.

Decimal numbers are familiar to most of you. Scientific notation and hexadecimal numbers may require some explanation.

Scientific Notation

People who need to deal with very large and very small numbers often use a special format called exponential or scientific notation.

In scientific notation, a number is broken down into two parts.

The first part consists of a regular decimal number between 1 and 10. The second part represents how large or small the number

is in powers of 10.

As you know the first number to the left of the decimal point in a regular decimal number shows the number of 1's, the second

41

shows the number of 10's, the third the number of 10's, and the fourth the number of 1000's. These are simply increasing powers

of 10.

10 =1, 10
1 = 10, 10

2 = 100, 10
3 = 1000, etc.

Scientific notation breaks down a decimal number into two parts: one shows what the numbers are; the second shows how far a

number is to the left or right of the decimal point. For example:

1234 becomes 1.234 times 10
3

(3 places to the right)

654321 becomes 6.54321 times 10
5

(5 places to the right)

.000125 becomes 1.25 times 10"4 (4 places to the left)

Scientific notation is useful for many shortcuts. You can see that it would take a lot of writing to show 1.0 times 10
87 - a 1 and

87 zeros! But, in scientific notation this number looks like this:

1.0 x 10
87

or 1.0 E 87

The PC-3 uses scientific notation whenever numbers become too large to display using decimal notation. This computer uses a

special exponentiation symbol, the IE, to mean "times ten to the":

1234567890000 is displayed as 1.23456789 IE 12

.000000000001 is displayed as 1. E -12

Those of you who are unfamiliar with this type of notation should take some time to put in a few very large and very small

numbers to note how they are displayed.

42

Limits

The largest number which the PC-3 can handle is ten significant digits, with two-digit exponents. In other words, the largest

number is:

9.999999999 E 99 = 9999999999000

and the smallest number is:

9.999999999 C -99 =

000000000000000000009999999999

Under certain circumstances, when numbers will be used frequently, the PC-3 uses a special compact form. In these cases there are

special limits imposed on the size of numbers, usually either to 65535 or -32768 to +32767. Those with some computer back-

ground will recognize both these numbers as the largest range which can be represented in 16 binary bits. The circumstances

under which this form is used are noted in Chapter 8.

Hexadecimal Numbers

The decimal system is only one of many different systems to represent numbers. Another which has become quite important when

using computers is the hexadecimal system. The hexadecimal system is based on 16 instead of 10. To write hexadecimal numbers,

you use the familiar ~ 9 and 6 more "digits": A, B, C, D, E, and F. These correspond to 10, 11, 12, 13, 14, and 15. When

43

you want the PC-3 to treat a number as hexadecimal, put an ampersand (&) character in front of the numeral:

&A = 10

&10 = 16

&100 = 256

&FFFF = 65535

Those with some computer background may notice that the last number (65535) is the same as the largest number in the special

group of limits discussed in the last paragraph. Hexadecimal notation is never required in using the PC-3, but there are special

applications where it is convenient.

String Constants

In addition to numbers, there are many ways that the Radio Shack PC-3 uses letters and special symbols. These letters, numbers,

and special symbols are called characters. These characters are available on the PC-3.

1234567890
ABCDEFGHI JKLMNOPQRSTUVWXYZ
!"#$%&()*+,-. / : ;< = >?@yr

~7T^iE

In BASIC, a collection of characters is called a string. In order for the PC-3 to tell the difference between a string and other parts

of a program, such as verbs or variable names, you must enclose the characters of the string in quotation marks (").

The following are examples of string constants:

44

"HELLO"

"GOODBYE"
"RADIO SHACK PC-3"

The following are not valid string constants:

"COMPUTER No ending quote

"ISN'T" Quote can't be used within a string

Variables

In addition to constants, whose values do not change during a program, BASIC has variables, whose values can change. Variables

are names used to designate locations where information is stored. These variables are like the letters used in algebraic equations.

Just as there are numeric and string constants, there are numeric and string variables.

Simple Numeric Variables

You have already used simple numeric variables when working with the PC-3 as a calculator in Chapter 3. Simple numeric variables

are used to store a single number and are designated by a single letter (A— Z):

A = 5

C = 12.345

Simple numeric variables may take the same range of values as numeric constants.

Simple String Variables

String variables are used to hold strings (a collection of characters). They are named by a single letter followed by a dollar sign:

45

A$

C$

A string variable may be from to 7 characters long. If you try to store more than 7 characters in a string variable, only the

first 7 will be saved. When a string variable is empty, or its length is zero, it is called NUL or the NUL string.

Numeric Array Variables

For some purposes it is useful to deal with numbers as an organized group, such as a list of scores or a tax table. In BASIC these

groups are called arrays. An array can be either one-dimensional, like a list, or two-dimensional, like a table. Array names are

designated in the same manner as simple variable names, except that they are followed by parentheses. The elements of an array

are referred to by a number inside the parentheses; when the array is two-dimensional, there must be two numbers separated by

a comma.

A (5) The fifth element of a one-dimensional array A.

B (3,2) The element in the third row and second column of a two dimensional B array.

Arrays are created using the DIM verb or command. To create an array, give its name and its size.

DIMX(5)

DIM Y (32)

Note that DIM X(5) actually creates an array with six entries:

X(0) X(1) X(2) X(3) X(4) X(5).

Similarly DIM Y(2, 2) creates an extra row and an extra column:

46

Y(M) Y(0,1) Y(0,2)

Y(1,0) Y{1,1) Y(1, 2)

Y(2,0) Y(2,1) Y(2,2)

This extra element, or row and column, is often used by programmers to hold partial products during computations. For example,

you might total the elements of the X array by summing them into X(0).

The form and use of the DIM verb is covered in detail in Chapter 8.

Note: The A array does not have the extra element and does not need to be DIMensioned (see section below on Preallocated

Variables).

String Array Variables

String array variables have the same relationship to numeric array variables as simple string variables have to simple numeric vari-

ables— their names are the same except for the addition of a dollar sign:

C$(5) The fifth string element in the array C$

With string arrays, the length of each string will be 16 characters unless you specifically choose a different length in the DIM

statement.

DIM X$(12) *8 DIMensionsa string array with 12 elements, each a string 8 characters long.

Chapter 8 details the use of the DIM statement.

Preallocated Variables

Some of the variables which you will use most frequently have already been allocated space in the PC-3's memory. Twenty-six

47

locations are reserved for numeric variables A - Z, string variables A$ - Z$, numeric array A(26),

or string array A$(26). The locations are assigned as follows:

Loc. Num. Var. Str. Var. Nu m. Arr. Var. Sti'. Arr. Var.

1 A A$ A(1) A$(1)

2 B B$ A(2) A$(2)

3 C C$ A(3) A$(3)

4 D D$ A(4) A$(4)

23 W w$ A(23) A$(23)

24 X x$ A(24) AS (24)

25 Y Y$ A(25) A$(25)

26 Z z$ A(26) A$(26)

NOTE: There are only twenty -six locations and you must be careful not to use the same location in two different ways.

If you use location 24 to store a numeric value in X and then try to print X$, you will get an Error 9. Similarly, if you store a

number in A(24) and then store another number in X, you will over-write the first number, but you will not get an error message.

The A() and A$() arrays are different from all other arrays — they don't have a zero element. It is possible to use DIM to

make A() or A$() larger than 26 but, if you do, the first 26 elements will use the reserved locations while the elements from

26 on will be stored in a different part of the memory. The only way that you will notice this, however, is that these 26 special

locations are not cleared when you RUN a program. All other array variables are cleared with each new RUN. By using good

48

programming practice and always initializing your variables to the desired value, you will avoid any possible confusion.

If DIM is used to allocate the A() or A$() arrays larger than 26 elements, there are certain special conditions in which an error

can cause the part of the array from A(27) or A$(27) on to become inaccessible. If this occurs, it is necessary to redimension the

array.

Expressions

An expression is some combination of variables, constants, and operators which can be evaluated to a single value. The calculations

which you entered in Chapter 3 were examples of expressions. Expressions are an intrinsic part of BASIC programs. For example,

an expression might be a formula that computes an answer to some equation, a test to determine the relationship between two

quantities, or a means to format a set of strings.

Numeric Operators

The PC-3 has five numeric operators. These are the arithmetic operators which you used when exploring the use of the PC-3

as a calculator in Chapter 3:

+ Addition

- Subtraction

* Multiplication

/ Division

A Power

A numeric expression is constructed in the same way that you entered compound calculator operations. Numeric expressions

can contain any meaningful combination of numeric constants, numeric variables, and these numeric operators:

49

(A* B)^2
A (2, 3)+A(3,4) + 5.(J-C

(A/B) * (C + D)

In certain circumstances the multiplication operator can be implied:

2A is the same as 2 * A
7C is the same as 7 * C

ABC is the same as A * B * C

As you can see from the last example, there is a possibility that implied multiplication could be confused with other BASIC words,

so don't use this form unless the context is very clear.

NOTE: Negative numbers may not be raised to a power with the ^operator since you may obtain incorrect signs. If negative

numbers are encountered in a program, convert the numbers to positive numbers using ABS before using the ^operator.

You will then have to change the result to the appropriate sign.

String Expressions

String expressions are similar to numeric expressions except that there is only one string operator — concatenation (+). This is

the same symbol used for plus. When use with a pair of strings, the + attaches the second string to the end of the first string and

makes one longer string. You should take care in making more complex string concatenations and other string operations because

the work space used by the PC-3 for string calculations is limited to only 79 characters.

NOTE: String quantities and numeric quantities cannot be combined in the same expression unless one uses one of the functions

which convert a string value into a numeric value or vice versa.

50

"15"+ 10 is illegal

"15" + "10" is "1510", not "25"

Relational Expressions

A relational expression compares two expressions and determines whether the stated relationship is True or False. The relational

operators are:

> Greater Than

> = Greater Than or Equal To

= Equals

<> Not Equal To

< = Less Than or Equal To

< Less Than

The following are valid relational expressions:

A<B
C(1,2)> = 5

D(3)<>8

If A was equal to 10, B equal to 12, CO, 2) equal to 6, and D(3) equal to 9, all of these relational expressions would be True.

Character strings can also be compared in relational expressions. The two strings are compared character by character according

to their ASCII value, starting at the first character (see Appendix B for ASCII values). If one string is shorter than the other,

a or NUL will be used for any missing positions. All of the following relational expressions are True:

51

"ABCDEF" = "ABCDEF"

"ABCDEF" <> "ABCDE"

"ABCDEF"> "ABCDE"

Relational expressions are either True or False. The PC-3 represents True by a 1; False is represented by a 0. In any logical test,

an expression which evaluates to 1 or more will be regarded as True, while one which evaluates to or less will be considered False.

Good programming practice, however, dictates the use of an explicit relational expression instead of relying on this coincidence.

Logical Expressions

Logical expressions are relational expressions which use the operators AND, OR, and NOT, AND and OR are used to connect two

relational expressions; the value of the combined expression is shown in the following tables:

A AND B Value of A

Value

of

B

True False

True True False

False False False

A OR B

Value

of

B

Value of A

True False

True True True

False True False

(Cf . Values of A and B must be or 1

)

52

Decimal numbers can be expressed in the binary notation of 16 bits as follows:

DECIMAL
NOTATION

BINARY NOTATION
OF 16 BITS

3276 7 0111111111111111

3 0000000000000011

2 0000000000000010

1 0000000000000001

0000000000000000

-1 1111111111111111

-2 1111111111111110

"3 1111111111111101

-32768 1000000000000000

The negative (NOT) of a binary number 0000000000000001 is taken as follows:

NOT
(Negative)

0000000000000001

1111111111111110

53

ThenVh

iS

f

in
,"

rted
^ °' 3nd

° t0 1 f° r 6aCh bit
'
Which is "<° ^ke negative (NOT) ••

Then the following will result when 1 and NOT 1 are added together:

0000000000000001 (1)

+) mi 1111 irnnio (notd
1111111111111 111 (-{)

(NOT X) is:

X + NOT X = ^1

This results in an equation of NOT X = -X-1
i.e. NOT X = -(X+ 1)

From this equation, the following results are found

IMOT0--1
NOT -1-0
NOT -2 = 1

(A<9) AND (B>5)
(A>=10) AND NOT (A > 20)
(C = 5) OR (C = 6) OR (C = 7)

54

The PC-3 implements logical operators as "bitwise" logical functions on 16-bit quantities. (See note on relational expressions and

True and False.) In normal operations this is not significant because the simple 1 and (True and False), which result from a

relational expression, use only a single bit. If you apply a logical operator to a value other than or 1, it works on each bit in-

dependently. For example, if A is 17 and B is 22, (A or B) is 23:

17 in binary notation is 10001

22 in binary notation is 10110

17 OR 22 is 10111 (1 if 1 in either number, otherwise 0)

10111 is 23 in decimal.

If you are a proficient programmer, there are certain applications where this type of operation can be very useful. Beginning pro-

grammers should stick to clear, simple True or False relational expressions.

Parentheses and Operator Precedence

When evaluation complex expressions the PC-3 follows a predefined set of priorities which determine the sequence in which opera^

tors are evaluated. This can be quite significant.

5 + 2*3 could be:

5 + 2 = 7 or 2*3 = 6

7*3 =21 6 + 5 = 11

The exact rules of "operator precedence" are given in Appendix D.

To avoid having to remember all these rules and to make your program clearer, always use parentheses to determine the sequence

of evaluation. The above example is clarified by writing either:

55

(5 + 2) * 3 nr c .„or 5 + (2 * 3)

Calculator Mode

Input
Display

(5>3) AND (2<6)

1.

The 1 means that the expression is True.

Functions

Functions are special components of thp RA^ir i*~ ._« .*. «ari8btas „n„se „,l „ii:z j ;,"::::::
-aiue md ,rms,-m

- *» «*- —• *«««
absolute .alue of iB argument.

""""* "' exPress '°"s- ABS is a function which produces the

ABS (-5) is 5

ABS (6) is 6

is a function which computes the log 1

LOG (100) is 2

LOG (1000) is 3

—- ___ 56

A function can be used any place that a variable can be used. Many functions do not require the use of parentheses.

LOG 100 is the same as LOG (100)

You must use parentheses for functions which have more than one argument. Using parentheses always makes programs clearer.

See Chapter 8 for a complete list of functions available on the PC-3.

57

CHAPTER 5 PROGRAMMING THE PC-3

In the previous chapter we examined some of the concepts and terms of the BASIC programming language. In this chapter you will

use these elements to create programs on the PC-3. Let us reiterate, however, that this is not a manual on how to program in

BASIC. What this chapter will do is familiarize you with the use of BASIC on your PC-3.

Programs

A program consists of a set of instructions to the computer. Remember the PC-3 is only a machine. It will perform the exact

operations that you specify. You, the programmer, are responsible for issuing the correct instructions.

BASIC Statements

The PC-3 interprets instructions according to a predetermined format. This format is called a statement. You always enter BASIC

statements in the same pattern. Statements must start with a line number:

10: PRINT "HELLO"

20: READ B (10)

30: END

Line Numbers

Each line of a program must have a unique line number— any integer between 1 and 999. Line numbers are the reference for the

computer. They tell the PC-3 the order in which to perform the program. You need not enter lines in sequential order (although

if you are a beginning programmer, it is probably less confusing for you to do so). The computer always begins execution with the

lowest line number and moves sequentially through the lines of a program in ascending order.

59

When programming, it is wise to allow increments in your line numbering (10, 20, 30, . . . 10, 30, 50 etc). This enables you to
insert additional lines, if necessary.

CAUTION: Do not use the same line numbers in different programs. If you use the same line number, the oldest line with that
number is deleted when you enter the new line.

BASIC Verbs

All BASIC statements must contain verbs. Verbs tell the computer what action to perform. A verb is always contained within a
program and, as such, is not acted upon immediately.

10

20

30

PRINT "HELLO'

READ B(10)

END

Some statements require or allow an operand:

10

20

30

PRINT "HELLO'

READ B(10)

END

Operands provide information to the computer telling it what data the verb will act upon. Some verbs require operands- with
other verbs they are optional. Certain verbs do not allow operands. (See Chapter 8 for a complete listing of BASIC verbs and their
uses on the PC-3.)

BASIC Commands

Commands are instructions to the computer which are entered outside of a program. Commands instruct the computer to perform
60

some action with your program or to set modes which effect how your programs are executed.

Unlike verbs, commands have immediate effects - as soon as you complete entering the command (by pressing the (enter) key),

the command will be executed. Commands are not preceded by a line number:

RUN
NEW
RADIAN

Some verbs may also be used as commands. (See Chapter 8 for a complete listing of BASIC commands and their uses on the PC-3.

Modes

You will remember that, when using the PC-3 as a calculator, it is set in the RUN mode.

The RUN mode is also used to execute the programs you create.

The PROgram mode is used to enter and edit your programs.

The RSV or ReSerVe mode enables you to designate and store predefined string variables and is used in more advanced pro-

gramming (see Chapter 6).

Beginning to Program on the PC-3

After all your practice in using the PC-3 as a calculator, you are probably quite at home with the keyboard. From now on, when
we show an entry, we will not show every keystroke. Remember to use (shift) to access characters above the keys and END
EVERY LINE BY PRESSING THE (ENTEfj) KEY.

Now you are ready to program! Set the slide switch to the PROgram mode and enter this command:
61

Input Display

NEW >

The NEW command clears the PC-3's memory of all existing programs and data. The prompt appears after you press (enter
) ,

indicating that the computer is awaiting input.

Example 1 — Entering and Running a Program

Make sure the PC-3 is in the PRO mode and enter the following program:

Input

10 PRINT "HELLO"

Display

10: PRINT "HELLO"

Notice that when you push (enter]
, the PC-3 displays your input, automatically inserting a colon (:) between the line number

and the verb. Verify that the statement is in the correct format.

Now slide the selector switch to the RUN mode:

Input Display

RUN HELLO

62

Since this is the only line of the program, the computer will stop executing at this point. Press (enter) to get out of the program
and reenter RUN if you wish to execute the program again.

Example 2 - Editing a Program

Suppose you wanted to change the message that you program was displaying; that is, you wanted to edit your program With a
single line program you could just retype the entry, but as you develop move complex programs editing becomes a very important
component of your programming. Let's edit the program you have just written.

Are you still in the RUN mode? If so, switch back to the PROgram mode.

You need to recall yourprogram in order to edit it. Use the Up Arrow (t) to recall your program. If your program was com-
P^tely executed, the QD will recall the last line of the program. If there was an error in the program, or if you used the BREAK
((break)) key to stop execution, the CD will recall the line in which the error or BREAK occurred. To make changes in your
program, use the CD to move up in your program (recall the previous line) and the CD to move down in your program (display
the next line). If held down, the CD and the CD will scroll verticaly; that is, they will display each line moving up or down in
your program.

You will remember that to move the cursor within a line you use the ® (right arrow) and® (left arrow). Using the®
position the cursor over the first character you with to change:

!^ Display

10: PRINT "HELLO'

63

Input Display

10: PRINT "iELLO"

Notice that the cursor is now in the flashing block form, indicating that it is "on top of" an existing character. Type in:

Input Display

GOODBYE"! 10PRINT"GOODBYE"! _

Don't forget to press Center) at the end of the line. Switch into the RUN mode.

m Pu * Display

RUN ERROR 1 IN 10

This is a new kind of error message. Not only is the error type identified (our old friend the syntax error), but the iine number in

which the error occurs is also indicated.

Switch back into the PROgram mode. You must be in the PROgram mode to make changes in a program. Using the f , recall the

last line of your program.

64

Input Display

10: PRINT "GOODBYE'H

The flashing cursor is positioned over the problem area. In Chapter 4 you learned that, when entering string constants in BASIC,
all characters must be contained within quotation marks. Use the DELete key to eliminate the "!".

Input

DEL

Display

10: PRINT "GOODBYE"-

Now let's put the
! in the correct location. When editing programs, DELete and INSert are used in exactly the same way as they are

in editing calculations (see Chapter 3). Using the® position the cursor on top of the character which will be the first character
following the insertion.

Input Display

10: PRINT "GOODBYE«

Press the INSert key. A _ will indicate the spot where the new data will be entered.

65

Input Display

INS

Type in the !. The display looks like this:

Input

10: PRINT "GOODBYES "

Display

10: PRINT "GOODBYE!!

Remember to press (enter) so the correction will be entered into the program.

NOTE: If you wish to DELete an entire line from your program, just type in the line number and the original line will be elimi-

nated.

Example 3 — Using Variables in Programming

If you are unfamiliar with the use of numeric and string variables in BASIC, reread these sections in Chapter 4.

Using variables in programming allows much more sophisticated use of the PC-3's computing abilities.

Remember, you assign simple numeric variables using any letter from A to Z.

A - 5

To assign string variables, you also use a letter following by a dollar sign. Do not use the same letter in designating a numeric and

66

a string variable. You cannot designate A and A$ in the same program.

Remember that simple string variables cannot exceed 7 characters in length:

A$ = "TOTAL"

The values assigned to a variable can change during the execution of a program, taking on the values typed in or computed during

the program. One way to assign a variable is to use the INPUT verb. In the following program, the value of A$ will change jn

response to the data typed in answering the inquiry "WORD?". Enter this program:

10 INPUT "WORD?";A$
20 B= LEN (A$)

30 PRINT "WORD IS "; B; " LETTERS"
40 END ^ ^ ^ means space

Before you RUN the program, notice several new features. Line 30 of this program exceeds the 24-character maximum of the

PC-3's display. When a line is longer than 24 characters (up to the 79-character maximum), PC-3 moves the characters to the left

as the 24-character maximum is exceeded. This does not destroy the previous input. This moves to the left is referred to as

horizontal scrolling.

The second new element in this program is the use of the END statement to signal the completion of a program. END tells the

computer that the program is completed. It is always good programming practice to use an END statement.

As your programs get more complex, you may wish to review them before you begin execution. To look at your program, use the

LIST command. LIST, which can only be used in the PROgram mode, displays programs beginning with the lowest line number.

Try listing this program:

67

Input Display

LIST 10: INPUT "WORD?"; A$

Use the CD and CD arrows to move through your program until you have reviewed the entire program. To review a line which
contains more than 24 characters, move the cursor to the extreme right of the display and the additional characters will appear
on the screen.

Input

RUN

HELP

(ENTER)

Display

WORD?_

WORD IS 4. LETTERS

>

This is the end of your program. Of course you may begin it again by entering RUN. However, this program would be a bit more
entertaining if it presented more than one opportunity for input. We will now modify the program so it will keep running without
entering RUN after each answer.

Return to the PRO mode and use the up or down arrows (or LIST) to reach line 40.

You may type 40 to Delete the entire line or use the ® to position the cursor over the E in End. Edit line 40 so that it reads:

40: GOTO 10

68

Now RUN the modified program.

The GOTO statement causes the program to loop (keep repeating the same operation). Since you put no limit on the loop it will

keep going forever (an "infinite" loop). To stop this program hit the BREAK ((
brk)) key.

When you have stopped a program using the (brk) key, you can restart it using the CONT command. CONT stands for CONTinue.

With the CONT command, the program will restart on the line which was being executed when the (brk) key was pressed.

Example 4 — More Complex Programming

The following program computes N Factorial (N!). The program begins with 1 and computes N! up to the limit which you enter.

Enter this program.

100 F = 1: WAIT 128

110 INPUT "LIMIT? "; L

120 FOR N = 1 TO L

130 F = F* N

140 PRINT N, F

150 NEXT N

160 END

Several new features are contained in this program. The WAIT verb in line 100 controls the length of time that displays are held

before the program continues. The numbers and their factorials are displayed as they are computed. The time they appear on the

display is set by the WAIT statement to approximately 2 seconds, instead of waiting for you to press (enter) .

Also on line 100, notice that there are two statements on the same line separated by a colon (:). You may put as many statements

as you wish on one line, separating each by a colon, up to the 80-character maximum including (enter
) . Multiple statement

69

lines can make a program hard to read and modify, however, so it is good programming practice to use them only where the state-

ments are very simple or there is some special reason to want the statements on one line.

Also in this program we have used the FOR verb on line 120 and the NEXT verb on line 150 to create a loop. In Example 3, you
created an "infinite" loop which kept repeating the statements inside the loop until you pressed the (brk) key. With this FOR/
NEXT loop, the PC-3 adds 1 to N each time execution reaches the NEXT verb. It then tests to see if N is larger than the limit L.

If N is less than or equal to L, execution returns to the top of the loop and the statements are executed again. If N is greater than
L, execution continues with the 160 and the program stops.

You may use any numeric variable in a FOR/NEXT loop. You also do not have to start counting at 1 and you can add any amount
at each step. See Chapter 8 for details.

We have labelled this program with line numbers starting with 100, Labelling programs with different line numbers allows you to
have several programs in memory at one time. To RUN this program instead of the one at line 10 enter:

RUN 100

In addition to executing different programs by giving their starting line number, you can give programs a letter name and start

them with the DEF key (see Chapter 6).

You will notice that while the program is running, the BUSY indicator is lit at those times that there is nothing on the display.

RUN the program a few more times and try setting N at several different values.

Storing Programs in the PC-3's Memory
You will remember that settings, ReSerVe keys, and functions remain in the computer even after it is turned OFF. Programs
also remain in memory when you turn off the PC-3, or it undergoes an AUTO OFF. Even if you use the (BRK)

, CLear or CA
70

keys, the programs will remain.

Programs are lost from memory only when you perform the following actions:

* You enter NEW before beginning programming.

* You initialize the computer using the ALL RESET button.

* You create a new program using the SAME LINE NUMBERS as a program already in memory.

* You change the batteries.

This brief introduction to programming on the PC-3 should serve to illustrate the exciting programming possibilities of your new

computer. For more practice in programming exercises, please see Chapter 9.

71

CHAPTER 6 SHORTCUTS
The PC-3 includes several features which make programming more convenient by reducing the number of keystrokes required to
enter repetitive material.

One such feature is the availability of abbreviations for verbs and commands (See Chapter 8).

This chapter discusses two additional features which can eliminate unnecessary typing — the DEF key and the ReSerVe mode.

The DEF Key and Labelled Programs

Often you will want to store several different programs in the PC-3's memory at one time. (Remember that each must have unique
line numbers.) Normally, to start a program with a RUN or GOTO command, you need to remember the beginning line number
of each program (see Chapter 8). But, there is an easier way! You can label each program with a letter and execute the program
using only two keystrokes. This is how to label a program and execute it using DEF:

Put a label on the first line of each program that you want to reference. The label consists of a single character in quotes,
followed by a colon.

10

20

80

90

"A": PRINT "FIRST"

END
"B": PRINT "SECOND"
END

Any one of the following characters can be used: A, S, D, F, G, H, J, K, L, =, Z, X, C, V, B, N, M, and SPC. Notice that
these are the keys in the last two rows of the alphabetic portion of the keyboard. This area has been darkened on your
keyboard to make it easier for you to remember.

73

To execute the program, instead of typing RUN 80 or GOTO 10, you need only to press the (def) key and then the letter

used as a label. In the above example, pressing (def) and then 'B' would cause 'SECOND' to appear on the display.

When DEF is used to execute a program, variables and mode settings are affected in the same way as when GOTO is used. See
Chapter 8 for details.

ReSerVe Mode

Another timesaving feature of the PC-3 is the ReSerVe mode.

Within the memory of the PC-3, 47 characters are designated for "Reserve Memory". You can use this memory to store frequently-
used expressions, which are then recalled by a simple two-keystroke operation.

NOTE: You store the strings in the ReSerVe mode and recall them for use in the RUN and PROgram modes.

Try this example of storing and recalling a reserved string.

Switch the PC-3 into ReSerVe mode by moving the slide switch to the RSV position.

Type NEW, followed by the (ente§) key. This will clear out any previously stored characters in the same way NEW clears out
stored programs in the PROgram mode.

Type (Shift) followed by 'A'.

lr>Put Display

(shift) a A: _

74

Notice that the "A" appears in the display at the left followed by a colon.

Enter the word 'PRINT' and press the (enter) key.

lr|Put Display

PRINT (ENTER) A: PRINT

A space appears after the colon signalling you that 'PRINT' is now stored in the reserve memory under the letter A.

Switch the PC-3 into PROgram mode. Type NEW followed by (enter) to clear the program memory. Type '10' as a line number
and then press (shift) and the 'A' key:

Input Display

10 (shift) a 10 PRINT.

(ENTER) 10: PRINT

Immediately the word "PRINT" will appear in the display after the line number.

Any character sequence can be stored in ReSerVe Memory. The stored strings can be recalled at any time in either the program
or the RUN mode by typing (SHlFT)and the key that the string is stored under. The keys available are the same as those used with
DEF, i.e., those in the dark area of the keyboard.

75

To edit a stored character sequence, switch into the ReSerVe mode and press(SHiFT)and the key under which the sequence is stored.

You can then edit using the Left Arrow, Right Arrow, DEL, and INS keys in the same way as in other modes.

When the last character in a stored sequence is a '@' character, it is interpreted as (enter) when the sequence is recalled. For
example, if you store the string "GOTO 100@" under the 'G' key, typing (shift) and 'G' in the RUN mode immediately starts

execution of the program at line 100. Without the '@' character, you must press (enter) after the (shift) and 'G' to begin

execution.

Templates

Two templates are provided with the PC-3. You can use these templates to help you remember frequently used ReSerVe sequences
or DEF key assignments. After you have labelled the programs or created the sequences, mark the templates so you know what
is associated with each key. You can then execute programs or recall sequences using the two-keystroke operation.

For example, if you have one group of programs which you often use at the same time, label the programs with letters and mark
the template so that you can easily begin execution of any of the programs with two keystrokes. You might also store frequently-

used BASIC commands and verbs in the Reserve Memory and mark a template to speed to entering BASIC programs.

Example:
SIN COS TAN ASN ACS ATN

RUN NEW INP. PR| a*A B*BDnnnnnnnt: j

76

CHAPTER 7 USING THE PC-3 PRINTER/CASSETTE INTERFACE
The PC-3 Printer/Cassette Interface allows you to add a printer and cassette interface to your Radio Shack PC-3 Pocket Computer.

The PC-3 Printer/ Cassette Interface features:

24-character-wide thermal printer with approximately a 48-line-per-minute print speed.

Convenient paper feed and tear bar.

Simultaneous printing of calculations as desired.

Easy control of display or printer output in BASIC.

Cassette interface to connect to any standard cassette recorder.

Manual and program control of recorder for storing programs, data, and reserve key settings.

Filenames and passwords on tape for control and security.

Built-in rechargable Nickel-Cadmium batteries for portability.

* Recharger supplied.

Introduction to the Machine

Before you begin to use the PC-3 Printer/Cassette Interface you should first become familiar with its components. Examine the

front of the machine:

77

PAPER TAPE
COMPARTMENT

PINS FOR
COMPUTER

PAPER FEED
BUTTON

CHECK CONNECTOR
For service only)

LOW BATTERY INDICATOR

PRINTER SWITCH

REMOTE SWITCH

AC ADAPTER
JACK

CASSETTE RECORDER
JACK

Figure 14. Printer/Cassette Interface (Front View)

78

REMOTE switch. This switch is used to operate the Cassette Recorder manually.

PRINTER ON/OFF. This switch is used to turn the printer on and off to conserve batteries when not in use.

LOW BATTERY indicator. This indicates when there is insufficient power to operate the PC-3 Printer/Cassette Interface

Paper feed button. Pressing this key will feed the paper in the printer.

PC-3 POCKET COMPUTER

PC-3 PRINTER/
CASSETTE INTERFACE

AC ADAPTER
JACK

REMOTE JACK
MICROPHONE JACK

EARPHONE JACK
Figure 15. PC-3 Printer/Cassette Interface (Right Side View)

Power

The PC-3 Printer/Cassette Interface is powered by a rechargeable Nickel Cadmium battery. It is necessary to recharge the battery
when the low battery indicator comes ON.

79

To recharge the battery, turn the Computer and Printer/Cassette Interface power OFF, connect the AC adapter to the Printer/
Cassette Interface, and plug the AC adapter into a wall outlet. (See the diagram.) It will take about 15 hours before the battery
is fully charged.

Important Note! Using any AC adapter other than the one supplied may damage the Printer/Cassette Interface.

PC-3 PRINTER/CASSETTE
INTERFACE

PC-3 POCKET COMPUTER AC ADAPTER

PLUG

AC ADAPTER CONNECTING
JACK OF PC-3 PRINTER/
CASSETTE INTERFACE WALL OUTLET

Figure 16. How to Connect the AC Adapter

Always connect the recharger to the Printer/Cassette Interface first. Then plug the recharger into the wall socket

When the batteries in the PC-3 Printer/Cassette Interface become discharged, the low battery indicator on the front of the unit
lights up and the unit will not function. At this point, you must recharge the batteries. When you first receive your Printer/
Cassette Interface it is likely that the batteries insufficiently charged due to the time spent in storage. The unit will require charging
before its first use.

80

NOTE: When the Computer is used with the Printer/Cassette interface and the battery power of the Computer decreases, the
power will be supplied to the Computer from the Printer/Cassette Interface.

Connecting the PC-3 Pocket Computer to the PC-3 Printer/Cassette Interface

To connect the PC-3 Pocket Computer to the PC-3 Printer/Cassette Interface, use the following procedure:

1. Turn OFF the power in both units.

NOTE: It is important that the power be OFF on the Computer before connecting the units, or the Computer may "hang
up". If this should occur, use the ALL RESET button to clear the Computer.

2. Remove the protective pin cover from the left side of the Computer and snap it into place on the bottom of the Printer/
Cassette Interface.

Snap into place here

Protective pin cover

Figure 17 Figure 18.

81

3. Place the Computer on the Printer/Cassette Interface shown in Fig. 19.

4. Lay the Computer down flat.

5. Gently slide the Computer to the left so that the pins on the Printer/Cassette Interface are inserted into the plug on the
Computer.

DO NOT FORCE the Computer and Printer/Cassette Interface together. If the two parts do not mate easily STOP and
check to see that the parts are correctly aligned.

Figure 19.
Figure 20.

82

6. To use the Printer, turn on the PC-3 Computer power switch, and then the Printer switch.
Press the (CL) key.

If the (CL) key is not pressed, the Printer may not operate.

Note: If executed when the Printer switch is set at the OFF position, printing causes an error (ERROR code 8). (The low battery
indicator may light up at this point.)

In this case, turn the Printer switch ON, and press the (CD key. Then, execute the printing again.

Loading the Paper

(1) Turn off the Printer switch.

(2) Open the paper cover. (Fig. 21)

Paper cover

Figure 21.

(3) Insert the leading edge of the roll of paper into the slot located in the paper tape compartment. (Fig. 22) (Fig 23)
(Any curve or crease near the beginning of the paper makes insertion difficult.)

83

Figure 22.
Figure 23.

NOTE: Use of irregular paper tape may cause irregular paper feeding or paper
m,sfeed. Therefore, be sure to tighten the roll before using, as shown in
the figure.

Paper tape roll

Cs^> - ((«o

R9ure24 - Wrong Right

(4) Turn on the Printer switch and press the paper feed button until th

Paper cutter

e paper comes out of the Printer mechanism. (Fig. 25)

Paper feed button

(5) Install the roll of paper into the compartment.

Figure 25.

84
Printer switch

(6) Close the paper cover. (Fig. 26.!

Paper cover——

~

Roll of Paper

Figure 26.

lunTiZ
P3Per fr°m the Print6r

'
'^ the P3Per ° n the ''^ °f tHe PaPer r°" compartment and then Pu " * strai 9h t out to the

Do not pull the paper backwards, as this may cause damage to the Printer mechanism.

CAUTION: —
Paper tape is available wherever the PC-3 Printer/Cassette Interface is sold.
Please order replacement paper tape to your local Radio Shack store. Please specify Model name when ordering The paper

^ll^ 01!^!^^^^^ damage to the unit

Using the Printer

If you are using the PC-3 Computer as adulator, you may use the PC-3 Printer to simultaneously print your calculations. This is
y accomphshed by pressing the mD key and then the ^ key (p „ Np) (Jhe indicator "_

Played. If not, press the gfijlj) and fNTER) keys. Check to see that the mode switch is set at the RUN position.) After this,

85

t:z:z^,zzr of • c8icuis,i°n
' ,he ™"ms^^- - **- -- ««- *. «,„, wil , *

Input

300 / 50

Paper

wide. The only difference is that, if you PR ,Nt some hi "to tfTZ '"TT *' ^'^ ^ *' »""" ' re 24 Characters

you to see the extra characters. With the LPR INT verb thP
" " '°n9er *'" *< CharaCt6rS

' there is no^ f° r

as is required.
NT^ the 6Xtra characters wil1 be Printed on a second and possibly a third line,

Programs which have been written with print^ k«

ment in the program (see Chap 8 r etl, iT^Zl^T *" **"*' *
'M"» '

statements. PR.NT=PR,NT wi „ reset this jition tn it

'^ *" St3tement Wi " aCt 3S if they were LPR| NT
IF statement allowing a choice of o u i t ime t

"Z" ™\ ™T^^ ^ * ''"^ '" ' P""™ in a"time the program „ used (see Relationship of Two Variables example in Chapter 9).

Lu^r;;:z::
9z^7^,:^ comr (see chapter 8 for detai,s) - ,f used—-

—

given with LUST to limit the lines wh hI™ pled ZT °T * ^"^ * "" """*»'^ ™y a ' S° be

may be used to print one program line ThT econd d J J T"" " "^ *'" 24^^^ tW° ° r more lines

will clearly identify each separate programme
9 "

neS ""' *" ,n*nted f° Ur CharaCterS s° that^ ""• number

86

Caution :

• In case an error (ERROR code 8) occurs due to a paper misfeed, tear off the paper tape, and pull the remaining part of the
paper tape completely out of the Printer. Then press the (CL) key to clear the error condition.

• When the Printer/Cassette Interface is exposed to strong external electrical noise, it may print numbers at random. If this
happens, depress the (brk) key to stop the printing; then press the (CD key.

Pressing the (CL) key will return the Printer to its normal condition.

Twhen the Printer causes a paper misfeed or is exposed to strong external electrical noise while printing, it may not operate
normally and only the symbol "BUSY" is displayed. If this happens, depress the £r® key to stop the printing. (Release

L.the paper misfeed.) Press the (CL) key.

• When the PC-3 Printer/Cassette Interface is not in use, turn off the Printer switch to save the battery life.

• Even while printing under the LPRINT command, the entry can be executed when an INPUT, INKEY$ or PRINT command is

performed.

In this case, however, the Printer will stop if the (CL) key is pressed. Therefore, be sure to press the (CD key upon completion
of printing.

Using a Cassette Recorder

With the Cassette Recorder connected, you can use the following commands:

CSAVE Saves the contents of a program or reserve memory on tape.

CLOAD Retrieves a program or reserve memory from tape.

CLOAD? Compares the program on tape with the contents of memory to insure that you have a good copy.

87

MERGE Combines a program on tape with one already in memory.

PR INT# Saves the contents of variables on tape.

INPUT# Retrieves the contents of variables from tape.

CHAIN Starts execution of a program which has been stored on tape.

Programs may be assigned filenames which will be stored on the tape. This allows the unambigous storage of many programs on
one tape. Programs can then be retrieved by name and the tape will be searched to find the appropriate file. If programs have

been password-protected in memory, they cannot be stored on tape, but a password can be assigned at the time that unprotected

programs are CSAVEd. Such password-protected programs can be used by other person, but they will not be able to LIST or

modify the programs in any way.

See Chapter 8 for details on all these verbs and commands.

When a program or data is recorded on tape, it will be preceded by a high-pitched tone of approximately 7 seconds. This tone

serves to advance the tape past any leader and to identify the beginning of each program or set of data.

NOTE: Whenever you wish to read in something from tape, it is essential that the tape be positioned on one of these leader

tone areas.

When searching for a filename, the tape can read only in a forward direction. This search is relatively slow, so it is sometimes
preferable to keep track of program locations by using tape counter. Using fast forward, rewind or play, the tape can be manually

positioned to the leader tone area of the correct program before the retrieval is started. While scanning the tapes, you will be

able to hear the high tones which begin each program. In between these high tones will be a mixed high and low tone sound which
indicates programs or data.

88

See the Operation Manual supplied with the PC-3 Printer/Cassette Interface for more detailed o perating instructions.

PC-3 PRINTER/CASSETTE
INTERFACE CASSETTE RECORDER

Figure 27. Cassette Cables and Interface Jacks Figure 28. Recorder Connected to Interface

89

• To transfer program and data from the tape, use the tape recorder with which the tape was prerecorded. A tape recorder, if

different from that used for recording, may cause no transfer of the prerecorded tape.

Care and Maintenance

* Be sure that the power is OFF on both units when connecting or disconnecting the Printer/Cassette Interface and the

Computer.

* The Printer should be operated on a level surface.

* The unit should be kept away from extreme temperatures, moisture, dust, and loud noises.

* Use a soft, dry cloth to clean the unit. DO NOT use solvent or a wet cloth.

* Keep foreign objects out of the unit.

Errors

If the batteries become low, or if the Printer/Cassette Interface is subjected to strong noise, the unit may cease to function and the

Pocket Computer may "hang up". This can also occur if the units are connected and the power is not turned on the Printer/

Cassette Interface when a LPRINT or LLIST command is used. In some cases, ERROR 8 may be displayed on the Computer.

The CLear key may usually be used to clear this condition, but in some cases the ALL RESET may be required. Be sure to restore

adequate power to Printer/Cassette Interface before attempting to use it again.

Examples

The procedures for the Computer and the Cassette Recorder operation

90

1. Saving

(1) Turn off the REMOTE switch.

(2) Put a tape into the Cassette Recorder.

(3) Turn on the REMOTE switch.

(4) Depress the RECORD button.

(5) With the same command which saves your program, you must give the program a "filename". This is for reference pur-
poses. Your filename cannot be longer than 7 characters. To save the program with a filename, type:

CSAVE (SHIFT) " PRO-1 (SHIFT) "

Your program will be saved with the name "PRO-1". You can assign any name you desire, whatever is easiest for you to keep
track of. Also, note that there is a 7-character length limit for your filename. If the name is longer than 7 characters, the excess
is ignored. A good practice is to maintain a program log, which includes the program name, starting and stopping locations on
tape (use the counter numbers), and a brief description of what the program does.

Press the (enter) key. At this time, you should hear a shrill buzzing sound, and the tape should be turning. Also, the "BUSY"
indicator should light up. This tells you that the computer is "busy" transferring your program from memory to the tape. If

this does not happen, start again from the beginning of the section.

Once the computer arrives at the end of the program, the "BUSY" indicator light will go off, the recorder will stop, and the
"prompt" will re-appear on the display. In order to insure that this has in fact been accomplished, we can read it back into

memory from the tape as explained in the next section.

91

2. Collating the Computer and Tape Contents

Now that the your program is saved on tape, you wili no doubt want to see if it is really there. To do this is relatively simple;

use the CLOAD? command.

(1) Turn off the REMOTE switch to clear remote control functions.

(2) Rewind the tape to the place at which you started, again using the number counter.

(3) Turn on the REMOTE switch to set remote control functions.

(4) Depress the PLAY button.

(5) To collate the program with a filename type:

CLOAD (shift) ? (shift) "PRO-1 (shift)
"

Press the Center) key.

The computer compares the CSAVEd program with the one in its memory. If all went well, it will display the "prompt" and end

its check. If all did not go well, an error message will be displayed, usually ERROR 8. This tells you that the program on tape is

somehow different from the program in computer's memory. Erase that portion of tape and start again.

3. Transfer from Tape ,^v

(1) Turn off the REMOTE switch.

(2) Rewind the tape to the place at which you started, again using the number counter.

(3) Stop rewinding.

(4) Turn the REMOTE switch back ON.

(5) Press the PLAY button.

92

(6) Type:

CLOAD (shift) "PRO-1 (shift)
"

and press the (enter) key.

(Remember "PRO-1 " is the filename we have given to your program. If you saved the program under another name, you
must use that name instead of PRO-1 .)

(7) The "BUSY" indicator will now light up, and the program will be brought back into the Computer's memory for use.

(8) The cassette retains a copy of the program, so you can CLOAD the same program over and over again!
If an error message (ERROR 8) is displayed while loading, start again from the above step (1).

Precautions for collation and transfer

The program is recorded on tape as illustrated below:

r

Tape transport direction

_ Non-signal

section (Beep)

t

Program

-

FilenameFigure 28.

When the tape is played back, its non-signal section produces a specific continuous beep, while the filename and program-
recorded sections cause an intermittent beep.

93

If collation or transfer was not done properly, the "BUSY" symbol does not disappear and the tape does not stop. To stop the

tape operation, press the (brk) key. Then, try again from the beginning.

94

CHAPTER 8 BASIC REFERENCE
The following chapter is divided into three sections:

Commands: Instructions which are used outside a program to change the working environment, perform utilities, or control
programs.

Verbs: Action words used in programs to construct BASIC statements.

Functions: Special operators used in BASIC programs to change one variable into another.

Commands and verbs are arranged alphabetically. Each entry is on a separate page for easy reference. The contents of each section
are shown in the tables below so that you can quickly identify the category to which an operator belongs. Functions are grouped
according to four categories and arranged alphabetically within each category.

95

Commands

Program Control Variables Control

CONT CLEAR
GOTO* DIM*
NEW
RUN Angle Mode Control

DEGREE*
Cassette Control GRAD*

CLOAD RADIAN*
CLOAD?
CSAVE Other

INPUT#* BEEP*
MERGE PASS*
PRINT#* RANDOM*

USING*
Debugging WAIT*

LIST

LLIST

TROFF*
TRON*

*These commands are also BASIC verbs. Their effect as commands is identical to their effect as verbs, so they are not described in

the command reference section. See the verb reference section for more information.

96

Control and Branching

CHAIN
END
FOR
GOSUB
GOTO
IF. . .THEN
NEXT
ON . . . GOSUB
ON . . . GOTO
RETURN
STOP

Assignment and Declaration

CLEAR
DIM

LET

Verbs

Input and Output

AREAD
CSAVE
DATA
INPUT

INPUT#
LPRINT

PAUSE
PRINT
PRINT#
USING
READ
RESTORE
WAIT

Other

BEEP

DEGREE
GRAD
RADIAN
RANDOM
REM
TROFF
TRON

97

Functions

Pseudovariables Numeric Functions

INKEY$ ABS
MEM ACS
PI ASN

ATN
String Functions COS

ASC DEG

CHR$ DMS

LEFTS EXP

LEN INT

MID$ LOG

RIGHTS LN

STR$ RND
VAL SGN

SIN

SQR
TAN

98

COMMANDS

1 CLOAD
2 CLOAD "filename"

Abbreviations: CLO., CLOA.

See also: CLOAD?, CSAVE, MERGE, PASS

Purpose

Ze'ueZlZT^ " ""* " ^ * ^^ ™" °""^ ^ '< ™^ be "«* with the optional PC-3 Printer/

Use

I'i'J"
C
,°
mP'"e,

^ " *' PROgn,m " RUN m0t"' <"°g"m m'mo" ls loaded '""" <"• op.. Whe„ ft. Com„u,.r is in ,h„

99

Examples

CLOAD Loads the first program from the tape.

CLOAD "PR03" Searches the tape for the program named "PR03" and loads it.

Notes:

1. The computer cannot identify the stored contents as a program or a reserve. Therefore, if a mode is designated incorrectly,

the reserved contents may be transferred to the program area or the program to the reserve area, causing the computer to remain

inoperative. If this happens, reset the computer by pressing the RESET button on the back of the computer.

2. If the designated filename is not retrieved, the computer will continue to search for the filename even after the tape reaches the

end. In this case, stop the retrieval function by pressing the
(J^ key. This applies to MERGE, CHAIN, CLOAD? and INPUT#

commands to be described later.

3. If an error occurs during CLOAD or CHAIN command (to be described later) execution, the program stored in the computer

will be invalid.

100

1 CLOAD?

2 CLOAD? "filename "

Abbreviations: CLO.?, CLOA.?

See also: CLOAD, CSAVE, MERGE, PASS

Purpose

:rP«rp«P™:zi
,

°rrf,r
8 program sared on ""-"•~ «»-»- »

—

«- »* ---
Use

^r:™r? oommand cwes **— •— *—» »;» *. fl„ PWm SKr.d „ the tape
,

::™z::i,"°^:r
nd ssarch8s ,he ,,pe f° r ,he—

-

h°*—
>
*- »—- *»-

Examples

CLOAD? Compares the first program from the tape with the one in memoryCLOAD? "PR03" Searches the tape for the program named 'PROS' and compares it to the one stored in memory.

101

1 CONT

Abbreviations: a, co., CON,

See also: RUN STOP verb

Purpose

The CONT command is used to continue a program which has been temporarily halted.

Use

When the STOP verb is used to halt a program during execution, the program can be continued by entering CONT in response to

the prompt.

When a program is halted using the (
brk

) key, the program can be continued by entering CONT in response to the prompt.

Examples

CONT Continues an interrupted program execution.

102

1 CSAVE

2 CSAVE "
filename"

3 CSAVE, "password "

4 CSAVE "
filename ", "password"

Abbreviations: CS., CSA., CSAV.

See also: CLOAD, CLOAD?, MERGE, PASS

Purpose

The^ CSAVE contend is used to save a program to cassette tape. ,t can be used with the optiona. PC-3 Printer/Cassette ,nte,

Use

Th, „* ,„m of ,h„ CSAVE commmd „ites a|| of (he proorms jn mmory on(o^ cassem^^ ^^^
ZZ" ,0™ °' ^ CSWE °°mma"d """" '" °' "» <"°*™ *— "™ *•—» *. and assig„s *. Seated

*.>— c,„ „„ „ m^rPnsr«rji;z^zrr by anvone
' but on,y !om-ne wh

°
k-°ws

filename and password.

It the PC-3 Computer is in PROgram or RUN mode, program memory is loaded to the tape. When the PC-3 Computer is in the

ReSerVe mode, reserve memory is loaded.

Examples

CSAVE "PR03", "SECRET" Saves the programs now in memory onto the tape under the name 'PR03', protected with the

password 'SECRET'.

104

L_

1 GOTO expression

Abbreviations: G., GO., GOT.

See also: RUN

Purpose

The GOTO command is used to start execution of a program.

Use

GOTO differs from RUN in four respects:

1

)

The value of the interval for WAIT is not reset.

2) The display format established by USING statements is not cleared.
3) Variables and arrays are preserved.

4) PRINT = LPRINT status is not reset.

5) The pointer for READ is not reset.

Execution of a program with GOTO is identical to execution with the (def) key.

Examples

GOTO 100 Begins execution of the program at line 100.
105

1 LIST

2 LIST expression

Abbreviations: L., Li., LIS.

See also: LLIST

Purpose

The LIST command is used to display a program.

Use

The List command may only be used in the PROgram mode. The first form of the list command displays the statement with the

lowest line number.

The second form displays the statement with the nearest line number greater than the value of the expression. The Up Arrow and

Down Arrow keys may then be used to examine the program.

Examples

LIST 100 Displays line number 100.

106

1 LLIST

2 LLIST expression^
, expression-2

Abbreviations: LL., LLI.,. LLIS.

See also: LIST

Purpose

The LLIST command is used for printing a program on the optional PC-3 Printer/Cassette Interface.

Use

The LLIST command may only be used in the PROgram mode.

The first form prints all of the programs in memory.

The second form prints the statements from the line number with the nearest line equal to or greater than the value of expression
1 .o ». ™mst ,„ equal to or ar«mr than the value of expression 2 There must te at ieast t

«

wo iines^jj^zz:.
Examples

LIST 100, 200 Lists the statements between line numbers 100 and 200.

107

1 MERGE
2 MERGE "filename

"

Abbreviations: MER., MERG.

See also: CLOAD, CLOAD?, CSAVE; PASS verb

Purpose

The MERGE command is used to load a program saved on cassette tape and merge it with programs existing in memory. It can
only be used with the optional PC-3 Printer/Cassette Interface.

Use

The first form of the MERGE command loads the first program stored on the tape, starting at the current position, and merges
it with programs already in memory.

The second form of the MERGE command searches the tape for the program whose name is given by "filename", and merges it

with the programs already in memory.

Programs with overlapping line numbers are treated as one program after merging.

If the program in memory is passward-protected, another password-protected program cannot be merged with it. If the program
on cassette is not password-protected, it becomes protected by the password of the program in memory when merged.

108

Example

MERGE Merges the first program from the tape.
MERGE "PR03" Searches the tape for the program named 'PR03' and merges it.

Note: For example, assume the Computer memory contains the following program:
10: PRINT "DEPRECIATION ALLOWANCE"
20: INPUT "ENTER METHOD: "

; A

"DEP,- o„ „. Cue ,jtaPe „ zzti:*z, T.r
are curren,iv co"s,ruo,in9 - The f,r!' ""

*
,o ,m *•- -*

Nowtype: MERGE "DEP1" and press (enter)

The computer will now load "DEP1" into memory IN ADDITION tn th Q *k
something in memory similar to this:

ADDITION to the above program. After "DEP1" is loaded, you might find

109

10

20

10

20

30

PRINT "DEPRECIATION ALLOWANCE"
INPUT "ENTER METHOD: "; A
"DEP1" : REM >> SECOND MODULE <<
PRINT "INTEREST CHARGES"
INPUT "AMOUNT BORROWED: "; B

(etc)

Note that, unlike the CLOAD command, the new program DID NOT replace the existing one and that some line numbers have been
duplicated. Also note that a "label" was used on the first line of the merged module. This allows "LINKING" of the modules
together (See LINKING MERGED MODULES - below).

It is important that you review the following information before proceeding with any further editing or programming:

IMPORTANT NOTES :

Once a MERGE is performed, no INSERTIONS, DELETIONS, or CHANGES are allowed to previously existing program lines.

110

Examples:

10 "A" REM THIS IS EXISTING PROGRAM
20 FOR T=1 TO 100

30 LPRINT T

40 NEXT T

:

(Etc)

BEFORE doing a MERGE of the next program, make any necessary changes to this program.
Then MERGE the next program: MERGE "PROG2" (example)

10 "B" REM THIS IS MERGED PROGRAM
20 INPUT "ENTER DEPRECIATION: "

; D
30 INPUT "NUMBER OF YEARS: "

; Y
40 . Etc.

Now you may make changes to the above program since it was the last MERGED portion.

111

LINKING MERGED MODULES (programs) TOGETHER

Since the processor executes your program lines in logical sequence, it will stop when it encounters a break in the sequence in line

numbering; i.e., if line numbers 10, 20, 30 are followed by duplicate line numbers in a second module, the following techniques

are valid: GOTO "B" "GOSUB "B", IF . . . THEN "B" (B is used for example only, you can use any label).

112

1 NEW

Abbreviations: none

Purpose

The NEW command is used to clear the existing program or reserve memory.

Use

When used in the PROgram mode, the NEW command clears all programs and data which are currently in memory
When used in the ReSerVe mode, the NEW command clears all existing reserve memory.
The NEW command is not defined in the RUN mode and will result in an Error 9.

Examples

NEVV Clears program or reserve memory

113

1 PASS '

'character string"

Abbreviations: none

See also: CSAVE, CLOAD

Purpose

The PASS command is used to set and cancel passwords.

Use

Passwords are used to protect programs from inspection or modification by other users. A password consists of a character string

which is no more than seven characters long. The seven characters must be alphabetic or one of the following special symbols:

!"#$%&()* + -/,. :;<=>?@V~7r-
Once a PASS command has been given, the programs in memory are protected. A password-protected program cannot be examined

or modified in memory. It cannot be output to tape or listed with LIST or LLIST, nor is it possible to add or delete program lines.

If several programs are in memory and PASS is entered, all programs in memory are protected. If a non-password-protected

program is merged with a protected program, the merged program is protected. The only way to remove this protection is to

execute another PASS statement with the same password or to enter NEW (which erases the programs).

Examples

PASS "SECRET" Establishes the password 'SECRET' for all programs in memory.

114

1 RUN
2 RUN expression

Abbreviations: R., RU.

See also: GOTO

Purpose

The RUN command is used to execute a program in memory.

Use

The first form of the RUN command executes a program beginning with the lowest numbered statement in memory.

v'alThe^Ln
e

-

^^^ **"*""
*^^ be9inm

'

ng^ *^ numb8red »™"«^ or^ to the

RUN differs from GOTO in five respects:

1

)

The value of the interval for WAIT is reset.

2) The display format established by USING statements is cleared.
3) Variables and arrays other than the fixed variables are cleared
4) PRINT = PRINT status is set.

5) The pointer for READ is reset to the beginning DATA statement.

115

Execution of a program with GOTO is identical to execution with the DEF key. In all three forms of program execution, FOR/
NEXT and GOSUB nesting is cleared.

Examples

RUN 100 Executes the program which begins at line number 100.

116

VERBS

1 AREAD variable name

Abbreviations: A., AR., ARE., AREA.

See also: INPUT verb and discussion of the use of the DEF key in Chapter 6.

Purpose

The AREAD verb is used to read in a single value to a program which is started using the DEF key.

Use

When a program is labelled with a letter, so that it can be started using the DEF key, the AREAD verb can be used to enter a
single starting value without the use of the INPUT verb. The AREAD verb must appear on the first line of the program following
the label. If it appears elsewhere in the program, it will be ignored. Either a numeric or string variable may be used, but only one
can be used per program.

To use the AREAD verb, type the desired value in the RUN mode and press the DEF key, followed by the letter which identifies
the program. If a string variable is being used, it is not necessary to enclose the entered string in quotes.

1 17

Examples

1(1 "X": AREAD N

20 PRINT N^2
30 END

Entering "7 (5ef) X" will produce a display of "49".

Notes:

1

.

When the display indicates PROMPT (">") at the start of program execution, the designated variable is cleared.

2. When the contents are displayed by the PRINT verb at the start of program execution, the following is stored:

When the program below is executed;

PRINT "ABC", "DEFG"
AREAD A$: PRINT A$

DEFG

Example:

10 "A"

20 "S"

RUN mode

(def) QD - ABC
.(def) (JJ -+ DEFG

• When the display indicates PRINT numeric expression, numeric expression or PRINT "String", "String", the contents on the

right of the display are stored.

• When the display indicates PRINT Numeric expression; Numeric expression; Numeric expression..., the contents displayed

first (on the extreme left) are stored.

• When the display indicates PRINT "String"; "String"; "String"..., meaningless contents may be stored.

118

1 BEEP expression

Abbreviations: B., BE., BEE.

Purpose

The BEEP verb is used to produce an audible tone.

Use

The BEEP verb causes the PC-3 Computer to emit one or more audible tones at 4 kHz. The number of beeps is determined by the

expression, which must be numeric. The expression is evaluated, but only the integer part is used to determine the number of

beeps.

BEEP may also be used as a command using numeric literals and predefined variables. In this case, the beeps occur immediately

after the (enter) key is pressed.

Examples

10 A = 5 : B$="9"
20 BEEP 3 Produces 3 beeps.

30 BEEP A Produces 5 beeps.

40 BEEP (A+4)/2 Produces 4 beeps.

50 BEEP B$ This is illegal and will produce an ERROR 9 message.

60 BEEP —4 Produces no beeps, but does not produce an error message.

119

1 CHAIN

2 CHAIN expression

3 CHAIN "filename
"

4 CHAIN "filename", expression

Abbreviations: CH., CHA., CHAI.

See also: CLOAD, CSAVE, and RUN

Purpose

The CHAIN verb is used to start execution of a program which has been stored on cassette tape. It can only be used in connection
with the optional PC-3 Printer/Cassette Interface.

Use

To use the CHAIN verb, one or more programs must be stored on a cassette. Then, when the CHAIN verb is encountered in a
running program, a program is loaded from the cassette and executed.

The first form of CHAIN loads the first program stored on the tape and begins execution with the lowest line number in the
program. The effect is the same as having entered CLOAD and the RUN when in the RUN mode.

The second form of CHAIN loads the first program stored on the tape and begins execution with the line number specified by the
expression.

120

The third form of CHAIN searches the tape for the program whose name is indicated by "filename", loads the program, and begins

execution with the lowest line number.

The fourth form of CHAIN will searches the tape for the program whose name is indicated by "filename", loads the program,

and begins execution with the line number indicated by the expression.

Examples

10 CHAIN Loads the first program from the tape and begins execution with the lowest line number.

20 CHAIN "PRO-2", 480 Searches the tape for a program named PRO-2, loads it, and begins execution with line number 480,

121

For example, let's assume you have three program sections named PRO-1, PRO-2, PRO-3. Each of these sections ends with a

CHAIN statement.

"PRO-1"

10:

20:

Execution

400: CHAIN

400: CHAIN "PRO-2", 410

."PRO-2"

410:

Execution

700: CHAIN

700: CHAIN "PRO-3", 710

Magnetic tape

(" f " indicates the position of the tape recorder head.

Filename

"PRO-2"
Filename

"PRO-3"

Filename

"PRO-2"
Filename

"PRO-3"

122

Filename

"PRO-2"
Filename

"PRO-3"

990: END

During execution, when the Computer encounters the CHAIN statement, the next section is called into memory and executed.

In this manner, all of the sections are eventually run.

123

1 CLEAR

Abbreviations: CL, CLE., CLEA.

See also: DIM

Purpose

The CLEAR verb is used to erase all variables which have been used in the program and to reset all preallocated variables to zero or
NUL

Use

The CLEAR verb recovers space which is being used to store variables. This might be done when the variables used in the first

part of a program are not required in the second part and available space is limited. CLEAR may also be used at the beginning

of a program when several programs are resident in memory and you want to clear out the space used by execution of prior

programs.

CLEAR does not free up the space used by the variables A - Z, A$ - Z$, or A(1) - A(26) since they are permanently assigned

(see Chapter 4). CLEAR does reset numeric variables to zero and string variables to NUL.

Examples

10 A = 5 : DIM C(5)

20 CLEAR Frees up the space assigned to C() and resets A to zero.

124

1 DEGREE

Abbreviations: DE., DEC, DEGR., DEGRE.

See also: GRAD and RADIAN

Purpose

The DEGREE verb is used to change the form of angular values to decimal degrees.

Use

The PC-3 Computer has three forms for representing angular values - decimal degrees, radians, and gradient. These forms are used
in specifying the arguments to the SIN, COS, and TAN functions, and in returning the results from the ASN, ACS, and ATN
functions.

The DEGREE function changes the form for all angular values to decimal-degree form until a GRAD or RADIAN verb is used.

The DMS and DEG functions can be used to convert decimal degrees to degree, minute, second form and vice versa.

Examples

10 DEGREE
20 X = ASN 1 X now has a value of 90, i.e., 90 degrees, the Arcsine of 1

.

125

1 DATA expression list

Where: expression list is :

or:

Abbreviations: DA., DAT.

See also: READ, RESTORE

expression

expression
, expression list

Prupose

The DATA verb is used to provide values for use by the READ verb.

Use

When assigning initial values to an array, it is convenient to list the values in a DATA statement and use a READ statement in a

FOR
. . . NEXT loop to load the values into the array. When the first READ is executed, the first value in the first DATA state-

ment is returned. Succeeding READs use succeeding values in the sequential order in which they appear in the program, regardless

of how many values are listed in each DATA statement or how many DATA statements are used.

DATA statement have no effect if encountered in the course of regular execution of the program, so they can be inserted wherever
it seems appropriate. Many programmers like to include them immediately following the READ which uses them. If desired,

the values in a DATA statement can be read a second time by using the RESTORE statement.

126

Examples

10 DIM BOO) Sets up an array.

20 FOR I = 1 TO 10

30 READ B(l) Loads the values from the DATA statement into B().

40 NEXT I B(1) wilt be 1,B(2) will be 2, B(3) will be 3, etc.

50 DATA 1,2,3,4,5,6

70 DATA 7,8,9,10

127

1 DIM dim list

Where: dim list is: dimension spec.

or: dimension spec, dim list

and: dimension spec. is: numeric dim spec.

or: string dim spec.

and: numeric dim spec is: numeric name (size)

and; string dim spec is: string name (dims)

or: string name (dims) * len

and: numeric name is: valid numeric variable name

and: string name is: valid string variable name

and: dims is: size

or: size, size

and: size is: number of elements

and: len is: length of each string in a string array

Abbreviations: D., Dl.

Purpose

The DIM verb is used to reserve space for numeric and string array variables.

128

Use

Except for A(26) and A$(26), which are predefined (see Chapter 4), a DIM verb must be used to reserve space for any array

variable. An array variable and a simple variable may not have the same name. A sting array and a numeric array may have the

same name except for the dollar sign.

The maximum number of dimensions in any array is two: the maximum size of any one dimension is 255. In addition to the

number of elements specified in the dimension statement, one additional "zeroeth" element is reserved. For example, Dim B(3)

reserves B(0), B(1), B(2), and B(3). In two-dimensional arrays, there is an extra "zeroeth" row and column.

In string arrays, one specifies the size of each string element in addition to the number of elements. For example, DIM B$(3) * 12

reserves space for 4 strings which are each a maximum of 12 characters long. If the length is not specified, each string can contain

a maximum of 16 characters.

When a numeric array is dimensioned, all values are initially set to zero; in a string array the values are set to NUL.

A() and A$(
) may be dimensioned to sizes larger than 26 with the DIM statement. In this case part of the array is in the

preallocated memory and part is in program memory. (See Chapter 4.)

Examples

10 DIM B(10) Reserves space for numeric array with 1 1 elements.

20 DIM C$(4,4) * 10 Reserves space for a two-dimensional string array with 5 rows and 5 columns: each string will be a maxi-

mum of 10 characters.

129

1 END

Abbreviations: E., EN.

Purpose

The END verb is used to signal the end of a program.

Use

When multiple programs are loaded into memory at the same time, a mark must be included to indicate where each program ends
so that execution does not continue from one program to another. This is done by including an END verb as the last statement in

the program.

Examples

10 PRINT "HELLO" With these programs in memory a 'RUN 10' prints 'HELLO', but not 'GOODBYE'. 'RUN 30' prints

20 END 'GOODBYE'.

30 PRINT "GOODBYE"
40 END

130

1 FOR numeric variable = expression 1 TO expression 2

2 FOR numeric variable = expression 1 TO expression 2

STEP expression 3

Abbreviations: F. and FO.; STE.

See also: NEXT

Purpose

The FOR verb is used in combination with the NEXT verb to repeat a series of operations a specified number of times.

Use

The FOR and the NEXT verbs are used in pairs to enclose a group of statements which are to be repeated. The first time this

group of statements is executed the loop variable (the variable named immediately following the FOR) has the value of expression

1.

When execution reaches the NEXT verb, this value is tested against expression 2. If the value of the loop variable is less than or

equal to expression 2, the loop variable is increased by the step size and the enclosed group of statements is executed again, starting

with the statement following the FOR. In the first form, the step size is 1 ; in the second form, the step size is given by expression

3. If the value of the loop variable is greater than expression 2, execution continues with the statment which immediately follows

the NEXT. Because the comparison is made at the end, the statements within a FOR/NEXT pair are always executed at least once.

Expression 1 and expression 2 may have any value in the numeric range. When expression 1 and expression 2 are compared, only

131

the integer part is used. Expression 3 must be an integer in the range of -32768 to 32767; it may not be zero.

The loop variable may be used within the group of statements, for example as an index to an array, but care should be taken in

changing the value of the loop variable.

Programs should be written so that they never jump from outside a FOR/NEXT pair to a statement within a FOR/NEXT pair.

Similarly, programs must never leave a FOR/NEXT pair by jumping out. Always exit a FOR/NEXT loop via the NEXT statement.

To do this, set the loop variable to a value higher than expression 2.

The group of statements enclosed by a FOR/NEXT pair can include another pair of FOR/NEXT statements which use a different

loop variable, as long as the enclosed pair is completely enclosed: i.e., if a FOR statement is included in the group, the matching
NEXT must also be included. FOR/NEXT pairs may be "nested" up to five levels deep.

132

Examples

10 FOR 1 = 1 TO 5

20 PRINT I

30 NEXT I

This group of statements prints the numbers 1, 2, 3, 4, 5.

40 FOR N- 10 TO STEP -1-n This group of statements counts down 10, 9, 8, 7, 6, 5, 4, 3 # 2 1,0.

50 PRINT N

60 NEXT N

70 FOR N = 1 TO 10

80 X= 1

90 FOR F = 1 TO N

100 X = X*F
110 NEXT F

120 PRINT X
130 NEXT N

This group of statements computes and prints N factorial for the numbers from 1 to 10.

133

1 GOSUB expression

Abbreviations: GOS., GOSUB.

See also: GOTO, ON . . . GOSUB, ON . . . GOTO, RETURN

Purpose

The GOSUB verb is used to execute a BASIC subroutine.

Use

When you wish to execute the same group of statments several time in the course of a program, or use a previously written set of

statements in several programs, it is convenient to use the BASIC capability for subroutines using the GOSUB and RETURN verbs.

The group of statements is included in the program at some location where they are not reached in the normal sequence of execu-

tion. A frequent location is following the END statement which marks the end of the main program. At those locations in the

main body of the program, where subroutines are to be executed, include a GOSUB statement with an expression which indicates

the starting line number of the subroutine. The last line of the subroutine must be a RETURN. When GOSUB is executed, the

PC-3 Pocket Computer transfers control to the indicated line number and processes the statements until a RETURN is reached.

Control is then transferred back to the statement following the GOSUB.

A subroutine may include a GOSUB. Subroutines may be "nested" in this fashion up to 10 levels deep.

The expression in a GOSUB statement may not include a comma, e.g., 'A(1,2)' cannot be used. Since there is an ON . . . GOSUB
structure for choosing different subroutines at given locations in the program, the expression usually consists of just the desired line

134

number. When a numeric expression is used, it must evaluate to a valid line number, i.e., 1 to 999, or an ERROR 4 will occur.

EXAMPLES

10 GOSUB 100 When this program is run it prints the word 'HELLO' one time
20 END
100 PRINT "HELLO"
110 RETURN

13.R

1 GOTO expression

Abbreviations: G., GO., GOT.

See also: GOSUB, ON . . . GOSUB, ON . . . GOTO

Purpose

The GOTO verb is used to transfer control to a specified line number.

Use

The GOTO verb transfers control from one location in a BASIC program to another location. Unlike the GOSUB verb, GOTO

does not "remember" the location from which the transfer occurred.

The expression in a GOTO statement may not include a comma, e.g., 'A(1,2)' cannot be used. Since there is an ON . . . GOTO

structure for choosing different destinations at given locations in the program, the expression usually consists of just the desired

line number. When a numeric expression is used, it must evaluate to a valid line number, i.e., 1 to 999, or an ERROR 4 will occur.

Well-designed programs usually flow simply from beginning to end, except for subroutines executed during the program. There-

fore, the principal use of the GOTO verb is as a part of an I F ... TH EN statement.

136

Examples

10 INPUT A$ This program prints 'YES' if a 'Y' is entered and prints 'NO' if anything else is entered.

20 IFA$= "Y" THEN GOTO 50

30 PRINT "NO"

40 GOTO 60

50 PRINT "YES"

60 END

137

1 GRAD

Abbreviations: GR. , GRA.

See also: DEGREE and RADIAN

Purpose

The GRAD verb is used to change the form of angular values to gradient form.

Use

The PC-3 Pocket Computer has three forms for representing angular values - decimal degrees, radians, and gradient. These forms

are used in specifying the arguments to the SIN, COS, and TAN functions and in returning the rusults from the ASN, ACS, and

ATN functions.

The GRAD function changes the form for all angular values to gradient form until a DEGREE or RADIAN verb is used. Gradient

form represents angular measurement in terms of percent gradient, i.e., a 45° angle is a 50% gradient.

Examples

10 GRAD
20 X = ASN 1 X now has a value of 100, i.e., a 100% gradient, the Arcsine of 1.

138

1 IF condition THEN statement

2 IF condition statement

Abbreviations: none for IF, T., TH., THE.

Purpose

The IF . . . THEN verb pair is used to execute or not execute a statement, depending onconditionsat the time the program is run.

Use

In the normal running of a BASIC program, statements are executed in the sequence in which they occur. The IF . . . THEN
verb pair allows decisions to be made during execution so that a given statement is executed only when desired. When the

condition part of the I F statement is true, the statement is executed; when it is False, the statement is skipped.

The condition part of the IF statement can be any relational expression as described in Chapter 4. It is also possible to use a

numeric expression as a condition, although the intent of the statement will be less clear. Any expression which evaluates to

zero or a negative number is considered False; any which evaluates to a positive number is considered True.

The statement which follows the THEN may be any BASIC statement, including another IF. . . THEN. If it is a LET statement,

the LET verb itself must appear. Unless the statement is an END, GOTO, or ON . . . GOTO, the statement following the IF . . .

THEN statement is the next one executed, regardless of whether or not the condition is True.

The two forms of the I F statement are identical in action, but the first form is clearer.

139

Examples

10 INPUT "CONTINUE?"; A$
20 IF A$ = "YES" THEN GOTO 10

30 IF A$ = "NO" THEN GOTO 60

40 PRINT "YES OR NO, PLEASE"
50 GOTO 10

60 END

This program continues to ask 'CONTINUE?' as long as 'YES' is entered; it stops if

'NO' is entered, and complains otherwise.

Note:

This unit is capable of calculation for a mantissa of up to 12 digits. To increase accuracy, however, the mantissa is calculated in-

side the unit up to 12 digits, the result of which is rounded to the 10th digit for display. For example, 5/9 and 5/9 * 9 are

calculated as follows:

5/9 5.55555555555E-01

t -This is rounded to the 10th digit.

Display

5/9*9

Display

5.555555556E-01

4.99999999999E00

-This is rounded to the 10th digit.

Thus, calculations are carried out for mantissas of up to 12 digits. This may cause a difference in the results of calculations when
performed in succession and independently.

140

[Example 1] 3-9
Successive calculation: 3 (shift) CZD 2 GE)

Independent calculation: 3 (shift) Q 2 (enter
)

Q9 (ENTER)

9 (
ENTER) - -9.E-11

-» 9.

- 0.

Even in the IF statement, this difference may cause the program not to work as planned for any successive calculations.

[Example 2] 10 INPUT A
20 IF A^2>=9 THEN 50

With A = 3, 3^2 results in 8.99999999991 E 00, making an IF statement unformulated.

In this case, reprogram the calculation by using variables so that it is independent, as follows:

10 INPUT A
15 B = A A

2 \ The result of A ^ 2 is substituted for a variable, which is used to formulate con-

20 IF B>=9THEN 50
J

ditional expression.

Power calculations are based on log x and 10x , thus tending to cause a difference in the results from those calculated inside

the computer.

A^ B M0 B !ogA

• When the A is negative, B must be an integer.

141

1 INPUT input list

Where: input list is: input group

or: input group, input list

and: input group is: var list

or: prompt , var list

or: prompt ; var list

and: var list is: variable

or: variable , var list

and: prompt is: any string constant

Abbreviations: I., IN., INP., INPU

See also: INPUT #, READ

Purpose

The INPUT verb is used to enter one or more values from the keyboard.

Use

When you want to enter different values each time a program is run, use the INPUT verb to enter these values from the keyboard.

In its simplest form, the INPUT statement does not include a prompt string; instead, a question mark is displayed on the left edge

of the display with the cursor next to it. A value is then entered, followed by the (ENTER) key. This value is assigned to the first

142

variable in the list, if other variables are included in the same INPUT statement, this process is repeated until the list is exhausted.

If a prompt is included in the INPUT statement, the process is exactly the same except that, instead of the question mark, the

prompt string is displayed at the left edge of the display. If the prompt string is followed by a semicolon, the cursor is positioned

immediately following the prompt. If the prompt is followed by a comma, the prompt is displayed; then, when a key is pressed,

the display is cleared and the first character of the input is displayed at the left edge.

When a prompt is specified and there is more than one variable in the list following it, the second and succeeding variables are

prompted with the question mark. If a second prompt is included in the list, it is displayed for the variable which immediately

follows it.

If alphabetic characters are entered for a numeric variable, the variable is assigned a value of zero, if the (enter
) key is pressed

and no input is provided, the variable retains the value it had before the INPUT statement.

Examples

10 INPUT A

20 INPUT "A = "
; A

30 INPUT "A = "
, A

40 INPUT "X = ? ; x , "Y

Clears the display and puts a question mark at the left edge.

Displays ''A =" and then displays the input data continuously.

Displays 'A ='

When the data is input, "A =" disappears and then the data is displayed.

Displays 'X = ?' and waits for first input. After Center) is pressed, display is cleared

and 'Y = ?' is displayed at left edge.

143

1 INPUT #
2 INPUT # '

'filename"

3 INPUT # varlist

4 INPUT # '

'filename" ; var list

where: var list is: variable

or: variable var list

Abbreviations: l.#, IN. #, INP. #, INPU.L

See also: INPUT, PRINT #, READ

Purpose

The INPUT #verb is used to enter one or more values from the cassette tape.

Use

PRINT # saves the values of variables on tape. They can then be read back into the same or another program using the INPUT#
verb.

With the first form, the values are read from the tape and assigned to the 26 preallocated storage locations. They can be used by
referring to variables A ~ Z and A$ ~ Z$, as appropriate.

With the second form, the tape is searched for the indicated filename and the variables are loaded, as in the first form.

144

With the third form, variables are read from the tape, starting at the current location, and loaded into the variables in the order in
which they appear in the variable list. If there are not enough values on the tape for the number of variables in the list, then zero
or NUL values are assigned to the remainder.

With the fourth form, the tape is searched for the indicated filename and the variables are loaded from the values saved in that file.

There is a special variable form which may be used in the variable list. It looks like an array variable except that an asterisk is

enclosed in the parentheses, e.g., B(*) or F$(*). This form causes all values of the indicated variable to be restored from the tape
including the simple variable of the same name; i.e., B(*) restores B and B(0), B(1), B(2), etc., for as many values as were original-
ly stored. You may not read a single element of an array.

Examples

10 INPUT # A,B,C, Reads three values from the current position of the tape.

20 INPUT # "FIL2"; D, E, F Searches the tape for the file 'FIL2' and reads in three values.

30 INPUT # "FIL3"; G(*) Searches the tape for the file 'FIL3' and reads in G and as many values of G() as are

available.

NOTES:

1. When the prerecorded data on tape is transferred to a variable, the data and variable should be coincident in shape (numerical
or string variable), size, and length. An error (ERROR 8) will result unless they are coincident in size and length. No error
will occur when they are not coincident in shape. In this case, however, the transfer of incorrect data may result when the
numerical data is transferred to a string variable or the string data to a numerical variable. Therefore, the data and variable should
also be coincident in shape.

2. The data transfer to variables in the fixed variables and/or in the shape of A () terminates when the prerecorded data on tape
is out, or when the Computer memory is filled to capacity.

145

1 LET variable = expression

2 variable = expression

Abbreviations: LE.

Purpose

The LET verb is used to assign a value to a variable.

Use

The LET verb assigns the value of the expression to the designated variable. The type of the expression must match that of the
variable, i.e., only numeric expressions can be assigned to numeric variables and only string expressions can be assigned to string
variables. In order to convert from one type to the other, one of the explicit type conversion functions, STR$ or VAL, must be
used.

The LET verb may be omitted in all LET statements except those which appear in the THEN clause of an IF . . . THEN state-
ment. In this one case, the LET verb must be used.

Examples

f I = 10 Assigns the value 10 to I.

20 A = 5*1 Assigns the value 50 to A.

30 X$ = STR$ (A) Assigns the value '50' to X$.

40 IFI>10 THEN LET Y$ = X$+".00" Assigns the value '50.00' to Y$.

146

1 LPRINT print expr

2 LPRINT print expr
, print expr

3 LPRINT print list

Where: print list
j s: print expr

or: print expr ; print list

and: print expr
j s: expression

or: USING clause ; expression

The USING clause is described separately under USING

Abbreviations: LP., LPR., LPR I., LPRIN.

See also: PAUSE, PRINT, USINT, and WAIT

Purpose

The LPRINT verb is used to print information on the Printer of the optional PC-3 Printer/Cassette Interface.

Use

The LPRINT verb is used to print prompting information, results of calculations, etc. The first form of the LPRINT statement
prints a single value. If the expression is numeric, the value will be printed at the far right edge of the paper. If it is a string
expression, the print is made starting at the far left.

147

::::™:i:z:^i~ the paper is divided - tw°»~ -- - --— «*-

z ,":;;;::r int:e::;;r
at the ,eft* and each vaiue is printed~>— -—

-

It is possible to cause PRINT statements to work as LPRINT statements. See the PRINT verb for details.

-f an^LPRINT statement contains more than 24 characters, the first 24 are printed on one line, the next 24 on the next line, and

Unlike PRINT, there is no halt or wait after execution of an LPRINT statement as there is with PRINT.

Examples

Paper
10 A=10 : B=20 : X$="ABCDEF"
20 LPRINT A
30 LPRINT X$
40 LPRINT A, B

50 LPRINT A;B;X$

ABCDEF

10.

10. 20. ABCDEF

10.

20.

148

1 NEXT numeric variable

Abbreviations: N., NE., NEX.

See also: FOR

Purpose

The NEXT verb is used to mark the end of a group of statements which are being repeated in a FOR/NEXT loop.

Use

The use of the NEXT verb is generally described under FOR. The numeric variable in a NEXT statement must match the numeric
variable in the corresponding FOR.

Examples

10 FOR
1 = 1 TO 10 Prints the numbers from 1 to 10.

20 PRINT I

30 NEXT I

149

1 ON expression GOSUB expression list

Where: expression list
i S : expression

or: expression
, expression list

Abbreviations: 0., GOS., GOSU.

See also: GOSUB, GOTO, ON . . . GOTO

Purpose

The ON
. . .

GOSUB verb is used to execute one of a set of subroutines, depending on the value of a control expression.

Use

When the ON
. . .

GOSUB verb is executed, the expression between ON and GOSUB is evaluated and reduced to an integer If the
value of the mteger is 1, the first subroutine in the list is executed as in a normal GOSUB. If the expression is 2, the second
subroutine m the list is executed, and so forth. After the RETURN from the subroutine, execution proceeds with the statement
which follows the ON . . . GOSUB.

If the expression is zero, negative, or larger than the number of subroutines provided in the list, no subroutine is executed and
execution proceeds with the next line of the program.

NOTE: Commas may not be used in the expressions following the GOSUB. The PC-3 Computer cannot distinguish between
commas in expressions and commas between expressions.

150

Examples

20 Z A

T

G

A
OSUB 100 200 300

^ "T * '^^^
"' * 9™ %

"SEC0ND "; 3 P*"* "THIRD". Any other^w uim A bOt>UB 100,200,300 input does not produce any print.
30 END

100 PRINT "FIRST"

110 RETURN
200 PRINT "SECOND
210 RETURN
300 PRINT "THIRD"
310 RETURN

151

1 ON expression GOTO expression list

Where: expression list is: expression

or: expression , expression list

Abbreviations: 0., G., GO., GOT.

See also: GOSUB, GOTO, ON . . . GOSUB

Purpose

The ON
. . .

GOTO verb is used to transfer control to one of a set of locations, depending on the value of a control expression.

Use

When the ON
. . .

GOTO verb is executed, the expression between ON and GOTO is evaluated and reduced to an integer. If the
value of the integer is 1, control is transferred to the first location in the list. If the expression is 2, control is transferred to the
second location in the list, and so forth.

If the expression is zero, negative, or larger than the number of locations provided in the list, execution proceeds with the next
line of the program.

NOTE: Commas may not be used in the expressions following the GOTO. The Computer can not distinguish between commas
in expressions and commas between expressions.

152

Examples

II oTiVoTO 100 200 300
^

""'I
'

1 PrimS "F,RST"' 2 PrlntS
"SEC0ND "; 3 Prinu 'THIRD". Any otherw uim Abuio 100,200,300 input does not produce any print

30 GOTO 900

100 PRINT "FIRST"

110 GOTO 900

200 PRINT "SECOND"
210 GOTO 900

300 PRINT "THIRD"
310 GOTO 900

900 END

153

1 PAUSE print expr

2 PAUSE print expr , print expr

3 PAUSE print list

Where: print list is: primexpr

or: print expr ; print list

and: print expr
j s: expression

or: USING clause ; expression

The USING clause is described separately under USING

Abbreviations: PA., PAU., PAUS.

See also: LPRINT, PRINT, USING, and WAIT

Purpose

The PAUSE verb is used to print information on the display for a short period.

Use

The PAUSE verb is used to display prompting information, results of calculations, etc. The operation of PAUSE is identical toPRINT except that, after PAUSE, the PC-3 Computer waits for a short preset interval of about .85 seconds and the c n'inuesexecut.on of the program without waiting for the ENTER key or the WAIT interval.

154

The first form of the PAUSE statement displays a single value. If the expression is numeric, the value is printed at the far right
end of the display. If it is a string expression, the value is printed at the far left end of the display.

With the second form of the PAUSE statement, the display is divided into two 12-character halves. The two values are displayed
in each half, according to the same rules as above.

With the third form, the display starts at the left edge and each value is displayed immediately following the previous value from
left to right, with no intervening space.

PAUSE statements are not affected by the PRINT-LPRINTstatement (see PRINT).

While it is possible to write PAUSE statements which would display more than 24 characters, only the leftmost 24 appear in the
display. There is no way to see the other characters.

Examples

10 A = 10 : B = 20 : X$= "ABCDEF"

20 PAUSE A

30 PAUSE X$

40 PAUSE A, B

50 PAUSE A; B; X$

Display

10.

ABCDEF

10. 20.

10. 20. ABCDEF

155

1 PRINT print expr

2 PRINT print expr
, print expr

3 PRINT print list

4 PRINT = LPRINT

5 PRINT = PRINT

Where: print list is: printexpr

or: printexpr ; print list

and: print exp r is: expression

or: USING clause expression

The USING clause is described separately under USING

Abbreviations: P., PR., PR|., prim.

See also: LPRINT, PAUSE, USING, and WAIT

Purpose

The PRINT verb is used to print information on the display or Printer of the PC-3 Printer/Cassette Interface.

Use

sion, the value is printed at the far left end of the display.

With the second form of the PRINT statement, the display is divided into two 12-characters halves and the two values are displayed
in each half, according to the same rules as above.

With the third form, the display starts at the left edge and each value is displayed immediately following the previous value from
left to right, with no intervening space.

The fourth and fifth forms of the PRINT statement do no printing. The fourth form causes all PR INT statements which follow it

in the program to be treated as if they were LPRINT statements. The fifth form resets the fourth condition so that the PRINT
statements will again work with the display.

While it is possible to write PRINT statements which would display more than 24 characters, only the leftmost 24 appear in the
display. There is no way to see the other characters.

Examples

10 A = 10 : B = 20 : X$ = "ABCDEF"

20 PRINT A

30 PRINT X$

40 PRINT A, B

50 PRINT A; B; X$

Display

ABCDEF

20.

10. 20. ABCDEF

157

1 PRINT #
2 PRINT # -filename

"

3 PRINT # "
filename

"

4 PRINT # "
filename" ; var list

Where: var list j S : variable

or: variable , var list

Abbreviations: P. #. PR. #, PRj. #, PR|N. #

See also: INPUT #, PRINT, READ

Purpose

The PR INT # verb is used to store one or more values on the cassette tape.

Use

Using PRINT #, the values of variables can be saved on tape. These can then be read back into the same or another program using
the INPUT* verb.

With the first form, the values of the 26 preallocated storage locations (variables A - Z and A$ - Z$) are stored on the tape.

With the second form, the 26 preallocated storage locations are stored on the tape under the designated filename.

158

With the third form, the indicated variables are stored on the tape, starting at the current location.

With the fourth form, indicated variables are stored on the tape under the designated filename.

'

There is a special variable form which may be used in the variable list. It looks like an array variable, except that an asterisk is

enclosed ,n the parentheses, e.g., B(*) or F$<*). This form causes all values of the indicated variable to be saved on the tape
including the s.mple variable of the same name, i.e., B<*) saves B and B<0), B(1), B(2), etc., for as many values as are in the array!
You may not save a single element of an array.

Examples

10 PRINT # A, B, C Saves three values on the tape at the current position.

20 PRINT # "FIL2"
;
D, E, F Saves three values on the tape under the filename "FIL2".

30 PRINT# "FIL3";G<*) Saves G and all values of G() on the tape under the filename "FIL3".

Note:

A variable above A(27), or a dimensional variable, must be secured into the program/data area before the PRINT # command is

executed. If the variable is not designated before the PRINT # command, an error (ERROR 3) will result.

159

1 RADIAN

Abbreviations: RAD., RADI., RADIA.

See also: DEGREE and GRAD

Purpose

The RADIAN verb is used to change the form of angular values to radian form.

Use

The PC-3 Pocket Computer has three forms for representing angular values - decimal degrees, radians, and gradient. These forms
are used in specifying the arguments to the SIN, COS, and TAN functions and in returning the results from the ASN, ACS and
ATN functions.

The RADIAN function changes the form for all angular values to radian form until a DEGREE or G RAD verb is used. Radian form
represents angles in terms of the length of the arc with repect to a radius, i.e., 360° is 2PI radians, since the circumference of a
circle is 2 PI times the radius.

Examples

10 RADIAN

20 X = ASN 1 x now has a value of 1.570796327 or PI/2, the Arcsine of 1.

160

1 RANDOM

Abbreviations: RA., RAN., RAND., RANDO.

Purpose

The RANDOM verb is used to reset the seed for random number generation.

Use

When random numbers are generated, using the RND function, the PC-3 Computer begins with a predetermined "seed" or starting
number. The RANDOM verb resets this seed to a new randomly-determined value.

The starting seed will be the same each time the PC-3 Computer is turned on, so the sequence of random numbers generated withRND ,s the same each time, unless the seed is changed. This is very convenient during the development of a program because it
means that the behav,or of the program should be the same each time it is run, even though it includes a RND function When you
want the numbers, to be truly random, the RANDOM statement can be used to make the seed itself random.

Examples

10 RANDOM When run from line 20, the value of X is based on the standard seed. When run from line 10, a new seed is

20 X = RND 1 used.

161

1 READ variable list

Where: variable list is: variable

or: variable , variable list

Abbreviations: REA.

Sea also: DATA, RESTORE

Purpose

The READ verb is used to read values from a DATA statement and assign them to variables.

Use

When assigning initial values to an array, it is convenient to list the values in a DATA statement and use a READ statement in a

FOR
. . .

NEXT loop to load the values into the array. When the first READ is executed, the first value in the first DATA state-

ment in returned. Succeeding READs use succeeding values in the sequential order in which they appear in the program, regard-

less of how many values are listed in each DATA statement or how many DATA statements are used.

If desired, the values in a DATA statement can be read a second time by using the RESTORE statement.

162

Examples

10 DIMBO0) Sets up an array

20 FOR l
= 1 TO 10

30 READ B(l) Loads the values from the DATA statement into B() — B(1) is1,B(2) is 2, B(3) is 3, etc.

40 NEXT I

50 DATA 1,2, 3,4,5,6

60 DATA 7, 8, 9, 10

1fi3

1 REM remark

Abbreviations: none

Purpose

The REM verb is used to include comments in a program.

Use

Often it is useful to include explanatory comments in a program. These can provide titles, names of authors, dates of last

modification, usage notes, reminders about algorithms used, etc. These comments are included by means of the REM statement.

The REM statement has no effect on the program execution and can be included anywhere in the program. Everything following

the REM verb in that line is treated as a comment, so the REM verb must be the last statement in a line when multiple statement
lines are used.

Examples

10 REM THIS LINE HAS NO EFFECT.

164

1 RESTORE
2 RESTORE expression

Abbreviations: RES., REST., RESTO., RESTOR.

See also: DATA, READ

Purpose

The RESTORE verb is used to reread values in a DATA statement or to change the order in which these values are read.

Use

in the regular use of the READ verb, the PC-3 Pocket Computer begins reading with the first value in a DATA statement and pro-

ceeds sequentially through the remaining values. The first form of the RESTORE statement resets the pointer to the first value of

the first DATA statement, so that it can be read again. The second form of the RESTORE statement resets the pointer to the first

value of the first DATA statement whose line number is greater than the value of the expression.

165

Examples

10 DIM B(10) Set up an array.

20 FOR 1
= 1 TO 10

30 READ B(l) Assigns the value 10 to each of the elements of B()

40 RESTORE
50 NEXT I

60 DATA 10

166

1 RETURN

Abbreviations: RE., RET., RETIL, RETUR.

See also: GOSUB, ON . . . GOSUB

Purpose

The RETURN verb is used at the end of a subroutine to return control to the statement following the originating GOSUB.

Use

A subroutine may have more than one RETURN statement, but the first one executed terminates the execution of the subroutine
The next statement executed will be the one following the GOSUB or ON . . . GOSUB which calls the subroutine. If a RETURN is

executed without a GOSUB, an Error 5 will occur.

Examples

10 GOSUB 100 When run, this program prints the word "HELLO" one time.

20 END
100 PRINT "HELLO"
110 RETURN

167

1 STOP

Abbreviations: S., ST., STO.,

See also: END, CONT command

Purpose

The STOP verb is used to halt execution of a program for diagnostic purposes.

Use

When the STOP verb is encountered in program execution, the PC-3 Computer execution halts and a message is displayed, such as

'BREAK IN 200' where 200 is the number of the line containing the STOP. STOP is used during the development of a program to
check the flow of the program or examine the state of variables. Execution may be restarted using the CONT command. Pressing

the Left Arrow or Right Arrow keys after a STOP restores the display to its condition prior to the STOP.

Examples

10 STOP Causes "BREAK IN 10" to appear in the display.

168

1 TROFF

Abbreviations: TROF.

See also: TRON

Purpose

The TROFF verb is used to cancel the trace mode.

Use

Execution of the TROFF verb restores normal execution of the program.

Examples

10 TRON When run, this program displays the line numbers 10, 20, 30, 30, 30 and 40.

20 FOR I
= 1 TO 3

30 NEXT!

40 TROFF

169

1 TRON

Abbreviations: TR., TRO.

See also: TROFF

Purpose

The TRON verb is used to initiate the trace mode.

Use

The trace mode provides assistance in debugging programs. When the trace mode is on, the line number of each statement is dis-
played after each statement is executed. The PC-3 Computer then halts and waits for the Down Arrow key to be pressed before
moving on to the next statement. The Up Arrow key may be pressed to see the statement which has just been executed. The trace
mode continues until a TROFF verb is executed.

Examples

10 TRON When run, this program displays the line numbers 10, 20, 30 30 30 and 40
20 FOR I

- 1 TO 3

30 NEXT I

40 TROFF

170

1 USING

2 USING "editing specification
''

Abbreviations: U., US., USI., USIN.

See also: LPRINT, PAUSE, PRINT
Further guide to the use of USING is provided in Appendix C

Purpose

The USING verb is used to control the format of displayed or printed output.

Use

The USING verb can be used by itself or as a clause within a LPRINT, PAUSE, or PRINT statement. The USING verb establishes
a specified format for all output which follows until changed by another USING verb.

The editing specification of the USING verb consists of a quoted string composed of some combination of the following editing
characters:

Right-justified numeric field character.

• Decimal point.

^ Used to indicate that numbers should be displayed in scientific notation.

& Left-justified alphanumeric field.

171

;:nr^^^^^ -
Editing specifications may include more than one field. For examole "###*«,*,*,*," „„u k ^ * .

character field next to each other.

--or example, ####&&&& could be used to print a numeric and a

If the editing specifications is missing, as in format 1 , special formatting is turned off and the built-in display rules pertain.

Examples

10 A = 125:X$="ABCDEF"

20 PRINT USING "##.##~~»;A

30 PRINT USING "&&&&&&&&"; X$

40 PRINT USING "####&&&"; A; X$

Display

[~ABCD EF

1 25ABC

1.25E 02

172

1 WAIT

2 WAIT expression

Abbreviations: W., WA., WAI.

See also: PAUSE, PRINT

Purpose

The WAIT verb is used to control the length of time that displayed information is shown before program execution continues.

Use

in normal execution, the PC-3 Pocket Computer halts execution after a PRINT command until the (enter) key is pressed. The
WAIT command causes the PC-3 Computer to display for a specified interval, and then proceed automatically (similar to the
PAUSE verb). The expression which follows the WAIT verb determines the length of the interval. The interval may be set to any
value from to 65535. Each increment is about one sixty-fourth of a second. WAIT is too fast to be read reasonably; WAIT
65535 is about 17 minutes. WAIT with no following expression resets the PC-3 Computer to the original condition of waiting
until the (enter) key is pressed.

Examples

10 WAIT 64 Causes PRINT to wait about 1 second.

173

FUNCTIONS
Pseudovariables

Pseudovariables are a group of functions which take no argument and are used like simple variables wherever required.

1 INKEY$

INKEY$ is a string pseudovariable which has the value of the last kev oressPri nn *h« v k a cUp Arrow, Down Arrow Left Arrow and Rinht a „ i ° keyboard
-

Enter
,
CL, CA. SHIFT, DEF

-j-

Arrow, and Right Arrow all have a value of NUL INKFY<fc ic ,,eo^ + -.
individual keys without waiting for the ENTER kpv t« phh +k • T

'NKEY$,s used to respond to the pressing of

be pressed :

* ^ t0 end the ,nput
"
For *™^> these statements "wait" for a non-NUL key to

10 A$ = INKEY$
20 B = ASC INKEY$
30 IF B = THEN GOTO 10
40 IF B

it*£ :i°rt:r;.r::; 'is
and™ r

-
-t-

onr—»-— *•- «—

*

read instead of a key pass.
$ "*" ,o"0wm

» PRINTt" pAUSE.,he contents of the display a„

174

1 MEM

MEM is a numeric pseudovariable which has the value of the number of characters of program memory remaining. The available

program memory will be the total memory, less the space consumed by programs and array variables. MEM may also be used as a

command. Immediately following reset, MEM has a value of 1438.

1 PI

PI is a numeric pseudovariable which has the value of PI. It is identical to the use of the special PI character {it) on the keyboard.

Like other numbers, the value of PI is kept to 10-digit accuracy (3.141 592654).

Numeric Functions

Numeric functions are a group of mathematical operations which take a single numeric value and return a numeric value. They

include trigonometric functions, logarithmic functions, and functions which operate on the integer and sign parts of a number.

Many dialects of BASIC require that the argument to a function be enclosed in parentheses. The PC-3 Pocket Computer does not

require these parentheses, except when it is necessary to indicate what part of a more complex expression is to be included in the

argument.

175

LOG 100 + 100 will be interpreted as:

(LOG 100) + 100 not LOG (100+ 100).

If the same function is to be used two or more times in succession, parentheses must be used:

LOG (LOG 100) not LOG LOG 100

1 ABS numeric expression

™Z™!X"£t ,7ST9 abi°' U,e "'" °"h
' "-*-»-• *»—«— "*. «a.ue o f , „™te

1 ACS numeric expression

^^T^^z::™'": °i

,he

rr
,,c r8umen '' The ,recosin- is *e•*—«— » --

»

176

1 ASN numeric expression

ASN is a numeric function which returns the arcsine of the numeric argument. The arcsine is the angle whose sine is equal to the

expression. The value returned depends on whether the PC-3 Computer is in decimal degree, radian, or gradient mode for angles.

ASN .5 is 30 in the decimal degree mode.

1 ATN numeric expression

ATN is a numeric function which returns the arctangent of the numeric argument. The arctangent is the angle whose tangent is

equal to the expression. The value returned depends on whether the PC-3 Pocket Computer is in decimal degree, radian, or gradient

mode for angles. ATN 1 . is 45 in the decimal degree mode.

1 COS numeric expression

177

Comoutlr ir'H'
^^' "^ ^^ ^^ * the an9le ar9U™nt The value "turned depends on whether the PC-3Computer ,s ,n decmal degree, radian, or gradient mode for angles. COS 60 is .5 in the decimal degree mode.

1 DEG numeric expression

m̂^VmT" """''" "" """" a^!"J™n,
'"
°MS ,Dli9™- MlnuM

' ^""l f°"™< » DEG (Decimal De,r.e | form In DMS

5B* » 1 B
" '

"" rePreSen ' '*" SeCond!
'

,nd an' ,u ',to *<>>« "P"-"' "eclmal arconds For ex.mpl

'

1 DMS numeric expression

55^445
nUm6riC fUnCti° n WhlCh C° nVertS " 3n9le ar9Ument " ° EG f°rmat t0 DMS for™< <- DEG). DMS 55. 179 2778 is

178

1 EXP numeric expression

EXP is a numeric function which returns the value of e (2.718281828 - the base of the natural logarithms) raised to the value ofthe numeric argument. EXP 1 is 2.718281828.

1 INT numeric expression

INT is a numeric function which returns the integer part of its numeric argument. INT PI is 3.

1 LOG numeric expression

LOG is a numeric function which returns the logarithm to the base 10 of its numeric argument. LOG 100 is 2.

1 LIM numeric expression

179

LN is a numeric function which retuns the logarithm to the base e (2.718281828) of its numeric argument LN 1(

4.605170186.

1 RND numeric expression

RND is a numeric function which generates random numbers. If the value of the argument is less than one but greater than or equal
to zero, the random number is less than one and greater than or equal to zero. If the argument is an integer greater than or equal
to 1

,

the result is a random number greater than or equal to 1 and less than or equal to the argument. If the argument is greater
than

1 and not an integer, the result is a random number greater than or equal to 1 and less than or equal to the smallest integer
which is larger than the argument:

-
- - Result -

Ar9ument Lower Bound Upper Bound

•5 <1
2 1

2.5 1

2

3

The same sequence of random numbers is normally generated because the same "seed" is used each time the PC-3 Pocket Com-
puter is turned on. To randomize the seed, see the RANDOM verb.

180

1 SGM numeric expression

SGN is a numeric function which returns a value based on the sign of the argument. If the argument is positive, the result is 1 ifthe argument is zero, the result is 0; if the argument is negative, the result is -1. SGN -5 is -1.

1 SIN numeric expression

SIN is a numeric function which returns the sine of the angle argument. The value returned depends on whether the PC-3 Com-
puter is in decimal degree, radian, or gradient mode for angles. SIN 30 is .5

1 SQR numeric expression

?^'' a

r::ii
u

:r
io

:
"h

:

chr rns the square root of its argument !t is identicai *^ «»

°

f *. .p*... «,„.,. r0ot symb oi(\0 on the keyboard. SQR 4 is 2.

1R1

1 TAN numeric expression

TAN is a numeric function which returns the tangent of its angle argument. The value returned depends on whether the PC-3

Computer is in decimal degree, radian, or gradient mode for angles. TAN 45 is 1

.

(CALCULATION RANGE)

Functions Dynamic range

y^x (y
x

)

-1 x 10
l00 <xiog^< 100

fy=0,x<0: ERROR 2\

[y = 0,x>0:0
J

If y < Ox must be an intege

(Ex.) 0^0 |ENTER| - ERROR 2

0^5 [ENTER]
- 0.

(-4)^0.5 (ENTERS ERROR 2

r.

SINx

COSx
TANx

DEG: Ix l< 1 x 10
i0

RAD: lil<-fx 10
10

GRAD: Ixl<^-x10 10

In TAN x, however, the

following cases are excluded.

DEG: Ix 1
-90 (2n-1)

RAD: Ix l

= -|- (2n-1)

GRAD: Ix 1

= 100 (2n-1)
(n: integer)

Functions Dynamic range

SIN" 1 x
COS" 1 x

-1 <x<1

TAN~ ! x Ix l<1 x 10
100

LNx
LOGx

1 x10"<x<1 x10 100

EXPx -1 X10 100 < x < 230.2585092

\fx 0<x< 1 x 10
100

182

• As a rule, the error of functional calculations is less than ±1 at the lowest digit of a displayed numerical value (at the lowest
digit of mantissa in the case of scientific notation system) within the above calculation range.

Note: Power calculation is performed from m logx and 10* calculations.

Y^X^ io
xl°9y

Therefore, there is inevitably a difference, to some extent, from the true value in the computer. This difference does not
usually appear on the display. However, it is accumulated depending on calculation contents, such as continuous calcula-
tions, and may appear on the display.

Example: 16-2^2^2 (|nte§) -> 6. E-10

String Functions

String functions are a group of operations used for manipulating strings. Some take a string argument and return a numeric valueSome take a string argumennt and return a string. Some take a numeric value and return a string. Some take a string argumentand one or two numeric arguments and return a string. Many dialects of BASIC require the argument of a function to be enclosed
in parentheses. The PC-3 does not require these parentheses, except when it is necessary to indicate what part of a more complex
expression is to be included in the argument. String functions with two or three arguments all require the parentheses Forexample, CHR$ 65 + 4 is interpreted as (CHR$ 65) + 4, which is an illegal mixture of string and numeric quantities; CHR$ (65 + 4)
IS V3I JQ,

183

1 ASC string expression

ASC is a string function which returns the numeric ASCII code value of the first character in its argument. The chart of ASCII

codes and their relationship to characters is given in Appendix B, ASC "A" is 65.

1 CHR$ numeric expression

CHR$ is a string function which returns the character which corresponds to the numeric ASCII code of its argument. The chart

of ASCII codes and their relationship to characters is given in Appendix B. CHR$ 65 is "A".

1 LEFT$ (string expression , numeric expression)

LEFTS is a string function which returns the leftmost part of the string first argument. The number of characters returned is

determined by the numeric expression. LEFT$ ("ABCDEF", 2) is "AB".

184

1 LEN string expression

LEN is a string function which returns the length of the string argument. LEN "ABCDEF" is 6.

1 MID$ (string expression
, num.exp. 1 , num. exp. 2

MIDS„. . !trlng functio„ mhich retums , midd|e port
.

on rf (h6 st
.

ng first

1 RIGHTS string expression , numeric expression

:z£:z^zjt^v^^vp ,,rs
*
aw™m - n

-^ °f*—---

185

1 STR$ numeric expression

STR$ is a string function which returns a string which is the character representation of its numeric argument. It is the reverse
of VAL STR$ 1.59 is "1.59".

1 VAL string expression

VAL is a string function which returns the numeric value of its string argument. It is the reverse of STR$. The VAL of a non-
number is zero. Val "1.59" is 1.59.

If the string contains alphanumeric character, any numeric character on the right of the alphanumeric is ignored.

VAL (2 LBS 5 OZ) will return "2"..

Space is usually regarded as non-existing. However, if space is included in the exponent portion (after E), any numeric character
on the right of space is ignored.

186

CHAPTER 9 PROGRAMMING EXAMPLES
This chapter presents a series of programming examples whifh; illustrate some of the potential programming capabilites of your
PC-3 Computer. Each example is briefly discussed to indicate the logic and structure of the program and the way in which the
PC-3 Computer is being used. This discussion is not meant to be a complete guide to programming. New programmers should
consult a separate book on how to program.

Loan Payments

This program illustrates how the PC-3 Computer can be used to calculate the size of a loan payment and the total cost of the loan
The program first solicits the amount borrowed, the rate of interest, and the number of months that the loan will run.
It then calculates the loan payment using this formula:

A = P* (1 + I)
N * |

(1 + I)
N - 1

Where: A is the monthly mortgage payment

P is the Principal; the amount borrowed

I is the interest for 1 month expressed as a decimal fraction (i.e., 1% = .01

)

N is the number of months

Then the program computes the total cost of the loan over the entire loan period and the total amount of interest.

The program asks for the interest for a whole year because this is the basis usually used to discuss interest.

187

Loan Payment Calculator Program

10: INPUT "PRINCIPAL? "; P

20

30

40:

INPUT "YEARLY^ INTEREST?"; I

I - 1/12

1 = 1/100

50: INPUT "MONTHS? ;N

60:T = (P*((1 + I)^N))*|
70: B = ((1 + I)^N)-1
80: A = T/B

90:A = { INT «A * 100) + .5))/100

100: PRINT "MO- PAYMENT = "
; A

110:Z = A*N
120: PRINT "TOTAL_COST = "

; Z

130: X = Z-P
140: PRINT "TOTAL^INTEREST = ;X

";G$
'Y") THEN GOTO 10

150: INPUT "ANOTHER?
160: IF (LEFTS (Q$,1) -'

170: END

Note: The computation in line 90 is a little programming
100 moves the first two decimal digits to the left of the

throws away any extra decimal digits. .5 is added first so
The amount is then divided by 100 again to restore its prior

Get the amount borrowed

Get the interest for a whole year

Divide by 12 to get the interest for a month
Divide by 100 to turn percent into a decimal fraction

Get number of months

Compute top half of formula

Compute bottom half of formula

Divide top by bottom

Convert to even cents

Display monthly payment amount

Multiply monthly amount times months for total

Display total cost

Subtract principal from total cost to get interest

Print interest

Ask for repeat

Go back to top if first character is 'Y'

Otherwise end

"trick" for rounding off numbers to a desired precision. Multiplying by
decimal point. Taking the integer part of this with the INT function
thif it will round up if the part which is to be thrown away is over .5.

scale.

188

Sort writing

When writing programs, you often need to get items into a particular order, i.e. to sort them. Many different sorting techniques
have been developed, each of which is better or worse for particular circumstances. One of the simplest sorting techniques is the
sort by search '. In this technique the program scans an array of unsorted data looking for the largest item. It puts this in the top

element of a new array and goes back to look for the next largest item. It puts this item in the next element of the array and so
on. Each element selected in the unsorted array is then set to a very small number so it won't be found on the next search.

'

Sorting Program

ITEMS TO SORT?10: INPUT "HOWMANY^.
20: DIM 0<N), S(N)

30: FOR 1= 1 TO IM

40: INPUT O(l)

50: NEXT I

60: PAUSE "SORTING"
70: FOR l= 1 TON

80: T = 1

90: FOR J = 1 TO N
100: IF (0 (J) > <T)) THEN LET T = J

110: NEXT J

120: S {I) =

130: 0(T)

0(T)

= - 9.999999999IE99

140: NEXT I

Find out how many values this time

Allocate space for an array to hold the data-0 () is for unsorteddata, S {)

for sorted

Lines 30-50 are a loop to read in the data

Read in each value

Announce that the sort is starting

Outside loop indexes through S () indicating where the next largest

value is to be put

Arbitrarily set pointer for the largest value to the first element in ()

Loop through array of unsorted data

If a larger value is found, change T to point to the largest so far

Put this value in the next element of the sorted array
Set that element in the unsorted array to the smallest possible number so

that it won't be used again

End of loop on sorted array

189

150: BEEP 2

160: PAUSE "DONE SORTING"

170: INPUT "DISPLAY OR PRINTER? "; A$
180: IF (LEFTS <A$,1) = "P") THEN PRINT - LPRINT

190: FOR l = 1TON
200: PRINTS (I)

210: NEXT I

220: PRINT =

230: END
PRINT

Announce that sort is done

Ask where output should go

If printer is selected, set output to printer

Loop through sorted array

Print largest through smallest

Reset to original condition

Slot Machine Simulation

This program simulates the behavior of a simple slot machine. The model simulated is based on three wheels covered with pictures
of objects. One object from each wheel shows through the window at a time. In this simulation there are three objects which
alternate around each of the three wheels. On each play the wheels are spun and travel freely for a period of time. Then they begin
to slow down and gradually come to a stop. The stopping point of each wheel is random. If the same three objects show in all

three windows at the end of the play, then you win.

Notice that this program has been written so that it is easy for you to modify the number of objects, the speed of play, and the
combinations which produce a win. At the beginning, variables are set to control the speed during the spin (i.e., the amount of
time it takes for each new object to appear in the window). One controls the rate during the initial free-wheeling portion, and
another controls the rate during the slow down period. A third variable is used to control the length of other displays.

Another variable determines the number of objects to be used, Although only three have been used here, it is easy to change this
variable and provide more names in the data list, if you would like to try more. The amount of the win is calculated so that the

190

expected payoff wilt be slightly less than the expected cost If desired it k akn p«w t„ »aa ~
,w * xx w •

,
.

aesirea, it is also easy to add more complex winning rules with
d.fferent payoffs. Variables are also set to control the length of the free-wheeling and slow-down periods.

Slot Machine Simulation Program

10:S = 0: F = 10: G = 90: H = 200

20: T = 3: Z = INT <((Ta3) - 1)/T): C = 3*T: B = 6 *T

30: DIM R(3),D(3),P$(T)*8

40: RANDOM

50: FOR I = 1 TO 3

60: D(l) = RND(T)
70: NEXT I

80: FOR l= 1 TOT
90: READP$(I)

100: NEXT I

110: DATA " ORANGE ", " LEMON ", " CHERRY "

120: WAIT H
130: PRINT "1$ SLOT MACHINE"
140: WAIT
150: PRINT "PRESS ENTER TO START"

200: REM* **START OF TURN* * *
210:M =

Set initial variables - S is amount of winnings, F is amount of PRINT
WAIT during first part of spin, G is longest print WAIT in spin, and H
is PRINT WAIT for information massages

T is number of objects, Z is earning from a win, C is length of fast spin,
B is maximum length of slow spin portion

Allocate space for arrays - R () is how many positions each wheel will
turn, D

() is number of current objects, p$ (} is names of objects
Randomize seed for RND (}

Initialize the object for each "window" to a random value

Read in the names of the objects

Spaces are added to make each 8 characters

Set WAIT for start message

Announce start

Reset WAIT to wait for Enter

Wait for Enter to begin

Initialize M
191

220: FOR I
- 1 TO 3

230: R{l) =B + RND <C)

240:IF(R(|) >M)THEN LETM-R(I)
250: NEXT I

260: WAIT F

270: E = (G-F)/{M-C)

280: FOR A = 1 TO M
290: IF (A> C) THEN WAIT F + ((A-C)* E)

300: FOR I = 1 TO 3
310: IF (R(l)>0) THEN LET D(l) = D(l) + 1

320: IF <D(I)>T) THEN LET D(l) = 1

330:R(|) = R{|)-1

340: NEXT I

350: PRINT P${D(1); P$(D(2)); P$(D(3)
360: NEXT A

370: WAIT H
380: PRINT P$(D(1)); P${D(2)); P$(D(3))
390: W = -1

400: IF (D(1) = D(2}) AND (D(2) = D(3)) THEN LET W - 2
410: IF W<0 THEN PRINT "YOU_LOSE"
420: IF W>0 THEN PRINT "YOU_WIN"; Z; "DOLLARS"
430: S - S + W

440: ON <2t SGN (S)) GOTO 450, 470, 490
450: PRINT 'SOJAR YOU HAVE LOST $"; ABS (S)
460: GOTO 500

—
'

—

r

Determine random stopping time for each window
Set M to longest stopping time

Reset WAIT to fastest interval

Compute the amount to slow the interval

during each turn of the slow down phase
Loop from 1 to longest stopping time
If in slow-down phase, then slow down rotation by one increment
Loop through each window
If window it still turning, then advance to next object
Cycle back to first object if over top
Reduce count of remaining turns

Show current objects

Reset WAIT to longest interval

Redisplay ending position

Set winnings this turn to expected loss of $1
If all objects are the same, then set to win amount
If loss, then say so

If win, then say so

Add this turn to total winnings

Jump to message depending on sign of winnings
Message for S<0
Go to common end

192

470: PRINT "YOU^ARE BREAKING EVEN"
480: GOTO 500

'

—

490: PRINT "SOJARJ'OU^JHAVE
i

_JVON $"; S

500: INPUT "ANOTHER _TRY?"; Q$
510: IF (LEFT${Q$,1) = "Y") THEN GOTO 200
520: END

Message for S =

Go to common end
Message for S>0

Ask about another turn

Check first character of answer

Federal Tax Estimator

:^z^:::^::^:^2r social security tax is computed
-

a-— -~ -—

«

'nLTfor
d

eac

f

h

C

fT
PUt

t

n

;

Federa
'

' nC°me T3><
" '^ "

"TaX Rate **««« X
'

Y and 2" These schedules break down the

veB I b no r
9T+7 T l"^ ^ ""* ^ *"*"•^ " 3 taX C°mpUtation rule °f the *>™ "" -com i

va ueS ', t °tL1 va ' ;

n

h ^ "
M<l) P ' US

'
(,) P6rCent °f tHe 6XCeSS °V6r B(""- The P^«" -", the baseline

»Z™'£m£T ,s not 9reater than the income
-

'* determines the appropiate bracket and app,ies the ruie

10

O

4

TE

ES

T

)

he

Th'r
S inC ' Uded

"
thlS Pr°9ram 3re^ °n th°Se in the 1982 Dedaration °f Esti™^ Tax for Individuals (Form

uth f ;• ^
Pm
f
am

" Pr6Sented h6re t0 iMUStrate the CapabMitieS °f the PC"3 Pocket Computer and is not intended to be a"author,™. bas,s for any individuals actua, tax liability. Individual circumstances and changing laws P ode too manv"x a s,mple pro9ram such as this one to be compiete - consu,t a tax pr°fessi°nai if^--— tz
193

United States Federal Tax Estimator Program

10: DIM B<15),M(15),P{15)

20: USING "######,"

30: WAIT 128

40: PRINT "FILING STATUS:"
50: PRINT "1 = SINGLE"
60: PRINT "2 = MARRIED FILING SEPAR."
70: PRINT "3 = MARRIED FILING JOINT"
80: PRINT "4 = HEAD OF HOUSEHOLD"
90: WAIT

100: INPUT "STATUS? "; F

110: IF <<F<1) OR <F>4)) THEN GOTO 40
120: INPUT "NO. OF EXEMPTIONS? ";E

130: INPUT "EST. SALARY INCOME? "; I

140: INPUT "EST. S.E. INCOME? ";S
150: INPUT "EST. OTHER INCOME? ";

160: I = I + S +

170: PRINT "TOTAL INCOME= "; I

180: INPUT "WILL YOU ITEMIZE? ";Q$
190: IF (LEFT$ (Q$,1) <> "Y") THEN GOTO 270
200: INPUT "EST. TOTAL DEDUCT.? "; D
210: IF ((F = 1) OR (F = 4)) THEN LET D = D-2300
220: IF (F = 2) THEN LET D = D-3400
230: IF (F = 3) THEN LET D = D-1700
240: IF (D<0) THEN LET D -

250: I = l-D
260: PRINT "INC. LESS DED. =" ; I

Allocate arrays - B () is baseline for tax bracket, M '

in bracket, P () is percent within bracket

Set format for all displays

Set WAIT for Status options display

Display options for filing status

Reset WAIT so that Enter is required after each display

Get filing status

Check if valid

Get number of exemptions

Get salary income

Get self-employment income

Get other income

Total the incomes

And display

Ask about itemizing deductions

If not then skip itemizing section

Get total itemized deductions

Subtract standard deduction according to filing status

Minimum deduction is zero

Reduce income by excess over standard

And display

1 is minimum tax

194

270:1 =I-(E*1000)
280: IF (KO)THEN LET I =0
290: PRINT "INC. LESS EXMP. ="; I

300: W = 750 + (50 *F)
310: RESTORE W
320: READ L

330: FOR X = 1 TO L

340: READ B(X), M(X), P(X)

350: IF (l>B{X))THEN LETJ = X

360: NEXT X

370:T = M(J) + (P(J)*(|_B(J)))

380: PRINT "FIT = ";T
390: INPUT "AMT. OF ADD. TAX? "; A

400: INPUT "AMT. OF TAX CREDITS? ";C

410: Z =S*.0935
420: IF Z>3029.40 THEN LET Z = 3029.40
430: IF Z>0 THEN PRINT "S.S. TAX = ";Z

440: T = T + A-C + Z
450: PRINT "EST. TOTAL TAX = "; T
460: END

Note: Tax tables have standard deduction built-in

Compute income less exemptions
Minimum income is zero

Display

Compute line number of appropriate tax table for filing status
And restore so READ will get right table
Read number of lines in table

Loop to read in table

Read baseline, minimum tax, and percent for each tax bracket

Save pointer to highest applicable bracket

Compute FIT (see text)

Display FIT

Get any miscellaneous tax obligations

Get any miscellaneous tax credits

Compute social security tax on self-employment income
Limit S.S. tax to maximum
Display if S.S. tax is greater than zero

Total tax

And display

195

800: REM TABLE FOR SINGLE TAXPAYERS
801: DATA 14

802: DATA 0,0,0

803: DATA 2300,0,. 12

804: DATA 3400, 132,. 14

805: DATA 4400,272,. 16

806: DATA 6500,608,. 17

807: DATA 8500,948,. 19

808: DATA 10800, 1385, .22

809: DATA 12900,1847,.23
810: DATA 15000,2330,.27
811: DATA 18200,3194,-31

812: DATA 23500,4837,. 35
813: DATA 28800,6692,.40
814: DATA 34410,8812,.44
815: DATA 41500,12068,-50

850: REM TABLE FOR MARRIED FILING SEPAR.
851: DATA 13

852: DATA 0,0,0

853: DATA 1700,0,. 12

854: DATA 2750,126,. 14

855: DATA 3800,273,. 16

856: DATA 5950,6 17,. 19
857: DATA 8000,1006,.22

858: DATA 10100,1468,-25

859: DATA 12300,2018,. 29
860: DATA 14950,2787, .33

861: DATA 17600,3661,-39
862: DATA 22900,5728,.44

196

863: DATA 30000,8852, .49
864: DATA 42800,15124,.50

900: REM TABLE FOR MARRIED FILING JOINT
901: DATA 13

902: DATA 0,0,0

903: DATA 3400,0,. 12

904: DATA 5500,252,. 14
905: DATA 7600,546,. 16

906: DATA 11 900, 1234,. 19
907: DATA 16000,2013,. 22
908: DATA 20200,2937,.25
909: DATA 24600,4037,.29
910: DATA 29900,5574,.33
911: DATA 35200,7323,-39

912: DATA 45800,1 1457,.44

913: DATA 60000,17705,.49
914: DATA 85600,30249,.50

950: REM TABLE FOR HEAD OF HOUSEHOLD
951: DATA 14

952: DATA 0,0,0

953: DATA 2300,0,. 12

954: DATA 4400,252,, 14

955: DATA 6500,546,. 16

956: DATA 8700,898,.20
957: DATA 11800,1518,.22
958: DATA 15000,2222,.23

959: DATA 18200,2958,.28
960: DATA 23500,4442,. 32

197

961 : DATA 28800, 6138, .38

962: DATA 34100, 8152, .41

963: DATA 44700, 12498, .49

964: DATA 60600, 20289, . 50

Relationship of Two Variables

The PC-3 Computer an excellent tool for making many small statistical tests. As an example of this capability, this program
calculates the basic tests which are often used to compare a series of paired observations. The program solicits the observations

which are entered in pairs. When there are an independent and a dependent variable, the dependent variable is X and the independ-
ent is Y. If the variables are independent, then simply assign one to X and one to Y.

The program loops through the observations and computes several quantities which are used to calculate the desired statistics.

These quantities are the Sum of X, the Sum of X 2
, the Sum of Y, the Sum of Y2

, and the Sum of X#Y. The mean of X is then
computed with the formula:

.. Sum of X
Mean v =

N

Where N is the number of observation pairs. The standard deviation of X is then calculated with these formulas:

(Sum of X)
2

Sum of Squaresx = Sum of X2

N

Standard Deviation x
- / Sum of Squares,

198

The mean and standard deviation of Y are computed with the same formulas. These quantities are then used to calculate the
correlation coefficient between the two variables using the formulas:

Sum of Products, v
- Sum of X * Y - (Sum of X) * (Sum of Y)

N

Correlation
Sum of Products

*,y
(x.y)

V (Sum of Squaresx) * (Sum of Squ ares v

Finally the program computes the coefficients for the linear regression equation using the formulas:

, Sum of Products,
'x-y

>x,y

Sum of Squares v

a = Mean
y
- (bx-y * Mean x)

The coefficients are then shown in the regression equation:

Y = a + b x . y X

Relationship of Two Variables Program

10: A = 0, B = 0, C = 0, D = 0, V =

20: INPUT "NUMBER OF OBSERV.? "
; N

30:DIMX(N),Y(N)
40: WAIT 48

50: PAUSE "ENTER "; N; " PAIRS OF OBS."

Initialize variables to accumulate sums
Get number of observations

Allocate arrays to hold observations

Set 3/4 second wait for prompts during data entry

Prompt start of data entry

199

60: FOR I = 1 TO N
70: PRINT "PAIR "; I

80: INPUT "X? "; X(l)

90: INPUT "Y? ";Y<0

100: NEXT I

110:WAIT 128

120: INPUT "DISPLAY OR PRINTER? ";W$
130: IF (LEFTS (W$, 1) = "P") THEN PRINT = LPRINT

140: INPUT "LIST OF DATA? "; W$
150: IF (LEFTS (W$, 1) = "Y") THEN LET V = 1

160: FOR I = 1 TON
170: IF (V- 1) THEN PRINT X(l), Y(l)

180:A = A + X(l)

190:B = B + X(I)A2

200:C = C + Y(l)

210:D = D + (Y(I)a2)

220: E=E+(X(I)*Y(I))

230: NEXT I

240: WAIT

250: F =A/N
260: PRINT "MEAN OF X - "; F

270: G =C/N
280: PRINT "MEAN OF Y = "; G

Loop for number of observations

Prompt with number of pair

Prompt and input X
Prompt and input Y

Reset WAIT time for data listing

Ask if output is to display or printer

If printer, then switch

Ask if listing of data is desired

If so, set flag; default V=0 set in line 10

Loop through data

If flag is set, then print observation pair

Accumulate the sum of X
Accumulate the sum of the squares of X
Accumulate the sum of Y
Accumulate the sum of the squares of Y
Accumulate the sum of the products of the pairs

Reset WAIT so that Enter is required

Compute mean of X
And display

Compute mean of Y
And display

200

290:J=B-((AA2)/N)
300:K=SQR (J/(N - 1))

310: PRINT "STD. DEV. X - "; K

320:L = D-{(CA2)/N)
330:M = SQR (L/(N - 1))

340: PRINT "STD. DEV. Y= ";M

350:0 -E -((A* C)/N)

360: R =0/SQR (J*L)
370: PRINT "CORREL. COEF. = "; R

380: P = O/J

390: Q = G -<p*F)
400: WAIT 128

410: PRINT "REGRESSION EQUATION IS"
420: WAIT
430: PRINT "Y = "; Q; " + "

; p ; "X"
440: PRINT = PRINT
450: END

Minefield Game
This program provides a simple minefield game. The game is played on a 10 x 10 set of squares like a checkerboard. The top of
he board ,s north, the bottom south, the left west, and the right east. The columns are numbered horizontally from left to right
from

1 to 10. The rows are numbered vertically from bottom to top, also from 1 to 10. You begin the game in the southwest'
corner, square (1

,
1). The object is to move to the northeast corner, square (10, 10). You make moves by entering a number from

1
to 9 to indicate the direction you want to take. The directions are indicated by the position of the key on the numeric pad i e

Compute the sum of squared deviates of X
Compute the standard deviation of X
And display

Compute the sum of squared deviates of Y
Compute the standard deviation of Y
And display

Compute the sum of products of the deviates

Compute the correlation

And display

Compute the regression coefficient

Compute the Y-intercept

Reset WAIT for leadin display

Print leadin display for equation

Reset WAIT for leadin display

Print the regression equation

Reset output to display

201

Northwest

7

West

4

Southwest

1

North

8

5

South

Northeast

9

East

6

Southeast

3

At random squares on the board there are -mines-. If you enter a square with a mine, you lose. To help you avoid the mines the
PC-3 Computer w.ll beep as it enters a square. It will make one beep for each adjacent square with a mine, but it won't tell you' the
direction. The program checks to insure that no mines are laid so close to the corners that it is difficult or impossible to start or
finish. You determine the number of mines by responding with a number in response to the question "DIFFICULTY?".

Notice the use of subroutines in this program to produce a short, simple main program with special functions isolated in separate
subroutines.

Minefield Game Program Sar lK?&6MM U0jtMM k F&L frbfipynT/ews (f~ /$

10:S = 10

20: DIM F {S + 1,S + 1)

30: WAIT 128

40: INPUT "DIFFICULTY LEVEL? "; B
50: PRINT "ONE MINUTE FOR SETUP"

Set size of field to 10 by 10

Allocate array 1 larger in both directions - Extra size facilitates loop
at line 220

Set WAIT for 2 seconds

Ask for number of mines

Display warning about setup time

202

60: FOR I = 1 TOS
70: FOR J = 1 TOS
80:F(S,S) =

90: NEXT J

100: NEXT I

110: FOR I = 1 TOB
120:X = RND(S)
130:Y = RND (S)

140: IF {{X + Y) < 5) THEN GOTO 120
150: IF l((1+S-X) + (1+S-Y)K5) THEN GOTO 120
160: F (X, Y) = 1

170: NEXT I

180: F (S,S) =9

190: X = 1 : Y = 1

200: PRINT "YOU ARE AT (";X;", ";Y;")"

210:GOSUB400
220: BEEP C

230: INPUT "WHICH WAY NOW? "; A$
240:D-VAL(A$)
250: IF ((D<1)OR (D > 9)) THEN PRINT

"1 TO 9 ONLY, PLEASE" : GOTO 280

260: IF <D>6) THEN GOSUB 500
270: IF (D<4) THEN GOSUB 550
280: IF ((D = 3)OR((D-6)OR (D = 9)) THEN GOSUB 600

Loop through entire array and set each entry to zero - Needed to clear out
mines from prior games

Loop for number of mines

Get random X coordinate

Get random Y coordinate

Check it too close to starting corner

Check if too close to ending corner

Mark mine

Mark goal

Set start to (1,1)

Start of turn — show location

Count the number of nearby mines

Beep to indicate number of nearby mines

Ask for direction from numeric pad

Convert keystroke to number
If not from numeric pad, then ask again

If from top row then GOSUB to north subroutine

If from bottom row, then GOSUB to south subroutine

If from right side, then GOSUB to east subroutine

203

290: IF «D = 1) OR (D = 4) OR (D = 7)} THEN GOSUB 650

300: IF <F(X,Y) = 1) THEN GOTO 700
310: IF (F(X, Y) = 9) THEN GOTO 750
320: GOTO 200

400:C =

410: FOR l = X-1TOX+ 1

420: FOR J = Y - 1 TO Y + 1

430:IF(F{I,J) = 1)THENLETC
440: NEXT J

450: NEXT I

460: RETURN

500: IF (Y=S) THEN PRINT
"YOU ARE AT NORTH EDGE"

510: Y = Y+ 1

520: RETURN

550: IF (Y = 1) THEN PRINT
"YOU ARE AT SOUTH EDGE'

560: Y = Y - 1

570: RETURN

C + 1

GOTO 520

: GOTO 570

600: IF (X=S) THEN PRINT
610: "YOU ARE AT EAST EDGE'
610: X = X + 1

620: RETURN

: GOTO 620

If from left side, then GOSUB to west subroutine

If new square contains a bomb, then GOTO losing message
If new square is the goal, then GOTO winning message
Otherwise loop

Mine counting subroutine
Set counter for mines
Loop through neighboring squares
If there is a mine, increment count by one

North subroutine

If at north edge, don't do anything
Move one square north

And return

South subroutine If at south edge, don't do anyth ing

Move one square south

And return

If at east edge, don't do anything

Move one square east

And return

204

650: IF (X = I) THEN PRINT
"YOU ARE AT WEST EDGE'

660: X = X - 1

670: RETURN

: GOTO 670

700: PRINT "BOOM!!!!!!! YOU LOSE"
710: GOTO 800

750: PRINT "CONGRATULATIONS, YOU WIN"

800: INPUT "ANOTHER GAME? ";A$
810: IF (LEFTS (A$ f 1) = "Y") THEN GOTO 40
820: END

If at west edge, don't do anything

Move one square west

And return

Display losing message

And go to common end

Display winning message

Ask about another game
Go again if first letter is "Y"
Otherwise end

205

CHAPTER 10 TROUBLESHOOTING
This chapter provides you with some hints on what to do when your Radio Shack PC-3 Pocket Computer does not do what you
expect it to do. It is divided into two parts — the first part deals with general machine operation, and the second with BASIC
programming. For each problem, there are a series of suggestions provided. You should try each of these, one at a time, until

you have fixed the problem.

If:

Machine Operation

Then You Should:

You turn on the machine but there is nothing on the

display.

There is a display, but no response to keystrokes.

You have typed in a calculation or answer and get no

response.

1

.

Check to see that the slide switch is set to RUN, PRO, or

RSV.

2. Push the (brk) key to see if AUTO POWER OFF has been

activated.

3. Replace the batteries.

1. Press (CL) key to clear.

2. Press (CA) ((shift) (cl)) to clear.

3. Turn OFF and ON again.

4. Hold down any key and push RESET.

5. Push RESET without any key.

1. Push (ENTEg)

207

1. Push (|NTfg

You are running a BASIC program and it displays
something, and stops

You enter a calculation and it is displayed in BASIC 1 c •* u x

statement format (colon after the first numbed
Sw.toh from the PROgram into the RUN mode for
ca icuiations.

You get no response from any keys. « u .. .

1

.

Hold down any key and push RESET.
2. If you get no response from any key, even when the above

operation is performed, push the RESET without any key.
(With this operation, the program, data, and all reserved
contents are cleared.)

BASIC Debugging

*™"^n a:^Z^™^~^ *™ « Vou are simp,y key ing in a

length, it will probably contain at least one ogiTe ro
'

w olw '*
'"*^ **'"^ ' f

'* " ' ™W Pr°gram ° f^
errors.

9 ' C err0r
'
as welL F°"°wmg are some general hints on how to find and correct your

You run your program and get an error message:

1. Go back to the PROgram mode and use the CD or the m kevs tn «« *h • u ,
Positioned at the place in the line where the PC^mpu^gSlnW ^ ^^ ^ CUrSOr Wi " be

208

2. If you can't find an obvious error in the way in which the line is written, the problem may lie with the values which are being
used. For example, CHR$ (A) will produce an error if A has a value of 1 because CHR$ (1) is an illegal character. Check the
values of the variables in either the RUN or the PROgram mode by typing in the name of the variable followed by (ente§).

You RUN the program and don't get an error message, but it doesn't do what you expect.

3. Check through the program line by line using LIST and the QD and CD keys to see if you have entered the program
correctly. It is surprising how many errors can be fixed by just taking another look at the program.

4. Think about each line as you go through the program as if you were the computer. Take sample values and try to apply the
operation in each line to see if you get the result that you expected.

5. Insert one or more extra PRINT statements in your program to display key values and key locations. Use these to isolate

the parts of the program that are working correctly and the location of the error. This approach is also useful for determining
which parts of a program have been executed. You can also use STOP to temporarily halt execution at critical points so
that several variables can be examined.

6. Use TRON and TROFF, either as commands or directly within the program, to trace the flow of the program through
individual lines. Stop to examine the contents of critical variables at crucial points. This is a very slow way to find a pro-
blem, but sometimes it is also the only way.

209

CHAPTER 11 MAINTENANCE OF THE PC-3 POCKET COMPUTER
To insure trouble-free operation of your Radio Shack PC-3 Pocket Computers, we recommend the following:

Always handle the Pocket Computer carefully, as the liquid crystal display is made of glass.

* Keep the Computer in an area free from extreme temperature changes, moisture, or dust. During warm weather vehicles
left ,n d,rect sunlight are subject to high temperature build up. Prolonged exposure to high temperature may cause damage
to your Computer.

Use only a soft, dry cloth to clean the Computer. Do not use solvents, water, or wet cloths.

* To avoid battery leakage, remove the batteries when the Computer will not be in use for an extended period of time.

If service is required, the Computer should only be returned to an authorized Radio Shack Service Center.

* If the Computer is subjected to strong static electricity or external noise, it may "hang up" (all keys become inoperative).
If this occurs, press the ALL RESET button while holding down any key. (See Troubleshooting.)

Keep this manual for further reference.

(NOTE: For maintenance of the PC-3 Printer/Cassette Interface, please see Chapter 7.)

211

APPENDIX A ERROR MESSAGES
The PC-3 Pocket Computer has nine different error messages.

Error

Number Meaning

1 Syntax Error.

3*/2

4

Calculation error. Either you have tried to use a number which exceeds the capacity of the PC-3 Computer:

9.9 IE 99*10

or you have tried to divide by zero:

5/0

DIM Error/Range over Error.

Array variable already exists, array specified without first DIMensioning it or array subscript exceeds size of array
specified in DIM statement.

DIM B(256)

Specified numeric value is outside permitted range, etc.

10: FOR I
= 1 TO 35000

Line number error. You have specified an invalid line number.

5 Nesting Error.

Buffer space exceeded or FOR statement nested too deeply, etc.

213

Memory overflow error. You have exceeded the momory capacity of the PC-3 Pocket Computer with some com-
Dination of programs and data:

10: DIM B (100, 100)

Print format error.

Data cannot be displayed in accordance with the format specified by USING command.

10: USING"####"
20: A= 123*20
30: PRINT A

I/O device error. An error has occurred in sending information between the PC-3 Computer and another devicesuch as the Printer or tape on the PC-3 Printer/Cassette Interface, check the low battery indicator on the PC-3 Printer^Cassette Interface. Check all the connections.

Other. Some other error has occurred which is not one of the above errors. Often this is due to an illegal value
CHR$(1)

or a misuse of preallocated variables:

10: A = 5 :PRINT A$

214

APPENDIX B ASCII CHARACTER CODE CHART
The following chart shows the conversion values for use with CHR<fc and aqp tu f u

215

First 4 bits

S
e

c
o
n

d

4

B
i

t

s

Hex 1 2 3 4 5 6 i

Binary 0000 0001 0010 0011 0100 0101 0110 0111

NUL
16 32

SP

48 64

@
80

P

96

E

WiMMiiM:
0000 il'"iM^0M^&

1 1 17 33

!

49

1

65

A
81

Q

'97 '.-/.; §M&M&;M
0001

2 2
. 18 34 50

2

66

B

82

R
|^;fi|||| 114

0010

3 ::J0Sy:M^AWi^0&\r, 35

#
51

3

67

C

83

S

^^WM$t^$^:^i§M
0011

4 4, 20 36

$

52

4

68

D
84

T
100 Slllllllflll

0100

5 5 .
.

21 37

%
53

5

69

E

85

U

101 .117

0101

6 '6-
'

22 38

&
54

6

70

F

86

V
102 118

0110

7 7 23 39 55

7

71

G
87

W
'S^^iWfB^. 119

0111

8 8 ^&}&^&$- 40

(

56

8

72

H

88

X
^^:

o0-M;&$^0&Pl
1000

>-piM:K£:&\

216

PC-3 does not recognize codes in shaded area. If you enter the code number in the shaded area, an error will result.

217

APPENDIX C FORMATTING OUTPUT
It is sometimes important or useful to control the format as well as the content of output. The PC-3 Pocket Computer controls

display formats with the USING verb. This verb allows you to specify:

* The number of digits

The location of the decimal point

Scientific notation format

The number of string characters

These diffrerent formats are specified with an "output mask". This mask may be a string constant or a string variable:

10: USING "####"

20: M$ = "&&&&&&
30: USING M$

When the USING verb is used with no mask, all special formatting is cancelled.

40: USING

A USING verb may also be used within a PRINT statement:

50: PRINT USING M$, N

Wherever a USING verb is used, it will control the format of all output until a new USING verb is encountered.

218

Numeric Masks

A numeric USING mask may only be used to display numeric values, i.e., numeric constants or numeric variables If a string
constant or variable is displayed while a numeric USING mask is in effect, the mask will be ignored. A value which is to be dis-
played must always fit within the space provided by the mask. The mask must reserve space for the sign character even when thenumber w.ll always be positive. Thus, a mask which shows four display positions may only be used to display numbers with three
digits.

Specifying Number of Digits

The desired number of digits is specified using the •#• character. Each '#• in the mask reserves space for one digit. The display
or print always contains as many characters as are designated in the mask. The number appears to the far right of this field- the
remaining positions to the left are filled with spaces. Positive numbers, therefore, always have at least one space at the left of' the
field. Since the PC-3 Pocket Computer maintains a maximum of 10 significant digits, no more than 11 <#' characters should beused in a numeric mask.

NOTE: In all examples in this appendix, the beginning and end of the displayed field will be marked with an *

I' character to
show the size of the field.

Statement
- Display

10: USING "####"
(Set the pc_3 Computer t0 the R(JN posjtion/ type RU|S^ apd
press (ENTER) .)

20: PRINT 25 2 5

30: PRINT -350 3 5

40: print 1000 ERROR7IIM40
219

Notice that the last statement produced an error because 5 positions (4 digits and a sign space) were required, but only 4 were
provided in the mask.

Specifying a Decimal Point

A decimal point character, '.', may be included in a numeric mask to indicate the desired location of the decimal point. If the
mask provides fewer significant decimal digits than are required for the value to be displayed, the remaining positions to the right

will be filled with zeros. If there are more significant decimal digits in the value than in the mask, the extra digits will be truncated
(not rounded):

Statement Display

10: USING "####.##"

20: PRINT 25 25.00

30: PRINT -350.5 -350.50

40: PRINT 2.547 2.54

Specifying Scientific Notation

A "^" character may be included in the mask to indicate that the number is to be displayed in scientific notation. The '#' and
'.' characters are used in the mask to specify the format of the "characteristic" portion of the number, i.e., the part which is

displayed to the left of the IE. Two '#' characters should always be used to the left of the decimal point to provide for the sign

220

TZZ« r T,
Clmal P° int "^ ^ inC 'Uded

'

bUt iS n0t required
'

UP * 9 '#' ch—ters may appear to the

osi ion th

POm
,

"^ the CharaCteristic P° rtion
' the exponentiation character, IE, will be displayed followed by o

T'^ h h

S '9n
'^

tW
° P°Siti0nS '" tHe eXP°nent ThUS

' the Small6St™»^ notation field would be provided Iof ## wh,ch would pnnt numbers of the form • 2 IE 99'. The largest scientific notation field would be <<## ####^##7^which would print numbers such as -1.234567890 IE— 12':
w-iHHfmFFHmF

Statement ^.
,— Display

10: USING "###.##*"

20: PRIWT2 2.00E00
30: PRINT -365.278 -3 . 6 5 E 2

Specifying Alphanumeric Masks

String constants and variables are displayed using the •&• character. Each •&• indicates one character in the field to be displayed

w e

n

f IN d

6

h

P0S ' tl0n

;f

d

^
the 'eft 6nd °f thlS fie 'd

- '

f the Strin9 iS Sh°rter tha" the field
' the raining spaces e Xw.ll be f-I.ed wth spaces. If the string is longer than the field, the string will be truncated to the length of the field:

Statement n.. .

Display

10: USING "&&&&&&"

20: PRINT "ABC" ABC
30: PRINT "ABCDEFGHI" A B C D E

221

Mixed Masks

In most applications, a USING mask will contain either all numeric or all string formatting characters. Both may be included in

one USING mask, however, for certain purposes. In such cases, each switch from numeric to string formatting characters or vice

versa, marks the boundary for a different value. Thus, a mask of "#####&&&&" is a specification for displaying two separate

values — a numeric value which is allocated 5 positions and a string value which is allocated 4 positions:

Statement Display

10: PRINT USING "###.##&&"; 25; "CR" 2 5 . C R

20: PRINT -5.789, "DB" -5.78DB

Remember: Once specified, a USING format is used for all output which follows until cancelled or changed by another USING

verb.

222

APPENDIX D EXPRESSION EVALUATION AND OPERATOR PRIORITY
When the Radio Shack PC-3 Pocket Computer is given a complex expression, it evaluates the parts of the expression in a sequencewhich ,s determined by the priority of the individual parts of the expression. If you enter the expression:

100/5+45

as either a calculation or as a part of a program, the PC-3 Computer does not know if you mean:

100 =2 „ 1.

5 + 45
or -f^+45=65

Since the PC-3 Computer must have some way to decide between these options, it uses its rules of operator priority Because
division has a higher 'priority" than addition (see below), it will choose to do the division first and then the addition i e it willchoose the second option and return a value of 65 for the expression.

Operator Priority

Operators on the Ratio Shack PC-3 Computer are evaluated with the following priorities from highest to lowest:

1. Parentheses

2. Variables and Pseudovariables

3. Exponentiation (~) when preceded by a multiplication which omits the operator
4. Multiplication which omits the operator

5. Functions

6. Exponentiation (^)

223

7. Unary minus, negative sign (-)

8. Multiplication and division (#, /)

9. Addition and subtraction (+, —

)

10. Relational operators (<,<=,= <>, >=, »
11. Logical operators (AND, OR)

The fourth item refers to usage such as 2A or 5C(2) in which a multiplication operator is implied, but not shown. The third refers

to the combination of this with exponentiation, such as 3A^3 or 5D^1.5. In these combined cases the exponentiation will be

done first and the multiplication second.

When there are two or more operators at the same priority level, the expression will be evaluated from left to right. Note that

with A+B— C, for example, the answer is the same whether the addition or the subtraction is done first.

When an expression contains multiple nested parentheses, the innermost set is evaluated first and evaluation then proceeds outward.

Sample Evaluation

Starting with the expression:

((3+5-2) *6+2) / 10^ LOG 100

The PC-3 Computer would first evaluate the innermost set of parentheses. Since '+' and '-' are at the same level, it would move

from left to right and would do the addition first:

((8-2)* 6+2) /10^LOG 100

Then it would do subtraction:

224

((6)*6+2)/10-LOG 100
or:

(6*6+2) /10^LOG 100

In the next set of parentheses, it would do the multiplication first:

(36+2)/ 10^ LOG 100

And then the addition:

(38) /10^LOG 100
or:

38/ 10^LOG 100

Now that the parentheses are cleared, the LOG function has the highest priority, so it is done next:

38/10^2

The exponentiation is done next:

38/100

And last of all, the division is performed:

0.38

This is the value of the expression.

225

APPENDIX E FEATURE COMPARISON OF THE PC-1, PC-2, AND PC-3
The three Radio Shack Pocket Computers, the PC-1, the PC-2, and the PC-3, have many features in common, but there are some
significant differences. Sometimes the same features are present, yet act in a slightly different fashion. In order to facilitate the
use of programs on different models, the following comparison charts are provided.

Verbs and Commands

In the following chart, the symbol:

M indicates that the feature can only be used in manual execution, i.e., as a command.
P indicates that the feature can only be used within a program.
B indicates that the feature can be used in both contexts.

When no symbol is shown, the feature is not available on that machine.

PC-1 PC-2 PC-3 Comments

AREAD
ARUN

P B

P

P See Note 1

BEEP

CHAIN
P

P

B

P

B

P

PC-2 has tone and duration

CLEAR B B B
CLOAD M M M
CLOAD? M M M
CLS B

226

COLOR
CONT
CSAVE
CSIZE

CURSOR
DEGREE
DATA
DEBUG
DIM

END
FOR ...TO.

GOSUB
GOTO
GCURSOR
GPRINT

GRAD
GRAPH
IF. ..THEN

INPUT

INPUT

#

LET

PC-1

STEP

M
M

M

P

P

P

P

P

P

B

P

PC-2

P

M
B

B

B

B

P

B

P

P

P

B

B

B

B

B

P

P

B

P

PC-3

M
B

B

P

B

P

P

P

B

P

P

B

P

Comments

227

PC-1 PC-2 PC-3 Comments

LF B

LINE B

LIST M M M
LLIST B M PC-1 can emulate with LIST

LOCK B

LPRINT B P See Note 2

MERGE M M M
NEW M M M
NEXT P P P

ON ... ERROR P

ON ... GOSUB P P

ON ... GOTO P P

PAUSE P B P

PASS M
PRINT P B P See Note 2

PRINT* B B B

RADIAN B B B

RANDOM B B

READ P P

REM P P P

RESTORE P P

228

PC-1

RETURN
RLINE

RMTOFF
RMTON
ROTATE
RUN
SORGN
STOP

TAB

TEST

TEXT
TROFF
TRON
UNLOCK
USING

WAIT

M

PC-2

P

B

B

B

B

M
B

P

B

B

B

B

B

B

B

B

PC-3 Comments

M

B

B

B

B

See Note 3

Note 1

:

There are some minor differences between the PC-3 and the PC-1 in the behavior of AREAD following PRINT but theseare unlikely to cause problems in ordinary usage.
ronowing rmiN i

,
but these

Note 2: Add PR.NT=LPRINT and PREPRINT statements to PC-1 programs to achieve the desired results on the PC3
Note 3: On the PC-1 the USING format applies to all displays on the line in which the USING clause appears even if the variablePrecedes the verb. On the other models, the USING format applies only to disp.ays which fo„owl^^.,*'^

229

until cancelled by another USING verb.

Example:

10 A = -123.456

20 PAUSE USING "####,##"; A
30 PAUSE A, USING "####"; A

When executed, this program displays the following:

PC-1

• PC-3

-123

-123.45

-123.45

-123

-123.45

-123

Tic 1 l
C

°Te

l "J^
6 PC ' 1

'

tHe PC"3
" f3Ster " Pr°CeSSing Speed f° r -'-lations. Therefore, when game programs forthe PC-1 are used with the PC-3, adjust the game speed, etc.

Pseudovariables

In this and the following charts, the features are simply marked with a *Y' when the machine has the feature.

INKEY$

MEM
PI or?r

TIME

PC-1

Y

Y

PC-2

Y

Y
Y

Y

PC-3

Y

Y

Y

Comments

PC-1 has only n

230

Numeric Functions

KU-1 PC-2 PC-3 Comments

ABS Y Y Y
ACS Y Y Y
ASN Y Y Y
ATN Y Y Y
COS Y Y Y
DEG Y Y Y
DMS Y Y Y
EXP Y Y Y
INT Y Y Y
LOG Y Y Y
LN Y Y Y
NOT Y Y
POIN1 Y
RND Y Y
SGN Y Y Y
SIN Y Y Y
SQR or\J~

STATUS
Y Y

Y
Y PC-1 has only \T

TAN Y Y Y

231

String Functions

PC-1 PC-2 PC-3 Comments

ASC Y Y
CHR$ Y Y
LEFTS Y Y
LEN Y Y
MID$ Y Y
RIGHTS Y Y
STR$ Y Y
VAL Y Y

Operators

PC-1 PC-2 PC-3 Comments

SK
Y Y Y See Note 4

*r 1, +, - Y Y Y
>,>=,= <>,<=< Y Y Y
AND, OR, Y Y
& Y Y

Note 4: Raising a negative number to a power with the ~ operator can result in incorrect signs. See Chapter 4.

232

Precautions

Programs for the PC-1, when loaded from its tape, can be used with the PC-3. When entering the PC-1 programs into this unit
from PC-3 keyboard, however, the following precautions should be observed:

For example, the following are keyed-in for program entry:

10 IFN^LPRINTA (ENTER)

With the PC-1, this results in a command for "If N = L, display A"
(IF N = LPRINTA). With the PC-3, however, it becomes a command for "If N=, print A" (IF N = LPRINT A), causing a syntax
error (ERROR 1) to occur when executed. This is because the PC-3 has an LPRINT command unavailable from the PC-1.
Therefore, an IF statement should be keyed-in as:

10 IF N = L THEN PRINT A

Thus, a character string for "variable and command" with the PC-1 may be regarded as "a command".

233

APPENDIX F SPECIFICATIONS
Model:

Processor:

Programming Language:

Memory Capacity:

Stack:

Operators:

Numeric Precision:

Editing Features:

Memory Protection:

PC-3 Pocket Computer

8-bit CMOS CPU
BASIC

System ROM:
RAM

System

User

Fixed Memory Area

(A~Z, A$~Z$)
Reserve Area

Program/Data Area

Subroutine: 10 stacks

FOR-NEXT: 5 stacks

Function: 16 stacks

Data: 8 stacks

Addition, subtraction, multiplication, division, exponentiation, trigonometric and inverse trigono-metnc funct.ons logarithmic and exponential functions, angle conversion, square root, si n a oZinteger, relational operators, logical operators
aosoiute,

10 digits (mantissa) + 2 digits (exponent)

Cursor left and right, line up and down, character insert, character delete
CMOS Battery backup

24 K Bytes

About 500 Bytes

208 Bytes

48 Bytes

1438 Bytes

234

Display:

keys:

Power Supply:

Power Consumption:

Operating Temperature:

Dimensions:

Weight:

Accessories:

Option:

24-character liquid crystal display with 5 x 7 dot characters

Xv DCZTZCT' SMCial SVmb°' S
'
""' fUnC,i0nS; """"* Md

'-*'« »"•

Type: CR-2032

6.0VDC@O.O3W

^^c^t^^™™* 3o° hours usa9e without externai p°wer sup^-

135(W)x 70(D) x 9.5(H) mm
5-5/1 6"(W) x 2-3/4"(D) x 3/8"(H)

Approximately 1 1 5g (0.25 lbs.) (with batteries)
Wallet, two lithium batteries (built-in), two keyboard templates, and owner's manual
Printer/Cassette Interface

235

INDEX
&
*

/

<

< =

<>

>

> =

71

t

i

ABS

AC adapter, PC-3 Printer/Cassette

Interface

ACS

44

49

49

49

49

49

181

51

26

51

51

51

51

26

51

175

208

208

176

80

176

ALL RESET 17

AND 52

AREAD 117

ASC 184

ASCII 215

ASN 177

ATN 177

Arrays 46

Auto off (Auto Power Off) 24

BEEP 119

Batteries, PC-3 Computer 19

Busy 16

CAkey 14

CHAIN 120

CHR$ 184

CLEAR 124

CLOAD 99

CLOAD? 101

C Lear key 14

CONT 102

COS 177

CSAVE 103
237

Cursor

Cassette

Commands

Compatability

Constants

DATA
DEF key

DEG
DEGREE
DELete key

DIM

DMS
Debugging

Display

END
ENTER key

EXP

Editing calculations

Editing programs

Error Messages

Exponentiation

Expressions

16

87

96,99

226

41,44

126

73

178

125

31,65

128

178

208

15

130

12,24

179

26

63

213

179

49

FOR,.. TO... STEP 131 Logical expressions
Formatting output 218 Loops
Functions 98,174 MEM
GOSUB 134 MERGE
GOTO 105,136 MID$
GRAD

138 Maintenance
Hexadecimal 43 Masks
IF... THEN 139 Memory Protection
INKEY$

174 NEW
INPUT

142 NEXT
INPUT*

145 NOT
INSert key

INT
66 Numeric expressions

179 Numeric variables
LEFT$ 184 ON (Start up)
LEN 185 ON ... GOSUB
LET 146 ON . . . GOTO
LIST 106 OR
LLIST 107 Operator precedence
LN 179 Operator priority
LOG 179 Operators
LPRINT 147 P ^ IMP

Labelled programs 73 PASS
Limits of numbers 43 PAUSE
Line numbers 59 PC-3 Printer/Cassette

238

52

69

175

108

185

211

219

70

113

149

52

49

46

23

150

152

52

36

223

49

85

114

154

77

PI

PRINT

PRINT*
PROgram mode

Paper feed

Parentheses

Power

Prealiocated variables

Printer

Priority

Program

Pseudovariables

RADIAN

RANDOM
READ
REM
RESET

RESTORE
RETURN
RIGHT$

RND
RUN
RUN mode

Range of numbers

175

156

158

61

84

36

79

47

85

223

59

174

160

161

162

164

17

165

167

185

180

115

61

43

ReSerVe mode 74 Verbs

Relational expressions 51 WAIT
Remote On/off 79

SGN 181

SHIFT key 24

SIN 181

SQR 181

STOP 168

STR$ 186

Scientific notation 41

Square root 181

Statements 59

String expressions 50

String variables 47

Subroutines 134

TAN 182

TROFF 169

TRON 170

Tape 87

Templates 76

Troubleshooting 207
USING 171

VAL 186

Variables 45

97, 117

173

239

Program Examples

In the preceding pages, you have probably acquired some new information on a number of program commands. Like driving a car
or playing tennis, things that can be improved by actual practice, you can improve your programming only by generating as many
programs as possible, regardless of your skill. It is also important for you to refer to programs generated by others. The following
pages contain a variety of suggestions for programs using the BASIC commands. We provide you with the necessary equations and
also inclube flowcharts. The rest is up to you!

(Radio Shack and/or its franchises assume no responsibilities or obligations to any losses or damages that could arise through the
use of the software programs employed in this owner's manual.)

241

CONTENTS
(program title)

• TYPING PRACTICE
• SOFTLANDING GAME
• MEMORY CHECKER
• BUGHUNT
• DOUBLE ROTATION.

At RUN position

D CLEAR (enter)

2) M38 CE) MEM ^ - number of bytes.

(page)

.... 243

248

.... 255

• . . .261

.... 265

. ... 270

... 275

. . .281

. ... 287

end of the TYPING

242

Program Title: NEWTON'S METHOD FOR FINDING ROOTS OF EQUATIONS

OVERVIEW (mathematical)

Finding *. roots of equations is usually troublesome, but by using Newton's Method, the approximate roots of equations can

When
1
root is found, depending on the interval width, by using Newton's Method, the starting point automatically changes.

CONTENTS

f\xn)

If the absolute value of the distance between X„ and X ^ is le« than m"8 y ;* ™ -^ -j ., • ,

tho f:«t a *••_. x- , •

" +1 lesstnan TO
,
Xn is considered a root and s displayed Herthe first derivative is defined in the following way;

f'fy) - /(* + *)-/(*) ,. . u .

y ^ j" — (« is the minute interval)

Change IE-8 in line 340 to change the value for 10~8
.

243

INSTRUCTIONS

INPUT

Starting point

Minute interval

Interval

Interval width

OUTPUTS Starting point

Root value (by pressing the (enter) key, the next interval's root is found)

EXAMPLE
x 3 - 2x 2 x + 2 = (the roots are — 1 ,1,2)

starting point =

minute interval = 1CT
4

interval = 0.5

The above values are used in the calculation.

The functions are to be written into lines after 500 as subroutines.

How to type in the example:

1

.

Go into PRO mode by operating the mode change key.

2. 500B= ((X-2) *X-1)* X + 2 (ENTER)

510 RETURN (enter) That is all that has to be done.

244

KEY OPERATION SEQUENCE

Step No.

11

Key Input

(DEF)®

0.0001

0.5

(ENTER)

(ENTEg)

(ENTER)

(ENTER)

(ENTER)

(ENTER)

(ENTE§)

(ENTER)

(ENTER)

Display

STARTING POINT =

MINUTE INTERVAL-.

INTERVAL *

ANSWER =

ANSWER =

ANSWER -

ANSWER =

ANSWER -

ANSWER •

ANSWER =

ANSWER =

Remarks

Waiting for starting point input

Waiting for minute interval input

Waiting for interval width input

Display of roots

By repeatedly pressing the (ENTER) key, the roots
of the function are found.

245

FLOWCHART

Newton's Method calculation

1

1
F = F + W

1

C = F

100

Newton's Method calculation

/Newton's Method calculation

\^ subroutine

300

X = C

Function calculation

Y-B
X = A + C

320

Function calculation

D = C
C- D-A#Y/(B-Y)

340

350

(Roots are displayed)

i

Q RETURN J

(

500

Function calculation subroutine)

B = ((X-2)*X-1)#X + 2
|

(_
RETURN ")

246

PROGRAM LIST

18:
V
A

V
: INPUT 'STARTING

point=';v
28: input minute interv

al= v
;a

3@: INPUT ' INTERVALES U

40:G=V:F=V:Z=8
58: IF Z=8 GOTO 70
60:G=G-14:C=G: GOTO 30
78:C=G:Z=1
80:GOSUB 308
90:F=F+N:C=F

108: GOSUB 380
110: GOTO 50

120: ENB

300: X=C: GOSUB 588
318:Y=B:X=A+C
328: GOSUB 599

330:3=C:C=I3~A*Y/CB-Y)
348: IF A3S (B-C)>=E-3

GOTO 388
350:BEEP 3: PRINT *ANSUE

R=%C
360: RETURN

508:B=<<X-2)*X-l>*X+2
518:RETURN

268

MEMORY CONTENTS

A Minute interval

B fix)

C *o

D f <x + h)

E

F V
G V
H

1

J

K

L

M

N

O

P

Q

R

S

T

u

V Starting point

w Interval

X X

Y f<x>

Z Initial flag

247

Program Title: AVERAGE, VARIANCE AND STANDARD DEVIATION

OVERVIEW
If the data are input, the total sum, average, variance, and standard deviation will be calculated for you. Revision of input data,

as well as data with weights, is possible.

CONTENTS
Total sum

Average

Variance

zxrfi

x —
2/i

o
2 = 2(Xj~ X)fj

2/W
(when there are no weights fj= 1

)

Number of data entries (up to 50)

INSTRUCTIONS
1- At (def) Ca~) , select whether or not there are any weights, then input the data.

2. (def) (~B~) is used to find any revision positions in the data, (def) Cc) is used to revise the data.

3. The total sum, average, variance, and standard deviation will be calculated with (def) QT)

EXAMPLE

x
t

14.1 14.2 14.3 14.4 14.5

fi 8 19 23 15 10

(data with weights)

248

KEY OPERATION SEQUENCE

Step No.

12

13

Key Input

(DEF)CD

14.1

(ENTEg)

(ENTER
)

8 Center)

14.5 (|NTE§)

10 (ENTER)

Display

NO. OF DATA =
.

WEIGHTS = 1 /NO WEIGHTS = 2?_

X(1) :

F(1) =

X(2) =

F(5)«

Remarks

Waiting for number of data input

Waiting for the selection of weights/no weights

End of the process

249

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 (DEF)CBD X(1) = 14.1

2 F(1) = 8(ENTER)

3 (ENTER] X(2) = 14.1 (PEF) (C) is used to input the revised values
when data errors are found

4 (DEF)C© X(2) =

REVISION VALUE = ?_ Revised value is input

5 14.2 (ENTER) F(2)«19

(ENTER)

250

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 (HEXTT) TOTAL SUM = 1072.5 Display of total sum

2 (ENTER) MEAN VALUE = 14.3 Display of average

3 CENTER) VARIANCE = 1.432432432 IE -02 Display of variance

4 STD. DEV. =
Display of standard deviationCENTER)

5 1.196842693IE-01(ENTER)

6 Center) > Processing finished

251

FLOWCHART
Data input Data revision

DIM \
UP-ll/

DIM
X(P-1), F(P-1

Data input

f END
J

(
°

)

Total sum, average,

variance, standard
deviation

Total sum, average,

variance, standard
deviatic

f END
J

200

210

230

Data display

xii)

^^"\ Y
*

l^N
/^"Data display

b

"AH date\Y
isplayed^^ I

©

®

f END)

260

Data revision

(C
)

1

/Data display

pRevised value

|

input

© ©

252

PROGRAM LIST

10: W A": CLEAR : WAIT 8

29: INPUT "NO. OF DATA=*

238
38: INPUT v

;4EIGHTS=l/NO
*eights=2? v

;a
48: IF A=2 Bill X<P-1>: 248

GOTO 78 258
58:IF A=l Bin X<P-1)*F(255

P-l>: GOTO 78 268
68: GOTO 38

78:F0R 1=8 TO P-i
38:B$=*X<'+ STR$ <!+!}+

W *-, _ M

278:
85:PAUSE B$: INPUT X<I)

: GOTO 188
90: GOTO 85 288:

188: IF A=2 GOTO 158 298:
128:B$='F<*+ STR$ <I+1)+ 1Q 4 *i7i «

*) = *
388:

138:PAUSE B$: INPUT F<I>
: GOTO 158 385:

148: GOTO 138

158:NEXT I: END 318:
288:'B': i*iAIT :I=8
218:B$='X('+ STR$ <I+i)+ 488:

'}=»:j=l: print B$?X
(I)

IF A=l LET B$=*F(*+
STR$ <I+1)+ V)= V

:

PRINT B*3F(I):j=2
5 1=1+1

= IF I=P END
sGOTO 210
:
V
C

V
: PAUSE B$: IF

LEFT* <BS,1) = \X V

INPUT 'REVISION VALU
E=»;X(I): GOTO 298
=IF LEFT* <B$>1)='F'
INPUT 'REVISION VALU
E= v

;F(I): GOTO 290
'GOTO 258
:IF J=l GOTO 238
tGOTO 218

•D':N=B:T=0:S=B: FOR
1=0 TO P-l:X=X<I>
F=l: IF A=l LET F=F(
I)

N=N+F:T=T+F*X:S=S+F*
X*X: NEXT I

WAIT :X=T/N:Q=<S-N*X

*X)/<N-l):S=.rQ:
PRIHT 'TOTAL SUff= v n
= PRINT 'HEAN VALUE*
•;x

418:PRINT 'VARIANCE^ ! Q:

PRINT '3TB. BE l^^ v
i

643

253

MEMORY CONTENTS

A V
B$ V
C

D

E

F V
G

H

1 V
J Flag

K

L

M

N V

P Data number

Q Variance

R

S Standard deviation

T Total sum

U

V

w

X Average

Y

z

X{P-1) Data

F(P-1) Data

254

Program Title: INTERSECTION BETWEEN CIRCLES AND STRAIGHT LINES

OVERVIEW
The points of intersection between circles and straight lines in the X-Y plane are found.

CONTENTS
The 2 points of intersection between a circle and a straight line are P and Q.

(Note) The angles are in degrees, minutes, and seconds and are to be input in the following way:

123.1423 = 123 degrees 14 minutes 23 seconds.

P
2 (X 21 Y 2)

255

INSTRUCTIONS

1. if the straight line is determined by 2 points, (d§E) CA3 is used.

If the line is determined by 1 point and 1 direction angle, (def) (jD is used.

2. After the data are input, the results are displayed.

EXAMPLE
x,= -50
Y, =

X2
= 50 XP =

Y2 = 100 YP = 50

X = 50 xQ = 50

Y = 50 YQ = 100

R = 50

a = 45°

(Note) The coordinate values are accurate

up to 5 decimal places.

.V J\/A
*^/Q^\

5oA

50, 'P M50, 50)

-50A5°

/ p
i

256

KEY OPERATION SEQUENCE
(when 2 points on the line are known)

Step No. Key Input

(BE)CD
50

50

50

-50

50

100

(ENTER)

(ENTER
)

(ENTER
)

(ENTER)

(ENTER)

(ENTER)

(ENTER)

(ENTER)

X0 = _

Y0 = „

R = _

X1

Y1

X2 = _

Y2 =

Display

P: 0.0000 49.9999

50.0000 100.0000

Remarks

bcp,yp)

257

KEY OPERATION SEQUENCE

(when 1 point on the line and 1 direction angle are known)

Step No. Key Input Display Remarks

1 (DlE)CS X0 = _

2 Y0 = „50 (ENTER)

3 R = _50 (ENTER)

4 X1 «_50 (ENTER)

5 Y1 =_-50 (ENTER)

6 A = _(ENTER)

7 P: 0.0000 49.9999 Up, yP)45 (ENTER)

8 Q: 50.0000 100.0000 lxq , yq)(ENTER)

258

FLOWCHART

50

90

K =W*SIN(X-H)
L = ACS(K/C)

M-H-90-L;IM = H-90+L

1 Tnput)^

I

Y
2

X- F- D
Y = G-E

H = DEG H

500

H = X

Subroutine for finding
the X—Y coordinates

Display of X-Y
coordinates

c M = N

Subroutine for finding
the X—Y coordinates

160

X = A-D
Y=B-E

Display of X-Y
values of point Q

C END

500

500
j>

W = >/~(X*X-Y*Y)
X = ACS(X/W)

510

600

Subroutine for ^N
finding the X—Y)

coordinates y

0=A+C*COSM
P = B+C*S!NM

T) C RETURN

259

PROGRAM LIST
i8:

v A tf :J=6: GOTO 38
28: w

B
tf :J=l

30:begree : input *x8=

•;a,'yb= ';bi'R= v
;c

48:INPUT *X1= m M$ 9n=
*;e

58: if j<>0 input v a= "s

h:h= beg h: goto 98
68:input "x2= sf>*y2=

*!G

78:X=F-B:Y=G-E: GOSUB 5

88

38:H=X
98:X=A-B:Y=B-E: GOSUB 5

88

188:K=U* SIN (X-H>

118:L= ACS (K/C)

128:i«I^H-98-L:N=H-98+L

138: GOSUB 688
148:PRINT USING "ittttttttttt.

tttj ¥ ;»p: ¥ ;o;p
158: M=N: GOSUB 688
168:PRINT *Q:*;05P
178: END

588:l4=f<X*X+Y*Y>

518:X= ACS (X/U): IF Y<6
LET X=368-X

528: RETURN
688:0=A+C* COS M:P=B+C*

SIN «: RETURN

335

MEMORY CONTENTS

A X

B Y

C R

D x,

E Y,

F x
2

G Y
2

H V
1

J V
K h

L a

M Qp

N Qq
XP. XQ

P yp, yQ
Q

R

S

T

u

V

w L

X AX, 6

Y AY

z

260

Program Title: NUMBER OF DAYS CALCULATION

OVERVIEW
How many days has it been since you were born?

i::::::ztc answer,n9 such qu*,tlons ' 8y **"• a c,min dav ' ,his prw,m wm -*« *•^ °< *»

CONTENTS

[Instructions]

(5§) QD
BASE YEAR

MONTH
DAY

TARGET YEAR
MONTH

DAY

To end the program, type in ® CZ3 in place of the year.

[Example]

from 1976 year 10 month 5 day

to 1982 year 6 month 4 day : 2068 days
to 1985 year 1 month 1 day : 3010 days

(ENTER)

261

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 (5|E)CD START YEAR =

2 MONTH = Base date 1976 year 10 month 5 day input1976 (ENTER)

3 10 (ENTER) DAY =

4 END YEAR-5 (ENTER)

5 MONTH = Target date 1982 year 6 month 4 day input1982 (ENTER)

6 DAY =6 (ENTER)

7 DAYS = 2068.4 (ENTER)

8 (ENTER) END YEAR =

9 MONTH = Target date 1985 year 1 month 1 day input1985 (ENTER)

10 DAY-1 (ENTER)

11 DAYS- 3010.1 (ENTER)

12 END YEAR =
(ENTER)

13 (D§E)CZ3 >

262

FLOWCHART

20

30

50

70

100

120

L
H = R
G = S
I

=, w

r~
Ĥ = F
G = V
l

== w

"Z"

c END

500

510

520

530

I = INT(365.25*H)
+ INT(30.6*G) + |

263

PROGRAM LIST MEMORY CONTENTS

1

29

58:

68:

70:

88:

180:

110:

128

138

148

150

580

510

520

538

688

8: V A V

input "start year= v
?

r^montk^s^bay^;
T

INPUT "ENS YEAR-';F*
•nGNTHs^V^DAY-VU
H=R
G=S:I=T
GOSUB 500

J=I

H^F
G=V:I=W
GOSUB 500
X=W
MAIT : USING : PRINT
'BAYS= w jX

GOTO 38

•If G-3>=8 LET G=G+l:
GOTO 528

:G=G+13:H=H-1

:I= INT <365.25*H)+
INT <38.6*G)+I
:I=I- INT <H/180)+
INT (H/400>-386-122:
RETURN
!*Z': ENB

278

A

B

C

D

E

F Year {after calculation)

G V
H V

1 V
J V
K

L

M

N

P

Q

R Start year

S Month of base date

T Day of base date

U

V Month of target date

w Day of target date

X Number of days

Y

z

264

Program Title: TYPING PRACTICE

OVERVIEW
Quick key operation

!

How fast and correct is your typing?
If you practice with this program, it wil, make programming much easier for you. Improve your skiil

!

CONTENTS (such as calculation contents)
The number of characters (4 ~ 6) is randomly chosen.
The character arrangement (A ~ Z) is done randomly
The allotted time depends on the number of characters and the grade level
J is the shortest time allotment, while 1 is the longest.

INSTRUCTIONS
After the buzzer sounds, 4 to 6 characters will be displayed You are to tun* in th-
If the are all correct, you get 10 points.

^ characters within the allotted time.

If more than half are correct, you get 5 points.
After the allotted time is over the next n.v,MQm j-

,

(1, 2, 3).
'

6Xt Pr°b,em
'

S d,Splayed
"
The -"ott-d time depends on the grade, which has three leve,s

3 is the shortest time allotment, while 1 is the longest.
Point competition is done within the same grade category.
There are 10 problems, making the maximum score 100 points.

265

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 (5EF)CD GRADE (1,2,3) ? Grade input

2 AZ B DC1 (ENTER)

3 c© AZ B DC A

4 (X) AZ B DC AZ

YOUR -SCORE = 80
After the 10 questions are answered, the score is

displayed

YOUR SCORE IS BEST
If your score is higher than the high score, the

guidance is displayed

>

1 (DEF)(A) HIGH -SCORE =80 When you want to play in the same grade

B W VS

2 GD

YOUR -SCORE = 60

>

266

FLOWCHART

40

"A"

High score

Characters arranged
according to random

numbers

Series of problem \
characters and input

]

character series J

"2"

Grade

©
Q

After the loop has
been processed

110

Points are counted
depending on the number

of correct answers

S YOUR
(SCORE IS

V BEST

END

267

PROGRAM LIST

18: V
Z

U
: CLEAR : DIM B$<

5>jC$(5): RANSOM

15:INPU7 v GRABE<i ? 2>3)?
v
5L: WAIT 8

17: if <L=1)+<L=2)+(L=3>
<>1 THEN 15

13:G0T0 39

28:"A V
: UAIT 0:P=8:

PAUSE y HIGH-SCORE= v
?

X

38:F0R S=l TO 18

48:B= RNB 4+2:Y$=" v :R=

INT (B/2>

58: FOR C=8 TO B-1:C$CC>

68:B= RHIi 2b:B$(C) =

CHR$ <D+&40):Y*=Y*+
CHR$ (D+&48): NEXT C

:A$= VV

70:BEEP 3:E=8: UAIT 38:

USING *&&&£&&£"

80: FOR 14=1 TO B*10/L=
PRINT Y$?" 'pA*:

IF E=B LET W=B*28/L:
GOTO 188

85:C$(E>= INKEY$: IF C

$<E>= VV THEN 188

37 = A$=A$+C*(E)
98: E=E+1

188: NEXT 14:0=8

118: FOR 14=8 TO 3-1: IF B

$<!4>=C$(W) LET 0=0+1

128 NEXT 14: IF

158

Q<=R THEN

138 IF Q=B LET P=P+18:

GOTO 158

148 .P=P+5

158 sNEXT S: US]:ng : BEEP
3: PAUSE "YQUR-SCORE
= v

;p

160 : IF P>X LET X=P: UAIT

188: PRINT v Y0UR SCO

RE IS BEST if

178 :ENS

475

268

MEMORY CONTENTS

A$ V
B V
C Loop counter

D V
E v/

F

G

H

1

J

K

L Grade

M

N

O

P Score

Q V
R V
S Loop counter

T

U

V

w Loop counter

X High score

Y$

z

B$(5) V
C$(5) V

269

Program Title: SOFTLANDING GAME

OVERVIEW
This game involves landing a rocket, with only a limited amount of fuel, as softly as possible. The rocket is in free fall. The

engine is used to slow down the free-falling rocket. If ignition takes place too soon or too much fuel is used, then the rocket is

thrust back out into space and becomes dust around the planet.

If all the fuel is burned up, the rocket hits the planet and blows up.

The aim is to land the rocket as softly as possible by controlling the engines while watching how much fuel is burned.

CONTENTS
Gravity is set to be 5 m/(unit time)

2
.

If 5 units of fuel per a unit time are burnt, then gravity is offset.

Equations

H

V

V 2

Ho

H + V t + yat 2

V + at

V 2 + 2aH

500, V = -50, F = 200

H
V
a

t

V

height H
speed Vo

gravitational acceleration F

time F

initial speed

initial height

initial speed

initial fuel

fuel burned

The initial height, initial fuel level, and the wait time are stored in line 30 as data. By changing these values, the above variables

can be changed.

INSTRUCTIONS
1. It is started by pressing (HE) CA3 . Press QD ~ GD keys to adjust the amount of fuel used to land the rocket.

270

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 (5|f)(X) *** START***

2

Keys QD ~ GD
designate fuel burned in

unit time

H: 500 S: -50 F: 200 C:

QD H: 452 S: -46 F: 191 C: 9

Repeat

(If successful) SUCCESS!!

FUEL LEFT: F = 15

(If failed) GOOD BYE!!

REPLAY (Y/N)? Wait for input on whether you wish to play again

CYJ Play again

(ED > End

271

FLOWCHART

100

130

140

t pressed
Y

C = A

TT^N

>d fuer^-^Y
C = Fds fuel

jft ^^
TTn

Calculation of the

rocket's height

and speed

272

PROGRAM LIST

- y
- h • whiT 58: CLFA°
JSING :s=-50:a=0:D

28=BEEP 5 : PRINT . ^
hi ART *#* u

30:DATA "TIME=%58,»P! IE

^=
1,

J 200,"HEI6HT=%5@

40: RESTORE
50 -'READ B$,W,B*,f.B*,h
60: WAIT W

SPRINT USING 'smv
.

F; ' C:-5 STR*' C '
'

8W.-IF F<=0 GOTO 170
9ti .-BEEP UB$= INKEY*

GOTO 130
110:0= VAL 3$
120: A=C

;ff-ir OF LET C=F

2:S=S+X
150: IF H>0 GOTO 78
16S:iP (abc u/pwx .^

S<5)=2 BEEP 5: PRINT
•SUCCESS!!*: GOTO i 3
8

179:BEEP 3: ?Rm »g 0B
BYE!!': GOTO 190

188:WAIT 158: print
USING "IliriTO *

EFT :f=»; F
19B:HAIT 50: pRINT * R£pi

AY CY/N) ?*:Z$=
INKEY*

280: IF <Z$= V
Y*}+(Z$= V

N
V
)

<>1 GOTO 190
210: IF Z*=*Y* GOTO 10
220: END

43S

273

MEMORY CONTENTS

A V
B$ V
C Fuel burned

D$ Fuel burned

E

F Initial fuel level, fuel left

G

H Initial height, height

1

J

K

L

M

N

O

P

Q

R

S Speed

T

U

V

W Wait time

X V
Y

z$ V

274

Program Title: MEMORY CHECKER

OVERVIEW
Three lines with a total of 18 characters will be displayed on the screen for approximately 5 seconds.

Your memory will be tested by how well you input the above line after it has disappeared.

CONTENTS
The following type of line will be displayed for approximately 5 seconds. There are 2 characters and 4 numbers in each set.

Character Number

****** ****** ******

Set 1 Set 2 Set 3

The 3 sets shown above are to be memorized and then input as answers.

The Computer will then analyze your answers and place you in one of the possible 7 categories.

Each set is split into 2 parts of former 3 and latter 3 characters, giving a total of 6 points when all the answers are correct.

275

Points Evaluation Message

IDIOT

1 BAD

2 AVERAGE

3 OK

4 GOOD!

5 INTELLIGENT*

6 ** GENIUS**

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 (dIDCaD MEMORY CHECK Title

2 **xxxx **xxxx **xxxx
Display of problem line (5 sec.)

* . . . character

X . . . number

3 ANS. = _ Waiting for the input of set 1

4
If- I \

ANS. = _ Waiting for the input of set 2
(Lxampiej TfmtfrI
AB1234 ^NTERJ

276

KEY OPERATION SEQUENCE

Step No.

10

Key Input

**xxxx (ENTER)

**XXXX (ENTER)

QQ <xQD (ENTER)

Display

ANS. = _

**XXXX **XXXX **xxxx

**xxxx **xxxx **xxxx

IDIOT

BAD

AVERAGE

OK

GOOD!

^INTELLIGENT*

GENIUS

*REPLAY (Y/N) ?

Remarks

Waiting for the input of set 3

Display of the problem line (1 .5 sec.)

Display of the answer input

display of category

Player input request

If Y,go to step 2

If N, END

277

FLOWCHART

20
J

Construction of the

problem line

150

160

200

200

C
Display of the \
problem line I (Subroutine 500)

{5 sec.) /

Redisplay of the ^ (Subroutine 500)
problem fine '

-T\
200 f Redisplay of the

answer input
(Subroutine 520)

278

PROGRAM LIST

18:

28!

38:

58

60

78

90:

108:

110:

128:

130'

140

159

160

178

"A
w

: USING : WAIT 28
0: PRINT 'ItENORY CHE
CK*: CLEAR : RANDOM
DIM G$<6>*l,N$a8)*l
,V$<3)*3,X$(3)*6,Z$<
3>*3,Y$(3)*6
FOR 1=1 TO 9:N$(I)=
STR$ is NEXT I:N*<19
) = '8*

FOR 1=1 TO 6

J= RND 26:J=J+64
G$(D = CHR* (J):

NEXT I

FOR 1=1 TO 3

¥$(1)=* •

FOR J=l TO 3:K= RND

9

Y$(I>=Y$(I)+N*<K>:
NEXT J

L= RND 9:J=CI-l)*2+i
A$(I)=G$<J>+G$(J+1>+
K$CL)

:H$=Y$(I):A$<I+3>=
RIGHT* <H$,3>: NEXT

I

:GOSUB 500
iFOR 1=1 TO 3

i INPUT " ANS.

(I):X$CI)=

<D,6>

"5X$

LEFT* <X$

180:Z$(I>- LEFT$ <X$(I),

3)

198:V$(I)= RIGHT* (X$(I)

i3): NEXT I

200:GOSUB 520: GOSUB 500
: GQSUB 520

210:N=8
228:F0R 1=1 TO 3

238: IF A$(I)=Z$<I> LET N

=N+1

240: IF A$(I+3)=V*(I) LET

N=N+1

250: NEXT I

260:N=N+1
270:WAIT 150: ON N GOTO

300,310,320)330,340,
350,360

300:BEEP l: PRINT • IDI

OT v
: GOTO 370

310:BEEP l: PRINT * BAD
•: GOTO 370

320:BEEP 2: PRINT * AVE

RAGE*: GOTO 370

338:BEEP 2: PRINT 9 OK
v

: GOTO 378

348:BEEP 3: PRINT w GO

OD!
v

: GOTO 378

358:BEEP 4: PRINT "* INT

ELLIGENT *': GOTO 37

8
279

568: BEEP 5: PRINT •

IUS***

'**GEN

378:;U$=": BEEP l: INPUT
¥ * REPLAY <Y/N)' ? •;

U$

388:HF tt*='N' THEN 688

390::IF i4*=
v Y* THEN 58

395:iGOTO 378
400::GOTO 378

580::MAIT 300: BEEP 2:

PRINT A$<1>5A*<4>;'
*;a$(2>;a$(5:>;•

*;a$<3>;a$<6>
510:: RETURN
528::UAIT 88: BEEP :i:

PRINT USING '&&&&&&'

5X$<i)5 USING !

;•

; using •&&&&« ,r ;x$<

2>; using ;• •5

USING *&Ute& v ;x$<3>

525 s USING

538 : RETURN

688 :END

391

MEMORY CONTENTS

A$

B$

C$ 3 columns of characters

D$

E$

F$

G

H$ V
1 Index

J Random number generation

K

L Random number generation

M

N Counter

P

Q

R

S

T

U

V

W$ Input for REPLAY

X

Y

Z

G$(6)*1 Characters (1 ~ 6)

N$(10)*1 Number table (1 ~ 10)

V$<3)*3 3 columns after answering (1 ~ 3)

X$(3)*6 Work (1 ~ 3)

Y$(3)*6 Work (1 ~ 3)

Z${3)*3 3 columns before answering {1 ~ 3)

280

Program Title: BUGHUNT

OVERVIEW
This is a game involving a man chasing after a bug.

CONTENTS
The bug moves according to random numbers.

The man chases the bug and kills it.

OD
The man moves by using the (A) (X) keys. (INKEY$isused)

QD
Each time the man moves one space, so does the bug. (Sometimes the bug will

stay in the same piace.)

Initially, the man is in position (0, 0).

The bug is placed at a position that was chosen at random.

Hints are displayed as distance.

The distance is displayed by the ABS(X-a) + ABS(Y-b) equation.

The initial energy level is 100. This decreases by 1 with time.

Each time that a bug is killed, the energy increases by 5, 10, or 15. (The

amount is chosen randomly.)

The score is determined by how many bugs were killed when the energy level

reaches 0.

(The position of the bug may "warp" when cornered.)

The program can be started by either pressing RUN (ENTER) or (5fF) (X)
.

281

Y

9

8

7

6

5 ^
4

3

2

1

X

1 2 3 4 5 6 7 8 9

Position of the man (X, Y)

Position of the bug (a, b)

Concerning the display (Small characters are actual values)

(x, y) DISTANCE = Z E = e

Present position Hint Remaining energy

(X coordinate, Y coordinate) (distance)

• Each time the man moves the display changes

Bug is caught

HIT! HIT!

BANG! BANG!

SCORE t ENERGY

Concerning the BEEP sound

• Hint: When the distance is 1 the BEEP goes off 3 times

2 2

3 " 1

282

* if the distance is greater than 3 no BEEP is given.

* When the bug is caught, the BEEP goes off 5 times.

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @F)CK) (0,0) DISTANCE- 5 E = 100

8 (0,1) DISTANCE = 4 E - 99

6 (1,1) DISTANCE = 2 E = 98 2 BEEPs

8 HIT! HIT! 5 BEEPs

BANG! BANG!

SCORE 1 ENERGY 108

2R3

FLOWCHART

Judge from the distance

L = 1 BEEP 3

2 2

3 1

(X, Y): L: E display

Score display

GAME OVER

END

/^~HIT HIT
\BANG BANG

Points and energy

added

Score displayed

T
©

284

PROGRAM LIST

10:»A V
: RAHBOfl : WAIT 2

59: PRINT *** BUGHUN
T GAHE ** v

: BEEP 3

20:X=S:T=9:E=l^e:F=l^f:
T=g:S=8 ^ ^

38:A= RNB 9:B= RNB 9

48:L= ABS CX-A>+ ABS (Y

-B>

50: IF X=A ANB Y=3 GOTO
488

188: IF L=l BEEP 3

118: IF L=2 BEEP 2

120: IF L=3 BEEP 1

138:*AIT 58: PRINT v <*;

STR$ (X);"!^ STR$ (

y>;
v

) distance^;
STR$ <L>5

¥ E=*5 STR$
<E>

158:S=S+lsE=F- INT (S/2>

153: IF E<=0 THEN 580

155:G$= INKEY* : IF G$= M

v GOTO 130

157: BEEP l

168: IF G$=*2* LET Y=Y-1:

GOTO 218

178: IF G$= V
4

V LET X=X-i:

GOTO 218

138^

190

200
210

228

230

240

258

260
270

230

298

388

310

320

340

IF G$=*6 V LET X=X+i:

uO T 218

IF G$= V
3

V LET Y=Y+l:

GOTO 218

GOTO 158

IF X<8 LET X=8: GOTO
150

IF Y<8 LET Y=0: GOTO

150

IF X>9 LET X=9: GOTO

150

IF Y>9 LET Y=9: GOTO

158

IF XssA AMI) y=B GOTO

488

E=F- INT (3/2)

IF E<=8 GOTO 588

R= RND 5

IF R=l LET B=B-l:

GOTO 348

IF R=2 LET A=A-l:

GOTO 348

IF R=3 LET A=A+l:

GOTO 348

IF R=4 LET B=B+l:

GOTO 348

IF h<8 OR A>9 GOTO 3

78

285

350 IF 3<8 OR B>9 GOTO 3

78

360 GOTO 40

378 BEEP 4: PAUSE v *** M

ARP *** v
: GOTO 30

408 PAUSE "KIT! KIT!*

418 BEEP 5

428 PAUSE 'BANG! BANG!*
430 T=T+3

+C

fc :C= RNB 3*5: F=F

435 E=F- INT (3/2)

448 UAIT 100: PRINT v SCO

RE 9
\ J}

9 ENERGY *?E

458 GOTO 38

500 • WAIT : PRINT 'SCORE
; s TB$ r'T>; "'' *GAME

>18: ENB

MEMORY CONTENTS

A Position of bug X coordinate

B Position of bug Y coordinate

C Amount of energy added

D

E Remaining energy

F Energy level

G$ Key read in

H

1

J

K

L Distance between bug and man

M

N

P

Q

R Size of bug movement

S Time spent

T Score

U

V

W

X Man position X coordinate

Y Man position Y coordinate

Z

286

Program Title: DOUBLE ROTATION

OVERVIEW
Quickly put in order A, B, C •

This is a game that arranges randomly placed characters (A ~ J) in alphabetical order. When the letters are arranged in the right

order, a score is displayed. The trick is to attack from the best place.

The sooner the characters are arranged, the better.

It is fun to race with 2 or 3 of your friends.

INSTRUCTIONS
1. After the program is initiated, by pressing (def) QT) , "DOUBLE ROTATION" is displayed. A random sequence of charac-

ters (A ~ J) is then displayed.

2. The space in between the characters is taken as the breakpoints (1 ~ 9) where the numbers are placed. Inputting a break

number causes the characters on each side of the breakpoint to be rotated by moving them to the far ends of the row.

3. After the characters have been placed in order, the number of moves required is displayed as the score. The lower the score

the better.

EXAMPLE
In (1), 4 is input; "F" and "

I " move to each side, changing the configura-

tion to (2). If 1 is now input, the "E" moves to the far right; but "F"

stays in its place because it is already in the far left position, becoming

configuration (3).

(1)

(3)

'

:> 3 4 5 (7 8 9

E H B F I A C J D GAll ^123456789
F E H B A C J D G I

i

-^"123456789
F H B A C J D G I E

287

KEY OPERATION SEQUENCE

Step No. Key Input

(DEF)®

CD~(3D

(HE)CI

Display

DOUBLE ROTATION

A~ J

Repeated input

ABCDEFGHIJ

GAME END

YOUR SCORE 35

A-

J

Same as (def) CaT) in succession

Remarks

Random sequence display

Numbers between 1 and 9 are selected and input

Does player want to play using the same

beginning random alphabets?

288

FLOWCHART

c^D r^)

10 400

Initial setup

70

Random number
generated

110

Alphabet is stored

depending on
random numbers

170

A sequence of

alphabets is

displayed

INKEY$
D$

210

300

Sequence of letters

is shifted according

to the input numbers

310

Game over

score

END

289

PROGRAM LIST

19:
y
A": CLEAR : WAIT 58

: RANDOM : DIP! B$<4>

28:PAUSE "DOUBLE RG7ATI
ON*

38:B$C8>="ABCBEFGHIJ V

48:B$(1)= vw

58:A=8
68:F0R 1=1 TO 18

78: R= RN2 18

80:S=2*<R-1>
85:B=S AND A

98: IF B<>8 GOTO 79

188: A=A OR S

110sB$(l)=B*(l)+ MID* (B

*<9>fR»i>: NEXT I

128:B*C2>=B*<1>
138:N=8
150:BEEP 1

170:D*=": PRINT 3*<2>:D
= INKEY

180:C= VAL D$

199: IF C=8 GOTO 170

210:B*<3>= LEFT* <B*<2>,

C)

220:B*<4>= RIGHT* (B*(2>

10-C)
248: IF C=l GOTO 268

258:3*<3>= RIGHT* (B*(3)

,1)+ LEFT* <B*(3)jC-

1)

260: IF C=9 GOTO 288

278:B*<4)= RIGHT* <B*(4)

»9-C)+ LEFT* <B*<4>,

1)

288:B*(2)=B$(3)+3*<4)
298:N=N+1
308:IF B*(2>OB*(8) GOTO

158

318:BEEP 5: PAUSE V GAHE

END*

328:14AIT 298: PRINT

USING •Mttt'S'YOUR S

cqresn
338: END

489: V
B

W
: WAIT 50: GOTO 1

20

471

290

MEMORY CONTENTS

A V
B V
C V
D$ Input key

E

F

G

H

1 V
J

K

L

M

N Score

P

Q

R Random numbers

S V
T

U

V

w
X

Y

z

B$(4) Alphabet sequences

291

ADDENDUM
Cat No. 26-3590

« a first element for a two dimensional array.

1 With the PC-3, you can use an array^as a first element

An array as a second element will not work.

Example:

B (C (0), 5) - - OK
B(5,C(0))--NO r it can be used as the second element

There is one exception. If the inner array is A* I,

of the two dimensional array.

2 When the decimal places as set by the statement "USING" and the number to be d,s-

Placed or printed becomes 0, the last is ^PPed.
„

Example: If decimal places are set with USING ##•# •

., wi|| be disp|ayed

fA = fl01 will be displayed instead of 0.0

0„. wv vou1 "-Id «t «* i. .o- . P-— «* -* <°"°"™'

£ rFA<i'f™EN PRINT USINO "##.##" i*™' °°T° 4.

30 PRINT A
Aflw

,
. A , ttr //Tn" u used in a character string

Radio /haek
Fort Worth, TX 76102

292

IMPORTANT INFORMATION

-This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in strict

accordance with the manufacturer's instructions, may cause interference to radio and television reception. It has

been type tested and found to comply with the limits for a Class B computing device in accordance with the specifi-

cations in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such

interference in a residential installation. However, there is no guarantee that interference will not occur in a par-

ticular installation. If this equipment does cause interference to radio or television reception, which can be deter-

mined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more

of the following measures:

• Reorient the receiving antenna

• relocate the computer with respect to the receiver

• move the computer away from the receiver

• plug the computer into a different outlet so that computer and receiver are on different branch circuits.

If necessary the user should consult the dealer or an experienced radio/television technician for additional sug-

gestions. The user may find the following booklet prepared by the Federal Communications Commission helpful:

-How to Identify and Resolve Radio-TV interference Problems'. This booklet is available from the US Government

Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4"

CUSTOM MANUFACTURED FOR RADIO SHACK, A DIVISION OF TANDY CORPORATION

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U.K.

91 KURRAJONG ROAD PARC tNDUSTRIEL DE NANiNNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N. S. W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

3A3 PRINTED IN JAPAN

