Computer Networks: A Systems Approach
Fifth Edition
Solutions Manual

Larry Peterson and Bruce Davie

2011

Larry L. Peterson and Bruce S. Davie

I' A ~
5 4 ‘
= =
=i "
&% ¢

Computer
Networks

Dear Instructor:

This Instructors’ Manualcontains solutions to most of the exercises in the fifth editi
of Peterson and DavieSomputer Networks: A Systems Approach

Exercises are sorted (roughly) by section, not difficulty.hil® some exercises are
more difficult than others, none are intended to be fiendigidiky. A few exercises
(notably, though not exclusively, the ones that involvegkdting simple probabilities)
require a modest amount of mathematical background; masbtidrhere is a sidebar
summarizing much of the applicable basic probability tlygnrChapter 2.

An occasional exercise is awkwardly or ambiguously wordketthe text. This manual
sometimes suggests better versions; also see the errbtavaeb site.

Where appropriate, relevant supplemental files for thelsgisos (.g.programs) have
been placed on the textbook web shet p: / / mkp. com conput er - net wor ks.
Useful other material can also be found there, such as emataple programming
assignments, PowerPoint lecture slides, and EPS figures.

If you have any questions about these support materialas@leontact your Morgan
Kaufmann sales representative. If you would like to comtebyour own teaching
materials to this site, please contact our Associate EBiémid Bevans,

D. Bevans@l sevi er. com

We welcome bug reports and suggestions as to improvemenimfb the exercises
and the solutions; these may be semétbugsPD5e@elsevier.com.

Larry Peterson
Bruce Davie
March, 2011

Chapter 1 1
Solutions for Chapter 1

3. We will count the transfer as completed when the last datrtives at its desti-
nation. An alternative interpretation would be to countithe last ACK arrives
back at the sender, in which case the time would be half an R5™E&) longer.

(a) 2initial RTT’s (100ms) + 1000KB/1.5Mbps (transmit) + RR (propaga-
tion = 25ms)
~ 0.125 + 8Mbit/1.5Mbps 6.125 + 5.333 sec= 5.458 sec. If we pay
more careful attention to when a megd @ versus2?°, we get
8,192,000 hitg1,500,000 bps= 5.461 sec, for a total delay of 5.586 sec.

(b) To the above we add the time for 999 RTTs (the number of R¥fween
when packet 1 arrives and packet 1000 arrives), for a totdl. 56 +
49.95 = 55.536.

(c) Thisis 49.5 RTTs, plus the initial 2, for 2.575 seconds.

(d) Right after the handshaking is done we send one packetRDm after the
handshaking we send two packets./ARTTs past the initial handshaking
we have sent +2 +4 + --- + 2" = 27*+1 _ 1 packets. Ath = 9 we have
thus been able to send all 1,000 packets; the last batcleaid RTT later.
Total time is 2+9.5 RTTs, or .575 sec.

4. The answer is in the book.

5. Propagation delay isx 102 m/(2x 108 m/s) =2x 1075 sec = 2Qus. 100 bytes/2Qs
is 5 bytes/is, or 5 MBps, or 40 Mbps. For 512-byte packets, this rises 4o&8lbps.

6. The answer is in the book.

7. Postal addresses are strongly hierarchical (with a ggbgeal hierarchy, which
network addressing may or may not use). Addresses alsode@rnbedded
“routing information”. Unlike typical network addressgsystal addresses are
long and of variable length and contain a certain amountadmeant informa-
tion. This last attribute makes them more tolerant of mirroors and inconsis-
tencies. Telephone numbers, at least those assigned {mks)dare more sim-
ilar to network addresses: they are (geographically) hidieal, fixed-length,
administratively assigned, and in more-or-less one-te-@rrespondence with
nodes.

8. One might want addresses to serveéaasitors providing hints as to how data
should be routed. One approach for this is to make addrégseschical

Another property might badministratively assignedrersus, say, théactory-
assignedaddresses used by Ethernet. Other address attributes ittt loe
relevant ardixed-lengthv. variable-length andabsolutev. relative (like file
names).

Chapter 1 2

10.

11.

12.

13.

If you phone a toll-free number for a large retailer, any ofelas of phones may
answer. Arguably, then, all these phones have the samemiqoaraddress”. A
more traditional application for non-unique addresseshtridg for reaching any
of several equivalent servers (or routers). Non-uniqueesies are also useful
when global reachability is not required, such as to addhessomputers within
a single corporation when those computers cannot be reddradutside the
corporation.

. Video or audio teleconference transmissions among ameasy large number

of widely spread sites would be an excellent candidate:astiwould require a
separate connection between each pair of sites, while basadould send far
too much traffic to sites not interested in receiving it. Bety of video and audio
streams for a television channel only to those householdsmily interested in
watching that channel is another application.

Trying to reach any of several equivalent servers, each aflwdan provide the
answer to some query, would be another possible use, althtegeceiver of
many responses to the query would need to deal with the pp$aige volume
of responses.

STDM and FDM both work best for channels with constant amiorm band-

width requirements. For both mechanisms bandwidth thas goeised by one
channel is simply wasted, not available to other channetsniliter communi-
cations are bursty and have long idle periods; such usatgpatvould magnify
this waste.

FDM and STDM also require that channels be allocated (arrd; BV, be as-
signed bandwidth) well in advance. Again, the connectiguiements for com-
puting tend to be too dynamic for this; at the very least, wasild pretty much
preclude using one channel per connection.

FDM was preferred historically for TV/radio because it iswsimple to build

receivers; it also supports different channel sizes. STCAd preferred for voice
because it makes somewhat more efficient use of the undgngndwidth of

the medium, and because channels with different capagitissnot originally

an issue.

10 Gbps =0'° bps, meaning each bit i$)~'° sec (0.1 ns) wide. The length in
the wire of such a bitis .1 ns 2.3 x 108 m/sec = 0.023 m or 23mm

z KB is 8 x 1024 x z bits. y Mbps isy x 106 bps; the transmission time would
be8 x 1024 x x/y x 10 sec = 8.192/yms.
(@) The minimum RTT i& x 385,000,000 m/ 3x10® m/s = 2.57 seconds.
(b) The delay bandwidth product is 2.5%sl Gbps = 2.57Gb = 321 MB.

(c) This represents the amount of data the sender can seoiklitefvould be
possible to receive a response.

Chapter 1 3

(d) We require at least one RTT from sending the request befa first bit
of the picture could begin arriving at the ground (TCP woualkkt longer).
25 MB is 200Mb. Assuming bandwidth delay only, it would thexke
200Mb/1000Mbps = 0.2 seconds to finish sending, for a totes ©f0.2 +
2.57 = 2.77 sec until the last picture bit arrives on earth.

14. The answer is in the book.

15. (a) Delay-sensitive; the messages exchanged are short.

(b) Bandwidth-sensitive, particularly for large files. ¢hmically this does pre-
sume that the underlying protocol uses a large messagersiaedow size;
stop-and-wait transmission (as in Section 2.5 of the teikt) asmall mes-
sage size would be delay-sensitive.)

(c) Delay-sensitive; directories are typically of modeses

(d) Delay-sensitive; a file’s attributes are typically mughaller than the file
itself.

16. (a) On a 100 Mbps network, each bit takgg0® = 10 ns to transmit. One
packet consists of 12000 bits, and so is delayed due to batiugerial-
ization) by 12Qus along each link. The packet is also delayed:4®n
each of the two links due to propagation delay, for a totalGf¥zs.

(b) With three switches and four links, the delay is
4 x 120pus + 4 x 10us = 520us

(c) With cut-through, the switch delays the packet by 208 ki2us. There
is still one 12Qus delay waiting for the last bit, and 28 of propagation
delay, so the total is 142s. To put it another way, the last bit still arrives
120us after the first bit; the first bit now faces two link delays ante
switch delay but never has to wait for the last bit along thg.wa

17. The answer is in the book.

18. (a) The effective bandwidth is 100 Mbps; the sender cad skata steadily
at this rate and the switches simply stream it along the pipelWe are
assuming here that no ACKs are sent, and that the switchekesgmup
and can buffer at least one packet.

(b) The data packet takes 526 as in 16(b) above to be delivered; the 400 bit
ACKs take 4us/link to be sent back, plus propagation, for a totad 84 ;1S
+4 x 10 us = 56us; thus the total RTT is 57@s. 12000 bits in 576s is
about 20.8 Mbps.

(€) 100x4.7x10° bytes/12 hours #.7x 10! bytes/(123600s) 10.9 MBps
=87 Mbps.

19. (a) 100x10%bpsx 10 x 10~% sec = 1000 bits = 125 bytes.

Chapter 1

(b) The first-bit delay is 520s through the store-and-forward switch, as in
16(a).100 x 10bpsx 520x 10~ sec = 52000 bits = 650 bytes.

(c) 1.5x10° bpsx 50 x 1073 sec = 75,000 bits = 9375 bytes.

(d) The path ishrougha satellite,i.e. between two ground stations, niot
a satellite; this ground-to-satellite-to-ground path esthe total one-way
travel distance 35,900,000 meters. With a propagation speed of
3x10® meters/sec, the one-way propagation delay is thu352900,000/
= 0.24 sec. Bandwidthdelay is thusl.5 x 10% bpsx 0.24 sec = 360,000
bits ~ 45 KBytes

20. (a) Per-link transmit delay if0* bits / 108 bps = 100us. Total transmission
time including link and switch propagation delay8 = 100+2 x 20435 =

275 ps.

(b) When sending as two packets, the time to transmit onegb&ckut in half.
Here is a table of times for various events:

T=0
T=50
T=70
T=105
T=100
T=155
T=175
T=225

start

A finishes sending packet 1, starts packet 2
packet 1 finishes arriving at S

packet 1 departs for B

A finishes sending packet 2

packet 2 departs for B

bit 1 of packet 2 arrives at B

last bit of packet 2 arrives at B

This is smaller than the answer to part (a) because packatts g make
its way through the switch while packet 2 is still being traitsed on the
first link, effectively getting a 5@:s head start. Smaller is faster, here.

21. (a) Without compression the total time is 1 NiBidwidth. When we com-
press the file, the total time is

compression_time + compressed_size/bandwidth

Equating these and rearranging, we get

bandwidth = compression_size_reduction/compression_time
=0.5MB/1 sec = 0.5 MB/sec for the first case,
= 0.6 MB/2 sec = 0.3 MB/sec for the second case.

(b) Latency doesn't affect the answer because it would affeccompressed
and uncompressed transmission equally.

22. The number of packets need@d, is [10%/ D], whereD is the packet data size.
Given that overhead = 50N and loss =D (we have already counted the lost
packet's header in the overhead), we have overhead+88s=10%/D] + D.

D | overhead+loss

1000
10000
20000

51000
15000
22500

Chapter 1 5

The optimal size is 10,000 bytes which minimizes the abonetion.
23. Comparison of circuits and packets result as follows :

(a) Circuits pay an up-front penalty of 1024 bytes being semne round trip
for a total data count 02048 + n, whereas packets pay an ongoing per
packet cost of 24 bytes for a total countl®24 x n/1000. So the question
really asks how many packet headers does it take to excee?it3Qds,
which is 86. Thus for files 86,000 bytes or longer, using ptckesults in
more total data sent on the wire.

(b) The total transfer latency for packets is the sum of th@dmit delays,
where the per-packet transmit times the packet size over the bandwidth
(8192/b), introduced by each of switches § x t), total propagation delay
for the links (s + 2) x 0.002), the per packet processing delays introduced
by each switch{x 0.001), and the transmit delay for all the packets, where
the total packet count is /1000, at the sourced x t). Resulting in a
total latency 0f(8192s/b) 4 0.003s 4 0.004 + (8.192n,/b) = (0.02924 +
0.000002048n) seconds. The total latency for circuits is the transmitylela
for the whole file §n/0), the total propagation delay for the links, and the
setup cost for the circuit which is just like sending one makach way
on the path. Solving the resulting inequal@y2924 + 8.192(n/b) >
0.076576 + 8(n/b) for n shows that circuits achieve a lower delay for files
larger than or equal to 987,000 B.

(c) Only the payload to overhead ratio size effects the numbdits sent,
and there the relationship is simple. The following tablevelhe latency
results of varying the parameters by solving forth@here circuits become
faster, as above. This table does not show how rapidly thimeance
diverges; for varying it can be significant.

b P pivotaln
4Mbps | 1000| 987000
4 Mbps | 1000 | 1133000
4 Mbps | 1000 | 1280000
4 Mbps | 1000 | 1427000
4 Mbps | 1000 | 1574000
4 Mbps | 1000 | 1721000
1Mbps | 1000| 471000
2Mbps | 1000 | 643000
8Mbps | 1000 | 1674000
16 Mbps | 1000 | 3049000
4Mbps | 512 | 24000
4Mbps | 768 | 72000
4Mbps | 1014 | 2400000

(d) Many responses are probably reasonable here. The molyetansiders
the network implications, and does not take into accourge s process-
ing or state storage capabilities on the switches. The maldelignores
the presence of other traffic or of more complicated top@sgi

U OO g©OoNO® U

Chapter 1 6

24,

25.

26.

27.
28.

The time to send one 12000-bit packet is 12000 bits/108db120us. The
length of cable needed to exactly contain such a packet is.$202x 102 m/sec
= 24,000 meters.

12000 bits in 24000 meters is 50 bits per 100 m. With an extizits®f delay in
each 100 m, we have a total of 60 bits/2100m or 0.6 bits/m. A 026i0packet
now fills 12000/(.6 bits/m) = 20,000 meters.

For music we would need considerably more bandwidth wautould toler-
ate high (but bounded) delays. We couldt necessarily tolerate higher jitter,
though; see Section 6.5.1.

We might accept an audible error in voice traffic every fewosels; we might
reasonably want the error rate during music transmissidveta hundredfold
smaller. Audible errors would come either from outright lpetdoss, or from
jitter (a packet’s not arriving on time).

Latency requirements for music, however, might be much tpweeseveral-
second delay would be inconsequential. Voice traffic hasastla tenfold faster
requirement here.

(a) 640 x 480 x 3 x 30 bytes/sec = 26.4 MB/sec
(b) 160 x 120 x 1 x 5 = 96,000 bytes/sec = 94KB/sec
(c) 650MB/75min = 8.7 MB/min = 148 KB/sec

(d) 8 x 10 x 72 x 72 pixels = 414,720 bits = 51,840 bytes. At 14,400 bits/sec,
this would take 28.8 seconds (ignoring overhead for fraraimgyacknowl-
edgments).

The answer is in the book.

(a) A file server needs lots of peak bandwidth. Latencyelisvant only if
it dominates bandwidth; jitter and average bandwidth aterisequential.
No lost data is acceptable, but without real-time requinetsieve can sim-
ply retransmit lost data.

(b) A print server needs less bandwidth than a file servere@mimages are
extremely large). We may be willing to accept higher latetian (a), also.

(c) Afile serveris a digital library of a sort, but in general the world wide web
gets along reasonably well with much less peak bandwidth thast file
servers provide.

(d) Forinstrument monitoring we don’t care about latencyttar. If data were
continually generated, rather than bursty, we might be eored mostly
with average bandwidth rather than peak, and if the datyreate routine
we might just accept a certain fraction of loss.

(e) For voice we need guaranteed average bandwidth and baumiktency
and jitter. Some lost data might be acceptable; e.g. reguilti minor
dropouts many seconds apart.

Chapter 1 7

(f) Forvideo we are primarily concerned with average bamithviFor the sim-
ple monitoring application here, relatively modest vidé&rercise 26(b)
might suffice; we could even go to monochrome (1 bit/pixet)waich
point 160x 120x 5frames/sec requires 12KB/sec. We could tolerate multi-
second latency delays; the primary restriction is thatéf sonitoring re-
vealed a need for intervention then we still have time to &cinsiderable
loss, even of entire frames, would be acceptable.

(g9) Full-scale television requires massive bandwidthebay, however, could
be hours. Jitter would be limited only by our capacity to abgbe arrival-
time variations by buffering. Some loss would be acceptaltnlg large
losses would be visually annoying.

29. In STDM the offered timeslices are always the same leragitd are wasted if
they are unused by the assigned station. The round-rob&saanechanism
would generally give each station only as much time as it eddd transmit,
or none if the station had nothing to send, and so networkatibn would be
expected to be much higher.

30. (a) Inthe absence of any packet losses or duplicatidmsnwe are expecting
the Nth packet weget the Nth packet, and so we can keep track/éf
locally at the receiver.

(b) The scheme outlined here is the stop-and-wait algorifirBection 2.5;
as is indicated there, a header with at least one bit of seguemmber is
needed (to distinguish between receiving a new packet anglacdtion of
the previous packet).

(c) With out-of-order delivery allowed, packets up to 1 mmapart must be
distinguishable via sequence number. Otherwise a very atttgt might
arrive and be accepted as current. Sequence numbers wagldcheount
as high as

bandwidth x 1 minute /packet_size
31. In each case we assume the local clock starts at 1000.

(a) Latency: 100. Bandwidth: high enough to read the clo@tet unit.
1000| 1100
1001 1101
1002 | 1102
1003 | 1104 tiny bit of jitter: latency = 101
1004 | 1104

(b) Latency=100; bandwidth: only enough to read the cloakrg\v0 units.
Arrival times fluctuate due to jitter.

1000 | 1100

1020 1110 latency = 90
1040 1145

1060 | 1180 latency = 120

1080 | 1184

Chapter 1 8

(c) Latency =5; zero jitter here:
1000| 1005
1001 | 1006
1003 | 1008 we lost 1002
1004 | 1009
1005| 1010

32. Generally, with MAXPENDING =1, one or two connections will be accepted
and queued; that is, the data won't be delivered to the sefer others will be
ignored; eventually they will time out.

When the first client exits, any queued connections are peack
34. Note that UDP accepts a packet of data from any sourceyatiraga; TCP re-

quires an advance connection. Thus, two clients can nowstaikltaneously;
their messages will be interleaved on the server.

Solutions for Chapter 2

A W

© ©

Bits,1.,0,0 1 41 41:1,1,0,0,0,1 ,0,0,0,1,
1 1 1 1 1
nez ot [T [

Manchester : ! ! !

Bits 11100010111 111010101

NRzI LT LT T T T

. The answer is in the book.

. One can list all 5-bit sequences and count, but here i©xanapproach: there are
23 sequences that start with 00, a¥cthat end with 00. There are two sequences,
00000 and 00100, that do both. Thus, the number that do &tRer8 —2 = 14,
and finally the number that do neitherd8 — 14 = 18. Thus there would have
been enough 5-bit codes meeting the stronger requiremewtver, additional
codes are needed for control sequences.

. The stuffed bits (zeros) are in bold:
110101111@0101111910101111 0110

. The , marks each position where a stuffed 0 bit was removed. There wo
stuffing errors detectable by the receiver; the only sucbrehe receiver could
identify would be seven 1's in a row.

1101 01111101111 10101111 7110

. The answer is in the book.
. ..., DLE, DLE, DLE, ETX, ETX

(&) X DLE Y, where X can be anything besides DLE and Y can hehémng
except DLE or ETX. In other words, each DLE must be followeckiifier
DLE or ETX.

(b) 0111 1111.

10.

11

12.

13.

14.

15.

(a) After 48<8=384 bits we can be off by no more thatl/2 bit, which is
about 1 part in 800.

(b) Oneframeis 810 bytes; at STS-151.8 Mbps speed we arangesid8x 10°/(8x 810)
= about 8000 frames/sec, or about 480,000 frames/minutes, Thstation
B’s clock ran faster than station A's by one part in 480,00@v@uld accu-
mulate about one extra frame per minute.

. Suppose an undetectable three-bit error occurs. Tée liad bits must be spread
among one, two, or three rows. If these bits occupy two oethogvs, then some
row must have exactly one bad bit, which would be detectedhéyparity bit for
that row. But if the three bits are all in one row, then that rowst again have a
parity error (as must each of the three columns containiadp#d bits).

If we flip the bits corresponding to the corners of a reglaim the 2-D layout of
the data, then all parity bits will still be correct. Furthreare, if four bits change
and no error is detected, then the bad bits must form a reletaingorder for the
error to go undetected, each row and column must have nsar@xactly two
errors.

If we know only one bit is bad, then 2-D parity tells us whrow and column it
is in, and we can then flip it. If, however, two bits are bad ia #ame row, then
the row parity remains correct, and all we can identify is¢bRimns in which
the bad bits occur.

We need to show that the 1's-complement sum of two no®@Xthumbers
is non-0x0000. If no unsigned overflow occurs, then the sujnssthe 2’s-
complement sum and can’t be 0000 without overflow; in the atsef overflow,
addition is monotonic. If overflow occurs, then the resuliti$east 0x0000 plus
the addition of a carry bit, i.e>0x0001.

Let's define swap([A,B]) = [B,A], where A and B are one bg&ch. We only
need to show [A, B] +' [C, D] = swap([B, A] +' [D, C]). If both (A€) and
(B+D) have no carry, the equation obviously holds.

If A+C has a carry and B+D+1 does not,
[A, B] +'[C, D] = [(A+C) & OXEF, B+D+1]

swap([B, A] +' [D, C]) = swap([B+D+1, (A+C) & OXEF]) = [(A+C)
& OXEF, B+D+1]

(The case where B+D+1 has also a carry is similar to the lagt.ra
If B+D has a carry, and A+C+1 does not,

[A, B] +'[C, D] = [A+C+1, (B+D) & OXEF].

swap([B, A] +'[D, C]) = swap([(B+D) & OXEF, A+C+1]) = [A+C+1,
(B+D) & OXEF].

10

Chapter 2 11

If both (A+C) and (B+D) have a carry,
[A, B] +'[C, D] = [((A+C) & OXEF) + 1, ((B+D) & OXEF) + 1]

swap([B, A] +’ [D, C]) = swap([((B+D) & OXEF) + 1, ((A+C) &
OXEF) + 1] = [((A+C) & OXEF) + 1, ((B+D) & OXEF) + 1]

16. Consider only the 1's complement sum of the 16-bit woltisce decrement a
low-order byte in the data, we decrement the sum by 1, andrzarmentally
revise the old checksum by decrementing it by 1 as well. If werdment a
high-order byte, we must decrement the old checksum by 256.

17. Here is a rather combinatorial approach. &.ét ¢, d be 16-bit words. Lefa, b]
denote the 32-bit concatenationofindb, and letcarry(a, b) denote the carry
bit (1 or 0) from the 2's-complement sum-b (denoted here+-3b). It suffices to
show that if we take the 32-bit 1's complement sumab] and|[c, d], and then
add upper and lower 16 bits, we get the 16-bit 1's-complersant ofa, b, c,
andd. We notea +1 b = a +2 b 42 carry(a, b).

The basic case is supposed to work something like this., First
[a,b] +2 [c,d] = [a +2 ¢ +2 carry(b,d), b +2 d]
Adding in the carry bit, we get
[a,b] 41 [c,d] = [a +2 ¢ +2 carry(b,d), b +2 d 42 carry(a, c)] (1)
Now we take the 1's complement sum of the halves,
a 432 ¢ +3a carry(b,d) +2 b +2 d +2 carry(a, ¢) + (carry(wholething))
and regroup:
= a +2 ¢ +2 carry(a,c) +2 b +2 d 42 carry(b, d) + (carry(wholething))

=(a+1¢)+2 (b+1d)+carry(a+1¢,b+1d)
=(a+1¢)+1(b+1d)
which by associativity and commutativity is what we want.

There are a couple annoying special cases, however, in doeqing, where

a sum is OXFFFF and so adding in a carry bit triggers an additioverflow.
Specifically, thecarry(a, ¢) in (1) is actuallycarry(a, ¢, carry(b, d)), and sec-
ondly adding it tob +2 d may cause the lower half to overflow, and no provision
has been made to carry over into the upper half. Howeverasdea +, ¢ and
b+ d are not equal to OXFFFF, adding 1 won't affect the overflovabi so the
above argument works. We handle the OXFFFF cases separately

Suppose that +5 d = 0xFFFF =5 0. Thena +1b+1 ¢+1 d = a +1 ¢. On the
other hand|a, b] +1 [c,d] = [a +2 b, 0XFFFF] + carry(a,b). If carry(a,b) =
0, then adding upper and lower halves together gives, b = a +1 b. If

Chapter 2

18.

12

carry(a,b) = 1, we getfa,b] +1 [¢,d] = [a +2 b +2 1,0] and adding halves
again leads ta +; b.

Now suppose +5 ¢ = OxFFFF. If carry(b,d) = 1 thenb +2 d # OxFFFF
and we havéa, b] +1 [¢,d] = [0,b +2 d +2 1] and folding gived +; d. The

carry(b,d) = 0 case is similar.

Alternatively, we may adopt a more algebraic approach. W imeat a buffer
consisting ofn-bit blocks as a large number written in ba¥e The numeric
value of this buffer is congruenhod (2" — 1) to the (exact) sum of the “digits”,
that is to the exact sum of the blocks. If this latter sum hasentiann bits, we
can repeat the process. We end up withstHat 1's-complement sum, which is

thus the remainder upon dividing the original numbepBy- 1.

Letb be the value of the original buffer. The 32-bit checksumisthmod 232 —
1. If we fold the upper and lower halves, we getnod (232—1)) mod (216—1),
and, becausg*? — 1 is divisible by2!¢ — 1, this isb mod (2!6 — 1), the 16-bit

checksum.

(a) We take the message 11100011, append 000 to it, aibk diy 1001
according to the method shown in Section 2.4.3. The remaiisd£00;
what we transmit is the original message with this remaiagended, or
11100011 100.

(b) Inverting the first bit of the transmission gives 01100Q00; dividing by
1001 @2 + 1) gives a remainder of 10; the fact that the remainder is non-

zero tells us a bit error occurred.

19. The answer is in the book.

20.

(b)_p

q

Cxq

000
001
010
011
100
101
110
111

000
001
011
010
111
110
100
101

000 000
001101
010111
011010
100011
101110
110100
111 001

(c) The bold entries 101 (in the dividend), 110 (in the quajieand 101110
in the body of the long division here correspond to the bold of the
preceding table.

Chapter 2 13
110 101 011 100
1101|101 001 011 001 100
101 110
111 011
111 001
010 o001
010 111
110 100
110 100
0

21. (a) M has eight elements; there are only four valuegf@o there must be:;
andms in M with e(m1) = e(ms). Now if m; is transmuted inten, by a
two-bit error, then the error-codecannot detect this.

(b) Foracrude estimate, |18 be the set ofV-bit messages with four 1's, and
all the rest zeros. The size @ff is (IV choose4) = N!/(4/(N — 4)!).
Any element ofM can be transmuted into any other by an 8-bit error. If
we takeN large enough that the size 8f is bigger thar232, then as in
part (a) there must for any 32-bit error code functigm) be elements
my andmgy of M with e(m1) = e(ms). To find a sufficiently largeV,
we noteN!/(4!(N — 4)!) > (N — 3)*/24; it thus suffices to findV so
(N —3)* > 24 x 232 ~ 101, N ~ 600 works. Considerably smaller
estimates are possible.

22. Assume a NAK is sent only when an out-of-order packetveasri The receiver
must now maintain a RESENNAK timer in case the NAK, or the packed it

NAK’ed, is lost.

Unfortunately, if the sender sends a packet and is then ddle fvhile, and this
packet is lost, the receiver has no way of noticing the lossheE the sender
must maintain a timeout anyway, requiring ACKs, or else sarsre-data filler
packets must be sent during idle times. Both are burdensome.

Finally, at the end of the transmission a strict NAK-onhastégy would leave the
sender unsure about whettaary packets got through. A final out-of-order filler
packet, however, might solve this.

23. (a) Propagation delay49 x 10>m/(2 x 108 m/s) = 200us.

(b) The roundtrip time would be about 406. A plausible timeout time would
be twice this, or 0.8 ms. Smaller values (but larger than GY nmight
be reasonable, depending on the amount of variation in laRiiEs. See
Section 5.2.6 of the text.

(c) The propagation-delay calculation does not considecgssing delays that
may be introduced by the remote node; it may not be able toemswne-

diately.

24. Bandwidth (roundtrip)delay is about 125KBps 2.5s = 312 KB, or 312 pack-
ets. The window size should be this large; the sequence mspbee must cover
twice this range, or up to 624. 10 bits are needed.

Chapter 2

25. The answer is in the book.

26. If the receiver delays sending an ACK until buffer spacavailable, it risks de-
laying so long that the sender times out unnecessarily arahsamits the frame.

27. For Fig 2.17(b) (lost frame), there are no changes frandihgram in the text.

The next two figures correspond to the text’s Fig 2.17(c) abd (c) shows a
lost ACK and (d) shows an early timeout. For (c), the receliveeout is shown
slightly greater than (for definiteness) twice the sendeedtut.

Sender

Timeout

Timeout

Frame

/
/

Ak

Frame

Frame

}/

ACE

©

Receiver

Ignored

Ignored

Timeout

Sender

Timeout

Bmepny /7

ACE

rame[N *]]

> >
g
&

AC “\ﬂ%\\

(d)

Receiver

duplicate frame; ignored;
receiver still waits for
timeout on Frame[N+1]

Timeout for Frame[N+1]
cancelled

Here is the version of Fig 2.17(c) (lost ACK), showing a reeeitimeout of
approximately half the sender timeout.

Chapter 2 15

Sender Receiver
m
ACE

Timeout; receiver retransmits
before sender times out

Timeout
cancelled
Yet another Timeout
(possible, depending on
exact timeout intervals)

28. (a) The duplications below continue until the end of tae$mission.

Sender Receiver

original ACK

response to duplicate frame

original frame

response to
duplicate ACK

original ACK

response to duplicate frame

original frame

response to
duplicate ACK

original ACK

response to duplicate frame

(b) To trigger the sorcerer’'s apprentice phenomenon, aichtpl data frame
must cross somewhere in the network with the previous ACkHatframe.
If both sender and receiver adopt a resend-on-timeouegyauith the
same timeout intervabnd an ACK is lost, then both sender and receiver
will indeed retransmit at about the same time. Whether thesansmis-
sions are synchronized enough that they cross in the netsep&nds on
other factors; it helps to have some modest latency delalgestow hosts.
With the right conditions, however, the sorcerer’s apgoenphenomenon
can be reliably reproduced.

29. The following is based on what TCP actually does: everiKA@ight (optionally

Chapter 2 16

30.

31.

or not) contain a value the sender is to use as a maximum for. #Wfss value
is zero, the sender stops. A later ACK would then be sent witbreeero SWS,
when a receive buffer becomes available. Some mechanisridweed to be
provided to ensure that this later ACK is not lost, lest thedes wait forever. It
is best if each new ACK reduces SWS by no more than 1, so thaehéer’'s
LFS never decreases.

Assuming the protocol above, we might have something like th

T=0 Sender sends Framel-Frame4. In short order, ACK1..4A&3K sent
setting SWS to 3, 2, 1, and 0 respectively.
The Sender now waits for SWS.

T=1 Receiver frees first buffer; sends ACK4/SWS=1.
Sender slides window forward and sends Frame5.
Receiver sends ACK5/SWS=0.

T=2 Receiver frees second buffer; sends ACK5/SWS=1.
Sender sends Frame6; receiver sends ACK6/SWS=0.

T=3 Receiver frees third buffer; sends ACK6/SWS=1.
Sender sends Frame7; receiver sends ACK7/SWS=0.

T=4 Receiver frees fourth buffer; sends ACK7/SWS=1.
Sender sends Frame8; receiver sends ACK8/SWS=0.

Here is one approach; variations are possible.

If frame[N] arrives, the receiver sends ACK[N] if NFE=N; ettwise if N was in
the receive window the receiver sends SACK]|N].

The sender keeps a bucket of values ofIMR for which SACK[N] was re-
ceived; note that whenever LAR slides forward this buckdtivaive to be purged
of all N<LAR.

If the bucket contains one or two values, these could bebat&d to out-of-
order delivery. However, the sender might reasonably assilvat whenever
there was an NLAR with frame[N] unacknowledged but with three, say, later
SACKs in the bucket, then frame[N] was lost. (The numberdtrere is taken
from TCP with fast retransmit, which uses duplicate ACKdeas of SACKs.)
Retransmission of such frames might then be in order. (T@Rsretransmit
strategy would only retransmit frame[LAR+1].)

The right diagram, for part (b), shows each of frames #nng out after a
2xRTT timeout interval; a more realistic implementatiang. TCP) would

probably revert to SWS=1 after losing packets, to addre#is dmngestion con-
trol and the lack of ACK clocking.

Chapter 2 17

Sender Receiver Sender Receiver

I RTT I RTT

Frame[4] lost

Frames [4]-[6]
We might resend lost

ACK]J3] here.

2RTT 2RTT

3RIT 3RIT

Timeout Fralne[Timeout s
a,
4 Timeout Ziey. 9]
cumulative ACK Fr,

Timeout

P\C\L\()\

%’

32. The answer is in the book.

33. Inthe following, ACK[N] means that all packets with seqee numbelessthan
N have been received.

1. The sender sends DATA[O], DATA[1], DATA[2]. All arrive.

2. The receiver sends ACK[3] in response, but this is slove fdteive window
is now DATA[3]..DATA[5].

3. The sender times out and resends DATA[O], DATA[1], DATA[Eor conve-
nience, assume DATA[1] and DATA[2] are lost. The receiveregats DATA[O]
as DATA[5], because they have the same transmitted sequemcker.

4. The sender finally receives ACK[3], and now sends DATA[BTA[5]. The

receiver, however, believes DATA[5] has already been rvexkiwhen DATA[O]
arrived, above, and throws DATA[5] away as a “duplicate”.eTgrotocol now
continues to proceed normally, with one bad block in the iveckstream.

34. We first note that data below the sending window (that:IsAR) is never sent
again, and hence — because out-of-order arrival is disatiowif DATA[N] ar-
rives at the receiver then nothing at or before DATA[N-3] earive later. Simi-
larly, for ACKs, if ACK[N] arrives then (because ACKs are culative) no ACK

Chapter 2 18

before ACK[N] can arrive later. As before, we let ACK[N] dardhe acknowl-
edgment of all data packets less than N.

(a) If DATA[6] is in the receive window, then the earliest theindow can be
is DATA[4]-DATA[6]. This in turn implies ACK[4] was sent, asththus that
DATA[1]-DATA[3] were received, and thus that DATA[O], by eunitial
remark, can no longer arrive.

(b) If ACK[6] may be sent, then the lowest the sending windaam de is
DATA[3]..DATA[5]. This means that ACK[3] must have been eized.
Once an ACK is received, no smaller ACK can ever be receivied la

35. (a) The smallest working value ftaxSeqNum is 8. It suffices to show that
if DATA[8] is in the receive window, then DATA[0] can no longarrive at
the receiver. We have that DATA[8] in receive window
= the earliest possible receive window is DATA[6]..DATA[8]
= ACK[6] has been received
=- DATA[5] was delivered.

But because SWS=5, all DATA[O]'s sent were sent before DATA[
= by the no-out-of-order arrival hypothesis, DATA[O] can nadjer arrive.

(b) We show that iMaxSeqNum=7, then the receiver can be expecting DATA[7]
and an old DATA[O] can still arrive. Because 7 and O are inidggtishable
mod MaxSegNum, the receiver cannot tell which actually arrived. We
follow the strategy of Exercise 27.

1. Sender sends DATA[O]...DATA[4]. All arrive.

2. Receiver sends ACK[5] in response, but it is slow. Theiweceindow
is now DATA[5]..DATA[7].

3. Sender times out and retransmits DATA[O]. The receiveepts it as
DATA[7].

(c) MaxSegNum > SWS + RWS.

36. (a) Note that this is the canonical SWS = bandwidtklay case, with RTT =
4 sec. In the following we list the progress of one particplacket. At any
given instant, there are four packets outstanding in varssates.

T=N Data[N] leaves A
T=N+1 Data[N]arrives at R
T=N+2 Data[N] arrives at B; ACK[N] leaves
T=N+3 ACK[N] arrives at R
T=N+4 ACK]|N] arrives at A; DATA[N+4] leaves.
Here is a specific timeline showing all packets in progress:

Chapter 2 19

Data[0]...Data[3] ready; Data[0] sent
Data[0] arrives at R; Data[1] sent
Data[1] arrives at R; Data[0] arrives at B; ACK[0] stalisck; Data[2] sent
ACK]|O0] arrives at R; Data[2] arrives at R; Data[1] arrévat B;
ACK]1] starts back; Data[3] sent
T=4 ACK]Q] arrives at A; ACK][1] arrives at R; Data[3] arrived R;
Data[2] arrives at B; ACK[2] starts back; Data[4] sent
T=5 ACK[1] arrives at A; ACK[2] arrives at R; Data[4] arrived R;
Data[3] arrives at B; ACK]3] starts back; Data[5] sent

Data[0]...Data[3] sent

Data[0]...Data[3] arrive at R

Data arrive at B; ACKJ0]...ACK]3] start back
ACKs arrive at R

ACKs arrive at A; Data[4]...Data[7] sent
Data arrive at R

ﬁﬁﬁﬁ
WN PO

(b)

TR,
O~ WNPRFO

37. T=0 A sends frames 1-4. Frame[1] starts across the R&B lin

Frames 2,3,4 are in R’s queue.

T=1 Frame[1] arrives at B; ACK][1] starts back; Frame[2] lea\R.
Frames 3,4 are in R’s queue.

T=2 ACK][1] arrives at R and then A; A sends Frame[5] to R;
Frame[2] arrives at B; B sends ACK[2] to R.
R begins sending Frame[3]; frames 4,5 are in R’s queue.

T=3 ACK]2] arrives at R and then A; A sends Frame[6] to R;
Frame[3] arrives at B; B sends ACK[3]to R;
R begins sending Frame[4]; frames 5,6 are in R’s queue.

T=4 ACK][3] arrives at R and then A; A sends Frame[7] to R;
Frame[4] arrives at B; B sends ACK[4] to R.
R begins sending Frame[5]; frames 6,7 are in R’s queue.

The steady-state queue size at R is two frames.

38. T=0 A sends frames 1-4. Frame[1] starts across the R&B lin
Frame[2] is in R's queudtames 3 & 4 are lost

T=1 Framel[1] arrives at B; ACK[1] starts back; Frame[2] leaR.

T=2 ACK]1] arrives at R and then A; A sends Frame[5] to R.
R immediately begins forwarding it to B.
Frame[2] arrives at B; B sends ACK[2] to R.

T=3 ACK]2] arrives at R and then A; A sends Frame[6] to R.
R immediately begins forwarding it to B.
Frame[5] (not 3) arrives at B; B sends no ACK.

T=4 Framel[6] arrives at B; again, B sends no ACK.

T=5 A TIMES OUT, and retransmits frames 3 and 4.
R begins forwarding Frame[3] immediately, and enqueues 4.

Chapter 2 20

39.

40.

41.

42.

43.

T=6 Frame[3] arrives at B and ACK[3] begins its way back.
R begins forwarding Frame[4].

T=7 Framel[4] arrives at B and ACK[6] begins its way back.
ACK][3] reaches A and A then sends Frame[7].
R begins forwarding Frame[7].

Hosts sharing the same address will be considered toebsatne host by all
other hosts. Unless the conflicting hosts coordinate theites of their higher

level protocols, it is likely that higher level protocol nsagies with otherwise
identical demux information from both hosts will be intenhed and result in
communication breakdown.

One-way delays:
Coax: 1500m 6.49s
link: 1000m 5.13us
repeaters two 1.2@s
transceivers six 1.2¢ks

(two for each repeater,

one for each station)
dropcable &50m 1.54us
Total: 15.56us

The roundtrip delay is thus about 31u%, or 311 bits. The “official” total is
464 bits, which when extended by 48 bits of jam signal exaatlyounts for the
512-bit minimum packet size.

The 1982 Digital-Intel-Xerox specification presents a gddadget (page 62 of
that document) that totals 463.8 bit-times, leaving 20 sanonds for unforeseen
contingencies.

A station must not only detect a remote signal, but folisioh detection it must
detect a remote signalhile it itself is transmitting.This requires much higher
remote-signal intensity.

(a) Assuming 48 bits of jam signal was still used, the munn packet size
would be 4640+48 bits = 586 bytes.

(b) This packet size is considerably larger than many hid¢gwesl packet sizes,
resulting in considerable wasted bandwidth.

(c) The minimum packet size could be smaller if maximum sah domain
diameter were reduced, and if sundry other tolerances wggreehed up.

(a) A can choosé4=0 or 1; B can chooséz=0,1,2,3. A wins outright if
(ka,kp) is among (0,1), (0,2), (0,3), (1,2), (1,3); there is a 5/8nuteaof
this.

(b) Now we havekp among 0...7. Ifk4=0, there are 7 choices fdrz that

have A win; if k4=1 then there are 6 choices. All told the probability of
A's winning outright is 13/16.

Chapter 2 21

(c) P(winning race 1) = 5/81/2 and P(winning race 2) = 13//4; general-

(d)

izing, we assume the odds of A winning tith race excee(l — 1/2¢~1).
We now have that
P(A wins every race given that it wins races 1-3)
>(1—1/8)(1—1/16)(1 — 1/32)(1 — 1/64)....
~ 3/4.

B gives up onit, and starts over with, B

44. (a) If A succeeds in sending a packet, B will get the nezgincle. If A and B

(b)

(©)

are the only hosts contending for the channel, then eventaofaifraction
of a slot time would be enough to ensure alternation.

Let A and B and C be contending for a chance to transmit. Mgpasse the
following: A wins the first race, and so for the second raceefieds to B

and C for two slot times. B and C collide initially; we suppdsevins the

channel from C one slot time later (when A is still deferringjhen B now
finishes its transmission we have the third race for the chlariy defers
for this race; let us suppose A wins. Similarly, A defers fu fourth race,
but B wins.

At this point, the backoff range for C is quite high; A and B hewegr are
each quickly successful — typically on their second attemand so their
backoff ranges remain bounded by one or two slot times. Ak dafers to

the other for this amount of time after a successful transions there is a
strong probability that if we get to this point they will comie to alternate
until C finally gives up.

We might increase the backoff range given a decayingsajeenf A's recent
success rate.

45, If the hosts are not perfectly synchronized the preambike colliding packet
will interrupt clock recovery.

46. Here is one possible solution; many, of course, are plessThe probability of
four collisions appears to be quite low. Events are listegrdter of occurrence.

A attempts to transmit; discovers line is busy and waits.
B attempts to transmit; discovers line is busy and waits.
C attempts to transmit; discovers line is busy and waits.

D finishes; A, B, and C all detect this, and attempt to transamitl collide.
A chooses:4=1, B chooseé =1, and C chooses-=1.
One slot time later A, B, and C all attempt to retransmit, agaimcollide.
A chooses: 4=2, B choose$ =3, and C choose&g =1.

One slot time later C attempts to transmit, and succeeddeWkiansmits,
A and B both attempt to retransmit but discover the line ig/kargd wait.

C finishes; A and B attempt to retransmit and a third collisi@curs. A
and B back off and (since we require a fourth collision) orgaia happen
to choose the samle< 8.

Chapter 2 22

A and B collide for the fourth time; this time A chooség=15 and B
chooses:z=14.

14 slot times later, B transmits. While B is transmitting, fieanpts to
transmit but sees the line is busy, and waits for B to finish.

47. Many variations are, of course, possible. The scenatmnbattempts to demon-

48.

49,

strate several plausible combinations.

D finishes transmitting.
First slot afterwards: all three defer (P=8/27).
Second slot afterwards: A,B attempt to transmit (and ce)li€C defers.

Third slot: C transmits (A and B are presumably backing dth@ugh no
relationship betweep-persistence and backoff strategy was described).

C finishes.

First slot afterwards: B attempts to transmit and A defesB succeeds.
B finishes.

First slot afterwards: A defers.

Second slot afterwards: A defers.

Third slot afterwards: A defers.

Fourth slot afterwards: A defers a fourth time (P=164820%).

Fifth slot afterwards: A transmits.

A finishes.

(a) The second address must be distinct from the firsthitetfrom the first
two, and so on; the probability that none of the address elsofoom
the second to the one thousand and twenty-fourth collidés avi earlier
choice is

(1—1/2%8)(1—2/2%%) ... (1 — 1023/2%%)

~1—(1424...+1023)/2% =1 — 1,047,552/(2 x 2%%).

Probability of a collision is thus, 047, 552/ (2 x 248) ~ 1.86 x 107, The
denominator should probably 24¢ rather thar2*8, since two bits in an
Ethernet address are fixed.

(b) Probability of the above 02¢° ~ 1 million tries is1.77 x 1073.

(c) Using the method of (a) yield®3")2/(2 x 248) = 21; we are clearly
beyond the valid range of the approximation. A better apipnation, us-
ing logs, is presented in Exercise 8.18. Suffice it to say dhatllision is
essentially certain.

(a) Here is a sample run. The bold backoff-time binarytsligere chosen by
coin toss, with heads=1 and tails=0. Backoff times are tlmverted to
decimal.

Chapter 2 23

T=0: hosts A,B,C,D,E all transmit and collide. Backoff timmare chosen
by a single coin flip; we happened to det=1, kp=0, k=0, kp=1, kp=1.
At the end of this first collision, T is now 1. B and C retransatif=1; the
others wait until T=2.

T=1: hosts B and C transmit, immediately after the end of tisédbllision,
and collide again. This time two coin flips are needed for dxadkoff; we
happened to gétg = 00 = 0, kc = 11 = 3. At this point T is now 2; B
will thus attempt again at T=2+0=2; C will attempt again al#3=5.
T=2: hosts A,B,D,E attempt. B chooses a three-bit backofétas it is
on its third collision, while the others choose two-bit ten&Ve gotk 4, =
10=2,kg=010=2,kp =01 =1, kg = 11 = 3. We add eacl to
T=3 to get the respective retransmission-attempt time$,5,4,6.

T=3: Nothing happens.

T=4: Station D is the only one to attempt transmission; itcessfully
seizes the channel.

T=5: Stations A, B, and C sense the channel before transmidsit find
it busy. E joins them at T=6.

(b) Perhaps the most significant difference on a real Ethésrntbat stations
close to each other will detect collisions almost immedyatenly stations
at extreme opposite points will need a full slot time to detecollision.
Suppose stations A and B are close, and C is far away. Allnérs the
same time T=0. Then A and B will effectively start their bafflad T~0; C
will on the other hand wait for T=1. If A, B, and C choose the samckoff
time, A and B will be nearly a full slot ahead.

Interframe spacing is only one-fifth of a slot time and appt®all partici-
pants equally; it is not likely to matter here.

50. Here is a simple program:

#define USAGE "ether N’
/1 Simulates N ethernet stations all trying to transmt at once;
/'l returns average # of slot times until one station succeeds.

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

#defi ne MAX 1000 /* max # of stations =*/

class station {
publi c:
void reset() { _NextAttenpt = _CollisionCount = O;}
bool transmits(int T) {return _NextAttenpt==T;}
void collide() { // updates station after a collision
_Col I'i si onCount ++;
_Next Attenpt += 1 + backoff (_CollisionCount);

Chapter 2 24

//the 1 above is for the current sl ot
}
private:

int _NextAttenpt;

int _CollisionCount;

static int backoff(int k) {

/1 choose random number 0..2"k-1; ie choose k randombits
unsi gned short r = rand();
unsi gned short mask = OXFFFF >> (16-k); // mask = 2"k-1
return int (r & nmask);

b
station S MAX];

/1 run does a single sinulation
/1 it returns the tine at which sonme entrant transnits
int run (int N) {

int tinme = O;

int i;
for (i=0;i<Ni++) { S[i].reset(); }
while(1l) {
int count = 0; /1 # of attenpts at this tine
int j=-1; // countthe # of attempts; save j as index of one of them
for (i=0; i<N i++) {
if (S[i].transmts(time)) {j=i; ++count;}
}
if (count==1) // we are done
return tinme;
else if (count>1) { // collisions occurred
for (i=0;i<Ni++) {
if (S[i].transmts(tine)) S[i].collide();
}
}
++t i me;
}

}

i nt RUNCOUNT = 10000;

void main(int argc, char = argv[]) {
int N, i, runsunFO;
assert(argc == 2);
N=at oi (argv[1]);
assert (N<MAX) ;
for (i=0;i <RUNCOUNT; i ++) runsum += run(N);

Chapter 2 25

cout << "runsum = << runsum

<< " RUNCOUNT= " << RUNCOUNT

<< " average: " << ((double)runsum/RUNCOUNT << endl;
return;

Here is some data obtained from it:

stations| slot times
5 3.9

10 6.6

20 11.2

40 18.8

100 37.7

200 68.6

51. We alternate N/2 slots of wasted bandwidth with 5 slotsisegfful bandwidth.
The useful fraction is: 5/(N/2 + 5) = 10/(N+10)

52. (a) The program is below. It produced the following otitpu

A # slot times A # slot times
1 6.39577 2 4.41884
1.1 | 5.78198 2.1 | 4.46704
1.2 | 5.36019 2.2 | 4.4593
1.3 | 5.05141 2.3 | 4.47471
1.4 | 4.84586 2.4 | 4.49953
1.5| 4.69534 25| 457311
1.6 | 4.58546 2.6 | 4.6123
1.7 | 4.50339 2.7 | 4.64568
1.8 | 4.45381 2.8 | 4.71836
1.9| 4.43297 2.9 | 4.75893
2 4.41884 3 4.83325

The minimum occurs at about2; the theoretical value of the minimum
is2e — 1 = 4.43656.

(b) If the contention period has length then the useful fraction &/(C + 8),
which is about 64% fo€ = 2e¢ — 1.

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>
#i ncl ude <math. h>

const int RUNCOUNT = 100000;

/1 X = X(lanbda) is our random vari abl e
doubl e X(doubl e I anbda) {

doubl e u;

do {

Chapter 2 26

53.

54.

55.

u= doubl e(rand())/ RAND.MAX;
} while (u== 0);

doubl e val = - 1og(u)=*Ianbda;
return val;
}
doubl e run(doubl e | anbda) {
int i = 0;
double tinme = O;
doubl e prevtine = -1;
doubl e nexttine = O;
time = X(Ianbda);
nexttime = time + X(Ianbda);
/1 while collision: adjacent tines within +/- 1 slot
while (time - prevtime < 1 || nexttine - time < 1) {
prevtine = tine;
time = nexttine;
nexttinme += X(I|anbda);
}
return tine;
}

void main(int argc, char * argv[]) {
int i;
doubl e sum | anbda;
for (lambda = 1.0; lanmbda <= 3.01; lanbda += 0.1) {

sum = 0;
for (i=0; i <RUNCOUNT; i++) sum += run(l anbda);
cout << lanbda << " " << sum RUNCOUNT << endl;

This is the case in the hidden node problem, illustratdeigure 2.30, in which
A interferes with C's communication to B, and C interfereshwh's communi-
cation to B.

Whereas in wired networks, the sender can detect avlisas they occur, this
is not true in wireless. The hidden node problem (see previmgstion) is one
reason for this, and the half-duplex nature of wirelessdiiskanother.

802.11 uses the RTS-CTS mechanism to try to addressrhiedrinals. A node
that has data to send begins by sending a short RTS packegiimgj that it
would like to send data, and the receiver responds with a @Fgh is also
likely to be received by nodes that are in reach of the recéivehidden from
the sender. While this doesn't prevent collisions, the fhat RTS and CTS are
short packets makes collisions less likely.

Chapter 2

56.

57.

27

A base station topology would require an infrastructifigase stations in place.
Existing base stations (and their hardline connectiong) beawiped out by the

disaster, and installing new ones may be difficult and timesaming. With a

mesh topology, each additional node would piggyback ortiegisiodes.

GPS is considered too expensive and consumes too mu@r favthe majority
of nodes. A typical solution requires a few nodes calbedcongo determine
their own absolute locations based on GPS or manual confignraThe ma-
jority of nodes can then derive their absolute location bybming an estimate
of their position relative to the beacons with the absolotation information

provided by the beacons.

Chapter 2

28

Solutions for Chapter 3

1. The following table is cumulative; at each part the VCllégbconsist of the
entries at that part and also all previous entries. Noteahthte last stage when
a connection comes in to A, we assume the VCI used at stagar{aptbe re-
used in the opposite direction, as would be the case forrbetibnal circuits
(the most common sort).

3.

Exercise| Switch Input Output
part Port | VCI || Port| VCI
€) 1 2 0 3 0
(b) 1 0 0 1 0

2 3 0 0 0
3 0 0 3 0
(c) 1 0 1 1 1
2 3 1 0 1
3 0 1 2 0
(d) 1 2 1 1 2
2 3 2 0 2
3 0 2 3 1
(e) 2 1 0 0 3
3 0 3 1 0
4 2 0 3 0
4) 1 1 3 2 2
2 1 1 3 3
4 0 0 3 1
2. The answer is in the book.
Node A: Destination Next hop Node B:
B C
C C
D C
E C
F C
Node C: Destination Next hop Node D:
A A
B E
D E
E E
F F

29

Destination Next hop
A E
C E
D E
E E
F E
Destination Next hop
A E
B E
C E
E E
F E

Chapter 3 30

Node E: Destinatior| Next hop Node F: Destinatioh Next hop

MmMoOO®@>
O0OWmO
moow>
O0O0O00OO0

4. S1: destinatior] port
A 1
B 2
default 3

S2: destination port
A
B
C
D
default

=

=
—

S3: destination
C
D

default

©

=
—

S4:. destination
D
default

e
P NO P WNO NWWPE

5. In the following, Si[j] represents the jth entry (courgifrom 1 at the top) for
switch Si.

A connects to D via S1[1]—S2[1]—S3[1]
A connects to B via S1[2]
B connects to D via S1[3]—S2[2]—S3[2]

6. We provide space in the packet header for a second adtesswhich we build
the return address. Each time the packet traverses a striechywitch must add
theinboundport number to this return-address list, in addition to farging the
packet out the outbound port listed in the “forward” addrelSser example, as
the packet traverses Switch 1 in Figure 3.7, towards forveadtess “port 17,
the switch writes “port 2” into the return address. SimiyaBwitch 2 must write
“port 3” in the next position of the return address. The netandress is complete
once the packet arrives at its destination.

Another possible solution is to assign each switch a loaatigue name; that
is, a name not shared by any of its directly connected neighbieorwarding
switches (or the originating host) would then fill in the sence of these names.
When a packet was sent in reverse, switches would use thesesrta look up
the previous hop. We might reject locally unique names, vewen the grounds

Chapter 3 31

10.

11.

that if interconnections can be added later it is hard to ssetb permanently
allocate such names without requiring global uniqueness.

Note that switches cannot figure out the reverse route frenfethend, given just
the original forward address. The problem is that multigleders might use the
same forward address to reach a given destination; no eveechanism could
determine to which sender the response was to be deliverecanfexample,
suppose Host A connects to port 0 of Switch 1, Host B connectsott O of
Switch 2, and Host C connects to port 0 of Switch 3. Furtheensuppose port
1 of Switch 1 connects to port 2 of Switch 3, and port 1 of Swizcbonnects
to port 3 of Switch 3. The source-routing path from A ta@dfrom B to C is
(0,1); the reverse path from C to A is (0,2) and from C to B i8]0,

. Here is a proposal that entails separate actions for éa3wlitch that lost state,

(b) its immediate neighbors, and (c) everyone else. We w#uae connec-
tions are bidirectional in that if a packet comes in @ort,VCI;) bound for
(port;,VCl,), then a packet coming in on the latter is forwarded to the &rm
Otherwise a reverse-lookup mechanism would need to bedinted.

(a). A switch that has lost its state might sendl @m lostmessage on its out-
bound links.

(b). Immediate neighbors who receive this would identify port through which
the lost switch is reached, and then search their tablesfoc@nnection entries
that use this port. Aonnection brokemessage would be sent out ththerport
of the connection entry, containing that port’s correspog®/Cl.

(c). The remaining switches would then forward thesanection brokemes-
sages back to the sender, forwarding them the usual way atatiog the VCI
on each link.

A switch might not be aware that it has lost some or all of itdest one clue
is that it receives a packet for which it was clearly expedtetiave state, but
doesn’t. Such a situation could, of course, also result faameighbor’s error.

. If a switch loses its tables, it could notify its neighbdngt we have no means of

identifying what hosts down the line might use that switch.

So, the best we can do is notify senders by sending theamahle to forward
message whenever a packet comes in to the affected switch.

. We now need to keep a network address along with each audhamrt (or with

every port, if connections are bidirectional).

(a) The packet would be sent-S$2—-S3, the known route towards B. S3
would then send the packet back to S1 along the new connethioking
it had forwarded it to B. The packet would continue to cirtela

(b) Thistime it is the setup message itself that circulabes\er.

As one possible answer, we use a modified version of Fydre in which hosts
H and J are removed, and port O of Switch 4 is connected to paofrSlvitch 3.

Chapter 3

12.

13.

14.
15.

16.

32

Here are théport,VCI) entries for a path from Host E to host F that traverses the

Switch2—Switch4 link twice; the VCI is 0 wherever possible.

Switch 2:(2,0) to (1,0)

Switch 4:(3,0) to (0,0)
Switch 3:(1,0) to (0,0)
Switch 2:(0,0) to (1,1)
Switch 4:(3,1) to (2,0)

There is no guarantee that data sent along the circuit eatch up to and pass

(recall Switch 4 port 0 now connects to Switch 3)

the process establishing the connections, so, yes, datddshot be sent until

the path is complete.

O

The answer is in the book.

When A sends to C, all bridges see the packet and learrewher. However,

when C then sends to A, the packet is routed directly to A andd@gs not learn

where C is. Similarly, when D sends to C, the packet is rouyeBDtowards B3
only, and B1 does not learn where D is.

B1: A-interface:

B2: Bl-interface:
B3: B2-interface:
B4: B2-interface:

A

A

AD

A (not C)

The answer is in the book.

B2-interface:
B3-interface:

C-interface:
D-interface:

C (not D)

C
C
D

B4-interface:

D

Chapter 3 33

17.

18.

19.

(&) When X sends to W the packet is forwarded on all linkyradges learn
where X is. Y’s network interface would see this packet.

(b) When Z sends to X, all bridges already know where X is, sthdaidge
forwards the packet only on the link towards X, that is,BB2—B1—X.
Since the packet traverses all bridges, all bridges learerevi is. Y'’s
network interface would not see the packet as B2 would onhydiod it on
the B1 link.

(c) When Y sends to X, B2 would forward the packet to B1, whialttrn
forwards it to X. Bridges B2 and B1 thus learn where Y is. B3 Zrmikver
see the packet.

(d) When W sends to Y, B3 does not know where Y is, and so retraga®n
all links; Z's network interface would thus see the packehaWthe packet
arrives at B2, though, it is retransmitted only to Y (and rmBtl) as B2
does know where Y is from step (c). B3 and B2 now know where Wus,
B1 does not learn where W is.

B1 will be the root; B2 and B3 each have two equal lengthgétlong their
upward link and along their downward link) to B1. They willada indepen-
dently, select one of these vertical links to use (perhapfeping the interface
by which they first heard from B1), and disable the other. &haxe thus four
possible solutions.

(a) The packetwill circle endlessly, in both theN82—L —B1 and M—B1—
L—B2 directions.

(b) Initially we (potentially) have four packets: one from dlbckwise, one
from M counterclockwise, and a similar pair from L.
Suppose a packet from L arrives at an interface to a bridgéoBawed
immediately via the same interface by a packet from M. As ttst fiacket
arrives, the bridge add4.,arrival-interface to the table (or, more likely,
updates an existing entry for L). When the second packetesraddressed
to L, the bridge then decides not to forward it, because wvedrfrom the
interface recorded in the table as pointing towards thdrd®gin, and so it
dies.
Because of this, we expect that in the long run only one of #iegs pack-
ets traveling in the same direction will survive. We may epdnith two
from M, two from L, or one from M and one from L. A specific sceioar
for the latter is as follows, where the bridges’ interfaces@enoted “top”
and “bottom”:
1. L sends to B1 and B2; both pla¢e,top) in their table. B1 already has
the packet from M in the queue for the top interface; B2 thiskeain the
queue for the bottom.
2. B1 sends the packet from M to B2 via the top interface. Sthee
destination is L andL,top) is in B2's table, it is dropped.
3. B2 sends the packet from M to Bl via the bottom interfaceB%o
updates its table entry for M tM,bottom)

Chapter 3 34

4. B2 sends the packet from L to B1 via the bottom interfacesicey it to
be dropped.

The packet from M now circulates counterclockwise, whikeplacket from
L circulates clockwise.

20. (@) Inthis case the packet would never be forwarded;asved from a given
interface the bridge would first recofil,interface in its table and then
conclude the packet destined for M did not have to be forwdalg the
other interface.

(b) Initially we would have a copy of the packet circling ckwdase (CW) and
a copy circling counterclockwise (CCW). This would conénas long as
they traveled in perfect symmetry, with each bridge seeltegraating ar-
rivals of the packet through the top and bottom interfacesniually, how-
ever, something like the following is likely to happen:

0. Initially, B1 and B2 are ready to send to each other viadipdriterface;
both believe M is in the direction of the bottom interface.

1. B1 starts to send to B2 via the top interface (CW); the peislemehow
delayed in the outbound queue.

2. B2 does send to B1 via the top interface (CCW).

3. B1 receives the CCW packet from step 2, and immediatelyduads it

over the bottom interface back to B2. The CW packet has nobgenh

delivered to B2.

4. B2 receives the packet from step 3, via the bottom interf&ecause
B2 currently believes that the destination, M, lies on th&dio interface,
B2 drops the packet.

The clockwise packet would then be dropped on its next dirteaving the
loop idle.

21. (a) Ifthe bridge forwards all spanning-tree messages,the remaining bridges
would see networks D,E,F,G,H as a single network. The tredymed
would have B2 as root, and would disable the following links:

fromB5to A (the D side of B5 has a direct connection to B2)
fromB7to B
from B6 to either side

(b) If B1 simply drops the messages, then as far as the spgitirda algorithm
is concerned the five networks D-H have no direct connectad,in fact
the entire extended LAN is partitioned into two disjointges A-F and G-
H. Neither piece has any redundancy alone, so the sepagataiag trees
that would be created would leave all links active. SinceldeiB1 still
presumablys forwarding other messages, all the original loops wouldl sti
exist.

22. (a) Whenever any host transmits, the packet collidds itgielf.

(b) Itis difficult orimpossible to send status packets, sitieey too would self-
collide as in (a). Repeaters do not look at a packet beforediating, so
they wouldn’t be in a position to recognize status packetsiah.

Chapter 3 35

23.

24,

25.

26.

27.
28.

29.

(c) A hub might notice a loop because collisiala/aysoccur, whenever any
host transmits. Having noticed this, the hub might send aipeignal
out one interface, during the rare idle moment, and seeftkilgaal arrives
back via another. The hub might, for example, attempt tdfywénat when-
ever a signal went out port 1, then a signal always appearetediately
at, say, port 3.

We now wait some random time, to avoid the situation wherdghhering
hub has also noticed the loop and is also disabling portsif #imelsituation
still persists we disable one of the looping ports.

Another approach altogether might be to introduce soméndtste signal
that does not correspond to the start of any packet, and issiotthub-to-
hub communication.

Once we determine that two podee on the same LAN, we can choose the
smaller-numbered port and shut off the other.

A bridge will know it has two interfaces on the same LAN whesdhds out its
initial “I am root” configuration messages and receives W& onessages back,
without their being marked as having passed through anbtitge.

A 53-byte ATM cell has 5 bytes of headers, for an overhdabout 9.4% for
ATM headers alone. ATM adaptation layers add varying ansaohadditional
overhead.

The drawbacks to datagram routing for small cells aréstiger addresses, which
would now take up a considerable fraction of each cell, amdcibnsiderably
higher per-cell processing costs in each router that arg@mgortional to cell
size.

Since the I/O bus speed is less than the memory bandwidththe bottle-

neck. Effective bandwidth that the I/O bus can provide is/800bps because
each packet crosses the 1/O bus twice. Therefore, the nuaibeterfaces is
|400/104 = 4.

The answer is in the book.

The workstation can handle 1000/2 = 500 Mbps, limitedheyltO bus. Let the
packet size be bits; to support 500,000 packets/second we need a totatitapa
of 500000 x x bps; equating x 10° x = 500 x 10° bps, we getz = 1000
bits = 125 bytes. For packet sizes below this, packet forwatelis the limiter,
above this the limit is the 1/O bus bandwidth.

Switch with input FIFO buffering :

(a) An input FIFO may become full if the packet at the head tided for a
full output FIFO. Packets that arrive on ports whose inpi®3 are full
are lost regardless of their destination.

(b) This is callechead-of-line blocking

Chapter 3 36

30.

31.

32.

33.

34.

35.

(c) By redistributing the buffers exclusively to the outptlFOs, incoming
packets will only be lost if the destination FIFO is full.

Each stage has/2 switching elements. Since after each stage we eliminate hal
the network,i.e. half the rows in then x n network, we needog, n stages.
Therefore the number of switching elements needéd j8) log, n. Forn = 8,

this is 12.

A Batcher network sorts elements into ascending (oradging) order. As long
as no two elements have the same index, the ordered list earbéhrouted to
the correct output by a Banyan network. However, some additimechanism
is needed to ensure that there are no duplicates. The paggiabgpelli et al.
[GHMS91] gives one approach.

(a) After the upgrade the server—switch link is the ordpgested link. For a
busy Ethernet the contention interval is roughly propowido the number
of stations contending, and this has now been reduced to S3agerfor-
mance should increase, but only slightly.

(b) A switch makes it impossible for a station to eavesdropraffic not ad-
dressed to it. On the other hand, switches tend to cost marehthbs, per
port.

IP addresses include the network/subnet, so thatacesfon different networks
must have different network portions of the address. Altwely, addresses
include location information and different interfaces atalifferent locations,
topologically.

Point-to-point interfaces can be assigned a duplicatessddor no address) be-
cause the other endpoint of the link doesn’t use the addvesath the interface;
it just sends. Such interfaces, however, cannot be addtdégsany other host
in the network. See also RFC1812, section 2.2.7, page 25uonumbered
point-to-point links”.

The IPv4 header allocates only 13 bits to @féset field, but a packet’s length
can be up t®'® — 1. In order to support fragmentation of a maximum-sized
packet, we must count offsets in multiples®df—13 = 23 bytes.

The only concerns with counting fragmentation offsets lny& units are that we
would waste space on a network with MU 8n + 7 bytes, or that alignment
on 8-byte boundaries would prove inconvenient. 8-byte &kame small enough
that neither of these is a significant concern.

All O's or 1's over the entire packet will change tkfersionand HLen fields,
resulting in non-IPv4 packets. The checksum algorithm @also catch this
error — a header consisting of all zeroes should have a checks$ all ones,
and vice versa. In reality, the checksum calculation wouttbpbly not even be
attempted after the version was found to be wrong.

Chapter 3 37

36. Consider the first network. An MTU of 1024 means that isléngest IP data-
gram that can be carried, so a datagram has room0ft — 20 = 1004 bytes
of IP-level data; because 1004 is not a multiple of 8, eaanfient can contain
at most8 x [1004/8] = 1000 bytes. We need to transféf24 + 20 = 1044
bytes of data when the TCP header is included. This woulddgnfented into
fragments of size 1000, and 44.

Over the second network the 44-byte packet would be unfratgdebut the
1000-data-byte packet would be fragmented as follows. Titeldyte MTU al-
lows for up to576 — 20 = 556 bytes of payload, so rounding down to a multiple
of 8 again allows for 552 byes in the first fragment with the aéming 448 in the
second fragment.

37. The answer is in the book.

38. (a) The probability of losing both transmissions of theket would be 0.£0.1
=0.01.

(b) The probability of loss is now the probability that fomse pair of identical
fragments, both are lost. For any particular fragment thabalbility of
losing both instances 501 x 0.01 = 10~*, and the probability that this
happens at least once for the 10 different fragments is thogtdl0 times
this, or 0.001.

(c) An implementationmight (though generally most do not) use the same
value forldent when a packet had to be retransmitted. If the retransmis-
sion timeout was less than the reassembly timeout, this tmigtan that
case (b) applied and that a received packet might contagmfeats from
each transmission.

39. M | offset | bytes data| source
1 0 360 1st original fragment
1| 360 152 1st original fragment
1| 512 360 2nd original fragment
1| 872 152 2nd original fragment
1| 1024 360 3rd original fragment
0 | 1384 16 3rd original fragment

If fragmentation had been done originally for this MTU, thevould be four
fragments. The first three would have 360 bytes each; theviaskd have 320
bytes.

40. Theldent field is 16 bits, so we can serid6 x 2'¢ bytes per 60 seconds, or
about 5Mbps. If we send more than this, then fragments of @aaé&gi could
conceivably have the sanigent value as fragments of another packet.

41. IPv4 effectively requires that, if reassembly is to beaat the downstream
router, then it be done at the link layer, and will be transpato IPv4. IP-layer
fragmentation is only done when such link-layer fragmeataisn’t practical,
in which case IP-layer reassembly might be expected to be legs practical,
given how busy routers tend to be. See RFC791, page 23.

Chapter 3 38

42.

43.

44,

45.

IPv6 uses link-layer fragmentation exclusively; expecemad by then estab-
lished reasonable MTU values, and also illuminated thegperdnce problems
of IPv4-style fragmentation. (Path-MTU discovery is alsandatory, which
means the sender always knows just how large the data pas#edan be to
avoid fragmentation.)

Whether or not link-layer fragmentation is feasible appdardepend on the
nature of the link; neither version of IP therefore requites

If the timeout value is too small, we clutter the networikhwinnecessary re-
requests, and halt transmission until the re-request isenesl.

When a host's Ethernet address changeg, because of a card replacement,
then that host is unreachable to others that still have hé&tiiernet address in
their ARP cache. 10-15 minutes is a plausible minimal amotitime required
to shut down a host, swap its Ethernet card, and reboot.

While self-ARP (described in the following exercise) is @agly a better solu-
tion to the problem of a too-long ARP timeout, coupled witlvihg other hosts
update their caches whenever they see an ARP query from alheatly in the
cache, these features were not always universally implesderA reasonable
upper bound on the ARP cache timeout is thus necessary akaghac

The answer is maybe, in theory, but the practical coreserps rule it out. A
MAC address is statically assigned to each hardware ierfARP mapping
enables indirection from IP addresses to the hardware MA@esdes. This
allows IP addresses to be dynamically reallocated whendhgware moves to
the different network, e.g. when a mobile wireless devicesas to a new access
network. So using MAC addresses as IP addresses would maawehwould
have to use static IP addresses.

Since the Internet routing takes advantage of address fpEreechy (use higher
bits for network addresses and lower bits for host addrisiéese would have

to use static IP addresses, the routing would be much lesseeffi Therefore
this design is practically not feasible.

After B broadcasts any ARP query, all stations that hatilsending to A's phys-
ical address will switch to sending to B’s. A will see a suddtait to all arriving
traffic. (To guard against this, A might monitor for ARP brgadts purportedly
coming from itself; A might even immediately follow such ldrasts with its
own ARP broadcast in order to return its traffic to itself sltiot clear, however,
how often this is done.)

If B uses self-ARP on startup, it will receive a reply indicgtthat its IP address
is already in use, which is a clear indication that B shoultdaomtinue on the
network until the issue is resolved.

(a) If multiple packets after the first arrive at the IPdafor outbound delivery,
but before the first ARP response comes back, then we sendudtiplen
unnecessary ARP packets. Not only do these consume baimncivoiat,

Chapter 3 39

because they are broadcast, they interrupt every host apagate across
bridges.

(b) We should maintain a list of currently outstanding ARReGes. Before
sending a query, we first check this list. We also might nowaresmit
queries on the list after a suitable timeout.

(c) This might, among other things, lead to frequent and €size packet loss
at the beginning of new connections.

46. (a) . i
Information Distance to Reach Node
Stored at Nodg A B C D E F
A 0 00 3 8 oo | 00
B 00 0 o0 | 00 2 %)
C 3 o0 0 00 1 6
D 8 oo | oo 0 2 00
E 00 2 1 2 0 00
F oo | 00 6 00 | 00 0
(b) : :
Information Distance to Reach Node
Stored at Nodg A B C D E F
A 0 | 0| 3 8 4 9
B 00 0 3 4 2 00
C 3 3 0 3 1 6
D 8 4 3 0 2 | o
E 4 2 1 2 0 7
F 9 00 6 00 7 0
(©) : :
Information Distance to Reach Node
Stored at Nodg A B C D E F
A 0 6 3 6 4 9
B 6 0 3 4 2 9
C 3 3 0 3 1 6
D 6 4 3 0 2 9
E 4 2 1 2 0 7
F 9 9 6 9 7 0

47. The answer is in the book.

Chapter 3 40

48.

50.

51.

52.

D Confirmed Tentative
1. (D,0,-)
2. (D,0,-) (A,8,A)
(E,2,E)
3. (D,0,-) (A,8,A)
(E,2,E) (B,4,E)
(C,3,E)
4, (D,0,-) (A,6,E)
(E,2,E) (B,4,E)
(C,3,E) (F,9,E)
5. (D,0,) (A,6,E)
(E,2,E) (F9,E)
(C,3,E)
(B,4,E)

6. previous + (A,6,E)
7. previous + (F,9,E)

Traceroute sends packets with limited TTL values. If eredsto an unassigned
network, then as long as the packets follow default routasgtoute will get nor-
mal answers. When the packet reaches a default-free (baekbmuter, however
(or more precisely a router which recognizes that the datitin doesn’t exist),
the process will abruptly stop. Packets will not be forwartiether.

The router that finally realizes the error will send back “IEMost unreachable”
or “ICMP net unreachable”, but this ICMP result may not intfae listened for
by traceroutei§ not, in implementations with which | am familiar), in which
case the traceroute session will end with timeouts eithgr wa

A can reach B and D but not C. Because A hasn'’t been configuite subnet

information, it treats C and B as being on the same netwodhétes a network
number with them, being in the same site). To reach B, A serRIB fequests
directly to B; these are passed by RB as are the actual Etipgaokets. To reach
D, which A recognizes as being on another network, A uses ARdeind to R2.

However, if A tries to ARP to C, the request will not pass R1.

The cost=1 links show A connects to B and D; F connects tod’Ea
F reaches B through C at cost 2, so B and C must connect.

F reaches D through E at cost 2, so D and E must connect.

A reaches E at cost 2 through B, so B and E must connect.
These give:

A (&) c

D E F
N

As this network is consistent with the tables, it is the ueiguinimal solution.

Chapter 3 41

53. The answer is in the book.

54. (a) A: dest| cost| nexthop B: dest cost| nexthop
B 00 - A 00 -
C 3 C C 00 -
D 00 - D 4 E
E 00 - E 2 E
F 9 C F 00 -
D: dest| cost| nexthop F: dest cost| nexthop
A 00 - A 9 C
B 4 E B %) -
C 00 - C 6 C
E 2 E D 00 -
F 00 - E %) -
(b) A: dest| cost| nexthop D: desf cost| nexthop
B 12 D A 8 A
C 3 C B 4 E
D 8 D C 11 A
E 10 D E 2 E
F 9 C F 17 A
(c) C: dest| cost| nexthop
A 3 A
B 15 A
D 11 A
E 13 A
F | 6 F

55. Apply each subnet mask and if the corresponding subrmabaumatches the
SubnetNumber column, then use the entry in Next-Hop. (Isghables there is
always a unique match.)

(a) Applying the subnet maslks5.255.255.128, we get128.96.39.0. Use in-
terface0 as the next hop.

(b) Applying subnet mask55.255.255.128, we get128.96.40.0. Use R2 as
the next hop.

(c) All subnet masks givé28.96.40.128 as the subnet number. Since there is
no match, use the default entry. Next hop is R4.
(d) Nexthopis R3.

(e) None of the subnet number entries match, hence use tefatdr R4.

56. The answer is in the book.

57. (a) A necessary and sufficient condition for the routoplto form is that B
reports to A the networks B believes it can currently reafer & discov-

ers the problem with the A—E link, but before A has commurédab B
that A no longer can reach E.

Chapter 3 42

(b) Atthe instant that A discovers the A—E failure, there 5086 chance that
the next report will be B's and a 50% chance that the next tepitirbe
As. Ifitis As, the loop will not form; if it is B’s, it will.

(c) Atthe instant A discovers the A—E failure, lebe the time until B's next
broadcastt is equally likely to occur anywhere in the intervak ¢ < 60.
The event of a loop forming is the same as the event that B besslfirst,
which is the event that < 1.0 sec; the probability of this is 1/60.

58. Denote the act of As sending an update to B about E byBA Any initial
number of B==C or C=-B updates don’'t change E entries. By split horizon,
B=-A and C=A are disallowed. Since we have assumed A reports to B before
C, the first relevant report must be=AB. This makes C the sole believer in
reachability of E; C's table entry for E remains (E,2,A).

At this point legal and relevant updates are>&, C=B, and B=-C; A< B ex-
changes don’t change E entries and & is disallowed by split horizon. If A-C
or B=-C the loop formation is halted, so we require>B. Now C's table has
(E,2,A) and B’s has (E,3,C); we have two believers.
The relevant possibilities now are=RA, or A=-C. If B=-A, then A’s table has
(E,4,C) and the loop is complete. If=-AC, then B becomes the sole believer.
The only relevant update at that point not putting an end tiebie E is B=A,
which then makes A a believer as well.
At this point, exchange A-C would then form the loop. On the other hand,
C=-B would leave A the sole believer. As things progress, weaeither

(a) form a loop at some point,

(b) eliminate all belief in E at some point, or

(c) have sole-believer status migrate around the loepBc-A—C— - - -,

alternating with the dual-believer situation.

59. (a) The book already explains how poison reverse is neted when F-G
fails. When the A-E link fails, the following sequence (onsething sim-
ilarly bad) may happen depending on the timing, whether drpmison
reverse is used.

i. A sends (E, inf) to B.
ii. Csends (E, 2)to B. This route is via A.
iii. Asends (E, inf)toC.
iv. B sends (E, 3) to A. This route is via C.
v. Csends (E, inf) to B.
vi. A sends (E, 4) to C. This route is via B.
vii. B sends (E, inf) to A.
viii. C sends (E, 5) to B. This route is via A.
ix. A sends (E, inf) to C.
x. B sends (E, 6) to A. The oscillation goes on and on like this.

Chapter 3 43

60.

61.

(b) Without poison reverse, A and B would send each othertasdhat simply
didn’t mention X; presumably (this does depend somewhatpieémen-
tation) this would mean that the false routes to X would str¢huntil they
eventually aged out. With poison reverse, such a loop woaldwgay on
the first table update exchange.

(c) 1. B and A each send out announcements of their route t@XCub each
other.
2. C announces to A and B that it can no longer reach X; the aroeu
ments of step 1 have not yet arrived.
3. B and A receive each others announcements from step 1, dopt a
them.

We will implement hold-down as follows: when an updateord arrives that
indicates a destination is unreachable, all subsequemttepavithin some given
time interval are ignored and discarded.

Given this, then in the EAB network A ignores B’s reachapiliews for one
time interval, during which time A presumably reaches B wvifib correct un-
reachability information.

Unfortunately, in the EABD case, this also means A ignoresvilid B-D—E
path. Suppose, in fact, that A reports its failure to B, D mpds valid path
to B, and then B reports to A, all in rapid succession. This neute will be
ignored.

One way to avoid delaying discovery of the B—D—-E path is topkée hold-
down time interval as short as possible, relying on triggeredates to spread
the unreachability news quickly.

Another approach to minimizing delay for new valid path®isgtain route infor-
mation received during the hold-down period, but not to tisatithe expiration
of the hold-down period, the sources of such informationhmize interrogated
to determine whether it remains valid. Otherwise we mightehi wait not
only the hold-down interval but also wait until the next reagwpdate in order
to receive the new route news.

We will also assume that each node increments its sequember only when
there is some change in the state of its local links, not foetiexpirations (“no
packets time out”).

The centrapointof this exercise is intended to be an illustration of theAging-
up-adjacencies” process: in restoring the connectiond&atwhe left- and right-
hand networks, it is not sufficient simply to flood the infotina about the re-
stored link. The two halves have evolved separately, ardrfidrmation must
be exchanged.

Given that each node increments its sequence number wheihaletects a
change in its links to its neighbors, at the instant befoeeBh-F link is restored
the LSP data for each node is as follows:

Chapter 3 44

62.

63.
64.

65.

node | seg#| connects to
A 2 B,C,.D

B 2 AC

C 2 A,B,D

D 2 AC

F 2 G

G 2 FH

H 1 G

When the B—F link is restored, OSPF has B and F exchange thedtdtabases
of all the LSPs they have seen with each other. Each then fibedsther side’s
LSPs throughout its side of the now-rejoined network. THe3Rs are as in the
rows of the table above, except that B and F now each have segueimbers
of 3.

The initial sequence number of an OSPF node is actualf} + 1.

Step| confirmed tentative

1 | (AO,)
2 | (A0,) (D,2,D) (B,5,B)
3 | (A0,-)(D,2,D) (B,4,D) (E,7,D)
4 | (A0,-)(D,2,D)(B,4,D) (E,6,D) (C,8,D)
5 | (A0,-)(D,2,D) (B,4,D) (E,6,D) (C,7,D)
6 | (A0,)(D,2,D)(B,4,D) (E,6,D)(C,7,D

The answer is in the book.

(a) This could happen if the link changed state receatlg one of the two
LSP’s was old.

(b) If flooding is working properly, and if A and B do in fact agg on the state
of the link, then eventually (rather quickly) whichever bettwo LSP’s
was old would be updated by the same sender’s newer versidmgaorts
from the two sides of C would again agree.

This exercise does not, alas, quite live up to its padénti

The central idea behind Ethernet bridges is that they leaw most locations
by examining ordinary data packets, andrai receive new-host notices from
other bridges. Thus the first part of the final sentence of Xleectse effectively
removes from consideration a genuine bridge-style appré@aouters. While
there are good reasons for this, outlined in the final papdgbalow, a better way
to phrase this might be to ask why IP routers do not work likerdeng bridges,
or, even more basically, why bridges do not use vector-aggt@aouting.

Furthermore, a consequence of the second half of the fintdisemis that there
is no real difference in the cases (a) and (b) with bridgéedgarning. Proper
configuration would prevent address-assignment incargigts in each, which
apparently had been the original concern.

Chapter 3 45

66.

68.

So we are left with a model of “bridge-style learning” in whicouters learn
about each other through messages each sends periodicathet routers. This
is not terribly bridge-like. Moreover, it is not clear whatmeans for routers
to learn of each other by this method; if they are sending e#lcbr messages
then either they already know about each other or else somedbbroadcast
is used. And broadcast runs into serious problems if theeepsssibility of
loops. If routers are sending out messages that are justitaeton directly
connected subnets, listing all the subnets they know alaowatthese messages
include distance information, then they are more-or-lesagl vector-distance
routing. One routing approach that might qualify under #rents of the exercise
is if routers send out link-state-style periodic messadestifying their directly
connected networks, and that these are propagated by ftpnodin

The main reason that IP routers cannot easily learn new sidmaions by ex-
amination ofdatapackets is that they would then have to fall back on network-
wide broadcast for delivery to unknown subnets. IP doesdddepport a notion
of broadcast, but broadcast in the presence of loop topdielich IP must sup-
port) fails rather badly unless specific (shortest-path}es to each individual
subnet are already known by the routers. And even if somenalige mech-
anism were provided to get routing started, path-lengtbrinfition would not
be present in data packets, so future broadcasting wouldirelmop-unsafe.
We note too that subnet routing requires that the routersa k& subnet masks,
which are also not present in data packets. Finally, bricgag prefer passive
learning simply because it avoids bridge-to-bridge corbyday issues.

If an IP packet addressed to a specific host A were inagiiyrtbroadcast, and
all hosts on the subnet did forwarding, then A would be intedavith multiple
copies of the packet.

Other reasons for hosts’ not doing routing include the risl tmisconfigured
hosts could interfere with routing, or might not have updtde tables, or might
not even participate in the same routing protocol that thermuters were using.

(a) Giving each department a single subnet, the nomiralet sizes ar@”,
26,25 25 respectively; we obtain these by rounding up to the neamsstp
of 2. For example, a subnet with 128 addresses is large erfougintain
75 hosts. A possible arrangement of subnet numbers is asvilISubnet
numbers are in binary and represent an initial segment dfite®f the last
byte of the IP address; anything to the right of the / represdeost bits. The
/ thus represents the subnet mask. Any individual bit carsytoymetry, be
flipped throughout; there are thus several possible bigasgénts.

A o/ one subnet bit, with value 0; seven host bits
B 10/

C 110/

D 111/

Chapter 3 46

The essential requirement is that any two distinct subnethars remain
distinct when the longer one is truncated to the length oktiaater.

(b) We have two choices: either assign multiple subnetsigisidepartments,
or abandon subnets and buy a bridge. Here is a solution g&ihgo
subnets, of sizes 64 and 32; every other department getgle subnet of
size the next highest power of 2:

A 01/
001/
B 10/
C 000/
D 11/

69. To solve this with routing, C has to be given its own subri&en if this is
small, this reduces the available size of the original Etbeto at most seven
bits of subnet address. Here is a possible routing table fauBnet numbers
and masks are in binary. Note that many addresses matclensithnet.

net subnet mask interface
200.0.0 0/0000000 10000000 Ethernet
200.0.0 100000/00 11111100 directlink

Here C’s subnet has been made as small as possible; only svbiteare avail-

able (a single host bit can’t be used because all-zero-hital-ones-bits are re-
served in the host portion of an address). C’s address mighbe 200.0.0.10000001,
with the last octet again in binary.

70. (a) Awould broadcast an ARP request “where is C?”
B would answer it; it would supply its own Ethernet address.
A would send C's packet to B's Ethernet address.
B would forward the packet to C.

(b) For the above to work, B must know to forward the packithoutusing
subnet addressing; this is typically accomplished by fgBrs routing
table contain a “host-specific route”

net/host interface

C direct link

200.0.0 Ethernet
Host-specific routes must be checked first for this to work.

71. (a) DHCP will have considerable difficulty sorting outwdich subnet var-
ious hosts belonged; subnet assignments would depend at waiver
answered first. The full DHCP deals with this by allowing ss/to be
manually configured to ignore address-assignment reqtrestscertain
physical addresses on the other subnet. Note that subiggti@ent in this
situation may matter for consistent naming, performanesass, certain
security access rules, and for broadcast protocols.

Chapter 3 47

(b) ARP will not be affected. Hosts will only broadcast ARRegies for other
hosts on the same subnet; hosts on the other subnet will hese but
won’t answer. A host on one subngbuldanswer an ARP query from the
other subnet, if it were ever issued, but it wouldn’t be.

72. (a): B (b): A (c): E (d): F (e): C f: D
(For the last one, note that the first 14 bits of C4.6B and Cmég&h.)

73. The answer is in the book.

74. (a) each department expects the growth in the number dfimas as follows

e Engineering expects machine number increase by one per, teek
by 52 per year. Note that we need 5 machines initially.

e Sales expects client number increaséby) - 0.20 + (+1)-0.60+0 -
0.20 = 0.40, thus machine number increasemy0 - 1/2 = 0.20 per
week, so by).20 x 52 = 10.4 per year. Note that we do not need any
machines in the first year, but at the beginning of the secesad, we
need 3 machines since we have 6 clients then.

e Marketing expects no increase.

To guarantee addresses for at least seven years, wéned - 7) + (3 +
10.4 - 6) + 16 = 450.4 addresses. Therefore, the new company needs a
slash 23 address range to accommodate 512 addresses.

(b) To determine how long the 512 addresses allocation wiastd suppose it
would lastn years(5+52-n)+(3+10.4-(n—1))+16 = 13.6+62.4-n =
512. Thus,n = 7.99. The address assignment would be, for engineering,
5452 -n = 420.32 ~ 420, for sales(3 + 10.4 - (n — 1)) = 75.67 ~ 76,
for marketing,16.

(c) Since class B supports 65534 host addresses and clagp@s254 ad-
dresses (note that two addresses are always reserved inetaahk class),
the company could get one class B range or two class C ranges.

75. There are many possible answers to this problem. Oneagpmight be to use
a tree of all netmasks. We decide on the left versus rightealat level based
on theith bit of the address. A network with anbit mask is marked in the tree
at leveln. Given an address, we use the bits to proceed down the tridevent
reach a dead end. At that point we use the last-encountetwdmkethis ensures
the longest match was found. Such a tree is sometimes calted a

This strategy is linear in the address size. Performancétiig enhanced by
handling 4 or even 8 address bits at each level of the tréguah this would
lead to some increased space used.

Another approach might be to maintain a separate dictiofmrgachn, 1 <

n < 24, of all masks of lengtm. We start with the longest mask length and
work backwards, at stage searching for the first bits of the address in the
length+ dictionary. If dictionary lookup were sufficiently fast hinight also be
roughly linear in address length.

Solutions for Chapter 4

1. (a) Q will receive three routes to P, along links 1, 2, and 3.

(b) A—B traffic will take link 1. B—A traffic will take link 2. Note that
this strategy minimizes cost to the source of the traffic.

(c) To have B—A traffic take link 1, Q could simply be configured to prefer
link 1 in all cases. The only general solution, though, iSdo accept into
its routing tables some of the internal structure of P, so @htor example
knows where A is relative to links 1 and 2.

(d) If Q were configured to prefer AS paths through R, or to a6 paths
involving links 1 and 2, then Q might route to P via R.

2. In the diagram below, the shortest path between A and Bguned by number
of router hops) passes through AS P, AS Q, and AS P.

While such a path might be desirable (the path via Q could behnfaster or
offer lower latency, for example), BGP would see the same A&lver (for AS
P) twice in the ASPATH. To BGP, such an ARATH would appear as a loop,
and be disallowed.

3. (a) The diameteb of a network organized as a binary tree, with root node as
“backbone”, would be of orddog, A. The diameter of a planar rectangular
grid of connections would be of ordefA.

(b) For each ASS, the BGP node needs to maintain a record of theRPASH
to.S, requiring 2<actualpathlength bytes. It also needs a list of all the net-
works within S, requiring 4xnumberof_networks bytes. Summing these
up for all autonomous systems, we @etD + 4N, or 2AC log A + 4N
and2AC+/A + 4N for the models from part (a), whef@is a constant.

4. Many arrangements are possible, although perhaps mty.liklere is an allo-
cation scheme that mixes two levels of geography with prenggit works with
48-bitInterfacelDs. The subdivisions become much more plausible with 64-bit
InterfacelDs.

48

Bytes 0-1: 3-bit prefix + country where site is located
(5 bits is not enough to specify the country)
Bytes 2-3: provider
Bytes 4-5: Geographical region within provider
Bytes 6-8: Subscriber (large providers may haxg:K subscribers)
Bytes 8-9: (Byte 8 is oversubscribed) Subnet
Bytes 10-15: InterfacelD

5. (a) P'stable:

address nexthop
C2.0.0.0/8 Q
C3.0.0.0/8 R

C1.A3.0.0/16 PA
C1.B0.0.0/12 PB

Q’s table:
address nexthop
C1.0.0.0/8 P
C3.0.0.0/8 R

C2.0A.10.0/20 QA

C2.0B.0.0/16 QB
R’s table:

address nexthop

C1.0.0.0/8 P

C2.0.0.0/8 Q

(b) The same, except for the following changes of one entch ¢a P’s and
R’s tables:
P: C3.0.0.0/8 Q //wasR
R: C1.0.0.0/8 Q [//wasP

(c) Note the use of the longest-match rule to distinguishethigies for Q &
QA in P's table, and for P & PA in Q’s table.

P’s table:
address nexthop
C2.0.0.0/8 Q

C2.0A.10.0/20 QA I for QA
C1.A3.0.0/16 PA
C1.B0.0.0/12 PB

Q's table:
address nexthop
C1.0.0.0/8 P
C1.A3.0.0/16 PA /I for PA

C2.0A.10.0/20 QA
C2.0B.0.0/16 QB

6. The longest-match rule is intended for this. Note #ibproviders now have to
include entries for PA and QB, though.

49

P’s table:

address nexthop
C2.0.0.0/8 Q
C3.0.0.0/8 R

C1.A3.0.0/16 Q /I entry for PA
C1.B0.0.0/12 PB
C2.0B.0.0/16 R Il entry for QB

Q’s table:
address nexthop
C1.0.0.0/8 P
C3.0.0.0/8 R

C1.A3.0.0/16 PA /I now Q’s customer
C2.0A.10.0/20 QA

C2.0B.0.0/16 R Il entry for QB
R’s table:

address nexthop

C1.0.0.0/8 P

C2.0.0.0/8 Q

C1.A3.0.0/16 Q /I R also needs an entry for PA
C2.0B.0.0/16 QB /l QB is now R’s customer

7. (a) Inbound traffic takes a single path to the organiz&tiaddress block,
which corresponds to the organization’s “official” locatio This means
all traffic enters the organization at a single point evenuichshorter al-
ternative routes exist.

(b) For outbound traffic, the organization could enter im¢amwn tables all the
highest-level geographical blocks for the outside worlidyéng the orga-
nization to route traffic to the exit geographically clogesthe destination.

(c) For an approach such as the preceding to work for inbonafiictas well,
the organization would have to be divided internally intmgeaphically
based subnets, and the outside world would then have to tacmaiing
entries for each of these subnets. Consolidation of thelseetsi into a
single external entry would be lost.

(d) We now need each internal router to have entries fornaleroutes to all
the other internal IP networks; this suffices to ensure ivaktraffic never
leaves.

8. Perhaps the primary problem with geographical addrgdsimvhat to do with
geographically dispersed sites that have their own integranections. Routing
all traffic to a single point of entry seems inefficient.

At the time when routing-table size became a critical issugst providers were
regional and thus provider-based addressiagmore or less geographical.

9. As described, ISP X is a customer of both ISP A and ISP B. ladheertises
a path learned from A to ISP B, then B may send him traffic thatvliiethen

50

have to forward on to A. At the least, this consumes resodozdSP X without

producing any income, and it may even increase his costspflge either A or
B based on volume. Hence, it would not typically be a good fdeaSP X to

advertise such a path.

10. (a) If Q does not advertise A to the world, then only tradfiiginating within
Q will take the Q—A link. Other traffic will be routed first to B.Q does
advertise A, then traffic originating at an external site B tkavel in via Q
whenever the B—Q-A path is shorter than the B—P—A path.

(b) Q must advertise A's reachability to the world, but it nyayt a very low
“preference value” on this link.

(c) The problem is that most outbound traffic will take the BEIET path, and
nominally this is a single entry. Some mechanism for loaakisiyy must be
put into place. Alternatively, A could enter into its intatrrouting tables
some of its most common external IP destinations, and rautieese via

Q.

11. (a) R1 should be configured to forward traffic destinedfadside of A to the
new ISP. R2 should route traffic for A to A as before. Note tifia host
on N sends its outbound traffic to R2 by mistake, R2 will senddtthe
old link. R2 should continue to advertise N to the rest of As Nutbound
traffic would then take the new link, but inbound traffic woskil travel
via A. Subnets are not announced into the backbone routbiggaso R1
would not announce N to the world.

(b) If N has its own IP network number, then R1 does annousa®iite to N
to the world. R1 would not necessarily announce its route,tbdiever.
R2 would not change: it would still announce N into A. Assugvkdoes
not announce its route to N into its provider, all externaffic to and from
N now goes through the new link, and N-A traffic goes through R2

(c) If Awants to use N's R1 link as a backup, then R1 needs tmance to
the backbone that it has a route to A, but give this route altgsier than
that of A's original link (techniques for doing this via BGRdlude route
preference indications and “padding” the report with eX&s.)

12. IP has a subrange of its address space reserved for astliddresses. In IPv4,
these addresses are assigned in the class D address sghtiey@also has a
portion of its address space (see Table 4.11) reserved ftircast group ad-
dresses.

13. Yes. Some subranges of the multicast ranges are redeniattadomain mul-
ticast, so they can be reused independently by differentdltsn

14. The host must have joined at least one of the other 31 IRaastl groups whose
addresses share the same high-order 5 bits and hence thEgsermeet multicast
address.

15. The answer is in the book.

51

16.

17.

18.

19.

20.

21.

See figure on following page. Note that we have assuméediihzostsexcept
the sources are members of G. (This was unclear in the firgingi)

(@) One multicast transmission involves iall- k2 + ... + kN =1 = (kN —
k)/(k — 1) links.

(b) One unicast retransmission involvaslinks; sending to everyone would
requireN x &V links.

(c) Unicast transmission tofraction of the recipients usasx N x k% links.
Equating this to the answer in (a), we get= (k¥ — k)/((k — 1) x N x
ENY~1/(k—1)x N

(&) In the PIM-SM scheme, each router in a multicast griodependently
decides when to create a source-specific tree for a pantisalace. The
router does so by sending a source-specific Join messageittheasource.
Hosts connected to the router benefit from this in the formeafrdased
latency of the multicasts they receive. The intention i$ therouter would
do so only in response to a high data rate being observed fratisource,
since it imposes a cost, in additional routing state, onrotbeters. An
unscrupulously configured router, however, could indimarately trigger
source-specific trees, without the justification of highedaites.

(b) Inthe PIM-SSM scheme, any host can join a source-spegiigp, thereby
triggering creation of a source-specific tree with the atéer source-specific
routing state. This is presumably not a problem since whes&gned the
SSM address to the group (a subrange of the IP multicast seklés re-
served for SSM) did so because SSM was appropriate for theydar

group.
A simple example where the routes are different has aemed triangle of
routers: the source router, the group member router, anditgrron the RP
address’s link. A simple example where the routes are the $wm the source
and group member routers each connected only to a routerroRRhaddress’s
link.

(a) correct
(b) incorrect (::: is not defined as abbreviating notation)
(c) incorrect (shorthand can only be used for one set of goaotis 0's)

(d) correct

(e) incorrect (an IPv4 address mapped to IPv6 should be geecky FFFF
hex).

First, MPLS labels are of link-local scope—this mearat the same label can
be used on different links to mean different things. Thisumtmeans that the
number of labels needed on a link is just the number of forimgrdquivalence
classes (FECs) that are meaningful on that link. Thus, ihdabel is used to
represent a prefix in the routing table, as described in @edt5.1, then up to a
million prefixes could be handled with 20 bits.

52

————————a

S2

R6

R5

Source

'eril]
Il
Il
|
e |
- v
i [[P
N !
R ! ©
il ! o
i !
[I ittt
N VT
| 1
M [
sl "l
1
! ~ H N
i R s
1
|||||| 3 |
! I 1IN
H I
_M ! ©
1
i ! e
| ! >
1 ! o
| ! ()
H 1
e
E i
1
—— | eeeee——————]
! 1
! 1
“ 1
1 - |
“ Mo
i 1 ~
H e w
ik
o
K
|
HE
i —
i)
o
I
N
o

Figure 1: Answers to question 4.16

53

Chapter 4 54

22.

23.

24,

25.

26.

27.

MPLS has been thought to improve router performanceusecaach label is
a direct index in the routing table, and thus an MPLS-onlyteogould avoid
running the more complex longest IP prefix match algorithnut Backet for-
warding has many other aspects that influence performancle as enqueueing
packets and switching them across a backplane. These sagpedhdependent
of the forwarding algorithm and have turned out to be the daami performance-
influencing factors.

(a) 8 bytes are needed to attach two MPLS labels.
(b) 20 bytes are needed for an additional IP header.

(c) Bandwidth efficiency for MPLS is 300/308 = 0.97, and fori$F300/320
= 0.94. For 64-byte packets, MPLS has 64/72 = 0.89 and IP h&sl 64
0.76. MPLS is relatively more efficient when the payload sszemaller.

Source routing cannot specify a long path because ofgtieosize limit. Sec-
ond, IP option processing is considerably more complextioaimal IP forward-
ing, and can cause significant performance penalties.|iisalirce routing can-
not readily aggregate the traffic with the same route intoadass; by contrast,
MPLS can aggregate such traffic as one FEC, represented Inglae tabel at
each hop, thus improving scalability.

A correspondent node has no way of knowing that the IPesddof a mobile
node has changed, and hence no way to send it a packet. A T@Batmm will
break if the IP address of one endpoint changes.

The home agent and the mobile node may be very far apadtnigto suboptimal
routing.

Without some sort of authentication of updates, an lttacould tell the corre-
spondent node to send all the traffic destined for a mobiletod node that the
attacker controls, thus stealing the traffic. Or, an attac&a tell any number of
correspondent nodes to send traffic to some other node thaittdcker wishes
to flood with traffic.

Solutions for Chapter 5

1. (a)

(b)

(©

An application such as TFTP, when sending initial @mtion requests,
might want to know the server isn’t accepting connections.

On typical Unix systems, one needs to open a socket witbate IP.RAW
(traditionally requiring special privileges) and recealel CMP traffic.

A receiving application would have no way to identify IGMnessages as
such, or to distinguish between these messages and praipedific data.

2. (&) Inthe following, the client receives file “foo” whertlitinks it has requested

(b)

“bar”.

1. The client sends a request for file “foo”, and immediatdlgrés locally.
The request, however, arrives at the server.

2. The client sends a new request, for file “bar”. It is lost.

3. The server responds with first data packet of “foo”, angwgethe only
request it has actually seen.

Requiring the client to use a new port number for each regépaequest
would solve the problem. To do this, however, the client widudve to
trust the underlying operating system to assign a new partbas each
time a new socket was opened. Having the client attach a timgsor

random number to the file request, to be echoed back in eaalpdaket
from the server, would be another approach fully under th@iecgtion’s

control.

3. The TFTP protocol is a reasonable model although with sdiogyncrasies that
address other issues; see RFC 1350. TFTP’s first packetddadad Request,
RRQ, simply names a file. Upon receipt, the server createsvaepbemeral
port from which to answer, and begins sending data from teat port. The
client assumes that the first well-formed packet it recewéss server data, and
records the data’s source port. Any subsequent packetsdmifferent port are
discarded and an error response is sent.

The basic stop-and-wait transfer is standard, althoughnongt decide if se-
guence numbers are allowed to wrap around or not. Here areaqes, TFTP’s
and otherwise, for (a)-(c):

(a) The most basic approach here is to require the serveemtkack of con-

nections, as long as they are active. The problem with thisaisthe client
is likely to be simply an application, and can exit at any tirfttemay exit
and retransmit a request for a different file, or a new regioeghe same
file, before the server knows there was a problem or statusgeha

A more robust mechanism for this situation might BB@GNNECT_NUM
field, either chosen randomly or clock-driven or incremdmni@ some cen-
tral file for each client connection attempt. Such a field wiazdrrespond
roughly with TCP’s initial sequence number (ISN).

55

Chapter 5 56

In TFTP, if the RRQ is duplicated then the server might wedlate two
processes and two ports from which to answer. (A server tterhated to
do otherwise would have to maintain considerable statetgdasi RRQ’s.)
Whichever process contacted the client first would win dwugh, while
the other would receive an error response from the clienton@ sense,
then, duplicate TFTP RRQ's do duplicate the connectionploly one of
the duplicates survives.

(b) The TFTP approach here is to have the client enter a ‘idgflyeriod af-
ter the final data was received, so that the process is iliratr (perhaps
moved to the background) to receive and re-acknowledgeetrgnsmis-
sions of the final data. This period roughly corresponds MBEWAIT.

(c) The dallying approach of (b) also ties up the client soééethat period,
preventing another incarnation of the connection. (HoweMeTP has no
requirement that dallying persist for a time interval agmtuing the MSL.)
TFTP also specifies théoth sides are to choose “random” port numbers
for each connection (although “random” is generally intetpd as “as-
signed by the operating system”). If either side choosesnapwt num-
ber, then late-arriving packets don’t interfere even ifdtieer side reuses its
previous port number. AZONNECT_NUM field would also be effective
here.

4. Host A has sent a FIN segment to host B, and has moved frorAEHESSHED
to FIN.WAIT_1. Host A then receives a segment from B that contains both
the ACK of this FIN, and also B’s own FIN segment. This coulgpen if the
application on host B closed its end of the connection imatetli when the host
A's FIN segment arrived, and was thus able to send its own FdNgawith the
ACK.

Normally, because the host B application must be schedalaghtbefore it can
close the connection and thus have the FIN sent, the ACK id&dore the FIN.
While “delayed ACKs” are a standard part of TCP, traditibpahly ACKs of
DATA, not FIN, are delayed. See RFC 813 for further details.

5. The two-segment-lifetime timeout results from the neegdurge old late dupli-
cates, and uncertainty of the sender of the last ACK as tolvenétwas received.
For the firstissue we only need one connection endpoint inELWAIT; for the
second issue, a host in the LASYCK state expects to receive the last ACK,
rather than send it.

6. The receiver includes the advertised window in the ACK¢hm sender. The
sender probes the receiver to know when the advertised wibéoomes greater
than O; if the receiver's ACK advertising a larger window @st, then a later
sender probe will elicit a duplicate of that ACK.

If responsibility for the lost window-size-change ACK idfséd from the sender
to the receiver, then the receiver would need a timer for iagaetransmission
of this ACK until the receiver were able to verify it had beeceived.

Chapter 5 57

10.
11.

12.

13.
14.

A more serious problem is that the receiver only gets confionaghat the sender
has received the ACK when new data arrives, so if the cormebtppens to fall
idle the receiver may be wasting its time.

. The sequence number doesn’t always beginfar a transfer, but is randomly

or clock generated.

(a) The advertised window should be large enough to keepitre full; de-
lay (RTT) x bandwidth here is 100ms 1 Gbps = 100 Mb = 12.5 MB of
data. This requires 24 bits if we assume the window is medduorbytes
(224 ~= 16million) for the AdvertisedWindow field. The sequence num-
ber field must not wrap around in the maximum segment lifetitme30
seconds, 30 Gb = 3.75 GB can be transmitted. 32 bits allows@esee
space of about 4GB, and so will not wrap in 30 seconds. (If tagimum
segment lifetime were not an issue, the sequence numbemfiltl still
need to be large enough to support twice the maximum windog; see
“Finite Sequence Numbers and Sliding Window” in Section)2.5

(b) The bandwidth is straightforward from the hardware; BR¥T is also a
precise measurement but will be affected by any future chamghe size
of the network. The MSL is perhaps the least certain valugedding as it
does on such things as the size and complexity of the netaackpn how
long it takes routing loops to be resolved.

The answer is in the book.

The problem is that there is no way to determine whethacket arrived on the
first attempt or whether it was lost and retransmitted.

Having the receiver echo back immediately and measuringetéygsed times
would help; many Berkeley-derived implementations measumeouts with a
0.5 sec granularity and round-trip times for a single linkheut loss would gen-
erally be one to two orders of magnitude smaller. But venifythat one had such
an implementation is itself rather difficult.

(a) This is 125MB/sec; the sequence numbers wrap aroumah we send
232 B = 4 GB. This would take 4GB/(125MB/sec) = 32 seconds.

(b) Incrementing every 32 ms, it would take abdRtx 4 x 10° ms, or about
four years, for the timestamp field to wrap.

The answer is in the book.

(a) If aSYN packet is simply a duplicate, its ISN value will be the same as
the initial ISN. If theSYN is not a duplicate, and ISN values are clock-
generated, then the seco8¥N'’s ISN will be different.

(b) We will assume the receiver is single-homed; that is,adasique IP ad-
dress. Le{raddr, rport) be the remote sender, ahi@rt be the local port.
We suppose the existence of a talflandexed by(lport, raddr, rport)

Chapter 5 58

and containing (among other things) data fields IISN and fi@Nhe local
and remote ISNSs.
if (connections tdport are not being accepted)
send RST
else if (there is no entry ifi” for (Iport, raddr, rport)) Il new SYN
Put(lport, raddr, rport) into a table,
Set rISN to be the received packet’s ISN,
Set lISN to be our own ISN,
Send the reply SYN+ACK
Record the connection as being in state SKECD
else if (I'[(Iport, raddr, rport)] already exists)
if (ISN in incoming packet matches rISN from the table)
/l SYN is a duplicate; ignore it
else
send RST tdraddr, rport))

15. x =< yifand only if (y —) > 0, where the expressian— z is taken to be
signed even though andy are not.

16. (a) A would send an ACK to B for the new data. When this adiat B,
however, it would lie outside the range of “acceptable AClést so B
would respond with its own current ACK. B’s ACK would be actsge to
A, and so the exchanges would stop.

If B later sent less than 100 bytes of data, then this exchamged be
repeated.

(b) Each end would send an ACK for the new, forged data. Hovyeween re-
ceived both these ACKs would lie outside the range of “a@igptACKs”
at the other end, and so each of A and B would in turn generaiedtrrent
ACK in response. These would again be the ACKs for the forged,cand
these ACKs would again be out of range, and again the reseiveuld
generate the current ACKs in response. These exchanged wontinue
indefinitely, until one of the ACKs was lost.

If A later sent 200 bytes of data to B, B would discard the fil@D bytes
as duplicate, and deliver to the application the second 8sb It would
acknowledge the entire 200 bytes. This would be a valid AQKAfo

For more examples of this type of scenario, see Joncher&ySimple Ac-
tive Attack Against TCPProceedings of the Fifth USENIX UNIX Security
Symposiumjune, 1995.

17. Let H be the host to which A had been connected; we assuneealie to guess
H. As we are also assuming telnet connections, B can regtrbes to H's telnet
port (port 23).

First, B needs to find a port A had been using. For variousyileghemeral
port numbers N, B sends an ACK packet from port Nthtelne}. For many
implementations, ephemeral ports start at some fixed valge N=1024) and
increase sequentially; for an unshared machine it is ulyltkat very many ports

Chapter 5 59

18.

19.

had been used. If A had had no connection from port N, H willyépB with a
RST packet. But if Hhadhad an outstanding connection{@,N), then H will
reply with either nothing (if B's forged ACK happened to beckptablej.e. in
the current window at the point when A was cut off), or the nresent Accept-
able ACK (otherwise). Zero-byte data packets can with mogiementations
also be used as probes here.

Once B finds a successful port number, B then needs to find tluesee number
H is expecting; once B has this it can begin sending data oedhaection as
if it were still A. To find the sequence number, B again takegaathge of the
TCP requirement that H reply with the current ACK if B sendA&K or DATA
inconsistent with H's current receive window [that is, amégaceptable ACK"].
In the worst case B's first probe lies in H’'s window, in whichseaB needs to
send a second probe.

We keep a table T, indexed Bgddress,poytpairs, and containing an integer
field for the ISN and a string field for the connection’s DATA.

We will use=< for sequence number comparison as in Exercise 15.

if (SYN flag is setin P.TCPHEAD.Flags)
Create the entry TP.IPHEAD.SourceAddr,P.TCPHEAD.SrcPgrt
T[...].ISN = P.TCPHEAD.SequenceNum
T[...]. DATA = (empty string
else
See if DATA bit in P.TCPHEAD.Flags is set; if not, ignore
Look up T[(P.IPHEAD.SourceAddr,P.TCPHEAD.SrcPgrt
(if not found, ignore the packet)
See if P,TCPHEAD.SequenceNusax T[...].ISN+100.
If so, append the appropriate portion of the packet’s daig.tq.DATA

(a) 1. Cconnectsto A, and gets As current clock-basbg, |S
2. C sends a SYN packet to A, purportedly from B. A sends SYNKAC
with ISN4 - to B, which we are assuming is ignored.
3. C makes a guess at 1IN e.g. ISNy; plus some suitable increment,
and sends the appropriate ACK to A, along with some data theitsbhme
possibly malign effect on A. As in Step 2, this packet too hdsrged
source address of B.
4. C does nothing further, and the connection either remiadtfsopen
indefinitely or else is reset, but the damage is done.

(b) In one 40 ms period there are 40 ms¢éc = 10,000 possible IS)¢; we
would expect to need about 10,000 tries.

Further details can be found in Morris, RT; A Weakness in tt#88D UNIX

TCP/IP Software,Computing Science Technical Report No. 1AT&T Bell
Laboratories, Murray Hill, NJ, 1985.

Chapter 5

60

20. (a) T=0.0 ‘a’sent

(b)

(©)

T=1.0 ‘b’collected in buffer

T=2.0 ‘c’ collected in buffer

T=3.0 ‘d’ collected in buffer

T=4.0 ‘e’ collected in buffer

T=4.1 ACK of ‘a’ arrives, “bcde” sent
T=5.0 ‘f’collected in buffer

T=6.0 ‘g’ collected in buffer

T=7.0 ‘h’collected in buffer

T=8.0 ‘I’ collected in buffer

T=8.2 ACK arrives; “fghi” sent

The user would type ahead blindly at times. Charactenddvbe echoed
between 4 and 8 seconds late, and echoing would come in clofifilksr
or so. Such behavior is quite common over telnet connectewen those
with much more modest RTTs, but the extent to which this is tuthe
Nagle algorithm is unclear.

With the Nagle algorithm, the mouse would appear to skopnfone spot
to another. Without the Nagle algorithm the mouse cursorldvotove
smoothly, but it would display some inertia: it would keepwimg for one
RTT after the physical mouse were stopped. (We've assumtusirtase
that the mouse and the display are at the same end of the ¢dmmpc

21. (a) We have 4096 ports; we eventually run out if the cotioecate averages

(b)

more than 4096/60 = 70 per sec. (The range used here for epdigrogs,
while small, is typical of older TCP implementations.)

In the following we let A be the host that initiated the so(and that is in
TIME _WAIT); the other host is B. A is nominally the client; B the ger.

If B fails to receive anACK of its final FIN, it will eventually retransmit
that FIN. So long as A remains in TIMBVAIT it is supposed to reply
again with the correspondir§CK. If the sequence number of tHdN
were incorrect, A would sendST.

If we allow reopening before TIMBNVAIT expires, then a given very-late-
arriving FIN might have been part of any one of a number of previous
connections. For strict compliance, host A would have tontaan a list

of prior connections, and if an oKIN arrived (as is theoretically possible,
given that we are still within the TIMBVAIT period for the old connec-
tion), host A would consult this list to determine whethez EiN had an
appropriate sequence number and hence whethaC#hor RST should
be sent.

Simply responding with aACK to all FINs with sequence numbers before
the ISN of the current connection would seem reasonableigtiho The
old connection, after all, no longer exists at B's end to beeteand A
knows this. A knows, in fact, that a prior finAICK or RST that it sent in
response to B'§IN wasreceived by B, since B allowed the connection to
be reopened, and so it might justifiably not send anything.

Chapter 5 61

22.

23.

24,

25.

26.

Whichever endpoint remains in TIM&AIT must retain a record of the connec-
tion for the duration of TIMEWAIT; as the server typically is involved in many
more connections than clients, the server’s record-keeggiquirements would
be much more onerous.

Note also that some implementations of TIMBAIT simply disallow all new
connections to the port in question for the duration, noy ¢imbse from the par-
ticular remote connection that initiated the TIMEAIT. Since a server cannot
choose a new port, this might mean it could process at most@meection per
TIME_WAIT interval.

In situations where the client requests some variablettestgeam €ga file), the
server might plausibly initiate the active close to indéctite end of the data.

Timeouts indicates that the network is congested aridtieashould send fewer
packets rather than more. Exponential backoff imnmediagelgs the network
twice as long to deliver packets (though a single linear bfickould give the
same); it also rapidly adjusts to even longer delays, thimsthieory readily ac-
commodating sharp increases in RTT without further loadimegalready over-
taxed routers. If the RTT suddenly jumps to 15 times theToideOut, expo-
nential increase retransmits at T=1, 3, 7, and 15; lineaease would retransmit
at T=1, 3, 6, 10, and 15. The difference here is not large. B&ptal backoff
makes the most difference when the RTT has increased by dargeyamount,
either due to congestion or network reconfiguration, or wheling” the net-
work to find the initial RTT.

The probability that a Normally distributed random aéie is more tham stan-
dard deviations above the mean is about 0.0816%.

If every other packet is lost, we transmit each packetdwi

(a) LetE > 1 bethe value foEstimatedRTT, andT" = 2 x E be the value for
TimeOut. We lose the first packet and back dfmeOut to 2 x T'. Then,
when the packet arrives, we resume vitstimatedRTT = E, TimeOut =
T'. In other wordsTimeOut doesn’t change.

(b) LetT be the value foifimeOut. When when we transmit the packet the
first time, it will be lost and we will wait timel". At this point we back
off and retransmit usingimeOut = 2 x T'. The retransmission succeeds
with an RTT of 1 sec, but we use the backed-off valué gfT for the next
TimeOut. In other words,TimeOut doubles with each received packet.
This is Not Good.

Using initialDeviation =1.0 it took 21 iterations fofimeOut to fall below 4.0.
With an initial Deviation of 0.1, it took 20 iterations; with an initidbeviation
of 2 it took 22.

Chapter 5 62

lteration SampleRTT EsStRTT Dev diff TimeOut

0 1.00 4.00 1.00

1 1.00 3.63 1.25 -3.00 8.63
2 1.00 3.31 1.42 -2.63 8.99
3 1.00 3.03 158 -2.31 9.15
4 1.00 2.78 1.59 -2.03 9.14
5 1.00 2.56 161 -1.78 9.00
6 1.00 2.37 1.61 -1.56 8.81
7 1.00 2.20 158 -1.37 8.52
8 1.00 2.05 1.54 -1.20 8.21
9 1.00 1.92 1.48 -1.05 7.84
10 1.00 1.81 141 -92 7.45
11 1.00 171 134 -81 7.07
12 1.00 1.63 127 -71 6.71
13 1.00 1.56 119 -.63 6.32
14 1.00 1.49 112 -56 5.97
15 1.00 1.43 1.05 -49 5.63
16 1.00 1.38 98 -43 5.30
17 1.00 1.34 91 -38 4.98
18 1.00 1.30 84 -34 4.66
19 1.00 1.27 .78 -.30 4.39
20 1.00 1.24 g2 =27 4.12
21 1.00 1.21 .66 -.24 3.85

27. The answer is in the book.

28. One approach to this, shown below, is to continue thetabbve, except that
wheneverTimeOut would fall below 4.0 we replace thBampleRTT of that
row with 4.0.

We could also create a table starting from scratch, usingnitiali Estimate-
dRTT of 1.0 and seeding the first few rows with a couple instanceSamh-
pleRTT = 4.0 to gefTimeOut > 4.0 in the first place.

Either way, N is between 6 and 7 here.

Chapter 5 63

row# SampleRTT EsStRTT Dev diff TimeOut

19 1.00 1.24 0.72 -0.27 4.13
20 4.00 1.58 0.98 2.76 5.50
21 1.00 151 0.93 -0.58 5.22
22 1.00 1.45 0.88 -0.51 4.95
23 1.00 1.39 0.82 -0.45 4.68
24 1.00 1.34 0.77 -0.39 4.42
25 1.00 1.30 0.72 -0.34 4.16
26 4.00 1.64 0.96 2.70 5.49
27 1.00 1.56 092 -0.64 5.25
28 1.00 1.49 0.88 -0.56 4.99
29 1.00 1.43 0.83 -0.49 4.74
30 1.00 1.37 0.78 -0.43 4.48
31 1.00 1.33 0.73 -0.37 4.24
32 4.00 1.66 0.97 2.67 5.54

29. Here is the table of the updates to B&RTT, etc statistics. Packet loss is ig-
nored; theSampleRTTs given may be assumed to be from successive singly
transmitted segments. Note that the first column, theref®stmply a row num-
ber,nota packet number, as packets are sent without updating tiietissawhen
the measurements are ambiguous. Note also that both algaritalculate the
same values foEstimatedRTT; only theTimeOut calculations vary.

newTimeOut old TimeOut
SampleRTT EstRTT Dev diff EstRTT+dDev 2xEStRTT

1.00 0.10 1.40 2.00
1 5.00 1.50 0.59 4.00 3.85 3.00
2 5.00 1.94 0.95 3.50 5.74 3.88
3 5.00 2.32 1.22 3.06 7.18 4.64
4 5.00 2.66 1.40 2.68 8.25 5.32

New algorithm (TimeOut = EstimatedRTT+ 4x Deviation):
There are a total of three retransmissions, two for packetdloae for packet 3.

The first packet after the change times out at T=1.40, theevalTimeOut at
that moment. It is retransmitted, wifimeOut backed off to 2.8. It times out
again 4.2 sec after the first transmission, aimdeOut is backed off to 5.6.

At T=5.0the first ACK arrives and the second packet is seimgube backed-off
TimeOut value of 5.6. This second packet does not time out, so thistitotes
an unambiguous RTT measurement, and so timing statisgéagpatated to those
of row 1 above.

When the third packet is sent, wilfimeOut=3.85, it times out and is retrans-
mitted. When its ACK arrives the fourth packet is sent, witle backed-off
TimeOut value, 2x3.85 = 7.70; the resulting RTT measurement is unambiguous
so timing statistics are updated to row 2. When the fifth paiksent, Time-
Out=5.74 and no further timeouts occur.

Chapter 5 64

30.

31.

If we continue the above table to row 9, we get the maximumeviduTimeOut,
of 10.1, at which poinTimeOut decreases toward 5.0.

Original algorithm (TimeOut = 2x EstimatedRTT):
There are five retransmissions: for packets 1, 2, 4, 6, 8.

The first packet times out at T=2.0, and is retransmitted. AQK arrives before
the second timeout, which would have been at T=6.0.

When the second packet is sent, the backed-iofieOut of 4.0 is used and we
time out againTimeOut is now backed off to 8.0. When the third packet is sent,
it thus does not time out; statistics are updated to thosevefl:

The fourth packet is sent withimeOut=3.0. We time out once, and then trans-
mit the fifth packet without timeout. Statistics are then afed to row 2.

This pattern continues. The sixth packet is sent WitlneOut = 3.88; we
again time out once, send the seventh packet without lossupdate to row
3. The eighth packet is sent witfimeOut=4.64; we time out, back off, send
packet 9, and update to row 4. Finally the tenth packet doesime out, as
TimeOut=2x2.66=5.32 is larger than 5.0.

TimeOut continues to increase monotonically towards 10.EsténmatedRTT
converges on 5.0.

Let the real RTT (for successful transmissions) be 1i@uBy hypothesis, ev-
ery packet times out once and then the retransmission isoad&dged after 1.0
units; this means that ea@ampleRTT measurement i§imeOut+1 = Esti-
matedRTT+1. We then have

EstimatedRTT = ax EstimatedRTT + #x SampleRTT
= EstimatedRTT + 5 x(SampleRTT —EstimatedRTT).
> EstimatedRTT + 3

Thus it follows that theVth EstimatedRTT is greater than or equal t§ 3.

Without the assumptiofmimeOut = EstimatedRTT we still haveSampleRTT
— EstimatedRTT > 1 and so the above argument still applies.

For the steady state, assume the true RTT is EatichatedRTT is 1. At T=0
we send a data packet. SintemeOut is twice EstimatedRTT=1, at T=2 the
packet is retransmitted. At T=3 the ACK of the original pataleturns (because
the true RTT is 3); measur&@hmpleRTT is thus3—2 = 1; this equal€Estimat-
edRTT and so there is no change. This is illustrated by the follgvdiagram:

Chapter 5 65

Sender Receiver

T=0 T
EstimatedRTT PaC[(
Ct

h

T=1

Timeout and

Retransmission 1~

T
Sample RTT P&C\L PaCke,
T=3 ——

To get to such a steady state, assume that originally REEtimatedRTT =
1.45, say, and RTT then jumps to 3.0 as above. The first paekéusder the
new rules will time out and be retransmitted at T=2.9; whenACK arrives at
T=3.0 we recordsampleRTT = 0.1. This causeEstimatedRTT to decrease.
It will continue to grow smaller, monotonically (at least(fis not too large),
converging on the value 1.0 as above.

32. AFIN or RST must lie in the current receive window. A RSTiside this win-
dow is ignored; TCP responds to an out-of-window FIN with ¢cherent ACK:

If an incoming segment is not acceptable, an acknowledgshentid
be sent in reply (unless the RST bit is set, if so drop the setjared
return) [RFC793]

Note that a RST can lie anywhere within the current windosvséquence num-
ber need not be the next one in sequence.

If a FIN lies in the current window, then TCP waits for any renirag data and
closes the connection. If a RST lies in the current windowm tie connection is
immediately closed:

If the RST bit is set then, any outstanding RECEIVEs and SEND
should receive “reset” responses. All segment queuesdheudlushed.
Users should also receive an unsolicited general “conmrecgset”
signal. Enter the CLOSED state, delete the TCB, and return.

33. (a) The first incarnation of the connection must haveedasiccessfully and
the second must have opened; this implies the exchange cAdNGYN
packets and associated ACKs. The delayed data must alsdbawesuc-
cessfully retransmitted.

(b) One plausible hypothesis is that two routes were availbm one host
to the other. Traffic flowed on one link, which suddenly depeld severe
congestion or routing-loop delays at which point subsetjtraffic was
switched to the other, now-faster, link. It doesn’t mattdrether the two

Chapter 5 66

34.

35.

routes were both used initially on an alternating basid, thiei second route
was used only after the first route failed.

We suppose A is connected to B and wishes to hand off theeotion to C.
There is more than one approach; in the following we assuiteAtand C do
most of the work, and that A decides on a point in the sequeager stream
after which B is to send to C. It could be argued that B is battesitioned
to make that determination. C also continues here with theesgce numbers
started by A.

New function call event: handoff(); allowed in ESTABLISHEDate only.
New packet types:

HANDOFF_REQ /I request from Ato C
HANDOFF.DO /I request from Ato B
New states:
HANDOFF_.CALLED I for A
H_REQ.SENT // for A, HANDOFFREQ sentto C
H_REQACK /I for A; C has acknowledged HANDOEREQ
H_REQRECD /[forC
H_START_WAIT I/ for C
H_TIME _WAIT Il for A

Here is a chronology of events.

1. handoff() called. A moves to state HANDOKFALLED, and identifies a
sequence number 8BEQ (for B) after which data is to be sent to C. A waits
for B to send up to this sequence number, blocking furtherstrassions by
shrinking the upper edge of the receive window t&SHQ. Whether or not A
buffers data following HSEQ, and forwards it to C, is optional.

2. A sends HANDOFEREQ to C, with sequence number$EQ-1 (from B)
and A's own current sequence number. C moves to staREQ.RECD. A
moves to state HREQ_SENT. If A has been buffering data past$EQ, it might
send it to C at this point.

3. Csends an ACK to A to accept the handoff (or RST to rejeclfithe former,
A moves to state HREQ ACK. C moves to HSTART_WAIT, and waits to hear
from B.

4. A sends HANDOFEDO to B, with HSEQ. B remains ESTABLISHED, and
sends an ACK to A, which moves to_HIME WAIT. B also sends an ACK to C,
which moves to ESTABLISHED.

Any data with sequence number beforeSEQ that arrives at A during the
H_TIME _WAIT period is now forwarded by A to C.

(a) In order to disallow simultaneous open, an endpaistate SYNSENT
should not accept SYN packets from the other end. This mdeighe

Chapter 5

(b)

(©

67

edge in the state diagram from SYBENT to SYNRECD should be re-
moved. Instead, the response to SYN in SBENT would be something
like RST.

As long as either side is allowed to close, no. The timiofgthe close()
calls are an application-level issue. If both sides happeedquest at ap-
proximately the same instant that a connection be closéddridly seems
appropriate to hold the connection open while the requestsexialized.
Looked at another way, disallowing simultaneous opendecesimply re-
quires that both sides adhere to the established rolesieftthnd “server”.
At the point of closing, however, there simply is no estdi#is role for
whether client or server is to close the connection. It wandtted be pos-
sible to require that the client, for example, had to indithte close, but that
would leave the server somewhat at the mercy of the client.

The minimum additional header information for this newerpretation is
a bit indicating whether the sender of the packet was thecfier that
connection or the server. This would allow the receivingthi@gigure out
to which connection the arriving packet belongs.

With this bit in place, we can label the nodes and edges at aveathe
ESTABLISHED state with “client” or “server” roles. The edf@em LIS-
TEN to SYN.SENT is the exception, traversed only if a server (LISTEN
state) takes on a client role (SYSEENT). We replace this edge with a no-
tion of creating the second connection; the original endfg@mains in the
server-role LISTEN state and a new endpoint (with same porther), on
in effect a new diagram, is created in the client-role SSENT state.

The edge from SYNSENT to SYNRCVD would be eliminated; during a
simultaneous open the arriving SYN would be delivered toséreer-role
endpoint, still in the LISTEN state, rather than to the dliesle endpoint
in state SYNSENT.

36. (a) Onewould now need some sort of connection numbeayressby the client

(b)

side to play the role of the port number in demultiplexindficawith this in
place, headers might not change much at all. Client and iseoekets will
now be fundamentally different objects. Server socketslavba required
to bind() themselves to a port number (perhaps at creation timentslie
would be forbidden to do this.

We still need to make sure that a client connection nungapt reused
within the 2<MSL period, at least not with the same server port. However,
this is now a TCP-layer responsibility, not an applicationcern. Assum-
ing the client connection number were assigned at the tino®hection,
clients would not need to be aware of TIMEAIT at all: they would be
freed of the requirement they close one socket and reopew ameto get

a fresh port number.

Since client connection numbers are now not visible to tientl simply
placing a connection number out of service entirely durregtIME_WAIT
interval, for connections to any server, would be a tolexapproach.

Chapter 5 68

37.

38.

39.

(c) The rlogin/rsh protocol authenticates clients by sgeirat they are using

a “reserved” port on the sending host (normally, a port ongilable to
system-level processes). This would no longer be possible.
However, the following variation would still be possible:han an rsh
server host S receives a client request from host C, with ection num-
ber N, then S could authenticate the request with C by imtjga second
connection to a reserved port on C, whereupon some sortloéatitation
application on C would verify that connection number N wateied being
used by an authorized rsh client on C. Note that this scherpédmthat
connection numbers are at least visible to the applicatirmdved.

(a) A program thatonnect()s, and then sends whatever is necessary to get the

server to close its end of the connection (eg the string “QVIdnd then
sits there, idle but not disconnecting, will suffice. Notattthe server has
to be willing to initiate the active close based on some tlgion.

(b) Alas, most telnet clients daoot work here. Although many can connect to
an arbitrary port, and issue a command such as QUIT to maksetiver
initiate the close, they generally do close immediatelyesponse to re-
ceiving the server’s FIN.

However, thesock program, written by W. Richard Stevens, can be used

instead. In the (default) client mode, it behaves like a camdaline telnet.
The option-Q 100 makessock wait 100 seconds after receiving the server
FIN before it closes its end of the connection. Thus the contma

sock -Q 100 hosthame5
can be used to demonstrate EWAIT 2 with an SMTP (email) server
(port 25) onhostnameusing theQUIT command.

sock is available fromhttp://www.icir.org/christian/sock.html

Let A be the closing host and B the other endpoint. A senelssagel, pauses,
sends message?2, and then closes its end of the connectiogafting. B gets
messagel and sends a reply, which arrives after A has pexfbitme half-close.
B doesn’t read message2 immediately; it remains in the T@& Rbuffers. B's
reply arrives at A after the latter has half-closed, and s@gponds wittRST
as per the quoted passage from RFC 1122. RS83 then arrives at B, which
aborts the connection and the remaining buffer contersitiessage2) are lost.

Note that if A had performed a full-duplex close, the sameaiade can occur.
However, it now depends on B’s reply crossing K&\ in the network. The
half-close-for-reading referred to in this exercise isually purely a local state
change; a connection that performs a half-close closingritsforwriting may
however send &IN segment to indicate this state to the other endpoint.

Incrementing the Ack number for a FIN is essential, sotti@sender of the FIN
can determine that the FIN was received and not just the gireg€elata.

For a SYN, any ACK of subsequent data would increment the agledgment
number, and any such ACK would implicitly acknowledge theNsa6 well (data

Chapter 5 69

40.

cannot be ACKed until the connection is established). Tthesincrementing of
the sequence number here is a matter of convention and temgigather than
design necessity.

(a) One method would be to invent an option to specifyttimafirstn bytes of
the TCP data should be interpreted as options.

(b) A TCP endpoint receiving an unknown option might

e close/abort the connectioithis makes sense if the connection cannot
meaningfully continue when the option isn’'t understood.

e ignore the option but keep the TCP dafdis is the current RFC 1122
requirement.

e send back “I don't understand’This is simply an explicit form of the
previous response. A refinement might be to send back sondeokin
list of options the hosoesunderstand.

e discard the accompanying the TCP datane possible use might be
if the data segment were encrypted, or in a format specifiethby
option. Some understanding would be necessary regardingeeee
numbers for this to make sense; if the entire TCP data segnadn
extended option block then the sequence numbers shoutdméase
at all.

e discard the firstn bytes of the TCP datarhis is an extension of the
previous strategy to handle the case where therfitsttes of the TCP
data was to be interpreted as an expanded options blockjat idear
though when the receiver might understaniut not the option itself.

41. TCP faces two separate crash-and-reboot scenariosash can occur in the

42.

middle of a connection, or between two consecutive incarnabf a connection.

The first leads to a “half-open” connection where one endpwis lost all state
regarding the connection; if either the stateless sidesandewSYN or the
stateful side sends new data, the other side will resporfdRST and the half-
open connection will be dissolved bilaterally.

If one host crashes and reboots between two consecutiveectom incarna-
tions, the only way the firstincarnation could affect themsetis if a late-arriving
segment from the first happens to fit into the receive windothefkecond. TCP
establishes a quasi-random initial sequence number ditsiigree-way hand-
shake at connection open time. A 64KB window, the maximuiovedld by the
original TCP, spans less than 0.0015% of the sequence nwepaee. Therefore,
there is very little chance that data from a previous inc@wnaf the connection
will happen to fall in the current window; any data outside thindow is dis-
carded. (TCP also is supposed to implement “quiet time atugtg an initial
1xMSL delay for all connections after bootup.)

(a) Non-exclusive open, reading block N, writing block &hd seeking to
block N all are idempotent,e. have the same effect whether executed
once or twice.

Chapter 5 70

(b) create() is idempotent if it means “create if nonexistent, or opehéiists
already”. mkdir() is idempotent if the semantics are “create the given di-
rectory if it does not exist; otherwise do nothinglelete() (for either file
or directory) works this way if its meaning is “delete if thbject is there;
otherwise, ignore.”

Operations fundamentally incompatible with at-leasteosemantics in-
clude exclusive open (and any other form of file locking), axdlusive
create.

(c) The directory-removing program would first check if theedtory exists.
If it does not, it would report its absence. If it does existinivokes the
system calrmdir().

43. (a) The problem is that reads aren't serviced in FIFO mrdisk controllers
typically use the “elevator” or SCAN algorithm to schedulédtas, in which
the pool of currently outstanding writes is sorted by digick-number and
the writes are then executed in order of increasing trackbmrmUsing a
single channel would force writes to be executed serialgnevhen such a
sequence required lots of otherwise-unnecessary diskmetdn.

If a pool of N sequential channels were used, the disk controller would at
any time have abouV writes to schedule in the order it saw fit.

(b) Suppose a client process writes some data to the seneethan the client
system shuts down “gracefully”, flushing its buffers (oritvaself of some
other mechanism to flush the buffer cache). At this point data local
disk would be safe; however,servercrash would now cause the loss of
client data remaining in the server’s buffers. The cliergimneverbe able
to verify that the data was safely written out.

(c) One approach would be to modify a protocol that uses sgglehannels
to support multiple independent outstanding requests dangeslogical
channel, and to support replies in an arbitrary order, noésgarily that in
which the corresponding requests were received. Such aanisch would
allow the server to respond to multiple I/O requests in wheterder was
most convenient.

A subsequent request could now no longer serve as an ACK ah\aopis
reply; ACKs would have to be explicit and non-cumulative.efdéwould
be changes in retransmission management as well: the i@t have
to maintain a list of the requests that hadn't yet been arevand the
server would have to maintain a list of replies that had besr but not
acknowledged. Some bound on the size of these lists (camesmy to
window size) would be necessary.

44. (a) The client sends the request. The server executagits{iccessfully com-
mits any resulting changes to disk), but then crashes jdstdeending its
reply. The client times out and resends the request, whiexésuted a
second time by the server as it restarts.

Chapter 5 71

(b) The tipoff to the client that thisnight have happened is that the server's
boot ID field incremented over that from the previous req(ektch would
always cause the RPC call to fail). While a server reboot dralways be
indicated by an incremented boot ID, it would not necesgéél the case
that any particular request was actually executed twice.

45. We will use the log blocks to maintain a “transaction lag8implified version of

46.

47.

the strategy used by database applications. In this p&atieMxample the actual
update is atomic; if two data blocks had to be updated togethevould have
additional complications.

Upon receipt of the request, the RPC server does the foltpwin

e reads in block N from the disk.

e records in the log block th€ID andMID values, the values of X and N,
and an indication that the transaction is in progress.

e performs the actual update write.

e replacesthe log entry with one that conta@i® andMID and an indication
that the operation was successful, and sends the replygsthais.

This last logdfile record is retained until the client ACKs tieply.

On restart the server looks in the log block. If this indicat®thing about the
transaction, then either the transaction was never startetse the final ACK
was received; either way, the RPC server has no further iratescesponsibil-
ities. If the log block indicates that the transaction cosbgdl successfully, we
reload its status as completed but unacknowledged. Thersdoesn’t know
if the reply has been sent, but this doesn’t matter as it valrétransmitted if
necessary when the appropriate timeout occurs. If suchranghission was
unnecessary, then the client will infer this from the exgix&iD.

Finally, if the restarting server finds the in-progress aadiion in the log, then it
reads data block N and determines, by comparing X there WitXtin the log,

whether the write operation completed. If so, the log is tgdas in the fourth
step above; if not, the server resumes the sequence abdwve #ind step, the
point of performing the actual write.

(a) Ifaclient has only sent the request once, and hawesta reply, and if the
underlying network never duplicates packets, then thattien be sure its
request was only executed once.

(b) To ensure at-most-once semantics a server would hawfey b reply with
a given transactioXID until it had received an acknowledgment from the
client that the reply had been received properly. This wauithil adding
suchACKs to the protocol, and also adding the appropriate bufferiagh-
anism to the implementation.

One TCP connection can manage multiple outstandingestsjuand so is capa-
ble of supporting multiple logical channels; we will assutiat this is the case.

The alternative, of one TCP connection per channel, is aimil

Chapter 5 72

(a) The overlying RPC protocol would need to provide a deipleling field
corresponding to the channel ID. (In the one-TCP-connegier-channel
setting, the TCP socketpair defining the connection reptesbe channel
ID.)

(b) The message ID would correspond to the sequence nuntitgeprimary
purpose of the message ID is to keep track of acknowledgments

(c) Boot ID is dealt with by the stateful nature of TCP; if eittend rebooted
and the other end eventually sent a messageR8iE response would be
an indication of that reboot.

(d)(e) The RPC request and reply messages would now becor@eh&ders
that divide the TCP byte stream into discrete messages.e®euld be
no guarantee, of course, that these headers were trarginittee same
segment as the associated data.

() The RPCACK would be replaced by the TCACK.

(g) Some sort ofare-you-alive? messages would still have to be generated
by the client, if they were desired; although TCP does supgeepAlive
messages they are for a vastly differen®thour) time scale and they do
not address the issue of whether the server process is alive.

If the TCP layer delayed sendifgCKs for, say, 100ms (such “Delayed ACKs”
are standard practice), then in many instances the replitrbig available in
time for it to be sent with the TCRCK. This would achieve the effect of implicit
ACKs in having only one packet handle b&&lEK and reply.

49. e Anapplication that encodes audio or video might produceoagof pack-
ets at a certain time that needed to be spread out in time fmoppate
playback. The application would typically do better seigdihose pack-
ets when they are ready rather than trying to pace them siydotb the
network (which could increase total delay).

e An application might send video and audio data at slightffedent times
that needed to be synchronized, or a single video frame nhiglsent in
multiple pieces over time.

It follows from the above that only the application (not th&FRstack or the
network) has the appropriate knowledge of when a partidtdan should be
played back, and thus the application should provide thedtamps.

50. This allows the server to make accurate measurementiiesf jThis in turn
allows an early warning of transient congestion; see thetieol to Exercise 53
below. Jitter data might also allow finer control over theesit the playback
buffer, although it seems unlikely that great accuracy exdeel here.

51. Each receiver gets 1/1000 of 5% of 320 kbps, or 16bps,hwinieans one 84-
byte RTCP packet every 42 sec. At 10K recipients, it's on&kebper 420 sec,
or 7 minutes.

Chapter 5 73

52.

53.

54.

(a) The answer here depends on how closely frame trasismis synchro-
nized with frame display. Assuming playback buffers on theéeo of a
full frame or larger, it seems likely that receiver framsslay finish times
would not be synchronized with frame transmission timed, tans would
not be particularly synchronized from receiver to receivir this case,
receiver synchronization of RTCP reports with the end ofrigadisplay
would not result in much overall synchronization of RTCHfica

In order to achieve such synchronization, it would be nearggs have both
a very uniform latency for all receivers and a rather low lexfgitter, so

that receivers were comfortable maintaining a negligitiésy/ipack buffer.
It would also be necessary, of course, to disable the RTC&oraization
factor. The number of receivers, however, should not matter

(b) The probability that any one receiver sends in the desegh5% subinter-
val is 0.05, assuming uniform distribution; the probapithat all 10 send
in the subinterval i9.05'°, which is negligible.

(c) The probability that one designated set of five receigersls in the desig-
nated interval, and the other five do not(i85)° x (.95)°. There are (10
choose 5) = 10!/5!5! ways of selecting five designated rezsjhand so the
probability thatsomeset of five receivers all transmit in the designated in-
terval is (10 choose 5) (.05)° x (.95)° = 252 x 0.0000002418 = 0.006%.
Multiplying by 20 gives a rough estimate of about 0.12% fa grobabil-
ity of an upstream traffic burst rivaling the downstream hursany given
reply interval.

If most receivers are reporting high loss rates, a semigit consider throttling
back. If only a few receivers report such losses, the serightoffer referrals
to lower-bandwidth/lower-resolution servers. A regiogedup of receivers re-
porting high losses might point to some local congestioRER traffic is often
tunneled, it might be feasible to address this by re-routiaffic.

As for jitter measurements, we quote RFC 1889:

The interarrival jitter field provides a second short-termasure of
network congestion. Packet loss tracks persistent congestile
the jitter measure tracks transient congestion. The jitieasure may
indicate congestion before it leads to packet loss.

Many answers are possible here. RTT estimation, anceteaiculation of suit-
able timeout values, is more difficult than TCP because ofdblk of a closed
feedback loop between sender and receiver. The solutidd @miude looking
for gaps in the RTP sequence number space. Running anotitecpkon top
of RTP (see DCCP, RFC 4340, for example) to detect lossesndalenowledg-
ment mechanism is another option.

Chapter 5

74

Solutions for Chapter 6

1. (a) From the application’s perspective, it is better tbraeflows as process-
to-process. If a flow is host-to-host, then an applicatiomiag on a multi-
user machine may be penalized (by having its packets drgjifpeaother
application is heavily using the same flow. However, it is measier
to keep track of host-to-host flows; routers need only lookhetIP ad-
dresses to identify the flow. If flows are process-to-pro¢ess end-to-
end), routers must also extract the TCP or UDP ports thatifgehe end-
points. In effect, routers have to do the same demultipteitiat is done
on the receiver to match messages with their flows.

(b) If flows are defined on a host-to-host basis, tkémwLabel would be a
hash of the host-specific information; that is, the IP adsleslf flows are
process-to-process, then the port numbers should be Ettlindthe hash
input.

2. (a) In arate-based TCP the receiver would advertise aatatich it could
receive data; the sender would then limit itself to this rperhaps making
use of a token bucket filter with small bucket depth. Congestiontrol
mechanisms would also be converted to terms of throttlirgk e rate
rather than the window size. Note that a window-based madealiag one
window-full per RTT automatically adjusts its rate invdysproportional
to the RTT; a rate-based model might not. Note also that if @K Arrives
for a large amount of data, a window-based mechanism may diatedy
send a burst of a corresponding large amount of new data;eebested
mechanism would likely smooth this out.

(b) A router-centric TCP would send as before, but wouldikecgresumably
a steady stream of) feedback packets from the routers. Atere would
have to participate, perhaps through a connection-origraeket-delivery
model. TCP’s mechanisms for inferring congestion from desnin RTT
would all go away.

TCP might still receive some feedback from the receiver altsuate, but
the receiver would only do so as a “router” of data to an apgilin; this is
where flow control would take place.

3. For Ethernet, throughput witl stations is5/(N/2 4+ 5) = 10/(N + 10); to
send one useful packet we requi¥g’2 slots to acquire the channel and 5 slots
to transmit. On average, a waiting station has to wait foruabalf the others
to transmit first, so withV stations the delay is the time it takes /2 to
transmit; combining this with a transmission timedf2 + 5 this gives a total
delay of N/2 x (N/2+5) = N(NN 4 10)/4. Finally, power is throughput/delay
=40/N(N + 10)2. Graphs are below.

75

Chapter 6 76

Ethernet throughput, delay, power (Exercise 3(a))

15 50
09 4 throughput
0.8 4 40
5 0.7
g o
g 06 4 30 @
3 o)
€ 05 | <
ie]
S 0.4 20
5
= 0.3 4
0.2 | 10
0.1
0 1 0
0

Load, N

The power curves has its maximumlt= 1, the minimumV, which is some-
what artificial and is an artifact of the unnatural way we aesasuring load.

4. Throughput here isin(z, 1), wherex is the load. Forr < 1 the delay is 1
second, constantly. We cannot sustaii 1 at all; the delay approaches infinity.
The power curve thus looks like= x for x < 1 and is undefined beyond that.

Another way to measure load might be in terms of the percentégime the
peak rate exceeds 1, assuming that the average rate reessrthan 1.

5. Yes, particularly if the immediate first link is high-bamidth, the first router has
a large buffer capacity, and the delay in the connectionvedtream Conges-
tionWindow can grow arbitrarily; the excess packets will simply pileatghe
first router.

6. R1 cannot become congested because traffic arriving asidaes all sent out
the other, and the bandwidths on each side are the same.

We now show how to congest only the router R2 that is R1’s imatedeft child;
other R’s are similar.

Chapter 6 77

10.

Link bandwidth 4 MB/sec

Link bandwidth 2 MB/sec

Link bandwidth 1 MB/sec

DRCIORORORD

We arrange for H3 and H4 to send 1MB/sec to H1, and H5 and H6rd se
1MB/sec to H2. Each of the links to the right of R1 reaches isximum ca-
pacity, as does the R1—R2 link, but none of these routersrhesa@ongested.
However, R2 now wants to send 4MB/sec to R3, which it cannot.

R3 is not congested as it receives at 2MB/sec from R2 andriffictis evenly
divided between H1 and H2.
(@) The fairness index is 0.9366; + - -- + x5 = 715 andz? + --- + 22 =
109225.
(b) The index falls to 0.4419.

. F; still represents a timestamp, but now when compufihgs a packet arrives

we run the clock slow by the sum of the weighisof the active flows, rather
than by the number of active flows.

Consider two flows with weights 1 and 2. If the the packet sizthe packet
in the queue for flow 2 is twice that of the packet in flow 1, thethbpackets
should look equally attractive to transmit. Hence, theatife packet size of the
second packet should & /2. In general, if the flow has a weight then the
effective packet size i®; /w. Hence the final time-stamps are calculated as

F, = max(F;_1,4;) + P;/w

. If we are in the process of transmitting a large sized paahkd a small packet

arrives just after the start of the transmission, then dueoto-preemption the
small packet gets transmitted after the large. Howevegifegt bit-by-bit round
robin the small packet would have finished being transmittefire the large
packet gets completely transmitted.

(a) First we calculate the finishing timés. We don’t need to worry about
clock speed here since we may takke = 0 for all the packets.F; thus
becomes just the cumulative per-flow size, F; = F;_1 + P;.

Chapter 6 78

Packet| size | flow | F;
1 100 1 100
2 100 1 200
3 100 1 300
4 100 1 400
5 190 2 190
6 200 2 390
7 110| 3 110
8 50 3 170

We now send in increasing order bf:
Packet 1, Packet 7, Packet 8, Packet 5, Packet 2, Packetk&t BaPacket
4.

(b) To give flow 2 a weight of 4 we divide each of if§ by 4,i.e. F; =
F;_1 + P;/4; again we are using the fact that there is no waiting.

Packet| size | flow | weightedF;
1 100 1 100
2 100 1 200
3 100 1 300
4 100 1 400
5 190| 2 47.5
6 200 2 97.5
7 110 3 110
8 50 3 170

Transmitting in increasing order of the weightEdwe send as follows:
Packet 5, Packet 6, Packet 1, Packet 7, Packet 8, Packet&at BaPacket
4.

11. The answer is in the book.

12. (a) The advantage would be that the dropped packetseresburce hogs, in
terms of buffer space consumed over time. One drawback iad¢bd to
recomputeostwhenever the queue advances.

(b) Suppose the queue contains three packets. The first2e§,ghe second
has size 15, and the third has size 5. Using the sum of thedittes earlier
packets as the measure of time remaining, the cost of the plaicket is
5 x 20 = 100, and the cost of the (larger) secondlis x 5 = 75. (We
have avoided the issue here of whether the first packet slabwéys have
cost 0, which might be mathematically correct but is argyabhisleading
interpretation.)

(c) We again measure cost in terms of size;we assume it takes 1 time unit
to transmit 1 size unit. A packet of size 3 arrives at T=0, wite queue
such that the packet will be sent at T=5. A packet of size Vesrright
after.

At T=0the costs arg x 5 = 15andl x 8 = 8.
At T=3 the costsarg x 2 =6 andl x 5 = 5.

Chapter 6 79

At T=4 the costs ar@ x 1 = 3 andl x 4 = 4; costranks have now reversed.
At T=5 the costs are 0 and 3.

13. (a) With round-robin service, we will alternate one &lpacket with each ftp
packet, causing telnet to have dismal throughput.

(b) With FQ, we send roughly equal volumes of data for each.flblere are
about552/41 ~ 13.5 telnet packets per ftp packet, so we now send 13.5
telnet packets per ftp packet. This is better.

(c) We now send 512 telnet packets per ftp packet. This exedgpenalizes
ftp.
Note that with the standard Nagle algorithm a backed-uteltould not in fact
send each character in its own packet.

14. In light of the complexity of the solution here, instroiet may wish to consider
limiting the exercise to those packets arriving before, $a6.

(a) Fortheith arriving packet on a given flow we calculate its estimateisfi-
ing time F; by the formulaF; = max{A4,, F;_1 } + 1, where the clock used
to measure the arrival time$; runs slow by a factor equal to the number
of active queues. Thd; clock is global; the sequence &f’s calculated
as above is local to each flow. A helpful observation hereas plackets
arrive and are sent at integral wallclock times.

The following table lists all events by wallclock time. Weeittify packets
by their flow and arrival time; thus, packet A4 is the packet #rrives on
flow A at wallclock time 4,i.e. the third packet. The last three columns
are the queues for each flow for the subsequent time intenalding
the packet currently being transmitted. The number of sutikeaqueues
determines the amount by which is incremented on the subsequent line.
Multiple packets appear on the same line if thE€ivalues are all the same;
the F; values are in italic wher; = F;_; + 1 (versusE; = A; + 1).

We decide ties in the order flow A, flow B, flow C. In fact, the otibs are
between flows A and C; furthermoreyerytime we transmit an A packet
we have a C packet tied with the satfig

Chapter 6 80
Wallclock A; arrivals F; sent || As queue B’'s queue C’'s queue
1 1.0 Al1,C1 20 Al| Al C1
2 15 B2 2.5 Cl| A2 B2 c1,c2
A2,C2 3.0
3 1.833 C3 4.0 B2 || A2 B2 C2,C3
4 2.166 A4 4.0 A2 || A2,A4 C2,C3
5 2.666 C5 5.0 C2 | A4 C2,C3,C5
6 3.166 A6 5.0 Ad || A4,A6 B6 C3,C5,C6
B6 4.166
C6 6.0
7 3.5 A7 6.0 C3 || AG,A7 B6 C3,C5,C6,C7
Cc7 7.0
8 3.833 B8 5.166 B6 || A6,A7 B6,B8 C5,C6,C7,C8
c8 8.0
9 4.166 A9 7.0 A6 || AB6,A7,A9 B8 C5,C6,C7,C8
10 4.5 Al10 8.0 C5 || A7,A9,A10 B8 C5,C6,C7,C8
11 4.833 B1l1 6.166 B8 || A7,A9,A10 B8,Bl1 C6,C7,C8
12 5.166 B12 7.166 A7 | A7,A9,A10 B11,B12 (C6,C7,C8
13 5.5 C6 || A9,Al10 B11,B12 C6,C7,C8
14 5.833 B11|| A9,Al10 B11,B12 C7,C8
15 6.166 B15 8.166 A9 || A9,Al10 B12,B15 C7,C8
16 C7 || A10 B12,B15 C7,C8
17 B12 || A10 B12,B15 C8
18 A10 || AlO B15 Cc8
19 Cc8 B15 Cc8
20 B15 B15

(b) For weighted fair queuing we have, for flow C,

F, =maz{A;,F;_1}+0.5

For flows A and B,F; is as before. Here is the table corresponding to the

one above.

Chapter 6 81
Wallclock A; arrivals F; sent|| As queue B’s queue C’s queue
1 1.0 Al 20 C1| A1 C1
C1 15
2 15 A2 3.0 Al || AL A2 B2 C2
B2 25
c2 2.0
3 1.833 C3 25 C2 || A2 B2 c2,C3
4 2.166 A4 40 B2 || A2,A4 B2 C3
5 25 C5 3.0 C3| A2,Ad C3,C5
6 3.0 A6 50 A2 || A2,A4,A6 B6 C5,C6
B6 4.0
Cc6 3.5
7 3.333 A7 6.0 C5 || A4,A6,A7 B6 C5,C6,C7
C7 4.0
8 3.666 B8 50 C6 || A4,A6,A7 B6,B8 C6,C7,C8
cs8 4.5
9 4.0 A9 7.0 A4 || A4,A6,A7,A9 B6,B8 c7,C8
10 4.333 Al0 8.0 B6 || A6,A7,A9,A10 B6,B8 C7,C8
11 4.666 Bl1 6.0 C7 || A6,A7,A9,A10 BS8,B11 C7,C8
12 5.0 B12 7.0 C8 || A6,A7,A9,A10 B8,B11,B12 C8
13 5.333 A6 | A6,A7,A9,A10 B8,B11,B12
14 5.833 B8 || A7,A9,A10 B8,B11,B12
15 6.333 B15 8.0 A7 || A7,A9,A10 B11,B12,B15
16 B11 | A9,A10 B11,B12,B15
17 A9 || A9,Al10 B12,B15
18 B12 || Al0 B12,B15
19 A10 || Al0 B15
20 B15 B15

15. The answer is in the book.

16. (a) In slow start, the size of the window doubles every RAtTthe end of the
ith RTT, the window size i€’ KB. It will take 10 RTTs before the send
window has reache?!'® KB = 1 MB.

(b) After 10 RTTs, 1023KB = 1 MB- 1 KB has been transferred, and the
window size is now 1 MB. Since we have not yet reached the maxim
capacity of the network, slow start continues to double tiredaw each
RTT, so it takes 4 more RTTs to transfer the remaining 9MB &meunts
transferred during each of these last 4 RTTs are 1 MB, 2 MB, 4 M&B;
these are all well below the maximum capacity of the link i &®TT of
12.5MB). Therefore, the file is transferred in 14 RTTs.

(c) It takes 0.7 seconds (14 RTTs) to send the file. The efiettiroughput
is (10MB / 0.7s) = 14.3MBps = 114.3Mbps. This is only 11.4% loé t
available link bandwidth.

Chapter 6 82

17. Let the sender window size be 1 packet initially. The sersgnds an entire
window-full in one batch; for every ACK of such a window-faiflat the sender
receives, it increases its effective window (which is cednn packets) by one.
When there is a timeout, the effective window is cut into b number of
packets.

Now consider the situation when the indicated packets ate Tdne window size
is initially 1; when we get the first ACK it increases to 2. Aetbeginning of
the second RTT we send packets 2 and 3. When we get their ACKisonaase
the window size to 3 and send packets 4, 5 and 6. When these ACKs the
window size becomes 4.

Now, at the beginning of the fourth RTT, we send packets 7, &n@ 10; by
hypothesis packet 9 is lost. So, at the end of the fourth RT hawe a timeout
and the window size is reduced4g2 = 2.

Continuing, we have
RTT |5 6 7 8 9
Sent| 9-10 11-13 14-17 18-22 23-28

Again the congestion window increases up until packet 293, lwhen it is
halved, to 3, at the end of the ninth RTT. The plot below shdws#tindow size
vs. RTT.

A

CONGESTION WINDOW
SIZE 7

18. From the figure for the preceding exercise we see thakésstabout 17 RTTs
for 50 packets, including the necessary retransmissionsncél the effective
throughput iss0/17 x 100 x 1073 KB/s = 29.4KB/s.

19. The formula is accurate if each new ACK acknowledges ave MSS-sized
segment. However, an ACK can acknowledge either small sizkgis (smaller
than MSS) or cumulatively acknowledge many MSS’s worth dada

16

17

Chapter 6 83

Let N = CongestionWindow/MSS, the window size measured in segments.
The goal of the original formula was so that afteérsegments arrived the net
increment would be MSS, making the increment for one MS8esgegment
MSSIN. If instead we receive an ACK acknowledging an arbitrary Amo
tACKed, we should thus expand the window by

Increment= AmountACKed N
= (AmountACKedx MSS)/CongestionWindow

20. We may still lose a batch of packets, or else the windowisismall enough that
three subsequent packets aren’t sent before the timeosat.rétsansmit needs
to receive three duplicate ACKs before it will retransmitacket. If so many
packets are lost (or the window size is so small) that not ¢kese duplicate
ACKs make it back to the sender, then the mechanism cannativated, and a
timeout will occur.

21. We will assume in this exercise and the following two tivaen TCP encoun-
ters a timeout it reverts to stop-and-wait as the outstanltist packets in the
existing window get retransmitted one at a time, and thatstbe start phase
begins only when the existing window is fully acknowledgkdparticular, once
one timeout and retransmission is pending, subsequenttitaef later packets
are suppressed or ignored until the earlier acknowledgimsemiceived. Such
timeouts are still shown in the tables below, but no actidaken.

We will let Data N denote the Nth packet; Ack N here denotesattienowledg-
ment for data up through arndcludingdata N.

(a) Here is the table of events wiltimeOut = 2 sec. There is no idle time on

the R-B link.

Time Arecvs A sends R sends cwnd size
0 Data0 Data0 1

1 AckO Datal,2 Datal 2

2 Ackl Data3,4 (4 dropped) Data2 3

3 Ack2 Datab,6 (6 dropped) Data3 4

4 Ack3/timeout4 Data4 Data5 1

5 Ack3/timeout5&6 Data4 1

6 Ack5 Data 6 Data6 1

7 Ack 6 Data7,8 (slow start) Data7 2

(b) With TimeOut = 3 sec, we have the following. Again nothing is transmitted
at T=6 because ack 4 has not yet been received.

Chapter 6 84

Time Arecvs A sends R sends cwnd size
0 Data0 Data0 1
1 AckO Datal,2 Datal 2
2 Ackl Data3,4 (4 dropped) Data2 3
3 Ack2 Datab,6 (6 dropped) Data3 4
4 Ack3 Data7,8 (8 dropped) Data5 5
5 Ack3/timeout4 Data4 Data7 1
6 Ack3/timeout5&6 Data4 1
7 Ack5/timeout7&8 Data6 Data6 1
8 Ack7 Data8 Data8 1
9 Ack8 Data9,10 (slow start) Data9 2

22. We follow the conventions and notation of the precedieg@se. Although the
first packetis lost at T=4, it wouldn’t have been transmitiatll T=8 and its loss
isn't detected until T=10. During the final few seconds th&standing losses in
the existing window are made up, at which point slow starthdidne invoked.

Arecvs cwnd Asends R sending/R’squeue
Ack # size Data
1 1
2,3 2/3
4,5 3/4,5
6,7 4/5,6,7
8,9 5/6,7,8 9 lost
10,11 6/7,8,10 11 lost
12,13 7/8,10,12 13 lost
14,15 8/10,12,14 15 lost
16,17 10/12,14,16 17 lost
12/14,16
9 14/16,9 2nd duplicate Ack8
16/9
9/
10 11 11/ B gets 9
12 13 13/
14 15 15/
16 17 17/
17 2 18,19 18/19 slow start

T T
©CoOo~NOULh, WNEO
©COWOwoOo~NOOUO~WNE

WO NOUTDE,WNPRE

PR R R R R

e v v e v v v,
~Nooh~ WNE O

P

23. R’s queue size is irrelevant because the R-B link chafrged having a band-
width delay to having a propagation delay only. That imptiest packets leave
R as soon as they arrive and hence no queue can develop. Tierpnoow be-
comes rather trivial compared to the two previous questiBesause no queue
can develop at the router, packets will not be dropped, saihdow continues
to grow each RTT. In reality this scenario could happen buildialtimately be
limited by the advertised window of the connection.

Note that the question is somewhat confusingly worded—yis $hat 2 packets

Chapter 6 85

take one second to send, but since this is propagation datagrthan bandwidth
delay,anynumber of packets can be sent in one second.

Notation and conventions are again as in #21 above.
Arecvs cwnd A sends data#

T=0 1 1
T=1 Ackl 2 2,3
T=2 Ack3 4 4,5,6,7
T=3 Ack7 8 8-15
T=4 Ackl5 16 16-31
T=5 Ack31 32 32-63
T=6 Ack63 64 64-127
T=7 Ackl127 128 127-255
T=8 Ack255 256 255-511

24. With a full queue of size N, it takes an idle period on thedss’s part of N+1

25.

26.

27.

seconds for R1’s queue to empty and link idling to occur. & donnection is
maintained for any length of time witGongestionWindow=N, no losses occur
but EstimatedRTT converges to N. At this point, if a packet is lost the timeout
of 2xN means an idle stretch of length 2N(N+1) = N-1.

With fast retransmit, this idling would not occur.

The router is able in principle to determine the actuahber of bytes outstand-
ing in the connection at any time, by examining sequence akidaavledgment
numbers. This we can take to be the congestion window exoeptimediately
after when the latter decreases.

The host is complying with slow start at startup if only onermpacket is out-
standing than the number of ACKs received. This is stragyiaérd to measure.

Slow start after a coarse-grained timeout is trickier. Tlaémproblem is that the
router has no way to know when such a timeout occurs; the T@Rtrhave in-
ferred a lost packet by some other means. We may, howevecaasion be able
to rule out three duplicate ACKs, or even two, which meantdiratransmission
might be inferred to represent a timeout.

After any packet is retransmitted, however, we should seedhgestion window
fall at least in half. This amounts to verifying multiplidz¢ decrease, though,
not slow start.

Using ACKs in this manner allow very rapid increase anutias overConges-
tionWindow. Stefan Savage suggests requiring ACKS to includerceas a
solution. That is, ACKs must include information from thata which is being
ACKed to be valid.

Slow start is active up to about 0.5 sec on startup. Attihed a packet is sent
that is lost; this loss results in a coarse-grained timebtlita.9.

At that point slow start is again invoked, but this time TCRughes to the linear-
increase phase of congestion avoidance before the conig@stidow gets large

Chapter 6 86

enough to trigger losses. The exact transition time is diffio see in the dia-
gram; it occurs sometime around T=2.4.

At T=5.3 another packet is sent that is lost. This time the Issletected at T=5.5
by fast retransmit; this TCP feature is the one not presehigare 6.11 of the

text, as all lost packets there result in timeouts. Becadusedngestion window
size then drops to 1, we can infer that fast recovery was nefféct; instead,

slow start opens the congestion window to half its previalserand then linear
increase takes over. The transition between these two phashown more
sharply here, at T=5.7.

28. We assume here that the phone link delay is due to bartdwidt latency, and
that the rest of the network path offers a bandwidth at lembigh as the phone
link's. During the first RTT we send one packet, due to slowtssand by the final
assumption we thus transmit over the link for a third of theTRand thus use
only a third of the total bandwidth, or 1 KB/sec. During thesed RTT we send
two packets; in the third and subsequent RTTs send threeefgadaturating the
phone link. The sequence of averages, however, climbs nmsys at the end
of the second RTT the fraction of bandwidth used is 3/6; akete of the third
RTT it is 6/9, then 9/12, at the end of the Nth RTT we have usdd\Lef the
bandwidth.

Packet losses cause these averages to drop now and themgéltkince the
averages are cumulative the drops are smaller and smalienegoes on.

29. (a) Hereis how a connection startup might progress:

Send packet 1

Getack 1

Send packets 2 & 3

Getack 2

Send packet 4, which is lost due to link errors,GangestionWin-
dow=1.
One way or another, we get lots of coarse-grained timeou&nwie win-
dow is still too small for fast retransmit. We will never bel@ko get past
the early stages of slow start.

(b) Over the short term such link losses cannot be distimgaisrom conges-
tion losses, unless some router feedback mechanism (eMP I8ource
Quench) were expanded and made more robust. (Over the longden-
gestion might be expected to exhibit greater temporal ity and care-
ful statistical analysis might indicate when congestios weesent.)

(c) Inthe presence of explicit congestion indications, TaiBht now be tuned
to respond to ordinary timeout losses by simply retranamgjttwithout
reducing the window size. Large windows could now behavenadly.

We would, however, need some way for keeping the ACK clocking
ning; coarse-grained timeouts would still necessitatéwameo
CongestionWindow= 1 because ACKs would have drained. Either TCP’s
existing fast retransmit/fast recovery, or else some fdrsetective ACKs,

Chapter 6 87

might be appropriate. Either might need considerable gutonhandle a
25% loss rate.

30. Suppose the first two connections keep the queue full 9586 time, alternating

31.

transmissions in lockstep and timed so that their packetaya arrive just as a
gueue vacancy opens. Suppose also that the third connegiexckets happen
always to arrive when the queue is full. The third connecsipackets will thus
be lost, whether we use slow start or not. The first two conoestwill not be
affected.

Congestion avoidance by the first two connections meanghbegtwill even-

tually try a window size of 4, and fall back to 2, and give thedltonnection
a real foot in the door. Slow start for the third connectioruldomean that if
a packet got through, then the window would expand to 2 andhid sender
would have about twice the probability of getting at least @acket through.
However, since a loss is likely, the window size would soosereto 1.

(a) We lose 1100 ms: we wait 300 ms initially to detect thiedtduplicate
ACK, and then one full 800 ms RTT as the sender waits for the ACthe
retransmitted segment. If the lost packet is sent at 336, the lost ACK
would have arrived at T=0. The duplicates arrive at T=10@, 2(0d 300.
We retransmit at T=300, and the ACK finally arrives at T=1100.

(b) We losel100 — 400 = 700 ms. As shown in the diagram, the elapsed time
before we resume is again 1100 ms but we have had four extreces#o
transmit during that interval, for a savings of 400 ms.

Chapter 6 88

32.

33.

34.

3rd dup ACK -100
stop sending 0
100

stop sending 0
100
200
300
400
500

200
300
400
500

600 600
700 700

800 — 800
900 — 900
1000 —] 1000
resume 1100 —f resume 1100

We might alternate between congestion-free backoffigagly congestion, mov-
ing from the former to the latter in as little as 1 RTT. Movingth congestion
back to no congestion unfortunately tends not to be so rapid.

TCP Reno also oscillates between congestion and non-cimgdsut the peri-
ods of non-congestion are considerably longer.

Marking a packet allows the endpoints to adjust to caimgemore efficiently—

they may be able to avoid losses (and timeouts) altogethglolsing their send-

ing rates. However, transport protocols must be modifiechtesstand and ac-
count for the congestion bit. Dropping packets leads todime and therefore
may be less efficient, but current protocols (such as TCRJ neebe modified

to use RED. Also, dropping is a way to rein in an ill-behaveutss.

(&) We have

TempP = MaxP x AvgLen-MinThreshold

MaxThreshold—MinThreshold

AvgLen is halfway betweerMinThreshold and MaxThreshold, which
implies that the fraction here is/2 and soTempP = MaxP/2 = 0.005.
We now haveP 0t = TempP/(1 — count x TempP) = 1/(200-count).
For count=1 this is 1/199; forcount=100 it is 1/100.

3rd dup ACK

window forward
window forward
window forward

window forward

Chapter 6 89

35

36.

37.

38.

39.

40.

41.

(b) Evaluating the produc¢t — Py) x --- x (1 — P5o) gives

198 197 196 150 149
— X — X —— XX — X —
199~ 198 197 151 150

which all telescopes down to 149/199, or 0.7487.

. The answer is in the book.

The difference betwediaxThreshold andMinThreshold should be large enough
to accommodate the average increase in the queue lengtle IROR with TCP

we expect the queue length to double in one RTT, at least glstow start, and
hence wanMaxThreshold to be at least twiceMinThreshold. MinThresh-

old should also be set at a high enough value so that we extradtmaaxlink
utilization. If MaxThreshold is too large, however, we lose the advantages of
maintaining a small queue size; excess packets will simyd time waiting.

Only when theaveragequeue length exceeddaxThreshold are packets au-
tomatically dropped. If the average queue length is less haxThreshold,
incoming packets may be queued even if the real queue lemgtbntes larger
thanMaxThreshold. The router must be able to handle this possibility.

It is easier to allocate resources for an applicatioh ¢ha precisely state its
needs, than for an application whose needs vary over songe r&ursts con-
sume resources, and are hard to plan for.

BetweerMinThreshold andMaxThreshold we are using the drop probability
as a signaling mechanism; a small value here is sufficierthiBopurpose and a
larger value simply leads to multiple packets dropped pelP T¥ihdow, which
tends to lead to unnecessarily small window sizes.

AboveMaxThreshold we are no longer signaling the sender. There is no logical
continuity intended between these phases.

The bit allows for incremental deployment, in which saenépoints respond to
congestion marks and some do not. Without this bit, ECN-leltouters would
mark packets during congestion rather than dropping themnsdme (presum-
ably older, not updated) endpoints would not recognize tlagkmand hence
would not back off during congestion, crowding out the EGhnpliant end-
points, which would then have the incentive to ignore ECNksas well. The
result could actually be congestion collapse as in the pregestion-controlled
Internet.

(a) Assume the TCP connection has run long enough foll aviladlow to be
outstanding (which may never happen if the first link is thengst). We
first note that each data packet triggers the sending of lgxaice ACK,
and each ACK (because the window size is constant) triggersending
of exactly one data packet.

We will show that two consecutive RTT-sized intervals cimthe same
number of transmissions. Consider one designated packeand let the

Chapter 6 90

first RTT interval be from just before P1 is sent to just befBfes ACK,
Al, arrives. Let P2 be the data packet triggered by the drivAl, let
A2 be the ACK for P2, and let the second interval be from jusbteethe
sending of P2 to just before the receipt of A2. Let N be the nenrds
segments sent within the first intervak., counting P1 but not P2. Then,
because packets don't cross, this is the number of ACKswedeluring
the second RTT interval, and these ACKs trigger the sendimxactly N
segments during the second interval as well.

(b) The following shows a window size of four, but only two kats sent per
RTT once the steady state is reached. It is based on an umdgidypology
A—R—B, where the A—R link has infinite bandwidth and the R—&Kli
sends one packet per second each way. We thus have-R3dc; in any
2-second interval beginning on or after T=2 we send only texckpts.

T=0 send data[1] through data[4]
T=1 data[1] arrives at destination; ACK[1] starts back
T=2 receive ACK][1], send data[5]
T=3 receive ACK][2], send data[6]
T=4 receive ACK[3], send data[7]
The extra packets are, of course, piling up at the interneddauter.

42. The first time a timed packet takes the doubled RTT, TCR¥stjll sends one
windowful and so measures awctualRate = CongestionWindow/RT Tnew of
half of what it had been, and thus about half (or lessExpectedRate. We
then haveDiff = ExpectedRate—ActualRate ~ (1/2)x ExpectedRate, which
is relatively large (and, in particular, larger thay so TCP Vegas starts reducing
CongestionWindow linearly. This process stops whé&iff is much closer to 0;
that is, wherCongestionWindow has shrunk by a factor close to two.

The ultimate effect is that we underestimate the usable estian window by
almost a factor of two.

43. (a) If we send 1 packet, then in either case we see a 1 seclR¥@ send a
burst of 10 packets, though, then in the first case ACKs arelsk at
1sec intervals; the last packet has a measured RTT of 10 $ecselcond
case gives a 1 sec RTT for the first packet and a 2 sec RTT foaste |
The technique of packet-pairs, sending multiple instané¢éso consecu-
tive packets right after one another and analyzing the minirtime differ-
ence between their ACKs, achieves the same effect; indee#teppair is
sometimes thought of as a technique to find the minimum pattilth.
In the first case, the two ACKs of a pair will always be 1 secoparg in
the second case, the two ACKs will sometimes be only 100 md.apa

(b) In the first case, TCP Vegas will measure RTT = 3 as soonag ik a
full window outstanding. This meamsctualRate is down to 1 packet/sec.
HoweverBaseRTT is 1 sec, and so
ExpectedRate = CongestionWindow/BaseRTT is 3 packets/sec. Hence,
Diff is 2 packets/sec, ar@ongestionWindow will be decreased.

Chapter 6 91

44,

45,

46.

In the second case, when a burst of three packets is sent isenee RTTS
are 1.0, 1.1, 1.2. Further measurements are similar. eilyldoes not re-
sult in enough change in the measured RTT to decrBaselRate suffi-
ciently to trigger a decrease @ongestionWindow, and depending on the
value ofa may even trigger an increase. At any rafetualRate decreases
much more slowly than in the first case.

If an application running over UDP has no congestionrabnénd it shares a
bottleneck link with an application that runs over congasitontrolled TCP,
then only the TCP traffic will reduce its sending rate in rexgoto congestion.
In the extreme, the throughput of TCP traffic could drop t@zkthere is enough
UDP traffic to congest the link on its own.

An application that receives RTCP receiver reports, howesen detect loss,
and attempt to emulate the congestion control behavior &. For example, a
video application might respond to an RTCP report of paakss$ by dropping
its transmission rate, perhaps by changing the video riégnolar the strength of
its compression algorithm.

A detailed specification of a protocol that can run over UDRB gt respond to
congestion in a TCP-like way is in RFC 4340.

An ATM network may be only one network, or one type of natyin an inter-
net. Making service guarantees across such an ATM link doemthis setting
guarantee anything on an end-to-end basis. In other woodgiestion manage-
ment is an end-to-end issue.

If IP operates exclusively over ATM, then congestion mamaget at the ATM
level may indeed address total congestion (although ifigdgracket discard is
not implemented then dropped cells do not correspond vety taelropped
packets). In this setting, congestion control at the TClellbas the drawback
thatit doesn’taddress other protocols, and doesn’t takeiccount the switches’
knowledge of virtual circuits.

(a) Robot control is naturally realtime-intolerante ttobot can not wait indef-
initely for steering control if it is about to crash, and ithcaot afford to
lose messages such as “halt”, “set phasers on stun”, or svétch to blue
paint”. Such an application could be adaptive in a settingnetwe have
the freedom to slow the robot down.

(b) If an application tolerates a loss ratexgf) < = < 1, then itis only receiv-
ing fraction1 — x of the original bandwidth and can tolerate a reduction to
that bandwidth over a lossless link.

(c) Suppose the data being transmitted are positioningdaoates for some
kind of robotic device. The device must follow the positiphstted, though
some deviation is permitted. We can tolerateasionalost data, by inter-
polating the correct path (there is a continuity assumgiene); this would
qualify the application as loss-tolerant.

We also want to be able to claim that the application is ncaptide. So
we will suppose that too much transmission delay means thet annot

Chapter 6 92

follow the path closely enough (or at least not with the regglispeed),
making the application non-delay-adaptive. A significaaterreduction,
similarly, might mean the device can’t keep to within theuieed tolerance
— perhaps it requires at least 80% of the coordinates — antlwouid
qualify as non-rate-adaptive.

47. (a) One way to solve this is to imagine that we start witkesupty bucket but
allow the bucket volume to become negative (while still pdavg pack-
ets); we then get the following table of bucket “indebtedrieAt T=0, for
example, we withdraw 8 tokens from the bucket (the numberaakets
sent) and deposit 2 (the token rate).

Time,secs | 0 1 2 3 4 5
Bucketvolume| -6 -8 -7 -5 -9 -8
We thus need an initial bucket depth of 9, so as not to run o=t
Because all the volumes above are negative, the bucket efith@® never
overflows.

(b) If we do the same thing as above we get
Time,secs | 0 1 2 3 4 5
Bucketvolume| -4 -4 -1 3 1 4
A bucket depth of 4 will thus accommodate T=0 and T=1. In tlasec
because the volume is sometimes positive we also need t& thaicthe
bucket doesn’t overflow. If we start with an initially full bket of depth 4,
we get
Time,secs |0 1 2 3 4 5
Bucketvolume| 0 0 2 4 2 4
Note that the bucket does become full of tokens at T=3 and Tt3hat
we are able to handle the 6 packets at T=4 because we had 4 tiokitre
bucket plus the 4 more tokens that arrive each interval. SotHei size of
the minimal token bucket.

48. The answer is in the book.

49. (a) If the router queue is empty and all three flows dumj theckets at the
same time, the burst amounts to 15 packets for a maximum déla$ sec.
Since the router can keep up with packets due to steadytsaéfie alone,
and can drain any earlier bucket dumps faster than the migkerefilled,
such a burst is in fact the maximum queue.

(b) In 2.0 seconds the router can forward 20 packets. If flogvids an initial
burst of 10 at T=0 and another single packet at T=1, and flowmgsd at
T=0and 2 at T=1, thatamounts to 17 packets in all. This leavesimum
capacity of 3 packets for flow3. Over the long term, of coufkmy3 is
guaranteed an average of 8 packets per 2.0 seconds.

50. (&) If the router was initially combining both reservettlanonreserved traffic
into a single FIFO queue, then reserved flows before the less mot get-
ting genuine service guarantees. After the loss the rosistilihandling all

Chapter 6 93

traffic via a single FIFO queue; the only difference is thatralfffic is now
considered nonreserved. The state loss should thus makéeremce.

(b) If the router used weighted fair queuing to segregatervesl traffic, then
a state loss may lead to considerable degradation in setwmause the
reserved traffic now is forced to compete on an equal footittyoi polloi
traffic.

(c) Suppose new reservations from some third parties réechouter before
the periodic refresh requests are received to renew thmatigservations;
if these new reservations use up all the reservable caphetsouter may
be forced to turn down the renewals.

Solutions for Chapter 7

1. Each string is preceded by a count of its length; the arfaglaries is preceded
by a count of the number of elements. That leads to the foligwiequence of
integers and ASCII characters being sent:

7TRICHARDA4376 8DECEMBER 21998 3 80000 85000 90000
2

2. The answer is in the book.

5. Limited measurements suggest that, at least in one plantigetting, use ditonl
slows the array-converting loop down by about a factor of.two

6. The following measurements were made on a 300MHz Intéésy,scompiling
with Microsoft’s Visual C++ 6.0 and optimizations turned.dfVe normalize to
the case of a loop that repeatedly assigns the same integgdnleso another:

for (i=0;i<N;i++) {j=k}

Replacing the loop body above withhtonl(k) made the loop take about 2.9
times longer. The following homemade byte-swapping codk &bout 3.7 times
longer:

char = p

char > q

al 0] =p[3] ;

al 1] =p[2] ;

al 2] =p[1];

a[3] =p[O] ;
For comparison, replacing the loop body with an array cafpl=BJi] took about
2.8 times longer.

(char *) & k;
(char *) & j;

7. ASN.1 encodings are as follows:
INT | 4 101
INT | 4 10120
INT | 4 | 16909060

8. The answer is in the book.

9. Here are the encodings.

101 be 00000000 00000000 00000000 01100101
101 I e 01100101 00000000 00000000 00000000

10120 be 00000000 00000000 00100111 10001000
10120 | e 10001000 00100111 00000000 00000000

16909060 be 00000001 00000010 00000011 00000100
16909060 | e 00000100 00000011 00000010 00000001

For more on big-endian versus little-endian we quote J@ama8wift, writing in
Gulliver’'s Travels

94

10.
11.

12.

13.

14.

...Which two mighty powers have, as | was going to tell yowgrben-
gaged in a most obstinate war for six and thirty moons padtedgan upon
the following occasion. It is allowed on all hands, that thienitive way of
breaking eggs before we eat them, was upon the larger endhidptesent
Majesty’s grandfather, while he was a boy, going to eat an agd break-
ing it according to the ancient practice, happened to cutajrigs fingers.
Whereupon the Emperor his father published an edict, cordimgrall his
subjects, upon great penalties, to break the smaller enlkeaf ¢ggs. The
people so highly resented this law, that our histories telthere have been
six rebellions raised on that account.... Many hundredelaxgumes have
been published upon this controversy: but the books of tigeEBidians have
been long forbidden, and the whole party rendered incaggblaw of hold-
ing employments.

The answer is in the book.

The problem is that we don’t know whether tRECVersion field is in big-
endian or little-endian format until after we extract ittlbve need this informa-
tion to decide on which extraction to do.

It would be possible to work around this problem provided traong all the
version IDs assigned, the big-endian representation of@mever happened to
be identical to the little-endian representation of anotikis would be the case
if, for example, future versions of XDR continued to use bigdian format for
theRPCVersion field, but not necessarily elsewhere.

It is often possible to do a better job of compressing tta d one knows some-
thing about the type of the data. This applies even to losslespression; it is
particularly true if lossy compression can be contemplat@dce encoded in a
message and handed to the encoding layer, all the data Itik&sand only a
generic, lossless compression algorithm can be applied.

[The DEC-20 was perhaps the best-known example of 3értdiitecture.]

Incoming 32-bit integers are no problem; neither are outilazharacter strings.
Outbound integers could either be sent as 64-bit integerse could lose the
high-order bits (with or without notification to the senddfpr inbound strings,
one approach might be to strip them to 7 bits by default, médlegaavailable to
indicate whether any of the eighth bits had been set, and, ihake available a
lossless mechanism (perhaps one byte per word) of re-rg#urdata.

Here is a C++ solution, in which we maketint=-int an automatic conversion.
To avoid potential ambiguity, we make use of #aelicit keyword in the con-

structor convertingnt to netint, so that this does not also become an automatic

conversion. (Note that the ambiguity would require addiilccode to realize.)
To support assignmenetint = int, we introduce an assignment operator.

class netint {
publi c:

95

15.

16.

17.

18.
19.

operator int() {return ntohl(.netint);}

netint() : _netint(0) /| default constructor

explicit netint (int n) : _netint(ntohl(n)) {}
netint & operator=(int n) {

netint = htonl (n);

return xthis;

int raw() {return _netint;} /| fortesting
private:
int _netint;

b

The above strategy doesn’t help at all with pointers, anadmath with structures
and arrays. It doesn’t address alignment problems, for pi@am

Transmission bit order is the province of the networkpaelia which addresses
this as it transmits or receives each byte. Generally allenigriormats on the
same machine (different sizes of ints, floats, etc) use thmedat order; only if
they didn’t would the programmer have to make distinctions.

For big-endian network byte order the average numbesmfarsions i$ x p? +
1 x 2p(1 — p) + 2 x (1 — p)?. For receiver-makes-right this i5x p? + 1 x
2p(1 — p) + 0 x (1 — p)?; that is, if both sender and receiver are little-endian
then no conversion is done. These are evaluated below:
| p=01 p=05 p=09
big-endian network | 1.80 1.00 0.20
receiver-makes-right 0.18 0.50 0.18

(a) Replace the markup tag text with corresponding co@e® or two bytes
would suffice for most XML languages.

(b) Represent numerical data using a numerical represemiattead of text.
Try data files with lots of byte-string-level redundancy

(a) letter| encoding

a 1

b 01
c 001
d 000

(b) 1 x0.5+2x%x0.34+3x0.14+3x0.1=1.7So the compressed data uses
1.7/2 x 100 = 85% as many bits, or a 15% compression gain.

(c) The table is the same, although we could now give eigharb the 1-bit
encoding. The average compressionis iow0.4 +2 x 0.4+ 3 x 0.15+
3 x 0.05 = 1.8, i.e., we use 90% as many bits or a 10% compression gain.

96

20. (a) This is a counting argument: there aré strings of lengthV and only
20 421 4 ... 4 2N-1 — 9N _ 1 strings of length< N. Some string,
therefore, cannot get shorter.

(c) We let
/ 07¢(s) if length(c(s)) < length(s)
d(s) = ~ :
17s otherwise

(where0™¢(s) is c(s) with a zero-bit prepended). The initial bit is a flag
to indicate whether the remainder was compressed or not.

21. Bytes that occur with a run length of 1 we represent widntbelves. If a byte
occurs in a run of more than 1, we represent it with the threéesy
[ESC] [count] [byte]
The byte [ESC] can be any agreed-upon escape charactendé€utrs alone it
might be represented as [ESC][ESC].

22. A sample program appears on the web page; it generatddlibvwing data.
The uncompressed size of RFC 791 is 94892 bytes. There a2d3livords
in all; the number of distinct words is 2255 and the dictignsize is 18226
bytes. The encoded size of the non-dictionary part with 12er word is thus
(12x 11243)/8 = 16865 bytes; together with the dictionary we get a compeess
size of 35091 bytes, 37% of the original size. There are 132lsvappearing at
least 13 times, with a total frequency count of 6689. This mseae 128 most
common words appear a total of 6637 times; this gives a cossptesize of
(8 x 6637 4+ 13 x (11243 — 6637))/8 = 14122 bytes, plus the dictionary; the
total is now 34% of the original size. Note that exact numlagessensitive to
the precise definition of a “word” used.

23. (a) For “symmetric” data such as this, coefficiets'T'(:) fori = 1,3,5,7
(starting the indexing at= 0) should be zero or near-zero.

(b) If we keep six coefficients, the maximum errorifiel (i) after applying
the DCT and its inverse is about 0.7%, foe= 1 andi = 2. If we keep
only four or five coefficients (note that both choices leadosame values
for the inverse DCT), then the maximum error is 6% at 0; the error at
1 =11is5.6%.

(c) The input vectors for this problem look liké, 0,0, 0, 0, 0, 0, 0) with the 1
moving one position to the right @sncreases. Here is a table listing, for
eachs;, the percentage error in thith place of the final result. The smallest
error is fori = 0 and 7; the largest is far= 1 and 6.
i 0 1 2 3 4 5 6 7
% error| 12.3| 53.1| 39.6| 45.0| 45.0| 39.6 | 53.1| 12.3

24. The all-white image generates all zeros in the DCT phdse quantization
phase leaves thex 8 grid of 0’s unchanged; the encoding phase then compresses
it to almost nothing.

97

25.

26.

Here is the first row of a® x 8 pixmap consisting of a black line (value 0) in the
first column, and the rest all white:
00 FF FF FF FF FF FF FF

Here is the image after default-qualityjjeg -quality 75) JPEG compression
and decompression; there is some faint vertical fringihg ¢olumns with FC,
FD, and FE would appear as progressively fainter grey linkisyows are iden-
tical; here is the first:

01 FC FF FD FF FF FE FF
With -quality 100, or even-quality 90, the fringing is gone; the image after
compression and decompression is identical to the original

We start with an example specifically generated fostixe8 grid; note that the
letters change gradually in both directions. Here is thgioai data:

a b c d e f g h
b ¢c d e f g h i
c d e f g h i |
d e f g h i j Kk
e f g h i j k |
f g h i j k | m
g h i j k I m n
h i j k I m n o

We get the following after default-quality (quality=75)eip compression and
decompression; no letter is off by more than 1 ASCII value.
b b ¢c d e g h h

b ¢c d e f g h nh
c d d f g h i i
d e f g h i j |j
f f g h i j k |1
g g h i j | I m
h h i j k | m n
h h i k I m n n

At quality=100 the text is preserved exactly. However, ihithe best case.

Here is the first line of Lincoln’s Gettysburg Address,
Fourscore and seven years ago our fathers brought forth @ ¢bnti-
nent...,
compressed and decompressed. With spaces between wondsagtid and ev-
erything made lowercase, at quality=75 we get:
hnruugdtdihjpkirmqicjlfgowpekoifappiosqrbnnjonkppjgjulafrnhq
At quality=100 we get:
fourscoreandsevenyeagjoovfathersbroughtfrihonthiscontinentan
The three errors are underlined. Leaving in the spaces,ahguoality=100 we
get:
fourscpre and seven years ago our fathers bsought eodttis
where the “” character is the character with decimal value 31, versupB2

space character.

98

Chapter 7 99

Lowercase letters are all within the ASCII range 97-122 nucadly. Space
characters are numerically 32; these thus appear to the BGfFiking disconti-
nuities.

27. Jpeg includes an encoding phase, but as this is loststisssn’'t affect the image.
JPEG’s quantization phase, however, potentially rountialbfoefficients, to a
greater or lesser degree; the strategy here however leavesraed coefficients
alone.

28. Recalling tha’(0) = 1/+/2, we have

N—-1N—
DCT(0,0) = 2\/% Z Z izel(z,y)
=0 y=0
N\/_ N—-1N-—
= 2\/5 z:: z:: pizel(x,y)
= % x (average of theizel(z,y)’s)

(2)

30. If you display | frames only, then the fast-forward speselimited to the rate at
which I-frames are included; note that this may be variable.

The worst case for decoding an arbitrary frame is when thedrgou want is
a B frame. It depends on a previous P frafand a future P or | fram®. To
decode the B frame you want, you will first neBdnd its | frame, and alsQ.
If Qis a P frame, then its | frame is the same as thd.ofhe total number of
frames processed, including the one wanted, is four.

33. (a) For a while, the intervening B frames would show eaelenwblock con-
taining a point as an appropriately translated macroblomk the original
| frame. The) for the frame is zero. Once the two points were close enough
that they were in the same macroblock, however, we would agemhzero
o0 to represent the frame, perhaps translating a macroblookite original
| frame so as to show one point, and using &ith one nonzero entry to
show the second point.

(b) If the points were of a fixed color, the only differencerfradhe above is
that color macroblocks come at a different resolution. Vgitints that are
changingin color, modest deltas are needed from the beginning tcéatdi
this.

Chapter 7 100

Solutions for Chapter 8

Plaintext Block 3

Plaintext Block 2

Plaintext Block 1

Plaintext Block 0

Encryption

4 —— > Blocks of ciphertext
Function

‘w

Initialization Vector

(For block 0 only)

4. If the outputs are not truly random, then the algorithndoees more vulnerable

to a brute force attack. For example, if some outputs areetaglikely to be
produced as others, an attacker can test fewer input stringsoduce one of
those more likely outputs. A factor of two probably doesndtter too much, but
large non-randomness would weaken the hash significantly.

5. The adversary would replay, to Bob, the third messagesdfifredham-Schroeder

7.

authentication protocol. Consistent with the protocolbBemuld extract the ap-
parently new, but actually old, session key, and use it toygrt@ nonce in a
reply. The adversary, having discovered the session keyldame able to de-
crypt the received nonce and reply as Alice would have.

. We havepassword[N| = g(password|N — 1]); the essential property gf is
that it be believed that knowing(z) does not provide any information that can
be used to find:.

(a) letq be the firstN — 1 characters of the passwopd of length N. The
eavesdropper is in possessiony@t the point indicated in the hint; we now
assume that “sufficiently slowly” means that the eavesdeogppn try all
passwordg; " ch, for all charactergh, before the original user has typed

101

8.

9.

10.

11.

the Nth character. If we assume passwords are restricted to 7ibiapte
ASCII, that's only 96 tries.

(b) Other attacks include a compromised utility to calceithe one-time pass-
word f (mp, N) from the master passwordp, discovery of a way to invert
the functiong at least partially, eavesdropping on the initial selectién
mp, and “hijacking” a connection after authentication hastbeampleted.
There are doubtless others, as well.

The FAQ atwwv. r sasecurity. com explains:

The Diffie-Hellman key exchange is vulnerable to a man-ethiddle
attack. In this attack, an opponent Carol intercepts Adigaiblic
value and sends her own public value to Bob. When Bob trassmit
his public value, Carol substitutes it with her own and sdahttsAl-

ice. Carol and Alice thus agree on one shared key and Carddaind
agree on another shared key. After this exchange, Carol\sid®p
crypts any messages sent out by Alice or Bob, and then realls an
possibly modifies them before re-encrypting with the appete key
and transmitting them to the other party. This vulnerapisitpresent
because Diffie-Hellman key exchange does not authentibatpdr-
ticipants. Possible solutions include the use of digitghatures and
other protocol variants.

Becauss is short, an exhaustive search conducted by generatingsdilges
and comparing the MD5 checksums withwould be straightforward. Sending
MD5(s"r), for some random or time-dependentvould suffice to defeat this
search strategy, but note that now we would have to remembed be able
to present it later to show we knew Using RSA to encrypt—r would be
better in that sense, because we could decrypt it at any timheexify s without
remembering-.

Each side chooses privately. They exchange signatures of their respective
choices as in the previous exercise, perhaps MD5r;) for randomr;. Then
they exchange the actual's (andr;'s); because of the signatures, whoever re-
veals theirz; last is not able to change their choice based on knowing tier ot
x;. Thenletr = 1 z2; as long as either party chooses thgirandomly then

x is random.

Let Py be the probability that ofV messages each checksum value is different
from all the preceding. As in Chapter 2 Exercise 41 we have

1 2 N-1
po= (o) (- 3) (- 5)

Taking logs and approximating we get

lOgPN == —(1/2128 —+ 2/2128 + -+ (N _ 1)/2128)
= —(14+2+..+(N—-1))/2'
_N2/2129

102

S0Py ~ e N*/2"*" For N = 263 the exponent here is2126 /2129 — _1/8;
for N = 264 andN = 2% itis —1/2 and—2 respectively. Thus, the probabilities
are

Pgs = e 1/8 = 0.8825,
Psy = e~ 1/2 = 0.6065,
Pss=e 2 =0.1353.

The probability two messages have the same checkstim i®y .

12. The problem with padding each 1-byte message with sementytes before
encrypting is that we now are transmitting only 256 possilifierent encrypted
blocks and a codebreaking attack is quite straightforward.

Here are some better options. Each involves encryptingléfoitk for each
plaintext byte transmitted; the first two also require thattvansmit a full block.

1. We could pad each plaintext byte with 7 random bytes befoceypting. This
is quite effective, if the random bytes are truly random.

2. We could make use of cipher block chaining, padding eaamfgixt byte
p; With seven zero-bytes befoms@ring with the previous Cipher; block. A

roughly equivalent alternative, perhaps more like the jptevoption, is to pad
p; With seven bytes from Ciphgr;, and omit theor.

3. So-called cipher-feedback (CFB) mode is sometimes uUseid:; denote the
ith encrypted byte. Givem;, we first use 3DES to encryptthe blogk_s - - - ¢;—1),
and then let; be thexor of p; and the first byte of this encryption result. CFB
makes assumptions about the pseudo-randomness of 3DES thapmay not
be initially apparent.

13. (a) Here is one possible approach. We add the followindsfi® the packets
(which presumably contain a Packet Type field and a Block Nanfibld
already):

Sender’s time when the connection was initiated

Receiver’s time when the connection was initiated

Keyed MD5 checksum field
The latter consists of the MD5 checksum of everything elsthénpacket
concatenated with the sender’s own key. The packet sentraesclude
the sender’s key. The recipient is able to recompute thislchanm, because
we have assumed both keys are known to both parties.
The checksum field provides both message integrity and atithdion; at
least it confirms that whoever created the packet knew thaesirkey.

The timestamps guard against replay attacks. Both sides emakange
timestamps through a three-way handshake before any ds¢mismuch
like ISNs in TCP. If we include only the client’s timestampen the server
could only detect replay attacks by keeping track of the iprev client

timestamp used. With both timestamps, each party is asafradhew

connection as long dashas chosen a new timestamp.

103

(b) The timestamps guard against late packets from a priariration; older
incarnations would have at least one timestamp wrong. Hewdvey do
nothing to protect against sequence number wraparoundéwétbhonnec-
tion.

16. This is the chain-of-trust problem. Even though the ©Atmay have done
a fine job of checking the identity of the second-tier CA, ihi&rd for Bob to
know that the second-tier CA did the same for Alice. That isbBnight doubt
whether the root CA checks the operations of the secon@dbefore signing
their certificate.

17. (a) The user gets a message the first time he or she atteanpiginect to
the given server. At that point, the user can cancel, go ahgtdthe
connection this one time, or go ahead with the connectionsawd the
server's public key for future authentications.

(b) Client authentication is up to the server. Passworedashemes are prob-
ably the most common. Public-key authentication is anoftwessibility,
and PUTTY provides support for that.

(c) The user ranks the ciphers in order of preference, and Pulegotiates
with the server to use the user’s most preferred cipher antorge sup-
ported by the server.

(d) Some servers may support only a weak cipher. PUTTY ghesiser the
option of accepting the risk of using a weak cipher. The ustr g thresh-
old in the user’s ranking of the ciphers, and PuTTY warns ther uf the
negotiated cipher falls below that threshold, giving therdke opportunity
to cancel the connection.

(e) The security derived from a session key decreases awerdince more
time is available to perform cryptanalysis. It also decesass more en-
crypted data becomes available for cryptanalysis. So déoseksy should
only be used short-term with a limited amount of data.

18. (a) Aninternal telnet client can presumably use any pot24. In order for
such clients to be able to connect to the outside world, tleevii must
pass their return, inbound traffic. If the firewall bases it®ifing solely
on port numbers, it must thus allow inbound TCP connectioray port
> 1024.

(b) If the firewall is allowed access to the TCP heddegs bits, then to block
all inbound TCP connections it suffices to disallow inbouadkets with
SYN set but not ACK. This prevents an outside host initiaingpnnection
with an inside host, but allows any outbound connection. bid filtering
is needed.

19. (a) The FTP client uses ti®ORT command to tell the server what port to use
for the data connection. If this port can be taken from a kahitange, in
which we are sure there are no other servers to which an eutsidyht

104

Chapter 8

(b)

20. The

105

attempt to connect, then a firewall can be configured to allotgide ac-
cess to this range (by examining both port numbers and the Al&gs)

without unduly compromising security. This range cannotitated to

a single port, though, because otherwise that port woulglifatly be in
TIME_WAIT and unavailable.

Instead of using thPORT command to tell the FTP server to what client
port it should connect for data transfer, an FTP client can $lee server the
PASV (“passive”) command. The server response, assuming itostgp
PASV, is to send an acknowledgment containing a server port numbe
The client then initiates the data-transfer connectiohi®gerver port. As
this is typically an outbound connection through the firéwahn be safely
permitted.

routers are configured as follows:
R1 blocks inbound traffic to the telnet port, unless the dasibn subnet is

net2.

R2 blocks all telnet traffic from net 2 to net 1.

21. The ISP might want to prohibit attacks (such as the IP fapgattack described
in Exercise 5.17 or, for that matter, email spamming) lawachy its own cus-
tomers.

22. RFC 2402 and RFC 2406 are handy for this exercise.

(@)

(b)

(©)

IPsec ESP transport mode is incompatible with NAT. Irciee of TCP/UDP
packets, NAT would need to update the checksum in TCP/UDHEdrsa
when an address in IP header is changed. However, as the DERieader
is encrypted by the ESP, NAT would not be able to make this lchen
update. As a result, TCP/UDP packets encrypted in transpode ESP,
traversing a NAT device will fail the TCP/UDP checksum validn on the
receiving end and will simply not reach the target applmati

IPsec ESP tunnel mode may work with NAT. Since IPsec ESRalmode
attach a new IP header and encapsulate the original IP piacketSince
the way ESP encryption works is that it only encrypts and enifbate the
IP payload, when the tunnel IP header gets stripped off, DOP/check-
sum is preserved and still correct for the original IP pacKéterefore the
original IP packet can reach the target application.

Itis obvious that (a) will not work with PAT due to the sameasons above.
Now, as for the case (b), clearly IPsec ESP tunnel mode wilvook with
PAT. PAT needs to look at the port numbers to do the transiakiot those
are encrypted by ESP. The case (b) only works in true NAT cBilsere is
an effort called “NAT traversal” to work around this problersing UDP
encapsulation. With NAT traversal, the case (b) may work\wAT.

Solutions for Chapter 9

1. Both SMTP and HTTP are already largely organized as assefieequests sent
by the client, and attendant server reply messages. Sosmgiait would have
to be paid in the request/reply protocol, though, to thetfzat SMTP and HTTP
data messages can be quite large (though not so large thaniteetermine the
size before beginning transmission).

We might also need a MessagelD field with each message, ttifiderich
request/reply pairs are part of the same transaction. Taiddibe particularly
an issue for SMTP.

It would be quite straightforward for the request/replynsport protocol to sup-
port persistent connections: once one message was exchaitganother host,
the connection might persist until it was idle for some giierval of time.

Such a request/reply protocol might also include suppontdoiable-sized mes-
sages, without using flag characters (CRLF) or applicasioeeific size headers
or chunking into blocks. HTTP in particular currently indks the latter as an
application-layer issue.

3. Existing SMTP headers that help resist forgeries inchadnly theReceived:
header, which gives a list of the hosts through which the agséas actually
passed, by IP address.

A mechanism to identify the specific user of the machine (gsdsided by the
identd service), would also be beneficial.

4. If an SMTP host cannot understand a command, it resporttls wi
500 Syntax error, command unrecognized
This has (or is supposed to have) no other untoward consegsiéor the con-
nection. A similar message is sent if a command parametetisnderstood.

This allows communicating SMTPs to query each other as talveneertain
commands are understood, in a manner similar to the WILL/\W@Mbtocol of,
say, telnet.

RFC 1869 documents a further mechanism: the client serlO (Extended
HELO), and anEHLO-aware server responds with a list of SMTP extensions it
supports. One advantage of this is that it better supponsand pipelining; it
avoids multiple exchanges for polling the other side abcwtit supports.

5. Further information on command pipelining can be founBFC 2197.

(a) We could send theELO, FROM, andTO all together, as these messages
are all small and the cost of unnecessary transmission isbiotit would
seem appropriate to examine the response for error indicaliefore both-
ering to send th®ATA.

(b) The idea here is that a server reading vg#ts() in this manner would be
unable to tell if two lines arrived together or separatelpwdver, a TCP

106

buffer flush immediately after the first line was processeddovipe out
the second; one way this might occur is if the connection wareled off at
that point to a child process. Another possibility is tha server busyreads
after reading the first line but before sending back its rasppa server
that willfully refused to accept pipelining might demanadtithis busyread
return 0 bytes. This is arguably beyond the scopget$(), however.

(c) When the client sends its initi@dHLO command (itself an extension of
HELO), a pipeline-safe server is supposed to respond 26t PIPELIN-
ING, included in its list of supported SMTP extensions.

6. Implementers are free to add new subtypes to MIME, buatedefault interpre-
tations may apply. For example, unrecognized subtypeseadjiplication type
are to be treated as being equivalengpplication/octet-stream. New experi-
mental types and subtypes can be introduced; names of spieb &ye to begin
with X- to mark them as such. New image and text subtypes may be fgmeg!
istered with the IANA,; senders of such subtypes may also bewaged to send
the data in one of the “standard” formats as well, usingtipart/alternative.

7. We quote from RFC 1521:

NOTE: From an implementor’s perspective, it might seem nsere
sible to reverse this ordering, and have the plainest @t last.
However, placing the plainest alternative first is the fdlkest pos-
sible option whermultipart/alternative entities are viewed using a
non-MIME-conformant mail reader. While this approach does
pose some burden on conformant mail readers, interopityahith
older mail readers was deemed to be more important in thés cas

It seems likely that anyone who has received MIME messagesdih text-based
non-MIME-aware mail readers would agree.

8. Thebase64 encoding actually defines 65 transmission characters Gtie 6=",
is used as a pad character. The data file is processed in iloplsiof three bytes
at a time; each input block translates to an output block of &bit pieces in
thebase64 encoding process. If the final input block of the file contang or
two bytes, then zero-bits are first added to bring the databtdia boundary (if
the final block is one byte, we add four zero bits; if the finaldi is two bytes,
we add two zero bits). The two or three resulting 6-bit piesmesthen encoded
in the usual way, and two or one=" characters are appended to bring the output
block to the required four pieces. In other words, if the etezbfile ends with a
single=, then the original file size was 2 (mod 3); if the encoded file ends
with two =s then the original file sizewas 1 (mod 3).

9. (a) Enabling arbitrary SMTP relaying allows “spammeis’send unsolicited
email via someone else’s machine.

(b) One simple solution to this problem would be the additém password
option as part of the opening SMTP negotiation.

107

10.

11.

12.

13.

14.

(c) One approach is to use a VPN, to make one’s external ditaddress
appear to be internal. Relatively recently (relative to kregth of time
SMTP has been around) RFC4954 specified “SMTP Service Brtefw
Authentication”, which is in wide deployment today.

When the server initiates thiose, then it is the server that must enter the TIME-
WAIT state. This requires the server to keep extra recordereer that averaged
100 connections per second would need to maintain about B0AGWAIT
records at any one moment. HTTP 1.1 has a variable-sizedage$sansfer
mechanism; the size and endpoint of a message can be infesredhe head-
ers. The server can thus transfer a file and wait for the cledetect the end
and close the connection. Any request-reply protocol tbatccbe adapted to
support arbitrarily large messages would also suffice here.

For supplying an alternative error page, conamv.apache.org or the docu-
mentation for almost any other web senapache provides a setting foError-
Document in httpd.conf.

RFC 2068 (on HTTP) states:
10.4.5 404 Not Found

The server has not found anything matching the Request-URil [
form Resource Identifier, a more general form of URL].

However, nothing in RFC 2068 requires that the part of a URlofang the host
name be interpreted adile name. In other words, HTTP servers are allowed to
interpret “matching”, as used above, in whatever manngnihigh; in particular,

a string representing the name of a nonexistent file may lbtedimatch” a
designatedrrorDocument. Another example of a URL that does not represent
a filename is a dynamic query.

One server may support multiple web sites with multigisthames, a technique
known asvirtual hosting HTTP GET requests are referred by the server to the
appropriate directory based on the hostname containe@ iretfuest.

A TCP endpoint caabort the connection, which entails the sending of a RST
packet rather than a FIN. The endpoint then moves direcfifMEWAIT.

To aborta connection using the Berkeley socket libraryfosesets the&sO_LINGER
socket option, with a linger time of 0. At this point an applionclose() trig-
gers an abort as above, rather than the sending of a FIN.

(&) A mechanism within HTTP would of course require thatdtlient browser
be aware of the mechanism. The client could ask the primamesdf
there were alternate servers, and then choose one of thethe @rimary
server mightell the client what alternate to use. The parties involved might
measure “closeness” in terms of RTT, in terms of measuredigirput, or
(less conveniently) in terms of preconfigured geograplidatmation.

108

15.

16.

(b) Within DNS, one might add a WEB record that returned mplatiserver
addresses. The client resolver library cally; gethostbyname()) would
choose the “closest”, determined as above, and return tiggesclosest
entry to the client application as if it were an A record. Alsome CDNs
today use DNS resolution to try to direct a client to a nearBNode.
This is usually done without the client’s knowledge.

See the answer to question 37 for more on this topic.
The number of B2B and EAI network applications is potdhtihuge. A Web
Services protocol framework simplifies the task of spenifyideveloping, and

maintaining their protocols, and managing their operatifimagine creating
and running, say, one million custom FTP- and SMTP-like grots!)

Amazon’s S3 (Simple Storage Service) Web Service is-b@ésed, high-availability,
high-speed Internet storage service. Its storage modébhakets” that are like
directories; they contain “objects.”

The SOAP operations are:

e ListAllIMyBuckets

e CreateBucket

e DeleteBucket

e ListBucket

e GetBucketAccessControlPolicy

e SetBucketAccessControlPolicy

e PutObjectinline

e PutObject

e GetObject

e GetObjectExtended

e DeleteObject

e GetObjectAccessControlPolicy

e SetObjectAccessControlPolicy
The REST operations are HTTP operations. Their interpogtatepends on
what strings are appended to the base URI of the web servioeexample,
the URI http://s3.amazonaws.com/foo refers to the budket,” while the URI
http://s3.amazonaws.com/foo/bar refers to the objeat imathe bucket “foo.”
The base URI http://s3.amazonaws.com may be consideref:tioto the user’s

overall S3 account (both SOAP and REST S3 APIs authentibatsdénder of a
request).

Using this convention, the REST operations (and their edeis in parenthe-
ses) are:

e GET Service (ListAlIMyBuckets)

109

17.

e PUT Bucket (CreateBucket)
e GET Bucket (ListBucket)
e DELETE Bucket (DeleteBucket)

e PUT Object (PutObject, PutObjectinline). The SOAP integfgives you a
choice between transmitting the Object in the body of the B@#essage,
or as a DIME attachment.

e GET Object (GetObject, GetObjectExtended). GetObjeethoed sup-
ports some conditionals similar to those provided by HTTPTGEaders,
e.g. return the object only if it has been modified since aifipddime.

e HEAD Obiject. Retrieves metadata about the object.
e DELETE Object (DeleteObject)

The REST interface does not have distinct operations fazseccontrol policies.
“There are two ways to set the access control policy with RE/8T can set the
access control list (ACL) for an existing bucket or objectrbguesting a PUT to
/bucket?acl or /bucket/key?acl. Or, at the time you arengia bucket or object
you can include an x-amz-acl header with your PUT requesstbees a canned
ACL with the written resource.”

Note that the resource/service in this example, with itkbtecand objects, maps
nicely onto URIs. Other resources/services might have tbeshtomparable
information in the data instead of the URI, which would prolyabe more in
line with the REST philosophy.

Consider the GetObject operation of Amazon’s S3 (SilBpeage Service) Web
Service.

GetObject’s input message is a GetObjectRequest, and tigitomessage is a
GetObjectResponse:

<wsdl : operati on name="Cet Obj ect" >
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput name="Get Obj ect Request " >
<wsdl soap: body use="literal"/>
</wsdl : i nput >
<wsdl : out put nane="Get Cbj ect Response” >
<wsdl soap: body use="literal "/>
</ wsdl : out put >
</ wsdl : operati on>

A GetObjectRequest message consists of a GetObject element

<wsdl : message name="Cet Obj ect Request " >
<wsdl : part el ement="tns: Get Obj ect" nanme="paraneters"/>
</ wsdl : nressage>

110

which has the following fields:

<xsd: el emrent nane="Get Obj ect" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="Bucket" type="xsd:string"/>
<xsd: el emrent nane="Key" type="xsd:string"/>
<xsd: el emrent nane="Cet Met adat a" type="xsd: bool ean"/>
<xsd: el emrent nane="GCet Data" type="xsd: bool ean"/ >
<xsd: el ement nanme="InlineData" type="xsd: bool ean"/>
<xsd: el ement nane="AWSAccessKeyl d" type="xsd:string" mnminCccurs="0"/>
<xsd: el ement nane="Ti nestanp" type="xsd: dateTi me" ni nCccurs="0"/>
<xsd: el ement nane="Si gnature"” type="xsd:string" mnCccurs="0"/>
<xsd: el emrent nane="Credential " type="xsd:string" m nQccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

A GetObjectResponse message consists of a GetObjectResplement

<wsdl : message nanme="Cet Obj ect Response" >
<wsdl : part el ement ="t ns: GCet Obj ect Response” nane="paraneters"/>
</ wsdl : nessage>

of type GetObjectResult

<xsd: el emrent nane="Get Cbj ect Response" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="CGet Cbj ect Response" type="tns: Get Obj ect Resul t"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

which has the following fields:

<xsd: conpl exType nane="Get Cbj ect Resul t ">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="tns: Result">
<xsd: sequence>
<xsd: el ement nane="Met adat a"
type="tns: Met adat aéntry” m nCccurs="0" maxCOccur s="unbounded"/ >

111

18.

19.

20.

21.

<xsd: el ement name="Dat a"
type="xsd: base64Bi nary" nillable="true"/>

<xsd: el emrent nane="Last Modi fi ed" type="xsd: dateTi me"/>

<xsd: el emrent nane="ETag" type="xsd:string"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

One option would be to allow some receivers to join onéyahdio portion of the
conference while others join both audio and video; thesdddo® advertised as
separate sessions. Or there could be high bandwidth anddiogwidth sessions,
with the speaker sending to all sessions but receiversigitie session that suits
their bandwidth. SAP would be used to notify the receiversvbét types of
session are available.

A second approach would be to send all the media to a centriaktinwhich
could then transmit a single audio stream representingutimanix of all cur-
rent speakers and a single video stream, perhaps showiffigcenef the current
speaker or speakers.

For audio data we might send sample[n] for odd n in thegdasket, and for even
n in the second. For video, the first packet might contain $ajijpfor i+j odd
and the second for i+j even; dithering would be used to retcocisthe missing
sample[i,j] if only one packet arrived.

JPEG-type encoding (for either audio or video) could s@lused on each of
the odd/even sets of data; however, each set of data wouddegefy contain the
least-compressible low-frequency information. Becaudhie redundancy, we
would expect that the total compressed size of the two oed/eets would be
significantly larger than what would be obtained by convamal JPEG compres-
sion of the data.

URI includes URL and URN. URN (Uniform Resource Name) igeasistent
and location-independent name in a namespace, while URtifgsehow to
“locate” the resource. So, a URL can be moved or disappeta DERRN cannot.
An example of URN is urn:ISBN:0-201-62433-8, which refezsatbook using
the ISBN namespace.

MX records supply a list of hosts able to receive emaithdasted host has an
associated numeric “mail preference” value. This is doauetkfurther in RFC
974. Delivery to the host with the lowest-numbered mail grefice value is to
be attempted first.

For HTTP, the same idea of supporting multiple equivalentess with a single
DNS name might be quite useful for load-sharing among a etust servers;
however, one would have to ensure that the servers weretitrfdy stateless.
Another possibility would be for a WEB query to return a li§toT TP servers
each with some associated “cost” information (perhapgedlto geographical
distance); a client would prefer the server with the lowest.c

112

22. ARRP traffic is always local, so ARP retransmissions ardined to a small area.
Subnet broadcasts every few minutes are not a major isduer éit terms of
bandwidth or CPU, so a small cache lifetime does not creatsdoe burden.

Much of DNS traffic is nonlocal; limiting such traffic become®re important
for congestion reasons alone. There is also a sizable t®#dHine burden on
the root nameservers. And an active web session can easigygje many more
DNS queries than ARP queries. Finally, DNS provides a metifddcluding
the cache lifetime in the DNS zone files. This allows a sharhedifetime to be
used when necessary, and a longer lifetime to be used monmaaoin

If the DNS cache-entry lifetime is too long, however, thenewha host’s IP
address changes the host is effectively unavailable foolpged interval.

23. DNS servers will now take on ARP’s role, by in effect syipd both subnet
number and physical address of hosts in its domain. DNS senvest therefore
now monitor hosts for possibly changed physical addresses.

A fairly common method in IPv4 of finding ones DNS server is siatic con-
figuration,e.g. the Unix /etc/resolv.conf files. If this mechanism werd sided

in IPv6, changing the Ethernet address of a local DNS sereatdwnow involve

considerable updating, both of the local clients and alsoDNS parent. IPv6
clients, however, are likely to find their DNS server dynaati; e.g.via DHCP,

instead.

24. The lookup method here requires trusting of the remaéésDNS PTR data,
which may not be trustworthy. Suppose, for example, that Kriown thati-
cada.cs.princeton.edu trustsgnat.cs.princeton.edu. A request for authen-
tication might arrive aticada from, say, IP address 147.126.1.15, which is
not part of theprinceton.edu domain. Ifcicada followed the strategy of the
exercise here, it would look up the striri.1.126.147.in-addr.arpa in the
DNS PTR data. This query would eventually reach the DNS sdorePTR
zonel.126.147.in-addr.arpa, which if suborned or malicious might well return
the stringgnat.cs.princeton.edu regardless of the fact that it had no connec-

tion with princeton.edu. Hostname strings returned by DNS servers for PTR

searches are arbitrary, and need not be related to the 'sesigsigned domain
name.

A forward DNS lookup to confirm the result of the reverse DNS8Kap would,
however, be reasonably safe.

25. There is little if any relationship, formally, betweed@main and an IP network,
although it is nonetheless fairly common for an organizafmr department) to
have its DNS server resolve names for all the hosts in its erhfor subnet),
and no others. The DNS server fos.princeton.edu could, however, be on
a different network entirely (or even on a different contitjefrom the hosts
whose names it resolves. Alternatively, eacts.princeton.edu host could
be on a different network, and each host tlgbn the same network as the
cs.princeton.edu nameserver could be in a different DNS domain.

113

Chapter 9 114

26.

27.

28.

29.

30.

If the reverse-mapping PTR records are used, however, tieeisgme name-
server can handle both forward and reverse lookups only ii¢& zones do
correspond to groups of subnets.

If a host uses a nonlocal nameserver, then the host'segugon’t go into the
local nameserver’s cache (although this is only relevatitdéfe is some reason
to believe some other local host might make use of the cadheig¢®). Queries
have farther to travel, too. Otherwise there is no penalthéving the “wrong”
DNS server.

The DNS traffic volume will be the same for the nonlocal nameseas for a
local nameserver, if the nonlocal nameserver is “on the vi@yhe nameserver
that ultimately holds the address requested. Use of a nahh@eneserver could
result inlessDNS traffic if the nonlocal nameserver has the entries indathe,
and isn’t too far away, but local nameserver does not. Thghirbe the case
if, for example, a large group of people with similar intdseall used the same
nonlocal nameserver.

Figure 9.17 is “really” a picture of the domain hierardnain. Nameservers
have been abstracted, effectively, into one per zone (cpels are consolidated,
and a nameserver serving multiple zones would appear iripteuntries).

Without this abstraction, a graph of all nameservers wourgply be all DNS
servers joined by edges corresponding to NS records, frora garent to child.
It would not necessarily be acyclic, even as a directed graph

Here is an example based on princeton.&dwis princeton.edu returns:

Domain Name: PRINCETON.EDU

Registrant:
Princeton University
Office of Information Technology
701 Carnegie Center, Suite 302
Princeton, NJ 08540
UNITED STATES

One would first look up the IP address of the web servengusiay,host or
dig. One would then usahois to look up who is assigned that IP address, and
compare the resulting identification to that obtained bygsihois to look up
the web server domain name.

(a) One could organize DNS names geographically (tisahihy exists al-
ready; chi.il.us is the zone for many sites in the Chicago area), or else
organize by topic or service or product type. The problentk thiese alter-
natives are that they tend to be harder to remember, anditheoenatural

Chapter 9 115

classification for corporations. Geography doesn’t workaage corpora-
tions are not localized geographically. Classifying byvgss or product
has also never been successful; this changes too quicklgrasrations
merge or enter new areas or leave old ones.

(b) With multiple levels there are lots more individual nasaever queries, and
the levels are typically harder to remember.

31. If we just move thecom entries to the root nameserver, things wouldn’t be much
different than they are now, in practice. In theory, the noameservers now
could refer all queries about theom zone to a set ofcom-specific servers; in
practice the root nameservessrpot-servers.net for x from a to m) all do an-
swer.com queries directly. (They do not, however, ansvier queries directly.)
The proposal here simply makes this current practice mangand shouldn’t
thus affect current traffic at all, although it might leaveetzones such aerg
and.net and.edu with poorer service someday in the future.

The main problem with moving the host-level entries, sucfoasvww.cisco,
to a single root nameserver entry suchcaso, is that this either limits orga-
nizations to a single externally visible host, or else (& tthange is interpreted
slightly differently) significantly increases root namess traffic as it returns
some kind of block of multiple host addresses. In effect thlies DNS back to
a single central server. Perhaps just as importantly, tidating of the IP ad-
dresses corresponding to host names is now out of the hatius ofganizations
owning the host names, leading to a considerable admitig&taottleneck.

However, if we're just browsing the web and need only one aesklifor each
organization, the traffic would be roughly equivalent to they DNS works
now. (We are assuming that local resolvers still exist ailidnstintain request
caches; the loss of local caches would put an intolerablddsupn the root
nameservers.)

32. DNS records contain a TTL value, specified by the DNS serepresenting
how long a DNS record may be kept in the client cache. RFC 10@gl ipthis
way:

If a change can be anticipated, the TTL can be reduced pritireto
change to minimize inconsistency during the change, and ite
creased back to its former value following the change.

33. Hereis a series dfig queries and edited responses. First we try to find top level
servers for thedu. domain:

% di g +norecurse edu.

;; AUTHORI TY SECTI ON:
edu. 143993 I N NS C3. NSTLD. COM
edu. 143993 I N NS D3. NSTLD. COM

Chapter 9 116

edu. 143993 I N NS E3. NSTLD. COM
edu. 143993 IN NS G3. NSTLD. COM

Next, picking one of the top level servers:

% dig @3.nstld.comprinceton. edu.

; AUTHORI TY SECTI ON:

princet on. edu. 172800 I N NS NS1. UCSC. edu.

pri nceton. edu. 172800 I N NS NS2. FAST. NET.

pri nceton. edu. 172800 IN NS NS3. Nl C. FR.

pri nceton. edu. 172800 I N NS DNS. pri ncet on. edu.

;; ADDI TI ONAL SECTI ON:
DNS. pri ncet on. edu. 172800
NS1. UCSC. edu. 172800

A 128.112.129. 15
A 128.114.142.6

I'N
I'N
Now we can query the name server for Princeton:

% dig @28.112.129.15 cs. princeton. edu

;; AUTHORI TY SECTI ON:

cs. pri ncet on. edu. 172800 I N NS ns2.fast.net.
cs. pri ncet on. edu. 172800 I N NS ns3.fast.net.
Cs. princeton. edu. 172800 I N NS dnsl.cs. princeton. edu.

;; ADDI TI ONAL SECTI ON:

nsl. fast. net. 62914 IN A 209.92.1.12
nsl. ucsc. edu. 43200 I N A 128.114.142.6
ns2. fast. net. 62914 I N A 206. 245.170. 12

dnsl.cs.princeton.edu. 172800 IN A 128.112.136.10
dns2.cs. princeton.edu. 172800 IN A 128.112.136.12

And then on to one of the CS department’s servers:

% dig @28.112.136.12 www. cS. pri nceton. edu

;7 ANSWER SECTI ON:
WWW. CS. pri ncet on. edu. 21600 | N CNAME coreweb. cs. pri nceton. edu.
coreweb. cs. pri nceton. edu21600 IN A 128.112. 136. 35

Chapter 9 117

34.

35.

36.

37.

38.

(b) Use the name of each object returned astinepgetnext argument in the
subsequent call.

For example, you can alternate SNMP queries with telmtections to an oth-
erwise idle machine, and watttp.tcpPassiveOpens andtcp.tcplnSegs tick
up appropriately. One can also watcip.tcpOutSegs.

By polling the host's SNMP server, one could find out wiglt connections
had been initiated. A host that receives many such conmectioght be a good
candidate for attack, although finding out the hosts doiregctinnecting would
still require some guesswork.

Someone able to use SNMP s$eta host’s routing tables or ARP tables, etc,
would have many more opportunities.

A CDN using only HTTP 302 redirects could operate as Wadlothe user points
his browser at the origin, sdyttp://www.example.com/page.html, and the ori-
gin redirects using the HTTP 302 response to tell the brovestaik to another
node that is part of the CDN, sayttp://www.cdn.com/www.example.com/
page.html, and that node, using whatever algorithms the CDN implemgnt
choose a suitable surrogate, issues another HTTP 302c¢tttinhe appropriate
node with the content.

The main limitations of this approach are that, as descritheste is still some
load on the origin to issue the redirect, and there is addedds to process each
redirect.

A CDN using only DNS can (with the permission of the contenhew establish
a DNS CNAME for www.example.com, so that DNS queries to wwaraple.com
would be translated to queries to some other domain undecahtol of the
CDN operator, say al23.cdn.com. The CDN operator can tlsahveequeries to
the DNSforal23.cdn.comto a suitable surrogate for thesctat www.example.
com.

The main limitation of this approach is that it limits the gudarity of infor-
mation that is available to the CDN for making its choice ofregates; as de-
scribed, all the content from www.example.com would havied@erved by the
same surrogates. You could use multiple domains (e.g. imeg@mple.com,
videos.example.com) to address this issue.

Another limitation of using DNS is that the CDN doesn’t knossrauch about
the client (e.g. its IP address) because the DNS resolveatgueby the CDN
operator gets DNS queries from other resolvers, not thatslieThis can limit
the CDN's ability to pick a surrogate that is close to theraljéor example.

A combinationis possible. For example, you could use DN &tavgvw.example.
com to redirectto a123.cdn.com, and then use HTTP 302 mditepick a suit-
able surrogate based on the content requested. Note thatviicomes most of
the prior limitations.

One problem would be the caching of DNS responses; hastkiiend to keep
going to the overloaded server which their local DNS cachresicters to be the

Chapter 9 118

39.

40.

41.

right choice, unless every DNS server in the hierarchy imgliets the redirection
scheme.

To circumvent that problem, TTL should be set to a small nunde this causes
more queries to the DNS servers higher up the hierarchyticgepotentially
high loads on those servers.

The following describes one possible approach; mangrstire possible.

We build on the answer to question 37. Assume that a contggin@uch as
www.example.com is directed by means of a DNS CNAME to a nquirated
by CDN A, which in turn uses HTTP 302 redirects to direct a sewto a
surrogate. We can imagine that both CDNs have some des@ynaehines
that are responsible for communicating with other CDNs. &ugh machine in
CDN A tells an equivalent machine in CDN B (using some protacowhich

they agree) about

¢ the set of content that CDN A knows how to obtain (such as thrtect
from www.example.com), and

o the set of IP address prefixes that CDN A considers to correbiaats end
users.

CDN B also provides the corresponding information aboutastent and end-
user prefixes to CDN A. Having exchanged this informatioa ttto CDNs make
use of it in their routing of requests to surrogates.

Consider a request from a client that is among the prefixaeddsy CDN B
for a piece of content from www.example.com. Thanks to theSDDNAME,
that request will be handled by a node operated by CDN A. ButesCDN B
provided its list of end user prefixes to CDN A, CDN A can use afirH 302
redirect to send the request over to CDN B. CDN B can use itmabmethods to
redirect the request to a suitable surrogate in CDN B. IntaaidiCDN B needs
to be able to actually obtain the content from www.exampl@ @t some point
in order to cache it in a surrogate. This might be done byewtrg the content
from a node in CDN A, or by going back to www.example.com. Toarfer
might be preferred since it allows example.com to have dioglship with only
a single CDN.

If a cache node has high cache miss rates, then addingstooage to that node
should help to improve that aspect of performance. In palgicone would look
for cache misses that arise because a lack of capacity haeftire eviction of
content that was later requested.

High CPU load or contention for disk access at the root orinezliate layers
of the hierarchy would be a sign that the cost of servicinguests from the
lower layers is getting too high, which might imply that adglianother level of
hierarchy would help.

Suppose many people want to watch a popular TV show atatine sime. A
multicast overlay could be used to stream the video packats & single origin

Chapter 9 119

42.

to all the viewers. The nodes in the overlay from a tree and/idsers are the
leaves.

Now suppose those viewers all want to watch the show, butffareint times.
They could each subscribe to the multicast feed of video giacland write the
packets to a local disk for later viewing, rather like a digjitideo recorder such
as TiVo. Alternatively, a copy of the show could be placed iG2N. Assume
the CDN is arranged as a hierarchy, as in question 40. Rédtaestoring the TV
show at home to watch later, each viewer can request the stoowthe CDN
when he wants to watch it. A leaf node in the CDN that doesndtaaly have the
show will fetch it from a node higher up in the hierarchy; taesquests flow up
to the root of the hierarchy. So in both cases, a tree of oyedaes distributes
a single copy from the root to the leaves, the only differemei@g whether the
content is pulled by the leaves or pushed from the root arrédtat the leaves.

(a) All peers could have the file aftetime units. During each time unit, each
peer with the piece can transmit it to one peer without thegiso the
number of peers with the piece doubles with each time unit= 2¢) at
time 0, 2 & 21 attime 1, 4 & 22) at time 2, up t@" peers at timex.

(b) All peers could have the file after less thiantime units. If all pieces were
downloaded to just the right peers in just the right ordes ftossible for
all peers to obtain the file after as fewsas- 2 time units.

Let’s label the two pieces A and B. Let’s label as PA the peat ithitially

has the file. During the first time unit, PA transmits B to amotpeer, call
that other peer PB. Split the peers into two equal groupa(®f!), one
containing PA and the other containing PB. Now, from the ltesfuhe first
question, we know that all the peers grouped with PA can ni#awithin

an additional — 1 time units. Because the two sets of peers are disjoint,
with no interference or contention between them, all thepgeuped with

PB can obtain B during the same— 1 time units.

Together with the initial step, we have usedime units so far. Another
time unit will suffice for the peers grouped with PA to transiito all
the peers grouped with PB. One more time unit will suffice far peers
grouped with PB to transmit B to all the peers grouped with &cépt PA
itself, which has had B from the beginning). The 2 time uréguired for
each half to transmit its piece to the other half increaseddtal ton + 2
time units.

It can also be shown that+ 2 is the minimum (assuming is at least 3).
We know that it must take exactli2™) — 1 individual upload/download
transactions to propagate A from PA (directly or indirertly all of PA's
(2™) — 1 peers. Anothef2™) — 1 transactions is required for B, making a
total of 2(**+1) — 2 transactions.

On the other hand, not enough peers have pieces to all jpattdin trans-
actions during the first — 1 time units. During that period, an upper bound
on the number of transactions that can occur during thevakér— 1 to ¢

Chapter 9 120

to 2(t=1 . Some arithmetic gives an upper boun@6f-1) — 1 transactions
total during the firstu — 1 time units.

For an upper bound on the transactions during each subsgiaerunit,
let's assume every peer is able to participate in a trarwactiThen the
number of transactions would B&'—1) per time unit. So the two time units
fromn —1ton+1add2"” transactions to the previous upper bound. Hence
an upper bound on the number of transactions that could ataing the
firstn + 1 time units is2” + 2"~ — 1. Some arithmetic shows that, for

at least 3, this is less than th&*+!) — 2 transactions required. Thus+ 2

is the minimum time required.

