Pushdown Automata (PDA)

Reading: Chapter 6

PDA - the automata for CFLs

- What is?
- FA to Reg Lang, PDA is to CFL
- PDA == [ε-NFA + "a stack"]
- Why a stack?

Pushdown Automata Definition

- A PDA P := (Q, $\left.\Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right):$
- Q: states of the ε-NFA
- \sum : input alphabet
- Γ : stack symbols
- δ : transition function
- q_{0} : start state
- Z_{0} : Initial stack top symbol
- F: Final/accepting states

old state input symb. Stack top
 б: $Q \times \sum \times \Gamma=>Q \times \Gamma$
 δ : The Transition Function

$$
\delta(q, a, X)=\{(p, Y), \ldots\}
$$

state transition from q to p a is the next input symbol X is the current stack top symbol Y is the replacement for X ; it is in Γ^{*} (a string of stack symbols)

Set $\mathrm{Y}=\varepsilon$ for: $\operatorname{Pop}(\mathrm{X})$
ii. If $Y=X$: stack top is unchanged
ii. If $Y=Z_{1} Z_{2} \ldots Z_{k}$: X is popped and is replaced by Y in reverse order (i.e., Z_{1} will be the new stack top)

i)
ii) $Y=X \quad \operatorname{Pop}(X)$ Push(X)
iii) $Y=Z_{1} Z_{2} . . Z_{k} \quad \operatorname{Pop}(X)$ Push(Z_{k})
$\operatorname{Push}\left(Z_{k-1}\right)$
Push $\left(Z_{2}\right)$ Push $\left(Z_{1}\right)$

Example

Let $L_{w w r}=\left\{w w^{R} \mid w\right.$ is in $\left.(0+1)^{*}\right\}$

- CFG for $L_{w w r}$:
$S==>0 S 0|1 S 1| \varepsilon$
- PDA for $\mathrm{L}_{\mathrm{wwr}}$:
- $P:=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$

$$
=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\},\left\{0,1, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{2}\right\}\right)
$$

Initial state of the PDA:

First symbol push on stack

Grow the stack by pushing new symbols on top of old (w-part)
7. $\quad \begin{aligned} & \delta\left(q_{0}, \varepsilon, 0\right)=\left\{\left(q_{1}, 0\right)\right\} \\ & \delta\left(q_{0}, \varepsilon, 1\right)=\left\{\left(q_{1}, 1\right)\right\}\end{aligned}$
8. $\delta\left(q_{0}, \varepsilon, 1\right)=\left\{\left(q_{1}, 1\right)\right\}$ $\left.\delta\left(q_{0}, \varepsilon, Z_{0}\right)=\left\{\left(q_{1}, Z_{0}\right)\right\} \quad\right\}$

Switch to popping mode, nondeterministically (boundary between wand w^{R})
$\left.\begin{array}{ll}\text { 10. } & \delta\left(q_{1}, 0,0\right)=\left\{\left(q_{1}, \varepsilon\right)\right\} \\ \text { 11. } & \delta\left(q_{1}, 1,1\right)=\left\{\left(q_{1}, \varepsilon\right)\right\}\end{array}\right\} \quad$ Shrink the stack by popping matching symbols (w^{R}-part)
12. $\left.\delta\left(\mathrm{q}_{1}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{2}, \mathrm{Z}_{0}\right)\right\}\right\}$

Enter acceptance state

PDA as a state diagram

$$
\delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}, \mathrm{X}\right)=\left\{\left(\mathrm{q}_{\mathrm{j}}, \mathrm{Y}\right)\right\}
$$

PDA for $\mathrm{L}_{\text {wwr }}$: Transition Diagram

This would be a non-deterministic PDA

Example 2: language of balanced paranthesis

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced paranthesis (another design)

PDA's Instantaneous Description (ID)

A PDA has a configuration at any given instance: (q, w, y)

- q-current state
- w - remainder of the input (i.e., unconsumed part)
- y - current stack contents as a string from top to bottom of stack
If $\delta(q, a, X)=\{(p, A)\}$ is a transition, then the following are also true:
- (q, a, X)|--- (p,c,A)
- (q, aw, XB) |--- (p,w,AB)
$\mid--$ sign is called a "turnstile notation" and represents one move
|---* sign represents a sequence of moves

How does the PDA for $\mathrm{L}_{\text {wwr }}$ work on input "1111"?

Principles about IDs

- Theorem 1: If for a PDA, $(q, x, A) \mid--{ }^{*}(p, y, B)$, then for any string $\mathrm{w} \in \Sigma^{*}$ and $\gamma \in \Gamma^{*}$, it is also true that:
- ($\mathrm{q}, \mathrm{x} w, \mathrm{~A} \gamma) \mid-$--* $^{*}(\mathrm{p}, \mathrm{y} w, \mathrm{~B} \gamma)$
- Theorem 2: If for a PDA, $(q, x w, A) \mid--{ }^{*}(p, y w, B)$, then it is also true that:
- (q, x, A) |---* (p, y, B)

There are two types of PDAs that one can design:
those that accept by final state or by empty stack

Acceptance by...

- PDAs that accept by final state:
- For a PDA P, the language accepted by P, denoted by $L(P)$ by final state, is: checklist:
- $\left\{w\left|\left(q_{0}, w, Z_{0}\right)\right|---*(q, \varepsilon, A)\right\}$, s.t., $q \in F$
- input exhausted?
- in a final state?
- PDAs that accept by empty stack:
- For a PDA P, the language accepted by P, denoted by $N(P)$ by empty stack, is:
- $\left\{\mathrm{w}\left|\left(\mathrm{q}_{0}, \mathrm{w}, \mathrm{Z}_{0}\right)\right|--{ }^{*}(\mathrm{q}, \varepsilon, \varepsilon)\right\}$, for any $\mathrm{q} \in \mathrm{Q}$.
Q) Does a PDA that accepts by empty stack
need any final state specified in the design?

Checklist:

- input exhausted?
- is the stack empty?

Example: L of balanced parenthesis

PDA that accepts by final state

P_{F} :

An equivalent PDA that accepts by empty stack

How will these two PDAs work on the input: (()) ()) ()

PDA for $L_{w w r}$: Proof of correctness

- Theorem: The PDA for $\mathrm{L}_{\text {wwr }}$ accepts a string x by final state if and only if x is of the form $w w^{R}$.
- Proof:
- (if-part) If the string is of the form $w w^{R}$ then there exists a sequence of IDs that leads to a final state: $\left(q_{0}, w w^{R}, Z_{0}\right)\left|--{ }^{*}\left(q_{0}, w^{R}, w Z_{0}\right)\right|--{ }^{*}\left(q_{1}, w^{R}, w Z_{0}\right) \mid---*$ $\left(q_{1}, \varepsilon, Z_{0}\right) \mid-{ }^{*}\left(q_{2}, \varepsilon, Z_{0}\right)$
- (only-if part)
- Proof by induction on $|x|$

PDAs accepting by final state and empty stack are equivalent

- $P_{F}<=$ PDA accepting by final state
- $P_{F}=\left(Q_{F}, \Sigma, \Gamma, \delta_{F}, q_{0}, Z_{0}, F\right)$
- $\mathrm{P}_{\mathrm{N}}<=$ PDA accepting by empty stack
- $P_{N}=\left(Q_{N}, \Sigma, \Gamma, \delta_{N}, q_{0}, Z_{0}\right)$
- Theorem:
- $\left(P_{N}==>P_{F}\right)$ For every P_{N}, there exists a P_{F} s.t. $L\left(P_{F}\right)=L\left(P_{N}\right)$
- ($\left.P_{F}==>P_{N}\right)$ For every P_{F}, there exists a P_{N} s.t. $L\left(P_{F}\right)=L\left(P_{N}\right)$

$P_{N}==>P_{F}$ construction

- Whenever P_{N} 's stack becomes empty, make P_{F} go to a final state without consuming any addition symbol
- To detect empty stack in $P_{\underline{N}}=P_{F}$ pushes a new stack symbol $X_{0}\left(\right.$ not in Γ of P_{N}) initially before simultating P_{N}

$$
P_{F}=\left(Q_{N} \cup\left\{p_{0}, P_{\mathcal{F}}\right\}, \Sigma, \Gamma \cup\left\{X_{0}\right\}, \delta_{F}, P_{0}, X_{0},\left\{p_{\}}\right\}\right)
$$

Example: Matching parenthesis "(" ")"

$$
\begin{aligned}
& P_{N}: \\
& \delta_{N}:
\end{aligned}
$$

$$
\left(\left\{q_{0}\right\},\{(,)\},\left\{Z_{0}, Z_{1}\right\}, \delta_{N}, q_{0}, Z_{0}\right)
$$

$$
P_{f}: \quad\left(\left\{p_{0}, q_{0}, p_{f}\right\},\{(,)\},\left\{X_{0}, Z_{0}, Z_{1}\right\}, \delta_{f}, p_{0}, X_{0}, p_{f}\right)
$$

$$
\begin{aligned}
& \delta_{N}\left(q_{0},\left(, Z_{0}\right)=\left\{\left(q_{0}, Z_{1} Z_{0}\right)\right\}\right. \\
& \delta_{N}\left(q_{0},\left(, Z_{1}\right)=\left\{\left(q_{0}, Z_{1} Z_{1}\right)\right\}\right. \\
& \left.\delta_{N}\left(q_{0},\right), Z_{1}\right)=\left\{\left(q_{0}, \varepsilon\right)\right\} \\
& \delta_{N}\left(q_{0}, \varepsilon, Z_{0}\right)=\left\{\left(q_{0}, \varepsilon\right)\right\}
\end{aligned}
$$

$$
\delta_{\mathrm{f}}: \quad \delta_{\mathrm{F}}\left(\mathrm{p}_{0}, \varepsilon, \mathrm{X}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{Z}_{0}\right)\right\}
$$

$$
\delta_{f}\left(q_{0},\left(, Z_{0}\right)=\left\{\left(q_{0}, Z_{1} Z_{0}\right)\right\}\right.
$$

$$
\delta_{f}\left(q_{0},\left(, Z_{1}\right)=\left\{\left(q_{0}, Z_{1} Z_{1}\right)\right\}\right.
$$

$$
\left.\delta_{f}\left(q_{0}\right), Z_{1}\right)=\left\{\left(q_{0}, \varepsilon\right)\right\}
$$

$$
\delta_{f}\left(\mathrm{q}_{0}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \varepsilon\right)\right\}
$$

$$
\delta_{f}\left(\mathrm{p}_{0}, \varepsilon, \mathrm{X}_{0}\right)=\left\{\left(\mathrm{p}_{\mathrm{f}}, \mathrm{X}_{0}\right)\right\}
$$

Accept by empty stack
Accept by final state

$P_{F}==>P_{N}$ construction

- Main idea:
- Whenever P_{F} reaches a final state, just make an ε-transition into a new end state, clear out the stack and accept
- Danger: What if P_{F} design is such that it clears the stack midway without entering a final state?
\rightarrow to address this, add a new start symbol X_{0} (not in Γ of P_{F})

$$
P_{N}=\left(Q \cup\left\{p_{0}, p_{e}\right\}, \Sigma, \Gamma \cup\left\{X_{0}\right\}, \delta_{N}, p_{0}, X_{0}\right)
$$

P_{N} :

Equivalence of PDAs and CFGs

CFGs == PDAs ==> CFLs

This is same as: "implementing a CFG using a PDA"

Converting CFG to PDA

Main idea: The PDA simulates the leftmost derivation on a given w , and upon consuming it fully it either arrives at acceptance (by empty stack) or non-acceptance.

This is same as: "implementing a CFG using a PDA"

Converting a CFG into a PDA

Main idea: The PDA simulates the leftmost derivation on a given w , and upon consuming it fully it either arrives at acceptance (by empty stack) or non-acceptance.

Steps:

1. Push the right hand side of the production onto the stack, with leftmost symbol at the stack top
2. If stack top is the leftmost variable, then replace it by all its productions (each possible substitution will represent a distinct path taken by the non-deterministic PDA)
3. If stack top has a terminal symbol, and if it matches with the next symbol in the input string, then pop it
State is inconsequential (only one state is needed)

Formal construction of PDA

from CFG

Note: Initial stack symbol (S)

 same as the start variable in the grammar- Given: $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
- Output: $P_{\mathrm{N}}=(\{q\}, \mathrm{T}, \mathrm{V}$ U T, $\delta, q, \mathrm{~S})$
- δ :

Before:
$\rightarrow A A$
\vdots

- For all $\mathrm{A} \in \mathrm{V}$, add the following transition(s) in the PDA:

$$
. \delta(q, \varepsilon, A)=\{(q, \alpha) \mid " A==>\alpha " \in P\}
$$

Before:

\rightarrow| a |
| :---: |
| \vdots |

- For all $a \in \mathrm{~T}$, add the following transition(s) in the PDA:
- $\delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=\{(\mathrm{q}, \varepsilon)\}$

Example: CFG to PDA

- $G=(\{S, A\},\{0,1\}, P, S)$
- P:
- $S==>A S \mid \varepsilon$
- A ==> 0A1 |A1|01
- $P D A=(\{q\},\{0,1\},\{0,1, A, S\}, \delta, q, S) \backslash — — —$)
- -
- $\delta(\mathrm{q}, \varepsilon, \mathrm{S})=\{(\mathrm{q}, \mathrm{AS}),(\mathrm{q}, \varepsilon)\}$
- $\delta(q, \varepsilon, A)=\{(q, 0 A 1),(q, A 1),(q, 01)\}$
- $\delta(\mathrm{q}, 0,0)=\{(\mathrm{q}, \varepsilon)\}$
- $\delta(\mathrm{q}, 1,1)=\{(\mathrm{q}, \varepsilon)\}$

Simulating string 0011 on the new PDA ...

PDA (δ):

$$
\begin{aligned}
& \delta(q, \varepsilon, S)=\{(q, A S),(q, \varepsilon)\} \\
& \delta(q, \varepsilon, A)=\{(q, 0 A 1),(q, A 1),(q, 01)\} \\
& \delta(q, 0,0)=\{(q, \varepsilon)\} \\
& \delta(q, 1,1)=\{(q, \varepsilon)\}
\end{aligned}
$$

Stack moves (shows only the successful path):

Leftmost deriv.:

$$
\begin{aligned}
S & =>A S \\
& =>0 A 1 S \\
& =>0011 S \\
& =>0011
\end{aligned}
$$

S =>AS =>0A1S =>0011S
=> 0011

Proof of correctness for CFG ==> PDA construction

- Claim: A string is accepted by G iff it is accepted (by empty stack) by the PDA
- Proof:
- (only-if part)
- Prove by induction on the number of derivation steps
- (if part)
- If $(q, w x, S) \mid--^{*}(q, x, B)$ then $S=>^{*}{ }_{\text {m }} w B$

Converting a PDA into a CFG

- Main idea: Reverse engineer the productions from transitions
If $\delta(q, a, Z)=>\left(p, Y_{1} Y_{2} Y_{3} \ldots Y_{k}\right)$:
State is changed from q to p;
Terminal a is consumed;
Stack top symbol Z is popped and replaced with a sequence of k variables.
- Action: Create a grammar variable called "[qZp]" which includes the following production:

$$
\text { - }[q Z p]=>a\left[p Y_{1} q_{1}\right]\left[q_{1} Y_{2} q_{2}\right]\left[q_{2} Y_{3} q_{3}\right] \ldots\left[q_{k-1} Y_{k} q_{k}\right]
$$

- Proof discussion (in the book)

Example: Bracket matching

- To avoid confusion, we will use $b=$ "(" and $e=$ ")"

Two ways to build a CFG

(indirect)
(direct)

Similarly... Two ways to build a PDA

Deterministic PDAs

This PDA for $\mathrm{L}_{\text {wwr }}$ is non-deterministic

Grow stack
$0, \mathrm{Z}_{\mathrm{O}} / 0 \mathrm{Z}_{0}$
$1, \mathrm{Z}_{0} / 1 \mathrm{Z}_{0}$
$0,0 / 00$
$0,1 / 01$
$1,0 / 10$
$1,1 / 11$

Pop stack for matching symbols

Why does it have to be non-
deterministic?

$$
0,0 / \varepsilon
$$

$\varepsilon, Z_{0} / Z_{0}$
$\varepsilon, 0 / 0$
$\varepsilon, 1 / 1$
Switch to
popping mode

$$
\varepsilon, Z_{0} / Z_{0}
$$

Accepts by final state

To remove	
guessing,	
impose the user	
to insert c in the	
middle	33

Example shows that: Nondeterministic PDAs \neq D-PDAs

D-PDA for $L_{\text {wcwr }}=\left\{w c w^{R} \mid c\right.$ is some special symbol not in w\}

Grow stack
$0, \mathrm{Z}_{0} / 0 \mathrm{Z}_{0}$
$1, \mathrm{Z}_{0} / 1 \mathrm{Z}_{0}$
$0,0 / 00$
$0,1 / 01$
$1,0 / 10$
$1,1 / 11$

Note:

- all transitions have become deterministic

Deterministic PDA: Definition

- A PDA is deterministic if and only if:

1. $\delta(\mathrm{q}, \mathrm{a}, \mathrm{X})$ has at most one member for any $a \in \sum U\{\varepsilon\}$
\rightarrow If $\delta(q, a, X)$ is non-empty for some $a \in \sum$, then $\delta(\mathrm{q}, \varepsilon, \mathrm{X})$ must be empty.

PDA vs DPDA vs Regular languages

Summary

- PDAs for CFLs and CFGs
- Non-deterministic
- Deterministic
- PDA acceptance types

1. By final state
2. By empty stack

PDA

- IDs, Transition diagram
- Equivalence of CFG and PDA
- CFG => PDA construction
- PDA => CFG construction

