
Advanced Computer Design

PDQ-3 System User's Manual

PDQ-3 System User's Manual

PDQ-3 SYSTEM USER'S MANUAL

VERSION 3.1

Apr i 1 1981

Advanced Computer Design

PDQ-3 is a Registered TrademarK of Advanced Computer Design.

Information furnished by ACD is believed to be accurate and
reliable. Howevert no responsibility is assumed by ACQ for its
use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of ACD.
ACD reserves the right to change product specifications at any time
without notice.

DEC is a Registered TrademarK of Digital Equipment Corporation,
Maynard t Mass.

UCSD Pascal
Califorrda.

is a Registered TrademarK of the University of

Author: Rich Gleaves

Document: 0.3-8

Copyright (c) 1981, Advanced Computer Design. Al 1 rights reserved.

-Duplication of this worK by any means is forbidden without the
prior written consent of Advanced Computer Design.

I
\

PDQ-3 System User's Manual

TABLE OF CONTENTS

SECTION

I INTRODUCTION

I I

o Scope of this Manual
1 System Organization

2 Command and Data Overview
o Pr'ompt 1 ines
1 File Names
2 Data Prompts

3 Key Commands
o Accept and Escape
1 Console End of File
2
3

Cursor' Movement
User Interrupt Commands
OMan i tor' Trap
1 Stop and Start
2 Console Output Flush
3 Keyboard Type-ahead Flush
4 Disk Type

OPERATING SYSTEM . ,
o Error Handling

o Execution Errors
1 StacK Overflow
2 DisK Er·r·or·s
3 DisK Swapping,

1 File System
o Over'v i e~1I
1 Syntax Overview

2 Physical Units
o Syntax Overview
1 I/O Devices

o Serial Devices

. ,

1 BlocK-structured Devices

3 Logical Volumes
o Syntax Overview
1 BlocK-structured (DisK) Volumes
2 DisK Volume Usage
3 System Volumes
4 Prefixed Volumes
5 DisK Directories

o Duplicate Directories

i i

, .

PAGE

1
2

:3
:3
3
4

5
5
5
5
5
5
6
6
6
7

9

10
10
1 1
12
13

14
14
15

16
16
17
17
17

18
18
19

.~ 19
19
20
20
20

II OPERATINC SYSTEM (continued)

1 File System (continued)

2

4 DisK Fi) es •
o Syntax Overview •

1

2

3

4

File Attributes.
o File Type •.

o File Type Assignment
1 UCSD Pascal Files.

o Text Files.
1 Code Files.

2 Data Files
3 Restrictions Imposed by Types.

1 File Date
2 Size and Location Attributes.

Fi Ie Suffix.es •

File Titles.
o System File Titles.
1 User File Titles.
2 Titles with Non-blocK~structured Volumes.

File Length and File Length Specifiers

5 Syntax Specification t

6 File Conventions and Applications
o File Name Prompt Conventions

o Irlput Prompts
1 Output Prompts •

1 File Access from User Programs

Commands and Operation
o Starting the System
1 The WorK File

o WorK File Manipulation
1 WorK File Effects on System Behavior

2 Syntax. Errors and Editor Invocation
3 System State Flow Diagram
4 System Commands

o Clear Screen '.
1 A(ssemble.
2 C(ompile .'
3 E(dit
4 F(ile
5 H(alt
6 I (nit i a I i ze
7 L (i rlK
8 R(un
9 S(ubmit

10 U(ser restart
11 X(ecute

iii

22
22

22
22
23
23
23
23
23
24
24
24

25

25
25
26
26

27

29

81
31
31
31
82

83
88
88
34
34
35
35
87
37
38
39
40
41
42
43
44
4S
46
47
48

I I I

PDQ-3 System User's Manual

FILE HANDLER

o

2

3

4

5

F i) er' Prompts

File Naming Conventions
o General Syntax
1 Wi I dcar'ds

F i I er Commar,ds

o

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18

Command Summar' y
o WorK File C6mmands
1 DisK File & Volume Commands
2 DisK Volume Commands
3 DisK Media Commands

B (ad blocks scar.
C(hange
D(ate
E(xtended ist
G(et
K (r'unch
L(ist d ir·ector·y
M (a~<e
N(ew
P(refix volume
Q(uit
R(emove
S(ave
T(ransfer
V (0 I ume s on lin e
W(hat is worKFile?
X(amine bad blocks
Z(ero d ir'ector'y

Recovering Lost Files

Recovering Lost Directories

Changing the Type or Date of a File

iv

49

49

50
50
50

51

51
51
52
52
52

53
54
55
56
57
58
59
61
62
63
64
65
66
67
71

7:3
74

76

79

81

IV

.u~-w oys~em user's Manual

EDITOR

o
1
2
3
4
5
6
7
8
9

10

1 1

Editor Prompts
Edit Environments
The Fi) e Wir,dow
The Cursor
Repeat Factors
Direction
MarKers
Moving The Cursor
The Copy Buffer
Entering Strings in F(ind and R(eplace

Editor Commands

o Command Summary
o Moving Commands
1 Text-Changing Commands
2 Pattern Matching Commands
3 Formatting Commands
4 Miscet laneous Commands

1 A(dJust
2 C(opy
3 D(etete
4 F (i nd
5 I(nsert
6 J(ump
7 M(ar'gin
8 P(age
9 Q(uit

10 R(eptace
11 Stet
12 V(erify
13 eX(change
14 Z(ap

Editor Probtems
o Buffer Overflow
1 Writing Out the Fite

o Invalid Fite Names
1 Insufficient Space on Volume
2 File Too Large

v

. ,

83

83
83
84
84
84
84
85
85
86
87

89

89
89
89
89
90
90

91
92
93
94
95
97
98

100
101
102
104
107
108
109

110
110
110
110
111
111

v

VI

PDQ-3 System User's Manual

COMPILER

o

1

2

Intr-oduct ion

Using the Compiler
o Setting Up Input and Output Files
1 Console Display
2 Syntax Error Handling

Compiler Problems

o
1
2
3

X(ecuting the Compiler
Syntax Errors and the Editor
Insufficient Memory.
Insufficient Space on Volume

LINKER •

o Separate Compilation
o Units
1 Librar-ies

1 Using the LinKer
2 LinKer Problems

VII COMMAND FILE INTERPRETER

o S(ubmitting Command Files
o Command File Execution
1 Reserved Command File Names

1 Command Language
o Commands

o Immediate Commands •
1 Deferred Commands
Targets

2 Text Lirles

2 Example eXec Programs

VIII SYSTEM MONITOR

o
1
2

Entering The Monitor
Mon i tor- Commands
HDT Examples

vi

113

114
114
115
116

117

117
117
118
118

119

119
120
120
121
122

123

123
123
124

124
125
125
126
127
127

128

131
132
134

IX UTILITIES

o

1

2

3

4

DisK Managemerlt

o Bootstrap Copier
o Using Booter

DisK Copying
o Using BacKup

2 DisK Format Conversion
o Us i rig Mapper·

8 DisK Formatting
o Us irlg Forma t
1 Reformatting Bad BlocKs

4 Fast Bad BlocKs Scanning
o Using Bad.blocKs

Duplicate Directory Management

o
1

Us i ng Mar'Kdupd i r
Using Copydupdir

Library Management

o
1

Using Library
Us irlg L i bmap

Terminal Configuration

1 Using Setup
o Fields in Setup
1 Sample Setups For Some Common Terminals.

2 GOTOIY Blnding
o Using Birlder

Line-Orient~d Text Editor

o Entering YALOE •
1 Entering Commands and Text

o Command Arguments
1 Command Strings.
2 Text Strings

2 The Text Buffer
3 The Cursor •
4 Special Key Commands.
5 Input/Output Commands
6 Cursor Moving Commands
7 Text Changing Commands
8 Other Commands •
9 Command Summary

vii

..

135

135

136
136

136
136

137
138

139
139
140

140
141

142

142
143

144

144
146

149

150

151
152
157

158
160

161

161
161
162
162
162
168
163
163
164
166
169
170
173

PDQ-3 System User's Manual

IX UTILITIES (continued)

x

XI

5 Byte-level File Editor
o Using Patch

6 Code File Disassembly.
o Using Disassembler

7 Printer Spooler
o Using Pr-inter-
1 Using Spoolgen

8 Calculator
o Using Calc

APPENDICES

Apperld i x A: I/O Resu Its
Appendix B: Execution Err-or-s
Appendix C: I/O Uri it Ass i grlmerl ts •
Apperld i x D: Compi I er- Syn t ax Er-ror-s
Appendix E: ASC I I Character- Set
Apperld i x F: Key Def irti t ions for Commor.
Appendix Fl: ADM 3-A Terminal
Appendix F2: Soro.c IQ-120 Ter-m i na I
Appendix F3: Zenith Z19 Termirla 1

INDEX

viii

Terminals •

174
174

176
176

180
180
181

182
182

185

185
187
189
191
195
197
197
199
201

20:3


~~~-~ ~ystem user's Manual 

ix 



In tr'oduc t ion 

I. INTRODUCTION 

1.0 Scope of this Manual 

This is the reference manual for the UCSD Pascal system~ version 
111.1. Users are assumed to be familiar with the UCSD Pascal 
system; if this is not the case, trle following booK. is r'ecommended: 

Beginner's Guide for the UCSD Pascal System 
Kenneth L. Bowles 
Byte BooKs (McGraw-Hil I)t Peterborough. New Hampshiret 1979. 

Other documents related to the PDQ-3 Computer System include: 

PDQ-3 Hardware User's Manual 
Describes the physical characteristics of the computer. 

PDQ-3 Programmer's Manual 
Describes the PDQ-3 Pascal language implementation. 

PDQ-3 Architecture Guide 
Provides details of the system software to experienced 
pr·ogrammers. 

NOTE - The fol lowing conventions are used throughout this manual to 
facilitate the description of various system concepts. 

Angle br·acK.ets ("';;:" and ">") ar'e used to indicate metasymbols;­
these are generic names of symbols. Optional items are delimited 
by squar'e br'acKets ("C" and "]"). Some examples of metasymbols and 
opt iona I items fo I IO\lJ: 

Typing <cr> completes the input prompt. 

President (surname) should be [(expletive)] impeached! 

The syntax for Pascal's IF statement is: 

IF <Boolean expression) THEN (statem~nt> [ELSE <statement}]; 

DISCLAIMER much of the software provided with this system is 
maintained arid controlled by Wester'n Digital t Inc.t the maKer's of 
the MicroEngine; because of this, Advanced Computer Design cannot 
guarantee its correctness. Bugs that we are aware of are doc­
umented in the appropriate sections ~, this manual. 

Page 1 



PDQ-3 System User"s Manual 

1.1 System Organiza~ion 

The PDQ-3 system software is a superset of the UCSD Pascal system, 
which was designed as an interactive, single-user system for 
program development and execution. The system has been extended 
with multi-processing capabilities and an asynchronous 1/0 system 
to allow the development of multi-user and real-time appllcations. 
The minimal hardware configuration required to use the system is a 
CRT terminal and a mass storage device (typically one or more 
floppy disK drives). 

The system consists of the following parts: 

Operating System - Provides an interactive command interpreter 
to control the rest of the system, and run-time support for 
the execution of Pascal programs. 

Command File Interpreter - Automates repetitive tasKs by feeding 
the system a predefined sequence of system commands to 
execute. 

File Handler - Provides disK File management. 

Editor - A screen-oriented editor used to create and maintain 
source files containing Pascal programs. It also provides 
text editing Features for basic word processing tasKs. 

Pascal Compiler - A fast, one-pass compiler which can produce 
either executable Pascal programs or library routines. 

LinKer Combines Pascal programs and" separately compiled 
library routines into executable programs. 

Monitor - Allows the user to examine and modify the contents of 
memory. 

Printer Spooler A utility program which allows text file 
printing to proceed concurrently with normal system operation. 

Utility Programs 
opment. 

Various programs which aid program devel-

Page 2 



Introduction 

1.2 Command and Data Overview 

This section describes the various operations perFormed with the 
PDQ-3 system; these include action commands which invoKe system 
~artst and data prompts which supply input to ~he system parts. 

1.2.0 Promptlines 

Promptlines are a commonly used method of displaying the commands 
available to the user in various parts of the system. Here are 
some examples of promptlines found in the system: 

Command: E(dit, R(un, F(ile, C(omp, L(inK~ S(ubmit, X(ecute 

F i 1 e r': G ( e t , 5 ( a vet W ( hat t N ( e w , L ( d i r t R ( em, C ( h n 9 t T ( r' an s 

Responses consist of a single character; a carriage return is not 
required to complete the command. Command characters are capl­
talized and separated from the command abbreviation with a left 
parenthesis. Promptlines displaying alphabetic character commands 
accept both lower and upper case characters. With some prompt­
linest typing a"?" redisplays the promptline with a difFerent set 
of commands. This is done to accommodate wlde promptlines on 
nar'r'ow screens. Pr'ompt I i rles ar'e usua I lyre fer'r'ed to as "prompts"; 
thus, the prompt I ine For' the operat 1ng system is ca I I ed the "system 
pr'ompt" t and for· the F i I e hand I er', the .. F i I er pr·ompt". 

Many system 
promptlirtes; 

parts display their current version number in 
it is usually delimited by square bracKets. 

1.2.1 Pile Names 

the 1 r· 

Software development on the UCSD Pascal system largely consists of 
manipulating Files; hence, file name prompts appear rather fre­
quently. Because of this, users who understand the file system 
find the system easier to use, as many aspects of the file naming 
conventions involve simplifying the speciFication of a file name; 
it is thereFore worthwhile to study chapter 2 (section 2.1 - the 
file system) and the sections describing file name prompts for the 
various system parts. 

Page 3 



~.2.2 Data Prompts 

Data prompts are used to obtain input data needed by the system 
parts. They usually appear in the form of questions; for instance: 

Compile what file? 

Are you sure you want to crunch DISK1: ? 

Bad blocKs scan for how many blocKs? 

Responses to data prompts usually come in one of two forms: the 
single character response to a "yes/no" question (such as the 
second example), and the input data response requiring a string of 
input characters followed by a carriage return. 

An affirmative resporlse to a "yes/rIo" qu.estion is irldicated by 
typing lOy" or "Y". Negative resporlses gerlerall y ar'e indicated by 
typing "N" or "n"; however, some system parts (such as the Filer) 
interpret any characters other than the affirmative ones as a 
negative response. 

Input data responses are usually file names, but can be other items 
such as the current date or an integer value. These responses 
almost always require a carriage return to be typed after the input 
data. The bacKspace Key erases mistaKes in the typed input, and 
the rubout (or delete> character deletes al I of the typed input. 

Most system pr'ompts requirirlg input data r'ecognize "escape" inpu.ts 
that cause the initial system command to abort. For instance, 
typing only a carriage return after the compiler prompt: 

Compile what file? 

••• aborts the compiler and returns control to the system prompt. 
An immediate carriage return is generally accepted throughout the 
system as an escape; however, in some cases a carriage return has 
another meaning, so a different method of escape is required. 
These exceptions are described in the appropriate sections of this 
manua I. 

Page 4 



Introduction 

1.3 Key Commands 

This section describes some Key commands used throughout the 
system. Key command definitions are described in section 9.3 
(terminal configuration). Key command definitions for some common 
terminals are listed in Appendix F. 

1.3.0 Accept and Escape 

Two Key commands are used for terminating input data and commands: 
the accept Key and the escape Key. Accept is used in the edItor; 
it is denoted in this manual by the metasymbols <accept> and <etx>. 
Escape is used throughout the system to abort commands; it is 
denoted by the metasymbols (escape) and <esc>. Key command usage 
is described in appropriate sections of the manual. 

1.3.1 Console End of File 

The "er,d of fi Ie" Key is used to terminate character- sequences read 
from the Keyboard by a program or system part which uses the 
console as an input file; it is denoted by the metasymbol (eof). 
See section 2.1 and the Programmer's Manual for more details. 

1.3.2 Cursor Movement-

Some system parts depend on the user's ability to move the cursor 
across the screen. Cursor movement is performed with the termin­
ai's space bar (denoted as <space», backspace Key (denoted as 
<bac~<space> or (bs», arid the vector- Keys (i.e., <left>, <r-ight>, 
(up>. and <down> Keys). 

1.3.3 User Interrupt Commands 

Most Key commands are synchronous with respect to system operation; 
i. e. t they ar-e not executed unt i I the system r-eads them after­
issuing an input prompt. User interrupt comm~nds, on the other 
hand, are executed immediately after being typed. This section 
describes the user interrupt commands. 

1.3.3.0 Monitor Trap 

The monitor Key interrupts the currently executing user or system 
program and passes control to the system monitor (described in 
chapter 8); program execution may be resumed from the monitor. The 
monitor Key is defined to be <control-P>. 

Page 5 



PDQ-3 System User's Manual 

1.3.3.1 StQP and Start 

The stop and start keys suspend and resume console output. Once 
console output is suspended with the stop Key, typing any Key other 
than the start Key ~single-steps~ the output; specifically, It 
al lows one character to be written to the screen before resuspend­
ing output. The stop Key is defined to be (control-S). The start 
Key is defined to be both (control-S) and (control-Q). 

1.3.3.2 Console Output Flush 

The Flush Key causes the system to discard al I console output untIl 
a subsequent console read operation is completed. Flushing is 
disabled by rety~ing the Flush Key. A practical example of the 
flush cQmmand is the interruption of the filer command T(ransfer 

_when it is transFerring text files to the ionsole. Typing the 
flush Key causes the I/O system to discard al I characters written 
to the console, thus speeding up th~ transfer. When the transFer 
is complete, the Filer attempts to restore its promptline; however, 
screen output is stil I being flushed, so it doesn't appear. Typing 
the space bar causes the prompt to reappear; normal syste~ 

operation is then resumed. The flush Key is defined to be 
(control-F>. 

1.3.3.3 ~eyboard Type-ahead Flush 

The Keyboard type-ahead flush Key removes al I characters queued ir 
the type-ah~ad bufFer; it is defined to be (control-X). 

The type - ahead bu f fer is used to ho I d I·<e yboar'd i npu t tha t i.£ 
entered ahead of an input prompt. Input prompts always reac 
characters queued in the type-ahead buffer beFore reading inpu~ 

From the Keyboard. The type-ahead buffer is fil led in one of tw< 
ways: 

1 ) By t ypir,g Keys when the system is riot waiting for- art inpu 1 

response. The input is queued in the type-ahead buf fer'. 

2) By the command f i Ie in terpre ter" as i t queues commands an( 
data For" Future execu t i or •• 

The type-ahead buffer holds a maximum of 64 characters. When it i: 
full, subsequent Keyboar'd input is not queued; instead, the systel 
rings the terminal bell. 

Page 6 



Introduct ior. 

1~3.3.4 D~sK Type 

The disK type Key al lows on-the-fly alteration of the software 
control ling the floppy disK drives. Users can specify whether a 
drive reads single-sided, double-sided, DEC format, or Western 
Dig ita I for mat disK s • Use r· s can a Iso con t r 0 I t r. e 9 en e r· a t ion 0 f 
floppy disK error messages (see section 2.0.2). 

NOTE - Double-sided floppy disKs require double-sided disK 
The drives supplied with the standard PDQ-8 do not 
double-sided floppy disKs. 

dr·ives. 
support 

NOTE - Switching between single and double density floppy disks is 
performed automatically by the system. 

When the system is started, al I disK drives are configured for 
single-sided PDQ-3 format floppy disKs, with error messages disa­
bled. Drives are reconfigured by typing (control-D>, fol lowed by 
the two character sequence: 

where 
<drive number>(command> 

<drive number·> · . -· . -
<command> · : = · 

"0" or· 
"s" or· 
"d" or 
.. fit or 

II 1 .. 
.. s .. 
"D" 
"F" 

or· "2" or "3" 
for single-sided disKs 
for double-sided disKs 
for Wester·n Dig i ta I format 
("flipped") disKs 

" i" or· .. I ,. for· DEC forma t 
("inter·leaved") disKs 

"n" or· "N" enables floppy dis~~ 

er·r·or messages ("noisy") 

NOTE - The "f", "i", and IOn" commands ar'e toggles; 
switch the current state to its opposite, 

NOTE The Mapper utility (section 9.0.2) performs explicit 
remapping of floppy disKs between PDQ, WD t and DEC formats. This 
capability may seem redundant in light of the disK type Key's 
ability to read al I of these disK formats; however, disK accesses 
to WD and DEC disks are considerably slower than disk accesses to 
PDQ disKs because of the translation which taKes place in the disK 
drivers. Thus, while the disK type Key is useful for occasional 
communications with WD and DEC disks. it is more efficient in the 
long run to remap frequently-used disKs than to disK-type them 
every time they are used. 

Page 7 



PDQ-3 System User's Ma~ual 

Page 8 



Operating System 

II. THE OP~RATING SYSTEM 

The operating system initiates the execution of other system parts 
and user programs. implements the file syste~ and 1/0 subsystemSt 
reports hardware and software errors. and provides runtime support­
for Pascal programs. 

Section 2.0 describes the actions performed in response to various 
Kinds of system errors. Section 2.1 describes the file system, 
which includes file naming conventions and the lID device organiza­
tion. System commands and operation are described in section 2.2. 
Details on the Pascal runtime support routines are contained in the 
Programmer's Manual. 

Page 9 



2.0 Error Handling 

This section desc~ibes the system's ~esponse to ha~dware or 
soFtware er~ors. Execution errors are caused either by incorrect 
programs o~ explicit interruption of programs; they are described 
in section 2.0.0. StacK overFlows occur when a program uses up at I 
available system memo~y, and are desc~ibed in section 2.0.1. Error 
messages generated by the Floppy disK drives are described In 
section 2.0.2. The eFfects of removing disK volumes during system 
operation (Known as "disK swapping") are described in sectlon 
2.0.3. 

2.0.0 Execution Errors 

When an execution error is detected during p~ogram execution, the 
p~ogram is suspended, and the operating system prints a diagnostic 
message on the console. The message consists of a description of 
the error and the location in the program code where the error 
occurred. 

The e~r-or description is usually a textual message; e.g., "Invalid 
Irldex", Occasiorlall y, the oper-ating system is urlable to obtain the 
message; in these cases, only the execution er~or number is 
printed. A table of execution error numbers and their correspond­
ing messages is displayed in Appendix B. 

When the execution error is a user lID error, a description of the 
lID error is p~inted adJacent to the execution error message; as. 
with execution error-s, the urlavai labi I ity of liD err-or- messages\ 
causes the liD e~ror numbe~ to be printed. A table of lID error 
numbers and their corresponding messages is displayed in AppendIX 

-A. 

The error location is specified in terms of the code file 
structure; the displayed "S", "P", and "I" oFFsets repr-esent the 
code segment number, procedure number within the segment, and 
procedure-relative byte offset of the instruction causing the 
error. This information is used in conJunction with a source 
program listing to pinpOint the error in the source program. 
Program listings are described in the Programmer's Manual. Segment 
and procedure numbers are described in the Architecture Guide. 

Orlce an execu t ion er'r-or- has occur-red t the user has two cho ices 
a v a i I a b Ie. " T y P i rl g < sp ace> to con t i rl u e .. , as i s pro omp ted 0 nth e 
console, aborts the currently executing program and reinitializes 
the system. Typing the escape Key causes the system to resume 
execution of the program, the results of which are somewhat 
unpredictable and dependent upon the nature of the execution error. 

Page 10 



Operating System 

2.0.1 StacK Overflow 

StacK overflows occur when a program1s code and data use up al 1 of 
the memory in the system; the program is terminated. and the 
following message appears on the screen: 

*STK OFLOW* 

The system then reinitializes itself and redisplays the system 
prompt. 

NOTE - StacK overflows are not always detected by the processor or 
operating system; when this happenst the system stops without 
printing any error messages. and must be rebooted. In other cases, _ 
the system halts after displaying the stacK overflow message. See 
the Architecture Guide and Programmer's Manual for more informa­
tion. 

Page 11 



ru~-~ ~ystem user s ~anual 

2.0.2 Floppy Disk Errors 

The software control ling the floppy disK drives can be directed to 
issue error messages to the console whenever the hardware indicates 
that a disK operation caused a transient error (see section 
1.3.3.4). This section describes the format of floppy disK error 
messages. 

NOTE - this section contains references to the hardware interface 
of the PDQ-3 disK control ler. See the Hardware User's Manual for' 
details. 

Here IS an example of a disK error message (which fits on one line 
when displayed on the console) and a description of its format: 

Flop_42 (01] 01 Fc-94 Fs-30 T-Ol 8-19 Dc-Ol Ds-Ol 
C-OOOO A-0012F8 Vs-QOIA 

42 - High order byte of the disK select register. Low nIbble 
is the disK number (1.2.4.8). High order nibble is 
density (4=single). 

(Oll - The retry number. It indicates the number of times the 
operation has been attempted without success. 

01 - The system lID result indicating the error condition (see 
Appendix A). 

Fe - The command that was issued to the FDC when the failure 
occurred. 

Fs - The FDC status register indicating the error condition. 
T - The FDC tracK register. 
S - The FDe sector register. 
Dc - The DMA command register. 
Ds - The DMA status register. 
C - The DMA count register (negative number of bytes left in 

the current lID operation). 
A - The DMA address register (a byte address). 
Vs The starting virtual sector (a zero-based logical sector 

number). 

Page 12 



Opera t irlq System 

2.0.3 Disk Swapping 

This section describes the effects of removing disK volumes from 
the Floppy drives during system operation. Floppy disKs are oFten 
exchanged during system operation in order to ~etrieve Files from 
ti'Fl ine volumes, or to copy disK volumes onto bacKup disKs; the 
system accommodates this by Keeping tracK of the online disK 
volumes. However, disK swapping during program execution can be 
hazardous; if a system or user program requires a code segment from 
a disK volume, and the disK volume is no longer mounted in its 
original drive, the system cr·ashes. 

The system attempts to remedy this situation in a couple of ways. 

First, the file handler and disK-copying utility programs do not 
contain segment procedures; their code remains resident in memory 
at all times durlng execution. User programs must do the same in 
order to survive random disK swapping. 

Second, the operating system attempts to protect itselF from 
crashes caused by removing the system disk during program execu­
t ion. Nor'ma 11 y, if the system d is~~ is removed or' r'ep I aced t it must 
be remounted in the proper drive before the program terminates; in 
fact, many of the utility programs issue explicit prompts to 
remount the system disK before terminating. However, if the system 
determines that the system volume has been removed or replaced, the 
fol lowing message appears after the program terminates: 

Replace <system volume name>: 

The system waits until the proper disK is remounted, and then 
redisplays the system prompt as if nothing unusual had occurred. 
The method used to detect a disK swap is to monitor' 'all disK. 
directory accesses during program execution; iF a directory access 
is not perFormed on the system's disK drive after the disK has been 
swapped, program termination halts the system with an unrecoverable 
execution error instead of displaying the prompt shown above. 

Page 13 



ru~-~ ~ystem user 5 nanual 

2.1 File System 

2.1.0 Overview 

In the most abstract sense, a file is merely a sequence of data. A 
file system exists in order to adapt this abstract definItion of a 
file to the requirements and constraints of a given hardware and 
software environment. The file system desc~ibed herein has the 
Fol lowing outstanding char~cteristics: 

1) Files can be accessed From Pascal 
Pascal File operators. 

programs with standard 

2) Files possess types to aid the user in 
contents of files and to increase system 
preventing invalid operations 6n files, 

identiFying the 
reliabilIty by 

3) The file system implements high level concepts such as 
removable disK volumes and device-independent File liD. 

4) The disK File implementation is both time and space-efficient 
on relatively IQwpe~formance Floppy disK drives. 

The Fol lowing sections comprise a complete user-oriented spec­
ification of the file system~ Section 2.1.1 presents an overview 
of file name syntax. Section~ 2.1.2 through 2.1.4 describe the 
syntax and semantics of the file system hierarchy, starting with 
the lowest levels of devie. liD and ~ulminating with File attri­
butes. Section 2.1.5 contains the deFinitive syntax specification 
of a file name. Section 2.1.6 describ~s some system-wide conven­
tions that apply to the file syst~m. 

References to file naming conventions and file system terminology 
_throughout this manual (and the Programmer's Manual) refer either 
impliCitly or explicitly to the information presented in thi~ 
sectIon. 

NOTE In order to present a consistent file system description, 
this section defines a number of terms intended to describe parts 
of the file system. New terms are underlined and Fol lowed by 
either an immediate definition or a reference to a defining 
section; subsequent occurrences of the defined term are not 
underlined, 

Page 14 



Oper'ating System 

2.1.1 Syntax Overview 

<file designator> 
< f i 'e i d> 

L <v 0 I ume i d) _---.t_----______ ---'1 
• 

A val i d i.il.,g .,g.,g.§l.qnA!.2.!:: ( i n for mal 1 y r' e fer· r' edt 0 a s '£.il~ .!}~.m.,g ) 
cor. sis t 5 0 f a y.Q.l~~ iQ.~'2.1.if..i.~c. a r. d a f..il~ iQ.~a.!.if.i.!I:.. Vo 1 um e 
identifiers are described in section 2.1.3. File identifiers are 
described in section 2.1.4. The complete syntax for a file 
designator is presented in section 2.1.5. 

Page 15 



PDQ-3 System User's Manual 

2:-.1.2 Physical Ul'lits 

Eh_y..~i£!.l. ~n.its correspond to I/O dev ices; they are addr'essed by 
their assigned physical unit number. I/O devices are defined to be' 
either serial devices or blocK-structured devices (described in 
sectlon--2~1~2~1)~---A ~~~IiI-~~i-i~-;-physi~al-Unit assigned to a 
s e ,. i a Ide vic e • A Q.1Q. c j.t~ :..a!.r::.!:l£!J:!r..!.~ !:lUi!. (i n for m a ) ) y ref e r' red t 0 as 
a .Q.,t~f; Y!l.i!> is a physical urlit assigrled to a blocK-str'uctured 
device. 

Al I physical units may be used as files. 

NOTE - Appendix C contalns a complete description of the PDQ-3 
Computer System's standard device assignments. 

Unlt Number· device descriptlon un it attr·lbu.te 
------------ ------------------- ---------------

1 screen arid j.t:.e yboar'd ser'ia I 
\J}i th echo 

2 scr'eerl and K.eyboard serial 
without echo 

:3 graphics unused 
4 disK dr·i ve 0 b I Oc~(-structured 
c;-
·oJ disK drive 1 b locK-str'uctured 
6 pr'inter' serial 
. .,. 
l r'emote i rlpu t urlused 
8 r'emote output serial 
9 - 12 d i s~(s 2 - 5 blocK-structured 
18 r'emote por·t 0 input ser- i a I 
14 r'emote por·t 0 ou.tput ser·ial 
15 remote port 1 i rlpu t ser·ial 
16 r-emote por·t 1 ou. tpu t serial 
17 ,-emote port 2 i rlpu t serial 
18 r'emote port 2 output ser- i a I 
19 remote port 3 input 'ser i a I· 
20 r-emote por' t :3 output ser' i a I 

2.1.2.0 Syntax Overview 

<un it rlumber> 
---------.. < numb er > : __ --------t.~ 

The metasymbol <number> may be any positive integer representing a 
un i t number-. 

Page 16 



Operating System 

2.1.2.1 I/O Devices 

lID devices assumed to be connected to the system include disKs, 
terminals, printers, and remote ports, An lID device is in one of 
two states: online or oFFline. A device is online if it acKnowl­
edges status requests from the system ~nd is available For I/O 
oper'a t ions. 

2.1.2.1.0 Ser~al Devices 

A serial device is defined to either produce or consume a sequence 
.0F data. Serial devices assumed to be used with the system are 
terminals, printers. and remote ports, The software controlling 
these devices maKes some assumptions about the structure of the 
data sequences handled; in particular, deFault lID to serial 
devices expects human-readable data Known as j.iZj i.il.i.at Section 
2.1.4.1.0.1.0 provides an overview of text files. Details concern­
ing alternate modes of serial 1/0 can be found in the Programmer's 
Manual and Architecture Guide. 

2.1.2.1.1 BlocK-structured Devtces 

A blocK-structured device is organized into a fixed number of 512 
by t est or' age are a s ~< n own a 5 121.Q~!$3' B I 0 c K s are ran d om I y a c c e s sib I e 
by blocK number. These devices are usually implemented as fixed or 
removable disKs. 

NOTE - Large-capacity <e.g. hard) disKs are often partitioned into 
a number of logical disK devices. 

Page 17 



PDQ-3 System User's Manual 

2.1.3 Logical Volumes 

b.Q.<.l.!..£.!.1 y'Q.1.~m.~~ cor'r'esporld to phy~ica I uni ts; t .... ey ar'e addr'essed by 
the i r' ass i gned 'y.Ql.Y.ID.! !:!..!.ID.! (de scr' i bed in se c t ion 2. 1 .5) • A .aJg.!:.!~l 
y'Q.l~m.~ is a log i ca I vo 1 ume ass i gned to a ser' i a 1 uri it. A Q.1Q.£.~: 
ilr:uc!ur·.!.f! 'y.Ql.Y:.ID..@ is a logical volume assigned to a b\oc~{-str'uc­

tured unit. Serial volume ri.me ~ssignments are permanent and may 
not be changed by t .... e user; serial volumes are functionally 
equivalent to t .... eir assigned serial units. Volume name assignments 
to blocK-structured units are dynamic and control led by the user; a 
blocK-structured volume is addressable if and only if It resides on 
an online blocK-structured uni~. BlocK-structured volumes are 
de scr i bed i rl se c t ion 2. 1 .3. 1 .' 

At 1 serial volumes may be used as files. BlocK-structured volumes 
should never be addressed. as files except when using the fl~e 
handler' to cr'eate, e~.(amine, and .copy erltlr'e bloc~<-str'uctur'ed 

volumes. 

Volume Name 

CONSOLE: 
SYSTERM: 
GRAPHIC: 
<vol name> 
<vol name> 
PRINTER: 
REMIN: 
REr.,OUT: 
<vol names> 
REMIN1: 
REMOUT1: 
REMIN2: 
REMOUT2: 
REMIN:3: 
REMOUT3: 
REMIN4: 
REMOUT4: 

Assi"gned Phys. 

1 
"'J 
4-

:3 
'4 
5 
6 
7 
8 
'9 - 12 
1 :3 
14 
15 
16 
17 
18 
19 
20 

2.1.3.0 Syntax Overview 

< vo' ume i d> 
'<number . . > 

<"10' ume name) : 

* 1 . . 

Uni t 

~ 

volume attr'ibute 

ser' i a I 
ser'ial 
unused 
b I oC~( - s t r'uc t ur'ed 
b locK.-str·uctured 
ser' i a I 
serial" 
ser' i a I 
b I ocK-str'uctur'ed 
ser' i a I 
ser' i a I 
ser' i a I 
serial 
serial 
serial 
serial 
ser' i a I 

The volume identifier- may either' be the _§'.y.~.!~m .Y.9Jgm.§ "*" (sectiorl 
2.1.3.3), a unit number, or a volume name. File designators 
containirlg either' empty volume iderltifiers or' ";" specify the; 
Q.c.~f..t~~Q.. y.Q.l'=!.m.~t \llh i ch is descr i bed in sec t ion 2 t 1 .3.4. 

Page 18 



Operating System 

2.1.3.1 BlocK-structured <DisK> Volumes 

BlocK-structured volumes (informally referred to as ~isK ~~l~m~) 
correspond to mass storage devices; the typical case is a floppy 
disK. A disK volume contains a collection of disK files (described 
ins e c t ion 2. 1 • 4 ) • I n for mat i on des c rib i n 9 the fiT e s-is-c en t r a liz e d 
i rl a reserved ar'ea of the disK Krlowrl as the ~ia:.~ Q.ic.!.£!.Q.r.Y 
(described in section 2.1.3.5). A disK directory contains the 
volume name which identifies the disK volume as a whole. A disk 
volume is or.l ine if it resides or. an or .. ine disK unit; it is 
addressed by its volume name. DisK volumes may also be addressed 
by specifying the physical unit containing the disK volume; e.g •• a 
di s~( vo I ume named .. SYSTEM" on uri it 4 can be addressed either' as 
"SYSTEM:" or "14:". 

BlocK-structured units and disK volumes represent two distinct ways 
of treating disK storage. DisK volumes are implemented on blocK­
structured units; however, they contain a directory and volume 
name, and are designed to contain a number of disK files. 
BlocK-structured units are "bare" disKs and have no directory or 
volume name; they can contain only one File and are addressed by 
their physical unit number. Section 2.1.4.3.2 describes other 
differences between disK volumes and blocK-structured units. 

Details concerning the implementation of disK directories and disK 
files may be found in the Architecture Guide. 

2.1.3.2 DisK Volume Usage 

~~cause disK volumes may be referenced by volume name, the system 
has problems operating when two disK volumes with the same volume" 
name are online. This situation should be avoided ai much as 
possible. When it can't be, all file designators must avoid using 
volume names as volume identifiers; instead, the physical unit 
numbers must be used to unambiguously specify files on online 
volumes. 

DisK volume names should always be used in conjunction with a file 
identifier specifying a disK file on the volume. The only 
exceptions occur when using the file handler to create, examine, 
and copy entire disK volumes. Using a disK volume name as a file 
exposes the volume's disK directory to accidental overwriting by 
file write operations, thus threatening access to the volume's disK 
f i I es. 

2.1.3.3 System Volumes 

The system volume is the disK volume containing the operating 
system code file; usually, it also contains the code files for the 
rest of the system parts. The system volume may be specified 
independently of its assigned volume name by using the volume 
i den t i f i er s II *" or' .. *: " • 

Page 19 



ru~-~ ~ys~em user s Manual 

2.1.3.4 Pref~xed Volumes 

Prefixed volumes are used in conJunction with disK file desig­
nators. Normally, a dis~~ file desigr.ator· irlcludes a volume 
identifier to lndic~te the volume on which th. disK file resides in 
addition to the disK file identifier itself. DisK file designators 
lacKing a -volume identifier are assumed to reside on the prefixed 
~olume; thus, file naming can be simplified by speciFying the most 
frequently accessed disK volume as the prefixed volume. The entire 
pr'e fixed vo I ume can be addr'essed \1) i th the f i ) e des i gr,a tor' ":". 

The de~ault prefixed volume is the system volume. The P(refix 
command (in the file handler> is used to specify volumes as the 
prefixed volume; it designates a volume identifier entered by the 
user as the prefixed volume name. If the volume identifier matches 
the name of an online volume, the volume becomes the prefix~d 

volume. The volume identifier can also specify an offline disk 
volume; when the ~olume comes online, it becomes the prefIxed 
volume. If the volume identifier specifies a disk unit (as opposed 
to a volume name), whichever disK volume is mounted in the 
specified unit becomes the p~efixed volume. 

Setting the prefixed volume to a serial volume or unit is 
fruitless, as these devices neither ~ecognize file identifiers nor 
contain directories. 

2.1.3.5 D~sK Directories 

DisK directories are stored on a disK volume along with disK files. 1 

Directories contain the volume name and up to 77 directory entries. 
A dlrectory entry contains the name, location, and attributes of a 
disk file on the volume. The file names in a dIrectory must be 
unique in order to specif~ ~ file unambiguously; an existing file 
is automatically deleted if another' fIle ~I)ith the same name is 
entered in the directory. DisK file names are described in section 
2.1.4. For more informatIon cOricerning multiple files with the 
same name, consult the Programmer's Manual for a description of 
fi Ie operator·s. 

NOTE - When the file system attempts to add a file to a volume 
cont~ireing a full dir'ector'Yt it prints the er·r·or· message: 

No r'oom on vo I 

This is somewhat misleading, 
indicate a lacK of dIsK space. 

--
as the same message is used to 

2.1.3.5.0 Duplicate Directories 

A disK volume may be marKed so thai the system maintains two disK 
directories on a disk volume; the second directory is cal led a 
duplicate dIrectory and exists as a copy of the main directory. If 
unforeseen circumstances cause the destruction of the main direc-~ 
tory. It can be restored using the informatior. in the bacj..-~up 

Page 20 



Operating System 

directory. The only cost of duplicate directory usage is a slight 
increase in overhead due to the necessity of updating an extra disK 
directory during file manipulation. The insurance provided gene­
rally outweighs any losses in performance. The utility programs 
MarKdupdir and Copydupdir are used to create duplicate directories 
and restore deceased main directories (see section 9.1). 

Page 21 



PDQ-3 System User's Manual 

2.1.4 DisK Piles 

DisK fit~s are stored in an integra) number of contiguous blocKs on 
a disK and contain either programs or data. File attributes 
provide useful information about the structure and history of a 
dis~~ file; they are described in section 2.1.4.1. File names ar'e 
the most important attribute of a disK file; they uniquely identify 
a disK file within a directory. File names are described in 
sections 2.1.4.2 and 2.1.4.3. File length directives control the 
amount of disK space al located to a disK file; they are described 
in section 2.1.4.4. 

2.1.4.0 Syntax Overview 

<fi Ie id> 
-----------<title>----------------~--~------~----------~ 

<suff i x>--.J 

[ 1 

F tie .!J..!l~.§ dis tin 9 u ish the f i I e sin a d ire c tor' y ; the y a r' e 
des c r' i be Q ins e c t 1 on 2. 1 t 4 • :::c • F i I e §.~f..f..i~!..a. a I I ow the s y s t em and 
user to de~ermine the contents of a disK filet they are closely 
~elated to file types. File suffixes are described in section 
2.1.4.2. The syntactic items delimited by square bracKets are 
l!.Uq:tb. m!.£.if.i..~~. Length specifier's ser've as dir'ectives to the 
File system to determine the amount of disK space to al locate to a 
newly created disK file; they are described in section 2.1.4.4. 

DisK files attributes are used by the system to manipulate the file 
and by the user to determlne the contents and history of the File. 
From the user's point of viewt the prominent file attributes are 
til~ .!.y..P.~ arid .f..il~ .f!..2J~~. Fi Ie types ar'e described irl section 
2.1.4.1.0. Fi Ie dates ar'e descr'ibed in section 2.1.4.1.1. The 
remaining file attributes visible to the user are iJl~ l~n~lb, 
at!.t:.:t i r. q Q.LQ.£~t and Q. Y..:t~a.:.i.n.:.L!.a:t- b lQ.£K ; t r. e sea red esc r' i bed i n 
section 2.1.4.1.2. 

2,.1.4.1.0 File Type 

At I disK files have an attribute cal led tr.e file type. File types 
enable both system and user to determine the contents of a disK 
f i Ie, r' ega r die s S 0 fit S f i I e r. a me • Ii.~!. f.il~ and £.Q.Q.~ f.ili. a r' e 
file types used by the system; Files of these types are described 
in section 2.1.4.1.0.1. Files not containing text or code are 
assigned the type ~~l~ IJlg; these are described in section 

Page 22 



Operating System 

2.1.4.1.0.2. System restrictions imposed by file types are des­
cribed in section 2.1.4.1.0.3. 

2.1.4.1.0.0 File Type Assignment 

When a file is created. the system assigns a file type correspon­
ding to the suffix; subsequent file name changes do not affect the 
assigned file type. Section 8.5 describes a somewhat underhanded 
method of changing the type of a -file. 

2.1.4.1.0.1 UCSD Pascal Files 

The two file types described in this section are used to identif~ 
files containing specific internal structures; the structures are 
required (and assumed to be present and correct) by the system 
parts that operate on typed files. The internal structure~- of the 
file types are described in the Architecture Guide. 

2.1.4.1.0.1.0 T~~t Files 

Text files are usually created and maintained by the editor; they 
can also be created by user programs. Text Files contain human­
readable text that re~re~ents either p~ogram source filest program 
data. or written documents suitable for word processing. Serial 
devices used to display data for human scrutiny (e.g •• consoles and 
printers) recognize text fi Ie corlventions on output; thus. text 
files written to serial units or volumes appeaf as they do in the 
ed i tor. 

'2.1.4.1.0.1.1 Code Files 

Code files are created by the compiler and manipulated by the 
linKer and the operating system. Code files contain a mixture of 
P-code and execution information used by the CPU and operating 
system. Code files may need to be linKed before they are 
execu. tab Ie; \lIhen used elsewhere in th is manua I t the term lln.!:S.§.Q 
~Q.g.~ til!.. refers either to code fi les not requiring I inKing to 
execute or code files that have been linKed with the linKer. 

Attempts to edit a code file with the editor or display a code file 
on the printer or console wil I fail; the system misinterprets the 
code file format as text file information and spews forth a melange 
of aUdio/visual garbage for you.r entertainment. Code files are 
best examined and modified with the Patch utility program described 
in chapter 9. 

2.1.4.1.0.2 Data Files 

Data files are created by programs using files containing data 
other than text and can have any internal representation. Except 
for being restricted to lie within an integral number of disK 

Page 23 



PDQ-3 System User's Manual 

blocKs, data files have no defined internal structure whatsoever; 
they match the Pascal language's definition of a file as a sequence 
of arbitrarily structured items. 

2.1.4.1.0.3 System Restrictions Imposed by Pile Types 

The operating system does not accept files other than code files 
for execution, regardless of the file identifier. A weaKer form of 
type checKing is performed in some system parts (e.g., the editor) 
by using the current suffix of a disK File name to guess its filE 
type. This method of checKing is sufficient for al I practical 
purposes; however, It can be subverted by changing the suffIx of ar 
eXIstIng file name or uSing the file prompt conventions described 
in sectIon 2.1.6.0. 

The current system date is assigned to a file when it 15 created or 
modified (\vner'e "modifIed" is defined as the r'eplacement of art old 
f 11 e by a new f i I e of the same name). Sect iorl :3.5 descr' ibes a 
somewhat underhanded method of changing the file date. 

The length fiel~indicates the number of blocKs allocated to a disK 
file. The st~rting blocK field indicates the absolute blocK number 
of the First block of the disK file (block O· is the first absolute 
disK blocK). The bytes-in-last-blocK field indicates the number of 
bytes in the last blocK of the file. This field is always set to 
512 for text and code files, because they are created with 
block-oriented file operators; only data files have interesting 
values in this field. 

Page 24 



Operating System 

2.1.4.2 F~le Suff~xes 

Fi le suffixes ar'e separated from fi 1e ti'tles by a period. Fi Ie 
sufFixes treated speciall,y by the system are shown in the following 
table. Files created ~it'h th~se ~uffi~es are assigned the cor­
r e sporl din g f i 1 e type; 0 the r w i s e.' the F i lei s des i g na ted a d a t a 
f i Ie. 

SuFfix 

.TEXT 

.CODE 
iBACI( 
.BAD 

File Type 

'text fl Ie 
code File 

.~ 'text f i:1 e" 
data file 

System Uses 

"text f i lei den t i • i e r' 
code' F i Ie' ident i F ier' 
editor bacKup text 'lle 
damaged area of disK 

File titles uniquely identify disK 'files within a ,dire~torYt The 
system reserves some titles for its I own'use; 'thes~ a~e cal led 
system tit I e s • ,A I I other', y a I ~ d f i let i tIe s a r' e y-,s e r' ~ i~ 1 e s " r 

2.1.4.3.0 System File Titles 
.:.l .~ ~ . 

System Files contain code and data used fo~ system 6p~ratiori; they 
ar'e identiFied by the Fi Ie title "SYSTEM. <system part name)". The 
fol lowing tablesho~s ~I I system·~ile titles ~nd their con~ents: 

. . , ... ' ,,; . 

. ,,' System File T'itle Fi'le'T'ype Cotltents 

,,' 

---------------~- --------- --------
SYSTEM. COMPILER 
SYSTEM. ASSMBLER 
S··{STEM. ED I TOR 
SYSTEM. FILER 
S· .... STEM. LIBRARY 
SYSTEM. LINKER 
S .... ·STEM. LST • TEXT 
SYSTEM.MISCINFO 
SYSTEM. PASCAL 
SYSTEM. STARTUP 
S,(STEM.SWAPDISK 
SYSTEM. S''tNTAX' 
SYSTEM.WRK.TEXT 
SYSTEM ~ WR~: • CODE' 

code 
code 
code 
code 
code 
code 
text 
data 
code 
code 
data 
oata 
text 
cod~' 

comp i I er' 
assemb I er' 
ed i tor' 
f i 1 e harld'l er' 
contains user library routines 
code f i I e li rl~:.er 
default program listing File 
terminal conFiguration inf6 
oper'at ing system 
user-defined bootstrap program 
memory swapped while compiling 
~ompiler syntax erro~ text 
'lJork. tex t f i Ie 
wor~< cod'e f i Ie 

All code files except for the operating systemtcompiler. assem­
bler. arid I ibrar'Y"ar'e execu.table code 'files and carl be irlvoked from 
the system pro~pt;with theX(ec~tg' co~m~nd (see section 2.1.6). 
SYSTEM.MISCINFO may be e~amined and~'m6dified'with ~he Set~putilit~ 
(section 9.3.1). Users ~ay add their own library routines to 
SYSTEM.LIBRARY using th~ Lib~ary Utility '(section 9.2.0).' 

SYSTEM. STARTUP is a user-deFined program which the system executes 
during the system bootstrap before displaying the welcome message 

Page 25 



PDQ-3 System User's Manual 

or system prompt. It ,is used for turnKey applications programs 
which do not require the system. 

While bootstrappingt the system searches for SYSTEM.MISCINFO and 
SYSTEM.PASCAL only on the system volume. To locate the other 
system partst the system search~s the $ystem volume and then all 
other online disK units (ordered by increasing unit numbers) for a 
di5~ volume containing the system titles. 

WorK files (SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE) exist to speed up 
interactive program development; various system parts are automati­
cally invoked when a worK fIle exists. WorK files are described in 
sec t 1 on 2. 2. 1 • 

SYSTEM.SWAPDISK is used by the compiler to save memory during the 
compilation of large programs. If the fol lowing conditions hold: 

1) A 4-blocK file named SYSTEM.SWAPDISK resides on the same 
volume as SYSrEM.COMPILER. 

2) A d~sK'directory must be read onto the heap in order to open a 
f i Ie. 

3) There is insufficient memory to read the directory, 
heap is I arger', than 4K bytes, 

bu t the 

••. then the operating syst~m swaps a section of heap data out to 
the file SYSTEM.SWAPDISK. read the directory into the resulting 
section of memory, open the file, and swap the heap data bacK into 
memory. See section 9.2.2 for more information. 

The default program 115t1ng file SYSTEM.LST.TEXT is described in 
the Programmer's Manual. 

2.1.4.3.1 User File Titles 

User files may hav~ any valid flle title other than the reserved 
system file titles. 

2.1.4.3.2 File Titles with Non-blacK-structured Volumes 

This sectIon describes the consequences of creating files with 
semantically ambiguous designators; i.e., file names pairing a 
non-empty file identifier with a volume identifier specifying a 
non-blocK-structured volume. When a file identifier is appended to 
a serial volume name. it is ignored; the file designator is treated 
as a serial volume identifier. When a file identifier is appended 
to a disK unit number. the disk unit is assumed to contain a disK 
volume with its associated directory; blocK-stru~tured units lacK­
ing directories generate the file system error: 

No dire,tory on volume, 

The reason for this apparent discrepancy in behavior is to maKe 

Page 26 



Oper'a t i ng System 

~isK file 1/0 transparent to serial volumes an~ disK volumes (e.g., 
the directing of a listing file to either a disK file or a 
printer). It should be emphasized here that direct file 1/0 to a 
blocK-structured disK unit is only done in rare circumstances; 
e.g., when it is deemed necessary to dedicate an entire disK unit 
to the creation and maintenance of a single large-capacity file. 

2.1.4.4 File Length and File Length Specifiers 

When a disK file is created and made available for subsequent I/O 
operations, the file system must determine three things: whether 
the volume specified has an available directory entry for the new 
file, how much disK space to al locate for the new file. and whether 
the required disK space is available on the disK. When the 1/0 
operations are completed, the system releases any disK space that 
was al located to but not used by the file; however, while the file 
is available for 110, it reserves all of its al located disK space 
for growing room. 

Files created without a length specifier are allocated the largest 
free space on the volume in order to minimize the possibility of 
growIng files running out of disK space. This causes problems when 
a program attempts to create a number of new files on a disK volume 
having only one free space available; though the number of blocKs 
in the free space might easily contain al I of the completed files, 
the fir'st fi Ie cr'eated is al located at I avai lable disK space ,and 
thus prevents the other files from being created. 

File length specifiers change the file system's disK space al loca­
tion strategy in order to avoid problems such as the one described 
above. The value of the length specifier is treated as an estimate 
of the eventual maximum size (in blocKs> of the file. The file 
system then allocates the specified amount of disK space for the 
file in the first Free space large enough to contain it. For 
example, the fi Ie specifier "[10]" al locates 10 blocKs of disK 
space in the First 10-blocK chunK of free disK space. 

The File length specifier "[*]" is useful when creating multiple­
Files on a single disK; it al locates either half of the largest 
space on the disK or the second largest space, whichever is 
largest. 

The fi Ie length specifier-s "[0]" and U[]" ar'e equivalent to a rlull 
length specifier; they al locate the largest spac, available. 

If a growing file reaches the end of its initially allocated space, 
one of two things occurs. IF the disK space immediately following 
the allocated space is used by an existing file. the file system 
reports a system error; otherwise. the space is part of a Free 
space and the file's al located disK size is extended into the free 
space. 

Length speciFiers may appear in any File designator; however, they 
are ignored by al 1 file operators other than the file creation 
oper'-a tor'. 

Page 27 



PDQ-3 System User~s Manual 

Free spaces are created on disK volumes as a consequence of normal 
disK file creation and destruction. and the disK file implementa­
tion. DisK free space is managed with the K(runch command 
described in chapter 3. 

Page 28 



Operating System· 

2.1.5 Syntax Specificatio~ 

<file designator) 
( f i lei d> 

L<vo I ume i d) ___ t _________ ......;_ .... 1 
< '1O 1 ume i d> 

'<number): 

('1O 1 ume nam.e) ; 

* l ~ . . 
<fi le id> 
-----------(title>---,---------~~-?--------~-------~ 

(suff i x>.J 

[ ] 

A 1 I spaces and contro 1 char'acter's ar'e ignored, and a II lower case' 
alphabetic characters are mapped into their upper case equivalents. 
The fol lowing characters should not be used in a file designator: 
.. $ .. t " = "t " ? "t and .. t " • Th e sec h a r act e r' s a r' e t r' eat e d . s pe cia 1 1 Y b y 
the file handler'S file name prompts (see chapter 3 for more 
details). 

The volume identifier may specify a physical unit by its unit 
number' ("tt<number>:"), a logical volume by its volume name ("(vol 
raame>:"), the system volume ("*:", "*"), or' the pr'efixed volume ( 
nul lt ":"). The volume name may contain any printable characters 
except ... II arId ":" t and has a max i mum 1 eng th of seven charac ters. 

The fi le identifier consists of a tit le follo\ued by an .optional 
suffix and terminated by an optiorlal length specifier. The title 
and suffix may contain any printable characters except "["; their 
combined maximum length is fifteen characters. A disK file~s 
directory entry consists of the catenation of title and suffix; 
this entry must be matched exactly by a file designator~s title and 
suffix in order to locate the disK file. 

The file length specifier is delimited by square bracKets. The 
symbol "m" shown as one of the length specifier options denotes a 
positive integer. 

Page 29 



PDQ-3 System User's Manual 

Examp'es of valid file designators, are: 

*SYSTEM.WRK.CODE[*l 
FOON.TEXT 
SYSTEM.COMPIL.ER 
FLOPPY:SCRUB.BUB.FOTO[10l 

* 
*" " 
112: 
PRINTER: 
DATA 

Page 30 



Oper'ating System 

2.1.6 File Conventions and Applications 

This section describes some system-wide conventions for file name 
prompts. Programs developed by user's should taKe advantage of 
these conventions in order to be consistent with the rest of the 
system. 

2 .• 1.6.0 File Name Prompt Convent'ions 

File name prompts accept file names for one of two purposes: 
locating an existing file to use as an input file, or creating a 
new file to use as an output file. These operations are imple­
mented with the UCSD Pascal file operators; see the Programmer's 
Manual for details and examples, 

2.1.6.0.0 Input Prompts 

Input file prompts appearing in the system are one of two Kinds: 
type checKing prompts, and general prompts. 

Type checKing prompts enforce a weaK form of file type checKing 
(see section 2.1.4.1.0) by expecting only the vol~me identifier and 
file title For input, appending the input with the suffix cor­
r'esponding to the desired type, and opening the input file with the 
resulting file designator. It is assumed that the f.ile suffix is a 
true indication of the file type; therefore, the file designator 
should successFully locate the user's input file only if the user's 
file is of the correct type. Type checKing prompts provide a 
conventionalized "out"; a suffix is not appended if the last 
character in the input is a period (the period is removed). For 
example~ the editor· accepts the fi Ie name "SYSTEM. SYNTAX. II as a 
val id inpu.t text fi le rlame iderltifying the fi Ie "SYSTEM.SYNTAX". 

General prompts are the more forgiving of the two; they accept any 
input as a valid file designator and blithely proceed to open the 
file. If the file system indicates the file was not opened 
successfully, the proper suffix is appended to the input and the 
operation is retried. A variation of general prompts is used by 
the compiler's "include" file mechanism (described in the Program­
mer· ' s Manua I ) • 

2.1.6.0.1 Output Prompts 

Output prompts appearing in the system are one of two Kinds: good,­
and bad. 

Good prompts expect only the desired file title, catenate the 
correct file suFfix, and create the output file. Example of good 
prompts include the compiler code file prompt and the editor's 
output file prompt. 

Bad prompts accept any file specification and create the file. Bad 
prompts have a nasty habit of creating data files (instead of files 

Page 31 



PDQ-3 System User's Manual 

with the expected type), because users accustomed to good prompts 
naively type only a file title as the output file name. Sterling 
examples of bad prompts exist in the linKer and the Library utility 
program. 

2.1.6.1 File Access from User Programs 

This section exists solely to stress that all file system features 
and all file prompt conventions described in the previous sectIon 
are implemented with the language available to the user; no tricKs 
are involved. This implies that user programs can taKe full 
advantage of the file system and prompt conventions for their own 
prompts. 

Page 32 



Operating System 

2.2 Commands and Operation 

This section describes the operating system commands and operation. 
Section 2.2.0 explains how to start the system. Section 2.2.4 
describes all commands available in the system prompt. WorK files 
are descrIbed in section 2.2.1. The system's state flow is 
described in section 2.2.3. Automated invocation of system parts 
is described in sections 2.2.1.1 and 2.2.2. 

2.2.0 Starting the System 

This sectIon describes the actions taKen by the system when it is 
first started. 

The Hardware User's Manual provides instructions for starting the 
PDQ-3 computer and the operating system. When the system Finishes 
its initialization routines, it displays a welcome message at the 
center of the screen: 

SYSTEM: 

12-Apr-81 

ACD/VS UCSD Pascal 3.1 

The system volume name. current system date. 
displayed in the welcome message. The system prompt 
~cross the top of the screen. 

and version are 
then . appears 

NOTE - The reserved file names PROFILE (chap. 7) and SYSTEM.START­
UP (section 2.1.4.3.0) afFect the behavior of the system when it is 
first started. 

NOTE IF the welcome message or system prompt seem to be on the 
wrong part of the screen, consult section 9.3 (terminal conFigura­
t i on) • 

2.2.1 The Wor~ File 

The worK file is a special file which is used as a "scratch" or 
"worK" area for the development of programs and documents. It 
simplifies program development by reducing the number of commands 
required to edit, compile, linK, and execute a program. However, 
the worK file is temporary by nature, and thus susceptible to 
impromptu removal by certain system actions; therefore, the worK 
file contents can be saved in a named disK file. 

WorK File operations are described in section 2.2.1.0. The efFects 
of a worK file on system operation are described in section 
2.2.1.1. 

Page 33 



PDQ-3 System User's Manual 

2.2.1.0 Work File rlanipulation 

The filer commands N(ew, C(et, and S(ave are worK file commands. 
G(et and N(ew create new worK files; if a worK file already exists, 
it is removed. N(ew creates an empty worK file. C(et creates a 
worK file containing a copy of the contents of a named disK file. 
S(ave saves the contents of the worK file as a named disK file. 

The worK file consists of two parts: the worK text file, and the 
worK code file. The worK text file is modified with the editor; 
the editor command U(pdate saves the results of an edit session as 
the worK text file. The worK code file is modified with the 
compiler or linKer; these system parts can be directed to specify 
their output files as the worK code file. The text and code parts 
of the worK file exist separately; thus, the worK file may contain 
a text file, a code file, or both text and code files; in the 
latter case, the code file is always a direct translation of the 
current worK text file. The worK code file is removed whenever the 
worK text file is updated. 

When the worK file is updated, it is written to a disK file named 
SYSTEM.WRK. The worK text file is named SYSTEM.WRK.TEXT. The work 
code file is named SYSTEM.WRK.CODE. These files are always written 
to the system volume. 

More information concerning worK file manipulation can be found in 
the sections describing the commands and system parts mentioned in 
this sectior •• 

2.2.1.1 Work File Effects on System Behavior 

The editor, compiler, and linKer normally request the name of an 
input file; however, if a suitable worK file exists (e.g. worK 
text file for the editor), these system parts proceed automatically 
using the worK file as input. 

The system command R(un has the ability to automatically invoKe 
some system parts in order to execute the current worK file, 
regardless of its suitability for execution. The best example of 
this is to type R(un when only a worK text file exists. The system 
invoKes the compiler to compile the source; if the resulting worK 
code file needs linKing, the linKer is invoKed to produce a linKed 
code file. The system then executes the (linKed) worK code file. 
All this taKes place without requiring the user's attention (though 
rapturous awe is suggested). 

NOTE typing R(un when no worK file exists invoKes the compiler, 
which then prompts for the name of an input file. 

A formal specification of system behavior with respect to work 
files is presented in section 2.2.3. 

Page 34 



Operating System 

2.2.2 Syntax Errors and Edito~ Invocation 

When the compiler detects a syntax error in a source file. the user 
is given the choice of continuing compilation, aborting compila­
tion, or Fixing the error by invoKing the editor. If the latter 
choice is made, the system automatically enters the editor and 
positions the cursor near the error. If the source file being 
compiled is not the worK file, the editor dis~)ays its input file 
prompt; it is necessary for the user to type the correct file name­
in order to pinpoint the error in the text. 

2.2.3 System State Flow Di~gr~m 

This section presents a formal descr~ption of ai' system states 
along with the actions required to reach them. Words enclosed in 
parentheses denote conditions that must be satisfied if the ensuing 
state path is traversed. The list below the diagram contains 
system action descriptors, system condi~ionst and definitions 
relevant to the state diagram. The state flow diagram is on the 
next page. 

Page 35 



Sysboot 
( 1 ) 

PDQ-3 System User's Manual 

[Istartup) _sysprogJ 

• 

Cetcmd ~.~-----------------------------------------------I 

(I) '--Sysinit--~------------------------~--~~~ 

L--Istartup) ~sysprog~ 
(Ii) ~Sysha I t-

(~L..) ~Compon I y L 
I err-or) _sysprog.-J 

• 

F, E, L, X, U, 5) --Sysprog-----------------e.~1 

R) ~ ...... -( I inKed) ~Sysprog--------------...... ~I 

~( urI} inked) .-L inK&go--' Sysprog----' 

-:-Ino code) ...-comp&gol 

~ (error)~Sysprog-------------------•• 

o t h er 5 ) .--C tear s cr' ee n -------------------... 

Note: "(error)'- Syspr-og" sequence invoKes the editor. 

Descriptor 

Sysboot 
Sysinit 
Syshalt 
Cetcmd 
C} ear-screen 
Sysprog 
Compon}y 
Comp&<go 
LinK&go 
(startup) 
«letter» 
(others) 
(linked) 
(unlinKed) 
{no code) 
(error) 

Definition 

$ystem bootstrap 
system reinitialization 
system halt 
system prompt disptayed 
console display cleared 
system/user program invocation 
invoKe compiler or assembler only 
invoKe compiler and run worK file 
invoKe tinKer and run worK file 
SYSTEM.STARTUP code file on system volume 
system prompt command received 
non-command character received 
worK file is linKed code 
worK file is unlinKed code 
worK file is text only 
compiler syntax error 

Page 36 



Operating System 

2.2.4 System Commands 

This section describes the commands available from the system 
prompt. Commands are either completely specified herein or have a 
partial specification and a reference to another chapter in the 
manua 1 • 

The system promptline has the following form: 

Command: X(ecute, S(ubmit, R(un, F(ile, E(dit, C(omp, 
L ( inK, H ( a 1 t, ? [:3. 1 ] 

The system~s release version is enclosed in bracKets at the end of 
the promptline. Typing "?" displays the remaining commands: 

Command: A(ssemble, U(ser restart, I(nitialize 

Typing "?" again returns the original p,-,ompt line. 

2.2.4.0 Clear Screen 

All non-command characters are defined as clear screen commands in 
the system prompt; typing them clears the screen of all characters 
and redisplays the system p~ompt. 

Page 37 



PDQ~8 System User's Manual 

2.2.4.1 A(ssemble 

Executes the program named SYSTEM. ASSMBLER. Assemblers are not 
provided with this release. Users may find it convenient to change 
the name of an oft-used program to SYSTEM.ASSMBLER; it can then be 
executed by typing "A" from the system prompt. 

Page 38 



Operating System 

2.2.4.2 C(ompile 

Executes the program named SYSTEM. COMPILER. The compiler trans­
lates a Pascal source program into a code file. 

If a worK text file is present, it is used as the source file; 
otherwiset the compiler prompts for the source and code file names. 
Both file prompts expect only the volume and file title to be 
typed; the file suffixes are automatically appended. The code file 
prompt has some unique features. Typing <return> updates the worK 
code fi Ie with the code fi Ie. Typing US" writes the code fi Ie to 
the worK code file and saves it with the same name as the source 
, i Ie. 

Compiler operation is described in chapter 5. 

Page 39 



PDQ-8 System User's Manual 

Executes the program named SYSTEM. EDITOR. The editor creates and 
modifies text files. 

If work text file is present, it is used as the input file; 
otherwise, the editor asKs for the name of an input file. Typing 
<return> enters the editor with an empty file. Typing (escape) 
aborts the editor. 

Editor commands ar~ described in chapter 4. 

Page 40 



Operating System 

Executes the program named SYSTEM.FI~ER. The file handler is used 
to manage disK files and disK volumes. 

NOTE - Once the filer prompt appears. the system disK can be 
removed or replaced with another disK volume; however. it must be 
remounted before leaving the filer. 

Filer commands are describ.d in chapter 3. 

Page 41 



PDQ-3 System User's Manual 

Stops the system~ The only way to.r~sta~t the system is to reboot 
(see chapter 8 and section 2.2.0). 

Page 42 



Operating System 

2.2.4.6 I(nitialize 

Causes the system to reinitialize all of its state information. 
This involves initialization of all online 1/0 devices and system 
data structures. System programs are searched for and located on 
online disK volumes. If the code file SYSTEM.STARTUP exists on the 
system volumet it is executed before the system prompt appears. 
SYSTEM.STARTUP is described in section 2.1.4.3.0. 

AI. non-fatal execution errors (see Appendix B) cause the system to 
automatically invoKe the l(nitialize command. 

Page 43 



PDQ-3 System U5~r's Manual 

Executes the program named ·SYSTEM~LINKER. The linKer is used to 
combine user programs with separately compiled library routines to 
form executable code files. 

LinKer operation is described in ch~pter 6. 

Page 44 



Operatin9 SYiFtem 

Executes the worK code file. If the worK ~ode file does not exist, 
the compiler is automatically invoKed. The behavior of the R(un 
command with respect to wo~K files is described in sections 2.2.1.1 
and 2.2.3. 

Page 45 



PDQ-3 System User's Manual 

2.2.4.9 S(ubmit 

Executes the program n.med X.CODE on the system volume. X.CODE is 
assumed to contain the command-file interpreter program. which 1S 

used to control the system'~ operation with a command file. 

Command file specificati9n and operation are described in chapter 
7. 

Page 46 



Oper'a t inl1) System 

2.2.4.10 U(ser restart 

Reexecutes the last program. This command 
compiler or assembler. and does not worK if the 
reinitialized. 

Page 47 

cannot restart the 
system has been 



PDQ-3 System U~er's Manual 

Executes the specified code fire. 

X(ecute prompts for a code file name. 
automatically appended to the file name. 
code f i Ie (sec t i or. 2. 1 .4. 1 .0. 1 • 1 ) • 

Page 48 

The fi Ie suffix ".CODE" is 
The file must be a linKed 



File Handler 

III. THE FILE HANDLER 

The file handler (referred to as the "filer") manages worK files, 
disK files, disK volumes, and disK media. The file system is 
closely tied to filer operation, and should be thoroughly under­
stood before using the filer; the file system is described in 
Chapter 2. Section 3.0 describes the filer's prompting peculiari­
ties. Section 3.1 describes the file naming conventions that apply 
to f i I er prompts, and intr·oduces the "wi I dcard" concept; wi' dcards 
allow a Single file designator to specify several disK files, and­
thus a single filer operation to manipulate several files at once. 
Section 3.2 describes the filer commands; the command summary 
groups the commands by their function, while the alphabetically 
ordered I ist describes each command in detai I. Sections 3.-3 
through 3.5 describe methods for recovering inadvertently removed 
disK files and directories, and also how to change disK file 
attributes. 

3.0 Filer Prompts 

The filer's promptline has the following form: 

~iler: G(et,S(ave,W(hat,N(ew,L(dir,R(em,C(hng,T(rans,D(ate, 
Q(uit[3.0.bJ 

The remaining commands are displayed by typing "?": 

:iler: B(ad-bIKs,E(xt-dir,K(rnch,M(aKe,P(refix,V(ols,X(amine, 
Z(ero[3.0.bl 

Typing "7" again causes the original promptline to reappear. 

In the filer, responding to "yes/no" questions with any character 
other than ny" or "y" constitutes a negative response. Typing 
(escape) as a response to any data prompt aborts the current 
command and returns control to the filer prompt. 

Many filer commands require one or two file names. Whenever a 
filer command requests a file name, the user may specify as many 
files as desired by separating each file name with commas and 
terminating the list with a carriage return. Commands operating on 
Single files read the names from the list and operate on them one 
at a time until there are none left. Commands requiring two file 
names (e.g., C(hange and T(ransfer) taKe them from the list in 
pairs until one or none remain; if one file name remains, the filer 
prompts for the second. If an error occurs while operating on the­
list (such as an invalid file name), the remainder of the list is 
not processed. 

Page 49 



PDQ-3 System Reference Manual 

3.1 File Naming Conventions 

3.1.0 General Syntax 

The filer accepts standard syntax for file names (see section 
2.1.5). Al 1 filer commands except for C(et and SCave require 
complete file names, including file identifier suffixes; G(et and 
S(ave automatically append file suff.ixes to the specified file 
title. 

The "$" character' is treated speciall y \1}hen used irl a fi Ie name; It 

is applicable only to filer commands which operate on pairs of file 
names. Wherl u.sed irl the second f i 1 e name. a "." represents th~ 
file identifier in the first file name. For example: 

TransFer what file? *BUCKS.TEXT,#5:. 

• • • transfer's the f i 1 e "BUCKS. TEXT" on the system vo I ume to the 
disK volume mounted in disK unit 5. The filer substitutes the 
string "BUCKS. TEXT" for the "$" character. 

Volume identifiers normal ty require a trailing ":" character to 
differentiate them from file identifiers; however. filer prompts 
accept volume identifier's of the form "#<number>". This feature 
appl ies ortly to volume identificatiorl and' not to disK fi Ie 
des i g nat i orl • 

3.1.1 Wi 1 dcal"'ds 

The cr,aracters "=" and "?" are treated specia 11 y wher. used irl a 
f i 1 e rl am e; the y a r' e c a I led " \IJ i 1 d car' d" c h a r act e r' s be c au s e 0 f the i r' 
ability to maKe a single file designator specify many disK files. 
Wildcard characters are used in conJunction with partially speci­
fied file identifiers in order to match a subset of al 1 the file 
n am e sin a g i v e r. d ire c tor y • For e x a mp 1 eta f i led e s i gr. a tor 
containing the file identiFier' "S·tS=TEXT" notifies the filer' to 
perform the requested operation on all files whose names begin with 
the strirlg "S'y'S" and end with the strirlg "TEXT". 

Wildcard file identifiers are constrained to match this form: 

(string>=(string> 

The metasymbol (string> represents a sequence of valid 
identifier characters. Either or both strings may be empty; 
"=<strirlg>", "<strir,g>="t and "=" are val id wi ldcard forms. 
last case, where both strings are empty, the filer acts on 
disK fite in the specified volume's directory. 

f i Ie 
thus, 

In the 
every 

The crfar·acter .. ? .. may be used in place of "=" as a wi ldcard. U?,. 
is functional ty equivalent to "="; however, for each file that 
matches the wildcard specificationt the filer issues a verification 
prompt before performing the requested operation. 

Page 50 



F i 1 e Hand I er 

Here are some examples of the use of wildcards: 

Transfer what file? 14:SYSTEM.=tALTDISK:=.CODE 

This response transfers al 1 system files to the online volume named 
"ALTDISK"; in addition, the system fi les appear as code fi les on 
ALTDISK. For instance. SYSTEM. FILER becomes FILER. CODE. 

Remove what file? *? 

This response qenerates a series of prompts of the form: 

URemove <file name>?" 

.t. where <file name> is the name of a disK file on the system 
volume. The number of prompts generated equals the number of disK 
fi les on the system volume. For each prompt. typing "y" or· ")'" 
removes the named file; typing any other Key except (escape> 
preserves the file and generates the prompt for the next disK file; 
typing <escape> aborts the entire R(emove command. 

WARNING In some cases, wildcards may fail to match valid file 
names. Section 3.2.14.1 describes some other problems associated 
with the use of wildcards. 

3.2 Filer COMmands 

Section 3.2.0 organizes the filer commands by function and is 
useful as an overview and cross reference. Sections 3.2.1 through 
3.2.18 describe each command in detai I; the c,ommands ar'e .arranged 
in alphabetical order. 

3.2.0 Filer Command Summary 

Q(uit - leave the file handler and return to the system prompt. 

3.2.0.0 WorK File Commands 

WorK files are described in section 2.2.1. 
manipulate worK files: 

These filer commands 

G(et - Create a new worK file (containing the contents of an 
existing file). 

S(ave - Save the worK file contents in a disK file. 

N(ew - Create a new worK file (empty). 

W(hat - Display the name and status of the worK file. 

Page 51 



PDQ-3 System Refe~ence Manu~l 

3.2.0.1 DisK File & Volume Commands 

DisK volumes and files are described in section 2.1. 
commands manipulate disK files and volumes: 

These filer 

C(hange - Change the name of an existin~ disK file or volume. 

T(ransfer Transfer a disK file to another location on its 
disK volume or to another volume. Transfer an entire 
disK volume to another disk volume. 

R(emove - Remove a disK file. 

M(aKe - Create a disK file. 

3~2.0.2 Disk Volume Commands 

These commands manipulate disK volumes only: 

L(dir - List the contents of a disK directory. 

E(xt-dir - List the complete contents of a disK directory. 

D(ate - Change the system date. 

K(runch 
files. 

Remove al I free disK space between existing disK 

P(refix - Change the current prefixed volume name. 

V(olumes - Display the volume names of all online volumes. 

Z(ero - Initialize a disK volume by removing all existing file 
entries. 

3.2.0.3 Disk "edia Commands 

These commands checK for and repair damaged areas of disK media. 

B(ad blocks 
blocKs. 

scan a blocK-structured unit for damaged disK 

X(amine - Examine and attempt to repair damaged disK blocKs. 

Page 52 

f 
-\ 



File Handler 

3.2.1 B(ad bloc~s scan 

Scans a disK for blocKs that are not storing information reliably. 

The filer prompts for the volume to be scanned.' Each blocK of the 
named disK is checKed for problems; the blocK number of the blocK 
currently under testing is printed out. along with a warning 
message if the blocK is bad. 

Bad blocKs are either repaired or permanently marKed bad with the 
X(amine command. 

Bad blocKs scanning is performed much more efficiently with the 
utility program Bad.blocKs (section 9.0.4). 

Page 53 



PDQ-3 System Reference Manual 

3.2.2 C(hange 

Changes the name. of a disk file or disK volume. 

This command requires two file names: the name to be changed, and 
the new name. The first is separ·ated from the second by either a 
<return> or a comma. 

When changing the name of a disK file, a volume identifier or 
length specifier .in the· second file name is ignored. A file name 
is not changed if the new name exceeds 15 characters; instead, an 
error message is printed. 

Wi ldcar·d specifications ar'e le.gal .with this command. If a wi ldcar'd 
char'acter' is used in the first fi Ie r,ame, then it must be used in' 
the second; the strings matched by the first wildcard are substitu­
ted for the second wildcard. 

Example of changing a disK file name: 

Change what file? DUMP;=.BACK,=.TEXT 

This response changes al I bacKup files on the disK volume named 
DUMP to text files. 

When changing the name of a disk volume, a file identifier in the 
second File name is illegal. A volume name is not changed if the 
new name exceeds 7 characters; instead, an error message is 
printed. 

Example of changing a disK's volume name: 

Change what file? #4,WORK: 

This response changes the name of the disK volume mounted in drive 
4 to "WORK". 

Page 54 



File Handler 

Displays the current system date, and allows the date to be 
changed. 

Prompt: Date Set: (1 •• 31)-(Jan •• Dec)-<OO •• 99) 
Today is 30-Feb-Sl 
New date? 

New date entries have the following form: 

[<new day)[-<new month)[-<new year)llJ<return) 

Typing <return> preserves the current date.· The metasymbol <new 
day> is an integer between 1 and 31. <new month> is the first· 
three characters of the month's name (extras are ignored). <new 
year> is an integer between 0 and 99. denoting the last 2 digits of 
a year in this century. 

NOTE "I" may be 
delimiter shown above. 

used as an alternate character to the 

The current date is saved in the system's information file and is 
displayed in the welcome message and the D(ate command. When disK 
files are created or modified t the system assigns the current 
system date to the file; file dates are displayed by the directory 
listing commands L(dir and E(xt-dir. 

Page 55 



PDQ-3 System Refe~ence Manual 

3.2.4 E(xtended list 

Lists a disK directo~y in more detail than the L(dir command. 

AI I files and unused a~eas are listed; the fields displayed (in 
o~der) are: file name, file length (irl blocKs), date of file 
creation or last modification, starting blocK address (relative to 
disK), number of val id bytes in the last blocK of the fi le1 and 
file type. Only the blocK length and starting address fields apply 
to unused areas of disK. 

This command is identical to the L(ist di~ecto~y command with 
respect to I isting options and wildca~ds. 

Example of an extended directory listing: 

- PROSE: 
START. TEXT 4 15-Jan-81 10 512 Textfi Ie 
, 
' ... UNUSED :> 18 14 
CHAP3A.TEXT 48 5-Jan-81 82 512 Textfile 
PROSE. CODE 33 24-May-80 80 512 Code f i Ie 
PROSES. CODE :35 26-Nov-80 113 512 Codef i Ie 
< UNUSED > 32 148 
BEST. DATA 16 15-Jan-81 180 314 Datafile 
CONT.TEXT 18 5-Jan-81 196 512 Textfile 
<: UNUSED > 280 214 
6/6 fi les< I isted/in-dir>, 154 blocKs used, 3:30 ur,used, 
280 i rl largest area 

Page 56 

-( 



File Handle~ 

3.2.5 G(et 

Creates a new wo~K file. The worK file initially contains a copy 
of the contents of the specified text file. 

If a worK file exists, but is not saved, this p~ompt appea~s: 

Throwaway current worKfi1e? 

Typing "y" proceeds with the command. Typing any other character -
aborts G(et, saving the current worK file. 

The fol lowing prompt appea~s: 

Cet what file? 

The file name does not require a suffix; it is appended by the C(et 
command. The file name designates a text and/or code file as the 
worK file. 

NOTE - A disK file is not created by C(et. If the worK file 
SYSTEM.WRK exists, it is removed. The specified disK files become 
the source of the new worK file. Subsequent modifications to the 
worK file are saved in a new disK file named SYSTEM.WRK. 

WorK files are described in section 2.2.1. 

Page 57 



PDQ-3 System Reference Manual 

3.2.6 J«runch 

Moves all disK files on the specified disK volume to the front of 
the disK. thus merging al l unused disK space into one contiguous 
area at the end of the disK. 

Before crunching a disK volume. be sure to perform a B(ad blocKs 
scan; files can be lost by writing them on top of unmarKed bad 
blocKs on the disK. If found. bad blocKs must either be fixed or 
marKed with the X(amine command before crunching the disK; the 
K(runch command carefully avoids disK blocKs already marKed as 
"bad" • 

NOTE - If the file SYSTEM.PASCAL is moved while K(runching the 
system disK, the system indicates that it must be rebooted. 

WARNING nothing must happen to the system while crunching is in 
progress. Interrupting a disK crunch may ruin the contents of a 
disK volume; therefore, the following steps should be taKen while 
crunching: 

1) Do not type ahead any system commands during a crunch. 

2) Do not disturb any of the online disK volumes. 

3) As much as is possible, prevent accidental power-down of the 
system. 

Example of using K(runch: 

Crunch what vol? 15 

The user has specified the crunching of the disK volume in drive 5. 
The system responds with the Following question to determine the 
sincerity of the user's K(runch command invocation: 

Are you sure you want to crunch (volume identifier> ? 

A .. ) .... or· "y" answer· initiates the cr·urlch. Any other- char·acter 
aborts the command. 

Page 58 



File Handler' 

3.2.7 L(ist directory 

Lists all, or some subset of, the files in the disK directory of 
the specified disK volume. The directory listing may be displayed 
on the console or written to a file. 

The list command displays this data prompt~ 

Dir listing of what vol? 

Responses have the following form: 

[(volume id)[file identifier]][,[(file name)]] 

The optional volume field specifies the disK volume whose directory 
is to be listed; its default value is the current prefixed volume. 
When the optional file identifier is used, the directory listing 
contains only the files whose names match the given file identifier 
(wildcards are used here to designate a group of similar file 
names) • 

The optional file name field specifies the name of the file to 
which the directory listing is to be written; its default value 
sends the listing to the console. 

The directory listing consists of a list of file entries fol lowed 
by some disK status information. A file entry contains a file's 
name, length (in blocKs), and date. (The E(xt-dir command displays 
more file information.) The status information includes the number 
of files listed versus the total number in the directory, the 
number of blocKs used by existing disK files, the total number of 
unused blocKs, and the number of contiguous blocKs in th. largest 
unused space. 

The most common use of this command is to list an entire disK 
directory to the console; when the listing is too long to fit on 
the screen, the fol lowing prompt appears after a screenful of file 
entries: 

Type <space) to continue 

Typing (space> causes the rest of the listing to be displayed. 
Typing <escape) aborts the listing command. 

Page 59 



PDQ-3 System Reference Manual 

Some examples of directory listing responses: 

Dir listing of what vol? , 
or ••• 
Dir listing of what vol? : 

••• list the directory of the prefixed volume. 

Dir listing of what vol? *SYSTEM= 

•• t lists al I of the system files on the system volume. 

Dir listing of what vol? .4:=.TEXTtMYDIS~:DLIST.TEXT 

••• lists al I of the text files on the disK volume in drive 4 ahd 
writes the listing to the text file "DLIST.TEXT" on the online disK 
yolume "MYDISK". 

An example of a directory listing: 

PROSE: 
START. TEXT 4 15-Jan-Sl 
CHAP3A.TEXT 48 5-Jan-81 
PROSE. CODE 33 24-May-SO 
PROSE3.CODE 35 26-Nov-80 
BEST. TEXT 16 15-Jan-81 
CONT.TEXT 18 5-Jan-81 
6/6 files(listed/in-dir>, 154 blocKs used, 330 unused. 

280 in largest area 

Page 60 

-( 



F i I e Hand I er· 

3.2.8 M(aKe 

Creates a disK file with the specified file name. 

File length specifIers are extremely useful in conjunction with 
this command; they specify the length of the file to be created, 
and indirectly determine the location of the file on the disK. 

Sections 3.3 through 3.5 describe applications of this command, 
which include the recovery of lost files and the manipulation.of 
existing disK files and free spaces. 

Some restrictions eXist with respect to the creation of text files. 
A text file must be created with an even number of blocKs and 
contain a minimum of four blocks. Text flies specifYIng a length 
of less than four blocKs are not accepted, and odd blocK lengt~s 
are rounded down to the closest even number. 

Wildcards are not al lowed. 

Example of using the MaKe command: 

MaKe what file? *STUFF[7J 

t •• c rea t est rl e d a t a f i I e"S TU F F It i nth e fir· s t 
unused 7-blocK area on the system volume. 

Page 61 



PDQ-9 System Reference Manual 

Creates a new worK file. The new worK file is empty. 

If a worK file exists t but has not been saved. this prompt appears: 

Throw ~way current worKfile? 

Typing "y" or "V" removes tHe worK file; typing any other character 
aborts the command. 

NOTE - If the worK file SYSTEM.WRK exists, it is removed. BacKups-
of the worK file (i.e. SYSTEM.WRK.BACK) are unaffected by N(ew, 
and must be manually removed. 

Page 62 



File Handler 

3.2.10 P<refix volume 

Changes the current prefixed volume to the volume specified. 

This prompt is displayed: 

Prefix titles by what vol? 

A valid response contains a volume identifier; any associated file 
identifer is ignored. The volume specified need not be online. 

If the volume identifier contains a unit numbert the prefixed 
volume is set to the name of the volume in the specified disK 
drive. If no volume is online in the disK unitt the prefixed 
volume is set to the unit number itself. and the prefixed volume is 
defined to be whatever disK volume is mounted in that unit. 

The current prefixed volume can be determined by respondIng to the 
data prompt with ":" (this actual ly sets the new prefixed volume to 
the current prefixed volume). 

Page 63 



PDQ-~ System Reference Manual 

Exits the filer and returns control to the system prompt. 

NOTE - The system disK should be remQunted in the proper disK drive 
before typing Q(uit. 

Page 64 



F i 1 e Hand 1 er' 

3.2.12 R(emove 

Removes Files From the directory. 

The Files specified are removed From the disK; the disK space they 
occupied is marKed as unused space, and their directory entry is 
erased and made available for future files. Length 'spec4fi~rs are 
ignored in File names, and wildcards are' al lowed. 

BeFore completing the removal of files matched by a wildcard File 
name, the f i 1 er d i sp I a ys th i s prompt: 

Update directory? 

Responding \lJith a lOy" or' "''{" causes al I of the matched fi les to be 
removed. Typing any other character aborts the command and save~ 
all the Fi lest 

NOTE - SYSTEM.WRK.TEXT and/or SYSTEM.WRK.CODE should be removed 
only by the N(ew command; usirig R(emove to remove them Fails to 
update the system's work file state variables and may result in 
confusing system behavior. 

NOTE - When a disK file is removed, its data is not destroyed; only 
the directory entry that locates and protects the file's data is 
removed. Thus, inadvertently removed disK files may be recovered 
without harm if immediate actions are taKen. See section 3.3 for 
more information. 

Page 65 



PDQ-3 System Reference Manual 

Saves the worK file contents in a disK file. 

If the worK file originates from a disK file other than SYSTEM.WRK, 
this prompt appears: 

Save as <file name>? 

Typing "y" or "Y" writes the worK file contents to the disK File 
named by the prompt. Typing any other character generates the 
prompt described below. 

If the worK file has not been saved (or the user "fel I 
from the above prompt). this prompt appears; 

Save as what file? 

through, .. 

The specified file name must not contain a file suffix or length 
specifier; the appropriate suffix (.TEXT or .CODE) is automatically 
appended to the file name response. Wildcards are not allowed. 

NOTE If the worK file contents are saved on the system volume, 
the file SYSTEM.WRK is C(hanged to the specified file name; the 
resulting disK file becomes the source of the worK file. If the 
worK file contents are saved on a different volume, SYSTEM.WRK is 
T<ransferred to the volume with the specified file name; the source 
of the worK file remains in the file SYSTEM.WRK. 

Page 66 



F i 'e Hand I er 

3.2.14 T(ransfer 

Copies the specified disK file or disK volume to the specified 
destination. 

This command requires two file names: the source file and the 
destination file. The pair of names may be separated by either a 
comma or <return>. Complete file names must be provided. Length 
specifiers are ignored in the source File name, but are recognized 
in the destination File name as a means of controlling the location 
of the destination file. Wildcards are allowed. 

T(ransfer is used for the following tasKs: 

1) Copying disK files onto different disK volumes. 

2) Cop yin g en t i r· e dis 1.( v 0 I ume son t 0 d iff e r· e n t disK s ( t rio ugh the 
BacKup utility does a better Job of It). 

3) Transferring files to and from the console, printer, or 
r·emote dev i ce. 

_ .4) Moving disK files to other locations on the same disK volume. 

Transfers from serial units are al lowed if the device can generate 
data; gener'ally, only the console is used in this fashion. Files 
em a nat i n 9 From a s e r' 1 a Ide vic ear' e t e r' m i rl ate d b Y the t r a rl s m iss ion 
of arl end-oF-fi Ie flag; this is done fr'om the terminal by typing' 
<eof>. 

Length speciFiers are useful for control ling the location of disK 
Files written to the destination volume. For instanc~, if a 
25-blocK unused area is at the front of a volume, and a 25-blocK 
disK file is to be transferred to the volume, the File can be 
written directly to the unused space by adding the length specifier 
"[25]" to the destirlatiorl fi Ie rlame. Without the length specifier', 
the filer writes the file into the largest available free space on 
the destination volume. 

NOTE - See section 3.2.14.1 for problems with T(ransfer. 

Page 67 



PDQ-3 System Reference Manual 

Examples of disK file transfers: 

Transfer what file? *system.=tI5:S 

_.J. J transfers copies of all system files on the system volume to. 
the disK volume mounted in unit 5. 

Transfer what file? stuff.text. stuff.text(25J 

•.• tr'ansfers the fi Ie "STUFF. TEXT" to an u.nused ar'ea of disk 
containing at least 2S contiguous blocKs. 

Transfer what file? WORK:,BACKUP: 

. I. copies the entire disK volume "WORK~ onto the disK volu~e 

"BACKUP", destroying BACKUP's existing contents. When the transfer 
is completed, two ider,tical disK. volumes r,amed "WORK" ar'e onl ine. 

Transfer what file? DOCUMENT. TEXT. PRINTER: 

••• prints the text fi)e "DOCUMENT.TEXT" on the prir,ter" 

Page 68 



File Handler 

3 .• 2.14.0 Single-drive Transf'ers 

Filer operations involving two distinct disK volumes are easily 
performed with a system having two disk drives online; howevert 
they can also be performed using a single online disK drive. 

Example of a single-drive.transfer: 

Transfer what file? WORK: IMPORTANT. TEXT 

To where? BACKUP:$ 

The disK va I ume II WORK" m.~a.l_Q.Q.l be r'emoved un til 
prompt appear's; 

Put in BACKUP: Type <space) to continue 

the fo I lowing 

At this point, the disK volume "WORK" is r'emoved from the dr'ive and 
replaced with the disK volume "BACKUP", and <space) is typed. 
Transfers of large files or entire disK volumes generate a series 
of prompts having the form: 

Put in <volume name>; Type <space> to continue 

••• where <volume name> alternates between the name of the source 
and destination volumes until the transfer is complete. Transfer­
ring entire disK volumes in this fashion is a tedious process, as 
the filer can only buffer as much data as it can fit in memory; the 
user must suffer through numerous disK swappings. 

NOTE - Failure to mount the correct disK volume after a volume 
prompt Jeopardizes the successful transfer of files; Keep. the disK 
volumes straight! 

Page 69 



PDQ-3 System Reference Manual 

3.2.14.1 Transfer Problems and Warnings 

WARNING - Unless entire disK volumes are being transfered, the 
des tin a t i on's f i lei den t i fie r l].~a1._Q.Q.!. be 0 mit ted; 0 the r· w i s e , the 
directory of the destination volume may be destroyed. Transfers to 
a destination disK volume are verified with the prompt: 

Possibly destroy directory of <volume name) ? 

Typing "y" or ".'1"" commences the dis~( tr·ansfer, and overwri tes the 
existing directory; typing any other character aborts the transfer 
and spares the directory. 

Example of directory destruction: 

Transfer what file? MYDISK:DIR.WHAM.CODE,VICTIM: 

WARNING Wildcards should not be used in file names when 
transferring files to dlfferent locations on the same disK volume; 
the results are unpredictable. 

Example of bad wildcards: 

TransFer what file? =,= 

WARNING Transfers of entire disKs lacKing directories may fail, 
as the filer depends on directory information to determine the 
number of blocKs on the disK to transfer. If the information is 
not present, the filer transfers data in integral buffer quantities 
until no more can be transferred; depending on the disK size, the 
last (remainder) part of the disK may not be transferred. This 
problem can be avoided by using the BacKup utility (section 9.0.1) 
to copy entire disK images. 

NOTE - The filer does not allow any other characters or strings to 
be associated with "$" in a fi Ie name; for· instance: 

Transfer what file? FOON.TEXTt$[SOJ 

t.. is not accepted by the Filer. An alternative method exists 
for· t a Kin gad van tag e 0 f .. $ " in t his sit u a t i or. : 

Transfer what file? FOON.TEXT[SOl,$ 

The length specifier is ignored in the source file name, but the 
"$" carries it over to the destination name where it is recognized. 

Page 70 



File Handler 

3.2.15 V(olumes online 

Lists all volumes currently online along with their assigned unit 
numbers. 

A typical volume display is: 

Volumes on-line: 
1 CONSOLE: 
2 SYSTERM: 
4 * M'YD I 51< 
5 I EXTRA: 
8 REMOUT: 
Prefix is - EXTRA 

An asterisK ("*") marKs the system volume. Online disk volumes are 
indicated by "*" or "I". The currerlt pr"efixed volume is displayed 
at the bottom. 

NOTE The presence of a disK volume name in the list indicates 
that the volume is online. On the other hand t the presence of a 
serial volume name merely indicates that the system supports the 
corresponding device; the device itself may be online or offline. 

Page 71 



PDQ-3 SY$tem ReFerence Manual 

3.2.16 W(hat is worKfile? 

IdentiFies the name and state of the current worK File. 
File state is either "saved" or "not saved". 

Page 72 



File Handler 

3.2.17 X(amine bad blocKs 
-

Attempts to physically recover suspected bad blocKs, and marK 
unrecoverable blocKs as unusable. 

Example of using X(amine; 

Examine blocKs on what volume? 

After specifying a volume name or unit number, the Fol lowing prompt 
appears; 

Block number range? 

The user enters the blocK number(s) 
(section 3.2.1 describes one method of 
numbe~ ranges have the fol lowing form: 

<blocK number)[-<blocK number)] 

of suspected bad blocKs 
detecting them). Bloc~ 

When the optional part is used, al I blocKs between the two blocK 
numbers speciFied are examined. 

If any files are endangered by containing bad blocKs, the following 
prompt appears: 

File(s) endange~ed: 
<File name> 
Tr·y to Fix them? 

Typirlg y or "1''' star·ts the Fixing pr'ocess orl the named blocKs; 
typing any other character abort~ the command. When completed t 

X(amine returns one of these messages: 

BlocK <blocK number> may be oK 

••• indicating that the blocK is probably fixed, or tt. 

BlocK <blocK number> is bad 

••• indicating that the blocK is a hopeless case, X(amine ofFers 
the user the option of marKing hopeless blocKs as Files of type 
"bad", These fi les are not shiFted by the K(runch command; their 
presence prevents regular Files From being written over bad areas 
of the dis~<. 

WARNING A "Fixed" blocl< may contain gar'bage as data; the fixing 
process can only ensure the in~egrity of subsequent write oper­
ations to the fixed blocK. BlocK-fixing is done by reading up a 
bloc~:', \vriting it out, arid reading it up again. IF the two read 
operations bring in identical data without raising any 1/0 errors, 
the bloc~:' is consider'ed fixed ("may be o~C'); other\l}ise, the blocK 
is declared bad. 

Page 78 



PDQ-3 System Reference Manual 

3.2.18 Z(ero directol"'Y 

Writes an empty directory on the specified disK. 

Z(ero is used to build new disK volumes on either brand new disKs 
or obsolete disk volumes. If an old volume resides on the disK. 
some of its volume information is assumed to be applicable to the 
new disK volume; the prompt sequence is changed accordingly. 

NOTE - Z(ero automatically marKs all disKs to contain duplicate 
directories. 

3.2.18.0 New DisKs 

The fo) lowing prompt appears: 

Zero dir of what vol? 

The volume identifier of the disK to be zeroed is specified. The 
next prompt is: 

Number of blocKs (8-494 D-988 Q-1976)?: 

Any positive integer may be entered. The numbers displayed are 
standard values for single density (8), double density (D), and 
double density/double-sided (Q) 8-inch floppy disKs. The next 
pr·ompt is: 

Ne\1J vo 1 name? 

Any valid volume name may be entered. 
veriFied by the next prompt: 

<volume name) correct? 

The entered volume name is 

Typing "y" or· "Y" zeroes the dis~~; typing any other char·acter· 
aborts the command. In both cases, control returns to the filer 
prompt. 

NOTE - Brand-new disks should be formatted with the Format utility 
(section 9.0.3) before being Z(eroed. 

3.2.18.1 Recycling Old Volumes 

If the disK specified for zeroing contains an existing disK volume, 
the fol lowing changes occur to the prompt sequence defined in the 
previous section. Before the blocK number prompt, the Z(ero 
command is verified with the prompt: 

Destroy {current volume name>? 

Typing "y" or "Y" corltir:-Iues the prompt sequerlce; typing any other· \ 
character aborts the command. 

Page 74 



File Handler 

Instead of requesting the number of blocKs on the disK, the filer 
assumes that the new disK volume has the same number of blocKs as 
its ancestor, and prompts: 

(blocK number> blocKs? 

••• where <blocK number> is the number of blocKs in the obsolete 
disK volume. Typing "y" or "Y" uses the existing value for the new 
volume; typing any other character generates the blocK number 
prompt described in the previous section. 

Page 75 



PDQ-3 System Reference Manual 

3.3 Recoverin9 Lost Files 

Files may be lost by explicit removal or by creation of a new file 
having the same name as an existing file; in both cases, the 
directory entry for the existing file is erased, and the file 
appears to be permanently lost. This is not always true. This 
section describes a method for recreating removed files. 

When a disK file is removed, the file itselF is still on the disk; 
only its associated directory entry is erased. However, the disk 
space occupied by the removed file is marked as unused space; any 
subsequent activity involving the writing of data to the disK may 
overwrite the file's contents. Therefore, the probabil ity of 
recovering a lost File is directly related to the disK activity 
occurring between the removal of the file and the discovery by th~ 
user of its nonexistence. 

The E(xtended directory list command displays both Files and unused 
areas on a disK volume. The obJect of this method is to determine 
which area marKed as unused space on the disk contains the missing 
File, and then to use the M(ake command to create dummy files of 
various sizes until the position and size of one of the dummy files 
coincides with the missing file (see section 2.1.4.4 for a 
description of file space al location directives). If this stage is 
reached, recovery consists of removing any other dummy files 
created during the hunt, and changing the name of the coincident 
dummy file to the name of the missing file. 

NOTE - Files created with M(aKe cannot write over the data in the 
missing file; they are merely directory entries associating a file 
name with a group of blocKs on the disK. 

File recovery IS easiest when the file's size and location are 
Known beforehand; the fol lowing example is a demonstration of this 
case. The process becomes more difficult when some of the 
parameters are unKnowns; several iterations of creation and removal 
of dummy files may be necessary before the missing file is located 
and contained. 

Of the various file typest it is easiest to verify the capture of 
text files; dummy text files viewed in the editor immediately 
reveal their contents. Data and code files are comparatively 
difficult to capture; verification of their contents requires a 
Knowledge of their underlying structure and the utility programs 
Patch. Library. and Libmap (described in chapter 9). Data file 
structures must be Known by the user. Code file structures are 
described in the Architecture Guide. 

Page 76 



File Handler 

Example of recovering a lost text file: 

Here is a pre-accident directory listing: 

PROSE: 
START. TEXT 4 15-Jan-81 10 512 Textfile 
< UNUSED > 18 14 
CHAP3A.TEXT 48 5-Jan-81 32 512 Textfile 
PROSE. CODE 33 24-May-80 80 512 Codefile 
PROSE3.CODE :35 26-Nov-80 113 512 Codefile 
< UNUSED > :32 148 
BEST. TEXT 16 15-Jan-81 180 512 Textfile 
CONT.TEXT 18 5-Jan-81 196 512 Textfile 
< UNUSED > 280 214 
6/6 files<listed/in-dir>. 154 blocKs used. 3:30 unu.sed 

The valuable file BEST.TEXT is now accidentally removed by the 
creation of a neUJ file BEST.TEXT; fortunately. the user' is aler·t 
enough to remember the location of the old BEST. TEXT. Here is the 

i 

current situation: 

PROSE: 
START. TEXT 4 15-Jan-el 10 
< UNUSED > 18 14 
CHAP3A.TEXT 48 5-Jan-81 32 
PROSE. CODE 33 24-May-8Q 80 
PROSE3.CODE 35 26-Nov-80 113 
< UNUSED > 48 148 
CONT.TEXT 18 5-Jan-81 196 
BEST. TEXT 16 15-Jan-Sl 214 
< UNUSED > 264 230 

512 

512 
512 
512 

512 
512 

Textfile 

Textfile 
Codefile 
Codef i Ie 

Textfile 
,Textfi Ie 

6/6 fi les<l isted/in-dir>, 154 blocKs used. 330 unused 

Page 77 



PDQ-3 System Reference Manual 

The dummy files are created ~ith the M(aKe command. DUMMYI 
.TEXT[l81 fills the l8-blocK unused area at the front of the disK. 
DUMMY2.TEXT[321 fills the first 32 blocKs of the 48-biocK unused 
area that contains the missing file. DUMMY3.TEXT(161 fil ls the 
last 16 blocKs of the 48-biocK area, and coincides with the old 
copy of BEST. TEXT. The directory now appears as: 

PROSE: 
START. TEXT 4 15-Jan-81 10 
DUMMY1.TEXT 18 15-Jan-81 14 
CHAP3A.TEXT 48 5-Jan-81 32 
PROSE. CODE 33 24-May-80 80 
PROSE3.CODE 85 26-Nov-80 113 
DUMMY2.TEXT 32 1S-Jan-81 148 
DUMMY3.TEXT 16 15-Jan-81 180 
CaNT. TEXT 18 5-Jan-81 196 
BEST. TEXT 16 1S-Jan-a1 214 
< UNUSED ? 264 230 

512 
512 
S12 
512 
512 
512 
512 
512 
512 

Textfile 
Textfile 
Textfile 
Codefile 
Codefile 
Textfile 
Textfile 
Textfile 
Textfile 

9/9 files(listed/in-dir), 220 blocKs used, 264 unused 

The file has been recovered; only cleanup remains. DUMMY1.TEXT and 
DUMMY2.TEXT have served their purpose as free space fillers; they 
are removed. The new copy of BEST. TEXT is saved under a different 
name, and DUMMY3.TEXT is changed to BEST. TEXT. 

PROSE~ 

START. TEXT 4 15-Jan-81 10 
< UNUSED ) 18 14 
CHAP3A.TEXT 48 "5-Jan-Bl 32 
PROSE. CODE 33 24-May-80 80 
PROSE3.CODE 35 26-Nov-BO 113 
< UNUSED > 32 148 
BEST. TEXT 16 15-Jan-81 180 
CONT.TEXT 18 5-Jan-81 196 
NBEST.TEXT 16 15-Jan-81 214 
< UNUSED > 264 230 

512 Textfile 

512 Textfile 
512 Codefile 
512 ,Codefile 

512 
512 
512 

Textfile 
"Textfile 
Textfile 

7/7 files(listed/in-dir), 170 blocKs used, 314 unused 

Page 78 



File Handler 

3.4 Recovering Lost Directories 

The loss of a disK directory is a much more serious setbacK than 
the loss of a single disK file. The best protection against 
directory mishaps is to maintain duplicate directories on all disK 
volumes. When a disK volume loses its regular directory, but has a 
duplicate directory, the Copydupdir utility (section 9.0.1) re­
places its deceased regular directory with a copy of the duplicate 
directory; the volume is then restored. 

WARNING regular disK directories are stored on blocKs 2-5 of a 
disK volume, while duplicate directories are stored on blocKs 6-9; 
unFortunately. this implies that some accidents may simultaneously 
wipe out both directories. The method for recovering from this 
situation is to Z(ero the directory, and then use the method 
described in the previous section for fishing the files from the 
disK; needless to say, this is a tedious and not necessarily 
rewarding tasK. The best protection for a disK volume is to 
maintain a copy of the volume on a s~parate disK. 

Page 79 



PDQ-3 System Reference Manual 

3.5 Changi·ng the Type or Date of' a Fi 1 e 

Users occasionally find themselves stucK with a file of the wrong 
type. A common occurrence of this problem is the the linker's 
penchant for producing an output data File instead of the desired 
code file; the data file contains valid linKed cadet but its file 
type prevents it fro~ being executed by the system. 

One solution to this problem is based on the .method presented for 
recovering lost files (described in section 3.3). The bogus file 
is removed and a new file is created with the M(aKe command such 
t 1'". a t the new f i lei s co inc ide rl t wit h the 0 I d f i Ie; add i t i 0 rl a I I y, 
the new file is created with the file suffix corresponding to the 
desired file type. 

Example of changing a file's type: 

The file PROSE should be a code file, but somehow has ended up as a 
data fi Ie; thus, it is rlonexecutable. Her'e is the director'Y 
lis t i ng : 

PROSE: 
START. TEXT 4 1S-Jan-81 10 512 Textfi Ie 
STUFF. DATA 18 32-Feb-80 14 202 Datafiie 
CHAP:3A. TEXT 48 5-Jarl'"'81 32 512 Textfite 
PROSE 3:3 24-May-80 80 512 Datafile 
PROSE3.CODE :35 26-Nov-80 113 512 Codefile 
< UNUSED )- :32 148 
BEST. TEXT 16 15-Jan-81 180 512 Tex t f i Ie 
CONT.TEXT 18 5-Jan-81 196 512 Textfile 
.:. UNUSED > 280 214 
717 files(listed/in-dir}, 172 b I OC~(s used, :312 unused 

The data f i ) e PROeE is r'~moved ; a 33-blocK fr'ee space now exists 
,,,,her' e i t once r'esided: 

PROSE: 
START. TEXT 4 15-Jan'-81 10 512 Textfile 
STUFF.DATA 18 32-Feb-80 14 202 Datafile 
CHAP3A.TEXT 48 5-Jarl-81 32 512 Textfile 
< UNUSED >- '.:L3 80 
PROSE3.CODE 35 26-Nov-80 113 512 Codefi Ie 
< UNUSED ;:. 32 148 
BEST. TEXT 16 15-Jan-81 180 512 Textfi Ie 
CONT.TEXT 18 5-Jan-81 196 512 Textfile 
< UNUSED .... . ~ 280 214 

- . 6/6 files<listed/in~dir>t 1:39 b locJ<s used. 345 unused 

Page 80 



I" 1 I e HanQ I er· 

The M(aKe command is used to recreate the file: 

MaKe what file? PROSE.CODE[33l 

PROSE exists once again; it is now an executable code file: 

PROSE: 
START. TEXT 4 15-Jan-81 10 512 Textfi Ie 
STUFF. DATA 18 32-Feb-80 14 202 Datafile 
CHAP3A.TEXT 48 S-Jan-81 32 512 Textfile 
PROSE. CODE 33 24-May-80 80 512 Codefi Ie 
PROSE3.CODE 35 26-Nov-80 113 512 Codef i Ie 
< UNUSED > 32 148 
BEST. TEXT 16 15-Jan-81 180 512 Textfile 
CONT.TEXT 18 5-Jarl-81 196 512 Textfile 
< UNUSED > 280 214 
717 fi les<l isted/in-dir>, 172 bloc~~s used, 312 unused 

The procedure for changing the file date is similar. Prior to 
M(aKing the file, use the D(ate command in the filer to temporarily 
change the system date to the desired point in time; M(aKe assigns 
this date to the recreated file. Don't forget to return to the 
present afterwards. 

Page 81 



PDQ-3 System Reference Manual 

Page 82 



Ed i tor 

IV. THE EDITOR 

The editor is used to create and modify text files. Editor p~ompts 
are similar to filer and system prompts; they are desc~ibed in 
section 4.0. Text files may contain eithe~ Pascal programs or 
documents; because these have different formatting conventions. the 
edito~'s operation (Known as the "environment") can be changed to 
suit program development or word processing. Editor environments 
are described in section 4.1. Basic editor iommands and features 
a~~ described in sections 4.2 through 4.9. Section 4.10 describes 
the remaining editor commands; the command summary provides command 
overviews grouped by their function, while the detailed command 
descriptions are organized alphabetically. Problems encountered 
during regular editor use are described in section 4.11. 

4.0 Editor Prompts 

Editor prompts display either a promptline of available edit 
commands or a command line (generated as a result of typing a 
command from an outer promptline) displaying the available command 
options, Al 1 editor prompts display the current direction (des­
cribed in section 4.5) in the leftmost character of the prompt. 
Prompts are almost always present at the top of the screen. but 
occasionally disappear during some edit commands; depending on the 
situation, typing either <etx> or a different command redisplays 
the prompt t 

The editor p~ompt has the fol lowing format: 

Edit: A(dJust C(py D(lete F(ind I(ns~t J(mp R(place Q(uit X(chng Z(ap 

Only the most commonly us,d commands appear on the prompt. The 
remaining commands are displayed by typing "?". 

4.1 Edit Environments 

Edit commands affect the structure of text; edit environments 
affect the behavior of edit commands. Environment parameter values 
are saved within text files; unless changed, they control not only 
the current edit session, but all future edit sessions on the 
current text file. The most important parameters are "auto­
i n den t " t .. f ill i n g " tar. d .. mar gin s .. • Au to - i n den tis us edt 0 f a c i 1 -
itate the indentation of Pascal programs. Margins and fil ling are 
used for processing documents; in particula~, filling allows the 
J-ustification of paragraphs of text within the cur-rent margins. 

Edit environments are described in more detail in section 4.10.11 
(the S(et command). 

Page 8a 



PDQ-3 System Reference Manual 

4.2 The F~le Window 

The editor allows the the entire console screen to be used much 
liKe a chaIKbo~rd; any text displayed on the screen can be directly 
accessed and modified. At the beginning of an edit session, the 
editor displays the start of the file in the upper leFt corner of 
the screen. Unfortunately, most text files have more lines than 
can be displayed at once on the console; therefore, when the user 
moves to a section of text that is above or below the section 
currently displayed, the screen is updated by shifting some of the 
existing text off the screen to maKe room for the display of 
previously hidden lines of text. The screen can be thought of as a 
"windou," sl idirlg over- the text fi le being edited; the entire text 
File is accessible using the edit commands, but only the section of 
text that is currently being changed can be viewed through th~ 
wi rldo,l,. 

4.3 The Cursor 

If the screen can be considered a chalKboard, the cursor then 
serves as eraser, chalK, and pointer. All action taKes place 
around the cursor; it represents the user's exact position in the 
File, and it can be moved to any position within the text fIle. 
The file window automatically follows the cursor; any command which 
moves the cursor oFF the current window recenters the window to 
display the text adJacent to the cursor. 

Note that the cu.r-sor- is never r'eall y "at" a character position; it 
is between the character where it appears and the immediately 
pr-eceding char·acter-. This convention is important; it aFfects the 
behavior of the I(nsert and D(elete commands. 

4.4 Repeat Factors 

Most commands accept repeat Factors. A repeat factor is specified 
by typing a positive integer'beFore typing t~e command character; 
the digits of the integer are not printed on the screen, but the 
integer is internally recorded by the editor for a subsequent 
command. A repeat factor specifies that a command is to be 
repeated the number of times determined by its preceding Factor. 
For· example, erltering "2 <down;''' causes the <dowrl) command to be 
executed twice, moving the cursor down two lines. The default 
repeat factor' value is 1. A slash ("/") typed before the command 
indicates that the command is to be repeated until the end of the 
text file is reached. Commands accepting repeat factors are noted 
as such in their descriptions. 

4.5 Direction 

The editor' maintains an erlvironment parameter rlamed "direction". 
Direction affects commands involved with cursor movement; for 
example, typing the space bar normally moves the cursor left­
to-right across a lIne of text, and down when crOSSing text lines. 

Page 84 



Ed i tor 

After changing the direction. the space bar exhibits the exact 
opposite behavior. The current direction is indicated by the 
leftmost character of editor prompts: ")" denotes forward direc­
tion. "(,. denotes bacK.wards direction. The default direction is 
forwards. Commands affected by direction are noted as such in 
their descriptions. 

Direction commands may be executed whenever their Key definitions 
do not confl ict \vith an enclosing command invocation (e.g.. typing 
II ( " i n I (n s e r t ) • Th e f 0 I I ow i n 9 Key s a r' e de fin edt 0 c han 9 e 
directior,: 

,. < .. or' "." or 
">" or "." or 

4.6 Ma.rKers 

"+ " 
Change the current directio~ to bacKward 
Change the current direction to forward 

MarKers enable arbitrary cursor positions in a text file to be 
easily accessible from anywhere within the file. MarKers do not 
appear in the text itself; the only wa~ to locate a marKer is to 
Jump to it. MarKers are specified by name; names may contain up to 
eight characters. and are case-insensitive (e.g. the marKer names 
"STUFF" and "stufF" denote the same marKer). 
MarKers are saved across edit SEssions in the text file. A file 
can contain up to ten marKers. 

The SCet M(arKer command creates a marKer at the current cursor 
position. Setting a marKer to an existing marker name removes the 
old marKer setting. Jeump M(arKer moves the cursor to the 
specified marKer. Existing marKer names are displayed with the 
S(et ECnvironment command. 

4.7 Moving The Cursor 

This section describes most of the cursor-moving commands. Two 
alphabetic commands that move the cursor are Jeump and PCage; these 
are described in section 4.10. 

One command no t descr i bed be I O\V is the "equa Is" commar,d, \1}h i ch is 
executed by typing "=". Equals causes the cursor to Jump to the 
beginning of the last section of text which was inserted, found, or 
replaced; subsequent invocations will return to the same location. 
Equals is unaffected by direction, but is affected by a C(opy or 
D(elete operation between the start of the file and its current 
roosting location. 

Page 85 



PDQ-3 System Reference Manual 

The cursor commands are described in the following table: 

Direction insensitive commands-

<down> Moves cursor down 
(up> Moves cursor up 
<right> Moves cursor right 
(left> Moves cursor left 
<bacK-space) Moves left 

Direction sensitive commands-

<space) 
<tab> 

Moves direction 
Moves cursor to the next tab stop; 
tab stops are every 8 spaces, starting 
at the left of the screen 

<return> Moves to the beginning of the next line 

Repeat factors can be used with any of the above commands. 

The cursor's column position is preserved by the (up) and <down> 
commands; however, when the cursor is moved outside the text, it is 
treated as though it were immediately after the last character or 
before the first in the line. 

4~8 The Copy Buffer 

The editor maintains a copy of the most recently changed text in 
its copy buffer. The contents of the copy buffer can be inserted 
into the text with the C(opy B(uffer command. The copy buffer is 
used to move or duplicate blocKs of text within the file. 

The contents of the copy buffer are updated by the fol lowing 
commands: 

1 > D(elete the buffer is fil led 
regardless of whether the deletion is 
with <etx» or escaped (terminated with 

with the deleted text, 
accepted (terminated 

<esc». 

2) I(nsert the buffer is fil led with the inserted text only 
when the command is accepted~ it is emptied after escaping 
from an I(nse~t. 

3) Z(ap - the Z(apped text is moved into the buffer. 

The copy buffer is of limited size. Whenever a Zeap or D(elete 
command changes more text than can fit in the copy buffer, the user 
is warned that the text cannot be copied and is asKed (with a 
"yes/no" prompt) to verify acceptance of the command. 

Page as 



Ed i tor 

4.9 Enter~nq Str~nqs in P<ind and R(eplace 

The F(ind and R(eplace commands operate on character strings. This 
section describes the Features unique to these commahds, including: 
syntax for specifying character strings (described in section 
4.9.0), editor variables which contain the current target and 
substitution strings (described in section 4.9.1), and an envi­
ronment parameter which aFfects the editor's method of searching 
for character strings (described in section 4.9.2), More details 
on this topic can be Found in the descriptions of the F(ind, 
R(eplace. and S(et E(nvironment commands. 

4.9.0 String Syntax 

Strings may contain any characters (including nonprinting char­
acter's); they ar'e de I imi ted by two occur:rences of the same 
c h a r act e r' , For e x a mp Ie. "I I'm a s t r i n g / " , " , 8, " , and " * ran d y * .. 
repr'eserlt the strings "I'm a str'ing", "S", and "rarldy", respec­
tively. Delimiting characters may be any non-alphanumeric char­
acter other than (space>. 

NOTE - This is one of the few places in the system where a <return> 
is"not required at the end of the data typed in; the command is 
executed immediately after the closing delimiter of the last string 
parameter is typed. Also, the editor does not a~'ow a completed 
string parameter to be bacKspaced over from the prompt. 

4.9.1 String Var~ables 

The editor provides two string variables for saving the last string 
arguments used in a F(ind or R(eplace. The target string (named 
"<tar'g>") is used by both commands; the substitutiorl str'irlg (named 
"<sub>") is used only by R(eplace. The str'ing values in both of 
these variables may be used in subsequent F(inds and R(eplaces by 
using the letter's "S" or' "s" irl place of an expl icit string 
argument. For example, irl F(ind, typing "S" (r'ead as "find same") 
finds an occurrence of the contents of the <targ> variable in the 
text file. Irl R(eplace. typing "SS" (r'ead as "r'eplace same with 
same") replaces an occurrence of (targ> with the contents of <sub>t 
while typing ",match.s" replaces occurr'ences of the string "match" 
with the contents of <sub>. 

The current values of <targ> and <sub> can be examined with the 
Stet E(nvironment command. No values are displayed if the vari­
ables are not assigned values during the edit session. 

4.9.2 Search Modes 

Fjind and R(ep)ace both have two diFferent methods of searching for 
strings in a text file - ToKen mode and Literal mode. In Literal 
mode, the editor searches For any occurrences of the target string. 
In ToKen mode. it searches for an isolated occurrence, which is 
defined as a string delimited by spaces or other punctuation. For 

Page 87 



PDQ-3 System Reference Manual 

example, in the str'ing "r.ow is the time for' bl isters", a Liter'al 
mode search finds two occurrences of the search string ~is", while 
ToKen mode finds onty one. 

ToKen mode ignores spaces within strings; thus. the two strings 
• , ." ar.d ". " ar'e equ i val en t • 

The search mode is ~.ept as ar, environmer.t parameter'; its name is 
"ToKen def", which is short for "Token default mode". When this 
parameter is set truet al 1 searches default to ToKen mode; when set 
false. they default to Literal mode. The initial parameter value 
is true, but can be changed by the user with the S(et E(nvironment 
commar,d. 

The current default search mode can be overridden in F(ind and 
R(eplace by using the letter's "L"/"I" (force Liter'al mode) and 
"T" I" t" (force To~<en mode). These must appear' outside of the 
string parameters; here are some examples of search mode override: 

"L.foon." (find the string "foon" in Literal mode); 

"T/f-oonl/yeer"" (replace at 1 toker. occurr'ences of "foon" with 
the string "yeen"); 

",bad,L,good," (r'eplace al t I iter'al occurrer,ces of "bad" with 
the str' i rig "good"). 

Page a8 



Editor 

4.10 Editor Commands 

Section 4.10.0 contains a command overview; the commands are 
grouped according to their function. Sections 4.10.1 through 
4.10.14 describe each command in detail; the commands are alpha­
betical ly ordered. 

4.10.0 Command Summary 

4.10.0.0 MoY~ng Commands 

<down> 
(up> 
<r'ight> 
<left)' 
<space> 
<bacK space) 
<tab> 
<returrl> 
II .( .. 

"> .. 
U=" 

.... 
f 

II U 

• "+" 

cursor down 
cursor up 
cursor right 
cursor left 
cursor in direction 
cursor left 
cursor to next tab stop 
cursor to next line 
backward direction 
forward direction 
cursor to start of last inserted/found/replaced 

Jeump: Jump to marKer or the beginning or end of the file. 

_P(age: Move cursor one page in the current direction. 

4.10.0.1 Text-Chang~ng Commands 

I (nser·t: Irlsert text. 

C(qpy: Copies last inserted/deleted/zapped text into the file. 

D(elete: Delete text. 

X(change: Exchange text. 

Z(ap: Delete all text between last found/replaced/inserted/ 
adJusted text and the current cursor position. 

4.10.0.2 Pattern Matching Commands 

F(ind: Find character string patterns in text. 

R(eplace: Locate string patterns in text and replace with a 
substitute pattern. 

Page 89 



PDQ-3 System Reference Manual 

4.10.0.3 Formatting Commands 

A(dJust; AdJusts indentation of the current line. 

M(argin: AdJust al I text between two blanK tines to the current 
margin settings. 

4.10.0.4 "iscellaneous Commands 

S(et: Set M(arKers to J(ump to or E(nvironment to change 
parameters. 

V(erify; Redisplay screen with the cursor centered. 

Q(uit: Leave the editor. 

Page 90 



Editor 

4.10.1 A(dJust 

Repeat factors are allowed. 

Prompt: 

>AdJust: L(Just R(Just C(enter <left,right,up,down­
arrows> «etx> to leave) 

A(dJust changes the indentation of a text line. The (right> and 
(left> commands move the entire line on which the cursor is located 
one space right or left, respectively. 

"L" and "R" left-Justify and right-Justify I irles to the cur-rent 
margin settings. "C" centers the line between the margins. 
Margins are described in the Stet E(nvironment command. 

A series of lines may be adJusted by adJusting one line the desired 
amount and then using the <up> and <down> commands to adJust 
adJacent lines by the same amount. Note that horizontal commands 
can be intermixed with vertical commands to allow cumulative 
horizontal offset changes on successive line adJusts; thus, typing 
"A(dJust <left> <left> <down> (left> (do\lJn)" moves the cur-rent )irle 
two spaces to the left, while the two lines below it are moved 
three spaces to the left. 

The (etx) key is typed to finish the command; the cursor is left at 
the beginning of the last line adJusted. There is no command 
available to exit A(dJust. 

Page 91 



PDQ-3 System Reference Manual 

4.10.2 C(opy 

Prompt: 

')Copy: B(uffer F(ile <esc> 

4.10.2.0 C(opy B(uffer 

Typing "B" copies text from the copy buFfer. The copy buffer 
contents are copied into the text, starting at the cursor location 
prior to invoKing C(opy. The cursor is left at the front of the 
copied text. 

The copy buffer is described in section 4.8. 

4.10.2.1 C(opy F(ile 

Pr'ompt: 

?Copy: from what file[marKer,marKerJ? 

Typing "F" copies portions of text fr'om another' text Fi Ie. 
section of copied text is inserted into the current text 
starting at the cursor location prior to invoKing C(opy. 
cursor is left at the front of the copied text. 

The 
f i Ie 
The 

Any text file may be specified; 
optional. 

the file suffix. ".TEXT" is 

WARNING - The disK containing the editor's code file must not be 
removed. 

The marKer specification (including the square bracKets) is option­
al. and is used to copy selected portions of another file. Its 
for'm is: 

< f i I e name> [" [" [<mar~<er' name>], [<mar·l<er· name) J" J"] 

The marKers specified must be present in the other file. The text 
copied is that which lles between the first and the second marKers 
specified. An empty marKer Field indicates one end of the file as 
the delimiter' of the copied text. For example, "[,<mar'Ker name)]" 
indicates that all text between the Front of the file and <marKer 
name> should be copied. MarKers are described in section 4.6. 

C(opy F(ile does not alter the contents of the file being copied. 

Page 92 



Ed i tor 

4.10.3 D(elete 

Prompt: 

>Delete: ( > <Moving commands> {(etx> to delete, <esc> to abort) 

The cursor must be positioned at the first character to be deleted. 
Before entering D(elete, the cursor position is recorded; it is 
cal led the "anchor". As the cursor is moved away From the anchor 
using the moving commands, text in its path disappears. As the 
cursor is moved bacK toward the anchor, the previously deleted text 
is restored. 

To accept the deletion, type (etx>; to escape, type <esc>. 

NOTE 
factors, 
factors. 

While the D(elete command itself does not accept repeat 
the moving commands used within D(elete do accept repeat 

Example of using D(elete: 

Here is the text before deleting: 

This sentence of the text is to remain the same. This 
sentence is 10 be modified by the delete command. 

The cur'sor is positioned over the letter' "t H in the second 
occurrence of the \lJor·d "to". Erlter' D(elete by typing "D", then 
type (space) six times and (etx). The text and cursor position now 
appear as fol lows: 

This sentence of the text is to remain the same. This 
sentence is modified by the delete command. 

Page 93 



PDQ-3 System Reference Manual 

4.10.4 F(ind 

Repeat factors are allowed. 

Prompt: 

>Find[(n>l: L(it <target> =) 
or ••• 
)FindC(n>l: TeoK <target> => 

••• depending on the value of 
parameter. The metasymbol (n> 

the ToKen default environment 
denotes the repeat factor value 

passed to F(ind. 

F(ind finds the <n>-th occurrence of the target string in the textt 
starting at the current cursor position and moving in the direction 
displayed. If the repeat factor' is "I", the last occur'r'erlce is 
found. 

If an occur'r'ence of the target str'irlg is found, the cursor is 
positioned after the found string; otherwise, the Following prompt 
appear's: 

ERROR: Pattern not in file. Please press (spacebar) to continue. 

TYPlng <esc> while entering the target string exits the F(ind 
commarld. 

See section 4.9 for more detail~ on using F(ind. 

NOTE - Because F(indleaves the cursor at the end of a target 
string, F(inds in the bacKward direction behave oddly. After a 
bacKward F(ind locates an occurrence of the tar~et string, it is 
necessary to type "=<bs>" to move the cursor in front of the target 
it~ing before Finding the next match; otherwise, F(ind Keeps 
finding the same target occurrence. 

Example of using F(ind: 

We wi I) attempt to find "rutabaga". 
start of the line. 

The cursor is located at the 

This sentence rutabaga contains an out-of-place word. 

The F( ind command is irlvoKed with an argument of "rutabaga": 

)Find[(l)l: L(it (target> =)/rutabagal 

The cursor is moved to this position: 

This sentence rutabaga_contains an out-oF-place word. 

Page 94 



ta 1 tor 

4.10.5 I(nsert 

Prompt: 

Insert: Text {<bs> a char. <de I) a line} 
[<etx> accepts, <esc> escapes] 

Characters (including <return» are inserted into the text as they 
are typed in. Any nonprinting characters that are typed are echoed 
with a "?". Text may be charlged whi Ie it it is beirlg irlserted 
typing <bacKspace> removes the last inserted character, while 
typing <del) removes the current line of inserted text. Text 
preceding the inserted text cannot be removed. 

To accept the insertion. type <ext>; to escape, type <esc>. 

Occasionally, I(nsert may add a blanK at the end of the original 
line into which the insertion occurred. This allows optimization 
of large character-moving operations; it has ~o impact on Fil ling, 
and is not included in the copy buffer. 

I(nsert is aFFected by the fol lowing environment parameters: 
Auto-indent, Fil ling. and Margins. These control the text margins 
as successive lines of text are inserted. See the S(et E(nvi­
ronment command for more details. 

Example of using I(nsert: 

Here is the text before inserting: 

This sentence of the text is 1.0 r'emain the same. 

The cursor is positioned over the letter' "t" in 
Enter I(nser't by typirlg "r", then type "not <etx>". 
cursor pOSition now appear as follows: 

This sentence of the text is not .to r'emain the same. 

4.10.5.0 Using Auto-indent 

the word II to". 
The text arid 

If Auto-indent is True, a (return) causes the next line to have the 
same level of indentation as the immedi~tely preceding line. If 
False, the indentation level for a new I ine is ahlJays zero. When 
Auto-indent is True. indentation levels are changed by using the 
(space) and (bacKspace> Keys immediately following a <return>. 

Page 95 



PDQ-3 System Reference Manual 

Example of Auto-indent: 

Line 1 
Line 2 

Line 3 
Lirle 4 

Lirle 5 

Original inderltation 
<ret> maintains current indentation level 
(ret><space><space> indents by two 
<ret> maintains current indentation level 
<ret><bacK space><bacK space) unindents by two 

4.10.5.1 Usin9 Filling 

If Fil ling is True. al I words inserted are forced to lie between 
the left and right margins. The editor 
does this by automatically inserting a <return> between words 

whenever the right margin would have been' exceeded, and by 
indenting to the left margin before every new line. Any character 
strings delimited by spaces or by a space and hyphen are 
considered words. 

A paragraph is a series of text lines delimited by blanK lines. 
Fil ling automatical ly adJusts the right margins of the remainder of 
a par'agraph tha t has text irlserted into itt HO\lJever', any I irle 
beginning with a command character is not touched; it is considered 
to terminate the paragraph. Command characters are described in 
section 4.10.7.0. 

The margins of a fit led paragraph may be re-adJusted by using the 
M ( arg i rl command. 

Page 96 



'Editor 

4.10.6 J(ump 

Prompt: 

Jump: B(eginning E(nd M(arKer <esc> 

Typing "B" or "E" moves the cursor to the beginning or end of the 
file. 

4.10.6.0 J(ump M(arKer 

Prompt: 

Jump to what marKer? 

Typing a marKer name followed by a <return> moves the cursor to the 
marKer~s location in the File. 

If the specified marKer does not exist, 
displayed: 

the Following prompt is 

ERROR: MarKer not there. Please press (space-bar) 
to continue. 

MarKers associate user-defined names with arbitrary cursor posi­
tions within the text File. Se~tion 4.6 describes marKers. 

Current marKer names can be viewed with the S(et E(nvironment 
command. 

Page 97 



PDQ-3 System Reference Manual 

4.10.7 M(argin 

M(argin reorganizes the paragraph of text currently occupied by the 
cursor so that its text lines lie within the current margins. A 
paragraph is defined as a series of text lines delimited by blanK 
lines. M(argin is used strictly for word processing; it cannot be 
executed unless Fil ling is True and Auto-indent is False. 

The text format produced is similar to the filled format described 
in the !(nsert command (using Fit ling): M(argin indents to the 
paragraph margin on the first line of the paragraph. inserts a 
<return> between words whenever the right margin would be exceeded t 

and indents to the left margin before every new line. Any 
character strings delimited by spaces or by a space and hyphen are 
considered words. 

Margin values are set with the Stet ECnvironment command. 

M(argin may taKe several seconds to reorganize long paragraphs of 
text. The screen remains blanK until the paragraph is finished; 
the screen is then redisplayed. 

Page 98 



Editor 

Example of using M(argin: 

The paragraph before M(argin: 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The Margin Command is executed 
by typing "M" when 
the cursor is in the paragraph to be margined. 
The 
Margin Command deals with 
only one paragraph at a time 
and realigns the text to the specification set in the 
environment. 

Set: 
Left margin - 5 
Right margin - 60 
Paragraph margin - 10 
Auto-indent - False 
Filling - True 

The paragraph after M(argin: 

The Margin Command is executed by typing "M~ when 
the cursor is in the paragraph to be margined. The 
Margin Command deals with only one paragraph at a time 
and realigns the text to the specification set in the 
environment. 

4.10.7.0 Command Characters 

For purposes of formatting, a paragraph is defined as a series of 
text lines delimited by blanK lines. However, an arbitrary line of 
text ~an be protected from M(argin if a command character appears 
as the First non-blanK character on the line. M(argin treats these 
lines as though they were blanK lines. The character definition of 
the command character is controlled by the Stet E(nvironment 
command. 

Command characters also affect the behavior of !(nsert. 

WARNING Do not use M(argin within a line that starts with the 
Command character. 

Page 99 



PDQ-3 System Reference Manual 

4.10.8 P(age 

Re·peat factors are allowed. 

Displays the screen of text adJacent to the current screen; the 
current direction determines whether the preceding or fol lowing 
screen is displayed. The cursor is left on the same line of the 
screen, but is moved to the start of the line. 

Page 100 



Editor 

4.10.9 Q(ui"t' 

Prompt: 

)Quit: 
U(pdate the worKfile and leave 
E(xit without updating 
R(eturn to the editor without updating 
W(rite to a file name and return 

One of the four options must be selected by typing Ut E t R t or W; 
all other characters are ignored. 

U(pdate -

Stores the text file as the worK file; it is named SYSTEM.WRK.TEXT. 
WorK files are described in section 2.2.1. 

E(xit -

Terminates the edit session - unless the W(rite option has already 
been used. all modifications made to the text during the edit 
session are lost. as the text file is not saved on the disK. 

R(eturn -

Returns to the editor without updating. The cursor is returned to 
the same position in the fi le it occupied uJhen "Q" was typed. This 
command is often used after unintentionally typing "Q". 

W(rite -

Prompt: 

>Quit: 
Name of output file «cr> to return) --) 

The current text file may be written to any file name; a text file 
suffix is not required with the file name. Q(uit can be aborted by 
typing <return> instead of a file name; the text file and the 
editor pr'ompt then reappear'. However'. if the fi Ie is wr'itten to a 
disK file. the fol lowing prompt appears: 

)Quit: 
Wr i t i ng ••••••• 
Your file is (number) bytes long. 
Do you want to E(xit from or R(eturn to the Editor? 

Typing "E" exits from the Editor and returns control to the system 
prompt. Typing "R" returns control to the editor; the text and 
prompt are redisplayed and the cursor is returned to its original 
position. It is a good practice to periodically write the current 
text file contents out to a disK file in order to save the worK 
invested in a long edit session. 

Page 101 



PDQ-3 System Reference Manual 

4.10.10 R(eplace 

Repeat factors are allowed. 

Prompt: 

>Replace[nl: L(it V(fy <targ> <sub> => 
or- ••• 
>Replace[n]: T(oK V(fy <targ> <sub> => 

f •• depending on the value of 
parameter. The metasymbol <n> 
passed to R(eplace. 

the ToKen deFault environment 
denotes the repeat factor value 

R(eplace replaces <n> occurrences of the target string in the text­
with the contents of the substitution string. starting at the 
current cursor position and moving in the current direction. If 
the r-epeat Factor is "/", all occurrences of the target str-ing ar'e 
replaced. 

The veri f y opt iorl ("V( fy") per-mi ts the examinat ion of each 
occurrence of the target string prior to its replacement; it is 
speciFied (in the same fashion as the ToKen and Literal modes - see 
section 4.9) by typing the letter "V" within the prompt. 

When V(erify mode is used, each occurrence of the target string 
Found in the text is displayed on the screen, and the Following 
prompt appears: 

>Replace: <esc> aborts, 'R' replaces, , doesn't 

Typing an "R" replaces the str·ing. Typing a space spar'es tl"H? 
current target occurrence from replacement. 

In V(eriFy mode, the repeat factor applies to the number of times a 
target occurrence is Found, not the number of times it is 
r,placed. 

If the speciFied number of target occurrences is found, the cursor 
is pOSitioned after the last replaced string; otherwise. the 
fol lowing prompt appears: 

ERROR: Pattern not in file. Please press <spacebar> to continue. 

Typing <esc> while entering the string parameters exits the 
R(eplace command. 

See section 4.9 for more details on using R(eplace. 

Page 102 



·~dltor 

Example of using R(eplace: 

We will attempt to maKe the sentence in this example more palatable 
by replacing the string "rutabagas", The cursor is located at the 
start of the line. 

ghilled rutabagas are delicious when served with whipped cream. 

The R(eplace command is invoKed with a target string of hruta­
bagas" and a substitution string of "straWberries": 

)Replace[ll: Leit V(fy <targ> <sub>=),rutabag~s •• strawberries. 

The string is replaced and the cursor is moved to this position: 

Chilled strawberries_are delicious when served with whipped cream. 

Page 103 



PDQ-3 System Reference Manual 

4.10.11 S(et 

Prompt: 

>Set: M(arKer E(nvironment <esc> 

MarKers enable arbitrary cursor positions in a text file to be 
easily accessible from anywhere within the file; they are described 
in detail in section 4.6. MarKer setting is described in section 
4.10.11.0. 

The editor's environment maintains text file information that is 
stored separately from the text. The environment is used to 
display and/or modify editor variables which control the editor's 
operation or aid the user in editing a text file. The environment' 
is described in section 4.10.11.1. 

4.10.11.0 S(et M(arker 

Prompt: 

Name of marKer? 

MarKer names may contain up to eight characters; they are termin­
ated by typing a <return>. 

A maximum of ten marKers is permitted i.n a file at anyone time; 
attempts to set an eleventh marKer generate the following prompt: 

MarKer ovflw. 
Which one to replace. 
0) <marKer name> 
1) (marKer name) 

• • • 
9) <marKer name> 

Typing a number between 0 and 9 removes the associated marKer 
definition to maKe room for the new marKer. 

See section 4.6 for details on marKers. 

Page 104 



Ed i tor 

4.10.11.1 S(et E(nvirDnmen~ 

Prompt: 

>E(nvironment: {options} (etx> or (sp> to leave 

A(uto indent 
F ( i , ling 
L ( e f,t mar gin 
R(ight margin 
P(ara margin 
C(ommand ch 
T(oKen def 

3120 bytes used, 

Patter'ns: 
target = 'xyz', 

True 
False 
o 
79 
o 

True 

12345 available 

subst = 'abc' 

NOTE - Some of the values shown in this example are arbitrary; they 
vary from file to file. However, the environment parameter values 
displayed above are the editor's default value$. Though not shown 
in this example, any existing marKer names are displayed, 

4.10.11.1.0 Environment Parameters 

Environment parameters affect the behavior of some edit commands; 
particularly I(nsert, M(argin, F(ind, and R(eplace (see the sec­
tions describing these commands for more details). Parameter 
values are changed in the environment by typing the pa~ameter's 
displayed command character. 

The parameters are one of three types: boolean, character, or 
irtteger. Booleart parameters are changed merely by typirtg "T"/tOt" 
or "F"/"f", while character parameters are changed by typing a 
character; neither of these types require a termination character 
to complete the prompt. Integer parameters accept a string of 
digits and are terminated by typing <space) or <return>. 

A(uto indent affects I(nsertt 
default value "T", 

It is a boolean parameter with 

F(illing - affects !(nsert and M(argin. 
with default value "Flit 

It is a boolean parameter 

L(eft margin 
R(ight margin 
P(ara margin - affect I(nsert, M(argin, and A(dJust. 

integer parameters; values should be between 
Default values: L(eft - 0, R(ight - 79, P(ara - o. 

Page 105 

These 
o and 

ar'e 
84. 



PDQ-3 System Reference Manual 

C(ommand ch - affects I(nsert 
parameter with default 
more information. 

and M(argin. It is a character 
value "." See section 4.10.7.0 for 

T(oKen def - affects F(ind and R(eplace. 
with default value "True". See 
information. 

Page 106 

It is a boolean parameter 
section 4.9.2 for more 



Editor 

4.10.12 V(erify 

Redisplays the text window and repositions the window in order to 
center the cursor on the screen. 

NOTE This command is especially useful in rare situations where 
the editor is not displaying the cursor in the position it thinKs 
it is in; V(erify usually KnocKs it bacK to its senses. 

Page 107 



4.10.13 eX(change 

Prompt: 

PDQ-3 System Reference Manual 

eXchange: Text C<bs) a char} [(esc> escapes; <etx> accepts] 

Replaces characters in the text file with characters typed int 
starting from the current cursor position. 

Exchanged text may be bacKspaced; the original text reappears. 
Typing <esc> aborts eX(change with no changes made to the original 
text, while typing <etx> accepts the changes made to the file. The 
cursor is left at the end of the exchanged text. 

NOTE - eX(change does not al low typing past th~ end of the line o~ 
typing a <return>. It is not affected by direction. 

E-xample of using eX(change: 

This is the original text (the cursor position is underlined): 

Boy, I Just love this (:.utabaga pie!! 

After typing "xdocumerltatiorl<etx)", the sentence now appears as: 

Boy, I Ju.st love this documentationl 

Page 108 



Ed i tor 

4.10.14 Z(ap 

Deletes at' text between the start 0' the previously F(ound, 
R(eplaced or I(nserted text (Known as the "equals marKer" - see 
section 4.7 for details) and the current position of the cursor. 

NOTE - Z(ap is designed to 
R(eplace, or I(nsert; it 
tions. 

be used immediately after a F(ind, 
should not be used in any other situa-

If more than 80 characters are to be deleted, a prompt is posted to 
verify the operation. The r~sults of a Z(ap are normally saved in 
the copy buffer for possible later use; however, if a Z(ap deletes 
more text than can fit in the buffer, the user is notified with a 
prompt and asKed to verify the command. 

Page 109 



PDQ-3 System Reference Manual 

4.11 Editor Problems 

This section describes some problems that arise from regular use of 
the editor. 

4.11.0 Buffer Overflow 

When a text file is too large to fit in available memory, the 
editor displays the message "Buffer overflow" while reading in the 
file, and then proceeds to operate in its normal fashion. Unfortu­
nately, the text file in memory is a truncated version of the text 
file; all text at the end of the file that would not fit into the 
editor buffer is not present. 

This is a serious problem if a large-file editor is not available 
to split the text file into smaller files; the regular editor is 
helpless in this situation. 

Unless text files are originally created either with a large-file 
editor or on a system with more memory, the editor normally cannot 
produce a text file that is too large to edit in a later edit 
session. See the following sections for details. 

4.11.1 Writing Out the File 

A~ the end of an edit session, while the editor writes the modified 
text file from its buffer to a disK file, the message "Error in 
writing out the file - type (space) to continue" sometimes appears; 
typing (space) returns the user to the editor with no updating to 
disK performed. This message can arise from many different error 
conditions. The most common are: 

a) The output file name was invalid. 

b) There is insufficient space on the specified disK volume to 
hold the output file. 

c) The text file has grown too large for the editor to handle. 

Though they generate identical warning messages, these problems are 
quite distinct and must be handled differently. The following 
sections describe some handy solutions, along with pitFal Is arising 
from user actions contrary to those dictated by the solutions. 

4.11.1.0 Invalid File Names 

Once identified, this problem is easy to solve. The editor 
attempts to open a disK file (for the output file) with the file 
name specified by the user. The file system responds with an I/O 
error that is mapped into the editor's standard error message. The 
typical problem is either an incorrect volume name or a file name 
that is too. long; once this is conFirmed by inspection of the file 
name. it is sufficient to Q(uit W(rite from the editor with a 

Page 110 



Ed i tor 

correct file name. 

4.11.1.1 Insuff~c~ent Space on Volume 

This problem is trivial if mUltiple disK volumes can be placed 
online simultaneously; if the specified disK volume lacKs the 
necessary disK ~pace, it is sufficient to Q(uit W(rite the text 
file to an online volume which can spare the disK space. 

The problem can be serious (see the warning below) if the 
possiblity exists of unmounting the disK volume containing the 
editor's code file in order to mount a volume having the disK space 
needed for the output file. Systems having only one drive are an 
obvious example, but the problem is more subt"le on multiple-drive 
systems if the editor's resident volume is unKnown. 

WARNING - If it becomes necessary to unmount the editor's resident 
volume, a specific sequence of actions is required - the price of 
nonconformance with this sequence is the loss of all worK done 
during the edit session via a system crash. Here is the required 
command sequence: The error message has appeared, and the space 
bar is typed to return the user to the editor. The user must type 
Q(uit W(rite BEFORE removing the editor's disK volume. At this 
point, the editor is waiting for the name of the output fi Ie; it is 
now safe to replace the editor's volume with another volume, 
specify the output file name using the new volume's name, and type 
<return> to start a successful disK write. 

4.11.1.2 File Too Large 

Text files become too large during an edit session by an overabun­
dance of insert and copy operations. The editor has three methods 
of notifying the user of its buffer status: the used and unused 
space listed in the environment, rather devious prompting behavior 
during an I(nsert, and the output file message described in 
section 4.11.1. These are described in the following paragraphs. 

It is wise to periodically examine the number of bytes left in the 
edit buffer (displayed in the environment). When a text file gets 
down to about one thousand (1000) unused bytes, the user should 
split the text file into two smaller files before adding more text. 

When the editor gets below a thousand unused bytes, it begins to 
have some trouble managing the text file. In the I(nsert command, 
the prompt "Please finish up the insertion - type <space> to 
continue" starts appearing when the first character is typed; the 
underlying problem can be confirmed by checKing the number of 
unused bytes in the environment. Once confirmed, it is high time 
to split the text file. 

If the warnings described in the past two paragraphs go unheeded. 
the editor does not complain until the file is written to disK; 
then, "Error in writing out the fi le" appears. At this point, the 
user must delete enouqh of the text file in memory to enable the 

Page 111 



PDQ-3 System Reference Manual 

remainder to be written to disK. 

Page 112 



Compiler 

v. THE COMPILER 

This chapter describes compiler operation from the system user's 
point of view. Compiler usage is described in section 5.1. 
System-level problems encountered during compilation are described 
in section 5.2. 

The UCSD Pascal language implementation is described in the 
Programmer's Manual. 

5~O Introduction 

The compiler is a one-pass recursive descent compiler for the UCSD 
Pascal language. It is based on the P2 compiler developed at ETH 
Zurich. 

The compiler reads a text file containing a Pascal programt and 
produces a code file (containing P-code> and an optional text file 
(containing a program listing). The code file is executable if the 
program does not reference separately compiled library routines; 
otherwiset the code file (containing a mixture of P-code and linKer 
information) must be linKed before it may be executed. Library 
routines and linKing are described in chapter 6. P-code and linKer 
information are described in the Architecture Guide. Program 
listings are described in the Programmer's Manual. 

The fol lowing sections contain passing references to compiler 
options; because these options are set by directives embedded in 
Pascal programs rather than by compiler promptst they are described 
in the Programmer's Manual. 

Page 118 



PDQ-3 System Reference Manual 

5.1 Using the Compiler 

The compiler is invoKed from the system prompt by typing C(ompile. 
Typing R(un invoKes the compiler if the worK code file doesn't 
exist. 

5.1.0 Setting Up Input and Output Files 

1 f a \lJor~<. f i) e exists, the compi) er uses it as the input f i I e, and 
names the output fi Ie "*S'(STEM.WRK.CODE[*J"; otherwise, the fol low­
ing prompt appears: 

Compile what text? 

The specified input file name should not contain the suffix 
",TEXT"; it is automatically appended by the compi ler- unless the 
file name ends with a period (which is stripped off), 

The next prompt asKs for the output file name: 

To what codefile? 

Typing <return> causes the output file to become the worK code 
Pi Ie, Typirlg "<esc> (retur"n}" abor-ts the C(ompi Ie command. A "$" 

in the output file name is substituted with the input file title; 
thus, compiling "STUFF" to "$1" names the output file "STUFFl. 
CODE" • 

If an output file name is specified, it should not have the suffix 
",CODE"; it is automatically appended by the compiler unless the 
file name ends with a period (which is stripped off). Length 
specifiers are sometimes necessary in the output file name - see 
section 5.2 for details. 

Page 114 



Compi 1 er 

5.1.1 Console Display 

During compilationt a running account of the compiler's progress is 
written to the console; howevert this can be inhibited by a couple 
of methods: the "quiet" compile option can be asserted t or a 
program 1 isting may be directed to tl'"le console by the" 1 ist" 
compile option. The Former leaves the screen blanK during compila­
tiont while the latter uses the screen to display the program 
listing. 

NOTE - On CRT terminalst suppressing the console display speeds up 
the compiler approximately thirteen percent. 

Example of a console display: 

PASCAL Compiler [III.HO] 
--} SYSTEM.WRK.TEXT 
< 0)- ••••••••••••••••••••••••••••••••••••••••••• 
LAINIT [4710] 
< 43} ••••••••• 
GETFILE [4692J 
< 52> ••••••••••••••••••• 
WRITEIT [4674J 
-( 71> ••••••••••••• 
NEWLINE [4634J 
< 84> • • • • • • • • .' • • • • • • • • • • • • • • • • • • • • • • • • • .' • • • • • • • • • • • • • • • 
< 134> •••••••••••••••••••••••••••••••••••••••••••••••••• 
< 184> •••••••• 
COPYIT (4616J 
< 192> •••••••••••••• 
SEND [4627] 
< 205) •••••• 

211 1 inest 6 seCSt 2110 1 ines/min 
Smallest available space = 4616 words 

The compiler's release version is delimited by square bracKets at 
the start of the display. The name of each routine in the program 
is displayed; the adJacent number delimited by square bracKets 
indicates the current amount of memory available (# of words). 
Numbers delimited by angle bracKets indicate the current line 
number in the source program. Each dot represents one source line 
compi led. The Fi le name Fol lowing the symbol "--)" indicates a neUJ 
source file. A file name following the symbol indicates the 
current source File. 

Page 115 



PDQ-3 System ReFerence Manual 

5.1.2 Syntax Error Handling 

I F the compi I er' detects a syrltax er'ror, the curr'ent sour'ce I ine is 
printed on the screen; the symbol causing the error is pointed at 
by. "««". Below this, the Followirlg prompt is displayed: 

Line <n>, error <m>: (sp><contirlue), <esc><ter'minate), E(dit 

••• where (1"'1) is the current source line, and <m> is the error 
I"'lumber' • 

Typing <space} sKips the erroneous symbol and resumes compilation. 
Typing <esc> aborts the compiler and returns control to the system 
pI"" omp t • T yp i n 9 " E II aut 0 mat i c a I I Y i 1"'1 V 0 ~< est he e d i tor' • 1ft r, e 
current inpu.t Pi Ie is not the \lJor'~( Fi Ie, the editor' first pr'ompts 
for the name of the current input file. Once the File is 
specified, the editor reads it in, positions the cursor over the 
error, and prints the error number or message. 

A Ilst of syntax error numbers and their corresponding error 
messages is provided in Appendix D. 

NOTE IF the wrong input file is given to the editor, the editor 
reads in the file and positions the cursor where the error would be 
iF the correct file were read in (see section 5.2.1). 

When the "list" compile option is asserted, syntax error messages 
a r' e a Iso \u r' itt e 1"', tot he lis t ir. g f i let H 0 \.., eve r t i f bot h the " lis t .. 
and "quiet" compile options are asserted, error messages are only 
wrltten to the listing File; compilation continues without inter­
ruption, as no error message or prompt is displayed on the console. 

NOTE - IF syntax errors are detected in the program, 
does not produce an output code file. 

Page 116 

the compiler 



Compi I er 

5.2 Compiler Problems 

This section describes strictly system-related problems caused by 
using the compiler, Problems concerning the correct compilation of 
Pascal programs are described in the Programmer's Manual. 

5.2.0 X(ecuting the Compiler 

The compiler can only be invoKed by typing C(ompile, UnliKe the 
other system parts (which are X(ecutable as regular code files). 
the compiler must remain as the system file "SYSTEM. COMPILER" in 
order to set up its input and output Files correctly. Attempts to 
X(ecute the compiler's code File unfailingly result in the compiler 
issuing syntax error 401 at the start of compilation. 

NOTE - U(ser restart also does not worK with the compiler. 

5.2.1 Syntax Errors and the Editor 

In some situationst the communication between compiler and editor 
(described in section 5.1.2) seems muddled after syntax errors; the 
editor positions the cursor in a location far removed from the 
actual site of the error. 

This problem arises when a Pascal source program is spread across a 
number of text files that are "included" into the compiler's input 
file (see the Programmer's Manual for details). For reasons 
discussed below, the editor reads in a File other than the current 
input file, and places the cursor at the file position set by the 
compiler - i.e., the right place in the wrong file. 

This can occur by explicitly typing the wrong file name into the 
editor's prompt - it is the user's responsibility to keep tracK of 
the current input File (the console display provides this inForma­
tion). However, if the program being compiled resides in the worK 
file and includes other Filest the editor always enters the worK 
File aFter a syntax error. This is incorrect iF the error occurs 
irl an "include" file; worset it cannot be, prevented by user 
actions. The only way around this problem is to avoid using the 
wor'~< f i I e when a program uses II inc I ude It ,f il es. 

Page 117 



PDQ-3 System Reference Manual 

5.2.2 Insufficient Memory 

Compiling lar-ge programs may cause the system to "stacK overflou,", 
Programs containing a large number o' identifiers use large amounts 
of memory during compilation - sometimes more than the system can 
provide. Here, in increasing order o' severity, are some ways to 
avoid running out o' memory: 

1) MaKe a 'our-blocK data .ile named "SYSTEM.SWAPDISK" on the 
system volume. This can save one thousand words o' memory 
during disK directory accesses; directories are accessed while 
opening "include" .iles for compilation. 

2) Assert the "swapping" compi Ie 
thousand words o. memory. but the 
ha 1 •• 

option. 
campi Ie 

ThIS can save four 
speed is cut in 

3) Reorganize the program to minimize memory usage. Minimize the 
use of global variables and/or divide the program into 
separately compiled units (see the Programmer~s Manual for 
details). 

4) Buy more memory! 

5.2.3 Insufficient Space on Volume 

WI'-..en the comp i I er- is d i rec ted to wr i te a pr-ogr-am list i ng to a d i s~~ 
.ile, the output code file competes for disk space with the program 
I istirlg fi Ie - adver-sel y, in some circumstances. Here is a typical 
scenar' i 0: 

The program listing file and output code file are to be written to 
the same disK volume, which has a single area of available disK 
space. The output code file is opened first, with a default length 
specifier- of "*"; it reser-ves orle half o' the available dis~~ space. 
The lIsting file is opened next, entitling it to the rest of the 
disK space. (Note - these defaults are assigned by the operating 
system and compiler - not the file system). 

Unfortunately, program listing .iles are usually much larger than 
their corresponding code files; if the listing file needs any more 
than hal' o. the total available space to be completed, compilation' 
aborts because of a "rio r'oom on vo I" error- fr'om the • i I e system. 
By adding an explicit length speci.ier to the file name entered at 
the compi ler's output fi Ie pr'omptt the user' carl I imit the amourlt of 
disK space allocated .or the code filet and thus maximize the 
amount of disK space available for the listing file. 

Page 118 



LinKer 

VI. THE LINkER 

The linKer linKs together separately compiled programs and library 
routines, It produces an executable code file containing the host 
program's code and a copy of each library routine referenced by the 
host program. Section 6.0 introduces the concept of separate 
compilation; the description of library routines and library files 
provided in this section is sufficient for using the linKer. 
Section 6.1 describes how to use the linKer. Problems encountered 
during regular use of the linKer are described in section 6.2. 

NOTE The utility programs Lib~ary and Libmap perform tasKs 
related to linKing (see section 9.2 for details). 

6.0 Separate Compilation 

Separ'ate compilati'on, also Known as "exter'nal compilation" or' 
"modular programming", al lows programs to be created from individ­
ually compiled parts. Here are some advantages arising From 
separate compilation: 

1) New parts can be written, compiled, and combined with existing 
parts to create new programs. The new parts themselves might 
later be used in other programs; thus, a growing catalog of 
useful soFtware parts becomes available For use in general 
soFtware development. 

2) Large programs constructed From separate 
modiFied; changes are isolated to individual 
Fast and reliable program maintenance. 

parts are easily 
parts, allowing 

3) By breaKing them into separately compiled parts. programs can 
be developed that are larger than could be compiled in one 
piece by the system. 

Library routines are created in UCSD Pascal with the "unit" 
construct. A unit is defined as a collection of routines and data 
that is accessable to programs. Units are stored in libraries; at 
the system level (as opposed to the program level), a unit is 
addressed by the file name of the library containing it. Units are 
described in section 6.0.0. Libraries are described in section 
6.0.1. 

NOTE This section provides only a system-level description of 
units. The Programmer's Manual describes how to construct units 
and use them in programs. 

Page 119 



PDQ-3 System Reference Manual 

6.0.0 Units 

A unit contains a group of related routines and data; part of the 
group is exported for use by programs, while the rest remains 
hidden inside the unit. Programs import al I of a unit's exported 
routines and data by using the unit. Units are stored in 
I ibr'ar'ies; within a I ibr'ar'y, they are addr'essed by unit name. 

6.0.1 Libl-aries 

A library is a non-executable form of code file containing between 
one and sixteen units. Libraries are created by the compiler and 
m~naged with the Library utility <section 9.2.0); they are ad-
dr'essed by the i r' f i I e name. The f i I e name .. *S'rSTEM. LIBRARY'" 
denotes the system's default library; units residing in this file 
do not require a library name to be located by the system. Both 
the compiler and linKer reference library files when a program uses 
U.n its t 

Page 120 



LinKer' 

6.1 Using the LinKer 

If the worK file is being used for program development, the R(un 
command automatically invoKes the linKer if the compiled worK file 
requires linKing. Moreover, rather than prompting for a library 
file name, the linKer automatically searches the File *SYSTEM. 
LIBRARY For the referenced units; if they are not present, the 
linKer aborts with an error message. Therefore, the user must 
manually linK his files in the following cases: 

1) The program requiring linKing is not in th~ worK File. 

2) The units required for linKing reside in library files other 
than SYSTEM. LIBRARY. 

The linKer is invoKed manual ly by typing L(inK. The following 
prompt appears: 

Host file? 

The host file is the code file containing a program which 
references units residing in one or more library Files. Typing 
<return> or "*<return}" specifies the work file as the host; 
other\lJise, the 1 irl~~er appends the ".CODE" sufFix to the fi le name 
unless it ends with a period (which is stripped off). The LinKer 
then prompts For the library Files containing the required units: 

Lib file? 

Up to eight library File names may be entered; the prompt reappears 
unti 1 <r'eturn> is typed. Typing "*<r'etur'n>" speciFies the Fi le 
*SYSTEM.LIBRARY as one of the library Files. The linKer prints 
"Openir.g -( lib Fi le name)" aFter' successFull y opening each 1 ibrar'y 
f i 1 e. 

After the library Files have been speciFied, the Following prompt 
appears: 

Map name? 

Typing <return) sKips the map file option; otherwise, a map file is 
created with the specified file name. The ",TEXT" suffix is 
automatically appended to the name unless it ends with a ",", The 
map file lists linKer inFormation used to resolve the procedure and 
data references between host and unit (see chapter 9 - Libmap for a 
description of map files and the Architecture Guide for a descrip­
tion of linker information), 

The linKer then prompts for the output File name: 

Output Fi 1 e? 

Typing <return> writes the output file to the worK code file; 
otherwise, the file is written to the specified file name. 

Pa.ge 121 



PDQ-3 System Reference Manual 

NOTE - this prompt does not append a ".CODE" suffix; the user must 
explicitly type this suffix to create an executab,le code file. 

After the output file is specified. linKing commences. During 
linKingt the names of the host and ~ach us~d unit is printed. 

Lin~(ing is aborted if any required unit,s are missing or undefined; 
the fol lowing message appears: "Unit <identifier> undefined". 

6.2 LinKer Problems 

UnliKe other file name prompts in the'system. linKer prompts do not 
r'ecogn i ze escape charac ter·s. To' abo'rt the, linKer fr·om one 0 fits 
Ii Ie name pr'omptst type "(escape><r·eturn)". The I inKer attempts to 
open a file rlamed "<escape:>", fails t and issues this prompt: "type' 
<sp> (cont inue) t <esc> (termina"te)". Typing <escape) then abor·ts 
the I i rlKer. 

Page 122' 



Command Interpreter 

VII. COMMAND FILE INTERPRETER 

The command file interpreter is used to automate system operation; 
it reads a command program from a text file (Known as a "command 
file"). translates the program into a series of system commands and 
input data, and queues the commands and data in the Keyboard 
type-ahead buffer for eventual use by the system. Command inter­
preter operation and command file names are described in section 
7.0. Command language syntax is described in section 7.1. Exam­
ples of command programs appear in section 7.2. The file "X.DEMO" 
is a command file that presents an overview of the command 
interpreter. 

7.0 S(ubmittinq Command Files 

Typing S(ubmit from the system prompt automatically executes the 
code fi Ie "X.CODE" residing or. the system volume; this fi Ie 
contains the command Interpreter. The fol lowin~ prompt appears: 

',.: 

Filename? 

The specified command file name must not contain the file suffix 
II .TEXT". 

The command interpreter also accepts "targets" as valid responses 
to its file name prompt; targets specify a command file and the 
label or line number within the command program where execution 
should commence. Targets are described in section 7.1.1. 

Typing <return> aborts the command interpreter and returns control 
to the system prompt. 

7.0.1 Command File Execution 

If the command interpreter discovers an error in a command program, 
it halts without notifying the user of the problem; control is 
returned to the system prompt. If a command program contains an 
infinite loop, the command interpreter must be halted by rebooting 
the system. 

When the execution of a command pr'ogram finishes, its output is 
queued in the Keyboard type-ahead buffer (as if it had been typed 
from the Keyboard), and the command interpreter terminates. Con­
trol is returned to the system prompt, but the type-ahead buffer 
contains queued input; the system then begins to read characters 
out of the type-ahead buffer and process them as system commands 
and data. 

NOTE the Keyboard type-ahead buffer contains a maximum of 64 
characters. 

WARNING - Command files are written with the ~ssumption that 
various system parts behave in a predetermined fashion; i.e., 

Page 123 

the 
that 



PDQ-3 System Reference Manual 

the order of commands and data in the type-ahead buffer match the 
order of the generated promptlines. If an unexpected system 
condition causes an unplanned-for prompt to appear, the queued 
commands and data may lose their synchronization with the system 
prompts; chaos then presides until the type-ahead buffer is 
emptied. It l~ theoretically possible for the resulting series of 
randomly generated commands to destroy the contents of online disK 
volumes. The user can terminate out-of-control command files by 
typing (ctrl-X>; this clears the type-ahead buffer of all queued 
characters. 

7.0.2 Reserved Command File Names 

T"'0 commar.d f i let i tIes ar'e r'eserved by t~.e system for spec i a'l 
uses: "PROFILE" and "$EXEC". A command file named "PROFILE.TEXT" 
is automatically S(ubmitted when the system is bootstrapped. A 
command fi Ie r.amed "SEXEC.TEXT" is automaticall y submitted .. \A}hen the 
S(ubmit command is invoKed. 

NOTE Automatic execution of "$EXEC" may be subver·ted by typing 
ahead a command file name aFter typing S(ubmit. If the command 
interpreter detects characters queued in the type-ahead buffer, it 
wi) I use them to build a command file name rather than opening 
"SEXEC" • 

NOTE - "PROFILE" ar.d "SEXEC" ar'e expected to r'eside on the pref ixed 
volume. 

WARNING - The file title "$EXEC" causes pr'oblems ir. the filer·, as 
it violates the r·estr-ictior. or. using the "$" char-acter in a file 
name. The best \lla y to change a command f i let i tIe tol from "$EXEC" 
is to edit the File and write it out with the desired file name. 

7.1 Command Lanquaqe 

The command language described in this section is named "eXec", An 
eXec program is stored as a series of commands and labels in a text 
file; a single text line contains at most one eXec command or 
label I Command lines start with a reserved command word; all other 
lines are treated as comments. Commands are described in section 
7.1.0. Commands ta~(e either- "tar-gets" or' "textlir.es" as arguments. 
Targets are used as arguments by the flow-of-control commands; they 
are described in section 7.1.1. Textlines contain text that is 
either immediately written to the screen or queued in the type­
ahead buffer; they are described in section 7.1.2. 

When dealing with alphabetic characters, the command interpreter is 
case-insensitive for commands and labels; however, case is pre­
served for screen I/O. 

Page 124 



Command Interpreter 

BlanK characters are usually ignored by the command interpreter, 
with the fol lowing exceptions: 

BlanKs are significant after these commands: READ, WRITEJ 
WRITELN, and T. 

BlanKs should not occur in targets. 

7.1.0 Commands 

Commands must appear as the first toKen on a text line. 
may be classified by their time of "execution": 

Commands 

Immediate commands (READ, WRITE, CALL, etc.) cause the command 
interpreter to execute the command upon processing the line. 

Deferred commands (STK, Sf RUN) cause the command interpreter 
to save characters for subsequent use by the system. 

7.1.0.0 Immediate Commands 

WRITE 

Form: WRITE <textline> 

Writes <textline> to the console (without writing <return». 

WRITELN 

Form: WRITELN <textline> 

Writes <textline><return> to the console. 

Forom: T < tex t line)-

Synonymous with the WRITELN command, but allows a longer 
"text line" arogument because of its abbreviated form. 

READ 

Form: READ <textline> 

Writes <textline> to the console; then, reads text from the 
Keyboard until <return> is typed. The text read is stored in 
an interpreter variable named "Answer"; its contents are 
accessable with the special character "1" (described in 
section 7.1.2). 

Page 125 



PDQ-3 System Reference Manual 

COTO 

Form: GOTO <target> 

Command interpretation continues at <target>. 

CALL 

Form: CALL <target> 

Command interpretation continues at 
the command Following the CALL 
executed. 

<target>. 
after a 

but 
RUN 

returns 
command 

to 
is 

VERBOSE 

Form: VERBOSE 

Verifies each command before executing it; the command is 
written to the console, and the user may type either <return> 
to execute it or <escape><return> to abort the command 
interpreter. VERBOSE is used to debug command programs. 

QUIET 

Form: QUIET 

Disables the VERBOSE command~ 

7.1.0.1 Deferred Commands 

STK 

s 

RUN 

Form: STK <textline> 

Saves <textline> on the command interpreter's internal stacK. 

Form: S <target> 

STKs a S(ubmit command for (target>. 

Form: RUN 

If CALL commands are extant. command interpretation continues 
at the command Following the last CALL; otherwise, RUN puts 
at 1 text saved on the command interpreter's internal stacK 
into the system's type-ahead buFfert and terminates the 
command interpreter. 

Page 126 



,",\JIIIIIICI",", 4""'c::r t-'r 'c::"'c::r 

7.1.1 Targets 

Form: <target> ::= [(filename>] ["/{label)" or "\(linel)"] 

Targets are used as arguments to the COTO and CALL commands; they 
indicate the location in a command file where command interpreta­
tion is to continue. Targets denoting a specific location within a 
command file contain either a zero-origin line number (e.g., 
"\004") or' a label (e.g., "/beginloop") \l,Ihich is the first to~t~erl on 
ali ne. 

NOTE - Care must be taKen to ensure that labels have names distinct 
From command names. For instance, "shell" is not a val id label; it 
is irlter'preted as s<target>, wher'e <target> = "hel 1 ". 

Targets can specify locations in other command Files with the 
optional fi le name field; e.g., "profi lelsubr·outine". Fi le suffix­
es must not be used in the file name. IF only the File name field 
is specified, command interpretation continues at the first line in 
the named command file. 

NOTE - Targets may also be used in the command interpreter's 
initial file prompt to speciFy the location in a command file where 
interpretation is to commence. 

7.1.2 Text Lines 

Within "textline" arguments, ~:.ey commands ar'e prefixed with the 
escape character ":"; they are denoted as Fol lows; 

<space> "r" <r'eturn> .. . .. {single OIl"} "b" (bs> I 

It.,.. .•• (u.p> "e" <escape> 
"v" < do\un > lid" '<delete> 
"( .. <left> .. t" <tab> 
It ., .. . ~ <right> 

Two special characters definitions have special properties: 10K" and 
"?". An occur'rence of ": 7" in a text line is subst i tuted wi th the 
text read in by the last READ command. 

WARNING - Occurrences of "I?" are replaced with garbage if no READ 
command is performed beforehand. 

The special char·acter "IK" should only be used in textlines passed 
as arguments to the STK command. All occurrences of ":K" are 
replaced by special toKens as they are put in the type-ahead 
buffer. Later, when the system encounters one of these toKens 
while reading characters from the type-ahead buffer, it requests 
direct Keyboard input until a <nul l) is typed, and then resumes 
reading from the type-ahead buffer. Thus, a series of queued 
system commands and data can be punctuated with requests for input 
directly From the Keyboard, allowing automated tasKs to possess 
interactive capabilities. (See the. example in section 7.2). 

Page 127 



PDQ-3 System Reference Manual 

7.2 Example eXec Programs 

Example from command file "X,DEMO": 

writeln line 0 executing 
s Itar·get 
r·un 

target 
writeln target executing 
writeln calling It2 
call It2 
writeln It2 returned 
write}n going to It3 
goto It:3 

t2 
writeln It2 running 
run 

t3 
writeln It3 gone to 
\vr· i t e ) n 
read Enter Text : 
\lJriteln You Typed" 17" 
\llr i te In 
writeln end of test 
rur, 

Example of listing a disK directory: 

t 
t Once S(ubmitted, this program runs forever ••• 
t 
loopstar·t 
read directory listing of what volume? 
st~< f e :? 1 r : q 
s I I oopst ar· t 
run 

This command program repeatedly prompts for a volume name. invoKes 
the filer, lists the direc.tory of the specified volume, and returns 
to the system prompt. The three blanKs are added in case the 
directory listing is longer than the screen; otherwise. the blanKs 
are consumed by the filer~s promptline. Note that the title 
message is printed only once; subsequent invocations of the command 
file Jump to the label "Ioopstart", Note also that the command 
inter·preter automatical I y .expands the specified target to include 
the name of the enclosing command file. 

Page 128 



Command Interpreter 

Another example of listing a disK directory: 

stK f e :K :r 
run 

q 

In this example~ the volume name is not specified until the actual 
filer prompt is displayed; at this point, the system requests 
direct input From the Keyboard (bypassing the queued <return>t 
three blanKs. and "q"). The volume name must be terminated by 
typing <nul l>. The listing is then made and control is returned to 
the system prompt. 

Page 129 



PDQ-3 System Reference Manual 

Page 130 



System Monitor 

VIII. SYSTEM MONITOR 

The system monitor is named HDT, short for "Hexadecimal Debugging 
Tool". HDT is capable of: examirdng and modifyirlg the contents of 
memory words and I/O device registers, starting/suspending/resuming 
system operation, and recovering from power failures. 

HDT does not display a promptline; instead, the prompt character 
("tOO) is pr'inted on the console. HDT commands ar'e described in 
section 8.1. Examples of using HDT appear in section 8.2. 

NOTE - HDT is implemented as a Pascal program resident in PROMs. 
Its code occupies memory addresses F400-F7FF hex. Its data 
occupies memory in 100-200 hex and 22-25 hex; using HDT to modlfy 
the contents of these areas disrupts monitor operation and thus 15 

not recommended. The Hardware Reference Manual describes the 
memory layout of the PDQ-3 system, including memory addresses 
reserved for I/O devices and other system functions. 

8.0 Entering The Monitor 

HDT is activated in these situations: 

1) Pressing the RESET button on the front panel. 

HDT pr'ompts for' a commarld. Typirlg "R" causes HDT to boot the 
system from the system volume. The PDQ-3 can be configured to 
automatically boot the system after RESET is pressed - see the 
Hardware User's Manual for details. 

2) System power-up. 

HDT checks for a power fail restart in progress. If a restart 
is in progress (and battery backup exists for the system 
memory), HDT restarts the system at the point where a power 
failure interrupted it; otherwise, HDT acts as if the RESET 
button was pressed. 

3) Typing the monitor Key «control-P» during system operation. 

4) Calling the predefined procedure HALT in a Pascal program. 

HDT is invoKed as a high priority process, suspending normal 
system operation; HDT then prompts for a command. During monitor 
operation, al 1 interrupts are latched and any outstanding I/O 
oper'atiorls continue. System oper'ation is resu.med by typing "P". 

Page 131 



PDQ-3 System Reference Manual 

8.1 Monitor Commands 

HDT commands examine and modify memory contents, boot the system 
from the system volume, and resume execution of a currently 
suspended system or user program. Al I numbers used in HDT are 
hexadecimal (hex digits: 0 •• 9, A •• F); all memory addresses are 
word addresses; al I data quantities are i6-bit words. Hex numbers 
are entered as a string of hex digits; if a number contains more 
than four digits, only the last four are significant. 

HDT commands are al I single Key commands; lower-case alphabetic 
characters are mapped into their upper-case equivalents. Commands 
and numbers are echoed on the console as they are typed. Typing an 
invalid command or number causes HDT to print "7" and redisplay the 
prompt character. 

The commands are: 

R 

P 

/ 

For·m: R 

Reboot the system from the system volume. InvoKing this 
command when the system volume is not mounted causes HDT to 
continually retry until the volume is mounted. 

Form: P 

Resume execution of a suspended user or system program. 
InvoKing this command if a program is not currently suspended 
halts the monitor. 

Form: [(number}]/ 

Set current address. 
Display contents of current address. 

If <rlumber> is typed, 
then displays the contents 

it becomes the current address. 
of the current address. 

Page 132 

HDT 



System Monitor 

<return> 

Form: [(number)l(return> 

Set contents of current address. 
Redisplay prompt. 

If <number> is typed, it is stored into the word at the 
current address. HDT then displays the prompt character. No 

. ,warnings are generated For invalid memory writes; e.g., 
storage into ROM. 

(line feed> 

A 

Form: [(number>l<line Feed> 

Set contents of current address. 
Increment current address and display contents. 

If <number> is typed, it is stored into the word at the 
current address. HDT then increments the current address. and 
displays the contents of the current address. 

Form: C(number)]A 

Set contents of current address. 
Decrement current address and display contents. 

If a number is typed, it is stored into the word at the 
cur~ent address. HDT then decrements the current address, and 
displays the contents of the current address. 

Form: C(number)l@ 

Set current address indirect and display contents. 

If the number is typed, it is stored into word at the current 
address. HDT then sets the current address to the contents of 
the current address. and displays the contents of the current 
address. 

Page 133 



PDQ-3 System Reference Manual 

8.2 HDT Examples 

In the following examples, the user~s responses are underlined. 

Starting the system with the system disK mounted: 

Zeroing memory locations 2000-2002 hex: 

Memory beforehand: 

#£~~~L2937 ~line i~~~~ 
2001/A1Al ilin~ fe~~2 
2002/ABCD ~lLn~ t~~~l 
2003/FEFE ~£~ly£n> 
# 

Zeroing memor-y: 

#: 
2002/ABCD .Q'::: 
2001/A1Al Q.:: 
2000/2937 Qi~~lY~n2 
# 

Memory afterwards: 

-ILOOOO illn~ 1~~~1 
2001/0000 ~lLU~ i~~~2 
2002/0000 iJ;r.:2 
I 

Chaining through memory pointers starting at 1000 hex: 

#1.Q.Q.Q.L234E j! 
234E/3EFC ~ 
3EFC/0000 l..Q.QQ~ 
1000/234E ~~~lurUL .. 

Page 134 



Util.ities 

IX. UTILITIES 

The programs described in this chapter perform useful system 
functions; they are Known as "utility programs". UnliKe the system 
parts described in the previous chapters, utility programs are 
invoKed as user programs with the X(ecute command. 

9.0 D~sk Management 

This section describes the utility programs used to manage disk 
media~ Booter, BacKup. Mapper, Format, and Bad.blocks. 

Booter copies the bootstrap software from one disK to anothe~. 
TracK 0 and disK blocKs 0 and 1 can contain bootstrap code required 
for bootable system disKs. Booter is described in section 9.0.0. 

Backup copies entire disK images from one disk to another. Its 
most common use is to maKe bacKup copies of disKs containing 
valuable data. BacKup is described in section 9.0.1. 

Mapper converts entire disK volumes to different disK formats, thus 
al lowing floppy disKs to be read by UCSD Pascal systems running on 
different machines. Mapper is described in section 9.0.2. 

Format writes formatting information on blanK disKs so they may be 
used on the PDQ-3 system. Format is described in section 9.0.3. 

Bad.blocKs performs high-speed scanning of disKs for bad blocKs; it 
is described in section 9.0.4. 

Page 135 



PDQ-3 System Reference Manual 

9.0.0 Bootstrap Copier 

The utility program Booter (BOOTER.CODE on the utilities disK> 
coples bootstrap inFormation (i.e.t al I of tracK 0 plus blocKs 0 
and 1) from a source volume to a destination volume. 

9.0.0.0 Using Booter 

X(ecute BOOTER. The f01 lowing prompt appears: 

Copy Boot From #4: to IS: ? 
<cr> to COPYt (esc) <cr> Exits 

The source disK must occupy unit 4. and the destination disK must 
occupy unit 5. Typing <esc><return> exits Booter; typing almost 
any other character(s) (including <return)> starts the copy. 

Booter always generates one last message before terminating: 

Insert System DisKette in '4: and Hit <cr>, Please 

Obey the pr·ompt arid type <retur·rl>; Booter· then ter·minates. 

9.0.1 Dis~ Copying 

The utility program BacKup (BACKUP. CODE on the utilities disK) 
copies the entire contents of a disk volume (called the "master" or 
" ctource " volume) onto another· dis~< (called the "bacKup" or· "destin­
ation" volume). AI though there ar·e otrler \lJays to copy disKs (e.g., 
the T(ransfer' command in the fi ler·), BacKup rlas the fol lowing 
featur·es: 

1) BacKup checKs that the bacKup volume is an exact copy of the 
source volume by repeatedly reading the finished copy and 
comparing its contents with those of the source volume. 

2) BacKup copies any bootstrap information contained on the 
source volume. 

9.0.1.0 Usinq BacKup 

X(ecute BACKUP. The fol lowing prompt appears: 

Master in 14: BacKup in #5: ? 

Typing "Y" desigrlates unit 4 as the master volume and unit 5 as the 
bacKup volume. Typing <esc> generates the exit prompt described 
be' O\llt Typirlg "Nil swi tches the uni t number assignment: 

Master in 15: BacKup in 14: ? 

Typing lOY" now designates unit 5 as the master volume and unit 4 as 
the bacKup volume «esc> is same as above), 

Page 136 



Utilities 

NOTE The following prompts assume the 
specifying the dther case generates similar 
interchanged unit numbers. 

A verification message then appears: 

Master on #5: Volume <source volume name> 

master is in unit 5; 
prompts. but with 

If the designated bacKup disK possesses a volume name other than 
"BACKUP", the fo 11 owirlg pr'ompt appears: 

Destroy #4: Volume <destination volume name> ? 

Typ i ng .. N" ex i ts the BacKu.p pr'ogr'am; typing "'{" pr'ints the 
fol lowing message: 

BacKup on #4: Volume (destination volume name) 
Master has <# of blocKs on source volume> blocKs 

BacKup then proceeds to copy the source volume; it writes a series 
of dots to the screen to indicate its progress. When copying is 
successfully completed, this prompt may appear (it is omitted if 
the bac~<up volume's initial volume name is already "BACKUP") 

May I rename <source volume name> to BACKUP: ? 

This message is potentially confusing, as the master and backup 
volumes have the same volu.me name at this point. Typing "Y" 
changes the bacKup volume's name to "BACKUP" (the master volume 
name is not changed). 

The exit prompt then appears: 

E(xit to Boot DisKette in #4 ? 

Typing "E" t "'I''' t or <esc> r'eturns the user to the system pr'ompt; as 
implied by the prompt, the system disK is assumed to be mounted. 
Typing "N" (or' any or the r'emaining characters) r'edisplays the 
original BacKup prompt: 

Master in #4: BacKup in #5: ? 

••• allowing a new set of disKs to be copied. 

9.0.2 Disk Format Conversion 

The utility program Mapper (MAPPER.CODE on the utilities disK) 
changes floppy disk formats; this al lows disk volumes to be 
transported between systems with different hardware configurations. 
Mapper operates on disKs having the fol lowing standard formats: 
Digital Equipment (DEC), Western Digital, and PDQ-a. The contents 
of a source disl< are \lJritten ("mapped") orlto a destination disj.t~ in 
the format requested by the user; the source disK is not affected. 

Page 137 



PDQ-3 System Reference Manual 

NOTE - DisKs having Western Digital or DEC format can be read by 
the PDQ-3 without being remapped. See section 1.3.3.4 for details. 

9.0.2.0 Using Mapper 

X(ecute MAPPER. The fol lowing prompt appears: 

Source D(ec W(d P(dq 

The choices avai lable ar'e: "D", "W", "P", and (escape>. The fir'st 
three specify the corresponding disK format; (escape> generates 
Mapper's exit prompt (described below). 

NOTE - Mapper cannot verify the source disK's format; incorrectly 
specifying the source disK's format yieldS a scrambled destination 
disk. Mapper \1Ii 11 riot map a dis~~ to the same format (i .e., a 
straight copy); use the BacKup utility to do this. 

The next prompt is treated similarly: 

Target D(ec W(d P(dq 

Once the source and destination formats are specified, the follow­
ing prompt appears: 

Map #4:[ <source form,t> J ---) 15:[ <target format> J OK ? 

The choices available ar'e: .... ( .. t "N" , arid (escape>. Typing .. '-1" .. 

star·ts the mapping pr'ocess; typirlg <escape> terminates Mapper; 
typing "N" generoa tes the following pr'ompt, \lIh i ch is treated 
.s i mil ar' 1 y: 

Map #5:[ <source format> ] ---) #4:[ <target format> ] OK ? 

While Mapper maps, information detailing its progress is displayed 
'in the upper right-hand corner of the screen. Typing a <blanK> 
during mapping causes Mapper to sKip the current tracK, and 
continue mapping on the next tracK. Typing <escape) interrupts 
mapping and generates the exit prompt. 

NOTE On some systems, error messages appear while mapping a 
DEC-formatted disK into another format; certain incompatibilities 
can arise while mapping tracK 0 of a DEC-format disK. If the error 
messages persist, sKip tracK 0 by typing a <blanK>. Mapping should 
resume without problems on TracK 1. 

When mapping is completed, the exit prompt appears: 
, 

Mapping completed 
R(epeat or' <cr> 

Typing "R" restarts Mapper; typing <return) exits Mapper. Be sure 
to replace the system disK in unit 4 before typing <return>. 

Page 138 



Utilities 

9.0.3 DisK Formatting 

The ~tility prog~am Format (FORMAT. CODE on the 
formats floppy disKs in the PDQ-3 disK format. 
used for: 

uti lit i e s d i s~( ) 
DisK formatting is 

1) Preparing new disKs (8" soft-sectored .floppys only we 
recommend Dysan disks). 

2) Recycling old disks with different formats. 

3) Fixing disks which have been rendered unreadable by unfortun­
ate circumstances. 

WARNING - When a disK or an area of a disK is reformatted, its 
original data is iroroetrievably 1.Q.§.!' 

9.0.3.0 Using Format 

X(ecute FORMAT. The following prompt appears: 

Enter unit number containing disK to be formatted [0,4,5] 

Typing "0" exits Format; typing any of the other numbers generates 
the fol lowing prompt: 

Format single or double density? (8 or D) 

Typing "s" specifies single density for'mattirlg; typing "D" speci­
fies double density. 

The next prompt is: 

Format single or double sided? (S or D) 

Typing "S" specifies single-sided disKs; typing "D" specifies 
double-sidedt 

NOTE - Before choosing double density, be sure that your floppy 
disks can handle double density formatting. Before choosing 
double-sided, be sure that your disKs AND disK drives support. it; 
standard PDQ-3 disK drives do not support double-sided disKs. 

The next prompt is: 

SKewing? (Y or N) 

Typing "Y" directs Format to sKew the placement of disk sectors in 
order to improve disK performance. Typing "N" suppresses sector 
sKewing. See the Architecture Guide for more information on disK 
sec t or s~<e,u i ng • 

Page 139 



PDQ-3 System ReFerence Manual 

The next prompt is; 

Format al I tracks? (Y or N) 

Typirlg "Y" initiates Formatting of the erltire dis~~; typirlg "N" 
generates the Fol lowing prompt: 

Enter starting tracK number 

The starting tracK number is typed int Fol lowed by a <return>; The 
F ina I tr"acK rlumber is har.d I ed simi I ar I y: 

Enter Final tracK number 

Orlce the tr·ac~< rarlge is spec iF i ed t Forma t t i ng commences. The' 
screen displays the Fol lowing messages detailing Format's progress: 

Formatting (starting track #> - <track # being processed) 
VeriFying (starting tracK #> - <tracK # being processed> 

9.0.3.1 Reformatting Bad BlocKs 

This section describes how to reFormat bad blocKs that cannot be 
Fixed with the X(amine command in the Filer. It is necessary to 
determine which tracKs the bad blocKs occupy; only these tracKs 
need reFormatting. Here are the Formulae For determining the tracK 
and sectors used by an arbitrary 'blocK: 

«blocK #> * 4 DIV 26 
«blocK #> * 4 MOD 26 

+ 1 = <tracK #> 
+ 1 = (starting sector #> 

There are Four sectors per blocK. IF the starting sector is 25, 
the next tracK should be reformatted also. for it contains the rest 
of the b I oc~~. 

NOTE - The above formulae and information are For single density 
disKs. For· double density, "4" =) "2". For double-sided, "26" => 
"52" • 

NOTE - reFormatting entire tracKs to fix a bad blocK destroys the 
contents of adJacent blocKs. 

9-.0.4 Fa.st Bad BlocKs Scanning 

The utility program Bad.blocKs (BAD.BLOCKS.CODE on the utilities 
disK) checKs a disK File or disK volume For damaged blocKs. Bad 
blocKs scanning can also be perFormed with the Filer's B(ad blocKs 
command; however, Bad.blocKs is much Faster. Bad blocKs are 
repaired with the Filer's X(amine command or the Format utility 
( se c t ion 9. O. :3) • 

Page 140 



Utilities 

9.0.4.0 Using Bad.blocKs 

X(ecute BAD. BLOCKS. The following prompt appears: 

Fi 1 e to scan? 

Typing <""etu""n} exits Bad.blocKs; typing a volume id (e.g. "#5:" 
or' "Mt'DISK:") scans an entir'e disK. volume; typing a file name scans 
a single file on a disK volume. The next prompt is: 

Searl all <# bloc~<s irl file> b)oc~(s [y/rl] 

Typing "Y" scans all bloc~<s occupied by ,the specified fi ie; typing 
~N" generates this prompt: 

Start scanning at blocK: 

Type the number, fol lowed by a (return). 
is relative to the start of the specified 
blocK of 0 initiates bad blocKs scanning 
file, even if the file itself starts at 
volume. 
The fol lowing prompt is defined similarly: 

Stop scanning after blocK: 

The starting blocK number 
file; e.g., a starting 
on the first blocK of the 

blocK 45 on the disK 

Once the blocK range is specified, scanning begins; Bad.blocKs 
indicates its progress by writing a series of message having the 
following form: 

Scanning blocKs (blocK number> to <blocK number> 

When scanning a single disK file, the blocK numbers indicated are 
relative to the start of the file; when scanning a disK volume. the 
blocK numbers displayed correspond to the actual disK blocK 
numbers. Bad.blocKs checKs 40 blocKs at a time. 
If a bad blocK is detected, the following message appears: 

BlocK (blocK number> is bad 

When Bad.blocKs is finished. it indicates the total number of bad 
bloc~'s detected: 

<number> bad blocKs 

Before terminating, Bad.blocKs writes the following prompt: 

Insert system disK and type (CR) 

Typing <return> returns control to the system prompt. 

Page 141 



PDQ-3 System Reference Manual 

9.1 Duplicate Directory Mana~ement 

This section describes two utilities that manage duplicate direc­
tories: MarKdupdir and Copydupdir. 

MarKdupdir (MARKDUPDIR.CODE on the utilities disK) modifies a disK 
volume currently maintaining only a primary directory so that it 
maintains a duplicate directory. This is usually done with the 
filer command Z(ero; MarKdupdir is used to add a dupl icate 
directory to an existing disK volume without destroying its 
contents. 

Copydupdir (COPYDUPDIR.CODE on the utilities disK) copies the 
duplicate directory into the location of the primary disK direc­
tory; it is used after unfortunate circumstances destroy the mai~ 
directory. 

Primary and duplicate disk directories are described in section 
2.1.3.5 and the Architecture Guide. 

9.1.0 Using Markdupdir 

X(ecute MAR~DUPDIR. It first prompts for the disK drive (4 or 5) 
containing the volume to be marKed. 

If the disK volume already has a duplicate directory. the user is 
notified; typing <return> then exits MarKdupdir. Otherwiset blocKs 
6-9 on the disK volume are checKed to see if they are currently 
occupied by a disK file; if so, the user is asKed to verify the 
marK~ as the disK file would be overwritten by a duplicate 
directory. Typing ~Y" proceeds with the marKing; typing any other 
character exits MarKdupdir. 

The status of blocKs 6-9 can be checKed with the filer command 
E(xtended list. If the first disK file in the directory starts at 
blocK 6, or if it starts at blocK 10 and is preceded by a 
four-blocK unused area. then the disK has not been marKed. 
However, if the first file starts at blocK 10 and there are no 
unused blocKs at the beginning. the disK has been marKed. 

Examples of directory listings of unmarKed volumes: 

SYSTEM. PASCAL 31 10-Jan-79 6 Codefile 

<unused> 4 10-Jan-79 6 Codefile 
SYSTEM. PASCAL 31 10-Jan-79 10 Codefile 

Example of a directory listing of a marKed volume: 

SYSTEM. PASCAL 31 10-Jan-79 10 Codefile 

Page 142 



Utilities 

9.1.1 Using Copydupdir 

X(ecute COPYDUPDIR. It first prompts for the disK drive (4 or 5) 
in which the copy is to taKe place. 

The user is notified if the disK is not currently maintaining a 
duplicate directory. If a duplicate directory is found, a prompt 
is issued to verify that the current primary directory is to be 
destrooyed. Typing "Y" copies the diroectory; typing any othero 
character exits Copydupdir. 

Page 143 



PDQ-3 System Reference Manual 

9.2 L~brary Management 

Libraries are managed with the utility programs Library and Libmap 
(LIBRARY.CODE and LIBMAP.CODE on the utilities disK). 

Library transfers units between library files. It is used to 
create and maintain the system library and user-defined libraries. 
Library is described in section 9.2.0. 

Libmap lists library file information in symbolic form; among other 
things, it displays the units residing in a library, and the names 
of exportable routines and data in each unit. 'Libmap is described 
in section 9.2.1. 

See chapter 6 for a system-level description of units and libraries' 
and the Programmer~s Manual For a program-level description of 
units and libraries • 

. 9.2.0 Using Library 

X(ecute LIBRARY. The fo) lowing prompt appears: 

Output Code File -) 

The file name entered becomes the name of the library file produced 
by Library. 

Typing only a <return> exits Library. 

NOTE Library does not append a suffix to the specified name; 
libraries function equal ly wel) as code files or data files. 

The fo) lowing prompt then appears: 

LinK Code File -) 

Enter the file name of the library to be modified. Library then 
lists the name (and code size in words) of each unit in the 
library. Note that sixteen slots are shown; a library file 
contains a maximum of sixteen units. 

NOTE When adding units to an existing library (such as SYSTEM. 
LIBRARY)t output and link file names can be identical; otherwiset 
it becomes necessary later on to remove the old library file and 
change the outp~t file's name bacK to the original library name. 

Page 144 



Uti 1 ities 

After the library's contents are displayed, this prompt appears: 

Segment. to linK and (space>, N(ew file, Q(uit, A(bort 

Typing a displayed unit's slot number fol lowed by <return> indi­
cates that the unit is to be copied into the output file. Library 
then requests an output file slot for the unit: 

Seg to 1 inK to? 

After typing a slot number and <return>, library moves the unit 
into the output ,file; the other slots in the output file also 
appear. The remaining units in the linK file are copied across in 
a similar manner. Library displays thecurren't number of blocKs in 
the output file at the bottom of the library display. 

NOTE - When expanding an existing library, be sure to preserve its 
units by copying them into the output file before adding the new 
un its, 

N(ew file redisplays this prompt: 

LinK Code File -> 

Enter the name of a file containing new units; as before, the units 
in the File are displayed, and can be copied into the output File. 

NOTE The new File is usually a code File produced by the 
comp i 1 er. It cou 1 d be used as a 1 ibr'ar'y f i 1 e; "merg irlg sma 11 
1 ibr'ar'ies uJith a lar·ger· 1 ibr'ar'y" is a more precise description of 
Librar'y's tas~< than "addirlg u.nits to a 1 ibr'ary", 

Q(uit displays this prompt: 

Notice? 

Up to eighty characters of text may be typed before typing 
<return>. The text is moved into the segment dictionary of the 
output flle. This is used for embedding copyright notices in the 
1 i brar' y f i 1 e. 

A(bort exits Library; the output file is not saved. A(bort worKs 
everywhere except aFter typing Q(uit. 

NOTE - Library can be used to 
within an executable code 
details, 

view 
f i 1 e. 

Page 145 

and rearrange code segments 
See the Architecture Guide for 



PDQ-3 System Reference Manual 

9.2.1 Usinq L~bmap 

X(ecute LIBMAP. The fol lowing prompt appears: 

enter library name: 

Typing <return> exits Libmap; typing the file name of a library 
generates this prompt: 

list linKer info table (YIN)? 

Typing "Y" directs Libmap to pr~int.a textua I r'epr'esentat ion of the 
linKer information embedded in each unit; it also generates the 
r,ex t pr·omp t : 

list referenced items (YIN)? 

Typing "Y" directs Libmap to print a symbolic list of al I external 
references contained in the linKer information. 

The fol lowing prompt appears regardless of the choices made for 
I i fI ~( e r i r, for' mat ion: 

map output file name: 

Typing "11:" or' "console:" directs the listing to the console; 
otherwise, Libmap automatically appends ",TEXT" to the output file 
name. 

When the map file is completed. this prompt reappears: 

enter library name: 

NOTE Libmap can also be used to list the linKer information and 
code segments of any code file. 

Page 146 



Utilities 

Example of a library unit and its map listing: 

Here is a UCSD Pascal unit: 

unit mapexample; interface 
uses extraref; 

var itJtK: integer; 

procedure map1; 

implementation 

var mtn:boolean; 

procedure private; 
begin 

writeln ; 
m := true; 
n := false; 

end; 

procedure map1; 
begin 

: = 1; 
. a- ~, 

J .- ~, 

K := 55; 
end; 

end; 
f 

Here is its map listing: 

Segment. 1: MAPEXAMP library unit 

uses extraref; 

var i,JtK: integer; 

procedure map1; 

MAPEXAMP 
UNITVAR 
N 
EXTRAREF 
I 
J 
K 
M 

unit byte reference (0 times) 
public big reference (0 times) 
private big reference (once) 
unit byte reference (0 times) 
public big reference (once) 

i 

public big reference (once) 
public big reference (once) 
private big reference (once) 

Page 147 



The segment~s name, 
line, followed by 
rlames. 

PDQ-3 System Reference Manual 

number, and type are displayed on the first 
a list of the unit's exported routine and data 

The linKer information shows al I external variable and unit 
references made by the unit. An external obJect's name and I ink 
type are always printed. External references display their refer­
ence format and number of references. External deFinitions (usu­
ally seen in host pr~grams) display their assigned data offset. 

LinKer information is described in the Architecture Cuide. 

Page 148 



Utilities 

9.3 Terminal Configuration 

This section describes the system parts used to create and maintain 
a standard interface between system software and the terminal. 
These parts enable the system to use many different terminals with 
a minimum of effort. 

Two system parts define the system's current terminal interface: 
GOTOXY and SYSTEM.MISCINFO. 

The operating system procedure GOTOXY implements random (i.e., X-Y 
coordinate) addreSSing o~ the cursor position. 

The data file named ~SYSTEM.MISCINFO" resides on the system volume,. 
It contains three Kinds of in~ormation: miscellaneous system data, 
terminal screen control characters, and Key definitions for the 
special commands. Its contents are read into a system data 
structure named SYSCOM after booting or I(nitializing the system 
(see the Architecture Guide for details on SYSCOM). The system 
uses the values in SYSCOM to perform various screen control 
operations. 

Three system parts are used to reconfigure the system's terminal 
fhterface: Config, Setup, and Binder. 

The utility program Config (CONFIG on the system disK) recon~igures 
the system ~or the ~ol lowing terminals: 

1) DEC VT-52 compatible terminals (such as the Zenith Z19). 

2) Soroc IQ-120 

3) VC 404 

4) Teleray 

Config simplifies system configuration for the listed terminals; it 
renames an existing data file (which already contains system 
information for the speci~ied terminal) as SYSTEM.MISCINFO f and 
modlfies the existing GOTOXY procedure in the operating system. 
Config is invoKed by the default command program when the system is 
booted for the first time - see the Hardware Reference Manual ~or 

details. Con~ig's operation is described in section 9.3.0. 

Terminals not supported by Config require manual recon~iguration of 
the system. A new SYSTEM.MISCINFO must be created ~rom scratch and 
assigned the proper terminal parameters. A new GOTOXY procedure 
must be written and bound into the operating system. These tasks 
are performed with the utilities Setup and Binder. 

The utility program Setup (SETUP.CODE on the utilities disK) is 
used to create a new MISCINFO file. Setup is described in section 
9.3.1. The utility program Binder (BINDER.CODE on the utilities 
disK) binds a compiled GOTOXY procedure into the operating system's 
code file. Details on creating, compiling, and binding a new 
GOTOXY are presented in section 9.3.2. 

Page 149 



PDQ-3 System Reference Manual 

9.3.0 Using Config 

A copy of the necessary MISCINFO file (SOROC, VC404, TRAY, VT52) 
must reside on the system volume. An online drive is assumed to 
contain a bootable system disK requiring reconfiguration. 

X(ecu.te 
file name 

"CONFIG." (note the ..... 
lacKs the ".CODE" suffix>. 

is necessary because Config's 
The fol lowing prompt appears: 

What is the destination drive (4,5,9,101? 

Enter the drive containing the disK to be configured. 
displays the fol lowing menu: 

Config then 

The terminals for which ACD has constructed drivers inclu.de: 

A) Zenith/HeathKit (or any VT-S2 compatible terminal) 
B) Sor'oc IQ-120 
C) VC 404 
D) Tr'a y 

Type the letter for- your- terminal ([RETURN] for- neither'); 

Type the appropriate letter; typing <return> exits Config. Config 
reads the corresponding MISCINFO file from the system volume, and 
writes it to SYSTEM.MISCINFO on the destination disK. The code 
file on the destination disK containing the operating system 
(SYSTEM.PASCAL) is located, and its default GOTOXY procedure is 
modified to worK for the indicated terminal. 

If the disk is successful \y reconfigured, this message appears: 

Done. 

If any problems occur, one or both of these messages appear: 

File error: Configuration not done 

Consult the SETUP section of the user manual for instructions. 

These appear if <return> was typed instead of a letter the 
reference to Setup is printed because Config assumes that manual 
reconfiguration is necessary, as none of the supported 'terminals 
was specified. 

Conditions causing problems include: 

Wrong or miSSing MISCINFO file on the system volume 
Faulty or off-line destination disK 
Destination volume is write-protected 
No room on destination volume 
No file SYSTEM.PASCAL on destination volume 
Bad blocK in SYSTEM.PASCAL 

Page 150 



Uti 1 ities 

9.3.1 Using Setup 

X(ecute SETUP. Setup spends a few moments copying the contents of 
SYSCOM into its own buffer, and then displays the following prompt 
1 i rle: 

SETUP: C(HANGE T(EACH) H(ELP) Q(UIT) 

H(ELP describes the currently available commands. 

T(EACH describes how to use Setup. 

NOTE Please ignore the section references to the WDManual 
displayed in T(EACH. GOTOXY binding is described in this manual in 
sectior, 9.:3.2. 

C(HANGE is used to display and modify screen control and speCial 
command information in Setup's edit buFfer. 

Q(UIT displays the following prompt: 

QUIT: D(ISK) OR M(EMORY) UPDATE, R(ETURN) H(EL?) E(XIT) 

D(ISK UPDATE saves the contents of Setup's edit buffer in the data 
fi le "NEW.MISCINFO". This must· be charlged to "SYSTEM.MISCINFO" to 
be used by the system. 

M(EMORY UPDATE writes the contents of Setup's edit buffer to the 
SYSCOM data structure in memory; the new values may be tested 
immediately. but are lost if the system is rebooted or I(nitial­
ized. 

R(ETURN returns the Setup promptline. 

E(XIT exits Setup. 

Page 151 



PDQ-3 System Reference Manual 

9-.3.1.1 Fiel ds in Setup 

This section describes the fields accessed by the C(HANGE command. 
The fIelds represent three Kinds of system information~ keys, 
characters. and parameters. 

Keys map character sequences from the keyboard into the system's 
various Key commands (e.g. (control-F> from the Keyboard is 
recognized as the flush command). Key fields in Setup have the 
word "KEY" in their field names. 

Characters are character sequences that the system writes to the 
terminal in order to manipulate the screen display (e.g. writing 
the ERASE LINE character to the terminal erases the characters 
displayed on the current line). 

Parameters are various integer or Boolean values which control the 
system's operation (e.g. the HAS CLOCK field is a Boolean 
parameter indicating the presence of a system clocK). 

Section 9.3.1.2 lists field values for some common terminals. The 
terminal functions (and related character sequences) referred to in 
this section should be documented in the terminal's functIonal 
specification. Key command defintions for some common terminals 
are listed in Appendix F. 

NOTE - The ASCII character names used in some fields are defined 1n 
Appendix E. 

BACKSPACE 

Writing this character to the console moves the cursor one space to 
the left. This must be a single character. Suggested value: ASCII 
BS 

DISK READ RATE 
DISK SEEK RATE 
DISK WRITE RATE 

These fields were introduced by Western Digital to control the disK 
characteristics in their system; the PDQ-3 system does not use 
them. 

EDITOR ACCEPT KEY 

This Key is used in the editor to conclude commands. save the text 
changes. Suggested value: ASCII ETX (ctrl-C or ctrl-J) 

EDITOR ESCAPE KEY 

This Key is used in the editor to exit from commands. Suggested 
value~ ASCII ESC (ctrl-() 

Page 152 



Utilities 

ERASE LINE 

Writing this character to the console erases al I characters on the 
line that the cursor is on, and positions the cursor at the start 
of the line. 

ERASE SCREEN 

WritIng this character to the console erases the entire screen and 
pOSitions the cursor at the top left of the screen. 

ERASE TO END OF LINE 

Writing this character to the console erases all characters from 
the current cursor position to the end of the line, and leaves the 
cursor at its current position. 

ERASE TO END OF SCREEN 

Writing this character to the console erases all characters from 
the current cursor position to the end of the screen, and leaves 
the cursor at its current position. 

HAS 8510A 

This should always be set to FALSE on PDQ-3 systems; it is set to 
TRUE only on Terak machines. 

HAS CLOCK 

This indicates the presence of a system clocK; it should always be 
set to TRUE on PDQ-3 systems. 

HAS LOWER CASE 

This is set to TRUE if the terminal supports lower-case characters; 
otherwise, FALSE. 

HAS RANDOM CURSOR ADDRESSING 

This is set to FALSE only when using hard-copy terminals; other­
wise, TRUE. 

Page 158 



PDQ-3 System Reference Manual 

HAS SLOW TERMINAL 

This field is intended for terminals operating at less than 600 
baud. I t is not used by the PDQ-:3 system. 

KE'{ FOR BREAK 

This Key is intended to terminate the current program. 
used by the PDQ-3 system. 

KEY" FOR FLUSH 

It is not 

This is the console output cancel key. When the FLUSH Key i~ 

typed, console output is discarded until FLUSH is typed again or 
the system reads from the terminal. This field is not used by the 
PDQ-3 systemt as the flush Key is hard-wired to (ctrl-F). 

KEY FOR STOP 

This is the console output stop Key. When the STOP Key 
the system halts on the next console output operation, 
is not used by the PDQ-3 system (see section 1.3.3.1), 

KEY TO BACKSPACE 

is typed, 
This field 

This Key moves the cursor one space to the -left. 
ASCII BS 

Default value: 

KEY TO DELETE CHARACTER 

This Key deletes the character where the cursor 
cursor one character to the left. Suggested 

is, and moves the 
value: ASCII BS 

(contr'ol-H or- "bac~~space") 

KEY TO DELETE LINE 

This Key deletes the line occupied by the cursor. Suggested value: 
ASC I I DEL ( .. rubou t " ) 

KEY TO END FILE 

This Key sets the Boolean intrinsic EOF to true when it 
while reading from the predeclared files INPUT or 
Suggested value: ASCII ETX (control-C or "home") 

Page 154 

is typed 
KEYBOARD. 



Utilities 

KEY TO MOVE CURSOR UP 
KEY TO MOVE CURSOR DOWN 
KEY TO MOVE CURSOR LEFT 
KEY TO MOVE CURSOR RIGHT 

These Keys are used by the editor for cursor control. If the 
terminal Keyboard has a vector pad, it should be used to define 
these Keys. Otherwiset four Keys may be chosen in the pattern of a 
~ector pad and be assigned the control codes that correspond to. 
them (e.g., ctrl-K t ctr·l-O. ctrl-;t ctrl-.). 

LEAD-IN CHAR FROM KEYBOARD 

Some terminals contain Keys that generate two-character sequences. 
I f the pr'ef ix char'acter' is the same for' a I I of these ~<eys, it is 
used to set the value of the field LEAD-IN CHAR FROM KEYBOARD. The 
PREFIX[(Field name)] field for each two-character Key must then be 
set to TRUE. 

LEAD-IN TO SCREEN 

Some terminals require two-character sequences to activate certain 
functions. If the prefix character is the same for all of these 
functions, it is used to set the value of the field LEAD-IN TO 
SCREEN. The PREFIX[(field name)] field For each two-character 
function must then be set to TRUE. 

MOVE CURSOR HOME 

Writing this character to the console "homes" the cursor; 
moves it to the upper leFt hand corner of the screen. 

NOTE If the terminal does not have such a character, the field 
shou.ld be set to ASCI I CR ("r'eturn"); as a consequerlce, the editor' 
wi} I be unusable. Use YALOE (section 9.4) instead. 

MOVE CURSOR RIGHT 

Writing this character to the console moves the cursor one space to 
the right without erasing any characters. 

~NOTE - If the terminal does not have such a character, 
wil} be unusable. Use YALOE (section 9.4) instead. 

MOVE CURSOR UP 

the ed i tor. 

Writing this character to the console moves the cursor vertically 
up one line without erasing any characters. 

NOTE - If the terminal does not have such a character, 
wil I be unusable. Use YALOE (section 9.4) instead. 

Page 155 

the ed i tor' 



PDQ-3 System Reference Manual 

NON-PRINTING CHARACTER 

This character is displayed whenever a non-printing character is 
written to the console by the editor-. Star.dard value: ASCII "7" 

PREFIXED[(field name)] 

The system wil I recognize any two-character sequences generated by 
a Key or sent to the console if the PREFIXED field corresponding to 
the appropriate field is set to TRUE. See the descriptions of the 
LEAD-IN TO SCREEN and LEAD-IN CHAR FROM KEYBOARD fields for more 
detai Is. 

SCREEN HEIGHT 

The number of text lines displayable on the console. 
value: 24 decimal. Value for hard-copy terminals: 0. 

SCREEN WIDTH 

St andar-d 

The number of characters on one line on the console. Standard 
value: 80 decimal. 

VERTICAL DELAY CHARACTER 

This character is intended for implementing vertical move delays on 
slower terminals. This field is not used by the PDQ-3 system. The 
vertical delay character is hard-wired to <nul I}. 

VERTICAL MOVE DELAY 

This field can taKe integer values between 0 and 11. Many types of 
terminals require a delay after certain cursor movements to enable 
the terminal to complete the movement before the next character is 
displayed. The delay is implemented by sending a series of <nul I} 
characters to the terminal; the value in this field determines the 
number of characters to be sent. 

Page 156 



Uti} ities 

9.3.1.2 Sample Setups For Some Popular Terminals 

Terminals: 

Fields: 
BACKSPACE 
EDITOR ACCEPT KEY 
EDITOR ESCAPE KEY 
ERASE LINE 
ERASE SCREEN 
ERASE TO END OF LINE 
ERASE TO END OF BCRN 
HAS LOWER CASE 
HAS RAND CURS ADDR 
HAS SLOW TERM 
KEY FOR BREAK 
KEY FOR FLUSH 
~~EY FOR STOP 
KEY TO BACKSPACE 
KEY TO DELETE CHAR 
KEY TO DELETE LINE 
KEY TO END FILE 
KEY TO MOV CURS DOWN 
KEY TO MOV CURS LEFT 
KEY TO MOV CURS RGHT 
KEY TO MOV CURS UP 
LEAD IN FROM KBD 
LEAD IN TO SCREEN 
MOVE CURSOR HOME 
MOVE CURSOR RIGHT 
MOVE CURSOR UP 
NON-PRINTING CHAR 
PREF [ED ACCEPT KEY] 
PREF [ED ESCAPE KEY] 
PREF (ERASE LINE] 
PREF [ERASE SCREEN] 
PREF [ERASE TO EOLN] 
PREF (ERSE TO EOBCN] 
PREF [KEY DEL CHAR] 
PREF [KEY DEL LINE] 
PREF [KEY MV CRS DNl 
PREF [KEY MV CRS LTl 
PREF [KEY MV CRS RTl 
PREF [KEY MV CRB UP] 
PREF [MOV CURS HOME] 
PREF [MOV CURS RTl 
PREF [MOV CURS UPl 
PREF [NONPRINT CHAR] 
SCREEN HEIGHT 
SCREEN WIDTH 
VERTICAL MOVE CHAR 
VERTICAL MOVE DELAY 

LSI 
ADM-3A 

} -ar'row 
ctrl-C 
esc 
NUL 
ctrl-Z 
NUL 
NUL 
TRUE 
TRUE 
FALSE 
c tr I -B 
ctr'} -F 
ctrl-S 
BS 
ctrl-H 
DEL 
ctrl-C 
C tr I -J 
ctr 1 -H 
ctr'l-L 
ctrl-I< 
NUL 
NUL 
ctr'}-'" 
c tr I -L 
ctr} -K 
U?" 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
24 
80 
NUL 
5 

Page 157 

SOROC 
IQ120 

ctr'I-H 
home 
esc 
NUL 
U*" 
T 
y 
TRUE 
TRUE 
FALSE 
br'ea~~ 

ctr-l-F 
ctr')-S 
BS 
1 - arrO\l} 
DEL 
ctr·1 -C 
d - arrO\l} 
I -ar'rO\l} 
r- - arrO\l} 
u-arrow 
NUL 
ESC 
c t r } - -'. 
r-arr'ow 
u - ar-rO\l} 
"?" 
FALSE 
FALSE 
TRUE 
TRUE 
TRUE 
TRUE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
24 
80 
NUL 
10 

ZENITH 
Z19 

ctr-I-H 
ctr'} -J 
esc 
} 

E 
K 
J 
TRUE 
TRUE 
FALSE 
breaK 
ctr-l-F 
ctrl-S 
BS 
bacK_space 
DEL 
ctr-}-C 
B 
D 
C 
A 
ESC 
ESC 
H 
C 
A 
II?" 
FALSE 
FALSE 
TRUE 
TRUE 
TRUE 
TRUE 
FALSE 
FALSE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
TRUE 
FALSE 
24 
80 
NUL 
o 



PDQ-3 System Reference Manual 

9.3.2 GOTOXY Binding 

First, a Pascal program containing the GOTOXY procedure must be 
written and compiled to a code file. IF the system has not be~n 
configured for the terminal being used, it might be necessary to 
create the program with the line-orinted editor YALOE; the regular 
editor may be unusable. 

Here is an example of a complete GOTOXY program for the Sorce IQ 
120 t er'm i rl a 1 : 

{$U-,S+} 
program NewGotoXY; 

procedure SorocIQ120GotoXY(X,Y; integer); 
eanst 

NumChar's = 4; -( chars irl sequence ) 

Lead lrl = "7 .. "-I , ( Soroc lead-in char' ... .' 
CmdChar = I = I' ( Soroc command char' ) 

XBias = 3"" "-, 1" '. Sor'oc X O~ Y bias ) 

·tBi as = 82; 
XMax = 0; { Screen Width Par· arne t ers 
XMin = 79; 
YMin = 0; ( Screen Height Par'ameters 
YMax = 2:3; 
ter'mina I = 1 ; ( Terminal I/O Unit ) 

noSpec = 1?' 1" No special char's -, -, '. .l 

var' 

} 

Char·Seq; pacKed arr'a y ( 1 t • NumChar's] of char; 

beg i r, 
i F X > XMax 
else i F :x < 
i F ''J' > 'tMax 
else i F Y 

Char'Seq [ 1 J 
CharSeq(21 
CharSeq[3J 
CharSeqC41 

< 

then X : = XMax 
XMirl therl X := XM i rq 
then Y .. -.. - 'YMax 
XMin therl Y : = XM i rq 

:= chr' ( Le ad In) ; 
:= CmdChar; 
.. -.. - chr' (YBi as + Y) ; 
.. -.. - chr(XBias + X) ; 

unitwrite(terminal,CharSeq,NumChars"noSpec); 
end CSorocIQ120GotoXY}; 

begin {dummy program} 
end. 

Page 158 

) 



Utilities 

This example demonstrates most of the requirements and restrictions 
imposed on new GOTOIY procedures, Most terminals use similar 
character sequences for cursor addressing; the parameters most 
likely to vary are the prefix and command chars, and the biases 
applied to the X and Y coordinates. These should be documented in 
the terminal's Functional speciFication, 

The compi 1 er' d ir'ect i ve a t the top of the progr'am is r'equired; "U- II 

directs the compiler to create the program at the system level, 
wh i 1 e .. 5 + .. i s me r' ely to s a ve spa c e • 

NOTE 
able. 

Pr·ograms compi led with the "U-" directive are riot execut-

The name "GOTOXY" car.rlot be used as a procedur'e or' var·iable name; 
it is reserved For standard calls to the GOTOIY intrinsic. Binder 
recognizes the new GOTOXY procedure by its position in the code 
File; hence. there must be only one procedure in the programt and 
the main program must be an empty blocK. 

The UNITWRITE intrinsic is used to maKe the GOTOXY as eFFicient as 
possible. Using the standard procedure WRITE slows down terminal 
_response. The UNITWRITE option to suppress special character 
processing is asserted to prevent the system from interpreting any­
of the characters in the command sequence as special characters 
(e.g., DLE expansion), 

GOTOIY must ensure that its X and Y argument values are in the 
proper range; iF not, they must be truncated, Also, be sure that 
the X parameter controls horizontal cursor movement and the Y 
parameter vertical cursor movement. If there are any doubts about 
a GOTOXY, it is worthwhile to embed the GOTOXY procedure in a test 
program and test it out beFore running Binder. 

Page 159 



PDQ-3 System Reference Manual 

9.3.2.0 Usin9 Binder 

X(ecute BINDER. The fol lowing prompt appe~rs: 

Enter name of file with GOTOXY procedure: 

Enter the name of the code file containing the compiled GOTOXY. 
The prefix volume should be set to the volume containing the 
operating system code file. Binder reads the operating system code 
into memory, binds in the new procedure. and writes the modified 
system code bacK to the disK. Rebooting the system reloads the 
operating system with the new GOTOIY instal led and ready for 
action. 

NOTE - Binder removes the old operating system code file; be sure 
to maKe a copy of it on a bacKup disK before running Binder. 
Binder can be run successfully on the same file many times; 
however, this is not suggested. as the operating system code 
becomes progressively larger (and thus wastes memory). This occurs 
because Binder merely adds the new procedure code to the end of the 
existing code. and then updates the GOTOXY procedure pointer. 

NOTE - A newly bound in GOTOXY is correct iF; 

1) The welcome message appears in the center of the screen when 
the new system is booted (section 2.2.0). 

2) The editor seems to worK correctly. 

Page 160 



Utilities 

9.4 L~ne-Or~ented Text Ed~tor 

YALOE is a' line-oriented text editor designed for use in systems 
having a hard-copy device (e.g., teletypewriter) for a terminal, or 
on unconfigured systems (see section 9.3); YALOE worKs in these 
situations, while the regular editor does not. 

Section 9.4.9 contains a summary of all YALOE commands. 

9.4.0 Entering YALOE 

YALOE is invoKed by X(ecuting YALOE.CODE; however, if YALOE is to 
be used extensively, it can assume the role of the standard system 
editor. Change the screen editor's code file to a different file 
name (e.g. SCREEN.EDITOR)~ and then change YALOE.CODE to 8Y8-
TEM.EDltyping E(dit from the system prompt now invoKes YALOE. 

IF a worK File exists, the editor prints: 

WorKfile <file name> read in 

• • • where <File name> is the name of the current worK File • 

If the workFile is empty, this message appears: 

No worKFile read in. 

9.4.1 Entering Commands and Text 

The editor operates in either Command mode or Text mode. The 
editor is in Command mode when it is first entered; in Command 
mode, al I Keyboard input is interpreted as edit commands. Commands 
may be invoKed individually or as part of a command string 
specifying the execution of a sequence of commands. Text mode is 

-entered whenever a command is typed that must be fol lowed by a text· 
string; when the text string is terminated, the editor returns to 
Command mode. 

Examples of command and text strings appear in the sections 
describing the edit commands. 

NOTE - unliKe other parts of the system, YALOE does not display 
promptlines automatically; instead, an asterisK ("*") is printed to 
indicate that commands may be entered. Commands are entered by 
typing command characters; they are displayed on the screen as they 
are typed. The "?" command lists the available commands on the 
screen. 

Page 161 



PDQ-3 System Reference Manual 

9.4.1.0 Command Arguments 

Some edit commands allow a command argument to precede the command 
character. The argument usually specifies the number of times the 
command should be performed or the particular portion of text to be 
affected by the command. The definitions listed below are used in 
the command descriptions. 

Command arguments ~re: 

n Any integer, signed or unsigned. Unsigned integers are 
assumed to be positive. In a command that accepts an 
argument, the default value is 1; if only a minus sign is 
pr-eserlt, the valu.e is -1. Negative ar-gumerlts imply 
bacKwards cursor movement. 

m An integer between 0 and 9. 

o The beginning of the current line • 

.I Denotes the number- 32700. A" - / I, derlotes -32700. 
used as arl II in f i rl i te II r-epea t f ac tor.'. 

"/" is 

= Equivalent to the signed integer argument "_n", where n 
equals the length of the last text string argument used. 
Applies only to the J(ump, D(elete, and C(hange commands. 

9.4.1.1 Command Strings 

Commands may be entered singly or in strings; they are not executed 
until <esc><esc> is typed. Command strings consist of a sequence 
of single character commands. Commands requiring text strings are 
separated by the <esc> terminating the command~s text string; 
commands not requiring text strings may optionally be separated by 
<esc>. 

NOTE - <esc> echoes a dollar sign ("$") wherl typed. The <esc> 
terminates the text string and returns control to Command mode. 
The examples in this section display <esc> in its echoed form "$". 

SpaceSt carriage returns and tabs within a command string are 
ignor~d unless they appear in a text string. When the execution of 
a command string is complete, the Editor prompts for the next 
command with an asterisK ("*"). 

If an error is encountered while executing a single command, 
execution of the command string is terminated; the results of the 
preceding commands in the string remain, but subsequent commands in 
the command string are discarded. 

9.4.1.2 Text Strings 

In Text mode, al I Keyboard input is treated as text until <esc> is 
typed I Commands r'equir-ing text strirlgs are F( ind, G(et, I (nser-t, 
M(acro define, R(ead file, W(rite to file, and eX(change. 

Page 162 



Utilities 

9.4.2 The Text Buffer 

The text file being modified by the editor is stored in the text 
buffer. Files must fit in the text buffer to be successFully 
edited. 

9.4.3 The Cursor 

The cursor is the position in the file where the next command will 
be executed. Most edit commands use the cursor position as a 
starting point in their operations on the text file. 

9.4.4 Spec~al Commands 

Various Keys on the Keyboard have special functions when used in 
YALOE. These commands are described below: 

<esc> 

Echoes a dollar sign ($) on the console. A single <esc> 
terminates a text string. A double <esc> executes a 
command str' i ng. 

CTRL H 
< char·de I> 

Deletes a character from the current line. On hard-copy 
t e r' min a Is, i t e c hoe sap e r' c e n t s i g n ( .. '% ... ) f 0 1 lowe d b Y t 1'", e 
character deleted. Deletions are done right to left t 

with each deleted character erased by the %, up to the 
beginning of the command string. CTRL H may be used in 
both Command and Text Modes. 

CTRL X 

CTRL X causes the editor to ignore the entire command 
string currently being entered; YALOE responds with an 
asterisK ("*") to accept new commands. If the command 
str ing cover's sever'a 1 lines, a 1 I I ines baclt~ to the 
previous command prompt are ignored. 

NOTE - The Operating System currently reserves CTRL X for 
its own purposes; this command does" not worK. 

CTRL 0 

CTRL 0 causes the Editor to switch to the optional 
character set (bit 7 turned on). 

NOTE - If strange characters start appearing 
terminal, CRTL 0 may have been accidental ly 
Typing CRTL 0 again should fix the problem, 

Page 163 

on the 
typed. 



PDQ-3 System Reference Manual 

9.4.5 Input/Output Commands 

The commarlds that contr·ol I/O are: L( ist, V(erify, W(r'ite, 
Q(uit, E(rase, and O(ption. 

9.4.5.0 L(ist 

For'ma t: 

nL 

RCead, 

Prints the specified number of text lines on the terminal without 
moving the cursor. Variations of this command are illustrated in 
the examples below. 

*-3L$$ Prints al I characters starting at the third preceding 
line and ending at the cursor. 

*5L$$ Prints all characters beginning at the cursor and 
terminating at the fifth carriage return (tine). 

Prints from the beginning of the current line up to 
the cursor'. 

9.4.5.1 V(erif'y 

For'ma t: 

V 

Prints the current text line on the terminal. The pOSition of the 
cursor within the line has no effect on the command and the cursor 
is not moved. No arguments are used. VERIFY is equivalent to a 
"*OL$$" lis t command. 

9.4.5.2 W(rite 

Format: 

W<file title>$ 

•• ~ where <file title> is a text string containing a valid file 
title. The editor' appends the text file suffix ".TEXT" unless the 
tit I e ends wit h • t "]" or to. TEXT" • 1ft he tit 1 e ends i r. t t the 
dot is removed. 

This command writes the entire text buffer to the specified disK 
file. It does not move the cursor or alter the contents of the 
text buffer. 

Page 164 



Utilities 

If the specified volume has insufficient room to hold the disK 
file) the fol lowing error message is printed: 

OUTPUT ERROR. HELP! 

The text buffer can be written to another volu~e. 

9.4.5.3 R(ead 

For·rna t : 

R<file title>$ 

••• where <file title> is a text string containing a valid file 
tit 'j e. 

The editor attempts to locate the specified file. If no file is 
f oun d h a vir. g the g i v e n tit 1 e ) a ". TE XT .. s u f fix i s a pp end e dan d the 
editor maKes another attempt at finding the file. 

The contents of the specified file are copied into the text buffer 
starting at the cursor position. 

WARNING - If the file read in does not fit. the entire text buffer 
contents become undefined. This is an unrecoverable error. 

9.4.5.4 Q<uit 

The Q(uit command can have these forms: 

QU Quit and update by writing to the worK file. 
QE Quit and exit YALOE; the text is not saved. 
Q Issue a prompt requesting 

one of the following options: Ut E, or R. R returns 
to the edit session. 

The "QU" command writes the fi le to the worK. text fi le; it is 
simi lar to the W(r·ite command. "RIO is often used to r·eturn to the 
editor after a "Q" has been accidentally typed. 

~9.4.5.5 E<rase 

Format: 

E 

Erases the screen; this command only worKs with video display 
terminals. 

Page 165 



PDQ·3 System Reference Manual 

9.4.5.6 O(p't:'ion 

Forma t: 

nO 

Automatically display the text surrounding the cursor each time the 
cursor is moved; this option only worKs with video display 
terminals. The argument specifies the number of lines to be 
displayed. This option is disabled when the editor is entered; it 
is enabled by typing O(ption, and disabled by typing O(ption again. 
The cursor location is indicat~d by a split in the displayed text 
Ii r,e. 

9.4.6 Cursor Moving Commands 

The commands that move the cursor 
nir,g, G(et, and F(ir,d. They are 
sec t i or,s. 

ar'e: J(ump, A(dvance, B(egirl­
described in the fol lowing 

The direction of cursor movement is specified by the sign of the 
command argument; e.g., when applied to the J(ump command, the 
arguments (+n) and (n) move the cursor forward n characters, while 
the argument (-n) moves the cursor bacKwards n spaces. 

Carriage returns are treated as a single text character. 

Examples of the moving commands are given in section 9.4.6.4. 

Format: 

MO~~5 the cursor a specified number of characters in the 
buf fer'. 

9.4.6.1 A(dvance. 

Format: 

nA 

text 

Moves the cursor a specified number of lines. The cursor is 
positioned at the beginning of the line to which it moved. A 
command argumer,t of "0" moves the cursor to the beginning of the 
currer, t 'i ne. 

Page 166 



Utilities 

9.4.6.2 B(eginning 

For-ma t: 

B 

Moves the cursor to the beginning of the text buffer. A logical 
complement to this command would be "End"; this can be simulated 
with "/J". 

9.4.6.3 G(et and F(ind 

For-rna t: 

nF<target string)$ nG<target string}$ 

These commands are synonymous. Starting at the current curscir 
position, the text buffer is searched for the n'th occurrence of 
the specified text string; the sign of n determines the search 
dir-ect ion. I f the search is successfu I f the cursor is posi t ioned 
immediately after the text string if n is positive. or immediately 
before the text string if n is negative. If the string is not 
found, an error message is printed~ and the cursor is left at the 
end of the buffer if n is positive, or at the beginning if n is 
rleg at i ve. 

Page 167 



PDQ-3 System Reference Manual 

9.4.6.4 Examples of Cursor Moving Commands 

In these examples, the cursor position is indic~ted by an under­
score character; the cursor does not appear on a hard-copy device. 

Her e i 5 the or' i q ina 1 t ext : 

The time has come 
the walrus saiQ 
to balK at many things 

*8J$$ Moves the cursor forward 8 characters: 

The time has come 
the \l}a I r'Us sa i d 
to ba11 at many things 

- - '- -
Moves the cursor up one line: 

The time has come 
~_he wa I r'us sa i d 
to balK at many things 

*BGcome$=J$$ Moves the cursor to the beginning of the text 
bu f fer' arid se ar'ches for' the str' i ng II COME II • 

When the str'irlg is found, the cursor' is 
positioned at the start of the string: 

The time !'"Ias £.ome 
the \lJa 1 rus sa i d 
to balK at many things 

Page 168 



Utilities 

9.4.7 Text Changing Commands 

The commands that change text are: I(nsert, D(elete, K(il l, 
C(hange, and eX(change. These are described in the fol lowing 
sections. Examples of these commands are given in Section 9.4.7.5. 

9.4.7.0 I(nsert 

Format: 

I<text string)$ 

Starting at the current cursor position, the characters in the 
specified text string are added to the text. YALOE enters Tex~ 
mode after typing the "I", Text mode is terminated by typing "$". 

The cursor is left immediately after the last inserted character. 

Occasionally, large insertions may fill the temporary insert 
buffer; before this happens, the editor' prirlts "Please finish" on 
the console. Typing <esc><esc> finishes the current command. To 
continue, type "I" to re-enter Text mode. 

9.4.7.1 D(elete 

Forma t: 

nD 

Starting at the current cursor position, the specified number of 
characters are removed from the text buffer; negative arguments 
indicate bacKwards cursor movement. The cursor is left at the 
first character following the deleted text. 

9.4.7.2 K(ill 

Format: 

nl< 

Starting at the current cursor position, the specified number of 
lines are deleted from the text buffer. The cursor is left at the 
beginning of the line fo) lowing the deleted text. 

Page 169 



PDQ-3 System Reference Manual 

9.4.7.3 C(han.ge 

For'rna t: 

nC{text string)$ 

Starting at the current cursor position, n characters are replaced 
with the specified text str·lng. The cursor' is left immediately 
after the changed text. 

9.4.7.4 eX(change 

Format: 

nX<text string). 

Starting at the current cursor position, n lines are replaced 
the specified text string. The cursor is left at the end of 
changed text. 

9.4.7.5 Examples of Text Changing Commands 

Deletes the four characters immediately preceding 
the cursor (even if they are on the previous line). 

Deletes all I irles in the text buffer' after the 
cursor' • 

*OCAAA$$ Replaces the characters from the beginning of the 
line tot rle cur'sor \l} i t h .. AAA" (same as *OXAAA$$). 

* BG A $ = C B$ $ 5 ear' c h e s for' the fir' s t 0 c cur' r' e n ceo f II A " and 
r'ep I aces i t ~1;i th "B". 

*-3XNEW$$ Exchanges al I characters beginning with the first 
character on the third line back and ending at 
the cur'sor' wi th the str' ing "NEW". 

*BSGTWINE$=D$$ Moves the cursor to the beginning of the 
te~t buffer, searches for th~ string 
"TWINE", and deletes it. 

9.4.8 Other Commands 

Miscellaneous commands include: S(ave, U(nsave, M(acro, N (macr~ 
execu.t iorl), and "?". 

Page 170 



Utilities 

9.4.8.0 S(ave 

Format: 

nS 

Starting at the current cursor position. the specified number of" 
text lines are copied into the save buffer. The cursor position 
and the text buffer contents are not affected. Each time a S(ave 
is executed, the previous contents of the save buffer are de­
stroyed. If the execution of a S(ave command would overflow the 
save buffer) the editor generates a warning message and does not 
perform the S(ave. 

The contents of the save buffer are accessed with the U(nsa~e 
command. 

9.4.8.1 U(nsave 

For'ma t : 

U 

Starting at the current cursor position. the current contents of 
the save buffer are inserted into the text buffer. The cursor is 
left in front of the inserted text. If the text buffer does not 
have enough room for the contents of the save buffer. the Editor 
generates a warning message and and does not execute the U(nsave. 

The save buffer can be r'emoved by typirlg the command "QU". 

9.4.8.2 M(acro 

A macro is a single command that executes a user-defined command 
string. Macros are created with the M(acro command. A macro can 
invoKe other macros (including itself recursively), 

Format: 

mM%<command string>% 

,.. where m is an integer between 0 and 9 which is used td 
specify the macro definition. The default macro number is 1. The 
command str i rig de' i mi ter (" %" i rl the examp 1 e above) is a 1 wa ys the 
first character- follouJirlg the "Moo. The del imiter may be any 
character that does not appear in the macro command string itself. 
The second occurrence of the delimiter terminates the macro 
definition. 

All characters except the delimiter are legal 
character's, including a single <esc>. All commands 
the command string, 

command string 
ar'e I ega I in 

If an error occurs when defining a macro, the following error 

Page 171 



PDQ-3 System Reference Manual 

message is generated: 

Error in macro definition. 

The macro wil I have to be redefined. 

Example of a macr-o definItion: 

*4M%FPREFACE$=CEND PREFACE$V$%$$ 

This example defines macro number 4. When macro 4 is executed 
(uslr,g the "N" command), the editor- loo~(s for- the str-ing "PREFACE", 
changes it to "END PREFACE", and displays the change. 

NOTE - A maximum of 10 macros may exist at one time. 

9.4.8.3 N (Execute Macro> 

For-ma t : 

nNm$ 

Ex e C' u t € S the .s pee i fie d mac r- 0 de fin i t ion • " m " i s the mac r- 0 n u. m be r­
<between 0 and 9 that identifies the macro; its default value is 
1 • E: E-' C au..s e mac t u. a I I" y r· e p r' e sen t sat ext s t r i n g 0 f com man d s , the N 
command must be terminated by <esc> <echoed as $). 

Attempts to execute undefined macros generate the fol lowing error 
mes.5age~ 

LJrd'",appy macnum. 

Errors encountered during macro execution generate: 

Error in macro. 

9.4.8.4 ? (Display Info) 

Forma t : 

? 

Prints a list of al 1 commands, the current size of the text buffer 
and save buffer, the numbers of the currently defined macros, and 
the amount of memory available for expansion of the text buffer. 

Page 172 



Utilities 

9.4.9 Command Summary 

?: 
nA: 

B: 
nC: 

nD: 
E: 

nF: 
nG: 

I : 

nJ: 
nK: 

nL: 
mM: 
nNm: 
nO; 

Q: 

R: 

nS; 

U: 

V: 
W: 

nX: 

n - integer argument m - macro number 

Display command list and file information. 
Advance the cursor to the beginning of the 
n'th line from the current position. 
Go to the Beginning of the file. 
Change by deleting n characters and inserting 
the fol lowing text. Terminate text with <esc>. 
Delete n characters. 
Erase the screen. 
Find the n'th occurrence from the current cursor. 
position of the following string. Terminate 
target string with <esc>. 
Insert the following text. Terminate text 
with <esc>. 
Jump cursor n characters. 
Kil I n lines of text from the current cursor 
position. 
List n lines of text, 
Define macro number m. 
Perform macro mt n times. 
On, off toggle. If on, n lines of text will be 
displayed above and below the cursor each time 
the cursor is moved. If the cursor is in the 
middle of a line then the line will be split into 
two parts. The default is whatever fil Is the screen. 
Type 0 to turn off. 
Quit this session, followed by: 

U:(pdate Write out a new SYSTEM.WRK.TEXT 
E:(scape Escape from session 
R:(eturn Return to editor 

Read file into buffer starting at cursor; 
format is: R<file name><esc>. 
WARNING: If the file will not fit into the 
bufFer, the buFFer contents become undeFined! 
Put the next n lines of text From the cursor 
position into the Save BufFer. 
Insert (Unsave) the contents of the Save Buffer into the 
text at the cursor; does not destroy the Save BuFfer. 
Verify: display the current line. 
Write file (from start of bufFer); 
format is: W<file name><esc>. 
Delete n lines of text, and insert the Fol lowing text; 
terminate with <esc>. 

Page 178 



PDQ-3 System Reference Manual 

9.5 Byte-level File Editor 

The utllity program Patch (PATCH.CODE on the utilities disK) is 
used to view and alter· the corltents of a dis~< file. Files ar'e 
addressed as a series of 512-byte blocKs; the contents of each 
blocK can be displayed on the console either in hex format or as a 
mixture of hex and ASCII characters. The contents of a displayed 
block can be modified by moving the cursor to the desired positlQnJ 
typing in the new data, and writing the modified blocK bacK to 
disK. Patch can examine and modify text and code file information; 
bee au s e i tIS a 1 ow - level u. til i t y tit i s g e n e r- a I I Y a v 0 ide d b y u. s e r' s 
who are not extremely cu.rious or desperate. 

9.5.0 Using Patch 

X(ecu.te PATCH. The following promptline appears: 

Patch [HO]: F(ile, Q(u.it 

Q(uit exits Patch; F(ite generates the prompt: 

Fi tenallle: <cr for unit i/o> 

Enter the name of the file to be edited. Patch expects complete 
fi Ie names, su.ffixes ar-e r-equir-ed. Specifying a disK fi Ie limits 
Patch to the blocKs u.sed by the file. BlocKs are referenced by 
reI a t i ve b I 0 c K numb e r- (e. 9 ., fir- s t b I 0 c ~< in the f i lei s b I 0 c K 0). 

Typing <return> generates this prompt: 

Un itt I) pat c h [4. 5, 9 •• 12] : 

Type the number corresponding to the unit containing the disk to be 
e x ami ned ( not e - t Y pin g .. 0 II ex its the pr-omp t ) • S p e c i f yin gad i sK 
unit al iows Patch to access all blocKs on the mounted disK. BlocKs 
are r'eferenced by absolute blocK number (e.g., the first blocK on 
the disK is blocK 0). 

When eIther a file name or a unit number has been entered, the 
original prompt reappears with an added command: 

Pat cr', [H 0 ]: G ( e t, F ( i I e', Q ( u i t 

C(et generates the prompt: 

BLOCK: 

~ blocK number is entered~ The specified blocK is read into 
memory; it becomes the current blocK. The current blocK is 
affected only by G(et and the Alter commands. Patch maintains only 
one current blocK. 

NOTE - No range checKing is provided on bloc~ numbers. 
number is out of range, Patch accepts the command, 
change the current blocK. 

Page 174 

If a blocK 
bu.t does not 



Utilities 

When a current blocK exists, the original prompt reappears with two 
new commands: 

Pa t ch [HO]: G ( e t , H ( ex, M ( i xed, F ( i 'e, Q ( u i t 

H(ex displays the contents of the current blocK in hexadecimal 
characters. M(ixed attempts to display the blocK in ASCII charac­
ters; bytes not containing valid ASCII characters are displayed in 
hex. 

H(ex and M(ixed generate the following prompt after displaying the 
currerlt b 1 oc~;: 

Alter: pad vector 1,5,3,0 O •• ~ hex characters, S(tuff, Q(uit 

The cursor is initially positioned at the first byte in the blocK; 
the vector Keys and space bar control its movement. Typing a hex 
~haracter changes the character at the current cursor position. 

NOTE - The pr-omptl irle commands "1,5,3,0" are obsolete and unimple­
mented; they should have been removed by Western Digital a long 
time ago. 

S(tuff is used to set a series of bytes to the same value. The 
following prompt appears: 

Stuff for how many bytes: 

Enter a number <between 0 and 512, depending on the current cursor 
pOSition). The next prompt is: 

Fill with what hex pair: 

Enter two hex characters. 

Starting at the current cursor position, Patch assigns ~~e speci­
fied value to the number of bytes indicated, and updates the 
d i sp I a y. 

NOTE a <return> is not required after the hex pair is entered. 
Patch starts stuffing immediately after the second hex character is 
typed. 

WARNING The system may crash if S(tuff is asKed to change more 
bytes than are displayed between the cursor and the end of the 
current blocK. DO NOT stuff past the displayed bytes. 

In Alter mode, Q(uit redisplays the original Patch prompt with an 
added command: 

Pa t ch rHO 1: G (e t, P (u t, H (ex, M ( i xed f F ( i Ie, Q (u it 

P(ut writes the current block to its proper disK location. It is 
not possible to write the current blocK to, any other disK blocK 
than the one it was read from. 

Page 175 



PDQ-3 System Reference Manual 

9.6 Code F~le D~sassembly 

The utility program Disassembler (DISASM.CODE on the utilities 
di~Ek) is used to dIsplay the contents of a code fi Ie in symbol ic 
form. The information available includes: 

1) The number of code segments in the file. 

2' The symbolic name of each code segment. 

3) The number of procedures in a code segment. 

4) Symbolic displays of a procedure's code and constant data. 

NOTE - The disassemblero UorH:overs many detai Is of the UCSD PascaoJ 
implementation; thereforoe, much of the ter'minology u.sed to describe 
its output is not defined in this manual. See the Architecture 
G u ide f oro a d e tin i t ion 0 f the f 0 I I o!,!} i n 9 t e ro m s : P - cod e , con s tan t 
pools, exit ic's, data segments, procedure bodiest and code 
segments. 

NOTE - If a code file contains a program having library references, 
the disassembler can display the referenced library routines only 
if the code file has been linKed. 

9.6.0 Using Disassembler 

X(£cute DISASM. After a few seconds. the fol lowing prompt appears: 

input file: 

The input file name does not require a suffix (if the disassembler 
cannot open the file by appending ".CODE", it trys again sans 
suffix). Typing only a (return) exits the disassembler. 

The next prompt is: 

The 1 i.S" t f i 1 e rt am € r e qui r' e s a ". T EXT" s u f fix i f the 1 i s tin 9 iss e r. t 
t{:> a dis~( file. Typing "#1:" oro "corlso)e:" directs the listirlg to 
the console. Typing only a <return> exits the disassembler. 

Page 176 



Utilities 

The Segment Guide appears next; its prompt is: 

Segment Guide: A(l I, I(of segment. Q(uit 

Below this prompt is a table displaying the fol lowing information 
for each code segment in the file: segment namet segment numbert 
and number of procedures. 

At the bottom of the Segment Guide is the prompt: 

Segment: 

A(l I generates a disassembled listing of every procedure in every 
code segment in the code file. Q(uit exits the disassembler. 
rvping one of the segment numbers displayed in the Segment Guide 
sends the user into the Procedure Guide for the specified code 
segment: 

Procedure Guide: A(l It I(of procedure, Q(uit 

Below this prompt. the disassembler indicates the number of 
procedures in the current code segment. Procedures are addressed 
by their procedure number (range for a given segment is 1 to <procs 
in seg)>. 

At the bottom of the Procedure Guide is the prompt: 

Procedure: 

A(I I generates a disassembled listing of every procedure in the 
current code segment. Q(uit exits the Procedure Guide and reenters 
the Segment Guide. Typing a procedure number generates a disassem­
bled listing of the corresponding procedure; when the listing is 
complete, the fol lowing prompt appears: 

press spacebar to continue ••• 

Typing (space) reenters the Procedure Guide. 

Page 177 



PDQ-3 System Reference Manuat 

Example of a disassembled listing: 

He~e is the sample program: 

progr'am examp 1 e; 

procedure target; 
var itJ : integer; 

s : string; 
begin 

i : = 1; 
J := 18; 
if i )= J then 

s : = .' r' i gh t .' 
else 

S .. -.. -
end; 

begin 
tar'get; 

end, 

, \lJr'ong ~ ; 

Her'e is a d i sassemb·) ed ) i st i ng of pr'ocedure .. t ar'ge t .. : 

SEGMENT= 1 PROCEDURE= 
CONSTANT POOL: 

2 BLOCK= 1 BLOCK OFFSET= 2 

- 1 : 0572 I r: 6967.ig: 
0031 

6874.ht: 0577. w: 726F.ro: 6E67.ng: 
EXIT IC: 

SEG 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

PROC 
2 
2 ,.., ... 
2 
2 
2 
2 
2 
2 
2 
2 
2 ,.., ... 
2 
2 
2 
2 
2 

btoc~~ # 1 
OFFSET 
0(000) : 
1(001): 
3(003) : 
4(004) : 
6(006) : 
7(007) : 
8(008): 
9 ( 009 ) : 

11(00B): 
1:3(OOD) : 
IS(OOF): 
17(011): 
20(014): 
22 ( 0 16 ) : 
24 ( 0 18 ) : 
26 ( 01 A) : 
28(01C): 
31(01F): 

DATA SEGMENT SIZE: 002B 
offset in blocK= 18 

SLDC 
STL 
SLDC 
STL 
SLDL 
SLDL 
CEQ! 
FJP 
LLA 
LeA 
LDCB 
CXG 
UJP 
LLA 
LCA 
LDCB 
CXG 
RPU 

Page 178 

1 
2 

18 
1 
2 
1 

22 
3 
1 

80 
ASSIGN 

31 
3 
4 

80 
ASSIGN 

4:3 

HEX CODE 
01 
A402 
12 
A401 
21 
20 
B3 
D40B 
8403 
8201 
8050 
940311 
BA09 
8403 
8204 
8050 
940311 
962B 



Utilities 

BLOCK and BLOCK OFFSET respectively indicate the blocK number and 
byte offset of the procedure body in the code file. 

The constant pool is displayed only if it exists. The number at 
the start of each line of constant pool data indicates the 
pool-relative word offset of the first word on the line. Each word 
of constant data is displayed in hex; if it exists, the ASCII 
representation is printed alongside. 

EXITIC is a decimal value displaying a code-relative byte offset. 
DATA SEGMENT SIZE is a hex value indicating the number of words in 
the local data segment. 

The "blocK #" and "offset in blocK" fields denote the beginning of 
the procedure code in the file. 

Procedure code offsets are given in hex and in decimal. P-code 
mnemonics and their hex eqiuvalents are displayed for each instruc­
tion. System cal Is are recognizable by the substitution of a 
system cal l's procedure name for its segment and procedure number; 
this helps the user match the code in the dis-assembled listing 
with source statements in the corresponding program listing. 

Page 179 



PDQ-3 System Referenc~ Manual 

9.7 Printer Spooler 

The utility program Printer (PRINTER.CODE on the utilities disK) 
starts the printer spooler, which writes text files to an 1/0 
device concurrently with normal system operation. The spooler 
al lows users to edit t compilet and run programs while text files 
are being printed on the line printer. The printer spooler is a 
bacKground tasK that executes while the system is suspended (e.g. 
waiting at a promptline). Printer is described in section 9.7.0. 
The utility program Spoolgen (SPOOLGEN.CODE on the utilities disK) 
removes the printer spooler from the system, freeing up 400 words 
of memory for situations where the extra memory is needed more than 
the spooler is. Spoolgen is described in section 9.7.1. 

9.7.0 Using Printer 

X(ecute PRINTER. The fol lowing prompt appears: 

What is the output unit (Ot 1, <onl in~ urdts»? 

••• where <online units> is a list of unit numbers for all online 
serial units (1 is the console unit). Typing "0" exits Pr-irlter·. 
Typing any other number designates the corresponding unit as the 
outpu_t unit. 

The next prompt is: 

File to print? 

File names in Printer have the fol lowing form: 

(\l<filename} 

A"'" pr-eceding the fi Ie name indicates that the fi Ie is prirlted 
~lJithout pagination; other\&Jise, all fi les ar'e paginated (at 60 lines 
per- page). 

Up to three files may be queued for printing; the file name prompt 
reappears after each File name is typed in. Typing only <return> 
to the file name prompt indicates that no more files are to be 
queued For printing; Printer then terminates. 

NOTE - Printer has the fol lowing restrictions: 

A) Fi les queu.ed Tor- pr'intirlg must not be modified. moved. or­
removed until they are finished printing; the same restric­
tions apply to the disK volumes containing them. Be wary of 
K(runch. The best way to avoid problems of this nature is to 
move files to an unused online disK volume before printing 
them. 

B) The output device used by the spooler should not be accessed 
by the. system until the spooler is finished. 

Page 180 



Utilities 

C) If the output unit is unit St and the printer operates at a 
different baud rate than the terminal. then Printer loses its 
concurrent capabilities. The system prompt reappears during 
printing. but the system does not accept any commands until 
al I printing is finished. This restriction is imposed by the 
hardware; see the Hardware User's Manual for details. 

9.7.1 Using Spoolgen 

X(ecute SPOOLGEN. The fol lowing message appears: 

The printer spooler is currently (spoolstate). 

••• \uhere (spoolstate> is "ENABLED" or "DISABLED". 

The fol lowing prompt then appears: 

Do you wish to ENABLE or DISABLE it (E/D) ? 

Typing "E" enables the spooler. Typing liD" disables it. Typirlg 
<escape> exits Spoolgen. 

NOTE - The system must then be rebooted to acutally enable or 
disable the spooler. 

Spoolgen modifies a parameter stored in SYSTEM.MISCINFO. When the 
system is booted, the parameter value is checKed. If spooling is 
enabled, the spooler is allocated 400 words of memory. and is 
available for use; otherwise, the memory is not al located, and the 
spoo I er' d i sp I a ys the message II queue fu I I II wherl execu ted. 

Page 181 



PDQ-3 System ReFerence Manual 

9.8 Calculator 

The utility program Calc (CALC.CODE on the utilities disK) simu­
lates a desKtop calculator. 

9i8.0 Usin<j Calc 

X(ecute CALC. The fol lowing prompt appears~ 

-, .... 

Calc expects a one-line expression in algebraic form as a response. 
Up to 25 diFferent variables are available. Variable names are 
significant only to eight case-insensitive characters. Variables 
having a value may be used as constants. Two predeFined variables 
are PI (3.14159S) and E (2.718282). 

The remairlder operator- (specified by the dyadic operator' "''') 
rounds its result to an integer. 

WARNING Because th~ remainder operator is based on Pascal s MOD 
operator, it should not be used with negative arguments. 

Arguments of the factorial Function (form: FAC(x» are rounded to 
integer values; al I arguments X (0 (= X <= 33) cause the 
expression to be reJected. 

The uparrow is used for exponentiation (Form: xAy>. The result is 
calculated usin~ the formula: e A y In (x>; operands must be 
positive or the expression is reJected, 

The predeFined variable LASTX is always assigned the value of the 
previous corre~t e~pression. 

Ar·gumerl ts 
r'ad i arts t 
fl or·mu. I a: 

of the trigonometric functions ,re expected to be in 
Degree-to-radian conversion is accomplished with the 
RADANCLE = (PI/laO) * DECANCLE. 

Calc generates an execution 
occur·s. I f th is ""nappens. all 
va lues ar'e lost t 

err-or i f an 
user·-assigned 

overflow or underflow 
variables and their 

TypIng <return> in respo~se to a prompt exits Calc. 

Page 182 



Utilities 

Example of a Calc session: 

-) PI 
3.14159 

- )- E 
2.71828 

-> A = (FAC(:3)/2) 
3.00000 

- > :3 + 6 
9.00000 

-} A + 6 
9.00000 

-> <r·eturn> 

Page 188 



PDQ-3 System R~ference Manual 

Page J84 



Appendices 

APPENDIX A: I/O RESULTS 

o No error 
1 Bad BlocK, Parity error (eRe) 
2 Bad Unit Number 
3 Bad Mode, Il legal operation 
4 Undefined hardware error 
5 Lost unitt Unit is no longer on-line 
6 Lost file. File is no longer in directory 
7 Bad Title. Illegal file name 
8 No roomt irlsufficient space 
9 No unit. No such volume on line 
10 No file, No such file on volume 
11 Duplicate file 
12 Not closed, attempt to open an open file 
13 Not opent attempt to access a closed file 
14 Bad formatt error in reading real or integer 
15 Ring buffer overflow 
16 Write Protect; attempted write to protected disK 
17 11 legal blocK number 
18 Illegal buffer address 

Page 185 



PDQ-8 9yst~m Reference Manual 

Page 1~6 



Appendices. 

APPENDIX B: EXECUTION ERRORS 

o System error 
1 Invalid indext value out of range 
2 No segment, ban code file 
3 Exit from uncal led procedure 
4 StacK overflow 
5 Integer overflow 
6 Divide by zero 
7 Invalid memory reference <bus timed out> 
8 User BreaK 
9 System 110 error 
10 User 110 error 
11 Unimplemented instruction 
12 Floating Point math error 
13 String too tong 

Page 187 



PDQ~8 Syste~ Reference Manual 



Appendices 

APPENDIX C:: I/O UNIT ASSIGNMENTS 

-This section describes the hardware devices assigned to the 
system's physical unit numbers. The operating system contains 
software drivers to support I/O to the indicated devices. See the 
Hardware User's Manual for details on the devices listed below. 
Physical units are described in section 2.1.2. The Programmer's 
Manual describes Unit I/O operations. 

Unit Number PDQ-3 Device Assignment 

1 Console port (echo) 
2 Console port (no echo) 
3 unass i grled 
4 Floppy Drive 0 
5 Floppy Dr' i ve 1 
6 LPV-l1 (FFAO hex) para} lel pr'irlter 
7 unassigned 
8 serial pr irlter' por·t 
9 RP-02 (FEE4 hex) Logical DisK 0 
10 RP-02 (FEE4 hex) Logical DisK 1 
1 1 RP-02 (FEE4 hex) Logical DisK 2 
12 RP-02 (FEE4 hex) Logical DisK 3 
13 DLV-l1J (FEAO hex) Port 0 Input 
14 DLV-I1J (FEAO hex) Por·t 0 Output 
15 DLV-11J (FEA4 hex) Port 1 I rlpu t 
16 DLV-l1J (FEA4 hex) Port 1 Output 
17 DLV-I1J (FEA8 hex) Port 2 Input 
18 DLV-11J (FEA8 hex) Port 2 Output 
19 DLV-I1J (FEB8 hex) Por·t 3 Input 
20 DLV-11J (FEBB hex) Por·t 3 Output 
128 Ke yboar'd Type-Ahead Buffer (write only) 
129 Fast console output 

NOTE - Hex numbers displayed with I/O device names indicate the 
memory address used to communicate with the device. 

_ NOTE - The assignments shown here may change in future versions of 
the system. 

Page 189 



PDQ-3 Syste~ Reference Ma~ual 

Page 190 



Append ices, 

APPENDIX D: COMPILER SYNTAX ERRORS 

1 : 
2: 
3: 
4: 
5: 
6: 
7, 
I • 

8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 

Error' .irl simple type 
Identifier expected 
'PROGRAM' expected 
')' expecte~ 
':' expected 
Illegal symbol 
Error' irl parameter,. ) ist 
'OF' expected 
'(' expected 
Error i rl type 
'(' expected 
']' expected 
'END' expected 
';' expected 
Integer' expected 
, =" expec ted 
.' BEG IN' expec ted 
Error in declaration part 
Error in (field-list> . 
't' expected 
, *" expec ted 
'Interface' expected 
'Implementation' expected 
'Urti t' expected 

50: Error in constant 
51: ' :=' expected 
52! 'THEN' expected 
53: 'UNTIL' expected 
54: 'DO' expected 

", " .. 

':.':,' 

: ' 

, " 

55: 'TO" or "DOWNTO' expected in for' statemerlt 
56: ' IF' expected 
57: 'FILE' expected 
58: Error in (fac~or) (bad expression) 
~59: Error in variable 
60: Must be semaphore 
61: Must be pro~essid 

101: IdentiFier decla~ed twice 
102: Low bound exceeds high bound '" 
103: Identifier is not of t~e appr~p~ia~e class 
104: Undeclared identifier ., 
105: Sign not al lowed 
106: Number expected 
107: Incompatible subrange types 
108: F i 1 e no t a I. I owed h~re 
109: Type must not be 'real' 
110: <tagfield> type must be scalar or subrange 
111: Incompatible with (tagfield> part 
112: Index type must not be r'ea I 
113: Index type must be a scalar or a subrang~ 
114: Base type must not be real " 
115: Base type must be a scalar o~ a s~br~nge 

Page 191 



11 b : 
1 t 7 : 
1 18 ~ 
1 19: 
120: 
121 ! 

1 2::3 ~ 
124.: 
125: 
126: 
127: 
128: 
129: 
130; 
1 31 : 
1 :32: 
133: 
134: 
135: 
136 : 
1 ~37 ~ 
188: 
1:39: 
140: 
141 : 
142~ 

14:3 : 
144: 
145: 
146: 
147: 
148: 
14'3 : 
150: 
151 : 
152: 
15:3 : 
154: 
155; 
156; 
157: 
158: 
159: 
160: 
161: 
162: 
16:3 : 
164: 
165: 
lEE.: 
167: 
168: 
169: 
170: 
171 : 

PDQ-3 System Re'erenc, Manu~l 

Error in type of standard procedure parameter 
Unsatisfied Forwar~ reference 
Forward reference type identifier in varlab'e declaration 
Re-speciFied params not OK For a forwa~d declared procedure 
Function result type must bv scalar, ~ubrange or pointer 
File value parameter not _l lowed 
Forward declared functiqn result type can't be re~specified 
Missing result tYPE in fun~ti9n declaration 
F-format For r~als qnly 
Error in type of stand~rd F~nctiGn parameter 
N~lmber' of par'~mfiter's doe" rlo~ ;.t9r·~~ with dectar'ation 
11 I eg~ I par'anlster' ~u.b$t i tut iorl 
Result type do~~ not agree with declara,~on 
Type con~llct of operands 
Expression IS not of set typ, 
Tests o~ equality at lowed only 
Strlct inclusion npt ~) lQwed 
File comp~rison not allowed 
I 1 I ega l type of opt!r'and (.$) 

Type of QP~rand must be boolean 
Set element typ~ must b~ st~l~r or $ubranqe 
Set e;ement type$ mus~ be cQmpatjbt, 
Type of varia~'e is nOt arr,y 
Inde~ tyne i$ np, cQmpatlble with the declaratton 
Type of variable is not record 
Type of var'abl~ mu~, b, ~i)e or pointer 
Illegal pilr'~metelf" ~lJ,bs~itutipn 
I I leg~l typ~ of loop <:;orltrol var'iat',lle 
II legal type of Expression 
If ype c()rd~ l i ~ t 
Assignment of 'ii,s n9t ~l lowed 
Label type incompatible ~ith 5el~~ting expression 
Subrange bound$ m~st be ,c~lar 
Index type must be integer 
Assignment to $tandard 'unction is not al lowed 
Assignment to Porma~ Funct.on i$ not at lowed 
No such fi~ld in thiS r~,ord 
Type ~rrQr in r,ad 
Actual parameter musW ~~ a v~riable 
Control variable ~annot be fcrm~l O~ non~loc,l 

Multidefined case 'abel 
Too m~ny cases in cas, stit~men~ 
No such v~riant in this record 
Real or strimq ta9field~ not allQWijd 
Previovs decla~atio~ w~s not forward 
Again forward de~lared 
Parameter size m~$t b, ~9nstint 
Mis$i~g variant in decl~ratlon 
Substitution pf $tandar~ proc/func "9t al towed 
MultideFined la~el 
Multideclared label 
Undeclared lab~l 
Unde F i rled I abe 1 
Error in bas, s~t 
Value parameter ~xp,cte~ 
Standard file w,s re-~,~lar~d 



172: 
174: 
175: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 
193: 
194: 
195: 

201: 
202: 
203: 
204: 

250: 
251 : 
252: 
253: 
254: 
256: 
257: 
258: 
259: 

300: 
:301: 
302: 
:303: 
304: 

:398: 
399: 
400: 
401: 
402: 
403: 
404: 
405: 
406: 

Apper,d ices 

Undeclared external file 
Pascal function or procedure expected 
Semaphore value parameter not allowed 
Nested units not al lowed 
External declaration not allowed at this nesting level 
External declaration not al lowed in interface section 
Segment declaration not al lowed in unit 
Labels not allowed in interface section 
Attempt to open library unsuccessful 
Unit not declared in previous uses declaration 
'Uses' not al lowed at this nesting level 
Unit not in library 
No private files 
'Uses' must be in interface section 
Not enough room for this operation 
Comment must appear at top of program 
Unit not importable 

Error in real number - digit expected 
String constant must not exceed source line 
Integer constant exceeds range 
8 or 9 in octal number 

Too many scopes of nested identifiers 
Too many nested procedures or function$ 
Too many forward references of procedure entries 
Procedure too long 
Too many long constants in this procedure 
Too many external references 
Too many externals 
Too many local files 
Expression too complicated 

Divisior, by zer'o 
No case provided for this value 
Index expression out of bounds 
Value to be assigned is out of bounds 
Eleme~t expression out of range 

Implementation restriction 
Implementation restriction 
Illegal character ir. text 
Unexpected end of input 
Error in writing code filet not enough room 
Error in reading include file 
Error in writing list filet not enough room 
Cal I not allowed in separate procedure 
Include file not legal 

Page 193 



PDQ-3 System Reference Manual 

Page 194 



Appendices 

APPENDIX E:: ASCII CHARACTER SET 

0 000 00 NUL 32 040 20 SP 64 100 40 Ii 96 140 60 
1 001 01 SOH 38 040 21 65 101 41 A 97 141 64 a 
2 002 02 STX 34 042 22 66 102 42 B 98 142 62 b 
3 003 03 ETX 35 043 23 # 67 103 43 C 99 143 63 c 
4 004 04 EOT :36 044 24 $ 78 104 44 D 100 144 64 d 
5 005 05 ENG 37 045 25 % 69 105 45 E 101 145 65 e 
6 006 06 ACK :38 046 26 & 70 106 46 F 102 146 66 f 
7 007 07 BEL 39 047 27 71 107 47 G 103 147 67 9 
8 010 08 BS 40 050 28 72 110 48 H 104 150 68 h 
9 011 09 HT 41 051 29 78 111 49 I 105 151 69 i 

10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A J 
1 1 018 OB VT 43 058 2B + 75 113 4B I< 107 153 6B ~( 

12 014 OC FF 44 054 2C 76 114 4C L 108 154 6C 1 
13 015 OD CR 45 055 2D 77 115 4D M 109 155 6D m 
14 016 OE SO 46 056 2E 78 116 4E N 110 156 6E n 
15 017 OF SI 47 057 2F / 79 117 4F 0 111 157 6F 0 

16 020 10 DLE 48' 060 :30 0 80 120 50 P 112 160 70 p 
17 021 1 1 DCl 49 061 81 1 81 121 51 Q 113 161 71 q 
18 022 12 DC2 50 062 32 ,., 82 122 52 R 114 162 72 r "" 
19 023 13 DC3 51 063 33 3 83 123 53 S 115 163 73 s 
20 024 14 DC4 52 064 :34 4 84 124 54 T 116 164 74 t 
21 025 15 NAI< 53 064 85 5 85 125 55 U 117 165 75 u 
22 026 16 SYN 54 066 86 6 86 126 56 V 118 166 76 v 
28 O'J-",,/ 17 ETE: 55 067 37 7 07 

\JI 127 57 W 119 167 77 w 
24 0:30 18 CAN 56 070 :38 8 89 1 :30 58 X 120 170 78 x 

/ 25 031 19 EM 57 071 89 9 89 131 59 Y 121 171 79 Y 
26 032 lA SUB 58 0 7 ,., 

I .:.. 3A 90 1:32 SA -. 
L 122 172 7A z 

27 038 IB ESC 59 073 8B ; 91 133 5B [ 123 173 7B { 

28 0:34 1C FS 60 074 3C < 92 134 5C \ 124 174 7C 
29 035 ID GS 61 075 3D = 93 135 5D J 125 175 7D } 

:30 0:36 IE RS 62 076 3E )- 94 1:36 5E ...... 126 176 7E Ity 

81 807 IF US 63 077 3F ? 95 137 5F 127 177 7F DEL 

Page 195 



f' DO·.3 S y s t € rn Ref e r- e nee Man u. a I 

Paqe 196 



Appendices 

APPENDIX Fl: ADM 3-A TERMINAL 

The ~<ey definitions shown below fal I in one of tUJO classes: "har-d" 
(fixed definition in system) or- "soft" (user-redefirlable). Har-d 
Keys are described in section 1.3. Soft Keys are described in 
chapter- 9.3.1. 

Function 

escape 
retur-n 
delete line 
EOF 
bacKspace 
tab stop 
accept 
cursor- down 
cur-sor- up 
cur-sor- Ie f t 
cursor right 

Stop 
Stop (al t.) 
Flush output 
HDT 
Flush input 
Set disK shape 

Key 

ESC 
RETURN 
RUBOUT 
cor. tro I -C 
I -ar-r-ow Ke y 
cor. tr-o I - I 
cor. t roo I -C 
d - ar-r-ow Ke y 
u. - arrOUJ Ke y 
, - ar-row ~{e y 
r- - arr-o\u ~{e y 

contro)-S 
contro I -Q 
contr-o) -F 
contro) -p 
contr-o I -X 
con tr'o I -D 

Page 197 



PDQ-3 System ReFerence Manual 

Page 198 



Appendices 

APPENDIX F2: SORoe 10-120 TERMINAL 

The ~<ey definitions shown below fa)' in one of t\1JO classes: "har-d" 
(fixed definition in system) or "soft" (user-redefinab)e). Hard 
Keys are described in section 1.3. Soft Keys are described in 
se c t ion 9. 3. 1 I 

Function 

escape 
r'e tur'n 
delete line 
[OF 
bacKspace 
tab .stop 
accept 
cur- sor' down 
cursor' up 
cu.rsor· I eft 
cur-sor' r'ight 

Stop 
Stop (alt.) 
Flush output 
HDT 
Flu.sh inpu.t 
Set disk shape 

Key 

ESC 
RETURN 
RUBOUT 
cor. t r' 0 I - C 
) - a r'r'O\IJ ~:.e y 
TAB 
home 
d-ar'row k:ey 
u - ar'r'O\U Ke y 
1- arr'ow Ke y 
r' - ar'row Ke y 

.:ontr·o 1-8 
cor,tro) -Q 
cor.tr·o) -F 
contr'o I -P 
cor, tr'o I -x 
control-D 

Page 199 



PDQ-3 System ReFerence Manual 

Page 200 



Appendices 

APPENDIX F3: ZENITH 219 

The Key definitions shown below fall in one of two classes: "har'd" 
(fixed definition in system) or "soft" (user-redefinable). Hard 
Keys are described in section 1.3. Soft Keys are described in 
se c t i or. 9.:3. 1 • 

Function 

escape 
return 
delete line 
EOF 
bacKspace 
tab stop 
accept 
cur'sor down 
cur'sor' up 
cur'sor' left 
cursor r' i gh t 

Stop 
Stop (a It. ) 
Flush output 
HDT 
Flush i rtpu t 
Se t d i s~~ shape 

Key 

ESC 
RETURN 
RUBOUT 
line feed 
bacK space 
TAB 
LINE FEED 
d - arr'ow Ke y 
u - arrO\JJ Ke y 
I -ar'rO\l} Key 
r' - arr'ow ~c~e y 

con tr'o' -5 
corl tro I -Q 
contr'o I -F 
contro I -P 
contr'o I -x 
corltr·o I -D 

Page 201 



PDQ-3 System Reference Manual 

Page 202 



$EXEC.TEXT • • • • • • • • • • • • • • • • • • • • • • t • • ••• 

• BACK ••••••••••••••••••••••••••••••••• 
• BAD • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• CODE ...................... , ......... . 
• TEXT • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
<accept> •••••••••• t ••••••••••••••••••• 

<bacJ.t~space> ••••••••••••••••••••••••••• 
<bs> ............................. , .... .......................... , ..... 
(eof!> 
<esc> 

••••••••••••••••••••••••••••••••• 
, ........................... , ... . 

< esc ape) •• t ••••••••••••••••••••••••••• 

<etx> ••••••••••••••••••••••••••••••••• 
<Ief!t> •••••••••••••••••••••••••••••••• 
<right> ••••••••••••••••••••••••••••••• 
< sp ace> ••••••••••••••••••••••••• t ••••• 

< up;' ••• t • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

·A(dJust ••••••••••••••••••••••••••••••• 
ACuto-indent •••••••••••••••••••••••••• 
Accept Key • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
Anchor' • • • • • • • • • • • • • • • • • • • • • • • • • • • t • • • t 

Architecture Guide • • • • • • • • • • • • • • • • • • • • 

As semb I er' • t ••••••••••••••••••••••••••• 

Auto-indent ••••••••••••••••••••••••••• 
BCad Bloc~~s • • • • • • • • • • • • • • • • • • • • • • • • • • • 
BacJ.t~space Key ••••••••••••••••••••••••• 
B a c ~< up •• t • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • . . . . . . . . . . , . . . . . . . , . . . . . . . . . . BACKUP. CODE 
Bad B I oc~< 
Bad BlocKs 
Bad Pr'ompt 
Bad.blocKs 

• • • • • • • • • • • • • • • • • • • • • • • • • t •• 

• • t • • • • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • 
BAD. BLOCKS, CODE ••••.••••.•••.•••.••••• 
Beg inner's Gu i de •••••••••••••••••••••• 
Binder •••••• , ••••••••••••• ,., ••••••••• 
BlocK ••••••••••••••••••••••••••••••••• 
B I oc~< Number •••••••••••••••••••••••••• 
BlocK-structured Device ••••••••••••••• 
Block-structured Unit ••••••••••••••••• 
BlocK-structured Volume ••••••••••••••• 
Boo t e r' ••••••••••••••••••••• , •••••••••• 
BOOTER.CODE ••••••••••••••••••••••••••• 
Bu f f! e r' 0 v e r' flo \1) ••••••••••••••••••••••• 

By t e s - in - I as t - blocK ••••••••••••••••••• 
C (harlge ••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• C (ompi 'e 
C(opy ••••••••••••••••••••••••••••••••• 
C(opy B(uffer ••••••••••••••••••••••••• 
C(opy F(ile • • • • • • • • • • • • • • • • • • • • • • • • • • • 

•••••••••••••••••••••••••••••••••• Calc 
CALC. CODE ••••••••••••••••••••••••••••• 
CALL •••••••••••••••••••••••••••••••••• 
Clear' Screen •••••••••••••••••••••• t ••• 

Code Fi 1 e ••••••••••••••••••••••••••••• 

Page 20:3 

124 
25 
25 
25 
25 
5 
5 
5 
5 
5 
5 
5 
5,83 
5 
5 
5 
5 
90,91 
105 
5 
9:3 
1, 10, 11, 17, 23, 76, 113 t 121, 139, 
148,176 
36,38 
83,95,98 
52,5:3,58 
5 
67,70,1:35,136 
136 
140 
58,7:3 
31 
53, 140 
140 
1 
149,160 
17,24,27 
17 
16, 17 
1 6, 18 t 1 9, 26, 27 
18, 19 
135, 136 
186 
110 
22,24 
52,54,151 
39, 114 
85,89,92 
92 
92 
182 
182 
126 
37 
22,23 



PDQ-3 System Reference Manual 

Command Argument •••••••••••••••••••••• 
Commar.d Character ••••••••••••••••••••• 
C omm and F i Ie. • • • • • • • • • • • • • • • • • • • • • • • • • 
Command File Interpreter •••••••••••••• 
Command Mode •••••••••••••••••••••••••• 
Commarld Str'irlg •••••••••••••••••••••••• 
C omp i I er' ••• t •••••••••••• t t •••••••••••• 

Con f j, 9 •••••••••••••••••••••••••••••••• 
Copydupdir ••••••••••• t •••••••••••••••• 

D(ate ••••••••••••••••••••••••••••••••• 
D(elete ••••••••••••••••••••••••••••••• 
D(ISI< UPDATE .t •••••••••••••••••••••••• 

Data 
Data 
DEC 

File ••••••••••••••••••••••••••••• 
Pr'omp t ••••••••••••••••••••••••••• 

Forma t •••••••••••••••••••••••••••• 
Dir·ectiorl ••••••••••••••••••••••••••••• 
DISASM·.CODE ••••••••••••••••••••••••••• 
Disassemb 1 er •••••••••••••••••••••••••• 
D i s~< D ire c tor y •••••••••••••••••••••••• 
D i sj.t~ Dr' i ve ••••••••• + •••••••••••••••••• 

D i s~< F i 1 e ••••••••••••••••••••••••••••• 
Dis~< SU/apping ••••••••••••••••••••••••• 
DisK Type Key ••••••••••••••••••••••••• 
D i sj.t~ Uri it ••••••••••••••••••••••••••••• 
DisK Vol urn e ••••••••••••••••••••••••••• 
Double Density Floppy DisK •••••••••••• 
Double-sided Floppy DisK •••••••••••••• 
Duplicate Directory ••••••••••••••••••• 
E(dit ••••••••••••••••••••••••••••••••• 
E(XIT ••••••••••••••••••••••••••••••••• 
E(xt-dir' •••••••••••••••••••••••••••••• 
Ed i tor' ••••••••••••• t •••• t ••••• t t •••••• 

End 0 f F i I e ~~ e y •••••••••••••••••• I •• I • 

Erlvir'onment ••• t ••••••••••••••••••••••• 

Equ. a Is ••••••••••••••••••••••••• t •••••• 

Escape Key •••••••••••••••••••••••••••• 
eX(change ••••••••••••••••••••••••••••• 
eXec •••••••••••••••••••••••••••••••••• 
Execu t ion Er'ror' •••••••••• t ••• t •••••••• 

F(ile ••••••••••••••••••••••••••••••••• 
F(irld t •••••••••••••••••••••••••••••••• 

Fi Ie Attr'ibutes ••••••••••••••••••••••• 
File Date ••••••••••••••••••••••••••••• 
F i I e De s i 9 r. a tor ••••••••••••••••••••••• 
F i I e I derl t i f i er' •••••••••••••••••••• , •• 
F i I e Leng t h ••••••••••••••••••••••••••• 
F i leN a me •• t •••••••••••••••••••••••••• 

F i ) e Su f fix ••••••••••••••••••••••••• •• 
File System ., ••••••••••••••••••••••••• 
File Title •••••••••••••••••••••••••••• 
Fi I e Type , .... ,., .................... . 
Fi Ie Window ••••••••••••••••••••••••••• 
F i I er' ,. I ••••••••••••• I ••••••••••• , •••• 

Filling ••••••••••••••••••••••••••••••• . . . . . . . . . . . . . . . . . . . . . . , . , . . . . Flush Key 
For-ma t •••••••••••••••••••••••••••••••• 

Page 204 

162 
96,99,106 
123 
2,46,123 
161 
162 
2,26,34,35,36,39,47,113,159,1 
149,150 
21,79,142 
52,55,81 
84,85,86,89,9:3 
151 
22,23 
4 
7 , 
83,84,100 
176 
176 
19,20,26,79 
16 
19,20,22,49 
13 
7 , 
16, 19 
19,26,49,70,111 
7 
7 
20,79,142 
40 
151 
52,56,76 
2,34,:35,40,116,152 
5 
83, 111 
85,109 
5, 10 
108 
124 
10, 13, 187 
41 
87,89,94,105,109 
22 
22,24 
15,29,31 
15 t 19, 29 
22,24 
3,4,15,22 
22,24,25,29,31 
:3, 14 
22,25,26,29,31 
22,80 
84 
2,29,41,49 
83,95,96,98,105 
6 
74,135, 139,140 



Index 

FORMAT. CODE ••••••••••••••••••••••••••• 
C(et •••••••••••••••••••••••••••••••••• 
Cenera I Prompt t ••••••••••••••••••• t ••• 

·Cood Pr'omp t ••••••••••••••••••••••••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • COTO 
COTOXY •••••••••••••••••••••••••••••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
••••••••••••••••••••••••••••••••• 

Craphics 
H(alt 
H(ELP 
Hard Key 
Har-dwar-e 

••••••••••••••••••••••••••••••••• 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
User's Mar,ua I •••••••••••••••• 

HDT ••••••••••••••••••••••••••••••••••• 
I (n i t i a I i ze ••••••••••••••••••••••••••• 
I(nsert ••••••••••••••••••••••••••••••• 
-1 lODe vic e •••••.••••••••••••••• • • • • • 
I/O Er'ror' 
I/O Result 

••••••••••••••••••••••••••••• 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • 

Input Flush Key ••••••••••••••••••••••• 
Input Pr'ompt •••••••••••••••••••••••••• 
J(ump ••••••••••••••••••••••••••••••••• 
J(ump M(arKer ••••••••••••••••••••••••• 
I«rurlch ••••••••••••••••••••••••••••••• 
I< eye omm and ••••••••••••••••••••••••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Keyboard 
L(dir' ••••••••••••••••••••••••••••••••• 
L( inK ••••••••••••••••••••••••••••••••• 
Length Specifier •••••••••••••••••••••• 

•••••••••••••••••••••••••••••••• Libmap 
LIBMAP.CODE ••••••••••••••••••••••••••• 
Libr'ar'ies ••••••••••••••••••••••••••••• 
L i br' ar- y ••••••••••••••••••••••••••••••• 
LIBRA~·l.CODE •••••••••••••••••••••••••• 

••••••••••••••••••••• t • • • t • • • • • • 

Mode • • • • • • • • • • • • • • • • • • • • • • • • • • 
Volume •••••••••••••••• t ••••••• 

LinKer­
Literal 
Logical 
M (at<e ••••••••••••••••••••••••••••••••• 
M ( ar'g in. t ••••••••••••••••••••••••••••• 

M (EMORY UPDATE •••••••••••••••••••••••• 
Mapper' •••••••••••••••••••••••••••••••• 
MAPPER. CODE ••••••••••••••••••••••••••• 
Marg i rl S ••••••••••••••••••••••••••••••• 

Mar~(dlJ.pd i r' •••••••••••••••••••••••••••• 
Mar'~~er •••••••••••••••••••••••••••••••• 

• • • • • • • • • • • • • • • • • • • • • • t • • • • • Metasymbol 
Mon i tor' ................ ' ............. . 

Key • • • • • • • • • • • • • • • • • • • • • • • •••• Morl i tor' 
N(ew • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
Of f ) i rte • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
On 1 i r, e •••••••••••••••••••••••••••••••• 
Opera t i ng System •••••••••••••••••••••• 
Output Flush Key •••••••••••••••••••••• 

::Ou tpu t Pr'ompt ••••••••••••••••••••••••• 
P( age I •••••••••••••••••••••••••••••••• 

P(refix ••••••••••••••••••••••••••••••• 
Par'agr'aph ••••••••••••••••••••••••••••• 
Patch ••••••••••••••••••••••••••••••••• 

Page 205 

139 
34,50,51,57 
31 
31 
126 
149,150,158 
16 
42 
151 
197,199,201 
1,12,131.181,189 
131 
43 
84,86,89,95,99,105,109,111 
16 t 17 
10, 12 
12, 185 
6 
31 
85,89,97 
97 
28,52,58 
5 
16 
52,56,59 
44, 121 
22,27,29,61,67,70,114,118 
76,119,144 
144 
119, 120 
25,76,119,144 
144 
2,34,36,44,119 
87,106 
18 
52,61,76,80,81 
90,98,99,105 
151 
7, 135, 1 :37 
137 
83,95,105 
21 , 142 
85 
1 
2,42 
5, 131 
:34,51,62,65 
17 
17 
2,23 
6 
31 
85,89,100 
20,52,63 
96,98,99 
23,76,174 



PDQ-3 System Reference Manual 

PATCH. CODE •••••••••••••••••••••••••••• 
Physical 
Physical 
Prefixed 

Unit • • • • • • • • • • • • • • • • • • • • • • • • • 
Ur.it Number •••••••••••••••••• 
Vo I ume •••••••••••••••••••••.•• 

Pr in t e ro ••••••••••••••••••••••••••••••• 
Prointer Spooler ••••••••••••••••••••••• 
PRINTER.CODE •••••••••••••••••••••••••• 
PROF I LE • TEXT •••••••••••••••••••••••••• 
Progroam Listing ••••••••••••••••••••••• 
~rogrammer's Manual ••••••••••••••••••• 

Proompt Conventions •••••••••••••••••••• 
Pro omp t lin e s ••••••••••••••••••••••••••• 
Pr omp t S .........,.,................... 

Q(uit ••••••••••••••••••••••••••••••••• 
Q(uit [exit ••••• , ••••••••••••••••••••• 
Q ( u. i t R ( e t uro n ••••••••••••••••••••••••• 
Q ( u i t U ( pd ate ••• I •••••••••••••• t •••••• 

Q ( u i t W ( ro i t e ....,...............'...... 
QUIET . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . 
R(emove 
FUeplace 
R(ETURN 

••••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••• 
R(un 
READ 

............ , .................... . 
•••••••••••••••••••••••••••••••••• 

Fac toro ... , .................... . Repeat 
RUN ••••••••••••••••••••••••••••••••••• 
S ••••••••••••••••••••••••••••••••••••• 
S(ave 
S(et 
S(et 
SCet 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
ECnvironment ••••••••••••••••••••• 
M(arK.er· •••••••••••••••••••••••.•• 

Scan •••••••••••••••••••••••••••••••••• 
Separate Compilation •••••••••••••••••• 
Se r' i a) De vic e ••••••••••••••••••••••••• 
Ser' i a I Un it ••••••••••••••••••••••••• t • 

Ser' i a 1 Va) ume ••••••••••••••••••••• t ••• 

Setup ••••••••••••••••••••••••••••••••• 
Single Density Floppy DisK •••••••••••• 
Single-drive Transfers •••••••••••••••• 
Single-sided Floppy DisK •••••••••••••• 
Si>:: e \1) •••••••••••••••••••••••••••••••••• 

So t t Key •••••••••••••••••••••••••••••• 
SOROC • M I SC INFO ••••••••••• t •••••••••••• 

Spa c e ~~ e y ••••••••••••••••••••••••••••• 
Spoc I er' ••••••••••••••••• t ••••••••••••• 

~poo 1 gen •••••••••••••••••••••••••••••• 
SPOOLGEN. CODE ••••••••••••••••••••••••• 
Stactt~ Over·f low •••••••••••••••••••••••• 
Start Key ••••••••••••••••••••••••••••• 
Starting BlocK •••••••••••••••••••••••• 
State Flow Diagr'am •••••••••••••••••••• 
STI< • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
Stop ~:e y •••••••••••••••••••••••••••••• 
Substitution String ••••••••••••••••••• 

174 
16 
16 
18,20,29,63,71 
16, 180 
2,180 
180 
124 
10~ 26,1.13,115.179 
1,9,10,11,14,17,20,26,31,113 
117,118,119,144,189 
31 
3 
:3 
51,64,90,101,151 
101 
101 
101 
101,110,111 
126 
52,65 
87,89,102,105,109 
151 
34,45,114,121 
125 
84,86,91,93,94,100,102 
126 
126 
34,50,51,66 
90,104 
87,91, 105 
104 
135 
119 
16, 17 t 23 
16, 18,67 
18,20,26 
25, 149, 151 .... 
l 

69 -l 
139 
197,199,201 
150 
5 
2,180 
180 
180 
11,118 
6 
22,24 
33,35 
126 
6 
87 

Syntax Error ••••••••••••••• t •••••••••• 35,36,116,191 

Page 206 



Index 

SYSCOM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 
System File Title ••••••••••••••••••••• 
System Mon i tor· •••••••••••••••••••••••• 
Sys t em Vo) ume ••••••••••••••••••••••••• 
SYSTEM. ASSMBLER ••••••••••••••••••••••• 
SYSTEM. COMP I LER ••••••••••••••••••••• t • 

SYSTEM. ED I TOR ••••••••••••• t •••• t •••••• 

SYSTEM. FILER •••••••••••••••••••••••••• 
SYSTEM. LIBRARY •••••••••• t ••••••••••••• 

SYSTEM. LINKER ••••••••••••••••••••••••• 
SYSTEM. LST • TEXT ••••••••••••••••••••••• 
SYSTEM. M I SC INFO ••••••• t ••••• t ••••••••• 

SYSTEM. PASCAL • t •••••••••••••••••••• t • t 

SYSTEM. STARTUP •••••••••••••••••••••••• 
SYSTEM.SWAPDISK ••••••••••••••••••••••• 
S',(STEM. SYNTAX ••••••••••••••••••••••••• 
SYSTEM. WRJ< • CODE ••••••••••••••••• t ••••• 

SYSTEM. WRK • TEXT I •••••••• , ••••••••••••• 

••••••••••••••••••••••••••••••••••••• T 
T(EACH •••••••••••••••••••••••••••••••• 
T(r·ansfer· ••••••••••••••••••••••••••••• 
Tar·get •••••••••••••••••••••••••••••••• 
Target String ••••••••••••••••••••••••• 
Termina) Conf igurat ion •••••••••••••••• 
Text File ••••••••••••••••••••••••••••• 
Text Mode ••••••••••••••••••••••••••••• 
ToJ.<:en Mode •••••••••••••••••••••••••••• 
TRAY.MISCINFO ••••••••••••••••••••••••• 
Type-ahead Bu.ffer ••••••••••••••••••••• 
Type-ahead Flush Key •••••••••••••••••• 
Type-checKing Prompt •••••••••••••••••• 
U ( pd ate ••••••••••••••••••••••••••••••• 
~(ser· Restar·t •••••••••••••••••••• t •••• 

UCSD Pasca 1 ••••••••••••••••••••••••••• 
~CSD Pascal System •••••••••••••••••••• 
Uri it. • • • • • • • • • • • • • • • • • • • I • • • • • • • • • • • • • 

Un i t Number ••••••••••••••••••••••••••• 
User· F i 1 e Tit 1 e ••••••••• I ••••••••••••• 

Uti lit Y Pro og r· am ••••••••••••••••••••••• 
V ( er' i f Y ••••••••••••••••••••••••••••••• 
V ( 0 , ume 5 •••••••••••••••••••••••••••••• 

VC404.MISCINFO •••••••••••••••••••••••• 
Ve c tor· Keys ••••••••••••••••••••••••••• 
VERBOSE ••••••••••••••••••••••••••••••• 
Ver·sion Number· ' •••••••••• t •••••••••••• 

Vo 1 ume I derl t i f i er ••••••••••••••••••••• 
Vo 1 ume Name ••••••••••••••••••••••••••• 
VT52. M I SC INFO ••••••••••••••••••••••••• 
W(hat ................................. . 
We s t ern Dig ita 1 ••••••••••••••••••••••• 
Western Digital Format •••••••••••••••• 
Wi 1 dcard •••••••••••• f •••••• t ••• t • t •••• 

Wor· ~{ F i 1 e ••••••••••••••••••••••••••••• 
WR I TE ••••••••••••••••••••••••••••••••• 
WR I TELN ••••••••••••••••••••••••••••••• 
X ( anl i ne ••••••••••••••••••••••••••••••• 

Page 207 

149 
25 
181 
18 t 19,71 
25,88 
25,26,39,117 
25,40,161 
25,41 
25,120,121 
25,44 
25 
25,26,149 
25,26,58,150 
25,36,43 
25,26,118 
25 
25,26,65,114 
25,26,65 
125 
151 
52,67 
127 
87 
5 
17,22,23,61,83 
161 
87,106 
150 
6, 123 
6 
31 
84 
47 
113,176 
1,2 
119, 120 
16,18,29 
26 
2,135 
90,102,107 
52,71 
150 
5,86,89,91 
126 
3 
15, 18, 29 
18,29 
150 
51,72 
1 
7 
49,50,54,56,59,61,65,67,70 
26,33,36,45,49,57,62,66,114 
125 
125 
52, 5:3, 58, 73, 140 



PDQ-3 System ReFerence Manual 

• • • • • • • • • • • • • • • • • •• f • • • • • • • • • • X(change 
X(ecute ••• •••••••••••••••••••••••••••• 
X.CODE •••••••••••••••••••••••••••••••• 
X. DE1"10. TEXT • • • • • t • • • • • • • • • • • • • • • • • • • • • 

•••••••••• t •••••••••••••••••••••• YALOE 
YALOE.CODE· • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

89 
48 t 117 
46, 123 
123 
155,158,161 
161 

Yes/No Quest iorl • t •••••••••••••••••••• f 4,49 
Z ( a p •••••••••••••••••••••••••••••••••• 86 t 89 t 1 09 
Z ( e r- 0 ••••••••••••••••••••••••••••••••• 52 t 7 4 t 79 

Page 208 


