/4

Advanced Computer Design

PDQ-3 System User’s Manual

PDR-3 System User’'s Manual

FDQ-3 SYSTEM USER’'S MANUAL
VERSION 3.1
April 1981

- Advanced Computer Design

PD@-3 is a Registered Trademark of Advanced Computer Design.

Information furnished by ACD 1is believed to be accurate and

reliable, However, no responsibility is assumed by ACD for its
use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by

implication or otherwise under any patent or patent rights of ACD,
ACD reserves the right to change product specifications at any time
without notice.

DEC is a Registered Trademark of Digital Equipment Corporation,
Maynard, Mass.,

UCSD Pascal is a Registered Trademark of the University of
California,
Author: Rich Gleaves

Document: 0,3-S

Copyright (c) 1981, Advanced Computer Design., All rights reserved,

-Duplication of this work by any means is forbidden without the
prior written consent of Advanced Computer Design.

PDQ-3 System

TABLE OF CONTENTS

SECTION

1

11

INTRODUCTION o v v v v v v

r

Y]

Scope of this Marnual . . .
System Organization ., . .

Command and Data Overview
0 PPomptlines [S S S SR
1 File Names S T Y ST S
2 Data Prompts

Key Commands + + + 4+ o« 4
Accept and Escape . .+ .
Console End of File . .
Cursor Movement
User Interrupt Commands
Monitor Trap [T Y
Stop and Start . .+ .

Wwrde— o

WM - O

Disk Type L S S T

OPERATING SYSTEM

0

Error Handling+

0 Execution Errors . . .
1 Stack Overflow . . .+ .
2 DiSK EI"‘I"'CH"S 0)] . 3
3 Disk Swapping + + +
File System « « v 4 4 a4
0 Overview .+ + + + + +
1 Syntax Overview .
e PhYSica‘ Units + + +

0 Syntax Overview . ,
i 1/0 Devices + + +
0 Serial Devices .
1 Block-structured

3 Logical Volumes . . .
Syntax Overview . .

Disk Volume Usage .
System Volumes ., .,
Prefixed Volumes .,
Disk Directories .

UM »—oO

0O Duplicate Directories

ii

) ‘
L .
’ .
4 4
[1]
4 4
+ *
4 L]
')
4 ¢
* .
+ L
L} L]
4 4

+ +
L] L]
] L]
L] +
+ L]
L] 4
L] 1]
L] L]
* +
L] +
+ +
4 +
L] +
+ +
Devi
L] +

] .

Block-structured (Disk)

L *
4]
L} +

+ *

User s Manual

L ‘ + 4 L] + L
L3 + * [} (]] +
’ + + L L] . +
’ L] L] + L} L] L]
+ L] L] L] 1 + +

Console Output F‘USh R S T T T T
keyboard Type-ahead Flush

L} + * 1] + L] L

e o ® o
- o ° o -
-

- o o o e
-

- o - e -
-

[T T SR ST S
[S T Y Y S
Volumes + . .
[S T S S S
L S N T T
I S S S S
LI S S S T S

12 + * L] L3 L

* o o o o

- & 2+ -

. o e o

- o o o

PAGE

-

S0 WW

Noohaauadaa

10
10
11
12
13

14
14
15

16
16
17
17
17

18
18
19
19
19
20
20

20

11

a4 & wE Lo w TR VRN Wawl

OPERATING SYSTEM (continued)

1

N

File System (continued)

4 Disk Files + + +

-
-
-
-
-
-
-
-
-

0 Syntax Overview

-
-
-
-
-
-
-
-
-

1 File Attributes + + +« + +

[L}

0 File Type L T N L R Y)
0 File Type Assignment . .,

i UCSD Pascal Files + + +

0 Text Files + + + o+ +

1 Code Files + « + + +

2 Data Files + + v v v v

2 Restrictions Imposed by T

1 File Date S Y S T R S SR S Y
2 Size and Location Attributes

N

File Suffixes + + + + o « + o+ o

3 File Titles + « + 4+ 4 v v o o 4
0 System File Titles + + + + v
User File Titles + « + « « o+

i
2 Titles with Non-block~structured

4 File Length and File Length Specifiers

S Syntax Specification + + + + v v 4

5]

Commands and Operation . .+ .

0
1

& WN

e

File Conventions and Applications .,
0 File Name Prompt Conventions . ,
0 Input Prompts L T R R L)
1 OQutput Prompts « + + + v+«
1 File Access from User Programs .,

-

Starting the System .+ + + +
The Work File L T T ST S S S
0 Work File Manipulation . .+ .

* o o
-
e © o e

{1 Work File Effects on System Behavi

Syntax Errors and Editor Invocation
System State Flow Diagram . .+ +

.
System Commands TSR S ST SR SURNE ST SR B Y
0 CleaP‘SCPeen P T T T T
| Alssemble + « + + v v ¢ v 4 v ¢
2 Clompile I S T S S S O S T T)
3 E(dit « o v v 0 0 v e e e e e e
4 FCile o o v v v v v v v v v 0
5 H{alt v v v v v v ¢ & o v 0 s 4
6 Itnitialize + v v v o« v v v 4+ v s
7 LtinkK « « « v v v 0 0 ¢ v v 0 a
8 R{un L S S T S S T T T S S S T)
9 Slubmit + + v + v ¢« ¢ v v e e 4
0 Ulser restart + « + « o o« v+ ¢
1 X{ecute . . I S S T SR S S R)

iii

1]
]
L]
[
+
+
.
ype
L]
L]

* &6 © @ * e =

n

4

+

* * o e e

e e & o 4 o o e o o e+ e e+ e e e o o -

-2 1Tiarniwea

+ + [14
+ [[] 1]
* [] * 1]
+ L] + L]
* 1 [] 1]
+ 1] + L]
+ * L] L]
L] +] +
+ * * 1]
+ L] + +
L] L] 1] 1]
L] + ¢ 1]
4+ L] 1] 1]
[+ L] +
Volumes
L] L]

L] 1] 1] +
. L] + L]
+ 1] L] ()
L] L] L] ()
L] 1] 4 +
1] 4 L] 1]
+ 13 * "
L] L] L] 4+
1] 1] * 1]
L] L] * ¢
r T
* L] [+
1] [[L3
L] L] + +
1] L] L] 1]
¢+ (] [] ¢+
(3 + L] [
+ (] 1] L]
1] + L] +
L] L] [] L]
(3 1] . 1]
[] L] . L]
* + 1] L]
+ + [[]
* * * *
* [} + L2

* *® o @ o * e *° e -

e o @ o

e * o o e

* @ ® * & * & e + S + & & ® W T e e o o

> o e e * ® & ® * ® e ° e -

. @ & o o

* @ * ® & ® & e & e & e e T *e e e e & -

25
235
26

26
27
29

31
a1
31
31
32

33
33
33
34
34
35
35
37
37
38
39
40
At
42
43
44
45
46
47
48

PDR-2 System

iv

User 's Marual

ITI FILE HANDLER + v v v v v v v v v v & '
0 Filer Prompts L L O T T T T S [
1 File Naming Conventions .+ + + . . .

0 General Syntax « + + « « + 4 '
1 Wildcards . . L .
2 Filer Commands . + + .+ . L S ‘
0 Command Summary [N T y
0 Work File Commands + + .+ .+ . '
1 Disk File & Volume Commands
- 2 Disk Volume Commands + + + . L S S
3 Disk Media Commands [S S S S N S

1 Blad blocks scan [S S S S S f

2 C(hange L L +

3 Date « o +« 4+ v v v ¢ 4 4 0 4 ’

4 E{xtended list [S T S S T S '

5 Glet [N T Y TR SN S SN Y N TR SN S)

() Klrunch « + v v v v v v v v '

7 Liist directory L S T S S S S .

8 MiakKe + « v v o v v e)

9 N(ew L T S N T T T T T S T T Y .

10 P(refix volume L S S S T ST S .
11 Qluit + « + « v v [T R T} ‘
12 R{emove + « v v v v v v v v v 1y
13 Slave + « v v v v e e e e e ’
14 T{ransfer + + + + + + o+ + . e ‘.
1S5 V(oclumes online + + « + v + « & .
16 Wlhat is workfile? I S S S S +
17 X({amine bad blocks .+ . + + .+ '
18 Z{ero directory + + + v v v 4 '

2 Recovering Lost Files .+ . + « +)
4 Recovering Lost Directories . . . '
5 Changing the Type or Date of a File .

49
49
30
50
50

S1

v

ruw-3 DYSTEm

EDITOR L . . L] [} L4 L ¢ L} + (4 . ’

wEeNOTULEWON—~CO

-
o

11

Editor Prompts .

. L] L] [L] L]
Edit Environments . . + + .+
The File Window . T T T R T}
The Cursor L S T S S S T TS
Repeat Factors .+ « + + « 4+ o
Direction + + + + S S S S
Markers , « + . I S S S TR S
Moving The Cursor + . + + +
The Copy Buffer + « +« « « +
Entering Strings in F(ind and

Editor Commands .« « + + + +

0 Command Summary .+ + + o+
Moving Commands . « . .
Text-Changing Commands

Formatting Commands . .
Miscel lanneous Commands

& WK —~O

1 A(ddust L S S T T S T S Y
2 C(Opy L S T T T T SR SR S
3 D(elete [S S ST SR T SN S Y
4 Flind [S T S S S S S S
b} I(nsert L S T T S S T
6 J{ump R S S S S T S S S
7 M(argin L S S S TR S SN S
8 P(age D L L T S ST T |
9 Qluit L S S S S S T S
10 Rleplace « + + + + + + +
11 S(et v « v v v s e e
12 V(erify L T T S T T TR S
13 eX(chamge + + + + + + 4+
14 D - 1 = R T
Editor Problems + + + + + +
0 Buffer Overflow . + « +
1 Writing Out the File . . .
0 Invalid File Names . .

! Insufficient Space on V

2 File Too Large .+ « +

user's Manual

¢ ¢ + 4 L] + L]
L L] L] ¢ L]] L
L] ¢ . L] + + *
’ L} * * + L3 L]
* 4 L} ¢ + + +
+ * ¢ * L4 ’ *
L] 4 ¢ + ¢ * L]
+ * L} L} LN] L]
+ + L + L * L
R(eplace . .

L] * * + L ’ L
L] L (] 4 L] + ¢

¢ ¢ L] L} L 1] *

Pattern Matching Commands + + + « . ,

*] + ¢ *] L}

[4 L] + + + .

* 1] + [] [] 4+ +
+ 4 + L] L) + *
+ L] 1] [(] + *
+ + 1] 4 + [L]
1] 1] 1) * + 1] 1]
L] 4 [+ 4+ L] 1]
* 1] + + + 1] 1]
L] + L] L] L] * *
+ 1] L] [+ + +
+ + + + L] L] L]
+ 1] 1] 1] L] + []
L] . + L] 1] + +
]] + L] 1] * L]
1] L] L] 4 L] L] [}
* L] + + 1] [] +
L] + + L] [+ L]
1] 1] * [] 1] 1] L]
+ L] L] L] + * L]
olume o e s
+ L] L] 4 1] * [

* * ® & ° e * e e e

* ® ® e * e+ e e o

* e ® e o

> e o e

> ® ® o o

*« ® * o ® & ©® ®© © e e e

-

* o ® e o

* *o o e

* & ® e * =

* ® ©®© & * o ® e ° & * e -

e ® e e e e

¢ o * o

- ® * e * e

* @ ®© ® * e *e ©e e e -

. e

- ©®© * * e -

> e e o

> o ® * o o

* @ ® o ® e - e =

-

* @ e ® o °

a3
3
84
84
84
84
83
8%
86
87

89

a9
89
89
89
90
90

91
92
93
94
93
97
98
100
101
102
104
107
108
109

110
110
110
110
111
111

PDR-2 System

\" COMPILER L T T S SR TR Y

0

1

N

VI

VII

VIII

L

0

M -

Introduction + +« + « «

Using the Compiler . . .

0 Setting Up Inmput and Output

Console Display . . .

1
2 Syntax Error Handling

Compiler Problems . . .

0 Xf{ecuting the Compiler
1 Syntax Errors and the
2 Insufficient Memory .
3 Insufficient Space on
I NI‘:EP 4 + + (] + ‘ (2 + 4 L]
Separate Compilation .
0 Units I T T S S T
1 Libraries .+ .+ + +
Using the Lirnker .+ .
Linker Problems . ., .+

COMMAND FILE INTERPRETER

User 's Manual

[S S R S SR T SN
Files + + +

[T S S T S S S SR
I T T T S SR SR SN Y
S T S T S SR S SN S
S T S T S S SR S
Editor PR S S S S
[T S S Y S S S SR
Volume .+ + « + o+

-
-
-

- o * e
- o © o -
- ® * e -
* + © & "=
. & * o

- o o o

* o * e -
« o * -

- * 2+ o =
e o * o -

] L] L} 1 L L} + L 4 [

0 Stubmitting Command Files . .+ + .+ v
0 Command File Execution [T T ST SR SRR S |

1 Reserved Command File

1 Command Language + +
0 Commands + + + +

0 Immediate Commands
1 Deferred Commands

1 Targets I
2 Text Lines .+ + +

]

Example eXec Programs

STYSTEM MONITOR + + + +
Entering The Monitor

0
1 Monitor Commands .+ .
2 HDT Examples .+ + +

vi

Names + + « + v

L]

’

e o o o e
> o *o e - -
e @ e e =+ e
- + e @ o =
- o o o e -
- & e e - o
> e e & * o
- ® @ o *
- ® o e * -

+

e w o =

> ® e o

- o * o

- ® @ ® <+ o

- ® e =

- o * -

- o * o -

> o & e = -

. * & =

- & o o

- o ® o =

e * o+ e - o

. + o =

- o v e =

> ® o * * o

. o o .

* o ° e -

* ® o @ *

117

iz
117
118
118

119

119
120
120
121

22

123

123
123
124

124
123
125
126
127
127

128

131
132
134

MU~ 9 Qyaveis

IX UTILITIES + v v v v v 4 o &

0

Disk Management

0

r

o

Duplicate Directory

0
1

Bootstrap Copier . . .,
0 Using Booter . . .

Disk Copying + + + +
0 Using Backup . . .

Disk Format Conversion
0 Using Mapper . . .

Disk Formatting . . .,
0 Using Format ., . ,
1 Reformatting Bad Blo

(2

(]

cks

13

Fast Bad Blocks Scanning .

0 Using Bad.blocks .

Using Markdupdir . . .
Using Copydupdir . . ,

Library Management . ., .,

0
1

USing Libr‘ar‘y [T T
Using Libmap + + + + .

Terminal Configuration .

0

1

2

USil’lg COI"IPig [T T S

USing Setup [T T T
0 Fields in Setup . .

¢

¢

Management

]

[]

waer’

+

1]

L]

+

4

1 Sample Setups For Some Common

GOTOXTY Binding + + +
0 Using Binder . . .

¢

*

*

Line-Oriented Text Editor . .

0
1

WoNOTU A ON

Entering YALOE

+

Entering Commands and Text

0 Command Arguments .
1 Command Strings . .
2 Text Strings . . .
The Text Buffer ., . ,
The Cursor + « + + +
Special Key Commands .,
Input/Output Commands
Cursor Moving Commands
Text Changing Commands
Other Commands .+ + .+
Command Summary .+ . .

vii

L]

e ® & @ & & & e o -

® * o *® e *© B © & -

® © 4 e e @ & ®© o © & o e

- - - - - - - - - - - - -

® ¢ @ @ o ® @ * e © e ° -

2 rwaernmualn

¢ ¢ + L L]
] L4 + L] *

Terminals

+ + * * 4+
) . L} (] L +
+ + + (] ¢
L L] (2 L} L]
L] 4 L + ¢
* L] 1] . .
¢ 4 + ¢ L]
* + (] + *
L] L} L] * +
+ + ? . .
4 L] L] (2 (2
L} . L3 L} L
+ + L] + 4

® * & @ e ® e ®©® * e e+ @ e

* *© & * e @® & @ @+ ° & 2+ o

® ® & e ® e e e ©o ° e ° e

@ ® ¢ @ e © @ * e e e e

135
133

136
136

136
136

137
138

139
139
140

140
141

142

142
143

144

144
146

149
150

151
152
157

138
160

161

i61
161
162
162
162
163
163
163
164
166
169
170
173

IX

X1

UTILITIES

FDQ-3 System

{continued)

S ©Byte-level File Editor . . .
0 USing Patch [T T T ST SR

6 Code File Disassembiy + « + .
0 Using Disassembler . + . .

7 Printer Spooler « .+ + « « 4

0 USiﬁg Printer D T T S T
1 Usihg Spoolgen [N S T TR S)

8 Calculator [T S SR TR SRR SR S
0] USing Calc + « v v « v «

APPENDICES

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendilx
Appendix
Appendix

INDEX

+

Az
B:
C:
D:
E:
Ft
Fl:
F2:
F3:

L]

L}] L 1] ’ L3 L] 13 L L]

1/0 Results " T T}
Execution Errors ., .
I1/0 Unit Assigrments
Compiler Syntax Error
ASCII Character Set

ADM 3-A Terminal . .
Soroc 1@-120 Terminal
Zenith Z19 Terminal

+
+
+
+
+
Key Definitions for Common Terminals
+
1]
+

viii

User 's Manual

L] L . ‘ L] L] 4 L]
L} L} L + + + L *
*+ + + L] L + ¢ +

L} + 4 + + +
+ c e + L3]

* L) + + +

-

- & ® w e * e

-

- @ e o -

-

e o © e

-

> ® e * e - -

174
174

176
176

180
180
181

182
182

185

185
187
189
191
195
197
197
199
201

203

rue-J gsystem uUser's Manual

ix

Introduction
1. INTRODUCTION

1.0 Scope of this Manual

This is the reference manual for the UCSD Pascal system, versiorn
IT1.1. Users are assumed to be familiar with the UCSD Pascal
system; if this 1s not the case, the following book is recommended:

Beginner's Guide for the UCSD Pascal System
Kenneth L, Bowles

Byte Books (McGraw-Hill), Peterborough, New Hampshire, 1979,
Other documents related to the PDQ-3 Computer System include:

PDQ-3 Hardware User 's Manual
Describes the physical characteristics of the computer.

PDQ-2 Programmer s Manual
Describes the PD@-3 Pascal language implementation.

PDE@-2 Architecture Guide

Provides details of the system software to experienced
programmers.,

NOTE - The following conventions are used thrdughout this manual to
facilitate the description of various system concepts,
‘Angle brackets ("<" and "»") are used to indicate metésymbo\s;
these are generic names of symbols., Optional items are delimited
by square brackets ("[" and "1"), GSome exampies of metasymbols and
optional items follow:

Typing <cr* ctompletes the input prompt.

President <{surname: should be [{expletive:]l impeached!

The syntax for Pascal’'s IF statement is:

IF <Boolean expression> THEN <{statement: [ELSE <statementi:1;
DISCLAIMER - much of the software provided with this system is
maintained and controlled by Western Digital, Inc., the makers of
the MicroEngine;y because of this, Advanced Computer Design cannot

guarantee its correctness. Bugs that we are aware of are doc-
umented in the appropriate sections ~f trhis manual.

Page 1

PDQ-3 System User s Manual

1.1 System Organization

The PDQ-3 system software is a superset of the UCSD Pascal system,
which was designed as an interactive, single-user system for
program development and execution. The system has been extended
with multi-processing capabilities and arn asynchronous [1/0 system
to allow the development of multi-user and real-time applications,
The minimal hardware configuration required to use the system is a
CRT terminal arnd a mass storage device (typically one or more
floppy disk drives).

The system consists of the following parts:
Operating System - Provides an interactive command interpreter

to control the rest of the system, and run-time support for
the execution of Pascal programs, '

Command File Interpreter - Automates repetitive tasks by feeding
the system a predefined sequence of system commands to
execute.,

File Handler - Provides disk file management.

Editor - A screen-oriented editor used to create and maintain
source files containing Pascal programs, It also provides
text editing features for basic word processing tasks.

Pascal Compiler - A fast, one-pass compiler which c¢an produce
either executable Pascal programs or library routines. ‘
Linker - Combines Pascal programs and separately compiled
library routines into executable programs. -

Mornitor - Allows the user to examine and modify the contents of
memory.
Printer Spooler - A utility program which allows text file

printing to proceed concurrently with normal system operation.

Utility Programs - Various programs which aid program devel-
opment.

TS

Page 2

Introduction

1.2 Command and Data Overview

This section describes the various operations performed with the
PD@-3 system; these include action commands which invoke system
parts, and data prompts which supply input to the system parts,

1.2.0 Promptlines

Promptiines are a commonly used method of displaying the commands
available to the user in various parts of the system. Here are
some examples of promptlines found in the system:

Command: Et(dit, R{un, Fi{ile, Ciomp, L{ink, S(ubmit, Xlecute
Filer: G(et, Siave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans

Respornses consist of a singie character; a carriage return 15 not
required to complete the command, Command characters are capl-
talized and separated from the command abbreviation with a left
parenthesis, Promptiines displaying alphabetic character commands
accept both lower and upper case characters, With some prompt-
lines, typing a "?" redisplays the promptline with a different set
of commands. This is done to accommodate wide promptlines on
narrow screens. Promptlines are usually referred to as "prompts”™;
thus, the promptliine for the operating system 1s called the "system
prompt”, and for the file handler, the "filer prompt".

Many system parts display their current version number in their
promptiines; it is usually delimited by square brackets,

1.2.1 File HNames

Software development on the UCSD Pascal system largely consists of
manipulating filesy hence, file name prompts appear rather fre-
quently, Because of this, users who understand the file system
find the system easier to use, as many aspects of the file naming
conventions involve simplifying the specification of a file namej
it is therefore worthwhile to study chapter 2 (section 2.1 - the
file system) and the sections describing file name prompts for the
various system parts. '

Page 3

P ew @ @YD Lem User § ranual

1.2.2 Data Frompts

Data prompts are used to obtain input data needed by the system
parts. They usually appear in the form of questions; for instance:

Compile what file?
Are you sure you want to crunch DISK1: ?
Bad blocks scan for how many blocks?

Respornses to data prompts usually come in one of two forms: the
single character response to a “yes/no" question (such as the
second example), and the input data response requiring a string of
input characters followed by a carriage return.

An affirmative response to a "yes/no” question is indicated by
typing "y* or "Y', Negative responses generally are indicated by
typing "N" or "n"; however, some system parts (such as the filer)
interpret any characters other than the affirmative ones as a

negative response.

Input data responses are usually file names, but can be other items
such as the current date or an integer value. These responses
almost always require a carriage return to be typed after the input
data. The backKspace KkKey erases mistakes in the typed input, and
the rubout (or delete) character deletes all of the typed input.

Most system prompts requiring input data recognize “"escape” inputs
that cause the initial system command to abort. For instance,
typing only a carriage return after the compiler prompt:

Compile what file?

v+ aborts the compiler and returns control to the system prompt.
An immediate <carriage return is generally accepted throughout the
system as an escape; however, in some cases a carriage return has
another meaning, so a different method of escape is5 required,

These exceptions are described in the appropriate sections of this
manual .

Page 4

Introduction

1.3 Key Commands

This section describes some Key commands used throughout the
system, Key command definitions are described in section 9.3

(terminal configuration). Key command definitions for some common
terminals are listed in Appendix F. :

1.3.0 Accept and Escape

Two Key commarids are used for terminating input data and commands:
the accept kKey and the escape Key. Accept is used in the editor;
it is denoted in this manual by the metasymbols <accept> and <etx’,
Escape is wused throughout the system to abort commands; it is
denoted by the metasymbols {escape> and ‘esc’>., Key command usage
is described in appropriate sections of the marual,

1.3.1 Console End of File

The "end of file" Key is used to terminate character sequences read
from the Keyboard by a program or system part which uses the
conscle as an input filey it is denoted by the metasymbol <{eof’,
See section 2.1 and the Programmer s Manual for more details,

1.3.2 Cursor Movement:

Some system parts depend on the user’s ability to move the cursor
across the screen. Cursor movement is performed with the termin-
al’'s space har (denoted as <(space’), backspace Key (denoted as
{backspace> or <bs’), and the vector keys (i.e., <left’, <{right>,
{up*, and <down> keys). '

1.3.3 User Interrupt Commands

Most key commands are synchronous with respect to system operation;
1.4y they are not executed until the system reads them after
issuing an input prompt, User interrupt commands, on the other
harnd, are executed immediately after being typed., This section
describes the user interrupt commands. :

1.3.3.0 FMonitor Trap

The monitor Key interrupts the currently executing user or system
program and passes control to the system monitor (described in
chapter 8)3; program execution may be resumed from the monitor. The
monitor key is defined to be <control-F:,

Page)

PDQR-3 System User ‘s Manual

1.3.3.1 Stop and Start

The stop and start Keys suspend and resume console output. Onice
console output is suspended with the stop Key, typing any kKey other
than the start Key “"single-steps” the output; specifically, 1t
allows one character to be written to the screen before resuspend-
ing output., The stop Key is defined to be {control-S>. The start
Key is defined to be hoth <{control-5> and <{control-Q>,

1.3.3.2 Console Output Flush

The flush Key causes the system to discard all console output until
a8 subsequent console read operation is completed, Flushing is
disabled by retyping the flush Key, A practical example of the
flush command is the interruption of the filer command T(ransfer

whern it is transferring text files to the corisole. Typing the
flush Key causes the 1/0 system to discard all characters written
to the console, thus speeding up the transfer. When the transfer

is complete, the filer attempts to restore its promptline; however,
screen output is still being flushed, so it doesn’'t appear, Typing
the space bar causes the prompt to reappearj normal systenm
operation is then resumed., The flush Key 1is defined to be
{control-F>,

1.3.3.3 Kevboard Type-ahead Flush

The Keyboard type-ahead flush kKey removes all characters queued ir
the type-ahead buffer;y it is defined to be <{control-X’,

The type-ahead huffer is used to hold Keybhoard input that ic
entered ahead of an input prompt. Input prompts always reac
characters qQueued in the type-ahead buffer before reading inpul
from the KkKeyboard, The type-ahead buffer is filled in one of tw
ways:

1) By typing Keys when the system is not waiting for an inpu’
response. The input is queued in the type-ahead huffer.

2) By the command file interpreter, as it queues commands an¢
data for future execution.

The type-ahead buffer holds a maximum of 64 characters. When it i:

full, subsequent Keyboard input is not queued; instead, the systel
rings the terminal bell,

Page 6

Introduction

1.3.3.4 Disk Type

The disk type Key allows on-the-fly alteration of the software
controlling the floppy disk drives., Users can specify whether a
drive reads single-sided, double-sided, DEC format, or Western
Digital format disks., Users <¢an also control the generation of
floppy disk error messages (see section 2.0.2),

NOTE - Double-sided floppy disks require double-sided disk drives.
The drives supplied with the standard PD@-3 do not support
double-sided floppy disks.

NOTE - Switching between singlie and double density floppy disks is
performed automatically by the system.

When the system 1is started, all disk drives are configured for
single-sided PDQ-3 format floppy disks, with error messages disa-
bled. Drives are reconfigured by typing <control-D>, followed by

the two character sequence:

{drive rnumber><{command>

where
{drive number» ::= "0" or "i{" or "2" or "3"
{commard > 1= "s" or "8" for single-sided disks
"d" or "D" for double-sided disks
“"£" or "F" for Western Digital format
("flipped”) disks
"1" or "I" for DEC format
{"interleaved"”) disks
"n" or "N" enables floppy disk
error messages ("noisy”)
NOTE - The "$#", "i1i", and "n" commands are toggles; i.e., they

switch the current state to its opposite,

NOTE - The Mapper utility (section 9.0.2) performs explicit
remapping of floppy disks between PDQ, WD, and DEC formats. This
capability may seem redundant in light of the disk type Key's -
ability to read all of these disk formats; however, disk accesses
to WD and DEC disks are considerably slower than disk accesses to
PDQ disks because of the transiation which takes place in the disk
drivers., Thus, while the disk type key is useful for occasional
communications with WD and DEC disks, it is more efficient 1in the
long run to remap freguently-used disks than to disk-type them
every time they are used.

Page 7

PDR@-3 System User ‘s Manual

Page 8

Operating System
ITI. THE OFPERATING SYSTEM

The operating system initiates the execution of other system parts
and wuser programs, implements the file system and [/0 subsystems,
reports hardware and software errors, and provides runtime support-
for Pascal programs.

Section 2.0 describes the actions performed in response to various
Kinds of system errors. Section 2.1 describes the file system,
which includes file naming conventions and the 1/0 device organiza-
tion, System commands and operation are described in section 2.2,
Details on the Pascal runtime support routines are contained in the
Programmer s Manual.,

Page 9

ruw-3 Dystem user s Manual

2.0 Error Handling

-

This section describes the system’s response to hardware or

software errors. Execution errors are caused either by incorrect
programs or explicit interruption of programs; they are described
in section 2,0,.0. Stack overflows occur when a program uses up al

available system memory, and are described in section 2.0.1. Errcr
messages generated by. the floppy disk drives are describhed 1in
section 2,0.2, The effects of removing disk volumes during system

operation (kKnown as “"disk swapping”) are described 1n section
2,0.3,

2,0.0 Execution Errors

When an execution error is detected during program execution, the
program 15 suspended, and the operating system prints a diagnostic
message on the console. The message consists of a description of

the error and the location in the program code where the error
occurred,

The error description is usually a textual message; €.g9., “Invalid
Index", Occasionally, the operating system is unable to obtain the
message; in these cases, only the execution error number 1is
printed, A table of execution error numbhers and their correspond-

ing messages is displayed in Appendix E.

When the execution error is a user [/0 error, a description of the
1/0 error is printed adjacent to the execution error message; as,
with execution errors, the unavailability of [1/0 error messagesL
causes the 1/0 error number to be printed., A table of 1/0 error

numbers and their corresponding messages is displayed in Appendix
“A ~

The error location 1is specified in terms of the code file
structure; the displayed "S", "P", and "I" offsets represent the
code segment number, procedure number within the segment, and
procedure-relative hyte offset of the instruction causing the

error, This information 1is used in congjunction with a source
program listing to pinpoint the error in the source program,
Program listings are described in the Programmer’'s Manual, Segment

and procedure numbers are described in the Architecture Guide.

Orce an execution error has occurred, the user has two choices
avaiiable, "Typing <spaces to continue”, as 1s prompted orn the
console, aborts the currently executing program and reinitializes
the system. Typing the escape KkKey causes the system to resume
execution of the program, the resuits of which are somewhat
unpredictable and dependent upon the nature of the execution error,

Page 10

Operating System

2.0.1 StacK Overflow

Stack overflows occur when a program’s code and data use up all of

the memory in the systemy the program is terminated, and the
following message appears on the screen:

¥*STK OFLOW#

The system then reinitializes itself and

redisplays the system
prompt.,

NOTE - StacK overflows are not always detected by the processor or
operating system; when this happens, the system stops without
printing any error messages, and must be rebooted. In other cases, .
the system halts after displaying the stack overflow message. See

the Architecture Guide and Programmer’'s Manual for more informa-
tion.

Page 11

ruw-3 Dystem vuser s rmanual

2.0.2 Floppy Disk Errors

The software controlling the floppy disk drives can be directed to
issue error messages to the console wheriever the hardware indicates
that a disk operation caused a transient error (see section

1.3,3.4), This section describes the format of floppy disk error
messages.
NOTE - this section contains references to the hardware interface

of the PDQ-3 disk corntroller. See the Hardware User's Manual for-
details.,

Here 15 an example of a disk error message (which fits or ore line
when displayed on the console) and a description of its format:

Flop_42 [01] 01 Fc-94 Fs-30 T-01 S$-19 Dc-0{ Ds-01
~ C-0000 A-0012F8 Vs-001A

42 - High order byte of the disk select register,. Low naibble
is the disk nrumber (1,2,4,8), High order nibble 1is
density (4=single).

{01 - The retry number, It indicates the number of times the
operation has been attempted without success.

01 - The system [/0 result indicating the error condition (see
Appendix A),

Fc - The command that was issued to the FDC when the fallure
occurred,

Fs - The FDC status register indicating the error condition.

T - The FDC track register.

s - The FDC sector register.,

Dc - The DMA command register.

Ds - The DMA status register, '

Cc - The DMA count register (negative number of bytes left in
the current I/0 operation). .

A - The DMA address register (a byte address). _

Vs - The starting virtual sector (a zero-based logical sector

number).

Page 12

Operating System

2.0.3 Disk Swapping

This section describes the effects of removing disk volumes frcm
the floppy drives during system operation. Floppy disks are often
exchanged during system operation in order to retrieve files ¢from
offline volumes, or to copy disk volumes onto backup disks; the
system accommodates this by Keeping track of the online disk
volumes, However, disk swapping during program execution can be
hazardous; if a system or user program requires a code segment from
a disk volume, and the disk volume is no longer mounted in its
original drive, the system crashes,

The system attempts to remedy this situation in a couple of ways.

First, the file handler and disk-copying utility programs do rot
contain segment procedures; their code remains resident in memory
at all times during execution. User programs must do the same in
order to survive random disk swapping.

Second, the operating system attempts to protect itself from
crashes caused by removing the system disk during program execu-
tion. Normally, if the system disk is removed or replaced, it must
be remounted in the proper drive before the program terminates; in
fact, many of the wutility programs issue explicit prompts to
remount the system disk before terminating. However, if the system
determines that the system volume has been removed or replaced, the
following message appears after the program terminates:

Replace <{system volume name’:

The system waits until the proper disk is remounted, arnd then
redisplays the system prompt as if nothing unusual had occurred.
The method used to detect a disk swap is to monitor ‘all disk

directory accesses during program executiony if a directory access
is not performed on the system’'s disk drive after the disk has been
swapped, program termination halts the system with an unrecoverable
execution error instead of displaying the prompt shown above.

Page 13

rouw-gS oystem user s rmanual

2.1 File System

2.1.0 Overview

In the most abstract sense, a file is merely a sequence of data. A
file system exists in order to adapt this abstract definition of a
file to the requirements and constraints of a given hardware and
software environment., The file system described herein has the
following outstanding characteristics:

1) Files can be accessed from Pascal programs with standard
Pascal file operators.,

2) Files possess types to aid the wuser in identifying the
contents of files and to increase system reliability by
preventing invalid operations on files, '

3) The file system implements high level concepts such
removable disk volumes and device-independent file [/0,

as
n

4) The disk file implementation is both time and space-efficient
on relatively low performance floppy disk drives,

The following sections comprise a complete user-oriented spec-
ification of the file system, Section 2.1,1 presents an overview
of file name syntax. Sections 2.1.2 through 2.1.4 describe the
syntax and semantics of the file system hierarchy, starting with
the lowest levels of device 1/0 and culminating with file attri-
bhutes. Section 2.1.35 contains the definitive syntax specification
of a file name, Section 2,1.6 describes some system-wide conven-
tiorns that apply to the file system. ‘

Peferences to file naming conventions and file system terminology
_throughout this manual (and the Programmer s Manual) refer either
implicitly or explicitly to the information presented in this
section,

NOTE - In order to present a cornsistent file system description,
this section defines a rnumber of terms intended to describe parts
of the file system, New terms are underlined and followed by

either an immediate definition or a reference to a defining
sectiony subsequent occurrences of the defined term are not
underiined,

Page 14

Operating System

2.1.1 Syntax Overview

<file designator)

T CFile id> -

{volume 1d)

A valid file designator (informatly referred to as file name)
consists of a volume identifier and a file identifier., Volume
identifiers are described in section 2.1,3, File identifiers are

described in section 2.1.4. The complete syntax for a file
designator is presented in section 2.1.93.

Page 15

2.1.2 Physical

Physical units correspond to 1/0 devices;
their assigned physical

either serial devices or
2,1.2.1).,

section
serial
a disk

device,

device.
unit)

All physical

NOTE - Appendix C contains a

PDQ-3 System User s Manual

Units

uriit number.

they are addressed by

I1/0 devices are defined to be
block-structured

devices (described 1in

A serial unit

is a physical
A block-structured unit

is a physical

complete

unit assigned to a
(informally referred to as

unit assigried to a block-structured

units may be used as files,

description of the PDQ@-3

Computer System’'s standard device assignments.,

Uriirt Number

P

rJ

GO~k W

13

15
16
17

18
19

device description

- e w6 s ew e G um we e we e e e

screen and Keyhoard
with echo

screen and Keyboard
without echo
graphics

disk drive 0

disk drive 1
printer

remote input

remote cutput

disks 2 - 5

remote port 0 input
remote port 0 ocutput
remote port 1 input
remote port 1 output
remote port 2 input
remote port 2 output
remote port 3 input
remote port 3 output

2.1.2.0 Synrtax Overview

<unit number

The metasymbol
uwnit number,

unit attribute

e e T T R

serial

serial

unused
blockK-structured
hlock-structured
serial
unused
serial
hlocK-structured
serial
serial
serial
serial
serial
serial

‘serial-

serial

#<number’>:

{number> may be any positive

Page 16

integer representing a

Operating System

2.1.2.1 I/70 Devices

1/0 devices assumed to be connected to the system include disks,
terminals, printers, and remote ports. An [/0 device is in one of
two states: online or offline, A device is online if it acknow!-

edges status requests from the system and is available for 1/0
operations,

2.1.2.1.0 Serial Devices

A serial device is defined to either produce or consume a sequerce
.0of data, Serial devices assumed to be used with the system are
terminals, printers, and remote ports. The software controlling
these devices makes some assumptions about the structure of the
data sequences handled; in particular, default I1/0 to serial
devices expects human-readable data Known as text files. Section

2:1.4,1.,0,1.0 provides an overview of text files, Details concern-

ing alternate modes of serial 1/0 can be found in the Programmer’s
Manual! and Architecture Guide.

2,1.2.1.1 BRlocKk-structured Devices

A block-structured device is organized into a fixed number of S12
byte storage areas Krnown as blocks. Blocks are randomly accessible

by block number, These devices are usually implemented as fixed or
removable disks.

NOTE - Large-capacity (e.g. hard) disks are coften partitioned into
a number of logical disk devices.

Page 17

PFDRQ-3 System User s Marwual

2.1.3 Logical Volumes

Logical volumes correspond to physical units; they are addressed by

their assigned volume name (described in section 2,1.3), A serial
volume is a logical volume assigned to a serial unit. A block-
structured volume is a logical volume assigrned to a bhlock-struc-
tured unit, Serial volume rname assignments are permanent and may
not be changed by the usery serial volumes are functionally
equivalent to their assigned serial units, Volume name assigriments

to blockK-structured units are dynamic and controlied by the user; a
block-structured volume is addressahble if and only if 1t resides on
an online block-structured wunit. Block-structured volumes are
described in section 2.,1.3.1/

All serial volumes may be used as files. Block-structured volumes
should never be addressed. as files except when using the fiie
hardlier to create, examine, and copy entaire hlock-structured
volumes, ' D

Volume Name Asgigned Phys, Unit volume attribute

CONSOLE: 1 serial

STSTERM: 2 serial

GRAPHIC:] ; unused

<vol name:> 4 : biock-structured

<vol namer o)) - block-structured

PRINTER: & serial

REMIN: 7 serial

REMOUT: .. 8 _ ' serial

<vol names: 9 - 12) hilock-structured

REMINI ¢ ' 13 serial

REMOUT1: 14 serial

REMINZ2: 13 serial

REMOUTZ: 16 serial

REMINI: 17 serial

REMOUT3: 18 , serial

REMIN4: 19 serial

REMOUT4 : 2 serial

2.1.3.0 Syntax Overview

{volume i1d>

#<number>: >

{(volume name):

*

The volume identifier may either be the system volume "*" (section
2.1,3.,2)y a unit number, or a volume name, File designators
containing either empty volume identifiers or ":" specify thg
prefixed volume, which is described in section 2.1.3.4,

Page 18

Operating System

Z+1.3.1 BlocK-structured (DiskK) Volumes

Block-structured voiumes (informally referred to as disk volumes)
correspond to mass storage devices; the typical case is a floppy
diskK, A disk volume contains a collection of disk files (described
in section 2.1.4), Information describing the files is centralized
in a reserved area of the disKk Known as the disk directory
(described in section 2.1.3.9). A disk directory contains the
volume name which identifies the disk volume as a whole. A disk
volume is online 1if it resides on an online disk unity it is
addressed by its volume name. Disk volumes may also be addressed
by specifying the physical unit containing the disKk volume; e.g., a
disk volume named “SYSTEM" on unit 4 can be addressed either as
"SYSTEM: " or "#4:",

Block-structured units and disk velumes represent two distinct ways
of treating disk storage, Disk volumes are implemented on block-
structured unitsy however, they contain a directory and volume
name, and are desighed to contain a number of disk files.
Block-structured units are “"bare” disks and have no directory or
volume name; they can contain only one file and are addressed by
their physical unit rnumbher, Section 2.1.4.3.2 describes other
differences between disk volumes and block-structured units.,

Details concerning the implementation of disk directories and disk
files may be found in the Architecture Guide,

2.1.3.2 Disk Volume lUsage

Because diskK volumes may be referenced by volume name, the system
has problems operating when two disk volumes with the same volume
name are online, This situation should be avoided as much as
possible., When it can’'t be, all file designators must avoild using
volume names as volume identifiers; instead, the physical unit
numbers must be used to unambiguously specify files on online
volumes.,

Disk volume names should always be used in conjunction with a file
identifier specifying a disk file on the volume. The only

exceptions occur when using the file handler to create, examine,
and copy entire disk volumes, Using a disk volume name as a file
exposes the volume’'s disk directory to accidental overwriting by

“file write operations, thus threatening access to the volume’'s disk
files,

2.1.3.3 System Volumes

The system volume is the disk velume containing the operating
system code filej usually, 1t also contains the code files for the
rest of the system parts, The system volume may be specified

independently of its assigned volume name by using the volume
identifiers "#" or "¥:",

Page 19

ruu-J nystem user s PManual

2.1.3.4 Frefirxed Volumes

Prefixed volumes are used in conjunction with disk file desig;

nators, Normally, a disk file designator includes a volume
identifier to 1ndicate the volume on which the disk file resides in
addition to the disk file identifier itself., Disk file desigrnators

lacking a .volume identifier are assumed to reside on the prefixed
volume; thus, file naming can be simplified by specifying the most
frequently accessed disk volume as the prefixed volume. The entire
prefixed volume can be addressed with the file desigrnator ":",

The default prefixed volume is the system volume. The Plrefix
command (in the file handler) is used to specify volumes as the
prefixed volumej it designates a volume identifier entered by the
user as the prefized volume name, If the volume i1dentifier matches
the rname of an online volume, the volume becomes the prefixed
volume, The volume identifier can also specify an offline disk
volume; when the volume comes online, it becomes the prefixed
volume, If the volume identifier specifies a disk unit (as opposed
to a volume name), whichever disk volume 15 mounted in the
specified unit becomes the prefixed volume,

Setting the prefixed volume to 2 serial volume or unit is
fruitliess, as these devices neither recognize file identifiers nor
contain directories.

2.1.3.5 Disk Directories

Disk directories are stored on a digk volume along with disk files,
Directories contain the volume name and up to 77 directory entries.
A directory entry contains the name, location, and attributes of a
disk file on the voilume., The file names in a directory must be
unique in order to specify a file unambiguousliy; an existing file
is automatically deleted if another file with the same name is
entered in the directory. Disk file names are described in section
2,1.4, For more information concerning multiple files with the
same name, consult the Programmer’'s Manual for a description of
file operators,

NOTE - When the file system attempts to add a file to a volume
containing a full directory, it prints the error message:

No room on vol

"This is somewhat misleading, as the same message 1is5 used to
indicate a lack of disk space.

2¢1.3.5.0 Duplicate Directories

A disk volume may be marked so that the system maintains two disk
directories on a disk volume; the second directory is called a
duplicate directory and exists as a copy of the main directory, 1¢
unforeseen circumstances cause the destruction of the mailn direc%
tory, 1t can be restored using the information in the backup

Page 20

Operating System

directory. The only cost of duplicate directory usage is a slight
increase in overhead due to the necessity of updating an extra disk
directory during file manipulation. The insurance provided gene-
rally outweighs any losses in performance. The utility programs
Markdupdir and Copydupdir are used to create duplicate directories
and restore deceased main directories (see section 9.1).

Page 21

PDQ-3 System User s Manual

2.1.4 Disk Files

Disk files are stored in an integral riumber of contiguous blocks on
a disk and contain either programs or data. File attributes
provide useful information about the structure and history of a
disk file; they are described in section 2,1,4.1. File names are
the most important attribute of a disk filey they uniquely identify
a disk file within a directory, File names are descrihed in
sections 2,1.4.2 and 2,1.4.3, File length directives control the

amount of disk space allocated to a disk filey they are described
in section 2.1.4.4.,

2,1.4,.0 Syntax Overview

(file 1id>

<title> >

(U f f 1 X>— [*]—
— [m] —

(]

File titles distinguish the files in a directory; they are
described in section 2.1.4,3, File suffixes allow the system and

user to determirnme the contents of a disk filey they are <closely

related to file types. File suffixes are described in section
2.1,4,2, The syntactic items delimited by square brackets are
lengqth specifiers. Length specifiers serve as directives to the

file system to determine the amount of disk space to allocate to =2
riewly created disk filej they are described in section 2.1.4.4,

2.1.4.1 File Attributes

‘Disk files attributes are used by the system to manipulate the file
and by the user to determine the contents and history of the file.
From the user’'s point of view, the prominent file attributes are
file type and file date. File types are described in section
2:.1.4,1.0, File dates are described in section 2.1.4,1.,1. The
remaining file attributes visihle to the wuser are file length,
starting block, and bytes-in-last-block; these are described in
section 2,1.4,1.2,

2.1.4,1.0 File Ty pe

Al)l disk files have an attribute called the file type, File types
enable both system and user to determine the contents of a disk
file, regardless of its file name. Text file and code file are
file types used by the system; files of these types are described
in section 2.1,4,1,0.1, Files not containing text or code are
assigned the type data filey these are described in section

Page 22

Operating System

2,1.4,1,0.,2, System restrictions imposed by file types are des-
cribed in section 2.1.,4.,1,0,3. o

2.1.4.1.0.0 File Type Ass1gnment

When a file is created, the system assigns a Flle type correspon-
ding to the suffixj subsequent file name changes do not affect the
assigned file type., Section 3.5 describes a somewhat underhanded
method of changing the type of a f1le.

2,1.4,1.0.1 UCSD Fascal Files

The two file types described in this section are used to identify
files containing specific internal structures; the structures are
required (and assumed to be present and correct) by the system
parts that operate o typed files. The internal structures of the
file types are described in the Architecture Guide.

2eledele0e1.0 TE'X.t Files

Text fiies are usually created and maintained by the editor; they
can also be created by user programs., Text files contain human-
readable text that represents either program source files, program
data, or written documents suitable for word processing. Serial
devices used to display data for human scrutiny (e.g., conseles and
printers) recognize text file conventions on output; thus, text
files written to serial units or volumes appear as they do 1in the
edlter. : ‘ ‘

2¢1:4.1.0.1.1 Code Files

Code files are created by the compiler and manipulated by the
linker and the operating system. Code files contain a mixture of
P-code and execution information used by the CPU and operating

system, Code files may need to be linked before they are
executable; when used elsewhere in this manual, the term linkKed
code file refers either to code files not requiring linking to

execute or code files that have been linked with the linkKer,

Attempts to edit a code file with the editor or display a code file

on the printer or console will failj the system misinterprets the
code file format as text file information and spews forth a melange
of audio/visual garhbage for your entertainment. Code files are

best examined and modified with the Patch utility program described
in chapter 9,

2.1.4.1.0.2 Data Files
Data files are created by programs using files containing data

other than text and can have any internal representation. Except
for being restricted to lie within an integral nrumber of disk

Page 23

PDQ-3 System User s Manual

blocks, data files have no defined internal structure whatsoever;
they match the Pascal languaqe’s definition of a file as a sequence
of arbitrarily structured items.

2,1.4,1,0.,3 System Restrictions Imposed by File Types

The operating system does not accept files other than code files
for execution, regardless of the file identifier., A weaker form of
- type checking is performed in some system parts (e.g., the editor)
by using the current suffix of a disk file name to guess its file
type. This method of checking 15 sufficient for all practical
purposes; however, 1t can be subverted by changing the suffi1x of ar
existing file rame or using the file prompt conventions described
in section 2.1.6.0. :

2.1.4.1.1 File Date

The current system date is assigned to a file when 1t 1s createa or
modified {where "modified” is defined as the replacement of an old
file by a new file of the same name). Section 3.5 describes a
somewhat underhanded method of changing the file date,

2+1.4.1.2 Size and Location Attributes

The length field indicates the number of bhlocks allocated to a disk
file. The starting block field indicates the absolute block number
aof the first biock of the disk file (block 0 is the first absolute
disk block), The bytes-in-last-block field indicates the number of
bytes in the ltast block of the file. This field is always set to
512 for text and <«¢ode files, because they are created with
bicck-oriented file operatorsy only data files have interesting
values in this field,

Py =N

Page 24

Operating System

2.1, 4 2 File Suff1xes

File suffixes are separated from file titles by a period. File
suffixes treated specially by the system are showmn in the following
table, Files created with these suffixes are assigned the cor- .

responding file typej - otherwise, ' the file is designated a data
file, : : v ’ E ' . . g .

v

Suffix _ File Type @~ System Uses

 TEXT 7 text file " text file identifier
+CODE ' - code file ' code file identifier
+ BACK - T text file: editor backup text file

+ BAD data file damaged area of disk

File titles uniquely identify disk files within‘a ,directory, The
system reserves some titles for 1its own use; these are called
system titles, All other valid file titles are user titles,,

2 1. 4 3 O System Flle T1tles

System F1le5 contain code and data used for system operatxon, they
are identified by the file title "SYSTEM.<system part name> The
FO!IOWing table-shows all system ?1!9 tlt}es and their contents.

i

System File Title F1)EjType ”Contents

- am e e we am me e e we wm e ae m w R Ry - e am e =

SYSTEM.COMPILER code compiler

SYSTEM, ASSMELER code assembler

STYSTEM,EDITOR code editor

SYSTEM.FILER code file handier

STSTEM, LIBRARTY code contains user library routines

SYSTEM, LINKER code code file linker

SYSTEM,LST. TEXT text default program listing file

SYSTEM.MISCINFO- - data terminal confiquration info

SYSTEM. PASCAL code operating system

SYSTEM. STARTUP code user-defined bootstrap program

STYSTEM, SWAPDISK data memory swapped while compiling
T BSYSTEM.SYNTAX ™ data ~° ‘compiler syntax error text o

SYSTEM. WRK . TEXT text work text file

SYSTEM.WRK.CODE code ' work code file

All code files except for the operating system, ‘compiler, assem-
bler, and library are executable code files and can be invoked from
the system prompt with the X(ecute command (see section 2.1.,6),
SYSTEM.MISCINFD may be: examined and modified with the Setup utility
(section 9,3,1), Users may add their own 'library routines to
SYSTEM, LIBRARY using the Library utility (section 9.2.0)+ '

STSTEM,.STARTUP 1s a user-defined program which the system executes
during the system bootstrap before displayingwtheb we |l come message

Page 25

PDQ-3 System User s Manual

or system prompt. It is used for turnkey applications programs
which do rot require the system,

While bootstrapping, the system searches for STSTEM/MISCINFO and
STSTEM.PASCAL only on the system volume. To locate the other
system parts, the system searches the system volume and then all
other orline disk umits (prdered by increasing unit rnumbers) for a
disk volume containing the system titles.

Work files (SYSTEM.WRK,TEXT and SYSTEM.WRK.,CODE) exist to speed up
Iinteractive program development; various system parts are automati-

cally invoked when a work file exists. Work files are described in
section 2.2.1,

STSTEM, SWAPDISK is wused by the compiler to save memory during the
compilation of large programs. [If the following conditions hoid:

1) A d4-bilock file nrnamed STYSTEM,SWAPDISK resides on the same
volume as STYSTEM,COMPILER.

2) A disk ' directory must be read onto the heap in order to open a
file.

3) There is insufficient memory to read the directory, but the
heap is larger than 4K bytes.

e ther the operating system swaps a section of heap data out to
the file STSTEM,SWAPDISK, read the directory ‘into the resuiting
section of memory, open the file, and swap the heap data back into
memory., See section 9,2,2 for more information.

The default program listing file STSTEM.LST,TEXT 1s described in
the Programmer s Manual.

2.1.4.3.1 User File Titles

User files may have arny valid file title other than the reserved
system file titles.,

2¢1.4.3.2 File Titles with NMon-block-structured Volumes

This section describes the consequences of creating files with

semantically ambiguous designatorsy 1.e.,, file names pairing a
norn-empty file identifier with a volume identifier specifying a
non-block-structured volume. When a file identifier is appended to

a serial volume name, it is ignored; the file designator is treated
as a serial volume identifier. Whern a file identifier is appended
to a disk unit number, the disk unit is assumed to contain a disk
volume with its associated directory; blockK-structured units lack-
ing directories generate the file system error:

No directory on volume,

$

The reason for this apparent discrepancy in behavior is to make

Page 26

=N

Operating System

disk file 1/0 transparent to serial volumes and disk volumes (e.q.,
the directing of a listing file ¢to either a disk file or a’
printer). It should be emphasized here that direct file 1/0 to a
bltock-structured disk unit is only done in rare circumstances;
e/g.y when it is deemed necessary to dedicate an entire disk unit
to the creation and maintenance of a single large-capacity file.

Z2+.1.4.4 File Length and File Length Specifiers

When a disk file 1s created and made available for subseguent 1/0
operations, the file system must determine three things: whether
the volume specified has an available directory entry for the new
file, how much disk space to allocate for the new file, and whether
the required disk space is available on the disk, When the 1/0
operations are completed, the system releases any disk space that
was allocated to but not used by the filey however, while the file
is available for 1/0, it reserves all of its allocated disk space
for growing room., ‘

Files created without a length specifier are aliocated the largest
free space on the volume in order to minimize the possibility of
growing files running out of disk space. This causes problems when
a program attempts to create a number of new files on a disk volume
having only one free space available; though the rnumber of blocks
in the free space might easily contain all of the completed files,
the first file created is allocated all available disk space .and
thus prevents the other files from being created.

File length specifiers change the file system’'s disk space alloca-
tion strategy in order to avoid problems such as the one described
above. The value of the length specifier is treated as an estimate
of the everntual maximum size (in blocks) of the file, The file
system then allocates the specified amount of disk space for the
file in the first free space large enough to contain 1it, For
example, the file specifier "[101" allocates 10 blocks of disk
space in the first 10-block chunk of free disk space.

The file length specifier "[#]1" is useful when <c¢reating muitiple”
files orn a single disk; it allocates either half of the largest
space on the disk or the second largest space, whichever |is
largest.

The file length specifiers "[0]1" and "[]1" are equivalent to a null
length specifier; they allocate the largest space available,

I+ a growing file reaches the end of its initially allocated space,
one of two things occurs, If the disk space immediately following
the allocated space is used by an existing file, the file system
reports a system error; otherwise, the space is part of a free
space and the file's allocated disk size is extended into the free
space.

Length specifiers may appear in any file designatorj however, they

are ignored by all file operators other than the file <¢reation
operator.,

Page 27

PDR@-3 System User’ s Manual

Free spaces are created on disk volumes as a consequence of normal
disk file creation and destruction, and the disk file implementa-
tion., Disk free space is managed with ‘the K(runch command
described 1n chapter 3.

Page 28

Operating System.
2.1.5 Syntax Specification

(file designator)

) (file id) ¥ —
{volume 1d>
{volume i1d>
#<number>: I >
{volume name):
#
)
Y .
{(file id>
(titled 1 I >
—<{suffix>- [#)
F—l{m]—j
(1.
‘All spaces and control characters are ignored, and all lower case

alphabetic characters are mapped into their upper case equivalents.
The following characters should not bhe used in a file designator:
", “"=", "?", and ",". These characters are treated specially by
the file handler's file name prompts (see chapter 3 for more
details), ‘

The volume identifier may specify a physical unit by its unit
number (“"#<number>:"), a logical volume by its volume name ("<vol

name>:1 "), the system volume (“"#:", "%"), or the prefixed volume (
null, “:"), The volume name may contain any printable characters
except "#" and ":", and has a maximum length of seven characters,

The file identifier consists of a title followed by an optional

suffix and terminated by an optional length specifier. The title
and suffix may contain any printable characters except "["§ their
combined maximum length 1is fifteen characters., A disk file’s

directory entry consists of the catenation of title and suffix;
this entry must be matched exactly by a file designator’'s titie and
suffix in order to locate the disk file.

The file length specifier 1is delimited by square brackets. The

symbol "m" shown as one of the length specifier options denotes a
positive integer.

Page 29

PDQR-3 System User ‘s Manual

Examples of valid file designatorslarei

*SYSTEM. WRK . CODEL 1

FOON. TEXT

SYSTEM, COMPILER
FLOPPY:SCRUB. BUB.FOTO[101]

*
*2

#12:
PRINTER:
DATA

Page 30

Operating System

2.1.6 File Conventions and Applications

This section describes some system-wide conventions for file name
prompts. Programs developed by users should take advantage of

these conventions in order to be consistent with the rest of the
system.,

2.1.6.0 File Name Frompt Conventions

File name prompts accept file names for one of two purposes:
locating an existing file to use as an input file, or creating a
new file to use as an output file. These operations are imple-
mented with the UCSD Pascal file operators; see the Programmer s
Manual for details and examplies., '

2¢1.6.0,0 Input Prompts

Input file prompts appearing in the system are one of two Kinds:
type checkKing prompts, and general prompts.

Type checking prompts enforce a weak form of file type checking
(see section 2,1.4.,1.0) by expecting only the volume identifier and
file title for input, appending the input with the suffix cor-
responding to the desired type, and opening the input file with the
resulting file designator. It is assumed that the file suffix is a
true indication of the file type; therefore, the file designator
should successfully locate the user’'s input file only if the user’'s
file is of the correct type. Type checking prompts provide a
conventionalized “"out”": a suffix is not appended if the last
character in the input is a period (the period 1is removed). For
example, the editor accepts the file name "SYSTEM.SYNTAX." as a
valid input text file name identifying the file "SYSTEM.SYNTAX",

GCeneral prompts are the more forgiving of the two; they accept any
input as a valid file designator and blithely proceed to open the
file, If the file system indicates the file was not opened
successful ly, the proper suffix is appended to the input and the
operation is retried, A variation of general prompts is used by
the compiler’'s "include" file mechanism (described in the Program-
mer ‘s Manual).,

2+1.6,0.1 Output Frompts

Output prompts appearing in the system are one of two Kinds: good, -
and bad.

GCood prompts expect only the desired file title, catenate the
correct file suffix, and create the output file. Example of good
prompts include the compiler code file prompt and the editor’s
output file prompt.

Bad prompts accept any file specification and create the file. Bad
prompts have a nasty habit of creating data files (instead of files

Page 31

PDQ@-3 System User ‘s Manual

with the expected type), because users accustomed to good prompts
naively type onily a file title as the output file name, Sterling

examples of bad prompts exist in the linker and the Library utility
program,

2.1.6.1 File Access from User Programs

This section exists solely to stress that all file system features
and all file prompt conventions described in the previous section
are implemented with the language available to the userj no tricks
are involved, This implies that user programs can take full

advantage of the file system and prompt conventions for their own
prompts, :

Page 32

Operating System

2.2 Commands and Operation

This section describes the operating system commands and operation,
Section 2.2.0 explains how to start the system. Section 2.2.4
describes all commands available in the system prompt, Work files
are described 1in section 2.2.1. The system’'s state flow is
described in section 2.2,3, Automated invocation of system parts
is described in sections 2.2.1.1 and 2.2.2,

2.2.0 Starting the System

This section describes the actions taken by the system when it is
first started,

The Hardware User ‘s Manual provides instructions for starting the
PDQ-3 computer and the operating system. When the system finishes
its initialization routines, it displays a welcome message at the
center of the screen:

SYSTEM:
12-Apr-81
ACD/VS UCSD Pascal 3.1

The system volume name, current system date, and version are

displayed in the welcome message. The system prompt then appears
across the top of the screen.,

NOTE - The reserved file names PROFILE (chap. 7) and SYSTEM.START-
UP (section 2,.1,4,3.,0) affect the behavior of the system when it is
first started,

NOTE - If the welcome message or system prompt seem to be on the
wrong part of the screen, consult section 9.3 (terminal configura-
tion).

The work file is a special file which is used as a "scratch” or
“work" area for the development of programs and documents., It
simplifies program development by reducing the number of commands
required to edit, compile, link, and execute a program. However,
the work file 1is temporary by mnature, and thus susceptible to
impromptu removal by certain system actionsj therefore, the work
file contents can be saved in a3 named disk file, :

Work file operations are described in section 2.2.1.0., The effects

of a work file on system operation are described in section
202'1010

Page 33

PDQ-3 System User’'s Manual

2:.2.1.0 Work File Manipulation

The filer commands N(ew, G(et, and S(ave are work file commands.
G(et and N(ew create new work filesy if a worK file already exists,
it is removed., N(ew creates an empty work fite, G(et creates a
work file containing a copy of the contents of a named disk file,
S{ave saves the contents of the work file as a named disk file.

The workK file consists of two parts: the workK text file, and the
work code file, The work text file is modified with the editor;
the editor command U(pdate saves the results of an edit session as
the work text file, The work code file 1is modified with the
compiler or linKer; these system parts can be directed to specify
their output files as the work code file, The text and code parts
of the work file exist separateiy; thus, the work file may contain
a text file, a code file, or both text and code ¢filesy in the
latter case, the <code file is always a direct translation of the
current work text file. The workK code file is removed whenever the
work text file is updated.

When the worK file is updated, it is written to a disk file named
SYSTEM.WRK.:, The work text file is named SYSTEM.WRK.TEXT. The work
code file is named SYSTEM.WRK.CODE, These files are always written
to the system volume,

More information concerning work file manipulation can be found 1in
the sections describing the commands and system parts mentioned in
this section,

2.2.1.1 Work File Effects on System Behavior

The editor, compiler, and linker normally request the name of an
input filey however, if a suitable work file exists (e.g. work
text file for the editor), these system parts proceed automatically

using the work file as input. ’

The system command R(un has the ability to automatically invokKe
some system parts in order to execute the current work file,
regardless of its suitability for execution, The best example of
this is to type R{un when only a work text file exists, The system
invokes the compiler to compile the sourcej if the resulting work
code file needs linking, the linKer is invoKed to produce a linkKed
code file. The system then executes the (linkKed) work code file.
All this takes place without requiring the user’'s attention (though
rapturous awe is suggested).

NOTE - typing R(un when no work file exists invokKes the compiler,
which then prompts for the name of an input file,

A formal specification of system behavior with respect to work
files is presented in section 2,2.,3,

Page 34

Operating System

2.2.2 Syntax Errors and Editor Invocation

When the compiler detects a syntax error in a source file, the user
is given the choice of continuing compilation, aborting compila-

tion, or fixzing the error by invokKing the editor., If the latter
choice is made, the system automatically enters the editor and
positions the cursor near the error., I1f the source file heing

compiled is not the work file, the editor displays its input file
prompt; it is necessary for the user to type the correct file name’
in order to pinpoint the error in the text.

2.2.3 System State Flow Diagram

This section presents a formal description of all system states
along with the actions required to reach them. Words enclosed in
parentheses denote conditions that must be satisfied if the ensuing
state path 1is traversed. The 1ist below the diagram contains
system action descriptors, system conditions, and definitions

relevant to the state diagram. The state flow diagram is on the
next page. :

Page 35

PDQ-3 System User’ s Manual

Sysboot

- ‘)
(1) . 4
te—(startup) »—Sysprog—J

GCetcmd =

F— (I) »—Sysinit T —
-—-(startup)>——9y5prog-—-

f— (H) »—gyshalt

— (&C) »——Compon|y »

—~(error) »—-Sysprog——J

—(F,E,L,X,U,S) »—Sysprog

—(R) ®»=r——(linked) »—=Sysprog

—(unlinked) »—Link&go— Sysprog—»

—(no code) »—Compkgo—>
}

e (@rror)»—Sysprog -

e (Others)»—=Clearscreen

Note: "(error)»—— Sysprog"” sequence invokes the editor,

Descriptor Defimition

Syshoot system bootstrap

Sysinit system reinitialization

Syshalt system halt

Getcmd system prompt displayed
Clearscreen console display cleared

Sysprog system/user program invocation
Componly : invoke compiler or assembler only
Comp&go invoKe compiler and run work file
LinkKégo invoke linker and run work file
{(startup) SYSTEM, STARTUP code file on system volume
({letter?>) system prompt command received
(others) non-command character received
{linked) work file is linked code
(unlinked) work file is unlinked code

fno code) work file is text only

(error) compiler syntax error

Page 36

Operating System

2.2.4 System Commands

This section describes the commands available from the system
prompt., Commands are either completely specified herein or have a

partial specification and a reference to another chapter in the
manual,

The system promptline has the following form:

Command: X(ecute, S{ubmit, R(un, F(ile, E(dit, C{omp,
L(ink, H(alt, ? [3.1]

The system’'s release version is enclosed in brackets at the end of
the promptliine. Typing "7" displays the remaining commands:

Command: A(ssemble, U(ser restart, I(nitialize

Typing "7?" again returns the original prompt line.

2.2.4.0 Clear Screen

All non-command characters are defined as clear screen commands 1in

the system promptj typing them clears the screen of all characters
and redisplays the system prompt.

Page '37

PDQ-3 System User 's Manual

2.2.4.1 A(ssemble

Executes the program named SYSTEM.ASSMBLER. Assemblers are not
provided with this release. Users may find it convenient to change
the name of an oft-used program to SYSTEM.ASSMBLER; it can then be
executed by typing "A" from the system prompt.

Page 38

Operating System

2.2.4.2 C(ompile

Executes the program named SYSTEM.COMPILER., The compiler trans-
lates a Pascal source program into a code file.

I a work text file is present, it is used as the source file;
otherwise, the compiler prompts for the source and code file names.
Both file prompts expect only the volume and file title to be
typed; the file suffixes are automatically appended. The code file
prompt has some unique features, Typing <return’> updates the work
code file with the code files, Typing "$" writes the code file to

the work code file and saves it with the same name as the source
FiIEQ ’

Compiler operation is described in chapter 5.

Page 39

PDQ-3 System User’'s Manual

2.2.4.3 E(dit

Executes the program named SYSTEM,EDITOR, The editor creates and
modifies text files, :

If work text file is present, it is used as the input file;

otherwise, the editor asks for the name of an input file. Typing

{return> enters the editor with an empty file, Typing <escape:
aborts the editor, C

Editor commands are described in chapter 4.

Page 40

Operating System

2.2.4.4 F(ile

Executes the program named SYSTEM.FILER. The file handler is used
to manage disk files and disk volumes.,

NOTE - Once the filer prompt appears, the system diskKk can be

removed or replaced with another disk volume; however, it must be
remounted before leaving the filer,

Filer commands are described in chapter 3.

Page 41

PDQ-3 System User ‘s Manual

2:.2.4.5 H(alt

Stops the system: The only way to restart the system is to reboot
(see chapter 8 and section 2.2.0), ' ‘

Page 42

Operating System

2e2+e4.6 I(nitialize

Causes the system to reinitialize all of its state information.
This involves initialization of all online 1/0 devices and system
data structures. System programs are searched for and located on
online disk volumes. If the code file SYSTEM.STARTUP exists on the
system volume, it is executed before the system prompt appears.
SYSTEM,STARTUP is described in section 2,1.4.,3.0,

All rnon-fatal execution errors (see Appendix B) cause the system to
automatically invoKe the I(nitialize command.

Page 43

PDQ-3 System User’'s Manual

2,2.49.7 L(ink

Executes the program named SYSTEM,LINKER. The linkKer is used to
combhine user programs with separately compiled library routines to
form executable code files.) '

Linker operation is described in chapter 6,

Page 44

Operating System -
2:2.4.8 R(un

Executes the work code file. If the work code file does not exist,
the compiler is automatically invoKed. The behavior of the R(un
command with respect to work files is described in sections 2.2.1.1
and 2.2.3.,

b &t

Page 45

PDQ-3 System User ‘s Manual

2e2.4.9 S(ubmit

Executes the program named X.CODE on the system volume.

X.CODE 1is
assumed to

contain the command:file interpreter progtram,

which 15
used to control the system’'s operation with a command file.
Command file specificatiorn and operation are described in chapter
7

Page 46

Operating System

2.2.4.10 U(ser restart

Reexecutes the last program, This command cannot restart the
compiler or assembler, and does not work if the system has been
reinitialized.

Page 47

PDQ-3 System User s Manual

Z2+2.4.11 X(ecute
Executes the specified code file.

X{ecute prompts for a code file name,
automatically appended to the file name.
code file (section 2.1.4,1.,0.1,1).,

The file suffix ",CODE" is
The file must be a linked

Page 48

File Handler
I1I. THE FILE_HANDLER

The file handler (referred to as the "filer") manages work files,
disk files, disk volumes, and disk media. The file system 1is
closely tied to filer operation, and should be thoroughly under-
stood before using the filer; the file system is described in
Chapter 2, Section 3.0 describes the filer's prompting peculiari-
ties, Section 3.1 describes the file naming conventions that apply
to filer prompts, and introduces the “wildcard” concept; wildcards
allow a single file designator to specify several disk files, and
thus a single filer operation to manipulate several files at once.
Section 3.2 describes the filer commands; the command summary
groups the commands by their function, while the alphabetically
ordered list describes each command in detail, Sections 3.3
through 3.5 describe methods for recovering inadvertently removed
disk files and directories, and alsoc how to change disk file
attributes.,

3.0 Filer Prompts
The filer's promptline has the following form:

“iler: Glet,S(ave,W(hat,N(ew,L(dir,R(em,C(hng, T(rans,D(ate,
Q(uit(3.,0.b1

The remaining commands are displayed by typing "7?":

“iler: B(ad-blks,E(xt—dir,K(rnch,M(ake,P(refix,V(ols,X(amine,
Z{erol3,0.b1

Typing "?" again causes the original promptline to Peappeaf.

In the filer, responding to "yes/no” questions with any character

other than "Y" or "y constitutes a negative response. Typing

{escape?> as 23 response to any data prompt aborts the current
command and returns control to the filer prompt.

Many filer commands require one or two file names, Whenever a
filer command requests a file name, the user may specify as many
files as desired by separating each file name with commas and
terminating the list with a carriage return., Commands operating on
single files read the names from the list and operate on them one
at a3 time until there are none left,. Commands requiring two file

names (e.g., C(hange and T(ransfer) take them from the list in
pairs until one or norie remainy if one file name remains, the filer
prompts for the second. If an error occurs while operating on the’

list (such as an invalid file name), the remainder of the list is
not processed.

Page 49

PDQ@-3 System Reference Manual
3.1 File Maming Conventions

3.1.0 General Syntax

The filer accepts standard syntax for file names (see section
2,1.9), All filer commands except for G(et and S(ave require
complete file names, including file identifier suffixesy G(et and

S(ave automatically append file suffixes to the specified file
title, .

The "$" character is treated specially when used in a file name; 1t
is applicable only to filer commands which operate on pairs of file
names. When used in the second file name, a "%" represents the
file identifier in the first file name. For example:

Transfer what file? *BUCKS.TEXT, #5:%

Ve transfers the file "BUCKS.TEXT" on the system volume to the
disk volume mounted in disk unit 35, The filer substitutes the
string “"BUCKS.,TEXT" for the "$" character,

Volume identifiers normally require a trailing ":" character to
differentiate them from file identifiersy however, filer prompts
accept volume identifiers of the form "#<{number>". This feature

applies only to volume identification and not to disk file
designation.,

3.1.1 Wildcards

The characters "=" and "7?" are treated specially when used in a
file namej they are called "wildcard” characters because of their
ability to maKke a single file designator specify many disk files,
Wildcard characters are used in conjunction with partially speci-
fied file identifiers in order to match a subset of all the file
names in a given directory. For example, a file designator
containing the file identifier "SYS=TEXT" notifies the filer to
perform the requested operation on all files whose names begin with
the string "SYS" and end with the string "TEXT".

Wildcard file identifiers are constrained to match this form:

{string:=<{string’

The metasymbol <string> represents a sequence of valid file
identifier characters. Either or both strings may be empty; thus,
"={string>", "<{(string*=", and "=" are valid wildcard forms. In the

last case, where both strings are empty, the filer acts on every
disk file in the specified volume’'s directory.

The character “?" may be used in place of "=" as a wildcard, "7?"
is functionally equivalent to "="3 however, for each file that
matches the wildcard specification, the filer issues a verification
prompt before performing the requested operation.

Page 50

é

Al

File Handler

Here are some examples of the use bf wildcards:

Transfer what file? #4:SYSTEM.=,ALTDISK:=,CODE
This response transfers all system files to the online volume named
"ALTDISK"3y in addition, the system files appear as code files on
ALTDISK., For instance, STSTEM.FILER becomes FILER,CODE,

Remove what file? %7
This response generates a series of prompts of the form:

“"Remove <file name>?"

verv where (file name> is the name of a disk file on the system

volume., The number of prompts generated equals the number of disk
files on the system volume., For each prompt, typing "y* or "Y"
removes the nramed filey typing any other Key except <escape>
preserves the file and gernerates the prompt for the next disk filejy
typing <escape> aborts the entire R(emove command.
WARNING - In some cases, wildcards may fail to match valid file
names. Section 3.2.14,1 describes some other problems associated
with the use of wildcards,
3.2 Filer Commands
Section 3.,2.0 organizes the filer commands by function and is
useful as an overview and cross reference, Sections 3,2,1 through
3.2.18 describe each command in detail; the commands are .arranged
in alphabhetical order.

3+2.0 Filer Command Summary

Q(uit - leave the file handler and return to the system prompt.

3+2.0.0 Work File Commands

Work files are described in section 2.2.1. These filer commands
manipulate work files:

Glet - Create a new work file (containing the contents of an
existing file).

S(ave - Save the work file contents in a disk file,
N(ew - Create a new work file (empty).

Wi{hat - Display the name and status of the workK file.,

Page 5t

PDQ-3 System Reference Manual

3.2.0.1 Disk File & Volume Commands

Disk volumes and files are described in section 2.1. These filer
commands manipulate disk files and volumes:

C(hange - Change the name of an existing disk file or volume.

T(ransfer - Transfer a disk file to another location on its
disk volume or to another volume. Transfer an entire
disk volume to another disk volume,

R{emove - Femove a disk file.

M(ake - Create a disk file.

3e2.0.2 Disk Volume Commands

These commands manipulate’disk volumes only:
L(dir - List the contents of a disk directory.,
E(xt~-dir - List the complete contents of a disk directory,
D(ate - Change the system date.

EK{runch - Remove all free disk space between existing disk
files.,

P{refix - Change the current prefixed volume name.
Viotumes - Display the volume names of all online volumes.,

Zlero - Initialize a disk volume by removing all existing file
entries,

3.2.0.3 DiskK Media Commands
These commands check for and repair damaged areas of disk media.

E(ad blocks - scan a blocK-structured unit for damaged disk
blocKs,

Xf{amine - Examine and attempt to repair damaged disk blocks.

Page 52

File Handler

3.2.1 B(ad blocks scan

Scans a disk for blocks that are not storing information reliably.
The filer prompts for the volume to be scanned, Each block of the
named disk is checked for problems; the block number of the block .
currently under testing 1is printed out, along with a warning
message if the block is bad.

Bad blocks are either repaired or permanently marked bad with the
X{(amine command., :

Bad blocks scanning is performed much more efficiently with the
utility program Bad.blocks (section 9,0.4),

Page §53

PDQ-3 System Reference Manual

3.2.2 Clhange
Changes the name of a disk file or disk volume,

This command requires two file names: the name to be changed, and

the rnew name., The first is separated from the second by either a
{return’> or a comma., - :

When changing the name of a disk file, a volume identifier or
length specifier in the second file name is ignored. A file name
is not changed if the new name exceeds 15 characters; instead, an
error message is printed, '

Wildcard specifications are legal with this command, If a wiidcard
character is wused in the first file name, then it must be used in
the second; the strings matched by the first wildcard are substitu-
ted for the second wildcard.

Example of changing a disk file name:
Change what file? DUMP:=,BACK, =.TEXT

This respornse changes all backup files on the disk volume named
DUMP to text files,

When changing the name of a disk volume, a file identifier 1in the

second file name is illegal, A volume name is not changed if the

rew name exceeds 7 characters; instead, an error message is
printed.,

Example of changing a disk’s volume name:

Change what file? #4,WORK:

This response changes the name of the disk volume mounted in drive
4 to "WORK".

Page 5S4

File Handler

3¢e2.3 D(ate

Displays the current system date, and allows the date to be
changed.

Prompt: Date Set: <1.,.31>-<Jan..Dec>-<00,.99>
Today is 30-Feb-81
New date?

New date entries have the follpwing form:
{<{new day>[-<new month>[-<{new year)]]]<return>

Typing <return> preserves the current date. The metasymbol <new
day> is an integer between 1 and 31, <{new month> is the first:
three characters of the month’'s name (extras are ignored). <new

year> is an integer between 0 and 99, deroting the last 2 digits of
a year in this century,

NOTE - “/" may be used as an alternate character to the "-"
delimiter shown above.

The current date is saved in the system’'s information file and |is
displayed in the welcome message and the D(ate command. When disk
files are created or modified, the system assigns the current
system date to the filej; file dates are displayed by the directory
listing commands L(dir and E(xt-dir,

Page 595

PDQ-3 System Reference Manual

3+.2.4 E(xtended list
Lists a disk directory in more detail than the L{dir command.

All files and unused areas are listedy; the fields displayed (in
order) are: file name, file length (in blocks), date of file
creation or last modification, starting block address (relative to
disk), number of valid bytes in the last block of the file, and
file type, Only the block length and starting address fields apply
to unused areas of disk, \

This command is identical to the L{ist directory command with
respect to listing options and wildcards.,

Example of an extended directory listing:

" PROSE:
START.TEXT 4 15-Jan-81 10 512 Textfile
< UNUSED > 18 14
CHAP3A, TEXT 48 S-Jan-81 22 512 Textfile
PROSE. CODE 33 24-May-80 80 512 Codefile
PROSE3, CODE 35 26-Nov-80 113 512 Codefile
. < UNUSED > 3z 148
BEST.DATA 16 15-Jan-81 180 314 Datafile
CONT. TEXT 18 S5-Jan-81 196 512 Textfile
< UNUSED > 280 214

6/6 files<listed/in-dir:, 154 blocks used, 330 unused,
280 inm largest area

Page 56

File Handler

3e2+.5 G(et

Creates a new work file, The work file initially contains a copy
of the contents of the specified text file.

If a work file exists, but is not saved, this prompt appears:
Throw away current workfile?

Typing "y" proceeds with the command., Typing any other character
aborts G(et, saving the current work file,

The following prompt appears:

Cet what file?

The file name does not require a suffixy it is appended by the G(et
command . The file name designates a text and/or code file as the
work file.

NOTE - A disk file is not <created by Glet, If the work file
SYSTEM\WRK exists, it is removed, The specified disk files become
the source of the new work file. Subsequent modifications to the
work file are saved in a new disk file named SYSTEM.WRK,

Work files are described in section 2.2.1,

Page 57

PDR-3 System Reference Manual

e2.6 K(runch

Moves all disk files on the specified disk volume to the front of
the disk, thus merging all unused disk space into one contiguous
area at the end of the disk.

Before crunching a disk volume, be sure to perform a B(ad blocks
scany files can be lost by writing them on top of unmarkKed bad
blocks on the disk, 1# found, bad blocks must either be fixzed or
marked with the X(amine command before crunching the diskj the

K(runch command carefully avoids disk blocKks already marked as
ilbadll R

NOTE - If the file SYSTEM.PASCAL is moved while K(runching the
system disk, the system indicates that it must be rebooted. :

WARNING - nothing must happen to the system while crunching is in
progress., Interrupting a disk crunch may ruin the contents of a

disk volume; therefore, the following steps should be taken while
crunching:

1) Do not type ahead any system commands during a crunch.
2) Do not disturh any of the online disk volumes,

3) As much as is possible, prevent accidental power-down of the
system,

Example of using K(runch:

Crunch what vol? #5
The user has specified the crunching of the disk volume in drive 5.
The system responds with the following question to determine the
sincerity of the user’'s K{runch command invocation:

Are you sure you want to crunch <volume identifier> 7

A "Y" or "y" answer initiates the crunch. Any other character
aborts the command.,

Page 58

T File Handler

3.2.7 L{ist directory

Lists all, or some subset of, the files in the disk directory of
the specified disk volume, The directory listing may be displayed
on the console or written to a file,

The list command displays this data prompt:
Dir listing of what vol?
Responses have the following form:
[{volume id>[file identifierll[,[<{file name>1]l

The optional volume field specifies the disk volume whose directory
is to be listed; its default value is the current prefixed volume.
When the optional file identifier is used, the directory listing
contains only the files whose names match the given file identifier
{(wildcards are used here to designate a group of similar file
names).

The optional +file name field specifies the name of the file to
which the directory listing is to be written; its default value
sends the listing to the console, ' ’

The directory listing consists of a list of file entries followed
by some disk status information., A file entry contains a file’'s
name, length (in blocks), and date, {The E(xt-dir command displays
more file information.,) The status information includes the number
of files listed versus the total number in the directory, the
number of blocks used by existing disk files, the total number of
unused bhlocks, and the number of contiguous blocKs in the largest
unused space.

The most common use of this command is to list an entire diskK .
directory to the console; when the listing is too long to fit on
the screen, the following prompt appears after a screenful of file
entries:

Type <{space> to continue

Typing <(space> causes the rest of the listing to be displayed.
Typing <escape’ aborts the listing command.

Page 959

PDQ-3 System Reference Manual

Some examples of directory listing responses:
Dir listing of what vol? ,
O e
Dir listing of what vol? :
Ve list the directory of the prefixed volume.
Dir listing of what vol? *SYSTEM=
‘e lists all of the system files on the system volume.
Dir listing of what vol? #4:=, TEXT,MYDISK:DLIST,TEXT
Vs lists all of the text files on the disk volume in drive 4 and
wr-ites the listing to the text file "DLIST,TEXT" on the online disk
volume "MYDISK".

Arn example of a directory listing:

PROSE:

START. TEXT 4 15-Jan-81

CHAP3A, TEXT 48 S5-Jan-81

PROSE . CODE 33 24-May-80
- PROSE3.,CODE 35 26-Nov-80
- BEST.TEXT 16 15-Jan-81

CONT, TEXT 18 S5-Jan-81

6/6 fileslisted/in-dir>, 154 blocKs used, 330 unused,
280 in largest area :

Page 60

File Handler

3.2.8 M(ake
Creates a disk file with the specified file name.

File length specifiers are extremely useful in conjunction with
this command; they specify the length of the file to be created,
and 1ndirectly determine the location of the file on the disk,

Sections 3,3 through 2.5 describe applications of this command,
which include the recovery of lost files and the manipulation of
existing disk files and free spaces.

Some restrictions exi1st with respect tc the creation of text files,
A text file must be created with an even rnumber of blocks and
contain a minimum of four hlocks, Text files specifying a length
of less than four blocks are not accepted, and odd block lengths
are rounded down to the closest evern number,

Wildcards are not allowed.

Example of using the Make command:

Make what file? *STUFFL7]

NN creates the data file "STUFF" in the first

unused 7-block area on the system volume.

Page 61

PDQ-3 System Reference Manual

3.2.9 N{ew
Creates a new work file. The new work file is empty.

If a work file exists, but has not been saved, this prompt appears:
Throw away current workfile?
Typing "y" or "Y" removes the work filej typing any other character

aborts the command.

NOTE - 1f the work file SYSTEM.WRK exists, it is removed. BacKups

of the work file (i.e. SYSTEM.WRK.BACK) are unaffected by N{ew,
and must be manually removed,

Page 62

File Handler

3¢2:.10 Plrefixz volume

Changes the current prefixed volume to the volume specified.
This prompt is displayed:
Prefix titles by what vol?

A valid response contains a volume identifier; any associated file
identifer is ignored, The volume specified need not be online.

If the volume identifier contains a wunit number, the prefixed
volume is set to the rname of the volume in the specified disk
drive. If rno volume 1s online 1in the disk unit, the prefixed
volume 15 set to the unit rnumber itself, and the prefixed volume is
defined to be whatever disk volume is mounted in that unit.

The current prefixed voliume can be determined by responding to the

data prompt with ": (this actually sets the new prefixed volume to
the current prefixed volume),

Page 63

"PDQR-3 System Reference Manual

3.2.11 QCuit

Exits the filer and returns control to the system prompt.

NOTE - The system disk should be remounted

in the proper disk drive
before typing Q(uit.

Page 64

File Handler

3.2.12 R(emove
Removes files from the directory.

The files specified are removed from the disky the disk space they
occupied is marked as unused space, and their directory entry is
erased and made available for future files, Length specifiers are
ignored in file names, and wildcards are allowed, : B

Before completing the removal of files matched by a wildcard file
name, the filer displays this prompt:

Update directory?

Responding with a "y" or "T" causes all of the matched files to be
removed, Typing any other character aborts the command and saves
all the files,

NOTE - SYSTEM.WREK.TEXT and/or S5YSTEM.WRK.CODE should be removed
only by the N{ew command; using R(emove to remove them fails tc
update the system’'s work file state variables and may result in
confusing system behavior, : :

NOTE - When a disk file is removed, 1its data is rnot destroyedy only
the directory entry that locates and protects the file's data 15
removed., Thus, inadvertently removed disk files may be recovered
without harm 1f immediate actions are taken., See section 3.3 for
more information,

Page 65

PDQ-3 System Reference Manual

3.2.13 S(ave
Saves the work file contents in a disk file.,

I the work file originates from a disk file other than STYSTEM.WRK,
this prompt appears:

Save as <file name>?
Typing "y" or “"Y" writes the work file contents to the disk file

named by the prompt. Typing any other character generates the
prompt described below,

If the work file has not been saved (or the user “"fell through”
from the above prompt), this prompt appears:)

Save as what file?

The specified file name must not contain a file suffix or length
specifiery the appropriate suffix (.TEXT or .,CODE) is automatically
appended to the file name response, Wildcards are not allowed,

NOTE - If the work file contents are saved on the system volume,
the file SYSTEM.WRK is C(hanged to the specified file namej the
resulting disk file becomes the source of the work file. If the
work file contents are saved on a different volume, SYSTEM.WRK |is
T(ransferred to the volume with the specified file name; the source
of the work file remains in the file SYSTEM.WRK,

Page = 66

File Handler

3e2.14 T(ransfer

Copies the specified disk file or disk volume to the specified
destination.

This command requires two file names: the source file and the
destination file. The pair of names may be separated by either a
comma or <returnd, Complete file names must be provided, Length
specifiers are ignored in the source file rame, but are recognized
in the destination file name as a means of controll1nq the location
of the destination file, Wildcards. are a!\owed.

T(ransfer is used for the following tasks:

1) Copying disk files onto different disk volumes,

2) Copying entire disk volumes onto different disks (though the
Backup utility does a hetter ,job of 1t), :

3) Transferring files to and from the console, printer, or
remote device,

-.4) Moving disk files to other locations on the same disk volume.

Transfers from serial units are allowed if the device can generate

data; generally, only the console is used in this fashion, Files
emanating from a serial device are terminated by the transmission
of an end-of-file flagy this is done from the terminal by typing
{eofi.

Length specifiers are useful for controlling the location of disk

files written to the destination volume. For instance, 1if a
25-block urnused area 1is at the front of a volume, and a 25-block
disk file is to he transferred to the volume, the file can be

wr-itten directly to the unused space by adding the length specifier
"[251" to the destimation file name. Without the length specifier,
the filer writes the file into the largest available free space on
the destination volume.

NOTE - See section 3,2.14.,1 for problems with T(ransfer,

Page 67

PDQ-3 System Reference Manual

Examples of disk file transfers:
Transfer what filje? *system.=, #5:%

-4+ transfers copies of all system files on the system volume toO
the disk volume mounted in unit 5.

Transfer what file? stuff.text, stuff,text(25]

Ve transfers the file "STUFF.TEXT" to an unused area of disk
containing at least 295 contigquous blocks,

Transfer what file? WORK:, BACKUP:
vy copies the entire disk volume "WORK" onto the disk volume
"BACKUP", destroying BACKUP's existing contents. When the transfer
is completed, two identical disk volumes named "WORK" are online,

Transfer what file? DOCUMENT.,TEXT, PRINTER:

v prints the text file "DOCUMENT.,TEXT" on the printer.

Page 68

File Handler

3.2.14.0 Single-drive Transfers

Filer operations involving two distinct disk volumes are easily
performed with a system having two disk drives online; however,
they can also be performed using a single online disk drive,

Example of a single-drive,transfer:

Transfer what file? WORK:IMPORTANT.,TEXT

To where? BACKUP: %

The disk volume "WORK" must not be removed unti! the following
prompt appears:

Put in BACKUP: Type <{space’ to continue

At this point, the disk volume "WORK" is removed from the drive and
replaced with the disk volume “BACKUP", and <space» is typed.
Transfers of large files or entire disk volumes generate a series
of prompts having the form:

Put in {(volume name:: Type <{space* to continue

vvv where <{volume name’: alternates between the name of the source
and destination volumes until the transfer 1s complete, Transfer-
ring entire disk volumes in this fashion is a tedious process, as
the filer can only buffer as much data as it can fit in memory; the
user must suffer through numerous disk swappings.

NQTE - Failure to mount the correct disk volume after a3 volume

prompt jeopardizes the successful transfer of filesj Keep the disk
volumes straight! ,

Page 69

PD@-3 System Reference Manual

3+.2.14.1 Transfer Problems and Warnings

WARNING - Unless entire disk volumes are being transfered, the
destination’s file identifier must _not be omitted; otherwise, the

directory of the destinatiom volume may be destroyed. Transfers to
a destination disk volume are verified with the prompt:

Possibly destroy directory of <volume name} 7

Typing "y" or "T" commences the disk transfer, and overwrites the
existing directory; typing any other character aborts the transfer
and spares the directory.

Example of directory destruction:

Transfer what file? MTDISK:DIR,WHAM,CODE,VICTIM:

WARNING - Wildcards should not be used in file names when
transferring files to different locations on the same disk volume;
the results are unpredictable,

Example of had wildcards:

Transfer what file? =, =

WARNING - Transfers of entire disks lackKing directories may fail,
as the filer depends on directory information to determine the
number of blocks on the disk to transfer. If the information is
not present, the filer transfers data in integral buffer quantities
until no more can be transferred; depending on the disk size, the
last (remainder) part of the disk may riot be transferred. This
problem c¢an be avoided by using the Eackup utility (sectiorn 9.0.1)
to copy entire disk images.

NOTE - The filer does not allow any other characters or strings to
be associated with "$" in a file namej for instance:

Transfer what file? FOON.TEXT,$[501

v is not accepted by the filer. An alternative method exists
for taking advantage of "$" in this situation:

Transfer what file? FOON,TEXTILS0], %

The length specifier is ignored in the source file name, but the
“$" carries it over to the destination name where it is recognized,

Page 70

File Handler

3.2.15 V(olumes online

Lists all volumes currently online along with their assigned wunit
numbers, o

A typical volume display is:

Volumes on-line:
1 CONSOLE:

2 SYSTERM:

4 * MYDISK

S # EXTRA:

a8 REMOUT :
Prefix is - EXTRA

Ar asterisk ("#") marks the system volume., Online disk volumes are
indicated by "#*" or "#". The current prefixed volume is displayed
at the bottom,

NOTE - The presence of a disk volume name in the list indicates
that the volume is online, On the other hand, the presence of a
serial volume name merely indicates that the system supports the
corresponding devicey the device itself may be onlirne or offline,

Page 71

PDQ-3 System Reference Manual
3.2.16 W(hat is workfile?

Identifies the name and state of the current work file. The work
file state is either "saved” or "not saved”.

- Page 72

File Handler

3:¢2.17 X(amine bad blocks

Affempts to physically recover suspected bad blocks, and mark
unrecoverable blocks as unusable,

Example of using X(amine:

Examine blocks on what volume?

After specifying a volume name or uhnit numher, the following prompt
appears: :

Block number range?
The user enters the block number(s) of suspected bad bilocks
(section 3.2.1 describes one method of detecting them), Block
number ranges have the following form:

<hlock number>[-<{block number>]

When the optional part is used, all blocks between the two block
numbers specified are examined. :

If any files are endangered by containing bad blocks, the following
prompt appears:

File(s) endangered:

{file name:

Try to fix them?
Typing "y" or "Y' starts the fixing process on the named blocks;
typing any other character aborts the command. When completed,
X(amine returns one of these messages: '

Block <block number:> may be ok

Vs indicating that the block is probably fixed, or ...

Block <hlock number> is bad

o indicating that the block is a hopeless case. X(amine offers
the user the option of marking hopeless bhlocks as files of type
“bad”. These files are not shifted by the K(runch command; their

presence prevents regular files from being written over bad areas
of the disk,

WARNING - A "fixed" block may contain garbage as dataj the fixing
process can only ensure the integrity of subsequent write oper-
ations to the fixed block:. Block-fixing is done by reading up a
block, writing it out, and reading it up again. If the two read
operations bring in identical data without raising any I1/0 errors,
the block is considered fixed ("may be ok")j otherwise, the block
is declared bad.,

Page 73

PDQ-3 System Reference Manual

3.2.18 Z(ero directory

Writes an empty directory on the specified disk.

Zlero is wused to build new disk volumes on either brand new disks
or obsolete disk volumes, If an old volume resides on the disk,
some of its volume information is assumed to be applicable to the
new disk volume; the prompt sequence is changed accordingly.

NOTE - Z(ero automatically marks all disks to contain duplicate
directories,

3.2.18.0 New Disks

The following prompt appears:

Zero dir of what vol?

The volume identifier of the disk to be zeroed is specified. The
next prompt is: -

Number of blocks (5-494 D-988 Q-1976)7:

Any positive integer may be entered, The numbhers displayed are
standard values for single density (S), double density (D), and
double density/double-sided (@) 8-inch floppy disks., The next

prompt is:
New vol name?

Any wvalid volume name may be entered. The entered volume name is
verified by the next prompt:

{volume name> correct?

Typing "y" or "T" zeroes the disky typing any other character
aborts the command. In both cases, control returns to the filer
prompt.

NOTE - Brand-new disks should be formatted with the Format utility
(section 9.0.3) before being Z(eroed.

3+2,18.1 Recycling 01d Volumes

If the disk specified for zeroing contains an existing disk volume,
the following changes occur to the prompt sequence defined in the
previous section. Before the block number prompt, the Z{ero
command is verified with the prompt:

Destroy <current volume name>?

© [

Typing "y" or "T" continues the prompt sequence; typing any other
character ahorts the command,

Page 74

File Handier

Instead of requesting the number of blocks on the disk, the filer
assumes that the rnew diskK volume has the same number of blocks as

its ancestor, and prompts:

<blockK number> blocks?

~

e where <block rnumber:>

disk volume., Typing "y" or
volume;y typing any other

is the rumber of blocks in the obsolete
"Y" uses the existing value for the new
character generates the block riumber

prompt described in the previous section.

Page

75

PDR-3 System Reference Manual

3.3 Recovering Lost Files

Files may be lost by explicit removal or by creation of a new file
having the same name as an existing filey in both cases, the
directory entry for the existing file is erased, and the file
appears to be permanently lost, This is not always true. This
section describes a method for recreating removed files,

When a disk file is removed, the file itself is still on the disk;
only 1its associated directory entry is erased. However, the disk
space occupied by the removed file is marked as urused space; any
subsequent activity involving the writing of data to the disk may
overwrite the file's contents, Trerefore, the probability of
recovering a lost file 1is directly related to the disk activity
occurring betweern the removal of the file and the discovery by the
user of its nonexistence.

The E(xtended directory list command displays both files and unused
areas on a disk volume. The obhject of this method is to determine
which area marked as unused space on the disk contains the missing
file, and then to use the M(ake command to create dummy files of
various sizes until the position and size of one of the dummy files
coincides with the missing file (see section 2.1.4.4 for =a
description of file space allocation directives), If this stage is
reached, recovery consists of removing any other dummy files
created during the hunt, and changing the name of the coincident
dummy file to the name of the missing file.

NOTE - Files created with M(ake carmnot write over the data in the
missing filej they are merely directory entries associating a file
name with a group of blocks on the disk, ‘

File recovery is easiest when the ¢file’'s size and location are
known beforehand; the following example is a demonstration of this .
case. The process becomes more difficult when some of the

parameters are unknownsj several iterations of creation and removal
of dummy files may be necessary before the missing file is located
and contained,

Of the various file types, it is easiest to verify the capture of
text files; dummy text files viewed in the editor immediately
reveal their contents. Data and code files are comparatively
difficult to capture; verification of their contents requires a
Knowledge of their underlying structure and the utility programs
Patch, Library, and Libmap (described in chapter 9). Data file
structures must be Known by the user. Code file structures are
described in the Architecture Guide.

Page 76

File Handler

Example of recovering a lost text file:

Here 1s a pre-accident directory listing:

PROSE:

START. TEXT

< UNUSED >

CHAP3A. TEXT
PROSE. CODE
PROSEZ.CODE
< UNUSED >

BEST. TEXT
CONT. TEXT

{ UNUSED
€/6 files<listed/in-dir>,

The valuable file BEST.TEXT is

new file BEST.TEXT;
to remember the

creation
enough

N

rd

of

a

4
18
48
33
35
a2
16
18

280

current situation:

PROSE:

START. TEXT

< UNUSED >

CHAP3A. TEXT
PROSE . CODE

PROSE3Z. CODE
¢ UNUSED

.,

/;

CONT. TEXT
BEST., TEXT

< UNUSED

>

4
18
48
33
35
48
18
16

264

15-Jan-81

5-Jan-81
24-May-80
26-Nov-80

15-Jan-81
5-Jan-81

now

10
14
32
80
113
148
180
196
214

accidentally
fortunately,

512

512
512
512

512
512

154 blocks used,

Textfile

Textfile
Codefile
Codefile

Textfile
Textfile

330 unused

location of the old BEST.TEXT,

15-Jan-81

5-Jan-81
24-May-80
26-Nov-80

S-Jan-81
15-Jdan-81

10
14
32
80
113
148
196
214
230

512

512
512
512

Siz2
512

Textfile
Textfile
Codefile
Codefile

Textfile

Textfile

6/6 filesd{listed/in-dir?», 154 hlockKs used, 330 unused

Page 77

removed
the user
Here is

by the
is alert
the

PDR-3 System Reference Manrual

The dummy files are created with the M(ake command, DUMMY1
+TEXTL[18] fills the 18-block unused area at the front of the disk,
DUMMT2.TEXTI32]1 fills the first 32 blocks of the 48-block unused
area that contains the missing file. DUMMY3, TEXTL16]1 fills the
last 16 blocks of the 48-block area, and coincides with the old
copy of BEST.TEXT. The directory now appears as:

PROSE:

START. TEXT 4 15-Jan-81 10 912 Textfile
DUMMT 1. TEXT 18 15-Jan-81 14 512 Textfile
CHAP3A. TEXT 48 S5-Jan-81 32 512 Textfile
PROSE ., CODE 33 24-May-80 80 512 Codefile
PROSE3.CODE 33 26-Nov-80 113 512 Codefile
DUMMY 2., TEXT 32 15-Jan-81 148 512 Textfile
DUMMT3. TEXT 16 15-Jdan-81 180 912 Textfile
CONT. TEXT 18 5-Jan-81 196 512 Textfile
BEST. TEXT 16 15-Jdan-81 214 512 Textfile
< UNUSED 264 230

9/9 files<listed/in~-dir>, 220 blocks used, 264 unused

The file has been recovered; only clearnup remains, DUMMY!L1,TEXT and
DUMMY2.TEXT have served their purpose as free space fillers; they
are removed, The new copy of BEST.TEXT is saved under a different
name, and DUMMY3,TEXT is changed to BEST.TEXT.

PROSE :

START. TEXT 4 15-Jdan-81 10 512 Textfile
< UNUSED > 18 ' 14

CHAP3A, TEXT 48 ‘5-Jan-81 22 5912 Textfile
PROSE.CODE 33 24-May-80 a0 512 Codefile
PROSEZ, CODE 35 26-Nov-80 113 512 .Codefile
< UNUSED > 32 148

BEST, TEXT i6 15-Jan-81 180 512 Textfile
"CONT.TEXT 18 5-Jdan-81 196 512 Textfile
NBEST. TEXT 16 15-Jan-81 214 512 Textfile
{ UNUSED > 264 230

7/7 files<listed/in-dir>, 170 blocKs used, 314 unused

Page 78

File Handler

3.4 Recovering Lost Directories

The 1loss of a disk directory is a much more serious setback than
the loss of a single disk file, The best protection against
directory mishaps is to maintain duplicate directories on all disk
volumes, When a disk volume loses its regular directory, but has a
duplicate directory, the Copydupdir utility (section 9.0.1) re-
places its deceased reqular directory with a copy of the duplicate
directoryy the volume is then restored.

WARNING - regular disk directories are stored on blocks 2-5 of a
disk volume, while duplicate directories are stored on blocks 6-9;
unforturnately, this implies that some accidents may simultaneously
wipe out both directories. The method for recovering from this
situation is to Z(ero the directory, and then use the method
described in the previous section for fishing the files from the
disk; needless to say, this is a tedious and not necessarily
rewarding task, The best protection for a disk volume 1is to
maintain a copy of the volume on a separate disk,

Page 79

PDR-3 System Reference Manual

3.5 Changing the Type or Date of a File

Users occasionally find themselves stuck with a file of the wrong
type. A common occurrence of this problem 1is the the lirker's
penchant for producing an output data file instead of the desired
code filej the data file contains valid linked code, but its file
type prevents it from being executed by the system.

One solution to this problem is based on the method presented for
recovering lost files (described in section 3.3), The bogus file
is removed and a rnew file is created with the M(ake command such
that the new file is coincident with the old file; additionally,
the new file is created with the file suffix corresponding to the
desired file type.

Example of charnging a file’'s type:

The file PROSE should be a code file, but somehow has ended up as a

data filej thus, it is nonexecutable. Here 1s the directory
listing:
PROSE:
START. TEXT 4 15-Jan-81 10 512 Textfile
STUFF.DATA 18 32-Febh-80 14 202 Datafile
CHAP3A. TEXT 48 5-Jan-81 32 512 Textfile
PROSE 33 24-May-80 a0 512 Datafile
PROSE3. CODE 35 26-Nov-80 113 512 Codefile
. UNUSED > a2 148
BEST,TEXT 16 15-Jdan-81 180 512 Textfile
CONT.TEXT 18 5-Jan-81 196 512 Textfile
. UNUSED » 280 214
7/7 filesdlisted/in-dir», 172 blocks used, 212 unused

The data file PROSE is removed; a 33-block free space now exists
where it once resided:

PROGE

START.TEXT 4 15-Jan-81 10 512 Textfile
STUFF.DATA 18 32-Feb-80 14 202 Dasafile
CHAP3A. TEXT 48 S-Jan-81 32 512 Textfile
< UNUSED = 33 80

PROSEZ., CODE 35 2&6-Nov-80 1132 512 Codefile
% UNUSED = 32 148

EEST. TEXT 16 15-Jan-81 180 5312 Textfile
CONT.TEXT 18 S5-Jan-81 196 512 Textfile
< UNUSED > 280 214

.. 6/6 tiles<listed/in-dir>, 139 bhlocks used, 345 unused

Page &80

riie HMandlier

The M(ake command is used to recreate the file:
Make what file? PROSE.CODE[(33]

PROSE exists once againy it is now an executable code file:

PROSE:

START. TEXT 4 15-Jan-81 10 512 Textfile
STUFF.DATA 18 32-Feb-80 14 202 Datafile
CHAP3A. TEXT 48 S5-Jan-81 32 512 Textfile
PROSE ., CODE 33 24-May-80 80 512 Codefile
PROSE3.,CODE 35 26-Nov-80 113 512 Codefile
< UNUSED > 232 148

BEST. TEXT 16 15-Jan-81 180 512 Textfile
CONT. TEXT 18 S5-Jan-81 196 512 Textfile
< UNUSED > 280 214

7/7 fites<listed/in-dir>», 172 blocks used, 312 unused

The procedure for changing the file date is similar. Prior to
M(aking the file, use the Dl(ate command in the filer to temporarily
change the system date to the desired point in timej M(ake assigns
this date to the recreated file, Don‘t forget to return to the
present afterwards.

Page 81

PDQ-3 System Reference Manual

Page 82

Editor

Iv. THE EDITOR

The editor is used to create and modify text files. Editor prompts
are similar to filer and system prompts; they are described in
section 4.0, Text files may contain either Pascal programs or
documents; because these have different formatting conventions, the
editor’'s operation (Known as the "environment”) can be changed to

suit program development or word processing. Editor environments
are described in section 4.1, Basic editor commands and features
are described in sections 4.2 through 4,9, Section 4.10 describes

the remaining editor commands; the command summary provides command
overviews grouped by their function, while the detailed command
descriptions are organized alphabetically, Problems encountered
during reqular editor use are described in section 4,11,

4.0 Editor Prompts

Editor prompts display either a promptline of available edit

commands or a command line (generated as a result of typing a
command from an outer promptline) displaying the available command
options, All editor prompts display the current direction (des-

cribed in section 4,3) in the leftmost character of the prompt.
Prompts are almost always present at the top of the screen, but
occasionally disappear during some edit commands; depending on the
situation, typing either <etx> or a different command redisplays

the prompt.
The editor prompt has the following format:

Edit: A(djust C(py D(lete Flind I(nsrt J(mp R(place Qfuit X(chng Z2(ap
Only the most cemmonly uéed commands appear on the prompt. The
remaining commands are displayed by typing “?".

4.1 Edit Environments
Edit commands affect the structure of text; edit environments

affect the behavior of edit commands. Environment parameter values
are saved within text files; unless changed, they control not only

the current edit session, but all future edit sessions on the
current text file, . The most important parameters are “auto-
indent", "filling”, and "margins”., Auto-indent is used to facil-

itate the indentation of Pascal programs. Margins and filling are
used for processing documents; in particular, filling allows the
justification of paragraphs of text within the current margins.,

Edit environments are described in more detail in section 4,10.,11
(the S(et command).

Page 83

PDR-3 System Reference Manual

4,2 The File Window

The weditor allows the the entire console screen to be used much
like a chalkboard; any text displayed on the screen can be directly

accessed and modified. At the beginning of an edit session, the
editor displays the start of the file in the upper left corner of
the screen. Unfortunately, most text files have more lines than

can be displayed at once on the console; therefore, when the user
moves to a section of text that is above or below the section
currernitly displayed, the screen is updated by shifting some of the
existing text off the screen to make room for the display of
previously hiddern lines of text, The screen can be thought of as a
"window” sliding over the text file being edited; the entire text
file 1s accessihle using the edit commands, but only the section of

text that is currently being <c¢hanged can be viewed through the
window,

4,3 The Cursor

If the screen can be considered a chalkboard, the cursor then

serves as eraser, chalk, and pointer. All action takKes place
around the cursor; it represents the user’'s exact position in the
file, and it <¢an be moved to any position within the text file,

The file window automatically follows the cursorj any command which
moves the cursor off the current window recenters the window to
display the text adjacent to the cursor.

Note that the cursor is never really "at" a character position; it
is between the character where it appears and the immediately
preceding character, This convention is important; it affects the
behavior of the I{nsert and D(elete commands,

4.4 Repéat Factors

Most commands accept repeat factors. A repeat factor is specified
by typing a positive integer before typing the command character;
the digits of the integer are not printed on the screen, but the
integer is internally recorded by the editor for a subsequent
commarid. A repeat factor specifies that a command is to be
repeated the number of times determined by its preceding factor.
Forr example, entering "2 {(down>" causes the <{down’> command to be
executed twice, moving the cursor down two lines. The default
repeat factor value is 1. A slash ("/") typed before the command
indicates that the command is to be repeated until the end of the
text file is reached, Commands accepting repeat factors are noted
as such in their descriptions.

4.5 Direction

The editor maintains an environment parameter named “direction”,
Direction affects commands involved with cursor movementy for
example, typing the space bar normally moves the cursor left-
to~-right across a line of text, and down when crossing text lines.

Page 84

Editor

After changing the direction, the space bar exhibits the exact

opposite behavior. The current direction is indicated by the
leftmost character of editor prompts: “">" denotes forward direc-
tion, “¢" denotes backwards direction, The default direction is

forwards., Commands affected by direction are noted as such in
their descriptions.,

Direction commands may be executed whenever their key definitions
do not conflict with an enclosing command i1nhvocatiorn (e.g., typing
<" in llnsert), The following Keys are defined to change
direction:

T or "y or M- Change the current direction to backward

" " “ "

"Rt oor Yt oor T4+ Change the current direction to forward

'

4.4 Markers

Markers enable arbitrary cursor positions in a text file to be

easily accessible from anywhere within the file, MarkKers do rot
appear in the text itself; the only way to locate a marker 1is to
Jjump to it. MarkKers are specified by riame} names may contain up to

eight characters, and are case-insensitive (e.g. the marker names
"STUFF" and “"stuff" dernote the same marker).

Markers are saved across edit sessions in the text file., A file
can contain up to ten markers. ’

The S(et M(arker command creates a marker at the current cursor

position, Setting a marker to an existing marker name removes the
old marker setting, J{ump M(arker moves the cursor to the

specified marker., Existing marker names are displayed with the
S(et E(nvironment command., .

4,7 Moving The Cursor

This section describes most of the cursor-moving commands, Two
alphabetic commands that mpve the cursor are J(ump and P(age; these
are described in section 4,10,

One command not described below is the "equals" command, which 15
executed by typing "=", Equals causes the cursor to jump to the
beginning of the last section of text which was inserted, found, or
replaced; subsequent invocations will return to the same location,
Equals is unaffected by direction, but is affected by a Clopy or
D(elete operation between the start of the file and i1ts current
roosting location.,

Page 85

PD@-3 System Reference Manual

The cursor commands are described in the following table:

Direction insensitive commands-

<downr i Moves cursor down
<up Moves cursor up
<right? Moves cursor right
{left: Moves cursor left
{back-space> Moves left

Direction sensitive commands-

{space> Moves direction

“tah Moves cursor to the next tab stop;
tab stops are every & spaces, starting
at the left of the screen

return’ Moves to the beginning of the next line

Repeat factors can bhe used with any of the above commands.

The cursor ‘s column position is preserved by the <up?> and <ddown?
commands: however, when the cursor is moved outside the text, it is
treated as though it were immediately after the last character or
bhefore the first in the line,

4,8 The Copy Buffer

The editor maintains a copy of the most recently changed text in
its copy huffer, The contents of the copy huffer can be inserted
into the text with the Clopy B(uffer command. The copy buffer is
used to move or duplicate blocks of text within the file,

The contents of the copy buffer are updated by the following
commands:

1) Dielete - the buffer is filled with the deleted text,
regardless of whether the deletion is accepted (terminated
with <etx>) or escaped (terminated with <esc>).

2) I(nsert - the buffer is filled with the inserted text only
when the command is accepted; it is emptied after escaping
from an I{nsegt.

3) Z(ap - the Zlapped text is moved into the buffer.
The copy buffer is of limited size. Whenever a Z{(ap or D(elete
command changes more text than can fit in the copy buffer, the user

is warned that the text cannot be copied and is asked (with a
"yes/no" prompt) to verify acceptance of the command.

Page 86

Editor

4,9 Entering Strings in Fd(ind and R(eplace

The F(ind and R(eplace commands operate on character strings. This
section describes the features unique to these commarids, including:
syntax for specifying character strings (described in section
4,9.0), editor variables which contain the current target and
substitution strings (described in section 4.,9.1), and an envi-
ronmerit parameter which affects the editor’'s method of searching
for character strings (described in section 4.9.2). More detaiis
on this topic can be found in the descriptions of the F(lind,
R(eplace, and S{(et E(nvirorment commands.

4,7.0 String Syntax

Strings may contain any characters (including nonprinting char -
acters); they are delimited by two occurrences of the same

character. For example, "/I'm a string/", ".8¢"y and T*randy*”
represent the strings "I'm a string”, "8", and "randy", respec-
tively, Delimiting characters may be any non-alphanumeric char-

acter other than <space?>.

NOTE - This is one of the few places in the system where 2 <{return?
is not required at the end of the data typed in3y the command 1is
executed immediately after the closing delimiter of the last string
parameter is typed, Also, the editor ‘does not allow a completed
string parameter to be backspaced over from the prompt.

4.9.1 String Variables

The editor provides two string variables for saving the last string
arguments used in a Flind or R(eplace. The target string (rnamed
"<targ>") is used by both commands; the substitution string (named
“{sub>") is used only by R(eplace. The string values in both of
these variables may be used in subsequent Flinds and R(eplaces by

using the letters "S8" or "s” in place of an explicit string
argument. For example, in F(ind, typing "S" (read as "find same")
finds an occurrence of the contents of the <{targ> variable in the
text file. In R{eplace, typing "S85" (read as "replace same with

same”) replaces an occurrence of <targ> with the contents of <{sub’,
while typing ".match.s" replaces occurrences of the string "match”
with the contents of <sub>.

The current values of <{targ> and <sub> can be examined with the
S(et E(nvironment command, No values are displayed if the vari-
ables are not assigned values during the edit session.

4,9.2 Search Modes

Fl(ind and R(eplace both have two different methods of searching for
strings in a text file - Token mode and Literal mode. In Literal
mode, the editor searches for any occurrences of the target string.
In ToKen mode, it searches for an isolated occurrence, which is
defined as a string delimited by spaces or other punctuatior. For

Page 87

PDQ@-3 System Reference Manual

example, in the string "now is the time for blisters", a Literal
mode search finds two occurrences of the search string "is", while
Token mode finds only one.

Token mode ignores spaces within strings; thus, the two strings

vy and "y, " are equivalent.,

The search mode is Kept as an environment parameter; its name is

"Token def”, which 1is short for "ToKen default mode". Wher this
parameter is set true, all searches default to Token mode; when set
false, they default to Literal mode, The initial parameter value

is true, but can be changed by the user with the S(et E(nvirorment
command.,

The current default search mode can be overridden in F(ind and
R(eplace by using the letters “L"/"1" (force Literal mode) and
"T*/"t" (force ToKern mode). These must appear outside of the
string parameters; here are some examples of search mode override:

.

"L foon,"” (find the string “foon” in Literal mode);

“T/foon//yeen/" {(replace all toKen occurrences of "foon" with
the string “yeen")j

"ybad,L,good," (replace all literal occurrences of "bad" with
the string "good”).

Page 88

Editor

4,10 Editor Commands

Section 4,10.0 contains a command overviewj the commands are
grouped according to their function, Sections 4.10.1 through

4,10.14 describe each command in detailj the commands are alpha-
betically ordered., :

4.10.0 Command Summary

4,10.0.0 PFMoving Conmands

<down> cursor down

{up’ cursor up

<right: cursor right

{lefty cursor left

{space> cursor in direction
{hack space* cursor left

{tab> cursor to next tab stop
<return’> cursor to next line

B backward direction

A forward direction

U

= cursor to start of last inserted/found/replaced
Jtump: Jump to marker or the beginning or end of the file.

- .P{age: Move cursor one page in the current direction.

4,10.0.1 Text-Changing Commands

I[{rnsert: Insert text.

Clopy: Copies last inserted/deleted/zapped text into the file.

D(elete: Delete text,.
X{change: Exchange text,

Z(ap: Delete all text between last found/replaced/inserted/
adjusted text and the current cursor position.

4,10.0.2 Pattern Matching Commands
Flind: Find character string patterns in text.

R(eplace: Locate string patterns in text and replace with a
substitute pattern.

Page 89

PDQ-3 System Reference Manual

4.10.0.3 Formatting Commands
Aldjust: Adjusts indentation of the current line.
M(argin: Adjust all text between two blank lines to the current
margin settings.

4.,10.0.4 Miscel laneous Commands

Slet: Set M(arkers ta J{ump to or E(nvironment to change
parameters.

Vierify: Redisplay screen with the cursor centered,

Q(uit: Leave the editor,

Page 90

Editor

4.,10.1 Al(djust
Repeat factors are allowed.
Prompt:

>Adjust: L({just R({just C(enter <left,right,up,down-
arrows> {<etx> to leavel

A(djust changes the indentation of a text line. The <right> and
{left> commands move the entire line on which the cursor is located
one space right or left, respectively.

"L" and "R" left-justify and right-justify lines to the current
margin settings. "C" centers the line between the margins.
Margins are described in the S(et E(nvirornment command.

A series of lines may be adjusted by adjusting one line the desired
amounit and then using the <up’> and <down: commands to adjust
adjacent lines by the same amount. Note that horizontal commands
can be intermixed with vertical commands to allow cumulative
horizontal offset changes on successive line adjusts; thus, typing
"Aldjust <{left: {left> <{down> <{left> <{down>" moves the current |ine
two spaces to the left, while the two lines below it are moved
three spaces to the left.

The {etx> Key is typed to finish the command; the cursor is left at

the beginning of the last line adjusted, There is no command
available to exit A(djust.

Page 91

PDQ-3 System Reference Manual

4.10.2 Clopy

Prompt:

->Copy: Bluffer F(ile <esc>

4.10.2.0 C(opy Bluffer

Typing "B" copies text from the copy buffer. The copy bhuffer
contents are copied into the text, starting at the cursor location
prior to invoKing Clopy, The cursor is left at the front of the
copied text,

The copy buffer is described in section 4.8,

4.10.2.1 CCopy F(ile

Prompt:

*Copy: from what filelmarker,markerl?

Typing "F" copies portions of text from another text file, The
section of copied text 1i1s inserted into the current text file
starting at the cursor location prior to invoking Clopy. The

cursor is left at the front of the copied text,

Any text file may bhe specifiedy the file suffix ",TEXT" is
optional.

WARNING - The disk containing the editor’'s code file must not be
removed.

The marker specification (including the square brackets) is option-
al, and is used to copy selected portions of another file., Its
form is:

{file name>[("["[<{markKer name>1l, [<marker name>1"1"1]

The markers specified must be present in the other file., The text
copied is that which lies between the first and the second markers

specified. An empty marker field indicates one end of the file as
the delimiter of the copied text, For example, "[,<{markKer name>l"
indicates that all text between the front of the file and <marker

name> should be copied, MarKers are described in section 4.6.

C(opy Ftile does not alter the contents of the file being copied.

Page 92

Editor

4,10.3 D(eletre

Prompt:

>Delete: < > <Moving commands> {<etx> to delete, <{esc> to abort}

The cursor must be positioned at the first character to be deleted.,
Before entering D(elete, the cursor position is recorded; it is
called the "anchor”., As the cursor is moved away from the anchor
using the moving commands, text in its path disappears. As the

cursor: is moved back toward the anchor,; the previously deleted text
is restored.

- To accept the deletion, type <etx>; to escape, type <{escr.

NOTE - While the D(elete command itself does not accept repeat

factors, the moving commands used within D(elete do accept repeat
factors,

Example of using D(elete:

Here is the text before deleting:

- -

This sentence of the text is to remain the same. This
sentence is to be modified by the delete command,

- - - - - - ~ -

The «cursor is positioned over the letter "t" in the second
occurrence of the word "to", Enter D(elete by typing "D", then

type {space} six times and <etx>. The text and cursor position now
appear as follows:

This sentence of the text is to remain the same, This
sentence is modified by the delete command.

- -

Page 93

PDQ-3 System Reference Manual

Repeat factors are allowed.

Prompt:

>Findl<n>l: L(it <{target> =>
or +a s
>Findl<n>]: T(okK <{target> =>

vvv depending on the value of the Token default envirornment
parameter, The metasymbol <n> deriotes the repeat factor value
passed to Flind.,

Ftind finds the <n>-th occurrence of the target string in the text,
starting at the current cursor position and moving in the direction
displayed. If the repeat factor is "/", the last occurrence 1is
found,

If an occurrence of the target string is found, the cursor is
positioned after the found string; otherwise, the following prompt
appears:

ERROR: Pattern not in file. Please press <spacebar> to continue.

Typing <esc> while entering the target string exits the F(ind
command.

See section 4.9 for more detailg on using F(lind,

NOTE - Because Flind leaves the cursor at the end of a target
string, F(inds in the backward direction behave oddly. After a
backward F(ind locates an occurrence of the target string, it |is
necessary to type "=<(bs>" to move the cursor in front of the target
string hefore finding the next matchy otherwise, Flind Keeps

finding the same target occurrence.

Example of using Flind:

We will attempt to find "rutabaga”:, The cursor is located at the
start of the line,

- -

This sentence rutabaga contains an out-of-place word,

- - - - - - - - - - - - - - - - -~ - - - - - - e e - - - em e

The F(ind command is invokKed with an argument of "rutabaga”:
>Findl<1>1: L(it {(target> =>/rutabaga/

The cursor is moved to this position:

- - - - - - - - - - -~ - - - - - - - - - - - - - - - - - - -

This sentence rutabaga_contains an out-of-place word.,

- -

Page 94

caizor

4.10.5 I(nsert
Prompt:

Insert: Text{<{bs> a char, <{del> a linel
[<etx> accepts, <esc’> escapes]

Characters (including <return>) are inserted into the text as they
are typed in, Any nonprinting characters that are typed are echoed
with a "?", Text may be changed while it it is being inserted -
typing <bacKspace> removes the last inserted character, while
typing <del?> removes the current line of inserted text, Text
preceding the inserted text cannot be removed.

To accept the insertion, type <{ext>; to escape, type <esc’.

Occasiorally, I{nsert may add a blank at the end of the original
line into which the insertion occurred., This allows optimization
of large character-moving operationsy it has no impact on Filling,
and is not included in the copy buffer,

I{nsert is affected by the following environment parameters:
Auto-indent, Filling, and Margins. These control the text margins -
as successive lines of text are inserted. See the S(et E(nvi-

ronment command for more details,
Example of using I(nsert:

Here is the text before inserting:

- -

This sentence of the text is to remain the same.

- -

The cursor is positioned over the letter "t" in the word "to",
Enter I({nsert by typing "I", then type "not <etx*", The text and
cursor position now appear as follows:

This sentence of the text is not to remain the same.

4.10.5.0 Using Auto-indent

If Auto-indent is True, a <{return’ causes the next line to have the
same level of indentation as the immediately preceding line, 1f
False, the indentation level for a new line is always zero. When
Auto-indent is True, indentation levels are changed by using the
{space? and <{bacKspace’> keys immediately following a <return>.

Page 95

PDQ@-3 System Reference Manual

Example of Auto-indent:

- -

Line 1 Original indentation
Line 2 {ret’> maintains current indentation level
Line 3 <{ret><{space><{space> indents by two
Lirne 4 <ret> maintains current indentation level
Line 5 {ret:<back spaceX*<{back space’ unindents by two

4.10.5.1 Using Filling

If Filling 1is True, all words inserted are forced to lie between
the left and right margins, The editor

does this by automatically inserting a <return’> between words
wherever the right margin would have beerr exceeded, and by
indenting to the left margin before every new line. Any character -
strings delimited by spaces or by a space and hyphen are
considered words.

A paragraph is a series of text lines delimited by blark lines.
Filling automaticalily adjusts the right margins of the remainder of
a paragraph that has text inserted into 1it. However, any line

beginning with a command character is not touched; it is considered
to terminate the paragraph. Command characters are described 1in
section 4,10.7.0,

The margins of a filled paragraph may be re-adjusted by using the
M{argin command.

Page 96

‘Editor

4.,10.6 J{ump
Prompt:
Jump: Bleginning E(nd M(arker <esc>

Typing "B" or "E" moves the cursor to the beginning or end of the
file.,

4,10,6.,0 J(ump FM(arker
Prompt:
Jump to what marker?

Typing 2 marker name followed by a <{return> moves the cursor to the
marker’'s location in the file.

If the specified marker does rnot exist, the following prompt is
displayed:

ERROR: Marker not there. Please press <{space-bar>
to continue,

Markers associate user-defined nrames with arbitrary cursor posi-
tions within the text file. Section 4.6 describes markKers.

Current marker rnames can be viewed with the S{(et E(nvironment
command.

Page 97

PDR-3 System Reference Manual

4,10.7 Margin

M(argin reorganizes the paragraph of text currently occupied by the
cursor so that its text lines lie within the current margins, A
paragraph is defined as a series of text lines delimited by blank
lines, M(argin is used strictiy for word processing; it cannot be
executed unliess Filling is True and Auto-indent is False.

The text format produced is similar to the filled format described
in the l(nsert command (using Filling): M{argin i1ndents to the
paragraph margin on the first line of the paragraph, inserts a
{return’> between words whenever the right margin would be exceeded,
and indents to the left margin before every new line, Any

character strings delimited by spaces or by a space and hyphen are
considered words., :

Margin values are set with the Slet E{nvironment command.

M(argin may take several seconds to reorganize long paragraphs of
text, The screen remains blankK until the paragraph 1is finished;
the screen is then redisplayed.,

Page 98

Editor

Example of using M(argin:

The paragraph before M{argin:

The Margin Command is executed

by typing "M" when

the cursor is in the paragraph to be margined.

The

Margin Command deals with

only one paragraph at a time

and realigns the text to the specification set in the
environment,

- - - - - ~ - - - - - - - - - -

- - - - - - - - -

Set:

Left margin - S

Right margin - 60
Paragraph margin - 10
Auto-indent - False
Filling - True

The paragraph after M(argin:

The Margin Command is executed hy typing "M" when
the cursor is in the paragraph to be margined, The
Margin Command deals with only one paragraph at a time
and realigns the text to the specification set in the
envirorment.

4.10.7.0 Command Characters

For purposes of formatting, a paragraph is defined as a series of
text lines delimited by blank lines. However, an arbitrary line of
text can be protected from M(argin if a command character appears
as the first non-blank character on the line. M(argin treats these
lines as though they were blank lines, The character definition of
the command character 1is controlled by the §Slet E(nvirornment
command,

Command characters also affect the behavior of I(nsert.

WARNING - Do not use M(argin within a line that starts with the
Command character,

Page 99

PDQ-3 System Reference Manual
4.10.8 FP(age
Repeat factors are allowed.

Displays the screen of text adjacent to the current screen; the
current direction determines whether the preceding or following
screen is displayed, The cursor is left on the same line of the
screen, but is moved to the start of the line,

Page 100

Editor

4,10.9 QCuit
Prompt:

>Quit:

U(pdate the workfile and leave

E(xit without updating

R(eturn to the editor without updating
Wirite to a file name and return

One of +the four options must be selected by typing U, E, R, or W;
all other characters are ignored.

U(pdate -

Stores the text file as the work filejy it is named SYSTEM. WRK. TEXT.
Work files are described in section 2.2.1.,

E(xit -

Terminates the edit session - unless the W(rite option has already
been used, all modifications made to the text during the edit
session are lost, as the text file is not saved on the disk,

Rleturn -

Returns to the editor without updating. The cursor is returned to
the same position in the file it occupied when "Q" was typed. This
command is often used after unintentionally typing "@",.

Wirite -
Prompt:

>Quit:
Name of output file (<cr> to return) -->

The current text file may be written to any file namej a text file
suffix is not required with the file name. Q(uit can be aborted by
typing <return> instead of a file name; the text file and the
editor prompt then reappear, However, if the file is written to =z
disk file, the following prompt appears:

>Quit:

Writing...n..

Your file is {number> bhytes long.

Do you want to E(xit from or Rleturn to the Editor?

Typing "E" exits from the Editor and returns control to the system
prompt., Typing "R" returns control to the editoriy the text and
prompt are redisplayed and the cursor is returned to its original
position. It is a good practice to periodically write the current
text file contents out to a disk file in order to save the work
invested in a long edit session.

Page 101

PDQ-3 System Reference Manual

4.10.10 R(eplace
Repeat factors are allowed.

Prompt:

’Replacelnl: L(it V(fy <{targ> <sub> =>
Or + 4+
>Replacelnl: T(ok V(fy <{targ> <sub)> =>

vve depending on the value of the Token default environment
parameter, The metasymbol <{n> denotes the repeat factor value
passed to Rleplace.

Rleplace replaces <n> occurrences of the target string in the text
with the contents of the substitution string, starting at the
current cursor position and moving in the current direction. 1f

the repeat factor is "/", all occurrences of the target string are
replaced.

The verify option ("V(fy") permits the examination of each
occurrence of the target string prior to its replacement; it is
specified (in the same fashion as the TokKen and Literal modes - see
section 4.,9) by typing the letter "V" within the prompt.

When Vi(erify mode 1is used, each occurrence of the target string
found in the text is displayed on the screen, and the following
prompt appears:

>Replacer <esc> aborts, 'R’ replaces, ' ° doesn’t

Typirng an "R" replaces the string. Typing a8 space spares the
current target occurrence from replacement.

In V(erify mode, the repeat factor applies to the number of times a
target occurrerice 1is found, not the number of times it is
replaced.,

1 the specified number of target occurrernces is found, the cursor
is positioned after the last replaced stringy otherwise, the
following prompt appears:

ERROR: Pattern not in file, Please press <{spacebar’> to continue.

Typing <esc> while entering the string parameters exits the
R(eplace command.

See section 4,9 for more details on using R{eplace.

Page 102

‘Editor

Example of using R{eplace:

We will attempt to make the sentence in this example more palatable

by replacing the string "rutabagas”. The cursor is located at the
start of the line.

- -

Chilled rutabagas are delicious when served with whipped cream.

- -

The R(eplace command is invoKed with a target string of "ruta-
bagas” and a substitution string of "strawberries”:

>Replacelll: L(it V(fy {targ> <{sub* =).,rutabagas..strawberries.

The string is replaced and the cursor is moved to this position:

Chilled strawberries_are delicious when served with whipped cream.

- - - - - - - - - - - - - - - ~ - - - - - - " - - - - - - - - - - -

Page 103

PD@-3 System Reference Manual

4.,10.11 S (et

Prompt:
>8et: M(arker E(nvironment <{esc>

Markers enable arbitrary cursor positions in a text file to be
easily accessible from anywhere within the filejy they are described

in detail in section 4,6, Marker setting is described in section
4010011000

The editor’'s envirorment maintains text file information that is
stored separately from the text. The environment is used to
displiay and/or modify editor variables which control the editor’'s
operation or aid the user in editing a text file. The envirorment
is described in section 4,10,11.1,

4,10.11.0 S(et M{arker
Prompt:
Name of marker?

Marker names may contain up to eight characters;i they are termin-
ated by typing a <{return>.

A maximum of ten markers is permitted in a file at any one time;
attempts to set an eleventh marker generate the following prompt:

Marker ovfliw,
Which one to replace.
0) {marker namej
1) {marker name}
L N)

9) <{marKer name:>

Typing a number between 0 and 9 removes the associated marker
definition to make room for the new marker.

See section 4.6 for details on markKers.

Page 104

Editor

4,10.11.1 S(et E(nvironment

Prompt:

*E(nvironment: {options} <{etx> or <{sp> to leave

Aluto indent True
Flilling False
Lieft margin 0
R{ight margin 79
Plara margin 0
Cl{ommand ch .
T{oken def True

3120 bytes used, 12345 available

Patterns:
target = ‘xyz’, subst = “abc’

NOTE - Some of the values shown in this example are arbitrary; they
vary from file to file, However, the environment parameter values
displayed above are the editor’'s default values., Though not shown
in this example, any existing marker names are displayed.,

4,10.,11.1.0 Environment FParameters

Environment parameters affect the behavior of some edit commands;
particularly linsert, Ml{argin, F(ind, and R(eplace (see the sec-
tions describing these commands for more details), Parameter
values are changed in the environment by typing the parameter’'s
displayed command character,

The parameters are one of three types: boolean, character, or
integer,. Boolean parameters are changed merely by typing "T"/"t"
or “F"/"#", while character parameters are changed by typing =a
character; neither of these types require a termination character
to complete the prompt, Integer parameters accept a string of
digits and are terminated by typing <{space> or <return>.,

Aluto indent - affects I(nsert, It is a boolean parameter with
default value "T",

Flilling - affects I(nsert and M(argin., It is a boolean parameter
with default value "F".

L(eft margin

Rlight margin

P(ara margin - affect I(nsert, M(argin, and A{djust, These are
integer parametersy values should be between 0 and 84,
Default values: L(eft - 0, R(ight - 79, P(ara - 0.

Page 105

- PD@-3 System Reference Manual

Clommand ch - affects I(nsert and M(argin, It is a <character
parameter with default value ".". See section 4,10.7.0 for
more information.,

T(oken def - affects F(ind and R(eplace. It is a boolean parameter

with default value “"True". See section 4.9.2 for more
information.

Page 106

Editor

4.10.12 U(erify

Redisplays the text window and repositions the window in order to
center the cursor on the screen.

NOTE - This command is especially useful in rare situations where
the editor is not displaying the cursor in the position

it thinks
it is injy V(erify usually Knocks it back to its senses.

Page 107

PD@-3 System Reference Manual

4.,10.13 eX(change

Prompt:
eXchange: Text {<{bs> a char} [{esc)> escapes; <etx> accepts]

Replaces characters in the text file with characters typed in,
starting from the current cursor position,

Exchanged text may be backspaced; the original text reappears.,
Typing <esc?> aborts eX{change with no changes made to the original
text, while typing <etx)> accepts the changes made to the file., The
cursor is left at the end of the exchanged text.

NOTE - eX(change does not allow typing past the end of the line or
typing a <return’, It is not affected by direction.

Example of using eX{(change:

This is the original text (the cursor position is underlined):

- - - - - - - - - - - - - - - - - -

Boy, I ,just love this rutabaga pie!l!

After typing “"xdocumentation<etx>", the sentence now appears as:

Boys, 1 just love this documentatian!

- - - - - - - - - - - - - - - - -

Page 108

- Editor

Deletes all text between the start of the previously Fl(ound,
R(eplaced or I(nserted text (Known as the "equals marKer" - see
section 4.7 for details) and the current position of the cursor.

NOTE - Z(ap is designed to be used immediately after a F(ind,

R(eplace, or I(nserty it should not be used in any other situa-
tions., '

If more than 80 characters are to be deleted, a prompt is posted to
verify the operation., The results of a Z(ap are normally saved in
the copy buffer for possible later use; however, if a Z(ap deletes

more text than can fit in the buffer, the user is notified with a
prompt and asked to verify the command.

Page 109

PDQ-3 System Reference Manual

4,11 Editor FProblems

This section describes some problems that arise from regular use of
the editor,

4,11.0 Buffer Overflow

When a text file is too large to fit in available memory, the
editor displays the message "Buffer overflow"” while reading in the

file, and then proceeds to operate in its normal fashion., Unfortu-
nately, the text file in memory is a truncated version of the text
file;y all text at the end of the file that would not fit into the

editor buffer is not present,

This is a serious problem if a large-file editor is not available

to split the text file into smaller files; the regular editor is
helpless in this situation.,

Uriless text files are originally created either with a large-file
editor or on a system with more memory, the editor normally cannot
produce a text file that is too large to edit in a later edit
session., See the following sections for details.

4.11.1 Writing Out the File

At the end of an edit session, while the editor writes the modified
text file from its buffer to a disk file, the message “Error in
writing out the file - type {(space> to continue” sometimes appears;
typing <space’> returns the user to the editor with no updating to
disk performed., This message can arise from many different error
conditions:, The most common are:

a) The output file name was invalid.

b) There is insufficient space on the specified disk volume to
hold the output file,

c) The text file has grown too large for the editor to handle.

Though they generate identica)l warning messages, these problems are
Qquite distimnct and must be handied differently, The following
sections describe some handy solutions, along with pitfalls arising
from user actions contrary to those dictated by the solutions,

4.11.1.0 Invalid File HNames

Once identified, this problem is easy to solve. The editor
attempts to open a disk file (for the output file) with the file
name specified by the user, The file system responds with an 1/0
error that is mapped into the editor’'s standard error message. The
typical problem is either an incorrect volume rname or a file name
that is too longy once this is confirmed by inspection of the file
name, it is sufficient to Qfuit W(rite from the editor with a

Page 110

Editor
correct file name.

4.11.1.1 Insufficient Space on Volume

This problem is trivial if multiple disk volumes <can be placed
online simultaneously; if the specified disk volume lacks the
necessary disk space, it is sufficient to Q(uit Wirite the text
file to an online volume which can spare the disk space,

The problem can be serious (see the warning below) if the
possiblity exists of unmounting the disk volume <containing the
editor’'s code file in order to mount a volume having the disk space
needed for the output file, Systems having only one drive are an
obvious example, but the problem is more subtle on multiple-drive
systems if the editor’'s resident volume is unknown.

WARNING - If it becomes necessary to unmount the editor’'s resident
volume, a specific sequence of actions is required - the price of
noncorformance with this sequence is the loss of all work done

during the edit session via a system crash, Here is the required
command sequence: The error message has appeared, and the space
bar is typed to return the user to the editor. The user must type
@(uit W(rite BEFORE removing the editor’'s disk volume. At this
point, the editor is waiting for the name of the output filej it is
now safe to replace the editor’s volume with another volume,
specify the output file name using the new volume’'s name, and type
{return> to start a successful disk write.

4.11.1.2 File Too Large

Text files become too large during an edit session by an overabun-
dance of insert and copy operations. The editor has three methods
of rnotifying the user of its buffer status: the used and unused

space listed in the environment, rather devious prompting behavior
during an I(nsert, and the output file message described in
section 4,11.1. These are described in the following paragraphs.

It is wise to periodically examine the number of bytes left in the
edit buffer (displayed in the environment), When a text file gets
down to about one thousand (1000) unused bytes, the user should
split the text file into two smaller files before adding more text.

When the editor gets below a thousand unused bytes, it begins to
have some trouble managing the text file. In the I(nsert command,
the prompt “Please finish up the insertion - type <{space> to
continue"” starts appearing when the first character is typed; the
underlying problem can be confirmed by checkKing the number of
unused bytes in the environment, Once confirmed, it is high time
to split the text file.

I+ the warnings described in the past two paragraphs go unheeded,
the editor does not complain until the file is written to disKj
then, “Error in writing out the file" appears. At this point, the
user must delete enough of the text file in memory to enable the

Page 111

PDQ-3 System Reference Manual

remainder to be written to disk.

Page 112

Compiiler
V. THE COMFPILER

This chapter describes compiler operation from the system user s
point of view, Compiler usage is described in section 5.1,
System-level problems encountered during compilation are described
in section 5.2, :

The UCSD Pascal language implementation is described in the
Programmer ‘s Manual.

5.0 Introduction

The compiler is a one-pass recursive descent compiler for the UCSD
Pascal language. It is based on the P2 compiler developed at ETH
Zurich,

The compiler reads a text file containing a Pascal program, and
produces a code file {(containing P-code) and an optional text file
(containing a program listing), The ccde file is executable if the
program does not reference separately compiled library routinesy
otherwise, the code file (containing a mixture of P-code and iinker
information) must be linked before it may be executed, Library
routines and 1inking are described in chapter 6, P-code and linkKer
information are described in the Architecture Guide, Program
listings are described in the Programmer ‘s Marnual.

The following sections contain passing references to compiler
options; because these options are set by directives embedded in
Pascal programs rather than by compiler prompts, they are described
in the Programmer’'s Manual.

Page 113

PDQ-2 System Reference Marnual

5.1 Using the Combiler

The compiler is invoked from the system prompt by typing Clompile.

Typing R(un invokKes the compiler 1if the work code file doesn’'t
exist.,

5¢1.0 Setting Up Input and Output Files

If a work file exists, the compiler uses it as the input file, and
names the output file "*SYSTEM.WRK.CODE(*1"; otherwise, the follow-
ing prompt appears:

Compile what text?

The specified input file name should rot contain the suffix
"+WTEXT"; it 1is automatically appended by the compiler unless the
file name ends with a period (which is stripped off).

The next prompt asks for the output file name:
To what codefile?

Typing <return? causes the output file to become the work code
file, Typing "<esc: “return>" aborts the Clompile command, A "$"
in the output file name is substituted with the input file title;

thus, compiling "STUFF" to "$1" names the output file "STUFF1,
CODE".

If an output file name is specified, it should not have the suffix
"+CODE"; it 1s automatically appended by the compiler unless the
file name ends with a period (which 1is stripped off), Length
specifiers are sometimes necessary inm the output file name - see
section 5.2 for details.,

Page 114

Compiler

S5.1.1 Console Display

During compilation, a running account of the compiler’s progress is
written to the consolej however, this can be inhibited by a couple
of methods: the "quiet” compile option c¢an be asserted, or a
program listing may be directed to the console by the "list"
compile option, The former leaves the screen blank during compila-

tion, while the latter uses the screen to display the program
listing.,

NOTE - On CRT terminals, suppressing the console display speeds up
the compiler approximately thirteen percent.

Example of a console display:

PASCAL Compiler [III.HO]

-=> SYSTEM,WRK.TEXT

< L0

LAINIT €47101

< LX) R

GETFILE (46921

< =) R R R

WRITEIT (46741

< Flr e v e

NEWLINE [4634]

< L

<134>'0.00'0.0..'...

{184>'0'0.000

- COPYIT (46161

) (192}....00..00"..
SEND {46271

< 205>000000

-
-
-
-

I I T S I I I I O T S I S I I I I I T A S S S I B R

-
-
-
-

[2 2N K N N R I I O T T I DN DN K I INE DN K N RO N B 2 N)

211 tines, 6 secs, 2110 lines/min
Smallest available space = 4616 words

The compiler’'s release version is delimited by square bhrackets at
the start of the display. The name of each routine in the program
is displayed; the adjacent number delimited by square bracKets
indicates the current amount of memory available (# of words).
Numbers delimited by angle brackets indicate the current line
number in the source program, Each dot represents one source line
compiled, The file name following the symbol "-->" indicates a new
source file. A file name following the symbol "--" indicates the
current source file,

Page 115

PDQ-3 System Reference Manual

5.1.2 Syntax Error Handling

If the compiler detects a syntax error, the current source line is
printed on the screenjy the symbol causing the error is pointed at
by "<<4{<", Below this, the following prompt is displayed:

Line <ni, error <m:: <{spr(contirue), <escr(terminate), E(dit

‘e where <(n>x is the current source lirne, and <m> is the error
rnumber .,

Typing <space: skips the erroneous symbol and resumes compilation,
Typing <esc* aborts the compiler and returns control to the system

prompt. Typing "E" automatically invokes the editor, If the
current input file is not the work file, the editor first prompts
for the name of the current input file., Once the file 1is

specified, the editor reads 1t in, positions the cursor over the
error, and prints the error number or message.

A list of syntax error numbers and their corresponding error
messages is provided in Appendix D.

NOTE - If the wrong input file is given to the editor, the editor
reads in the file and positions the cursor where the error would be
if the correct file were read in {(see section 5.2.1).,

Whern the "list" compile option is asserted, syntax error messages
are also written to the listing file. However, if both the "list”
arnd “"quiet" compile options are asserted, error messages are only

written to the listing filej compilation continues without inter-
ruption, as no error message or prompt is displayed on the console.

NOTE - If syntax errors are detected in the program, the compiler
does not produce an output code file.

Page 116

Compiler

5.2 Compiler Problems

This section describes strictly system-related problems caused by
using the compiler, Problems concerning the correct compilation of
Pascal programs are described in the Programmer's Manual.

S5.2.0 X(ecuting the Compiler

The compiler can only be invoKed by typing Clompile. UnliikKe the
other system parts (which are X(ecutable as regular code files),
the compiler must remain as the system file "SYSTEM.COMPILER" in
order to set up its input and output files correctly, Attempts to
X{ecute the compiler’'s code file unfailingly result in the compiler
issuing syntax error 401 at the start of compilation,

NOTE - U(ser restart also does not work with the compiler,

5.2.1 Syntax Errors and the Editor

In some situations, the communication between compiler and editor
(described in section 3.1.2) seems muddled after syntax errorsj the
editor positions the cursor in a location far removed from the
actual site of the error.

This problem arises when a Pascal source program is spread across a
number of text files that are "included"” into the compiler’s input

file (see the Programmer’'s Manual for details). For reasons
discussed below, the editor reads in a file other than the current
input file, and places the cursor at the file position set by the
compiler - i.e., the right place in the wrong file.

This can occur by explicitly typing the wrong file name into the

editor’s prompt - it is the user’'s responsibility to keep track of
the current input file (the console display provides this informa-
tion). However, if the program bheing compiled resides in the work
file and includes other files, the editor always enters the work
file after a syntax error., This is incorrect if the error occurs
in an "include” filey worse, it cannot be prevented by user
actions., The only way around this problem is to avoid using the

work file when a program uses "include” files.,

Page 117

PDQ-3 System Reference Marnual

S5:.2.2 Insufficient Memory

Compiling large programs may cause the system to "stack overflow".
Programs containing a large number of identifiers use large amounts
of memory during compilation - sometimes more than the system can
provide., Here, in increasing order of severity, are some ways to
avoid running out of memory:

1) Make a four-block data file named “"SYSTEM,SWAPDISK" on the
system volume. This can save one thousand words of memory
during disk directory accesses; directories are accessed while
opening "include” files for compilation,

2) Assert the ‘“swapping” compile option. This can save four
thousand words of memory, but the compile speed 1is cut in
half,

3) Reorganize the program to minimize memory usage,. Minimize the
use of global variables and/or divide the program into

separately compiled urnits (see the Frogrammer’ s Manual for
details).,

4) Buy more memory!

S5.2.3 Insufficient Space on VYolume

When the compiler is directed to write a program listing to a disk
file, the output code file competes for disk space with the program

listing file - adversely, in some circumstances, Here is a typical
scenario:

The program listing file and output code file are to be written to
the same disk volume, which has a single area of available disk
space. The output code file is opened first, with a default length
specifier of "#"; it reserves one half of the available disk space.
The listing file 1is operned next, entitling it to the rest of the
disk space, { Note - these defaults are assigned by the operating
system and compiler - not the file system).,

Unfortunately, program listing files are usually much larger than
their corresponding code filesy if the listing file needs any more
than half of the total available space to be completed, compilation
aberts because of a "no room on vol" error from the file system.
By adding an explicit length specifier to the file name entered at
the compiler’s output file prompt, the user can limit the amount of
disk space allocated for the code file, and thus maximize the
amount of disk space available for the listing file,

Page (18

Linker

VI. THE LINKER

The linker 1inks together separately compiled programs and library
routines, It produces an executable code file containing the host
program’s code and a copy of each library routine referenced by the
host program., Section 6.0 introduces the concept of separate
compilation; the description of library routines and library files
provided in this section is sufficient for using the linker.
Section 6.1 describes how to use the linker. Problems encountered
during regular use of the linker are described in section 6.2,

NOTE - The wutility programs Library and Libmap perform tasks
related to linkKing (see section 9.2 for details),

6.0 Separate Compilation

Separate compilation, also Known as ‘“external compilation” or
"modular programming"”, allows programs to be created from individ-
ually compiled parts, Here are some advantages arising from

separate compilation:

1) New parts can be written, compiled, and combined with existing
parts to create new programs. The new parts themselves might
later be used in other programsi thus, a growing catalog of
useful software parts becomes available for use in general
software development,

2) Large programs constructed from separéte parts are easily
modified; changes are isolated to individual parts, allowing
fast and reliable program maintenance. ‘

3) By breaking them into separately compiled parts, programs can
be developed that are larger than could be compiled in one
piece by the system.

Library routines are created in UCSD Pascal with the "unit”

construct, A unit is defined as a collection of routines and data
that 1s accessable to programs, Units are stored in librariesj at
the system level (as opposed to the program level), a unit is
addressed by the file name of the library containing it, Units are
described in section 6,0.,0, Libraries are described in section
600010

NOTE - This section provides only a system-level description of

units, The Programmer’'s Manual describes how to construct units
and use them in programs.

Page 119

PDQ-3 System Reference Manual

S5.,0.0 Units

A unit contains a group of related routines and data; part of the
group 1s exported for use by programs, while the rest remains
hidden inside the unit. Programs import all of a unit’'s exported
routines and data by wusing the unit, Units are stored 1in
libraries; within a library, they are addressed by unit name.

AH,0.,1 Libraries

A library is a non-executable form of code file containing between
one and sixteen units. Libraries are created by the compiler and
managed with the Library utility (section 9.2,0)3 they are ad-
dressed by their file rame, The file name “*STSTEM,LIEPARY"
denotes the system’'s default libraryj units residing in this file
do not require a library rname to be located by the system., Both

the compiler and linker reference library files when a program uses
units,

Page 120

Linker

6.1 Using the Linker

If the work file is being used for program development, the R(un
command automatically invoKes the linkKer if the compiled work file
requires linkKing. Moreover, rather than prompting for a library
file name, the linker automatically searches the file *SYSTEM,
LIBRPARY for the referenced unitsy if they are not present, the
linkKer abhorts with an error message. Therefore, the user must
manually 1inK his files in the following cases:

1) The program requiring linKing is not in the work file,
2) The units required for linking reside in library files other
than STSTEM. LIBRARY,
The 1linker is 1invoked manually by typing L(ink, The following
prompt appears:

Host file?

The host file 1is the <code file <containing a program which
references wunits residing in one or more library files. Typing

{return> or "#*<{return>" specifies the work file as the host;
otherwise, the linker appends the ",CODE" suffix to the file name
unless it ends with a pericd (which is stripped off). The Linker

then prompts for the library files containing the required units:

Lib file?

Up to eight library file names may be entered; the prompt reappears
until <return> is typed, Typing “"#<{return>" specifies the file
*SYSTEM,LIBRARY as one of the library files, The linker prints
"Opening <1lib file name:>" after successfully opening each library
file.

After the library files have been specified, the following prompt
appears:

Map name?

Typing <return> sKips the map file option; otherwise, a map file is
created with the specified file name., The ".TEXT" suffix is
automatically appended to the name unless it ends with a "."., The
map file lists linker information used to resolve the procedure and
data references between host and unit (see chapter 9 - Libmap for a
description of map files and the Architecture Guide for a descrip-
tion of linkKer information). ’

The linker then prompts for the output file name:
OQutput File?

Typing <return> writes the output file to the workK code file;
otherwise, the file is written to the specified file name.

Page 121

PDQ-3 System Reference Manual

NOTE - this prompt does not append a ".CODE" suffixj the user must
explicitly type this suffix to create an executable code file.

After the output file is specified, linKing commences. During
linKing, the names of the host and each used unit is printed.

LinkKing 1is aborted if any required units are missing or undefined;
the following message appears: "Unit <identifier?> undefined".

LH.2 Linker Problems

Unlike other file name prompts in the system, |inkKer prompts do not
recognize escape characters:, To abort the linkKer from one of its
file name prompts, type “"<{escaper<{return>”. The linker attempts to
open a file named “"<{escaper", fails, and issues this prompt: "type

{sp> (continue), <esc> (terminate)”, Typing <{escape?> then aborts
the linker.

Page 122

Command Interpreter
VII. COMMAND FILE INTERPRETER

The command file interpreter is used to automate system operation;
it reads a command program from a text file (Known as a “"command
file"), translates the program into a series of system commands and
input data, and queues the commands and data in the Keyboard
type-ahead buffer for eventual use by the system, Command inter-
preter operation and command file names are described 1in section
700 Command language syntax is described in section 7.1, Exam-
ples of command programs appear in section 7.2, The file "X.DEMO"

is a command file that presents an overview of the command
interpreter,

7.0 S{ubmitting Command Files

Typing S(ubmit from the system prompt automatfcally executes the
code file “X,CODE" residing on the system volumey this file
contains the command interpreter. The following prompt appears:

Filename?

The specified command Filé name must not contain the file suffix
“TEXT", '

The command interpreter also accepts "targets” as valid responses
to its file name prompt} targets specify a command file and the
label or 1line number within the command program where execution
should commerice. Targets are described in section 7.1.1,

Typing <return’ aborts the command interpreter and returns control
to the system prompt.,

7.0.1 Command File Execution

If the command interpreter discovers an error in a command program,
it halts without notifying the user of the problem; control is
returned to the system prompt., I[f a command program contains an

infinite loop, the command interpreter must be halted by rebooting
the system, '

When the execution of a command program finishes, its output is
queued in the kKeyboard type-ahead buffer (as if it had been typed
from the Keyboard), and the command interpreter terminates. Con-
trol is returned to the system prompt, but the type-ahead buffer
contains queued inputy the system then begins to read characters

out of the type-ahead buffer and process them as system commands
and data.

NOTE - the Keyboard type-ahead buffer contains a maximum of 64
characters.

WARNING - Command files are written with the assumption that the
various system parts behave in a predetermined fashionj i.e., that

Page 123

PDQ-3 System Reference Manual

the order of commands and data in the type-ahead buffer match the

order of the generated promptlines. If an unexpected system
condition causes an unplanned-for prompt to appear, the qgueued
commarnds and data may lose their synchronization with the system
prompts; c¢chaos then presides until the type-ahead buffer is
emptied. It is theoretically possible for the resulting series of
randomly generated commands to destroy the contents of online disk
volumes. The wuser can terminate out-of-control command files by
typing <ctri-X>; this clears the type-ahead buffer of all queued

characters.

7+.0.2 Reserved Command File Names

Two command file titles are reserved by the system for special
uses: "PROFILE" and "$EXEC", A command file nramed “PROFILE.TEXT"
is automatically S(ubmitted when the system is bootstrapped. A
command file named "$EXEC.TEXT" is automatically submitted when the -
S{ubmit command is invoked.

NOTE - Automatic execution of "$EXEC” may be subverted by typing
ahead a command file name after typing Slubmit, If the command
interpreter detects characters gueued in the type-ahead buffer, it
will use them to build a command file name rather than opening
"$EXEC" .

NOTE - "PROFILE" and "$EXEC" are expected to reside on the prefixed
volume. :

WARERNING - The file title "$EXEC" causes problems in the filer, as
it violates the restriction on using the "$" character in a file
rname. The best way to change a command file titie to/from "$EXEC"
is to edit the file and write it out with the desired file name,

7.1 Command Language

The command language descrihed in this section is named “"eXec”. An
eXec program is stored as a series of commands and labhels in a text
filey a single text line contains at most one eXec command or
label, Command lines start with a3 reserved command word; all other
lines are treated as comments., Commands are described 1n section
7+.1,0, Commands take either "targets” or "textlirnes” as arguments.
Targets are used as arguments by the flow-of-control commands; they
are described in section 7.1,1, Textlines contain text that is
either i1immediately written to the screen or queued in the type-
ahiead buffer; they are described in section 7.1.2,

When dealing with alphabetic characters, the command interpreter 1is

case-insensitive for commands and labels; however, case is pre-
served for screen 1/0.

Page 124

Command Interpreter

Blank characters are usually ignored by the command interpreter,
with the following exceptions:

Blanks are significant after these commands: READ, WRITE,
WRITELN, and T,

Blanks should not occur in targets,

7+1.0 Commands

Commarnds must appear as the first token on a text line. Commands
may be classified by their time of "execution”:

Immediate commands (READ, WRITE, CALL, etc.) cause the command
interpreter to execute the command upon processing the |ine,

Deferred commands (S5TK, 8, RUN) cause the command interpreter
to save characters for subsequent use by the system.

741.0.0 Immediate Commands

WRITE

Form: WRITE <{textline>

Writes <{textline> to the console (without writing <{return>).

WRITELN

Form: WRITELN <{textline>

Writes <{textline><return’> to the console,

IA
Form: T <textlineX
Synonymous with the WRITELN command, but allows a longer
“textline" argument because of its abbreviated form,

READ

Form: READ <{textline>

Writes <{textline’ to the consolej then, reads text from the
Keyboard until <{return> is typed. The text read is stored in
an interpreter variable named “"Answer”"; 1its contents are
accessable with the special character "?" (described in
section 7.1,2),

Page 125

PDQ-3 System Reference Manual

GOTO

Form: GOTO <target>

Command interpretation contirnues at <target’.

CALL

Form: CALL <target>

Command interpretation continues at <{target>, but returns to

the command following the CALL after a RUN command is
executed,

VERRBROSE

QUI

Form: VEREOQOSE

Verifies each command before executing ity the command is
written to the console, and the user may type either <return’;
to execute 1t or <escaper<return’; to abort the command
interpreter. VERBOSE is used to debug command programs.

ET
Form: QUIET

Disables the VERBQOSE command.

7+41.0.1 Deferred Commands

STE

RUN

Form: GSTK {textline:

Saves «<textline> on the command interpreter’'s internal stack.,

Form: S <target:

STKs a S{ubmit command for {target>.

Form: RUN

I+ CALL commands are extant, command interpretation continues
at the command following the last CALL; otherwise, RUN puts
all text saved on the command interpreter’'s internal stack

into the system’'s type-ahead bhuffer, and terminates the
command interpreter.

Page 126

ARSI LIIIE- S NAN Y ATlvEel Y E vl

7.1.1 Targets
Form: <target> t:= [<(filename>] [“/<label>" or "\<line#>"1

Targets are used as arguments to the GOTO and CALL commands; they
indicate the location in a command file where command interpreta-

tion is5 to continue., Targets denoting a specific location within a
command file contain either a zero-origin line number (e.g.,
“\004") or a label (e.g., "/beginloop”) which is the first token on
a line,

NOTE - Care must be takKen to ensure that labels have names distinct
from commanrd names. For instance, "shell” is not a valid labelj 1t
is interpreted as s<{target?, where <{target> = "hell"”,

Targets can specify locations in other command files with the
optional file name field; e.q., “"profile/subroutine”, File suffix-
es must not be used in the file name. If ontly the file name field

is specified, command interpretation continues at the first line in
the named command file,

NOTE - Targets may also be used in the command interpreter’'s

initial file prompt to specify the location in a command file where
interpretation 1s to commence.

7Z7:.1.2 Text Lines

Within "textline"” arguments, key commands are prefixed with the

escape character "1"; they are denoted as follows:
" {space’ r" {return?
" ! {single "1"} “b*" {bs>
. <up> “e" {escape’
A {down?> "d" ‘{delete>
BE <{left> R <tab>
e {right>

Two special characters definitions have special properties: "K" and
"?", An occurrence of "I?" in a textline is substituted with the
text read in by the last READ command.

WARNING - Occurrences of “i7?" are replaced with garbage if no READ
command is performed beforehand.

The special character "i1K" should only be used in textlines passed

as arguments to the STK command. All occurrences of "iK" are
replaced by special tokens as they are put in the type-ahead
buffer. Later, when the system encounters one of these tokens

while reading characters from the type-ahead buffer, it requests
direct Keyboard input until a <null?> is typed, and then resumes
reading from the type-ahead buffer. Thus, a series of queued
system commands and data can be punctuated with requests for input
directly from the Keyboard, allowing automated tasks to possess
interactive capabilities. (See the. example in section 7.2).,

Page 127

PDQR-3 System Reference Manual
7.2 Example eXec Programs

Example from command file "X,DEMO":

writeln line 0 executing
s /target
run

target

writeln target executing
writeln calling /t2

call /12

writeln /t2 returned
writeln going to /t3

goto /t3

t2

writeln /t2 running
run

t32

writeln /t3 gone to
writeln

read Enter Text :
writeln Tou Typed “i17"
writeln

writeln end of test
run

EXample of listing a disk directory:

- -

t
t Once S(ubmitted, this program runs forever...
t
.. loopstart
' read directory listing of what volume?
stk £ e 1?7 ir ¢ 1 1 Qq
s /loopstart
run

This command program repeatedly prompts for a volume name, invokes
the filer, lists the directory of the specified volume, and returns
to the system prompt, The three blanks are added in case the
directory listing is longer than the screenj otherwise, the blanKks
are consumed by the filer’'s promptline. Note that the title
message is printed only once; subsequent invocations of the command
file gjump to the label "loopstart”, Note also that the command
interpreter automatically expands the specified target to include
the name of the enclosing command file,

Page 128

Command Interpreter

Another example of listing a disk directory:

stk £ e K ir 1 1V | g
run

- - - - - - - -~ - - - - - - - - - - - - - - - - -

In this example, the volume name is not specified until the actual
filer prompt is displayedy at this point, the system requests
direct input from the KkKeyboard (bypassing the queued <return:,
three blanks, and "q"). The volume name must be terminated by
typing <rnull>, The listing is then made and control is returned to
the system prompt,

Page 129

PDQ-3 System Reference Manual

Page 130

System Monitor
"VIITI. SYSTEM MONITOR

The system monitor is named HDT, short for “"Hexadecimal Debugging
Toel", HDT is capable of: examining and modifying the contents of
memory words and 1/0 device registers, starting/suspending/resuming
system operation, and recovering from power failures.,

HDT does nrot displiay a promptline; instead, the prompt character
("#") is printed on the console. HDT commands are described in
section 8.1, Examples of using HDT appear in section 8.2.

NOTE - HDT 1is implemented as a Pascal program resident in PROMs.
Its code occupies memory addresses F400-F7FF hex. Its data
occupies memory in 100-200 hex and 22-25 hex; using HDT to modify
the contents of these areas disrupts monitor operation and thus 1is
not recommended. The Hardware Referernce Manual describes the
memory layout of the PDQ@-3 system, including memory addresses
reserved for 1/0 devices and other system functions. '

8.0 Entering The Monitor
HDT is activated in these situations:
1) Pressing thebﬁESET button on the front panel.
HDT prompts for a command, Typing "R" causes HDT to boot the
system from the system volume. The PDQ-3 can be configured to
automatically boot the system after RESET is pressed - see the
Hardware User's Manual for details.
2) System power-up.,
HDT checks for a power fail restart in progress. If a restart
is in progress (and battery backup exists for the system
memory), HDT restarts the system at the point where a power

failure interrupted 1it; otherwise, HDT acts as if the RESET
button was pressed,

2) Typing the monitor Key ({control-P’>) during system operation.
4) Calling the predefined procedutre HALT in a Pascal program,
HDT is invoked as a high priority process, suspending normal
system operation; HDT then prompts for a command., During monitor

operation, all interrupts are latched and any outstanding 1I1/0
operations continue. System operation is resumed by typing "P",

Page 131

PDQ-3 System Reference Manual

8.1 Monitor Commands

HDT commands examine and modify memory contents, boot the system

from the system volume, and resume execution of a currently
suspended system oOr user program, All numbers used in HDT are
hexadecimal (hex digits: 0..9, A..F); all memory addresses are
word addresses; all data quantities are 16-bit words., Hex numbers

are entered as a string of hex digitsy if a number contains more
than four digits, only the last four are significant.

HDT commands are all single Key commands; lower-case alphabetic
characters are mapped into their upper-case equivalents., Commands
and numbers are echoed on the console as they are typed., Typing an

invalid command or number causes HDT to print "?" and redisplay the
prompt character.

The commands are:

R
Form: R
Reboot the system from the system volume. InvoKing this
command when the system volume is not mounted causes HDT to
continually retry until the volume is mounted.

P
Form: P
Resume execution of a suspended user or system program.,
Invoking this command if a program is not currently suspended
halts the monitor.,

/

Form: [<number>1/

Set current address.
Display contents of current address.

I+ <number> 1is typed, it becomes the current address., HDT
then displays the contents of the current address.

Page 132

System Monitor

{return:
Form: [<number>l<{return’

Set contents of current address.
Redisplay prompt,

1f {number> is typed, it is stored into the word at the
curtrent address, HDT thern displays the prompt character. No

" warnings are generated for invalid memory writes; e.g.,
storage into ROM.

<line feed>
Form: [<rniumber>1<lire feed’

Set contents of current address.
Increment current address and display contents.

If <number’> 1is typed, it 1is stored into the word at the

current address, HDT thernn increments the current address, and
displays the contents of the current address,

Form: (<rumber>1"

Set contents of current address.
Decrement current address and display contents,

If a number 1is typed, it is stored 1nto the word at the

current address. HDT then decrements the current address, and
displays the contents of the current address,

Form: [<{rumber:1@
Set current address indirect and display contents,

If the number is typed, it is stored into word at the current

address. HDT then sets the current address to the contents of
the current address, and displays the conternts of the current
address.

Page 133

PDQ-3 System Reference Manual

8.2 HDT Examples

In the following examples,

the user’'s responses are underlined.

Starting the system with the system disk mounted:

#R

Zeroing memory locations 2000-2002 hex:

Memory beforehand:

i et s e etomen et i ot

#
Zeroing memory:

42
2002/ABCD 0~
2001/A1A1 O~

#
Memory afterwards:

#/0000 <line feed:
2001/0000 <line feed>
2002/0000 fcrs

#

Chaining through memory pointers starting at 1000 hex:

o e e e

234E/3EFC @
3EFC/0000 10008

1000/234E (return:
#

Page 134

Utilities
IX. UTILITIES

The programs described in this chapter perform useful system
functions; they are Krniown as "utility programs”, Unlike the system
parts described in the previous chapters, utility programs are
invoKed as user programs with the X(ecute command.

9.0 Disk Management

This section describes the utility programs used to manage disk
mediay Booter, Backup, Mapper, Format, and Bad.blocks,

Booter copies the bootstrap software from one disk to another.
Track 0 and disk blocks 0 and | can contairn bootstrap code required
for bootable system disks, Booter is described in section 9.0.0,

Backup copies entire disk images from one disk to another. Its
most common use 1is to makKe backup copies of disks containing
valuabhle data, Backup is described in section 9.0.1,

Mapper converts entire disk volumes to different disKk formats, thus
allowing floppy disks to be read by UCSD Pascal systems running on
different machines., Mapper is described in section 9.0.2.

Format writes formatting information orn blank diskKs so they may be
used on the PD@-3 system. Format is described in section 9.0.3.

Bad.blocks performs high-speed scanning of disks for bad blocksy it
is described in section 9.,0.4. :

Page 133

PD@-3 System Reference Manual

7.0.0 Bootstrap Copier

The utility program Booter (BOOTER.CODE on the utilities disk)
copies bootstrap information (i.e., all of track 0 plus blocks 0
and 1) from a source volume to a destination volume.

7.0.0.0 Using Eooter

X{ecute BOOTER. The following prompt appears:

Copy Boot From #4: to #5: 7
‘cr> to Copy, <esc> {cr> Exits

The source disk must occupy unit 4, and the destination disk must
occupy unit S5, Typing <esc>{return> exits Booterj typing almost
any other character(s)v(including {return:) starts the copy.
Booter always generates one last message before terminating:

Insert System Diskette in #4: and Hit <cr’>, Please

Obey the prompt and type <{return>; Booter ther terminates.

?2.0.1 Disk Copying

The utility program Backup (BACKUP.CODE on the utilities disk)
copies the entire contents of a disk volume (called the "master" or
"source” volume) onto another disk (callied the "backup” or “"destin-
ation” volume), Although there are other ways to copy disks (e.g.,

the T(ransfer command in the filer), Backup has the following
features:

1) Backup checks that the backup volume is an exact copy of the
source volume by repeatedly reading the finished copy and
comparing its contents with those of the source volume.

2) Backup copies any bootstrap information contained on the
source volume,

Y.0.1.0 Using BRBackKup
X(ecute BACKUP. The following prompt appears:

Master in #4: BacKup in #5: 7

Typing "Y" designates unit 4 as the master volume and unit 5 as the
backup volume, Typing <esc> generates the exit prompt described
below. Typing "N" switches the unit number assignment:

Master in #5: Backup in #4: 7

Typing "T" now designates unit S as the master volume and unit 4 as
the backup volume (<esc> is same as above).

Page 136

Utilities

NOTE - The following prompts assume the master is in unit 53
specifying the other case generates similar prompts, but with
interchanged unit numbers,

A verification message then appears:

Master on #35: Volume <{source volume name}

If the designated backup disk possesses a volume name other tharn
"BACKUP", the following prompt appears:

Destroy #4: Volume <destination volume name> 7

Typing "N" exits the BacKup programj typing "Y' prints the
following message:

Eackup on #4: Volume <destination volume riame’
Master has <# of blocks on source volume’ blocks

Backup then proceeds to copy the source volume; it writes a series
of dots to the screen to indicate its progress, When copying is
successfully completed, this prompt may appear (it is omitted if
the backKup volume’'s initial volume name is already "BACKUP") :

May I rername <{source volume name> to BACKUP: 7
This message is potentially confusing, as the master and backup
volumes have the same volume nmname at this point. Typing "T°
changes the backup volume’'s name to "BACKUP" (the master volume
name is not changed),

The exit prompt then appears:

E{xit to Boot DisKette in #4 7

Typing “"E", "7T", or <esc’ returns the user to the system prompt; as
implied by the prompt, the system disk is assumed to be mounted,
Typing "N (or any of the remaining characters) redisplays the

original Backup prompt:
Master in #4: Backup in #5: 7

~eee allowing a new set of disks to be copied.

9.0.2 DPiskK Format Conversiom

The utility program Mapper (MAPPER.CODE on the utilities disk)
changes floppy disk formats;y this allows disk volumes to be
transported between systems with different hardware configurations,
Mapper operates on disks having the following standard formats:
Digital Equipment (DEC), Western Digital, and PDQ-3, The contents
of a source disk are written ("mapped”) onto a destination disk in
the format requested by the user; the source disk is not affected,

Page 137

PDQ-3 System Reference Manua!

NOTE - Disks having Western Digital or DEC format can be read by
the PDQ-3 without being remapped. See section 1.3,3.4 for details.,
?.0.2.0 Using HMHMapper
X(ecute MAPPER. The following prompt appears:

Source D(ec W{(d Pl(dg :
The choices available are: "D", "W", "P", and <escape>, The ¢tirst
three specify the corresponding diskK format; <escape’ generates
Mapper ‘s exit prompt (described below).
NOTE - Mapper cannot verify the source disk’'s formaty incorrectly
specifying the source disk’'s format yields a scrambled destination
disk, Mapper will not map a disk to the same format (i.e.4, a
straight copy); use the Backup utility to do this,
The next prompt is treated simiiarly:

Target D(ec W(d P(dqg :

Once the source and destination formats are specified, the follow-
ing prompt appears:

Map #4:[<source format> 1 ---> #5:[<{target format> 1 OK 7
The chicices available are: "71", "NT, and <escape>’, Typing "7°
starts the mapping process; typing <escape> terminates Mapper;

typing "N gererates the following prompt, which 15 treated
similarly:

Map #5:[<{source format> 1 ---> #4:[<target format> 1 OK 7

While Mapper maps, information detailing its progress is displayed
‘in the upper right-hand corner of the screen. Typing a <blank>
durirng mapping causes Mapper to skip the current track, and
continue mapping on the rnext track, Typing <escape’ interrupts
mapping and generates the exit prompt, : :

NOTE - Onn some systems, error messages appear while mapping a
DEC-formatted disk inmto another formati certain incompatibilities
can arise while mapping track 0 of a DEC-format disk. If the error
messages persist, skip track 0 by typing a <blank>, Mapping should
resume without problems on Track 1.

When mapping is completed, the exit prompt appears:

.

Mapping completed
R{epeat or <cr>

Typing "R" restarts Mapper; typing <return> exits Mapper. Be sure
to replace the system disk in unit 4 before typing <{return>,

Page 138

Utilities

?.0.3 Disk Formatting
The utility program Format (FORMAT.CODE on the utilities disk)

formats floppy disks in the PDQ-3 disk format. Disk formatting is
used for: ' :

1) Preparing new disks (8" soft-sectored floppys only - we
recommend Dysan disks).

2) Recycling old disks with different formats.

3) Fixing disks which have been rendered unreadable hy unfortur-
ate circumstances.,

WARNING - When a disk or an area of a disk 1is reformatted, its
original data is irretrievably lost.
?.0.3,0 Using Format
X(ecute FORMAT. The following prompt appears:
Enter unit number containing disk to be formatted [0,4,5]

Typing "0" exits Format; typing any of the other numhers geherates
the following prompt:

Format single or double density? (S or D)

Typing "S" specifies single density formatting; typing "D" speci-
fies double density.

The next prompt is:
Format single or double sided? (S or D)

"Typing "8" specifies single-sided disks; typing "D" specifies
double-sided.

NOTE - Before choosing double density, be sure that vyour floppy
disks can ftrandle double density formatting., Before choosing
double-sided, be sure that your disks AND disk drives support 1itj
standard PDA-3 disk drives do not support double-sided disks.

The next prompt is:

Skewing? (7T or N)

Typing "Y" directs Format to skew the placement of disk sectors in
order to improve disk performance. Typing "N" suppresses sector
skewing, See the Architecture Cuide for more information on disk

sector skewing.

Page 139

PD@-3 System Reference Manual

The next prompt is:
Format all tracks? (Y or N)

Typing "T" initiates formatting of the entire disky typing "N”
generates the following prompt:

Enter starting track number

The starting track riumber is typed in, followed by a <(return>; The
final track number is handled similarly:

Enter final track number

Once the track range 1is specified, formatting commences., The
screen displays the following messages detailing Format’'s progress:

Formatting <starting track #> - <track # being processed>
Verifying <starting track #> - <{track # being processed>
7,0.3.1 Reformatting Bad ERlocks

This section describes how to reformat bad blocks that carnot be

fized with the X{amine command in the filer. It is necessary to
determine which tracks the bad blocks occupy; only these tracks
need reformatting., Here are the formulae for determining the track

and sectors used by an arbitrary block:

(<{hblock #> * 4 DIV 26) + 1 = <{track #:
(<block #> * 4 MOD 26) + | = {starting sector #>
There are four sectors per block, If the starting sector is 295,

the next trackK should be reformatted also, for it contains the rest
of the block.

NOTE - The above formulae and information are for single density
disks, For double density, "4" => "2", For double-sided, "26" =>
|.52" R .

NOTE - reformatting entire tracks to fix a bad block destroys the
contents of adjacent hlocks.,

7+0.4 Fast Bad Blocks Scanming

The utility program Bad.blocks (BAD.BLOCKS.CODE on the utilities

disk) checks a disk file or disk volume for damaged blocks, Bad
blocks scanning can also be performed with the filer’'s B(ad blocks
commandsy however, Bad.blocks 1is much faster, Bad blocks are

repaired with the filer's X(amine command or the Format utility
(section 9.0,3),

Page 140

Utilities

F.0.4.0 Using Bad.blocks
X(ecute BAD,BLOCKS. The following prompt appears:

File to scan?

Typing <return> exits Bad.blocksy typing a volume id (e.qg. "#3:"
or "MTDISK:") scans an entire disk volume; typing a8 file name scans
a single file on a disk volume, The next prompt is:

Scart all <# blocks in file> blocks [y/n]

Typing "Y" scans all blocks occupied by the specified fiie; typing
"N" generates this prompt:

Start scanning at block:

Type the number, followed by a <return:, The starting block rumber
is relative to the start of the specified filey e.g.y a starting
block of 0 initiates bad blocKs scanning on the first block of the
file, even if the file itself starts at block 45 on the disk
volume,

The following prompt is defined similarly:
Stop scanning after block:

Once the block range 1is specified, scanning begins; Bad.blocks
indicates its progress by witing a series of message having the
following form:

Scanning blocks <{blocK number:> to <block number:>
Whern scanning a single disk file, the block numbers indicated are
relative to the start of the filejy when scanning a disk volume, the
block numbers dispiayed correspond to the actual disk block
numbers. Bad.blocks checks 40 blocks at a time.
If a bad block 1s detected, the following message appears:

BlocK <block number> is bad

Whern Bad.blocks is finished, it indicates the total rumber of bad
blocks detected:

{number> bad blocks
Before terminating, Bad.blocks writes the following prompt:
Insert system disk and type <CR>

Typing <return’ returns control to the system prompt.

Page 141

PDQ-3 System Reference Manual

Z+1 Duplicate Directory PManagement

This section describes two utilities that manage duplicate direc-
tories: Markdupdir and Copydupdir.

Markdupdir (MARKDUPDIR.CODE on the utilities disk) modifies a disk
volume currently maintaining only a primary directory so that it
maintains a duplicate directory, This is usually done with the
filer command Zferoj; MarKdupdir is used to add a duplicate

directory to an existing disk volume without destroying its
contents., :

Copydupdir (COPYDUPDIR.CODE on the wutilities disk) copies the
duplicate directory into the location of the primary disk direc-
tory;s it is used after unfortunate circumstances destroy the main
directory.,

Primary and duplicate disk directories are described in section
2,1,3,9 and the Architecture Guide.

?.1.0 Using FMarkdupdir

X{ecute MARKDUPDIR, It first prompts for the disk drive (4 or 35)
containing the volume to be marked.

If the disk volume already has a duplicate directory, the user |is
notified; typing <return> then exits MarKdupdir. Otherwise, blocks
6-9 on the disk volume are checked to see if they are currently
occupied by a disk filey if so, the user is asked to verify the
mark, as the disk file would be overwritten by a duplicate
directory. Typing "T" proceeds with the marKing; typing any other
character exits Markdupdir.

The status of blocks 6-9 can be checked with the filer command
E(xtended 1list, I1f the first disk file in the directory starts at
block &, or if it starts at block 10 and is preceded by a
four-block unused area, thern the disk has not been marked,
However, if the first file starts at block 10 and there are no
unused blocks at the beginning, the disk has been marked,

Examples of directory listings of unmarked volumes:

SYSTEM. PASCAL 31 10-Jan-79 6 Codefile
{unused> 4 10-Jan-79 6 Codefile
STYSTEM, PASCAL 31 10-Jan-79 10 Codefile

Example of a directory listing of a markKed volume:

STYSTEM. PASCAL 31 10-Jdan-79 10 Codefile

Page 142

Utilities

?.1.1 Using Copydupdir

X(ecute COPYDUPDIR, It first prompts for the disk drive (4 or 95)
in which the copy is to take place.

The user is notified if the disk is not currently maintaining a
duplicate directory. If a duplicate directory is found, a prompt
is issued to verify thatr the current primary directory is to be
destroyed. Typing "Y" copies the directoryy typing any other
character exits Copydupdir.,

Page 143

PDQR-3 System Reference Manual

¥Y.2 Library Management

Libraries are managed with the utility programs Library and Libmap
(LIBRARY,CODE and LIBMAFP.CODE on the utilities disk).

Library transfers units between library files. It is used to
¢reate and maintain the system library and user-defined libraries.
Library is described in section 9.2.0.

Libmap lists library file information in symbolic formj; among other
things, it displays the units residing in a library, and the names

of exportable routines and data in each unit, Libmap is described
in section 9.2.1.

See chapter 6 for a system-level description of units and libraries
and the Programmer’s Marnual for a program-level description of
units and libraries.

P+2.0 Using Library

X(ecute LIBRARY. The following prompt appears:

Qutput Code File -7

The file name entered becomes the rname of the library file produced
by Library.

Typing only a {return® exits Library.

NOTE - Library does nrot append a suffix to the specified name;
libraries function equally well as code files or data files,

The following prompt thern appears:

Link Code File ->»

Enter the file name of the library to be modified. Library then
lists the nrname (and code size in words) of each unit in the
library, Note that sixteen slots are showni; a library file

contains a maximum Of sixteen units.

NOTE - When adding units to an existing library (such as SYSTEM.
LIBRART), output and 1inkK file names can be identical} otherwise,
it becomes necessary later on to remove the old library file and
change the output file’'s name back to the original library name.

Page 144

Utilities

After the library’'s contents are displayed, this prompt appears:
Segment # to linkK and <{space’, N(ew file, Q(uit, A(bort

Typing a displayed unit’s slot number followed by <return® indi-
cates that the unit is to be copied into the output file. Library
then requests an output file slot for the unit:

Seg to link to?

After typing a slot riumber and <return>, library moves the unit
into the output .filey the other slots in the output file also
appear, The remaining units in the link file are copied across in
a similar manner. Library displays the current number of blocks in
the output file at the bottom of the library display. S

NOTE - Whern expanding an existing library, be sure to preserve its

units by copying them into the output file before adding the new
units., ;

N(ew file redisplays this prompt:
Link Code File -

Eriter the name of a file containing new unitsy as before, the units
in the file are displayed, and can be copied into the output file,

NOTE - The new file is wusually a cocde file produced by the
compiler. It could he used as a library filey ‘“"merging small
libraries with a larger library” is a more precise description of
Library’'s task than "adding units to a library”.

@(uit displays this prompt:

Notice?
Up to eighty characters of text may be typed before typing
{return:, The text is moved into the segment dictionary of the
putput file. This is used for embedding copyright notices in the
library file,

A(bort exits Library; the output file is not saved. Al(bort works
everywhere except after typing Q{uit,

NOTE - Library can be used to view and rearrange code segments

within an executable <code file. See the Architecture Guide for
details.

Page 145

PDQ-3 System Reference Manual

?.2.1 Using Libmap
X(ecute LIBMAP., The following prompt appears:
enter library name:

Typing <return’> exits Libmap; typing the file name of a library
generates this prompt:

list linker info table (Y/N)?
Typing “T" directs Libmap to pﬁint.a textual representation of the
linker information embedded in each unit; it also generates the
next prompt: ‘

list referenced items (Y/N)?

Typing "Y' directs Libmap to print a symbolic list of all external
references contained in the linker information.

The following prompt appears regardless of the choices made for
lirnker information:

map output file name:

Typing “#1:" or "console:“ directs . the listing to the console;
otherwise, Libmap automatically appends ".TEXT" to the output file
name. '

Whern the map file is completed, this prompt reappears:
enter library rname:

NOTE - Libmap can also be used to list the linkKer information and
code segments of any code file,

Page 146

Utilities

Example of a library unit and its map listing:
Here is a UCSD Pascal unit:

unit mapexample; interface
uses extraref;

var i, jHyK: integer;
procedure mapl;
implementation

var myhthoolean;
procedure private;
begin

writeln 3

m = truej

n 1= falsey

end;

procedure mapl;

begin
i 1= 13
J o= 23
kK = 3953
end;
end;

Here is its map listing:

Segmenrit # 1: MAPEXAMP library unit
uses extraref;
var i, j»K: integer;

procedure mapl;

MAPEXAMP unit byte reference (0 times)
UNITVAR public big reference (0 times)
N private big reference (once)
EXTRAREF unit byte reference (0 times)
public big reference (once)
public big reference (once)
public big reference (once)
private bhig reference (once)

B~

Page 147

PD@-3 System Reference Manual

The segment’s name, number, and type are displayed on the first

l1ne, followed by a list of the unit’'s exported routine and data
rnames.

The linker information shows all external variable and wunit
references made by the unit, An external object’'s name and link

type are always printed. External references display their refer-
ence format and number of references. External definitions (usu-
ally seen in host programs) display their assigned data offset.

Linker information is described in the Architecture GCuide,

Page 148

Utilities

?.3 Terminal Configuration

This section describes the system parts used to create and maintain
a standard interface between system software and the terminal,

These parts enable the system to use many different terminals with
a minimum of effort,

Two system parts define the system’'s current terminal interface:
GOTOXT and SYSTEM,MISCINFO,

The operating system procedure GOTOXY implements random (i.e.,, X-Y
coordinate) addressing of the cursor pasition.,

The data file named “SYSTEM.MISCINFO" resides on the system volume.
It contains three Kinds of information: miscellaneous system data,

terminal screen control characters, and Key definitions for the
special commands., Its contents are read into a system data
structure named STSCOM after booting or I(nitializing the system
(see the Architecture Guide for details on S7TSCOM), The system

uses the values in 8YSCOM to perform various screen control
operations.,

Three system parts are used to reconfigure the system’'s terminal
iriterface: Config, Setup, and Binder.

The utility program Config (CONFIG on the system disk) reconfigures
the system for the following terminals:

1) DEC VT-52 compatible terminals (such as the Zenith Z19),
2) Soroc 1Q-120
3) VC 404

4) Teleray

Config simplifies system configuration for the listed terminals; it
renames an existing data file (which already contains system
information for the specified terminal) as SYSTEM.MISCINFO, and
modifies the existing GOTOXY procedure in the operating system.
Config is invoked by the default command program whern the system is
booted for the first time - see the Hardware Reference Manual for
details, Config’'s operation is described in section 9.3.0.

Terminals riot supported by Config require manual reconfiguration of
the system. A new STSTEM.MISCINFO must be created from scratch and
assigned the proper terminal parameters, A new GOTOXY procedure
must be written and bound into the operating system. These tasks
_are performed with the utilities Setup and Binder.

The utility program Setup (SETUP,CODE on the utilities disk) is
used to create a new MISCINFO file., Setup is described in section
9:23.1+ The utility program EBinder (BINDER.CODE on the wutilities
disk) binds a compiled GOTOXY procedure into the operating system’'s
code file, Details on creating, compliling, and binding a new
GOTOXY are presented in section 9.3,2,

Page 149

PDQ-3 System Reference Manual

P.3.0 Using Config

A copy of the necessary MISCINFO file (SOROC, VC404, TRAY, VTS2)
must reside on the system volume. An online drive is assumed to
contain a bootable system disk requiring reconfiguration,

X{ecute "CONFIG."” (note - the "," is necessary bhecause Config's
file name lacks the ".CODE" suffix)., The following prompt appears:

What is the destination drive [(4,5,9,1017

Enter the drive containing the disk to be configured, Config then
displays the following menu:

The terminals for which ACD has constructed drivers include:
A) Zenith/HeathkKit (or any VT-32 compatibhle terminal)
E) Soroc 1@-120

C) VC 404
D) Tray

Type the letter for your terminal ([RETURN] for neither):

Type the appropriate letter; typing <return; exits Config. Config
reads the corresponding MISCINFO file from the system volume, and
writes it to STSTEM,MISCINFO on the destination disk. The code

file on the destination disk containing the operating system
(STSTEM, PASCAL) is located, and its default GOTOXY procedure 1is
modified to work for the indicated terminal,

If the disk is successfully reconfiqured, this message appears:

Done.

I+ any probliems occur, one or both of these messages appear:

File error: Configuration not done
Consult the SETUP section of the user manual for instructions.

These appear if <{return> was typed 'instead of =a letter - the
reference to Setup 1is printed because Config assumes that manual

reconfiguration is necessary, as honhe of the supported terminals
was specified.

Conditions causing problems include:

Wrong or missing MISCINFO file on the system volume
Faulty or off-line destination disk

Destination volume is write-protected

No room on destination volume

No file SYSTEM.PASCAL on destination volume

Bad bhlock in STYSTEM.PASCAL

Page 150

Utilities

?33.1 Using Setup

X(ecute SETUP. Setup spends a few moments copying the contents of
STSCOM into its own buffer, and then displays the following prompt
line:

SETUP: C{HANGE T(EACH) H{ELP) Q(UIT)

H(ELP describes the currently available commands,

T(EACH describes how to use Setup.

NOTE - Please ignore the section references to the WD Manual
displayed in T(EACH., GCOTOXY binding is described in this manual in
section 9,3,2, ‘

C(HANGE 15 used to display and modify screen control and special
command informatiorn in Setup’'s edit buffer.

Q(UIT displays the following prompt:

QUIT: D(ISK) OR M(EMORY) UPDATE, R(ETURN) H(ELP) E(XIT)
D{ISK UPDATE saves the contents of Setup’'s edit buffer in the data
file "NEW.MISCINFO", This must be changed to "SYSTEM.MISCINFO" to
be used by the system,
M(EMORY UPDATE writes the contents of Setup’'s edit buffer to the
STYSCOM data structure in memory} the new values may be tested
immediately, but are lost if the system is rebooted or I(nitial-
ized,

R(ETUEN returns the Setup promptline.

E(XIT exits Setup.,

Page 151

PDQ-3 System Reference ﬁanual

¥+.3.1.1 Fields in Setup

This section describes the fields accessed by the C(HANGE command.
The fields represent three Kinds of system information: Keys,
characters, and parameters.,

Keys map character sequences from the Keyboard into the system’'s
various Key commands (e.qg. {control-F> from the kKeyboard 1is
recognized as the flush command)., Key fields in Setup have the
word "KEY" in their field names,

Characters are character sequences that the system writes to the
terminal in order to manipulate the screen display (e.g. writing
the ERASE LINE character to the terminal erases the characters
displayed on the current line),

Parameters are various integer or Boolean values which control the
system’'s operation {(e.g. the HAS CLOCKE field 1is a Boolean
parameter indicating the presence of a system clock).,

Section 9.3,1.2 lists field values for some common terminals., The
terminal functions (and related character sequences) referred to in
this section should be documented in the terminal’'s functional
specification, Key command defintions for some common terminals
are listed in Appendix F.

NOTE - The ASCII1 character names used in some fields are defined 1n
Appendix E. ‘

BACESPACE

Writing this character to the console moves the cursor one space to
the left, This must be a single character. Suggested value: ASCII
BS

DISE READ RATE

DISE SEEK RATE

DISE WRITE RATE

These fields were introduced by Western Digital to control the disk
characteristics in their system; the PDQ-3 system does not use
them,

EDITOR ACCEPT KEY

This Key is used in the editor to conclude commands. save the text
changes., Suggested value: ASCII ETX (ctri-C or ctri-J)

EDITOR ESCAPE KETY

This Key 1is used in the editor to exit from commands, Suggested
valuer ASCII ESC (ctri-[)

Page 152

Utilities

ERASE LINE

Writing this character to the console erases all characters on the
line that the cursor is on, and positions the cursor at the start
of the line,

ERASE SCREEN

Writing this character to the console erases the entire screen and
positions the cursor at the top left of the screen.

ERASE TO END OF LINE

Writing this character to the console erases all characters from
the current cursor position to the erd of the lirne, and leaves the
cursor at its current position.

ERASE TO END OF SCREEN

Writing this character to the console erases all characters from
the current cursor position to the end of the screen, and leaves
the cursor at its current position,

HAS 8510A

This should always be set to FALSE on PDR-3 systems; it is set to
TRUE only on Terak machines.

HAS CLOCK

This indicates the presence of a system clocky it should always be
set to TRUE on PDR-3 systems,

HAS LOWER CASE

This is set to TRUE it the terminal supports lower-case characters;
otherwise, FALSE.

HAS RANDOM CURSOR ADDRESSING

This is set to FALSE only when using hard-copy terminalsy other-
wise, TRUE.

Page 1353

PD@-3 System Reference Manual

HAS SLOW TERMINAL

This field 1is intended for terminals operating at less than 600
bhaud., It is not used by the PDQ-3 system,

KEY FOR BREAK

This Key is intended to terminate the current program. It is not
used by the PDQ-3 system.

FEY FOR FLUSH
This 1is the console output cancel kKey., When the FLUSH key 15
typed, console output is discarded until FLUSH is typed again or

the system reads from the terminal, This field is not used by the
PDR-3 system, as the flush Key is hard-wired to (ctri-F),

KET FOR STOP

This is the console output stop Key. When the STOP kKey 1is typed,
the system halts on the next console output operation., This field
is not used by the PDQ-2 system (see section 1,3.3,1),

KET TO BACKSPACE

This Key moves the cursor one space to the ‘left, Default value:
ASCII ES

KET TO DELETE CHARACTER

This key deletes the character where the cursor is, and moves the
cursor one character to the left. Suggested value: ASCII BS
(control-H or "hackspace”)

KEY TO DELETE LINE

This kKey deletes the line occupied by the cursor, Suggested value:
ASCII DEL ("rubout™)

KEY TO END FILE

This key sets the Boolean intrinsic EOF to true when it 1is typed
while reading from the predeciared files INPUT or KETBOARD.
Suggested value: ABCII ETX (control-C or "home")

Page 154

E

Utilities

KEY TO MOVE CURSOR UP

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

These Keys are used by the editor for cursor control,. I the
terminal Keybhoard has a vector pad, it should be used to define
these kKeys. Otherwise, four Keys may be chosen in the pattern of a
vector pad and be assigned the control codes that correspond to.
them (e.g+, ctrl-K, ctri-0, ctrl-3, ctri-.),.

LEAD-IN CHAR FROM KEYBOARD

Some terminals contain Keys that generate two-character sequences.
If the prefix character is the same for all of these Keys, it is
used to set the value of the field LEAD-IN CHAR FROM KEYEOARD. The

PREFIX[L<field nrame>] field for each two-character key must then be
set to TRUE.

LEAD-IN TO SCREEN

Some terminals require two-character sequences to activate certain

functions., I+ the prefix character is the same for all of these
functions, it is used to set the value of the field LEAD-IN TO
SCREEN., The PREFIXI[<field name>] field for each two-character

function must then be set to TRUE.

MOVE CURSOR HOME

Writing this character to the conscole “"homes” the cursor;y i.e.,
moves it to the upper left hand corner of the screen.

NOTE - 1If the terminal does rnot have such a character;,; the field
should be set to ASCII CR ("return"); as a consequence, the editor
will be urnusable., Use TALOE (sectiorn 9.4) instead.

MOVE CURSOR RIGHT

vWPiting this character to the console moves the cursor one space to

the right without erasing any characters.

NOTE - If the terminal does not have such a character, the editor
will be unusable, Use TALOE (section 9.4) instead.

MOVE CURSOR UP

Writing this character to the conscle moves the cursor vertically
up one line without erasing any characters,

NOTE - If the terminal does not have such a character, the editor
will be unusable. Use TALOE (section 9.4) instead.

Page 153

PDQ-3 System Reference Manual

NON-PRINTING CHARACTER

This character is displayed whenever a non-printing character is
written to the console by the editor, Standard value: ASCII "7?°

PREFIXED[<field name>]

The system will recognize any two-character sequences generated by
a key or sent to the console if the PREFIXED field corresponding to
the appropriate field is set to TRUE. See the descriptions of the
LEAD-IN TO GSCREEN and LEAD-IN CHAR FROM KEYBOARD fields for more
details, ‘ ‘

SCREEN HEIGHT

The riumber of text lines displayable on the console, Standard
value: 24 decimail, Value for hard-copy terminals: 0.

SCREEN WIDTH

The number of characters on orne line on the console. Standard
value: 80 decimal,

VERFTICAL DELAY CHARACTER

This character is intended for implementing vertical move delays on
slower terminals, This field is not used by the PDQ@-3 system., The
vertical delay character is hard-wired to <null:,

VERTICAL MOVE DELAY

This field can take integer values between 0 and 11, Many types of
terminals require a delay after certain cursor movements to enable
the termirnial to complete the movement before the next character is
displayed, The delay is implemented by sending a series of <null:
characters to the terminal; the value in this field determines the
number of characters to be sent.

Page 156

Utilities

Terminals:

Fields:

EACKSPACE

EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
ERASE LINE

ERASE SCREEN '
ERASE TO END OF LINE
ERASE TO END OF SCRN
HAS LOWER CASE

HAS RAND CURS ADDR
HAS SLOW TERM

KEY FOR RREAE

KET FOR FLUSH

KEY FOR STOP

KEY TO BACKSPACE

KEY TO DELETE CHAR
EET TO DELETE LINE
KEY TO END FILE

KET TO MOV CURS DOWN
KEY TO MOV CURS LEFT
KEY TO MOV CURS RCHT
KEY TO MOV CURS UP
LEAD IN FROM KBD
LEAD IN TO SCREEN
MOVE CURSOR HOME
MOVE CURSOR RIGHT
MOVE CURSOR UP
NON-PRINTING CHAR
PREF [ED ACCEPT KETY1
PREF [ED ESCAPE KEYI
PREF [ERASE LINE]
PREF [ERASE SCREEN]
PREF [(ERASE TO EOLN]
PREF [ERSE TO EQSCN]
PREF [KEY DEL CHAR]
FREF [KET DEL LINE]
PREF [KEY MV CRS DNl
PREF [KEY MV CRS LTI
PREF [KEY MV CRS RT]
PREF [KEY MV CRS UP]
PREF [MOV CURS HOME]
PREF [(MOV CURS RTI
PREF [MOV CURS UP]
PREF [NONPRINT CHAR]
SCREEN HEIGHT
SCREEN WIDTH
VERTICAL MOVE CHAR
VERTICAL MOVE DELAY

LSI
ADM-3A

| -arrow
ctrl-C
esc
NUL
ctri-2
NUL
NUL
TRUE
TRUE
FALSE
ctrl-B
ctrl -F
ctr1-5
BS
ctri-H
DEL
ctri-C
ctrl-d
ctr)-H
ctrl-L
ctrl-K
NUL
NUL
ctri-=
ctri-L
ctrl -k
nmw
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
24

&0

NUL

)

Page 157

SOROC
I1Q@120

ctrl-H
home
esc

NUL

“ g

T

Y

TRUE -
TRUE
FALSE
break
ctr)-F
ctr1-8
BS
l-arrow
DEL
ctri-C
d-arrow
| -arrow
r-arrow

u-arrow

NUL
ESC
ctril-"
r-arrow
u-arrow
Y
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
24

80

NUL

10

P¢3.1.2 Sample Setups For Some Fopular Terminals

ZENITH
219

ctri-H
ctri-J
esc

1

E

K

J

TRUE
TRUE
FALSE
break
ctr)-F
ctrl -9
BS
backspace
DEL
ctrl-C

PDQ-3 System Reference Marual

7.3.2 GOTOXY BRinding

First, a Pascal program containing the GOTOXY procedure must be
written and compiled to a code file, If the system has not been
configured for the terminal being used, it might be necessary to
create the program with the line-orinted editor TYALOE; the regular
editor may be unusable.

Here 1s an example of a complete GOTOXY program for the Soroc 1Q
120 terminal:

{$U“, S+
program NewGotoXT;

procedure Sorocl@120GotoXY(X,7T: integer);

const
NumChars = 43 { chars in sequence 2
LeadlIn = 273 { Soroc lead-in char @
CmdChar = ‘=~ { Soroc command char
XBias = 323% { Soroc X & Y hias 3
YBias = 323
XMax = 03 { Screen Width Parameters
XMin = 793
TMin = 03 { BScreen Height Parameters 1}
TMax = 233
terminal = 13 { Terminal I/0 Unit 2
noSpec = 123 f No special chars ¥
var
CharSeq: packed array [1..NumCharsl of char;
begin

if X » XMax then X 1= XMax
else 1f X £ XMin then X 1= XMin;
if 7 » YMax then Y 1= TMax

else if 7 XMin then T 1= XMinj
CharSeqlll := chr(Leadln)}s
CharSeql2] := CmdChar;
CharSeql3] 1= chr(TBias + T)3
CharSeql4] 1= chr(XBias + X);

unitwrite(terminal, CharSeqg,NumChars,,noSpec);
end {Sorocl@120CGotoXY:;

begin {dummy program}
end.

Page 158

Utilities

This example demonstrates most of the requirements and restrictions
imposed on new GOTOXY procedures, Most terminals use similar
character sequences for cursor addressing; the parameters most
likely to vary are the prefix arnd command chars, and the biases
applied to the X and Y coordinates. These should be documented in
the terminal’s functional specification,

The compiler directive at the top of the program is required; "U-"
directs the compiler to create the program at the system level,
while "S+" is merely to save space.

NOTE - Programs compiled with the "U-" directive are not execut-
able. .

The name “"GOTOXT"™ cannot be used as a procedure or variable name;s
it is reserved for standard calls to the GOTOXY intrinsic. Binder
recognizes the new GOTOXY procedure by its position in the code
filey hence, there must be only one procedure in the program, and
the main program must be an empty block.

The UNITWRITE intrinsic is used to make the GOTOXT as efficient as
possible. Using the standard procedure WRITE slows down terminal
response, The UNITWRITE option to suppress special character
processing is asserted to prevent the system from interpreting any
of the characters in the command sequence as special characters
(e.g., DLE expansion).

GOTOXY must ensure that its X and T argument values are in the
proper range; if not, they must be truncated. Also, be sure that
the X parameter controls horizontal cursor movement and the Y

parameter vertical cursor movement, If there are any doubts about
a GOTOXY, 1t is worthwhile to embed the GOTOXY procedure in a test
program and test it out before running Binder,

Page 159

PDQ-3 System Reference Manual

Pe3.2.0 Using Binder
X(ecute BINDER, The following prompt appears:
Enter name of file with GOTOXY procedure:

Enter the name of the code file containing the compiled GOTOXY,.
The prefix volume should be set to the volume containing the
operating system code file, Binder reads the operating system code
into memory, binds in the new procedure, and writes the modified
system code back to the disk, Rebooting the system reloads the
operating system with the new GOTOXTY installed and ready for
action.,

NOTE - Binder removes the old operating system code filey be sure
to wmake a copy of it on a backup disk before running Binder.
Binder can be run successfully on the same file many times;
however, this 15 not suggested, as the operating system code
becomes progressively larger (and thus wastes memory). This occurs
hecause Binder merely adds the new procedure code to the end of the
existing code, and thern updates the GOTOXY procedure pointer.

NQTE - A newly bound in GOTOXY is correct 1f:

1) The welcome message appears in the center of the screen when
the rnew system is booted (section 2.2.0),

2) The editor seems to work correctly,

Page 160

Utilities

.4 Line-Oriented Text Editor

YALOE is a line-oriented text editor designed for use in systems
having a hard-copy device (e.g,, teletypewriter) for a terminal, or
on unconfigured systems (see section 9.3); YALOE works in these
situations, while the regular editor does not.

Section 9.,4,9 contains a summary of all TALOE commands.

?.4,.0 Entering YALOE

TALOE is invokKed by X(ecuting YALOE.CODE; however, if TALOE is to
be used extensively, it can assume the role of the standard system
editor, Change the screen editor’'s code file to a different file
rname (e.g, SCREEN,EDITOR), and then change TALOE.CODE to S7S-
TEM.EDItyping E(dit from the system prompt now invokes YALOE.

If a work file exists, the editor prints:

Worktile {file rname> read in

e where <file name: is the name of the current work file.,
If the workfile is empty, this message appears:

No workfile read in.

.4,1 Entering Commands and Text

The editor operates in either Command mode or Text mode. The
editor is in Command wmode when it is first enteredy in Command
mode, all Keyboard input is interpreted as edit commands, Commands

may be invoked individually or as part of a command string
specifying the execution of a sequence of commands. Text mode is
entered whenever a command is typed that must be followed by a text.

stringy when the text string is terminated, the editor returns to
Command mode.

Examples of command and text strings appear 1in the sections
describing the edit commands.,

NOTE - unlike other parts of the system, YALOE does not display
promptlines automatically) instead, an asterisk ("*") is printed to
indicate that commands may be entered. Commands are entered by
typing command characters; they are displayed on the screen as they
are typed. The "7?" command lists the available commands on the
screen.,

Page 161

PDQ-3 System Reference Manual

Z.4.1.0 Command Arguments

Some edit commands allow a command argument to precede the command

character. The argument usually specifies the number of times the
command should be performed or the particular portion of text to be
affected by the command, The definitions listed below are used in

the command descriptions,

Commarnd argumernts are:

ri Any ‘1nteger, signed or unsigned, Unsigned integers are
assumed to be positive, In a command that accepts an
argument, the default value is 13 if only a minus sign 1s
present, the value 1is -1, Negative arguments imply
backwards cursor movement. '

m Ar integer betweern 0 and 9,

0 The beginning of the current line.

! Denotes the numher 32700, A "-/" denotes -32700, "/" is

used as an “"infinite" repeat factor,

= Equivalent to the signed integer argument "-n", where n
equals the length of the last text string argument used,
Applies only to the J(ump, D(elete, and Clhange commands.

9.4.1.].(hmmmand.ﬁhﬂﬁings

Commands may be entered singly or in strings; they are not executed
uritil <esc:<esc> is typed., Command strings consist of a sequence
of single character commands. Commands requiring text strings are
separated by the <esc> terminating the command’s text stringj;

commands ot requiring text strings may optionally he separated by
Tescl,

NOTE - <esc> echoes a dollar sign ("$") when typed. The <esc”
terminates the text string and returns control to Command mode.
The examples in this section display {esc> in its echoed form "$".

Spaces, carriage returns and tabs within a command string are
ignored unless they appear in a text string, When the execution of
a command string is complete, the Editor prompts for the next
command with an asterisk ("#"),

If an error is encountered while executing a single command,
execution of the command string is terminated; the results of the
preceding commands in the string remain, but subsequent commands in

the command string are discarded.
7+4.1.2 Text Strings
In Text mode, all Keybeoard input is treated as text until {esc: is

typed., Commands requiring text strings are F(ind, Gl(et, I(nsert,
M(acro define, R(ead file, W(rite to file, and eX{(change.

Page 162

‘Utilities

9.4.,2 The Text Euffer
The text file being modified by the editor is stored in the text

buffer. Files must fit in the text buffer to be successfully
edited,

Y.4.3 The Cursor

The cursor is the position in the file where the next command will
be executed, Most edit commands use the cursor position as a
starting point in their operations on the text file,

9.4.4 Special Commands

Various Keys on the Keyboard have special functions when used in
YALOE, These commands are described helow:

{esc’
Echoes a dollar sign (%) on the console, A single {esc>

terminates a text string. A double <esc: executes a
command string.

CTRL H

<chardel>
Deletes a character from the current line. On hard-copy
terminals, it echoes a percent sign ("%4") followed by the
character deleted, Deletions are done right to left,

with each deleted character erased by the %, up to the
beginning of the command string., CTRL H may be used in
hoth Command and Text Modes.

CTRL X

CTRL X causes the editor to ignore the entire command
string currently being entered; TALOE responds with an
asterisk ("*#") to accept new commands., If the command
strring covers several lines, all lines back to the
previous command prompt are ignored.

NOTE - The Operating System currently reserves CTRL X for
its own purposes; this command does not work,

CTRL O

CTRL 0 causes the Editor to switch to the optional
character set (bit 7 turned on).

NOTE - If strange characters start appearing on the

terminal, CRTL O may have bheen accidentally typed.
Typing CRTL O again should fix the problem.

Page 163

PDR-3 System Reference Manual

Z:4.5 Input/70utputr Commands

The commands that control 1/0 are: L({ist, Vierify, Wirite, R(ead,
Quit, E(rase, and O(ption.

+e4.5.0 L{ist

Format:

nkL

Prints the specified number of text lines on the terminal without
moving the cursor, Variations of this command are illustrated in
the examples below,

*¥-3L%% Prints all characters starting at the third preceding
lirne and ending at the cursor.

*5L%% Prints all characters beginning at the cursor and
terminating at the fifth carriage return (line).

*0L%%$ Prints from the beginning of the current line up to
the cursor.,

Ye4.5.1 U(er':i.fy

Format:

\

Prints the current text line on the terminal, The position of the
cursor within the line has no effect on the command and the cursor
is not moved, No arguments are used. VERIFY is equivalent to 3
"#QL$%E" list command.

Y:4.5.2 Wirite
Format:

Wifile title>s

voew where <file titler is a text string containing a valid file
title. The editor appends the text file suffix " .TEXT" unless the
title ends with "“+"y, "1" or " .TEXT", If the title ends in ".", the

dot is removed.

This command writes the entire text buffer to the specified disk

file. It does not move the cursor or alter the contents of the
text buffer, :

Page 164

Utilities

If the specified volume has insufficient room to hold the disk
file, the following error message is printed:

OUTPUT ERROR. HELP!

The text buffer can bhe written to ariother volume.

Fed.5.3 R{(ead
Format:

R{file title>s$

‘e where <file title> is a text string containing a valid file
title,
The editor attempts to locate the specified file. If rno +file is

found havimg the given title, a " .TEXT" suffix is appended and the
editor makes another attempt at finding the file.

The contents of the specified file are copied into the text buffer
starting at the cursor position,

WARNING -~ I¢f the file read in does not fit, the entire text buffer
contents become undefined., This is an unrecoverable error.

P.4.5.4 Q{uit

The Q{uit command can have these forms:

Qu Quit and update by writing to the work file,
QE Quit and exit YALOE; the text is not saved,
Q@ Issue a prompt requesting

one of the following options: U, E, or R« R returns
to the edit session. :

The "QU" command writes the file to the work text filey it is
similar to the W(rite command. "R" is often used to return to the
editor after a "Q" has been accidentally typed,

" Pe4.,5.5 E(rase

Format:

E

Erases the screeni this command only works with video display
terminals,

Page 165

PDRQ-3 System Reference Manual

Y.4.5.6 O(ption
Format:

nO

Automatically dispiay the text surrounding the cursor each time the
cursor is movedy this option only works with video display
terminals, The argument specifies the rumber of lines to he
displayed., This option is disabled wher the editor is entered; it
is enabled by typing O(ption, and disabled by typing O(ption again,

The cursor location is indicated by a split in the displayed text
line.

Ye4.46 Cursor Poving Commands

The commands that move the cursor are: J{ump, Aldvance, Blegin-
ning, G(et, and F(ind., They are described in the following
sections.,

The direction of cursor movement is specified by the sign of the
command argument; e.,g., wher applied to the J{ump command, the
arguments (+n) and () move the cursor forward n characters, while
the argument (-1n) moves the cursor backwards n spaces.,

Carriage returns are treated as a single text character,

Examples of the moving commands are given in section 9.4.6.4,

Fed:5.0 J(ump
Format:

riJ

Moves the cursor a specified number of characters in the text
buffer,

Yed4,46.1 Aldvance

Format:

nA

Moves the cursor a specified rnumber of lines., The cursor is
positioned at the beginning of the line to which 1t moved., A
command argument of "0" moves the cursor to the beginning of the

current line.

Page 166

Utilities

Fed4.6.2 Bleginning
Format:

B

Moves the cursor to the beginning of the text buffer. A logical

complement to this command would be "End"j this can be simulated
with "/d",

Ped4.46.,3 Glet and F(ind

Format:
nF<target string*$ nG{(target string>%$

These commands are sSynonymous. Starting at the current cursor
position, the text buffer is searched for the n'th occurrence of
the specified text stringj the sign of n determines the search
direction., If the search is successful, the cursor is positioned
immediately after the text string if n is positive, or immediately
before the text string if n is negative. If the string is not
found, an error message is printed, and the cursor is left at the

end of the buffer if n is positive, or at the beginning if n is
negative, '

Page 167

PD@~-3 System Reference Manual

Ped4.6.4 Examples of Cursor Moving Commands

In these examples, the cursor position is indicated by an under-
score character; the cursor does not appear on a hard-copy device,

Here is the original text:

- -

The time has come
the walrus said
to bhalk at many things

- - - - - - - - - - - - - - - - - - - -

*8J$% Moves the cursor forward 8 characters:

The time has come
the walrus said
to balk at many things

*-A%% Moves the cursor up one line:

- -

The time has come
the walrus said
to halk at many things

- -

¥BCcomes=J%$% Moves the cursor to the beginning of the text
buffer and searches for the string "COME".
When the string is found, the cursor is
positioned at the start of the string:

The time has come
the walrus said
to balk at many things

- - - - - - - - - - - - - - - - - I~ - - -

Page 168

"Utilities

4.7 Text Changing Commands
The commands that change text are: I(nsert, D(elete, K(ill,

C(hange, and eX(change. These are described in the following
sections, Examples of these commands are given in Section 9.4.7.5,

Ped.7+.0 I({nsert
Format:

I<text string>%

Starting at the current cursor position, the characters in the
specified text string are added to the text, YALOE enters Text
mode after typing the "I", Text mode is terminated by typing "$",
The cursor is left immediately after the last inserted character.

Occasionally, iarge insertions may fill the temporary insert
buffer; before this happens, the editor prints "Please finish” on -
the console. Typing <esc><esc> finishes the current command., To

continue, type "I" to re-enter Text mode.

Yed.7.1 D(elete
Format:

nD

Starting at the current cursor position, the specified number of
characters are removed from the text buffer) negative arguments
indicate backwards cursor movement. The cursor is left at the
first character following the deleted text,

Fed4.7.2 KC(i}

Format:

nk

Starting at the current cursor position, the specified number of
lirnes are deleted from the text buffer. The cursor is left at the
beginning of the line following the deleted text.

Page 169

PDG-3 System Referernce Marual

Ye4.7 .3 CChange

Format:
nCitext string:%

Starting at the current cursor position, n characters are replaced
with the specified text string. The cursor is left immediately
after the changed text.

Fe4.7 .4 eX{(change
Format:
nX<text string %

Starting at the current cursor position, n lines are replaced with

the specified text string, The cursor is left at the end of the
changed text.

?2:.4.7.5 Examples of Text Changing Commands

¥-4D%$ Deletes the four characters immediately preceding
‘ the cursor (even if they are on the previous line).

*/E$% Deletes all lines in the text buffer after the
cursor.,
*OCAAATS Feplaces the characters from the beginning of the

line to the cursor with "AAA" (same as *0XAAA$E).

*+BCAS=CRE$E Searches for the first occurrence of "A" and
replaces it with "B".

*¥-3XANEWSS Exchanges all characters beginning with the first
character on the third line back and ending at
the cursor with the string "NEW",

*ESCTWINES=D$$ Moves the cursor to the beginning of the

text buffer, searches for the string
“TWINE", and deletes it,
?.4.8 Other Commands

Miscellaneous commands include: S{ave, Ulnsave, M{acro, N {(macro
execution), and "?".

Page 170

Utilities

P.4.8.0 S(ave

Format:

nS

Starting at the current cursor position, the specified number of
text lines are copied into the save buffer. The cursor position
and the text buffer contents are not affected, Each time a S(ave
is executed, the previous contents of the save buffer are de-
stroyed., If the execution of a S(ave command would overflow the
save buffer, the editor generates a warning message and does not

perform the S(ave.

The contents of the save buffer are accessed with the U(nsave
command .

.4.8.1 Uinsave
Format:
U

Starting at the current cursor position, the current contents of
the save buffer are inserted into the text buffer, The cursor 'is
left in front of the inserted text. If the text buffer does not
have enough room for the contents of the save buffer, the Editor
generates a warning message and and does not execute the Ul(nsave.

The save buffer can be removed by typing the command "0U",

Pe4.8.2 M{acro

A macro 1is a single command that executes a user-defined command
string, Macros are created with the M{acro command. A macro can
invoke other macros (including itself recursively).

Format:

mM%<command string>%

e where m is an integer between 0 and 9 which is used to
specify the macro definition, The default macro number is 1, The
command string delimiter ("%" in the example above) is always the
first character following the "M", The delimiter may be any
character that does not appear in the macro command string itself,.

The second occurrence of the delimiter terminates the macro
definition.

All characters except the delimiter are legal command string
characters, including a single <esc>, All commards are legal in
the command string.

If an error occurs when defining a macro, the following error

Page 171

PDQ-3 System Reference Manual

message 15 generated:
Error in macro definition,
The macro will have to be redefined,
Example of a macro definition:
*4MLFPREFACE$=CEND PREFACE$V$%E$
This examplie defires macro number 4, Whernn macro 4 is executed
(usi1ng the "N" command), the editor looks for the string "PREFACE",

changes it to "END PREFACE", and displays the change.

NOTE - A maximum of 10 macros may exist at one time.

Y«4.8.2 N (Execute Macro)

Format:

rnNm$

Executes the specified macro definition, "m" is the macro number
(hetweern 0 and 9 that identifies the macro; its default value is
1. Eecause m actually represents a text string of commands, the N

command must be terminated by <esc: (echoed as $).

Attempts to execute undefined macros generate the follcwing error
message:

Unhappy machum,

Errors ericountered during macro execution gerierate:

Error in macro.

F+e4.8.4 7 (Display Info)
Format:

?

Prints a list of all commands, the current size of the text buffer
and save buffer, the numbers of the currently defined macros, and
the amount of memory availabhle for expansion of the text buffer.

Page 172

Utilities

9.4.Y Command Summary

nJd:
nk:
nkL:
mM:

nNm
nO:

nS:

.

We

nX:

g

integer argument m - macro number

Display command list and file information,
Advance the cursor to the beginning of the

n'th line from the current position,

Go to the Beginning of the file.,

Change by deleting n characters and inserting

the following text. Terminate text with <{esc>,
Delete n characters.

Erase the screen.

Find the n’th occurrence from the current cursor,
position of the following string, Terminate
target string with <esc>,

Insert the following text. Terminate text

with {esci.

Jump cursor n characters.

Kill n lines of text from the current cursor
position,

List n lines of text.,

Define macro number m.

Perform macro m, n times.

On, off toggqle. 1f on, n lines of text will be
displayed above and bhelow the cursor each time
the cursor 1is moved. If the cursor is in the
middie of a line then the line will he split inte
two parts. The default is whatever fills the screen.
Type O to turn off.

Quit this session, followed by:

U: (pdate Write out a new STYSTEM.WRK,TEXT
E: (scape Escape from session
R: (eturn Return to editor

Read file into buffer starting at cursor;y

format is: R{file name:<esc>.

WARNING: If the file will not fit into the

buffer, the buffer contents become undefined!

Put the rnext n lines of text from the cursor

position into the Save Buffer.

Insert (Unsave) the contents of the Save Buffer into the
text at the cursor; does not destroy the Save Buffer.
Verify: display the current line.

Write file (from start of buffer);

format is: W{(file name><{esc>.

Delete n lines of text, and insert the following text;
terminate with <{esc:,

Page 173

PDQ-3 System Reference Manual

75 Byte-level File Editor

The utility program Patch (PATCH.CODE on the utilities disk) is
used to view and alter the contents of a disk file, Files are
addressed as a series of S512-byte blocks; the contents of each
block «can be displayed on the console either in hex format or as a
mixture of hex and ASCII characters. The contents of a displayed
bicck can he modified by moving the cursor to the desired position,
typing in the new data, and writing the modified block back to
disk, Patch can examine and modify text and code file information;
hecause it 15 8 low-level utility, it is generally avoided by users
who are not extremely curious or desperate.

7.5.0 Using Fatch
X{ecute PATCH, The following promptline appears:

Patch [HOJ: F(ile, @Q(uit
Qluit exits Patch; Flile generates the prompt:

Filename: <cr for unit i/o>
Enter the name of the file to be edited, Patch expects complete
file namesy suffixes are required., Specifying a disk file limits
Patch to the blocks used by the file, Elocks are referenced by
relative block number {(e.g., first block in the file is block 0).
Typing +«<return> generates this prompt:

Unit to patch [4,5,9.,.12]:
Type the rnumber corresponding to the unit containming the disk to be
examined (note - typing "“0" exits the prompt)., Specifying a disk
unit aliows Patch to access all blocks on the mounted disk., Blocks
are referenced by absolute block rnumber (e.g., the first block on

the disk is block 0).

Whern ei1ther a file name or a unit number has been entered, the
original prompt reappears with an added command:

Patch [HO1: Glet, F(ile, Qfuit

Glet generates the prompt:

ELOCK:
A block number is enterede. The specified block is read into .
memory; it becomes the current block, The current block is

affected oniy by G(et and the Alter commands. Patch maintains only
one current hlocgk.

NOTE -~ No range checking is provided on block riumbers. If a block

number is out of range, Patch accepts the command, but does not
charige the current block.

Page 174

Utilities
Wherr a current block exists, the original prompt reappears with two
new commands:
Patch [HOJl: G(et, H(ex, M(ixed, F(ile, Qfuit
H(ex displays the contents of the current block in hexadecimal
characters, M(ixed attempts to display the block in ASCII charac-
tersy bytes not containing valid ASCII characters are displayed in

hex.

H(ex and M(ixed generate the following prompt after displaying the
current block: .

Alter: pad vector 1,5,3,0 0,.F hex characters, S(tuFF,IQ(uit
The cursor is initially positioned at the first byte in the block;
the vector Keys and space bar control its movement, Typing a hex
character changes the character at the current cursor position.
NOTE - The promptline commands "1,5,3,0" are obsolete and unimple-
merited; they should have bheen removed by Western Digital a long

time ago.

S(tuff 1is used to set a series of bytes to the same value. The
following prompt appears:

Stuff for how many bytes:

Eriter a number (betweernn 0 and 3512, depending on the current cursor
position), The next prompt is:

Fill with what hex pair:
Eriter two hex characters.,

Starting at the current cursor position, Patch assigns ihe speci-

fied value to the number of bytes indicated, and updates the
display.,
NOTE - a <return: is not required after the hex pair is entered.

Patch starts stuffing immediately after the second hex character is
typed. .

WAENING - The system may crash if S(tuff is asked to change more
bytes than are displayed between the cursor and the end of the
current block, DO NOT stuff past the displayed bytes.

In Alter mode, Qluit redisplays the original Patch prompt with an
added command: :

Patch [HOJ: G(et, P(ut, H{ex, M(ixed, Flile, Q(uit
Plut writes the current block to its proper disk location, It is

not possible to write the current block to any other disk block
than the one it was read from,

Page 175

PDQ-3 System Reference Manual

P+6 Code File Disassembly

The utility program Disassembler (DISASM.CODE on the utilities
disk) i used to display the contents of a code file in symbolic
form, The information available includes:

1) The number of code segments in the file,
2V The symbolic name of each code segment.,
3) The riumber of procedures in a code segment.

4) Symbolic displays of a procedure’s code and cornstant data.

NOTE - The disassembler uncovers many details of the UCSD Pascal
implementation; therefore, much of the terminoleogy used to describe
its output is not defined in this manual, See the Architecture
Guide for a definition of the foliowing terms: P-code, constant

pools, ewit ic’ s, data segments, procedure bodies, and code .
segments,

NOTE - If a code file contains a program having library references,
the disassembler can display the referenced library routines onily
i1f the code file has been linked.
Y.4.0 Using Disassembler
X(ecute DISASM., After a few seconds, the following prompt appears:
input file:
The input file name does not require a suffix (if the disassembler
cannot openn the file by appending ".CODE", it trys again sans
suffix), Typing only a <return’* exits the disassembler.
The next prompt is:
listing file:
The list file name requires a ",TEXT" suffix if the listing is sent

to a disk file., Typing "#1:" or "console:r” directs the listing to
the console. Typing only a <returri> exits the disassembler,

Page 176

Utilities

The Segment Guide appears next; its prompt is:
Segment Guide: A(11l, #(of segment, Q(uit

Below this prompt is a table displaying the followirng information
for each code segment in the file: segment name, segment number,
and rnumber of procedures.

At the bottom of the Segment Guide is the prompt:

Segment:
A(l]l generates a disassembled listing of every procedure 1in every
code segment in the code file, Qfuit exits the disassembler.

Typing ore of the segment numbers dispiayed in the Segment GCuide.
sends the wuser into the Procedure Guide for the specified code

segment:

Procedure Guide: A(l1, #(of procedure, Q{(uit
Below this prompt, the disassembler indicates the number of
procedures in the current code segment. Procedures are addressed
by their procedure number (range for a given segment is 1| to {procs
in seg>).,
At the bottom of the Procedure Guide is the prompt:

Procedure:
A(ll generates a disassembled listing of every procedure in the
current code segment, Q(uit exits the Procedure Guide and reenters
the Segment Guide. Typing a procedure rnumber generates a disassem-
bled listing of the corresponding procedure; when the listing 1is
complete, the following prompt appears:

press spacebar to continue, ..

Typing <space’ reenters the Procedure Guide.

Page 177

PDQ-3 System Reference Manual
Example of a disassembled listing:

Here 1s the sampie program:
program examples;
procedure target;

var i, integery
5 string;

beqgin
i = 13
Jg = 183
if 1 = j then
s = “right’
else
s 1= ‘wronhg i
end;
begin
target;y
end,

Here is a disassembled listing of procedure "target”:

SEGMENT= | PROCEDURE= 2 BLOCk= 1 BLOCK OFFSET= 2
CONSTANT POOL: '

Tl 0372, ri! 6967.ig! 6874, ht! 0577, w! 726F.ro! 6E67.ng!

EXIT IC: 0031 DATA SEGMENT SIZE: 002B
block # 1 offset in block= 18
SEG PROC OFFSET HEX CODE

1 2 0(000): SLDC 1 01

1 2 1(001): STL 2 A402

1 2 3(003) SLDC 18 12

1 2 4(004): STL i A401

1 2 6(006): SLDL 2 21

1 2 7(007) SLLDL 1 20

1 2 8(008): GEQI B3

i 2 3(009): FJP 22 D40B

1 2 11(00B): LLA 3 8403

1 2 13(00D) LCA i 8201

1 2 15(00F): LLDCE 80 8050

1 2 170011 CXG ASSICN 940311
1 2 20¢(014): UJP - 31 8A09

i 2 22001602 LLA 3 8403

1 2 24(018): LCA 4 8204

13 2 26 (01A): LDCE 80 8050

1 2 28(01C): CXG ASSIGN 940311
1 2 31(01F): RPU 43 962E

Page 178

Utilities

BLOCK and BLOCEK OFFSET respectively indicate the block number and
byte offset of the procedure body in the code file,

The constant pool is displayed only if it exists, The number at
the start of each line of constant pool data indicates the
pool-relative word offset of the first word on the line. Each word
of constant data is displayed in hex;y if it exists, the ASCII
representation is printed alongside.

EXITIC is a decimal value displaying a code-relative bhyte offset.
DATA SEGMENT SIZE is a hex value indicating the number of words in
the local data segment.

The "block #" and "offset in block" fields deriote the beginning of
the procedure code in the file,

Procedure code offsets are given in hex and in decimal. P-code
mhnemonics and their hex eqgiuvalents are displayed for each instruc-
tion. System calls are recognizable by the substitution of a
system call ‘s procedure name for its segment and procedure number;
this helps the user match the code in the dis-assembled listing
with source statements in the corresponding program ltisting,

Page 179

PDR-3 System Reference Manual

7+7 Frinter Spooler

The utility program Printer (PRINTER.CODE on the wutilities disk)
starts the printer spooler, which writes text files to an 1/0

device concurrently with riormal system operation., The spooler
allows users to edit, compile, and run programs while text files
are being printed on the line printer, The printer spooler is a

background task that executes while the system is suspended (e.,qg.
waiting at a promptliine), Printer is described in section 9.7.,0.
The utility program Spoolgen (SPOOLGEN.CODE on the utilities disk)
removes the printer spocler from the system, freeing up 400 words
of memory for situations where the extra memory is needed more than
the spooler is, Spoolgen is described in section 9.7.1.

Y.7.0 Using Frinter

X{ecute PRINTER, The following prompt appears:
What 1s the output unit (0,1, <online units>)?

1o where <online units: is a list of wunit numbers for all online
serial units (1 is the console unit), Typing "0" exits Printer.
Typing any other number designates the corresponding unit as the
output unit,

The next prompt is:
File to print?

File names in Printer have the following form:

(\N]<filename>

A_"\" preceding the file name indicates that the file is printed
without pagination; otherwise, all files are paginated (at &0 lines
per page).

Up to three files may be queued for printing; the file rname prompt
reappears after each file name is typed in. Typing only <return?
to the file name prompt indicates that rno more files are to be
Queued for printing; Printer then terminates. '

NOTE - Printer has the following restrictions:

A) Files queued for printing must not be modified, moved, or
removed until they are finished printingy the same restric-
tions apply to the disk volumes containing them. Be wary of
K{runch., The best way to avoid problems of this nature is to
move files to an unused online disk volume before printing
them.

B) The output device used by the spooler should not be accessed
by the system until the spooler is finished,

Page 180

Utilities

C) If the output unit is unit 8, and the printer operates at a
different baud rate than the terminal, then Printer loses its
concurrent capabilities. The system prompt reappears during
printing, but the system does rot accept any commands until
all printing is finished. This restriction is imposed by the
hardware; see the Hardware User’'s Manual for details.,

?+.7.1 Using Spoolgen
Xtecute SPOOLGEN., The following message appears:
The printer spooler is currently <spoolstéte>.
v+v wWhere <{spoolstate’ is "ENAELED" or "DISABLED".
The following prompt then appears:

Do you wish to ENABLE or DISABLE it (E/D) 7

Typing "E" enables the spooler, Typing "D" disables it, Typing
{escape’ exits Spoolgen. :

NOTE - The system must then be rebooted to acutally enable or
disabhle the spooler.

Spoolgen modifies a parameter stored in SYSTEM.MISCINFO. When the

system is booted, the parameter value is checked, It spooling is
enabled, the spocler 1is allocated 400 words of memory, and is
available for use; otherwise, the memory is not allocated, and the
spooler displays the message "queue full” when executed.

Page 181

PDQ-3 System Reference Manual

2.8 Calculator

The utility program - Calc (CALC.CODE on the utilities disk) simu-
lates a desktop calculator.

¥.8.0 Using Calc

Xtecute CALC, The following prompt appears:

Calc expects a one-line expression in algebraic form as a response.
Up to 25 different variahles are available. Variable names are
significant only to eight case-insensitive characters. Variables
having a value may he used as constants, Two predefined variables
are Pl (3,141593) and E (2.718282).

The remainder operator (specified by the dyadic operator "\")
rounds its result to an integer,

WARNING - Because the remainder operator is based on Pascal ' s MOD
operator, it should not be used with negative arguments.

Arguments of the factorial function (farm: FAC(x)) are rounded to
integer values;y; all arguments X 1 (0 <= X <= 33) cause the
erpression to be rejected.

The uparrow is used for exponentiation (form: x"y)., The result is
calculated wusing the formula: e ™ y Inm (x); operands must bhe

positive or the expression is rejected.

The predefined variable LASTX is always assigned the value of the
previous correct expression.

Arquments of the trigonometric functions are expected to he in
radians., Degree-to-radian conversion 1s accomplished with the
formula: RADANGLE = (PI/180) % DEGANGLE.

Calc generates an execution error if an overflow or underflow
occurs, I# this happens, all user-assigned variables and their
values are lost,

Typing <{return> in respanse to a prompt exits Calc,

Page 182

Utilities

Example of a Calc session:
-» Pl
3,14159
2,71828

-» A = (FAC(3)/2)
3.00000

->r 3 + 6
9.00000

- A + 6
9,00000

-y Lreturn’;

Page 183

PDQ-3 System Reference Manual

Page 184

APFENDIX A=z

BOoONOU WK - O

P P
- O

—
M

13
14
15
16
17
18

Appendices
I/0 RESULTS

No error

Bad Block, Parity error (CRC)

Bad Unit Number

Bad Mode, Illegal operation

Undefined hardware error

Lost unit, Unit is no longer on-line

Lost file, File is no longer in directory
Bad Title, Illegal file name

No room, insufficient space

No unit, No such volume on line

No file, No such file on volume

Duplicate file

Not closed, attempt to oper an open file

Not open, attempt to access a closed file
Bad format, error in reading real or integer
Ring buffer overfliow

Write Protect; attempted write to protected diskK
Iltegal blockK number

Illtegal buffer address

Page 185

PD@-3 System Reference Mariual

Page 186

Appendices
. APPENDIX Bz EXECUTIONM ERRORS

System error

Invailid index, value out of range
No segment, bad code file

Exit from uncalled procedure
Stack overfiow

Integer overfiow

Divide by zero

Invalid memory reference <bus timed out>
User Break

System 1/0 error

User 1/0 error

Unimplemented instruction
Floating Point math error

String too long

WOoONNU&EWON—O

— -
- O

—
rJ

-

—
o

Page 187

PDRQ-2 System Reference Manual

Page 188

Appendices
AFFENDIX C: I/0 UNIT ASSIGNMENTS

‘This section describes the hardware devices assigned to the
system’'s physical unit nrumbers, The operating system contains
software drivers to support 1/0 to the indicated devices, GSee the
Hardware User 's Manual for details on the devices listed below,
Physical units are described in section 2.1,2, The Programmer s
Marnual describes Unit 1/0 operations.

Unit Number PDR-3 Device Assignment

1 Console port (echo)

2 Console port (no echo)

3 unassigned

4 Floppy Drive 0

S Floppy Drive 1

6 LPV-11 (FFAO hex) parallel printer
7 unassigned

e serial printer port

9 RP-02 (FEE4 hex) Logical Disk 0
10 RP-02 (FEE4 hex) Logical Disk 1
11 RP-02 (FEE4 hex) Logical Disk 2
12 RP-02 (FEE4 hex) Logical Disk 3
13 DLV-11J (FEAQO hex) Port 0 Input
14 DLV-11J (FEAO hex) Port 0 Qutput
15 DLV-11d (FEA4 hex) Port 1| Input
16 DLV-11J (FEA4 hex) Port 1 Output
17 DLV-11J (FEA8 hex) Port 2 Input
i8 DLV-11J (FEA& hex) Port 2 Output
19 DLV-11J (FERBR8 hex) Port 3 Input

2 DLV-11J (FER8 hex) Port 3 Output
128 Keyhoard Type-Ahead Buffer (write only)
129 Fast console output

NOTE - Hex numbers displayed with I/0 device names indicate the
memory address used to communicate with the device,

-NOTE - The assignments shown here may change'in future versions of
the system.

Page 189

PDQ-3 System Reference Manmual

Fage 190

Appendices

APFENDIX Dz COFMPILER SYNTAX ERRORS

SNMOU s WM -

SWN=oWOWONNINLEDON—-OWOVR
s 20 S8 84 4e B0 S0 85 #s A4 #F W4 68 6 U6 A4 98 VS U8 S5 D6 44 ¢4 o4

= O
i wr s

o
w

Error in simple type
Identifier expected
‘PROCRAM’ expected
‘) expected

‘1 expected

Illegal symbol

Error in parameter list .
‘OF° expected

“{° expected

Error in type

‘[’ expected

"1’ expected

"END’ expected

"3’ expected

Integer expected

‘=" expected

“BEGIN' expected

Error in declaration part
Error in <{field-list:

‘v’ expected

‘#° expected

‘"Interface’ expected
‘Implementation’ expected
‘Unit’ expected ‘

Error in constant

“1=7 expected

"THEN® expected

"UNTIL® expected

‘DO expected)
‘TO" or "DOWNTO’® expected in for statement
*1F’ expected '
"FILE" expected o _

Error in <factor> (bad expression)
Error in variable C

Must be semaphore

Must be processid .

Identifier declared twice

Low bound exceeds high bound

ldentifier is not of the approprxate c!ass
Undeclared identifier

Sign not allowed

Number expected

Incompatible subrarnge types

File not allowed here

Type must not be real

<{tagfield> type must be scalar or subrange
Incompatible with {tagfield> part

Index type must not be real

Index type must be a scalar or a subrange

Ease type must not be real

Pase type must be a scalar or a subrange_

Page 191

FDQ-3 System Refererice Manual

116 Error in type of stamdard procedure parameter

117 Unsatisfied forward reference

112y Forward reference type identifier in variable declaration
1193: RPe-specified params not O for a forward declared procedure
120 Function result type must ba scalar, subrange or pointer
121y File value parameter not allowed

122 Forward declared function result type can’'t be re-specified
1237 Missing result type im function declaration
124 F-format for reals onmly

125: Error in type of standard funmction parameter
26 Number of parameters doeg not agree with declaration
127: Illega! parameter suhstitution

128: Result type dogs not agree with declarat;on
129 Type confiict of operands

1307 Expression 15 not of set type

131: Tests on equality allaowed only

1232y Strict inclusign rnot allowed

133: File comparison not allowed

124 Illegal type of operangd(s)

135: Type of operand must he hoolean

136: Set element type must he scalar or subrange
137: Get eiement types must he compatible

138: Type of variahle is rniot array

139: Index type is rpt compatible with the declaration
140: Type of variable is not record

i41: Tvpe of variable mugt be fiile or pointer

1427 Illegal parameter gubstitution

143 Illegal tvpe of loaop ¢ontrol variahie

144: Illegal type of expression

145 Type conflict

146: Asgsigrment of files rot allowed

147: Label type incompatihle with selecting expression
148: Subrange bounds mpst be scalar

149: Index type must be integer

130: Assigrment to standard function is not allowed
191y Assignment to formai function is not allowed
132 No such field in this record

133: Type error in read

1534: Actual parameter must be a variable

193: Control variable cannot be formpl or non-local
1%6: Multidefined case |abel

157 Too many cases 1m case statement

158: No such variant in this record

159: Real or strimg tagfields not allowed

160: Previous declaration was not forward

161: Again forward dec¢lared

162: Parameter size must be constant

163: Missing variant 1n declaratian

164: Substitution pf standard proc/func npt allowed
165: Multidefined label

166 Multideclared)abel

167: Undeclared label

168: Urdefined label

169: Ervror in hbase set

170: Value parameter expected

171: Standard file was re-¢declared

[y

T Page 192

QS IR N
COOCO

Appendices

Undeclared external file

Pascal function or procedure expected

Semaphore value parameter not allowed

Nested units not allowed

External declaration not allowed at this nesting

External declaration not allowed in interface section

Segment declaration not alliowed in unit
l.Labels not allowed in interface section
Attempt to open library unsuccessful
Unit not declared in previous uses declaration
‘Uses’ not allowed at this nesting level
Unit not in library

No private files

"Uses’ must be in interface section

Not enough room for this operation
Comment must appear at top of program
Uit not importable

Error in real number - digit expected
String constant must not exceed source line
Integer constant exceeds range

8 or 9 in octal number

Too many scopes of nested identifiers

Too many riested procedures or functions

Too many forward references of procedure entries
Procedure too long

Too many long constants in this procedure

Too many external references

Too many externals

Too many local files

Expression too complicated

Division by zero

No c¢ase provided for this value

Index expression out of hounds

Value to be assigned is out of bhounds
Element expression out of range

Implementation restriction

Implementation restriction

Illegal character in text

Uriexpected end of input

Error in writing code file, not enough room
Error in reading include file

Error in writing list file, not enough room
Call not allowed in separate procedure
Include file rnot legal

Page 193

PD@-3 System Reference Manual

Page 194

AFPENDIX E=

VeNMOUds WN—O

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026

27
030
031
032
033
0=z4
035
036
307

00
01

02
03
04
03
06
07
08
09
0A
OB
0C
0D
OE
OF
10
11

12
13
14
15
16
17
18
19
1A
1R
1C
1D
lE
1F

NUL
SOH
STX
ETX
EOT
ENG
ACK
BEL
BS
HT
LF
VT
FF
CR
S0
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETE
CAN
EM
SUE
ESC
FS
GS
RS
us

Appendices

ASCII CHARACTER SET

0 o)
SNoms W

38

60
el
62
63

040
040
042
043
044
045
046
047
050
051
052
053
054
055
056
057

- 060

o061
062
063
064
064
066
067
070
071
072
073
074
075
076

077

20 SP
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
ac
3D
3E
3F

L~ + %k -~ X RPE

O A T] m[o\jmw&wr-d..‘O\o

d N

Page 195

64
653
&6
67
78
69

CWOSNOU & WP -

[Tt By B B Bt M M M Bt B

81

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
121
132
133
134
133
136
137

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
SB
5C
5D
SE
SF

e, NS X E<CHNADITOZIrNL=IO0OTMOOWDB

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
123
126
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171

172

NN NN
NGO s

— e et e

60
64
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

eV —-mNX XE<CLCaWw TODOII ~Fc T AN TE

EL

POQ -3 System Reference Manual

Page 196

Appendices

AFPFENDIX Fl=

The key definitions shown below fall
definition
Keys are described

(fixed

Chapter" 9,3.1,

Function

ADM 3-A TERMINMAL

in
in

escape
return
delete line
EOF
hackspace
tab stop
accept
cursor down
cursor up
cursor left
cursor right
Stop
Stop (alt.)
Flush output
HDT
Flush input

Set diskK shape

system) or
section 1.3,

Key

ESC

RETURN
RUBQUT
control -C

| -arrow Key
control-1
control-C
d-arrow Key
u-arrow Key
l-arrow Key
r-arrow kKey

control -5
control-Q
control-F
control-P
control-X
control-D

Page 197

“soft"
Soft

in one of two classes:

"h

(user-redefirahbhle).

Keys

are

described

ard”
Hard
in

PDQ-3 System Reference Manual

Page 198

Appendices

APFPENDIX F2=

key Command

The

Keys are
sectionn 9'3610

Furniction

escape
return
delete
EOF

hackspace
tabh stop
accept
cursor
cursor
cursor

up

described

lirne

down

left

SOROC IQ-120 TERMINAL

efinitions

in sys
in

cursor right

Stop
Stop
Fiush
HDT

Flush
Set disk

{alt,)
output

input
shape

key definitions shown below fall
(fived definition

tem) or
section

Key

ESC
RETURN
RUROUT
control-C

| ~arrow key
TAB
home
d-arrow
u-arrow
| -arrow
r-arrow

kKey
kKey
Key
Key

control -8
contraol-@
control-F
control -P
control~-X
control-D

Page 199

in

"soft"

1.3,

one of two classes:
(user-redefinable),

"hard”
Hard
Soft Keys are described

11

PDQ-3 System Reference Manual

Page 200

Appendices

APPENMDIX F3:

ZEMITH

Key Command Definitions

The Key definitions shown below fall

(fixed definition in
Keys are described in section 1.3,

section 9.3.,1.

Function

escape
return

delete line

EOF
backspace
tab stop
accept

cursor down

cursor up

cursor left

cursor right

Stop

Stop (alt.)

Flush output

HDT

Flush input

Set disk shape

Z19

system) or

kKey

ESC

RETUEN
RUBOQUT

line feed
back space
TAB

LINE FEED
d-arrow kKey
u-arrow kKey
|-arrow kKey
r-arrow key

control -8
control -Q
control-F
coritrol -P
control-X
control-D

Page 201

"soft"
Soft

in orie of two classes: "h

(user-redefinabie).

Keys

are

described

ard”
Hard
in

PDQ-3 System Reference Manual

Page 202

Index

$EXEC., TEXT POt ettt r et st e 124
'BACK ".’Q.""..".'.'Q.’.'.’..‘..'.. 25

+ BAD R R S S R R S S S S S S S S R S . o

.CODE L2 0 B O O 2 2 I O DR R N N TN BN BN Y N NN SN S T N SN S T T SN TN S T) 25

+ TEXT TR S N I S N N R S S A S S R S N -t

(accept\ L T S S S S S S S S S S S S TS S S S S SRR S
<barkspace> D O R I I N B I A N S N U S S A S S S S AP
L~ =0
{downr > D I N T I S S S T N B N N N A S S S S S S ST S S '
{eof> LI I R T N I I S S T S S N N S S S S S S S SRS S S S
{esc> I I I I N T N S S S S S A T S S N S S S S S S S SO
(escape} L O I I N S N S T S N S S N S S S S S S S S S S
{etx> L R I I S S S S S S B N N N N B RS S R S S SR SO
<|eFt:} L I A I I e e R R R R N I A I A S A R N S N N I I N N]
(right> L I R I S R N N N N S N N N S S S S S ST S ST S S SRTA

<SPECE} L I N T S S T S S S S S S S S SO S SN ST S S ST SR

auauadaaagaad

b
<Upz L2 R N N I I N B K B I I A I I N 2 I T T R S SN SN S SN SN S S S R }

o
o
O
—

'A(ddust L R O S I N N S N S S S S S N S S S SN S S ST ST S

Aluto- lhdent Vet et ra st arrrr e 105

Accept KEY R N

Anchor N I RN R S R T S S R T R A S~ IC

APChitECture Guide RN 1910)11,17;239?6,113p121)139)
: 148, 176

Assembler N RN 36938

Auto-indent D N N N N NN R R 83,95'98

B(ad RBlocks R T O 52,53;58

BaCKspaCE Key ottt iessreee S

BBCKUP A A R 67}70)135'136
BACKUPOCODE e b s et e e r e e 136

Bad Block trr b r e e rr s e e rras 140

Bad Blocks N R 53,73
Bad Prompt Vet e s et e r e r e a1
Bad.blocks , R 539140
BADBLOCkSCODE L N 2 2 e I B O N N N R AN A] 140
Beglnner S Guide v e e et i e 1

Binder BRI T 149)160
BlDCK LN I K B T B BN B BNY JNE R K N R BN INE IR 2N DR N SR NN N YRR T S RN S N SN) 17’24,27
Block Number vetr b r it e b a st et ety LT
Block-structured Device ev v v vt ven s 16;17
Block-structured Unit RS 16;18,19. 6)51
B‘OCK“StPUCtUPEd Volume EEEEEEEEEEEEEX 18’19
BOOtEP L I O I T T T S S S S S S S S S S S S T SO S S S S Y 185)136
BOOTER. CODE thr b et ettt raas 136
Buffer Overflow teerrer s erairrarss 110
BYtES“ih"aSt'b]OCK RN ~L’24
C(hange L S S T S S S S S S S S S T S S S T A S S S T S S Y S 52)54p151
C(Dmpi)e Lottt tae s e s st e ey 39,114
C(OPY NN N NN NN R R) 85789992
C(Opy Bluffer tiiiiiaroisitiverasrsrasee 92

C(pr Flile oot st rnn ooy 92

Ca’c [N IR IR I N R R B B IR I R B A I I A N A K 2N I R B N I O A A I I) 182
CALC‘CODE L2 20 2N 2N TN BT O K B 2 T N N TN NN TR NN N NN N 2 K N R 2 N N 2 182
CALL s v v vttt st st s et trasasesssressare 126
Clear SCreen v it v it oo st et tnne 37

Code File svrorsvrrtvarniosnnens 22,23

-
-
-
-
-
-
-
-

o
[:1]
0
[0
P
O
w

PD@-3 System

Command Argument R A A S S R R I
Command Character «oooeesees
Command File sovvrvnnrnnrn o
Command File Interpreter ...
Command Mode v veorrnornnns
Command String N S S S A R S R S
Compi]eF L R B A O A N A A A SR RS
Config N B R S S R R S B R B R S S A R
Copydupdir I I R R R N R S A I S RS
D(ate L I S S S S S R N S N S B ST ST Y
Dielete L T S S S S A S S S W N S S S S
D(ISK UPDATE vt vonnoanns
Data File N N NN RN
Data Prompt PR I N N A S R S S R S A
DEC Format ..o vvv v nnnns e
Direction seesvs et ivaneaneas
DISASMWCODE v v v v v v v i onrano
Disassembler .isvoveoarsronns
Disk Directory RN
Disk Drive LR I R B R S R S N S S R R R
Disk File D S T S S S S N S N N S N S Y
Disk Swapping DR A O O N S S S Y
Disk TYPE Key LR R S N S S S R S R
Disk Unit +oivivvrnoioronnns
Disk Volume +vivivriarevsonen
Double Density Floppy Disk .
Double-sided Floppy Disk ...
Duplicate DiPQCtOPY EEEEERE
E(dit vt v iy
ECXIT v vn vt v s nvnonns
O A B
Editor sv oot vansonsas
End of File Key DR S S S S S I
Envirorment P N S N R I S S S S S S ST I
Equals I S T T S S S S S S N S Y
ESCBDQ Key DR I R R S N B S N S S B S
eX(chahge LR I R I S A S R S S S SR S S SR
eXec L N N N B N S B R N S N S R S S S SR
Execution Error +ivevevs s
Flile L A I S R I S B N R S S S SR
FOimd v v vvn o v v v
File Attributes R
File Date v i v rrvvorornnsne
File Designator «veseerravan
File Identifier +voverv oo v
File Length R
File Name v vor oot
File Suffix sivierrnnninians
File System D S N S BN S N
File Title oot nrvrvrsnans
File Type L I N A S R S S S N S S S R ST
File Window +ovierversnveay
Filer vovv o v nnorv v
Filling LI A S N A N I I SN S R R S A
Flush Key RN
Format sves ot v o steasonooas

Reference Manual

L2 J 162
vs 96,99, 106)
v 123 \

ve 2,46,123

vo 161

v 162

ve 2,26,34,35,36,39,47,113,159,1
o 149,150

v 21,79, 142

v 92,55, 81

v+ 84,835, 86,89,93

o 151

v 22,23

v 16,19
v 19,26,49,70, 111

ve 7
ve 7
ve 20,79, 142
L] 40

vy 151

vv 52,56,76

v+ 2,34,35,40, 116, 152
L] 5

ve 83,111

v\ 85,109

Vi 5,10

vy 108

Vo 124

Ve 10,113,187

Voo 4l

.+ 87,89,94,105, 109
vy 22

Ve 22,24

v\ 15,29, 31

vy 15,19,29

v 22424

ve 3,4, 15,22

v 22, 24, 25,29, 31
v 3,14

o 22, 25,26,29, 31
v 22,80

vo B4

v 2,29,41,49

v+ 83,95,96,98,105
ve B

v 74,135,139, 140

Index

FORMAT‘CoDE LA I A N O I TN N 2 2NN 2 TN TN BN R N NN SN Y SN SN N N S 1 139

Glet tet Lt err ettt it eaanry 34,50,51,57
General Prompt Prer s a b rr e r e ey 31

Good Prompt cevivni ittt nntinnnns 31

COTO "..'...0.’.0’."...”0'..’0."'.’ 126

GCOTOXY Prr Ll s e i sttt r s r e er e 149,150, 158
Graphics R I S A S S S S S S S S U U S S S S SN SO ORGRRS I -}

H(alt R R R I N N N S N N A S S S R S S S S S 74

H(ELP;..‘.D"Q.'.‘0.0.0}‘00.."... 151

Hard Key PU Lt Lt et sttt r e e 197,199, 201
Hardware User ‘s Marnual v o v v oo v it b e 1 12)131,181,1D9
HDT R N N R N N N S S S SR S N A S SR S A SR < B |
Iltnitialize R A R R A T S A X

I(nsert I N RN R 84 86 89 95 99 105,109 111
170 Device Er s r s r b e s r s s errarrers 16,17

1/0 Error N N NN NN) 10,12

1/0 Result ., L S T S S S T S N S S S S S W S S S S SN SRS 12,185

Input Flush Key tHi s i r s i e ey B

Input Perpt N R NI S S ST S S S S ST SN GPOR SPSPSC § |

J(ump Per e et s i sttt i e ey 85,89,97
J(Ump MlarkKer +ovisviir it o venss 97

K{rurnch LI T S S R N S S S S S S S N N Y N N Y A S S S S S S S S Y 28,52;58

Key Command oot err st orrrrsree 5

Keyboard sisvrvevnnterisnvrirsiessavess 16

L(dlr‘ .'0"0.’""0‘.......’.’..00.!0'..' 52'56'59
L(ink LI R I L BN L K K B R N Y B B K 2K B Y DN RN AT Y R SN 2N AT SN S S Y N R) 44 1"1
Length SpeCiFiEP RN ﬂﬂ'zf’hg 61 67 7091149118
Libmap P L b s ettt e eress 76,119,144
LIBMAP.CODE L I N 2 2 I I T T TN T S T S N 2N) 144
Libraries R R 119,120
Libraﬁy D R I I S S Y T N S S S N T S S S N S S S ST S ST ST S 25;76,1199144
LIBRAR-I'CODE LN 2 2NE IR N DN IR N DK K R N N I 2N N T T S S SN R SN R Y) 144

Linker L O A T T S S S S S S T S S S SN S S S S ST S S S S 2’34'36;44'119
Literal! Mode D I I R I BN N S N S S S S S N A S S S S ST Y 87'106
Logica\ Volume s iverr vt vrivrvesrrarsre 18

M(ake I N N NN RN 52,61,76,80981
M(argin A R R R 90998,99)105
M(EMOR\' UPDATE L2 IR JNK N TN TR TN 2R N N N K K I I I A K B) 151

vMapper Ve b b et s st ar e s 7243 135,137
MAPPER.CODE LN 2N R BT I JNY IR B BN INE BN 2NN 2NE K JNK JER IR TN JNR T JNK N TN N 2N N) 137

Margins NN NN NN NN R R 83,95,105
Markdupdir R R I N R N R N N S S S A S S S ST S S A S ST S S S S 219142

Marker s oot vt iorrarr oo rrriaress 85

Metasymbcl R T |

Monitor L R I I S T S S T S S S N S T S S S S S S SR S S S S 2942

Monitor Key tar e e s ettt e e 9,131

NCBW s oottt i sttt oot an oo 34,51,62,65
108 I ¥ Y- T V4

ORTine erv st st onrroorrnsrrrvrrass 17

Operating System Pe st et s e 2,23

Output Flush Key R R S S S S S S S S =

fOutput Prompt T TR T T - }

P(age L2 2N N I B B AN 2 2 2 I I I N DY TN TN 2N RN DN K DAY B 2NN 2 T TN INY TN BN I) 85’89’100
P(PeFix N R R Ty 20952963
Paragraph R ey 96,98,99

| =3 2 o4 T 23,76,174

PDQ-3 System

FATCH’CODE L 2L SN I I N I N I N B I B B B B K BN BN Y

ree
PhYSica] Unit oorisrtentsorravronasss
Physical Unit Number +ivvvvivovrrvs
Prefixed Volume «ivivvverrnrevirenn
Prifnter oot v i ittt ons
Printer Spooler tiviev ittt vrvnnnan

PRINTERVCODE v v v ieav v nnosonnnans
PROFILE:TEXT o v vt o ot aovvessonnss
Program Listing L R S R A A N A A A S R)
Phogrammer's Manual o ivvrovvrenin

Prompt Cornventions iviser v norsay
Promptlines L A R R N N N S I N N B S B S R S SN
Prompts L I I T N S S S S S S S S S T S S S S S S Y
(o T I - S T T TS
Qluit E(xit s v s ot oneronnsvoresnn
Quit RetUrnm svevsortar ot ooersrnse
Qluit U(pdate o v nrrrrnriirnsos
Qluit Wilrite D O B S T N N Y N S S N S S N S B O S)
QUIET v i v v vs v oo ssansrsnnnns
Rlemove L R A A A A I I B B R I N S S ST ST B Y B S S S
R(eplace L S S S S S S S S S S S S S A S S S S N N S S
O I
R(Un LN I I I 2 2 I D O DR R O DN N I NN RN NK O 2 I N I I N A)
BEAD v oottt o oo et tvonas
Repeat Factor o v re st sar ot onrnes
|
1= J T S S S O
S({ave L I I R R I K I I I B S S B B N N S S B B S S}
S(et L2 LI R A I N O B L O D R DN DN N DA N NN B I AN I AN R B Y N)
Slet E{nvironment .« oot oo orevosen
Slet Mlarker vovv e vt bsarn oo
e o= 1 o
Separate Compilation viervev v
Serial Device vivi vt ittt
Serial Unit I N A A AR R R B R A S B S A S A S S R)
Serial Volume L S R N S B N N I S N N B S S S N N N)
Setup R R I A N A A N O
Single DEﬂSity F]Oppy Disk sovavnnnns
Single~drive Transfers sorvivo o

SiﬂglE'SidEd FlOppy Disk vrovevvsanenn

Skew L T I I T O S O S S N S I S T I S S R S N R)

Soft KEY D I I I R I I N I B N S A

e e
SOROC MISCINFO v v v v e nrnonon
Space Key L R R N B S S S S S N S R S S ST Y B RN B S)
SPOGIEr v i vttt i e e
Spoolgen R R N R S N A S A N S S R B S SR N S S R S R ST
SPOOLGENVCODE v v v vt v v v v it s s o
StacK Overflow srvers et is st oreis s
Start Key R R
Starting BlocK torvvr it vt ssnnionran

State Flow Diagram +ovrvsesrrvnrvoos
1) S
StOp Key L R N A A A I 2N B IR B N A S S S N S
Substitution String vt s e
SYhtBX Error s overvrrarries st o

Page 206

Reference Manual

v 174
+ 16
v 1B

v 18,20,29,63,71

vy 16,180

v 2,180

v+ 180

vo 124

ve 10,26,113,115,179

s 1,9,10,11,14,17,20,26,31, 113
117,118,119, 144, 189

LI] 31

[] 8

[4 3

v 31,64,90,101, 151

vo 101

e 101

v 101

o 101,110,111

v 126

v o 92,65

v 87,89,102,105,109

v 151

o 34,45, 114, 121

v 125

v 84,86,91,93,94,100, 102

vo 126

v 126

v 34,50,51,66

vv 90,104

o 87,911,105

v 104

vo 135

v 119

ve 16,17, 23

v 16,18,67

v 18,20,26

v 25,149,151

’

v 69

vv 139

v 197,199, 201
v 190

+ 5

v 2,180

e 180

v 180

e 11,118

ve B

() 22)24

v+ 33,35

o 126

v B

v 87

vv 35,36,116, 191

Index

S‘YSCOM L2 R SNK SN TR BEE BN BN BN B)
System File Title
System Monitor ..
System Volume ..
SYSTEM., ASSMBLER
SYSTEM.COMPILER
SYSTEM,EDITOR ..
SYSTEM.FILER ...
SYSTEM,LIERARY .
SYSTEM,LINKER ..
SYSTEM,.LST.TEXT
SYSTEM.MISCINFO
STSTEM.PASCAL ..,
SYSTEM.STARTUP .
SYSTEM. SWAPDISK
SYSTEM;SI'NTAX v
SYSTEM. WRK, CODE
SYSTEM, WRK, TEXT
T.Q'...Q"..QQ.
TCEACH v oo v v v
T(ransfer .44,
Tar*get A A A S AR
Target String .44
Terminal Configuration
Text File oo vovvrnn
Text Mode s o v v ov
Token Mode v v i vvi o
TRAY MISCINFO v v va e
Type-ahead Buffer ...
Type-ahead Flush Key
Type-checking Prompt
Ulpdate vvvrrn vty
Ulser Restart ...,
!JCSD Pascal vvoev
UCSD Pascal System
Urilt vvv v v o
Unit Number ...+
User File Title .
Utility Program .
V(erl‘:y RN EEN
Violumes s

*@ @ @ @ @ ® e e e e e ®w e e e v e e o ° -
* v @ * e * & * * * o e o © e
> * e * & * & * @+ * e + e - =

* * 4 e o e & T & * e ® & e e e o -
* ® * e e * e *® + e e e + e e * e e -

*
L}
+
*
L]
L]
+
’
4
(]
+
’
(]
L]
+
*
+
+
4
+
L
+
4+

e * & 4 & e =+ * e e e *© & ° e O &6 °© o O o e e
e * & e e e e * e * e ® e e o © o 6 o e o e -

+ * * e * e+ & e &+ @+ e+ e + e o =

e * & o+ & e+ e e 2+ -

*
+
L}
*

® @ & + e & + e @ e e e+ 6 e e * + e * e e & *© & e @

VC404 , MISCINFO .
Vector Keys 444
VERBOSE v vvv v
Version Number ...
Volume Identifier
Volume Name «+vo 4
VTS2/.MISCINFO ...,
Wihat BREEEEREEEREEEE
Western Digital ...
Western Digital Forma
Wildcard RN
Work File ...
WRITE .44
WRITELN ..,
Xtamine ...

- o -
® * e ® e + ® e e T & * & + e T & e e * e ° @ € @ O e T e T ® ® e * o C© o * © © o e o e
- -

-
> * * + v e * @ + e * e ® 4 @ + e * e e e e e o6 * & * e ® & o - <«

.
*
+
(4
¢
»
‘.
[}
)
L
.
(]
L]
»
L)
12
+

*
’
L]
L]
1]
L]
+
+
+
Al
L
4
4
4

* @ e e @ * ® & e @ e e e ® e e e e e e o + o e o

* & e & e e * * =

LI A L]

LN] LR}

- @* ® &6 T 4 e 4+ @ & e e + & @ & v e e &6 T 6 e &+ e e e e ° e O & © & C & T 6 e o S & T 4 v e & s e & © o e o e
> & * e ® & * & @ + *e e * e e e e + e + o * e e e e e e e e + & * & & & ® & & 6 *© & & o e o € + © 6 & & * + v @

* ® * & v p T e e e e + e e =
* & o e T e+ @ & e * -

e * * e * e @+ e e e =

- ® * 4 * o * -

* & o o -

+ +
LI 2 2 +
LN I K B K I DN B B]
LI A A A AN)

Page

* * & + e ® e v & ° &+ e &+ e e

e @ 2 e 4 * e > & + e e & & e & e ® e e s @+ + e + T e * 4 + s e 6 e o -

- * o o -

> @ ® o * & e e © o e e

e @ + o & @ e & & * 4 e 4 ° e e @ ®w e € & e e @ o * & o &

® @ e @ ® @ e e & * e e * 6 e+ e e e e @ @ * e T S C e S e S & O e 6 o S @ e 6 *° e v o O
-

* @ ® e ® & @ @6 v & S e T & w & S & + e S & & 4+ & + e e * & * e e & ®© &6 © o o e *e & e & * e w 6 e & * o © o e o
* * e e e e o+ 2+ =

* & * e © & * * e+ e -

- * * o o

]
(=]
~

+ e e 4 * & @& e + e e & + @ e s v e e e e ® e e T e C @ S e T e T O e e e & o e e S e e e o e +

- * ® @+ * o+ @ »

* *® & *®© e ® e ® e e e e o e =

* ¢ e e e e e + v e e e e e e s e e e e e e e e e 4 e e e e e o+ -

- -

-

> @ * o -

*® * & e 6 e e @ + e e e * * & ® @ T + e e @ 6 e & e e T & e &6 @ 6 e o e &+ © + & e & & © e e o e e -

- & * e -

® * & 6 e @ e e & T e @ e e e C e * e T e @ & T & S 6 e & € & e &6 * o O 6 O e e + © o e o

-

- * * e v e e -

® @ & @ & @@ e T S e e S 6 e e @ 6 e + T e FT & € & O o o 4 e 4+ S 4 e & © e e & e & € o ° -

e & * 4 e 4 e & o o o

* e & 4 * e e e e e * e+ ® e e e

* * * e e & e & @ e e * e e e e e e e ® e & e * e e S e e + e o € e @ o O o o @

® e * e 2 s e & e e e e s e e e e e e e e e e o * e e 66 e S e+ e S @ * S e & 6 e T * *© e © o © e * S * o & o e o

149

25

131

18,19,71

25, 38
25,26,39, 117
25,40, 161
25, 41
25,120, 121
25, 44

25

25, 26, 149
25, 26,58, 150
25,36, 43
25,26,118

25
25,26,65,114
25, 26,65

125

151

52,67

127

87

3
17,22,23,61,83
161

87,1086

150

6,123

6

31

34

47 .
113,176

1,2

119,120
16,18, 29

26

2,135
90,102, 107
52,71

150

5, 86,89, 91
126

3
15,18, 29
18,29
150
51,72
1

7

49, 50, 54, 56, 59,61,65,67,70
26,33,36,45,49,57,62,66,114

125
125
52,53,58,73, 140

PDQR-3 System Reference Manual

X(change NI S R AT S A A S ST S A ST SO TF S S ST AU SRR = 3

X({ecute L T T S S S T T S S S S S S S S S S S S S T T S S S B S Y 48)11?
XeCODE ¢ ovvvvorsenstv et rssartrarasess 46,123
XeDEMOITEXT sv vt vev i vanrnveraree 123

TALOE v v v vttt ittt sarersaaes 195,158, 161
TYALOE.CODE s v v v i vt vsrrnrn v enins 161

TesS/NO QUESTION o1ttt 0000 b 000080000040 4949

:(ap G h b sra i a s r s s 36,89,109

~ -y -
A T o « BT 529!’49/9

Page 208

