
PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

≡ Menu 

GO

Python >>>
Python Developer's Guide >>>
PEP Index >>>
PEP 8 -- Style Guide for Python Code

PEP 8 -- Style Guide for Python Code
PEP: 8

Title: Style Guide for Python Code

Author: Guido van Rossum <guido at python.org>,
Barry Warsaw <barry at python.org>,
Nick Coghlan

 <ncoghlan at gmail.com>

Status: Active

Type: Process

Created: 05-Jul-2001

Pos-
Hisory:

05-Jul-2001, 01-Aug-2013

Contents

Introduction
A Foolish Consisency is the Hobgoblin of Little Minds
Code Lay-out

Indentation

Tweets by @ThePSF

The PSF
The Python Software

 Foundation is the organization

 behind Python. Become a

 member of the PSF and help

 advance the software and our

 mission.

Notice: While Javascript is not essential for this website, your interaction with the content will be limited. Please turn Javascript on for the full experience.

Python PSF Docs PyPI Jobs Community

A A Socialize

Smaller

Larger

Reset

 Google+

 Facebook

 Twitter

 Chat on IRC

https://www.python.org/
https://www.python.org/
https://www.python.org/dev/
https://www.python.org/dev/peps/
https://twitter.com/ThePSF
https://www.python.org/
https://www.python.org/
https://www.python.org/psf-landing/
https://docs.python.org/
https://pypi.python.org/
https://www.python.org/jobs/
https://www.python.org/community/
javascript:;
javascript:;
javascript:;
http://plus.google.com/+Python
http://plus.google.com/+Python
http://www.facebook.com/pythonlang?fref=ts
http://www.facebook.com/pythonlang?fref=ts
http://twitter.com/ThePSF
http://twitter.com/ThePSF
https://www.python.org/community/irc/
https://www.python.org/community/irc/

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Tabs or Spaces?
Maximum Line Length
Should a Line Break Before or After a Binary Operator?
Blank Lines
Source File Encoding
Imports
Module Level Dunder Names

String Quotes
Whitespace in Expressions and Statements

Pet Peeves
Other Recommendations

When to Use Trailing Commas
Comments

Block Comments
Inline Comments
Documentation Strings

Naming Conventions
Overriding Principle
Descriptive: Naming Styles
Prescriptive: Naming Conventions

Names to Avoid
ASCII Compatibility
Package and Module Names
Class Names
Type Variable Names
Exception Names
Global Variable Names
Function and Variable Names
Function and Method Arguments
Method Names and Insance Variables
Consants
Designing for Inheritance

Public and Internal Interfaces
Programming Recommendations

Function Annotations
Variable Annotations

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

References
Copyright

Introduction
This document gives coding conventions for the Python code comprising
the sandard library in the main Python

 disribution. Please see the
companion informational PEP describing syle guidelines for the C code
in the C
 implementation of Python [1].

This document and PEP 257 (Docsring Conventions) were adapted from
Guido's original Python Style Guide

 essay, with some additions from
Barry's syle guide [2].

This syle guide evolves over time as additional conventions are
identifed and pas conventions are rendered

 obsolete by changes in
the language itself.

Many projects have their own coding syle guidelines. In the event of any
conficts, such project-specifc guides

 take precedence for that project.

A Foolish Consisency is the Hobgoblin of Little Minds
One of Guido's key insights is that code is read much more often than
it is written. The guidelines provided here

 are intended to improve
the readability of code and make it consisent across the wide
spectrum of Python code.
 As PEP 20 says, "Readability counts".

A syle guide is about consisency. Consisency with this syle guide
is important. Consisency within a project is

 more important.
Consisency within one module or function is the mos important.

However, know when to be inconsisent -- sometimes syle guide
recommendations jus aren't applicable. When

 in doubt, use your bes
judgment. Look at other examples and decide what looks bes. And
don't hesitate to ask!

In particular: do not break backwards compatibility jus to comply with
this PEP!

Some other good reasons to ignore a particular guideline:

1. When applying the guideline would make the code less readable, even
for someone who is used to reading
 code that follows this PEP.

2. To be consisent with surrounding code that also breaks it (maybe
for hisoric reasons) -- although this is also
 an opportunity to
clean up someone else's mess (in true XP syle).

3. Because the code in quesion predates the introduction of the
guideline and there is no other reason to be
 modifying that code.

https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0020

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

4. When the code needs to remain compatible with older versions of
Python that don't support the feature
 recommended by the syle guide.

Code Lay-out

Indentation
Use 4 spaces per indentation level.

Continuation lines should align wrapped elements either vertically
using Python's implicit line joining inside
 parentheses, brackets and
braces, or using a hanging indent [7]. When using a hanging
indent the following

 should be considered; there should be no
arguments on the frs line and further indentation should be used to

clearly disinguish itself as a continuation line.

Yes:

Aligned with opening delimiter.

foo = long_function_name(var_one, var_two,

 var_three, var_four)

More indentation included to disinguish this from the res.

def long_function_name(

 var_one, var_two, var_three,

 var_four):

 print(var_one)

Hanging indents should add a level.

foo = long_function_name(

 var_one, var_two,

 var_three, var_four)

No:

Arguments on frs line forbidden when not using vertical alignment.

foo = long_function_name(var_one, var_two,

 var_three, var_four)

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Further indentation required as indentation is not disinguishable.

def long_function_name(

 var_one, var_two, var_three,

 var_four):

 print(var_one)

The 4-space rule is optional for continuation lines.

Optional:

Hanging indents *may* be indented to other than 4 spaces.

foo = long_function_name(

 var_one, var_two,

 var_three, var_four)

When the conditional part of an if-satement is long enough to require
that it be written across multiple lines, it's

 worth noting that the
combination of a two character keyword (i.e. if), plus a single space,
plus an opening

 parenthesis creates a natural 4-space indent for the
subsequent lines of the multiline conditional. This can
 produce a visual
confict with the indented suite of code nesed inside the if-satement,
which would also

 naturally be indented to 4 spaces. This PEP takes no
explicit position on how (or whether) to further visually
 disinguish such
conditional lines from the nesed suite inside the if-satement.
Acceptable options in this

 situation include, but are not limited to:

No extra indentation.

if (this_is_one_thing and

 that_is_another_thing):

 do_something()

Add a comment, which will provide some disinction in editors

supporting syntax highlighting.

if (this_is_one_thing and

 that_is_another_thing):

 # Since both conditions are true, we can frobnicate.

 do_something()

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Add some extra indentation on the conditional continuation line.

if (this_is_one_thing

 and that_is_another_thing):

 do_something()

(Also see the discussion of whether to break before or after binary
operators below.)

The closing brace/bracket/parenthesis on multiline consructs may
either line up under the frs non-whitespace

 character of the las
line of lis, as in:

my_lis = [

 1, 2, 3,

 4, 5, 6,

]

result = some_function_that_takes_arguments(

 'a', 'b', 'c',

 'd', 'e', 'f',

)

or it may be lined up under the frs character of the line that
sarts the multiline consruct, as in:

my_lis = [

 1, 2, 3,

 4, 5, 6,

]

result = some_function_that_takes_arguments(

 'a', 'b', 'c',

 'd', 'e', 'f',

)

Tabs or Spaces?
Spaces are the preferred indentation method.

Tabs should be used solely to remain consisent with code that is
already indented with tabs.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Python 3 disallows mixing the use of tabs and spaces for indentation.

Python 2 code indented with a mixture of tabs and spaces should be
converted to using spaces exclusively.

When invoking the Python 2 command line interpreter with
the -t option, it issues warnings about code that

 illegally mixes
tabs and spaces. When using -tt these warnings become errors.
These options are highly

 recommended!

Maximum Line Length
Limit all lines to a maximum of 79 characters.

For fowing long blocks of text with fewer sructural resrictions
(docsrings or comments), the line length should

 be limited to 72
characters.

Limiting the required editor window width makes it possible to have
several fles open side-by-side, and works

 well when using code
review tools that present the two versions in adjacent columns.

The default wrapping in mos tools disrupts the visual sructure of the
code, making it more difcult to

 undersand. The limits are chosen to
avoid wrapping in editors with the window width set to 80, even
if the tool

 places a marker glyph in the fnal column when wrapping
lines. Some web based tools may not ofer dynamic

 line wrapping at all.

Some teams srongly prefer a longer line length. For code maintained
exclusively or primarily by a team that can

 reach agreement on this
issue, it is okay to increase the nominal line length from 80 to
100 characters

 (efectively increasing the maximum length to 99
characters), provided that comments and docsrings are sill

 wrapped
at 72 characters.

The Python sandard library is conservative and requires limiting
lines to 79 characters (and

 docsrings/comments to 72).

The preferred way of wrapping long lines is by using Python's implied
line continuation inside parentheses,

 brackets and braces. Long lines
can be broken over multiple lines by wrapping expressions in
parentheses.

 These should be used in preference to using a backslash
for line continuation.

Backslashes may sill be appropriate at times. For example, long,
multiple with-satements cannot use implicit

 continuation, so
backslashes are acceptable:

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

with open('/path/to/some/fle/you/want/to/read') as fle_1, \

 open('/path/to/some/fle/being/written', 'w') as fle_2:

 fle_2.write(fle_1.read())

(See the previous discussion on multiline if-satements for further
thoughts on the indentation of such multiline

 with-satements.)

Another such case is with assert satements.

Make sure to indent the continued line appropriately.

Should a Line Break Before or After a Binary Operator?
For decades the recommended syle was to break after binary operators.
But this can hurt readability in two

 ways: the operators tend to get
scattered across diferent columns on the screen, and each operator is
moved

 away from its operand and onto the previous line. Here, the eye
has to do extra work to tell which items are

 added and which are
subtracted:

No: operators sit far away from their operands

income = (gross_wages +

 taxable_interes +

 (dividends - qualifed_dividends) -

 ira_deduction -

 sudent_loan_interes)

To solve this readability problem, mathematicians and their publishers
follow the opposite convention. Donald

 Knuth explains the traditional
rule in his Computers and Typesetting series: "Although formulas
within a

 paragraph always break after binary operations and relations,
displayed formulas always break before binary
 operations" [3].

Following the tradition from mathematics usually results in more
readable code:

Yes: easy to match operators with operands

income = (gross_wages

 + taxable_interes

 + (dividends - qualifed_dividends)

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

 - ira_deduction

 - sudent_loan_interes)

In Python code, it is permissible to break before or after a binary
operator, as long as the convention is

 consisent locally. For new
code Knuth's syle is suggesed.

Blank Lines
Surround top-level function and class defnitions with two blank
lines.

Method defnitions inside a class are surrounded by a single blank
line.

Extra blank lines may be used (sparingly) to separate groups of
related functions. Blank lines may be omitted

 between a bunch of
related one-liners (e.g. a set of dummy implementations).

Use blank lines in functions, sparingly, to indicate logical sections.

Python accepts the control-L (i.e. ^L) form feed character as
whitespace; Many tools treat these characters as

 page separators, so
you may use them to separate pages of related sections of your fle.
Note, some editors and

 web-based code viewers may not recognize
control-L as a form feed and will show another glyph in its place.

Source File Encoding
Code in the core Python disribution should always use UTF-8 (or ASCII
in Python 2).

Files using ASCII (in Python 2) or UTF-8 (in Python 3) should not have
an encoding declaration.

In the sandard library, non-default encodings should be used only for
tes purposes or when a comment or
 docsring needs to mention an author
name that contains non-ASCII characters; otherwise, using \x,
\u, \U, or

 \N escapes is the preferred way to include
non-ASCII data in sring literals.

For Python 3.0 and beyond, the following policy is prescribed for the
sandard library (see PEP 3131): All

 identifers in the Python
sandard library MUST use ASCII-only identifers, and SHOULD use
English words

 wherever feasible (in many cases, abbreviations and
technical terms are used which aren't English). In

 addition, sring
literals and comments mus also be in ASCII. The only exceptions are
(a) tes cases tesing the

 non-ASCII features, and
(b) names of authors. Authors whose names are not based on the
Latin alphabet (latin-

1, ISO/IEC 8859-1 character set) MUST provide
a transliteration of their names in this character set.

https://www.python.org/dev/peps/pep-3131

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Open source projects with a global audience are encouraged to adopt a
similar policy.

Imports
Imports should usually be on separate lines:

Yes: import os

 import sys

No: import sys, os

It's okay to say this though:

from subprocess import Popen, PIPE

Imports are always put at the top of the fle, jus after any module
comments and docsrings, and before

 module globals and consants.

Imports should be grouped in the following order:

1. Standard library imports.
2. Related third party imports.
3. Local application/library specifc imports.

You should put a blank line between each group of imports.

Absolute imports are recommended, as they are usually more readable
and tend to be better behaved (or at

 leas give better error
messages) if the import sysem is incorrectly confgured (such as
when a directory
 inside a package ends up on sys.path):

import mypkg.sibling

from mypkg import sibling

from mypkg.sibling import example

However, explicit relative imports are an acceptable alternative to
absolute imports, especially when dealing

 with complex package layouts
where using absolute imports would be unnecessarily verbose:

from . import sibling

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

from .sibling import example

Standard library code should avoid complex package layouts and always
use absolute imports.

Implicit relative imports should never be used and have been removed
in Python 3.

When importing a class from a class-containing module, it's usually
okay to spell this:

from myclass import MyClass

from foo.bar.yourclass import YourClass

If this spelling causes local name clashes, then spell them explicitly:

import myclass

import foo.bar.yourclass

and use "myclass.MyClass" and "foo.bar.yourclass.YourClass".

Wildcard imports (from <module> import *) should be avoided, as
they make it unclear which names are

 present in the namespace,
confusing both readers and many automated tools. There is one
defensible use

 case for a wildcard import, which is to republish an
internal interface as part of a public API (for example,

 overwriting
a pure Python implementation of an interface with the defnitions
from an optional accelerator

 module and exactly which defnitions
will be overwritten isn't known in advance).

When republishing names this way, the guidelines below regarding
public and internal interfaces sill apply.

Module Level Dunder Names
Module level "dunders" (i.e. names with two leading and two trailing
underscores) such as __all__, __author__,

 __version__,
etc. should be placed after the module docsring but before any import
satements except from

 __future__ imports. Python mandates that
future-imports mus appear in the module before any other code

 except
docsrings:

"""This is the example module.

This module does suf.

"""

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

from __future__ import barry_as_FLUFL

__all__ = ['a', 'b', 'c']

__version__ = '0.1'

__author__ = 'Cardinal Biggles'

import os

import sys

String Quotes
In Python, single-quoted srings and double-quoted srings are the
same. This PEP does not make a

 recommendation for this. Pick a rule
and sick to it. When a sring contains single or double quote
characters,

 however, use the other one to avoid backslashes in the
sring. It improves readability.

For triple-quoted srings, always use double quote characters to be
consisent with the docsring convention in
 PEP 257.

Whitespace in Expressions and Statements

Pet Peeves
Avoid extraneous whitespace in the following situations:

Immediately inside parentheses, brackets or braces.

Yes: spam(ham[1], {eggs: 2})

No: spam(ham[1], { eggs: 2 })

Between a trailing comma and a following close parenthesis.

Yes: foo = (0,)

No: bar = (0,)

Immediately before a comma, semicolon, or colon:

https://www.python.org/dev/peps/pep-0257

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Yes: if x == 4: print x, y; x, y = y, x

No: if x == 4 : print x , y ; x , y = y , x

However, in a slice the colon acts like a binary operator, and
should have equal amounts on either side

 (treating it as the
operator with the lowes priority). In an extended slice, both
colons mus have the same

 amount of spacing applied. Exception:
when a slice parameter is omitted, the space is omitted.

Yes:

ham[1:9], ham[1:9:3], ham[:9:3], ham[1::3], ham[1:9:]

ham[lower:upper], ham[lower:upper:], ham[lower::sep]

ham[lower+ofset : upper+ofset]

ham[: upper_fn(x) : sep_fn(x)], ham[:: sep_fn(x)]

ham[lower + ofset : upper + ofset]

No:

ham[lower + ofset:upper + ofset]

ham[1: 9], ham[1 :9], ham[1:9 :3]

ham[lower : : upper]

ham[: upper]

Immediately before the open parenthesis that sarts the argument
lis of a function call:

Yes: spam(1)

No: spam (1)

Immediately before the open parenthesis that sarts an indexing or
slicing:

Yes: dct['key'] = ls[index]

No: dct ['key'] = ls [index]

More than one space around an assignment (or other) operator to
align it with another.

Yes:

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

x = 1

y = 2

long_variable = 3

No:

x = 1

y = 2

long_variable = 3

Other Recommendations
Avoid trailing whitespace anywhere. Because it's usually invisible,
it can be confusing: e.g. a backslash

 followed by a space and a
newline does not count as a line continuation marker. Some editors
don't preserve

 it and many projects (like CPython itself) have
pre-commit hooks that reject it.

Always surround these binary operators with a single space on either
side: assignment (=), augmented

 assignment (+=, -=
etc.), comparisons (==, <, >, !=, <>, <=,
>=, in, not in, is, is not), Booleans (and,
or,

 not).

If operators with diferent priorities are used, consider adding
whitespace around the operators with the

 lowes priority(ies). Use
your own judgment; however, never use more than one space, and
always have the

 same amount of whitespace on both sides of a binary
operator.

Yes:

i = i + 1

submitted += 1

x = x*2 - 1

hypot2 = x*x + y*y

c = (a+b) * (a-b)

No:

i=i+1

submitted +=1

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

x = x * 2 - 1

hypot2 = x * x + y * y

c = (a + b) * (a - b)

Don't use spaces around the = sign when used to indicate a
keyword argument or a default parameter value.

Yes:

def complex(real, imag=0.0):

 return magic(r=real, i=imag)

No:

def complex(real, imag = 0.0):

 return magic(r = real, i = imag)

Function annotations should use the normal rules for colons and
always have spaces around the -> arrow if

 present. (See
Function Annotations below for more about function annotations.)

Yes:

def munge(input: AnyStr): ...

def munge() -> AnyStr: ...

No:

def munge(input:AnyStr): ...

def munge()->PosInt: ...

When combining an argument annotation with a default value, use
spaces around the = sign (but only for

 those arguments that have
both an annotation and a default).

Yes:

def munge(sep: AnyStr = None): ...

def munge(input: AnyStr, sep: AnyStr = None, limit=1000): ...

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

No:

def munge(input: AnyStr=None): ...

def munge(input: AnyStr, limit = 1000): ...

Compound satements (multiple satements on the same line) are
generally discouraged.

Yes:

if foo == 'blah':

 do_blah_thing()

do_one()

do_two()

do_three()

Rather not:

if foo == 'blah': do_blah_thing()

do_one(); do_two(); do_three()

While sometimes it's okay to put an if/for/while with a small body
on the same line, never do this for multi-

clause satements. Also
avoid folding such long lines!

Rather not:

if foo == 'blah': do_blah_thing()

for x in ls: total += x

while t < 10: t = delay()

Defnitely not:

if foo == 'blah': do_blah_thing()

else: do_non_blah_thing()

try: something()

fnally: cleanup()

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

do_one(); do_two(); do_three(long, argument,

 lis, like, this)

if foo == 'blah': one(); two(); three()

When to Use Trailing Commas
Trailing commas are usually optional, except they are mandatory when
making a tuple of one element (and in
 Python 2 they have semantics for
the print satement). For clarity, it is recommended to surround
the latter in

 (technically redundant) parentheses.

Yes:

FILES = ('setup.cfg',)

OK, but confusing:

FILES = 'setup.cfg',

When trailing commas are redundant, they are often helpful when a
version control sysem is used, when a lis

 of values, arguments or
imported items is expected to be extended over time. The pattern is
to put each value

 (etc.) on a line by itself, always adding a trailing
comma, and add the close parenthesis/bracket/brace on the

 next line.
However it does not make sense to have a trailing comma on the same
line as the closing delimiter

 (except in the above case of singleton
tuples).

Yes:

FILES = [

 'setup.cfg',

 'tox.ini',

]

initialize(FILES,

 error=True,

)

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

No:

FILES = ['setup.cfg', 'tox.ini',]

initialize(FILES, error=True,)

Comments
Comments that contradict the code are worse than no comments. Always
make a priority of keeping the

 comments up-to-date when the code
changes!

Comments should be complete sentences. The frs word should be
capitalized, unless it is an identifer that

 begins with a lower case
letter (never alter the case of identifers!).

Block comments generally consis of one or more paragraphs built out of
complete sentences, with each

 sentence ending in a period.

You should use two spaces after a sentence-ending period in multi-
sentence comments, except after the fnal

 sentence.

When writing English, follow Strunk and White.

Python coders from non-English speaking countries: please write your
comments in English, unless you are

 120% sure that the code will never
be read by people who don't speak your language.

Block Comments
Block comments generally apply to some (or all) code that follows
them, and are indented to the same level as
 that code. Each line of a
block comment sarts with a # and a single space (unless it is
indented text inside the

 comment).

Paragraphs inside a block comment are separated by a line containing a
single #.

Inline Comments
Use inline comments sparingly.

An inline comment is a comment on the same line as a satement.
Inline comments should be separated by at

 leas two spaces from the
satement. They should sart with a # and a single space.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Inline comments are unnecessary and in fact disracting if they sate
the obvious. Don't do this:

x = x + 1 # Increment x

But sometimes, this is useful:

x = x + 1 # Compensate for border

Documentation Strings
Conventions for writing good documentation srings
(a.k.a. "docsrings") are immortalized in PEP 257.

Write docsrings for all public modules, functions, classes, and
methods. Docsrings are not necessary for

 non-public methods, but
you should have a comment that describes what the method does. This
comment
 should appear after the def line.

PEP 257 describes good docsring conventions. Note that mos
importantly, the """ that ends a multiline

 docsring should be
on a line by itself:

"""Return a foobang

Optional plotz says to frobnicate the bizbaz frs.

"""

For one liner docsrings, please keep the closing """ on
the same line.

Naming Conventions
The naming conventions of Python's library are a bit of a mess, so
we'll never get this completely consisent --

 nevertheless, here are
the currently recommended naming sandards. New modules and packages
(including

 third party frameworks) should be written to these
sandards, but where an exising library has a diferent syle,

internal consisency is preferred.

Overriding Principle
Names that are visible to the user as public parts of the API should
follow conventions that refect usage rather

 than implementation.

https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0257

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Descriptive: Naming Styles
There are a lot of diferent naming syles. It helps to be able to
recognize what naming syle is being used,

 independently from what
they are used for.

The following naming syles are commonly disinguished:

b (single lowercase letter)

B (single uppercase letter)

lowercase

lower_case_with_underscores

UPPERCASE

UPPER_CASE_WITH_UNDERSCORES

CapitalizedWords (or CapWords, or CamelCase -- so named because
of the bumpy look of its letters [4]).

 This is also sometimes known
as StudlyCaps.

Note: When using acronyms in CapWords, capitalize all the
letters of the acronym. Thus HTTPServerError is

 better than
HttpServerError.

mixedCase (difers from CapitalizedWords by initial lowercase
character!)

Capitalized_Words_With_Underscores (ugly!)

There's also the syle of using a short unique prefx to group related
names together. This is not used much in
 Python, but it is mentioned
for completeness. For example, the os.sat() function returns a
tuple whose items

 traditionally have names like s_mode,
s_size, s_mtime and so on. (This is done to emphasize the

correspondence with the felds of the POSIX sysem call sruct, which
helps programmers familiar with that.)

The X11 library uses a leading X for all its public functions. In
Python, this syle is generally deemed

 unnecessary because attribute
and method names are prefxed with an object, and function names are
prefxed

 with a module name.

In addition, the following special forms using leading or trailing
underscores are recognized (these can generally

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

 be combined with any
case convention):

_single_leading_underscore: weak "internal use" indicator.
E.g. from M import * does not import objects

 whose name sarts
with an underscore.

single_trailing_underscore_: used by convention to avoid
conficts with Python keyword, e.g.

Tkinter.Toplevel(maser, class_='ClassName')

__double_leading_underscore: when naming a class attribute,
invokes name mangling (inside class FooBar,

 __boo becomes
_FooBar__boo; see below).

__double_leading_and_trailing_underscore__: "magic" objects or
attributes that live in user-controlled

 namespaces.
E.g. __init__, __import__ or __fle__. Never invent
such names; only use them as documented.

Prescriptive: Naming Conventions

Names to Avoid

Never use the characters 'l' (lowercase letter el), 'O' (uppercase
letter oh), or 'I' (uppercase letter eye) as single

 character variable
names.

In some fonts, these characters are indisinguishable from the
numerals one and zero. When tempted to use 'l',

 use 'L' insead.

ASCII Compatibility

Identifers used in the sandard library mus be ASCII compatible
as described in the
policy section
of PEP 3131.

Package and Module Names

Modules should have short, all-lowercase names. Underscores can be
used in the module name if it improves

 readability. Python packages
should also have short, all-lowercase names, although the use of
underscores is

 discouraged.

When an extension module written in C or C++ has an accompanying
Python module that provides a higher
 level (e.g. more object oriented)
interface, the C/C++ module has a leading underscore
(e.g. _socket).

https://www.python.org/dev/peps/pep-3131/#policy-specification
https://www.python.org/dev/peps/pep-3131

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Class Names

Class names should normally use the CapWords convention.

The naming convention for functions may be used insead in cases where
the interface is documented and used

 primarily as a callable.

Note that there is a separate convention for builtin names: mos builtin
names are single words (or two words

 run together), with the CapWords
convention used only for exception names and builtin consants.

Type Variable Names

Names of type variables introduced in PEP 484 should normally use CapWords
preferring short names: T,

 AnyStr, Num. It is recommended to add
sufxes _co or _contra to the variables used to declare covariant
or

 contravariant behavior correspondingly:

from typing import TypeVar

VT_co = TypeVar('VT_co', covariant=True)

KT_contra = TypeVar('KT_contra', contravariant=True)

Exception Names

Because exceptions should be classes, the class naming convention
applies here. However, you should use the

 sufx "Error" on your
exception names (if the exception actually is an error).

Global Variable Names

(Let's hope that these variables are meant for use inside one module
only.) The conventions are about the same

 as those for functions.

Modules that are designed for use via from M import * should use
the __all__ mechanism to prevent exporting

 globals, or use the
older convention of prefxing such globals with an underscore (which
you might want to do to

 indicate these globals are "module
non-public").

Function and Variable Names

https://www.python.org/dev/peps/pep-0484

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Function names should be lowercase, with words separated by
underscores as necessary to improve

 readability.

Variable names follow the same convention as function names.

mixedCase is allowed only in contexts where that's already the
prevailing syle (e.g. threading.py), to retain

 backwards
compatibility.

Function and Method Arguments

Always use self for the frs argument to insance methods.

Always use cls for the frs argument to class methods.

If a function argument's name clashes with a reserved keyword, it is
generally better to append a single trailing
 underscore rather than
use an abbreviation or spelling corruption. Thus class_ is better
than clss. (Perhaps

 better is to avoid such clashes by using a
synonym.)

Method Names and Insance Variables

Use the function naming rules: lowercase with words separated by
underscores as necessary to improve

 readability.

Use one leading underscore only for non-public methods and insance
variables.

To avoid name clashes with subclasses, use two leading underscores to
invoke Python's name mangling rules.

Python mangles these names with the class name: if class Foo has an
attribute named __a, it cannot be

 accessed by Foo.__a. (An
insisent user could sill gain access by calling Foo._Foo__a.)
Generally, double leading

 underscores should be used only to avoid
name conficts with attributes in classes designed to be subclassed.

Note: there is some controversy about the use of __names (see below).

Consants

Consants are usually defned on a module level and written in all
capital letters with underscores separating
 words. Examples include
MAX_OVERFLOW and TOTAL.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Designing for Inheritance

Always decide whether a class's methods and insance variables
(collectively: "attributes") should be public or

 non-public. If in
doubt, choose non-public; it's easier to make it public later than to
make a public attribute non-

public.

Public attributes are those that you expect unrelated clients of your
class to use, with your commitment to avoid

 backwards incompatible
changes. Non-public attributes are those that are not intended to be
used by third

 parties; you make no guarantees that non-public
attributes won't change or even be removed.

We don't use the term "private" here, since no attribute is really
private in Python (without a generally

 unnecessary amount of work).

Another category of attributes are those that are part of the
"subclass API" (often called "protected" in other

 languages). Some
classes are designed to be inherited from, either to extend or modify
aspects of the class's

 behavior. When designing such a class, take
care to make explicit decisions about which attributes are public,

which are part of the subclass API, and which are truly only to be
used by your base class.

With this in mind, here are the Pythonic guidelines:

Public attributes should have no leading underscores.

If your public attribute name collides with a reserved keyword,
append a single trailing underscore to your

 attribute name. This is
preferable to an abbreviation or corrupted spelling. (However,
notwithsanding this

 rule, 'cls' is the preferred spelling for any
variable or argument which is known to be a class, especially the

frs argument to a class method.)

Note 1: See the argument name recommendation above for class methods.

For simple public data attributes, it is bes to expose jus the
attribute name, without complicated

 accessor/mutator methods. Keep
in mind that Python provides an easy path to future enhancement,
should

 you fnd that a simple data attribute needs to grow
functional behavior. In that case, use properties to hide

functional implementation behind simple data attribute access
syntax.

Note 1: Properties only work on new-syle classes.

Note 2: Try to keep the functional behavior side-efect free,
although side-efects such as caching are

 generally fne.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Note 3: Avoid using properties for computationally expensive
operations; the attribute notation makes the

 caller believe that
access is (relatively) cheap.

If your class is intended to be subclassed, and you have attributes
that you do not want subclasses to use,

 consider naming them with
double leading underscores and no trailing underscores. This
invokes Python's

 name mangling algorithm, where the name of the
class is mangled into the attribute name. This helps avoid

attribute name collisions should subclasses inadvertently contain
attributes with the same name.

Note 1: Note that only the simple class name is used in the mangled
name, so if a subclass chooses both the

 same class name and attribute
name, you can sill get name collisions.

Note 2: Name mangling can make certain uses, such as debugging and
__getattr__(), less convenient.

 However the name mangling
algorithm is well documented and easy to perform manually.

Note 3: Not everyone likes name mangling. Try to balance the
need to avoid accidental name clashes with

 potential use by
advanced callers.

Public and Internal Interfaces
Any backwards compatibility guarantees apply only to public interfaces.
Accordingly, it is important that users be

 able to clearly disinguish
between public and internal interfaces.

Documented interfaces are considered public, unless the documentation
explicitly declares them to be

 provisional or internal interfaces exempt
from the usual backwards compatibility guarantees. All undocumented

interfaces should be assumed to be internal.

To better support introspection, modules should explicitly declare the
names in their public API using the
 __all__ attribute. Setting
__all__ to an empty lis indicates that the module has no public API.

Even with __all__ set appropriately, internal interfaces (packages,
modules, classes, functions, attributes or

 other names) should sill be
prefxed with a single leading underscore.

An interface is also considered internal if any containing namespace
(package, module or class) is considered

 internal.

Imported names should always be considered an implementation detail.
Other modules mus not rely on indirect

 access to such imported names
unless they are an explicitly documented part of the containing module's
API,
 such as os.path or a package's __init__ module that exposes
functionality from submodules.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Programming Recommendations
Code should be written in a way that does not disadvantage other
implementations of Python (PyPy, Jython,

 IronPython, Cython, Psyco,
and such).

For example, do not rely on CPython's efcient implementation of
in-place sring concatenation for
 satements in the form a += b
or a = a + b. This optimization is fragile even in CPython (it
only works for

 some types) and isn't present at all in implementations
that don't use refcounting. In performance sensitive
 parts of the
library, the ''.join() form should be used insead. This will
ensure that concatenation occurs in

 linear time across various
implementations.

Comparisons to singletons like None should always be done with
is or is not, never the equality operators.

Also, beware of writing if x when you really mean if x is not
None -- e.g. when tesing whether a variable

 or argument that
defaults to None was set to some other value. The other value might
have a type (such as a

 container) that could be false in a boolean
context!

Use is not operator rather than not ... is. While both
expressions are functionally identical, the former is

 more readable
and preferred.

Yes:

if foo is not None:

No:

if not foo is None:

When implementing ordering operations with rich comparisons, it is
bes to implement all six operations

 (__eq__, __ne__,
__lt__, __le__, __gt__, __ge__) rather than relying
on other code to only exercise a

 particular comparison.

To minimize the efort involved, the functools.total_ordering()
decorator provides a tool to generate

 missing comparison methods.

PEP 207 indicates that refexivity rules are assumed by Python.
Thus, the interpreter may swap y > x with x

 < y, y >= x
with x <= y, and may swap the arguments of x == y and x !=
y . The sort() and min()

https://www.python.org/dev/peps/pep-0207

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

 operations are guaranteed to use
the < operator and the max() function uses the >
operator. However, it is

 bes to implement all six operations so
that confusion doesn't arise in other contexts.

Always use a def satement insead of an assignment satement that binds
a lambda expression directly to

 an identifer.

Yes:

def f(x): return 2*x

No:

f = lambda x: 2*x

The frs form means that the name of the resulting function object is
specifcally 'f' insead of the generic

 '<lambda>'. This is more
useful for tracebacks and sring representations in general. The use
of the

 assignment satement eliminates the sole beneft a lambda
expression can ofer over an explicit def

 satement (i.e. that it can
be embedded inside a larger expression)

Derive exceptions from Exception rather than BaseException.
Direct inheritance from BaseException is

 reserved for exceptions
where catching them is almos always the wrong thing to do.

Design exception hierarchies based on the disinctions that code
catching the exceptions is likely to need,

 rather than the locations
where the exceptions are raised. Aim to answer the quesion
"What went wrong?"
 programmatically, rather than only sating that
"A problem occurred" (see PEP 3151 for an example of this

 lesson being
learned for the builtin exception hierarchy)

Class naming conventions apply here, although you should add the
sufx "Error" to your exception classes if

 the exception is an
error. Non-error exceptions that are used for non-local fow control
or other forms of

 signaling need no special sufx.

Use exception chaining appropriately. In Python 3, "raise X from Y"
should be used to indicate explicit

 replacement without losing the
original traceback.

When deliberately replacing an inner exception (using "raise X" in
Python 2 or "raise X from None" in Python

 3.3+), ensure that relevant
details are transferred to the new exception (such as preserving the
attribute name

 when converting KeyError to AttributeError, or
embedding the text of the original exception in the new

https://www.python.org/dev/peps/pep-3151

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

 exception
message).

When raising an exception in Python 2, use raise ValueError('message')
insead of the older form raise

 ValueError, 'message'.

The latter form is not legal Python 3 syntax.

The paren-using form also means that when the exception arguments are
long or include sring formatting,

 you don't need to use line
continuation characters thanks to the containing parentheses.

When catching exceptions, mention specifc exceptions whenever
possible insead of using a bare except:
 clause:

try:

 import platform_specifc_module

except ImportError:

 platform_specifc_module = None

A bare except: clause will catch SysemExit and
KeyboardInterrupt exceptions, making it harder to interrupt a

program with Control-C, and can disguise other problems. If you
want to catch all exceptions that signal
 program errors, use
except Exception: (bare except is equivalent to except
BaseException:).

A good rule of thumb is to limit use of bare 'except' clauses to two
cases:

1. If the exception handler will be printing out or logging the
traceback; at leas the user will be aware that an
 error has
occurred.

2. If the code needs to do some cleanup work, but then lets the
exception propagate upwards with raise.
 try...fnally
can be a better way to handle this case.

When binding caught exceptions to a name, prefer the explicit name
binding syntax added in Python 2.6:

try:

 process_data()

except Exception as exc:

 raise DataProcessingFailedError(sr(exc))

This is the only syntax supported in Python 3, and avoids the
ambiguity problems associated with the older

 comma-based syntax.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

When catching operating sysem errors, prefer the explicit exception
hierarchy introduced in Python 3.3 over

 introspection of errno
values.

Additionally, for all try/except clauses, limit the try clause
to the absolute minimum amount of code

 necessary. Again, this
avoids masking bugs.

Yes:

try:

 value = collection[key]

except KeyError:

 return key_not_found(key)

else:

 return handle_value(value)

No:

try:

 # Too broad!

 return handle_value(collection[key])

except KeyError:

 # Will also catch KeyError raised by handle_value()

 return key_not_found(key)

When a resource is local to a particular section of code, use a
with satement to ensure it is cleaned up

 promptly and reliably
after use. A try/fnally satement is also acceptable.

Context managers should be invoked through separate functions or methods
whenever they do something

 other than acquire and release resources.

Yes:

with conn.begin_transaction():

 do_suf_in_transaction(conn)

No:

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

with conn:

 do_suf_in_transaction(conn)

The latter example doesn't provide any information to indicate that
the __enter__ and __exit__ methods are

 doing something other
than closing the connection after a transaction. Being explicit is
important in this case.

Be consisent in return satements. Either all return satements in
a function should return an expression, or

 none of them should. If
any return satement returns an expression, any return satements
where no value is
 returned should explicitly sate this as return
None , and an explicit return satement should be present at the

end of the function (if reachable).

Yes:

def foo(x):

 if x >= 0:

 return math.sqrt(x)

 else:

 return None

def bar(x):

 if x < 0:

 return None

 return math.sqrt(x)

No:

def foo(x):

 if x >= 0:

 return math.sqrt(x)

def bar(x):

 if x < 0:

 return

 return math.sqrt(x)

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Use sring methods insead of the sring module.

String methods are always much faser and share the same API with
unicode srings. Override this rule if

 backwards compatibility with
Pythons older than 2.0 is required.

Use ''.sartswith() and ''.endswith() insead of sring
slicing to check for prefxes or sufxes.

sartswith() and endswith() are cleaner and less error prone:

Yes: if foo.sartswith('bar'):

No: if foo[:3] == 'bar':

Object type comparisons should always use isinsance() insead of
comparing types directly.

Yes: if isinsance(obj, int):

No: if type(obj) is type(1):

When checking if an object is a sring, keep in mind that it might
be a unicode sring too! In Python 2, sr and

 unicode have a
common base class, basesring, so you can do:

if isinsance(obj, basesring):

Note that in Python 3, unicode and basesring no longer exis
(there is only sr) and a bytes object is no longer

 a kind of
sring (it is a sequence of integers insead).

For sequences, (srings, liss, tuples), use the fact that empty
sequences are false.

Yes: if not seq:

 if seq:

No: if len(seq):

 if not len(seq):

Don't write sring literals that rely on signifcant trailing
whitespace. Such trailing whitespace is visually

 indisinguishable
and some editors (or more recently, reindent.py) will trim them.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Don't compare boolean values to True or False using ==.

Yes: if greeting:

No: if greeting == True:

Worse: if greeting is True:

Function Annotations
With the acceptance of PEP 484, the syle rules for function
annotations are changing.

In order to be forward compatible, function annotations in Python 3
code should preferably use PEP 484

 syntax. (There are some
formatting recommendations for annotations in the previous section.)

The experimentation with annotation syles that was recommended
previously in this PEP is no longer

 encouraged.

However, outside the sdlib, experiments within the rules of PEP 484
are now encouraged. For example,

 marking up a large third party
library or application with PEP 484 syle type annotations,
reviewing how easy it

 was to add those annotations, and observing
whether their presence increases code undersandability.

The Python sandard library should be conservative in adopting such
annotations, but their use is allowed for

 new code and for big
refactorings.

For code that wants to make a diferent use of function annotations
it is recommended to put a comment of

 the form:

type: ignore

near the top of the fle; this tells type checker to ignore all
annotations. (More fne-grained ways of disabling
 complaints from
type checkers can be found in PEP 484.)

Like linters, type checkers are optional, separate tools. Python
interpreters by default should not issue any

 messages due to type
checking and should not alter their behavior based on annotations.

Users who don't want to use type checkers are free to ignore them.
However, it is expected that users of

 third party library packages
may want to run type checkers over those packages. For this purpose
PEP 484

 recommends the use of sub fles: .pyi fles that are read
by the type checker in preference of the

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

 corresponding .py fles.
Stub fles can be disributed with a library, or separately (with
the library author's
 permission) through the typeshed repo [5].

For code that needs to be backwards compatible, type annotations
can be added in the form of comments.

 See the relevant section of
PEP 484 [6].

Variable Annotations
PEP 526 introduced variable annotations. The syle recommendations for them are
similar to those on function

 annotations described above:

Annotations for module level variables, class and insance variables,
and local variables should have a single

 space after the colon.

There should be no space before the colon.

If an assignment has a right hand side, then the equality sign should have
exactly one space on both sides.

Yes:

code: int

class Point:

 coords: Tuple[int, int]

 label: sr = '<unknown>'

No:

code:int # No space after colon

code : int # Space before colon

class Tes:

 result: int=0 # No spaces around equality sign

Although the PEP 526 is accepted for Python 3.6, the variable annotation
syntax is the preferred syntax for

 sub fles on all versions of Python
(see PEP 484 for details).

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0484

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Footnotes

[7] Hanging indentation is a type-setting syle where all
the lines in a paragraph are indented except the

 frs line. In
the context of Python, the term is used to describe a syle where
the opening parenthesis

 of a parenthesized satement is the las
non-whitespace character of the line, with subsequent lines

 being
indented until the closing parenthesis.

References
[1] PEP 7, Style Guide for C Code, van Rossum

[2] Barry's GNU Mailman syle guide
http://barry.warsaw.us/software/STYLEGUIDE.txt

[3] Donald Knuth's The TeXBook , pages 195 and 196.

[4] http://www.wikipedia.com/wiki/CamelCase

[5] Typeshed repo
https://github.com/python/typeshed

[6] Suggesed syntax for Python 2.7 and sraddling code
https://www.python.org/dev/peps/pep-

0484/#suggesed-syntax-for-python-2-7-and-sraddling-code

Copyright
This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/maser/pep-0008.txt

About

Applications

Quotes

Getting Started

Help

Downloads

All releases

Source code

Windows

Mac OS X

Documentation

Docs

Audio/Visual Talks

Beginner's Guide

Developer's Guide

Community

Diversity

Mailing Liss

IRC

Forums

Success Stories

Arts

Business

Education

Engineering

News

Python News

Community News

PSF News

PyCon News

https://www.python.org/dev/peps/pep-0007
http://barry.warsaw.us/software/STYLEGUIDE.txt
http://www.wikipedia.com/wiki/CamelCase
https://github.com/python/typeshed
https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
https://github.com/python/peps/blob/master/pep-0008.txt
https://www.python.org/about/
https://www.python.org/about/apps/
https://www.python.org/about/quotes/
https://www.python.org/about/gettingstarted/
https://www.python.org/about/help/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/source/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/mac-osx/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/av
https://wiki.python.org/moin/BeginnersGuide
https://devguide.python.org/
https://www.python.org/community/
https://www.python.org/community/diversity/
https://www.python.org/community/lists/
https://www.python.org/community/irc/
https://www.python.org/community/forums/
https://www.python.org/about/success/
https://www.python.org/about/success/#arts
https://www.python.org/about/success/#business
https://www.python.org/about/success/#education
https://www.python.org/about/success/#engineering
https://www.python.org/blogs/
https://www.python.org/blogs/
http://planetpython.org/
http://pyfound.blogspot.com/
http://pycon.blogspot.com/

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Help & General Contact
 Diversity Initiatives
 Submit Website Bug
 Status

Copyright ©2001-2018.
 Python Software Foundation
 Legal Statements
 Privacy Policy
 Powered by Rackspace

Python Brochure Other Platforms

License

Alternative
 Implementations

FAQ

Non-English Docs

PEP Index

Python Books

Python Essays

Python Conferences

Special Interes Groups

Python Wiki

Python Logo

Merchandise

Community Awards

Code of Conduct

Government

Scientifc

Software Development
Events

Python Events

User Group Events

Python Events Archive

User Group Events
 Archive

Submit an Event

Contributing

Developer's Guide

Issue Tracker

python-dev lis

Core Mentorship

https://www.python.org/about/help/
https://www.python.org/about/help/
https://www.python.org/about/help/
https://www.python.org/community/diversity/
https://www.python.org/community/diversity/
https://github.com/python/pythondotorg/issues
https://status.python.org/
https://status.python.org/
https://www.python.org/psf-landing/
https://www.python.org/about/legal/
https://www.python.org/privacy/
https://www.python.org/psf/sponsorship/sponsors/
http://brochure.getpython.info/
https://www.python.org/download/other/
https://docs.python.org/3/license.html
https://www.python.org/download/alternatives
https://www.python.org/download/alternatives
https://docs.python.org/faq/
http://wiki.python.org/moin/Languages
http://python.org/dev/peps/
https://wiki.python.org/moin/PythonBooks
https://www.python.org/doc/essays/
https://www.python.org/community/workshops/
https://www.python.org/community/sigs/
https://wiki.python.org/moin/
https://www.python.org/community/logos/
https://www.python.org/community/merchandise/
https://www.python.org/community/awards
https://www.python.org/psf/codeofconduct/
https://www.python.org/about/success/#government
https://www.python.org/about/success/#scientific
https://www.python.org/about/success/#software-development
https://www.python.org/events/
https://www.python.org/events/python-events
https://www.python.org/events/python-user-group/
https://www.python.org/events/python-events/past/
https://www.python.org/events/python-user-group/past/
https://www.python.org/events/python-user-group/past/
https://wiki.python.org/moin/PythonEventsCalendar#Submitting_an_Event
https://www.python.org/dev/
https://devguide.python.org/
https://bugs.python.org/
https://mail.python.org/mailman/listinfo/python-dev
https://www.python.org/dev/core-mentorship/

	python.org
	PEP 8 -- Style Guide for Python Code | Python.org

	9yZy9kZXYvcGVwcy9wZXAtMDAwOC8A:
	form2:
	q: Search
	submit:

