PEP 8 -- Style Guide for Python Code | Python.org

Notice: While Javascript is not essential for this website, your interaction with the content will be limited. Please turn Javascript on for the full experience.

Python

.G‘ pgthon e | T | O Socialize

Smalle [Google+
Larger [Facebook

Reset [1 Twitter

[l ChatonIRC
Tweets by @ThePSF Python >>> Python Developer's Guide >>> PEP Index >>> PEP 8 -- Style Guide for Python Code
The PSF PEP 8 -- Style Guide for Python Code
The Python Software
Foundation is the organization PEP: 8
behind Python. Become a Title: Style Guide for Python Code
member of the PSF and help Author: Guido van Rossum <guido at python.org>,Barry Warsaw <barry at python.org>,Nick Coghlan

advance the software and our <ncoghlan at gmail.com>

mission. Status: Active

Type: Process
Created: 05-Jul-2001

Post- 05-Jul-2001, 01-Aug-2013
History:

Contents

= [ntroduction
= A Foolish Consistency is the Hobgoblin of Little Minds
= Code Lay-out

= |ndentation

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

https://www.python.org/
https://www.python.org/
https://www.python.org/dev/
https://www.python.org/dev/peps/
https://twitter.com/ThePSF
https://www.python.org/
https://www.python.org/
https://www.python.org/psf-landing/
https://docs.python.org/
https://pypi.python.org/
https://www.python.org/jobs/
https://www.python.org/community/
javascript:;
javascript:;
javascript:;
http://plus.google.com/+Python
http://plus.google.com/+Python
http://www.facebook.com/pythonlang?fref=ts
http://www.facebook.com/pythonlang?fref=ts
http://twitter.com/ThePSF
http://twitter.com/ThePSF
https://www.python.org/community/irc/
https://www.python.org/community/irc/

PEP 8 -- Style Guide for Python Code | Python.org
Tabs or Spaces?

= Maximum Line Length
= Should a Line Break Before or After a Binary Operator?
= Blank Lines
= Source File Encoding
= |mports
= Module Level Dunder Names
= String Quotes
= Whitespace in Expressions and Statements
= Pet Peeves
= Other Recommendations

When to Use Trailing Commas
= Comments
= Block Comments
= [nline Comments
= Documentation Strings
= Naming Conventions
= Overriding Principle
= Descriptive: Naming Styles
= Prescriptive: Naming Conventions
= Names to Avoid
= ASCIl Compatibility
= Package and Module Names
= Class Names
= Type Variable Names
= Exception Names
= Global Variable Names
= Function and Variable Names
= Function and Method Arguments
= Method Names and Instance Variables
= Constants
= Designing for Inheritance
= Public and Internal Interfaces
= Programming Recommendations
= Function Annotations
= Variable Annotations

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

= References
= Copyright

Introduction

This document gives coding conventions for the Python code comprisingthe standard library in the main Python
distribution. Please see thecompanion informational PEP describing style guidelines for the C codein the C

implementation of Python [1].
This document and PEP 257 (Docstring Conventions) were adapted fromGuido's original Python Style Guide
essay, with some additions fromBarry's style guide [2].

This style guide evolves over time as additional conventions areidentified and past conventions are rendered

obsolete by changes inthe language itself.

Many projects have their own coding style guidelines. In the event of anyconflicts, such project-specific guides

take precedence for that project.

A Foolish Consistency is the Hobgoblin of Little Minds
One of Guido's key insights is that code is read much more often thanit/is written. The guidelines provided here
are intended to improvethe readability of code and make it consistent across the widespectrum of Python code.
As PEP 20 says, "Readability counts".
A style guide is about consistency. Consistency with this style guideis important. Consistency within a project is
more important.Consistency within one module or function is the most important.

However, know when to be inconsistent -- sometimes style guidefecommendations just aren't applicable. When

in doubt, use your bestjudgment. Look at other examples and decide what looks best. Anddon't hesitate to ask!
In particular: do not break backwards compatibility just to comply withthis PEP!

Some other good reasons to ignore a particular guideline:

1. When applying the guideline would make the code less readable, evenfor someone who is used to reading

code that follows this PEP.
2. To be consistent with surrounding code that also breaks it (maybefor historic reasons) -- although this is also

an opportunity toclean up someone else's mess (in true XP style).
3. Because the code in question predates the introduction of theguideline and there is no other reason to be

modifying that code.

https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0020

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

4. When the code needs to remain compatible with older versions ofPython that don't support the feature
recommended by the style guide.

Code Lay-out

Indentation

Use 4 spaces per indentation level.

Continuation lines should align wrapped elements either verticallyusing Python's implicit line joining inside
parentheses, brackets andbraces, or using a hanging indent [7]. When using a hangingindent the following
should be considered; there should be noarguments on the first line and further indentation should be used to

clearly distinguish itself as a continuation line.

Yes:

Aligned with opening delimiter.
foo = long_function_name(var_one, var_two,

var_three, var_four)

More indentation included to distinguish this from the rest.
def long_function_name(

var_one, var_two, var_three,

var_four):

print(var_one)

Hanging indents should add a level.
foo = long_function_name(
var_one, var_two,

var_three, var_four)

No:

Arguments on first 1ine forbidden when not using vertical alignment.
foo = long_function_name(var_one, var_two,

var_three, var_four)

PEP 8 -- Style Guide for Python Code | Python.org

Further indentation required as indentation is not distinguishable.
def long_function_name(

var_one, var_two, var_three,

var_four):

print(var_one)

The 4-space rule is optional for continuation lines.

Optional:

Hanging indents *may* be indented to other than 4 spaces.
foo = long_function_name(
var_one, var_two,

var_three, var_four)

When the conditional part of an jf-statement is long enough to requirethat it be written across multiple lines, it's
worth noting that thecombination of a two character keyword (i.e. if), plus a single space,plus an opening
parenthesis creates a natural 4-space indent for thesubsequent lines of the multiline conditional. This can
produce a visualconflict with the indented suite of code nested inside the jf-statement,which would also
naturally be indented to 4 spaces. This PEP takes noexplicit position on how (or whether) to further visually
distinguish suchconditional lines from the nested suite inside the jf-statement.Acceptable options in this

situation include, but are not limited to:

No extra indentation.

if (this_is_one_thing and
that_is_another_thing):
do_something()

Add a comment, which will provide some distinction in editors
supporting syntax highlighting.
if (this_is_one_thing and

that_is_another_thing):

Since both conditions are true, we can frobnicate.

do_something()

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org
Add some extra indentation on the conditional continuation line.

if (this_is_one_thing
and that_is_another_thing):
do_something()

(Also see the discussion of whether to break before or after binaryoperators below.)

The closing brace/bracket/parenthesis on multiline constructs mayeither line up under the first non-whitespace

character of the lastline of list, as in:

result = some_function_that_takes_arguments(
'a', 'b', 'c',
a4, e, 'f',

)

or it may be lined up under the first character of the line thatstarts the multiline construct, as in:

my list = [
1, 2, 3,
4, 5, 6,
1

result = some_function_that_takes_arguments(

uau) ubu) e s

'd') 'e') "F')

Tabs or Spaces?

Spaces are the preferred indentation method.

Tabs should be used solely to remain consistent with code that isalready indented with tabs.

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Python 3 disallows mixing the use of tabs and spaces for indentation.
Python 2 code indented with a mixture of tabs and spaces should beconverted to using spaces exclusively.

When invoking the Python 2 command line interpreter withthe _¢ option, it issues warnings about code that

illegally mixestabs and spaces. When using -+t these warnings become errors.These options are highly

recommended!

Maximum Line Length

Limit all lines to a maximum of 79 characters.

For flowing long blocks of text with fewer structural restrictions(docstrings or comments), the line length should

be limited to 72characters.

Limiting the required editor window width makes it possible to haveseveral files open side-by-side, and works

well when using codereview tools that present the two versions in adjacent columns.

The default wrapping in most tools disrupts the visual structure of thecode, making it more difficult to
understand. The limits are chosen toavoid wrapping in editors with the window width set to 80, evenifithe tool
places a marker glyph in the final column when wrappinglines. Some web based tools may not offer dynamic

line wrapping at all.

Some teams strongly prefer a longer line length. For code maintainedexclusively or primarily by a team that can
reach agreement on thisissue, it is okay to increase the nominal line length from 80 to100 characters
(effectively increasing the maximum length to 99characters), provided that comments and docstrings are still

wrappedat 72 characters.

The Python standard library is conservative and requires limitinglines to 79 characters (and

docstrings/comments to 72).

The preferred way of wrapping long lines is by using Python's impliedline continuation inside parentheses,
brackets and braces. Long linescan be broken over multiple lines by wrapping expressions inparentheses.

These should be used in preference to using a backslashfor line continuation.

Backslashes may still be appropriate at times. For example, long,multiple with-statements cannot use implicit

continuation, sobackslashes are acceptable:

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

with open('/path/to/some/file/you/want/to/read') as file_1, \
open('/path/to/some/file/being/written’, 'w') as file_2:
file 2.write(file_1.read())

(See the previous discussion on multiline if-statements for furtherthoughts on the indentation of such multiline
with-statements.)

Another such case is with assert Statements.

Make sure to indent the continued line appropriately.

Should a Line Break Before or After a Binary Operator?

For decades the recommended style was to break after binary operators.But this can hurt readability in two
ways: the operators tend to getscattered across different columns on the screen, and each operator ismoved

away from its operand and onto the previous line. Here, the eyehas to do extra work to tell which items are
added and which aresubtracted:

No: operators sit far away from their operands
income = (gross_wages +
taxable_interest +
(dividends - qualified_dividends) -
ira_deduction -

student_loan_interest)

To solve this readability problem, mathematicians and their publishersfollow the opposite convention. Donald
Knuth explains the traditionalfule in his Computers and Typesetting series: "Although formulaswithin a

paragraph always break after binary operations and relations,displayed formulas always break before binary
operations” [3].

Following the tradition from mathematics usually results in morefeadable code:

Yes: easy to match operators with operands
income = (gross_wages
+ taxable_interest

+ (dividends - qualified_dividends)

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

- ira_deduction

- student_loan_interest)

In Python code, it is permissible to break before or after a binaryoperator, as long as the convention is

consistent locally. For newcode Knuth's style is suggested.

Blank Lines

Surround top-level function and class definitions with two blanklines.
Method definitions inside a class are surrounded by a single blankline.

Extra blank lines may be used (sparingly) to separate groups ofrelated functions. Blank lines may be omitted

between a bunch offelated one-liners (e.g. a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical sections.

Python accepts the control-L (i.e. AL) form feed character aswhitespace; Many tools treat these characters as
page separators, soyou may use them to separate pages of related sections of your file.Note, some editors and

web-based code viewers may not recognizecontrol-L as a form feed and will show another glyph in its place.

Source File Encoding

Code in the core Python distribution should always use UTF-8 (or ASCIlin Python 2).
Files using ASCII (in Python 2) or UTF-8 (in Python 3) should not havean encoding declaration.

In the standard library, non-default encodings should be used only fortest purposes or when a comment or
docstring needs to mention an authorname that contains non-ASCII characters; otherwise, using \x, \u, \U, Of

\N escapes is the preferred way to includenon-ASCII data in string literals.

For Python 3.0 and beyond, the following policy is prescribed for thestandard library (see PEP 3131): All
identifiers in the Pythonstandard library MUST use ASCII-only identifiers, and SHOULD useEnglish words
wherever feasible (in many cases, abbreviations andtechnical terms are used which aren't English). In
addition, stringliterals and comments must also be in ASCII. The only exceptions are(a) test cases testing the
non-ASCI| features, and(b) names of authors. Authors whose names are not based on theLatin alphabet (latin-

1, ISO/IEC 8859-1 character set) MUST provideal transliteration of their names in this character set.

https://www.python.org/dev/peps/pep-3131

PEP 8 -- Style Guide for Python Code | Python.org
Open source projects with a global audience are encouraged to adopt asimilar policy.

Imports

= Imports should usually be on separate lines:

Yes: import os

import sys
No: import sys, os
It's okay to say this though:
from subprocess import Popen, PIPE

= Imports are always put at the top of the file, just after any modulecomments and docstrings, and before

module globals and constants.

Imports should be grouped in the following order:

1. Standard library imports.
2. Related third party imports.
3. Local application/library specific imports.

You should put a blank line between each group of imports.

= Absolute imports are recommended, as they are usually more readableand tend to be better behaved (or at

least give better errormessages) if the import system is incorrectly configured (such aswhen a directory
inside a package ends up on sys.path):

import mypkg.sibling
from mypkg import sibling

from mypkg.sibling import example

However, explicit relative imports are an acceptable alternative toabsolute imports, especially when dealing

with complex package layoutswhere using absolute imports would be unnecessarily verbose:

from . import sibling

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

from .sibling import example

Standard library code should avoid complex package layouts and alwaysuse absolute imports.
Implicit relative imports should never be used and have been removedin Python 3.

= When importing a class from a class-containing module, it's usuallyokay to spell this:

from myclass import MyClass

from foo.bar.yourclass import YourClass

If this spelling causes local name clashes, then spell them explicitly:

import myclass

import foo.bar.yourclass

and use "myclass.MyClass" and "foo.bar.yourclass.YourClass".

= Wildcard imports (from <module> import *) should be avoided, asthey make it unclear which names are
present in the namespace,confusing both readers and many automated tools. There is onedefensible use
case for a wildcard import, which is to republish aninternal interface as part of a public API (for example,
overwritingal pure Python implementation of an interface with the definitionsfrom an optional accelerator

module and exactly which definitionswill be overwritten isn't known in advance).

When republishing names this way, the guidelines below regardingpublic and internal interfaces still apply.

Module Level Dunder Names

Module level "dunders" (i.e. names with two leading and two trailingtinderscores) such as a1, _author__,
__version__,etc. should be placed after the module docstring but before any importstatements except from
__future__ imports. Python mandates thatfuture-imports must appear in the module before any other code

exceptdocstrings:

This is the example module.

This module does stuff.

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

from _ future__ import barry_as_FLUFL

a11= [lal, 'b', 'C']
__version__ = '0.1'

__author__ = 'Cardinal Biggles'
import os

import sys

String Quotes
In Python, single-quoted strings and double-quoted strings are thesame. This PEP does not make a
recommendation for this. Pick a ruleand stick to it. When a string contains single or double quotecharacters,

however, use the other one to avoid backslashes in thestring. It improves readability.

For triple-quoted strings, always use double quote characters to beconsistent with the docstring convention in
PEP 257.

Whitespace in Expressions and Statements

Pet Peeves

Avoid extraneous whitespace in the following situations:

= Immediately inside parentheses, brackets or braces.

Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

= Between a trailing comma and a following close parenthesis.

Yes: foo

(e,)
(e,)

No: bar

= Immediately before a comma, semicolon, or colon:

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

https://www.python.org/dev/peps/pep-0257

PEP 8 -- Style Guide for Python Code | Python.org
Yes: if x == 4: print X, y; X, y =Y, X

No: if x == tprint x , y ; x,y=y, X

= However, in a slice the colon acts like a binary operator, andshould have equal amounts on either side
(treating it as theoperator with the lowest priority). In an extended slice, bothcolons must have the same

amount of spacing applied. Exception:when a slice parameter is omitted, the space is omitted.

Yes:

ham[1:9], ham[1:9:3], ham[:9:3], ham[1::3], ham[1:9:]
ham[lower:upper], ham[lower:upper:], ham[lower: :step]
ham[lower+offset : upper+offset]

ham[: upper_fn(x) : step_fn(x)], ham[:: step_fn(x)]

ham[lower + offset : upper + offset]
No:

ham[lower + offset:upper + offset]
ham[1: 9], ham[1 :9], ham[1:9 :3]
ham[lower : : upper]

ham[: upper]

= Immediately before the open parenthesis that starts the argumentlist of a function call:

Yes: spam(1)
No: spam (1)

= Immediately before the open parenthesis that starts an indexing orslicing:

Yes: dct['key'] = 1lst[index]
No: dct ['key'] = 1st [index]

= More than one space around an assignment (or other) operator toalign it with another.

Yes:

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

x =1
y =2

long variable = 3

No:
X = il
y = 2

long variable = 3

Other Recommendations

= Avoid trailing whitespace anywhere. Because it's usually invisible,it.can be confusing: e.g. a backslash
followed by a space and anewline does not count as a line continuation marker. Some editorsdon't preserve

it and many projects (like CPython itself) havepre-commit hooks that reject it.

= Always surround these binary operators with a single space on eitherside: assignment (=), augmented
assignment (+=, -=etc.), comparisons (==, <, >, 1=, <>, <=,[3=, in, not in, is, is not), Booleans (and,dr,

not).

= |f operators with different priorities are used, consider addingwhitespace around the operators with the
lowest priority(ies). Useyour own judgment; however, never use more than one space, andalways have the

same amount of whitespace on both sides of a binaryoperator.

Yes:

i=1+1
submitted += 1

X = x*¥2 -1

hypot2 = x*x + y*y
c = (atb) * (a-b)

No:

i=i+1

submitted +=1

PEP 8 -- Style Guide for Python Code | Python.org
X=x%*2-1
hypot2 = x * x +y *y
c=(a+b)* (a-Db)

= Don't use spaces around the = sign when used to indicate akeyword argument or a default parameter value.

Yes:

def complex(real, imag=0.0):

return magic(r=real, i=imag)

No:

def complex(real, imag = 0.0):

return magic(r = real, i = imag)

= Function annotations should use the normal rules for colons andalways have spaces around the _> arrow if

present. (SeeFunction Annotations below for more about function annotations.)

Yes:

def munge(input: AnyStr):
def munge() -> AnyStr:

No:

def munge(input:AnyStr):
def munge()->PosInt:

= When combining an argument annotation with a default value, usespaces around the = sign (but only for

those arguments that haveboth an annotation and a default).

Yes:

def munge(sep: AnyStr = None):
def munge(input: AnyStr, sep: AnyStr = None, 1limit=1000):

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

No:

def munge(input: AnyStr=None):
def munge(input: AnyStr, limit = 1000): ...

= Compound statements (multiple statements on the same line) aregenerally discouraged.

Yes:

if foo == 'blah':
do_blah_thing()

do_one()

do_two()

do_three()

Rather not:

if foo == 'blah': do_blah_thing()
do_one(); do_two(); do_three()

= While sometimes it's okay to put an if/for/while with a small bodyon the same line, never do this for multi-

clause statements. Alsoavoid folding such long lines!

Rather not:

if foo == 'blah': do_blah_thing()
for x in 1&t: total += x

while t < 10: t = delay()

Definitely not:

if foo == 'blah': do_blah_thing()
else: do_non_blah_thing()

try: something()
finally: cleanup()

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

do_one(); do_two(); do_three(long, argument,
list, like, this)

if foo == 'blah': one(); two(); three()

When to Use Trailing Commas

Trailing commas are usually optional, except they are mandatory whenmaking a tuple of one element (and in
Python 2 they have semantics forthe print Statement). For clarity, it is recommended to surroundthe latter in

(technically redundant) parentheses.

Yes:

FILES = ('setup.cfg',)
OK, but confusing:

FILES = 'setup.cfg',

When trailing commas are redundant, they are often helpful when aversion control system is used, when a list
of values, arguments orimported items is expected to be extended over time. The pattern isto put each value
(etc.) on a line by itself, always adding a trailingcomma, and add the close parenthesis/bracket/brace on the
next line.However it does not make sense to have a trailing comma on the sameline as the closing delimiter

(except in the above case of singletontuples).

Yes:

FILES = [
'setup.cfg’,
'tox.ini',
]
initialize(FILES,
error=True,

)

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

No:

FILES = ['setup.cfg', 'tox.ini',]

initialize(FILES, error=True,)

Comments

Comments that contradict the code are worse than no comments. Alwaysmake a priority of keeping the

comments up-to-date when the codechanges!

Comments should be complete sentences. The first word should becapitalized, unless it is an identifier that

begins with a lower caseletter (never alter the case of identifiers!).

Block comments generally consist of one or more paragraphs built out ofcomplete sentences, with each

sentence ending in a period.

You should use two spaces after a sentence-ending period in multi-sentence comments, except after the final

sentence.
When writing English, follow Strunk and White.

Python coders from non-English speaking countries: please write yourcomments in English, unless you are

120% sure that the code will neverbe read by people who don't speak your language.

Block Comments

Block comments generally apply to some (or all) code that followsthem, and are indented to the same level as

that code. Each line of ablock comment starts with a # and a single space (unless it isindented text inside the

comment).

Paragraphs inside a block comment are separated by a line containing asingle #.

Inline Comments

Use inline comments sparingly.

An inline comment is a comment on the same line as a statement.Inline comments should be separated by at

least two spaces from thestatement. They should start with a # and a single space.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Inline comments are unnecessary and in fact distracting if they statethe obvious. Don't do this:

X =Xx+1 # Increment Xx

But sometimes, this is useful:

X =x+1 # Compensate for border

Documentation Strings

Conventions for writing good documentation strings(a.k.a. "docstrings") are immortalized in PEP 257.

= Write docstrings for all public modules, functions, classes, andmethods. Docstrings are not necessary for

non-public methods, butyou should have a comment that describes what the method does. Thiscomment

should appear after the gef line.

= PEP 257 describes good docstring conventions. Note that mostimportantly, the that ends a multiline

docstring should beon a line by itself:
"""Return a foobang

Optional plotz says to frobnicate the bizbaz first.

= For one liner docstrings, please keep the closing onthe same line.

Naming Conventions

The naming conventions of Python's library are a bit of a mess, sowe'll never get this completely consistent --
nevertheless, here arethe currently recommended naming standards. New modules and packages(including

third party frameworks) should be written to thesestandards, but where an existing library has a different style,

internal consistency is preferred.

Overriding Principle
Names that are visible to the user as public parts of the API shouldfollow conventions that reflect usage rather

than implementation.

https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0257

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Descriptive: Naming Styles

There are a lot of different naming styles. It helps to be able torecognize what naming style is being used,

independently from whatthey are used for.
The following naming styles are commonly distinguished:

= p (single lowercase letter)

B (single uppercase letter)

" Jowercase

® Jower_case_with_underscores
" UPPERCASE

" UPPER_CASE_WITH_UNDERSCORES

= CapitalizedWords (or CapWords, or CamelCase -- so named becauseof the bumpy look of its letters [4]).

This is also sometimes knownas StudlyCaps.

Note: When using acronyms in CapWords, capitalize all theletters of the acronym. Thus HTTPServerError is

better thanHttpServerError.
= pixedcase (differs from CapitalizedWords by initial lowercasecharacter!)
" Capitalized_Words_With_Underscores (ugly")

There's also the style of using a short unique prefix to group relatednames together. This is not used much in
Python, but it is mentionedfor completeness. For example, the s .«at () function returns atuple whose items
traditionally have names like & mode, s size, & mtime @nd so on. (This is done to emphasize the

correspondence with the fields of the POSIX system call struct, whichhelps programmers familiar with that.)

The X11 library uses a leading X for all its public functions. InPython, this style is generally deemed
unnecessary because attributeand method names are prefixed with an object, and function names areprefixed

with a module name.

In addition, the following special forms using leading or trailingunderscores are recognized (these can generally

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

be combined with anycase convention):

= single leading underscore: Weak "internal use" indicator.E.g. from M import * does not import objects

whose name startswith an underscore.

= single_trailing underscore_: used by convention to avoidconflicts with Python keyword, e.g.
Tkinter.Toplevel(master, class_='ClassName')

" _ double_leading_underscore: When naming a class attribute,invokes name mangling (inside class FooBar,

__boo becomeSj_FooBar_boo; see belOW).

= double_leading_and_trailing_underscore__: "Magic" objects orattributes that live in user-controlled

namespaces.E.g. __init_, __import__Or s1e . Neverinventsuch names; only use them as documented.

Prescriptive: Naming Conventions

Names to Avoid
Never use the characters 'l' (lowercase letter el), 'O’ (uppercaseletter oh), or 'l' (uppercase letter eye) as single

character variablehames.

In some fonts, these characters are indistinguishable from thenumerals one and zero. When tempted to use 'I',

use 'L' instead.

ASCII Compatibility

Identifiers used in the standard library must be ASCII compatibleas described in thepolicy sectionof PEP 3131.

Package and Module Names

Modules should have short, all-lowercase names. Underscores can beused in the module name if it improves
readability. Python packagesshould also have short, all-lowercase names, although the use ofunderscores is

discouraged.

When an extension module written in C or C++ has an accompanyingPython module that provides a higher

level (e.g. more object oriented)interface, the C/C++ module has a leading underscore(€.g. _socket).

https://www.python.org/dev/peps/pep-3131/#policy-specification
https://www.python.org/dev/peps/pep-3131

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Class Names

Class names should normally use the CapWords convention.

The naming convention for functions may be used instead in cases wherethe interface is documented and used
primarily as a callable.

Note that there is a separate convention for builtin names: most builtinnames are single words (or two words

run together), with the CapWordsconvention used only for exception names and builtin constants.

Type Variable Names

Names of type variables introduced in PEP 484 should normally use CapWordspreferring short names: T,

AnyStr, Num. It is recommended to addsuffixes co Or contra to the variables used to declare covariantor
contravariant behavior correspondingly:

from typing import TypeVar

VT_co = TypeVar('VT_co', covariant=True)

KT_contra = TypeVar('KT_contra', contravariant=True)

Exception Names

Because exceptions should be classes, the class naming conventionapplies here. However, you should use the

suffix "Error" on yourexception names (if the exception actually is an error).

Global Variable Names

(Let's hope that these variables are meant for use inside one moduleonly.) The conventions are about the same
as those for functions.

Modules that are designed for use via from M import * should usethe a11_ mechanism to prevent exporting

globals, or use theolder convention of prefixing such globals with an underscore (whichyou might want to do to
indicate these globals are "modulenon-public").

Function and Variable Names

https://www.python.org/dev/peps/pep-0484

PEP 8 -- Style Guide for Python Code | Python.org
Function names should be lowercase, with words separated byunderscores as necessary to improve

readability.
Variable names follow the same convention as function names.
mixedCase is allowed only in contexts where that's already theprevailing style (e.g. threading.py), to retain

backwardscompatibility.

Function and Method Arguments

Always use self for the first argument to instance methods.
Always use cis for the first argument to class methods.

If a function argument's name clashes with a reserved keyword, it isgenerally better to append a single trailing

underscore rather thanuse an abbreviation or spelling corruption. Thus class_ is betterthan ciss. (Perhaps

better is to avoid such clashes by using asynonym.)

Method Names and Instance Variables

Use the function naming rules: lowercase with words separated byunderscores as necessary to improve

readability.
Use one leading underscore only for non-public methods and instancevariables.
To avoid name clashes with subclasses, use two leading underscores toinvoke Python's name mangling rules.

Python mangles these names with the class name: if class Foo has anattribute named 4, it cannot be
accessed by Foo. a. (Aninsistent user could still gain access by calling Foo. Foo__a.)Generally, double leading

underscores should be used only to avoidhame conflicts with attributes in classes designed to be subclassed.

Note: there is some controversy about the use of __names (see below).
Constants

Constants are usually defined on a module level and written in allcapital letters with underscores separating

words. Examples includejax_overrLow and ToTAL.

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

Designing for Inheritance

Always decide whether a class's methods and instance variables(collectively: "attributes") should be public or

non-public. If indoubt, choose non-public; it's easier to make it public later than tomake a public attribute non-
public.

Public attributes are those that you expect unrelated clients of yourclass to use, with your commitment to avoid
backwards incompatiblechanges. Non-public attributes are those that are not intended to beused by third

parties; you make no guarantees that non-publicattributes won't change or even be removed.

We don't use the term "private" here, since no attribute is reallyprivate in Python (without a generally

unnecessary amount of work).

Another category of attributes are those that are part of the!'subclass API" (often called "protected" in other
languages). Someclasses are designed to be inherited from, either to extend or modifyaspects of the class's
behavior. When designing such a class, takecare to make explicit decisions about which attributes are public,

which are part of the subclass API, and which are truly only to beused by your base class.
With this in mind, here are the Pythonic guidelines:
= Public attributes should have no leading underscores.

= |f your public attribute name collides with a reserved keyword,append a single trailing underscore to your
attribute name. This ispreferable to an abbreviation or corrupted spelling. (However,notwithstanding this
rule, 'cls' is the preferred spelling for anyvariable or argument which is known to be a class, especially the

first argument to a class method.)
Note 1: See the argument name recommendation above for class methods.

= For simple public data attributes, it is best to expose just theattribute name, without complicated
accessor/mutator methods. Keepin mind that Python provides an easy path to future enhancement,should
you find that a simple data attribute needs to growfuinctional behavior. In that case, use properties to hide

functional implementation behind simple data attribute accesssyntax.
Note 1: Properties only work on new-style classes.

Note 2: Try to keep the functional behavior side-effect free,although side-effects such as caching are
generally fine.

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Note 3: Avoid using properties for computationally expensiveoperations; the attribute notation makes the

caller believe thataccess is (relatively) cheap.

= If your class is intended to be subclassed, and you have attributesthat you do not want subclasses to use,
consider naming them withdouble leading underscores and no trailing underscores. Thisinvokes Python's
name mangling algorithm, where the name of theclass is mangled into the attribute name. This helps avoid

attribute name collisions should subclasses inadvertently containattributes with the same name.

Note 1: Note that only the simple class name is used in the mangledhame, so if a subclass chooses both the

same class name and attributehame, you can still get name collisions.

Note 2: Name mangling can make certain uses, such as debugging and’! getattr__ (), less convenient.

However the name manglingalgorithm is well documented and easy to perform manually.

Note 3: Not everyone likes name mangling. Try to balance theneed to avoid accidental name clashes with

potential use byadvanced callers.

Public and Internal Interfaces

Any backwards compatibility guarantees apply only to public interfaces.Accordingly, it is important that users be

able to clearly distinguishbetween public and internal interfaces.

Documented interfaces are considered public, unless the documentationexplicitly declares them to be
provisional or internal interfaces exemptfrom the usual backwards compatibility guarantees. All undocumented

interfaces should be assumed to be internal.

To better support introspection, modules should explicitly declare thenames in their public API using the

__all__ attribute. Settingl] an1__ to an empty list indicates that the module has no public API.

Even with ar1__ set appropriately, internal interfaces (packages,modules, classes, functions, attributes or

other names) should still beprefixed with a single leading underscore.

An interface is also considered internal if any containing namespace(package, module or class) is considered

internal.

Imported names should always be considered an implementation detail.Other modules must not rely on indirect
access to such imported namesunless they are an explicitly documented part of the containing module'sAPI,

such as os.path Or a package's __jnit__ module that exposesfunctionality from submodules.

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Programming Recommendations

= Code should be written in a way that does not disadvantage otherimplementations of Python (PyPy, Jython,

IronPython, Cython, Psyco,and such).

For example, do not rely on CPython's efficient implementation ofin-place string concatenation for
statements in the form g += pOr a = a + b. This optimization is fragile even in CPython (itonly works for
some types) and isn't present at all in implementationsthat don't use refcounting. In performance sensitive
parts of thelibrary, the == _join() form should be used instead. This willensure that concatenation occurs in

linear time across variousimplementations.

= Comparisons to singletons like None should always be done with(js or is not, never the equality operators.

Also, beware of writing if x when you really mean ;r x is notmNone --€.g. when testing whether a variable
or argument thatdefaults to None was set to some other value. The other value mighthave a type (such as a

container) that could be false in a booleancontext!

= Use is not operator rather than not ... is. While bothexpressions are functionally identical, the former is

more readableand preferred.

Yes:

if foo is not None:

No:

if not foo is None:

= When implementing ordering operations with rich comparisons, it isbest to implement all six operations

(_eq » _ne .01t _, 1e_, gt_, ge)ratherthan relyingon other code to only exercise a
particular comparison.

To minimize the effort involved, the functools.total ordering()decorator provides a tool to generate
missing comparison methods.

PEP 207 indicates that reflexivity rules are assumed by Python.Thus, the interpreter may swap y > x with x

< y,y >= xWith x <= y, and may swap the arguments of x == yand x 1=y . The sort() and ninQ

https://www.python.org/dev/peps/pep-0207

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

operations are guaranteed to usethe < operator and the max() function uses the >operator. However, it is

best to implement all six operations sothat confusion doesn't arise in other contexts.

= Always use a def statement instead of an assignment statement that bindsallambda expression directly to
an identifier.

Yes:
def f(x): return 2*x
No:

f = lambda x: 2*x

The first form means that the name of the resulting function object isspecifically 'f' instead of the generic
'<lambda>'. This is moreuseful for tracebacks and string representations in general. The useof the
assignment statement eliminates the sole benefit a lambdaexpression can offer over an explicit def
statement (i.e. that it canbe embedded inside a larger expression)

Derive exceptions from Exception rather than BaseException.DireCt inheritance from BaseException is

reserved for exceptionswhere catching them is almost always the wrong thing to do.

Design exception hierarchies based on the distinctions that codelcatching the exceptions is likely to need,
rather than the locationswhere the exceptions are raised. Aim to answer the question"What went wrong?"

programmatically, rather than only stating that"A problem occurred" (see PEP 3151 for an example of this
lesson beinglearned for the builtin exception hierarchy)

Class naming conventions apply here, although you should add thesuffix "Error" to your exception classes if

the exception is anerror. Non-error exceptions that are used for non-local flow controlor other forms of
signaling need no special suffix.

= Use exception chaining appropriately. In Python 3, "raise X from Y"should be used to indicate explicit

replacement without losing theoriginal traceback.

When deliberately replacing an inner exception (using "raise X" inPython 2 or "raise X from None" in Python
3.3+), ensure that relevantdetails are transferred to the new exception (such as preserving theattribute name
when converting KeyError to AttributeError, orembedding the text of the original exception in the new

https://www.python.org/dev/peps/pep-3151

PEP 8 -- Style Guide for Python Code | Python.org

exceptionmessage).

» When raiSing an exception in Python 2, US€ raise Va|ueError('message')mgtead of the older form raise

ValueError, "message-:
The latter form is not legal Python 3 syntax.

The paren-using form also means that when the exception arguments arelong or include string formatting,

you don't need to use linecontinuation characters thanks to the containing parentheses.

= When catching exceptions, mention specific exceptions wheneverpossible instead of using a bare except:
clause:

try:
import platform_specific_module
except ImportError:

platform_specific_module = None

Abare except: clause will catch SystemExit andKeyboardInterrupt exceptions, making it harder to interrupt a
program with Control-C, and can disguise other problems. If youwant to catch all exceptions that signal

program errors, useexcept Exception: (bare except is equivalent to exceptBaseException:)-
A good rule of thumb is to limit use of bare 'except' clauses to twocases:

1. If the exception handler will be printing out or logging thetraceback; at least the user will be aware that an
error hasoccurred.

2. If the code needs to do some cleanup work, but then lets theexception propagate upwards with raise.
try...finallyCan be a better way to handle this case.

= When binding caught exceptions to a name, prefer the explicit namebinding syntax added in Python 2.6:

try:
process_data()
except Exception as exc:

raise DataProcessingFailedError(str(exc))

This is the only syntax supported in Python 3, and avoids theambiguity problems associated with the older
comma-based syntax.

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

= When catching operating system errors, prefer the explicit exceptionhierarchy introduced in Python 3.3 over

introspection of errnovalues.

= Additionally, for all try/except clauses, limit the ¢ry clauseto the absolute minimum amount of code

necessary. Again, thisavoids masking bugs.

Yes:

try:

value = collection[key]
except KeyError:

return key_not_found(key)
else:

return handle_value(value)
No:

try:
Too broad!
return handle_value(collection[key])
except KeyError:
Will also catch KeyError raised by handle_value()
return key_not_found(key)

= When a resource is local to a particular section of code, use alyith statement to ensure it is cleaned up

promptly and reliablyafter use. A try/finally statement is also acceptable.

= Context managers should be invoked through separate functions or methodswhenever they do something

other than acquire and release resources.

Yes:

with conn.begin_transaction():

do_stuff_in_transaction(conn)

No:

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

with conn:

do_stuff_in_transaction(conn)

The latter example doesn't provide any information to indicate thatthe enter and exit_ methods are

doing something otherthan closing the connection after a transaction. Being explicit isimportant in this case.

= Be consistent in return statements. Either all return statements inal function should return an expression, or
none of them should. Ifany return statement returns an expression, any return statementswhere no value is
returned should explicitly state this as returnnone , and an explicit return statement should be present at the

end of the function (if reachable).

Yes:

def foo(x):
if x >= @:
return math.sqrt(x)
else:

return None

def bar(x):
if x < 0:
return None

return math.sqrt(x)

No:

def foo(x):
if x >= @:

return math.sqrt(x)

def bar(x):
if x < 0:
return

return math.sqrt(x)

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org
= Use string methods instead of the string module.

String methods are always much faster and share the same API withunicode strings. Override this rule if

backwards compatibility withPythons older than 2.0 is required.
s Use ' gartswith () and == _endswith() instead of stringslicing to check for prefixes or suffixes.

startswith() and endswith() are cleaner and less error prone:

Yes: if foo.startswith('bar'):
No: if foo[:3] == 'bar':

= Object type comparisons should always use isinstance() instead ofcomparing types directly.

Yes: if isinstance(obj, int):

No: if type(obj) is type(1):

When checking if an object is a string, keep in mind that it mightbe a unicode string too! In Python 2, str and

unicode have acommon base class, basestring, so you can do:

if isinstance(obj, basestring):

Note that in Python 3, unicode and pasesring NO longer exist(there is only «,) and a bytes object is no longer

a kind ofstring (it is a sequence of integers instead).

= For sequences, (strings, lists, tuples), use the fact that emptysequences are false.

Yes: if not seq:

if seq:

No: if len(seq):
if not len(seq):

= Don't write string literals that rely on significant trailingwhitespace. Such trailing whitespace is visually

indistinguishableand some editors (or more recently, reindent.py) will trim them.

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

PEP 8 -- Style Guide for Python Code | Python.org

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

= Don't compare boolean values to True or False using =-.

Yes: if greeting:
No: if greeting == True:

Worse: if greeting is True:

Function Annotations

With the acceptance of PEP 484, the style rules for functionannotations are changing.

= In order to be forward compatible, function annotations in Python 3code should preferably use PEP 484

syntax. (There are someformatting recommendations for annotations in the previous section.)

= The experimentation with annotation styles that was recommendedpreviously in this PEP is no longer

encouraged.

= However, outside the stdlib, experiments within the rules of PEP 484are now encouraged. For example,
marking up a large third partylibrary or application with PEP 484 style type annotations,reviewing how easy it

was to add those annotations, and observingwhether their presence increases code understandability.

= The Python standard library should be conservative in adopting suchannotations, but their use is allowed for

new code and for bigrefactorings.

= For code that wants to make a different use of function annotationsitlis recommended to put a comment of

the form:

type: ignore

near the top of the file; this tells type checker to ignore allannotations. (More fine-grained ways of disabling

complaints fromtype checkers can be found in PEP 484.)

= Like linters, type checkers are optional, separate tools. Pythoninterpreters by default should not issue any

messages due to typechecking and should not alter their behavior based on annotations.

= Users who don't want to use type checkers are free to ignore them.However, it is expected that users of
third party library packagesmay want to run type checkers over those packages. For this purposePEP 484

recommends the use of stub files: .pyi files that are readby the type checker in preference of the

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484

PEP 8 -- Style Guide for Python Code | Python.org

corresponding .py files.Stub files can be distributed with a library, or separately (withthe library author's
permission) through the typeshed repo [5].

= For code that needs to be backwards compatible, type annotationscan be added in the form of comments.
See the relevant section of PEP 484 [6].

Variable Annotations

PEP 526 introduced variable annotations. The style recommendations for them aresimilar to those on function
annotations described above:

= Annotations for module level variables, class and instance variables,and local variables should have a single
space after the colon.

= There should be no space before the colon.

= |f an assignment has a right hand side, then the equality sign should haveexactly one space on both sides.

= Yes:
code: int

class Point:
coords: Tuple[int, int]

label: str = '<unknown>'

= No:

code:int # No space after colon

code : int # Space before colon

class Test:

result: int=0 # No spaces around equality sign

= Although the PEP 526 is accepted for Python 3.6, the variable annotationsyntax is the preferred syntax for
stub files on all versions of Python(see PEP 484 for details).

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0484

PEP 8 -- Style Guide for Python Code | Python.org

About
Applications
Quotes

Getting Started

Help

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Downloads
All releases
Source code
Windows

Mac OS X

Footnotes

[7] Hanging indentation is a type-setting style where allthe lines in a paragraph are indented except the
first line. Inthe context of Python, the term is used to describe a style wherethe opening parenthesis
of a parenthesized statement is the lastnon-whitespace character of the line, with subsequent lines
beingindented until the closing parenthesis.

References

[1] PEP 7, Style Guide for C Code, van Rossum

[2] Barry's GNU Mailman style guidelhttp://barry.warsaw.us/software/STYLEGUIDE.txt
[3] Donald Knuth's The TeXBook, pages 195 and 196.

[4] http://www.wikipedia.com/wiki/CamelCase

[5] Typeshed repolhttps://github.com/python/typeshed

[6] Suggested syntax for Python 2.7 and straddling codehittps://www.python.org/dev/peps/pep-
0484 /#suggested-syntax-for-python-2-7-and-straddling-code

Copyright

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/master/pep-0008.txt

Documentation Community Success Stories News

Docs Diversity Arts Python News
Audio/Visual Talks Mailing Lists Business Community News
Beginner's Guide IRC Education PSF News
Developer's Guide Forums Engineering PyCon News

https://www.python.org/dev/peps/pep-0007
http://barry.warsaw.us/software/STYLEGUIDE.txt
http://www.wikipedia.com/wiki/CamelCase
https://github.com/python/typeshed
https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
https://github.com/python/peps/blob/master/pep-0008.txt
https://www.python.org/about/
https://www.python.org/about/apps/
https://www.python.org/about/quotes/
https://www.python.org/about/gettingstarted/
https://www.python.org/about/help/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/source/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/mac-osx/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/av
https://wiki.python.org/moin/BeginnersGuide
https://devguide.python.org/
https://www.python.org/community/
https://www.python.org/community/diversity/
https://www.python.org/community/lists/
https://www.python.org/community/irc/
https://www.python.org/community/forums/
https://www.python.org/about/success/
https://www.python.org/about/success/#arts
https://www.python.org/about/success/#business
https://www.python.org/about/success/#education
https://www.python.org/about/success/#engineering
https://www.python.org/blogs/
https://www.python.org/blogs/
http://planetpython.org/
http://pyfound.blogspot.com/
http://pycon.blogspot.com/

PEP 8 -- Style Guide for Python Code | Python.org

Python Brochure

Contributing
Developer's Guide
Issue Tracker
python-dev list

Core Mentorship

https://www.python.org/dev/peps/pep-0008/[2018/7/11 21:51:08]

Other Platforms
License

Alternative
Implementations

Help & General Contact

FAQ

Non-English Docs
PEP Index
Python Books

Python Essays

Diversity Initiatives

Python Conferences
Special Interest Groups
Python Wiki

Python Logo
Merchandise
Community Awards

Code of Conduct

Government
Scientific

Software Development

Submit Website Bug ~ Status

Events

Python Events

User Group Events
Python Events Archive

User Group Events
Archive

Submit an Event

https://www.python.org/about/help/
https://www.python.org/about/help/
https://www.python.org/about/help/
https://www.python.org/community/diversity/
https://www.python.org/community/diversity/
https://github.com/python/pythondotorg/issues
https://status.python.org/
https://status.python.org/
https://www.python.org/psf-landing/
https://www.python.org/about/legal/
https://www.python.org/privacy/
https://www.python.org/psf/sponsorship/sponsors/
http://brochure.getpython.info/
https://www.python.org/download/other/
https://docs.python.org/3/license.html
https://www.python.org/download/alternatives
https://www.python.org/download/alternatives
https://docs.python.org/faq/
http://wiki.python.org/moin/Languages
http://python.org/dev/peps/
https://wiki.python.org/moin/PythonBooks
https://www.python.org/doc/essays/
https://www.python.org/community/workshops/
https://www.python.org/community/sigs/
https://wiki.python.org/moin/
https://www.python.org/community/logos/
https://www.python.org/community/merchandise/
https://www.python.org/community/awards
https://www.python.org/psf/codeofconduct/
https://www.python.org/about/success/#government
https://www.python.org/about/success/#scientific
https://www.python.org/about/success/#software-development
https://www.python.org/events/
https://www.python.org/events/python-events
https://www.python.org/events/python-user-group/
https://www.python.org/events/python-events/past/
https://www.python.org/events/python-user-group/past/
https://www.python.org/events/python-user-group/past/
https://wiki.python.org/moin/PythonEventsCalendar#Submitting_an_Event
https://www.python.org/dev/
https://devguide.python.org/
https://bugs.python.org/
https://mail.python.org/mailman/listinfo/python-dev
https://www.python.org/dev/core-mentorship/

	python.org
	PEP 8 -- Style Guide for Python Code | Python.org

	9yZy9kZXYvcGVwcy9wZXAtMDAwOC8A:
	form2:
	q: Search
	submit:

