
Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-v1.0.0 - Draft 第 1 页

PLC Chipset SG Programmers Guide

MKG-xxxxx Ver. Draft

May, 2013

Confidential and Proprietary - Qualcomm Atheros, Inc.

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the
express written permission of Qualcomm Atheros, Inc.

QUALCOMM is registered trademark of Qualcomm Incorporated. ATHEROS is a registered trademark of
Qualcomm Atheros, Inc. All other registered and unregistered trademarks are the property of Qualcomm
Incorporated, Qualcomm Atheros, Inc. or their respective owners and used with permission. Registered marks owned
by Qualcomm Incorporated and Qualcomm Atheros, Inc. are registered in the United States of America and may be
registered in other countries.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion
contrary to U.S. and international law is strictly prohibited.

Qualcomm Atheros, Inc.

1700 Technology Drive

San Jose, CA 95110-1383

U.S.A.

Copyright © 2011 QUALCOMM Incorporated.

All rights reserved.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-v1.0.0 第 2 页

Revision History

Revision Date Description

Ver. 1.0 April, 2013 Initial version

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-v1.0.0 第 3 页

Contents

1 Acronyms and Abbreviations .. 5

2 Architecture Overview .. 6

2.1 Power line Frequency .. 6

2.2 SG System architecture ... 6

3 UART Data transparent TX/RX... 7

3.1 UART Data transmit ... 7

3.2 UART Data receive... 8

3.3 Power Meter Address and MAC address Mapping ... 8

4 Communication protocol .. 9

4.1 Protocol ... 9

4.2 Ethernet MME packet header ... 9

4.3 Get power meter data request (VS_UART_CMD_Req MME) ... 9

4.4 Get power meter data response (VS_UART_CMD_Cnf) ... 10

4.5 Get topology request and response (VS_AVLN_TOPO_Req VS_AVLN_TOPO_Cnf) 11

4.6 Network information request (VS_NW_INFO_STATS_Req).. 14

4.7 Network information response (VS_NW_INFO_STATS_Cnf) .. 15

4.8 Get software version request (VS_SW_VER_Req) .. 16

4.9 Get software version response (VS_SW_VER_Cnf) ... 17

4.10 Software reset request (VS_RS_DEV_Req) ... 17

4.11 Software reset response (VS_RS_DEV_Cnf) .. 17

4.12 MME timeout .. 18

Appendix : Example for Concentrator raw socket programming ... 19

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-v1.0.0 第 4 页

Table and Figure

Figure 2-1：QCA broadband PLC Smart Grid system block diagram ... 6

Figure 3-1：UART data transparently transmit .. 7

Figure 3-2：UART data transparently receive .. 8

Figure 4-1：MME packet captured by wireshark ... 10

Figure 5-2：Raw UART Data sent ... 10

Table 2-1：Acronyms and Abbreviations ... 5

Table 4-1：MME Packet Header .. 9

Table 4-2：VS_UART_CMD_Req .. 9

Table 4-3：VS_UART_CMD_Cnf ... 10

Table 4-4：VS_AVLN_TOPO_Req ... 11

Table 4-5：VS_AVLN_TOPO_Cnf .. 11

Table 4-6：VAR field for Get tree command .. 12

Table 4-7：VAR field for Get trace command .. 12

Table 4-8：STA’s Info .. 13

Table 4-9： VS_NW_INFO_STATS_Req .. 14

Table 4-10： VS_NW_INFO_STATS_Cnf ... 16

Table 4-11： VS_SW_VER_Req ... 16

Table 4-12： VS_SW_VER_Cnf.. 17

Table 4-13： VS_RS_DEV_Req .. 17

Table 4-14： VS_RS_DEV_Cnf ... 17

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 5

1 Acronyms and Abbreviations

Acronyms Definition

Power Meter One phase Smart meter and three phase Smart meter

CCO module CCO module is placed into concentrator. It included 3 QCA6411, 1 5-ports-switch.

STA module STA module is placed into smart meter. It included 1 QCA7000.

CCO Central Coordinator

STA Station

NSTA Normal STA

PSTA Proxy STA

HSTA Hidden STA

AVLN HomePlug AV Logical Network

Relay CCO cannot communicate with 1 HSTA, but via PSTA with relay, it can communicate with each other.

n Relay Multi- relay

MME MAC Management Message

PB PHY Block

TEI Terminal Equipment Identifier

QCA6411 Lynx chip used for CCO

QCA7000 Lynx chip used for STA

DA Destination Address，Destination MAC address

SA Source Address，Source MAC address。

Table 1-1：Acronyms and Abbreviations

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 6

2 Architecture Overview

2.1 Power line Frequency
To comply with the HomePlug GP specification, the Powerline frequency must be 50Hz±3.0% or 60

Hz±3.5%. Powerline frequency outside of this range will cause the firmware to reboot the device.

2.2 SG System architecture

Figure 2-1：QCA broadband PLC Smart Grid system block diagram

 CCO module was plugged into concentrator, which had 3 QCA6411 corresponding to 3 phase

power line, per QCA6411 use different Network password to indicate 3 different AVLAN. Per VLAN support

253 STAs.

 STA module was plugged into power meter, which deployed with 1 QCA7000.STA module fetch

power meter data via UART @2400 baud rate. UART baud rate can be configured with AVITAR tools.

 3 QCA6411 connect with switch and communicate with concentrator via Ethernet port.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 7

3 UART Data transparent TX/RX

3.1 UART Data transmit

Payload was raw UART data user wants to send to power meter. Maxim UART data length is within

256 Bytes.

 This transmit is initiated by Concentrator, so user need to fill in MME packet, refer chapter 4 for

sending MME Data.

 UART data will transparently send to power meter, so the UART data should be valid and can be

recognized by power meter. Here Payload is UART RAW data.

 Figure 3-1：UART data transparently transmit

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 8

3.2 UART Data receive

Payload was raw UART data which power meter response. Maxim UART data length is within 256

Bytes. UART data will be sent to concentrator transparently. Received MME packet, concentrator can

recognize which STA Module response. Further UART data analysis will be handled by concentrator.

Figure 3-2：UART data transparently receive

3.3 Power Meter Address and MAC address Mapping

Per STA module has own mac address (QCA7000 MAC Address), which was stored in NVM. This mac

address can be configured by AVITAR tools. The mapping relationship between QCA7000 module

MAC address and Meter ID should be maintained by Concentrator program. Power meter address

and mac address mapping can be realized by following steps:

1. Concentrator sends VS_NW_INFO_STATS_Req MME to fetch how many STA modules are online.
2. Concentrator initially sends unicast MME frame to online STA module. Payload (UART Data)

should be data to fetch the power meter address or other packet which power meter can recognize.

3. Concentrator analysis the received payload, and extract the power meter ID.

4. Maintain the mapping with STA module MAC address with power meter ID.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 9

4 Communication protocol

4.1 Protocol

 Concentrator communicates with CCO Module via MME.

 CCO communicate with remote server via private protocol, such as 372.1 etc.

 CCO Module communicates with STA Module via HomePlugAV protocol.

The user just focus on protocol (MME) between Concentrator with CCO module, low level

communication is invisible to user.

4.2 Ethernet MME packet header

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE MME Type

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

Table 4-1：MME Packet Header

 Different Ethernet MME is raw mac frame which shared same packet heard, refer table 4-1.

4.3 Get power meter data request (VS_UART_CMD_Req MME)
Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA400 (Request)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

0x0014 2 LENGTH UART raw data length

0x0016 Variable DATA UART raw data

Table 4-2：VS_UART_CMD_Req

 ODA: STA module mac address

 OSA: Concentrator mac address

 MTYPE: 0x88, 0xE1 (constant)

 MMV: 0 (constant)

 MMTYPE: 0xA400(constant)

 OUI: 0x00, 0xB0, 0x52(constant)

 LENGTH: Length of DATA, size in bytes

 DATA: UART command(raw data)

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 10

Use wire shark tools to monitor the data you send, the captured data should be like Figure 5-1.

Figure 4-1：MME packet captured by wireshark

Figure 4-2：Raw UART Data sent

4.4 Get power meter data response (VS_UART_CMD_Cnf)
Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA401 (Confirm)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

0x0014 6 RSVD Reserved

0x001A 2 LENGTH UART raw data length

0x001C Variable DATA UART raw data

Table 4-3：VS_UART_CMD_Cnf

 ODA: Concentrator mac address

 OSA: STA module mac address

 MTYPE: 0x88, 0xE1 (constant)

 MMTYPE: 0xA401(constant)

 MMV: 0 (constant)

 OUI: 0x00, 0xB0, 0x52(constant)

 LENGTH: Length of DATA, size in bytes

 DATA: UART response(raw data)

This mac frame is generated by STA module, so concentrator need to further analysis the data.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 11

4.5 Get topology request and response (VS_AVLN_TOPO_Req

VS_AVLN_TOPO_Cnf)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA308 (Request)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

0x0012 1 COMMAND 0x01: get tree

0x02: trace

0x03-0xff: reserved

0x0013 n VAR Base on command type

Table 4-4：VS_AVLN_TOPO_Req

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA309 (Confirm)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

0x0014 1 COMMAND 0x01: get tree

0x02: trace

0x03-0xff: reserved

0x0015 1 RESPONSE LSB 0th bit: show whether the response is

successful or not. “1” is fail, “0” is

successful.

MSB 7th bit: show whether current MME

has more MME followed. “1” is yes, “0”

means “no” and current is the last MME.

Other bits: reserved

0x0016 n VAR Base on command type

 Table 4-5：VS_AVLN_TOPO_Cnf

This MME is sent by concentrator, it shows all the directly connected STA information under the

given STA. Further, it can be used to show the whole topology of one AVLN.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 12

 Table 4-6：VAR field for Get tree command

 Response: only for Cnf MME. If the response is successful or not. “1” is fail, “0” is successful

 Root MAC: the MAC of chosen STA to query

 NumOfSTA: the number of STA directly under the chosen STA

 STAn Info: the Nth STA’s Info. Check table 4-8.

Table 4-7：VAR field for Get trace command

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 13

 Root MAC: the chosen STA’s MAC

 NumOfSTA: the number of STA in the path from chosen STA to CCO

 STAn Info: the Nth STA’s Info. Check table 4-8.

Table 4-8：STA’s Info

 MAC: STA MAC

 TEI: STA TEI

 NumOfSTA: the number of STA directly under this STA

 Status: the status of this STA. currently “1” means authenticated, “0” is associated

For Trace subcommand, numOfSTA and Status can be ignored

Following could be used as guide to develop application feature at concentrator to get topology related

information.

In order to get the topology of CCo, App should follow below steps:

1. Send a get tree command to CCo, “root MAC” is CCo’s MAC

2. CCo will return the list of STAs directly connected to it.

3. App check each STA’s info, if any STA has at least one STA under it (numOfSTA is non-zero in

Error! Reference source not found.), App should send a similar get tree command to CCo with

root MAC” set to STA’s mac instead. (NOTE: STAs having other STA under it are the non-leaf

node in the tree topology, STAs not having other STA under it are the leaf node in the tree topology)

4. Loop 3 until complete sending request MME to CCo for querying all the non-leaf STA (loop all the

non-leaf STAs by sending a get tree command)

5. App construct the tree topology based on the information above and show it out.

To get the data path (relay path) for a STA, App should follow below steps:

1. Send a trace command to CCo, “root MAC” is the STA’s MAC

2. CCo will return a response with the STA list where all STAs on the path between STA and CCo are

listed.

3. App show it out.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 14

4.6 Network information request (VS_NW_INFO_STATS_Req)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA074 (Request)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

0x0014 1 FIRST_TEI First TEI requested.

If FIRST_TEI is Zero the NUMSTAS field will be valid and up to 96
sets of Station Information will be returned. Otherwise the
NUMSTAS field will list the number of sets of Station
Information returned and all the existent sets of Station
Information will be return at or after the FIRST_TEI (up to 96).

Table 4-9： VS_NW_INFO_STATS_Req

This MME is sent by concentrator to get the network information, which devices registered in the network,

and get the MAC address of each device, if some expected devices not exist in the network, concentrator

cannot communicate with these devices.

Notes: If FIRST_TEI is set to 0, NUMSTAS in the response stands for total stations in the network, if the

number is bigger than 96, users should send the second or maybe third request to get the information(max

station number in a network is 253), since the max size of Ethernet frame is 1514 octets.

The first request, FIRST_TEI = 0,

The second request, FIRST_TEI = 98,

The third request, FIRST_TEI = 194,

Station TEI starts from 2, the MAX TEI is 254.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 15

4.7 Network information response (VS_NW_INFO_STATS_Cnf)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA075 (Confirm)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

0x0014 1 FIRST_TEI First TEI from Request.

0x0015 1 IN_AVLN Station is a Member of an AVLN

0x0016 7 NID Network Identifier

The least significant 54 bits of this field
contains the NID of the AVLN. The
remaining 2 bits are set to 0b00.

0x001D 1 SNID Short Network Identifier

The last significant 4 bits of this field
contains the Short Network Identifier. The
remaining 4 bits are set to 0x0

0x001E 1 TEI Terminal Equipment Identifier of the STA in
the AVLN

0x001F 1 STATIONROLE Role of the station in the AVLN

0x00 = STA

0x01 = Proxy Coordinator

0x02 = CCo

0x03 – 0xFF = reserved

0x0020 6 CCO_MACADDR MAC Address of the CCo of the network.

0x0026 1 ACCESS Access Network

0x00 = This NID corresponds to an in-home
network

0x01 = This NID corresponds to an Access
Network

0x02 - 0xFF = reserved

0x0027 1 NumCordNWs Number of Neighbor Networks that are
coordinating with the AVLN

0x00 = none (Un-Coordinated mode)

0x01 = one Coordinating network, and so
on

0x0028 1 CCO_TEI Terminal Equipment Identifier of the CCo in
the AVLN

0x0029 1 NUMSTAS Number of AV STAs in the AVLN = L

0x00 = None,

0x01 = One, and so on.

0x002A 6 DA[0] MAC Address of the STA – 0

0x0030 1 TEI[0] TEI of the STA – 0

0x0031 6 1stBDA[0] MAC Address of the first Node bridged by
STA – 0

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 16

0x0037 1 AvgPHYDR_TX[0] Average PHY Data Rate in Mega Bits per
second from STA to DA[0].

0x00 = unreachable/unknown

0x01 = 1 Mbps, and so on

0x0038 1

AvgPHYDR_RX[0]

Average PHY Data Rate in Mega Bits per
second from DA[0] to STA.

0x00 = unreachable/unknown

0x01 = 1 Mbps, and so on

* * *

 6 DA[L-1] MAC Address of STA – (L-1)

 1 TEI[L-1] TEI of the STA – (L-1)

 6 1stBDA[L-1] MAC Address of the first Node bridged by
STA – (L-1)

 1 AvgPHYDR_TX[L-1] Average PHY Data Rate in Mega Bits per
second from STA to DA[0].

0x00 = unreachable/unknown

0x01 = 1 Mbps, and so on

 1 AvgPHYDR_RX[L-1] Average PHY Data Rate in Mega Bits per
second from DA[0] to STA.

0x00 = unreachable/unknown

0x01 = 1 Mbps, and so on

Table 4-10： VS_NW_INFO_STATS_Cnf

4.8 Get software version request (VS_SW_VER_Req)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (=0)

0x000F 2 MMTYPE 0xA000 (Request)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

Table 4-11： VS_SW_VER_Req

This MME is sent by concentrator to get software version of devices, the destination could be

QCA6411 or QCA7000.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 17

4.9 Get software version response (VS_SW_VER_Cnf)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA001 (Confirm)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

0x0014 1 MSTATUS MME Status (0x00=Success)

0x0015 1 MDEVICEID Device ID

0x0016 1 MVERLENGTH Length of Version String (including null)

0x0017 128 MVERSION Version String

0x0097 5 RSVD

Table 4-12： VS_SW_VER_Cnf

4.10 Software reset request (VS_RS_DEV_Req)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA01C (Request)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

Table 4-13： VS_RS_DEV_Req

This MME is sent by concentrator to reset target device.

4.11 Software reset response (VS_RS_DEV_Cnf)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, 0xE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA01D (Confirm)

0x0011 3 OUI Intellon OUI (0x00, 0xb0, 0x52)

0x0014 1 MSTATUS MME Status (0x00=Success, 0x01 = Failure)

Table 4-14： VS_RS_DEV_Cnf

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 18

4.12 MME timeout
The ODA of MME should be existed in the network information. If not, there will be no response.

The time out is defined by user; it can be 3 or 5 seconds.

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 19

Appendix : Example for Concentrator raw socket programming
Filename: plc.h

#ifndef __PLC_H__

#define __PLC_H__

#include <linux/if_ether.h>

typedef unsigned short uint16;

typedef unsigned char byte;

typedef unsigned char uint8;

#define CMD_REQ_HDR_SZ (sizeof(struct cmd_req_hdr))

#define CMD_IND_HDR_SZ (sizeof(struct cmd_ind_hdr))

/* Default settings of cmd_req_hdr */

#define REQ_MTYPE 0x88e1

#define REQ_MMV 0x00

#define REQ_MMTYPE 0xA400

#define REQ_OUI0 0x00

#define REQ_OUI1 0xB0

#define REQ_OUI2 0x52

/*mme type*/

#define MMTYPE_CMD_IND 0xa402

/*Ether packet type*/

#define ETH_P_HPAV 0x88e1

/*struct type */

struct cmd_req_hdr

{

 struct ethhdr eth_hdr;

 uint8 mmv;

 uint16 mmtype;

 char oui[3];

 uint16 length;

 byte data[0];

} __attribute__((packed));

struct cmd_cnf_hdr

{

 struct ethhdr eth_hdr;

 uint8 mmv;

 uint16 mmtype;

 char oui[3];

 uint16 length;

 byte data[0];

} __attribute__((packed));

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 20

struct cmd_ind_hdr

{

 struct ethhdr eth_hdr;

 uint8 mmv;

 uint16 mmtype;

 char oui[3];

 byte address[ETH_ALEN];

 uint16 length;

 byte data[0];

} __attribute__((packed));

extern void cmd_req_hdr_init(struct cmd_req_hdr* p_req_hdr, const uint8* const dest_mac,

 const uint8* const src_mac, uint16 len);

#endif

Filename: plc.c

#include <string.h>

#include "plc.h"

void cmd_req_hdr_init(struct cmd_req_hdr* p_req_hdr, const uint8* const dest_mac, const uint8* const src_mac, uint16 len)

{

 memcpy(p_req_hdr->eth_hdr.h_dest, dest_mac, ETH_ALEN);

 memcpy(p_req_hdr->eth_hdr.h_source, src_mac, ETH_ALEN);

 p_req_hdr->eth_hdr.h_proto = htons(REQ_MTYPE);

 p_req_hdr->mmv = REQ_MMV;

 p_req_hdr->mmtype = REQ_MMTYPE;

 p_req_hdr->oui[0] = REQ_OUI0;

 p_req_hdr->oui[1] = REQ_OUI1;

 p_req_hdr->oui[2] = REQ_OUI2;

 /*p_req_hdr->length = htons(len);*/

 p_req_hdr->length = len;

}

Filename: common.h

extern int str2hex(const char* str, char byte[], int *psize);

extern int find_char(char str[], int len, char ch);

Filename: common.c
#include <stddef.h>

int str2hex(const char* str, char byte[], int *psize)

{

 char ch; int i = 0;

 if(str == NULL) return -1;

 while ((ch = *str++) != '\0')

 {

 if (ch >= 'a' && ch <= 'f') ch = ch - 'a' + 0x0a;

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 21

 else if (ch >= 'A' && ch <= 'F') ch = ch - 'A' + 0x0a;

 else if (ch >= '0' && ch <= '9') ch = ch - '0';

 else continue;

 if (i % 2 == 0) byte[i++ / 2] = ch << 4;

 else byte[i++ / 2] += ch;

 }

 if (i % 2 == 0) *psize = i / 2;

 else return -1;

 return 0;

}

/* Count char */

int find_char(char str[], int len, char ch)

{

 int i = 0;

 for (i = 0; i < len; i++) if (str[i] == ch) return i;

 return -1;

}

Filename: eth_plc.c
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <netdb.h>

#include <sys/ioctl.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <netinet/in.h>

#include <netpacket/packet.h>

#include <net/ethernet.h>

#include <net/if.h>

#include <arpa/inet.h>

#include <errno.h>

#include <time.h>

#include "plc.h"

#include "config.h"

#define RCV_BUF_SIZE 1024 * 1 /* Receive buffer size */

#define SND_BUF_SIZE 1024 * 1 /* Send buffer size */

#define MAX_PKT_LEN 256

#define RCV_TO 1

const char zero_mac[ETH_ALEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

struct eth_pkt

{

 struct ether_header eth_head;

 char eth_data[0];

}__attribute__ ((__packed__));

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 22

/* This is a list of interface name prefixes which are `bad' in the sense

 * that they don't refer to interfaces of external type on which we are

 * likely to want to listen. We also compare candidate interfaces to lo. */

static char *bad_interface_names[] =

{

 "lo:",

 "lo",

 "stf", /* pseudo-device 6to4 tunnel interface */

 "gif", /* psuedo-device generic tunnel interface */

 "dummy",

 "vmnet",

 NULL /* last entry must be NULL */

};

/* Receive buffer size */

static int rcv_buf_szie = RCV_BUF_SIZE;

static char rcv_buff[RCV_BUF_SIZE] = { 0 };

/*Send buffer size*/

static int snd_buf_szie = SND_BUF_SIZE;

static char snd_buff[SND_BUF_SIZE] = { 0 };

/* Interface name */

static char if_name[10] = "eth0";

/* Host MAC */

static char host_mac[ETH_ALEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

static char dest_mac[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };

static void reverse_char_array(char eth_mac[], int len)

{

 int i;

 char tmp;

 for (i = 0; i < len / 2; i++)

 {

 tmp = eth_mac[i];

 eth_mac[i] = eth_mac[len - 1 - i];

 eth_mac[len - 1 - i] = tmp;

 }

}

static void eth_show_mac(const int type, const char eth_mac[])

{

 int i = 0;

 if (0 == type) printf("SMAC=[");

 else printf("DMAC=[");

 for(i = 0; i < ETH_ALEN - 1; i++) printf("%02x:", *((unsigned char *)&(eth_mac[i])));

 printf("%02x] ", *((unsigned char *)&(eth_mac[i])));

}

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 23

/* Set interface as promiscuous mode */

static int set_promisc(const char *ifname, int fd, int flags)

{

 int ret = -1;

 struct ifreq st_ifr;

 /* Get interface flags */

 strcpy(st_ifr.ifr_name, ifname);

 ret = ioctl(fd, SIOCGIFFLAGS, &st_ifr);

 if (ret < 0)

 {

 perror("[Error]Get Interface Flags");

 return -1;

 }

 if (flags == 0)

 {

 /* reset promiscuous mode */

 st_ifr.ifr_flags &= ~IFF_PROMISC;

 }

 /* Set promiscuous mode */

 st_ifr.ifr_flags |= IFF_PROMISC;

 ret = ioctl(fd, SIOCSIFFLAGS, &st_ifr);

 if (ret < 0)

 {

 perror("[Error]Set Interface Flags");

 return -1;

 }

 return 0;

}

int plc_init_socket(void)

{

 int ret = -1;

 int fd = -1;

 struct ifreq st_ifr;

 struct sockaddr_ll st_local = {0};

 struct timeval rcv_timeout = {0, 10000}; /* 100 minisecond */

 /* Create a socket */

 fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));

 if (fd < 0)

 {

 perror("[Error]Initinate L2 raw socket");

 return -1;

 }

 /* Set if name */

 set_ifname(if_name);

 /* Set the interface as promiscuous mode */

 set_promisc(if_name, fd, 1);

 /* Set the timeout value of receiving, the default value is 0, which means will never time out */

ret = setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, (char*)&rcv_timeout, sizeof(struct timeval));

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 24

 if (ret < 0)

 {

 perror("[Error]Set socket receive timeout");

 close(fd);

 return -1;

 }

 /* Get index of interface */

 strcpy(st_ifr.ifr_name, if_name);

 ret = ioctl(fd, SIOCGIFINDEX, &st_ifr);

 if (ret < 0)

 {

 perror("[Error]Ioctl operation");

 close(fd);

 return -1;

 }

 /* Bind interface */

 st_local.sll_family = PF_PACKET;

 st_local.sll_ifindex = st_ifr.ifr_ifindex;

 /*st_local.sll_protocol = htons(ETH_P_ALL);*/

 st_local.sll_protocol = htons(ETH_P_HPAV);

 ret = bind(fd, (struct sockaddr *)&st_local, sizeof(st_local));

 if (ret < 0)

 {

 perror("[Error]Bind the interface");

 close(fd);

 return -1;

 }

 if (memcmp(host_mac, zero_mac, ETH_ALEN) == 0)

 {

 /* Get MAC address */

 ret = ioctl(fd, SIOCGIFHWADDR, &st_ifr);

 if (ret < 0)

 {

 perror("[Error]Get the MAC address");

 close(fd);

 return -1;

 }

 memcpy(host_mac, st_ifr.ifr_hwaddr.sa_data, sizeof(host_mac));

 }

 return fd;

}

int plc_exit_socket(fd)

{

 return close(fd);

}

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 25

int eth_recv(const int fd, char** pp_packet)

{

 int pkt_len = -1;

 /* Receive frame */

 memset(rcv_buff, 0, RCV_BUF_SIZE);

 pkt_len = recvfrom(fd, rcv_buff, rcv_buf_szie, 0, NULL, NULL);

 if (pkt_len < 0)

 {

 return -1;

 }

 *pp_packet = rcv_buff;

#ifdef DB_RCV_ETH_RAW

 int i;

 printf("\nReceive raw ether frame:\n");

 for (i = 0; i < pkt_len; i++)

 {

 printf("%02X ", (unsigned char)(*pp_packet)[i]);

 }

 printf("\n");

#endif

 return pkt_len;

}

int eth_plc_recv(const int fd, char* const plc_packet)

{

 int i;

 int pkt_len = -1;

 struct cmd_ind_hdr* p_packet = NULL;

 i = 0;

 /*while (i++ <= RCV_RETRY_CNT)*/

 time_t start_time;

 time_t current_time;

 start_time = time((time_t*)NULL);

 if (start_time < 0)

 {

 return -1;

 }

 do

 {

 current_time = time((time_t*)NULL);

 if (current_time < 0)

 {

 return -1;

 }

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 26

 pkt_len = eth_recv(fd, (char**)&p_packet);

 if (pkt_len < 0)

 {

 continue;

 }

 if (memcmp(dest_mac, p_packet->address, ETH_ALEN) == 0 && p_packet->mmtype == MMTYPE_CMD_IND)

 {

 if (pkt_len > MAX_PKT_LEN)

 {

 pkt_len = MAX_PKT_LEN;

 }

 pkt_len -= CMD_IND_HDR_SZ;

 memcpy(plc_packet, p_packet->data, pkt_len);

 return pkt_len;

 }

 }

 while (current_time - start_time < RCV_TO);

 return -1;

}

int eth_send(const int fd, const char* const packet, const int len)

{

 int ret = -1;

 int pkt_len = -1;

 int plc_addr_pos = 0;

 struct eth_pkt* eth_packet;

 /*char dest_mac[ETH_ALEN];*/

 if (packet == NULL) return -1;

 pkt_len = len;

 eth_packet = (struct eth_pkt*)malloc(pkt_len);

 if (eth_packet == NULL) return -1;

 memcpy(eth_packet, packet, len);

 /* Send packet */

 pkt_len = sendto(fd, eth_packet, pkt_len, 0, NULL, 0);

 if (pkt_len < 0)

 {

 free(eth_packet);

 return -1;

 }

 free(eth_packet);

 return pkt_len;

}

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 27

int eth_plc_send(const int fd, const char* const plc_packet, const int len)

{

 int ret = -1;

 int pkt_len = -1;

 int plc_addr_pos = 0;

 struct cmd_req_hdr* req_header;

 if (plc_packet == NULL) return -1;

 pkt_len = len + CMD_REQ_HDR_SZ;

 req_header = (struct cmd_req_hdr*)malloc(pkt_len);

 if (req_header == NULL) return -1;

 /* Find the address starting position */

 while (plc_packet[plc_addr_pos++] != 0x68)

 {

 if (plc_addr_pos >= len)

 {

 free(req_header);

 return -1;

 }

 }

 memcpy(dest_mac, (char*)plc_packet + plc_addr_pos, ETH_ALEN);

 /*reverse_char_array(dest_mac, ETH_ALEN);*/

 cmd_req_hdr_init(req_header, dest_mac, host_mac, len);

 memcpy(req_header->data, plc_packet, len);

#ifdef DB_SND_ETH_RAW

 int i;

 printf("\nSend raw ether frame:\n");

 for (i = 0; i < pkt_len; i++)

 {

 printf("%02X ", (unsigned char)(((char*)req_header)[i])) ;

 }

 printf("\n");

#endif

 /* Send packet */

 pkt_len = sendto(fd, req_header, pkt_len, 0, NULL, 0);

 if (pkt_len < 0)

 {

 free(req_header);

 return -1;

 }

 free(req_header);

 return pkt_len;

}

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 28

static int is_bad_interface_name(char *interface_name)

{

 char **p;

 for (p = bad_interface_names; *p; ++p)

 if (strncmp(interface_name, *p, strlen(*p)) == 0) return 1;

 return 0;

}

/* This finds the first interface which is up and is not the loopback

 * interface or one of the interface types listed in bad_interface_names. */

int set_ifname(char interface_name[])

{

 struct if_nameindex * nameindex;

 int i;

 nameindex = if_nameindex();

 if(nameindex == NULL)

 {

 return -1;

 }

 /* Try to find a interface named if_name */

 i = 0;

 while(nameindex[i].if_index != 0)

 {

 if (strcmp(nameindex[i].if_name, "lo") != 0 && !is_bad_interface_name(nameindex[i].if_name))

 {

 if (strcmp(interface_name, nameindex[i].if_name) == 0)

 {

 if_freenameindex(nameindex);

 return 0;

 }

 }

 i++;

 }

 /* If no interface named if_name is found, copy the first interface name found to if_name */

 i = 0;

 while(nameindex[i].if_index != 0)

 {

 if (strcmp(nameindex[i].if_name, "lo") != 0 && !is_bad_interface_name(nameindex[i].if_name))

 {

 strcpy(interface_name, nameindex[i].if_name);

 if_freenameindex(nameindex);

 return 0;

 }

 i++;

 }

 return -1;

}

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 29

void plc_set_ifname(char interface_name[])

{

 strcpy(if_name, interface_name);

}

void plc_set_host_mac(char mac_addr[])

{

 int i;

 for (i = 0; i < ETH_ALEN; i++)

 {

 host_mac[i] = mac_addr[i];

 }

}

Filename: config.h

#ifdef DEBUG

 #define DB_SND_ETH_RAW

 #define DB_RCV_ETH_RAW

 #define DB_TEMP

#endif

Filename: main.c
#include <stdio.h>

#include <string.h>

#include "common.h"

#define COM_RETRY_CNT 3

/*#define RCV_CNT 32*/

const static char host_mac_addr[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

int main(int argc, char* argv[])

{

 char recv_to_flag = 0;

 char input_flag = 1;

 /*char send_buf[32] = { 0 };*/

 /*char input_buf[100];*/

 char send_buf[1024] = { 0 };

 char input_buf[1024];

 int com_len;

 int str_len;

 char const send_com[32] = { 0xfe, 0xfe, 0xfe, 0xfe, 0x68, 0x32, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x68, 0x13, 0x00, 0x15, 0x16 };

 char receive_buf[300];

 int rcv_len = 0;

 int fd;

 int i;

 char *p;

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 30

 plc_set_ifname("eth0");

 plc_set_host_mac(host_mac_addr);

 fd = plc_init_socket();

 printf("\n\n");

 printf("/********QCA7000 Remote meter module test********/");

 printf("\n");

 printf("FE FE FE 68 32 00 00 00 00 00 68 11 04 33 34 34 35 E7 16");

 printf("\n");

 printf("FE FE FE 68 32 00 00 00 00 00 68 11 04 33 34 35 35 E8 16");

 while (1)

 {

 printf("\n\n");

 printf("--");

 while(1)

 {

 printf("\n");

 printf("Input: ");

 gets(input_buf);

 if (str2hex(input_buf, send_buf, &com_len))

 {

 printf("\nInput error!\n");

 }

 else

 {

 break;

 }

 }

 if (eth_plc_send(fd, send_buf, com_len) < 0)

 {

 printf("\neth_send error\n");

 continue;

 }

 /* Retry COM_RETRY_CNT times */

 for (i = 0; i < COM_RETRY_CNT; i++)

 {

 rcv_len = eth_plc_recv(fd, receive_buf);

 if (rcv_len > 0)

 {

 str_len = find_char(receive_buf, rcv_len, 0x16);

 if (str_len > 0) break;

 else i--;

 }

 }

 if (i == COM_RETRY_CNT) printf("\nReceive time out!");

 else

 {

Qua
lco

mm A
the

ro
s C

on
fid

en
tia

l

Fo
r G

rid
co

mm

DRAFT
 O

NLY

QCA-PLC-SG-firmware-application-notes v1.0.0 page 31

 printf("\nReceive %d data: ", str_len + 1);

 for (i = 0; i < str_len + 1; i++) printf("%02X ", (unsigned char)receive_buf[i]);

 }

 }

 plc_exit_socket(fd);

}

Filename: makefile
TARGET = eth_plc_7000

OBJS = main.c common.c eth_plc.c plc.c

#CC = /opt/nxp/gcc-4.3.2-glibc-2.7/bin/arm-vfp-linux-gnu-gcc

CC = gcc

all: $(TARGET)

$(TARGET): $(OBJS)

 @$(CC) -I. -o $@ $(OBJS)

 @echo "Compile completed!"

 @#cp $(TARGET) ~/nfs_dir/for_lpc3250/test

clean:

 @rm -vf $(TARGET) *.o *~

