aca;
-

QCA-PLC-SG-firmware-v1.0.0 - Draft

Eualcomm

ATHEROS
PLC Chipset SG Programmers Guide

MK G-xxxxx Ver. Draft
May, 2013

Confidential and Proprietary - Qualcomm Atheros, Inc.

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the
express written permission of Qualcomm Atheros, Inc.

QUALCOMM is registered trademark” of Qualcomm Incorporated. ATHEROS is a registered trademark of
Qualcomm Atheros, Inc. All other registered and unregistered trademarks are the property of Qualcomm
Incorporated, Qualcomm Atheros, Inc. or their respective owners and used with permission. Registered marks owned
by Qualcomm Incorporated‘and -Qualcomm Atheros, Inc. are registered in the United States of America and may be
registered in other countries.

This technical data may be subject to U.S..and-international export, re-export, or transfer (“export”) laws. Diversion
contrary to U.S. and.international law is.strictly prohibited.

Qualecomm Atheros, Inc.
1700 Technology Drive
San Jose, CA 95110-1383
US.A.

Copyright © 2011 QUALCOMM Incorporated.
All rights reserved.

QCA-PLC-SG-firmware-v1.0.0

i

p=i!

Revision History

Revision

Date

Description

Ver. 1.0

April, 2013

Initial version

9
=

QCA-PLC-SG-firmware-v1.0.0

Contents

Y Vol Fo1 1Y/ 04 I Yo Vo IV o] o g cL VA - o] o - R 5
2 ATCRILECTUIE OVEIVIEW ..eioueiiiiiiieeiieeetee ettt ettt e st e st e e bee e sabeeesat e e s abeesabe e e sabeesabeeaaseeesabeeesaseesnseesaneeesaseens 6
2.1 POWET [INE FrOOUENCY .. eiiiiiiietiictiee e ettt e seitee e ettt e e e stteeessaeeeessnbseeesssseeessssnnsesdinseeessnssenesssnsenessnsens 6
2.2 SG SYStEM ArChITECLUIE ...viiiiiiiiee e e e esnree s B s i e e e seateeeeseateeeesenteeeesanee 6
3 UART Data transparent TX/RX.....coceeioieeeiieecieeeeiteeecteeeeveeeeteeesaveesveeesse donine st iareeseseeeesseesreeensaeesnsessseeennnes 7
3.1 UART Data transSmit......coei ittt e sttt et st e s e e e s s e 7
3.2 UART Data FECRIVE. ... ueeiieieiiieeeeiitee e ettt e eitee e st e e s e e es b e 8 e sttt e s st e e s anbeeesannreeesenbeneseanrenessnnnenes 8
3.3 Power Meter Address and MAC address Mapping.....ctie e cueeeeeireeeeiiieeeesiieeeeseieeesssreeesssreeeessnvenas 8
4 CommuUNICAtION ProtOCO ..iiiiiiiiiiiiiiie it e ettt e et e e et e e e e bte e e e sbteeeesbteeeesntaeeesasreeessnes 9
4.1 [o] o] olo] H OSSP PP PSP 9
4.2 Ethernet MME Packet NBAENcocliei i e bee e e e sabae e e e eabe e e e e aneeas 9
4.3 Get power meter data request (VS UART_CMD_Req MME)c.cccooveiieiiiiiieeeeiee et 9
4.4 Get power meter data response (VS_UART_CMD_CNf) cccueiiiiieeiiiiciee ettt 10
4.5 Get topology request and response (VS_AVLN_TOPO_Req VS_AVLN_TOPO_Cnf)ccccccvuverereene 11
4.6 Network information request (VS_NW _INFO_STATS_REQ)....cccvieerrirerreeririeerreeereeeeireesreesvee e 14
4.7 Network information response (VSaNW _INFO_STATS CNnf).cocveeiiiiiiieeeee et 15
4.8 Get software version request (VS SW_VER REQ) tieeiecuriieiiciiieeieciieeeeeciteee e eteeeeeiteeeesenteeeesnraeeeeanns 16
49 Get software version response (VS _SW_VER.CNE) . ettt 17
4.10 Software reset requESt (VS_RS_DEV _REO) et ciee et e st e estre s re e eaee e sveesteeessaeesbeeenns 17
411 Software reset response (VS_RS_DEV_CNT)..cciiiiiiiieiiie ettt et e e ave e b 17
422 MME TIMEOULeiiiiiiiiii ittt a e s a e s ara s 18

Appendix : Example for Concentrator-raw socket programmingccccceeeceeerieesieeeriee e esee e 19

I
I
=

QCA-PLC-SG-firmware-v1.0.0

Table and Figure

Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 4-1:

Figure 5-2:

Table 2-1:

Table 4-1:

Table 4-2:

Table 4-3:

Table 4-4:

Table 4-5:

Table 4-6:

Table 4-7:

Table 4-8:

Table 4-9:

Table 4-10:

Table 4<11:

Table 4-12:

Table 4-13:

Table 4-14:

QCA broadband PLC Smart Grid system block diagramcccecvieeiiiiieeiecciee e, 6
UART data transparently transSmit..........coeeciiieieiiiie e e e e re e e et e e s eaaeeeeas 7
UART data transparently rECEIVEcovciiii it e e e e e e e s saaeeeeas 8
MME packet captured by Wireshark.........coccueiiiiiieiin e 10
RaW UART Data SENT ...t b s et 10
Acronyms and AbDBreViationsc.uueee e sl et 5
MIME PaCket HEAET ..coueiiiiiiieiee ittt ettt ettt ettt st e s b e e sate e saeeesanee s 9
VS_UART_CIMD_REQ oo b et eee e eee e es e eseeeeseeeees e seseesas s ssseseesesnees 9
VS _UART _CIMID_CNF .ottt eee s s se e e s eneeenees 10
VS AVLN_TOPO _REG thrievrvereeereeeeeeeeeeeeeeseessseseeessessseesessssesesessesssseseesesesessstssesesessssessesessesenes 11
VS_ AVLN_TOPO _CAf e sseeseeeeeseeeeeeseeesseeseeeseeeeseseesesesasseseesessessseessesesessseesassesesesenes 11
VAR field for Get tree comm@andi.........cooiiiiieiiiiie ettt sttt 12
VAR field for Get trace commaNnd i e ee ettt 12
STA’S INTO. et e it B ettt et b e s bt e sae e et e et e e s be e sbeesaeesanenas 13
VS_NW INFO STATS_ RET feerviiteeeseeeeeeeseeeeeeeeeeeseesees s ees s eeseese s ses s es s eeseenes s 14
VS NW_INFO_ STATS LONT oottt eee e eee et e eeeseeeeeeeeeeseseseeeeeseneseesseeenesessenees 16
VS SW._ VER RO e eeeeeeeeereeeeeeseseseseseeseeeseeseessssesesseesesesesesessessesasesesseesssseessseeesesasenees 16
VS SW AER L CNF .ottt s et e e ee e et e e s s e et e eses s e eseeeseeseeeeeeenesenasenees 17
VS RS DEV _REQ . .euveeeeeeeeeeeeseeeeeeeseeeeeeeseseesesesesesees s s seseseeseeseseesessesesseesessesesssesnesenees 17

VS RS DEV_Cferervereeeeeeeeeeeeseseeeseseeesssesseeeseeesesssessseeseeesesesesesesessssessseeseseseseseseseseeeseneses 17

QCA-PLC-SG-firmware-application-notes v1.0.0 page 5

1 Acronyms and Abbreviations

Acronyms

Definition

Power Meter

One phase Smart meter and three phase Smart meter

CCO module | CCO module is placed into concentrator. It included 3 QCA6411, 1 5-ports-switch.
STA module STA module is placed into smart meter. It included 1 QCA7000.
Cco Central Coordinator
STA Station
NSTA Normal STA
PSTA Proxy STA
HSTA Hidden STA
AVLN HomePlug AV Logical Network
Relay CCO cannot communicate with 1 HSTA, but via PSTA with relay, it can communicate with each other.
n Relay Multi- relay
MME MAC Management Message
PB PHY Block
TEI Terminal Equipment Identifier
QCAG411 Lynx chip used for CCO
QCAT7000 Lynx chip used for STA
DA Destination Address, Destination MAC address
SA Source Address, Source MAC address.

Table 1-1: Acronyms and Abbreviations

QCA-PLC-SG-firmware-application-notes v1.0.0 page 6

2 Architecture Overview

2.1 Power line Frequency
To comply with the HomePlug GP specification, the Powerline frequency must be 50Hz+3.0% or 60
Hz+3.5%. Powerline frequency outside of this range will cause the firmware to reboot the device.

2.2 SG System architecture

Remote Server]
GEES P
—y —
/
GPRS/PON Concentrator
PLC Master
-] ~
Ethernet | Switch | FC

QCATIOD

QCATOOD

i UART

T
i UART

Power Meter Power Meter

Power Meter
[

Figure 2-1: QCA broadband PLC Smart Grid system block diagram

CCO module was plugged into concentrator, which had 3 QCA6411 corresponding to 3 phase
power line, per QCA6411 use different Network password to indicate 3 different AVLAN. Per VLAN support
253 STAs.

STA module was plugged into power meter, which deployed with 1 QCA7000.STA module fetch
power meter data via UART @2400 baud rate. UART baud rate can be configured with AVITAR tools.

3 QCA6411 connect with switch and communicate with concentrator via Ethernet port.

QCA-PLC-SG-firmware-application-notes v1.0.0 page 7

3 UART Data transparent TX/RX

3.1 UART Data transmit

Payload was raw UART data user wants to send to power meter. Maxim UART data length is within
256 Bytes.

This transmit is initiated by Concentrator, so user need to fill in MME packet, refer chapter 4 for
sending MME Data.

UART data will transparently send to power meter, so the UART data should be valid and can be
recognized by power meter. Here Payload is UART RAW data.

concentrator
D& SA Type Payload
MME | 1# I 2 | IxESe1 | Payhoad]
Y
‘ Switch
DA SA Type Pavioad
MME | 1# I 2# | IxcEBe1 Paylo ad]
CCO Madule
Da SA Typs Pavigad
PLC | 1# I 2% | IxBEe1 Payioad
STA Module
1#: STA Module mac address
QCATO00 mac address
UART Raw uart data
2#: Concentrator mac address

Power Meter Payload: UART data which would

be sent to power meter via

QCAT000 uart over powerline

Figure 3-1: UART data transparently transmit

QCA-PLC-SG-firmware-application-notes v1.0.0 page 8

3.2 UART Data receive

Payload was raw UART data which power meter response. Maxim UART data length is within 256
Bytes. UART data will be sent to concentrator transparently. Received MME packet, concentrator can
recognize which STA Module response. Further UART data analysis will be handled by.concentrator.

concentrator
DA S Type Payload
MME | 1# I 2E I DxEEe1 | Payio sd l
Switch
E DA SA Type Pavioad
MME | 1# | 2¢ | oxeser | paywns
CCO Module ‘
A DA 54 Tvpe Pavioad
pPLC | 1= I 2u I OxB8e1 Payio sd l
STA M:-t:ule ‘ 1#: Concentrator mac address
2#: 5TA Module mac address
UART Raw uart data {QCAT00 Mac address)

Payload: UART data response
Power Meter

fram power meter.

Figure 3-2;” UART data transparently receive

3.3 Power Meter Address.and MAC address Mapping

Per STA module has own mac address (QCA7000 MAC Address), which was stored in NVM. This mac
address can be configured by AVITAR tools. The mapping relationship between QCA7000 module
MAC address and Meter ID should be maintained by Concentrator program. Power meter address
and mac address mapping can be realized by following steps:

1. Concentrator sends VS_NW _INFO_STATS_Req MME to fetch how many STA modules are online.
2. Concentrator initially sends unicast MME frame to online STA module. Payload (UART Data)
should be data to fetch the power meter address or other packet which power meter can recognize.
Concentrator analysis the received payload, and extract the power meter ID.

4. Maintain the mapping with STA module MAC address with power meter ID.

w

QCA-PLC-SG-firmware-application-notes v1.0.0 page 9

4 Communication protocol

4.1 Protocol

® Concentrator communicates with CCO Module via MME.

® CCO communicate with remote server via private protocol, such as 372:1 etc.

® CCO Module communicates with STA Module via HomePlugAV pratocol.
The user just focus on protocol (MME) between Concentrator with/CCO module, low level
communication is invisible to user.

4.2 Ethernet MME packet header

Offset Size Field Name Description
0x0000 6 ODA Original Destination Address
0x0006 6 OSA Original Source Address
0x000C 2 MTYPE Ethertype (0x88, OxE1)
0x000E 1 MMV MME Version (0)
0x000F 2 MMTYPE MME Type
0x0011 3 oul Intellon OUI (0x00, 0xb0, 0x52)

Table 4-1: .MME Packet Header

Different Ethernet MME is raw mac frame which shared same packet heard, refer table 4-1.

4.3 Get power meter data request (VS_UART_CMD_Req MME)

Offset Size Field Name Description
0x0000 6 ODA Original Destination Address
0x0006 6 OSA Original Source Address
0x000C 2 MTYPE Ethertype (0x88, OxE1)
0x000E 1 MMV MME Version (0)
0x000F 2 MMTYPE 0xA400 (Request)
0x0011 3 (0]V]] Intellon OUI (0x00, 0xb0, 0x52)
0x0014 2 LENGTH UART raw data length
0x0016 Variable DATA UART raw data

Table 4-2: VS_UART_CMD_Req

H ODA: STA module mac address

H OSA: Concentrator mac address

® MTYPE: 0x88, OXE1 (constant)

H MMV: 0 (constant)

® MMTYPE: 0xA400(constant)

m OUL 0x00, 0xB0, 0x52(constant)

B | ENGTH: Length of DATA, size in bytes
B DATA: UART command(raw data)

QCA-PLC-SG-firmware-application-notes v1.0.0

page 10

Use wire shark tools to monitor the data you send, the captured data should be like Figure 5-1.

Ox00: co2[00 BO

52 00 16 04

[FO 40 Az 29 B1 Ad/[68 Ell[00]00]

LOR. .. AME)Y £ETS. .

BO 5230 00

Ox10: A4|[00
Ox20: Ao BB
0x30: a4 BB
Ox40: &4 BB

MMTYPE

oo 11 22 33 44 55 BB TT &
ID EE FF 00 11 22 33 44 &

CC|DD EE|FF
CC|DD EE|FF
CC|DD EE|FF

oul LENGTH

oo 11 22
ooj11 22
ooj11 22

O3SA

DATA

33 44 55 66
33 44 55 66
33 44 55 66

MTYPE MMV

77 BB/ 99 =.°RO..."3DUFw"™
77 88|99 axifig.."3DUFwT™
77 88/ 99 asxiyig.. "3DUFwTT

asiviy

Figure 4-1: MME packet captured by wireshark

[
=

39 EE CC
BE TT &5 99

I EE FF O
EE CC I

011 28 33 44 55 86 7T 35 99 mh BB CC
I EE FF

Figure 4-2: Raw UART Data‘'sent

4.4 Getpower meter data response (VS_UART.CMD_Cnf)

Offset Size Field Name Description
0x0000 6 ODA Original Destination Address
0x0006 6 OSA Original Source Address
0x000C 2 MTYPE Ethertype (0x88, OxE1)
0x000E 1 MMV MME Version (0)
0x00O0F 2 MMTYPE 0xA401 (Confirm)
0x0011 3 Oul Intellon OUI (0x00, Oxb0, 0x52)
0x0014 6 RSVD Reserved
0x001A 2 LENGTH UART raw data length
0x001C Variable DATA UART raw data

Table4-3:VS_UART_CMD_Cnf
B ODA: Concentrator mac address
m OSA: STA module-mac address
m MTYPE: 0x88, OXE1 (constant)
® MMTYPE: 0xA401(constant)
H_MMV: 0. (constant)
H OUl: 0x00, 0xB0, 0x52(constant)
M. LENGTH: Length of DATA, size in bytes
B DATA: UART response(raw data)

This mac frame is generated by STA module, so concentrator need to further analysis the data.

QCA-PLC-SG-firmware-application-notes v1.0.0 page 11

4.5 Gettopology request and response (VS_AVLN_TOPO_Req
VS_AVLN_TOPO_Cnf)

Offset Size Field Name Description
0x0000 6 ODA Original Destination Address
0x0006 6 OSA Original Source Address
0x000C 2 MTYPE Ethertype (0x88, OxE1)
0x000E 1 MMV MME Version (0)
0x000F 2 MMTYPE 0xA308 (Request)
0x0011 3 Ooul Intellon OUI (0x00, 0xb0, 0x52)
0x0012 1 COMMAND 0x01: get tree

0x02: trace
0x03-0xff: reserved
0x0013 n VAR Base on command type

Table 4-4: VS_AVLN_TOPO_Req

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, OxE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA309 (Confirm)

0x0011 3 Ooul Intellon OUI (0x00, 0xb0, 0x52)

0x0014 1 COMMAND 0x01: get tree
0x02: trace
0x03-0xff: reserved

0x0015 1 RESPONSE LSB Oth bit: show whether the response is
successful or not. “1” is fail, “0” is
successful.
MSB 7th bit: show whether current MME
has more MME followed. “1” is yes, “0”
means “no” and current is the last MME.
Other bits: reserved

0x0016 n VAR Base on command type

Table 4-5: VS_AVLN_TOPO_Cnf

This MME is sent by concentrator, it shows all the directly connected STA information under the
given STA. Further, it can be used to show the whole topology of one AVLN.

QCA-PLC-SG-firmware-application-notes v1.0.0

page 12

Response:
Root MAC:
NumOfSTA:
STAn Info:

oul

Get tree

Response

Root MAC

oul

NumOfSTA

Get tree

STA1 Info

Root MAC

STAN Info

Get Tree Req

Get Tree Cnf

Table 4-6: VAR field for Get tree command

oul

Trace

Response

Root MAC

oul

NumOfSTA

Trace

STA1 Info

Root MAC

Get Trace Reqg

STAN Info

Get Trace Cnf

Table 4-7: VAR field for Get trace command

= - o

only for Cnf MME. If the response is successful or not. “1” is fail, “0” is successful
the MAC of chosen STA to query

the number of STA directly underthe chosen STA
the Nth. STA’s Info. Check/table 4-8.

= = O = = W

QCA-PLC-SG-firmware-application-notes v1.0.0 page 13

Root MAC: the chosen STA’s MAC
NumOfSTA: the number of STA in the path from chosen STA to CCO
STAn Info: the Nth STA’s Info. Check table 4-8.

MAC G
TEI 1
numOFSTA 1
Status 1

Table 4-8: STA’s'Info

e MAC: STA MAC

e TEI STATEI

o NumOfSTA: the number of STA directly under this STA

e Status: the status of this STA. currently “1” means authenticated, “0” is associated

For Trace subcommand, numOfSTA and'Status can be ignored

Following could be used as guide to develop application feature at concentrator to get topology related
information.

In order to get the topelogy of CCo, App should follow below steps:

1. Senda get tree command to'CCo, “root MAC”.is CCo’s MAC

2. CCowill return the list of STAs directly connected to it.

3. App'check each STA’s info, if any STA has at least one STA under it (numOfSTA is non-zero in
Error! Reference source not found.), App should send a similar get tree command to CCo with
root MAC” set'to STA’s mac instead. (NOTE: STAs having other STA under it are the non-leaf
node in the tree topology, STAS not having other STA under it are the leaf node in the tree topology)

4. Loop 3 until complete sending.request MME to CCo for querying all the non-leaf STA (loop all the
non-leaf STAs by sending a get tree command)

5. App construct the tree topology based on the information above and show it out.

To get the data path (relay path) for a STA, App should follow below steps:

=

Send a trace command to CCo, “root MAC” is the STA’s MAC

2. CCo will return a response with the STA list where all STASs on the path between STA and CCo are
listed.

3. App show it out.

QCA-PLC-SG-firmware-application-notes v1.0.0 page 14

4.6 Network information request (VS_NW_INFO_STATS_Req)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, OxE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA074 (Request)

0x0011 3 oul Intellon OUI (0x00, 0xb0, 0x52)

0x0014 1 FIRST_TEI First TEl requested.
If FIRST_TEI is Zero the NUMSTAS field will be valid and up to 96
sets of Station Information will be returned. Otherwise the
NUMSTAS field will list the number of sets of Station
Information returned and all the existent sets of Station
Information will be return at or after the FIRST_TEI (up to 96).

Table 4-9: VS_NW_INFO_STATS_Req

This MME is sent by concentrator to get the'network information, which devices registered in the network,
and get the MAC address of each device,.if some expected devices not exist in the network, concentrator
cannot communicate with these devices.

Notes: If FIRST_TEl is set to 0;;NUMSTAS in the response stands for total stations in the network, if the
number is bigger than 96, users should send the second or maybe third request to get the information(max
station number in a network is 253), since/'the max size of Ethernet frame is 1514 octets.

The first request; FIRST_TEI = 0,
The second reguest, FIRST /TEI = 98,
The third request, FIRST TEI = 194,

Station TEI starts from 2, the MAX TEl is 254.

QCA-PLC-SG-firmware-application-notes v1.0.0

4.7 Network information response (VS_NW_INFO_STATS_Cnf)

Offset Size Field Name Description

0x0000 6 ODA Original Destination Address

0x0006 6 OSA Original Source Address

0x000C 2 MTYPE Ethertype (0x88, OxE1)

0x000E 1 MMV MME Version (0)

0x000F 2 MMTYPE 0xA075 (Confirm)

0x0011 3 oul Intellon OUI (0x00, 0xb0, 0x52)

0x0014 1 FIRST_TEI First TEI from Request.

0x0015 1 IN_AVLN Station is a Member of an AVLN

0x0016 7 NID Network Identifier
The least significant 54 bits of this field
contains the NID of the AVLN. The
remaining 2 bits are set to 0b00.

0x001D 1 SNID Short Network Identifier
The last significant 4 bits of this field
contains the Short Network Identifier. The
remaining 4 bits are set to 0x0

0x001E 1 TEI Terminal Equipment Identifier of the STA in
the AVLN

0x001F 1 STATIONROLE Role of the station in the AVLN
0x00 = STA
0x01 = Proxy Coordinator
0x02 = CCo
0x03 — OxFF = reserved

0x0020 6 CCO_MACADDR MAC Address of the CCo of the network.

0x0026 1 ACCESS Access Network
0x00 = This NID corresponds to an in-home
network
0x01 = This NID corresponds to an Access
Network
0x02 - OXFF = reserved

0x0027 1 NumCordNWs Number of Neighbor Networks that are
coordinating with the AVLN
0x00 = none (Un-Coordinated mode)
0x01 = one Coordinating network, and so
on

0x0028 1 CCO_TEI Terminal Equipment Identifier of the CCo in
the AVLN

0x0029 1 NUMSTAS Number of AV STAs in the AVLN = L
0x00 = None,
0x01 = One, and so on.

0x002A 6 DAI0] MAC Address of the STA -0

0x0030 1 TEI[O] TEl of the STA-0

0x0031 6 1stBDA[O] MAC Address of the first Node bridged by
STA-0

page 15

QCA-PLC-SG-firmware-application-notes v1.0.0 page 16

0x0037

AvgPHYDR_TX[0]

Average PHY Data Rate in Mega Bits per
second from STA to DA[O].

0x00 = unreachable/unknown

0x01 = 1 Mbps, and so on

0x0038

AvgPHYDR_RX[0]

Average PHY Data Rate in Mega Bits per
second from DA[0] to STA.

0x00 = unreachable/unknown

0x01 = 1 Mbps, and so on

*

DA[L-1]

MAC Address of STA — (L-1)

TEI[L-1]

TEl of the STA — (L-1)

1stBDA[L-1]

MAC Address of the first Node bridged by
STA — (L-1)

AvgPHYDR_TX[L-1]

Average PHY Data Rate in Mega Bits per
second from STA to DA[O].

0x00 = unreachable/unknown

0x01 = 1 Mbps, and so on

AvgPHYDR_RX[L-1]

Average PHY Data Rate in Mega Bits per
second from DA[0O] to STA.

0x00 = unreachable/unknown

0x01 = 1 Mbps, and so on

Table 4-10: VS_NW_INFO_STATS_Cnf

4.8 Getsoftware version request (VS_SW_VER_Req)

Offset Size Field Name Description
0x0000 6 ODA Original Destination Address
0x0006 6 OSA Original Source Address
0x000C 2 MTYPE Ethertype (0x88, OxE1)
0x000E 1 MMV MME Version (=0)
0x000F 2 MMTYPE 0xA000 (Request)
0x0011 3 oul Intellon OUI (0x00, 0xb0, 0x52)

Table 4-11: VS_SW_VER_Req

This MME is sent by concentrator to get software version of devices, the destination could be
QCA6411 or QCA7000.

QCA-PLC-SG-firmware-application-notes v1.0.0

4.9 Getsoftware version response (VS_SW_VER_Cnf)

Offset Size Field Name Description
0x0000 6 ODA Original Destination Address
0x0006 6 OSA Original Source Address
0x000C 2 MTYPE Ethertype (0x88, OxE1)
0x000E 1 MMV MME Version (0)
0x000F 2 MMTYPE 0xA001 (Confirm)
0x0011 3 oul Intellon OUI (0x00, 0xb0, 0x52)
0x0014 1 MSTATUS MME Status (0x00=Success)
0x0015 1 MDEVICEID Device ID
0x0016 1 MVERLENGTH Length of Version String (including null)
0x0017 128 MVERSION Version String
0x0097 5 RSVD

4.10 Software reset request (VS_RS_DEV_Req)

Table 4-12: 'VS_SW_VER_Cnf

Offset Size Field Name Description
0x0000 6 ODA Original Destination Address
0x0006 6 OSA Original Source Address
0x000C 2 MTYPE Ethertype (0x88, OxE1)
0x000E 1 MMV MME Version (0)
0x000F 2 MMTYPE 0xA01C (Request)
0x0011 3 oul Intellon OUI (0x00, 0xb0, 0x52)

page 17

Table4-13: VS_RS_DEV_Req

This MME is sent by concentrator to reset target device.

4.11 Software reset response (VS_RS_DEV_Cnf)

Offset Size Field Name Description
0x0000 6 ODA Original Destination Address
0x0006 6 OSA Original Source Address
0x000C 2 MTYPE Ethertype (0x88, OxE1)
0x000E 1 MMV MME Version (0)
0x000F 2 MMTYPE 0xA01D (Confirm)
0x0011 3 oul Intellon OUI (0x00, Oxb0, 0x52)
0x0014 1 MSTATUS MME Status (0x00=Success, 0x01 = Failure)

Table 4-14: VS_RS_DEV_Cnf

QCA-PLC-SG-firmware-application-notes v1.0.0 page 18

4.12 MME timeout
The ODA of MME should be existed in the network information. If not, there will be no response.
The time out is defined by user; it can be 3 or 5 seconds.

QCA-PLC-SG-firmware-application-notes v1.0.0 page 19

Appendix : Example for Concentrator raw socket programming
Filename: plc.h
#ifndef _PLC_H__

#define __ PLC_H__
#include <linux/if_ether.h>

typedef unsigned short uint16;
typedef unsigned char byte;
typedef unsigned char uint8;

#define CMD_REQ_HDR_SZ (sizeof(struct cmd_req_hdr))
#define CMD_IND_HDR_SZ (sizeof(struct cmd_ind_hdr))

/* Default settings of cmd_req_hdr */

#define REQ_MTYPE 0x88el
#define REQ_MMV 0x00
#define REQ_MMTYPE 0xA400
#define REQ_OUIO 0x00
#define REQ_OUI1 0xBO
#define REQ_OUI2 0x52
/*mme type*/

#define MMTYPE_CMD_IND 0xa402

/*Ether packet type*/
#define ETH_P_HPAV 0x88el

/*struct type */
struct cmd_req_hdr,
{
struct ethhdr eth_hdr;
uint8 mmv;
uintl6 mmtype;
char oui[3];
uint16 length;
byte data[0];
} __attribute_~((packed));

struct cmd_cnf_hdr
{
struct ethhdr eth_hdr;
uint8 mmv;
uintl6 mmtype;
char oui[3];
uint16 length;
byte data[0];
} __attribute__((packed));

QCA-PLC-SG-firmware-application-notes v1.0.0

page 20

struct cmd_ind_hdr

{

struct ethhdr eth_hdr;
uint8 mmv;

uintl6 mmtype;

char oui[3];

byte address[ETH_ALEN];
uint16 length;

byte data[0];

} __attribute__ ((packed));

extern void cmd_req_hdr_init(struct cmd_req_hdr* p_req_hdr, const uint8* const dest. mac,
const uint8* const src_mac, uint16 len);

#endif

Filename: plc.c

#include <string.h>

#include "plc.h"

void cmd_req_hdr_init(struct cmd_req_hdr* p_req_hdr, const uint8* const dest_mac, const uint8* const src_mac, uint16 len)

{

memcpy(p_req_hdr->eth_hdr.h_dest, dest_mac, ETH_ALEN);
memcpy(p_req_hdr->eth_hdr.h_source, sr¢_mac, ETH_ALEN);
p_req_hdr->eth_hdr.h_proto = htons(REQ_MTYPE);
p_req_hdr->mmv = REQ_MMV;

p_req_hdr->mmtype = REQ-MMTYPE;

p_req_hdr->oui[0] = REQ_OUIO;

p_req_hdr->oui[1] = REQ_OUI1;

p_req_hdr->oui[2] = REQ_OUI2;

/*p_req_hdr->length = htons(len);*/

p_req_hdr->length = len;

Filename: common.h

extern int str2hex(.const char* str, charbyte[], int *psize);

extern int find_char(char str[], int len, char ch);

Filename: common.c

#include <stddef.h>

int str2hex(const char* str, char byte[], int *psize)

{

charch; inti=0;
if(str == NULL) return-1;
while ((ch = *str++) 1="\0")
{
if (ch>="a"' && ch<="f") ch=ch-'a"+0x03;

QCA-PLC-SG-firmware-application-notes v1.0.0

page 21

else if (ch >="A"' && ch <="F') ch=ch-'A"+0x0a
else if (ch>='0"' && ch<="9") ch=ch-'0
else continue;

if (i%2==0)byte[i++/2]=ch<< 4;
else byte[i++ /2] +=ch;

if(i%2==0) *psize=i/2;
else return -1;
return O;

/* Count char */
int find_char(char str[], int len, char ch)

{
inti=0;
for (i=0; i< len; i++) if (str[i] == ch) return i;
return -1;

}

Filename: eth plc.c
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <sys/ioctl.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <netinet/in.h>
#include <netpacket/packet.h>
#include <net/ethernet.h>
#include <net/if.h>
#include’<arpa/inet.h>
#include <errno.h>
#include <time.h>
#include "plc.h"

#include "config.h"

#define RCV_BUF_SIZE 1024 * 1
#define SND_BUF_SIZE 1024 * 1
#define MAX_PKT_LEN 256
#define RCV_TO 1

const char zero_mac[ETH_ALEN] = {0x00, 0x00, 0x00, 0x00,

struct eth_pkt
{
struct ether_header eth_head;
char eth_data[0];
}__attribute__ ((__packed_));

’

/* Receive buffer size */
/* Send buffer size */

0x00, 0x00};

QCA-PLC-SG-firmware-application-notes v1.0.0

page 22

/* This is a list of interface name prefixes which are ‘bad' in the sense
* that they don't refer to interfaces of external type on which we are
* likely to want to listen. We also compare candidate interfaces to lo. */
static char *bad_interface_names[] =
{
"lo:",
"lo",
"stf", /* pseudo-device 6to4 tunnel interface */
"gif", /* psuedo-device generic tunnel interface */
"dummy",
"vmnet",
NULL /* last entry must be NULL */

/* Receive buffer size */
static int rcv_buf_szie = RCV_BUF_SIZE;
static char rcv_buff[RCV_BUF_SIZE] ={0};

/*Send buffer size*/
static int snd_buf_szie = SND_BUF_SIZE;
static char snd_buff[SND_BUF_SIZE] ={0};

/* Interface name */
static char if_name[10] = "eth0";

/* Host MAC */
static char host_mac[ETH_ALEN] ={ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
static char dest_mac[ETH_ALEN] = { Oxff, Oxff, Oxff, Oxff, Oxff, Oxff };

static void reverse_char.array(char eth_mac[], int'len)

{
int i;
char. tmp;
for (i=0;i<len/ 2;i++)
{
tmp = eth_macli];
eth_macli] = eth_mac[len -1 - i];
eth_mac[len - 1.- i] =tmp;
}
}

static void eth_show_mac(const int type, const char eth_mac[])
{
inti=0;
if (0 == type) printf("SMAC=[");
else printf("DMAC=[");
for(i=0; i < ETH_ALEN - 1; i++) printf("%02x:", *((unsigned char *)&(eth_macli])));
printf("%02x] ", *((unsigned char *)&(eth_macli])));

QCA-PLC-SG-firmware-application-notes v1.0.0

page 23

/* Set interface as promiscuous mode */
static int set_promisc(const char *ifname, int fd, int flags)
{
intret=-1;
struct ifreq st_ifr;
/* Get interface flags */
strcpy(st_ifr.ifr_name, ifname);
ret = ioctl(fd, SIOCGIFFLAGS, &st_ifr);
if (ret<0)
{
perror("[Error]Get Interface Flags");
return -1;

if (flags == 0)
{
/* reset promiscuous mode */
st_ifr.ifr_flags &= ~IFF_PROMISC;
}
/* Set promiscuous mode */
st_ifr.ifr_flags |= IFF_PROMISC;
ret = ioctl(fd, SIOCSIFFLAGS, &st_ifr);

if (ret<0)

{
perror("[Error]Set Interface Flags");
return -1;

}

return 0;

int plc_init_socket(void)
{
intret=-1;
intfd=-1;
struct ifreq st_ifr;
struct sockaddr_lI st_local = {0};
struct timeval rcv_timeout = {0, 10000}; /* 100 minisecond */
/* Create a socket */
fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
if (fd < 0)
{
perror("[Error]Initinate L2 raw socket");
return -1;
}
/* Set if name */
set_ifname(if_name);
/* Set the interface as promiscuous mode */
set_promisc(if_name, fd, 1);

/* Set the timeout value of receiving, the default value is 0, which means will never time out */
ret = setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, (char*)&rcv_timeout, sizeof(struct timeval));

QCA-PLC-SG-firmware-application-notes v1.0.0

page 24

if (ret<0)

{
perror("[Error]Set socket receive timeout");
close(fd);
return -1;

}

/* Get index of interface */

strcpy(st_ifr.ifr_name, if_name);

ret = ioctl(fd, SIOCGIFINDEX, &st_ifr);

if (ret<0)

{
perror("[Error]loctl operation");
close(fd);
return -1;

/* Bind interface */

st_local.sll_family = PF_PACKET;
st_local.sll_ifindex = st_ifr.ifr_ifindex;
/*st_local.sll_protocol = htons(ETH_P_ALL);*/
st_local.sll_protocol = htons(ETH_P_HPAV);

ret = bind(fd, (struct sockaddr *)&st_local, sizeof(st.local));

if (ret<0)
{
perror("[Error]Bind the interface');
close(fd);
return -1;
}
if (memcmp(host mac, zero_mac, ETH_ALEN).== 0)
{
/* Get MAC address */
ret = joctl(fd, SIOCGIFHWADDR, &st_ifr);
if (ret<0)
{
perror("[Error]Get the MAC address");
close(fd);
return -1;
}
memcpy(host_mac, st_ifr.ifr_hwaddr.sa_data, sizeof(host_mac));
}
return fd;
}

int plc_exit_socket(fd)
{

return close(fd);

QCA-PLC-SG-firmware-application-notes v1.0.0

page 25

int eth_recv(const int fd, char** pp_packet)

{
int pkt_len =-1;

/* Receive frame */

memset(rcv_buff, 0, RCV_BUF_SIZE);

pkt_len = recvfrom(fd, rcv_buff, rcv_buf_szie, 0, NULL, NULL);
if (pkt_len < 0)

{

return -1;

*pp_packet = rcv_buff;

#ifdef DB_RCV_ETH_RAW
inti;
printf("\nReceive raw ether frame:\n");
for (i=0; i< pkt_len; i++)
{
printf("%02X ", (unsigned char)(*pp_packet)[il);
}
printf("\n");
#endif

return pkt_len;

int eth_plc_recv(const int fd, char* const plc_packet)
{

inti;

int pkt_len =-1;

struct cmd_ind.hdr* p_packet = NULL;

i=0;

/*while (i++ <= RCV_RETRY_CNT)*/
time_t'start_time;

time_t current_time;

start_time =time((time_t*)NULL);
if (start_time < 0)
{

return -1;

do

{
current_time = time((time_t*)NULL);
if (current_time < 0)
{

return -1;

QCA-PLC-SG-firmware-application-notes v1.0.0

page 26

pkt_len = eth_recv(fd, (char**)&p_packet);
if (pkt_len < 0)
{

continue;

if (memcmp(dest_mac, p_packet->address, ETH_ALEN) == 0 && p_packet->mmtype == MMTYPE_CMD_IND)

{
if (pkt_len > MAX_PKT_LEN)

{
pkt_len = MAX_PKT_LEN;

pkt_len -= CMD_IND_HDR_SZ;
memcpy(plc_packet, p_packet->data, pkt_len);
return pkt_len;

}

while (current_time - start_time < RCV_TO);

return -1;

int eth_send(const int fd, const char* const packet, const int len)

{

intret=-1;

int pkt_len =-1;

int plc_addr_pos =0;

struct eth_pkt* eth.packet;
/*char dest_mac[ETH_ALEN];*/

if (packet ==NULL) return -1;

pktolen =len;
eth_packet = (struct eth. pkt*)malloc(pkt_len);

if (eth_packet== NULL) return -1;

memcpy(-eth_packet, packet;len);
/* Send packet */
pkt_len = sendto(fd, eth.packet, pkt_len, 0, NULL, 0);
if (pkt_len < 0)
{
free(eth_packet);
return -1;
}
free(eth_packet);
return pkt_len;

QCA-PLC-SG-firmware-application-notes v1.0.0 page 27

int eth_plc_send(const int fd, const char* const plc_packet, const int len)

{
intret=-1;
int pkt_len =-1;
int plc_addr_pos =0;
struct cmd_req_hdr* req_header;

if (plc_packet == NULL) return -1;

pkt_len = len + CMD_REQ_HDR_SZ;
req_header = (struct cmd_req_hdr*)malloc(pkt_len);

if (req_header == NULL) return -1;

/* Find the address starting position */
while (plc_packet[plc_addr_pos++] != 0x68)

{
if (plc_addr_pos >=len)
{
free(req_header);
return -1;
}
}

memcpy(dest_mac, (char*)plc_packet + plc_addr_pos, ETH_ALEN);
/*reverse_char_array(dest_mac, ETH_ALEN);*/

cmd_req_hdr_init(req_header, dest_mac, host_mac, len);
memcpy(req_header->data, plc_packet, len.);

#ifdef DB_SND_ETH_RAW
inti;
printf(."\nSend raw ether.frame:\n");
for (i = 0; i < pkt_len; i++)

{
printf("%02X ", (unsigned char)(((char*)req_header)[i])) ;
}
printf("\n");
#endif

/* Send packet */
pkt_len = sendto(fd, req_header, pkt_len, 0, NULL, 0);
if (pkt_len < 0)
{
free(req_header);
return -1;

free(req_header);
return pkt_len;

QCA-PLC-SG-firmware-application-notes v1.0.0 page 28

static int is_bad_interface_name(char *interface_name)

{
char **p;
for (p = bad_interface_names; *p; ++p)
if (strncmp(interface_name, *p, strlen(*p)) == 0) return 1;
return 0;
}

/* This finds the first interface which is up and is not the loopback
* interface or one of the interface types listed in bad_interface_names. */
int set_ifname(char interface_namel])
{
struct if_nameindex * nameindex;
inti;

nameindex = if_nameindex();
if(nameindex == NULL)

{
return -1;
}
/* Try to find a interface named if_name */
i=0;
while(nameindex[i].if_index !=0)
{
if (strcmp(nameindex[i]{if_name, "lo") |= 0 && lis_bad_interface_name(nameindex[i].if_name))
{
if (strcmp(interface_name, nameindex[i].if_name) == 0)
{
if_freenameindex(nameindex);
return 0;
}
}
i++;
}
/¥ If no interface named if_name is found, copy the first interface name found to if_name */
i=0;
while(nameindex][i].if_index !=0)
{
if (strcmp(nameindex[i].if_name, "lo") != 0 && lis_bad_interface_name(nameindex[i].if_name))
{
strepy(interface_name, nameindex[i].if_name);
if _freenameindex(nameindex);
return O;
}
i++;
}
return -1;

QCA-PLC-SG-firmware-application-notes v1.0.0 page 29

void plc_set_ifname(char interface_name([])

{

strcpy(if_name, interface_name);
1
void plc_set_host_mac(char mac_addr[])
{

inti;

for (i = 0; i < ETH_ALEN; i++)

{

host_mac[i] = mac_addr[i];

b

1

Filename: config.h

#ifdef DEBUG
#define DB_SND_ETH_RAW
#define DB_RCV_ETH_RAW
#define DB_TEMP

#endif

Filename: main.c
#include <stdio.h>

#include <string.h>
#include "common.h"

#define COM_RETRY_CNT 3
/*#define RCV_CNT 32%/

const static char. host_mac_addr[6] = { 0x00,0x00, 0x00, 0x00, 0x00, 0x00 };

int main(int.argc, char* argv[])

{
char recv_to_flag = 0;
char input_flag =1;
/*char send.buf[32] ={0 };*/
/*charinput_buf[100];*/
char send_buf[1024] ={ 0 };
char input_buf{1024];
int com_len;
int str_len;

char const send_com([32] = { Oxfe, Oxfe, Oxfe, Oxfe, 0x68, 0x32, 0x00, 0x00, 0x00,
0x00, 0x00, 0x68, 0x13, 0x00, 0x15, 0x16 };

char receive_buf[300];

intrcv_len =0;

int fd;

inti;

char *p;

QCA-PLC-SG-firmware-application-notes v1.0.0

page 30

plc_set_ifname("eth0");

plc_set_host_mac(host_mac_addr);

fd = plc_init_socket();

printf("\n\n");

printf("/********QCA7000 Remote meter module test********/u).
printf("\n");

printf("FE FE FE 68 32 00 00 00 00 00 68 11 04 33 34 34 35 E7 16");
printf("\n");

printf("FE FE FE 68 32 00 00 00 00 00 68 11 04 33 34 35 35 E8 16");
while (1)

printf("\n\n");
printf(" ");

while(1)

{
printf("\n");
printf("Input: ");
gets(input_buf);

if (str2hex(input_buf, sendbuf, &com_len))
{

printf("\nInput error\n");
}

else

{

break;

if (eth_plc_send(fd, send_buf, com“len)<0)
{
printf("\neth_send error\n");
continue;

/* Retry COM_RETRY_CNT times */
for(i=0; i < COM_RETRY._CNT; i++)

{
rcv_len =.eth_plc_recv(fd, receive_buf);
if (rcv_.len>0)
{
str_len = find_char(receive_buf, rcv_len, 0x16);
if (str_len > 0) break;
else i--;
}
}

if (i == COM_RETRY_CNT) printf("\nReceive time out!");
else

{

QCA-PLC-SG-firmware-application-notes v1.0.0 page 31

printf("\nReceive %d data: ", str_len+1);
for (i=0; i< str_len + 1; i++) printf("%02X ", (unsigned char)receive_buf]i]);

1
plc_exit_socket(fd);

Filename: makefile
TARGET = eth_plc_7000
OBIJS = main.c common.c eth_plc.c plc.c

#CC = Jopt/nxp/gcc-4.3.2-glibc-2.7/bin/arm-vfp-linux-gnu-gcc
CC=gcc

all: $(TARGET)

$(TARGET): $(OBJS)
@3(CC) -1. -0 $@ $(0BIJS)
@echo "Compile completed!"
@#cp S(TARGET) ~/nfs_dir/for_Ipc3250/test

clean:
@rm -vf S(TARGET) *.0 *~

