
PPP Style Guide Stroustrup 10/7/2011

~ 1 ~

PPP Style Guide

Bjarne Stroustrup
www.stroustrup.com/Programming

www.research.att.com/~bs
bs@cs.tamu.edu

Introduction
All major real-world software projects have a “house style” (“coding guide-lines”, “project standard” or
whatever they are called) to ensure clarity and consistency. This can be a nuisance because no style is
perfect, different projects have different styles, and we’d rather just write what “looks good on the day.”
However, professionals follow the approved style for a project (§25.6). This document outlines the style
we use with Programming: Principles and Practice using C++ (sometimes referred to as “PPP”).
References, such as §3.7, point to sections of PPP. More examples can be found in the model solutions to
exercises posted on the web (though the comments on those can be a bit chatty).

Stick to the simple rules outlined here. It’ll help you to read your own code and that of others and keep
you out of some minor programming problems. Your TAs are encouraged to take off points for egregious
departures from this style guide (as well as to gently guide you to improve your style – you won’t master
all immediately).

“Code as if you really mean it.” Most real-world code “lives” for a long time (years or decades) and is
read and modified repeatedly by others. Make their job more manageable by using good style. Remember,
one of those “other people” might be you.

There can be no one true style that is best for everybody everywhere, but what we recommend here is
better than anything a novice can cook up in a hurry. This is not a comprehensive style guide for major
industrial use, but it is still better than some we have seen claimed to be that.

Naming
See §3.7 for a discussion. Use a single capital letter to start a type name, e.g. Table and Temperature.
Names of non-types are not capitalized, e.g. x and var. We use underscores for multi-part names, e.g.
initial_value and symbol_tbl. Use meaningful names. Don’t overuse acronyms. Don’t use excessively
long names, such as remaining_free_slots_in_symbol_table. The length of a name should be roughly
proportional to the size of its scope (§8.4).

Be careful when using letters and digits that are easily misread: 0Oo1lL. Don’t use ALL_CAPS.

C++ identifiers are case sensitive, so Val is different from val.

PPP Style Guide Stroustrup 10/7/2011

~ 2 ~

Indentation
Indent as done in the book. For example:

// if statement:
if (a==b) {
 // …
}
else {
 // …
}

// loop:
for (int i=0; i<v.size(); ++i) {
 // …
}

// Switch statement:
switch(a) {
case a:
 // …
 break;
case b:
 // …
 break;
default:
 // ...
}

// function:
double sqrt(double d)
{
 // …
}

// class or struct:
class Temperature_reading {
public:
 // …
private:
 // …
};

Note the placement of the braces ({ and }). We consider that placement significant. I use tab characters for
indentation. This can be a problem when changing editors. As long as you are consistent, you could use
spaces for indentation instead (with a minimum of 3 spaces per indentation).

That style is known as “K&R Style” or “Kernighan and Ritchie style” after the people who popularized it
for C and even “Stroustrup style” in the context of C++. It preserves vertical space. The point about

PPP Style Guide Stroustrup 10/7/2011

~ 3 ~

preserving vertical space is to fit logical entities (e.g., a function definition) on a single screen to ease
comprehension.

Whitespace
We don’t have really strong opinions on the use of whitespace beyond the use of indentation, but we have
found that the following rules of thumb ease reading. We use vertical whitespace (empty lines) between
functions, between classes, and to separate logically different sections of declarations of code. For
example:

void fct1()
{
 Vector<string> v; // to be used in the whole of the function

 string s; // input
 while (cin>>s) v.push_back(s);

 for (int i= 0; i<size(); ++i) { // processing
 // …
 }
}

int fct2()
{
 // something

 // something else
}

class X {
 // …
};

The book is full of examples. Sometimes, we use two blank lines between two functions, but don’t overdo
vertical whitespace: doing so will limit what you can fit on a screen for simultaneous viewing.

Never place two or more statements or two or more declarations on a single line:

int x = 7; char* p = 29; // don’t
int x = 7; f(x); ++x; // don’t

It is too easy to miss something important in such dense text.

We use a single line for an if-, for-, or while-statement only if the resulting line is very short and simple
(as in the while-statement above). There is an argument for always using a second line:

 while (cin>>s)
v.push_back(s);

PPP Style Guide Stroustrup 10/7/2011

~ 4 ~

We use a space after a for, switch, if, or while before the (.

We do not use a space between the function name and the (in a declaration or a call.

We use a space between class name and the { in a class declaration.

We don’t usually insert spaces in expressions, but when we do it’s to emphasize meaning (operator
binding):

if (x<0 || max<=x) // …
cin>>s;
int a = z+y*z;

We don’t use spaces in function argument lists, but we do use them in lists of argument types:

 void f(int, char*, double);
 f(1,"2",3.4);

In the ever-popular discussion of where to put spaces near the “pointer to” declarator operator, *, we use
the conventional C++ style:

int* p; // do it this way
int *p; // don’t
int * p; // don’t
int*p; // don’t

And when you are defining a variable, remember to initialize:

int* p = &v[i];

If you use a “smart” editor, it will have its own style, which you may or may not be able to influence.

Comments
See §7.6.4. Use comments to explain what you cannot state directly in code. Comments are for you and
your friends. Compilers don’t understand them.

Do not imitate comments in the book that explain what a language feature does – by the time you use a
feature you are supposed to know that.

Don’t say in comments what can be said clearly in code. Code is good at saying exactly what is done (in
minute detail and even if it wasn’t what you wanted it to do). Comments are good for

1. Stating intent (what is this code supposed to do)
2. Strategy (the general idea of this is …)
3. Stating invariants, pre- and post-conditions (§5.10)

If the comments and the code disagree, both are most likely wrong.

PPP Style Guide Stroustrup 10/7/2011

~ 5 ~

You are encouraged to use intelligible English in your comments; not (say) SMS-lingo. Keep an eye on
your grammar, spelling, punctuation, and capitalization. Our aim is professionalism, not “cool.”

Start every program file (.h or .cpp) with a comment containing your name, the date, and what the
program is supposed to do. For example:

/*
 Joe Q. Programmer
 Spring Semester 2011 (Jan 31)
 Solution for exercise 6.5.
 I use the technique from PPP section XX.Y.ZZ
*/

For each non-trivial function and for each non-trivial piece of code, write a comment saying what it is
supposed to do:

 // Bjarne Stroustrup 1/15/2010
 // Chapter 5 Exercise 11

 /*
 Write out Fibonacci numbers.
 Find the largest Fibonacci number that fits in an int
 */

 #include "std_lib_facilities.h"

 void fib()
 /*
 Compute the series and note when the int overflows;
 the previous value was the largest that fit
 */
 {
 int n = 1; // element n
 int m = 2; // element n+1

 while (n<m) {
 cout << n << '\n';
 int x = n+m;
 n = m; // drop the lowest number
 m = x; // add a new highest number
 }

 cout << "the largest Fibonacci number that fits in an int is " << n << '\n';
 }

In these comments, we assume that the reader knows what a Fibonacci sequence is. If not, a look at the
reference to the book (or a web search) will tell. Comments should not substitute for reference material. If
an extensive discussion is needed a comment can instead refer to reference material.

PPP Style Guide Stroustrup 10/7/2011

~ 6 ~

A comment stating a pre-condition, post-condition, or an invariant is not a substitute for code
appropriately checking a condition (e.g. argument validation in functions (§5.10) and constructors
(§9.4.3; §18.3; §19.5)). For example:

class vector { // vector of double
 /*
 invariant:
 for 0<=n<sz elem[n] is element n
 sz<=space;
 if sz<space there is space for (space-sz) elements after elem[sz-1]
 */
 int sz; // number of elements
 double* elem; // pointer to the elements (or 0)
 int space; // number of element plus number of free slots

// …
 };

vector::vector(int s)
:sz(s), elem(new double[s]), space(s)

 {
 If (s<0) throw Bad_vector_size(); // size must be non-negative

for (int i=0; i<sz; ++i) elem[i]=0; // elements are initialized
 }

Declarations
Use one line per declaration. In most cases, add a comment saying what that variable is supposed to do:

int p, q, r, b; // No! Also: not very mnemonic names; where are the initializers?

const int max = v.size()/2; // maximum partition size
int nmonths = 0; // number of months before current date

Note that function arguments are usually on a single line (if you need multiple lines, you probably have
too complicated functions:

int find_index(const string& s, char c); // find c’s position in s (-1 means ‘ not found’)

Variables and constants
Always initialize your variables. Don’t declare a variable or constant before you have an appropriate
value with which to initialize it. For example:

vector<int> make_random_numbers(int n)
 // make n uniformly distributed random numbers
{
 if (n<0) error("make_random_number: bad size");
 vector<int> res(n);

PPP Style Guide Stroustrup 10/7/2011

~ 7 ~

 // …
 return res;
}

The point is that we don’t want to initialize res until we have checked to see that its initializer n is
acceptable for our use. So, don’t use this alternative:

vector<int> make_random_numbers(int n)
 // make n uniformly distributed random numbers
{
 vector<int> res; // why define res when you don’t yet have a size for it?

if (n<0) error("make_random_number: bad size");
 res.resize(n);
 // …
 return res;
}

The latter is more work and in real code putting a distance between a variable definition and its proper
initialization is an opportunity for errors to creep in.

We accept one common and important (apparent) exception to the “always initialize” rule: A variable that
is immediately used as the target for an input operation need not be explicitly initialized. For example:

 int x;
 cin>>x;

Even in this case, we might use an initializer so that x has a defined value if the input operation fails.
Note that objects of some types, such as string and vector are implicitly initialized. This example has no
uninitialized variables:

 vector<string> vec;
 for (string buf; cin>>buf;) vec.push_back(buf);

Don’t use “magic constants’’:

for (int i=1; i<32; ++i) {
 // process a month
}

Why 32? The size of a vector? The number of days in a month plus one? Better:

const int mmax = 32; // here we explain what 32 is and why

// …

for (int i=1; i<mmax; ++i) {
 // process a month
}

PPP Style Guide Stroustrup 10/7/2011

~ 8 ~

Better still:

for (int i=1; i<months.size(); ++i) { // oh! Now it’s obvious
 // process a month
}

Use const if you don’t plan to ever change the value of an object.

Expressions and operators
Avoid overly long and complicated expressions: If you use more than three to four operators on the right-
hand side of an assignment, consider if what you are saying is clear. Don’t try to be clever with notation.
Prefer prefix ++ (e.g. ++count) to postfix ++ (e.g., count++) and prefer either to the less concise
count=count+1. If in doubt parenthesize, but you are supposed to know the most basic precedence rules:
a*b+c/d means (a*b)+(c/d) and i<0 || max<i means (i<0) || (max<i). Don’t “hide” assignments in the
middle of expressions: z=a+(b=f(x))*c.

Language feature use
Use the set of features presented in the course so far. Every exercise in a chapter is meant to be solvable
using the language and library facilities presented in that chapter or before. You do not get extra credit for
using advanced features not yet presented in the course. On the contrary, you may be asked to re-do the
work or get points taken off. In particular, note that use of arrays (rather than standard-library vectors and
strings) is not acceptable before Chapter 17. Similarly, don’t use pointers before the book does. Array
and pointer use (especially clever uses) correlate strongly with bugs and long painful debugging sessions
– do yourself a favor and avoid that.

Don’t use casts (explicit type conversion) until the book introduces them, and then only in emergencies.

Don’t use macros (§A.17) except for #include guards (§27.8.3).

Avoid global variables (§8.4).

Avoid naked deletes and in most cases also avoid naked news. The implication of following this advice is
to keep resources owned by objects that handle their release (§19.5). Following this advice – and
extending it to resource management in general as described in §19.5 gets you most of the way to
exception-safe and leak-free code (§19.5.3).

You may very well be used to something different, but you are not here to learn “the old way” you are
here to learn something new.

Line length
Understand that you read lines (usually on the screen). Lay out your code so that it fits into a reasonably-
sized window (e.g. 100 characters wide) or on paper (about 80 characters wide). Don’t rely on automatic
line wrap: Decide how you want your code to look and do it. For example:

PPP Style Guide Stroustrup 10/7/2011

~ 9 ~

// bad:
cout << item_name << ": unit = " << unit_count << "; number of units = " << number_of_units

<< "; total = " << unit_count*number_of_units << '\n';

// better:
cout << item_name

<< ": unit = " << unit_count
<< "; number of units = " << number_of_units
<< "; total = " << unit_count*number_of_units
<< '\n';

You read a piece of code much more often than you write it. Layout should reflect and emphasize the
logical structure of code.

Error handling and reporting
See §5.1. Unless we specifically say otherwise, we will assume that your program

1. should produce the desired results for all legal inputs

2. should give reasonable error messages for all illegal inputs

3. need not worry about misbehaving hardware

4. need not worry about misbehaving system software

5. is allowed to terminate after finding an error

Unless otherwise specified, your program is not required to recover from errors. If your program detects
an error, such as an illegal input, it may exit by a call of error() (see §5.6.3) from std_lib_facilities.h
(remember to catch runtime_error to write out the error message).

Compiler errors and warnings
A program should compile cleanly; that is, it should compile without errors (or it won’t run) and warnings
(most warnings point to a potential problem). We accept one exception; you may ignore the
signed/unsigned warning for this:

for (int i=0; i<v.size(); ++i) // …

where v is a standard library container (such as, vector or string). On a normal PC, this warns of a
problem that only happens if a vector has more than 231 (more than 2,000,000,000) elements. For an
explanation of this problem and what to do if you need larger vectors, see §25.5.3.

Foreign style
When you learn a new language, it is almost impossible to avoid using idioms and style from your
previous language. This is true for programming languages as well as natural languages. However, the

PPP Style Guide Stroustrup 10/7/2011

~ 10 ~

ultimate aim is always to master the idioms of the new language: “to speak it as a native.” For
programming languages, that’s important for maintenance (other programmers do better with styles they
are familiar with) and can be important for conciseness of expression, correctness, and performance. Style
matters!

For Java programmers
Java and C++ code can be very similar – especially where computations are done mostly with built-in
types, such as char, int, and double. Try to remember that in C++ not everything is or should be a class.
Free-standing functions are fine (§9.7.5; Chapter 21). Not every member function (“method”) should be
virtual and by default they are not. There is no universal base class (Object) in C++. Parameterization of
classes and functions is central to C++ (think “generics on steroids;” Chapters 19-21). Namespaces (§8.7)
can take the role of highest level classes (use a namespace where you might have used a class with only
static members). Use const to indicate immutability (§4.3.1 §9.7.4). Instead of serialization, look to
iostreams (Chapters 10-11). Don’t use new to simulate local variables:

void f1(int i) // akward “alien” style
{
 vector<int>& v = new vector<int>;
 // …
 delete &r;
}

This is more verbose, more error-prone, and less efficient that the colloquial:

void f2(int i)
{
 vector<int> v;
 // …
}

For C programmers
Almost every C construct is also C++ and has the same meaning in C++. C lacks direct support for user-
defined types, such as string and vector, so their equivalents must be simulated using lower-level
facilities. Similarly, the creation of an object using new must be synthesized by lower-level facilities
(new provides free-store allocation and initialization). For a C programmer learning C++, the aim must be
to avoid those lower-level facilities where reasonable. Chapter 27 explains how in detail. Avoid malloc(),
casts, pointers, and arrays at least until Chapters 17-18 where their proper role in C++ is outlined and
don’t use macro substitution (§27.8, §A.17). Avoid C-style string manipulation (e.g. strcmp(), strcpy(),
and especially gets();§27.5 and §27.6.2). Don’t simply use new where you would have used malloc();
think about what you are trying to achieve. Typically, letting string, vector, or some other container
(Chapter 20) do the work is simpler, safer, and equally efficient.

Feedback
Comments on this document and suggested improvements are welcome. Send email to bs@cs.tamu.edu.

	PPP Style Guide
	Bjarne Stroustrup

	Introduction
	Naming
	Indentation
	Whitespace
	Comments
	Declarations
	Variables and constants
	Expressions and operators
	Language feature use
	Line length
	Error handling and reporting
	Compiler errors and warnings
	Foreign style
	For Java programmers
	For C programmers

	Feedback

