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PRINCIPAL COMPONENT ANALYSIS: A BEGINNER’S 
GUIDE - I. Introduction and application 
By I A N  T. JOLLIFFE 
Institute of Mathematics, University of Kent, Canterbury 

RINCIPAL Component Analysis (PCA) is a widely used technique in meteorology and P climatology. Many papers which apply the method assume that the reader is familiar 
with its objectives, how to interpret its results, and what it can and cannot do. This may 
often not be the case, especially since there is some confusion over terminology and 
notation, and a wide variety of uses, some of which are far less valid than others. Indeed, it 
sometimes appears that the writers of climatological papers, as well as potential readers, d o  
not fully understand the technique. In this paper I attempt to explain in simple terms what 
PCA really does, and the manner in which it  is most frequently used in meteorology and 
climatology. Different terminologies are explained. A companion paper will discuss some 
common myths and pitfalls in implementing PCA, as well as connections with related or 
competing techniques and a number of extensions of the basic technique and its 
applications. 

TOO MANY VARIABLES - REDUCING DIMENSIONALITY 

When confronted with a very large dataset, a natural instinct is to try to reduce its size, 
whilst minimising any loss of information, in ordcr to better understand and interpret the 
structure of the data. A typical dataxt  can be viewed as n observations measurcd on p 
variables. Thus if maximum temperature was measurcd daily for a year at 50 different 
recording stations we would have n = 365 observations on p = SO variables. This is the most 
common format for meteorological or climatological data ( i . e .  one meteorological variable 
measured on n occasions at p sites), and most of what follows assumes this type of data. 
However, it should be noted that other types of data can occur, e.g.  p meteorological 
variables measured at n stations on a single occasion, or p meteorological variables mea- 
sured at a single station on n occasions. 

Often the p variables are highly correlated; this will certainly be true if the p variables 
correspond to p stations and some of the p stations are geographically very close. High 
correlation implies that the ‘true’ dimension of the dataset is less thanp, i.e. we can choose rn 
variables, where rn may be substantially less than p, which convey virtually all the 
information in the original p variables. There are essentially two possible strategies for 
finding such a set of m variables. The first, and perhaps the most obvious, is to choose a 
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subset of our originalp variables. For instance, in our example, one might choose 10 of our 
original 50 stations which we believe to be representative of the complete set of 50. For 
example, in the Wearher Log, the geographical variation of a month’s weather is sum- 
marised using only a couple of dozen from the far larger number of potential stations. 

An alternative strategy is to build new variables &om the original ones, so that each of 
our selection of m variables is typically different from any of the original p, but is con- 
structed from them. This approach has less intuitive appeal than choosing a subset, but has 
the advantage that, for the same amount of information loss, we can achieve a greater 
reduction in dimensionality. 

PCA is the simplest of these variable-building techniques. Its simplicity lies in its 
restriction to linear functions of the original variables. 

PRINCIPAL COMPONENT ANALYSIS 

Denote the p variables by x, ,  x2, . . ., xp. For example, x1 might be the maximum 
temperature at Station 1, and x2,  x3 ,  . . ., x are similarly maximum temperatures at 
Stations 2,3, . . . , p. A linear function of the p eariables will be of the form z = alxl + a g 2  
+ . . . + apxp, where a,, %, . . ., a,, are constants. As we change a,, a2, . . ., ap we get 
different linear functions, and we can calculate the variance of any such linear function. The 
first principal component (PC) is that linear function which has the maximum possible 
variance, the second PC is the linear function with maximum possible variance subject to 
being uncorrelated with the first PC, the third PC is the linear function which maximises 
variance subject to being uncorrelated with the first and second pcs, and so on. Altogether 
we could construct p PCS but this gives no reduction in dimensionality. PCA provides the 
optimal m-dimensional representation of the data for each m = 1,2, . . . , p - 1, for various 
different definitions of optimality (Jolliffe 1986). In particular, at each stage the sum of the 
variances of the PCS is as large as possible. In other words, with PCA we have, for each m = 
I, 2, . . . p - 1, the m linear functions of x , ,  x2, . . ., xp,  which account for the maximum 
possible proportion of the original variation. Before going much further we need to intro- 
duce and explain some terminology associated with PCA, but first we look at a simple 
artificial example. 

A TWO-DIMENSIONAL EXAMPLE 

Figure 1 shows a Scatter plot of 50 points in two dimensions corresponding to 50 
measurements on a pair of variables x, ,  x2. For example, x , ,  x2 respectively might represent 
soil temperature and air temperature on SO days at a particular site. Suppose that we wish to 
reduce the dimensionality of this dataset. Replacing the pair of variables by x1 or x2 alone 
will not be very successful; there is a considerable amount of variation in each variable, 
although rather more in x2 than x , ,  so omitting one of them throws away a non-trivial 
proportion of the original variability. However, it will be noticed that the points are 
scattered fairly closely about a straight line. This implies that there is a linear function ofx,, 
x2 which explains a substantially larger amount of variation than either x l  or x2 alone. The 
linear function which maximises this variance is the first PC, z,, and Fig. 2 plots the Same 50 
observations with respect to zl, and z2, the second Pc. It can now be seen that nearly all the 
variation in the data can be accounted for by the single dimension defined by zl. 

Two comments are worth making at this stage. The first is that Fig. 2 is identical to 
Fig. 1 except that the axes have been rotated, so that the z ,  axis goes through the middle of 
the points (and the second ( z 2 )  axis is constrained to be at right angles to the first). Forp > 2 
variables the effect of performing a PCA is to similarly rotate the axes with respect to which 
the observations are measured. 

The second comment is to note the similarity of what we have done in our two- 
dimensional example to fitting a regression line through the 50 points. The crucial dif- 
ference is that in a regression of x2 on x ,  we fit the line which minimises sums of squared 
distances in the vertical direction, whereas in PCA the fitted line minimises the sum of 
squared distances perpendicular to the line. 
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Fig. I Plot of 50 observations on two variables, x I ,  x2 
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Fig. 2 Plot of the 50 observationr from Fig. I with respect to their principal components, zI, z2 
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A BRIEF HISTORICAL NOTE 

PCA was originally defined in a statistical context by Pearson (1901) via an extension of 
the geometric argument just presented. If we plot n observations as points inp dimensional 
space, we can define PCS by successively finding a line, plane, hyperplanes of dimension 1, 
2,3, . . . from which sums of squared perpendicular distances to the points are minimised. 
The more usual definition in terms of successive maximisation of variance came 30 years 
later - Hotelling (1933). As we shall see in the next section, to actually determine the PCS we 
need non-trivial mathematics and, for all but very small values of p, substantial computa- 
tional effort. Thus, it was not until the advent of electronic computers in the late 1940s that 
the method could be implemented on realistically sized problems. The first uses in meteor- 
ology and climatology date from this period. Preisendorfer (1988) gives a review of early 
examples, with Wadsworth et al. (1948) as the first that he cites. Preisendorfer also gives 
some references which pre-date Pearson (1901), but which look at the ideas of PCA in an 
abstract, and not data-analytic way. 

The first book to appear on PCA was by Daultrey (1976) which is a slim volume (51 
pages) aimed at geographers. Two recent books by Jolliffe (1986) and Preisendorfer (1988) 
give a much broader coverage of the technique. Preisendorfer’s book concentrates on PCA 
within the context of meteorology and oceanography, and gives a comprehensive theoreti- 
cal account. Surprisingly, it is much less practically oriented than Jolliffe’s text which is 
aimed at a wider audience. 

The most recent book to be added to the literature is Dunteman (1989). Like Daultrey 
(1976), it is a short book (% pages) written for a mathematically unsophisticated reader- 
ship. Its target audience consists mainly of social scientists but, apart from its examples, it 
would be suitable for readers from other disciplines such as climatology. 

The alert reader will have noticed that two of the cited books use (like this paper) the 
expression ‘Principal Component Analysis’; the other two add an ‘s’ to Component. Both 
forms are in widespread use, and mean exactly the same thing. 

COMPUTATION OF PRINCIPAL COMPONENTS - EIGENVALUES AND 
EIGENVECTORS 

The actual computation of PCS will typically be done not by hand, but by a standard 
computer package. However, in order to interpret the output it is desirable to know 
something of the way in which the computations are done. Unfortunately this takes us into 
the realms of matrix algebra, and in particular the concept of eigenvalues and eigenvectors. 

It might be possible to use and interpret PCA without knowing anything about eigen- 
values and eigenvectors were it not for the fact that the terns are freely used in papers 
describing applications, and in the output of computer packages, so it is useful to know 
what they mean. We present the basic ideas here, with a little more information in Appen- 
dix 1. The output for PCA from a computer package will typically give columns of numbers 
labelled 1st eigenvector, 2nd eigenvector, etc. Recall that PCS are linear functions of xlr x2, 
. . ., xp. Suppose then that the first PC is 

ZI = a , ,  X I  + UI2X2 + . . . + UIPXP.  

More generally, suppose that the kth PC is 

fo rk=1 ,2 , .  . . , p .  
The first eigenvector is simply the set of coefficients a,,, aIz ,  . . ., a l p  appearing in the 

first Pc. Similarly, subsequent eigenvectors consist of coefficients of xl, x 2 ,  . . ., x in each 
successive PC. The term ‘eigenvalue’ is also encountered in computer output. h e  first 
eigenvalue is the variance of the first PC, and therefore a measure of its importance in 
explaining variation. Second, third, and subsequent eigenvalues are similarly the variances 
of the second, third and subsequent PCS. Having said that the terns ‘eigenvector/eigen- 
value’ are commonly encountered, the reader should be warned that other terminology is 
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sometimes used instead, for example latent vectodatent  roots, characteristic vectorsl 
characteristic roots, proper vectodproper values. We have referred to  the as as coeficients 
above; other commonly used terminology includes loadings or  weights, but they are also 
sometimes referred to as the principal components - this is clearly wrong. z k ,  and not its 
corresponding eigenvector, is the kth principal component. The zks may simply be called 
the PCS, or the PC scores, or the amplitudes. 

COVARIANCES OR CORRELATIONS? 

Next we need to discuss some variations on the basic definition of PCS. First, we have 
assumed that we are working with the variables as given, and that our analysis is therefore 
based on the so-called covariance matrix for our variables. You will find in practice that PCS 
are often found from correlations between x L ,  x2, . . . , x,,. What is effectively being done in 
such an analysis is to  standardise x,, x2, . . ., x,,, by dividing each by its standard deviation, 
and then finding linear functions of these standardised variables which successively max- 
imise variance. Using standardised variables has the effect of giving all variables equal 
weight, whereas the original variables may have vastly different variances. In this latter 
situation, the high-variance variables will dominate the first few PCS, which is often undesir- 
able, although sometimes it can be exactly what is wanted. A second argument for using 
standardised variables, and hence correlations, is that the variables may be measured in 
different units. For example, some may be temperatures, others atmospheric pressures, 
others rainfall amounts, and so on. In this case, the relative sizes of the variances and 
covariances depend crucially, and arbitrarily, on the units used to measure the various 
different elements. Standardisation of variables is an obvious strategy for overcoming this 
arbitrariness. 

A second variation of PCA which is more apparent than real, in that the basic inter- 
pretation of a PC is unaffected, concerns the subject of normalisation. This is discussed in 
Appendix 11. 

AN EXAMPLE 

It is an unfortunate necessity that we have reached the final section of this paper 
before presenting a real example. Most of the terminology and discussion presented so far 
is needed to interpret the example. The data consist of mean-sea-level pressure for 120 half- 
months in Januarymebruary from 1951 to 1980, measured at (or rather interpolated to) a 20 
X 15 grid of points over the area of Europe and the North Atlantic displayed in Figs. 3 to 5. 
Thus the number of observations is 120 and the number of variables is 300(= 20 X 15) and 
the PCS discussed below are based on the correlation matrix for the 300 variables. Using 
correlations means that we are giving all 300 stations equal weight in our analysis - see 
above. A great deal of meteorological and climatological data have a similar form, in which 
variables correspond to different grid points or  observing stations, and for such data the PC 
loadings can be represented conveniently in the form of maps such as Fig. 3. For each PC we 
have a loading, a numerical value, for each station or  grid point. We could leave these 
loadings as a column of numbers (which is what most computer packages will provide as 
output), but if we wish to interpret the PCS (i.e. which geographical areas are important in 
which PCS) it will be easier to  do so if we display them at the appropriate geographical 
location on a map, and even better if we then draw contours through them, as in Figs. 3 to  5. 

So how d o  we interpret these figures? In Fig. 3, virtually the whole region has positive 
loadings, so the first PC is a weighted average of pressure at all grid points with larger 
weights being given to  points near to the centre of the region. The fact that the first PC takes 
this form means that the major source of variation in the dataset is between, on the one 
hand, half-months when the (weighted) average pressure over the whole region was high 
and, on the other, half-months when this average pressure was low. This single first 
dimension accounts for 40.9 per cent of the total variation in the (standardised) data. The 
reason for the weights (coefficients) being unequal is simply that points near the edges of 
the region have smaller average correlation with all other points than d o  those in the centre. 
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Fig. 3 Mean half-monrhly sea-be1 pressure -first principal component 

Fig. 4 Mean halfimonthly sea-level pressure - second principal component 

Fig. 5 Mean half-monthly sea-level pressure - third principal component 
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Indeed, it has been argued that the patterns shown in figures such as Figs. 3 to 5 can be 
predicted to some extent by the shape of the geographical area examined, without any 
knowledge of the data. This point will be addressed in the companion paper, as will a 
number of extensions to the PCA methodology, together with various pitfalls that await the 
unwary. 

The loadings in Figs. 3 to 5 have been plotted here with the loadings normalised to 
have 

P 

i= I 
E aZi = h, (see Appendix 11), 

so they represent the correlations between the PC and the original variables. The 
peculiar values associated with each contour are due to an idiosyncracy of the plotting 
package, but they serve to emphasise the point that if we change the normalisation con- 
straint the figure does not change; only the labels on the contours will be different. 

Turning to Fig. 4, we see that there are positive coefficients in the north-west of the 
map, negative coefficients in the southeast. What this means is that after removing thefirst 
dominant source of variation the next major source of variation is a contrast between those 
half-months in which there was high pressure in the north-west and low pressure in the 
south-east, and the half-months for which the opposite pressure pattern holds. This second 
component accounts for a further 22.6 per cent of the original variables. 

Similarly in Fig. 5, after removing the first two major sources of variation, the next 
most important contrast is between half-months with high pressure in the south-west, low 
pressure in the north-east, and half-months with the opposite tendency. The third compo- 
nent accounts for an additional 22.2 per cent of the total variation. Th.x a total of 86 per 
cent of the variation in 300 variables is accounted for in just three dimensions, illustrating 
the great dimension-reducing potential of PCA. 
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APPENDIX I 
A more compact way of writing z = aL x1 + %x,  + . . . + aPxP is z = aTx, where a, x 

are vectors consisting of the as and xs respectively, and T denotes transpose. The way in 
which PCS are defined, either algebraically or geometrically, means that we are looking for 
linear functions aTx of x which optimise some criterion (maximise variance, or equivalently 
minimise sums of squared perpendicular distances) subject to constraints. It is fairly 
straightforward, mathematically speaking, to find a which optimises the criterion, subject 
to constraints (see, for example, Jolliffe 1986). It turns out that we must find eigenvalues 
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and eigenvectors of the (p x p )  covariance matrix, S. The matrix S has as its (i, j)th element 
the covariance between xi and xi, and the scalar lLk and the vector a, are respectively an 
eigenvalue and corresponding eigenvector of S if they satisfy the equation 

s a& = h& a&. 
Solving this equation for hk reduces to finding the p roots of a polynomial equation. If all of 
the roots are distinct, then there are p different, orthogonal ak, k = 1,2, . . ., p ,  uniquely 
defined (apart from the choice of normalisation constraint, discussed below), correspond- 
ing to the p eigenvalues which are conventionally labelled in descending order h, > h, > 
. . . > lLp. The case of exactly equal As is unusual and will not be discussed further in the 
present paper. 

APPENDIX 11 - NORMALISATION CONSTRAINTS 

To uniquely define the p a ,  a normalisation constraint needs to be imposed on the as - 
otherwise we can increase the variance of z& without bound, Simply by multiplying all of the 
as in z& by the same constant (e.g. lOz, has a variance 100 times as large as Zk). ?he 
constraint which leads to the conventional set of P C ~  is 

n 

I: aZi = 1, 

but once we have found the as we can change these constraints if we wish. The basic 
interpretation of each PC is unchanged, since the relative loadings of each variable are 
unchanged. 

There are two competing normalisations which may be encountered. By far the most 
common is 

i=l 

P 

i= 1 
z a$, = hk, 

where A& is the variance of zk. Compared with the original normalisation, this typically has 
the effect of increasing the loadings in the first PCS, whilst decreasing those of the later pcs. 
The great attraction of this normalisation is that, if we are dealing with a correlation matrix, 
then aki is the correlation between xi and the kth PC. For this reason, pcs are presented with 
this normalisation by several standard computer packages such as BMDP and spss. Some 
authors, notably Richman (1986) reserve the term ‘principal components’ for zk with this 
competing normalisation. He then refers to the corresponding quantities with the original 
normalisation 

P 

i= 1 
Z aZi = 1 

as ‘empirical orthogonal functions’ or EOFS, a terminology which is quite widely used in 
meteorology. Although the ‘correlation interpretation’ of the alternative normalisation 
makes it attractive, the variances of the resulting PO are distorted, so that if individual 
observations are plotted with respect to the first two components, the plot will give an 
exaggerated impression of the variation of the first component compared with the second. 
Similar distortions will occur for other plots, so a gain in one type of interpretation is 
matched by a loss in another. 

A third possible normalisation is 
P 

i = l  
X aZi= l/h, 

which gives var(z,) = 1, for all k = 1,2, . . , p .  For some purposes, such as the detection of 
outlying observations (see Jolliffe 1986) equalising the contribution of each component in 
this way has advantages. As with other normalisations, however, it is really only when we 
go beyond the pcs as a simple descriptive tool that the normalisation chosen matters much. 
As noted earlier in this section, the basic interpretation of a pc is not changed by changing 
its normalisation. 
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