Exit Ticket Sample Solutions

1. Use the law of sines to find lengths b and c in the triangle below. Round answers to the nearest tenth as necessary. $\angle C=82^{\circ}$

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \\
& \frac{\sin 42}{18}=\frac{\sin 56}{b}=\frac{\sin 82}{c}
\end{aligned}
$$

$$
b=\frac{18(\sin 56)}{\sin 42} \approx 22.3
$$

$$
c=\frac{18(\sin 82)}{\sin 42} \approx 26.6
$$

2. Given $\triangle D E F$, use the law of cosines to find the length of the side marked d to the nearest tenth.

$$
\begin{aligned}
d^{2} & =6^{2}+9^{2}-2(6)(9)(\cos 65) \\
d^{2} & =36+81-108(\cos 65) \\
d^{2} & =117-108(\cos 65) \\
d & =\sqrt{117-108(\cos 65)} \\
d & \approx 8.4
\end{aligned}
$$

Problem Set Sample Solutions

1. Given $\triangle A B C, A B=14, \angle A=57.2^{\circ}$, and $\angle C=78.4^{\circ}$, calculate the measure of angle B to the nearest tenth of a degree, and use the law of sines to find the lengths of $A C$ and $B C$ to the nearest tenth.
By the angle sum of a triangle, $\angle B=44.4^{\circ}$.
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$\frac{\sin 57.2}{a}=\frac{\sin 44.4}{b}=\frac{\sin 78.4}{14}$
$a=\frac{14 \sin 57.2}{\sin 78.4} \approx 12.0$

$b=\frac{14 \sin 44.4}{\sin 78.4} \approx 10.0$

Calculate the area of $\triangle A B C$ to the nearest square unit.

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} b c \sin A \\
& \text { Area }=\frac{1}{2}(10)(14) \sin 57.2 \\
& \text { Area }=70 \sin 57.2 \approx 59
\end{aligned}
$$

2. Given $\triangle D E F, \angle F=39^{\circ}$, and $E F=13$, calculate the measure of $\angle E$, and use the Law of Sines to find the lengths of $\overline{D F}$ and $\overline{D E}$ to the nearest hundredth.

By the angle sum of a triangle, $m \angle E=55^{\circ}$.

$$
\begin{aligned}
& \frac{\sin D}{d}=\frac{\sin E}{e}=\frac{\sin F}{f} \\
& \frac{\sin 86}{13}=\frac{\sin 55}{e} \\
& e=\frac{13 \sin 55}{\sin 86} \approx 10.67 \\
& \frac{\sin 86}{13}=\frac{\sin 39}{f} \\
& f=\frac{13 \sin 39}{\sin 86} \approx 8.20
\end{aligned}
$$

3. Does the law of sines apply to a right triangle? Based on $\triangle A B C$, the following ratios were set up according to the law of sines.

$$
\frac{\sin \angle A}{a}=\frac{\sin \angle B}{b}=\frac{\sin 90}{c}
$$

Fill in the partially completed work below:

$$
\begin{array}{ll}
\frac{\sin \angle A}{a}=\frac{\sin 90}{c} & \frac{\sin \angle B}{b}=\frac{\sin 90}{c} \\
\frac{\sin \angle A}{a}=\frac{1}{c} & \frac{\sin \angle B}{b}=\frac{1}{c} \\
\sin \angle A=\frac{a}{c} & \sin \angle B=\frac{b}{c}
\end{array}
$$

What conclusions can we draw?
The law of sines does apply to a right triangle. We get the formulas that are equivalent to $\sin \angle A=\frac{o p p}{h y p}$ and $\sin \angle B=\frac{o p p}{h y p}$, where A and B are the measures of the acute angles of the right triangle.
4. Given quadrilateral $G H K J, \angle H=50^{\circ}, \angle H K G=80^{\circ}, \angle K G J=50^{\circ}, \angle J$ is a right angle and $G H=9$ in., use the Law of Sines to find the length of $G K$, and then find the lengths of $\overline{G J}$ and $\overline{J K}$ to the nearest tenth of an inch.
By the angle sum of a triangle, $\angle H G K=50^{\circ}$; therefore, $\triangle G H K$ is an isosceles triangle since its base \angle 's have equal measure.

$$
\begin{aligned}
\frac{\sin 50}{h} & =\frac{\sin 80}{9} \\
h & =\frac{9 \sin 50}{\sin 80} \approx 7.0
\end{aligned}
$$

$k=7 \cos 50 \approx 4.5$
$g=7 \sin 50 \approx 5.4$
5. Given triangle $L M N, L M=10, L N=15$, and $\angle L=38^{\circ}$, use the Law of Cosines to find the length of $\overline{M N}$ to the nearest tenth.

$$
\begin{aligned}
& l^{2}=10^{2}+15^{2}-2(10)(15) \cos 38 \\
& l^{2}=100+225-300 \cos 38 \\
& l^{2}=325-300 \cos 38 \\
& l=\sqrt{325-300 \cos 38} \\
& l \approx 9.4
\end{aligned}
$$

$M N=9.4$

6. Given triangle $A B C, A C=6, A B=8$, and $\angle A=78^{\circ}$. Draw a diagram of triangle $A B C$, and use the law of cosines to find the length of $\overline{B C}$.

$$
\begin{aligned}
& a^{2}=6^{2}+8^{2}-2(6)(8)(\cos 78) \\
& a^{2}=36+64-96(\cos 78) \\
& a^{2}=100-96 \cos 78 \\
& a=\sqrt{100-96 \cos 78} \\
& a \approx 8.9
\end{aligned}
$$

The length of $\overline{B C}$ is approximately 8.9.

Calculate the area of triangle $A B C$.
Area $=\frac{1}{2} b c(\sin A)$
Area $=\frac{1}{2}(6)(8)(\sin 78)$
Area $=23.5(\sin 78)$
Area ≈ 23.5

The area of triangle $A B C$ is approximately 23.5 square units.

