
Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

1

BLOOMBERG L.P.

OPEN API

PUBLISHING DEVELOPER
GUIDE

Version: 1.2

Last Updated: 07/31/2015

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

2

Related Documents

Document Name

Core User Guide

Core Developer Guide

Enterprise User Guide

Enterprise Developer Guide

Publishing User Guide

Reference Guide - Bloomberg Services and Schemas

Reference Symbology Guide

All materials including all software, equipment and documentation made available by Bloomberg are for informational purposes only.
Bloomberg and its affiliates make no guarantee as to the adequacy, correctness or completeness of, and do not make any
representation or warranty (whether express or implied) or accept any liability with respect to, these materials. No right, title or interest is
granted in or to these materials and you agree at all times to treat these materials in a confidential manner. All materials and services
provided to you by Bloomberg are governed by the terms of any applicable Bloomberg Agreement(s).

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

3

Contents
1. About This Guide.. 4

2. Publishing Overview .. 4

2.1. Simple Broadcast ... 4

2.1.1 Creating a Session ... 5

2.1.2 Obtaining Authorization ... 5

2.1.3 Creating the Topic .. 7

2.1.4 Publishing Events ... 7

2.2. Interactive Publisher .. 8

2.2.1. Registration ... 9

2.2.2. Event Handling ... 9

2.2.3. Publication ... 11

3. Publishing Classes ... 12

3.1. ProviderSession ... 12

3.1.1. Session Options/Software Failover ... 13

3.2. Services ... 13

3.2.1. Registering a Service .. 13

3.3. Topics and TopicList .. 14

3.4. Events and EventFormatter .. 14

3.4.1. Example Event Structure .. 15

3.4.2. Event Formatter .. 15

4. Local Publishing ... 16

4.1. Publisher Groups.. 17

4.2. Launchpad Page Publishing ... 17

5. Platform Failover .. 19

6. Contribution ... 20

6.1. Contribution Example Code .. 20

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

4

1. About This Guide
The Publishing Developer’s Guide is designed to help understand the concept of Publishing and how
Bloomberg L.P. API allows customer applications to publish data as well as consume it. Customer data can
be published for distribution within the customer’s enterprise, contributed to the Bloomberg infrastructure,
distributed to others, or used for warehousing.

2. Publishing Overview

The Bloomberg API allows customer applications to publish data as well as consume it. Customer data can
be published for distribution within the customer’s enterprise, contributed to the Bloomberg infrastructure,
distributed to others, or used for warehousing.

Figure 1: Publishing Flow

Publishing applications might simply “broadcast” data or they can be “interactive”, responding to feedback
from the infrastructure about the currently active subscriptions from data consumers. This will illustrate
both paradigms. There are two Programming Examples:

 BroadcastOneTopic.cpp

 InteractivePublisher.cpp.

2.1. Simple Broadcast
In a simple broadcast, the publishing application sends data but has no indication if anyone is consuming
that data. In this simple example, data will be produced for a single topic. The major stages are:

 Creating a session

 Obtaining authorization

 Creating the topic

Asynchronously publish updates

Receive Events

Subscription Requests

Start processing for topic

Recap Requests

Resend current image for topic

Unsubscribe Requests

Stop any processing for topic

Register Service

Authorize

Connect

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

5

 Publishing events for the topic to the designated service

2.1.1 Creating a Session

Sessions for publication are created in the same manner as those for consuming data. The key difference is
that they are managed by an instance of ProviderSession instead of Session.

The event handler plays no significant role in this example and will NOT be examined.

// BroadcastOneTopic.cpp

… …

int main()

{

SessionOptions sessionOptions;

sessionOptions.setServerHost("platform");

sessionOptions.setServerPort(8197);

sessionOptions.setAuthenticationOptions("AuthenticationType=OS_LOGON")

; MyEventHandler myEventHandler;

ProviderSession session(sessionOptions, &myEventHandler, 0);

if (!session.start()) {

std::cerr <<"Failed to start session." << std::endl; return 1;

}… …

}

2.1.2 Obtaining Authorization

The authorization stage, if successful, provides a valid Identity object which is required for later operations.
Authorization is done by the "//blp/apiauth" service on receipt of an authorization request.

 For additional information on “Authorization and Permissioning Systems” refer to the Enterprise User
Guide.

Name TOKEN("token");

Name TOKEN_SUCCESS("TokenGenerationSuccess"); Name

TOKEN_FAILURE("TokenGenerationFailure");

Name AUTHORIZATION_SUCCESS("AuthorizationSuccess");

EventQueue tokenEventQueue;

session.generateToken(CorrelationId(), &tokenEventQueue);

std::string token;

Event event = tokenEventQueue.nextEvent();

if (event.eventType() == Event::TOKEN_STATUS) {

MessageIterator iter(event);

while (iter.next()) {

Message msg = iter.message();

msg.print(std::cout);

if (msg.messageType() == TOKEN_SUCCESS) {

token = msg.getElementAsString(TOKEN);

}

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

6

else if (msg.messageType() == TOKEN_FAILURE) {

break;

}

}

}

if (token.length() == 0) {

std::cout << "Failed to get token" << std::endl;

}

session.openService("//blp/apiauth");

Service authService = session.getService("//blp/apiauth");

Request authRequest =

authService.createAuthorizationRequest();

authRequest.set(TOKEN, token.c_str());

EventQueue authQueue;

Identity providerIdentity = session.createIdentity();

session.sendAuthorizationRequest(

authRequest, &providerIdentity, CorrelationId(), &authQueue);

else if (event.eventType() == EventType.RESPONSE

|| event.eventType() == EventType.PARTIAL_RESPONSE

|| event.eventType() == EventType.REQUEST_STATUS)

{ for (Message msg: event) {

if

(msg.correlationID().equals(d_authorizationResponseCorrelationId

)) { Object authorizationResponseMonitor =

msg.correlationID().obje

ct(); synchronized (authorizationResponseMonitor) {

if (msg.messageType() == AUTHORIZATION_SUCCESS) {

d_authorizationResponse = Boolean.TRUE;

authorizationResponseMonitor.notifyAll();

}

else if (msg.messageType() == AUTHORIZATION_FAILURE) {

d_authorizationResponse = Boolean.FALSE;

System.err.println("Not authorized: " +

msg.getElement("reason"));

}

else {

assert d_authorizationResponse == Boolean.TRUE;

System.out.println("Permissions updated");

}

}

}

}

}

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

7

2.1.3 Creating the Topic

Before publishing data, the application must create a Topic object on the appropriate service. This example
uses synchronous method createTopics() of the ProviderSession to create a Topic on //blp/test

service from a topic string "testtopic".

… …

const std::string myService = "//blp/test";

const std::string myTopic = "testtopic";

TopicList topicList;

topicList.add((myService + "/ticker/" + myTopic).c_str(),

CorrelationId((long long)1));

session.createTopics(

&topicList,

ProviderSession::AUTO_REGISTER_SERVICES,

providerIdentity);

Topic topic;

for (size_t i = 0; i < topicList.size(); ++i) {

if (topicList.statusAt(i) == TopicList::CREATED) {

topic = session.getTopic(topicList.messageAt(i));

}

}

… …

2.1.4 Publishing Events
In this example, data is published by sending events to the designated service, "//blp/test". Event

objects are obtained from the service and populated with the topic and the application specific data. In this
simple example, each event contains a single data message; however, in general, each event can contain
multiple messages. In this simple example, the data is just an integer value that is incremented and
published every ten seconds.

… …

Name messageType ("MyMessageType");

Name fieldType ("MyFieldType");

Service service = session.getService(myService.c_str());

for (int value = 1; true; ++value, sleep(10)) {

Event event = service.createPublishEvent();

EventFormatter eventFormatter(event);

eventFormatter.appendMessage(messageType, topic);

eventFormatter.setElement(fieldName, value);

session.publish(event);

}

session.stop();

return 0;

}

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

8

 Note: The standard C library 'sleep' function is used above. The argument specifies the number of
seconds to sleep.

2.2. Interactive Publisher

The Bloomberg infrastructure can send events to provider applications when data is needed for a given
topic. These events allow the customer applications to "interact" with the Bloomberg infrastructure. Data
for a topic need be published only when it is known to have subscribers.

In this simple example, data is published, only as needed, for a set of topics on a single service. The major
steps involved are:

 Creating a session

 Obtaining authorization

 Registering for subscription start and stop messages

 Handling subscription start/stop events, which add and remove topics to the active publication set

 Creating a topic

 Publishing events for the active topics of the designated service

The details for creating a session, obtaining a provider identity, and authorization are the same as for
‘Simple Broadcast’; they will not be detailed again.

This design requires the management of a collection of "active" topics for publication. That collection will be
populated (and depopulated) by event handling threads and accessed for periodic publication by the main
thread. A map will be used to store pairs of topic/CUSIP pairs (keyed on topic). The topics are provided in
the start and stop messages, and CUSIPs are obtained by requesting resolution of the received topics.

The multiple threads of this application must not concurrently access the collection; standard template
library (STL) containers are not thread-safe in that respect. Since there is only one "reading" thread in this
application, a simple mutex suffices. A pthread mutex was chosen because it is familiar to many readers.
The event handler is designed to hold pointers to the collection of active topics and to the mutex that
manages access to that collection.

// InteractivePublisher.cpp

… …

int main(int argc, char **argv)

{

Publications activePublications; pthread_mutex_t

activePublicationsMutex;

pthread_mutex_init(&activePublicationsMutex, NULL); MyEventHandler

myEventHandler(&activePublications,

&activePublicationsMutex);

SessionOptions sessionOptions;

sessionOptions.setServerHost("192.168.9.155");

sessionOptions.setServerPort(8197);

//sessionOptions.setAuthenticationOptions("AuthenticationType=OS_LOGON");

sessionOptions.setAuthenticationOptions("AuthenticationMode=APPLICATION_ONLY;

ApplicationAuthenticationType=APPNAME_AND_KEY;ApplicationName=blp:APP_BBOX");

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

9

ProviderSession session(sessionOptions, &myEventHandler, 0);

if (!session.start()) {

std::cerr << "Failed to start session." << std::endl;

return -1;

}

2.2.1. Registration
On completion of service registration, the application can expect subscription start and subscription stop
messages in the context of subscription status events.

… … create ’activePublication’ collection, the managing mutex,

and the event handler … …

… … create ’session’ and obtain ’Identity’… …

const char *myService = "//blp/mktdata8";

if (!session.registerService(myService, providerIdentity)) {

std::cerr <<"Failed to register " << myService << std::endl;

return -1;

}

… …

}

2.2.2. Event Handling
The event handler in this example is detailed below. The relevant event type is TOPIC_STATUS. The

TOPIC_STATUS event has three message types of interest: TOPIC_CREATED, TOPIC_SUBSCRIBED,

and TOPIC_UNSUBSCRIBED.

On receipt of "started" type messages, the event handler adds the topic to a set of topics that require
asynchronous topic creation. Once all of the messages in the event have been examined, that list (if non-
empty) is sent for resolution. Use of the session’s createTopicsAsync method means that the

operation does not block. Rather, the result is returned in a separate event of type TOPIC_CREATED.

When messages indicating successful topic creation are received, the event handler extracts the topic and
the corresponding string, creates an item, and adds that item to the collection of active publications. Since
a topic may have received a "stop" message while it was being created, there is first a check to see if the
topic is still in the "needed" set before it is added to the "active" collection.

On receipt of a "stopped" type, the event handler extracts the topic from the message and deletes the
corresponding item in the collection of active publications or the collection of topics needing creation.

 Note that all operations use the provided mutex to provide exclusive access for each other.

bool MyEventHandler::processEvent(const Event& event, ProviderSession*

session)

{

switch (event.eventType()) {

case Event::TOPIC_STATUS: {

TopicList topicList;

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

10

MessageIterator iter(event);

while (iter.next()) {

Message msg = iter.message();

std::cout << msg << std::endl;

if (msg.messageType() == TOPIC_SUBSCRIBED)

{ Topic topic;

try {

topic = session->getTopic(msg);

}

catch (blpapi::Exception &) {

}

if (!topic.isValid()) {

topicList.add(msg);

}

else if (d_actPub_p->find(topic) == d_actPub_p->end())

{ std::string topicStr =

msg.getElementAsString("topic");

pthread_mutex_lock(d_actMutex_p);

PublicationItem publicationItem(topic, topicStr);

d_actPub_p->insert(publicationItem);

pthread_mutex_unlock(d_actMutex_p);

}

}

else if (msg.messageType() == TOPIC_UNSUBSCRIBED) {

Topic topic;

try {

topic = session->getTopic(msg);

pthread_mutex_lock(d_actMutex_p);

Publications::iterator it = d_actPub_p->find(topic);

if (it != d_actPub_p->end()) {

d_actPub_p->erase(it);

}

pthread_mutex_unlock(d_actMutex_p);

}

catch (blpapi::Exception &) {

}

}

else if (msg.messageType() == TOPIC_CREATED) {

try {

Topic topic = session->getTopic(msg);

std::string topicStr =

msg.getElementAsString("topic");

pthread_mutex_lock(d_actMutex_p);

PublicationItem publicationItem(topic, topicStr);

d_actPub_p->insert(publicationItem);

pthread_mutex_unlock(d_actMutex_p);

} catch (blpapi::Exception &e) {

std::cerr

<< "Exception in Session::getTopic(): "

<< e.description()

<< std::endl;

continue;

}

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

11

}

}

if (topicList.size()) {

session->createTopicsAsync(topicList);

}

}

break

;

defau

lt:

printMessages(event);

}

return true;

}

2.2.3. Publication
The publication loop in this example is, in many ways, similar to that used in the first example. There is a
value that is incremented every ten seconds and is used to create an event for publication.

Service service = session.getService(myService);

Name messageType("MyMessageType");

Name fieldName("MyFieldName");

for (int value = 1; true; ++ value, sleep(10)) {

pthread_mutex_lock(&activePublicationsMutex);

if (0 == activePublications.size()) {

continue;

}

Event event = service.createPublishEvent(); EventFormatter

eventFormatter(event);

for (Publications::iterator iter = activePublications.begin();

iter != activePublications.end();

++iter) {

const std::string& cusip = iter->second;

eventFormatter.appendMessage(messageType, iter->first);

eventFormatter.setElement(fieldName, myValueFor(cusip,

value));

}

pthread_mutex_unlock(&activePublicationsMutex);

session.publish(event);

}

session.stop();

return 0;

}

 Note: The standard C library 'sleep' function is used above. The argument specifies the number
of seconds to sleep.

However, there are some differences, rather than a single fixed topic, publication is made for all of the
topics in the collection of active publications.

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

12

 Note that the mutex is acquired before iterating over that collection.

There is at most one published event per cycle. Each event may have multiple messages, each with data
for a specific topic. Although sending an empty event would not be harmful, if the collection of active
publications is empty, no event is published for that cycle. The published data might vary by topic.
Details of the myValueFor function are not important and, therefore, not shown.

3. Publishing Classes

This section gives an overview on the Publishing classes for the Platform. The figure below displays the

Class Representations in detail, each one of these will be explained in detail.

Figure 2: Platform Class Representation

3.1. ProviderSession

The ProviderSession object provides the context of a customer application's connection to the

Bloomberg infrastructure via the Bloomberg API. Having a ProviderSession object, customer applications

can use them to create Service objects for using specific Bloomberg services.

The SessionOptions class is used to initiate ProviderSession:

SessionOptions sessionOptions;

 ProviderSession session(sessionOptions,

&myEventHandler, 0);

 if (!session.start())

 {

 HandleFailure();

 return;

 }

Platform

Schemas

Resolve
Service

Services

Topic

String

Events Messages

ProviderSession

Service

Topic

Event

Formatter
Event

TopicList

Session
Options

Classes Concepts

Element DaData
Datata

Element Data

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

13

3.1.1. Session Options/Software Failover

The SessionOptions class provides all of the initialization information that the ProviderSession requires.

Many of its methods are used to implement a software failover mechanism. Given a list of possible hosts

(d_hosts) and a port to connect on (d_port), the SessionOptions class can be populated with a number

of potential hosts to connect to.

for (size_t i = 0; i < d_hosts.size(); ++i)

 {

 sessionOptions.setServerAddress(d_hosts[i],

 d_port, i);

 }

The options to enable the failover are as follows:

sessionOptions.setAutoRestartOnDisconnection(true);

 sessionOptions.setNumStartAttempts(d_hosts.size());

Once the API receives a disconnection event, or tries to connect to a server that isn’t active, it will
advance to the next host on the list.

3.2. Services

All Bloomberg data provided by the Bloomberg API is accessed through a "service”. The Schema defines

the format of requests to the service and the events returned from that service. The customer

application's interface to a Bloomberg service is a Service object. Multiple applications can publish to a

single service with the same topics. Platform provides the ability to assign priorities:

 Priority

o Integer Value

o Higher the value the more preferred

 Group

o Set of publishers for a service that support identical sets of topics

o Possibly different priorities within group

3.2.1. Registering a Service

There are two ways to registering a service:

a. ServiceRegistrationOptions is one where a setGroupID is to set the identifier for the group that

the application belongs to and the other one is setServicePriority where the priority is set for

the application for this service.

b. ProviderSession is the second way where the registerService (service_name, app_identity,

service_options) helps in registering the service with the ProviderSession and Platform and

getService(service_name) is used to retrieve a Service object for use after it’s been registered.

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

14

3.3. Topics and TopicList

The concept of a Topic is an “instrument” of data that is to be distributed and all the messages are

created with the topic object. A Topic (Concept) is an instrument of data that is to be distributed. All

messages are created using the topic object.

The TopicList is used to construct a list of topics to be created:

 topicList.add("//viper/mktdata/ABCDE Equity",

 CorrelationId(1));

It is possible to check status of a topic:

 for (size_t i = 0; i < topicList.size(); ++i)

 {

 int status = topicList.statusAt(i);

 if (status == TopicList::CREATED)

The PrvideSession help to create Topics(topic_list, .., ..); and also updates the status in the TopicList.

3.4. Events and EventFormatter

An event is encapsulates data to be sent to the platform that is created via a Service’s createPublishEvent.

This is populated via the EventFormatter object:

Event event = service.createPublishEvent();

An EventFormatter is constructed with the Event it updates:

EventFormatter = new EventFormatter(event);

The ProviderSession.publish(Event) sends the event to the platform.

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

15

3.4.1. Example Event Structure

Figure 3: Event Structure - example

3.4.2. Event Formatter

 Note: In both deployments, the end-user application and the customer’s active Bloomberg
Professional service (BPS) share the same display/monitor(s).

Event Formatter Description

.appendMessage(msg_name, topic) Appends a message of the specified type to the event for the
specified topic

.setElement(element_name, value) Set the value of a named element

.pushElement(string) Creates a new element for the EventFormatter.

Pushes one level up in the stack that needs to be popped

All subsequent operations apply to the element at top the stack

.appendElement()

Creates a new Array Element

Pushes one level up in the stack that needs to be popped

.appendValue(value) Adds the value to the current Array

.popElement()

Removes the current top element from the event formatter stack

Each call to pushElement and appendElement requires one call to
popElement

Action Method

Get New Message – MSG1 (MessageIterator)

Get Field1 getElementAs

Get Seq1 getElement

Get Field2 getElementAs

Get Field3 getElementAs

Get New Message – MSG2 (MessageIterator)

Get Array Field4 getElement

Get Field4 – Element # 1 getValue

Get Field4 – Element # 2 getValue

Field1

MSG1

MSG2

Field4 (Array)

Field4[0]

Field4[1]

E

V

E

N

T

Seq1(Array)

Seq1[0]

Field2

Field3

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

16

4. Local Publishing

Local Publishing responds to subscriptions and can be locally subscribed to. It is displayed in containers
and can use directly in local application. It will be available globally soon and will have full control of
schema, container is Restricted. This is available in Excel and uses BLPAPI. Listed below is a code
example:

Topic topic = session->getTopic(msg);
CorrelationId cid = msg.correlationId(); // Solicited Only
CorrelationId * cidptr = (isSolicited) ? &cid : 0;
Event event = service.createPublishEvent();
EventFormatter eventFormatter(event);
eventFormatter.appendRecapMessage(topic, cidptr);

Managed Client Side Platform Net

Bloomberg LP

X-link

Client DMZ Network

Existing

Ethernet

Handoff

To Client

For Bloomberg

Terminal

Existing
Ethernet
Handoff
To Client

For Bloomberg
Terminal

Customer Site

Client Platform Publisher

BBG L3

Switch

Bloomberg

Appliances

(1 U)

[Client VLAN Details]

Bloomberg Professional

Terminals

Bloomberg LP

Application Server
Figure 4: Local Publishing

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

17

4.1. Publisher Groups

These groups are needed if multiple publishers on the same topic and determine how the Platform
behaves. The publisher will send subscriptions to publishers with the highest priority. If groups are
different, multiple publishers can send to the same topic and if groups are the same, only the
assigned publisher’s data will be used.

Backup Pub

This is a publisher that receives no subscription requests until the primary pub fails. It is achieved by
using a publisher group; the backup simply has a lower priority:

ServiceRegistrationOptions options;

char *groupID = "SomeGroupID";

options.setGroupId(groupID, strlen(groupID));

options.setServicePriority(Priority);

providerSession.regisqterService(serviceName,identity, options);

The presert values for Priority are ‘PRIORITY_LOW’, PRIORITRY_MEDIUM and PRIORITY_HIGH. The
Platform will load balance between all active members of the group with the currently highest
priority.

4.2. Launchpad Page Publishing

Page Monitor is a Launchpad component that is included as a part of (BPS) Bloomberg Professional

Service. This understands a set schema on Platform for Page Publishing.

Figure 5: Page Publishing Overview

Page
Publish

er

Platform on
Appliance

Page Monitor

DMZ

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

18

Events

RowUpdate

PageUpdate [SEQUENCE]

numCols [INT32]

numRows [INT32]

rowUpdate [SEQUENCE]

rowNum [INT32]

spanUpdate [SEQUENCE]

PageUpdate

attr [ENUMERATION]

bgColor[ENUMERATION]

fgColor[ENUMERATION]

length [INT32]

startCol [INT32]

text [STRING]

RowUpdate [SEQUENCE]

rowNum [INT32]

spanUpdate [SEQUENCE]

attr [ENUMERATION]

bgColor[ENUMERATION]

fgColor[ENUMERATION]

length [INT32]

startCol [INT32]

text [STRING]

Page Update event

Number of rows and
columns on the page

Span update event

Attributes like background Color,
foreground Color, text etc,.

Figure 6: Publishing Schema

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

19

5. Platform Failover

Failover occurs when one of the paired platforms is unavailable for any reason –
Network/Server/Router/Service:

 API gets notified of lost connection

 API will hunt through list of Appliances

o Until it finds an active Platform

API will re-establish all subscriptions and API keeps a replay buffer (of limited size).

Platform Groups

 Any number of platforms can be grouped together.

 A service will be primary on any of the platforms in a group.

 All other platforms in the group will receive data from the primary to be distributed to any subscriber
connected to that platform.

 In the event of the primary failing, a new platform will become the primary for that service.

 The new platform to become primary is guaranteed to be one with a publisher connected to it.

Platform groups are connected either via cross connect in the same site or via Blolomberg network between
sites.

Publisher Groups

 Are needed if multiple publishers on the same topic.

 How the Platform behaves is determined by publisher groups and priority

 The publisher will send subscriptions to publishers with the highest priority

 If groups are different, multiple publishers can send to the same topic

 If groups are the same, only the assigned publisher’s data will be used

Backup Pub

 A publisher that receives no subscription requests until the primary pub fails

 This is achieved by using a publisher group

 The backup simply has a lower priority

Load Balancing

 Giving both publishers the same priority in the same group will achieve load balancing

 Each publisher gets topic requests by round robin

 The same level of redundancy will be achieved

 This is not recommended, if this will result in publishing across sites where such network traffic is an
issue

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

20

Disconnected operation

 In the event that a platform cannot connect to Bloomberg

 All local publishing will continue

 All permissioning will use the last cached copies

 Changes to EMRS will not be available

6. Contribution

Contribution is any piece of data that is published to the Bloomberg back end. It is the data that is

submitted to the Bloomberg Ticker plant and provides data for distribution to other Bloomberg clients.

It provides access to contribute data controlled via Enterprise Management and Reporting service

(EMRS) and access to consume controlled via traditional NFPV (a contribution Entitlement function that

displays the attributes for all products.

6.1. Contribution Example Code

All examples are in C++. However, only language specific differences exist for other programming

languages. The structure of the code is essentially the same. For specific details, please refer to the

standard examples provided with the API in each language specific directory.

a. Create the ProvideSession object
The Assumption is that there exists a sessionOptions object, and a defined event handler…

ProviderSession session(sessionOptions, &myEventHandler, 0);

b. Service registration
A service can be explicitly registered...

ServiceRegistrationOptions serviceOptions;
// Set of publishers for a service that support identical set of topics, but may

have different priorities.

serviceOptions.setGroupId(groupId, groupId.size());

//Integer value, the higher the value, the more preferred

serviceOptions.setServicePriority(priority);

// Assuming user already has service and identity object...

if(!providerSession->registerService(service, providerIdentity, serviceOptions))

{

 ...

}

...or alternatively, user can specify AUTO_REGISTER_SERVICES on Topic creation...as shown below

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

21

c. Create the TopicList object and register
TopicList topicList;

Topic topic;

// add topic to the resolution list

topicList.add(service + topic, CorrelationId(topic));

// createTopics() is synchronous, topicList will be updated

// with the results of topic creation (resolution will happen

// under the covers)

providerSession->createTopics(topicList,

 ProviderSession::DONT_REGISTER_SERVICES,

 providerIdentity);

d. Verify Topic resolution
//Parse the topicList to check resolution status of the list of topics
for (size_t i = 0; i < topicList.size(); ++i)
{
 int resolutionStatus = topicList.statusAt(i);

 if (resolutionStatus == TopicList::CREATED)
 {
 topic = providerSession->getTopic(topicList.messageAt(i));
 } else
 {
 …
 }
}

e. Create the publish Event object

The Event object is the mechanism by which data is communicated to the back end

Service service = session.getService(service);

Event event = service.createPublishEvent();

f. Create the EventFormatter object

This may take place within a loop if multiple topics are being contributed...

EventFormatter eventFormatter(event);

The use of the event formatter object depends on the specific activity taking place.

g. EventFormatter for Market Data contribution

The EventFormatter object allows the developer to format an event message, in this case, Market

Data...

eventFormatter.appendMessage("MarketData", topic);

eventFormatter.setElement("BID", bid_value);

eventFormatter.setElement("ASK", ask_value);

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

22

h. EventFormatter for Page Data contribution

The EventFormatter object for Page Data. The data is similar to XML in structure. Each pushElement

makes that the current element. Each popElement restores the parent element as the current

element..
eventFormatter.appendMessage("PageData", topic);
eventFormatter.pushElement("rowUpdate");
eventFormatter.appendElement();
eventFormatter.setElement("rowNum", 1);
eventFormatter.pushElement("spanUpdate");
eventFormatter.appendElement();
eventFormatter.setElement("startCol", 20);
eventFormatter.setElement("length", 4);
eventFormatter.setElement("text", "TEST");
eventFormatter.popElement();
eventFormatter.appendElement();
eventFormatter.setElement("startCol", 25);

eventFormatter.setElement("length", 4);
eventFormatter.setElement("text", "PAGE");
eventFormatter.popElement();
eventFormatter.popElement();
eventFormatter.popElement();
eventFormatter.setElement("productCode", 1);
eventFormatter.setElement("pageNumber", 1);

i. EventFormatter to Clear a GDCO Page

The EventFormatter object also allows for a GDCO page to be cleared. This unloads any currently

loaded securities :

eventFormatter.appendMessage("MonitorablePageData", topic);

eventFormatter.pushElement("clearMonitorablePage");

eventFormatter.setElement("pageID", gdco); // GDCO number

eventFormatter.setElement("pageSubID", monitor); //Monitor number

eventFormatter.popElement();

j. EventFormatter to Clear a GPGX Page
The EventFormatter object also allows for a GPGX page to be cleared :-

eventFormatter.appendMessage(“PageData", topic);

eventFormatter.pushElement("clearPage");

eventFormatter.setElement(“contributorId", contributorID); // Contributor no.

eventFormatter.setElement("pageNumber", gpgx); // GPGX number

eventFormatter.setElement(“productCode", product); //Monitor number

eventFormatter.popElement();

k. EventFormatter to load a security on GDCO Page

The EventFormatter object is used to load a security onto a GDCO page, at a specified row :-
eventFormatter.appendMessage("MonitorablePageData", topic);
eventFormatter.pushElement("loadMonitorableSecurities");
eventFormatter.setElement("pageID", gdco); // GDCO
eventFormatter.setElement("pageSubID", monitor); // Monitor
// A security is being loaded...
eventFormatter.setElement("pageOperation", "ADD");
// identifierType has to match with what is setup on the terminal for the monitor
// on the GDCO# in use.
// Contact the contribution representative and use the appropriate type.

Bloomberg Open API – Publishing Developer Guide

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED

23

// If there is a mismatch in the identifierType sent by the application and what is
// on the terminal, the packet will not be displayed on the GDCO.
// Possible values for identifierType are:
// - PAGE_ACCESS_TYPE_ISIN
// - PAGE_ACCESS_TYPE_NONE
// - PAGE_ACCESS_TYPE_BBG_NUMBER
// - PAGE_ACCESS_TYPE_CUSIP
// - PAGE_ACCESS_TYPE_TICKER
// - PAGE_ACCESS_TYPE_NEW_ISIN
eventFormatter.setElement("identifierType", identifierType);
eventFormatter.setElement("identifier", security);
// loadIndicatior specify how to load the securities on the page.
// Possible values are ABSOLUTE_ORDER/MATURITY_ORDER
eventFormatter.setElement("loadIndicator", "ABSOLUTE_ORDER"); //No maturity sorting
eventFormatter.popElement();

l. Publishing the Event
This passes the event object to the back end to be processed :-

 session.publish(event);

