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PREFACE  
 
 

When the first edition of Survival Analysis Using SAS was published 
in 1995, my goal was to provide an accessible, data-based introduction to 
methods of survival analysis, one that focused on methods available in SAS 
and that also used SAS for the examples. The success of that book 
confirmed my belief that statistical methods are most effectively taught by 
showing researchers how to implement them with familiar software using 
real data. 

Of course, the downside of a software-based statistics text is that the 
software often changes more rapidly than the statistical methodology. In the 
15 years that the first edition of the book has been in print, there have been 
so many changes to the features and syntax of SAS procedures for survival 
analysis that a new edition has been long overdue. Indeed, I have been 
working on this second edition for several years, but got partially 
sidetracked by a four-year term as department chair. So, it’s a great relief 
that I no longer have to warn potential readers about out-of-date SAS code.  

Although the basic structure and content of the book remain the same, 
there are numerous small changes and several large changes. One global 
change is that all the figures use ODS Graphics. Here are the other major 
changes and additions: 

 
 Chapter 3, “Estimating and Comparing Survival Curves 

with PROC LIFETEST.”  This chapter documents some 
major enhancements to the STRATA statement, which 
now offers several alternative tests for comparing survivor 
functions. It also allows for pairwise comparisons and for 
adjustment of p-values for multiple comparisons. In the 
first edition, I demonstrated the use of a macro called 
SMOOTH, which I had written to produce smoothed 
graphs of hazard function. That macro is no longer 
necessary, however, because the PLOTS option (combined 
with ODS Graphics) can now produce smoothed hazard 
functions using a variety of methods.  

 Chapter 4, “Estimating Parametric Regression Models with 
PROC LIFEREG.” This chapter now includes a section on 
the PROBPLOT command, which offers graphical 
methods to evaluate the fit of each model. The last section 
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VIII 

 

 

introduces the new BAYES statement, which (as the name 
suggests) makes it possible to do a Bayesian analysis of 
any of the parametric models using MCMC methods.  

 Chapter 5, “Estimating Cox Regression Models with PROC 
LIFEREG.”  The big change here is the use of the counting 
process syntax as an alternative method for handling time-
dependent covariates. When I wrote the first edition, the 
counting process syntax had just been introduced, and I 
did not fully appreciate its usefulness for handling 
predictor variables that vary over time. Another new topic 
is the use of the ASSESS statement to evaluate the 
proportional hazards assumption. Finally, there is a 
section that describes the BAYES statement for estimating 
Cox models and piecewise exponential models.  

 Chapter 6, “Competing Risks.”  This chapter now contains 
a section on cumulative incidence functions, which is a 
popular alternative approach to competing risks.  

 Chapter 7, “Analysis of Tied or Discrete Data with the 
LOGISTIC Procedure.”  The first edition also used the 
PROBIT and GENMOD procedures to do discrete time 
analysis. But, PROC LOGISTIC has been enhanced to the 
point where the other procedures are no longer needed for 
this application.  

 Chapter 8, “Heterogeneity, Repeated Events, and Other 
Topics.”  For repeated events and other kinds of clustered 
data, the WLW macro that I described in the first edition 
has been superseded by the built-in option 
COVSANDWICH. In this chapter, I also describe the use of 
the new GLIMMIX procedure to estimate random-effects 
models for discrete time data.  

 
Please note that I use the following convention for presenting SAS 

programs. All words that are part of the SAS language are shown in 
uppercase. All user-specified variable names and data set names are in 
lowercase. In the main text itself, both SAS keywords and user-specified 
variables are in uppercase.    

I am most grateful to my editor, George McDaniel, for his patient 
persistence in getting me to finish this new edition.  
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What Is Survival Analysis?   1 

What Is Survival Data?    2 

Why Use Survival Analysis?   4 

Approaches to Survival Analysis   5 

What You Need to Know   6 

Computing Notes   7 

WHAT IS SURVIVAL ANALYSIS? 

Survival analysis is a class of statistical methods for studying the 
occurrence and timing of events. These methods are most often applied to 
the study of deaths. In fact, they were originally designed for that purpose, 
which explains the name. That name is somewhat unfortunate, however, 
because it encourages a highly restricted view of the potential applications 
of these methods. Survival analysis is extremely useful for studying many 
different kinds of events in both the social and natural sciences, including 
disease onset, equipment failures, earthquakes, automobile accidents, 
stock market crashes, revolutions, job terminations, births, marriages, 
divorces, promotions, retirements, and arrests. Because these methods 
have been adapted—and sometimes independently discovered—by 
researchers in several different fields, they also go by several different 
names: event history analysis (sociology), reliability analysis (engineering), 
failure time analysis (engineering), duration analysis (economics), and 
transition analysis (economics). These different names don’t imply any 
real difference in techniques, although different disciplines may 
emphasize slightly different approaches. Because survival analysis is the 
name that is most widely used and recognized, it is the name I use here.  

This book is about doing survival analysis with SAS. I have also 
written an introduction to survival analysis that is not oriented toward a 
specific statistical package (Allison, 1984), but I prefer the approach taken 
here. To learn any kind of statistical analysis, you need to see how it’s 
actually performed in some detail. And to do that, you must use a 
particular computer program. But which one? Although I have performed 
survival analysis with many different statistical packages, I am convinced 
that SAS currently has the most comprehensive set of full-featured 
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procedures for doing survival analysis. When I compare SAS with any of 
its competitors in this area, I invariably find some crucial capability that 
SAS has but that the other package does not. When you factor in the 
extremely powerful tools that SAS provides for data management and 
manipulation, the choice is clear. On the other hand, no statistical package 
can do everything, and some methods of survival analysis are not available 
in SAS. I occasionally mention such methods, but the predominant 
emphasis in this book is on those things that SAS can actually do. 

I don’t intend to explain every feature of the SAS procedures 
discussed in this book. Instead, I focus on those features that are most 
widely used, most potentially useful, or most likely to cause problems and 
confusion. It’s always a good idea to check the official SAS documentation 
or online help file.   

WHAT IS SURVIVAL DATA? 

Survival analysis was designed for longitudinal data on the 
occurrence of events. But what is an event? Biostatisticians haven’t written 
much about this question because they have been overwhelmingly 
concerned with deaths. When you consider other kinds of events, 
however, it’s important to clarify what is an event and what is not. I define 
an event as a qualitative change that can be situated in time. By a 
qualitative change, I mean a transition from one discrete state to another. A 
marriage, for example, is a transition from the state of being unmarried to 
the state of being married. A promotion consists of the transition from a job 
at one level to a job at a higher level. An arrest can be thought of as a 
transition from, say, two previous arrests to three previous arrests.  

 To apply survival analysis, you need to know more than just who is 
married and who is not married. You need to know when the change 
occurred. That is, you should be able to situate the event in time. Ideally, 
the transitions occur virtually instantaneously, and you know the exact 
times at which they occur. Some transitions may take a little time, 
however, and the exact time of onset may be unknown or ambiguous. If the 
event of interest is a political revolution, for example, you may know only 
the year in which it began. That’s all right so long as the interval in which 
the event occurs is short relative to the overall duration of the observation.  

 You can even treat changes in quantitative variables as events if the 
change is large and sudden compared to the usual variation over time. A 
fever, for example, is a sudden, sustained elevation in body temperature. A 
stock market crash could be defined as any single-day loss of more than 20 
percent in some market index. Some researchers also define events as 
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occurring when a quantitative variable crosses a threshold. For example, a 
person is said to have fallen into poverty when income goes below some 
designated level. This practice may not be unreasonable when the 
threshold is an intrinsic feature of the phenomenon itself or when the 
threshold is legally mandated. But I have reservations about the 
application of survival methods when the threshold is arbitrarily set by the 
researcher. Ideally, statistical models should reflect the process generating 
the observations. It’s hard to see how such arbitrary thresholds can 
accurately represent the phenomenon under investigation.  

 For survival analysis, the best observation plan is prospective. You 
begin observing a set of individuals at some well-defined point in time, 
and you follow them for some substantial period of time, recording the 
times at which the events of interest occur. It’s not necessary that every 
individual experience the event. For some applications, you may also want 
to distinguish between different kinds of events. If the events are deaths, 
for example, you might record the cause of death. Unlike deaths, events 
like arrests, accidents, or promotions are repeatable; that is, they may 
occur two or more times to the same individual. While it is definitely 
desirable to observe and record multiple occurrences of the same event, 
you need specialized methods of survival analysis to handle these data 
appropriately.  

 You can perform survival analysis when the data consist only of the 
times of events, but a common aim of survival analysis is to estimate 
causal or predictive models in which the risk of an event depends on 
covariates. If this is the goal, the data set must obviously contain 
measurements of the covariates. Some of these covariates, like race and 
sex, may be constant over time. Others, like income, marital status, or 
blood pressure, may vary with time. For time-varying covariates, the data 
set should include as much detail as possible on their temporal variation.  

 Survival analysis is frequently used with retrospective data in which 
people are asked to recall the dates of events like marriages, child births, 
and promotions. There is nothing intrinsically wrong with this approach 
as long as you recognize the potential limitations. For one thing, people 
may make substantial errors in recalling the times of events, and they may 
forget some events entirely. They may also have difficulty providing 
accurate information on time-dependent covariates. A more subtle 
problem is that the sample of people who are actually interviewed may be 
a biased subsample of those who may have been at risk of the event. For 
example, people who have died or moved away will not be included. 
Nevertheless, although prospective data are certainly preferable, much can 
be learned from retrospective data.  
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WHY USE SURVIVAL ANALYSIS? 

Survival data have two common features that are difficult to handle 
with conventional statistical methods: censoring and time-dependent 
covariates (sometimes called time-varying explanatory variables). 
Consider the following example, which illustrates both these problems. A 
sample of 432 inmates released from Maryland state prisons was followed 
for one year after release (Rossi et al., 1980). The event of interest was the 
first arrest. The aim was to determine how the occurrence and timing of 
arrests depended on several covariates (predictor variables). Some of these 
covariates (like race, age at release, and number of previous convictions) 
remained constant over the one-year interval. Others (like marital and 
employment status) could change at any time during the follow-up period.  

 How do you analyze such data using conventional methods? One 
possibility is to perform a logistic regression analysis with a dichotomous 
dependent variable: arrested or not arrested. But this analysis ignores 
information on the timing of arrests. It’s natural to suspect that people who 
are arrested one week after release have, on average, a higher propensity to 
be arrested than those who are not arrested until the 52nd week. At the 
least, ignoring that information should reduce the precision of the 
estimates.  

 One solution to this problem is to make the dependent variable the 
length of time between release and first arrest and then estimate a 
conventional linear regression model. But what do you do with the 
persons who were not arrested during the one-year follow-up? Such cases 
are referred to as censored. There are a couple of obvious ad-hoc methods 
for dealing with censored cases, but neither method works well. One 
method is to discard the censored cases. That method might work 
reasonably well if the proportion of censored cases is small. In our 
recidivism example, however, fully 75 percent of the cases were not 
arrested during the first year after release. That’s a lot of data to discard, 
and it has been shown that large biases may result. Alternatively, you 
could set the time of arrest at one year for all those who were not arrested. 
That’s clearly an underestimate, however, and some of those ex-convicts 
may never be arrested. Again, large biases may occur.  

 Whichever method you use, it’s not at all clear how a time-
dependent variable like employment status can be appropriately 
incorporated into either the logistic model for the occurrence of arrests or 
the linear model for the timing of arrests. The data set contains information 
on whether each person was working full time during each of the 52 weeks 
of follow-up. You could, I suppose, estimate a model with 52 indicator 
(dummy) variables for employment status. Aside from the computational 
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awkwardness and statistical inefficiency of such a procedure, there is a 
more fundamental problem: all the employment indicators for weeks after 
an arrest might be consequences of the arrest rather than causes. In 
particular, someone who is jailed after an arrest is not likely to be working 
full time in subsequent weeks. In short, conventional methods don’t offer 
much hope for dealing with either censoring or time-dependent covariates.  

 By contrast, all methods of survival analysis allow for censoring, and 
many also allow for time-dependent covariates. In the case of censoring, 
the trick is to devise a procedure that combines the information in the 
censored and uncensored cases in a way that produces consistent 
estimates of the parameters of interest. You can easily accomplish this by 
the method of maximum likelihood or its close cousin, partial likelihood. 
Time-dependent covariates can also be incorporated with these likelihood-
based methods. Later chapters explain how you can usefully apply these 
methods to the recidivism data.  

APPROACHES TO SURVIVAL ANALYSIS 

One of the confusing things about survival analysis is that there are 
so many different methods: life tables, Kaplan-Meier estimators, 
exponential regression, log-normal regression, proportional hazards 
regression, competing risks models, and discrete-time methods, to name 
only a few. Sometimes these methods are complementary. Life tables have 
a very different purpose than regression models, for example, and discrete-
time methods are designed for a different kind of data than continuous-
time methods. On the other hand, it frequently happens that two or more 
methods may seem attractive for a given application, and the researcher 
may be hard-pressed to find a good reason for choosing one over another. 
How do you choose between a log-normal regression model (estimated 
with the LIFEREG procedure) and a proportional hazards model (estimated 
with the PHREG procedure)? Even in the case of discrete-time versus 
continuous-time methods, there is often considerable uncertainty about 
whether time is best treated as continuous or discrete. One of the aims of 
this book is to help you make intelligent decisions about which method is 
most suitable for your particular application. SAS/STAT software contains 
six procedures that can be used for survival analysis. Here’s an overview of 
what they do: 

LIFETEST  is primarily designed for univariate analysis of the timing 
of events. It produces life tables and graphs of survival 
curves (also called survivor functions). Using several 
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methods, this procedure tests whether survival curves are 
the same in two or more groups. PROC LIFETEST also tests 
for associations between event times and time-constant 
covariates, but it does not produce estimates of parameters.  

LIFEREG  estimates regression models with censored, continuous-
time data under several alternative distributional 
assumptions. PROC LIFEREG allows for several varieties of 
censoring, but it does not allow for time-dependent 
covariates.  

PHREG  uses Cox’s partial likelihood method to estimate regression 
models with censored data. The model is less restrictive 
than the models in PROC LIFEREG, and the estimation 
method allows for time-dependent covariates. PROC 
PHREG handles both continuous-time and discrete-time 
data.  

LOGISTIC is designed for general problems in categorical data 
analysis, but it is effective and flexible in estimating 
survival models for discrete-time data with time-dependent 
covariates.  

GENMOD  estimates the same discrete-time survival models as PROC 
LOGISTIC, but it can handle repeated events using 
generalized estimating equation (GEE) methods. 

NLMIXED estimates random-effects (mixed) parametric models for 
repeated events. 

  
All of these procedures can be used to estimate competing risks 

models that allow for multiple kinds of events, as described in Chapter 6, 
“Competing Risks.”  

WHAT YOU NEED TO KNOW 

I have written this book for the person who wants to analyze survival 
data using SAS but who knows little or nothing about survival analysis. 
The book should also be useful if you are already knowledgeable about 
survival analysis and simply want to know how to do it with SAS. I 
assume that you have a good deal of practical experience with ordinary 
least squares regression analysis and that you are reasonably familiar with 
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the assumptions of the linear model. There is little point in trying to 
estimate and interpret regression models for survival data if you don’t 
understand ordinary linear regression analysis.  

 You do not need to know matrix algebra, although I sometimes use 
the vector notation kk xxx βββ ...2211 ++=βx to simplify the presentation of 
regression models. A basic knowledge of limits, derivatives, and definite 
integrals is helpful in following the discussion of hazard functions, but 
you can get by without those tools. Familiarity with standard properties of 
logarithms and exponentials is essential, however. Chapters 4 and 5 each 
contain a more technical section that you can skip without loss of 
continuity. (I note this at the beginning of the section.) Naturally, the more 
experience you have with SAS/STAT and the SAS DATA step, the easier it 
will be to follow the discussion of SAS statements. On the other hand, the 
syntax for most of the models considered here is rather simple and 
intuitive, so don’t be intimidated if you are a SAS neophyte.  

COMPUTING NOTES 

Most of the examples in this book were executed on a Dell laptop 
running Windows Vista at 1.80 GHz with 1 GB of memory, using SAS 9.2.  
Occasionally, I report comparisons of computing times for different 
procedures, options, sample sizes, and program code. These comparisons 
should only be taken as rough illustrations, however, because computing 
time depends heavily on both the software and hardware configuration.  
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INTRODUCTION 

In this chapter, I discuss several topics that are common to many 
different methods of survival analysis:  

 censoring, a nearly universal feature of survival data 
 common ways of representing the probability distribution of 

event times, especially the survivor function and the hazard 
function 

 choice of origin in the measurement of time, a tricky but 
important issue that is rarely discussed in the literature on 
survival analysis  

 the basic data structure required for most computer programs 
that perform survival analysis.  

CENSORING 

Not all survival data contain censored observations, and censoring 
may occur in applications other than survival analysis. Nevertheless, 
because censored survival data are so common and because censoring 
requires special treatment, it is this topic more than anything else that 
unifies the many approaches to survival analysis. 

Censoring comes in many forms and occurs for many different 
reasons. The most basic distinction is between left censoring and right 
censoring. An observation on a variable T is right censored if all you know 
about T is that it is greater than some value c. In survival analysis, T is 
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typically the time of occurrence for some event, and cases are right 
censored because observation is terminated before the event occurs. Thus, 
if T is a person’s age at death (in years), you may know only that T > 50, in 
which case the person’s death time is right censored at age 50. This notion 
of censoring is not restricted to event times. If you know only that a 
person’s income is greater than $75,000 per year, then income is right 
censored at $75,000.  

Symmetrically, left censoring occurs when all you know about an 
observation on a variable T is that it is less than some value. Again, you 
can apply this notion to any sort of variable, not just an event time. In the 
context of survival data, left censoring is most likely to occur when you 
begin observing a sample at a time when some of the individuals may have 
already experienced the event. If you are studying menarche (the onset of 
menstruation), for example, and you begin following girls at age 12, you 
may find that some of them have already begun menstruating. Unless you 
can obtain information on the starting date for those girls, the age of 
menarche is said to be left censored at age 12. (In the social sciences, left 
censoring often means something quite different. Observations are said to 
be left censored if the origin time, not the event time, is known only to be 
less than some value. According to the definitions used here, such 
observations are actually right censored.) 

In both the natural and social sciences, right censoring is far more 
common than left censoring, and most computer programs for survival 
analysis do not allow for left censored data. Note, however, that the 
LIFEREG procedure will handle left censoring as well as interval 
censoring. Interval censoring combines both right and left censoring. An 
observation on a variable T is interval censored if all you know about T is 
that a < T < b, for some values of a and b. For survival data, this sort of 
censoring is likely to occur when observations are made at infrequent 
intervals, and there is no way to get retrospective information on the exact 
timing of events. Suppose, for example, that a sample of people is tested 
annually for HIV infection. If a person who was not infected at the end of 
year 2 is then found to be infected at the end of year 3, the time of 
infection is interval censored between 2 and 3. When all observations are 
interval censored and the intervals are equally spaced, it is often 
convenient to treat such data as discrete-time data, which is the subject of 
Chapter 7, “Analysis of Tied or Discrete Data with PROC LOGISTIC.” 

I won’t say anything more about left censoring and interval 
censoring until Chapter 4, “Estimating Parametric Regression Models with 
PROC LIFEREG.” The rest of this section is about the various patterns of 
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right-censored data and the possible mechanisms generating such data. 
The distinctions are important because some kinds of censoring are 
unproblematic, while other kinds require some potentially dubious 
assumptions. 

The simplest and most common situation is depicted in Figure 2.1. 
For concreteness, suppose that this figure depicts some of the data from a 
study in which all persons receive heart surgery at time 0 and are followed 
for 3 years thereafter. The horizontal axis represents time. Each of the 
horizontal lines labeled A through E represents a different person. An X 
indicates that a death occurred at that point in time. The vertical line at 3 
is the point at which we stop following the patients. Any deaths occurring 
at time 3 or earlier are observed and, hence, those death times are 
uncensored. Any deaths occurring after time 3 are not observed, and those 
death times are censored at time 3. Therefore, persons A, C, and D have 
uncensored death times, while persons B and E have right-censored death 
times. Observations that are censored in this way are referred to as singly 
Type I censored. 

Figure 2.1 Singly Right-Censored Data 
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Type I means that the censoring time is fixed (that is, under the 
control of the investigator), and singly refers to the fact that all the 
observations have the same censoring time. Even observations that are not 
censored are said to have a censoring time, in this case 3 years. It’s just that 
their death times did not exceed their censoring time. Of course, censoring 
times can also vary across individuals. For example, you might want to 
combine data from two experiments, one with observation terminating 
after 3 years and another with observation terminating after 5 years. This is 
still Type I censoring, provided the censoring time is fixed by the design of 
the experiment. 

Type II censoring occurs when observation is terminated after a 
prespecified number of events have occurred. Thus, a researcher running 
an experiment with 100 laboratory rats may decide that the experiment 
will stop when 50 of them have died. This sort of censoring is uncommon 
in the social sciences.  

Random censoring occurs when observations are terminated for 
reasons that are not under the control of the investigator. There are many 
possible reasons why this might happen. Suppose you are interested in 
divorces, so you follow a sample of couples for 10 years beginning with 
the marriage, and you record the timing of all divorces. Clearly, couples 
that are still married after 10 years are censored by a Type I mechanism. 
But for some couples, either the husband or the wife may die before the 10 
years are up. Some couples may move out of state or to another country, 
and it may be impossible to contact them. Still other couples may refuse to 
participate in the study after, say, 5 years. These kinds of censoring are 
depicted in Figure 2.2, where the O for couples B and C indicates that 
observation is censored at that point in time. Regardless of the subject 
matter, nearly all prospective studies end up with some cases that didn’t 
make it to the maximum observation time for one reason or another.  
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Figure 2.2  Randomly Censored Data 

 
Random censoring can also be produced when there is a single 

termination time, but entry times vary randomly across individuals. 
Consider again the example in which people are followed from heart 
surgery until death. A more likely scenario is one in which people receive 
heart surgery at various points in time, but the study has to be terminated 
on a single date (say, December 31, 2010). All persons still alive on that 
date are considered censored, but their survival times from surgery will 
vary. This censoring is considered random because the entry times are 
typically not under the control of the investigator.  

Standard methods of survival analysis do not distinguish among 
Type I, Type II, and random censoring. They are all treated as generic right-
censored observations. Why make the distinctions, then? Well, if you have 
only Type I or Type II censoring, you’re in good shape. The maximum 
likelihood and partial likelihood methods discussed in this book handle 
these types of censoring with no appreciable bias. Things are not so simple 
with random censoring, however. Standard methods require that random  
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censoring be noninformative. Here’s how Cox and Oakes (1984) describe 
this condition: 

A crucial condition is that, conditionally on the 
values of any explanatory variables, the prognosis for 
any individual who has survived to ci should not be 
affected if the individual is censored at ci. That is, an 
individual who is censored at c should be 
representative of all those subjects with the same 
values of the explanatory variables who survive to c 
(p. 5).  

The best way to understand this condition is to think about possible 
violations. Suppose you follow a cohort of new graduate students to see 
what factors affect how long it takes them to get a Ph.D. Many students 
drop out before completing the degree, and these observations are 
randomly censored. Unfortunately, there is good reason to suspect that 
those who drop out are among those who would take a long time to finish 
if they stayed until completion. This is called informative censoring. In the 
divorce example mentioned earlier, it is plausible that those couples who 
refuse to continue participating in the study are more likely to be 
experiencing marital difficulties and, hence, at greater risk of divorce. 
Again, the censoring is informative (assuming that measured covariates do 
not fully account for the association between dropout and marital 
difficulty).   

Informative censoring can, at least in principle, lead to severe biases, 
but it is difficult in most situations to gauge the magnitude or direction of 
those biases. In the case of graduate student drop out, where the censored 
cases are likely to be those who would have had long times to the event, 
one consequence of censoring is to underestimate the median survival 
time. 

 An easy solution to censoring that is random because of random 
entry times is to include entry time as a covariate in a regression model. 
This solution should work well in many situations, but it can lead to 
computational difficulties if a large proportion of the observations is 
censored.  

Unfortunately, there is no statistical test for informative censoring 
versus noninformative censoring. The best you can do is a kind of 
sensitivity analysis that is described in Chapter 8, “Heterogeneity,  
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Repeated Events, and Other Topics.” Aside from that, there are three 
important lessons here: 

1. First, in designing and conducting studies, you should do 
everything possible to reduce the amount of random censoring. 
You can’t rely on statistical methods to completely adjust for 
such censoring.  

2. Second, you should make an effort to measure and include in the 
model any covariates that are likely to affect the rate of 
censoring.  

3. Third, in studies with high levels of random censoring, you may 
want to place less confidence in your results than calculated 
confidence intervals indicate.  

DESCRIBING SURVIVAL DISTRIBUTIONS 

All of the standard approaches to survival analysis are probabilistic 
or stochastic. That is, the times at which events occur are assumed to be 
realizations of some random process. It follows that T, the event time for 
some particular individual, is a random variable having a probability 
distribution. There are many different models for survival data, and what 
often distinguishes one model from another is the probability distribution 
for T. Before looking at these different models, you need to understand 
three different ways of describing probability distributions. 

Cumulative Distribution Function 

One way that works for all random variables is the cumulative 
distribution function, or c.d.f. The c.d.f. of a variable T, denoted by F(t), is 
a function that tells us the probability that the variable will be less than or 
equal to any value t that we choose. Thus, F(t) = Pr{T ≤ t}. If we know the 
value of F for every value of t, then we know all there is to know about the 
univariate distribution of T. In survival analysis, it is more common to 
work with a closely related function called the survivor function, defined 
as S(t) = Pr{T > t} = 1 – F(t). If the event of interest is a death, the survivor 
function gives the probability of surviving beyond t. Because S is a 
probability, we know that it is bounded by 0 and 1. And because T cannot 
be negative, we know that S(0) = 1. Finally, as t gets larger, S never 
increases (and usually decreases). Within these restrictions, S can have a 
wide variety of shapes.  
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Chapter 3, “Estimating and Comparing Survival Curves with PROC 
LIFETEST,” explains how to estimate survivor functions using life-table 
and Kaplan-Meier methods. Often, the objective is to compare survivor 
functions for different subgroups in a sample. If the survivor function for 
one group is always higher than the survivor function for another group, 
then the first group clearly lives longer than the second group. If survivor 
functions cross, however, the situation is more ambiguous.  

Probability Density Function  

When variables are continuous, another common way of describing 
their probability distributions is the probability density function, or p.d.f. 
This function is defined as 

 dt
tdS

dt
tdFtf )()()( −==  (2.1) 

That is, the p.d.f. is just the derivative or slope of the c.d.f. Although this 
definition is considerably less intuitive than that for the c.d.f., it is the 
p.d.f. that most directly corresponds to our intuitive notions of 
distributional shape. For example, the familiar bell-shaped curve that is 
associated with the normal distribution is given by its p.d.f., not its c.d.f. 

Hazard Function 

For continuous survival data, the hazard function is actually more 
popular than the p.d.f. as a way of describing distributions. The hazard 
function is defined as 

 ( )
t

tTttTtth
t ∆

≥∆+<≤
=

→∆

|Prlim)(
0

 (2.2) 

Instead of h(t), some authors denote the hazard by λ(t) or r (t). 
Because the hazard function is so central to survival analysis, it is worth 
taking some time to explain this definition. The aim of the definition is to 
quantify the instantaneous risk that an event will occur at time t. Because 
time is continuous, the probability that an event will occur at exactly time 
t is necessarily 0. But we can talk about the probability that an event 
occurs in the small interval between t and t + ∆t. We also want to make this 
probability conditional on the individual surviving to time t. Why? 
Because if individuals have already died (that is, experienced the event), 
they are clearly no longer at risk of the event. Thus, we want to consider 
only those individuals who have made it to the beginning of the interval 
[t, t + ∆t). These considerations point to the numerator in equation (2.2):  
Pr(t ≤ T<t+∆t|T ≥t).  
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The numerator is still not quite what we want, however. First, the 
probability is a nondecreasing function of ∆t—the longer the interval, the 
more likely it is that an event will occur in that interval. To adjust for this, 
we divide by ∆t, as in equation (2.2). Second, we want the risk for event 
occurrence at exactly time t, not in some interval beginning with t. So we 
shrink the interval down by letting ∆t get smaller and smaller, until it 
reaches a limiting value.  

The definition of the hazard function in equation (2.2) is similar to 
an alternative definition of the probability density function: 

 ( )
t

ttTttf
t ∆

∆+<≤
=

→∆

Prlim)(
0

 (2.3) 

 
The only difference is that the probability in the numerator of equation 
(2.3) is an unconditional probability, whereas the probability in equation 
(2.2) is conditional on T ≥ t. For this reason, the hazard function is 
sometimes described as a conditional density. When events are repeatable, 
the hazard function is often referred to as the intensity function.  

The survivor function, the probability density function, and the 
hazard function are equivalent ways of describing a continuous probability 
distribution. Given any one of them, we can recover the other two. The 
relationship between the p.d.f. and the survivor function is given directly 
by the definition in equation (2.1). Another simple formula expresses the 
hazard in terms of the p.d.f. and the survivor function: 

 .
t
tt
)(
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S
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Together, equations (2.4) and (2.1) imply that 

 ).(log)( tS
dt
dth −=  (2.5) 

Integrating both sides of equation (2.5) gives an expression for the 
survivor function in terms of the hazard function: 
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Together with equation (2.4), this formula leads to  
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These formulas are extremely useful in any mathematical treatment 
of models for survival analysis because it is often necessary to move from 
one representation to another.  

INTERPRETATIONS OF THE HAZARD FUNCTION 

Before proceeding further, three clarifications need to be made: 
 Although it may be helpful to think of the hazard as the 

instantaneous probability of an event at time t, it’s not really a 
probability because the hazard can be greater than 1.0. This can 
happen because of the division by ∆t in equation (2.1). Although 
the hazard has no upper bound, it cannot be less than 0.  

 Because the hazard is defined in terms of a probability (which is 
never directly observed), it is itself an unobserved quantity. We 
may estimate the hazard with data, but that’s only an estimate.  

 It’s most useful to think of the hazard as a characteristic of 
individuals, not of populations or samples (unless everyone in 
the population is exactly the same). Each individual may have a 
hazard function that is completely different from anyone else’s.  

The hazard function is much more than just a convenient way of 
describing a probability distribution. In fact, the hazard at any point t 
corresponds directly to intuitive notions of the risk of event occurrence at 
time t. With regard to numerical magnitude, the hazard is a dimensional 
quantity that has the form number of events per interval of time, which is 
why the hazard is sometimes called a rate. To interpret the value of the 
hazard, then, you must know the units in which time is measured. 
Suppose, for example, that I somehow know that my hazard for 
contracting influenza at some particular point in time is .015, with time 
measured in months. This means that if my hazard stays at that value over 
a period of one month, I would expect to contract influenza .015 times. 
Remember, this is not a probability. If my hazard was 1.3 with time 
measured in years, then I would expect to contract influenza 1.3 times 
over the course of a year (assuming that my hazard stays constant during 
that year). 

To make this more concrete, consider a simple but effective way of 
estimating the hazard. Suppose that we observe a sample of 10,000 people 
over a period of one month, and we find 75 cases of influenza. If every 
person is observed for the full month, the total exposure time is 10,000 
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months. Assuming that the hazard is constant over the month and across 
individuals, an optimal estimate of the hazard is 75/10000=.0075. If some 
people died or withdrew from the study during the one-month interval, we 
have to subtract their unobserved time from the denominator. 

The assumption that the hazard is constant may bother some readers 
because one thing known about hazards is that they can vary continuously 
with time. That’s why I introduced the hazard function in the first place. 
Yet, this sort of hypothetical interpretation is one that is familiar to 
everyone. If we examine the statement “This car is traveling at 30 miles per 
hour,” we are actually saying that “If the car continued at this constant 
speed for a period of one hour, it would travel 30 miles.” But cars never 
maintain exactly the same speed for a full hour. 

The interpretation of the hazard as the expected number of events in 
a one-unit interval of time is sensible when events are repeatable. But what 
about a nonrepeatable event like death? Taking the reciprocal of the 
hazard, 1/h(t), gives the expected length of time until the event occurs, 
again assuming that h(t) remains constant. If my hazard for death is .018 
per year at this moment, then I can expect to live another 1/.018 = 55.5 
years. Of course, this calculation assumes that everything about me and 
my environment stays exactly the same. Actually, my hazard of death will 
certainly increase (at an increasing rate) as I age. The reciprocal of the 
hazard is useful for repeatable events as well. If I have a constant hazard of 
.015 per month of contracting influenza, the expected length of time 
between influenza episodes is 66.7 months. 

In thinking about the hazard, I find it helpful to imagine that each of 
us carries around hazards for different kinds of events. I have a hazard for 
accidental death, a hazard for coronary infarction, a hazard for quitting my 
job, a hazard for being sued, and so on. Furthermore, each of these hazards 
changes as conditions change. Right now, as I sit in front of my computer, 
my hazard for serious injury (one requiring hospitalization) is very low but 
not zero. The ceiling could collapse or my chair could tip over, for 
example. It surely goes up substantially as I leave my office and walk 
down the stairs. And it goes up even more when I get in my car and drive 
onto the expressway. Then it goes down again when I get out of my car and 
walk into my home.  

This example illustrates the fact that the true hazard function for a 
specific individual and a specific event varies greatly with the ambient 
conditions. In fact, it is often a step function with dramatic increases or 
decreases as an individual moves from one situation to another. When we 
estimate a hazard function for a group of individuals, these micro-level 
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changes typically cancel out so that we end up capturing only the gross 
trends with age or calendar time. On the other hand, by including 
changing conditions as time-dependent covariates in a regression model 
(Chapter 5, “Estimating Cox Regression Models with PROC PHREG”), we 
can estimate their effects on the hazard.  

SOME SIMPLE HAZARD MODELS  

We have seen that the hazard function is a useful way of describing 
the probability distribution for the time of event occurrence. Every hazard 
function has a corresponding probability distribution. But hazard 
functions can be extremely complicated, and the associated probability 
distributions may be rather esoteric. This section examines some rather 
simple hazard functions and discusses their associated probability 
distributions. These hazard functions are the basis for some widely 
employed regression models that are introduced briefly here. 

The simplest function says that the hazard is constant over time: that 
is, h(t) = λ or, equivalently, log h(t) = µ. Substituting this hazard into 
equation (2.6) and carrying out the integration implies that the survival 
function is S(t) = e-λt. Then, from equation (2.1), we get the p.d.f.,  
f (t) = λe-λt. This is the p.d.f. for the well-known exponential distribution 
with parameter λ. Thus, a constant hazard implies an exponential 
distribution for the time until an event occurs (or the time between events).  

The next step up in complexity is to let the natural logarithm of the 
hazard be a linear function of time: 

 tth αµ +=)(log . (2.8) 

Taking the logarithm is a convenient and popular way to ensure that h(t) is 
nonnegative, regardless of the values of μ, α, and t. Of course, we can 
rewrite the equation as 

 tth λγ=)(  (2. 9) 

where λ = eµ and γ = eα. This hazard function implies that the time of event 
occurrence has a Gompertz distribution. Alternatively, we can assume that 

 tth log)(log αµ +=  (2.10) 
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which can be rewritten as 

 αλtth =)(  (2.11) 

with λ = eµ . This equation implies that the time of event occurrence 
follows a Weibull distribution.  

Figures 2.3 and 2.4 show some typical hazard functions for the 
Weibull and Gompertz distributions. Both distributions have the 
exponential distribution as a special case when α is 0. When α is not 0, the 
hazard is either always increasing or always decreasing with time for both 
distributions. One difference between them is that, for the Weibull model, 
when t = 0, the hazard is either 0 or infinite. With the Gompertz model, on 
the other hand, the initial value of the hazard is just λ, which can be any 
nonnegative number. 

Figure 2.3 Typical Hazard Functions for the Weibull Distribution 
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Figure 2.4 Typical Hazard Functions for the Gompertz Distribution 

 

We can readily extend each of these models to allow for the 
influence of covariates (explanatory variables). Thus, if we have covariates  
x1, x2,…, xk, we can write 

  

 Exponential:  kk xxxth βββµ ++++= 2211)(log  

      Gompertz:  kk xxxtth βββαµ +++++= 2211)(log  (2.12)

 
        Weibull:  kk xxxtth βββαµ +++++= 2211log)(log  

                 

 

We can estimate the Weibull and exponential models (along with a 
number of other models) with PROC LIFEREG, as described in Chapter 4. 
The Gompertz model is not standardly available in SAS. All three models 
are members of a general class known as proportional hazards models. 
Chapter 5 explains how to use Cox’s partial likelihood method to estimate 
the coefficients of the covariates for any proportional hazards model 
without having to specify exactly how the hazard depends on time.  
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THE ORIGIN OF TIME 

All models for survival data are fundamentally concerned with the 
timing of events. In assigning a number to an event time, we implicitly 
choose both a scale and an origin. The scale is just the units in which time 
is measured: years, days, minutes, hours, or seconds. We have already seen 
that the numerical value of the hazard depends on the units of 
measurement for time. In practice, however, the choice of units makes 
little difference for the regression models discussed in later chapters. 
Because those models are linear in the logarithm of the hazard or event 
time, a change in the units of measurement affects only the intercept, 
leaving the coefficients unchanged.  

The choice of origin (0 point) is more problematic, however, for three 
reasons:  

1. First, it does make a difference—often substantial—in coefficient 
estimates and fit of the models.  

2. Second, the preferred origin is sometimes unavailable, in which 
case you must use some proxy.  

3. Third, many situations occur in which two or more possible time 
origins are available, but there is no unambiguous criterion for 
deciding among them.  

 
Consider the problem of unavailability of the preferred origin. Many 

medical studies measure time of death as the length of time between the 
point of diagnosis and death. Most medical researchers prefer, if possible, 
to measure time from the point of infection or the onset of the disease. 
Because there is often wide variation in how long it takes before a disease 
is diagnosed, the use of diagnosis time as a proxy may introduce a 
substantial amount of random noise into the measurement of death times. 
A likely consequence is attenuation of coefficients toward 0. Worse yet, 
because variation in time of diagnosis may depend on such factors as age, 
sex, race, and social class, there is also the possibility of systematic bias. 
Thus, if African Americans tend to be diagnosed later than Caucasians, 
they will appear to have shorter times to death. Unfortunately, if the point 
of disease onset is unavailable (as it usually is), you cannot do much about 
this problem except to be aware of the potential biases that might result.  

On the other hand, the point of disease onset may not be the ideal 
choice for the origin. If the risk of death depends heavily on treatment—
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which cannot begin until the disease is diagnosed—then the point of 
diagnosis may actually be a better choice for the origin. This fact brings up 
the third issue. What criteria can be used to choose among two or more 
possible origins? Before attempting to answer that question, consider some 
of the possibilities:  

  Age. Demographers typically study the age at death, implicitly 
using the individual’s birth as the point of origin.  

  Calendar time. Suppose we begin monitoring a population of 
deer on October 1, 2010, and follow them for one year, recording 
any deaths that occur in that interval. If we know nothing about 
the animals prior to the starting date, then we have no choice but 
to use the starting date as the origin for measuring death time.  

  Time since some other event. In studying the determinants of 
divorce, it is typical to use the date of marriage as the origin time. 
Similarly, in studying criminal recidivism, the natural starting 
date is the date at which the convict is released from prison.  

  Time since the last occurrence of the same type of event. When 
events are repeatable, it is common to measure the time of an 
event as the time since the most recent occurrence. Thus, if the 
event is a hospitalization, we may measure the length of time 
since the most recent hospitalization.  

In principle, the hazard for the occurrence of a particular kind of 
event can be a function of all of these times or any subset of them. 
Nevertheless, the continuous-time methods considered in this book 
require a choice of a single time origin. (The discrete-time methods 
discussed in Chapter 7 are more flexible in that regard.) Although you can 
sometimes include time measurements based on other origins as 
covariates, that strategy usually restricts the choice of models and may 
require more demanding computation.  

So how do you choose the principal time origin? Here are some 
criteria that researchers commonly use, although not always with full 
awareness of the rationale or the implications: 

 Choose a time origin that marks the onset of continuous 
exposure to risk of the event. If the event of interest is a divorce, 
the natural time origin is the date of the marriage. Prior to 
marriage, the risk (or hazard) of divorce is 0. After marriage, the 
risk is some positive number. In the case of recidivism, a convict 
is not at risk of recidivating until he or she is actually released 
from prison, so the point of release is an obvious time origin.  
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This criterion is so intuitively appealing that most researchers 
instinctively apply it. But the justification is important because 
there are sometimes attractive alternatives. The most compelling 
argument for this criterion is that it automatically excludes 
earlier periods of time when the hazard is necessarily 0. If these 
periods are not excluded, and if they vary in length across 
individuals, then bias may result. (Chapter 5 shows how to 
exclude periods of zero hazard using PROC PHREG.) 

Often this criterion is qualified to refer only to some subset of a 
larger class of events. For example, people are continuously at 
risk of death from the moment they are born. Yet, in studies of 
deaths due to radiation exposure, the usual origin is the time of 
first exposure. That is the point at which the individual is first 
exposed to risk of that particular kind of death—a death due to 
radiation exposure. Similarly, in a study of why some patients 
die sooner than others after cardiac surgery, the natural origin is 
the time of the surgery. The event of interest is then death 
following cardiac surgery. On the other hand, if the aim is to 
estimate the effect of surgery itself on the death rate among 
cardiac patients, the appropriate origin is time of diagnosis, with 
the occurrence of surgery as a time-dependent covariate. 

 In experimental studies, choose the time of randomization to 
treatment as the time origin. In such studies, the main aim is 
usually to estimate the differential risk associated with different 
treatments. It is only at the point of assignment to treatment that 
such risk differentials become operative. Equally important, 
randomization should ensure that the distribution of other time 
origins (for example, onset of disease) is approximately the same 
across the treatment groups.  

This second criterion ordinarily overrides the first. In an 
experimental study of the effects of different kinds of marital 
counseling on the likelihood of divorce, the appropriate time 
origin would be the point at which couples were randomly 
assigned to treatment modality, not the date of the marriage. On 
the other hand, length of marriage at the time of treatment 
assignment can be included in the analysis as a covariate. This 
inclusion is essential if assignment to treatment was not 
randomized. 

 Choose the time origin that has the strongest effect on the hazard. 
The main danger in choosing the wrong time origin is that the 
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effect of time on the hazard may be inadequately controlled, 
leading to biased estimates of the effects of other covariates, 
especially time-dependent covariates. In general, the most 
important variables to control are those that have the biggest 
effects. For example, while it is certainly the case that the hazard 
for death is a function of age, the percent annual change in the 
hazard is rather small. On the other hand, the hazard for death 
due to ovarian cancer is likely to increase markedly from time 
since diagnosis. Hence, it is more important to control for time 
since diagnosis (by choosing it as the time origin). Again, it may 
be possible to control for other time origins by including them as 
covariates. 

DATA STRUCTURE 

The LIFETEST, LIFEREG, and PHREG procedures all expect data 
with the same basic structure. Indeed, this structure is fairly standard 
across many different computer packages for survival analysis. For each 
case in the sample, there must be one variable (which I’ll call DUR) that 
contains either the time that an event occurred or, for censored cases, the 
last time at which that case was observed, both measured from the chosen 
origin. A second variable (which I’ll call STATUS) is necessary if some of 
the cases are censored or if you want to distinguish different kinds of 
events. The STATUS variable is assigned arbitrary values that indicate the 
status of the individual at the time recorded in the DUR variable. If there is 
only one kind of event, it is common to have STATUS=1 for uncensored 
cases and STATUS=0 for censored cases, but any two values will do as 
long as you remember which is which. For PROC LIFEREG and PROC 
PHREG, which estimate regression models, the record should also contain 
values of the covariates. This is straightforward if the covariates are 
constant over time. The more complex data structure needed for time-
dependent covariates is discussed in Chapter 5.  

The basic data structure is illustrated by Output 2.1, which gives 
survival times for 25 patients diagnosed with myelomatosis (Peto et al., 
1977). These patients were randomly assigned to two drug treatments, as 
indicated by the TREAT variable. The DUR variable gives the time in days 
from the point of randomization to either death or censoring (which could 
occur either by loss to follow up or termination of the observation). The 
STATUS variable has a value of 1 for those who died and 0 for those who 
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were censored. An additional covariate, RENAL, is an indicator variable 
for normal (1) versus impaired (0) renal functioning at the time of 
randomization. This data set is one of several that are analyzed in the 
remaining chapters.   

Output 2.1  Myelomatosis Data  

                       OBS    DUR    STATUS    TREAT    RENAL 
 
                 1       8       1        1        1 
                 2     180       1        2        0 
                 3     632       1        2        0 
                 4     852       0        1        0 
                 5      52       1        1        1 
                 6    2240       0        2        0 
                 7     220       1        1        0 
                 8      63       1        1        1 
                 9     195       1        2        0 
                10      76       1        2        0 
                11      70       1        2        0 
                12       8       1        1        0 
                13      13       1        2        1 
                14    1990       0        2        0 
                15    1976       0        1        0 
                16      18       1        2        1 
                17     700       1        2        0 
                18    1296       0        1        0 
                19    1460       0        1        0 
                20     210       1        2        0 
                21      63       1        1        1 
                22    1328       0        1        0 
                23    1296       1        2        0 
                24     365       0        1        0 
                25      23       1        2        1 
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Although the basic data structure for survival analysis is quite 
simple, it can often be an arduous task to get the data into this form, 
especially in complex life history studies that contain information on 
many different kinds of repeatable events. With its extremely flexible and 
powerful DATA step, SAS is well-suited to perform the kinds of 
programming necessary to process such complex data sets. Of particular 
utility is the rich set of date and time functions available in the DATA step. 
For example, suppose the origin time for some event is contained in three 
numeric variables: ORMONTH, ORDAY, and ORYEAR. Similarly, the event 
time is contained in the variables EVMONTH, EVDAY, and EVYEAR. To 
compute the number of days between origin and event time, you need only 
the statement 

dur = MDY(evmonth,evday,evyear) – MDY(ormonth,orday,oryear); 

The MDY function converts the month, day, and year into a SAS 
date: the number of days since January 1, 1960. Once that conversion takes 
place, simple subtraction suffices to get the duration in days. Many other 
functions are also available to convert time data in various formats into 
SAS date values. 
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INTRODUCTION 

Prior to 1970, the estimation of survivor functions was the 
predominant method of survival analysis, and entire books were devoted 
to its exposition (for example, Gross and Clark, 1975). Nowadays, the 
workhorse of survival analysis is the Cox regression method discussed in 
Chapter 5, “Estimating Cox Regression Models with PROC PHREG.” 
Nevertheless, survival curves are still useful for preliminary examination 
of the data, for computing derived quantities from regression models (like 
the median survival time or the 5-year probability of survival), and for 
evaluating the fit of regression models. For very simple experimental 
designs, standard tests for comparing survivor functions across treatment 
groups may suffice for analyzing the data. And in demography, the life-
table method for estimating survivor functions still holds a preeminent 
place as a means of describing human mortality.  

PROC LIFETEST produces estimates of survivor functions using 
either of two methods. The Kaplan-Meier method is more suitable when 
event times are measured with precision, especially if the number of 
observations is small. The life-table or actuarial method may be better for 
large data sets or when the measurement of event times is crude. In 
addition to computing and graphing the estimated survivor function, 
PROC LIFETEST provides several methods for testing the null hypothesis 
that survivor functions are identical for two or more groups (strata). 
Finally, PROC LIFETEST can test for associations between survival time 
and sets of quantitative covariates.  
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THE KAPLAN-MEIER METHOD 

In biomedicine, the Kaplan-Meier (KM) estimator is the most widely 
used method for estimating survivor functions. Also known as the 
product-limit estimator, this method was known for many years prior to 
1958 when Kaplan and Meier showed that it was, in fact, the 
nonparametric maximum likelihood estimator. This gave the method a 
solid theoretical justification.  

When there are no censored data, the KM estimator is simple and 
intuitive. Recall from Chapter 2, “Basic Concepts of Survival Analysis,” in 
the section Describing Survival Distributions, that the survivor function 
( )S t is the probability that an event time is greater than t, where t can be 

any nonnegative number. When there is no censoring, the KM estimator 
)(ˆ tS  is just the proportion of observations in the sample with event times 

greater than t. Thus, if 75 percent of the observations have event times 
greater than 5, we have 75.)5(ˆ =S . 

The situation is also quite simple in the case of single right censoring 
(that is, when all the censored cases are censored at the same time c and all 
the observed event times are less than c). In that case, for all t ≤ c, )(ˆ tS  is 
still the sample proportion of observations with event times greater than t. 
For t > c, )(ˆ tS  is undefined. 

Things get more complicated when some censoring times are smaller 
than some event times. In that instance, the observed proportion of cases 
with event times greater than t can be biased downward because cases that 
are censored before t may, in fact, have “died” before t without our 
knowledge. The solution is as follows. Suppose there are k distinct event 
times, t1 < t2 < … <tk . At each time tj , there are nj individuals who are said 
to be at risk of an event. At risk means they have not experienced an event 
nor have they been censored prior to time tj . If any cases are censored at 
exactly tj , they are also considered to be at risk at tj . Let dj be the number 
of individuals who die at time tj. The KM estimator is then defined as  

 ∏
≤











−=

ttj j

j

j
n
d

tS
:

1)(ˆ  (3.1) 

for t1 ≤ t ≤ tk. In words, this formula says that for a given time t, take all the 
event times that are less than or equal to t. For each of those event times, 
compute the quantity in brackets, which can be interpreted as an estimate 
of the conditional probability of surviving to time tj+1, given that one has 
survived to time tj . Then multiply all of these conditional probabilities 
together. For t less than t1 (the smallest event time), )(ˆ tS  is defined as 1.0. 
For t greater than tk, the largest observed event time, the definition of )(ˆ tS  
depends on the configuration of the censored observations. When there are 
no censored times greater than tk, )(ˆ tS  is set to 0 for t > tk. When there are 
censored times greater than tk, )(ˆ tS  is undefined for t greater than the 
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largest censoring time. For an explanation of the rationale for equation 
(3.1), see The Life-Table Method later in this chapter. 

Here’s an example of how to get the KM estimator using PROC 
LIFETEST with the myelomatosis data shown in Output 2.1: 

 
DATA myel; 
   INPUT dur status treat renal; 
   DATALINES; 
   8       1        1        1 
 180       1        2        0 
 632       1        2        0 
 852       0        1        0 
  52       1        1        1 
2240       0        2        0 
 220       1        1        0 
  63       1        1        1 
 195       1        2        0 
  76       1        2        0 
  70       1        2        0 
   8       1        1        0 
  13       1        2        1 
1990       0        2        0 
1976       0        1        0 
  18       1        2        1 
 700       1        2        0 
1296       0        1        0 
1460       0        1        0 
 210       1        2        0 
  63       1        1        1 
1328       0        1        0 
1296       1        2        0 
 365       0        1        0 
  23       1        2        1 
; 
PROC LIFETEST DATA=myel; 
   TIME dur*status(0); 
RUN;  
 

The KM estimator is the default, so you do not need to request it. If 
you want to be explicit, you can put METHOD=KM on the PROC 
LIFETEST statement. The syntax DUR*STATUS(0) is common to PROC 
LIFETEST, PROC LIFEREG, and PROC PHREG. The first variable is the 
time of the event or censoring, the second variable contains information on 
whether or not the observation was censored, and the numbers in 
parentheses (there can be more than one) are values of the second variable 
that correspond to censored observations. These statements produce the 
results shown in Output 3.1.  
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Output 3.1 Kaplan-Meier Estimates for Myelomatosis Data 

                      Product-Limit Survival Estimates 
 
                                        Survival 
                                        Standard     Number      Number 
        dur     Survival    Failure      Error       Failed       Left 
 
       0.00       1.0000           0           0        0          25 
       8.00            .           .           .        1          24 
       8.00       0.9200      0.0800      0.0543        2          23 
      13.00       0.8800      0.1200      0.0650        3          22 
      18.00       0.8400      0.1600      0.0733        4          21 
      23.00       0.8000      0.2000      0.0800        5          20 
      52.00       0.7600      0.2400      0.0854        6          19 
      63.00            .           .           .        7          18 
      63.00       0.6800      0.3200      0.0933        8          17 
      70.00       0.6400      0.3600      0.0960        9          16 
      76.00       0.6000      0.4000      0.0980       10          15 
     180.00       0.5600      0.4400      0.0993       11          14 
     195.00       0.5200      0.4800      0.0999       12          13 
     210.00       0.4800      0.5200      0.0999       13          12 
     220.00       0.4400      0.5600      0.0993       14          11 
     365.00*           .           .           .       14          10 
     632.00       0.3960      0.6040      0.0986       15           9 
     700.00       0.3520      0.6480      0.0970       16           8 
     852.00*           .           .           .       16           7 
    1296.00       0.3017      0.6983      0.0953       17           6 
    1296.00*           .           .           .       17           5 
    1328.00*           .           .           .       17           4 
    1460.00*           .           .           .       17           3 
    1976.00*           .           .           .       17           2 
    1990.00*           .           .           .       17           1 
    2240.00*           .           .           .       17           0 
 
        NOTE: The marked survival times are censored observations. 
 
                 Summary Statistics for Time Variable dur 
 
                            Quartile Estimates 
 
                      Point          95% Confidence Interval 
         Percent    Estimate    Transform      [Lower      Upper) 
 
              75         .      LOGLOG         220.00         . 
              50      210.00    LOGLOG          63.00     1296.00 
              25       63.00    LOGLOG           8.00      180.00 

                                                                                                                                                (continued) 
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Output 3.1 (continued) 

                            Mean    Standard Error 
 
                          562.76            117.32 
 
NOTE: The mean survival time and its standard error were underestimated 
      because the largest observation was censored and the estimation was 
      restricted to the largest event time. 
 
 
          Summary of the Number of Censored and Uncensored Values 
 
                                                  Percent 
                    Total  Failed    Censored    Censored 
 
                       25      17           8       32.00 
 

 
 

Each line of numbers in Output 3.1 corresponds to one of the 25 
cases, arranged in ascending order (except for the first line, which is for 
time 0). Censored observations are starred. The crucial column is the 
second—labeled Survival—which gives the KM estimates. At 180 days, for 
example, the KM estimate is .56. We say, then, that the estimated 
probability that a patient will survive for 180 days or more is .56. When 
there are tied values (two or more cases that die at the same reported time), 
as we have at 8 days and 63 days, the KM estimate is reported only for the 
last of the tied cases. No KM estimates are reported for the censored times.  

In fact, however, the KM estimator is defined for any time between 0 
and the largest event or censoring time. It’s just that it changes only at an 
observed event time. Thus, the estimated survival probability for any time 
from 70 days up to (but not including) 76 days is .64. The 1-year (365 days) 
survival probability is .44, the same as it was at 220 days. After 2,240 days 
(the largest censoring time), the KM estimate is undefined.  

The third column, labeled Failure, is just 1 minus the KM estimate, 
which is the estimated probability of a death prior to the specified time. 
Thus, it is an estimate of the cumulative distribution function. The fourth 
column, labeled Survival Standard Error, is an estimate of the standard 
error of the KM estimate, obtained by the well-known Greenwood’s 
formula (Collett, 2003). Although this standard error could be used 
directly to construct confidence intervals around the survival probabilities, 
PROC LIFETEST has better methods that we shall examine later.  

The fifth column, labeled Number Failed, is just the cumulative 
number of cases that experienced events prior to and including each point 
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in time. The column labeled Number Left is the number of cases that have 
neither experienced events nor been censored prior to each point in time. 
This is the size of the risk set for each time point. Below the main table, 
you find the estimated 75th, 50th, and 25th percentiles (labeled Quartile 
Estimates). If these were not given, you could easily determine them from 
the Failure column. Thus, the 25th percentile (63 in this case) is the 
smallest event time such that the probability of dying earlier is greater than 
.25. No value is reported for the 75th percentile because the KM estimator 
for these data never reaches a failure probability greater than .70.  

Of greatest interest is the 50th percentile, which is, of course, the 
median death time. Here, the median is 210 days, with a 95% confidence 
interval of 63 to 1296. As noted in the table, the confidence intervals are 
calculated using a log-log transform that preserves the upper bound of 1 
and the lower bound of 0 on the survival probabilities. Although other 
transforms are optionally available, there is rarely any need to use them. 

An estimated mean time of death is also reported. This value is 
calculated directly from the estimated survival function. It is not simply 
the mean time of death for those who died. As noted in the output, the 
mean is biased downward when there are censoring times greater than the 
largest event time. Even when this is not the case, the upper tail of the 
distribution will be poorly estimated when a substantial number of the 
cases are censored, and this can greatly affect estimates of the mean. 
Consequently, the median is typically a better measure of central tendency 
for censored survival data.  

Usually you will want to see a plot of the estimated survival 
function. PROC LIFETEST can produce plots in three different modes: line 
printer, traditional graphics, and the output delivery system (ODS). Here I 
use ODS because it has a much richer array of features. Here’s how to get 
the survivor function graph using ODS: 

 
ODS GRAPHICS ON; 
PROC LIFETEST DATA=myel PLOTS=S; 
   TIME dur*status(0); 
RUN; 
ODS GRAPHICS OFF; 

 

The resulting graph (shown in Output 3.2) can be accessed by double-
clicking on the graph icon in the Results window.  

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 3 Estimating and Comparing Survival Curves with PROC LIFETEST 

 35 

 

Output 3.2  Plot of the Survivor Function for Myelomatosis Data 

   

Notice that the graph contains plus signs (that look like tick marks) 
wherever there are censored observations. These marks can be very 
distracting when the data set is large with lots of censored observations. 
They can be suppressed by using the NOCENSOR option. Another useful 
option is ATRISK, which adds the number of individuals still at risk (not 
yet dead or censored) to the graph. To get a graph with 95% confidence 
limits around the survivor function, use the CL option. All three options 
can be specified with the statement 

 
PROC LIFETEST DATA=myel PLOTS=S(NOCENSOR ATRISK CL); 

which produces the graph shown in Output 3.3. 
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Output 3.3  Plot of the Survivor Function for Myelomatosis Data with Pointwise Confidence Limits 

 

The confidence limits shown in Output 3.3 are pointwise limits, 
meaning that for each specified survival time, we are 95% confident that 
the probability of surviving to that time is within those limits. Note that 
the confidence limits only extend to the largest event time.  

Suppose we want confidence bands that can be interpreted by 
saying that we are 95% confident that the entire survivor function falls 
within the upper curve and the lower curve. More complex methods are 
needed to produce such bands, and PROC LIFETEST offers two: the Hall-
Wellner method and the equal precision (EP) method. I prefer the EP 
method because it tends to produce confidence bands that are more stable 
in the tails. To implement this method, the option becomes 
PLOTS=S(CB=EP). To get both pointwise and EP bands, use the option 
PLOTS=S(CL CB=EP), which produces Output 3.4. As is evident in that 
graph, the confidence bands are always wider than the pointwise 
confidence limits.  
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Output 3.4  Survivor Function for Myelomatosis Data with Confidence Bands and Pointwise Limits 

 

You can also write the pointwise limits to a SAS data set using the 
OUTSURV option: 

 
PROC LIFETEST DATA=myel OUTSURV=a; 
   TIME dur*status(0); 
PROC PRINT DATA=a; 
RUN; 

Output 3.5 shows the printed data set. Note that the data set contains 
one record for each unique event or censoring time, plus a record for time 
0. The two right-hand columns give the upper and lower limits for a 95% 
confidence interval around each survival probability. (To get 90% 
intervals, use ALPHA=.10 as an option in the PROC LIFETEST statement.) 
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 Output 3.5 Data Set Produced by the OUTSURV= Option  

  Obs     dur    _CENSOR_    SURVIVAL    SDF_LCL    SDF_UCL 
 
  1       0        .        1.00000    1.00000    1.00000 
  2       8        0        0.92000    0.71639    0.97937 
  3      13        0        0.88000    0.67256    0.95964 
  4      18        0        0.84000    0.62806    0.93673 
  5      23        0        0.80000    0.58445    0.91146 
  6      52        0        0.76000    0.54205    0.88428 
  7      63        0        0.68000    0.46093    0.82527 
  8      70        0        0.64000    0.42215    0.79378 
  9      76        0        0.60000    0.38449    0.76109 
 10     180        0        0.56000    0.34794    0.72728 
 11     195        0        0.52000    0.31249    0.69238 
 12     210        0        0.48000    0.27813    0.65640 
 13     220        0        0.44000    0.24490    0.61936 
 14     365        1        0.44000     .          . 
 15     632        0        0.39600    0.20826    0.57872 
 16     700        0        0.35200    0.17355    0.53660 
 17     852        1        0.35200     .          . 
 18    1296        0        0.30171    0.13419    0.48925 
 19    1296        1         .          .          . 
 20    1328        1         .          .          . 
 21    1460        1         .          .          . 
 22    1976        1         .          .          . 
 23    1990        1         .          .          . 
 24    2240        1         .          .          . 

 
By default, these limits are calculated by adding and subtracting 1.96 

standard errors to the log-log transformation of the survivor function, 
( ))(ˆloglog tS− , and then reversing the transformation to get back to the 

original metric. This method ensures that the confidence limits will not be 
greater than 1 or less than 0. Other transformations are available, the most 
attractive being the logit: ))](ˆ1/()(ˆlog[ tStS − . To switch to this transform, 
include the CONFTYPE=LOGIT option in the PROC statement. You can 
also write the equal precision confidence bands to the OUTSURV data set 
by including the CONFBAND=EP option in the PROC statement.   

TESTING FOR DIFFERENCES IN SURVIVOR FUNCTIONS 

If an experimental treatment has been applied to one group but not 
another, the obvious question to ask is “Did the treatment make a 
difference in the survival experience of the two groups?” Because the 
survivor function gives a complete accounting of the survival experience 
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of each group, a natural approach to answering this question is to test the 
null hypothesis that the survivor functions are the same in the two groups 
(that is, S1(t) = S2(t) for all t, where the subscripts distinguish the two 
groups). PROC LIFETEST can calculate several different statistics for 
testing this null hypothesis.  

For the myelomatosis data, it is clearly desirable to test whether the 
treatment variable (TREAT) has any effect on the survival experience of the 
two groups. To do that with PROC LIFETEST, simply add a STRATA 
statement after the TIME statement: 

 
ODS GRAPHICS ON; 
PROC LIFETEST DATA=myel PLOTS=S(TEST); 
   TIME dur*status(0); 
   STRATA treat;  
RUN; 
ODS GRAPHICS OFF; 

The STRATA statement has three consequences:  
 

1. First, instead of a single table with KM estimates, separate tables 
(not shown here) are produced for each of the two treatment 
groups.  

2. Second, corresponding to the two tables are two graphs of the 
survivor function, superimposed on the same axes for easy 
comparison.  

3. Third, PROC LIFETEST reports several statistics related to 
testing for differences between the two groups. Also, the TEST 
option (after PLOTS=S) includes the log-rank test in the survivor 
plot.  

 
Look at the graphs in Output 3.6. Before 220 days, the two survival 

curves are virtually indistinguishable, with little visual evidence of a 
treatment effect. The gap that develops after 220 days reflects the fact that 
no additional deaths occur in treatment group 1 after that time. 
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Output 3.6 Survival Curves for Two Treatment Groups 

  

Next, PROC LIFETEST prints log-rank and Wilcoxon statistics for 
each treatment group, followed by an estimate of their covariance matrix. 
These are used to compute the chi-square statistics shown near the bottom 
of Output 3.7. In most cases, you can ignore the preliminaries and look 
only at the p-values. Here they are far from significant, which is hardly 
surprising given the graphical results and the small sample size. Thus, 
there is no evidence that would support the rejection of the null 
hypothesis that the two groups have exactly the same survivor function 
(that is, exactly the same probability distribution for the event times). The 
p-value for a likelihood-ratio test (-2log(LR)) is also reported; this test is 
usually inferior to the other two because it requires the unnecessary 
assumption that the hazard function is constant in each group, implying 
an exponential distribution for event times.  
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Output 3.7 Statistics for Testing for Differences between Two Groups 

          Testing Homogeneity of Survival Curves for dur over Strata 
 
                             Rank Statistics 
 
                     treat       Log-Rank    Wilcoxon 
 
                     1            -2.3376     -18.000 
                     2             2.3376      18.000 
 
               Covariance Matrix for the Log-Rank Statistics 
 
                     treat             1             2 
 
                     1           4.16301      -4.16301 
                     2          -4.16301       4.16301 
 
               Covariance Matrix for the Wilcoxon Statistics 
 
                     treat             1             2 
 
                     1           1301.00      -1301.00 
                     2          -1301.00       1301.00 
 
                       Test of Equality over Strata 
 
                                                   Pr > 
                Test      Chi-Square      DF    Chi-Square 
 
                Log-Rank      1.3126       1      0.2519 
                Wilcoxon      0.2490       1      0.6178 
                -2Log(LR)     1.5240       1      0.2170 

The log-rank test is the best known and most widely used test for 
differences in the survivor function, but the Wilcoxon test is also popular. 
Are there any reasons for choosing one over the other? Each statistic can be 
written as a function of deviations of observed numbers of events from 
expected numbers. For group 1, the log-rank statistic can be written as 

 ∑
=

−
r

j
jj ed

1
11 )(  

where the summation is over all unique event times (in both groups), and 
there are a total of r such times. d1j is the number of deaths that occur in 
group 1 at time j, and e1j is the expected number of events in group 1 at 
time j. The expected number is given by n1jdj/nj, where nj is the total 
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number of cases that are at risk just prior to time j, n1j is the number at risk 
just prior to time j in group 1, and dj is the total number of deaths at time j 
in both groups. (This is just the usual formula for computing expected cell 
counts in a 2 × 2 table, under the hypothesis of independence.) As shown 
in Output 3.7, the log-rank statistic in group 1 is –2.3376. The chi-square 
statistic is calculated by squaring this number and dividing by the 
estimated variance, which is 4.16301 in this case.  

The Wilcoxon statistic, given by 

 ∑
=

−
r

j
jjj edn

1
11 )(  

differs from the log-rank statistic only by the presence of nj, the total 
number at risk at each time point. Thus, it is a weighted sum of the 
deviations of observed numbers of events from expected numbers of 
events. As with the log-rank statistic, the chi-square test is calculated by 
squaring the Wilcoxon statistic for either group (–18 for group 1 in this 
example) and dividing by the estimated variance (1301).  

Because the Wilcoxon test gives more weight to early times than to 
late times (nj never increases with time), it is less sensitive than the log-
rank test to differences between groups that occur at later points in time. 
To put it another way, although both statistics test the same null 
hypothesis, they differ in their sensitivity to various kinds of departures 
from that hypothesis. In particular, the log-rank test is more powerful for 
detecting differences of the form 

γ)]([)( 21 tStS =  

where γ is some positive number other than 1.0. This equation defines a 
proportional hazards model, which is discussed in detail in Chapter 5. (As 
we will see in that chapter, the log-rank test is closely related to tests for 
differences between two groups that are performed within the framework 
of Cox’s proportional hazards model.) In contrast, the Wilcoxon test is 
more powerful than the log-rank test in situations where event times have 
log-normal distributions (discussed in the next chapter) with a common 
variance but with different means in the two groups. Neither test is 
particularly good at detecting differences when survival curves cross.  

Now let’s see an example where the survival distributions clearly 
differ across two groups. Using the same data set, we can stratify on 
RENAL, the variable that has a value of 1 if renal functioning was impaired 
at the time of randomization; otherwise, the variable has a value of 0. 
Output 3.8 shows that the survival curve for those with impaired renal 
functioning drops precipitously, while the curve for those with normal 
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functioning declines much more gradually. The three hypothesis tests are 
unanimous in rejecting the null hypothesis of no difference between the 
two groups.  

Output 3.8 Graphs and Tests for Stratifying by Renal Functioning 

  

 
 
 
                    Test of Equality over Strata 
 
                                          Pr > 
           Test      Chi-Square    DF  Chi-Square 
 
           Log-Rank     24.0188     1      0.0001 
           Wilcoxon     20.8739     1      0.0001 
           -2Log(LR)    35.4813     1      0.0001 

In addition to the log-rank and Wilcoxon tests, which are produced 
by default, the STRATA statement also has options for four other 
nonparametric tests: Tarone-Ware, Peto-Peto, modified Peto-Peto, and 
Fleming-Harrington. Like the Wilcoxon and log-rank tests, all of these can 
be represented as a weighted sum of observed and expected numbers of 
events: 
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∑
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jjj edw

1
11 )(

 

For the Tarone-Ware test, wj is the square root of nj, so this test behaves 
much like the Wilcoxon test in being more sensitive to differences at earlier 
rather than later times. That’s also true of the two Peto tests, for which wj is 
a function of the survivor function itself. Fleming-Harrington is actually a 
family of tests in which the weights depend on two parameters, p and q, 
which can be chosen by the user: 
 
 q

j
p

jj tStSw )](ˆ1[)(ˆ −=  

Although p and q can be any nonnegative numbers, here are a few special 
cases. When both p and q are 0, you get the log-rank test. When p is 1 and q 
is 0, you get something very close to the Peto-Peto test. When q is 1 and p is 
0, wi increases with time, unlike any of the other tests. When both q and p 
are 1, you get a weight function that is maximized at the median and gets 
small for large or small times.  

To get all these tests, the STRATA statement can be changed to 
 
STRATA treat / TESTS=ALL; 

which produces the results in Output 3.9. By default, the Fleming-
Harrington test is performed with p=1 and q=0.  

Output 3.9 Optional Tests for Differences between Survival Functions 

                       Test of Equality over Strata 
 
                                                     Pr > 
               Test         Chi-Square      DF    Chi-Square 
 
               Log-Rank         1.3126       1      0.2519 
               Wilcoxon         0.2490       1      0.6178 
               Tarone           0.6514       1      0.4196 
               Peto             0.3766       1      0.5394 
               Modified Peto    0.3321       1      0.5644 
               Fleming(1)       0.3045       1      0.5811  

 
So far, we have only tested for differences between two groups. The 

tests readily generalize to three or more groups, with the null hypothesis 
that all groups have the same survivor function. If the null hypothesis is 
true, the test statistics all have chi-square distributions with degrees of  
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freedom equal to the number of groups minus 1. The STRATA statement 
provides great flexibility in defining those groups. PROC LIFETEST 
constructs a stratum corresponding to each unique value of the variable in 
the STRATA statement. That variable may be either numeric or character. 
If the STRATA statement contains two or more variable names, PROC 
LIFETEST constructs one group for every unique combination of values of 
the variables.  

To illustrate this and other options, we need a different data set. 
Output 3.10 displays the first 20 observations from the recidivism study 
that was briefly described in Chapter 1, “Introduction,” in the section Why 
Use Survival Analysis? The sample consisted of 432 male inmates who 
were released from Maryland state prisons in the early 1970s (Rossi et al., 
1980). These men were followed for 1 year after their release, and the dates 
of any arrests were recorded. We’ll look only at the first arrest here. (In 
fact, there weren’t enough men with two or more arrests to use the 
techniques for repeated events discussed in Chapter 8, “Heterogeneity, 
Repeated Events, and Other Topics.”) The WEEK variable contains the 
week of the first arrest after release. The variable ARREST has a value of 1 
for those who were arrested during the 1-year follow-up, and it has a value 
of 0 for those who were not. Only 26 percent of the men were arrested. The 
data are singly right censored so that all the censored cases have a value of 
52 for WEEK.  

Output 3.10 Recidivism Data (First 20 Cases Out of 432) 

OBS WEEK ARREST FIN  AGE  RACE  WEXP  MAR  PARO  PRIO  
 
   1   52   0    1    24    1     1    0     1     1  
   2   52   0    0    29    1     1    0     1     3  
   3   52   0    1    20    1     1    1     1     1  
   4   52   0    0    20    1     0    0     1     1  
   5   52   0    1    31    0     1    0     1     3  
   6   12   1    1    22    1     1    1     1     2  
   7   52   0    0    24    1     1    0     1     2  
   8   19   1    0    18    1     0    0     0     2  
   9   52   0    0    18    1     0    0     1     3  
  10   15   1    1    22    1     0    0     1     3  
  11    8   1    1    21    1     1    0     1     4  
  12   52   0    1    21    1     0    0     1     1  
  13   52   0    1    21    0     1    0     1     1  
  14   36   1    1    19    1     0    0     1     2  
  15   52   1    0    33    1     1    0     1     2  
  16    4   1    0    18    1     1    0     0     1  
  17   45   1    1    18    1     0    0     0     5  
  18   52   1    0    21    1     0    0     0     0  
  19   52   0    1    20    1     0    1     0     1  
  20   52   0    0    22    1     1    0     0     1  
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The covariates shown in Output 3.10 are defined as follows: 
 

FIN has a value of 1 if the inmate received financial aid after 
release; otherwise, FIN has a value of 0. This variable 
was randomly assigned with equal numbers in each 
category. 

AGE specifies age in years at the time of release. 
RACE has a value of 1 if the person was black; otherwise, 

RACE has a value of 0. 
WEXP has a value of 1 if the inmate had full-time work 

experience before incarceration; otherwise, WEXP has a 
value of 0. 

MAR  has a value of 1 if the inmate was married at the time of 
release; otherwise, MAR has a value of 0. 

PARO  has a value of 1 if the inmate was released on parole; 
otherwise, PARO has a value of 0. 

PRIO specifies the number of convictions an inmate had prior to 
incarceration. 

The following program stratifies by the four combinations of WEXP 
and PARO. The ADJUST option (new in SAS 9.2) tells PROC LIFETEST to 
produce p-values for all six pairwise comparisons of the four strata and 
then to report p-values that have been adjusted for multiple comparisons 
using Tukey’s method (other methods are also available):   

 
PROC LIFETEST DAta=my.recid; 
  TIME week*arrest(0); 
  STRATA wexp paro / ADJUST=TUKEY; 
RUN; 
 

Results are shown in Output 3.11. The first table shows how the four 
strata correspond to the possible combinations of WEXP and PARO. Next 
we get overall chi-square tests of the null hypothesis that the survivor 
functions are identical across the four strata. All three tests are significant 
at the .05 level. Last, we see the log-rank tests comparing each possible 
pair of strata. Three of the tests are significant using the “raw” p-value, but 
only one of these comparisons is significant after the Tukey adjustment. 
(Not shown is a similar table for the Wilcoxon test.)  
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Output 3.11 Tests Comparing More Than Two Groups, with Multiple Comparison Adjustment 

         Stratum            wexp            paro 
 
              1               0               0 
              2               0               1 
              3               1               0 
              4               1               1 
 
 
             Test of Equality over Strata 
 
                                         Pr > 
      Test      Chi-Square      DF    Chi-Square 
 
      Log-Rank     10.2074       3      0.0169 
      Wilcoxon     11.2596       3      0.0104 
      -2Log(LR)     9.2725       3      0.0259 
 
 
 Adjustment for Multiple Comparisons for the Logrank Test 
                                             p-Values 
                                                   Tukey- 
 _Stratum_    _Stratum_    Chi-Square       Raw    Kramer 
 
         1            2       0.00542    0.9413    0.9999 
         1            3        4.5853    0.0322    0.1401 
         1            4        6.6370    0.0100    0.0491 
         2            3        3.5427    0.0598    0.2357 
         2            4        5.2322    0.0222    0.1009 
         3            4        0.4506    0.5021    0.9080 

 
For numeric variables, you can use the STRATA statement to define 

groups by intervals rather than by unique values. For the recidivism data, 
the AGE variable can be stratified as 

 
STRATA age(21 24 28); 

This statement produces four strata, corresponding to the intervals: 

         age < 21 
 21 ≤ age < 24 
 24 ≤ age < 28 
 28 ≤ age 
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Output 3.12 displays the results. Here I have also requested multiple 
comparisons but now using the Bonferroni adjustment (ADJUST=BON). 
Note that except for the two extreme strata, each stratum is identified by 
the midpoint of the interval. Clearly one must reject the null hypothesis 
that all age strata have the same survivor function. Three of the six 
pairwise comparisons are also significant, either with or without the 
adjustment.  

Output 3.12 Tests for Multiple Age Groups 

    Summary of the Number of Censored and Uncensored Values 
 
                                                         Percent 
 Stratum    age            Total  Failed    Censored    Censored 
 
       1     <21             127      52          75       59.06 
       2      22.5           114      29          85       74.56 
       3      26              91      17          74       81.32 
       4    >=28             100      16          84       84.00 
 --------------------------------------------------------------- 
   Total                     432     114         318       73.61 
 
 
                  Test of Equality over Strata 
 
                                              Pr > 
           Test      Chi-Square      DF    Chi-Square 
 
           Log-Rank     22.2316       3      <.0001 
           Wilcoxon     20.9222       3      0.0001 
           -2Log(LR)    19.8330       3      0.0002 
 
 
    Adjustment for Multiple Comparisons for the Logrank Test 
     Strata Comparison                         p-Values 
        age         age    Chi-Square       Raw    Bonferroni 
 
    21.0000     22.5000        8.4518    0.0036        0.0219 
    21.0000          26       15.6465    <.0001        0.0005 
    21.0000     28.0000       18.3765    <.0001        0.0001 
    22.5000          26        0.8272    0.3631        1.0000 
    22.5000     28.0000        1.6912    0.1934        1.0000 
         26     28.0000        0.1836    0.6683        1.0000 
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THE LIFE-TABLE METHOD 

If the number of observations is large and if event times are precisely 
measured, there will be many unique event times. The KM method then 
produces long tables that may be unwieldy for presentation and 
interpretation. One way to solve this problem is to use the TIMELIST 
option (in the PROC LIFEREG statement), which reports the KM estimates 
only at specified points in time. An alternative solution is to switch to the 
life-table method, in which event times are grouped into intervals that can 
be as long or short as you please. In addition, the life-table method (also 
known as the actuarial method) can produce estimates and plots of the 
hazard function. The downside to the life-table method is that the choice 
of intervals is usually somewhat arbitrary, leading to arbitrariness in the 
results and possible uncertainty about how to choose the intervals. There 
is inevitably some loss of information as well. Note, however, that PROC 
LIFETEST computes the log-rank and Wilcoxon statistics (as well as other 
optional test statistics) from the ungrouped data (if available) so they are 
unaffected by the choice of intervals for the life-table method.  

We now request a life table for the recidivism data, using the default 
specification for interval lengths: 

 
PROC LIFETEST DATA=recid METHOD=LIFE; 
   TIME week*arrest(0); 
RUN; 

Output 3.13 shows the results. PROC LIFETEST constructs six 
intervals, starting at 0 and incrementing by periods of 10 weeks. The 
algorithm for the default choice of intervals is fairly complex (see the 
SAS/STAT User’s Guide for details). You can override the default by 
specifying WIDTH=w in the PROC LIFETEST statement. The intervals will 
then begin with [0, w) and will increment by w. Alternatively, you can get 
even more control over the intervals by specifying INTERVALS=a b c … in 
the PROC LIFETEST statement, where a, b, and c are cut points. For 
example, INTERVALS= 15 20 30 50 produces the intervals [0, 15), [15, 20), 
[20, 30), [30, 50), [50, ∞). See the SAS/STAT User’s Guide for other options. 
Note that intervals do not have to be the same length. It’s often desirable to 
make later intervals longer so that they include enough events to get 
reliable estimates of the hazard and other statistics.  
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Output 3.13 Applying the Life-Table Method to the Recidivism Data 

                       Life Table Survival Estimates 
 
                                                               Conditional 
                                       Effective  Conditional  Probability 
      Interval       Number   Number     Sample   Probability    Standard 
  [Lower,    Upper)  Failed  Censored     Size    of Failure       Error 
 
        0        10    14        0       432.0       0.0324      0.00852 
       10        20    21        0       418.0       0.0502       0.0107 
       20        30    23        0       397.0       0.0579       0.0117 
       30        40    23        0       374.0       0.0615       0.0124 
       40        50    26        0       351.0       0.0741       0.0140 
       50        60     7      318       166.0       0.0422       0.0156 
 
                                           Survival    Median     Median 
      Interval                             Standard   Residual   Standard 
  [Lower,    Upper)  Survival    Failure     Error    Lifetime     Error 
 
        0        10    1.0000          0          0          .          . 
       10        20    0.9676     0.0324    0.00852          .          . 
       20        30    0.9190     0.0810     0.0131          .          . 
       30        40    0.8657     0.1343     0.0164          .          . 
       40        50    0.8125     0.1875     0.0188          .          . 
       50        60    0.7523     0.2477     0.0208          .          . 
 
                           Evaluated at the Midpoint of the Interval 
 
                                         PDF                 Hazard 
            Interval                  Standard              Standard 
        [Lower,    Upper)     PDF       Error     Hazard      Error 
 
              0        10   0.00324   0.000852   0.003294    0.00088 
             10        20   0.00486    0.00103   0.005153   0.001124 
             20        30   0.00532    0.00108   0.005966   0.001244 
             30        40   0.00532    0.00108   0.006345   0.001322 
             40        50   0.00602    0.00114   0.007692   0.001507 
             50        60   0.00317    0.00118   0.004308   0.001628 
 
 
          Summary of the Number of Censored and Uncensored Values 
 
                                                  Percent 
                    Total  Failed    Censored    Censored 

                     432     114         318       73.61 
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For each interval, 14 different statistics are reported. The four 
statistics displayed in the first panel, while not of major interest in 
themselves, are necessary for calculating the later statistics. Number Failed 
and Number Censored should be self-explanatory. Effective Sample Size is 
straightforward for the first five intervals because they contain no censored 
cases. The effective sample size for these intervals is just the number of 
persons who had not yet been arrested at the start of the interval. For the 
last interval, however, the effective sample size is only 166, even though 
351 persons made it to the 50th week without an arrest. Why? The answer 
is a fundamental property of the life-table method. The method treats any 
cases censored within an interval as if they were censored at the midpoint 
of the interval. This treatment is equivalent to assuming that the 
distribution of censoring times is uniform within the interval. Because 
censored cases are only at risk for half of the interval, they only count for 
half in figuring the effective sample size. Thus, the effective sample size 
for the last interval is 7+(318/2)=166. The 7 corresponds to the seven men 
who were arrested in the interval; they are treated as though they were at 
risk for the whole interval. 

The Conditional Probability of Failure is an estimate of the 
probability that a person will be arrested in the interval, given that he 
made it to the start of the interval. This estimate is calculated as (number 
failed)/(effective sample size). An estimate of its standard error is given in 
the next panel. The Survival column is the life-table estimate of the 
survivor function (that is, the probability that the event occurs at a time 
greater than or equal to the start time of each interval). For example, the 
estimated probability that an inmate will not be arrested until week 30 or 
later is .8657.  

The survival estimate is calculated from the conditional probabilities 
of failure in the following way. For interval i, let ti be the start time and qi 

be the estimated conditional probability of failure. The probability of 
surviving to ti or beyond is then  

 ∏
−

=

−=
1

1

)1()(ˆ
i

j
jqtS . (3.2) 

For i = 1 and, hence, ti = 0, the survival probability is set to 1.0.  
The rationale for equation (3.2) is a fairly simple application of 

conditional probability theory. Suppose we want an expression for the 
probability of surviving to t4 or beyond. To obtain this, let’s define the 
following events: 
 A = survival to t2 or beyond. 
 B = survival to t3 or beyond. 
 C = survival to t4 or beyond. 
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We want the probability of C. But since you can’t get past t4 without 
getting past t2 and t3, we can write Pr(C) = Pr(A, B, C). By the definition of 
conditional probability, we can rewrite this as 

 Pr(A, B, C)=Pr(C|A, B)Pr(B|A)Pr(A)=(1 – q3)(1 – q2)(1 – q1). 

Extending this argument to other intervals yields the formula in equation 
(3.2). Note the similarity between this formula and equation (3.1) for the 
KM estimator. In equation (3.1), dj/nj is equivalent to qj in equation (3.2); 
both are estimates of the probability of failure in an interval given survival 
to the start of the interval. The major differences between the two formulas 
are as follows:  
 The number of censored observations in an interval is not halved in 

the KM estimator.  
 The interval boundaries for the KM estimator are determined by the 

event times themselves.  
Thus, each interval for KM estimation extends from one unique event time 
up to, but not including, the next unique event time. 

Continuing with the second panel of Output 3.13, the Failure 
column is just 1 minus the Survival column. We are also given the 
standard errors of the Survival probabilities. The Median Residual 
Lifetime column is, in principle, an estimate of the remaining time until an 
event for an individual who survived to the start of the interval. For this 
example, however, the estimates are all missing. To calculate this statistic 
for a given interval, there must be a later interval whose survival 
probability is less than half the survival probability associated with the 
interval of interest. It is apparent from Output 3.13 that no interval satisfies 
this criterion. For many data sets, there will be at least some later intervals 
for which this statistic cannot be calculated.  

The PDF Standard Error column gives the estimated value of the 
probability density function at the midpoint of the interval. Of greater 
interest is the Hazard column, which gives estimates of the hazard 
function evaluated at the midpoint of each interval. This is calculated as  

 







 −−

=

22

)(
ii

ii

i
im dwnb

dth  

(3.3)

 

where for the ith interval, tim is the midpoint, di is the number of events, bi 

is the width of the interval, ni is the number still at risk at the beginning of 
the interval, and wi is the number of cases withdrawn (censored) within 
the interval. A better estimate of the hazard could be obtained by di/Ti, 
where Ti is the total exposure time within interval i. For each individual,  
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exposure time is the amount of time actually observed within the interval. 
For an individual who is known to have survived the whole interval, 
exposure time is just the interval width bi. For individuals who had events 
or who withdrew in the interval, exposure time is the time from the 
beginning of the interval until the event or withdrawal. Total exposure 
time is the sum of all the individual exposure times. The denominator in 
equation (3.3) is an approximation to total exposure time, such that all 
events and all withdrawals are presumed to occur at the midpoint of the 
interval (thus, the division by 2). Why use an inferior estimator? Well, 
exact exposure times are not always available (see the next section), so the 
estimator in equation (3.3) has become the standard for life tables. 

You can get plots of the survival and hazard estimates by using 
PLOTS=(S,H) in the PROC LIFETEST statement, as in the following 
program: 

 
ODS GRAPHICS ON; 
PROC LIFETEST DATA=recid METHOD=LIFE PLOTS=(S,H); 
   TIME week*arrest(0); 
RUN; 
ODS GRAPHICS OFF; 

Output 3.14 displays the graph of the hazard function. Apparently, 
the hazard of arrest increases steadily until the 50-60 week interval, when 
it drops precipitously from .077 to .043. This drop is an artifact of the way 
that the last interval is constructed, however. Although the interval runs 
from 50 to 60, in fact, no one was at risk of an arrest after week 52 when 
the study was terminated. As a result, the denominator in equation (3.3) is 
a gross overestimate of the exposure time in the interval.  
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Output 3.14 Hazard Estimates for Recidivism Data 

 

 
We can fix this by explicitly setting the last interval to end at 53. (If 

we set it at 52, the interval will not include arrests that occurred in week 
52 because the interval is open on the right). At the same time, it is better 
to recode the censored times from 52 to 53 because they are not censored 
within the interval but rather at the end. Recoding effectively credits the 
full interval (rather than only half) as exposure time for the censored cases.  

Here’s the revised code: 
 
DATA newrecid; 
   SET recid; 
   IF arrest=0 THEN week=53; 
PROC LIFETEST DATA=newrecid METHOD=LIFE PLOTS=(S,H)  
   INTERVALS=10 20 30 40 50 53; 
   TIME week*arrest(0); 
RUN; 

The resulting hazard estimates and plot in Output 3.15 show only a 
slight tendency for the hazard to decline in the last interval.  
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Output 3.15 Corrected Hazard Estimates and Plot for Recidivism Data  

            Evaluated at the Midpoint of the Interval 
 
                  Median                PDF               Hazard 
  Interval      Standard            Standard            Standard 
[Lower,  Upper)    Error      PDF      Error    Hazard     Error 
 
    0       10         .   0.00324  0.000852  0.003294   0.00088 
   10       20         .   0.00486   0.00103  0.005153  0.001124 
   20       30         .   0.00532   0.00108  0.005966  0.001244 
   30       40         .   0.00532   0.00108  0.006345  0.001322 
   40       50         .   0.00602   0.00114  0.007692  0.001507 
   50       53         .   0.00540   0.00202  0.007258  0.002743 
   53        .         .         .         .         .         . 
 

 
 

 

 

 

 

LIFE TABLES FROM GROUPED DATA 

Although PROC LIFETEST estimates survival probabilities from 
individual-level data with exact event times, you can also easily construct 
life tables from published data that provide only  

 the boundaries of the intervals 
 the number of events in each interval 
 the number of censored cases in each interval.  
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Consider the following survival data for 68 patients from the Stanford 
Heart Transplantation Program, as reported by Elandt-Johnson and 
Johnson (1980): 

Number of Days Number of Deaths Number Censored 
0-50 16 3 

50-100 11 0 

100-200 4 2 

200-400 5 4 

400-700 2 6 

700-1000 4 3 

1000-1300 1 2 

1300-1600 1 3 

1600+ 0 1 

 

Time is measured from the date of the transplant. Although this sample is 
rather small for constructing a life table, it will do fine for illustration. The 
trick is to create a separate observation for each of the frequency counts in 
the table. For each observation, the value of the time variable (TIME) can 
be anywhere within the interval—we’ll use the midpoint. A second 
variable (STATUS) is created with a value of 1 for the death counts and a 
value of 0 for the censored counts. The frequency count (NUMBER) is used 
as a weight variable with the FREQ statement in PROC LIFETEST. Here’s 
the SAS code: 

 
DATA; 
INPUT time status number; 
DATALINES; 
25 1 16 
25 0 3 
75 1 11 
75 0 0 
150 1 4 
150 0 2 
300 1 5 
300 0 4 
550 1 2 
550 0 6 
850 1 4 
850 0 3 
1150 1 1 
1150 0 2 
1450 1 1 
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1450 0 3 
1700 1 0 
1700 0 1 
; 
PROC LIFETEST METHOD=LIFE INTERVALS=50 100 200 400 700  
  1000 1300 1600 PLOTS=(S,H); 
   TIME time*status(0); 
   FREQ number; 
RUN; 

Two of the data lines (75 0 0, 1700 1 0) are unnecessary because the 
frequency is 0, but they are included here for completeness. Output 3.16 
shows the tabular results. The hazard plot is in Output 3.17.  

The most striking fact about this example is the rapid decline in the 
hazard of death from the origin to about 200 days after surgery. After that, the 
hazard is fairly stable. This decline is reflected in the Median Residual 
Lifetime column. At time 0, the median residual lifetime of 257.7 days is an 
estimate of the median survival time for the entire sample. However, of those 
patients still alive at 50 days, the median residual lifetime rises to 686.6 days. 
The median remaining life continues to rise until it reaches a peak of 982.9 
days for those who were still alive 400 days after surgery.  

Output 3.16  Life-Table Estimates from Grouped Data 

Life Table Survival Estimates 
 
                                         Effective   Conditional 
     Interval       Number    Number       Sample    Probability 
  [Lower,  Upper)   Failed    Censored      Size      of Failure 
 
       0       50     16          3         66.5         0.2406 
      50      100     11          0         49.0         0.2245 
     100      200      4          2         37.0         0.1081 
     200      400      5          4         30.0         0.1667 
     400      700      2          6         20.0         0.1000 
     700     1000      4          3         13.5         0.2963 
    1000     1300      1          2          7.0         0.1429 
    1300     1600      1          3          3.5         0.2857 
    1600        .      0          1          0.5              0 

                                                                                                                                                (continued) 
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Output 3.16 (continued) 

                   Conditional 
                   Probability                      Survival   Median 
     Interval        Standard                       Standard  Residual 
  [Lower,  Upper)     Error     Survival   Failure    Error   Lifetime 
       0       50      0.0524     1.0000         0         0     257.7 
      50      100      0.0596     0.7594    0.2406    0.0524     686.6 
     100      200      0.0510     0.5889    0.4111    0.0608     855.7 
     200      400      0.0680     0.5253    0.4747    0.0620     910.5 
     400      700      0.0671     0.4377    0.5623    0.0628     982.9 
     700     1000      0.1243     0.3939    0.6061    0.0637     779.6 
    1000     1300      0.1323     0.2772    0.7228    0.0664         . 
    1300     1600      0.2415     0.2376    0.7624    0.0677         . 
    1600        .           0     0.1697    0.8303    0.0750         . 
 
 
                Evaluated at the Midpoint of the Interval 
 
                    Median                PDF               Hazard 
     Interval      Standard            Standard            Standard 
  [Lower,  Upper)    Error      PDF      Error    Hazard     Error 
 
       0       50     140.1   0.00481   0.00105   0.00547  0.001355 
      50      100     139.4   0.00341  0.000935  0.005057  0.001513 
     100      200     124.4  0.000637  0.000308  0.001143  0.00057 
     200      400     363.2  0.000438  0.000186  0.000909  0.000405 
     400      700     216.3  0.000146    0.0001  0.000351  0.000248 
     700     1000     236.9  0.000389  0.000175  0.001159  0.000571 
    1000     1300         .  0.000132  0.000126  0.000513  0.000511 
    1300     1600         .  0.000226  0.000202  0.001111  0.001096 
    1600        .         .         .         .         .         . 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 3 Estimating and Comparing Survival Curves with PROC LIFETEST 

 59 

 

Output 3.17 Hazard Plot for Grouped Data 

 

TESTING FOR EFFECTS OF COVARIATES 

Besides tests of differences between groups, PROC LIFETEST can 
test whether quantitative covariates are associated with survival time. 
Given a list of covariates, PROC LIFETEST produces a test statistic for each 
one and ignores the others. It also treats them as a set, testing the null 
hypothesis that they are jointly unrelated to survival time and also testing 
for certain incremental effects of adding variables to the set. The statistics 
are generalizations of the log-rank and Wilcoxon tests discussed earlier in 
this chapter. They can also be interpreted as nonparametric tests of the 
coefficients of the accelerated failure time model discussed in Chapter 4, 
“Estimating Parametric Regression Models with PROC LIFEREG.”  

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 3 Estimating and Comparing Survival Curves with PROC LIFETEST 

60 

You can test the same sorts of hypotheses with PROC LIFEREG or 
PROC PHREG. In fact, the log-rank chi-square reported by PROC 
LIFETEST is identical to the score statistic given by PROC PHREG for the 
null hypothesis that all coefficients are 0 (when the data contain no tied 
event times). However, in most cases, you are better off switching to the 
regression procedures, for two reasons. First, PROC LIFETEST doesn’t give 
coefficient estimates, so there is no way to quantify the effect of a covariate 
on survival time. Second, the incremental tests do not really test the effect 
of each variable controlling for all the others. Instead, you get a test of the 
effect of each variable controlling for those variables that have already 
been included. Because you have no control over the order of inclusion, 
these tests can be misleading. Nevertheless, PROC LIFETEST can be useful 
for screening a large number of covariates before proceeding to estimate 
regression models. Because the log-rank and Wilcoxon tests do not require 
iterative calculations, they use relatively little computer time. (This is also 
true for the SELECTION=SCORE option in PROC PHREG.) 

Let’s look at the recidivism data as an example. The covariate tests 
are invoked by listing the variable names in a TEST statement: 

 
PROC LIFETEST DATA=recid; 
   TIME week*arrest(0); 
   TEST fin age race wexp mar paro prio; 
RUN; 

Output 3.18 shows selections from the output. I have omitted the 
Wilcoxon statistics because they are nearly identical to the log-rank 
statistics for this example. I also omitted the variance-covariance matrix for 
the statistics because it is primarily useful as input to other analyses.  
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Output 3.18 Covariate Tests for the Recidivism Data 

           Univariate Chi-Squares for the LOG RANK Test 
 
                  Test                                    Pr > 
   Variable    Statistic    Variance    Chi-Square     Chi-Square 
 
   FIN           10.4256     28.4744       3.8172        0.0507 
   AGE             233.2      4305.3      12.6318        0.0004 
   RACE          -2.7093     12.8100       0.5730        0.4491 
   WEXP          16.4141     27.3305       9.8580        0.0017 
   MAR            7.1773     13.1535       3.9164        0.0478 
   PARO           2.9471     26.7927       0.3242        0.5691 
   PRIO           -108.8       812.3      14.5602        0.0001 
 
 
    Forward Stepwise Sequence of Chi-Squares for the LOG RANK Test 
 
                                  Pr >      Chi-Square      Pr > 
  Variable    DF  Chi-Square   Chi-Square    Increment    Increment 
 
  PRIO         1    14.5602      0.0001       14.5602      0.0001 
  AGE          2    25.4905      0.0001       10.9303      0.0009 
  FIN          3    28.8871      0.0001        3.3966      0.0653 
  MAR          4    31.0920      0.0001        2.2050      0.1376 
  RACE         5    32.4214      0.0001        1.3294      0.2489 
  WEXP         6    33.2800      0.0001        0.8585      0.3541 
  PARO         7    33.3828      0.0001        0.1029      0.7484  

The top panel shows that age at release (AGE), work experience 
(WEXP), and number of prior convictions (PRIO) have highly significant 
associations with time to arrest. The effects of marital status (MAR) and 
financial aid (FIN) are more marginal, while race and parole status (PARO) 
are apparently unrelated to survival time. The signs of the log-rank test 
statistics tell you the direction of the relationship. The negative sign for 
PRIO indicates that inmates with more prior convictions tend to have 
shorter times to arrest. On the other hand, the positive coefficient for AGE 
indicates that older inmates have longer times to arrest. As already noted, 
none of these tests controls or adjusts for any of the other covariates.  

The lower panel displays results from a forward inclusion 
procedure. PROC LIFETEST first finds the variable with the highest chi-
square statistic in the top panel—in this case, PRIO—and puts it in the set 
to be tested. Because PRIO is the only variable in the set, the results for 
PRIO are the same in both panels. Then PROC LIFETEST finds the variable 
that produces the largest increment in the joint chi-square for the set of 
two variables—in this case, AGE. The joint chi-square of 25.49 in line 2 
tests the null hypothesis that the coefficients of AGE and PRIO in an 
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accelerated-failure time model are both 0. The chi-square increment of 
10.93 is merely the difference between the joint chi-square in lines 1 and 
2. It is a test of the null hypothesis that the coefficient for AGE is 0 when 
PRIO is controlled. On the other hand, there is no test for the effect of PRIO 
controlling for AGE.  

This process is repeated until all the variables are added. For each 
variable, we get a test of the hypothesis that the variable is unrelated to 
survival time controlling for all the variables above it (but none of the 
variables below it). For variables near the end of the sequence, the 
incremental chi-square values are likely to be similar to what you might 
find with PROC LIFEREG or PROC PHREG. For variables near the 
beginning of the sequence, however, the results can be quite different.  

For this example, the forward inclusion procedure leads to some 
substantially different conclusions from the univariate procedure. While 
WEXP has a highly significant effect on survival time when considered by 
itself, there is no evidence of such an effect when other variables are 
controlled. The reason is that work experience is moderately correlated 
with age and the number of prior convictions, both of which have 
substantial effects on survival time. Marital status also loses its statistical 
significance in the forward inclusion test.  

What is the relationship between the STRATA statement and the 
TEST statement? For a dichotomous variable like FIN, the statement TEST 
FIN is a possible alternative to STRATA FIN. Both produce a test of the 
null hypothesis that the survivor functions are the same for the two 
categories of FIN. In fact, if there are no ties in the data (no cases with 
exactly the same event time), the two statements will produce identical 
chi-square statistics and p-values. In the presence of ties, however, 
STRATA and TEST use somewhat different formulas, which may result in 
slight differences in the p-values. (If you’re interested in the details, see 
Collett, 2003.) In the recidivism data, for example, the 114 arrests occurred 
at only 49 unique arrest times, so the number of ties was substantial. The 
STRATA statement produces a log-rank chi-square of 3.8376 for a p-value 
of .0501 and a Wilcoxon chi-square of 3.7495 for a p-value of .0528. The 
TEST statement produces a log-rank chi-square of 3.8172 for a p-value of 
.0507 and a Wilcoxon chi-square of 3.7485 for a p-value of .0529. 
Obviously the differences are minuscule in this case. 

Other considerations should govern the choice between the STRATA 
and TEST statements. While the STRATA statement produces separate 
tables and graphs of the survivor function for the two groups, the TEST 
statement produces only the single table and graph for the entire sample. 
With the TEST statement, you can test for the effects of many dichotomous 
variables with a single statement, but the STRATA statement requires a 
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new PROC LIFETEST step for each variable tested. Of course, if a variable 
has more than two values, the STRATA statement treats each value as a 
separate group while the TEST statement treats the variable as a 
quantitative measure. 

What happens when you include both a STRATA statement and a 
TEST statement? Adding a TEST statement has no effect whatever on the 
results from the STRATA statement. This fact implies that the hypothesis 
test produced by the STRATA statement in no way controls for the 
variables listed in the TEST statement. On the other hand, the TEST 
statement can produce quite different results, depending on whether you 
also have a STRATA statement. When you have a STRATA statement, the 
log-rank and Wilcoxon statistics produced by the TEST statement are first 
calculated within strata and then averaged across strata. In other words, 
they are stratified statistics that control for whatever variable or variables 
are listed in the STRATA statement. Suppose, for example, that for the 
myelomatosis data, we want to test the effect of the treatment while 
controlling for renal functioning. We can submit these statements: 

 
PROC LIFETEST DATA=myel; 
   TIME dur*status(0); 
   STRATA renal; 
   TEST treat; 
RUN; 

The resulting log-rank chi-square for TREAT is 5.791 with a p-value 
of .016. This result is in sharp contrast with the unstratified chi-square of 
only 1.3126 that we saw earlier in this chapter (Output 3.7).  

An alternative way to get a stratified test comparing survivor 
functions for different groups is to use the GROUP option in the STRATA 
statement, as follows: 

 
PROC LIFETEST DATA=myel; 
   TIME dur*status(0); 
   STRATA renal / GROUP=treat; 
RUN; 
 

This produces the same log-rank chi-square for TREAT of 5.791 with a 
p-value of .016. But the advantage of this approach is that the GROUP 
variable (unlike a variable in the TEST statement) can have more than two 
categories. As we’ll see in Chapter 5, “Estimating Cox Regression Models 
with PROC PHREG,” you can also get nearly identical results using PROC 
PHREG with stratification and the score test.  
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LOG SURVIVAL AND SMOOTHED HAZARD PLOTS 

PROC LIFETEST produces two other plots that give useful 
information about the shape of the hazard function, the log-survival (LS) 
plot and the log-log survival (LLS) plot. In this section, we’ll see how these 
plots help determine whether the hazard function can be accurately 
described by certain parametric models discussed in Chapter 2. We’ll also 
see how to get smoothed estimates of the hazard function with ungrouped 
data.  

Suppose we specify PLOTS=(S, LS, LLS) in the PROC LIFETEST 
statement. The S gives us the now-familiar survival curve. LS produces a 
plot of  )(ˆlog tS− versus t. To explain how this plot is useful, we need a 
little background. From equation (2.6), one can readily see that 

 ∫=−
t

duuhtS
0

)()(log  

Because of this relationship, the log survivor function is commonly 
referred to as the cumulative hazard function, frequently denoted by Λ(t). 
Now, if h(t) is a constant with a value of λ (which implies an exponential 
distribution for event times), then the cumulative hazard function is just 
Λ(t) = λt. This result implies that a plot of )(ˆlog tS−  versus t should yield a 
straight line with an origin at 0. Moreover, an examination of the log-
survival plot can tell us whether the hazard is constant, increasing, or 
decreasing with time.  

Output 3.19 displays the LS plot for the myelomatosis data. Instead 
of a straight line, the graph appears to increase at a decreasing rate. This 
fact suggests that the hazard is not constant but rather declines with time. 
If the plot had curved upward rather than downward, it would suggest that 
the hazard was increasing with time. Of course, because the sample size is 
quite small, caution is advisable in drawing any conclusions. A formal test, 
such as the one described in the next chapter, might not show a significant 
decrease in the hazard.  
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Output 3.19 Log-Survival Plot for Myelomatosis Data 

 
 

The LLS keyword produces a plot of )](ˆloglog[ tS−  versus log t. If 
survival times follow a Weibull distribution, which has a hazard given by 

tth log)(log βα += , then the log-log survival plot (log cumulative hazard 
plot) should be a straight line with a slope of β. Examining Output 3.20, 
we see a rather rough plot with a slight tendency to turn downward at later 
times. Again, however, the data are so sparse that this is probably not 
sufficient evidence for rejecting the Weibull distribution. In Chapter 4, 
we’ll see how to construct similar plots for other distributions such as the 
log-normal and log-logistic.  
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Output 3.20 Log-Log Survival Plot for Myelomatosis Data 
 

 

Although graphs based on transformations of the survivor function 
are certainly useful, they are ultimately rather frustrating. What we really 
want to see is a graph of the hazard function. We got that from the life-table 
method, but at the cost of grouping the event times into arbitrarily chosen 
intervals. While it’s possible to estimate hazards from ungrouped data, the 
estimates usually vary so wildly from one time to the next as to be almost 
useless. There are several ways to smooth these estimates by calculating 
some sort of moving average. One method, known as kernel smoothing, 
has been shown to have good properties for hazard functions (Ramlau-
Hansen, 1983). Using this method, PROC LIFETEST (SAS 9.2 and later) 
can produce smoothed graphs of hazard functions with the ODS version of 
the PLOT option. Here’s how to do it for the recidivism data: 

 
ODS GRAPHICS ON; 
PROC LIFETEST DATA=recid PLOTS=H; 
  TIME week*arrest(0); 
RUN; 
ODS GRAPHICS OFF; 
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Output 3.21 shows the smoothed hazard function. The graph bears 
some resemblance to the grouped hazard plot in Output 3.14, although 
here we see a rather pronounced plateau between about 20 and 30 weeks 
and no downturn at the end.  

  Output 3.21 Smoothed Hazard Function Estimate for Recidivism Data  

 
 
Notice the Bandwidth=11.4839 in the lower left corner. This means 

that, when calculating the hazard for any specified point in time, the 
smoothing function only uses data within 11.5 weeks on either side of the 
time point. The bandwidth has a big impact on the appearance of the 
graph: the larger the bandwidth, the smoother the graph. By default, PROC 
LIFETEST selects the bandwidth using a method that has certain 
optimality properties. But sometimes you may want to experiment with 
different bandwidths. Here’s how to force the bandwidth to be 5 weeks: 

 
PROC LIFETEST DATA=recid PLOTS=H(BW=5); 
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As Output 3.22 shows, the resulting hazard function is much choppier.  

Output 3.22 Smoothed Hazard Function Estimate with Smaller Bandwidth  

 
 

 
If you want confidence limits around the hazard function, you can 

get them using the CL option: 
 

PROC LIFETEST DATA=recid PLOTS=H(CL); 
 

However, as we see in Output 3.23, the hazard curve is greatly 
compressed because the confidence limits are so wide at the earliest and 
latest times. 
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Output 3.23 Smoothed Hazard Function with Confidence Limits  

 

 
 

CONCLUSION  

PROC LIFETEST is a useful procedure for preliminary analysis of 
survival data and for testing simple hypotheses about differences in 
survival across groups. For experimental studies, PROC LIFETEST (with 
the STRATA statement) gives tests that are analogous to a one-way analysis 
of variance. But the procedure is not adequate for two-factor designs 
because there is no way to test for interactions. Similarly, while the TEST 
statement in PROC LIFETEST may be useful for screening large numbers of 
quantitative covariates, it is not adequate for examining the effects of 
variables controlling for other covariates. In most cases, therefore, you will 
need to move to the estimation of regression models with PROC LIFEREG 
or PROC PHREG.  
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It is also important to recognize that survival curves and their 
associated hazard functions can be misleading when the sample is 
heterogeneous. As explained in Chapter 8, uncontrolled heterogeneity 
tends to make hazard functions look as though they are declining, even 
when there is no real decline for any individual in the sample. As we will 
see in Chapter 5, one way to reduce the effect of heterogeneity is to 
estimate and plot baseline survivor functions after fitting Cox regression 
models. 
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INTRODUCTION 

The LIFEREG procedure produces estimates of parametric regression 
models with censored survival data using the method of maximum 
likelihood. To some degree, PROC LIFEREG has been eclipsed by the 
PHREG procedure, which does semiparametric regression analysis using a 
method known as partial likelihood. The reasons for PROC PHREG’s 
popularity will become apparent in the next chapter. PROC LIFEREG is by 
no means obsolete, however. It can do some things better than PROC 
PHREG, and it can do other things that PROC PHREG can’t do at all: 

 PROC LIFEREG accommodates left censoring and interval 
censoring. PROC PHREG allows only right censoring.  

 With PROC LIFEREG, you can test certain hypotheses about the 
shape of the hazard function. PROC PHREG gives you only 
nonparametric estimates of the survivor function, which can be 
difficult to interpret.
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 If the shape of the survival distribution is known, PROC 

LIFEREG produces more efficient estimates (with smaller 
standard errors) than PROC PHREG.  

 PROC LIFEREG can easily generate predicted event times for any 
specified set of covariate values. This is more difficult with 
PHREG, and often impossible.  

PROC LIFEREG’s greatest limitation is that it does not handle 
time-dependent covariates, something at which PROC PHREG excels.  

THE ACCELERATED FAILURE TIME MODEL 

The class of regression models estimated by PROC LIFEREG is 
known as the accelerated failure time (AFT) model. In its most general 
form, the AFT model describes a relationship between the survivor 
functions of any two individuals. If Si(t) is the survivor function for 
individual i, then for any other individual j, the AFT model holds that 

 )()( tStS ijij φ=  for all t  (4.1) 

where φij is a constant that is specific to the pair (i, j). This model says, in 
effect, that what makes one individual different from another is the rate at 
which they age. A good example is the conventional wisdom that a year 
for a dog is equivalent to 7 years for a human. This relationship can be 
represented by equation (4.1), with Si being the survival probability for a 
dog, Sj the survival probability for a human, and φij = 7.  

What PROC LIFEREG actually estimates is a special case of this 
model that is quite similar in form to an ordinary linear regression model. 
Let Ti be a random variable denoting the event time for the ith individual 
in the sample, and let xi1, …, xik be the values of k covariates for that same 
individual. The model is then 

 iikkii xxT σεβββ ++++= ...log 110  (4.2) 

where εi is a random disturbance term, and β0,…,βk, and σ are parameters 
to be estimated. Exponentiating both sides of equation (4.2) gives an 
alternative way of expressing the model: 

 )...exp( 110 iikkii xxT σεβββ ++++=  

So far, the only differences between the model in equation (4.2) and 
the usual linear regression model are that there is a σ  before the ε  and the 
dependent variable is logged. The σ can be omitted, which requires that 
the variance of ε be allowed to vary from one data set to another. But it is 
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simpler to fix the variance of ε at some standard value (for example, 1.0) 
and let σ change in value to accommodate changes in the disturbance 
variance. (This notational strategy could also be used for linear models.) 
As for the log transformation of T, its main purpose is to ensure that 
predicted values of T are positive, regardless of the values of the x’s and 
the β’s. 

In a linear regression model, it is typical to assume that εi has a 
normal distribution with a mean and variance that is constant over i, and 
that the ε’s are independent across observations. One member of the AFT 
class, the log-normal model, has exactly these assumptions. It is called the 
log-normal model because if log T has a normal distribution, then T has a 
log-normal distribution. Other AFT models allow distributions for ε 
besides the normal distribution but retain the assumptions of constant 
mean and variance, as well as independence across observations. We will 
consider these alternative models in some detail, but for the moment let’s 
stick with the log-normal.  

If there are no censored data, we can readily estimate this model by 
ordinary least squares (OLS). Simply create a new variable in a DATA step 
that is equal to the log of the event time and use the REG procedure with 
the transformed variable as the dependent variable. This process yields 
best linear unbiased estimates of the β coefficients, regardless of the shape 
of the distribution of ε. If ε is normal, the OLS estimates will also be 
maximum likelihood estimates and will have minimum variance among 
all estimators, both linear and nonlinear. In fact, the coefficients and 
standard errors produced by PROC REG will be identical to those 
produced by PROC LIFEREG with a log-normal specification.  

But survival data typically have at least some censored observations, 
and these are difficult to handle with OLS. Instead, we can use maximum 
likelihood estimation. Later, this chapter examines the mathematics of 
maximum likelihood (ML) for censored regression models in some detail. 
First, let’s look at an example of how a regression application is set up 
with PROC LIFEREG and what results it produces. In the section The Life 
Table Method in Chapter 3, “Estimating and Comparing Survival Curves 
with PROC LIFETEST,” I described the recidivism data set in which 432 
inmates were followed for 1 year after release. That data set is used 
throughout this chapter, so you may want to reread the earlier description 
(or see Appendix 2, “Data Sets”).  

In this recidivism example, the variable WEEK contains the week of 
the first arrest or censoring. The variable ARREST is equal to 1 if WEEK is 
uncensored or 0 if right censored. There are seven covariates. To estimate 
the log-normal model, we specify 
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PROC LIFEREG DATA=recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio 
         / DISTRIBUTION=LNORMAL; 
RUN;  

Note that WEEK*ARREST(0) in the MODEL statement follows the 
same syntax as the TIME statement in PROC LIFETEST. However, it is now 
followed by an equal sign and a list of covariates. The slash (/) separates 
the variable list from the specification of options, of which there are 
several possibilities. Here, we have merely indicated our choice of the log-
normal distribution.  

Output 4.1 displays the results. The output first provides some 
preliminary information: the names of the time and censoring variables, 
the values that correspond to censoring, and the numbers of cases with 
each type of censoring. Then the output shows that the log-likelihood for 
the model is –322.6946. This is an important statistic that we will use later 
to test various hypotheses.   

The table labeled “Fit Statistics” gives four modifications of the log-
likelihood that may be used in assessing model fit. The first is simply the 
log-likelihood multiplied by –2. The second, Akaike’s information 
criterion (AIC), is a modification of the –2 log-likelihood that penalizes 
models for having more covariates. Specifically,  

kLAIC 2log2 +−=  
 

where k is the number of covariates. The next statistic (AICC) is a 
“corrected” version of the AIC that may have better behavior in small 
samples: 

1
)1(2

−−
+

+=
kn
kkAICAICC  

 
Finally, the Bayesian information criterion (also known as Schwarz’s 
criterion) gives a more severe penalization for additional covariates, at 
least for most applications: 

nkLBIC loglog2 +−=  
 

All three of these penalized statistics can be used to compare models with 
different sets of covariates. The models being compared do not have to be 
nested, in the sense of one model being a special case of another. However, 
these statistics cannot be used to construct a formal hypothesis test, so the 
comparison is only informal. For all three statistics, smaller values mean a 
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better fit. But keep in mind that the overall magnitude of these statistics 
depends heavily on sample size.   

For this example, the “Type III Analysis of Effects” table is 
completely redundant with the table that follows. But the Type III table 
will be important later when we consider CLASS variables. 

Finally, we get a table of estimated coefficients, their standard errors, 
chi-square statistics for the null hypothesis that each coefficient is 0, and 
p-values associated with those statistics. The chi-squares are calculated by 
dividing each coefficient by its estimated standard error and squaring the 
result.  

 

Output 4.1 Results from Fitting a Log-Normal Model to the Recidivism Data 

                           The LIFEREG Procedure 
 
                            Model Information 
 
                 Data Set                        RECID 
                 Dependent Variable             Log(week) 
                 Censoring Variable                arrest 
                 Censoring Value(s)                     0 
                 Number of Observations               432 
                 Noncensored Values                   114 
                 Right Censored Values                318 
                 Left Censored Values                   0 
                 Interval Censored Values               0 
                 Name of Distribution           Lognormal 
                 Log Likelihood              -322.6945851 
 
 
                  Number of Observations Read         432 
                  Number of Observations Used         432 
 
                              Fit Statistics 
 
             -2 Log Likelihood                        645.389 
             AIC (smaller is better)                  663.389 
             AICC (smaller is better)                 663.816 
             BIC (smaller is better)                  700.005 
 
Algorithm converged. 
 

                                                                                                                                                (continued) 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 4 Estimating Parametric Regression Models with PROC LIFEREG 

76 

 

Output 4.1 (continued) 

                       Type III Analysis of Effects 
 
                                         Wald 
                Effect       DF    Chi-Square    Pr > ChiSq 
 
                fin           1        4.3657        0.0367 
                age           1        2.9806        0.0843 
                race          1        1.8824        0.1701 
                wexp          1        2.2466        0.1339 
                mar           1        2.4328        0.1188 
                paro          1        0.1092        0.7411 
                prio          1        5.8489        0.0156 
 
 
            Analysis of Maximum Likelihood Parameter Estimates 
 
                            Standard   95% Confidence     Chi- 
  Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
 
  Intercept      1   4.2677   0.4617   3.3628   5.1726   85.44     <.0001 
  fin            1   0.3428   0.1641   0.0212   0.6645    4.37     0.0367 
  age            1   0.0272   0.0158  -0.0037   0.0581    2.98     0.0843 
  race           1  -0.3632   0.2647  -0.8819   0.1556    1.88     0.1701 
  wexp           1   0.2681   0.1789  -0.0825   0.6187    2.25     0.1339 
  mar            1   0.4604   0.2951  -0.1181   1.0388    2.43     0.1188 
  paro           1   0.0559   0.1691  -0.2756   0.3873    0.11     0.7411 
prio           1  -0.0655   0.0271  -0.1186  -0.0124    5.85     0.0156 
Scale          1   1.2946   0.0990   1.1145   1.5038 

Two variables meet the .05 criterion for statistical significance: FIN 
(whether the inmate received financial aid) and PRIO (number of prior 
convictions). The signs of the coefficients tell us the direction of the 
relationship. The positive coefficient for FIN indicates that those who 
received financial aid had longer times to arrest than those who did not. 
The negative coefficient for PRIO indicates that additional convictions 
were associated with shorter times to arrest. As in any regression 
procedure, these coefficients adjust or control for the other covariates in 
the model. 

The numerical magnitudes of the coefficients are not very 
informative in the reported metrics, but a simple transformation leads to a 
more intuitive interpretation. For a 1-0 variable like FIN, if we simply take 
eβ, we get the estimated ratio of the expected (mean) survival times for the 
two groups. Thus, e.3428= 1.41. Therefore, controlling for the other 
covariates, the expected time to arrest for those who received financial aid 
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is 41 percent greater than for those who did not receive financial aid. (This 
statement also applies to the median time to arrest, or any other percentile 
for that matter.) For a quantitative variable like PRIO, we can use the 
transformation 100(eβ – 1), which gives the percent change in the expected 
survival time for each one-unit increase in the variable. Thus,  
100(exp(–.0655)– 1) = –6.34. According to the model, then, each additional 
prior conviction is associated with a 6.34 percent decrease in expected 
time to arrest, holding other covariates constant. We can also interpret the 
coefficients for any of the other AFT models discussed in this chapter in 
this way.  

The output line labeled SCALE is an estimate of the σ parameter in 
equation (4.2), along with its estimated standard error. For some 
distributions, changes in the value of this parameter can produce 
qualitative differences in the shape of the hazard function. For the log-
normal model, however, changes in σ merely compress or stretch the 
hazard function.  

ALTERNATIVE DISTRIBUTIONS 

In ordinary linear regression, the assumption of a normal 
distribution for the disturbance term is routinely invoked for a wide range 
of applications. Yet PROC LIFEREG allows for four additional distributions 
for ε: extreme value (2 parameter), extreme value (1 parameter), log-
gamma, and logistic. For each of these distributions, there is a 
corresponding distribution for T:  

 

            Distribution of  Distribution of T 

extreme value (2 par.)  Weibull 

extreme value (1 par.) exponential 

log-gamma  gamma 

logistic  log-logistic 

normal  log-normal 

 

Incidentally, all AFT models are named for the distribution of T 
rather than for the distribution of ε or log T. Because the logistic and 
normal lead to the log-logistic and log-normal, you might expect that the 
gamma will lead to the log-gamma. But it is just the reverse. This is one of 
those unfortunate inconsistencies in terminology that we just have to live 
with.  
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What is it about survival analysis that makes these alternatives worth 
considering? The main reason for allowing other distributions is that they 
have different implications for hazard functions that may, in turn, lead to 
different substantive interpretations. The remainder of this section 
explores each of these alternatives in some detail.  

The Exponential Model 

The simplest model that PROC LIFEREG estimates is the exponential 
model, invoked by DISTRIBUTION=EXPONENTIAL in the MODEL 
statement. This model specifies that ε has a standard extreme-value 
distribution and constrains σ = 1. If ε has an extreme-value distribution, 
then log T also has an extreme-value distribution, conditional on the 
covariates. This implies that T itself has an exponential distribution, 
which is why we call it the exponential model. The standard extreme 
value distribution is also known as a Gumbel distribution or a double 
exponential distribution. It has a p.d.f. of f(ε) = exp[ε – exp(ε)]. Like the 
normal distribution, this is a unimodal distribution defined on the entire 
real line. Unlike the normal, however, it is not symmetrical, being slightly 
skewed to the left. 

As we saw in Chapter 2, “Basic Concepts of Survival Analysis,” an 
exponential distribution for T corresponds to a constant hazard function, 
which is the most characteristic feature of this model. However, equation 
(2.12) expresses the exponential regression model as  

 kk xxth ••• +++= βββ 110)(log  (4.3) 

where the •’s have been added to distinguish these coefficients from those 
in equation (4.2). Although the dependent variable in equation (4.2) is the 
log of time, in equation (4.3) it is the log of the hazard. It turns out that the 
two models are completely equivalent. Furthermore, there is a simple 
relationship between the coefficients in equation (4.2) and equation (4.3): 
namely, that βj = –βj

• for all j.  
The change in signs makes intuitive sense. If the hazard is high, then 

events occur quickly and survival times are short. On the other hand, 
when the hazard is low, events are unlikely to occur and survival times are 
long. It is important to be able to shift back and forth between these two 
ways of expressing the model so that you can compare results across 
different computer programs. In particular, because PROC PHREG reports 
coefficients in log-hazard form, we need to make the conversion in order to 
compare PROC LIFEREG output with PROC PHREG output.  

You may wonder why there is no disturbance term in equation (4.3) 
(a characteristic it shares with the more familiar logistic regression model). 
No disturbance term is needed because there is implicit random variation 
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in the relationship between h(t), the unobserved hazard, and the observed 
event time T. Even if two individuals have exactly the same covariate 
values (and, therefore, the same hazard), they will not have the same event 
time. Nevertheless, in Chapter 8, “Heterogeneity, Repeated Events, and 
Other Topics,” we will see that there have been some attempts to add a 
disturbance term to models like this to represent unobserved heterogeneity. 

Output 4.2 shows the results of fitting the exponential model to the 
recidivism data. Comparing this with the log-normal results in Output 4.1, 
we see some noteworthy differences. The coefficient for AGE is about 
twice as large in the exponential model, and its p-value declines from .08 
to .01. Similarly, the coefficient for PRIO increases somewhat in 
magnitude, and its p-value also goes down substantially. On the other 
hand, the p-value for FIN increases to slightly above the .05 level.  

Output 4.2  Exponential Model Applied to Recidivism Data  

       Analysis of Maximum Likelihood Parameter Estimates 
 
                          Standard   95% Confidence     Chi- 
Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
 
Intercept      1   4.0507   0.5860   2.9021   5.1993   47.78     <.0001 
fin            1   0.3663   0.1911  -0.0083   0.7408    3.67     0.0553 
age            1   0.0556   0.0218   0.0128   0.0984    6.48     0.0109 
race           1  -0.3049   0.3079  -0.9085   0.2986    0.98     0.3220 
wexp           1   0.1467   0.2117  -0.2682   0.5617    0.48     0.4882 
mar            1   0.4270   0.3814  -0.3205   1.1745    1.25     0.2629 
paro           1   0.0826   0.1956  -0.3007   0.4660    0.18     0.6726 
prio           1  -0.0857   0.0283  -0.1412  -0.0302    9.15     0.0025 
Scale          0   1.0000   0.0000   1.0000   1.0000 
Weibull Shape  0   1.0000   0.0000   1.0000   1.0000 
 
                     Lagrange Multiplier Statistics 
 
                 Parameter     Chi-Square    Pr > ChiSq  
                 Scale            24.9302        <.0001 

 

Clearly, the choice of model can make a substantive difference. Later, 
this chapter considers some criteria for choosing among these and other 
models. Notice that the SCALE parameter σ is forced equal to 1.0 which, as 
noted above, is what distinguishes the exponential model from the Weibull 
model. The line labeled “Weibull Shape” will be explained when we 
discuss the Weibull model.   
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The “Lagrange Multiplier Statistics” table reports a chi-square of 
24.9302 with a p-value less than .0001. This is a 1 degree-of-freedom test 
for the null hypothesis that σ = 1. Here the null hypothesis is soundly 
rejected, indicating that the hazard function is not constant over time. 
While this might suggest that the log-normal model is superior, things are 
not quite that simple. There are other models to consider as well. 

The Weibull Model 

The Weibull model is a slight modification of the exponential model, 
with big consequences. By specifying DISTRIBUTION=WEIBULL in the 
MODEL statement, we retain the assumption that ε has a standard extreme-
value distribution, but we relax the assumption that σ = 1. When σ >1, the 
hazard decreases with time. When .5<σ<1, the hazard is increasing at a 
decreasing rate. When 0<σ<.5, the hazard is increasing at an increasing 
rate. And when σ=.5, the hazard function is an increasing straight line 
with an origin at 0. Graphs of these hazard functions appear in Figure 2.3 
(with the α in the figure equal to 1/σ – 1).  

We call this the Weibull model because T has a Weibull distribution, 
conditional on the covariates. The Weibull distribution has long been the 
most popular parametric model in the biostatistical literature, for two 
reasons. First, it has a relatively simple survivor function that is easy to 
manipulate mathematically: 

 [ ]







−= − σ

1

exp)( iettS ii
βx  

where xi is a vector of the covariate values and β is a vector of coefficients. 
Second, in addition to being an AFT model, the Weibull model is also a 
proportional hazards model. This means that its coefficients (when 
suitably transformed) can be interpreted as relative hazard ratios. In fact, 
the Weibull model (and its special case, the exponential model) is the only 
model that is simultaneously a member of both these classes.  

As with the exponential model, there is an exact equivalence 
between the log-hazard form of the model 

 kk xxtth ••• ++++= βββα 110log)(log  

and the log-survival time model 

 σεβββ ++++= kki xxT ...log 110  

The relationship between the parameters is slightly more 
complicated, however. Specifically, for the Weibull model 

 
σ
β

β j
j

−
=•  for j = 1,…, k 
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and α = (1/σ )– 1. Because βj = 0 if and only if βj
• = 0, a test of the null 

hypothesis that a coefficient is 0 will be the same regardless of which form 
you use. On the other hand, standard errors and confidence intervals for 
coefficients in the log-survival time format are not so easily converted to 
the log-hazard format. Collett (2003) gives formulas for accomplishing this.  

Output 4.3 shows the results from fitting the Weibull model to the 
recidivism data. Compared with the exponential model in Output 4.2, the 
coefficients are all somewhat attenuated. But the standard errors are also 
smaller, so the chi-square statistics and p-values are hardly affected at all. 
Furthermore, if we convert the coefficients to the log-hazard format by 
changing the sign and dividing by σ̂  (the Scale estimate of .7124 in the 
output), we get 

FIN -0.382 
AGE -0.057 

RACE  0.316 
WEXP -0.150 

MAR -0.437 
PARO -0.083 
PRIO  0.092. 

These coefficients are much closer to the log-hazard coefficients for the 
exponential model (which differ only in sign from the log-survival time 
coefficients).  

Output 4.3 Weibull Model Applied to Recidivism Data 

                            Standard   95% Confidence     Chi- 
  Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
 
  Intercept      1   3.9901   0.4191   3.1687   4.8115   90.65     <.0001 
  fin            1   0.2722   0.1380   0.0018   0.5426    3.89     0.0485 
  age            1   0.0407   0.0160   0.0093   0.0721    6.47     0.0110 
  race           1  -0.2248   0.2202  -0.6563   0.2067    1.04     0.3072 
  wexp           1   0.1066   0.1515  -0.1905   0.4036    0.49     0.4820 
  mar            1   0.3113   0.2733  -0.2244   0.8469    1.30     0.2547 
  paro           1   0.0588   0.1396  -0.2149   0.3325    0.18     0.6735 
  prio           1  -0.0658   0.0209  -0.1069  -0.0248    9.88     0.0017 
Scale          1   0.7124   0.0634   0.5983   0.8482  
Weibull Shape  1   1.4037   0.1250   1.1789   1.6713 

Because σ̂  (labeled “Scale” in Output 4.3) is between 0 and 1, we 
conclude that the hazard is increasing at a decreasing rate. We can also 
calculate α̂ = (1/.7124)–1=0.4037, which is the coefficient for log t in the 
log-hazard model. Because both the dependent and independent variables 
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are logged, this coefficient can be interpreted as follows: a 1 percent 
increase in time since release is associated with a 0.40 percent increase in 
the hazard for arrest.  

The last line is labeled “Weibull Shape.”  This is not an independent 
parameter but merely the reciprocal of the Shape parameter (that is, 1/σ̂ ).  
It is included in the output because some statisticians prefer this way of 
parameterizing the model.   

The Log-Normal Model 

Although we have already discussed the log-normal model and 
applied it to the recidivism data, we have not yet considered the shape of 
its hazard function. Unlike the Weibull model, the log-normal model has a 
nonmonotonic hazard function. The hazard is 0 when t=0. It rises to a peak 
and then declines toward 0 as t goes to infinity. The log-normal is not a 
proportional hazards model, and its hazard function cannot be expressed 
in closed form (it involves the c.d.f. of a standard normal variable). It can, 
however, be expressed as a regression model in which the dependent 
variable is the logarithm of the hazard. Specifically,  

βxβx −= − )(log)(log 0 tehth  

where h0(.) can be interpreted as the hazard function for an individual 
with x = 0. This equation also applies to the log-logistic and gamma 
models to be discussed shortly, except that h0(.) is different in each case.  

Some typical log-normal hazard functions are shown in Figure 4.1. 
All three functions correspond to distributions with a median of 1.0. When 
σ is large, the hazard peaks so rapidly that the function is almost 
indistinguishable from those like the Weibull and log-logistic that may 
have an infinite hazard when t = 0. 

The inverted U-shape of the log-normal hazard is often appropriate 
for repeatable events. Suppose, for example, that the event of interest is a 
residential move. Immediately after a move, the hazard of another move is 
likely to be extremely low. People need to rest and recoup the substantial 
costs involved in moving. The hazard will certainly rise with time, but 
much empirical evidence indicates that it eventually begins to decline. 
One explanation is that, as time goes by, people become increasingly 
invested in a particular location or community. However, Chapter 8 shows 
how the declining portion of the hazard function may also be a 
consequence of unobserved heterogeneity.  
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Figure 4.1 Typical Hazard Functions for a Log-Normal Model 

 

The Log-Logistic Model 

Another model that allows for an inverted U-shaped hazard is the 
log-logistic model, which assumes that ε has a logistic distribution with 
p.d.f. 
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The logistic distribution is symmetric with a mean of 0, and is quite 
similar in shape to the normal distribution. It is well known to students of 
the logistic (logit) regression model, which can be derived by assuming a 
linear model with a logistically distributed error term and a 
dichotomization of the dependent variable.  

If ε has a logistic distribution, then so does log T (although with a 
nonzero mean). It follows that T has a log-logistic distribution. The log-
logistic hazard function is  
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where γ = 1/σ and λ = exp{–[β0 + β1x1 + … + βkxk]}. This produces the 
characteristic shapes shown in Figure 4.2, all of which correspond to 
distributions with a median of 1.0.  
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Figure 4.2 Typical Hazard Functions for the Log-Logistic Model 

 
When σ < 1, the log-logistic hazard is similar to the log-normal hazard: 

it starts at 0, rises to a peak, and then declines toward 0. When σ > 1, the 
hazard behaves like the decreasing Weibull hazard: it starts at infinity and 
declines toward 0. When σ =1, the hazard has a value of λ at t=0 and then 
declines toward 0 as t goes to infinity. 

Despite the complexity of its hazard function, the log-logistic model 
has a rather simple survivor function: 
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As before, γ = 1/σ and λ = exp{–[β0 + β1x1 + … + βkxk]}. A little algebra 
shows that this can be written as 

 txx
tS

tS
kk log

)(1
)(log 110 γβββ −+++=








−

•••   

where βi

•
 = βi/σ for i = 1, ..., k. This is just a logistic regression model for 

the probability that an event occurs prior to t. Thus, for the recidivism 
data, the log-logistic model can be estimated by fitting a logistic regression 
model to the dichotomy arrested versus not arrested in the first year after 
release. (Because t is a constant 52 weeks, the term γ log t gets absorbed 
into the intercept.) Of course, this estimation method is not fully efficient 
because we are not using the information on the exact timing of the arrests, 
and we certainly will not get the same estimates. The point is that the two 
apparently different methods are actually estimating the same underlying 
model.  
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To fit the log-logistic model with PROC LIFEREG, you specify 
DISTRIBUTION=LLOGISTIC as an option in the MODEL statement. 
Output 4.4 shows the results for the recidivism data. The first thing to 
notice is that the estimate of σ (labeled “Scale”) is less than 1.0, implying 
that the estimated hazard function follows the inverted U-shaped form 
shown in Figure 4.2. Given what I just said about the similarity of the log-
normal and log-logistic hazards, you might expect the other results to be 
similar to the log-normal output in Output 4.1. But the coefficients and test 
statistics actually appear to be closer to those for the Weibull model in 
Output 4.3. 

Output 4.4 Log-Logistic Model Applied to Recidivism Data 

            Analysis of Maximum Likelihood Parameter Estimates 
 
                            Standard   95% Confidence     Chi- 
  Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
 
  Intercept      1   3.9183   0.4274   3.0805   4.7561   84.03     <.0001 
  fin            1   0.2889   0.1456   0.0035   0.5742    3.94     0.0472 
  age            1   0.0364   0.0156   0.0058   0.0669    5.45     0.0195 
  race           1  -0.2791   0.2297  -0.7293   0.1710    1.48     0.2242 
  wexp           1   0.1784   0.1572  -0.1297   0.4865    1.29     0.2563 
  mar            1   0.3473   0.2697  -0.1812   0.8758    1.66     0.1978 
  paro           1   0.0508   0.1496  -0.2424   0.3440    0.12     0.7341 

prio           1  -0.0692   0.0227  -0.1138  -0.0246    9.25     0.0023  
Scale          1   0.6471   0.0559   0.5463   0.7666 

The Gamma Model 

The generalized gamma model has one more parameter than any of 
the other models we have considered, and that fact implies that its hazard 
function can take on a wide variety of shapes. In particular, the 
exponential, Weibull, and log-normal models (but not the log-logistic) are 
all special cases of the generalized gamma model. This fact is exploited 
later in this chapter when we consider likelihood ratio tests for comparing 
different models. But the generalized gamma model can also take on 
shapes that are unlike any of these special cases. Most important, it can 
have hazard functions with U or bathtub shapes in which the hazard 
declines, reaches a minimum, and then increases. It is well known that the 
hazard for human mortality, considered over the whole life span, has such 
a shape. On the other hand, the generalized gamma model cannot 
represent hazard functions that have more than one reversal of direction. 
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Given the richness of the generalized gamma model, why not always 
use it instead of the other models? There are two reasons. First, the formula 
for the hazard function for the generalized gamma model is rather 
complicated, involving the gamma function and the incomplete gamma 
function. Consequently, you may often find it difficult to judge the shape of 
the hazard function from the estimated parameters. By contrast, hazard 
functions for the specific submodels can be rather simply described, as we 
have already seen. Second, computation for the generalized gamma model is 
more difficult. For example, it took more than five times as much computer 
time to estimate the generalized gamma model for the recidivism data as 
compared with the exponential model. This fact can be an important 
consideration when you are working with very large data sets. The 
generalized gamma model also has a reputation for convergence problems, 
although the parameterization and numerical algorithms used by PROC 
LIFEREG seem to have reduced these to a minimum.  

To fit the generalized gamma model with PROC LIFEREG, you 
specify D=GAMMA as an option in the MODEL statement. Output 4.5 
shows the results from fitting this model to the recidivism data. As usual, 
the Scale parameter is the estimate of σ in equation (4.2). The estimate 
labeled “Shape” is the additional shape parameter that is denoted by δ in 
the PROC LIFEREG documentation. (In the output for earlier releases of 
PROC LIFEREG, this parameter is labeled “Gamma.”) When the shape 
parameter is 0, we get the log-normal distribution. When it is 1.0, we have 
the Weibull distribution. In Output 4.5, the shape estimate is almost 
exactly 1.0, so we are very close to the Weibull distribution.  Later, we’ll 
make this comparison more rigorous.  

Output 4.5 Generalized Gamma Model Applied to the Recidivism Data 

                            Standard   95% Confidence     Chi- 
  Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
 
  Intercept      1   3.9915   0.4349   3.1391   4.8439   84.23     <.0001 
  fin            1   0.2724   0.1401  -0.0022   0.5471    3.78     0.0518 
  age            1   0.0407   0.0165   0.0082   0.0731    6.04     0.0140 
  race           1  -0.2255   0.2280  -0.6723   0.2213    0.98     0.3226 
  wexp           1   0.1073   0.1659  -0.2179   0.4326    0.42     0.5177 
  mar            1   0.3118   0.2769  -0.2309   0.8545    1.27     0.2602 
  paro           1   0.0588   0.1398  -0.2152   0.3328    0.18     0.6741 
  prio           1  -0.0659   0.0213  -0.1076  -0.0241    9.56     0.0020 

Scale          1   0.7151   0.2396   0.3708   1.3790  
Shape          1   0.9943   0.4849   0.0439   1.9446 
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CATEGORICAL VARIABLES AND THE CLASS STATEMENT 

In the recidivism example, several of the covariates—race, marital 
status, work experience, and parole status—are dichotomous variables that 
are coded as indicator (dummy) variables. For categorical covariates with 
more than two categories, the standard approach is to create a set of 
indicator variables, one for each category (except for one). You can do this 
in the DATA step, but PROC LIFEREG does it automatically if the variable 
(or variables) is listed in a CLASS statement. Here’s an example. Another 
covariate in the recidivism data set is education, which was originally 
coded like this: 

 2 = 6th grade or less 24 cases 
 3 = 7th to 9th grade 239 cases 
 4 = 10th to 11th grade 119 cases 
 5 = 12th grade 39 cases 
 6 = some college 11 cases 

Due to the small numbers of cases in the two extreme categories, I 
combined them (in a DATA step) with the adjacent categories to produce a 
variable EDUC with values of 3 (9th or less), 4 (10th to 11th), and 5 (12th 
or more). I then specified a Weibull model in PROC LIFEREG with the 
following statements: 

 
PROC LIFEREG DATA=recid; 
   CLASS educ; 
   MODEL week*arrest(0)=fin age race wexp mar paro  
         prio educ / D=WEIBULL;  
RUN; 

Output 4.6 shows the results (some output lines have been omitted). 
For any variables listed in the CLASS statement, PROC LIFEREG first 
reports the number of levels found and the values for those levels. The 
Type III Analysis of Effects table, which really served no purpose in our 
previous models, now gives us a very useful overall test for EDUC, which 
(with a p-value of .20) is not statistically significant. This test has two 
degrees of freedom (df), corresponding to the two coefficients that are 
estimated for EDUC. What is particularly attractive about this test is that it 
does not depend on which category of EDUC is the omitted category. 

In the table of estimates, there are three lines for the EDUC variable. 
The first two lines contain coefficients, standard errors, and hypothesis 
tests for levels 3 and 4 of EDUC, while the last line merely informs us that 
level 5 is the omitted category. Hence, each of the estimated coefficients is 
a contrast with level 5. (The default in PROC LIFEREG is to take the 
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highest formatted value as the omitted category, but you can get some 
control over this with the ORDER option in the PROC LIFEREG statement.) 

Output 4.6 Recidivism Model with Education as a CLASS Variable    

                         Class Level Information 
 
                        Name      Levels    Values 
 
                        educ           3    3 4 5 
 
                       Type III Analysis of Effects 
 
                                         Wald 
                Effect       DF    Chi-Square    Pr > ChiSq 
 
                fin           1        3.8069        0.0510 
                age           1        6.0426        0.0140 
                race          1        1.2819        0.2575 
                wexp          1        0.2581        0.6114 
                mar           1        1.2160        0.2701 
                paro          1        0.2221        0.6374 
                prio          1        7.5308        0.0061 
                educ          2        3.2023        0.2017 
 
            Analysis of Maximum Likelihood Parameter Estimates 
 
                             Standard   95% Confidence     Chi- 
 Parameter       DF Estimate    Error       Limits       Square Pr > ChiSq 
 
 Intercept        1   4.4680   0.5171   3.4544   5.4816   74.65     <.0001 
 fin              1   0.2690   0.1379  -0.0012   0.5392    3.81     0.0510 
 age              1   0.0392   0.0159   0.0079   0.0705    6.04     0.0140 
 race             1  -0.2524   0.2229  -0.6893   0.1845    1.28     0.2575 
 wexp             1   0.0773   0.1522  -0.2209   0.3755    0.26     0.6114 
 mar              1   0.3013   0.2732  -0.2342   0.8368    1.22     0.2701 
 paro             1   0.0658   0.1396  -0.2078   0.3394    0.22     0.6374 
 prio             1  -0.0585   0.0213  -0.1004  -0.0167    7.53     0.0061 
 educ          3  1  -0.5116   0.3090  -1.1172   0.0941    2.74     0.0978 
 educ          4  1  -0.3536   0.3243  -0.9892   0.2819    1.19     0.2755 
 educ          5  0   0.0000    .        .        .         .        . 
 Scale            1   0.7119   0.0634   0.5979   0.8476  
 Weibull Shape    1   1.4047   0.1251   1.1798   1.6726 

 
Unlike most other SAS procedures that have a CLASS statement, 

PROC LIFEREG does not have a TEST or CONTRAST statement that 
would enable you to test whether EDUC 3 has the same coefficient as 
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EDUC 4.  Methods for constructing such a test by hand calculation are 
described in the Hypothesis Tests section below. 

In earlier releases of PROC LIFEREG, it was not possible to include 
interaction terms directly in the MODEL statement. SAS 9.2 allows 
interactions for any set of variables using the familiar notation X1*X2. 

MAXIMUM LIKELIHOOD ESTIMATION 

 All models in PROC LIFEREG are estimated by the method of 
maximum likelihood. This section explores some of the basics of ML 
estimation, with an emphasis on how it handles censored observations. 
The discussion is not intended to be rigorous. If you want a more complete 
and careful treatment of ML, you should consult one of the many texts 
available on the subject. For example, Kalbfleisch and Prentice (2002) give 
a more detailed introduction in the context of survival analysis.  

ML is a quite general approach to estimation that has become 
popular in many different areas of application. There are two reasons for 
this popularity. First, ML produces estimators that have good large-sample 
properties. Provided that certain regularity conditions are met, ML 
estimators are consistent, asymptotically efficient, and asymptotically 
normal. Consistency means that the estimates converge in probability to 
the true values as the sample gets larger, implying that the estimates will 
be approximately unbiased in large samples. Asymptotically efficient 
means that, in large samples, the estimates will have standard errors that 
are (approximately) at least as small as those for any other estimation 
method. And, finally, asymptotically normal means that the sampling 
distribution of the estimates will be approximately normal in large 
samples, which implies that you can use the normal and chi-square 
distributions to compute confidence intervals and p-values.  

All these approximations get better as the sample size gets larger. 
The fact that these desirable properties have been proven only for large 
samples does not mean that ML has bad properties for small samples. It 
simply means that we often don’t know what the small-sample properties 
are. And in the absence of attractive alternatives, researchers routinely use 
ML estimation for both large and small samples. Although I won’t argue 
against that practice, I do urge caution in interpreting p-values and 
confidence intervals when samples are small. Despite the temptation to 
accept larger p-values as evidence against the null hypothesis in small 
samples, it is actually more reasonable to demand smaller values to 
compensate for the fact that the approximation to the normal or chi-square 
distributions may be poor.  
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The other reason for ML’s popularity is that it is often 
straightforward to derive ML estimators when there are no other obvious 
possibilities. As we will see, one case that ML handles nicely is data with 
censored observations. Although you can use least squares with certain 
adjustments for censoring (Lawless, 2002), such estimates often have much 
larger standard errors, and there is little available theory to justify the 
construction of hypothesis tests or confidence intervals. 

The basic principle of ML is to choose as estimates those values that 
will maximize the probability of observing what we have, in fact, observed. 
There are two steps to this: (1) write down a formula for the probability of 
the data as a function of the unknown parameters, and (2) find the values 
of the unknown parameters that make the value of this formula as large as 
possible.  

The first step is known as constructing the likelihood function. To 
accomplish this, you must specify a model, which amounts to choosing a 
probability distribution for the dependent variable and choosing a 
functional form that relates the parameters of this distribution to the values 
of the covariates. We have already considered those two choices. The 
second step—maximization—typically requires an iterative numerical 
method that involves successive approximations.  

In the next section, I work through the basic mathematics of 
constructing and maximizing the likelihood function. You can skip this 
part without loss of continuity if you’re not interested in the details or if 
you simply want to postpone the effort. Immediately after this section, I 
discuss some of the practical details of ML estimation with PROC 
LIFEREG.  

Maximum Likelihood Estimation:  Mathematics 

Assume that we have n independent individuals (i = 1, …, n). For 
each individual i, the data consist of three parts: ti, δi, and xi, where ti is 
the time of the event or the time of censoring, δi, is an indicator variable 
with a value of 1 if ti is uncensored or 0 if right censored, and xi = [1 xi1 … 
xik]′ is a vector of covariate values (the 1 is for the intercept). For 
simplicity, we treat xi as fixed rather than random. We could get equivalent 
results if xi were random and the distributions of δi and ti were expressed 
conditional on the values of xi. But that would just complicate the 
notation. We also assume that censoring is non-informative. 

For the moment, suppose that all the observations are uncensored. 
Because we are assuming independence, it follows that the probability of 
the entire data is found by taking the product of the probabilities of the 
data for every individual. Because ti is assumed to be measured on a 
continuum, the probability that it will take on any specific value is 0. 
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Instead, we represent the probability of each observation by the probability 
density function (p.d.f.),  f (ti). Thus, the probability (or likelihood) of the 
data is given by the following expression, where Π indicates repeated 
multiplication: 
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Notice that fi is subscripted to indicate that each individual has a different 
p.d.f. that depends on the covariates.  

To proceed further, we need to substitute an expression for fi(ti) that 
involves the covariates and the unknown parameters. Before we do that, 
however, let’s see how this likelihood is altered if we have censored cases. 
If an individual is censored at time ti, all we know is that the individual’s 
event time is greater than ti. But the probability of an event time greater 
than ti is given by the survivor function S(t) evaluated at time ti. Now 
suppose that we have r uncensored observations and n – r censored 
observations. If we arrange the data so that all the uncensored cases come 
first, we can write the likelihood as 
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where, again, we subscript the survivor function to indicate that it 
depends on the covariates. Using the censoring indicator δ, we can 
equivalently write this as 
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Here δi acts as a switch, turning the appropriate function on or off, 
depending on whether the observation is censored. As a result, we do not 
need to order the observations by censoring status. This last expression, 
which applies to all the models that PROC LIFEREG estimates with right-
censored data, shows how censored and uncensored cases are combined in 
ML estimation.  

Once we choose a particular model, we can substitute appropriate 
expressions for the p.d.f. and the survivor function. Let’s take the simplest 
case—the exponential model. We have 
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Although this expression can be maximized directly, it is generally 
easier to work with the natural logarithm of the likelihood function 
because products get converted into sums and exponents become 
coefficients. Because the logarithm is an increasing function, whatever 
maximizes the logarithm also maximizes the original function.  

Taking the logarithm of the likelihood, we get 
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Now we are ready for step 2, finding values of β that make this 
expression as large as possible. There are many different methods for 
maximizing functions like this. One well-known approach is to find the 
derivative of the function with respect to β , set the derivative equal to 0, 
and then solve for β . Taking the derivative and setting it equal to 0 gives 
us  
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Because xi is a vector, this is actually a system of k + 1 equations, 
one for each element of β . While these equations are not terribly 
complicated, the problem is that they involve nonlinear functions of β . 
Consequently, except in special cases (like a single dichotomous x 
variable), there is no explicit solution. Instead, we have to rely on iterative 
methods, which amount to successive approximations to the solution until 
the approximations converge to the correct value. Again, there are many 
different methods for doing this. All give the same solution, but they differ 
in such factors as speed of convergence, sensitivity to starting values, and 
computational difficulty at each iteration.  

PROC LIFEREG uses the Newton-Raphson algorithm (actually a 
ridge stabilized version of the algorithm), which is by far the most popular 
numerical method for solving for β . The method is named after Sir Isaac 
Newton, who devised it for a single equation and a single unknown. But 
who was Raphson? Joseph Raphson was a younger contemporary of 
Newton who generalized the algorithm to multiple equations with 
multiple unknowns.  

The Newton-Raphson algorithm can be described as follows. Let 

)(βU  be the vector of first derivatives of log L with respect to β  and let 

)(βI be the matrix of second derivatives of log L with respect to β . That is, 
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The vector of first derivatives )(βU is sometimes called the gradient 
or score, while the matrix of second derivatives )(βI  is called the Hessian. 
The Newton-Raphson algorithm is then 

 )()(1
1 jjjj βUβIββ −

+ −=  (4.4) 

where I-1 is the inverse of I. In practice, we need a set of starting values 
  β0, which PROC LIFEREG calculates by using ordinary least squares, 

treating the censored observations as though they were uncensored. These 
starting values are substituted into the right side of equation (4.4), which 
yields the result for the first iteration,   β1.  These values are then substituted 
back into the right side, the first and second derivatives are recomputed, 
and the result is   β2. This process is repeated until the maximum change in 
the parameter estimates from one step to the next is less than .00000001. 
(This is an absolute change if the current parameter value is less than .01; 
otherwise, it is a relative change.)  

Once the solution is found, a convenient by-product of the Newton-
Raphson algorithm is an estimate of the covariance matrix of the 
coefficients, which is just )ˆ(1

jβI−− . This matrix, which can be printed by 
listing COVB as an option in the MODEL statement, is often useful for 
constructing hypothesis tests about linear combinations of coefficients. 
PROC LIFEREG computes standard errors of the parameters by taking the 
square roots of the main diagonal elements of this matrix. 

Maximum Likelihood Estimation:  Practical Details 

PROC LIFEREG chooses parameter estimates that maximize the 
logarithm of the likelihood of the data. For the most part, the iterative 
methods used to accomplish this task work quite well with no attention 
from the data analyst. If you’re curious to see how the iterative process 
works, you can request ITPRINT as an option in the MODEL statement. 
Then, for each iteration, PROC LIFEREG will print out the log-likelihood 
and the parameter estimates. When the iterations are complete, the final 
gradient vector and the negative of the Hessian matrix will also be printed 
(see the preceding section for definitions of these quantities).  

When the exponential model was fitted to the recidivism data, the 
ITPRINT output revealed that it took six iterations to reach a solution. The 
log-likelihood for the starting values was –531.1, which increased to  
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–327.5 at convergence. Examination of the coefficient estimates showed 
only slight changes after the fourth iteration. By comparison, the 
generalized gamma model took 13 iterations to converge.  

Occasionally the algorithm fails to converge, although this seems to 
occur much less frequently than it does with logistic regression. In general, 
nonconvergence is more likely to occur when samples are small, when 
censoring is heavy, or when many parameters are being estimated. There is 
one situation, in particular, that guarantees nonconvergence (at least in 
principle). If all the cases at one value of a dichotomous covariate are 
censored, the coefficient for that variable becomes larger in magnitude at 
each iteration. Here’s why: the coefficient of a dichotomous covariate is a 
function of the logarithm of the ratio of the hazards for the two groups. But 
if all the cases in a group are censored, the ML estimate for the hazard in 
that group is 0. If the 0 is in the denominator of the ratio, then the 
coefficient tends toward plus infinity. If it’s in the numerator, taking the 
logarithm yields a result that tends toward minus infinity. By extension, if 
a covariate has multiple values that are treated as a set of dichotomous 
variables (for example, with a CLASS statement) and all cases are censored 
for one or more of the values, nonconvergence should result. When this 
happens, there is no ideal solution. You can remove the offending variable 
from the model, but that variable may actually be one of the strongest 
predictors. When the variable has more than two values, you can combine 
adjacent values or treat the variable as quantitative.  

PROC LIFEREG has two ways of alerting you to convergence 
problems. If the number of iterations exceeds the maximum allowed (the 
default is 50), SAS issues the message: WARNING: Convergence not 
attained in 50 iterations.  WARNING: The procedure is 
continuing but the validity of the model fit is 
questionable. If it detects a problem before the iteration limit is reached, 
the software says WARNING: The negative of the Hessian is not 
positive definite. The convergence is questionable. 
Unfortunately, PROC LIFEREG sometimes reports estimates and gives no 
warning message in situations that are fundamentally nonconvergent. The 
only indication of a problem is a coefficient that is large in magnitude 
together with a huge standard error.  

It’s tempting to try to get convergence by raising the default 
maximum number of iterations or by relaxing the convergence criterion. 
This rarely works, however, so don’t get your hopes up. You can raise the 
maximum with the MAXITER= option in the MODEL statement. You can 
alter the convergence criterion with the CONVERGE= option, but I don’t 
recommend this unless you know what you’re doing. Too large a value 
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could make it seem that convergence had occurred when there is actually 
no ML solution.  

HYPOTHESIS TESTS 

PROC LIFEREG is somewhat skimpy in its facilities for hypothesis 
tests. It automatically reports a chi-square test for the hypothesis that each 
coefficient is 0. These are Wald tests that are calculated simply by dividing 
each coefficient by its estimated standard error and squaring the result. For 
models like the exponential that restrict the scale parameter to 1.0, PROC 
LIFEREG reports a Lagrange multiplier chi-square statistic (also known as 
a score statistic) for the hypothesis that the parameter is, indeed, equal to 
1.0. Finally, as we’ve seen, for categorical variables named in a CLASS 
statement, PROC LIFEREG gives a Wald chi-square statistic for the null 
hypothesis that all the coefficients associated with the variable are 0.  

To test other hypotheses, you have to construct the appropriate 
statistic yourself. Before describing how to do this, I’ll first present some 
background. For all the regression models considered in this book, there 
are three general methods for constructing test statistics: Wald statistics, 
score statistics, and likelihood-ratio statistics. Wald statistics are calculated 
using certain functions (quadratic forms) of parameter estimates and their 
estimated variances and covariances. Score statistics are based on similar 
functions of the first and second derivatives of the log-likelihood function. 
Finally, likelihood-ratio statistics are calculated by maximizing the 
likelihood twice: under the null hypothesis and with the null hypothesis 
relaxed. The statistic is then twice the positive difference in the two log-
likelihoods. 

You can use all three methods to test the same hypotheses, and all 
three produce chi-square statistics with the same number of degrees of 
freedom. Furthermore, they are asymptotically equivalent, meaning that 
their approximate large-sample distributions are identical. Hence, 
asymptotic theory gives no basis for preferring one method over another. 
There is some evidence that likelihood-ratio statistics may more closely 
approximate a chi-square distribution in small- to moderate-sized samples, 
however, and some authors (for example, Collett, 2002) express a strong 
preference for these statistics. On the other hand, Wald tests and score tests 
are often more convenient to calculate because they don’t require re-
estimation of the model for each hypothesis tested. 

Let’s first consider a likelihood-ratio test of the null hypothesis that 
all the covariates have coefficients of 0. This is analogous to the usual F-
test that is routinely reported for linear regression models. (Many 
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authorities hold that if this hypothesis is not rejected, then there is no 
point in examining individual coefficients for statistical significance.) To 
calculate this statistic, we need only to fit a null model that includes no 
covariates. For a Weibull model, we can accomplish that with the 
following statement: 

MODEL week*arrest(0)= / D=WEIBULL; 

For the recidivism data, this produces a log-likelihood of  
–338.59. By contrast, the Weibull model with seven covariates displayed 
in Output 4.3 has a log-likelihood of –321.85. Taking twice the positive 
difference between these two values yields a chi-square value of 33.48. 
With seven degrees of freedom (the number of covariates excluded from 
the null model), the p-value is less than .001. So we reject the null 
hypothesis and conclude that at least one of the coefficients is nonzero.  

You can also test the same hypothesis with a Wald statistic, but that 
involves the following steps:  

1. request that the parameter estimates and their covariance matrix 
be written to a SAS data set  

2. read that data set into PROC IML, the SAS matrix algebra 
procedure  

3. use PROC IML to perform the necessary matrix calculations.  
(These calculations include inverting the appropriate submatrix of the 
covariance matrix and premultiplying and postmultiplying that matrix by 
a vector containing appropriate linear combinations of the coefficients.) 
That’s clearly a much more involved procedure.  

Wald statistics for testing the equality of any two coefficients are 
simple to calculate. The method is particularly useful for doing post-hoc 
comparisons of the coefficients of CLASS variables. Earlier we used a 
CLASS statement to include a three-category education variable in the 
model. As shown in Output 4.6, there is one chi-square test comparing 
category 3 with category 5 and another chi-square test comparing category 
4 with category 5. But there is no test reported for comparing category 3 
with category 4. The appropriate null hypothesis is that β3 = β4, where the 
subscripts refer to the values of categories. A Wald chi-square for testing 
this hypothesis can be computed by 

  
)ˆˆ(2)ˆ()ˆ(

)ˆˆ(

4,343

2
43

ββββ
ββ

CovVarVar −+
− . (4.5) 

Estimates of the variances and covariances in the denominator are 
easily obtained from the covariance matrix that was requested in the 
MODEL statement. Output 4.7 shows a portion of the printed matrix.  
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Output 4.7 A Portion of the Covariance Matrix for a Model with a CLASS Variable 

                        Estimated Covariance Matrix 
 
                              educ3         educ4         Scale 
 
            Intercept     -0.094637     -0.090901      0.003377 
            fin           -0.000920     -0.001186      0.001338 
            age            0.000137      0.000285      0.000202 
            race           0.002250     -0.003371     -0.001341 
            wexp           0.002200     -0.001100      0.000398 
            mar            0.000551      0.000826      0.001593 
            paro          -0.000617      0.000704      0.000383 
            prio          -0.000593     -0.000131     -0.000260 
            educ3          0.095495      0.086663     -0.002738 
            educ4          0.086663      0.105149     -0.001756 

 3
ˆVar b is found to be .095495 at the intersection of educ3 with 

itself, and similarly  4
ˆVar b  is .105149 at the intersection of educ4 with 

itself. The covariance is .086663 at the intersection of educ3 and educ4. 
Combining these numbers with the coefficient estimates in Output 4.7, we 
get 

 
[ ] 9154.

)08666(.21051.09549.
)3536.(5116. 2

=
−+

−−
. 

With 1 degree of freedom, the chi-square value is far from the .05 critical 
value of 3.84. We conclude that there is no difference in the time to arrest 
between those with 9th grade or less and those with 10th or 11th grade 
education. This should not be surprising because the overall chi-square 
test is not significant, nor is the more extreme comparison of category 3 
with category 5. Of course, another way to get this same test statistic is 
simply to re-run the model with category 4 as the omitted category rather 
than category 5 (which can be accomplished by recoding the variable so 
that category 4 has the highest value). The chi-square statistic for category 
3 will then be equal to .9154.  

When performing post-hoc comparisons like this, it is generally 
advisable to adjust the alpha level for multiple comparisons. The simplest 
approach is the well-known Bonferroni method: For k tests and an overall 
Type I error rate of α, each test uses α/k as the criterion value.   

We can also test the hypothesis that β3=β4 with the likelihood ratio 
statistic. To do that, we must re-estimate the model while imposing the 
constraint that β3=β4. We can do this by recoding the education variable so  
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that levels 3 and 4 have the same value. For example, the DATA step can 
contain a statement like 

 
IF educ = 3 THEN educ = 4; 

When I estimated the model with this recoding, the log-likelihood 
was –317.97, compared with –317.50 with the original coding. Twice the 
positive difference is .94, which, again, is far from statistically significant.  

GOODNESS-OF-FIT TESTS WITH THE LIKELIHOOD-RATIO STATISTIC 

As we have seen, the AFT model encompasses a number of 
submodels that differ in the assumed distribution for T, the time of the 
event. When we tried out those models on the recidivism data, we found 
that they produced generally similar coefficient estimates and p-values. A 
glaring exception is the log-normal model, which yields qualitatively 
different conclusions for some of the covariates. Clearly, we need some 
way of deciding between the log-normal and the other models. Even if all 
the models agree on the coefficient estimates, they still have markedly 
different implications for the shape of the hazard function. Again we may 
need methods for deciding which of these shapes is the best description of 
the true hazard function.  

In the next section, we’ll consider some graphical methods for 
comparing models. Here, we examine a simple and often decisive method 
based on the likelihood-ratio statistic. In general, likelihood-ratio statistics 
can be used to compare nested models. A model is said to be nested within 
another model if the first model is a special case of the second. More 
precisely, model A is nested within model B if A can be obtained by 
imposing restrictions on the parameters in B. For example, the exponential 
model is nested within the Weibull model. You get the exponential from 
the Weibull by forcing the scale parameter σ  equal to 1, and you get the 
exponential from the gamma by forcing both the shape and scale 
parameters equal to 1.  

If model A is nested within model B, we can evaluate the fit of A by 
taking twice the positive difference in the log-likelihoods for the two 
models. Of course, to evaluate a model in this way, you need to find 
another model within which it is nested. As previously noted, the Weibull 
and log-normal models (but not the log-logistic) are both nested within the 
generalized gamma model, making it a simple matter to evaluate them with 
the likelihood-ratio test.  
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Here are the restrictions on the generalized gamma that are implied 
by its submodels: 

 δ = 1 Weibull  
 σ = 1, δ = 1 exponential  
 δ = 0 log-normal 
 

Remember that σ is the scale parameter and δ is the shape parameter. 
The likelihood-ratio test for each of these models is, in essence, a test for 
the null hypothesis that the particular restriction is true. Hence, these tests 
should be viewed not as omnibus tests of the fit of a model but rather as 
tests of particular features of a model and its fit to the data.  

Let’s calculate the likelihood-ratio tests for the recidivism data. The 
log-likelihoods for the models fitted earlier in this chapter are 

 –325.83 exponential 
 –319.38 Weibull 
 –322.69 log-normal 
 –319.40 log-logistic 
 –319.38 generalized gamma 
 

Because these log-likelihoods are all negative (which will virtually 
always be the case), lower magnitudes correspond to better fits. Taking the 
differences between nested models and multiplying by 2 yields the 
following likelihood-ratio chi-square statistics: 

 12.90 exponential vs. Weibull 
 12.90 exponential vs. g. gamma 
 .00 Weibull vs. g. gamma 
 6.62 log-normal vs. g. gamma 
 

With the exception of the exponential model versus the generalized 
gamma model (which has 2 d.f.), all these tests have a single degree of 
freedom corresponding to the single restriction being tested. 

The conclusions are clear. The exponential model must be rejected 
(p=.002), implying that the hazard of arrest is not constant over the 1-year 
interval. This is consistent with the results we saw earlier for the Lagrange 
multiplier test, although that test produced a chi-square value of 24.93, 
more than twice as large as the likelihood-ratio statistic. The log-normal 
model must also be rejected, although somewhat less decisively (p=.01). 
On the other hand, the Weibull model fits the data very well. Apparently, 
we can safely disregard the discrepant coefficient estimates for the log-
normal model because the model is not consistent with the data.  
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Before embracing the Weibull model, however, remember that the 
log-logistic model, which has a nonmonotonic hazard function, does not 
fit into our nesting scheme. For the recidivism data, its log-likelihood is 
only trivially lower than that for the gamma model, suggesting a very good 
fit to the data. While this fact should lead us to retain the log-logistic 
model as one of our possible candidates, we cannot use it in a formal test 
of significance.  

In interpreting these likelihood-ratio statistics, you should keep in 
mind that the validity of each test rests on the (at least approximate) truth 
of the more general model. If that model does not fit the data well, then the 
test can be quite misleading. I have seen several examples in which the 
test for the exponential model versus the Weibull model is not significant, 
but the test for the Weibull model versus the generalized gamma model is 
highly significant. Without seeing the second test, you might conclude that 
the hazard is constant when, in fact, it is not. But what about the 
generalized gamma model itself? How do we know that it provides a 
decent fit to the data? Unfortunately, we can’t get a likelihood-ratio test of 
the generalized gamma model unless we can fit an even more general 
model. And even if we could fit a more general model, how would we 
know that model was satisfactory? Obviously you have to stop somewhere. 
As noted earlier, the generalized gamma model is a rich family of 
distributions, so we expect it to provide a reasonably good fit in the 
majority of cases. 

GRAPHICAL METHODS FOR EVALUATING MODEL FIT 

Another way to discriminate between different probability 
distributions is to use graphical diagnostics. In Chapter 3, we saw how to 
use PROC LIFETEST to get plots of the estimated survivor function, which 
can be used to evaluate two of the distributional models considered in this 
chapter. Specifically, the PLOTS=LS option produces a plot of 

)(ˆlog tS− versus t. If the true distribution is exponential, this plot should 
yield a straight line with an origin at 0. The LLS option produces a plot of 

)](ˆloglog[ tS− versus log t, which should be a straight line if the true 
distribution is Weibull.  

There are two limitations to these methods.  First, PROC LIFETEST 
cannot produce any graphs suitable for evaluation of the gamma, log-
normal or log-logistic.  Second, these graphs do not adjust for the effects of 
covariates.  Both limitations are removed by the PROBPLOT statement in 
PROC LIFEREG. 
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The PROBPLOT statement could hardly be easier to use. After the 
MODEL statement, simply write 

 
PROBPLOT; 
 

Although several options are available, they are usually not necessary.  
The PROBPLOT statement produces non-parametric estimates of the 

survivor function using a modified Kaplan-Meier method that adjusts for 
covariates. It then applies a transformation to the survivor estimates that, 
when graphed against the log of time, should appear as a straight line if the 
specified model is correct.  

Output 4.8 displays a graph produced by the PROBPLOT statement 
for the exponential model applied to the recidivism data. The upward 
sloping straight line represents the survival function predicted by the 
model. The shaded bands around that line are the 95% confidence bands. 
The circles are the non-parametric survival function estimates. Ideally, all 
the non-parametric estimates should lie within the confidence bands.  

Output 4.8 Probability Plot for Exponential Model Applied to Recidivism Data 
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Output 4.9 displays the probability plot for the log-normal model. 
Again, we see evidence that the model doesn’t fit the data well, although 
it’s not nearly as bad as the exponential model. Finally, Output 4.10 shows 
the probability plot for the Weibull model. Here all the non-parametric 
estimates fall within the 95% confidence bands. 

Output 4.9 Probability Plot for Log-Normal Model Applied to Recidivism Data 

 
 
The probability plots for these three models are consistent with the 

likelihood-ratio tests reported earlier. The Weibull model fits well but the 
exponential and log-normal models do not. Such consistency will not 
always occur, however. Unlike the likelihood-ratio tests, which compare 
one model with another, the probability plots compare the model against 
the data and thus allow us to evaluate the overall goodness of fit of the 
model.  
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Output 4.10 Probability Plot for Weibull Model Applied to Recidivism Data 

 

LEFT CENSORING AND INTERVAL CENSORING 

One of PROC LIFEREG’s more useful features is its ability to handle 
left censoring and interval censoring. Recall that left censoring occurs 
when we know that an event occurred earlier than some time t, but we 
don’t know exactly when. Interval censoring occurs when the time of 
event occurrence is known to be somewhere between times a and b, but 
we don’t know exactly when. Left censoring can be seen as a special case 
of interval censoring in which a = 0; right censoring is a special case in 
which b=∞ .  

Interval-censored data are readily incorporated into the likelihood 
function. The contribution to the likelihood for an observation censored 
between a and b is just Si(a) - Si(b), where Si(.) is the survivor function for 
observation i. (This difference is always greater than or equal to 0 because 
Si(t) is a nonincreasing function of t.) In other words, the probability of an 
event occurring in the interval (a, b) is the probability of an event 
occurring after a minus the probability of it occurring after b. For left-
censored data, Si(a) = 1; for right-censored data, Si(b)=0.  
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PROC LIFEREG can handle any combination of left-censored, right-
censored, and interval-censored data, but a different MODEL statement 
syntax is required if there are any left-censored or interval-censored 
observations. Instead of a time variable and a censoring variable, PROC 
LIFEREG needs two time variables, an upper time and a lower time. Let’s 
call them UPPER and LOWER. The MODEL statement then reads as 
follows: 

 
MODEL (lower,upper)=list of covariates; 
 

The censoring status is determined by whether the two values are 
equal and whether either is coded as missing data: 

 Uncensored:   LOWER and UPPER are both present and equal. 
 Interval Censored:   LOWER and UPPER are present and different.  
 Right Censored:   LOWER is present, but UPPER is missing. 
 Left Censored:   LOWER is missing, but UPPER is present.  

You might think that left censoring could also be indicated by coding 
LOWER as 0, but PROC LIFEREG excludes any observations with times 
that are 0 or negative. Observations are also excluded if both UPPER and 
LOWER are missing or if LOWER > UPPER. Here are some examples: 

 

Observation Lower Upper Status 
1 3.9 3.9 Uncensored 
2 7.2 . Right Censored 
3 4.1 5.6 Interval Censored 
4 . 2.0 Left Censored 
5 0 5.8 Excluded 
6 3.2 1.9 Excluded 

Let’s look at an example of left censoring for the recidivism data. 
Suppose that of the 114 arrests, the week of arrest was unknown for 30 
cases. In other words, we know that an arrest occurred between 0 and 52 
weeks, but we don’t know when. To illustrate this, I modified the 
recidivism data by recoding the WEEK variable as missing for the first 30 
arrests in the data set. This was accomplished with the following program: 

 
PROC SORT DATA=recid OUT=recid2; 
  BY DESCENDING arrest; 
DATA recidlft; 
  SET recid2; 
  IF _N_ LE 30 THEN week = .; 
RUN; 
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The following program further modifies the data set to create the 
UPPER and LOWER variables needed for PROC LIFEREG: 

 
DATA recid3; 
   SET recidlft; 
      /* uncensored cases: */ 
   IF arrest=1 AND week ne . THEN DO; 
 upper=week; 
 lower=week; 
   END; 
      /* left-censored cases: */ 
   IF arrest=1 AND week = . THEN DO; 
    upper=52; 
    lower=.; 
   END; 
      /* right-censored cases: */ 
   IF arrest=0 THEN DO; 
    upper=.; 
    lower=52; 
   END; 
RUN; 
 

The code for estimating a Weibull model is then 
 
PROC LIFEREG DATA=recid3; 
   MODEL (lower,upper)=fin age race wexp mar paro prio 
    / D=WEIBULL; 
RUN; 

Results in Output 4.11 should be compared with those in Output 4.3, 
for which there were no left-censored cases. Although the results are quite 
similar, the chi-square statistics are nearly all smaller when some of the 
data are left censored. This is to be expected because left censoring entails 
some loss of information. Note that you cannot compare the log-likelihood 
for this model with the log-likelihood for the model with no left censoring. 
Whenever you alter the data, the log-likelihoods are no longer comparable.  
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Output 4.11 Results for the Weibull Model with Left-Censored Data 

                            Model Information 
 
                 Data Set                      WORK.DATA1 
                 Dependent Variable            Log(lower) 
                 Dependent Variable            Log(upper) 
                 Number of Observations               432 
                 Noncensored Values                    84 
                 Right Censored Values                318 
                 Left Censored Values                  30 
                 Interval Censored Values               0 
                 Name of Distribution             Weibull 
                 Log Likelihood              -294.0611169 
 
            Analysis of Maximum Likelihood Parameter Estimates 
 
                            Standard   95% Confidence     Chi- 
  Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
 
  Intercept      1   3.9567   0.4078   3.1574   4.7560   94.14     <.0001 
  fin            1   0.2490   0.1348  -0.0152   0.5133    3.41     0.0647 
  age            1   0.0413   0.0158   0.0102   0.0723    6.79     0.0092 
  race           1  -0.2191   0.2145  -0.6395   0.2013    1.04     0.3070 
  wexp           1   0.0777   0.1484  -0.2132   0.3686    0.27     0.6006 
  mar            1   0.3001   0.2658  -0.2208   0.8211    1.27     0.2588 
  paro           1   0.0682   0.1356  -0.1975   0.3339    0.25     0.6151 
  prio           1  -0.0623   0.0207  -0.1030  -0.0217    9.03     0.0027 

Scale          1   0.6911   0.0717   0.5639   0.8470 
Weibull Shape  1   1.4469   0.1501   1.1806   1.7732 

The recidivism data can also be used to illustrate interval censoring. 
Because we know only the week of the arrest and not the exact day, we can 
actually view each arrest time as an interval-censored observation. 
Although Petersen (1991) has shown that some bias can result from 
treating discrete data as continuous, there’s probably little danger of bias 
with 52 different values for the measurement of arrest time. Nonetheless, 
we can use the interval-censoring option to get a slightly improved 
estimate. For an arrest that occurs in week 2, the actual interval in which 
the arrest occurred is (1, 2). Similarly, the interval is (2, 3) for an arrest 
occurring in week 3. This suggests the following recoding of the data:  
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DATA recidint;  
   SET recid; 
      /* interval-censored cases: */ 
   IF arrest=1 THEN DO; 
      upper=week; 
      lower=week-.9999; 
   END; 
      /* right-censored cases: */ 
   IF arrest=0 THEN DO; 
      upper=.; 
      lower=52; 
   END; 
RUN; 
PROC LIFEREG DATA=recidint; 
   MODEL (lower, upper) = fin age race wexp mar paro prio 
    / D=WEIBULL; 
RUN; 

To get the lower value for the interval-censored cases, I subtracted 
.9999 instead of 1 so that the result is not 0 for those persons with 
WEEK=1 (which would cause PROC LIFEREG to exclude the observation). 

The results in Output 4.12 are very close to those in Output 4.3, 
which assumed that time was measured exactly. (Some output lines are 
deleted.) If the intervals had been larger, we might have found more 
substantial differences. The magnitude of the log-likelihood is nearly 
doubled for the interval-censored version but, again, log-likelihoods are 
not comparable when the data are altered.  
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Output 4.12 Results Treating Recidivism Data as Interval Censored 

                             Model Information 
 
                 Data Set                    WORK.RECIDINT 
                 Dependent Variable             Log(lower) 
                 Dependent Variable             Log(upper) 
                 Number of Observations                432 
                 Noncensored Values                      0 
                 Right Censored Values                 318 
                 Left Censored Values                    0 
                 Interval Censored Values              114 
                 Name of Distribution              Weibull 
                 Log Likelihood                -680.995873 
 
            Analysis of Maximum Likelihood Parameter Estimates 
 
                            Standard   95% Confidence     Chi- 
  Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
 
  Intercept      1   3.9906   0.4374   3.1333   4.8479   83.23     <.0001 
  fin            1   0.2837   0.1440   0.0015   0.5659    3.88     0.0488 
  age            1   0.0425   0.0167   0.0098   0.0753    6.48     0.0109 
  race           1  -0.2343   0.2298  -0.6846   0.2161    1.04     0.3079 
  wexp           1   0.1106   0.1582  -0.1994   0.4206    0.49     0.4845 
  mar            1   0.3246   0.2853  -0.2345   0.8837    1.29     0.2552 
  paro           1   0.0618   0.1457  -0.2238   0.3474    0.18     0.6714 
  prio           1  -0.0685   0.0218  -0.1113  -0.0257    9.83     0.0017 

Scale          1   0.7435   0.0665   0.6239   0.8861   
Weibull Shape  1   1.3449   0.1204   1.1285   1.6028 

 

GENERATING PREDICTIONS AND HAZARD FUNCTIONS 

After fitting a model with PROC LIFEREG, it’s sometimes desirable 
to generate predicted survival times for the observations in the data set. If 
you want a single point estimate for each individual, the predicted median 
survival time is probably the best. You can get this easily with the 
OUTPUT statement, as shown in the following example: 

 
PROC LIFEREG DATA=recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio 
         / D=WEIBULL; 
   OUTPUT OUT=a P=median STD=s;   
RUN;  
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PROC PRINT DATA=a;  
   VAR week arrest _prob_ median s; 
RUN; 

The P= option in the OUTPUT statement requests percentiles. By 
default, PROC LIFEREG calculates the 50th percentile (that is, the median). 
(The word median in the OUTPUT statement is just the variable name I 
chose to hold the quantiles.) You can request other percentiles with the 
QUANTILE keyword, as described in the PROC LIFEREG documentation. 
The STD keyword requests the standard errors of the medians.  

Output 4.13 shows the first 20 cases in the new data set. In the output, 
_PROB_ is the quantile (that is, the percentile divided by 100) requested, and S 
is the standard error of the median. Note that many of these predicted medians 
are much greater than the observed event (or censoring times) and often well 
beyond the observation limit of 52 weeks. This is not surprising given that 
nearly 75 percent of the observations are censored. Although we observed 
individuals for only 52 weeks, the fitted distribution is not at all limited by the 
censoring times. Therefore, you should be very cautious in interpreting these 
predicted medians because the model is being extrapolated to times that are far 
beyond those that are actually observed.  

Output 4.13 Predicted Median Survival Times for Recidivism Data (First 20 Cases) 

   Obs    week    arrest    _PROB_     median       s 
 
     1     20        1        0.5      86.910     14.532 
     2     17        1        0.5      43.353      6.646 
     3     25        1        0.5      45.257     14.654 
     4     52        0        0.5     167.947     50.293 
     5     52        0        0.5      87.403     21.731 
     6     52        0        0.5      86.166     13.989 
     7     23        1        0.5     148.225     42.416 
     8     52        0        0.5      93.083     15.532 
     9     52        0        0.5      54.873      7.694 
    10     52        0        0.5      83.518     15.483 
    11     52        0        0.5     109.544     18.986 
    12     52        0        0.5     165.290     50.312 
    13     37        1        0.5      56.411     10.132 
    14     52        0        0.5     146.285     38.768 
    15     25        1        0.5      65.358      8.360 
    16     46        1        0.5     110.592     18.115 
    17     28        1        0.5      45.471      6.814 
    18     52        0        0.5      65.816     10.306 
    19     52        0        0.5      44.305      9.429 
    20     52        0        0.5     122.208     30.552 
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You can also get predicted values for sets of covariate values that are 
not in the original data set. Before estimating the model, simply append to 
the data set additional observations with the desired covariate values and 
with the event time set to missing. These added observations are not used 
in estimating the model, but predicted values will be generated for them.  

Instead of predicted survival times, researchers often want to predict 
the probability of surviving to some specified time (for example, 5-year 
survival probabilities). While these are not directly computed by PROC 
LIFEREG, it’s fairly straightforward to calculate them. This is 
accomplished by substituting linear predictor values that can be produced 
by the OUTPUT statement into formulas for the survivor function (given in 
the PROC LIFEREG documentation). To make it easy, I’ve written a macro 
called PREDICT, which is described in detail in Appendix 1, “Macro 
Programs.” This macro is used in the following way. When specifying the 
model in PROC LIFEREG, you must request that the parameter estimates 
be written to a data set using the OUTEST= option. Next, use the XBETA= 
option in the OUTPUT statement to request that the linear predictor be 
included in a second data set. Finally, call the macro, indicating the names 
of the two data sets, the name assigned to the linear predictor, and the time 
for calculating the survival probabilities. For example, to produce 30-week 
survival probabilities for the recidivism data, submit these statements: 

 
PROC LIFEREG DATA=recid OUTEST=a; 
   MODEL week*arrest(0) = fin age race wexp mar paro prio 
         / D=WEIBULL; 
   OUTPUT OUT=b XBETA=lp;   
RUN; 
 
%PREDICT(OUTEST=a,OUT=b,XBETA=lp,TIME=30) 
 

Output 4.14 shows the first 20 cases of the new data set (_PRED_). 
The last column (prob) contains the 30-week survival probabilities based 
on the fitted model.  
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Output 4.14 Predicted 30-Week Survival Probabilities for Recidivism Data 

Obs  week  fin  age  race  wexp  mar  paro  prio  educ  arrest   t    prob 
 
  1   20    0    27    1     0    0     1     3     3      1    30  0.85579 
  2   17    0    18    1     0    0     1     8     4      1    30  0.66139 
  3   25    0    19    0     1    0     1    13     3      1    30  0.67760 
  4   52    1    23    1     1    1     1     1     5      0    30  0.94010 
  5   52    0    19    0     1    0     1     3     3      0    30  0.85684 
  6   52    0    24    1     1    0     0     2     4      0    30  0.85417 
  7   23    0    25    1     1    1     1     0     4      1    30  0.92903 
  8   52    1    21    1     1    0     1     4     3      0    30  0.86811 
  9   52    0    22    1     0    0     0     6     3      0    30  0.74306 
 10   52    0    20    1     1    0     0     0     5      0    30  0.84816 
 11   52    1    26    1     0    0     1     3     3      0    30  0.89356 
 12   52    0    40    1     1    0     0     2     5      0    30  0.93878 
 13   37    0    17    1     1    0     1     5     3      1    30  0.75151 
 14   52    0    37    1     1    0     0     2     3      0    30  0.92776 
 15   25    0    20    1     0    0     1     3     4      1    30  0.79267 
 16   46    1    22    1     1    0     1     2     3      1    30  0.89490 
 17   28    0    19    1     0    0     0     7     3      1    30  0.67934 
 18   52    0    20    1     0    0     0     2     3      0    30  0.79448 
 19   52    0    25    1     0    0     1    12     3      0    30  0.66965 
 20   52    0    24    0     1    0     1     1     3      0    30  0.90800 

Because every model estimated in PROC LIFEREG has an implicit 
hazard function, it would be nice to see what that hazard function looks 
like. I’ve written another macro called LIFEHAZ (also described in 
Appendix 1) that produces a graph of the hazard as a function of time. As 
with the PREDICT macro, you first need to fit a PROC LIFEREG model that 
includes the OUTPUT statement and the OUTEST= option in the PROC 
statement. Using the same PROC LIFEREG specification that was used 
before with the PREDICT macro, you then submit the following: 

 
%LIFEHAZ(OUTEST=a,OUT=b,XBETA=lp) 
 

For the recidivism data using the Weibull model, this macro 
produces the graph shown in Output 4.15. Keep in mind that this graph 
depends heavily on the specified model.  If we specify a log-normal model 
before using the LIFEHAZ macro, the graph will look quite different.  
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Output 4.15 Graph of Hazard Function for Recidivism Data 
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THE PIECEWISE EXPONENTIAL MODEL 

All the AFT models we have considered so far assume that the 
hazard is a smooth, relatively simple function of time. The Cox model 
(estimated with the PHREG procedure) is much less restrictive in this 
regard, but it lacks the facility to test hypotheses about the shape of the 
hazard function. One way to get some of the flexibility of the Cox model 
without losing the hypothesis testing capability is to employ the piecewise 
exponential model, a method that is widely used in several fields. We can 
easily estimate it with PROC LIFEREG, although it requires some 
preliminary restructuring of the data. A bonus of this method is the ability 
to incorporate time-dependent covariates.  

The basic idea is simple. Divide the time scale into intervals. 
Assume that the hazard is constant within each interval but can vary 
across intervals. In symbols, we define a set of J intervals, with cut points 
a0, a1, … , aJ, where a0 = 0, and aJ = ∞. Thus, interval j is given by [aj-1, aj). 
The hazard for individual i is assumed to have the form 

 ieth ji
βxλ=)(       for aj-1 ≤ t < aj 

or equivalently 

 iji th βx+= α)(log  
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where αj = log λj. Thus, the intercept in the log-hazard equation is allowed 
to vary in an unrestricted fashion from one interval to another. The choice 
of intervals is arbitrary, however, leading to some arbitrariness in the 
estimates.  

The procedure for estimating this model is best explained by way of 
example. For the recidivism data, let’s break up the 52-week observation 
period into four quarters of 13 weeks each and assume that the hazard is 
constant within each quarter. We then create a new data set with possibly 
multiple records for each person. One record is created for each quarter 
during which an individual was at risk of the first arrest. Four records are 
created for persons who were arrested in the fourth quarter or who were 
not arrested at all. Three records are created for those arrested in the third 
quarter, two records are created for those arrested in the second quarter, 
and one record is created for those arrested in the first quarter. This yields 
a total of 1,573 person-quarters for the 432 ex-convicts.  

Each record is treated as a distinct observation, with the time reset to 
0 at the beginning of the quarter. If an arrest occurred in the quarter, a 
censoring variable for that person-quarter is set to 1; otherwise, it is set to 
0. If no arrest occurred in the quarter, a time variable is assigned the full 13 
weeks. If an arrest occurred, the time variable is coded as the length of 
time from the start of the quarter until the arrest.  

For the recidivism data, all censoring is at the end of the fourth 
quarter. Had there been any censoring within quarters, the time variable 
would be coded as the length of time from the beginning of the quarter 
until censoring occurred. The fixed covariates are simply replicated for 
each quarter. If there were any time-dependent covariates, their values at 
the beginning of each quarter could be assigned to the records for that 
quarter.  

Here’s a DATA step for creating such a data set: 
 
DATA quarter; 
   SET recid; 
   quarter=CEIL(week/13);   
   DO j=1 TO quarter; 
      time=13;            
      event=0; 
 IF j=quarter AND arrest=1 THEN DO; 
   event=1; 
   time=week-13*(quarter-1); 
 END; 
 OUTPUT; 
   END; 
RUN; 
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The CEIL function, which produces the smallest integer greater than its 
argument, yields values of 1, 2, 3, or 4, corresponding to the quarter. The 
DO loop produces a record for each quarter at risk. The TIME and EVENT 
variables are initialized at the values appropriate for quarters in which 
arrests did not occur. The IF statement checks to see if an arrest occurred 
in the quarter. If an arrest did occur, then EVENT and TIME are 
appropriately recoded. Finally, a new record is output containing all the 
original variables plus the newly created ones.  

We then call the LIFEREG procedure and specify an exponential 
model: 

 
PROC LIFEREG DATA=quarter; 
   CLASS j; 
   MODEL time*event(0)=fin age race wexp mar paro prio j  
         / D=EXPONENTIAL COVB; 
RUN; 

The variable J—the index variable in the DO loop of the DATA step—has 
values of 1, 2, 3, or 4, corresponding to the quarter covered by each record. 
It is specified as a CLASS variable so that PROC LIFEREG will set up an 
appropriate set of indicator variables to estimate the αj’s in the piecewise 
exponential model (actually we estimate contrasts between the αj’s). 

Results in Output 4.16 show a significant effect of J (quarter), 
implying that the hazard is not constant over time. The Wald chi-square 
value is 8.70 on 3 d.f., which is corroborated by a likelihood-ratio test with 
a chi-square value of 9.52. (The likelihood-ratio test is calculated by 
rerunning the model without J and taking twice the positive difference in 
the log-likelihoods.) The coefficients for the three indicator variables are 
all contrasts with the fourth quarter. To interpret these coefficients, it’s 
probably best to change their signs so that they reflect hazards rather than 
survival times. In contrast to the Weibull model, which imposed a 
monotonically increasing hazard, the pattern displayed here is not 
monotonic. The estimated hazard increases from first to second quarter, 
then decreases, and then increases again.  
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Output 4.16 Results for Piecewise Exponential Model Applied to Recidivism Data 

 
                       Type III Analysis of Effects 
 
                                         Wald 
                Effect       DF    Chi-Square    Pr > ChiSq 
 
                j             3        8.6954        0.0336 
 
 
            Analysis of Maximum Likelihood Parameter Estimates 
 
                             Standard   95% Confidence     Chi- 
 Parameter       DF Estimate    Error       Limits       Square Pr > ChiSq 
 
 Intercept        1   3.7226   0.6082   2.5307   4.9146   37.47     <.0001 
 fin              1   0.3774   0.1913   0.0023   0.7524    3.89     0.0486 
 age              1   0.0570   0.0220   0.0140   0.1000    6.73     0.0095 
 race             1  -0.3126   0.3080  -0.9162   0.2910    1.03     0.3101 
 wexp             1   0.1489   0.2122  -0.2670   0.5648    0.49     0.4828 
 mar              1   0.4331   0.3818  -0.3152   1.1814    1.29     0.2566 
 paro             1   0.0836   0.1957  -0.3000   0.4672    0.18     0.6692 
 prio             1  -0.0909   0.0286  -0.1470  -0.0347   10.07     0.0015 
 j             1  1   0.8202   0.2841   0.2633   1.3771    8.33     0.0039 
 j             2  1   0.1883   0.2446  -0.2911   0.6677    0.59     0.4414 
 j             3  1   0.3134   0.2596  -0.1953   0.8221    1.46     0.2273 
 j             4  0   0.0000    .        .        .         .        . 
 Scale            0   1.0000   0.0000   1.0000   1.0000 

The chi-square tests for the individual indicator variables show that 
the hazard of arrest in the first quarter is significantly lower than the 
hazard in the last quarter. Although the two middle quarters have lower 
estimated hazards than the last, the differences are not significant. A Wald 
test (constructed from the covariance matrix produced by the COVB 
option) comparing the first and second quarters is also significant at about 
the .03 level. The coefficients and p-values for the remaining variables are 
consistent with those found with the conventional exponential and 
Weibull models. 

Of course, there is a certain arbitrariness that arises from the division 
of the observation period into quarters. To increase confidence in the 
results, you may want to try different divisions and see if the results are 
stable. I re-estimated the model for the recidivism data with a division into 
13 “months” of four weeks each, simply by changing all the 13’s to 4’s in 
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the DATA step. This produces a data set with 4,991 records. Results for the 
fixed covariates are virtually identical. The Wald chi-square test for the 
overall effect of J (month) is also about the same, but, with 12 degrees of 
freedom, the p-value is well above conventional levels for statistical 
significance.  

Here are some final observations about the piecewise exponential 
model: 

 You do not need to be concerned about the fact that the working 
data set has multiple records for each individual. In particular, 
there is no inflation of test statistics resulting from lack of 
independence. The fact that the results are so similar regardless 
of how many observations are created should reassure you on 
this issue. The reason it’s not a problem is that the likelihood 
function actually factors into a distinct term for each individual 
interval. This conclusion does not apply, however, when the 
data set includes multiple events for each individual.  

 The piecewise model can be easily fit in a Bayesian framework 
using PROC PHREG. This option will be discussed in the next 
chapter. 

 The piecewise exponential model is very similar to the discrete-
time methods described in Chapter 7, “Analysis of Tied or 
Discrete Data with PROC LOGISTIC,” The principal difference is 
that estimation of the piecewise exponential model uses 
information on the exact timing of events, while the discrete-time 
methods are based on interval-censored data.  

 There is no requirement that the intervals have equal length, 
although that simplifies the DATA step somewhat. Because 
there’s some benefit in having roughly equal numbers of events 
occurring in each interval, this sometimes requires unequal 
interval lengths.  

 The use of time-dependent covariates in the piecewise 
exponential model can substantially complicate the DATA step 
that creates the multiple records. For examples of how to do this, 
see Chapter 7 on discrete-time methods. There are also a number 
of issues about design and interpretation of studies with time-
dependent covariates that are discussed in detail in Chapters 5 
and 7.  
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BAYESIAN ESTIMATION AND TESTING 

Beginning with SAS 9.2, PROC LIFEREG can do a Bayesian analysis 
for any of the models discussed in this chapter. In a Bayesian analysis, the 
parameters of the model are treated as random variables rather than as 
fixed characteristics of the population. A prior distribution must be 
specified for these parameters. This is a probability distribution that 
incorporates any previous knowledge or beliefs about the parameters. The 
goal of the analysis is to produce the posterior distribution of the 
parameters. The posterior distribution is obtained by using Bayes’ theorem 
to combine the likelihood function of the data with the prior distribution. 
Once you have the posterior distribution for a particular parameter, the 
mean or median of that distribution can be used as a point estimate of the 
parameter, and appropriate percentiles of the distribution can be used as 
interval estimates. For a useful primer on Bayesian analysis in SAS, see 
the SAS/STAT 9.2 User’s Guide, “Introduction to Bayesian Analysis 
Procedures.” 

A Bayesian approach has several attractions that are relevant here:   
 Inferences are exact, in the sense that they do not rely on large-

sample approximations, and thus may be more accurate for small 
samples. 

 Information from prior research studies can be readily 
incorporated into the analysis. 

 Comparison of non-nested models can be accomplished in a 
systematic framework.  

These advantages come with a major computational cost. The Markov 
Chain Monte Carlo (MCMC) methods used by PROC LIFEREG to simulate 
the posterior distribution are very intensive. For example, it took only 
about a tenth of a second on my laptop to estimate the log-normal model 
reported in Output 4.1. By contrast, a Bayesian analysis (with the default 
non-informative prior distributions) took more than 5 minutes.  

The other potential disadvantage of a Bayesian approach is the 
difficulty in coming up with suitable prior distributions for the parameters 
of the model. The default is to use non-informative priors that embody 
little or no information about the parameters. PROC LIFEREG uses uniform 
(constant) priors for the coefficients and a “just informative” gamma prior 
for the scale parameter. But if you use these defaults, results typically don’t 
differ much from conventional maximum likelihood estimation. In fact, for 
the exponential model (which has the scale parameter fixed at 1), the 
maximum likelihood estimator for the coefficients is simply the mode of 
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the posterior distribution.  Although you have the option of choosing 
informative priors, this is not such an easy or straightforward task. 

As with most software for Bayesian analysis, PROC LIFEREG uses 
the MCMC algorithm (more specifically, the Gibbs sampler) to simulate a 
large number of sequential random draws from the posterior distribution—
by default, 12,000 draws. The first 2,000 (the “burn-in” iterations) are 
discarded in order to ensure that that the algorithm has converged to the 
correct posterior distribution. Even then, however, there is no guarantee 
that convergence has been attained. For that reason, PROC LIFEREG 
provides diagnostic plots and several test statistics to evaluate the 
convergence of the distribution.  

If you are OK with the defaults, requesting a Bayesian analysis is 
very simple. Just include the BAYES statement. Here is how to do it for the 
Weibull model that we estimated earlier (Output 4.3), using the recidivism 
data: 

 
ODS HTML; 
ODS GRAPHICS ON; 
PROC LIFEREG DATA=recid; 
  MODEL week*arrest(0)=fin age race wexp mar paro prio /D=WEIBULL; 
  BAYES; 
RUN; 
ODS GRAPHICS OFF; 
ODS HTML CLOSE; 
 

ODS GRAPHICS is used here so that PROC LIFEREG will produce a 
plot of the posterior distribution for each parameter, along with two 
diagnostic plots, a trace plot and an autocorrelation plot. Selected portions 
of the tabular results are shown in Output 4.17. Plots for one of the 
parameters (the coefficient of AGE) are shown in Output 4.18.  

The first two tables in Output 4.17 describe the prior distributions 
for all the parameters. By default, the regression coefficients all have the 
“Constant” or uniform prior, and they are assumed to be independent of 
each other and the scale parameter. The scale parameter is assigned a 
gamma distribution with “hyperparameters” of .001 for both the scale and 
inverse-shape parameters. This is equivalent to using a gamma distribution 
with a mean of 1 and a very large standard deviation (approximately 32). 

The “Initial Values of the Chain” table displays the starting values 
for the parameters. These are “posterior mode” estimates, which means 
that they are obtained by maximizing the likelihood function weighted by 
the prior distribution. The “Fit Statistics” table shows three fit measures 
that were described earlier in this chapter: AIC, AICC, and BICC. In fact, 
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the values shown here are exactly the same as those reported for 
conventional maximum likelihood estimation.  

What’s new are the DIC and pD statistics. DIC stands for deviance 
information criterion, a widely used measure of fit for Bayesian analysis. 
It’s essentially a Bayesian analog to the AIC statistic, calculated as 

DpLDIC 2)(log2 +−= θ   

where L is the likelihood function, θ is the mean of the posterior 
distribution of the parameter vector θ, and pD is the “effective number of 
parameters.” It is calculated as  

 )(log2)](log2[ θθ LLMeanpD +−=  

where the mean is taken over the posterior distribution of θ.   As with the 
AIC, the DIC is used primarily to compare models with different numbers 
of parameters.   

The next table, “Posterior Summaries,” is the heart of the analysis. 
For each parameter, we get the mean of the posterior distribution, based on 
the sample of 10,000 random draws from that distribution. Keep in mind 
that all the numbers in this table are simulation-based estimates, and 
therefore will be slightly different if we run the model again. But with 
10,000 cases, the sampling error should be small. The next column is the 
standard deviation, which plays the same role as the standard error in 
conventional frequentist methodology. Finally, we get the 25th, 50th, and 
75th percentiles of the posterior distribution. The 50th percentile is, of 
course, the median, and some may prefer this to the mean as a point 
estimate for the parameter of interest.  

The “Posterior Intervals” table displays what are usually called 
credible intervals in Bayesian analysis, and by default, they are 95% 
intervals.  Credible intervals play the same role as confidence intervals in 
conventional statistics, although the interpretation is somewhat different. 
A 95% confidence interval is interpreted by saying that if we repeated the 
sampling and estimation process many times, 95% of the constructed 
confidence intervals would include the true parameter.  A 95% credible 
interval says simply that there is a .95 probability that the true parameter is 
included in the reported interval. 

The “Equal Tail Intervals” are merely the 2.5th percentiles and the 
97.5th percentiles of the posterior distribution. Alternatively, one can use 
the “highest posterior density” or HPD intervals. These are the narrowest 
possible intervals that contain, by default, 95% of the posterior 
distribution. Although p-values are not reported for the estimates, a 95% 
credible interval that does not include 0 is the Bayesian equivalent of an 
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estimate that is significantly different from 0 at the .05 level (by a two-
sided test).  

The two remaining tables are used as diagnostics for the performance 
of the MCMC algorithm. In the sequence of random draws from the 
posterior distribution, each new draw depends, in part, on the value of the 
preceding draw. That induces an autocorrelation in the drawn values that, 
ideally, should decline to 0 as the distance between draws gets larger. 
Persistently high values of the autocorrelation suggest that the algorithm is 
not mixing well. These autocorrelations can vary substantially from one 
parameter to another. For example, the autocorrelation for adjacent values 
(lag 1) of the “fin” coefficient is only .04, while for “age” it is .79. The 
“age” autocorrelation declines to .29 for values that are five draws apart 
(lag 5) and then to .08 for lag 10. A graph of the autocorrelations for the 
“age” coefficient is shown in Output 4.18.  

Although autocorrelation should not cause any problem for 
estimates of the means, medians, and credible intervals, it may induce 
some bias in estimates of the standard deviations of the posterior 
distribution (Daniels and Hogan, 2008). This can be fixed by thinning the 
sample (for example, retaining only every 10th sample instead of every 
sample).  To do this in PROC LIFEREG, you simply use THIN=10 as an 
option in the BAYES statement. Of course, the disadvantage of this is that 
you would need to generate 10 times as many samples to get the same 
degree of accuracy. And in my (limited) experience, using this option 
typically has very little impact on the standard deviations. If you do 
choose to thin, the autocorrelation graph should provide useful guidance 
on what level of thinning is needed. 

The last table displays the “Geweke Diagnostics” for convergence of 
MCMC. The idea behind these statistics is very simple. After discarding 
the 2,000 burn-in iterations, we divide the sample into equal subsamples 
of early and late iterations. For the two subsamples, we calculate the 
means for each parameter. If the distribution has converged, these means 
should be equal, apart from sampling error. The Geweke statistic is just a 
standard z-statistic for differences between the two means. For the 
recidivism data, none of the differences approaches statistical significance. 
PROC LIFEREG also offers several other optional tests of convergence.   
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Output 4.17 Results for Bayesian Analysis of the Weibull Model for Recidivism 

                             Bayesian Analysis 
 
                 Uniform Prior for Regression Coefficients 
 
                           Parameter    Prior 
 
                           Intercept    Constant 
                           fin          Constant 
                           age          Constant 
                           race         Constant 
                           wexp         Constant 
                           mar          Constant 
                           paro         Constant 
                           prio         Constant 
 
 
           Independent Prior Distributions for Model Parameters 
 
             Prior 
Parameter    Distribution                   Hyperparameters 
 
Scale        Gamma           Shape       0.001    Inverse Scale       0.001 
 
 
                        Initial Values of the Chain 
 
     Chain        Seed  Intercept       fin       age      race      wexp 
 
         1   681742001   3.989018   0.27029  0.040422  -0.22319  0.105745 
 
                        Initial Values of the Chain 
 
                    mar        paro        prio       Scale 
 
               0.308981    0.058355    -0.06541    0.706806 
 
                              Fit Statistics 
 
             AIC (smaller is better)                  656.753 
             AICC (smaller is better)                 657.180 
             BIC (smaller is better)                  693.369 
             DIC (smaller is better)                  657.110 
             pD (effective number of parameters)        8.753 

                                                                                                                                                (continued) 
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Output 4.17 (continued) 

 
                           Posterior Summaries 
 
                                  Standard           Percentiles 
  Parameter         N      Mean  Deviation       25%       50%       75% 
 
  Intercept     10000    4.0183     0.4505    3.7214    4.0233    4.3152 
  fin           10000    0.2927     0.1502    0.1905    0.2909    0.3902 
  age           10000    0.0444     0.0171    0.0325    0.0438    0.0554 
  race          10000   -0.2661     0.2408   -0.4222   -0.2565   -0.1008 
  wexp          10000    0.1171     0.1648   0.00599    0.1161    0.2246 
  mar           10000    0.3767     0.3060    0.1647    0.3613    0.5749 
  paro          10000    0.0628     0.1523   -0.0384    0.0624    0.1625 
  prio          10000   -0.0675     0.0228   -0.0823   -0.0672   -0.0527 
  Scale         10000    0.7663     0.0708    0.7166    0.7619    0.8109 
 
 
                           Posterior Intervals 
 
    Parameter    Alpha     Equal-Tail Interval        HPD Interval 
 
    Intercept    0.050      3.1265      4.8962      3.1210      4.8881 
    fin          0.050     0.00557      0.5971    0.000220      0.5888 
    age          0.050      0.0130      0.0802      0.0126      0.0796 
    race         0.050     -0.7700      0.1813     -0.7401      0.2044 
    wexp         0.050     -0.2005      0.4436     -0.1940      0.4487 
    mar          0.050     -0.1900      0.9996     -0.1935      0.9931 
    paro         0.050     -0.2351      0.3628     -0.2255      0.3686 
    prio         0.050     -0.1137     -0.0225     -0.1139     -0.0229 
    Scale        0.050      0.6383      0.9201      0.6295      0.9067 
 
 
                        Posterior Autocorrelations 
 
           Parameter      Lag 1      Lag 5     Lag 10     Lag 50 
 
           Intercept     0.5590     0.0933    -0.0033    -0.0137 
           fin           0.0437     0.0064     0.0134    -0.0067 
           age           0.7862     0.2927     0.0821    -0.0099 
           race          0.6416     0.1024     0.0067     0.0076 
           wexp          0.2374     0.0563     0.0047    -0.0096 
           mar           0.7769     0.2421     0.0207    -0.0073 
           paro          0.0808     0.0139     0.0183    -0.0040 
           prio          0.7405     0.1581     0.0114    -0.0093 
           Scale         0.6061     0.1295     0.0677    -0.0145 

                                                                                                                                                (continued) 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 4 Estimating Parametric Regression Models with PROC LIFEREG 

 123 

 

Output 4.17 (continued) 

 
                            Geweke Diagnostics 
 
                     Parameter           z    Pr > |z| 
 
                     Intercept      0.8086      0.4188 
                     fin            1.4737      0.1406 
                     age           -0.0764      0.9391 
                     race          -0.4365      0.6625 
                     wexp          -0.6223      0.5337 
                     mar            0.7653      0.4441 
                     paro          -0.0576      0.9541 
                     prio          -1.0156      0.3098 
                     Scale          1.3244      0.1854 
 

 
Output 4.18 displays the plots that are produced by default when the 

BAYES statement is used. Only the plots for the AGE coefficient are 
shown. We have already considered the autocorrelation plot. The top plot 
is a trace plot of the sampled values of the AGE coefficient across the 
sequence of iterations, from 2,000 to 12,000. The first 2,000 values are not 
shown because they are considered burn-in iterations and are not used in 
calculating any of the estimates. Ideally, the trace plot should look like 
white noise (that is, it should have no pattern whatsoever). Certainly, we 
don’t want to see any upward or downward trends, nor any evidence that 
the variability is increasing or decreasing. The plot shown here is 
consistent with the relatively high levels of autocorrelation that persist up 
to about lag 10.  

The last plot is a graph of the empirical density function for the 
posterior distribution. These graphs typically look similar to normal 
distributions, especially if the sample size is large. In this example, the 
bulk of the distribution is clearly well above 0, consistent with the 95% 
credible intervals in Output 4.17 that do not include zero.  
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Output 4.18 Graphs for Bayesian Analysis of Recidivism Data 

 

CONCLUSION 

PROC LIFEREG provides effective methods for regression analysis of 
censored survival data, especially data with left censoring or interval 
censoring. These methods are somewhat less robust than the more widely 
used Cox regression analysis performed by PROC PHREG but, in most 
cases, the results produced by the two approaches are very similar. 
Moreover, unlike PROC PHREG, PROC LIFEREG makes it possible to test 
certain hypotheses about the shape of the hazard function.  

The biggest limitation of the PROC LIFEREG models is the inability 
to incorporate time-dependent covariates, although you can accomplish 
this to some degree with the piecewise exponential model. We now turn to 
PROC PHREG, which excels at this particular task.  
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INTRODUCTION 

PROC PHREG (pronounced P-H-REG, not FREG) implements the 
regression method first proposed in 1972 by the British statistician Sir 
David Cox in his famous paper “Regression Models and Life Tables” 
(Journal of the Royal Statistical Society, Series B). It’s difficult to 
exaggerate the impact of this paper. In the 2009 ISI Web of Science, it was 
cited over 1,000 times, making it the most highly cited journal article in 
the entire literature of statistics. In fact, Garfield (1990) reported that its 
cumulative citation count placed it among the top 100 papers in all of 
science. These citation counts undoubtedly underestimate the actual use 
of the method because many authors don’t bother citing the original paper. 

What explains this enormous popularity? Perhaps the most 
important reason is that, unlike the parametric methods discussed in 
Chapter 4, “Estimating Parametric Regression Models with PROC 
LIFEREG,” Cox’s method does not require that you choose some particular 
probability distribution to represent survival times. That’s why it’s called 
semiparametric. As a consequence, Cox’s method (often referred to as Cox  
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regression) is considerably more robust. A second reason for the paper’s 
popularity is that Cox regression makes it relatively easy to incorporate 
time-dependent covariates (that is, covariates that may change in value 
over the course of the observation period). 

There are other attractive features of Cox regression that are less 
widely known or appreciated. Cox regression permits a kind of stratified 
analysis that is very effective in controlling for nuisance variables. And 
Cox regression makes it easy to adjust for periods of time in which an 
individual is not at risk of an event. Finally, Cox regression can readily 
accommodate both discrete and continuous measurement of event times.  

Despite all these desirable qualities, Cox regression should not be 
viewed as the universal method for regression analysis of survival data. As 
I indicated in Chapter 4, there are times when a parametric method is 
preferable. And for most applications, you can do a reasonably good job of 
survival analysis using only PROC LIFEREG and PROC LIFETEST. Still, if 
I could have only one SAS procedure for doing survival analysis, it would 
be PROC PHREG. 

All implementations of Cox regression are not created equal. Among 
the many available commercial programs, PROC PHREG stands out for its 
toolkit of powerful features. While some programs don’t allow 
stratification—a fatal deficit in my view—PROC PHREG has a very flexible 
stratification option. Many programs don’t handle time-dependent 
covariates at all; those that do often have severe restrictions on the number 
or kinds of such covariates. In contrast, PROC PHREG has by far the most 
extensive and powerful capabilities for incorporating time-dependent 
covariates. And while Cox regression can theoretically deal with discrete 
(tied) data, most programs use approximations that are inadequate in many 
cases. In contrast, PROC PHREG offers two exact algorithms for tied data.  

THE PROPORTIONAL HAZARDS MODEL 

In his 1972 paper, Cox made two significant innovations. First, he 
proposed a model that is usually referred to as the proportional hazards 
model. That name is somewhat misleading, however, because the model 
can readily be generalized to allow for nonproportional hazards. Second, 
he proposed a new estimation method that was later named partial 
likelihood or, more accurately, maximum partial likelihood. The term Cox 
regression refers to the combination of the model and the estimation  
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method. It didn’t take any great leap of imagination to formulate the 
proportional hazards model—it’s a relatively straightforward 
generalization of the Weibull and Gompertz models that we considered in 
Chapter 2, “Basic Concepts of Survival Analysis.” But the partial 
likelihood method is something completely different. It took years for 
statisticians to fully understand and appreciate this novel approach to 
estimation. 

Before discussing partial likelihood, let’s first examine the model 
that it was designed to estimate. We’ll start with the basic model that does 
not include time-dependent covariates or nonproportional hazards. The 
model is usually written as 

 )exp()()( 110 ikkii xxtth ββλ ++=   (5.1) 

This equation says that the hazard for individual i at time t is the product 
of two factors:  

 a function λ0(t) that is left unspecified, except that it can’t be 
negative 

 a linear function of a set of k fixed covariates, which is then 
exponentiated.  

The function λ0(t) can be regarded as the hazard function for an individual 
whose covariates all have values of 0. It is often called the baseline hazard 
function. 

Taking the logarithm of both sides, we can rewrite the model as 

 ikkii xxtth ββα +++= 11)()(log   (5.2) 

where α(t) = log λ0(t). If we further specify α(t) = α, we get the exponential 
model. If we specify α(t) = αt, we get the Gompertz model. Finally, if we 
specify α(t) = α log t, we have the Weibull model. As we will see, however, 
the great attraction of Cox regression is that such choices are unnecessary. 
The function α(t) can take any form whatever, even that of a step function.  

Why is equation (5.1) called the proportional hazards model? 
Because the hazard for any individual is a fixed proportion of the hazard 
for any other individual. To see this, take the ratio of the hazards for two 
individuals i and j, and apply equation (5.1): 

 { })()(exp
)(
)(

11 jkikkji
j

i xxxx
th
th

−++−= ββ   (5.3) 
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What’s important about this equation is that λ0(t) cancels out of the 
numerator and denominator. As a result, the ratio of the hazards is 
constant over time. If we graph the log hazards for any two individuals, the 
proportional hazards property implies that the hazard functions should be 
strictly parallel, as in Figure 5.1.  

Figure 5.1 Parallel Log-Hazard Functions from Proportional Hazards Model  

t

log h(t)

Case 1

Case 2

 

PARTIAL LIKELIHOOD 

What’s remarkable about partial likelihood is that you can estimate 
the β coefficients of the proportional hazards model without having to 
specify the baseline hazard function λ0(t). In this section, we will  

 consider some general properties of partial likelihood  
 look at two simple examples using PROC PHREG  
 examine the mathematics of the method in some detail.  

The likelihood function for the proportional hazards model of 
equation (5.1) can be factored into two parts:  

 one part depends on both λ0(t) and β = [β1 β2 … βk]', the vector of 
coefficients  

 the other part depends on β  
alone.  

What partial likelihood does, in effect, is discard the first part and 
treat the second part—the partial likelihood function—as though it were 
an ordinary likelihood function. You get estimates by finding values of 

β that maximize the partial likelihood. Because there is some information 
about β in the discarded portion of the likelihood function, the resulting  
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estimates are not fully efficient. Their standard errors are larger than they 
would be if you used the entire likelihood function to obtain the estimates. 
In most cases, however, the loss of efficiency is quite small (Efron, 1977). 
What you gain in return is robustness because the estimates have good 
properties regardless of the actual shape of the baseline hazard function. 
To be specific, partial likelihood estimates still have two of the three 
standard properties of ML estimates: they are consistent and 
asymptotically normal. In other words, in large samples they are 
approximately unbiased and their sampling distribution is approximately 
normal.  

Another interesting property of partial likelihood estimates is that 
they depend only on the ranks of the event times, not their numerical 
values. This implies that any monotonic transformation of the event times 
will leave the coefficient estimates unchanged. For example, we could add 
a constant to everyone’s event time, multiply the result by a constant, take 
the logarithm, and then take the square root—all without producing the 
slightest change in the coefficients or their standard errors.  

Partial Likelihood: Examples 

Let’s first apply the partial likelihood method to the recidivism data 
that we introduced in The Life-Table Method in Chapter 3, “Estimating 
and Comparing Survival Curves with PROC LIFETEST,” and that was 
repeatedly analyzed in Chapter 4. The syntax for PROC PHREG is almost 
identical to that for PROC LIFEREG, except that you do not need to specify 
a distribution: 

 
PROC PHREG DATA=recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio; 
RUN; 
 

Output 5.1 shows the results. 
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Output 5.1 Results from Partial Likelihood Estimation with Recidivism Data 

                            The PHREG Procedure 
 
                             Model Information 
 
                     Data Set                 MY.RECID 
                     Dependent Variable       week 
                     Censoring Variable       arrest 
                     Censoring Value(s)       0 
                     Ties Handling            BRESLOW 
 
 
                  Number of Observations Read         432 
                  Number of Observations Used         432 
 
 
            Summary of the Number of Event and Censored Values 
 
                                                    Percent 
                  Total       Event    Censored    Censored 
 
                    432         114         318       73.61 
 
 
                            Convergence Status 
 
              Convergence criterion (GCONV=1E-8) satisfied. 
 
 
                           Model Fit Statistics 
 
                                   Without           With 
                  Criterion     Covariates     Covariates 
 
                  -2 LOG L        1351.367       1318.241 
                  AIC             1351.367       1332.241 
                  SBC             1351.367       1351.395 
 
 

                                                                                                                                                  (continued) 
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Output 5.1 (continued) 

                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio        33.1256        7         <.0001 
          Score                   33.3828        7         <.0001 
          Wald                    31.9875        7         <.0001 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  fin         1    -0.37902     0.19136      3.9228      0.0476     0.685 
  age         1    -0.05724     0.02198      6.7798      0.0092     0.944 
  race        1     0.31415     0.30802      1.0402      0.3078     1.369 
  wexp        1    -0.15113     0.21212      0.5076      0.4762     0.860 
  mar         1    -0.43280     0.38180      1.2850      0.2570     0.649 
  paro        1    -0.08497     0.19575      0.1884      0.6642     0.919 
  prio        1     0.09114     0.02863     10.1331      0.0015     1.095 

The preliminary information is the same as in PROC LIFEREG, 
except for the line “Ties Handling: BRESLOW.” This line refers to the 
default method for handling ties—two or more observations that have 
exactly the same event time. Although Breslow’s method is nearly 
universal, we’ll consider three superior alternatives later in the Tied Data 
section. The next table, labeled “Model Fit Statistics,” displays measures 
of fit that were described in Chapter 4: 

  –2 times the log likelihood  
 Akaike’s information criterion  
 Schwarz’s Bayesian criterion (equivalent to the Bayesian 

information criterion [BIC] statistic reported by PROC LIFEREG)  
The difference here is that these statistics are based on the partial 

likelihood rather than the full likelihood. Notice that the three fit measures 
are the same for a model with no covariates. This is not surprising because 
the main purpose of Akaike’s information criterion (AIC) and Schwartz’s 
Bayesian criterion (SBC) statistics is to penalize models for having more 
covariates, allowing one to compare non-nested models with different 
numbers of covariates. 

The table labeled “Testing Global Null Hypothesis: BETA=0” 
displays tests of the null hypothesis that all the coefficients are 0. Three 
alternative chi-square statistics are given: a likelihood-ratio test, a score  

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

132 

test, and a Wald test. The likelihood ratio chi-square is just the difference 
in the –2 log L values for the models with and without covariates shown in 
the previous table. I already discussed the general properties of these tests 
in Chapter 4 (see Hypothesis Tests). Here we see that all three statistics are 
a bit over 30 with 7 d.f. leading to very small p-values. (The 7 d.f. 
correspond to the seven coefficients in the model.) We conclude that at 
least one of the coefficients is not 0.  

In the last table, we see the coefficient estimates and associated 
statistics. Notice that there is no intercept estimate—a characteristic 
feature of partial likelihood estimation. The intercept is part of α(t), the 
arbitrary function of time, which drops out of the estimating equations. As 
with PROC LIFEREG, the chi-square tests are Wald tests for the null 
hypothesis that each coefficient is equal to 0. These statistics are 
calculated simply by squaring the ratio of each coefficient to its estimated 
standard error. The last column, labeled “Hazard Ratio,” is just exp(β). 

Hazard ratios can be interpreted almost exactly like odds ratios in 
logistic regression. For indicator (dummy) variables with values of 1 and 0, 
you can interpret the hazard ratio as the ratio of the estimated hazard for 
those with a value of 1 to the estimated hazard for those with a value of 0 
(controlling for other covariates). For example, the estimated hazard ratio 
for the variable FIN (financial aid) is .685. This means that the hazard of 
arrest for those who received financial aid is only about 69 percent of the 
hazard for those who did not receive aid (controlling for other covariates).  

For quantitative covariates, a more helpful statistic is obtained by 
subtracting 1.0 from the hazard ratio and multiplying by 100. This gives 
the estimated percent change in the hazard for each 1-unit increase in the 
covariate. For the variable AGE, the hazard ratio is .944, which yields 
100(.944 – 1) = – 5.6. Therefore, for each 1-year increase in the age at 
release, the hazard of arrest goes down by an estimated 5.6 percent.  

Overall, the results are similar to those we saw in Chapter 4 with the 
LIFEREG procedure. There are highly significant effects of age and the 
number of prior convictions and a marginally significant effect of financial 
aid. Comparing the coefficients with those in Output 4.2 for the 
exponential model, we find that all the numbers are very close, but the 
signs are reversed. The p-values are also similar. The sign reversal is not 
surprising because the PROC LIFEREG estimates are in log-survival time 
format, while the PROC PHREG estimates are in log-hazard format. The 
PROC PHREG estimates are all larger in magnitude than the Weibull 
estimates in Output 4.3, but, again, that’s merely a consequence of the 
alternative ways of expressing the model. When we convert the Weibull 
estimates to log-hazard format by dividing by the scale estimate and 
changing the sign (as in The Weibull Model section in Chapter 4), the 
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results are remarkably close to the PROC PHREG estimates. Because the 
other PROC LIFEREG models (gamma, log-logistic, and log-normal) are not 
proportional hazards models, their coefficients cannot be converted to log-
hazard format. Consequently, there is no point in comparing them with the 
PROC PHREG coefficients. 

Now let’s look at a somewhat more complicated example, the famous 
Stanford Heart Transplant Data, as reported by Crowley and Hu (1977). 
The sample consists of 103 cardiac patients who were enrolled in the 
transplantation program between 1967 and 1974. After enrollment, 
patients waited varying lengths of time until a suitable donor heart was 
found. Thirty patients died before receiving a transplant, while another 
four patients had still not received transplants at the termination date of 
April 1, 1974. Patients were followed until death or until the termination 
date. Of the 69 transplant recipients, only 24 were still alive at 
termination. At the time of transplantation, all but four of the patients were 
tissue typed to determine the degree of similarity with the donor.  

The following variables were input into SAS: 

 DOB date of birth. 
 DOA date of acceptance into the program. 
 DOT date of transplant. 
 DLS date last seen (dead or censored). 
 DEAD coded 1 if dead at DLS; otherwise, coded 0. 
 SURG coded 1 if patient had open-heart surgery prior  
  to DOA; otherwise, coded 0. 
 M1 number of donor alleles with no match in recipient  
  (1 through 4). 
 M2 coded 1 if donor-recipient mismatch on HLA-A2 antigen; 
  otherwise, 0. 
 M3 mismatch score. 

The variables DOT, M1, M2, and M3 are coded as missing for those 
patients who did not receive a transplant. All four date measures are coded 
in the form mm/dd/yy, where mm is the month, dd is the day, and yy is the 
year. Here are the raw data for the first 10 cases: 
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DOB  DOA  DOT        DLS         DEAD  SURG    M1     M2     M3   
    
01/10/37 11/15/67     .     01/03/68 1 0 . . .  
03/02/16 01/02/68     .     01/07/68 1 0 . . .  
09/19/13 01/06/68 01/06/68 01/21/68 1 0 2 0 1.110 
12/23/27 03/28/68 05/02/68 05/05/68 1 0 3 0 1.660 
07/28/47 05/10/68     .     05/27/68 1 0 . . .  
11/08/13 06/13/68     .     06/15/68 1 0 . . .  
08/29/17 07/12/68 08/31/68 05/17/70 1 0 4 0 1.320 
03/27/23 08/01/68     .     09/09/68 1 0 . . .  
06/11/21 08/09/68     .     11/01/68 1 0 . . .  
02/09/26 08/11/68 08/22/68 10/07/68 1 0 2 0 0.610 

These data were read into SAS with the following DATA step. (Note: 
The OPTIONS statement preceding the DATA step corrects a Y2K problem 
in the data.) 

 
OPTIONS YEARCUTOFF=1900; 
DATA stan; 
   INFILE 'c: stan.dat'; 
   INPUT dob mmddyy9. doa mmddyy9. dot mmddyy9. dls mmddyy9.      
         dead surg m1 m2 m3; 
   surv1=dls-doa; 
   surv2=dls-dot; 
   ageaccpt=(doa-dob)/365.25; 
   agetrans=(dot-dob)/365.25; 
   wait=dot-doa; 
   IF dot=. THEN trans=0; ELSE trans=1; 
RUN; 

Notice that the four date variables are read with the MMDDYY9. 
format, which translates the date into the number of days since January 1, 
1960. (Dates earlier than that have negative values.) We then create two 
survival time variables: days from acceptance until death (SURV1) and 
days from transplant until death (SURV2). We also calculate the age (in 
years) at acceptance into the program (AGEACCPT), the age at transplant 
(AGETRANS), and the number of days from acceptance to transplant 
(WAIT). Finally, we create an indicator variable (TRANS) coded 1 for those 
who received a transplant and 0 for those who did not. 

An obvious question is whether transplantation raised or lowered 
the hazard of death. A naive approach to answering this question is to do a 
Cox regression of SURV1 on transplant status (TRANS), controlling for 
AGEACCPT and SURG: 
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PROC PHREG DATA=stan; 
   MODEL surv1*dead(0)=trans surg ageaccpt; 
RUN; 

The results in Output 5.2 show very strong effects of both transplant 
status and age at acceptance. We see that each additional year of age at the 
time of acceptance into the program is associated with a 6 percent increase 
in the hazard of death. On the other hand, the hazard for those who 
received a transplant is only about 18 percent of the hazard for those who 
did not (see the Hazard Ratio column). Or equivalently (taking the 
reciprocal), those who did not receive transplants are about 5-1/2 times 
more likely to die at any given point in time.  

Output 5.2 Results for All Patients, No Time-Dependent Variables  

                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio        45.4629        3         <.0001 
          Score                   52.0469        3         <.0001 
          Wald                    46.6680        3         <.0001 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  trans       1    -1.70813     0.27860     37.5902      <.0001     0.181 
  surg        1    -0.42130     0.37098      1.2896      0.2561     0.656 

ageaccpt    1     0.05860     0.01505     15.1611      <.0001     1.060 

While the age effect may be real, the transplant effect is almost surely 
an artifact. The main reason why patients did not get transplants is that 
they died before a suitable donor could be found. Thus, when we compare 
the death rates for those who did and did not get transplants, the rates are 
much higher for those who did not. In effect, the covariate is actually a 
consequence of the dependent variable: an early death prevents a patient 
from getting a transplant. The way around this problem is to treat 
transplant status as a time-dependent covariate, but that will have to wait 
until the Time-Dependent Covariates section later in this chapter. 

We can also ask a different set of questions that do not require any 
time-dependent covariates. Restricting the analysis to the 65 patients who 
did receive heart transplants, we can ask why some of these patients 
survived longer than others: 

 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

136 
PROC PHREG DATA=stan; 
   WHERE trans=1; 
   MODEL surv2*dead(0)=surg m1 m2 m3 agetrans wait dot; 
RUN; 

Notice that we now use a different origin—the date of the 
transplant—in calculating survival time. (It is possible to use the date of 
acceptance as the origin, using the methods in the Left Truncation and 
Late Entry into the Risk Set section later in this chapter, but it is probably 
not worth the trouble.) 

Output 5.3 Results for Transplant Patients, No Time-Dependent Covariates 

                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio        16.5855        7         0.0203 
          Score                   15.9237        7         0.0258 
          Wald                    14.9076        7         0.0372 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  surg        1    -0.77029     0.49718      2.4004      0.1213     0.463 
  m1          1    -0.24857     0.19437      1.6355      0.2009     0.780 
  m2          1     0.02958     0.44268      0.0045      0.9467     1.030 
  m3          1     0.64407     0.34276      3.5309      0.0602     1.904 
  agetrans    1     0.04927     0.02282      4.6619      0.0308     1.050 
  wait        1    -0.00197     0.00514      0.1469      0.7015     0.998 

dot         1  -0.0001650   0.0002991      0.3044      0.5811     1.000 

Results in Output 5.3 show, again, that older patients have higher 
risks of dying. Specifically, each additional year of age at the time of the 
transplant is associated with a 5 percent increase in the hazard of death. 
That does not tell us whether the surgery is riskier for older patients, 
however. It merely tells us that older patients are more likely to die. There 
is also some evidence of higher death rates for those who have a higher 
level of tissue mismatch, as measured by the M3 score. None of the other 
variables approaches statistical significance, however. (Note that four cases 
are lost in this analysis because of missing data on M1-M3.) 
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Partial Likelihood: Mathematical and Computational Details 

Now that we’ve seen the partial likelihood method in action, let’s 
take a closer look at how it does what it does. Using the same notation as 
in Chapter 4, we have n independent individuals (i = 1,…, n). For each 
individual i, the data consist of three parts: ti, δi and xi, where ti is the time 
of the event or the time of censoring, δi is an indicator variable with a 
value of 1 if ti is uncensored or a value of 0 if ti is censored, and xi = [xi1 … 
xik] is a vector of k covariate values. 

An ordinary likelihood function is typically written as a product of 
the likelihoods for all the individuals in the sample. On the other hand, 
you can write the partial likelihood as a product of the likelihoods for all 
the events that are observed. Thus, if J is the number of events, we can 
write 

 ∏
=

=
J

j
jLPL

1

 (5.4) 

where Lj is the likelihood for the jth event. Next we need to see how the 
individual Ljs are constructed. This is best explained by way of an 
example. Consider the data in Output 5.4, which is taken from Collett 
(2003) with a slight modification (the survival time for observation 8 is 
changed from 26 to 25 to eliminate ties). The variable SURV contains the 
survival time in months, beginning with the month of surgery, for 45 breast 
cancer patients. Twenty-six of the women died (DEAD=1) during the 
observation period, so there are 26 terms in the partial likelihood. The 
variable X has a value of 1 if the tumor had a positive marker for possible 
metastasis; otherwise, the variable has a value of 0. The cases are arranged 
in ascending order by survival time, which is convenient for constructing 
the partial likelihood. 

Output 5.4 Survival Times for Breast Cancer Patients 

      OBS     EVENT    SURV     DEAD     X 
 
        1        1        5       1      1 
        2        2        8       1      1 
        3        3       10       1      1 
        4        4       13       1      1 
        5        5       18       1      1 
        6        6       23       1      0 
        7        7       24       1      1 
        8        8       25       1      1 
        9        9       26       1      1 
       10       10       31       1      1 

                                                                                                                                                     (continued) 
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Output 5.4 (continued) 

       11       11       35       1      1 
       12       12       40       1      1 
       13       13       41       1      1 
       14       14       47       1      0 
       15       15       48       1      1 
       16       16       50       1      1 
       17       17       59       1      1 
       18       18       61       1      1 
       19       19       68       1      1 
       20       20       69       1      0 
       21        .       70       0      0 
       22       21       71       1      1 
       23        .       71       0      0 
       24        .       76       0      1 
       25        .      100       0      0 
       26        .      101       0      0 
       27        .      105       0      1 
       28        .      107       0      1 
       29        .      109       0      1 
       30       22      113       1      1 
       31        .      116       0      1 
       32       23      118       1      1 
       33       24      143       1      1 
       34       25      148       1      0 
       35        .      154       0      1 
       36        .      162       0      1 
       37       26      181       1      0 
       38        .      188       0      1 
       39        .      198       0      0 
       40        .      208       0      0 
       41        .      212       0      0 
       42        .      212       0      1 
       43        .      217       0      1 
       44        .      224       0      0 
       45        .      225       0      1 

The first death occurred to patient 1 in month 5. To construct the 
partial likelihood (L1) for this event, we ask the following question: Given 
that a death occurred in month 5, what is the probability that it happened 
to patient 1 rather than to one of the other patients? The answer is the 
hazard for patient 1 at month 5 divided by the sum of the hazards for all 
the patients who were at risk of death in that same month. At month 5, all 
45 patients were at risk of death, so the probability is 
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 (5.5) 

While this expression has considerable intuitive appeal, the derivation is 
actually rather involved and will not be presented here.  

The second death occurred to patient 2 in month 8. Again we ask, 
given that a death occurred in month 8, what is the probability that it 
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occurred to patient 2 rather than to one of the other patients at risk? 
Patient 1 is no longer at risk of death because she already died. So L2 has 
the same form as L1, but the hazard for patient 1 is removed from the 
denominator: 
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The set of all individuals who are at risk at a given point in time is 
often referred to as the risk set. At time 8, the risk set consists of patients 2 
through 45, inclusive.  

We continue in this way for each successive death, deleting from the 
denominator the hazards for all those who have already died. Also deleted 
from the denominator are those who have been censored at an earlier point 
in time. That’s because they are no longer at risk of an observed event. For 
example, the 21st death occurred to patient 22 in month 71. Patient 21 was 
censored at month 70, so her hazard does not appear in the denominator of 
L21. On the other hand, if an event time is the same as a censoring time, the 
convention is to assume that the censored observation was still at risk at 
that time. Thus, patient 23 who was censored in month 71 does show up 
in the denominator of L21. 

The last term in the likelihood corresponds to the 26th death, which 
occurred to the 37th patient in month 181:  
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All the hazards in the denominator, except for the first, are for patients 
who were censored in months later than 181.  

The results to this point have made no assumptions about the form 
of the hazard function. Now, we invoke the proportional hazards model of 
equation (5.1) and substitute the expression for the hazard into the 
expression for L1, 
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where xi is the value of x for the ith patient. This leads to a considerable 
simplification because the unspecified function λ0(5) is common to every 
term in the expression. Canceling, we get 

 
4521

1

1 βxβxβx

βx

eee
eL

+++
=


. (5.9) 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

140 

It is this cancellation of the λs that makes it possible to estimate the β 
coefficients without having to specify the baseline hazard function. Of 
course, the λs also cancel for all the other terms in the partial likelihood.  

Earlier I remarked that the partial likelihood depends only on the 
order of the event times, not on their exact values. You can easily see this 
by considering each of the Lj terms. Although the first death occurred in 
month 5, L1 would be exactly the same if it had occurred at any time from 
0 up to (but not including) 8, the month of the second event. Similarly, L2 
would have been the same if the second death had occurred any time 
greater than 5 and less than 10 (the month of the third death).  

A general expression for the partial likelihood for data with time-
invariant covariates from a proportional hazards model is 
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where Yij = 1 if tj ≥ ti; and Yij = 0 if tj < ti. (The Ys are just a convenient 
mechanism for excluding from the denominator those individuals who 
have already experienced the event and are, thus, not part of the risk set.) 
Although this expression has the product taken over all individuals rather 
than over all events (as in equation [5.4]), the terms corresponding to 
censored observations are effectively excluded because δi =0 for those 
cases. This expression is not valid for tied event times, but it does allow 
for ties between one event time and one or more censoring times.  

Once the partial likelihood is constructed, you can maximize it with 
respect to β just like an ordinary likelihood function. As usual, it’s 
convenient to maximize the logarithm of the likelihood, which is 
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Most partial likelihood programs use some version of the Newton-
Raphson algorithm to maximize this function with respect to β . For 
details, see Chapter 4 (in the Maximum Likelihood Estimation: 
Mathematics section). 

As with PROC LIFEREG, there will occasionally be times when the 
Newton-Raphson algorithm does not converge. A message in the OUTPUT 
window will say WARNING: The information matrix is not 
positive definite and thus the convergence is questionable. 
Unfortunately, PROC PHREG’s convergence criterion sometimes makes it 
look as though the algorithm has converged when, in fact, true 
convergence is not possible. This problem typically arises when one of the 
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explanatory variables is an indicator variable (1 or 0) and all the 
observations are censored for one of the levels of that variable. In such 
cases, the log-likelihood reaches a stable value, but the coefficient of the 
offending variable keeps heading off toward plus or minus infinity. The 
only indication of a problem is that the variable in question will have a 
large coefficient with a much larger standard error.  Beginning with SAS 
9.2, there is now a simple solution to this problem. Using the FIRTH 
option in the MODEL statement requests that the partial likelihood 
function be modified to produce penalized partial likelihood estimates. 
This method reduces the small-sample bias that often occurs with 
conventional likelihood methods and usually clears up convergence 
problems (Firth, 1993; Heinze and Schemper, 2001).  

To complete the breast cancer example, let’s take a look at the partial 
likelihood results in Output 5.5. With only one covariate, the Global Null 
Hypothesis statistics provide us with three alternative tests for the effect of 
that variable. The Wald and score tests have p-values that exceed the 
conventional .05 level, while the likelihood-ratio test has a p-value that is 
slightly below .05. This degree of discrepancy is not at all surprising with a 
small sample. The estimated hazard ratio of 2.483 tells us that the hazard 
of death for those whose tumor had the positive marker was nearly 2.5 
times the hazard for those without the positive marker.  

Because the covariate is dichotomous, an alternative approach is to 
use PROC LIFETEST to test for differences in survival curves. When I did 
this, the p-value for the log-rank test (.0607) was identical to the p-value 
for the score test in Output 5.5. This is no accident. The log-rank test is the 
exact equivalent of the partial likelihood score test for a single, 
dichotomous covariate (when there are no ties).   

Output 5.5 PROC PHREG Results for Breast Cancer Data 

                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio         3.8843        1         0.0487 
          Score                    3.5194        1         0.0607 
          Wald                     3.2957        1         0.0695 
 
                 Analysis of Maximum Likelihood Estimates 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
x           1     0.90933     0.50089      3.2957      0.0695     2.483 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

142 

TIED DATA 

The formula for the partial likelihood in equation (5.10) is valid only 
for data in which no two events occur at the same time. It’s quite common 
for data to contain tied event times, however, so we need an alternative 
formula to handle those situations. Most partial likelihood programs use a 
technique called Breslow’s approximation, which works well when ties are 
relatively few. But when data are heavily tied, the approximation can be 
quite poor (Farewell and Prentice, 1980; Hsieh, 1995). Although PROC 
PHREG uses Breslow’s approximation as the default, it also provides a 
better approximation proposed by Efron (1977) as well as two exact 
methods.  

This section explains the background, rationale, and implementation 
of these alternative methods for handling ties. Because this issue is 
somewhat confusing, I’m going to discuss it at some length. Those who 
just want the bottom line can skip to the end of the section where I 
summarize the practical implications. Because the formulas get rather 
complicated, I won’t go into all the mathematical details. But I will try to 
provide some intuitive understanding of why there are different 
approaches and the basic logic of each one.  

To illustrate the problem and the various solutions, let’s turn again to 
the recidivism data. As Output 5.6 shows, these data include a substantial 
number of tied survival times (weeks to first arrest). For weeks 1 through 7, 
there is only one arrest in each week. For these seven events, the partial 
likelihood terms are constructed exactly as described in the Partial 
Likelihood: Mathematical and Computational Details section. Five arrests 
occurred in week 8, however, so the construction of L8 requires a different 
method. Two alternative approaches have been proposed for the 
construction of the likelihood for tied event times; these are specified in 
PROC PHREG by TIES=EXACT or TIES=DISCRETE as options in the 
MODEL statement. This terminology is somewhat misleading because both 
methods give exact partial likelihoods; the difference is that the EXACT 
method assumes that there is a true but unknown ordering for the tied 
event times (that is, time is continuous), while the DISCRETE method 
assumes that the events really occurred at exactly the same time.  

 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

 143 

 

Output 5.6  Week of First Arrest for Recidivism Data 

                                   Cumulative  Cumulative 
       WEEK   Frequency   Percent   Frequency    Percent 
       ------------------------------------------------- 
         1          1       0.2           1        0.2 
         2          1       0.2           2        0.5 
         3          1       0.2           3        0.7 
         4          1       0.2           4        0.9 
         5          1       0.2           5        1.2 
         6          1       0.2           6        1.4 
         7          1       0.2           7        1.6 
         8          5       1.2          12        2.8 
         9          2       0.5          14        3.2 
        10          1       0.2          15        3.5 
        11          2       0.5          17        3.9 
        12          2       0.5          19        4.4 
        13          1       0.2          20        4.6 
        14          3       0.7          23        5.3 
        15          2       0.5          25        5.8 
        16          2       0.5          27        6.2 
        17          3       0.7          30        6.9 
        18          3       0.7          33        7.6 
        19          2       0.5          35        8.1 
        20          5       1.2          40        9.3 
        21          2       0.5          42        9.7 
        22          1       0.2          43       10.0 
        23          1       0.2          44       10.2 
        24          4       0.9          48       11.1 
        25          3       0.7          51       11.8 
        26          3       0.7          54       12.5 
        27          2       0.5          56       13.0 
        28          2       0.5          58       13.4 
        30          2       0.5          60       13.9 
        31          1       0.2          61       14.1 
        32          2       0.5          63       14.6 
        33          2       0.5          65       15.0 
        34          2       0.5          67       15.5 
        35          4       0.9          71       16.4 
        36          3       0.7          74       17.1 
        37          4       0.9          78       18.1 
        38          1       0.2          79       18.3 
        39          2       0.5          81       18.8 
        40          4       0.9          85       19.7 
        42          2       0.5          87       20.1 
        43          4       0.9          91       21.1 
        44          2       0.5          93       21.5 
        45          2       0.5          95       22.0 
        46          4       0.9          99       22.9 
        47          1       0.2         100       23.1 
        48          2       0.5         102       23.6 
        49          5       1.2         107       24.8 
        50          3       0.7         110       25.5 
        52        322      74.5         432      100.0 
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The EXACT Method 

 Let’s begin with the EXACT method because its underlying model is 
probably more plausible for most applications. Since arrests can occur at 
any point in time, it’s reasonable to suppose that ties are merely the result 
of imprecise measurement of time and that there is a true but unknown 
time ordering for the five arrests that occurred in week 8. If we knew that 
ordering, we could construct the partial likelihood in the usual way. In the 
absence of any knowledge of that ordering, however, we have to consider 
all the possibilities. With five events, there are 5! = 120 different possible 
orderings. Let’s denote each of those possibilities by Ai, where i = 1, … , 
120. What we want is the probability of the union of those possibilities, 
that is, Pr(A1 or A2 or … or A120). Now, a fundamental law of probability 
theory is that the probability of the union of a set of mutually exclusive 
events is just the sum of the probabilities for each of the events. Therefore, 
we can write 

 ∑
=
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120

1
8 )Pr(
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Each of these 120 probabilities is just a standard partial likelihood. 
Suppose, for example, that we arbitrarily label the five arrests at time 8 
with the numbers 8, 9, 10, 11, and 12, and suppose further that A1 denotes 
the ordering {8, 9, 10, 11, 12}. Then  

 








+++








+++








+++

=
4321312

12

432109

9

43298

8

)Pr( 1 βxβxβx

βx

βxβxβx

βx

βxβxβx

βx

eee
e

eee
e

eee
eA





. 

On the other hand, if A2 denotes the ordering {9, 8, 10, 11, 12}, we 
have 

 








+++








+++








+++

=
4321312

12

432108

8

43298

9

)Pr( 2 βxβxβx

βx

βxβxβx

βx

βxβxβx

βx

eee
e

eee
e

eee
eA





. 

 
We continue in this way for the other 118 possible orderings. Then L8 is 
obtained by adding all the probabilities together. 

The situation is much simpler for week 9 because only two arrests 
occurred, giving us two possible orderings. For L9, then, we have 
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where the numbers 13 and 14 are arbitrarily assigned to the two events. 
When we get to week 10, there’s only one event, so we’re back to the 
standard partial likelihood formula: 
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It’s difficult to write a general formula for the exact likelihood with 
tied data because the notation becomes very cumbersome. For one version 
of a general formula, see Kalbfleisch and Prentice (2002). Be forewarned 
that the formula in the official PROC PHREG documentation bears no 
resemblance to that given by Kalbfleisch and Prentice or to the explanation 
given here. That’s because it’s based on a re-expression of the formula in 
terms of a definite integral, which facilitates computation (DeLong, 
Guirguis, and So, 1994).  

It should be obvious, by this point, that computation of the exact 
likelihood can be a daunting task. With just five tied survival times, we 
have seen that one portion of the partial likelihood increased from 1 term 
to 120 terms. If 10 events occur at the same time, there are over 3 million 
possible orderings to evaluate. Until recently, statisticians abandoned all 
hope that such computations might be practical. What makes it possible 
now is the development of an integral representation of the likelihood, 
which is much easier to evaluate numerically (DeLong, Guirguis, and So, 
1994). Even with this innovation, however, computation of the exact 
likelihood when large numbers of events occur at the same time can take a 
lot of computing time. 

Early recognition of these computational difficulties led to the 
development of approximations. The most popular of these is widely 
attributed to Breslow (1974), but it was first proposed by Peto (1972). This 
is the default in PROC PHREG, and it is nearly universal in other 
programs. Efron (1977) proposed an alternative approximation that is also 
available in PROC PHREG. The results that we saw earlier in Output 5.1 
for the recidivism data were obtained with the Breslow approximation.  

To use the EXACT method, we specify 
 
PROC PHREG DATA=recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio  
         / TIES=EXACT; 
RUN; 
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This PROC step produces the results in Output 5.7. Comparing this with 
Output 5.1, it’s apparent that the Breslow approximation works well in this 
case. The coefficients are generally the same to at least two (and sometimes 
three) decimal places. The test statistics all yield the same conclusions.  

Output 5.7 Recidivism Results Using the EXACT Method 

                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio        33.2663        7         <.0001 
          Score                   33.5289        7         <.0001 
          Wald                    32.1190        7         <.0001 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  fin         1    -0.37942     0.19138      3.9305      0.0474     0.684 
  age         1    -0.05743     0.02200      6.8152      0.0090     0.944 
  race        1     0.31393     0.30800      1.0389      0.3081     1.369 
  wexp        1    -0.14981     0.21223      0.4983      0.4803     0.861 
  mar         1    -0.43372     0.38187      1.2900      0.2560     0.648 
  paro        1    -0.08486     0.19576      0.1879      0.6646     0.919 
  prio        1     0.09152     0.02865     10.2067      0.0014     1.096 

 

Output 5.8 shows the results from using Efron’s approximation 
(invoked by using TIES=EFRON). If Breslow’s approximation is good, this 
one is superb. Nearly all the numbers are the same to four decimal places. 
In all cases where I’ve tried the two approximations, Efron’s 
approximation gave results that were much closer to the exact results than 
Breslow’s approximation. This improvement comes with only a trivial 
increase in computation time.  

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

 147 

 

Output 5.8 Recidivism Results Using Efron’s Approximation 

                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio        33.2659        7         <.0001 
          Score                   33.5287        7         <.0001 
          Wald                    32.1192        7         <.0001 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  fin         1    -0.37942     0.19138      3.9304      0.0474     0.684 
  age         1    -0.05743     0.02200      6.8152      0.0090     0.944 
  race        1     0.31392     0.30799      1.0389      0.3081     1.369 
  wexp        1    -0.14981     0.21223      0.4983      0.4803     0.861 
  mar         1    -0.43372     0.38187      1.2900      0.2560     0.648 
  paro        1    -0.08486     0.19576      0.1879      0.6646     0.919 
  prio        1     0.09152     0.02865     10.2067      0.0014     1.096 

If the approximations are so good, why do we need the 
computationally intensive EXACT method? Farewell and Prentice (1980) 
showed that the Breslow approximation deteriorates as the number of ties 
at a particular point in time becomes a large proportion of the number of 
cases at risk. For the recidivism data in Output 5.6, the number of tied 
survival times at any given time point is never larger than 2 percent of the 
number at risk, so it’s not surprising that the approximations work well.  

Now let’s look at an example where the conditions are less favorable. 
The data consist of 100 simulated job durations, measured from the year of 
entry into the job until the year that the employee quit. Durations after the 
fifth year are censored. If the employee was fired before the fifth year, the 
duration is censored at the end of the last full year in which the employee 
was working. We know only the year in which the employee quit, so the 
survival times have values of 1, 2, 3, 4, or 5.  
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Here’s a simple life table for these data: 
 

 
Duration 

Number 
Quit 

   Number           Number 
   Censored         At Risk 

Number Quit/ 
At Risk 

1 22       7                     100 .22 
2 18       3                       71 .25 
3 16       4                       50 .32 
4 8       1                       30 .27 
5 4     17                       21 .19 

 
The number at risk at each duration is equal to the total number of 

cases (100) minus the number who quit or were censored at previous 
durations. Looking at the last column, we see that the ratio of the number 
quitting to the number at risk is substantial at each of the five points in 
time. Three covariates were measured at the beginning of the job: years of 
schooling (ED), salary in thousands of dollars (SALARY), and prestige of 
the occupation (PRESTIGE) measured on a scale from 1 to 100.  

Output 5.9 displays selected results from using PROC PHREG with 
the three different methods for handling ties. Breslow’s method yields 
coefficient estimates that are about one-third smaller in magnitude than 
those using the EXACT method, while the p-values (for testing the 
hypothesis that each coefficient is 0) are substantially higher. In fact, the p-
value for the SALARY variable is above the .05 level for Breslow’s method, 
but it is only .01 for the EXACT method. Efron’s method produces 
coefficients that are about midway between the other two methods, but the 
p-values are much closer to those of the EXACT method. Clearly, the 
Breslow approximation is unacceptable for this application. Efron’s 
approximation is not bad for drawing qualitative conclusions, but there is 
an appreciable loss of accuracy in estimating the magnitudes of the 
coefficients. 
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Output 5.9 Results for Job Duration Data: Three Methods for Handling Ties 

Ties Handling: BRESLOW 
 
                 Parameter   Standard    Wald       Pr >       Hazard 
  Variable DF     Estimate     Error  Chi-Square Chi-Square    Ratio 
 
  ED        1     0.116453    0.05918    3.87257     0.0491    1.124 
  PRESTIGE  1    -0.064278    0.00959   44.93725     0.0001    0.938 
  SALARY    1    -0.014957    0.00792    3.56573     0.0590    0.985 
 
 
Ties Handling: EFRON 
 
                 Parameter   Standard    Wald       Pr >       Hazard 
  Variable DF     Estimate     Error  Chi-Square Chi-Square    Ratio 
 
  ED        1     0.144044    0.05954    5.85271     0.0156    1.155 
  PRESTIGE  1    -0.079807    0.00996   64.20009     0.0001    0.923 
  SALARY    1    -0.020159    0.00830    5.90363     0.0151    0.980 
 
 
Ties Handling: EXACT 
 
                 Parameter   Standard    Wald       Pr >       Hazard 
  Variable DF     Estimate     Error  Chi-Square Chi-Square    Ratio 
 
  ED        1     0.164332    0.06380    6.63419     0.0100    1.179 
  PRESTIGE  1    -0.092019    0.01240   55.10969     0.0001    0.912 
  SALARY    1    -0.022545    0.00884    6.50490     0.0108    0.978 

The DISCRETE Method 

The DISCRETE option in PROC PHREG is also an exact method but 
one based on a fundamentally different model. In fact, it is not a 
proportional hazards model at all. The model does fall within the 
framework of Cox regression, however, because it was proposed by Cox in 
his original 1972 paper and because the estimation method is a form of 
partial likelihood. Unlike the EXACT model, which assumes that ties are 
merely the result of imprecise measurement of time, the DISCRETE model 
assumes that time is really discrete. When two or more events appear to 
happen at the same time, there is no underlying ordering—they really 
happen at the same time.  

While most applications of survival analysis involve events that can 
occur at any moment on the time continuum, there are definitely some 
events that are best treated as if time were discrete. If the event of interest 
is a change in the political party occupying the U.S. presidency, that can 
only occur once every four years. Or suppose the aim is to predict how 
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many months it takes before a new homeowner misses a mortgage 
payment. Because payments are only due at monthly intervals, a discrete-
time model is the natural way to go.  

Cox’s model for discrete-time data can be described as follows. The 
time variable t can only take on integer values. Let Pit be the conditional 
probability that individual i has an event at time t, given that an event has 
not already occurred to that individual. This probability is sometimes 
called the discrete-time hazard. The model says that Pit is related to the 
covariates by a logistic regression equation: 
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The expression on the left side of the equation is the logit or log-odds of 
Pit. On the right side, we have a linear function of the covariates, plus a 
term αt that plays the same role as α(t) in expression (5.2) for the 
proportional hazards model. αt is just a set of constants—one for each time 
point—that can vary arbitrarily from one time point to another.  

This model can be described as a proportional odds model. The odds 
that individual i has an event at time t (given that i did not already have an 
event) is Oit =Pit /(1 - Pit ). The model implies that the ratio of the odds for 
any two individuals Oit/Ojt does not depend on time (although it may vary 
with the covariates). 

How can we estimate this model? In Chapter 7, “Analysis of Tied or 
Discrete Data with PROC LOGISTIC,” we will see how to estimate it using 
standard maximum likelihood methods that yield estimates of both the β 
coefficients and the αts. Using partial likelihood, however, we can treat the 
αts as nuisance parameters and estimate only the βs. If there are J unique 
times at which events occur, there will be J terms in the partial likelihood 
function: 

 ∏
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where Lj is the partial likelihood of the jth event. Thus, for the job duration 
data, there are only five terms in the partial likelihood function. But each 
of those five terms is colossal. Here’s why. 

At time 1, 22 people had events out of 100 people who were at risk. 
To get L1, we ask the question: given that 22 events occurred, what is the 
probability that they occurred to these particular 22 people rather than to 
some different set of 22 people from among the 100 at risk? How many 
different ways are there of selecting 22 people from among a set of 100? A 
lot! Specifically, 7.3321 × 1021. Let’s call that number Q, and let q be a 
running index from 1 to Q, with q = 1 denoting the set that actually 
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experienced the events. For a given set q, let ψq be the product of the odds 
for all the individuals in that set. Thus, if the individuals who actually 
experienced events are labeled i = 1 to 22, we have  
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We can then write 
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This looks like a simple expression, but there are trillions of terms being 
summed in the denominator. Fortunately, there is a recursive algorithm 
that makes it practical, even with substantial numbers of ties (Gail et al., 
1981). Still, doing this with a very large data set with many ties can take a 
lot of computer time.  

Does the discrete-time model make sense for these data? For most 
jobs it’s possible to quit at any point in time, suggesting that the model 
might not be appropriate. Remember, however, that these are simulated 
data. Because the simulation is actually based on a discrete-time model, it 
makes perfectly good sense in this case. Output 5.10 displays the results. 
Comparing these with the results for the EXACT method in Output 5.9, we 
see that the chi-square statistics and the p-values are similar. However, the 
coefficients for the DISCRETE method are about one-third larger for ED 
and PRESTIGE and about 15 percent larger for SALARY. This discrepancy 
is due largely to the fact that completely different models are being 
estimated, a hazard model and a logit model. The logit coefficients will 
usually be larger. For the logit model, 100(eβ – 1) gives the percent change 
in the odds that an event will occur for a one-unit increase in the 
covariate. Thus, each additional year of schooling increases the odds of 
quitting a job by 100(e.219–1) = 24 percent.  

Output 5.10 Job Duration Results Using the DISCRETE Method 

Ties Handling: DISCRETE 
 
               Analysis of Maximum Likelihood Estimates 
 
                 Parameter   Standard    Wald       Pr >       Hazard 
  Variable DF     Estimate     Error  Chi-Square Chi-Square    Ratio 
 
  ED        1     0.219378    0.08480    6.69295     0.0097    1.245 
  PRESTIGE  1    -0.120474    0.01776   46.02220     0.0001    0.886 
  SALARY    1    -0.026108    0.01020    6.55603     0.0105    0.974 
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Comparison of Methods 

Though the job duration coefficients differ for the two exact 
methods, they are at least in the same ballpark. More generally, it has been 
shown that if ties result from grouping continuous time data into intervals, 
the logit model converges to the proportional hazards model as the interval 
length gets smaller (Thompson, 1977). When there are no ties, the partial 
likelihoods for all four methods (the two exact methods and the two 
approximations) reduce to the same formula. 

The examples that we’ve seen so far have been small enough, both in 
number of observations and numbers of ties, that the computing times for 
the two exact methods were quite small (much less than a second). Before 
concluding, let’s see what happens with larger data sets. I took the 100 
observations in the job duration data set and duplicated them to produce 
data sets of size 1000 to 6000 in increments of 1000. I then estimated the 
models on a Dell laptop running at 1.8GHz with 1 Gb of memory. Here are 
the CPU times, in seconds, for the two exact methods and six sample sizes: 

 1000 2000 3000 4000 5000 6000 
EXACT 3.6 16 43 93 171 316 

DISCRETE 1.6 6 13 23 33 51 

The good news is that these computing times are more than an order 
of magnitude smaller than the times that I reported in the 1995 edition of 
this book. For 1000 observations, what previously took the EXACT method 
more than 2 minutes now takes less than 4 seconds. The upshot is that 
these methods are now practical for fairly large data sets, at least if you are 
willing to be patient. For the DISCRETE method, computing time goes up 
approximately with the square of the sample size. Computing time for the 
EXACT method goes up even faster. Incidentally, both approximate 
methods (BRESLOW and EFRON) took less than a quarter of a second for 
6000 observations. 

What we’ve learned about the handling of ties can be summarized in 
six points: 

 When there are no ties, all four options in PROC PHREG give 
identical results. 

 When there are few ties, it makes little difference which method 
is used. But because computing times will also be comparable, 
you might as well use one of the exact methods.  

 When the number of ties is large, relative to the number at risk, 
the approximate methods tend to yield coefficients that are 
biased toward 0.  
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 Both the EXACT and DISCRETE methods produce exact results 
(that is, true partial likelihood estimates), but the EXACT method 
assumes that ties arise from grouping continuous, untied data, 
while the DISCRETE method assumes that events really occur at 
the same, discrete times. The choice should be based on 
substantive grounds, although qualitative results will usually be 
similar. 

 Both of the exact methods need a substantial amount of 
computer time for large data sets containing many ties, especially 
the EXACT method.  

 If the exact methods are too time-consuming, use the Efron 
approximation, at least for model exploration. It’s nearly always 
better than the Breslow method, with virtually no increase in 
computer time. 

TIME-DEPENDENT COVARIATES 

Time-dependent covariates are those that may change in value over 
the course of observation. While it’s simple to modify Cox’s model to allow 
for time-dependent covariates, the computation of the resulting partial 
likelihood is more time-consuming, and the practical issues surrounding 
the implementation of the procedure can be quite complex. It’s easy to 
make mistakes without realizing it, so be sure you know what you’re 
doing. 

To modify the model in equation (5.2) to include time-dependent 
covariates, all we need to do is write (t) after the xs that are time-
dependent. For a model with one time-invariant covariate and one 
time-dependent covariate, we have 

 ).()()(log 2211 txxtth iii ββα ++=  

This says that the hazard at time t depends on the value of x1 and on the 
value of x2 at time t. What may not be clear is that x2(t) can be defined 
using any information about the individual before time t, thereby allowing 
for lagged or cumulative values of some variables. For example, if we want 
a model in which the hazard of arrest depends on employment status, we 
could specify employment as 

 whether the person is currently employed in week t 
 whether the person was employed in the previous month (t-1) 
 the number of weeks of employment in the preceding 3 months 
 the number of bouts of unemployment in the preceding 12  
     months. 
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The use of lagged covariates is often essential for resolving issues of causal 
ordering (more on that later). 

For handling time-dependent covariates, PROC PHREG has two very 
different ways of setting up the data and specifying the model. In the 
programming statements method, there is one record per individual, and 
the information about time-dependent covariates is contained in multiple 
variables on that record. The time-dependent covariates are then defined 
in programming statements that are part of the PROC PHREG step. In the 
counting process method, on the other hand, there may be multiple 
records for each individual, with each record corresponding to an interval 
of time during which all the covariates remain constant. Once this special 
data set has been constructed, time-dependent covariates are treated just 
like time-invariant covariates. However, a different syntax (the counting 
process syntax) is needed to specify the dependent variable.  

If done properly, these two methods produce exactly the same 
results, so the choice between them is purely a matter of computational 
convenience. Both methods may require a substantial amount of careful 
programming. However, with the counting process syntax, all the 
programming is up front in the construction of the data set. That makes it 
straightforward to check the data set for any programming errors. The 
method also lends itself to a division of labor in which a skilled 
programmer produces the required data set. The data analyst can then 
easily specify whatever models are desired in PROC PHREG.  

With the programming statements method, on the other hand, the 
program to generate the time-dependent covariates must be a part of every 
PROC PHREG run. Furthermore, because the temporary data set produced 
by the program is not accessible, there is no easy way to check for 
programming mistakes. All this would seem to favor the counting process 
method. Nonetheless, as we shall see, the counting process method often 
requires considerably more program code. We will illustrate these two 
methods with several examples, first applying the programming statements 
method and then using the counting process method.  

Heart Transplant Example  

We begin with another look at the Stanford Heart Transplant Data. In 
the Partial Likelihood: Examples section, we attempted to determine 
whether a transplant raised or lowered the risk of death by examining the 
effect of a time-invariant covariate TRANS that was equal to 1 if the patient 
ever had a transplant and 0 otherwise. I claimed that those results were 
completely misleading because patients who died quickly had less time 
available to get transplants. Now we’ll do it right by defining a time-
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dependent covariate PLANT equal to 1 if the patient has already had a 
transplant at day t; otherwise, PLANT is equal to 0.  

Here’s how it’s done with the programming statements method: 
 
PROC PHREG DATA=stan; 
   MODEL surv1*dead(0)=plant surg ageaccpt / TIES=EFRON; 
   IF wait>=surv1 OR wait=. THEN plant=0; ELSE plant=1; 
RUN; 

Recall that SURV1 is the time in days from acceptance into the 
program until death or termination of observation (censoring). Recall also 
that SURG =1 if the patient had previous heart surgery; otherwise, 
SURG=0. AGEACCPT is the patient’s age in years at the time of 
acceptance, and WAIT is the time in days from acceptance until transplant 
surgery, coded as missing for those who did not receive transplants. Note 
that I have used the EFRON method for handling ties. Although there are 
not many ties in these data, the discussion in the last section concluded 
that the EFRON method is a better default than the usual BRESLOW 
method.  

The IF statement defines the new time-varying covariate PLANT. 
Note that programming statements must follow the MODEL statement. At 
first glance, this IF statement may be puzzling. For patients who were not 
transplanted, the IF condition will be true (and PLANT will be assigned a 
value of 0) because their WAIT value will be missing. On the other hand, 
for those who did receive transplants, it appears that the IF condition will 
always be false because their waiting time to transplant cannot be greater 
than their survival time, giving us a fixed covariate rather than a time-
dependent covariate. Now it’s true that waiting time is never greater than 
survival time for transplanted patients (with one patient dying on the 
operating table). But, unlike an IF statement in the DATA step, which only 
operates on a single case at a time, this IF statement compares waiting 
times for patients who were at risk of a death with survival times for 
patients who experienced events. Thus, SURV1 in this statement is 
typically not the patient’s own survival time, but the survival time of some 
other patient who died. This fact will become clearer in the next 
subsection when we examine the construction of the partial likelihood.  

Results in Output 5.11 indicate that transplantation has no effect on 
the hazard of death. The effect of age at acceptance is somewhat smaller 
than it was in Output 5.2, although still statistically significant. However, 
the effect of prior heart surgery is larger and now significant at the .05 
level.  
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Output 5.11 Results for Transplant Data with a Time-Dependent Covariate 

                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  plant       1     0.01610     0.30859      0.0027      0.9584     1.016 
  surg        1    -0.77332     0.35967      4.6229      0.0315     0.461 
ageaccpt    1     0.03054     0.01389      4.8312      0.0279     1.031 

 

Now let’s redo the analysis using the counting process method. To 
do this, we must construct a data set with multiple records per person, one 
record for each period of time during which all the covariates remain 
constant. For persons who did not receive transplants, only one record is 
needed. Persons who received transplants need two records: one for the 
interval of time between acceptance and transplantation (with PLANT=0) 
and a second record for the interval between transplantation and either 
death or censoring (PLANT=1). The first interval is coded as censored. The 
second interval may be either censored or uncensored, depending on 
whether the person died during the observation period. Time-invariant 
variables are replicated for the two records. For each record, we also need 
two time variables, one for the start of the interval and one for the end of 
the interval. Both time variables are measured in days since acceptance 
into the study.  

Here is the DATA step needed to produce the required data set: 
 

DATA stanlong; 
SET stan; 
plant=0; 
start=0; 
IF trans=0 THEN DO; 
  dead2=dead; 
  stop=surv1; 
  IF stop=0 THEN stop=.1; 
  OUTPUT;  
END; 
ELSE DO; 
  stop=wait; 
  IF stop=0 THEN stop=.1; 
  dead2=0; 
  OUTPUT; 
  plant=1; 
  start=wait; 
  IF stop=.1 THEN start=.1; 
  stop=surv1; 
  dead2=dead; 
  OUTPUT; 
END; 
RUN; 
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Clearly this is a lot more programming than was required for the 
programming statements method. Here is a brief explanation. The first two 
assignment statements initialize the time-dependent covariate (PLANT) 
and the starting time at 0. The IF-DO statement begins a block of 
definitions for those who did not receive transplants. A new censoring 
indicator, DEAD2, is specified to have the same value as the old indicator 
DEAD, and the stop time is set to be the same as the original time variable 
SURV1. The OUTPUT statement writes the record to the new data set. By 
default, all other variables in the original data set are included in this 
record. 

A peculiarity of this data set is that there were two individuals who 
died on their day of acceptance into the study, so both their start time and 
their stop time would be 0. Unfortunately, the counting process syntax 
deletes records that have the same start and stop time. That’s why there is 
an IF statement that changes a stop time of 0 to .1.  

The ELSE DO statement begins a block of variable definitions for 
those who received transplants. First, a record is created for the interval 
from acceptance to transplant. The stop time is set to be the waiting time to 
transplant. Again, because there was one person who was transplanted on 
the day of acceptance, it is necessary to change the stop time from 0 to .1. 
The censoring indicator DEAD2 is set to 0 since this interval did not end 
in a death. And the OUTPUT statement writes the record to the new data 
set.  

Next, a record is created for the interval from transplant to death or 
censoring. PLANT is now set to 1. The START time is set to the time of 
transplant (WAIT). The STOP time is reset to the original death or 
censoring time, and the censoring indicator is reset to its original values. 
For the one person transplanted on the day of acceptance, the IF statement 
aligns the start time of the second interval with the stop time of the first 
interval.  

The new data set has 172 records, one each for the 34 people who 
did not receive transplants and two records for each of the 69 people who 
did receive transplants. Output 5.12 displays the last 15 records in the new 
data set, representing eight people. All but one (record 164) had a 
transplant and, therefore, the rest have two records. Only one person died 
(record 163).  
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Output 5.12 Last 15 Records for Counting Process Data Set 

       Obs    start      stop    dead2    plant    surg    ageaccpt 
 
       158      0.0      35.0      0        0        1      36.6543 
       159     35.0    1141.0      0        1        1      36.6543 
       160      0.0      57.0      0        0        1      45.3032 
       161     57.0    1321.0      0        1        1      45.3032 
       162      0.0      36.0      0        0        0      54.0123 
       163     36.0    1386.0      1        1        0      54.0123 
       164      0.0    1400.0      0        0        0      30.5352 
       165      0.0      40.0      0        0        1      48.4819 
       166     40.0    1407.0      0        1        1      48.4819 
       167      0.0      22.0      0        0        0      40.5530 
       168     22.0    1571.0      0        1        0      40.5530 
       169      0.0      50.0      0        0        0      48.9035 
       170     50.0    1586.0      0        1        0      48.9035 
       171      0.0      24.0      0        0        0      33.2238 
       172     24.0    1799.0      0        1        0      33.2238 

 
 

To estimate the model, we use the counting process syntax, 
specifying both the starting time and the stopping time for each record: 

 
PROC PHREG DATA=stanlong; 
   MODEL (start,stop)*dead2(0)=plant surg ageaccpt /TIES=EFRON; 
RUN; 
 

Results are identical to those in Output 5.11.  
Although this syntax is similar to the PROC LIFEREG syntax for 

interval-censored data, the intent is completely different. In the PROC 
LIFEREG syntax, the event is known to occur sometime within the 
specified interval. In the counting process syntax, on the other hand, 
(START, STOP) represents an interval of time during which the individual 
was continuously at risk of the event, and events can only occur at the end 
of the interval. 

Construction of the Partial Likelihood with Time-Dependent Covariates 

With time-dependent covariates, the partial likelihood function has 
the same form that we saw previously in equation (5.4) and equation 
(5.10). The only thing that changes is that the covariates are now indexed 
by time. Consider, for example, the 12 selected cases from the Stanford 
Heart Transplant Data that are shown in Output 5.13. These are all the 
cases that had death or censoring times between 16 and 38 days, inclusive. 
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Output 5.13 Selected Cases from the Stanford Heart Transplant Data 

   OBS    SURV1    DEAD    WAIT 
 
   19      16       1       4 
   20      17       1       . 
   21      20       1       . 
   22      20       1       . 
   23      27       1      17 
   24      29       1       4 
   25      30       0       . 
   26      31       1       . 
   27      34       1       . 
   28      35       1       . 
   29      36       1       . 
   30      38       1      35 

On day 16, one death occurred (to case 19). Because 18 people had 
already died or been censored by day 16, there were 103–18 = 85 people 
left in the risk set on that day. Let’s suppose that we have a single 
covariate, the time-dependent version of transplant status. The partial 
likelihood for day 16 is therefore 
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To calculate this quantity, PROC PHREG must compute the value of x on 
day 16 for each of the 85 people at risk. For cases 19 and 24, a transplant 
occurred on day 4. Since this was before day 16, we have x19(16) = 1 and 
x24(16) = 1. Waiting time is missing for cases 20−22 and cases 25−29, 
indicating that they never received a transplant. Therefore, x20(16) = 
x21(16) = x22(16) = x25(16) = x26(16) = x27(16) = x28(16) = x29(16) = 0. Case 
23 had a transplant on day 17, so on day 16, the patient was still without a 
transplant and x23(16) = 0. Similarly, we have x30(16) = 0 because case 30 
didn’t get a transplant until day 35.  

For the programming statements method, the calculation of the 
appropriate x values is accomplished by the IF statement shown earlier in 
the heart transplant example. At each unique event time, PROC PHREG 
calculates a term in the partial likelihood function (like the one above) by 
applying the IF statement to all the cases in the risk set at that time. Again, 
the value of SURV1 in the IF statement is the event time that PROC PHREG 
is currently operating on, not the survival time for each individual at risk.  

For the counting process method, to compute the partial likelihood 
for a death occurring on day 16, PHREG simply searches through all the 
records in the data set to find those with START and STOP times that 
bracket day 16. Note that the intervals defined by those times are open on 
the left and closed on the right. That means that, if the START time is 16 
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and the STOP time is 24, day 24 would be included in the interval but day 
16 would not be included.  

This property of the counting process method has important 
implications for the next term in the partial likelihood function, which 
corresponds to the death that occurred to person 20 on day 17: 
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Of course person 19 no longer shows up in this formula because that 
patient left the risk set at death. The values of x are all the same as they 
were for day 16, even for patient 23, who had a transplant on day 17. This 
patient has two records, one running from 0 to 17 and the other from 17 to 
27. The first record includes day 17, but the second record does not. The 
first record has PLANT=0, so x23(17) = 0. 

For the data in Output 5.13, there are eight additional terms in the 
partial likelihood function. For the first five of these, the values of x for 
cases remaining in the risk set are the same as they were on day 17. On day 
36, however, the value of x for case 30 switches from 0 to 1.  

Covariates Representing Alternative Time Origins 

When I discussed the choice of time origin in Chapter 2, I mentioned 
that you can include alternative origins as covariates, sometimes as time-
dependent covariates. Let’s see how this might work with the Stanford 
Heart Transplant Data. In the analysis just completed, the origin was the 
date of acceptance into the program, with the time of death or censoring 
computed from that point. It is certainly plausible, however, that the 
hazard of death also depends on age or calendar time. We have already 
included age at acceptance into the program as a time-constant covariate 
and found that patients who were older at acceptance had a higher hazard 
of death. But if that’s the case, we might also expect that the hazard will 
continue to increase with age after acceptance into the program. A natural 
way to allow for this possibility is to specify a model with current age as a 
time-dependent covariate. Here’s how to do that with PROC PHREG: 

 
PROC PHREG DATA=stan; 
   MODEL surv1*dead(0)=plant surg age / TIES=EFRON; 
   IF wait>surv1 OR wait=. THEN plant=0; ELSE plant=1; 
   age=ageaccpt+surv1; 
RUN; 

In this program, current age is defined as age at acceptance plus the 
time to the current event. While this is certainly correct, a surprising thing 
happens: the results are exactly the same as in Output 5.11. Here’s why. 
We can write the time-dependent version of the model as 
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 )()()()(log 332211 txtxxtth βββα +++=  (5.13) 

where x1 is the surgery indicator, x2 is the transplant status, and x3 is the 
current age. We also know that x3(t) = x3(0) + t, where x3(0) is age at the 
time of acceptance. Substituting into equation (5.13), we have 

 )0()()()(log 332211
* xtxxtth βββα +++=  

where α*(t) = α(t) + β3t. Thus, we have converted a model with a time-
dependent version of age to one with a time-invariant version of age. In the 
process, the arbitrary function of time changes, but that’s of no 
consequence because it drops out of the estimating equations anyway. The 
same trick works with calendar time: instead of specifying a model in 
which the hazard depends on current calendar time, we can estimate a 
model with calendar time at the point of acceptance and get exactly the 
same results.  

The trick does not work, however, if the model says that the log of 
the hazard is a nonlinear function of the alternative time origin. For 
example, suppose we want to estimate the model 

 )(log)()()(log 332211 txtxxtth βββα +++=  

where x3(t) is again age at time t. Substitution with x3(t) = x3(0) + t gets us 
nowhere in this case because the β3 coefficient does not distribute across 
the two components of x3(t). You must estimate this model with log x3(t) as 
a time-dependent covariate: 

PROC PHREG DATA=stan; 
   MODEL surv1*dead(0)=plant surg logage / TIES=EFRON; 
   IF wait>surv1 OR wait=. THEN plant=0; ELSE plant=1; 
   logage=LOG(ageaccpt+surv1); 
RUN; 

In sum, if you are willing to forego nonlinear functions of time, you 
can include any alternative time origin as a time-invariant covariate, 
measured at the origin that is actually used in calculating event times.  

Time-Dependent Covariates Measured at Regular Intervals 

As we saw earlier, calculation of the partial likelihood requires that 
the values of the covariates be known for every individual who was at risk 
at each event time. In practice, because we never know in advance when 
events will occur, we need to know the values of all the time-dependent 
covariates at every point in time. This requirement was met for the heart 
transplant data: death times were measured in days, and for each day, we 
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could construct a variable indicating whether a given patient had already 
had a heart transplant.  

Often, however, the information about the covariates is only 
collected at regular intervals of time that may be longer (or shorter) than 
the time units used to measure event times. For example, in a study of time 
to death among AIDS patients, there may be monthly follow-ups in which 
vital signs and blood measurements are taken. If deaths are reported in 
days, there is only about a 1-in-30 chance that the time-dependent 
measurements will be available for a given patient on a particular death 
day. In such cases, it is necessary to use some ad-hoc method for assigning 
covariate values to death days. In a moment, I will discuss several issues 
related to such ad-hoc approaches. First, let’s look at an example in which 
the time intervals for covariate measurement correspond exactly to the 
intervals in which event times are measured.  

For the recidivism example that we studied earlier, additional 
information was available on the employment status of the released 
convicts over the 1-year follow-up period. Specifically, for each of the 52 
weeks of follow-up, there was a dummy variable coded 1 if the person was 
employed full-time during that week; otherwise, the variable was coded 0. 
The data are read as follows: 

 
DATA RECID; 
   INFILE 'c:\recid.dat'; 
   INPUT week arrest fin age race wexp mar paro prio educ emp1-emp52; 
RUN; 

The employment status information is contained in the variables EMP1 to 
EMP52. For the programming statements method, we can work directly 
with the RECID data set. The PROC PHREG statements are 

 
PROC PHREG DATA=recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio employed  
         / TIES=EFRON; 
   ARRAY emp(*) emp1-emp52; 
   DO i=1 TO 52; 
      IF week=i THEN employed=emp[i]; 
   END; 
RUN; 

The aim here is to pick out the employment indicator that 
corresponds to the week in which an event occurred and assign that value 
to the variable EMPLOYED for everyone who is in the risk set for that 
week. The ARRAY statement makes it possible to treat the 52 distinct 
dummy variables as a single subscripted array, thereby greatly facilitating 
the subsequent operations. Note that in the IF statement, the “subscript” to 
EMP must be contained in brackets rather than parentheses. 
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The only problem with this code is that the program has to cycle 
through 52 IF statements to pick out the right value of the employment 
variable. A more efficient program that directly retrieves the correct value 
is as follows: 

 
PROC PHREG DATA=recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio employed  
         / TIES=EFRON; 
   ARRAY emp(*) emp1-emp52; 
   employed=emp[week]; 
RUN; 

Output 5.14 shows the results (for either version). For the 
time-invariant variables, the coefficients and test statistics are pretty much 
the same as in Output 5.8. Judging by the chi-square test, however, the new 
variable EMPLOYED has by far the strongest effect of any variable in the 
model. The hazard ratio of .265 tells us that the hazard of arrest for those 
who were employed full time is a little more than one-fourth the hazard for 
those who were not employed full time.  

Output 5.14 Recidivism Results with a Time-Dependent Covariate 

                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  fin         1    -0.35672     0.19113      3.4835      0.0620     0.700 
  age         1    -0.04633     0.02174      4.5442      0.0330     0.955 
  race        1     0.33867     0.30960      1.1966      0.2740     1.403 
  wexp        1    -0.02557     0.21142      0.0146      0.9037     0.975 
  mar         1    -0.29374     0.38303      0.5881      0.4432     0.745 
  paro        1    -0.06420     0.19468      0.1088      0.7416     0.938 
  prio        1     0.08515     0.02896      8.6455      0.0033     1.089 
  employed    1    -1.32823     0.25071     28.0679      <.0001     0.265 

Unfortunately, these results are undermined by the possibility that 
arrests affect employment status rather than vice versa. If someone is 
arrested and incarcerated near the beginning of a particular week, the 
probability of working full time during the remainder of that week is likely 
to drop precipitously. This potential reverse causation is a problem that is 
quite common with time-dependent covariates, especially when event 
times or covariate times are not measured precisely.  

One way to reduce ambiguity in the causal ordering is to lag the 
covariate values. Instead of predicting arrests in a given week based on 
employment status in the same week, we can use employment status in the 
prior week. This requires only minor modifications in the SAS code: 
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PROC PHREG; 
   WHERE week>1; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio employed  
         / TIES=EFRON; 
   ARRAY emp(*) emp1-emp52; 
   employed=emp[week-1]; 
RUN; 

One change is to add a WHERE statement to eliminate cases (only 
one case, in fact) with an arrest in the first week after release. This change 
is necessary because there were no values of employment status before the 
first week. The other change is to use WEEK–1 as the subscript for EMP 
rather than WEEK. With these changes, the coefficient for EMPLOYED 
drops substantially, from –1.33 to –.79, which implies that the hazard of 
arrest for those who were employed is about 45 percent of the risk of those 
who were not employed. While this is a weaker effect than we found using 
unlagged values of employment status, it is still highly significant with a 
chi-square value of 13.1. The effects of the other variables remain virtually 
unchanged.  

As this example points out, there are often many different ways of 
specifying the effect of a time-dependent covariate. Let’s consider a couple 
of the alternatives. Instead of a single lagged version of the employment 
status indicator, we can have both a 1-week and a 2-week lag, as shown in 
the following program: 

 
PROC PHREG; 
   WHERE week>2; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio employ1  
         employ2 / TIES=EFRON; 
   ARRAY emp(*) emp1-emp52; 
   employ1=emp[week-1]; 
   employ2=emp[week-2]; 
RUN; 

Note that because of the 2-week lag, it is necessary to eliminate cases 
with events in either week 1 or week 2. When I tried this variation, I found 
that neither EMPLOY1 nor EMPLOY2 was significant (probably because 
they are highly correlated—a joint test that both coefficients are 0 yielded a 
p-value of .0018). However, the 1-week lag was much stronger than the 2-
week lag. So it looks as though we’re better off sticking with the single 1-
week lag.  

Another possibility is that the hazard of arrest may depend on the 
cumulative employment experience after release rather than the 
employment status in the preceding week. Consider the following SAS 
code: 
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DATA RECIDCUM; 
   SET recid; 
   ARRAY emp(*) emp1-emp52; 
   ARRAY cum(*) cum1-cum52; 
   cum1=emp1; 
   DO i=2 TO 52; 
      cum(i)=(cum(i-1)*(i-1) + emp(i))/i; 
   END; 
PROC PHREG DATA=recidcum; 
   WHERE week>1; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio employ  
         / TIES=EFRON; 
   ARRAY cumemp(*) cum1-cum52; 
   EMPLOY=cumemp[week-1]; 
RUN; 

The DATA step defines a new set of variables CUM1−CUM52 that are 
the cumulative proportions of weeks worked for each of the 52 weeks. The 
DO loop creates the cumulative number of weeks employed and converts it 
into a proportion. The PROC PHREG statements have the same structure as 
before, except that the cumulative employment (lagged by 1 week) has 
been substituted for the lagged employment indicator. This run produces a 
marginally significant effect of cumulative employment experience. When 
I also included the 1-week-lagged employment indicator, the effect of the 
cumulated variable faded to insignificance, while the lagged indicator 
continued to be a significant predictor. Again, it appears that the 1-week 
lag is a better specification. 

You can create the cumulated variable in the PROC PHREG step 
rather than the DATA step, but that would increase computing time.  In 
general, whatever programming can be done in the DATA step should be 
done there because the computations only have to be done once. In the 
PROC PHREG step, on the other hand, the same computations may have to 
be repeated many times.  

Now let’s repeat our analysis of the RECID data set using the 
counting process method. Here’s the code for producing the data set: 

 
DATA RECIDCOUNT; 
  ARRAY emp(*) emp1-emp52; 
  SET recid; 
  arrest2=0; 
  DO stop=1 TO week; 
    start=stop-1; 
    IF stop=week THEN arrest2=arrest; 
    employed=emp(stop); 
    IF week>=1 THEN emplag=emp(stop-1); ELSE emplag=.; 
    OUTPUT; 
  END; 
RUN; 
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This DATA step produced 19,377 person-weeks. Once again, we 
need an ARRAY to hold the 52 values of the employment indicator. Next, 
ARREST2, our new censoring indicator is initialized at 0 because 
individuals can only be arrested in their last person-week. The DO loop, 
running from week 1 until the week of arrest or censoring, creates a new 
person-week for each cycle through the loop. For each person-week, a 
START time and a STOP time are defined. For the last person-week 
(STOP=WEEK), the IF statement resets ARREST2 to be the same as 
ARREST, the original censoring indicator. Next, the variable EMPLOYED is 
set equal to the EMP indicator variable corresponding to that week. An 
employment indicator lagged by 1 week is also created. Note that here in a 
DATA step, we can put parentheses around the array subscript rather than 
the brackets that are required in the PROC PHREG step (although brackets 
would work also).  

Because most periods of employment or unemployment extended 
over multiple weeks, we could have gotten by with a lot fewer records in 
the new data set. That is, we could have created one record for each 
contiguous period of employment or unemployment. But that would 
require a considerably more complicated program to produce the data set. 
In many applications, it’s easier to just create a new record for each 
discrete point in time. This will not change the results. You must break the 
observation period whenever any covariate changes in value, but you can 
always break it into smaller units without affecting the outcome.  

Here is the PROC PHREG step, which produces exactly the same 
table as the one shown in Output 5.14: 

 
PROC PHREG DATA=recidcount; 
MODEL (start,stop)*arrest2(0)=fin age race wexp mar paro prio employed  
   /TIES=EFRON; 
RUN; 

To do the analysis with a 1-week lag of employment status, just substitute 
EMPLAG for EMPLOYED. 
 

Ad-Hoc Estimates of Time-Dependent Covariates 

It often happens that time-dependent covariates are measured at 
regular intervals, but the intervals don’t correspond to the units in which 
event times are measured. For example, we may know the exact day of 
death for a sample of cancer patients but have only monthly measurements 
of, say, albumin level in the blood. For partial likelihood estimation with 
such data, we really need daily albumin measurements, so we must 
somehow impute these from the monthly data. There are often several 
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possible ways to do this, and, unfortunately, none has any formal 
justification. On the other hand, it’s undoubtedly better to use some 
common-sense method for imputing the missing values rather than 
discarding the data for the time-dependent covariates.  

Let’s consider some possible methods and some rough rules of thumb. 
For the case of monthly albumin measurements and day of death, an 
obvious method is to use the closest preceding albumin level to impute the 
level at any given death time. For data over a 1-year period, the SAS code 
for the programming statements method might look like this: 

 
DATA blood; 
   INFILE 'c:\blood.dat'; 
   INPUT deathday status alb1-alb12; 
PROC PHREG; 
   MODEL deathday*status(0)=albumin; 
   ARRAY alb(*) alb1-alb12; 
   deathmon=CEIL(deathday/30.4); 
   albumin=alb[deathmon]; 
RUN; 

Assume that ALB1 is measured at the beginning of the first month, 
and so on for the next 11 measurements. Dividing DEATHDAY by 30.4 
converts days into months (including fractions of a month). The CEIL 
function then returns the smallest integer larger than its argument. Thus, 
day 40 would be converted to 1.32, which then becomes 2 (that is, the 
second month). This value is then used as a subscript in the ALB array to 
retrieve the albumin level recorded at the beginning of the second month. 
(There may be some slippage here because months vary in length. 
However, if we know the exact day at which each albumin measurement 
was taken, we can avoid this difficulty by using the methods for irregular 
intervals described in the next section.) 

Here’s how to accomplish the same thing with the counting process 
syntax: 

 
DATA bloodcount; 
  SET blood; 
  ARRAY alb(*) alb1-alb12; 
  status2=0; 
  deathmon=CEIL(deathday/30.4); 
  DO j=1 TO deathmon; 
    start=(j-1)*30.4; 
    stop=start+30.4; 
    albumin=alb(j); 
    IF j=deathmon THEN DO; 
      status2=status; 
      stop=deathday-start; 
  END; 
  OUTPUT; 
END; 
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PROC PHREG DATA=bloodcount; 
   MODEL (start,stop)*status2(0)=albumin; 
RUN; 
 
  

It may be possible to get better imputations of daily albumin levels 
by using information about the blood levels in earlier months. If we 
believe, for example, that albumin levels are likely to worsen (or improve) 
steadily, it might be sensible to calculate a linear extrapolation based on 
the most recent 2 months. Here is the programming statements code: 

 
PROC PHREG DATA=blood; 
   MODEL deathday*status(0)=albumin; 
   ARRAY alb(*) alb1-alb12; 
   deathmon=deathday/30.4; 
   j=CEIL(deathmon); 
   IF j=1 THEN albumin=alb(1); 
   ELSE albumin=alb[j]+(alb[j]-alb[j-1])*(deathmon-j+1); 
RUN; 
 

To accomplish the same thing with the counting process method, the 
data set must consist of person months rather than person days. Here is the 
code: 

 
DATA bloodcount; 
SET blood; 
  ARRAY alb(*) alb1-alb12; 
  status2=0; 
DO i=1 TO deathday; 
  start=i-1 
  stop=i; 
  j=CEIL(i/30.4); 
  albumin=alb(j)+(alb(j)-alb(j-1))*(i/30.4-j+1); 
  IF i=deathday THEN status2=status; 
  OUTPUT; 
END; 
PROC PHREG DATA=bloodcount; 
   MODEL (start,stop)*status2(0)=albumin; 
RUN; 
 

In these examples, we made no use of information about albumin 
levels that were recorded after the death date. Obviously, we had no other 
option for patients who died. Remember, though, that for every death date, 
PROC PHREG retrieves (or constructs) the covariates for all individuals 
who were at risk of death on that date, whether or not they died. For those 
who did not die on that death date, we could have used the average of the 
albumin level recorded before the death date and the level recorded after 
the death date. I don’t recommend this, however. Using different 
imputation rules for those who died and those who didn’t die is just 
asking for artifacts to creep into your results. Even in cases where the 
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occurrence of the event does not stop the measurement of the time-
dependent covariate, it’s a dangerous practice to use information recorded 
after the event to construct a variable used as a predictor of the event. This 
would be sensible only if you are completely confident that the event 
could not have caused any changes in the time-dependent covariate. For 
example, in modeling whether people will purchase a house, it might be 
reasonable to use an average of the local mortgage rates before and after the 
purchase. 

Time-Dependent Covariates That Change at Irregular Intervals  

In the Stanford Heart Transplant example, we had a time-dependent 
covariate—previous receipt of a transplant—that changed  
at unpredictable times. No more than one such change could occur for any  
of the patients. Now we consider the more general situation in which the 
time-dependent covariate may change at multiple, irregularly spaced 
points in time.  

We’ll do this by way of an example. The survival data (hypothetical) 
in Output 5.15 are for 29 males, aged 50 to 60, who were diagnosed with 
alcoholic cirrhosis. At diagnosis, they were measured for blood 
coagulation time (PT). The men were then remeasured at clinic visits that 
occurred at irregular intervals until they either died or the study was 
terminated. The maximum number of clinic visits for any patient was 10. 
The length of the intervals between visits ranged between 3 and 33 
months, with a mean interval length of 9.5 months and a standard 
deviation of 6.0. In Output 5.15, SURV is the time of death or time of 
censoring, calculated in months since diagnosis. DEAD is coded 1 for a 
death and 0 if censored. TIME2−TIME10 contain the number of months 
since diagnosis for each clinic visit. PT1−PT10 contain the measured 
values of the PT variable at each clinic visit. Variables are recorded as 
missing if there was no clinic visit.  
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Output 5.15 Survival Data for 29 Males with Alcoholic Cirrhosis 

                                T 
       T  T  T  T  T  T  T  T  I 
  S D  I  I  I  I  I  I  I  I  M                                                 P 
  U E  M  M  M  M  M  M  M  M  E    P    P    P    P    P    P    P    P    P    T 
  R A  E  E  E  E  E  E  E  E  1    T    T    T    T    T    T    T    T    T    1 
  V D  2  3  4  5  6  7  8  9  0    1    2    3    4    5    6    7    8    9    0 
 
 90 0  7 20 26 35 44 50 56 80 83 23.9 20.8 23.6 23.6 24.0 22.5 24.6 25.1 29.4 27.9 
 80 0  6 36 42 54 67 78  .  .  . 29.6 15.1 15.4 16.3 13.9 14.6 16.1   .    .    . 
 36 0 17 28 34  .  .  .  .  .  . 25.9 24.4 24.8 24.3   .    .    .    .    .    . 
 68 0 15 20 26 32 51  .  .  .  . 26.8 27.9 26.5 26.5 26.8 26.6   .    .    .    . 
 62 0 22 40 46  .  .  .  .  .  . 23.0 25.2 27.1 27.8   .    .    .    .    .    . 
 47 0  5 12 24 35 46  .  .  .  . 25.8 26.0 25.2 24.9 26.3 26.6   .    .    .    . 
 84 0  8 27 31 43 76  .  .  .  . 14.2 11.5 12.9 12.6 12.5 18.6   .    .    .    . 
 57 0  6 21 27 34 39 45 51  .  . 27.6 27.5 28.0 27.8 29.1 28.2 28.3 28.4   .    . 
  7 0  4  7  .  .  .  .  .  .  . 25.0 25.1 24.7   .    .    .    .    .    .    . 
 49 0 16  .  .  .  .  .  .  .  . 25.5 27.4   .    .    .    .    .    .    .    . 
 55 0  3  9 15 21 33 42 49  .  . 14.8 16.7 16.9 17.7 13.8 13.8 13.7 14.2   .    . 
 43 0  6 11 18 24 42  .  .  .  . 20.6 19.9 20.3 20.2 19.7 27.1   .    .    .    . 
 42 0  6 12 18 23 29 35  .  .  . 27.6 27.0 28.1 28.8 29.0 28.4 28.8   .    .    . 
 11 0  9  .  .  .  .  .  .  .  . 25.3 27.8   .    .    .    .    .    .    .    . 
 36 1 16 22 28  .  .  .  .  .  . 22.5 22.3 25.2 26.4   .    .    .    .    .    . 
 36 1  9 26 32  .  .  .  .  .  . 26.9 26.9 24.2 26.2   .    .    .    .    .    . 
  2 1  .  .  .  .  .  .  .  .  . 19.2   .    .    .    .    .    .    .    .    . 
 23 1  7 13  .  .  .  .  .  .  . 21.8 20.3 23.8   .    .    .    .    .    .    . 
 10 1  6  .  .  .  .  .  .  .  . 21.6 22.3   .    .    .    .    .    .    .    . 
 29 1 21 27  .  .  .  .  .  .  . 18.7 20.2 22.5   .    .    .    .    .    .    . 
 16 1  6 12  .  .  .  .  .  .  . 28.4 28.7 28.7   .    .    .    .    .    .    . 
 15 1  7 12  .  .  .  .  .  .  . 17.8 17.7 17.4   .    .    .    .    .    .    . 
  5 1  3  .  .  .  .  .  .  .  . 20.7 22.6   .    .    .    .    .    .    .    . 
 15 1  6  .  .  .  .  .  .  .  . 28.0 28.8   .    .    .    .    .    .    .    . 
  1 1  .  .  .  .  .  .  .  .  . 31.6   .    .    .    .    .    .    .    .    . 
 13 1  4 10  .  .  .  .  .  .  . 26.0 22.7 25.4   .    .    .    .    .    .    . 
 39 1 22 35  .  .  .  .  .  .  . 25.5 29.0 29.2   .    .    .    .    .    .    . 
 20 1 12  .  .  .  .  .  .  .  . 21.3 21.0   .    .    .    .    .    .    .    . 
 45 1 18 24 38  .  .  .  .  .  . 23.9 28.7 29.5 30.2   .    .    .    .    .    . 

Let’s estimate a model in which the hazard of death at time t 
depends on the value of PT at time t. Because we don’t have measures of 
PT at all death times, we’ll use the closest preceding measurement. The 
SAS code for accomplishing this with the programming statements method 
is as follows: 

 
PROC PHREG DATA=alco; 
   MODEL surv*dead(0)=pt; 
   time1=0; 
   ARRAY time(*) time1-time10; 
   ARRAY p(*) pt1-pt10; 
   DO j=1 TO 10; 
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   IF surv > time[j] AND time[j] NE . THEN pt=p[j]; 
   END; 
RUN; 

For a given death time, the DO loop cycles through all 10 possible 
clinic visits. If the death time is greater than the time of jth visit, the value 
of PT is reassigned to be the value observed at visit j. PROC PHREG keeps 
doing this until it either 

 encounters a missing value of the TIME variable (no clinic visit) 
 encounters a TIME value that is greater than the death time 
 goes through all 10 possible visits.  

Hence, PROC PHREG always stops at the most recent clinic visit and 
assigns the value of PT recorded at that visit.  

When I ran this model, I got a coefficient for PT of .084 with a 
nonsignificant likelihood-ratio chi-square value of 1.93, suggesting that the 
blood measurement is of little predictive value. But suppose the hazard 
depends on the change in PT relative to the patient’s initial measurement 
rather than upon the absolute level. You can implement this idea by 
changing the IF statement above to read as follows: 

 
IF surv > time[j] AND time[j] NE . THEN pt=p[j]-pt1; 

With this minor change in specification, the coefficient of PT increased in 
magnitude to .365 with a chi-square of 7.35, which is significant at beyond 
the .01 level.  

Here is the code for producing the same results with the counting 
process method: 

 
DATA alcocount; 
 SET alco; 
 time1=0; 
 time11=.; 
 ARRAY t(*) time1-time11; 
 ARRAY p(*) pt1-pt10; 
 dead2=0; 
 DO j=1 TO 10 WHILE (t(j) NE .); 
   start=t(j); 
   pt=p(j); 
   stop=t(j+1); 
   IF t(j+1)=. THEN DO; 
      stop=surv; 
      dead2=dead; 
   END; 
   OUTPUT; 
END; 
PROC PHREG DATA=alcocount; 
  MODEL (start,stop)*dead2(0)=pt; 
RUN; 
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To make the predictor measure the change from TIME1, simply modify the 
definition of PT to be    

 
pt=p(j)-pt1; 

 
In general, the only additional requirement for handling covariates 

with irregular intervals between measurements is data on the times of 
measurement. The variables containing the measurement times must 
always be in the same metric as the event-time variable. 

COX MODELS WITH NONPROPORTIONAL HAZARDS 

Earlier, I mentioned that the Cox model can be easily extended to 
allow for nonproportional hazards. In fact, we’ve just finished a lengthy 
discussion of one class of nonproportional models. Whenever you 
introduce time-dependent covariates into a Cox regression model, it’s no 
longer accurate to call it a proportional hazards (PH) model. Why? Because 
the time-dependent covariates will change at different rates for different 
individuals, so the ratios of their hazards cannot remain constant. As 
we’ve seen, however, that creates no real problem for the partial likelihood 
estimation method.  

But suppose you don’t have any time-dependent covariates. How do 
you know whether your data satisfy the PH assumption, and what happens 
if the assumption is violated? Although these are legitimate questions, I 
personally believe that concern about the PH assumption is often 
excessive. Every model embodies many assumptions, some more 
questionable or consequential than others. The reason people focus so 
much attention on the PH assumption is that the model is named for that 
property. At the same time, they often ignore such critical questions as: 
Are all the relevant covariates included? Is the censoring mechanism 
noninformative? Is measurement error in the covariates acceptably low? As 
in ordinary linear regression, measurement error in the covariates tends to 
attenuate coefficients (Nakamura, 1992).  

To put this issue in perspective, you need to understand that 
violations of the PH assumption are equivalent to interactions between one 
or more covariates and time. That is, the PH model assumes that the effect 
of each covariate is the same at all points in time. If the effect of a variable 
varies with time, the PH assumption is violated for that variable. It’s 
unlikely that the PH assumption is ever exactly satisfied, but that’s true of 
nearly all statistical assumptions. If we estimate a PH model when the 
assumption is violated for some variable (thereby suppressing the 
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interaction), then the coefficient that we estimate for that variable is a sort 
of average effect over the range of times observed in the data. Is this so 
terrible? In fact, researchers suppress interactions all the time when they 
estimate regression models. In models with even a moderately large 
number of variables, no one tests for all the possible 2-way interactions—
there are just too many of them.  

In some cases, however, we may have reason to believe that the 
interactions with time are so strong that it would be misleading to 
suppress them. In other situations, we might have a strong theoretical 
interest in those interactions, even when they are not very strong. For 
those cases, we need to examine methods for testing and modeling 
nonproportional hazards.  

We begin with methods for testing for nonproportional hazards using 
residuals. Then we examine two methods that extend the Cox model to 
allow for nonproportional hazards. One method explicitly incorporates the 
interactions into the model. The other, called stratification, subsumes the 
interactions into the arbitrary function of time.  

Testing the Proportionality Assumption with the ASSESS Statement 

A variety of different kinds of residuals have been defined for Cox 
regression models (Collett, 2003). One kind, martingale residuals, can be 
used to test for nonproportionality, using the method proposed by Lin, 
Wei, and Ying (1993). This method has been incorporated into the ASSESS 
statement in PROC PHREG. Unfortunately, this statement will not work if 
the model contains time-dependent covariates, either with the 
programming statements method or the counting process method.  

Here’s how to use the ASSESS statement for the recidivism data: 
 
ODS GRAPHICS ON; 
PROC PHREG DATA=recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio 
         / TIES=EFRON; 
   ASSESS PH / RESAMPLE; 
RUN; 
ODS GRAPHICS OFF; 
 

In the ASSESS statement, the PH option requests an assessment of 
the proportional hazards assumption. For each covariate, this statement 
produces a graphical display of the empirical score process, which is 
based on the martingale residuals. Output 5.16 displays the graph for AGE. 
The solid line is the observed empirical score process. The dashed lines 
are empirical score processes based on 20 random simulations that 
embody the proportional hazards assumption. If the observed process 
deviates markedly from the simulated processes, it is evidence against the 
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proportional hazards assumption. The observed process for AGE does 
indeed appear to be somewhat more extreme than the simulated processes.  

Output 5.16 Testing the Proportional Hazards Assumption with the ASSESS Statement 

 

  
In the lower right corner of Output 5.16, we get a more quantitative 

assessment in the form of a p-value. For 1000 simulated paths, only 1.5 
percent of them had extreme points (suprema) that exceeded the most 
extreme point of the observed path (yielding a Kolmogorov-Smirnov type 
test). The p-value was produced by the RESAMPLE option, which 
generated the 1,000 simulated paths. That option also produces a table 
summarizing the results for each covariate, as seen in Output 5.17. The 
only variable with clear evidence for a violation of the PH assumption is 
AGE. However, this test does not tell us anything about the nature of the 
violation. Note also that if you only want the table but not the graphs, you 
can just run the code above without the ODS statements. 
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Output 5.17 Testing the Proportional Hazards Assumption with the ASSESS Statement 

            Supremum Test for Proportional Hazards Assumption 
 
                   Maximum 
                  Absolute                                      Pr > 
      Variable       Value    Replications          Seed    MaxAbsVal 
 
      fin           0.5408            1000     292778001       0.8240 
      age           1.8192            1000     292778001       0.0150 
      race          0.9435            1000     292778001       0.2210 
      wexp          1.3008            1000     292778001       0.0940 
      mar           0.9349            1000     292778001       0.2350 
      paro          0.5383            1000     292778001       0.8070 
      prio          0.6104            1000     292778001       0.7240 

You can also test for nonproportional hazards using Schoenfeld 
residuals. Unlike the ASSESS statement, this method works even if you 
have time-varying covariates defined by the counting process method (but 
not with the programming statements method). It also takes much less 
computing time, which may be important with large samples.  

Schoenfeld residuals have an unusual property: instead of a single 
residual for each individual, there is a separate residual for each covariate 
for each individual. They are not defined for censored observations (they 
are missing in the output data set). Here’s how they are calculated. 
Suppose that individual i is arrested at time ti, and at that time there were 
330 people at risk of arrest, indexed by j = 1, …, 330. For each of those 330 
people, the estimated Cox model implies a certain probability of being 
arrested at that time, denoted by pj. Imagine randomly selecting one of 
these 330 people, with probability pj. For each covariate xk, we can 
calculate its expected value for a randomly selected person (from that risk 
set) as 

  ∑
=

=
330

1j
jkjk pxx . 

The Schoenfeld residual is then defined as the covariate value for the 
person who actually died, xik, minus the expected value.  
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The main use of these residuals is to detect possible departures from 
the proportional hazards assumption. If the assumption is satisfied, the 
Schoenfeld residuals should be independent of time. Testing the 
proportional hazards assumption is equivalent, therefore, to testing 
whether the Schoenfeld residuals are correlated with time or with some 
function of time. For the recidivism data, I produced a data set containing 
the Schoenfeld residuals using these statements: 

 
PROC PHREG DATA=recid; 
  MODEL week*arrest(0)=fin age prio race wexp mar paro prio / 
    TIES=EFRON; 
OUTPUT OUT=b RESSCH=schfin schage schprio schrace schwexp schmar  
  schparo schprio; 
RUN; 

Note that the keyword RESSCH is followed by eight arbitrarily 
chosen variable names corresponding to the eight covariates in the model. 
These variables contain the Schoenfeld residuals in the output data set B.  

The next step is to modify the data set to incorporate two familiar 
functions of time, the log and the square, followed by PROC CORR to 
compute the correlations of the residuals with time and its two functions. 
Other functions of time might also be considered. 

 
DATA c; 
  SET b; 
  lweek=LOG(week); 
  week2=week**2; 
PROC CORR; 
VAR week lweek week2 schfin schage schprio schrace schwexp schmar   
  schparo schprio; 
RUN; 
 

The results, shown in Output 5.18, are consistent with what we 
found using the ASSESS statement. There is a fairly clear-cut problem 
with AGE (with p-values less than .05 for all three functions) and a 
marginal problem with WEXP. Notice that the sample size is only 114 
because the Schoenfeld residuals are not defined for the censored cases. In 
the next subsection, we will see how to estimate a Cox model that allows 
the effect of AGE to change with time. This will also give us a more 
definitive test of the proportionality assumption for this variable.  
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Output 5.18 Testing the Proportional Hazards Assumption with Schoenfeld Residuals 

                    Pearson Correlation Coefficients 
                       Prob > |r| under H0: Rho=0 
                          Number of Observations 
 
                                    week      lweek      week2   
 
 schfin                         -0.00874    0.03484   -0.01688   
 Schoenfeld Residual for fin      0.9265     0.7129     0.8585 
                                     114        114        114   
 
 schage                         -0.21563   -0.23849   -0.18679   
 Schoenfeld Residual for age      0.0212     0.0106     0.0466   
                                     114        114        114   
 
 schprio                        -0.06043    0.01215   -0.08285   
 Schoenfeld Residual for prio     0.5230     0.8979     0.3809   
                                     114        114        114   
 
 schrace                        -0.13550   -0.11724   -0.13527   
 Schoenfeld Residual for race     0.1506     0.2141     0.1513   
                                     114        114        114   
 
 schwexp                         0.18432    0.13489    0.20662   
 Schoenfeld Residual for wexp     0.0496     0.1524     0.0274   
                                     114        114        114   
 
 schmar                          0.09382    0.09654    0.08061   
 Schoenfeld Residual for mar      0.3208     0.3069     0.3939   
                                     114        114        114   
 
 schparo                         0.01596    0.04421    0.00346   
 Schoenfeld Residual for paro     0.8661     0.6404     0.9709   
                                     114        114        114   
 
 schprio                        -0.06043    0.01215   -0.08285   
 Schoenfeld Residual for prio     0.5230     0.8979     0.3809   
                                     114        114        114 

 

INTERACTIONS WITH TIME AS TIME-DEPENDENT COVARIATES 

A common way of representing interaction between two variables in 
a linear regression model is to include a new variable that is the product of 
the two variables in question. To represent the interaction between a 
covariate x and time in a Cox model, we can write 

 xtxtth 21)()(log ββα ++= . 

Factoring out the x, we can rewrite this as 

 xttth )()()(log 21 ββα ++= . 
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In this equation, the effect of x is β1 + β2t. If β2 is positive, then the 
effect of x increases linearly with time; if it’s negative, the effect decreases 
linearly with time. β1 can be interpreted as the effect of x at time 0, the 
origin of the process.  

You can easily estimate this model by defining a time-dependent 
covariate z=xt. Here’s an example. Using both the ASSESS statement and 
Schoenfeld residuals, we just saw evidence that the variable AGE violates 
the proportional hazards assumption, implying that the effect of AGE 
varies with time since release. To incorporate that interaction using the 
programming statements method, we can run the following SAS code, 
which yields the results in Output 5.19: 

 
PROC PHREG DATA=recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio ageweek 
         / TIES=EFRON; 
   ageweek=age*week; 
RUN; 

Output 5.19 A Model for Recidivism with Time by Age Interaction 

                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  fin         1    -0.37823     0.19129      3.9096      0.0480     0.685 
  age         1     0.03692     0.03917      0.8883      0.3459     1.038 
  race        1     0.32290     0.30804      1.0989      0.2945     1.381 
  wexp        1    -0.12224     0.21285      0.3298      0.5658     0.885 
  mar         1    -0.41162     0.38212      1.1604      0.2814     0.663 
  paro        1    -0.09293     0.19583      0.2252      0.6351     0.911 
  prio        1     0.09354     0.02869     10.6294      0.0011     1.098 

ageweek     1    -0.00369     0.00146      6.4241      0.0113     0.996 
 

The interaction term is significant at about the .01 level, which 
confirms what we found using the ASSESS statement and the Schoenfeld 
residuals. But now we can go further and say something specific about 
how the effect of AGE varies with time. The main effect of AGE is the 
effect of that variable when WEEK is 0 (that is, when people are first 
released from prison). The hazard ratio tells us that each additional year of 
AGE increases the hazard of arrest by about 3.8 percent, although that 
number is not significantly different from 0. To get the effect of age for any 
given week, we can calculate .03692 – .00369*WEEK. For example, at 10 
weeks from release, the effect is approximately 0. At 20 weeks, it’s –.0369. 
At 30 weeks, it’s –.0738. And at 40 weeks, it’s –.1107. We can test whether 
the effect of AGE is significantly different from 0 at any given week by 
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using a TEST statement. For example, to test the effect at week 30, the 
TEST statement would be 

 
TEST age+30*ageweek=0; 

This returns a chi-square value of 9.06, with a p-value of .0026. 
Some textbooks recommend forming the product of the covariate 

and the logarithm of time, possibly to avoid numerical overflows. But 
there is no theoretical reason to prefer this specification, and the algorithm 
used by PROC PHREG is robust to numerical problems. When I used the 
logarithm of time with the recidivism data, the chi-square for the 
interaction was higher but not by much.  

As an alternative to treating time as continuous in the interaction, I 
defined it as dichotomous with the following programming statement: 

 
ageweek=age*(week>26); 

 
In this case, the main effect of AGE (−.004 with a p-value of .88) may be 
interpreted as the effect of AGE during the first 6 months of the year. To get 
the effect of AGE during the second 6x months, we add the interaction to 
the main effect, which yields a value of –.145 with a p-value of .0004. So it 
appears that AGE has essentially no effect on the hazard of arrest during 
the first 6 months but a big negative effect during the second 6 months.  

To sum up, we now have a definitive way to test for violations of the 
PH assumption: For any suspected covariate, simply add to the model a 
time-dependent covariate representing the interaction of the original 
covariate and time. If the interaction covariate does not have a significant 
coefficient, then we may conclude that the PH assumption is not violated 
for that variable. On the other hand, if the interaction variable does have a 
significant coefficient, we have evidence for nonproportionality. Of course, 
we also have a model that incorporates the nonproportionality. So, in this 
case, the method of diagnosis is also the cure.  

NONPROPORTIONALITY VIA STRATIFICATION 

Another approach to nonproportionality is stratification, a technique 
that is most useful when the covariate that interacts with time is both 
categorical and not of direct interest. Consider the myelomatosis data 
described in Chapter 2 and analyzed in Chapter 3. For that data, the 
primary interest was in the effect of the treatment indicator TREAT. There 
was also a covariate called RENAL, an indicator of whether renal 
functioning was impaired at the time of randomization to treatment. In 
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Chapter 3, we found that RENAL was strongly related to survival time, but 
the effect of TREAT was not significant. Suppose we believe (or suspect) 
that the effect of RENAL varies with time since randomization. 
Alternatively, we can say that the shape of the hazard function is different 
for those with and without impaired renal functioning. Letting x represent 
the treatment indicator and z the renal functioning indicator, we can 
represent this idea by postulating separate models for the two renal 
functioning groups: 

 Impaired  Not Impaired 
 ii xtth βα += )()(log 0  ii xtth βα += )()(log 1  

Notice that the coefficient of x is the same in both equations, but the 
arbitrary function of time is allowed to differ. We can combine the two 
equations into a single equation by writing 

 izi xtth βα += )()(log . 

One can easily estimate this model by the method of partial 
likelihood using these steps: 

1. Construct separate partial likelihood functions for each of the 
two renal functioning groups.  

2. Multiply those two functions together. 
3. Choose values of β that maximize this function. 

PROC PHREG does this automatically if you include a STRATA statement: 
 
PROC PHREG DATA=myel; 
   MODEL dur*stat(0)=treat / TIES=EXACT; 
   STRATA renal; 
RUN; 

Output 5.20 shows the results. PROC PHREG first reports some 
simple statistics for each of the strata; then it reports the usual output for 
the regression model. In contrast to the PROC LIFETEST results of Chapter 
3, we now find a statistically significant effect of the treatment. Notice, 
however, that there is no estimated coefficient for RENAL. Whatever 
effects this variable may have, they are entirely absorbed into the two 
arbitrary functions of time.  
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Output 5.20 Myelomatosis Data with Stratified Cox Regression 

             Summary of the Number of Event and Censored Values 
 
                                                                Percent 
    Stratum    renal          Total       Event    Censored    Censored 
 
          1    0                 18          10           8       44.44 
          2    1                  7           7           0        0.00 
    ------------------------------------------------------------------- 
      Total                      25          17           8       32.00 
 
 
 
                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio         6.0736        1         0.0137 
          Score                    5.7908        1         0.0161 
          Wald                     4.9254        1         0.0265 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
treat       1     1.46398     0.65965      4.9254      0.0265     4.323 

 

For comparison purposes, I also estimated three other PROC PHREG 
models: 

 a model with TREAT as the only covariate and no stratification. 
The coefficient was .56, with a p-value (based on the Wald chi-
square test) of .27, which is approximately the same as the p-
value for the log-rank test reported in Chapter 3.  

 a model with both TREAT and RENAL as covariates. The 
coefficient of TREAT was 1.22, with a p-value of .04. 

 a model that included TREAT, RENAL, and the (time-varying) 
product of RENAL and DUR. The coefficient of TREAT was 1.34, 
with a p-value of .05. The interaction term was not significant.  
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Based on these results, it is clearly essential to control for RENAL in 
order to obtain good estimates of the treatment effect, but whether you do 
it by stratification or by including RENAL as a covariate doesn’t seem to 
make much difference. Note that you cannot stratify by a variable and also 
include it as a covariate. These are alternative ways of controlling for the 
variable.  

Compared with the explicit interaction method of the previous 
section, the method of stratification has two main advantages: 

  The interaction method requires that you choose a particular 
form for the interaction, but stratification allows for any change 
in the effect of a variable over time. For example, including the 
product of RENAL and DUR as a covariate forces the effect of 
RENAL to either increase linearly or decrease linearly with time. 
Stratification by RENAL allows for reversals (possibly more than 
one) in the relationship between time and the effect of RENAL.  

  Stratification takes less computing time. This can be important 
in working with large samples.  

But there are also important disadvantages of stratification: 
  No estimates are obtained for the effect of the stratifying 

variable. As a result, stratification only makes sense for nuisance 
variables whose effects have little or no intrinsic interest.  

  There is no way to test for either the main effect of the stratifying 
variable or its interaction with time. In particular, it is not 
legitimate to compare the log-likelihoods for models with and 
without a stratifying variable.  

  If the form of the interaction with time is correctly specified, the 
explicit interaction method should yield more efficient estimates 
of the coefficients of the other covariates. Again, there is a trade-
off between robustness and efficiency. 

Now for some complications. In the example we’ve just been 
considering, the stratifying variable had only two values. If a variable with 
more than two values is listed in the STRATA statement, PROC PHREG 
creates a separate stratum for each value. The stratifying variable can be 
either character or numeric, with no restrictions on the possible values. If 
more than one variable is listed in the STRATA statement, PROC PHREG 
creates a separate stratum for every observed combination of values. 
Obviously you must exercise some care in using this option because you 
can easily end up with strata that have only one observation. For 
stratifying variables that are numeric, it is also easy to specify a limited 
number of strata that correspond to cut points on the variable. The syntax 
for accomplishing this is identical to the description in Chapter 3 for the 
STRATA statement in PROC LIFETEST. 
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In my view, the most useful application of stratification is for 
samples involving some kind of clustering or multi-level grouping. 
Examples include animals within litters, children within schools, patients 
within hospitals, and so on. In all of these situations, it is reasonable to 
expect that observations within a cluster will not be truly independent, 
thereby violating one of the standard assumptions used in constructing the 
likelihood function. The result is likely to be standard error estimates that 
are biased downward and test statistics that are biased upward. A highly 
effective solution is to treat each cluster as a distinct stratum. You can 
accomplish this by giving every cluster a unique identification number 
and then stratifying on the variable containing that number. This method 
assumes that observations are conditionally independent within clusters 
and that the coefficients of the covariates are the same across clusters. (The 
conditional independence assumption would be violated if, for example, 
the death of one patient had a deleterious effect on the risk of death for 
other patients in the same hospital.) In Chapter 8, we will see an 
alternative method for dealing with clustering. 

LEFT TRUNCATION AND LATE ENTRY INTO THE RISK SET 

In standard treatments of partial likelihood, it is assumed that every 
individual is at risk of an event at time 0 and continues to be at risk until 
either the event of interest occurs or the observation is censored. At that 
point the individual is removed from the risk set, never to return. It doesn’t 
have to be this way, however. If there are periods of time when it is known 
that a particular individual is not at risk for some reason, the partial 
likelihood method allows for the individual to be removed from the risk 
set and then returned at some later point in time. Unfortunately, many 
partial likelihood programs are not set up to handle this possibility. 

The most common situation is left truncation or late entry to the risk 
set. This situation often arises without the investigator even realizing it. 
Here are three examples: 

 Patients are recruited into a study at varying lengths of time after 
diagnosis with some disease. The investigator wishes to specify a 
model in which the hazard of death depends on the time since 
diagnosis. But by the design of the study, it is impossible for the 
patients to die between diagnosis and recruitment. If they had 
died, they would not have been available for recruitment.  

 At a specific point in time, all employees in a firm are 
interviewed and asked how long they have been working for the 
firm. Then, they are followed forward to determine how long 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

184 

they stay with the firm. The investigator estimates a model in 
which the hazard of termination depends on the length of 
employment with the firm. But again, it is impossible for these 
employees to have terminated before the initial interview. If they 
had terminated, they would not have been present for that 
interview.  

 High school girls are recruited into a study of teen pregnancy. 
The desired model expresses the hazard of pregnancy as a 
function of age. But girls were not included in the study if they 
had become pregnant before the study began. Thus, the girls in 
the study were not observationally at risk of pregnancy at ages 
before the initial interview. Obviously, they were at risk during 
those ages, but the design of the study makes it impossible to 
observe pregnancies that occurred before the initial interview.  

In all three cases, the solution is to remove the individual from the 
risk set between the point of origin and the time of the initial contact, 
which you can easily accomplish using the counting process syntax in 
PROC PHREG.  

To illustrate these methods, let’s specify a model for the Stanford 
Heart Transplant Data in which the hazard is expressed as a function of 
patient age rather than time since acceptance into the program. To do this, 
we must first convert the death time variable into patient age (in years): 

 
DATA stan2; 
   SET stan; 
   agels=(dls-dob)/365.25; 
RUN; 

Recall that DLS is date last seen and DOB is date of birth. Then 
AGELS is age at which the patient was last seen, which may be either a 
death time or a censoring time. Our problem is that, by design, patients 
were not at risk of an observable death before they were accepted into the 
program.  

Using the counting process syntax, we can specify a model in the 
following way: 

 
PROC PHREG DATA=stan2; 
   MODEL (ageaccpt,agels)*dead(0)=surg ageaccpt / TIES=EFRON; 
RUN; 

Here, AGEACCPT is the time of entry into the risk set and AGELS is the 
time of departure. Note that AGEACCPT can also be included as a 
covariate. 

It is also possible to combine the counting process syntax with the 
programming statements method for defining a time-dependent covariate. 
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The following program defines PLANT as a time-dependent indicator of 
transplant status, with results shown in Output 5.21: 

 
PROC PHREG DATA=stan2; 
   MODEL (ageaccpt,agels)*dead(0)=plant surg ageaccpt / TIES=EFRON; 
   IF agetrans>=agels OR agetrans=. THEN plant=0; 
   ELSE plant=1; 
RUN; 

Compare the results in Output 5.21 with those in Output 5.11, which had 
the same covariates but specified the principal time axis as time since 
acceptance. For PLANT and SURG, the results are very similar. But there is 
a dramatic increase in the effect of age at acceptance, which is a direct 
consequence of specifying age as the time axis. With age held constant 
(every risk set consists of people who are all the same age), age at 
acceptance is an exact linear function of time since acceptance. In the 
earlier analysis, any effects of time since acceptance were part of the 
baseline hazard function and were, therefore, not visible in the estimated 
coefficients.  

Output 5.21 Results for Transplant Data with Age as the Principal Time Axis 

                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  plant       1    -0.28042     0.43761      0.4106      0.5217     0.755 
  surg        1    -0.85312     0.46529      3.3618      0.0667     0.426 
ageaccpt    1     0.75857     0.28338      7.1655      0.0074     2.135 

 

So far, I have explained how to handle situations in which 
individuals who are not in the risk set at time 0 enter the risk set at some 
later point in time and then remain in the risk set until an event occurs. 
Now let’s consider situations in which individuals temporarily leave the 
risk set for some reason and then return at a later point in time. Suppose, 
for example, that a sample of children is followed for a period of 5 years to 
detect any occurrences of parental abuse. If some children are placed in 
foster homes for temporary periods, it may be desirable to remove them 
from the risk set for those periods.  

To accomplish this, a separate record is created for each interval 
during which the individual was continuously at risk. Thus, for a child 
who had one temporary period in a foster home, the first record 
corresponds to the interval from time 0 (however defined) to the time of 
entry into the foster home. This record is coded as censored because the 
event of interest did not occur. The second record is for the interval from 
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the time of exit from the foster home to the last time of observation, coded 
as censored if no event occurred at the termination of observation. The 
MODEL statement then uses the counting process syntax: 

 
MODEL (start, finish)*CENSOR(0)=X1 X2; 

Here, start is the time at which the interval begins (measured from the 
origin) and finish is the time at which the interval ends. The extension to 
multiple time outs should be straightforward. 

ESTIMATING SURVIVOR FUNCTIONS 

As we have seen, the form of the dependence of the hazard on time 
is left unspecified in the proportional hazards model. Furthermore, the 
partial likelihood method discards that portion of the likelihood function 
that contains information about the dependence of the hazard on time. 
Nevertheless, it is still possible to get nonparametric estimates of the 
survivor function based on a fitted proportional hazards model.  

When there are no time-dependent covariates, the Cox model can be 
written as  

 [ ] )exp(
0 )()( itStSi

βx=  (5.14) 

where Si(t) is the probability that individual i with covariate values xi 
survives to time t. S0(t) is called the baseline survivor function (that is, the 
survivor function for an individual whose covariate values are all 0). After 

β  is estimated by partial likelihood, S0(t) can be estimated by a 
nonparametric maximum likelihood method. With that estimate in hand, 
you can generate the estimated survivor function for any set of covariate 
values by substitution into equation (5.14). 

In PROC PHREG, this is accomplished with the BASELINE statement 
and the PLOTS option. The easiest task is to get the survivor function for 

xx =i , the vector of sample means. For the recidivism data set, the SAS 
code for accomplishing this task is as follows: 

 
ODS GRAPHICS ON; 
PROC PHREG DATA=recid PLOTS=S; 
   MODEL week*arrest(0)=fin age prio  
         / TIES=EFRON; 
   BASELINE OUT=a SURVIVAL=s LOWER=lcl UPPER=ucl; 
RUN; 
ODS GRAPHICS OFF; 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

 187 

 

In the BASELINE statement, the OUT=A option puts the survival 
estimates in a temporary data set named A. SURVIVAL=S stores the 
survival probabilities in a variable named S. The UPPER and LOWER 
options store the upper and lower 95% confidence limits in variables UCL 
and LCL, respectively.  

Data set A is printed in Output 5.22. There are 50 records, 
corresponding to the 49 unique weeks in which arrests were observed to 
occur, plus an initial record for time 0. Each record gives the mean value 
for each of the three covariates. The S column gives the estimated survival 
probabilities. The last two columns are the upper and lower 95% 
confidence limits. The survivor function reported here is very similar to 
one that would be produced by PROC LIFETEST using the Kaplan-Meier 
method, but it is not identical. This one allows for heterogeneity in the 
hazard/survivor functions while the Kaplan-Meier estimator does not. 

Output 5.22 Survivor Function Estimates for Recidivism Data at Sample Means 

Obs    fin      age        prio     week       s         lcl        ucl 
 
   1    0.5    24.5972    2.98380      0     1.00000     .          . 
   2    0.5    24.5972    2.98380      1     0.99801    0.99411    1.00000 
   3    0.5    24.5972    2.98380      2     0.99602    0.99050    1.00000 
   4    0.5    24.5972    2.98380      3     0.99403    0.98728    1.00000 
   5    0.5    24.5972    2.98380      4     0.99204    0.98425    0.99989 
   6    0.5    24.5972    2.98380      5     0.99005    0.98134    0.99884 
   7    0.5    24.5972    2.98380      6     0.98805    0.97851    0.99769 
   8    0.5    24.5972    2.98380      7     0.98605    0.97573    0.99648 
   9    0.5    24.5972    2.98380      8     0.97610    0.96258    0.98981 
  10    0.5    24.5972    2.98380      9     0.97209    0.95747    0.98694 
  11    0.5    24.5972    2.98380     10     0.97009    0.95494    0.98547 
  12    0.5    24.5972    2.98380     11     0.96606    0.94991    0.98248 
  13    0.5    24.5972    2.98380     12     0.96197    0.94487    0.97939 
  14    0.5    24.5972    2.98380     13     0.95993    0.94237    0.97783 
  15    0.5    24.5972    2.98380     14     0.95381    0.93494    0.97307 
  16    0.5    24.5972    2.98380     15     0.94970    0.92999    0.96983 
  17    0.5    24.5972    2.98380     16     0.94558    0.92507    0.96654 
  18    0.5    24.5972    2.98380     17     0.93942    0.91778    0.96158 
  19    0.5    24.5972    2.98380     18     0.93321    0.91047    0.95651 
  20    0.5    24.5972    2.98380     19     0.92904    0.90560    0.95309 
  21    0.5    24.5972    2.98380     20     0.91865    0.89356    0.94445 
  22    0.5    24.5972    2.98380     21     0.91448    0.88876    0.94096 
  23    0.5    24.5972    2.98380     22     0.91240    0.88636    0.93920 
  24    0.5    24.5972    2.98380     23     0.91031    0.88396    0.93744 
  25    0.5    24.5972    2.98380     24     0.90198    0.87445    0.93037 

                                                                                                                                                       (continued) 
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  26    0.5    24.5972    2.98380     25     0.89573    0.86735    0.92504 
  27    0.5    24.5972    2.98380     26     0.88938    0.86017    0.91959 
  28    0.5    24.5972    2.98380     27     0.88514    0.85539    0.91593 
  29    0.5    24.5972    2.98380     28     0.88090    0.85062    0.91227 
  30    0.5    24.5972    2.98380     30     0.87665    0.84584    0.90857 
  31    0.5    24.5972    2.98380     31     0.87451    0.84345    0.90672 
  32    0.5    24.5972    2.98380     32     0.87024    0.83867    0.90300 
  33    0.5    24.5972    2.98380     33     0.86596    0.83389    0.89925 
  34    0.5    24.5972    2.98380     34     0.86165    0.82909    0.89547 
  35    0.5    24.5972    2.98380     35     0.85302    0.81953    0.88788 
  36    0.5    24.5972    2.98380     36     0.84653    0.81235    0.88214 
  37    0.5    24.5972    2.98380     37     0.83787    0.80281    0.87446 
  38    0.5    24.5972    2.98380     38     0.83569    0.80042    0.87252 
  39    0.5    24.5972    2.98380     39     0.83133    0.79563    0.86863 
  40    0.5    24.5972    2.98380     40     0.82262    0.78610    0.86085 
  41    0.5    24.5972    2.98380     42     0.81823    0.78130    0.85691 
  42    0.5    24.5972    2.98380     43     0.80948    0.77177    0.84903 
  43    0.5    24.5972    2.98380     44     0.80505    0.76696    0.84503 
  44    0.5    24.5972    2.98380     45     0.80061    0.76214    0.84102 
  45    0.5    24.5972    2.98380     46     0.79171    0.75251    0.83294 
  46    0.5    24.5972    2.98380     47     0.78947    0.75010    0.83091 
  47    0.5    24.5972    2.98380     48     0.78500    0.74528    0.82684 
  48    0.5    24.5972    2.98380     49     0.77384    0.73328    0.81665 
  49    0.5    24.5972    2.98380     50     0.76712    0.72608    0.81049 
50    0.5    24.5972    2.98380     52     0.75812    0.71644    0.80221 

The PLOTS=S option produces a graph of the adjusted survivor 
function, evaluated at the means of the covariates, displayed in Output 
5.23. The PLOTS option only works with ODS graphics, which is why the 
PROC PHREG step is preceded and followed by ODS statements. The 
“Reference Setting” in the graph title refers to the mean values of the 
covariates. However, if the MODEL statement contains any CLASS 
variables, the survivor function is evaluated at the reference levels of those 
variables rather than at their means. In a moment, we will see how to 
evaluate and graph the survivor function at other specified covariate 
values. 
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Output 5.23 Graph of the Adjusted Survivor Function for Recidivism Data 

 
 
By combining the BASELINE statement with stratification, we can 

also produce graphs that compare survivor functions for two or more 
groups, while adjusting for covariates. Suppose we take financial aid (FIN) 
as the stratifying variable for the recidivism data. That might seem self-
defeating because FIN is the variable of greatest interest and stratifying on 
it implies that no tests or estimates of its effect are produced. But after 
stratifying, we can graph the baseline survivor functions for the two 
financial aid groups using the following code: 

 
ODS GRAPHICS ON; 
PROC PHREG DATA=recid PLOTS(OVERLAY=ROW)=S; 
   MODEL week*arrest(0)=fin age prio  
         / TIES=EFRON; 
   STRATA fin; 
RUN; 
ODS GRAPHICS OFF; 
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The OVERLAY option is necessary to get the two survival curves on the 
same graph. Note that the BASELINE statement used in the previous 
program is not necessary if you only want the graphs. The resulting figure 
in Output 5.24 shows the survivor functions for each of the two financial 
aid groups, evaluated at the means of the covariates.  

Output 5.24  Survivor Plots for the Two Financial Aid Groups  

 

Another major use of the baseline survivor function is to obtain 
predictions about survival time for particular sets of covariate values. 
These covariate values need not appear in the data set being analyzed. For 
the recidivism data, for example, we may want to say something about 
arrest times for 20-year-olds with four prior convictions who did not 
receive financial aid. The mechanics of doing this are a bit awkward. You 
must first create a new data set containing the values of the covariates for 
which you want predictions and then pass the name of that data set to 
PROC PHREG: 

 
DATA covals; 
   INPUT fin age prio; 
   DATALINES; 
0 40 3 
; 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 5 Estimating Cox Regression Models with PROC PHREG 

 191 

 

PROC PHREG DATA=recid; 
   MODEL week*arrest(0)=fin age prio / TIES=EFRON; 
   BASELINE OUT=a COVARIATES=covals SURVIVAL=s LOWER=lcl    
         UPPER=ucl; 
PROC PRINT DATA=a; 
RUN; 

The advantage of doing it this way is that predictions can easily be 
generated for many different sets of covariate values just by including 
more input lines in the data set COVALS. Each input line produces a 
complete set of survivor estimates, but all estimates are output to a single 
data set. The LOWER= and UPPER= options give 95% confidence intervals 
around the survival probability.  

Output 5.25 displays a portion of the data set generated by the 
BASELINE statement above. In generating predictions, it’s typical to focus 
on a single summary measure rather than the entire distribution. The 
median survival time is easily obtained by finding the smallest value of t 
such that S(t) ≤ .50. That won’t work for the recidivism data, however, 
because the data are censored long before a .50 probability is reached. For 
these data, it’s probably more useful to pick a fixed point in time and 
calculate survival probabilities at that time under varying conditions. For 
the covariate values in Output 5.25, the 6-month (26-week) survival 
probability is .82, with a 95% confidence interval of .77 to .88.  

Output 5.25  Portion of Survivor Function Estimate for Recidivism Data 

    Obs    fin    age    prio    week       s         lcl        ucl 
 
      1     0      20      4       0     1.00000     .          . 
      2     0      20      4       1     0.99644    0.98948    1.00000 
      3     0      20      4       2     0.99289    0.98305    1.00000 
      4     0      20      4       3     0.98935    0.97730    1.00000 
      5     0      20      4       4     0.98582    0.97189    0.99994 
      6     0      20      4       5     0.98229    0.96671    0.99811 
      7     0      20      4       6     0.97875    0.96168    0.99613 
      8     0      20      4       7     0.97522    0.95675    0.99404 
      9     0      20      4       8     0.95769    0.93345    0.98257 
     10     0      20      4       9     0.95068    0.92444    0.97767 
     11     0      20      4      10     0.94718    0.92000    0.97517 
     12     0      20      4      11     0.94017    0.91117    0.97009 
     13     0      20      4      12     0.93308    0.90232    0.96489 
     14     0      20      4      13     0.92954    0.89794    0.96226 
     15     0      20      4      14     0.91898    0.88497    0.95429 
     16     0      20      4      15     0.91191    0.87636    0.94890 

                                                                                                                                             (continued) 
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     17     0      20      4      16     0.90486    0.86783    0.94346 
     18     0      20      4      17     0.89435    0.85524    0.93525 
     19     0      20      4      18     0.88381    0.84267    0.92695 
     20     0      20      4      19     0.87677    0.83433    0.92137 
     21     0      20      4      20     0.85932    0.81381    0.90738 
     22     0      20      4      21     0.85237    0.80570    0.90175 
     23     0      20      4      22     0.84891    0.80166    0.89894 
     24     0      20      4      23     0.84543    0.79762    0.89611 
     25     0      20      4      24     0.83166    0.78169    0.88482 
     26     0      20      4      25     0.82140    0.76989    0.87634 
     27     0      20      4      26     0.81102    0.75799    0.86776 
     28     0      20      4      27     0.80413    0.75011    0.86204 
     29     0      20      4      28     0.79726    0.74227    0.85631 
     30     0      20      4      30     0.79039    0.73445    0.85058 

 

Note that the BASELINE statement will not produce any output 
when there are time-dependent covariates defined by the programming 
statements method. The BASELINE statement will produce output when 
time-dependent covariates are handled with the counting process method, 
although the log window will contain the following warning: NOTE: 
Since the counting process style of response was specified 
in the MODEL statement, the SURVIVAL= statistics in the 
BASELINE statement should be used with caution. For most 
applications, however, this should not be a concern.  

TESTING LINEAR HYPOTHESES WITH CONTRAST OR TEST 
STATEMENTS 

In Chapter 4, I discussed the CLASS statement in PROC LIFEREG, 
and I showed how to do non-standard hypothesis tests using the estimated 
covariance matrix of the coefficients. PROC PHREG also has a CLASS 
statement (in SAS 9.2 and later), but it has many more options than the 
one in PROC LIFEREG. PROC PHREG also has a TEST statement and a 
CONTRAST statement that make it easy to test any linear hypothesis about 
more than one coefficient. As we shall see, these two statements are 
somewhat redundant. Almost anything you can do with one can be done 
with the other. Furthermore, if you are already familiar with these 
statements from other SAS procedures (for example, REG, GLM, 
LOGISTIC, GENMOD), you won’t find much new in this section. 

As an example, let’s treat the variable EDUC as a CLASS variable in a 
model for the recidivism data: 
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PROC PHREG DATA=recid; 
   CLASS educ; 
   MODEL week*arrest(0)=fin age prio educ/ TIES=EFRON; 
   TEST educ3=educ5; 
   CONTRAST 'ed3 vs. ed5' educ 0 1 0 -1 ; 
RUN; 

The EDUC variable has five different integer values: 2, 3, 4, 5, and 6. 
The CLASS statement creates a set of dummy variables to represent four 
out of the five categories. (In this context, they are sometimes referred to as 
design variables.) By default, the omitted (reference) category is the one 
with the highest value, in this case 6. You can override this default by 
specifying, for example,  

    
CLASS educ(REF='2'); 

which makes level 2 the reference category.   
The TEST statement tests the null hypotheses that the coefficient for 

level 3 is the same as the coefficient for level 5. Note that you refer to the 
coefficients by appending the variable value to the variable name. The 
CONTRAST statement accomplishes exactly the same task but with a very 
different syntax. The text enclosed in single quotes is a required label 
describing the test. It can be any text that you choose. The set of numbers 
following the variable name encodes the following instructions: Take the 
coefficient for the second dummy variable (EDUC3) and multiply it by 1. 
Take the coefficient for the fourth dummy variable (EDUC5) and multiply 
it by −1. Add the two numbers together and test whether the sum is equal 
to 0. Of course, this is equivalent to testing whether the two coefficients 
are equal to each other. 

Output 5.26 displays the results. When a model contains a CLASS 
variable, PROC PHREG reports a Type 3 table. For variables that are not 
CLASS variables, this table is completely redundant with the usual 
regression table below. For the CLASS variable, however, it gives us the 
very useful test that all the coefficients associated with this variable are 0. 
What makes this test particularly attractive is that it does not depend on 
the choice of the reference category. In this case, with a chi-square of 4.53 
and 4 degrees of freedom, the test is far from statistically significant. 

In the regression table, we see coefficients and hazard ratios for 
levels 2 through 5 of EDUC. Each of these is a comparison with the omitted 
level 6. For example, the hazard ratio for level 3 is 2.738. This means that 
the hazard of arrest for someone at level 3 is almost three times the hazard 
for someone at level 6. However, the difference is not statistically 
significant, nor are any of the other differences with level 6. Below the 
regression table, we see the output from the TEST statement, which shows 
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that the difference between level 3 and level 5 is not statistically 
significant. Below that is the same result from the CONTRAST statement.  

You can include as many TEST or CONTRAST statements as you 
like. Also, a single CONTRAST or TEST statement can test more than one 
hypothesis at a time—just separate the hypotheses by commas. You’ll get a 
single test statistic and p-value for a simultaneous test that all the 
hypotheses are true.  

Output 5.26 Results from Using the CLASS Statement for the Recidivism Data 

                               Type 3 Tests 
 
                                        Wald 
                Effect      DF    Chi-Square    Pr > ChiSq 
 
                fin          1        3.6040        0.0576 
                age          1        8.1609        0.0043 
                prio         1        8.6708        0.0032 
                educ         4        4.5257        0.3395 
 
                 Analysis of Maximum Likelihood Estimates 
 
                Parameter   Standard                         Hazard 
Parameter   DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio Label 
 
fin          1   -0.36314    0.19128     3.6040     0.0576    0.695 
age          1   -0.05986    0.02095     8.1609     0.0043    0.942 
prio         1    0.08355    0.02837     8.6708     0.0032    1.087 
educ      2  1    0.46192    1.12059     0.1699     0.6802    1.587 educ 2 
educ      3  1    1.00730    1.00996     0.9948     0.3186    2.738 educ 3 
educ      4  1    0.77558    1.01952     0.5787     0.4468    2.172 educ 4 
educ      5  1    0.28079    1.09597     0.0656     0.7978    1.324 educ 5 
 
                     Linear Hypotheses Testing Results 
 
                                   Wald 
               Label         Chi-Square      DF    Pr > ChiSq 
 
               Test 1            2.4159       1        0.1201 
 
                           Contrast Test Results 
 
                                           Wald 
              Contrast         DF    Chi-Square    Pr > ChiSq 
 
              ed3 vs. ed5       1        2.4159        0.1201 
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CUSTOMIZED HAZARD RATIOS 

As we have seen, for each predictor variable PROC PHREG reports a 
hazard ratio (HR), which is just the exponentiated value of its coefficient. 
And if we further calculate 100(HR-1), we get the percentage change in the 
hazard of the event for a 1-unit increase in that particular variable. Two 
problems can arise, however. First, a 1-unit change may be either too small 
or too large to be usefully interpreted. If a person’s income is measured in 
dollars, for example, a $1 increase will most likely produce a very tiny 
percentage change in the hazard. On the other hand, if a lab measurement 
varies only between 0 and 0.1, a 1-unit increase (from 0 to 1) will be 10 
times the observed range of the variable. Although you can do hand 
calculations to get the hazard ratio for different units (or modify the units 
of the variables before estimating the model), the HAZARDRATIO 
statement (available in SAS 9.2 and later) makes things much easier.  

Let’s apply these options to the recidivism data. In Output 5.1, we 
saw a hazard ratio of .944 for AGE, which we interpreted to mean that each 
1-year increase in age was associated with a 5.6 percent reduction in the 
hazard of arrest. Suppose, instead, that we want the hazard ratios for a 5-
year increase and a 10-year increase in age. We can get that with the 
following code: 

 
PROC PHREG DATA=my.recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio; 
   HAZARDRATIO age / UNITS=5 10; 
RUN; 

 
In addition to the usual output, we now get Output 5.27, which tells us 
that a 5-year increase in age is associated with a 25 percent reduction in 
the hazard of arrest, while a 10-year increase in age is associated with a 44 
percent reduction.  

Output 5.27 Results from Using the HAZARDRATIO  Statement for the Recidivism Data 

                Hazard Ratios for age 
 
                     Point     95% Wald Confidence 
   Description    Estimate           Limits 
 
   age Unit=5        0.751       0.606       0.932 
   age Unit=10       0.564       0.367       0.868 
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The HAZARDRATIO statement also solves another problem. More 
recent versions of PROC PHREG allow for interactions to be directly 
specified in the MODEL statement. But if you include an interaction, 
PROC PHREG does not report hazard ratios for either the interaction itself 
or the main effects associated with the interaction.  For example, suppose 
that we fit a model with an interaction between FIN and AGE, which 
produces the results in Output 5.28: 

 
PROC PHREG DATA=my.recid; 
   MODEL week*arrest(0)=fin age race wexp mar paro prio fin*age; 
RUN; 

Output 5.28 Model with Interaction between FIN and AGE 

              Parameter   Standard                         Hazard 
Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio Label 
 
fin        1    1.62266    1.02829     2.4902     0.1146     . 
age        1   -0.02263    0.02595     0.7600     0.3833     . 
race       1    0.32112    0.30827     1.0851     0.2976    1.379 
wexp       1   -0.15996    0.21231     0.5677     0.4512    0.852 
mar        1   -0.45026    0.38264     1.3846     0.2393    0.637 
paro       1   -0.08408    0.19601     0.1840     0.6680    0.919 
prio       1    0.09380    0.02846    10.8618     0.0010    1.098 
fin*age    1   -0.08832    0.04504     3.8449     0.0499     .    fin * age 

 
The interaction is just barely significant at the .05 level. Like all two-

way interactions, this one can be interpreted in two different ways: the 
effect of AGE depends on the level of FIN and the effect of FIN depends on 
the level of AGE. The latter makes more sense because AGE is 
predetermined and FIN is an experimental treatment. So it is natural to ask 
how the effect of the treatment depends on the characteristics of the 
subjects. Output 5.28 is not helpful because it doesn’t give us hazard ratios 
for either the interaction or the two main effects. To answer this question, 
we can use the HAZARDRATIO statement to give us hazard ratios for FIN 
at various selected ages.  Here’s how: 

 
HAZARDRATIO fin / at (age=20 25 30 35 40) CL=PL; 
 

The CL=PL option is not essential here. It requests that confidence 
intervals be computed using the profile likelihood method, which is 
somewhat more accurate than the conventional Wald method, especially 
in small samples.   
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Output 5.29 Hazard Ratios for FIN by AGE 

                      Hazard Ratios for fin 
 
                                                 95% Profile 
                                   Point         Likelihood 
  Description                   Estimate      Confidence Limits 
 
  fin Unit=1 At age=20             0.866       0.559       1.333 
  fin Unit=1 At age=25             0.557       0.351       0.854 
  fin Unit=1 At age=30             0.358       0.157       0.743 
  fin Unit=1 At age=35             0.230       0.065       0.701 
  fin Unit=1 At age=40             0.148       0.027       0.676 

 
Results are shown in Output 5.29. At age 20, the hazard ratio is not 

significantly different from 1 (as indicated by the 95% confidence interval, 
which includes 1). For later ages, all the odds ratios are significantly 
different from 1. The differences are striking. At age 25, receipt of financial 
aid reduces the hazard of arrest by 44 percent. At age 40, receipt of 
financial aid reduces the hazard by 85 percent.  

BAYESIAN ESTIMATION AND TESTING 

Beginning with SAS 9.2, PROC PHREG can do a Bayesian analysis of 
the Cox regression model. We discussed Bayesian analysis for PROC 
LIFEREG in the last section of Chapter 4. Because the theory, syntax, and 
output for Bayesian analysis are virtually identical for these two 
procedures, I will not go into all the details here.  

As with PROC LIFEREG, requesting a Bayesian analysis in PROC 
PHREG can be as simple as including the BAYES statement after the 
MODEL statement. Here’s how to do it for the recidivism data: 

 
PROC PHREG DATA=my.recid; 
  MODEL week*arrest(0)=fin age race wexp mar paro prio; 
  BAYES; 
RUN; 

The default is to use non-informative priors for the coefficients and to 
produce 10,000 random draws from the posterior distribution using a 
Gibbs sampler algorithm. Output 5.30 displays some key summary 
statistics for the posterior distribution of the regression coefficients. 
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Output 5.30 Results from Using the BAYES Statement for the Recidivism Data 

                             Bayesian Analysis 
 
                           Posterior Summaries 
 
                                  Standard           Percentiles 
  Parameter         N      Mean  Deviation       25%       50%       75% 
 
  fin           10000   -0.3823     0.1927   -0.5111   -0.3806   -0.2494 
  age           10000   -0.0593     0.0220   -0.0738   -0.0586   -0.0443 
  race          10000    0.3520     0.3133    0.1371    0.3434    0.5526 
  wexp          10000   -0.1542     0.2113   -0.2988   -0.1534  -0.00844 
  mar           10000   -0.4798     0.3959   -0.7338   -0.4593   -0.2022 
  paro          10000   -0.0868     0.1947   -0.2180   -0.0887    0.0435 
  prio          10000    0.0889     0.0286    0.0700    0.0897    0.1084 
 
 
                           Posterior Intervals 
 
    Parameter    Alpha     Equal-Tail Interval        HPD Interval 
 
    fin          0.050     -0.7655    -0.00737     -0.7572    -0.00339 
    age          0.050     -0.1047     -0.0186     -0.1028     -0.0175 
    race         0.050     -0.2310      1.0003     -0.2634      0.9563 
    wexp         0.050     -0.5708      0.2548     -0.5734      0.2499 
    mar          0.050     -1.3054      0.2385     -1.2621      0.2575 
    paro         0.050     -0.4669      0.3009     -0.4469      0.3194 
    prio         0.050      0.0315      0.1435      0.0310      0.1425 

 
As expected, the results from the Bayesian analysis do not differ 

much from the conventional analysis in Output 5.1. Either the means or 
medians (50th percentiles) of the posterior could be used as point 
estimates, and both are about the same as the conventional partial 
likelihood estimates. The standard deviations in Output 5.30 are about the 
same as the standard errors in Output 5.1. The big difference is in 
computing time, which increases by a factor of nearly 1,000 when the 
BAYES statement is used. There are a lot of additional tables in the default 
output that are not shown here, including fit statistics, autocorrelations, 
and Geweke diagnostics. And if you want to see graphs of the posterior 
distribution, you will need ODS statements before and after the code 
above, as shown in the last section of Chapter 4.  

One surprising thing you can do with the BAYES statement is 
estimate a piecewise exponential model, which we discussed in Chapter 4 
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and estimated with PROC LIFEREG. For the piecewise exponential model, 
a special case of the Cox model, we divide the time scale into intervals 
with cut points a0, a1, … , aJ, where a0 = 0, and aJ = ∞. We assume that the 
hazard is constant within each interval but can vary across intervals. The 
hazard for individual i is assumed to have the form 

 iji th βx+= α)(log           for aj-1 ≤ t < aj 

Thus, the intercept in the equation is allowed to vary in an unrestricted 
fashion from one interval to another.  

You can do a Bayesian analysis of this model by putting the 
PIECEWISE option in the BAYES statement. On the other hand, if you only 
want maximum likelihood estimates, you can suppress the Gibbs sampler 
iterations with the statement 

 
BAYES PIECEWISE NBI=0 NMC=1; 

which gives the maximum likelihood estimates in Output 5.31. The default 
is to construct eight intervals with approximately equal numbers of events 
in each interval, as shown in the table. However, you can directly specify 
either the number of intervals or the cut points for the intervals.  

Output 5.31 Maximum Likelihood Estimates of Piecewise Exponential Model 

                      Constant Hazard Time Intervals 
 
              Interval                                  Log Hazard 
         [Lower,      Upper)           N       Event    Parameter 
 
               0        11.5          17          17    Alpha1 
            11.5        18.5          16          16    Alpha2 
            18.5        24.5          15          15    Alpha3 
            24.5        30.5          12          12    Alpha4 
            30.5        36.5          14          14    Alpha5 
            36.5        42.5          13          13    Alpha6 
            42.5        47.5          13          13    Alpha7 
            47.5       Infty         332          14    Alpha8 
 
 

                                                                                                                                                  (continued) 
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Output 5.31 (continued) 

                       Maximum Likelihood Estimates 
 
                                     Standard 
      Parameter    DF    Estimate       Error    95% Confidence Limits 
 
      Alpha1        1     -4.5804      0.6295     -5.8142     -3.3466 
      Alpha2        1     -4.0752      0.6316     -5.3131     -2.8373 
      Alpha3        1     -3.9299      0.6346     -5.1737     -2.6861 
      Alpha4        1     -4.1037      0.6457     -5.3692     -2.8381 
      Alpha5        1     -3.9063      0.6376     -5.1560     -2.6567 
      Alpha6        1     -3.9233      0.6433     -5.1841     -2.6625 
      Alpha7        1     -3.6959      0.6462     -4.9626     -2.4293 
      Alpha8        1     -3.4703      0.6432     -4.7310     -2.2095 
      fin           1     -0.3801      0.1914     -0.7552    -0.00507 
      age           1     -0.0575      0.0220     -0.1006     -0.0144 
      race          1      0.3131      0.3080     -0.2904      0.9167 
      wexp          1     -0.1483      0.2123     -0.5645      0.2678 
      mar           1     -0.4327      0.3820     -1.1813      0.3159 
      paro          1     -0.0839      0.1957     -0.4675      0.2998 
      prio          1      0.0917      0.0287      0.0355      0.1479 

CONCLUSION 

It’s no accident that Cox regression has become the overwhelmingly 
favored method for doing regression analysis of survival data. It makes no 
assumptions about the shape of the distribution of survival times. It allows 
for time-dependent covariates. It is appropriate for both discrete-time and 
continuous-time data. It easily handles left truncation. It can stratify on 
categorical control variables. And, finally, it can be extended to 
nonproportional hazards. The principal disadvantage is that you lose the 
ability to test hypotheses about the shape of the hazard function. As we’ll 
see in Chapter 8, however, the hazard function is often so confounded with 
unobserved heterogeneity that it’s difficult to draw any substantive 
conclusion from the shape of the observed hazard function. So the loss 
may not be as great as it seems. 

PROC PHREG goes further than most Cox regression programs in 
realizing the full potential of this method. In this chapter, I have 
particularly stressed those features of PROC PHREG that most distinguish 
it from other Cox regression programs: its extremely general capabilities for 
time-dependent covariates, its exact methods for tied data, and its ability 
to handle left truncation. If you already have some familiarity with PROC 
PHREG, you may have noticed that I said nothing about its several variable 
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selection methods. I confess that I have never used them. While I am not 
totally opposed to such automated model-building methods, I think they 
should be reserved for those cases in which there are a large number of 
potential covariates, little theoretical guidance for choosing among them, 
and a goal that emphasizes prediction rather than hypothesis testing. If 
you find yourself in this situation, you may want to consider the best 
subset selection method that uses the SELECTION=SCORE and BEST= 
options. This method is computationally efficient because no parameters 
are estimated. Yet, it gives you lots of useful information.  

We still haven’t finished with PROC PHREG. Chapter 6, “Competing 
Risks,” shows you how to use it for competing risks models in which there 
is more than one kind of event. Chapter 8, “Heterogeneity, Repeated 
Events, and Other Topics,” considers PROC PHREG’s capabilities for 
handling repeated events.  
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INTRODUCTION 

In the previous chapters, all the events in each analysis were treated 
as if they were identical: all deaths were the same, all job terminations 
were the same, and all arrests were the same. In many cases, this is a 
perfectly acceptable way to proceed. But more often than not, it is 
essential—or at least desirable—to distinguish different kinds of events 
and treat them differently in the analysis. To evaluate the efficacy of heart 
transplants, you will certainly want to treat deaths due to heart failure 
differently from deaths due to accident or cancer. Job terminations that 
occur when an employee quits are likely to have quite different 
determinants than those that occur when the employee is fired. And 
financial aid to released convicts will more plausibly reduce arrests for 
theft or burglary than for rape or assault.  

In this chapter, we consider the method of competing risks for 
handling these kinds of situations. What is most characteristic of 
competing risk situations is that the occurrence of one type of event 
removes the individual from risk of all the other event types. People who 
die of heart disease are no longer at risk of dying of cancer. Employees who 
quit can no longer be fired.  

Because competing risk analysis requires no new SAS procedures, 
this chapter will be short. With only minor changes in the SAS statements, 
you can estimate competing risks models with the LIFETEST, LIFEREG, or 
PHREG procedures. All that’s necessary is to change the code that specifies 
which observations are censored and which are not. After considering a bit 
of the theory of competing risks, most of the chapter will be devoted to 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 6 Competing Risks 

204 

examples. At the end, however, I also discuss some alternative to 
competing risks analysis that may be more appropriate for some situations.  

Despite the practical importance of methods for handling multiple 
kinds of events, many textbooks give minimal coverage to this topic. For 
example Collett’s (2003) otherwise excellent survey of survival analysis 
makes only a brief mention of competing risks. In this chapter, I have 
relied heavily on Kalbfleisch and Prentice (2002) and Cox and Oakes 
(1984).  

TYPE-SPECIFIC HAZARDS 

The classification of events into different types is often somewhat 
arbitrary and may vary according to the specific goals of the analysis. I’ll 
have more to say about that later. For now, let’s suppose that the events 
that we are interested in are deaths, and we have classified them into five 
types according to cause: heart disease, cancer, stroke, accident, and a 
residual category that we’ll call other. Let’s assign the numbers 1 through 
5, respectively, to these death types. For each type of death, we are going 
to define a separate hazard function that we’ll call a type-specific or cause-
specific hazard. 

As before, let Ti be a random variable denoting the time of death for 
person i. Now let Ji be a random variable denoting the type of death that 
occurred to person i. Thus, J5=2 means that person 5 died of cancer. We 
now define hij(t), the hazard for death type j at time t for person i, as 
follows: 

    5,,1,)|,Pr(lim)(
0

=
∆

≥=∆+<<
=

→∆
j

t
tTjJttTtth iii

tij
       (6.1) 

   

Comparing this with the definition of the hazard in equation (2.2), we see 
that the only difference is the appearance of Ji =j. Thus, the conditional 
probability in equation (6.1) is the probability that death occurs between t 
and t+∆t, and the death is of type j, given that the person had not already 
died by time t. The overall hazard of death is just the sum of all the type-
specific hazards: 

 ∑=
j

iji thth )()( . (6.2) 

You can interpret type-specific hazards in much the same way as 
ordinary hazards. Their metric is the number of events per unit interval of 
time, except now the events are of a specific type. The reciprocal of the 
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hazard is the expected length of time until an event of that type occurs, 
assuming that the hazard stays constant.  

Based on the type-specific hazards, we can also define type-specific 
survival functions: 

 








−= ∫
t

jj duuhtS
0

)(exp)( . (6.3) 

The interpretation of these functions is somewhat controversial, however. 
Lawless (2003) claims that they don’t refer to any well-defined random 
variable and that they are useful only as a way of examining hypotheses 
about the hazard. On the other hand, we can define the hypothetical 
variable Tij as the time at which the jth event type either occurred to the 
ith person or would have occurred if other event types had not preceded it. 
In other words, we suppose that a person who dies of cancer at time T2 

would have later died of heart disease at time T1 if the cancer death had 
not occurred. For a given set of Tijs, we only observe the one that is 
smallest. If we further assume that the Tijs are independent across event 
types, we can say that 

 )Pr()( tTtS ijij >= . (6.4) 

That is, the type-specific survival function gives the probability that an 
event of type j occurs later than time t. You can see why people might want 
to forgo this interpretation, but I personally find it meaningful.  

Now that we have the type-specific hazards, we can proceed to 
formulate models for their dependence on covariates. Any of the models 
that we have considered so far—both proportional hazards models and 
accelerated failure time models—are possible candidates. For example, we 
can specify general proportional hazards models for all five death types: 

 .5,,1),()()(log =+= jttth ijjij xβα  (6.5) 

where xi(t) is a vector of covariates, some of which may vary with time. 
Note that the coefficient vector β  is subscripted to indicate that the effects 
of the covariates may be different for different death types. In particular, 
some coefficients may be set to 0, thereby excluding the covariate for a 
specific death type. The α(t) function is also subscripted to allow the 
dependence of the hazard on time to vary across death types. If jβ  and αj(t) 
are the same for all j, then the model reduces to the proportional hazards 
model of Chapter 5 where no distinction is made among event types.  

Although it is a bit unusual, there is nothing to prevent you from 
choosing, say, a log-normal model for heart disease, a gamma model for 
cancer, and a proportional hazards model for strokes. What makes this 
possible is that the models may be estimated separately for each event 
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type, with no loss of statistical precision. This is, perhaps, the most 
important principle of competing risks analysis. More technically, the 
likelihood function for all event types taken together can be factored into a 
separate likelihood function for each event type. The likelihood function 
for each event type treats all other events as if the individual were 
censored at the time when the other event occurred.  

There are a few computer programs that estimate models for 
competing risks simultaneously, but their only advantage is to reduce the 
number of statements needed to specify the models. This advantage must 
be balanced against the disadvantage of having to specify the same 
functional form and the same set of covariates for all event types.  

The only time you need to estimate models for two or more events 
simultaneously is when there are parameter restrictions that cross event 
types. For example, Kalbfleisch and Prentice (2002) consider a model that 
imposes the restriction αj(t) = αj + α0(t) on equation (6.3). This restriction 
says that the baseline hazard function for each event type is proportional 
to a common baseline hazard function. Later in the chapter, we’ll see how 
to test this restriction (see Estimates and Tests without Covariates). 

A further implication is that you don’t need to estimate models for 
all event types unless you really want to. If you’re only interested in the 
effects of covariates on deaths from heart disease, then you can simply 
estimate a single model for heart disease, treating all other death types as 
censoring. Besides reducing the amount of computation, this fact also 
makes it unnecessary to do an exhaustive classification of death types. You 
only need to distinguish the event type of interest from all other types of 
event.  

Since we are treating events other than those of immediate interest 
as a form of censoring, it’s natural to ask what assumptions must be made 
about the censoring mechanism. In Chapter 2, “Basic Concepts of Survival 
Analysis,” we saw that censoring must be noninformative if the estimates 
are to be unbiased. We must make exactly the same assumption in the case 
of competing risks. That is, we must assume that, conditional on the 
covariates, those who are at particularly high (or low) risk of one event 
type are no more (or less) likely to experience other kinds of events. Thus, 
if we know that someone died of heart disease at age 50, that should give 
us no information (beyond what we know from the covariates) about his 
risk of dying of cancer at that age. Noninformativeness is implied by the 
somewhat stronger assumption that the hypothetical Tijs (discussed above) 
are independent across j. Unfortunately, as we saw in Chapter 2 with 
censoring, it is impossible to test whether competing events are actually 
noninformative. I’ll discuss this issue further in the conclusion to this 
chapter. 
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TIME IN POWER FOR LEADERS OF COUNTRIES: EXAMPLE 

The main data set that I will use to illustrate competing risks 
analysis was constructed by Bienen and van de Walle (1991). They 
identified a fairly exhaustive set of primary leaders of all countries 
worldwide over the past 100 years or so. For each leader, they determined 
the number of years in power and the manner by which he or she lost 
power. Each period of leadership is called a spell. The mode of exit for a 
leader from a position of power was classified into three categories:  

 death from natural causes 
 constitutional means 
 nonconstitutional means (including assassination).  

Clearly, it is unreasonable to treat all three types as equivalent. While 
constitutional and nonconstitutional exits might have similar 
determinants, death from natural causes is clearly a distinct phenomenon.  

The data set included the following variables:  
 

YEARS Number of years in power, integer valued. Leaders in power 
less than 1 year were coded 0.  

LOST  0=still in power in 1987; 1=exit by constitutional means;  
2=death by natural causes; and 3=nonconstitutional exit. 

MANNER  How the leader reached power: 0=constitutional means;  
1=nonconstitutional means. 

START Year of entry into power. 
MILITARY  Background of the leader: 1=military; 0=civilian. 
AGE Age of the leader, in years, at the time of entry into power. 
CONFLICT Level of ethnic conflict: 1=medium or high; 0=low. 
LOGINC Natural logarithm of GNP per capita (dollar equivalent) in 

1973. 
GROWTH Average annual rate of per capita GNP growth between 

1965−1983. 
POP Population, in millions (year not indicated). 
LAND Land area, in thousands of square kilometers. 
LITERACY Literacy rate (year not indicated).  
REGION 0=Middle East; 1=Africa; 2=Asia; 3=Latin America; and 
 4=North America, Europe, and Australia. 
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In the analysis that follows, I restrict the leadership spells to  
 countries outside of Europe, North America, and Australia 
 spells that began in 1960 or later 
 only the first leadership spell for those leaders with multiple 

spells.  
This leaves a total of 472 spells, of which 115 were still in progress 

at the time observation was terminated in 1987. Of the remaining spells, 27 
ended when the leader died of natural causes, 165 were terminated by 
constitutional procedures, and 165 were terminated by nonconstitutional 
means. The restriction to starting years greater than 1960 was made so that 
the variables describing countries (income, growth, population, and 
literacy) would be reasonably concurrent with the exposure to risk.  

ESTIMATES AND TESTS WITHOUT COVARIATES 

The simplest question we might ask about the multiple event types 
is whether the type-specific hazard functions are the same for all event 
types (that is, hj(t) = h(t) for all j). For the LEADER data set, just looking at 
the frequencies of the three event types suggests that deaths due to natural 
causes (n=27) are much less likely to occur than the other two types, 
which have identical frequencies (n=165). In fact, we can easily obtain a 
formal test of the null hypothesis from these three frequencies. If the null 
hypothesis of equal hazards is correct, the expected frequencies of the 
three event types should be equal in any time interval. Thus, we have an 
expected frequency of 119=(472−115)/3 for each of the three types. 
Calculating Pearson’s chi-square test (by hand) yields a value of 88.9 with 
2 d.f., which is far above the .05 critical value. So we can certainly 
conclude that the hazard for naturally occurring deaths is lower than for 
the other two exit modes.  

Although the hazards are not equal, it’s still possible that they might 
be proportional (in a different sense than that of Chapter 5); that is, if the 
hazard for death changes with time, the hazards for constitutional and 
nonconstitutional exits may also change by a proportionate amount. We 
can write this hypothesis as 

 ,3,2,1),()( == jthth jj ω  (6.6) 

where the ωjs are constants of proportionality.  
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We can obtain a graphic examination of this hypothesis by using 
PROC LIFETEST to estimate log-log survivor functions for each of the 
three event types. If the hazards are proportional, the log-log survivor 
functions should be strictly parallel. We can get graphs of those functions 
by first creating a separate data set for each event type, with a variable 
EVENT equal to 1 if that event occurred and 0 otherwise. We then 
concatenate the three data sets into a single data set called COMBINE. 
Finally, we run PROC LIFETEST, stratifying on a variable TYPE that 
distinguishes the three data sets, and requesting the log-log survivor 
function with the PLOTS=LLS option. Here is the code: 

 
DATA const; 
  SET leaders; 
  event=(lost=1); 
  type=1; 
DATA nat; 
  SET leaders; 
  event=(lost=2); 
  type=2; 
DATA noncon; 
  SET leaders; 
  event=(lost=3); 
  type=3; 
DATA combine; 
  SET const nat noncon; 
PROC LIFETEST DATA=COMBINE PLOTS=LLS; 
  TIME years*event(0); 
  STRATA type; 
RUN; 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 6 Competing Risks 

210 

Output 6.1  Log-Log Survival Plot for Three Types of Exits, LEADERS Data Set 

 

Output 6.1 shows the log-log survivor curves for the three event 
types. The curves for constitutional and nonconstitutional exits are 
virtually indistinguishable. Not surprisingly, the curve for natural deaths is 
much lower than the other two curves. There is also some tendency for the 
natural death curve to move closer to the other two in later years, which is 
evidence against the proportionality hypothesis.  

We can also examine smoothed hazard plots using the kernel 
smoothing option for PROC LIFETEST that was described in Chapter 3: 

  
ODS GRAPHICS ON; 
PROC LIFETEST DATA=combine PLOTS=H(BW=10); 
  TIME years*event(0); 
  STRATA type; 
RUN; 
ODS GRAPHICS OFF; 

In Output 6.2, we see that the smoothed hazard functions for 
constitutional and nonconstitutional exits are very similar, except after the 
15th year. The sharp increase in the hazard for constitutional exits after 
this year could arguably be disregarded because the standard errors also 
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become large at later points in time. On the other hand, it could represent 
the fact that many governments have constitutional limits on the number 
of years a leader can spend in power. As might be expected, the hazard for 
natural death is much lower but gradually increases with time (except for 
the very end where, again, the estimates are not very reliable).  

Output 6.2 Smoothed Hazard Functions for Three Types of Exits 

 

 
Cox and Oakes (1984) proposed a parametric test of the proportional 

hazards hypothesis in equation (6.6). Consider the model 

 ,2,1,)()(log 0 =++= jttth jjj βαα  (6.7) 

If βj = β for all j, then the proportional hazards hypothesis is satisfied. 
Otherwise, this model says that the log-hazards for any two event types 
diverge linearly with time. Cox and Oakes showed that if there are two 
event types, equation (6.7) implies a binary logistic regression model for 
the type of event, with the time of the event as an independent variable. 
Under the proportional hazards hypothesis, the coefficient for time will be 
0.  
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For more than two event types, equation (6.7) implies a multinomial 
logit model for event type. Here’s how to estimate that model with PROC 
LOGISTIC: 

 
PROC LOGISTIC DATA=leaders; 
   WHERE lost NE 0; 
   MODEL lost=years / LINK=GLOGIT; 
RUN; 

Notice that leadership spells that are still in progress (LOST=0) 
when the observation is terminated are excluded from the analysis. The 
LINK=GLOGIT option specifies an unordered multinomial logit model 
(rather than the default cumulative logit model). Output 6.3 shows 
selected portions of the output. 

Output 6.3 Test of Proportionality with PROC LOGISTIC 

                        Type 3 Analysis of Effects 
 
                                        Wald 
                Effect      DF    Chi-Square    Pr > ChiSq 
 
                years        2       17.8915        0.0001 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
                                       Standard          Wald 
Parameter    lost    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept    1        1      0.0134      0.1432        0.0088        0.9253 
Intercept    2        1     -2.5393      0.3141       65.3689        <.0001 
years        1        1    -0.00391      0.0267        0.0215        0.8834 
years        2        1      0.1394      0.0359       15.0990        0.0001 

 

Looking first at the TYPE 3 table, we see that the effect of YEARS is 
highly significant, indicating a rejection of the proportionality hypothesis. 
The coefficients in the lower half of the output tell us which hazard 
functions are proportional and which are not. The first coefficient for 
YEARS is the β coefficient for the contrast between type 1 (constitutional 
exit) and type 3 (nonconstitutional exit). The chi-square statistic is 
minuscule, indicating that proportionality cannot be rejected for these two 
hazard types. Moreover, the fact that the coefficient is also near 0 suggests 
that the hazard functions for these two event types are nearly identical. On 
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the other hand, the second YEARS coefficient is highly significant. This 
coefficient is a contrast between the type 2 hazard (death from natural 
causes) and the type 3 hazard (nonconstitutional exit). Its value tells us 
that the hazard for natural death increases much more rapidly with time 
than the hazard for nonconstitutional exit; specifically, their ratio increases 
by about 15 percent each year (calculated as 100(exp(.1394)–1))).  

COVARIATE EFFECTS VIA COX MODELS  

We have just seen evidence that the hazard for natural death is lower 
than that for the other two exit types but that it increases more rapidly 
with time. On the other hand, the hazard functions for constitutional and 
nonconstitutional exits are nearly indistinguishable. We now look at 
whether the effects of covariates are the same or different across event 
types by fitting a Cox model to each type. The SAS program for doing this 
is as follows: 

 
PROC PHREG DATA=leaders; 
   MODEL years*lost(0)=manner start military age conflict   
         loginc growth pop land literacy; 
   STRATA region; 
PROC PHREG DATA=leaders; 
   MODEL years*lost(0,1,2)=manner start military age conflict   
         loginc growth pop land literacy; 
   STRATA region; 
PROC PHREG DATA=leaders; 
   MODEL years*lost(0,1,3)=manner start military age conflict  
         loginc growth pop land literacy; 
   STRATA region; 
PROC PHREG DATA=leaders; 
   MODEL years*lost(0,2,3)=manner start military age conflict   
         loginc growth pop land literacy; 
   STRATA REGION; 
RUN; 
 

The first model treats all event types the same. I’ve included that 
model for comparison, as well as for some hypothesis tests that we’ll look 
at shortly. The second model focuses on type 3 by treating types 1 and 2 as 
censoring. That’s followed by a model for type 2, treating types 1 and 3 as 
censoring, and a model for type 1, treating types 2 and 3 as censoring. 
Notice that I have stratified by region. Alternatively, I could have created 
three dummy variables to represent the four regions and included them in 
the model. However, stratification is less restrictive because it allows for 
interactions between region and time, as we saw in Chapter 5.  
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In Output 6.4 we see what happens when no distinction is made 
among the different kinds of exits. Four variables are statistically 
significant by conventional criteria. The strongest effect is age at entry into 
power, with each additional year of age associated with a 2 percent 
increase in the risk of leaving power. Recall from Chapter 5, moreover, that 
if age at origin is a covariate in a Cox model, its coefficient may actually be 
interpreted as the effect of age as a time-dependent covariate. We also see 
that 

 leaders who attained power by nonconstitutional means 
(MANNER=1) have a 44 percent greater risk of leaving power 

 leaders in countries with higher GNP per capita (LOGINC) have a 
lower risk of exit 

 the risk of exit declined by about 1.6 percent per year (START) 
since 1960.  

The coefficient for the logarithm of GNP (–.1710) needs a little 
explanation. If both the hazard and a covariate in a regression model are 
logged, we can interpret the coefficient (without transformation) as the 
percent change in the hazard for a 1 percent increase in the covariate (in 
its original metric). Thus, we conclude that a 1 percent increase in per 
capita GNP yields a .17 percent decrease in the hazard of exit.  

Output 6.4 PROC PHREG Analysis for Exits by Any Means 

                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio        29.9069       10         0.0009 
          Score                   29.5835       10         0.0010 
          Wald                    29.3945       10         0.0011 
 
                 Analysis of Maximum Likelihood Estimates 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  manner      1     0.36403     0.15412      5.5787      0.0182     1.439 
  start       1    -0.01591     0.00815      3.8129      0.0509     0.984 
  military    1    -0.22510     0.16251      1.9186      0.1660     0.798 
  age         1     0.02016     0.00555     13.1731      0.0003     1.020 
  conflict    1     0.12052     0.13175      0.8368      0.3603     1.128 

                                                                                                                                                  (continued) 
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Output 6.4 (continued) 

  loginc      1    -0.17103     0.08244      4.3044      0.0380     0.843 
  growth      1    -0.00140     0.02131      0.0043      0.9478     0.999 
  pop         1  -0.0000210   0.0006375      0.0011      0.9737     1.000 
  land        1   0.0000107   0.0000478      0.0502      0.8228     1.000 
literacy    1   0.0008773     0.00321      0.0747      0.7847     1.001 

 

The picture changes somewhat when we focus on the hazard for 
nonconstitutional exits in Output 6.5. Leaders who acquired power by 
nonconstitutional means are 2.4 times as likely as other leaders to exit by 
nonconstitutional means. Income also has a stronger effect: a 1 percent 
increase in per capita GNP now yields a .42 percent decrease in the risk of 
nonconstitutional exit. Age is no longer important, but we still see a 
reduction in the hazard over time since 1960. In addition, we find that 
leaders in countries with ethnic conflict have a 62 percent greater chance 
of nonconstitutional exit. 

Constitutional exits show a different pattern (Output 6.6). Manner of 
acquiring power is not important, nor is income or conflict. Age shows up 
again, however, and we also see an effect of literacy. Each 1-percentage-
point increase in the literacy rate is associated with a 1.4 percent increase 
in the risk of a constitutional exit.  

Output 6.5 PROC PHREG Analysis for Nonconstitutional Exits 

                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  manner      1     0.88049     0.21958     16.0796      <.0001     2.412 
  start       1    -0.03189     0.01220      6.8278      0.0090     0.969 
  military    1    -0.38832     0.22651      2.9392      0.0865     0.678 
  age         1     0.00827     0.00841      0.9670      0.3254     1.008 
  conflict    1     0.48053     0.20398      5.5498      0.0185     1.617 
  loginc      1    -0.42010     0.14129      8.8412      0.0029     0.657 
  growth      1    -0.04585     0.03130      2.1466      0.1429     0.955 
  pop         1    -0.00101     0.00157      0.4170      0.5184     0.999 
  land        1   0.0000185   0.0000809      0.0525      0.8188     1.000 
literacy    1    -0.00572     0.00454      1.5901      0.2073     0.994 
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Output 6.6 PROC PHREG Analysis for Constitutional Exits 

                    Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  manner      1    -0.27001     0.25623      1.1105      0.2920     0.763 
  start       1     0.00276     0.01200      0.0530      0.8178     1.003 
  military    1    -0.02793     0.25913      0.0116      0.9142     0.972 
  age         1     0.02267     0.00865      6.8729      0.0088     1.023 
  conflict    1    -0.03383     0.20309      0.0278      0.8677     0.967 
  loginc      1    -0.12894     0.11904      1.1733      0.2787     0.879 
  growth      1     0.03254     0.03452      0.8887      0.3458     1.033 
  pop         1   0.0004148   0.0008444      0.2413      0.6233     1.000 
  land        1  -0.0000233   0.0000699      0.1108      0.7393     1.000 
literacy    1     0.01376     0.00559      6.0532      0.0139     1.014 

 

For deaths from natural causes (Output 6.7), it is not terribly 
surprising that age is the only significant variable. Each 1-year increase in 
age is associated with a 7.8 percent increase in the hazard of death. 

Output 6.7 Deaths from Natural Causes 

                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  manner      1     0.30550     0.70173      0.1895      0.6633     1.357 
  start       1    -0.05731     0.03526      2.6410      0.1041     0.944 
  military    1    -0.30438     0.78263      0.1513      0.6973     0.738 
  age         1     0.07834     0.02035     14.8145      0.0001     1.081 
  conflict    1    -0.55599     0.50965      1.1901      0.2753     0.574 
  loginc      1     0.19416     0.28346      0.4692      0.4934     1.214 
  growth      1     0.09201     0.08551      1.1579      0.2819     1.096 
  pop         1   0.0009613     0.00220      0.1910      0.6621     1.001 
  land        1   0.0000348   0.0001800      0.0373      0.8468     1.000 
literacy    1    -0.01268     0.01364      0.8644      0.3525     0.987 

 

We see, then, that the coefficients can differ greatly across different 
event types. But perhaps these differences are merely the result of random 
variation. What we need is a test of the null hypothesis that ββ =j  for all 
j, where jβ  is the vector of coefficients for event type j. A test statistic is 
readily constructed from output given by PROC PHREG. For each model, 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 6 Competing Risks 

 217 

 

PROC PHREG reports –2 × log-likelihood (for the model with covariates). 
For the four models we just estimated, the values are 

 All types combined 2620.54 
 Nonconstitutional 1216.76 
 Constitutional 1158.92 
 Natural death   156.24 

To construct the test, we sum the values for the three specific death 
types, yielding a total of 2531.92. We then subtract that from the value for 
all types combined, for a difference of 88.62. This is a likelihood ratio chi-
square statistic for the null hypothesis. How many degrees of freedom? 
Well, when we estimated separate models for the three event types, we got 
a total of 30 coefficients. When we collapsed them all together, we only 
estimated 10. The difference of 20 is the degrees of freedom. Because the 
chi-square statistic is significant at well beyond the .01 level, we may 
reject the hypothesis that the coefficients are all equal across event types.  

That result is not terribly surprising because deaths from natural 
causes are unlikely to have the same determinants as constitutional and 
nonconstitutional exits. A more interesting question is whether the 
covariates for the latter two event types have identical coefficients. We can 
obtain a test statistic for that null hypothesis by estimating a model that 
combines constitutional and nonconstitutional exits and that treats natural 
deaths as censoring. For that model, –2 × log-likelihood=2443.71. If we 
sum the values for the two separate models (given above), we get 2375.68. 
The difference of 68.03 has 10 degrees of freedom (the difference in the 
number of estimated parameters) for a p-value less than .0001. So again, 
we may conclude that different models are required for constitutional and 
nonconstitutional exits.  

These tests (for all three events or for just two of them) are only valid 
when using the Breslow method for handling ties or when there are no tied 
event times. A more complicated procedure is necessary if there are ties, 
and one of the other three tie-handling methods is used. Suppose, for 
example, that we re-estimate all the models using the TIES=EFRON option 
in the MODEL statement. We get the following values for the –2 log L 
statistics: 

 All types combined 2561.08 
 Nonconstitutional 1202.04 
 Constitutional 1139.41 
 Natural death   155.38 

As before, we can add up the –2 log L statistics for the three separate event 
types, yielding a total of 2496.83. But we can’t validly compare this  
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number with –2 log L for all the types combined. That’s because when we 
estimate three models for the different outcomes, we are allowing the 
baseline hazard function to be different for each outcome. When we 
estimate the model for all the types combined, however, we are only 
allowing for a single baseline hazard function. The usual likelihood ratio 
chi-square has no way to adjust for this difference.  

The solution is to use the COMBINE data set that was created in the 
Estimation and Testing without Covariates section above. This data set 
was constructed by first creating a separate data set for each event type, 
with a variable EVENT equal to 1 if that event occurred and 0 otherwise. 
We then concatenated the three data sets into a single data set (COMBINE), 
which included the variable TYPE with values of 1, 2, or 3 to distinguish 
the three kinds of deaths. We now estimate a Cox model for this data set 
while stratifying on the TYPE variable. We are already stratifying by 
REGION so we can simply add TYPE to the STRATA statement: 

 
PROC PHREG DATA=combine; 
   MODEL years*event(0)=manner start military age conflict   
         loginc growth pop land literacy / TIES=EFRON; 
   STRATA region type; 
RUN; 

 
This produces a –2 log L of 2590.68. From this we subtract the summed –2 
log Ls for the three separate models (2496.83) to produce a likelihood ratio 
chi-square of 93.85. With 20 degrees of freedom, the chi-square statistic is 
highly significant, leading again to the conclusion that the regression 
coefficients differ across the three event types.  

If we had concluded, instead, that corresponding coefficients were 
equal across all event types, a natural next step would be to test whether 
they were all equal to 0. No special computations are needed for that test, 
however. Just estimate the model without distinguishing among the event 
types, and examine the global statistics for the null hypothesis that all 
coefficients are equal to 0. In Output 6.4, all three chi-square statistics 
(Wald, score, and likelihood ratio) have values of about 30 with 10 d.f., 
giving strong evidence against that null hypothesis. Note that this is a 
conditional test, the condition being that the coefficients are equal. To test 
the hypothesis that corresponding coefficients are equal and that they are 
equal to 0, simply add this conditional chi-square statistic to the chi-
square statistic for testing equality and then add the degrees of freedom as 
well. Thus, for this example, the likelihood ratio statistic is 
29.90+88.62=118.52 with 40 d.f. 

We can also construct test statistics for hypotheses about coefficients 
for specific covariates, using only the coefficients and their standard errors 
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(Lagakos, 1978). The coefficient for CONFLICT for nonconstitutional exits 
was .4805, with a standard error of .2040. By contrast, the coefficient for 
CONFLICT for constitutional exits was –.0338, with a standard error of 
.2031. The first coefficient is significantly different from 0; the second is 
not. But is there a significant difference between them? A 1-degree-of-
freedom Wald chi-square statistic for testing the null hypothesis that 

1 2β β= is easily calculated by the following formula: 
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where b1 is the estimate of β1 and s.e.(.) means estimated standard error. 
For our particular question, we have 
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Because that does not exceed the .05 critical value, we have insufficient 
statistical justification for concluding that the two coefficients are 
different.  

This particular statistic, in one form or another, is widely used to test 
for differences in parameter estimates across two independent groups. 
Here, however, we do not have independent groups because the same set 
of 472 leaders is used to estimate models for both constitutional and 
nonconstitutional exits. This suggests that we may need a covariance term 
in the denominator of the statistic. In fact, we do not. What justifies this 
statistic is the fact that the likelihood function factors into a distinct 
likelihood for each event type. It follows that the parameter estimates for 
each event type are asymptotically independent of the parameter estimates 
for all other event types. This only holds for mutually exclusive event 
types, however. We cannot use this statistic to test for the difference 
between a coefficient for constitutional exits and the corresponding 
coefficient for all types of exits.  

Because we found no reason to reject the hypothesis that the two 
coefficients for CONFLICT are equal, we may want to go further and test 
whether they are 0. This is easily accomplished by taking the reported chi-
square statistics for CONFLICT, for both constitutional and 
nonconstitutional exits, and summing them: .87+5.55=6.42 with 2 d.f. This 
is just barely significant at the .05 level.  

The tests for a single covariate can be generalized to more than two 
event types. For a given covariate, let bj be its coefficient for event type j; 
let sj

2 be the squared, estimated standard error of bj; and let Xj
2=bj

2/sj
2

 be the 
reported Wald chi-square statistic for testing that βj=0. To test the 
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hypothesis that all the coefficients for the chosen covariate are 0, we sum 
the Wald chi-square statistics as follows: 

 ∑=
j

jXQ 2  (6.9) 

which has degrees of freedom equal to the number of event types. To test 
the hypothesis that all coefficients are equal to each other, we calculate 
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which has degrees of freedom equal to one less than the number of event 
types. 

ACCELERATED FAILURE TIME MODELS 

Competing risks analysis with accelerated failure time models is 
basically the same as with Cox models. As before, the key point is to treat 
all events as censoring except the one that you’re focusing on. However, 
there are some complications that arise in constructing tests of equality of 
coefficients across event types. There are also some special characteristics 
of the LEADER data set that require slightly different treatment with 
accelerated failure time models.  

One of those characteristics is the presence of 0s in the YEARS 
variable. Recall that any leaders who served less than 1 year were assigned 
a time value of 0. Of the 472 leaders, 106 fell in this category. This poses 
no problem for PROC PHREG, which is only concerned with the rank 
order of the time variable. On the other hand, PROC LIFEREG excludes 
any observations with times of 0 or less because it must take the logarithm 
of the event time as the first step. But we certainly don’t want to exclude 
22 percent of the cases. One approach is to assign some arbitrarily chosen 
number between 0 and 1. A more elegant solution is to treat such cases as 
if they were left censored at time 1. We discussed how to do this in some 
detail in the section Left Censoring and Interval Censoring in Chapter 4, 
“Estimating Parametric Regression Models with PROC LIFEREG.” For the 
LEADER data set, we need a short DATA step to create LOWER and UPPER 
variables that are appropriately coded. Here’s how to prepare the data set 
for modeling the constitutional exits. 
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DATA leaders2; 
   SET leaders; 
   lower=years;  
   upper=years; 
   IF years=0 THEN DO; 
      lower=.;  
      upper=1;  
   END; 
   IF lost IN (0,1,2) THEN upper=.; 
RUN; 
 

For uncensored observations, LOWER and UPPER have the same value. 
For observations with YEARS=0, we set LOWER=. and UPPER=1. For 
right-censored observations (including those with events other than the 
one of interest), UPPER=. and LOWER=YEARS. If both UPPER and 
LOWER are missing (which happens for individuals with YEARS=0 who 
have events other than the one of interest), the observation is excluded. To 
fit a model for the other two types of exit, we simply change the last IF 
statement so that the numbers in parentheses include all outcomes to be 
treated as right censored.  

To fit an exponential model to this data set, I used the following 
PROC LIFEREG program: 

 
PROC LIFEREG DATA=leaders2;  
   CLASS region; 
   MODEL (lower,upper)= manner start military age conflict   
         loginc literacy region / D=EXPONENTIAL; 
RUN;     

Notice that REGION is declared to be a CLASS variable. In the PROC 
PHREG analysis, I simply stratified on this variable. But stratification is 
not an option in PROC LIFEREG. I also excluded from the models all 
variables that were not statistically significant in any of the PROC PHREG 
models (namely, POP, GROWTH, and LAND).  

For each of the three event types, I estimated all five of the 
accelerated failure time models discussed in Chapter 4. The models and 
their log-likelihoods are shown below: 

 

 Nonconstitutional Constitutional Natural Death 
Exponential -383.39 -337.30 -87.17 
Weibull -372.51 -336.46 -82.48 
Log-normal -377.04 -338.09 -83.60 
Gamma -372.47 -336.14 (-81.36) 
Log-logistic -374.95 -335.88 -82.78 
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(In fitting the gamma model to natural deaths, PROC LIFEREG reported a 
possible convergence failure after 22 iterations. I’ve given the log-
likelihood at the last iteration.)  

For the nonconstitutional exits, we can reject the hypothesis that the 
hazard is constant over time. That’s because the chi-square statistic for 
comparing the exponential (constant hazard) model with the generalized 
gamma model is 21.84, which was calculated by taking the difference in 
the log-likelihoods for the two models and multiplying by 2. With 2 d.f., 
this has a p-value of .00002. The log-normal model must also be rejected 
(p=.003). The Weibull model, on the other hand, is only trivially different 
from the gamma model. 

Output 6.8 shows the parameter estimates for the Weibull model. 
Consider first the scale estimate of 1.41, which can tell us whether the 
hazard is increasing or decreasing. Using the transformation 1/1.41–1= 
–.29, we get the coefficient of log t in the equivalent proportional hazards 
model. This result indicates that the hazard of a nonconstitutional exit 
decreases with time since entry into power. The p-values for the covariates 
are quite similar to those in Output 6.5 for the Cox model, but naturally the 
coefficients are all reversed in sign. To directly compare the magnitudes of 
the coefficients with those of the Cox model, each must be divided by the 
scale estimate of 1.41. After this adjustment, the values are remarkably 
similar. We also see major differences among the regions, something that 
was hidden in the Cox analysis. Specifically, expected time until a 
nonconstitutional exit is more than seven times greater (exp(2.036)) in 
Asia (REGION=2) than it is in Latin America (REGION=3), and it is nearly 
four times greater (exp(1.36)) in Africa (REGION=1).  

Output 6.8 Weibull Model for Nonconstitutional Exits 

                             Standard   95% Confidence     Chi- 
 Parameter       DF Estimate    Error       Limits       Square Pr > ChiSq 
 
 Intercept        1 -40.6136  17.1902 -74.3057  -6.9215    5.58     0.0181 
 manner           1  -1.3806   0.3143  -1.9965  -0.7646   19.30     <.0001 
 start            1   0.0410   0.0178   0.0062   0.0758    5.33     0.0210 
 military         1   0.6510   0.3135   0.0366   1.2655    4.31     0.0378 
 age              1  -0.0124   0.0114  -0.0348   0.0100    1.18     0.2775 
 conflict         1  -0.7199   0.2843  -1.2771  -0.1626    6.41     0.0113 
 loginc           1   0.6750   0.2073   0.2688   1.0812   10.61     0.0011 
 literacy         1   0.0072   0.0063  -0.0052   0.0196    1.28     0.2572 
 region        0  1   0.9037   0.4457   0.0301   1.7773    4.11     0.0426 
 region        1  1   1.3636   0.3926   0.5941   2.1332   12.06     0.0005 

                                                                                                                                                     (continued) 
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Output 6.8 (continued) 

 region        2  1   2.0362   0.4692   1.1166   2.9558   18.83     <.0001 
 region        3  0   0.0000    .        .        .         .        . 
 Scale            1   1.4064   0.1121   1.2030   1.6441 
 Weibull Shape    1   0.7111   0.0567   0.6082   0.8313 

For constitutional exits, the picture is rather different. All the models 
have similar log-likelihoods, and even the exponential model is not 
significantly worse than the Weibull or gamma models. Invoking 
parsimony, we might as well stick with the exponential model, which is 
displayed in Output 6.9. The Lagrange multiplier test at the bottom of the 
output shows, again, that the exponential model cannot be rejected. As 
with the nonconstitutional exits, the results are quite similar to those of 
the Cox model in Output 6.6. Apart from the region differences, the only 
significant variables are AGE and LITERACY. Except for the reversal of 
sign, the coefficients are directly comparable to those of the Cox model. 
Again, we see that Latin America has the shortest expected time until a 
constitutional exit, but the longest expected time is now in Africa rather 
than Asia.  

Output 6.9 Exponential Model for Constitutional Exits 

                             Standard   95% Confidence     Chi- 
 Parameter       DF Estimate    Error       Limits       Square Pr > ChiSq 
 
 Intercept        1  12.4138  11.7600 -10.6353  35.4630    1.11     0.2912 
 manner           1   0.3112   0.2624  -0.2030   0.8255    1.41     0.2356 
 start            1  -0.0092   0.0120  -0.0328   0.0144    0.58     0.4453 
 military         1   0.0284   0.2526  -0.4667   0.5236    0.01     0.9104 
 age              1  -0.0317   0.0083  -0.0480  -0.0154   14.52     0.0001 
 conflict         1   0.1573   0.1983  -0.2314   0.5460    0.63     0.4277 
 loginc           1   0.1366   0.1135  -0.0858   0.3590    1.45     0.2287 
 literacy         1  -0.0113   0.0056  -0.0223  -0.0003    4.09     0.0432 
 region        0  1   0.5413   0.3326  -0.1106   1.1932    2.65     0.1036 
 region        1  1   1.7032   0.3702   0.9776   2.4288   21.17     <.0001 
 region        2  1   0.5336   0.2180   0.1062   0.9609    5.99     0.0144 
 region        3  0   0.0000    .        .        .         .        . 
 Scale            0   1.0000   0.0000   1.0000   1.0000 
 Weibull Shape    0   1.0000   0.0000   1.0000   1.0000 
 
                      Lagrange Multiplier Statistics 
 
                  Parameter     Chi-Square    Pr > ChiSq 
 
                  Scale             1.4704        0.2253 
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For deaths due to natural causes, the only model that is clearly 
rejectable is the exponential model. Of the remaining models, the Weibull 
model again appears to be the best choice because its log-likelihood is only 
trivially different from that of the gamma model. The Weibull estimates are 
reported in Output 6.10. As in the Cox model, there is a strong effect of age 
at entry, with older leaders having shorter times until death. 

Output 6.10 Weibull Estimates for Natural Deaths 

                             Standard   95% Confidence     Chi- 
 Parameter       DF Estimate    Error       Limits       Square Pr > ChiSq 
 
 Intercept        1 -23.1476  20.0574 -62.4595  16.1642    1.33     0.2485 
 manner           1  -0.2216   0.3909  -0.9878   0.5445    0.32     0.5707 
 start            1   0.0302   0.0209  -0.0107   0.0712    2.09     0.1480 
 military         1   0.2210   0.4158  -0.5939   1.0360    0.28     0.5950 
 age              1  -0.0451   0.0108  -0.0662  -0.0240   17.58     <.0001 
 conflict         1   0.0736   0.2804  -0.4761   0.6232    0.07     0.7930 
 loginc           1  -0.1514   0.1563  -0.4577   0.1549    0.94     0.3328 
 literacy         1   0.0030   0.0073  -0.0112   0.0172    0.17     0.6769 
 region        0  1   0.3597   0.4472  -0.5168   1.2361    0.65     0.4212 
 region        1  1   0.7672   0.4491  -0.1131   1.6475    2.92     0.0876 
 region        2  1   0.6378   0.3745  -0.0963   1.3718    2.90     0.0886 
 region        3  0   0.0000    .        .        .         .        . 
 Scale            1   0.5994   0.0885   0.4487   0.8007 
 Weibull Shape    1   1.6684   0.2465   1.2489   2.2287 

 

The next logical step is to construct tests of hypotheses about 
equality of coefficients across different event types. For tests about 
individual covariates, the chi-square statistics in equations (6.8) – (6.10) 
will do just fine. Unfortunately, we cannot use the method employed for 
Cox models to construct a global test of whether all the coefficients for one 
event type are equal to the corresponding coefficients for another event 
type. For the accelerated failure time models, fitting a model to all events 
without distinction involves a different likelihood than constraining 
parameters to be equal across the separate likelihoods. As a result, if you 
try to calculate the statistics described in the previous section, you’re 
likely to get negative chi-square statistics. 

In general, there’s no easy way around this problem. For Weibull 
models (actually for any parametric proportional hazards model), the 
likelihood test can be corrected by a function of the number of events of 
each type at each point in time (Narendranathan and Stewart, 1991). Here, 
I consider an alternative test for Weibull models that I think is more easily 
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performed. It also yields a test for each covariate as a by-product. It is, in 
fact, a simple generalization of the test for proportional hazards discussed 
earlier in this chapter (see Time in Power for Leaders of Countries: 
Example).  

Suppose we believe that constitutional and nonconstitutional exits 
are both governed by Weibull models but with different parameters. We 
can write the two models as 

 kkjjjjj xxtth βββα ++++= 110log)(log  (6.11) 

with j=1 for constitutional exits and j=2 for nonconstitutional exits. Now 
consider the following question: Given that an exit (other than a natural 
death) occurs at time t, what determines whether it is a constitutional or a 
nonconstitutional exit? Equation (6.11) implies that this question is 
answered by a logistic regression model: 

 
kkk xxt

tTJ
tTJ ))()(log)(
)|2Pr(
)|1Pr(log 2111211020121 ββββββαα −(++−+−+−=

==
==

  

This model can be easily estimated with PROC LOGISTIC: 
 
DATA leaders3; 
   SET leaders; 
   lyears=LOG(years+.5); 
PROC LOGISTIC DATA=leaders3; 
   WHERE lost=1 OR lost=3; 
   CLASS region / PARAM=GLM; 
   MODEL lost=lyears manner age start military conflict loginc 
         literacy region; 
RUN; 

The DATA step is needed so that the log of time can be included in 
the model (0.5 was added to avoid problems with times of 0). The WHERE 
statement eliminates the censored cases and those who died of natural 
causes.  

Output 6.11 shows the results. We can interpret each of the 
coefficients in this table as an estimate of the difference between 
corresponding coefficients in the two Weibull models. We see that there 
are highly significant differences in the coefficients for MANNER and 
LITERACY but only marginally significant differences between the 
coefficients for AGE, START, and LYEARS. The test for LYEARS is 
equivalent to a test of whether the scale parameters are the same in the 
accelerated failure time version of the model.  

The null hypothesis that all the corresponding coefficients are equal 
in the two Weibull models is equivalent to the hypothesis that all the 
coefficients in the implied logit model are 0. That hypothesis, of course, is 
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tested by the three chi-square statistics in the panel labeled “Testing Global 
Null Hypothesis: BETA=0”. Although the three statistics vary quite a bit in 
magnitude, they all indicate that the hypothesis should be rejected.  

Output 6.11 Logit Model Comparing Constitutional and Nonconstitutional Exits 

                  Testing Global Null Hypothesis: BETA=0 
 
          Test                 Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio       129.1322       11         <.0001 
          Score                  108.7634       11         <.0001 
          Wald                    76.2327       11         <.0001 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
                                    Standard          Wald 
   Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
   Intercept       1    -42.9260     20.7274        4.2890        0.0384 
   lyears          1      0.2749      0.1424        3.7239        0.0536 
   manner          1     -1.3252      0.3801       12.1579        0.0005 
   age             1      0.0277      0.0144        3.7136        0.0540 
   start           1      0.0407      0.0214        3.6004        0.0578 
   military        1      0.0698      0.3949        0.0313        0.8596 
   conflict        1     -0.2433      0.3425        0.5044        0.4776 
   loginc          1      0.0581      0.2502        0.0539        0.8163 
   literacy        1      0.0334     0.00895       13.9201        0.0002 
   region    0     1      0.1111      0.5062        0.0481        0.8263 
   region    1     1     -0.6684      0.5034        1.7626        0.1843 
   region    2     1      0.4737      0.4568        1.0754        0.2997 
   region    3     0           0           .         .             . 
 
 
                           Odds Ratio Estimates 
 
                                  Point          95% Wald 
            Effect             Estimate      Confidence Limits 
 
            lyears                1.316       0.996       1.740 
            manner                0.266       0.126       0.560 
            age                   1.028       1.000       1.057 
            start                 1.041       0.999       1.086 
            military              1.072       0.495       2.325 

                                                                                                                                                     (continued) 
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Output 6.11 (continued) 

            conflict              0.784       0.401       1.534 
            loginc                1.060       0.649       1.731 
            literacy              1.034       1.016       1.052 
            region   0 vs 3       1.117       0.414       3.014 
            region   1 vs 3       0.513       0.191       1.375 
            region   2 vs 3       1.606       0.656       3.932 

ALTERNATIVE APPROACHES TO MULTIPLE EVENT TYPES 

Conditional Processes 

 
The competing risks approach presumes that each event type has its 

own hazard model that governs both the occurrence and timing of events 
of that type. The appropriate imagery is one of independent causal 
mechanisms operating in parallel. Whichever type of event happens first, 
the individual is then no longer at risk of the other types.  

This is clearly a defensible way of thinking about deaths due to 
natural causes, on the one hand, and forcible removal from power, on the 
other. It may not be so sensible, however, for the distinction between 
constitutional exits and nonconstitutional exits. We might imagine that a 
leader will stay in power as long as his popularity with key groups stays 
sufficiently high. When that popularity drops below a certain point, 
pressures will build for his removal. How he is removed is another 
question, and the answer depends on such things as the constitutional 
mechanisms that are available and the cultural traditions of the country. In 
this way of thinking about things, we have one mechanism governing the 
timing of events and another distinct mechanism determining the type of 
event, given that an event occurs.  

For an even more blatant example, consider the event buying a 
personal computer, and suppose we subdivide this event into two types: 
buying a Macintosh computer and buying a Windows based computer. 
Now it would be absurd to suppose that there are two parallel processes 
here and that we merely observe whichever produces an event first. 
Rather, we have one process that governs the decision to buy a computer at 
all and another that governs which type is purchased. These kinds of 
situations arise most commonly when the different event types are 
alternative means for achieving some goal.  

If we adopt this point of view, a natural way to proceed is to estimate 
one model for the timing of events (without distinguishing among event 
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types) and a second model for the type of event (restricting the analysis to 
those individuals who experienced an event). For the timing of events, any 
of the models that we have considered so far are possible contenders. For 
the type of event, a binomial or multinomial logit model is a natural 
choice, although there are certainly alternatives. A major attraction of this 
approach is that there is no need to assume that the different kinds of 
events are uninformative for one another.  

We have already estimated a logit model for constitutional versus 
nonconstitutional exits, with the results displayed in Output 6.11. There 
we interpreted the coefficients as differences in coefficients in the 
underlying hazard models. Now I am suggesting that we interpret these 
coefficients directly as determinants of whether a loss of power was by 
constitutional or nonconstitutional means, given that an exit from power 
occurred. We see, for example, that those who obtained power by 
nonconstitutional means are about four times as likely to lose power in the 
same way (based on the odds ratio of .266 for MANNER). On the other 
hand, each additional percentage point of literacy increases the odds that 
the exit will be constitutional rather than nonconstitutional by about 3 
percent. Although the effects are only marginally significant, there are 
consistently positive effects of time on constitutional rather than 
nonconstitutional changes: older leaders, more recently installed leaders, 
and leaders who have been in power longer are all more likely to exit via 
constitutional mechanisms.  

We still need a model for timing of exits from power, treating deaths 
from natural causes as censoring. Output 6.12 shows the results of 
estimating a Cox model, with the following statements: 

 
PROC PHREG DATA=leaders;  
   MODEL years*lost(0,2)=manner age start military conflict    
      loginc literacy / TIES=EXACT; 
   STRATA region; 
RUN; 

 
Because nearly half of the exits occurred at 0 or 1 year, I used the 
TIES=EXACT option.  
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Output 6.12 Cox Model for Timing of Constitutional and Nonconstitutional Exits 

                Parameter   Standard                         Hazard 
  Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio 
 
  manner     1    0.37642    0.15922     5.5892     0.0181    1.457 
  age        1    0.01718    0.00575     8.9381     0.0028    1.017 
  start      1   -0.01497    0.00840     3.1769     0.0747    0.985 
  military   1   -0.20906    0.16439     1.6174     0.2035    0.811 
  conflict   1    0.17099    0.13607     1.5792     0.2089    1.186 
  loginc     1   -0.24071    0.08860     7.3820     0.0066    0.786 
literacy   1    0.00186    0.00331     0.3150     0.5747    1.002 

 

Three results stand out in Output 6.12:  
 Those who acquired power by nonconstitutional means had 

about a 46 percent higher risk of losing power (by means other 
than natural death).  

 Each additional year of age increased the risk of exit by about 1.7 
percent.  

 A 1 percent increase in GNP per capita yielded about a .24 
percent decrease in the risk of exit.  

In my judgment, of all the analyses done in this chapter, Output 6.11 
and Output 6.12 give the most meaningful representation of the processes 
governing the removal of leaders from power. To that, we may also wish to 
add Output 6.7, which shows that only age is associated with the risk of a 
death from natural causes.  

Cumulative Incidence Functions 

In equation (6.3) I defined the type-specific survivor function Sj(t), 
but I warned that it did not apply to any well-defined, observable random 
variable. Nevertheless, if you do Kaplan-Meier (or life table) estimation 
with PROC LIFETEST, treating other events as censoring, what you get is 
an estimate of the function Sj(t). This can be interpreted as the probability 
that an individual makes it to time t without having an event of type j, 
under the hypothetical presumption that other kinds of events cannot 
occur. Similarly, Fj(t) = 1– Sj(t) can be interpreted as the probability that an 
event of type j occurs to an individual by time t, in the absence of any 
competing risks.  

In some fields, especially those that are more oriented toward 
applications, this is not regarded as a useful function to estimate, because 
the competing risks cannot be removed. A further reason is that  
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the sum of the probabilities of the different kinds of events occurring by 
time t, may often exceed 1. 

Instead, many people prefer to estimate cumulative incidence 
functions, which are defined as  

),Pr()( jJtTtI iij =<= .  

This equation estimates the probability that an event of type j happens to 
individual i before time t, in the presence of competing event types. As 
described by Marubini and Valsecchi (1995), a consistent estimate of the 
cumulative incidence function is given by  
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where )(ˆ tS  is the Kaplan-Meier estimate of the overall survivor function, 
djk is the number of events of type j that occurred at time tk, and nk is the 
number at risk at time tk. The ratio of djk to nk is an estimate of the hazard 
of event type j at time tk.   

An attractive feature of this estimator is that 

1)(ˆ)(ˆ =+ ∑
j

j tItS . 

This says that at any time t, the probabilities for all the event types plus 
the probability of no event add up to 1. Another attraction is that the 
method does not depend on the assumption that each event type is non-
informative for other event types.  

Although cumulative incidence functions are not currently 
implemented in any SAS procedure, there is a macro called CUMINCID 
that is distributed with SAS and stored in its autocall location. That means 
that the macro is available for use in any SAS program. Here’s how to use 
the macro for the LEADERS data set to estimate the cumulative incidence 
function for nonconstitutional exits (LOST=3): 

 
 %CUMINCID(DATA=leaders, 
           TIME=years, 
           STATUS=lost, 
           EVENT=3, 
           COMPETE=1 2, 
           CENSORED=0) 
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In this version of the data set, leaders whose YEARS value was 0 
were recoded to have a value of .5. Output 6.13 displays the results. Like 
the Kaplan-Meier method in PROC LIFETEST, the output produced by 
CUMINCID contains one line for every observation, but most of these lines 
contain no useful information. I’ve edited out all the lines that are not 
informative. The cumulative incidence probabilities are substantially 
lower than the cumulative failure probabilities reported by PROC 
LIFETEST using the Kaplan-Meier method. For example, at 24 years, the 
cumulative incidence estimate is .42 but the corresponding probability 
reported by LIFETEST is .63. 

Output 6.13 Estimates of the Cumulative Incidence Function 

                      Cumulative Incidence Estimates                      
             with Confidence Limits Based on the Log Transform 
 
                                       StdErr    Lower95Pct   Upper95Pct 
  Obs      years   censor    CumInc    CumInc      CumInc       CumInc 
 
    1     0.0000     .      0.00000   0.000000      .            . 
   54     0.5000     0      0.11229   0.014532     0.08713      0.14471 
  129     1.0000     0      0.15979   0.016919     0.12984      0.19664 
  185     2.0000     0      0.20689   0.018833     0.17309      0.24730 
  223     3.0000     0      0.23473   0.019810     0.19895      0.27696 
  262     4.0000     0      0.25637   0.020516     0.21916      0.29991 
  304     5.0000     0      0.28356   0.021330     0.24469      0.32860 
  337     6.0000     0      0.29932   0.021800     0.25951      0.34525 
  360     7.0000     0      0.31055   0.022151     0.27004      0.35715 
  374     8.0000     0      0.32554   0.022639     0.28406      0.37307 
  388     9.0000     0      0.33208   0.022874     0.29014      0.38008 
  399    10.0000     0      0.34618   0.023411     0.30320      0.39524 
  412    11.0000     0      0.36890   0.024258     0.32429      0.41964 
  427    13.0000     0      0.38142   0.024739     0.33588      0.43312 
  430    14.0000     0      0.38568   0.024896     0.33985      0.43770 
  437    15.0000     0      0.39467   0.025238     0.34818      0.44737 
  442    16.0000     0      0.39972   0.025468     0.35280      0.45289 
  445    17.0000     0      0.40513   0.025730     0.35771      0.45883 
  451    18.0000     0      0.41100   0.026042     0.36300      0.46534 
  455    19.0000     0      0.41749   0.026423     0.36878      0.47264 
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The CUMINCID macro also has a STRATA parameter that produces 
cumulative incidence functions for multiple subgroups and plots the 
functions on a single graph. However, it does not have the capability of 
testing the null hypothesis that the cumulative incidence functions are 
identical, although several such tests have been proposed (for example, 
Gray, 1988). There are even regression methods based on cumulative 
incidence functions rather than on hazard functions (Fine and Gray, 1999; 
Scheike and Zhang, 2008). SAS macros that implement these methods can 
readily be found on the Web.  

Despite the popularity of these methods (and the insistence by some 
that conventional methods are flatly incorrect), I think that cumulative 
incidence functions have been oversold. As a descriptive device in applied 
settings, the methods can certainly be useful. But if the aim is to 
understand the causal mechanisms underlying event occurrence, I still 
believe that the estimation of hazard functions (treating other events as 
censoring) is the way to go (Pintilie, 2006). 

CONCLUSION 

As we have seen, competing risks analysis is easily accomplished 
with conventional software by doing a separate analysis for each event 
type, treating other events as censoring. The biggest drawback of 
competing risks analysis is the requirement that times for different event 
types be independent or at least that each event be noninformative for the 
others. This requirement is exactly equivalent to the requirement for 
random censoring discussed in Chapter 2. In either case, violations can 
lead to biased coefficient estimates.  

The seriousness of this problem depends greatly on the particular 
application. For the LEADERS data set, I argued that death due to natural 
causes is likely to be noninformative for the risk of either a constitutional 
or a nonconstitutional exit. For the latter two types, however, the 
presumption of noninformativeness may be unreasonable. In thinking 
about this issue, it is helpful to ask the question, “Are there unmeasured 
variables that may affect more than one event type?” If the answer is yes, 
then there should be a presumption of dependence.  

Unfortunately, there’s not a lot that can be done about the problem. 
It’s possible to formulate models that incorporate dependence among event 
types but, for any such model, there’s an independence model that does an 
equally good job of fitting the data. Dependence models typically impose 
parametric restrictions on the shape of the hazard functions, and the 
results may heavily depend on those restrictions. Heckman and Honoré 
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(1989) showed that you can identify nonparametric dependence models, 
so long as there is at least one continuous covariate with different 
coefficients for different event types (along with some other mild 
conditions), but the practical implications of their theorem have yet to be 
explored. Just because you can do something doesn’t mean you can do it 
well.  

So for all practical purposes, we have little choice but to use a 
method that rests on assumptions that may be implausible and cannot be 
tested. In Chapter 8, “Heterogeneity, Repeated Events, and Other Topics,” I 
describe a sensitivity analysis for informative censoring that may also be 
useful for competing risks. Basically, this method amounts to redoing the 
analysis under two worst-case scenarios and hoping that the qualitative 
conclusions don’t change. The other thing to remember is that you can 
reduce the problem of dependence by measuring and including those 
covariates that are likely to affect more than one type of event. For 
example, a diet that is high in saturated fat is thought to be a common risk 
factor for both heart disease and cancer. If a measure of dietary fat intake is 
included in the regression model, it can partially alleviate concerns about 
possible dependence among these two event types. 
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INTRODUCTION 

This chapter shows you how to use the LOGISTIC procedure to 
analyze data in which many events occur at the same points in time. In 
Chapter 5, “Estimating Cox Regression Models with PROC PHREG,” we 
looked at several different methods for handling tied data with PROC 
PHREG. There we saw that Breslow’s method—the standard formula for 
partial likelihood estimation with tied data—is often a poor approximation 
when there are many ties. This problem was remedied by two exact 
methods, one that assumed that ties result from imprecise measurement 
and another that assumed that events really occur at the same (discrete) 
time. Unfortunately, both of these methods are computationally 
demanding for large data sets with many ties. We also looked at tied data 
in Chapter 4, “Estimating Parametric Regression Models with PROC 
LIFEREG,” under the heading of interval censoring. While PROC LIFEREG 
is adept at estimating parametric models with interval censoring, it cannot 
incorporate time-dependent covariates.  

The maximum likelihood methods described in this chapter do not 
suffer from these limitations. They do not rely on approximations, the 
computations are quite manageable even with large data sets, and they are 
particularly good at handling large numbers of time-dependent covariates. 
In addition, the methods make it easy to test hypotheses about the 
dependence of the hazard on time.  

The basic idea is simple. Each individual’s survival history is broken 
down into a set of discrete time units that are treated as distinct 
observations. After pooling these observations, the next step is to estimate 
a binary regression model predicting whether an event did or did not 
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occur in each time unit. Covariates are allowed to vary over time from one 
time unit to another.  

This general approach has two versions, depending on the form of 
the binary regression model. By specifying a logit link, you get estimates of 
the discrete-time proportional odds model proposed by Cox. This model is 
identical to the model estimated when you specify the TIES=DISCRETE 
option in PROC PHREG. Alternatively, by specifying a complementary log-
log link, you get estimates of an underlying proportional hazards model in 
continuous time. This is identical to the model that is estimated when you 
specify the TIES=EXACT option in PROC PHREG.  

The mechanics of this approach are similar to those of the piecewise 
exponential model described in Chapter 4 and the counting process syntax 
of Chapter 5. The main difference is that those methods assumed that you 
know the exact time of the event within a given interval. By contrast, the 
procedures in this chapter presume that you know only that an event 
occurred within a given interval.  

THE LOGIT MODEL FOR DISCRETE TIME 

We begin with the logit version of the model because it is more 
widely used and because logistic regression is already familiar to many 
readers. In Chapter 5 (see The DISCRETE Method), we considered Cox’s 
model for discrete-time data. In brief, we let Pit be the conditional 
probability that individual i has an event at time t, given that an event has 
not already occurred to that individual. The model says that Pit is related 
to the covariates by a logistic regression equation: 

 itkkitt
it

it xx
P

P ββα +++=







−

111
log  (7.1) 

where t =1, 2, 3,…. This model is most attractive when events can only 
occur at regular, discrete points in time, but it has also been frequently 
employed when ties arise from grouping continuous-time data into 
intervals.  

In Chapter 5, we saw how to estimate this model by the method of 
partial likelihood, thereby discarding any information about the αts. Now 
we are going to estimate the same model by maximum likelihood, so that 
we get explicit estimates of the αts. The procedure is best explained by 
way of an example. As in Chapter 5, we’ll estimate the model for 100  
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simulated job durations, measured from the year of entry into the job until 
the year that the employee quit. Durations after the fifth year are censored. 
We know only the year in which the employee quit, so the survival times 
have values of 1, 2, 3, 4, or 5. These values are contained in a variable 
called DUR, while the variable EVENT is coded 1 if the employee quit; 
otherwise, it is coded 0. Covariates are ED (years of education), PRESTIGE 
(a measure of the prestige of the occupation), and SALARY in the first year 
of the job. None of these covariates are time-dependent.  

The first task is to take the original data set (JOBDUR) with one 
record per person and create a new data set (JOBYRS) with one record for 
each year that each person was observed. Thus, someone who quit in the 
third year gets three observations, while someone who still had not quit 
after five years on the job gets five observations. The following DATA step 
accomplishes this task: 

 
DATA jobyrs; 
   SET jobdur; 
   DO year=1 TO dur; 
      IF year=dur AND event=1 THEN quit=1;  
      ELSE quit=0; 
      OUTPUT; 
   END; 
RUN; 
 

The DO loop creates 272 person-years that are written to the output 
data set. The IF statement defines the dependent variable QUIT, which 
equals 1 if the employee quit in that particular person-year; otherwise, 
QUIT equals 0. Thus, if a person quit in the fifth year, QUIT is coded 0 for 
the first four records and 1 in the last record. For people who don’t quit 
during any of the 5 years, QUIT is coded 0 for all five records. 

Output 7.1 shows the first 20 records produced by this DATA step. 
Observation 1 is for a person who quit in the first year of the job. 
Observations 2 through 5 correspond to a person who quit in the fourth 
year. QUIT is coded 0 for the first three years and 1 for the fourth. 
Observations 6 through 10 correspond to a person who still held the job at 
the end of the fifth year.  
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Output 7.1 First 20 Cases of Person-Year Data Set for Job Durations 

Obs    dur  event    ed  prestige  salary   year    quit 
 
  1     1     1       7       3       19      1       1 
  2     4     1      14      62       17      1       0 
  3     4     1      14      62       17      2       0 
  4     4     1      14      62       17      3       0 
  5     4     1      14      62       17      4       1 
  6     5     0      16      70       18      1       0 
  7     5     0      16      70       18      2       0 
  8     5     0      16      70       18      3       0 
  9     5     0      16      70       18      4       0 
 10     5     0      16      70       18      5       0 
 11     2     1      12      43      135      1       0 
 12     2     1      12      43      135      2       1 
 13     3     1       9      18       12      1       0 
 14     3     1       9      18       12      2       0 
 15     3     1       9      18       12      3       1 
 16     1     1      11      31       12      1       1 
 17     1     1      13      26        6      1       1 
 18     1     1      10       1        4      1       1 
 19     2     1      12      28       17      1       0 
 20     2     1      12      28       17      2       1 

Now we’re ready to estimate a logistic regression model for these 
data. The following program accomplishes this task: 

 
PROC LOGISTIC DATA=jobyrs; 
   CLASS year / PARAM=GLM; 
   MODEL quit(DESC)=ed prestige salary year; 
RUN; 

By specifying YEAR as a CLASS variable, we tell PROC LOGISTIC to treat 
this variable as categorical rather than quantitative. The PARAM=GLM 
option overrides the default effect coding and tells PROC LOGISTIC to 
create a set of four indicator (dummy) variables, with the reference 
category being YEAR=5 (the highest value). The DESC option specifies that 
the model will predict the probability of a 1 for QUIT rather than a 0.  

Output 7.2 shows the results. Comparing these estimates with the 
partial likelihood estimates in Output 5.10, we see that the coefficients of 
ED, PRESTIGE, and SALARY are similar, as are the chi-square statistics. 
Again, this is not surprising because they are simply alternative ways of 
estimating the same model.  
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Output 7.2 Maximum Likelihood Estimates of Discrete-Time Logistic Model for Job Duration Data 

                      Type 3 Analysis of Effects 
 
                                       Wald 
             Effect        DF    Chi-Square    Pr > ChiSq 
 
             ed             1        6.8392        0.0089 
             prestige       1       46.5794        <.0001 
             salary         1        6.6791        0.0098 
             year           4       23.2529        0.0001 
 
 
              Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1      3.4443      1.1821        8.4896        0.0036 
ed              1      0.2249      0.0860        6.8392        0.0089 
prestige        1     -0.1235      0.0181       46.5794        <.0001 
salary          1     -0.0268      0.0104        6.6791        0.0098 
year      1     1     -2.6875      0.8327       10.4174        0.0012 
year      2     1     -1.4475      0.7671        3.5605        0.0592 
year      3     1     -0.0130      0.7272        0.0003        0.9857 
year      4     1      0.2355      0.7779        0.0916        0.7621 
year      5     0           0           .         .             . 
 

Unlike partial likelihood, the maximum likelihood method also 
gives us estimates for the effect of time on the odds of quitting, as reflected 
in the αts in equation (7.1). The intercept in Output 7.2 is an estimate of 
α5, the log-odds of quitting in year 5 for a person with values of 0 on all 
covariates. For level j of the YEAR variable, the coefficient is an estimate of 
αj – α5 (that is, the difference in the log-odds of quitting in year j and the 
log-odds of quitting in year 5, controlling for the covariates). We see that 
the log-odds is lowest in the first year of the job, rises steadily to year 3, 
and then stays approximately constant for the next 2 years. Overall, the 
effect of YEAR is highly significant with a Wald chi-square statistic of 
23.25 with 4 d.f., as shown in the Type 3 table.  

When the model in equation (7.1) is estimated by partial likelihood, 
there can be no restrictions on the αts. With the maximum likelihood 
method of this chapter, however, we can readily estimate restricted 
versions of the model. In fact, because time (in this case, YEAR) is just 
another variable in the regression model, we can specify the dependence 
of the hazard on time as any function that SAS allows in the DATA 
statement. For example, if we remove YEAR from the CLASS statement but 
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keep it in the MODEL statement, we constrain the effect of YEAR to be 
linear on the log-odds of quitting. Alternatively, we can take the logarithm 
of YEAR before putting it in the model, or we can fit a quadratic model 
with YEAR and YEAR squared. To compare the fit of these models, we can 
use the AIC (Akaike’s information criterion) or SC (Schwarz’s criterion) 
statistics reported by PROC LOGISTIC. These are simply adjustments to –2 
times the log-likelihood that penalize models for having more parameters. 
Here are the results: 

  
 AIC SC 

Unrestricted 215.67 244.21 
Linear 216.28 234.31 
Quadratic 212.19 233.82 
Logarithmic 211.98 230.00 

  
For both fit measures, smaller values are better. Clearly, the 

logarithmic model is the best. The coefficients for ED, PRESTIGE, and 
SALARY in the logarithmic model (not shown) hardly change at all from 
the unrestricted model. The coefficient for the logarithm of YEAR is 2.00, 
indicating that a 1 percent increase in time in the job is associated with a  
2 percent increase in the odds of quitting.  

THE COMPLEMENTARY LOG-LOG MODEL FOR CONTINUOUS-TIME 
PROCESSES 

As already noted, the logit model presumes that events can occur 
only at discrete points in time. For most applications, however, ties occur 
because event times are measured coarsely even though events can 
actually occur at any point in time. Aside from the implausibility of the 
logit model for such data, the logit model suffers from a lack of invariance 
to the length of the time interval. In other words, switching from person-
months to person-years changes the model in a fundamental way, so that 
coefficients are not directly comparable across intervals of different length.  

To avoid these difficulties, we can first specify a model for 
continuous-time data and from that derive a model for data grouped into 
intervals. (In essence, that’s how the EXACT method was developed for 
PROC PHREG.) Suppose that the intervals are of equal length beginning at 
the origin. We’ll index them by t=1, 2, 3, …. As before, let Pit be the 
probability that an event occurs to individual i in interval t, given that the 
individual did not have events in any of the earlier intervals. If we now 
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assume that events are generated by Cox’s proportional hazards model, it 
follows (Prentice and Gloeckler, 1978) that 

 [ ] itkkittit xxP ββα +++=−− 11)1log(log . (7.2) 

This result is easily obtained using equation (5.14) in Chapter 5. The 
transformation on the left side is called the complementary log-log 
function, which is also what we call the model.  

Like the logit function, the complementary log-log function takes a 
quantity that varies between 0 and 1 and changes it to something that 
varies between minus and plus infinity. Unlike the logit function, however, 
the complementary log-log function is asymmetrical. For example, after 
taking the logit transformation, a change in probability from .25 to .50 is 
the same as from .50 to .75. On the complementary log-log scale, however, 
the difference between probabilities of .25 and .50 is larger than the 
difference between .50 and .75. This difference has an important practical 
implication. In the logit model, switching the values of the binary 
dependent variable merely changes the signs of the coefficients. In the 
complementary log-log model, on the other hand, switching the values 
produces completely different coefficient estimates, and it can even result 
in nonconvergence of the maximum likelihood algorithm. It’s essential, 
then, that the model be set up to predict the probability of an event rather 
than a non-event. 

Another important point about the model in equation (7.2) is that the 
β coefficients are identical to the coefficients in the underlying 
proportional hazards model. That doesn’t mean that the estimates that you 
get from grouped data will be the same as those from the original 
ungrouped data. What it does mean is that both are estimating the same 
underlying parameters and are directly comparable to each other. It also 
means that the complementary log-log coefficients have a relative hazard 
interpretation, just like Cox model coefficients, and that the model (not the 
estimates) is invariant to interval length.  

Originally, people preferred the logit model because there was little 
software for the complementary log-log model. Now there’s no excuse. 
Many popular packages have complementary log-log options, and SAS 
makes it available in the LOGISTIC, PROBIT, GENMOD, and GLIMMIX 
procedures. In PROC LOGISTIC, PROC GENMOD, and PROC GLIMMIX, 
you specify it with the LINK=CLOGLOG option in the MODEL statement. 
In PROC PROBIT, you specify D=GOMPERTZ as an option in the MODEL 
statement. (D=GOMPERTZ is a misnomer. The correct name of the 
distribution function corresponding to the complementary log-log is 
Gumbel, not Gompertz.)  
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To estimate the complementary log-log model for the job duration 
data, we can use exactly the same SAS statements that we used for the 
logit model, except for the addition of the LINK=CLOGLOG to the MODEL 
statement. The coefficients in Output 7.3 are directly comparable to those 
in Output 5.9 for the EXACT method in PROC PHREG. Indeed, they are 
very similar—much closer to each other than either is to the two 
approximate methods in Output 5.9.  

Output 7.3 Maximum Likelihood Estimates of the Complementary Log-Log Model for Job Duration Data 

 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1      2.1952      0.8868        6.1270        0.0133 
ed              1      0.1655      0.0632        6.8470        0.0089 
prestige        1     -0.0926      0.0126       53.8990        <.0001 
salary          1     -0.0229     0.00895        6.5623        0.0104 
year      1     1     -2.0952      0.6600       10.0777        0.0015 
year      2     1     -1.1097      0.6156        3.2489        0.0715 
year      3     1      0.0489      0.5840        0.0070        0.9333 
year      4     1      0.2131      0.6287        0.1149        0.7346 
year      5     0           0           .         .             . 

 

 
We can interpret the coefficients just as if this were a proportional 

hazards model. In particular, exponentiating the coefficients gives us 
hazard ratios. For example, a 1-year increase in education produces a 
100(exp(.1655)−1)=18 percent increase in the hazard of quitting. A one-
unit increase in prestige yields a 100(exp(–.0926)–1) = –9 percent change 
in the hazard of quitting. For a thousand-dollar increase in salary, we get a 
100(exp(–0.0229)–1) = –2 percent change in the hazard of quitting. 

Again, we see a strong effect of YEAR, with approximately the same 
pattern as in the logit model. As with that model, we can easily estimate 
constrained effects of YEAR by including the appropriate transformed 
variable as a covariate. Some of these constrained models have familiar 
names. If the logarithm of YEAR is a covariate, then we are estimating a 
Weibull model. If we just include YEAR itself (without the CLASS 
statement), we have the Gompertz model described briefly in Chapter 2, 
“Basic Concepts of Survival Analysis,” but not otherwise available in SAS. 

Comparing the results in Output 7.3 with those for the logit model in 
Output 7.2, we see that the coefficients are somewhat larger for the logit 
model, but the chi-square statistics and p-values are similar. This is the 
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usual pattern. Only rarely do the two methods lead to different qualitative 
conclusions. 

DATA WITH TIME-DEPENDENT COVARIATES 

Because the maximum likelihood method is particularly effective at 
handling time-dependent covariates, let’s look at an example with three 
covariates that change over time. The sample consists of 301 male 
biochemists who received their doctorates in 1956 or 1963. At some point 
in their careers, all of these biochemists had jobs as assistant professors at 
graduate departments in the U.S. The event of interest is a promotion to 
associate professor. The biochemists were followed for a maximum of 10 
years after beginning their assistant professorships. For a complete 
description of the data and its sources, see Long, Allison, and McGinnis 
(1993). That article focuses on comparisons of men and women, but here I 
look only at men in order to simplify the analysis. The original data set has 
one record per person and includes the following variables: 

 
DUR the number of years from beginning of the job to promotion 

or censoring. 
EVENT has a value of 1 if the person was promoted; otherwise, 

EVENT has a value of 0. 
UNDGRAD a measure of the selectivity of undergraduate institution 

(ranges from 1 to 7). 
PHDMED has a value of 1 if the person received his Ph.D. from a 

medical school; otherwise, PHDMED has a value of 0. 
PHDPREST a measure of the prestige of the person’s Ph.D. institution 

(ranges from 0.92 to 4.62). 
ART1-ART10 the cumulative number of articles the person published in 

each of the 10 years. 
CIT1-CIT10 the number of citations in each of the 10 years to all 

previous articles. 
PREST1 a measure of the prestige of the person’s first employing 

institution (ranges from 0.65 to 4.6). 
PREST2 a measure of the prestige of the person’s second employing 

institution (coded as missing for those who did not change 
employers). No one had more than two employers during 
the period of observation. 

JOBTIME the year of employer change, measured from the start of the 
assistant professorship (coded as missing for those who did 
not change employers). 
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The covariates describing the biochemists’ graduate and 
undergraduate institutions are constant over time, but article counts, 
citation counts, and employer prestige all vary with time. The citation 
counts, taken from Science Citation Index (Institute for Scientific 
Information), are sometimes interpreted as a measure of the quality of a 
scientist’s published work, but it may be more appropriate to regard them 
as a measure of the impact on the work of other scientists.  

The first and most complicated step is to convert the file of 301 
persons into a file of person-years. The following DATA step accomplishes 
that task:  

 
DATA rankyrs; 
   INFILE 'c:rank.dat'; 
   INPUT dur event undgrad phdmed phdprest art1-art10  
         cit1-cit10 prest1 prest2 jobtime; 
   ARRAY arts(*) art1-art10; 
   ARRAY cits(*) cit1-cit10; 
   IF jobtime=. THEN jobtime=11; 
   DO year=1 TO dur; 
      IF year=dur THEN promo=event;  
         ELSE promo=0; 
      IF year GE jobtime THEN prestige=prest2;  
         ELSE prestige=prest1; 
      articles=arts(year); 
      citation=cits(year); 
      OUTPUT; 
   END; 
RUN; 

This DATA step has the same basic structure as the one for the job 
duration data. The DO loop creates and outputs a record for each person-
year, for a total of 1,741 person-years. Within the DO loop, the dependent 
variable (PROMO) is assigned a value of 1 if a promotion occurred in that 
person-year; otherwise, PROMO has a value of 0.  

What’s new is that the multiple values of each time-dependent 
covariate must be read into a single variable for each of the person-years. 
For the article and citation variables, which change every year, we create 
arrays that enable us to refer to, say, articles in year 3 as ARTS(3). For the 
two job prestige variables, we must test to see whether the current year (in 
the DO loop) is greater than or equal to the year in which a change 
occurred. If it is, we assign the later value to the variable PRESTIGE; 
otherwise, PRESTIGE is assigned the earlier value. Note that for this to 
work, we recode the JOBTIME variable so that missing values (for people 
who didn’t have a second employer) are recoded as 11. That way the DO 
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loop index, which has a maximum value of 10, never equals or exceeds 
this value.  

Now we can proceed to estimate regression models. For academic 
promotions, which usually take effect at the beginning of an academic 
year, it makes sense to view time as being truly discrete. A logit model, 
then, seems entirely appropriate. Using PROC LOGISTIC, we specify the 
model with a quadratic effect of YEAR: 

 
PROC LOGISTIC DATA=rankyrs; 
   MODEL promo(DESC)=undgrad phdmed phdprest articles citation  
         prestige year year*year; 
RUN; 
 
 

Output  7.4 Estimates of Logit Model for Academic Promotions 

                                Standard          Wald 
 Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
 Intercept     1     -8.4845      0.7756      119.6539        <.0001 
 undgrad       1      0.1939      0.0635        9.3236        0.0023 
 phdmed        1     -0.2357      0.1718        1.8830        0.1700 
 phdprest      1      0.0271      0.0932        0.0843        0.7715 
 articles      1      0.0734      0.0181       16.3702        <.0001 
 citation      1    0.000126     0.00131        0.0091        0.9238 
 prestige      1     -0.2535      0.1138        4.9628        0.0259 
 year          1      2.0818      0.2338       79.3132        <.0001 
 year*year     1     -0.1586      0.0203       61.0097        <.0001 
 
 
                         Odds Ratio Estimates 
 
                            Point          95% Wald 
             Effect      Estimate      Confidence Limits 
 
             undgrad        1.214       1.072       1.375 
             phdmed         0.790       0.564       1.106 
             phdprest       1.027       0.856       1.233 
             articles       1.076       1.039       1.115 
             citation       1.000       0.998       1.003 
             prestige       0.776       0.621       0.970 

 

Output 7.4 shows the results. Not surprisingly, there is a strong effect 
of number of years as an assistant professor. The odds of a promotion 
increase rapidly with time, but at a decreasing rate; there is actually some 
evidence of a reversal after 7 years. I also estimated a model with a set of 
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10 dummy variables for years as an assistant professor, but a likelihood 
ratio chi-square test showed no significant difference between that model 
and the more restricted version shown here. Higher-order polynomials also 
failed to produce a significant improvement. On the other hand, the chi-
square test for comparing the model in Output 7.4 and a model that 
excluded both YEAR and YEAR2 was 178.98 with 2 d.f.  

Article counts had the next largest effect (as measured by the Wald 
chi-square test): each additional published article is associated with an 
increase of 7.6 percent in the odds of a promotion. But there is no evidence 
of any effect of citations, suggesting that it’s the quantity of publications 
that matters in promotions, not the importance or impact of the published 
work.  

Somewhat surprisingly, while there is no effect of the prestige of the 
institution where a biochemist got his doctorate, there is a substantial 
effect of the selectivity of his undergraduate institution. Each 1-point 
increase on the 7-point selectivity scale is associated with a 21 percent 
increase in the odds of a promotion, controlling for other covariates. There 
is also a slightly negative effect of the prestige of the current employer, 
suggesting that it may be harder to get promoted at a more prestigious 
department.  

Notice that once the person-year data set is created, the 
time-dependent covariates are treated just like fixed covariates. Thus, 
many models can be estimated with the saved data set without additional 
data manipulations, making it especially convenient to estimate models 
with large numbers of time-dependent covariates.  

ISSUES AND EXTENSIONS 

In this section, we look at a number of complications and concerns 
that arise in the analysis of tied data using maximum likelihood methods. 

Dependence Among the Observations? 

A common reaction to the methods described in this chapter is that 
there must be something wrong. In general, when multiple observations 
are created for a single individual, it’s reasonable to suppose that those 
observations are not independent, thereby violating a basic assumption 
used to construct the likelihood function. The consequence of dependence 
is usually biased standard error estimates and inflated test statistics. Even 
worse, there are different numbers of observations for different 
individuals, so some appear to get more weight than others.  
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While concern about dependence is often legitimate, it is not 
applicable here. In this case, the creation of multiple observations is not an 
ad-hoc method; rather, it follows directly from factoring the likelihood 
function for the data (Allison, 1982). The basic idea is this: In its original 
form, the likelihood for data with no censoring can be written as a product 
of probabilities over all n observations, as follows: 

 ∏
=

=
n

j
ii tT

1

)Pr(
 

(7.3) 

where Ti is the random variable and ti is the particular value observed for 
individual i. Each of the probabilities in equation (7.3) can be factored in 
the following way. If  ti =5, we have 

 )1)(1)(1)(1()5Pr( 12345 iiiiii PPPPPT −−−−==  (7.4) 

where, again, Pit is the conditional probability of an event at time t, given 
that an event has not already occurred. This factorization follows directly 
from the definition of conditional probability. Each of the five terms in 
equation (7.4) behaves as if it came from a distinct, independent 
observation.  

For those who may still be unconvinced, a comparison of the 
standard errors in Output 5.10 with those in Output 7.2 should be 
reassuring. They are virtually identical, despite the fact that the partial 
likelihood estimates in Output 5.10 are based on 100 persons, while the 
maximum likelihood estimates in Output 7.2 are based on 272 person-
years.  

This lack of dependence holds only when no individual has more 
than one event. When events are repeatable, as discussed in Chapter 8, 
“Heterogeneity, Repeated Events, and Other Topics,” there is a real 
problem of dependence. But the problem is neither more nor less serious 
than it is for other methods of survival analysis. 

Handling Large Numbers of Observations 

Although the creation of multiple observations for each individual 
does not violate any assumptions about independence, it may cause 
practical problems when the number of individuals is large and the time 
intervals are small. For example, if you have a sample of 1,000 persons 
observed at monthly intervals over a 5-year period, you could end up with 
a working data set of nearly 60,000 person-months. While this is not an 
impossibly large number, it can certainly increase the time you spend 
waiting for results, thereby inhibiting exploratory data analysis. 

If you find yourself in this situation, there are several options you 
may want to consider: 
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 First, you should ask yourself if you really need to work with 
such small time intervals. If the time-dependent covariates are 
only changing annually, you might as well switch from person-
months to person-years. True, there will be some loss of 
precision in the estimates, but this is usually minimal. And by 
switching to the piecewise exponential model described in 
Chapter 4 (which has a similar data structure), you can even 
avoid the loss of precision. On the other hand, if the time-
dependent covariates are changing at monthly intervals, you 
should not aggregate to larger intervals.  

 Second, if your covariates are all categorical or they at least have 
a small number of levels, you can achieve great computational 
economy by estimating the models from data that are grouped by 
covariate values. You can accomplish this by using PROC 
SUMMARY to create a grouped data set and then using the 
grouped data syntax in PROC LOGISTIC. Alternatively, PROC 
CATMOD will automatically group the data when you specify a 
logit model, and you can save the grouped data set for further 
analysis.  

 Third, if you are estimating logit models, you may want to 
sample on the dependent variable, at least for exploratory 
analysis. Typically, the data sets created for the methods in this 
chapter have a dichotomous dependent variable with an extreme 
split—the number of nonevents will be many times larger than 
the number of events. What you can do is take all the 
observations with events and a random subsample of the 
observations without events, so that the two groups are 
approximately equal. Is this legitimate? Well, it is for the logit 
model (but not for the complementary log-log model). It is well 
known that disproportionate stratified sampling on the 
dependent variable in a logit analysis does not bias coefficient 
estimates (Prentice and Pike, 1979).  

Unequal Intervals 

To this point, we have assumed that the time intervals giving rise to 
tied survival times are all of equal length. It’s not uncommon, however, for 
some intervals to be longer than others, either by design or by accident. 
For example, a study of deaths following surgery may have weekly follow-
ups soon after the surgery when the risk of death is highest and then 
switch to monthly follow-ups later on. Some national panel studies, like 
the Panel Survey of Income Dynamics, were conducted annually in most 
years, but not in all. As a result, some intervals are 2 years long instead of 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 7 Analysis of Tied or Discrete Data with PROC LOGISTIC 

 249 

 

1. Even if the intervals are equal by design, it often happens that some 
individuals cannot be reached on some follow-ups. 

Regardless of the reason, it should be obvious that, other things 
being equal, the probability of an event will increase with the length of the 
interval. And if time-dependent covariates are associated with interval 
length, the result can be biased coefficient estimates. The solution to this 
problem depends on the pattern of unequal intervals and the model being 
estimated.  

There is one case in which no special treatment is needed. If you are 
estimating the models in equation (7.1) or equation (7.2), which place no 
restrictions on the effect of time, and if the data are structured so that 
every individual’s interval at time t is the same length as every other 
individual’s interval at time t, then the separate parameters that are 
estimated for every time interval automatically adjust for differences in 
interval length. This situation is not as common as you might think, 
however. Even when intervals at the same calendar time have the same 
length, intervals at the same event time will have different lengths 
whenever individuals have different origin points. 

In all other cases, an ad-hoc solution will usually suffice: simply 
include the length of the interval as a covariate in the model. If there are 
only two distinct interval lengths, a single dummy variable will work. If 
there are a small number of distinct lengths, construct a set of dummy 
variables. If there are many different lengths, you will probably need to 
treat length as a continuous variable but include a squared term in the 
model to adjust for nonlinearity.  

Empty Intervals 

 In some data sets, there are time intervals in which no individual 
experiences an event. For example, in the LEADER data set that we 
analyzed in Chapter 6, “Competing Risks,” none of the 472 leaders lost 
power in the 22nd year of rule. Naturally, this is most likely to occur when 
the number of time intervals is large and the number of individuals is 
small. Whenever there are empty intervals, if you try to estimate a model 
with an unrestricted effect of time, as in equation (7.1) or equation (7.2), 
the maximum likelihood algorithm will not converge. This result is a 
consequence of the following general principle. For any dichotomous 
covariate, consider the 2 × 2 contingency table formed by that covariate 
and the dichotomous dependent variable. If any of the four cells in that 
table has a frequency of 0, the result is nonconvergence. 

An easy solution is to fit a model with restrictions on the time effect. 
The quadratic function that was estimated in Output 7.4, for example, will 
not suffer from this problem. Alternatively, if you don’t want to lose the 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 7 Analysis of Tied or Discrete Data with PROC LOGISTIC 

250 

flexibility of the unrestricted model, you can constrain the coefficient for 
any empty interval to be the same as that of an adjacent interval. The 
simplest way to do this is to recode the variable containing the interval 
values so that the adjacent intervals have the same value. For the LEADER 
data, this requires a DATA step with the following statement: 

 
IF year=22 THEN year=21; 

Then specify YEAR as a CLASS variable in PROC LOGISTIC. Instead of 
separate dummy (indicator) variables for years 21 and 22, this code 
produces one dummy variable equal to 1 if an event time was equal to 
either of those 2 years; otherwise, the variable is equal to 0.  

Left Truncation 

In Chapter 5, we discussed a problem known as left truncation, in 
which individuals are not at risk of an event until some time after the 
origin time. This commonly occurs when “survivors” are recruited into a 
study at varying points in time. We saw how this problem can be easily 
corrected with the partial likelihood method using PROC PHREG. The 
solution is equally easy for the maximum likelihood methods discussed in 
this chapter, although quite different in form. In creating the multiple 
observations for each individual, you simply delete any time units in 
which the individual is known not to be at risk of an event. For example, if 
patients are recruited into a study at various times since diagnosis, no 
observational units are created for time intervals that occurred before 
recruitment. We can still include time since diagnosis as a covariate, 
however.  

This method also works for temporary withdrawals from the risk set. 
If your goal is to predict migration of people from Mexico to the U.S., you 
will probably want to remove anyone from the risk set when he or she was 
in prison, in the military, and so on. Again, you simply exclude any time 
units in which the individual is definitely not at risk.  

Competing Risks 

In Chapter 6, we saw that the likelihood function for data arising 
from multiple event types can be factored into a separate likelihood 
function for each event type, treating other event types as censoring. 
Strictly speaking, this result only holds when time is continuous and 
measured precisely, so that there are no ties. When time is discrete or 
when continuous-time data are grouped into intervals, the likelihood 
function does not factor. If you want full-information maximum likelihood 
estimates, you must estimate a model for all events simultaneously. On the 
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other hand, it’s also possible to do separate analyses for each event type 
without biasing the parameter estimates and with only slight loss of 
precision.  

These points are most readily explained for the logit model for 
competing risks. Let Pijt be the conditional probability that an event of type 
j occurs to person i at time t, given that no event occurs before time t. The 
natural extension of the logit model to multiple event types is the 
multinomial logit model: 

 
∑+

=
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itk

itj
ijtP

)exp(1
)exp(
xβ

xβ ,          j=1, 2, … 
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where Pi0t is the probability that no event occurs at time t to individual i. As 
in the case of a single event type, the likelihood for data arising from this 
model can be manipulated so that each discrete-time point for each 
individual appears as a separate observation. If there are, say, three event 
types, these individual time units can have a dependent variable coded 1, 2, 
or 3 if an event occurred and coded 0 if no event occurred. We can then use 
PROC LOGISTIC to estimate the model simultaneously for all event types.  

For the job duration data analyzed earlier in this chapter, suppose 
that there are actually two event types, quitting (EVENT=1) and being fired 
(EVENT=2), with EVENT=0 for censored cases. The following statements 
produce a person-year data set with a dependent variable called 
OUTCOME, which is coded 1 for quit, 2 for fired, and 0 for neither: 

 
DATA jobyrs2; 
   SET jobdur; 
   DO year=1 TO dur; 
     IF year=dur THEN outcome=event; 
     ELSE outcome=0; 
     OUTPUT; 
   END; 
RUN; 

We can then use PROC LOGISTIC to estimate the multinomial logit model: 
 
PROC LOGISTIC data=jobyrs2; 
  MODEL outcome(REF='0')=ed prestige salary year  
    / LINK=GLOGIT; 
RUN; 
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The REF='0' option makes 0 the reference category for the dependent 
variable. The default is to use the highest value as the reference category, 
but in survival analysis we want each event type to be compared with no 
event. The LINK=GLOGIT option requests an unordered multinomial logit 
model, rather than the default cumulative logit model.  

Output 7.5 displays the results. The Type 3 table gives statistics for 
testing the null hypothesis that both coefficients for each covariate are 0, a 
hypothesis that is clearly rejected for ED, PRESTIGE, and YEAR. The effect 
of SALARY is less dramatic but still significant at the .03 level. The lower 
portion of the table gives the coefficient estimates and their respective test 
statistics. All the parameters labeled 1 pertain to the contrast between type 
1 (quit) and no event, while all the parameters labeled 2 pertain to the 
contrast between type 2 (fired) and no event. We see that education 
increases the odds of quitting but reduces the odds of being fired, with 
both coefficients highly significant. The prestige of the job, on the other 
hand, reduces the risk of quitting while increasing the risk of being fired. 
Again, both coefficients are highly significant. Finally, the odds of quitting 
increase markedly with each year, but the odds of being fired hardly 
change at all.  

Output 7.5 PROC LOGISTIC Results for Competing Risks Analysis of Job Data  

                      Type 3 Analysis of Effects 
 
                                       Wald 
             Effect        DF    Chi-Square    Pr > ChiSq 
 
             ed             2       21.0701        <.0001 
             prestige       2       66.5608        <.0001 
             salary         2        6.7535        0.0342 
             year           2       19.5623        <.0001 
 
 

                                                                                                                                                       (continued) 
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Output 7.5 (continued) 

               Analysis of Maximum Likelihood Estimates 
 
                                    Standard        Wald 
  Parameter  outcome  DF  Estimate     Error  Chi-Square  Pr > ChiSq 
 
  Intercept  1         1    0.3286    0.8196      0.1608      0.6885 
  Intercept  2         1   -1.5491    1.6921      0.8381      0.3599 
  ed         1         1    0.1921    0.0836      5.2809      0.0216 
  ed         2         1   -0.7941    0.2011     15.5874      <.0001 
  prestige   1         1   -0.1128    0.0169     44.4661      <.0001 
  prestige   2         1    0.1311    0.0274     22.8174      <.0001 
  salary     1         1   -0.0255    0.0103      6.1743      0.0130 
  salary     2         1    0.0110    0.0150      0.5333      0.4652 
  year       1         1    0.7725    0.1748     19.5367      <.0001 
  year       2         1  -0.00962    0.2976      0.0010      0.9742 

 

Now, we’ll redo the analysis with separate runs for each event type. 
For this, we rely on a well-known result from multinomial logit analysis 
(Begg and Gray, 1984). To estimate a model for event type 1, simply 
eliminate from the sample all the person-years in which events of type 2 
occurred. Then, do a binomial logit analysis for type 1 versus no event. To 
estimate a model for event type 2, eliminate all the person-years in which 
events of type 1 occurred. Then, do a binomial logit analysis for type 2 
versus no event. Here’s the SAS code that accomplishes these tasks: 

 
PROC LOGISTIC DATA=jobyrs2; 
   WHERE outcome NE 2; 
   MODEL outcome(DESC)=ed prestige salary year; 
RUN; 
 
PROC LOGISTIC DATA=jobyrs2; 
   WHERE outcome NE 1; 
   MODEL outcome(DESC)=ed prestige salary year; 
RUN; 

This procedure is justified as a form of conditional maximum 
likelihood. The resulting estimates are consistent and asymptotically 
normal, but there is some loss of precision, at least in principle. In 
practice, both the coefficients and their estimated standard errors usually 
differ only trivially from those produced by the simultaneous estimation 
procedure. We can see this by comparing the results in Output 7.6 with 
those in Output 7.5. The advantages of separating the estimation process 
are that you can 
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 focus on only those event types in which you are interested 
 specify quite different models for different event types, with 

different covariates and different functional forms.  

Output 7.6 PROC LOGISTIC Results for Separate Estimation of Quitting and Firing Models 

  Quittings 
                                Standard          Wald 
 Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
 Intercept     1      0.3672      0.8254        0.1979        0.6564 
 ed            1      0.1895      0.0840        5.0911        0.0240 
 prestige      1     -0.1125      0.0169       44.3193        <.0001 
 salary        1     -0.0255      0.0103        6.1688        0.0130 
 year          1      0.7637      0.1742       19.2200        <.0001 
 
Firings 
                                Standard          Wald 
 Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
 Intercept     1     -1.5463      1.7054        0.8221        0.3646 
 ed            1     -0.7871      0.1999       15.5022        <.0001 
 prestige      1      0.1300      0.0274       22.5041        <.0001 
 salary        1      0.0118      0.0155        0.5845        0.4445 
 year          1     -0.0296      0.2913        0.0103        0.9190 

 

Now, what about competing risks for the complementary log-log 
model? Here, things are a little messier. It is possible to derive a 
multinomial model based on a continuous-time proportional hazards 
model, and this could be simultaneously estimated for all event types 
using maximum likelihood. This is not a standard problem, however, and 
no SAS procedure will do it without a major programming effort. Instead, 
we can use the same strategy for getting separate estimates for each event 
type that we just saw in the case of the logit model. That is, we delete all 
individual time units in which events other than the one of interest 
occurred. Then we estimate a dichotomous complementary log-log model 
for the event of interest versus no event. In effect, we are deliberately 
censoring the data at the beginning of any intervals in which other events 
occur. This should not be problematic because, even if we have 
continuous-time data, we have to assume that the different event types are 
noninformative for one another. Once we eliminate all extraneous events 
from the data, we reduce the problem to one for a single event type. Again, 
there will be some slight loss of information in doing this.  
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CONCLUSION 

The maximum likelihood methods discussed in this chapter are 
attractive alternatives to partial likelihood when there are many ties and 
many time-dependent covariates. Not only are they much more 
computationally efficient, but they also give direct estimates of the effect of 
time on the hazard of an event. The methods discussed here have 
considerable intuitive appeal and are relatively straightforward to 
implement. Once the expanded data set is constructed, the analyst can 
proceed as in an ordinary logistic regression analysis with no need to treat 
time-dependent covariates any differently than fixed covariates. This 
approach also has advantages whenever there is ambiguity about the time 
origin. Because time is treated just like any other covariate, there is great 
flexibility in specifying and testing alternative functional forms, and 
multiple time scales with different origins can be included in the model. 
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INTRODUCTION 

This chapter deals with several issues that arise for all the methods 
that we have previously discussed. The first two issues—heterogeneity and 
repeated events—are closely related. One problem with the models that we 
have been considering is that biological and social entities usually differ in 
ways that are not fully captured by the model. This unobserved 
heterogeneity can produce misleading estimates of hazard functions and 
attenuated estimates of covariate effects. When individuals can experience 
more than one event, unobserved heterogeneity can also produce 
dependence among the observations, leading to biased standard errors and 
test statistics. We’ll survey a variety of methods for dealing with these 
problems. Later in the chapter, we’ll see how to compute a generalized R2 
and how to gauge the possible consequences of informative censoring.  

UNOBSERVED HETEROGENEITY 

An implicit assumption of all the hazard models that we have 
considered so far is that if two individuals have identical values on the 
covariates, they also have identical hazard functions. If there are no 
covariates in the model, then the entire sample is presumed to have a 
single hazard function. Obviously, this is an unrealistic assumption. 
Individuals and their environments differ in so many respects that no set 
of measured covariates can possibly capture all the variation among them. 
In an ordinary linear regression model, this residual or unobserved  
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heterogeneity is explicitly represented by a random disturbance term, for 
example,  

 ε+= βxy  

where ε represents all unmeasured sources of variation in y. But in a Cox 
regression model, for example, there is no disturbance term: 

 βx+= )()(log tth α . 

The absence of a random disturbance term does not mean that the 
model is deterministic. There is plenty of room for randomness in the 
relationship between the unobserved hazard h(t) and the observed event 
time. Nevertheless, the presence of unobserved heterogeneity can lead to 
incorrect conclusions about the dependence of the hazard function on 
time, and it can also produce biased estimates of the covariate coefficients. 

The most serious problem is this: unobserved heterogeneity tends to 
produce estimated hazard functions that decline with time, even when the 
true hazard is not declining for any individual in the sample (Proschan, 
1963; Heckman and Singer, 1985). This fact is most easily explained by an 
example. Suppose we have a sample of 100 people, all of whom have 
hazards that are constant over time. The sample is equally divided 
between two kinds of people: those with a high hazard of death (h(t)=2.0) 
and those with a low hazard of death (h(t)=0.5). Unfortunately, we don’t 
know which people have which hazard, so we must estimate a hazard 
function for the entire sample. Figure 8.1 shows what happens. The 
empirical hazard function starts out, as you might expect, midway 
between .5 and 2. But then it steadily declines until it approaches .5 as an 
asymptote. What’s happening is that the high hazard people are dying 
more rapidly at all points in time. As a result, as time goes by, the 
remaining sample (the risk set) is increasingly made up of people with low 
hazards. Because we can estimate the hazard function at time t with only 
those who are still at risk at time t, the estimated hazard will be more and 
more like the lower hazard.  
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Figure 8.1 Empirical Hazard Function Produced by Mixing Two Constant Hazards 

 
 
Of course, any real life situation will have more than two kinds of 

people, but the basic principle is the same. Those with higher hazards will 
tend to die (or experience whatever event is being studied) before those 
with lower hazards, leaving a risk set that is increasingly made up of low 
hazard people.  

This problem has led to some potentially serious errors in 
interpreting research results. In the management literature, for example, 
there has been great interest in the hypothesis of the liability of newness 
(Hannan and Freeman, 1984). This hypothesis says that when firms are 
just starting out, they are prone to failure because they lack capital, 
contacts, traditions, and so on. As firms get older and accumulate 
resources, they become more resistant to failure. Empirical studies 
invariably show that, in fact, younger firms do have higher rates of failure 
than older firms. But this fact does not necessarily prove the hypothesis. 
The results are equally consistent with the hypothesis that firms differ in 
their initial vulnerability to failure. Weaker firms go out of business 
quickly while stronger firms survive. 

What can be done? As we’ll see in the next section, when events are 
repeatable, it is quite feasible to separate the true hazard function from 
unobserved heterogeneity. But when events are not repeatable, as with 
both human and organizational death, the options are limited. If you find 
an empirical hazard function that is increasing, then you can validly  
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conclude that the true hazard is increasing for at least some fraction of the 
sample over some interval of time. But decreasing hazard functions are 
inherently ambiguous.  

There have been numerous attempts to separate the hazard function 
from unobserved heterogeneity by formulating models that incorporate 
both. For example, we can insert a random disturbance term into a Weibull 
hazard model: 

 εα ++= βxtth log)(log . 

But models like this are highly sensitive to the choice of a distribution for ε 
or the form of the dependence on time. If such models are identified at all, 
it is only because of the imposition of a particular functional form. That 
situation is not conducive to drawing reliable conclusions.  

What about estimates of the β coefficients? Are they affected by 
unobserved heterogeneity? Given what we know about linear models, it’s a 
foregone conclusion that coefficients may be severely biased if the 
unobserved components are correlated with the measured covariates. The 
more interesting question is what happens when the unobserved 
disturbance is independent of the measured covariates. Early literature on 
this question seemed to suggest that coefficient estimates could be grossly 
biased in unexpected ways. But the work by Gail and colleagues (1984) is 
more persuasive. They showed that unobserved heterogeneity tends to 
attenuate the estimated coefficients toward 0. On the other hand, standard 
errors and test statistics are not biased. Therefore, a test of the hypothesis 
that a coefficient is 0 remains valid, even in the presence of unobserved 
heterogeneity. It’s also important to realize that the attenuation of 
coefficients is not a problem unique to hazard models, but it occurs with a 
wide variety of nonlinear models, including logistic regression (Allison, 
1987). 

REPEATED EVENTS 

All the models and analyses in the preceding chapters presume that 
no individual experiences more than one event. That’s a reasonable 
presumption if the event is death. But most events in the social sciences 
are repeatable:  births, marriages, job changes, promotions, arrests, 
residence changes, and so on. There are also many repeatable events that 
are of interest to biomedical scientists: tumor recurrences, seizures, urinary 
infections, and hospitalizations, to name only a few. Because so much of 
survival analysis has focused on deaths, good methods for handling 
repeated events were relatively slow in coming. Nevertheless, several 
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important developments have occurred in recent years, and some of those 
methods are now available in SAS. Before examining the newer methods, 
however, we need to consider what’s wrong with conventional methods.  

Problems with Conventional Methods 

There are basically two approaches to analyzing repeated events 
with standard software. First, you can do a separate analysis for each 
successive event. Suppose, for example, that you have reproductive 
histories for a sample of women who are married or who have ever been 
married, and you want to estimate a model for birth intervals. You start 
with an analysis for the interval between marriage and the first birth. For 
all those women who had a first birth, you then do a second analysis for 
the interval between first birth and second birth. You continue in this 
fashion until the number of women gets too small to reliably estimate a 
model.  

For a more detailed example, let’s look at some simulated data on job 
changes. For 100 people, I generated repeated job durations, from the point 
of entry into the labor market until 20 years had elapsed, at which time 
observation was terminated. Thus, people whose first job lasted more than 
20 years were censored at year 20. Everyone else had exactly one censored 
job (the one still in progress in year 20) and at least one uncensored job. A 
total of 395 jobs were produced. 

Each person was assigned a certain number of years of schooling 
(ED) that did not vary over jobs. Each job had a prestige score (ranging 
from 1 to 100), as well as a salary (in thousands of dollars) that remained 
constant during the job. The duration for each job was generated by a 
Weibull model that included ED, PRESTIGE, and the logarithm of 
SALARY as covariates. Coefficients were invariant across people and 
across time. 

Output 8.1 displays the first 20 cases out of the 395 jobs in the 
working data set. ID is a variable that distinguishes different people. We 
see that these 20 jobs were held by four people: 6 jobs for person 1, 1 job 
for person 2, 3 for person 3, and 10 for person 4. EVENT is the censoring 
indicator. The variable SEQ simply keeps track of where each job is in a 
person’s sequence of jobs. LOGSAL is the natural logarithm of salary. 
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Output 8.1 First 20 Cases in Repeated Job Duration Data Set 

OBS    ID    EVENT    ED    SEQ    DURATION    PRESTIGE     LOGSAL 
 
  1     1      1       7     1      2.3575       27       2.30259 
  2     1      1       7     2      4.5454       31       1.38629 
  3     1      1       7     3      1.0864        8       2.07944 
  4     1      1       7     4      3.5893       22       2.83321 
  5     1      1       7     5      4.6676       30       3.40120 
  6     1      0       7     6      3.7538       24       3.13549 
  7     2      0      14     1     20.0000       69       3.33220 
  8     3      1      16     1      7.3753       69       3.58352 
  9     3      1      16     2     11.2632       60       3.85015 
 10     3      0      16     3      1.3615       56       3.82864 
 11     4      1      12     1      1.1436       27       2.56495 
 12     4      1      12     2      0.7880       35       2.19722 
 13     4      1      12     3      1.0437       30       2.77259 
 14     4      1      12     4      0.2346       15       2.56495 
 15     4      1      12     5      0.7983       39       3.21888 
 16     4      1      12     6      1.2168       41       3.52636 
 17     4      1      12     7      0.9160       24       3.43399 
 18     4      1      12     8      0.3174       26       3.36730 
 19     4      1      12     9      0.6573       45       3.82864 
 20     4      1      12    10      1.7036       41       3.91202 

The easiest way to run separate models for each job in the sequence 
is to sort the data by SEQ and then include a BY statement in the PROC 
PHREG program: 

 
PROC SORT DATA=jobmult; 
   BY seq; 
PROC PHREG DATA=jobmult; 
   MODEL duration*event(0)=prestige logsal ed; 
   BY seq; 
RUN;  

In Output 8.2, we see results for the first five job durations. As is 
typical of data like these, the number of observations declines 
substantially for each successive interval until, by the sixth job, it’s really 
too small to support a credible analysis. The effect of PRESTIGE is fairly 
consistent over the five models, with more prestigious jobs having lower 
hazards of termination. The effect of ED is not significant in the second 
job, but it is clearly significant in the others. Its coefficient is much smaller 
for the first two jobs than for the later jobs. The salary effect varies greatly 
from job to job and hovers around the .05 level of significance, except for 
job 4, when it is far from significant.  
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Output 8.2 PROC PHREG Coefficients for Successive Jobs (Selected Output)  

First Job (n=100) 
                Parameter   Standard                         Hazard 
  Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio 
 
  prestige   1   -0.08714    0.01212    51.6530     <.0001    0.917 
  logsal     1   -0.43249    0.21767     3.9478     0.0469    0.649 
  ed         1    0.17226    0.06597     6.8171     0.0090    1.188 
 
Second Job (n=72) 
                Parameter   Standard                         Hazard 
  Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio 
 
  prestige   1   -0.07141    0.01555    21.0889     <.0001    0.931 
  logsal     1   -0.77067    0.28446     7.3399     0.0067    0.463 
  ed         1    0.09044    0.06747     1.7968     0.1801    1.095 

 
Third Job (n=52) 
                Parameter   Standard                         Hazard 
  Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio 
 
  prestige   1   -0.11049    0.02365    21.8185     <.0001    0.895 
  logsal     1   -0.88703    0.41098     4.6583     0.0309    0.412 
  ed         1    0.43346    0.14648     8.7569     0.0031    1.543 

 
Fourth Job (n=34) 
                Parameter   Standard                         Hazard 
  Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio 
 
  prestige   1   -0.10120    0.02613    14.9978     0.0001    0.904 
  logsal     1   -0.19497    0.44619     0.1909     0.6621    0.823 
  ed         1    0.43956    0.12108    13.1784     0.0003    1.552 
 
Fifth Job (n=34) 
                Parameter   Standard                         Hazard 
  Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio 
 
  prestige   1   -0.07592    0.02744     7.6559     0.0057    0.927 
  logsal     1   -1.14765    0.58605     3.8349     0.0502    0.317 
  ed         1    0.34951    0.11327     9.5216     0.0020    1.418 

While this approach has some things going for it, it’s inefficient in a 
couple of respects. It’s tedious to do multiple analyses, and the more 
numbers you have to interpret, the more room there is for ambiguity and 
confusion. While it is tempting to interpret the job-to-job variations as real 
differences, I know for a fact that the underlying process is constant over  
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time—after all, I generated the data! If the process is, in fact, invariant from 
one interval to the next, it’s also statistically inefficient to produce several 
redundant estimates. That may not be much of a concern if you’re working 
with census data and have 100,000 cases. But if you have only 100 cases, 
you want to use your limited information to the best advantage. An 
additional problem is that later jobs are a biased sample: the only people 
who had a fifth job were those who already had four jobs in the 20-year 
period. Of necessity, those four jobs were shorter than average, so it’s likely 
that their fifth job will also be short.  

There is a second general approach to repeated events that avoids 
these problems by treating each interval as a distinct observation, pooling 
all the intervals together, and estimating a single model. Output 8.3 shows 
the results of doing that for the 395 job durations, also including SEQ as 
one of the predictors. We now see that all four variables have highly 
significant coefficients. This model is essentially equivalent to the gap-
time model of Prentice and colleagues (1981), except that their model 
would have stratified on SEQ instead of including it as a covariate.  

Output 8.3 PROC PHREG Results for Pooled Job Durations 

                Parameter   Standard                         Hazard 
  Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio 
 
  prestige   1   -0.07865    0.00633   154.3027     <.0001    0.924 
  logsal     1   -0.59694    0.11443    27.2127     <.0001    0.550 
  ed         1    0.18663    0.02887    41.7959     <.0001    1.205 
  seq        1    0.26911    0.02946    83.4457     <.0001    1.309 

 

Unfortunately, this method introduces a new problem—dependence 
among the multiple observations. It’s well-known that whenever two or 
more observations come from the same unit (person, litter, organization), 
they tend to be more alike than two randomly chosen observations. In the 
birth interval example, we would expect that women who have short first 
intervals will also tend to have short second intervals, and so on. Pooling 
these observations without taking the dependence into account can lead to 
standard error estimates that are biased downward and test statistics that 
are biased upward. In essence, the estimation procedure is fooled into 
thinking it has more information than it actually does. Because 
observations are correlated, some of the apparent information in the 
sample is redundant. 
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Dependence among observations can be thought of as arising from 
unobserved heterogeneity. Second intervals tend to be like first intervals 
because there are unmeasured, stable factors affecting both intervals. If we 
could measure all of these factors and include them as covariates, the 
dependence problem would disappear. But, of course, that’s not going to 
happen. As we saw in the preceding section, unobserved heterogeneity 
leads to artifactually declining hazard functions and coefficients that are 
attenuated toward 0. These two problems are still present with repeated 
events, but with the added problem of biased standard errors and test 
statistics. That’s important to remember because some methods correct 
only the standard errors, while others can also correct biases in the 
coefficients and hazard functions.  

Before we look at ways of correcting for dependence, let’s first look 
at a simple way to detect it. Even though dependence is always likely to be 
present to some degree, it may be so small that it has trivial effects on the 
estimates. Hence, we need some way to judge just how substantial the 
problem is. Here’s a simple ad-hoc way to do just that: Estimate a model 
for the second interval with the length of the first interval as a covariate. 
You should also include the covariates you would otherwise put in the 
model because the important question is whether there is residual 
dependence after the effects of any covariates have been removed. Here is 
the code: 

 
PROC SORT DATA=jobmult; 
  BY id seq; 
DATA joblag; 
  SET jobmult; 
  durlag=LAG1(duration); 
PROC PHREG DATA=joblag; 
  WHERE seq = 2; 
  MODEL duration*event(0)=prestige logsal ed durlag; 
RUN; 
 

Output 8.4 shows the results for the 72 second jobs in the job 
duration data set. Two things are noteworthy here. First, the duration of 
the first job has a highly significant negative coefficient, indicating that 
long first jobs are associated with low hazards, implying long second jobs. 
Clearly, there is dependence here that needs to be corrected in some way. If 
the coefficient had not been significant, we could ignore the dependence 
without much fear of error. Second, the coefficients for the other covariates 
have changed substantially from the values in Output 8.2 for second jobs. 
While this is a further indication that dependence may be influencing the 
results in some way, these coefficients are not necessarily any better than 
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those that we have already estimated, and they may even be worse. In 
other words, this technique is only good for diagnosing the problem, not 
for correcting it.  

Output 8.4 Model for Second Interval with First Interval as a Covariate 

                Parameter    Standard               Pr >         Hazard 
 Variable  DF    Estimate      Error   Chi-Square   Chi-Square   Ratio 
 
 prestige   1   -0.060441     0.01576    14.71353     0.0001     0.941 
 logsal     1   -0.283335     0.32508     0.75966     0.3834     0.753 
 ed         1    0.036648     0.06953     0.27785     0.5981     1.037 
 dur1       1   -0.269221     0.07639    12.42143     0.0004     0.764 

Given the dependence in the job durations, we can’t accept the 
pooled estimates in Output 8.3 at face value. At a minimum, the standard 
errors are likely to be too low and the chi-square statistics too high. The 
coefficients may also be attenuated toward 0, and there may be other 
biases if the unobserved heterogeneity is correlated with the measured 
covariates. (Note that these coefficient biases will also occur in the 
unpooled estimates in Output 8.2.) What can we do about it? One 
approach is to ignore the possible biases and concentrate on getting better 
estimates of the standard errors and test statistics. The other approach is to 
formulate a model that incorporates unobserved heterogeneity and 
estimate that model by maximum likelihood or conditional likelihood. 
While this second approach can correct biases in the coefficients, it 
depends more on a correct specification of the model.  

Robust Standard Errors  

  
PROC PHREG has an option called COVSANDWICH that makes it 

easy to correct for dependence when there are repeated observations. This 
option invokes a method variously known as the robust variance estimator 
or the modified sandwich estimator, developed for Cox regression by Lin 
and Wei (1989) and described in some detail in Therneau and Grambsch 
(2000). (The name sandwich comes from the matrix formula for the robust 
variance-covariance estimator, which has the general form ABA where A is 
the inverse of the observed information matrix.) The technique is 
sometimes described as a population-averaged method. One attraction of 
this method is that there is no need to make assumptions about the  
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nature or structure of the dependence. On the other hand, there is no 
correction for biases in the coefficients that arise from unobserved 
heterogeneity. 

Here’s a PROC PHREG program for the job duration data that 
includes this option:   

 
PROC PHREG DATA=jobmult COVSANDWICH(AGGREGATE); 
   MODEL duration*event(0)=prestige logsal ed seq; 
   ID id; 
RUN; 

 
The option COVSANDWICH can be abbreviated to COVS. To correct for 
dependence, it’s necessary to include both the AGGREGATE option and an 
ID statement that gives the name of the variable containing the ID number 
that has the same value for all observations in the same cluster (a person, 
in this example).  

In Output 8.5, we see that the coefficients (and hazard ratios) are 
identical to what we got in Output 8.3 without the COVSANDWICH 
option. What has changed are the standard errors, chi-squares, and p-
values. We also see a new column, “StdErr Ratio,” that gives the ratio of 
the new, robust standard errors to the original standard errors. Three of the 
four standard errors are larger with the robust correction, which is what 
you typically find when you correct for dependence among repeated 
observations. However, the standard error for PRESTIGE is a little smaller. 
It’s also common to find the greatest increase in the standard errors for 
those variables, like ED, that do not change over time.  

Another change in the output is that there are now two versions of 
the score chi-square and the Wald chi-square for testing the null 
hypothesis that all the coefficients are 0. The model-based versions are 
what you get when you don’t use the COVSANDWICH option. The 
sandwich chi-squares correct for dependence and will usually be smaller 
than the model-based chi-squares. In this example, the score statistic gets a 
much larger correction than the Wald statistic, although it’s not obvious 
why this should be so.  
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Output 8.5 PROC PHREG Results with Robust Standard Errors 

                  Testing Global Null Hypothesis: BETA=0 
 
        Test                    Chi-Square       DF     Pr > ChiSq 
 
        Likelihood Ratio          433.3143        4         <.0001 
        Score (Model-Based)       386.7275        4         <.0001 
        Score (Sandwich)           51.6611        4         <.0001 
        Wald (Model-Based)        349.3395        4         <.0001 
        Wald (Sandwich)           334.6795        4         <.0001 
 
 
                 Analysis of Maximum Likelihood Estimates 
 
               Parameter   Standard StdErr                         Hazard 
 Parameter DF   Estimate      Error  Ratio Chi-Square Pr > ChiSq    Ratio 
 
 prestige   1   -0.07865    0.00615  0.972   163.4016     <.0001    0.924 
 logsal     1   -0.59694    0.14249  1.245    17.5509     <.0001    0.550 
 ed         1    0.18663    0.04604  1.595    16.4301     <.0001    1.205 
 seq        1    0.26911    0.03057  1.038    77.5025     <.0001    1.309 

 

Although we have corrected the standard errors for dependence, we 
have done nothing to improve the coefficients. Not only are they subject to 
attenuation bias (which we shall correct in the next session), they are also 
less than fully efficient. That means that the true standard errors are larger 
than they need to be. This inefficiency can be corrected using methods 
similar to those of Wei and colleagues (1989).  The basic idea is to get 
coefficient estimates for each successive event (just as we did in Output 
8.1) and then calculate a weighted average of those coefficients using the 
robust covariance matrix to calculate optimal weights.   

The trick is to do this all in one run of PROC PHREG.  (A SAS macro 
called WLW, which automates the following steps, can be downloaded at 
www.pauldallison.com.) The first step is to create interactions between 
each covariate and a set of dummy variables that indicate whether it’s the 
first event, the second event, and so on.  This can most easily be done in a  
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DATA step by creating arrays to hold the new variables and then defining 
the interactions in a DO loop: 

 
DATA job; 
  SET my.jobmult; 
ARRAY p (*) p1-p10; 
ARRAY s (*) s1-s10; 
ARRAY e (*) e1-e10; 
DO i=1 TO 10; 
  p(i)=prestige*(seq=i); 
  s(i)=logsal*(seq=i); 
  e(i)=ed*(seq=i); 
END; 
RUN; 
 

We then fit a model with PROC PHREG using all 30 of these 
covariates (plus SEQ itself), while adjusting the standard errors with the 
COVSANDWICH option. Three TEST statements are then used to calculate 
a weighted average for each set of coefficients: 

 
PROC PHREG DATA=job COVS(AGGREGATE); 
   MODEL duration*event(0)=p1-p10 s1-s10 e1-e10 seq;  
   ID id; 
   Prestige: TEST p1,p2,p3,p4,p5,p6,p7,p8,p9,p10 / AVERAGE; 
   Salary: TEST s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 / AVERAGE; 
   Education: TEST e1,e2,e3,e4,e5,e6,e7,e8,e9,e10 / AVERAGE; 
RUN; 
 

There’s little point in looking at the 30 coefficients in the fitted 
model.  What’s important are the weighted averages reported in Output 
8.6.  These estimates are similar in magnitude to those in Output 8.5 
(although the weighted coefficient for salary is 43 percent larger than the 
unweighted one). The standard errors are slightly lower, which is what 
you hope for with a method that is theoretically more efficient. 
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Output 8.6 PROC PHREG Results with Robust Standard Errors 

              Average Effect for Test Prestige 
 
                     Standard 
       Estimate         Error       z-Score    Pr > |z| 
 
        -0.0730        0.0057      -12.7635      <.0001 
 
 
               Average Effect for Test Salary 
 
                     Standard 
       Estimate         Error       z-Score    Pr > |z| 
 
        -0.8601        0.1117       -7.6995      <.0001 
 
 
              Average Effect for Test Education 
 
                     Standard 
       Estimate         Error       z-Score    Pr > |z| 
 
         0.2534        0.0332        7.6352      <.0001 

Random-Effects Models 

A second approach to the problem of dependence not only corrects 
the standard errors and test statistics, but it also corrects for some or all of 
the bias in the coefficients caused by unobserved heterogeneity. The basic 
idea is to formulate a model that explicitly introduces a disturbance term 
representing unobserved heterogeneity. Models of this sort are sometimes 
described as subject-specific.  

Letting hij(t) be the hazard for the jth event for individual i at time t, 
we can write 

 iijij tth εα ++= βx)()(log  (8.1) 

where εi represents unobserved heterogeneity. Notice that ε is subscripted 
by i but not by j, indicating that the unobserved component is constant 
from one job to the next. At this point, there are two ways to proceed. In 
the next section, we will consider a fixed-effects approach. Here we shall 
assume that εi is a random variable with a specified distribution, 
independent of xij. This leads to random-effects or frailty models that can 
be estimated by maximum likelihood or partial likelihood (Klein, 1992; 
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McGilchrist, 1993). When events are repeated, such models are well 
identified and are not highly sensitive to the choice of a distribution for ε.  

Unfortunately, SAS has no procedure that is explicitly designed to 
estimate models like this. However, with a bit of programming, it is 
possible to estimate parametric random-effects models using the NLMIXED 
procedure. PROC NLMIXED does maximum likelihood estimation of non-
linear mixed models  (that is, models that incorporate both random effects 
and fixed effects). For example, we can estimate a Weibull random-effects 
model, which sets α(t) = µ  + α log t in equation (8.1). To estimate this 
model in PROC NLMIXED, you must specify the log-likelihood for a single 
individual. Let ti be the event or censoring time for individual i, and let δi = 
1 if individual i is uncensored and 0 if i is censored. Define λi = exp(βxi + 
εi), where εi has a normal distribution with a mean of 0 and a variance σ2. It 
can be shown (using formulas in Chapter 4) that the contribution to the 
log-likelihood (conditional on ε) for a single individual is 

)loglog)1(log(log )1(
iiiiii ttL λααδλ α ++++−= + . 

Here is the corresponding PROC NLMIXED program: 
 
PROC NLMIXED DATA=jobmult;  
 lambda=exp(b0+bed*ed+bpres*prestige+bsal*logsal+bseq*seq+e); 
 ll=-lambda*duration**(alpha+1)+ event*(LOG(alpha+1)+  
    alpha*LOG(duration)+LOG(lambda)); 
 MODEL duration~GENERAL(ll); 
 RANDOM e~NORMAL(0,s2) SUBJECT=id; 
 PARMS b0=1 bed=0 bpres=0 bsal=0 btime=0 s2=1 alpha=0; 
RUN; 
 

Because PROC NLMIXED can estimate such a wide range of non-linear 
models, it is necessary to specify the model in considerably more detail 
than in most other procedures. The statement beginning with LAMBDA 
defines λi = exp(βxi + εi). In PROC NLMIXED, every parameter must be 
assigned a name. It’s advisable to give the coefficients names that contain 
the corresponding variable names so that the output can be more easily 
interpreted. The E at the end of the statement corresponds to ε, the random 
effect. The statement beginning with LL defines the log-likelihood. Note 
that EVENT is the censoring indicator, equivalent to δi.  

The MODEL statement sets DURATION as the response variable, 
with a distribution corresponding to the log-likelihood LL. The RANDOM 
statement declares E to be a normally distributed random variable with a 
mean of 0 and a variance S2 (which is just the name of the parameter to be 
estimated). The SUBJECT option says that E is a different random variable 
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for each value of the ID variable. The PARMS statement sets the starting 
values for the parameters. If you omit the PARMS statement, the default 
starting values are set to 1 for all parameters, which often doesn’t work. As 
shown here, I usually get results by setting all coefficients to 0, setting the 
intercept to 1 and the variance parameter to 1. But if you run into 
problems, you may do better by using coefficient estimates from PROC 
PHREG as starting values.  

The key results are shown in Output 8.7. The coefficient for 
PRESTIGE (BPRES) is about the same as in Output 8.5, with similar 
standard error. LOGSAL has a coefficient (BSAL) that is substantially 
larger in magnitude than in Output 8.5 and with a slightly smaller 
standard error. The big change is in the effect of education (ED). The 
coefficient in Output 8.5 was positive and highly significant, but here the 
coefficient (BED) is negative and almost significant at the .05 level. Last, 
the coefficient for SEQ, which was large and highly significant in Output 
8.5, is now much smaller and not quite statistically significant. All of these 
discrepancies between Outputs 8.5 and 8.7 are due to the presence of the 
random error term ε. If you remove E and the RANDOM statement from the 
PROC NLMIXED program, you get estimates for a conventional Weibull 
model that are very similar to those in Output 8.5.  

Besides the coefficient estimates, we also get an estimate of S2, the 
variance of ε, which is large and highly significant. This tells us that there 
is definitely unobserved heterogeneity across persons or, equivalently, that 
there is dependence among the repeated observations. The last line is an 
estimate of α, the coefficient of log t. This can be interpreted by saying that 
each 1 percent increase in time is associated with a 2.2 percent increase in 
the hazard of job termination. 

Output 8.7 PROC NLMIXED Results for Weibull Model with Random Effects 

                      Standard 
 Parameter  Estimate     Error    DF  t Value  Pr > |t|   
 
 b0           2.5528    1.3258    99     1.93    0.0570   
 bpres      -0.08032  0.008202    99    -9.79    <.0001   
 bsal        -0.9810    0.1523    99    -6.44    <.0001   
 bed         -0.2265    0.1178    99    -1.92    0.0575   
 bseq        0.06754   0.03637    99     1.86    0.0663   
 s2           6.7986    1.5026    99     4.52    <.0001   
 alpha        2.1943    0.1627    99    13.48    <.0001   
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Fixed-Effects Models 

Instead of treating εi in equation (8.1) as a set of random variables 
with a specified probability distribution, we can treat it as representing a 
set of fixed constants (that is, a fixed-effects model). The attraction of this 
approach is that, rather than assuming that εi is independent of xi, we 
allow εi to be freely correlated with xi. That implies that the estimates 
actually control for all stable, unobserved characteristics of the individual.  

How can we estimate such a model? One possibility is to put dummy 
variables in the model for all individuals (except one). This method works 
well for linear regression models but not for Cox regression, which is 
subject to something called incidental parameters bias (Allison, 2002). 
When the average number of intervals per person is less than three, 
regression coefficients are inflated by approximately 30 to 90 percent, 
depending on the level of censoring (a higher proportion of censored cases 
produces greater inflation).  

Fortunately, there is a simple alternative method that does the job 
very well. First, we modify equation (8.1) to read 

ijiij tth βx+= )()(log α . 
 

In this equation, the fixed effect εi has been absorbed into the unspecified 
function of time, which is now allowed to vary from one individual to 
another. Thus, each individual has her own hazard function, which is 
considerably less restrictive than allowing each individual to have her 
own constant.  

This model can be estimated by partial likelihood using the method 
of stratification, discussed in Chapter 5. Stratification allows different 
subgroups to have different baseline hazard functions, while constraining 
the coefficients to be the same across subgroups. We can implement this 
method in PROC PHREG by using the STRATA statement, with an 
identification variable that distinguishes individuals. This is called the 
fixed-effects partial likelihood (FEPL) method. For the job duration data 
set, the SAS statements are 

 
PROC PHREG DATA=jobmult NOSUMMARY; 
   MODEL duration*event(0)=prestige logsal seq; 
   STRATA id; 
RUN; 

The NOSUMMARY option suppresses the information that is usually 
reported for each stratum. Otherwise, you get a line of output for every 
individual in the sample.  
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Notice that the variable ED is not included as a covariate. One 
drawback of the FEPL method is that it can only estimate coefficients for 
those covariates that vary across (or within) the successive spells for each 
individual. And because education does not vary over time for this 
sample, its effect cannot be estimated. On the other hand, the fixed-effect 
method implicitly controls not only for education but for all constant 
covariates, regardless of whether they are measurable and regardless of 
whether they are correlated with the measured covariates. In other words, 
this method controls for things like race, ethnicity, sex, religion, region of 
origin, personality—anything that’s stable over time. 

As Output 8.8 shows, a fixed-effects analysis for the job duration 
data yields results that are similar to those for the random-effects model in 
Output 8.6, except that the effect of SEQ is even smaller.  

Output 8.8 Results of Fixed-Effects Partial Likelihood for Repeated Job Durations 

                  Parameter  Standard                          Hazard 
  Parameter  DF    Estimate     Error  Chi-Square  Pr > ChiSq   Ratio 
 
  prestige    1    -0.05594   0.00979     32.6427      <.0001   0.946 
  logsal      1    -0.86566   0.17432     24.6616      <.0001   0.421 
  seq         1     0.02073   0.03941      0.2769      0.5988   1.021 

Fixed-effects partial likelihood was proposed by Chamberlain (1985), 
who expressed reservations about its use when the number of intervals 
varied across individuals and when the censoring time (the time between 
the start of an interval and the termination of observation) depended on 
the lengths of preceding intervals. Both of these conditions exist for the job 
duration data set and for most other applications to repeated events. 
Whatever the theoretical merit of these concerns, however, my own (1996) 
Monte Carlo simulations have convinced me that there is little or no 
problem in practice.  

There is one exception to that conclusion: the FEPL method does not 
do a good job of estimating the effect of the number of previous events, 
such as the SEQ variable in this example. Specifically, FEPL tends to yield 
negative estimates for the number of prior events, even when there is no 
real effect. On the other hand, conventional partial likelihood produces 
estimates for the number of prior events that are much more strongly 
biased but in the opposite direction (as we found in Output 8.3).  

As already noted, a major advantage of the FEPL method is that the 
unobserved disturbance term is allowed to be correlated with the 
measured covariates. However, when the disturbance term is not 
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correlated with any of the covariates, the random-effects approach 
produces more efficient estimates (that is, with smaller standard errors). 
This differential efficiency is especially great when the average number of 
events per individual is less than two. The reason is that the FEPL method 
excludes two types of individuals from the partial likelihood function: 

 those with no events (that is, those with only a single censored 
spell) 

 those with one uncensored spell and one censored spell, if the 
censored spell is shorter than the uncensored spell. 

One circumstance in which the unobservable characteristics of 
individuals are not correlated with their measured characteristics is a 
randomized experiment. But with nonexperimental data, it’s much safer to 
assume that they are correlated.  

In sum, the FEPL method is the preferred technique for repeated 
events whenever  

 the data do not come from a randomized experiment  
 interest is centered on covariates that vary across intervals for 

each individual 
 most individuals have at least two events 
 there is a reasonable presumption that the process generating 

events is invariant over time.  
If the data are produced by a randomized experiment or if the main 

interest is in covariates that are constant for each individual, a random-
effects method is preferable.  

Specifying a Common Origin for All Events 

Another issue that arises in the analysis of repeated events is 
whether the hazard varies as a function of time since the last event or as a 
function of time since the process began.  All the analyses so far have 
made the former assumption, that the clock is reset to 0 whenever an event 
occurs. But in many applications, it is reasonable to argue that the hazard 
depends on the time since the individual first became at risk, regardless of 
how many intervening events have occurred. For example, the hazard for a 
job change may depend on the time in the labor force rather than the time 
in the current job. 

PROC PHREG makes it easy to specify models in which the hazard 
depends on a single origin for all of an individual’s events. As before, we 
create a separate record for each interval for each individual. But instead 
of a single variable containing the length of the interval, the record must 
contain a starting time (measured from the common origin) and a stopping 
time (also measured from the origin). Output 8.9 shows what the records 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 8 Heterogeneity, Repeated Events, and Other Topics 

276 

look like for the job duration data set (omitting the covariates). Here is the 
program that produced this data set and output: 

 
DATA strtstop; 
  SET jobmult; 
  RETAIN stop; 
  IF seq=1 THEN stop=0; 
  start=stop; 
  stop=duration+stop; 
PROC PRINT; 
  VAR id event seq start stop; 
RUN; 

Output 8.9 First 20 Cases for Job Duration Data with Start and Stop Times 

    OBS    ID    EVENT    SEQ    START       STOP 
 
      1     1      1       1     0.0000     2.3575 
      2     1      1       2     2.3575     6.9029 
      3     1      1       3     6.9029     7.9893 
      4     1      1       4     7.9893    11.5786 
      5     1      1       5    11.5786    16.2462 
      6     1      0       6    16.2462    20.0000 
      7     2      0       1     0.0000    20.0000 
      8     3      1       1     0.0000     7.3753 
      9     3      1       2     7.3753    18.6385 
     10     3      0       3    18.6385    20.0000 
     11     4      1       1     0.0000     1.1436 
     12     4      1       2     1.1436     1.9315 
     13     4      1       3     1.9315     2.9752 
     14     4      1       4     2.9752     3.2098 
     15     4      1       5     3.2098     4.0081 
     16     4      1       6     4.0081     5.2249 
     17     4      1       7     5.2249     6.1409 
     18     4      1       8     6.1409     6.4583 
     19     4      1       9     6.4583     7.1156 
     20     4      1      10     7.1156     8.8192 

The model is then specified by the following program: 
 
PROC PHREG DATA=strtstop COVSANDWICH(AGGREGATE); 
  MODEL (start,stop)*event(0)=prestige logsal ed seq; 
  ID id; 
RUN; 

Notice that I have also used the COVSANDWICH option to adjust for 
possible dependence among the multiple events for each person. The 
results in Output 8.10 are quite similar to those in Output 8.5, which reset 
the origin for the hazard function at each job termination, although the 
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coefficient magnitudes are somewhat smaller.  These are essentially 
estimates of the counting process model proposed by Andersen and Gill 
(1982), although they did not correct the standard errors for dependence.  
If we stratified by SEQ rather than included it as a covariate, we would get 
estimates of the total time model described by Prentice and colleagues 
(1981). 

Output 8.10 PROC PHREG Estimates with a Common Origin for Pooled Job Durations 

               Parameter   Standard StdErr                         Hazard 
 Parameter DF   Estimate      Error  Ratio Chi-Square Pr > ChiSq    Ratio 
 
 prestige   1   -0.05223    0.00382  0.671   187.0645     <.0001    0.949 
 logsal     1   -0.37332    0.08465  0.710    19.4493     <.0001    0.688 
 ed         1    0.12815    0.03439  1.170    13.8827     0.0002    1.137 
 seq        1    0.17951    0.02104  0.709    72.7975     <.0001    1.197 

An alternative approach is to use the stop times for each 
observational record but not the start times. If this is done, however, it is 
essential that one also stratify on the sequence number, as in the marginal 
model of Wei and colleagues (1989).  Otherwise, the same individual 
could appear more than once in the same risk set.  For example, we can 
use  

 
PROC PHREG DATA=strtstop COVSANDWICH(AGGREGATE); 
  MODEL stop*event(0)=prestige logsal ed; 
ID id; 
STRATA seq; 
RUN; 
 

This approach produces the results in Output 8.11, which are quite similar 
to those in Output 8.10.    

Output 8.11 PROC PHREG with Common Origin and No Adjustment of Start Times 

               Parameter   Standard StdErr                         Hazard 
 Parameter DF   Estimate      Error  Ratio Chi-Square Pr > ChiSq    Ratio 
 
 prestige   1   -0.06167    0.00628  0.987    96.5662     <.0001    0.940 
 logsal     1   -0.52963    0.13594  1.123    15.1788     <.0001    0.589 
 ed         1    0.13875    0.04859  1.567     8.1543     0.0043    1.149 

One disadvantage of specifying a single time origin for all events is 
that you cannot then do fixed-effects partial likelihood. That is because 

Allison, Paul D. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Copyright © 2010, SAS Institute Inc., 
Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/publishing. 



CHAPTER 8 Heterogeneity, Repeated Events, and Other Topics 

278 

each individual is treated as a separate stratum in FEPL. For each of those 
strata, a common time origin implies that there is only one observation in 
the risk set at any given point in time, so the partial likelihood becomes 
degenerate. Furthermore, although it’s theoretically possible to fit a 
random-effects model with a common time origin, I am not aware of any 
software that will do this. 

Repeated Events for Discrete-Time Maximum Likelihood 

In Chapter 7, we saw how to use PROC LOGISTIC to estimate models 
for discrete-time survival data using the method of maximum likelihood. 
These methods can easily be extended to handle repeated events. In fact, 
there are even more methods available for discrete-time maximum 
likelihood, and some of those methods are simpler to implement than the 
ones that we have already discussed in this chapter.  

Before discussing the analytic methods, we must first consider the 
construction of the data set. In Chapter 7, for non-repeated events, the data 
set consisted of one record for each unit of time that each individual was 
observed, up to and including the time unit in which an event occurred. 
But once an event occurred, no more observational records were created. 
When events are repeatable, however, you don’t stop with the first event 
occurrence. An observational record is created for each time unit that the 
individual is observed, regardless of how many events occur before or 
after.  

Once the data set is created, you can simply do a binary regression 
using PROC LOGISTIC, either with the default logit link (for truly discrete 
time) or the complementary log-log link (for grouped continuous-time 
data). Unlike in Chapter 7, however, methods are needed to correct for 
dependence among the repeated observations. These methods are 
discussed in detail in Chapter 3 of my book Fixed Effects Regression 
Methods for Longitudinal Data Using SAS (SAS Institute, 2005).  

Here is an example of how to do it for the job duration data. In the 
following DATA step, I first convert the DURATION variable into discrete 
years by using the CEIL function (which rounds up to the next higher 
integer). Then, using a DO loop, I produce a set of multiple records for 
each person, for a total of 2,072 person years: 

 
DATA discrete; 
  SET jobmult; 
  durdis=CEIL(duration); 
  DO time=1 TO durdis; 
    term=0; 
    IF time=durdis THEN term=event; 
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    OUTPUT; 
  END; 
RUN; 
 

To implement the method of robust standard errors, you can use 
PROC SURVEY LOGISTIC with the CLUSTER statement: 

 
PROC SURVEYLOGISTIC DATA=discrete; 
  MODEL term(DESC)=prestige logsal ed seq time time*time; 
  CLUSTER id; 
RUN; 

Notice that, unlike the PROC PHREG models, it’s important to include the 
time since the last event as a covariate. (Actually, I’ve allowed for a quadratic 
function by including both TIME and TIME squared.) In PROC PHREG, 
dependence on time is automatically allowed via the α(t) function. As 
expected, the results in Output 8.11 are very similar to those in Output 8.5. If 
you prefer to estimate a proportional hazards model rather than a logit 
model, just put the / LINK=CLOGLOG option in the MODEL statement.  

Output 8.11 PROC SURVEYLOGISTIC with Robust Standard Errors 

                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept     1     -0.4169      0.6629        0.3954        0.5295 
prestige      1     -0.0894     0.00840      113.2848        <.0001 
logsal        1     -0.6253      0.1807       11.9773        0.0005 
ed            1      0.2114      0.0602       12.3411        0.0004 
seq           1      0.3317      0.0385       74.2487        <.0001 
time          1      0.4012      0.0857       21.9219        <.0001 
time*time     1     -0.0162     0.00492       10.8633        0.0010 

 

Random-effects models (for either link function) can be estimated 
with PROC NLMIXED, although the syntax is a little simpler than what we 
used for the Weibull model earlier in this chapter. Even easier is PROC 
GLIMMIX, which has a much simpler syntax than PROC NLMIXED. Here 
is the code: 

 
PROC GLIMMIX DATA=discrete METHOD=QUAD; 
  MODEL term=prestige logsal ed seq time  
    /DIST=BIN SOLUTION LINK=LOGIT; 
    RANDOM INTERCEPT / SUBJECT=id; 
RUN; 
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By default, PROC GLIMMIX does pseudo-likelihood estimation, which is 
very fast but may not be sufficiently accurate for binary outcomes. 
However, you can force it to do true maximum likelihood estimation by 
specifying METHOD=QUAD in the MODEL statement. This option uses 
Gaussian quadrature to calculate the likelihood function, the same method 
used by PROC NLMIXED.  

Results in Output 8.12 are very similar to those produced by PROC 
NLMIXED in Output 8.7. The covariance parameter of 9.2179 is the 
estimated variance of εi. 

Output 8.12 PROC GLIMMIX Estimates for the Random-Effects Model 

                 Covariance Parameter Estimates 
 
                                              Standard 
          Cov Parm     Subject    Estimate       Error 
 
          Intercept    id           9.2179      2.6330 
 
 
                   Solutions for Fixed Effects 
 
                         Standard 
Effect       Estimate       Error       DF    t Value    Pr > |t| 
 
Intercept      3.0191      1.6496       98       1.83      0.0703 
prestige     -0.09723     0.01266     1967      -7.68      <.0001 
logsal        -0.9589      0.2514     1967      -3.81      0.0001 
ed            -0.2857      0.1532     1967      -1.86      0.0624 
seq           0.08710     0.05818     1967       1.50      0.1345 
time           1.2281      0.1275     1967       9.63      <.0001 
time*time    -0.04313    0.005883     1967      -7.33      <.0001 

 
To estimate a fixed-effects model, simply use PROC LOGISTIC with 

the STRATA statement, as follows: 
 
PROC LOGISTIC DATA=discrete; 
  MODEL term(DESC)=prestige logsal ed seq time time*time; 
  STRATA id; 
RUN; 
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However, unlike the robust standard error method, the fixed-effects 
method is only available for the logit link, not the complementary log-log 
link. Results in Output 8.13 are very similar to those in Output 8.8. Note 
that the coefficient for education cannot be estimated in a fixed-effects 
model because that variable does not vary over time.  

Output 8.13 Fixed-Effects Estimates with PROC LOGISTIC 

             Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
prestige      1     -0.0762      0.0131       33.5857        <.0001 
logsal        1     -1.0499      0.2648       15.7198        <.0001 
ed            0    -4.05E-6           .         .             . 
seq           1    -0.00772      0.0571        0.0183        0.8924 
time          1      1.3716      0.1400       96.0533        <.0001 
time*time     1     -0.0346     0.00765       20.4496        <.0001 

 
 

Besides these methods, one can also adjust for dependence using the 
method of generalized estimating equations (GEE), which is available in 
PROC GENMOD. Invoked with the REPEATED statement, this method 
produces robust standard error estimates using the same method that is 
used by PROC PHREG. However, GENMOD also produces GEE estimates 
of the coefficients, which are more statistically efficient than conventional 
logistic regression coefficients. Although GEE estimates have less sampling 
variability than conventional estimates, they do not adjust for bias due to 
unobserved heterogeneity. 

Specifying the hazard as a function of time since a common origin is 
easy with any of these models for discrete-time data. That’s because time is 
treated like any other variable on the right-hand side of the equation. So 
you simply create another variable, which is the time since origin, and 
include that in the model. You can also include the time since the last 
event in the same model. And you can specify nonlinear functions of 
either of these variables.   
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GENERALIZED R2 

People who do a lot of linear regression tend to become attached to 
R2 as a measure of how good their models are. When they switch to PROC 
LIFEREG or PROC PHREG, they may experience withdrawal symptoms 
because no similar statistic is reported. In this section, I show how a 
generalized R2 can be easily calculated from statistics that are reported. 
Before doing that, I want to caution readers that R2 is not all it’s cracked up 
to be, regardless of whether it’s calculated for a linear model or a 
proportional hazards model. In particular, R2 does not tell you anything 
about how appropriate the model is for the data. You can obtain an R2 of 
only .05 for a model whose assumptions are perfectly satisfied by the data 
and whose coefficients are precisely unbiased. Similarly, an R2 of .95 does 
not protect you against severe violations of assumptions and grossly biased 
coefficients. All R2 tells you is how well you can predict the dependent 
variable with the set of covariates. And even for prediction, some 
authorities argue that the standard error of the estimate is a more 
meaningful and useful measure.  

Still, other things being equal, a high R2 is definitely better than a 
low R2, and I happen to be one of those who miss it if it’s not there. With 
that in mind, let’s see how we can calculate one for survival models. 
Unfortunately, there’s no consensus on the best way to calculate an R2 for 
nonlinear models. In my opinion, many of the R2s that are reported by 
some widely used packages are virtually worthless. The statistic that I 
describe here was proposed by Cox and Snell (1989) and was also one of 
three statistics endorsed by Magee (1990). It’s the same statistic that is 
available as an option for PROC LOGISTIC.  

Let G2 be the likelihood ratio chi-square statistic for testing the null 
hypothesis that all covariates have coefficients of 0. This G2 is reported 
directly by PROC PHREG and PROC LOGISTIC. For PROC LIFEREG, you 
must calculate it yourself by fitting models both with and without the 
covariates and then taking twice the positive difference in the log-
likelihoods. With that statistic in hand, you can calculate the R2 as 

 






 −
−=

n
GR

2
2 exp1  (8.2) 

where n is the sample size. If you are using a method that breaks the 
individual’s time to event into multiple records (for example, the 
piecewise exponential model or the maximum likelihood logistic model), 
the n should be the number of individuals, not the number of 
observational records.  
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 The justification for this formula is simple. For an ordinary linear 
regression model with a normal error term, it’s possible to calculate a 
likelihood ratio chi-square statistic for the null hypothesis that all 
coefficients are 0 (although what’s usually reported is an F statistic). That 
chi-square statistic is related to the standard R2 by the formula in equation 
(8.2). By analogy, we use the same formula for nonlinear models.  

You can use this statistic for any regression model estimated by 
maximum likelihood or partial likelihood. Unlike the linear model, 
however, it cannot be interpreted as a proportion of variation in the 
dependent variable that is explained by the covariates. It’s just a number 
between 0 and 1 that is larger when the covariates are more strongly 
associated with the dependent variable. Nevertheless, it seems to behave 
in similar ways to the usual R2. In samples with no censored data, I have 
compared OLS linear regression models for the logarithm of time with 
various accelerated failure time models estimated by maximum likelihood 
and with Cox models estimated by partial likelihood. In all cases that I 
have examined, the generalized R2s from the likelihood-based procedures 
are similar in magnitude to the R2 from the ordinary regression model.  

Here are some examples. In Chapter 4, “Estimating Parametric 
Regression Models with PROC LIFEREG,” we used PROC LIFEREG to 
estimate a Weibull model for the 432 cases in the recidivism data set, and 
we calculated a likelihood ratio chi-square statistic of 33.48 for the test that 
all coefficients are 0. Applying the formula above, we get an R2 of .0746. 
For the same data set, we used partial likelihood in Chapter 5 to estimate a 
proportional hazards model. As shown in Output 5.1, the likelihood ratio 
chi-square statistic is 33.13, so the R2 is virtually identical. For the 65 heart 
transplant cases, the PROC PHREG model in Output 5.3 had a likelihood 
ratio chi-square statistic of 16.6, yielding an R2 of .23.  

SENSITIVITY ANALYSIS FOR INFORMATIVE CENSORING 

In Chapters 2 and 6, we discussed the relatively intractable problem 
of informative censoring. Let’s quickly review the problem. Suppose that 
just before some particular time t, there are 50 individuals who are still at 
risk of an event. Of those 50 individuals, 5 are censored at time t. Suppose 
further that 20 of the 50 at risk have covariate values that are identical to 
those of the 5 who are censored. We say that censoring is informative if the 
5 who are censored are a biased subsample of the 20 individuals with the 
same covariate values. That is, they have hazards that are systematically 
higher or lower than those who were not censored. Informative censoring 
can lead to parameter estimates that are seriously biased.  
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When censoring is random (that is, not under the control of the 
investigator), it’s usually not difficult to imagine scenarios that would lead 
to informative censoring. Suppose, for example, that you’re studying how 
long it takes rookie policemen to be promoted, and those who quit are 
treated as censored. It doesn’t take much insight to suspect that those who 
quit before promotion have, on average, poorer prospects for promotion 
than those who stay. Unfortunately, there’s no way to test this hypothesis. 
You can compare the performance records and personal characteristics of 
those who quit and those who stayed, but these are all things that would 
probably be included as covariates in your model. Remember that what 
we’re concerned about is residual informativeness, after the effects of 
covariates have been taken into account. And even if we could 
discriminate between informative and noninformative censoring, there are 
no standard methods for handling informative censoring. The best that can 
be done by way of correction is to include as covariates any factors that are 
believed to affect both event times and censoring times.  

There is, however, a kind of sensitivity analysis that can give you 
some idea of the possible impact that informative censoring might have on 
your results. The basic idea is to redo the analysis under two extreme 
assumptions about censored cases. One assumption is that censored 
observations experience events immediately after they are censored. This 
corresponds to the hypothesis that censored cases are those that tend to be 
at high risk of an event. The opposite assumption is that censored cases 
have longer times to events than anyone else in the sample. Obviously, this 
corresponds to the hypothesis that censored cases are those that tend to be 
at low risk of an event. 

This is the general strategy. Some care needs to be taken in 
implementation, however. Let’s consider the LEADERS data set that we 
analyzed extensively in Chapter 6. There were four outcomes, as coded in 
the variable LOST: 

 

Code Frequency Reason 
   0       115 leader still in power at the end of the study 
   1       165 leader left office by constitutional means 
   2         27 leader died of natural causes 
   3       165 leader left office by nonconstitutional 

means 

 
We saw that types 1 and 3 were similar in many respects. Output 

6.12 displayed estimates for a Cox model that combined types 1 and 3 but 
that treated types 0 and 2 as censoring. Now we want to see how sensitive 
those estimates in Output 6.12 are to possible informative censoring.  
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The censoring that occurred because the study ended is, in fact, 
random censoring because the leaders began their spells in power at 
varying points in time. It’s possible that those who entered power later had 
higher or lower risks of exit than those who entered earlier. Nonetheless, 
we can control for this kind of random censoring by including the START 
time as a covariate, which we did in Output 6.12. We can’t do anything 
like that for deaths, however, so our sensitivity analysis will focus on the 
27 cases that have a value of 2 for the LOST variable. 

The first reanalysis assumes that if the 27 people had not died in a 
particular year, they would have immediately been removed from power 
by constitutional or nonconstitutional means. We can accomplish this 
reanalysis by removing the value 2 from the list of censored values in the 
MODEL statement, thereby treating it as if it were a 1 or a 3: 

 
PROC PHREG DATA=leaders;  
   MODEL years*lost(0)=manner age start military conflict  
         loginc literacy / TIES=EXACT; 
   STRATA region; 
RUN; 

The second reanalysis assumes that if those 27 leaders had not died 
of natural causes, they would have remained in power at least as long as 
anyone else in the sample. We still treat them as censored, but we change 
their censoring time to the largest event time in the sample, which, in this 
case, is 24 years. Because we’re doing a partial likelihood analysis, we 
could change it to any number greater than or equal to 24, and the result 
would be the same. If we were using PROC LIFEREG, which uses the exact 
times of all observations, we might want to change the censoring time to 
the longest observed time, either censored or uncensored. The longest 
censored time in this sample is 27 years.  

Here’s the SAS code for changing the censoring times to 24 and then 
running the model: 

 
DATA leaders2; 
   SET leaders; 
   IF lost=2 THEN years=24; 
PROC PHREG DATA=leaders2;  
   MODEL years*lost(0,2)=manner age start military conflict    
    loginc literacy / TIES=EXACT; 
   STRATA region; 
RUN; 

Compare the results for these two models, shown in Output 8.14, 
with those in Output 6.12. For each covariate, the two new estimates 
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bracket the original estimate. The biggest difference is in the effect of age, 
which gets larger in the top panel but much smaller in the bottom panel, to 
the point where it is no longer significant at the .05 level. This should not 
be surprising because AGE was the only variable of any importance in the 
model for deaths due to natural causes (Output 6.7). For the most part, 
however, the results in Output 8.14 are reassuring. We can be reasonably 
confident that treating natural deaths as noninformative censoring has no 
appreciable affect on the conclusions. 

Output 8.14 Sensitivity Analysis of LEADERS Data Set for Informative Censoring 

Censored Cases Treated as Uncensored Cases 
 
                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  manner      1     0.38528     0.15490      6.1868      0.0129     1.470 
  age         1     0.02307     0.00547     17.8215      <.0001     1.023 
  start       1    -0.01774     0.00816      4.7251      0.0297     0.982 
  military    1    -0.22637     0.16041      1.9913      0.1582     0.797 
  conflict    1     0.12992     0.13073      0.9876      0.3203     1.139 
  loginc      1    -0.18263     0.08235      4.9181      0.0266     0.833 
literacy    1   0.0006600     0.00320      0.0426      0.8366     1.001 
 

Censoring Times Recoded as 24 
 

                  Parameter    Standard                            Hazard 
  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio 
 
  manner      1     0.31912     0.15669      4.1479      0.0417     1.376 
  age         1     0.01001     0.00568      3.1128      0.0777     1.010 
  start       1    -0.01316     0.00826      2.5394      0.1110     0.987 
  military    1    -0.14295     0.16305      0.7686      0.3806     0.867 
  conflict    1     0.20979     0.13708      2.3421      0.1259     1.233 
  loginc      1    -0.27022     0.08939      9.1382      0.0025     0.763 
literacy    1     0.00378     0.00334      1.2819      0.2575     1.004 
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In interpreting output like this, you should remember that these are 
worst-case scenarios, and it’s unlikely that either of the extremes is an 
accurate depiction of reality. The usual estimates are still your best guess 
of what’s really going on. It’s also worth noting that for many applications, 
one of these extremes may be much more plausible than the other. 
Naturally, you’ll want to focus your attention on the extreme that is most 
sensible. 
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HOW TO CHOOSE A METHOD 

In this book, we’ve examined many different approaches to the 
analysis of survival data: Kaplan-Meier estimation, log-rank tests, 
accelerated failure time models, piecewise exponential models, Cox 
regression models, logit models, and complementary log-log models. Each 
of these methods is worth using in some situations. Along the way I have 
tried to point out their relative advantages and disadvantages, but those 
discussions are scattered throughout the book. It’s not easy to keep all the 
points in mind when designing a study or planning an analysis.  

Many readers of early versions of this book urged me to provide a 
concluding roadmap for choosing a method of survival analysis. Although 
I give this kind of advice all the time, I do so here with some hesitation. 
While statisticians may have great consensus about the characteristics of 
various statistical methods, the choice among competing methods is often 
very personal, especially when dealing with methods as similar in spirit 
and results as those presented here. Five equally knowledgeable 
consultants could easily give you five different recommendations. I’m 
going to present some rules of thumb that I rely on myself in giving advice, 
but please don’t take them as authoritative pronouncements. Use them 
only to the degree that you find their rationales persuasive. 

Make Cox Regression Your Default Method 

Given the relative length of Chapter 5, “Estimating Cox Regression 
Models with PROC PHREG,” it will come as no surprise that I have a 
strong preference for Cox regression using PROC PHREG. This particular 
method 

 is more robust than the accelerated failure time methods 
 has excellent capabilities for time-dependent covariates 
 handles both continuous-time and discrete-time data 
 allows for late entry and temporary exit from the risk set 
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 has a facility for nonparametric adjustment of nuisance variables 
(stratification). 

PROC PHREG can also do log-rank tests (using a single dichotomous 
covariate). PROC PHREG will even do Kaplan-Meier estimation (by fitting 
a model with no covariates and using the BASELINE statement to produce 
a table of survival probabilities).  

Beyond these intrinsic advantages, Cox regression has the 
considerable attraction of being widely used, accepted, and understood. 
What’s the point of choosing a marginally superior method if your 
audience is confused or skeptical and you have to waste valuable time and 
space with explanation and justification? For better or worse (mostly for 
better), Cox regression has become the standard, and it makes little sense 
to choose a different method unless you have a good reason for doing so. 
Having said that, I’ll now suggest some possible good reasons. They are 
presented in the form of questions that you should ask yourself when 
deciding on a method. 

Is the Sample Large with Heavily Tied Event Times?  

As we saw in Chapter 5, PROC PHREG can deal with situations in 
which there are many events occurring at the same recorded times using 
either the DISCRETE method or the EXACT method. Unfortunately, those 
options can take a great deal of computer time that increases rapidly with 
sample size. If you have a sample of 10,000 observations with only 10 
distinct event times, you can expect to wait a long time before you see any 
output. Why wait when the alternatives are so attractive? The 
complementary log-log and logit methods of Chapter 7 estimate exactly the 
same models as the EXACT and DISCRETE methods with statistical 
efficiency that is at least as good as that provided by PROC PHREG.  

Do You Want to Study the Shape of the Hazard Function? 

In some studies, one of the major aims is to investigate hypotheses 
about the dependence of the hazard on time. Cox regression is far from 
ideal in such situations because it treats the dependence on time as a 
nuisance function that cancels out of the estimating equations. You can 
still produce graphs of the baseline survival and hazard functions, but 
those graphs don’t provide direct tests of hypotheses. 

 With PROC LIFEREG, on the other hand, you can produce formal 
hypothesis tests that answer the following sorts of questions:  

 Is the hazard constant over time? 
 If not constant, is the hazard increasing, decreasing, or non-

monotonic? 
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 If increasing (or decreasing), is the rate of change going up or 
down? 

All of these questions are addressed within the context of smooth 
parametric functions. If that seems too restrictive, you can get much more 
flexibility with the piecewise exponential, or with maximum likelihood 
estimation of the logit or complementary log-log models. With these 
models, the time scale is chopped into intervals, and the least restrictive 
models have a set of indicator variables to represent those intervals. 
Restrictions can easily be imposed to represent functions of almost any 
desired shape. A further advantage of these multiple-record methods is 
that two or more time axes can be readily introduced into a single model. 
A model for promotions, for example, could include the time since the last 
promotion, the time since initial employment by the firm, the time in the 
labor force, and the time since completion of education.  

So if you want to study the dependence of the hazard on time, there 
are good alternatives to Cox regression. But whatever method you use, I 
urge you to be cautious in interpreting the results. As we saw in Chapter 8, 
“Heterogeneity, Repeated Events, and Other Topics,” the hazard function is 
strongly confounded with uncontrolled heterogeneity, which makes 
hazards look like they are declining with time even when they are constant 
or increasing. As a result, any declines in the hazard function may be 
purely artifactual, a possibility that you can never completely rule out.  

Do You Want to Generate Predicted Event Times or  

Survival Probabilities? 

As we saw in Chapter 5, you can use output from the BASELINE 
statement in PROC PHREG to get predicted median survival times or 
survival probabilities for any specified set of covariates. Because the  
BASELINE statement produces a complete set of survivor function 
estimates, however, getting predicted values or 5-year survival 
probabilities for a large number of observations can be rather cumbersome. 
Furthermore, predicted median survival times may be unavailable for 
many or all of the observations if a substantial fraction of the sample is 
censored. With PROC LIFEREG, on the other hand, you can easily generate 
predicted median survival times (or any other percentile) for all 
observations using the OUTPUT statement. Using my PREDICT macro, you 
can also produce estimated survival probabilities for a specified survival 
time.  
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Do You Have Left-Censored Data? 

The only SAS procedure that allows for left censoring is PROC 
LIFEREG. In principle, it’s possible to adapt Cox regression to handle left 
censoring, but I know of no commercial program that does this. 

CONCLUSION 

While it’s good to consider these questions carefully, you shouldn’t 
become obsessed with making the right choice. For most applications, a 
reasonable case can be made for two or more of these methods. 
Furthermore, the methods are so similar in their underlying philosophy 
that they usually give similar results. When they differ, it’s typically in 
situations where the evidence is not strong for any conclusion. If you have 
the time, it’s always worthwhile trying out two or more methods on the 
same data. If they lead you to the same conclusions, then your confidence 
is increased. If they are discrepant, your confidence is appropriately 
reduced. If they are widely discrepant, you should carefully investigate the 
reasons for the discrepancy. Perhaps you made an error in setting up one 
method or the other. Maybe there’s a serious peculiarity in the data. Search 
for outliers and examine residuals and influence diagnostics. 
Discrepancies are often a powerful indication that there is something 
important to be learned.  
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INTRODUCTION 

In the main text, I introduced two macros for carrying out certain 
auxiliary analyses with PROC LIFEREG. They are listed here with 
instructions and background information. They are also available on the 
Web at www.pauldallison.com. 

Both of the macro programs use keywords for the required and 
optional parameters. Default values (if any) are given after the equal sign in  
the parameter list. Thus, you only need to specify parameters that differ 
from the default value, and you can specify these parameters in any order 
in the macro call. 

THE LIFEHAZ MACRO 

The LIFEHAZ macro produces parametric plots of hazard functions 
based on models fitted by PROC LIFEREG. In the LIFEREG procedure, you 
must specify OUTEST=name1 in the PROC LIFEREG statement. You must 
also use the OUTPUT statement with OUT=name2 and XBETA=name3. By 
default, the hazard is plotted for the mean value of the XBETA option (the 
linear predictor). If you want a plot for a specific observation, you must 
specify the observation number (OBSNO) when you invoke the macro. The 
macro requires SAS/GRAPH software. 

To use the macro, you must first read it into your SAS session.  This 
can be done by simply copying the text of the macro into the editor 
window and then running it.  Alternatively, you can use the %INCLUDE 
statement to specify the name and location of the file containing the macro 
(which must have a .sas extension).  Once the macro has been read in to 
SAS, you can use it repeatedly during your SAS session. For an example 
using the LIFEHAZ macro, see the section Generating Predictions and 
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Hazard Functions in Chapter 4, “Estimating Parametric Regression Models 
with PROC LIFEREG.”  

Parameters 

OUTEST=  specifies the name of the data set produced by the 
OUTEST= option in PROC LIFEREG. 

OUT=_LAST_ specifies the name of the data set produced by the OUT= 
option in PROC LIFEREG. 

XBETA= specifies the name used with the XBETA= option in the 
OUTPUT statement.  

OBSNO= specifies the sequence number of the observation for 
which you want plots of the hazard function. (The default 
method is to use the mean of the linear predictor to 
generate the hazards.)  

Program 
 
%macro lifehaz(outest=,out=,obsno=0,xbeta=lp); 
/******************************************************************** 
Version 2.0 (9-14-01) 
 
This version of LIFEHAZ works for SAS Release 6.12 through  
Release 9.2.   
 
********************************************************************/ 
data; 
  set &outest; 
  call symput('time',_NAME_); 
run; 
proc means data=&out noprint; 
  var &time &xbeta; 
  output out=_c_ min(&time)=min max(&time)=max mean(&xbeta)=mean; 
run; 
data; 
  set &outest; 
  call symput('model',_dist_); 
  s=_scale_; 
  d=_shape1_; 
  _y_=&obsno; 
  set _c_ (keep=min max mean); 
  if _y_=0 then m=mean; 
  else do; 
    set &out (keep=&xbeta) point=_y_; 
    m=&xbeta; 
  end; 
  inc=(max-min)/300; 
  g=1/s; 
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  alph=exp(-m*g); 
  _dist_=upcase(_dist_); 
if _dist_='LOGNORMAL' or _dist_='LNORMAL'  then do; 
  do t=min to max by inc; 
  z=(log(t)-m)/s; 
  f=exp(-z*z/2)/(t*s*sqrt(2*3.14159)); 
  Surv=1-probnorm(z); 
  h=f/Surv; 
  output; 
  end; 
end; 
else if _dist_='GAMMA' then do; 
  k=1/(d*d); 
  do t=min to max by inc; 
  u=(t*exp(-m))**(1/s); 
  f=abs(d)*(k*u**d)**k*exp(-k*u**d)/(s*gamma(k)*t); 
  Surv=1-probgam(k*u**d,k); 
  if d lt 0 then Surv=1-Surv; 
  h=f/Surv; 
  output; 
  end; 
end; 
else if _dist_='WEIBULL' or _dist_='EXPONENTIAL' or _dist_='EXPONENT'  then do; 
  do t=min to max by inc; 
  h=g*alph*t**(g-1); 
  output; 
  end; 
end; 
else if _dist_='LLOGISTIC' or _dist_='LLOGISTC' then do; 
  do t=min to max by inc; 
  h=g*alph*t**(g-1)/(1+alph*t**g); 
  output; 
  end; 
end; 
else put 'ERROR:DISTRIBUTION NOT FITTED BY LIFEREG'; 
run; 
proc gplot; 
  plot h*t / haxis=axis2 vaxis=axis1 vzero; 
  symbol1 i=join v=none c=black; 
  axis1 label=(f=titalic angle=90 'Hazard'); 
  axis2 label=(f=titalic justify=c 'time' f=titalic justify=c "&model"); 
run; quit; 
%mend lifehaz; 
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THE PREDICT MACRO 

The PREDICT macro produces predicted survival probabilities for all 
individuals in a sample for specified survival times, based on models 
fitted by PROC LIFEREG. You must specify OUTEST=name1 in the PROC 
LIFEREG statement. You must also use the OUTPUT statement with 
OUT=name2 and XBETA=name3.  The probabilities are written to the 
output window and also to a temporary SAS data set named _PRED_. 

To use the macro, you must first read it into your SAS session.  This 
can be done by simply copying the text of the macro into the editor 
window and then running it.  Alternatively, you can use the %INCLUDE 
statement to specify the name and location of the file containing the macro 
(which must have a .sas extension).  Once the macro has been read in to 
SAS, you can use it repeatedly during your SAS session. For an example 
using the PREDICT macro, see the section Generating Predictions and 
Hazard Functions in Chapter 4. 

 

Parameters 

OUTEST=  specifies the name of the data set produced by the 
OUTEST= option in PROC LIFEREG. 

OUT=_LAST_ specifies the name of the data set produced by the OUT= 
option in PROC LIFEREG. 

XBETA= specifies the name used with the XBETA= option in the 
OUTPUT statement.  

TIME= specifies the survival time to be evaluated. This time must 
be in the same metric as the event times.   

Program 
 
%macro predict (outest=, out=_last_,xbeta=,time=); 
/******************************************************************** 
 
Example:  To get 5-year survival probabilities for every individual 
in the sample (assuming that actual survival times are measured in  
years); 
 
%predict(outest=a, out=b, xbeta=lp, time=5). 
 
*********************************************************************/ 
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data _pred_; 
_p_=1; 
set &outest  point=_p_; 
set &out; 
lp=&xbeta; 
t=&time; 
gamma=1/_scale_; 
alpha=exp(-lp*gamma); 
prob=0; 
_dist_=upcase(_dist_); 
if _dist_='WEIBULL' or _dist_='EXPONENTIAL' or _dist_='EXPONENT' then prob=exp(-
alpha*t**gamma); 
if _dist_='LOGNORMAL' or _dist_='LNORMAL' then prob=1-probnorm((log(t)-lp)/_scale_); 
if _dist_='LLOGISTIC' or _dist_='LLOGISTC' then prob=1/(1+alpha*t**gamma); 
if _dist_='GAMMA' then do; 
  d=_shape1_; 
  k=1/(d*d); 
  u=(t*exp(-lp))**gamma; 
  prob=1-probgam(k*u**d,k); 
  if d lt 0 then prob=1-prob; 
  end; 
drop lp gamma alpha _dist_ _scale_ intercept 
     _shape1_ _model_ _name_ _type_ _status_ _prob_ _lnlike_ d k u; 
run; 
proc print data=_pred_; 
run; 
%mend predict; 
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INTRODUCTION 

This appendix provides information about the data sets used as 
examples in this book. They are listed in the order in which they are 
discussed in the main text. All data are written in free format, with the 
variables appearing in the order given in each of the following sections. 
These data sets are available on the Web at 
support.sas.com/publishing/authors/allison.html. 

THE MYEL DATA SET:  MYELOMATOSIS PATIENTS 

The MYEL data set contains survival times for 25 patients diagnosed 
with myelomatosis (Peto et al., 1977). The patients were randomly 
assigned to two drug treatments. The entire data set is listed in Output 2.1. 
These data are used extensively in Chapter 3 to illustrate the LIFETEST 
procedure and briefly in Chapter 5. The variables are as follows: 

 
DUR is the time in days from the point of randomization to 

either death or censoring (which could occur either by loss 
to follow up or termination of the observation). 

STATUS  has a value of 1 if dead and a value of 0 if censored. 
TREAT specifies a value of 1 or 2 to correspond to the two 

treatments.  
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RENAL  has a value of 1 if renal functioning was normal at the time 
of randomization; it has a value of 0 for impaired 
functioning.  

THE RECID DATA SET:  ARREST TIMES FOR RELEASED PRISONERS 

The RECID data set contains information about 432 inmates who 
were released from Maryland state prisons in the early 1970s. This data set 
is used in Chapters 3, 4, and 5. The first 20 cases are listed in Output 3.10. 
The data were kindly provided to me by Dr. Kenneth Lenihan who was 
one of the principal investigators. The aim of this research was to 
determine the efficacy of financial aid to released inmates as a means of 
reducing recidivism. Results from the study are described in Rossi, Berk, 
and Lenihan (1980). (This book also reports results from a much larger 
follow-up study done in Texas and Georgia.) Half the inmates were 
randomly assigned to receive financial aid (approximately the same 
amount as unemployment compensation). They were followed for 1 year 
after their release and were interviewed monthly during that period. Data 
on arrests were taken from police and court records. The data set used here 
contains the following variables: 
 
WEEK is the week of first arrest; WEEK has a value of 52 if not 

arrested. 
ARREST has a value of 1 if arrested; otherwise, ARREST has a value  

of 0.  
FIN has a value of 1 if the inmate received financial aid after 

release; otherwise, FIN has a value of 0. FIN is randomly 
assigned, with equal numbers in each category. 

AGE is the age in years at the time of release. 
RACE has a value of 1 if the inmate is black; otherwise, RACE has 

a value of 0. 
WEXP has a value of 1 if the inmate had full-time work experience 

before incarceration; otherwise, WEXP has a value of 0. 
MAR has a value of 1 if the inmate was married at the time of 

release; otherwise, MAR has a value of 0. 
PARO has a value of 1 if released on parole; otherwise, PARO has 

a value of 0. 
PRIO is the number of convictions before the current 

incarceration. 
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EDUC is the highest level of completed schooling, coded as 
 2 = 6th grade or less  
 3 = 7th to 9th grade  
 4 = 10th to 11th grade  
 5 = 12th grade  
 6 = some college  
EMP1−EMP52 represents the employment status in each of the first 52 

weeks after release. These variables have values of 1 if the 
inmate was employed full time; otherwise, EMP1–EMP52 
have values of 0. Data are missing for weeks after the first 
arrest. 

THE STAN DATA SET:  STANFORD HEART TRANSPLANT PATIENTS 

Various versions of data from the Stanford Heart Transplant study 
have been reported in a number of publications. The data set used in 
Chapter 5, “Estimating Cox Regression Models with PROC PHREG,” 
appeared in Crowley and Hu (1977). The sample consisted of 103 cardiac 
patients who were enrolled in the transplantation program between 1967 
and 1974. After enrollment, patients waited varying lengths of time until a 
suitable donor heart was found. Patients were followed until death or until 
the termination date of April 1, 1974. Of the 69 transplant recipients, only 
24 were still alive at termination. At the time of transplantation, all but 
four of the patients were tissue typed to determine the degree of similarity 
with the donor. The data set contains the following variables: 
 
DOB is the date of birth. 
DOA is the date of acceptance into the program. 
DOT is the date of transplant. 
DLS is the date last seen (death date or censoring date). 
DEAD has a value of 1 if the patient is dead at DLS; otherwise, 

DEAD has a value of 0. 
SURG has a value of 1 if the patient had open-heart surgery before 

DOA; otherwise, SURG has a value of 0. 
M1 is the number of donor alleles with no match in the 

recipient (1 through 4). 
M2 has a value of 1 if the donor and recipient mismatch on the  

HLA-A2 antigen; otherwise, M2 has a value of 0. 
M3 is the mismatch score. 

All date variables are in the mm/dd/yy format. 
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THE BREAST DATA SET: SURVIVAL DATA FOR BREAST CANCER 
PATIENTS 

The BREAST data set (displayed in Output 5.4) contains survival 
data for 45 breast cancer patients. The data are taken from Collett (1994) 
except that survival time for the 8th patient is changed from 26 to 25 to 
eliminate ties. The variables are as follows: 
 
SURV is the survival time (or censoring time) in months, 

beginning with the month of surgery. 
DEAD 1 = dead; 0=alive. 
X has a value of 1 if the tumor had a positive marker for 

metastasis; otherwise, X has a value of 0. 

THE JOBDUR DATA SET:  DURATIONS OF JOBS 

The JOBDUR data set consists of 100 simulated observations of jobs 
and job holders. Results of analyzing these data were reported in Output 
5.9 and 5.10. The variables are as follows: 
 
DUR is the length of the job in years (integer values only). 
EVENT 1 = quit; 2 = fired; 0 = censored. 
ED is the number of years of completed schooling. 
PRESTIGE is a measure of the prestige of the job.  
SALARY is the salary in thousands of dollars.  

For the analyses in Chapter 5, firings were treated as censoring. 

THE ALCO DATA SET:  SURVIVAL OF CIRRHOSIS PATIENTS 

The ALCO data set, displayed in Output 5.15, consists of simulated 
data for 29 alcoholic cirrhosis patients. The variables are as follows:  
 
SURV  is the number of months from diagnosis until death or  

 termination of the study. 
DEAD  has a value of 1 if the patient died; otherwise, DEAD has  

 a value of 0. 
TIME2−TIME10  represent the time of clinic visits in months since  

 diagnosis. 
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PT1−PT10  is the blood coagulation measure at diagnosis and at 
subsequent clinic visits. 

THE LEADERS DATA SET:  TIME IN POWER FOR LEADERS OF 
COUNTRIES 

The LEADERS data set, analyzed in Chapter 6, “Competing Risks,” is 
described in detail by Henry Bienen and Nicolas van de Walle (1991), who 
generously provided me with the data. Each record in the data set 
corresponds to a spell in power for a primary leader of a country. I used a 
subset of the original data, restricting the spells to countries outside of 
Europe, North America, and Australia; spells that began in 1960 or later; 
and only the first leadership spell for those leaders with multiple spells. 
This left a total of 472 spells. 

Each record includes the following variables:   
 

YEARS is the number of years in power, integer valued. Leaders in 
power less than 1 year have a value of 0.  

LOST  0 = still in power in 1987; 1 = exit by constitutional means;  
2 = death by natural causes; and 3 = nonconstitutional exit. 

MANNER  specifies how the leader reached power: 0 = constitutional 
means; 1 = nonconstitutional means. 

START is the leader’s year of entry into power. 
MILITARY  is the background of the leader: 1 = military; 0 = civilian. 
AGE is the age of the leader, in years, at the time of entry into 

power. 
CONFLICT is the level of ethnic conflict: 1 = medium or high; 0 = low. 
LOGINC is the natural logarithm of GNP per capita (dollar 

equivalent) in 1973. 
GROWTH is the average annual rate of per capita GNP growth 

between 1965 and 1983. 
POP is the population, in millions (year not indicated). 
LAND is the land area, in thousands of square kilometers. 
LITERACY is the literacy rate (year not indicated).  
REGION 0 = Middle East; 1 = Africa; 2 =Asia; 3 = Latin America.  
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THE RANK DATA SET: PROMOTIONS IN RANK FOR BIOCHEMISTS 

The RANK data set, analyzed in Chapter 7, “Analysis of Tied or 
Discrete Data with PROC LOGISTIC,” contains records for 301 biochemists 
who at some point in their careers were assistant professors at graduate 
departments in the U.S. The event of interest is a promotion to associate 
professor. The data set includes the following variables: 
 

DUR is the number of years from the beginning of the job to 
promotion or censoring (ranges from 1 to 10, in integers). 

EVENT has a value of 1 if the person was promoted; otherwise, 
EVENT has a value of 0. 

UNDGRAD specifies the selectivity of the undergraduate institution 
(ranges from 1 to 7). 

PHDMED has a value of 1 if the person received a Ph.D. from a 
medical school; otherwise, PHDMED has a value of 0. 

PHDPREST is a measure of the prestige of the Ph.D. institution (ranges 
from 0.92 to 4.62). 

ART1−ART10 specify the cumulative number of articles published in 
each of the 10 years. 

CIT1−CIT10 specify the number of citations in each of the 10 years to all 
previous articles. 

PREST1 is a measure of the prestige of the first employing 
institution (ranges from 0.65 to 4.6). 

PREST2 is the measure of the prestige of the second employing 
institution (same as PREST1 for those who did not change 
employers). No one had more than two employers during 
the period of observation. 

JOBTIME is the year of employer change, measured from the start of 
the assistant professorship (coded as missing for those who 
did not change employers). 
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THE JOBMULT DATA SET:  REPEATED JOB CHANGES 

The JOBMULT data set contains simulated information for 395 jobs 
observed over a period of 20 years for 100 people. The first 20 cases are 
displayed in Output 8.1, with analytic results in Output 8.2 through 8.9. 
 

ID is a unique identification number for each person. 
EVENT has a value of 1 if the job was terminated; EVENT has a 

value of 0 if censored. 
ED is the number of years of schooling completed. 
SEQ is the number of the job in each person’s sequence. 
DURATION is the length of the job until termination or censoring. 
PRESTIGE is a measure of the prestige of the job, ranging from 1 to 

100. 
LOGSAL is the natural logarithm of the annual salary at the 

beginning of the job. 
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LOGISTIC procedure and   6 
logit model for   236–240 
PHREG procedure and   6 
repeated events and   278–281 

DISTRIBUTION=EXPONENTIAL option, 
MODEL statement (LIFEREG)   78 

DISTRIBUTION=GAMMA option, MODEL 
statement (LIFEREG)   86 

DISTRIBUTION=LLOGISTIC option, 
MODEL statement (LIFEREG)   85 

DISTRIBUTION=WEIBULL option, MODEL 
statement (LIFEREG)   80 

double exponential distribution   78 

E 
Efron's approximation 

comparing methods for handling ties   
148–149, 152–153 

heart transplant study and   155 
recidivism study and   146–147 

ELSE DO statement   157 
empirical score process   173 
empty intervals   249–250 
equal precision method   36 
estimated hazard function   53–55 
event types 

alternative approaches   227–232 
conditional processes   227–229 
covariate effects and   213–220 

cumulative incidence functions    
229–232 

estimates and tests without covariates   
208–213 

time in power for leaders study    
207–208 

type-specific hazards   204–206 
events 

defined   2 
repeated   260–281 

EXACT method 
See TIES=EXACT option, MODEL 

statement (PHREG) 
exponential distribution model 

accelerated failure time model   78–80 
competing risks analysis   221–223 
double exponential distribution   78 
functionality   20, 78–80 
generalized gamma model and   85,  

98–99 
hazard functions and   20 
heterogeneity and   79 
LIFEREG procedure and   221 
piecewise   112–116, 199 
probability plot for   101 

F 
F statistic   283 
FEPL (fixed-effects partial likelihood)    

273–275, 278 
FIRTH option, MODEL statement (PHREG)   

141 
fixed-effects models   273–275, 281 
fixed-effects partial likelihood (FEPL)    

273–275, 278 
Fleming-Harrington test   43–44 
frailty models   271 
FREQ statement, LIFETEST procedure    

56–57 

G 
gamma model 

See generalized gamma model 
GEE (generalized estimating equation) 

methods   6, 281 
generalized gamma model 

accelerated failure time model   85–86, 
98–100 

competing risks analysis and   222 
exponential distribution model and   85, 

98–99 
functionality   85–86 
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generalized gamma model (continued) 
goodness-of-fit and   98–100 
hazard functions and   85–86 
log-normal model   98–99 
nesting and   98–99 

generalized R2   282–283 
GENMOD procedure 

complementary log-log options   241 
discrete-time methods and   6 
functionality   6 
MODEL statement   241 
REPEATED statement   281 

Geweke statistic   120 
Gibbs sampler   118 
GLIMMIX procedure   241, 278, 279–280 
Gompertz distribution 

complementary log-log model and   242 
Cox regression models and   127 
functionality   20–22 
hazard functions and   20–22 

goodness-of-fit tests   98–100 
gradient, defined   93 
Greenwood's formula   33 
GROUP option, STRATA statement 

(LIFETEST)   63 
grouped data   55–59, 248 
Gumbel distribution   78, 241 

H 

Hall-Wellner method   36 
hazard functions 

alternative distributions and   78 
baseline   127 
      cause-specific hazards   204–206 
conditional density and   17 
constant   78 
cumulative   64 
defined   16–18 
discrete-time   150 
estimated   53–55 
exponential model and   20 
gamma model and   85–86 
generating predictions and   108–112 
Gompertz distribution   20–22 
interpretations of   18–20 
kernel smoothing method   66 
log-logistic model and   83–84 
log-normal model and   82–83, 98 
origin of time and   22–26 
parametric regression models and    

108–112 
smoothed   67–69, 210–211 
studying shape of   290–291 

type-specific hazards   204–206 
uncontrolled heterogeneity and   70 
unobserved heterogeneity and   259 
Weibull distribution model   21–22 

hazard ratios 
customized   195–197 
interpreting   132, 135 

HAZARDRATIO statement, PHREG 
procedure   195–197 

      CL=PL option   196 
heart transplant study 

See Stanford Heart Transplantation 
Program 

Hessian matrix   93–94 
heterogeneity 

exponential model and   79 
hazard functions and   70 
uncontrolled   70 
unobserved   79, 82, 257–260 

hypothesis tests 
AFT model and   74–75 
chi-square statistics and   95–97 
liability of newness   259 
LIFEREG procedure and   71, 95–98 
likelihood-ratio tests   95–96 
linear   192–194 
parametric regression models and    

95–98 

I 
ID statement, PHREG procedure   267 
IF-DO statement   157 
IF statement   155, 171 
IML procedure   96 
incidental parameters bias   273 
independence hypothesis   42 
informative censoring   14–15, 283–287 
intensity functions 

See hazard functions 
intercept estimates   132 
interval censoring 

defined   10 
LIFEREG procedure and   71, 106–108, 

235 
intervals 

empty   249–250 
unequaled   248–249 

INTERVALS= option, LIFETEST procedure   
49 

ITPRINT option, MODEL statement 
(LIFEREG)   93 
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J 
job duration data 

common time origins and   276 
competing risks analysis   252 
Cox regression models and   147–151 
fixed-effects models   274 
JOBDUR data set   302 
JOBMULT data set   305 
logit model for discrete time   238–239 
maximum likelihood estimates   242 
PHREG procedure   264 
repeated events and   262, 264 

JOBDUR data set   302 
JOBMULT data set   305 

K 
Kaplan-Meier method 

functionality   29–38 
LIFEREG procedure and   31, 101 
LIFETEST procedure and   29, 31, 187, 

229–231 
PHREG procedure and   31, 290 

kernel smoothing method   66, 210 
kidney function study   179–180 
Kolmogorov-Smirnov type test   174 

L 
late entry into the risk set   183–186 
LEADERS data set   303 
leadership, time in power 

covariate effects via Cox models    
213–220 

estimates and tests without covariates   
208–213 

LEADERS data set   303 
study overview   207–208 

left censoring 
choosing methods   292 
defined   9–10 
LIFEREG procedure and   71, 103–106, 

292 
origin of time and   10 

left truncation   183–186, 250 
liability of newness hypothesis   259 
life-table method 

functionality   29, 49–55 
grouped data   55–59 
heart transplant study and   56–59 
LIFETEST procedure and   5, 29 

LIFEHAZ macro   111, 293–295 
LIFEREG procedure 

See also MODEL statement, LIFEREG 
procedure 

See also parametric regression models 
additional distributions   77–89 
AFT model and   72–73, 220 
BAYES statement   120 
Bayesian analysis and   117–124, 131, 

197 
censoring and   6, 103–108 
choosing methods   290–291 
CLASS statement   87–89, 94–96, 192 
competing risks analysis and   203 
continuous-time methods and   6 
convergence problems   94 
data structure requirements   26 
exponential models and   221 
functionality   5–6 
generalized R2   282 
generating predictions   108–112 
hypothesis testing   71, 95–98 
informative censoring and   285 
interval censoring and   71, 106–108, 235 
Kaplan-Meier method and   31, 101 
left censoring and   71, 103–106, 292 
maximum likelihood estimation   89–95 
Newton-Raphson algorithm   140 
OLS and   93 
ORDER option   88 
OUTEST= option   110–111 
OUTPUT statement   108–111, 291 
partial likelihood method and   129–133 
PHREG procedure comparison   71–72 
piecewise exponential model   112–116 
PROBPLOT statement   100–101 
QUANTILE keyword   109 
STD keyword   109 
testing for effects of covariates   60 
time-dependent covariates and   6, 235 
TIMELIST option   49 
Weibull model and   283 

LIFETEST procedure 
See also PLOTS= option, LIFETEST 

procedure 
See also survival curves 
ADJUST= option   46, 48 
ALPHA= option   37 
ATRISK option   35 
CL option   35 
competing risks analysis and   203 
CONFTYPE= option   38 
data structure requirements   26 
FREQ statement   56–57 
functionality   5–6, 29 
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LIFETEST procedure (continued) 
INTERVALS= option   49 
Kaplan-Meier method and   29, 31, 187, 

229–231 
kernel smoothing option   210 
life-table method   5, 29 
METHOD= option   31 
NOCENSOR option   35 
OUTSURV= option   37–38 
STRATA statement   39, 43–45, 47,  

62–63 
TEST option   39 
TEST statement   62–63 
testing differences in survival curves   

141 
time in power study   209 
TIME statement   39, 74 

likelihood-ratio tests 
goodness-of-fit and   98–100 
hypothesis testing and   95–96 
p-values for   40 
partial likelihood estimation and   131 

linear hypothesis tests   192–194 
LINK= option 

MODEL statement (LOGISTIC)   212, 
241, 252 

MODEL statement (SURVEYLOGISTIC)   
279 

log-hazard format   78, 132 
log-log function, complementary   240–243 
log-log survival (LLS) plots 

myelomatosis study   64–66 
time in leadership study   209–210 

log-logistic model   83–85 
log-normal model 

competing risks analysis   222 
functionality   73, 82–83 
generalized gamma model and   98–99 
hazard functions and   82–83, 98 
LIFEREG procedure and   5 
probability plot for   102 

log-rank statistic 
partial likelihood estimation and   141 
testing for differences in survivor 

functions   40–43, 46–47 
testing for effects of covariates   59, 61 

log-survival (LS) plot   64–65, 132 
LOGISTIC procedure 

CLASS statement   238 
competing risks analysis and   251–254 
complementary log-log functions   241 
discrete-time hazards   150, 278 
discrete-time methods and   6 

functionality   6 
generalized R2   282 
grouped data syntax   248 
logit model for discrete time   238–240 
MODEL statement   212, 239, 241, 252 
multinomial logit model and   212 
repeated events and   278–281 
STRATA statement   280 
testing proportionality   212 

logit model 
competing risks analysis   226, 228 
complementary log-log model   240–243 
for academic promotions   243–246 
for discrete time   236–240 
multinomial   212, 251–252 

LOWER= option, BASELINE statement 
(PHREG)   187, 191 

M 
Markov Chain Monte Carlo (MCMC) 

methods   117–118, 120 
martingale residuals   173 
maximum likelihood estimation 

See ML (maximum likelihood) 
estimation 

maximum partial likelihood method   126 
MAXITER= option, MODEL statement 

(LIFEREG)   94 
MCMC methods   117–118, 120 
MDY function   28 
METHOD= option 

LIFETEST procedure   31 
MODEL statement (GLIMMIX)   278 

ML (maximum likelihood) estimation 
censoring and   73, 91 
competing risks analysis   250–254 
complications and concerns   246–254 
functionality   89–90 
job duration data   242 
LIFEREG procedure and   89–95 
mathematics   90–93 
parametric regression models and    

89–95 
piecewise exponential model and   199 
practical details   93–95 
random-effects models and   271 
repeated events and   278–281 
time-dependent covariates and   243–246 

MMDDYY9. format   134 
MODEL statement, GENMOD procedure   

241 
MODEL statement, GLIMMIX procedure   

241, 278 
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MODEL statement, LIFEREG procedure 
categorical variables   89 
censoring and   104–105 
CONVERGE= option   94 
COVB option   93, 115 
DISTRIBUTION=EXPONENTIAL option   

78 
DISTRIBUTION=GAMMA option   86 
DISTRIBUTION=LLOGISTIC option   85 
DISTRIBUTION=WEIBULL option   80 
hypothesis tests and   96 
ITPRINT option   93 
MAXITER= option   94 

MODEL statement, LOGISTIC procedure 
LINK= option   212, 241, 252 
logit model for discrete time   239 
REF= option   252 

MODEL statement, NLMIXED procedure   
271 

MODEL statement, PHREG procedure 
BAYES statement and   197 
customized hazard ratios   196 
estimating survivor function   188, 192 
FIRTH option   141 
informative censoring and   285 
programming statements method and   

155 
TIES=DISCRETE option   143, 149–153, 

236 
TIES=EFRON option   146–147, 217 
TIES=EXACT option   142, 143–149, 

152–153, 228, 236 
MODEL statement, PROBIT procedure   241 
MODEL statement, SURVEYLOGISTIC 

procedure   279 
modified Peto-Peto test   43–44 
modified sandwich estimator   266–270 
Monte Carlo simulations   274 
multinomial logit model   212, 251–252 
MYEL data set   299–300 
myelomatosis data 

Cox regression model and   181 
Kaplan-Meier method   31–38 
log-survival plots   64–65 
MYEL data set   299–300 
testing for differences in survivor 

functions   39–44 

N 
nesting   98–99 
newness, liability of   259 
Newton, Isaac   92 
Newton-Raphson algorithm   92–93, 140 

NLMIXED procedure   271–272, 279–280 
NOCENSOR option, LIFETEST procedure   

35 
noninformativeness   206 
nonproportional hazards 

functionality   172–173 
interactions with time   177–179 
stratification and   179–183 
testing proportionality assessments   

173–177 
NOSUMMARY option, PHREG procedure   

273 

O 
observations 

dependence among   246–247 
large numbers of   247–248 

odds ratios, and hazard ratios   132 
ODS (output delivery system)   34–35 
ODS GRAPHICS   118, 188 
OLS (ordinary least squares) 

AFT model and   73 
comparing with logarithm of time   283 
LIFEREG procedure and   93 

ORDER option, LIFEREG procedure   88 
ordinary least squares 
      See OLS 
origin of time 

See time origins 
OUT= option, BASELINE statement 

(PHREG)   187 
OUTEST= option, LIFEREG procedure    

110–111 
output delivery system (ODS)   34–35 
OUTPUT statement 

LIFEREG procedure   108–111, 291 
PHREG procedure   194 
programming statements method and   

157 
OUTSURV= option, LIFETEST procedure   

37–38 
OVERLAY suboption (PLOTS= option, 

LIFETEST)   190 

P 
p-values   40, 89 
PARAM= option, CLASS statement 

(LOGISTIC)   238 
parametric regression models 

See also LIFEREG procedure 
accelerated failure time model   72–77 
alternative distributions   77–86 
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parametric regression models (continued) 
Bayesian estimation and timing    

117–124, 131 
categorical variables   87–89 
censoring and   103–108 
CLASS statement and   87–89 
evaluating model fit   100–103 
functionality   71–72 
generating predictions   108–112 
goodness-of-fit tests and   98–100 
hazard functions and   108–112 
hypothesis tests   95–98 
maximum lilkelihood estimation and   

89–95 
piecewise exponential model   112–116 

PARMS statement, NLMIXED procedure   
272 

partial likelihood method 
Bayesian information criterion (BIC)   

131 
Breslow approximation   142 
chi-square statistics and   131–132 
Cox regression models and   126–128 
examples   129–136 
functionality   150 
heart transplant study and   133–136 
intercept estimates and   132 
LIFEREG procedure and   129–133 
likelihood-ratio tests   131 
log-rank statistic   141 
mathematical and computational details   

137–141 
maximum   126 
PHREG procedure   129–136 
random-effects models and   271 
score tests and   131–132 
semiparametric regression analysis and   

71 
time-dependent covariates and   158–160 

p.d.f. (probability density function)   16, 91 
Pearson's chi-square test   208 
Peto-Peto test   43–44 
PHREG procedure 

See also Cox regression models 
See also MODEL statement, PHREG 

procedure 
accelerated failure time models   220 
ASSESS statement   173–178 
BASELINE statement   186–187,  

189–192, 290–291 
BAYES statement   197–199 
Bayesian analysis and   197 
BEST= option   201 

breast cancer study   141 
Breslow approximation   142 
BY statement   263 
censoring and   6 
choosing methods   289–290 
CLASS statement   192–193 
common time origins and   275–277, 279 
comparison of methods   152–153 
competing risks analysis and   203 
continuous-time methods and   6 
CONTRAST statement   192–194 
convergence criterion   140 
counting process method   154, 156, 158 
covariate effects via Cox models    

214–217 
COVSANDWICH option   266–269, 276 
cumulated variables   165 
data structure requirements   26 
DISCRETE method   143, 149–153 
dicrete-time methods and   6 
EXACT method   143–149, 152–153 
functionality   5–6, 125–126 
generalized R2   282 
HAZARDRATIO statement   195–197 
ID statement   267 
job duration data   264 
Kaplan-Meier method and   31, 290 
LIFEREG procedure comparison   71–72 
log-hazard form   78 
NOSUMMARY option   273 
OUTPUT statement   194 
partial likelihood method and   129–136 
piecewise exponential model and   116 
PLOTS= option   186, 188 
programming statements method    

154–155, 157 
SELECTION= option   60, 201 
STRATA statement   180–182, 218, 273 
TEST statement   192–194, 269 
testing for effects of covariates   60, 63 
time-dependent covariates and    

154–155, 159–168, 170–171 
piecewise exponential model   112–116, 199 
PIECEWISE option, BAYES statement 

(PHREG)   199 
PLOTS= option, LIFETEST procedure 

equal precision method   36 
evaluating model fit   100 
Hall-Wellner method   36 
hazard functions   66–68 
log survival plots   64 
OVERLAY suboption   190 
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plots of survival and hazard estimates   
53 

plots with confidence limits   36, 68 
time in leadership study   209 

PLOTS= option, PHREG procedure   186, 
188 

pointwise limits   36 
population-averaged method   266–270 
posterior distribution   117–124 
power of county leaders 

See leadership, time in power 
PREDICT macro   110–111, 291, 296–297 
predictions, generating   108–112 
prior distribution   117 
probability density function (p.d.f.)   16, 91 
probability distributions 

Bayesian analysis and   117 
cumulative distribution function   15–16 
hazard function   16–22 
LIFEREG procedure and   72 
probability density function   16 
probability plots   101–103 

PROBIT procedure   241 
PROBPLOT statement, LIFEREG procedure   

100–101 
product-limit estimator 

See Kaplan-Meier method 
programming statements method 

albumin measurement study   167 
alcoholic cirrhosis study   170–171 
heart transplant study   154–155, 157 

proportional hazards model 
continuous-time method and   236 
Cox regression models and   126–128, 

172–179 
defined   22, 42, 126–128 
estimating   279 
exponential model and   20 
Gompertz distribution   20–22, 127 
PHREG procedure   5 
time-invariant covariates and   140 
type-specific hazards and   205 
Weibull distribution model   21–22, 127 

proportionality, test of   173–177, 212 
prospective analysis   3 

Q 
qualitative changes   2 
QUANTILE keyword, LIFEREG procedure   

109 

R 
R2   282–283 
random censoring   12–13 
random-effects models   6, 270–272, 280 
RANDOM statement, NLMIXED procedure   

271–272 
RANK data set   304 
Raphson, Joseph   92 
rate, defined   18 
RECID data set   300–301 
recidivism study 

AFT model and   73–77 
Bayesian analysis and   118–124, 197 
Breslow approximation and   145–147 
censoring and   104–108 
counting process method and   165 
covariate tests for   61 
customized hazard ratios   195 
Efron's approximation and   146–147 
exponential model and   79 
gamma model and   86, 99 
generating predictions   108–112 
life-table method   47–55 
likelihood-ratio tests   96, 100 
log-logistic model and   85 
log-normal model and   82–83 
partial likelihood estimation and   130 
piecewise exponential model and    

113–115 
probability plots for   101–103 
RECID data set   300–301 
smoothed hazard functions   67 
survivor function estimates   187, 189, 

191 
testing for differences in survivor 

functions   45–48 
testing for effects of covariates   60–61 
tied data   143 
ties   142 
time-dependent covariates and    

163–164, 178–179 
Weibull distribution model   81, 283 

REF= option, MODEL statement (LOGISTIC)   
252 

REG procedure   73 
regression 
      See also Cox regression models 
      See also parametric regression models 
      semiparametric regression analysis   71 
renal function study   179–180 
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repeated events 
background information   260–261 
discrete-time maximum likelihood   

278–281 
fixed-effects models   273–275 
job duration data and   262, 264 
LOGISTIC procedure   278–281 
      ML estimation   278–281 
problems with conventional methods   

261–266 
random-effects models   270–272 
robust standard errors   266–270 
specifying common origins for   275–278 

REPEATED statement, GENMOD procedure   
281 

RESAMPLE option, ASSESS statement 
(PHREG)   174 

residuals, martingale   173 
retrospective data   3 
right censoring 

defined   9–10 
patterns of   11–15 
PHREG procedure and   71 

robust variance estimator   266–270 

S 
sandwich estimator, modified   266–270 
Schoenfeld residuals   175–178 
Schwarz's criterion 

See Bayesian information criterion (BIC) 
score, defined   93 
score tests 

defined   95 
partial likelihood estimation and    

131–132 
SELECTION= option, PHREG procedure   60, 

201 
semiparametric regression analysis   71 

sensitivity analysis for informative censoring   
283–287 

singly Type I censored   11–12 
slash (/)   74 
smoothed hazard functions   66–69, 210–211 
spell, defined   207 
STAN data set   301 
Stanford Heart Transplantation Program 

counting process method and   156, 158, 
184 

Efron’s approximation and   155 
left truncation and   184–186 
life-table method   56–59 
partial likelihood estimation   133–136 
STAN data set   301 

time-dependent covariates   154–161, 
169 

STD keyword, LIFEREG procedure   109 
STRATA statement 

LIFETEST procedure   39, 43–45, 47,  
62–63 

LOGISTIC procedure   280 
PHREG procedure   180–182, 218, 273 

stratification technique   179–183 
study of death 

See survival analysis 
SUBJECT option, RANDOM statement 

(NLMIXED)   272 
subject-specific models   270 
SUMMARY procedure   248 
SURVEYLOGISTIC procedure   279 
survival analysis 

approaches to   5–6 
breast cancer study   137–141 
censoring   4–5, 9–14 
choice of origin in measuring time    

23–26 
data structure requirements   26–28 
defined   1 
DISCRETE method and   149 
interpreting hazard function   18–20 
representing survival distributions    

15–18 
simple hazard models   20–22 
suitable uses   1 
survival data in   2–3 
time-dependent covariates   4–5 
usage considerations   4–5 

survival curves 
See also LIFETEST procedure 
functionality   5–6 
Kaplan-Meier method   30–38 
life-table method   49–55 
life tables from grouped data   55–59 
log survival plots   64–66 
smoothed hazard function   67–69 
testing for differences in   38–48, 141 
testing for effects of covariates   59–63 

survival data 
analysis considerations   2–3 
censoring considerations   4–5 
time-dependent covariates   4–5 
timing of events   23–26 

survival distributions 
See probability distributions 

SURVIVAL= option, BASELINE statement 
(PHREG)   187, 192 

survivor functions 
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AFT model and   72 
defined   5, 15 
estimating   186–192 
log-logistic model   84 
PHREG procedure and   71 
testing for differences in   38–48 
type-specific hazards   205–206 
Weibull distribution model   80 

T 
Tarone-Ware test   43–44 
TEST option, LIFETEST procedure   39 
TEST statement 

LIFETEST procedure   62–63 
PHREG procedure   192–194, 269 

testing 
See also hypothesis tests 
for differences in survival curves   38–48, 

141 
for effects of covariates   59–63 
goodness-of-fit tests   98–100 
linear hypotheses   192–194 
proportionality   173–177, 212 

THIN= option, BAYES statement (LIFEREG)   
120 

tied data 
Breslow approximation   131, 142,  

145–149 
Cox regression models and   142–153 
defined   142–143 
DISCRETE method   143, 149–153 
EXACT method   143–149, 152–153 
interval censoring and   235 

TIES=DISCRETE option, MODEL statement 
(PHREG) 

background information   142 
comparing methods for handling ties   

152–153 
discrete-time method and   236 
functionality   149–151 

TIES=EFRON option, MODEL statement 
(PHREG)   146–147, 217 

TIES=EXACT option, MODEL statement 
(PHREG) 

background information   142 
comparing methods for handling ties   

152–153 
functionality   144–149 
multiple event types and   228 
proportional hazards model and   236 

time-constant covariates   6, 72 
time-dependent covariates 
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