
Performance Analysis Guide

 1

Performance Analysis Guide for Intel®
Core™ i7 Processor and Intel® Xeon™ 5500

processors

By Dr David Levinthal PhD.
Version 1.0

Performance Analysis Guide

 2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT
DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE
INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH
MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without
notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not
finalize a design with this information.
Intel® Hyper-Threading Technology requires a computer system with an Intel® processor
supporting Hyper-Threading Technology and an Intel® HT Technology enabled chipset,
BIOS and operating system. Performance will vary depending on the specific hardware
and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.htm; including details on which
processors support Intel HT Technology.
The products described in this document may contain design defects or errors known as
errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.
Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo,
Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and
VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.
*Other names and brands may be claimed as the property of others.
Contact your local Intel sales office or your distributor to obtain the latest specifications
and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or
other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web
Site.
Copyright © 2008-2009 Intel Corporation

http://www.intel.com/
http://www.intel.com/

Performance Analysis Guide

 3

Introduction... 4

Basic Intel® Core™ i7 Processor and Intel® Xeon™ 5500 Processor Architecture and
Performance Analysis ... 5
Core Out of Order Pipeline ... 6
Core Memory Subsystem.. 8
Uncore Memory Subsystem.. 10

Overview... 10
Intel® Xeon™ 5500 Processor ... 10

Core Performance Monitoring Unit (PMU).. 12
Uncore Performance Monitoring Unit (PMU).. 13

Performance Analysis and the Intel® Core™ i7 Processor and Intel® Xeon™ 5500
processor Performance Events: Overview.. 13
Cycle Accounting and Uop Flow.. 14

Branch mispredictions, Wasted Work, Misprediction Penalties and UOP Flow 17
Stall Decomposition Overview... 20

Measuring Penalties .. 21
Core Precise Events .. 23

Overview... 23
Precise Memory Access Events .. 23
Latency Event ... 26
Precise Execution Events.. 28
Shadowing... 29
Loop Tripcounts.. 30
Last Branch Record (LBR) ... 30

Non-PEBS Core Memory Access Events ... 35
Bandwidth per core ... 37
L1D, L2 Cache Access and More Offcore events .. 38

Store Forwarding .. 42
Front End Events... 43

Branch Mispredictions .. 43
FE Code Generation Metrics .. 44
Microcode and Exceptions.. 45

Uncore Performance Events ... 45
The Global Queue ... 46
L3 CACHE Events.. 51
Intel® QuickPath Interconnect Home Logic (QHL) ... 52
Integrated Memory Controller (IMC)... 53
Intel® QuickPath Interconnect Home Logic Opcode Matching 56
Measuring Bandwidth From the Uncore... 63

Conclusion: ... 64
Intel® Core™ i7 Processors and Intel® Xeon™ 5500 Processors open a new class of
performance analysis capablitlies ... 64

Appendix 1.. 64
Profiles .. 64

General Exploration .. 64

Performance Analysis Guide

 4

Branch Analysis .. 65
Cycles and Uops ... 65
Memory Access .. 66
False- True Sharing... 66
FE Investigation .. 67
Working Set .. 67
Loop Analysis with call sites .. 67
Client Analysis with/without call sites ... 68

Appendix II PMU Programming .. 70

Introduction
 With the introduction of the Intel® Core™ i7 processor and Intel® Xeon™ 5500
processors, mass market computing enters a new era and with it a new need for
performance analysis techniques and capabilities. The performance monitoring unit
(PMU) of the processor has progressed in step, providing a wide variety of new
capabilities to illuminate the code interaction with the architecture.
In this paper I will discuss the basic performance analysis methodology that applies to
Intel® Core™ i7 processor and platforms that support Non-Uniform Memory Access
(NUMA) using two Intel® Xeon 5500 processors based on the same microarchitecture as
Intel® Core™ i7 processor. The events and methodology that referred to Intel® Core™
i7 processor also apply to Intel® Xeon™ 5500 processors which are based on the same
microarchitecture as Intel® Core™ i7 processor. Thus statements made only about Intel®
core™ i7 processors in this document also apply to the Intel® Xeon™ 5500 processor
based systems. This will start with extensions to the basic cycle accounting methodology
outlined for Intel® Core™2 processors(1) and also include both the specific NUMA
directed capabilities and the large extension to the precise event based sampling (PEBS) .
 Software optimization based on performance analysis of large existing
applications, in most cases, reduces to optimizing the code generation by the compiler
and optimizing the memory access. This paper will focus on this approach. Optimizing
the code generation by the compiler requires inspection of the assembler of the time
consuming parts of the application and verifying that the compiler generated a reasonable
code stream. Optimizing the memory access is a complex issue involving the bandwidth
and latency capabilities of the platform, hardware and software prefetching efficiencies
and the virtual address layout of the heavily accessed variables. The memory access is
where the NUMA nature of the Intel® Core™ i7 processor based platforms becomes an
issue.

Performance analysis illuminates how the existing invocation of an algorithm
executes. It allows a software developer to improve the performance of that invocation. It
does not offer much insight about how to change an algorithm, as that really requires a
better understanding of the problem being solved rather than the performance of the
existing solution. That being said, the performance gains that can be achieved on a large

Performance Analysis Guide

 5

existing code base can regularly exceed a factor of 2, (particularly in HPC) which is
certainly worth the comparatively small effort required.

Basic Intel® Core™ i7 Processor and Intel® Xeon™ 5500
Processor Architecture and Performance Analysis
 Performance analysis on a micro architecture is the experimental investigation of
the micro architecture’s response to a given instruction and data stream. As such, a
reasonable understanding of the micro architecture is required to understand what is
actually being measured with the performance events that are available.
 This section will cover the basics of the Intel® Core™ i7 processor and Intel®
Xeon™ 5500 processor architecture. It is not meant to be complete but merely the
briefest of introductions. For more details the reader should consult the Software
Developers Programming Optimization Guide. This introduction is broken into sections
as

1) Overview
2) Core out of order pipeline
3) Core memory subsystem
4) Uncore overview
5) Last Level Cache and Integrated memory controller
6) Intel® QuickPath Interconnect (Intel QPI)
7) Core and Uncore PMUs

Overview
 The Intel® Core™ i7 Processor and Intel® Xeon™ 5500 processors are multi
core, Intel® Hyper-Threading Technology (HT) enabled designs. Each socket has one to
eight cores, which share a last level cache (L3 CACHE), a local integrated memory
controller and an Intel® QuickPath Interconnect. Thus a 2 socket platform with quad
core sockets might be drawn as:

Discrete
Gfx

DDR3 DDR3

8M LLC

QPI

C0 C1 C2 C3

QPI

8M LLC

QPI IMC

C0 C1 C2 C3

QPI

I/O Hub

IMC

Figure 1

Performance Analysis Guide

 6

Each core is quite similar to that of the Intel® Core™2 processor. The pipelines are
rather similar except that the Intel® Core™ i7 core and pipeline supports Intel® Hyper-
Threading Technology (HT), allowing the hardware to interleave instructions of two
threads during execution to maximize utilization of the core’s resources. The Intel®
Hyper-Threading Technology (HT) can be enabled or disabled through a bios setting.
Each core has a 32KB data and instruction cache, a 256 KB unified mid-level cache and
2 level DTLB system of 64 and 512 entries. There is a single, 32 entry large page dtlb.
The cores in a socket share an inclusive last level cache. The inclusive aspect of this
cache is an important issue and will be discussed later. In the usual DP configuration the
shared, inclusive last level cache is 8MB and 16 way associative.
The cache coherency protocol messages, between the multiple sockets, are exchanged
over the Intel® QuickPath Interconnects. The inclusive L3 CACHE allow this protocol
to be extremely fast, with the latency to the L3 CACHE of the adjacent socket being even
less than the latency to the local memory.
One of the main virtues of the integrated memory controller is the separation of the cache
coherency traffic and the memory access traffic. This enables an enormous increase in
memory access bandwidth. This results in a non-uniform memory access (NUMA). The
latency to the memory dimms attached to a remote socket is considerably longer than to
the local dimms. A second advantage is that the memory control logic can run at
processor frequencies and thereby reduce the latency.

The development of a reasonably hierarchical structure and usage of the performance
events will require a fairly detailed knowledge of exactly how the components of Intel®
Core™ i7 processor execute an application’s stream of instructions and delivers the
required data. What follows is a minimal introduction to these components.

Core Out of Order Pipeline
The basic analysis methodology starts with an accounting of the cycle usage for
execution. The out of order execution can be considered from the perspective of a simple
block diagram as shown below:

Performance Analysis Guide

 7

After instructions are decoded into the executable micro operations (uops), they are
assigned their required resources. They can only be issued to the downstream stages
when there are sufficient free resources. This would include (among other requirements):

1) space in the Reservation Station (RS), where the uops wait until their inputs are
available

2) space in the Reorder Buffer, where the uops wait until they can be retired
3) sufficient load and store buffers in the case of memory related uops (loads and

stores)
Retirement and write back of state to visible registers is only done for instructions and
uops that are on the correct execution path. Instructions and uops of incorrectly predicted
paths are flushed upon identification of the misprediction and the correct paths are then
processed. Retirement of the correct execution path instructions can proceed when two
conditions are satisfied

1) The uops associated with the instruction to be retired have completed, allowing the
retirement of the entire instruction, or in the case of instructions that generate very
large number of uops, enough to fill the retirement window

2) Older instructions and their uops of correctly predicted paths have retired
The mechanics of following these requirements ensures that the visible state is always
consistent with in-order execution of the instructions.
The “magic” of this design is that if the oldest instruction is blocked, for example waiting
for the arrival of data from memory, younger independent instructions and uops, whose
inputs are available, can be dispatched to the execution units and warehoused in the
ROB upon completion. They will then retire when all the older work has completed.

Decode
and
Resource
allocation

RS Execution
Units

dispatch

ROB

Retirement/Writeback

Figure 2

Inst Fetch
Br Pred

Performance Analysis Guide

 8

The terms “issued”, “dispatched”, “executed” and “retired” have very precise meanings
as to where in this sequence they occur and are used in the event names to help document
what is being measured.
In the Intel® Core™ i7 Processor, the reservation station has 36 entries which are shared
between the Hyper-threads when that mode (HT) is enabled in the bios, with some entries
reserved for each thread to avoid locking. If not, all 36 could be available to the single
running thread, making restarting a blocked thread inefficient. There are 128 positions in
the reorder buffer, which are again divided if HT is enabled or entirely available to the
single thread if HT is not enabled. As on Core™2 processors, the RS dispatches the uops
to one of 6 dispatch ports where they are consumed by the execution units. This implies
that on any cycle between 0 and 6 uops can be dispatched for execution.

The hardware branch prediction requests the bytes of instructions for the predicted code
paths from the 32KB L1 instruction cache at a maximum bandwidth of 16 bytes/cycle.
Instructions fetches are always 16 byte aligned, so if a hot code path starts on the 15th
byte, the FE will only receive 1 byte on that cycle. This can aggravate instruction
bandwidth issues. The instructions are referenced by virtual address and translated to
physical address with the help of a 128 entry instruction translation lookaside buffer
(ITLB). The x86 instructions are decoded into the processors uops by the pipeline front
end. Four instructions can be decoded and issued per cycle.
If the branch prediction hardware mispredicts the execution path, the uops from the
incorrect path which are in the instruction pipeline are simply removed where they are,
without stalling execution. This reduces the cost of branch mispredictions. Thus the
“cost” associated with such mispredictions is only the wasted work associated with any of
the incorrect path uops that actually got dispatched and executed and any cycles that are
idle while the correct path instructions are located, decoded and inserted into the
execution pipeline.

Core Memory Subsystem
In applications working with large data footprints, memory access operations can
dominate the application’s performance. Consequently a great deal of effort goes into the
design and instrumentation of the data delivery subsystem. Data is organized as a
contiguous string of bytes and is transferred around the memory subsystem in cachelines
of 64 bytes.
Generally, load operations copy contiguous subsets of the cachelines to registers, while
store operations copy the contents of registers back into the local copies of the cachelines.
SSE streaming stores are an exception as they create local copies of cachelines which are
then used to overwrite the versions in memory, thus are slightly different. The local
copies of the lines that are accessed in this way are kept in the 32KB L1 data cache. The
access latency to this cache is 4 cycles.
While the program references data through virtual addresses, the hardware identifies the
cachelines by the physical addresses. The translation between these two mappings is
maintained by the operating system in the form of translation tables. These tables list the
translations of the standard 4KB aligned address ranges called pages. They also handle
any large pages that the application might have allocated. When a translation is used it is

Performance Analysis Guide

 9

kept in the data translation lookaside buffers (DTLBs) for future reuse, as all load and
store operations require such a translation to access the data caches. Programs reference
virtual addresses but access the cachelines in the caches through the physical addresses.
As mentioned before, there is a multi level TLB system in each core for the 4KB pages.
The level 1 caches have TLBs of 64 and 128 entries respectively for the data and
instruction caches. There is a shared 512 entry second level TLB. There is a 32 entry
DTLB for the large 2/4MB pages should the application allocate and access any large
pages. There are 7 large page ITLB entries per HT. When a translation entry cannot be
found in the DTLBs the hardware page walker (HPW) works with the OS translation data
structures to retrieve the needed translation and updates the DTLBs. The hardware page
walker begins its search in the cache for the table entry and then can continue searching in
memory if the page containing the entry required is not found.
Cacheline coherency in a multi core multi socket system must be maintained to ensure
that the correct values for the data variables can be retrieved. This has traditionally been
done through the use of a 4 value state for each copy of each cacheline. The four state
(MESI) cacheline protocol allows for a coherent use of data in a multi-core, multi-socket
platform. A line that is only read can be shared and the cacheline access protocol supports
this by allowing multiple copies of the cacheline to coexist in the multiple cores. Under
these conditions, the multiple copies of the cacheline would be in what is called a Shared
state (S). A cacheline can be put in an Exclusive state (E) in response to a “read for
ownership” (RFO) in order to store a value. All instructions containing a lock prefix will
result in a (RFO) since they always result in a write to the cache line. The F0 lock prefix
will be present in the opcode or is implied by the xchg and cmpxchg instructions when a
memory access is one of the operands. The exclusive state ensures exclusive access of the
line. Once one of the copies is modified the cacheline’s state is changed to Modified (M).
That change of state is propagated to the other cores, whose copies are changed to the
Invalid state (I).
With the introduction of the Intel® QuickPath Interconnect protocol the 4 MESI states
are supplemented with a fifth, Forward (F) state, for lines forwarded from on socket to
another.
When a cacheline, required by a data access instruction, cannot be found in the L1 data
cache it must be retrieved from a higher level and longer latency component of the
memory access subsystem. Such a cache miss results in an invalid state being set for the
cacheline. This mechanism can be used to count cache misses.
The L1D miss creates an entry in the 16 element superqueue and allocates a line fill
buffer. If the line is found in the 256KB mid level cache (MLC, also referred to as L2), it
is transferred to the L1 data cache and the data access instruction can be serviced. The
load latency from the L2 CACHE is 10 cycles, resulting in a performance penalty of
around 6 cycles, the difference of the effective L2 CACHE and L1D latencies. If the line
is not found in the L2 CACHE, then it must be retrieved from the uncore.
When all the line fill buffers are in use, the data access operations in the load and store
buffers cannot be processed. They are thus queued up in the load and store buffers. When
all the load or store buffers are occupied, the front end is inhibited from issuing uops to
the RS and OOO engine. This is the same mechanism as used in Core™2 processors to
maintain pipeline consistency.

Performance Analysis Guide

 10

The Intel® Core™ i7 processor has a 4 component hardware prefetcher very similar to
that of the Core™ processors. Two components associated with the L2 CACHE and two
components associated with the L1 data cache. The 2 components of L2 CACHE
hardware prefetcher are similar to those in the Pentium™ 4 and Core™ processors. There
is a “streaming” component that looks for multiple accesses in a local address window as
a trigger and an “adjacency” component that causes 2 lines to be fetched instead of one
with each triggering of the “streaming” component. The L1 data cache prefetcher is
similar to the L1 data cache prefetcher familiar from the Core™ processors. It has another
“streaming” component (which was usually disabled in the bios’ for the Core™
processors) and a “stride” or “IP” component that detected constant stride accesses at
individual instruction pointers. The Intel® Core™ i7 processor has various
improvements in the details of the hardware pattern identifications used in the prefetchers.

Uncore Memory Subsystem

Overview
The “uncore” is essentially a shared last level cache (L3 CACHE), a memory access
chipset (Northbridge) , and a socket interconnection interface integrated into the multi
processor package. Cacheline access requests (i.e. L2 Cache misses, uncacheable loads
and stores) from the cores are serviced and the multi socket cacheline coherency is
maintained with the other sockets and the I/O Hub.
There are five basic configurations of the Intel® Core™ i7 processor uncore.

1. Intel® Xeon™ 550 processor has a 3 channel integrated memory controller
(IMC), 2 Intel® QuickPath Interconnects to support up to a DP configuration and
an 8 MB L3 CACHE. This is the main focus of this document

2. Intel® Core™ i7 processor-HEDT (High End Desk Top) has a 3 channel IMC, 1
Intel® QuickPath Interconnect to access the chipset and an 8 MB L3 CACHE.
This is for UP configurations

3. A quad core mainstream configuration with a 2 channel IMC, integrated PCI-e and
an 8MB L3 CACHE

4. A dual core mainstream configuration where the memory access is through an off
die chipset to enable support of more memory dimm formats equipped with a
4MB L3 CACHE

5. The 8-core implementation based on the Nehalem microarchitecture will be the
MP configuration. This will be described in later documents.

Intel® Xeon™ 5500 Processor
IA block diagram of the Intel® Xeon™ 5500 processor package is shown below:

Performance Analysis Guide

 11

Cacheline requests from the cores or from a remote package or the I/O Hub are handled
by the Intel® Xeon™ 5500 processor Uncore’s Global Queue (GQ). The GQ contains 3
request queues for this purpose. One for writes with 16 entries and one of 12 entries for
off package requests delivered by the Intel® QuickPath Interconnect and one of 32
entries for load requests from the cores.
On receiving a cacheline request from one of the cores, the GQ first checks the Last Level
Cache (L3 CACHE) to see if the line is on the package. As the L3 CACHE is inclusive,
the answer can be quickly ascertained. If the line is in the L3 CACHE and was owned by
the requesting core it can be returned to the core from the L3 CACHE directly. If the line
is being used by multiple cores, the GQ will snoop the other cores to see if there is a
modified copy. If so the L3 CACHE is updated and the line is sent to the requesting core.
In the event of an L3 CACHE miss the GQ must send out requests for the line. Since the
cacheline could be in the other package, a request through the Intel® QuickPath
Interconnect (Intel QPI) to the remote L3 CACHE must be made. As each Intel® Core™
i7 processor package has its own local integrated memory controller the GQ must identify
the “home” location of the requested cacheline from the physical address. If the address
identifies home as being on the local package, then the GQ makes a simultaneous request

C3 C1

GQ
(Global Queue)

IMC
(Integrated
 Memory
Controller)

LLC

Last
level
Cache

QI
(Intel® QuickPath

Interconnect Controller)

Link

Physical

CSI
6 . 4 GH

1 .4 - 2 .3 G /

C0 C2

QHL
(QP

Home
Logic)

PC
(Power

Control Unit)

 CRA
(Control Register Access

Bus Controller)

GCL
(PLL Farm)

Figure 3

Performance Analysis Guide

 12

to the local memory controller, the Integrated memory controller (IMC). If home is
identified as belonging to the remote package, the request sent by the QPI will also be
used to access the remote IMC.
This process can be viewed in the terms used by the Intel® QuickPath Interconnect
protocol. Each socket has a Caching agent (that might be thought of as the GQ plus the L3
CACHE) and a Home agent (the IMC). An L3 CACHE miss results in simultaneous
queries for the line from all the Caching Agents and the Home agent (wherever it is). This
is shown diagrammatically below for a system with 3 caching agents (2 sockets and an
I/O hub) none of whom have the line and a home agent, which ultimately delivers the line
to the caching agent C that requested it.

Clearly, the IMC has queues for handling local and remote, read and write requests. These
will be discussed at greater length as the events that monitor their use are described.

Core Performance Monitoring Unit (PMU)
Each core has its own PMU. They have 3 fixed counters and 4 general counters for each
Hyper-Thread. If HT is disabled in the bios only one set of counters is available. All the
core monitoring events count on a per thread basis with one exception that will be
discussed. The PMIs are raised on a per logical core or HT basis when HT is enabled.
There is a significant expansion of the PEBS events with respect to Intel® Core™2
processors. This will be discussed in detail. The Last Branch Record (LBR) has been
expanded to hold 16 source/target pairs for the last 16 taken branch instructions.

I I

CA-B CA-C H
Request

Rsp

M

DATA

M

RdDat

DataC_E_Cm

I E

CA-A

I

Rsp

SnpData
SnpData

Figure 4

Performance Analysis Guide

 13

Uncore Performance Monitoring Unit (PMU)
The Uncore has its own PMU for monitoring its activity. It consists of 8 general counters
and one fixed counter. The fixed counter monitors the uncore frequency, which is
different than the core frequency. In order for the uncore PMU to generate an interrupt it
must rely on the core PMUs. If an interrupt on overflow is desired, a bit pattern of which
core PMUs to signal to raise a PMI must be programmed. As the uncore events have no
knowledge of the core, PID or TID that ultimately generated the event, the most
reasonable approach to sampling on uncore events requires sending an interrupt signal to
all of the core PMUs and generating one PMI per logical core.

Performance Analysis and the Intel® Core™ i7
Processor and Intel® Xeon™ 5500 processor
Performance Events: Overview
The objective of performance analysis is of course to improve an applications
performance. The process reveals insights into an existing code base’s performance
limitations. In general it does not tell the user how to improve an algorithm, merely the
limitations in the algorithm the user has already chosen. Improving an algorithm usually
requires deeper insight into the problem being solved, rather than insight into how the
chosen solution performs.
There are dominantly two types of performance limitations identified through analysis.
These are sub optimal code generation and sub optimal interaction of the code and the
micro architecture. Performance event profiling with software tools like the VTune™
performance analyzer, PTU and such address both issues. A profile of an execution
sensitive event like core cycles or instructions (uops) executed identifies which parts of
the code are actually being executed and thus dominating the applications performance.
One of the primary uses of such tools is as execution sensitive assembly editors. It is the
disassembly view of such tools that allow a user to evaluate the code generation and
determine if the compilation was optimal, if the high level language encoding results in
artificially constraining the compiler’s options (false loop dependencies for example), or
identifying a compiler’s inadequacies. While this is certainly one of the most important
aspects of performance analysis, it is not the subject of this paper. The focus here is on the
Intel® Core™ i7 processor specifics and identifying performance bottlenecks in the
applications interaction with the micro architecture.
The spectrum of performance monitoring events on the Intel® Core™ i7 processor
provides unprecedented insights into and application’s interaction with the processor
micro architecture. The remainder of this paper will be devoted to describing the
systematic use of the performance events. It is divided into the following discussions

1) Cycle Accounting and Uop Flow
2) Stall Decomposition Overview
3) Precise Memory Access Events (PEBS)
4) Precise Branch Events (PEBS, LBR)
5) Core Memory Access Events (non-PEBS)
6) Other Core Events (non-PEBS)
7) Front End Issues

Performance Analysis Guide

 14

8) Uncore Events

Cycle Accounting and Uop Flow
 Improving performance starts with identifying where in the application the cycles
are spent and identifying how they can be reduced. As Amdahl’s law points out, an
application can only be sped up by the fraction of cycles that are being used by the
section of code being optimized. To accomplish such a cycle count reduction it is critical
to know how the cycles are being used. This is both to identify those places where there
is nothing to be gained, but more importantly where any effort is most likely to be
fruitful. Such a cycle usage decomposition is usually described as cycle accounting. The
first step of the decomposition is usually to divide the cycles into two groups, productive
and unproductive or “stalled”. This is particularly important, as stalled cycles are usually
the easiest to recover.
 The techniques described here rely on several of the PMU programming options
beyond the performance event selection. These include the threshold (:cmask=val),
comparison logic (:inv=1), edge detection (:edge=1) and privilege level (:usr=1, :sup=1)
filtering being applied to the event counting. When the PMU is programmed to count an
event the PerfEvtSel register for one of the 4 programmable counters is programmed with
the event code and umask value to select which event should be counted. There are many
different programmable conditions under which the event can be counted. These are also
controlled by the PerfEvtSel register. When the cmask value is zero the counter is
incremented by the value of the event on each cycle. (ex: inst_retired.any can have any
value from 0 to 4). If the cmask is non zero then the value on each cycle is compared to
the cmask value and thus the cycles for which the comparison condition is true are
counted. The condition can be either GE (>=) or LT (<), depending on whether the “inv”
bit is zero or not. The “edge detect” can be used to count the changing of the condition
determined by the cmask, this is used to count divides and sqrt instructions as will be
discussed later. There are more details on the PerfEvtSel register in Appendix II.
The cycle usage is best evaluated with the flow of uops through the pipeline. In the Intel®
Core™ i7 processor core there are three particularly valuable places where this can be
done. Using the simplified pipeline diagram we identify these three spots as:

1) Output of the decoding and resource allocation (issue)
2) Execution
3) Retirement

On the diagram below we highlight a few of these performance events and where they
monitor the uop flow.

Performance Analysis Guide

 15

The pipeline has buffers distributed along the uops flow path, for example the RS and
ROB. The result is the flow discontinuities (stalls) in one location do not necessarily
propagate at all locations. The OOO execution can keep the execution units occupied
during cycles where no uops retire, with the completed uops simply being staged in the
ROB for future retirement. Similarly the buffering in the RS can similarly keep the
execution units occupied during short discontinuities in uops being issued by the pipeline
front end. The design optimizes the continuity of the uop flow at the dispatch to the
execution units. Thus SW performance optimization should also focus on this objective.

In order to evaluate the efficiency of execution, cycles are divided into those
where micro-ops are dispatched to the execution units and those where no micro-ops are
dispatched, which are thought of as execution stalls. In the Intel® Core™ i7 processor
(as on the Intel® Core™ 2 processors) uops are dispatched to one of six ports. By
comparing the total uop count to 1 (cmask=1) and using a “less than” (inv=1) and
“greater than or equal to” (inv = 0) comparison, the PMU can divide all cycles into
“stalled” and “unstalled” classes. These PMU programmings are predefined enabling the
identify:

Total cycles = UOPS_EXECUTED.CORE_STALL_CYCLES +

UOPS_EXECUTED.CORE_ACTIVE_CYCLES

Resource
Allocation

RS Execution
Units

dispatch

ROB

Retirement/Writeback

Figure 5

Inst Fetch
Br Pred

Decoder

UOPS_ISSUED
RESOURCE_STALLS

UOPS_EXECUTED

UOPS_RETIRED

Performance Analysis Guide

 16

Where UOPC_EXECUTED.CORE_STALL_CYCLES is defined as
UOPS_EXECUTED:CMASK=1:INV=1, using the usual shorthand notation.

This expression is in a sense a trivial truism, uops either are, or are not, executed on any
given cycle. This technique can be applied to any core event, with any threshold (cmask)
value and it will always be true. Any event, with a given cmask threshold value, counts
the cycles where the events value is >= to the cmask value (inv=0) , or < the cmask value
(inv=1). Thus the sum of the counts for inv =0 and inv=1 for a non-zero cmask will
always be the total core cycles, not just the unhalted cycles. This sum value is of course
subject to any frequency throttling the core might experience during the counting period.
The choice of dividing cycles at execution in this particular manner is driven by the
realization that ultimately keeping the execution units occupied is one of the essential
objectives of optimization.
Total cycles can be directly measured with CPU_CLK_UNHALTED.TOTAL_CYCLES.
This event is derived from CPU_CLK_UNHALTED.THREAD by setting the cmask = 2
and inv = 1, creating a condition that is always true. The difference between these two is
the halted cycles. These occur when the OS runs the null process.
The signals used to count the memory access uops executed (ports 2, 3 and 4) are the
only core events which cannot be counted on a logical core or HT basis. Thus the total
execution stall cycles can only be evaluated on a per core basis. If the HT is disabled this
presents no difficulty. There is some added complexity when the HT is enabled however.
While the memory ports only count on a per core basis, the ALU ports (0,1,5) count on a
per thread basis. The number of cycles where no uops were dispatched on the ALU ports
can be evaluated on a per thread basis consequently. This event is called
UOPS_EXECUTED.PORT015_STALL_CYCLES. Thus in the case where HT is
enabled we have the following inequality

 UOPS_EXECUTED.CORE_STALL_CYCLES <=
 True execution stalls per thread <=
 UOPS_EXECUTED.PORT015_STALL_CYCLES

Of course with HT disabled then
 UOPS_EXECUTED.CORE_STALL_CYCLES =
 True execution stalls per thread

In addition the uop flow can be measured at issue and retirement on a per thread basis
and so can the number of cycles where no uops flow at those points. These events are
predefined as UOPS_ISSUED.STALL_CYCLES for measuring stalls in uop issue and
UOPS_RETIRED.STALL_CYCLES for measuring stalls in uop retirement, respectively.

The edge detection option in the PMU can be used to count the number of times an
event’s value changes, by detecting the rising signal edge. If this is applied to
UOPS_EXECUTED.CORE_STALLS_CYCLES as,
(UOPS_EXECUTED:CMASK=1:INV=1:EDGE=1), then the PMU will count the
number of stalls. This programming is defined as the event
UOPS_EXECUTED.CORE_STALL_COUNT. The ratio,

Performance Analysis Guide

 17

UOPS_EXECUTED.CORE_STALLS_CYCLES/
 UOPS_EXECUTED.CORE_STALLS_COUNT

is the average stall duration, and with the use of sampling can be measured reasonably
accurately even within a code region like a single loop.

Branch mispredictions, Wasted Work, Misprediction Penalties
and UOP Flow
 Branch mispredictions can introduce execution inefficiencies that are typically
decomposed into three components.

1) Wasted work associated with executing the uops of the incorrectly predicted
path

2) Cycles lost when the pipeline is flushed of the incorrect uops
3) Cycles lost while waiting for the correct uops to arrive at the execution units

In the Intel® Core™ i7 processor, there are no execution stalls associated with clearing
the pipeline of mispredicted uops (component 2). These uops are simply removed from
the pipeline without stalling executions or dispatch. This typically lowers the penalty for
mispredicted branches. Further, the penalty associated with instruction starvation
(component 3) can be measured for the first time in OOO x86 architectures.

Speculative OOO execution introduces a component of execution inefficiency due
to the uops on mispredicted paths being dispatched to the execution units. This represents
wasted work as these uops will never be retired as is part of the cost associated with
mispredicted branches. It can be found through monitoring the flow of uops through the
pipeline. The uop flow can be measured at 3 points in the diagram shown above, going
into the RS with the event UOPS_ISSUED, going into the execution units with
UOPS_EXECUTED and at retirement with UOPS_RETIRED. The differences of
between the upstream measurements and at retirement measure the wasted work
associated with these mispredicted uops.

As UOPS_EXECUTED must be measured per core, rather than per logical
core/HT, the wasted work per core is evaluated as

Wasted Work = (UOPS_EXECUTED.PORT234_CORE +
 UOPS_EXECUTED.PORT015 (for HT1) +
 UOPS_EXECUTED.PORT015 (for HT2)) –

(UOPS_RETIRED.ANY(for HT1) +
UOPS_RETIRED.ANY(for HT2))

The events were designed to be used in this manner without corrections for micro or
macro fusion. If HT is disabled, the count for the second HT is not needed.
A “per thread” measurement can be made looking at the difference between the uops
issued and uops retired as both of these events can be counted per logical core/HT. It over
counts slightly, by the mispredicted uops that are eliminated in the RS before they can
waste cycles being executed, but this is a small correction.

Performance Analysis Guide

 18

 Wasted Work/thread = (UOPS_ISSUED.ANY + UOPS_ISSUED.FUSED)
– UOPS_RETIRED.ANY

As stated above, there is no interruption in uop dispatch or execution due to flushing the
pipeline. Thus the second component of the misprediction penalty is zero.

The third component of the misprediction penalty, instruction starvation, occurs when the
instructions associated with the correct path are far away from the core and execution is
stalled due to a lack of uops. This can now be explicitly measured at the output of the
resource allocation as follows. Using a cmask =1 and inv=1 logic applied to
UOPS_ISSUED, we can count the total number of cycles where no uops were issued to
the OOO engine.
 UOPS_ISSUED.STALL_CYCLES = UOPS_ISSUED.ANY:CMASK=1:INV=1
Since the event RESOURCE_STALLS.ANY counts the number of cycles where uops
could not be issued due to a lack of downstream resources (RS or ROB slots, load or
store buffers etc), the difference is the cycles no uops are issued because there were none
available.
With HT disabled we can identify an instruction starvation condition indicating that the
front end was not delivering uops when the execution stage could have accepted them.
Instruction Starvation =

UOPS_ISSUED.STALL_CYCLES - RESOURCE_STALLS.ANY
When HT is enabled, the uop delivery to the RS alternates between the two threads. In an
ideal case the above condition would then count 50% of the cycles, as those cycles were
delivering uops for the other thread. We can modify the expression by subtracting the
cycles that the other thread is having uops issued.
Instruction Starvation =

UOPS_ISSUED.STALL_CYCLES - RESOURCE_STALLS.ANY
 -UOPS_ISSUED.ANY:CMASK=1(other thread)
But this will over count as the resource_stall condition could exist on “this” thread while
the other thread was issuing uops. An alternative might be
CPU_CLK_UNHALTED.THREAD – UOPS_ISSUED.CORE_CYCLES_ACTIVE-
RESOURCE_STALLS.ANY
Where UOPS_ISSUED.CORE_CYCLES_ACTIVE counts the UOPS_ISSUED.ANY
event with cmask=1 and allthreads=1, thus counting the cycles either thread issues uops.
The problem of course is that if the other thread can always issue uops, it will mask the
stalls in the thread that cannot.

The event INST_RETIRED.ANY (instructions retired) is most commonly used to
evaluate a cycles/instruction ratio, but the most powerful usage is in evaluating basic
block execution counts. All of the instructions in a basic block are retired exactly the
same number of times by the very definition of a basic block. As several instructions tend
to be retired on each cycle where instructions are retired there tends to be a clustering of
the IP values associated with sampling on INST_RETIRED.ANY. This same clustering
also occurs for the cpu cycle counting events. The result is that the distribution of
samples in a VTune™ Analyzer type disassembly spreadsheet is far from uniform.
Frequently there are instructions with no samples at all right next to instructions with

Performance Analysis Guide

 19

thousands of samples. The solution to this is to average the sample counts over the
instructions of the basic block. This will result in yielding the best measurement of the
basic block execution count.
 Basic Block Execution Count =
Σinst_in_BB Samples(inst_retired)*Sample_after_Value/(Number of inst in BB)

When analyzing the execution of loops, the basic block execution counts can be used to
get the average tripcount (iteration count) of the loop. For a simple loop with no
conditional branches, this ends up being the ratio of the basic block execution count of
the loop block to the basic block execution count of the block immediately before and/or
after the loop block. Judicious use of averaging over multiple blocks can be used to
improve the accuracy. Usually the objective of the analysis is just to determine if the
tripcount is large (> 100) or very small (<10), so this rough technique is usually adequate.
There is a fixed counter version of the event and a version that can be programmed into
the general counters, which also uses the PEBS (precise event based sampling)
mechanism. The PEBS mechanism is armed by the overflow of the counter. There is a
short propagation delay between the counter overflow and when PEBS is ready to capture
the next event. This shadow makes the use of the precise event inappropriate for basic
block execution counting. By far the best mechanism for this is to use the PEBS
br_inst_retired.all_branches event and capture the LBRs (Last Branch Records). More
will be said of the use of the precise version in the section on precise events.
A final event should be mentioned in regards to stalled execution. Chains of dependent
long latency instructions (fmul, fadd, imul, etc) can result in the dispatch being stalled
while the outputs of the long latency instructions become available. In general there are
no events that assist in counting such stalls with the exception of the divide and sqrt
instructions. For these two instructions the event ARITH can be used to count both the
occurrences of these instructions and the duration in cycles that they kept their execution
units occupied. The event ARITH.CYCLES_DIV_BUSY counts the cycles that either the
divide/sqrt execution unit was occupied. (perhaps the events name is thus a bit
misleading)

 The flow of uops is mostly due to the decoded instructions. There are also uops
that can enter the flow due to micro coded exception handling, like those associated with
floating point exceptions. Micro code will be covered as part of the Front End discussion.

In summary, a table of these events is shown below, with C indicating the CMASK value,
I indicating the INV value, E indicating the EDGE DETECT value and AT indicating the
value of the ALLTHREAD bit. For the Edge Detect to work, a non zero cmask value
must also be used.
Table 1

Event Name Definition Umask Event C I E AT
ARITH.CYCLES_DIV_BUSY Cycles the divider is busy 1 14 0 0 0 0
ARITH.DIV Divide Operations executed 1 0 0 1 0
ARITH.MUL Multiply operations executed 2 0 0 0 0

CPU_CLK_UNHALTED.REF
Reference cycles when
thread is not halted 0

Fixed
Ctr 0 0 0 0

Performance Analysis Guide

 20

CPU_CLK_UNHALTED.THREAD Cycles when thread is not halted 0
Fixed
Ctr 0 0 0 0

CPU_CLK_UNHALTED.THREAD_P
Cycles when thread is
not halted (programmable counter) 0 3C 0 0 0 0

CPU_CLK_UNHALTED.REF_P
Reference cycles when thread is
not halted (programmable counter) 1 0 0 0 0

INST_RETIRED.ANY Instructions retired (fixed counter) 0
Fixed
Ctr 0 0 0 0

INST_RETIRED.ANY_P
Instructions retired
(programmable counter) 1 C0 0 0 0 0

UOPS_EXECUTED.PORT0 Uops dispatched from port 0 1 B1 0 0 0 0
UOPS_EXECUTED.PORT1 Uops dispatched on port 1 2 0 0 0 0
UOPS_EXECUTED.PORT2_CORE Uops dispatched on port 2 4 0 0 0 1
UOPS_EXECUTED.PORT3_CORE Uops dispatched on port 3 8 0 0 0 1
UOPS_EXECUTED.PORT4_CORE Uops dispatched on port 4 10 0 0 0 1
UOPS_EXECUTED.
PORT5 Uops dispatched on port 5 20 0 0 0 0
UOPS_EXECUTED.
PORT015 Uops dispatched on ports 0, 1 or 5 40 0 0 0 0
UOPS_EXECUTED.PORT015
_STALL_CYCLES

Cycles no Uops
dispatched on ports 0, 1 or 5 40 1 1 0 0

UOPS_EXECUTED.
PORT234_CORE Uops dispatched on ports 2, 3 or 4 80 0 0 0 1
UOPS_EXECUTED.
CORE_ACTIVE_CYCLES

Cycles no Uops
dispatched on any port 3F 1 0 0 1

UOPS_EXECUTED.
CORE_STALL_COUNT

Number of times no Uops
dispatched on any port 3f 1 1 1 1

UOPS_EXECUTED.
CORE_STALL_CYCLES

Cycles no Uops
dispatched on any port 3F 1 1 0 1

UOPS_ISSUED.ANY Uops issued 1 0E 0 0 0 0
UOPS_ISSUED.STALL_CYCLES Cycles no Uops were issued 1 1 1 0 0
UOPS_ISSUED.FUSED Fused Uops issued 2 0 0 0 0
UOPS_RETIRED.ACTIVE_CYCLES Cycles Micro-ops are retiring 1 C2 1 0 0 0
UOPS_RETIRED.ANY Micro-ops retired 1 0 0 0 0
UOPS_RETIRED.STALL_CYCLES Cycles Micro-ops are not retiring 1 1 1 0 0
UOPS_RETIRED.RETIRE_SLOTS Number of retirement slots used 2 0 0 0 0
UOPS_RETIRED.MACRO_FUSED Number of macro-fused Uops retired 4 0 0 0 0
RESOURCE_STALLS.ANY Resource related stall cycles 1 A2 0 0 0 0
RESOURCE_STALLS.LOAD Load buffer stall cycles 2 0 0 0 0
RESOURCE_STALLS.RS_FULL Reservation Station full stall cycles 4 0 0 0 0
RESOURCE_STALLS.STORE Store buffer stall cycles 8 0 0 0 0
RESOURCE_STALLS.ROB_FULL ROB full stall cycles 10 0 0 0 0
RESOURCE_STALLS.FPCW FPU control word write stall cycles 20 0 0 0 0
RESOURCE_STALLS.MXCSR 40 0 0 0 0
RESOURCE_STALLS.OTHER Other Resource related stall cycles 80 0 0 0 0

Stall Decomposition Overview
 The decomposition of the stall cycles is accomplished through a standard
approximation. It is assumed that the penalties occur sequentially for each performance
impacting event. Consequently, the total loss of cycles available for useful work is then
the number of events, Ni, times the average penalty for each type of event, Pi.

Performance Analysis Guide

 21

 Counted_Stall_Cycles = Σ Pi * Ni

 This only accounts for the performance impacting events that are or can be
counted with a PMU event. Ultimately there will be several sources of stalls that cannot
be counted, however their total contribution can be estimated by the difference of

 Unaccounted = Stalls – Counted_Stall_Cycles

= UOPS_EXECUTED.CORE_STALL_CYCLES –
 Σ Pi * Ni(both threads)

The unaccounted component can become negative as the sequential penalty model is
overly simple and usually over counts the contributions of the individual architectural
issues. As UOPS_EXECUTED.CORE_STALL_CYCLES counts on a per core basis
rather than on a per thread basis, the over counting can become severe. In such cases it
may be preferable to use the port 0,1,5 uop stalls, as that can be done on a per thread
basis.
 Unaccounted/thread = Stalls/thread – Counted_Stall_Cycles/thread

= UOPS_EXECUTED. PORT015_THREADED_STALL_CYCLES
– Σ Pi * Ni

This unaccounted component is meant to represent the components that were either not
counted due to lack of performance events or simply neglected during the data collection.
 One can also choose to use the “retirement” point as the basis for stalls. The
PEBS UOPS_RETIRED.STALL_CYCLES event has the advantage of being evaluated
on a per thread basis and being having the HW capture the IP associated with the retiring
uop. This means that the IP distribution will not be effected by STI/CLI deferral of
interrupts in critical sections of OS kernels, thus producing a more accurate profile of OS
activity.

Measuring Penalties
Decomposing the stalled cycles in this manner should always start by first considering
the large penalty events, events with penalties of greater than 10 cycles for example.
Short penalty events (P < 5 cycles) can frequently be hidden by the combined actions of
the OOO execution and the compiler. Both of these strive to create maximal parallel
execution for precisely the purpose of keeping the execution units busy during stalls due
to instruction dependencies. The large penalty operations are dominated by memory
access and the very long latency instructions for divide and sqrt.

The largest penalty events are associated with load operations that require a cacheline
which is not in one of the core’s two data caches. Not only must we count how many
occur, but we need to know what penalty to assign. The standard approach to measuring
latency is to measure the average number of cycles a request is in a queue.

Latency = (Σcycles Queue_entries_outstanding)/Queue_inserts

Performance Analysis Guide

 22

However, the penalty associated with each queue insert (ie cachemiss), is the latency
divided by the average queue occupancy. This correction is needed to avoid over
counting associated with overlapping penalties.

Average Queue Depth = (Σcycles Queue_entries_outstanding)
 /Cycles_queue_not_empty
Thus
 Penalty = Latency/Average Queue Depth
 = Cycles_queue_not_empty/Queue_inserts

An alternative way of thinking about this is to realize that the sum of all the penalties, for
an event that occupies a queue for its duration, cannot exceed the time that the queue is
not empty.
 Cycles_queue_not_empty >= Events * <Penalty>
The equality results in the expression derived in the first part of the discussion.

Neither of these more standard techniques will be used much for this processor. In
part due to the wide number of data sources and the large variations in their data delivery
latencies. The Precise Event Based Sampling (PEBS) will be the technique of choice
The use of the precise latency event, that will be discussed later, provides a more accurate
and flexible measurement technique when sampling is used. As each sample records both
a load to use latency and a data source, the average latency per data source can be
evaluated. Further as the PEBS hardware supports buffering the events without
generating a PMI until the buffer is full, it is possible to make such an evaluation quite
efficient.
While there are many events that will yield the number of L2 CACHE misses, the
associated penalties may average over a wide variety of data sources which actually have
individual penalties that vary by an order of magnitude. A more detailed decomposition is
needed that just an L2 CACHE miss.
The approximate latencies for the individual data sources that respond to an L2 CACHE
miss are shown in table 2. These values are only approximate as they depend on
processor frequency and DIMM speed among other things.

Table 2
Data Source Latency
L3 CACHE hit, line unshared ~40 cycles
L3 CACHE hit, shared line in another core ~65 cycles
L3 CACHE hit, modified in another core ~75 cycles

remote L3 CACHE
~100-300
cycles

Local Dram ~60 ns
Remote Dram ~100 ns

NOTE: THESE VALUES ARE ROUGH APPROXIMATIONS. THEY DEPEND ON
CORE AND UNCORE FREQUENCIES, MEMORY SPEEDS, BIOS SETTINGS,
NUMBERS OF DIMMS, ETC,ETC..YOUR MILEAGE MAY VARY.

Performance Analysis Guide

 23

Core Precise Events

Overview
The Precise Event Based Sampling (PEBS) mechanism enables the PMU to capture the
architectural state and IP at the completion of the instruction that caused the event. This
not only allows the location of the events in the instruction space to be accurate profiled,
but by capturing the values of the registers, instruction arguments can be reconstructed in
a post processing phase. The Intel® Core™ i7 processor has greatly expanded the
numbers and types of precise events.
The mechanism works by using the counter overflow to arm the PEBS data acquisition.
Then on the next event, the data is captured and the interrupt is raised.
The captured IP value is sometimes referred to as IP +1, because at the completion of the
instruction, the IP value is that of the next instruction.
By their very nature precise events must be “at-retirement” events. For the purposes of
this discussion the precise events are divided into Memory Access events, associated with
the retirement of loads and stores, and Execution Events, associated with the retirement
of all instructions or specific non memory instructions (branches, FP assists, SSE uops)

Precise Memory Access Events
There are two enormously powerful properties common to all precise memory access
events:

1) The exact instruction can be identified because the hardware captures the IP of
the offending instruction. Of course the captured IP is that of the following
instruction but one simply moves the samples up one instruction. This works
even when the recorded IP points to the first instruction of a basic block
because in such a case the offending instruction has to be the last instruction
of the previous basic block, as branch instructions never load or store data.

2) The PEBS buffer contains the values of all 16 general registers, R1-R16,
where R1 is also called RAX. When coupled with the disassembly the address
of the load or store can be reconstructed and used for data access profiling.
The Intel® Performance Tuning Utility does exactly this, providing a wide
variety of powerful analysis techniques.

The Intel® Core™ i7 processor precise memory access events mainly focus on loads as
those are the events typically responsible for the very long duration execution stalls. They
are broken down by the data source, thereby indicating the typical latency and the data
locality in the intrinsically NUMA configurations. These precise load events are the only
L2 CACHE, L3 CACHE and DRAM access events that only count loads. All others will
also include the L1D and/or L2 CACHE hardware prefetch requests. Many will also
include RFO requests, both due to stores and to the hardware prefetchers.
All four general counters can be programmed to collect data for precise events.
The ability to reconstruct the virtual addresses of the load and store instructions allows an
analysis of the cacheline and page usage efficiency. Even though cachelines and pages
are defined by physical address the lower order bits are identical, so the virtual address
can be used.

Performance Analysis Guide

 24

As the PEBS mechanism captures the values of the register at completion of the
instruction, the dereferenced address for the following type of load instruction (Intel asm
convention) cannot be reconstructed.
 MOV RAX, [RAX+const]
This kind of instruction is mostly associated with pointer chasing
 mystruc = mystruc->next;
This is a significant shortcoming of this approach to capturing memory instruction
addresses.

The basic memory access events are shown in the table below:

Table 3
Event Name Description umask Event

MEM_INST_RETIRED.LOADS
Instructions retired which
contains a load 01 0B

MEM_INST_RETIRED.STORES
Instructions retired which
contains a store 02

MEM_LOAD_RETIRED.L1D_HIT
Retired loads that hit the
L1 data cache 01 CB

MEM_LOAD_RETIRED.L2_HIT
Retired loads that hit the
L2 cache 02

MEM_LOAD_RETIRED.
LLC_UNSHARED_HIT

Retired loads that hit the
LL3 cache 04

MEM_LOAD_RETIRED.
OTHER_CORE_L2_HIT_HITM

Retired loads that hit
sibling core's L2 08

MEM_LOAD_RETIRED.LLC _MISS
Retired loads that miss the
LL3 cache 10

MEM_LOAD_RETIRED.
DROPPED_EVENTS

Retired load info dropped
due to data breakpoint 20

MEM_LOAD_RETIRED.HIT_LFB

Retired loads that miss the
L1 data cache and hit a
line fill buffer 40

MEM_LOAD_RETIRED.DTLB_MISS
Retired loads that miss the
DTLB 80

MEM_UNCORE_RETIRED.
OTHER_CORE_L2_HITM

Memory instructions retired
LL3 Cache hit and HITM in
sibling core 02 0F

MEM_UNCORE_RETIRED.
REMOTE_CACHE_LOCAL_HOME_HIT

Memory instructions retired
remote cache HIT 08

MEM_UNCORE_RETIRED.
REMOTE_DRAM

Memory instructions retired
remote DRAM 10

MEM_UNCORE_RETIRED.LOCAL_DRAM
Memory instructions retired
local DRAM 20

MEM_UNCORE_RETIRED.UNCACHEABLE
Memory instructions retired
IO 80

MEM_STORE_RETIRED.DTLB_MISS
Retired stores that miss
the DTLB 01 0C

MEM_STORE_RETIRED.
DROPPED_EVENTS

Retired stores dropped due
to data breakpoint 02

ITLB_MISS_RETIRED
Retired instructions that
missed the ITLB 20 C8

Performance Analysis Guide

 25

Strictly speaking the ITLB miss event is really an execution event but is listed here as it
is associated with cacheline access.
The precise events listed above allow load driven cache misses to be identified by data
source. This does not identify the “home” location of the cachelines with respect to the
NUMA configuration. The exceptions to this statement are the events
MEM_UNCORE_RETIRED.LOCAL_DRAM and
MEM_UNCORE_RETIRED.NON_LOCAL_DRAM. These can be used in conjunction
with instrumented malloc invocations to identify the NUMA “home” for the critical
contiguous buffers used in an application.
The sum of all the MEM_LOAD_RETIRED events will equal the
MEM_INST_RETIRED.LOADS count.
A count of L1D misses can be achieved with the use of all the MEM_LOAD_RETIRED
events, except MEM_LOAD_RETIRED.L1D_HIT. It is better to use all of the individual
MEM_LOAD_RETIRED events to do this, rather than the difference of
MEM_INST_RETIRED.LOADS-MEM_LOAD_RETIRED.L1D_HIT because while the
total counts of precise events will be correct, and they will correctly identify instructions
that caused the event in question, the distribution of the events may not be correct due to
PEBS SHADOWING, discussed later in this section.

L1D_MISSES = MEM_LOAD_RETIRED.HIT_LFB +
MEM_LOAD_RETIRED.L2_HIT + MEM_LOAD_RETIRED.LLC_UNSHARED_HIT
+ MEM_LOAD_RETIRED.OTHER_CORE_HIT_HITM +
MEM_LOAD_RETIRED.LLC_MISS

MEM_LOAD_RETIRED.LLC_UNSHARED_HIT is not well named. The inclusive L3
CACHE has a bit pattern to identify which core has a copy of the line. If the only bit set
is for the requesting core (unshared hit) then the line can be returned from the L3
CACHE with no snooping of the other cores. If multiple bits are set, then the line is in a
shared state and the copy in the L3 CACHE is current and can also be returned without
snooping the other cores. If the line is read for ownership (RFO) by another core, this will
put the copy in the L3 CACHE into an exclusive state. If the line is then modified by that
core and later evicted, the written back copy in the L3 CACHE will be in a modified
state and snooping will not be required.
MEM_LOAD_RETIRED.LLC_UNSHARED_HIT counts all of these. The event should
really have been called MEM_LOAD_RETIRED.LLC_HIT_NO_SNOOP.
Similarly, MEM_LOAD_RETIRED.LLC_HIT_OTHER_CORE_HIT_HITM would
have been better named as MEM_LOAD_RETIRED.LLC_HIT_SNOOP. The author
apologizes for this, having been the one responsible for the poor naming.

When a modified line is retrieved from another socket it is also written back to memory.
This causes remote HITM access to appear as coming from the home dram. The
MEM_UNCORE_RETIRED.LOCAL_DRAM and
MEM_UNCORE_RETIRED.REMOTE_DRAM thus also count the L3 CACHE misses
satisfied by modified lines in the caches of the remote socket.

Performance Analysis Guide

 26

There is a difference in the behavior of MEM_LOAD_RETIRED.DTLB_MISSES with
respect to that on Intel® Core™2 processors. Previously the event only counted the first
miss to the page, as do the imprecise events. The event now counts all loads that result in
a miss, thus it includes the secondary misses as well.

Latency Event
Saving the best for last, the Intel® Core™ i7 processor has a “latency event” which is
very similar to the Itanium® Processor Family Data EAR event. This event samples
loads, recording the number of cycles between the execution of the instruction and actual
deliver of the data. If the measured latency is larger than the minimum latency
programmed into MSR 0x3f6, bits 15:0, then the counter is incremented. Counter
overflow arms the PEBS mechanism and on the next event satisfying the latency
threshold, the measured latency, the virtual or linear address and the data source are
copied into 3 additional registers in the PEBS buffer. Because the virtual address is
captured into a known location, the sampling driver could also execute a virtual to
physical translation and capture the physical address. The physical address identifies the
NUMA home location and in principle allows an analysis of the details of the cache
occupancies.
Further, as the address is captured before retirement even the pointer chasing encodings
 MOV RAX, [RAX+const]
have their addresses captured.
Because an MSR is used to program the latency only one minimum latency value can be
sampled on a core during a given period. To enable this, the Intel performance tools
restrict the programming of this event to counter 4 to simplify the scheduling.
The preprogrammed event files used by the Intel® PTU and Vtune™ Performance
Analyzer contain the following latency events, differing in the minimum latencies
required to make them count. Both tools do the required programming of MSR 0x3f6.

Table 4
Event Name Description umask Event
MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_0

Load instructions retired above 0
cycles 10 0B

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_4

Load instructions retired above 4
cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_8

Load instructions retired above 8
cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_10

Load instructions retired above 16
cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_20

Load instructions retired above 32
cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_40

Load instructions retired above 64
cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_80

Load instructions retired above
128 cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_100

Load instructions retired above
256 cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE Load instructions retired above 10

Performance Analysis Guide

 27

_THRESHOLD_200 512 cycles
MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_400

Load instructions retired above
1024 cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_800

Load instructions retired above
2048 cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_1000

Load instructions retired above
4096 cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_2000

Load instructions retired above
8192 cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_4000

Load instructions retired above
16384 cycles 10

MEM_INST_RETIRED.LATENCY_ABOVE
_THRESHOLD_8000

Load instructions retired above
32768 cycles 10

The Data Source register captured in the PEBS buffer with the Latency Event is
interpreted as follows:

Table 5
Intel®
Core™ i7
Processor
Data
Source
Encoding

Data Source short
description Data Source Longer Description

0x0 Unknown Miss Unknown cache miss.

0x1 L1 Hit Minimal latency core cache hit. This request was
satisfied by the data cache.

0x2 Fill Buffer Hit
Pending core cache hit. The data is not yet in the data
cache, but is located in a line fill buffer and will soon be
committed to cache. The data request was satisfied
from the line fill buffer.

0x3 L2 CACHE Hit
Highest latency core cache hit. This data request was
satisfied by the L2 CACHE.

0x4 L3 CACHE Hit L3 CACHE Hit: Hit the last level cache in the uncore
with no coherency actions required (snooping).

0x5 L3 CACHE Hit Other Core
Hit Snp

L3 CACHE Hit: Hit the last level cache and was serviced
by another core with a cross core snoop where no
modified copies found. (clean)

0x6 L3 CACHE Hit Other Core
HitM

L3 CACHE Hit: Hit the last level cache and was serviced
by another core with a cross core snoop where modified
copies found. (HITM)

0x7 L3 CACHE_No_Details Encoding not supported

0x8 Remote_Cache_FWD

L3 CACHE Miss: Local home requests that missed the
last level cache and was serviced by forwarded data
following a cross package snoop where no modified
copies found. (Remote home requests are not
counted)

Performance Analysis Guide

 28

0x9 Remote_Cache_HITM

L3 CACHE Miss: Local or Remote home requests that
missed the last level cache and was serviced by
forwarded data following a cross package snoop where
a modified copy was found and coherency actions
taken. (Not supported at this time)

0xA Local_Dram_GoTo_S
L3 CACHE Miss: Local home requests that missed the
last level cache and was serviced by local dram. (goto
Shared state)

0xB Remote_Dram_GoTo_S
L3 CACHE Miss: Remote home requests that missed
the last level cache and was serviced by remote dram.
(goto Shared state)

0xC Local_Dram_GoTo_E
L3 CACHE Miss: Local home requests that missed the
last level cache and was serviced by local dram. (goto
Execlusive state)

0xD Remote_Dram_GoTo_E
L3 CACHE Miss: Remote home requests that missed
the last level cache and was serviced by remote dram.
(goto Exclusive state)

0xE I/O None: The request was a result of an input or output
operation.

0xF Uncacheable The request was to un-cacheable memory.

The latency event is the recommended method to measure the penalties for a cycle
accounting decomposition. Each time a PMI is raised by this PEBS event a load to use
latency and a data source for the cacheline is recorded in the PEBS buffer. The data
source for the cacheline can be deduced from the low order 4 bits of the data source field
and the table shown above. Thus an average latency for each of the 16 sources can be
evaluated from the collected data. As only one minimum latency at a time can be
collected it may be awkward to evaluate the latency for an L2 CACHE hit and a remote
socket dram. A minimum latency of 32 cycles should give a reasonable distribution for
all the offcore sources however. The Intel® PTU version 3.2 performance tool can
display the latency distribution in the data profiling mode and allows sophisticated event
filtering capabilities for this event.

Precise Execution Events
There are a wide variety of precise events monitoring other instructions than load and
store instructions. Of particular note are the precise branch events that have been added.
All branches, near calls and conditional branches can all be counted with precise events,
for both retired and mispredicted (and retired) branches of the type selected. For these
events, the PEBS buffer will contain the target of the branch. If the Last Branch Record
(LBR) is also captured then the location of the branch instruction can also be determined.
When the branch is taken the IP value in the PEBS buffer will also appear as the last
target in the LBR. If the branch was not taken (conditional branches only) then it won’t

Performance Analysis Guide

 29

and the branch that was not taken and retired is the instruction before the IP in the PEBS
buffer.
In the case of near calls retired, this means that Event Based Sampling (EBS) can be used
to collect accurate function call counts. As this is the primary measurement for driving
the decision to inline a function, this is an important improvement. In order to measure
call counts, you must sample on calls. Any other trigger introduces a bias that cannot be
guaranteed to be corrected properly.
The precise branch events are shown in the table below:

Table 6

Event Name Description umask Event
BR_INST_RETIRED.CONDITIONAL Retired conditional branch instructions 01 C4
BR_INST_RETIRED.NEAR_CALL Retired near call instructions 02
BR_INST_RETIRED.ALL_BRANCHES Retired branch instructions 04

Shadowing
There is one source of sampling bias associated with precise events. It is due to the time
delay between the PMU counter overflow and the arming of the PEBS hardware. During
this period events cannot be detected due to the timing shadow. To illustrate the effect
consider a function call chain where a long duration function, foo, which calls a chain of
3 very short duration functions, foo1 calling foo2 which calls foo3, followed by a long
duration function foo4. If the durations of foo1,foo2 and foo3 are less than the shadow
period the distribution of pebs sampled calls will be severely distorted.

1) if the overflow occurs on the call to foo, the pebs mechanism is armed by the time
the call to foo1 is executed and samples will be taken showing the call to foo1
from foo.

2) If the overflow occurs due to the call to foo1, foo2 or foo3 however, the PEBS
mechanism will not be armed until execution is in the body of foo4. Thus the calls
to foo2, foo3 and foo4 cannot appear as pebs sampled calls

Shadowing can effect the distribution of all PEBS events. It will also effect the
distribution of basic block execution counts identified by using the combination of a
branch retired event (PEBS or not) and the last entry in the LBR. If there were no delay
between the PMU counter overflow and the LBR freeze, the last LBR entry could be used
to sample taken retired branches and from that the basic block execution counts. All the
instructions between the last taken branch and the previous target are executed once.
Such a sampling could be used to generate a “software” instruction retired event with
uniform sampling, which in turn can be used to identify basic block execution counts.
Unfortunately the shadowing causes the branches at the end of short basic blocks to not
be the last entry in the LBR, distorting the measurement. Since all the instructions in a
basic block are by definition executed the same number of times.
 The shadowing effect on call counts and basic block execution counts can be
alleviated to a large degree by averaging over the entries in the LBR. This will be
discussed in the section on LBRs.

Performance Analysis Guide

 30

Loop Tripcounts
The available options for optimizing loops are completely constrained by the loop
tripcount. For counted loops it is very common for the induction variable to be compared
to the tripcount in the termination condition evaluation. This is particularly true if the
induction variable is used within the body of the loop, even in the face of heavy
optimization. Thus a sequence like the following will appear in the disassembly:
addq $0x8, %rcx
cmpq %rax, %rcx
jnge triad+0x27
This was from a heavily optimized triad loop that the compiler had unrolled by 8X. In
this case the two registers, rax and rcx are the tripcount and induction variable. If the
PEBS buffer is captured for the conditional branches retired event, the average values of
the two registers in the compare can be evaluated. The one with the larger average will be
the tripcount. Thus the average, RMS, min and max can be evaluated and even a
distribution of the recorded values.

Last Branch Record (LBR)
The LBR captures the source and target of each retired taken branch. It keeps 16 source-
target sets in a rotating buffer. In Intel® Core™ i7 processor, the types and privilege
levels of the branch instructions that are captured can be filtered. This means that the
LBR mechanism can be programmed to capture branches occurring at ring0 or ring3 or
both (default) privilege levels. Further the types of taken branches that are recorded can
also be filtered. The table below lists the filtering options

Table 7
LBR Filter Bit Name Bit Description bit
CPL_EQ_0 Exclude ring 0 0
CPL_NEQ_0 Exclude ring3 1
JCC Exclude taken conditional branches 2
NEAR_REL_CALL Exclude near relative calls 3
NEAR_INDIRECT_CALL Exclude near indirect calls 4
NEAR_RET Exclude near returns 5
NEAR_INDIRECT_JMP Exclude near unconditional near branches 6
NEAR_REL_JMP Exclude near unconditional relative branches 7
FAR_BRANCH Exclude far branches 8

The default is to capture all branches at all privilege levels (all bits zero). Another
reasonable programming would set all bits to 1 except bit 1 (capture ring 3) and bit 3
(capture near calls) and bits 6 and 7. This would leave only ring 3 calls and unconditional
jumps in the LBR. Such a programming would result in the LBR having the last 16 taken
calls and unconditional jumps retired and their targets in the buffer. A PMU sampling
driver could then capture this restricted “call chain” with any event, thereby providing a
“call tree” context. The inclusion of the unconditional jumps will unfortunately cause
problems, particularly when there are if-else structures within loops. In a case where
there were particularly frequent function calls at all levels, the inclusion of returns could
be added to clarify the context. However this would reduce the call chain depth that could

Performance Analysis Guide

 31

be captured. A fairly obvious usage would be to trigger the sampling on extremely long
latency loads, to enrich the sample with accesses to heavily contended locked variables,
and then capture the call chain to identify the context of the lock usage.
Call Counts and Function Arguments
If the LBRs are captured for PMIs triggered by the BR_INST_RETIRED.NEAR_CALL
event, then the call count per calling function can be determined by simply using the last
entry in LBR.As the PEBS IP will equal the last target IP in the LBR, it is the entry point
of the calling function. Similarly, the last source in the LNR buffer was the call site from
within the calling function. If the full PEBS record is captured as well, then for functions
with limited numbers of arguments on Intel64 OS’s, you can sample both the call counts
and the function arguments.
LBRs and Basic Block Execution Counts
Another interesting usage is to use the BR_INST_RETIRED.ALL_BRANCHES event
and the LBRs with no filter to evaluate the execution rate of basic blocks. As the LBRs
capture all taken branches, all the basic blocks between a branch IP (source) and the
previous target in the LBR buffer were executed one time. Thus a simple way to evaluate
the basic block execution counts for a given load module is to make a map of the starting
locations of every basic block. Then for each sample triggered by the PEBS collection of
BR_INST_RETIRED.ALL_BRANCHES, starting from the PEBS address (a target but
perhaps for a not taken branch and thus not necessarily in the LBR buffer) and walking
backwards through the LBRs until finding an address not corresponding to the load
module of interest, count all the basic blocks that were executed. Calling this value
“number_of_basic_blocks”, increment the execution counts for all of those blocks by
1/(number_of_basic_blocks). This technique also yields the taken and not taken rates for
the active branches. All branch instructions between a source IP and the previous target
IP (within the same module) were not taken, while the branches listed in the LBR were
taken. This is illustrated in the graphics below

Target_0 Branch_0

Target_1 Branch_1

All instructions between Target_0 and Branch_1 are retired 1 time
All Basic Blocks between Target_0 and Branch_1 are executed 1 time
All Branch Instructions between Target_0 and Branch_1 are not taken

Performance Analysis Guide

 32

Assume every branch is taken, and average over the basic blocks in the LBR trajectory
results in:

20

20

2
2
2
2

20

20 O

P
C O

P
C O

P

C

O

P

C

O

P

C

O

P

C

O

P
C

5N

0

0
0
0

N

N

O means counter overflow
P means PEBS enabled
C means interupt occurs

Assume 10 cycle shadow for
this example

Numbers are
Cycles/basic block

Performance Analysis Guide

 33

This illustrates a situation where some basic blocks would appear to never get samples
and some have many times too many. Weighting each entry by 1/(num of basic blocks in
the LBR trajectory), in this example would result in dividing the numbers in the right
most table by 16. Thus we end up with far more accurate execution counts ((1.25-> 1.0) *
N) in all of the basic blocks, even those that never directly caused a PEBS sample.

As on Intel® Core™2 processors there is a precise instructions retired event that can be
used in a wide variety of ways. In addition there are precise events for uops_retired,
various SSE instruction classes, FP assists. It should be noted that the FP assist events
only detect x87 FP assists, not those involving SSE FP instructions. Detecting all assists
will be discussed in the section on the pipeline Front End.
The instructions retired event has a few special uses. While its distribution is not uniform,
the totals are correct. If the values recorded for all the instructions in a basic block are
averaged, a measure of the basic block execution count can be extracted. The ratios of
basic block executions can be used to estimate loop tripcounts when the counted loop
technique discussed above cannot be applied.
The PEBS version (general counter) instructions retired event can further be used to
profile OS execution accurately even in the face of STI/CLI semantics, because the pebs

20

20

2

2

2

2

20

20 O

P
C O

P
C O

P

C

O

P

C

O

P

C

O

P

C

O

P
C 5N

0

0

0

0

N

N

Cycles/branch
taken

Pebs Samples
taken

Many more with 20
Cycles/branch
taken

Many more with
N samples taken

20N

19N

18N

17N

16N

16N

16N

16N

Number of LBR
entries

Many more with
16 N LBR Entries

Performance Analysis Guide

 34

buffer retains the IP value of the OS code section where the overflow (+1) occurred. The
interrupt then occurs after the critical section has completed, but the data was frozen
correctly. If the cmask value is set to some very high value and the invert condition is
applied, the result is always true, and the event will count core cycles (halted + unhalted).
Consequently both cycles and instructions retired can be accurately profiled. The
UOPS_RETIRED.ANY event, which is also precise can also be used to profile Ring 0
execution and really gives a more accurate display of execution.

The events are shown in the table below:

Table 8

Event Name Description Umask
Even
t Cmask

In
v

Edg
e

INST_RETIRED.ANY_P
Instructions retired
(general counter) 01 C0 0 0 0

INST_RETIRED.TOTAL_CYCLES Total cycles 01 C0 10 1 0
INST_RETIRED.TOTAL_CYCLES
_R0 Total cycles in ring 0 01 C0 10 1 0
INST_RETIRED.TOTAL_CYCLES
_R3 Total cycles in ring 3 01 C0 10 1 0

INST_RETIRED.X87
Retired floating-point
operations 02 C0 0 0 0

INST_RETIRED.MMX
Retired MMX
instructions 04 C0 0 0 0

UOPS_RETIRED.ACTIVE_
CYCLES

Cycles Uops are being
retired 01 C2 1 0 0

UOPS_RETIRED.ANY Uops retired 01 C2 0 0 0
UOPS_RETIRED.STALL_
CYCLES

Cycles Uops are not
retiring 01 C2 1 1 0

UOPS_RETIRED.RETIRE_SLOTS Retirement slots used 02 C2 0 0 0
UOPS_RETIRED.MACRO_
FUSED

Macro-fused Uops
retired 04 C2 0 0 0

SSEX_UOPS_RETIRED.PACKED
_SINGLE

SIMD Packed-Single
Uops retired 01 C7 0 0 0

SSEX_UOPS_RETIRED.SCALAR
_SINGLE

SIMD Scalar-Single
Uops retired 02 C7 0 0 0

SSEX_UOPS_RETIRED.PACKED
_DOUBLE

SIMD Packed-Double
Uops retired 04 C7 0 0 0

SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

SIMD Scalar-Double
Uops retired 08 C7 0 0 0

SSEX_UOPS_RETIRED.VECTOR
_INTEGER

SIMD Vector Integer
Uops retired 10 C7 0 0 0

FP_ASSIST.ANY
X87 Floating point
assists 01 F7 0 0 0

FP_ASSIST.OUTPUT
X87 FP assist on input
values 02 F7 0 0 0

FP_ASSIST.INPUT
X87 FP assist on
output values 04 F7 0 0 0

Performance Analysis Guide

 35

Non-PEBS Core Memory Access Events
On the Intel® Core™ i7 processor the mid level cache (L2 CACHE) misses and traffic
with the uncore and beyond can be measured with a large variety of metrics. Besides the
PEBS events discussed earlier which monitor loads there are a wide variety of
regular/non-PEBS events as well.
A special event to decompose the L2 CACHE misses by data source exists among the
Intel® Core™ i7 processor core events. It is organized as a matrix of request type by
response type. Multiple requests and responses can be selected and if any of the requests
and any of the responses are satisfied by a particular L2 CACHE miss then the event
increments. A list of request and response types are shown below.

Table 9

Bit
position Description

Request 0
Demand Data Rd = DCU reads (includes partials, DCU
Prefetch)

Type 1 Demand RFO = DCU RFOs
 2 Demand Ifetch = IFU Fetches
 3 Writeback = L2 CACHE_EVICT/DCUWB
 4 PF Data Rd = MPL Reads
 5 PF RFO = MPL RFOs
 6 PF Ifetch = MPL Fetches
 7 OTHER
Response 8 L3 CACHE_HIT_UNCORE_HIT
Type 9 L3 CACHE_HIT_OTHER_CORE_HIT_SNP
 10 L3 CACHE_HIT_OTHER_CORE_HITM
 11 L3 CACHE_MISS_REMOTE_HIT_SCRUB
 12 L3 CACHE_MISS_REMOTE_FWD
 13 L3 CACHE_MISS_REMOTE_DRAM
 14 L3 CACHE_MISS_LOCAL_DRAM
 15 IO_CSR_MMIO

The request type “other”, selected by enabling bit 7 includes things like non temporal
SSE stores. The three L3 CACHE hit options correspond to an unshared line, a shared
clean line and a shared line that is modified in one of the other cores. The L3
CACHE_miss_remote options correspond to lines that must have the cores snooped (ie
used by multiple cores) or clean lines that are used by only one core and can be safely
forwarded directly from the remote L3 CACHE.
Due to the number of bits required to program the matrix selection, a dedicated MSR (1A6) is used.
However, the global nature of the MSR results in only one version of the event being able to be
collected during a given collection period. The Intel Performance Tools (the VTune™ Performance
Analyzer and the Intel Performance Tuning Utility) constrain this by requiring the event be programmed
into counter 2.

In order to make data collection maximally efficient a large set of predefined bit
combinations were included in the default event lists to minimize the number of data
collection runs needed. The predefined combinations for requests are shown below

Performance Analysis Guide

 36

Multiple request type and response type bits can be set (there are approximately 65K non-zero
programmings of the event possible) to allow data collection with the minimum number of data
collection runs. The predefined combinations used by the Intel Performance Tools are shown below.
The event names are constructed as OFFCORE_RESPONSE_0.REQUEST.RESPONSE.
Where the REQUEST and RESPONSE strings are defined to correspond to unique
programmings of the lower 8 bits or the upper 8 bits of the 16 bit field. The *DEMAND*
events discussed in this document also include any requests made by the L1D cache
hardware prefetchers.

Request Type MSR Encoding
ANY_DATA xx11
ANY_IFETCH xx44
ANY_REQUEST xxFF
ANY_RFO xx22
COREWB xx08
DATA_IFETCH xx77
DATA_IN xx33
DEMAND_DATA xx03
DEMAND_DATA_RD xx01
DEMAND_IFETCH xx04
DEMAND_RFO xx02
OTHER xx80
PF_DATA xx30
PF_DATA_RD xx10
PF_IFETCH xx40
PF_RFO xx20
PREFETCH xx70

Response Type MSR Encoding
ANY_CACHE_DRAM 7Fxx
ANY_DRAM 60xx
ANY_LLC_MISS F8xx
ANY_LOCATION FFxx
IO_CSR_MMIO 80xx
LLC_HIT_NO_OTHER_CORE 01xx
LLC_OTHER_CORE_HIT 02xx
LLC_OTHER_CORE_HITM 04xx
LOCAL_CACHE 07xx
LOCAL_CACHE_DRAM 47xx
LOCAL_DRAM 40xx
REMOTE_CACHE 18xx
REMOTE_CACHE_DRAM 38xx
REMOTE_CACHE_HIT 10xx
REMOTE_CACHE_HITM 08xx
REMOTE_DRAM 20xx

Errata:

Performance Analysis Guide

 37

Non temporal stores to locally homed cachelines would be thought to increment the
offcore_response_0 event when the MSR was set to a value of 0x4080
(other.local_dram). These NT writes in fact increment the event when the MSR is
programmed to 0x280 (other.llc_other_core_hit). This can make the analysis of total
traffic to dram a bit clumsy.

Cacheline requests to the uncore are staged in the Super Queue
There are two events that monitor when the super queue is full and when it is full and
more critically the cycles when it tries to allocate a slot but cannot.

Table 10
Event Name Definition Umask Event
OFFCORE_REQUESTS_BUFFER_FULL Offcore request queue (SQ) full 01 B2
SQ_STALL Cycles SQ allocation stalled, SQ full 01 F6

Bandwidth per core
Measuring the bandwidth for an individual core is complicated on Intel® Core™ i7
processors. The problem is the writebacks/evictions from the L2 CACHE and to some
degree the non temporal SSE writes. The eviction of modified lines from the L2 CACHE
causes a write of the line back to the L3 CACHE. The line is only written to memory
when it is evicted from the L3 CACHE some time later (if at all). The writebacks to
memory due to eviction of modified lines from the L3 CACHE cannot be associated with
an individual core. The net result of this is that the total write bandwidth for all the cores
can be measured with events in the uncore. The read bandwidth and the SSE non-
temporal write bandwidth can be measured on a per core basis. Further due to the
intrinsically NUMA nature of memory bandwidth, the measurement for those 2
components has to be divided into bandwidths for the core on a per target socket basis. It
can be measured for the loads with the events
 OFFCORE_RESPONSE_0.DATA_IFETCH.LLC_MISS_LOCAL_DRAM
 OFFCORE_RESPONSE_0.DATA_IFETCH.LLC_MISS_REMOTE_DRAM
And for both target sockets with
 OFFCORE_RESPONSE_0.DATA_IFETCH.ANY_DRAM
While the SSE stores would be measured with
 OFFCORE_RESPONSE_0.OTHER.LLC_MISS_LOCAL_CACHE_DRAM
 OFFCORE_RESPONSE_0.OTHER.LLC_MISS_REMOTE_DRAM
And for both sockets with
 OFFCORE_RESPONSE_0.OTHER.ANY_CACHE_DRAM
The use of the “CACHE_DRAM” encodings is to work around the errata mentioned
earlier in this section. Non temporal stores of course write to dram.

But of course, none of the above includes the bandwidth associated with writebacks of
modified cacheable lines.

Performance Analysis Guide

 38

If you are only concerned with data then the events
 OFFCORE_RESPONSE_0.DATA_IN.LLC_MISS_LOCAL_DRAM
 OFFCORE_RESPONSE_0.DATA_IN.LLC_MISS_REMOTE_DRAM
May prove the most useful, along with
 OFFCORE_RESPONSE_0.DATA_IN.LLC_MISS
Which would include the lines forwarded from the remote cache along with the two dram
sources just above.

L1D, L2 Cache Access and More Offcore events
There is a certain redundancy in some of the offcore/L2 CACHE miss events. The events
discussed below are of a secondary nature and are discussed here mostly for
completeness. The most obvious use may be to help decompose the impact of the
hardware prefetchers, how often their requests hit in the L2 CACHE, how frequently they
evict modified lines and so on.
 In addition to the OFFCORE_RESPONSE_0 event and the precise events that will be
discussed later, there are several other events that can be used as well. These can be used
to supplement the offcore_response_0 events, which can only be programmed in a
one/run manner, to minimize data collection time in some cases. L2 CACHE misses can
also be counted with the architecturally defined event
LONGEST_LAT_CACHE_ACCESS, however as this event also includes requests due to
the L1D and L2 CACHE hardware prefetchers its utility may be limited. Some of the L2
CACHE access events can be used for both breaking down L2 CACHE accesses and L2
CACHE misses by type, in addition to the OFFCORE_REQUESTS events discussed
earlier. The L2_RQSTS and L2_DATA_RQSTS events are listed below with the assorted
umask values that can be used to discern the assorted access types. In all of the L2
CACHE access events the designation PREFETCH only refers to the L2 CACHE
hardware prefetch. The designation DEMAND includes loads, stores, SW prefetches and
requests due to the L1D hardware prefetchers.

Table 11
Event Name Definition Umask Event
L2_RQSTS.LD_HIT Load requests that hit the L2 1 24
L2_RQSTS.LD_MISS Load requests that miss the L2 2
L2_RQSTS.LOADS All L2 load requests 3
L2_RQSTS.RFO_HIT Store RFO requests that hit the L2 4

L2_RQSTS.RFO_MISS
Store RFO requests that miss the
L2 8

L2_RQSTS.IFETCH_HIT Code requests that hit the L2 10
L2_RQSTS.IFETCH_MISS Code requests that miss the L2 20
L2_RQSTS.IFETCHES All L2 code requests 30
L2_RQSTS.PREFETCH_HIT Prefetch requests that hit the L2 40
L2_RQSTS.PREFETCH_MISS Prefetch requests that miss the L2 80
L2_RQSTS.RFOS All L2 store RFO requests 0C
L2_RQSTS.MISS All L2 misses AA
L2_RQSTS.PREFETCHES All L2 prefetches C0

Performance Analysis Guide

 39

L2_RQSTS.REFERENCES All L2 requests FF
L2_DATA_RQSTS.DEMAND.I_STATE L2 data demand in I state (misses) 1 26
L2_DATA_RQSTS.DEMAND.S_STATE L2 data demand in S state 2
L2_DATA_RQSTS.DEMAND.E_STATE L2 data demand in E state 4
L2_DATA_RQSTS.DEMAND.M_STATE L2 data demand in M state 8

L2_DATA_RQSTS.PREFETCH.I_STATE
L2 data prefetches in the I state
(misses) 10

L2_DATA_RQSTS.PREFETCH.S_STATE L2 data prefetches in the S state 20
L2_DATA_RQSTS.PREFETCH.E_STATE L2 data prefetches in E state 40
L2_DATA_RQSTS.PREFETCH.M_STATE L2 data prefetches in M state 80
L2_DATA_RQSTS.DEMAND.MESI L2 data demand requests 0F
L2_DATA_RQSTS.PREFETCH.MESI All L2 data prefetches F0
L2_DATA_RQSTS.ANY All L2 data references FF

The L2_LINES_IN and L2_LINES_OUT events have been decomposed slightly
differently than on Intel® Core™2 processors as can be seen in the table below. The
L2_LINES_OUT event can now be used to decompose the evicted lines by clean and
dirty (ie a Writeback) and whether they were evicted by an L1D request or an L2
CACHE HW prefetch.

Table 12
Event Name Definition Umask Event
L2_LINES_IN.S_STATE L2 lines allocated in the S state 2 F1
L2_LINES_IN.E_STATE L2 lines allocated in the E state 4
L2_LINES_IN.ANY Lines allocated in the L2 cache 7
L2_LINES_OUT.ANY All L2 lines evicted 0F F2
L2_LINES_OUT.DEMAND_CLEAN L2 lines evicted by a demand request 1

L2_LINES_OUT.DEMAND_DIRTY
L2 modified lines evicted by a demand
request 2

L2_LINES_OUT.PREFETCH_CLEAN L2 lines evicted by a prefetch request 4

L2_LINES_OUT.PREFETCH_DIRTY
L2 modified lines evicted by a prefetch
request 8

The event L2_TRANSACTIONS counts all interactions with the L2 CACHE and is
divided up as follows

Table 13
Event Name Definition Umask Event

L2_TRANSACTIONS.LOAD
Load, SW prefetch and L1D prefetcher
requests 1 F0

L2_TRANSACTIONS.RFO RFO requests from L1D 2
L2_TRANSACTIONS.IFETCH Cachelines requested from L1I 4

L2_TRANSACTIONS.PREFETCH
L2 Hw prefetches, includes L2 hits and
Misses 8

L2_TRANSACTIONS.L1D_WB Writebacks from L1D 10
L2_TRANSACTIONS.FILL Cachelines brought in from L3 CACHE 20
L2_TRANSACTIONS.WB Writebacks to the L3 CACHE 40
L2_TRANSACTIONS.ANY All actions taken by the L2 80

Writes and locked writes are counted with a combined event.

Performance Analysis Guide

 40

Table 14
Event Name Definition Umask Event
L2_WRITE.RFO.I_STATE L2 store RFOs in I state (misses) 1 27
L2_WRITE.RFO.S_STATE L2 store RFOs in S state 2
L2_WRITE.RFO.E_STATE L2 store RFOs in E state 4
L2_WRITE.RFO.M_STATE L2 store RFOs in M state 8
L2_WRITE.LOCK.I_STATE L2 lock RFOs in I state (misses) 10
L2_WRITE.LOCK.S_STATE L2 lock RFOs in S state 20
L2_WRITE.LOCK.E_STATE L2 lock RFOs in E state 40
L2_WRITE.LOCK.M_STATE L2 lock RFOs in M state 80
L2_WRITE.RFO.HIT All L2 store RFOs that hit the cache 0E
L2_WRITE.RFO.MESI All L2 store RFOs 0F
L2_WRITE.LOCK.HIT All L2 lock RFOs that hit the cache E0
L2_WRITE.LOCK.MESI All L2 lock RFOs F0

The next largest set of penalties is associated with the TLBs and accessing more physical
pages than can be mapped with their finite number of entries. A miss in the first level
TLBs results in a very small penalty that can usually be hidden by the OOO execution
and compiler’s scheduling. A miss in the shared TLB results in the Page Walker being
invoked and this penalty can be noticeable in the execution.
The (non pebs) TLB miss events break down into three sets: DTLB misses, Load DTLB
misses and ITLB misses. Store DTLB misses can be evaluated from the difference of the
DTLB misses and the Load DTLB misses. Each then has a set of sub events programmed
with the umask value. A summary of the non PEBS TLB miss events is in the table
below.

Table 15

Event Name Definition Umask Event
DTLB_LOAD_MISSES.ANY DTLB load miss 1 8
DTLB_LOAD_MISSES.
WALK_COMPLETED DTLB load miss page walks 2
DTLB_LOAD_MISSES.
PMH_BUSY_CYCLES

Page walk blocked
due to PMH busy 8

DTLB_LOAD_MISSES.STLB_HIT
DTLB first level load miss
but second level hit 10

DTLB_LOAD_MISSES.PDE_MISS
DTLB load miss caused
by low part of address 20

DTLB_LOAD_MISSES.PDP_MISS
DTLB load miss caused
by high part of address 40

DTLB_LOAD_MISSES.
LARGE_WALK_COMPLETED

DTLB load miss large page
walks 80

DTLB_MISSES.ANY DTLB miss 1 49
DTLB_MISSES.
WALK_COMPLETED DTLB miss page walks 2
DTLB_MISSES.
PMH_BUSY_CYCLES

Page walk blocked
due to PMH busy 8

DTLB_MISSES.STLB_HIT
DTLB first level miss
but second level hit 10

DTLB_MISSES.PDE_MISS DTLB miss caused 20

Performance Analysis Guide

 41

by low part of address

DTLB_MISSES.PDP_MISS
DTLB miss caused
by high part of address 40

DTLB_MISSES.
LARGE_WALK_COMPLETED DTLB miss large page walks 80
ITLB_MISSES.ANY ITLB miss 1 85
ITLB_MISSES.
WALK_COMPLETED ITLB miss page walks 2
ITLB_MISSES.
PMH_BUSY_CYCLES

Page walk blocked
due to PMH busy 8

ITLB_MISSES.STLB_HIT
ITLB first level miss
but second level hit 10

ITLB_MISSES.PDE_MISS
ITLB miss caused
by low part of address 20

ITLB_MISSES.PDP_MISS
ITLB miss caused
by high part of address 40

ITLB_MISSES.
LARGE_WALK_COMPLETED ITLB miss large page walks 80

The L1 data cache, L1D, is the final component to be discussed. These events can only be
counted with the first 2 of the 4 general counters. Most of the events are self explanatory.
The total number of references to the L1D can be counted with L1D_ALL_REF, either
just cacheable references or all. The cacheable references can be divided into loads and
stores with L1D_CACHE_LOAD and L1D_CACHE.STORE. These events are further
subdivided by MESI states through their umask values, with the I state references
indicating the cache misses.
The evictions of modified lines in the L1D result in writebacks to the L2 CACHE. These
are counted with the L1D_WB_L2 events. The umask values break these down by the
MESI state of the version of the line in the L2 CACHE.
The locked references can be counted also with the L1D_CACHE_LOCK events. Again
these are broken down by MES states for the lines in L1D.
The total number of lines brought into L1D, the number that arrived in an M state and the
number of modified lines that get evicted due to receiving a snoop are counted with the
L1D event and its umask variations.
NOTE: many of these events are known to overcount (l1d_cache_ld, l1d_cache_lock) so
they can only be used for qualitative analysis.
These events and a few others are summarized below.

Table 16

Event Name Definition Umask Event
L1D_WB_L2.I_STATE L1 writebacks to L2 in I state (misses) 01 28
L1D_WB_L2.S_STATE L1 writebacks to L2 in S state 02 28
L1D_WB_L2.E_STATE L1 writebacks to L2 in E state 04 28
L1D_WB_L2.M_STATE L1 writebacks to L2 in M state 08 28
L1D_WB_L2.MESI All L1 writebacks to L2 0F 28
L1D_CACHE_LD.I_STATE L1 data cache read in I state (misses) 01 40
L1D_CACHE_LD.S_STATE L1 data cache read in S state 02 40
L1D_CACHE_LD.E_STATE L1 data cache read in E state 04 40

Performance Analysis Guide

 42

L1D_CACHE_LD.M_STATE L1 data cache read in M state 08 40
L1D_CACHE_LD.MESI L1 data cache reads 0F 40
L1D_CACHE_ST.I_STATE L1 data cache stores in I state 01 41
L1D_CACHE_ST.S_STATE L1 data cache stores in S state 02 41
L1D_CACHE_ST.E_STATE L1 data cache stores in E state 04 41
L1D_CACHE_ST.M_STATE L1 data cache stores in M state 08 41
L1D_CACHE_ST.MESI All L1 data cache stores 0F 41
L1D_CACHE_LOCK.HIT L1 data cache load lock hits 01 42
L1D_CACHE_LOCK.S_STATE L1 data cache load locks in S state 02 42
L1D_CACHE_LOCK.E_STATE L1 data cache load locks in E state 04 42
L1D_CACHE_LOCK.M_STATE L1 data cache load locks in M state 08 42
L1D_ALL_REF.ANY All references to the L1 data cache 01 43
L1D_ALL_REF.CACHEABLE L1 data cacheable reads and writes 02 43

L1D_PEND_MISS.PENDING Outstanding L1 data cache misses at any cycle 01 48
L1D_PEND_MISS.LOAD_BUFFERS_FULL L1 data cache load fill buffer full 02 48
L1D.REPL L1 data cache lines allocated 01 51
L1D.M_REPL L1D cache lines allocated in the M state 02 51

L1D.M_SNOOP_EVICT L1D snoop eviction of cache lines in M state 08 51

L1D_CACHE_PREFETCH_LOCK_FB_HIT L1D prefetch load lock accepted in fill buffer 01 52
L1D_CACHE_LOCK_FB_HIT L1D load lock accepted in fill buffer 01 53
L1I.HITS L1I instruction fetch hits 01 80
L1I.MISSES L1I instruction fetch misses 02 80
L1I.READS L1I Instruction fetches 03 80
L1I.CYCLES_STALLED L1I instruction fetch stall cycles 04 80
L1I_OPPORTUNISTIC_HITS Opportunistic hits in the streaming buffer 01 83
L1D_PREFETCH.REQUESTS L1D hardware prefetch requests 01 4E
L1D_PREFETCH.MISS L1D hardware prefetch misses 02 4E

L1D_PREFETCH.TRIGGERS
L1D hardware prefetch requests triggered by
FSM 04 4E

Store Forwarding
There are few cases of loads not being able to forward from active store buffers in Intel®
Core™ i7 processors. The predominant remaining case has to do with larger loads
overlapping smaller stores. There is not event that detects when this occurs. There is also
a “false store forwarding” case where the addresses only match in the lower 12 address
bits. This is sometimes referred to as 4K aliasing. This can be detected with the following
event

Table 17

Event Name Description
Event
Code Umask

PARTIAL_ADDRESS_ALIAS
False dependencies due to partial
address aliasing 7 1

Performance Analysis Guide

 43

Front End Events
Branch misprediction effects can sometimes be reduced through code changes and
enhanced inlining. Most other front end performance limitations have to be dealt with by
the code generation. The analysis of such issues is mostly of use by compiler developers.

Branch Mispredictions
As discussed earlier there is good coverage of branch mispredictions with precise events.
These are enhanced by use of the LBR to identify the branch location to go along with
the target location captured in the PEBS buffer. It is not clear to the author that there is
more information to be garnered from the front end events that can be used by code
developers, but they are certainly of use to chip designers and architects. These events are
listed below.

Table 18
Event Name Description Event Code Umask
BACLEAR.CLEAR BAclears asserted, regardless of cause E6 1
BACLEAR.BAD_TARGET BACLEAR asserted with bad target address E6 2
BPU_CLEARS.EARLY Early Branch Prediciton Unit clears E8 1
BPU_CLEARS.LATE Late Branch Prediction Unit clears E8 2
BPU_MISSED_CALL_RET Branch prediction unit missed call or return E5 1
BR_INST_DECODED Branch instructions decoded E0 1
BR_INST_EXEC.COND Conditional branch instructions executed 88 1
BR_INST_EXEC.DIRECT Unconditional branches executed 88 2
BR_INST_EXEC.INDIRECT_NON_CALL Indirect non call branches executed 88 4
BR_INST_EXEC.RETURN_NEAR Indirect return branches executed 88 8
BR_INST_EXEC.DIRECT_NEAR_CALL Unconditional call branches executed 88 10
BR_INST_EXEC.INDIRECT_NEAR_CALL Indirect call branches executed 88 20
BR_INST_EXEC.TAKEN Taken branches executed 88 40
BR_INST_EXEC.ANY Branch instructions executed 88 7F
BR_INST_EXEC.NON_CALLS All non call branches executed 88 3
BR_INST_EXEC.NEAR_CALLS Call branches executed 88 30
BR_MISP_EXEC.COND Mispredicted conditional branches executed 89 1
BR_MISP_EXEC.DIRECT Mispredicted unconditional branches executed 89 2

BR_MISP_EXEC.INDIRECT_NON_CALL
Mispredicted indirect non call branches
executed 89 4

BR_MISP_EXEC.RETURN_NEAR Mispredicted return branches executed 89 8
BR_MISP_EXEC.DIRECT_NEAR_CALL Mispredicted non call branches executed 89 10
BR_MISP_EXEC.INDIRECT_NEAR_CALL Mispredicted indirect call branches executed 89 20
BR_MISP_EXEC.TAKEN Mispredicted taken branches executed 89 40
BR_MISP_EXEC.ANY Mispredicted branches executed 89 7F
BR_MISP_EXEC.NON_CALLS Mispredicted non call branches executed 89 3
BR_MISP_EXEC.NEAR_CALLS Mispredicted call branches executed 89 30

Branch mispredictions are not in and of themselves an indication of a performance
bottleneck. They have to be associated with dispatch stalls and the instruction starvation
condition, UOPS_ISSUED:C1:I1 – RESOURCE_STALLS.ANY. Such stalls are likely
to be associated with icache misses and ITLB misses. The precise ITLB miss event can
be useful for such issues. The icache and ITLB miss events are listed below

Performance Analysis Guide

 44

Table 19
Event Name Description Event Code Umask
L1I.HITS L1I instruction fetch hits 80 1
L1I.MISSES L1I instruction fetch misses 80 2
L1I.CYCLES_STALLED L1I instruction fetch stall cycles 80 4
L1I.READS L1I Instruction fetches 80 3
IFU_IVC.FULL victim cache full 81 1
IFU_IVC.L1I_EVICTION L1I eviction 81 2
ITLB_FLUSH ITLB flushes AE 1
ITLB_MISSES.ANY ITLB miss 85 1
ITLB_MISSES.WALK_COMPLETED ITLB miss page walks 85 2
ITLB_MISSES.LARGE_WALK_COMPLETED ITLB miss large page walks 85 80
LARGE_TLB.HIT large TLB hit 82 1

FE Code Generation Metrics
The remaining front end events are mostly of use in identifying when details of the code
generation interact poorly with the instructions decoding and uop issue to the OOO
engine. Examples are length changing prefix issues associated with the use of 16 bit
immediates, rob read port stalls, instruction alignment interfering with the loop detection
and instruction decoding bandwidth limitations. The activity of the LSD is monitored
using CMASK values on a signal monitoring activity. Some of these events are listed
below:
Table 20

Event Name Description
Event
Code Umask

ILD_STALL.LCP Length Change Prefix stall cycles 87 1
ILD_STALL.MRU MRU stall cycles 87 2
ILD_STALL.IQ_FULL Instruction Queue full stall cycles 87 4
ILD_STALL.REGEN Regen stall cycles 87 8

ILD_STALL.ANY
Any Instruction Length Decoder stall
cycles 87 0F

INST_DECODED.DEC0
Instructions that must be decoded by
decoder 0 18 1

INST_QUEUE_
WRITE_CYCLES

Cycles instructions are written to the
instruction queue 1E 1

INST_QUEUE_WRITES Instructions written to instruction queue. 17 1

LSD.ACTIVE
Cycles when uops were delivered by
LSD A8 1

LSD.INACTIVE Cycles no Uops delivered by the LSD A8 1

LSD_OVERFLOW
Loops that can't stream from the
instruction queue 20 1

LSD_REPLAY.ABORT Loops aborted by the LSD 1F 2
LSD_REPLAY.COUNT Loops replayed by the LSD 1F 1
MACRO_INSTS.DECODED Instructions decoded D0 1
MACRO_INSTS.
FUSIONS_DECODED Macro-fused instructions decoded A6 1
RAT_STALLS.ANY All RAT stall cycles D2 0F
RAT_STALLS.FLAGS Flag stall cycles D2 1

Performance Analysis Guide

 45

RAT_STALLS.REGISTERS Partial register stall cycles D2 2
RAT_STALLS.
ROB_READ_PORT ROB read port stalls cycles D2 4
RAT_STALLS.
SCOREBOARD Scoreboard stall cycles D2 8

Microcode and Exceptions
 The invocation of microcode can significantly effect the retirement of
instructions. Most instructions are decoded to a single uop. There are a few that can
decode to many uops, for example fsincos, fptan or rep mov. When long strings of uops
are required, they are inserted into the pipeline by the microcode sequencer. This can be
monitored with the UOPS_DECODED.MS_CYCLES_ACTIVE event. Which uses the
base event, with the cmask set to 1, to count the cycles the microcode sequencer is active.
Consequently regions of execution where this is significant can be easily identified.
 Another more nefarious source is due to FP assists, like the processing of
denormalized FP values or QNaNs. In such cases the penalty is essentially the uops
required for the assist plus the pipeline clearing required to ensure the correct state.
Consequently there is a very clear signature consisting of MACHINE_CLEAR.CYCLES
and uops being inserted by the microcode sequencer,
UOPS_DECODED.MS_CYCLES_ACTIVE. The execution penalty being approximately
the sum of these two.

Table 21

Event Name Description
Event
Code Umask

UOPS_DECODED.MS
Uops decoded by
Microcode Sequencer D1 2

MACHINE_CLEARS.CYCLES Cycles Machine Clears Asserted C3 1

Uncore Performance Events
The performance monitoring of the uncore is mostly accomplished through the uncore
PMU and the events it monitors. As stated earlier the PMU has 8 general counters and a
fixed counter that monitors the uncore’s unhalted clock, which runs at a different
frequency than the core. The uncore cannot by itself generate an interrupt. The cores do
that. When an uncore counter overflows, a bit pattern is used to determine which cores
should be signaled to raise a PMI. The uncore PMU is unaware of the core, PID or TID
that caused the event that overflowed a counter. Consequently the most reasonable
approach for sampling on uncore events is to raise a PMI on all the logical cores in the
package.
There are a wide variety of events that monitor queue occupancies and inserts. There are
others that count cacheline transfers, dram paging policy statistics, snoop types and
responses, and so on. The uncore is the only place the total bandwidth to memory can be
measured. This will be discussed explicitly after all the uncore components and their
events are described.

Performance Analysis Guide

 46

The Global Queue
L2 CACHE misses and writebacks from all the cores of a package result in requests
being sent to the uncore’s Global Queue (GQ). There are 3 “trackers” in the GQ that are
the queues for on package read and writeback requests and requests that arrive from a
“peer”, meaning anything coming from the Intel® QuickPath Interconnect. As
mentioned before these have 32, 16 and 12 entries respectively. The occupancies, inserts,
cycles full and cycles not empty for all three trackers can be monitored. Further as load
requests go through a series of stages the occupancy and inserts associated with the stages
can also be monitored, enabling a “cycle accounting” breakdown of the uncore memory
accesses due to loads.
When a counter is first programmed to monitor a queue occupancy, for any of the uncore
queues, the queue must first be emptied. This is accomplished by the driver issuing a bus
lock. This only needs to be done when the counter is first programmed. From that point
on the counter will correctly reflect the state of the queue, so it can be repeatedly sampled
for example without another bus lock being issued.
The following events monitor the 3 GQ trackers, with RT signifying the read tracker,
WT, the write tracker and PPT the peer probe tracker.

Table 22

Event Name Definition Umask Event
UNC_GQ_TRACKER_OCCUP.RT GQ read tracker occupancy 01 02

UNC_GQ_TRACKER_OCCUP.RT_LLC_MISS
GQ read tracker L3 CACHE
miss occupancy 02

UNC_GQ_TRACKER_OCCUP.RT_TO_LLC_R
ESP

GQ read tracker L3 CACHE
request occupancy 04

UNC_GQ_TRACKER_OCCUP.RT_TO_RTID_
ACQUIRED

GQ read tracker from no
RTID to RTID acquired
occupancy 08

UNC_GQ_TRACKER_OCCUP.WT_TO_RTID_
ACQUIRED

GQ write tracker from no
RTID to RTID acquired
occupancy 10

UNC_GQ_TRACKER_OCCUP.WT
GQ write tracker alloc to
deallocate occupancy 20

UNC_GQ_TRACKER_OCCUP.PPT
GQ peer probe tracker alloc
to deallocate occupancy 40

UNC_GQ_ALLOC.RT GQ read tracker requests 01 03

UNC_GQ_ALLOC.RT_LLC_MISS
GQ read tracker L3 CACHE
misses 02

UNC_GQ_ALLOC.RT_TO_LLC_RESP
GQ read tracker L3 CACHE
requests 04

UNC_GQ_ALLOC.RT_TO_RTID_ACQUIRED
GQ read tracker L3 CACHE
miss to RTID acquired 08

UNC_GQ_ALLOC.WT_TO_RTID_ACQUIRED
GQ write tracker L3 CACHE
miss to RTID acquired 10

UNC_GQ_ALLOC.WT GQ write tracker requests 20

UNC_GQ_ALLOC.PPT
GQ peer probe tracker
requests 40

Performance Analysis Guide

 47

A latency can measured by the average duration of the queue occupancy, if the
occupancy stops as soon as the data has been delivered. Thus the ratio of
UNC_GQ_TRACKER_OCCUP.X/UNC_GQ_ALLOC.X measures an average duration
of queue occupancy. The total occupancy period measured by
Total Read Period = UNC_GQ_TRACKER_OCCUP.RT/UNC_GQ_ALLOC.RT
Is longer than the data delivery latency due to it including time for extra General Queue
bookkeeping and cleanup.

Similary, the
L3 CACHE response Latency = UNC_GQ_TRACKER_OCCUP.RT_TO_LLC_RESP
 /UNC_GQ_ALLOC.RT_TO_LLC_RESP
This term is essentially a constant. It does not include the total time to snoop and retrieve
a modified line from another core for example, just the time to scan the L3 CACHE and
see if the line is or is not present on the socket.

Miss to fill latency = UNC_GQ_TRACKER_OCCUP.RT_LLC_MISS
 /UNC_GQ_ALLOC.RT_LLC_MISS
This ratio will overcount the latency as it will include time for eviction of any modified
lines that must be written back to dram on eviction.
An overall latency for an L3 CACHE hit is the weighted average over the latency of a
simple hit, where the line has only been used by the core making the request and the
latencies for accessing clean and dirty lines that have been accessed by multiple cores.
These three components of the L3 CACHE hit for loads can be decomposed using the
OFFCORE_RESPONSE events.

Table 15
OFFCORE_RESPONSE_0.DEMAND_DATA.LLC_HIT_NO_OTHER_CORE
OFFCORE_RESPONSE_0.DEMAND_DATA.LLC_HIT_OTHER_CORE_HIT
OFFCORE_RESPONSE_0.DEMAND_DATA.LLC_HIT_OTHER_CORE_HITM
OFFCORE_RESPONSE_0.DEMAND_DATA.LOCAL_CACHE

The *LOCAL_CACHE event should be used as the denominator. The individual
latencies could have to be measured with microbenchmarks, but the use of the precise
latency event will be far more effective as any bandwidth loading effects will be
included.
The L3 CACHE miss component is the weighted average over the latencies of hits in a
cache on another socket, with the multiple latencies as in the L3 CACHE hit just
discussed. It also includes in the weighted average the latencies to local and remote dram.
The local dram access and the remote socket access can be decomposed with more
uncore events. This will be discussed a bit later in this paper.
The *RTID* events allow the monitoring of a sub component of the Miss to fill latency
associated with the communications between the GQ and the QHL.

The write and peer probe latencies are the L3 CACHE response time + any other time
required. This can also include a fraction due to L3 CACHE misses and retrievals from

Performance Analysis Guide

 48

dram. The breakdowns cannot be done in the way discussed above as the extra required
events do not exist.

There are events which monitor if the three trackers are not empty (>= 1 entry) or full.
Table 23

Event Name Definition Umask Event

UNC_GQ_CYCLES_FULL.READ_TRACKER
Cycles GQ read
tracker is full. 01 00

UNC_GQ_CYCLES_FULL.WRITE_TRACKER
Cycles GQ write
tracker is full. 02

UNC_GQ_CYCLES_FULL.PEER_PROBE_TRACKER
Cycles GQ peer
probe tracker is full. 04

UNC_GQ_CYCLES_BUSY.READ_TRACKER
Cycles GQ read
tracker is busy 01 01

UNC_GQ_CYCLES_BUSY.WRITE_TRACKER
Cycles GQ write
tracker is busy 02

UNC_GQ_CYCLES_BUSY.PEER_PROBE_TRACKER
Cycles GQ peer
probe tracker is busy 04

The technique of dividing the latencies by the average queue occupancy in order to
determine a penalty does not work for the uncore. Overlapping entries from different
cores do not result in overlapping penalties and thus a reduction in stalled cycles. Each
core suffers the full latency independently. To evaluate the correction on a per core basis
one needs the number of cycles there is an entry from the core in question. A
*NOT_EMPTY_CORE_N type event would needed. There is no such event.
Consequently, in the cycle decomposition one must use the full latency for the estimate
of the penalty. As has been stated before it is best to use the PEBS latency event as the
data sources are also collected with the latency for the individual sample.
The individual components of the read tracker, discussed above, can also be monitored as
busy or full by setting the cmask value to 1 or 32 and applying it to the assorted RT
occupancy events.

Table 24

Event Name CMASK Umask Event
UNC_GQ_TRACKER_OCCUP.RT_LLC_MISS_FULL 32 02 02
UNC_GQ_TRACKER_OCCUP.RT_TO_LLC_RESP_FULL 32 04
UNC_GQ_TRACKER_OCCUP.RT_TO_RTID_ACQUIRED_FULL 32 08
UNC_GQ_TRACKER_OCCUP.RT_LLC_MISS_BUSY 1 02 02
UNC_GQ_TRACKER_OCCUP.RT_TO_LLC_RESP_BUSY 1 04
UNC_GQ_TRACKER_OCCUP.RT_TO_RTID_ACQUIRED_BUSY 1 08

The GQ data buffer traffic controls the flow of data through the uncore. Diagramatically
it can be shown as follows

Performance Analysis Guide

 49

The input and output flows can be monitored with the following events. They measure
the cycles that the ports they are monitoring are busy. Most of the ports transfer a fixed
number of bits per cycle, however the Intel® QuickPath Interconnect protocols can
result in either 8 or 16 bytes being transferred on the read Intel QPI and IMC ports.
Consequently these events cannot be used to measure total data transfers and bandwidths.

Table 25
Event Name Definition Umask Event

UNC_GQ_DATA.FROM_QPI
Cycles GQ data is imported from
Quickpath interconnect 01 04

UNC_GQ_DATA.FROM_IMC
Cycles GQ data is imported from
integrated memory interface 02

UNC_GQ_DATA.FROM_LLC
Cycles GQ data is imported from L3
CACHE 04

UNC_GQ_DATA.FROM_CORES_02
Cycles GQ data is imported from Cores
0 and 2 08

UNC_GQ_DATA.FROM_CORES_13
Cycles GQ data is imported from Cores
1 and 3 10

UNC_GQ_DATA.TO_QPI_IMC Cycles GQ data sent to the QPI or IMC 01 05
UNC_GQ_DATA.TO_LLC Cycles GQ data sent to L3 CACHE 02
UNC_GQ_DATA.TO_CORES Cycles GQ data sent to cores 04

The GQ handles the snoop responses for the cacheline requests that come in from the
Intel® QuickPath Interconnect. These correspond to the queue entries in the peer probe
tracker.
They are divided into requests for locally homed data and remotely homed data. If the
line is in a modified state and the the GQ is responding to a read request the line also

QPI

LLC

Core0/2

Core1/3

IMC 16B

LLC
QPI/
IMC

Cores

Performance Analysis Guide

 50

must be written back to memory. This would be a wasted effort for a response to a RFO
as the line will just be modified again, so no Writeback is done for RFOs.
The local home events:

Table 26

Event Name Definition Umask Event
 Local home snoop response
UNC_SNP_RESP_TO_LOCAL_HOME.
I_STATE L3 CACHE does not have cache line 01 06
UNC_SNP_RESP_TO_LOCAL_HOME.
S_STATE L3 CACHE has cache line in S state 02

UNC_SNP_RESP_TO_LOCAL_HOME.
FWD_S_STATE

L3 CACHE in E state, changed to S
state
and forwarded 04

UNC_SNP_RESP_TO_LOCAL_HOME.
FWD_I_STATE

L3 CACHE has forwarded a modified
cache line
responding to RFO 08

UNC_SNP_RESP_TO_LOCAL_HOME.
CONFLICT Local home conflict snoop response 10

UNC_SNP_RESP_TO_LOCAL_HOME.
WB

L3 CACHE has cache line in the M
state
responding to read 20

UNC_SNP_RESP_TO_LOCAL_HOME.
HITM

L3 CACHE HITM (WB,
FWD_S_STATE) 24

UNC_SNP_RESP_TO_LOCAL_HOME.
HIT

L3 CACHE HIT (S, FWD_I_STATE,
conflict) 1A

And the snoop responses for the remotely homed lines

Table 27
Event Name Definition Umask Event
 Remote home snoop response
UNC_SNP_RESP_TO_REMOTE_HOME.
I_STATE

L3 CACHE does not have cache
line 01 07

UNC_SNP_RESP_TO_REMOTE_HOME.
S_STATE

L3 CACHE has cache line in S
state 02

UNC_SNP_RESP_TO_REMOTE_HOME.
FWD_S_STATE

L3 CACHE in E state, changed to
S state
and forwarded 04

UNC_SNP_RESP_TO_REMOTE_HOME.
FWD_I_STATE

L3 CACHE has forwarded a
modified cache line
responding to rfo 08

UNC_SNP_RESP_TO_REMOTE_HOME.
CONFLICT

Remote home conflict snoop
response 10

UNC_SNP_RESP_TO_REMOTE_HOME.
WB

L3 CACHE has cache line in the M
state
responding to read 20

UNC_SNP_RESP_TO_REMOTE_HOME.
HITM

L3 CACHE HITM (WB,
FWD_S_STATE) 24

UNC_SNP_RESP_TO_REMOTE_HOME.
HIT

L3 CACHE HIT (S,
FWD_I_STATE, conflict) 1A

Performance Analysis Guide

 51

Some related events count the MESI transitions in response to snoops from other caching
agents (processors or IOH). Some of these rely on an MSR so they can only be measured
one at a time, as there is only one MSR. The Intel performance tools will schedule this
correctly by restricting these events to a single general uncore counter.

Table 28

Event Name Definition Umask Event msr
msr
value

UNC_GQ_SNOOP.GOTO_S change cache line to S state 01 0C 0 0
UNC_GQ_SNOOP.GOTO_I change cache line to I state 02 0 0

UNC_GQ_SNOOP.GOTO_S_HIT_M
 change cache line from M to S
state 04 301 1

UNC_GQ_SNOOP.GOTO_S_HIT_E
 change cache line from E to S
state 04 301 2

UNC_GQ_SNOOP.GOTO_S_HIT_S
 change cache line from S to S
state 04 301 4

UNC_GQ_SNOOP.GOTO_S_HIT_F
 change cache line from F to S
state 04 301 8

UNC_GQ_SNOOP.GOTO_I_HIT_M
 change cache line from M to I
state 08 301 10

UNC_GQ_SNOOP.GOTO_I_HIT_E
 change cache line from E to I
state 08 301 20

UNC_GQ_SNOOP.GOTO_I_HIT_S
 change cache line from S to I
state 08 301 40

UNC_GQ_SNOOP.GOTO_I_HIT_F change cache line from F to I state 08 301 80

L3 CACHE Events
The number of hits and misses can be determined from the GQ tracker allocation events,
but it is simpler with the following list:

Table 29

Event Name Definition Umask Event
UNC_LLC_HITS.READ Number of L3 CACHE read hits 01 08
UNC_LLC_HITS.WRITE Number of L3 CACHE write hits 02
UNC_LLC_HITS.ANY Number of L3 CACHE hits 03
UNC_LLC_HITS.PROBE Number of L3 CACHE peer probe hits 04
UNC_LLC_MISS.READ Number of L3 CACHE read misses 01 09
UNC_LLC_MISS.WRITE Number of L3 CACHE write misses 02
UNC_LLC_MISS.ANY Number of L3 CACHE misses 03
UNC_LLC_MISS.PROBE Number of L3 CACHE peer probe misses 04

Note that the *.any events only refer to requests from the cores of the local package and
do not include the requests that arrive from the Intel® QuickPath Interconnect.

The MESI breakdown of lines allocated and victimized can also be monitored with
LINES_IN, LINES_OUT:

Performance Analysis Guide

 52

Table 30

Event Name Definition Umask Event
UNC_LLC_LINES_IN.M_STATE L3 CACHE lines allocated in M state 01 0A
UNC_LLC_LINES_IN.E_STATE L3 CACHE lines allocated in E state 02
UNC_LLC_LINES_IN.S_STATE L3 CACHE lines allocated in S state 04
UNC_LLC_LINES_IN.F_STATE L3 CACHE lines allocated in F state 08
UNC_LLC_LINES_IN.ANY L3 CACHE lines allocated 0F
UNC_LLC_LINES_OUT.M_STATE L3 CACHE lines victimized in M state 01 0B
UNC_LLC_LINES_OUT.E_STATE L3 CACHE lines victimized in E state 02
UNC_LLC_LINES_OUT.S_STATE L3 CACHE lines victimized in S state 04
UNC_LLC_LINES_OUT.I_STATE L3 CACHE lines victimized in I state 08
UNC_LLC_LINES_OUT.F_STATE L3 CACHE lines victimized in F state 10
UNC_LLC_LINES_OUT.ANY L3 CACHE lines victimized 1F

Intel® QuickPath Interconnect Home Logic (QHL)
Data access requests that miss the L3 CACHE are sent to the Intel® QuickPath
Interconnect home logic unit to retrieve the data from the local NUMA dram. Such
request are speculative by nature, as a hit(m) response to a snoop requests to the other
caching agents may return the line more quickly and supersede the request to the QHL.
Again this process starts with 3 request queues for requests from local requests, requests
from remote processor sockets and from the IOH. The requests are broken down by reads
and writes. This allows the measurement of the latency to local dram for all 3 request
source classes for reads. Further the total bandwidth to the local dram can also be
measured. In addition the contributions from the three sources and the fraction of read
and write bandwidth/source can also be evaluated.
Again we have events that indicate when there are entries in the queues (*BUSY*)
allowing the penalties to be evaluated (busy/requests). The number of cycles the queues
are full can also be measured.
The request queues are set differently for DP and UP systems. On a DP system the local
tracker has 24 entries the, the remote queue has 16 and the IOH has 24. In the UP mode
there are only the local and IOH queues and both have 32 entries.
Using the L3 CACHE miss latency computed from the GQ occupancies and the QHL
events we can decompose the miss latency into a component handled by the QHL and the
component handled by the QPI.
The local QHL read latency = UNC_QHL_OCCUPANCY.LOCAL/
 UNC_QHL_REQUESTS.LOCAL_READS
The total miss latency (discussed during the GQ section) can be decomposed (thereby
defining the terms) into
Miss latency = L3 CACHE response Latency + MQPI * QPI response latency + MQHL *
QHL latency
Where MQPI and MQHL are the fractions of L3 CACHE misses that get their responses
from either the QPI interface or the local dram. The best way to compute these fractions
is to simply use the core event
OFFCORE_RESPONSE_0.DATA_IFETCH.REMOTE_CACHE_DRAM
And

Performance Analysis Guide

 53

OFFCORE_RESPONSE_0.DATA_IFETCH.LOCAL_DRAM

The events are listed below.

Table 31

Event Name Definition Umask Event

UNC_QHL_OCCUPANCY.IOH
QHL IOH tracker allocate to deallocate read
occupancy 01 23

UNC_QHL_OCCUPANCY.REMOTE
QHL remote tracker allocate to deallocate read
occupancy 02 23

UNC_QHL_OCCUPANCY.LOCAL
QHL local tracker allocate to deallocate read
occupancy 04 23

UNC_QHL_REQUESTS.IOH_READS QPI Home Logic IOH read requests 01 20
UNC_QHL_REQUESTS.IOH_WRITES QPI Home Logic IOH write requests 02 20
UNC_QHL_REQUESTS.REMOTE_READS QPI Home Logic remote read requests 04 20
UNC_QHL_REQUESTS.REMOTE_WRITES QPI Home Logic remote write requests 08 20
UNC_QHL_REQUESTS.LOCAL_READS QPI Home Logic local read requests 10 20
UNC_QHL_REQUESTS.LOCAL_WRITES QPI Home Logic local write requests 20 20
UNC_QHL_CYCLES_FULL.IOH Cycles QHL IOH Tracker is full 01 21
UNC_QHL_CYCLES_FULL.REMOTE Cycles QHL Remote Tracker is full 02 21
UNC_QHL_CYCLES_FULL.LOCAL Cycles QHL Local Tracker is full 04 21
UNC_QHL_CYCLES_NOT_EMPTY.IOH Cycles QHL IOH tracker is busy 01 22
UNC_QHL_CYCLES_NOT_EMPTY.REMOTE Cycles QHL remote tracker is busy 02 22
UNC_QHL_CYCLES_NOT_EMPTY.LOCAL Cycles QHL local tracker is busy 04 22

Integrated Memory Controller (IMC)
Access to dram is controlled directly from the processor package. The performance
monitoring capabilities associated with the memory controller are extensive, extending
far beyond typical expected needs. The memory controller supports up to three memory
channels and each channel is monitored individually.
The first thing is to measure the queue occupancies, queue inserts (allocations) and the
cycles where the queues are full for normal application accesses to the dram. This
reveals the latencies and bandwidths per memory channel. For this the following events
are particularly useful.
Note: When first programming the queue occupancy events, a bus lock must be issued to
correctly initialize the occupancy. This is the same requirement encountered with the GQ
and QHL occupancy events.

Table 32

Event Name Definition Umask Event
UNC_IMC_NORMAL_OCCUPANCY.CH0 IMC channel 0 normal read request occupancy 01 2A
UNC_IMC_NORMAL_OCCUPANCY.CH1 IMC channel 1 normal read request occupancy 02
UNC_IMC_NORMAL_OCCUPANCY.CH2 IMC channel 2 normal read request occupancy 04
UNC_IMC_NORMAL_READS.CH0 IMC channel 0 normal read requests 01 2C

Performance Analysis Guide

 54

UNC_IMC_NORMAL_READS.CH1 IMC channel 1 normal read requests 02
UNC_IMC_NORMAL_READS.CH2 IMC channel 2 normal read requests 04
UNC_IMC_NORMAL_READS.ANY IMC normal read requests 07
UNC_IMC_WRITES.FULL.CH0 IMC channel 0 full cache line writes 01 2F
UNC_IMC_WRITES.FULL.CH1 IMC channel 1 full cache line writes 02
UNC_IMC_WRITES.FULL.CH2 IMC channel 2 full cache line writes 04
UNC_IMC_WRITES.FULL.ANY IMC full cache line writes 07
UNC_IMC_WRITES.PARTIAL.CH0 IMC channel 0 partial cache line writes 08
UNC_IMC_WRITES.PARTIAL.CH1 IMC channel 1 partial cache line writes 10
UNC_IMC_WRITES.PARTIAL.CH2 IMC channel 2 partial cache line writes 20
UNC_IMC_WRITES.PARTIAL.ANY IMC partial cache line writes 38

The bandwidths due to normal application dram access can be evaluated as follows:
Read Bandwidth (ch0) = 64*UNC_IMC_NORMAL_READS.CH0* Frequency/Cycles
Where any of the cycle events (core or uncore) can be used as long as the corresponding
frequency is used also.
Similarly the write bandwidth can be evaluated (ignoring partial writes) as:
Write Bandwidth (ch0) = 64*UNC_IMC_WRITES.FULL.CH0* Frequency/Cycles

The penalty can be evaluated using the cycles that there are entries in the queues as usual.
Similarly there are events for counting the cycles during which the associated queues
were full.

Table 33

Event Name Definition Umask Event

UNC_IMC_BUSY.READ.CH0
Cycles IMC channel 0 busy with a
read request 01 29

UNC_IMC_BUSY.READ.CH1
Cycles IMC channel 1 busy with a
read request 02 29

UNC_IMC_BUSY.READ.CH2
Cycles IMC channel 2 busy with a
read request 04 29

UNC_IMC_BUSY.WRITE.CH0
Cycles IMC channel 0 busy with a
write request 08 29

UNC_IMC_BUSY.WRITE.CH1
Cycles IMC channel 1 busy with a
write request 10 29

UNC_IMC_BUSY.WRITE.CH2
Cycles IMC channel 2 busy with a
write request 20 29

As the dram control is on the processor the dram paging policy statistics can also be
collected. Some of the events related to this are listed below.

Table 34

Event Name Definition
Umas
k

Even
t

UNC_DRAM_OPEN.CH0 DRAM Channel 0 open commands 01 60
UNC_DRAM_OPEN.CH1 DRAM Channel 1 open commands 02 60
UNC_DRAM_OPEN.CH2 DRAM Channel 2 open commands 04 60
UNC_DRAM_PAGE_CLOSE.CH0 DRAM Channel 0 page close 01 61

Performance Analysis Guide

 55

UNC_DRAM_PAGE_CLOSE.CH1 DRAM Channel 1 page close 02 61
UNC_DRAM_PAGE_CLOSE.CH2 DRAM Channel 2 page close 04 61
UNC_DRAM_PAGE_MISS.CH0 DRAM Channel 0 page miss 01 62
UNC_DRAM_PAGE_MISS.CH1 DRAM Channel 1 page miss 02 62
UNC_DRAM_PAGE_MISS.CH2 DRAM Channel 2 page miss 04 62

There are also queues to monitor the high priority accesses like those associated with
device drivers for video and network adapters.

Table 35

Dram access control commands can be monitored with:

Table 36
Event Name Definition Umask Event

UNC_DRAM_READ_CAS.CH0
DRAM Channel 0 read CAS
commands 01 63

UNC_DRAM_READ_CAS.AUTOPRE_CH0
DRAM Channel 0 read CAS
auto page close commands 02 63

UNC_DRAM_READ_CAS.CH1
DRAM Channel 1 read CAS
commands 04 63

UNC_DRAM_READ_CAS.AUTOPRE_CH1
DRAM Channel 1 read CAS
auto page close commands 08 63

UNC_DRAM_READ_CAS.CH2
DRAM Channel 2 read CAS
commands 10 63

Event Name Definition Umask Event
UNC_IMC_ISOC_OCCUPANCY.CH0 IMC channel 0 ISOC read request occupancy 01 2B
UNC_IMC_ISOC_OCCUPANCY.CH1 IMC channel 1 ISOC read request occupancy 02 2B
UNC_IMC_ISOC_OCCUPANCY.CH2 IMC channel 2 ISOC read request occupancy 04 2B
UNC_IMC_ISOC_OCCUPANCY.ANY IMC ISOC read request occupancy 07 2B
UNC_IMC_HIGH_PRIORITY_READS.CH0 IMC channel 0 high priority read requests 01 2D
UNC_IMC_HIGH_PRIORITY_READS.CH1 IMC channel 1 high priority read requests 02 2D
UNC_IMC_HIGH_PRIORITY_READS.CH2 IMC channel 2 high priority read requests 04 2D
UNC_IMC_HIGH_PRIORITY_READS.ANY IMC high priority read requests 07 2D
UNC_IMC_CRITICAL_PRIORITY_READS.CH0 IMC channel 0 critical priority read requests 01 2E
UNC_IMC_CRITICAL_PRIORITY_READS.CH1 IMC channel 1 critical priority read requests 02 2E
UNC_IMC_CRITICAL_PRIORITY_READS.CH2 IMC channel 2 critical priority read requests 04 2E
UNC_IMC_CRITICAL_PRIORITY_READS.ANY IMC critical priority read requests 07 2E

UNC_IMC_ISOC_FULL.READ.CH0 Cycles DRAM channel 0 full with ISOC read requests 01 28

UNC_IMC_ISOC_FULL.READ.CH1 Cycles DRAM channel 1 full with ISOC read requests 02 28

UNC_IMC_ISOC_FULL.READ.CH2 Cycles DRAM channel 2 full with ISOC read requests 04 28

UNC_IMC_ISOC_FULL.WRITE.CH0 Cycles DRAM channel 0 full with ISOC write requests 08 28

UNC_IMC_ISOC_FULL.WRITE.CH1 Cycles DRAM channel 1 full with ISOC write requests 10 28

UNC_IMC_ISOC_FULL.WRITE.CH2 Cycles DRAM channel 2 full with ISOC write requests 20 28

Performance Analysis Guide

 56

UNC_DRAM_READ_CAS.AUTOPRE_CH2
DRAM Channel 2 read CAS
auto page close commands 20 63

UNC_DRAM_WRITE_CAS.CH0
DRAM Channel 0 write CAS
commands 01 64

UNC_DRAM_WRITE_CAS.AUTOPRE_CH0
DRAM Channel 0 write CAS
auto page close commands 02 64

UNC_DRAM_WRITE_CAS.CH1
DRAM Channel 1 write CAS
commands 04 64

UNC_DRAM_WRITE_CAS.AUTOPRE_CH1
DRAM Channel 1 write CAS
auto page close commands 08 64

UNC_DRAM_WRITE_CAS.CH2
DRAM Channel 2 write CAS
commands 10 64

UNC_DRAM_WRITE_CAS.AUTOPRE_CH2
DRAM Channel 2 write CAS
auto page close commands 20 64

UNC_DRAM_REFRESH.CH0
DRAM Channel 0 refresh
commands 01 65

UNC_DRAM_REFRESH.CH1
DRAM Channel 1 refresh
commands 02 65

UNC_DRAM_REFRESH.CH2
DRAM Channel 2 refresh
commands 04 65

UNC_DRAM_PRE_ALL.CH0
DRAM Channel 0 precharge all
commands 01 66

UNC_DRAM_PRE_ALL.CH1
DRAM Channel 1 precharge all
commands 02 66

UNC_DRAM_PRE_ALL.CH2
DRAM Channel 2 precharge all
commands 04 66

Intel® QuickPath Interconnect Home Logic Opcode Matching
One rather different form of monitoring the cacheline access and writeback traffic in the
uncore is to use the QHL opcode matching capability. QHL requests can be superseded
when another source can supply the required line more quickly.
L3 CACHE misses to locally homed lines, due to on package requests, are
simultaneously directed to the QHL and QPI. If a remote caching agent supplies the line
first then the request to the QHL is sent a signal that the transaction is complete. If the
remote caching agent returns a modified line in response to a read request then the data in
dram must be updated with a writeback of the new version of the line.
There is a similar flow of control signals when the QPI simultaneously sends a snoop
request for a locally homed line to both the GQ and the QHL. If the L3 CACHE has the
line the QHL must be signaled that the transaction was completely by the L3
CACHE/GQ. If the line in the L3 CACHE (or the cores) was modified and the snoop
request from the remote package was for a load, then a writeback must be completed by
the QHL and the QHL forwards the line to the QPI to complete the transaction.
The cases listed above (and others) can be monitored by using the opcode matcher in the
QHL to monitor which protocol signals it receives and use these to count the occurrences
of the assorted cases. The opcode matcher is programmed with MSR 396h as described in
the table below:

Performance Analysis Guide

 57

Table 37

Bit Position Bit Name
Access
Method

Reset
Type

Reset
Value Bit Description

39:03:00 Address state reset_reset0

An Address Match PerfMon event
is generated if the incoming
address for a request matches
these bits.

47:40:00 Opcode state reset_reset0

An Opcode Match PerfMon event
is generated if the incoming
Opcode for a request matches
these bits.
This match select field allows for
the following sub-event
combinations:
Bits [63:61] = '10- ' Address
match only
Bits [63:61] = '01- ' Opcode
match only
Bits [63:61] = '11- ' (Address
match) OR (Opcode match)
Bits [63:61] = '001 ' (Address
match) AND (Opcode match)
Bits [63:61] = '000 ' 0

63:61 Match_Select state reset_reset0

Upon hardware reset, this field is
all zeroes thus powering down the
local event generation logic in the
CHL section. This encoding
scheme helps minimize design
impact in the CHL (only 2
additional stages of logic needed).

There is no reasonable way to predefine any address matching of course but several
opcodes that identify writebacks and forwards from the caches that are certainly useful as
they identify (un)modified lines that were forwarded from the remote socket or to the
remote socket. Not all the predefined entries currently make sense.

Table 38

Event Name Description umask Event MSR MSR Value

UNC_ADDR_OPCODE_MATCH.IOH.NONE No opcode match 01 35 396 0

UNC_ADDR_OPCODE_MATCH.IOH.RSPFWDI Hitm in lOH Cache, RFO snoop 01 35 396 4000190000000000

UNC_ADDR_OPCODE_MATCH.IOH.RSPFWDS ?? 01 35 396 40001A0000000000

UNC_ADDR_OPCODE_MATCH.IOH.RSPIWB ?? 01 35 396 40001D0000000000

UNC_ADDR_OPCODE_MATCH.LOCAL.NONE none 04 35 396 0

Performance Analysis Guide

 58

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPFWDI Hitm in local L3 CACHE, RFO snoop 04 35 396 4000190000000000

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPFWDS Local L3 CACHE in F or S, load snoop 04 35 396 40001A0000000000

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPIWB Hitm in local L3 CACHE, load snoop 04 35 396 40001D0000000000

UNC_ADDR_OPCODE_MATCH.REMOTE.NONE none 02 35 396 0

UNC_ADDR_OPCODE_MATCH.REMOTE.RSPFWDI Hitm in remote L3 CACHE, RFO 02 35 396 4000190000000000

UNC_ADDR_OPCODE_MATCH.REMOTE.RSPFWDS Remote L3 CACHE in F or S, load 02 35 396 40001A0000000000

UNC_ADDR_OPCODE_MATCH.REMOTE.RSPIWB Hitm in remote L3 CACHE, load 02 35 396 40001D0000000000

These opcode uses can be seen from the dual socket QPI communications diagrams
below. These predefined opcode match encodings can be used to monitor HITM
accesses in particular and serve as the only event that allows profiling the requesting code
on the basis of the HITM transfers its requests generate.

Intel TOP SECRET

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q
P
I

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q
P
I Rsp

I

DRd

Cache Lookup
Cache Miss

[Sending Req to
Local Home
(socket 2 owns
this address)]

SnpData

[Send
Snoop
to LLC]

SnpData

Cache
Lookup

Cache
Miss

RspI

Speculative
mem Rd

Data

[Fill complete to
Socket2]

RspI

RdData request after LLC Miss to Local
Home (Clean Rsp)

RspI

Allocate in E state

[I-> E]

R
dD

at
a

[Broadcast
snoops to all
other caching
agents)]

SnpData

D
at

aC
_E

_C
M

P

Performance Analysis Guide

 59

Intel TOP SECRET

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q
P
I

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q
P
I

DRd
(1)

Cache
Lookup

(2)

Cache
Miss

(3)

[Sending Req to
Remote Home
(socket 1 owns
this address)]

RdData
(4)

RdData (5)
[Send
Snoop
to LLC]

SnpData (6)

[Send
Request
to CHL]

RdData
 (6

)

Cache
Lookup
(7)

Clean Rsp
(8)

R
sp

I
 (9

)

Speculative
mem Rd (7)

Data (9)

Data
C_E

_c
mp

(10
)

[Send complete
and Data to
Socket2 to
allocate in E state]

DataC_E_cmp
(11)

DataC_E_cmp
(12)

Allocate
in E state
[i->E] (13)

RdData request after LLC Miss to
Remote Home (Clean Rsp)

[RspI indicates
clean snoop]

Performance Analysis Guide

 60

Intel TOP SECRET

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q
P
I

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q
P
I

DRd
(1)

Cache
Lookup

(2) Cache
Miss

(3)

[Sending Req to
Remote Home
(socket 1 owns
this address)]

RdData
(4)

RdData (5)

[Send
Snoop
to LLC]SnpData (6)

[S
en

d
Req

ue
st

to C
HL]

RdData
 (6

)

Cache
Lookup
(7)

Hitm
 Rsp

M-> I ,
 Data (8)

R
sp

IW
b,

W

bI
D

at
a

(9
)

Speculative mem Rd
(7)

Data (9)

Data
C_E

_c
mp

(10
)

[Send complete
and Data to
Socket2 to
allocate in E state]

DataC_E_cmp
(11)

DataC_E_cmp
(12)

Allocate
in E state
[i->E] (13)

RdData request after LLC Miss to
Remote Home (Hitm Res)

[Data written back
to Home. RspIWb
is a NDR response.
Hint to home that
wb data follows
shortly which is
WbIData.

WB

Intel TOP SECRET

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q
P
I

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q
P
I WbIData

DRd

Cache Lookup
Cache Miss

[Sending Req to
Local Home
(socket 2 owns
this address)]

SnpData

[Send
Snoop
to LLC]SnpData

Cache
Lookup

Hitm
 Rsp

M-> I ,
 Data RspIWb

Speculative mem Rd

Data

[Send complete to
Socket2]

RspIWb
WbIData

RdData request after LLC Miss to Local
Home (Hitm Response)

RspIW
b

Allocate in E state

[I-> E]

R
dD

at
a

[Broadcast
snoops to all
other caching
agents)]

SnpData

[Data written back to
Remote Home. RspIWb is
a NDR response. Hint to
home that wb data
follows shortly which is
WbIData]

WbIData

D
at

aC
_E

_C
m

p

WB

Performance Analysis Guide

 61

Intel TOP SECRET

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q
P
I

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q
P
I Data

C_F

DRd

Cache Lookup
Cache Miss

[Sending Req to
Local Home
(socket 2 owns
this address)]

SnpData

[Send
Snoop
to LLC]SnpData

Cache
Lookup

Hit Rsp

E,F -> S,
Data

RspFwdS

Speculative
mem Rd

Data

[Send complete to
Socket2]

DataC_F
RspFwdS

RdData request after LLC Miss to Local
Home (Hit Response)

RspFwdS

Allocate in F state

[I-> F]

R
dD

at
a

[Broadcast
snoops to all
other caching
agents)]

SnpData

[RspFwdS indicates Hit
snoop response and data
forwarded to Peer agent]]

[DataC_F indicates data
forwarded to Peer agent in
F state]

DataC_F

C
m

p

Intel TOP SECRET

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q
P
I

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q
P
I

RdInvO
wn

Data
C_E

_C
mp

RFO

Cache
Lookup

Cache Miss

[Sending Req to
Remote Home
(socket 1 owns
this address)]

RdInvOwn

[Send
Snoop
to LLC]SnpInvOwn

[Send
Request
to CHL]

RdInvO
wn

Cache
Lookup

Clean (S
, F

, I
I)

R
spI

Speculative
mem Rd

Data

[Home Sends cmp
and Data to
Socket2 to
allocate in E state]

DataC_E_cmp Allocate
in E state
[I->E]

RdInvOwn request after LLC Miss to
Remote Home (Clean Res)

Data
C_E

_c
mp

RspI indicates
Clean snoop
Response

Performance Analysis Guide

 62

Intel TOP SECRET

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q
P
I

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q
P
I

RdInvO
wn

Data
C_M

RFO

Cache
Lookup

Cache Miss

[Sending Req to
Remote Home
(socket 1 owns
this address)]

RdInvOwn

[Send
Snoop
to LLC]SnpInvOwn

[S
en

d

Req
ues

t

to C
HL] RdInvO

wn

Cache
Lookup

HITM (M
I),

Data

R
spFw

dI

Speculative
mem Rd

Data

DataC_M
[Send Data to
Socket2 to
allocate in M
state]

DataC_M
Allocate
in M state
[I->M]

RdInvOwn request after LLC Miss to
Remote Home (Hitm Res)

cm
p

cmp

cm
p

Indicates to Home that
Data has already been
forwarded to Socket 2

Intel TOP SECRET

Socket 1 Socket 2

Uncore

Cores

L

L

C

GQ

QHLIMC

Q
P
I

Uncore

Cores

QHL

GQ

L

L

C

IMC

Q
P
I

R
dI

nv
O

w
n

Data
C_E

RFO

Cache
Lookup

Cache Miss

[Sending Req to
Local Home
(socket 2 owns
this address)]

SnpInvOwn

[Send
Snoop
to LLC]SnpInvOwn

Cache
Lookup

HIT (E
I),

Data

RspFwdI

Speculative
mem Rd

Data

DataC_E

[Send Data to
Socket2 to
allocate in E state]

DataC_E

Allocate
in E state
[I->E]

RdInvOwn request after LLC Miss to
Local Home (Hit Res)

RspFwdI

RspFwdI

Indicates to
Home that Data
has already
been forwarded
to Socket 2

SnpInvO
wn

[Broadcast
Snoops to all
other caching
agents

cm
p

The diagrams show a series of QPI protocol exchanges associated with Data Reads and
Reads for Ownership (RFO), after an L3 CACHE miss, under a variety of combinations

Performance Analysis Guide

 63

of the local home of the cacheline, and the MESI state in the remote cache. Of particular
note are the cases where the data comes from the remote QHL even when the data was in
the remote L3 CACHE. These are the Read Data with the remote L3 CACHE having the
line in an M state. Whether the line is locally or remotely “homed” it has to be written
back to dram before the originating GQ receives the line, so it always appears to come
from a QHL. The RFO does not do this. However, when responding to a remote RFO
(SnpInvOwn) and the line is in an S or F state, the cacheline gets invalidated and the line
is sent from the QHL.
The point is that the data source might not always be so obvious.

Measuring Bandwidth From the Uncore
Read bandwidth can be measured on a per core basis using events like
OFFCORE_RESPONSE_0.DATA_IN.LOCAL_DRAM and
OFFCORE_RESPONSE_0.DATA_IN.REMOTE_DRAM. The total bandwidth includes
writes and these cannot be monitored from the core as they are mostly caused by
evictions of modified lines in the L3 CACHE. Thus a line used and modified by one core
can end up being written back to dram when it is evicted due to a read on another core
doing some completely unrelated task. Modified cached lines and writebacks of uncached
lines (ex: written with non temporal streaming stores) are handled differently in the
uncore and their writebacks increment various events in different ways.
All full lines written to dram are counted by the UNC_IMC_WRITES.FULL.* events.
This includes the writebacks of modified cached lines and the writes of uncached lines,
for example generated by NT SSE stores. The uncached line writebacks from a remote
socket will be counted by UNC_QHL_REQUESTS.REMOTE_WRITES. The uncached
writebacks from the local cores are not counted by
UNC_QHL_REQUESTS.LOCAL_WRITES, as this event only counts writebacks of
locally cached lines.
The UNC_IMC_NORMAL_READS.* events only count the reads. The
UNC_QHL_REQUESTS.LOCAL_READS and the
UNC_QHL_REQUESTS.REMOTE_READS count the reads and the InvtoE
transactions, which are issued for the uncacheable writes, eg USWC/UC writes. This
allows the evaluation of the uncacheable writes, by computing the difference of
UNC_QHL_REQUESTS.LOCAL_READS +
UNC_QHL_REQUESTS.REMOTE_READS – UNC_IMC_NORMAL_READS.ANY.
These events are summarized in the following table

Table 39

Event Description
UNC_IMC_WRITES.FULL.ANY All writes of full cachelines (cached and uncached)
UNC_IMC_WRITES.FULL.CH0 Writes of full lines to channel 0
UNC_IMC_WRITES.FULL.CH1 Writes of full lines to channel 1
UNC_IMC_WRITES.FULL.CH2 Writes of full lines to channel 2
UNC_QHL_REQUESTS.
LOCAL_WRITES Writes of modified cached lines from local cores
UNC_QHL_REQUESTS. Writes of modified cached lines AND uncached lines from

Performance Analysis Guide

 64

REMOTE_WRITES remote cores
UNC_IMC_NORMAL_READS.ANY Total normal priority reads
UNC_IMC_NORMAL_READS.CH0 Total normal priority reads on Channel 0
UNC_IMC_NORMAL_READS.CH1 Total normal priority reads on Channel 1
UNC_IMC_NORMAL_READS.CH2 Total normal priority reads on Channel 2
UNC_QHL_REQUESTS.
LOCAL_READS Total reads plus I to E for writebacks from local cores
UNC_QHL_REQUESTS.
REMOTE_READS Total reads plus I to E for writebacks from remote cores

Conclusion:

Intel® Core™ i7 Processors and Intel® Xeon™ 5500
Processors open a new class of performance analysis
capablitlies

Appendix 1

Profiles
Basic Intel® PTU Profiles

General Exploration
A six event set that can be captured in a single run. The following events are included:
Cpu_clk_unhalted.core
Inst_retired.any
Br_inst_retired.all_branches
Mem_inst_retired.latency_above_threshold_32
Mem_load_retired.llc_miss
Uops_executed.core_stall_cycles
Thus this profile gives cycle usage and stalled cycles for the core (ie works best with HT
disabled). Instructions retired can be used for basic block execution counts, particularly in
conjunction with the precise branch retired event
Using the latency event with a 32 cycle threshold measures the distribution of offcore
accesses though the data source encoding captured with the event. As the latency events
capture data sources, latencies and linear addresses, this profile can also yield a
breakdown of data sources for loads that miss the core’s data caches and the latencies that
result. This event is randomly samples loads and the sampling fraction is dependent on
the application. This can be measured by normalizing the sum of the L3 CACHE miss
data sources with the Mem_uncore_retired.llc_miss event, which counts them all.

Performance Analysis Guide

 65

Branch Analysis
This profile is designed for detailed branch analysis. The 4 events:
br_inst_retired.all_branches
br_inst_retired.near_call:LBR=user_calls
cpu_clk_unhalted.thread
inst_retired.any
allow basic execution analysis and a variety of deatiled loop and call analyses. The call
counts per source can be extracted as the LBRs are captured. If the call counts are low
you may need to make a copy of the profile and decrease the SAV value. As the LBRs
are captured this will take 2 runs and cannot be multiplexed. As the registers are
captured, on Intel(r) Core(tm) i7 systems running in Intel(r) 64 enabled mode, the integer
arguments of functions can be extracted from the register values display in the asm
display, for functions with limited numbers of arguments. Further the register values can
be used to get average tripcount values for counter loops where an induction variable is
compared to a tripcount, when using the all_branches event. The SAV value for the call
retired event must be tuned to the application as this can vary by orders of magnitude
between applications.

Cycles and Uops
This list of 14 events, thus collected in 3 runs, assists in the analysis of cycle usage and
uop flow through the core pipeline, and execution flow through the program. The events
are:
Br_inst_retired.conditional
Br_inst_retired.near_call
Cpu_clk_unhalted.core
Inst_retired.any
Resource_stalls.any
Uops_decoded.any
Uops_decoded.stall_cycles
Uops_executed.core_stall_cycles
Uops_executed.port015
Uops_executed.port234_core
Uops_issued.any
Uops_issued.stall_cycles
Uops_retired.any
Uops_retired.stall_cycles
This set of events can be used to identify a large number of performance issues. It
identifies where cycles are consumed in the code and what fraction of them corresponded
to stalls in the execution stages. Uops_executed.core_stall_cycles count cycles that no
uops were dispatched to the execution units. Used in conjunction with the precise event,
uops_retired.stall_cycles, the nature of the stall can usually be discerned with the
disassembly display. The control flow of the program can be monitored with the
inst_retired and the two PEBS branch events. Function call counts and basic block
execution counts can be extracted with these 3 events. Uops_issued.stall_cycles-
resource_stalls.any monitors uop delivery starvation due to FE issues.
Uops_executed.port015 + uops_executed.core234.core – uops_retired.any measures the

Performance Analysis Guide

 66

wasted work due to speculatively dispatched instructions.
Uops_retired.any/inst_retired.any can be used to identify when (FP) exception handlers
are being frequently invoked, and causing a high ratio (>>1). The comparison of the stall
cycle counts at the various pipeline stages can yield insight into the uop flow efficiency.

Memory Access
A set of 13 events that require 3 runs, or three groups if event multiplexing is enabled.
These events were selected to give a reasonably complete breakdown of cacheline traffic
due to loads and some overview of total offcore traffic. As cycles and instructions retired
have dedicated counters, they are also included. The additional events are
Mem_inst_retired.loads
Mem_inst_retired.stores
Mem_inst_retired.latency_above_threshold_32
Mem_inst_retired.latency_above_threshold_128
Mem_load_retired.llc_miss
Mem_load_retired.llc_unshared_hit
Mem_load_retired.other_core_l2_hit_hitm
Mem_uncore_retired.local_dram
Mem_uncore_retired.remote_dram
Offcore_response_0.data_in.local_dram
Offcore_response_0.data_in.remote_dram
The use of the offcore_response_0.any_request.local_dram/remote dram events was
selected because non temporal stores to local dram are miscounted by the
“other_core_hit_hitm” data source. This does not happen for the remote dram.
Using two latency thresholds allows simultaneous monitoring of L3 CACHE hits and L3
CACHE misses with reasonable statistical accuracy. As the latency events capture data
sources, latencies and linear addresses, it was decided that full data profiling with all the
events would not be needed. A copy that includes this option is also provided.

False- True Sharing
These 2 precise events should be extremely effective at identifying cachelines that result
in access contention in threaded applications. This profile can be used on either single or
dual socket configurations.
Mem_inst_retired.stores
Mem_uncore_retired.other_core_l2_hitm
The SAV values are lowered with respect to nominal values as the objective is to capture
as many addresses as possible to enable the data profiling analysis of these contended
accesses. If data acquisition runs last much longer than 1 minute, invoke the sampling
multipliers in the project properties in order to keep the number of events under 10
million. The tb5 file will not be created if the size exceeds 4GBs.

Performance Analysis Guide

 67

FE Investigation
A list of 14 events, thus collected in 3 runs, that yields a reasonably complete breakdown
of instruction delivery related performance issues.
Br_inst_exec.any
Br_misp_exec.any
Cpu_clk_unhalted.core
Inst_retired.any
Ild_stall.any
Ild_stall.lcp
Itlb_miss.retired
L1I.cycles_stalled
L1I.misses
Rat_stalls.flags
Rat_stalls.registers
Rat_stalls.rob_read_port
Resource_stalls.any
Uops_issued.stall_cycles
The difference of uops_issued.stall_cycles - resource_stalls.any yields the instruction
starvation cycles when the machine is booted with HT disabled. This can be used as an
overall guide for identifying a uop delivery problem. The main causes for such issues are
usually, branch mispredictions causing incorrect instruction “prefetching”, uop decoding
and resource allocation bandwidth issues and excessively large active binaries. The
selected events should assist in the identification of these issues.

Working Set

A single run data collection gathering PEBS data on all loads and stores retired. In
addition, cycles, inst_retired.any, and conditional branches executed are also collected.
The Sample After Values for the load and store instructions are lowered from the default
values by a factor of 100. This will result in a severe performance distortion and an
enormous amount of data being collected. This is needed to accurately sample the address
space of a real application. The data profiling is enabled and the Intel® PTU Data Access
Analysis package can be used to get an idea of the working set size of the program in the
utility histogram pane. Address profiles can also be nicely extracted with this profile. An
application that normally runs in one minute on a single core will produce approximately
2GBs of data, so it is wise to use the SAV multipliers if the run time is longer than a
couple minutes.

Loop Analysis with call sites
A reasonably complete list of events for analyzing loop dominated codes
Arith.cycles_div_busy
Br_inst_retired.all_branches
Br_inst_retired.any.near_call
Br_misp_exec.any

Performance Analysis Guide

 68

Cpu_clk_unhalted.thread
DTLB_misses.any
Inst_retired.any
Load_hit_pre
Mem_inst_retired.Latency_above_threshold_32
Mem_load_retired.L2_hit
Mem_load_retired.llc_miss
Mem_load_retired.llc_unshared_hit
Mem_load_retired.other_core_l2_hit_hitm
Mem_uncore_retired.local_dram
Mem_uncore_retired.other_core_l2_hitm
Mem_uncore_retired.remote_dram
Offcore_response_0.data_in.any_dram
Offcore_response_0.data_in.local_dram
Offcore_response_0.data_in.remote_dram
Sq_full_stall_cycles
Rat_stalls.any
Rat_stalls.rob_read_port
Resource_stalls.load
Resource_stalls.ROB_full
Resource_stalls.RS_full
Resource_stalls.store
Uops_executed.core_stall_cycles
Uops_issued.any
Uops_issued.stall_cycles
Uops_retired.any
Uops_retired.stall_cycles
This list of events will allow computation of many of the more relevant predefined ratios
for loop execution. These include the cycles lost to assorted load latencies, stalls at
execution, FE stalls, stalls at retirement, wasted work, branch misprediction rates, basic
block execution counts, function call counts, a few specific loop related FE and saturation
effects and input bandwidth. The precise events will be collected with the full PEBS
buffer enabling data address profiling.
This profile was added in Intel® PTU with and without call site collection to allow
multiplexing. However, currently multiplexing in intel® PTU will not work with this
many events. Further, Intel® PTU 3.2 multiplexing may crash some OS’s when HT is
enabled.

Client Analysis with/without call sites
A reasonably complete list of events for analyzing typical client applications
Arith.cycles_div_busy
Arith.div
Arith.mul
Br_inst_retired.all_branches
Br_inst_retired.any.near_call

Performance Analysis Guide

 69

Br_misp_exec.any
Cache_lock_cycles.l1d
Cpu_clk_unhalted.thread
DTLB_misses.any
Fp_mmx_trans.any
Ild_stall.any
ild_stalls.iq_full
Ild_stall.lcp
ild_stalls.mru
ild_stalls.regen
Inst_retired.any
Itlb_miss_retired
L1i.cycles_stalled
L1I.misses
Load_hit_pre
Machine_clears.cycles
Mem_inst_retired.Latency_above_threshold_32
Mem_inst_retired.loads
mem_inst_retired.stores
Mem_load_retired.hit_lfb
mem_load_retired.L1d_hit
Mem_load_retired.L2_hit
Mem_load_retired.llc_miss
Mem_load_retired.llc_unshared_hit
Mem_load_retired.other_core_l2_hit_hitm
Mem_uncore_retired.local_dram
Mem_uncore_retired.other_core_l2_hitm
Misalign_mem_ref.load
Misalign_mem_ref.store
Offcore_request.uncached_mem
Offcore_response_0.data_in.any_dram
Partial_address_alias
Sq_full_stall_cycles
Rat_stalls.any
Rat_stalls.flags
Rat_stalls.registers
Rat_stalls.rob_read_port
Resource_stalls.any
Resource_stalls.load
Resource_stalls.ROB_full
Resource_stalls.RS_full
Resource_stalls.store
Uops_executed.core_stall_cycles
Uops_issued.any
Uops_issued.stall_cycles
Uops_retired.any

Performance Analysis Guide

 70

Uops_retired.stall_cycles
Uops_issued.core_stall_cycles
This list of events wil allow computation of many of the more relevant predefined ratios
of interest in client application execution. These include the cycles lost to assorted load
latencies, stalls at execution, FE stalls and most of the causes of FE stalls, stalls at
retirement, wasted work, branch misprediction rates, basic block execution counts,
function call counts, a few specific low penalty issues seen in client applications,
saturation effects and input bandwidth. With HT disabled FE stalls can be evaluated with
uops_issued.stall_cycles - resource_stalls.any, with HT enabled use
uops_issued.core_stall_cycles-resource_stalls.any. The precise events will be collected
with the full PEBS buffer enabling data address profiling.
This profile was added in Intel® PTU with and without call site collection to allow
multiplexing. However, currently multiplexing in intel® PTU will not work with this
many events. Further, Intel® PTU 3.2 multiplexing may crash some OS’s when HT is
enabled.

Appendix II PMU Programming
Figure 1: PerfEvtSelX MSR Definition

EVTSEL

 0 71523 31

32 394755 63

EVTMSK

OS
USR

E

INT
AnyThr

EN
INV

CMASK

Reset Value: 0x00000000.00000000

Reserved

Performance Analysis Guide

 71

Table 1: PerfEvtSelX Programming

Bit Bit
Position

Access Description

EVTSEL 7:0 RW Selects the event logic unit used to detect micro-
architectural conditions.

EVTMSK 15:8 RW Condition qualifiers for the event selection logic
specified in the EVTSEL field.

USR 16 RW When set, indicates that the event specified by bit
fields EVTSEL and EVTMSK is counted only
when the logical processor is operating and
privilege level 1, 2, or 3.

OS 17 RW When set, indicates that the event specified by bit
fields EVTSEL and EVTMSK is counted only
when the logical processor is operating and
privilege level 0.

E 18 RW When set, causes the counter to increment when a
deasserted to asserted transition occurs for the
conditions that can be expressed by any of the
fields in this register.

INT 20 RW When set, the logical processor generates an
exception through its local APIC on counter
overflow. Counters only count up, and interrupts
are generated on a transition from maximum
count to zero. There will be some latency from
the time the counter triggers the interrupt until the
interrupt handler is invoked.

AnyThr 21 RW When clear, the counter increments only when
event conditions are satisfied in its logical
processor. When Set, the counter increments
when event conditions are satisfied for any logical
processor in the core in which this counter
resides.

EN 22 RW When clear, this counter is locally disabled.
When set, this counter is locally enabled.

INV 23 RW When clear, the CMASK field is interpreted as
greater than or equal to. When set, the CMASK
field is interpreted as less than.

CMASK 31:24 RW When this field is clear, it has no effect on
counting. When set to a value other than zero, the
logical processor compares this field to the event
counts on each core clock cycle. If INV is clear
and the event counts are greater than or equal to
this field, the counter is incremented by one. If
INV is set and the event counts are less than this
field, the counter is incremented by one.
Otherwise the counter is not incremented.

Performance Analysis Guide

 72

Software must read-modify-write or explicitly clear reserved bits.

	Introduction
	Basic Intel® Core™ i7 Processor and Intel® Xeon™ 5500 Processor Architecture and Performance Analysis
	Core Out of Order Pipeline
	Core Memory Subsystem
	Uncore Memory Subsystem
	Overview
	Intel® Xeon™ 5500 Processor

	Core Performance Monitoring Unit (PMU)
	Uncore Performance Monitoring Unit (PMU)

	Performance Analysis and the Intel® Core™ i7 Processor and Intel® Xeon™ 5500 processor Performance Events: Overview
	Cycle Accounting and Uop Flow
	Branch mispredictions, Wasted Work, Misprediction Penalties and UOP Flow

	Stall Decomposition Overview
	Measuring Penalties

	Core Precise Events
	Overview
	Precise Memory Access Events
	Latency Event
	Precise Execution Events
	Shadowing
	Loop Tripcounts
	Last Branch Record (LBR)

	Non-PEBS Core Memory Access Events
	Bandwidth per core
	L1D, L2 Cache Access and More Offcore events
	Store Forwarding

	Front End Events
	Branch Mispredictions
	FE Code Generation Metrics
	Microcode and Exceptions

	Uncore Performance Events
	The Global Queue
	L3 CACHE Events
	Intel® QuickPath Interconnect Home Logic (QHL)
	Integrated Memory Controller (IMC)
	Intel® QuickPath Interconnect Home Logic Opcode Matching
	Measuring Bandwidth From the Uncore

	Conclusion:
	Intel® Core™ i7 Processors and Intel® Xeon™ 5500 Processors open a new class of performance analysis capablitlies
	Appendix 1
	Profiles
	General Exploration
	Branch Analysis
	Cycles and Uops
	Memory Access
	False- True Sharing
	FE Investigation
	Working Set
	Loop Analysis with call sites
	Client Analysis with/without call sites

	Appendix II PMU Programming

