

Preface

About SunFounder

SunFounder is a technology company focused on Raspberry Pi and Arduino open source

community development. Committed to the promotion of open source culture, we strive to

bring the fun of electronics making to people all around the world and enable everyone to

be a maker. Our products include learning kits, development boards, robots, sensor modules

and development tools. In addition to high quality products, SunFounder also offers video

tutorials to help your own project. If you have interest in open source or making something

cool, welcome to join us! Visit www.sunfounder.com for more!

About the PiCar-S

The PiCar-S is a cool smart car that can work with Raspberry Pi model B+, 2 model B and 3

model B. Equipped with three sensor modules including ultrasonic obstacle avoidance, light

follower, and line follower, you can better learn the programming on how to control the car.

In this manual, we will show you how to build the PiCar-S via description, illustrations of physical

components, in both hardware and software respects. You will enjoy learning how all this work.

You may visit our website www.sunfounder.com to download the related code and view the

user manual on LEARN -> Get Tutorials and watch related videos under VIDEO, or clone the

code on our page of github.com at

https://github.com/sunfounder/SunFounder_PiCar-S

You are welcome to pull requests and issue posts on our page on Github.

Free Support

If you have any TECHNICAL questions, add a topic under FORUM section on our website

and we'll reply as soon as possible.

For NON-TECH questions like order and shipment issues, please send an email to

service@sunfounder.com. You're also welcomed to share your projects on FORUM.

Contents

Components List ..1

Acrylic Plates ..1

Servo Accessories ...2

Mechanical Fasteners ...2

Wires ...3

PCB ...4

Other Components ..5

Tools ..6

Introduction ...7

Building the Car ..7

Fixing Rear Wheels ..7

Upper Plate ... 10

Battery Holder ... 11

Rear Wheels (Driving) ... 13

TF Card Guard .. 15

Front Half Chassis ... 16

Front Wheels .. 17

Steering Part .. 18

PCB Assembly ... 20

Circuits Building .. 21

Software Installation .. 23

1. Log into Raspberry Pi .. 23

2. Get Source Code .. 23

3. Go to the Code Directory ... 24

4. Install the Environment ... 24

Adjust the Servo to 90 Degrees ... 25

Build the Rest of the Car .. 26

Configuration .. 28

Arming the Car! ... 32

Ultrasonic Obstacle Avoidance .. 33

How the Obstacle Avoidance Works ... 33

Principle ... 33

Procedures ... 33

Software Flow .. 35

Code Explanation .. 37

Light Following .. 38

How It Works ... 38

Principle ... 38

Procedures ... 39

Software Flow .. 41

Code Explanation .. 44

Line Following ... 45

How to Follow Lines .. 45

Principle ... 45

Procedures ... 45

Software Flow .. 49

Code Explanation .. 53

Combination ... 54

Appendix .. 57

Appendix 1: Modules ... 57

Robot HATS ... 57

PCA9865 .. 58

TB6612 .. 59

Line Follower Module ... 59

Light Follower Module ... 60

Ultrasonic Obstacle Avoidance Module ... 61

SunFounder SF0180 Servo ... 61

WiFi Adapter .. 62

DC Gear Motor ... 62

1

Components List

Acrylic Plates

1. Upper Plate x 1

2. Hex Front Wheel Fixing Plate x 4

3. Front Half Chassis x 1

4. TF Card Guard x 1

5. Motor Support x 4

6. Back Half Chassis x 1

7. Bearing Shield x 4

8. Ultrasonic Connector x 1

9. Steering Linkage x 1

10. Ultrasonic Support x 1

11. Steering Connector x 2

12. Sensor Connector x 1

2

Servo Accessories

The following three parts will be used in the servo package:

1. Rocker Arm

2. Rocker Arm Screw

3. Rocker Arm Fixing Screw

Mechanical Fasteners

Name Component Qty.

M2x8 Screw

2

M2.5x6 Screw

12

M3x8 Screw

8

M3x8

Countersunk

Screw

2

M3x10 Screw

9

M3x30 Screw

4

3

M4x25 Screw

2

M2 Nut

2

M2.5 Nut

12

M3 Nut

23

M4 Self-locking

Nut

2

M2.5x8 Copper

Standoff
16

M3x25 Copper

Standoff
8

4x11x4 F694ZZ

Flange Bearing

2

Wires

100mm HX2.54

5-Pin Jumper

Wire

1

50mm HX-2.54 4-

Pin Jumper Wire

1

50mm HX-2.54 2-

Pin Jumper Wire
1

100mm HX-2.54

2-Pin Jumper

Wire
1

200mm HX2.54

5-Pin Jumper

Wire

 1

200mm HX-2.54

4-Pin Jumper

Wire

 1

4

200mm HX2.54

3-Pin Jumper

Wire

 1

PCB

Robot HATS

1

PCA9685 PWM

Driver

1

TB6612 Motor

Driver

1

5-CH Line

Follower Module

1

5

Ultrasonic

Obstacle

Avoidance

Module

1

Light Follower

Module

1

Other Components

2x18650 Battery

Holder

1

DC Gear Motor

2

SunFounder

SF0180 Servo

1

Rear Wheel

2

6

Front Wheel

2

USB Wi-Fi Adapter

1

Ribbon (30cm)

1

Tools

Cross Screwdriver

1

Cross Socket

Wrench

1

M2.5/M4 Small

Wrench

1

M2/M3 Small

Wrench

1

7

Introduction

The is a SMART SENSOR car robot based on Raspberry Pi, which comes with three sensor

modules, including the light follower, line follower and ultrasonic obstacle avoidance. With

these modules, this smart car is capable of some simple automatic actions. Thus, you can

learn some basics of programming in Python to control the car with these sensors. Let’s start

with building this smart car!

Building the Car

Extremely excited when opening the box and checking so many components? Keep your

patience and take it easy. Please note that some details in the following steps need CAREFUL

observation. You should double-check your work based on the figures in the manual after

finishing each step. Don’t worry! Kindly reminders will be given in some particular steps. Just

follow the tutorial step by step. Okay, with no further ado, now let’s start!

Fixing Rear Wheels

Assemble the Motor Support Plate into the Back Half Chassis as shown below.

8

Assemble the two motors with four M3x30 screws and M3 nuts. Pay attention to place the

motors with wires inward, providing convenience for connecting the circuit.

Place wires

inwards

9

Insert four M3x25 copper standoffs through the acrylic plate into four M3 nuts as shown below:

So now this part is completed. You can put it aside for now.

10

Upper Plate

Mount the M2.5x8 copper standoffs and M2.5 nuts into the upper plate first. There are three

PCBs to be installed onto the plate and four copper standoffs are needed for each. So here

12 holes should be used, marked with cross as shown below:

Assemble the M2.5x8 copper standoffs and M2.5 nuts as shown below. Pay attention that the

side the logo carved should face up.

11

Battery Holder

Turn the Upper Plate upside down. Cut the ribbon into two halves. Thread them through the

holes on the plate. Pay attention to the direction and leave one end longer out of the plate

for each to remove the battery easily later.

12

Fasten the battery holder with two M3x8 countersunk screws and two M3 nuts: pay attention

to the direction of battery holder’s wire.

13

Rear Wheels (Driving)

Mount the assembled rear wheel driving part onto the Upper Plate with four M3x8 screws:

14

Assemble the rear wheels:

Align the rear wheels with the motor shaft, and rotate to insert them gently.

15

TF Card Guard

Mount the TF Card Guard plate onto the side near the front wheel with an M3x10 screw and

an M3 nut. First place the nut into the slot from the underneath, and then insert the screw into

the nut through the plate.

16

Front Half Chassis

Assemble the Front Half Chassis with four M3x25 copper standoffs and four M3 nuts as shown

below:

17

Front Wheels

Insert an M4x25 screw through a Flange Bearing (pay attention to the direction – the flange

near the cap of the screw), a Steering Connector, 2 Bearing Shields, 2 Hex Front Wheel Fixing

Plates, and a front wheel, into an M4 Self-locking Nut (note the direction) as shown below:

The Self-locking Nut should be screwed tight enough. It would be better to tighten the screw

until the wheel and Steering Connector cannot move first, then loosen the screw a little, so

that the Steering Plate can just move. Thus, the wheel can turn flexibly when the connection

would not be too loose.

Assemble the other front wheel in the same way, but bear in mind the Steering Connector on

the wheel should be symmetric with the previous one:

Now two front wheels have finished assembly.

Flange

18

Steering Part

Take out the Rocker Arm and the Rocker Arm Screw (the longer one):

Connect the Steering Linkage and the rocker arm with the screw. Note: Insert it into the first

hole of the arm (as indicated by the arrow below) which is the farthest from the gears. Since

the screw is larger than the hole, you should try to screw it hardly so as tight to the arm. Don't

worry of the arm which is soft.

And also fasten them as tightly as possible, and then loosen the screw a little so the Steering

Linkage can move flexibly.

19

Mount the steering servo to the Upper Plate with two M2x8 Screws and two M2 nuts (pay

attention to the direction of the servo wires):

Till here the car assembly is mostly done. But don’t hurry to assemble the front wheels, because

the servo has not been adjusted yet. An unadjusted servo may get stuck and further get hot

and burnt when it is connected to power to use as it is. To adjust, you can use your own way,

like uploading an Arduino program to the servo which makes it rotate to the 90 degrees and

stop, or using the servo adjustment code provided in this kit.

For the latter method, since we need to connect the related driver board and Raspberry Pi to

adjust the servo, now let's first assemble the PCBs onto the car, which is much easier than

previous assembly.

20

PCB Assembly

Assemble the Raspberry Pi (TF Card inserted) with four M2.5x8 copper standoffs, then plug the

Robot HATS onto it, and fix the PCA9685 PWM Driver, the TB6612 Motor Driver and the Robot

HATS with twelve M2.5x6 screws.

PCA9685

PWM Driver
TB6612

Motor Driver

Robot HATS

Raspberry Pi

21

Circuits Building

Connect the PWM CONTROL of the Robot HATS with the PCA9685 PWM Driver, and the TB6612

CONTROL with the TB6612 Motor Driver.

Then the Left Motor and the Right Motor of the TB6612 to two motors, and the Motor PWM with

the No. 4 and 5 PWM channel of the PCA9685.

Connect the PWM Power of the PCA9685 with the Robot HATS, and its channel 0 of with the

Turning Servo.

22

So now the circuit boards are all installed onto the car and the wiring is done. But still you're

not ready to adjust the servo yet. First you need to complete some software installation.

23

Software Installation

1. Log into Raspberry Pi

The TF card onto which the Raspbian has been burnt is inserted into the Raspberry Pi before.

Now power the Raspberry Pi.

The installation may take a long time, so you're recommended to so you're recommended to supply the Raspberry Pi

via a USB cable and then power the Robot HAT with batteries in case of power cut-off thus causing a sudden shutdown

and file damage of the Raspberry Pi. You can directly power it via the Micro USB port because the Robot HATS won't

get damaged by it due to the built-pin protective circuit.

Plug in the USB Wi-Fi dongle (skip this if you use a Raspberry Pi 3 with the WiFi) and complete

the setting in the way you're comfortable with.

Log into the Raspberry Pi via ssh or ssh tools like PuTTY.

2. Get Source Code

You can find the source code in our Github repositories. Download the source code by git

clone:

git clone --recursive https://github.com/sunfounder/SunFounder_PiCar-S.git

pi@raspberrypi:~ $ git clone --recursive https://github.com/sunfounder/SunFounder_PiC

ar-S.git

Cloning into 'SunFounder_PiCar-S'...

remote: Counting objects: 162, done.

remote: Total 162 (delta 0), reused 0 (delta 0), pack-reused 162

Receiving objects: 100% (162/162), 61.98 KiB | 36.00 KiB/s, done.

Resolving deltas: 100% (80/80), done.

Checking connectivity... done.

Submodule 'example/SunFounder_Light_Follower' (https://github.com/sunfounder/SunFound

er_Light_Follower.git) registered for path 'example/SunFounder_Light_Follower'

Submodule 'example/SunFounder_Line_Follower' (https://github.com/sunfounder/SunFounde

r_Line_Follower.git) registered for path 'example/SunFounder_Line_Follower'

Submodule 'example/SunFounder_Ultrasonic_Avoidance' (https://github.com/sunfounder/Su

nFounder_Ultrasonic_Avoidance.git) registered for path 'example/SunFounder_Ultrasonic

_Avoidance'

Cloning into 'example/SunFounder_Light_Follower'...

remote: Counting objects: 15, done.

remote: Total 15 (delta 0), reused 0 (delta 0), pack-reused 15

Unpacking objects: 100% (15/15), done.

Checking connectivity... done.

Submodule path 'example/SunFounder_Light_Follower': checked out '10b3ccea709f34221c6d

c137aca6cb00abfca417'

24

Cloning into 'example/SunFounder_Line_Follower'...

remote: Counting objects: 8, done.

remote: Total 8 (delta 0), reused 0 (delta 0), pack-reused 8

Unpacking objects: 100% (8/8), done.

Checking connectivity... done.

Submodule path 'example/SunFounder_Line_Follower': checked out '9560e7adbb52a883d438b

78de90d185fc168fed5'

Cloning into 'example/SunFounder_Ultrasonic_Avoidance'...

remote: Counting objects: 24, done.

remote: Total 24 (delta 0), reused 0 (delta 0), pack-reused 24

Unpacking objects: 100% (24/24), done.

Checking connectivity... done.

Submodule path 'example/SunFounder_Ultrasonic_Avoidance': checked out

'9e0349b2155fa7585021bfb979643e5f98aa51c5'

Check by the ls command, then you can see the code directory:

 SunFounder_PiCar-S/

pi@raspberrypi:~ $ ls

Desktop Downloads Pictures python_games Templates

Documents Music Public SunFounder_PiCar-S Videos

3. Go to the Code Directory

cd ~/SunFounder_PiCar-S/

Enter the code directory and you can see the installation script:

pi@raspberrypi:~ $ cd SunFounder_PiCar-S/

pi@raspberrypi:~/SunFounder_PiCar-S $ ls

example install_dependencies LICENSE README.md show

4. Install the Environment

Installing Automatically by Script

You can get all the required software and configuration done with the installation script. If you

want to do step by step instead, refer to the operations in Installing Manually below.

sudo ./install_dependencies

Notes:

1. The installation script will install the required components and configure for the running environment. Make

sure your Raspberry Pi is connected to the Internet during the installation, or it would fail.

2. The Raspberry Pi will reboot after the installation, so you need to log in again.

Installing Manually

25

1. Update the apt list

sudo apt-get update

2. Install python-smbus

sudo apt-get install python-smbus -y

3. Install the PiCar module

cd ~

git clone --recursive https://github.com/sunfounder/SunFounder_PiCar.git

cd SunFounder_PiCar

python setup.py install

4. Enable I2C

Edit the file /boot/config.txt

sudo nano /boot/config.txt

The "#" in front of each line is to comment the following contents which does not take effect

in a sketch. The I2C configuration part is commented by default too. Add the following code

at the end of the file, or delete the pound mark "#" at the beginning of related line; either way

will do.

dtparam=i2c_arm=on

5. Reboot

sudo reboot

Adjust the Servo to 90 Degrees

After reboot, type in the command:

picar

pi@raspberrypi:~ $ picar

Usage: picar [Command] [value]

Commands:

 servo-install Set 16 channel servos to 90 degree for installation

 front-wheel-test [chn] Test the steering servo connect to chn, chn default 0

 rear-wheel-test Test the rear wheel

You can see three commands here.

The first one servo-install is for servo adjustment, which is used after the front wheels are

assembled. The servo will rotate to 90 degrees after this command is run, so we will use this

command here.

pi@raspberrypi:~ $ picar servo-install

pi@raspberrypi:~ $

Now the servo may or may not make noises to rotates to 90 degrees. Script will end almost

26

immediately, but all servos will keep at 90 degrees. You can continue the rest assembly.

Warning: After power is on, a short circuit may happen because the exposed contacts of the

PCB may be touched by conductive objects like screw or screwdriver. If it occurs, please

remove the conductor immediately or unplug the power as quickly as you can.

Build the Rest of the Car

Connect the Steering Linkage and the rocker arm. Make sure the rocker arm is in an angle as

shown below. If there is just a littile deviation from the right position of the rocker arm, it can

be fine tuned by software. Try to spin the arm on the shaft. If it's unmovable, it means the servo

is adjusted to 90 degrees. But if it spins, check whether the wiring is correct. Besides, the screw

is quite sharp at the end, so be careful to assemble in case of getting hurt.

If everything is OK, take out the Rocker Arm Fixing Screw to connect them as shown below.

27

Take out the assembled front wheels and the Upper Plate, and mount the wheels onto the

Upper Plate carefully: insert one bulge of the Steering Connector at either wheel into the hole

on the Steering Linkage plate, and another bulge into the Upper Plate, and similar with the

other wheel.

Then put the assembled Front Half Chassis onto the Upper Plate with standoffs aligned with

the holes.

Hold them carefully, turn upside down, and fasten the standoffs and the Uppe Plate with four

M3x8 screws:

28

Now, the whole assembly, the wiring and code are all DONE! Congrats! Enjoy the

satisfaction and thrill.

Configuration

Remember the commands to adjust the servo to 90 degrees previously? Now, let’s talk about

the other two commands.

The second command front-wheel-test is used to test whether the front wheels can turn

flexibly after assembly. When you run this command, it will drive them to turn left and right.

Besides, there is an optional parameter [chn]. It will be used only when you change the PWM

channel of the servo. If you use the default channel 0 according to the wiring diagram, there

is no need to enter [chn].

pi@raspberrypi:~ $ picar front-wheel-test

DEBUG "front_wheels.py": Set debug off

DEBUG "front_wheels.py": Set wheel debug off

DEBUG "Servo.py": Set debug off

turn_left

turn_straight

turn_right

turn_straight

turn_left

turn_straight

turn_right

29

^Cturn_straight

You may find the direction of the front wheels is not facing exatly front when they are in the

straight status (they will return to the status anytime the front wheels program stops running). If

there is an obvious deviation from the middle line of the front chassis, remove the servo and

run servo-install again; if it is just a little deviation (like about 0~15 degrees), it can be

adjusted by software.

Get into the folder SunFounder_PiCar/picar:

cd /home/pi/SunFounder_PiCar/picar

ls

pi@raspberrypi:~ $ cd /home/pi/SunFounder_PiCar/picar

pi@raspberrypi:~/SunFounder_PiCar/picar $ ls

back_wheels.py filedb.py __init__.py SunFounder_PCA9685

config front_wheels.py PCF8591.py SunFounder_TB6612

pi@raspberrypi:~/SunFounder_PiCar/picar $

Open the config file under the folder with an editor. You can see a few parameters. Modify

the value of turning_offset (the first parameter) to adjust the front wheels. Its value is 0 by

default, and you can turn the wheels left by decreasing the value, or turn right by increasing

it. For example, if you want to make the front wheels turn right a bit, just modify it to a larger

number; to make it more towards the left, you can set it smaller (it can even be a negative

number).

But DO NOT over-configure the wheels (recommended a value between -30 and 30), or the

servo may be stuck and broken.

pi@raspberrypi:~/SunFounder_PiCar/picar $ nano config

 GNU nano 2.2.6 File: config

File based database

turning_offset = 10

forward_A = 1

forward_B = 1

[Read 9 lines]

^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text ^T To Spell

30

After changing the value of turning_offset, press Ctrl + O to save the changes, and press Ctrl

+ X to exit. Run the command picar servo-install to check the front wheel’s status.

pi@raspberrypi:~/SunFounder_PiCar/picar $ picar servo-install

pi@raspberrypi:~/SunFounder_PiCar/picar $

If the front wheels is still not facing the exact front, you may need to edit the file config for a

couple of times. The front wheels may need to be adjusted about 3 to 5 times usually. We can

move on to calibration of the rear wheels when the front wheels are done.

Since the wiring of the two DC motors is random, the VCC and GND of a motor may be

connected to the wheel reversely, causing the wheel to spin forward when it should do

backward as configured in the code. Thus we can use the third command which will drive the

rear wheels to simultaneously speed up and slow down alternately.

pi@raspberrypi:~ $ picar rear-wheel-test

DEBUG "back_wheels.py": Set debug off

DEBUG "TB6612.py": Set debug off

DEBUG "TB6612.py": Set debug off

DEBUG "PCA9685.py": Set debug off

Forward, speed = 0

Forward, speed = 1

Forward, speed = 2

Forward, speed = 3

Forward, speed = 4

Forward, speed = 5

Forward, speed = 6

Forward, speed = 7

Forward, speed = 8

Forward, speed = 9

Forward, speed = 10

 .

 .

 .

Backward, speed = 10

Backward, speed = 9

Backward, speed = 8

Backward, speed = 7

Backward, speed = 6

Backward, speed = 5

Backward, speed = 4

Backward, speed = 3

Backward, speed = 2

Backward, speed = 1

Finished, motor stop

Check whether both the two rear wheels rotate direction is the same as the screen promt.

31

Note that the two wheels are driven by the two motors separately. It may happen that one

rotates forward, while the other does backwards. If so, we need to adjust one or both two

wheels which rotate reversely under that command.

The two other parameters in the file config are to set the rear wheels: forward_A and

forward_B. They can change the default spinning direction of the two motors. The value can

only be 0 or 1, which represents clockwise and counterclockwise rotation. By default, it's 1 for

both parameters. Thus if a wheel spins reversely, you only need to change the corresponding

parameter for the wheel to 0.

Press Ctrl + O to save the changes, and press Ctrl + X to exit. Run the command picar rear-

wheel-test again to check whether the rear wheels are rotating in accordance with the

command.

Copy config to the directory example under PiCar-S.

pi@raspberrypi:~/SunFounder_PiCar/picar $ cp config ~/SunFounder_PiCar-S/example

32

Arming the Car!

A car without sensor modules is unarmed just like a man without sight and hearing, thus he has

no feeling for the surrounding environment. So what we are going to do is arm the car,

allowing it to detect the surroundings. Now let’s turn the PiCar into the PiCar-S.

What exactly is the PiCar-S? ------- We arm the PiCar with some sensors, which endow the car

with the ability to collect and process the data. The sensor modules to the PiCar is what the

cartridges to the game console; they are added to the basic design of the game and thus

richening the play. It’s also similar to the code. The processor will use SunFounder_PiCar to

drive the car’s movement, and call the corresponding code package for different modules

(SunFounder_Light_Follower, SunFounder_Line_Follower, SunFounder_Ultrasonic_Avoidance).

Assemble the desired sensor module according to the wiring in corresponding module

instructions below. Have fun with The Transformer!

33

Ultrasonic Obstacle Avoidance

How the Obstacle Avoidance Works

The ultrasonic obstacle avoidance module detects and transfers the collected data to

Raspberry Pi that can calculate the distance from the obstacle. The Pi will send a command

to adjust the front wheels and rear wheels direction and rotation to control the PiCar-S walk

away from the obstacle if there is one.

Principle

Supply a short 10µS pulse to the SIG to start the ranging, and then the module will send out an

8 cycle burst of ultrasound at 25 kHz and raise its echo back to SIG. The echo is a distance

object that is pulse width and the range in proportion. You can calculate the ����� through

the ����	
����
�� between sending trigger signal and receiving echo signal.

Formula:

�����(�) =
����	
����
�� × 340�/�

2

Or:

�����(��) =
����	
����
��

58

Or:

�����(���ℎ�) =
� �!	 "#$!%&'(

)*+

We suggest to use over 60ms measurement cycle, so as to prevent trigger signal to the echo.

Procedures

Step 1. Assembly

Connect the ultrasonic module and the ultrasonic module connector to the ultrasonic module

support with M3*10 screws and M3 nuts. Reminder: It would be easier to place the nuts into

the slots with your fingers to hold underneath. Then assemble them to the Upper Plate with

M3*10 screws and M3 nuts.

34

Step 2. Wiring

Connect the ultrasonic obstacle avoidance to Robot HATS with a 3-pin anti-reverse cable as

shown below.

Ultrasonic Obstacle Avoidance Robot HATS

SIG D0

5V 3.3V

GND GND

Test for Ultrasonic Obstacle Avoidance

First, test the ultrasonic obstacle avoidance module before applying.

Get into the directory example:

cd ~/SunFounder_PiCar-S/example/

Run the test code:

python test_ultrasonic_module.py

pi@raspberrypi:~ $ cd ~/SunFounder_PiCar-S/example/

pi@raspberrypi:~/SunFounder_PiCar-S/example $ python test_ultrasonic_module.py

distance 32 cm Over 17

distance 32 cm Over 17

distance 29 cm Over 17

distance 29 cm Over 17

Read distance error

distance 21 cm Over 17

distance 21 cm Over 17

distance 18 cm Over 17

distance 18 cm Over 17

distance 16 cm less than 17

distance 15 cm less than 17

35

distance 13 cm less than 17

distance 10 cm less than 17

Read distance error

You may find that the distance measurement may be not that accurate. It doesn’t matter.

This 25kHz ultrasonic module is not a commonly used one, but one has a horizontal detecting

range of about 30~40 degrees. Thus the distance measured may be not so accurate, but that

small range provides convenience for obstacle avoidance. Besides, since the Raspberry Pi is

not a real-time operating system, the inaccurate time calculation will affect the accuracy of

distance measurement too. However, this ultrasonic module is precise enough for obstacle

avoidance.

Step 3. Run the Code

Now we have a general idea of the ultrasonic module’s effect after the test above. Let’s run

the code of the ultrasonic obstacle avoidance.

Get into the directory:

cd ~/SunFounder_PiCar-S/example/

Run the code:

python ultra_sonic_avoid.py

Get on the road!

The PiCar-S starts running now. Just place the car on the ground. It will follow the program to

turn when it detects an obstacle; if the obstacle is too close, it will move backwards, and turn

left/right. You can also modify the threshold of obstacle detecting range and that of moving

backwards in the code.

Software Flow

Run obstacle

avoidance

program

Start

Keyboard

Interrupt

Y

End

N

Avoid

obstacle

function

36

The ultrasonic module returns a digital value, i.e., High or Low level, and the interval time

between two levels returned can be converted to the distance to the obstacle. Thus, we call

the time module in Python for timing here. The formula to calculate the distance is written in

the ultrasonic module’s driver. The main program just calls the corresponding program to get

the distance value.

Subflow of the Obstacle Avoidance Function

When the car starts, it will detect obstacles and measure the distance in cycle, make

judgement, and take actions. Here are three cases: when the distance to the obstacle is x

(the ranging distance threshold) away, the car will turn directions; when the distance is less

than x, the car will move backwards before turning direction; when the distance is more than

x, it will keep moving forwards.

Avoid obstacle function

distance
detect

Touch

Backwards

Near by

Turns

More than

Forward

Loop

37

Code Explanation

ua = Ultra_Sonic.UltraSonic_Avoidance(17)

Create an object ua of a UltraSonic_Avoidance class in the Ultra_Sonic module. The number

in the round bracket is the initial parameter, which represents the pin number the SIG of the

module is connected to. Since the BCM naming method is applied, the corresponding pin on

the Raspberry Pi is #17.

back_distance and turn_distance, two constants are to set the thresholds of the ranging

distance.

while() loop

When the detected distance is less than the back_distance, the car will move backwards;

when it is between back_distance and turn_distance, the car will turn a direction (you can

set the turning angle in the aforementioned parameter turning_angle and the angle can be

a positive or negative number, for turning left or turning right respectively; NOTE that the

number of the turning angle should be -90 to 90 considering the servo’s max rotation degrees,

or the servo may be burnt.); when the detected distance is greater than the turn_distance,

the car will keep moving forward.

bw.backward(), making the rear wheels rotate backwards; bw.forward(), making the rear

wheels spin forward. These two functions in the rear wheel driving module back_wheels are to

set the wheel’s rotating direction.

bw.set_speed(speed), function in the back_wheels, to set the wheel's rotating speed. The

Turn

Backward

Forward

38

larger the number (within the range 0-100) is, the faster the wheel rotates.

fw.turn(angle), function in the back_wheels, to set the turning angle. The angle is 90 when

the car moves straight forwards; reduce the number to turn left, and increase it to turn right.

fw.turn_straight(), making the front wheels return to the angle of moving straight forwards.

More:

back_distance and turn_distance

Try to modify the constants to make the car back off and turn away in a desired distance and

angle as you like during the obstacle avoidance.

Light Following

How It Works

The light follower module detects light sources in the surroundings, and transfers the data to

the processor. The processor analyzes the data and finds the direction of the light resource,

so it will send a command to control the movement of the front and rear wheels to approach

the resource.

Principle

This light follower module applies phototransistors as photosensitive components. Similar to

common transistors, the phototransistor can amplify current, but the current at the collector

terminal is controlled not only by the circuit and current of the base area, but also by light

emission. Usually, the base terminal is not exposed, but some may still do for temperature

compensation and extra control.

Phototransistor, also known as photodiode, is a device that converts light to current. Currents

are generated when photons are absorbed in the P-N junction. When a reverse voltage is

applied, the reverse current in the device will change with the light luminance. The stronger

the light is, the larger the reverse current will be. Most phototransistors work this way.

The ADC chip on the HATS can receive 8-bit analog signals and convert them into integers,

and transfer the signals to the Raspberry Pi. The Raspberry Pi will analyze the data to determine

the direction of the brightest area (the light source), and further control the steering and

movement of the four wheels to approach the light source.

You may need a light focused flashlight in this experiment. At least, the spot size of the torch

should not be too big to reach all the 3 phototransistors on the module at the same time. Well,

you can also shine the flashlight closer to the car to get a small spot size.

39

Procedures

Step 1 Assembly

Connect the light follower to the Sensor Connector with M3*10 screws and M3 nuts, and then

assemble them to the car with two M3*10 screws and two M3 nuts. You're suggested to hold

the nuts underneath with your fingers.

Step 2 Wiring

Connect the light follower to the Robot HATS with a 5-pin anti-reverse cable as shown below.

Light Follower Robot HATS

AD2 A2

AD1 A1

AD0 A0

5V 3.3V

GND GND

Note: You may wonder why we connect 5V to 3.3. Well, since the working voltage of the STM8

chip on the light follower is 2.7-5.5V, we can connect it to 3.3V here. DO NOT connect 5V to 5V! All

the analog ports on the Robot HATS are led from the PCA8591, which is powerd by 3.3V. Therefore,

if the voltage is between 3.3V-5V, the output value will always be 255, thus the PCA8591 may be

damaged if connected to 5V. Remember to connect to 3.3V.

The wiring is shown as below:

40

Test for Light Follower

Let’s test the light follower first.

Get into the directory example

cd ~/SunFounder_PiCar-S/example/

Run the test code

python test_light_module.py

pi@raspberrypi:~ $ cd ~/SunFounder_PiCar-S/example/

pi@raspberrypi:~/SunFounder_PiCar-S/example $ python test_light_module.py

[237, 233, 237]

[236, 230, 236]

[232, 238, 246]

[237, 240, 251]

[145, 175, 200]

[228, 234, 74]

[219, 226, 23]

[220, 192, 21]

[233, 238, 23]

[236, 241, 22]

Expose the phototransistors to the light spot of the flashlight. When you increase the light intensity,

more LEDs light up, and the ouput values decrease. Here we can rotate the blue adjustable resistor

to change the values under the same light luminance. If there is no light, only one LED will light up

with the output value as 255; if the light is the brightest, all the LED will light up, and it would be

better to adjust the output value to 10-25 under this circumstance.

Place the module in an open field with even light exposure so the experiment can be free of the

interference of unsteady ambient light thus the sensor is more sensitive. Check this way: expose

41

the light follower module under the natural light (or other bright conditions) to get the output value;

then shine the flashlight on the phototransistors to get another output value. A place with a gap

of 20+ between these two values would be a better choice, so that we can get an obvious effect

when the car follows light.

Step 3 Run the Code

Get into the directory

cd ~/SunFounder_PiCar-S/example

Run the code

python light_follower.py

Calibrate the light following

The car will enter the light following configuration mode when we run the code above. It will keep

turning to the right in a circle to gather the information of light condition in different directions. So

just place the car in an open field and wait.

Picar-S follows light

When the calibration is done, the car will stop temporarily. Shine a flashlight on the light follower

module, and the car will just follow the light spot as you moves it.

Software Flow

1. Light-sensitive sensors need to be calibrated before actual use because of complex light

conditions in the environment. It gathers the information of the ambient light luminance. The car

can follow light only when the light source is brighter than the surroundings.

42

2. Here write two main functions/modules including light following calibration and light following

in the main program.

Subflow of Light Follower Calibration Function

We need to configure three light-sensitive components separately, so we set three lists to store

the values in A0, A1, and A2 collected for multiple times. Then pick out the minimum values,

which are the ouput analog values in the brightest conditions.

Since the light source we use is much brighter than the ambient light, we should take the

output values in the brightest conditions as reference.

Besides, we should set a threshold value - when the gap between the collected value of the

light source and that of the environment is beyond the threshold, trigger the value switching

to 0 or 1. Here we use [0,0,0] to represent the three photoresistors’ status when they are not

triggered. "0" will become "1" when the value detected of the corresponding photoresistor is

higher than the threshold. Thus we can set the related action of the car according to the

three-element list.

If there is light detected, the car will move and follow it; if there is no light detected, the car

will stop temporarily and keep turning to detect in a circle.

Subflow of Light Following Function

Calibrate

Check light

following

function

Start

Keyboard

Interrupt

Y

End

N

Calibratio

n function

Light

following

subfuncti

on

Calibration

function

Create lists for

collected values

Car runs in a circle

to collect light

values in different

directions

Store groups of

collected value in

the lists

Take the min

values of each

sensor as

reference

Upload trigger

threshold values to

parameters of

class library

Four wheels back

to standby

43

The light follower includes three phototransistors, thus its status list is composed of three

elements which represent 8 statuses (based on permutation and combination). And here we

need to set related responses to these statuses.

The three elements show the status of the three probes: 1 represents light detected, and 0, for

none. For example, [1,0,0] shows that light is detected only by the left probe, meaning th

light source is at the left of the car, thus setting the car’s response action as turning left; [1,1,0]

means that light is detected on the left and central probes, thus its response action should be

set turning left too; and set it as turning right the same way according to the corresponding

status. When there is no light detected, the status is [0,0,0], so we set the response action to

stop and return to the standby mode.

Here, we need to set another variable – the steering angle – to distinguish between the large-

44

angle and small-angle turning. If the light is at the central left side (status [1,1,0]), we should apply

a small-angle turning; if the light is at the edge of the left side (status [1,0,0]), we should apply a

large-angle turning.

Code Explanation

To understand the code, take the software subflows above for reference.

Three Python modules are used in the code including the imported light_follower_module,

front_wheels, and back_wheel previously. They are drivers for this kit, respectively for light

following, front wheels and rear wheels.

The related classes have been defined here. When the modules are applied to use, objects

will be created for related classes, and different parts of hardware will be driven by calling a

function by the class object.

For example, for the light following module, we create an object named lf:

lf = Light_Follower.Light_Follower()

Then we can call the function by a class object.

A0 = lf.read_analog()[0]

This function read_analog() will return a list with three elements, which stores the detected

analog values of three probes. Here we use A0 = lf.read_analog()[0], A1 =

lf.read_analog()[1], and A2 = lf.read_analog()[2] to store three elements of returned

value separately into the variables A0-A2.

A for() loop is used here cycling 10 times, that is the car will acquire the analog values ten

times when the car drives in a circle under the calibration mode. The minimum values will be

taken as reference here. If you need more samples, just increase the times of the loop.

Store the detected values to a list in each loop by the env0_list.append(A0) function. When

the loop ends, the built-in list function reference[0] = min(env0_list) in Python will pick out

the minimum in the list.

lt_status_now = lf.read_flashlight()

This is to read the status of the module, which will return a 3-element list. This function is used

to solve the possible problem caused by brightness-adjustable flashlights. They blink

repeatedly due to brightness change by PWM method, so we add this function to the driver

library to prevent the car from moving and stopping repeatedly when the light source lights

up and goes out quickly or changes luminance by ON/OFF ratio.

fw.turn(turning_angle)

Function for front wheels steering. The main program will call this function if the front wheels

are applied for steering. The parameter is the turning angle.

bw.forward()

45

bw.set_speed(forward_speed)

Here we need two functions for rear wheels. The first function is to control the rotating direction

as forward (the function for backwards is bw.backward()). The second one is to set the rotating

speed of the wheels; the parameter is the speed value (range: 0-100). The bigger the

parameter is, the faster the wheel rotates.

Line Following

How to Follow Lines

The line follower detects lines in the surrounding environment, and transfers the data to the

processor. The processor analyzes the data, and sends a command to control the movement of

front wheels and rear wheels.

Principle

The TCRT5000 IR sensor on the line follower has a TX and RX inside. If a bright color surface is

detected in front of the sensor, such as a white paper (about 1cm away), most of the IR rays will

be reflected; if a dark color like black surface is detected, most of the rays will be absorbed, while

only a small amount will be reflected. The RX will output different analog signals according to the

intensity of the reflected IR light.

The ADC chip on the HATS can receive analog signal and convert it into digital signal, and transfer

to the Raspberry Pi.

Procedures

Step 1 Assembly

Connect the light follower to the Sensor Connector with M3*10 screws and M3 nuts, and then

assemble them to the car with two M3*10 screws and two M3 nuts. You're suggested to hold

the nuts underneath with your fingers.

46

Step 2 Wiring

Connect the line follower module to the Robot HATS with a 4-pin anti-reverse cable as shown

below.

Line Follower Robot HATS

SCL SCL

SDA SDA

VCC 3.3V

GND GND

Test for Line Follower

Get into the directory example:

cd ~/SunFounder_PiCar-S/example

Check whether any i2c device is recognized or not via i2c-tools

sudo i2cdetect –y 1

pi@raspberrypi:~ $ cd ~/SunFounder_PiCar-S/example/

pi@raspberrypi:~/SunFounder_PiCar-S/example $ sudo i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- 11 -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: 40 -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: 70 -- -- -- -- -- -- --

47

We can see 11 is the line follower’s i2c address. If it is not shown, it proves your wiring is not

correct and the i2c communication with Raspberry Pi fails too. You need to check the wiring

before the next step.

Run the test code

python test_line_module.py

pi@raspberrypi:~/SunFounder_PiCar-S/example/ $ python test_line_module.py

[58, 38, 84, 121, 112]

[58, 38, 84, 121, 112]

[58, 38, 84, 121, 112]

[58, 38, 84, 121, 112]

[59, 38, 84, 121, 112]

[58, 38, 84, 121, 112]

[58, 38, 84, 121, 112]

[58, 38, 84, 121, 112]

[58, 38, 84, 121, 112]

[58, 38, 84, 121, 112]

Calibrate the line follower

The IR sensor on the line follower should be calibrated before application. Run the line

following code python Line_Follower.py. The main program will print the data of 5 channels.

Place each of the five probes above the black line, and then above a white surface, so we

can get the gap between the two values. Adjust the potentiometer, and repeat the previous

operations to get the gap again. Thus we can get the optimal resistance of the pot when the

gap is the max value.

Step 3 Run the Code

Log into the Raspberry Pi via ssh on the computer, and get into the code directory

cd ~/SunFounder_PiCar-S/example

Run the line follower code

python line_follower.py

Calibrate the line follower on the car

A prompt of calibration will be printed on the screen when the program starts to run. We will

calibrate the module on a white surface first: place all the five probes of the line follower

above a white board. The prompt of completed calibration will be printed on the screen a

few seconds later. Then let’s move on to calibration on black line. Also the prompt of starting

is printed on the screen, and then place all the probes above the black lines. And the prompt

of calibration completed will be printed on the screen a few seconds later.

Starts Running!

When the module calibration is all completed, we can run the car then. Place the PiCar-S with

probes above the black line on the white board, and then it will go forward following the line

48

itself.

How to make a track for line following

To make a track for the car to follow a black line, you need to prepare the following materials:

A large sheet of paper, a roll of black tape (as black lines), a hard card board (the size

depending on the size of the track) or a flat surface like the floor or desk.

1. Spread the paper out smoothly on the hard board, and paste on the board or flat surface.

2. Paste the tape on the paper.

Rules for making:

1. Width of the black line: about 18-30mm, nearly the distance between two probes, no

more than the minimum distance of two nonadjacent probes

2. The gap between two lines: more than 125mm, which is the width of the whole module,

to prevent the car from getting confused when detecting two lines at the same time.

3. The semidiameter of curves: more than 138mm. When the front wheels turn left or right 45

degrees, the semidiameter of the path by which the car turns is equal to the wheelbase

(the distance between the center of the front wheels and rear wheels). The car won't be

able to turn and pass the curve smoothly if the semidiameter of the curve is too small.

A track sample is shown as below (the original map file can be found under folder map in

github):

49

Software Flow

Considering the interference of negative environment factors, we need to calibrate the line

follower sensor before actual use.

Here two main functions including the line follower calibration and line following are included in

the main program.

Subflow of Line Follower Calibration Function

When we run the line follower configuration, we will start from white color, then black color, which

is more like the upper limit and lower limit of the sensor. Then we take the average value of black

and white as reference value: if the detected value is higher than the reference, it should be white;

if the detected is lower than the reference, it should be black. We will show the five detectors’

status by 5 elements [0,0,0,0,0].

50

Line follower calibration function

Prompt user to

calibrate for

white color

Delay for user to
place the sensor

above white surface

Sensor reads the

average value

Prompt user:

white color

calibration done

Prompt user to

calibrate for

black color

Delay for user to
place the sensor

above black line

Sensor reads the

average value

Prompt user that

black color

calibration done

White color

calibration

Black color

calibration

Take the

average value

for each sensor
for white and

black as

reference

Subflow of Line Following Function

51

In the line following function, we set the turning angle of the servo in different levels according

52

to the detection results of the probes. If the line in front of the car is detected as a small curve,

then the car will turn a small angle; if it is a big one, the car will turn a large angle. Thus, here

we set four angle-turning constants: a_step, b_step, c_step, and d_step.

When the car moves forward originally, the servo is in 90 degrees. To drive the car to turn left, the

servo should be in 90+step degrees; to turn right, the servo should be in 90-step degrees.

There is a special case: if the car runs off the track, and all the probes cannot detect the black

lines any more, then it will continue the program below.

In some case, especially when the car turns in a direction when the semidiameter of the curve is

very small (1), the car may run out of the track and cannot detect any black line (2). If there is no

response program in such case, the car will be unable to follow the line again. Thus we set the

53

response program to let the car move backwards in the opposite direction (3), and then turn back

to the original direction until a black line is detected again and move forward (4).

Code Explanation

The logic of the code is just as shown in the flow chart above.

Three Python modules are used in the code, including the imported

SunFounder_Line_Follower, front_wheels, and back_wheels. They are the drivers for this kit,

respectively for line following , front wheels, and rear wheels

The related classes have been defined here. When the modules are applied to use, objects

will be created for related classes, and different parts of hardware will be driven by calling a

function by the class object.

Similar to the line following module, we create an object named lf:

lf = Line_Follower_module.Line_Follower(references=REFERENCES)

The parameter is initial, and then we can apply the function by calling a class object.

lf.read_digital()

This function is used to read the analog signal of all probes, and convert it into digital signal. If

the signal is larger than the reference, the corresponding parameter will be 0; if it is lower than

the reference, the parameter will be 1. There are five probes, thus we will get a 5-parameter

list.

fw.turn(turning_angle)

The function for front wheels' turning. The main program will call this function if applying the

front wheels for turning. The parameter is the turning angle.

bw.forward()

bw.set_speed(forward_speed)

Here we need two functions for rear wheels. One is to control the rotating direction as forward

(for rotating backwards, bw.backward()). The second one is to set the rotating speed; the

parameter is the speed value (range 0~100). The bigger the parameter is, the faster the wheel

rotates.

54

Combination

So, this smart car now is smart in three separate features. But, you think only one sensor module

is not enough? Try to combine those sensor modules in one! Here we can show you an

experiment - light following with obstacle avoidance for referece.

When the car runs with the light follower, sometimes it may crash into obstacles when following

the light, and it’s not quite convenient to let the car move back (though we've set the car to

move backward if the array is [1,0,1], it’s hard to acquire these values since the the car is

moving and the light cannot be exactly as required sometimes). So we consider Also, you can

let the car move backwards by a paper board or your foot, which is quite easy.

Check below the program of this example.

Assemble the light follower module and ultrasonic obstacle avoidance module on the car first.

Log into the Raspberry Pi on your computer via ssh, and get into the directory

cd ~/SunFounder_PiCar-S/example

Run the code

python light_with_obsavoidance.py

How it works:

Set the obstacle avoidance as a superior priority than light following: if there is an obstacle in front

of the car, it walk away from the obstacle and back to the track; if not, then the car will keep

follow light.

55

Calibration

Run light

following

program

Start

Interrupt

Y

End

Run light follower

calibration function

 Light following

subfunction

Detect obstacles

avoid_flag == 2

If an obstacle

detected, move

backwards

Else

 If no obstacle found,

keep following light

avoid_flag == 1

If close to an

obstacle, turn away

N

Since the light following and obstacle avoidance of the car depend on the sensor modules,

we set two functions to read the status of two sensors separately, and assign values to flags to

be returned from the functions: state_light(), and state_sonic().

In the function state_sonic(), the return value is avoid_flag.

If the car is close to an obstacle, it will return avoid_flag = 2;

if it is too close to the obstacle, it will return avoid_flag = 1;

if ahead no obstacle is detected near, it will return avoid_flag = 0.

In the function state_light(), the return value is light_flag.

If the light spot is in front of the car, it will return light_flag = 0;

if the spot is at the right side, it will return light_flag = 1;

56

if the spot is at the left side, it will return light_flag = 2;

if the spot is at the back, it will return light_flag = 3;

if no light spot is detected, it will return light_flag = 4.

The main program main() will run the corresponding program according to avoid_flag and

light_flag, and the avoid_flag is superior in priority.

57

Appendix

Appendix 1: Modules

Robot HATS

Robot HATS is a specially-designed HAT for a 40-pin Raspberry Pi and can work with Raspberry

Pi model B+, 2 model B, and 3 model B. It supplies power to the Raspberry Pi from the GPIO

ports. Thanks to the design of the ideal diode based on the rules of HATS, it can supply the

Raspberry Pi via both the USB cable and the DC port thus protecting it from damaging the TF

card caused by batteries running out of power. The PCF8591 is used as the ADC chip, with I2C

communication, and the address 0x48.

○
1 . Digital ports: 3-wire digital sensor ports, signal voltage: 3.3V, VCC voltage: 3.3V.

○
2 . Analog ports: 3-wire 4-channel 8-bit ADC sensor port, reference voltage: 3.3V, VCC

voltage: 3.3V.

○
3 . I2C ports: 3.3V I2C bus ports

○
4 . 5V power output: 5V power output to PWM driver.

58

○
5 . UART port: 4-wire UART port, 5V VCC, perfectly working with SunFounder FTDI Serial to USB.

○
6 . TB6612 motor control ports: includes 3.3V for the TB6612 chip, 5V for motors, and direction

control of motors MA and MB; working with SunFounder TB6612 Motor driver.

○
7 . Switch: power switch

○
8 . Power indicators: indicating the voltage – 2 indicators on: >7.9V; 1 indicator on: 7.9V~7.4V;

no indicator on: <7.4V. To protect the batteries, you're recommended to take them out for

charge when there is no indicator on. The power indicators depend on the voltage

measured by the simple comparator circuit; the detected voltage may be lower than

normal depending on loads, so it is just for reference.

○
9 . Power port: 5.5/2.1mm standard DC port, input voltage: 8.4~7.4V (limited operating

voltage: 12V~6V).

PCA9865

PCA9685 16-channel 12-bit I2C Bus PWM driver. It supports independent PWM output power

and is easy to use 4-wire I2C port for connection in parallel, distinguished 3-color ports for PWM

output.

○1 . PWM output ports: 3-color ports, independent power PWM output port, connect to the

servo directly.

○2 & ○3 . I2C port: 4-wire I2C port, can be used in parallel. Compatible with 3.3V/5.5V

○4 . PWM power input: 12V max.

○5 . LED: power indicator for the chip and for the PWM power input.

59

TB6612

The TB6612 Motor Driver module is a low heat generation one and small packaged motor

drive.

○
1 Power and motor control port: includes pins for supplying the chip and the motors and

controlling the motors' direction

○
2 PWM input for the motors: PWM signal input for adjusting the speed of the two motors

○
3 Motor output port: output port for two motors

Line Follower Module

60

The TCRT5000 infrared photoelectric switch adopts a high transmit power infrared photodiode and

a highly sensitive phototransistor. It works by applying the principle of objects' reflecting IR light –

the light is emitted, then reflected, and sensed by the synchronous circuit. Then it determines

whether there exists an object or not by the light intensity. It can easily identify black and white

lines.

In other words, the different conduction levels of the phototransistor when it passes over black and

white lines can generate different output voltages. Therefore, all we need to do is to collect data

by the AD converter on the Atmega328 and then send the data to the master control board via

I2C communication.

This module is an infrared tracking sensor one that uses 5 TRT5000 sensors. The blue LED of TRT5000

is the emission tube and after electrified it emits infrared light invisible to human eye. The black

part of the sensor is for receiving; the resistance of the resistor inside changes with the infrared light

received.

Light Follower Module

Phototransistor, or photo triode, is a photoelectric conversion component that senses the light

intensity. The stronger light, the larger currents, and better conductivity of the triode.

Based on this principle, we use it for light following. It works by converting the conductivity to

voltage output, which means the stronger light shone on it, the smaller voltage output. Then

61

convert the voltage into digital values by the A/D converter on the MCU. And we can tell the light

intensity then by this value.

The module can be used to sense the ambient luminance. The blue potentiometer is to adjust the

sensitivity – you can change it to adapt to specific circumstances. There are two mounting holes

of 3mm diameter on the module for easy assembly on your robot.

Ultrasonic Obstacle Avoidance Module

This module contains an ultrasonic sensor to detect the distance to an obstacle in front. It is usually

used on robots to avoid obstacles. With the two holes, it can be assembled easily on the robot.

There is power indicator light added onside to indicate power on/off. The 3-pin design makes it

unique among most of the ultrasonic module in the market: the same pin to trigger and receive

signals. The 3-pin anti-reverse cable included makes the wiring tighter and more convenient. Also

the beautiful cartoon design and the red PCB add to its fascination.

The 25kHz ultrasonic module differs from common 40kHz ones. It is not so precise in distance

measurement, but it has a wider detecting range of about 30 degrees. Thus it can detect the

obstacle near ahead, and measure the distance if it’s assembled on the PiCar. Though a 40kHz

ultrasonic measures distance precisely, it can only detect obstacles which is right in front. Therefore,

the 25kHz ultrasonic module is more preferably applicable to an obstacle avoidance car, or

projects require a large detection range instead of accurate distance measurement.

SunFounder SF0180 Servo

The SunFounder SF0180 Servo is a 180-degree three-wire digital servo. It utilizes PWM signal of

60Hz and has no physical limit – only control by internal software to 180 degrees at most.

62

Electrical Specifications:

Item V = 4.8V V = 6.0V

Operating speed (no load) 0.12 Sec/60° 0.09 Sec/60°

Running current (no load) 140 mA 200 mA

Stall torque (locked) 2.0 kg-cm 2.5 kg-cm

Stall current (locked) 520 mA 700 mA

Idle current (stop) 5 mA 5 mA

For more information, refer to SunFounder_PiCar-S/datasheet/SunFounder_SF0180.pdf in the

code package on our Github page. .

WiFi Adapter

The Ralink RT5370 Wireless Adapter is used in the car. Below are the features:

USB: XC1291

Network Connectivity: Wireless-Wi-Fi 802.11b, Wireless-Wi-Fi 802.11g, Wireless-Wi-Fi 802.11n

Applicable Network Type: Ethernet

Transmission Rate: 150Mbps

DC Gear Motor

It's a DC motor with a speed reducing gear train. See the parameters below:

Motor

Model F130SA-11200-38V

Rated Voltage 4.5V-6V

No-load Current ≤80mA

No-load Speed 10000±10%

Gear Reducer

Gear Ratio 1:48

Speed (no-load) ≈200rpm (≈180rmp in test)

Current ≤120mA

63

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the

SunFounder Company. You should only use it for personal study, investigation, enjoyment, or other

non-commercial or nonprofit purposes, under the related regulations and copyrights laws, without

infringing the legal rights of the author and relevant right holders. For any individual or organization

that uses these for commercial profit without permission, the Company reserves the right to take

legal action.

