

MPR604UMU-01 MPC604UM/AD
11/94

Power PC
rn

604
Rise Microprocessor User's Manual

IBM Microelectronics

© Motorola Inc. 1994
Portions hereof © International Business Machines Corp. 1991-1994. All rights reserved.

This document contains infonnatlon on a new product under development. Motorola reserves the right to change or discontinue this product without
notice. Information in this document Is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no
express or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information
in this document.

The PowerPC 604 microprocessor embodies the intellectual property of IBM and of Motorola. However, neither party assumes any responsibility or
liability as to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party. Neither party Is to be
considered an agent or representative of the other party, and neither has granted any right or authority to the other to assume or create any express or
implied obligations on its behalf. Information such as data sheets, as well as sales terms and conditions such as prices, schedules, and support, for the
microprocessor may vary as between IBM and Motorola. Accordingly, customers wishing to learn more information about the products as marketed by a
given party should contact that party.

Both IBM and Motorola reserve the right to modify this manual and/or any of the products as described herein without further notice. Nothing in this
manual, nor in any of the errata sheets, data sheets, and other supporting documentation, shall be interpreted as conveying an express or implied
warranty, representation, or guarantee regarding the suitability of the products for any particular purpose. The parties do not assume any liability or
obligation for damages of any kind arising out of the application or use of these materials. Any warranty or other obligations as to the products described
herein shall be undertaken solely by the marketing party to the customer, under a separate sale agreement between the marketing party and the customer.
In the absence of such an agreement, no liability Is assumed by the marketing party for any damages, actual or otherwise.

''Typical'' parameters can and do vary in different applications. All operating parameters, including ''Typlcals,'' must be validated for each customer
application by customer's technical experts. Neither IBM nor Motorola convey any license under their respective intellectual property rights nor the rights
of others. The products described in this manual are not designed, intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation
where personal injury or death may occur. Should customer purchase or use the products for any such unintended or unauthorized application, customer
shall indemnify and hold IBM and Motorola and their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims.
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and ® are registered trademarks of Motorola. I nco Motorola. Inc. Is an Equal Opportunity/Affirmative Action Employer.

IBM Is a registered trademark, and IBM Mi:roelectrooic is a trademark of IBM Corp.
PowerPC. PowerPC Architecture, POWER Architecture, PowerPC 601, PowerPC 603, PowerPC 604. and JltJWtII'IIC are trademarks of IBM Corp.
used by Motorola under license from IBM Corp.

Paragraph
Number

1.1
1.1.1
1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.1.3
1.2.1.4
1.2.1.5
1.2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.3
1.2.4
1.2.4.1
1.2.4.2
1.2.5
1.2.5.1
1.2.5.2
1.2.5.3
1.2.6
1.3

Contents

CONTENTS

Title

About This Book

Page
Number

Audience ... xxii
Organization .. xxii
Suggested Reading ... xxiii
Conventions ... xxiv
Acronyms and Abbreviations .. xxv
Terminology Conventions ... xxviii

Chapter 1
Overview

Overview .. 1-1
PowerPC 604 Microprocessor Features ... 1-2

PowerPC 604 Microprocessor Hardware Implementation 1-7
Instruction Flow ... 1-8

Fetch Unit .. 1-8
Decode/Dispatch Unit .. 1-9
Branch Processing Unit (BPU) .. 1-9
Completion Unit .. 1-9
RenaIlle Buffers ... 1-10

Execution Units .. 1-10
Integer Units (IUs) ... 1-10
Floating-Point Unit (FPU) ... 1-11
Load/Store Unit (LSU) .. 1-11

Memory Management Units (MMUs) ... 1-12
Cache Implementation ... 1-12

Instruction Cache ... 1-13
Data Cache ... 1-13

System Interface/Bus Interface Unit (BIU) ... 1-14
Memory Accesses .. 1-1 6
Signals .. 1-16
Signal Configuration .. 1-17

Clocking ... 1-18
PowerPC 604 Microprocessor Execution Model. .. 1-19

iii

Paragraph
Number

1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.3.2.5
1.3.2.6
1.3.2.7
1.3.2.7.1
1.3.2.7.2
1.3.3
1.3.3.1
1.3.3.1.1
1.3.3.1.2
1.3.4
1.3.5
1.4
1.5

2.1
2.1.1
2.1.2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4
2.1.2.4.1
2.1.2.4.2
2.1.2.4.3
2.1.2.4.4
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.3.1
2.3.1.1

iv

CONTENTS

Title Page
Number

Levels of the PowerPC Architecture ... 1-19
Registers and Programming Model ... 1-20

General-Purpose Registers (GPRs) .. 1-22
Floating-Point Registers (FPRs) .. 1-22
Condition Register (CR) .. 1-22
Floating-Point Status and Control Register (FPSCR) 1-23
Machine State Register (MSR) .. 1-23
Segment Registers (SRs) ... 1-23
Special-Purpose Registers (SPRs) ... 1-23

User-Level SPRs .. 1-23
Supervisor-Level SPRs .. 1-23

Instruction Set and Addressing Modes .. 1-25
PowerPC Instruction Set and Addressing Modes 1-25

Instruction Set .. 1-25
Calculating Effective Addresses .. 1-27

Exception Model .. 1-28
Instruction Timing ... 1-33

Power Management-Nap Mode .. 1-35
Performance Monitor ... 1-35

Chapter 2
PowerPC 604 Processor Programming Model

The PowerPC 604 Processor Register Set ... 2-1
Register Set .. 2-2
604-Specific Registers ... 2-8

Instruction Address Breakpoint Register (IABR) .. 2-8
Processor Identification Register (PIR) ... 2-9
Hardware Implementation-Dependent Register 0 2-10
Performance Monitor Registers ... 2-11

Monitor Mode Control Register 0 (MMCRO) 2-11
Performance Monitor Counter Registers (PMCI and PMC2) 2-13
Sampled Instruction Address Register (SIA) .. 2-15
Sampled Data Address Register (SDA) ... 2-16

Operand Conventions ... 2-16
Floating~Point Execution Models-UISA ... 2-16
Data Organization in Memory and Data Transfers .. 2-17
Alignment and Misaligned Accesses ... 2-17
Floating-Point Operand .. 2-17
Effect of Operand Placement on Performance .. 2-19

Instruction Set Summary .. 2-19
Classes of Instructions ... 2-21

Definition of Boundedly Undefined .. 2-21

PowerPC 604 RISC Microprocessor User's Manual

Paragraph
Number

2.3.1.2
2.3.1.3
2.3.1.4
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4
2.3.2.4.1
2.3.2.4.2
2.3.2.4.3
2.3.3
2.3.4
2.3.4.1
2.3.4.1.1
2.3.4.1.2
2.3.4.1.3
2.3.4.1.4
2.3.4.2
2.3.4.2.1
2.3.4.2.2
2.3.4.2.3
2.3.4.2.4
2.3.4.2.5
2.3.4.2.6
2.3.4.3
2.3.4.3.1
2.3.4.3.2
2.3.4.3.3
2.3.4.3.4
2.3.4.3.5
2.3.4.3.6
2.3.4.3.7
2.3.4.3.8
2.3.4.3.9
2.3.4.4
2.3.4.4.1
2.3.4.4.2
2.3.4.4.3
2.3.4.4.4
2.3.4.5
2.3.4.6
2.3.4.6.1

Contents

CONTENTS

Title
Page

Number

Defined Instruction Class .. 2-21
Illegal Instruction Class ... 2-22
Reserved Instruction Class .. 2-23

Addressing Modes ... 2-23
Memory Addressing .. 2-23
Memory Operands ... 2-23
Effective Address Calculation ... 2-24
Synchronization ... 2-24

Context Synchronization ... 2-24
Execution Synchronization .. 2-25
Instruction-Related Exceptions .. 2-25

Instruction Set Overview ... 2-26
PowerPC VISA Instructions .. 2-26

Integer Instructions .. : 2-26
Integer Arithmetic Instructions .. 2-26
Integer Compare Instructions .. 2-28
Integer Logical Instructions ... 2-28
Integer Rotate and Shift Instructions ... 2-29

Floating-Point Instructions .. 2-30
Floating-Point Arithmetic Instructions .. 2-30
Floating-Point Multiply-Add Instructions ... 2-31
Floating-Point Rounding and Conversion Instructions 2-31
Floating-Point Compare Instructions ... 2-32
Floating-Point Status and Control Register Instructions 2-32
Floating-Point Move Instructions .. 2-33

Load and Store Instructions ... 2-33
Self-Modifying Code ... 2-34
Integer Load and Store Address Generation .. 2-35
Register Indirect Integer Load Instructions ... 2-35
Integer Store Instructions ... 2-36
Integer Load and Store with Byte Reverse Instructions 2-37
Integer Load and Store Multiple Instructions .. 2-38
Integer Load and Store String Instructions .. 2-39
Floating-Point Load and Store Address Generation 2-40
Floating-Point Store Instructions ... 2-41

Branch and Flow Control Instructions ... 2-43
Branch Instruction Address Calculation .. 2-44
Branch Instructions .. 2-44
Condition Register Logical Instructions .. 2-45
Trap Instructions .. 2-45

System Linkage Instruction-VISA .. 2-46
Processor Control Instructions-UISA ... 2-46

Move to/from Condition Register Instructions 2-46

v

Paragraph
Number

2.3.4.6.2
2.3.4.7
2.3.5
2.3.5.1
2.3.5.2
2.3.5.3
2.3.5.3.1
2.3.5.4
2.3.6
2.3.6.1
2.3.6.2
2.3.6.3
2.3.6.3.1
2.3.6.3.2
2.3.6.3.3
2.3.7

CONTENTS

Title Page
Number

Move to/from Special-Purpose Register Instructions (UISA) 2-47
Memory Synchronization Instructions-UISA ... 2-47

PowerPC YEA Instructions ... 2-48
Processor Control Instructions-VEA .. 2-48
Memory Synchronization Instructions-VEA .. 2-49
Memory Control Instructions-VEA .. 2-50

User-Level Cache Instructions-VEA .. 2-50
Optional External Control Instructions .. 2-52

PowerPC OEA Instructions ... 2-52
System Linkage Instructions-OEA ... 2-52
Processor Control Instructions-OEA .. 2-52
Memory Control Instructions-OEA .. 2-54

Supervisor-Level Cache Management Instruction-(OEA) 2-54
Segment Register Manipulation Instructions (OEA) 2-55
Translation Lookaside Buffer Management Instructions-(OEA) 2-55

Recommended Simplified Mnemonics .. 2-57

Chapter 3
Cache and Bus Interface Unit Operation

3.1 Data Cache Organization ... 3-3
3.2 Instruction Cache Organization ... 3-4
3.3 MMUs/Bus Interface Unit ... 3-5
3.4 Memory Coherency Actions .. 3-8
3.4.1 604-Initiated Load and Store Operations ... 3-8
3.5 Sequential Consistency .. 3-9
3.5.1 Sequential Consistency Within a Single Processor ... 3-9
3.5.2 Weak Consistency between Multiple Processors .. 3-9
3.5.3 Sequential Consistency Within Multiprocessor Systems 3-10
3.6 Memory and Cache Coherency .. 3-10
3.6.1 Data Cache Coherency Protocol .. 3- i 1
3.6.2 Coherency and Secondary Caches ... 3-13
3.6.3 Page Table Control Bits ... 3-13
3.6.4 MESI State Diagrarn .. 3-13
3.6.5 Coherency Paradoxes in Single-Processor Systems 3-14
3.6.6 Coherency Paradoxes in Multiple-Processor Systems 3-15
3.7 Cache Configuration .. 3-15
3.8 Cache Control Instructions .. 3-16
3.8.1 Instruction Cache Block Invalidate (iebi) .. 3-16
3.8.2 Instruction Synchronize (isyne) ... 3-17
3.8.3 Data Cache Block Touch (debt) and

Data Cache Block Touch for Store (debtst) .. 3-17
3.8.4 Data Cache Block Set to Zero (debz) .. 3-17

vi PowerPC 604 RISC Microprocessor User's Manual

Paragraph
Number

CONTENTS

Title Page
Number

3.8.S Data Cache Block Store (dcbst) .. 3-17
3.8.6 Data Cache Block Flush (dcbf) ... 3-18
3.8.7 Data Cache Block Invalidate (dcbi) .. 3-18
3.9 Basic Cache ()perations ... 3-18
3.9.1 Cache Reloads .. 3-18
3.9.2 Cache Cast-Out Operation ... 3-18
3.9.3 Cache Block Push Operation ... 3-18
3.9.4 Atomic Memory References .. 3-19
3.9.S Snoop Response to Bus Operations ... 3-19
3.9.6 Cache Reaction to Specific Bus Operations .. 3-19
3.9.7 Enveloped High-Priority Cache Block Push Operation 3-22
3.9.8 Bus Operations Caused by Cache Control Instructions 3-22
3.9.9 Cache Control Instructions .. 3-23
3.10 Cache Actions .. 3-23
3.11 Access to Direct-Store Segments ... 3-44

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.S
4.S.1
4.5.2
4.5.2.1
4.5.2.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
4.5.9
4.5.10
4.S.11
4.5.12

Contents

Chapter 4
Exceptions

PowerPC 604 Microprocessor Exceptions ... 4-2
Exception Recognition and Priorities .. 4-S
Exception Processing ... 4-6

Enabling and Disabling Exceptions ... 4-9
Steps for Exception Processing .. 4-10
Setting MSR[RI] .. 4-10
Returning from an Exception Handler ... 4-11

Process Switching ~ .. 4-11
Exception Definitions .. 4-12

System Reset Exception (OxOO100) ... 4-13
Machine Check Exception (OxOO200) ... 4-13

Machine Check Exception Enabled (MSR[ME] = 1) 4-14
Checkstop State (MSR[ME] = 0) .. 4-15

DSI Exception (OxOO300) .. 4-16
lSI Exception (OxOO400) .. 4-16
External Interrupt Exception (OxOO500) .. 4-16
Alignment Exception (OxOO600) ... 4-17
Program Exception (OxOO700) ... 4-17
Floating-Point Unavailable Exception (OxOO800) ... 4-18
Decrementer Exception (OxOO900) .. 4-19
System Call Exception (OxOOCOO) .. 4-19
Trace Exception (OxOODOO) ... 4-19
Floating-Point Assist Exception (OxOOEOO) .. 4-19

vii

Paragraph
Number

4.5.13
4.5.14
4.5.15
4.5.16

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.6.1
5.1.6.2
5.1.6.3
5.1.6.4
5.1.7
5.1.8
5.1.9
5.2
5.3
5.4
5.4.1
5.4.1.1
5.4.1.2
5.4.1.3
5.4.2
5.4.3
5.4.3.1
5.4.3.2
5.4.4
5.4.5
5.4.6
5.4.7
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5

viii

CONTENTS

Title Page
Number

Performance Monitoring Interrupt (OxOOFOO) ... 4-20
Instruction Address Breakpoint Exception (Ox01300) 4-20
System Management Interrupt (Ox01400) ... 4-20
Power Management ... 4-21

Chapter 5
Memory Management

MMU Overview ... 5-2
Memory Addressing .. 5-4
MMU Organization .. 5-4
Address Translation Mechanisms .. 5-9
Memory Protection Facilities ... 5-11
Page History Information ... 5-12
General Flow of MMU Address Translation ... 5-12

Real Addressing Mode and Block Address Translation Selection 5-12
Page and Direct-Store Interface Address Translation Selection 5-14
Selection of Page Address Translation .. 5-16
Selection of Direct-Store Interface Address Translation 5-16

MMU Exceptions Summary .. 5-16
MMU Instructions and Register Summary .. 5-18
TLB Entry Invalidation .. 5-19

Real Addressing Mode ... 5-20
Block Address Translation ... 5-20
Memory Segment Model ... 5-20

Page History Recording ... 5-21
Referenced Bit ... 5-22
Changed Bit .. 5-22
Scenarios for Referenced and Changed Bit Recording 5-23

Page Memory Protection ... 5-24
TLB Description .. 5-24

TLB Organization .. 5-24
TLB Invalidation ... 5-26

Page Address Translation Summary .. 5-27
Page Table Search Operation ... 5-29
Page Table Updates ... 5-33
Segment Register Updates ... 5-34

Direct-Store Interface Address Translation ... 5-35
Direct-Store Interface Accesses ... 5-35
Direct-Store Segment Protection ... 5-35
Instructions Not Supported in Direct-Store Segments 5-36
Instructions with No Effect in Direct-Store Segments 5-36
Direct-Store Segment Translation Summary Flow .. 5-36

Power PC 604 RISC Microprocessor User's Manual

Paragraph
Number

6.1
6.2
6.2.1
6.2.1.1
6.2.1.1.1
6.2.1.1.2
6.2.1.1.3
6.2.1.1.4
6.2.1.1.5
6.2.1.1.6
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.3
6.4
6.4.1
6.4.2
6.4.2.1
6.4.2.2
6.4.3
6.4.4
6.4.4.1
6.4.4.1.1
6.4.4.1.2
6.4.4.1.3
6.4.4.1.4
6.4.5
6.4.6
6.4.6.1
6.4.6.2
6.4.7
6.4.7.1
6.4.7.2
6.4.7.3
6.4.7.4
6.4.7.5

Contents

CONTENTS

Title

Chapter 6
Instruction Timing

Page
Number

Terminology and Conventions ... 6-1
Instruction Timing Overview ... 6-3

Pipeline Structures ... 6-5
Description of Pipeline Stages ... 6-7

Fetch Stage .. 6-8
Decode Stage ... 6-9
Dispatch Stage ... 6-9
Execute Stage .. 6-10
Complete Stage .. 6-11
Write-Back Stage ... 6-12

Memory Performance Considerations ... 6-12
MMU Overview ... 6-13
Cache Overview ... 6-13
Bus Interface Overview ... 6-15
Memory Operations ... 6-15

Write-Back Mode .. 6-15
Write-Through Mode ... 6-16
Cache-Inhibited Mode ... 6-16

Timing Considerations ... 6-17
General Instruction Flow ... 6-17
Instruction Fetch Timing ... 6-18

Cache Hit Timing EXaIl1ple ... 6-18
Cache Miss Timing ExaIl1ple ... 6-22

Cache Arbitration ... 6-24
Branch Prediction .. 6-24

Branch Timing EXaIllples .. 6-25
Timing EXaIllple-Branch Timing for a BT AC Hit 6-25
Timing EXaIllple-Branch with BTAC Miss/Decode Correction 6-26
Timing Example-Branch with BTAC Miss/Dispatch Correction 6-28
Timing Example-Branch with BT AC Miss/Execute Correction 6-28

Speculative Execution .. 6-29
Instruction Dispatch and Completion Considerations 6-30

RenaIl1e Register Operation ... 6-31
Execution Unit Considerations .. 6-33

Instruction Serialization ... 6-33
Dispatch Serialization Mode .. 6-34
Execution Serialization Mode .. 6-34
Postdispatch Serialization Mode .. 6-34
Serialization of String/Multiple Instructions ... 6-35
Serialization of Input/Output ... 6-35

ix

Paragraph
Number

CONTENTS

Title Page
Number

6.5 Execution Unit Timings ... 6-35
6.5.1 Branch Unit Instruction Timings ... 6-35
6.5.2 Integer Unit Instruction Timings ... 6-35
6.5.3 Floating-Point Unit Instruction Timings .. 6-37
6.5.4 Load/Store Unit Instruction Timings ... 6-39
6.5.5 isync, rti, and sc Instruction Timings .. 6-41
6.6 Instruction Scheduling Guidelines ... 6-42
6.6.1 Instruction Dispatch Rules ... 6-42
6.6.2 Additional Programming Tips for the PowerPC 604 Processor 6-43
6.7 Instruction Latency Summary .. 6-45

7.1
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.1.3
7.2.1.3.1
7.2.1.3.2
7.2.2
7.2.2.1
7.2.2.1.1
7.2.2.1.2
7.2.2.2
7.2.2.2.1
7.2.2.2.2
7.2.3
7.2.3.1
7.2.3.1.1
7.2.3.1.2
7.2.3.1.3
7.2.3.1.4
7.2.3.2
7.2.3.2.1
7.2.3.2.2
7.2.3.3
7.2.4
7.2.4.1
7.2.4.1.1
7.2.4.1.2

x

Chapter 7
Signal Descriptions

Signal Configuration .. 7-2
Signal Descriptions .. 7-3

Address Bus Arbitration Signals .. 7-3
Bus Request (BR)--Output ... 7-4
Bus Grant (BG)-Input ... 7-4
Address Bus Busy (ABB) .. 7-5

Address Bus Busy (ABB)--Output.. ... 7-5
Address Bus Busy (ABB}-Input ... 7-5

Address Transfer Start Signals .. 7-6
Transfer Start (TS) ... 7-6

Transfer Start (TS)--Output .. 7-6
Transfer Start (TS}-Input .. 7-6

Extended Address Transfer Start (XA TS) ... 7-6
Extended Address Transfer Start (XATS)--Output 7-6
Extended Address Transfer Start (XATS}-Input 7-7

Address Transfer Signals ... 7-7
Address Bus (AO-A31) .. 7-7

Address Bus (AO-A31)-Output (Memory Operations) 7-7
Address Bus (AO-A31)-Input (Memory Operations) 7-7
Address Bus (AO-A31)-Output (Direct-Store Operations) 7-8
Address Bus (AO-A31)-Input (Direct-Store Operations) 7-8

Address Bus Parity (APO-AP3) ... 7-8
Address Bus Parity (APO-AP3)--Output ... 7-8
Address Bus Parity (APO-AP3}-Input .. 7-9

Address Parity Error (APE)--Output .. 7-9
Address Transfer Attribute Signals .. 7-9

Transfer Type (TTO-TT4) ... 7-10
Transfer Type (TTO-TT4)--Output .. 7-10
Transfer Type (TTO-TT4}-Input ... 7-10

PowerPC 604 RISC Microprocessor User's Manual

Paragraph
Number

7.2.4.2
7.2.4.2.1
7.2.4.2.2
7.2.4.3
7.2.4.3.1
7.2.4.3.2
7.2.4.4
7.2.4.5
7.2.4.6
7.2.4.7
7.2.4.7.1
7.2.4.7.2
7.2.4.8
7.2.5
7.2.5.1
7.2.5.2
7.2.5.2.1
7.2.5.2.2
7.2.5.3
7.2.5.3.1
7.2.5.3.2
7.2.6
7.2.6.1
7.2.6.2
7.2.6.3
7.2.6.3.1
7.2.6.3.2
7.2.7
7.2.7.1
7.2.7.1.1
7.2.7.1.2
7.2.7.2
7.2.7.2.1
7.2.7.2.2
7.2.7.3
7.2.7.4
7.2.8
7.2.8.1
7.2.8.2
7.2.8.3
7.2.9
7.2.9.1
7.2.9.2

Contents

CONTENTS

Title Page
Number

Transfer Size (TSIZO-TSIZ2) ... 7-11
Transfer Size (TSIZO-TSIZ2)-Output .. 7-12
Transfer Size (TSIZO-TSIZ2}-Input ... 7-12

Transfer Burst (TBST) ... 7-13
Transfer Burst (TBST)--Output. ... 7-13
Transfer Burst (TBST)-Input .. 7-13

Transfer Code (TCO-TC2)--Output ... 7-13
Cache Inhibit (CI)--Output ... 7-14
Write-Through (WT)-Output .. 7-15
Global (GBL) ... 7-15

Global (GBL)-Output. ... 7-15
Global (GBL)-Input .. 7-15

Cache Set Element (CSEO-CSE1)--Output ; 7-15
Address Transfer Termination Signals .. 7-16

Address Acknowledge (AACK}-Input. ... 7-16
Address Retry (ARTRY) ... 7-16

Address Retry (ARTRY)-Output ~ .. 7-16
Address Retry (ARTRY}-Input. .. 7-17

Shared (SHD) ... 7-17
Shared (SHD)--Output ... 7-17
Shared (SHD}-Input .. 7-18

Data Bus Arbitration Signals ... 7-18
Data Bus Grant (DBG}-Input .. 7-18
Data Bus Write Only (DBWO}-Input ... 7-18
Data Bus Busy (DBB) ... 7-19

Data Bus Busy (DBB)-Output .. 7-19
Data Bus Busy (DBB}-Input ... 7-19

Data Transfer Signals ... 7-20
Data Bus (DHO-DH31, DLO-DL31) ... 7-20

Data Bus (DHO-DH31, DLO-DL31)-Output. 7-20
Data Bus (DHO-DH31, DLO-DL31)-Input .. 7-21

Data Bus Parity (Dro-DP7) .. 7-21
Data Bus Parity (Dro-DP7)-Output ... 7-21
Data Bus Parity (Dro-DP7}-Input. ... 7-21

Data Parity Error (DPE)--Output ... 7-22
Data Bus Disable (DBDIS}-Input ... 7-22

Data Transfer Termination Signals .. 7-22
Transfer Acknowledge (TA}-Input ... 7-23
Data Retry (DRTRY)-Input .. 7-23
Transfer Error Acknowledge (TEA)-Input ... 7-24

System Interrupt, Checkstop, and Reset Signals ... 7-24
Interrupt (INT}-Input ... 7-25
System Management Interrupt (SMI}-Input ... 7-25

xi

Paragraph
Number

7.2.9.3
7.2.9.4
7.2.9.5
7.2.9.6
7.2.9.6.1
7.2.9.6.2
7.2.10
7.2.10.1
7.2.10.2
7.2.10.3
7.2.10.4
7.2.10.5
7.2.11
7.2.12
7.2.12.1
7.2.12.2
7.2.12.3
7.2.12.4

8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.3.2.2.1
8.3.2.2.2
8.3.2.3
8.3.2.4
8.3.2.4.1
8.3.2.5
8.3.3
8.4
8.4.1

xii

CONTENTS
Page

Number Title

Machine Check Interrupt (MCP}-Input.. ... 7-25
Checkstop Input(CKSTP _IN}--Input ... 7-26
Checkstop Output (CKSTP _OUT)-Output ... 7-26
Reset Signals .. 7-27

Hard Reset (HRESET)-Input .. 7-27
Soft Reset (SRESET)-Input .. 7-27

Processor Configuration Signals ... 7-28
Timebase Enable (TBEN)--Input ... 7-28
Reservation (RSRV}-Output ... 7-28
L2 Intervention (L2_INT}-Input ... 7-28
Run (RUN)--Input .. 7-29
Halted (HALTED) -Output ... 7-29

COP/Scan Interface .. 7-29
Clock Signals ... 7-30

System Clock (SYSCLK)-Input .. 7-30
Test Clock (CLK_OUT)-Output ... 7-31
Analog VDD (AVDD}-Input .. 7-31
PLL Configuration (PLL_CFGO--PLL_CFG3}-Input 7-31

Chapter 8
System Interface Operation

PowerPC 604 Microprocessor System Interface Overview 8-1
Operation of the Instruction and Data Caches ... 8-2
Operation of the System Interface ... 8-4
Direct-Store Accesses .. 8-5

Memory Access Protocol ... 8-6
Arbitration Signals ... 8-7
Address Pipelining and Split-Bus Transactions ~ 8-9

Address Bus Tenure ... 8-10
Address Bus Arbitration .. 8-10
Address Transfer .. 8-12

Addre~s Bus Parity .. 8-13
Address Transfer Attribute Signals ... 8-13

Transfer Type (TTO--TT4) Signals .. 8-13
Transfer Size (TSIZO--TSIZ2) Signals ... 8-13

Burst Ordering During Data Transfers .. 8-14
Effect of Alignment in Data Transfers .. 8-14

Alignment of External Control Instructions .. 8-16
Transfer Code (TCO--TC2) Signals .. 8-17

Address Transfer Termination .. : 8-18
Data Bus Tenure .. 8-20

Data Bus Arbitration .. 8-20

PowerPC 604 RISC Microprocessor User's Manual

Paragraph
Number

8.4.1.1
8.4.1.2
8.4.2
8.4.3
8.4.4
8.4.4.1
8.4.4.2
8.4.5
8.5
8.6
8.6.1
8.6.1.1
8.6.1.2
8.6.2
8.6.2.1
8.6.2.2
8.6.3
8.6.4
8.7
8.7.1
8.7.1.1
8.7.1.2
8.7.1.3
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.9
8.9.1
8.10
8.10.1
8.11

9.1
9.1.1
9.1.1.1
9.1.1.1.1
9.1.1.1.2

Contents

CONTENTS

Title Page
Number

Effect of ARTRY Assertion on Data Transfer and Arbitration 8-21
Using the DBB Signal ... 8-22

Data Bus Write Only .. 8-23
Data Transfer ... 8-23
Data Transfer Termination ... 8-24

Normal Single-Beat Termination .. 8-25
Data Transfer Termination Due to a Bus Error ... 8-28

Memory Coherency-MESI Protocol ... 8-29
Timing Examples ... 8-32
Direct-Store Operation ... 8-38

Direct-Store Transactions .. 8-40
Store Operations .. 8-41
Load Operations ... 8-41

Direct-Store Transaction Protocol Details ... 8-42
Packet 0 .. 8-43
Packet 1 .. 8-44

I/O Reply Operations ... 8-44
Direct-Store Operation Tim~ng .. 8-46

Optional Bus Configuration ... 8-48
Fast-L2/Data Streaming Mode ~ .. 8-48

Fast-L2/Data Streaming Mode Design Considerations 8-49
Data Streaming in the Fast-L2/Data Streaming Mode 8-49
Data Valid Window in the Fast-L2/Data Streaming Mode 8-50

Interrupt, Checkstop, and Reset Signals .. 8-50
External Interrupts .. 8-50
Checkstops \ ... 8-51
Reset Inputs' ... 8-51
PowerPC 604 Microprocessor Configuration during HRESET 8-51

Processor State Signals .. 8-52
Support for the Iwarxlstwcx. Instruction Pair ... 8-52

IEEE 1149.1-Compliant Interface .. 8-52
IEEE 1149.1 Interface Description ~ ... 8~52

Using Data Bus Write Only ... 8-53

Chapter 9
Performance Monitor

Performance Monitor Interrupt · ... ~ 9-2
Special-Purpose Registers Used by Performance Monitor 9.;,2

Performance Monitor Counter Registers (PMC1 and PMC2) 9-3
PMC1 Selectable Events ... 9-3
PMC2 Selectable Events ... 9-5

xiii

Paragraph
Number

9.1.1.2
9.1.1.2.1
9.1.1.2.2
9.1.1.2.3
9.1.1.3
9.1.2
9.1.2.1
9.1.2.2
9.1.2.2.1
9.1.2.2.2
9.1.2.2.3
9.1.2.3

CONTENTS

Title Page
Number

SIA and SDA Registers ... 9-6
Sampled Instruction Address Register (SIA) .. 9-6
Sampled Data Address Register (SDA) ... 9-6
Updating SIA and SDA ... 9-6

Monitor Mode Control Register 0 (MMCRO) ... 9-6
Event Counting .. 9-8

Event Selection .. 9-9
Threshold Events ... 9-10

Threshold Conditions .. 9-10
Lateral L2 Cache Intervention ... 9-10
Warnings .. 9-11

Nonthreshold Events .. 9-11

Appendix A
PowerPC Instruction Set Listings

A.1 Instructions Sorted by Mnemonic ... A-I
A.2 Instructions Sorted by Opcode .. A-10
A.3 Instructions Grouped by Functional Categories ... A-18
A.4 Instructions Sorted by Form .. A-28
A.5 Instruction Set Legend•... A-39

Appendix B
Invalid Instruction Forms

B.1 Invalid Forms Excluding Reserved Fields ; ... B-1
B.2 Invalid Forms with Reserved Fields (Bit 31 Exclusive) B-2
B.3 Invalid Form with Only Bit 31 Set .. B-5
B.4 Invalid Forms from Invalid BO Field Encodings .. B-6

Glossary of Terms and Abbreviations

Index

xiv Power PC 604 RISC Microprocessor User's Manual

Figure
Number

ILLUSTRATIONS

Title Page
Number

1-1 Block Diagram ... 1-3
1-2 Block Diagram-Internal Data Paths ... 1-7
1-3 Cache Unit Organization .. 1-14
1-4 System Interface ... 1-15
1-5 PowerPC 604 Microprocessor Signal Groups .. 1-18
1-6 Programming Model-PowerPC 604 Microprocessor Registers 1-21
1-7 Pipeline Diagram .. 1-33
2-1 Programming Model-PowerPC 604 Microprocessor Registers 2-3
2-2 Instruction Address Breakpoint Register ... 2-9
2-3 Processor Identification Register ... 2-9
3-1 Cache Organization ... 3-2
3-2 Cache Integration ... 3-3
3-3 Bus Interface Unit and MMU ... 3-6
3-4 Memory Queue Organization ... 3-7
3-5 MESI States .. 3-12
3-6 MESI Cache Coherency Protocol-State Diagram (WIM = 00 1) 3-14
4-1 Machine Status Save/Restore Register 0 .. 4-6
4-2 Machine Status Save/Restore Register 1 .. 4-6
4-3 Machine State Register (MSR) .. 4-7
5-1 MMU Conceptual Block Diagram-32-Bit Implementations 5-6
5-2 PowerPC 604 Microprocessor IMMU Block Diagram .. 5-7
5-3 PowerPC 604 Microprocessor DMMU Block Diagram .. 5-8
5-4 Address Translation Types ... 5-10
5-5 General Flow of Address Translation (Real Addressing Mode and Block) 5-13
5-6 General Flow of Page and Direct-Store Interface Address Translation 5-15
5-7 Segment Register and DTLB Organization ... 5-25
5-8 Page Address Translation Flow-TLB Hit .. 5-28
5-9 Primary Page Table Search .. 5-31
5-10 Secondary Page Table Search Flow ... 5-32
5-11 Direct-Store Segment Translation Flow ... 5-37
6-1 PowerPC 604 Microprocessor Block Diagram Showing Data Paths 6-4
6-2 GPR Reservation Stations and Result Buses .. 6-5
6-3 Pipeline Diagram .. 6-6
6-4 PowerPC 604 Microprocessor Pipeline Stages .. 6-7
6-5 Instruction Fetch Address Generation .. 6-8
6-6 Data Caches and Memory Queues ... 6-14
6-7 Instruction Timing--Cache Hit. ... 6-19

Illustrations xv

Figure
Number
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
7-1
7-2
8-1
8-2
8-3

8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29

xvi

ILLUSTRATIONS

Title Page
Number

Instruction Timing-Instruction Cache Miss (BTAC Hit) 6-22
Instruction Timing-Branch with BT AC Hit .. 6-25
Instruction Timing-Branch with BT AC Miss/Decode Correction 6-27
Instruction Timing-Branch with BT AC Miss/Dispatch Correction 6-28
Instruction Timing-Branch with BT AC Miss/Execute Correction 6-29
GPR Rename Register .. 6-32
SCIU Block Diagram ... 6-36
MCIU Block Diagram .. 6-37
FPU Block Diagram ... 6-38
LSU Block Diagram ... 6-40
Store Queue Structure .. 6-41
PowerPC 604 Microprocessor Signal Groups .. 7-3
IEEE 1149.1-Compliant Boundary Scan Interface .. 7-30
PowerPC 604 Microprocessor Block Diagram .. 8-3
Timing Diagram Legend .. 8-5
Overlapping Tenures on the PowerPC 604 Microprocessor Bus for a Single-Beat

Transfer .. 8-6
Address Bus Arbitration ... 8-10
Address Bus Arbitration Showing Bus Parking ... 8-11
Address Bus Transfer ... 8-12
Snooped Address Cycle with ARTRY ... 8-19
Data Bus Arbitration .. 8-20
Qualified DBG Generation Following ARTRY ... 8-22
Normal Single-Beat Read Termination .. 8-25
Normal Single-Beat Write Termination ... 8-26
Normal Burst Transaction .. 8-26
Termination with DRTRY ... 8-27
Read Burst with TA Wait States and DRTRY ... 8-28
MESI Cache Coherency Protocol-State Diagram (WIM = 001) 8-31
Fastest Single-Beat Reads .. 8-32
Fastest Single-Beat Writes _ .. 8-33
Single-Beat Reads Showing Data-Delay Controls ... 8-34
Single-Beat Writes Showing Data Delay Controls .. 8-35
Burst Transfers with Data Delay Controls ... 8-36
Use of Transfer Error Acknowledge (TEA) ... 8-37
Direct-Store Tenures•... 8-40
Direct-Store Operation-Packet 0 ... 8-43
Direct-Store Operation-Packet 1 ... 8-44
I/O Reply Operation ... 8-45
Direct-Store Interface Load Access Example .. 8-47
Direct-Store Interface Store Access Example .. 8-48
Data Transfer in Fast-L2/Data Streaming Mode .. 8-50
Data Bus Write Only Transaction .. 8-53

PowerPC 604 RISC Microprocessor User's Manual

Table
Number

ii
iii
1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31

Tables

TABLES

Title Page
Number

Acronyms and Abbreviated Terms ... xxv
Terminology Conventions .. xxviii
Instruction Field Conventions .. xxviii
Exception Classifications ... 1-30
Overview of Exceptions and Conditions .. 1-30
MSR[PM] Bit ... 2-6
Instruction Address Breakpoint Register Bit Settings .. 2-9
Hardware Implementation-Dependent Register 0 Bit Settings 2-10
MMCRO Bit Settings .. 2-12
Selectable Even ts-PMC1 ... 2-14
Selectable Events-PMC2 ... 2-15
Floating-Point Operand Data Type Behavior : 2-18
Floating-Point Result Data Type Behavior .. 2-19
Integer Arithmetic Instructions ... 2-26
Integer Compare Instructions ... 2-28
Integer Logical Instructions .. 2-28
Integer Rotate Instructions ... 2-29
Integer Shift Instructions .. 2-30
Floating-Point Arithmetic Instructions ... 2-30
Floating-Point Multiply-Add Instructions .. 2-31
Floating-Point Rounding and Conversion Instructions .. 2-32
Floating-Point Compare Instructions ... 2-32
Floating-Point Status and Control Register Instructions 2-32
Floating-Point Move Instructions ... 2-33
Integer Load Instructions .. 2-35
Integer Store Instructions ... 2-37
Integer Load and Store with Byte Reverse Instructions 2-38
Integer Load and Store Multiple Instructions ... 2-39
Integer Load and Store String Instructions ... 2-39
Floating-Point Load Instructions .. 2-41
Floating-Point Store Instructions .. 2-41
Store Floating-Point Single Behavior ... 2-42
Store Floating-Point Double Behavior ... 2-43
Branch Instructions ... 2-44
Condition Register Logical Instructions ... 2-45
Trap Instructions ... 2-45

xvii

Paragraph
Number

CONTENTS

Title Page
Number

2-32 System Linkage Instruction-UISA ... 2-46
2-33 Move to/from Condition Register Instructions ... 2-46
2-34 Move to/from Special-Purpose Register Instructions (UISA) 2-47
2-35 Memory Synchronization Instructions-UISA .. 2-47
2-36 Move from Time Base Instruction ... 2-48
2-37 Memory Synchronization Instructions-VEA ... 2-49
2-38 User-Level Cache Instructions ... 2-51
2-39 External Control Instructions ... 2-52
2-40 System Linkage Instructions-OEA .. 2-52
2-41 Move to/from Machine State Register Instructions .. 2-53
2-42 Move to/from Special-Purpose Register Instructions (OEA) 2-53
2-43 SPR Encodings for 604-Defined Registers (mfspr) .. 2-53
2-44 Cache Management Supervisor-Level Instruction ... 2-54
2-45 Segment Register Manipulation Instructions ... 2-55
2-46 Translation Lookaside Buffer Management Instruction 2-56
3-1 Memory Coherency Actions on Load Operations .. 3-8
3-2 Memory Coherency Actions on Store Operations .. 3-9
3-3 MESI State Definitions ... 3-11
3-4 Response to Bus Transactions .. 3-20
3-5 604 Bus Operations Initiated by Cache Control Instructions 3-23
3-6 Cache Actions ... 3-24
4-1 Exception Classifications ... 4-3
4-2 Exceptions and Conditions-Overview ... 4-3
4-3 MSR Bit Settings .. 4-7
4-4 IEEE Floating-Point Exception Mode Bits .. 4-9
4-5 MSR Setting Due to Exception .. 4-12
4-6 System Reset Exception-Register Settings .. 4-13
4-7 Machine Check Enable Bits ... 4-14
4-8 Machine Check Exception-Register Settings .. 4-15
4-9 Other MMU Exception Conditions .. 4-16
4-10 Trace Exception-SRRI Settings .. 4-19
5-1 MMU Feature Summary ... 5-3
5-2 Access Protection Options for Pages .. 5-11
5-3 Translation Exception Conditions .. 5-17
5-4 Other MMU Exception Conditions for the PowerPC 604 Processor 5-18
5-5 PowerPC 604 Microprocessor Instruction Summary-Control MMUs 5-19
5-6 PowerPC 604 Microprocessor MMU Registers ... 5-19
5-7 Search Operations to Update History Bits-TLB Hit Case 5-21
5-8 Model for Guaranteed R and C Bit Settings ... 5-23
6-1 Execution Latencies and Throughputs ... 6-7
6-2 Instruction Execution Timing ... 6-46
7-1 Transfer Encoding for PowerPC 604 Processor Bus Master 7-10
7-2 Data Transfer Size .. 7-12

xviii PowerPC 604 RISC Microprocessor User's Manual

Table
Number

7-3
7-4
7-5
7-6
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
9-1
9-2
9-3
9-4
A-I
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-I0
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24

Tables

TABLES

Title
Page

Number

Encodings for TCO-TC2 Signals .. 7 -13
Data Bus Lane Assignments ... 7-20
Dro-DP7 Signal Assignments ... 7-21
PLL Configuration .. 7-31
PowerPC 604 Microprocessor Bus Arbitration Signals ... 8-8
Transfer Size Signal Encodings .. 8-14
PowerPC 604 Microprocessor Burst Ordering ... 8-14
Aligned Data Transfers ... 8-15
Misaligned Data Transfers (Four-Byte Examples) ... 8-16
Transfer Code Encoding ... 8-17
CSEO-CSEI Signals ... 8-31
Direct-Store Bus Operations ... 8-40
Address Bits for I/O Reply Operations .. 8-45
PowerPC 604 Microprocessor Mode Configuration during HRESET 8-51
IEEE Interface Pin Descriptions ... 8-52
Performance Monitor SPRs .. 9-3
PMCI Events-MMCRO [19-25] Select Encodings ... 9-4
PMC2 Events-MMCRO [26-31] Select Encoding ... 9-5
MMCRO Bit Settings .. 9-7
Complete Instruction List Sorted by Mnemonic ... A-I
Complete Instruction List Sorted by Opcode .. A-I0
Integer Arithmetic Instructions .. A-18
Integer Compare Instructions .. A-19
Integer Logical Instructions ... A-19
Integer Rotate Instructions .. A-20
Integer Shift Instructions ... A-20
Floating-Point Arithmetic Instructions .. A-20
Floating-Point Multiply-Add Instructions ... A-21
Floating-Point Rounding and Conversion Instructions A-21
Floating-Point Compare Instructions .. A-21
Floating-Point Status and Control Register Instructions A-22
Integer Load Instructions ... A-22
Integer Store Instructions .. A-23
Integer Load and Store with Byte Reverse Instructions A-23
Integer Load and Store Multiple Instructions .. A-23
Integer Load and Store String Instructions .. A-24
Memory Synchronization nstructions .. A-24
Floating-Point Load Instructions ... A-24
Floating-Point Store Instructions ... A-24
Floating-Point Move Instructions .. A-25
Branch Instructions .. A-25
Condition Register Logical Instructions .. A-25
System Linkage Instructions ... A-26

xix

Paragraph
Number

CONTENTS

Title
Page

Number

A-25 Trap Instructions .. A-26
A-26 Processor Control Instructions .. A-26
A-27 Cache Management Instructions ... A-26
A-28 Segment Register Manipulation Instructions .. A-27
A-29 Lookaside Buffer Management Instructions ... A-27
A-30 External Control Instructions .. A-27
A-31 I-Form .. A-28
A-32 B-Form•... A-28
A-33 SC-Form .. A-28
A-34 D-Form .. A-28
A-35 DS-Form .. A-30
A-36 X-Form•... A-30
A-37 XL-Form .. A-34
A-38 XFX-Form ... A-35
A-39 XFL-Form .. A-35
A-40 XS-Form .. A-36
A-41 XO-Form ... A-36
A-42 A-Form .. A-37
A-43 M-Form .. A-38
A-44 MD-Form ... A-38
A-45 MDS-Form .. A-38
A-46 PowerPC Instruction Set Legend ... A-39
B-1 Invalid Forms (Excluding Reserved Fields) ... B-1
B-2 Invalid Forms with Reserved Fields (Bit 31 Exclusive) .. B-2

xx PowerPC 604 RISC Microprocessor User's Manual

About This Book
The primary objective of this manual is to help hardware and software designers who are
working with the PowerPC 604TM microprocessor. This book is intended as a companion
to the PowerPCN Microprocessor Family: The Programming Environments, referred to as
The Programming Environments Manual. Because the. PowerPC Architecture™ is
designed to be flexible to support a broad range of processors, The Programming
Environments Manual provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the. design of each processor.

Note that The Programming Environments Manual does not attempt to replace the
PowerPC architecture specification (documented in The PowerPC Architecture: A
Specificationfor a New Family of RISC Processors), which defines the architecture from
the perspective of the three programming environments and which remains the defining
document for the PowerPC architecture.

The PowerPC 604 RISC Microprocessor User's Manual summarizes features of the 604
that are not defined by the architecture. This document and The Programming
Environments Manual distinguishes between the three levels, or programming
environments, of the PowerPC architecture, which are as follows:

• PowerPC user instruction set architecture (UISA)-The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)-The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices
can access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory acCesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

About This Book xxi

• PowerPC operating environment architecture (OEA)-The OEA defines
supervisor-level resources typically required by an operating system. The OEA
defines the PowerPC memory management model, supervisor-level registers, and
the exception model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more g~nerally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture
information into topics that build upon one another, beginning with a description and
complete summary of 604-specific registers and progressing to more specialized topics
such as 604-specific details regarding the cache, exception, and memory management
models. As such, chapters may include information from multiple levels of the architecture.
(For example, the discussion of the cache model uses information from both the VEA and
theOEA.)

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers' responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience
This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 604. It is assumed that the reader
understands operating systems, microprocessor system design, the basic principles ofRISC
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

xxii

• Chapter 1, "Overview," is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition, and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

Power PC 604 RISC Microprocessor User's Manual

• Chapter 2, "PowerPC 604 Processor Programming Model," is useful for software
engineers who need to understand the 604-specific registers, operand conventions,
and details regarding how PowerPC instructions are implemented on the 604.

• Chapter 3, "Cache and Bus Interface Unit Operation," provides a discussion of the
cache and memory model as implemented on the 604.

• Chapter 4, "Exceptions," describes the exception model as implemented on the 604.

• Chapter 5, "Memory Management," provides descriptions of the PowerPC address
translation and memory protection mechanism as implemented on the 604.

• Chapter 6, "Instruction Timing," describes instruction timing in the 604.

• Chapter 7, "Signal Descriptions," describes individual signals defined for the 604.

• Chapter 8, "System Interface Operation," describes interface operations on the 604.

• Chapter 9, "Performance Monitor," describes the operation of the performance
monitor diagnostic tool incorporated in the 604.

• Appendix A, "PowerPC Instruction Set Listings," lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and fOIm.

• Appendix B, "Invalid Instruction Forms," describes how invalid instructions are
treated by the 604.

• This manual also includes a glossary and an index.

In this document, the terms "PowerPC 604 Microprocessor" and "604" are used to denote
a microprocessor from the PowerPC architecture family. The PowerPC 604
microprocessors are available from IBM as PPC604 and from Motorola as MPC604.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual.

• PowerPC Microprocessor Family: The Programming Environments, MPCFPE/AD
(Motorola Order Number) and MPRPPCFPE-Ol (IBM Order Number) _"

• The PowerPC Architecture: A Specification/or a New Family 0/ RISe Processors,
Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, CA

• John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA

• PowerPC 601 RISe Microprocessor User's Manual, Rev 1
MPC601 UM/AD (Motorola Order Number) and 52G7484/(MPR601 UMU-02)
(IBM Order Number)

• PowerPC 601 RISe Microprocessor Technical Summary, Rev 1
MPC601/D (Motorola order number) and MPR601 TSU-02 (IBM order number)

• PowerPC 603 RISC Microprocessor User's Manual, MPC603UM/AD (Motorola
order number) and MPR603UMU-Ol (IBM order number)

About This Book xxiii

• PowerPC 603 RISC Microprocessor Technical Summary, Rev 3
MPC603/D (Motorola order number) and MPR603TSU-03 (IBM order number)

• PowerPC 604 RISC Microprocessor Technical Summary, Rev 1
MPC604/D (Motorola order number) and MPR604TSU -02 (IBM order number)

• PowerPC 620 RISC Microprocessor Technical Summary, MPC620/D (Motorola
order number) and MPR620TSU-Ol (IBM order number)

Additional literature on PowerPC implementations is being released as new processors
become available.

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

mnemonics

OPERATIONS

italics

OXO

ObO

rA,rB

rAID

rD

frA, frB, frC

frD

REG [FIELD]

xxiv

A bar over a signal name indicates that the signal is active low-for
example, ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
APO-AP3 (address bus parity signals) and TIO-TI4 (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

Instruction mnemonics are shown in lowercase bold.

Address-only bus operations that are named for the instructions that
generate them are identified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.

Italics indicate variable command parameters, for example, bcctrx

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR

The contents of a specified GPR or the value O.

Instruction syntax used to identify a destination GPR

Instruction syntax used. to identify a source FPR

Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

PowerPC 604 RISC Microprocessor User's Manual

x

n

In certain contexts, such as a signal encoding, this indicates a don't
care.

Used to express an undefined numerical value.

Acronyms and Abbreviations
The Table i contains acronyms and abbreviations that are used in this document. Note that
the meanings for some acronyms (such as SDRI and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table I. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BAT Block address translation

BIST Built-in self test

BIU Bus interface unit

BHT Branch history table

BPU Branch processing unit

BTAC Branch target address cache

BUID Bus unit 10

COP Common on-chip processor

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DEC Decrementer (register)

DEO Decode queue

DISO Dispatch queue

DSISR Register used for determining the source of a DSI exception

DTLB Data translation look-aside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in, first out

FLO Finish load queue

About This Book xxv

Table I. Acronyms and Abbreviated Terms (Continued)

Term Meaning

FPR Roating-point register

FPSCR Roating-point status and control register

FPU Roating-point unit

GPR General-purpose register

HIOO Hardware implementation dependent (register) 0

IABR Instruction address breakpoint register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation look-aside buffer

IU Integer unit

JTAG Joint Test Action Group

L2 Secondary cache

LR Unk register

LRU Least recently used

LSB Least-significant byte

Isb Least-significant bit

LSU Load/store unit

MCIU Multiple-cycle integer unit

MESI Modifiedlexclusive/sharedlinvalid-cache coherency protocol

MMCRn Monitor mode control register n

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

No-Op No operation

OEA Operating environment architecture

PIO Processor identification tag

PLL Phase-locked loop

PMCn Performance monitor control (register) n

PMI Performance monitor interrupt

PTE Page table entry

xxvi PowerPC 604 RISC Microprocessor User's Manual

Table I. Acronyms and Abbreviated Terms (Continued)

Term Meaning

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing/computer

ROB Reorder buffer

RTL Register transfer language

RWITM Read with intent to modify

SCIU Single-cycle integer unit

SDA Sampled data address (register)

SDR1 Register that specifies the page table base address for virtual-t~hysical address translation

SIA Sampled instruction address (register)

SIMM Signed immediate value

SLB Segment look-aside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRRO (Machine status) save/restore register 0

SRR1 (Machine status) save/restore register 1

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VEA Virtual environment architecture

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

About This Book xxvii

Terminology Conventions
Table ii lists certain tenns used in this manual that differ from the architecture terminology
conventions.

Table II. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (OSI) OSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (lSI) lSI exception

Interrupt* Exception

Privileged mode (or priyileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

* For a detailed discussion of how the terms interrupt and exception are used in this document, see the introduction
to Chapter 4, "Exceptions."

Table iii describes instruction field notation conventions used in this manual.

Table III. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA,BB,BT crbA, crbB, crbO (respectively)

BF, BFA crfO, crfS (respectively)

0 d

OS ds

FLM FM

FAA, FRB, FRC, FRT, FRS frA, frB, frC, frO, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rO, rS (respectively)

SI SIMM

U IMM

UI UIMM

I, II, III 0 ... 0 (shaded)

xxviii Power PC 604 RISC Microprocessor User's Manual

Chapter 1
Overview
This chapter provides an overview of the PowerPC 604TM microprocessor. It includes the
following:

• A summary of 604 features

• Details about the 604 hardware implementation. This includes descriptions of the
604's execution units, cache implementation, memory management units (MMUs),
and system interface.

• A description of the 604 execution model. This section includes infonnation about
the programming model, instruction set, exception model, and instruction timing.

1.1 Overview
This section describes the features of the 604, provides a block diagram showing the major
functional units, and describes briefly how those units interact.

The 604 is an implementation of the PowerpcTM family of reduced instruction set computer
(RISC) microprocessors. The 604 implements the PowerPC Architecture™ as it is specified
for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer data types
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single-precision and
double-precision).

The 604 is a superscalar processor capable of issuing four instructions simultaneously. As
many as six instructions can finish execution in parallel. The 604 has six execution units
that can operate in parallel:

• Floating-point unit (FPU)

• Branch processing unit (BPU)

• Load/store unit (LSU)

• Three integer units (IUs):

- Two single-cycle integer units (SCIUs)

- One multiple-cycle integer unit (MCIU)

Chapter 1. Overview 1-1

This parallel design, combined with the PowerPC architecture's specification that
instructions be of uniform length, allows for rapid execution times, yields high efficiency
and throughput. The 604's rename buffers, reservation stations, dynamic branch prediction,
and completion unit increase instruction throughput, guarantee in-order completion, and
ensure a precise exception model. (Note that the PowerPC architecture specification refers
to all exceptions as interrupts.)

The 604 has separate memory management units (MMUs) and separate 16-Kbyte on-chip
caches for instructions and data. The 604 implements two 128-entry, two-way set (64 x 2)
associative translation lookaside buffers (TLBs), one for instructions and one for data. The
604 also provides support for demand-paged virtual memory address translation and
variable-sized block translation. The TLBs and the cache use least-recently used (LRU)
replacement algorithms.

The 604 has a 64-bit external data bus and a 32-bit address bus. The 604 interface protocol
allows multiple masters to compete for system resources through a central external arbiter.
Additionally, on-chip snooping logic maintains data cache coherency for multiprocessor
applications. The 604 supports single-beat and burst data transfers for memory accesses
and memory-mapped I/O accesses.

The 604 uses an advanced, 3.3-V CMOS process technology and is fully compatible with
TTL devices.

1.1.1 PowerPC 604 Microprocessor Features
This section summarizes features of the 604 's implementation of the PowerPC architecture.

Figure 1-1 provides a block diagram showing features of the 604. Note that this is a
conceptual block diagram intended to show the basic features rather than an attempt to
show how these features are physically implemented on the chip.

1-2 Power PC 604 RISC Microprocessor User's Manual

(')
::r'

i
i
~

~ s.
I

c'..>

-n
C
c
c;
...a.
• ...a.

OJ
0'
n
~

C
ii'
ce ...
I»
:I

Time-Base
Counter/Decrementer

Clock I JTAGICOP
Multiplier 1 Interface

COMPLETION
UNIT

16-Entry
Reorder Buffer rn Store Queue Finish Load

Queue

~ ~
32-BIT ADDRESS BUS

64 Bit

64 Bit

DMMU

I SRs IIOBATI I DTLB I array 1-1 -...., .. -..11

32 Bit

Tags 6~~~ I: -I
Snoop

128 Bit

IMMU

I SRs I I 'BAT I r;:;:;-;l Array
~

BUS INTERFACE
UNIT

.. Major features of the 604 are as follows:

1-4

• High-performance, superscalar microprocessor

- As many as four instructions can be issued per clock cycle.

- As many as six instructions can start executing per clock (including three integer
instructions) .

- Single clock cycle execution for most instructions

• Six independent execution units and two register files

- BPU featuring dynamic branch prediction

- Speculative execution through two branches

- 64-entry fully-associative branch target address cache (BTAC)

- 512-entry, direct-mapped branch history table (BHT) with two bits per entry
for four levels of prediction-not-taken, strongly not-taken, taken, strongly
taken

- Two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU)

- Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

- Each SCIU has a two-entry reservation station to minimize stalls.

- The MCIU has a two-entry reservation station and provides early exit (three
cycles) for 16- x 32-bit and overflow operations.

- Thirty-two GPRs for integer operands

- Twelve rename buffers for GPRs

- Three-stage floating-point unit (FPU)

- Fully IEEE 754-1985 compliant FPU for both single- and double-precision
operations

- Supports non-IEEE mode for time-critical operations

- Fully pipelined, single-pass double-precision design

- Hardware support for denormalized numbers

- Two-entry reservation station to minimize stalls

- Thirty-two 64-bit FPRs for single- or double-precision operands

- Load/store unit (LSU)

- Two-entry reservation station to minimize stalls

- Single-cycle, pipelined cache access

- Dedicated adder performs EA calculations

- Performs alignment and precision conversion for floating-point data

- Performs alignment and sign extension for integer data

Power PC 604 RISC Microprocessor User's Manual

- Four-entry finish load queue (FLQ) provides load miss buffering

- Six-entry store queue

- Supports both big- and little-endian modes

• Rename buffers

- Twelve GPR rename buffers

- Eight FPR rename buffers

- Eight condition register (CR) rename buffers

The 604 rename buffers are described in Section 1.2.1.5, "Rename Buffers."

• Completion unit

- Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution

- Guarantees sequential programming model (precise exception model)

- Monitors all dispatched instructions and retires them in order

- Tracks unresolved branches and removes speculatively executed, dispatched,
and fetched instructions if branch is mispredicted

- Retires as many as four instructions per clock

• Separate on-chip instruction and data caches (Harvard architecture)

- 16-Kbyte, four-way set-associative instruction and data caches

- LRU replacement algorithm

- 32-byte (eight word) cache block size

- Physically indexed; physical tags. Note that the PowerPC architecture refers to
physical address space as real address space.

- Cache write-back or write-through operation programmable on a per page or per
block basis

- Instruction cache can provide four instructions per clock cycle; data cache can
provide two words per clock cycle.

- Caches can be disabled in software

- Caches can be locked

- Parity checking performed on both caches

- Data cache coherency (MESI) maintained in hardware

- Secondary data cache support provided

- Instruction cache coherency maintained in software

- Provides a no-DRTRY /data streaming mode, which allows consecutive burst
read data transfers to occur without intervening dead cycles. This mode also
disables data retry operations.

• Separate memory management units (MMUs) for instructions and data

Chapter 1. Overview 1-5

1-6

- Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

- Separate instruction and data translation lookaside buffers (TLBs)

- Both TLBs are 128-entry and two-way set associative

- Separate IBATs and DBATs (four each) also defined as SPRs

- LRU replacement algorithm

- Hardware table search (caused by TLB misses) through hashed page tables

- 52-bit virtual address; 32-bit physical address

• Bus interface features include the following:

- Selectable processor-to-bus clock frequency ratios (1:1, 1.5:1,2:1, and 3:1)

- A 64-bit split-transaction external data bus with burst transfers

- Support for address pipe lining and limited out-of-order bus transactions

- Additional signals and signal redefinition for direct-store operations

• Multiprocessing support features include the following:

- Hardware enforced, four-state cache coherency protocol (MESI) for data cache.
Bits are provided in the instruction cache to indicate only whether a cache block
is valid or invalid.

- Separate port into data cache tags for bus snooping

- Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

• Power management

- Operating voltage is 3.3 ± 0.3 V

- Software-initiated NAP mode suspends instruction dispatch and waits for all
activity in progress, including active and pending bus transactions, to complete.
It then shuts down the internal chip clocks, and enters nap mode.

• Performance monitor can be used to help in debugging system designs and
improving software efficiency, especially in multiprocessor systems.

• In-system testability and debugging features through JTAG boundary-scan
capability

PowerPC 604 RISC Microprocessor User's Manual

1.2 PowerPC 604 Microprocessor Hardware
Implementation

This section provides an overview of the 604 's hardware implementation, including
descriptions of the functional units, shown in Figure 1-2, the cache implementation, MMU,
and the system interface.

Note that Figure 1-2 provides a more detailed block diagram than that presented in
Figure I-I-showing the additional data paths that contribute to the improved efficiency in
instruction execution and more clearly indicating the relationships between execution units
and their associated register files.

Branch
Correction

Fetch Unit

Instruction Dispatch Buses

GPR Operand Buses

Dispatch Unit
(Four-instruction

dispatch)

r - -I: - - r. - - 1- - - - -.- - - l
I GPR Result Buses I I I
II-~....-"!~~I"""""I--+ - -~I.... I FPR Operand Buses

I r I .---1.---.
I I FPR Result Buses

Result Status Buses

Instruction 16-Kbyte data cache
Completion Unit 4-way, 8 words/block

Figure 1-2. Block Diagram-Internal Data Paths

Chapter 1. Overview

Result Buses
Operand Buses
Dispatch Buses

1-7

1.2.1 Instruction Flow
Several units on the 604 ensure the proper flow of instructions and operands and guarantee
the correct update of the architectural machine state. These units include the following:

• Fetch unit-Using the next sequential address or the address supplied by the BPU
when a branch is predicted or resolved, the fetch unit supplies instructions to the
eight-word instruction buffer.

• Decode/dispatch unit-The decode/dispatch unit decodes instructions and
dispatches them to the appropriate execution unit. During dispatch, operands are
provided to the execution unit (or reservation station) from the register files, rename
buffers, and result buses.

• Branch processing unit (BPU)-In addition to providing the fetcher with predicted
target instructions when a branch is predicted (and a mispredict-recovery address if
a branch is incorrectly predicted), the BPU executes all condition register logical
and flow control instructions.

• Completion unit-The completion unit retires executed instructions in program
order and controls the updating of the architectural machine state.

1.2.1.1 Fetch Unit
The fetch unit provides instructions to the eight-entry instruction queue by accessing the
on-chip instruction cache. Typically, the fetch unit continues fetching sequentially as many
as four instructions at a time.

The address of the next instruction to be fetched is determined by several conditions, which
are prioritized as follows:

1-8

1. Detection of an exception. Instruction fetching begins at the exception vector.

2. The BPU recovers from an incorrect prediction when a branch instruction is in the
execute stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

3. The BPU recovers from an incorrect prediction when a branch instruction is in the
dispatch stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

4. The BPU recovers from an incorrect prediction when a branch instruction is in the
decode stage. Subsequent instructions are flushed and fetching begins at the correct
target address.

5. A fetch address is found in the BTAC. As a cache block is fetched, the branch target
address cache (BTAC) and the branch history table (BHT) are searched with the
fetch address. If it is found in the BTAC, the target address from the BTAC is the
first candidate for being the next fetch address.

6. If none of the previous conditions exist, the instruction is fetched from the next
sequential address.

Power PC 604 RISC Microprocessor User's Manual

1.2.1.2 Decode/Dispatch Unit
The decode/dispatch unit provides the logic for decoding instructions and issuing them to
the appropriate execution unit. The eight-entry instruction queue consists of two four-entry
queues-a decode queue (DEQ) and a dispatch queue (DISQ).

The decode logic decodes the four instructions in the decode queue. For many branch
instructions, these decoded instructions along with the bits in the BHT, are used during the
decode stage for branch correction.

The dispatch logic decodes the instructions in the DISQ for possible dispatch. The dispatch
logic resolves unconditional branch instructions and predicts conditional branch
instructions using the branch decode logic, the BHT, and values in the CTR.

The 512-entry BHT provides two bits per entry, indicating four levels of dynamic
prediction-strongly not-taken, not-taken, taken, and strongly taken. The history of a
branch's direction is maintained in these two bits. Each time a branch is taken the value is
incremented (with a maximum value of three meaning strongly-taken); when it is not taken,
the bit value is decremented (with a minimum value of zero meaning strongly not-taken).
If the current value predicts taken and the next branch is taken again, the BHT entry then
predicts strongly taken. If the next branch is not taken, the BHT then predicts taken.

The dispatch logic also allocates each instruction to the appropriate execution unit. A
reorder buffer (ROB) entry is allocated for each instruction, and dependency checking is
done between the instructions in the dispatch queue. The rename buffers are searched for
the operands as the operands are fetched from the register file. Operands that are written by
other instructions ahead of this one in the dispatch queue are given the tag of that
instruction's rename buffer; otherwise, the rename buffer or register file supplies either the
operand or a tag. As instructions are dispatched, the fetch unit is notified that the dispatch
queue can be updated with more instructions.

1.2.1.3 Branch Processing Unit (BPU)
The BPU is used for branch instructions and condition register logical operations. All
branches, including unconditional branches, are placed in a reservation station until
conditions are resolved and they can be executed. At that point, branch instructions are
executed in order-the completion unit is notified whether the prediction was correct.

The BPU also executes condition register logical instructions, which flow through the
reservation station like the branch instructions.

1.2.1.4 Completion Unit
The completion unit retires executed instructions from the reorder buffer (ROB) in the
completion unit and updates register files and control registers. The completion unit
recognizes exception conditions and discards any operations being performed on
subsequent instructions in program order. The completion unit can quickly remove
instructions from a mispredicted branch, and the decode/dispatch unit begins dispatching
from the correct path.

Chapter 1. Overview 1-9

The instruction is retired from the reorder buffer when it has finished execution and all
instructions ahead of it have been completed. The instruction's result is written into the
appropriate register file and is removed from the rename buffers at or after completion. At
completion, the 604 also updates any other resource affected by this instruction. Several
instructions can complete simultaneously. Most exception conditions are recognized at
completion time.

1.2.1.5 Rename Buffers
To avoid contention for a given register location, the 604 provides rename registers for
storing instruction results before the completion unit commits them to the architected
register. Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight
for the condition register. GPRs are described in Section 1.3.2.1, "General-Purpose
Registers (GPRs)," FPRs are described in Section 1.3.2.2, "Floating-Point Registers
(FPRs)," and the condition register is described in Section 1.3.2.3, "Condition Register
(CR)."

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register for the results of that instruction. The dispatch unit also provides a tag to the
execution unit identifying the result that should be used as the operand. When the proper
result is returned to the rename buffer it is latched into the reservation station. When all
operands are available in the reservation station, execution can begin.

The completion unit does not transfer instruction results from the rename registers to the
registers until any speculative branch conditions preceding it in the completion queue are
resolved and the instruction itself is retired from the completion queue without exceptions.
If a speculatively executed branch is found to have been incorrectly predicted, the
speculatively executed instructions following the branch are flushed from the completion
queue and the results of those instructions are flushed from the rename registers.

1.2.2 Execution Units
The following sections describe the 604 's arithmetic execution units-the two single-cycle
IUs, the multiple cycle IU, and the FPU. When the reservation station sees the proper result
being written back, it will grab it directly from one of the result buses. Once all operands
are in the reservation station for an instruction, it is eligible to be executed. Reservation
stations temporarily store dispatched instructions that cannot be executed until all of the
source operands are valid.

1.2.2.1 Integer Units {IUs}
The two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCID) execute all integer
instructions. These are shown in Figure 1-1 and Figure 1-2. Each IU has a dedicated result
bus that connects to rename buffers and to all reservation stations. Each IU has a two-entry
reservation station to reduce stalls. The reservation station can receive instructions from the
decode/dispatch unit and operands from the GPRs, the rename buffers, or the result buses.

1-10 PowerPC 604 RISC Microprocessor User's Manual

Each SCIU consists of three single-cycle subunits-a fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero
operations. These subunits handle all one-cycle arithmetic instructions; only one subunit
can execute an instruction at a time.

The MCIU consists of a 32-bit integer multiplier/divider and supports early exit on
16- x 32-bit multiplication operations. The MCIU executes mfspr and mtspr instructions,
which are used to read and write special-purpose registers. The MCIU can execute an
mtspr or mfspr instruction at the same time that it executes a multiply or divide instruction.
These instructions are allowed to complete out-of -order.

Note that the load and store instructions that update their address base register (specified by
the rA operand) pass the update results on the MCIU's result bus. Otherwise, the MCIU's
result bus is dedicated to MCIU operations.

1.2.2.2 Floating-Point Unit (FPU)
The FPU, shown in Figure 1-1 and Figure 1-2, is a single-pass, double-precision execution
unit; that is, both single- and double-precision operations require only a single pass, with a
latency of three cycles.

As the decode/dispatch unit issues instructions to the FPU's two reservation stations, source
operand data may be accessed from the FPRs, the floating-point rename buffers, or the
result buses. Results in turn are written to the floating-point rename buffers and to the
reservation stations and are made available to subsequent instructions. Instructions are
executed from each reservation station in dispatch order.

1.2.2.3 Load/Store Unit (LSU)
The LSU, shown in Figure 1-1 and Figure 1-2, transfers data between the data cache and
the result buses, which route data to other execution units. The LSU supports the address
generation and handles any alignment for transfers to and from system memory. The LSU
also supports cache control instructions and load/store multiple/string instructions. As
noted above, load and store instructions that update the base address register pass their
results on the MCIU's result bus. This is the only exception to the dedicated use of result
buses.

The LSU includes a 32-bitadder dedicated for EA calculation. Data alignment logic
manipulates data to support aligned or misaligned transfers with the data cache. The LSU's
load and store queues are used to buffer instructions that have been executed and are
waiting to be completed. The queues are used to monitor data dependencies generated by
data forwarding and out-of-order instruction execution ensuring a sequential model.

The LSU allows load operations to precede pending store operations and resolves any
dependencies incurred when a pending store is to the same address as the load. If such a
dependency exists, the LSU delays the load operation until the correct data can be
forwarded. If only the low-order 12 bits of the EAs match, both addresses may be aliases

Chapter 1. Overview 1-11

for the same physical address, in which case, the load operation is delayed until the store
has been written back to the cache, ensuring that the load operation retrieves the correct
data.

The LSU does not allow the following operations to be speculatively perfonned on
wrresolved branches:

• Store operations
• Loading of noncacheable data or cache miss operations

• Loading from direct-store segments

1.2.3 Memory Management Units (MMUs)
The primary functions of the MMUs are to translate logical (effective) addresses to
physical addresses for memory accesses, I/O accesses (most I/O accesses are assumed to
be memory-mapped), and direct-store accesses, and to provide access protection on blocks
and pages of memory.

The PowerPC MMUs and exception model support demand-paged virtual memory. Vrrtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

Address translations are enabled by setting bits in the MSR-MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

The 604 's MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory. The MMUs support block address translations, direct-store segments,
and page translation of memory segments. Referenced and changed status are maintained
by the processor for each page to assist implementation of a demand-paged virtual memory
system.

Separate but identical translation logic is implemented for data accesses and for instruction
accesses. The 604 implements two 128-entry, two-way set associative translation lookaside
buffers (TLBs), one for instructions and one for data. These TLBs can be accessed
simultaneously.

1.2.4 Cache Implementation
The 604 implements separate 16-Kbyte, four-way set-associative data and instruction
caches (Harvard architecture). The PowerPC architecture defines the unit of coherency as
a cache block, which for the 604 is a 32-byte (eight-word) line.

1-12 PowerPC 604 RISC Microprocessor User's Manual

PowerPC implementations can control the following memory access modes on a page or
block basis:

• Write-backlwrite:'through mode

• Cache-inhibited mode
• Memory coherency
• Guarded memory (prevents access for speculative execution)

The caches implement an LRU replacement algorithm.

1.2.4.1 Instruction Cache
The 604's 16-Kbyte, four-way set associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions. Instruction
cache coherency is not maintained by hardware.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabledlenabled and invalidated by setting the HIDO[16] and
HIDO[20] bits, respectively. The instruction cache can be locked by setting HIDO[18].

1.2.4.2 Data Cache
The 604's data cache is a 16-Kbyte, four-way set aSSOCIatIve cache. It is a
physically-indexed, nonblocking, write-back cache with hardware support for reloading on
cache misses. Within one cycle, the data cache provides double-word access to the LSU.

The data cache tags are dual-ported, so the process of snooping does not affect other
transactions on the system interface. If a snoop hit occurs, the LSU is blocked internally for
one cycle to allow the eight-word block of data to be copied to the write-back buffer.

To ensure cache coherency, the 604 data cache supports the four-state MESI
(modifiedlexclusive/sharedlinvalid) protocol.

These four states indicate the state of the cache block as follows:

• Modified (M)-The cache block is modified with respect to system memory; that is,
data for this address is valid only in the cache and not in system memory.

• Exclusive (E)-This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

• Shared (S)-This cache block holds valid data that is identical to this address in
system memory and at least one other caching device.

• Invalid (I)-This cache block does not hold valid data.

Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabledlenabled and invalidated by setting the
HIDO[17] and HlDO[21] bits, respectively. The data cache can be locked by setting
HIDO[19].

Chapter 1. Overview 1-13

Each cache line contains eight contiguous words from memory· that are loaded from an
eight-word boundary (that is, bits A27-A31 of the logical addresses are zero); thus, a cache
line never crosses a page boundary. Accesses that cross a page boundary can incur a
perfonnance penalty.

Block 0

Block 1

Block 2

Block 3

128 Sets I

~ I •
Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

..
I

• •
• --, I

I I
I I I -- - State Words 0-7 ..

- State Words 0-7' - - .
I I I I I· - State - Words 0-7

- State Words 0-7 - ,

8 Words/Block

Figure 1-3. Cache Unit Organization

1.2.5 System Interface/Bus Interface Unit (BIU)

I I I I

r--
I

I-
I- r--.. ,

I- -, I-
I I

I-
.... I-
,

I-
I-,

The 604 provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The 604 uses one-beat and four-beat data
transactions, although it is possible for other bus participants to perfonn longer data
transfers. The 604 clocking structure supports processor-to-bus clock ratios of 1:1, 1.5:1,
2:1, and 3:1, as described in Section 1.2.6, "Clocking."

The system interface is specific for each PowerPC processor implementation. The 604
system interface is shown in Figure 1-4.

1-14 Power PC 604 RISC Microprocessor User's Manual

Address Bus

Address Arbitration

Address Transfer Start

Address Transfer

Transfer Attrbute

Address Transfer Termination

Clocks

PowerPC604
Processor

I ~
+3.3 V -

Figure 1-4. System Interface

Data Bus

Data Arbitration

Data Transfer

Data Transfer Termination

Processor State

System Status

Test/Control/Miscellaneous

Four-beat burst-read memory operations that load an eight-word cache block into one of
the on-chip caches are the most common bus transactions in typical systems, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the data cache).

The BIU implements the critical double-word first access where the double-word requested
by the fetcher or the load/store unit is fetched first and the remaining words in the line are
fetched later. The critical double-word as well as other words in the cache block are
forwarded to the fetcher or to the LSU before they are written to the cache.

Memory accesses can occur in single-beat or four-beat burst data transfers. The address and
data buses are independent for memory accesses to support pipelining and split
transactions. The 604 supports bus pipelining and out-of-order split-bus transactions. In
general, the bus-pipelining mechanism allows as many as three address tenures to be
outstanding before a data tenure is initiated. Address tenures for address-only transactions
can exceed this limit.

Typically, memory accesses are weakly-ordered. Sequences of operations, including
load/store string/multiple instructions, do not necessarily complete in the same order in
which they began-maximizing the efficiency of the bus without sacrificing coherency of
the data. The 604 allows load operations to precede store operations (except when a
dependency exists, of course). In addition, the 604 provides a separate queue for snoop
push operations so these operations can access the bus ahead of previously queued
operations. The 604 dynamically optimizes run-time ordering of load/store traffic to
improve overall performance.

Chapter 1. Overview 1-15

In addition, the 604 implements a data bus write only signal (DBWO) that can be used for
reordering write operations. Asserting DBWO causes the first write operation to occur
before any read operations on a given processor. Although this may be used with any write
operations, it can also be used to reorder a snoop push operation.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 604 to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction pair (Iwarx/stwcx.) for atomic memory
references and other operations useful in multiprocessor implementations.

The following sections describe the 604 bus support for memory and direct-store
operations. Note that some signals perform different functions depending upon the
addressing protocol used.

1.2.5.1 Memory Accesses
Memory accesses allow transfer sizes of 8, 16,24,32,40,48,56, or 64 bits in one bus clock
cycle. Data transfers occur in either single-beat transactions or four-beat burst transactions.
A single-beat transaction transfers as much as 64 bits. Single-beat transactions are caused
by noncached accesses that access memory directly (that is, reads and writes when caching
is disabled, cache-inhibited accesses, and stores in write-through mode). Burst transactions,
which always transfer an entire cache block (32 bytes), are initiated when a block in the
cache is read from or written to memory. Additionally,the 604 supports address-only
transactions used to invalidate entries in other processors' TLBs and caches.

Typically I/O accesses are performed using the same protocol as memory accesses. Refer
to Chapter 8, "System Interface Operation," for more information.

1.2.5.2 Signals
The 604's signals are grouped as follows:

• Address arbitration signals-The 604 uses these signals to arbitrate for address bus
mastership.

• Address transfer start signals-These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals-These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Transfer attribute signals-These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted,
write-through, or cache-inhibited.

1-16 Power PC 604 RISC Microprocessor User's Manual

• Address transfer termination signals-These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

• Data arbitration signals-The 604 uses these signals to arbitrate for data bus
mastership.

• Data transfer signals-These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

• Data transfer termination signals-Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

• System status signals-These signals include the interrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

• Processor state signals-These two signals are used to set the reservation coherency
bit and set the size of the 604's output buffers.

• Miscellaneous signals-These signals are used in conjunction with such resources
as secondary caches and the time base facility.

• Test/COP interface signals-The common on-chip processor (COP) unit is the
master clock control unit and it provides a serial interface to the system for
performing built-in self test (BIST).

• Clock signals-These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE
A bar over a signal name indicates that the signal is active
low-for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as APO-AP3 (address bus parity
signals) and ITO-TT 4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

1.2.5.3 Signal Configuration
Figure 1-5 illustrates the logical pin configuration of the 604, showing how the signals are
grouped.

Chapter 1. Overview 1-17

ADDRESS
ARBITRATION

ADDRESS
START

ADDRESS
TRANSFER

TRANSFER
ATTRIBUTE

ADDRESS
TERMINATION

t
{

f
-

- --

-

t

1m
lID
ASS

1'8
XATS

AO-A31
APO-AP3

AJ5E

TTO-TT4
TSST

TSIZO-TSIZ2
GS[

cr
WT

CSEO-CSEl
TCO-TC2

AACK
Al1mY
SAD

1 1
1 1
1 1

1 64
1 8

1
1

32
a 4 1

1 1
1

a 5
1 2
3 0') 1
1 0 2

1 ~ 2
1 2
2
3 1

2
1

1 1
1 1
1 1

1
1
4
1

5

I-!-
+3.3 V

DBG
TIBWO
neg

DHO-DH31, DLO-DL31
DPO-DP7

UPE
ooms

TA
mmw

TEA

1NT SMl
MCI5

CKSTP W
CKSTP GOT

Hl1ESET SI1ESET

11SRV
DRVMOD

TBEN
l2 INT
RUN

HALTED

SYSCLK
CLK OUT

PLL CFGO-PLL CFG3
AVDD

iRSi, TCK TMS TOI, TOO

1 DATA J ARBITRATION

1 DATA d TRANSFER

~ DATA d TERMINATION

{ SYSTEM J STATUS

1 PROCESSOR J CONFIGURATION

J CLOCKS

L JTAG'COP
~ INTERFACE

Figure 1·5. PowerPC 604 Microprocessor Signal Groups

1.2.6 Clocking
The 604 has a phase-locked loop (PLL) that generates the internal processor clock. The
input, or reference signal, to the PLL is the bus clock. The feedback in the PLL guarantees
that the processor clock is phase-locked to the bus clock, regardless of process variations,
temperature changes, or parasitic capacitances. The PLL also ensures a 50% duty cycle for
the processor clock.

The 604 supports the following processor-to-bus clock frequency ratios-l:l, 1.5:1, 2:1,
and 3: 1, although not all ratios are available for all frequencies. For more information, refer
to the 604 hardware specifications.

1-18 Power PC 604 RISC Microprocessor User's Manual

1.3 PowerPC 604 Microprocessor Execution Model
This section describes the following characteristics of the 604 's execution model:

• The PowerPC architecture
• The 604 register set and programming model

• The 604 instruction set

• The 604 exception model
• Instruction timing on the 604

1.3.1 Levels of the PowerPC Architecture
The PowerPC architecture is derived from the IBM POWER Architecture™ (Performance
Optimized with Enhanced RiSe architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented. For example, if a processor adheres to the virtual environment architecture,
it is assumed that it meets the user instruction set architecture specification.

• PowerPC user instruction set architecture (UISA)-The UISA defines the level of
the architecture to which user-level software must conform. The VISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers. Note
that the PowerPC architecture refers to user level as problem state.

• PowerPC virtual environment architecture (VEA)-The YEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices
can access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for managing resources in an environment in which other
processors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also adhere to the mSA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)-The OEA defines
supervisor-level resources typically required by an operating system. The OEA
defines the PowerPC memory management model, supervisor-level registers, and
the exception model. Note that the PowerPC architecture refers to the supervisor
level as privileged state.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
mSAandVEA.

Chapter 1. Overview 1-19

The 604 complies with all three levels of the PowerPC architecture. Note that the PowerPC
architecture defines additional instructions for 64-bit data types. These instructions cause
an illegal instruction exception on the 604. PowerPC processors are allowed to have
implementation-specific features that fall outside, but do not conflict with,· the PowerPC
architecture specification. Examples of features that are specific to the 604 include the
performance monitor and nap mode.

The 604 is a high-performance, superscalar PowerPC implementation of the PowerPC
architecture. Like other PowerPC processors, it adheres to the PowerPC architecture
specifications but also has additional features not defined by the architecture. These
features do not affect software compatibility. The PowerPC architecture allows optimizing
compilers to schedule instructions to maximize performance through efficient use of the
PowerPC instruction set and register model. The multiple, independent execution units in
the 604 allow compilers to maximize parallelism and instruction throughput. Compilers
that take advantage of the flexibility of the PowerPC architecture can additionally optimize
instruction processing of the PowerPC processors.

1.3.2 Registers and Programming Model
The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

During normal execution, a program can access the registers, shown in Figure 1-6,
depending on the program's access privilege (supervisor or user, determined by the
privilege level (PR) bit in the machine state register (MSR». Note that registers such as the
general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through
operands that are part of the instructions. Access to registers can be explicit (that is, through
the use of specific instructions for that purpose such as Move to Special-Purpose Register
(mtspr) and Move from Special-Purpose Register (mfspr) instructions) or implicitly as the
part of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

The numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

Figure 1-6 shows the registers implemented in the 604, indicating those that are defined by
the PowerPC architecture and those that are 604-specific. Note that all of these registers
except the FPRs are 32 bits wide.

1-20 Power PC 604 RISC Microprocessor User's Manual

USER MODEL
UISA

General-Purpose
Registers

GPRO

GPRl

i
GPR31

Floating-Point
Registers

FPRO

FPRl

i
FPR31

Condition Register

CR

Floating-Point Status
and Control Register

I FPSCR I
XER

XER I SPR 1

Link Register

lR I SPR8

Count Register

I CTR I SPR9

USER MODEL
VEA

Time Base Facility
(For Reading)

~TBR268
~TBR269

SUPERVISOR MODEL
OEA

Configuration Registers

Machine State
Register

Hardware Implementation
Dependent Reglster1

Processor Version
Register

I MSR HIDO I SPR 1008 PVR I SPR 287

Memory Management Registers
Instruction BAT
Registers

IBATOU

IBATOl

IBAT1U

IBAT1l

IBAT2U

IBAT2l

IBAT3U

IBAT3l

SPR 528

SPR529

SPR530

SPR531

SPR532

SPR533

SPR534

SPR535

Data BAT Registers

DBATOU

DBATOl

DBAT1U

DBATll

DBAT2U

DBAT2l

DBAT3U

DBAT3l

SPR536

SPR537

SPR538

SPR539

SPR540

SPR541

SPR542

SPR543

Segment Registers

SRO

SRl

i
SR15

SDR1

SDRl I SPR25

Performance Performance Monitor
Monitor Sampled Datal
Counters1 Monitor Control1 Instruction Address1

~SPR953 I MMCRO ISPR952 ~SPR959
~SPR954 ~SPR955

Exception Handling Registers
Data Address Register DSISR

I DAR I SPR19 I DSISR I SPR 18

SPRGs Save and Restore
SPRGO SPR272 Registers

SPRGl SPR273 ~SPR26
SPRG2 SPR274 SRRl SPR27

SPRG3 SPR275

Miscellaneous Registers
Time Base Facility
(For Writing)

~SPR284
~SPR285
External Address Register (Optional)

I EAR I SPR 282

Processor Identification
Register 1 (Optional)
I PIR I SPR 1023

Decrementer

L..-_D_E_C~I SPR 22

Instruction Address
Breakpoint Reglster1

I IABR I SPR 1010

Data Address
Breakpoint Register
I DABR I SPR 1013

1 604-specifio--not defined by the Power PC architedure

Figure 1·6. Programming Model-PowerPC 604 Microprocessor Registers

Chapter 1. Overview 1-21

PowerPC processors have two levels of privilege-supervisor mode of operation (typically
used by the operating environment) and one that corresponds to the user mode of operation
(used by application software). As shown in Figure 1-6, the programming model
incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Note that each PowerPC implementation has its own unique set of
implementation-dependent registers that are typically used for debugging, configuration,
and other implementation-specific operations.

Some registers are accessible only by supervisor-level software. This division allows the
operating system to control the application environment (providing virtual memory and
protecting operating-system and critical machine resources). Instructions that control the
state of the processor, the address translation mechanism, and supervisor registers can be
executed only when the processor is in supervisor mode.

The following sections sununarize the PowerPC registers that are implemented in the 604.

1.3.2.1 General-Purpose Registers (GPRs)
The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are 32 bits wide in 32-bit PowerPC implementations and 64 bits wide in 64-bit
PowerPC implementations. The 604 also has 12 GPR rename buffers, which provide a way
to buffer data intended for the GPRs, reducing stalls when the results of one instruction are
required by a subsequent instruction. The use of rename buffers is not defined by the
PowerPC architecture, and they are transparent to the user with respect to the architecture.
The GPRs and their associated rename buffers serve as the data source or destination for
instructions executed in the IUs.

1.3.2.2 Floating-Point Registers (FPRs)
The PowerPC architecture also defines 32 floating-point registers (FPRs). These 64-bit
registers typically are used to provide source and target operands for user-level,
floating-point instructions. The 604 has eight FPR rename buffers that provide a way to
buffer data intended for the FPRs, reducing stalls when the results of one instruction are
required by a subsequent instruction. The rename buffers are not defined by the PowerPC
architecture. The FPRs and their associated rename buffers can contain data objects of
either single- or double-precision floating-point formats.

1.3.2.3 Condition Register (CR)
The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,
and logical instructions, and provide a mechanism for testing and branching. The 604 also
has eight CR rename buffers, which provide a way to buffer data intended for the CR. The
rename buffers are not defined by the PowerPC architecture.

1-22 Power PC 604 RISC Microprocessor User's Manual

1.3.2.4 Floating-Point Status and Control Register (FPSCR)
The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard

1.3.2.5 Machine State Register (MSR)
The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and restored
when the exception handling completes. The 604 implements the MSR as a 32-bit register;
64-bit PowerPC processors use a 64-bit MSR that provides a superset of the 32-bit
functionality.

1.3.2.6 Segment Registers (SRs)
For memory management, 32-bit PowerPC implementations use sixteen 32-bit segment
registers (SRs).

1.3.2.7 Special-Purpose Registers (SPRs)
The PowerPC operating environment architecture defines numerous special-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing special operations. Some SPRs are accessed
implicitly as part of executing certain instructions. All SPRs can be accessed by using the
move to/from SPR instructions, mtspr and mfspr.

In the 604, all SPRs are 32 bits wide.

1.3.2.7.1 User-Level S P Rs
The following SPRs are accessible by user-level software:

• Link register (LR)-The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
32 bits wide.

• Count register (CTR)-The CTR is decremented and tested automatically as aresult
of branch and count instructions. The CTR is 32 bits wide.

• XER-The 32-bit XER contains the integer carry and overflow bits.

• The time base registers (TBL and TBU) can be read by user-level software, but can
be written to only by supervisor-level software.

1.3.2.7.2 Supervisor-Level SPRs
The 604 also contains SPRs that can be accessed only by supervisor-level software. These
registers consist of the following:

• The 32-bit data DSISR defines the cause of DSI and alignment exceptions.

• The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or DSI exception.

Chapter 1. Overview 1-23

• The decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. In the
604, the decrementer frequency is l/4th of the bus clock frequency (as is the time
base frequency).

• The 32-bit SDR1 register specifies the location and page table format used in
logical-to-physical address translation for pages.

• The machine status save/restore register 0 (SRRO) is a 32-bit register that is used by
the 604 for saving the address of the instruction that caused the exception, and the
address to return to when a Return From Interrupt (rfi) instruction is executed.

• The machine status save/restore register 1 (SRR1) is a 32-bit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed.

• SPRGO-SPRG3 registers are 32-bit registers provided for operating system use.

• The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions.

• The processor version register (PVR) is a 32-bit, read-only register that identifies the
version (model) and revision level of the PowerPC processor.

• The time base registers (TBL and TBU) together provide a 64-bit time base register.
The registers are implemented as a 64-bit counter, with the least-significant bit being
the most frequently incremented. The PowerPC architecture defines that the time
base frequency be provided as a subdivision of the processor clock frequency. In the
604, the time base frequency is l/4th of the bus clock frequency (as is the
decrementer frequency). Counting is enabled by the Time Base Enable signal
(TBEN).

• Block address translation (BAT) registers-The PowerPC architecture defines 16
BAT registers, divided into four pairs of data BATs (DBATs) and four pairs of
instruction BATs (IBATs).

The 604 includes the following registers not defined by the PowerPC architecture:

• InstrUction address breakpoint register (IABR)-This register can be used to cause
a breakpoint exception to occur if a specified instruction address is encountered.

• Data address breakpoint register (DABR)-This register can be used to cause a
breakpoint exception to occur if a specified data address is encountered.

• Hardware implementation-dependent register 0 (HIDO)-This register is used to
control various functions within the 604, such as enabling checks top conditions, and
locking, enabling, and invalidating the instruction and data caches.

• Processor identification register (PIR)-The PIR is a supervisor-level register that
has a right-justified, four-bit field that holds a processor identification tag used to
identify a particular 604. This tag is used to identify the processor in multiple-master
implementations.

1-24 Power PC 604 RISC Microprocessor User's Manual

• Perfonnance monitor counter registers (PMC! and PMC2). The counters are used
to record the number of times a certain event has occurred.

• Monitor mode control register 0 (MMCRO)-This is used for enabling various
performance monitoring interrupt conditions and establishes the function of the
counters.

• Sampled instruction address and sampled data address registers (SIA and
SDA)-These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the HID registers, or other implementation-specific
registers, be consistent among PowerPC processors.

1.3.3 Instruction Set and Addressing Modes
The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.3.3.1 PowerPC Instruction Set and Addressing Modes
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly
simplifies instruction pipelining.

1.3.3.1.1 Instruction Set
The 604 implements the entire PowerPC instruction set (for 32-bit implementations) and
most optional PowerPC instructions. The PowerPC instructions can be loosely grouped
into the following general categories:

• Integer instructions-These include computational and logical instructions.

- Integer arithmetic instructions

- Integer compare instructions
- Logical instructions

- Integer rotate and shift instructions

• Floating-point instructions-These include floating-point computational
instructions, as well as instructions that affect the FPSCR. Floating-point
instructions include the following:

- Floating-point arithmetic instructions
- Floating-point multiply/add instructions

- Floating-point rounding and conversion instructions

- Floating-point compare instructions
- Floating-point move instructions

- Floating-point status and control instructions

- Optional floating-point instructions (listed with the optional instructions below)

Chapter 1. Overview 1-25

The 604 supports all IEEE 754-1985 floating-point data types (normalized,
denonnalized, NaN, zero, and infinity) in hardware, eliminating the latency incurred
by software exception routines.

The PowerPC architecture also supports a non-IEEE mode, controlled by a bit in the
FPSCR. In this mode, denormalized numbers, N aNs, and some IEEE invalid
operations are not required to conform to IEEE standards and can execute faster.
Note that all single-precision arithmetic instructions are performed using a
double-precision format. The floating -point pipeline is a single-pass implementation
for double-precision products. For almost all floating-point instructions, a
single-precision instruction using only single-precision operands in
double-precision fonnat perfonns the same as its double-precision equivalent.

• Load/store instructions-These include integer and floating-point load and store
instructions.

- Integer load and store instructions
- Integer load and store multiple instructions
- Integer load and store string instructions

- Floating-point load and store
• Flow control instructions-These include branching instructions, condition register

logical instructions, trap instructions, and other instructions that affect the
instruction flow.

- Branch and trap instructions
- System call and rfi instructions
- Condition register logical instructions

• Synchronization instructions-The PowerPC architecture defines instructions for
memory synchronizing, especially useful for multiprocessing:

- Load and store with reservation instructions-These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

- The Synchronize instruction (sync)-This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

- The Instruction Synchronize instruction (isync)-This instruction causes the
604 to purge its instruction buffers and fetch the double word containing the next
sequential instruction.

- The Enforce In-Order Execution of I/O instruction (eieio)-The eieio
instruction, defined by the YEA, can be used instead of the sync instruction when
only memory references seen by I/O devices need to be ordered.

• Processor control instructions-These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. These
instructions include move to/from special-purpose register instructions (mtspr and
mfspr).

1-26 PowerPC 604 RISC Microprocessor User's Manual

• Memory/cache control instructions-These instructions provide control of caches,
TLBs, and segment registers.

- User- and supervisor-level cache instructions
- Segment register manipulation instructions
- Translation lookaside buffer management instructions

• Optional instructions-the 604 implements the following optional instructions:

- The eciwx/ecowx instruction pair
- The TLB Synchronize instruction (tlbsync)
- Optional graphics instructions:

- Store Floating-Point as Integer Word Indexed (stfiwx)
- Floating Reciprocal Estimate Single (fres)
- Floating Reciprocal Square Root Estimate (frsqrte)
- Floating Select (fset)

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 FPRs.

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
specific store instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.3.1.2 Calculating Effective Addresses
The effective address (EA) is the 32-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

• EA = (rAID) + offset (including offset = 0) (register indirect with immediate index)

• EA = (rAID) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

Chapter 1. Overview 1-27

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address O.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

1.3.4 Exception Model
The following subsections describe the PowerPC exception model and the 604
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state as
a result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception-for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular PowerPC processor may recognize exception conditions out of order,
exceptions are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of next instruction
to be executed is saved in SRRO so execution can resume at the proper place when the
exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRRI early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.

1-28 Power PC 604 RISC Microprocessor User's Manual

The PowerPC architecture supports the following types of exceptions:

• Synchronous, precise-These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored.

• Synchronous, imprecise-The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 604
implements only the imprecise nonrecoverable mode. The imprecise, recoverable
mode is treated as the precise mode in the 604.

• Asynchronous-The OEA portion of the PowerPC architecture defines two types of
asynchronous exceptions:

- Asynchronous, maskable-The PowerPC architecture defines the external
interrupt and decrementer interrupt, which are maskable and asynchronous
exceptions. In the 604, and in many PowerPC processors, the hardware interrupt
is generated by the assertion of the Interrupt (INT) signal, which is not defined
by the architecture. In addition, the 604 implements the system management
interrupt, which performs similarly to the external interrupt, and is generated by
the assertion of the System Management Interrupt (SMI) signal, and the
performance monitor interrupt.

When these exceptions occur, their handling is postponed until all instructions,
and any exceptions associated with those instructions, complete execution.
These exceptions are maskable by setting MSR[EE].

- Asynchronous, nonmaskable-There are two nonmaskable asynchronous
exceptions that are imprecise: system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signals used to cause these
exceptions. These exceptions may not be recoverable, or may provide a limited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the machine state register (MSR)-FEO and
FE I-that determine how floating-point exceptions are handled. There are four
combinations of bit settings, of which the 604 implements three. These are as follows:

• Ignore exceptions mode (FEO = FE 1 = 0). In this mode, the instruction dispatch logic
feeds the FPU as fast as possible and the FPU uses an internal pipeline to allow
overlapped execution of instructions. In this mode, floating -point exception
conditions return a predefined value instead of causing an exception.

• Precise interrupt mode (FEO = 1; FEI = x). This mode includes both the precise
mode and imprecise recoverable mode defined in the PowerPC architecture. In this
mode, a floating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 604 takes floating-point exceptions as
defined by the PowerPC architecture.

Chapter 1. Overview 1-29

• Imprecise nonrecoverable mode (FEO = 0; FEI = 1). In this mode, when a
floating-point instruction causes a floating point exception, the save restore
register 0 (SRRO) may point to an instruction following the instruction that caused
the exception.

The 604 exception classes are shown in Table 1-1.

Table 1-1. Exception Classifications

Type Exception

Asynchronouslnonmaskable Machine check
System reset

Asynchronous/maskable External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise Instruction-caused exceptions

Synchronouslimprecise Roating-point exceptions (imprecise nonrecoverable mode)

The 604's exceptions, and a general description of conditions that cause them, are listed in
Table 1-2.

Table 1-2. Overview of Exceptions and Conditions

Exception Vector Offset
Causing Conditions

Type (hex)

Reserved 00000 -

System reset 00100 A system reset is caused by the assertion of either the soft reset or hard reset
signal.

Machine check 00200 A machine check exception is signaled by the assertion of a qualified TEA
indication on the 604 bus, or the machine check interrupt ('l~) signal. If
MSR(ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

1-30 Power PC 604 RISC Microprocessor User's Manual

Table 1·2. Overview of Exceptions and Conditions (Continued)

exception Vector Offset
Causing Conditions Type (hex)

OSI 00300 The cause of a OSI exception can be determined by the bit settings in the
OSISR, listed as follows:
o Set if a load or store instruction results in a direct-store program exception;

otherwise cleared.
1 Set if the translation of an attempted access is not found in the primary table

entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 " SR[11 = 1, set by an eclwx, ecowx, Iwarx, or stwcx. instruction; otherwise
cleared. Set by an eclwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.
9 Set if an EA matches the address in the OABR while in one of the three

compare modes.
10 Set if the segment table search fails to find a translation for the effective

address; otherwise cleared.
11 Set if eclwx or ecowx is used and EAR[E] is cleared.

lSI 00400 An lSI exception is caused when an instruction fetch cannot be performed for
any of the following reasons:

· The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an lSI exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

· The fetch access is to a direct-store segment.

· The fetch access violates memory protection. " the key bits (Ks and Kp) in
the segment register and the PP bits in the PTE or BAT are set to prohbit
read access, instructions cannot be fetched from this location.

External 00500 An external interrupt occurs when the external exception signal, 'INT, is
interrupt asserted. This signal is expected to remain asserted until the exception handler

begins execution. Once the signal is detected, the 604 stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment 00600 An alignment exception is caused when the processor cannot perform a
memory access for the following reasons:
A floating-point load, store, Imw, stmw, Iwarx, stwcx., eclwx, or ecowx
instruction is not word-aligned.
A dcbz instruction refers to a page that is marked either cache-inhbited or
write-through.
A dcbz instruction has executed when the 604 data cache is locked or disabled.
An access is not naturally aligned in little-endian mode.
An Imw, stmw, Iswl, Iswx, stswl, or stswx instruction is issued in little-endian
mode.

Chapter 1. Overview 1-31

Table 1·2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

· Roating-point exceptions-A floating-point enabled exception condition
causes an exception when FPSCR[FEX] is set and depends on the values
in MSR[FEO] and MSR[FE1].
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a "move to FPSCR"
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

· II/egal instruction-An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as ncrops).

· Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[O] = 1 and
MSR[PR]= 1.

· Trap-A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Roating-point 00800 A floating-point unavailable exception is caused by an attempt to execute a
unavailable floating-point instruction (including floating-point load, store, and move

instructions) when the floating-point available bit is disabled (MSR[FP] = O).

Decrementer 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved OOAOO-OOBFF -
System call OOCOO A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00000 Either MSR[SE] = 1 and any instruction (except rfl) successfully completed or
MSR[BE] = 1 and a branch instruction is completed.

Roating-point OOEOO Defined by the PowerPC architecture, but not required in the 604.
assist

Reserved 00E10-OOEFF -

Performance OOFOO The performance monitoring interrupt is a 604-specific exception and is used
monitoring with the 604 performance monitor, described in Section 1.5, "Performance
interrupt Monitor."

The performance monitoring facility can be enabled to signal an exception
when the value in one of the performance monitor counter registers (PMC1 or
PMC2) goes negative. The conditions that can cause this exception can be
enabled or disabled in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000~12FF -

1-32 PowerPC 604 RISC Microprocessor User's Manual

Table 1·2. Overview of Exceptions and Conditions (Continued)

exception Vector Offset
Causing Conditions Type (hex)

Instruction 01300 An instruction address brea~int exception occurs when the address (bits 0 to
address 29) in the IABR matches the next instruction to complete in the completion unit,
breakpoint and the IABR enable bit IABR[30] is set.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the ~
management input signal is asserted. This exception is provided for use with the nap mode,
interrupt which is described in Section 1.4, "Power Management-Nap Mode."

Reserved 01500-o2FFF Reserved, implementation-specific exceptions. These are not implemented in
the 604.

1.3.5 Instruction Timing
As shown in Figure 1-7, the conunon pipeline of the 604 has six stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline
consists of three stages through which all floating-point instructions must pass.

(Four-instruction dispatch per clock cycle in
any combination) '-----=----'

1
1
1 ' ______ ----------- -

Figure 1·7. Pipeline Diagram

Chapter 1. Overview 1-33

The common pipeline stages are as follows:

• Instruction fetch (IF)-Ouring the IF stage, the fetch unit loads the decode queue
(OEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

• Instruction decode (IO)-During the 10 stage, all time-critical decoding is
performed on instructions in the dispatch queue (OISQ). The remaining decode
operations are performed during the instruction dispatch stage.

• Instruction dispatch (OS)-During the dispatch stage, the decoding that is not
time-critical is performed on the instructions provided by the previous 10 stage.
Logic associated with this stage determines when an instruction can be dispatched
to the appropriate execution unit. At the end of the OS stage, instructions and their
operands are latched into the execution input latches or into the unit's reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

• Execute (E)-While the execution stage is viewed as a common stage in the 604
instruction pipeline, the instruction flow is split among the six execution units, some
of which consist of multiple pipelines. An instruction may enter the execute stage
from either the dispatch stage or the execution unit's dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifies the completion stage that the instruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

• Complete (C)-The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB).
Results may be written back from the rename buffers to the register as early as the
complete stage. If the completion logic detects an instruction containing exception
status or if a branch has been mispredicted, all subsequent instructions are cancelled,
any results in rename buffers are discarded, and instructions are fetched from the
correct instruction stream.

The CR, CTR, and LR are also updated during the complete stage.

• Write back (W)-The writeback stage is used to write back any information from the
rename buffers that was not written back during the complete stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. Integer divide instructions
iterate in stage two of the multiplier. SPR operations can execute in the MCIU in parallel
with multiply and divide operations.

1-34 PowerPC 604 RISC Microprocessor User's Manual

The floating-point pipeline has three stages. Floating-point divide operations iterate in the
first stage.

1.4 Power Management-Nap Mode
The 604 provides a power-saving mode, called nap mode, in which all internal processing
and bus operations are suspended. Software initiates nap mode by setting the MSR[POW]
bit. After this bit is set, the 604 suspends instruction dispatch and waits for all activity in
progress, including active and pending bus transactions, to complete. It then powers down
the internal clocks, and indicates nap mode by asserting the HALTED output signal.

When the 604 is in nap mode, all internal activity stops except for decrementer, time base,
and interrupt logic, and the 604 does not snoop bus activity unless the system asserts the
RUN input signal. Asserting the RUN signal causes the HALTED signal to be negated.

Nap mode is exited (clocks resume and MSR[POW] cleared) when any asynchronous
interrupt is detected.

1.5 Performance Monitor
The 604 incorporates a performance monitor facility that system designers can use to help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

The monitor mode control register 0 (MMCRO) can be used to specify the conditions for
which a performance monitoring interrupt is taken. For example, one such condition is
associated with one of the counter registers (PMCI or PMC2) incrementing until the most
significant bit indicates a negative value. Additionally, the sampled instruction address and
sampled data address registers (SIA and SDA) are used to hold addresses for instruction
and data related to the performance monitoring interrupt.

Chapter 1. Overview 1-35

Chapter 2
PowerPC 604 Processor Programming
Model
This chapter describes the PowerPC programming model with respect to the 604. It consists
of three major sections, which describe the following:

• Registers implemented in the 604
• Operand conventions
• The 604 instruction set

2.1 The PowerPC 604 Processor Register Set
This section describes the registers in the 604 and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 604-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 604. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, "PowerPC Register Set," in The Programming
Environments Manual.

Note that registers are defined at all three levels of the PowerPC architecture-user
instruction set architecture (VISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for all computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
is transferred between memory and registers with explicit load and store instructions only.

Chapter 2. Power PC 604 Processor Programming Model 2-1

..

..
2.1.1 Register Set
The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Access to registers can be explicit (that is, through the use of specific instructions
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to access the integer exception register (XER) is SPR 1). These registers can
be accessed using the mtspr and mfspr instructions.

Implementation Note-The 604 fully decodes the SPR field of the instruction. If the SPR
specified is undefined, the illegal instruction program exception occurs.

2-2 PowerPC 604 RISC Microprocessor User's Manual

USER MODEL
UISA

General-Purpose
Registers

GPRO

GPRl

i
GPR31

Floating-Point
Registers

FPRO

FPRl

i
FPR31

Condition Register

CR

Floating-Point Status
and Control Register

I FPSCR I

XER
XER I SPR 1

Link Register

lR I SPR 8

Count Register

CTR I SPR 9

USER MODEL
VEA

Time Base Facility
(For Reading)

~TBR268
~TBR269

lOO\..{ - n I v ..L- ull~I.J..I..:.I ____ - I ... -' ... :vr-' II,;;.."

q sCo m JV\CR,1-
~ 5"1 P(Y\c>
Cf S8 rl\1 c. '-(

SUPERVISOR MODEL
OEA

Configuration Registers

Machine State
Register

Hardware Implementation
Dependent Register 1

Processor Version
Register

I MSR HIDO I SPR 1008 PVR I SPR287

Memory Management Registers
Instruction BAT
Registers

IBATOU

IBATOl

IBAT1U

IBATll

IBAT2U

IBAT2l

IBAT3U

IBAT3l

SPR 528

SPR529

SPR 530

SPR531

SPR 532

SPR 533

SPR534

SPR535

Data BAT Registers

DBATOU

DBATOl

DBAT1U

DBAT1l

DBAT2U

DBAT2l

DBAT3U

DBAT3l

SPR536

SPR537

SPR538

SPR539

SPR540

SPR541

SPR542

SPR543

Segment Registers

SRO

SRl

i
SR15

SDR1

SDRl I SPR25

Performance Monitor
Performance Monitor Mode Control Sampled Datal
Monitor Counters 1 Register 01 Instruction Address 1

~SPR953 I MMCRO ISPR952 ~SPR959
~SPR954 ~SPR955

Exception Handling Registers
Data Address Register DSISR

DAR I SPR 19 I DSISR I SPR 18

SPRGs Save and Restore
SPRGO SPR272 Registers

SPRGl SPR273 ~SPR26
SPRG2 SPR274 SRRl SPR 27

SPRG3 SPR275

Miscellaneous Registers
Time Base Facility
(For Writing)

~SPR284
~SPR285
External Address Register (Optional)

I EAR I SPR 282

Processor Identification
Register 1 (Optional)
I PIR I SPR 1023

Oecrementer

,,---_D_E_C I SPR 22

Instruction Address
Breakpoint Reglster1

I IABR I SPR 1010

Data Address
Breakpoint Register
I DABR I SPR 1013

1 604-specifio-not defined by the PowerPC architecture

Figure 2·1. Programming Model-PowerPC 604 Microprocessor Registers

Chapter 2. Power PC 604 Processor Programming Model 2-3

The PowerPC's user-level registers are described as follows:

2-4

• User-level registers (UISA)-The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

- General-purpose registers (GPRs). The PowerPC general-purpose register file
consists of thirty-two GPRs designated as GPRO-GPR31. The GPRs serve as
data source or destination registers for all integer instructions and provide data
for generating addresses. See "General Purpose Registers (GPRs)," in Chapter 2,
"PowerPC Register Set," of The Programming Environments Manual for more
information.

- Floating-point registers (FPRs). The floating-point register file consists of
thirty-two FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see "Floating-Point Registers (FPRs)," in Chapter 2, "PowerPC
Register Set," of The Programming Environments Manual.

- Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CRO-CR7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
"Condition Register (CR)," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual.

Implementation Note--The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fields (mtcrt) instruction may
perform more slowly when only a portion of the fields are updated as opposed to
all of the fields. The condition register access latency for the 604 is the same in
both cases. In the 604, an mtcrf instruction that sets only a single field performs
significantly faster than one that sets either no fields or multiple fields. For more
information regarding the most efficient use of the mtcrf instruction, see
Section 6.6, "Instruction Scheduling Guidelines."

- Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see "Floating-Point Status and Control Register
(FPSCR)," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual.

Implementation Note--The PowerPC architecture states that in some
implementations, the Move to FPSCR Fields (mtfst) instruction may perform
more slowly when only a portion of the fields are updated as opposed to all of
the fields. In the 604 implementation, there is no degradation of performance.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain

Power PC 604 RISC Microprocessor User's Manual

registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

- Integer exception register (XER). The XER indicates overflow and carries for
integer operations. It is set implicitly by many instructions. See "XER Register
(XER)," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual for more information.

- Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
"Link Register (LR)," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual.

- Count register (CTR). The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. For more information, see "Count Register (CTR)," in
Chapter 2, "PowerPC Register Set," of The Programming Environments
Manual.

• User-level registers (VEA)-The PowerPC VEA introduces the time base facility
(TB), a 64-bit structure that maintains and operates an interval timer. The TB
consists of two 32-bit registers-time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the YEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level access to the TB for
writing values to the TB. For more information, see "PowerPC VEA Register
Set-Time Base," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual.

• Supervisor-level registers (OEA)-The OEA dermes the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor -level registers defined by the
PowerPC architecture for 32-bit implementations are describes as follows:

- Configuration registers

- Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. See "Machine
State Register (MSR)," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual for more information.

Chapter 2. Power PC 604 Processor Programming Model 2-5

Implementation Note-Note that the 604 defines MSR[29] as the performance monitor
marked mode bit (PM). This additional bit is described in Table 2-1.

Bit

29

2-6

Table 2-1. MSR[PM] Bit

Name Description

PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
This bit is specific to the 604, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 9, "Performance Monitor."

- Processor version register (PVR). This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor.
For more information, see "Processor Version Register (PVR)," in Chapter 2,
"PowerPC Register Set," of The Programming Environments Manual.

Implementation Note-The processor version nwnber is 4 for the 604. The
processor revision level starts at OXOOOO and is different for each revision of
the chip. The revision level is updated for each silicon revision.

- Memory management registers

- Block-address translation (BAT) registers. The PowerPC OEAincludes eight
block-address translation registers (BATs), consisting of four pairs of
instruction BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of
data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for
a list of the SPR nwnbers for the BAT registers. For more information, see
"BAT Registers," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual. Because BAT upper and lower words
are loaded separately, software must ensure that BAT translations are correct
during the time that both BAT entries are being loaded.

SDRI. The SDRI register specifies the page table base address used in
virtual-to-physical address translation. For more information, see "SDRl," in
Chapter 2, "PowerPC Register Set," of The Programming Environments
Manual for more information."

- Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SRI5). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit O. See "Segment Registers," in
Chapter 2, "PowerPC Register Set," of The Programming Environments
Manual for more information.

- Exception handling registers

- Data address register (DAR). After a DSI or an alignment exception, DAR is
set to the effective address generated by the faulting instruction. See "Data
Address Register (DAR)," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual for more information.

PowerPC 604 RISC Microprocessor User's Manual

- SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. See "SPRGO-SPRG3," in Chapter 2, "PowerPC Register Set," of
The Programming Environments Manual for more information.

- DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See "DSISR," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual for more information. ~

- Machine status save/restore register 0 (SRRO). The SRRO register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See "Machine Status Save/Restore Register 0
(SRRO)," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual for more information.

- Machine status save/restore register 1 (SRRl). The SRRI register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See "Machine Status Save/Restore Register 1
(SRRI)," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual for more information.

- Miscellaneous registers

- Time Base (TB). The TB is a 64-bit structure that maintains the time of day
and operates interval timers. The TB consists of two 32-bit registers-time
base upper (TBU) and time base lower (TBL). Note that the time base
registers can be accessed by both user- and supervisor-level instructions. See
"Time Base Facility (TB)-OEA," in Chapter 2, "PowerPC Register Set," of
The Programming Environments Manual for more information.

Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
prograounable delay; the frequency is a subdivision of the processor clock.
See "Decrementer Register (DEC)," in Chapter 2, "PowerPC Register Set," of
The Programming Environments Manual for more information.

Implementation Not~In the 604, the decrementer register is decremented
at a speed that is one-fourth the speed of the bus clock.

- Data address breakpoint register (DABR)-This optional register can be used
to cause a breakpoint exception to occur if a specified data address is
encountered See "Data Address Breakpoint Register (DABR)," in Chapter 2,
"PowerPC Register Set," of The Programming Environments Manual for
more information.

- External access register (EAR). This optional register is used in conjunction
with the eciwx and ecowx instructions. Note that the EAR register and the
eciwx and ecowx instructions are optional in the PowerPC architecture and
may not be supported in all PowerPC processors that implement the OEA. See
"External Access Register (EAR)," in Chapter 2, "PowerPC Register Set," of
The Programming Environments Manual for more information.

Chapter 2. Power PC 604 Processor Programming Model 2-7

..
• Hardware implementation registers-The PowerPC architecture allows

implementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 604 are described as follows. Note that in the 604, these registers
are all supervisor-level registers.

- Instruction address breakpoint register (IABR)-This register can be used to
cause a breakpoint exception to occur if a specified instruction address is
encountered.

- Hardware implementation-dependent register 0 (HIDO)-This register is used to
control various functions within the 604, such as enabling checks top conditions,
and locking, enabling, and invalidating the instruction and data caches.

- Processor identification register (PIR)-The PIR is a supervisor-level register
that has a right-justified, four-bit field that holds a processor identification tag
used to identify a particular 604. This tag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the DEA, the register definition is implementation-specific.

- Performance monitor counter registers (PMC! and PMC2). The counters are
used to record the number of times a certain event has occurred.

- Monitor mode control register 0 (MMCRO)-This is used for enabling various
performance monitoring interrupt conditions and establishes the function of the
counters.

- Sampled instruction address and sampled data address registers (SIA and
SDA)-These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 604-Specific Registers
This section describes registers that are defined for the 604 but are not included in the
PowerPC architecture. This section also includes a description of the PIR, which is
assigned an SPR number by the architecture but is not defined by it. Note that these are all
supervisor-level registers.

2.1.2.1 Instruction Address Breakpoint Register (IABR)
The 604 also implements an Instruction Address Breakpoint Register (IABR). When
enabled, instruction fetch addresses will be compared with an effective address that is
stored in the IABR. The granularity of these compares will be a word. If the word specified
by the IABR is fetched, the instruction breakpoint handler will be invoked. The instruction
which triggers the breakpoint will not be executed before the handler is invoked.

The IABR is shown in Figure 2-2.

2-8 PowerPC 604 RISC Microprocessor User's Manual

ADDRESS

o 29 30 31

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction ~
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bits in the IABR are defined as shown
in Table 2-2.

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description

0-29 Word address to be compared

30 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 Translation enabled. This bit is compared with the MSR[IR] bit. An IABR match is
signaled only if these bits also match.

The instruction that triggers the instruction address breakpoint exception is executed before
the exception handler is invoked. For more information about the IABR exception, see
Section 4.5.14, "Instruction Address Breakpoint Exception (OxOI300)."

The IABR can be accessed with the mtspr and mfspr instructions using the SPR number,
1010.

2.1.2.2 Processor Identification Register (PIR)
The processor identification register (PIR) is a 32-bit register that holds a processor
identification tag in the four least significant bits (PIR[28-31]). This tag is useful for
processor differentiation in multiprocessor system designs. In addition, this tag is used for
several direct-store bus operations in the form of a "bus transaction from" tag.

PIR [i) Reserved

r~!~~~j~!~jI~j~!tItm!~Jt!t~~t~~~~Ii~~UBUBtQ.~@:~Q.~:q]fq:~Q~:q:~Q!:~H~~p~p!ijqj~BUB~~~Q.]UrII~t~~~~!~~~t~~~~t!I~~~IIr~~~I~~I~~~~II~tl PIO I
o 27 28 31

Figure 2-3. Processor Identification Register

Chapter 2. PowerPC 604 Processor Programming Model 2-9

The PIR can be accessed with the mtspr and mfspr instructions using the SPR number,
1013. Note that although this number is defined by the OEA, the register structure is defined
by each implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register 0
The hardware implementation dependent register 0 (HlDO) is an SPR that controls the state
of several functions within the 604.

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings

Bit Description

0 Enable machine check i,.:>ut pin
0 The assertion of the ~ does not cause a machine check exception.
1 Enables the entry into a machine check exception based on assertion of the ~ input, detection of a

Cache Parity Error, detection of an address parity error, or detection of a data parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

1 Enable cache parity checking
0 The detection of a cache parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2 Enable machine check on address bus parity error
0 The detection of a address bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

3 Enable machine check on data bus parity error
0 The detection of a data bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

7 Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SAD and ~
signals to the high (negated) state. " this is done, then the system must restore the signals to the high state.

15 Not hard reset
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

16 Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1 X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The instruction cache is enabled

17 Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The data cache is enabled.

2-10 PowerPC 604 RISC Microprocessor User's Manual

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

18 Instruction cache lock
0 Normal operation
1 All misses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to

work as normal. This is the only method for "deallocating" an entry.

19 Data cache lock
0 Normal operation
1 All misses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to

work as normal. This is the only method for "deaUocating" an entry. The dcbz instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.

20 Instruction cache invalidate aU
0 The instruction cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the instruction cache as

invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-aU operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 Data cache invalidate all
0 The data cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the data cache as

invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-aU operation is in
progress.

The bit is cleared when the invalidation operation begins (usuaUy the cycle immediately following the write
operation to the register). Note that the data cache must be enabled for the invalidation to occur.

24 Serial instruction execution disable
0 The 604 executes one instruction at a time. The 604 does not post a trace exception after each

instruction completes, as it would if MSR[SE] or MSR[BE] were set.
1 Instruction execution is not serialized.

29 Branch history table enable
0 The 604 uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch

instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section "Conditional Branch Control," in Chapter 4 of The Programming Environments Manual.

1 AUows the use of the 512-entry branch history table (BHT).
The BHT is initialized and disabled at power-on reset. The BHT is updated while it is disabled, so it can be
initialized before it is enabled.

2.1.2.4 Performance Monitor Registers
The remaining five registers defined for use with the 604 are used by the performance
monitor. For more information about the performance monitor, see Chapter 9,
"Performance Monitor."

2.1.2.4.1 Monitor Mode Control Register 0 (MMCRO)
The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

Chapter 2. PowerPC 604 Processor Programming Model 2-11

-
The MMCRO can be written to or read only in. supervisor mode. The MMCRO includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-4.

Table 2·4. MMCRO Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode
0 The PMCn counters can be changed by hardware.

1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters
are not changed by hardware.

2 DU Disable counting while in user mode
0 The PMCn counters can be changed by hardware.

1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not
changed by hardware.

3 OMS Disable counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitoring interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.

6 DISCOUNT Disable counting of PMC1 and PMC2 when a performance monitor interrupt is
signaled (that is, «PMCnINTCONTROL= 1) & (PMCn[O] = 1) & (ENINT = 1» or
the occurrence of an enabled time base transition with ((INTONBITTRANS =1) &
(ENINT = 1».
0 The signalling of a performance monitoring interrupt has no effect on the

counting status of PMC1 and PMC2.
1 The signalling of a performance monitoring interrupt prevents the changing

of the PMC1 counter. The PMC2 counter will not change if
PMC2COUNTCTL = O.

Because a time base signal could have occurred along with an enabled counter
negative condition, software should always reset INTONBITTRANS to zero, if the
value in INTONBITTRANS was a one.

7-8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

2-12 Power PC 604 RISC Microprocessor User's Manual

Table 2-4. MMCRO Bit Settings (Continued)

Bit Name Description

9 INTONBITTRANS Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10-15 THRESHOLD Threshold value. All 6 bits are supported by the 604; allowing threshold values
from 0 to 63. The intent of the THRESHOLD support is to be able to characterize
L 1 data cache misses.

16 PMC11NTCONTROL Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMC1 interrupt signaling due to PMC1 counter negative
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative

17 PMC21NTCONTROL Enable interrupt signalling due to PMC2 counter negative. This signal overrides
the setting of DISCOUNT.
0 Disable PMC2 interrupt signaling due to PMC2 counter negative
1 Enable PMC2 Interrupt signaling due to PMC2 counter negative

18 PMC2COUNTCTL May be used to trigger counting of PMC2 after PMC1 has become negative or
after a performance monitoring interrupt is signaled.
0 Enable PMC2 counting
1 Disable PMC2 counting until PMC1 bit 0 is set or until a performance monitor

interrupt is signaled
This signal can be used to trigger counting of PMC2 after PMC1 has become
negative. This provides a triggering mechanism for counting after a certain
condition occurs or after a preset time has elapsed. It can be used to support
getting the count associated with a specific event.

19-25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 2-5.

26-31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 2-6.

2.1.2.4.2 Performance Monitor Counter Registers (PMC1 and PMC2)
PMC 1 and PMC2 are 32-bit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; that is, they reach the value 2147483648 (Ox8000_0000). However,
an interrupt is not signaled unless both PCMn[INTCONTROL] and MMCRO[ENINT] are
also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MMCRO[DISCOUNT] forces the counters stop counting when a counter interrupt
occurs.

PMC1 and PMC2 are SPRs 953 and 954, respectively, and can be read and written to by
using the mfspr and mtspr instructions. Software is expected to use the mtspr instruction
to explicitly set the PMC register to non-negative values. If software sets a negative value,
an erroneous interrupt may occur. For example, if both PCMn[lNTCONTROL] and
MMCRO[ENINT] are set and the mtspr instruction is used to set a negative value, an
interrupt signal condition may be generated prior to the completion of the mtspr and the

Chapter 2. Power PC 604 Processor Programming Model 2-13

..

values of the SIA and SDA may not have any relationship to the type of instruction being
counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO[19-31]. The number of occurrences of these selected events is counted from the
time the MMCRO was set either until a new value is introduced into the MMCRO register
or until a performance monitor interrupt is generated. Table 2-5 lists the selectable events
with their appropriate MMCRO encodings.

Table 2-5. Selectable Events-PMC1

MMCRO[19-25] Description
Encoding

0000000 Nothing

0000001 Processor cycles

0000010 Number of instructions completed

000 0011 RTCSELECT bit transition

0000100 Number of instructions dispatched

0000101 lcache misses

0000110 dtlb misses

0000111 Branch predicted incorrectly

000 1000 Number of reservations requested (LARX is ready for execution)

0001001 Number of load dcache misses that exceeded the threshold value with lateral L2 intervention

0001010 Number of store dcache misses that exceeded the threshold value with lateral L2 intervention

0001011 Number of mtspr instructions dispatched

0001100 Number of sync instructions

0001101 Number of eieio instructions

0001110 Number of integer instructions being completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions being completed every cycle (no loads or stores)

0010000 LSU produced result

0010001 SCIU1 produced result

0010010 FPU produced result

0010011 Instructions dispatched to the LSU

0010100 Instructions dispatched to the SCIU1

0010101 Instructions dispatched to the FP unit

0010110 Snoop requests received

0010111 Number of load dcache misses that exceeded the threshold value without lateral L2 intervention

0011000 Number of store dcache misses that exceeded the threshold value without lateral L2 intervention

2-14 PowerPC 604 RISC Microprocessor User's Manual

Bits MMCRO[26-31] are used for selecting events associated with PMC2. These settings are
shown in Table 2-6.

Table 2-6. Selectable Events-PMC2

MMCRO[26-31)
Description

Select Encoding

00 0000 Nothing

00 0001 Processor cycles

000010 Number of instructions completed

000011 RTCSELECT bit transition

000100 Number of instructions dispatched

000101 Number of cycles a load miss takes

00 0110 Data cache misses

000111 Instruction 112 misses

00 1000 Branches completed

00 1001 Number of reservations successfully obtained (STCX succeeded)

001010 Number of mfspr instructions dispatched

001011 Number of Icbl instructions

001100 Number of Isync instructions

001101 Branch unit produced result

00 1110 SCIUO produced result

00 1111 MCIU produced result

010000 Instructions dispatched to the branch unit

010001 Instructions dispatched to the SCIUO

010010 Number of loads completed

010011 Instructions dispatched to the MCIU

010100 Number of snoop hit occurred

2.1.2.4.3 Sampled Instruction Address Register (SIA)
The two address registers contain the addresses of the data or the instruction that caused a
threshold-related performance monitor interrupt. For more information on
threshold-related interrupts, see Section 9.1.2.2, "Threshold Events."

The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction.

Chapter 2. Power PC 604 Processor Programming Model 2-15

-
If the perfonnance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 955).

2.1.2.4.4 Sampled Data Address Register (SOA)
The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the perfonnance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the perfonnance monitor interrupt was caused by something other than a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 959).

2.2 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture-VISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models-UISA
The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

• Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

2-16 PowerPC 604 RISC Microprocessor User's Manual

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an II-bit exponent, exponent arithmetic _
uses two additional bit positions to avoid potential transient overflow conditions. An extra _
bit is required when denormalized double-precision numbers are prenonnalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

• Underflow during multiplication using a denormalized operand
• Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with O. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the "natural" address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-7. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands).

The concept of alignment is also applied more generally to data in memory. For example,
a I2-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

2.2.4 Floating-Point Operand
The 604 provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/lEEE

Chapter 2. PowerPC 604 Processor Programming Model 2-17

-
standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, "Operand
Conventions," in The Programming Environments Manual.

The 604 supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denormalized
numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE conforming
manner. This is accomplished by delivering results that approximate the values required by
the IEEE standard. Table 2-7 summarizes the conditions and mode behavior for operands.

Table 2-7. Floating-Point Operand Data Type Behavior

Operand A Operand B Operand C IEEE Mode Non-I EEE Mode
Data Type Data Type Data Type (NI = 0) (NI = 1)

Single denormalized Single de normalized Single denormalized Normalize all three Zero all three
Double de normalized Double denormalized Double denormalized

Single denormalized Single de normalized Normalized or zero Normalize A and B Zero A and B
Double denormalized Double denormalized

Normalized or zero Single de normalized Single denormalized Normalize Band C Zero Band C
Double denormalized Double denormalized

Single de normalized Normalized or zero Single denormalized Normalize A and C Zero A and C
Double denormalized Double denormalized

Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized

Normalized or zero Single de normalized Normalized or zero Normalize B ZeroB
Double denormalized

Normalized or zero Normalized or zero Single denormalized Normalize C ZeroC
Double denormalized

Single ONaN Don't care Don't care ONaN(1) ONaN(1)
Single SNaN
Double ONaN
Double SNaN

Don't care Single ONaN Don't care ONaN(1) ONaN(1)

Single SNaN
Double ONaN
Double SNaN

Don't care Don't care Single ON aN ONaN(1) ONaN(1)

Single SNaN
Double ONaN
Double SNaN

Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero
Double normalized Double normalized Double normalized
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

1 Prioritize acx:ording to Chapter 3, uOperand Conventions," in Th9 Programming Environm9nts Manual.

2-18 Power PC 604 RISC Microprocessor User's Manual

Table 2-8 summarizes the mode behavior for results.

Table 2-8. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non·IEEE Mode (NI = 1)

Single Denormalized Retum single-precision Retum zero.
denormalized number with trailing
zeros.

Single Normalized Return the result. Return the result.
Infinity
Zero

Single ONaN RetumONaN. ReturnONaN.
SNaN

Single INT Place integer into low word of FPR. " (Invalid Operation)
then

Place (OxSOOO) into FPR[32-63]
else

Place integer into FPR[32-63].

Double Denormalized Retum double precision Retum zero.
denormalized number.

Double Normalized Retum the result. Return the result.
Infinity
Zero

Double ONaN RetumONaN. RetumONaN.
SNaN

Double INT Not supported by 604 Not supported by 604

2.2.5 Effect of Operand Placement on Performance
The PowerPC YEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, "Operand
Conventions," in The Programming Environments Manual.

2.3 Instruction Set Summary
This chapter describes instructions and addressing modes defined for the 604. These
instructions are divided into the following functional categories:

• Integer instructions-These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, "Integer Instructions."

• Floating-point instructions-These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, "Floating-Point Instructions."

Chapter 2. PowerPC 604 Processor Programming Model 2-19

-
• Load and store instructions-These include integer and floating-point load and store

instructions. For more information, see Section 2.3.4.3, "Load and Store
Instructions. "

• Flow control instructions-These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, "Branch and Flow
Control Instructions."

• Processor control instructions-These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, "Processor Controllnstructions-UISA,"
Section 2.3.5.1, "Processor Control Instructions-YEA," and Section 2.3.6.2,
"Processor Control Instructions-OEA."

• Memory synchronization instructions-These instructions are used for memory
synchronizing. See Section 2.3.4.7, "Memory Synchronization
Instructions-VISA," Section 2.3.5.2, "Memory Synchronization
Instructions-YEA," for more information.

• Memory control instructions-These instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, "Memory Control
Instructions-YEA," and Section 2.3.6.3, "Memory Control Instructions-OEA."

• External control instructions-These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, "Optional External
Control Instructions."

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 604' s superscalar parallel instruction execution, is provided
in Chapter 6, "Instruction Timing."

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, "Simplified
Mnemonics," in The Programming Environments Manual for a complete list of simplified

2-20 Power PC 604RISC Microprocessor User's Manual

mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 604 instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the 604.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined
If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, "Instruction Set," in The
Programming Environments Manual. The 604 provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 604 provides hardware support for all instructions defined for 32-bit implementations.
The 604 does not support the optional fsqrt, fsqrts, and tibia instructions.

Chapter 2. PowerPC 604 Processor Programming Model 2-21

..

A defined instruction can have invalid forms. The 604 provides limited support for
instructions that are represented in an invalid form. Appendix B, "Invalid Instruction
Forms," lists all invalid instruction forms and specifies the operation of the 604 upon
detecting each.

2.3.1.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1,4,5,6,9,22,56,57,60,61

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

• Instructions dermed in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such as the 604.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 604:

2,30,58,62

• All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, "Instructions Sorted by Opcode," and
Section 2.3.1.4, "Reserved Instruction Class." Notice that extended opcodes for
instructions dermed only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19,31,59,63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

• An instruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokes the system illegal instruction error handler (a program exception). Note that
if only the primary opcode consists of all zeros. The instruction is considered a
reserved instruction, as described in Section 2.3.1.4, "Reserved Instruction Class."

The 604 invokes the system illegal instruction error handler (a program exception) when it
detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, "Program Exception (OxOO700)," for additional information about
illegal and invalid instruction exceptions. With the exception of the instruction consisting
entirely of binary zeros, the illegal instructions are available for further additions to the
PowerPC architecture.

2-22 Power PC 604 RISC Microprocessor User's Manual

2.3.1.4 Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
"Program Exception (OxOO700)," in Chapter 6, "Exceptions," in The Programming
Environments Manual for additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:

• Instructions in the POWER architecture not part of the PowerPC VISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, "POWER Architecture Cross Reference," in
The Programming Environments Manual.

• Implementation-specific instructions required to conform to the PowerPC
architecture

• Architecturally-allowed extended opcodes

• Implementation-specific instructions

2.3.2 Addressing Modes
This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see "Conventions," in Chapter 4,
"Addressing Modes and Instruction Set Summary," of The Programming Environments
Manual.

2.3.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands
Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See "Byte Ordering," in Chapter 3, "Operand Conventions," of The Programming
Environments Manual for more information about big- and little-endian byte ordering.

Chapter 2. PowerPC 604 Processor Programming Model 2-23

-
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the "natural" address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, "Operand Conventions," of The Programming
Environments Manual.

2.3.2.3 Effective Address Calcu lation
An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode

• Register indirect with index mode

• Register indirect mode

Refer to Section 2.3.4.3.2, "Integer Load and Store Address Generation," for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate
• Link register indirect

• Count register indirect

2.3.2.4 Synchronization
The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization
The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).

• All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.

2-24 Power PC 604 RISC Microprocessor User's Manual

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The instructions following the sc or rfi. instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization
An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and will not cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 604-those caused directly by the execution of an
instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 604 provides the following supervisor-level
instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi.,
tlbie, and tlbsync. Note that the privilege level of the mfspr and mtspr instructions
depends on the SPR encoding.

• An attempt to access memory that is not available (page fault) causes the lSI
exception handler to be invoked.

• An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

• The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

• The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, "Exceptions."

Chapter 2. PowerPC 604 Processor Programming Model 2-25

..

..
2.3.3 Instruction Set Overview
This section provides a brief overview of the PowerPC instructions implemented in the 604
and highlights any special information with respect to how the 604 implements a particular
instruction. Note that the categories used in this section correspond to those used in
Chapter 4, "Addressing Modes and Instruction Set Summary," in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

• CR Update-The dot (.) suffix on the mnemonic enables the update of the CR.
• Overflow option-The 0 suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions
The PowerPC VISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer logical instructions
• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-9 lists the integer arithmetic instructions for the PowerPC processors.

Table 2·9. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addl rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add add (add. addo addo.) rD,rA,rB

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addlc rD,rA,SIMM

Add Immediate Carrying and Record addlc. rD,rA,SIMM

2-26 Power PC 604 RISC Microprocessor User's Manual

Table 2-9. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

Subtract from Immediate Carrying subflc rD,rA,SIMM

Add Carrying addc (addc. addco addco.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Add Extended adde (adde. add eo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mUIli rD,rA,SIMM

Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu dlvwu. dlvwuo dlvwuo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation is complete. The
604 arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the integer exception register are set to reflect an overflow condition
of a 32-bit result. This may only occur when the overflow enable bit is set (OE = 1).

Chapter 2. Power PC 604 Processor Programming Model 2-27

2.3.4.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpJ instructions. Table 2-10

,. summarizes the integer compare instructions.

Table 2-10. Integer Compare Instructions

Name Mnemonic Operand Syntax

Compare Immediate cmpi crfD,L,rA,SIMM

Compare cmp crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Compare Logical cmpl crfD,L,rA,rB

The crtD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, "Simplified Mnemonics," in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions
The logical instructions shown in Table 2-11 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV] , and XER[CA] bits.

See Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-11. Integer Logical Instructions

Name Mnemonic
Operand
Syntax

AND Immediate andi. rA,rS,UIMM

AND Immediate Shifted andis. rA,rS,UIMM

OR Immediate ori rA,rS,UIMM

OR Immediate Shifted oris rA,rS,UIMM

XOR Immediate xorl rA,rS,UIMM

XOR Immediate Shifted xoris rA,rS,UIMM

AND and (and.) rA,rS,rB

OR or (or.) rA,rS,rB

2-28 Power PC 604 RISC Microprocessor User's Manual

Table 2-11. Integer Logical Instructions (Continued)

Name Mnemonic
Operand
Syntax

XOR xor (xor.) rA,rS,rB

NAND nand (nand.) rA,rS,rB

NOR nor (nor.) rA,rS,rB

Equivalent eqv (eqv.) rA,rS,rB

AN D with Complement andc (andc.) rA,rS,rB

OR with Complement orc (orc.) rA,rS,rB

Extend Sign Byte extsb (extsb.) rA,rS

Extend Sign HaH Word extsh (extsh.) rA,rS

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS

2.3.4.1.4 Integer Rotate and Shift Instructions
Rotation operations are perfonned on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-12.

Table 2-12. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AN D with Mask rlwlnm (rlwlnm.) rA,rS,SH,MB,ME

Rotate Left Word then AN D with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwlml (rlwlml.) rA,rS,SH,MB,ME

The integer shift instructions perfonn left and right shifts. Immediate-fonn logical
(unsigned) shift operations are obtained by specifying·masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, "Simplified
Mnemonics," in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Chapter 2. Power PC 604 Processor Programming Model 2-29

Multiple-precision shifts can be programmed as shown in Appendix C, "Multiple-Precision
Shifts," in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-13.

Table 2-13. Integer Shift Instructions

Name Mnemonic Operand Syntax

Shift Left Word slw (slw.) rA,rS,rS

Shift Right Word srw (srw.) rA,rS,rS

Shift Right Algebraic Word Immediate srawl (srawl.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rS

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

Floating-point arithmetic instructions
Floating-point multiply-add instructions

Floating-point rounding and conversion instructions
Floating-point compare instructions
Floating-point status and control register instructions

Floating-point move instructions

See Section 2.3.4.3, "Load and Store Instructions," for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-'14.

Table 2-14. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Dolble-Precision) fadd (fadd.) frD,frA,frS

Floating Add Single fadds (fadds.) frD,frA,frS

Floating Subtract (Double-Precision) fsub (fsub.) frO,frA,frS

Floating Subtract Single fsubs (fsubs.) frD,frA,frS

Floating Multiply (Dolble-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frO,frA,frC

Floating Divide (Double-Precision) fdlv (fdlv.) frO,frA,frS

2-30 PowerPC 604 RISC Microprocessor User's Manual

Table 2-14. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

Floating Divide Single fdlvs (fdlvs.) frD,frA,frB

Floating Square Root (Double-Precision) fsqrt (fsqrt.) frp;frB

Floating Square Root Single fsqrts (fsqrts.) irD,frB

Floating Re~rocal Estimate Single fres (fres.) frD,frB

Floating Re~rocal Square Root Estimate frsqrte (frsqrte.) frD,frB

Floating Select fsel frD,frA,frC,frB

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-15.

Table 2-15. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.

Chapter 2. Power PC 604 Processor Programming Model 2-31

-
Examples of uses of these instructions to perform various conversions can be found in
Appendix D, "Floating-Point Models," in The Programming Environments Manual.

Table 2-16. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax

Roating Round to Single frsp (frsp.) frD,frB

Roating Convert to Integer Word fctlw (fctlw.) frD,frB

Roating Convert to Integer Word with Round toward Zero fctlwz (fctlwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = -0). The floating-point compare
instructions are summarized in Table 2-17.

Table 2-17. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax

Roating Compare Unordered fcmpu crfD,frA,frB

Roating Compare Ordered fcmpo crfD,frA,frB

Within the PowerPC architecture, an fcmpu or fcmpo instruction with the Rc bit set can
cause an illegal instruction program exception or produce a boundedly undefined result. In
the 604, crtD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that
all floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-18.

Table 2-18. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Field Immediate mtfsfl (mtfsfl.) crfD,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsbO (mtfsbO.) crbD

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

2-32 Power PC 604 RISC Microprocessor User's Manual

2.3.4.2.6 Floating·Point Move Instructions
Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CRI. Table 2-19 summarizes the floating-point
move instructions.

Table 2·19. Floating-Point Move Instructions

Name Mnemonic Operand Syntax

Floating Move Register fmr (fmr.) frO,frB

Floating Negate fneg (tneg.) trO,frB

Floating Absolute Value tabs (tabs.) frO,frB

Floating Negative Absolute Value fnabs (fnabs.) frO,frB.

2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte reverse instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Memory synchronization instructions

Implementation Notes-The following describes how the 604 handles misalignment:

• If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal
segment, an exception may occur when the boundary is crossed (that is, a protection
violation occurs on the new page). In these cases, the 604 triggers a DSI exception
and the instruction may have partially completed.

• Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the same type. Memory accesses that cross a word boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point
doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.

Chapter 2. Power PC 604 Processor Programming Model 2-33

• Any operation that crosses a word boundary (double word for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accesses is translated. If either translation results in a data memory violation, a DSI
exception is signaled. If two translations cross from T = 1 into T = 0 space (a
programming error), the 604 completes all of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and he 604 requires a direct-store protocol "Reply" from the
device. If two translations cross from T = 0 into T = 1 space, a DSI exception is
signaled.

• In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructions (lbzx, Ibzux, Ihzx, Ihzux, Ihax, Ihaux, Iwzx,
Iwzux), the integer store indexed instructions (stbx, stbux, sthx, sthux, stwx,
stwux), the load and store with byte-reversal instructions (lhbrx, Iwbrx, sthbrx,
stwbrx), the string instructions (Iswi, Iswx, stswi, stswx), and the synchronization
instructions (sync, Iwarx). In the 604, executing one of these invalid instruction
forms causes CRO to be set to an undefined value. The floating-point load and store
indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux, stfdx, stfdux) are also
invalid when the Rc bit is one. In the 604, executing one of these invalid instruction
forms causes CRO to be set to an undefined value.

2.3.4.3.1 Self-Modifying Code
When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst lupdate memory
sync Iwait for update
lebl lremove (invalidate) copy in instruction cache
sync Iwait for icbi to be globally perfonned
Isync Iremove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the YEA, and discussed in Chapter 5, "Cache Model
and Memory Coherency," in The Programming Environments Manual. Because the 604
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2-34 PowerPC 604 RISC Microprocessor User's Manual

2.3.4.3.2 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, "Effective Address Calculation," for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 4.5.6, "Alignment Exception _
(OxOO600)," for additional information about load and store address alignment exceptions. -

2.3.4.3.3 Register Indirect Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which r A is updated with the generated effective address. For these forms, if
r A"¢ 0 and r A"¢ rD (otherwise invalid), the EA is placed into r A and the memory element
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand r A = 0 or
rA = rD as invalid forms.

Implementation Notes-The following notes describe the 604 implementation of integer
load instructions:

• In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructions (lbzx, Ibzux, Ibzx, Ibzux, Ibax, Ibaux, Iwzx, and
Iwzux). In the 604, executing one of these invalid instruction forms causes CRO to
be set to an undefmed value.

• For load with update instructions (lbzu, Ibzux, Ibzu, Ibzux, Ibau, Ibaux, Iwzu,
Iwzux, Ifsu, Ifsux, Ifdu, Ifdux), when rA = 0 or rA = rD the instruction form is
considered invalid. If r A = 0, the 604 sets GPRO to an undefined value. If r A = r D,
the 604 sets rD to an undefmed value.

• The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebraic (Iba, Ibax) instructions with
greater latency than other types of load instructions. This is not the case for the 604.

Table 2-20 summarizes the integer load instructions.

Table 2·20. Integer Load Instructions

Name Mnemonic Operand Syntax

Load Byte and Zero Ibz rD,d(rA)

Load Byte and Zero Indexed Ibzx rD,rA,rB

Load Byte and Zero with Update Ibzu rD,d(rA)

Load Byte and Zero with Update Indexed Ibzux rD,rA,rB

Load Half Word and Zero 1hz rD,d(rA)

Load Half Word and Zero Indexed Ihzx rD,rA,rB

Chapter 2. Power PC 604 Processor Programming Model 2·35

Table 2-20. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax

Load HaN Word and Zero with Update Ihzu rD,d(rA)

Load HaN Word and Zero with Update Indexed Ihzux rD,rA,rB

Load HaN Word Algebraic Iha rD,d(rA)

Load HaN Word Algebraic Indexed Ihax rD,rA,rB

Load HaN Word Algebraic with Update Ihau rD,d(rA)

Load HaH Word Algebraic with Update Indexed Ihaux rD,rA,rB

Load Word and Zero Iwz rD,d(rA)

Load Word and Zero Indexed Iwzx rD,rA,rB

Load Word and Zero with Update Iwzu rD,d(rA)

Load Word and Zero with Update Indexed Iwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents of rS are stored into the byte, half word, word
or double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which r A is updated with the EA. For these forms, the following
rules apply:

• If r A * 0, the effective address is placed into r A.

If rS = r A, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

The PowerPC architecture defines store with update instructions with r A = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-21
summarizes the integer store instructions.

2-36 Power PC 604 RISC Microprocessor User's Manual

Table 2·21. Integer Store Instructions

Name Mnemonic Operand Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store HaH Word sth rS,d(rA)

Store HaH Word Indexed sthx rS,rA,rB

Store HaH Word with Update sthu rS,d(rA)

Store HaH Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Implementation Notes-The following notes describe the 604 implementation of integer
store instructions:

• In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer store indexed instructions (stbx, stbux, sthx, sthux, stwx, stwux). In the
604, executing one of these invalid instruction forms causes eRO to be set to an
undefmed value.

• For the store with update instructions (stbu, stbux, sthu, sthux, stwu, stwux, stfsu,
stfsux, stfdu, stfdux), when r A = 0, the instruction form is considered invalid. In
this case, the 604 sets GPRO to an undefined value.

2.3.4.3.5 Integer Load and Store. with Byte Reverse Instructions
Table 2-22 describes integer load and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, "Byte Ordering," in The Programming
Environments Manual.

Implementation Note-In the PowerPC architecture, the Rcbit must be zero for almost
all load and store instructions. If the Rc bit is one, the instruction form is invalid. These
include the load and store with byte-reversal instructions (Ihbrx, Iwbrx, sthbrx, stwbrx).

Chapter 2. Power PC 604 Processor Programming Model 2-37

-

In the 604, executing one of these invalid instruction fonns causes eRO to be set to an
undefined value.

Table 2·22. Integer Load and Store with Byte Reverse Instructions

Name Mnemonic Operand Syntax

Load Half Word Byte-Reverse Indexed Ihbrx rD,rA,rB

Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

2.3.4.3.6 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

Implementation Notes-The following describes the 604 implementation of the
load/store multiple instruction:

• The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructions (Imw and stmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 604
provides hardware support for Imw, stmw, Iswi, Iswx, stswi, and stswx instructions
to cross a page boundary. However, a DSI exception may occur when the boundary
is crossed (for example, if a protection violation occurs on the new page).

• Executing an Imw instruction in which rA is in the range of registers to be loaded
or in which RA = RT = 0 is invalid in the architecture. In the 604, all registers loaded
are set to undefined values. Any exceptions resulting from a memory access cause
the system error handler nonnally associated with the exception to be invoked.

• The 604 's implementation of the Imw instruction allows one word of data to be
transferred to the GPRs per internal clock cycle (that is, one register is filled per
clock) whenever the data is found in the cache. For the stmw instruction, data is
transferred from the GPRs to the cache at a rate of one word (GPR) per clock cycle.

• When an Imw or stmw access is to noncacheable memory, data is transferred on the
external bus at a rate of one word per external bus tenure. Bus tenures are pipelined,
allowing a maximum tenure rate of one address tenure every three bus-clock cycles.

• The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If r A has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of r A,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

2-38 PowerPC 604 RISC Microprocessor User's Manual

The PowerPC architecture defines the load multiple word (Imw) instruction with rAin the
range of registers to be loaded as an invalid form.

Table 2·23. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax

Load Multiple Word Imw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

2.3.4.3.7 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-24
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, "Byte Ordering," in The Programming Environments Manual for more
information.

Table 2·24. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax

Load String Word Immediate Iswl rD,rA,NB

Load String Word Indexed Iswx rD,rA,rB

Store String Word Immediate stawl rS,rA,NB

Store String Word Indexed atawx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, "Alignment Exception (OxOO600)," a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non-word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.
A non-word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

Chapter 2. PowerPC 604 Processor Programming Model 2-39

..

Implementation Note-The following describes the 604 implementation of the load/store
string instruction:

• The 604 provides hardware support for Imw, stmw, Iswi, Iswx, stswi, and stswx
instructions to cross a page boundary. However, a DSI exception may occur when
the boundary is crossed (for example, if a protection violation occurs on the new
page).

• An Iswi or Iswx instruction in which r A or rB is in the range of registers potentially
to be loaded or in which rA = rD = 0 is an invalid instruction form. In the 604, all
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

• The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If r A has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

• The 604 executes load string operations to cacheable memory at two cycles per word
if they are word-aligned Two additional cycles per instruction are required if they
are not word-aligned Cache-inhibited load string instructions require one bus tenure
per word if they are aligned. An additional tenure per instruction is required if a
cache-inhibited load string operation is not word aligned.

• The 604 executes store string operations to cacheable memory at a rate of one cycle
per word if they are word-aligned. Cacheable store string operations that are not
word-aligned require five cycles per word. Cache-inhibited store string instructions
require one bus tenure per word if they are word-aligned. Two bus tenures per word
are required if a store string operation is not word aligned.

• The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If r A has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

2.3.4.3.8 Floating-Point Load and Store Address Generation
Floating-point load and store· operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction-single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading the operands into the target
FPR.

2-40 Power PC 604 RISC Microprocessor User's Manual

Implementation Notes-The following notes characterize how the 604 treats exceptions:

• On the 604, if a floating-point number is not aligned on a word boundary, an
alignment exception occurs.

• The floating-point load and store indexed instructions (lfsx, lfsux, lfdx, If dux, stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the 604, executing one
of these invalid instruction forms causes CRO to be set to an undefined value.

Note that the PowerPC architecture defines load with update instructions with r A = 0 as an
invalid form.

Table 2-25. Floating-Point Load Instructions

Name Mnemonic Operand Syntax

Load Floating-Point Single Ifs frD,d(rA)

Load Floating-Point Single Indexed Ifax frD,rA,rB

Load Floating-Point Single with Update Ifau frD,d(rA)

Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB

Load Floating-Point Double Ifd frD,d(rA)

Load Floating-Point Double Indexed Ifdx frD,rA,rB

Load Floating-Point Double with Update Ifdu frD,d(rA)

Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

2.3.4.3.9 Floating-Point Store Instructions
This section describes floating-point store instructions. There are three basic forms of the
store instruction-single-precision, double-precision, and integer. The integer fonn is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-26 summarizes the floating-point store instructions.

Table 2-26. Floating-Point Store Instructions

Name Mnemonic Operand Syntax

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx frS,r B

Store Floating-Point Single with Update stfau frS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,r B

Store Floating-Point Double stfd frS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rB

Store Floating-Point Double with Update stfdu frS,d(rA)

Chapter 2. Power PC 604 Processor Programming Model 2-41

Table 2-26. Floating-Point Store Instructions (Continued)

Name Mnemonic Operand Syntax

Store Floating-Point Double with Update Indexed stfdux frS,r B

Store Floating-Point as Integer Word Indexed stflwx frS,rB

Some floating-point store instructions require conversions in the LSU. Table 2-27 shows
the conversions made by the LSU when performing a Store Floating-Point Single
instruction.

Table 2-27. Store Floating-Point Single Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero Store
Infinity
ONaN

Single SNaN Store

Do\ble Normalized If(exp ::;; 896)
then Denormalize and Store
else

Store

Do\ble Denormalized Store Zero

Do\ble Zero Store
Infinity
ONaN

Do\ble SNaN Store

2-42 Power PC 604 RISC Microprocessor User's Manual

Table 2-28 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Table 2-28. Store Floating-Point Double Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and Store

Single Zero Store
Infinity
QNaN

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero Store
Infinity
QNaN

Double SNaN Store

Architecturally, all floating-point numbers are represented in double-precision format
within the 604. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The 604 supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cycles are required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the 604, there is also a case
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles are incurred during the store.

2.3.4.4 Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

Chapter 2. PowerPC 604 Processor Programming Model 2-43

..

2.3.4.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative

• Branch conditional to relative address

• Branch to absolute address

• Branch conditional to absolute address

• Branch conditional to link register

• Branch conditional to count register

Note that in the 604, all branch instructions (b, ba, bl, bla, bc, bca, bel, bela, belr, belrl,
bcctr, bcctrl) and condition register logical instructions (crand, cror, crxor, crnand,
crnor, crandc, creqv, crorc, and mcrt) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bits in
the CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the 604 flush speculatively
executed instructions and restore the machine state to immediately after the branch. This
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions
Table 2-29 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-29. Branch Instructions

Name Mnemonic Operand Syntax

Branch b (ba bl bla) targeCaddr

Branch Conditional be (bee bel bela) BO,BI,targeCaddr

Branch Conditional to Link Register belr (belrl) BO,BI

Branch Conditional to Count Register bcctr (beetrl) BO,BI

2-44 Power PC 604 RISC Microprocessor User's Manual

2.3.4.4.3 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 2-30, and the Move Condition
Register Field (mcrt) instruction are also defined as flow control instructions.

Table 2-30. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AN D crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA, crbB

Condition Register AND with Complement crandc crbD,crbA, crbB

Condition Register OR with Complement crorc crbD,crbA, crbB

Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these fonns of the instructions as invalid.

2.3.4.4.4 Trap Instructions
The trap instructions shown in Table 2-31 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
nonnally.

Table 2·31. Trap Instructions

Name Mnemonic Operand Syntax

Trap Word Immediate twl TO,rA,SIMM

Trap Word tw TO,rA,rB

See Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for
a complete set of simplified mnemonics.

Chapter 2. Power PC 604 Processor Programming Model 2-45

-
2.3.4.5 System Linkage Instruction-UISA
This section describes the System Call (sc) instruction that pennits a program to call on the
system to perfonn a service. See also Section 2.3.6.1, "System Linkage
Instructions-OEA," for additional infonnation.

Table 2-32. System Linkage Instruction-UISA

Name Mnemonic Operand Syntax

System Call sc -

2.3.4.6 Processor Control Instructions-UISA
Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR) , and special-purpose registers (SPRs). See
Section 2.3.5.1, "Processor Control Instructions-YEA," for the mftb instruction and
Section 2.3.6.2, "Processor Control Instructions-OEA," for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-33 summarizes the instructions for reading from or writing to the condition
register.

Table 2-33. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crfD

Move from Condition Register mfcr rD

Note that the perfonnance of the mterf instruction depends greatly on whether only one
field is being accessed or either no fields or multiple fields are accessed as follows:

• Those mten instructions that update only one field are executed in either of the
SCIUs and the CR field is renamed as with any other SCIU instruction.

• Those mten instructions that update either multiple fields or no fields are dispatched
to the MCIU and a count/link scoreboard bit is set. When that bit is set, no more
mterf instructions of the same type, mtspr instructions that update the count or link
registers, branch instructions that depend on the condition register and CR logical
instructions can be dispatched to the MCIU. The bit is cleared when the mtetr,
mterf, or mtlr instruction that the bit is executed.

2-46 Power PC 604 RISC Microprocessor User's Manual

Because mterf instructions that update a single field do not require such synchronization
that other mterf instructions do, and because two such single-field instructions can execute
in parallel, it is typically more efficient to use multiple mterf instructions that update only
one field apiece than to use one mterf instruction that updates multiple fields. A rule of
thumb follows:

• It is always more efficient to use two mterf instructions that update only one field
apiece than to use one mterf instruction that updates two fields.

- It is almost always more efficient to use three or four mterfinstructions that
update only one field apiece than to use one mterf instruction that updates three
fields.

- It is often more efficient to use more than four mterf instructions that update only
one field than to use one mterf instruction that updates four fields.

2.3.4.6.2 Move tolfrom Special·Purpose Register Instructions (UISA)
Table 2-34 lists the mtspr and mfspr instructions.

Table 2·34. Move to/from Speclal·Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mfspr rD,SPR

2.3.4.7 Memory Synchronization Instructions-UISA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, "Cache and
Bus Interface Unit Operation," for additional information about these instructions and
about related aspects of memory synchronization.

Table 2-35. Memory Synchronization Instructlons-UISA

Name Mnemonic Operand Syntax

Load Word and Reserve Indexed Iwarx rD,rA,rB

Store Word Conclitionallndexed stwcx. rS,rA,rB

Synchronize sync -

The proper paired use of the lwarx with stwex. instructions allows programmers to emulate
common semaphore operations such as "test and set," "compare and swap," "exchange
memory," and "fetch and add." The lwarx instruction must be paired with an stwcx.
instruction with the same effective address used for both instructions of the pair. Note that
the reservation granularity is implementation-dependent. See 2.3.5.2, "Memory
Synchronization Instructions-VEA," for details about additional memory
synchronization (eieio and isyne) instructions.

Chapter 2. Power PC 604 Processor Programming Model 2-47

..

..
Implementation Notes-The following notes describe the 604 implementation of memory
synchronization instructions:

• The PowerPC architecture requires that memory operands for Load and Reserve
(lwan) and Store Conditional (stwcx.) instructions must be word-aligned. If the
operands to these instructions are not word-aligned on the 604, an alignment
exception occurs.

• The PowerPC architecture indicates that the granularity with which reservations for
Iwan and stwcx. instructions are managed is implementation-dependent. In the 604
reservations, this granularity is a 32-byte cache block.

• The sync instruction causes the 604 to serialize. The sync instruction can be
dispatched with other instructions that are before it, in program order. However, no
more instructions can be dispatched until the sync instruction completes.
Instructions already in the instruction buffer, due to prefetching, are not refetched
after the sync completes. If reflecting is required, isync should be executed to flush
the instruction buffer after the sync. The sync is dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the sync and
Iwan instructions. In the 604, executing one of these invalid instruction forms causes CRO
to be set to an undefined value. The stwcx. instruction is the only load/store instruction that
has a valid form if Rc is set. If the Rc bit is zero, the result of executing this instruction in
the 604 causes CRO to be set to an undefined value.

2.3.5 PowerPC YEA Instructions
The PowerPC virtual environment architecture (YEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the YEA.

2.3.5.1 Processor Control Instructions-YEA
In addition to the move to condition register instructions (specified by the UISA), the YEA
defines the mftb instruction (user-level instruction) for reading the contents of the time
base register; see Chapter 3, "Cache and Bus Interface Unit Operation," for more
information. Table 3-34 shows the mftb instruction.

Table 2-36. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR

2-48 Power PC 604 RISC Microprocessor User's Manual

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both a basic and simplified _
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form, -
and an mftb mnemonic with one operand as the simplified form.

Implementation Notes-The following information is useful with respect to using the
time base implementation in the 604:

• The 604 allows user-mode read access to the time base counter through the use of
the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a 32-bit PowerPC implementation, the 604 supports separate access
to the TBU and TBL, whereas 64-bit implementations can access the entire TB
register at once.

• The time base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the time base enable (TBE) input signal.

2.3.5.2 Memory Synchronization Instructions-VEA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, "Cache and
Bus Interface Unit Operation," for additional information about these instructions and
about related aspects of memory synchronization.

Table 2-37 describes the memory synchronization instruction s defined by the VEA.

Table 2·37. Memory Synchronization Instructlons-VEA

Name Mnemonic
Operand

Implementation Notes
Syntax

Enforce In-Order elelo - The elelo instruction is dispatched by the 604 to the LSU. The
Execution of VO elelo instruction executes after all preceding cache-inhibited

or write-through memory instructions execute; aU following
cache-inhibited or write-through instructions execute after the
elelo instruction executes. When the elelo instruction
executes. an EIEIO address-only operation is broadcast on
the external bus to allow ordering to be enforced in the
external memory system.

Instruction Isync - The Isync instruction causes the 604 to purge its instruction
Synchronize buffers and fetch the double word containing the next

sequential instruction.

Chapter 2. PowerPC 604 Processor Programming Model 2-49

..
System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a SYNC bus operation and perform the appropriate actions
to guarantee that memory references that may be queued internally to the second-level
cache have been performed globally.

In addition to the sync instruction (specified by VISA), the VEA defines the Enforce
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this
instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

2.3.5.3 Memory Control Instructions-VEA
Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the YEA.
See 2.3.6.3, "Memory Controllnstructions-OEA," for information about supervisor-level
cache, segment register manipulation, and translation lookaside buffer management
instructions.

2.3.5.3.1 User-Level Cache Instructions-VEA
The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 3, "Cache and Bus Interface
Unit Operation," for more information about cache topics.

The user-level cache instructions provide software a way to help manage processor caches.
The following sections describe how these operations are treated with respect to the 604's
cache.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly-ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

Note that this discussion does not apply to direct-store segment accesses because these are
defined to be cache-inhibited and instruction fetch from them is not allowed. Cache
operations that access direct-store segment are treated as no-ops. Table 2-38 summarizes
the cache instructions defined by the YEA. Note that these instructions are accessible to
user-level programs.

2-50 Power PC 604 RISC Microprocessor User's Manual

Table 2-38. User-Level Cache Instructions

Name Mnemonic Operand Implementation Notes Syntax

Data debt rA,rS The VEA defines this instruction to allow for potential system
Cache performance enhancements through the use of software-initiated
Block Touch prefetch hints. Implementations are not required to take any action based

off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache. The
604 performs the prefetch when the address hits in the TLB or the BAT, is
permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. If the
operation does not meet these criteria, it is treated as a no-op. The data
brought into the cache as a result of this instruction is validated in the
same way a load instruction would be (that is, if no other bus participant
has a copy, it is marked as Exclusive, otherwise it is marked as Shared).
The memory reference of a dcbt causes the reference bit to be set.
A successful debt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data debtst rA,rS This instructions behaves like the dcbt instruction.
Cache
Block
Touch for
Store

Data debz rA,rS The effective address is computed, translated, and checked for
Cache protection violations as defined in the VEA. If the 604 does not have
Block Set exclusive access to the block, it presents an operation onto the 604 bus
to Zero interface that instructs all other processors to invalidate copies of the

block that may reside in their cache (this is the kiU operation on the bus).
After it has exclusive access, the 604 writes all zeros into the cache
block. If the 604 already has exclusive access, it Immediately writes all
zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or
disabled, the an aNgnment exception occurs.
If the operation is successful, the cache block is marked modified.

Data debst rA,rS The effective address is computed, translated, and checked for
Cache protection violations as defined in the VEA. If the 604 does not have
Block Store exclusive access to the block, it broadcasts the essence of the instruction

onto the 604 bus (using the clean operation, described in Table 3-4). If
the 604 has modified data associated with the block, the processor
pushes the modified data out of the cache and into the memory queue for
future arbitration onto the 604 bus. In this situation, the cache block is
marked exclusive. Otherwise this instruction is treated as a no-op.

Data debf rA,rS The effective address is computed, translated, and checked for
Cache protection violations as defined by the VEA. If the 604 does not have
Block Flush exclusive access to the block, It broadcasts the essence of the instruction

onto the 604 bus (using the flush operation described in Table 3-4). In
addition, if the addressed block is present in the cache, the 604 marks
this data as invalid. On the other hand, if the 604 has modified data
associated with the block, the processor pushes the modified data out of
the cache and into the memory queue for future arbitration onto the 604
bus. In this situation, the cache block is marked invalid.

Chapter 2. Power PC 604 Processor Programming Model 2-51

-
Table 2-38. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand Implementation Notes
Syntax

Instruction Icbl rA,rB The effective address is computed, translated, and checked for
Cache protection violations as defined in the PowerPC architecture. If the
Block addressed block is in the instruction cache, the 604 marks it invalid. This
Invalidate instruction changes neither the content nor status of the data cache. In

addition, the ICBI operation is broadcast on the 604 bus unconditionally
to support this function throughout multilayer memory hierarchy.

2.3.5.4 Optional External Control Instructions
The external control instructions allow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 2-39.

Table 2·39. External Control Instructions

Name Mnemonic Operand Syntax

Extemal Control In Word Indexed eclwx rD,rA,rB

Extemal Control Out Word Indexed ecowx rS,rA,rB

The eciwx and ecowx instructions cause an alignment exception if they are not
word-aligned.

2.3.6 PowerPC OEA Instructions
The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the VISA and the YEA. This
section describes the instructions provided by the DEA

2.3.6.1 System Linkage Instructions-OEA
This section describes the system linkage instructions (see Table 2-40). The sc instruction
is a user-level instruction that permits a user program to calion the system to perform a
service and causes the processor to take an exception. The rfi instruction is a
supervisor-level instruction that is useful for returning from an exception handler.

Table 2-40. System Linkage Instructlons-OEA

Name Mnemonic Operand Syntax

Syst8mCaH sc -
Return from Int8rft4)t rfl -

2.3.6.2 Processor Control Instructions-OEA
This section describes the processor control instructions that are used to read from and
write to the MSR and the SPRs.

2-52 Power PC 604 RISC Microprocessor User's Manual

Table 2-41 summarizes the instructions used for reading from and writing to the MSR.

Table 2-41. Move tolfrom Machine State Register In$tructlons

Name Mnemonic Operand Syntax

Move to Machine State Register mtmsr rS

Move from Machine State Register mtmsr rD

The OEA defines encodings of the mtspr and mfspr instructions to provide access to
supervisor-level registers. The instructions are listed in Table 2-42. '

Table 2-42. Move tolfrom Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mtspr rD,SPR

Encodings for the 604-specific SPRs are listed in Table 2-43.

Table 2-43 SPR Encodlngs for 604-Deflned Registers (mfspr)

SPR
1

Register Name
Decimal spr[5-9) spr[0-4)

952 11101 11000 MMCRO

953 11101 11001 PMC1

954 11101 11010 PMC2

955 11101 11011 SIA

959 11101 11111 SDA

1010 11111 10010 IABR

1023 11111 11111 PIR

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtapr and mtspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in
the instruction, with the high-order 5 bits appearing in bits 16-20 of the instruction and the low-order 5 bits in
bits 11-15.

Simplified mnemonics are provided for the mtspr and mfspr instructions in Appendix F,
"Simplified Mnemonics," in The Programming Environments Manual. For a discussion of
context synchronization requirements when altering certain SPRs, refer to Appendix E,
"Synchronization Programming Examples," in The Programming Environments Manual.

Chapter 2. PowerPC 604 Processor Programming Model 2-53

For infonnation on SPR encodings (both user- and supervisor-level) see Chapter 8,
"Instruction Set," in The Programming Environments Manual. Note that there are
additional SPRs specific to each implementation; for implementation-specific SPRs, see
the user's manual for that particular processor.

2.3.6.3 Memory Controllnstructions-OEA
Memory control instructions include the following types of instructions:

Cache management instructions (supervisor-level and user-level)
Segment register manipulation instructions
Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 2.7.3,
"Memory Control Instructions-VEA," for more information about user-level cache
management instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction-(OEA)
Table 2-44 lists the only supervisor-level cache management instruction.

Table 2-44. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes

Data debl rA,rS The EA is computed, translated, and checked for protection
Cache violations as defined in the OEA.
Block The 604 broadcasts the essence of the instruction onto the 604
Invalidate bus (using the kin operation). In addition, if the addressed block

is present in the cache, the 604 marks this data as invalid
regardless of whether the data is clean or modified. Note that
this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

See Section 2.7.3.1, "User-Level Cache Instructions-VEA," for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op. Note that any
cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

2-54 Power PC 604 RISC Microprocessor User's Manual

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)
The instructions listed in Table 2-45 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to "Synchronization Requirements for Special Registers and
for Lookaside Buffers," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual for serialization requirements and other recommended precautions _
to observe when manipulating the segment registers. _

Table 2-45. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax

Move to Segment Register mtsr SR,rS

Move to Segment Register Indirect mtsrln rS,rB

Move from Segment Register mfsr rD,SR

Move from Segment Register Indirect mfsrln rD,rB

2.3.6.3.3 Translation Lookaside Buffer Management Instructions-(OEA)
The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical to physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
tables and page tables in memory, respectively.

Refer to Chapter 7, "Memory Management" for more information about TLB operation.
Table 2-46 summarizes the operation of the TLB instructions in the 604.

Chapter 2. Power PC 604 Processor Programming Model 2-55

..
Table 2-46. Translation Lookaslde Buffer Management Instruction

Name Mnemonic
Operand

Implementation Notes
Syntax

TLB tlble rB Execution of this instruction causes all entries in the congruence class
Invalidate corresponding to the specified EA to be invalidated in the processor
Entry executing the instruction and in the other processors attached to the

same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, "Address Transfer Attribute Signals."
The OEA requires that a synchronization instruction be issued to
guarantee completion of a tlble across all processors of a system.
The 604 implements the tlbsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlble instructions. Multiple tlble
instructions can be executed correctly with only one tlbsync
instruction, folloWing the last tlble, to guarantee all previous tlble
instructions have been performed globally.
Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tlble have been completed prior
to executing the tlble instruction.
When a snooping 604 detects a TLB invalidate entry operation on the
bus, it accepts the operation only if no TLB invalidate entry operation
is being executed by this processor and all processors on the bus
accept the operation (A'ATJN is not asserted). Once accepted, the
TLB invalidation is performed unless the processor is executing a
multiple/string instruction, in which case the TLB invalidation is
delayed until it has completed.
Other than the possible TLB miss on the next instruction prefetch, the
tlble does not affect the instruction fetch operation--that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB tlbsync - The TLBSYNC operation appears on the bus as a distinct operation,
Synchronize different from a SYNC operation. It is this bus operation that causes

synchronization of snooped tlble instructions.
See the tlble de~tion above for information regrading using the
tlbsync instruction with the tlble instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Section 3.9.6, "Cache
Reaction to Specific Bus Operations."

Implementation Note-The tIbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. As described above, the tlbie
instruction can be used to invalidate a particular index of the TLB based on EA[14-19].
With that concept in mind, a sequence of 64 t1bie instructions followed by a single tlbsync
instruction would cause all the 604 TLB structures to be invalidated (for EA[14-19] = 0, 1,
2, ... ,63). Therefore the tIbia instruction is not implemented on the 604. Execution of a tIbia
instruction causes an illegal instruction program exception.

2-56 Power PC 604 RISC Microprocessor U •• r'. Manual

Because the presence and exact semantics of the TLB management instructions is
implementation-dependent, system software should incorporate uses of.these instructions
into subroutines to minimize compatibility problems.

2.3.7 Recommended Simplified Mnemonics
To simplify assembly language coding, a set of alternative mnemonics is provided for some -.-
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For a complete list of simplified mnemonics, see Appendix F, "Simplified Mnemonics," in
The Programming Environments Manual.

Chapter 2. Power PC 604 Processor Programming Model 2-57

Chapter 3
Cache and Bus Interface Unit Operation
This chapter describes the organization of the 604's on-chip cache system, the MESI cache
coherency protocol, special concerns for cache coherency in single- and multiple-processor
systems, cache control instructions, various cache operations, and the interaction between
the cache and the memory unit.

To minimize the number of bus accesses, the 604 contains separate 16-Kbyte, four-way set
associative instruction and data caches and also provides support for secondary (L2)
caching. The cache block size is 32 bytes. The cache is designed to adhere to a write-back
policy, but the 604 allows control of cacheability, write policy, and memory coherency at
the page and block level, as defined by the PowerPC architecture. The caches use a least
recently used (LRU) replacement policy.

The 604 cache implementation has the following characteristics:

• Separate 16-Kbyte instruction and data caches (Harvard architecture)

• Instruction and data caches are four-way set associative.

• Caches implement an LRU replacement algorithm within each set.

• The cache directories are physically addressed. The physical (real) address tag is
stored in the cache directory.

• Both the instruction and data caches have 32-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.

• The coherency state bits for each block of the data cache allow encoding for all four
possible MESI states:

- Modified (Exclusive) (M)

- Exclusive (Unmodified) (E)

- Shared(S)

- Invalid (I)

Chapter 3. Cache and Bus Interface Unit Operation 3-1

• The coherency state bit for each cache block of the instruction cache allows
encoding for two possible states:

- Invalid (INV)

- Valid (VAL)

• Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation dependent register 0 (HIDO), a special-purpose register
(SPR) specific to the 604.

The 604 uses eight-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 604 presents a double-word-aligned address. Memory
controllers are expected to transfer this double word of data first, followed by double words
from increasing addresses, wrapping back to the beginning of the eight-word block as
required.

Burst misses can be buffered into two 8-word line-fill buffers before being loaded into the
cache. Writes of cache blocks by the 604 (for a copy-back operation) always present the
first address of the block, and transfer data beginning at the start of the block. However, this
does not preclude other masters from transferring critical double words first on the bus for
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used in the
context of maintaining cache coherency. These devices could be processors or other
devices that can access system memory, maintain their own caches, and function as bus
masters requiring cache coherency.

The organization of the 604 instruction and data caches is shown in Figure 3-1.

Block 0

Block 1

Block 2

Block 3

3-2

128 Sets I

~ I
Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

• • •
I-

r-
'-

'-

-r-
r-

l-

I I I I I I I· I • •
~ I -

I

- State I Words 0-7 ~ -I-
I I

I-- State Words 0-7 I- -
I I I I I I I

State -Words 0-7 -
State Words 0-7 I

I --I I

8 Words/Block

Figure 3-1. Cache Organization

Power PC 604 RISC Microprocessor User's Manual

As shown in Figure 3-2, the instruction cache is connected to the bus interface unit (BIU)
with a 64-bit bus; likewise, the data cache is connected both to the BIU and the load/store
unit (LSU) with a 64-bit bus. The 64-bit bus allows two instructions to be loaded into the
instruction cache or a double word (for example, a double-precision floating-point operand)
to be loaded into the data cache in a single clock. The instruction cache provides a 128-bit
interface to the instruction fetcher, so four instructions can be made available to the
instruction unit in a single clock cycle.

Instruction Unit

------r----------..---

Instructions (0-127) EA (20

Instruction Cache

----.J Cache I I Tags

-31)

I Cacho
Tags

16-Kbyte
Four-Way Set Associative

PA(0-1 9)

I Cache
Logic

-J Cache I
~ Logic

~---~----~

Instructions (0--63) PA(0-3 1)

____ ---L. __________ ..L-., __ _

~

r

---. -
EA: Effective Address
PA: Physical Address

MMu/Bus Interface Unit (BIU)

Figure 3·2. cache Integration

3.1 Data Cache Organization

Load/Store Unit (LSU)

Data (0--63)

Data Cache

16-Kbyte
Four-Way Set Associative

Data (0--63)

As shown in Figure 3-2, the physically-addressed data cache lies between the load/store
instruction unit (LSU) and the bus interface unit (BIU), and provides the ability to read and
write data in memory by reducing the number of system bus transactions required for
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes data to the
other execution units. The LSU supports the address generation and all the data alignment
to and from the data cache. The LSU also handles other types of instructions that access
memory, such as cache control instructions, and supports out-of-order loads and stores
while ensuring the integrity of data.

Chapter 3. Cache and Bus Interface Unit Operation 3-3

The 16-Kbyte, four-way set data cache is nonblocking write-back cache with hardware
reload. The data cache can continue to process loads and stores while as many as four block
fill requests are in progress.

The set associativity of the data cache is shown in Figure 3-1.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27-A31 of the EA are zero); as a result, cache blocks
are aligned with page boundaries. Within a single cycle, the data cache provides a double
word access to the LSU.

The data cache supports a coherent memory system using the four-state MESI coherency
(modifiedlexclusive/sharedlinvalid) protocol. Dual-ported data cache tags are implemented
to prevent snooping accesses from affecting other bus traffic, except when snooping hits
modified data. The LSU is blocked for one cycle to copy the cache block of data into a
write-back buffer. The data cache can be invalidated on a block or invalidate-all granularity.
Also, data cache enable, lock, and parity checking enable bits can be set in hardware
implementation register 0 (HIDO).

3.2 Instruction Cache Organization
The 16-Kbyte, four-way set-associative instruction cache is physically-indexed. The
organization of the instruction cache, shown in Figure 3-1, is identical to that of the data
cache. Each cache block contains eight contiguous words from memory that are loaded
from an eight-word boundary (that is, bits A27-A31 of the effective addresses are zero); as
a result, cache blocks are aligned with page boundaries.

Within a single cycle, the instruction cache provides as many as four instructions to the
instruction fetch unit. The instruction cache coherency is software-controlled. The
instruction cache can be invalidated on a block or invalidate-all granularity. The instruction
cache can be enabled, locked, and checked for parity depending on the setting of enable bits
provided in HIDO.

The instruction cache differs from the data cache in that it does not implement MESI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. If a processor modifies a memory location that may be
contained in the instruction cache, software must ensure that memory updates are visible to
the instruction fetching mechanism. This can be achieved by the following instruction
sequence:

3-4

dcbst
sync
1001
sync
Isync

update memory
wait for update
remove (invalidate) copy in instruction cache
wait for ICBI operation to be globally petfonned
remove copy in own instruction buffer

Power PC 604 RISC Microprocessor User's Manual

These operations are necessary because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes made to items in the data cache may
not be reflected in memory until after a fetch operation completes.

3.3 MMUs/Bus Interface Unit
The bus interface unit (BIU) is compatible with those of the PowerPC 601 TM and
PowerPC 603™ microprocessors. It implements both tenured and split-transaction modes
and can handle as many as three outstanding transactions in pipelined mode. If permitted,
the BIU can complete one or more write transactions between the address and data tenures
of a read transaction. The BIU has 32-bit address and 64-bit data buses protected by byte
parity.

The BIU implements the critical-double-word-first access where the double word requested
by the fetcher or the LSU is fetched first and the remaining words in the line are fetched
later. The critical double word as well as other words in the cache block are forwarded to
the fetcher or to the LSU before they are written to the cache.

The bus can be run at lx, 2/3x, l/2x or l/3x the speed of the processor. The programmable
on-chip phase-locked loop (PLL) generates the necessary processor clocks from the bus
clock.

When a memory access fails to hit in the cache, the 604 accesses system memory through
the bus interface unit. These operations must arbitrate for bus access.

The memory management units (MMUs) provide address translation as specified by the
PowerPC OEA, including block address translation and page translation of memory
segments. The MMUs and the bus interface unit are shown in Figure 3-3.

The 604 implements separate MMUs, one for instruction accesses and one for data
accesses. VIrtual address translation uses two l28-entry, two-way set-associative (64 x 2)
translation lookaside buffers (TLBs), one for instruction accesses and one for data accesses.
The 604 provides hardware that performs the TLB reload (also known as page table walk)
when a translation is not in a TLB. Memory management is described in Chapter 5,
"Memory Management."

The BIU handles block fill and write-back requests from either cache, as well as all
noncacheable reads and writes.

Chapter 3. Cache and Bus Interface Unit Operation 3-5

Instruction Unit Load/Store Unit

- -

G)
Instruction MMU DataMMU

~ G)

0
I I

-fj
C I'tS
.2 I TLB Reload I 0

~
I'tS
1a

1 I c

Bus Interface Unit

L...-- -I

Bus

Figure 3-3. Bus Interface Unit and MMU

As shown in Figure 3-4, the 604 implements four types of memory queues to support the
foUr types of operations-line-fill, write, copy-back, and invalidation operations. For a
line-fill operation, the line-fill address from either the instruction or data cache is kept in
the memory address queue until the address can be sent out in an address tenure. After the
address tenure, the address is transferred to the line-fill address queue, which releases the
address bus for other transactions in split-transaction mode. As each double word for the
line-fill operation is returned, it is transferred to the line-fill buffer, where it is forwarded to
the LSU.

3-6 Power PC 604 RISC Microprocessor User's Manual

Ul Z! Z! Ul

~
Ul e e e

:g "0 "0 "0
"0 "0 "0

c:(c:(c:(c:(

Q) Q) u: u: .s:::. "fi
~ C\l Q) Q)

.2 0 c c
c :t ~

!
6

\ I Copy-Back Address - --ao
Copy-Back Address

01 ---
Memory Address

CO

Memory Address I Share-Invalidate I I-Line Fill
01 Oueue Address 0

L-. D-Une Fill -

r Address ao I-

D-Une Fill
\ I Address 01 I-

Snoop Address
to Data Cache

t
Snoop Address I

Register
Address Bus I

Register

""
1 Address Bus

~ c
u::
Q)
c
:t

~ c
u::
Q) S
c C\l
~ c
6 e

.9 en

Copy-Back Data
QO (8 word)

Copy-Back Data
Q1 (8word)

Une Fill Data
ao (8word)

Line Fill Data
01 (8 word)

Write Data
00 (2 word)

Write Data
01 (2 word)

Figure 3·4. Memory Queue Organization

For write operations, the address is kept in the memory address queue and the data is kept
in the write buffer until both can be sent out in a write transaction. Similarly, for copy-back
operations the address is kept in the copy-back address queue and the data is kept in the
copy-back buffer until both can be sent out in a burst write transaction. For a cache control
instruction or a store to a shared cache block, the address is kept in the cache control address
queue until an address-only transaction is sent out to broadcast the cache control command.
Because all address queues in the 604 are treated as part of the coherent memory system,
they are checked against the data cache and snoop addresses to ensure data consistency and
to maintain MESI coherency protocol.

Chapter 3. Cache and Bus Interface Unit Operation 3-7

To support the increased bandwidth of the nonblocking caches, the BIU can handle as many
as three pipelined transactions before data has to be provided by the memory system. The
three outstanding transactions can be any combination of the following-two noncacheable
or write-through write operations, two data cache reloads, one instruction cache reload, and
two cache block copybacks. In addition, address-only transactions are not counted in the
three outstanding transactions.

For details concerning the signals, see Chapter 7, "Signal Descriptions," and for
information regarding bus protocol, see Chapter 8, "System Interface Operation."

3.4 Memory Coherency Actions
The following sections describe memory coherency actions in response to various
operations and instructions.

3.4.1 604-lnitiated Load and Store Operations
The following tables provide an overview of the behavior of the 604 with respect to load
and store operations. Table 3-1 does not includenoncacheable cases. The first three cases
(load when the cache block is marked I) also involve selecting a replacement class and
copying back any modified data that may have resided in that replacement class.

Table 3-1. Memory Coherency Actions on Load Operations

Cache State Bus Operation Snoop Response Action

I Read -ARmY Load data and mark E
-mD

I Read -A"R'mY Load data and mark S
mm

I Read ARTRV Retry read operation

S None Don't care Read from cache

E None Don't care Read from cache

M None Don't care Read from cache

Table 3-2 does not address the noncacheable or write-through cases and does not
completely describe the exact mechanisms for the operations described. The first two cases
also involve selecting a replacement class and copying back any modified data that may
have resided in that replacement class. The state of the SHD signal is unimportant in this
table.

3-8 PowerPC 604 RISC Microprocessor User's Manual

Table 3-2. Memory Coherency Actions on Store Operations

eacheState Bus Operation Snoop Response Action

I RWITM -AFiTRV Load data, modify it, mark M

I RWITM ARTRV Retry the RWITM

S Kill -'JMRY Modify cache, mark M

S Kill ARTRV Retry the kill

E None Don't care Modify cache, mark M

M None Don't care Modify cache

3.5 Sequential Consistency
The following sections describe issues related to sequential consistency with respect to
single processor and multiprocessor systems.

3.5.1 Sequential Consistency Within a Single Processor
The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in the order specified by the program with respect
to exceptions and data dependencies. Note that all potential precise exceptions are resolved
before memory accesses that miss in the cache are forwarded onto the memory queue for
arbitration onto the bus. In addition, although subsequent memory accesses can address the
cache, full coherency checking between the cache and the memory queue is provided to
avoid dependency conflicts.

3.5.2 Weak Consistency between Multiple Processors
The PowerPC architecture requires only weak consistency among processors-that is,
memory accesses between processors need not be sequentially consistent and memory
accesses among processors can occur in any order. The ability to order memory accesses
weakly provides opportunities for more efficient use of the system bus. Unless a
dependency exists, the 604 allows read operations to precede store operations.

Note that strong ordering of memory accesses with respect to the bus (and therefore, as
observed by other processors and other bus participants) can be accomplished by following
instructions that access memory with the SYNC instruction.

Chapter 3. Cache and Bus Interface Unit Operation 3-9

3.5.3 Sequential Consistency Within Multiprocessor Systems
The PowerPC architecture defines a load operation to have been perfonned with respect to
all other processors (and mechanisms) when the value to be returned by the load can no
longer be changed by a subsequent store by any processor (or other mechanism). In
addition, it defines a store operation to be perfonned with respect to all other processors
(and mechanisms) when any load operation from the same location returns the value stored
(or a subsequently stored value).

In the 604, cacheable load operations and cacheable, non-write-through store operations
are perfonned with respect to all other processors (and mechanisms) when they have
arbitrated to address the cache. If a cache miss occurs, these operations may drop a memory
request into the processor's memory queue, which is considered an extension to the state
of the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through store
operations are perfonned with respect to other processors (and mechanisms) when they
have been successfully presented onto the 604 bus interface. As a result, if multiple
processors are performing these types of memory operations to the same addresses without
properly synchronizing one another (through the use of the Iwarx/stwcx. instructions), the
results of these instructions are sensitive to the race conditions associated with the order in
which the processors are granted bus access.

If the 604 uses an L2 cache, the system designer must ensure the memory system responds
to the SYNC and EIEIO bus operations in such a way that the required ordering of memory
operations is preserved.

3.6 Memory and Cache Coherency
The 604 can support a fully coherent 4-Gbyte (232) memory address space. Bus snooping
is used to drive a four-state (MESI) cache coherency protocol which ensures the coherency
of all processor and direct-memory access (DMA) transactions to and from global memory
with respect to each processor's cache. It is important that all bus participants employ
similar snooping and coherency control mechanisms. The coherency of memory is
maintained at a granularity of 32-byte cache blocks (this size is also called the coherency
or cache-block size).

All instruction and data accesses are perfonned under the control of the four memory/cache
access attributes:

• Write-through (W attribute)
• Caching-inhibited (I attribute)
• Memory coherency (M attribute)

• Guarded (G attribute)

3-10 Power PC 604 RISC Microprocessor User's Manual

These attributes are programmed by the operating system for each page and block. The W
and 1 attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory
location. The G attribute prevents speculative loading and prefetching from the addressed
memory location.

3.6.1 Data Cache Coherency Protocol
Each 32-byte cache block in the 604 data cache is in one of four states. Addresses presented
to the cache are indexed into the cache directory and are compared against the cache
directory tags. If no tags match, the result is a cache miss. If a tag match occurs, a cache hit
has occurred and the directory indicates the state of the block through three state bits kept
with the tag.

The four possible states for a block in the cache are the invalid state (I), the shared state (S),
the exclusive state (E), and the modified state (M). The four MESI states are defined in
Table 3-3 and illustrated in Figure 3-5.

Table 3-3. MESI State Definitions

MESI State Definition

Modified (M) The addressed block is valid in the cache and in only this cache. The block is modified with respect
to system memory-that is, the modified data in the block has not been written back to memory.

Exclusive (E) The addressed block is in this cache only. The data in this block is consistent with system memory.

Shared (S) The addressed block is valid in the cache and in at least one other cache. This block is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state.

Invalid (I) This state indicates that the addressed block is not resident in the cache and/or any data contained
is considered not useful.

The primary objective of a coherent memory system is to provide the same image of
memory to all processors in the system. This is an important feature of multiprocessor
systems since it allows for synchronization, task migration, and the cooperative use of
shared resources. An incoherent memory system could easily produce unreliable results
depending on when and which processor executed a task. For example, when a processor
performs a store operation, it is important that the processor have exclusive access to the
addressed block before the update is made. If not, another processor could have a copy of
the old (or stale) data. Two processors reading from the same memory location would get
different answers.

To maintain a coherent memory system, each processor must follow simple rules for
managing the state of the cache. These include externally broadcasting the intention to read
a cache block not in the cache and externally broadcasting the intention to write into a block
that is not owned exclusively. Other processors respond to these broadcasts by snooping
their caches and reporting status back to the originating processor. The status returned
includes a shared indicator (that is, another processor has a copy of the addressed block)

Chapter 3. Cache and Bus Interface Unit Operation 3-11

and a retry indicator (that is, another processor either has a modified copy of the addressed
block that it needs to push out of the chip, or another processor had a queuing problem that
prevented appropriate snooping from occurring).

To maximize performance, the 604 provides a second path into the data cache directory for
snooping. This allows the mainstream instruction processing to operate concurrently with
the snooping operation. The instruction processing is affected only when the snoop control
logic detects a situation where a snoop push of modified data is required to maintain
memory coherency.

M ---..

E ---..

3-12

Modified in Cache A

Cache A

Valid Data

System Memory

Data invalid\
not congruent

Cache B

Exclusive in Cache A

Cache A Cache B

Valid Data

System Memory

Valid Data

S ---..

---..

Shared in Cache A

Cache A Cache B

Valid Data S ---.. Valid Data

System Memory

Valid Data

Invalid in Cache A

Cache A Cache B

Invalid Date :---+ Don't Care

System Memory

Don't Care

Figure 3·5. MESI States

Power PC 604 RISC Microprocessor User's Manual

3.6.2 Coherency and Secondary Caches
The 604 supports the use of a larger secondary cache that can be implemented in different
configurations. The use of an L2 cache can serve to further improve performance by further
reducing the number of bus accesses. The L2 cache must operate with respect to the
memory system in a manner that is consistent with the intent of the PowerPC architecture.

L2 caches must forward all relevant system bus traffic onto the 604 so the 604 can take the
appropriate actions to maintain memory coherency as defined by the PowerPC architecture.

3.6.3 Page Table Control Bits
The PowerPC architecture allows certain memory characteristics to be set on a page and on
a block basis. These characteristics include the following:

• Write-backlwrite-through (using the W bit)
• Cacheable/noncacheable (using the I bit)
• Memory coherency enforced/not enforced (using the M bit)

An additional page control bit, G, handles guarded storage and is not considered here. This
ability allows both single- and multiple-processor system designs to exploit numerous
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits to be
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these bits if coherent
memory support is desired. Careless specification of these bits may create situations that
present coherency paradoxes to the processor. In particular, this can happen when the state
of these bits is changed without appropriate precautions (such as flushing the pages that
correspond to the changed bits from the caches of all processors in the system) or when the
address translations of aliased real addresses specify different values for any of the WIM
bits. These coherency paradoxes can occur within a single processor or across several
processors.

It is important to note that in the presence of a paradox, the operating system software is
responsible for correctness. The next section provides a few simple examples to convey the
meaning of a paradox.

3.6.4 MESI State Diagram
The 604 provides dedicated hardware to provide data cache coherency by snooping bus
transactions. The address retry capability of the 604 enforces the MESI protocol, as shown
in Figure 3-6. Figure 3-6 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.

Chapter 3. Cache and Bus Interface Unit Operation 3-13

Bus Transactions

RH = Read hit CD = Snoop push
RMS = Read miss. shared
RME = Read miss. exclusive ~ = Invalidate transaction
WH = Write hit \CY
WM = Write miss Ee = Read-with-intent-to-modify

SHR = Snoop hit on a read
SHW = Snoop hit on a write or (!) = Read

read-with-intent-to-modify

Figure 3-6. MESI cache Coherency Protocol-State Diagram (WIM = 001)

Table 3-6 gives a detailed list of MESI transitions for various operations and WIM bit
settings.

3.6.5 Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

• Load or store operations to a page with WIM = Ob011 and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a cache
inhibited page that hits in the cache presents a paradox to the processor. The 604
ignores the data in the cache and the state of the cache block is unchanged.

• Store operation to a page with WIM = Ob 1 OX and a cache hit on a modified cache
block occurs. This page was marked as write-through yet the processor was given
access to the cache (write-through page are always main memory). Any store

3-14 Power PC 604 RISC Microprocessor User'. Manual

operation to a write-through page that hits a modified cache block in the cache
presents a coherency paradox to the processor. The 604 writes the data both to the
cache and to main memory (note that only the data for this store is written to main
memory and not the entire cache block). The state of the cache block is unchanged.

3.6.6 Coherency Paradoxes in Multiple-Processor Systems
It is possible to create a coherency paradox across multiple processors. Such paradoxes are
particularly difficult to handle since some scenarios could result in the purging of modified
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the memory
coherency bit (or the M bit). Improper use of this bit can lead to multiple processors
accepting a cache block into their caches and marking the data as exclusive. In turn, this
can lead to a state where the same cache block is modified in multiple processor caches.

Additional information on what bus operations are generated for the various instructions
and state conditions can be found in Chapter 8, "System Interface Operation."

3.7 Cache Configuration
There are several bits in the HIDO register that can be used to configure the instruction and
data cache. These are described as follows:

• Bit I-Enable cache parity checking. Enables a machine check exception based on
the detection of a cache parity error. If this bit is cleared, cache parity errors are
ignored. Note that the machine check exception is further affected by the MSR[ME]
bit, which specifies whether the processor enters checkstop state or continues
processing.

• Bit 7-Disable snoop response high state restore. If this bit is set, the processor
cannot drive the SHD andARTRY signals to the high (negated) state, and the system
must restore the signals to the high state. See Chapter 7, "Signal Descriptions," for
more information

• Bit 16-Instruction cache enable. If this bit is cleared, the instruction cache is
neither accessed nor updated. Disabling the caches forces all pages to be accessed
as if they were marked cache-inhibited (WIM = XIX). All potential cache accesses
from the bus are ignored.

• Bit 17-Data cache enable. If this bit is cleared, the data cache is neither accessed
nor updated. Disabling the cache forces all pages to be accessed as if they were
marked cache-inhibited (WIM = XIX). All potential cache accesses from the bus,
such as snoop and cache operations are ignored.

• Bit 18-Instruction cache lock. Setting this bit locks the instruction cache, in which
case all cache misses are treated as cache-inhibited. Cache hits occur as normal.
Cache operations and the icbi instruction continue to work as nonnal.

Chapter 3. Cache and Bus Interface Unit Operation 3-15

• Bit 19-Data cache lock. Setting this bit locks the data cache, in which case all
cache misses are treated as cache-inhibited. Cache hits occur as nonnal, and cache
snoops and other operations continue to work as normal. This is the only way to
deallocate an entry. If the data cache is locked when the dcbz instruction is executed,
it takes an alignment exception, provided the target address had been translated
correctly.

• Bit 20--Instruction cache invalidate all. When this bit is set, the instruction cache
begins an invalidate operation marking the state of each cache block in the desired
cache as invalid without copying back any data to memory. It is assumed that no data
in the instruction cache is modified. Access to the cache is blocked during this time.
The bits are reset when the invalidation operation begins (usually the cycle
immediately following the write to the register beginning an invalidate operation).

• Bit 21-Data cache invalidate all. When this bit is set, the data cache begins an
invalidate operation marking the state of each cache block in the desired cache as
invalid without copying back any modified lines to memory. Access to the cache is
blocked during this time. The bits are reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accesses to
the cache from the bus are signaled as a miss during the time that the invalidate-all
operation is in progress.

The HIDO register can be accessed with the mtspr and mfspr instructions.

3.8 Cache Control Instructions
The VEA and OEA portions of the PowerPC architecture define instructions that can be
used for controlling caches in both single- and multiprocessor systems. The exact behavior
of these instruction in the 604 is described in the following sections.

Several of these instructions are required to broadcast their essence (such as a kill, clean,
or flush operation) onto the 604 bus interface so that all processors in a multiprocessor
system can take the appropriate actions. The 604 contains snooping logic to monitor the bus
for these commands and control logic to keep the cache and the memory queue coherent.
Additional details on the specific bus operations can be found in Chapter 7, "Signal
Descriptions. "

3.8.1 Instruction Cache Block Invalidate (icbi)
The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. If the addressed block is in the instruction cache, the
604 marks this instruction cache block as invalid This instruction changes neither the
content nor status of the data cache. The ICBI operation is broadcast on the 604 bus
unconditionally to support this function throughout a system's memory hierarchy.

3-16 Power PC 604 RISC Microprocessor User's Manual

3.8.2 Instruction Synchronize (isync)
The isyne instruction causes the 604 to purge its instruction buffers and fetch the next
sequential instruction.

3.8.3 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (debt) and Data Cache Block Touch for Store (debtst)
instructions provide potential system performance improvement through the use of
software-initiated prefetch hints. The 604 treats these instructions identically. Note that
PowerPC implementations are not required to take any action based on the execution of this
instruction, but they may choose to prefetch the cache block corresponding to the effective
address into their cache. The 604 fetches the data into the cache when the address hits in
the TLB or the BAT, is permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. Otherwise, the 604 treats these
instructions as no-ops. .

Regarding MESI cache coherency, the data brought into the cache as a result of these
instructions is validated in the same manner that a load instruction would be (that is, if no
other bus participant has a copy, it is marked as exclusive; otherwise it is marked as shared).
The memory reference of a debt instruction causes the reference bit to be set.

Note also that the successful execution of the debt instruction affects the state of the TLB
and cache LRU bits as defined by the LRU algorithm.

3.8.4 Data Cache Block Set to Zero (dcbz)
As defined in the YEA, when the debz instruction is executed the effective address is
computed, translated, and checked for protection violations. If the 604 does not already
have exclusive access to this cache block, it presents a kill operation onto the 604 bus-a
kill operation instructs all other processors to invalidate copies of the cache block that may
reside in their caches. After it has exclusive access to the cache block, the 604 writes all
zeros into the cache block. In the event that the 604 already has exclusive access, it
immediately writes all zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or disabled, an alignment
exception occurs.

3.8.5 Data Cache Block Store (dcbst)
As defined in the YEA, when a Data Cache Block Store (debst) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604
does not have modified data in this block, the 604 broadcasts a clean operation onto the bus.
If modified (dirty) data is associated with the cache block, the processor pushes the
modified data out of the cache and into the memory queue for future arbitration onto the
604 bus. In this situation, the cache block is marked as exclusive. Otherwise this instruction
is treated as a no-op.

Chapter 3. Cache and Bus Interface Unit Operation 3-17

3.8.6 Data Cache Block Flush (dcbt)
As defined in the YEA, when a Data Cache Block Flush (debt) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604
does not have modified data in this cache block, it broadcasts a flush operation onto the 604
bus. If the addressed cache block is in the cache, the 604 marks this data as invalid.
However, if the cache block is present and modified, the processor pushes the modified data
into the memory queue for arbitration onto the 604 bus and the cache block is marked as
invalid.

3.8.7 Data Cache Block Invalidate (dcbi)
As defined in the OEA, when a Data Cache Block Invalidate (deb i) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 604 broadcasts a kill operation onto the 604 bus. If the addressed cache block is in the
cache, the 604 marks this data as invalid regardless of whether the data is modified.
Because this instruction may effectively destroy modified data, it is privileged and has store
semantics with respect to protection; that is, write permission is required for the DCBI (kill)
operation.

3.9 Basic Cache Operations
This section describes operations that can occur to the cache, and how these operations are
implemented in the 604.

3.9.1 Cache Reloads
A cache block is reloaded after a read miss occurs in the cache. The cache block that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified data is first written to external memory before the cache reload occurs.

3.9.2 Cache Cast-Out Operation
The 604 uses an LRU replacement algorithm to determine which of the four possible cache
locations should be used for a cache update. Updating a cache block causes any modified
data associated with the least-recently used element to be written back, or cast out, to
system memory.

3.9.3 Cache Block Push Operation
When a cache block in the 604 is snooped and hit by another processor and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus. The 604 supports
two kinds of push operations-nonnal push operations and enveloped high-priority push
operations, which are described in Section 3.9.7, "Enveloped High-Priority Cache Block
Push Operation."

3-18 Power PC 604 RISC Microprocessor User's Manual

3.9.4 Atomic Memory References
The Iwarx/stwcx. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 2, "PowerPC 604 Processor
Programming Model."

3.9.5 Snoop Response to Bus Operations
When the 604 is not the bus master, it monitors bus trcdficand performs cache and memory
queue snooping as appropriate. The snooping operation is triggered by the receipt of a
qualified snoop request. A qualified snoop request is generated by the simultaneous
assertion of the TS and GBL bus signals.

Instruction processing is interrupted for one clock cycle only when a snoop hit occurs and
the snoop state machine determines a push-out operation is required.

The 604 maintains a write queue of bus operations in progress and/or pending arbitration.
This write queue is also snooped in response to qualified snoop requests. Note that block
length (four beat) write operations are always snooped in the write queue; however, single
beat writes are not snooped. Coherency for single-beat writes is maintained through the use
of cache operations that are broadcast with the write on the system interface or the
Iwarx/stwcx. instructions.

The 604 drives two snoop status signals (ARTRY and SHD) in response to a qualified
snoop request that hits. These signals provide infonnation about the state of the addressed
block for the current bus operation. For more infonnation about these signals, see
Chapter 7, "Signal Descriptions."

3.9.6 Cache Reaction to Specific Bus Operations
There are several bus transaction types defined for the 604 bus. The 604 must snoop these
transactions and perfonn the appropriate action to maintain memory coherency; see
Table 3-4. For example, because single-beat write operations are not snooped when they
are queued in the memory unit, additional operations such as flush or kill operations, must
be broadcast when the write is passed to the system interface to ensure coherency.

A processor may assertARTRY for any bus transaction due to internal conflicts that prevent
the appropriate snooping. In general, if ARTRY is not asserted, each snooping processor
must take full ownership for the effects of the bus transaction with respect to the state of
the processor.

The transactions in Table 3-4 correspond to the transfer type signals TTO--TT4, which are
described in Section 7.2.4.1, "Transfer Type (TTO-TT4)."

Chapter 3. Cache and Bus Interface Unit Operation 3-19

Table 3-4. Response to Bus Transactions

Transaction Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a debst
instruction. This operation affects only blocks marked as modified (M). Assuming the
cmc signal is asserted, modified blocks are pushed out to memory, changing the state
to E.

Flush block The flush operation is an address-only bus transaction initiated by executing a debf
instruction. Assuming the GBC signal is asserted, the flush block operation results in the
following:

• If the addressed block is in the S or E state, the state of the addressed block is
changed to I.

• If the addressed block is in the M state, the snooping device asserts XRTRV and~,
the modified block is pushed out of the cache, and its state is changed to I.

Write-with-flush Write-with-flush and write-with-flush-atomic operations are issued by a processor after
Write-with-flush-atomic executing stores or stwex., respectively to memory in a variety of different states,

particularly noncacheable and write-through. SOx processors do not use this transaction
code for burst transfers, but system use for bursts is not precluded. H they appear on the
bus and the GBl bit is asserted, the 60x processors have the same snoop response as
for flush block, except that a hit on the reservation address causes loss of the
reservation.

Kill block Kill block is an address-only transaction issued by a processor after executing a debl
instruction, a debz instruction to a location marked I or S, or a write operation to a block
marked S. H a kill-block transaction appears on the bus, and the GBl bit is asserted, the
addressed block is forced to the I state if it is in the cache.

Write-with-kill In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
block is forced to the I state, killing modified data that may have been in the block. In
addition to snooping the cache, the three-entry write queue is also snooped. A kill
operation that hits an entry in the write queue purges that entry from the queue.

Read Read is used by most single-beat or burst reads on the bus. A read on the bus with the
Read-atomic GBl bit asserted causes the following snoop responses:

• If the addressed block is in the cache in the I state, the processor takes no action.
• If the addressed block is in the cache in the S state, the processor asserts the §A15

snoop status signal.
• If the addressed block is in the cache in the E state, the processor asserts the ~

snoop status signal and changes the state of that cache block to S.
• If the addressed block is in the cache in the M state, the processor asserts both the

XRTRV and ~ snoop status signals and changes the state of that block in the
caChe from E to S.

Read-~tomic operations appear on the bus in response to Iwarx instruction and receive
the same snooping treatment as a read operation.

3-20 PowerPC 604 RISC Microprocessor User's Manual

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response

Read-with-intent-to- The RWITM transaction is issued to acquire exclusive use of a memory location for the
modify (RWITM) purpose of modifying it. One example is a processor that writes to a block that is not
RWITM atomic currently in its cache. When GBl is asserted, RWITM transactions on the bus cause the

processors to take the following snoop actions:

• If the addressed block is not in the cache, it takes no action.
• If the addressed block is in the cache in the S or E state, the processor changes the

state of that block in the cache to I.
• If the addressed block is present in the cache in the XM state, then the 60x asserts

both the ARTRY and the SHARED snoop status signals, pushes the dirty block out of
the cache and changes the state of that block in the cache from XM to INV.

RWITM atomic appears on the bus In response to the stwCX. instruction and receives
the same snooping treatment as RWITM.

TLBSYNC This TLB synchronize operation is an address-only transaction placed onto the bus by a
604 when it executes a tlbsync instruction.
When the TLBSYNC bus operation is detected by a snooping 604, the 604 asserts the
Am'RV snoop status if any operations based on an invalidated TLB are pending.

TLB invalidate A TLB invalidate transaction is an address-only transaction issued by a processor when
it executes a tlble instruction. The address transmitted as part of this transaction
contains bits 12-19 of the EA in their correct respective bit positions.

In response to a TLB invalidate operation, snooping processors invaKdate the entire
congruence class in any TLBs associated with the specified EA. In addition, a snooping
604 also asserts the A'R'mV snoop status when it has a pending TLB invalidate
operation, and a second TLB invalidate operation is detected.

For more information on the tlble instruction, see Section 2.3.6.3.3, "Translation
lookaside Buffer Management Instructions-{OEA)."

VO reply The 110 reply operation is part of the direct-store operation. It serves as the final bus
operation in the series of bus operations that service a direct-store operation.

EIEIO An EIEIO operation is put onto the bus as a result of executing an elelo instruction. The
elelo instruction enforces ordered execution of ac:cesses to noncacheable memory. The
604s internally enforce ordering of such ac:cesses with respect to the elelo instruction· in
that noncacheable ac:cesses due to instructions that occur before the elelo instruction in
the program order are placed on the bus before any noncacheable accesses that result
from instructions that occur after the elelo instruction with the EIEIO bus operation
separating the two sets of bus operations.

If the system implements a mechanism that allows reordering of noncacheable
requests, the appearance of an EIEIO operation should cause it to force ordering
between accesses that occurred before and those that occur after.

SYNC The sync instruction generates an address-only transaction, which the 604 places onto
the bus.
When a 604 detects a SYNC operation on the bus, it asserts the ARTRV snoop status if
any other snooped cache operations are pending in the device.

Read-with-no-intent-to- A RWNITC operation is issued by a bus-attached device as TT(4,0-3) = Ob10101-1ike
cache (RWNITC) a read, but with TT4 = 1). The 604 snoops this operation and if it gets a cache hit on a

block marked M, It writes the block back to memory and marks it E.

This operation is useful for a graphics adapter that reads display data from memory.
This data may be in the processor's cache and may be updated frequently. Because the
adapter does not cache the data, the processor need not leave the block in the S state,
requiring a bus operation to regain exclusive ac:cess.

Chapter 3. Cache and Bus Interface Unit Operation 3-21

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response

XFERDATA XFERDATA read and write operations are bus transactions that result from execution of
the eclwx or ecowx instructions, respectively. These instructions assist certain adapter
types (especially displays) to make high-speed data transfers. They do this by
calculating an effective address, translating it, and presenting the resulting physical
address to the adapter.

The XFERDATA read and write operations transfer a word of data to or from the
processor, respectively. They also present the 4-bit resource 10 (RID) field, using the
concatenation of the bits TeST II TSIZ[O-2]. These transactions are unique in the sense
that the address that is transferr~d does not select the slave device; it is simply being
passed to the slave device for use in a subsequent transaction. Rather, the RID bits are
used to select among the slave devices.

Although the intent of these instructions is that the slave device that is selected by the
RID bitswill use the address that is transferred in a subsequent data transfer, the exact
natured this data transfer is not defined by 604 bus specifications. It is a private
transfer that can be defined by the system like any other direct memory access.

3.9.7 Enveloped High-Priority Cache Block Push Operation
If the 604 has a read operation outstanding on the bus and another pipe lined bus operation
hits against a modified block, the 604 provides a high-priority push operation. This
transaction can be enveloped within the address and data tenures of a read operation. This
feature prevents deadlocks in system organizations that support multiple memory-mapped
buses. More specifically, the 604 internally detects the scenario where one or more load
requests are outstanding and the processor has pipelined a write operation on top of the
load. Nonnally, when the data bus is granted to the 604, the resulting data bus tenure is used
for the load operation.

The enveloped high-priority cache block push feature defines a bus signal, the data bus
write only qualifier (DBWO), which, when asserted with a qualified data bus grant,
indicates that the resulting data tenure should be used for the first store operation instead.
If no store operation is pending, the first read operation is perfonned If no write operation
is pending, the 604 can perfonn a read operation. This signal is described in detail in
Section 8.11, "Using Data Bus Write Only." Note that the enveloped copy-back operation
is an internally pipelined bus operation.

3.9.8 Bus Operations Caused by Cache Control Instructions
Table 3-5 provides an overview of the bus operations initiated by cache control
instructions. Note that Table 3-5 assumes that the WIM bits are set to 001; that is, since the
cache is operating in write-back mode, caching is permitted and coherency is enforced.

3-22 Power PC 604 RISC Microprocessor User's Manual

3.9.9 Cache Control Instructions
Table 3-5 lists bus operations performed by the 604 when they execute cache control
instructions.

Table 3·5. 604 Bus Operations Initiated by Cache Control Instructions

Instruction Cache State Next Cache State Bus Operation Comment

sync Don't care No change SYNC First clears memory queue

eieio Don't care No change EIEIO No clear meaning

lebl Don't care I ICBI -

debl Don't care I Kill -
(invalidate)

debf E,S,I I Rush -
(flush)

M I Write-with-k111 Marked as write-through

debst E,S,I No change Clean -
(store)

M E Write-with-k111 Marked as write-through

debz I M Kill May also replace
(zero)

S M Kill -

M,E M None Write over modified data

debt, debtst I E,S Read State change on reload

M,E,S No Change None -

tlbsyne Don't care No change TLBSYNC -

Table 3-5 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.10, "Cache Actions."

Chapter 3, "Addressing Modes and Instruction Set Summary," and Chapter 8, "Instruction
Set," in The Programming Environments Manual describe th~ cache control instructions in
detail. Several of the cache control instructions broadcast onto the 604 interface so that all
processors in a multiprocessor system can take appropriate actions. The 604 contains
snooping logic to monitor the bus for these commands and the control logic required to
keep the cache and the memory queues coherent. For additional details about the specific
bus operations performed by the 604, see Chapter 8, "System Interface Operation."

3.10 Cache Actions
Table 3-6 lists the actions that occur for various operations depending on different WIM bit
settings.

Chapter 3. Cache and Bus Interface Unit Operation 3-23

Table 3-6. Cache Actions

Cache MESI
Action

Bus Bus TTO-4 Rsy'n Snoop
Action

WIM State Operation WIM Response

000 I Load Read 000 01010 (n/a) (None) Load the block of data into cache
forward data from load
mark cache block E

000 I Load Read 000 01010 (n/a) SFm Load the block of data into cache
load from cache
mark cache block S

000 I Load Read 000 01010 (n/a) ARTRY'or Release the bus
ARTRY&'SRt> retry the operation

000 ME Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache
S

001 I Load Read 001 01010 (n/a) (None) Load the block of data into cache
mark cache block E
load from cache

001 I Load Read 001 01010 (n/a) ~ Load the block of data into cache
load from cache
mark cache block S

001 I Load Read 001 01010 (n/a) ARTRY'or Release the bus
A"R'mV&SR15 retry the operation

001 ME Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache
S

011 ESI Load Single- 01M 01010 (n/a) (None) or Load from main memory
010 beat read 11M SRI5
110
111

011 ESI Load Single- 01M 01010 (n/a) ARTRYor Release the bus
010 beat read 11M ~&SR15 retry the operation
110
111

011 M Load Single- 01M 01010 (n/a) (None) or Paradox-cache should be I
010 beat read 11M ~ load from main memory
110
111

011 M Load Single- 01M 01010 (n/a) Am'RVor Paradox-cache should be I
010 beat read 11M ARmY&SRD release the bus
110 retry the operation
111

100 I Load Read 100 01010 (n/a) (None) Load the block of data into cache
load from cache
mark the cache block E

100 I Load Read 100 01010 (n/a) SAl) Load the block of data into cache
load from cache
mark cache block S

3-24 Power PC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

100 I Load Read 100 01010 (nla) ARTRVor Release the bus
ARTRV&~ retry the operation

100 ME Load (None) (nla) (nla) (nla) (nla) Load from cache
S

101 I Load Read 101 01010 (nla) (None) Load the block of data into cache
load from cache
mark cache E

101 I Load Read 101 01010 (nla) ~ Load the block of data into cache
load from cache
mark cache block S

101 I Load Read 101 01010 (nla) AR'TRVor Release the bus
ARTRV&~ retry the operation

101 ME Load (None) (nla) (nla) (nla) (nla) Load from cache
S

000 I Iwarx Read 000 11010 Set (None) .Load the block of data into cache
atomic by set reservation

this op load from cache
mark cache block E

000 I Iwarx Read 000 11010 Set SRl5 Load the block of data into cache
atomic by set reservation

this op load from cache
mark cache block S

000 I Iwarx Read 000 11010 (nla) ARTRVor Release the bus
atomic ARTRV&SRl5 retry the operation

000 ME Iwarx Iwarx 000 00001 Set (None) or Set reservation
S reservation by SRl5 load from cache

set this op

000 ME Iwarx Iwarx 000 00001 (nla) ARTRVor Release the bus
S reservation AR'TRV&SRl5 retry the operation

set

001 I Iwarx Read 001 11010 Set (None) Load the block of data into cache
atomic by mark cache block E

this op set reservation
load from cache

001 I Iwarx Read 001 11010 Set SRl5 Load the block of data into cache
atomic by set reservation

this op load from cache
mark cache block S

001 I Iwarx Read 001 11010 (nla) ARTRVor Release the bus
atomic ARTRV&SRl5 retry the operation

001 ME Iwarx Iwarx 001 00001 Set (None) or Set reservation
S reservation by SRl5 load from cache

set this op

Chapter 3. Cache and Bus Interface Unit Operation 3-25

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

001 ME Iwarx Iwarx 001 00001 (n/a) AR'mYor Release the bus
S reservation AR'mY&SFm retry the operation

set

011 I Iwarx Single- 01M 11010 Set (None) or Set reservation
010 beat read by §m load from main memory

atomic this op

011 I Iwarx Single- 01M 11010 (n/a) ~or Release the bus
010 beat read AR'mY&SFm retry the operation

atomic

011 ES Iwarx Single- 01M 11010 Set (None) or Set the reservation
010 beat read by ~ load from main memory

atomic this op

011 ES Iwarx Single- 01M 11010 (n/a) AR'mYor Release the bus
010 beat read ~&mD" retry the operation

atomic

011 M Iwarx Single- 01M 11010 Set (None) or Paradox-<:ache should be I
010 beat read by ~ set the reservation

atomic this op load from main memory

011 M Iwarx Single- 01M 11010 (n/a) AR'mYor Paradox-<:ache should be I
010 beat read AR'mY&SFm release the bus

atomic retry the operation

100 I Iwarx (n/a) (n/a) (n/a) (n/a) (n/a) A Iwarx to a page marked write-
101 through causes a data access

exception; therefore no bus
transaction results.

101 (n/a) Iwarx (n/a) (n/a) (n/a) (n/a) (n/a) A Iwarx to a page marked write-
through causes a data access
exception; therefore no bus
transaction results.

000 I Store RWITM 000 01110 (n/a) (None) or Load the block of data into cache
~ store to cache

mark cache M

000 I Store RWITM 000 01110 (n/a) AR'mYor Release the bus
AR'mY&~ retry the operation

000 S Store Kill 000 01100 (n/a) (None) or Wait for the kill to be successfully
§m presented

store to cache
mark cache block M

000 S Store Kill 000 01100 (n/a) ~or Release the bus
AR'mY&SFm retry the operation

000 E Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache
mark cache block M

000 M Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache

3-26 Power PC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

001 I Store RWITM 001 01110 (nta) (None) or Load the block of data into cache
sm> mark cache block E

store to cache
mark cache block M

001 I Store RWITM 001 01110 (nta) AFtTRVor Release the bus
ARTRV&'§R15 retry the operation

001 S Store Kill 001 01100 (..va) (None) or Wait for kill to be successfully
§m presented

mark cache block E
store to cache
mark cache block M

001 S Store Kill 001 01100 (..va) AFtTRVor Release the bus
ARTRV&'§R15 retry the operation

001 E Store (None) (n/a) (n/a) (nta) (n/a) Store to cache
mark cache block M

001 M Store (None) (n/a) (n/a) (..va) (n/a) Store to cache

011 I Store Write with 01M 00010 (..va) (None) or Store to main memory
010 flush 11M mD
110
111

011 I Store Write with 01M 00010 (..va) Am"RVor Release the bus
010 flush 11M Am"RV&'§R15 retry the operation
110
111

011 ES Store Write with 01M 00010 (nta) (None) or Paradox-cache should be I
010 flush 11M S'Rl) store to main memory
110
111

011 ES Store Write with 01M 00010 (nta) Am"RVor Paradox-cache should be I
010 flush 11M AFtTRV&~ release the bus
110 retry the operation
111

011 M Store Write with 01M 00010 (nta) (None) or Paradox-cache should be I
010 flush 11M S'Rl) store to main memory
110
111

011 M Store Write with 01M 00010 (nta) ARTRYor Paradox-cache should be I
010 flush 11M ARTRV&'§R15 release the bus
110 retry the operation
111

100 I Store Write with 100 00010 (..va) (None) or Store to main memory
flush mD

100 ME Store Write with 100 00010 (nta) Am"RVor Release the bus
SI flush AFtTRV&'SFm retry the operation

Chapter 3. Cache and Bus Interface Unit Operation 3-27

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus TTO-4 Rsv'n
Snoop

Action
WIM State Operation WIM Response

100 ME Store Write with 100 00010 (,va) (None) or Store to cache
S flush SFm store to main memory

101 I Store Write with 101 00010 (,va) (None) or Write to main memory
flush 'SAD (note: no reload on a store miss)

101 ME Store Write with 101 00010 (,va) A'RTRVor Release the bus
SI flush Am'RY&§m retry the operation

101 ME Store Write with 101 00010 (,va) (None) or Store to cache
S flush 'SAD store to main memory

000 SI stwcx. (None) (,va) (n/a) None (n/a) Update condition register

000 I stwcx. RWITM 000 11110 Yes (None) or load the block of data into cache
atomic (and 'SAt) release the reservation

reset) update the condition register
store to cache
mark cache M

000 I stwcx. RWITM 000 11110 Yes A'RTRVor Release the bus
atomic ARTIW&§m retry the operation

000 S stwcx. Kill 000 01100 Yes (None) or Wait for the kill to be successfully
(and SFm presented
reset) release reservation

update condition register
store to cache
mark cache block M

000 S stwcx. Kill 000 01100 Yes A'RTRVor Release the bus
Am'RY&'SFm retry the operation

000 ME stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

000 E stwcx. (None) (n/a) (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache

mark cache block M

000 ME stwcx. (None) (n/a) (n/a) Yes (n/a) (,va)
(and
reset)

000 M stwcx. (None) (n/a) (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache

001 SI stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

001 I stwcx. RWITM 001 11110 Yes (None) or load the block of data into cache
atomic (and SRD release the reservation

reset) update the condition register
store to cache
mark cache M

001 I stwcx RWITM 001 11110 Yes Am'RVor Release the bus
atomic ARTRY&SRl) retry the operation

3-28 Power PC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

001 S stwcx. Kill 001 01100 Yes (None) or Release reservation
(and §it) update condition register
reset) mark cache block E

store to cache
mark cache block M

001 S stwcx. Kill 001 01100 Yes ~or Release the bus
ARTRV&§it) retry the operation

001 E stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

001 ME stwcx. (None) (n/a) (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache

mark cache block M

001 ME stwcx. (None) (n/a) (n/a) Yes (n/a) (wa)

001 M stwcx. (None) (n/a) (n/a) Yes (n/a) Release reservation
(and update condition register
reset) store to cache

011 I stwcx. (None) (n/a) (n/a) None (n/a) Update condition register
010

011 I stwcx. Write with 01M 10010 Yes (None) or Release reservation
010 flush (and mm update condition register

atomic reset) store to main memory

011 I stwcx. Write with 01M 10010 Yes Xm"RVor Release the bus
010 flush ~&§Rn retry the operation

atomic

011 ME stwcx. (None) (n/a) (n/a) None (n/a) Paradox-cache should be I
010 S update condition register

011 ME stwcx. Write with 01M 10010 Yes (None) or Paradox-cache should be I
010 S flush (and mm check/release reservation

atomic reset) update condition register
store to main memory

011 ME stwcx. Write with 01M 10010 Yes ARTJ!r{or Paradox-cache should be I
010 S flush ~&§Rn release the bus

atomic retry the operation

011 M stwcx. (n/a) (n/a) (n/a) None (n/a) (wa)
010

100 (wa) stwcx. (n/a) (n/a) (n/a) (wa) (n/a) A .twcx. to a page marked write-
101 though causes a data access
llX exception; therefore, no bus

transaction results.

Chapter 3. Cache and Bus Interface Unit Operation 3-29

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action WIM State Operation WIM Response

100 (..va) stwex. (n/a) (n/a) (n/a) Yes (n/a) An stwex. to a page marked
101 write-though causes a data
11X access exception; therefore, no

bus transaction results.

000 I debt Read 000 01010 (..va) (None) Load the block of data into cache
mark the cache E .. 000 I debt Read 000 01010 (..va) 'SFm Load the block of data into cache
mark the cache S

000 I debt Read 000 01010 (..va) XFrmVor Release the bus
Am'RV&§m retry the operation

000 ME debt (None) (n/a) (n/a) (..va) (n/a) No-op
S

001 I debt Read 001 01010 (..va) (None) Load the block of data into cache
mark the cache E

001 I debt Read 001 01010 (..va) "SRD Load the block of data into cache
mark the cache S

001 I debt Read 001 01010 (..va) XFrmVor Release the bus
XFrmV&~ retry the operation

001 ME debt (None) (n/a) (n/a) (..va) (n/a) No-op
S

011 I debt (None) 01M (n/a) (..va) (n/a) No-op
010 11M
110
111

011 ES debt (None) (n/a) (n/a) (..va) (n/a) No-op
010
110
111

011 M debt (None) (n/a) (n/a) None (n/a) No-op
010
110
111

011 M debt (n/a) (n/a) (n/a) None (n/a) (..va)
010
110
111

100 I debt Read 100 01010 (..va) (None) Load the block of data into cache
mark the cache E

100 I debt Read 100 01010 (..va) SAt> Load the block of data into cache
mark the cache S

100 I debt Read 100 01010 (..va) Am'RVor Release the bus
XFrmV&~ retry the operation

3-30 Power PC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsy'n

Snoop
Action

WIM State Operation WIM Response

100 ME debt (None) (n/a) (nla) (nla) (nla) No-op
S

101 I debt Read 101 01010 (nla) (None) Load the block of data into cache
mark the cache E

101 I debt Read 101 01010 (nla) SRT5 Load the block of data into cache
mark the cache S

101 I debt Read 101 01010 (nla) 'ARTRVor Release the bus
'ARTRV&§m retry the operation

101 ME debt (None) (n/a) (nla) (nla) (n/a) No-op
S

000 I debtst Read 000 01010 (nla) (None) Load the block of data into cache
mark the cache E

000 I debtst Read 000 01010 (nla) SRT5 Load the block of data into cache
mark the cache S

000 I debtst Read 000 01010 (nla) 'ARTRVor Release the bus
ARTRV&§m retry the ope ration

000 S debtst (None) (nla) (nla) (nla) (n/a) No-op

000 ME debtst (None) 000 (nla) (nla) (n/a) No-op

001 I debtst Read 001 01010 (nla) (None) Load the block of data into cache
mark the cache E

001 I debtst Read 001 01010 (nla) SRT5 Load the block of data into cache
mark the cache S

001 I debtst Read 001 01010 (nla) AR'TRVor Release the bus
~&§m retry the operation

001 ME debtst (None) (n/a) (nla) (nla) (n/a) No-op
S

011 I debtst (None) 01M (nla) (nla) (n/a) No-op
010 11M
110
111

011 ES debtst (None) (n/a) (nla) (nla) (nla) No-op
010
110
111

011 M debtst (None) (n/a) (n/a) None (nla) No-op
010
110
111

011 M debtst (nla) (nla) (n/a) None (n/a) (nla)
010
110
111

Chapter 3. Cache and Bus Interface Unit Operation 3-31

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WlM Response

100 I debtst Read 100 01010 (nta) (None) Load the block of data into cache
mark cache E

100 I debtst Read 100 01010 (nta) SFm Load the block of data into cache
mark cache as block S

100 I debtst Read 100 01010 (nta) AR'mVor Release the bus .. AR'mV&SRl> retry the operation

100 ME debtst (None) (n/a) (n/a) (nta) (n/a) No-op
S

101 I debtst Read 101 01010 (nta) (None) Load the block of data into cache
mark cache block E

101 I debtst Read 101 01010 (nta) SFm Load the block of data into cache
mark cache block S

101 I debtst Read 101 01010 (nta) AR'mVor Release the bus
ARTRV&SRl> retry the operation

101 S debtst (None) (n/a) (n/a) (nta) (n/a) No-op
E

101 M debtst (None) (n/a) (n/a) (nta) (n/a) No-op

000 I debz Kill 000 01100 (nta) (None) or Establish the block in data cache
SFm without fetching the block from

main memory
clear all bytes
mark cache block M

000 SI debz Kill 000 01100 (nta) 1'Fn'RVor Release the bus
AR'mV&~ retry the operation

000 S debz Kill 000 01100 (nta) (None) or Clear all bytes in the block
SFm mark cache block M

000 E debz (None) 000 (n/a) (nta) (n/a) Clear all bytes in the block
mark cache block M

000 M debz (None) (n/a) (n/a) (nta) (n/a) Write zeros to all bytes in the
cache block

001 I debz Kill 001 01100 (nta) (None) or Establish the block in data cache
SFm without fetching the block from

main memory
clear all bytes
mark cache block M

001 I debz Kill 001 01100 (nta) 1'Fn'RVor Release the bus
AR'mV&~ retry the operation

001 S debz Kill 001 01100 (nta) (None) or Mark cache block E
SFm set all bytes of the block to zero

mark the cache block M

001 S debz Kill 001 01100 (nta) AR'mVor Release the bus
AR'mV&~ Retry the operation

3-32 Power PC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus TTO-4 Rsv'n
Snoop

Action
WIM State Operation WIM Response

001 E debz (None) (n/a) (n/a) (n/a) (n/a) Write zeros to all bytes in the
Cache block
mark cache block M

001 M debz (None) (n/a) (n/a) (n/a) (n/a) Write zeros to all bytes in the
cache block

010 ME dcbz (n/a) (n/a) (n/a) (n/a) (n/a) A debz to a page marked cache
011 SI inhbited or write-through causes
110 an alignment exception;
111 therefore this transaction does
100 not occur on the bus
101

000 ESI debst Clean 000 00000 (n/a) (None) or No-op
SAl)

000 ESI debst Clean 000 00000 (n/a) JrnTRYor Release the bus
A'RTRY&SRt> retry the operation

000 M debst Write with 100 00110 (n/a) (None) or Write the block to main memory
kill SAl) mark cache block E

000 M debst Write with 100 00110 (n/a) JrnTRYor Release the bus
kill A'RTRY&SRt> retry the operation

001 ESI debst Clean 001 00000 (n/a) (None) or No-op
SRl)

001 ESI debst Clean 001 00000 (n/a) ARTRYor Release the bus
A'RTRY&SRt> retry the operation

001 M debst Write with 100 00110 (n/a) (None) or Write all bytes in the cache block
kill SAl) to main memory

mark cache block E

001 M debst Write with 100 00110 (n/a) A'RTRYor Release the bus
kill A'RTRY&SRt> retry the operation

011 ESI debst Clean W1M 00000 (n/a) (None) or No-op
010 SAl)
110
111

011 I debst Clean W1M 00000 (n/a) JrnTRYor Release the bus
010 ARWr?&SRt> retry the operation
110
111

011 M debst Write with 100 00110 (n/a) (None) or Write all bytes in the cache block
010 kill 'SAD to main memory
110 Mark cache block E
111

011 M debst Write with 100 00110 (n/a) A'RTRYor Release the bus
010 kill A'RTRY&SRt> retry the operation
110
111

Chapter 3. Cache and Bus Interface Unit Operation 3-33

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus TTO-4 Rsv'n
Snoop

Action
WIM State Operation WIM Response

100 ESI debst Clean 100 00000 (n/a) AR'mVor Release the bus
AR'mV&SRD retry the operation

100 ESI debst Clean 100 00000 (n/a) (None) or No-op
SRD

100 M debst Write with 100 00110 (n/a) (None) or Write the block back to memory
kill SRD mark cache block E

100 M debst Write with 100 00110 (n/a) AR'mVor Release the bus
kill AR'mV&SRD retry the operation

101 ESI debst Clean 101 00000 (n/a) (None) or No-op
SFm

101 ESI debst Clean 101 00000 (n/a) AR'mVor Release the bus
AR'mV&SRD retry the operation

101 M debst Write with 100 00110 (n/a) (None) or Write the block back to memory
kill SFm mark cache block E

101 M debst Write with 100 00110 (n/a) AR'mVor Release the bus
kill Am'RY&SRD retry the operation

000 I debt Flush 000 00100 (n/a) (None) or No-op
SRD

000 I debt Flush 000 00100 (n/a) AR'mVor Release the bus
AR'mV&SRD retry the operation

000 ES debf Flush 000 00100 (n/a) (None) or Mark cache block I
SFm

000 ES debt Flush 000 00100 (n/a) 'AI1mVor Release the bus
AR'mV&SFm retry the operation

000 M debt Write with 100 00110 (n/a) (None) or Write the block of data back to
kill SFm main memory

mark the cache block I

000 M debt Write with 100 00110 (n/a) AR'mVor Release the bus
kill ARTRY&SFm retry the operation

001 I debt Flush 001 00100 (n/a) (None) or No-op
SFm

001 ES debt Flush 001 00100 (n/a) (None) or Mark cache block I
SFm

001 ESI debt Flush 001 00100 (n/a) AR'mVor Release the bus
ARTRY&SFm retry the operation

001 M debt Write with 100 00110 (n/a) (None) or Write all bytes in the cache block
kill SFm to main memory

mark cache block I

001 M debf Write with 100 00110 (n/a) ARTRYor Release the bus
kill AR'mV&SFm retry the operation

3-34 PowerPC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WlM Response

011 I debt Flush W1M 00100 (n'a) (None) or No-op
010 §it)
110
111

011 I debt Flush W1M 00100 (n'a) ~or Release the bus
010 Am'RV&§Rt5 retry the operation
110
111

011 ES debt Flush W1M 00100 (n'a) (None) or Mark cache block I
010 ~
110
111

011 ES debt Flush W1M 00100 (n'a) AR'mVor Retry the operation
010 AR'mV&§Rt5
110
111

011 M debt Write with 100 00110 (n'a) (None) or Flush the block
010 kill §it) mark cache block I
110
111

011 M debt Write with 100 00110 (n'a) AR'mVor Release the bus
010 kill ~&§m retry the operation
110
111

100 I debt Flush 100 00100 (n'a) (None) or No-op
§it)

100 ES debt Flush 100 00100 (n'a) (None) or Mark cache block I
§it)

100 ESI debt Flush 100 00100 (n'a) AR'mVor Release the bus
AR'mV&§Rt5 retry the operation

100 M debt Write with 100 00110 (n'a) (None) or Write the block back to memory
kill SAn mark cache block I

100 M debt Write with 100 00110 (rVa) AR'mVor Release the bus
kill AR'mV&§Rt5 retry the operation

101 I debt Flush 101 00100 (n'a) (None) or No-op
mm

101 ES debt Flush 101 00100 (n'a) (None) or Mark cache block I
SAn

101 ESI debt Flush 101 00100 (n'a) Am'RVor Release the bus
AR'mV&§Rt5 retry the operation

101 M debt Write with 100 00110 (n'a) (None) or Flush the block
kill SRl5 mark cache block I

101 M debt Write with 100 00110 (n'a) A'RTRVor Release the bus
kill A'RTRV&§Rt5 retry the operation

Chapter 3. Cache and Bus Interface Unit Operation 3-35

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

000 I debl Kill 000 01100 (n/a) (None) or No-op
SRl5

000 ME debl Kill 000 01100 (n/a) (None) or Mark the cache block I
S §An

000 ME debl Kill 000 01100 (n/a) ~or Release the bus
SI ARm&§m retry the operation

001 I dcbl Kill 001 01100 (n/a) (None) or No-op
SRl5

001 I debl Kill 001 01100 (n/a) ~or Release the bus
ARm&§m retry the operation

001 S debl Kill 001 01100 (n/a) (None) or Mark cache block I
SRl5

001 S debl Kill 001 01100 (n/a) ~or Release the bus
~&§m retry the operation

001 EM debl Kill 001 01100 (n/a) (None) or Mark cache block I
SRl5

001 EM debl Kill 001 01100 (n/a) ~or Release the bus
~&§m retry the operation

011 I debl Kill W1M 01100 (n/a) (None) or No-op
010 SRl5
110
111

011 ME debl Kill W1M 01100 (n/a) (None) or Mark cache block I
010 S SRI5
110
111

011 ME debl Kill W1M 01100 (n/a) ARmor Release the bus
010 SI ARTRY&§m retry the operation
110
111

100 I debl Kill 100 01100 (n/a) (None) or No-op
SRI5

100 ME debl Kill 100 01100 (n/a) ARmor Release the bus
SI ARTRY&§m retry the operation

100 ME debl Kill 100 01100 (n/a) (None) or Mark cache block I
S §AD

101 I debl Kill 101 01100 (n/a) (None) or No-op
§AD

101 ME debl Kill 101 01100 (n/a) ARmor Release the bus
SI ARTR&§AD retry the operation

3-36 Power PC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

101 ME debl Kill 101 01100 (nta) (None) or Mark cache block I
S SFm

000 INV lebl ICBI 000 01101 (nta) (None) or No-op
SFm

000 INV lebl ICBI 000 01101 (nta) AR'mVor Release the bus
AR'mV&SFm retry the operation

000 VAL lebl ICBI 000 01101 (nta) (None) or Mark icache block INV
SFm

000 VAL Icbl ICBI 000 01101 (nta) AR'mVor Release the bus
AR'mV&SRn' retry the operation

001 INV Icbl ICBI 001 01101 (nta) (None) or No-op
SFm

001 INV lebl ICBI 001 01101 (nta) AR'mVor Release the bus
VAL AR'mV&SRn' retry the operation

001 VAL Icbl ICBI 001 01101 (nta) (None) or Mark icache block INV
SFm

011 INV Icbl ICBI 01M 01101 (nta) (None) or No-op
010 11M SFm
110
111

011 INV Icbl ICBI 01M 01101 (nta) Am'RVor Release the bus
010 VAL 11M AR'mV&SRn' retry the operation
110
111

011 VAL Icbl ICBI 01M 01101 (nta) (None) or Mark icache block INV
010 11M §m
110
111

100 INV Icbl ICBI 100 01101 (nta) (None) or No-op
SR15

100 INV Icbl ICBI 100 01101 (nta) AR'mVor Release the bus
VAL AJm!!(V&SRn' retry the operation

100 VAL Icbl ICBI 100 01101 (nta) (None) or Mark icache block INV
SR15

101 INV lebl ICBI 101 01101 (nta) (None) or No-op
SR15

101 INV Icbl ICBI 101 01101 (nta) AR'mVor Release the bus
VAL AR'mV&§m retry the operation

101 VAL Icbl ICBI 101 01101 (nta) (None) or Mark icache block INV
SFm

Chapter 3. Cache and Bus Interface Unit Operation 3-37

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

(n/a) (n/a) sync SYNC xx1 01000 (n/a) (None) or The sync instruction completed.
~ (Note: This table does not give

an accurate representation of
what the sync instruction does.)

(n/a) (n/a) sync SYNC xx1 01000 (n/a) AR'TRYor Release the bus.
AR'TRV&~ Retry the operation.

(n/a) (n/a) eleio EIEIO xx1 10000 (n/a) (None) or The eieio instruction has
SRI> completed.

(Note: This table does not give
an accurate representation of
what the eieio instruction does.)

(n/a) (n/a) elelo EIEIO xx1 10000 (n/a) AR'TRYor Release the bus.
Am"R'l&SRr5 Retry the operation.

(n/a) (n/a) tlble TLB xx1 11000 (n/a) (None) or Hold oft any new storage
invalidate sm> instructions.

Wait for the completion of any
outstanding storage instructions
Invalidate the requested TLB
entry
(Note: This table does not
thoroughly characterize the tlble
instruction.)

(n/a) (n/a) tlble TLB xx1 11000 (n/a) Am"R'lor Release the bus.
invalidate Am"R'l&~ Retry the operation

tlbsync TLBsync xx1 01001 (n/a) (None) or The TLB sync instruction has
SRr5 completed.

(Note: This table does not
thoroughly characterize the
tlbsync instruction.)

tlbsync TLB sync xx1 01001 (n/a) AR'TRVor Release the bus.
ARTRY&~ Retry the operation.

I Snoop-kill xx1 01100 None (None) No-op

I Snoop-kill xx1 01100 Yes (None) Release reservation.
(and
reset)

ME Snoop-kill xx1 01100 None (None) Mark cache block I.
S

ME Snoop-kill xx1 01100 Yes (None) Mark cache block I.
S (and Release reservation.

reset)

I Snoop- xx1 01010 None (None) No-op
read

I Snoop- xx1 01010 Yes sm> No-op
read

3-38 PowerPC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action Bus Bus

nO-4 Rsv'n
Snoop

Action
WIM State Operation WIM Response

S Snoop- xx1 01010 (,va) SFm No-op
read

E Snoop- xx1 01010 (,va) SFm Mark cache block S.
read

M Snoop- x01 01010 (,va) ~&SFm Attempt to write cache block
read back to main memory;

if successful, mark cache block S

M Snoop- x11 01010 (,va) ~&SFm Attempt to write cache block
read back to main memory;

If successful, mark cache block S

I Snoop- xx1 11010 None (None) No-op
read
atomic

I Snoop- xx1 11010 Yes SFm No-op
read
atomic

S Snoop- xx1 11010 (,va) SFm No-op
read
atomic

E Snoop- xx1 11010 (,va) "SAD Mark cache block S
read
atomic

M Snoop- xx1 11010 (,va) AR'mV&SFm Attempt to write cache block
read back to main memory; if
atomic successful, mark cache block S.

I Snoop- xx1 01110 None (None) No-op
RWITM

I Snoop- xx1 01110 Yes (None) Release reservation.
RWITM (and

reset)

ES Snoop- xx1 01110 None (None) Mark cache block I.
RWITM

ES Snoop- xx1 01110 Yes (None) Mark cache block I.
RWITM (and Release reservation.

reset)

M Snoop- xx1 01110 None AimW&SRr> Attempt to write cache block
RWITM back to main memory;

if successful, mark cache block I.

M Snoop- xx1 01110 Yes AR'm'7&SFm Attempt to write cache block
RWITM (and back to main memory;

reset) if successful, mark cache block I,
release reservation

Chapter 3. Cache and Bus Interface Unit Operation 3-39

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

I Snoop- xx1 11110 None (None) No-op
RWITM
atomic

I Snoop- xx1 11110 Yes (None) Release reservation.
RWITM (and
atomic reset) .. S Snoop- xx1 11110 None (None) Mark cache block I.

E RWITM
atomic

S Snoop- xx1 11110 Yes (None) Mark cache block I.
E RWITM (and Release reservation.

atomic reset)

M Snoop- xx1 11110 None AJ1mY&SRD Attempt to write cache block
RWITM back to main memory;
atomic if successful, mark cache block I.

M Snoop- xx1 11110 Yes ARTRY&§m Attempt to write cache block
RWITM (and back to main memory;
atomic reset) if successful, mark cache block I,

release reservation.

I Snoop- xx1 00100 None (None) No-op
flush

I Snoop- xx1 00100 Yes (None) No-op
flush

SE Snoop- xx1 00100 (n/a) (None) Mark cache block I.
flush

M Snoop- xx1 00100 (n/a) AR'mY&SRD Attempt to write cache block
flush back to main memory;

if successful:
mark cache block I.

ESI Snoop- xx1 00000 (n/a) (None) No-op
clean

M Snoop- xx1 00000 (n/a) AJ1mY&SHD Attempt to write cache block
clean back to main memory; if

successful, mark cache block E.

I Snoop- xx1 00010 None (None) No-op
write with
flush

I Snoop- xx1 00010 Yes (None) Release reservation.
write with (and
flush reset)

S Snoop- xx1 00010 None (None) Mark cache block I.
write with
flush

3-40 PowerPC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus TTO-4 Rsv'n
Snoop

Action
WIM State Operation WIM Response

S Snoop- xx1 00010 Yes (None) Mark cache block I.
write with (and Release reservation.
flush reset)

E Snoop- xx1 00010 None (None) Paradox-no one else should be
write with writing if this cache is E.
flush Mark cache block I

E Snoop- xx1 00010 Yes (None) Paradox-no one else should be
write with (and writing if this cache is E.
flush reset) Mark cache block I.

Release reservation.

M Snoop- xx1 00010 None AmV&SRD Paradox-no one else should be
write with writing if this cache is M.
flush Attempt to write cache block

back to main memory;
if successful, mark cache block I

M Snoop- xx1 00010 Yes AmV&SRIl Paradox-no one else should be
write with (and writing if this cache is M.
flush reset) Attempt to write cache block

back to main memory;
if successful, mark cache block I,
release reservation

I Snoop- xx1 00110 None (None) No-op
write with
kill

I Snoop- xx1 00110 Yes (None) Release reservation.
write with (and
kill reset)

S Snoop- xx1 00110 None (None) Mark cache block I.
write with
kill

S Snoop- xx1 00110 Yes (None) Mark cache block I.
write with (and Release reservation.
kill reset)

E Snoop- xx1 00110 None (None) Paradox-no one else should be
write with writing if this cache is E.
kill Mark cache block I.

E Snoop- xx1 00110 Yes (None) Paradox-no one else should be
write with (and writing if this cache is E.
kill reset) Mark cache block I.

Release reservation.

M Snoop- xx1 00110 None (None) Paradox-no one else should be
write with writing if this cache is M.
kill Mark cache block I.

Chapter 3. Cache and Bus Interface Unit Operation 3-41

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

M Snoop- xx1 00110 Yes (None) Paradox-no one else should be
write with (and writing if this cache is M.
kill reset) Mark cache block I.

Release reservation.

I Snoop- xx1 10010 None (None) No-op
write with .. flush
atomic

I Snoop- xx1 10010 Yes (None) Release reservation.
write with (and
flush reset)
atomic

S Snoop- xx1 10010 None (None) Mark cache block I.
write with
flush
atomic

S Snoop- xx1 10010 Yes (None) Mark cache block I.
write with (and Release reservation.
flush reset)
atomic

E Snoop- xx1 10010 None (None) Paradox-no one else should be
write with writing if this cache is E.
flush Mark cache block I.
atomic

E Snoop- xx1 10010 Yes (None) Paradox-no one else should be
write with (and writing if this cache is E.
flush reset) Mark cache block I,
atomic release reservation.

M Snoop- xx1 10010 None ARTRV&§m Paradox-no one else should be
write with writing if this cache is M.
flush Attempt to write block back to
atomic main memory;

if successful, mark cache block I

M Snoop- xx1 10010 Yes ARTRV&§m Paradox-no one else should be
write with (and writing if this cache is M.
flush reset) Attempt to write block back to
atomic main memory;

if successful: mark cache block I,
release reservation.

(,va) Snoop- xx1 11000 (,va) (None) Respond with (none) when the
TLB TLB has been invalidated.
invalidate

3-42 Power PC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions (Continued)

Cache MESI
Action

Bus Bus
TTO-4 Rsv'n

Snoop
Action

WIM State Operation WIM Response

(n/a) Snoop- xx1 11000 (n/a) (None) but Do not perform the TLB
TLB Am'IWis invalidate-this is to prevent a
invalidate activated on deadlock condition from

the bus from occurring.
another
processor

(n/a) Snoop- xx1 11000 (n/a) :urmv Respond with retry until the TLB
TLB has been invalidated.
invalidate

(n/a) Snoop- xx1 01000 (n/a) (None) H no TLB invalidates are
SYNC pending. no-op.

(n/a) Snoop- xx1 01000 (n/a) XRTRV H a TLB invalidate is pending.
SYNC respond with retry.

(n/a) Snoop- xx1 01001 (n/a) (None) H no TLB invalidates are
TLBSYNC pending. no-op.

(n/a) Snoop- xx1 01001 (n/a) XRTRV H a TLB invalidate is pending.
TLBSYNC respond with retry.

(n/a) Snoop- xx1 10000 (n/a) (None) No-op
EIEIO

(n/a) Snoop- xx1 10000 (n/a) XRTRV No-op
EIEIO

I Snoop- xx1 01101 (n/a) (None) No-op
ICBI

VAL Snoop- xx1 01101 (n/a) (None) Invalidate entry in icache
ICBI

I Snoop- xx1 01011 None (None) No-op
RWNITC

I Snoop- xx1 01011 Yes ~ No-op
RWNITC

ES Snoop- xx1 01011 (n/a) ~ No-op
RWNITC

M Snoop- xx1 01011 (n/a) XRTRV&~ Attempt to write cache block
RWNITC back to main memory; if

successful. mark cache block E.

Chapter 3. Cache and Bus Interface Unit Operation 3-43

3.11 Access to Direct-Store Segments
The 604 supports both memory-mapped and I/O-mapped access to I/O devices. In addition
to the high-perfonnance bus protocol for memory-mapped I/O accesses, the 604 provides
the ability to map memory areas to the direct-store interface (SR[T] = 1) with the following
two kinds of operations:

• Direct-store operations. These operations are considered to address the noncoherent
and noncacheable direct-store; therefore, the 604 does not maintain coherency for
these operations, and the cache is bypassed completely.

• Memory-forced direct-store operations. These operations are considered to address
memory space and are therefore subject to the same coherency control as memory
accesses. These operations are global memory references within the 604 and are
considered to be noncacheable.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for
these operations is determined by the settings of the WIM bits.

3-44 PowerPC 604 RISC Microprocessor User's Manual

Chapter 4
Exceptions
The DEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
mSA defines conditions that may cause floating-point exceptions; the DEA defines the
mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception-for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested It is up to the exception handler to save the states
if it is desired to allow control to ultimately return to the excepting program.

Chapter 4. Exceptions 4-1

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRRI soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition

Taken

Handling

Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor-
level (referred to as privileged state in the architecture specification).

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this
book, the term interrupt is reserved to refer to asynchronous exceptions, and sometimes to
the event that causes the exception to be taken. Also, the PowerPC architecture uses the
word exception to refer to IEEE-defined floating-point exceptions, conditions that may
cause a program exception to be taken (See Section 4.5.7, "Program Exception (OxOO700).)
The occurrence of these IEEE exceptions may in fact not cause an exception to be taken.
IEEE-defined exceptions are referred to as IEEE floating-point exceptions or floating-point
exceptions.

4.1 PowerPC 604 Microprocessor Exceptions
As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor's execution; synchronous exceptions are caused by
instructions.

The types of exceptions are shown in Table 4~1. Note that all exceptions except for the
system management interrupt and performance monitoring exception are defined by the
PowerPC architecture.

4-2 Power PC 604 RISC Microprocessor User's Manual

Table 4-1. Exception Classifications

Type exception

Asynchronouslnonmaskable Machine Check
System Reset

Asynchronouslmaskable External interrupt
Decrementer interrupt
System management interrupt (604-specific)
Performance monitoring exception (604-specific)

Synchronouslprecise Instruction-caused exceptions

Synchronouslimprecise Instruction-caused imprecise exceptions
(Roating-point imprecise exceptions)

Exceptions implemented in the 604, and conditions that cause them, are listed in Table 4-2.

Table 4-2. Exceptions and Conditions-Overview

exception Vector Offset
Causing Conditions Type (hex)

Reserved 00000 -
System reset 00100 The causes of system reset exceptions are implementation-dependent. In the

604 a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRRO and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check 00200 On the 604 a machine check exception is signaled by the assertion of a qualified
TEA indication on the 604 bus, or the machine check input (JlCl5) signal. If the
MSR(ME) is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME) is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by read, write, and instruction
fetch operations initiated by the processor; however, it is expected that the TEA
signal would be used by a memory controller to indicate that a memory parity
error or an uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = O. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state. (Note that, physical address is referred to as the real
address in the architecture specification.)

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRRO and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Chapter 4. Exceptions 4-3

Table 4-2. Exceptions and Conditions-Overview (Continued)

exception Vector Offset
Causing Conditions Type (hex)

OSI 00300 A OSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.5.3, "OS I Exception (OxOO300)." Such
accesses can be generated by loacVstore instructions, certain memory control
instructions, and certain cache control instructions.

lSI 00400 An lSI exception occurs when an instruction fetch cannot be performed for a
variety of reasons descrbed in Section 4.5.4, "lSI Exception (Ox00400)."

External 00500 An external interrupt occurs when the external exception signal, lNT, is
interrupt asserted. This signal is expected to remain asserted until the exception handler

begins execution. Once the signal is detected, the 604 stops dispatching
instructions and waits for all dispatched instructions to complete. Any exceptions
associated with dispatched instructions are taken before the interrupt is taken.

Alignment 00600 An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.5.6, "Alignment Exception
(Ox00600)." Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 604. In
these cases, the 604 provides logic to handle these conditions without requiring
the processor to invoke the alignment exception handler.

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

· Aoating-point enabled exception-A floating-point enabled exception
condition is generated when either MSR[FEO) or MSR[FE1) and
FPSCR[FEX] are set. The settings of FEO and FE1 are descrbed in
Table 4-4.
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 3 of
The Programming Environments Manual.

· Illegal instruction-An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specifiC implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, "Instruction Set
Summary."

· Privileged instructiorr-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR), is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if spr(0]=1 and
MSR[PR] = 1.

· Tra,>-A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.5.7, "Program Exception (OxOO700)."

Floating-point 00800 Defined by the PowerPC architecture, but not implemented in the 604.
unavailable

Oecrementer 00900 The decrementer interrupt exception is taken if the interrupt is enabled and the
exception is pending. The exception is created when the most significant bit
changes from 0 to 1. If it is not enabled, the exception remains pending until it is
taken.

4-4 Power PC 604 RISC Microprocessor User's Manual

Table 4-2. exceptions and Conditions-Overview (Continued)

Exception Vector Offset
Causing Conditions Type (hex)

Reserved OOAOO Reserved for implementation-specific exceptions. For example, the 601 uses
this vector offset for direct-store exceptions.

Reserved OOBOO -
System call OOCOO Asystem call exception occurs when a System Call (sc) instruction is executed.

Trace 00000 The trace exception, which is implemented in the 604, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either
MSR[SE) = 1 and any instruction (except rfl) successfully completed or
MSR[BE) = 1 and a branch instruction is completed.

Performance OOFOO The performance monitoring interrupt is a 604-specific exception and is used
monitoring with the 604 performance monitor, descrbed in Section 4.5.13, "Performance
interrupt Monitoring Interrupt (OxOOFOO)."

The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled by through bits in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR[EE) bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF Reserved for implementation-specific exceptions not implemented on the 604.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0 to
address 29) in the IABR matches the next instruction to complete in the completion unit,
breakpoint and the IABR enable bit (bit 30) is set to 1.

System 01400 A system management interrupt is caused when MSR[EE) = 1 and the mJt
management input signal is asserted. This exception is provided for use with the nap mode.
interrupt

Reserved 014FF-02FFF Reserved for implementation-specific exceptions not implemented on the 604.

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions
system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.

Chapter 4. Exceptions 4-5

III

Exception priorities are described in "Exception Priorities," in Chapter 6, "Exceptions," in
The Programming Environments Manual.

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state infonnation for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRRO did not cause the exception then that
instruction appears not to have begun execution. For more infonnation on context
synchronization, see Chapter 6, "Exceptions," in The Programming Environments Manual.

4.3 Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRRO and SRR1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore register 0
(SRRO) is used to help calculate where instruction processing should resume when the
exception handler returns control to the interrupted process. Depending on the exception,
this may be the address in SRRO or at the next address in the program flow. All instructions
in the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (as in the case of a system call or trap exception). The
SRRO register is shown in Figure 4-1.

SRRO (holds EA for instruction in interrupted program flow)

o

Figure 4-1. Machine Status Save/Restore Register 0

SRRO is 32 bits wide in 32-bit implementations.

31

The save/restore register I(SRR1} is used to save machine status (selected bits from the
MSR and possibly other status bits as well) on exceptions and to restore those values when
rfi is executed. SRRI is shown in Figure 4-2.

Exception-specific information and MSR bit values

o 31

Figure 4-2. Machine Status Save/Restore Register 1

4-6 Power PC 604 RISC Microprocessor User's Manual

Typically, when an exception occurs, bits 2-4 and 10-12 of SRRI are loaded with
exception-specific infonnation and bits 5-9, and 16-31 of MSR are placed into the
corresponding bit positions of SRRI.

Note that in other implementations every instruction fetch that occurs when MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRRI.

In the 604 and in other 32-bit PowerPC implementations, the MSR is 32 bits wide as shown
in Figure 4-3.

m Reserved

Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-3. Full function reserved bits are saved in SRRI when
an exception occurs; partial function reserved bits are not saved.

Table 4-3. MSR Bit Settings

Blt(s) Name Description

0 - Reserved. Fun Function.

1-4 - Reserved. Partial function.

5-9 - Reserved. Full function.

10-12 - Reserved. Partial function.

13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note that power management functions are implementation-dependent.

14 - Reserved-Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable
0 WhHe the bit is cleared the processor delays recognition of external interrupts and

decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

Chapter 4. Exceptions 4-7

Table 4-3. MSR Bit Settings (Continued)

Blt(s) Name Description

18 FP Aoating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point

loads, stores, and moves.
1 The processor can execute floating-point instructions, and can take floating-point enabled

exception type program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FEO IEEE floating-point exception mode 0 (See Table 4-4).

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of

the next instruction (unless that instruction is an rfl instruction). Successful execution
means that the instruction caused no other exception.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception upon the successful execution of

a branch instruction.

23 FE1 IEEE floating-point exception mode 1 (See Table 4-4).

24 - Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or Os. In the following desc:t1>tion, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address OxOOOn_nnnn.
1 Exceptions are vectored to the physical address OxFFFn_nnnn.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, "Memory Management."

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, "Memory Management."

28 - Reserved, full function.

29 PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
This bit is specific to the 604, and is defined as reserved by the PowerPC architecture. For
more information about the performance monitor, see Section 4.5.13, "Performance Monitoring
Interrupt (OxOOFOO)."

4-8 PowerPC 604 RISC Microprocessor User's Manual

Table 4-3. MSR Bit Settings (Continued)

Blt(s) Name Description

30 RI Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective IX the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does nol guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-end ian mode.
1 The processor runs in little-endian mode.

The IEEE floating-point exception mode bits (FEO and FEI) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. The possible settings and default conditions for the 604 are shown in Table 4-4. For
further details, see Chapter 6, "Exceptions," of The Programming Environments Manual.

Table 4-4. IEEE Floating-Point Exception Mode Bits

FEO FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable. In the 604, this bit setting causes the 604 to operate in floating-
point precise mode.

1 1 Floating-point precise mode

MSR bits are guaranteed to be written to SRRI when the first instruction of the exception
handler is encountered.

4.3.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

• IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEO] and MSR[FEI] are cleared If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

• Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognition
of these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of conditions causing those exceptions.

Chapter 4. Exceptions 4-9

..

• A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. IfMSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HlDO register, which is
described in Table 4-7.

• System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. The machine status save/restore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. Bits 1-4 and 10-15 of SRR1 are loaded with information specific to the exception
type.

3. Bits 5-9 and 16-31 of SRR1 are loaded with a copy of the corresponding bits of the
MSR. Note that depending on the implementation, reserved bits may not be copied.

4. The MSR is set as described in Table 4-3. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is cleared,
exceptions are vectored to the physical address OxOOOn _ nnnn. If IP is set, exceptions
are vectored to the physical address OxFFFn_ nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checks top state is entered (the machine stops executing instructions). See
Section 4.5.2, "Machine Check Exception (OxOO200)."

4.3.3 Setting MSR[RI]
The operating system should handle MSR[RI] as follows:

• In the machine check and system reset exceptions-If SRRI [RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

4-10 Power PC 604 RISC Microprocessor User's Manual

• In each exception handler-When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

• In each exception handler-Clear MSR[RI] , set the SRRO and SRRI registers
appropriately, and then execute rfi.

• Not that the RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

4.3.4 Returning from an Exception Handler
The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The rfi instruction copies SRRI bits back into the MSR.

• The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Chapter 6, "Exceptions," of
The Programming Environments Manual.

4.4 Process Switching
The operating system should execute one of the following when processes are switched:

• The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes. For an example showing use of the sync instruction, see
Chapter 2, "PowerPC Register Set," of The Programming Environments Manual.

• The isync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

• The stwcx. instruction, to clear any outstanding reservations, which ensures that an
Iwarx instruction in the old process is not paired with an stwcx. instruction in the
new process.

Chapter 4. Exceptions 4-11

The operating system should set the MSR[RJ] bit as described in Section 4.3.3, "Setting
MSR[RJ]."

4.5 Exception Definitions
Table 4-5 shows all the types of exceptions that can occur with the 604 and the MSR bit
settings when the processor transitions to supervisor mode due to an exception. Depending
on the exception, certain of these bits are stored in SRRI when an exception is taken.

Table 4-5. MSR Setting Due to Exception

Exception
MSR Bit

Type
POW ILE EE PR FP ME FEO SE BE FE1 IP IR DR RI LE

System reset 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Machine 0 - 0 0 0 0 0 0 0 0 - 0 0 0 ILE
check

OSI 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

lSI 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Extemal 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Alignment 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Program 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Floating- 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE
point
unavailable

Oecrementer 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

System call 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE

Trace 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE
exception

System 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE
management

Performance 0 - 0 0 0 - 0 0 0 0 - 0 0 0 ILE
monitor

o Bit is cleared.
ILE Bit is copied from the ILE bit in the MSR.

Bit is not altered
Reserved bits are read as if written as o.

The setting of the exception prefix bit (IP) detennines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address OxOOOn _ nnnn (where nnnnn
is the vector offset); if IP is set, exceptions are vectored to the physical address
OxFFFn _ nnnn. Table 4-2 shows the exception vector offset of the first instruction of the
exception handler routine for each exception type.

PowerPC 604 RISC Microprocessor User's Manual

4.5.1 System Reset Exception (Ox00100)
The 604 implements the system reset exception as defined in the PowerPC architecture
(OEA). The system reset exception is a nonmaskable, asynchronous exception signaled to
the processor through the assertion of system-defined signals. In the 604, the exception is
signaled by the assertion of either the SRESET or HRESET inputs, described more fully in
Chapter 7, "Signal Descriptions.".

Table 4-6. System Reset Exception-Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1-4 Cleared
5-9 Loaded with equivalent bits from the MSR
10-15 Cleared
16-31 Loaded with equivalent bits of the MSR
Note that if the processor state is corrupted to the extent that execution cannot resume reliably, the
MSR[Rij bit (SRR1 [30» is cleared.

MSR POW 0 BE 0
ILE - FE1 0
EE 0 IP -
PR 0 IR 0
FP 0 DR 0
ME -- RI 0
FEO 0 LE Set to value of ILE
SE 0

The SRESET input provides a "warm" reset capability. This input is used to avoid causing
the 604 to perform the entire power-on reset sequence, thereby preserving the contents of
the architected registers. This capability is useful when recovering from certain checkstop
or machine check states. When a system reset exception is taken, instruction execution
continues at offset OxOOlOO from the physical base address indicated by MSR[lP].

4.5.2 Machine Check Exception (Ox00200)
The 604 implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, after receiving a qualified transfer error
acknowledge (TEA) indication on the 604 bus, or after the machine check interrupt (MCP)
signal had been asserted. As defined in the OEA, the exception is not taken if the MSR[ME]
is cleared.

Chapter 4. Exceptions 4-13

Machine check conditions can be enabled and disabled using bits in the HlDO described in
Table 4-7.

Table 4-7. Machine Check Enable Bits

HIDO Bit Description

0 Enable machine check input pin

1 Enable cache parity checking

2 Enable machine check on address bus parity error.

3 Enable machine check on data bus parity error.

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, the TEA signal is expected to be used by a memory controller to
indicate that a memory parity error or an uncorrectable memory ECC error has occurred.
Note that the resulting machine check exception is imprecise and unordered with respect to
the instruction that originated the bus operation.

If the MSR[ME] bit and the appropriate bits in HlDO are set, the exception is recognized
and handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checks top state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checks top condition; the disabled machine check exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, "Machine Check Exception Enabled (MSR[ME] = 1)." If MSR[ME] = 0
and a machine check occurs, the processor enters the checks top state. Checkstop state is
described in Section 4.5.2.2, "Checks top State (MSR[ME] = 0)."

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-8.

4-14 Power PC 604 RISC Microprocessor User's Manual

Table 4-8. Machine Check Exception-Register Settings

Register Setting Description

SRRO On a best-effort basis implementations can set this to an EA ~ some instruction that was executing
or about to be executing when the machine check condition occurred.

SRR1 0-9 Cleared
10 Set when a data cache parity error is detected, otherwise zero
11 Set when a instruction cache parity error is detected, otherwise zero
12 Set when Machine Check Pin (lleI5) is asserted, otherwise zero
13 Set when ~ pin is asserted, otherwise zero
14 Set when a data bus parity error is detected, otherwise zero
15 Set when an address bus parity error is detected, otherwise zero
16-29 MSR(16-29)
30 Zero
31 MSR(31)

MSR POW 0 BE 0
ILE - FE1 0
EE 0 IP -
PR 0 IR 0
FP 0 DR 0
ME· 0 RI 0
FEO 0 LE Set to value of ILE
SE 0

• Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
allow the processor to continue execution at the machine check exception vector address.
Typically earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction execution resumes at offset OxOO200
from the physical base address indicated by MSR[lP].

4.5.2.2 Checkstop State (MSR[ME] = O)
When a processor is in the checks top state, instruction processing is suspended and
generally cannot resume without the processor being reset. The contents of all latches are
frozen within two cycles upon entering checks top state.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0), or through an invalid translation. On such a system,
for example, execution of a Data Cache Block Set to Zero (dcbz) instruction that introduces
a block into the cache associated with a nonexistent physical address may delay the
machine check exception until an attempt is made to store that block to main memory.

Chapter 4. Exceptions 4-15

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checks top state are implementation-dependent.

4.5.3 OSI Exception (Ox00300)
A OSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The OSI exception is implemented as it is defined in the PowerPC
architecture (OEA). Note that there are some conditions for which the PowerPC
architectures allow implementations to optionally take a OSI exception. Table 4-9 lists
conditions defined by the architecture that optionally may cause a OSI exception.

Table 4-9. Other MMU Exception Conditions

Condition Description DSISR

Iwarx or stwcx. with W = 1 Reservation instruction to write-through segment or block DSISR[5] = 1

Iwarx, stwcx., eclwx, or ecowx Reservation instruction or external control instruction DSISR[5] = 1
instruction to direct-store segment when SR[l] = 1 or STE[T] = 1

Load or store that results in a direct- Direct-store interface protocol signalled with an error DSISR[O] = 1
store error condition

eclwx or ecowx attempted when eclwx or ecowx attempted with EAR[E] = 0 DSISR[11] = 1
external control facility disabled

4.5.4 lSI Exception (Ox00400)
An lSI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA). In addition, an instruction fetch from a no-execute segment results in
an lSI exception.

When an lSI exception is taken, instruction execution resumes at offset OxOO400 from the
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (Ox00500)
An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). The INT signal is expected to remain asserted until the 604 takes the external
interrupt exception. If the external interrupt signal is negated early, recognition of the
interrupt request is not guaranteed. After the 604 begins execution of the external interrupt
handler, the system can safely negate the INT. When the signal is detected, the 604 stops
dispatching instructions and waits for all pending instructions to complete. This allows any
instructions in progress that need to take an exception to do so before the external interrupt
is taken. After all instructions have cleared, the 604 takes the external interrupt exception
as defined in the PowerPC architecture (OEA).

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE] bit is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, "Exceptions," in The Programming Environments Manual.

4-16 Power PC 604 RISC Microprocessor User's Manual

When an external interrupt exception is taken, instruction execution resumes at offset
OxOO500 from the physical base address indicated by MSR[IP].

4.5.6 Alignment Exception (Ox00600)
The 604 implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following conditions are met:

• A floating-point load or store, tmw, stmw, twarx, or stwcx. instruction is not word
aligned.

• If a floating-point number is not word-aligned. The 604 provides hardware support
for misaligned storage accesses for other memory access iIistructions. If a
misaligned memory access crosses a 4-Kbyte page boundary within a memory
segment, an exception may occur when the boundary is crossed (that is, there is a
protection violation on an attempt to access the new page). In these cases, a OSI
exception occurs and the instruction may complete partially.

• Some types of misaligned memory accesses are slower than aligned accesses.
Accesses that cross a word boundary (and double-precision values aligned on a
double-word boundary) are broken into multiple accesses by the LSU. More
dramatically, any noncacheable memory access that crosses a double-word
boundary requires multiple external bus tenures.

• Operations that cross a word boundary (and operations involving double-precision
values aligned on a double-word boundary) require two accesses, which are
translated separately. If either translation creates a OSI exception condition, that
exception is signaled.

• If the T-bit settings are not the same for both portions of a misaligned memory
access, (which is considered to be a programming error), the 604 completes all of
the accesses for the operation, the segment information from the T = 1 space is
presented on the bus for every access of the operation, and the 604 requires a direct
store access reply from the device. If two translations cross memory locations that
are T = 0 into T = 1, a OSI exception is signaled.

• A dcbz instruction references a page that is marked either cache-inhibited or write
through or has executed when the 604 data cache is locked or disabled Note that this
condition may not cause an alignment exception in other PowerPC processors.

• An access is not naturally aligned in little-endian mode.

• An ecowx or eciwx is not word-aligned.
• A tmw, stmw, tswi, Iswx, stswi, or stswx instruction is issued in little-endian mode.

4.5.7 Program Exception (Ox00700)
The 604 implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

The 604 invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class.

Chapter 4. Exceptions 4-17

The 604 fully decodes the SPR field of the instruction. If an undefined SPR is specified, a
program exception is taken.

The UISA defines the mtspr and mfspr instructions with the record bit (Rc) set to cause a
program exception or provide a boundedly undefined result. In the 604, the appropriate CR
should be treated as undefined. Likewise, the PowerPC architecture states that the Floating
Compared Unordered (fcmpu) or Floating Compared Ordered (fcmpo) instruction with the
record bit set can either cause a program exception or provide a boundedly undefined result.
In the 604, CR field BF for these cases should be treated as undefined.

When a program exception is taken, instruction execution resumes at offset OxOO700 from
the physical base address indicated by MSR[IP].

Note that the 604 supports one of the two floating-point imprecise modes supported by the
PowerPC architecture. The three modes supported by the 604 are described as follows:

• Ignore exceptions mode (MSR[FEO] = MSR[FEl] = O)-In ignore exceptions
mode, the instruction dispatch logic feeds the FPU as fast as possible, and the FPU
uses an internal pipeline to allow overlapped execution of instructions. IEEE
floating-point exception conditions (as defined in the PowerPC architecture) do not
cause any exceptions.

• Precise exceptions mode (MSR[FEO] = 1; MSR[FEl] = x)-In this mode, a floating
point instruction that causes a floating-point exception brings the machine to a
precise state. In doing so, the 604 sequencer unit can detect floating-point exception
conditions and take floating-point exceptions as defined by the PowerPC
architecture. Note that the imprecise recoverable mode supported by the PowerPC
architecture (MSR[FEO] = 1; MSR[FEl] = 0) is implemented identically to precise
exceptions mode in the 604.

• Imprecise nonrecoverable mode (MSR[FEO] = 0; MSR[FEl] = I)-In this mode,
floating-point exception conditions cause a floating-point exception to be taken,
SRRO may point to some instruction following the instruction that caused the
exception.

Register settings for this exception are described in Chapter 6, "Exceptions," in The'
Programming Environments Manual.

4.5.8 Floating-Point Unavailable Exception (Ox00800)
The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, "Exceptions," in The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset OxOO800 from the physical base address indicated by MSR[lP].

4-18 Power PC 604 RISC Microprocessor User's Manual

4.5.9 Decrementer Exception (Ox00900)
The decrementer exception is implemented in the 604 as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the 604, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, "Exceptions," in The Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset OxOO900
from the physical base address indicated by MSR[IP].

4.5.10 System Call Exception (OxOOCOO)
A system call exception occurs when a System Call (sc) instruction is executed. In the 604,
the system call exception is implemented as it is defined in the PowerPC architecture.
Register settings for this exception are described in Chapter 6, "Exceptions," in The
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset OxOOCOO
from the physical base address indicated by MSR[IP].

4.5.11 Trace Exception (OxOODOO)
The trace exception is taken when the single step trace enable bit (MSR[SE]) or the branch
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When a trace
exception is taken, the values written to SRRI are implementation-specific; those values
for the 604 are shown in Table 4-10.

Table 4-10. Trace Exceptlon-SRR1 Settings

Register Setting

SRR1 0-2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5-9 Cleared
10 Set for Iswx or stswx, otherwise cleared
11 Set for mtspr to SDR1, EAR, HIDO, PIR, IBATs, DBATs, SRs
12 Set for taken branch, otherwise cleared
13-15 Cleared
16-31 MSR(16-31).

When a trace exception is taken, instruction execution resumes as offset OxOODOO from the
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (OxOOEOO)
The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the 604.

Chapter 4. Exceptions 4-19

4.5.13 Performance Monitoring Interrupt (OxOOFOO)
The PowerPC 604 performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions. The performance monitor is provided to help system developers
to debug their systems and to increase system performance with efficient software,
especially in a multiprocessor system where memory hierarchy behavior must be
monitored and studied in order to develop algorithms that schedule tasks (and perhaps
partition them) and distribute data optimally.

The performance monitor uses the following SPRs:

• Performance monitor counters 1 and 2 (PMC 1 and PMC2)-two 32-bit counters
used to store the number of times a certain event has occurred.

• The monitor mode control register 0 (MMCRO), which establishes the function of
the counters.

• Sampled instruction address and sampled data address registers (SIA and SDA). The
two address registers contain the addresses of the data and of the instruction that
caused a threshold-related performance monitor interrupt.

The 604 supports a performance monitor interrupt that is caused by a counter negative
condition or by a time-base flipped bit counter defined in the MMCRO register.

As with other PowerPC interrupts, the performance monitoring interrupt follows the
normal PowerPC exception model with a defined exception vector offset (OxOOFOO). The
priority of the performance monitoring interrupt is below the external interrupt and above
the decrementer interrupt. The contents of the SIA and SDA are described in
Section 2.1.2.4, "Performance Monitor Registers." The performance monitor is described
in Chapter 9, "Performance Monitor."

4.5.14 Instruction Address Breakpoint Exception (Ox01300)
The instruction address breakpoint exception occurs when an attempt is made to execute an
instruction that matches the address in the instruction address breakpoint register (IABR)
and the breakpoint is enabled (IABR[30] is set). The instruction that triggers the instruction
address breakpoint exception is not executed before the exception handler is invoked. The
vector offset of the instruction address breakpoint exception is Ox01300.

4.5.15 System Management Interrupt (Ox01400)
The 604 implements a system management interrupt exception, which is not defined by the
PowerPC architecture. The system management exception is very similar to the external
interrupt exception and is particularly useful in implementing the nap mode. It has priority
over an external interrupt and it uses a different interrupt vector in the exception table (at
offset Ox01400).

4-20 PowerPC 604 RISC Microprocessor User's Manual

Like the external interrupt, a system management interrupt is signaled to the 604 by the
assertion of an input signal. The system management interrupt signal (SMI) is expected to
remain asserted until the interrupt is taken. If the SM! signal is negated early, recognition
of the interrupt request is not guaranteed. After the 604 begins execution of the system
management interrupt handler, the system can safely negate the SMI signal. After the SM!
signal is detected, the 604 stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt is taken.

When the exception is taken, 604 vectors to the system management interrupt vector in the
interrupt table. The vector offset of the system management is OxOl400.

4.5.16 Power Management
Nap mode is a simple power-saving mode, in which all internal processing and bus
operation is suspended. Software initiates nap mode by setting MSR[POW]. After this bit
is set, the 604 suspends instruction dispatch and waits for all activity, including active and
pending bus transactions, to complete. It then shuts down the internal chip clocks and enters
nap mode state. The 604 indicates the internal idle state by asserting the HALTED output
regardless whether the clock is stopped.

Nap mode must be entered by using the following code sequence:

naploop:

sync
mtmsr <GPR> (modify the POW bit QOly; at this point the EE bit should

have already been enabled by the software)
isync
ba nap loop

Since this code sequence creates an infinite loop, the progranuner should ensure that the
exit routine (one of the exception handler routines listed below) properly updates SRRO to
return to a point outside of this loop.

While the 604 is in nap mode, all internal activity except for decrementer, timebase, and
interrupt logic is stopped. During nap mode, the 604 does not snoop; if snooping is
required, the system may assert the RUN signal. The clocks run while the RUN signal is
asserted, but instruction execution does not resume. The HALTED output is deasserted to
indicate any bus activity, including a cache block pushout caused by a snoop request, and
is reasserted to indicate that the processor is idle and that the RUN signal can be safely
deasserted to stop the clocks. The maximum latency from the RUN signal assertion to the
starting of clock is three bus clock cycles.

To ensure proper handling of snoops in a multiprocessor system when a processor is the
first to enter nap mode, the system must assert the RUN signal no later than the assertion
of BG to another bus master. This constraint is necessary to ensure proper handling of
snoops when the first processor is entering nap mode.

Chapter 4. Exceptions 4-21

Nap mode is exited (clocks resume and MSR[POW] cleared) when an external interrupt is
signaled by the assertion of INT, SRESET, MCP, or SMI, when a decrementer interrupt
occurs, or when a hard reset is sensed.

For more information about the RUN and HALTED signals, refer to Section 7.2.1004, "Run
(RUN)-Input," and Section 7.2.10.2, "Reservation (RSRV)-Output."

4-22 Power PC 604 RISC MicroproceMor User'. Manual

Chapter 5
Memory Management
This chapter describes the PowerPC 604 microprocessor's implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the translation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses, I/O
accesses (most I/O accesses are assumed to be memory-mapped), and direct-store interface
accesses. In addition, the MMU provides access protection on a segment, block or page
basis. This chapter describes the specific hardware used to implement the MMU model of
the OEA in the 604. Refer to Chapter 7, "Memory Management," in The Programming
Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
translation-instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment infonnation translates the
effective address to an interim virtual address, and the page table infonnation translates the
interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the 604). In addition, two
translation lookaside buffers (TLBs) are implemented on the 604 to keep recently-used
page address translations on-chip. Although the PowerPC OEA describes one MMU
(conceptually), the 604 hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be perfonned independently (and simultaneously).
Therefore, the 604 is described as having two MMU s, one for instruction accesses (IMMU)
and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as
pairs of BAT registers that are accessible as supervisor special-purpose registers (SPRs).
There are separate instruction and data BAT mechanisms, and in the 604, they reside in the
instruction and data MMUs respectively.

Chapter 5. Memory Management 5-1

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, "Exceptions." Section 4.3, "Exception Processing," describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Overview
The 604 implements the memory management specification of the PowerPC OEA for
32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors
also have a BAT mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 604 MMU implementation defined by the OEA are as follows:

• Support for real addressing mode-Logical-to-physical address translation can be
disabled separately for data and instruction accesses.

• Block address translation-Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory space.
This can be used for translating large address ranges whose mappings do not change
frequently.

• Direct-store segments-If the T bit in the indexed segment register is set for any
load or store request, this request accesses a direct-store segment; bus activity is
different and the memory space used has different characteristics with respect to
how it can be accessed. The address used on the bus consists of bits from the EA and
the segment register.

• Segmented address translation-The 32-bit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segment
register. This 52-bit virtual address space is divided into 4-Kbyte pages, each of
which can be mapped to a physical page.

The 604 also provides the following features that are not required by the PowerPC
architecture:

5-2

• Separate translation lookaside buffers (TLBs)-The 128-entry, two-way set
associative ITLBs and DTLBs keep recently-used page address translations on-chip.

• Table search operations performed in hardware-The 52-bit virtual address is
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the translation is not found in a TLB
(that is, a TLB miss occurs), the hardware performs a table search operation (using
a hashing function) to search for the PTE.

Power PC 604 RISC Microprocessor User's Manual

• TLB invalidation-The 604 implements the optional TLB Invalidate Entry (tlbie)
and TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB
entries. For more information on the tlbie and tJbsync instructions, see
Section 5.4.3.2, "TLB Invalidation."

Table 5-1 summarizes the 604 MMU features, including those defined by the PowerPC
architecture (DEA) for 32-bit processors and those specific to the 604.

Table 5-1. MMU Feature Summary

Architecturally
Feature Category Defined/ Feature

604-Speclflc

Address ranges Architecturally defined 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

Page" size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address Architecturally defined Range of 128 Kbyte-256 Mbyte sizes
translation

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history Architecturally defined Referenced and changed bits defined and maintained

Page address Architecturally defined Translations stored as PTEs in hashed page tables in memory
translation

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining TLBs (tlble and tlbsync
instructions in 604)

604-specific 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment des~tors Architecturally defined Stored as segment registers on-chip (two identical copies
maintained)

Page table search 604-specific The 604 performs the table search operation in hardware.
support

Chapter 5. Memory Management 5-3

5.1.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, "Memory Management," in The Programming
Environments Manual, augmented with infonnation in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, "Effective
Address Calculation."

5.1.2 MMU Organization
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search. of the page
tables for PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.

The 604 maintains two on-chip TLBs with the following characteristics:

• 128 entries, two-way set associative (64 x 2), LRU replacement
• Data TLB supports the DMMU; instruction TLB supports the IMMU

• Hardware TLB update
• Hardware update of memory access recording bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of
a translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the 604 instruction and data
MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by the
processor for sequential instruction fetches and addresses that correspond to a change of
program flow. Data addresses shown in Figure 5-3 are generated by load and store
instructions (both for the memory and the direct-store interfaces) and by cache instructions.

As shown in the figures, after an address is generated, the higher-order bits of the effective
address, EAO-EA19 (or a smaller set of address bits, EAO-EAn, in the cases of blocks), are
translated into physical address bits PAO-PA19. The lower-order address bits, A20-A31 are
untranslated and therefore identical for both effective and physical addresses. After
translating the address, the MMUs pass the resulting 32-bit physical address to the memory
subsystem.

5-4 Power PC 604 RISC Microprocessor User's Manual

hi addition to the higher-order address bits, the MMUs automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the access is for a
load or a store operation. This information is then used by the MMUs to appropriately direct
the address translation and to enforce the protection hierarchy progranuned by the
operating system. Section 4.3, "Exception Processing," describes the MSR, which controls
some of the critical functionality of the MMUs.

The figures show the way in which the A20-A26 address bits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits PAO-PA19) of the two selected cache
blocks to determine if a cache hit has occurred. In the case of a cache miss, the instruction
or data access is then forwarded to the bus interface unit which then initiates an external
memory access.

Chapter 5. Memory Management 5-5

A20-A31

PAO-PA31

Figure 5-1. MMU Conceptual Block Diagram-32-Blt Implementations

5-6 Power PC 604 Rise Microprocessor User's Manual

A20-A31

PAO-PA31

Figure 5-2. Power PC 604 Microprocessor IMMU Block Diagram

Chapter 5. Memory Management

I Cache
HitlMiss

5-7

5-8

A20-A31

PAO-PA31

o Cache
HitlMiss

Figure 5-3. PowerPC 604 Microprocessor DMMU Block Diagram

Power PC 604 RISC Microprocessor User's Manual

5.1.3 Address Translation Mechanisms
PowerPC processors support the following four types of address translation:

• Page address translation-translates the page frame address for a 4-Kbyte page size

• Block address translation-translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte.

• Direct-store interface address translation-used to generate direct-store interface
accesses on the external bus; not optimized for performance-present for
compatibility only.

• Real addressing mode address translation-when address translation is disabled, the
physical address is identical to the effective address.

Figure 5-4 shows the four address translation mechanisms provided by the MMUs. The
segment descriptors shown in the figure control both the page and direct-store interface
address translation mechanisms. When an access uses the page or direct-store interface
address translation, the appropriate segment descriptor is required. In 32-bit
implementations, one of the 16 on-chip segment registers (which contain segment
descriptors) is selected by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store
interface is present only for compatibility with existing I/O devices that used this interface.
When an access is determined to be to the direct-store interface space, the implementation
invokes an elaborate hardware protocol for communication with these devices. The
direct-store interface protocol is not optimized for performance, and therefore, its use is
discouraged. The most efficient method for accessing I/O devices is by memory-mapping
the I/O areas.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address translation
misses in an on-chip TLB, the MMU causes a search of the page tables in memory (using
the virtual address information and a hashing function) to locate the required physical
address.

Block address translation occurs in parallel with page and direct-store segment address
translation and is similar to page address translation; however, fewer higher-order effective
address bits are translated into physical address bits (more lower-order address bits (at least
17) are untranslated to form the offset into a block). Also, instead of segment descriptors
and a TLB, block address translations use the on-chip BAT registers as a BAT array. If an
effective address matches the corresponding field of a BAT register, the information in the
BAT register is used to generate the physical address; in this case, the results of the page
translation and the direct-store translation (occurring in parallel) are ignored.

Chapter 5. Memory Management 5-9

o 31 Address Translation Disabled

Page Address
Translation

Direct-Store Segment
Translation

(see Section 5.5)

Effective Address

LookUp in
Page Table

51

(MSR[IR] = 0, or MSR[DR] = 0)

Match with BAT

Block Address
Translation

(see Section 5.3)

Real Addressing Mode
Efledwe Ackjress - Physical hktess

(see Sadion 5.2)

o 31 ~0~~~~~ __ ~31 ~0~~~~~ ___ 3~1 ~0~~~~~ ___ 3~1
'---:D~ir-e-'ct'-:-S~to-re-A':"'"d-:-:d:-re-ss~ Physical Address Physical Address Physical Address

Figure 5-4. Address Translation Types

Direct-store address translation is used when the direct-store translation control bit (T bit)
in the corresponding segment descriptor is set. In this case, the remaining information in
the segment descriptor is interpreted as identifier information that is used with the
remaining effective address bits to generate the packets used in a direct-store interface
access on the external interface; additionally, no TLB lookup or page table search is
performed.

Translation is disabled for real addressing mode. In this case the physical address generated
is identical to the·effective address. Instruction and data address translation is enabled with
the MSR[IR] and MSR[DR] bits, respectively. Thus when the processor generates an
access, and the corresponding address translation enable bit in MSR (MSR[IR] for
instruction accesses and MSR[DR] for data accesses) is cleared, the resulting physical
address is identical to the effective address and all other translation mechanisms are
ignored.

5-10 Power PC 604 RISC Microprocessor User's Manual

5.1.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

Table 5-2. Access Protection Options for Pages

User Read
User

Supervisor Read
Supervisor

Option
Write Write

I·Fetch Data I·Fetch Data

Supervisor-only - - - -4 -4 -4

Supervisor-only-nCHxecute - - - - -4 -4

Supervisor-write-only -4 -4 - -4 -4 -4

Supervisor-write-only-no-execute - ..J - - ..J ..J

Bdh user/supervisor ..J ..J -4 -4 -4 -4

Bdh user-/supervisor-no-execute - ..J -4 - -4 -4

Bdh read-only ..J -4 - ..J ..J -
Both read-only-no-execute - ..J - - -4 -

Guarded

-4 Access permitted
- Protection violation

The operating system determines whether instruction can be fetched from an area of
memory for which the no-execute option is provided in the segment descriptor. Each of the
remaining options is enforced based on a combination of information in the segment
descriptor and the page table entry. Thus, the supervisor-only option allows only read and
write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception to be taken.

Finally, there is a facility in the VEA and OEA that allows pages or blocks to be designated
as guarded preventing out-of order accesses that may cause undesired side effects. For
example, areas of the memory map that are used to controlI/O devices can be marked as
guarded so that accesses (for example, instruction prefetches) do not occur unless they are
explicitly required by the program.

For more information on memory protection, see "Memory Protection Facilities," in
Chapter 7, "Memory Management," in the The Programming Environments Manual.

Chapter 5. Memory Management 5-11

5.1.5 Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. This information can then be used by the operating system to determine which areas
of memory to write back to disk when new pages must be allocated in main memory. While
these bits are initially programmed by the operating system into the page table, the
architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required.

Implementation Note-In the process of loading the TLB, the 604 checks the state of the
changed and referenced bits for the matched PTE. If the referenced bit is not set and the
table search operation is initially caused by a load operation or by an instruction fetch, the
604 automatically sets the referenced bit in the translation table. Similarly, if the table
search operation is caused by a store operation and either the referenced bit or the changed
bit is not set, the hardware automatically sets both bits in the translation table. In addition,
during the address translation portion of a store operation that hits in the TLB, the 604
checks the state of the changed bit. If the bit is not already set, the hardware automatically
updates the TLB and the translation table in memory to set the changed bit. For more
information, see Section 5.4.1, "Page History Recording."

5.1.6 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used
(physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, "Real Addressing Mode."

Figure 5-5 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select either
direct-store interface or page address translation.

5-12 Power PC 604 RISC Microprocessor User's Manual

I-access D-access

Ins!ructic;m ~truction
TranslatIon DIsabled Translation Enabled

(MSR[IR] = 0) (MSR[IR] = 1

~. Data
t?ata ~ Translation Disabled

TranslatIOn Enabled (MSR[DR] - 0)
(MSR[DR] = 1) -

Compare Address with
Instruction or Data BAT
Array (as appropriate)

BAT Array (see The Programming
Hit ~nments Manual)

Access ~ Access
Protected Permitted

(see Figure 5-6) (_Fa§)

Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (lSI or DSI
exception) is generated.

Implementation Note-The 604 BAT registers are not initialized by the hardware after the
power-up or reset sequence. Consequently, all valid bits in both instruction and data BAT
areas must be cleared before setting any BAT area for the first time. This is true regardless
of whether address translation is enabled. Also, software must avoid overlapping blocks
while updating a BAT area or areas. Even if translation is disabled, multiple BAT area hits
are treated as programming errors and can corrupt the BAT registers and produce
unpredictable results.

Chapter 5. Memory Management 5-13

5.1.6.2 Page and Direct-Store Interface Address Translation
Selection

If address translation is enabled and the effective address information does not match with
a BAT array entry, then the segment descriptor must be located. Once the segment
descriptor is located, the T bit in the segment descriptor selects whether the translation is
to a page or to a direct-store segment as shown in Figure 5-6. In addition, Figure 5-6 also
shows the way in which the no-execute protection is enforced; if the N bit in the segment
descriptor is set and the access is an instruction fetch, the access is faulted as described in
Chapter 7, "Memory Management," in The Programming Environments Manual. Note that
the figure shows the flow for these cases as described by the PowerPC OEA, and so the TLB
references are shown as optional. As the 604 implements TLBs, these branches are valid,
and described in more detail throughout this chapter.

5-14 Power PC 604 RISC Microprocessor User's Manual

Use EAO-EA3 to
Select One of 16 On-Chip

Segment Registers

Page Address
Translation

~(T=O)

othe~~
I I-Fetch with N bit Set in

Segment Descriptor

Generate 52-Bit Virtual
Address from Segment

D9s~or

Compare Virtual
Address with TLB

Entries L ______ .J

TLB
Miss

.....

(No-Execute)

..... " TLB
Hit

(See Ths Programming
Environments Manua/'J

.......... -. (See Figure 5-8)

PTE Not
Found

(See
Figure 5-9)

PTE Found

r - -1- -,
Load TLB Entry L ____ ..J

.....

Access
Permitted

- - - Optional to the PowerPC architecture. Implemented in the 604.

.....

"Not allowed for
instruction accesses

(causes lSI exception)

Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

Chapter 5. Memory Management 5-15

5.1.6.3 Selection of Page Address Translation
If the T bit in the corresponding segment descriptor is 0, page address translation is
selected. The information in the segment descriptor is then used to generate the 52-bit
virtual address. The virtual address is then used to identify the page address translation
information (stored as page table entries (PTEs) in a page table in memory). For increased
performance, the 604 has two on-chip TLBs to store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page translation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU requires a search of the page table. In this case, the 604 hardware performs the
page table search operation. If the PTE is successfully found, a new TLB entry is created
and the page translation is once again attempted. This time, the TLB is guaranteed to hit.
Once the PTE is located, the access is qualified with the appropriate protection bits. If the
access is a protection violation (not allowed), either an lSI or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
lSI or DSI exception occurs so software can handle the page fault.

5.1.6.4 Selection of Direct-Store Interface Address Translation
When the segment descriptor has the T bit set, the access is considered a direct-store
interface access and the direct-store interface protocol of the external interface is used to
perform the access to direct-store space. The selection of address translation type differs for
instruction and data accesses only in that instruction accesses are not allowed from
direct-store segments; attempting to fetch an instruction from a direct-store segment causes
an lSI exception See Section 5.5, "Direct-Store Interface Address Translation," for more
detailed information about the translation of addresses in direct-store space.

5.1.7 MMU Exceptions Summary
In order to complete any memory access, the effective address must be translated to a
physical address. As specified by the architecture, an MMU exception condition occurs if
this translation fails for one of the following reasons:

• There is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

• An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the lSI or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains information that
identifies the address of the failing instruction. Refer to Chapter 4, "Exceptions," for a more
detailed description of exception processing.

5-16 Power PC 604 RISC Microprocessor User's Manual

Table 5-3. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and no I access: lSI exception
matching BAT array entry) SRR1[1] = 1

o access: OSI exception
OSISR[1] =1

Block protection violation Conditions descrbed for block in MBlock Memory I access: lSI exception
Protection" in Chapter 7, MMemory Management," SRR1[4] = 1
in The Programming Environments Manual.M

o access: OSI exception
OSISR[4] =1

Page protection violation Conditions descrbed for page in MBlock Memory I access: lSI exception
Protection" in Chapter 7, MMemory Management," SRR1[4] = 1
in The Programming Environments Manual. o access: OSI exception

OSISR[4] =1

No-execute protection Attempt to fetch instruction when SR[N] = 1 lSI exception
violation SRR1[3] = 1

Instruction fetch from Attempt to fetch instruction when SR[T1 = 1 lSI exception
direct-store segment SRR1[3] =1

Instruction fetch from Attempt to fetch instruction when MSR[IR] = 1 and lSI exception
guarded memory either matching xBAT[G] = 1, or no matching BAT SRR1[3] =1

entry and PTE[G] = 1

In addition to the translation exceptions, there are other MMU-related conditions (some of
them defined as implementation-specific and therefore, not required by the architecture)
that can cause an exception to occur. These exception conditions map to the processor
exception as shown in Table 5-4. The only MMU exception conditions that occur when
MSR[DR] = 0 are the conditions that cause the alignment exception for data accesses. For
more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 4.5.6, "Alignment Exception
(OxOO600)."

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
"Memory/Cache Access Attributes," in Chapter 5, "Cache Model and Memory
Coherency," of The Programming Environments Manual. Refer to Chapter 4,
"Exceptions," and to Chapter 6, "Exceptions," in The Programming Environments Manual
for a complete description of the SRRI and DSISR bit settings for these exceptions.

Chapter 5. Memory Management 5-17

Table 5-4. Other MMU Exception Conditions for the PowerPC 604 Processor

Condition Description Exception

dcbzwithW=1orl=1 dcbz instruction to write-through or Alignment exception (not
cache-inhibited segment or block required by architecture for

this condition)

dcbz when the data cache is The dcbz instruction takes an alignment Alignment exception
locked exception if the data cache is locked (HIOO

bits 18 and 19) when it is executed.

Iwarx or stwcx. with W = 1 Reservation instruction to write-through OSI exception OSISR[5] = 1
segment or block

Iwarx, stwcx., eclwx, or ecowx Reservation instruction or extemal control OSI exception
instruction to direct-store segment instruction when SR[T] =1 OSISR[5] = 1

Roating-point load or store to FP memory access when SR£11 = 1 Alignment exception (not
direct-store segment required by architecture)

Load or store that results in a Direct-store interface protocol signalled with OSI exception
direct-store error an error condition OSISR[O] = 1

eclwx or ecowx attempted when eclwx or ecowx attempted with EAR[E) = 0 OSI exception
extemal control facility disabled OSISR[11] = 1

Imw, stmw, Iswl, Iswx, stswl, or Imw, stmw, Iswl, Iswx, stswl, orstswx Alignment exception
stswx instruction attell1)ted in instruction attempted while MSR[LE] = 1
little-endian mode

Operand misalignment Translation enabled and operand is Alignment exception (some
misaligned as descrbed in Chapter 4, of these cases are
"Exceptions." implementation-specific)

5.1.8 MMU Instructions and Register Summary
The MMU instructions and registers provide the operating system with the ability to set up
the block address translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tables in memory whenever changes are made to the tables in memory.
When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the 604 implements all TLB-related instructions except tibia, which is treated as
an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be "encapsulated" into
subroutines to minimize the impact of migrating across the family of implementations.

5-18 PowerPC 604 RISC Microprocessor User's Manual

Table 5-5 summarizes 604 Instructions that specifically control the MMU.

Table 5-5. PowerPC 604 Microprocessor Instruction Summary-Control MMUs

Instruction Description

mtsrSR,rS Move to Segment Register
SR{SRt]+- rS

mtsrln rS,rB Move to Segment Register Indirect
SR{rB[0-3D+-rS

mfsr rD,SR Move from Segment Register
rD+-SR[SR#]

mfsrln rD,rB Move from Segment Register Indirect
rD+-SR[rB[0-3D

tlbl. rB" Execution of this instruction causes all entries in the congruence class corresponding to the EA to
be invalidated in the processor executing the instruction and in the other processors attached to
the same bus.
Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlble instruction have been completed prior to executing the tlble instruction.

tlbsync • The tlbsync operation appears on the bus as a distinct operation that causes synchronization of
snooped tibia instructions .

.. These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program the 604
MMUs. These registers are accessible to supervisor-level software only. These registers are
described in Chapter 2, "PowerPC 604 Processor Programming Model."

Table 5-6. PowerPC 604 Microprocessor MMU Registers

Register Description

Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SRO-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit O. The segment registers are accessed by
the mtsr, mtsrln, mfsr, and mfsrln instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-OBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined
DBATOU-OBAT3U,and as 32-bit registers in 32-bit implementations. These are special-purpose registers
DBATOL-OBAT3L) that are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in
memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

5.1.9 TLB Entry Invalidation
For PowerPC processors such as the 604 that implement. TLB structures to maintain
on-chip copies of the PrEs that are resident in physical memory, the optional TLB
Invalidate Entry (tlbie) instruction provides a way to invalidate the TLB entries.

Chapter 5. Memory Management 5-19

Execution of this instruction causes all entries in the congruence class corresponding to the
presented EA to be invalidated in the processor executing the instruction and in the other
processors attached to the same bus.

The t1bsync operation appears on the bus as a distinct operation, that causes
synchronization of snooped t1bie instructions. Section 5.4.3.2, "TLB Invalidation,"
describes the TLB invalidation mechanisms in the 604.

5.2 Real Addressing Mode
If address translation is disabled (MSR[lR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, "Memory Management," in The Programming
Environments Manual.

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to Section 2.3.2.4, "Synchronization."

5.3 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

Block address translation in the 604 is described in Chapter 7, "Memory Management," in
The Programming Environments Manual for 32-bit implementations.

5.4 Memory Segment Model
The 604 adheres to the memory segment model as defined in Chapter 7, "Memory
Management," in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, "Block Address Translation." If
not, the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the
byte offset within a page), and

2. from virtual address to physical address.

5-20 Power PC 604 RISC Microprocessor User'. Manual

This section highlights those areas of the memory segment model defined by the DEA that
are specific to the 604.

5.4.1 Page History Recording
Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 604 table search hardware and the
system software. The operating system uses this information to detennme which areas of
memory to write back to disk when new pages must be allocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = lor MSR[DR] = 1).

In the 604, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-7.

• For TLB misses, when a table search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5·7. Table Search Operations to Update History Blts-TLB Hit Case

Rand C bits
Processor Action

In TLB Entry

00 Combination doesn't occur

01 Combination doesn't occur

10 Read: No special action
Write: The 604 initiates a table search operation to update C.

11 No special action for read or write

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The debt and debtst instructions can execute if there is a TLB/BAT hit or if the processor
is in real addressing mode. In case of a TLB/BAT miss, these instructions are treated as
no-ops; they do not initiate a table search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address translation were disabled (real addressing mode). Additionally, these updates are
performed with single-beat read and byte write transactions on the bus.

Chapter S. Memory Management 5-21

•

5.4.1.1 Referenced Bit
The referenced (R) bit of a page is located in the PrE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the 604 sets the R bit in the
page table. The OEA specifies that the referenced bit may be set immediately, or the setting
may be delayed. until the memory access is determined to be successful. Because the
reference to a page is what causes a PrE to be loaded into the TLB, the referenced bit in all
604 TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

• Fetching of instructions not subsequently executed

• Accesses generated by an Iswx or stswx instruction with a zero length

• Accesses generated by an stwcx. instruction when no store is performed because a
reservation does not exist

• Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit
The changed bit of a page is located both in the PrE in the page table and in the copy of
the PrE loaded into the TLB (if a TLB is implemented, as in the 604). Whenever a data
store instruction is executed successfully, if the TLB search (for page address translation)
results in a hit, the changed bit in the matching TLB entry is checked. If it is already set,
the processor does not change the C bit. If the TLB changed bit is 0, the 604 sets it and a
table search operation is performed to also set the C bit in the corresponding PrE in the
page table. The 604 initiates the table search operation for setting the C bit in this case.

The changed bit (in both the TLB and the PrE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

• The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

• The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

• The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5-22 Power PC 604 RISC Microprocessor User's Manual

5.4.1.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the 604 updates the R and C bits in memory, the
accesses are performed as if MSR[DR] = 0 and G = 0 (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed Rand C Bit Settings

Causes Setting of Causes Setting

Priority Scenario
R Bit of C Bit

OEA 604 OEA 604

1 No-execute protection violation No No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation contingent on a branch, trap, Maybe No No No
sc or rfl instruction, or a possible exception

5 Out-of-order store operation contingent on an exception, Maybe No No No
other than a trap or ac instruction, not occurring

6 Zero-length load (Iswx) Maybe No No No

7 Zero-length store (stswx) Maybe1 No Maybe1 No

8 Store conditional (stwcx.) that does not store Maybe1 Yes Maybe1 Yes

9 In-order instruction fetch Yes2 Yes No No

10 Load instruction or eclwx Yes Yes No No

11 Store instruction, ecowx, or dcbz instruction Yes Yes Yes Yes

Chapter 5. Memory Management 5-23

Table 5-8. Model for Guaranteed Rand C Bit Settings (Continued)

Causes Setting of

Priority Scenario
R Bit

OEA 604

12 lebl, debt, debtst, debst, or debf instruction Maybe Yes

13 debl instruction Maybe~ Yes

1 H C is set, R is also guaranteed to be set.
2 This includes the case in which the instruction was fetched out-of order and R was not set

(does not apply for 604).

Causes Setting
of C Bit

OEA 604

no no

Maybe 1 Yes

For more information, see "Page History Recording" in Chapter 7, "Memory
Management," of The Programming Environments Manual.

5.4.2 Page Memory Protection
The 604 implements page memory protection as it is defined in Chapter 7, "Memory
Management," in The Programming Environments Manual.

5.4.3 TLB Description
Because the 604 has two MMUs (IMMU and DMMU) that operate in parallel, some of the
MMU resources are shared, and some are actually duplicated (shadowed) in each MMU to
maximize performance. For example, although the architecture defines a single set of
segment registers for the MMU, the 604 maintains two identical sets of segment registers,
one for the IMMU and one for the DMMU; when a segment register instruction executes,
the 604 automatically updates both sets.

5.4.3.1 TLB Organization
The 604 implements separate 128-entry data and instruction TLBs to support the
implementation of separate instruction and data MMU s. This section describes the
hardware resources provided in the 604 to facilitate page address translation. Note that the
hardware implementation of the MMU is not specified by the architecture, and while this
description applies to the 604, it does not necessarily apply to other PowerPC processors.

Each TLB contains 128 entries organized as a two-way set associative array with 64 sets as
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address
is being translated, a set of two TLB entries is indexed in parallel with the access to a
segment register. If the address in one of the two TLB entries is valid and matches the
virtual address, that TLB entry contains the physical address. If no match is found, a TLB
miss occurs.

5-24 Power PC 604 RISC Microprocessor User'. Manual

EA0-EA31 Segment Registers
o 7 8 31

o T

EAO-EA3 VSID

15 T VSID
EA4-EA13

DTLB
v I

o v ,

EA1~19 Select 1-+--~-::-:--+.I~MSl
63

RPN

I MUX

L...-_____ -.. EAO-EA19

Figure 5-7. Segment Register and DTLB Organization

Unless the access is the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into a particular TLB entry
selected by the least-recently-used (LRU) replacement algorithm, and the translation
process begins again, this time with a TLB hit.

TLB entries are on-chip copies of PTEs in the page tables in memory and are similar in
structure. TLB entries consist of two words; the upper-order word contains the VSID and
API fields of the upper-order word of the PTE and the lower-order word contains the RPN,
the C bit, the WIMG bits and the PP bits (as in the lower-order word of the PTE). To
uniquely identify a TLB entry as the required PTE, the PTE also contains four more bits of

Chapter 5. Memory Management 5-25

the page index, EA10--EA13 (in addition to the API bits of the PTE). Formats for the PTE
are given in "PTE Format for 32-Bit Implementations," in Chapter 7, "Memory
Management," of The Programming Environments Manual.

Software does not have direct access to the TLB arrays, except to invalidate an entry with
the tlbie instruction.

Each set of TLB entries is associated with one LRU bit, which is accessed when those
entries in the same set are indexed. LRU bits are updated whenever a TLB entry is used or
after the entry is replaced. Invalid entries are always the first to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), when there is an exception condition, only one
exception is reported at a time.

Although address translation is disabled on a reset condition, the valid bits of the BAT array
and TLB entries are not automatically cleared. Thus, TLB entries must be explicitly cleared
by the system software (with the tlbie instruction) before the valid entries are loaded and
address translation is enabled. Also, note that the segment registers do not have a valid bit,
and so they should also be initialized before translation is enabled.

5.4.3.2 TLB Invalidation
The 604 implements the optional tlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of the tlbie instruction always invalidates four
entries-both the ITLB entries indexed by EA14-EA19 and both the indexed entries of the
DTLB.

Execution of the tlbie instruction causes all entries in the congruence class corresponding
to the specified EA to be invalidated in the processor executing the instruction and also in
the other processors attached to the same bus by causing a TLB invalidate broadcast
operation on the bus as described in Section 7.2.4, "Address Transfer Attribute Signals."

A TLB invalidate broadcast operation is an address-only transaction issued by a processor
when it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12-19 of the EA in their correct respective bit positions.

When a snooping 604 detects a TLB invalidate operation on the bus, it accepts the operation
only if no TLB invalidation is being performed by this processor and all processors on the
bus accept the operation (ARTRY is not asserted). Once accepted, the TLB invalidation is
performed unless the processor is executing a multiple/string instruction, in which case the
TLB invalidation is delayed until the instruction has completed. Note that a 604 processor
can only have one TLB invalidation operation pending internally. Thus if the 604 has a
pending TLB invalidate operation, it asserts the ARTRY snoop status in response to another
TLB invalidate operation on the bus. Detected TLB invalidate operations on the bus and
the execution of the tlbie instruction both cause a congruence-class invalidation on both
instruction and data TLBs.

5-26 Power PC 604 RISC Microprocessor User's Manual

The OEA requires that a synchronization instruction be issued to guarantee completion of
a tlbie instruction across all processors of a system. The 604 implements the t1bsync
instruction which causes a TLBSYNC broadcast operation to appear on the bus as an
address-only transaction, distinct from a SYNC operation. It is this bus operation that
causes synchronization of snooped tlbie instructions. Multiple t1bie instructions can be
executed correctly with only one tlbsync instruction, following the last t1bie, to guarantee
all previous tlbie instructions have been performed globally.

When the TLBSYNC bus operation is detected by a snooping 604, the 604 asserts the
ARTRY snoop status if any operations based on an invalidated TLB are pending.

Software must ensure that instruction fetches or memory references to the virtual pages
specified by the t1bie have been completed prior to executing the t1bie instruction.

Other than the possible TLB miss on the next instruction prefetch, the tlbie does not affect
the instruction fetch operation-that is, the pre fetch buffer is not purged and does not cause
these instructions to be ref etched.

The tibia instruction is optional for an implementation if its effects can be achieved through
some other mechanism. As described above, the tlbie instruction can be used to invalidate
a particular index of the TLB based on EA[14-19]. With that concept in mind, a sequence
of 64 tlbie instructions followed by a single tlbsync instruction would cause all the 604
TLB structures to be invalidated (for EA[14-19] = 0, 1, 2, ... , 63). Therefore the tibia
instruction is not implemented on the 604. Execution of a tIbia instruction causes an illegal
instruction program exception.

The tlbie and tlbsync instructions are described in detail in Section 2.3.6.3.3, "Translation
Lookaside Buffer Management Instructions---(OEA)." For more information about how
other processors react to TLB operations broadcast on the system bus of a multiprocessing
system, see Section 3.9.6, "Cache Reaction to Specific Bus Operations."

5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands
on the "TLB Hit" branch of Figure 5-6. The detailed flow for the "TLB Miss" branch of
Figure 5-6 is described in Section 5.4.5, "Page Table Search Operation." Note that as in the
case of block address translation, if the dcbz instruction is attempted to be executed either
in write-through mode or as cache-inhibited (W = 1 or I = 1), the alignment exception is
generated. The checking of memory protection violation conditions for page address
translation is described in Chapter 7, "Memory Management," in The Programming
Environments Manual.

Chapter 5. Memory Management 5-27

5-28

Effective Address
Generated

Page Address
Translation

Generate 52-Bit
Virtual Address from
Segment Desa1;>tor

Compare Virtual
Address with TLB Entries

dcbz Instruction
withWorl=1

otherwise

Instruction Fetch with
N bit Set in Segment

Descriptor

Access Permitted Access Prohibited

(S99 The
Programming
Environments

Manua~

~_Mh~
PTE [C) = 0 otherwise

Page Memory
Protection Violation

Figure 5-8. Page Address Translation Flow-TLB Hit

Power PC 604 RISC Microprocessor User's Manual

5.4.5 Page Table Search Operation
If the translation is not found in the TLBs (a TLB miss), the 604 initiates a table search
operation which is described in this section. Formats for the PTE are given in "PTE Fonnat
for 32-Bit Implementations," in Chapter 7, "Memory Management," of The Programming
Environments Manual.

The following is a summary of the page table search process perfonned by the 604:

1. The 32-bit physical address of the primary PTEG is generated as described in "Page
Table Addresses" in Chapter 7, "Memory Management," of The Programming
Environments Manual.

2. The first PTE (PTEO) in the primary PTEG is read from memory. PTE reads should
occur with an implied WIM memory/cache mode control bit setting of ObOO1.

, Therefore, they are considered cacheable and read (burst) from memory and placed
in the cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur,the following must be true:

- PTE[H] =0
- PTE[V] = 1
- PTE[VSID] = VA[0-23]
- PTE[API] = VA[24-29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, the table search process continues as described
in step 8. If a match is not found within the 8 PTEs of the primary PTEG, the address
of the secondary PTEG is generated.

5. The first PTE (PTEO) in the secondary PTEG is read from memory. Again, because
PTE reads typically have a WIM bit combination of ObOOl, an entire cache line is
read into the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

- PTE[H] = 1
- PTE[V] = 1
- PTE[VSID] = VA[0-23]
- PTE [API] = VA[24-29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG. If it is never found, an exception is taken (step 9).

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated
in the PTE in memory (if necessary). If there is no memory protection violation, the
C bit is also updated in memory (if the access is a write operation) and the table
search is complete.

Chapter 5. Memory Management 5-29

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an lSI exception or anSI
exception).

Reads from memory for table search operations should be perfonned as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary
page table search operations, described in The Programming Environments Manual are
realized in the 604.

Figure 5-9 shows the case of a dcbz instruction that is executed with W = 1 or I = 1, and
that the R bit may be updated in memory (if required) before the operation is perfonned or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.

5-30 Power PC 604 RISC Microprocessor User's Manual

Generate PA using Primary Hash Function
PA.- Base PA of PTeG

Fetch PTe from PTeG

otherwise

""'0"""<
PTe [VSID. API. H. V] =

Segment Descriptor [VSID). ~[AP~. o. 1

~ 0 ss-co-n-da-ry-pa-g eD

~ \..,.Table Search H~

PTE[R).-1
(Update PTE[R)

In Memory)

Last PTe in PTeG

Perform Secondary
Page Table Search

PTE[C) .-1
(Update PtE[C) in

Memory)
Also Update

PTErR] in Memory
itA_Rag = 1

Page Table
Search Complete

PTE[R] = 1 PTE[R] = 0

dcbz Instruction
withWorl=1

(from Figure 5-10)

R_~oIherwIse
PTE[R).-1

(Update PTE[R]
In Memory)

~Rag= 1

PTE[R) .-1
(Update PTE[R]

In Memory)

Alignment Exception

Memory Protection
ViOlation

Figure 5-9. Primary Page Table Search

Chapter 5. Memory Management 5-31

Generate PA Using Secondary Hash Function
PA +- Base PA of PTEG

otherwise

~.-~
Last PTE in PTEG

Fetch PTE from PTEG

PTE [VSID, API, H, V]=
Segment DesCJ1:>tor [VSID), EA[API), 1, 1

Y98 Fauh

(S99 Figure 5-9)

Instruction Access Data Access

Figure 5-10. Secondary Page Table Search Flow

If the address in one of the two selected TLB entries is valid and matches the virtual
address, that TLB entry contains the physical address. If no match is found, a TLB miss
occurs and, if this is an in-order access, a hardware table search operation begins. Once the
matching PTE is found in memory, it is loaded into the appropriate TLB entry depending
on the LRU bit setting and translation continues.

The LSU initiates out-of-order accesses without knowledge of whether it is legal to do so.
Therefore, the MMU does not perform hardware table search due to TLB misses until the
request is nonspeculative. In these out-of-order cases, the MMU does detect protection
violations and whether a dcbz instruction specifies a page marked as write-through or
cache-inhibited. The MMU also detects alignment exceptions caused by the dcbz
instruction, which prevents the changed bit in the PTE from being updated erroneously.

Note that when a TLB miss occurs, the MMU does not begin the table search operation if
the access is out of order.

5-32 Power PC 604 RISC Microprocessor User's Manual

If the MMU registers are being accessed by an instruction in the instruction stream, the
IMMU stalls for one translation cycle to perform those operation. The sequencer serializes
instructions to ensure the data correctness. For updating the IBATs and SRs, the sequencer
classifies those operations as fetch serialization. After such an instruction is dispatched, the
instruction buffer is flushed and the fetch stalls until the instruction completes. However,
for reading from the IBATs, the operation is classified as execution serialization. As long as
the LSU ensures that all previous instructions can be executed, subsequent instructions can
be fetched and dispatched.

5.4.6 Page Table Updates
This section describes the requirements on the software when updating page tables in
memory via some pseudocode examples. Multiprocessor systems must follow the rules
described in this section so that all processors operate with a consistent set of page tables.
Even single-processor systems must follow certain rules, because software changes must
be synchronized with the other instructions in execution and with automatic updates that
may be made by the hardware (referenced and changed bit updates). Updates to the tables
include the following operations:

• Adding a PTE
• Modifying a PTE, including modifying the R and C bits of a PTE

• Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be appropriately
synchronized by software locking of (that is, guaranteeing exclusive access to) PTEs or
PTEGs if more than one processor can modify the table at that time. In the examples below,
'lockO' and 'unlockO' refer to software locks that must be performed to provide exclusive
access to the PTE being updated. See Appendix E, "Synchronization Programming
Examples," in The Programming Environments Manual, for more information about the
use of the reservation instructions (such as the Iwarx and stwex. instructions) to perform
software locking.

On single-processor systems, PTEs need not be locked. To adapt the examples given below
for the single-processor case, simply delete the 'lockO' and 'unlockO' lines from the
examples. The sync instructions shown are required even for single-processor systems (to
ensure that all previous changes to the page tables and all preceding t1bie instructions have
completed) .

When TLBs are implemented, they are defined as noncoherent caches of the page tables.
TLB entries must be invalidated explicitly with the TLB invalidate entry instruction (tlbie)
whenever the corresponding PTE is modified. In a multiprocessor system, the t1bie
instruction must be controlled by software locking, so that the tlbie is issued on only one
processor at a time. The sync instruction causes the processor to wait until the TLB
invalidate operation in progress by this processor is complete.

Chapter 5. Memory Management 5-33

The PowerPC OEA defines the tlbsync instruction that ensures that TLB invalidate
operations executed by this processor have caused all appropriate actions in other
processors. In a system that contains multiple processors, the tlbsync functionality must be
used in order to ensure proper synchronization with the other PowerPC processors. Note
that for compatibility with PowerPC 601 microprocessor systems a sync instruction must
also follow the tlbsync to ensure that the tlbsync has completed execution on this
processor.

Any processor, including the processor modifying the page table, may access the page table
at any time in an attempt to reload a TLB entry. An inconsistent page table entry must never
accidentally become visible; thus, there must be synchronization between modifications to
the valid bit and any other modifications (to avoid corrupted data). This requires as many
as two sync operations for each PTE update.

Because the V, R, and C bits each reside in a distinct byte of a PTE, programs may update
these bits with byte store operations (without requiring any higher-level synchronization).
However, extreme care must be taken to ensure that no store overwrites one of these bytes
accidentally. Processors write referenced and changed bits with unsynchronized, atomic
byte store operations.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly undefined results. Therefore, PTEs must not be
changed in a manner that causes an implicit branch. Chapter 2, "PowerPC Register Set," in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and MSR bits are changed.

5.4.7 Segment Register Updates
There are certain synchronization requirements for using the move to segment register
instructions. These are described in "Synchronization Requirements for Special Registers
and for Lookaside Buffers" in Chapter 2, "PowerPC Register Set," in The Programming
Environments Manual.

5-34 PowerPC 604 RISC Microprocessor User's Manual

5 .. 5 Direct-Store Interface Address Translation
As described for memory segments, all accesses generated by the processor map to a
segment descriptor in the segment table. If T = 1 for the selected segment descriptor and
there are no BAT hits, the access maps to the direct-store interface, invoking a specific bus
protocol for accessing some special-purpose I/O devices. Direct-store segments are
provided for POWER compatibility. As the direct-store interface is present only for
compatibility with existing I/O devices that used this interface and the direct-store interface
protocol is not optimized for performance, its use is discouraged. Applications that require
low latency load/store access to external address space should use memory-mapped I/O,
rather than the direct-store interface.

5.5.1 Direct-Store Interface Accesses
When the address translation process determines that the segment descriptor has T = 1,
direct-store interface address translation is selected and no reference is made to the page
tables and referenced and changed bits are not updated. These accesses are performed as if
the WIMG bits were ObOl0l; that is, caching is inhibited, the accesses bypass the cache,
hardware-enforced coherency is not required, and the accesses are considered guarded.

The specific protocol invoked to perform these accesses involves the transfer of address and
data information in packets; however, the PowerPC OEA does not define the exact
hardware protocol used for direct-store interface accesses. Some instructions cause
multiple address/data transactions to occur on the bus. In this case, the address for each
transaction is handled individually with respect to the DMMU.

The following data is sent by the 604 to the memory controller in the protocol (two packets
consisting of address-only cycles) described in Section 8.6, "Direct-Store Operation."

• Packet 0
- One of the K.x bits (Ks or Kp) is selected to be the key as follows:

- For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored.

- For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored.

- The contents of bits 3-31 of the segment register, which is the BUID field
concatenated with the "controller-specific" field.

• Packet 1-SR[28-31] concatenated with the 2810wer-orderbits of the effective
address, EA4-EA31.

5.5.2 Direct-Store Segment Protection
Page-level memory protection as described in Section 5.4.2, "Page Memory Protection," is
not provided for direct-store segments. The appropriate key bit (Ks or Kp) from the
segment descriptor is sent to the memory controller, and the memory controller implements
any protection required. Frequently, no such mechanism is provided; the fact that a
direct-store segment is mapped into the address space of a process may be regarded as
sufficient authority to access the segment.

Chapter 5. Memory Management 5-35

5.5.3 Instructions Not Supported in Direct-Store Segments
The following instructions are not supported at all and cause a DSI exception (with
DSISR[5] set) when issued with an effective address that selects a segment descriptor that
has T = 1 ,(or when MSR[DR] = 0):

• Iwarx
• stwcx.
• eciwx
• eeowx

5.5.4 Instructions with No Effect in Direct-Store Segments
The following instructions are executed as no-ops when issued with an effective address
that selects a segment where T = 1:

• debt
• debtst
• debf
• debi
• debst
• debz
• iebi

5.5.5 Direct-Store Segment Translation Summary Flow
Figure 5-11 shows the flow used by the MMU when direct-store segment address
translation is selected. This figure expands the direct-store segment translation stub found
in Figure 5-6 for both instruction and data accesses. In the case of a floating-point load or
store operation to a direct-store segment, other implementations may not take an alignment
exception, as is allowed by the PowerPC architecture. In the case of an eeiwx, eeowx,
Iwarx, or stwcx. instruction, the implementation either sets the DSISR register as shown
and causes the DSI exception, or causes boundedly undefined results.

5-36 PowerPC 604 RISC Microprocessor User's Manual

Direct-Store
Segment Translation

T=1

Data Access

Load or Store
... , 1 FlOating-Point

otherwise "1

~
r Aig.;,.;tl E;c~ptj;;n ' L ______ .J

eclwx, ecowx,lwarx,
or stwcx. instruction otherwise

r - - L ~ cach.l~(dcbl,
DSISR[5] +-1 otherwise debtst, debf, debl, debst,

L. _ _ _ _ .J dcbz, or lebl)

Periorm Direct-Store
Interiaee Access

~
CNcH>P)

- - - Optional to the PowerPC architecture. Implemented in the 604.

Figure 5-11. Direct-Store Segment Translation Flow

Chapter 5. Memory Management 5-37

Chapter 6
Instruction Timing
This chapter describes instruction prefetch and execution through all of the execution units .
of the PowerPC 604 microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions.

6.1 Terminology and Conventions
This section describes tenninology and conventions used in this chapter. This section
defines tenns used in this chapter.

• Stage-An element in the pipeline at which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, and writing back the
results. A stage typically takes a cycle to perfonn its operation; however, some
stages are repeated (a double-precision floating-point multiply, for example). When
this occurs, an instruction immediately following it in the pipeline is forced to stall
in its cycle.

In some cases, an instruction may also occupy more than one stage
simultaneously-for example, instructions may complete and write back their
results in the same cycle.

After an instruction is fetched, it can always be defined as being in one or more
stages.

• Pipeline-In the context of instruction timing, the term pipeline refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously-analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

Chapter 6. Instruction Timing 6-1

6-2

• Superscalar-A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the same time. In
the 604 these instructions can leave the execute stage out of order but must leave the
other stages in order.

• Branch prediction-The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term predicted as it is used here does not
imply that the prediction is correct (successful). The PowerPC architecture defines
a means for static branch prediction, which is part of the instruction encoding. The
604 also implements dynamic branch prediction, where there are levels of
probability assigned to a particular instruction depending on the history of that
instruction, which is recorded in the branch history table (BHT).

• Branch resolution-The determination of whether a branch is taken or not taken. A
branch is said to be resolved when it can exactly be determined which path it will
take. If the branch is resolved as predicted, speculatively executed instructions can
be completed. If the branch is not resolved as predicted, instructions on the
mispredicted path are purged from the instruction pipeline and are replaced with the
instructions from the nonpredicted path.

• Program order-The original order in which program instructions are provided to
the instruction queue from the cache.

• Stall-An occurrence when an instruction cannot proceed to the next stage.

• Latency-The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

• Throughput-A measure of the number of instructions that are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle.

• Reservation station-A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the operands required for execution may
not yet be available. In the 604, each execution unit has a two-entry reservation
station. The 604 implements two types of reservation stations. The integer units
implement out -of -order execution units so integer instructions can be executed out
of order within individual integer units and among the three units. The reservation

. stations for the other execution units are in-order reservation stations-that is, all
noninteger instructions must pass through its assigned unit in program order with
respect to other like instructions.

Power PC 604 RISC Microprocessor User's Manual

• Rename buffer-Temporary buffers used by instructions that have not completed
and as write-back buffers for those that have.

• Finish-The term indicates the final cycle of execution. In this cycle, the completion
buffer is updated to indicate that the instruction has finished executing.

• Completion-Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previous instructions will cause no exceptions. In some situations,
an instruction can finish and complete in the same cycle.

• Write-back-Write-back (in the context of instruction handling) occurs when a
result is written fr.om the rename registers into the architectural registers (typically
the GPRs and FPRs). Results are written back at completion time or are moved into
the write-back buffer. Results in the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken.

6.2 Instruction Timing Overview
The 604 has been designed to maximize instruction throughput and minimize average
instruction execution latency. For many of the instructions in the 604, this can be simplified
to include only the execute phase for a particular instruction. Note that the number of
additional cycles required by data access instructions depends on whether the access hits in
the cache in which case there is a single cycle required for the cache access. If the access
misses in the cache, the number of additional cycles required is affected by the processor
to-bus clock ratios and other factors pertaining to memory access.

In keeping with this definition, most integer instructions have a latency of one clock cycle
(for example, results for these instructions are ready for use on the next clock cycle after
issue). Other instructions, such as the integer multiply, require more than one clock cycle
to finish execution.

Figure 6-1 provides a detailed block diagram-showing the additional data paths that
contribute to the improved efficiency in instruction execution and more clearly shows the
relationships between execution units and their associated register files.

Chapter 6. Instruction nming 6-3

Branch
Correction

Fetch Unit
Dispatch Unit

(Four-Instruction
Dispatch)

Instruction Dispatch Buses

GPR Operand Buses

r - -I: - - r. - - I~ - - - -.- - - l
I GPR Result Buses I I I
II _~;..600_~""'_~;..600_-""-+--I'" I FPR Operand Buses

I r I .---'.---.
I I FPR Result Buses

I

Instruction 16-Kbyte Data Cache
Completion Unit 4-Way, 8 Words/Block

Result Buses
Operand Buses
Dispatch Buses

Figure 6-1. PowerPC 604 Microprocessor Block Diagram Showing Data Paths

As shown in Table 6-1, effective throughput of more than one instruction per clock cycle
can be realized by the many perfonnance features in the 604 including multiple execution
units that operate independently and in parallel, pipelining, superscalar instruction issue,
dynamic branch prediction, the implementation of two reservation stations for each
execution unit to avoid additional latency due to stalls in individual pipelines, and result
buses that forward results to dependent instructions instead of requiring those instructions
to wait until results become available in the architected registers.

The reservation stations and result buses for the GPRs are shown in Figure 6-2

6-4 PowerPC 604 RISC Microprocessor User's Manual

Figure 6-2. GPR Reservation Stations and Result Buses

Although it is not shown in Figure 6-1, the LSU and FPU are pipe lined.

The 604's completion buffer can retire four instructions every clock cycle. In general,
instruction processing is accomplished in six stages-fetch stage, decode stage, dispatch
stage, execute stage, completion stage, and write-back stage. The instruction fetch stage
includes the clock cycles necessary to request instructions from the on-chip cache as well
as the time it takes the on-chip cache to respond to that request. The decode stage consists
of the time it takes to fully decode the instruction. In the complete stage, as many as four
instructions per cycle are completed in program order. In the write-back stage, results are
returned to the register file. Instructions are fetched and executed concurrently with the
execution and write-back of previous instructions producing an overlap period between
instructions. The details of these operations are explained in the following paragraphs.

6.2.1 Pipeline Structures
The master instruction pipeline of the 604 has six stages. Instructions executed by the
machine flow through these stages. Some instructions combine the completion and write
back stages into a single cycle. Some instructions (load, store, and floating-point
instructions) flow through additional execution pipeline stages.

The six basic stages of the master instruction pipeline are as follows:

• Fetch (IF)
• Decode (10)
• Dispatch (OS)
• Execute (E)
• Completion (C)
• Write-back (W)

Chapter 6. Instruction Timing 6-5

These stages are shown in Figure 6-3. Some instructions occupy multiple stages
simultaneously and some individual execution units, such as the FPU and MCIU, have
multiple execution stages.

(Four-instruction dispatch per clock cycle in
any combination) L--_=-_--'

------------------,
Execute Stage , , , , , , , , , _______________ -1

Figure 6-3. Pipeline Diagram

Pipelines for typical instructions for each of the execution units are shown in Figure 6-4.
Note that this figure does not accurately reflect the latencies for all instructions that pass
through each of the pipelines. The division of instructions into branch, integer, load/store,
and floating-point instructions indicates the execution unit in which the instructions
execute. For example, mtspr instructions, which are not thought of as integer instructions
from a functional perspective, are considered with integer instructions here because they
execute in the MCIU.

Note that in many circumstances, complete and write-back can occur in the same cycle.
Also, integer multiply, integer divide, move to/from SPR, store, and load instructions that
miss in the cache can occupy both the final stage of execute (finish) and complete (and
write-back) simultaneously.

6-6 PowerPC 604 RISC Microprocessor User'. Manual

Branch Instructions
Fetch Decode
Predict Predict

«>,::}:::>}'

Dispatch
Predict Validate Complete

11111111111
Integer Instructions

Fetch Decode Dispatch Execute· Complete Write-Back

I :«:::<::«<1 1111111I11I

Load/Store Instructions

Fetch Decode

[»»:»»i
Floating-point Instructions

Dispatch EA
Calc

Execute

Cache Align Complete Write-Back

".: '111111111111

Execute
Fetch Decode Dispatch (Multiply) (Add) lRound Complete Write-Back

INbrmallze)
__ ==:::\:.::::.::: .. ::{::/::::.:,.::::::::.:::' .. ::.,:: .. ::.:.: :::.> ... :.: ... :: ... ':".:-:::.: 11111111111

• Note that several integer instructions that execute in the MCIU have multiple execute stages.

Figure 6-4. PowerPC 604 Microprocessor Pipeline Stages

Table 6-1 lists the latencies and throughputs for general groups of instructions.

Table 6-1. Execution Latencies and Throughputs

Instruction Latency Throughput

Most integer instructions 1 1

Integer multiply (32x32) 4 2

Integer multiply (others) 3 1

Integer divide 20 19

Integer load 2 1

Floating-point load 3 1

Floating-point store 3 1

Double-preeision floating-point multiply-add 3 1

Single-preeision floating-point divide 18 18

Double-preeision floating-point divide 31 31

6.2.1.1 Description of Pipeline Stages
This section gives a brief description of each of the six stages of the master instruction
pipeline.

Chapter 6. Instruction Timing 6-7

6.2.1.1.1 Fetch Stage
The fetch stage primarily is responsible for fetching instructions from the instruction cache
and determining the address of the next instruction to be fetched. Instructions fetched from
the cache are latched into an instruction buffer for subsequent consideration by the decode
stage. The instruction fetching logic is shown in Figure 6-5.

BTAC

Decode Buffer

Decode Prediction

Dispatch Buffer

Dispatch Prediction
To Cache

Pending Branch Queue { Target 1 Seq 1
(BPU Reservation I------f-----t

Station) Target 0 Seq 0

Execute Stage Correction

Finished Branch { Queue ___ ~ ________ ~_~_~

Number Completed
Exceptions

Complete Stage Correction

Figure 6-5. Instruction Fetch Address Generation

6-8 Power PC 604 RISC Microprocessor User's Manual

The ·fetch unit keeps the instruction buffer (four-entry decode and four-entry dispatch
buffer) supplied with instructions for the dispatcher to process. Nonnally, the fetch unit
fetches instructions sequentially, even when the instruction buffer is full because space may
become available by the time the instruction cache supplies them. Instructions are fetched
from the instruction cache in groups of four along double-word boundaries. Instructions
can be fetched from only one cache block at a time, so if only two instructions remain in
the cache block, only two instructions are fetched. If fetching is sequential, then it resumes
at four instructions'per clock from the next cache block.

The next address to be fetched is affected by several different conditions. Each stage offers
its own candidate for the next instruction to be fetched, and the latest stage has the highest
priority. As a block is prefetched, the branch target address cache (BTAC) and the branch
history table (BHT) are searched with the fetch address. If the fetch address is found in the
BTAC, it is the fetch stage candidate for being the next instruction address (as shown in
Section 6.4.4.1.1, "Timing Example~Branch Timing for a BTAC Hit"); otherwise, the
next sequential· address is the candidate provided by the fetch stage.

The decode logic may indicate, based on the BHT or an unconditional branch decode, that
an earlier BTAC prediction was incorrect. The BPU can indicate that a previous branch
prediction, either from the BTAC or the decoder was incorrect and it can supply a new fetch
address. In this case, the contents of the instruction buffers are flushed. Exception logic
within the completion logic may indicate the need to vector to an exception handler
address. From these choices the exception has first priority, the branch unit has second
priority, the decode correction of a BTAC prediction has third priority, and the BTAC
prediction has the final priority for instruction prefetching.

6.2.1.1.2 Decode Stage
The decode stage handles all time-critical instruction decoding for instructions in the
instruction buffer. The decode stage contains a four-instruction buffer that shifts one or two
pairs of instructions into the dispatch buffer as space becomes available.

6.2.1.1.3 Dispatch Stage
The dispatch pipeline stage is responsible for non-time-critical decoding of instructions
supplied by the decode stage and for determining which of the instructions can be
dispatched in the current cycle. Also, the source operands of the instructions are read from
the appropriate register file and dispatched with the instruction to the execute stage. At the
end of the dispatch stage, the dispatched instructions and their operands are latched into
reservation stations or execution unit input latches.

Chapter 6. Instruction Timing 6-9

6.2.1.1.4 Execute Stage
As shown in Figure 6-3, after an instruction passes through the common stages of fetch,
decode, and dispatch, they are passed to the appropriate execution unit where they are said
to be in execute stage. Note that the time that an instruction spends in the execute stage
varies depending on the execution unit. For example, the floating-point unit has a fully
pipelined, three-stage execution unit, so most floating-point instructions have a tbree-cycle
execute latency, regardless whether they are single- or double-precision. Some instructions,
such as integer divides, must repeat some stages in order to calculate the correct result.

The execute stage executes the instruction selected in the dispatch stage, which may come
from the. reservation stations or from instructions arriving from dispatch. At the end of
execute stage, the execution unit writes the results into the appropriate rename buffer entry,
and notifies the complete stage that the instruction has finished execution.

If it is determined that the direction of a branch instruction was mispredicted in an earlier
stage, the instructions from the mispredicted path are flushed and fetching resumes at the
correct address.

If an instruction causes an exception, the execution unit reports the exception to the
complete stage and continues executing instructions regardless of the exception. Under
certain conditions, results can write directly into the register file and bypass the rename
registers.

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

• Integer divide, multiply when OE = 0

• All mfspr
• All mtspr instructions except when LRlCTR is involved

Note that all instructions that execute in the MCIU can complete during the same cycle in
which they finish executing except for the following:

• Instructions that change OVor CA (OE = 1)
• Move to CTR/LR instructions because they are not execution-serialized

An example of one of these instructions, mulli, is shown in the instruction timing examples
in Figure 6-9 through Figure 6-12. An instruction can finish execution .and complete only
if it is the first instruction· to complete. Whether an instruction is able to complete in the
same cycle in which it finishes execution is also subject to the normal considerations that
affect execution and completion.

For more information about individual execution units, see Section 6.5, "Execution Unit
Timings."

6-10 PowerPC 604 RISC Microprocessor User'. Manual

6.2.1.1.5 Complete Stage
The complete stage maintains the correct architectural machine state. In doing this it
considers a number of instructions residing in the completion buffer and uses the
information about the status of instructions provided by the execute stage.

When instructions are dispatched, they are issued a position in the 16-entry completion
buffer· which they hold until they meet the constraints of completion. When an instruction
finishes execution, its status is recorded in its completion buffer entry. The completion
buffer is managed as a first-in, first-out (FIFO) buffer; it examines the entries in the order
in which the instructions were dispatched. The fact that the completion buffer allows the
processor to retain the program order ensures that instructions are completed in order.

The status of four entries are examined during each cycle to determine whether the results
can be written back, and therefore, as many as four instructions can complete per clock. If
an instruction causes an exception, the status information in the completion buffer reflects
this, and this information in the completion buffer is used to generate the exception. In this
way the completion buffer is used to ensure a precise exception model. Typically,
exceptions are detected in the fetch, decode, or execute stage.

Apart from those restrictions necessary to support a precise exception model, the 604
imposes the following restrictions per each cycle:

• Completion stops before a store since store data is read directly from GPRs or FPRs

• Completion stops after a taken branch instruction to simplify the program counter
logic.

Note that the 604 decouples instruction completion from the actual update (write-back) of
the register file; therefore, instructions can complete regardless of how many registers they
must update, and a few instructions, such as load cache misses can complete before the
result is known. The write-back occurs during the complete stage if the ports and results are
available; otherwise, the write-back is treated as a separate stage, as shown in the timing
examples in Section 6.4.1, "General Instruction Flow." This provision allows the processor
to complete instructions, without concern for the number or presence of results. Note that
if a read operation misses in the cache, the instruction can complete (as long as it is certain
that the instruction can cause no exceptions) even though the result is not available.

Rename buffer entries for the FPRs, GPRs, and CR act as temporary buffers for instructions
that have not completed and as write-back buffers for those that have.

Each of the rename buffers has two read ports for write-back, corresponding to the two
ports provided for write-back for the GPRs, FPRs, and CR. As many as two results are
copied from each write-back buffer to a register per clock cycle.

Chapter 6. Instruction Timing 6-11

If the completion logic detects an instruction containing exception status or an instruction
that can cause subsequent instructions to be flushed at completion (such as mtspr[xer),
instructions that set the summary overflow (SO) bit, and other instructions listed below),
all following instructions are cancelled, their execution results in the rename buffers are
discarded, and fetching resumes at the correct stream of instructions. Other architectural
registers, such as CTR, LR, and CR, are updated during this stage. A complete list of the
affected instructions is as follows:

• mtspr (x.er)

• mcrxr

• isync

• Instructions that set the summary overflow, SO, bit

• Iswx with 0 bytes to load

• Floating-point arithmetic, frsp, fctiw, and fctiwz instructions that cause an
exception with FPSCR[VE] = 1

• A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE = 1)

6.2.1 .1.6 Write-Back Stage
The write-back stage is used to write back any information from the rename buffers that
was not written back by the complete stage.

As mentioned in Section 6.2.1.1.5, "Complete Stage," each of the rename buffers has two
read ports for write-back, corresponding to the two ports provided for write-back for the
GPRs, FPRs, and CR As many as two results are copied from the write-back buffers to a
register per clock cycle. To compensate for the extra write-back stage, the GPR rename
buffer has 12 entries, which reduces the chances for dispatch stalls for applications that
depend heavily on integer instructions.

6.3 Memory Performance Considerations
Due to the 604' s instruction throughput of four instructions per clock cycle, lack of data
bandwidth can become a performance bottleneck. In order for the 604 to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.
If there are many processors in a system environment, one processor may experience long
memory latencies while another bus master (for example, a direct memory access
controller) is using) the external bus.

6-12 Power PC 604 RISC Microprocessor User's Manual

To reduce this possible contention, the PowerPC architecture provides three memory
update modes-write-back, write-through, and cache-inhibit. Each page of memory is
specified to be in one of these modes. If a page is in write-back mode, data being stored to
that page is written only to the on-chip cache. If a page is in write-through mode, writes to
that page update the on-chip cache on hits and always update main memory. If a page is
cache-inhibited, data in that page is never stored in the on-chip cache. All three of these
modes of operation have advantages and disadvantages. A decision as to which mode to use
depends on the system environment as well as the application. Although these modes are
described in detail in Chapter 3, "Cache and Bus Interface Unit Operation," Section 6.3.4,
"Memory Operations," briefly describes how these modes may affect instruction timing.

6.3.1 MMU Overview
The 604 implements separate 128-entry, two-way set-associative TLBs, one each for
instruction and data accesses. The TLBs are managed in hardware and adhere to the
specifications for segmented page virtual memory provided in the operating environment
architecture (OEA). The block address translation (BAT) registers make it possible to easily
manage large contiguous areas of memory (128 Kbyte to 256 Mbyte).

The MMUs also control memory protection as well as the cache functions, such as whether
a block or page is write-back or write-through, is cacheable/noncacheable, is kept coherent,
or is available for speculative execution.

For more information about the 604 MMU implementation, see Chapter 5, "Memory
Management. "

6.3.2 Cache Overview
The nonblocking data cache, shown in Figure 6-6, provides continuous load or store access
during a cache block reload.

Chapter 6. Instruction Timing 6-13

Bus Interface

Load/Store Unit

Line-Fill Buffer

Store Queue Load Queue

Data Cache

Store Miss Load Miss
Queue Queue

Result Buses

Figure 6-6. Data Caches and Memory Queues

For a load operation, the cache is accessed first by the LS U and data is forwarded to the
execution unit and to the rename buffer if the access hits in the cache. Otherwise, the load
operation is added to the load queue.

Store operations are added to the store queue after they are successfully translated. As each
store operation is completed with respect to the execution unit, it is only marked as
completed in the queue so instruction processing can continue without having to wait for
the actual store operation to take place either in the cache or in system memory. When the
cache is not busy, one completed store can be written to the cache per cycle. In the case of
a cache miss on a store operation, that store information is placed in the store miss queue
to allow subsequent store operations to continue while the missing cache block is brought
in from system memory. The store queue can hold six instructions.

As each load miss completes, the cache is accessed a second time. If it misses again, the
instruction is moved to the load miss register while the missing cache block is brought in.
This allows a second load miss to begin without having to wait for the first one to complete.
The load queue can hold as many as four instructions.

6-14 Power PC 604 RISC Microprocessor User's Manual

Requests from a mispredicted branch path are selectively removed from the memory
queues when the misprediction is corrected, eliminating unnecessary memory accesses and
reducing traffic on the system bus. The 604 also implements the cache block touch
instructions (debt and debtst) which allows the processor to schedule bus activity more
efficiently and increase the likelihood ofa cache hit.

The data cache is kept coherent using MESI protocol and maintains a separate port so
snooping does not interfere with other bus traffic. Note that coherency is not maintained in
the instruction cache. Instructions are provided by the PowerPC architecture to ensure
coherency in the instruction cache.

Both caches can be disabled, invalidated, or locked by using bits in the HIDO register. For
more information, see Section 2.1.2.3, "Hardware Implementation-Dependent Register 0."

For more information about the 604 cache implementation, see Chapter 3, "Cache and Bus
Interface Unit Operation."

6.3.3 Bus Interface Overview
The bus interface unit (BIU) on the 604 is compatible with that on the PowerPC 601 and
603 processors. The BIU supports both tenured and split-transaction modes and can handle
as many as three outstanding pipelined operations. The BIU can complete one or more
write transactions between the address and data tenures of a read transaction. The BIU
provides critical double word first, so the data in the double word requested by the
instruction fetcher or LSU is presented to the cache before the other data in the cache block.
The critical double word is forwarded to the fetcher or to the LSU without having to wait
for the entire cache block to be updated.

For more information about the BIU, see Chapter 3, "Cache and Bus . Interface Unit
Operation. "

6.3.4 Memory Operations
The 604 provides features that provide flexible and efficient accesses to memory in both
single- and multiple-processor systems.

6.3.4.1 Write-Back Mode
When storing data while in write-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on modified line replacements, cache flushes, or when another processor attempts to
access a specific address for which there is a corresponding modified cache entry. For this
reason, write-back mode may be preferred when external bus bandwidth is a potential
bottleneck-for example, in a multiprocessor environment. Write-back mode is also well
suited for data that is closely coupled to a processor, such as local variables.

Chapter 6. Instruction Timing 6-15

If more than one device uses data stored in a page that is in write-back mode, snooping must
be enabled to allow write-back operations and cache invalidations of modified data. The
604 implements snooping hardware to prevent other devices from accessing invalid data.
When bus snooping is enabled, the processor monitors the transactions of the other devices.
For example, if another device accesses a memory location and its memory-coherent (M)
bit is set, and the 604's on-chip cache has a modified value for that address, the processor
preempts the bus transaction, and updates memory with the cache data. If the cache
contents associated with the snooped address are unmodified, the 604 invalidates the cache
block. The other device is then free to attempt an access to the updated memory address.
See Chapter 3, "Cache and Bus Interface Unit Operation," for complete information about
bus snooping.

Write-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

6.3.4.2 Write-Through Mode
Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the data in the cache must
always agree with external memory (for example, video memory), or when there is shared
(global) data that may be used frequently, or when allocation of a cache block on a cache
miss is undesirable. Cached data is not automatically written back if that data is from a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that are in write-through mode may cause a decrease in performance.
Each time a store is performed to memory in write-through mode, the bus remains busy for
the extra clock cycles required to update memory; therefore, load operations that miss the
cache must wait until the external store operation completes.

6.3.4.3 Cache-Inhibited Mode
If a memory page is specified to be cache-inhibited, data from this page is not cached.

Areas of the memory map can be cache-inhibited by the operating system software. If a
cache-inhibited access hits in the on-chip cache, the corresponding cache block is
invalidated. If the line is marked as modified, it is written back to memory before being
invalidated.

In summary, the write-back mode allows both load and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the cache-inhibited mode causes memory access for both loads and stores.

6-16 Power PC 604 RISC Microprocessor User's Manual

6.4 Timing Considerations
A superscalar machine is one that can issue multiple instructions concurrently from a
conventional linear instruction stream. The 604 is a true superscalar implementation of the
PowerPC architecture since a maximum of four instructions can be issued to the execution
units during. each clock cycle. Although a superscalar implementation complicates
instruction timing, these complications are transparent to the functionality of software.
While the 604 appears to the programmer to execute instructions in sequential order, the
604 provides increased performance by executing multiple instructions at a time, and by
using hardware to manage dependencies.

When an instruction is issued, the register file places the appropriate source data on the
appropriate source bus. The corresponding execution unit then reads the data from the bus.
The register files and source buses have sufficient bandwidth to allow the dispatching of
four instructions per clock. If an operand is unavailable, the instruction is kept in a
reservation station until the operand becomes available.

The 604 contains the following execution units that operate independently and in parallel:

• Branch processing unit (BPU)
• Two 32-bit single-cycle integer units (SCIU)
• One 32-bit multiple-cycle integer units (MCIU)
• 64-bit floating-point unit (FPU)

• Load/store unit (LSU)

As shown in Figure 1-1, the BPU directs the program flow with the aid of a dynamic branch
prediction mechanism. The instruction unit determines to which of the five other execution
units an instruction is dispatched.

6.4.1 General Instruction Flow
When the IU or FPU finishes executing an instruction, it places the resulting data, if any,
into one of the GPR, FPR, or condition register rename registers. The results are then stored
into the correct register file during the write-back stage. If a subsequent instruction is
waiting for this data, it is forwarded from the result buses, directly into the appropriate
execution unit for the immediate execution of the waiting instruction. This allows a data
dependent instruction to be executed without waiting for the data to be written into the
register file and then read back out again. This feature, known as feed forwarding,
significantly shortens the time the machine may stall on data dependencies.

Chapter 6. Instruction Timing 6-17

As many as four instructions are fetched from the instruction cache per cycle and placed in
the decode buffer. After they are decoded, instructions advance to the dispatch buffers as
space becomes available. The 604 tries to keep the IQ full at all times. Although four
instructions can be brought in from the on-chip cache in a single clock cycle, if there is a
two-instruction vacancy in the IQ, two instructions can be fetched from the cache to fill it.
If while filling the IQ, the request for new instructions misses in the on-chip cache,
arbitration for a memory access begins. Whenever a pair of positions opens in the queue,
the next two instructions are shifted in.

6.4.2 Instruction Fetch Timing
The timing. of the instruction fetch mechanism on the 604 depends heavily on the state of
the on-chip cache. The speed with which the required instructions are returned to the
fetcher depends on whether the instruction being asked for is in the on-chip cache (cache
hit) or whether a memory transaction is required to bring the data into the cache (cache
miss).

6.4.2.1 Cache Hit Timing Example
Assuming that the instruction fetcher is not blocked from the cache by a cache reload
operation and the instructions it needs are in the on-chip cache (a cache hit has occurred),
there will only be one clock cycle between the time that the instruction fetcher requests the
instructions and the time that the instructions enter the IQ. As previously stated, instructions
are fetched in pairs from a single cache block, so usually four instructions are
simultaneously fetched from the on-chip cache and loaded into the IQ. If the fetch address
points to the last two instructions in the instruction cache block, as is the case in Figure 6-7,
only two instructions can be fetched into the IQ.

Figure 6-7 shows the timing for the following simple code sequence for instructions that
use the SCIUs and the FPU:

and
or
fadd
fsub
addc
subfc
fmadd
fmsub
xor
neg
fadds
fsubs
add
subf

6-18 Power PC 604 RISC Microprocessor User's Manual

o 2 3 4 5 6 7

Ie eel I I I
I 0 and L:::::::::::::;:::::::::::: "" M I

[I J1~oLr 11:E: :2::::::E:<:2<:~1 ~~ •• IJIW"II'II". I I I

Ip: ::~:::qzl]][::::::::::EIIt=:al ==1 1 I)III=II"~
1 4 addc 1<::«:\ 11111111111111111"'.

11111111111111111"'ffII

1;::11 1
1 8 xor I»:::::::::::::::::: I
1 9 neg he::;:::::::::::::::::::::

: r~=r::,
I . 12 add »»»
I 113 subf 1«:::1 :::::::::1
I I I I

c=J Fetch

1»:::»1 Decode

~ Dispatch

_ Execute

lIIIIDI1 Complete

_ Write-Back

8

. I

Figure 6-7. Instruction Timing-Cache Hit

9 10

The instruction timing for this example is described cycle-by-cycle as follows:

11

O. Two integer instructions (and and or) and two floating-point instructions (fadd and
fsub) are fetched in cycle O. These were fetched from the second double-word
boundary in the instruction cache, so only two instructions can be fetched in the next
clock cycle.

1. In cycle 1, the last two instructions in the cache block (adde and subfe) are fetched,
while instructions 0-3 pass into the decode stage.

2. In cycle 2, the two integer add instructions (0 and 1) are dispatched, one to each of
the SCIUs. The fadd instruction (2) is dispatched to the FPU. The fsub instruction
cannot be dispatched, so is held in the dispatch stage until the next cycle.
Instructions 4 and 5 are in the decode stage.

Instructions 6-9 are fetched from a new cache block. Note that this is the typical,
and the most efficient, alignment for instructions fetching, allowing all eight
instruction in the cache block to be fetched in two cycles (four instructions per
cycle).

Chapter 6. Instruction Timing 6-19

3. The following occurs in cycle 3:

- The first two integer instructions (and and or) enter the execute stages of the two
SCIUs. The two integer instructions decoded in cycle 2 (adde and subfe) are
dispatched without delay to the two SCIUs. The next pair of integer instructions
(xor and neg) is in decode stage and the final pair of integer instructions (add
and subt) is fetched from the second quad word in the instruction cache block.

- The fadd instruction enters execute stage in the FPU, vacating the dispatch
stage, allowing the fsub instruction to dispatch. The fmadd and fmsub
instructions are in decode stage, and the final pair of floating-point·instructions
(fadds and fsubs) is fetched.

4. The following occurs in cycle 4:

- In the SCIUs, the first two integer instructions complete execution and write
back their results, and the second pair of integer instructions (adde and subfe)
enters execute stage. The next pair of integer instructions (xor and neg) is held
in the dispatch stage because the fmsub instruction cannot dispatch.

- Thefadd instruction is in the second of the three execute stages and fsub is in
the first. The fmadd instruction (6) is in the dispatch stage, which forces fmsub
to remain in the dispatch stage, similar to the situation in cycle 1 when two
floating-point instructions were ready for dispatch. Note that because of in-order
dispatch, the integer instructions (8 and 9) are also held in the dispatch stage
behind the fmsub instruction. The final pair of floating-point instructions enters
decode stage.

5. The following occurs in cycle 5:

- The first two integer instructions have completed, written back their results, and
vacated the pipeline. The second pair of integer instructions has executed and
vacated the execution stages, but must remain in the completion buffer until the
previous floating-point instructions can complete. The third pair of integer
instructions is allowed to dispatch, and the final pair of integer instructions is
held in the decode stage behind the previous floating-point instructions
(10 and 11).

- In the FPU, fadd is in the final execute stage, fsub is in the second stage, fmadd
is in the first, and fmsub is allowed to dispatch. Because instructions 7-9 occupy
the two available positions for instruction pairs in the dispatch unit, fadds and
fsubs are held in decode, again, forcing subsequent integer instructions to remain
in decode.

6. The following occurs in cycle 6:

6-20

- The second pair of integer instructions (4 and 5) remains in the completion buffer
waiting for the previous floating-point instructions to complete. The third pair of
integer instructions is in execute stage, and the final pair of integer instructions
is held in the dispatch stage behind the fsubs instruction.

PowerPC 604 RISC Microprocessor User's Manual

- In the FPU, fadd is in the complete and write-back stages, fsub is in the final
execute stage, fmadd is in the second stage, and fmsub is in the first. The fadds
instruction is in dispatch, causing the final floating-point instruction, fsubs, to
stall in dispatch.

7. The following occurs in cycle 7:

- Integer instructions 4 and 5 are allowed to complete and writeback because the
previous fsub instruction completes. However, the next pair of integer
instructions (8 and 9) must wait in the complete stage until fmadd and fmsub
can complete. The add and subf instructions are in the dispatch stage along with
the previous fsubs instruction.

- The fsub instruction completes, allowing integer instructions 4 and 5 to
complete. Floating-point instructions continue to move through the floating
point pipeline with fmadd in the final execute stage, fmsub in the second stage,
and fadds in the first. The final floating-point instruction, fsubs, is allowed to
dispatch.

8. The following occurs in cycle 8:
- Integer instructions 8 and 9 continue to wait in the complete stage until fmsub

can complete. The add and subf instructions move into execute stage along with
the previous fsubs instruction, which is in the first stage of execute.

- The fmadd instruction completes and writes back and the subsequent floating
point instructions each move to the next stage in the floating-point pipeline.

9. The following occurs in cycle 9:
- Integer instructions 8 and 9 are allowed to complete with the fmsub instruction.

However, the final pair of integer instructions (12 and 13) must wait in the
complete stage until fadds and fsubs can complete and write back.

- The fmsub instruction completes and writes back and the subsequent floating
point instructions each move to the next stage in the floating-point pipeline.

10. The following occurs in cycle 10:

- The two remaining integer instructions remain in the complete stage until the
fsubs instruction completes.

- The fadds instruction completes and writes back and the remaining floating
point instruction, fsubs, is in the last execute stage in the floating-point pipeline.

11. In cycle 11 all remaining instructions complete.

Note that the double-precision floating-point add instructions each has a latency of three
cycles (assuming no register dependencies) but can be fully pipelined and achieve a
throughput of one floating-point instruction per clock cycle.

Chapter 6. Instruction Timing 6-21

6.4.2.2 Cache Miss Timing Example
Figure 6-8 illustrates the timing for a cache miss using the following code sequence.

add
fadd
add
fadd
br
add
fsub
add
fsub
add
fadd

Note that this example assumes a best-case scenario.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

---I I I
o add 1><» I I

1faddl:><>::'~ :
12 add I> «<) 1111111' • I

13faddl><»:1 ~
I 4br

I
I
I

".:. «:::! 111111111111
: ~ Address H
I

I
I
I
I
I
I
I
I
I
I
I

I
I ~5~~d~1 ~~~~~}.~<}<~
I Is fsub I I •• >
I

I I 17 add 1<::'::1
C==:J Fetch _ Execute la fsub I.{ •• \:: =::::: .. : ... ::: ... :.: ... ::.:: : .. 11 1 ••

I«««J Decode lIIIDIIJ Complete : 19 add I :???? I
~ Dispatch _ Write-Back I

Figure 6-8. Instruction Timing-Instruction Cache Miss (BlAC Hit)

6-22 Power PC 604 RISC Microprocessor User's Manual

The instruction timing for this example is described cycle-by-cycle as follows:

O. In cycle 0, the first pair of add and fadd instructions is fetched.

1. In cycle 1, the second pair of add and fadd instructions is fetched as the first pair is
decoded.

2. In cycle 2, the first pair of add and fadd instructions is dispatched, the second pair
is decoded and the br instruction is fetched.

3. In cycle 3, the first pair of add and fadd instructions is in execute, the second pair
is in dispatch stage, and the br instruction is in decode. By this time the target
instruction, add (S) was not found in the instruction cache and arbitration for the line
fill has begun.

4. In cycle 4, the first add instruction completes and writes back, the first fadd
instruction is in the second execute stage, and the second pair of add./fadd
instructions enter execute stage. The br instruction is in dispatch stage and
arbitration continues for the line fill. The target instruction, add (S), and fsub remain
in the fetch state.

S. In cycle S, fadd (1) is in the final execute stage in the floating-point pipeline, which
prevents the subsequent add instruction from completing and writing back. The
second fadd instruction is in the second cycle of the floating-point execute stage and
the br instruction is in execute stage. During this cycle, the address for the target
instruction is on the address bus and access has been granted for the data bus.

6. In cycle 6, fadd (1) completes and writes back, allowing the add (2) instruction to
complete and write back. The fadd (3) instruction is in the final execute stage and
the br instruction is in complete stage. The first beat of the four-beat burst (which
contains the critical double word) is sent over the data bus.

7. In cycle 7, fadd (3) completes and writes back, allowing the br instruction to
complete. The second beat of the burst transfer begins on the data bus.

8. In cycle 8, the two instructions in the critical double word transferred in cycles 6 and
7 (add (S) and fsub (6)) are placed in the instruction queue. All previous instructions
have vacated the completion buffer.

9. In cycle 9, add (S) and fsub (6) are in decode stage and the pair of instructions
loaded in the second beat of the data burst (add (7) and fsub (8)) are fetched. Note
that although there is room in the instruction queue for as many as four instructions,
only instructions 7 and 8 are available.

10. In cycle 10, instructions S and 6 are in dispatch stage, instructions 7 and 8 are in
decode stage, and the third pair of instructions are fetched. The fourth pair of
instructions are sent in the fourth and final beat of the four-beat data burst.

11. In the remaining clock cycles, the instructions shown complete processing similarly .
to instructions 0--3. Note again that although the integer instructions add (7) and
add (9) complete, they cannot write back until the previous floating-point
instructions fsub (6) and fsub (8) write back.

Chapter 6. Instruction Timing 6-23

6.4.3 Cache Arbitration
When a cache miss occurs, a line-fill operation is initiated to update the appropriate cache
block. When the double word containing the data at the specified address (the critical
double word) is available, it is forwarded to the cache and made available to other resources
on the 604. Likewise, subsequent double words are also forwarded as they reach the
memory unit.

Fetches to different lines can hit in the cache during the line-fill operation; however, if a
miss occurs before the cache block has been updated, the line-fill operation must complete
before the line-fill operation caused by the subsequent miss can begin.

For more information about the cache implementation in the 604, see Chapter 3, "Cache
and Bus Interface Unit Operation."

6.4.4 Branch Prediction
The 604 implements several features to reduce the latencies caused by handling branch
instructions. In particular, it provides a means of dynamic branch prediction. This is
especially critical for the 604 to take fullest advantage of the possibilities of increased
throughput made available from its pipelined and highly parallel organization. Dynamic
branch prediction is implemented in the fetch, decode, and dispatch stages, as described in
the following:

In the fetch stage, the fetch address is used to access the branch target address cache
(BTAC), which contains the target address of previously executed branch instructions that
are predicted to be taken. The 64-entry BTAC is fully associative to provide a high hit
percentage. If a fetch address is in the BTAC, the target address is used in the next cycle to
fetch the instructions from the predicted path. If the address is not present, sequential
instruction flow is assumed and the appropriate sequential address is generated based on
the number of instructions added to the decode buffer. The fetch address, rather than the
first branch address, is sufficient to access the BTAC, since a BTAC entry contains the first
predicted taken branch beyond the current fetch address.

In the decode and dispatch stages, the first branch instruction is identified and its outcome
is predicted. For an unconditional branch instruction, the instruction prefetch is redirected
to the target address if this branch was predicted as not taken by a previous stage.
Conditional instructions whose direction depends on the value in the CTR are predicted
based on that value. If the prediction differs from the current branch prediction, the prefetch
is redirected.

For conditional branch instructions that depend only on a bit in the CR, the BHT is used for
the prediction. The BRT is a 512-entry, direct-mapped cache with 2 bits that can indicate
four prediction states-strongly taken, taken, not-taken, and strongly not-taken. The entry
is updated each time a conditional branch instruction that depends on a bit in the condition
register is executed. For example, a BRT entry that predicts "taken" is updated to "strongly
taken" after the branch is taken or is updated to "not-taken" if the next branch is not-taken.

6-24 Power PC 604 RISC Microprocessor User's Manual

6.4.4.1 Branch Timing Examples
This section shows how the timing of· a branch is affected depending upon whether the
branch hits in the BTAC, or whether correction is required in one of the stages. The
following examples use the following code sequence:

and
ld
add
be
or
emp
ld
mulli

6.4.4.1.1 Timing Example-Branch Timing for a BTAe Hit
Figure 6-9 shows the timing for a branch instruction that had a BTAC hit.

o

•••
o and

c=:J Fetch

[::::::><::1 Decode

2

~ Dispatch

I I

3 4

_ Execute

UDllI1 Complete

_ Write-Back

I I

5 6

I

Figure 6·9. Instruction Timing-Branch with BT AC Hit

Chapter 6. Instruction Timing

7

6-25

The timing for this example is described, cycle-by-cycle, as follows:

O. In clock cycle 0, instructions 0-3 are fetched. The target instruction of the be
instruction is found in the BTAC.

1. In cycle 1, instructions 0-3 are decoded and instructions 4-7, using the address in
the BTAC, are fetched.

2. In cycle 2, instructions 0-3 are dispatched and instructions 4-7 are decoded.

3. In cycle 3, instructions 0-3 are in the execute stage and instructions 4-7 are in the
dispatch stage.

4. In cycle 4, instructions 0, 2, and 3 are in the complete stage, but only instruction °
is allowed to complete and write back because the Id instruction (1) is still in the
execute stage of the LSU pipeline. Instructions 2and 3 wait in the complete stage.
Instructions 4-7 all enter the execute stage.

5. In cycle 5, the Id (1) instruction is able to complete and write back, allowing the add
instruction to write back and vacate the pipeline in the next cycle. The br instruction
also completes. Because the branch is taken, the or (4) instruction, which could
otherwise write back in this cycle, stays in the complete stage and completes and
writes back in the next cycle. The emp (5) instruction also enters the complete stage;
Id (6) and mulli (7) enter the second stages of the LSU and MCIU pipelines,
respectively.

6. In cycle 6, instructions 4-6 complete and write back their results. The mulli
instruction, which is one of the instructions that can complete and write back during
its final cycle in the execute stage, occupies the execute and complete stages, but
cannot write back because both GPR write-back ports are occupied by the or and Id
instructions.

7. The mulli instruction writes back its results.

6.4.4.1.2 Timing Example-Branch with BTAC Miss/Decode Correction
In the example shown in Figure 6-10, the branch target address is not found in the BTAC
during the fetch cycle of the be instruction, as was the case in Figure 6-9. This one-cycle
delay causes the second group of instructions to be executed one cycle later than if there is
a BTAC hit.

6-26 Power PC 604 RISC Microprocessor User's Manual

o 2 3 4 5 6 7

... " '"

~O~a~d[d =tJ1:Z>::£::<2::Z<:IT»2<:~1 ==S ••• IIIIIIIIIIII t"" II' "eI
1 bc I> ::»<:::::::1 111111111111111111111111

: I 2 or t:::»:: <::::::::>1 I I' " , , " •
, tl:!3Ecm~p:1lE<:m:::=:>TI:>E>:E::<m>I~;;;;~ :",:,:,,:,: : :.::.:.: ... ::.:.: 11111 11 •• • -

: ... :.: :. :. -: .. : ;::' .:. ': .:: .::> "::::

, I 4 Id I~,' ~.::.: .. ::,'~.::,I
: tJ5~m~ul[1i j.z:::::ill:::::::;ZI><[[«z< n:;;;~;;I111 ••• __ RII1DI_
,

c:::::J Fetch

1»>«1 Decode

~ Dispatch

Execute

Complete

Write-Back

I

" , , ,
I ,

Figure 6·10. Instruction Timing-Branch with BTAC Miss/Decode Correction

A cycle-by-cycle description of this example is as follows:

O. In cycle 2, instructions 0-3 are dispatched and instructions 4-7 are fetched.

1. In cycle 3, instructions 0-3 are in the execute stage and instructions 4--7 are in the
decode stage.

2. In cycle 4, instructions 0, 2, and 3 complete, but only instruction 0 is allowed to write
back, because the Id instruction (1) is still in the execute stage of the LSU pipeline.
Instructions 2 and 3 wait in the complete stage. Instructions 4-7 enter the dispatch
stage.

3. In cycle 5, the Id (1) instruction is able to write back, allowing the following add
instruction (which completed in the previous cycle) to write back and vacate the
pipeline in the next cycle. Instructions 4-7 are in the execute stage.

4. In cycle 6, the or and cmp (5) instructions complete and write back; Id (6) and mulli
(7) enter the second stages of the LSU and MelU execute pipelines, respectively.

5. In cycle 7, the Id (6) instruction completes and writes back its results. The mulli
instruction finishes executing, completes, and writes back its results. Note that the
mulli instruction is able to complete in the same cycle as the Id instruction because,
unlike in the previous example, the two GPR write-back ports are available.

Chapter 6. Instruction Timing 6-27

6.4.4.1.3 Timing Example-Branch with BTAC Miss/Dispatch Correction
Figure 6-11 uses the same code sequence as the example shown in Figure 6-9, and shows
the timing when the BTAC miss is corrected in the dispatch stage. The timing in this
example is identical to that in Figure 6-10, except that the timings for instructions 4-7 are
shifted over by one cycle.

o 2 3 4 5 6 7

••• I I
o and L\ -::::::::::; :-:':-:':':-:':'·1 I

I
I

t=' 11 ~ldQlp<;:;D:;}:§< Z:;:::D;:::;::q'l==s •• 111 I '" II;:.
2 add t?'< ::::::::::::::::)/::) 111111111111""". I

I I

''''''''N 3 be !::/ ".", //:1 -4 ·or III:;:,::::,,:::;:::,::! II III II I 1'.IIIWIllilIii

I I 5cmp
I I
I I 61d

I I
I I

c:=:J Fetch

I}>}}}}] Decode

59 Dispatch

I I

.,. Execute

IIIIIDI1 Complete

.,. Write-Back

, ," , .11111 1 • p •

8

Figure 6-11. Instruction Timing-Branch with BTAC Miss/Dispatch Correction

6.4.4.1.4 Timing Example-Branch with BTAC Miss/Execute Correction
Figure 6-12 uses the same code sequence as the previous examples, and shows the timing
when the BTAC miss is corrected in the execute stage. The timing in this example is
identical to that in Figure 6-10, except that the timings for instructions 4-7 are shifted over
by two cycles (and over one cycle when compared to the timing when correction is
provided in the dispatch stage, as shown in Figure 6-11).

6-28 Power PC 604 RISC Microprocessor User's Manual

o

•••
o and

1 Id

2 add

3bc

I
r» :\:<»'

c=:J Fetch

1:<»>1 Decode

2

~ Dispatch

3 4

... Execute

IIIIIII11 Complete

... Write-Back

5 6 7 8

I
I
I
I
I
I

--

9

Figure 6-12. Instruction Timing-Branch with BT AC Miss/Execute Correction

6.4.5 Speculative Execution
To take fullest advantage of pipelining and parallelism, the 604 speculatively executes
instructions along a predicted path until the branch is resolved The 604 can handle as many
as four dispatched, uncompleted branch instructions (with four more in the instruction
queue) and can execute instructions from the predicted path of two unresolved branch
instructions. The results of speculatively executed instructions (the predicted state) are kept
in temporary locations, such as rename buffers, the completion buffer, and various shadow
registers. Architecturally defined resources are updated only after a branch is resolved.

To record the predicted state, the 604 uses many of the same resources (primarily the
rename buffers and completion buffer) and logic as the mechanism used to maintain a
precise exception model, as is common among superscalar implementations. The 604
design avoids the performance degradation that may come from such a design due to
speculative execution of longer latency instructions, by implementing additional logic to
record the predicted state whenever a predicted branch instruction is dispatched. This
allows the state to be quickly recovered when the branch prediction is incorrect. The
recording of these predicted states makes it possible to identify and selectively remove
instructions from the mispredicted path.

A shadow register is used with the CTR and LR to accelerate instructions that access these
registers. Shadow registers are updated and the old value is saved whenever a branch
instruction is dispatched, even if it is from a predicted path for a branch that has not yet been

Chapter 6. Instruction Timing 6-29

resolved. If the prediction is correct, there is no penalty. If the prediction is incorrect,
shadow registers are restored from the saved values so instructions fetched from the correct
path can be dispatched and executed. When the branch instruction completes, architected
registers are updated.

6.4.6 Instruction Dispatch and Completion Considerations
The 604's ability to dispatch instructions at a peak rate of four per cycle is affected by
availability of such resources as execution units, destination rename registers, and
completion buffer entries. To avoid dispatch unit stalls due to instruction data
dependencies, each execution unit has two reservation stations. If a data dependency could
prevent an instruction from beginning execution, that instruction is dispatched to the
reservation station associated with its execution unit, clearing the dispatch unit. When the
data that the operation depends upon is returned via a cache access or as a result of a
previous operation, execution begins during the cycle after the rename register is updated.
If the second instruction in the dispatch unit requires the same execution unit, that
instruction is not dispatched until the first instruction completes execution.

Instructions are dispatched to reservation stations in order, but from the perspective of the
overall program flow, instructions can execute out of order. The following aspects of the
604's support for out-of-order execution should be noted:

• The BPU, FPU, and LSU each have two-entry in-order reservation stations. These
stations allow instructions to clear the dispatch stage even though operands may not
yet be available for execution to occur. The BPU, FPU, and LSU instructions may
execute out of order with respect to one another and to other execution units, but the
BPU, FPU, and LSU instructions pass through their respective reservation stations
and pipelines in program order.

• Each integer unit has a two-entry out-of-order reservation station which allows
integer instructions to execute out-of-order within each execution as well as with
respect to instructions in other execution units.

The completion unit can track instructions from dispatch through execution and ensure that
they are completed in program order. In-order completion ensures the correct architectural
state when the 604 must recover from a mispredicted branch, or any other exception or
interrupt.

The rate of instruction completion is unaffected by the 604 's ability to write the instruction
results from the rename registers to the architecturally defined registers when the
instruction is retired. The 604 can perform two write-back operations from each of the
rename registers to the register files (CR, GPRs, and FPRs) each clock cycle.

Due to the 604's out-of-order execution capability, the in-order completion of instructions
by the completion unit provides a precise exception mechanism. All program-related
exceptions are signaled when the instruction causing the exception has reached the last
positio~ in the completion buffer. All prior instructions are allowed to complete and write
back before the exception is taken.

6-30 Power PC 604 RISC Microprocessor User's Manual

6.4.6.1 Rename Register Operation
To avoid contention for a given register file location in the course of out-of-order execution,
the 604 provides rename registers for the storage of instruction results prior to their
commitment (in program order) to the architecturally defined register by the completion
unit. Register renaming minimizes architectural resource dependencies, namely the output
and antidependencies, that would otherwise limit opportunities for out-of-order execution.
Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight for the
condition register.

A GPR rename buffer entry is allocated when an instruction that modifies a GPR is
dispatched. This entry is marked as allocated but not valid. When the instruction executes,
it writes its result to the entry and sets the valid bit. When the instruction completes, its
result is copied from the rename buffer entry to the GPR and the entry is freed for
reallocation. For load with update instructions that modify two GPRs, one for load data and
another for address, two rename buffer entries are allocated.

The rename register for the GPRs is shown in Figure 6-13.

Chapter 6. Instruction Timing 6-31

SCIU1 --.

SCIU2--.

MCIU3--.

LSU --.

Figure 6-13. GPR Rename Register

When an integer instruction is dispatched, its source operands are searched simultaneously
from the GPR file and its rename buffer. If a value is found in the rename buffer, that value
is used; otherwise, the value is read from the GPR. However, the rename buffer entry may
not yet be valid if the instruction that updates the GPR has not yet executed. In this case,
the instruction is dispatched with the rename buffer entry identifier in place of the operand,
which will be supplied by the reservation station when the result is produced. The GPR file
and its rename buffer have eight read ports for source operands to support dispatching of
four integer instructions each cycle.

The FPR file has 32 registers of 64 bits wide and an eight-entry rename buffer. The FPR file
and its rename buffer have three read ports for three source operands, which allow one
floating-point instruction to be dispatched per cycle.

6-32 Power PC 604 RISC Microprocessor User's Manual

The 604 treats each of the 4-bit fields in the condition register as a register and applies
register renaming for each with an eight-entry rename buffer.

Along with the reorder buffer, the rename buffers provide the basis of the precise exception
mechanism, because the 604 's architectural state represents, at all times, the results of
instructions completed in program order. Precise exceptions greatly simplify the exception
model by allowing the appearance of serialized execution.

6.4.6.2 Execution Unit Considerations
As previously noted, the 604 is capable of dispatching and retiring four instructions per
clock cycle. One of the factors affecting the peak dispatch rate is the availability of
execution units on each clock cycle.

For an instruction to be issued, the required reservation station must be available. The
dispatcher monitors the availability of all execution units and suspends instruction dispatch
if the required reservation station is not available. An execution unit may not be available
if it can accept and execute only one instruction per cycle, or if an execution unit's pipeline
becomes full. This situation may occur if instruction execution takes more clock cycles than
the number of pipeline stages in the unit, and additional instructions are issued to that unit
to fill the remaining pipeline stages.

6.4.7 Instruction Serialization
Some instructions, such as mfspr and most mtspr instructions, extended arithmetic
instructions that require the carry bit, and condition register instructions, require
serialization to execute correctly. For this reason, the 604 implements a simple serialization
mechanism that allows such instructions to be dispatched properly but delays execution
until they can be executed safely. When all previous instructions have completed and
updated their results to the architectural states, the serialized instruction is executed by
directly reading and updated in the architectural states. If the instruction target is a GPR,
FPR, or the CR, the register is renamed to allow later nondependent instructions to execute.

Store instructions are dispatched to the LSU where they are translated and checked for
exception conditions. If no exception conditions are present, the instruction is passed to the
store queue where it waits for all previous instructions to complete before it can be
completed. Direct-storage accesses are handled in the same way to ensure that exceptions
are precise.

The perfonnance is not degraded since instructions following a serializing instruction are
dispatched and executed usually before the serializing instruction is executed. One
serialized instruction can complete per clock cycle.

The following sections describe the serialization modes.

Chapter 6. Instruction Timing 6-33

6.4.7.1 Dispatch Serialization Mode
Dispatch serialization occurs when an mtspr instruction that accesses either the counter or
link or a mterf instruction that accesses multiple bits is dispatched to the MCIU. In these
instances, an interlock is set so that no other stich instructions or branch unit instructions
(branch and CR logical) can dispatch until the original instruction executes and clears the
interlock. The interlock is cleared when the instruction that sets the interlock finishes
executing. On the next cycle the instruction that is waiting can dispatch.

6.4.7.2 Execution Serialization Mode
The occurrence of an execution serialization instruction has no effect on the dispatching
and execution of any following instructions. The only difference between an execution
serialization instruction and a nonserialization instruction is that the execution serialization
instruction cannot be executed until it is the oldest uncompleted instruction in the
processor. In other words, the instruction is dispatched into a reservation station, but cannot
be executed until the completion block informs the execution unit to execute the
instruction. This means it is guaranteed to wait at least one cycle before it can execute.

Instructions causing execution serialization include the following:

• Condition register logical operations (erand, erande, ereqv, ernand, ernor, eror,
erore, erxor, and mert)

• mfspr and mfmsr

• mtspr (except count and link registers) and mtmsr

• Instructions that use the carry bit (adde, addeo, subfe, subfeo, addme, addmeo,
subfme, subfmeo, addze, addzeo, subfze, and subfzeo)

6.4.7.3 Postdispatch Serialization Mode
Postdispatch serialization occurs when the serializing instruction is being completed. All
instructions followmg the postdispatch serialized instruction are flushed, refetched, and re
executed. Instructions causing postdispatch serialization include the following:

• mtspr (xer)

• merxr

• isyne

• Instructions that set the summary overflow, SO, bit

• lswx with 0 bytes to load

• Floating-point arithmetic, frsp, fetiw, and fetiwz instructions that cause an
exception with FPSCR[VE] = 1

• Floating-point instructions with the Rc (record bit) set

• FPSCR instructions-mtfsbO, mtfsbl, mtfsfi, mffs, mtfsf, and merfs

• A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE = 1)

6-34 Power PC 604 RISC Microprocessor User's Manual

6.4.7.4 Serialization of String/Multiple Instructions
Serialization is required for all load/store multiple/string instructions. These instructions
are broken into a sequence of register-aligned operations. The first operation is dispatched
along with any preceding instructions in the dispatch buffer. Subsequent operations are
dispatched one-word-per-cycle until the operation is finished. String/multiple instructions
remain in the dispatch buffer for at least two cycles even if they only require a single-word
aligned memory operation.

Instructions causing string/multiple serialization include Imw, stmw, Iswi, Iswx, stswi, and
stswx.

6.4.7.5 Serialization of Input/Output
In this serialization mode, all noncacheable loads are performed in order with respect to the
eieio instruction.

6.5 Execution Unit Timings
The following sections describe instruction timing considerations within each of the
respective execution units in the 604. Refer to Table 6-2 for branch instruction execution
timing.

6.5.1 Branch Unit Instruction Timings
The 604 can have two unresolved branches in the branch reservation station and two
resolved branches that have not yet completed. The branch unit serves to validate branch
predictions made in earlier stages. It also verifies that the predicted target matches the
actual target address. If a misprediction is detected~ it redirects the fetch to the correct
address and starts the branch misprediction recovery.

The branch execution unit also executes condition register logical instructions, which the
PowerPC architecture provides for calculating complex branch conditions. Other
architectures that lack such instructions would need to use a series of branch instructions to
resolve complex branching . conditions. All executIon units can update the CR fields, but
only the branch and CR logical operations use CR fields as source operands.

6.5.2 Integer Unit Instruction Timings
The two SCIUs and the MCIU execute all integer and bit-field instructions, and are shown
in Figure 6-14 and Figure 6-15, respectively.

The SCIU s consist of three one-cycle subunits:

• A fast adder/comparator subunit
• A logic subunit
• A rotator/shifter/count-Ieading zero subunit

Chapter 6. Instruction Timing 6-35

These subunits handle all of the one-cycle aritlunetic instructions. Only one subunit in each
SCIU can obtain and execute an instruction at a time.

nstruetion 0° h B Ispate uses

GPR Operand Buses

Result Buses

~ ,

Reservation Station

0
0
::J

Rotate/Shift!
1"-

Adder I I+- Logie
[

CTLZ Comparator c8
c;"

\ 3:1 MUX L
J

Figure 6-14. SCIU Block Diagram

The MCIU, which handles all integer multiple-cycle integer instructions, consists of a 32-
bit integer multiplier/divider subunit. The multiplier supports early exit on 32 x .16-bit
operations. In addition the MelU executes all mfspr and mtspr instructions.

6-36 Power PC 604 RISC Microprocessor User's Manual

nstruetion Ispate 'D' h B uses
GPR Operand Buses

Result Buses

l
Reservation Station

I

0
0 a
2-

Multiplier / b
SPR ~

co
Divider 5'

Figure 6-15. MCIU Block Diagram

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

• Integer divide, multiply when OE = 0

• All mfspr instructions

• All mtspr instructions except when LRlCTR is involved

Note that all instructions that execute in the MCIU can complete during the same cycle in
which they finish executing except for the following:

• Instruction that changes OV or CA (OE = 1)

• The move to CTRILR instructions cannot because they are not execution-serialized

6.5.3 Floating-Point Unit Instruction Timings
The floating-point unit on the 604 . executes all floating-point instructions. Execution of
most floating-point instructions is pipelined within the FPU, allowing up to three
instructions to be executing in the FPU concurrently. While most floating-point instructions
execute with three-cycle latency and one-cycle throughput, three instructions (fdivs, fdiv,
and fres) execute with latencies of 18 to 33 cycles. The fdivs, fdiv, fres, mtfsbO, mtfsbl,
mtfsfi, miTs, and mtfsf instructions block the floating-point pipeline until they complete
execution and thereby inhibit the execution of additional floating-point instructions. With
the exception of the merfs instruction, all floating-point instructions immediately forward

Chapter 6. Instruction Timing 6-37

their CR results to the BPU for fast branch resolution without waiting for the instruction to
be retired by the completion unit and the CR to be updated~ Refer to Table 6-2 for floating
point instruction execution timing.

As shown in Figure 6-16, The FPU on the 604 is a single-pass, double-precision unit. This
means that both single- and double-precision floating-point operations require one
pass/one-cycle throughput with a latency of three cycles. This hardware implementation
supports the IEEE 754-1985 standard for floating-point arithmetic, including support for
the N aNs and denonnalized data types.

Instructions are obtained from the instruction dispatcher and placed in the reservation
station queue. The operand sources are the FPR, the floating-point rename buffers, and the
result buses. The result of an FPU operation is written to the floating-point rename buffers
and to the reservation stations. Instructions are executed from the reseIVation station queue
in the order they were originally dispatched.

Instruction Dispatch Bus /

FPR Operand Buses
,

/ ,
FPU Result Bus /

LS Result Bus
, , ,

FPSCR Bus / ,

n n , n
Queue 1 Ivl

-+-
Queue 0 Ivl I

I

.2 !
g> Floating-Point Multiply

--.J
Add Pre-Alignment Stage 1

e c
0
0 Floating-Point Pipeline Add Stage 2

Normalize/RoundlWrite-Back Stage 3

y
Result Status Bus

~ ,

Figure 6-16. FPU Block Diagram

6-38 PowerPC 604 RISC Microprocessor User'. Manual

6.5.4 Load/Store Unit Instruction Timings
The execution of most load and store instructions is pipelined. The LSU has two pipeline
stages; the first stage is for effective address calculation, and MMU translation, and the
second stage is for accessing the data in the cache. Load instructions have a two-cycle
latency and one-cycle throughput, and store instructions have a two-cycle latency and
single-cycle throughput.

The primary function of the LSU is to transfer data between the data cache and the result
bus, which routes data to the other execution units. The LSU supports the address
generation and all the data alignment to and from the data cache. As shown in Table 6-2,
the LSU also executes special instructions such as string transfers and cache control.

To improve execution performance, the LSU allows a load operation to be executed ahead
of pending store operations. All data dependencies introduced by this out-of -order
execution are resolved by the LSU. These dependencies arise when, in the instruction
stream, a store is followed by a load from the same address. If the load instruction is
speculatively executed before the store has modified the cache, incorrect data is loaded into
the rename registers. If the low-order 12 bits of the effective addresses are equal, the two
effective addresses may be aliases for the same physical address, in which case the load
instruction waits until the store data is written back to the cache, guaranteeing that the load
operation retrieves the correct data.

The LSU provides hardware support for denormalization of floating-point numbers. Within
the 604, all floating-point numbers are represented as double-precision numbers.
Denormalization can occur during a store floating-point single instruction, when the
double-precision number is converted to a single-precision number.

A block diagram of the load/store unit is shown in Figure 6-17. The unit is composed of:
reservation stations, an address calculation block, data alignment blocks, load queues, and
store queues.

Chapter 6. Instruction Timing 6-39

Instruction Flow and Result Bus

+
I Reservation

Station

I EA
Calculation

.- I Rooting-Point I I Load I ~ ~ Convert Align

Finish Load ~
Store Queue Queue

Complete
~ Store

Queue

~ . .~
~ FP Convert

r
Store Align J

- t t
r t

I MMUlCache Interface I
Address -.

Data

Figure 6-17. LSU Block Diagram

The reservation stations are used as temporary storage of dispatched instructions that
cannot be executed until all of the instruction operands are valid. The address calculation
block includes a 32-bit adder that computes the effective address for all operations. The
data alignment blocks manage the necessary byte manipulations to support aligned or
unaligned data transfers to and from the data cache. The load and store queues are used for
temporary storage of instructions for which the effective addresses have been translated and
are waiting to be completed by the sequencer unit.

6-40 Power PC 604 RISC Microprocessor User's Manual

Figure 6-18 shows the structure of the store queue. There are four regions that identify the
state of the store instructions.

Empty

Figure 6-18. Store Queue Structure

When a store instruction finishes execution, it is placed in the finished state. When it is
completed, the finish pointer advances to place it in the completed state. When the store
data is committed to memory, the completion pointer advances to place it in the committed
state. If the store operation hits in the cache, the commit pointer advances to effectively
remove the instruction from the queue. Otherwise, the commit pointer does not advance
until the cache block is reloaded and the store operation can occur. During this time, the
next store instruction pointed to by the completion pointer can access the cache. If this
second store instruction hits in the cache, it is removed from the queue. If not, another cache
block reload begins.

6.5.5 isync, rfi, and sc Instruction Timings
The isync, rfi, and sc instructions do not execute in one of the execution units. These
instructions decode to branch unit instructions, as specified by the PowerPC architecture,
but they do not actually execute in the BPU in the same sense that other branch instructions
do. The completion unit treats the rfi and sc instructions as exceptions, and handles them
precisely. When an isync instruction reaches the top of the completion buffer, subsequent
instructions are flushed from the pipeline and are refetched during the next clock cycle.

Although the rfi and sc are dispatched to the branch reservation stations, these instructions
do not execute in the ordinary sense, and do not occupy a position in an execute stage in
one of the BPU. Instead, these instructions are given a position in the completion buffer at
dispatch. When the sc instruction reaches the top of the completion buffer, the system call
exception is taken. When the rfi instruction reaches the top of the completion buffer, the
necessary operations required for restoring the machine state upon returning from an
exception are performed.

The isync instruction causes instructions to be flushed when it is completed This means
that the decode buffers, dispatch buffers, and execution pipeline are all flushed. Fetching
resumes from the instruction following the isync.

Chapter 6. Instruction Timing 6-41

6.6 Instruction Scheduling Guidelines
The performance of the 604 can be improved by avoiding resource conflicts and promoting
parallel utilization of execution units through efficient instruction scheduling. Instruction
scheduling on the 604 can be improved by observing the following guidelines:

• Schedule instructions such that they can maximize the dispatch rate.
• Schedule instructions to minimize execution-unit -busy stalls
• Avoid using serializing instructions
• Schedule instructions to avoid dispatch stalls due to renamed resource limitations

6.6.1 Instruction Dispatch Rules
The following list provides limitations on instruction dispatch that should be kept in mind
in order to ensure stalls:

• At most, four instructions can be dispatched per cycle.

• An instruction cannot be dispatched unless all preceding instructions in the dispatch
buffer are dispatched

• One instruction can be dispatched per functional unit.
- The branch unit executes all branch and condition register logical instructions

- The two SCIUs are identical and either can be used to execute any integer
arithmetic, logical, shift/rotate, trap, and mtcrf instructions that update only one
field.

- The MCIU executes all integer multiply, divide and move to/from instructions
except mtcrf instructions that update only one field, which are executed in either
of the SCIUs.

- The load/store unit executes load, store, and cache control instructions

- The FPU executes all floating-point instructions including move to/from FPSCR

Table 6-2 indicates which execution unit executes each instruction.

• Each instruction must have an entry in the 16-entry reorder buffer. The dispatch unit
stalls when the reorder buffer is full. Reorder buffer entries become available on the
cycle after the instruction has completed.

• An instruction that modifies a GPR is assigned one of the 12 positions in the GPR
rename buffer. Load with update instructions get two positions since they update
two registers. When the GPR rename buffer is full, the dispatch unit stalls when it
encounters the first instruction that needs an entry. A rename buffer entry becomes
available one cycle after the result is written to the GPR.

• Any floating-point instruction except mcrfs, mtfsfi, mtfsfi., mtfsf, mtfsf., mtfsbO,
mtfsbO., mtfsbl, and mtfsbl. gets one entry in the eight-entry FPR rename buffer.
When the FPR rename buffer is full, dispatch stalls on the next floating-point
instruction. A rename buffer entry can become available one cycle after the result is
written to the FPR. .

6-42 PowerPC 604 RiSe Microprocessor User's Manual

• The eight-entry CR rename buffer is similar to the GPR rename buffer in that an
instruction that modifies a CR field gets one entry. This includes, for example, all
condition register logical instructions and mtcrf instructions that update only one
CR field. When the CR rename buffer is full, dispatch stalls when the next
instruction to be dispatched needs a CR entry. A rename buffer entry becomes
available one cycle after the result is written to the CR.

• Each execution unit has a two-entry reservation station that holds instructions until
they are ready for execution. Instructions cannot be dispatched if the reservation
station is full.

• No following instruction can dispatch in the same cycle as a branch instruction.

• Since instructions are dispatched in program order, a later instruction cannot be
dispatched until all earlier ones have.

• There is an interlock mechanism between CTR and LR. After dispatching a move to
CTR/LR or mtcrf with multiple field update, the dispatch stalls on the first branch,
CR logical, move to CTR/LR, or mtcrf that update multiple fieldsuntil.one cycle
after the dispatched move to CTR/LR or mtcrf instruction executes. Those mtcrf
instructions that update multiple fields are execution-serialized.

• The 604 can handle as many as four branch instructions in the execute and complete
stages. The dispatch stalls on the first instruction after the fourth branch until the first
branch completes.

• An instruction cannot be dispatched until all destination registers for the instruction
have been assigned to a rename register.

• An instruction may not be dispatched if a serialization mode is in effect for the
instruction.

6.6.2 Additional Programming Tips for the PowerPC 604 Processor
The following guidelines should be followed when writing assembly code for the 604.

• Interleave memory instructions with integer and floating-point operations.

The 604 has a dedicated LSU that does not require the use of the integer or floating
point units to process memory operations. As a result, when scheduling code for the
604, interleaving memory operations with integer or floating-point instructions
typically result in better performance.

• Interleave integer operations.

Because the 604 has three IUs, it is also possible to interleave multiple, independent
integer operations. Two of these integer units support simple integer operations,
while the third supports complex integer operations such as bit-field manipulation.

• Avoid using instructions that write to multiple registers.

The 604 's dynamic register renaming permits instructions to execute out of order
with respect to their original program sequence, which increases overall throughput.
However, in other PowerPC processors, certain instructions including the load/store

Chapter 6. Instruction TIming 6-43

multiple/string operations, monopolize these internal hardware resources, which can
affect performance. For software portability, such instructions should be avoided,
even though they do not suffer the performance degradation in the 604 that they
might in other PowerPC processors. The most common use of such instructions is
in subroutine prologues or epilogues The following alternatives are typically more
efficient:

- Expanding the register save/restore code in-line

- Branching to special save/restore functions (sometimes called millicode) that use
in-line sequences of save and restore instructions.

• Use the load with update instruction judiciously.

Another frequently used set of instructions that are subject to this multiple register
usage effect are the load with update instructions. While use of such instructions is
usually desirable from a performance standpoint (they eliminate a dependent integer
operation), care must still be taken to not issue too many of these instructions
consecutively.

• Schedule code to take advantage of rename registers.

As discussed previously, the 604 provides register renaming as a means of
improving execution speed. Since there are a limited number of rename buffers
implemented in hardware, it is always desirable to minimize pressure on this
resource. One relatively simple means of doing this is to use immediate addressing
when the option exists. For example, an integer register copy can be performed in a
single cycle using a number of different instructions. However, using an ori
instruction (with an immediate operand of zero) uses only one source register
operand; whereas, the register indirect form of the or instruction uses two source
registers.

• Minimize use of instructions that serialize execution.

Some operations, such as memory synchronization primitives and trap instructions,
have well-known serialization properties that are intended when used by a
programmer. Other instructions, however, have more subtle serialization effects that
may affect performance. For example, if operations that manipulate condition
register fields are used frequently, they can significantly hinder performance,
particularly when multiple condition fields are being accessed by a single
instruction, described in the following:

• Avoid using the mtcrf instruction to update multiple fields.

6-44

Note that the performance of the mtcrf instruction depends greatly on whether only
one field is accessed or either no fields or multiple fields are accessed as follows:

- Those mtcrf instructions that update only one field are executed in either of the
SCIUs and the CR field is renamed as with any other SCIU instruction.

- Those mtcrf instructions that update either multiple fields or no fields are
dispatched to the MCIU and a count/link scoreboard bit is set. When that bit is
set, no more mtcrf instructions of the same type, mtspr instructions that update

Power PC 604 RISC Microprocessor User's Manual

the count or link registers, branch instructions that depend on the condition
register and CR logical instructions can be dispatched to the MCIU. The bit is
cleared when the mtctr, mtcrf, or mttr instruction that set the bit is executed.

Because mtcrf instructions that update a single field do not require such
synchronization that other mtcrf instructions do, and because two such single-field
instructions can execute in parallel, it is typically more efficient to use multiple
mtcrf instructions that update only one field apiece than to use one mtcrf instruction
that updates multiple fields. A rule of thumb follows:

- It is always more efficient to use two mtcrf instructions that update only one field
apiece than to use one mtcrf instruction that updates two fields.

- It is almost always more efficient to use three or four mtcrf instructions that
update only one field apiece than to use one mtcrf instruction that updates three
fields.

- It is often more efficient to use more than four mtcrf instructions that update only
one field than to use one mtcrf instruction that updates four fields.

• Minimize branching.

The 604 supports dynamic branch prediction and other mechanisms that reduce the
impact of branching; nevertheless, changing control flow in a program is relatively
expensive, in that fullest advantage cannot be taken of resources that can improve
throughput. such as superscalar instruction dispatch and execution. In some cases,
branches can be minimized by simply rewriting an algorithm. In other cases, special
PowerPC instructions, such as fset, can be used to eliminate a conditional branch
altogether.

• Note that the fset instruction is optional to the PowerPC architecture and may not be
implemented on all PowerPC implementations, so use of this instruction to improve
performance in the 604 should be weighed against portability considerations.

6.7 Instruction Latency Summary
Table 6-2 summarizes the execution cycle time of each instruction. Note that the latencies
themselves provide limited insight as to the actual behavior of an instruction. The following
list summarizes some aspects of instruction behavior:

• For a store operation, availability means data is visible to the following loads from
the same address. Misaligned load or store operations require one additional cycle,
assuming cache hits.

- Floating-point stores that require denonnalization take an additional cycle for
each bit of shifting that is needed up to a maximum of 23.

- Store multiple instructions are taken in pairs and take one additional cycle if an
odd number of registers is stored.

Chapter 6. Instruction Timing 6-45

- Misaligned load string operations require two cycles per register plus two
additional cycles.

- Misaligned store string operations take six cycles per register being stored
(although the final store may only take three cycles if it does not cross a word
boundary).

• For instructions with both a CR result and either a GPR or an FPR result, the cycle
count shown is for the.GPR or FPR result. CR results from logical or bit field
instructions that execute in the SCIU and CR results from instructions that execute
in the FPU take one additional cycle.

• Integer multiplies that detect an early exit condition finish a cycle earlier than others.
For signed multiplies, if the top 15 bits of the RB operand are all the same it is an
early out condition. For unsigned multiplies, if the top 15 bits are all zeros it is an
early out condition.

• All instructions are fully pipelined except for divides and some integer multiplies.

6-46

The integer multiplier is a three-stage pipeline. Integer multiplies other than those
that can exit early (described in the previous bullet) stall for one cycle in the first
stage of the pipeline. Integer divide instructions iterate in stage two of the multiplier.
Special-purpose register operations can execute in the MCIU in parallel with
multipli.es and divides.

- The FPU unit is a three-stage pipeline. Floating-point divides iterate in the
floating-point pipeline. The floating-point unit also has some data-dependent
delays not shown inTable 6-2. If the rounder has a carry out, that is, 1.11. .. 111
rounds to 2.00 ... 000, the FPU takes an additional cycle. If the final normalization
of the result requires a shift of more than 63, the FPU takes an additional cycle.
Underflow and overflow take an additional cycle. Denormalization to zero takes
an additional cycle. Massive cancellation resulting in zero takes an additional
cycle.

Table 6-2. Instruction Execution Timing

Instruction Unit Cycle (cycle) Serialization

add SCIU 1 -
addc SCIU 1 -

adde SCIU 1 Execute

addl SCIU 1 -
addlc SCIU 1 -
addlc. SCIU 1 -
addis SCIU 1 -

addme SCIU 1 Execute

addze SCIU 1 Execute

and SCIU 1 -

Power PC 604 RISC Microprocessor User's Manual

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

ande SCIU 1 -

andl. SCIU 1 -

andls. SCIU 1 -
b BPU 1 -

be BPU 1 -
bectr BPU 1 -

belr BPU 1 -

cmp SCIU 1 -
cmpl SCIU 1 -
cmpl SCIU 1 -
empll SCIU 1 -
cntlzw SCIU 1 -
crand BPU 1 Execute

crande BPU 1 Execute

creqv BPU 1 Execute

crnand BPU 1 Execute

crnor BPU 1 Execute

cror BPU 1 Execute

crore BPU 1 Execute

crxor BPU 1 Execute

debf LSU - Execute

debl LSU 3 Execute

debst LSU - Execute

debt LSU - Execute

debtst LSU - Execute

debz LSU 3 Execute

dlvw MCIU 20 -
dlvwu MCIU 20 -
eclwx LSU 2 + bus Execute

ecowx LSU 3 + bus Execute

elelo LSU - VO

eqv SCIU 1 -

Chapter 6. Instruction Timing 6-47

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

extsb SCIU 1 -
extsh SCIU 1 -

fabs FPU 3 -
fadd FPU 3 -
fadds FPU 3 -
fempo FPU 3 -
fempu FPU 3 -
fctlw FPU 3 -
fctlwz FPU 3 -

fdlv FPU 32 FP empty1

fdlvs FPU 18 FP empty1

fmadd FPU 3 -
fmadds FPU 3 -

fmr FPU 3 -

fmsub FPU 3 -

fmsubs FPU 3 -

fmul FPU 3 -

fmuls FPU 3 -

fnabs FPU 3 -

fneg FPU 3 -
fnmadd FPU 3 -

fnmadds FPU 3 -

fnmsub FPU 3 -

fnmsubs FPU 3 -

fres FPU 18 FPempty1

frsp FPU 3 -
frsqrte FPU 3 -

fsel FPU 3 -

fsub FPU 3 -

fsubs FPU 3 -
Icbl LSU - -

Isync Completion 1 Post dispatch

6-48 PowerPC 604 RISC Microprocessor User's Manual

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

Ibz LSU 2 -

Ibzu LSU 2 -
Ibzux LSU 2 -

Ibzx LSU 2 -
Ifd LSU 3 -

Ifdu LSU 3 -
Ifdux LSU 3 -

Ifdx LSU 3 -
Ifs LSU 3 -
Ifsu LSU 3 -

Ifsux LSU 3 -

Ifsx LSU 3 -
Iha LSU 2 -
Ihau LSU 2 -
Ihaux LSU 2 -
Ihex LSU 2 -
Ihbrx LSU 2 -
1hz LSU 2 -
Ihzu LSU 2 -
Ihzux LSU 2 -
Ihzx LSU 2 -

Imw LSU #regs + 2 String/multiple

Iswl LSU 2(#regs) + 2 String/multiple

Iswx LSU 2(#regs) + 2 String/multiple

Iwarx LSU 3+bus Execute

Iwbrx LSU 2 -
Iwz LSU 2 -
Iwzu LSU 2 -
Iwzux LSU 2 -

Iwzx LSU 2 -
mcrf BPU 1 Execute

mcrfs FPU 3 -

Chapter 6. Instruction TIming 6-49

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

mcrxr MCIU 3 Execute

mfcr MCIU 3 Execute

mffs FPU 3 -
mfmsr MCIU 3 Execute

mftb MCIU 3 Execute

mfspr LRlCTR MCIU 3 Execute

mfspr (others) MCIU 3 Execute

mtcrf (O/multlple bit) MCIU 1 DispatchlExecute

mtcrf (single bit) SCIU 1 -
mtfsbO FPU 3 -
mtfsb1 FPU 3 -
mtfsf FPU 3 -
mtfsfl FPU 3 -
mtmsr MCIU 1 Execute

mtspr (LRICTR) MCIU 1 Dispatch

mtspr(XER) MCIU 1 Complete 2

mtspr (others) MCIU 1 Execute

mulhw MCIU 4(3) -
mulhwu MCIU 4(3) -
mUIil MCIU 3 -

mullw MCIU 4(3) -
nand SCIU 1 -

neg SCIU 1 -
nor SCIU 1 -
or SCIU 1 -
orc SCIU 1 -
orl SCIU 1 -
oris SCIU 1 -
rfl Completion - Postdispatch

rlwlml SCIU 1 -
rlwlnm SCIU 1 -
rlwnm SCIU 1 -

6-50 PowerPC 604 RISC Microprocessor User's Manual

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

sc Completion - Postdispatch

slw SCIU 1 -

sraw SCIU 1 -

srawl SCIU 1 -

srw SCIU 1 -
stb LSU 3 Execute

stbu LSU 3 Execute

stbux LSU 3 Execute

stbx LSU 3 Execute

stfd LSU 3 Execute

stfdu LSU 3 Execute

stfdux lSU 3 Execute

stfdx lSU 3 Execute

stflwx lSU 3 Execute

stfs LSU 3 Execute

stfsu lSU 3 Execute

stfsux LSU 3 Execute

stfsx lSU 3 Execute

sth LSU 3 Execute

sthbrx lSU 3 Execute

sthu LSU 3 Execute

sthux lSU 3 Execute

sthx lSU 3 Execute

stmw lSU #regs + 2 String/multiple

stswl lSU #regs + 2 String/multiple

stswx lSU #regs + 2 String/multiple

stw lSU 3 Execute

stwbrx lSU 3 Execute

stwcx. lSU 3 Execute

stwu lSU 3 Execute

stwux lSU 3 Execute

stwx LSU 3 Execute

Chapter 6. Instruction Timing 6-51

6-52

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

subf SCIU 1 -
subfc SCIU 1 -
subfe SCIU 1 Execute

subflc SCIU 1 -
subfma SCIU 1 Execute

subfze SCIU ·1 Execute

sync LSU - -
tibia LSU - Execute

tlbsync LSU - -
tw SCIU 1 -
twI SCIU 1 -
xor SCIU 1 -
XOrl SCIU 1 -
xorls SCIU 1 -
1 TheS8lnstructions are not p~Uned. They cannot be executed until the previous
instNdion in the FPU completes; subsequent FPU instNdions cannot begin
execution until these Instructions complete.

2 The mtspr (XER) instruction causes instructions to be flushed when it executes.

Power PC 604 RISC Microprocessor User's Manual

Chapter 7
Signal Descriptions
This chapter describes the PowerPC 604 microprocessor's external signals. It contains a
concise description of individual signals, showing behavior when the signal is asserted and
negated and when the signal is an input and an output.

NOTE
A bar over. a signal name indicates that the signal is active
low-for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as APO-AP3 (address bus parity
signals) and TT~ TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

The 604 signals are grouped as follows:

• Address arbitration signals-The 604 uses these signals to arbitrate for address bus
mastership.

• Address transfer start signals-These signals indicate that a bus master has begun a
transaction on th~ address bus.

• Address transfer signals-These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Transfer attribute signals-These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write
through, or cache-inhibited.

• Address transfer termination signals-These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

• Data arbitration signals-The 604 uses these signals to arbitrate for data bus
mastership.

• Data transfer signals-These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

Chapter 7. Signal Descriptions 7-1

• Data transfer tennination signals-Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

• System status signals-These signals include the external interrupt signal,
checkstop signals, and both soft reset and hard reset signals. These signals are used
to interrupt and, under various conditions, to reset the processor.

• JTAG/COP interface signals-The JTAG (IEEE 1149.1) interface and common on
chip processor (COP) unit provides a serial interface to the system for performing
monitoring and boundary tests.

• Processor configuration signals-These signals include the memory reservation
signal, machine quiesce control signals, time base enable signal, driver mode signal,
L2 intervention signal, the run and halted signals, and the analog VDD signal.

• Clock signals-These signals provide for system clock input and frequency control.

7.1 Signal Configuration
Figure 7-1 illustrates the pin configuration of the ·604, showing how the signals are
grouped.

7-2

NOTE
A pinout showing actual pin numbers is included in the 604
hardware specifications.

PowerPC 604 RISC Microprocessor User's Manual

ADDRESS
ARBITRATION

ADDRESS
START

ADDRESS
TRANSFER

TRANSFER
ATTRIBUTE

ADDRESS
TERMINATION

t
t

t
r-

-

-

t

Btl
BG
ASS

TS
XATS

AO-A31
APO-AP3

APE

TTO-TT4
TBST

TSIZO-TSIZ2
GB[

cr
WT

CSEO-CSE1
TCO-TC2

"AACK
ARTRY

"SHU

1 1
1 1
1 1

1 64
1 8

1
1

32
4 1
1 1

1
5
1 2
3 1 0')
1 0 2
1 ~ 2
1 2
2
3 1

2
1

1 1
1 1
1 1

1
1
4
1

5

14-
+3.3 V

rnm
OBWO
neg

DHO-DH31. DlO-Dl31
DPO-DP7

msE
1JSOlS

TA
ORTRY

TEA

TNT sm
JACl5
~1R
~OOT

RJ5SET~

"RSRV
DRVMOD

TBEN
L2 INT

RUN
HALTED

SYSClK
ClK OUT

Pll CFGO-Pll CFG3
AVDD

TRST TCK TMS TOI TOO

l DATA J ARBITRATION

:L DATA d TRANSFER

=t DATA d TERMINATION

{ SYSTEM J STATUS

i PROCESSOR J CONFIGURATION

}QO~S
L JTN3ICOP
~ INTERFACE

Figure 7·1. PowerPC 604 Microprocessor Signal Groups

7.2 Signal Descriptions
This section describes individual 604 signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signal functions.
Chapter 8, "System Interface Operation," describes many of these signals in greater detail,
both with respect to how individual signals function and how groups of signals interact.

7.2.1 Address Bus Arbitration Signals
The address arbitration signals are a collection of input and output signals the 604 uses to
request the address bus, recognize when the request is granted, and indicate to other devices
when mastership is granted. For a detailed description of how these signals interact, see
Section 8.3.1, "Address Bus Arbitration."

Chapter 7. Signal Descriptions' 7-3

7.2.1.1 Bus Request (BR}-Output
The bus request (BR) signal is an output signal on the 604. Following are the state meaning
and timing comments for the BR signal.

State Meaning Asserted-Indicates that the 604 is requesting mastership of the
address bus. Note that BR may be asserted for one or more cycles,
and then deasserted due to an internal cancellation of the bus request
(for example, due to the loss of a memory reservation). See
Section 8.3.1, "Address Bus Arbitration."

Negated-Indicates that the 604 is not requesting the address bus.
The 604 may have no bus operation pending, it may be parked, or the
ARTRY input was asserted on the previous bus clock cycle.

Timing Comments Assertion-Occurs when a bus transaction is needed and the 604
does not have a qualified bus grant. This may occur even if the three
possible pipeline accesses have occurred.

Negation-Occurs for at least one bus clock cycle after an accepted,
qualified bus grant (see BO and ABB), even if another transaction is
pending. It is also negated for at least one bus clock cycle when the
assertion of ARTRY is detected on the bus, with the exception of the
bus master that asserted ARTRY due to the need to perform a cache
line push.

7.2.1.2 Bus Grant (BG}-Input
The bus grant (BO) signal is an input signal on the 604. Following are the state meaning
and timing comments for the BO signal.

State Meaning Asserted-Indicates that the 604 may, with the proper qualification,
assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted, ABB and ARTRY are not asserted, and
ARTRY has been negated on the previous cycle. The ABB and
ARTRY signals are driven by the 604 or other bus masters. If the 604
is parked, BR need not be asserted for the qualified bus grant. See
Section 8.3.1, "Address Bus Arbitration."

Negated- Indicates that the 604 is not the next potential address bus
master.

Timing Comments Assertion-May occur at any time to indicate the 604 is free to use
the address b~s. After the 604 assumes bus mastership, it does not
check for a qualified bus grant again until the cycle during which the
address bus tenure is completed (assuming it has another transaction
to run). The 604 does not accept a BO in the cycles between the
assertion of any TS or XATS through to the assertion of AACK.

7-4

Negation-May occur at any time to indicate the 604 cannot use the
bus. The 604 may still assume bus mastership on the bus clock cycle

PowerPC 604 RISC Microprocessor User's Manual

of the negation of BG because during the previous cycle BG
indicated to the 604 that it was free to take mastership (if qualified).

7.2.1.3 Address Bus Busy (ABB)
The address bus busy (ABB) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy (ABB)-Output
Following are the state meaning and timing comments for the ABB output signal.

State Meaning Asserted-Indicates that the 604 is the address bus master. See
Section 8.3.1, "Address Bus Arbitration."

Negated-Indicates that the 604 is not using the address bus. If ABB
is negated during the bus clock cycle following a qualified bus grant,
the 604 did not accept mastership, even if BR was asserted. This can
occur if a potential transaction is aborted internally before the
transaction is started.

Timing Comments Assertion-Occurs on the bus clock cycle following a qualified BG
that is accepted by the processor (see Negated).

Negation-Occurs on the bus clock cycle following the assertion of
AACK. If ABB is negated during the bus clock cycle following a
qualified bus grant, the 604 did not accept mastership, even if BR
was asserted.

High Impedance-Occurs one-half bus cycle (two-thirds bus cycle
when using 3:1 clock mode, and one-third bus cycle when using 3:2
bus ratio) after ABB is negated.

7.2.1.3.2 Address Bus Busy {ABB)-Input
Following are the state meaning and timing comments for the ABB input signal.

State Meaning Asserted-Indicates that the address bus is in use. This condition
effectively blocks the 604 from assuming address bus ownership,
regardless of the BG input; see Section 8.3.1, "Address Bus
Arbitration." Note that the 604 will not take the address bus for the
sequence of cycles beginning with TS and ending with AACK; thus
effectively making the use of ABB optional, provided that other bus
masters respond in the same way.

Negated-Indicates that the address bus is not owned by another bus
master and that it is available to the 604 when accompanied by a
qualified bus grant.

Timing Comments Assertion-May occur when the 604 must be prevented from using
the address bus (and the processor is not currently asserting ABB).

Negation-May occur whenever the 604 can use the address bus.

Chapter 7. Signal Descriptions 7-5

7.2.2 Address Transfer Start Signals
Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer start (TS) signal identifies the operation as a memory
transaction; extended address transfer start (XATS) identifies the transaction as a direct
store operation.

For detailed information about how TS and XATS interact with other signals, refer to
Section 8.3.2, "Address Transfer," and Section 8.6, "Direct-Store Operation," respectively.

7.2.2.1 Transfer Start (TS)
The TS signal is both an input and an output signal on the 604.

7.2.2.1.1 Transfer Start {TS)-Output
Following are the state meaning and timing comments for the TS output signal.

State Meaning Asserted-Indicates that the 604 has begun a memory bus
transaction and that the address-bus and transfer-attribute signals are
valid. When asserted with the appropriate TTO-TT4 signals it is also
an implied data bus request for a memory transaction (unless it is an
address-only operation).

Negated-Is negated during a direct-store operation.

Timing Comments Assertion-Coincides with the assertion of ABB.
Negation-Occurs one bus clock cycle after TS is asserted.
High Impedance-Occurs one bus clock cycle after TS is negated.

7.2.2.1.2 Transfer Start {TS)-Input
Following are the state meaning and timing comments for the TS input signal.

State Meaning Asserted-Indicates that another master has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping (see GBL).

Negated-Indicates that no bus transaction is occurring.

Timing Comments Assertion-May occur during the assertion of ABB.
Negation-Must occur one bus clock cycle after TS is asserted.

7.2.2.2 Extended Address Transfer Start (XATS)
The XATS signal is both an input and an output signal on the 604.

7.2.2.2.1 Extended Address Transfer Start {XATS)-Output
Following are the state meaning and timing comments for the XATS output signal.

State Meaning Asserted-Indicates that the 604 has begun a direct-store operation
and that the first address cycle is valid. When asserted with the
appropriate XATC signals it is also an implied data bus request for
certain direct-store operation (unless it is an address-only operation).

Negated-Is negated during an entire memory transaction.

7-6 PowerPC 604 RISC Microprocessor User's Manual

Timing Comments Assertion-Coincides with the assertion of ABB.
Negation~ccurs one bus clock cycle after the assertion of XATS.

High Impedance~ccurs one bus clock cycle after the negation of
XATS.

7.2.2.2.2 Extended Address Transfer Start (XATS)-Input
Following are the state meaning and timing comments for the XATS input signal.

State Meaning Asserted-Indicates that the 604 must check for a direct-store
operation reply.

Negated-Indicates that there is no need to check for a direct-store
operation reply.

Timing Comments Assertion-May occur while ABB is asserted.
Negation-Must occur one bus clock cycle after XATS is asserted.

7.2.3 Address Transfer Signals
The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signals interact, refer
to Section 8.3.2, "Address Transfer."

7.2.3.1 Address Bus (AO-A31)
The address bus (AO-A31) consists of 32 signals that are both input and output signals.

7.2.3.1.1 Address Bus (AO-A31)-Output (Memory Operations)
Following are the state meaning and timing comments for the AO-A31 output signals.

State Meaning Asserted/Negated-Represents the physical address (real address in
the architecture specification) of the data to be transferred. On burst
transfers, the address bus presents the double-word-aligned address
containing the critical code/data that missed the cache on a read
operation, or the first double word of the cache line on a write
operation. Note that the address output during burst operations is not
incremented. See Section 8.3.2, "Address Transfer."

Timing Comments AssertionlNegation~ccurs on the bus clock cycle after a qualified
bus grant (coincides with assertion of ABB and TS).

High Impedance-Occurs one bus clock cycle after AACK is
asserted.

7.2.3.1.2 Address Bus (AO-A31)-lnput (Memory Operations)
Following are the state meaning and timing comments for the AO-A31 input signals.

State Meaning Asserted/Negated-Represents the physical address of a snoop
operation.

Timing Comments AssertionlNegation-Must occur on the same bus clock cycle as the
assertion ofTS; is sampled by 604 only on this cycle.

Chapter 7. Signal Descriptions 7-7

7.2.3.1.3 Address Bus (AO-A31)-Output (Direct-Store Operations)
Following are the state meaning and timing comments for the address bus signals (AD to
A31) for output direct-store operations on the 604.

State Meaning AssertedlNegated-For direct-store operations where the 604 is the
master, the address tenure consists of two packets (each requiring a
bus cycle). For packet 0, these signals convey control and tag
information. For packet I, these signals represent the physical
address of the data to be transferred. For reply operations, the
address bus contains control, status, and tag information.

Timing Comments Assertion/Negation-Address tenure consists of two beats. The first
beat occurs on the bus clock cycle after a qualified bus grant,
coinciding with XATS. The address bus transitions to the second
beat on the next bus clock cycle.

High Impedance-Occurs on the bus clock cycle after AACK is
asserted.

7.2.3.1.4 Address Bus (AO-A31)-Input (Direct-Store Operations)
Following are the state meaning and timing comments for input direct-store operations on
the 604.

State Meaning AssertedlNegated-When the 604 is not the master, it snoops (and
checks address parity) on the first address beat only of all direct-store
operations for an I/O reply operation with a receiver tag that matches
its PID tag. See Section 8.6, "Direct-Store Operation."

Timing Comments Assertion/Negation-The first beat of the I/O transfer address tenure
coincides with XATS, with the second address bus beat on the
following cycle.

7.2.3.2 Address Bus Parity {APO-AP3}
The address bus parity (APO-AP3) signals are both input and output signals reflecting one
bit of odd-byte parity for each of the four bytes of address when a valid address is on the
bus.

7.2.3.2.1 Address Bus Parity (APO-AP3)-Output
Following are the state meaning and timing comments for the APO-AP3 output signal on
the 604.

State Meaning

7-8

AssertedlNegated-Represents odd parity for each of four bytes of
the physical address for a transaction. Odd parity means that an odd
number of bits, including the parity bit, are driven high. The signal
assignments correspond to the following:

APO AD-A7
API A8-AI5
AP2 Al6-A23
AP3 A24-A31

PowerPC 604 RISC Microprocessor User's Manual

For more information, see Section 8.3.2.1, "Address Bus Parity."

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

7.2.3.2.2 Address Bus Parity {APO-AP3)-lnput
Following are the state meaning and timing comments for the APO-AP3 input signal on the
604.

State Meaning AssertedlNegated-Represents odd parity for each of four bytes of
the physical address for snooping and direct-store operations.
Detected even parity causes the processor to enter the checkstop
state, or take a machine check exception depending on whether
address parity checking is enabled in the HlDO register and the
condition of the MSR[ME] bit; see Section 2.1.2.3, "Hardware
Implementation-Dependent Register 0." (See also. the APE signal
description.)

Timing Comments Assertion/Negation-The same as AO-A31.

7.2.3.3 Address Parity Error (APE}-Output
The address parity error (APE) signal is an output signal on the 604. Note that the (APE)
signal is an open-drain type output, and requires an external pull-up resistor (for example,
10 k.Q to Vdd) to assure proper deassertion of the APE signal). Following are the state
meaning and timing comments for the APE signal on the 604. For more information, see
Section 8.3.2.1, "Address Bus Parity."

State Meaning Asserted-Indicates that incorrect address bus parity has been
detected by the 604 on a snoop that the 604 recognizes. This includes
the first address beat of a direct-store operation.

Negated-Indicates that the 604 has not detected a parity error (even
parity) on the address bus.

Timing Comments Assertion-Occurs on the second bus clock cycle after TS or XATS
is asserted.

High Impedance-Occurs on the third bus clock cycle after TS or
XATS is asserted.

7.2.4 Address Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer-such
as the size of the transfer, whether it is a read or write operation, and whether it is a burst
or single-beat transfer. For a detailed description of how these signals interact, see
Section 8.3.2, "Address Transfer."

Note that some signal functions vary depending on whether the transaction is a memory
access or an I/O access. For a description of how these signals function for direct-store
operations, see Section 8.6, "Direct-Store Operation."

Chapter 7. Signal Descriptions 7-9

7.2.4.1 Transfer Type (TTO-TT4)
The transfer type (ITO--TT4) signals consist of five input/output signals on the 604. For a
complete description ofITO--TT4 signals and for transfer type encodings, see Table 7-1.

7.2.4.1.1 Transfer Type (TTO-TT4)-Output
Following are the state meaning and timing comments for the ITO--TT4 output signals on
the 604.

State Meaning AssertedlNegated-Indicates the type of transfer in progress.

For direct-store operations these signals are part of the extended
address transfer code (XATC) along with TSIZ and TBST:

XATC(0--7)=TT(0--3)IITBSTIITSIZ(0--2).

Timing Comments Assertion/Negation/High Impedance-The same as AO--A31.

7.2.4.1.2 Transfer Type (TTO-TT4)-lnput
Following are the state meaning and timing comments for the ITO--IT4 input signals on
the 604.

State Meaning AssertedlNegated-Indicates the type of transfer in progress (see
Table 7-1). For direct-store operations, the TTO--IT3 signals form
part of the XATC and are snooped by the 604 if XATS is asserted.

Timing Comments Assertion/Negation-The same as AO--A31.

Table 7-1 describes the transfer encodings for a 604 bus master and the 60x bus
specification.

Table 7·1. Transfer Encoding for PowerPC 604 Processor Bus Master

TTO TT1 TT2 TT3 TT4
604 Bus Master

Transaction Transaction Source Transaction

0 0 0 0 0 Clean block Address only Cache operation

0 0 1 0 0 Flush block Address only Cache operation

0 1 0 0 0 SYNC Address only Cache operation

0 1 1 0 0 Kill block Address only Store hit/shared or
cache operation

1 0 0 0 0 Ordered I/O Address only elelo
operation

1 0 1 0 0 External control Single-beat ecowx
word write write

1 1 0 0 0 TLB invalidate Address only tlble

1 1 1 0 0 External control Single-beat eclwx
word read read

0 0 0 0 1 Iwarx Address only Iwarx with cache hit
Reservation set

0 0 1 0 1 Reserved Address only N/A

7-10 PowerPC 604 RISC Microprocessor User's Manual

Table 7-1. Transfer Encoding for PowerPC 604 Processor Bus Master (Continued)

TTO TT1 TT2 TT3 TT4
604 Bus Master

Transaction Transaction Source
Transaction

0 1 0 0 1 TLBSYNC Address only tlbsync or tlble

0 1 1 0 1 ICBI Address only N/A

1 X X 0 1 Reserved - N/A

0 0 0 1 0 Write-with-flush Single-beat Caching-inhibited or
write or burst write-through store

0 0 1 1 0 Write-with-kill Single-beat Cast-out, or snoop
write or burst copyback

0 1 0 1 0 Read Single-beat Caching-inhibited
read or burst load

0 1 1 1 0 Read-with-intent- Burst Load miss, or store
to-modify miss

1 0 0 1 0 Write-with-flush- Single-beat stwcx.
atomic write

1 0 1 1 0 Reserved N/A NlA

1 1 0 1 0 Read-atomic Single-beat Iwarx
read or burst (caching-inhibited

load)

1 1 1 1 0 Read-with-intent- Burst Iwarx
to-modify-atomic (load miss)

0 0 0 1 1 Reserved - NlA

0 0 1 1 1 Reserved - N/A

0 1 0 1 1 Read-with-no- Single-beat NlA
intent-to-cache read or burst

0 1 1 1 1 Reserved - N/A

1 X X 1 1 Reserved - N/A

7.2.4.2 Transfer Size (TSIZO-TSIZ2)
The transfer size (TSIZO-TSIZ2) signals consist of three input/output signals on the 604.

Chapter 7. Signal Descriptions 7-11

7.2.4.2.1 Transfer Size (TSIZO-TSIZ2)-Output
Following are the state meaning and timing comments for the TSIZG-TSIZ2 output signals
on the 604.

State Meaning AssertedlNegated-For memory accesses, these signals along with
TBST, indicate the data transfer size for the current bus operation, as
shown in Table 7-2. Table 8-4 shows how the TSIZ signals are used
with the address signals for aligned transfers. Table 8-5 shows how
the TSIZ signals are used with the address signals for misaligned
transfers. For I/O transfer protocol, these signals form part of the I/O
transfer code; see the description in Section 7.2.4.1, "Transfer Type
(TTO-TT4)."

For external control instructions (eciwx and ecowx), TSIZG-TSIZ2
are used to output bits 29-31 of the external access register (EAR),
which are used to fonn the resource ID (TBSTIITSIZG-TSIZ2).

Timing Comments Assertion/Negation-The same as AG-A31.
High Impedance-The same as AG-A31.

Table 7-2. Data Transfer Size

TIST TSIZG-TSIZ2 Transfer Size

Asserted 010 Burst (32 bytes)

Negated 000 8 bytes

Negated 001 1 byte

Negated 010 2 bytes

Negated 011 3 bytes

Negated 100 4 bytes

Negated 101 5 bytes

Negated 110 6 bytes

Negated 111 7 bytes

7.2.4.2.2 Transfer Size (TSIZO-TSIZ2)-lnput
Following are the state meaning and timing comments for the TSIZG-TSIZ2 input signals
on the 604.

State Meaning AssertedlNegated- For the direct-store protocol, these signals form
part of the I/O transfer code; see Section 7.2.4.1, "Transfer Type
(TTG-TT4)."

Timing Comments Assertion/Negation-The same as AO-A31.

7-12 PowerPC 604 RISC Microprocessor User's Manual

7.2.4.3 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on the 604.

7.2.4.3.1 Transfer Burst (f'B5f)-Output
Following are the state meaning and timing comments for the TBST output signal.

State Meaning Asserted-Indicates that a burst transfer is in progress.

Negated-Indicates that a burst transfer is not in progress. Also, part
of I/O transfer code; see Section 7.2.4.1, "Transfer Type (TIO
TI4)."

For external control instructions (eciwx and ecowx), TBST is used
to output bit 28 of the EAR, which is used to form the resource ID
(TBSTIITSIZO-TSIZ2).

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

·7.2.4.3.2 Transfer Burst (TBST)-Input
Following are the state meaning and timing comments for the TBST input signal.

State Meaning AssertedlNegated- For the I/O transfer protocol, this signal forms
part of the I/O transfer code; see Section 7.2.4.1, "Transfer Type
(TTO-TT4)."

Timing Comments Assertion/Negation-The same as AO-A31.

7.2.4.4 Transfer Code {TCO-TC2)-Output
The transfer code (TeO-Te2) consists of three output signals on the 604 that, when
combined with the WT signal, provide additional information about the transaction in
progress. Following are the state meaning and timing comments for the TeO-Te2 signals.

State Meaning AssertedlNegated-Represents a special encoding for the transfer in
progress (see Table 7-3).

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

Table 7-3. Encodlngs for TCO-TC2 Signals

Transfer Type Wf TCO TC1 TC2 Transaction

Write-with-kill 1 1 0 0 Cache copyback

Write-with-kill 0 1 0 0 Block invalidate
(debf)

Write-with-kill 0 0 0 0 Block clean
(debst)

Write-with-kill 0 0 1 0 Snoop push
(read operation)

Chapter 7. Signal Descriptions 7-13

Table 7-3. Encodings for TCO-TC2 Signals (Continued)

Transfer lYpe WT TCO TC1 TC2 Transaction

Write-with-kill 0 1 0 0 Snoop push
(read-with-intent-to-modify)

Write-with-kill 0 0 0 0 Snoop push
(clean operation)

Write-with-k111 0 1 0 0 Snoop push
(flush operation)

Kill block x 1 0 0 Kill block de-allocate
(debl)

Kill block 1 0 0 0 Kill block & allocate
with no cast-out (dcbz)

Kill block 1 0 0 1 Kill block & allocate
with cast-out (dcbz)

Kill block 1 0 0 0 Kill block
Write to shared block

Read1 VJ3 0 x 0 Data read
with no cast-out

Read W 0 x 1 Data read
with cast-out

Read W 1 x 0 Instruction read

ICBI x 1 0 0 KUI block and de-aUocate
(lcbl)2

Note: 1. Includes both ordinary and atomic read and read-with-intent-to-modify operations.

2. ICBI operation is distinguished from kill block by assertion of TT4 bit.
3. W = write-through bit from translation.

The value shown in the WT column reflects the actual logic value seen on the WT input signal.

7.2.4.5 Cache Inhibit (CI)-Output
The cache inhibit (CI) signal is an output signal on the 604. Following are the state meaning
and timing comments for the CI signal.

State Meaning Asserted-Indicates that a single-beat transfer will not be cached,
reflecting the setting of the I bit for the block or page that contains
the address of the current transaction.

Negated-Indicates that a burst transfer will allocate a line in the 604
data cache.

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

7-14 PowerPC 604 RISC Microprocessor User's Manual

7.2.4.6 Write-Through (WT)-Output
The write-through (WT) signal is an output signal on the 604. Following are the state
meaning and timing comments for the WT signal.

State Meaning Asserted-Indicates that a single-beat transaction is write-through,
reflecting the value of the W bit for the block or page that contains
the address of the current transaction.

Negated-Indicates that a transaction is not write-through.

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

7.2.4.7 Global (GBl)
The global (GBL) signal is an input/output signal on the 604.

7.2.4.7.1 Global (GBl)-Output
Following are the state meaning and timing comments for the GBL output signal.

State Meaning Asserted-Indicates that a transaction is global, reflecting the setting
of the M bit for the block or page that contains the address of the
current transaction (except in the case of copy-back operations,
which are nonglobal.)

Negated-Indicates that a transaction is not global.

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

7.2.4.7.2 Global (GBl)-lnput
Following are the state meaning and timing cOlIll11ents for the GBL input signal.

State Meaning Asserted-Indicates that a transaction may be snooped by the 604.
The 604 will not snoop, regardless of GBL signal assertion, reserved
transaction types, bus operations associated with the eieio, eciwx,
ecowx instructions, or the address-only bus transaction associated
with a Iwarx reservation set.

Negated-Indicates that a transaction is not snooped by the 604.

Timing Comments Assertion/Negation-The same as AO-A31.

7.2.4.8 Cache Set Element (CSEO-CSE1)-Output
Following are the state meaning and timing comments for the CSEO-CSEI signals.

State Meaning AssertedlNegated-Represents the cache replacement set element
for the current transaction reloading into or writing out of the cache.
Can be used with the address bus and the transfer attribute signals to
externally track the state of each cache line in the 604's cache.

Timing Comments Assertion/Negation-The same as AO-A31.
High Impedance-The same as AO-A31.

Chapter 7. Signal Descriptions 7-15

7.2.5 Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated. For detailed information about how these signals interact, see Section 8.3.3,
"Address Transfer Termination."

7.2.5.1 Address Acknowledge (AACK)-Input
The address acknowledge (AACK) signal is an input signal (input-only) on the 604.
Following are the state meaning and timing comments for the AACK signal.

State Meaning Asserted-fudicates that the address phase of a transaction is
complete. The address bus will go to a high impedance state on the
next bus clock cycle. The 604 samples ARTRY on the bus clock
cycle following the assertion of AACK.

Negated-Indicates that the address bus and the transfer attributes
must remain driven, if negated during ABB.

Timing Comments Assertion-May occur as early as the bus clock cycle after TS or
XATS is asserted; assertion can be delayed to allow adequate address
access time for slow devices. For example, if an implementation
supports slow snooping devices, an external arbiter can postpone the
assertion of AACK.

Negation-Must occur one bus clock cycle after the assertion of
AACK.

7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY) signal is both an input and output signal on the 604.

7.2.5.2.1 Address Retry (ARTRY)-Output
Following are the state meaning and timing comments for the ARTRY output signal.

State Meaning Asserted-fudicates that the 604 detects a condition in which a
snooped address tenure must be retried. If the 604 needs to update
memory as a result of the snoop that caused the retry, the 604 asserts
BR the cycle after the ARTRY is asserted.

High Impedance-fudicates that the 604 does not need the snooped
address tenure to be retried.

Timing Comments Assertion-Asserted the third bus cycle following the assertion of
TS if a retry is required.

7-16

Negation-Occurs the second bus cycle after the assertion of
AACK. Since this signal may be simultaneously driven by multiple
devices, it is driven negated in the following ways:

• 1:1 and 2:1 bus ratio-high-impedance for 1/2 bus clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.

PowerPC 604 RISC Microprocessor User's Manual

• 3: 1 bus ratio-bigh-impedance for 1/3 bus clock cycle, deasserted
for 2/3 bus clock cycle, then high-impedance.

• 3:2 bus ratio-high-impedance for 1/3 system clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.

This special method of negation may be disabled by setting the
disable snoop response high state restore bit (bit 7) in HIDO.

7.2.5.2.2 Address Retry (ARTRY)-Input
Following are the state meaning and timing comments for the ARTRY input signal.

State Meaning Asserted-If the 604 is the address bus master, ARTRY indicates
that the 604 must retry the preceding address tenure and immediately
negate BR (if asserted). If the associated data tenure has already
started, the 604 will also abort the data tenure immediately, even if
the burst data has been received. If the 604 is not the address bus
master, this input indicates that the 604 should immediately negate
BR for one bus clock cycle following the assertion of ARTRY by the
snooping bus master to allow an opportunity for a copy-back
operation to main memory. Note that the subsequent address
presented on the address bus may not be the same one associated
with the assertion of the ARTRY signal.

Negated/High Impedance-Indicates that the 604 does not need to
retry the last address tenure.

Timing Comments Assertion-May occur as early as the second cycle following the
assertion of TS or XATS, and must occur by the bus dock cycle
immediately following the assertion of AACK if an address retry is
required.

Negation-Must occur during the second cycle after the assertion of
AACK.

7.2.5.3 Shared (SHD)
The shared (SHD) signal is both an input and output signal on the 604.

7.2.5.3.1 Shared (SHD)-Output
Following are the state meaning and timing comments for the SHD output signal.

State Meaning Asserted-Indicates that the 604 had a cache hit on a shared block,
or, if asserted with ARTRY, a snoop push of modified data is
required.

Negated/High Impedance-Indicates that the 604 did not have a
cache hit on the snooped address.

---=== Timing Comments Assertion/Negation-Same as ARTRY.

High Impedance-Same as ARTRY.

Chapter 7. Signal Descriptions 7-17

7.2.5.3.2 Shared (SHD)-Input
Following are the state meaning and timing comments for the SHD input signal.

State Meaning Asserted-If ARTRY is not asserted, indicates that for a self
generated transaction the 604 must allocate the incoming cache
block as shared-unmodified.

Negated-If ARTRY is not asserted, indicates that the address for
the current transaction is not in any other cache.

Timing Comments Assertion/Negation-The same as ARTRY.

7.2.6 Data Bus Arbitration Sig nals
Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. Note that there is no data bus arbitration signal
equivalent to the address bus arbitration signal BR (bus request), because, except for
address-only transactions, TS and XATS imply data bus requests. For a detailed description
on how these signals interact, see Section 8.4.1, "Data Bus Arbitration."

One special signal, DBWO, allows the 604 to be configured dynamically to write data out
of order with respect to read data. For detailed information about using DBWO, see
Section 8.11, "Using Data Bus Write Only."

7.2.6.1 Data Bus Grant (DBG)-Input
The data bus grant (DBG) signal is an input signal (input-only) on the 604. Following are
the state meaning and timing comments for the DBG signal.

State Meaning Asserted-Indicates thatthe 604 may, with the proper qualification,
assume mastership of the data bus. The 604 derives a qualified data
bus grant when DBG is asserted and DBB, DRTRY, andARTRY are
negated; that is, the data bus is not busy (DBB is negated), there is
no outstanding attempt to retry the current data tenure (DRTRY is
negated), and there is no outstanding attempt to perform anARTRY
of the associated address tenure.

Negated-Indicates that the 604 must hold off its data tenures.

Timing Comments Assertion-May occur any time to indicate the 604 is free to take
data bus mastership. It is not sampled until TS or XATS is asserted.

Negation-May occur at any time to indicate the 604 cannot assume
data bus mastership.

7.2.6.2 Data Bus Write Only (DBWO)-Input
The data bus write only (DBWO) signal is an input signal (input-only) on the 604.
Following are the state meaning and timing comments for the DBWO signal.

7-18 PowerPC 604 RISC MicroproC888or User's Manual

State Meaning Asserted-Indicates that the 604 may run the data bus tenure for an
outstanding write address even if a read address is pipelined before
the write address. Refer to Section 8.11, "Using Data Bus Write
Only," for detailed instructions for using DBWO.

Negated-Indicates that the 604 must run the data bus tenures in the
same order as the address tenures.

Timing Comments Assertion-Must occur no later than a qualified DBG for an
outstanding write tenure. DBWO is only recognized by the 604 on
the clock of a qualified DBG. If no write requests are pending, the
604 will ignore DBWQ and assume data bus ownership for the next
pending read request.

Negation-May occur any time after a qualified DBG and before the
next assertion of DBG.

7.2.6.3 Data Bus Busy (DBB)
The data bus busy (DBB) signal is both an input and output signal on the 604.

7.2.6.3.1 Data Bus Busy {DBB)-Output
Following are the state meaning and timing comments for the DBB output signal.

State Meaning Asserted-Indicates that the 604 is the data bus master. The 604
always assumes data bus mastership if it needs the data bus and is
given a qualified data bus grant (see DBG).

Negated-Indicates that the 604 is not using the data bus.

Timing Comments Assertion-Occurs during the bus clock cycle following a qualified
DBG.

Negation-Occurs a fractional bus clock cycle following the
assertion of the final TA.

High Impedance-Occurs one-half bus cycle (two-thirds bus cycle
when using 3: 1 clock mode, and one-third bus cycle when using 3:2
bus ratio) after DBB is negated.

7.2.6.3.2 Data Bus Busy (DBB)-Input
Following are the state meaning and timing comments for the DBB input signal. Note that
the DBB input signal cannot be used in systems that use read data streaming.

State Meaning Asserted-Indicates that another device is bus master.
Negated-Indicates that the data bus is free (with proper
qualification, see DBG) for use by the 604.

Timing Comments Assertion-Must occur ~hen the 604 must be prevented from using
the data bus.

Negation-May occur whenever the data bus is available.

Chapter 7. Signal Descriptions 7-19

7.2.7 Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signals interact, see Section 8.4.3, "Data Transfer."

7.2.7.1 Data Bus (DHO-DH31, DLO-DL31)
The data bus (DHO-DH31 and DLO-DL31) consists of 64 signals that are both input and
output on the 604. Following are the state meaning and timing comments for the DH and
DL signals.

State Meaning The data bus has two halves-data bus high (DH) and data bus low
(DL). See Table 7-4 for the data bus lane assignments. Direct-store
operations use DH exclusively (that is, there are no 64-bit, I/O
transfers).

Timing Comments The data bus is driven once for noncached transactions and four
times for cache transactions (bursts).

Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DHO-DH7 0

DH8-DH15 1

DH16-DH23 2

DH24-DH31 3

DLO-DL7 4

DL8-DL15 5

DL16-DL23 6

DL24-DL31 7

7.2.7.1.1 Data Bus (DHO-DH31, DLO-DL31)-Output
Following are the state meaning and timing comments for the DH and DL output signals.

State Meaning Asserted/Negated-Represents the state of data during a data write.
Byte lanes not selected for data transfer will not supply valid data.

Timing Comments AssertionlNegation-Initial beat coincides with DBB and, for
bursts, transitions on the bus clock cycle following each assertion of

7-20

TA. .

High Impedance-Occurs on the bus clock cycle after the final
assertion of TA.

Power PC 604 RISC Microprocessor User's Manual

7.2.7.1.2 Data Bus (DHO-DH31, DLO-DL31)-lnput
Following are the state meaning and timing comments for the DH and DL input signals.

State Meaning AssertedlNegated-Represents the state of data during a data read
transaction.

Timing Comments Assertion/Negation-Data must be valid on the same bus clock
cycle that TA is asserted.

7.2.7.2 Data Bus Parity (DPO-DP7)
The eight data bus parity (DPO-DP7) signals on the 604 are both output and input signals.

7.2.7.2.1 Data Bus Parity (DPO-DP7)-Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning AssertedlNegated-Represents odd parity for each of eight bytes of
data write transactions. Odd parity means that an odd number of bits,
including the parity bit, are driven high. The signal assignments are
listed in Table 7-5.

Timing Comments Assertion/Negation-The same as DLO--DL31.
High Impedance-The same as DLO--DL31.

Table 7·5. DPO-DP7 Signal Assignments

Signal Name Signal Assignments

DPO DHO-DH7

DP1 DH8-DH15

DP2 DH16-DH23

DP3 DH24-DH31

DP4 DLO-DL7

DP5 DL8-DL15

DP6 DL16-DL23

DP7 DL24-DL31

7.2.7.2.2 Data Bus Parity (DPO-DP7)-lnput
Following are the state meaning and timing comments for the DP input signals.

State Meaning AssertedlNegated-Represents odd parity for each byte of read data.
Parity is checked on all data byte lanes during data read operations,
regardless of the size of the transfer. During direct-store read
operations, only the DPO-DP3 signals (corresponding to byte lanes
DHO--DH31) are checked for odd parity. Detected even parity causes
a checkstop or a machine check exception (and assertion of DPE) if
data parity errors are enabled in the HID register. (The DPO--DP7
signals function in the same way as the APO-AP3 signals.)

Chapter 7. Signal Descriptions 7-21

Timing Comments AssertionlNegation~The same as DLO--DL31.

7.2.7.3 Data Parity Error (DPE)-Output
The data parity error (DPE) signal is an output signal (output-only) on the 604. Note that
the (DPE) signal is an open-drain type output, and requires an external pull-up resistor (for
example, 10 k.Q to Vdd) to assure proper deassertion of the (DPE) signal. Following are the
state meaning and timing comments for the DPE signal.

State Meaning Asserted-Indicates incorrect data bus parity.
Negated-Indicates correct data bus parity.

Timing Comments Assertion-Occurs on the second bus clock cycle after TA is
asserted to the 604.

High Impedance-Occurs on the third bus clock cycle after TA is
asserted to the 604.

7.2.7.4 Data Bus Disable (DBDIS}-Input
The Data Bus Disable (DBDIS) signal is an input signal (input-only) on the 604. Following
are the state meanings and timing comments for the DBDIS signal.

State Meaning Asserted-Indicates (for a write transaction) that the 604 must
release data bus and the data bus parity to high impedance during the
following cycle. The data tenure will remain active, DBB will
remain driven, and the transfer termination signals will still be
monitored by the 604.

Negated-Indicates the data bus should remain normally driven.
DBDIS is ignored during read transactions.

Timing Comments AssertionlNegation-May be asserted on any clock cycle when the
604 is driving, or will be driving the data bus; may remain asserted
multiple cycles.

7.2.8 Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, "Data Transfer
Termination. "

7-22 PowerPC 604 RISC Microprocessor User's Manual

7.2.8.1 Transfer Acknowledge (TA}-Input
The transfer acknowledge (TA) signal is an input signal (input-only) on the 604. Following
are the state meaning and timing comments for the TA signal.

State Meaning Asserted- Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully (unless DRTRYis asserted on the next bus clock cycle).
Note that TA must be asserted for each data beat in a burst
transaction. For more information, see Section 8.4.4, "Data Transfer
Termination. "

Negated-(During DBB) indicates that, until TAis asserted, the 604
must continue to drive the data for the current write or must wait to
sample the data for reads.

Timing Comments Assertion-When the bus is configured for normal operation, must
not occur earlier than one bus clock cycle before the beginning of the
valid ARTRY window, or when the bus is configured for fast-L2
mode, must not be asserted earlier than the first cycle of a valid
ARTRY window; otherwise, assertion may occur at any time during
the assertion of DBB. The system can withhold assertion of TA to
indicate that the 604 should insert wait states to extend the duration
of the data beat.

Negation-Must occur after the bus clock cycle of the final (or only)
data beat of the transfer. For a burst transfer, the system can assert TA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

7.2.8.2 Data Retry (DRTRY}-Input
The data retry (DRTRY) signal is input only on the 604. Following are the state meaning
and timing comments for the DRTRY signal.

State Meaning Asserted-Indicates that the 604 must invalidate the data from the
previous read operation.

Negated-Indicates that data presented with TA on the previous read
operation is valid. This is essentially a late TA to allow speculative
forwarding of data (with TA) during reads. Note that DRTRY is
ignored for write transactions.

Chapter 7. Signal Descriptions 7-23

TIming Comments Assertion-Must occur during the bus clock cycle immediately after
TA is asserted if a retry is required. The DRTRY signal may be held
asserted for multiple bus clock cycles. When DRTRY is negated,
data must have been valid on the previous clock with TA asserted.

Negation-Must occur during the bus clock cycle after a valid data
beat. This may occur several cycles after DBB is negated, effectively
extending the data bus tenure.

Startup-DRTRY is sampled at the negation of HRESET; if DRTRY
is asserted, fast -L2 mode is selected. If DRTRY is negated at startup,
DRTRY is enabled. DRTRY must be negated during nonnal
operation (following HRESET) if fast-L2/data streaming mode is
selected.

7.2.8.3 Transfer Error Acknowledge {TEA)-Input
The transfer error acknowledge (TEA) signal is input only on the 604. Following are the
state meaning and timing comments for the TEA signal.

State Meaning Asserted-Indicates that a bus error occurred. Causes a machine
check exception (and possibly causes the processor to enter
checks top state if machine check enable bit is cleared
(MSR[ME] = 0». For more information, see Section 4.5.2.2,
"Checkstop State (MSR[ME] = 0)." Assertion terminates the current
transaction; that is, assertion of TA and DRTRY are ignored. The
assertion of TEA causes the negation/high impedance of DBB in the
next clock cycle. However, data entering the GPR or the cache are
not invalidated. Note that the architecture specification refers to all
exceptions as interrupts.

Negated-Indicates that no bus error was detected.

Timing Comments Assertion-May be asserted while DBB is asserted, or during valid
DRTRY window. In fast-L2/data streaming mode, the 604 will not
recognize TEA the cycle after TA during a read operation due to the
absence of a DRTRY assertion opportunity. The TEA signal should
be asserted for one cycle only.

Negation- The TEA signal must be negated no later than the
negation of DBB or the last DRTRY. The 604 deasserts DBB within
one bus clock cycle following the assertion of TEA.

7.2.9 System Interrupt, Checkstop, and Reset Signals
Most of the system interrupt, checks top , and reset signals are input signals that indicate
when exceptions are received, when checks top conditions have occurred, and when the 604
must be reset. The 604 generates the output signal, CKSTP _OUT, when it detects a
checks top condition. For a detailed description of these signals, see Section 8.8, "Interrupt,
Checkstop, and Reset Signals."

7-24 PowerPC 604 RISC Microprocessor User's Manual

7.2.9.1 Interrupt (INT}-Input
The interrupt (INT) signal is input only. Following are the state meaning and timing
connnents for the INT signal.

State Meaning Asserted-The 604 initiates an interrupt if MSR[EE] is set;
otherwise, the 604 ignores the interrupt. To guarantee that the 604
will take the external interrupt, the INT signal must be held active
until the 604 takes the interrupt; otherwise, the 604 will take an
external interrupt depending on whether the MSR[EE] bit was set
while the INT signal was held active.

Negated-Indicates that normal operation should proceed. See
Section 8.8.1, "External Interrupts."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks. The INT input is level-sensitive.

Negation-Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the INT signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.9.2 System Management Interrupt (SMI)-Input
The system management interrupt (SMI) signal is input only. Following are the state
meaning and timing comments for the SMI signal.

State Meaning Asserted-The 604 initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 604 ignores the
interrupt condition. The system must hold the SMI signal active until
the interrupt is taken.

Negated-Indicates that normal operation should proceed. See
Section 8.8.1, "External Interrupts."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks. The SMI input is level-sensitive.

Negation-Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the SMI signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.9.3 Machine Check Interrupt (MCP)-Input
The machine check interrupt (MCP) signal is input only on the 604. Following are the state
meaning and timing comments for the MCP signal.

Chapter 7. Signal Descriptions 7-25

State Meaning Asserted-The 604 initiates a machine check interrupt operation if
MSR[EE] and HIDO[EMCP] are set; if MSR[EE] is cleared and
HIDO[EMCP] is set, the 604 must terminate operation by internally
gating off all clocks, and releasing all outputs (except CKSTP _OUT)
to the high impedance state. If HIDO[EMCP] is cleared, the 604
ignores the interrupt condition. TheMCP signal must be held
asserted for two bus clock cycles.

Negated-Indicates that normal operation should proceed. See
Section 8.8.1, "Extemallnterrupts."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks. The MCP input is negative edge
sensitive.

Negation-May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the MCP signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.9.4 Checkstop Input(CKSTP _IN)-Input
The checks top input (CKSTP _IN) signal is input only on the 604. Following are the state
meaning and timing comments for the CKSTP _IN signal.

State Meaning Asserted-Indicates that the 604 must terminate operation by
internally gating off all clocks, and release all outputs (except
CKSTP _OUT) to the high impedance state. Once CKSTP _IN has
been asserted it must remain asserted until the system has been reset.

Negated-Indicates that normal operation should proceed. See
Section 8.8.2, "Checkstops."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the input clocks.

Negation-May occur any time after the CKSTP _OUT output signal
has been asserted.

7.2.9.5 Checkstop Output (CKSTP _OUT)-Output
The checkstop (CKSTP _OUT) signal is output only on the 604. Note that the
(CKSTP _OUT) signal is an open-drain type output, and requires an external pull-up
resistor (for example, 10 ill to Vdd) to assure proper deassertion of the (CKSTP _OUT)
signal. Following are the state meaning and timing comments for the CKSTP _OUT signal.

State Meaning

7-26

Asserted-Indicates that the 604 has detected a checks top condition
and has ceased operation.

Negated-Indicates that the 604 is operating normally.
See Section 8.8.2, "Checkstops."

Power PC 604 RISC Microprocessor Uaer's Manual

Timing Comments Assertion-May occur at any time and may be asserted
. asynchronously to the 604 input clocks.

===-Negation-Is negated upon assertion of HRESET.

7.2.9.6 Reset Signals
There are two reset signals on the 604-hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.6.1 Hard Reset (HRESET)-Input
The hard reset (HRESET) signal is input only and must be used at power-on to properly
reset the processor. Following are the state meaning and timing comments for the HRESET
signal.

State Meaning Asserted-Initiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a reset exception as
described in Section 4.5.1, "System Reset Exception (OxOO100)."
Output drivers are released to high impedance within five clocks
after the assertion of HRESET.

Negated-Indicates that normal operation should proceed. See
Section 8.8.3, "Reset Inputs."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the 604 input clock; must be held asserted for a
minimum of 255 clock cycles. .

Negation-May occur any time after the minimum reset pulse width
has been met.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the HRESET signal should be asserted and negated synchronously
with the SYSCLK signal. The HRESET signal has additional functionality in certain test
modes.

7.2.9.6.2 Soft Reset (SRESET)-Input
The soft reset (SRESET) signal is input only. Following are the state meaning and timing
comments for the SRESET signal.

State Meaning Asserted- Initiates processing for a reset exception as described in
Section 4.5.1, "System Reset Exception (OXOO100)."

Negated-Indicates that normal operation should proceed. See
Section 8.8.3, "Reset Inputs."

Timing Comments Assertion-May occur at any time and may be asserted
asynchronously to the 604 input clock. The SRESET input is
negative edge-sensitive.

Negation-May be negated two bus cycles after assertion.

Chapter 7. Signal Descriptions 7-27

If detenninistic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the SRESET signal should be asserted and negated synchronously
with the SYSCLK signal. The SRESET signal has additional functionality in certain test
modes.

7.2.10 Processor Configuration Signals
The signals described in this section provide inputs for controlling the 604's timebase,
signal drive capabilities, L2 cache access, bus snooping while in nap mode, and PLL
configuration, along with output signals to indicate that a storage reservation has been set,
and that the 604's internal clocking has stopped.

7.2.10.1 Timebase Enable (TBEN)-Input
The timebase enable (TBEN) signal is input only on the 604. Following are the state
meanings and timing comments for the TBEN signal.

State Meaning Asserted-Indicates that the timebase should continue clocking.
This input is essentially a "count enable" control for the timebase
counter.

Negated-Indicates the timebase should stop clocking.

Timing Comments Assertion/Negation-May occur on any cycle.

7.2.10.2 Reservation (RSRV)-Output
The reservation (RSRV) signal is output only on the 604. Following are the state meaning
and timing comments for the RSRV signal.

State Meaning AssertedlNegated-Represents the state of the reservation
coherency bit in the reservation address register that is used by the
Iwarx and stwcx. instructions. See Section 8.9.1, "Support for the
lwarxlstwcx. Instruction Pair."

Timing Comments Assertion/Negation-Occurs synchronously one bus clock cycle
after the execution of an Iwarx instruction that sets the internal
reservation condition.

7.2.10.3 L2 Intervention (L2_INT)-lnput
The L2 intervention (L2_INT) signal is input only on the 604. Following are the state
meanings and timing comments for the L2_INT signal.

State Meaning Asserted- Indicates that the current data transaction requires
intervention from other bus masters.

Negated-Indicates that the current data transaction requires no
intervention from other bus masters.

Timing Comments Assertion/Negation-The L2_INT signal is sampled by the 604
concurrently with the first assertion of TA for a given data tenure.

7-28 PowerPC 604 RISC Microprocessor User's Manual

7.2.10.4 Run {RUN}-Input
The run (RUN) signal is input only on the 604. Following are the state meanings and timing
comments for the RUN signal.

State Meaning Asserted- Forces the internal clocks to continue rururing during nap
mode, allowing bus snooping to occur.

Negated-Internal clocks are inhibited from running when 604 is in
nap mode.

For additional information regarding the nap mode, refer to Section 4.5.16, "Power
Management. "

Timing Comments Assertion/Negation-Assertion may occur asynchronously to the
604 input clock; and must be held asserted for a minimum of 3 bus
clock cycles before snoop activity.

7.2.10.5 Halted {HALTED} -Output
The halted (HALTED) signal is output only on the 604. Following are the state meaning
and timing comments for the HALTED signal.

State Meaning Asserted-Indicates that the internal clocks have stopped due to the
604 entering nap mode, or a JTAG/COP request.

Negated-Indicates that internal clocks are running.

Timing Comments Assertion/Negation-Occurs synchronously with internal processor
clock.

For additional information regarding the nap mode, refer to Section 4.5.16, "Power
Management. "

7.2.11 COP/Scan Interface
The 604 has extensive on-chip test capability including the following:

• Built-in instruction and data cache self test (BIST)

• Debug controVobservation (COP)

• Boundary scan (IEEE 1149.1 compliant interface)

The BIST hardware is not exercised as part of the POR sequence. The COP and boundary
scan logic are not used under typical operating conditions.

Detailed discussion of the 604 test functions is beyond the scope of this document;
however, sufficient information has been provided to allow the system designer to disable
the test functions that would impede normal operation.

The COP/scan interface is shown in Figure 7-2. For more information, see Section 8.10.1,
"IEEE 1149.1 Interface Description."

Chapter 7. Signal Descriptions 7-29

• TOI (Test Data Input)

• TMS (Test Mode Select)

• TCK (Test Clock input)

~ TOO (Test Data Output)

• TRST (Test Reset)

Figure 7·2. IEEE 1149.1·Compllant Boundary Scan Interface

7.2.12 Clock Signals
The clock signal inputs of the 604 determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency. An analog voltage input signal is provided to supply stable power
for the internal PLL clock generator.

Refer to the 604 hardware specifications for exact timing relationships of the clock signals.

7.2.12.1 System Clock {SYSCLK)-Input
The 604 requires a single system clock (SYSCLK) input. This input sets the frequency of
operation for the bus interface. Internally, the 604 uses a phase-lock loop (PLL) circuit to
generate a master clock for all of the CPU circuitry (including the bus interface circuitry)
which is phase-locked to the SYSCLK input. The master clock may be set to a multiple (xl,
x1.5, x2, or x3) of the SYSCLK frequency allowing the CPU core to operate at an equal or
greater frequency than the bus interface.

State Meaning AssertedlNegated-The SYSCLK input is the primary clock input
for the 604, and represents the bus clock frequency for 604 bus
operation. Internally, the 604 may be operating at a multiple of the
bus clock frequency.

Timing Comments Duty cycle-Refer to the 604 hardware specifications for timing
comments.

7-30

Note: SYSCLK is used as the frequency reference for the internal
PLL clock generator, and must not be suspended or varied during
normal operation to ensure proper PLL operation.

PowerPC 604 RiSe Microprocessor User's Manual

7.2.12.2 Test Clock {CLK_OUT)-Output
The Test Clock (CLK_OUT) signal is an output signal (output-only) on the 604. Following
are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/N egated-Provides PLL clock output for PLL testing and
monitoring. CLK_ OUT clocks at the processor clock frequency. The
CLK_OUT signal is provided for testing purposes only.

Timing Comments AssertionfNegation-Refer to the 604 hardware specifications for
timing comments.

7.2.12.3 Analog VDD {AVDD)-Input
The analog VDD signal is an input for supplying a stable voltage to the on-chip phase
locked loop clock generator. For more information about the electrical requirements of the
AVDD input signal, refer to the 604 electrical specification.

7.2.12.4 PLL Configuration {PLL_ CFGO-PLL_ CFG3)-lnput
The PLL (phase-lock loop) is configured by the PLL_CFGO-PLL_CFG3 pins. For a given
SYSCLK (bus) frequency, the PLL configuration pins set the internal CPU frequency of
operation.

Following are the state meaning and timing comments for the PLL_CFGO-PLL_CFG3
signals.

State Meaning AssertedlNegated- Configures the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus and internal frequency of operation.

Timing Comments AssertionfNegation-Must remain stable during operation.

Table 7-6. PLL Configuration

Bus, CPU and PLL Frequencies

PLL_CFG
CPUI

Bus Bus Bus Bus Bus Bus Bus
SYSCLK

0-3
Ratio

16.6 MHz 20 MHz 25 MHz 33.3 MHz 40 MHz so MHz 66.6 MHz

0000 1 :1 - - - - - 50 66.6
(100) (133)

0001 1:1 - - 25 33.3 40 50 -
(100) (133) (160) (200)

0010 1 :1 16.6 20 25 - - - -
(133) (160) (200)

0100 2:1 - - 50 66.6 80 100 -
(100) (133) (160) (200)

0101 2:1 33.3 40 50 - - - -
(133) (160) (200)

Chapter 7. Signal Descriptions 7-31

Table 7-6. PLL Configuration (Continued)

Bus, CPU and PLL Frequencies

PLL_CFG
CPUI

Bus Bus Bus Bus Bus Bus Bus
SYSCLK 0-3

Ratio
16.6 MHz 20 MHz 25 MHz 33.3 MHz 40 MHz so MHz 66.6 MHz

1000 3:1 - - 75 100 - - -
(150) (200)

1100 1.5:1 - - - 50 60 75 100
(100) (120) (150) (200)

0011 PLLBypass

Notes: 1. Some PLL configurations may select bus, CPU, or PLL frequencies which are not useful, not
supported, 0(not tested fO(by the 604. FO(complete information, see the 604 hardware
specifications fO(timing comments. PLL frequencies (shown in pal8nthesis in the table above)
should not fall below 100 MHz, and should not exceed 200 MHz.

2. In PLL-bypass mode, the SYSCLK if'1)ut signal clocks the internal processor directly, and the
bus is set for 1: 1 mode operation. The PLL-bypass mode is for test only, and is not intended for
functional use. In clock-off mode, no clocking occurs inside the 604 regardless of the SYSCLK
if'1)ut.

3. PLL_CFG(0:1) selects the CPU-to-bus ratio (1:1,1.5:1,2:1,3:1), PLL_CFG(2:3) selects the
CPU-to-PLL multiplier (x2, x4, x8).

7-32 PowerPC 604 RISC Microprocessor User's Manual

Chapter 8
System Interface Operation
This chapter describes the PowerPC 604 microprocessor bus interface and its operation. It
shows how the 604 signals, defined in Chapter 7, "Signal Descriptions," interact to perfonn
address and data transfers.

8.1 PowerPC 604 Microprocessor System Interface
Overview

The system interface prioritizes requests for bus operations from the instruction and data
caches, and perfonns bus operations per the 604 bus protocol. It includes address register
queues, prioritization logic, and the bus control unit. The system interface latches snoop
addresses for snooping in the data cache and in the address register queues, and snoops for
direct-store reply operations and for reservations controlled by the Load Word and Reserve
Indexed (lwarx) and Store Word Conditional Indexed (stwcx.) instructions. The interface
allows two level of pipelining; that is, with certain restrictions discussed later, there can be
three outstanding transactions at any given time. Accesses are prioritized with load
operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit
where they are dispatched to the execution units at a peak rate of four instructions per clock.
Conversely, load and store instructions explicitly specify the movement of operands to and
from the integer and floating-point register files and the memory system.

When the 604 encounters an instruction or data access, it calculates the logical address
(effective address in the architecture specification) and uses the low-order address bits to
check for a hit in the on-chip, 16-Kbyte instruction and data caches. During cache lookup,
the instruction and data memory management units (MMUs) use the higher-order address
bits to calculate the virtual address, from which they calculate the physical address (real
address in the architecture specification). The physical address bits are then compared with
the corresponding cache tag bits to determine if a cache hit occurred. If the access misses
in the corresponding cache, the physical address is used to access system memory.

In addition to the loads, stores, and instruction fetches, the 604 perfonns hardware table
search operations following TLB misses, cache cast-out operations when least-recently

Chapter 8. System Interface Operation 8-1

used cache lines are written to memory after a cache miss, and cache-line snoop push-out
operations when a modified cache line experiences a snoop hit from another bus master.

Figure 8-1 shows the address path from the execution units and instruction fetcher, through
the translation logic to the caches and system interface logic.

The 604 uses separate address and data buses and a variety of control and status signals for
performing reads and writes. The address bus is 32 bits wide and the data bus is 64 bitS
wide. The interface is synchronous-all 604 inputs are sampled at and all outputs are driven
from the rising edge of the bus clock. The bus can run at the full processor-clock frequency,
or at 1/2, 1/3 or 2/3 the frequency of the processor clock. While the 604 operates at
3.3 Volts, all the I/O signals are 5.0-Volt TTL-compatible.

8.1.1 Operation of the Instruction and Data Caches
The 604 provides independent instruction and data caches. Each cache is a physically
addressed, 16-Kbyte cache with four-way set associativity. Both caches consist of 128 sets
of four cache lines, with eight words in each cache line.

Because the data cache on the 604 is an on-chip, write-back primary cache, the predominant
type of transaction for most applications is burst-read memory operations, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped, and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the cache).

The 604 data cache tags are dual-ported to facilitate efficient coherency checking. This
allows data cache accesses to occur concurrently with snooping operations. Data cache
accesses are only interrupted when the snoop control logic detects a situation where snoop
push of modified data is required to maintain memory coherency.

The 604 supports a four-state coherency protocol that supports the modified, exclusive,
shared and invalid (MESI) cache states. The MESI protocol ensures that the 604 operates
coherently in systems that contain multiple four-state caches, provided that all bus
participants employ similar snooping and coherency control mechanisms.

Cache lines in the 604 are loaded in four beats of 64 bits each. The burst load is performed
as critical-double-word-first. The cache that is being loaded allows internal accesses until
the load completes (that is, the 604 supports cache hits under misses). The critical double
word is simultaneously written to the cache and forwarded to the requesting unit, thus
minimizing stalls due to load delays. If consecutive double words are required from the
same cache line following a cache line miss, the LSU stalls until the entire cache line has
been loaded into the cache,

8-2 Power PC 604 RISC MicrQprocessor User's Manual

(')
::T
II

" i
~

f "'11
:I ~
5' c
;- ;
it cp
i ~
0 '"0

" 0 G

I ..
!. o· ...

'"0 ::J
(')
0)
0
~

~ n a
'a ...
0
2
tI)
tI)
0
m
0'
n
~

C
ii cc ...
I»
3

(XI

c'..>

Time-Base
Counter/Decrementer

Clock l JTAGICOP
Multiplier Interface

COMPLETION
UNIT

16-Entry
Reorder Buffer

~
Store Queue Finish Load

Queue

~ ~
32-BIT ADDRESS BUS

32 Bit

128 Bit

DMMU

Dispatch Unit

1 BHT I

Rename
Buffers (8)

bhd
64 Bit

64 Bit

I SRs IIDBAll
IDTLS I array I .. I Tags b6~~~ I: ~I

Snoop

IMMU

I SRs IllBAl I
IITLS I Array

Tags
16-Kbyte
I Cache

BUS INTERFACE
UNIT

Cache lines are selected for replacement based on an LRU (least recently used) algorithm.
Each time a cache line is accessed, it is tagged as the most recently used line of the set.
When a miss occurs, if all lines in the set are marked as valid, the least recently used line
is replaced with the new data. When data to be replaced is in the modified state, the
modified data is written into a write-back buffer while the missed data is being read from
memory. When the load completes, the 604 then pushes the replaced line from the write
back buffer to main memory in a burst write operation if the memory queue is idle, or at a
later time if other transactions are pending.

8.1.2 Operation of the System Interface
Memory accesses can occur in single-beat (1-8 bytes) and four-beat (32 bytes) burst data
transfers. The address and data buses are independent for memory accesses to support
pipelining and split transactions. The 604 can pipeline as many as three transactions and
has limited support for out-of-order split-bus transactions.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 604 to be integrated into systems that implement various fairness and bus
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered-sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin-maximizing the efficiency of the bus without sacrificing coherency of the data. The
604 allows read operations to precede store operations (except when a dependency exists).
In addition, the 604 performs snoop push operations ahead of all other bus operations.
Because the processor can dynamically optimize run-time ordering of load/store traffic,
overall performance is improved.

Note that the Synchronize (sync) or Enforce In-Order Execution of I/O (eieio) instructions
can be used to enforce strong ordering.

The following sections describe how the 604 interface operates, providing detailed timing
diagrams that illustrate how the signals interact. A collection of more general timing
diagrams are included as examples of typical bus operations.

Figure 8-2 is a legend of the conventions used in the timing diagrams.

This is a synchronous interface-all 604 input signals are sampled and output signals are
driven on the rising edge of the bus clock cycle (see the 604 hardware specifications for
exact timing information).

8-4 PowerPC 604 RISC Microprocessor User's Manual

apO

8A

ADDR+

qual BG

~
~

<) ..
L.J
~
I

(j
I

Bar over signal name indicates active low

604 input (while 604 is a bus master)

604 output (while 604 is a bus master)

604 output (grouped: here, address plus attributes)

604 internal signal (inaccessible to the user, but used in
diagrams to clarify operations)

Compelling dependency-event will occur on the
next clock cycle

Prerequisite dependency-event will occur on an
undetermined subsequent clock cycle

604 three-state output or input

604 nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Figure 8-2. Timing Diagram Legend

8.1.3 Direct-Store Accesses
Memory and direct-store accesses use the 604 signals differently.

The 604 defines separate memory and I/O address spaces, or segments, distinguished by
the segment register T bit in the address translation logic of the 604. If the T bit is cleared,
the memory reference is a normal memory access and uses the paged virtual memory
management mechanism of the 604. If the T bit is set, the memory reference is a direct-store
access.

The function and timing of some address transfer and attribute signals (such as TTO-TT3,
TBST, and TSIZO-TSIZ2) are changed for direct-store accesses. Additional controls are
required to facilitate transfers between the 604 and the specific I/O devices that use this
interface. Direct-store and memory transfers are distinguished from one another by their

Chapter 8. System Interface Operation 8-5

address transfer start signals-TS indicates that a memory transfer is starting and XA TS
indicates that a direct-store transaction is starting.

Direct-store accesses are strongly ordered--each access occurs in strict program order and
completes before another access can begin. For this reason, direct-store accesses are less
efficient than memory accesses. The direct-store extensions also allow for additional bus
pacing and multiple transaction operations for variably-sized data transfers (1 to 128 bytes),
and they support a tagged, split request/response protocol. The direct-store access protocol
also requires the slave device to function as a bus master.

8.2 Memory Access Protocol
Memory accesses are divided into address and data tenures. Each tenure has three phases
bus arbitration, transfer, and termination. The 604 also supports address-only transactions.
Note that address and data tenures can overlap, as shown in Figure 8-3.

Figure 8-3 shows that the address and data tenures are distinct from one another and that
both consist of three phases-arbitration, transfer, and tennination. Address and data
tenures are independent (indicated in Figure 8-3 by the fact that the data tenure begins
before the address tenure ends), which allows split-bus transactions to be implemented at
the system level in multiprocessor systems. Figure 8-3 shows a data transfer that consists
of a single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte cache
lines require data transfer termination signals for each beat of data.

ADDRESS TENURE

ARBITRATION

INDEPENDENT ADDRESS AND DATA

\ DATA~NURE
r---------~-----------------------------------~
I ARBITRATION I SINGLE-BEAT TRANSFER I TERMINATION I

Figure 8-3. Overlapping Tenures on the PowerPC 604 Microprocessor Bus for a
Single-Beat Transfer

The basic functions of the address and data tenures are as follows:

8-6

• Address tenure

- Arbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

- Transfer: After the 604 is the address bus master, it transfers the address on the

Power PC 604 RISC Microprocessor User's Manual

address bus. The address signals and the transfer attribute signals control the
address transfer. The address parity and address parity error signals ensure the
integrity of the address transfer.

- Termination: After the address transfer, the system signals that the address tenure
is complete or that it must be repeated.

• Data tenure

- Arbitration: To begin the data tenure, the 604 arbitrates for mastership of the data
bus.

- Transfer: After the 604 is the data bus master, it samples the data bus for read
operations or drives the data bus for write operations. The data parity and data
parity error signals ensure the integrity of the data transfer.

- Termination: Data tennination signals are required after each data beat in a data
transfer. Note that in a single-beat transaction, the data tennination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

The 604 generates an address-only bus transfer during the execution of dcbz, sync, eieio,
tlbie, tlbsync, and Iwarx instructions, which use only the address bus with no data transfer
involved. Additionally, the 604's retry capability provides an efficient snooping protocol
for systems with multiple memory systems (including caches) that must remain coherent.

8.2.1 Arbitration Signals
Arbitration for both address and data bus mastership is perfonned by a central, external
arbiter and, minimally, by the arbitration signals shown in Section 8.3.1, "Address Bus
Arbitration." Most arbiter implementations require additional signals to coordinate bus
master/slave/snooping activities. Note that address bus busy (ABB) and data bus busy
(DBB) are bidirectional signals. These signals are inputs unless the 604 has mastership of
one or both of the respective buses; they must be connected high through pull-up resistors
so that they remain negated when no devices have control of the buses.

The following list describes the address arbitration signals:

• lJlI (bus request)-Assertion indicates that the 604 is requesting mastership of the
address bus.

• 1i'G (bus grant)-Assertion indicates that the 604 may, with the proper
qualification, assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted, ABB is negated, and ARTRY is negated during the current and
previous bus cycle.

If the 604 is parked, BR need not be asserted for the qualified bus grant.

• AmJ (address bus busy)-Assertion by the 604 indicates that the 604 is the
address bus master.

Chapter 8. System Interface Operation 8-7

The following list describes the data arbitration signals:

• I>ii'G (data bus grant)-Indicates that the 604 may, with the proper qualification,
assume mastership of the data bus. A qualified data bus grant occurs when DBG is
asserted while DBB, DRTRY, and ARTRY are negated (although ARTRY may
actually be asserted at the time DBG is asserted due to the snoop of a later address
tenure).

The DBB signal is driven by the current bus master, DRTRY is only driven from the
bus, and ARTRY is from the bus, but only for the address bus tenure associated with
the current data bus tenure (that is, not from another address tenure).

• bBwu (data bus write only)-Assertion indicates that the 604 may perform the
data bus tenure for an outStanding write address even if a read address is pipelined
before the write address. IfDBWO is asserted, the 604 will assume data bus
mastership for a pending data bus write operation; the 604 will take the data bus for
a pending read operation if this input is asserted along with DBG and no write is
pending. Care must be taken with DBWO to ensure the desired write is queued (for
example, a cache-line snoop push-out operation).

Jm]J (data bus busy)-Assertion by the 604 indicates that the 604 is the data bus
master. The 604 always assumes data bus mastership if it needs the data bus and is
given a qualified data bus grant (see DBG).

For more detailed information on the arbitration signals, refer to Section 8.3.1,
"Address Bus Arbitration," and Section 8.4.1, "Data Bus Arbitration."

Note that while operating in fast-L2/data streaming mode, DBB becomes a 604 output-only
signal and is driven in the same manner as before. If systems using the 604 in fast-L2/data
streaming mode also implement data streaming across multiple masters, the DBB signal
must not be common among processors to avoid contention problems when one processor
is negating DBB while another is asserting DBB. Table 8-1 describes the bus arbitration
signals provided by the 604.

Table 8-1. PowerPC 604 Microprocessor Bus Arbitration Signals

Signal Name Mnemonic Signal Type Signal Connection Requirements

Bus request BR Output One per processor

Bus grant 'BG Input One per processor

Address bus busy AIm Input/output Common among processors

Data bus grant 'DBa Input One per processor

Data bus busy mm Input/output Common among processors
(One per processor if in fast-L2Idata
streaming mode, and data streaming across
multiple processors is implemented.)

8-8 Power PC 604 RISC Microprocessor User's Manual

8.2.2 Address Pipelining and Split-Bus Transactions
The 604 protocol provides independent address and data bus capability to support pipelined
and split-bus transaction system organizations. Address pipe lining allows the address
tenure of a new bus transaction to begin before the data tenure of the current transaction has
finished. Split-bus transaction capability allows other bus activity to occur (either from the
same master or from different masters) between the address and data tenures of a
transaction.

While this capability does not inherently reduce memory latency, support for address
pipelining and split-bus transactions can greatly improve effective bus/memory
throughput. For this reason, these techniques are most effective in shared-memory
multiprocessor implementations where bus bandwidth is an important measurement of
system performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The design of the external arbiter affects pipelining by regulating the BG,
DBG, and AACK signals. For example, a one-level pipeline is enabled by asserting AACK
to the current address bus master and granting mastership of the address bus to the next
requesting master before the current data bus tenure has completed. Three address tenures
can occur before the current data bus tenure completes.

The 604 can pipeline its own transactions to a depth of two levels (intraprocessor
pipelining); however, the 604 bus protocol does not constrain the maximum number of
levels of pipelining that can occur on the bus between multiple masters (interprocessor
pipelining). The external arbiter must control the pipeline depth and synchronization
between masters and slaves.

In a pipe lined implementation, data bus tenures are kept in strict order with respect to
address tenures. However, external hardware can further decouple the address and data
buses, allowing the data tenures to occur out of order with respect to the address tenures.
This requires some form of system tag to associate the out -of -order data transaction with
the proper originating address transaction (not defined for the 604 interface). Individual bus
requests and data bus grants from each processor can be used by the system to implement
tags to support interprocessor, out-of-order transactions.

The 604 supports a limited intraprocessor out-of-order, split-transaction capability via the
DBWO signal. For more information about using DBWO, see Section 8.11, "Using Data
Bus Write Only."

Chapter 8. System Interface Operation 8-9

8.3 Address Bus Tenure
This section describes the three phases of the address tenure-address bus arbitration,
address transfer, and address termination.

8.3.1 Address Bus Arbitration
When the 604 needs access to the external bus and does not have a qualified bus grant, it
asserts bus request (BR) until it is granted mastership of the bus and the bus is available
(see Figure 8-4). The external arbiter must grant master-elect status to the potential master
by asserting the bus grant (BG) signal. The 604 requesting the bus determines that the bus
is available when the ABB input is negated. When the address bus is not busy (ABB input
is negated), BG is asserted and the address retry (ARTRY) input is negated, and was
negated the previous cycle, the 604 has what is referred to as a qualified bus grant. The 604
assumes address bus mastership by asserting ABB when it receives a qualified bus grant.

Logical Bus Clock

nS6d_bus I

Iml

quslBG
I

-1 o

~~------~------~-
I ~~----~

Figure 8-4. Address Bus Arbitration

External arbiters must allow only one device at a time to be the address bus master.
Implementations in which no other device can be a master, BG can be grounded (always
asserted) to continually grant mastership of the address bus to the 604.

If the 604 asserts BR before the external arbiter asserts BG, the 604 is considered to be
unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where a qualified bus
grant exists on the clock edge following a need_bus condition. Notice that the two bus clock
cycles required for arbitration are eliminated if the 604 is parked, reducing overall memory

8-10 Power PC 604 RISC Microprocessor User's Manual

latency for a transaction. The 604 always negates ABB for at least one bus clock cycle after
AACK is asserted, even if it is parked and has another transaction pending.

Typically, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes such as providing unrequested bus
grants in situations where it is easy to correctly predict the next device requesting bus
mastership.

-1 o

qua/SG
I

UlJ �__---...... ---..."._
'+-r-----f

Figure 8-5. Address Bus Arbitration Showing Bus Parking

When the 604 receives a qualified bus grant, it assumes address bus mastership by asserting
ABB and negating the BR output signal. Meanwhile, the 604 drives the address for the
requested access onto the address bus and asserts TS to indicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 604 may assert BR without
using the bus after it receives the qualified bus grant. For example, in a system using bus
snooping, if the 604 asserts BR to perform a queued read-with-intent-to-modify-atomic
(RWITMA), and the 604 snoops an access which cancels the reservation associated with
the RWITMA.Once the 604 is granted the bus, it no longer needs to perform the RWITMA;
therefore, the 604 does not assert ABB and does not use the bus for the read operation. Note
that the 604 asserts BR for at least one clock cycle in these instances.

Chapter 8. System Interface Operation 8-11

8.3.2 Address Transfer
During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.3,
"Address Transfer Termination."

The signals used in the address transfer include the following signal groups:

• Address transfer start signal: Transfer start (TS)

Note that extended address transfer start (XATS) signal is used for direct-store
operations and has no function for memory-mapped accesses; see Section 8.6,
"Direct-Store Operation."

• Address transfer signals: Address bus (AO-A31), address parity (APO-AP3), and
address parity error (APE)

• Address transfer attribute signals: Transfer type (TTO-TT4), transfer code (TCO
TC2), transfer size (TSIZO-TSIZ2), transfer burst (TBST), cache inhibit (CI) , write
through (WT), global (GBL), and cache set element (CSEO-CSEl)

Figure 8-6 shows that the timing for all of these signals, except TS and APE is identical. All
of the address transfer and address transfer attribute signals are combined into the ADDR+
grouping in Figure 8-6. The TS signal indicates that the 604 has begun an address transfer
and that the address and transfer attributes are valid (within the context of a synchronous
bus). The 604 always asserts TS (or XATS for direct-store operations) coincident with
ABB. As an input, TS need not coincide with the assertion of ABB on the bus (that is, either
TS or XATS can be asserted with, or on a subsequent clock cycle after ABB is asserted; the
604 tracks this transaction correctly).

8-12

o

qua/'liG ~ __ ~.....,

TS" -.1 -----' __

1 ~-~~

1
JJJB' 1

I
ADDR+ 1

1
artry_ln 1

2 3

Figure 8-6. Address Bus Transfer

4

PowerPC 604 RISC Microprocessor User's Manual

In Figure 8-6, the address transfer occurs during bus clock cycles I and 2 (arbitration
occurs in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this
diagram, the address bus termination input, AACK, is asserted to the 604 on the bus clock
following assertion ofTS (as shown by the dependency line). This is the minimum duration
of the address transfer for the 604; the duration can be extended by delaying the assertion
of AACK for one or more bus clocks.

8.3.2.1 Address Bus Parity
The 604 always generates one bit of correct odd-byte parity for each of the four bytes of
address when a valid address is on the bus. The calculated values are placed on the APO
AP3 outputs when the 604 is the address bus master. If the 604 is not the master, TS and
GBL are asserted together, and the transaction type is one that the 604 snoops (qualified
condition for snooping memory operations), the calculated values are compared with the
APO-AP3 inputs. If there is an error, the APE output is asserted. If HIDO[2] is set to 1, a
parity error will cause a machine check if the MSR[ME] bit is set, or will cause a checkstop
if the MSR[ME] bit is cleared. If HIDO[2] is cleared to 0, then no action is taken. In either
case, the APE signal will be asserted if even parity is detected For more information about
checkstop conditions, see Chapter 4, "Exceptions."

8.3.2.2 Address Transfer Attribute Signals
The transfer attribute signals include several encoded signals such as the transfer type
(TTO-TT4) signals, transfer burst (TBST) signal, transfer size (TSIZO-TSIZ2) signals, and
transfer code (TCO-TC2) signals. Section 7.2.4, "Address Transfer Attribute Signals,"
describes the encodings for the address transfer attribute signals. Note that TTO-TT4,
TBST, and TSIZO-TSIZ2 have alternate functions for direct-store operations; see
Section 8.6, "Direct-Store Operation."

8.3.2.2.1 Transfer Type (TTO-TT4) Signals
Snooping logic should fully decode the transfer type signals if the GBL signal is asserted.
Slave devices can sometimes use the individual transfer type signals without fully decoding
the group. For a complete description of the encoding for TTO-TT4 signals, refer to
Table 7-1.

8.3.2.2.2 Transfer Size (TSIZO-TSIZ2) Signals
The transfer size signals (TSIZO-TSIZ2) indicate the size of the requested data transfer as
shown in Table 8-2. The TSIZO-TSIZ2 signals may be used along with rBST and A29-
A31 to determine which portion of the data bus contains valid data for a write transaction
or which portion of the bus should contain valid data for a read transaction. Note that for a
burst transaction (as indicated by the assertion of TBST) TSIZO-TSIZ2 are always set to
ObOIO. Therefore, if the TBST signal is asserted (except in cases of direct-store operations,
or operations involving the use of eciwx or ecowx instructions), the memory system should
transfer a total of eight words (32 bytes), regardless of the TSIZO-TSIZ2 encoding.

Chapter 8. System Interface Operation 8-13

Table 8-2. Transfer Size Signal Encodlngs

TIST TSIZO TSIZ1 TSIZ2 Transfer Size

Asserted 0 1 0 Eight-word burst

Negated 0 0 0 Eight bytes

Negated 0 0 1 One byte

Negated 0 1 0 Two bytes

Negated 0 1 1 Three bytes

Negated 1 0 0 Four bytes

Negated 1 0 1 Five bytes

Negated 1 1 0 Six bytes

Negated 1 1 1 Seven bytes

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache
line). Data transfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as
noncoherent data with respect to the 604.

8.3.2.3 Burst Ordering During Data Transfers
During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or
from the cache in order. Burst write transfers are always perfonned zero-double-word-first,
but since burst reads are perfonned critical-double-word-first, a burst read transfer may not
start with the first double word of the cache line, and the cache line fill may wrap around
the end of the cache line. Table 8-3 describes the various burst orderings for the 604.

Table 8-3. PowerPC 604 Microprocessor Burst Ordering

For Starting Address:
Data Transfer

A27-A28 =00 A27-A28 =01 A27-A28= 10 A27-A28 =11

First data beat DWO DW1 DW2 DW3

Second data beat DW1 DW2 DW3 DWO

Third data beat DW2 DW3 DWO DW1

Fourth data beat DW3 DWO DW1 DW2

Note: A29-A31 are always ObOOO for burst transfers by the 604.

8.3.2.4 Effect of Alignment in Data Transfers
Table 8-4 lists the aligned transfers that can occur on the 604 bus. These are transfers in
which the data is aligned to an address that is an integer multiple of the size of the data. For

8-14 Power PC 604 RISC Microprocessor User's Manual

example, Table 8-4 shows that one-byte data is always aligned; however, for a four-byte
word to be aligned, it must be oriented on an address that is a multiple of four.

Table 8-4. Aligned Data Transfers

Data Bus Byte Lane(s)
Transfer Size TSIZO TSIZ1 TSIZ2 A29-A31

0 1 2 3 4 5 6 7

Byte 0 0 1 000 ~ - - - - - - -
0 0 1 001 - ~ - - - - - -
0 0 1 010 - - ~ - - - - -
0 0 1 011 - - - ~ - - - -

0 0 1 100 - - - - ~ - - -

0 0 1 101 - - - - - ~ - -
0 0 1 110 - - - - - - ~ -

0 0 1 111 - - - - - - - ~

Half word 0 1 0 000 ~ ~ - - - - - -
0 1 0 010 - - ~ .J - - - -
0 1 0 100 - - - - ~ ~ - -

0 1 0 110 - - - - - - ~ .J

Word 1 0 0 000 ~ ~ ~ .J - - - -
1 0 0 100 - - - - .J ~ ~ ~

Double word 0 0 0 000 .J ~ .J .J ~ ~ ~ ~

The 604 supports misaligned memory operations, although their use may substantially
degrade performance. Misaligned memory transfers address memory that is not aligned to
the size of the data being transferred (such as, a word read of an odd byte address).
Although most of these operations hit in the primary cache (or generate burst memory
operations if they miss), the 604 interface supports misaligned transfers within a word (32-
bit aligned) boundary, as shown in Table 8-5. Note that the four-byte transfer in Table 8-5
is only one example of misalignment. As long as the attempted transfer does not cross a
word boundary, the 604 can transfer the data on the misaligned address (for example, a half
word read from an odd byte-aligned address). An attempt to address data that crosses a
word boundary requires two bus transfers to access the data.

Due to the performance degradations associated with misaligned memory operations, they
are best avoided. In addition to the double-word straddle boundary condition, the address
translation logic can generate substantial exception overhead when the load/store multiple
and load/store string instructions access misaligned data. It is strongly recommended that
software attempt to align code and data where possible.

Chapter 8. System Interface Operation 8-15

Table 8-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size
Data Bus Byte Lanes

(Four Bytes) TSIZ(O-2) A29-A31
0 1 2 3 4 5 6 7

Aligned 100 000 A A A A - - - -

Misaligned-first access 011 001 A A A - - - -
second access 001 100 - - - - A - - -

Misaligned-first access 010 010 - - A A - - - -

second access 010 100 A A - - - - - -
Misaligned-first access 001 011 - - - A - - - -

second access 01 1 100 - - - - A A A -

Aligned 100 100 A A A A - - - -
Misaligned-first access 011 101 - - - - - A A A

second access 001 000 A - - - - - - -
Misaligned-first access 010 110 - - - - - - A A

second access 010 000 A A - - - - - -
Misaligned-first access 001 1 11 - - - - - - - A

second access 011 000 A A A - - - - -

A: Byte lane used
-. Byte lane not used

8.3.2.4.1 Alignment of External Control Instructions
The size of the data transfer associated with the eciwx and ecowx instructions is always
four bytes. However, if the eciwx or ecowx instruction is misaligned and crosses any word
boundary, the 604 will generate two bus operations, each with a size of fewer than four
bytes. For the first bus operation, bits A29-A31 equals bits 29-31 of the data, which will
be Obl0l, ObllO, or Obll1. The size associated with the first bus operation will be 3, 2, or
1 bytes, respectively. For the second bus operation, bits A29-A31 equal ObOOO, and the size
associated with the operation will be 1, 2, or 3 bytes, respectively. For both operations,
TBST and TSIZO-TSIZ2 are redefined to specify the resource 10 (RID). The resource 10
is copied from bits 28-31 of the external access register (EAR). For eciwx/ecowx
operations, the state of bit 28 of the EAR is presented by the TBST signal without inversion
(if EAR[28] = 1, TBST = 1). The size of the second bus operation cannot be deduced from
the operation itself; the system must determine how many bytes were transferred on the first
bus operation to determine the size of the second operation.

Furthermore, the two bus operations associated with such a misaligned external control
instruction are not atomic. That is, the 604 may initiate other types of memory operations

8-16 Power PC 604 RISC Microprocessor User's Manual

between the two transfers. Also, the two bus operations associated with a misaligned ecowx
may be interrupted by an eciwx bus operation, and vice versa. The 604 does guarantee that
the two operations associated with a misaligned ecowx will not be interrupted by another
ecowx operation; and likewise for eciwx.

Because a misaligned external control address is considered a programming error, the
system may choose some means to cause an exception, typically by asserting TEA to cause
a machine check exception or INT to cause an external interrupt, when a misaligned
external control bus operation occurs.

8.3.2.5 Transfer Code (TCO-TC2) Signals
The TCO-TC2 signals provide supplemental information about the corresponding address.
Note that the TCx signals can be used with the WT, TTO-TT 4 and TBST signals to further
define the current transaction. When asserted, the transfer codes have the following
meanings:

• TCO
- Read cycle: indicates code fetch

- Write cycle: de-allocation from Ll cache

• TCl

- Write cycle: indicates new cache state is shared

• TC2
- Read and write cycle: indicates allocation cycle utilized a copy-back buffer

Table 8-6 shows the supplemental information provided by the TCO-TC2 and WT signals.

Table 8-6. Transfer Code Encoding

TTTypeCode WT TCO TC1 TC2 Operation

Write with kill 1 1 0 0 Cache copyback

Write with kill 0 1 0 0 Block invalidate
(debf)

Write with kill 0 0 0 0 Block clean
(debst)

Write with kill 0 0 1 0 Snoop push
(read operation)

Write with kill 0 1 0 0 Snoop push
(read-with-intent-to-modify)

Write with kill 0 0 0 0 Snoop push
(clean operation)

Write with kill 0 1 0 0 Snoop push
(flush operation)

Kill block x 1 0 0 Kill block de-allocate
(debl)

Chapter 8. System Interface Operation 8-17

Table 8-6. Transfer Code Encoding (Continued)

TTType Code WT TCO TC1 TC2 Operation

Kill block 1 0 0 0 Kill block and allocate, no cast
out required (dcbz)

Kill block 1 0 0 1 Kill block and allocate, cast
out required (dcbz)

Kill block 1 0 0 0 Kill block, write to shared
block

Read1 W3 0 x 0 Data read, cast out required

Read W3 0 x 1 Data read, cast out required

Read W3 1 x 0 Instruction read

Instruction cache x 1 0 0 Kill block de-allocate
block invalidate (lcbl)2

Note: 1. Read encompasses all of the read or read-with-intent-to-modify operations, both normal and atomic.

2. The lebl instruction is distinguished from kill block by assertion of the TT4 bit.

3. Value determined by write-through bit from translation.

8.3.3 Address Transfer Termination
The address tenure of a bus operation is tenninated when completed with the assertion of
AACK, or retried with the assertion of ARTRY. The SHD signal may also be asserted either
coincident with the ARTRY signal, or alone to indicate that a copy of the requested data
exists in one of the devices on the bus, and that the requesting device should mark the data
as shared in its cache. The 604 does not terminate the address transfer until the AACK
(address acknowledge) input is asserted; therefore, the system can extend the address
transfer phase by delaying the assertion of AACK to the 604. AACK can be asserted as
early as the bus· clock cycle following TS (see Figure 8-7), which allows a minimum
address tenure of two bus cycles. As shown in Figure 8-7, these signals are asserted for one
bus clock cycle, three-stated for half of the next bus clock cycle, driven high till the
following bus cycle, and finally three-stated. Note that AACK must be asserted for only one
bus clock cycle.

The address transfer can be tenninated with the requirement to retry if ARTRY is asserted
anytime during the address tenure and through the cycle following AACK. The assertion
causes the entire transaction (address and data tenure) to be rerun. As a snooping device,
the 604 asserts ARTRY for a snooped transaction that hits modified data in the data cache
that must be written back to memory, or if the snooped transaction could not be serviced.
As a bus master, the 604 responds to an assertion of ARTRY by aborting the bus transaction
and re-requesting the. bus. Note that after recognizing an assertion of ARTRY and aborting
the transaction in progress, the 604 is not guaranteed to run the same transaction the next
time it is granted the bus.

8-18 PowerPC 604 RISC Microprocessor User's Manual

If an address retry is required, the ARTRY response will be asserted by a bus snooping
device as early as the second cycle after the assertion of TS. Once asserted, ARTRY must
remain asserted through the cycle after the assertion of AACK. The assertion of ARTRY
during the cycle after the assertion of AACK is referred to as a qualifiedARTRY. An earlier
assertion of ARTRY during the address tenure is referred to as an early ARTRY.

As a bus master, the 604 recognizes either an early or qualified ARTRY and prevents the
data tenure associated with the retried address tenure. If the data tenure has already begun,
the 604 aborts and terminates the data tenure immediately even if the burst data has been
received. If the assertion of ARTRY is received up to or on the bus cycle following the first
(or only) assertion of TA for the data tenure, the 604 ignores the first data beat, and if it is
a load operation, does not forward data internally to the cache and execution units.

If the 604 is in fast-L2/data streaming mode, TA should not be asserted prior to the qualified
ARTRY cycle. If ARTRY is asserted after the first (or only) assertion of TA, improper
operation of the bus interface may result.

During the clock of a qualified ARTRY, the 604 also determines if it should negate BR and
ignore BG on the following cycle. On the following cycle, only the snooping master that
asserted ARTRY and needs to perform a snoop copy-back operation is allowed to assert
BR. This guarantees the snooping master an opportunity to request and be granted the bus
before the just-retried master can restart its transaction.

aaCkI
I

ARTlW I
I
I
I

q;iiiTllG I
I

AD" I
I

2 3 4

I
I

5

~

I
I

6 7 8

t""'--~!ilh-----~f\----l
Figure 8-7. Snooped Address Cycle with ARTRY

Chapter 8. System Interface Operation 8-19

8.4 Data Bus Tenure
This section describes the data bus arbitration, transfer, and tennination phases defined by
the 604 memory access protocol. The phases of the data tenure are identical to those of the
address tenure, underscoring the symmetry in the control of the two buses.

8.4.1 Data Bus Arbitration
Data bus arbitration uses the data arbitration signal group-DBG, DBWO, and DBB.
Additionally, the combination of TS or XATS and TTO-TT4 provides information about
the data bus request to extemallogic.

The TS signal is an implied data bus request from the 604; the arbiter must qualify TS with
the transfer type (TT) encodings to determine if the current address transfer is an address
only operation, which does not require a data bus transfer (see Figure 8-7). If the data bus
is needed, the arbiter grants data bus mastership by asserting the DBG input to the 604. As
with the address-bus arbitration phase, the 604 must qualify the DBG input with a number
of input signals before assuming bus mastership, as shown in Figure 8-8.

o 2

TS : -----:.-"'\\ ___ _+_'

I
1

3

1 1
qua/751IG 1 :::~~~trtttttrtrtttJttt~tttmrtt~

1 1 1
mm- t-I ----+----~ 1 1

1 ----~I---~I

Figure 8-8. Data Bus Arbitration

A qualified data bus grant can be expressed as the following:

QDBG = DBG asserted while DBB, DRTRY, andARTRY (associated with the data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a qualified ARTRY
assertion coincident with a data bus grant signal does not result in data bus mastership
(DBB is not asserted). Otherwise, the 604 always asserts DBB on the bus clock cycle after
recognition of a qualified data bus grant. Since the 604 can pipeline transactions, there may

8-20 Power PC 604 RISC Microprocessor User's Manual

be an outstanding data bus transaction when a new address transaction is retried In this
case, the 604 becomes the data bus master to complete the previous transaction.

8.4.1.1 Effect of ARTRY Assertion on Data Transfer and Arbitration
The system designer must define the qualified snoop response window, and ensure that data
is not transferred prior to one cycle before the end of that window in non-fast-L2/data
streaming mode, or prior to the same cycle as the end of that window in fast-L2/data
streaming mode. The 604 supports a snoop response window as early as two cycles after
assertion of TS. Operation of the 604 in fast-L2/data streaming mode requires that data be
transferred no earlier than the first cycle of the ARTRY window, not the cycle earlier. The
system may assert T A for a data transaction prior to the termination of an address tenure;
in this case note that the snoop response window is closed either on the clock that T A is
asserted (if in fast-L2/data streaming mode), or the clock after the assertion of TA (if in
non-fast-L2!data streaming mode).

An asserted AR TRY can invalidate a previous or current data transfer and terminate the
data cycle, invalidate a qualified data bus grant, or cancel a future data transfer. The
possible scenarios are described below:

• If data is transferred (via assertion of TA) two or more cycles before the beginning
of the snoop window in non-fast-L2/data streaming mode, or one or more cycles
before the beginning of the snoop window in fast-L2!data streaming, then data is
transferred too early to be cancelled by ARTRY. Therefore, systems in which
ARTRY can be asserted must not attempt data transfers (assert TA) prior to this
cycle.

• If data is transferred in the cycle before the beginning of the snoop response window,
assertion of ARTRY invalidates the data transfer, in a similar fashion to assertion of
DRTRY, except that the data tenure is aborted, not extended. If the fast-L2/data
streaming mode is active, data may not be transferred in this cycle.

• If data is transferred in the first cycle of the snoop response window, assertion of
ARTRY invalidates the data transfer. This is similar to de asserting T A except that
the data tenure is aborted, instead of continued.

• If DBG has been asserted, the system must not attempt to transfer data in cycles
following the assertion of ARTRY. The 604 negates DBB the cycle following
ARTRY, and expects no more data to be transferred. However, note that the data
related to a previous address tenure must not be affected, and that the system must
distinguish this case.

• If a DBG has not been asserted, an ARTRY assertion effectively negates the implied
data bus request that was associated with the address transfer, and the 604 will not
expect a transfer. The system must not assert DBG for this transfer if any other 604
data transfers are pending.

• If ARTRY assertion occurs while a data transfer is in progress, the 604 will
terminate data transfers following the first cycle of ARTRY assertion. This means
that a burst transfer may be cut short.

Chapter 8. System Interface Operation 8-21

• If an ARTRY assertion occurs the same cycle as its corresponding DBG, the
ARTRY will disqualify the data bus grant in that cycle and the 604 will not initiate
any data transaction on the following cycle regardless of whether any other data
transactions are queued However, on the following cycle (the cycle after the
ARTRY assertion) the 604 processor will respond to a qualified data bus grant if it
has previously queued data transactions. Figure 8-9 shows an example where a write
address tenure receives an ARTRY snoop response in the same cycle the system
asserts DBWO and DBG (cycle 6) to grant the write data tenure before a previously
requested read data tenure. Following the ARTRY assertion, the qualified DBG
assertion to the 604 in cycle 7 will be accepted for the read data tenure.

12 13141516

System Clock

I READ ~I-----~~\WRITEI ~
Master 1 I Master 1

I I ~

Master 115BG

I
I

Qualified 15m I

W :
I I

7 I 8 I 9

I
I

W
I

I~----~----~----~--------~----~----~~ I
Internal Data U
Bus Request \ :

~ ____ ~ ____ ~ ____ ~ ________ ~ ____ ~ ____ ~ ________ I~ I I
I \ for READ I
I ¥ ¥

Figure 8·9. Qualified DBG Generation Following ARTRY

8.4.1.2 Using the DBB Signal

10

I
I
¥

The DBB signal should be connected between masters if data tenure scheduling is left to
the masters. Optionally, the memory system can control data tenure scheduling directly
with DBG. However, it is possible to ignore the DBB signal in the system if the DBB input
is not used as the final data bus allocation control between data bus masters, and if the

8-22 Power PC 604 RISC Microprocessor User's Manual

memory system can track the start and end of the data tenure. In non-fast-L2/data
streaming mode, if DBB is not used to signal the end of a data tenure, DBG is only asserted
to the next bus master the cycle before the cycle that the next bus master may actually begin
its data tenure, rather than asserting it earlier (usually during another master's data tenure)
and allowing the negation of DBB to be the final gating signal for a qualified data bus grant.
If the 604 is in fast-L2/data streaming mode, the DBB signal is an output only, and is not
sampled by the 604. Even if DBB is ignored in the system, the 604 always recognizes its
own assertion of DBB (except when in fast-L2/data streaming mode), and requires one
cycle after data tenure completion to negate its own DBB before recognizing a qualified
data bus grant for another data tenure. If the DBB signal is not used by the system, DBB
must still be connected to a pull-up resistor on the 604 to ensure proper operation. If the
604 is in fast-L2/data streaming mode, and data streaming is to be performed across
multiple processors, the DBB signal for each processor should be connected directly to the
memory arbiter.

8.4.2 Data Bus Write Only
As a result of address pipelining, the 604 may have up to three data tenures queued to
perform when it receives a qualified DBG. Generally, the data tenures should be performed
in strict order (the same order) as their address tenures were performed. The 604, however,
also supports a limited out-of-order capability with the data bus write only (DBWO) input.
The DBWO capability exists to alleviate deadlock conditions that are possible in certain
system topologies. When recognized on the clock of a qualified DBG, DBWO may direct
the 604 to perform the next pending data write tenure even if a pending read tenure would
have normally been performed first. For more information on the operation of DBWO, refer
to Section 8.11, "Using Data Bus Write Only."

If the 604 has any data tenures to perform, it always accepts data bus mastership to perform
a data tenure when it recognizes a qualified DBG. If DBWO is asserted with a qualified
DBG and no write tenure is queued to run, the 604 still takes mastership of the data bus to
perform the next pending read data tenure. If the 604 has multiple queued writes, the
assertion of DBWO causes the reordering of the write operation whose address was sent
first.

Generally, DBWO should only be used to allow a copy-back operation (burst write) to
occur before a pending read operation. If DBWO is used for single-beat write operations,
it may negate the effect of the eieio instruction by allowing a write operation to precede a
program-scheduled read operation. If DBWO is asserted when the 604 does not have write
data available, bus operations occur as if DBWO had not been asserted

8.4.3 Data Transfer
The data transfer signals include DHO-DH31, DLO-DL31, DPO-DP7 and DPE. For
memory accesses, the DH and DL signals form a 64-bit data path for read and write
operations.

Chapter 8. System Interface Operation 8-23

The 604 transfers data in either single- or four-beat burst transfers. Single-beat operations
can transfer from one to eight bytes at a time and can be misaligned; see Section 8.3.2.4,
"Effect of Alignment in Data Transfers." Burst operations always transfer eight words and
are aligned on eight-word address boundaries. Burst transfers can achieve significantly
higher bus throughput than single-beat operations.

The type of transaction initiated by the 604 depends on whether the code or data is
cacheable and, for store operations whether the cache is considered in write-back or write
through mode, which software controls on either a page or block basis. Burst transfers
support cacheable operations only; that is, memory structures must be marked as cacheable
(and write-back for data store operations) in the respective page or block descriptor to take
advantage of burst transfers.

The 604 output TBST indicates to the system whether the current transaction is a single- or
four-beat transfer (except during eciwx/ecowx transactions, when it signals the state of
EAR[28]). A burst transfer has an assumed address order. For load or store operations that
missed in the cache (and are marked as cacheable and, for stores, write-back in the MMU),
the 604 uses the double-word-aligned address associated with the critical code or data that
initiated the transaction. This minimizes latency by allowing the critical code or data to be
forwarded to the processor before the rest of the cache line is filled. For all other burst
operations, however, the cache line write operations are transferred beginning with the oct
word-aligned data, and burst reads begin on double-word boundaries.

The 604 does not directly support dynamic interfacing to subsystems with less than a 64-
bit data path (except for direct-store operations discussed in Section 8.6, "Direct-Store
Operation") .

8.4.4 Data Transfer Termination
Four signals are used to terminate data bus transactions-TA, DRTRY (data retry), TEA
(transfer error acknowledge), and ARTRY. The TA signal indicates normal termination of
data transactions. It must always be asserted on the bus cycle coincident with the data that
it is qualifying. It may be withheld by the slave for any number of clocks until valid data is
ready to be supplied or accepted. DRTRY indicates invalid read data in the previous bus
clock cycle. DRTRYextends the current data beat and does not terminate it. If it is asserted
after the last (or only) data beat, the 604 negates I5B'Bbut still considers the data beat active
and waits for another assertion of TA. DRTRY is ignored on write operations. TEA
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termination
condition, the 604 always negates DBB for one cycle, except when data streaming in fast
L2/data streaming mode.

If DRTRY is asserted by the memory system to extend the last (or only) data beat past the
negation of DBB, the memory system should three-state the data bus on the clock after the
final assertion ofTA, even though it will negate DRTRY on that clock. This is to prevent a
potential momentary data bus conflict if a write access begins on the following cycle.

8-24 Power PC 604 RISC Microprocessor User's Manual

The TEA signal is used to signal a nonrecoverable error during the data transaction. The
TEA signal will be recognized anytime during the assertion of DBB or when a valid
DRTRY could be sampled. The assertion of TEA terminates the data tenure immediately
even if in the middle of a burst; however, it does not prevent incorrect data that has just been
acknowledged with TA from being written into the 604's cache or GPRs. The assertion of
TEA initiates either a machine check exception or a checkstop condition based on the
setting of the MSR.

An assertion of ARTRY causes the data tenure to be terminated immediately if the ARTRY
is for the address tenure associated with the data tenure in operation (the data tenure may
not be terminated due to address pipelining). If ARTRY is connected for the 604, the
earliest allowable assertion of T A to the 604 is directly dependent on the earliest possible
assertion of ARTRY to the 604; see Section 8.3.3, "Address Transfer Termination."

8.4.4.1 Normal Single-Beat Termination
Normal termination of a single-beat data read operation occurs when T A is asserted by a
responding slave. The TEA and DRTRY signals must remain negated during the transfer
(see Figure 8-10).

qua/1JR

I
150 I

I
datal

ii
I

drtry I
I

o

AACK 1 -----+----h
I

2 3

Figure 8-10. Normal Single-Beat Read Termination

Chapter 8. System Interface Operation

4

8-25

The DRTRY signal is not sampled during data writes, as shown in Figure 8-11.

o 2 3

qUal: ~5.;-r-f"_~--"",: ~~
I

datal

AACK I
I

I I

:\~---+':/
Figure 8-11. Normal Single-Beat Write Termination

Nonnal tennination of a burst transfer occurs when T A is asserted for four bus clock cycles,
as shown in Figure 8-12. The bus clock cycles in which T A is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to tenninate
successfully, TEA and DRTRY must remain negated during the transfer. For write bursts,
TEA must remain negated for a successful transfer. DRTRY is ignored during data writes.

2 3 4 5 6 7

qua/1)§G

1)D "'--~-+-::::3L
I ~----~---------r--------~------------r-J

data

Figure 8-12. Normal Burst Transaction

8-26 Power PC 604 RISC Microprocessor User's Manual

For read bursts, DRTRY may be asserted one bus clock cycle after TA is asserted to signal
that the data presented with T A is invalid and that the processor must wait for the negation
of DR TRY before forwarding datato the processor (see Figure 8-13). Thus, a data beat can
be speculatively terminated with fA and then one bus clock cycle later confirmed with the
negation of DRTRY. The DRTRY signal is valid only for read transactions. TA must be
asserted on the bus clock cycle before the first bus clock cycle of the assertion of DRTRY;
otherwise the results are undefined.

The DRTRY signal extends data bus mastership such that other processors cannot use the
data bus until DRTRY is negated. Therefore, in the example in Figure 8-13, DBB cannot
be asserted until bus clock cycle 5. This is true for both read and write operations even
though DRTRY does not extend bus mastership for write operations.

2 3 4 5

qusl"lmG

nDt----+-......
I ~r-~~LA

drtry I
I

Figure 8-13. Termination with DRTRY

Figure 8-14 shows the effect of using DRTRY during a burst read. It also shows the effect
of using TA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8-14,
TA is negated for the second data beat. The 604 data pipeline does not proceed until bus
clock cycle 4 when the TA is reasserted.

Note that DRTRY is useful for systems that implement speculative forwarding of data such
as those with direct-mapped, second-level caches where hit/miss is determined on the
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note that DRTRY may not be implemented on other PowerPC processors.

Chapter 8. System Interface Operation 8-27

8.4.4.2 Data Transfer Termination Due to a Bus Error
The TEA signal indicates that a bus error occurred. It may be asserted while DBB is
asserted or when a valid DRTRY could be recognized by the 604. Asserting TEA to the 604
tennmates the transaction; that is, further assertions of TA and DRTRY are ignored and
DBB is negated. If the system asserts TEA for a data transaction on the same cycle or before
ARTR Y is asserted for the corresponding address transaction, the 604 will ignore the
effects of ARTRY on the address transaction and will consider it successfully completed.

Note that from a bus standpoint, the assertion of TEA causes nothing worse than the early
tennination of the data tenure in progress. All the system logic involved in processing the
data transfer prior to the TEA must return to the normal nonbusy state following the TEA
so that the bus operations associated with a machine check exception can proceed. Due to
bus pipelining in the 604, all outstanding bus operations, including all queued requests, are
completed in the normal fashion following the TEA. The machine check exception can be
taken while these transactions are in progress.

If the TEA signal is asserted during a direct-store access, the action of the TEA is delayed
until all data transfers from the direct store access have been completed. The device causing
assertion of the TEA signal is responsible for maintaining assertion of the TEA signal until
the last direct-store data tenure is complete. The direct store reply, in cases of TEA
assertion, is not required, and will be ignored by the 604. The 604 will recognize the
assertion of the TEA signal at the completion of the last direct-store data tenure, and not
before.

2 3 4 5 6 7 8 9

qua/~

DR r---~r--r----....
~--~----~--~~--~----~--~~-

data

drtry I
I

Figure 8-14. Read Burst with TA Wait States and DRTRY

8-28 Power PC 604 RISC Microprocessor User's Manual

Assertion of the TEA signal causes a machine check exception (and possibly a checkstop
condition within the 604). For more information, see Section 4.5.2, "Machine Check
Exception (OxOO200}." Note also that the 604 does not implement a synchronous error
capability for memory accesses. This means that the exception instruction pointer does not
point to the memory operation that caused the assertion of TEA, but to the instruction about
to be executed (perhaps several instructions later). However, assertion of TEA does not
invalidate data entering the GPR or the cache. Additionally, the corresponding address of
the access that caused TEA to be asserted is not latched by the 604. To recover, the
exception handler must determine and remedy the cause of the TEA, or the 604 must be
reset; therefore, this function should only be used to flag fatal system conditions to the
processor (such as parity or uncorrectable ECC errors).

After the 604 has committed to run a transaction, that transaction must eventually complete.
Address retry causes the transaction to be restarted; TA wait states and DRTRY assertion
for reads delay termination of individual data beats. Eventually, however, the system must
either terminate the transaction or assert the TEA signal (and vector the 604 into a machine
check exception.) For this reason, care must be taken to check for the end of physical
memory and the location of certain system facilities to avoid memory accesses that result
in the generation of machine check exceptions.

Note that TEA generates a machine check exception depending on the ME bit in the MSR.
Clearing the machine check exception enable control bit leads to a true checkstop condition
(instruction execution halted and processor clock stopped); a machine check exception
occurs if the ME bit is set.

8.4.5 Memory Coherency-MESI Protocol
The 604 provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability enforces the four-state, MESI cache-coherency
protocol (see Figure 8-15). In addition to the hardware required to monitor bus traffic for
coherency, the 604 has a cache port dedicated to snooping so that comparing cache entries
to address traffic on the bus does not tie up the 604's on-chip data cache.

The global (GBL) signal output, indicates whether the current transaction must be snooped
by other snooping devices on the bus. Address bus masters assert GBL to indicate that the
current transaction is a global access (that is, an access to memory shared by more than one
processor/cache). If GBL is not asserted for the transaction, that transaction is not snooped.
When other devices detect the GBL input asserted, they must respond by snooping the
broadcast address.

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s}. Note that care must be taken to minimize the
number of pages marked as global, because the retry protocol discussed in the previous
section is used to enforce coherency and can require significant bus bandwidth.

Chapter 8. System Interface Operation 8-29

When the 604 is not the address bus master, GBLis an input. The 604 snoops a transaction
ifTS and GBL are asserted together in the same bus clock cycle (this is a qualified snooping
condition). No snoop update to the 604 cache occurs if the snooped transaction is not
marked global. This includes invalidation cycles.

When the 604 detects a qualified snoop condition, the address associated with the TS is
compared against the data cache tags through a dedicated cache tag port. Snooping
completes if no hit is detected. If, however, the address hits in the cache, the 604 reacts
according to the MESI protocol shown in Figure 8-15, assuming the WIM bits are set to
write-back mode, caching allowed, and coherency enforced (WIM = 001).

Note that write hits to clean lines of nonglobal pages do not generate invalidate broadcasts.
There are several types of bus transactions that involve the movement of data that can no
longer access the TLB M-bit (for example, replacement cache block copy-back, or a snoop
push). In these cases, the hardware cannot detennine whether the cache block was
originally marked global; therefore, the 604 marks these transactions as nonglobal to avoid
retry deadlocks.

The 604's on-chip data cache is implemented as a four-way set-associative cache. To
facilitate external monitoring of the internal cache tags, the cache set element (CSEO
CSEl) signals indicate which sector of the cache set is being replaced on read operations
(including RWITM). Note that these signals are valid only for 604 burst operations; for all
other bus operations, the CSEO-CSE 1 signals should be ignored.

8-30 PowerPC 604 RISC Microprocessor User's Manual

BUS TRANSACTIONS

RH = Read Hit <D = Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive ® = Invalidate Transaction
WH = Write Hit
WM = Write Miss E9= Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or <D = Cache Block Fill

Read-with-Intent-to-Modify

Figure 8-15. MESI Cache Coherency Protocol-State Diagram (WIM = 001)

Table 8-7 shows the CSEO-CSEI encodings.

Table 8-7. CSEO-CSE1 Signals

CSEO-CSE1 Cache Set Element

00 Set 0

01 Set 1

10 Set 2

11 Set 3

Chapter 8. System Interface Operation 8-31

8.5 Timing Examples
This section shows timing diagrams for various scenarios. Figure 8-16 illustrates the fastest
single-beat reads possible for the 604. This figure shows both minimal latency and
maximum single-beat throughput. By delaying the data bus tenure, the latency increases,
but, because of split-transaction pipelining, the overall throughput is not affected unless the
data bus latency causes the fourth address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.

11123141516 7 1 8 1 9 1 10 11 12

UR ~ \~~ ~I \'--_~ ~I I \'---.-~ ----.--.-----.1

g ~ : b::::::::f:::::::::::::::::::::::~:::::::\ : 1:::::::::::1:::::::::::::::::::::::1::::::::\ : b:::::::::I:::::::::::::::::::::::i:::4 :

ASB 11----+1.....,., 1 M 1 r+-"\ 1 I 1
I 1 1 1 --'1r---r....J 1 '---. 1r-----r....J 1

T§ : : '-+l : '-+l : '-+l :
AO-A31 1-1 -4I--rcc:P(PUj'jA~)---+-{ CPU A }---+-{ CPU A I

1 1 1 1 1
no-n 4 I I Read >--+-< Read>-+--< Read I

I I I I I
1mT1 I I I 1

nm: ~~:~:~:~:~:~:~:~:~:~:~:~!~:~:~:~:d ~ ~ f~{:f~l~t:~d ~ ~ Itt:~:!:~:}] ~ ~ I:~:~:~:~:~;:~:~:~:~:~:~:}~{~:~:~:~:~:~:~:~:}~:~:t
~t-: -fo-__ :.....,~ ¢ ~ :
~~I --~--~~---+--~--~--~~---+--~--~~I

1 1 I 1 1 1
'Dlm I~:~:~:::~:}~:~:~:~:}~:~:~\ l~:~:~:~:}~:::~:~:~:::~:}::~:}}~\ N~:~:~:~:~:~:~:~:~:~:~:~:~:}}~:~a b:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:t~:~:~:~:~:t~:~:~:~:~:~:~:~:~:~:t~:~:~J

I I I I I I I I I I
1mB 1 LU 1 LU 1 LU

1 1 1 1 1 1
DO-D~I~--~--~C!J~~--+I~C!J~~-+I~C!J~~-----+-~

1 1 1 1 1 I I 1 1 I
TA p:::{::::\ I #::\ I B:::::::f::::::::::::::::::::::::::::::\ I N::::::::::::::::::::::::::::::::j:=:::::::::::::::::::::i

~I~------~~--~--~------~I--~I~~--~--~~
I I I

TEA~I --~--~~--~--~--~-4I--~I--~--~-4----.I
I I I

1 1 7 I 8 I 9 10 11 I 12

Figure 8-16. Fastest Single-Beat Reads

8-32 Power PC 604 RISC Microprocessor User's Manual

Figure 8-17 illustrates the fastest single-beat writes supported by the 604. Note that all
bidirectional signals are three-stated between bus tenures. The TT1-TI4 signals are binary
encoded ObxOO10, and TIO can be either 0 or 1.

11123141516 7 1 8 1 9 1 10 1 11 12

I I I I
~ 1\......0 \'-__ ----', I \'-__ ----', I \'-__ - ___ -...-----j

'SG i' : • : • : N:::::;:::~::;4 :

AIm : : \'--....,.:-~~'---T:--t-Iri''--t:_--t-'I :
T§ : : Li-J : Li-J : Li-J :

AO-A31 ~I -~I-C~C~PU~A~)--I---{ CPU A >--+-<[~CP~U~A::J~-~I-~
I I I I I

no-n 4 I , sew >---+--< sew H-<[:Js~ew~}--t---..;.+, --;
" , I ,

TSST" , , ,

cmr ~}}}~:~:~:~:~:I~:}}J ~ ~ g~:}~:~~{{:1 ~ ~ h}~:~~:}~:q ~ ~ h~:~:~:~!~:~:~t:~:~:~:~:~:~:~;:~:~:~:~:~:~:~:}~:~:~

~: w ¢ y :
~, I

I I I I I I
l')g b:::::::::::::::::::::::::::;\ b:::\ k:::\ k:::J

" I , I , 'I' I
TYSB" I LU I LU I \.....l...J 1

I I I I I I I
DO~63~1-~-~~~~I--~~~~--+I~~ I

I I I I I I I I I I I I I
TA (:::}}}~:~:~:~:~:f~:~:~:~:~:~:t~:~:~:~:\ I b~:~:~:~:}}~:~:~:f}~:~:}f\ I ,f:~t:}}~t:~:~:~:~:;:;:};:;::\ I #:;:;:;:::~:;t:;:;:;:;{:;:;:;:;:~:;:;:;:;:::~:~:::;:;:j

URTRV I
TEA~I -~-~~--+-~--~--+-~~-+--~--~~

I

1 1 2 1 31 4 1 5 1 6 7 1 8 1 9 1 10 11 12

Figure 8-17. Fastest Single-Beat Writes

Chapter 8. System Interface Operation 8-33

Figure 8-18 shows three ways to delay single-beat reads showing data-delay controls:

• The TA signal can remain negated to insert wait states in clock cycles 3 and 4.

• For the second access, Di3G could have been asserted in clock cycle 6.

• In the third access, DRTRY is asserted in clock cycle 11 to flush the previous data.

Note that all bidirectional signals are three-stated between bus tenures.

I 1 2 I 3 I 4 I 5 6 I 7 I 8 I 9 I 10 11 12 13 I 14 I

1 1 I ,.....-L.....---I.1....,. I """"'1..-.----,-1....,. 1 ,.....-L.....-__ 1_---'-__
1m 1 I L-'-' I I L-'-' I I L-'-' I I

1m ~'--+-: 1_\::~:~~:~:~:::::=:::::::::::~::::::f:::~:A --I:.-l=:::::::::::'i""'~:t::::=:::::::::: ::+:::::.:.:&.,.:::\ -+: ..."I;o::;b~~:::{:!:=~::::::::::=:::::::::::~~~:::4 :

~ 1 --+1""""'\\ 1 r-+-"\ 1 ~ 1 / I
1 1 '-. -t1r------t'...J 1 '--tII'----t"'...J 1 '----t-I ---t--'o 1

TS : : Li-J : Li-J : Li-J :
AO-A31 '-I -~I-{~CP~U~A:J>-Y CPU A >--y CPUA 1

1 1 1 1 I
ITO-IT 4 J-I --I-I-f"FRei;;a;dd ,>---+--< Read H--< Read I

I I I I I
TBSTI I I I I

Gm: ~::t:~:~:~:~:~:~:~4~t:H ~ ~ 1~{:f~~:}f~1 ~ ~ H:~:f~~:}~:~:1 ~ ~ n:f~~:}~:~:~:~:~:~:~:~:~:~~:~:~:~:}~:~:~:}~~

AACK: : : L!-J : ~ : y :
~~I -~I---+--~--+---~I --~--+-~I~-+--~--~~I

1 1 1 I I 1 1 1 1
t5BG h:::::::::::::::::::::\:A b::::::::::::::::::::::::::::::::)::::::::::::::::::::\:4 \ me 1:::::::::::1:::::::::::::::::::::::\:::\:::::::::::::::::::::1

I I I I I I I I I I I I
t5tm I ,I I I I LLJT"\.--1...I

1 1 1 1 1 I 1
DO~63~-+-~-+--~

1 I I I 1 I 1 I 1 I
TA f:::::::::::::::::::}:::::::::::::::::::::1:::::4 '~-Jt=)~~:~:~:~:~,....:~t:=~:~:~:~:=t~:~:~·~:~:~:~"""':~\--4--"tff[R\=:f~:~;;w;;;t:~:=~:I:·&--I ___ ---+-1 .&;;;;k=::~:~:~:~~:f~=:~:~:i:i=:;:f~i:~:~:~:=~:}~=:~:~:~:~~:I~:j

~I~ --~-4--~--~~--~I--~I--~--~~....,.\ ~ I 1 I 1
I I I '--t"""' I I I

TEAl I I I I I I

I 1 7 I 8 I 9 I 10 11 12 13 I 14

Figure 8-18. Single-Beat Reads Showing Data-Delay Controls

8-34 Power PC 604 RISC Microprocessor User's Manual

Figure 8-19 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are three-stated between bus tenures. Data transfers are delayed in the
following ways:

• The TA signal is held negated to insert wait states in clocks 3 and 4.
• In clock 6, DBG is held negated, delaying the start of the data tenure.

The last access is not delayed (DRTRY is valid only for read operations).

111231415 6 1 7 1 8 1 9 1 10 11 1 12

~~~~\~~~-_~~~7~\~~~7~1~\~~----~~~ 

1m i'\..-+-: ~b::::~::::~:::::;;;;;;;;:;;:::::::::::~::::::f:::;;;;;;;.).::::\ ~1i---l/;;;;;;;;;;;::::::::::::F~::::::::;;;;;;;;;;;:::::::::::~::::!::::::~:::\ ....... 1 ~/t~~:~:t~!~~:t~:~:~:;;;;;;;:;:;:~:~:~{:~~~:~:~q : 

Ae"e 1--1 ---11~\ 1 M,--_'_~r+"\'---t"_--,I I 1 1 ~It---__ ..J I i I I 1 

T§ : : Li-J : Li-J : Li-J : 
AO-A31 !-I -~I-C~C~PU~A~)---.+-{ CPU A )---+--( CPU A I 

1 1 1 1 1 
TTO-TT41-1 -41--f'---:sSBeww~>-+--< sew >-+-< sew I 

1 1 1 1 I 
~I I 1 1 1 

US[ l~:~:t~:~:}~:~:~:~!~:f~] ~ ~ r:~{:~~:~:~:~:~:1 ~ 1:~:~:~:~:~~t:~:~:~J ~ I:~:~:~:~:~!~:~:~:?~:~:~:~:~:~:~~:~:t~:~:t~:~:~:~:: 
AACl(1 1 \ ~ J \ ~ J 1 \ ~ J 1 

1 1 --r-- ...- 1 ---y- 1 
ARTRV1 1 1 , 

1 1 I 1 1 1 
~ ::::::::::::::::::::::::::::::::\ #:::::::::::::::::::::::::::::::::::::::::::::::::::::/::::::::1 \ IfiID% b:::::::::::::::::::::::::::::::::::::::::::::::::::::::J 

1 1 1 1 1 1 1 1 1 1 
t>BS I \ 1 1 1 I 1 \.....l..rT\..- I 

I 1 I I I 1 I 1 1 
DO-D63 rl -~-r-C:::J~~tC:::)-~I--r~~ 1 

I , 1 I I 1 I 1 1 I 
~ :~t:~:?f~:f~:~:?~:~:::~:f::~:~:~:~::4 \ ..... --+--lr;;;:;;:::::o=::{::.,.,..:::::::=:::::::o=::::::::,...(:::=::;:\ ........ ,_JM8 .... }~=:~:~:~:""""~:~:~:~:-.~:o --+-1 _t=}::o~tf=~:~:~:~=:~:~:~:~tfj 

~~I--~--~~--~--~--~~--~--~--~~--~ 
1 

TEA~I--~--+-~~~---r--~--+-~~~--~--~~ 
1 

1 1 6 1 7 1 8 1 9 1 10 11 1 12 

Figure 8-19. Single-Beat Writes Showing Data Delay Controls 

Chapter 8. System Interface Operation 8-35 

---------- -----~~ 



Figure 8-20 shows the use of data-delay controls with burst transfers. Note that all 
bidirectional signals are three-stated between bus tenures. Note the following: 

• The first data beat of bursted read data (clock 3) is the critical quad word. 
• The write burst shows the use of TA signal negation to delay the third data beat. 
• The final read burst shows the use of DRTRY on the third data beat. 
• The address for the third transfer is delayed until the first transfer completes. 

1 1 1 2 1 3 14 1 5 1 6 1 7 1 8 I 9 110 111 112113114115116117118119120 I 

:Jlm l 

AO-A31 
I 

TTO-TT4 
I 

TBSTI 
I I I 

GB[ :~:?~:~:~:~:~:~:~:~I 

~I 
~~I -+-+~--~+-+-~~-+~~~~ 

I 

"I5mI F1' : kt::::::::::::::j::::::::::::::j::::::::::::::i:::\ : #::::I:::::::::::::::I:::::::::::::::1::::::::::::::i::::::::::::::1:\ : k:::f::::::::::::::j:::::::::::::::l::::::::::::::j::::::::::::::j 

mml 
I 

I\~~I ~~~lfI\~_I~~~~I(i\~~I~~ ____ ~I~ 
I I I I I I I I I I I 

00-063 1--+-+-li';;QV~'In2'Jj~ 
I 1 1 1 1 I 1 I 1 1 1 1 I 1 I 

TA f::::::::::::f::::::::::::::A 1 1 fif!J\ 1 If\,--,-I ...........,.1 lETh"",::::::::~:::::··L.4---&---&---&-1 --+AI BJifi:.:.:.:.·::::::::.;.:.;.::::::::~::::::::· 
~I ~ ______ ~ ____ ~~~~~~~~~~~I I I 

nRTRY I I '-tl I 
~~I -+-+~--~+-+-~~-+~~~+-+-~~-+~I~~~I 

I I 1 

1 1 1 2 1 3 14 1 5 1 6 1 7 1 8 1 9 11 0 111 1121131141151161171181191201 

Figure 8-20. Burst Transfers with Data Delay Controls 

8-36 Power PC 604 RISC Microprocessor User's Manual 



Figure 8-21 shows the use of the TEA signal. Note that all bidirectional signals are tbree
stated between bus tenures. Note the following: 

• The first data beat of the read burst (in clock 0) is the critical quad word. 

• The TEA signal truncates the burst write transfer on the third data beat. 

• The 604 eventually causes an exception to be taken on the TEA event. 

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1101111121131141151161171 

BR ~ : s=? : \'-r;-"----r-J 
g 1"\ I IITi\ I aE\ r.-.-.o=r-r---r----r--""""'I 

I I I I I 
AIm I I I\.....I-~ 

I I I 
TSI I I 

I I I AO-A31 

TTO-TT4 : 
~~I -+~~~+-~~-+~--~+-~~~ 

I I I 
<me {:}~:~:~:~:~:~:~I l:}~{] [:~:tftt~:~:H r:~:}~{:f~:ff~:~d 

I I I I I I I I I I I I 
AACR I I I I 

I I I I I 
ARTRYI I I I I I I I I I I I I I 

!mG ~ : b:::~I::::::::::::~::~:::::::~::::::!::::t~:::~:IA : k::::!:ft::::~:!:::::::::::::::IA : k::::I:~:~::::::::::I::::::::::::::I::::::::::::::1 

'O'RTRVI I I I I I I I I I 
I I I I I I I I I I I 

TEA 1---1--1----~---I--I--~~llJJ~~I~~--~~I~I~1 

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 112113114 \151 16 117 1 
Figure 8-21. Use of Transfer Error Acknowledge (TEA) 

Chapter 8. System Interface Operation 8-37 



8.6 Direct-Store Operation 
The 604 defines separate memory-mapped and I/O address spaces, or segments, 
distinguished by the corresponding segment register T bit in the address translation logic 
of the 604. If the T bit is cleared, the memory reference is a normal memory-mapped access 
and can use the virtual memory management hardware of the 604. If the T bit is set, the 
memory reference is a direct-store access. 

The following points should be considered for direct-store accesses: 

• The use of direct-store segment (referred to as direct-store segments in the 
architecture specification) accesses may have a significant impact on the 
performance of the 604. The provision of direct-store segment access capability by 
the 604 is to provide compatibility with earlier hardware I/O controllers and may not 
be provided in future derivatives of the 604 family. 

• Direct-store accesses must be strongly ordered; for example, these accesses must 
run on the bus strictly in order with respect to the instruction stream. 

• Direct-store accesses must provide synchronous error reporting. Chapter 3, "Cache 
and Bus Interface Unit Operation," describes architectural aspects of direct-store 
segments, as well as an overview of the segmented address space management of 
PowerPC processors. 

The 604 has a single bus interface to support both memory accesses and direct-store 
segment accesses. 

The direct-store protocol for the 604 allows for the transfer of 1 to 128 bytes of data 
between the 604 and the bus unit controller (BUC) for each single load or store request 
issued by the program. The block of data is transferred by the 604 as multiple single-beat 
bus transactions (individual address and data tenure for each transaction) until completion. 
The program waits for the sequence of bus transactions to be completed so that a final 
completion status (error or no error) can be reported precisely with respect to the program 
flow. The completion status is snooped by the 604 from a bus transaction run by the BUC. 

The system recognizes the assertion of the TS signal as the start of a memory-mapped 
access. The assertion of XA TS indicates a direct-store access. This allows memory-mapped 
devices to ignore direct-store transactions. If XATS is asserted, the access is to a direct
store space and the following extensions to the memory access protocol apply: 

• A new set of bus operations are defined. The transfer type, transfer burst, and 
transfer size signals are redefined for direct -store operations; they convey the 
opcode for the I/O transaction (see Table 8-8). 

• There are two beats of address for each direct-store transfer. The first beat (packet 
0) provides basic address information such as the segment register and the sender 
tag and several control bits; the second beat (packet 1) provides additional 
addressing bits from the segment register and the logical address. 

Power PC 604 RISC Microprocessor User's Manual 



• The TTO-TT3, TBST, and TSIZO-TSIZ2 signals are remapped to form an 8-bit 
extended transfer code (XATC) which specifies a command and transfer size for the 
transaction. The XATC field is driven and snooped by the 604 during direct-store 
transactions. 

• Only the data signals such as DHO-DH31 and DPO-DP3 are used. The lower half of 
the data bus and parity is ignored. 

• The sender that initiated the transaction must wait for a reply from the receiver bus 
unit controller (BUC) before starting a new operation. 

• The 604 does not burst direct-store transactions. All direct-store transactions 
generated by the 604 are single-beat transactions of four bytes or less (single data 
beat tenure per address tenure). 

Direct-store transactions use separate arbitration for the split address and data buses and 
define address-only and single-beat transactions. The address-retry vehicle is identical, 
although there is no hardware coherency support for direct-store transactions. The ARTRY 
signal is useful, however, for pacing 604 transactions, effectively indicating to the 604 that 
the BUC is in a queue-full condition and cannot accept new data. 

In addition to the extensions noted above, there are fundamental differences between 
memory-mapped and direct-store operations. For example, only half of the 64-bit data path 
is available for 604 direct-store transactions. This lowers the pin count for I/O interfaces 
but generally results in substantially less bandwidth than memory-mapped accesses. 
Additionally, load/store instructions that address direct-store segments cannot complete 
successfully without an error-free reply from the addressed BUC. Because normal direct
store accesses involve multiple I/O transactions (streaming), they are likely to be very long 
latency instructions; therefore, direct-store operations usually stall 604 instruction issue. 

Figure 8-22 shows a direct-store tenure. Note that the I/O device response is an address
only bus transaction. 

It should be noted that in the best case, the use of the 604 direct-store protocol degrades 
performance and requires the addressed controllers to implement 604 bus master capability 
to generate the reply transactions. 

Chapter 8. System Interface Operation 8-39 



ADDRESS TENURE 1/0 RESPONSE 

__ -----------A~·----------__ __-----------A~----------__ 

INDEPENDENT ADDRESS AND DATA 

~ 
DATA TENURE 

NO DATA TENURE FOR 1/0 RESPONSE 
ARBITRATION TRANSFER TERMINATION ••• (1/0 responses are address-only) 

Figure 8-22. Direct-Store Tenures 

8.6.1 Direct-Store Transactions 
The 604 defines seven direct-store transaction operations, as shown in Table 8-8. These 
operations pennit communication between the 604 and BUCs. A single 604 store or load 
instruction (that translates to a direct-store access) generates one or more direct-store 
operations (two or more direct-store operations for loads) from the 604 and one reply 
operation from the addressed BUC. 

Table 8-8. Direct-Store Bus Operations 

Operation Address Only Direction XATe Encoding 

Load start (request) Yes 604~IO 01000000 

Load immediate No 604~IO 01010000 

Load last No 604~IO 01110000 

Store immediate No 604~IO 00010000 

Store last No 604~IO 00110000 

Load reply Yes IO~604 11000000 

Store reply Yes IO~604 10000000 

For the first beat of the address bus, the extended address transfer code (XATC), contains 
the I/O opcode as shown in Table 8-8; the opcode is formed by concatenating the transfer 
type, transfer burst, and transfer size signals defined as follows: 

XATC = TT[O:3]IITBSTIITSIZ[O:2] 

8-40 PowerPC 604 RISC Microprocessor User's Manual 



8.6.1.1 Store Operations 
There are three operations defined for direct-store store operations from the 604 to the 
BUC, defined as follows: 

1. Store immediate operations transfer up to 32 bits of data each from the 604 to the 
BUC. 

2. Store last operations transfer up to 32 bits of data each from the 604 to the BUC. 

3. Store reply from the BUC reveals the success/failure of that direct-store access to 
the 604. 

A direct-store store access consists of one or more data transfer operations followed by the 
I/O store reply operation from the BUC. If the data can be transferred in one 32-bit data 
transaction, it is marked as a store last operation followed by the store reply operation; no 
store immediate operation is involved in the transfer, as shown in the following sequence: 

STORE LAST (from 604) 

• 
• 

STORE REPLY (from BUC) 
However, if more data is involved in the direct-store access, there will be one or more store 
immediate operations. The BUC can detect when the last data is being transferred by 
looking for the store last opcode, as shown in the following sequence: 

STORE IMMEDIATE(s) 

• 
STORE LAST 

• 

STORE REPLY 

8.6.1.2 Load Operations 
Direct-store load accesses are similar to store operations, except that the 604 latches data 
from the addressed BUC rather than supplying the data to the BUC. As with memory 
accesses, the 604 is the master on both load and store operations; the external system must 
provide the data bus grant to the 604 when the BUC is ready to supply the data to the 604. 

Chapter 8. System Interface Operation 8-41 



The load request direct-store operation has no analogous store operation; it informs the 
addressed BUC of the total number of bytes of data that the BUC must provide to the 604 
on the subsequent load immediatelload last operations. For direct-store load accesses, the 
simplest, 32-bit (or fewer) data transfer sequence is as follows: 

LOAD REQUEST 

• 
• 

LOAD LAST 

• 
• 

LOAD REPLY(from BUC) 
However, if more data is involved in the direct-store access, there will be one or more load 
immediate operations. The BUC can detect when the last data is being transferred by 
looking for the load last opcode, as seen in the following sequence: 

LOAD REQUEST 

• 
• 

LOADIMM(s) 

• 
• 

LOAD LAST 

• 
• 

LOAD REPLY 
Note that three of the seven defined operations are address-only transactions and do not use 
the data bus. However, unlike the memory transfer protocol, these transactions are not 
broadcast from one master to all snooping devices. The direct-store address-only 
transaction protocol strictly controls communication between the 604 and the BUC. 

8.6.2 Direct-Store Transaction Protocol Details 
As mentioned previously, there are two address-bus beats corresponding to two packets of 
information about the address. The two packets contain the sender and receiver tags, the 
address and extended address bits, and extra control and status bits. The two beats of the 
address bus (plus attributes) are shown at the top of Figure 8-23 as two packets. The first 
packet, packet 0, is then expanded to depict the XATC and address bus information in 
detail. 

8-42 PowerPC 604 RISC Microprocessor User's Manual 



8.6.2.1 Packet 0 
Figure 8-23 shows the organization of the first packet in a direct-store transaction. 

The XATC contains the I/O opcode, as discussed earlier and as shown in Table 8-8. The 
address bus contains the following: 

Key bit 1\ segment register 1\ sender tag 

A (0-31) + Attributes -(PKT ~.j» 

__ ----------------------A---------------------r Address Bus (AG-A31) "\ 

__ ------------------~A~-------------------( , 
o 7 o 1 2 3 1112 27 28 31 
I XATC 

IIOOpcode 
I + I I I I I I 

~11\.. BUID v,..--___ JTo 
From Segment Register 

Key Bit 

Reserved 

Figure 8-23. Direct-Store Operation-Packet 0 

This information is organized as follows: 

• Bits 0 and 1 of the address bus are reserved-the 604 always drives these bits to 
zero. 

• Key bit-Bit 2 is the key bit from the segment register (either SR[Kp] or SR[Ks]). 
Kp indicates user-level access and Ks indicate supervisor-level access. The 604 
multiplexes the correct key bit into this position according to the current operating 
context (user or supervisor). (Note that user- and supervisor-level refer to problem 
and privileged state, respectively, in the architecture specification.) 

• Segment register-Address bits 3-27 correspond to bits 3-27 of the selected 
segment register. Note that address bits 3-11 form the 9-bit receiver tag. Software 
must initialize these bits in the segment register to the ID of the BUC to be 
addressed; they are referred to as the BUID (bus unit ID) bits. 

• PID (sender tag)-Address bits 28-31 fonn the 4-bit sender tag. The 604 PID 
(processor ID) comes from bits 28-31 of the 604's processor ID register. The 4-bit 
PID tag allows a maximum of 16 processor IDs to be defined for a given system. If 
more bits are needed for a very large multiprocessor system, for example, it is 
envisioned that the second-level cache (or equivalent logic) can append a larger 
processor tag as needed. The BUC addressed by the receiver tag should latch the 
sender address required by the subsequent I/O reply operation. 

Chapter 8. System Interface Operation 8·43 



8.6.2.2 Packet 1 
The second address beat, packet 1, transfers byte counts and the physical address for the 
transaction, as shown in Figure 8-24. 

ADDR + --(tlto(pKT 1) 

__ ----------------------------JA~---------------------------r , 
o 7 O~---3~4----------~------------------------3~1 I XATC I + ~~_R(~2_~~11~ ___________ B_us_A_d_d_m_s_s ________________ ~1 

Byte Count Address Bus (AO-A31) 

Figure 8-24. Direct-Store Operation-Packet 1 

For packet 1, the XATC is defined as follows: 

• Load request operations-XATC contains the total number of bytes to be transferred 
(128 bytes maximum for 604). 

• Immediatellast (load or store) operations-XATC contains the current transfer byte 
count (1 to 4 bytes). 

Address bits 0-31 contain the physical address of the transaction. The physical address is 
generated by concatenating segment register bits 28-31 with bits 4-31 of the effective 
address, as follows: 

Segment register (bits 28-31) II effective address (bits 4-31) 

While the 604 provides the address of the transaction to the BUC, the BUC must maintain 
a valid address pointer for the reply. 

8.6.3 I/O Reply Operations 
BUCs must respond to 604 direct-store transactions with an I/O reply operation, as shown 
in Figure 8-25. The purpose of this reply operation is to inform the 604 of the success or 
failure of the attempted direct-store access. This requires the system direct-store to have 
604 bus mastership capability-a substantially more complex design task than bus slave 
implementations that use memory-mapped I/O access. 

Reply operations from the BUC to the 604 are address-only transactions. As with packet 0 
of the address bus on 604 direct-store operations, the XATC contains the opcode for the 
operation (see Table 8-8). Additionally, the I/O reply operation transfers the sender/receiver 
tags in the first beat. 

8-44 PowerPC 604. RISC Microprocessor User's Manual 



Address Bus (AO-A31) 

__ -------------------------------JA~----------------------------__ r , 
o 7 0 1 2 3 1112 27 28 31 
I XATC I + I I I It~ItIItIItlt~IIIItIttIItIIIItrrttrtrq I 

1/00pcode ~,...--/'- _-----~'_y__' 

j
! rl '- B BUI IDO V Bue ?;;ecific ~ PID 

Error Segment Register 
Bit 

Reserved 

Figure 8-25. I/O Reply Operation 

The address bits are described in Table 8-9. 

Table 8-9. Address Bits for 1/0 Reply Operations 

Address Bits Description 

0-1 Reserved. These bits should be cleared for compatbility with future PowerPC microprocessors. 

2 Error bit. It is set if the BUC records an error in the access. 

3-11 BUIO. Sender tag of a reply operation. Corresponds with bits 3-11 of one of the 604 segment 
registers. 

12-27 Address bits 12-27 are BUC-specific and are ignored by the 604. 

28-31 PIO (receiver tag). The 604 effectively snoops operations on the bus and, on reply operations, 
compares this field to bits 28-31 of the PIO register to determine if it should recognize this va reply. 

The second beat of the address bus is reserved; the XATC and address buses should be 
driven to zero to preserve compatibility with future protocol enhancements. 

The following sequence occurs when the 604 detects an error bit set on an I/O reply 
operation: 

1. The 604 completes the instruction that initiated the access. 

2. If the instruction is a load, the data is forwarded onto the register file(s)/sequencer. 

3. A direct-store error exception is generated, which transfers 604 control to the direct
store error exception handler to recover from the error. 

If the error bit is not set, the 604 instruction that initiated the access completes and 
instruction execution resumes. 

Chapter 8. System Interface Operation 8-45 



System designers should note the following: 

• "Misplaced" reply operations (that match the processor tag and arrive unexpectedly) 
are ignored by the 604. 

• Extemallogic must assertAACK for the 604, even though it is the receiver of the 
reply operation AACK is an input-only signal to the 604. 

• The 604 monitors address parity when enabled by software and XATS and reply 
operations (load or store). 

8.6.4 Direct-Store Operation Timing 
The following timing diagrams show the sequence of events in a typical 604 direct-store 
load access (Figure 8-26) and a typical 604 direct-store store access (Figure 8-27). All 
arbitration signals except for ABB and DBB have been omitted for clarity, although they 
are still required as described earlier in this chapter. Note that, for either case, the number 
of immediate operations depends on the amount and the alignment of data to be transferred. 
If no more than 4 bytes are being transferred, and the data is double-word-aligned (that is, 
does not straddle an 8-byte address boundary), there will be no immediate operation as 
shown in the figures. 

The 604 can transfer as many as 128 bytes of data in one load or store instruction (requiring 
more than 33 immediate. operations in the case of misaligned operands). 

In Figure 8-26, XATS is asserted with the same timing relationship as TS in a memory 
access. Notice, however, that the address bus (and XATC) transition on the next bus clock 
cycle. The first of the two beats on the address bus is valid for one bus clock cycle window 
only, and that window is defined by the assertion ofXATS. The second address bus beat, 
however, can be extended by delaying the assertion of AACK until the system has latched 
the address. 

The load request and load reply operations, shown in Figure 8-26, are address-only 
transactions as denoted by the negated TI3 signal during their respective address tenures. 
Note that other types of bus operations can occur between the individual direct-store 
operations on the bus. The 604 involved in this transaction, however, does not initiate any 
other direct-store load or store operations once the first direct-store operation has begun 
address tenure; however, if the 1/0 operation is retried, other higher-priority operations can 
occur. 

Notice that, in this example (zero wait states), 13 bus clock cycles are required to transfer 
no more than 8 bytes of data. 

8-46 PowerPC 604 RISC Microprocessor User's Manual 



I 
AIm 

I 
~ 

I 
ADDR+XATC 

REQUESTOP 

I 2 I 3 

IMM.OP 

4 I 5 I 6 

LASTOP REPLYOP 

7 I 8 I 9 10 11 I 12 I 13 

Figure 8-26. Direct-Store Interface Load Access Example 

Figure 8-27 shows a direct-store store access, comprised of three direct-store operations. 
As with the example in Figure 8-26, notice that data is transferred only on the 32 bits of the 
DH bus. As opposed to Figure 8-26, there is no request operation since the 604 has the data 
ready for the BUC. 

The assertion of the TEA signal during a direct-store operation indicates that an 
unrecoverable error has occurred. If the TEA signal is asserted during a direct-store 
operation, the TEA action will be delayed and following direct-store transactions will 
continue until all data transfers from direct store segment had been completed. The bus 
agent that asserts TEA is responsible to assert TEA for every direct-store transaction tenure 
including the last one. The direct-store reply, under this case, is not required and will be 
ignored by the processor. The processor will take a machine check exception after the last 
direct-store data tenure has been terminated by the assertion of TEA, and not before. 

Chapter 8. System Interface Operation 8-47 



I 
AmJ 

I 
~ 

I 
ADDR+XATC 

IMM. OP I LAST OP 

1213141516 

I 

DHO-DH31 1:}~:~:~:~:~:}}i~:~:~:~:Q I :~ 

TA !:::::::::::::::::::::::~:::A ~ k::::t~~:::::::::::::::~:::::~1~:~:A ~ !Q 

I REPLYOP 

7 1 8 1 9 1 10 

Figure 8-27. Direct-Store Interface Store Access Example 

8.7 Optional Bus Configuration 
The 604 supports an optional bus configuration that is selected by the assertion or negation 
of the DRTRY signal during the negation of the HRESET signal. The operation and 
selection of the optional bus configuration is described in the following section. 

8.7.1 Fast-L2/Data Streaming Mode 
The 604 supports an optional mode (described as the fast-L2/data streaming mode), that 
disables the use of the data retry function provided through the DRTRY signal. Although 
this bus interface mode implies its suitability for use in interfacing to a second-level cache, 
the fast-L2/data streaming mode allows the forwarding of data during load operations to 
the internal CPU one bus cycle sooner than in the normal bus protocol. The PowerPC bus 
protocol specifies that, during load operations, the memory system normally has the 
capability to cancel data that was read by the master on the bus cycle after TA was asserted. 
In the 604 implementation, this late cancellation protocol requires the 604 to hold any 
loaded data at the bus interface for one additional bus clock to verify that the data is valid 
before forwarding it to the internal CPU. The use of the optional fast-L2/data streaming 
mode eliminates the one-cycle stall during all load operations, and allows for the 
forwarding of data to the internal CPU immediately when T A is recognized, thereby 
increasing maximum read bandwidth. 

When the 604 is following normal bus protocol, data may be cancelled the bus cycle after 
TA by either of two means-late cancellation by DRTRY, or late cancellation by ARTRY. 
When the fast-L2/data streaming mode is selected, both cancellation cases must be 
disallowed in the system design for the bus protocol. 

8-48 Power PC 604 RISC Microprocessor User's Manual 



When the fast-L2/data streaming mode is selected for the 604, the system must ensure that 
DRTRY will not be asserted to the 604. If it is asserted, it may cause improper operation of 
the bus interface. The system must also ensure that an assertion of ARTRY by a snooping 
device must occur before or coincident with the first assertion of T A to the 604, but not on 
the cycle after the first assertion of TA. 

The 604 selects the desired DRTRY mode at startup by sampling the state of the DRTRY 
signal at the negation of the HRESET signal. If the DRTRY signal is negated at the 
negation of HRESET, normal operation is selected. If the DRTRY signal is asserted at the 
negation of HRESET, fast-L2/data streaming mode is selected. To select the fast-L2/data 
streaming mode, the system designer may connect the DRTRY signal to the HRESET 
signal. This asserts DRTRY during startup for fast-L2/data streaming mode selection, and 
holds the DRTRY signal negated during operation. 

When the 604 is in fast-L2/data streaming mode, the bus protocol is modified to disable the 
ability to cancel data that was read by the master on the bus cycle after TA was asserted. 
Also, DBB is an output-only signal, and is not a term in generating a qualified data bus 
grant. When in fast-L2/data streaming mode, the system is not allowed to assert DBG 
earlier than one cycle before the data tenure is to commence, to park DBG, or to assert DBG 
for multiple consecutive cycles. In all other respects, the bus protocol for the 604 is 
identical to that for the basic and extended transfer bus protocols described in this chapter. 

8.7.1.1 Fast-L2/Data Streaming Mode Design Considerations 
It is recommended that use of fast-L2/data streaming mode be accompanied by two other 
system design practices. 

The first recommendation is not to use the ABB signal. If the system is designed so that an 
address tenure is defined by TS and AACK assertion, (which the 604 is designed to 
support), the ABB signal is unnecessary, and should be pulled high at the 604. Because the 
ABB signal has an inherently short "restore high" time, it is desirable that the ABB signal 
not be used in systems that try to achieve a short cycle time. 

The second recommendatton is not to use the DBB signal. This signal is restored high in 
the same way as ABS, and therefore has the same problems in a system with short cycle 
time. To avoid the use of the DBB signal, the system arbiter must assert t DBG for a single 
cycle, one cycle before the 604 is supposed to begin its data tenure. The DBB signal should 
be pulled high. The additional system cost of operating in this manner is that it must count 
the number of data transfers, and assert DBG only on the last cycle in a data tenure. 

8.7.1.2 Data Streaming in the Fast-L2/Data Streaming Mode 
Data streaming is the ability to commence a data tenure after a previous data tenure with 
no dead cycles between. The 604 only supports data streaming for consecutive burst read 
data transfers. This does include support for data streaming consecutive burst read data 
transfers between two separate masters. For instance, in a multi-604 system, data streaming 
is allowed on consecutive burst read data transfers from different 604s. 

Chapter 8. System Interface Operation 8-49 



To cause data streaming to take place, the system asserts DBG during the last data transfer 
of the first data tenure as shown in Figure 8-28. To fully realize the performance gain of 
data streaming, the system should be prepared to, but is not required to, supply an 
uninterrupted sequence of T A assertions. 

Figure 8-28 shows the operation of the DBG signal when data streaming operations are 
taking place on the data bus 

0 2 3 4 5 6 7 8 9 

Bus Clock 

I I I 

!mG ~ ~ 
t5ATA 

I 
TA \ I 

Figure 8-28. Data Transfer In Fast-L2/Data Streaming Mode 

8.7.1.3 Data Valid Window in the Fast·L2/Data Streaming Mode 
Standard bus mode operations allow data to be transferred no earlier than the cycle before 
the ARTRY window that the system defines. In some cases, an asserted ARTRY signal 
invalidates the data that was transferred the previous cycle, in the same way DRTRY 
cancels data from the previous cycle. 

In fast-L2!data streaming mode, the data buffering that allows late cancellation of a data 
transfer does not exist, so late cancellation with ARTRY is also impossible. Therefore, the 
earliest that data can be transferred in fast'-L2/data streaming mode is the first cycle of the 
ARTRY window, not the cycle before that. 

8.8 Interrupt, Checkstop, and Reset Signals 
This section describes external interrupts, checkstop operations, and hard and soft reset 
inputs. 

8.8.1 External Interrupts 
The external interrupt input signals (lNT, SMI and MCP) to the 604 eventually force the 
processor to take the external interrupt vector, the system management interrupt vector, or 
the machine check interrupt if enabled by the MSR[EE] bit (and the HlDO[EMCP] bit in 
the case of a machine check interrupt). 

8·50 Power PC 604 RISC MicroproC8880r u .. r'. Manual 



8.8.2 Checkstops 
The 604 has two checkstop input signals-CKSTP _IN and MCP (when MSR[ME] is 
cleared, and HIDO[EMCP] is set), and a checkstop output (CKSTP _OUT). If CKSTP _IN 
or MCP is asserted, the 604 halts operations by gating off all internal clocks. The 604 
asserts CKSTP _OUT if CKSTP _IN is asserted. 

If CKSTP _OUT is asserted by the 604, it has entered the checkstop state, and processing 
has halted internally. The CKSTP _OUT signal can be asserted for various reasons 
including receiving a TEA signal and detection of external parity errors. For more 
information about checks top state, see Section 4.5.2.2, "Checkstop State (MSR[ME] = 0)." 

8.8.3 Reset Inputs 
The 604 has two reset inputs, described as follows: 

• HRESET (hard reset)--The HRESET signal is used for power-on reset sequences, 
or for situations in which the 604 must go through the entire cold-start sequence of 
internal hardware initializations. 

• SRESET (soft reset)-The soft reset input provides warm reset capability. This 
input can be used to avoid forcing the 604 to complete the cold start sequence. 

When either reset input is negated, the processor attempts to fetch code from the system 
reset exception vector. The vector is located at offset OxOO 1 00 from the exception prefix (all 
zeros or ones, depending on the setting of the exception prefix bit in the machine state 
register (MSR[lPD. The IP bit is set for HRESET. 

8.8.4 PowerPC 604 Microprocessor Configuration during HRESET 
The 604's bus interface can be configured into one of two modes during a hard reset, as 
described in Table 8-10. 

Table 8-10. PowerPC 604 Microprocessor Mode Configuration during HRESET 

604 Mode Input Signal Used Timing Requirements Notes 

Nonnal bus mode t>ATRV Must be negated throughout the 
duration of the ~ assertion. 
After ~ negation. t>J!i'rRV 
can be used normally. 

Fast-L2Idata streaming t>ATRV Must be asserted and negated Can be implemented by 
mode coincidentally with RREm and tying t>RTRV to 

remain negated during normal RRESET. 
operation. 

Chapter 8. System Interface Operation 8-51 



8.9 Processor State Signals 
This section describes the 604's support for atomic update and memory through the use of 
the Iwarx/stwcx. opcode pair. 

8.9.1 Support for the Iwarx/stwcx. Instruction Pair 
The Load Word and Reserve Indexed (Iwarx) and the Store Word Conditional Indexed 
(stwcx.) instructions provide a means for atomic memory updating. Memory can be 
updated atomically by setting a reservation on the load and checking that the reservation is 
still valid before the store is perfonned. In the 604, the reservations are made on behalf of 
aligned, 32-byte sections of the memory address space. 

The reservation (RSRV) output signal is driven synchronously with the bus clock and 
reflects the status of the reservation coherency bit in the reservation address register (see 
Chapter 3, "Cache and Bus Interface Unit Operation," for more infonnation). See 
Section 7.2.10.2, "Reservation (RSRV)-Output," for information about timing. 

8.10 IEEE 1149.1-Compliant Interface 
The 604 boundary-scan interface is a fully-compliant implementation of the IEEE 1149.1 
standard. This section describes the 604 IEEE 1149.1(JTAG) interface. 

8.10.1 IEEE 1149.1 Interface Description 
The 604 has five dedicated JTAG signals which are described in Table 8-11. The TOI and 
TOO scan ports are used to scan instructions as well as data into the various scan registers 
for JTAG operations. The scan operation is controlled by the test access port (TAP) 
controller which in turn is controlled by the TMS input sequence. The scan data is latched 
in at the rising edge of TCK. 

Table 8-11. IEEE Interface Pin Descriptions 

Signal Name Input/Output 
Weak Pullup 

IEEE 1149.1 Function 
Provided 

TOI lf1)ut Yes Serial scan if1)ut pin 

TOO Output No Serial scan output pin 

TMS lf1)ut Yes TAP controller mode pin 

TCK lf1)ut Yes Scan clock 

TRST lf1)ut Yes TAP controller reset 

TRST is a JTAG optional signal which is used to reset the TAP controller asynchronously. 
The TRST signal assures that the JTAG logic does not interfere with the nonnal operation 
of the chip, and should be held asserted during normal operation. The remaining JTAG 
signals are provided with internal pullup resistors, and may be left unconnected. 

8-52 Power PC 604 RISC Microprocessor User's Manual 



Boundary scan description language (BSDL) files for the 604 and other PowerPC 
microprocessors are available in the RISe support area of the Motorola Freeware Data 
Services bulletin board system. The bulletin board system, located in Austin, Texas, can be 
reached at (512) 891-3733; the connecting terminal or terminal emulator should be 
configured with 8-bit data, no parity, and one start and one stop bit. Asynchronous 
transmission rates to 14.4K bits per second are supported. 

8.11 Using Data Bus Write Only 
The 604 supports split-transaction pipelined transactions. It supports a limited out-of-order 
capability for its own pipelined transactions through the data bus write only (DBWO) 
signal. When recognized on the clock of a qualified DBG, the assertion of DBWO directs 
the 604 to perform the next pending data write tenure (if any), even if a pending read tenure 
would have normally been performed because of address pipelining. The DBWO does not 
change the order of write tenures with respect to other write tenures from the same 604. It 
only allows that a write tenure be performed ahead of a pending read tenure from the same 
604. 

In general, an address tenure on the bus is followed strictly in order by its associated data 
tenure. Transactions pipelined by the 604 complete strictly in order. However, the 604 can 
run bus transactions out of order only when the external system allows the 604 to perform 
a cache line snoop push out operation (or other write transaction, if pending in the 604 write 
queues) between the address and data tenures of a read operation through the use of 
DBWO. This effectively envelopes the write operation within the read operation. 
Figure 8-29 shows how the DBWO signal is used to perform an enveloped write 
transaction. 

LJ 

Write Address 

Enveloped Write 
Transaction 

(2) ______ ...., (1)r----_____ _ 

L-J LJ 
~ --,~ ________________ ~r_l~ ________________ ~r__ 

UBWO --u-

Figure 8-29. Data Bus Write Only Transaction 

Chapter 8. System Interface Operation 8-53 



Note that although the 604 can pipeline any write transaction behind the read transaction, 
special care should be used when using the enveloped write feature. It is envisioned that 
most system implementations will not need this capability; for these applications DBWO 
should remain negated. In systems where this capability is needed, DBWO should be 
asserted under the following scenario: 

1. The 604 initiates a read transaction (either single-beat or burst) by completing the 
read address tenure with no address retry. 

2. Then, the 604 initiates a write transaction by completing the write address tenure, 
with no address retry. 

3. At this point, if DBWO is asserted with a qualified data bus grant to the 604, the 604 
asserts DBB and drives the write data onto the data bus, out of order with res~o 
the address pipeline. The write transaction concludes with the 604 negating DBB. 

4. The next qualified data bus grant signals the 604 to complete the outstanding read 
transaction by latching the data on the bus. This assertion of DBG should not be 
accompanied by an asserted DBWO. 

Any number of bus transactions by other bus masters can be attempted between any of 
these steps. 

Note the following regarding DBWO: 

• The DBWO signal can be asserted if no data bus read is pending, but it has no effect 
on write ordering. 

• The ordering and presence of data bus writes is determined by the writes in the write 
queues at the time BG is asserted for the write address (not DBG). A cache-line 
snoop push-out operation has the highest priority, and takes precedence over other 
queued write operations. 

• Because more than one write may be in the write queue when DBG is asserted for 
the write address, more than one data bus write may be enveloped by a pending data 
bus read. 

The arbiter must monitor bus operations and coordinate the various masters and slaves with 
respect to the use of the data bus when DBWO is used. Individual DBG signals associated 
with each bus device should allow the arbiter to synchronize both pipelined and split
transaction bus organizations. Individual DBG and DBWO signals provide a primitive 
fonn of source-level tagging for the granting of the data bus. 

Note that use of the DBWO signal allows some operation-level tagging with respect to the 
604 and the use of the data bus. 

8-54 Power PC 604 RISC Microprocessor User's Manual 



Chapter 9 
Performance Monitor 
The PowerPC 604 microprocessor provides a performance monitor facility to monitor and 
count predefined events such as processor clocks, misses in either the instruction cache or 
the data cache, instructions dispatched to a particular execution unit, mispredicted 
branches, and other occurrences. The count of such events (which may be an 
approximation) can be used to trigger the performance monitor exception. The 
performance monitor facility is not defined by the PowerPC architecture. 

The performance monitor can be used for the following: 

• To increase system performance with efficient software, especially in a 
multiprocessing system. Memory hierarchy behavior must be monitored and studied 
in order to develop algorithms that schedule tasks (and perhaps partition them) and 
that structure and distribute data optimally. 

• To improve processor architecture, the detailed behavior of the 604 's structure must 
be known and understood in many software environments. Some environments may 
not easily be characterized by a benchmark or trace. 

• To help system developers bring up and debug their systems. 

The performance monitor uses the following 604-specific special-purpose registers (SPRs): 

• Performance monitor counters 1 and 2 (PMCI and PMC2)-two 32-bit counters 
used to store the number of times a certain event has been detected 

• The monitor mode control register (MMCRO), which establishes the function of the 
counters. 

• Sampled instruction address and sampled data address registers (SIA and SDA). 
Depending on how the performance monitor is configured, these registers point to 
the data or instruction that caused a threshold-related performance monitor interrupt. 

The 604 supports a performance monitor interrupt that is caused by a counter negative 
condition or by a time-base flipped bit counter defined in the MMCRO register. 

As with other PowerPC interrupts, the performance monitor interrupt follows the normal 
PowerPC exception model with a defined exception vector offset (OxOOFOO). The priority 
of the performance monitor interrupt is below the external interrupt and above the 
decrementer interrupt. The contents of the SIA and SDA are described in Section 9.1.1.2.1, 

Chapter 9. Performance Monitor 9-1 



"Sampled Instruction Address Register (SIA)," and Section 9.1.1.2.2, "Sampled Data 
Address Register (SDA)," respectively. The performance monitor counter registers are 
described in Section 9.1.1.1, "Performance Monitor Counter Registers (PMCI and 
PMC2)." 

9.1 Performance Monitor Interrupt 
The 604 performance monitor is a software-accessible mechanism that provides detailed 
information concerning the dispatch, execution, completion, and memory access of 
PowerPC instructions. A performance monitor interrupt (PMI) can be triggered by a 
negative counter (most significant bit set to one) condition. If the interrupt signal condition 
occurs while MSR[EE] is cleared, the interrupt is delayed until the MSR[EE] bit is set. A 
PM! may also occur when certain bits in the time base register change from 0 to 1; this 
provides a way to generate interrupts based on a time reference. 

Depending on the type of event that causes the PMI condition to be signaled, the 
performance monitor responds in one of two ways: 

• When a threshold event causes a PMI to be signaled, the exact addresses of the 
instruction and data that caused the counter to become negative are saved in the 
sampled instruction address (SIA) register and the sampled data address (SDA) 
register, respectively. For more information, see Section 9.1.2.2, "Threshold 
Events." 

• For all other programmable events that cause a PMI, the address of the last 
completed instruction during that cycle is saved in the SIA, which allows the user to 
determine the part of the code being executed when a PMI was signaled. Likewise, 
the effective address of an operand being used is saved in the SDA. Typically, the 
operands in the SDA and SIA are unrelated. For more information, see 
Section 9.1.2.3, "Nonthreshold Events." 

When the performance monitor interrupt is signaled, the hardware clears MMCRO[ENINT] 
and prevents the changing of the values in the SIA and SDA until ENINT is set by software. 
The MMCRO is described in the Section 9.1.1.3, "Monitor Mode Control Register 0 
(MMCRO)." 

The following section describes the SPRs used with the performance monitor. 

9.1.1 Special-Purpose Registers Used by Performance Monitor 
The performance monitor incorporates the SPRs listed in Table 9-1. The SIA register is 
located in the sequencer unit and the SDA register is located in the LSU. All of these 
supervisor-level registers are accessed through mtspr and mfspr instructions. The 
following table shows more information about all performance monitor SPRs. 

9-2 Power PC 604 RISC Microprocessor User's Manual 



Table 9-1. Performance Monitor SPRs 

SPR Number spr[5-9)II spr[O-4) Register Name Access Level 

952 Ob1110111000 MMCRO Supervisor 

953 Ob1110111001 PMC1 Supervisor 

954 Ob11101 11010 PMC2 Supervisor 

955 Ob1110111011 SIA Supervisor 

959 Ob1110111111 SDA Supervisor 

9.1.1.1 Performance Monitor Counter Registers (PMC1 and PMC2) 
PMCl and PMC2 are 32-bit counters that can be programmed to generate interrupt signals 
when they are negative. Counters are considered to be negative when the high-order bit (the 
sign bit) becomes set; they reach the value Ox8000_0000, that is, all zeros with the most 
significant bit, or sign bit, set. However, an interrupt is not signaled unless both 
MMCRO[INTCONTROL] and MMCRO[ENINT] are also set. 

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition 
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set. 
Setting MMCRO[DISCOUNT] forces the counters to stop counting when a counter 
interrupt occurs. 

PMCl and PMC2 are SPRs 953 and 954, respectively, and can be read and written to by 
using the mfspr and mtspr instructions. Software is expected to use the mtspr instruction 
to explicitly set the PMC register to nonnegative values. If software sets a negative value, 
an erroneous interrupt may occur. For example, if both MMCRO[INTCONTROL] and 
MMCRO[ENINT] are set and the mtspr instruction is used to set a negative value, an 
interrupt signal condition may be generated prior to the completion of the mtspr and the 
values of the SIA and SDA may not have any relationship to the type of instruction being 
counted. 

The event that is to be monitored can be chosen by setting the appropriate bits in the 
MMCRO[l9-3l]. The number of occurrences of these selected events is counted from the 
time the MMCRO was set either until a new value is introduced into the MMCRO register 
or until a performance monitor interrupt is generated. Table 9-2 and Table 9-3 list the 
selectable events for the PMCl and PMC2 registers, respectively, with their appropriate 
MMCRO encodings. 

9.1.1.1.1 PMC1 Selectable Events 
The events counted by PMCl can be divided into two groups. 

• Events that can occur only once per cycle. These are the most common. 

• Events can have as many as four occurrences per cycle, such as instructions 
dispatched per clock. 

Chapter 9. Performance Monitor 9-3 



Events selectable for counting by PMCI are listed, along with their MMCRO[19-25] 
encodings, in Table 9-2. 

Table 9-2. PMC1 Events-MMCRO [19-25] Select Encodlngs 

Encoding Description 

0000000 Nothing. Register counter holds current value. 

0000001 Processor cycles are counted 

0000010 Count the number of instructions completed per cycle. legal values are 000, 001, 010, 011, 100. 

0000011 RTCSElECT bit transition. (0 = 47, 1 = 51,2 = 55, 3 = 63) 
Bits from the time-base lower register (TBl). 

0000100 Number of instructions dispatched. From zero to four instructions per cycle 

0000101 Instruction cache misses (speculative (Instruction cache line-fill)) 

0000110 dtlb misses (not speculative) 

0000111 Branch incorrectly predicted 

0001000 Number of reservations requested 

0001001 Number of load data cache misses that exceeded the threshold value with lateral L2 cache 
intervention. For more information on l2 cache intervention, see Section 7.2.10.3, "l2 Intervention 
(l2_INT)-I~ut." 

0001010 Number of store data cache misses that exceeded the threshold value with lateral l2 cache 
intervention 

0001011 Number of mtspr instructions dispatched 

0001100 Number of sync instructions completed 

0001101 Number of alalo instructions completed 

0001110 Number of integer instructions completed every cycle (no loads or stores) 

0001111 Number of floating-point instructions completed every cycle (no loads or stores) 

0010000 lSU produced result without an exception condition 

0010001 SCIU1 unit produced result. (add, subtract, compare, rotate, shift, or logical instructions) 

0010010 FPU produced result 

0010011 Number of instructions dispatched to the lSU 

0010100 Number of instructions dispatched to the SCIU1 unit 

0010101 Number of instructions dispatched to the floating-point unit 

0010110 Snoop requests received. Valid snoops from outside the 604. Does not know if it is a hit or miss. 

001 0111 Number of marked load data cache misses that exceeded the threshold value without lateral L2 
intervention. 

0011000 Number of marked store data cache misses that exceeded the threshold value without lateral L2 
intervention 

9-4 Power PC 604 RISC Microprocessor User's Manual 



9.1.1.1.2 PMC2 Selectable Events 
The events counted by PMC2 follow the same groupings explained in the previous section. 
The differences between PMCl and PMC2 event selection are as follows: 

• Different bits of the MMCRO register are decoded in order to select events. 

• PMC2 has fewer events. 

Events selectable for counting by PMC2 are listed, along with their MMCRO[26-31] encodings, 
are listed in Table 9-3. 

Table 9-3. PMC2 Events-MMCRO [26-31] Select Encoding 

Encoding Description 

000000 Nothing. Register counter holds current value 

000001 Processor cycles 

000010 Number of instructions completed. Legal values are 000, 001, 010, 011. and 100. 

000011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 bits from the time base lower register. 

000100 Number of instructions dispatched 

000101 Number of cycles a load miss takes 

000110 Data cache misses (data cache line fill) 

000111 Number of itlb misses 

001000 Number of branches completed. Indicates the number of branch instructions completed every cycle. 
00 None 
01 Illegal value 
10 One 
11 Two 

001001 Number of reservations successfully obtained 

001010 Number of mfspr instructions dispatched (speculative) 

001011 Number of icbl instructions. The icbi instruction may not hit in the cache. 

001100 Number of pipeline-flushing operations (sc, isync, mtspr[xer). floating-point operations with divide 
by 0 or invalid operand when the 604 is in precise mode, branch when MSR[BE) is set, Iswx with 
XER = 0 and SO set). 

001101 Branch unit produced result (branch or CR-Iogical instruction finished) 

001110 SCIUO unit produced result (add, subtract, compare, rotate, shift, or logical instruction) 

001111 MCIU unit produced result (multiply/divide or SPR instruction) 

01 0000 Number of instructions dispatched to the branch unit 

01 0001 Number of instructions dispatched to the SCIUO unit 

010010 Number of loads completed. From 0 to 4 instructions per cycle. Indicates the number of load 
instructions being completed every cycle. These include all cache operations, t1ble, tlbsync, sync, 
elelo, and Icbl. 

010011 Number of instructions dispatched to the MCIU 

010100 Number of snoop hits occurred 

Chapter 9. Performance Monitor 9-5 



9.1.1.2 SIA and SDA Registers 
The two address registers contain the addresses of the data or the instruction that caused a 
threshold-related perfonnance monitor interrupt. For more information on 
threshold-related interrupts, see Section 9.1.2.2, "Threshold Events." 

9.1.1.2.1 Sampled Instruction Address Register (SIA) 
The SIA contains the effective address of an instruction executing at or around the time that 
the processor signals the performance monitor interrupt condition. If the performance 
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction 
that caused the counter to become negative. The instruction whose effective address is put 
in the SIA is called the sampled instruction. 

If the performance monitor interrupt was caused by something besides a threshold event, 
the SIA contains the address of the last instruction completed during that cycle. The SDA 
contains an effective address that is not guaranteed to match the instruction in the SIA. The 
SIA and SDA are supervisor-level SPRs. 

The SIA can be read by using the mfspr instruction and written to by using the mtspr 
instruction (SPR 955). 

9.1.1.2.2 Sampled Data Address Register (SOA) 
The SDA contains the effective address of an operand of an instruction executing at or 
around the time that the processor signals the performance monitor interrupt condition. In 
this case the SDA is not meant to have any connection with the value in the SIA. If the 
perfonnance monitor interrupt was triggered by a threshold event, the SDA contains the 
effective address of the operand of the SIA. 

If the performance monitor interrupt was caused by something other than a threshold event, 
the SIA contains the address of the last instruction completed during that cycle. The SDA 
contains an effective address that is not guaranteed to match the instruction in the SIA. The 
SIA and SDA are supervisor-level SPRs. 

The SDA can be read by using the mfspr instruction and written to by using the mtspr 
instruction (SPR 959). 

9.1.1.2.3 Updating SIA and SOA 
The values of the SIA and SDA registers depend on the type of event being monitored. 
These registers have predicted values after a PMI is signaled. A PMI may be signaled, but 
not serviced because the exception is masked by the MSR(EE) bit. Programmers must 
make sure that this bit is set active in order to take the PM!. 

9.1.1.3 Monitor Mode Control Register 0 (MMCRO) 
, The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 952) whose bits are 
partitioned into bit fields that determine the events to be counted and recorded. The 
selection of allowable combinations of events causes the counters to operate concurrently. 
Control fields in the MMCRO select the events to be counted, can enable a counter overflow 

9-6 Power PC 604 RISC Microprocessor User's Manual 



to initiate a perfonnance monitor interrupt, and specify the conditions under which 
counting is enabled. 

The MMCRO can be written to or read only in supervisor mode. The MMCRO includes 
controls, such as counter enable control, counter overflow interrupt control, counter event 
selection, and counter freeze control. 

This register is cleared at power up. Reading this register does not change its contents. The 
fields of the register are defined in Table 9-4. 

Table 9-4. MMCRO Bit Settings 

Bit Name Description 

0 DIS Disable counting unconditionally 
0 The values of the PMCn counters can be changed by hardware. 
1 The values of the PMCn counters cannot be changed by hardware. 

1 DP Disable counting while in supervisor mode 
0 The PMCn counters can be changed by hardware. 
1 " the processor is in supervisor mode (MSR[PR] is cleared), the counters are 

not changed by hardware. 

2 DU Disable counting while in user mode 
0 The PMCn counters can be changed by hardware. 
1 " the processor is in user mode (MSR[PR) is set), the PMC counters are not 

changed by hardware). 

3 OMS Disable counting while MSR[PM] is set 
0 The PMCn counters can be changed by hardware. 
1 "MSR[PM] is set, the PMCn counters are not changed by hardware. 

4 DMR Disable counting while MSR[PM] is zero. 
0 The PMCn counters can be changed by hardware. 
1 "MSR[PM] is cleared, the PMCn counters are not changed by hardware. 

5 ENINT Enable performance monitor interrupt signaling. 
0 Interrupt signaling is disabled. 
1 Interrupt signaling is enabled. 
This bit is cleared by hardware when a performance monitor interrupt is Signaled. 
To reenable these interrupt signals, software must set this bit after servicing the 
performance monitor interrupt. This bit is cleared before passing control to the 
operating system. 

6 DISCOUNT Disable counting of PMC1 and PMC2 when a performance monitor interrupt is 
signaled (that is, «PMCnINTCONTROL = 1) & (PMCn[O] = 1) & (ENINT = 1)) or 
the occurrence of an enabled time base transition with ((INTONBITTRANS =1) & 
(ENINT = 1)). 
0 Signaling a performance monitor interrupt has no effeet on the counting 

status of PMC1 and PMC2. 
1 Signaling a performance monitor interrupt prevents the PMC1 counter from 

changing. The PMC2 counter does not change if PMC2COUNTCTL = o. 
Because, a time-base signal could have occurred along with an enabled counter 
negative condition, software should always reset INTONBITTRANS to zero, if the 
value in INTONBITTRANS was a one. 

Chapter 9. Performance Monitor 9-7 



Table 9-4. MMCRO Bit Settings (Continued) 

Bit Name Description 

7-8 RTCSELECT 64-bit time base, bit selection enable. 
00 Pick bit 63 to count 
01 Pick bit 55 to count 
10 Pick bit 51 to count 
11 Pick bit 47 to count 

9 INTONBITIRANS Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to 
on. 
0 Do not allow interrupt signal if chosen bit transitions. 
1 Signal interrupt if chosen bit transitions. 
Software is responsible for setting and clearing INTONBITIRANS. 

10-15 THRESHOLD Threshold value. All 6 bits are supported by the 604 processor; allowing threshold 
values from 0 to 63. The intent of the THRESHOLD support is to be able to 
characterize L 1 data cache misses. 

16 PMC11NTCONTROL Enable interrupt signaling due to PMC1 counter negative. 
0 Disable PMC1 interrupt signaling due to PMC1 counter negative. 
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative. 

17 PMC21NTCONTROL Enable interrupt signaling due to PMC2 counter negative. This signal overrides 
the setting of DISCOUNT. 
0 Disable PMC2 interrupt signaling due to PMC2 counter negative. 
1 Enable PMC2 Interrupt signaling due to PMC2 counter negative. 

18 PMC2COUNTCTL May be used to trigger counting of PMC2 after PMC1 has become negative or 
after a performance monitor interrupt is signaled. 
0 Enable PMC2 counting 
1 Disable PMC2 counting until PMC 1 bit 0 is set or until a performance monitor 

interrupt is signaled. 
This signal can be used to trigger counting of PMC2 after PMC1 has become 
negative. This provides a triggering mechanism for counting after a certain 
condition occurs or after a preset time has elapsed. It can be used to support 
getting the count associated with a specific event. 

19-25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 9-2. 

26-31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 9-3. 

9.1.2 Event Counting 
Counting can be enabled if conditions in the processor state match a software-specified 
condition. Because a software task scheduler may switch a processor's execution among 
multiple processes and because statistics on only a particular process may be of interest, a 
facility is provided to mark a process. The performance monitor (PM) bit, MSR[29] is used 
for this purpose. System software may set this bit when a marked process is numing. This 
enables statistics to be gathered only during the execution of the marked process. The states 
of MSR[PR] and MSR[PM] together define a state that the processor (supervisor or 
program) and the process (marked or unmarked) may be in at any time. If this state matches 
a state specified by the MMCR, the state for which monitoring is enabled, counting is 
enabled. 

9-8 Power PC 604 RISC Microprocessor User's Manual 



The following are states that can be monitored: 

• (Supervisor) only 

• (User) only 
• (Marked and user) only 

• (Not marked and user) only 
• (Marked and supervisor) only 
• (Not marked and supervisor) only 

• (Marked) only 
• (Not marked) only 

In addition, one of two unconditional counting modes may be specified: 

• Counting is unconditionally enabled regardless of the states of MSR[PM] and 
MSR[PR]. This can be accomplished by clearing MMCRO[0-4]. 

• Counting is unconditionally disabled regardless of the states of MSR[PM] and 
MSR[PR]. This is done by setting MMCRO[O]. 

The performance monitor counters track how often a selected event occurs and are used to 
generate performance monitor exceptions when an overflow (most significant bit is a 1) 
situation occurs. The 604 performance monitor contains two counters. This register is 
cleared at startup and can be updated through an mtspr instruction. 

The 32-bit registers can count up to Ox7FFFFFFF (2,147,483,648 in decimal) before 
becoming negative. The most significant bit (bit 0) of both registers is used to determine if 
an interrupt condition exists. 

9.1.2.1 Event Selection 
Event selection is handled through PMCI and PMC2, described in Table 9-2 and Table 9-3, 
respectively. Event selection is described as follows: 

• The event select fields are located in MMCRO. There are 7 bits associated with 
PMC 1 and 6 bits associated with PMC2. Only the low order 5 bits are used for 
selection. The higher order bits are reserved for future applications. 

• In the tables, a correlation is established between each counter, the events to be 
traced, and the pattern required for the desired selection. 

• The first five events are common to both counters. These are considered to be 
reference events. 

• Some events can have multiple occurrences per cycle, and therefore need two or 
three bits to represent them. These events are number 2, 4, 14, 15 for PMCI and 
2,4,8, 18 for PMC2. 

Chapter 9. Performance Monitor 9-9 



9.1.2.2 Threshold Events 
These PMCI events are numbers 9, 10, 23, and 24. These events monitor load and store 
misses (with and without lateral L2 intervention). Only "marked" loads and stores (loads 
and stores at queue position 0) are monitored. See Section 9.1.2.2.1, "Threshold 
Conditions," for more information. 

When a marked operation is detected, the SDA is updated with the effective address. When 
the marked instruction finishes executing, the SIA will be updated with the address of that 
instruction. Thus, when a PMI is signaled (as a result of a threshold event) the SIA and SDA 
contains the exact SIA and SDA belonging to the instruction that caused PMCI to become 
negative; see Section 9.1.2.2.3, "Warnings," for further information. 

9.1.2.2.1 Threshold Conditions 
The ability to generate a PMI based on a threshold condition makes it· possible to 
characterize Ll data cache misses. Specifically, the programmer should be able to identify 
(through repeated runs and sampling) the time distribution required to satisfy Ll cache 
misses. For example, if PMC 1 is counting load misses and the threshold is set to two 
(cycles), only load misses taking more than two cycles are counted. Repeated runs with 
different threshold values would allow construction of a load-miss distribution chart. 

When a load (or store) miss arrives in the load/store queue, the threshold control logic 
begins decrementing. For each cycle that passes, the threshold value in a shadow register 
(obtained from MMCRO[10-15]) is decremented. The threshold is exceeded when this 
value reaches 0, at which point the PMCI count is updated. 

While servicing the load/store misses, the SIA and SDA registers are updated to the exact 
instruction and data addresses at the time an interrupt condition occurs. Thus, at the end of 
each threshold load or store operation, the SIA contains the address of the instruction that 
was last monitored, and the SDA contains the address of the data of the same instruction. 

9.1.2.2.2 Lateral L2 Cache Intervention 
A load or store operation that misses in the Ll cache can receive its data from one of several 
memory devices. In a uniprocessor system, the data would likely come an L2 cache, or from 
main memory if no L2 cache is present. In a multiprocessor system, the data can originate 
from the L2 cache connected to another 604 (that is, a lateral L2 cache), in which case, the 
L2 controller asserts an intervention signal (L2_INT) used by the performance monitor. 
This signal is useful when tracking memory latencies in a SMP system. For information 
about the L2_intervention signal, see Section 7.2.10.3, "L2 Intervention 
(L2_INT)-Input. " 

9-10 PowerPC 604 RISC Microprocessor User's Manual 



9.1.2.2.3 Warnings 
The following warnings should be noted: 

• Not all load and store operations are monitored. Only those in queue position 0 of 
their respective load/store queues are monitored. 

• The 604 cannot accurately track threshold events with respect to the following types 
of loads and stores: 

- Unaligned load and store operations that cross a word boundary 

- Load and store multiple operations 

- Load and store string operations 

• The lateral L2 cache intervention signal is controlled by the L2 cache controller 
being used. If the L2 cache controller does not provide this functionality, the events 
that use this signal (PMCI events 9 and 10) become obsolete. 

9.1.2.3 Nonthreshold Events 
Nonthreshold events are all events except for PMCI events 9, 10, 23, or 24. Any PM! 
signaled from nonthreshold events operate the same way. There is no distinction (in the SIA 
and SDA registers) between an interrupt generated by a time-base register bit transition or 
from PMC2 or PMCI becoming negative. In these cases the SIA contains the address of 
the last instruction completed during the cycle the PMI was signaled. The SDA contains an 
effective address of some instruction currently being processed. 

Under these events the SIA and SDA does not contain information belonging to the same 
instruction. 

Chapter 9. Performance Monitor 9-11 





Appendix A 
PowerPC Instruction Set Listings 
This appendix lists the PowerPC 604 microprocessor instruction set as well as PowerPC 
instructions not implemented in the 604. Instructions are sorted by mnemonic, opcode, 
function, and form. Also included in this appendix is a quick reference table that contains 
general information, such as the architecture level, privilege level, and form, and indicates 
if the instruction is 64-bit and optional. 

Note that split fields, that represent the concatenation of sequences from left to right, are 
shown in lowercase. For more information refer to Chapter 8, "Instruction Set," in The 
Programming Environments Manual. 

A.1 Instructions Sorted by Mnemonic 
Table A-I lists the instructions implemented in the 604 in alphabetical order by mnemonic. 

Key: 

IH//}] Reserved bits ~,*,:.;, I Instruction not implemented in the 604 

Table A·1. Complete Instruction List Sorted by Mnemonic 

Name 0 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31 

addx 31 0 A B 266 

addcx 31 0 A B 10 

addex 31 0 A B 138 

add I 14 0 A SIMM 

addlc 12 0 A SIMM 

addlc. 13 0 A SIMM 

addis 15 0 A SIMM 

addmex 31 0 A 234 

addzex 31 0 A 202 

andx 31 S A B 28 

andcx 31 S A B 60 

Appendix A. Power PC Instruction Set Ustings A-1 

• 



• 

Name 

andl. 

andls. 

bx 

bex 

bcctrx 

belrx 

emp 

empl 

empl 

erand 

erande 

creqv 

crnand 

emor 

eror 

crore 

erxor 

debf 

debl 1 

debst 

debt 

debtst 

eclwx 

ecowx 

Ilelo 

A-2 

0 6 7 8 9 10 11 

28 S 

29 S 

18 

16 BO 

19 BO 

19 BO 

31 crfD 

11 crfD 

31 crfD 

19 erbD 

19 crbD 

19 crbD 

19 crbD 

19 crbD 

19 crbD 

19 crbD 

19 erbD 

31 

31 

31 

31 

31 

31 

31 

31 

31 

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

A UIMM 

A UIMM 

LI 

BI BD 

BI 528 

16 

0 

SIMM 

32 

erbA 257 

crbA erbB 129 

crbA crbB 289 

crbA crbB 225 

erbA erbB 33 

erbA crbB 449 

erbA crbB 417 

erbA crbB 193 

A B 86 

A B 470 

A B 54 

A B 278 

A B 246 

459 

310 

438 

854 

Power PC 604 RISC Microprocessor User's Manual 



Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

eqvx 31 S A 
~----------+---------~---------

extsbx 31 S A 

fctlwzx 63 0 

fdlvx 63 0 

fdlvsx 59 0 A B 

fmaddx 63 0 A B 

fmaddsx 59 0 C 

fmrx 63 0 72 

fmsubx 63 0 C 28 

fmsubsx 59 0 C 28 

fmulx 63 0 C 25 

fmulsx 59 0 C 25 

fnabsx 63 0 136 

fnegx 63 0 40 

fnmaddx 63 0 A B C 31 • fnmaddsx 59 0 A B C 31 

fnmsubx 63 0 A B C 30 

59 0 

fresx 5 59 0 

frspx 63 0 

frsqrtex 5 63 0 

fselx 5 63 0 

Appendix A. Power PC Instruction Set Ustings A-3 



• 

Name 0 

A-4 

Ibz 

Ibzu 

Ibzux 

Ibzx 

Ifd 

Ifdu 

Ifdux 

Ifdx 

Ifs 

Ifsu 

Ifsux 

Ifsx 

Iha 

Ihau 

Ihaux 

Ihax 

Ihbrx 

1hz 

Ihzu 

Ihzux 

Ihzx 

Imw 3 

34 

35 

31 

31 

50 

51 

31 

31 

48 

49 

31 

31 

42 

43 

31 

31 

31 

40 

41 

31 

31 

46 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A d 

D A d 

D A B 119 

D A B 87 

D A d 

D A d 

D A B 631 

D A B 599 

D A d 

D A d 

D A B 567 

D A B 535 

D A d 

D A d 

D A B 375 

D A B 343 

D A B 790 

D A d 

D A d 

D A B 311 

D A B 279 

D A d 

Power PC 604 RISC Microprocessor User's Manual 



Name 0 

Iswl 3 

Iswx 3 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 o A 597 

31 o A B 533 

Iwz 32 0 A d 

Iwzu 33 0 A d 

Iwzux 31 0 A B 55 

Iwzx 31 0 A B 23 

merf 19 crfD 0 

mcrfs 63 crfD 64 

merxr 31 crfD 512 

mfer 31 19 

mffsx 63 0 583 

mfmsr 1 31 0 83 

mfspr 2 31 0 339 

mfsr 1 31 0 595 

mfsrln 1 31 0 659 

mftb 31 0 371 

mterf 31 S 144 

63 crbD 70 

mtfsb1x 63 38 

63 711 

mtfsflx 63 134 

mtmsr 1 31 146 

mtspr 2 31 467 

mtsr 1 31 210 

Appendix A. PowerPC Instruction Set Ustings A-5 

• 



Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31 

mullwx 31 0 A 235 

nandx 31 S A 476 

negx 31 0 A 104 

norx 31 S A 124 

orx 31 S A B 444 

orcx 31 S A B 412 

or! 24 S A UIMM 

oris 25 UIMM 

• 

A-6 PowerPC 604 RISC Microprocessor User's Manual 



Name 0 

stbu 

stbux 

stbx 

stfd 

stfdu 

stfdux 

stfdx 

stflwx 5 

stfs 

stfsu 

stfsux 

stfsx 

sth 

sthbrx 

sthu 

sthux 

sthx 

stmw 3 

stswl 3 

stswx 3 

stw 

stwbrx 

stwex. 

stwu 

stwux 

stwx 

subfx 

subfex 

39 

31 

31 

54 

55 

31 

31 

31 

53 

31 

31 

44 

31 

45 

31 

31 

47 

31 

31 

36 

31 

31 

37 

31 

31 

31 

31 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

s A d 

s A B 247 

s A B 215 

S A d 

S A d 

S A B 759 

S A 727 

S A B 983 

S A d 

S A d 

S A B 695 

S A B 663 

S A d 

S A B 918 

S A d 

S A B 439 

S A B 407 

S A d 

S A NB 725 

S A B 661 

S A d 

S A B 662 

S A B 150 

S A d 

S A B 183 

S A B 151 

0 A B 40 

0 A B 8 

Appendix A. PowerPC Instruction Set Ustings A-7 

• 



• 

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

subfex 

subfle 

subfmex 

subfzex 

tw 

twl 

xorx 

xorl 

xorls 

31 D 

08 D 

31 D 

31 

31 

03 TO 

31 S 

S 

27 S 

1 Supervisor-level instruction 

A-8 

2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 64-bit instruction 
5 Optional instruction 

A B 136 

A SIMM 

A 

4 

A SIMM 

A B 316 

A IMM 

A UIMM 

Power PC 604 RISC Microprocessor User's Manual 



A.2 Instructions Sorted by Opcode 
Table A-2lists the 603 instruction set sorted in numeric order by opcode, including those 
PowerPC instructions not implemented by the 604. 

Key: 

1".,,:1 Reserved bits Instruction not implemented in the 604 

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mUIli 000111 0 A SIMM 

subfle 001000 0 A SIMM 

empll 001010 crfD A UIMM 

empl 001011 crfD A SIMM 

addle 0 A 

addle. 001101 0 A SIMM 

addl 001110 0 A SIMM 

addis 001111 0 A SIMM 

bex 010000 

se 010001 

bx 010010 

mert 010011 0000000000 

belr 010011 0000010000 

ern or 010011 0000100001 

rtl 010011 0000110010 

erande 010011 0010000001 

Isyne 010011 0010010110 

crxor 010011 crbD erbA crbB 0011000001 

crnand 010011 crbD erbA crbB 0011100001 

erand 010011 crbD crbA crbB 0100000001 

ereqv 010011 crbD crbA crbB 0100100001 

crore 010011 crbD crbA crbB 0110100001 

eror 010011 crbD crbA crbB 0111000001 

Appendix A. Power PC Instruction Set Ustings A-9 

• 



• 

Name 0 

bcctrx 

rlwlmlx 

rlwlnmx 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 

o 1 0 0 1 1 BO BI 1 0 0 0 0 1 0 0 0 0 

o 1 0 1 0 0 SASH MB ME 

MB ME 
~----------~--------~--------~--------+---------+---------~ 

rlwnmx 

orl 

oris 

xorl 

xorls 

andl. 

andls . 

subfx 

A-10 

010111 S 

011000 S 

011001 S 

011010 S 

011011 S 

011100 S 

011101 S 

011111 aiD 

011111 

A B MB ME 

A UIMM 

A UIMM 

A UIMM 

A UIMM 

A UIMM 

A UIMM 

A B 0000100000 

A B 0000101000 

Power PC 604 RISC Microprocessor User's Manual 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Ibzx 

negx 011111 0 A 0001101000 

Ibzux 011111 0 A 0001110111 

norx 011111 S A 0001111100 

subfex 011111 0 A 0010001000 

addex 011111 0 0010001010 

mtcrf 011111 S 0010010000 

• 

Appendix A. PowerPC Instruction Set Ustings A-11 



Name 0 5 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mullwx 011111 D 0011101011 

mtsrln 011111 

debtst 011111 

stbux 011111 B 

add x 011111 A B 0100001010 

debt 011111 A B 0100010110 

Ihzx 011111 A B 0100010111 

A-12 PowerPC 604 RISC Microprocessor User's Manual 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Iswx 3 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 

Iwbrx 011111 1000010110 

Ifsx 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 

Ifsux 011111 1000110111 

mfsr 011111 1001010011 

Iswl 3 011111 1001010101 

sync 011111 1001010110 

Ifdx 011111 1001010111 

Ifdux 011111 0 B 1001110111 

mfsrin 1 011111 0 B 1010010011 

stswx 3 011111 S B 1010010101 

stwbrx 011111 S A B 1010010110 

stfsx 011111 S A B 1010010111 

stfsux 011111 S A B 1010110111 

stswl 3 011111 S A NB 1011010101 

stfdx 011111 S A B 1011010111 

stfdux 011111 S A B 1011110111 

Ihbrx 011111 0 A B 1100010110 

• 011111 1101010110 

011111 1110010110 

011111 1110011010 

011111 1110111010 

Icbl 011111 1111010110 

Appendix A. Power PC Instruction Set Ustings A-13 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Iwz 100000 0 A d 

Iwzu 100001 0 A d 

Ibz 100010 0 A d 

Ibzu 100011 0 A d 

stw 100100 S A d 

stwu 100101 S A d 

stb 100110 S A d 

stbu 10 11 1 S A d 

1hz 101000 0 A d 

Ihzu 101001 0 A d 

Iha 101010 0 A d 

Ihau 101011 0 A d 

sth 101100 S A d 

sthu 101101 S A d 

Imw 3 101110 0 A d 

stmw 3 101111 S A d 

Ifs 110000 0 A d 

Ifsu 110001 0 A d 

Ifd 110010 0 A d 

Ifdu 110011 0 A d 

stfs 110100 S A d 

sttsu 110101 S A d 

• stfd 110110 A d 

stfdu 110111 S A d 

A-14 Power PC 604 RISC Microprocessor User'. Manual 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fmulsx 111011 0 

fmsubsx 

fmaddsx 

fnmsubsx 

fmulx 

frsqnex 5 

fmsubx 

fmaddx 

fnmsubx 

fnmaddx 

fempo 

111011 o 
111011 o 
111011 o 

111111 

111111 0 

111111 0 

111111 0 

111111 0 

111111 0 

111111 0 

111111 0 

111111 0 

111111 0 

111111 0 

111111 crfD 

111111 

111111 0 

111111 crfD 

111111 

111111 0 

111111 crfD 

Appendix A. Pow.rPC Instruction Set Ustings 

A c 11100 

A c 1 11 01 

A c 1 111 0 

A B C 11 101 

A B C 11 1 1 0 

A B C 1 1 11 1 

0000100000 

0000100110 

0000101000 

0001000000 

0001000110 

0001001000 

0010000110 

A-15 

• 



• 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

A-16 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 64-bit instruction 
5 Optional instruction 

Power PC 604 RISC Microprocessor User's Manual 



A.3 Instructions Grouped by Functional Categories 
Table A-3 through Table A-30 list the 604 instructions grouped by function, as well as the 
PowerPC instructions not implemented in the 604. 

Key: 

/.)(/1 Reserved bits l~m:UJ Instruction not implemented in the 604 

Table A·3. Integer Arithmetic Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

addx 31 0 A B 266 

31 0 A B 10 

31 0 A B 138 

addl 14 0 A SIMM 

addie 12 0 A SIMM 

addie. 13 0 A SIMM 

addis 15 0 A SIMM 

addmex 31 0 A 234 

mullwx 31 0 235 

negx 31 0 104 

subfx 31 0 40 

subfex 31 0 B 8 

subfiex 08 0 A SIMM 

Appendix A. Power PC Instruction Set Ustings A-17 

• 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

subfex 31 D A 136 

subfmex 31 D A 232 

subfzex 31 D A 200 

Table A-4. Integer Compare Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

cmp 

cmpl 11 crfD 

cmpl 31 crfD 

cmpll 10 crfD 

Table A-5. Integer Logical Instructions 

Name 0 5 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

and x 31 S A B 28 

andcx 31 S A B 60 

andl. 28 S A UIMM 

norx 31 S A B 124 

• orx 31 S A B 444 

orcx 31 S A B 412 

orl 24 S A UIMM 

oris S A UIMM 

xorx 31 S A B 316 

xorl 26 S A UIMM 

xorls 27 S A UIMM 

A-18 Power PC 604 RISC Microprocessor User's Manual 



Table A-6. Integer Rotate Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-7. Integer Shift Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-8. Floating-Point Arithmetic Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

faddx 63 0 

faddsx 59 0 • fdlvx 63 0 

fdlvsx 59 0 

fmulx 63 0 

fmulsx 59 0 

fresx s 59 0 

frsqrtexS 63 0 
~-----+--------~ 

fsubx 63 0 

Appendix A. PowerPC Instruction Set Ustings A-19 



• 

Name 0 

Name 0 

fmaddx 

fmaddsx 

fmsubx 

fmsubsx 

fnmaddx 

fnmaddsx 

fnmsubx 

fnmsubsx 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-g. Floating-Point Multiply-Add Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

63 0 A B C 29 Rc 

59 0 A B C 29 Rc 

63 0 A B C 28 Rc 

59 0 A B C 28 Rc 

63 0 A B C 31 Rc 

59 0 A B C 31 Rc 

63 0 A B C 30 Rc 

59 0 A B C 30 Rc 

Table A-10. Floating-Point Rounding and Conversion Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-11. Floating-Point Compare Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fempo 63 crfD 
r-----+---

fempu 63 crfD 

A-20 PowerPC 604 RISC Microprocessor User's Manual 



Table A-12. Floating-Point Status and Control Register Instructions 

Name 

mcrfs 

mffsx 

mtfsbOx 

mtfsb1x 

mtfsfx 

mtfsflx 

Name 

Ibz 

Ibzu 

Ibzux 

Ibzx 

Ihau 

Ihaux 

Ihax 

1hz 

Ihzu 

Ihzux 

Iwzu 

Iwzux 

Iwzx 

0 5 

63 

63 

63 

63 

31 

63 

0 5 

34 

35 

31 

31 

43 

31 

31 

40 

41 

31 

33 

31 

31 

678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

64 

583 

70 

38 

711 

134 

Table A-13. Integer Load Instructions 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0 A d 

0 A d 

0 A B 119 

0 A B 87 

0 A d 

0 A B 375 

0 A B 343 

0 A d 

0 A d 

0 A B 311 

o A d 

o A B 55 

o A B 23 

Appendix A. Power PC Instruction Set Ustings A-21 

• 



• 

Name 0 

stb 

stbu 

sth 

sthu 

sthux 

sthx 

stw 

stwu 

stwux 

stwx 

38 

39 

44 

45 

31 

31 

36 

37 

31 

31 

Table A-14.lnteger Store Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31 

s A d 

s A d 

S A d 

S A d 

S A B 439 

S A B 407 

S A d 

S A d 

S A B 183 

S A B 151 

Table A-15. Integer Load and Store with Byte Reverse Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

:.:.:.:.: 
Ihbrx 31 0 A B 790 ~~!~~ 
Iwbrx 31 0 A B 534 ~~,~~ 

sthbrx 31 S A B 918 ~~,~~ 
stwbrx 31 S A B 662 ]f 

::::::::: 

Table A-16. Integer Load and Store Multiple Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Imw'l 46 0 A d 

stmw 3 47 S A d 

A-22 Power PC 604 RISC Microprocessor User'. Manual 



Table A-17. Integer Load and Store String Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Iswl 3 31 

IsW]( 3 31 

stswl 3 31 

stsW]( 3 31 

Name 0 

Name 0 

Ifd 

Ifdu 

Ifdux 

Ifdx 

Ifs 

Ifsu 

Ifsux 

Ifsx 

Name 0 

stfd 

stfdu 

stfdux 

stfdx 

50 

51 

31 

31 

48 

49 

31 

31 

54 

55 

31 

31 

0 A NB 597 ~~i~~ 
0 A B 533 ~~i1~ 
S A NB 725 ~lfll 
S A B 661 11i~~ 

Table A-18. Memory Synchronization nstructlons 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-19. Floating-Point Load Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

o A d 

o A d 

o A B 631 

o A B 599 

o A d 

o A d 

o A B 567 

o A B 535 

Table A-20. Floating-Point Store Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

s A d 

s A d 

s A B 759 

s A B 727 

Appendix A. Power PC Instruction Set Ustings A-23 

• 



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

stflwx 5 :'.':':-: 
31 S A B 983 [~t~[ 

stfs 52 S A d 

stfsu 53 S A d 

stfsux 31 S A B 695 l~ill 
stfsx 31 S A B 663 ~1i~~ 

Table A-21. Floating-Point Move Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fabsx 63 0 B 264 

fmrx 63 0 B 72 

fnabsx 63 0 B 136 

fnegx 0 B 40 

Table A-22. Branch Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bx 18 LI 

bcx 16 BO BI BO 

bcctrx 19 BO BI 528 

belrx 19 BO BI 16 

Table A-23. Condition Register Logical Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

erand 19 crbO erbA erbB 257 

erande 19 crbO erbA crbB 129 

creqv 19 crbO crbA crbB 289 

• emand 19 crbO erbA crbB 225 

emor 19 crbO erbA crbB 33 

eror 19 crbO crbA crbB 449 

erore 19 crbO crbA crbB 417 

erxor 19 

mert 19 crfO 

A-24 PowerPC 604 RISC Microprocessor User's Manual 



Table A-24. System Linkage Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rfl 1 19 

se 17 

Table A-25. Trap Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

twl 03 TO A SIMM 

Table A-26. Processor Control Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

merxr 31 crfS 512 

mfer 31 D 19 

mfmsr 1 31 D 83 

mfspr 2 31 D 339 

mftb 31 D 371 

mterf 31 S 144 

mtmsr 1 31 S 146 

mtspr 2 31 D 467 

Table A-27. Cache Management Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

debf 31 A B 86 

debl 1 31 A B 470 • debst 31 A B 54 

debt 31 A B 278 

debtst 31 A B 246 

dcbz 31 A B 1014 

lebl 31 A B 982 

Appendix A. Power PC Instruction Set Ustings A-25 



• 

Table A-28. Segment Register Manipulation Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mfsr 1 

mfsrin 1 

mtsr 1 

mtsrin 1 

31 o 595 

31 o 659 

31 S 210 

31 S 242 

Table A-29. Lookaslde Buffer Management Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-30. External Control Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

A-26 

ecoedWXWX~ ___ 3_1 __ +-____ D ____ r-___ A ____ +-___ B ____ ~ ________ 3_10 ________ ~lm:'m:~I 
. 31 S A B 438 JK 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 64-bit instruction 
5 Optional instruction 

Power PC 604 RISC Microprocessor User's Manual 



A.4 Instructions Sorted by Form 
Table A-31 through Table A-45 list the 604 instructions grouped by fonn, including those 
PowerPC instructions not implemented in the 604. 

Key: 

IH/ul Reserved bits ,. Instruction not implemented in the 604 

Table A-31. I-Form 

opeD LI I.v1LKI 
Specific Instruction 

Name 0 5 6 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bxl 18 LI I.v1LKI 
Table A-32. B-Form 

opeD BO BI BD I.v1LKI 
Specific Instruction 

Name 0 5 6 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bcxl 16 BO BI BD I.v1LKI 
Table A-33. SC-Form 

Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-34. D-Form 

opeD 0 A d 

opeD 0 A SIMM 

opeD S A d 

opeD S A UIMM 
.:.:.:.:. 

opeD crfD ~1!1~ L A SIMM 

opeD crfD ::,:: L A UIMM 

opeD TO A SIMM 

Appendix A. Power PC Instruction Set Ustings A-27 

., 



Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

addl 14 0 A SIMM 

addlc 12 0 A SIMM 

addlc. 13 0 A SIMM 

addis 15 0 A SIMM 

andl. 28 S A UIMM 

andls. 29 S A UIMM 

cmpl 11 crfD iilii L A SIMM 

cmpll 10 crfD i@ L A UIMM 

Ibz 34 0 A d 

Ibzu 35 0 A d 

Ifd 50 0 A d 

Ifdu 51 0 A d 

Ifs 48 0 A d 

Ifsu 49 0 A d 

Iha 42 0 A d 

Ihau 43 0 A d 

1hz 40 0 A d 

Ihzu 41 0 A d 

Imw 3 46 0 A d 

Iwz 32 0 A d 

Iwzu 33 0 A d 

mUIli 7 0 A SIMM 

orl 24 S A UIMM 

oris 25 S A UIMM 

stb 38 S A d • stbu 39 S A d 

stfd 54 S A d 

stfdu 55 S A d 

stfs 52 S A d 

stfsu 53 S A d 

sth 44 S A d 

sthu 45 S A d 

stmw 3 47 S A d 

A-28 Power PC 604 RISC Microprocessor User's Manual 



Specific Instructions (Continued) 

Name 0 5 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31 

stw 36 S A d 

stwu 37 S A d 

subflc 08 D A SIMM 

twl 03 TO A SIMM 

xorl 26 S A UIMM 

xorls 27 S A UIMM 

Table A-35. DS-Form 

opeD D A ds 

I:~ I opeD S A ds 

Specific Instructions 

Name 0 5 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-36. X-Form 

opeD D A B xo 
opeD D A NB xo 
opeD D xo 

D xo 
opeD D xo • opeD S A B xo 
opeD S A B xo 
opeD S A B xo 
opeD S A xo 
opeD S xo 

Appendix A. Power PC Instruction Set Ustings A-29 



xo 
xo 

opeD crfD xo 
opeD crfD xo 
opeD crfD xo 
opeD crfD xo 
opeD crfD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 

Specific Instructions 

Name 0 5 678 9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

andx 31 S A B 28 

andcx 31 S A B 60 

cmp 31 crfD A B 0 

debf 31 86 

debl 1 31 A B 470 

dcbst 31 A B 54 

debt 31 A B 278 

• dcbtst 31 A B 246 

dcbz 31 A B 1014 

eclwx 31 A B 310 

ecowx 31 438 

eleio 31 854 

eqvx 31 284 

31 S A 954 

31 S A 922 

A-30 Power PC 604 RISC Microprocessor User's Manual 



Specific Instructions (Continued) 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fctlwzx 63 0 B 15 

fmrx 63 0 B 72 

fnabsx 63 0 B 136 

fnegx 63 0 B 40 

frspx 63 B 12 

Icbl 31 B 982 

Ibzux 31 B 119 

Ifdux 31 0 A B 631 

Ifdx 31 0 A B 599 

Ifsux 31 0 A B 567 

Ifsx 31 0 A B 535 

Ihaux 31 0 A B 375 

Ihax 31 0 A B 343 

Ihbrx 31 0 A B 790 .. 
Ihzux 31 0 A B 311 

Ihzx 31 0 A B 279 

Appendix A. Power PC Instruction Set Ustings A-31 



Specific Instructions (Continued) 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Iwbrx 31 D A B 534 

Iwzux 31 D A B 55 

Iwzx 31 D A B 23 

mcrfs 63 crfD 64 

mcrxr 31 crfD 512 

mfcr 31 D 19 

mffsx 63 D 583 

mfmsr 1 31 D 83 

mfsr 1 31 D 595 

mfsrin 1 31 D 659 

mtfsbOx 63 70 

mtfsb1x 63 38 

mtfsflx 63 abD 134 

mtmsr 1 31 S 146 

mtsr 1 31 S 210 

mtsrin 1 31 S 242 

nandx 31 S A B 476 

norx 31 S A B 124 

orx 31 S A B 444 

• 

A-32 Power PC 604 RISC Microprocessor User's Manual 



Specific Instructions (Continued) 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31 

stfdx 31 S A B 727 

stflwx5 31 S A B 983 

stfsux 31 S A B 695 

stfsx 31 S A B 663 

sthbrx 31 S A B 918 

sthux 31 S A B 439 

sthx 31 S A B 407 

stswl 3 31 S A NB 725 

stswx 3 31 S A B 661 

stwbrx 31 S A B 662 

stwcx. 31 S A B 150 

stwux 31 S A B 183 

stwx 31 151 

4 

31 S A B 316 

Table A-37. XL-Form 

opeD xo 
opeD xo • opeD xo 
opeD xo 

Specific Instructions 

Name 0 5 6 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bcctrx 19 BO BI 528 

bclrx 19 BO BI 16 

Appendix A. Pow.rPC Instruction Set Uatingtr A-33 



Specific Instructions (Continued) 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

crand 19 abO abA crbB 257 

crandc 19 abO abA crbB 129 

creqv 19 abO erbA crbB 289 

crnand 19 abO abA crbB 225 

cmor 19 abO abA crbB 33 

cror 19 abO erbA crbB 449 

crorc 19 abO abA crbB 417 

crxor 19 abO abA crbB 193 

Isync 19 150 

mcrf 19 0 

rfll 19 50 

Table A-3B. XFX-Form 

opeD 0 spr xo l~i~l 
opeD 0 ~ji] CRM ~~jfjj xo 11ijl 
opeD s spr xo it 

::::::::: 

opeD 0 tbr xo ~~!~~ 
Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mfspr 2 31 0 spr 339 

mftb 31 0 tbr 371 

mtcrf 31 S CRM 144 

mtspr 2 31 0 spr 467 

Table A-39. XFL-Form • opeD !ljlll! FM Illl9lli B xo I Rei 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mtfsfxl 63 I~l!ljl FM Illjij! B 711 IRel 

A-34 Power PC 604 RISC Microprocessor User's Manual 



Table A-40. XS-Form 

opeD s A sh xo 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-41. XC-Form 

opeD D A xo Rc 

opeD D A xo Rc 

opeD D A xo Rc 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 

31 

31 

31 

• 31 D A 104 

31 D A 40 

31 D A 8 

31 D A 136 

31 D A 232 

31 D A 200 

Appendix A. Power PC Instruction Set Ustings A-35 



,. 

Name 

fnmsubsx 

fresx 5 

frsqrtex 5 

A-3S 

OPCD 

OPCD 

OPCD 

OPCD 

0 

63 

59 

63 

59 

63 

59 

63 

59 

63 

59 

59 

59 

63 

59 

Table A·42. A-Form 

D XO Rc 

D ABC XO Rc 

D XO Rc 

D XO Rc 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A B 

D A B 

D A B 

D A B 

D A B 

D A B C 29 

D A B C 28 

D A B C 28 

D A C 25 

D A C 25 

B C 31 

B C 31 

B C 30 

D 

D 

D 

D A B 

Power PC 604 RISC Microprocessor User's Manual 



Table A·43. M·Form 

opeD S A SH MB ME 

I~ opeD S A B MB ME 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rlwlmlx 20 S A SH MB ME Rc 

rlwlnmx 21 S A SH MB ME Rc 

rlwnmx 23 S A B MB ME Rc 

Table A·44. MD·Form 

opeD S A sh mb xo 
opeD S A sh me xo 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-45. MDS·Form 

opeD S A B me xo I~ 
opeD S A B mb xo 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 64-bit instruction 
5 Optional instruction 

Appendix A. PowerPC Instruction Set Ustings A-37 

• 



• 

A.5 Instruction Set Legend 
Table A-46 provides general information on the 604 instruction set (such as the 
architectural level, privilege level, and form), including instructions not implemented in the 
604. 

Key: 

• Instruction not implemented in the 604 

Table A-46. PowerPC Instruction Set Legend 

UISA VEA OEA Supervisor Level 64-Bit Optional Form 

" XO 

" XO 

addex " XO 

addl " o 
addle " o 
addle. " o 
addis " o 

XO 

XO 

x 
andex " x 
andl. " o 

andls. o 
bx " " B 

bcctrx " XL 

belrx " XL 

emp " X 

empl " o 
cmpl " X 

empll " o 

A-3S PowerPC 604 RISC Microprocessor User's Manual 



ereqv 

emend 

emor 

eror 

crore 

erxor 

debt 

debl 

debst 

debt 

debtst 

dcbz 

dlvwx 

dlvwux 

eclwx 

ecowx 

elelo 

eqvx 

extsbx 

extshx 

tetlwx 

tetlwzx 

UISA VEA OEA 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

Appendix A. Power PC Instruction Set Ustings 

Supervisor Level 64-Bit Optional Form 

XL 

XL 

XL 

XL 

XL 

XL 

X 

X 

X 

X 

X 

X 

XO 

XO 

~ X 

~ X 

X 

X 

X 

X 

• 
X 

X 

A-39 



UISA VEA OEA Supervisor Level 54-Bit Optional Form 

fdlvx V A 

fdlvsx v A 

fmaddx v A 

fmaddsx v A 

fmrx v X 

fmsubx v A 

fmsubsx v A 

fmulx v A 

fmulsx v A 

fnabsx v X 

fnegx v X 

fnmaddx v A 

fnmaddsx v A 

fnmsubx v A 

fnmsubsx v A 

fresx v A 

frspx v X 

frsqrtex v v A 

fselx v v A 

fsubx v A 

fsubsx v A 

Icbl v X 

Isync v XL 

• Ibz v D 

Ibzu v D 

Ibzux v X 

Ibzx v X 

A-40 PowerPC 604 RISC Microprocessor User's Manual 



UISA VEA OEA Supervisor Level 64-Bit Optional Form 

Ifd " 0 

Ifdu " 0 

Ifdux " X 

Ifdx " X 

Ifs " 0 

Ifsu " 0 

Ifsux " X 

Ifsx " X 

Iha " 0 

Ihau " 0 

Ihaux " X 

Ihex " X 

Ihbrx " X 

1hz " Ihzu " 0 

Ihzux " X 

Ihzx " X 

Imw 2 

" 0 

Iswi 2 

" X 

Iswx 2 

" X 

Iwbrx " X • Iwz " 0 

Iwzu " 0 

Iwzux " X 

Iwzx " X 

mcrf " XL 

mcrfs " X 

mcrxr " X 

Appendix A. Power PC Instruction Set Ustings A-41 



• 

A-42 

mfcr 

mffsx 

mfmsr 

mfspr 1 

mfsr 

mfsrln 

mftb 

mtcrf 

mtfsbOx 

mtmsr 

mtspr 1 

mtsr 

mtsrln 

orcx 

or! 

oris 

UISA VEA OEA 

" " 
" 

" " 
" 
" 

" 
" " 
" " 

" 
" " 

" 
" 

Supervisor Level 64-Bit Optional Form 

X 

X 

" X 

" XFX 

" X 

" X 

XFX 

XFX 

X 

X 

XFL 

X 

" X 

" XFX 

" X 

" X 

X 

o 
o 

Power PC 604 RISC Microprocessor User's Manual 



rlwlmlx 

rlwlnmx 

rlwnmx 

stb 

stbu 

stbux 

stbx 

stfd 

stfdu 

stfdux 

stfdx 

stflwx 

stfs 

UISA VEA OEA 

~ 

-J 

~ 

~ 

-J 

-J 

Appendix A. PowerPC Instruction Set Ustings 

Supervisor Level 64-Bit Optional Form 

M 

M 

M 

o 
o 
x 
x 

• 
0 

0 

X 

X 

X 

0 

A-43 



• 

A-44 

stfsu 

stfsux 

stfsx 

sth 

sthbrx 

sthu 

sthux 

sthx 

stmw 2 

stswl 2 

stswx 2 

stw 

stwbrx 

stwex. 

stwu 

stwux 

stwx 

subfx 

subfex 

tw 

twl 

UISA VEA OEA Supervisor Level 64-8it Optional Form 

..J 0 

..J X 

..J X 

..J 0 

..J X 

..J 0 

..J X 

..J X 

..J 0 

..J X 

..J X 

..J 0 

..J X 

..J X 

..J 0 

..J X 

..J X 

..J XO 

..J XO 

X 

o 

Power PC 604 RISC MicroproC888or User's Manual 



UISA VEA OEA Supervisor Level 64-Bit Optional Form 

XOrKl 
~ 

I I I I I I 

X 

I 

~ D 

X:~I: ~ D 

1 Supervisor- and user-level instruction 
2 Load and store string or multiple instruction 

• 

Appendix A. Power PC Instruction Set Ustings A-45 





Appendix B 
Invalid Instruction Forms 
This appendix describes how invalid instructions are treated by the PowerPC 604 
microprocessor. 

B.1 Invalid Forms Excluding Reserved Fields 
The following table illustrates the invalid instruction forms of the PowerPC architecture 
that are not a result of a nonzero reserved field in the instruction encoding. 

Table B·1. Invalid Forms (Excluding Reserved Fields) 

rA=O rAin rAor rB SPR Not Mnemonic B02 =0 or rA=O rA=rT=O Range In Range L=1 Implemented 
rA= rD 

beetr X 

beetrl X 

Ibzu X 

Ibzux X 

Ihzu X 

Ihzux X 

Ihau X 

Ihaux X 

Iwzu X 

Iwzux X 

stbu X 

stbux X 

sthu X 

sthux X 

stwu X 

stwux X 

Imw X X 

Appendix B. Invalid Instruction Forms B-1 

• 



• 

Table B-1. Invalid Forms (Excluding Reserved Fields) (Continued) 

rA:O 
rAin rAor rB SPR Not 

Mnemonic B02 :O or rA:O rA: rT: 0 Range in Range L:1 Implemented 
rA: rD 

Iswl X X 

Iswx X X 

cmpl X 

cmp X 

cmpll X 

cmpl X 

mtspr X 

mfspr X 

LFSU X 

Ifsux X 

Ifdu X 

Ifdux X 

stfsu X 

stfsux X 

stfdu X 

stfdux X 

B.2 Invalid Forms with Reserved Fields (Bit 31 
Exclusive) 

Table B-2 lists the invalid instruction fonns of the PowerPC architecture that result from a 
nonzero reserved field in the instruction encoding. This table takes into consideration all 
reserved fields in an instruction that must be zero, excluding only those instructions that 
would become invalid if only bit 31 were set. Note that any combination of a one being 
detected in the instructions field(s) marked X results in an invalid form. 

The t1bsync instruction has the same opcode and format as the sync instruction. Setting 
bit 31 in the instruction indicates a tlbsync. 

Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) 

6 6 6 6 9 9 11 11 14 16 21 
Mnemonic 6 to to to to 9 to to 11 to to to 15 to 20 21 to 31 

10 15 20 29 10 15 15 20 20 20 25 

bclr X 

bclrl X 

8-2 PowerPC 604 RISC Microprocessor User's Manual 



Table B·2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued) 

6 6 6 6 9 9 11 11 14 16 21 
Mnemonic 6 to to to to 9 to to 11 to to to 15 to 20 21 to 31 

10 15 20 29 10 15 15 20 20 20 25 

bcctr X 

bcctrl X 

sc X X 

mcrf X X X 

sync X • 
addme[o][.] X 

subfme[o)[.] X 

addze[o)[.] X 

subfze[o][.] X 

neg[o][.] X 

mulhw[u][.] X 

cmpl X X 

cmp X 

cmpll X X 

cmpl X 

extsb[.] X 

extsh[.] X 

cntlzw[.] X 

mtcrf X X X 

mcrxr X X X 

mtpmr X X 

mfpmr X X 

fmr[.] X 

fneg[.] X 

fabs[.] X 

fnabs[.] X 

fadd[.] X • fadds[.] X 

fsub[.] X 

fsubs[.] X 

fmul[.] X 

Appendix B. Invalid Instruction Forms B-3 



Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued) 

6 6 6 6 9 9 11 11 14 16 21 
Mnemonic 6 to to to to 9 to to 11 to to to 15 to 20 21 to 31 

10 15 20 29 10 15 15 20 20 20 25 

fmuls[.] X 

fdlv[.] X 

fdlvs[.] X 

frsp[.] X 

fetlw(.] X 

fetlwz[.] X 

fempu X X 

fempuo X X 

mffs[.] X 

merfs X X X 

mtfsfl[.) X X 

mtfsf[.] X X 

mtfsbO[.] X 

mtfsb1[.] X 

lebl X X 

Isyne X X 

debt X X 

debtst X X 

debz X X 

debst X X 

debf X X 

elelo X X 

mftb X X 

mftbu X X 

rfl X X 

mtmsr X X • mfmsr X X 

debl X X 

mtsr X X X 

mfsr X X X 

mtsrln X X 

8-4 Power PC 604 RISC Microprocessor User's Manual 



Table B-2. Invalid Fonns with Reserved Fields (Bit 31 Exclusive) (Continued) 

6 6 6 6 9 9 11 11 14 16 21 
Mnemonic 6 to to to to 9 to to 11 to to to 15 to 20 21 to 31 

10 15 20 29 10 15 15 20 20 20 25 

mfsrin X X 

tlble X X 

mttb X X 

mttbu X X 

tlbsync X • 

B.3 Invalid Form with Only Bit 31 Set 
The following instructions generate invalid instruction forms if only bit 31 is set in the 
instruction: 

• cror 

• crxor 

• crnand 

• crnor 

• crandc 

• creqv 

• crorc 

• Ibzx 

• Ibzux 

· Ihzx 

• Ihzux 

• Ihax 

• Ihaux 

• lwzx 

• lwzux 

• stbx 

• stbux 

• sthx 

• sthux 

• stwx 

• stwux 

• Ihbrx 

• lwbrx 

• sthbrx 

Appendix B. Invalid Instruction Forms 8-5 

• 



• stwbrx 

• Iswi 
• Iswx 

• stswi 
• stswx 

• Iwctrx 
• tw 
• mtspr 
• mfspr 

• Ifsx 
• Ifsux 

• Ifdx 
• Ifdux 
• stfsx 
• stfsux 

• stfdx 
• stfdux 

B.4 Invalid Forms from Invalid BO Field Encodings 
The following list illustrates the invalid BO fields for the conditional branch instructions 
(be, bca, bel, bela, belr, belrl, beetr, and bectrl). Specifying a conditional branch 
instruction with one of these fields results in a invalid instruction fonn. Note that entries 
with the y bit represent two possible instruction encodings. 

Invalid BO field encodings are as follows: 

• 00lly 
• 01lly 

• 1100y 
• 1l01y 
• 10101 

• 10110 
• 10111 

• 11100 
• 11101 

• 11110 
• 11111 

The 604 treats the bits listed above as causing an invalid fonn as "don't cares." 

8-6 Power PC 604 RISC Microprocessor User's Manual 



Glossary of Terms and Abbreviations 
The glossary contains an alphabetical list of tenns, phrases, and abbreviations used in this 
book. Some of the terms and definitions included in the glossary are reprinted from IEEE 
Std 754-1985, IEEE Standard/or Binary Floating-Point Arithmetic, copyright ©1985 by 
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE. 

A Atomic. A bus access that attempts to be part of a read-write operation to the 
same address uninterrupted by any other access to that address (the 
tenn refers to the fact that the transactions are indivisible). The 
PowerPC architecture implements atomic accesses through the 
Iwarx/stwcx. instruction pair. 

B Biased exponent. The sum of the exponent and a constant (bias) chosen to 
make the biased exponent's range non-negative. 

Big-endian. A byte-ordering method in memory where the address n of a 
word corresponds to the most significant byte. In an addressed 
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0 
being the most significant byte. 

Boundedly undefined. The results of attempting to execute a given 
instruction are said to be boundedly undefined if they could have 
been achieved by executing an arbitrary sequence of defined 
instructions, in valid form, starting in the state the machine was in 
before attempting to execute the given instruction. Boundedly 
undefined results for a given instruction may vary between 
implementations, and between execution attempts in the same 
implementation. 

C Cache. High-speed memory contannng recently accessed data and/or 
instructions (subset of main memory). 

Cache block. The cacheable unit for a PowerPC processor. The size of a II1II 
cache block may vary among processors. IiiIIiii 

Glossary of Terms and Abbreviations Glossary-l 



Cache coherency. Caches are coherent if a processor performing a read from 
its cache is supplied with data corresponding to the most recent value 
written to memory or to another processor's cache. 

Cast-outs. Cache blocks that must be written to memory when a snoop miss 
causes the least recently used section with modified data to be 
replaced. 

Context synchronization. Context synchronization as the result of specific 
instructions (such as isync or rfi) or when certain events occur (such 
as an exception). During context synchronization, all instructions in 
execution complete past the point where they can produce an 
exception; all instructions in execution complete in the context in 
which they began execution; all subsequent instructions are fetched 
and executed in the new context. 

D Denormalized number. A nonzero floating-point number whose exponent 
has a reserved value, usually the format's minimum, and whose 
explicit or implicit leading significand bit is zero. 

E Exception. A condition encountered by the processor that requires special 

Glossary-2 

processing. 

Exception handler. A software routine that executes when an exception 
occurs. Normally, the exception handler corrects the condition that 
caused the exception, or performs some other meaningful task (such 
as aborting the program that caused the exception). The addresses of 
the exception handlers are defined by a two-word exception vector 
that is branched to automatically when an exception occurs. 

Execution synchronization. All instructions in execution are architecturally 
complete before beginning execution (appearing to begin execution) 
of the next instruction. Similar to context synchronization but doesn't 
force the contents of the instruction buffers to be deleted and 
refetched. 

Exponent. The component of a binary floating-point number that normally 
signifies the integer power to which two is raised in determining the 
value of the represented number. Occasionally the exponent is called 
the signed or unbiased exponent. 

PowerPC 604 RISC Microprocessor User's Manual 



F Floating-point register (FPR). Any of the 32 registers in the floating-point 
register file. These registers provide the source operands and 
destination results for floating-point instructions. Load instructions 
move data from memory to FPRs, and store instructions move data 
from FPRs to memory. 

Fraction. The field of the significand that lies to the right of its implied binary 
point. 

G General-purpose register (GPR). Any of the 32 registers in the register file. 
These registers provide the source operands and destination results 
for all data manipulation instructions. Load instructions move data 
from memory to registers, and store instructions move data from 
registers to memory. 

I IEEE 754. A standard written by the Institute of Electrical and Electronics 
Engineers that defines operations of binary floating-point arithmetic 
and representations of binary floating-point numbers. 

Interrupt. An asynchronous exception. 

K Kill. An operation that causes a cache block to be invalidated. 

L Latency. The number of clock cycles necessary to execute an instruction and 
make ready the results of that instruction. 

Little-endian. A byte-ordering method in memory where the address n of a 
word corresponds to the least significant byte. In an addressed 
memory word, the bytes are ordered (left to right) 3, 2, 1,0, with 3 
being the most significant byte. 

M Mantissa. The decimal part of logarithm. 

Memory-mapped accesses. Accesses whose addresses use the segmented or 
block address translation mechanisms provided by the MMU and 
that occur externally with the bus protocol defined for memory. 

Memory coherency. Refers to memory agreement between caches in a 
multiple processor and system memory (for example, MESI cache • 
coherency). 

Glossary of Terms and Abbreviations Glossary-3 



• 

Memory consistency. Refers to agreement of levels of memory with respect 
to a single processor and system memory (e.g. on-chip cache, 
secondary cache, and system memory). 

Memory management unit. The functional unit that translates the effective 
address bits to physical address bits. 

N NaN. An abbreviation for Not a number; a symbolic entity encoded in 
floating-point format. There are two types of NaNs-signaling NaNs 
and quiet NaNs. 

No-op. No-operation. A single-cycle operation that does not affect registers 
or generate bus activity. 

o Overflow. An error condition that occurs during arithmetic operations when 
the result cannot be stored accurately in the destination register(s). 
For example, if two 32-bit numbers are added, the sum may require 
33 bits due to carry. 

P Page. A 4-Kbyte area of memory, aligned on a 4-Kbyte boundary. 

Q 

s 

Glossary-4 

PipeIining. A technique that breaks instruction execution into distinct steps 
so that multiple steps can be performed at the same time. 

Precise exceptions. The pipeline can be stopped so the instructions that 
preceded the faulting instruction can complete, and subsequent 
instructions can be executed from scratch. The system is precise 
unless one of the imprecise modes for invoking the floating-point 
enabled exception is in effect. 

Quiet NaNs. Propagate through almost every arithmetic operation without 
signaling exceptions. These are used to represent the results of 
certain invalid operations, such as invalid arithmetic operations on 
infinities or on NaNs, when invalid. 

Signaling NaNs. Signal the invalid operation exception when they are 
specified as arithmetic operands 

Significand. The component of a binary floating-point number that consists 
of an explicit or implicit leading bit to the left of its implied binary 
point and a fraction field to the right. 

PowerPC 604 RISC Microprocessor User's Manual 



Static branch prediction. Mechanism by which software (for example, 
compilers) can give a hint to the machine hardware about the 
direction the branch is likely to take. 

Sticky bit. A bit that when set must be cleared explicitly. 

Superscalar machine. A machine that can issue multiple instructions 
concurrently from a conventional linear instruction stream. 

Supervisor mode. The privileged operation state of the a processor. In 
supervisor mode, software can access all control registers and can 
access the supervisor memory space, among other privileged 
operations. 

U Underflow. An error condition that occurs during arithmetic operations when 
the result cannot be represented accurately in the destination register. 
For example, underflow can happen if two floating-point fractions 
are multiplied and the result is a single-precision number. The result 
may require a larger exponent and/or mantissa than the single
precision format makes available. In other words, the result is too 
small to be represented accurately. 

Unified cache. Combined data and instruction cache. 

User mode. The unprivileged operating state of a processor. In user mode, 
software can only access certain control registers and can only 
access user memory space. No privileged operations can be 
performed. 

W Write-through. A memory update policy in which all processor write cycles 
are written to both the cache and memory. 

Glossary of Terms and Abbreviations Glossary-5 

• 





A 
AO-A31 signals, 7-7 
AACK signal, 7-16 
ABB signal, 7-5,8-7 
Address bus 

address tenure, 8-6, 8-39 
address transfer 

AO-A31,7-7 
APO-AP3,7-8 
APE,7-9 
signals, 8-12 

address transfer attribute 
CI,7-14 
CSEO-CSE1,7-15 
GBL,7-15 
TBST, 7-13,8-13 
TCO-TC2, 7-13,8-17 
TSIZO-TSIZ2, 7-11,8-13 
TTO-TT4, 7-10,8-13 
WT,7-15 

address transfer start 
TS,7-6 
XATS,7-6 

address transfer tennination 
AACK,7-16 
ARlRY, 7-16 
SHD,7-17 
tenninating address transfer, 8-18 

arbitration signals, 8-7 
bus arbitration 

ABB,7-5 
BG,7-4 
BR,7-4 
bus parking, 8-11 

Address translation, see Memory management unit 
Aligned data transfer, 8-14 
Alignment 

exception, 4-17, 5-17 
misaligned accesses, 2-17 
rules, 2-17 

APO-AP3 signals, 7-8 
APE signal, 7-9 
Arbitration, system bus, 8-10, 8-20 
ARlRY signal, 7-16 
Atomic memory references 

using lwarx/stwcx., 3-19 

Index 

INDEX 

B 
BAT registers 

BAT, description, 2-6 
BG signal, 7-4,8-7 
Bits used to configure cache, 3-15 
Block address translation 

BAT register initialization, 5-13 
block address translation flow, 5-12 
selection of block address translation, 5-9 

Boundedly undefined, definition, 2-21 
BR signal, 7-4,8-7 
Branch instructions 

address calculation, 2-44 
branch instructions, 2-44, A-25 
condition register logical, 2-45, A-25 
system linkage, 2-46, 2-52, A-26 
trap, 2-45, A-26 

Branch prediction, 6-2, 6-24 
Branch processing unit 

instruction timings, 6-25, 6-35 
overview, 1-9 

Branch resolution, 6-2 
Burst data transfers 

64-bit data bus, 8-14 
transfers with data delays, timing, 8-36 

Bus configurations, 8-48, 8-49, 8-50 
Bus interface unit (BIU) 

description, 1-14,3-5,6-15 
Byte ordering 

default, 2-23 

c 
Cache 

bits used to configure cache, 3-15 
cache configuration, 3-15 
cache integration, 3-3 
characteristics, 3-1 
data caches and memory queues, 6-14 
MESI state definitions, 3-11 
organization, instruction and data, 3-2, 3-3, 3-4 
set associativity, 3-4 

Cache arbitration, 6-24 
Cache block push operation, 3-18, 3-22 
Cache cast-out operation, 3-18 

Index-1 • 



• 

Cache coherency 
cache coherency protocol, 3-11 
cache snoop, 3-19 
coherency paradoxes, 3-14, 3-15 
L2 cache, 3-13 
MESI protocol, 3-14 
reaction to bus operations, 3-19 

Cache control instructions 
bus operations, 3-23 
dcbf,3-18 
dcbi, 2-54, 3-18 
debst, 3-17 
debt, 2-51, 3-17 
debtst, 3 -17 
debz, 3-17 
iebi,3-16 
isync, 3-17 

Cache hit 
instruction timing example, 6-19 

Cache implementation, 604, 1-12 
Cache management instructions, A-26 
Cache miss, 6-22 
Cache operations 

overview, 3-1 
response to bus transactions, 3-19 
types of operations, 3-18 

Cache reload operation, 3-18 
Cache unit 

operation of the cache, 8-2 
Cache-inhibited accesses (I-bit) 

memory/cache access attributes, 3-10 
pedormance considerations, 6-16 

Changed (C) bit maintenance 
recording, 5-12, 5-21-5-22 
updates, 5-33 

Checkstop signal, 7-26,8-51 
Checkstop state, 4-15 
CI signal, 7-14 
Classes of instructions, 2-21 
Clean block operation, 3-20 
Clock signals 

CLK_OUT,7-31 
PLL_CFGO-PLL_CFG3,7-31 
SYSCLK,7-30 

Completion 
completion considerations, 6-30 
completion pipeline stage, 6-11 
completion unit, 1-9 
definition, 6-3 

Context synchronization, 2-24 
COP/scan intedace, 7-29 

Index-2 

INDEX 

CR (condition register) 
CR logical instructions, 2-45 
CR, description, 2-4 

CSEO-CSEI signals, 7-15, 8-30 
C1R register, 2-5 

D 
DABR (data address breakpoint register), 2-7 
DAR (data address register), 2-6 
Data bus 

arbitration signals 
DBB, 7-19, 8-8 
DBG, 7-18,8-8 
DBVVO,7-18,8-8 

bus arbitration 
AR1RY assertion, effect of, 8-21 
signals, 8-20 

data tenure, 8-7,8-39 
data transfer 

alignment, 8-14 
AR1RY assertion, effect of, 8-21 
burst ordering, 8-14 
DBDIS, 7-22 
DHO-DH31/DLO-DL31, 7-20,8-23 
DPO-DP7, 7-21,8-23 
DPE, 7-22, 8-23 
eciwx/ecowx instructions, alignment, 8-16 

data transfer termination 
DR1RY,7-23,8-24 
error termination, 8-28 
TA, 7-23,8-24 
TEA, 7-24, 8-24 
terminating data transfer, 8-24 

Data cache 
data caches and memory queues, 6-14 
disabling and enabling, 3-3 
organization, 3-3 

Data organization in memory, 2-17 
DBB signal, 7-19,8-8,8-22 
DBDIS signal, 7-22 
DBG signal, 7-18,8-8 
DBVVO signal, 7-18,8-8,8-23,8-53 
dcbt,2-51 
DEC (decrementer register), 2-7 
Decode stage, 6-9 
Decode/dispatch unit, 1-9 
Decrementer exception, 4-19 
Defined instruction class, 2-21 
DHO-DH31/DLO-DL31 signals, 7-20 

Power PC 604 RISC Microprocessor User's Manual 



INDEX 

Direct-store interface 
access to direct-store segments. 3-44 
architectural ramifications of accesses. 8-38 
bus protocol 

address and data tenures. 8-39 
detailed description. 8-42 
load access. timing. 8-47 
load operations. 8-41 
store access. timing. 8-48 
store operations. 8-41 
transactions. 8-40 
XATS signal. 8-38 

direct-store interface accesses. 5-35 
instructions with no effect. 5-36 
no-op instructions. 5-36 
operations. 7-8 
protection. 5-35 
segment protection. 5-35 
selection of direct-store segments. 5-16. 5-35 
unsupported functions. 5-36 

Dispatch considerations. 6-30 
Dispatch serialization mode. 6-34 
Dispatch stage. 6-9 
OMMU.5-8 
OPO-OP7 signals. 7-21 
OPE signal. 7-22 
OR1RY signal. 7-23.8-24.8-27 
OSI exception. 4-16 
OSISR register. 2-7 
OlLB organization. 5-24 

E 
EAR (external access register). 2-7 
Effective address calculation 

address translation. 5-4 
branches. 2-24 
loads and stores. 2-24. 2-35. 2-40 

eieio. 2-49. 3-21 
Error termination. 8-28 
Event counting. 9-8 
Exceptions 

alignment exception. 4-4. 4-17 
decrementer exception. 4-4. 4-19 
OSI exception. 4-4. 4-16 
enabling and disabling. 4-9 
exception classes. 4-2 
exception prefix bit (lP). 4-12 
exception priorities. 4-5 
exception processing. 4-6. 4-10 
external interrupt. 4-4. 4-16 
FP assist exception. 4-19 
FP unavailable exception. 4-4. 4-18 
instruction address breakpoint exception. 4-5. 

4-20 

Index 

instruction-related exceptions. 2-25 
lSI exception. 4-4 
machine check. 4-3 
machine check exception. 4-13 
performance monitoring interrupt. 4-20 
performance monitoring mechanism. 4-5 
program exception. 4-4. 4-17 
register settings 

MSR. 4-7. 4-12 
SRRO. SRRI. 4-6 

reset. 4-13 
returning from an exception handler. 4-11 
summary table. 4-3 
system call exception. 4-5. 4-19 
system management interrupt. 4-5. 4-20 
system reset. 4-3 
terminology. 4-2 
trace exception. 4-5. 4-19 
vector offset table. 4-3 

Execute stage. 6-10 
Execution serialization mode. 6-34 
Execution synchronization. 2-25 
Execution units. 1-10.6-33 
External control instructions. 2-52. 8-16. A-27 

F 
Features. 604. 1-2. 1-20 
Feed forwarding. 6-17 
Fetch stage. 6-8 
Fetch unit. 1-8 
Finish cycle. definition. 6-3 
Floating-point model 

FEO/FEI bits. 4-9 
FP arithmetic instructions. 2-30. A-20 
FP assist exceptions. 4-19 
FP compare instructions. 2-32. A-21 
FP load instructions. A-24 
FP move instructions, A-25 
FP multiply-add instructions. 2-31. A-21 
FP rounding and conversion instructions. 2-31. 

A-21 
FP store instructions. 2-42, 2-43. A-24 
FP unavailable exception. 4-18 
FPSCR instructions. 2-32. A-22 
IEEE-754 compatibility. 2-16 
NI bit in FPSCR, 2-18 

Floating -point unit 
execution timing. 6-37 
overview. 1-11 

Flush block operation. 3-20 
FPRO-FPR31 (floating -point registers). 2-4 

Index-3 

.. 



III 

INDEX 

FPSCR (floating-point status and control register) 
FPSCR instructions, 2-32 
FPSCR register description, 2-4 
NI bit, 2-18 

G 
GBL signal, 7-15 
GPR~PR31 (general-purpose registers), 2-4 
Guarded attribute (G bit), 3-10 

H 
HALTED signal, 7-29 
Hloo register 

bit settings, 2-10 
bits used for cache configuration, 3-15 
hardware implementation register, 2-8 

HRESET signal, 7-27 

I/O tenures, 8-40 
IABR (instruction address breakpoint register), 2-8, 

2-9 
IEEE 1149.1-compliant interface, 8-52 
illegal instruction class, 2-22 
IMMU, 5-7 
Instruction address breakpoint exception, 4-20 
Instruction cache 

disabling and enabling, 3-4 
organization, 3-4 

Instruction dispatch rules, 6-42 
Instruction fetch 

instruction fetch address generation, 6-8 
timing, 6-18 

Instruction timing 
examples 

branch with BTAC hit, 6-25 
branch with BT AC miss/decode correction, 

6-26 
branch with BTAC miss/dispatch correction, 

6-28 
branch with BTAC miss/execute correction, 

6-28 
cache hit, 6-19 
cache miss, 6-22 

instruction flow, 6-17 
overview, 1-33,6-3 
terminology, 6-1 
timing considerations, 6-17 

Index-4 

Instructions 
604-specific, 1-27 
64-bit instructions, A-39 
branch address calculation, 2-44 
branch instructions, A-25 
cache management, A-26 
classes, 2-21 
condition register logical, 2-45, A-25 
defined instructions, 2-21 
eieio, 2-49 
external control instructions, 2-52, A-27 
floating -point 

arithmetic, 2-30, A-20 
compare, 2-32, A-21 
FP load instructions, A-24 
FP move instructions, A-25 
FP rounding and conversion, 2-31 
FP status and control register, 2-32 
FP store instructions, A-24 
FPSCR instructions, A-22 
multiply-add, 2-31, A-21 
rounding and conversion, A-21 

illegal instructions, 2-22 
input/output, serialization, 6-35 
Instructions, list, A-I, A-10, A-18, A-28, A-39 
integer 

arithmetic, 2-26, A-18 
compare, 2-26, 2-28, A-19 
load, A-22 
logical, 2-26, 2-28, A-19 
rotate, A-20 
rotate and shift, 2-29 
shift, A-20 
store, A-23 

isync, 2-49,4-11 
latency summary, 6-45 
load and store 

address generation, floating-point, 2-40 
address generation, integer, 2-35 
byte reverse instructions, 2-37, A-23 
floating-point move, 2-33 
floating-point store, 2-41 
handling misalignment, 2-33 
integer load, 2-35 
integer multiple, 2-38 
integer store, 2-36 
multiple instructions, A-23 
string instructions, 2-39, A-24 

memory control instructions, 2-50, 2-54 
memory synchronization instructions, 2-47 
mtcrf, 2-46, 6-44 
optional instructions, A-39 
processor control instructions, 2-46, 2-48, 2-52, 

A-26 

PowerPC 604 RISC Microprocessor User's Manual 



reserved instructions, 2-23 
tfi,4-11 
segment register manipulation, A-27 
string/multiple, serialization, 6-35 
stwcx., 4-11 
supervisor-level, A-39 
support for lwarx/stwcx., 8-52 
sync, 4-11 
system linkage, 2-46, A-26 
1LB management instructions, A-27 
tlbie, 2-56 
tlbsync, 2-56 
trap instructions, 2-45, A-26 

INT signal, 7-25, 8-50 
Integer arithmetic instructions, 2-26, A-18 
Integer compare instructions, 2-28, A-19 
Integer load instructions, 2-35, A-22 
Integer logical instructions, 2-28, A-19 
Integer rotate and shift instructions, 2-29, A-20 
Integer store instructions, 2-36, A-23 
Integer unit 

instruction timings, 6-35 
overview, 1-10 

Interrupt, external, 4-16 
isync, 2-49, 4-11 
11LB organization, 5-24 

K 
Kill block operation, 3-20 

L 
L2_INT signal. 7-28 
Latency 

definition, 6-2 
execution latency, 6-7 
minimizing latency, 8-24 

Link register (LR), 2-5 
Load operations 

I/O load accesses, 8-41 
Load/store 

address generation, 2-35 
byte reverse instructions, 2-37, A-23 
floating-point load instructions, A-24 
floating-point move instructions, 2-33, A-25 
floating-point store instructions, 2-41, A-24 
handling misalignment, 2-33 
integer load instructions, 2-35, A-22 
integer store instructions, 2-36, A-23 
load/store multiple instructions, 2-38, A-23 
memory synchronization instructions, A-24 
string instructions, 2-39, A-24 

Index 

INDEX 

Load/store unit 
execution timing, 6-39 
overview, 1-11 

Logical addresses 
translation into physical addresses, 5-1 

lwarxlstwcx. 

M 

general information, 3-19 
support, 8-52 

Machine check exception, 4-13 
MCP signal, 7-25 
Memory accesses, 8-4, 8-6 
Memory coherency 

memory coherency actions, 3-8 
memory/cache access attributes, 3-10 
sequential consistency, 3-9 

Memory coherency (M attribute), 3-10 
Memory control instructions, 2-50, 2-54 
Memory management unit 

604-specific features, 5-2 
address translation flow, 5-12 
address translation mechanisms, 5-9, 5-12 
block address translation, 5-9, 5-12, 5-20 
block diagram, 5-6, 5-7,5-8 
exceptions, 5-16 
features summary, 5-3 
instructions and registers, 5-18 
memory protection, 5-11 
overview, 1-12 
page address translation, 5-9, 5-12, 5-27 
page history status, 5-12, 5-21-5-24 
real addressing mode, 5-10, 5-12,5-20 
segment model, 5-20 

Memory operations, features, 6-15 
Memory synchronization 

instructions, 2-47, A-24 
Memory unit 

queuing structure, 3-19 
Memory/cache access modes, see also WIMG bits 

performance impact of write-back mode, 6-15 
MESI protocol 

enforcing memory coherency, 8-29 
MESI state definitions, 3 -11 
Misaligned data transfer, 8-16 
MMCRO register, 2-8, 2-11, 9-1, 9-6 
MSR (machine state register) 

FEO/FEI bits, 4-9 
IPbit, 4-12 
PM bit, 2-6 
POW bit, 4-21 
RIbit, 4-10 
settings due to exception, 4-12 

mterf, performance, 2-46, 6-44 

Index-5 • 



II 

INDEX 

Multiple-precision shifts, 2-30 

N 
Nap mode, 4-21 
No-DRlRY mode, 8-48,8-49, 8-50 

o 
OEA 

cache operation, 3-1 
definition, 1-19 
exception mechanism, 4-1 
memory management specifications, 5-1 
registers, 2-5 

Operand conventions, 2-16 
Operand placement and perfonnance, 2-19 
Operating environment architecture, see OEA 
Optional instructions, A-39 

p 
Page address translation 

page address translation flow, 5-27 
page size, 5-20 
selection of page address translation, 5-9, 5-16 
1LB organization, 5-25 

Page history status 
cases of debt and dcbtst misses, 5-21 
Making R and C bit updates to page tables, 5-33 
Rand C bit recording, 5-12,5-21-5-24 
Rand C bit updates, 5-12, 5-33 

Page tables 
page table updates, 5-33 

Perfonnance considerations, memory, 6-12 
Perfonnance monitor 

event counting, 9-8 
perfonnance monitor facility, 1-35 
perfonnance monitor SPRs, 9-3 
perfonnance monitoring interrupt, 9-2 
perfonnance monitoring mechanism, 4-20 
purposes, 9-1 

Physical address generation 
memory management unit, 5-1 

Pipeline 
completion stage, 6-11 
decode stage, 6-9 
dispatch stage, 6-9 
execute stage, 6-10 
fetch stage, 6-8 
instruction timing, definition, 6-1 
pipeline diagram, 6-6 
pipeline stages, 6-7 
pipeline structures, 6-5 
write-back stage, 6-12 

Index-6 

PIR (processor identification register), 2-8, 2-9 
PLL configuration, 7-31 
PMCI and PMC2 registers, 2-8, 2-13, 9-1,9-3 
Postdispatch serialization mode, 6-34 
Power management 

nap mode, 4-21 
overview, 1-35 
POW bit, 4-21 

PowerPC architecture 
features used in 604, 1-20 
instruction list, A-I, A-IO, A-18, A-28, A-39 
levels ofimplementation,l-19 
operating environment architecture, xxii 
user instruction set architecture, xxi 
virtual environment architecture, xxi 

Priorities 
exception priorities, 4-5 

Process switching, 4-11 
Processor configuration 

HALTED,7-29 
L2_INT,7-28 
RSRV, 7-28 
RUN,7-29 
TBEN,7-28 

Processor control instructions, 2-46, 2-48, 2-52 
Program exception, 4-17 
Program order, 6-2 
Programming tips, 6-43 
Protection of memory areas 

direct-store interface protection, 5-35 
no-execute protection, 5-14 
options available, 5-11 
protection violations, 5-16 

PTEs (page table entries) 
page table updates, 5-33 

PVR (processor version register), 2-6 

Q 
Qualified data bus grant, 8-7, 8-20 
Qualified snoop request, 3-19 

R 
Read operation, 3-20 
Read-atomic operation, 3-20 
Read-with-intent-to-modify operation, 3-20 
Read-with-no-intent-to-cache operation, 3-21 
Real address (RA), see physical address generation 
Real addressing mode (translation disabled) 

data accesses, 5-10, 5-12, 5-20 
instruction accesses, 5-10, 5-12,5-20 
support for real addressing mode, 5-2 

Power PC 604 RISC Microprocessor User'. ManUal 



Referenced (R) bit maintenance 
recording, 5-12, 5-21, 5-22, 5-30 
updates, 5-33 

Registers 
604-specific registers, 2-3, 2-8, 2-53 
hardware implementation registers, 2-8 
rename register, 6-32 
supervisor-level 

BAT registers, 2-6 
DABR,2-7 
DAR,2-6 
DEC, 2-7 
DSISR,2-7 
EAR,2-7 
HIDO,2-8 
IABR,2-8 
~~0,2-8,9-6 

MSR, 2-5 
PIR,2-8 
PMCI and PMC2, 2-8 
PVR,2-6 
SDR I register, 2-6 
SIA and SDA, 2-8, 2-15,9-6 
SPRGO-SPRG3,2-7 
SPRs for petfonnance monitor, 9-1 
SRRO/SRR1,2-7 
SRs, 2-6 
time base (I'B), 2-7 

user-level 
~,2-4 
ClR,2-5 
FPRO-FPR31, 2-4 
FPSCR,2-4 
GPRO-GPR31,2-4 
LR,2-5 
time base (I'B), 2-5 
XER,2-5 

Rename buffer, 1-10,6-3 
Rename register operation, 6-31 
Reservation station, 6-2 
Reserved instruction class, 2-23 
Reset 

HRESET signal, 7-27,8-51 
reset exception, 4-13 
SRESET signal, 7-27, 8-51 

rfi,4-11 
Rotate and shift instructions, A-20 
RSRV signal, 7-28,8-52 
RUN signal, 7-29 

S 
se,4-19 
SDRI register, 2-6 
Segment registers 

INDEX 

SR description, 2-6 
SR manipulation instructions, 2-55, A-27 
Tbit, 8-38 

Segmented memory model, see Memory management 
unit 

SHD signal,7-17 
SIA and SDA registers, 2-8, 2-15, 9-1, 9-6 
Signals 

604 signals, overview, 1-16 
AO-A31,7-7 
AACK,7-16 
ABB, 7-5,8-7 
address arbitration, 7-3, 8-7 
address transfer, 7-7,8-12 
address transfer attribute, 7-9,8-13 
address transfer start, 7-6 
A~AP3, 7-8 
APE,7-9 
ARlRY, 7-16,8-24 
BG, 7-4,8-7 
BR, 7-4,8-7 
checkstop, 8-51 
CI,7-14 
CKSTP IN,7-26 
CKSTP_OUT,7-26 
CLK_OUT,7-31 
configuration, 7-2 
COP/scan intetface, 7-29 
CSEO-CSE1, 7-15, 8-30 
data aroitration, 8-8, 8-20 
data bus arbitration, 7-18 
data transfer, 7-20 
data transfer tennination, 7-22, 8-24 
DBB, 7-19,8-8,8-22 
DBDIS, 7-22 
DBG, 7-18,8-8 
DBWO, 7-18,8-8,8-23,8-53 
DHO-DH31/DLO-DL31,7-20 
D~DP7, 7-21 
DPE,7-22 
DRlRY, 7-23,8-24,8-27 
GBL,7-15 
HALTED,7-29 
HRESET,7-27 
INT, 7-25,8-50 
L2_INT,7-28 
MCP, 7-25 
PLL_CFGO-PLL_CFG3,7-31 
processor configuration, 7-28 
reset, 8-51 
RSRV,7-28,8-52 
RUN,7-29 
SHD,7-17 
signal configuration, 1-17 
SMI,4-21,7-25 ~ 

----------------------------"~ 
Index Index-7 



III 

INDEX 

snoop status signals, 3-19 
SFUESET,7-27,8-51 
system status, 7-24 
TA,7-23 
TBEN,7-28 
TBST, 7-13,8-24 
TCO-TC2, 7-13, 8-17 
TEA, 7-24, 8-24, 8-28 
TS,7-6 
TS~TStz2, 7-11,8-13 
TTO-TT4, 7-10,8-13 
WT,7-15 
XATS, 7-6,8-38 

Single-beat reads with data delays, timing, 8-35 
Single-beat transfer 

reads with data delays, timing, 8-34 
reads, timing, 8-32 
tennination, 8-25 
writes, timing, 8-33 

SMI signal, 4-21,7-25 
Snoop operation, 3-19,6-16 
Split-bus transaction, 8-9 
SPRG registers, 2-7 
SFUESET signal, 7-27 
SRRO/SRRI (status save/restore registers), 2-7 

exception processing, 4-6 
Stage 

definition, instruction timing, 6-1 
Stall,6-2 
Store operations 

I/O operations to BUC, 8-41 
single-beat writes, 8-:-33 

String/multiple instructions, serialization, 6-35 
stwcx., 4-11 
Supervisor-level instructions, A-39 
sync, 4-11 
Synchronization 

context/execution synchronization, 2-24 
execution of rfi, 4-11 
memory synchronization instructions, 2-47, 2-49, 

A-24 
SYSCLK signal, 7-30 
System call exception, 4-19 
System linkage instructions, 2-46, 2-52 
System management interrupt, 4-20 
System status 

CKSTP _IN, 7-26 
CKSTP_OUT,7-26 
HRESET,7-27 
INT,7-25 
MCP, 7-25 
SMI,7-25 
SRESET,7-27 

Index-8 

T 
TA signal, 7-23 
Table search operations 

table search flow (primary and secondary), 5-30 
TBEN signal, 7-28 
TBST signal, 7-13,8-13,8-24 
TCO-TC2 signals, 7-13,8-17 
TEA signal, 7-24, 8-28 
Tennination, 8-18, 8-24 
Throughput, 6-2, 6-7 
Time base 

TBUfBU registers, 2-5, 2-7 
Timing diagrams, interface 

address transfer signals, 8-12 
burst transfers with data delays, 8-36 
direct-store interface load access, 8-47 
direct-store interface store access, 8-48 
single-beat reads, 8-32 
single-beat reads with data delays, 8-34 
single-beat writes, 8-33 
single-beat writes with data delays, 8-35 
use of TEA, 8-37 
using DBWO, 8-53 

Timing, instruction 
branch prediction, 6-24 
branch unit execution timing, 6-25, 6-35 

BTAC miss/decode correction, 6-26 
branch unit execution timing example 

BTAC hit, 6-25 
BTAC miss/dispatch correction, 6-28 
BTAC miss/execute correction, 6-28 

branch with BT AC miss/decode correction, 6-27 
branch with BTAC miss/dispatch correction, 6-28 
branch with BTAC miss/execute correction, 6-29 
cache arbitration, 6-24 
cache hit, 6-19 
cache miss, 6-22 
FPU execution timing, 6-37 
instruction dispatch, 6-30 
instruction fetch timing, 6-18 
instruction flow, 6-17 
instruction scheduling guidelines, 6-42 
instruction serialization, 6-33 
integer unit execution timing, 6-35 
isync, rfi, sc instruction timing, 6-41 
latency summary, 6-45 
load/store unit execution timing, 6-39 
overview, 6-3 
speculative execution, 6-29 

Power PC 604 RISC Microprocessor User's Manual 



INDEX 

lLB 
description, 5-24 
LRU replacement, 5-26 
organization for IlLB and DlLB 5-24 
lLB miss and table search operation 5-25 5-29 

5-32 ' , , 

1LB invalidation 
description, 5-19, 5-26 
page table updates, 5-33 
lLB invalidate and lLBSYNC operations, 3-21, 

5-26, 5-27,7-10 
1LB invalidate broadcast operations, 5-26 
lLB management instructions, A-27 

tIbia (not implemented), 2-56, 5-27 
tIbie, 2-55, 2-56, 5-26, 5-33 
tIbsync, 2-55,2-56, 5-27 5-34 

tIbie. 2-56. 5-26. 5-33 • 
tIbsync. 2-56.5-27.5-34 
Trace exception. 4-19 
Transfer. 8-12. 8-23 
Trap instructions. 2-45 
TS signal. 7-6.8-12 
TSIZO-TSIZ2 signals. 7-11.8-13 
170-174 signals. 7-10.8-13 

U 
UISA 

definition. 1-19 
registers. 2-2 

Use of TEA. timing. 8-37 
User instruction set architecture. see UISA 
Using DBWO. timing. 8-53 

V 
VEA 

cache operation. 3-1 
definition. 1-19 

Vector offset table. exception. 4-3 
Virtual environment architecture. see VEA 

W 
WIMG bits 

cache actions. 3-23 
memory coherency. 8-29 
WIM combination. 8-30 

Write-back. 6-3. 6-12. 6-15 
Write-through mode (W bit) 

memory/cache access attriibute. 3-10 
performance considerations. 6-16 

Write-with-atomic operation. 3-20 
Write-with-flush operation. 3-20 
Write-with-kill operation. 3-20 
WT signal. 7-15 

X 
XATS signal. 7-6,8-38 
XER register. 2-5 
XFERDATA read/write operation. 3-22 

----------------------------·111 
Index Index-9 





Motorola Distributor and Worldwide Sales Offices 

AUTHORIZED NORTH AMERICAN DISTRIBUTORS 
UNITED STATES 
ALABAMA 

Huntsville 
ArrC1N~ Electronics .. (205)837~955 
Future Electronics • . . . . . .. (205)830-2322 
Hamilton Hallmark ....... (205)837-8700 
Newark •.•.....•....•. (205)837-9091 
Time Electronics •...... 1-800-789-TIME 
Wyle Laboratories . . . . . . •. (205)830-1119 

Arizona 
Phoenix 

Future Electronics .....•.. (602)968-7140 
Hamilton Hallmark ..•.... (602)437-1200 
Newark Electronics . . • • . .. (602)864-9905 
Wyle Laboratories ........ (602)437-2088 

Tempe 
ArrC1NISdw-K!beJ Electronics .• (602)431-0030 
Time Electronics. . . . . .. 1-800-789-TIME 

CALIFORNIA 
Agoura Hills 

Time Electronics Corporate 1-800-789-TIME 
Belmont 

Richardson Electronics ••.. (415)592-9225 
. Calabassas 

ArrC1NI&i1Wfber Electronics •. (818)880-9686 
Wyle Laboratories . . . . . . .. (818)880-9000 

Chatsworth 
Future Electronics. . . . • . .. (818)865-0040 
Time Electronics ....... 1-800-789-TIME 

Costa Mesa 
Hamilton Hallmark ....... (714)641-4100 

Culver City 
Hamilton Hallmark ....... (213)558-2000 

Irvine 
Arrow/Schweber Electronics. (714)587-0404 
Future Electronics .......• (714)250-4141 
Wyle Laboratories CoIporate . (714)753-9953 
Wyle Laboratories . . . . . . .. (714)863-9953 

Los Angles 
Wyle Laboratories . . • . . . .. (818)880-9000 

Mountain View 
Richardson Electronics •... (415)960-6900 

Orange 
Newark ........•.....• (714)634-8224 

Rocklin 
Hamilton Hallmark ....... (916)624-9781 

Sacramento 
Newark ............... (916)721-1633 
Wyle Laboratories. . . . . . .. (916)638-5282 

San Diego 
Arrow/Schweber Electronics. (619)565-4800 
Future Electronics ....•... (619)625-2800 
Hamilton Hallmark ....... (619)571-7540 
Newark •.....•........ (619)569-9877 
Wyle Laboratories ••....•. (619)565-9171 

San Francisco 
Newark .........••.... (415)571-5300 

San Jose 
ArrCIN/SctrNf!ber Electronics .. (408)441-9700 
ArrC1N/Schwf!ber Electronics •. (408)428-6400 
Future Electronics ........ (408)434-1122 

Santa Clara 
Wyle Laboratories ........ (408)727-2500 

Sunnyvale 
Hami~on Hallmark .•....•. (408)435-3500 
Time Electronics ....... 1-800-789-TIME 

Torrance 
Time Electronics ....... 1-800-789-TIME 

Tustin 
Time Electronics .•....• 1-800-789-TIME 

West Hills 
Newark ........•...... (818)888-3718 

Woodland Hills 
Hami~on Hallmark •....... (818)594-0404 
Richardson Electronics .... (615)594-5600 

COLORADO 
Colorado Springs 

Newark ............... (719)592-9494 
Denver 

Newark ......•....•... (303)757-3351 
Englewood 

ArrC1N/SctrNf!ber Electronics .. (303)799-0258 
Hamilton Hallmark ....... (303)790-1662 
Time Electronics . . . • . .. 1-800-789-TIME 

Lakewood 
Future Electronics. . . . . . .. (303)232-2008 

Thornton 
Wyle Laboratories ..••.... (303)457-9953 

CONNECTICUT 
Cheshire 

Future Electronics. . . . • . .. (203)250-0083 
Hamilton Hallmark ....... (203)271-2844 

Southbury 
Time Electronics ....... 1-800-789-TIME 

Wallingfort 
ArrC1NTSctmf!ber Electronics .. (203)265-7741 

Windsor 
Newark ••. . . • . . . . . . . .. (203)683-8860 

FLORIDA 
Altamonte Springs 

Future Electronics •...••.. (407)767-8414 

Motorola Distributor and Worldwide Sales Offices 

Clearwater 
FuMe Electronics ........ (813)530-1222 

Deerfield Beach 
ArrC1N/SctrNfJ:s Electronics .• (305)429-8200 
Wylie Laboratories ....... (305)420-0050 

Ft. Lauderdale 
Future Electronics ........ (305)436-4043 
Hami~on Hallmark ... . . . .. (305)484-5482 
Time Electronics .•....• 1-800-789-TIME 

Lake Mary 
ArrC1N/SctrNfJ:s Electronics •• (407)333-9300 

Largo/TampaiSt. Petersburg 
Hami~n Hallmark ........ (813)541-7440 
Newark ..........•.... (813)287-1578 
Wyle Laboratories ...•.... (813)576-3004 

Orlando 
Newark ......•......•. (407)896-8350 
Time Electronics •....•. 1-800-789-TIME 

Plantation 
Newark .•............. (305)424-4400 

Winter Park 
Hamilton Hallmark •.•..•. (407)657-3300 
Richardson Electronics ...• (407)644-1453 

GEORGIA 
Atlanta 

Time Electronics ....... 1-800-789-TIME 
Wyle Laboratories ........ (404)441-9045 

Duluth 
ArrC1N!Schwf!ber Electronics .. (404)497-1300 
Hami~on Hallmark ........ (404)623-5475 

Norcross 
Future Electronics ........ (404)441-7676 
Newark ............••. (404)448-1300 
Wyle Laboratories ........ (404)441-9045 

ILLINOIS 
Addison 

Wyle Laboratories . . . . . . .. (708)620-0969 
Bensenville 

Hami~on Hallmark ••...... (708)860-7780 
Chicago 

Newark Electronics Corp ... (312)784-5100 
Hoffman Estates 

Future Electronics .••..... (708)882-1255 
Itasca 

Arrow/Schweber Electronics . (708)250-0500 
La Fox 

Richardson Electronics •..• (708)208-2401 
Schaumburg 

Newark ...•.....•....• (708)310-8980 
Time Electronics ....... 1-800-789-TIME 



Motorola Distributor and Worldwide Sales Offices 

INDIANA 
Indianapolis 

ArrCNI/Sr:ilwl:bfl Elooronk:s ., (317)299-2071 
Hamilton Hallmark ....... (317)872-8875 
Newark .....•......... (317)259-{)086 
Time Electronics ....... 1-800-789-TIME 

Ft. Wayne 
Newark ............... (219)484-0766 

IOWA 
Cedar Rapids 

Newark ............... (319)393-3800 
Time Electronics ....... 1-800-789-TIME 

KANSAS 
Lenexa 

ArrCNIISroWfJ:Jf:J Electronics . . (913)541-9542 
Hamilton Hallmark ....•.. (913)88&-4747 

Overland Park 
Future Electronics ........ (913)649-1531 
Newark ..•............ (913)677-{)727 
Time Electronics ...•... 1-800-7,89-TIME 

MARYLAND 
Beltsville 

Newark ............... (301)604-1700 
Columbia 

ArrCNIISroWfJ:Jf:J Electronics .. (301)596-7800 
Future Electronics ........ (410)290-0600 
Hamilton Hallmark ....... (410)988-9800 
Time Electronics ....... 1-800-789-TIME 
Wyle Laboratories ........ (410)312-4844 

MASSACHUSETTS 
Boston 

ArrCNIISroWf!bfx Electronics .. (508)658-{)900 
Bolton 

Future Corporate ........ (508)779-3000 
Burlington 

Wyle laboratories ........ (617)272-7300 
Methuen 

Newark ............... (508)683-{)913 
Norwell 

Richardson Electronics .... (617)871-5162 
Peabody 

Time Electronics ....... 1-800-789-TIME 
Hamilton Hallmark ....... (508)532-3701 

MICHIGAN 
Detroit 

Newark ............... (313)967-{)600 
Grand Rapids 

Future Electronics ........ (616)698-6800 

Livonia 
ArrCNIlSctrNfber Electronics .. (313)462-2290 
Future Electronics ........ (313)261-5270 
HamiHon Hallmark ...•.. " (313)347-4020 
Time Electronics. . . • . .. 1-800-789-TIME 

MINNESOTA 
Bloomington ......... (612)853-2280 
Eden Prairie 

ArrCNIlSctrNfber Electronics .. (612)941-5280 
Future Electronics ........ (612)944-2200 
Hamilton Hallmark ....... (612)881-2600 
Time Electronics ....... 1-800-789-TIME 

Minneapolis 
Newark ............... (612)331-6350 

MISSOURI 
Earth City 

Hamilton Hallmark ....... (314)291-5350 
St. Louis 

ArrCNIlSctrNfber Electronics .. (314)567-6888 
Future Electronics .. ; ..... (314)469-6805 
Newark ............. " (314)298-2505 
Time Electronics ..... " 1-800-789-TIME 

NEW JERSEY 
Cherry Hili 

HamiHon Hallmark . . . . . . .. (609)424-{)100 
Fairfield 

Newark ............... (201)882-{)300 
Marlton 

ArrCNIlSctrNfber Electronics .. (609)596-8000 
Future Electronics . . . . . . .. (609)596-4080 

Plnebrook 
ArrCNIl&.trNfber Electronics .. (201 )227-7880 
Wyle Laboratories ...... " (201)882-8358 

Parsippany 
Future Electronics ........ (201)299-{)400 
HamiHon Hallmark ........ (201)515-1641 

Wayne 
Time Electronics ....... 1-800-789-TIME 

NEW MEXICO 
Albuquerque 

Alliance Electronics • . . . . .. (505)292-3360 
HamiHon Hallmark ... . . . .. (505)828-1058 
Newark ............... (505)828-1878 

NEW YORK 
Commack 

Newark ...•........... (516)499-1216 
Hauppauge 

ArrCNIlSctrNfber Electronics .. (516)231-1000 
Future Electronics ........ (516)234-4000 
Hamilton Hallmark ....... (516)434-7400 

Konkoma 
Hamilton Hallmark ....... (516)737-{)600 

Melville 
Wyle Laboratories ........ (516)293-8446 

Pittsford 
Newark ............... (716)381-4244 

Rochester 
ArrCNIlSctrNfts Electronics .• (716)427-{)300 
Future Electronics ........ (716)272-1120 
Hamilton Hallmark ....... (716)475-9130 
Richardson Electronics .... (716)264-1100 
Time Electronics. . . . . .. 1-800-789-TIME 

Rockville Centre 
Richardson Electronics .... (516)872-4400 

Syracuse 
Future Electronics ........ (315)451-2371 
Time Electronics ....... 1-800-789-TIME 

NORTH CAROLINA 
Charlotte 

Future Electronics ........ (704)455-9030 
Richardson Electronics .... (704)548-9042 

Greensboro 
Newark ............... (919)292-7240 

Raleigh 
ArrCNIl&.trNfts Electronics .. (919)876-3132 
Future Electronics ........ (919)790-7111 
Hamilton Hallmark ....... (919)872-{)712 
Time Electronics ....... 1-800-789-TlME 

OHIO 
Centerville 

ArrCNIl&.trNfts Electronics .. (513)435-5563 
Cleveland 

Newark ............... (216)391-9330 
Time Electronics ....... 1-800-789-TIME 

Columbus 
Newark ............... (614)431-{)809 
Time Electronics ....... 1-800-789-TIME 

Dayton 
Future Electronics ........ (513)439-5700 
Hamilton Hallmark ....... (513)439-6735 
Newark ............... (513)294-8980 
Time Electronics ....•.. 1-800-789-TIME 

Mayfield Heights 
Future Electronics ........ (216)449-6996 

Solon 
ArrCNIlSctrNfts Electronics .. (216)248-3990 
HarriHon Hallmark ........ (216)498-1100 

Worthington 
Hamilton Hallmark ....... (614)888-3313 

OKLAHOMA 
Tulsa 

Hamilton Hallmark ....... (918)254-6110 
Newark ............... (918)252-5070 

2 Motorola Distributor and Worldwide Sales Offices 



Motorola Distributor and Worldwide Sales Offices 

OREGON 
Beaverton 

ArrC1N/AIm?£ 
Electronts Corp. ....... (503)629-8090 

Future Electronics . . . . . . . . (503)645-9454 
Hamilton Hallmark ......• (503)526-6200 
Wyle Laboratories. . . . . . .• (503)643-7900 

Portland 
Newark ............... (503)297-1984 
Time Electronics •...... 1-800-789-TIME 

PENNSYLVANIA 
King of Prussia 

Newark ............... (215)265-0933 
Mt. Laurel 

Wyle Laboratories ...... " (609)439-9110 
Montgomeryville 

Richardson'tlectronics .... (215)628-0805 
Philadelphia 

Time Electronics ....... 1-800-789-TIME 
Wyle Laboratories ...•.... (609)439-9110 

Pittsburgh 
ArrC1N~ Electronts .. (412)963-6807 
Newark ............... (412)788-4790 
Time Electronics .•..... 1-800-789-TIME 

TENNESSEE 
Franklin 

Richardson Electronics .... (615)791-4900 
Knoxville 

Newark ............... (615)588-6493 

TEXAS 
Austin 
ArrC1N~ Electronts .. (512)835-4180 
Future Electronics ........ (512)502-0991 
Ham~on Hallmark ........ (512)25&-8818 
Newark ..•.•.......... (512)338-0287 
Time Electronics. . . . • .. 1-800-789-TIME 
Wyle Laboratories ........ (512)345-8853 

Carollton 
ArrC1N~ Electronts .. (214)380-6464 

Dallas 
Future Electronics ..•..... (214)437-2437 
Hamilton Hallmark ...•... (214)553-4300 
Richardson Electronics .•.. (214)239-3680 
Time Electronics ....... 1-800-789-TIME 
Wyle Laboratories ........ (214)235-9953 

. Ft. Worth 
Allied Electronics ........ (817)336-5401 

Houston 
ArrCIN/SctrNrbJr Electronts •• (713)530-4700 
Future Electronics ....•••. (713)785-1155 
Hamilton Hallmark •...... (713)78Hi1oo 
Newark ......•••..•.•. (713)270-4800 
Time Electronics •.••... 1-800-789-TlME 
Wyle Laboratories .•...... (713)879-9953 

Richardson 
Newark ............... (214)235-1998 

UTAH 
Salt Lake City 

ArrCIN/SctrNrbJr Electronics .. (801 )973-6913 
Future Electronics •....... (801)467-4448 
Hami~on Hallmark ........ (801)266-2022 
Newark ..••........... (801)261-5660 
Wyle Laboratories .•...... (801)974-9953 

West Valley City 
Time Electronics ....... 1-800-789-TlME 
Wyle Laboratories ........ (801)974-9953 

WASHINGTON 
Bellevue 

Almac Electronics Corp. ... (206)643-9992 
Newark •...•.......... (206)641-9800 
Richardson Electronics .... (206)646-7224 

Bothell 
Future Electronics . . . . . . .. (206)489-3400 

Redmond 
Hami~on Hallmark ........ (206)881-6697 
Time Electronics .....•• 1-800-789-TIME 
Wyle Laboratories ........ (206)881-1150 

Seattle 
Wyle Laboratories ........ (206)881-1150 

Spokane 
ArrCJN/AIm?£ 

Electronics Corp. ....... (509)924-9500 

WISCONSIN 
Brookfield 

ArrCIN/SctrNrbJr Electronics .. (414)792-0150 
Future Electronics ........ (414)879-0244 

Milwaukee 
Time Electronics . . . . . .. 1-800-789-TIME 

New Berlin 
Hamilton Hallmark ....•.. (414)780-7200 

Wauwatosa 
Newark ........•.•...• (414)453-9100 

Waukeaha 
Wyle Laboratories ........ (414)521-9333 

Motorola Distributor and Worldwide Sales Offices 

CANADA 
ALBERTA 

Calgary 
Electro Sonic Inc. . • . . • .. (403)255-9550 
Future Electronics. . . • . • .. (403)250-5550 
Ham~ Hallmark ........ (604)420-4101 

Edmonton 
Future Electronics. • . • • . .. (403)438-2858 
Hamilton Hallmark ....... (800)663-5500 

BRITISH COLUMBIA 
Vancouver 

Arrow Electronics . . • . • . •. (604)421-2333 
Electro Sonic Inc ......... (604)273-2911 
Future Electronics ........ (604)294-1166 
Ham~ Hallmark ........ (604)420-4101 
Newark ............... (800)463-9275 

MANITOBA 
Winnipeg 

Electro Sonic Inc. ... . . •. (204)783-3105 
Future Electronics ........ (204)944-1446 
Ham~ Hallmark ..•....• (800)663-5500 

ONTARIO 
Ottawa 

Arrow Electronics ........ (613)226-6903 
Electro Sonic Inc .....•. " (613)728-8333 
Future Electronics .....•.. (613)820-8313 
HamltonlAvnet EloOllts ... (613)226-1700 

Toronto 
Arrow Electronics ........ (416)670-n69 
Electro Sonic Inc. ........ (416)494-1666 
Future Electronics. • . . . . .. (416)612-9200 
Ham~ Hallmark ........ (905)564-6060 
Newark ............... (800)463-9275 
Richardson Electronics .... (800)348-5530 

QUEBEC 
Montreal 

ArrowElectronics .•...... (514)421-7411 
Future Electronics ........ (514)694-n10 
Ham~ Hallmark .......• (514)335-1000 
Newark ............... (800)463-9275 
Richardson Electronics .... (800)348-5530 

Quebec City 
Future Electronics .•..•••• (418)8n-6666 

3 



Motorola Distributor and Worldwide Sales Offices 

SALES OFFICES 

UNITED STATES 
ALABAMA, Huntsville . • . . . . .. (205)464-6800 
ALASKA ................. (800)635-8291 
ARIZONA, Tempe ........... (602)897-5056 
CALIFORNIA, Agoura Hills .... (818)706-1929 
CALIFORNIA, Los Angeles .... (310)417-8848 
CALIFORNIA, Irvine ......... (714)753-7360 
CALIFORNIA, San Diego ..... (619)541-2163 
CALIFORNIA, Sunnyvale .•.•. (408)749-0510 
COLORADO, Colorado Springs .. (719)599-7497 
COLORADO, Denver ........ (303)337-3434 
CONNECTICUT, Wallingford ... (203)949-4100 
FLORIDA, Maitland . . . . . . . . .. (407)628-2636 
FLORIDA, Pompano Beach! 

Ft. Lauderdale ..........•. (305)351-6040 
FLORIDA, Clearwater ..... . .. (813)538-7750 
GEORGIA, Atlanta .......... (404)729-7100 
IDAHO, Boise ...........•.. (208)323-9413 
ILLINOIS, Chicago! 

Hoffman Estates .......... (708)413-2500 
Shaumburg . . . • . . . . . . . . .. (708)413-2500 

INDIANA, Fort Wayne ......•. (219)436-5818 
INDIANA, Indianapolis ....•.•. (317)571-0400 
INDIANA, Kokomo .......... (317)455-5100 
IOWA, Cedar Rapids . . . . . . . .. (319)376-0383 
KANSAS, KansasCity/Mission .. (913)451-8555 
MARYLAND, Columbia ....... (410)381-1570 
MASSACHUSETTS, Mar1borough . (508)481-8100 
MASSACHUSETTS, Woburn ... (617)932-9700 
MICHIGAN, Detroit .......... (313)347-6800 
MINNESOTA, Minnetonka ..... (612)932-1500 
MISSOURI, S1. Louis ....•.... (314)275-7380 
NEW JERSEY, Fairfield . . . . . .. (201 )808-2400 
NEW YORK, Fairport ......... (716)425-4000 
NEW YORK, Hauppauge ..•... (516)361-7000 
NEW YORK, Fishkill ......... (914)896-{)511 
NORTH CAROLINA, Raleigh ..• (919)870-4355 
OHIO, Cleveland ......•.•••• (216)349-3100 
OHIO,ColumbuslWorthington •• (614)431-8492 
OHIO, Dayton ••............ (513)495-6800 
OKLAHOMA, Tulsa. • . . . . • . .. (800)544-9496 
OREGON, Portland ......•..• (503)641-3681 
PENNSYLVANIA, Colmar ••••• (215)997-1020 

Philadelphia/Horsham ...... (215)957-4100 
TENNESSEE, Knoxville ....... (615)690-5593 
TEXAS, Austin ............. (512)502-2100 
TEXAS, Houston . . . . . . . . . . .. (800)343-2692 
TEXAS, Plano .............. (214)516-5100 
TEXAS, Seguin ......•...... (210)372-7620 

4 

UTAH, CSI •............... (801)561-5099 
VIRGINIA, Richmond ......... (804)285-2100 
WASHINGTON, Bellevue ...... (206)454-4160 

Seattle Access . . . . . . . . . . .• (206)622-9960 
WISCONSIN, Milwaukeel 

Brookfield .....•......... (414)792-{)122 

Field Applications Engineering Available 
Through All Sales Offices 

CANADA 
BRITISH COLUMBIA, Varr::tY.Ner . (604)293-7650 
ONTARIO, Toronto .......... (416)497-8181 
ONTARIO, Ottawa ........... (613)226-3491 
QUEBEC, Montreal .......... (514)333-3300 

INTERNATIONAL 
AUSTRALIA, Melbourne ..... (61-3)887-{)711 
AUSTRALIA, Sydney ........ 61(2)906-3855 
BRAZIL, Sao Paulo ....•.... 55(11)815-4200 
CHINA, Beijing ••............ 86-505-2180 
FINLAND, Helsinki ....•... 358-0-35161191 

car phone ••.•........... 358(49)211501 
FRANCE, ParisNanves ...... 33(1)40955900 
GERMANY, Langenhagenl 

Hannover ..•.....••.•.•• 49(511)789911 
GERMANY, Munich . • . • . . . . .• 49 89 921 03-D 
GERMANY, Nurenberg ...... 4991196-3190 
GERMANY, Sindelfingen ...... 49703169910 
GERMANY, Wiesbaden .•...•• 49611973050 
HONG KONG, Kwai Fong ...... 852-489-1111 

Tai Po .. .. .. .. .. .. . .. .... 852-6668333 
INDIA, Bangalore •.•......• (91-812)627094 
ISRAEL, Tel Aviv. . . • . . . . . .• 972(3)753-8222 
ITALY, Milan ..............•... 39(2)82201 
JAPAN, Atsugi ..•........ 81-462-23-D761 
JAPAN, Gotanda •...•.... 81-3-5487-8448 
JAPAN, Kumagaya . . . . . . .. 81-485-26-2600 
JAPAN, Kyushu .......... 81-92-771-4212 
JAPAN, Nagoya .......... 81-52-232-1621 
JAPAN, Osaka ..........• 81-{)6-305-1801 
JAPAN, Sendai ........... 81-22-268-4333 
JAPAN, Tachikawa ......•. 81-425-23-6700 
JAPAN, Takamatsu ........ 81-878-37-9972 
JAPAN, Tokyo ••......... 81-3-3440-3341 

JAPAN, Yokohama ........ 81-45-472-2751 
KOREA, Pusan ............ 82(51)4635-035 
KOREA, Seoul ••........... 82(2)554-5118 
MALAYSIA, Penang ....••..... 60(4)374514 
MEXICO, Mexico City .••..... 52(5)282-0230 
MEXICO, Guadalajara ........ 52(36)21-8977 

Marketing .........•••.•• 52(36)21-2023 
Customer Service ........ 52(36)669-9160 

NETHERLANDS, Best ....•.. (31)499861211 
PHILIPPINES, Manila ........ (63)2 822-0625 
PUERTO RICO, San Juan ..... (809)793-2170 
SINGAPORE ................ (65)2945438 
SPAIN, Madrid ..........•.. 34(1 )457-8204 

or . • . . . . . . . . . . . . . . . . . .. 34(1 )457-8254 
SWEDEN, Solna . . . . . . . . . . •. 46(8)734-8800 
SWITZERLAND, Geneva ..... 41(22)7991111 
SWITZERLAND, Zurich ....... 41 (1)730-4074 
TAIWAN, Taipei ...••....... 886(2)717-7089 
THAILAND, Bangkok ........ 66(2)254-4910 
UNITED KINGDOM, Aylesbury .. . 44(296)395-252 

FULL LINE REPRESENTATIVES 
CALIFORNIA, Loomis 

Galena Technology Group ... (916)652-0268 
NEVADA, Reno 

Galena Technology Group ... (702)746-0642 
NEW MEXICO, Albuquerque 

S&S Technologies, Inc ....... (505)298-7177 
UTAH, Salt Lake City 

Utah Component Sales, Inc .•. (801)561-5099 
WASHINGTON, Spokane 

Doug Kenley . • • . . . • . . . . •. (509)924-2322 

HYBRID/MCM COMPONENT 
SUPPLIERS 
Chip Supply ............... (407)298-7100 
Elmo Semiconductor .•.....•. (818)768-7400 
Minco Technology Labs Inc ..... (512)834-2022 
Semi Dice Inc .....•.••.....• (310)594-4631 

Motorola Distributor and Worldwide Sales Offices 



International Motorola Distributor and Sales Offices 

AUTHORIZED DISTRIBUTORS 
AUSTRALIA 
Ve~ek Ply Ltd ••..•.•...•• (61)3808-7511 
VSI Electronics (NZ) Ltd ..... (64)9 579-6603 
VSI Prornark Elec. Ply Ltd ...•. (61)2 439-4655 

AUSTRIA 
EBV Austria .•....••.... (43) 2228941774 
Elbatex GmbH ..•.•....•• (43) 222 86 3211 

BENELUX 
Diode Belgium ..•.••...... (32) 2 725 4660 
Diode Components BV ..... (31) 340 29 1234 
EBV Belgium •...••.....•. (32) 2 720 9936 
EBV Holland .........••. (31) 3465 623 53 
Rodelco Electronics ...•.... (31) 767 84911 
Rodelco N.V .............• (32) 2 460 0560 

CHINA 
Advanced Electronics Ltd. . . . . . (852)305-3833 
China EI. ARl. CorP. Xiamen Co. (86)592 553-487 
Nanco Electronics Supply Ltd •. (852) 333-5121 
Qing Cheng Enterprises Ltd. . . (852) 493-4202 

DENMARK 
Avnet Nortec AlS Denmark • •• (45) 42842000 
EBV Denmark ...........• (45) 39890511 

FINLAND 
Arrow Field OY ........... (35) 807 775 71 

FRANCE 
Arrow Electronique . . . . . . . (33) 1 49 78 49 78 
Avnet Components. . • . . . . (33) 1 49 65 25 00 
EBV France ............ (33) 1 6468 86 00 
Scaib ................ (33) 1 46 87 23 13 

GERMANY 
Avnet E2000 ......•..... (49) 89 4511001 
EBV Germany .......••... (49) 89 456100 
Future Electronics GmbH . (49) 89-957195-0 
Jermyn GmbH ...........• (49) 6431-5080 
Muetron, Mueller GmbH & Co. (49) 421-305 60 
Sasco GmbH •...••....•... (49) 89-46110 
Spoerle Electronic ....•... (49) 6103-304-0 

HONG KONG 
Nanshing Clr. & Chern. Co. Ltd . (852) 333-6121 
Wong's Kong King Semi. Ltd. . (852) 357-8888 

INDIA 
Canyon Products Ltd ....... (852) 755-2583 

ITALY 
Avnet Adelsy SpA .....•.. (39) 238103100 
EBV Italy ...•..•..••••.. (39) 266017111 
Silverstar SpA ............ (39) 2 66 1251 

JAPAN 
AMSC Co., Ltd. ••....... 81-422-~800 
Marubun Corporation ... " 81-3-3639-8951 
OMRON Corporation .•... 81-3-5488-3121 
Fuji Electronics Co., Ltd .. " 81-3-3814-1411 
Tokyo Electron Ltd •...... 81-3-3340-8239 
Nihon Motorola Micro Elec.. 81-3-3280-7333 

KOREA 
Lite-On Korea Ltd .••...•... (82)2 858-3853 
Lee Ma Industrial Co. Ltd. . ... (82)2 739-5267 
Jung Kwang Sa •....•.... (82)51802-2153 

NORWAY 
Avnet Nortec AlS Norway ...• (47) 66646210 

SCANDINAVIA 
Avnet Nortec (S) .........• (46) 87051800 
Avnet Nortec (OK) ........• (45) 42 842 000 
Avnet Nortec (N) .........• (47) 6 684 210 
ITT Mu~ikomponent AB ••... (46) 8 830 020 

SINGAPORE 
Alexan Commercial ....•..• (63)2 405-952 
GEIC ..••...•.•.....•.. (65) 298-7633 
P.T. Ometraco ....•.....•• (62)22630-805 
Shapiphat Ltd ...•......... (66)2221-5384 
Uraco Impex Asia Pte Ltd. '" (65) 284-0622 

SPAIN 
Amitron Arrow ......... " (34) 1 3043040 
EBV Spain ....•....•... (34) 1 358 86 08 
Selco S.A. .. .. .. .. . .. ... (34) 1 326 43 48 

SWEDEN 
Avnet Nortec AS ......... (48) 8629 1400 

SWITZERLAND 
ESV Switzerland ..••....• (41) 1 7401090 
Elbatex AG ...••....•...• (41) 56 275165 

TAIWAN 
Mercuries & Assoc. Ltd ..... (886)2 503-1111 
Solomon Technology Corp .... (886)2760-5858 
Strong EIec1ronk:s Co. Ltd ..•. (886)2917-9917 

Motorola Distributor and Worldwide Sales Offices 

UNITED KINGDOM 
Arrow Electronics (UK) Ltd. .• (44) 234 272733 
AvnetJAccess •••...••.... (44) 462 480888 
Future Electronics Ltd ••.... (44) 753 687000 
Macro Marketing Ltd •..••.. (44) 628 604 383 

CANADA 
ALBERTA 

Calgary 
Electro Sonic Inc. ..•.... (403)255-9550 
Future Electronics. . . . . . .. (403)250-5550 
Hamiiton/Avnet Electronics . (403)236-2484 

Edmonton 
Future Electronics. . . . . . •• (403)438-2858 
Hamiiton/Avnet Electronics . (800)663-5500 

BRITISH COLUMBIA 
Vancouver 

Electro Sonic Inc ..•••...• (609)273-2911 
Future Electronics. . • • . • .• (604)294-1166 
Hamiiton/Avnet Electronics . (604)420-4101 

MANITOBA 
Winnipeg 

Electro Sonic Inc. ....... (209)783-3105 
Future Electronics •..•.... (204)944-1446 
Hamiiton/Avnet Electronics . (204)942-3992 

ONTARIO 
Ottawa 

Arrow Electronics .•...••. (613)226-6903 
Electro Sonic Inc .•....•.. (613)728-8333 
Future Electronics •..•...• (613)820-8313 
Hamiiton/Avnet Electronics . (613)226-1700 

Toronto 
Arrow Electronics ..••... . (416)670-7769 
Electro Sonic Inc ....•.... (416)494-1555 
Future Electronics ........ (416)638-4771 
Hamilton/AvnetElectronics • (416)677-7432 
Richardson Electronics •... (416)458-5333 

QUEBEC 
Montreal 

ArrowElectronics ........ (514)421-7411 
Future Electronics ........ (514)694-7710 
Hamiiton/AvnetElectronics • (514)335-1000 

Quebec City 
Arrow Electronics .•...... (418)687-4231 
Future Electronics ........ (418)682-8092 

SI. Laurent 
Richardson Electronics .... (514)748-1770 

5 





IBM Sales Offices 

IBM IBM Centaur Corporation S-J Associates 
MICROELECTRONICS MICROELECTRONICS 18006 Sky Park Circle 265 Sunrise Highway 

Suite 106 Rockville Centre, NY 11570 
PowerPC Marketing MANUFACTURERS Irvine, CA 92714 Tel: (516) 536-4242 
Mail Stop A25/862-1 REPRESENTATIVES Tel: (714) 261-2123 Fax: (516) 536-9638 
1 000 River Street Fax: (714) 261-2905 
Essex Junction, VT 05452-4299 Bonser-Philhower 3547 West Lake Road 
Tel: (800) PowerPC 

Sales 3914 Murphy Canyon Road Canandaigua, NY 14424 
Tel: (800) 769-3772 #A125 Tel: (716) 394-3281 
Fax: (800) POWERfax 689 West Renner Road San Diego, CA 92123 Fax: (716) 394-1139 
Fax: (800) 769-3732 Suite 101 Tel: (619) 278-4950 

Richardson, TX 75080 Fax: (619) 278-0649 131-0 Gaither Drive Tel: (214) 234-8438 
Mt. Laurel, NJ 08054 Fax: (214) 437-0897 

23901 Calabasas Road Tel: (609) 866-1234 

8240 MoPac Expressway 
Suite 1063 Fax: (609) 866-8627 
Calabasas, CA 91302 

Suite 135 Tel: (818) 591-1655 10 Cooper Ridge Circle Austin, TX 78759 
Tel: (512) 346-9186 

Fax: (818) 591-7479 Guilford, CN 06437 

Fax: (512) 346-2393 Mill-Bern Associates Tel: (203) 458-7558 

2 Mack Road 
Fax: (203) 458-1181 

10700 Richmond Woburn, MA 01801 
900 S. Washington Street Suite 150 Tel: (617) 932-3311 

Houston, TX 77042 Fax: (617) 932-0511 Suite B-2 

Tel: (713) 782-4144 Falls Church, VA 22046 

Fax: (713) 789-3072 Nexus Tel: (703) 533-2233 
555 N. Mathilda Avenue Fax: (703) 533-2236 

Suite 120 
Sunnyvale, CA 94086 
Tel: (408) 720-4787 
Fax: (408) 720-4453 

IBM Sales Offices 



IBM Sales Offices 

IBM San Diego (SW) Illinois New Mexico 

MICROELECTRONICS 5520 Ruffin Rd., • Chicago (Central) Albuquerque (SW) 
Suite 209 870 Cambridge Drive 11728 Linn, N.E. 

DISTRIBUTORS San Diego, CA 92123 Elk Grove Village, IL 60007 Albuquerque, NM 87123 
Tel: (619) 268-1277 Tel: (708) 640-1910 Tel: (505) 292-2700 

Bell Industries, Inc. Fax: (619) 492-9826 Fax: (708) 640-1926 Fax: (505) 275-2819 
Electronic Distribution 

• Sunnyvale (NW) Indiana Ohio Group 1161 N. Fairoaks Ave. • Fort Wayne (Central) Cleveland (Central) 
11812 San Vicenta Blvd. Sunnyvale, CA 94089 3433 E. Washington Blvd. 31200 Solon Road, # 11 
Suite 300 Tel: (408) 734-8570 Ft. Wayne, IN 46803 Solon, Ohio 44139 
Los Angeles, CA 90049 Fax: (408) 734-8875 Tel: (219) 422-4300 Tel: (216) 498-2002 
Fax: 447-3265 Fax: (219) 423-3420 Fax: (216) 498-2006 
Tel: (800) BUY-BELL Colarado 

·FAE in these locations. 
• Denver (NW) • Indianapolis (Central) • Dayton Industrial (Central) 
1873 S. Bellaire St, #100 5230 West 79th Street 444 Windsor Park Drive 

Arizona Denver, CO 80222-0000 P.O. Box 6885 Dayton, OH 45459 

• Phoenix (SW) Tel: (303) 691-2460 Indianapolis, IN 46268 Tel: (513) 435-5922 

140 S. Lindon Lane #1 02 Fax: (303) 691-9036 Tel: (317) 875-8200 Fax: (513) 435-3122 

Tempe, AZ 85281 Connecticut 
Fax: (317) 875-8219 

Dayton (Military) 
Tel: (602) 966-3600 Hartford (NW) Maryland 446 Windsor Park Drive 
Fax: (602) 967-6584 1064 East Main Street Baltimore (Mid-Atlantic) Dayton, OH 45459 

California Meriden, CT 06450 8945 Guildford Rd., Tel: (513) 434-8231 

• Ventura (SW) Tel: (203) 639-6000 Suite 130 Fax: (513) 434-8103 

30101 Agoura Ct., #118 Fax: (203) 639-6005 Columbia, MD 21046 
Oregon 

Agoura Hills, CA 91301 Florida 
Tel: (410) 290-5100 

Portland (NW) 
Tel: (818) 879-9492 • Orlando (Southern) 

Fax: (410) 290-8006 
9275 S.W. Nimbus 

Fax: (818) 991-7695 650 S. North Lake Blvd, #400 Massachusetts Beaverton, OR 97005 

• Orange County (SW) Altamonte Springs, FL 32701 • Boston (NE) Tel: (503) 644-3444 

220 Technology Drive, Tel: (407) 339-0078 100 Burtt Road,#106 Fax: (503) 520-1948 

Suite 100 Fax: (407) 339-0139 Andover, MA 01810 
Pennysylvania 

Irvine, CA 92718 Georgia 
Tel: (508) 474-8880 

• Philadelphia (Mid-Atlantic) 
Tel: (714) 727-4500 Atlanta 

Fax: (508) 474-8902 
2556 Metropolitan Drive 

Fax: (714) 453-4610 3000 Business Park Dr., #0 New Jersey Trevose, PA 19053 

• Sacramento (NW) Norcross, GA 30071 Fairfield (Mid-Atlantic) Tel: (215) 953-2899 
4311 Anthony Ct., #100 Tel: (404) 446-7167 271 Route 46 West Fax: (215) 364-4927 

Rocklin, CA 95677 Fax: (404) 446-7264 Suites F202-203 
Tel: (916) 652-0418 Fairfield, NJ 07004 Texas 
Fax: (916) 652-0403 Tel: (201) 227-6060 Dallas (Southern) 

Fax: (201) 227-2626 1701 Greenville Ave #306 
Richardson, TX 75081 
Tel: (214) 690-0466 
Fax: (214) 690-0467 

2 IBM Sales Offices 



IBM Sales Offices 

Utah Massachusetts Arizona Connecticut 
Salt Lake City (Northwest) 16, Upton Drive Phoenix Connecticut 

6912 S. 185 West, Suite B Wilmington, MA 01887 9831 S. 51st St. 20 Sterling Drive 
Midvale, UT 84047 Tel: (508) 658-0222 Suite C1 07-109 Barnes Industrial Park, North 
Tel: (801) 561-9691 Fax: (508) 694-9987 Phoenix, AZ 85044 Post Office Box 200 
Fax: (801) 255-2477 Tel: (602) 496-0290 Wallingford, CT 06492-0200 

Minnesota Tel: (203) 265-3822 

Washington Minneapolis California 
Seattle (NW) 13513 McGinty Road E. Irvine Florida 

1715114thAve. S.E., #208 Minnetoka, MN 55305 One Morgan Fort Lauderdale 
Bellevue, WA 98004 Tel: (612) 933-3236 Irvine, CA 92718 2700 W. Cypress Creek Rd., 
Tel: (206) 646-8750 Fax: (612) 933-3415 Tel: (714) 458-5301 Suite 0114 
Fax: (206) 646-8559 Ft. Lauderdale, FL 33309 

New York/New Jersey Los Angeles Tel: (305) 977-4880 

Wisconsin 1055 Parsippany Blvd., Ste 501 26637 West Agoura Rd 
Milwaukee (Central) Parsippany, NJ 07054 Calabasas, CA 91302 Orlando 

W 226 N 900 Eastmound Tel: (201) 402-5959 Tel: (818) 878-7000 380 S. Northlake Boulevard, 
Waukesha, WI 53186 Fax: (201) 402-0424 Suite 1024 
Tel: (414) 547-8879 Sacramento Altamonte Springs, FL 32701 
Fax: (414) 547-6547 Texas 3039 Kilgore Avenue Tel: (407) 767-8585 

100 North Central Expressway, Rancho Cordova, CA 95670 
Ste502 Tel: (916) 635-9700 Tampa 

Bell Microproducts Richardson, TX 75080-5300 2840 Scherer Drive, Suite 410 

Branch Locations Tel: (214) 783-4191 San Diego St. Petersburg, FL 33716 

California 
Fax: (214) 234-2123 5961 Kearny Villa Tel: (813) 573-1399 

Northern 
San Diego, CA 92123 

1941 Ringwood Ave. Washington Tel: (619) 627-4140 Georgia 

San Jose, CA 95131 18210 Redmond Way, Ste 302 Atlanta 

Tel: (408) 451-9400 Redmond, WA 98052 San Francisco 5300 Oakbrook Parkway, 

Fax: (408) 451-1600 Tel: (206) 861-5710 336 Los Coches Street Suite 140 
Fax: (206) 885-5399 Milpitas, CA 95035 Norcross, GA 30093-9990 

Southern 
Tel: (408) 942-4600 Tel: (404)923-5750 

18350 Mt. Langley, # 207 
Colorado Illinois Fountaint Valley, CA 92708 Marshall Industries 

Tel: (714) 963-0667 Branch Locations Denver Chicago 

Fax: (714) 968-3195 Alabama 
12351 North Grant 50 East Commerce Drive, 
Thornton, CO 80241 Unit 1 

Huntsville Tel: (303) 451-8383 Schaumburg, IL 60173 
860-H Hampshire 3313 Memorial Parkway South Tel: (708) 490-0155 
Westlake Village, CA 91362 Huntsville, AL 35801 
Tel: (805) 496-2606 Tel: (205)881-9235 
Fax: (805) 496-6119 

IBM Sales Offices 3 



IBM Sales Offices 

Indiana Missouri Dayton Washington 
Indianapolis st. Louis 3520 Park Center Drive Seattle 

6990 Corporate Drive 3377 Hollenberg Drive Dayton, OH 45414 11715 North Creek Pkwy South, 
Indianapolis, IN 46278 Bridgeton, MO 63044 Tel: (513) 8984480 Suite 112 
Tel: (317) 297-0483 Tel: (314) 291-4650 Bothell, WA 98011 

Oregon Tel: (206) 486-5747 

Kansas New Jersey Portland 
Kansas City North New Jersey 9705 S.W. Gemini Drive Wisconsin 

10413 West 84th Terrace 101 Fairfield Road Beaverton, OR 97005 Milwaukee 
Pine Ridge Business Park Fairfield, NJ 07006 Tel: (503) 644-5050 Crossroads Corporate Center 1 
lenexa, KS 66214 Tel: (201) 882-0320 20900 Swenson Drive, Suite 
Tel: (913) 492-3121 Pennsylvania 150 

New York Philadelphia Waukesha, WI 53186 

Massachusetts Binghamton 158 Gaither Drive Tel: (414) 797-8400 

Boston 100 Marshall Drive Mt. Laurel, NJ 08054 
33 Upton Drive Endicott, NY 13760 Tel: (609) 234-9100 
Wilmington, MA 01887 Tel: (607) 785-2345 Canada 
Tel: (508) 658-0810 Texas G.S.Marshall Company 

Long Island Austin Toronto 
Maryland 95 Oser Avenue 8504 Cross Park Drive 4 Paget Road 

Maryland Haupanuge, NY 11788 Austin, TX 78754 Units 10 and 11 
2221 Broadbirch Drive Tel: (516) 273-2695 Tel: (512) 837-1991 Building 1112 
Silver Springs, MD 20904 Brampton, Ontario 
Tel: (301) 622-1118 Rochester Dallas L6T5G3 

1250 Scottsville Road Corporate Square Tech Tel: (416) 458-8046 
Michigan Rochester, NY 14624 Center III 

Michigan Tel: (716) 235-7620 1551 North Glenville Drive 
Montreal 

31067 Schoolcraft Richardson, TX 75081 
148 Brunswick Boulevard 

Livonia, MI48150 North Carolina Tel: (214) 705-0600 
Pointe Claire, Quebec H9R 5P9 

Tel: (313) 525-5850 Raleigh Tel: (514) 694-8142 
5224 Greens Dairy Road Houston 

Minnesota Raleigh, NC 27604 10681 Haddington Drive, 

Minneapolis Tel: (919) 878-9882 Suite 160 

14800 28th Avenue Houston, TX 77043 United Kingdom 
Suite 175 Ohio Tel: (713) 467-1666 Macro Marketing, LTD. 
Plymouth, MN 55447 Cleveland Branch Burnham Lane 
Tel: (612) 559-2211 30700 Bainbridge Road, Unit A Utah Slough SL 1 6LN 

Solon, OH 44139 Salt Lake City United Kingdom 

Tel: (216) 248-1788 2355 South 1070 W Tel: (44) 628604383 
Suite D Fax: (44) 628 666 873 

Salt Lake City, Utah 84119 /668071 
Tel: (801) 973-2288 

4 IBM Sales Offices 



IBM Sales Offices 

Blue Microelectronics 
Limited 
Albion House, 
Victoria Promenade 
Northhampton, NN1, 1HH 
United Kingdom 
Tel: (44) 604 603 310 
Fax: (44) 604603320 

France 
A2M 
5, rue Carle Vernet 
92315 SEVRES CEDEX 
France 
Tel:(33)-1-46-23-79-Q0 
Fax: (33)-1-46-23-79-23 

INTERNATIONAL 
SALES OFFICES 

IBM Sales Offices 

Leading 
Technologies SA 
1 Avenue des Neuvilles 
1920 Martigny 
Switzerland 
Tel: (41) 26-232 257 
Fax: (41) 26-228 609 

IBM Microelectronics 
Department 1045 
224 Boulevard J.F.Kennedy 
91105 Corbeil-Essonnes, 
CEDEX 
France 
Tel: (33) 1-60885167 
Fax: (33) 1-60 88 4920 

Germany 
In Distribution 
Postfach 1246 
Bahnhofstrasse 44 
0-71693 Moglingen, Germany 
Tel: 0130857314 
Fax: 0130 83 33 01 

IBM Microelectronics 
Europe 
Department 8142 
Tour Descartes, 
CEDEX50 
F.92066 Paris 
La Defense 
France 
Tel: (33) 1-49058533 
Fax: (33) 1-47887912 

Aviv Electronics 
4, Hayetzira St. 
Raanana,43100 
Israel 
Tel: (972) 9-983232 
Fax: (972) 9-916510 

IBM Microelectronics 
Department R0260 
800 Ichimiyake, 
Yasu-cho, Yasu-gun, Shiga-ken 
Japan 520-23 
Tel: (81) 775-87-4745 
Fax: (81) 775-87-4735 

5 





Overview 

PowerPC604 Processor Programming Model ~ 

Cache and Bus Interface Unit Operation 

Exceptions 

Memory Management 

Instruction Timing 

Signal Descriptions 

System Interface Operation 

Performance Monitor 

PowerPC Instruction Set Listings • 

Invalid I nstruction Forms • 

Glossary of Terms and Abbreviations • 

Index. 



Overview 

r. PowerPC 604 Processor Programming Model 

Cache and Bus Interface Unit Operation 

Exceptions 

Memory Management 

Instruction Timing 

Signal Descriptions 

System Interface Operation 

Performance Monitor 

• PowerPC Instruction Set Listings 

• Invalid Instruction Forms 

• Glossary of Terms and Abbreviations 

• Index 1 ATX31764-0 Printed in USA 11/94 COURIER UM 20902 30,000 MPU YGABAA 




