
 Public Imagination Technologies

PowerVR Framework Development Guide 1 Revision PowerVR SDK REL_18.1@5080009

PowerVR Framework

Development Guide

Public. This publication contains proprietary information which is subject to change without notice
and is supplied 'as is' without warranty of any kind. Redistribution of this document is permitted

with acknowledgement of the source.

Filename : PowerVR Framework.Development Guide

Version : PowerVR SDK REL_18.1@5080009 External Issue

Issue Date : 31 May 2018

Author : Imagination Technologies Limited

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 2

Contents

1. Overview of the PowerVR Framework .. 4

1.1. Libraries .. 4
1.1.1. Default library locations .. 4

1.2. Additional header files .. 5
1.2.1. DynamicGles.h/DynamicEGL.h .. 5
1.2.2. vk_bindings.h/vk_bindings_helper.h .. 5

1.3. Overview of the PowerVR Framework Modules ... 6
1.3.1. PVRShell .. 6
1.3.2. PVRVk .. 7
1.3.3. PVRAssets ... 7
1.3.4. PVRCore .. 8
1.3.5. PVRUtils ... 8
1.3.6. PVRCamera ... 9
1.3.7. Changes from older modules ... 9

1.4. Platform Independence .. 10
1.4.1. Supported platforms ... 10
1.4.2. Build system ... 10
1.4.3. File system (streams) ... 10
1.4.4. Windowing system ... 10

1.5. Supported APIs... 11
1.6. The Skeleton of a Typical Framework 5.x Application ... 12

1.6.1. PowerVR SDK examples structure .. 12
1.6.2. The minimum application skeleton ... 12
1.6.3. Using PVRVk .. 13
1.6.4. Using PVRUtils ... 13
1.6.5. Using the UIRenderer ... 15
1.6.6. A simple application using PVRVk/PVRUtilsVk/PVRUtilsEs 17
1.6.7. Rendering without PVRUtils ... 21

1.7. Synchronisation in PVRVk (and Vulkan in general) ... 21
1.7.1. Semaphores ... 21
1.7.2. Fences .. 22
1.7.3. Events... 22
1.7.4. Recommended typical synchronisation for presenting .. 22

1.8. Overview of Useful Namespaces ... 23
1.9. Debugging PowerVR Framework Applications .. 23

1.9.1. Exceptions .. 23
1.9.2. OpenGL ES .. 23
1.9.3. Vulkan/PVRVk .. 23

2. Tips and Tricks .. 25

2.1. Frequently Asked Questions .. 25
2.1.1. Which header files should I include? .. 25
2.1.2. Which libraries should be linked against? .. 25
2.1.3. Does library link order matter? ... 25
2.1.4. Are there any dependencies to be aware of? .. 26
2.1.5. What are the strategies for Command Buffers? What about Threading? 26
2.1.6. How are PVRVk objects created? .. 27
2.1.7. How are PVRVk Objects cleaned up? Is there anything that needs to be destroyed
that the developer did not create? .. 27
2.1.8. How is a UIRenderer cleaned up? ... 27
2.1.9. Do any API objects need to be manually kept alive? ... 27
2.1.10. How are files/assets/resources loaded? .. 28
2.1.11. How are buffers updated? .. 28

2.2. Models and Effects, POD & PFX .. 30
2.2.1. Models, meshes, cameras, and similar .. 30
2.2.2. Effects... 31

2.3. Utilities and the RenderManager .. 31

 Public Imagination Technologies

PowerVR Framework Development Guide 3 Revision PowerVR SDK REL_18.1@5080009

2.3.1. Simplified structure of the RenderManager Render Graph 32
2.3.2. Semantics ... 32
2.3.3. Automatic Semantics .. 32

2.4. Reference Counting .. 33
2.4.1. Performance ... 34
2.4.2. Features ... 34
2.4.3. Creating a smart pointer ... 35

2.5. Input Handling Tips and Tricks ... 38
2.5.1. PVRShell simplified (mapped) input ... 38
2.5.2. Lower-level input .. 39

2.6. Renderpass/PLS strategies .. 39

3. Contact Details .. 42

List of Figures
Figure 1. Framework Structure ... 6

Figure 2. PowerVR SDK Examples Structure ... 12

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 4

1. Overview of the PowerVR Framework
The PowerVR Framework, also referred to as the Framework, is a collection of libraries that is
intended to serve as the basis for a graphical application. It is made up of code files, header files and
several platforms‟ project files that group those into modules, also referred to as libraries.

The PowerVR SDK aims to:

 Facilitate development using low level graphics APIs (OpenGL ES, Vulkan)

 Promote best practices using these APIs

 Show and encourage optimal API use patterns, tips and tricks for writing multi-platform code,
while also ensuring optimal behaviour for the PowerVR platforms

 Demonstrate variations of rendering techniques that function optimally on PowerVR platforms.

The purpose of the PowerVR Framework is to find the perfect balance between raw code and engine
code. In other words:

 It is fast and easy to get going with - for example, default parameters on all Vulkan objects

 For Vulkan, it thinly wraps the raw objects to make things easier and more convenient. Whilst
the raw Vulkan must provide a C interface, the Framework through PVRVk provides a C++
interface.
This allows reference counting and STL objects, and in general makes coding much easier
and shorter.

 It is obvious what the code does to someone used to the raw APIs from looking at any
example

 Any differences from the raw APIs such as Vulkan lifecycle management are documented.

Note: This document has been written assuming the reader has a general familiarity with the 3D
graphics programming pipeline, and some knowledge of OpenGL ES (version 2 onwards)
and/or Vulkan.

1.1. Libraries

All the PowerVR Framework libraries are provided as source code, and compiled by default as static
libraries. A developer could theoretically configure these as dynamic libraries (.dll/.so and so on) to
allow dynamic binding, but no such attempt has been done in the SDK.

We use CMake to build our demos and framework modules. The demos depend on the Framework,
so a developer can always just use CMake on the demo they are interested in, and it will build
everything required. We also provide top-level CMakeLists that build the entire SDK as it does not
take that long to build – generally a few minutes.

The Framework is a high-level C++ project, so no sterilised C APIs exist. This means that the libraries
and the final executable should always be compiled with the same compiler make/version with
compatible parameters to ensure that C++ rules such as the One Definition Rule (ODR) is observed.
This is one of the reasons we provide a common .cmake used by both the examples and the
Framework. The compilers must use the same C++ name mangling rules and other details, otherwise
the behaviour may be unexpected.

1.1.1. Default library locations

The provided CMake files place Framework library files into:

[SDKROOT]/framework/bin/[PLATFORM,CONFIG…]/

For example:

 Public Imagination Technologies

PowerVR Framework Development Guide 5 Revision PowerVR SDK REL_18.1@5080009

c:\Imagination\PowerVR_SDK\Framework\bin\Windows_x86_64\Debug\PVRVk.lib

or:

//home/myself/PowerVR_SDK/Framework/bin/Linux_x86_64/Debug_X11/libPVRVk.a

1.2. Additional header files

The PowerVR Framework contains some useful header files that solve some of the most problematic
OpenGL problems, and bring Vulkan closer to the C++ world.

Those header files have no dependencies and are not part of any module. They can be used exactly

as they are, and each one functions individually. They can all be found in [SDKROOT]/include.

It is highly recommended that developers read about and use these header files as they are very
beneficial.

1.2.1. DynamicGles.h/DynamicEGL.h

DynamicGles.h and DynamicEgl.h are based upon similar principles - they provide a convenient

single header file solution that loads OpenGL ES/EGL. This includes all supported extensions,
dynamically and without statically linking to anything, by using advanced C++ features.

To use them, drop the files somewhere where the compiler will find the header file which is generally

wherever library header files are usually stored. Write “#include DynamicGLES.h” at the top of the

code file, and everything will work – the code will have OpenGL ES functions available.

There is no need to link against EGL, or define function pointers.

It is still necessary to test for extension support, and there is a function for that in EGL. However,
everything else is automatic including loading the extension function pointers.

The libraries (libGLESv2.lib/so, libEGL.lib/so) do not need to be linked to as they are loaded

at runtime. However, they do need to be present on the platform where the application runs.

DynamicGles.h can limit the compile-time OpenGL ES version, minimum 2. This can be done by

defining DYNAMICGLES_GLES2, DYNAMICGLES_GLES3, DYNAMICGLES_GLES31 or

DYNAMICGLES_GLES32. The default is always the highest supported.

These are all replacements for the corresponding gl2.h/gl3.h/gl2ext.h/egl.h, so do not

include those directly.

Whenever possible, namespaces are used to group symbols and keep the global namespace as clear
as possible.

 DynamicGles.h places functions in gl:: (so glGenBuffers becomes gl::GenBuffers)

unless DYNAMICGLES_NO_NAMESPACE is defined before including the file.

 DynamicEGL.h places functions in egl:: (so eglSwapBuffers becomes

egl::SwapBuffers) unless DYNAMICEGL_NO_NAMESPACE is defined before including the

file.

1.2.2. vk_bindings.h/vk_bindings_helper.h

In Vulkan, each driver or device or Vulkan installation in the developer‟s system is represented as

Vulkan underlying objects. For example, there is the VkInstance, the VkPhysicalDevice,

VkDisplay and others. Vulkan is called by calling the vkXXXXXXX globally and passing the

corresponding object - for example call vkCreateBuffer(myVulkanDevice…)

The problem is that objects that belong to different VkPhysicalDevices need to dispatch to

different functions as they use different drivers to implement the functions. The Vulkan Loader (the

vulkan-1.dll that is linked against) will need to do this dispatching, causing a needless level of

indirection. This is because the global function is called, which is in the loader. It then determines
which device it needs to be dispatched to, and calls that function, and then returns the result.

The Vulkan recommended way to tackle this is simple. Do not use the global functions for functions
dispatched to a VkDevice – these are functions that get a VkDevice as their first parameter. Instead,
get function pointers for the functions specific to that device, so that the dispatching can be skipped.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 6

vk_bindings.h does exactly this. It is an auto-generated file that provides all the function pointer

definitions and loading code to get per-instance and per-device function pointers.

1.3. Overview of the PowerVR Framework Modules

Figure 1. Framework Structure

1.3.1. PVRShell

About PVRShell

PVRShell, and especially the pvr::Shell class is the scaffolding of an application. It implements

the entry point (main) of the application and provides convenient places to immediately start coding

application logic.

It is intended for the main structure of an application to be a class implementing pvr::Shell as

seen in The Skeleton of a Typical Framework Application. This way, all of the per-platform
initialisation (creating the window, reading command line parameters, calling a function at
initialisation, every frame, and teardown) is taken care of. Every conceivable platform operation such
as loading files from device-specific storages is provided.

Its public contents can easily be accessed from inside the application class itself. The application

class normally derives from the pvr::Shell class, and is powered by its callbacks. So in most IDEs,

after writing this-> somewhere in the main application class, autocomplete should give all the

information needed to be able to use PVRShell.

PVRShell handles everything up to the level of display/window creation. Higher levels - for instance
GPU contexts/devices/API calls/surfaces including any and all API objects - are not handled by the
Shell. These should be dealt with from the application, normally using PVRUtilsVK / PVRUtilsGles.

In summary, PVRShell:

 abstracts away the platform - display, input, filesystem, window and so on

 contains main() or any other platform-specific entry point of the application

 is the ticking clock that provides all the events that structure the application

 provides utilities for reading command line parameters, loading and saving files, displaying
the fps and many others

 catches std::runtime_error exceptions. All the exceptions used in the Framework derive

from std::runtime_error.The message is displayed in a platform-specific way, usually a

dialog window.

How to use PVRShell

PVRShell uses PVRCore and therefore requires it to be linked in the application.

 Include PVRShell/PVRShell.h, in the main app class file

 Public Imagination Technologies

PowerVR Framework Development Guide 7 Revision PowerVR SDK REL_18.1@5080009

 Create a class that derives from pvr::Shell as described in The Skeleton of a Typical

Framework 5.x Application to begin using the shell. The library file will be named

PVRShell.lib or equivalent; libPVRShell.a and so on.

1.3.2. PVRVk

About PVRVk

PVRVk is an independent module providing a convenient, advanced, yet still extremely close to the
original Vulkan abstraction. It offers a sweet spot combination of simplicity, ease of use, minimal
overhead and respect to the specifications.

The main features are:

 C++ classes that wrap the Vulkan objects with their conceptual functionalities

 automatic reference counted smart pointers for all Vulkan objects/object lifecycle
management

 Command buffers know what objects await execution into them and keep them alive

 Descriptor sets actually contain references to objects they contain

 Default parameters for all parameter objects and functions, where suited

 Structs initialised to sensible defaults

 Strongly typed enums wrapping Vulkan enums

Developers who have used the Vulkan spec should find it very familiar without any other external

references. All developer-facing functionality can be found in the pvrvk:: namespace.

To make sure PVRVk can be used by as wide an audience as possible, it is completely independent
from any other Framework module. This includes PVRCore, so this is the reason there is a little
duplication of code between PVRVk and PVRCore, especially error logging.

How to use PVRVk

PVRVk can be used by just following the Vulkan specification and getting a handle on the obvious
conventions:

 Enums are type safe (enum class) and their members lose the prefix. Instead e_ is added

so that members like VK_FORMAT_2D can be defined as e_2D)

 Vulkan functions become methods of their first parameter's class. This means that any
function that takes a command buffer as its first argument becomes a member function of the

CommandBuffer class.

 A few other obvious rules such as Resource Acquisition Is Initialisation (RAII) objects. This
means release whatever is not wanted any more by null-ing or resetting its handle, or just
letting it go out of scope.

PVRVk has no Framework dependencies and uses vulkan_bindings.h. The compiled library file

is named PVRVk, therefore the files are PVRVk.lib and libPVRVK.a. The library will need to be

linked to be used.

PVRVk/PVRVk.h will need to be included in order to make available the symbols required for PVRVk,

but PVRUtilsVk will always include the PVRVk headers anyway. Therefore when using PVRUtilsVk

there is no need to #include “PVRVk/PVRVk.h”

For developers familiar with Vulkan, the sections Using PVRVk and Tips and Tricks may also give
some useful Vulkan tips.

PVRUtilsVk uses PVRVk. All of the PowerVR SDK Vulkan examples except for HelloAPI (which is
completely raw code) are nearly all PVRVk/PVRUtilsVk code.

1.3.3. PVRAssets

PVRAssets is used to work directly with the CPU-side of the authored parts of an application, for
example models, meshes, cameras, lights, textures and so on. It is used when dealing with
application logic for things like animation and in general scene management.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 8

PVRAssets does not contain any code that is related to the Graphics API and API objects. A mesh

defined in pvr::assets contains raw vertex data loaded in CPU-side memory. This may be

decorated by metadata such as datatypes, meaning (semantics) and all the data needed to create a
Vertex Buffer Object (VBO), but not the VBO itself. This area is covered by PVRUtils or the
application.

PVRAssets is the recommended way to load and handle a multitude of assets. These include but are
not limited to all PowerVR formats like POD (models), PVR (textures, fonts) and PFX (effects). The
PVRAssets classes map very well to these, but can easily be used by other formats as well.

This would normally be accomplished by extending the AssetReader class for other formats, so it

should work well with the rest of the Framework. For instance, an AssetReader<Texture> for

JPEG, or an AssetReader<Model> for Wavefront OBJ would be simple to write.

How to use PVRAssets

PVRAssets requires PVRCore. PVRAssets is required by PVRUtilsVk and PVRUtilsGles. It is
necessary to link against the PVRAssets library if using its functionality or PVRUtils(Vk/ES). Include

“PVRAssets/PVRAssets.h” to include all normally required functionality of PVRAssets.

Start from the pvr::assets::Model class to become familiar with PVRAssets.

1.3.4. PVRCore

About PVRCore

PVRCore contains low-level supporting C++ code. This includes, but is not limited to:

 data structures

 code helper functions

 math such as frustum culling and cameras

 string helpers such as Unicode and formatting

PVRCore has several fully realised classes that can be used in their own right, such as the

RefCountedResource and Stream. These can be used on their own if required. Look into the

pvr, pvr::strings and pvr::maths namespaces for other useful functionality.

How to use PVRCore

PVRCore should be linked into applications that use PVRShell, PVRAssets or PVRUtils. It is required
by all modules (except PVRVk) and requires none of the other PVR modules.

PVRCore requires and includes the external library GLM for vectors and matrices, a modified version

of moodyCamel::ConcurrentQueue for multithreading, and pugixml for reading XML data.

Include PVRCore/PVRCore.h to include all common functionality of PVRCore.

1.3.5. PVRUtils

About PVRUtils

PVRUtils is another central part of developer-facing Framework code. Where PVRShell abstracts and
provides the platform, PVRUtils provides tools and facilitates working with the rendering API,
automating and assisting common initialisation and rendering tasks.

It provides higher level utilities and helpers for tedious tasks such as context creation, vertex
configuration based on models, and texture loading. These extend right up to very high level complex
areas like the UIRenderer which is a full-fledged 2D renderer itself, threading and access to the
hardware camera and so on.

There are two versions available covering Vulkan and OpenGL ES - these are PVRUtilsVk and
PVRUtilsGles. They provide a similar but not identical API, as they have several differences in order
to optimise better each for their underlying API.

The most typical functionality in PVRUtils (either version) is boilerplate removal. Tasks such as
creating contexts, surfaces, queues and devices can be reduced to one line of code. There is also
support for creating VBOs from a model, loading textures from disk and much more.

 Public Imagination Technologies

PowerVR Framework Development Guide 9 Revision PowerVR SDK REL_18.1@5080009

For Vulkan, this reduced the usually hundreds of lines of code to create physical devices, surfaces,
devices, queues, and backbuffers to around ten lines. Loading textures or buffers with an allocator
becomes a single line each.

For both OpenGL ES and Vulkan, StructuredBufferView is very important, as it is a tool to

determine the std140 layout of buffers. It makes mapping and setting members more straightforward,
without needing to go into complicated packing/padding calculations.

Importantly, it also contains the UIRenderer. This is a very powerful library, which provides the
capability of rendering 2D objects in a 3D environment, especially for text and images. For text
rendering, font textures can be generated in a few seconds with PVRTexTool. An Arial font is
provided and loaded by default.

Several methods of layout and positioning are provided, such as:

 anchoring

 custom matrices

 hierarchical grouping with inherited transformations

Other functionality provided by PVRUtils includes:

 asynchronous operations via a texture loading class that loads textures in the background

 the Vulkan RenderManager. This is a class that can completely automate rendering by using
the PowerVR POD and PFX formats for a complete scene description.

How to use PVRUtils

PVRUtilsVk is built on top of PVRVk, and PVRUtilsGles is built on top of raw OpenGL ES

2.0+. Their main header files need to be included with #include “PVRUtils/PVRUtilsVk.h” or
#include “PVRUtils/PVRUtilsGles.h”

Later on in this document is more information on the basic use of UIRenderer.

All the SDK examples use PVRUtils for all kinds of tasks. They use UIRenderer to display titles and
logos. The exceptions are HelloApi and IntroducingPVRShell.

IntroducingUIRenderer and ExampleUI are both examples of more complex UIRenderer
usage. Multithreading showcases the Asynchronous API for Vulkan.

1.3.6. PVRCamera

PVRCamera provides an abstraction for the hardware camera provided by Android and iOS. Currently
it is only implemented for OpenGL ES (not Vulkan) as the camera texture is provided as an OpenGL
ES texture. In Windows/Linux, a dummy implementation displaying a static image instead of the
camera stream is provided to assist development on desktop machines.

Using PVRCamera

Include PVRCamera/PVRCamera.h.

The SDK example IntroducingPVRCamera shows how to use this module.

1.3.7. Changes from older modules

PVRPlatformGlue

PVRPlatformGlue (EGL/EAGL) context creation functionality has been moved into PVRUtilsGles

and called explicitly in application code.

PVRPlatformGlue (Vk) is no longer separate and is covered by PVRVk, with its helper functionality
into PVRUtilsVk.

PVRApi

PVRApi (OpenGL ES) has been removed. No OpenGL ES abstraction is provided any more, and the
high level functionality moved into PVRUtilsGles as helpers and support classes.

PVRApi (Vulkan) has been reimagined and streamlined into PVRVk, with its high-level functionality
extracted into PVRUtilsVk.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 10

PVRUIRenderer

PVRUIRenderer is now a part of PVRUtils, and has been split into two platform specific parts:

 OpenGL ES has been reimplemented with tweaks for more natural use with raw OpenGL ES
code, and moved into PVRUtilsGles. The biggest difference is that it executes GL commands
inline instead of recording into command buffers.

 Vulkan is largely the same as in versions 4.+

1.4. Platform Independence

All platform specific code is abstracted away from the application. Apart from obvious issues, such as
different compilers/toolchains, project files and so on, this also means areas such as the file system
and the window/surface itself. This platform independence is largely provided from PVRShell.

1.4.1. Supported platforms

The PowerVR Framework is publicly supported for Windows, Linux, OSX, Android, iOS, and QNX.

1.4.2. Build system

All platforms use CMake for all platforms. Each framework module and example have their own

CMakeLists.txt, and there is additionally a CMakeLists.txt file at the root of the SDK.

For Android, we are using gradle for the java part and putting the apk together, and CMake (the same
CMake as all the other platforms) for the native part. CMake is called internally by the Android build
system. Each framework module and example has their gradle build scripts in a build-android folder.

We are also providing a number of cross-compilation toolchains. These are found in the

cmake/toolchains folder of the SDK. These are:

 iOS cross-compilation toolchain

 Linux cross-compilation with gcc (x86_32,x86_64,armv7, armv7hf, armv8, mips32,mips64)

 QNX cross-compilation with qcc (x86_32,x86_64,aarch64le, armlet-v7)

Changing the compiler to something else is achieved by changing/copying the CMake toolchains.

1.4.3. File system (streams)

The file system is abstracted through the PVRCore and PVRShell.

In PVRCore, the abstract class pvr::Stream contains several implementations:

 pvr::FileStream, provides code for files

 pvr::AndroidAssetStream, provides code for Android Assets

 pvr::WindowsResourceStream provides code for Windows Resource files

 pvr::BufferStream provides code for raw memory

Any Framework functionality requiring raw data will require a pvr::Stream object, so that files, raw

memory, android assets or windows resources can be used interchangeably.

PVRShell puts everything together. The pvr::Shell class provides a getAssetStream(…)

method which will try all applicable methods to get a pvr::Stream to a filename provided. It initially

looks for a file with a specified name, and if it fails it will then attempt other platform specific streams
such as Android Assets or Windows Resources. Linux by default only supports files, and iOS

accesses its bundles as files. It is important to check the returned smart pointer for NULL to make

sure that a stream was actually created.

1.4.4. Windowing system

The windowing system is abstracted through PVRShell. No access is required, or given to the

windowing system, except for generic OSWindow and OSDisplay objects used for context/surface

creation by PVRUtils. Window creation parameters such as window size, full screen mode,

 Public Imagination Technologies

PowerVR Framework Development Guide 11 Revision PowerVR SDK REL_18.1@5080009

framebuffer formats and similar are accessed by several setXXXXXXX PVRShell functions that the

developer can call in the initialisation phase of the application.

1.5. Supported APIs

Version 5.0 and beyond of the PowerVR SDK will no longer provide API independence. PVRUtils is
now separate libraries which sometimes differ in both API and implementation.

This was not a decision taken lightly. However, it was felt that whilst in the early Vulkan days an
experimental cross-API implementation would be very valuable, as Vulkan matured the value became
less. Vulkan is intended to be cross-platform, so a cross-API with OpenGL ES is no longer necessary.
In the interests of Vulkan SDK flexibility and expressiveness, and the educational value of OpenGL
ES SDK, it seemed sensible to separate the APIs so they no longer trip over each other.

Some benefits to Vulkan are immediately obvious:

 Vulkan queues have been unleashed. Any queue configuration allowed by the specification
can be produced. In previous versions, queues were internally handled.

 Any synchronisation scheme may be realised. The previous version featured automatic
synchronisation that was convenient, but limited.

 Multi surface cases and similar can be done. In the previous versions, surfaces were handled
internally, making multi-surface impossible.

 In general it is now much easier to do custom, even unusual solutions without performing
unnecessary or complex operations.

The main benefit for OpenGL ES is a return to its educational values.

The obvious change that this causes is that all API objects such as contexts, devices, and surfaces
are explicitly created in application code, by the developer. PVRUtils makes this easy, but it is still
completely obvious what is happening, and it is simple to follow the code.

Additionally, by incorporating PVRShell command line configuration, initialisation becomes a handful
of lines at most. For example, PVRUtilsGles can one-line-create an EGL/EAGL context supporting the
highest available OpenGL ES version that is supported at runtime, with a command-line developer-
specified resolution and backbuffer format.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 12

1.6. The Skeleton of a Typical Framework 5.x Application

1.6.1. PowerVR SDK examples structure

PowerVR SDK examples follow the following structure:

Figure 2. PowerVR SDK Examples Structure

1.6.2. The minimum application skeleton

The easiest way to create a new application is to copy an existing one - for example
IntroducingPVRUtils.

 Add the sdk folders framework/ and include/ as include folders

 Link against PVRShell, PVRCore, PVRAssets, and either PVRUtilsVk (PVRUtilsVk.lib) or

PVRUtilsGles (PVRUtilsGles.lib)

o If using Vulkan, the application should also link against PVRVk (PVRVk.lib)

o If using OpenGL ES, there is no need to link against OpenGL ES libraries.

DynamicGles.h takes care of loading the functions at runtime.

 Include PVRShell.h, and PVRUtilsVk.h or PVRUtilsGles.h in the file where the

application class is

 Create the application class, inheriting from pvr::Shell, implementing the five mandatory

callbacks as follows:

class MyApp : public pvr::Shell

{

 //...Your class members here...

 pvr::Result::initApplications();

 pvr::Result::initView();

 Public Imagination Technologies

PowerVR Framework Development Guide 13 Revision PowerVR SDK REL_18.1@5080009

 pvr::Result::renderFrame();

 pvr::Result::releaseView();

 pvr::Result::quitApplication();

}

 Create a free-standing newDemo() function implementation with the signature

std::unique_ptr<pvr::Shell> newDemo() that instantiates the application. The Shell

uses this to create the Application. Use default compiler options such as calling conventions
for it.

std::unique_ptr<pvr::Shell> newDemo()

{

 return std::unique_ptr(new MyApp());

}

1.6.3. Using PVRVk

PVRVk follows the Vulkan spec, and all operations normally need to be explicitly performed. The calls
themselves are considerably shortened due to the constructors and default values, while reference
counting again dramatically reduces the bookkeeping code required.

For simplifying the operations and tasks themselves see PVRUtils.

Note that with PVRVk, the optimised, per-device function pointers are always called as devices hold
their function pointer tables internally. Function pointers do not need to be retrieved with

VkGetDeviceProcaddress and similar, as this happens automatically at the construction of the

device.

There are obvious usage changes, due to the Object Oriented paradigm followed. In general:

 Vulkan functions whose first parameter is a Vulkan object become member functions of the

class of that object. For example, VkCreateBuffer becomes a member function of

pvrvk::Device, so developers will need to use myDevice->createBuffer().

 Functions without a dispatchable object as an input parameter object remain global functions

in the pvrvk:: namespace. For example, pvrvk::CreateInstance(…).

 Simple structs like Offset2D and so on are shadowed in the pvrvk:: namespace.

 VkXXXCreateInfo objects get shadowed by pvrvk:: equivalents with default parameters

and potentially setters. Obvious simplifications/automations are done, for instance

VK_STRUCTURE_TYPE is never required as it is autopopulated.

 Vulkan Objects are wrapped in C++ reference-counted classes providing them with a proper
C++ interface. Usage remains the same and the Vk… prefix is dropped. For

example VkBuffer becomes pvrvk::Buffer.

 All enums are shadowed by C++ scoped enums (enum class TypeName)

o The VK_ENUM_TYPE_NAME_ prefix of enum members is dropped and replaced by e_

In many cases, for example after dropping VK_ FORMAT_2D, this would become

pvrvk::Format::2D which is illegal as it starts with a number.

o Flags/Bitfields are used like every other enum as bitwise operators are defined for

them. VkCreateBufferFlags and VkCreateBufferFlagBits become just

pvrvk::CreateBufferFlags and are directly passed to corresponding functions.

1.6.4. Using PVRUtils

PVRUtilsVk

Even using PVRVk, the amount of boilerplate code required by Vulkan for many common tasks can
be daunting due to operations complexity.

This is particularly obvious in the simplest tasks that require CPU-GPU transfers, especially loading
textures. Even this requires staging buffers and special synchronisation, and in general looks
daunting at first.

For even just initialising, the list is as follows:

 creating an instance

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 14

 getting device function pointers

 enabling extensions

 creating a surface

 enumerating the physical devices

 selecting a physical device

 querying queue capabilities

 creating a logical device

 querying swap chain capabilities

 deciding a configuration

 creating a swapchain

Each of these steps has a few tens of lines in raw Vulkan, and with quite involved logic.

Initially, the PVRUtilsVk helpers can help automate most, if not all of these tasks, without taking away
any of the power. Additionally, if a fringe case cannot be done with the helpers, they only need to be
used as required. They don‟t introduce unnecessary intermediate objects, so mixing and matching as
needed is fine.

It is recommended to look at any SDK example, and then if more information is required, follow the
utility code. The helpers are usually reasonably simple functions, though in some cases they can get
longer the more complex the task.

One of the more important helpers is texture loading, which is automated. The particulars of it can be
daunting – for instance:

 determining the exact formats

 array members

 mipmaps

 calculating required memory type and size

 allocating yet more memory for staging buffers

 copying data into it

 kicking transfers to the final texture

 waiting for the results

Or, alternatively, use the texture upload functions, and follow the code to see how it is done.

To learn more about the particulars such as staging buffers, determining formats, read the
implementation of the texture upload function or look at the HelloAPI example.

Many more such helpers can be found in pvr::utils.

Note: During initialisation, some PVRUtilsVk utility functions will use the DisplayAttributes class.

The Shell auto populates this from defaults, command line arguments and the setXXXXX()

functions. This is a means of communication from the System to Vulkan. If this functionality is

not required, for example if the Shell is not being used, then the DisplayAttributes can be

populated manually as it is just a raw struct object. This still would take advantage of its
sensible defaults. The UIRenderer will be described on its own.

PVRUtilsEs

PVRUtilsEs is similar in use to PVRUtilsVk, but tailored for the OpenGL ES 2.0, 3.x APIs.

The EGL/EAGL context creation is simplified, again with PVRShell command line arguments being
automatically used when passed by the developer.

Read any PowerVR SDK OpenGL ES example (except HelloAPI or IntroducingShell) to see how it is

used. The context creation can normally be found in initView(): createEglContext(),

then EglContext::init(...). Additionally, several helpers, including loading/uploading textures,

exist in pvr::utils.

 Public Imagination Technologies

PowerVR Framework Development Guide 15 Revision PowerVR SDK REL_18.1@5080009

1.6.5. Using the UIRenderer

UIRenderer (both the OpenGL ES and Vulkan versions) is a library for laying out and rendering 2D

objects in a 2D or 3D scene. The main class of the library is pvr::ui::UIRenderer.

The UIRenderer is part of the PVRUtils library.

Initialisation

In Vulkan, UIRenderer refers to and is therefore compatible with a specific RenderPass, and UI

Rendering commands are packaged and recorded into a pvrvk::CommandBuffer.

In OpenGL ES, the OpenGL state is recorded, rendering commands are executed inline, and then the
OpenGL ES state is restored.

During initialisation, the rendering surface of the UIRenderer is configured. Note that it is not implied
that this surface is the entire canvas, and it will not cull the rendering. It is only a coordinate system
transformation from pixels to normalised coordinates and back.

In both OpenGL ES and Vulkan, beginRendering(...) is normally used on the UIRenderer

objects, either to push and configure the OpenGL state, or to open the Vulkan command buffer. Any

sprites required are then rendered, and finally endRendering(...) follows to either signify closing

command buffers, or pop the GL state.

Sprites

The class that will most commonly be accessed using the UIRenderer is the pvr::ui::Sprite. In

short, a sprite is an object that can be laid out and rendered using UIRenderer. The sprite is aware of

and references a specific pvr::UIRenderer. The sprite allows the developer to render() it and

set things like its colour, rendering mode and so on.

The layout itself and the positioning are not done by the sprite interface class. Instead, the next level
of the hierarchy will normally provide methods to lay it out depending on its specific capabilities.

There are two main categories of layout: the 2DComponent and the MatrixComponent.

2D components provide methods to lay the component out in a screen aligned rectangle, provide
methods for anchoring to the corners, offsetting by X/Y pixels, rotations and scales and so on.

Matrix components directly take a Matrix for 3D positioning of the component. All predefined primitive

sprites (pvr::ui::Text, pvr::ui::Image) are 2D components.

Complex layouts can be achieved by using a group. Groups are hierarchical containers of other
components including other groups. So for example, there could be a 2D group representing a panel
with components. Text sprites and an image could be added and positioned to the group, which is
then added into a MatrixGroup. Finally, the group could be transformed with a projection matrix to
display it in a Star Wars intro scrolling marquee way. This use case is shown in the
IntroducingUIRenderer example.

An Example of Layout

In order to better understand this, here is a simple example. The developer wishes to print a scrolling
marquee, Star Wars-intro like, with some icons at the corners of the marquee, scrolling text, and some
text in the corners of the screen. This needs to start from being a single point in the centre of the
screen and blow up to take up the entire screen.

The steps would be as follows:

1. Create text for the lines marquee, image for the icons, and put those in a MatrixGroup

2. Put this MatrixGroup in a PixelGroup

3. Set the anchor of the marquee texts to Centre, and calculate the fixed PixelOffset of

each text based on line spacing. Each frame, add a number to each text's PixelOffset.y to

scroll them.

4. Anchor the TopLeft of the top left symbol to the TopLeft of the matrix group. Anchor the

BottomRight of the bottom right symbol to the BottomRight of the MatrixGroup and so

on.
5. Calculate a suitable transformation with a projection to nicely display the marquee relative to

its containing group. The marquee and symbols will move as one item here.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 16

6. Anchor the corner text with the same logic, potentially offsetting it so it does not touch the
borders.

7. Finally, centre the PixelGroup, and set its scale to a very small number. As it increases

frame by frame, the group takes up the whole screen when it reaches the value of one.

Preparation (Create Fonts)

If any other font besides the default (Arial TrueType font) is required, use PVRTexTool„s Create Font

tool to create a .pvr file. This is actually a .pvr texture file that contains metadata to be used as a

font by UIRenderer, or the old Print3D used in legacy versions of the SDK.

Usage Example

Here is how to use sprites:

1. Create any sprites that are to be used using UIRenderer->createFont(…),

createImage(…), createText(…), createMatrixGroup(…) and so on

2. Set up sprites with setColour, setText

3. Create hierarchies by adding the sprites to groups

4. Lay out sprites/groups using setPosition() and so on

5. Call render() on the top level sprite. Never call render() on sprites that are themselves in

containers - only call render on the item containing other items. Otherwise, any sprite on

which render() is called will be rendered relative to the top level (screen), not taking into

account any containers to which it may belong.

For reference:

 Position refers to the position of a sprite relative to the component it is added to. For

example, the top-left corner of the screen

 Anchor refers to the point on the sprite that position is calculated from. For example, the top-

left corner of the sprite

 Rotation is the angle of the sprite. 0 is horizontal. Rotation happens around the Anchor

 Scale is the sprite's size compared to its natural size. Scale happens pinned to the Anchor

 Offset is a number of pixels to move the final position by, relative to the parent container,

and relatively to the finally scaled sprite

To Render the Sprites

If any changes are made to text or matrices or similar, call the commitUpdates() function on the

sprite on which it will actually be rendered.

There is no need, although it will still execute and cause some overhead, to call commitUpdates()

on every single sprite. This is only necessary if a sprite needs to be rendered both on its own and
inside a container. Otherwise, only call commit updates on the container (the object on which

render() is called), and the container itself will take care of correctly preparing its children items for

rendering.

Note: It is perfectly legal to render a sprite from more than one container. For instance, create the text
"Hello" and then render it from five different containers, one spinning, one still, one raw and so

on. Then call commitUpdates() and render() on each of those.

To actually render with UIRenderer:

1. Call uiRenderer->beginRendering(…) In Vulkan, this takes a

SecondaryCommandBuffer where the rendering commands will be recorded.

2. Call the render() method on all top level sprites that will be rendered - the containers, not

the contents. Again, do not call render on a component that is contained in another
component, as the result is not what would be expected. It will be rendered as if it was not a

 Public Imagination Technologies

PowerVR Framework Development Guide 17 Revision PowerVR SDK REL_18.1@5080009

part of the other component. So if there are two images and a group that contains ten texts

and another two images, only three render() calls are necessary.

3. Call the uiRenderer->endRendering() method.

For OpenGL ES, that is all, the rendering of the objects is complete. The state should be as it was

before the beginRendering() command, so any state changes between the beginRendering()

and endRendering() commands will be lost.

For Vulkan, The Secondary Command Buffer passed as a parameter in the beginRendering()

command will now contain the rendering commands such as bind pipelines, buffers, descriptor sets,
draw commands, and so on for the UI. It must be submitted inside the renderpass and subpass which

were used to initialise the UIRenderer, or a compatible renderpass.

Recommendations:

 For Vulkan, reuse the command buffer of the sprite. Even if the text or the image is changed,
it is unnecessary to re-record the command buffer unless the actual sprite objects rendered
changed. UIRenderer uses indirect drawing commands to make it possible to even change
the text without re-recording.

o For example, if the colour and position of a sprite is changed, the command buffers
do not need to be re-recorded

o If the actual text of a Text element is changed, the command buffers do not need to

be re-recorded
o If new text or remove a text from a container is added, the command buffers do need

to be re-recorded

 Only call commitUpdates() when all changes to a sprite are done. In some cases,

especially if text length increases, this operation can become expensive. For example, VBOs
may need to be regenerated and so on.

Important:

 If the command buffer is open (beginRecording() has been called) when uiRenderer-

>beginRendering() is called, the commands will be appended. In the end, the command

buffer will not be closed when endRendering() is called.

 On the other hand, if the command buffer is closed (beginRecording() has not been

called) when uiRenderer->beginRendering() is called, the command buffer will be

reset and opened. Then, when finished rendering with uiRenderer->endRendering(),

the command buffer will be closed, endRecording() will be called on it.

1.6.6. A simple application using PVRVk/PVRUtilsVk/PVRUtilsEs

initApplication (VK/ES)

The initApplication function will always be called once, and only once, before initView, and

before any kind of window/surface/API initialisation.

Do any non-API specific application initialisation code, such as:

 Loading objects that will be persistent throughout the application, but do not create API
objects for them. For example, models may be loaded from file here, or PVRAssets may be
used freely here.

 Do not use PVRVk/PVRUtilsVk/PVRUtilsES at all yet. The underlying window has not yet
been initialised/created so most functions would fail or crash, and the shell variables used for

context creation (like OSDisplay and OSWindow) are not yet initialised.

 Most importantly, if any application settings need to be changed from their defaults, they must
be defined here. These are settings such as window size, window surface format, specific API

versions, vsync or other application customisations. The setXXXXX() shell functions give

access to exactly this kind of customisation. Many of those settings may potentially be read

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 18

from the command line as well. Keep in mind that setting them manually will override the
corresponding command line arguments.

initView(Generic)

initView will be called once when the window has been created and initialised. If the application

loses the window/API/surface or enters a restart loop, initView will be called again after

releaseView.

In initView, the window has been created. The convention is to initialise the API here. All PowerVR

SDK examples use PVRUtils to create the context (if OpenGL ES) or instance, device surface and
swapchain here (if Vulkan).

initView(OpenGL ES)

Create the EGL/EAGL Context here using pvr::eglCreateContext. It needs to be initialised with

the display and window handles returned by the getDisplay() and getWindow() functions of the

Shell, as well as some further parameters.

After that, it is ready to go. Create any OpenGL ES Shader Programs and other OpenGL Objects that
are required. Set up any default OpenGL ES states that would be persistent throughout the program
or any other OpenGL ES initialisation that may be needed.

Remember to use the pvr::utils namespace to simplify/automate tasks like texture uploading. If

needed, jump into the functions to see their implementations. Not all are simple, but will help to point
developers in the right direction.

initView (Vulkan)

Create/get the basic Vulkan objects here - instance, physical device, device, surface, swapchain, and
Depth buffer. Unless doing a specific exercise, use the PVRUtilsVk helpers, otherwise the two to three
lines of code can explode well into the hundreds.

After initialising the API, this place can be used for one-shot initialisation of other API-specific code. In
simple applications, this might be all actual objects used. In more complex applications with streaming
assets and so on, this may be the resource managers and similar classes.

Usually, the initView in our demos is structured in Vulkan as follows:

Initial Setup

1. Create the instance, surface, swapchain, device and queues with our helpers. These can be
created with various levels of detail with different helpers, but usually use

pvr::utils::createInstance(…), pvr::utils::createSurface(…),

pvr::utils::createLogicalDeviceAndQueues(…) and
pvr::utils::createSwapchainAndDepthStencilImageView(…)

2. Create DescriptorSetLayout objects depending on the app:
pvrvk::LogicalDevice::createDescriptorSetLayout(…)

3. Create DescriptorSet objects based on the layouts:
pvrvk::LogicalDevice::createDescriptorSet(…)

4. Create PipelineLayout objects using the descriptor layouts:
pvrvk::LogicalDevice::createPipelineLayout(…)

5. Configure PipelineCreateInfo objects (amongst others using those shader strings) and

create the pipelines

6. Configure the VertexAttributes and VertexBindings usually using helper utilities such

as pvr::utils::CreateInputAssemblyFromXXXXX(…) This is in order to automatically

populate the VertexInput area of the pipeline based on our models

7. Create the pipelines:
myLogicalDevice->createPipeline(…)

Textures and Buffers

1. Create a Vulkan Memory Allocator: pvr::utils::vma::createAllocator(…).Use it for all

memory objects by passing it as a parameter to all the functions that support it
2. Create the memory objects such as buffers, images and samplers

 Public Imagination Technologies

PowerVR Framework Development Guide 19 Revision PowerVR SDK REL_18.1@5080009

3. Get streams to the texture data on disk: getAssetStream(…)

4. To access CPU-side texture data, load the images into pvr::assets::Texture objects

using pvr::assets::textureLoad(), then upload them to the GPU as pvrvk::Image

and pvrvk::ImageView using pvr::utils::uploadImageAndView

Otherwise, merge the two steps using pvr::utils::loadAndUploadImageAndView.

5. For a proper method to do this asynchronously in a multithreaded environment, see the
Multithreading example

6. Use the shortcut utilities pvr:: createBuffer()for creating UBOs or SSBOs.

7. To automatically layout buffers that will have a shader representation (UBOs or SSBOs), we

use StructuredBufferView. This is an incredibly useful class. The UBO/SSBO

configuration needs to be described, and it will then automatically calculate all sizes and
offsets based on STD140 rules. This includes array members, nested structs and so on,
automatically allowing the developer to both determine size, and set individual elements or

block values. Connect it to the actual buffer with StructuredBufferView->
pointToMappedMemory().

Objects

1. Update the descriptor sets with the actual objects. This might sometimes need to be done in

renderframe for streaming resources.

2. Create command buffers, synchronisation objects and other app-specific objects. Normally

one is needed per backbuffer image. Use getSwapChainLength() and logicalDevice

-> createCommandBufferOnDefaultPool() for this.

In a multithreaded environment at least one command pool per thread should be used. Use

context -> createCommandPool() and then commandPool ->

allocateCommandBuffer() on that thread.

Do not use a command pool object from multiple threads, create one per thread.

pvrvk::CommandBuffer objects track their command pools and are automatically

reclaimed. One caveat here is that normally these should be released on the thread their pool
belongs to, or externally synchronise their release with their pool access.

3. Use a loop to fill them up as follows: (very simple case)

 For each swapChainImage, for the CommandBuffer that corresponds to that swap

image: (get the index with getSwapchainIndex())
o beginRecording()

o beginRenderPass() – pass the FBO that wraps the backbuffer image

corresponding to this index to the index of this command buffer
o For each material/object type:

 bindPipeline() - pass the pipeline object

 bindDescriptorSets() – for any per-material descriptor sets such as

textures
 For each object:

 bindDescriptorSets() – for any per-object descriptor sets,

for example worldMatrix

 bindVertexBuffer() - pass the VBO

 bindIndexBuffer() - pass the IBO

 drawXXXXXX() - for instance draw(), drawIndexed()
o endRenderPass()
o endRecording()

renderFrame

This function gets executed by the shell once for each frame. This is where any logic updates will
happen. In the most common, recommended scenarios, this will end up being updated values of
uniforms such as transformation matrices, updated animation bones and so on.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 20

renderFrame (ES)

In OpenGL ES, it behaves as expected. Run app logic and OpenGL ES commands as with any

application with a main, per-frame loop. Remember to call eglContext->swapBuffers() when

rendering is finished, or swap the buffers manually if not using PVRUtilsGles.

renderFrame (Vulkan)

It is normal to sometimes generate command buffers in renderFrame. However, it should be

considered whether it is better to offload as much of this work as possible to either initView so it is

only done once, or to separate threads. It is very much desirable to generate CommandBuffers in
other threads - for example as objects move in and out of view. See the GnomeHorde example for
this.

In all cases, it is highly recommended for Command buffers to be submitted here, in the main thread.
Otherwise, the synchronisation can quickly get unmanageable. There is nothing to be gained by
offloading submissions to other threads, unless they are submissions to different queues than the one
used for on screen display.

Remember to submit the correct command buffer that corresponds to the current swap chain image

using this->getSwapChainIndex().

Usually, renderFrame will be home to rather complex synchronisation - this is expected and normal

with Vulkan development. See the SDK examples for the typical recommended basic synchronisation
scheme.

If application logic determines it is time to signal an exit, return pvr::Result::ExitRenderFrame

instead of pvr::Result::Success. This is virtually the same as calling exitShell().

releaseView

releaseView will be called once when the window is going to be torn down, but before this actually

happens. For example, if the application is about to lose the window/API/surface or enters a restart

loop, releaseView will be called before initView is called again.

For OpenGL ES just follow normal OpenGL ES rules for deleting objects.

For PVRVk, leverage RAII: Release any API objects specifically created, by releasing any references

that are held. Release can be achieved by calling reset() on the smart pointer itself, or by deleting

the enclosing object and so on.

Do not attempt to release the underlying object. If such an API exists, it will probably mean

something else and behave as expected. Access the reset() function with dot „.‟(not arrow ‘->’)

operator on a PVRVk object. Releasing should only be attempted on the references that the
developer is holding. There is never a need to try and specifically delete an API object. All objects are
deleted when no references to them are held.

When cleaning up, it is recommended to use device->waitIdle() before deleting objects that

might still be executing. As this takes place during teardown, objects are being released, and there is
no performance worry.

Note that RAII deletion of PVRVk and other framework objects is deterministic. Objects are always
deleted exactly when the last reference to them is released. Also, note that objects may hold
references to other objects that they require, and these object chains are also deleted when the last
reference is released. For example, command buffers hold references to their corresponding pools,
descriptor sets hold references to any objects they contain. This is one of the most important features
of PVRVk.

It does not impose any particular required deletion order, so the developer does not need to be
concerned. The developer should keep any objects needed to reference, and release them when no
longer required.

In general, it is recommended that C++ destructors are used. This is the way it is done in the
Framework examples.

A struct/class is kept that contains all the PVRVk objects. It is allocated in initView and deleted in

releaseView. Ideally, a std::unique_ptr is used. Then as objects are deleted (unless a circular

dependency was created) then the dependency graph unfolds itself as it has to, and destructors are
called in the correct order.

 Public Imagination Technologies

PowerVR Framework Development Guide 21 Revision PowerVR SDK REL_18.1@5080009

quitApplication

quitApplication will be called once, before the application exits. In reality, as the application is

about to exit, little needs to be done here except release non-automatic objects, such as file handles
potentially held, database connections and similar. Some still consider it best practice to tear down
any leftover resources held here, even if they will normally automatically be freed by the operating
system.

1.6.7. Rendering without PVRUtils

The Framework is modular, and libraries can commonly be used separately from the others. There
are a lot of options that can be used:

 Everything – obviously, that's our official recommendation. Derive the application from

pvr::Shell, use PVRUtils and PVRVk for rendering, load and use the assets with

PVRAssets and use the PVRUtils for rendering 2D elements and multithreading. Most
PowerVR SDK examples use this approach, leveraging all the power of the PowerVR
Framework.

 Forgo using the top-level libraries (PVRUtils, PVRCamera) because a different solution is
needed, or the functionality is not required. Be warned that the boilerplate may become
unbearable while the overhead is minimal.

 Completely raw Vulkan, without even PVRVk. This is not recommended, it is better to
use PVRVk or another Vulkan library to help. Check out the Vulkan IntroducingPVRShell or
even HelloAPI examples to get a taste of just how much code is needed to get even a triangle
on screen. Then check out any other example to see how much lifetime management,
sensible defaults and in general a modern language can help. These gains are practically for
free.

 Forgo using even PVRAssets, in which case, the only thing that is being used from the
framework is PVRShell. In this scenario, code will need to be written for everything except the
platform abstraction. Loading assets will now become non-trivial, and support classes will
need to be written for every single bit of functionality. This is done in IntroducingPVRShell.

 Less than that, it's not using the Framework at all.

1.7. Synchronisation in PVRVk (and Vulkan in general)

The Vulkan API, and therefore PVRVk, has a detailed synchronisation scheme.

There are three important synchronisation objects: the semaphore, the fence and the event.

 The semaphore is responsible for coarse-grained syncing of GPU operations, usually
between queue submissions and/or presentation

 The fence is required to wait on GPU events on the CPU such as submissions, presentation
image acquisitions, and some other cases

 The event is used for fine-grained control of the GPU from either the CPU or the GPU. It can
also be used as part of layout transitions and dependencies

1.7.1. Semaphores

The semaphores impose order in queue submissions or queue presentations.

A command buffer imposes some order on submissions. When a command buffer is submitted to a
queue, the Vulkan API allows considerable freedom to determine when the command buffer's
commands will actually be executed. This is either in relation to other command buffers submitted
before or after it, or compared to other command buffers submitted together in the same batch (queue
submission). The typical way to order these submissions is with semaphores.

Without using semaphores, the only guarantee imposed by Vulkan is that when two command buffer
submissions happen, the commands of the second submission will not finish executing before the
commands in the first submission have begun. This is obviously not the strongest guarantee in the
world.

The basic use of a semaphore is as follows:

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 22

 Create a semaphore

 Add it to the SignalSemaphores list of the command buffer submission that needs to

execute first

 Add it in the WaitSemaphores list of the command buffer that is to be executed second

 Set the Source Mask as the operations of the first command buffer that must be completed
before the Destination Mask operations of the second command buffer begin. The more
precise these are, the more overlap is allowed. Avoid blanket wait-for-everything statements,
as this can impose considerable overhead by starving the GPU.

For example by adding a semaphore with FragmentShader as the source and GeometryShader

as the destination, this ensures that the FragmentShader of the first will have finished before the

GeometryShader of the second begins. This implies that, for example, the VertexShaders might

be executed simultaneously, or even in reverse order.

This needs to be done whenever there are multiple command buffer submissions. In any case, it is
usually recommended to do one big submission per frame whenever practical. The same semaphore
can be used on different sides of the same command buffer submission. For example, in the wait list
of one command buffer and the signal list of another, in the same queue submission. This is quite
useful for reducing the number of queue submissions.

1.7.2. Fences

Fences are simple: insert a fence on a supported operation whenever it is necessary to know (wait)
on the CPU side whenever the operation is done. These operations are usually a command buffer
submission, or acquiring the next backbuffer image.

This means that if a fence is waited on, any GPU commands that are submitted with the fence, and
any commands dependent on them, are guaranteed to be over and done with.

1.7.3. Events

Events can be used for fine-grained control, where a specific point in time during a command buffer
execution needs to wait for either a CPU or a GPU side event. This can allow very precise threading
of CPU and GPU side operations, but can become really complicated fast.

It is important and powerful to remember that events can be waited on in a command buffer with the

waitEvents() function. They can be signalled both by the CPU by calling event->signal(), or

when a specific command buffer point is reached by calling commandBuffer->signalEvent().

Execution of a specific point in a command buffer can be controlled either from the CPU side, or from
the GPU with another command buffer submission.

1.7.4. Recommended typical synchronisation for presenting

Even the simplest case of synchronisation such as acquire-render-present =(next)=> acquire-render-
present =(next)=>… needs quite a complicated synchronisation scheme in order to ensure
correctness.

This scheme is used in every PowerVR SDK example. For an n-buffered scenario where there are n
presentation images, with corresponding command buffers, there will be:

 One sets of fences (one if the developer is prepared to allow command buffer simultaneous
execution - not recommended)

 One set of semaphores connecting Acquire to Submit

 One set of semaphores connecting Submit to Present

 Tracking a linear progression of frames (frameId) and the swapchain image id separately.

See most PowerVR SDK examples for the implementation.

Any additional synchronisation can be inserted inside the Submit phase without complicating things
too much.

 Public Imagination Technologies

PowerVR Framework Development Guide 23 Revision PowerVR SDK REL_18.1@5080009

1.8. Overview of Useful Namespaces

Table 1. Useful Namespaces

Namespace Description

Namespace ::pvr
Main namespace. Primitive types and foundation objects, such as

the RefCountedResource and some interfaces are found here.

Namespace ::pvrvk

All public classes of the PVRVk library are found here. This is
where to find any API objects that need to be created such as
buffers, (GPU) textures, CommandBuffers, GraphicsPipelines,
RenderPasses and so on.

Namespace ::pvr::utils

This extremely important namespace is the location for
automations for common complex tasks. For example, matching a

Model (from a POD file) with an Effect (from a PFX file) to set up a

pipeline and VBOs to render with. Creating a Vulkan context.

Namespace ::pvr::assets
All classes of the PVRAssets library are found here: Model, Mesh,
Camera, Light, Texture, AssetLoader and so on.

Namespace ::gl
OpenGL ES bindings. Only OpenGL ES function pointers are
found here.

Namespace ::vk Vulkan bindings. Only Vulkan function pointers are found here.

Namespaces

::?::details

::?::impl

Namespaces for code organisation. Not required by the developer.

1.9. Debugging PowerVR Framework Applications

The first step in debugging a PowerVR Framework application should always be to examine the log
output. There are assertions, warnings and error logs that should help find many common issues.

1.9.1. Exceptions

All errors that are caught by the application will raise an exception. All exceptions inherit from a

common base class, itself inheriting from std::runtime_error.

On a debug build, if a debugger is present and supported, for instance, if executing the application
from an IDE, all PowerVR exceptions will cause a debugger break (similar to a breakpoint)
immediately in their constructor. This allows the developer to immediately examine the situation and
call stack where the exception was thrown.

In any case, if a std::runtime_exception is not caught anywhere else, it will be caught by

PVRShell, and the application will quit. Its message (what()) will be displayed as a pop up with

windowing systems or a logged message with command line systems.

Additionally, API specific tools should be used to help identify a bug or other problem.

1.9.2. OpenGL ES

OpenGL ES applications are usually debugged as a combination of CPU debugging and PVRTrace or
other tools in order to trace and play back commands.

1.9.3. Vulkan/PVRVk

The Vulkan implementation of the PowerVR Framework is thin and reasonably simple. Apart from
CPU-side considerations like lifetime, API level debugging should be very similar to completely raw
Vulkan. However, the complexity of the Vulkan API makes debugging not very easy in general.

The most important consideration here are the Vulkan Layers.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 24

Layers

Vulkan Layers sit between the application and the Vulkan implementation, performing all kinds of
validation. They can be enabled globally, for example in the registry, or locally, for example in
application code. PVRUtilsVk automatically enables the standard validation ones for debug builds. It
is extremely important not to start debugging without these, their information is invaluable.

Check the LunarG Vulkan SDK for the default layers; they are valuable in tracking many kinds of
wrong API use. It is a very good practice to:

1. Inspect the log for any errors. This includes layers output on platforms that have them.
2. Inspect the Vulkan layers and fix any issues found, until they are clear of errors and warnings.
3. Continue with other methods of debugging such as the API dump layer, CPU or GPU

debuggers, Trace or any other method suitable to the error.

 Public Imagination Technologies

PowerVR Framework Development Guide 25 Revision PowerVR SDK REL_18.1@5080009

2. Tips and Tricks

2.1. Frequently Asked Questions

2.1.1. Which header files should I include?

For a typical application, add [sdkroot]/Framework as an include folder, then:

For Vulkan:

#include "PVRShell/PVRShell.h"

#include "PVRUtils/PVRUtilsVk.h" //Includes everything, including PVRVk

Or for OpenGL ES:

#include "PVRShell/PVRShell.h"

#include "PVRUtils/PVRUtilsGles.h"

If PVRCamera is required, additionally:

#include PVRCamera/PVRCamera.h

2.1.2. Which libraries should be linked against?

Usually, the framework needed should be added through CMake, using add_subdirectory. To link

to pre-built binaries, build the framework libraries with CMake and add the library outputs from
wherever they were built. The libraries themselves are:

 [lib]PVRCore.[ext] e.g. PVRCore.lib, libPVRCore.a

 [lib]PVRShell.[ext] e.g. PVRShell.lib, libPVRShell.a

 [lib]PVRAssets.[ext] e.g. PVRAssets.lib, PVRAssets.a

 (Vulkan) [lib]PVRVk.[ext] e.g. PVRVk.lib, libPVRVk.a

 [lib]PVRUtils[API].[ext] e.g. PVRUtilsGles.lib, libPVRUtilsVk.a

As noted, the dependencies are:

 PVRCore: None

 PVRShell: PVRCore

 PVRAssets: PVRCore

 PVRVk: None

 PVRUtilsVk: PVRCore, PVRShell, PVRAssets. PVRVk

 PVRUtilsGles: PVRCore, PVRShell, PVRAssets

For Android, use the settings.gradle file to define any required Framework projects build-

android folders as dependencies of the application. This is in addition to CMake.

If the PVRCamera module is required, build and include in the project the PVRCamera library, which
is platform specific, not just native. See the IntroducingPVRCamera example for more information.

2.1.3. Does library link order matter?

For Windows/OSX/iOS, it does not matter. For Android and Linux, it does because it matters for some
possible underlying compilers.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 26

Make sure that for Linux and Android, link order is in reversed order of dependencies: dependents
(high level) first, to dependencies (low level) last. So the order should be:

1. PVRUtils, PVRCamera
2. PVRShell, PVRAssets
3. PVRCore, PVRVk
4. System libraries (usually: m, thread for linux, android_native_app_glue for Android)

If there are undefined references to functions that appear to be present, apart from needing a library
that is not included, this is a common culprit.

2.1.4. Are there any dependencies to be aware of?

In general we recommend using one of our CMakeLists.txt and/or gradle scripts as a base. To start
from scratch:

 The [SDKROOT]/include folder must be added as an include file search path. It contains

the API header files and any other headers that are used. As well as the stock Khronos

headers for most APIs, it contains PowerVR SDK's own custom DynamicGles.h,

DynamicEgl.h, and vulkan_wrapper.h bindings.

 The [SDKROOT]/framework folder must be added as an include file search path to access

the framework‟s headers.

 The [SDKROOT]/external folder contains external libraries used by the framework, such

as glm, concurrentqueue and pugixml that are all used by the Framework.

 The [SDKROOT]/lib [PLATFORM…] folder may contain library dependencies of the project

files. For example, the PVRScope libraries are located there.

 The Framework library files will be either wherever they were built, or by default, prebuilt

would be in [SDKROOT]/framework/bin/[PLATFORM…] . Since the PowerVR libraries do

NOT have a C interface (they expose C++ classes in their API), it is strongly recommended to
never use prebuilts, but to always build them through CMake with common compilation
options with the application.

What about linking against OpenGL ES, or Vulkan, respectively?

It is not necessary to link against them, both are loaded with dynamic library loading (except for iOS).

DynamicGLES takes care of it by dynamically linking OpenGL ES.

PVRVk loads Vulkan function pointers the optimal way, using per-device function pointers. These are,
stored into per-instance and per-device function pointer table. Static linking is unnecessary.

2.1.5. What are the strategies for Command Buffers? What about
Threading?

The Vulkan multithreading model in general means that the developer is free to generate command
buffers in any thread, but they should be submitted in the main thread. While it may be possible to do
differently, this is normally both the optimal and the desired way, so we do not concern ourselves with
cases of submissions for multiple threads.

On the other hand, command buffers can and should, if possible, be generated in other threads. See
the GnomeHorde example for a complete start-to-finish implementation of this scenario.

Apart from that, there are numerous ways that an application is structured, but some patterns will be
emerging at times.

Single command buffer submission, multiple command secondary command buffers

This strategy is a very good starting point and general case. Work is mostly generated in the form of
secondary command buffers, and these secondary command buffers are gathered and recorded into
a single primary command buffer, which is then submitted. Almost all examples in the PowerVR SDK
use this strategy.

 Public Imagination Technologies

PowerVR Framework Development Guide 27 Revision PowerVR SDK REL_18.1@5080009

Multiple parallel command buffers, submitted once

This strategy means creating several command buffers, and submitting them together once. A little
additional synchronisation might be needed with the acquire and the presentation engine, but there
could be cases where some small gain is realised. However, it is much less common for rendering
than it would be immediately apparent, as a RenderPass cannot be split to multiple submissions. This
means that it is mostly operations on different render targets, especially from different frames, and
Compute operations on the same queue that can be split into different command buffers.

In this scenario, all those command buffers would be independent and could be scheduled to start
after the presentation engine has prepared the rendering image (backbuffer).The presentation engine
would then wait for these to finish before it presents the image. This scenario is applicable if no
interdependencies exist between the command buffers, or if the developer synchronises them with
semaphores or events. For example, it is possible to render different objects to different targets from
different command buffers. It is much more complicated to stream computed data with this strategy.

Multiple parallel command buffers, submitted multiple times

When there is no reason to do otherwise, submitting once is fine. Sometimes it is better to completely
separate different command buffers into different submissions, especially if utilising different queues
or even queue families and sometimes activating different hardware. In general, the developer must
devise their own synchronisation scheme in this case, but usually this will be connected to the basic
case described above.

2.1.6. How are PVRVk objects created?

Usually, most PVRVk objects with a Vulkan equivalent (buffers, textures, semaphores, descriptor

sets, command pools and so on) are created from the device by calling a createXXXX() function.

This completely shadows the Vulkan API, so look for the corresponding create function in the

members of the class of the first parameter of the Vulkan create function.

Whenever possible, we have provided defaults for as many of the parameters/create info fields as is
feasible.

Remember that some creations are really allocations from pool objects:

There is no device -> createCommandBuffer(), instead developers must call commandPool

-> allocateCommandBuffer(). These are usually hinted by the name: instead of create/destroy

for objects created on a device, we have allocate/free for objects allocated on a pool.

2.1.7. How are PVRVk Objects cleaned up? Is there anything that needs to
be destroyed that the developer did not create?

Discard (exit the scope) or reset any smart pointers to objects not needed, when they are finished

with. If manually resetting, do this, at the latest, in the releaseView() function. API objects do not

have to be explicitly destroyed, only their smart pointers reset, as they are immediately destroyed

when their reference count goes to zero.

Other objects may sometimes hold references to them. Most notably, CommandBuffers and

DescriptorSets hold references to objects they are using.

2.1.8. How is a UIRenderer cleaned up?

The UIRenderer has an explicit release() function that releases all resources held by it. Remember

to do this before destroying the device.

See the following question if a specific order of destruction is needed.

2.1.9. Do any API objects need to be manually kept alive?

Mostly, they do not.

 CommandBuffer objects and DescriptorSet objects will keep references to any objects

they contain (submitted/updated into them respectively) until reset is called.

 Any nested objects will keep alive underlying objects. For example, TextureView objects

will keep alive the TextureStore objects underneath, BufferView objects will keep alive

Buffer objects, Pipelines will keep their PipelineLayouts alive, and so on.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 28

There are some notable exceptions:

 CommandPool and DescriptorPool objects. These objects are not kept alive by their

CommandBuffer and DescriptorSet objects. This means that the developer must keep all

of them alive until no longer required. This means that Command/Descriptor pools must be
destroyed after any of their objects are released.

 CommandBuffer objects must be kept alive as long as they are executing (rendering) which

generally means when the corresponding SwapBuffer image is released, unless a fence is

specifically waited on. This rule, in conjunction with the previous one, means that destruction
must happen in the order: Frame done -> commands released -> pools released.

2.1.10. How are files/assets/resources loaded?

The PowerVR Framework uses the stream abstraction for data. There are two ways to use those:

 Directly create a FileStream/ BufferStream/ WindowsResourceStream to load a

resource. The resource must be of the correct type, and can be platform specific. For

example, a FileStream will work fine for Windows and Linux, but not for Android.

Additionally, this method is used in order to use a stream pointing to raw memory using a

BufferStream.

 Use pvr::Shell::getAssetStream(…name…)This function will look for any applicable

methods depending on the platform, and attempt to create a stream with that method, until it
succeeds or run out of methods. The priority from highest to lowest is:

o FileStream
o AndroidAssetStream
o WindowsResourceStream

The parameter is usually a relative, but can be an absolute, path, and assumes that Windows
Resource names will be this path. Files will be searched for both in the current folder of the
executable, and in the Assets subfolder. Functions that need some kind of data to create an
object, most notably, Asset load functions, will take streams as input. The only exception is
PVRVk Shaders - these are passed as raw bytes to avoid a PVRVk dependency on
PVRCore.

2.1.11. How are buffers updated?

At the API level, buffers can be updated with two strategies: map/unmap for CPU-synchronous

mapping, and updateBuffer for GPU-synchronous mapping.

Update

Update copies over the data supplied by the developer, and only transfers it into the actual buffer
when the command is actually executed. In other words, the command buffer submitted, and the
relevant point in the command stream reached.

Map

OpenGL ES and Vulkan behave very differently when mapping.

For OpenGL ES, mapping is similar to update, and acts as if the map command happened just after
the previous command and just before the following command.

However, the developer may forego this behaviour, its guarantees and the data copies they force the

driver to do, by using GL_MAP_UNSYNCHRONIZED_BIT. This makes the changes the developer does

to the data immediately visible to the API. Of course, it also forces the developer to have their own
synchronisation scheme - for instance multi-buffering, synchronised slices and others.

Vulkan by default and exclusively uses this strategy. No synchronisation is attempted, so the
developer must use multi-buffering, fences, events or other synchronisation strategies to ensure
everything is working as intended.

 Public Imagination Technologies

PowerVR Framework Development Guide 29 Revision PowerVR SDK REL_18.1@5080009

Calculating buffer layouts

When a UBO or SSBO interface block is defined in the shader, and the developer needs to fill it with
data, the developer must religiously follow the STD140 (or STD430) GLSL rules to determine the
actual memory layout, bit for bit, including paddings. Then the developer must translate that into a

C++ layout or manually memcpy every bit of it into the mapped block.

This can become extremely tedious, especially when considering potential inner structs or other
similar complications. Fortunately PVRUtils is able to help with this.

The StructuredBufferView

This class takes a tree-structure definition of entries, automatically calculates their offsets based on
std140 rules (an std430 version is planned), and allows utilities to directly set values into mapped
pointers.

The ease that this provides cannot be overstated – normally a developer would have to go through all
the std140 ruleset and determine the offset manually for every case of setting a value into a buffer.

This is a code example from the Skinning SDK example:

GLSL

struct Bone {

 highp mat4 boneMatrix;

 highp mat3 boneMatrixIT;

 }; // SIZE: 4x16 + 3x16(!) = 112. Alignment: Must align to 16 bytes

 layout (std140, binding = 0) buffer BoneBlock {

 mediump int BoneCount; // OFFSET 0, size 4

 Bone bones[]; // starts at 16, then 112 bytes each element

 };

CPU side

We wanted to provide an easy to use interface for defining the StructuredBufferView. Using C++

initialiser lists, we have created a compact JSON-like constructor that allows the developer to easily
express any structure.

The following code fragment shows the corresponding CPU-side code for the GLSL above:

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 30

// LAYOUT OF THE BUFFERVIEW

pvr::utils::StructuredMemoryDescription descBones("Ssbo", 1, // 1: The UBO itself is not array

{

 { "BoneCount", pvr::GpuDatatypes::Integer } // One integer element, name “BoneCount”

 { // One element, name “Bones”, that contains...

 "Bones", 1,

 { // One mat4x4 and one mat3x3

 {"BoneMatrix", pvr::GpuDatatypes::mat4x4},

 {"BoneMatrixIT", pvr::GpuDatatypes::mat3x3}

 }

 }

});

// CREATING THE BUFFERVIEW

pvr::utils::StructuredBufferView ssboView;

ssboView.init(descBones); // One-shot initialisation to avoid mistakes.

// SETTING VALUES

void* bones = gl::MapBufferRange(GL_SHADER_STORAGE_BUFFER,

 0,

 ssboView.getSize(),

 GL_MAP_WRITE_BIT);

int32_t boneCount = mesh.getNumBones();

ssboView.getElement(_boneCountIdx).setValue(bones, &boneCount);

auto root = ssboView.getBufferArrayBlock(0);

for (uint32_t boneId = 0; boneId < numBones; ++boneId)

{

 const auto& bone = _scene->getBoneWorldMatrix(nodeId, mesh.getBatchBone(batch, boneId));

 auto bonesArrayRoot = root.getElement(_bonesIdx, boneId);

 bonesArrayRoot.getElement(_boneMatrixIdx).setValue(bones,

 glm::value_ptr(bone));

 bonesArrayRoot.getElement(_boneMatrixItIdx).setValue(bones,

 glm::value_ptr(glm::inverseTranspose(bone))));

}

gl::UnmapBuffer(GL_SHADER_STORAGE_BUFFER);

It is highly recommended to give the StructuredBufferView a try even if there is no intention to

use the rest of the Framework.

2.2. Models and Effects, POD & PFX

The PVRAssets library contains very detailed, carefully crafted classes to allow handling of all kinds of
assets.

2.2.1. Models, meshes, cameras, and similar

The top-level class for models is the pvr::assets::Model class. The model contains an entire

description of a scene, including a number of:

 Meshes

 Cameras

 Lights

 Materials

 Animations

 Nodes

In general, these objects are found both in raw lists, and bound to nodes. The Node contains a
reference to an item in the list of meshes that is stored in the model. The lists describe the objects that

are present. Call model->getMesh(meshIndex) to get the list.

Nodes

Nodes are the building blocks of the scene, and describe the hierarchy of the scene. Each node is
part of a tree structure, with parent nodes, and carries a transformation, and a reference to an object
such as a mesh, camera or light. The transformations are applied hierarchically. The transformations,

 Public Imagination Technologies

PowerVR Framework Development Guide 31 Revision PowerVR SDK REL_18.1@5080009

in general, are animated and dependent on the current frame of the scene. Static scenes only have
one animation.

Nodes are accessed through their indices. In order to make accessing objects easier, the nodes are
sorted by object types, in the order Mesh, Camera, Light. Therefore mesh nodes have the indexes

from 0 to model->getNumMeshNodes()-1. Light nodes have the indexes from model ->

getNumMeshNodes() to model -> getNumCameraNodes()-1 and so on.

Always be wary when trying to access a node or its underlying object. When trying to iterate the

meshes (for example, to get VBOs, attributes, textures…), always call getMesh(…). When trying to

display the scene, iterate MeshNodes(). A Mesh is a description of a mesh, not an object in the

scene; an instance of an object is a Mesh Node.

Some useful methods

 getMesh(meshIndex)

 getMeshNode(nodeIndex)

 getMeshNode(nodeIndex)->getObjectId()

 getCamera(id, [output camera parameters])

 getLight…

Models as mesh libraries – shared pointers between models/meshes

Sometimes a model is only used as a library, and not as a scene definition. In such a case, it is
preferable to deal with the meshes as objects in their own right, and not deal or even hold, if possible,
the model. For example, the position and animation of objects might come from app logic and not the
model.

The Framework deals with that with the Shared Refcounting feature. Call Model ->

getMeshHandle() to get a RefCountedResource<Mesh> that will be functional work for any use.

Feel free to discard the pointer to the model if it is not needed - the new pointer will deal with its
lifecycle management.

2.2.2. Effects

Effects are PowerVR Framework's way to automate rendering. An effect wraps all necessary objects
to actually render something.

Previously (up to and including version 2.0 in August 2016), the PFX file was mainly a shader
container. The third version of PFX completely overhauls it to be a rendering description. See the PFX
specification and the Vulkan Skinning example for use of the last version of PFX.

In general, a PFX can contain enough information for a complete rendering effect, including:

 different passes

 subpasses that can be implemented by different pipelines

 conditions to select different models to be rendered for different passes/subpasses

 memory objects (uniforms and/or buffers)

On the application side, in general, the intention is for the developer to add different models to
different subpasses of the PFX. For example, for a Deferred Shading implementation, there may be
three subpasses - a G-Buffer geometry subpass, a Shading subpass, and a PostProcessing subpass.
In this scenario, the developer would add their objects to the first subpass, the light proxies such as
circles to the second pass, and a full screen quad for the third one, and kick the render.

See the PFX spec and any Framework examples implemented with PFX files (Skinning), the PFX
spec, and the RenderManager documentation for details on how to use these.

The RenderManager can be considered a Reference implementation for how PFX might be used. It is
supplied for Vulkan only.

2.3. Utilities and the RenderManager

The RenderManager is a very ambitious project that has been written specifically to support the new,
improved PFX files.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 32

It is essentially a minimum system for completely automated Vulkan rendering. As the PowerVR
Framework features a very permissive licence, it can also to use it as a starting point for
rendering/game engines.

In conjunction with the PFX and POD files, it makes completely automating rendering very easy, and
prototyping rendering demos absolutely trivial.

2.3.1. Simplified structure of the RenderManager Render Graph

The PowerVR Framework assets model structure basically contains of a hierarchy of nodes, which
connect mesh objects with material objects. So, when mentioning a node here, this is referring to a
specific renderable instance of a mesh with a known material.

Effects contain passes (final render targets), which contain subpasses (intermediate draws), which
contain groups (imposing order in the draws, allowing to select different pipelines), to which nodes are
added, matched with specific pipeline objects suitable for rendering them. There are more than ten
intermediate classes and objects to this graph, but it is important to remember that the node is the
final renderable object in RenderManager. From just a reference to a (Render) node object, a
developer can navigate all the information required to render something start to finish.

2.3.2. Semantics

Semantics were first introduced as part of PVRShaman (PVR Shader Manager) and the original PFX
format. It is a way for a developer to signify to an implementation (for example PVRShaman, or now
the RenderManager class) what kind of information is required by a shader. In other words, which
data from a model needs to be uploaded to which variable in the shader.

For example, in the old PFX format the developer could annotate the attribute myVertex with the

semantic POSITION, so that PVRShaman knew to funnel the Position vertex data from the POD file

into this attribute and display the file. Semantics have been simplified and expanded since then.

First, the PFX format itself is completely unaware of what semantics exist, and what is valid. It is an
implementation using the PFX that defines that.

So, there are two sides to semantics:

 The PFX file has semantics, which define what information is required to render

 The POD file has semantics, which define what information is provided by this model

In order to render, the two sides must match. If the exact same strings are used, this can be done
automatically. Otherwise, the developer can create custom mappings to map different semantics

together. For example, there could be a model with an attribute semantic called VERTEX_POSITION

instead of the commonly provided POSITION that the PODReader class provides by default.

Vertex data, material data, and other parts of the scene provide semantics.

The PFX file can use semantics to annotate attributes, uniforms, textures, or entries into buffers.
Entire buffers can also be annotated by semantics, but no automatic handling is currently done.

2.3.3. Automatic Semantics

Automatic semantics is one of the most powerful features of RenderManager - it is the way to
automate an actual, moving scene.

Inputs of the PFX are matched to outputs of the application, or the model, allowing them to match
precisely and automatically update. The RenderManager can generate the necessary commands to
update them by reading data from the model and writing it into whatever the PFX requires. Currently,
attributes are read only once while uniforms or buffer entries are expected to be updated once per
frame.

In general, for a simple scenario like the Skinning example, the following steps are enough:

1. Definition: Define a pvr::utils::RenderManager object

2. Initialisation:

1. Load a PFX from file into a pvr::assets::Effect object with a PFXReader

2. Load a POD file into a pvr::assets::Model object with a PODReader

 Public Imagination Technologies

PowerVR Framework Development Guide 33 Revision PowerVR SDK REL_18.1@5080009

3. Initialise the RenderManager with the Shell(*this), the swapchain and a

DescriptorPool
4. Add the effect to the RenderManager:

int effectId = renderMgr.addEffect(myEffect, context);

Using EffectId is not necessary, as the effects get sequential ids from 0 increasing.

5. Add the model to a subpass of the effect. As a shortcut, add to all passes.
int modelId = renderMgr.addModelToSubpass(model, effectIdx,

passIdx, subpassIdx); (normally 0,0,0)

6. Kick the RenderManager object processing:
renderMgr.buildRenderObjects(“CommandBuffer”)

3. Set up automatics, if required. For whatever granularity needed, call

createAutomaticSemantics(). This can be called for the entire RenderManager, or for a

specific pipeline, or for nodes. It is recommended to call this globally, on the RenderManager.
Otherwise, it can be called for effects, passes, subpasses, pipelines or nodes.

4. Get the rendering commands into a command buffer:
1. Depending on the specific requirements, commands can again be generated for

different sub-trees or sub-objects. In general, recording commands are usually called
on the pass.
renderMgr.toPass(effectIdx,

passIdx).recordRenderingCommands(myCmdBuffer,…)

2. The command buffer will then contain all the rendering commands to render this pass
with all its subpasses.

3. If using uniforms (uniform semantics) in the PFX, UpdateCommands must be
recorded because uniforms are updated in the command buffer. This should be done

usually before the rendering commands - recordUpdateRenderingCommands

4. If using buffers (buffer entry semantics) in the PFX, it is normally not necessary to
prepare recording commands for them; it is enough to update their memory.

5. For every frame:

1. Calculate/advance the current frame for any or all models. Usually, model->

setCurrentFrame(XXX)) and any other logic required.

2. If using semantics, apart from the automatic semantics, update them

with updateSemantic() in the corresponding objects

3. If using automatic semantics, call the updateAutomaticSemantics() function.

This will update all the memory with the relevant semantics. In the case of the buffer

entry semantics, this is all that is needed as map/unmap has been called. In the case

of uniform semantics, the command buffers must still be submitted so that the

updateUniform commands are called.

4. Submit any command buffers that have been prepared.

In summary, the render manager will have:

 Parsed and read the PFX

 Added the nodes of every model added to pipelines suitable to render it, creating a rather
complicated render graph

 Matched the required semantics of the PFX with the semantics of the POD preparing them for
automatic updating

 Created commands to render each pass/subpass/pipeline/node

 For each frame, iterating all automatic semantics and updating them

2.4. Reference Counting

The PowerVR Framework always uses automatic reference counting to reduce bookkeeping needed

for its use. The pvr::RefCountedResource and its family of classes such as

EmbeddedRefCountedResource, RefCountWeakReference and so on, is basically a smart

pointer class with several interesting features. It was developed to support the PowerVR framework
and can be found in PVRCore. PVRVk also carries its own version of this class to avoid
dependencies.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 34

Note: Remember that with the MIT licence the PowerVR SDK is covered under, these classes can be
reused in the developer’s own code, even outside the Framework.

2.4.1. Performance

The RefCountedResource is an optimal smart pointer implementation. If it is used as

recommended in the same way the Framework does in a release build, dereferencing can be just as
efficient as a raw pointer. The overhead is the size of a pointer and two 32 bit integers.

Remember to use the construct() method to create the underlying object whenever possible, as

this puts the reference count in the same contiguous block of memory as object implementation itself.
This is normally an immediate benefit as the two will usually be accessed together, and should make
it as fast as accessing a raw pointer. Needless to say, the PowerVR SDK exclusively uses this path.

2.4.2. Features

Single block refcounting and object

If ptr.construct(…) is used, this call perfect-forwards all arguments to the underlying class's

constructor, if one exists. Otherwise, if a constructor that can accommodate all the arguments cannot

be found, a compilation error will be raised. Note the dot "." operator - this is an operation on the

pointer, not the pointed object. The arrow "->"operator should not be used for this.

This mechanism is not mandatory, but it is highly recommended, as it avoids memory fragmentation
and promotes locality.

Example:

Class Foo

 {

 public:

 Foo(int a = 0);

 Foo(int a, int b);

 void DoStuff();

 }

 RefCountedResource<Foo> myFoo;

 myFoo.construct(); // Good, Calls Foo(a=0);

 myFoo.construct(42); // Good, Calls Foo(42);

 myFoo.construct(42,1); // Good, Calls Foo(42,1);

 myFoo.construct(myBar); // ERROR – the refcounted resource cannot find a constructor

 myFoo.construct(0,1,2); // ERROR – the refcounted resource cannot find a constructor

The alternative is to create the object manually with "new", and then just reset(...) the smart

pointer to the object.

Deterministic reference count

The only overhead the developer must do for these objects is to release them. This happens
automatically when they go out of scope. It also generally happens in any case where the pointer no

longer points to the object, for instance calling ptr.reset(), or the equivalent ptr.reset(NULL).

In general, it is quite safe and recommended to just allow variables to go out of scope. Otherwise, use

ptr.reset(), when the object needs to be kept around, but not holding the reference any more, for

example objects that are members of an object that will be kept around.

When an object is not pointed to by any RefCountedResources, its destructor will be called and its

memory freed. This is not garbage collection – it is a deterministic operation. It happens immediately,
in the same thread where and when the last reference of an object is released, before the call that
released it or its scope exits.

 Public Imagination Technologies

PowerVR Framework Development Guide 35 Revision PowerVR SDK REL_18.1@5080009

 // myFoo has a reference count of 1

 {

 auto myFoo2 = myFoo; // Refcount 2

 myFoo.reset(); // myFoo now points to null/refcount 0, myFoo2 points to the object,

 // and has refcount 1

 myFoo.reset(); // NOP - absolutely no effect, myfoo is still null

 myFoo = myFoo2; // Again myFoo points to the object, refcount 2

 myFoo.reset(); // myFoo again points to null/refcount 0,

 // myFoo2 still points to the object, and has refcount 1

 myFoo2.reset(); // Refcount 0: Before this call returns, the object's destructor

 // is called and its memory is deleted

 myFoo2.construct(); // New object, refcount 1;

 } // myFoo2 out of scope: Refcount 0, destructor called

 // and the new object deleted here

Weak references

An important weak point of reference counting is the possibility of cyclic references. When two objects
hold a reference to each other, they will keep each other alive even when the program holds no
reference to either of them, causing a memory leak that can easily become a much bigger problem.
The way to break this is with programmer care, and the tool that can be used is weak references -
handles that point to a reference counted object but without keeping it alive.

The RefCountedWeakReference is exactly that. These objects are similar to the

RefCountedResource, but additionally they will allow an object to be destroyed, and also allow the

developer to check if the object still exists before dereferencing the pointer. Some PVRVk objects are
accessed through such weak pointers.

As a rule of thumb, child objects keep strong references to their owners so that the owners don't get
released before their children, for instance, a CommandBuffer holds a reference to a pool object.
However, when a parent object needs references to child objects, these are weak references, for
example, a pool needing a list of all its CommandBuffers.

This rule is not absolute though. The device object may need be removed at any point, taking all
objects with it. Hence, all internal references to a device are weak.

Embedded refcounting

Some of the classes additionally use Embedded Refcounting. This is an Intrusive Refcounting
scheme, and is used when an object needs to be aware of its own refcounting - most notably for its
implementation to be able to generate smart pointers to itself.

For example, a CommandBuffer is generated by a CommandPool object, and during its generation, it
needs to be provided with a pointer to its owning CommandPool. Therefore, the CommandPool object
uses EmbeddedRefcount, so that it can generate such a pointer during its

allocateCommandBuffer function. All objects that follow similar situations (especially Device,

CommandPool, DescriptorPool and so on) use embedded refcounting.

2.4.3. Creating a smart pointer

To create a smart pointer to a class there are three paths - a slow path, a fast path, and an embedded
fast path.

Slow path

The slow path uses a developer-provided pointer to an already created object. Pass this pointer to the

constructor of a RefCountedResource of its real class. Do not pass it to a subclass or the class that

it is intended to be handled through, unless the object has a virtual destructor.

 Unless the object has a virtual destructor, it must be initially wrapped into a

RefCountedResource<Actual Class> and not one of its base types. This is so that the

correct destructor is called.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 36

 If the object has a virtual destructor, it is possible to create the initial smart pointer with the
type of any of its superclasses, but not void.

In both of these cases, after the initial RefCountedResource is created, it can be freely converted to

any compatible RefCountedResource type (any superclass, and void). Pointers to the initial

object can, and should, be discarded. Cast the refcounted resources back and forth to their sub/super
classes.

No matter what the developer does, when the last reference is done, the correct destructor will always
be called, as it is built into the refcounted entry. There is no known way to break this.

The reason this path is called the slow path is because of the accountability of the

RefCountedResource object. The reference counting data itself and the pointer to the object, which

get accessed on any operation like copy or dereference, are stored in different parts of memory. This
memory may be completely unrelated to the block of memory where the object lives, so in the general
case, memory locality is reduced.

Simple dereferences of the object that do not need to access refcounting data will still be just as fast
as the fast path. However, doing copies, refcounting inspections, deletes or other operations that
require access to the refcounting data will normally introduce an additional cache-miss.

Fast path

The fast path is the recommended method, and used throughout the Framework. It involves creating

a RefCountedResource of the class that needs to be created, and then calls its construct(…)

method to initially create the object. Pass to the construct() call the same arguments that would

have been passed to the constructor of the class that is to be created. This is analogous to the

std::make_shared call.

The parameters will then be perfect-forwarded to the correct constructor. One memory block will be
allocated to hold the object and the refcounting bookkeeping data together. This improves memory
locality when refcounting operations and pointer dereferencing are performed close to each other
which is very common.

Embedded refcount path

This path is very similar to the fast path, but is additionally intrusive. In order to use it, a class must be

designed to be used only through a RefCountedResource pointer. The benefit of this path

compared to the fast path is that the class is aware of and can access this bookkeeping information. It

can therefore generate smart pointers to itself with the getReference() and

getWeakReference() methods.

The disadvantage of this path is that the class must be designed to be used through the smart
pointer, and any instances of it must necessarily only ever be instantiated and used through a

RefCountedResource.

To design a class to be used with embedded refcounting:

 Inherit from the EmbeddedRefCount class, passing as template parameter the class type

itself, as per the CRTP pattern

 Make all its constructors protected or private, including the default, so that it can never be
instantiated directly by app code

 Add the EmbeddedRefCount as a template friend class to allow access to its private

constructors

 To actually create instances of the class, add one static factory function to it to for each of its
constructors, with the same number and types of arguments. The body should forward them

to the a call to the static function createNew() of the EmbeddedRefcount.

 Public Imagination Technologies

PowerVR Framework Development Guide 37 Revision PowerVR SDK REL_18.1@5080009

class MyClass: public EmbeddedRefCount<MyClass>

{

 private:

 template<typename> friend class ::pvr::EmbeddedRefCount;

 MyClass(ParamType constructorArg){ … }

 public:

 EmbeddedRefCountedResource<MyClass> createNew(ParamType constructorArg)

 {

 // possible to use std::forward(...) here

 return EmbeddedRefCount<MyClass>::createNew(constructorArg);

 }

 }

Shared refcounting

Shared refcounting is an interesting method, and a convenient feature of the RefCountedResource.

It allows the developer to use reference counting with objects that have their lifetime tied to other
objects, such as specific members of an array. Consider a scenario where an array of items is
allocated, and a developer would like to destroy it when no outside code references any of the object
it contains. What the developer can do in this case is this:

 Make the array refcounted as normal. A std::vector or std::array would work perfectly

here. A c-style array would not work here, so assume a std::array<int> or a
std::vector

 Create an empty RefCountedResource<type> where type is the type of the object that

needs to be accessed

 Call the shareRefCountFrom on it, passing the original ref counted resource and a pointer

to the object (see code below)

{

 RefCountedResource<int> sharedMember0;

 RefCountedResource<int> sharedMember2;

 {

 // We use this scope to show that myArray will be alive even after it is out of scope

 RefCountedResource<std::array<int, 10> > myArray;

 // Create the array using fast path

 myArray.construct();

 (*myArray)[0]=0;

 (*myArray)[1]=10;

 (*myArray)[7]=42;

 sharedMember0.shareRefCountFrom(myArray, &(*myArray)[1]);

 sharedMember2.shareRefCountFrom(myArray, &(*myArray)[7]);

 // myArray goes out of scope here, but it is kept alive by sharedMember0 and 7

 }

 printf("%d, %d", *sharedMember0, *sharedMember2); //output : 10, 42

 }

 // sharedMember0,2 get released - NOW the actual myArray object gets destroyed

The PowerVR Framework uses this feature to allow developers to use the model class as a mesh

container. The developer can call getMeshHandle() on a model, and get a perfectly working smart

pointer to it. The pointer will be under the hood ensuring that the developer does not get overwhelmed
with a multitude of objects they do not care about. Therefore they can load a model with (for example)
five meshes, get pointers to the meshes they want, discard the original model, and not have to bother
about lifetime and clean-up of the original object.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 38

2.5. Input Handling Tips and Tricks

2.5.1. PVRShell simplified (mapped) input

Nearly all SDK Examples use Simplified Input. This is a model we use that is suitable for demo
applications. No matter the platform, common actions are mapped to a handful of events:

 Action1

 Action2

 Action3

 Left

 Right

 Up

 Down

 Quit

The Shell already does this mapping. All that is required is overriding the eventMappedInput

function of pvr::Shell as follows:

pvr::Result::Enum pvr::Shell::eventMappedInput(pvr::SimplifiedEvent::Enum evt)

This function will be called every time the developer performs one of the actions that map to a
simplified event.

Table 2. Input Events on Desktop

INPUT EVENT How to trigger on Desktop (Window) How to trigger on Desktop (Console)

Action1 Space, Enter, Click centre of screen Space, Enter

Action2 Click left 30% of screen, Key “1” Key “1”

Action3 Click right 30% of screen, Key “2” Key “2”

Left/Right/Up/
Down

Left/Right/Up/Down keys, Drag mouse
Left/Right/Up/Down

Left/Right/Up/Down keys

Quit Escape, Q key, close window Escape, Q key

Table 3. Input Events on Android

INPUT EVENT How to trigger on Android

Action1 Touch centre of screen

Action2 Touch left 30% of screen

Action3 Touch right 30% of screen

Left/Right/Up/Down Swipe Left/Right/Up/Down

Quit “Back” key

Table 4. Input Events on iOS

INPUT EVENT How to trigger on iOS

Action1 Touch centre of screen

Action2 Touch left 30% of screen

Action3 Touch right 30% of screen

 Public Imagination Technologies

PowerVR Framework Development Guide 39 Revision PowerVR SDK REL_18.1@5080009

INPUT EVENT How to trigger on iOS

Left/Right/Up/Down Swipe Left/Right/Up/Down

Quit “Home” key

2.5.2. Lower-level input

Besides this simplified input, it is possible to not use mappedInput and instead use the lower level

input events:

 onKeyDown

 onKeyUp

 onKeyPress

 onPointingDeviceDown

 onPointingDeviceUp

All these functions map differently to different platforms, and may not be present everywhere, for

instance keyDown and so on for mobile devices without keyboards. They can enable custom

programming of the developer's own input scheme. These functions can be used normally by

overriding them from pvr::Shell, exactly like eventMappedInput.

2.6. Renderpass/PLS strategies

The PowerVR SDK is designed to work with any conformant OpenGL ES or Vulkan implementation.
Most optimisation guidance we provide is sensible for any platform, but some guidance may be critical
for PowerVR Platforms. Optimisations we recommend will not normally be detrimental to the
performance of other platforms, but they may not actually improve them.

This section details strategies for optimisations relating to efficiently using multi-subpass
RenderPasses (Vulkan) or multi-pass rendering (OpenGL ES). All of these optimisations are suitable
for any platform that supports them, but their effect on PowerVR architectures makes them crucial to
use whenever possible.

These optimisations are expected to benefit any platform, or at worst be neutral and have no effect.
However, tile-based architectures (which applies to some mobile), and unified memory architectures
(practically all mobile) are expected to hugely benefit.

Setting the load and store ops or using invalidate/discard

In Vulkan and PVRVk, when creating a RenderPass object, set the LoadOp and the StoreOp to it.

The LoadOp means "when starting a RenderPass, what do we need to do with whatever contents the

FrameBuffer where we are rendering contains?"

There are three options here:

 Clear actually means "forget what's in there, use this colour". This is usually the
recommended operation.

 Don't Care means "we will render to the entire scene anyway, so it doesn't matter, don't load
it"

 Preserve means "we are incrementally rendering, using whatever is already in the
framebuffer, so we need the contents of it to be preserved."

Clear and Don't Care may sound different, but it is important to realise that their effect is practically
the same as far as the important parts of performance go. They both allow the driver to ignore what is
in the framebuffer. In the case of Clear, the driver will just be using the clear colour instead of the
contents of the framebuffer. Don't Care is similar, but also tells the driver that no specific colour is
required.

Never use Preserve unless absolutely certain it is needed as it will introduce an entire round-trip to
main memory. Its performance cost on bandwidth cannot be overstated. It is recommended to double-
check the application design if Preserve is actually required.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 40

In OpenGL ES, the situation is pretty much the same. When glClear is called at the start of a frame,

or glInvalidate depth/stencil before swapping, the driver may well be allowed to discard the

contents of the framebuffer / depthbuffer before the next frame.

Obviously, the specific flags depend on usage, but the baseline should be as follows:

Recommendations for LoadOp

 Clear for depth/stencil, using the maximum depth value/whatever the stencil needs to be.

 Clear for colour, if any part of the screen may not be rendered.

 Ignore, if it is guaranteed that every single pixel on the screen will be rendered to. It would be
almost the same to always set Clear in every case, but it does not hurt to be pedantic and set
ignore if it is suitable. Never set Ignore and have pixels on screen that have not been
specifically overwritten, as then there is undefined behaviour and there may be artifacts or
flickering.

Conversely, for OpenGL ES:

 glClear both Color and Depth at the start of the frame.

StoreOp

The StoreOp is much the same, but it should be even more obvious. In nearly every case, it is
necessary to:

 Store the colour so that it can be displayed on screen

 Discard the depth and stencil as their work is done

Conversely, for OpenGL ES, before calling eglSwapBuffers:

 Do not do anything special for colour (EGL_PRESERVE in EGL swap behaviour)

 glInvalidateFrameBuffers/glDiscardFrameBuffers any FBOs that are not being

rendered, and all depth/stencil attachments.

In short:

 Colour usually needs to be cleared on load, unless the contents of the framebuffer need to be
explicitly read. A need to load the colour is very commonly a hint that subpasses/pixel local
storage should be used instead if possible

 Colour usually needs to be stored at the end of the frame, in order to be presented

 Depth and stencil almost always need to be cleared to max value at the start of the pass

 Depth and stencil almost never need to be stored at the end of the pass, as they are not
required for rendering

Subpasses / Pixel Local Storage

Subpasses are one of those optimisations that applications should be designed around. Use them if
at all possible, explore them if remotely possible, and rewrite applications to take advantage of them.
One of the first questions that should be asked when doing a multi-pass application is: "can region-
local subpasses be used with it?"

Conceptually, a subpass is a run through the graphics pipeline (from vertex shader->… -> framebuffer
output) whose output will be an input for a later step. For instance, rendering the G-Buffer in deferred
shading can be a subpass.

This is similar to rendering to a texture of screen size in one run, and sampling the corresponding
texel at the same position as the rendered pixel on the next pass.

If this is designed properly, this allows the implementation to do a powerful optimisation on tiled
architectures. The output of the fragment shader of the first subpass is not stored at all to main
memory as it is known that it will not need to be displayed. Instead it is kept on very fast on-chip
memory (register files) and accessed again from the fragment shader of the next subpass.

 Public Imagination Technologies

PowerVR Framework Development Guide 41 Revision PowerVR SDK REL_18.1@5080009

For example, in Deferred Shading, the G-Buffer contents can be kept on-chip to be used in the
lighting pass. This can have great performance benefits in mobile architectures, as they are
commonly bandwidth limited.

The caveat is that for this to happen, each pixel must only use the information from the corresponding
input pixel. It cannot sample from arbitrary locations, and it cannot sample at all from the previous
contents.

For Vulkan, in order to collapse subpasses in this way:

 Render into the images in one subpass.

 Use these images as input attachments in the other subpass.

 Use Transient and Lazily Allocated flags for those attachments.

For OpenGL ES, the same effect is done with enabling the GL_PIXEL_LOCAL_STORAGE extension.

Additionally, the shaders must have been written to explicitly take advantage of it.

In short, use subpass folding wherever suitable. With multiple passes, see if they are suitable for
subpass optimisation. For both of these cases, see the DeferredShading example.

Imagination Technologies Public

Revision PowerVR SDK REL_18.1@5080009 42

3. Contact Details
For further support, visit our forum:

http://forum.imgtec.com

Or file a ticket in our support system:

https://pvrsupport.imgtec.com

To learn more about our PowerVR Graphics Tools and SDK and Insider programme, please visit:

http://www.powervrinsider.com

For general enquiries, please visit our website:

http://imgtec.com/corporate/contactus.asp

http://forum.imgtec.com/
https://pvrsupport.imgtec.com/
http://www.powervrinsider.com/
http://imgtec.com/corporate/contactus.asp

	1. Overview of the PowerVR Framework
	1.1. Libraries
	1.1.1. Default library locations

	1.2. Additional header files
	1.2.1. DynamicGles.h/DynamicEGL.h
	1.2.2. vk_bindings.h/vk_bindings_helper.h

	1.3. Overview of the PowerVR Framework Modules
	1.3.1. PVRShell
	About PVRShell
	How to use PVRShell

	1.3.2. PVRVk
	About PVRVk
	How to use PVRVk

	1.3.3. PVRAssets
	How to use PVRAssets

	1.3.4. PVRCore
	About PVRCore
	How to use PVRCore

	1.3.5. PVRUtils
	About PVRUtils
	How to use PVRUtils

	1.3.6. PVRCamera
	Using PVRCamera

	1.3.7. Changes from older modules
	PVRPlatformGlue
	PVRApi
	PVRUIRenderer

	1.4. Platform Independence
	1.4.1. Supported platforms
	1.4.2. Build system
	1.4.3. File system (streams)
	1.4.4. Windowing system

	1.5. Supported APIs
	1.6. The Skeleton of a Typical Framework 5.x Application
	1.6.1. PowerVR SDK examples structure
	1.6.2. The minimum application skeleton
	1.6.3. Using PVRVk
	1.6.4. Using PVRUtils
	PVRUtilsVk
	PVRUtilsEs

	1.6.5. Using the UIRenderer
	Initialisation
	Sprites
	An Example of Layout
	Preparation (Create Fonts)
	Usage Example
	To Render the Sprites
	Important:

	1.6.6. A simple application using PVRVk/PVRUtilsVk/PVRUtilsEs
	initApplication (VK/ES)
	initView(Generic)
	initView(OpenGL ES)
	initView (Vulkan)
	Initial Setup
	Textures and Buffers
	Objects

	renderFrame
	renderFrame (ES)
	renderFrame (Vulkan)
	releaseView
	quitApplication

	1.6.7. Rendering without PVRUtils

	1.7. Synchronisation in PVRVk (and Vulkan in general)
	1.7.1. Semaphores
	1.7.2. Fences
	1.7.3. Events
	1.7.4. Recommended typical synchronisation for presenting

	1.8. Overview of Useful Namespaces
	1.9. Debugging PowerVR Framework Applications
	1.9.1. Exceptions
	1.9.2. OpenGL ES
	1.9.3. Vulkan/PVRVk
	Layers

	2. Tips and Tricks
	2.1. Frequently Asked Questions
	2.1.1. Which header files should I include?
	2.1.2. Which libraries should be linked against?
	2.1.3. Does library link order matter?
	2.1.4. Are there any dependencies to be aware of?
	What about linking against OpenGL ES, or Vulkan, respectively?

	2.1.5. What are the strategies for Command Buffers? What about Threading?
	Single command buffer submission, multiple command secondary command buffers
	Multiple parallel command buffers, submitted once
	Multiple parallel command buffers, submitted multiple times

	2.1.6. How are PVRVk objects created?
	2.1.7. How are PVRVk Objects cleaned up? Is there anything that needs to be destroyed that the developer did not create?
	2.1.8. How is a UIRenderer cleaned up?
	2.1.9. Do any API objects need to be manually kept alive?
	2.1.10. How are files/assets/resources loaded?
	2.1.11. How are buffers updated?
	Update
	Map
	Calculating buffer layouts
	The StructuredBufferView
	GLSL
	CPU side

	2.2. Models and Effects, POD & PFX
	2.2.1. Models, meshes, cameras, and similar
	Nodes
	Some useful methods
	Models as mesh libraries – shared pointers between models/meshes

	2.2.2. Effects

	2.3. Utilities and the RenderManager
	2.3.1. Simplified structure of the RenderManager Render Graph
	2.3.2. Semantics
	2.3.3. Automatic Semantics

	2.4. Reference Counting
	2.4.1. Performance
	2.4.2. Features
	Single block refcounting and object
	Deterministic reference count
	Weak references
	Embedded refcounting

	2.4.3. Creating a smart pointer
	Slow path
	Fast path
	Embedded refcount path
	Shared refcounting

	2.5. Input Handling Tips and Tricks
	2.5.1. PVRShell simplified (mapped) input
	2.5.2. Lower-level input

	2.6. Renderpass/PLS strategies
	Setting the load and store ops or using invalidate/discard
	Recommendations for LoadOp
	StoreOp

	Subpasses / Pixel Local Storage

	3. Contact Details

