
this print for content only—size & color not accurate spine = 0.729" 312 page count

Books for professionals By professionals®

Practical Reporting with Ruby and Rails
Dear Reader,

Perhaps the most important skill any commercial Ruby programmer can have
is to write reports for data from disparate data sources. Practical Reporting with
Ruby and Rails will show you how to do just that, using concrete, real-life examples.
In fact, this book covers three distinct concepts: how to load data from different
sources, how to interpret the data, and how to present the data.

You’ll find out how to load data from a wide range of sources in various
formats, including web-based data sources like Google AdWords and eBay. I’ll
show you how to analyze data to produce meaningful reports using a variety
of techniques, from Active Record statistical functions to custom SQL. The
examples include conducting SugarCRM sales campaigns, analyzing data from
Apache web logs, and many other practical applications.

Displaying the data visually can be the most important part. You’ll learn how
to present data on the Web and on the desktop. I’ll cover graphing using Gruff,
Scruffy, CSS Graphs Helper, and Markaby, along with easy ways to create text
and HTML reports. The examples demonstrate how to display reports as Excel
spreadsheets or deliver them as PDF files, as well as how to create a Windows
desktop tool that downloads data from a Rails web application into a Microsoft
Access database.

That’s not all, though. This book also covers performance-enhancing techniques
such as using Active Record Extensions, which let you import data at lightning
speed, and rolling your own SQL statements to optimize slow queries.

I hope you will enjoy learning about reporting as much as I enjoyed writing
about it.

David Berube

Author of

Practical Ruby Gems

US $42.99

Shelve in
Programming Languages/
Ruby

User level:
Intermediate

Berube
Reporting

 w
ith Ruby and Rails

The eXperT’s Voice® in open source

Practical

Reporting with
Ruby and Rails

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

David Berube

Companion
eBook

Available

THE APRESS ROADMAP

Practical Rails Projects

Beginning Ruby

Beginning Rails

Practical Ruby Gems

Practical Reporting
with Ruby and Rails

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-933-4
ISBN-10: 1-59059-933-0

9 781590 599334

54299

Create and present attractive reports, graphs,
and documents using Ruby on the Web, on the
desktop, and on the server.

Practical

David Berube

Practical Reporting with
Ruby and Rails

9330FM.qxd 1/9/08 2:48 PM Page i

Practical Reporting with Ruby and Rails

Copyright © 2008 by David Berube

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-933-4

ISBN-10 (pbk): 1-59059-933-0

ISBN-13 (electronic): 978-1-4302-0532-6

ISBN-10 (electronic): 1-4302-0532-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editors: Steve Anglin, Jason Gilmore
Technical Reviewer: Nick Plante
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editor: Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Production Editor: Liz Berry
Compositor: Dina Quan
Proofreader: April Eddy
Indexer: Broccoli Information Management
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

9330FM.qxd 1/9/08 2:48 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

This book is dedicated to my parents.

9330FM.qxd 1/9/08 2:48 PM Page iii

9330FM.qxd 1/9/08 2:48 PM Page iv

Contents at a Glance

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Introducing Reporting with Ruby
■CHAPTER 1 Data Access Fundamentals . 3

■CHAPTER 2 Calculating Statistics with Active Record . 19

■CHAPTER 3 Creating Graphs with Ruby . 33

■CHAPTER 4 Creating Reports on the Desktop . 51

■CHAPTER 5 Connecting Your Reports to the World . 75

PART 2 ■ ■ ■ Examples of Reporting with Ruby
■CHAPTER 6 Tracking Auctions with eBay . 111

■CHAPTER 7 Tracking Expenditures with PayPal . 133

■CHAPTER 8 Creating Sales Performance Reports with SugarCRM 155

■CHAPTER 9 Investment Tracking with Fidelity . 171

■CHAPTER 10 Calculating Costs by Analyzing Apache Web Logs 189

■CHAPTER 11 Tracking the News with Google News . 215

■CHAPTER 12 Creating Reports with Ruby and Microsoft Office 233

■CHAPTER 13 Tracking Your Ads with Google AdWords . 261

■INDEX . 285

v

9330FM.qxd 1/9/08 2:48 PM Page v

9330FM.qxd 1/9/08 2:48 PM Page vi

Contents

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Introducing Reporting with Ruby

■CHAPTER 1 Data Access Fundamentals . 3

Choosing a Database . 3

Using Active Record As a Database Access Library 5

Calculating Player Salaries. 6

Calculating Player Wins . 11

Summary. 17

■CHAPTER 2 Calculating Statistics with Active Record 19

Grouping and Aggregation . 19

Analyzing Data with Grouping and Aggregates . 22

Calculating Salary Distribution. 25

Calculating Drink/Win Distribution . 26

Summary. 31

■CHAPTER 3 Creating Graphs with Ruby . 33

Choosing a Graphing Utility . 33

Graphing Data . 37

Creating a Line Chart . 37

Creating a Line Chart . 45

Summary . 49

vii

9330FM.qxd 1/9/08 2:48 PM Page vii

■CHAPTER 4 Creating Reports on the Desktop . 51

Choosing a Desktop Format . 51

Exporting Data to Spreadsheets . 52

Generating an Excel Spreadsheet . 52

Creating a Spreadsheet Report . 53

Creating GUIs with Ruby. 60

Using FXRuby . 61

Graphing Team Performance on the Desktop. 63

Summary. 73

■CHAPTER 5 Connecting Your Reports to the World . 75

Choosing a Web Framework . 75

Live Intranet Web Reporting with Rails . 76

Setting Up the Database. 78

Creating the Models for the Web Report . 82

Creating the Controller for the Web Report . 85

Creating the View for the Web Report . 85

Examining the Web Report Application . 87

Graphical Reporting with Rails . 91

Creating the Controller for the Graphical Report 92

Creating the Models for the Graphical Report. 95

Creating the View for the Graphical Report . 96

Examining the Graphical Reporting Application 99

Summary. 107

PART 2 ■ ■ ■ Examples of Reporting with Ruby

■CHAPTER 6 Tracking Auctions with eBay. 111

Using eBay APIs . 111

Obtaining Competitive Intelligence via eBay Web Services 113

Installing Hpricot and LaTeX . 114

Coding the eBay Report . 115

Summary . 131

■CONTENTSviii

9330FM.qxd 1/9/08 2:48 PM Page viii

■CHAPTER 7 Tracking Expenditures with PayPal. 133

Gathering Data from PayPal. 133

Reporting PayPal Expenses . 136

Using FasterCSV. 137

Converting PayPal CSV Data . 138

Analyzing the Data. 144

Summary. 153

■CHAPTER 8 Creating Sales Performance Reports with SugarCRM . . . 155

Installing SugarCRM . 155

Sales Force Reporting. 156

Updating the Database . 156

Creating PDFs from HTML Documents. 157

Summary. 169

■CHAPTER 9 Investment Tracking with Fidelity . 171

Writing a Small Server to Get Report Data . 171

Tracking a Stock Portfolio . 173

Creating an XML Server with Mongrel . 173

Creating the Graphical XML Ticker . 180

Summary. 187

■CHAPTER 10 Calculating Costs by Analyzing Apache Web Logs 189

Speeding Up Insertions with ActiveRecord::Extensions 190

Creating PDFs with PDF::Writer . 191

Cost-Per-Sale Reporting. 192

Creating the Controllers . 193

Creating the Layout and Views . 198

Downloading a Parser Library . 201

Creating the Routing File . 201

Setting Up the Database and Schema . 201

Defining the Models . 203

Examining the Log Analyzer and Cost-Per-Sale Report 203

Summary . 212

■CONTENTS ix

9330FM.qxd 1/9/08 2:48 PM Page ix

■CONTENTSx

■CHAPTER 11 Tracking the News with Google News . 215

Using FeedTools to Parse RSS . 216

Company News Coverage Reporting . 217

Loading the Data . 217

Creating the News Tracker Report Application. 226

Summary. 232

■CHAPTER 12 Creating Reports with Ruby and Microsoft Office 233

Interacting with Microsoft Office . 233

Working with Microsoft Excel . 234

Working with Microsoft Word . 234

Working with Microsoft Access . 236

Importing Web-Form Data into an Access Database. 236

Creating the Web Interface. 237

Importing the XML Data into Microsoft Access 251

Summary. 260

■CHAPTER 13 Tracking Your Ads with Google AdWords 261

Obtaining Google AdWords Reports . 262

Planning an AdWords Campaign. 267

Loading the XML into a Database . 267

Creating the AdWords Campaign Reporter Application. 272

Summary. 284

■INDEX . 285

9330FM.qxd 1/9/08 2:48 PM Page x

About the Author

■DAVID BERUBE is a Ruby developer, trainer, author, and speaker. He has used both Ruby
and Ruby on Rails for several years, starting in 2003 (he became a Ruby advocate after
writing about the language for Dr. Dobb’s Journal). Prior to this, David worked profession-
ally with PHP, Perl, C++, and Visual Basic. He is the author of the Apress book Practical
Ruby Gems.

David’s professional accomplishments include creating the Ruby on Rails engine for
CoolRuby.com (http://coolruby.com), a site that tracks the latest Ruby developments, and
working with thoughtbot (http://www.thoughtbot.com) on the Rails engine that powers
Sermo’s Top Doctor contest. Additionally, he has worked on several other Ruby projects,
including the engine powering CyberKnowHow’s Birdflubreakingnews.com search
engine. He currently works with the Los Angeles digital-casting services firm The Casting
Frontier.

David’s journalism has been in print in more than 65 countries, in magazines such as
Linux Magazine, Dr. Dobb’s Journal, Red Hat Magazine, and International PHP Magazine.
He has also taught college courses, guest lectured—notably at Harvard University—and
spoken publicly on topics such as “MySQL and You” and “Making Money with Open
Source Software.”

xi

9330FM.qxd 1/9/08 2:48 PM Page xi

http://coolruby.com
http://www.thoughtbot.com

9330FM.qxd 1/9/08 2:48 PM Page xii

About the Technical Reviewer

■NICK PLANTE is a programmer, author, entrepreneur, and (most of all)
a nice guy. As a freelance programmer and a partner in Ubikorp Inter-
net Services, Nick specializes in helping web startups accelerate their
development with Ruby and Rails. He is a co-organizer of the New
Hampshire Ruby Users Group and the Rails Rumble coding competi-
tion, and contributes to numerous open source projects.

When he is not dreaming up new applications or gushing about
how great Ruby is, Nick enjoys independent music and film, as well as

hiking, biking, and snowshoeing. He currently lives with his wife Amanda in the New
Hampshire seacoast area, an hour north of Boston.

You can contact Nick at nap@zerosum.org or visit his programming blog on the Web at
http://blog.zerosum.org. If you find something useful there, feel free to buy him comic
books or an alpaca ranch.

xiii

9330FM.qxd 1/9/08 2:48 PM Page xiii

mailto:nap@zerosum.org
http://blog.zerosum.org

9330FM.qxd 1/9/08 2:48 PM Page xiv

Acknowledgments

I’d like to thank my parents and my sisters; I can’t imagine writing this book without
them. I’d also like to thank the many friends who have supported me; in particular, I’d
like to thank Wayne Hammar, Matthew Gifford, and Michael Southwick.

I’d also like to thank the vast array of professional associates I’ve worked with and
learned from, and in particular, I’d like to thank Joey Rubenstein. I’d also like to thank
Jason Gilmore for teaching me quite a bit about the publishing business and about writ-
ing, and for that matter, for putting up with my incessant questions.

Finally, I’d like to thank my editors, originally Jason Gilmore and later Steve Anglin, as
well as my technical reviewer and co-conspirator Nick Plante, my project manager Beth
Christmas, and my copy editor Marilyn Smith.

xv

9330FM.qxd 1/9/08 2:48 PM Page xv

9330FM.qxd 1/9/08 2:48 PM Page xvi

Introduction

This book is about general and scalable ways to create reports with Ruby. It covers using
a huge array of tools—Rails, Gruff, Ghostscript, and many more—but a common thread
links them all: they are powerful tools that will serve you even if you have a huge amount
of data. Using the reporting tools and techniques described in this book, you will be able
to solve almost any reporting problem, from small to very, very large.

This book assumes you have some knowledge of Ruby and Rails, as well as access to
a machine with Ruby, RubyGems, Rails, and MySQL installed. If you need to learn more
about Ruby, I recommend reading Beginning Ruby: From Novice to Professional by Peter
Cooper (Apress, 2007).

Practical Reporting with Ruby and Rails is divided into two parts. Part 1 covers the
fundamentals of reporting with Ruby. You’ll find information about data access, data
analysis, and graphing, as well as presenting your graphs on the desktop and on the Web.
Part 2 gives specific, real-life examples of useful reports, ranging from monitoring eBay
auctions, to tracking sales performance with SugarCRM, to conducting Google AdWords
campaigns.

If you would like to contact me, you can do so through my web site at http://
berubeconsulting.com or via e-mail, at djberube@berubeconsulting.com. I would love to
hear from you.

xvii

9330FM.qxd 1/9/08 2:48 PM Page xvii

http://berubeconsulting.com
http://berubeconsulting.com
mailto:djberube@berubeconsulting.com

9330FM.qxd 1/9/08 2:48 PM Page xviii

Introducing Reporting
with Ruby

P A R T 1

9330CH01.qxd 12/3/07 11:59 AM Page 1

9330CH01.qxd 12/3/07 11:59 AM Page 2

Data Access Fundamentals

Businesses all over the globe produce data, and they are producing it at a faster pace
than ever before. Most of this data is stored in databases, but often it’s publicly available
only in inconvenient forms, such as Word documents, Excel spreadsheets, web pages,
and comma-separated values (CSV) files.

As an unfortunate result, the data you need often isn’t in a useful format. And even
when the data is in an accessible format, you may need to process it heavily to achieve a
useful result. For example, you might need to find the average sales of a certain region,
rather than just a list of individual sales.

Of course, once you’ve analyzed the data and extracted some useful information,
you’ll need to present it intelligently; raw numbers are rarely useful outside academia.
Today’s business world requires powerful, attractively designed reporting, with features
like charts, graphs, and images.

Essentially, this book will cover these three points: importing foreign data into a
database, analyzing that data to get a useful result, and then formatting that data in a way
that can be easily examined. To begin, you’ll need a database in which to store your data
and a library to access it. This chapter introduces two useful open source databases and
Active Record, a powerful database access library.

Choosing a Database
A wide variety of connection adapters are available for various databases, including
Oracle, Microsoft SQL Server, DB2, SQLite, MySQL, and PostgreSQL.

The examples in this book use MySQL, a fast, lightweight, open source database. You
can download and use it for free, although a paid version with technical support is avail-
able from http://www.mysql.com/. MySQL is a good choice for applications that are not
large enough to warrant purchasing an expensive database license. MySQL is also com-
monly used in web applications, because MySQL support is provided by a high
percentage of Internet web hosts.

A number of high-profile organizations and web sites—Apple, Craigslist, Google
AdWords, Flickr, Slashdot, and many others—use MySQL. Slashdot, shown in Figure 1-1,
handles more than 150 million page views per day.

3

C H A P T E R 1

9330CH01.qxd 12/3/07 11:59 AM Page 3

http://www.mysql.com

Figure 1-1. Slashdot.org is a high-traffic site that uses MySQL.

The techniques covered in this book will also generally work without modification on
PostgreSQL, a fast and full-featured open source database. You can download and use
PostgreSQL for free from http://www.postgresql.org/. PostgreSQL includes a number of
features that are comparable to those available with large, commercial databases, and it
performs just as well (and in some cases, better) as those databases. Therefore, you can
use PostgreSQL in many situations where you need a powerful, scalable database.

PostgreSQL also has a fair number of large users, like Skype, TiVo, the Internet Movie
Database, the US Department of Labor, Apple Remote Desktop (see Figure 1-2), and
Radio Paradise. Radio Paradise is an Internet radio station with roughly 30 thousand
users and more than 2 million file requests per day.

■Tip Often, convincing bosses, investors, or coworkers to use open source technology can be a hassle.
Pointing to high-profile, high-load sites and companies using the technology can help in this endeavor.
You can find a detailed list of significant MySQL users at http://en.wikipedia.org/wiki/
Mysql#Prominent_users. Similarly, you can find a list of PostgreSQL users at http://en.wikipedia.
org/wiki/Postgresql#Prominent_users.

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS4

9330CH01.qxd 12/3/07 11:59 AM Page 4

http://www.postgresql.org
http://en.wikipedia.org/wiki
http://en.wikipedia

Figure 1-2. Apple’s Remote Desktop is a high-traffic site that uses PostgreSQL.

Using Active Record As a Database Access Library
Most of the examples in this book use Active Record as a database access library. Active
Record is a simple way to access databases and database tables in Ruby. It is a powerful
object-relational mapping (ORM) library that lets you easily model databases using an
object-oriented interface. Besides being a stand-alone ORM package for Ruby, Active
Record will also be familiar to web application developers as the model part of the web-
application framework Ruby on Rails (see http://ar.rubyonrails.org/).

Active Record has a number of advantages over traditional ORM packages. Like the
rest of the Rails stack, it emphasizes configuration by convention. This means that Active
Record assumes that your tables and fields follow certain conventions unless you explic-
itly tell it otherwise. For example, it assumes that all tables have an artificial primary key
named id (if you have a different primary key, you can override it, of course). It also
assumes that the name of each table is a pluralized version of the model (that is, class)
name; so if you have a model named Item, it assumes that your database table will be
named items.

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS 5

9330CH01.qxd 12/3/07 11:59 AM Page 5

http://ar.rubyonrails.org

Active Record lets you define one or more models, each of which represents a single
database table. Class instances are represented by rows in the appropriate database
table. The fields of the tables, which will become your object’s attributes, are automati-
cally read from the database, so unlike other ORM libraries, you won’t need to repeat
your schema in two places or tinker with XML files to dictate the mapping. However, the
relationships between models in Active Record aren’t automatically read from the data-
base, so you’ll need to place code that represents those relationships in your models.

Creating a model in Active Record gives you quite a few features for free. You can
automatically add, delete, find, and update records using methods, and those methods
can make simple data tasks very trivial.

Let’s look at two examples to demonstrate data manipulation with Active Record.

Calculating Player Salaries

Suppose you work for a game development company, Transmegtech Studios. The com-
pany’s initial game releases were well received, but subsequent releases have been
lambasted due to poor artificial intelligence and game balance. Management has con-
cluded that programmers and graphic designers, who were responsible for testing the
previous releases of the game, do not have the game-playing experience necessary to
determine problems that occur only at superior skill levels. To remedy the problem, the
company has hired a number of professional game players to test the next game before
it’s released. The testers will be paid according to their gaming performance, calculated
based on their number of total wins per day.

The testers play a set number of games per day, and they record their wins. The
company wants you to use Active Record to manage the list of players and to find their
average salary/win ratio—that is, how much money each player costs per win. Trans-
megtech feels that this calculation will aid in determining how useful the player is to the
company, on the assumption that the more skilled players are more valuable, since they
presumably have a better knowledge of the game at hand. (Of course, this may or may
not be true, but the goal of a report is to provide the data that the end user requests.)

Fortunately, Active Record makes this fairly easy. With Active Record and MySQL
installed, you can create a simple schema, populate it with your data, and then find the
average salary.

Listing 1-1 shows the code to create a player table schema.

Listing 1-1. Simple Player Table Schema (player_schema.sql)

CREATE DATABASE players;

USE players;

CREATE TABLE players (

id int(11) NOT NULL AUTO_INCREMENT,

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS6

9330CH01.qxd 12/3/07 11:59 AM Page 6

name TEXT,

wins int(11) NOT NULL,

salary DECIMAL(9,2),

PRIMARY KEY (id)

)

Save this file as player_schema.sql. Then run the following MySQL command:

mysql -u your_mysql_username -p < player_schema.sql

Next, you can write the code to declare a model to wrap the newly created database
table, establish a connection to the database, add a few records, and then calculate the
average win/salary ratio. Listing 1-2 shows this code.

Listing 1-2. Calculating Player Salaries (player_salary_ratio.rb)

require 'active_record'

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'your_mysql_username_goes_here',

:password => 'your_mysql_password_goes_here' :database => 'players')

class Player < ActiveRecord::Base

end

Player.delete_all

Player.new do |p|

p.name = "Matthew 'm_giff' Gifford"

p.salary = 89000.00

p.wins = 11

p.save

end

Player.new do |p|

p.name = "Matthew 'Iron Helix' Bouley"

p.salary = 75000.00

p.wins = 4

p.save

end

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS 7

9330CH01.qxd 12/3/07 11:59 AM Page 7

Player.new do |p|

p.name = "Luke 'Cable Boy' Bouley"

p.salary = 75000.50

p.wins = 7

p.save

end

salary_total = 0

win_total=0

players = Player.find(:all)

players.each do |player|

puts "#{player.name}: $#{'%0.2f' % (player.salary/player.wins)} per win"

salary_total = salary_total + player.salary

win_total = win_total + player.wins

end

puts "\nAverage Cost Per Win : $#{'%0.2f' % (salary_total / win_total)}"

■Note If you connect to MySQL via Unix sockets, and it’s in a nonstandard location, you can add a
:socket=>'path/to/your/socket' option to the ActiveRecord::Base.establish_connection call.

Save this script as player_salary_ratio.rb. You can run this script using the following
command:

ruby player_salary_ratio.rb

Matthew 'm_giff' Gifford: $8090.91 per win

Matthew 'Iron Helix' Bouley: $18750.00 per win

Luke 'Cable Boy' Bouley: $10714.36 per win

Average Cost Per Win: $10863.66

Let’s take a closer look at the techniques used to manipulate the database in this
example.

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS8

9330CH01.qxd 12/3/07 11:59 AM Page 8

Dissecting the Code

In Listing 1-2, first the ActiveRecord::Base.establish_connection method is used to estab-
lish a connection to the database, as follows:

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'root', # This is the default username and password

:password => '', # for MySQL, but note that if you have a

different username and password,

you should change it.

:database => 'players')

The adapter parameter is of particular interest. As you can infer from this line, you
can use other adapters to connect to other database types. The remainder of the parame-
ters specify details of the connection: the server location, the name of the database,
access credentials, and so forth.

All of the models will use this connection by default, since you called establish_
connection on ActiveRecord::Base. However, you can also call establish_connection on
individual models that inherit from the Active Record base class, which lets you have
some models refer to one database and other models refer to a different database.

Next, you create a model:

class Player < ActiveRecord::Base

end

As you can see, it’s not at all complicated to create a simple model in Active Record.
All of your record names are automatically read from your database, and you can access
them with simple getter and setter methods. The two lines used to create the Player class
are very powerful. They declare the new class as a subclass of ActiveRecord::Base. This
gives you access to a number of built-in methods and, through introspection and plural-
ization rules, obtains the name of the underlying database table. The fact that Active
Record is now aware of the table’s name means that it can create methods to match the
field names and automatically generate SQL statements to interact with the database.

One of the methods you inherit from ActiveRecord::Base allows you to delete all of
the records from previous runs (of course, there won’t be any the first time through):

Player.delete_all

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS 9

9330CH01.qxd 12/3/07 11:59 AM Page 9

Next, you use the new method to add a record:

Player.new do |p|

p.name = "Matthew 'm_giff' Gifford"

p.salary = 89000.00

p.wins = 7

p.save

end

The new method has a few different forms. In this case, you’re passing it a block, and it
passes a new Player object to your block. You could also use this form:

p = Player.new

p.name = "Matthew 'm_giff' Gifford"

p.salary = 89000.00

p.wins = 7

p.save

Alternatively, you could use this form:

p = Player.new(:name=> "Matthew 'm_giff' Gifford", :salary => 89000.00, :wins => 7)

p.save

All three of these forms are just variations that perform the same action.
The methods you use to set your fields—name and salary—are provided by Active

Record, and they are named after their associated fields. Remember that both getter and
setter methods are automatically created for each field name declared in your schema
(Listing 1-1).

After you create the first player, you create two more in similar fashion. Then you
need to perform the analysis:

salary_total = 0

win_total = 0

players = Player.find(:all)

players.each do |player|

puts "#{player.name}: $#{'%0.2f' % (player.salary/player.wins)} per win"

salary_total = salary_total + player.salary

win_total = win_total + player.wins

end

puts "\nAverage Cost Per Win : $#{'%0.2f' % (salary_total / win_total)}"

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS10

9330CH01.qxd 12/3/07 11:59 AM Page 10

This code finds all of the players using the Player.find class method (inherited from
ActiveRecord::Base) and saves them into an array. It then loops through the array while
totaling the salaries and wins. For each player, it prints out the player’s salary/wins ratio—
that is, how much the player costs the company for each win. Note that although you
calculated the average manually for demonstration purposes, you would normally use
MySQL’s statistical functions to get this kind of information, as discussed in Chapter 2.

■Note The find method has quite a few options, as you’ll see in upcoming chapters. For example, the
:conditions parameter specifies conditions for the record retrieval, just like a SQL WHERE clause. The
:limit parameter specifies a maximum number of records to return, just like the SQL LIMIT clause. In fact,
the :conditions parameter and the :limit parameter are directly translated into WHERE and LIMIT
clauses, respectively.

Finally, the code prints out the average salary, which is calculated by dividing the
total salary by the number of players:

puts "\nAverage Cost Per Win : $#{'%0.2f' % (salary_total / win_total)}"

Notice the use of the % operator. This lets you format the output using two decimal
points. It is very similar to the C/C++ sprintf function; in fact, it calls the kernel::spintf
function. You can find out more about the various formatting options at http://www.ruby-
doc.org/core/classes/Kernel.html#M005962.

This example was fairly simple, but you can see how trivial it is to do data manipula-
tions with Active Record.

Calculating Player Wins

Now suppose that the new game release was a success, and Transmegtech has hired pro-
fessional game players to beta test all of the company’s games. Your boss now wants you
to calculate which player has the highest wins for each individual title, as well as which
player has the most wins overall.

For this report, you’ll need more than one table. Fortunately, Active Record has a
rich set of associations that describe the relationships between tables: the has_many
relationship describes a one-to-many relationship, the has_one association describes a
one-to-one relationship, and so forth. Those relationships are created inside your model
definitions. Once you’ve created them, you get a number of helper methods for free.
A method named after the association is added to the class, which can be enumerated,
inserted into, and so forth. For example, if you have a model named Customer and a model
named Order, and the Customer model has a has_many relationship with the Order model,
you can access the Orders associated with each Customer object via the orders method.

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS 11

9330CH01.qxd 12/3/07 11:59 AM Page 11

http://www.ruby-doc.org/core/classes/Kernel.html#M005962
http://www.ruby-doc.org/core/classes/Kernel.html#M005962
http://www.ruby-doc.org/core/classes/Kernel.html#M005962

Let’s begin by creating two more tables. You can do so using the SQL shown in
Listing 1-3.

Listing 1-3. Player Schema Modifications (player_schema_2.sql)

DROP DATABASE IF EXISTS players_2;

CREATE DATABASE players_2;

USE players_2;

CREATE TABLE players (

id int(11) NOT NULL AUTO_INCREMENT,

name TEXT,

salary DECIMAL(9,2),

PRIMARY KEY (id)

);

INSERT INTO players (id, name, salary)

VALUES (1, "Matthew 'm_giff' Gifford", 89000.00);

INSERT INTO players (id, name, salary)

VALUES (2, "Matthew 'Iron Helix' Bouley", 75000.00);

INSERT INTO players (id, name, salary)

VALUES (3, "Luke 'Cable Boy' Bouley", 75000.50);

CREATE TABLE games (

id int(11) NOT NULL AUTO_INCREMENT,

name TEXT,

PRIMARY KEY (id)

);

INSERT INTO games (id, name) VALUES (1, 'Eagle Beagle Ballad');

INSERT INTO games (id, name) VALUES (2, 'Camel Tender Redux');

INSERT INTO games (id, name) VALUES (3, 'Super Dunkball II: The Return');

INSERT INTO games (id, name) VALUES (4, 'Turn the Corner SE: Carrera vs CRX');

CREATE TABLE wins (

id int(11) NOT NULL AUTO_INCREMENT,

player_id int(11) NOT NULL,

game_id int(11) NOT NULL,

quantity int(11) NOT NULL,

PRIMARY KEY (id)

);

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS12

9330CH01.qxd 12/3/07 11:59 AM Page 12

INSERT INTO wins (player_id, game_id, quantity) VALUES (1, 1, 3);

INSERT INTO wins (player_id, game_id, quantity) VALUES (1, 3, 5);

INSERT INTO wins (player_id, game_id, quantity) VALUES (1, 2, 9);

INSERT INTO wins (player_id, game_id, quantity) VALUES (1, 4, 9);

INSERT INTO wins (player_id, game_id, quantity) VALUES (2, 1, 8);

INSERT INTO wins (player_id, game_id, quantity) VALUES (2, 3, 5);

INSERT INTO wins (player_id, game_id, quantity) VALUES (2, 2, 13);

INSERT INTO wins (player_id, game_id, quantity) VALUES (2, 4, 5);

INSERT INTO wins (player_id, game_id, quantity) VALUES (3, 1, 2);

INSERT INTO wins (player_id, game_id, quantity) VALUES (3, 3, 15);

INSERT INTO wins (player_id, game_id, quantity) VALUES (3, 2, 4);

INSERT INTO wins (player_id, game_id, quantity) VALUES (3, 4, 6);

Save this file as player_schema_2.sql. Then run the following MySQL command:

mysql -u your_mysql_username -p < player_schema_2.sql

Note that the SQL has the data already loaded into it (as specified with SQL INSERT
statements), so the script does not need to handle the data insertion directly.

Next, you need some code to analyze our data. The code shown in Listing 1-4 does
just that.

Listing 1-4. Analyzing Player Wins (player_wins.rb)

require 'active_record'

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'root', # This is the default username and password

:password => '', # for MySQL, but note that if you have a

different username and password,

you should change it.

:database => 'players_2')

class Player < ActiveRecord::Base

has_many :wins

def total_wins

total_wins = 0

self.wins.each do |win|

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS 13

9330CH01.qxd 12/3/07 11:59 AM Page 13

total_wins = total_wins + win.quantity

end

total_wins

end

end

class Game < ActiveRecord::Base

has_many :wins

end

class Win < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

games = Game.find(:all)

games.each do |game|

highest_win=nil

game.wins.each do |win|

highest_win = win if highest_win.nil? or

win.quantity > highest_win.quantity

end

puts "#{game.name}: #{highest_win.player.name} with #{highest_win.quantity} wins"

end

players = Player.find(:all)

highest_winning_player = nil

players.each do |player|

highest_winning_player = player if

highest_winning_player.nil? or

player.total_wins > highest_winning_player.total_wins

end

puts "Highest Winning Player: #{highest_winning_player.name} " <<

"with #{highest_winning_player.total_wins} wins"

Save this script as player_wins.rb. You can run this script using the following
command:

ruby player_wins.rb

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS14

9330CH01.qxd 12/3/07 11:59 AM Page 14

Eagle Beagle Ballad: Matthew 'Iron Helix' Bouley with 8 wins

Camel Tender Redux: Matthew 'Iron Helix' Bouley with 13 wins

Super Dunkball II: The Return: Luke 'Cable Boy' Bouley with 15 wins

Turn the Corner SE: Carrera vs CRX: Matthew 'm_giff' Gifford with 9 wins

Highest Winning Player: Matthew 'Iron Helix' Bouley with 31 wins

Let’s take a look at each of the techniques used in this script.

Dissecting the Code

First, the script in Listing 1-4 connects to the database, as in the previous example. How-
ever, the models are more complicated than the model in that example, because they
have relationships defined between them and a custom method on the Player model. You
can see those in the following code:

class Player < ActiveRecord::Base

has_many :wins

def total_wins

total_wins = 0

self.wins.each do |win|

total_wins = total_wins + win.quantity

end

total_wins

end

end

class Game < ActiveRecord::Base

has_many :wins

end

class Win < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

The Player model defines a has_many relationship with the Win model, as does the Game
model. This adds a wins method to instances of the Player and Game classes, which can be
used to iterate through the associated wins from either a Player or a Game object. (A savvy
reader will notice from the schema in Listing 1-3 that the Win model is a join table with an
extra attribute, quantity; the quantity attribute is why it is a model in its own right.) The
Win model defines a belongs_to relationship with both the Player and Game models, thus
adding player and game methods to each instance of the Win model. Calling one of these
methods lets you access the particular Player and Game objects with which the Win object

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS 15

9330CH01.qxd 12/3/07 11:59 AM Page 15

is associated. The Player model also has an extra method: an instance method called
total_wins, which is used to loop through all of a player’s wins, returning the total quan-
tity. This method uses the wins method added by the has_many relationship with the Win
model.

■Note Every time the total_wins method is called, a query is made on the wins table, which could con-
ceivably take a while. In a production environment, it might be worthwhile to cache the result in the parent
table.

The script loops through each game and finds the player who has the most wins for
that game:

games = Game.find(:all)

games.each do |game|

highest_win=nil

game.wins.each do |win|

highest_win = win if highest_win.nil? or

win.quantity > highest_win.quantity

end

puts "#{game.name}: #{highest_win.player.name} with #{highest_win.quantity} wins"

end

As you can see, it uses the aforementioned wins property of each Game object. The
method returns an array of wins for the current game, so we loop through each and find
the win with the highest quantity. At that point, the name of the game is printed out, as
well as the name of the winning player and the quantity.

Next, a very similar loop goes through all of the players and finds the player with the
highest total wins:

players = Player.find(:all)

highest_winning_player = nil

players.each do |player|

highest_winning_player = player if

highest_winning_player.nil? or

player.total_wins > highest_winning_player.total_wins

end

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS16

9330CH01.qxd 12/3/07 11:59 AM Page 16

puts "Highest Winning Player: #{highest_winning_player.name} " <<

"with #{highest_winning_player.total_wins} wins"

You loop through each player and use the total_wins method to sum the player’s
quantity of wins. The player with the highest result from total_wins is selected, and that
player’s name and total wins are printed out. As you can see, it’s easy to use Active Record
to process data.

Summary
In this chapter, you got started using MySQL and Active Record with Ruby to produce
some simple reports. Active Record is a powerful, easy-to-use library. Although Active
Record is best known for web applications, it can be used quickly and easily for virtually
all types of Ruby database connectivity, including reporting.

In both the examples in this chapter, you did all of the statistical calculations manu-
ally in Ruby code. Instead, you can use MySQL’s and Active Record’s statistical functions
to get statistics, group data, and more. The next chapter covers calculatiing statistics with
Active Record.

CHAPTER 1 ■ DATA ACCESS FUNDAMENTALS 17

9330CH01.qxd 12/3/07 11:59 AM Page 17

9330CH01.qxd 12/3/07 11:59 AM Page 18

Calculating Statistics with
Active Record

The previous chapter discussed the fundamentals of accessing and manipulating data
with Active Record. The statistical analyses—the highest salary, average salary, and so
forth—were done manually using Ruby code. While that’s a plausible approach, it’s easier
and often quicker to let the database do the work for you.

Databases typically have numerous built-in features for speeding up data access.
Indexes, for example, are subsets of your table data, which are automatically maintained
by your database and can make searching much faster. You can think of indexes like the
table of contents in a book. It’s much faster to find something by using the table of con-
tents than it is to read every page of the book looking for the desired information.
Additionally, the database’s query planner uses speed-enhancing techniques automati-
cally. This query planner has access to statistical information on the various tables and
columns that your query uses, and it will formulate a query plan based on that informa-
tion. In other words, it estimates how long each method of retrieving the data you
requested will take, and it uses the quickest method. Because of the capabilities of the
database, it’s typically best to use the techniques described in this chapter, as they are
considerably faster than doing your statistics in your Ruby code.

In this chapter, you’ll learn how to use the database to perform two common tasks:
grouping and aggregation. Let’s look at how these tasks are useful, and then work through
an example that uses them for reporting.

Grouping and Aggregation
Grouping refers to a way to reduce a table into a subset, where each row in the subset
represents the set of records having a particular grouped value or values. For example, if
you were tracking automobile accidents, and you had a table of persons, with their age
and number of accidents, you could group by age and retrieve every distinct age in the
database. In other words, you would get a list of the age of every person, with the dupli-
cates removed.

19

C H A P T E R 2

9330CH02.qxd 12/3/07 12:01 PM Page 19

If you were using an Active Record model named Person with an age column, you
could find all of the distinct ages of the people involved, as follows:

ages = Person.find(:all, :group=>'age')

However, to perform useful work on grouped queries, you’ll typically use aggregate
functions. For example, you’ll need to use aggregate functions to retrieve the average
accidents per age group or the count of the people in each age group.

You’ve probably encountered a number of aggregate functions already. Some com-
mon ones are MAX and MIN, which give you the maximum and minimum value; AVG, which
gives you the average value; SUM, which returns the sum of the values; and COUNT, which
returns the total number of values. Each database engine may define different statistical
functions, but nearly all provide those just mentioned.

Continuing with the Active Record model named Person with an age column, you
could find the highest age from your table as follows:

oldest_age = Person.calculate(:max, :age)

Note that calculate takes the max function’s name, as a symbol, as its first argument,
but Active Record also has a number of convenience functions named after their respec-
tive purposes: count, sum, minimum, maximum, and average. For example, the following two
lines are identical:

average_accident_count = Person.calculate(:avg, :accident_count)

average_accident_count = Person.average(:accident_count)

Both print out the average number of accidents for all rows.

■Note The calculate form takes the abbreviated version of the function name, such as avg for
average. However, the shortcut form takes a longer version. For example, you could use either
Person.calculate(:avg, :age) or Person.average(:age). This is confusing, but the idea is that the
calculate form passes your function directly to your database, so you can use any statistical function
defined in your database, whereas the convenience functions are fixed, so they can have easier to under-
stand names.

You can also combine grouping and aggregate functions. For example, if you wanted
to print the average accident count for each age, you could do so as follows:

Person.calculate(:avg, :accident_count, :group=>'age').each do |player|

age, accident_count_average = *player

puts "Average Accident Count #{'%0.3f' % accident_count_average} for age #{age}"

end

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD20

9330CH02.qxd 12/3/07 12:01 PM Page 20

Note that the object passed to the block is an array. In the array, the grouped field
comes first, followed by the calculated field. (If you wanted to group by more than one
field, it would be in the order specified by the group parameter.)

Depending on your data, your results would look something like this:

Average Accident Count 3.000 for age 18

Average Accident Count 2.020 for age 19

Average Accident Count 1.010 for age 20

. . .

However, for more complex queries, you may need to craft a SQL statement manu-
ally. Specifically, you can use find_by_sql to search for any arbitrary SQL query, and this
allows you to ask for virtually any type of information. For example, if a vehicle_model
column existed in your Accident model, you could group by vehicle_model and run two
aggregate functions: average age and average accident_count. This would give you an
average owner age and an average number of accidents per vehicle, so you could get
some idea whether, say, a Ford Explorer was a safer ride than a Honda CRX. (Of course,
driver control would play a significant part, and hence the average age is a helpful statis-
tic.) You can’t use multiple aggregate functions with calculate, but you can with
find_by_sql, like this:

sql = "SELECT vehicle_model,

AVG(age) as average_age,

AVG(accident_count) AS average_accident_count

FROM persons

GROUP

BY vehicle_model

"

Person.find_by_sql(sql).each do |row|

puts "#{row.vehicle_model}, " <<

"avg. age: #{row.average_age}, " <<

"avg. accidents: #{row.average_accident_count}"

end

The output would look something like this:

Ford Explorer, avg. age: 43.010, avg. accidents: 0.400

Honda CRX, avg. age: 18.720, avg. accidents: 1.250

. . .

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD 21

9330CH02.qxd 12/3/07 12:01 PM Page 21

Let’s put this knowledge to use with a more complicated example.

Analyzing Data with Grouping and Aggregates
The examples in Chapter 1 involved Transmegtech Studios, a hypothetical game develop-
ment company. Now let’s suppose Transmegtech Studios has merged with another small
studio, J. Lee Games, and they want to analyze their combined base of game testers.
Specifically, they want to answer two questions:

How many players are at each salary rate? Answering this question should give the
merged companies a way to get a handle on their total beta-testing expenditures.
This question can be answered with simple grouping in Active Record, so that will
be tackled first.

Which drink leads to the highest performance? The Transmegtech people are having a
dispute with the new personnel from J. Lee Games. The new testers and program-
mers drink Fresca, whereas the Transmegtech team prefers the Moxie energy drink.
Both sides claim their drink is superior, and leads to higher productivity and mental
agility. The management would like to know which drink leads to the highest per-
formance, with the data broken down by wins per game. In the interests of fairness,
they’ve agreed to analyze data only from new titles developed by the joint company,
so old data won’t cloud the analysis. This question can be answered with a combina-
tion of grouping and aggregate functions, and that will be tackled second.

For the examples in this chapter, you’ll use the schema shown in Listing 2-1.

■Note This and upcoming chapters use subqueries. Subqueries were not introduced into MySQL until
version 4.2. If you have an older version of MySQL, you’ll need to upgrade to follow these examples.

Listing 2-1. Player Schema Mark III (player_schema_3.sql)

CREATE DATABASE players_3;

USE players_3;

CREATE TABLE players (

id int(11) NOT NULL AUTO_INCREMENT,

name TEXT,

drink TEXT,

salary DECIMAL(9,2),

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD22

9330CH02.qxd 12/3/07 12:01 PM Page 22

PRIMARY KEY (id)

);

INSERT INTO players (id, name, drink, salary) VALUES

(1, "Matthew 'm_giff' Gifford", "Moxie", 89000.00);

INSERT INTO players (id, name, drink, salary) VALUES

(2, "Matthew 'Iron Helix' Bouley", "Moxie", 75000.00);

INSERT INTO players (id, name, drink, salary) VALUES

(3, "Luke 'Cable Boy' Bouley", "Moxie", 75000.50);

INSERT INTO players (id, name, drink, salary) VALUES

(4, "Andrew 'steven-tyler-xavier' Thomas", 'Fresca', 75000.50);

INSERT INTO players (id, name, drink, salary) VALUES

(5, "John 'dwy_dwy' Dwyer", 'Fresca', 76000.75);

INSERT INTO players (id, name, drink, salary) VALUES

(6, "Ryan 'the_dominator' Peacan", 'Fresca', 75000.50);

INSERT INTO players (id, name, drink, salary) VALUES

(7, "Michael 'Shaun Wiki' Southwick", 'Fresca', 75000.50);

CREATE TABLE games (

id int(11) NOT NULL AUTO_INCREMENT,

name TEXT,

PRIMARY KEY (id)

);

INSERT INTO games (id, name) VALUES (1, 'Bubble Recycler');

INSERT INTO games (id, name) VALUES (2, 'Computer Repair King');

INSERT INTO games (id, name) VALUES (3, 'Super Dunkball II: The Return');

INSERT INTO games (id, name) VALUES (4, 'Sudden Deceleration: No Time to Think');

CREATE TABLE wins (

id int(11) NOT NULL AUTO_INCREMENT,

player_id int(11) NOT NULL,

game_id int(11) NOT NULL,

quantity int(11) NOT NULL,

PRIMARY KEY (id)

);

INSERT INTO wins (player_id, game_id, quantity) VALUES (1, 1, 3);

INSERT INTO wins (player_id, game_id, quantity) VALUES (1, 3, 8);

INSERT INTO wins (player_id, game_id, quantity) VALUES (1, 2, 3);

INSERT INTO wins (player_id, game_id, quantity) VALUES (1, 4, 9);

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD 23

9330CH02.qxd 12/3/07 12:01 PM Page 23

INSERT INTO wins (player_id, game_id, quantity) VALUES (2, 1, 8);

INSERT INTO wins (player_id, game_id, quantity) VALUES (2, 3, 10);

INSERT INTO wins (player_id, game_id, quantity) VALUES (2, 2, 7);

INSERT INTO wins (player_id, game_id, quantity) VALUES (2, 4, 5);

INSERT INTO wins (player_id, game_id, quantity) VALUES (3, 1, 8);

INSERT INTO wins (player_id, game_id, quantity) VALUES (3, 3, 4);

INSERT INTO wins (player_id, game_id, quantity) VALUES (3, 2, 20);

INSERT INTO wins (player_id, game_id, quantity) VALUES (3, 4, 8);

INSERT INTO wins (player_id, game_id, quantity) VALUES (4, 1, 8);

INSERT INTO wins (player_id, game_id, quantity) VALUES (4, 3, 9);

INSERT INTO wins (player_id, game_id, quantity) VALUES (4, 2, 8);

INSERT INTO wins (player_id, game_id, quantity) VALUES (4, 4, 3);

INSERT INTO wins (player_id, game_id, quantity) VALUES (5, 1, 7);

INSERT INTO wins (player_id, game_id, quantity) VALUES (5, 3, 1);

INSERT INTO wins (player_id, game_id, quantity) VALUES (5, 2, 9);

INSERT INTO wins (player_id, game_id, quantity) VALUES (5, 4, 4);

INSERT INTO wins (player_id, game_id, quantity) VALUES (6, 1, 2);

INSERT INTO wins (player_id, game_id, quantity) VALUES (6, 3, 12);

INSERT INTO wins (player_id, game_id, quantity) VALUES (6, 2, 8);

INSERT INTO wins (player_id, game_id, quantity) VALUES (6, 4, 9);

INSERT INTO wins (player_id, game_id, quantity) VALUES (7, 1, 2);

INSERT INTO wins (player_id, game_id, quantity) VALUES (7, 3, 1);

INSERT INTO wins (player_id, game_id, quantity) VALUES (7, 2, 4);

INSERT INTO wins (player_id, game_id, quantity) VALUES (7, 4, 9);

Save this file as player_schema_3.sql. (Note that this listing increments the database
version number, so you can still go back and run the previous examples, which have dif-
ferent database structures.) Next, run the following command:

mysql -u your_mysql_username < player_schema_3.sql

Now that you have the data loaded into your database, let’s tackle the first question.

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD24

9330CH02.qxd 12/3/07 12:01 PM Page 24

Calculating Salary Distribution

You want to find how many players are at each salary rate. It’s reasonably simple to use
Active Record’s count function and grouping ability to calculate the distribution of the
salary, and Listing 2-2 does just that.

Listing 2-2. Calculating Salary Distribution (salary_distribution.rb)

require 'active_record'

Establish a connection to the database. . .

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'root', # This is the default username and password

:password => '', # for MySQL, but note that if you have a

different username and password,

you should change it.

:database => 'players_3')

. . . set up our models . . .

class Player < ActiveRecord::Base

has_many :wins

end

class Game < ActiveRecord::Base

has_many :wins

end

class Win < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

. . . and perform our calculation:

puts "Salary\t\tCount"

Player.calculate(:count, :id, :group=>'salary').each do |player|

salary, count = *player

puts "$#{'%0.2f' % salary}\t#{count} "

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD 25

9330CH02.qxd 12/3/07 12:01 PM Page 25

Note that the '%0.25f' % call formats the value as a float

with two decimal points. The String's % operator works

similarly to the C sprintf function.

end

Save this script as salary_distribution.rb. You can run it as follows:

ruby salary_distribution.rb

Salary Count

$75000.00 1

$75000.50 4

$76000.75 1

$89000.00 1

As you can see, it’s reasonably trivial to use the calculate function to do simple
grouping and report the results.

Dissecting the Code

Most of Listing 2-2 is code to connect to the database and initialize the models, as you’ve
seen in other examples. The work actually performed by this script is done by the follow-
ing code:

Player.calculate(:count, :id, :group=>'salary').each do |player|

salary, count = *player

puts "$#{'%0.2f' % salary}\t#{count} "

end

Essentially, this code groups by the salary field and counts the ids in each group.
Since each player has a unique id, this is equivalent to counting the rows themselves. For
each row, the array is split into its component parts: salary and count. As before, the order
of the array passed to your block is the grouped fields followed by the calculated field.

Calculating Drink/Win Distribution

Next, let’s try answering the second question: which drink leads to the highest perform-
ance? Listing 2-3 uses find_by_sql to do that.

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD26

9330CH02.qxd 12/3/07 12:01 PM Page 26

Listing 2-3. Calculating Drink/Win Distribution (drink_win_distribution.rb)

require 'active_record'

Establish a connection to the database. . .

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'root', # This is the default username and password

:password => '', # for MySQL, but note that if you have a

different username and password,

you should change it.

:database => 'players_3')

. . . set up our models . . .

class Player < ActiveRecord::Base

has_many :wins

end

class Game < ActiveRecord::Base

has_many :wins

end

class Win < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

def puts_underlined(text, underline_char="=")

This function will be used to print headers which are underlined

by an ASCII character such as the equal sign. This makes it

clear that it's a header and not part of the output data.

puts text

puts underline_char * text.length

end

. .. and create our report.

First, we print overall results for each drink:

sql = "SELECT drink,

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD 27

9330CH02.qxd 12/3/07 12:01 PM Page 27

COUNT(*) as total_players,

(SELECT SUM(quantity) FROM wins

WHERE wins.player_id=players.id) as total_wins

FROM players

GROUP

BY players.drink

;"

puts_underlined "Overall"

puts "Drink\t\tWins\tPlayers\tWins/Players"

Player.find_by_sql(sql).each do |player|

puts "#{player.drink.ljust(12)}\t" << # ljust is a function of String

that ensures the output is always

twelve characters long, so it lines up

nicely.

"#{player.total_wins}\t" <<

"#{player.total_players}\t" <<

"#{'%0.3f' % (player.total_wins.to_f / player.total_players.to_f) }"

end

Print results per drink and per game:

sql = "SELECT drink,

games.name as game,

COUNT(*) as total_players,

(SELECT SUM(quantity) FROM wins

WHERE wins.player_id=players.id

AND wins.game_id=games.id) as total_wins

FROM players,

games

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD28

9330CH02.qxd 12/3/07 12:01 PM Page 28

GROUP

BY games.name,

players.drink

; "

current_game=nil

Player.find_by_sql(sql).each do |player|

if current_game != player.game

puts "\n"

puts_underlined player.game

puts "Drink\t\tWins\tPlayers\tWins/Players"

current_game = player.game

end

puts "#{player.drink.ljust(12)}\t" <<

"#{player.total_wins}\t" <<

"#{player.total_players}\t" <<

"#{'%0.3f' % (player.total_wins.to_f /

player.total_players.to_f) }"

end

Save this script as drink_win_distribution.rb. You can run the script as follows:

ruby drink_win_distribution.rb

You should get the following results:

Overall

=======

Drink Wins Players Wins/Players

Fresca 28 4 7.000

Moxie 23 3 7.667

Bubble Recycler

===============

Drink Wins Players Wins/Players

Fresca 8 4 2.000

Moxie 3 3 1.000

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD 29

9330CH02.qxd 12/3/07 12:01 PM Page 29

Computer Repair King

====================

Drink Wins Players Wins/Players

Fresca 8 4 2.000

Moxie 3 3 1.000

Sudden Deceleration: No Time to Think

=====================================

Drink Wins Players Wins/Players

Fresca 3 4 0.750

Moxie 9 3 3.000

Super Dunkball II: The Return

=============================

Drink Wins Players Wins/Players

Fresca 9 4 2.250

Moxie 8 3 2.667

As you can see, it appears that the results for Moxie and Fresca are very close. Fresca
has exactly 7.0 wins per player, and Moxie has approximately 7.6 wins per player.
Although the Moxie drinkers have a higher overall win ratio, the Fresca drinkers have a
higher ratio for Bubble Recycler and Computer Repair King. Of course, a total of seven
players is not enough to really draw a conclusion—it could be coincidence. However, the
approach could easily be scaled up to thousands or even hundreds of thousands of
records.

Dissecting the Code

First, the script in Listing 2-3 connects to the database and sets up the models, as you’ve
seen in previous examples. Essentially, the remainder of the script runs two SQL state-
ments and prints out the results in a nice format.

The first SQL statement returns the overall results for all games combined. To retrieve
that result, the query groups by the drink field, and then uses a correlated subquery to
retrieve the total number of wins:

sql = "SELECT drink,

COUNT(*) as total_players,

(SELECT SUM(quantity) FROM wins

WHERE wins.player_id=players.id) as total_wins

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD30

9330CH02.qxd 12/3/07 12:01 PM Page 30

FROM players

GROUP

BY players.drink

;"

The grouping ensures that the main statement produces one row per drink. The
correlated subquery produces a sum for each of those rows by looping through the wins
table and totaling all of a player’s wins. The code then proceeds to loop through the
results and print them out.

Next, the second query produces a result specific to each game:

sql = "SELECT drink,

games.name as game,

COUNT(*) as total_players,

(SELECT SUM(quantity) FROM wins

WHERE wins.player_id=players.id

AND wins.game_id=games.id) as total_wins

FROM players,

games

GROUP

BY games.name,

players.drink

; "

This uses a cross join and grouping. In other words, it produces one row for every
combination of game and drink. For each of those rows, the subquery totals all wins that
refer to the current game and to players who drink the current drink.

Once you have this query, it’s reasonably trivial to print out the results.

Summary
Reporting often involves arduous statistical calculations. When you write code to per-
form these calculations by hand, you’re reinventing the wheel—writing code that has
been written countless times before. It’s also easy to write slow code when you create it

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD 31

9330CH02.qxd 12/3/07 12:01 PM Page 31

by hand. Fortunately, database systems contain fast, easy-to-use methods to create blaz-
ingly quick queries, and Active Record can make creating those queries even easier.

In the examples so far, you’ve seen how to print the results in a readable format. As
you’ll learn in the next chapter, you can use other formats. Chapter 3 discusses ways that
you can take data and turn it into an attractive graph or chart.

CHAPTER 2 ■ CALCULATING STATISTICS WITH ACTIVE RECORD32

9330CH02.qxd 12/3/07 12:01 PM Page 32

Creating Graphs with Ruby

For reporting, you’ll often need to format data as charts, which can come in a variety of
formats—line, bar, area, and more. Such graphs won’t be judged on functionality alone.
Their appearance is a very important factor, so you must strive to make your graphs as
attractive and understandable as possible.

Fortunately, graphing is a very common task, and several graphing utilities are avail-
able. This chapter introduces a few of these utilities, and then demonstrates how to build
charts with Gruff, a powerful Ruby-based graphing library.

Choosing a Graphing Utility
You have many choices for creating charts with Ruby. For example, you can do simple
charting in straight Hypertext Markup Language (HTML) and Cascading Style Sheets
(CSS). Chapter 7 shows you how to use Markaby, a templating language for Ruby, to
create your own HTML bar charts. Chapter 11 demonstrates how to use CSS helpers
to create charts in Rails. Here, we’ll look at the Gruff and Scruffy graphing libraries, and
then use Gruff in a couple of examples.

Gruff (http://gruff.rubyforge.org/) provides a simple, Ruby-based interface to enter
data and display details. After writing the code, you call a simple command to render the
graph to a file. For example, if you had a collection of vintage guitars and wanted to dis-
play a simple bar chart with their values, you could do so as shown in Listing 3-1.

■Note You’ll need Gruff, ImageMagick, and RMagick installed to run this example. ImageMagick, an
image-manipulation toolkit used by Gruff, is available from http://imagemagick.org. RMagick is the
Ruby interface to ImageMagick that Gruff uses. Install them by running the commands gem install -y
gruff and gem install rmagick.

33

C H A P T E R 3

9330CH03.qxd 12/4/07 10:22 AM Page 33

http://gruff.rubyforge.org
http://imagemagick.org

Listing 3-1. Creating a Simple Chart with Gruff (guitar_chart.rb)

require 'gruff'

line_chart = Gruff::Bar.new()

line_chart.labels = {0=>'Value (USD)'}

line_chart.title = "My Guitar Collection"

{"'70 Strat"=>2500,

"'69 Tele"=>2000,

"'02 Modded Mexi Strat Squier"=>400}.each do |guitar, value|

line_chart.data(guitar, value)

end

line_chart.write("guitar_chart.png")

You can run the example as follows:

ruby guitar_chart.rb

The resulting chart is shown in Figure 3-1.
As you can see, it’s not particularly complicated to make a simple chart. The labels

attribute takes a hash of labels for each column, so you can have multiple columns if you
so desire. The data method takes a label for the row of data, as well as an array of values
for that row. (If you have only one value, as in Listing 3-1, you don’t need to pass it as an
array.)

You can get Gruff documentation, sample graphs, and sample code from http://
nubyonrails.com/pages/gruff.

Scruffy (http://scruffy.rubyforge.org/) is another popular graphing library. Scruffy
offers a number of features that are not available with Gruff, but it’s slightly more difficult
to use than Gruff. Currently, Gruff has much more documentation available online and is
more mature than Scruffy.

With Scruffy, you can mix graph types in the same graph, so you could, for example,
have a chart with both line and bar elements. Suppose you were charting the output of a
factory that builds widgets and sprockets. You could use the code in Listing 3-2 to create a
bar and line chart with the data.

■Note To run this example, you’ll need to install Scruffy with the command gem install scruffy. You’ll
also need RMagick installed, so install that with gem install rmagick, if you haven’t already done so.

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY34

9330CH03.qxd 12/4/07 10:22 AM Page 34

http://nubyonrails.com/pages/gruff
http://nubyonrails.com/pages/gruff
http://scruffy.rubyforge.org

Figure 3-1. A chart of guitar values created using Gruff

Listing 3-2. Creating a Simple Chart with Scruffy (widget_chart_scruffy.rb)

require 'scruffy'

sprocket_output = [["Jan",500],

["Feb",750],

["Apr",380]]

widget_output = [["Jan",350],

["Feb",650],

["Apr",560]]

graph = Scruffy::Graph.new(

:title => "Widget and Sprocket Output",

:theme => Scruffy::Themes::Keynote.new)

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY 35

9330CH03.qxd 12/4/07 10:22 AM Page 35

graph.add(:bar, 'Sprockets', sprocket_output.map { |s| s[1] })

graph.add(:line, 'Widgets', widget_output.map { |w| w[1] })

graph.point_markers = widget_output.map { |w| w[0] }

graph.render(:width => 800,

:as=>'PNG',

:to => 'widgets_and_sprockets.png')

Save this as widget_chart_scruffy.rb. You can run the script in Listing 3-2 as follows:

ruby widget_chart_scruffy.rb

If you open the file widgets_and_sprockets.png, you should see something similar to
Figure 3-2.

Figure 3-2. Player graph created using Scruffy

As you may have surmised from Listing 3-2, you can add data to a Scruffy graph
using a command like this:

graph.add(:some_chart_type, 'Some_text_for_the_legend', some_array_of_values)

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY36

9330CH03.qxd 12/4/07 10:22 AM Page 36

The add command is quite similar to Gruff’s data method. This example is a bit more
complex, as it parses some hashes and uses the keys of the first hash as labels for the x
axis. (This assumes that they both have the same keys, which may or may not be true.)

You can find out more about Scruffy’s various chart types at the Scruffy home page
(http://scruffy.rubyforge.org/).

■Tip A graphing plug-in for Rails called ZiYa offers very attractive graphs and is easy to use. Unfortunately,
it’s based on a commercial SWF component, called XML/SWF Charts, so not only will your users need Flash,
but you’ll also need to purchase the component. (Actually, you can use ZiYa without paying, but if your users
click the graph, they’ll be taken to the XML/SWF Charts home page, which is unacceptable for many pur-
poses.) If you’re looking for a commercially supported graphing library, ZiYa may be a good choice. Another
option is an open source Flash charting plug-in, one of which is covered in Chapter 5.

Now let’s use Gruff to generate some interesting graphs.

Graphing Data
With Gruff, you can create bar charts, area charts, line charts, and more. To see how it
works, you’ll create a couple of charts for Transmegtech Studios, the fictional game devel-
opment company used in the examples in Chapters 1 and 2.

Creating a Line Chart

Suppose that Transmegtech Studios is close to releasing its new strategy game, but the
artificial intelligence is still not very good. Without a competitive artificial intelligence for
single-player mode, players will quickly become bored with the game, which means that
they will stop playing.

Your boss would like to dramatically improve the artificial intelligence. He wants to
analyze the strategy of each player by producing a “scorecard” that shows the player’s
average time to accomplish each major goal in the game. The theory is that the order in
which goals are achieved will reveal a significant amount about the player’s strategy, and
if the programmers can mimic that order, they can build a better computer player. (This
is a strategy that has worked well for other real-time strategy games.) The Transmegtech
game has a variety of goals, from building a company’s data center (DC) component all
the way to the player’s company going public, which is the game-winning event.

Before you can use Gruff to graph the data, you must first load the data into a data-
base. Listing 3-3 shows some of the SQL you’ll need, but much of the data has been
omitted for space considerations. You can download the full listing from http://

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY 37

9330CH03.qxd 12/4/07 10:22 AM Page 37

http://scruffy.rubyforge.org
http://scruffy.rubyforge.org

rubyreporting.com/examples/player_4.sql, or from the Source Code/Downloads area of
the Apress web site (http://.www.apress.com).

Listing 3-3. Team Performance SQL (player_4.sql)

DROP DATABASE IF EXISTS players_4 ;

CREATE DATABASE players_4;

USE players_4;

CREATE TABLE players (

id INT(11) NOT NULL AUTO_INCREMENT,

name TEXT,

nickname TEXT,

drink TEXT,

salary DECIMAL(9,2),

PRIMARY KEY (id)

);

INSERT INTO players (id, name, nickname, drink, salary) VALUES

(1, "Matthew Gifford", 'm_giff', "Moxie", 89000.00);

INSERT INTO players (id, name, nickname, drink, salary) VALUES

(2, "Matthew Bouley", 'Iron Helix', "Moxie", 75000.00);

INSERT INTO players (id, name, nickname, drink, salary) VALUES

(3, "Luke Bouley", 'Cable Boy', "Moxie", 75000.50);

INSERT INTO players (id, name, nickname, drink, salary) VALUES

(4, "Andrew Thomas", 'ste-ty-xav', 'Fresca', 75000.50);

INSERT INTO players (id, name, nickname, drink, salary) VALUES

(5, "John Dwyer", 'dwy_dwy', 'Fresca', 89000.00);

INSERT INTO players (id, name, nickname, drink, salary) VALUES

(6, "Ryan Peacan", 'the_dominator', 'Fresca', 75000.50);

INSERT INTO players (id, name, nickname, drink, salary) VALUES

(7, "Michael Southwick", 'Shaun Wiki', 'Fresca', 75000.50);

CREATE TABLE games (

id INT(11) NOT NULL AUTO_INCREMENT,

name TEXT,

PRIMARY KEY (id)

);

INSERT INTO games (id, name) VALUES (1, 'Bubble Recycler');

INSERT INTO games (id, name) VALUES (2, 'Computer Repair King');

INSERT INTO games (id, name) VALUES (3, 'Super Dunkball II: The Return');

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY38

9330CH03.qxd 12/4/07 10:22 AM Page 38

http://www.apress.com

INSERT INTO games (id, name) VALUES (4, 'Sudden Deceleration: No Time to Think');

INSERT INTO games (id, name) VALUES (5, 'Tech Website Baron');

CREATE TABLE plays (

id INT(11) NOT NULL,

player_id INT(11) NOT NULL,

game_id INT(11) NOT NULL,

won TINYINT NOT NULL,

PRIMARY KEY (id)

);

CREATE TABLE events(

play_id INT(11) NOT NULL,

event VARCHAR(25) NOT NULL,

time INT(11) NOT NULL

);

INSERT INTO plays (id, player_id, game_id, won) VALUES (0, 5, 5, 1);

INSERT INTO plays (id, player_id, game_id, won) VALUES (1, 5, 5, 1);

INSERT INTO plays (id, player_id, game_id, won) VALUES (2, 5, 5, 0);

INSERT INTO plays (id, player_id, game_id, won) VALUES (3, 5, 5, 1);

. . .

INSERT INTO events (play_id, event, time) VALUES(0, 'Built DC', 2146.8);

INSERT INTO events (play_id, event, time) VALUES(0, 'Built MC', 27867);

INSERT INTO events (play_id, event, time) VALUES(0, 'Built PR', 65349);

INSERT INTO events (play_id, event, time) VALUES(0, 'Went Public', 86104);

INSERT INTO events (play_id, event, time) VALUES(1, 'Built DC', 8466.0);

INSERT INTO events (play_id, event, time) VALUES(1, 'Built MC', 29454);

INSERT INTO events (play_id, event, time) VALUES(1, 'Built PR', 57896);

INSERT INTO events (play_id, event, time) VALUES(1, 'Went Public', 79587);

INSERT INTO events (play_id, event, time) VALUES(2, 'Built DC', 31455.6);

. . .

You can create the database using the following command:

mysql -u your_username -p your_mysql_password

As you can see from Listing 3-3, the schema in this example is quite similar to the
previous schemas, except that it gives a bit more information. Each time a game is
played, there is an entry in the plays table. Every time a major game event happens, there
is a row in the events table. This allows you to analyze the average time it takes the player
to achieve each goal. Note that the games table is included only for compatibility with the

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY 39

9330CH03.qxd 12/4/07 10:22 AM Page 39

previous database, since you have data for only one game. (This allows you to easily
expand if you’re asked to create a similar report for a different game.)

Now that you have the data loaded into your MySQL database, you can create a
simple bar chart for each player, as shown in Listing 3-4.

Listing 3-4. Creating Player Bar Charts (player_bar_charts.rb)

require 'gruff'

require 'active_record'

game_id_to_analyze = 5

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'root', # This is the default username and password

:password => '', # for MySQL, but note that if you have a

different username and password,

you should change it.

:database => 'players_4')

class Player < ActiveRecord::Base

has_many :plays

end

class Game < ActiveRecord::Base

has_many :plays

end

class Play < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

class Event < ActiveRecord::Base

belongs_to :plays

end

columns = Event.find(:all, :group=>'event DESC')

pic_dir='./player_graph_pics' #Used to store the graph pictures.

Dir.mkdir(pic_dir) unless File.exists?(pic_dir)

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY40

9330CH03.qxd 12/4/07 10:22 AM Page 40

Player.find(:all).each do |player|

bar_chart = Gruff::Bar.new(1024)

bar_chart.legend_font_size = 12

total_games = Play.count(:conditions=>['game_id = ? ' <<

'AND player_id = ?',

game_id_to_analyze,

player.id]).to_f

total_wins = Play.count(:conditions=>['game_id = ? ' <<

'AND player_id = ? ' <<

'AND won=1',

game_id_to_analyze,

player.id]).to_f

win_ratio = (total_wins / total_games * 100).to_i unless total_games == 0

win_ratio ||= 0

bar_chart.title = "#{player.name} " <<

"(#{win_ratio}% won)"

bar_chart.minimum_value = 0

bar_chart.maximum_value = 110

sql = "SELECT event, AVG(time) as average_time

FROM events AS e

INNER JOIN

plays AS p

ON e.play_id=p.id

WHERE p.game_id='#{game_id_to_analyze}'

AND

p.player_id='#{player.id}'

GROUP

BY e.event DESC;"

data = []

Event.find_by_sql(sql).each do |row|

bar_chart.data row.event, (row.average_time.to_i/1000)

end

bar_chart.labels = {0=>'Time'}

bar_chart.write("#{pic_dir}/player_#{player.id}.png")

end

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY 41

9330CH03.qxd 12/4/07 10:22 AM Page 41

Save this script as player_bar_charts.rb. You can run the script using the following
command:

ruby player_bar_charts.rb

When you run that command, the script creates a directory called player_graph_pics
and creates one graph for each player. The graphs are saved in PNG format as player_1,
player_2, and so forth. You can see two of the graphs in Figures 3-3 and 3-4.

■Note Chapter 10 includes an example that uses Gruff to graph cost-per-sale figures from Apache web
logs. Chapter 10 also covers using .rpdf views to embed those graphs in a PDF file, which is probably a
more convenient way to e-mail graphs than as PNG files.

Figure 3-3. Graph for one player

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY42

9330CH03.qxd 12/4/07 10:22 AM Page 42

Figure 3-4. Graph for another player, with a different build order

Dissecting the Code

The bulk of the program in Listing 3-4 consists of a loop that iterates through each player
in the database, creating a report and writing it to a file:

Player.find(:all).each do |player|

bar_chart = Gruff::Bar.new(1024)

bar_chart.legend_font_size = 12

The script creates a new Gruff::Bar object. The legend_font_size attribute is the font
size of the chart’s legend in points, The default is 20 points, but this graph has too much
information for the larger text size, so you reduce it to 12 points.

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY 43

9330CH03.qxd 12/4/07 10:22 AM Page 43

Next, the script sets the title of the chart:

total_games = Play.count(:conditions=>['game_id = ? ' <<

'AND player_id = ?',

game_id_to_analyze,

player.id]).to_f

total_wins = Play.count(:conditions=>['game_id = ? ' <<

'AND player_id = ? ' <<

'AND won=1',

game_id_to_analyze,

player.id]).to_f

win_ratio = (total_wins / total_games * 100).to_i unless total_games == 0

win_ratio ||= 0

bar_chart.title = "#{player.name} " <<

"(#{win_ratio}% won)"

The title of the chart is set to the player’s name, followed by a win/loss ratio. The cal-
culation uses the count aggregate function (discussed in Chapter 2).

Next, you set the scale of the chart:

bar_chart.minimum_value = 0

bar_chart.maximum_value = 110

The minimum_value and maximum_value attributes specify the scale. Without these
attributes, the chart will automatically scale according to the maximum and minimum
values. If you left the default, each chart would have a different scale, and so the charts
would not be directly comparable.

■Note You could loop through all of the charts and find the maximum value and use that here, but then
you would not be able to compare charts from different runs. With fixed values, you can take a chart from,
say, a month ago and compare it with a current chart. Another problem with that approach is that when you
fix the lower end as well, you enlarge the differences between values. The lowest is always scaled to be a
very short line, whereas the largest always occupies the entire chart space. For example, if you had the
values 54, 55, and 56 charted, 56 would appear to be twice as big as 55 and far bigger than 54.

Next, the code pulls out an average time for each event via a custom SQL statement
and the find_by_sql method:

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY44

9330CH03.qxd 12/4/07 10:22 AM Page 44

sql = "SELECT event, AVG(time) as average_time

FROM events AS e

INNER JOIN

plays AS p

ON e.play_id=p.id

WHERE p.game_id='#{game_id_to_analyze}'

AND

p.player_id='#{player.id}'

GROUP

BY e.event DESC;"

data = []

Event.find_by_sql(sql).each do |row|

bar_chart.data row.event, (row.average_time.to_i/1000)

end

bar_chart.labels = {0=>'Time'}

bar_chart.write("#{pic_dir}/player_#{player.id}.png")

end

Each row contains an event description and an average time. You loop through these
rows, and for each of those rows, you add a bar to your chart using the data method. After
that, you set the column label and write your chart to a file.

As you can see, even though Listing 3-4 is more complex than Listing 3-1, it’s still
fairly simple.

Now let’s try creating another type of chart with Gruff.

Creating a Line Chart

Suppose the management at Transmegtech Studios wants you to create a single chart
containing the average build time for each event for all players. You can do that with a
line chart. Listing 3-5 shows the code to create a single chart summarizing all of the
players.

Listing 3-5. Creating a Line Chart for All Player Events (all_players.rb)

require 'gruff'

require 'active_record'

game_id_to_analyze = 5

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY 45

9330CH03.qxd 12/4/07 10:22 AM Page 45

:username => 'your_mysql_username_here',

:password => 'your_mysql_password_here',

:database => 'players_4')

class Player < ActiveRecord::Base

has_many :wins

end

class Game < ActiveRecord::Base

has_many :wins

end

class Play < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

class Event < ActiveRecord::Base

belongs_to :play

end

def puts_underlined(text, underline_char="=")

puts text

puts underline_char * text.length

end

pic_dir='./all_players_graph_pics'

Dir.mkdir(pic_dir) unless File.exists?(pic_dir)

line_chart = Gruff::Line.new(1024)

index=0

columns = {}

Event.find(:all, :group=>'event DESC').each do |e|

columns[index] = e.event

index=index+1

end

line_chart.labels = columns

line_chart.legend_font_size = 10

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY46

9330CH03.qxd 12/4/07 10:22 AM Page 46

line_chart.legend_box_size = 10

line_chart.title = "Chart of All Players"

line_chart.minimum_value = 0

line_chart.maximum_value = 110

Player.find(:all).each do |player|

total_games = Play.count(:conditions=>['game_id = ? AND player_id = ?',

game_id_to_analyze, player.id]).to_f

total_wins = Play.count(:conditions=>['game_id = ? AND player_id = ? AND won=1',

game_id_to_analyze, player.id]).to_f

sql = "SELECT event, avg(time) as average_time

FROM events as e

INNER JOIN

plays as p

ON e.play_id=p.id

WHERE p.game_id='#{game_id_to_analyze}'

AND

p.player_id='#{player.id}'

GROUP

BY e.event DESC;"

data = []

Event.find_by_sql(sql).each do |row|

data << (row.average_time.to_i/1000)

end

line_chart.data(player.name, data)

end

line_chart.write("all_players.png")

Save this script as all_players.rb. You can run the script as follows:

ruby all_players.rb

The output from the script is shown in Figure 3-5. This example packs a lot of infor-
mation into the chart for demonstration purposes. You can design your own charts to
contain less information and be easier to read.

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY 47

9330CH03.qxd 12/4/07 10:22 AM Page 47

Figure 3-5. Graph of data for all players

Let’s take a look at the code line by line.

Dissecting the Code

Most of the code in Listing 3-5 is identical to that in Listing 3-4; however, a few lines are
different. For example, the object is a member of the Gruff::Line class, instead of the
Gruff::Bar class:

line_chart = Gruff::Line.new(1024)

The parameter to the call to new is the horizontal size. You can also pass a string con-
taining a full size parameter, such as 1024x768.

One of the noteworthy changes is inside the main loop, which iterates through all of
the players. Instead of writing each chart to a different file, the data is aggregated into a
single chart, as follows:

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY48

9330CH03.qxd 12/4/07 10:22 AM Page 48

data = []

Event.find_by_sql(sql).each do |row|

data << (row.average_time.to_i/1000)

end

line_chart.data(player.nickname, data)

This loop, like the one in Listing 3-4, goes through all of the event types and adds
them into an array, and then adds that array to the chart.

Summary
In this chapter, you learned how you can create beautiful graphs in just a few lines of
code with graphing libraries like Gruff and Scuffy. You saw how to use Active Record and
Gruff to extract data from a database, and then create a graph from it with relatively sim-
ple code. The Transmegtech Studios examples demonstrated how to take business data,
use Active Record to summarize the data into a useful form, and then use Gruff to pres-
ent it. You created detailed reports on an entire staff of people in just 77 lines of code!

So far, you’ve learned how to perform calculations using Active Record and how to
use Gruff to create attractive charts. However, these tasks are only part of a large project.
Presenting the data to the users in a way they can use it is also important. The next chap-
ter explains how you can let users view and manipulate data on their desktop.

CHAPTER 3 ■ CREATING GRAPHS WITH RUBY 49

9330CH03.qxd 12/4/07 10:22 AM Page 49

9330CH03.qxd 12/4/07 10:22 AM Page 50

Creating Reports on
the Desktop

In the previous chapters, you’ve learned about creating reports using Active Record.
However, it’s not enough to simply create a report; you need to place the report in a con-
text where it will be useful. Often, this means making the report accessible on the users’
desktop in a format that’s familiar to them. You can accomplish this in a number of ways,
as you’ll learn in this chapter.

Choosing a Desktop Format
One powerful way to deliver reports to your users is to create a stand-alone graphical
user interface (GUI) application that they can run on their desktop. This application can
blend in with native applications written in other languages, so it will be familiar to the
users. Furthermore, it won’t be subject to the security restrictions that apply to web appli-
cations, so it can even control other applications—launching them and so forth.

Of course, deploying desktop applications isn’t an option for some applications.
Many Ruby developers are restricted to deploying web applications only. If that’s true for
you, you’ll need an alternate approach.

One alternative is to offer the users the ability to download a file that can be opened
in a desktop application. A common example is a Microsoft Excel file, which is familiar to
many businesspeople. This is a useful approach, since many office workers have been
trained to do simple calculations on Excel spreadsheets. (Of course, Microsoft Excel files
can be opened in OpenOffice.org as well, so it’s something of a spreadsheet lingua
franca.)

■Note Currently, there aren’t any open source solutions for creating Microsoft Word or PowerPoint docu-
ments; Microsoft’s proprietary format can make interoperability difficult. Additionally, Word and PowerPoint
are commonly used for presentation purposes, and they can often be supplanted by HTML and PDF versions.
You’ve already done several HTML examples. Chapters 6, 8, and 10 have examples of PDF output.

51

C H A P T E R 4

9330CH04.qxd 12/19/07 1:47 PM Page 51

In this chapter, you’ll create a formatted spreadsheet for the end user, and then you’ll
see how to create a fully functional GUI application.

CONTROLLING QUICKTIME WITH A DESKTOP APPLICATION

An example of a useful desktop application is one that I created for The Casting Frontier, a digital cast-
ing services firm. This application uses FXRuby and the RubyOSA (rbosa) AppleScript library to control
QuickTime Pro on Mac OS X.

The program automates the process of storing national commercial auditions online. Before this
solution, the camera operators, who videotaped the auditions, needed to manually export each movie
to a file, manually export the first frame of a movie as a thumbnail, make sure both files were named
according to a convention, and then manually upload the file through FTP. (They also had a system to
associate an actor’s digital profile with a movie; if the users wanted to use this, the process became
even more complicated.)

Using the new application, the users simply entered the actor’s information, clicked Start, clicked
Stop, and then clicked Upload. This sped up the process considerably.

If the solution were a web application, it would have been impossible to control QuickTime in order
to export the movies and thumbnails. The camera operators would have needed to do it by hand, which
would slow them down and cost money. The solution also reduced errors, since it ensured that all of
the movie files and thumbnail files were correctly named and labeled. In fact, the time factor was very
significant. Auditions are held in rented rooms, which cost extra if auditions run overtime. Also, if actors
wait longer than a certain time, the casting director holding the audition must pay a large fee to the
actors’ union.

Exporting Data to Spreadsheets
Generally, clients love spreadsheets. Often, they don’t have the expertise to manipulate
data using SQL or a programming language like Ruby, but they do know how to perform
calculations and analyze data using Microsoft Excel or a similar tool. If their data is
directly delivered in their format of choice, they can skip a step and save time. (In fact,
some less computer-savvy users may not realize that they can copy and paste data from
a web page, so exporting to an Excel-compatible format may enable them to act on data
in ways they could not before.)

Generating an Excel Spreadsheet

You can generate Excel spreadsheet documents—which, incidentally, can also be opened
in the OpenOffice.org spreadsheet application—using the spreadsheet-excel gem. Install
this gem by using the following command:

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP52

9330CH04.qxd 12/19/07 1:51 PM Page 52

gem install spreadsheet-excel

■Tip If you want to generate Excel-compatible spreadsheets from HTML documents, see Chapter 16. The
method described in that chapter is a bit of a hack, and you get less control over your output formatting, but
it’s extremely easy to implement. The method shown in this chapter offers greater control, such as the ability
to arrange your Excel document into multiple sheets.

The following code creates a spreadsheet with “Hello, world!” in the upper-left
corner:

require "spreadsheet/excel"

include Spreadsheet

workbook = Excel.new("test.xls")

worksheet = workbook.add_worksheet

worksheet.write(0, 0, 'Hello, world!')

workbook.close

This code is reasonably straightforward. You require the code (using the library file
name spreadsheet/excel) and include the module, create a new workbook, and then add
a sheet to it. Note that each spreadsheet (workbook) can have multiple worksheets,
which behave similarly to tabs in a tabbed web browser, such as Mozilla Firefox or Opera.
After that, you write the phrase “Hello, world!” to 0,0—the upper-left corner—and then
close the workbook, which writes it to the indicated file. You can do other actions as well,
such as format cells and columns, as we’ll examine next.

Creating a Spreadsheet Report

Let’s say that your manager at Transmegtech Studios, the fictional game development
company we’ve used for the examples in previous chapters, wants a report on the game
players’ win/loss records per game in the form of a formatted spreadsheet. Listing 4-1
shows the script to create a simple Excel report.

Listing 4-1. Player Win/Loss Spreadsheet (spreadsheet_team_performance.rb)
require 'active_record'

require 'optparse'

require 'rubygems'

require 'active_record'

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 53

9330CH04.qxd 12/19/07 1:54 PM Page 53

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'insert_your_mysql_username_here',

:password => 'insert_your_mysql_password_here',

:database => 'players_4')

class Player < ActiveRecord::Base

has_many :plays

end

class Game < ActiveRecord::Base

has_many :plays

end

class Play < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

require 'spreadsheet/excel'

include Spreadsheet

spreadsheet_file = "spreadsheet_report.xls"

workbook = Excel.new(spreadsheet_file)

worksheet = workbook.add_worksheet

page_header_format = Format.new(:color=>'black', :bold=>true, :size=>30)

player_name_format = Format.new(:color=>'black', :bold=>true)

header_format = Format.new(:color=>'gray', :bold=>true)

data_format = Format.new()

workbook.add_format(page_header_format)

workbook.add_format(player_name_format)

workbook.add_format(header_format)

workbook.add_format(data_format)

worksheet.format_column(0, 35, data_format)

current_row=0

worksheet.write(current_row, 0, 'Player Win/Loss Report', page_header_format)

current_row=current_row+1

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP54

9330CH04.qxd 12/19/07 1:56 PM Page 54

Player.find(:all).each do |player|

worksheet.format_row(current_row, current_row==1 ? 20 : 33, player_name_format)

worksheet.write(current_row, 0, player.name)

current_row=current_row+1

worksheet.write(current_row, 0, ['Game', 'Wins', 'Losses'], header_format)

current_row=current_row+1

Game.find(:all).each do |game|

win_count = Play.count(:conditions=>[

"player_id = ? AND

game_id= ? AND

won=true",

player.id,

game.id])

loss_count = Play.count(:conditions=>[

"player_id = ? AND

game_id= ? AND

won=false",

player.id,

game.id])

worksheet.write(current_row, 0, [game.name, win_count, loss_count])

current_row=current_row+1

end

end

workbook.close

Save this code as spreadsheet_team_performance.rb. You can run it by issuing the
following command:

ruby spreadsheet_team_perfomance.rb

The script creates a file called spreadsheet_report.xls. Open the file with Microsoft
Excel or OpenOffice.org, as shown in Figure 4-1.

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 55

9330CH04.qxd 12/19/07 1:56 PM Page 55

Figure 4-1. Player win/loss spreadsheet in OpenOffice.org

■Tip You can use the spreadsheet/excel library to create spreadsheets dynamically in a Rails applica-
tion, and then send them to the user. This lets you have a “Download this as Excel” link in your views, for
example. You can see a scheme for quickly sending binary files in Rails at http://wiki.rubyonrails.
org/rails/pages/HowtoSendFilesFast.

Dissecting the Code

The first few lines of Listing 4-1 create a connection to your database and set up your
models, similar to the code in the previous examples. Next, you start creating the Excel
report using the spreadsheet-excel gem:

require 'spreadsheet/excel'

include Spreadsheet

workbook = Excel.new("spreadsheet_report.xls")

worksheet = workbook.add_worksheet

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP56

9330CH04.qxd 12/19/07 1:56 PM Page 56

http://wiki.rubyonrails

The first line loads the spreadsheet/excel library, and the second line mixes the
spreadsheet/excel code into your current module so you can use it. Next, you create a
new Excel document, which is called a worksheet, and then add a new worksheet to the
workbook. The worksheet will contain your report.

■Note You can add more than one worksheet to a workbook if desired. Then your end users will be able to
select between them using tabs at the bottom of their spreadsheet application.

Next, you set up some graphical formatting for your data:

page_header_format = Format.new(:color=>'black', :bold=>true, :size=>30)

player_name_format = Format.new(:color=>'black', :bold=>true)

header_format = Format.new(:color=>'gray', :bold=>true)

data_format = Format.new(:color=>'black', :bold=>false)

workbook.add_format(page_header_format)

workbook.add_format(player_name_format)

workbook.add_format(header_format)

workbook.add_format(data_format)

worksheet.format_column(0, 35, data_format)

This code creates a number of formats and adds them to the workbook. You need to
add them before you can use them later, because formats are specific to the entire docu-
ment and then referenced when used. Next, you proceed to format the first column using
the format_column method, passing three parameters:

• The first parameter specifies which column to format; in this case, column 0, or the
first column.

• The second parameter specifies the width of the column; in this case, 35, which is
wide enough to display all of the data in that column.

• The third parameter is a display format for the column; in this case, data_format.

An astute observer may notice that the data_format format contains no specific for-
matting, so it is not any different from an unformatted cell. This is intentional; the
format_column method can, in theory, set just a column width without setting a format,
but due to a bug, the library will crash if a format is not specified. (This will likely be fixed
in a future release; as of this writing, the current version of the spreadsheet gem is
0.3.5.1.) However, by calling format_column with both a width and a dummy format, you

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 57

9330CH04.qxd 12/19/07 1:56 PM Page 57

can achieve the desired effect of widening the column without changing the display
format.

Next, the script begins to write information to the spreadsheet. It begins with a
header stating the title of the spreadsheet:

current_row=0

worksheet.write(current_row, 0, 'Player Win/Loss Report', page_header_format)

The first line initializes a variable, current_row, which will store the current row in
the spreadsheet. The second line uses the write method of the worksheet object to write
“Player Win/Loss Report” using the page_header_format format, which has a large, bold
font. The worksheet.write method takes a row number, a column number, a value, and an
optional format. (Note that the code uses the current_row variable only for consistency
with later code, since it will always equal zero at this point.)

Next, you start looping through all of the players, first outputting a brief name and
header for each player:

Player.find(:all).each do |player|

worksheet.format_row(current_row, current_row==1 ? 20 : 33, player_name_format)

worksheet.write(current_row, 0, player.name)

current_row=current_row+1

worksheet.write(current_row, 0, ['Game', 'Wins', 'Losses'], header_format)

current_row=current_row+1

The second line uses the format_row method, which is much like the format_column
method, except that it formats rows rather than columns. You format the first row, giving
it a special format defined earlier, player_name_format, and giving it a variable height,
depending on whether it’s the second row or another row. The second row is the row
immediately following the page header (which is in a font twice the size of the data rows),
and it looks better with less vertical space.

Next, you write the player name to the first column of your current row and incre-
ment your current_row counter.

■Note The need to increment the current_row counter gets somewhat tedious. If it really irritates you,
you could create an object that simulates a stream object fairly easily, which would let the object keep track
of this for you. Whether this is helpful depends on your application, and such an approach would not neces-
sarily help applications with a complicated layout.

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP58

9330CH04.qxd 12/19/07 1:56 PM Page 58

After that, you write a brief header describing your data for each player. This call is
interesting, since it passes an array to the write method of your worksheet object. This
array is expanded into the cells to the right of the cell, so these two blocks of code are
the same:

This:

worksheet.write(current_row, 0, ['Game', 'Wins', 'Losses'], header_format)

... Is just like this:

worksheet.write(current_row, 0, 'Game', header_format)

worksheet.write(current_row, 1, 'Wins', header_format)

worksheet.write(current_row, 2, 'Losses', header_format)

Additionally, the write method can accept a format, just like the format_column and
format_row methods. This can be used to highlight just one cell of a row or column. (In
this particular case, you are formatting the entire row, so you could use the format_row
method.)

Next, you loop through all of the games, tally the players’ wins and losses for each
game, and write them to the spreadsheet:

Game.find(:all).each do |game|

win_count = Play.count(:conditions=>[

"player_id = ? AND

game_id= ? AND

won=true",

player.id,

game.id])

loss_count = Play.count(:conditions=>[

"player_id = ? AND

game_id= ? AND

won=false",

player.id,

game.id])

worksheet.write(current_row, 0, [game.name, win_count, loss_count])

current_row=current_row+1

end

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 59

9330CH04.qxd 12/19/07 1:56 PM Page 59

The two calls to the Active Record count method (discussed in Chapter 2) count the
wins and losses, respectively. You then use the worksheet object’s write method to put
the information into the spreadsheet, and continue on to the next game. After all of the
games have been reported, you continue on to the next player. After all of the players
have been reported, you close the workbook, and you’re finished:

workbook.close

As you can see, the spreadsheet/Excel interface is reasonably clean and easy to use.
But if you need a more powerful, desktop GUI solution, there’s a graphical interface
library that is just as clean and easy to use.

Creating GUIs with Ruby
You have several options for creating GUIs with Ruby. Most of them are interfaces to well-
established external libraries:

• Ruby-GNOME (http://ruby-gnome2.sourceforge.jp/) is a Ruby interface to
GNOME.

• Korundum (http://developer.kde.org/language-bindings/ruby/index.html) offers
access to KDE.

• RubyCocoa (http://rubycocoa.sourceforge.net/HomePage) offers an interface to the
Mac OS X Cocoa framework.

• QtRuby is a binding to QT (http://developer.kde.org/language-bindings/ruby/
index.html).

• JRuby (http://jruby.codehaus.org/), the Ruby implementation for the Java Virtual
Machine, provides access to Java frameworks, like Swing.

■Tip You can access Swing directly from JRuby, but Profligacy is a Ruby library designed to make Swing
more Ruby-like. You can learn more about Profligacy at http://ihate.rubyforge.org/profligacy/.

• FXRuby (http://www.fxruby.org/) is an interface to the cross-platform FOX GUI
library.

This book will focus on FXRuby. One of FXRuby’s strengths is that it has a particularly
strong Ruby feel to it. Many of the other libraries are quite clearly a bridge to a completely
different programming paradigm. FXRuby makes GUI programming easy.

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP60

9330CH04.qxd 12/19/07 1:56 PM Page 60

http://ruby-gnome2.sourceforge.jp
http://developer.kde.org/language-bindings/ruby/index.html
http://rubycocoa.sourceforge.net/HomePage
http://developer.kde.org/language-bindings/ruby/index.html
http://developer.kde.org/language-bindings/ruby/index.html
http://jruby.codehaus.org
http://ihate.rubyforge.org/profligacy
http://www.fxruby.org

Using FXRuby

Install FXRuby as follows:

gem install fxruby

Additionally, you’ll need an X11 server running under Linux or Mac OS X. Most Linux
distributions come with an X11 server, and you can install it from the distribution CD if
you don’t have it currently loaded. Mac OS X is much the same—you can install an X11
server from the CD included with your computer. You’ll need to explicitly launch the
server under either operating system. To do so under Linux, use the startx command.
On an OS X system, click the X11 icon.

Finally, you’ll also need the FOX library installed. This library is included with the
FXRuby gem under Windows, but you can install it fairly easily on other operating sys-
tems via your favorite software packaging method: MacPorts (port install rb-fxruby)
or Apt (apt-get install fox fox-devel). You can also download and install it from
http://www.fox-toolkit.org/.

After you’ve set up the prerequisites, you can try the simple example in FXRuby
shown in Listing 4-2.

Listing 4-2. Simple FXRuby Example (simple_fx_ruby_example.rb)

require 'fox16'

include Fox

myApp = FXApp.new

mainWindow=FXMainWindow.new(myApp, "Simple FXRuby Control Demo",

:padding =>10, :vSpacing=>10)

my_first_button= FXButton.new(mainWindow, 'Example Button Control')

my_first_button.connect(SEL_COMMAND) do

my_first_button.text="In a real-life situation, this would do something."

end

FXTextField.new(mainWindow, 30).text = 'Example Text Control'

FXRadioButton.new(mainWindow, "Example Radio Control")

FXCheckButton.new(mainWindow, "Example Check Control")

myApp.create

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 61

9330CH04.qxd 12/19/07 1:56 PM Page 61

http://www.fox-toolkit.org

mainWindow.show(PLACEMENT_SCREEN)

myApp.run

You can run the example as follows:

ruby simple_fxruby_example.rb

Your application will look like Figure 4-2.

Figure 4-2. A simple FXRuby example

Let’s take a look at the simple FXRuby demo in Listing 4-2.

Dissecting the Code

Listing 4-2 begins by creating an FXApp object, which represents your application, and
then an FXMainWindow object, which holds all of the controls. The FXApp object handles
application-wide tasks, like updating the mouse cursor and so forth.

myApp = FXApp.new

mainWindow=FXMainWindow.new(myApp, "Simple FXRuby Control Demo",

:padding =>10, :vSpacing=>10)

Here, you set a couple properties. The padding property is set to 10, which gives 10 pixels
of space on each side. The vSpacing property is also set to 10, for 10 pixels between each
control. Taken together, these two properties make the controls evenly spaced out so that
the application is visually attractive. By default, controls are arranged top to bottom;
however, you can specify other arrangements, as you’ll see in the next section.

After your FXApp and FXMainWindow objects are created, you can add your first control:

my_first_button= FXButton.new(mainWindow, 'Example Button Control')

my_first_button.connect(SEL_COMMAND) do

puts "You've clicked the button!"

end

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP62

9330CH04.qxd 12/19/07 1:56 PM Page 62

e8376d3cc8796c3240d60804b9c401fb

This is an FXButton control, which is designed to allow users to perform a specific
action. The first line creates the control with the text “Example Button Control,” and the
following lines specify an action to take when the user clicks the button.

Next, you create a few more interface widgets:

FXTextField.new(mainWindow, 30).text = 'Example Text Control'

FXRadioButton.new(mainWindow, "Example Radio Control")

FXCheckButton.new(mainWindow, "Example Check Control")

The FXTextField object lets the user enter text. The text can be retrieved or preset
using the text property, as in this example. You then create an FXRadioButton object,
which lets the user select just one button from a group (of course, typically you would
have more than one radio button). The last line creates an FXCheckButton control, which
lets the user make an on/off choice.

Finally, having specified the elements for your interface, you then need to perform
some actions. First, you call the create method on your application object. This calls the
create method on all of your FXRuby objects, which uses the FOX GUI toolkit to actually
create the objects and prepare them for display:

myApp.create

mainWindow.show(PLACEMENT_SCREEN)

The second line calls the show method, which, logically enough, shows the main win-
dow. The PLACEMENT_SCREEN constant specifies that the window should be centered on the
screen.

As you can see, it’s reasonably easy to create different types of controls: command
buttons, text fields, radio (often called “option”) buttons, check boxes, and so forth. (See
the FXRuby documentation at http://www.fxruby.org/ for information about the other
controls available and how they work.) Now let’s apply the same basic techniques to a
slightly more complicated example.

Graphing Team Performance on the Desktop

Let’s say that Transmegtech Studios is reworking the artificial intelligence in its new strat-
egy game using the graphs created in Chapter 3. However, the graphs were created as
PNG files, and the chief executive officer (CEO) of the company does not know how to
view PNGs. He wants to be able to click an icon on his desktop and launch an application
that lets him view charts by clicking a player in a list. Fortunately, this is reasonably easy
to do with FXRuby.

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 63

9330CH04.qxd 12/19/07 1:56 PM Page 63

http://www.fxruby.org

Before you can run this example, you’ll need the database from Chapter 3 (shown
partially in Listing 3-3). You can download the SQL from http://rubyreporting.com/
examples/player_4.sql or from the Source/Downloads area of the Apress web site
(http://.www.apress.com), and then import the data using the command mysql -u

my_mysql_user -p < player_4.sql.
The code to create a simple desktop application for viewing graphs is shown in

Listing 4-3.

Listing 4-3. Desktop Team Performance Grapher (desktop_team_performance_graph.rb)

require 'fox16'

require 'active_record'

require 'optparse'

require 'rubygems'

require 'gruff'

require 'active_record'

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'insert_your_mysql_username_here',

:password => 'insert_your_mysql_password_here',

:database => 'players_4')

class Player < ActiveRecord::Base

has_many :plays

end

class Game < ActiveRecord::Base

has_many :plays

end

class Play < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

class Event < ActiveRecord::Base

belongs_to :play

end

include Fox

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP64

9330CH04.qxd 12/19/07 1:56 PM Page 64

http://rubyreporting.com
http://www.apress.com

class TransmegtechGraphWindow

def initialize

@main_window=FXMainWindow.new(get_app,

"Transmegtech Studios Player Reporting Software",

nil, nil, DECOR_ALL)

@main_window.width=640; @main_window.height=480

control_matrix=FXMatrix.new(@main_window,4, MATRIX_BY_COLUMNS)

FXLabel.new(control_matrix, 'Game:')

@game_combobox = FXComboBox.new(control_matrix, 30, nil,

COMBOBOX_STATIC | FRAME_SUNKEN)

@game_combobox.numVisible = 5

@game_combobox.editable = false

Game.find(:all).each do |game|

@game_combobox.appendItem(game.name , game.id)

end

@game_combobox.connect(SEL_COMMAND) do

update_display

end

FXLabel.new(control_matrix, 'Player:')

@player_combobox = FXComboBox.new(control_matrix, 35, nil,

COMBOBOX_STATIC | FRAME_SUNKEN)

@player_combobox.numVisible = 5

@player_combobox.editable = false

Player.find(:all).each do |player|

@player_combobox.appendItem(player.name , player.id)

end

@player_combobox.connect(SEL_COMMAND) do

update_display

end

@graph_picture_viewer = FXImageView.new(@main_window , nil, nil, 0,

LAYOUT_FILL_X | LAYOUT_FILL_Y)

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 65

9330CH04.qxd 12/19/07 1:56 PM Page 65

mailto:@main_window=FXMainWindow.new
mailto:@main_window.width=640
mailto:@main_window.height=480
mailto:@game_combobox.numVisible
mailto:@game_combobox.editable
mailto:@game_combobox.appendItem
mailto:@game_combobox.connect
mailto:@player_combobox.numVisible
mailto:@player_combobox.editable
mailto:@player_combobox.appendItem
mailto:@player_combobox.connect

@graph_picture_viewer.connect(SEL_CONFIGURE) do

update_display

end

@main_window.show(PLACEMENT_SCREEN)

end

def update_display

game_id_to_analyze = @game_combobox.getItemData(@game_combobox.currentItem)

player = Player.find(@player_combobox.getItemData(

@player_combobox.currentItem))

bar_chart = Gruff::Bar.new("#{@graph_picture_viewer.width}x" <<

"#{@graph_picture_viewer.height}")

bar_chart.legend_font_size = 12

total_games = Play.count(:conditions=>['game_id = ? AND ' <<

'player_id = ?',

game_id_to_analyze, player.id]

).to_f || 0

total_wins = Play.count(:conditions=>['game_id = ? AND ' <<

'player_id = ? AND won=1',

game_id_to_analyze, player.id]

).to_f || 0

bar_chart.title = "#{player.name} (#{'%i' %

(total_games==0 ? '0' :

(total_wins/total_games * 100))

}% won)"

bar_chart.minimum_value = 0

bar_chart.maximum_value = 110

sql = "SELECT event, AVG(time) as average_time

FROM events AS e

INNER JOIN

plays AS p

ON e.play_id=p.id

WHERE p.game_id='#{game_id_to_analyze}'

AND

p.player_id='#{player.id}'

GROUP BY e.event DESC;"

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP66

9330CH04.qxd 12/19/07 1:56 PM Page 66

mailto:@graph_picture_viewer.connect
mailto:@main_window.show
mailto:@game_combobox.getItemData(@game_combobox.currentItem
mailto:find(@player_combobox.getItemData
mailto:@player_combobox.currentItem

data = []

Event.find_by_sql(sql).each do |row|

bar_chart.data row.event, (row.average_time.to_i/1000)

end

bar_chart.labels = {0=>'Time'}

chart_png_filename = "./player_#{player.id}.png"

bar_chart.write(chart_png_filename)

pic = FXPNGImage.new(FXApp.instance())

FXFileStream.open(chart_png_filename,

FXStreamLoad) { |stream| pic.loadPixels(stream) }

pic.create

@graph_picture_viewer.image = pic

File.unlink(chart_png_filename)

end

end

fox_application=FXApp.new

TransmegtechGraphWindow.new

FXApp.instance().create # Note that getApp returns the same FXApp instance

as fox_application references.

FXApp.instance().run

Save this script as desktop_team_performance_graph.rb. You can run the script using
the following command:

ruby desktop_team_performance_graph.rb

When you run this command, you will see a screen with the text “no data.” You can
then use the drop-down menus to select a game and a player. The sample database has
data only for the Tech Website Baron game. Select that game to see a screen similar to
Figure 4-3.

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 67

9330CH04.qxd 12/19/07 1:56 PM Page 67

mailto:@graph_picture_viewer.image

Figure 4-3. Player graph displayed by the GUI

Let’s take a look at the important parts of the script.

Dissecting the Code

The first part of Listing 4-3 sets up the connection to MySQL, creates the various models,
and so forth—nothing new there.

The bulk of the program is controlled by one class, TransmegtechGraphWindow, which is
divided into two parts: update_display and initialize methods. update_display creates a
graph for the selected player, writes it to a file, and then displays it in your application.
Much of this graphing code is the same as the code from Listing 3-4 in Chapter 3. The
initialize method creates a window and the user interface elements required: the drop-
down lists to select the game and player to graph, the labels for those two drop-down
lists, and the large display area that will be used to view the graph.

Whenever either of the drop-down entries is changed—that is, when the user selects
a new game or a new player to graph—the update_display method will be called again.

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP68

9330CH04.qxd 12/19/07 1:56 PM Page 68

def update_display

game_id_to_analyze = @game_combobox.getItemData(@game_combobox.currentItem)

player = Player.find(@player_combobox.getItemData(@player_combobox.currentItem))

bar_chart = Gruff::Bar.new("#{@graph_picture_viewer.width}x" <<

"#{@graph_picture_viewer.height}")

. . .

bar_chart.write(chart_png_filename)

pic = FXPNGImage.new(FXApp.instance())

FXFileStream.open(chart_png_filename,

FXStreamLoad) { |stream| pic.loadPixels(stream) }

pic.create

@graph_picture_viewer.image = pic

File.unlink(chart_png_filename)

@graph_picture_viewer.image = pic

end

The first two lines of this method call the getItemData method of the two combo
boxes. ItemData is where you can store an integer for each item in the list. Here, ItemData
holds the game IDs and the player IDs. By calling the getItemData method with the cur-
rently selected item as the parameter, you can get the appropriate player and game IDs.

After that, you create a chart, just as in Listing 3-4. The chart is written to a file, and
then loaded and displayed; however, unlike in the Chapter 3 example, you immediately
unlink—or delete—the file after displaying it.

■Note You could use a Tempfile object, which automates the unlinking behavior, but you can’t specify a
Tempfile’s extension, and FXRuby uses file extensions to determine the file format of a given image. This is
an unfortunate approach, yet apparently fairly common—the Gruff and PDF writer gems both have a similar
issue.

In order for the update_display method to do anything, you need a user interface
element to call it. So, first you must create a window to contain that user interface:

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 69

9330CH04.qxd 12/19/07 1:56 PM Page 69

mailto:@game_combobox.getItemData(@game_combobox.currentItem
mailto:find(@player_combobox.getItemData(@player_combobox.currentItem
mailto:@graph_picture_viewer.image
mailto:@graph_picture_viewer.image

fox_application=FXApp.new

@main_window=FXMainWindow.new(fox_application,

"Transmegtech Studios Player Reporting Software",

nil, nil, DECOR_ALL)

@main_window.width=640; @main_window.height=480

The first line creates a new FXApp object, which represents the entire application.
FXApp handles application-wide tasks such as starting messaging loops, event timers,
quitting the application, and so forth. The second line creates the main window as an
instance of the FXMainWindow class. Note that you are using the default icon for this appli-
cation, which is the nil, nil part of the call. The first of those two nil parameters sets the
normal icon, and the second sets the minimized icon for your window. The third line sets
the width and height. (You can actually set the height and width via optional parameters
to the constructor, but this method is clearer, since the constructor already has a large
number of parameters.)

Next, you need to place a strip of controls at the top of the window. These controls
will be used to select the player and game for the report. Whenever these settings are
changed, the graph should automatically update. Before you add the controls, you need
to create a space to put them:

control_matrix=FXMatrix.new(@main_window,4, MATRIX_BY_COLUMNS)

This line creates a new FXMatrix called control_matrix, which is a FOX container in
which you can place other controls. As noted earlier, by default, an FXMainWindow object
places controls vertically. The MATRIX_BY_COLUMNS flag in the FXMatrix constructor makes it
stack controls horizontally. The other alternative is MATRIX_BY_ROWS, which stacks controls
vertically. The second parameter, 4, specifies how many controls should be placed inside
the FXMatrix control before starting a new row. For example, you could set MATRIX_BY_ROWS
with a parameter of 2 to make a long vertical row of labels next to a vertical row of text
boxes.

After you have a place to put your report controls, you create them:

FXLabel.new(control_matrix, 'Game:')

@game_combobox = FXComboBox.new(control_matrix, 30,

nil, COMBOBOX_STATIC | FRAME_SUNKEN)

@game_combobox.numVisible = 5

This code creates two controls: an FXLabel, which is a visual indicator of the purpose
of the next control, and an FXComboBox, which is a list of elements that can be accessed by
clicking a drop-down arrow. The second parameter to the FXComboBox constructor is the
width. The third parameter is the message target. This parameter is a relic from the

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP70

9330CH04.qxd 12/19/07 1:56 PM Page 70

mailto:@main_window=FXMainWindow.new
mailto:@main_window.width=640
mailto:@main_window.height=480
mailto:@game_combobox.numVisible

original FOX implementation in C, and you won’t typically use it in an FXRuby applica-
tion. (If you’re interested, you can find out more at http://www.fxruby.org/doc/events.
html.) The fourth parameter, COMBOBOX_STATIC | FRAME_SUNKEN, is a bit field consisting of
various style bits. Specifically, it’s two constants OR’d together: the COMBOBOX_STATIC
constant makes the box static, so that users must pick from the list, and the
FRAME_SUNKEN constant makes the box have a three-dimensional sunken effect.

Additionally, the numVisible attribute selects how many options are visible in the
drop-down list at one time. Here, you set numVisible to 5 to let the user see all of the
available elements without scrolling.

Next, you fill the FXComboBox with options:

Game.find(:all).each do |game|

@game_combobox.appendItem(game.name, game.id)

end

This loop calls appendItem for each game in the database. The first parameter to the
appendItem method is the text that represents the option in the drop-down list. The sec-
ond parameter is the value the item has, which is stored in the itemData array in the
@game_combobox object. The update_display method uses this value later in the code to
retrieve the selected game ID.

Of course, you need to actually update the display when the user changes the
FXComboBox. You use the connect method to do just that:

@game_combobox.connect(SEL_COMMAND) do

update_display

end

The connect method attaches a block of code to a given FOX message on a given FOX
object. In this case, you’re specifying that whenever SEL_COMMAND is received by the object,
the update_display method will be called. SEL_COMMAND is sent to FXComboBox objects when
they change, so your update_display method will be called whenever someone selects a
new game to analyze.

■Tip Along with SEL_COMMAND, FOX has quite a few other trappable messages. You can use these to cus-
tomize your users’ experience with fine touches. You can get a complete list of all the FOX messages at
http://www.fox-toolkit.org/ftp/FoxMessages.pdf.

After this, the script creates a player label and drop-down list in the same way as the
game label and list.

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 71

9330CH04.qxd 12/19/07 1:56 PM Page 71

http://www.fxruby.org/doc/events
mailto:@game_combobox.appendItem
mailto:@game_combobox.connect
http://www.fox-toolkit.org/ftp/FoxMessages.pdf

Next, you need to create a place for the graphs to be displayed:

@graph_picture_viewer = FXImageView.new(main_window , nil, nil, 0,

LAYOUT_FILL_X | LAYOUT_FILL_Y)

@graph_picture_viewer.connect(SEL_CONFIGURE) do

update_display

end

The first line creates an FXImageView object, which you will use to display the graphs.
Note the use of the LAYOUT_FILL_X and LAYOUT_FILL_Y flags, which mean that the graph
viewer will use all available space in the window.

Finally, outside your class, you need to actually display your window and let it run.
The following three lines do just that:

FXApp.instance().create

main_window.show(PLACEMENT_SCREEN)

FXApp.instance().run

The first line creates the necessary objects, which are specific to the operating system
(and, happily, the details are hidden from us). The second line displays your window on
the screen, and the PLACEMENT_SCREEN flag means it will be centered. A call to FXApp.
instance() returns your previously defined FXApp object, since FXApp is a singleton.

PACKAGING THE REPORTER DESKTOP APPLICATION

Simply creating a desktop application is not enough—users need to have the application running on
their machine. If your application will be run by only a few users, or if your code will run only server
side, this may not be an issue. However, if you need to install Ruby and associated libraries on users’
machines for a wider distribution of your application, that can be a challenge.

Fortunately, a gem called RubyScript2Exe can help. This gem creates executable programs, and
you can target Mac OS X, Windows, or Linux. (You’ll need to be running the appropriate operating sys-
tem to create an executable for it, however.) In fact, RubyScript2Exe can even copy Ruby library
dependencies for you. It will run your program once as a “test run,” and from there, determine which
gems and other source code you’ve used. It will then copy the source into your finished executable,
which will be transparently available to your finished program. Additionally, you can package binary or
configuration files with your script, so that the entire program is one convenient package.

For the example in this chapter, you can create an executable with the following command:

rubyscript2exe desktop_team_performance_graph.rb

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP72

9330CH04.qxd 12/19/07 1:56 PM Page 72

mailto:@graph_picture_viewer.connect

As you can see, this gem is very easy to use. Using various options, you can modify the output. You
can find out more about RubyScript2Exe in my Apress book, Practical Ruby Gems, as well as from the
RubyScript2Exe home page: http://www.erikveenstra.nl/rubyscript2exe/index.html.

Summary
This chapter covered how you can extend your applications directly onto users’ desktops.
You saw how to use the spreadsheet-excel gem to create an Excel spreadsheet report,
which can be extremely helpful to end users. Then you created a desktop application that
displays beautiful graphs using Gruff and Active Record.

As you can see, Ruby isn’t a web-only or console-only language. It offers a great deal
of flexibility for creating applications that extend directly to the user’s desktop in familar
formats, including thick-client and common office applications. However, there’s no
question that Ruby is best known for its usage on the Web. In the next chapter, you’ll dis-
cover how all of the techniques you’ve learned so far can be used with Ruby on Rails, the
popular web development framework.

CHAPTER 4 ■ CREATING REPORTS ON THE DESKTOP 73

9330CH04.qxd 12/19/07 1:56 PM Page 73

http://www.erikveenstra.nl/rubyscript2exe/index.html

9330CH04.qxd 12/19/07 1:56 PM Page 74

Connecting Your Reports to
the World

Reporting does not take place in a vacuum. Reports are written for a specific purpose
for a given set of users. Technical choices like “what language do I use” and “how do I
deliver the information” are heavily influenced by the users and by the purpose of the
report. After all, your users must be able to access the report for it to be useful.

Perhaps the most powerful method to deliver reports to your user is via the World
Wide Web. Users can access the information from virtually any Internet-connected
device, and because of the Internet’s ubiquity, you probably won’t need to do any special
configuration for their computers—just give users the web address, and they should be
all set.

In this chapter, you’ll learn how to make your reports accessible from the Web. Let’s
start with a quick look at your choices for accomplishing this.

Choosing a Web Framework
Many web frameworks and languages are available. Of course, since you bought this
book, it’s likely you’re interested in Ruby web frameworks, and probably Ruby on Rails
(typically referred to as simply Rails) in particular. In fact, Ruby itself has grown dramati-
cally due to Rails’ meteoric rise to prominence. (Incidentally, Active Record, which you’ve
used in previous chapters, is part of Rails.)

However, you can use other Ruby web frameworks. Nitro (http://www.nitroproject.
org/), for example, is a powerful alternative. Another is Merb (http://merb.rubyforge.org/),
which is a framework similar to Rails, but with a much smaller footprint. Merb also lets
you use alternate ORM frameworks, like Data Mapper, so it’s more flexible.

Due to Rails’ popularity and widespread community support, it’s the framework
you’ll use for the web examples in this book. Rails, like Nitro and Merb, is a Model-View-
Controller (MVC) framework. Following the MVC pattern, code is generally divided into
three parts:

75

C H A P T E R 5

9330CH05.qxd 12/31/07 3:02 PM Page 75

http://www.nitroproject.org
http://www.nitroproject.org
http://merb.rubyforge.org

• The model represents the data used by the application.

• The view represents the actual presentation of the data.

• The controller controls the flow of the application. A controller often manipulates
models to achieve an action requested by a user, and then presents the results with
a view.

You can find out more about MVC frameworks at http://en.wikipedia.org/wiki/
Model-view-controller. You can find out more about Rails at its official home: http://
rubyonrails.org.

Now, let’s take a look at how to create a Rails application to deliver a web report.

Live Intranet Web Reporting with Rails
Let’s return to Transmegtech Studios, the fictional game development company we’ve
used for the examples in the previous chapters. Transmegtech has decided to hire actors
to do full-motion videos for its latest games. In order to save on costs, the studio is hiring
several full-time actors and having them act in different games simultaneously. The vari-
ous game sequences are filmed in different offices on different days.

Your manager wants you to create an application that tells actors where they need to
appear for the day. The actors will check the schedule for the next day before they leave
the office each day, but if they forget, they can use their cell phone to check the schedule
in the morning. Of course, this means that the reporting application will need to be
accessible via cell phone as well as the Web.

Before you get started, you need to install the Rails gem. You can do so as follows:

gem install rails -y

■Note The first example in this chapter is compatible with Rails versions 1.2 and later. The next example
works with only versions 2.0 and later, so you’ll need to upgrade your Rails installation with gem update -y

rails if you have an older version.

Next, create a new Rails application called actor_schedule, as follows:

rails actor_schedule

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD76

9330CH05.qxd 12/31/07 3:02 PM Page 76

http://en.wikipedia.org/wiki
http://rubyonrails.org
http://rubyonrails.org

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

create components

create db

create doc

create lib

create lib/tasks

create log

create public/images

create public/javascripts

create public/stylesheets

create script/performance

create script/process

create test/fixtures

. . .

create public/404.html

create public/500.html

create public/index.html

create public/favicon.ico

create public/robots.txt

create public/images/rails.png

create public/javascripts/prototype.js

create public/javascripts/effects.js

create public/javascripts/dragdrop.js

create public/javascripts/controls.js

create public/javascripts/application.js

create doc/README_FOR_APP

create log/server.log

create log/production.log

create log/development.log

create log/test.log

Rails creates quite a few files and directories for you, in a directory structure that will
hold the code that makes up our application. All of these directories and files are stored
in a directory named after the project. In this case, the directory is actor_schedule, and so
all of the paths in this example will be underneath the actor_schedule directory.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 77

9330CH05.qxd 12/31/07 3:02 PM Page 77

Setting Up the Database

Next, let’s create the database to store the data:

mysqladmin create actor_schedule_development -u your_mysql_username -p

At this point, you’ve created a database for your application, but before you populate
this database, let’s connect the application to your database server. After that, you can
use a Rails mechanism called migrations to create the database tables for you. Edit the
config/database.yml file to read as shown in Listing 5-1.

Listing 5-1. Database Configuration File for the Web Report (config/database.yml)

development:

adapter: mysql

database: actor_schedule_development

username: your_user_name

password: your_password

host: localhost

Note that Rails creates three database connection settings by default, but this
example uses only the development environment to keep things simple. The other envi-
ronments are testing, used for automated testing, and production, used for deployment.
Additionally, the default file includes a number of comments, which I’ve removed from
the listing for the sake of brevity.

Next, you need to create a new migration.

Creating a Migration

Migrations are bits of Ruby code that control the structure of a database. Each migration
represents a set of changes to a database. The first migration usually specifies the initial
structure of a database, and each successive version represents a change of some kind—
adding a column, setting a default value, renaming a table, and so forth. Migrations are
designed to be cross-platform, so you can usually run the same migration across multiple
databases. (Of course, if you use any database-specific features, the migration won’t be
cross-platform.) Migrations are versioned, so you can upgrade and downgrade them as
you see fit. Rails also keeps track of the current version of your database, so if you have a
number of migrations, Rails will run only the new migrations.

Create a new migration by using the following command:

ruby script/generate migration initial_schema

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD78

9330CH05.qxd 12/31/07 3:02 PM Page 78

create db/migrate

create db/migrate/001_initial_schema.rb

This creates a skeleton migration. The initial db/migrate/001_initial_schema.rb file
looks like this:

class InitialSchema < ActiveRecord::Migration

def self.up

end

def self.down

end

end

As you can see, it’s a single class that inherits from ActiveRecord::Migration, and it
has two class methods: up and down, which upgrade and downgrade the version of the
database structure, respectively, when the migration is run. Fortunately, Rails creates the
skeleton containing the class definition and method names, so you only need to fill out
the migration. Let’s do that now. Listing 5-2 shows the full migration class.

Listing 5-2. Application Schema (db/migrate/001_initial_schema.rb)

class InitialSchema < ActiveRecord::Migration

def self.up

create_table :actors do |t|

t.column :name, :string, :length=>45

t.column :phone, :string, :length=>13

end

create_table :projects do |t|

t.column :name, :string, :length=>25

end

create_table :rooms do |t|

t.column :name, :string, :length=>25

end

create_table :bookings do |t|

t.column :actor_id, :integer

t.column :room_id, :integer

t.column :project_id, :integer

t.column :booked_at, :datetime

end

end

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 79

9330CH05.qxd 12/31/07 3:02 PM Page 79

def self.down

drop_table :actors

drop_table :projects

drop_table :rooms

drop_table :bookings

end

end

Save this as db/migrate/001_initial_schema.rb.
Next, run the migration to create the database structure that the migration describes,

using the following command:

rake db:migrate

(in /your_path/your_directory/actor_schedule)

== InitialSchema: migrating ===

-- create_table(:actors)

-> 0.0000s

-- create_table(:projects)

-> 0.0160s

-- create_table(:rooms)

-> 0.0000s

-- create_table(:bookings)

-> 0.0000s

== InitialSchema: migrated (0.0160s) ==

Note that this process also works in reverse. You can specify a version to migrate your
database to using the VERSION=x option, and specifying 0 will revert your database. For
example, the following command will undo the previous migration command:

rake db:migrate VERSION=0

(in /your_path/your_directory/actor_schedule)

== InitialSchema: reverting ===

-- drop_table(:actors)

-> 0.0000s

-- drop_table(:projects)

-> 0.0000s

-- drop_table(:rooms)

-> 0.0000s

-- drop_table(:bookings)

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD80

9330CH05.qxd 12/31/07 3:02 PM Page 80

-> 0.0160s

== InitialSchema: reverted (0.0630s) ==

■Note The rake command has a whole host of other uses. It’s similar to the make command, but it’s writ-
ten in pure Ruby and is used to perform various maintenance tasks for Rails applications. The particular
rake task discussed here, db:migrate, uses migrations to either upgrade or downgrade a database. You
can find a list of all of the tasks available for a Rails application by running the command rake -T.

Adding the Data

Now that you have a Rails application that can connect to your database and a database
structure, you need to fill the database with some data. You can use the SQL code in
Listing 5-3 to do just that.

Listing 5-3. Sample Data for the Actor Scheduling Application (actor_schedule_data.sql)

DELETE FROM actors;

DELETE FROM projects;

DELETE FROM rooms;

DELETE FROM bookings;

INSERT INTO actors (id, name) VALUES

(1, 'Jim Thompson');

INSERT INTO actors (id, name) VALUES

(2, 'Becky Leuser');

INSERT INTO actors (id, name) VALUES

(3, 'Elizabeth Berube');

INSERT INTO actors (id, name) VALUES

(4, 'Dave Guuseman');

INSERT INTO actors (id, name) VALUES

(5, 'Tom Jimson');

INSERT INTO projects (id, name) VALUES

(1, 'Turbo Bowling Intro Sequence');

INSERT INTO projects (id, name) VALUES

(2, 'Seven for Dinner Win Game Sequence');

INSERT INTO projects (id, name) VALUES

(3, 'Seven for Dinner Lost Game Sequence');

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 81

9330CH05.qxd 12/31/07 3:02 PM Page 81

INSERT INTO rooms (id, name) VALUES

(1, 'L120, Little Hall');

INSERT INTO rooms (id, name) VALUES

(2, 'L112, Little Hall');

INSERT INTO rooms (id, name) VALUES

(3, 'M120, Tech Center');

INSERT INTO bookings (actor_id, room_id, project_id, booked_at) VALUES

(1,1,2, DATE_ADD(NOW(), INTERVAL 3 HOUR));

INSERT INTO bookings (actor_id, room_id, project_id, booked_at) VALUES

(1,1,3, DATE_ADD(NOW(), INTERVAL 4 HOUR));

INSERT INTO bookings (actor_id, room_id, project_id, booked_at) VALUES

(3,2,2, DATE_ADD(NOW(), INTERVAL 1 DAY));

INSERT INTO bookings (actor_id, room_id, project_id, booked_at) VALUES

(2,3,1, DATE_ADD(NOW(), INTERVAL 5 HOUR));

Save Listing 5-3 as actor_schedule_data.sql. In the listing, note the use of the DATE_ADD
function to create relative times, rather than hard-coding them, so the times will
always be in the future. Additionally, note the DELETE FROM statements at the beginning of
Listing 5-3. These clear the database before the new data is inserted. For example, this
lets you modify the data and then rerun this SQL script to have a fresh copy of your data.

■Tip You can also use migration to insert data, but the advantage of inserting your data in a separate SQL
file is that it keeps the structure and the data separate. If you had two separate deployments, with two sepa-
rate databases, you could use the same migrations on both.

You can run the SQL in Listing 5-3 and populate the database using the following
command:

mysql -u my_mysql_username -p actor_schedule_development < actor_schedule_data.sql

Now that your Rails application has been created, your database connection is ready,
and your database structure and data are prepared, you need to create code that accesses
this database. First, let’s create the models.

Creating the Models for the Web Report

The models will represent your tables and the relationships between them. You can
create the models using the following commands:

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD82

9330CH05.qxd 12/31/07 3:02 PM Page 82

ruby script/generate model actor

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/actor.rb

create test/unit/actors_test.rb

create test/fixtures/actor.yml

exists db/migrate

create db/migrate/002_create_actors.rb

ruby script/generate model project

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/project.rb

create test/unit/project_test.rb

create test/fixtures/project.yml

exists db/migrate

create db/migrate/003_create_projects.rb

ruby script/generate model room

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/room.rb

create test/unit/room_test.rb

create test/fixtures/room.yml

exists db/migrate

create db/migrate/004_create_rooms.rb

ruby script/generate model booking

exists app/models/

exists test/unit/

exists test/fixtures/

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 83

9330CH05.qxd 12/31/07 3:02 PM Page 83

create app/models/booking.rb

create test/unit/booking_test.rb

create test/fixtures/booking.yml

exists db/migrate

create db/migrate/005_create_bookings.rb

Each of these commands creates a number of files. You now have files named after
the tables in the app/models directory, and those are the files you will edit. The generate
model command also creates unit tests and fixtures, as well as a migration for each table.
You can safely delete the migrations, since you already created all of the tables in your
initial migration. The unit test and fixture files are for unit testing; visit the Rails site
(http://rubyonrails.org) for information about their use.

First, edit the app/models/actor.rb file so it looks like Listing 5-4.

Listing 5-4. Actor Model (app/models/actor.rb)

class Actor < ActiveRecord::Base

has_many :bookings

end

Save the modified model file. Then edit app/models/booking.rb to look like Listing 5-5.

Listing 5-5. Booking Model (app/models/booking.rb)

class Booking < ActiveRecord::Base

belongs_to :actor

belongs_to :project

belongs_to :room

end

The actor and booking models contain all of the relationships you will use in this
example. The has_many relationship between the actor and booking tables lets you retrieve
all of the booking objects for each actor, and the various belongs_to relationships in the
booking model allow you to retrieve the details of each booking. You could also add
has_many :bookings relationships to the room and project models, but since you won’t
use them in the controller, they are omitted.

At this point, you have a database with data in it and a Rails application with a few
models. Of course, models are just one-third of an MVC application, so let’s create a con-
troller next.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD84

9330CH05.qxd 12/31/07 3:02 PM Page 84

http://rubyonrails.org

Creating the Controller for the Web Report

The controller will respond to actions of the user by taking data from the model and pre-
senting it via your views .The controller is named home, since you will have just one page.
Create the app/controllers/home_controller.rb file with the code shown in Listing 5-6.

Listing 5-6. Home Controller for the Web Report (app/controllers/home_controller.rb)

class HomeController < ApplicationController

def index

@actors_today = []

@actors_tomorrow = []

Actor.find(:all).each do |actor|

@actors_today << {:actor=>actor,

:bookings => actor.bookings.find(:all,

:conditions => [

'TO_DAYS(booked_at)=' <<

'TO_DAYS(NOW())'])}

@actors_tomorrow << {:actor=>actor,

:bookings => actor.bookings.find(:all,

:conditions => [

'TO_DAYS(booked_at)=' <<

'TO_DAYS(NOW())+1'])}

end

end

end

This controller has just one action: index, which displays the bookings for today and
tomorrow.

Creating the View for the Web Report

Next, let’s create a view that actually displays this data, as shown in Listing 5-7.

Listing 5-7. The Single View for the Actor Scheduling Application (app/views/home/
index.rhtml)

<style>

body { font-family: sans-serif }

h2 { margin-left: 10pt;}

p { margin-left: 10pt; }

</style>

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 85

9330CH05.qxd 12/31/07 3:02 PM Page 85

<h1>Today's Schedule:</h1>

<% @actors_today.each do |actor_today| %>

<h2><%= actor_today[:actor].name %></h2>

<p><%if actor_today[:bookings].length > 0 %>

actor_today[:bookings].each do |b|

<%=b.booked_at.strftime('%I:%m%p') %>,

<%=b.room.name %>,

<%=b.project.name %>

<%end%>

<%else%>

Nothing for today!

<%end%>

</p>

<% end %>

<h1>Tomorrow's Schedule:</h1>

<% @actors_tomorrow.each do |actor_tomorrow| %>

<h2><%= actor_tomorrow[:actor].name %></h2>

<p><%if actor_tomorrow[:bookings].length > 0 %>

actor_tomorrow [:bookings].each do |b|

<%=b.booked_at.strftime('%I:%m%p') %>,

<%=b.room.name %>,

<%=b.project.name %>

<%end%>

<%else%>

Nothing for tomorrow!

<%end%>

<% end %>

Save this file as app/views/home/index.rhtml.
Now you need just one more piece: a layout, which is used as a template. In other

words, the view is displayed inside the layout. Listing 5-8 shows the layout.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD86

9330CH05.qxd 12/31/07 3:02 PM Page 86

mailto:@actors_today.each
mailto:@actors_tomorrow.each

Listing 5-8. Layout for the Actor Schedule View (app/views/layouts/application.rhtml)

<html>

<head>

<title>Actor Schedule Report</title>

</head>

<body>

<%= yield %>

</body>

</html>

Save this as app/views/layouts/application.rhtml. This layout will be used automati-
cally for all pages in the application by default. You can set up a layout for just one
controller, and you can also manually override layouts for a given action.

At this point, the application is complete.

Examining the Web Report Application

Let’s launch the application using the built-in Rails test web server. You can do that by
using the following command:

ruby script/server

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

=> Rails application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

** Starting Mongrel listening at 0.0.0.0:3000

** Starting Rails with development environment ...

** Rails loaded.

** Loading any Rails specific GemPlugins

** Signals ready. INT => stop (no restart).

** Mongrel available at 0.0.0.0:3000

** Use CTRL-C to stop.

Open a web browser and enter the address http://localhost:3000/home to see the
application. You should see a result similar to Figure 5-1.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 87

9330CH05.qxd 12/31/07 3:02 PM Page 87

http://0.0.0.0:3000
http://localhost:3000/home

■Note The Rails test server can use one of two web servers: WEBrick, which is installed by default, and
Mongrel, which is faster. It automatically uses Mongrel if it’s installed. If Mongrel is not installed, it will use
WEBrick, and your output will be slightly different than what is shown in the book. However, it won’t make a
difference for this example.

Figure 5-1. Ruby on Rails actor schedule

To view the report on a cell phone, you would need to run this application on a pub-
lic server. If you did so, and then used your cell phone to navigate to port 3000 on the
appropriate URL, you would see something similar to Figure 5-2 (of course, the exact
view depends on the cell phone model). Additionally, you would likely add authentica-
tion and other real-world features before actually deploying this application. Nonethe-
less, as you can see, the approach of using simple semantic HTML can work well even on
cell phones.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD88

9330CH05.qxd 12/31/07 3:02 PM Page 88

Figure 5-2. Ruby on Rails actor schedule on a Samsung A900 cell phone

Dissecting the Code

The bulk of the application is in the controller and the view, but before we get to that, let’s
take a brief look at the migration (Listing 5-2), which defines the database schema for the
application:

class InitialSchema < ActiveRecord::Migration

def self.up

create_table :actors do |t|

t.column :name, :text, :length=>45

t.column :phone, :text, :length=>13

end

create_table :projects do |t|

t.column :name, :text, :length=>25

end

create_table :rooms do |t|

t.column :name, :text, :length=>25

end

create_table :bookings do |t|

t.column :actor_id, :integer

t.column :room_id, :integer

t.column :project_id, :integer

t.column :booked_at, :datetime

end

end

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 89

9330CH05.qxd 12/31/07 3:02 PM Page 89

def self.down

drop_table :actors

drop_table :projects

drop_table :rooms

drop_table :bookings

end

end

This migration has two methods: up and down. The up method creates several tables
using the Rails built-in column types, which are automatically mapped to database-
specific types. The down method drops the tables and is used to undo a migration. Notice
that these tables automatically have an artificial primary key column, id, added by
default. If that is undesirable, you need to explicitly state you don’t want an id column,
by using the ;id=>false option in your create_table statement.

Next, let’s look at the controller (Listing 5-6):

def index

@actors_today = []

@actors_tomorrow = []

Actor.find(:all).each do |actor|

@actors_today << {:actor=>actor,

:bookings=>actor.booking.find(:all,

:conditions=>[

'TO_DAYS(booked_at)=' <<

TO_DAYS(NOW())'])}

@actors_tomorrow << {:actor=>actor,

:bookings=>actor.booking.find(:all,

:conditions=>[

'TO_DAYS(booked_at)=' <<

TO_DAYS(NOW())+1'])}

end

end

The controller has just one action, which represents the main page people will see
when they visit your page. This action prepares two lists of actors for the view: one for
today’s schedule and another for tomorrow’s schedule. Each item in the list has two
parts: an actor object representing the actor and a list of bookings for the appropriate
time period.

After this controller is called, the view of the same name is automatically rendered to
the screen by Rails. Specifically, it implicitly calls the render method for you; you can
override this with your own call to the render method, which lets you render a view with
a different name or that is associated with a different controller.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD90

9330CH05.qxd 12/31/07 3:02 PM Page 90

Let’s take a look at that view (Listing 5-7) next. First, it prints out all of the actors and
their schedule for the day, as follows:

<h1>Today's Schedule:</h1>

<% @actors_today.each do |actor_today| %>

<h2><%= actor_today[:actor].name %></h2>

<p><%if actor_today[:bookings].length > 0 %>

actor_today[:bookings].each do |b|

<%=b.booked_at.strftime('%I:%m%p') %>,

<%=b.room.name %>,

<%=b.project.name %>

<%end%>

<%else%>

Nothing for today!

<%end%>

</p>

<%end %>

It loops through each of the actors, prints their name as an h2 element, and then
prints the bookings. It formats the booked_at time for each and prints it, along with the
room name and the project name. The stftime function formats the date into a nice,
human-readable form (see http://ruby-doc.org/core/classes/Time.src/M000297.html for
details).

Then you do a very similar loop for tomorrow’s schedule. In fact, it’s identical, except
for the references to @actors_today being replaced with @actors_tomorrow and similar
changes.

Note that you could easily display this data in a table, but using paragraphs and
headers gives the browser more control over wrapping, which makes it display better on
small screens, such as the cell phone display you saw in Figure 5-2.

Now that you’ve seen how easy it is to create a web application with Rails, let’s take a
look at a slightly more complicated example.

Graphical Reporting with Rails
Although a lot of web reporting is textual, as in the previous example, it’s also possible to
do graphical reporting with Rails. To demonstrate, let’s re-create the team performance
report presented at the end of Chapter 4. However, instead of using Gruff to create
reports, you will use a Flash charting application. The advantage of using a Flash solution
is that it allows for interactivity. For example, you can create tool tips that report exact
values when users move their mouse over an area of the graph.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 91

9330CH05.qxd 12/31/07 3:02 PM Page 91

mailto:@actors_today.each
http://ruby-doc.org/core/classes/Time.src/M000297.html

First, let’s create a Rails project for the application:

rails team_performance_web

create

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

create components

create db

create doc

create lib

create lib/tasks

create log

create public/images

create public/javascripts

...

For this example, you’ll use a project called Open Flash Chart. It’s open source, unlike
many other Flash charting components, so you can use it on any size project without
paying licensing fees. Obtain Open Flash Chart from http://teethgrinder.co.uk/
open-flash-chart/. Unzip it into a temporary directory. Next, copy the open-flash-chart.
swf file from the root of the ZIP file into a new directory into your Rails application:
public/flash.

You’ll also use the Flash Object plug-in, which helps you include Flash objects in
your views. Install this plug-in using the following command:

ruby script/plugin install http://lipsiasoft.googlecode.com/svn/trunk/

flashobject_helper/

Now you can start generating your code.

Creating the Controller for the Graphical Report

Begin by generating a single controller, home, using the following command:

ruby script/generate controller home

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD92

9330CH05.qxd 12/31/07 3:02 PM Page 92

http://teethgrinder.co.uk
http://lipsiasoft.googlecode.com/svn/trunk

exists app/controllers/

exists app/helpers/

create app/views/home

exists test/functional/

create app/controllers/home_controller.rb

create test/functional/home_controller_test.rb

create app/helpers/home_helper.rb

For this example, you will use the players_4 database from Chapter 3, so you will
need to edit your config/database.yml file to look something like Listing 5-9.

Listing 5-9. Database Configuration File for the Graphical Report (config/database.yml)

development:

adapter: mysql

database: players_4

username: your_mysql_username_here

password: your_mysql_password_here

host: localhost

As in the previous example, you’re creating only a development environment at this
point, so you can safely ignore the other two database connection settings for testing
and production.

Place the code shown in Listing 5-10 in config/routes.rb.

Listing 5-10. Application Routing Code (config/routes.rb)

ActionController::Routing::Routes.draw do |map|

map.connect 'performance/:game_id/:player_id',

:controller=>'performance',

:action=>'show'

map.connect 'performance/:game_id/:player_id.:format',

:controller=>'performance',

:action=>'show'

map.connect "/", :controller=>'home'

map.connect ':controller/:action/:id'

map.connect ':controller/:action/:id.:format'

end

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 93

9330CH05.qxd 12/31/07 3:02 PM Page 93

Remove the public/index.html file, as it overrides your routing for /.
The code shown in Listing 5-11 goes in app/controllers/home_controller.rb.

Listing 5-11. Home Controller for the Web Report (app/controllers/home_controller.rb)

class HomeController < ApplicationController

def index

@available_players =Player.find(:all)

@available_games = Game.find(:all)

end

end

The code shown in Listing 5-12 goes in app/controllers/performance_controller.rb.

Listing 5-12. Web Performance Data Controller (app/controllers/performance_controller.rb)

class PerformanceController < ApplicationController

def show

@player = Player.find_by_id(params[:player_id])

@game = Game.find_by_id(params[:game_id])

@events = Event.find(:all,

:select=>'event, ' <<

'AVG(time)/1000 as average_time',

:group=>'events.event DESC',

:joins=>' INNER JOIN plays ON events.play_id=plays.id',

:conditions=>["plays.game_id = ? AND plays.player_id= ?",

@game.id, @player.id]

).map { |event|

{:event=>event.event,

:average_time=>event.average_time.to_i}

}

respond_to do |format|

format.html { render :layout=>false if request.xhr? }

format.text { render :layout=>false }

format.xml { render :xml=>{'player'=>@player,

'game'=>@game,

'events'=>@events

}.to_xml(:root=>'player_performance_report',

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD94

9330CH05.qxd 12/31/07 3:02 PM Page 94

mailto:@game.id
mailto:@player.id

:skip_types=>true) }

end

end

end

Now you can create the models for the report.

Creating the Models for the Graphical Report

This example will use four models: event (app/models/event.rb), game (app/models/game.rb),
play (app/models/play.rb), and player (app/models/player.rb). Their code is shown in
Listings 5-13 through 5-16.

Listing 5-13. Event Model (app/models/event.rb)

class Event < ActiveRecord::Base

belongs_to :play

end

Listing 5-14. Game Model (app/models/game.rb)

class Game < ActiveRecord::Base

has_many :plays

end

Listing 5-15. Play Model (app/models/play.rb)

class Play < ActiveRecord::Base

belongs_to :game

belongs_to :player

end

Listing 5-16. Player Model (app/models/player.rb)

class Player < ActiveRecord::Base

has_many :plays

end

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 95

9330CH05.qxd 12/31/07 3:02 PM Page 95

Creating the View for the Graphical Report

The final pieces are the views. Place the file shown in Listing 5-17 in app/views/home/
index.html.erb.

Listing 5-17. View for the Team Performance Application (app/views/home/index.html.erb)

<h1>Team Performance Reporting</h1>

<div id="top">

<%=select 'player', 'id',

[['Click here to select a player',""]] +

@available_players.map { |p|

[p.name, p.id] },

{:include_blank=>false} %>

<%=select 'game', 'id',

[['Click here to select a game',""]] +

@available_games.map { |g|

[g.name, g.id] },

{:include_blank=>false} %> </div>

<div id="chart">

</div>

<script>

function show_report(){

$('chart').hide();

var player_id = $('player_id').value;

var game_id = $('game_id').value

if(player_id && game_id) {

new Ajax.Updater("chart",

'/performance'+

'/' + $('game_id').value +

'/' + $('player_id').value,

{evalScripts:true,

method:'get',

onComplete:function(){

setTimeout("$('chart').show();",

400); }

}

);

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD96

9330CH05.qxd 12/31/07 3:02 PM Page 96

mailto:@available_players.map
mailto:@available_games.map

}

}

Event.observe("player_id", "change", show_report);

Event.observe("game_id", "change", show_report);

</script>

The code shown in Listing 5-18 goes in app/views/performance/show.html.erb.

Listing 5-18. Performance Controller Show HTML View (app/views/performance/
show.html.erb)

<%if @events.length>1%>

<div>

<% graph_params = { 'AllowScriptAccess'=>'SameDomain' } %>

<%=flashobject_tag "/flash/open-flash-chart.swf",

:size=>"850x400",

:parameters=>graph_params,

:variables=>{'data'=>"/performance/#{@game.id}

/#{@player.id}.text"} %>

</div>

<%else%>

<p> <%=@player.name%> has no recorded data for <%=@game.name%>.</p>

<%end%>

The code shown in Listing 5-19 goes in app/views/layouts/show.text.erb.

Listing 5-19. Performance Controller Show Text View (app/views/performance/show.text.erb)

<%

labels = @events.map { |e| e[:event] }

values = @events.map { |e| e[:average_time] }

min = 0

max = values.max

graph_variables = { "title"=>",{margin:10px;}",

"bar_3d"=>"60,#8E9BF0,#000000",

"values"=>"#{values.join(',')}",

"x_labels"=>"#{labels.join(',')}",

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 97

9330CH05.qxd 12/31/07 3:02 PM Page 97

mailto:@events.length
mailto:@events.map
mailto:@events.map

"y_max"=>max,

"y_min"=>min,

"x_axis_3d"=>"16",

"tool_tip"=>"#x_label#: #val#s Average Time",

"y_axis_colour"=>"#F0F0F0",

"y_grid_colour"=>"#E9E9E9",

"y_label_style"=>"12,#000000",

"x_axis_colour"=>"#6F6F7F",

"x_grid_colour"=>"#E9E9E9",

"x_label_style"=>"15,#000000",

"bg_colour"=>"#F8F8FF" }

%>

&<%=graph_variables.to_a.map { |key,val| "#{key}=#{val}" }.join("& &") %>&

Finally, the code shown in Listing 5-20 goes in app/views/layouts/application.
html.erb.

Listing 5-20. Layout for the Team Performance View (app/views/layouts/
application.html.erb)

<html>

<head>

<title>Team Performance Web Analyzer</title>

<style>

body { font-family: verdana; }

h1 { margin-bottom:0.5em; }

#top { margin-bottom: 0; width:802px;

background-color:#efefef; padding:10px 24px; }

</style>

<%=javascript_include_tag :defaults %>

</head>

<body>

<%=yield%>

</body>

</html>

And that completes the graphical reporting application. Let’s take a look at it.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD98

9330CH05.qxd 12/31/07 3:02 PM Page 98

Examining the Graphical Reporting Application

You can run the example by using the following command:

ruby script/server

Now open a web browser and browse to http://localhost:3000/. You’ll see a screen
showing the available players and games, just as in the example in Chapter 4. If you select
Michael Southwick and Tech Website Baron from the drop-down lists, you will see a
screen similar to Figure 5-3.

Figure 5-3. Flash chart showing player statistics

As you move your mouse over the various elements, you will see a tool tip with the
details of each item; it should also highlight slightly.

Let’s take a look at the code line by line.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 99

9330CH05.qxd 12/31/07 3:02 PM Page 99

http://localhost:3000

Dissecting the Code

The models and application layout are fairly straightforward. The models are the same
ones you used in Chapters 3 and 4. The application layout (Listing 5-20) is just a short
wrapper for the application, which includes a bit of CSS to make the application more
attractive. It does contain one important line:

<%=javascript_include_tag :defaults %>

This includes the default list of JavaScript files, which includes Prototype by default.
Because the Flash Object plug-in adds itself to the list of defaults, this line also includes
the Flash Object plug-in for you.

■Note You need Prototype, as it’s used later in this example. However, if you need to include Flash Object
by itself, you can use this line of code: <%= javascript_include_tag "flashobject" %>.

Next, let’s examine the config/routes.rb file (Listing 5-10), which controls the URLs
for the entire application:

ActionController::Routing::Routes.draw do |map|

map.connect 'performance/:game_id/:player_id',

:controller=>'performance',

:action=>'show'

map.connect 'performance/:game_id/:player_id.:format',

:controller=>'performance',

:action=>'show'

map.connect "/", :controller=>'home'

map.connect ':controller/:action/:id'

map.connect ':controller/:action/:id.:format'

end

The first route is a route that defines URLs of the form performance/game_id/
player_id. The second route defines URLs that specifically set an output type, like
performance/game_id/player_id.xml and performance/game_id/player_id.html. The next
route specifies that / should map to the Home controller. The remaining routes are catchall
routes. Although they are not used in the current version of this application, it’s wise to
include them so that you can easily add new controllers.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD100

9330CH05.qxd 12/31/07 3:02 PM Page 100

Let’s examine the Home controller (Listing 5-11) next:

class HomeController < ApplicationController

def index

@available_players =Player.find(:all)

@available_games = Game.find(:all)

end

end

This code is pretty straightforward. It populates a list of available players and games,
which is passed to your view. Let’s take a look at that view next.

The first part of the view for the application (Listing 5-17) uses the @available_players
and @available_games variables, and constructs two select boxes, which let users choose a
player and game combination to view:

<h1>Team Performance Reporting</h1>

<div id="top">

<%=select 'player', 'id',

[['Click here to select a player',""]] +

@available_players.map { |p|

[p.name, p.id] },

{:include_blank=>false} %>

<%=select 'game', 'id',

[['Click here to select a game',""]] +

@available_games.map { |g|

[g.name, g.id] },

{:include_blank=>false} %> </div>

<div id="chart">

</div>

This code creates two drop-down lists from the data passed from the controller. You
use the map method to turn each array of Active Record objects into the type of array that
the select tag expects: an array of arrays, with the first element as the label and the sec-
ond element as the value. This means that for the player Matthew Gifford, for example,
the player’s name will be displayed in the drop-down list, but the control will actually
have the value 1 (the player’s ID), which you’ll use to display the appropriate chart. This
code also puts a blank “Click here to select . . .” entry at the top of each drop-down list.
This entry has a label but no value, and it serves to tell the user what to do.

The second div, which has the ID chart, will be used to store the chart. The following
JavaScript makes that happen:

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 101

9330CH05.qxd 12/31/07 3:02 PM Page 101

mailto:@available_players.map
mailto:@available_games.map

<script>

function show_report(){

$('chart').hide();

var player_id = $('player_id').value;

var game_id = $('game_id').value

if(player_id && game_id) {

new Ajax.Updater("chart",

'/performance'+

'/' + $('game_id').value +

'/' + $('player_id').value,

{evalScripts:true,

method:'get',

onComplete:function(){

setTimeout("$('chart').show();",

400); }

}

);

}

}

Event.observe("player_id", "change", show_report);

Event.observe("game_id", "change", show_report);

</script>

This JavaScript code defines a new function, show_report, and then uses Prototype’s
Event.observe function to run the show_report function whenever either of the drop-down
lists changes. The show_report button hides the existing chart, and then checks if both a
player and game were selected. If neither or just one of them was selected, then the rou-
tine does nothing. If both are selected, then it uses Ajax.Updater to call the show method of
the Performance controller, passing it both the ID of the selected game and the ID of the
selected player. (Note that you don’t need to specify explicitly that it’s the show action,
because you defined an appropriate route in your routes.rb file.)

The Ajax.Updater call has three important optional parameters passed to it:

• The first is evalScripts, which ensures that JavaScript code passed by the
Performance controller is executed. By default, code retrieved by Ajax.Updater

is not executed.

• The second is the method parameter. By default, Ajax.Updater uses a POST request,
and since this is a read-only request that does not affect the state of the database, it
should be a GET request.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD102

9330CH05.qxd 12/31/07 3:02 PM Page 102

• The third is a callback, onComplete, which will run when Ajax.Updater has finished
updating the control. This is a small fix for a bug in the Flash Object plug-in, which
results in a “You do not have Flash installed” message appearing while the page is
loading. To avoid the problem, you wait 400 milliseconds to redisplay the chart
component.

Next, let’s take a look at the Performance controller (Listing 5-12):

class PerformanceController < ApplicationController

def show

@player = Player.find_by_id(params[:player_id])

@game = Game.find_by_id(params[:game_id])

@events = Event.find(:all,

:select=>'event, ' <<

'AVG(time)/1000 as average_time',

:group=>'events.event ASC',

:joins=>' INNER JOIN plays ON events.play_id=plays.id',

:conditions=>["plays.game_id = ? AND plays.player_id= ?",

@game.id, @player.id]

).map { |event|

{:event=>event.event,

:average_time=>event.average_time.to_i}

}

respond_to do |format|

format.html { render :layout=>false if request.xhr? }

format.text { render :layout=>false }

format.xml { render :xml=>{'player'=>@player,

'game'=>@game,

'events'=>@events

}.to_xml(:root=>'player_performance_report',

:skip_types=>true) }

end

end

end

This code sets the @player and @game variables, which allow the view to know which
player and game were selected and display the information, and then it prepares the
data. It retrieves the performance data using SQL that is similar to the example at the end
of Chapter 4, but it uses find to retrieve the values instead of find_by_sql. The routine

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 103

9330CH05.qxd 12/31/07 3:02 PM Page 103

mailto:@game.id
mailto:@player.id

then maps it into an array of hashes, with each hash having an event value and an
average_time value.

■Note The reason the raw array of Event values isn’t passed directly is that you need to call the to_i
method on average_time, since Rails doesn’t do that for you. This would require knowledge of the con-
troller’s internal structure to be embedded in the view, which violates MVC separation. By remapping it into a
new data structure and calling to_i on the average_time method, you can have a controller-agnostic view.
This has the benefit of letting you change the way this data is produced without affecting the view. As long
as the data passed to the view is an array of hashes with the appropriate values, it should work.

Finally, a respond_to block is used to provide varying results depending on which for-
mat is called. For example, the URL http://localhost:3000/performance/5/1 will use the
HTML format, since that’s the default format specified in routes.rb.

The first format is HTML. This is the code that is called by the show_report JavaScript
function in the Home controller. Note that it disables the layout if it’s being called by an
Ajax call. The request.xhr? method will return true during an XmlHttpRequest (XHR)
request, and in that case, the layout is disabled.

The second format is text. This is the format that Open Flash Chart uses to store its
data. The first format, HTML, calls this format to retrieve the data. This does mean that
the SQL is executed twice. It is necessary because the chart component should not be
rendered if there is no data for the player/game combination; instead, a message should
be displayed. You can detect that by running the computation for the HTML format as
well as the other formats.

The last format isn’t used in the example, but it demonstrates how easy it is to add
machine-readable formats to Rails 2.0 applications. The XML format can be read by an
application written in almost any language, as well as a desktop application such as
Microsoft Access. For example, the XML generated by this code for player Matthew
Gifford and game Tech Website Baron can be seen at the URL http://localhost:3000/
performance/5/1.xml and looks like this:

<player-performance-report>

<game>

<id>5</id>

<name>Tech Website Baron</name>

</game>

<player>

<drink>Moxie</drink>

<id>1</id>

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD104

9330CH05.qxd 12/31/07 3:02 PM Page 104

http://localhost:3000/performance/5/1
http://localhost:3000

<name>Matthew Gifford</name>

<nickname>m_giff</nickname>

<salary>89000.0</salary>

</player>

<events>

<event>

<event>Went Public</event>

<average-time>93</average-time>

</event>

<event>

<event>Built PR</event>

<average-time>72</average-time>

</event>

<event>

<event>Built MC</event>

<average-time>54</average-time>

</event>

<event>

<event>Built DC</event>

<average-time>13</average-time>

</event>

</events>

</player-performance-report>

The exact appearance of the XML is controlled by two optional parameters passed to
the to_xml method: :root=>'player_performance_report' and :skip_types=>true. The first,
:root, sets the name of the root node to be easier to read; otherwise, it would simply be
“hash,” which isn’t very descriptive. The second removes the type attributes, such as
type="array" for the <events> element; those attributes clutter up the XML without
adding much information.

Other optional parameters to to_xml are :include, which lets you specify exactly
which elements to include, and :except, which lets you specifically exclude elements,
such as password fields. You can find out more about to_xml at Ryan Daigle’s blog:
http://ryandaigle.com/articles/2007/4/13/what-s-new-in-edge-rails-a-more-flexible-

to_xml.
Next, let’s take a look at the view that contains the Flash container for the chart

(Listing 5-18):

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 105

9330CH05.qxd 12/31/07 3:02 PM Page 105

http://ryandaigle.com/articles/2007/4/13/what-s-new-in-edge-rails-a-more-flexible-to_xml
http://ryandaigle.com/articles/2007/4/13/what-s-new-in-edge-rails-a-more-flexible-to_xml
http://ryandaigle.com/articles/2007/4/13/what-s-new-in-edge-rails-a-more-flexible-to_xml

<%if @events.length>1%>

<div>

<% graph_params = { 'AllowScriptAccess'=>'SameDomain' } %>

<%=flashobject_tag "/flash/open-flash-chart.swf",

:size=>"850x400",

:parameters=>graph_params,

:variables=>{'data'=>"/performance/#{@game.id}

/#{@player.id}.text"} %>

</div>

<%else%>

<p> <%=@player.name%> has no recorded data for <%=@game.name%>.</p>

<%end%>

If the user/game combination has no data, the view displays a message to that effect.
If the user has selected a player and game, the view will use flashobject_tag—provided
by the Flash Object plug-in—to include a graph. The data for the graph comes from the
path /performance/game_id/player_id.text.

Although it’s possible to include Flash objects directly in your HTML views using
EMBED tags, that’s not a good idea. If the user doesn’t have Flash installed, you should dis-
play a message stating that Flash is required to see the content. Additionally, if you use
EMBED tags, Internet Explorer requires users to click Flash objects to activate them and dis-
play their content, which is annoying. The Flash Object plug-in will take care of both
problems. It will check if Flash is installed, and if not, it will display the message. The
plug-in also inserts the objects dynamically, which avoids the Internet Explorer click-to-
activate issue.

Next, let’s take a look at the last view, app/views/performance/show.text.erb
(Listing 5-19):

<%

labels = @events.map { |e| e[:event] }

values = @events.map { |e| e[:average_time] }

min = 0

max = values.max

%>

First, you loop through the @events array and pull out the event and average_time
from each element. The events are used as labels; the average time is used as values. Note
that this code is in here and not in the controller to keep their concerns separate. You
could pass the labels and values directly to the view, but that would require the controller
code to embody knowledge of how Open Flash Chart works, which would violate MVC

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD106

9330CH05.qxd 12/31/07 3:02 PM Page 106

mailto:@events.length
mailto:@events.map
mailto:@events.map

separation. It would also add code that is irrelevant to the three other output formats to
the controller.

Next, the code sets a few view-specific options:

graph_variables = { "title"=>",{margin:10px;}",

"bar_3d"=>"60,#8E9BF0,#000000",

"values"=>"#{values.join(',')}",

"x_labels"=>"#{labels.join(',')}",

"y_max"=>max,

"y_min"=>min,

"x_axis_3d"=>"16",

"tool_tip"=>"#x_label#: #val#s Average Time",

"y_axis_colour"=>"#F0F0F0",

"y_grid_colour"=>"#E9E9E9",

"y_label_style"=>"12,#000000",

"x_axis_colour"=>"#6F6F7F",

"x_grid_colour"=>"#E9E9E9",

"x_label_style"=>"15,#000000",

"bg_colour"=>"#F8F8FF" }

%>

&<%=graph_variables.to_a.map { |key,val| "#{key}=#{val}" }.join("& &") %>&

Many of these options are fairly self-explanatory. For example, x_axis_colour controls
the color of the x axis lines. The y_ticks parameter is a comma-delimited list of three
parameters, which control the ticks (the small lines that point to numeric labels) on the
left side of the graph. The first y_ticks parameter is the distance from the ticks to the
labels, the second is the distance from the labels to the chart itself, and the third is the
total number of ticks. You can get a full list of parameters from http://teethgrinder.co.
uk/open-flash-chart/.

The final line of the code converts the hash into key=value pairs surrounded by
ampersands, which is the data format required by Open Flash Chart.

Summary
This chapter demonstrated how you can easily use Rails, along with the techniques
you’ve already learned, to quickly create web applications that serve reports as textual
HTML or as Flash charts. Rails is a fast and easy way to create reporting software. The
Web is ubiquitous, which gives it implicit deployment advantages, and Rails is a great
way to create web applications.

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD 107

9330CH05.qxd 12/31/07 3:02 PM Page 107

http://teethgrinder.co

CHAPTER 5 ■ CONNECTING YOUR REPORTS TO THE WORLD108

However, while Rails takes care of many of the problems inherent in web applica-
tions, it cannot address all software issues. You’re still likely to encounter various
application-specific problems. The rest of this book is dedicated to examples of how
you can solve specific reporting problems with Ruby.

9330CH05.qxd 12/31/07 3:02 PM Page 108

Examples of Reporting
with Ruby

P A R T 2

9330CH06.qxd 12/31/07 3:08 PM Page 109

9330CH06.qxd 12/31/07 3:08 PM Page 110

Tracking Auctions with eBay

Essentially, business is about money changing hands, and for that to happen, you need
to have a buyer and a seller who need to connect somehow. Where they connect, of
course, is a marketplace. Marketplaces come in many varieties, from a high-profile dia-
mond market in London to a corner flea market in Wyoming. Of course, most businesses
choose their marketplace according to the ability to reach their customers. eBay is per-
haps the world’s largest marketplace for many types of goods.

Unfortunately, it’s not enough to simply sell your product on eBay. You need to intel-
ligently price, describe, and promote it. This requires experimentation with all of the
possible factors, as well as the ability to analyze which tactics increase sale price and vol-
ume. You also need to assess how cost efficient each factor is, since some factors are not
free. For example, eBay allows sellers to place small icons next to a listing or to boldface
the listing’s title for a small fee. For a much larger fee, you can place your listing in a spe-
cial “featured items” category, which appears at the top of every search. Any of these
options may or may not be appropriate, and reporting can help you decide which
options to use.

Of course, there are many other reasons why you might want to produce reports
based on your eBay-driven initiatives. For example, you may have hired an intern to list a
certain number of items per day, and you want to ensure that the intern is actually doing
her job. Or you may not choose to sell on eBay at all, but rather want to make sure that no
competitor is selling inferior goods on eBay and claiming they are yours.

Fortunately, the work of creating eBay reports does not have to be done by hand, as
you’ll learn in this chapter.

Using eBay APIs
eBay devotes an entire site to its various developer APIs. Although a Ruby example isn’t
available on eBay’s site, it’s reasonably easy to write Ruby code that accesses the APIs.

eBay offers several different APIs. This chapter focuses on one particular variant: the
REST API.

111

C H A P T E R 6

9330CH06.qxd 12/31/07 3:08 PM Page 111

The REST API is accessed using simple HTTP GET and POST requests, which return
XML responses. As you’ll learn in this chapter, both the request and response phases are
easily handled by Ruby. The eBay REST API, although considerably easier to use than the
full eBay API, is limited to retrieving information. You cannot post new items for sale
using that API. Fortunately, read-only access is fine for reporting purposes. You can find
out the full documentation for eBay’s REST API at http://developer.ebay.com/
developercenter/rest/eBayRESTAPIGuide.pdf.

Before you can do anything with the eBay API, you need to sign up and retrieve an
authorization token. Visit http://developer.ebay.com/ to create an eBay developer
account.

After you’ve created an account, you need to generate a set of authorization keys,
which is fairly straightforward. As shown in Figure 6-1, you can create keys for either
eBay’s main site, called production, or for its test site, called sandbox. To follow the
example in this chapter, you should create keys for the production site.

Figure 6-1. eBay developer authorization key page

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY112

9330CH06.qxd 12/31/07 3:08 PM Page 112

http://developer.ebay.com
http://developer.ebay.com

Next, you’ll be asked whether you want to create an authorization token, and you
should select to do so. Authorization tokens are used to access the REST API, whereas
authorization keys can be used to access eBay’s full developer API. The authorization
token is only slightly different from a set of authorization keys (and, truth be told, it’s not
really clear why eBay has two separate authorization systems). You’ll need an eBay.com
account in order to create an authorization token. Remember your eBay.com username,
as you’ll need to use it in conjunction with your authorization token.

Obtaining Competitive Intelligence via eBay
Web Services
Suppose you own a business selling, say, musical instruments to the public, and you
want to use eBay’s web services to make sure your equipment is competitively priced.
You would like to sell the instruments rapidly, so you don’t want to price them too high,
but you would also like to have as high a profit margin as possible, so you don’t want to
price them too low.

Of course, many people are selling instruments on eBay. You want to use eBay’s REST
API to perform searches on your various competitors, finding out how much they are
getting for various items. Fortunately, it’s easy to use Hpricot, a Ruby-based HTML and
XML parsing library, to do just that. This chapter’s example will use eBay’s REST API and
Hpricot to perform searches on multiple competitors, parse the result, and figure out the
average price.

To present the report, you’ll write the result to a PDF file, using the LaTeX document-
preparation system. PDFs are particularly useful for a couple reasons. Unlike HTML,
they appear almost identical in print as they do on the screen. Also, they can easily be
e-mailed or saved on disk. (Modern web browsers permit HTML pages to be saved to disk
with images, but most end users are not savvy enough to do this, and this facility will not
work with complicated web pages.)

WHY LATEX?

There are many ways to produce PDFs using Ruby, so you might wonder why LaTeX is being used in
this chapter. After all, LaTeX is an older technology that can be relatively hard to learn, particularly com-
pared with Ruby. However, LaTeX has two large advantages over the alternatives: it’s fast, and it’s
flexible. LaTeX can perform a huge array of PDF-formatting tasks—ranging from automatic page num-
bering, to footnotes, to mathematical formulas, to printing address labels—and it can create even very
large PDF reports quickly.

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 113

9330CH06.qxd 12/31/07 3:08 PM Page 113

On the othe hand, as mentioned, LaTeX is not the most user-friendly tool. If you’re looking for
another solution, you can try two other PDF-generation techniques demonstrated in this book:

• Converting HTML to PDF is an easy technique to use, as the source is HTML. However, you don’t
have detailed control over your formatting, since HTML is a very different format from PDF. This
technique is demonstrated in Chapter 8.

• Using PDF::Writer is more flexible than HTML-to-PDF conversion, but slower and less flexible than
LaTeX. However, PDF::Writer is written in pure Ruby, so if you pefer to use a pure Ruby library
with no external dependencies, that’s the way to go. An example of using PDF::Writer along with
Gruff to create PDF graphs is presented in Chapter 10.

Installing Hpricot and LaTeX

For this example, you’ll need both Hpricot and a LaTeX distribution installed. The LaTeX
distribution you use depends on your operating system:

Windows: You can obtain MiKTeX, a TeX/LaTeX distribution for Windows, from
http://miktex.org.

Mac OS X: You can obtain a TeX/LaTeX distribution for OS X at http://tug.org/
mactex/. If you have a preferred ports manager for OS X, such as Fink or MacPorts,
you can probably install LaTeX using that as well.

Linux: If you’re running Linux, LaTeX may already be installed. If not, you should be
able to install it easily using your system’s package manager.

• The command for Debian Linux and related distributions (Ubuntu, for
example) is apt-get install texlive.

• For Red Hat–based distributions, you should be able to use the command sudo
yum install tetex-latex.

You’ll also need to install Hpricot. You can install it using the following command:

gem install hpricot

You’ll find that Hpricot is very easy to use. For example, you could parse a simple
HTML document using Hpricot like this:

require 'hpricot'

html_document = "

<html>

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY114

9330CH06.qxd 12/31/07 3:08 PM Page 114

http://miktex.org
http://tug.org

<body>

<h1>Test Document</h1>

<p>This is the first test paragraph.</p>

<p>This is the second test paragraph.

</body>

</html

END

parser=Hpricot.parse(html_document)

(parser/:p).each do |list_item|

puts list_item.inner_html

end

If you ran this example, you would get these results:

This is the first test paragraph.

This is the second test paragraph.

This example simply divides your Hpricot parser document by :p (parser/:p).
Because Hpricot interprets divide as “search by,” it returns an array of all of the p tags. You
then use the inner_html method, which returns the HTML code inside that element, to
print out the contents of each of your test paragraphs. Of course, you can use Hpricot to
search by other tags, and you can perform more complicated searches, such as finding all
of the p tags inside a div of a certain class. You can find out more about using Hpricot at
http://code.whytheluckystiff.net/hpricot/ or in my Apress book Practical Ruby Gems.

Coding the eBay Report

Now let’s look at the code for the example. Since it’s fairly complicated, I’ve divided it into
parts. The first part, shown in Listing 6-1, includes the various libraries required and the
setup code. Make sure you set your path to pdflatex.exe appropriately.

Listing 6-1. Average Price Reporter, Part 1 (average_price_report.rb)

require 'rexml/document'

require 'net/http'

require 'uri'

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 115

9330CH06.qxd 12/31/07 3:08 PM Page 115

http://code.whytheluckystiff.net/hpricot

require 'hpricot'

(puts "usage: #{$0} keyword1,keyword2 seller1,seller2"; exit) unless ARGV.length>1

keywords=ARGV.shift.split(',')

sellers=ARGV.shift.split(',')

sellers << nil # This line adds an entry that displays all sellers;

note that you can delete this line if

you do not want your output to display

an average for all sellers.

path_to_pdflatex = '/somepath/pdflatex.exe'

Make sure you insert your path to pdflatex here.

Next is a class, eBaySearch, which the application will use to search eBay for prices, as
shown in Listing 6-2.

Listing 6-2. Average Price Reporter, Part 2 (average_price_report.rb)

class EBaySearch

@@ebay_config = {

:ebay_address=> 'rest.api.ebay.com',

:request_token => 'my_request_token',

:user_id => 'my_ebay_user_id' }.freeze # Insert your request token

and eBay user ID here.

def self.get_average_price(keyword, seller_id=nil)

params = {

Authorization information . . .

'RequestToken' => @@ebay_config[:request_token],

'RequestUserId' => @@ebay_config[:user_id],

Function name

'CallName' => 'GetSearchResults',

Search parameters

'Query'=>URI.escape(keyword), # Note that only

some parameters are escaped.

This is because the RequestToken

is already escaped for URLs, so

re-URL encoding would cause

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY116

9330CH06.qxd 12/31/07 3:08 PM Page 116

problems; otherwise, we could just

run all of these values through a URI.escaping

loop.

'ItemTypeFilter' => 3, # Search all items,

including fixed price items.

If you change this to 2,

you'll get fewer results,

but it won't include in-progress

auctions, which may make your

results more accurate.

'SearchInDescription'=>0, # Do not search inside of

description, since it's easy to say

"this item is like XYZ other item"

in a description, thus throwing off our

average.

Return data parameters

'Schema' =>1, # Use eBay's new style XML schema instead of

of the old, deprecated one.

'EntriesPerPage' =>100, # Return at most 100 entries.

Note that for performance reasons,

this code does not iterate through the pages,

so it will calculate the average of

only the first hundred items on eBay.

'PageNumber' =>1

}

if seller_id # If the caller does not pass a seller id,

this function will search across all sellers.

params['IncludeSellers'] = URI.escape(seller_id)

eBay usernames are currently limited to alphanumeric characters

and underscores, so this may not be necessary, but it's escaped

just in case.

end

url_path = "/restapi?" << params.map{|param, value| "#{param}=#{value}"}.join("&")

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 117

9330CH06.qxd 12/31/07 3:08 PM Page 117

response_body = Net::HTTP.get($ebay_config[:ebay_address], url_path)

hpricot_doc = Hpricot.XML(response_body)

total_price = 0.0

result_count = 0

(hpricot_doc/:SearchResultItem).each do |item| # Iterate through

each SearchResultItem element.

price_element = (item/:CurrentPrice) # Find the CurrentPrice element

inside of each SearchResultItem element.

if price_element # If it has a price . . .

total_price = total_price + price_element.first.innerHTML.to_f

#. . . then pull out the

inside of the element,

convert it to a float,

and add it to the total.

Note that the method is called innerHTML, but

actually returns the inside of the element.

This is because Hpricot was originally an HTML

parsing library.

result_count = result_count + 1

end

end

if result_count > 0

average_price = (total_price/result_count)

else

average_price = nil

end

[result_count, average_price] # Return the number of results and

average price as an array.

end

end

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY118

9330CH06.qxd 12/31/07 3:08 PM Page 118

■Note You’ll need to replace the request token and eBay username with the appropriate values. They are
marked with italics in Listing 6-2. See the “Using eBay APIs” section earlier in this chapter for instructions on
how to sign up for an eBay developer account and create an authorization token.

Finally, the last part of the code, shown in Listing 6-3, will create the report in LaTeX
and print out the results to a PDF file.

Listing 6-3. Average Price Reporter, Part 3 (average_price_report.rb)

class String

def latex_escape()

replacements= { '\\' =>'\backslash',

'$'=>'\$',

'%'=>'\%',

'&'=>'\&',

'_'=>'_',

'~'=>'*~*',

'#'=>'\#',

'{'=>'$\{$',

'}'=>'$\}$',

}

self.gsub(/[#{replacements.keys.join('|')}]/) do |match|

replacements[match]

end

end

end

temporary_latex_file='average_price_report.tex' # This file name will also control

the output file name. The

file will be named

average_price_report.pdf.

latex_source='

\documentclass[8pt]{article}

\begin{document}

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 119

9330CH06.qxd 12/31/07 3:08 PM Page 119

\huge % Switch to huge size and

\textbf{Competitor Average Price Report} % print a header at the

% top of the page.

\vspace{0.1in} % Add a small amount of

% whitespace between the

% header and the table.

\normalsize % Switch back to normal size.

\begin{tabular}{llll} % Start a table with four

% left-aligned columns.

\textbf{Item}& % Four headers, each in bold,

\textbf{Seller}& % with labels for each column.

\textbf{Count}&

\textbf{Average Price}\\\\

'

keywords.each do |keyword|

first=true

sellers.each do |seller|

total_items, average_price = *EBaySearch.get_average_price(keyword, seller)

latex_source << "

\\textbf{#{first ? keyword.latex_escape : ' '}} &

#{seller ? seller.latex_escape : 'First 100 eBay Results'} &

#{total_items} &

\\#{average_price ? ('$%0.2f' % average_price) : ''}

\\\\ "

Note that the character & is the marker for the end of a cell, and

that the sequence \\\\ is two escaped backslashes, which mark

the end of the row.

first=false # This marker controls whether to redisplay the keyword.

For visual formatting reasons, each keyword is

shown only once.

end

end

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY120

9330CH06.qxd 12/31/07 3:08 PM Page 120

latex_source << '

\end{tabular}

\end{document}'

fh = File.open(temporary_latex_file, 'w')

fh.puts latex_source

fh.close

puts "Searched #{

keywords.length} keywords and #{

sellers.delete_if {|s| s.nil?}.length

} sellers for a total of #{

sellers.length*keywords.length

} eBay searches."

puts `"#{path_to_pdflatex}" #{temporary_latex_file} --quiet` # Runs PDFLatex with

the --quiet switch, which eliminates much of the chatter it usually displays.

It will still display errors, however.

puts "Wrote report to average_price_report.pdf"

Save all the code as average_price_report.rb.
Note that I cannot include any specific eBay IDs in this book, but you can feel free to

go to the eBay site, perform a random search, and insert a few user IDs and keywords
into a command, like this one:

ruby average_price_report.rb "keyword1,keyword2" "seller_id1,seller_id2,seller_id3"

The results should look something like this:

Searched 2 keywords and 3 sellers for a total of 6 eBay searches.

entering expanded_mode . . .

Wrote report to average_price_report.pdf

This will create a file called average_price_report.pdf. If you open it, you should see
something similar to Figure 6-2.

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 121

9330CH06.qxd 12/31/07 3:08 PM Page 121

Figure 6-2. Average price report output PDF in Adobe Reader

Let’s take a look at a few important lines from this example.

Dissecting the eBay Web Services Code

In Listing 6-2, the script first parses the arguments from the command line, which is
fairly straightforward. After that, you define a class that can be used to get the average
price of certain combinations of keywords and sellers:

class EBaySearch

@@ebay_config = {

:ebay_address=> 'rest.api.ebay.com',

:request_token => 'my_request_token',

:user_id => 'my_ebay_user_id' }.freeze # Insert your request token

and eBay user ID here.

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY122

9330CH06.qxd 12/31/07 3:08 PM Page 122

def self.get_average_price(keyword, seller_id=nil)

params = {

Authorization information . . .

'RequestToken' => @@ebay_config[:request_token],

'RequestUserId' => @@ebay_config[:user_id],

Function name

'CallName' => 'GetSearchResults',

Search parameters

'Query'=>URI.escape(keyword), # Note that only

some parameters are escaped.

This is because the RequestToken

is already escaped for URLs, so

re-URL encoding would cause

problems; otherwise, we could just

run all of these values through a URI.escaping

loop.

'ItemTypeFilter' => 3, # Search all items,

including fixed price items.

If you change this to 2,

you'll get fewer results,

but it won't include in-progress

auctions, which may make your

results more accurate.

'SearchInDescription'=>0, # Do not search inside of

description, since it's easy to say

"this item is like XYZ other item"

in a description, thus throwing off our

average.

Return data parameters

'Schema' =>1, # Use eBay's new style XML schema instead

of the old, deprecated one.

'EntriesPerPage' =>100, # Return at most 100 entries.

Note that for performance reasons,

this code does not iterate through the pages,

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 123

9330CH06.qxd 12/31/07 3:08 PM Page 123

so it will calculate the average of

only the first hundred items on eBay.

'PageNumber' =>1

}

As you can see, this class has just one method, and the first thing you do is create a
hash that represents the parameters you’ll pass to eBay’s web services. The most impor-
tant parameter is CallName, which controls which of the various available functions you
call. In this case, you call GetSearchResults, which returns the result of an eBay search,
logically enough. A number of other function calls are available, and each can be used in
a manner similar to this one.

The second most important parameter is the Query parameter, which specifies the
keywords to search by. However, you need to optionally search by seller as well, so the
next chunk of code adds a second parameter if desired:

if seller_id # If the caller does not pass a seller id,

this function will search across all sellers.

params['IncludeSellers'] = URI.escape(seller_id)

eBay usernames are currently limited to alphanumeric characters

and underscores, so this may not be necessary, but it's escaped

just in case.

end

If the method is passed a seller_id that isn’t false or nil, you add a new parameter to
your call to GetSearchResults: IncludeSellers, which specifies which sellers to search for.
If a call to GetSearchResults has both an IncludeSellers and a Query parameter, it will
search for both; if the call has just an IncludeSellers value, it will return everything from
that seller. (If it has just a Query parameter, it will search for that keyword without regard
to who is selling the item.)

Next, since you’ve created an array of parameters to be passed to the eBay web serv-
ices API, you need to begin constructing the actual URL you will send, as follows:

url_path = "/restapi?" << params.map{|param, value| "#{param}=#{value}"}.join("&")

response_body = Net::HTTP.get($ebay_config[:ebay_address], url_path)

The first line constructs the URL, turning the params hash into pairs of the form
name=value. These pairs are then joined by & symbols, and the resulting string is the path
you’ll use to call the eBay REST API.

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY124

9330CH06.qxd 12/31/07 3:08 PM Page 124

The second line actually calls the API, using the Net::HTTP.get method. This is a con-
venience method that skips several steps for you. Normally, you would need to open a
connection to the server, request the document represented by url_path, and then close
the connection. Fortunately, the Net:HTTP.get method does all that and returns a string,
which represents the body of eBay’s response to your request.

Next, you need to create an Hpricot object to parse the response. After that, you can
use Hpricot to loop through the XML:

hpricot_doc = Hpricot.XML(response.body)

Incidentally, the XML you’re parsing looks something like this:

<GetSearchResultsResponse xmlns="urn:ebay:apis:eBLBaseComponents">

<Timestamp>2007-08-12T20:31:11.148Z</Timestamp>

<Ack>Success</Ack>

<Version>525</Version>

<Build>e525_core_Bundled_5124914_R1</Build>

<SearchResultItemArray>

<SearchResultItem>

<Item>

<ItemID>120148832189</ItemID>

<ListingDetails>

<StartTime>2007-08-05T13:39:30.000Z</StartTime>

..snip...

<CurrentPrice currencyID="USD">12.95</CurrentPrice>

. . .

Essentially, you want to pull all of the SearchResultItem elements out of the docu-
ment, and then retrieve the CurrentPrice elements from each of those. For each
SearchResultItem element, you add the CurrentPrice of the object to the total. You also
keep track of the total number of results.

total_price = 0.0

result_count = 0

(hpricot_doc/:SearchResultItem).each do |item| # Iterate through

each SearchResultItem element

price_element = (item/:CurrentPrice) # Find the CurrentPrice element

inside of each SearchResultItem element.

if price_element # If it has a price . . .

total_price = total_price + price_element.first.innerHTML.to_f

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 125

9330CH06.qxd 12/31/07 3:08 PM Page 125

#. . . then pull out the

inside of the element,

convert it to a float,

and add it to the total.

Note that the method is called innerHTML, but

actually returns the inside of the element.

This is because Hpricot was originally an HTML

parsing library.

result_count = result_count + 1

end

end

As you can see, Hpricot has a very simple interface. You use the divide operator (/) to
extract all of the children of a certain type. The expression hpricot_doc/:SearchResultItem
extracts all of the <SearchResultItem> elements and their children, and you then loop
through them. For each of those items, you extract all of the <CurrentPrice> elements
using the divide operator. Since the divide operator always returns an array—even when
there’s just one element—you then call the first method on that array, extracting the first
element. Next, you call the innerHTML method, which returns the inside text of the ele-
ment. Finally, you call to_f on the inside text, which converts it into a float, and then add
the price to the total price.

Note that there is a bit of a trade-off here. eBay web services do not have a feature to
search for listings in the past, so you are limited to searching among currently available
listings. (The documentation does indicate that recently finished auctions may be
included, though.) As a result, some auctions may not be finished, and you can retrieve
only the current price. Since most of the auctions are likely to go higher, you can use this
average as only a rough guide of an object’s value. On the other hand, it’s unlikely that
the objects will drop in price, so the results are very useful as minimum prices.

■Note Auctions occasionally drop in price. Bidders can cancel bids for a limited variety of reasons, and
sellers can cancel bids for a similarly limited set of reasons. Both situations are uncommon, however.

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY126

9330CH06.qxd 12/31/07 3:08 PM Page 126

MAKING THE PRICES MORE ACCURATE

You have a couple ways to make the prices obtained by the eBay report more accurate:

• Limit listings to fixed price eBay store listings, which you can do by changing the
ItemTypeFilter parameter of your params hash to 2. Since this will not include regular
auctions, it will limit the scope significantly, and if the goods you are searching for are
uncommon, this could cause a problem.

• Search all auctions, but only to examine their Buy It Now price. Buy It Now prices are prices set
by the seller, which the seller considers sufficient to stop the auction. If a user clicks Buy It Now,
he agrees to pay that price regardless of the current auction price. Since that represents a static
value set by the seller, you may consider it more accurate. You can easily check this instead of
the current auction price by replacing :CurrentPrice with :BuyItNowPrice. (Note that if you
do that, it won’t count items without Buy It Now prices; this is because of the if statement
checking for the existence of the price element.)

As you can see, the downside is that these approaches come at the expense of having less data to
work with in your report,

Now you need to return the data to the caller of your method, as follows:

if result_count > 0

average_price = (total_price/result_count)

else

average_price = nil

end

[result_count, average_price] # Return the number of results and

average price as an array.

end

end

The first if statement checks if you have any results. If so, you calculate the average
as the total divided by the number of results, and return the average and the total. If not,
you return a zero total and nil as an average.

Next, let’s take a look at the code that creates the PDF.

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 127

9330CH06.qxd 12/31/07 3:08 PM Page 127

Dissecting the PDF Creation

The first thing that you do in the output routine in Listing 6-3 is define a new method
called escape_latex. This will take arbitrary strings and make them safe to be included
in a LaTeX script, so that characters that would usually have a special meaning will be
included as text literals instead. This method is added to the String class, so that it can
be called on any string. (This may seem very unusual to developers from nondynamic
language backgrounds, but it’s quite a common Ruby idiom.)

class String

def latex_escape()

replacements= { '\\' =>'\backslash',

'$'=>'\$',

'%'=>'\%',

'&'=>'\&',

'_'=>'_',

'~'=>'*~*',

'#'=>'\#',

'{'=>'$\{$',

'}'=>'$\}$'

}

self.gsub(/[#{replacements.keys.join('|')}]/) do |match|

replacements[match]

end

end

end

Note that many escape routines are simpler, but unfortunately, LaTeX has a fairly
complex set of escape sequences. You cannot simply escape a list of strings with their
backslashed counterparts, since they aren’t all simple backslash substitutions, and sub-
stitutions contain earlier ones; the substitution for the backslash character contains
dollar signs, for example. You therefore need to loop through the string using just a
single regular expression, which you create using a character class consisting of each of
the special characters, and you pass it to the gsub method. However, you don’t pass a
replacement string; instead, you pass a block, which lets you look up the appropriate
substitution for each of the special characters.

Next, you start a string buffer, which will contain your document before it’s written to
a file:

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY128

9330CH06.qxd 12/31/07 3:08 PM Page 128

temporary_latex_file='average_price_report.tex' # This file name will also control

the output file name. The

file will be named

average_price_report.pdf.

latex_source='

\documentclass{article}

\begin{document}

\huge % Switch to huge size and

\textbf{Competitor Average Price Report} % print a header at the

% top of the page.

\vspace{0.1in} % Add a small amount of

% whitespace between the

% header and the table.

\normalsize % Switch back to normal size.

\begin{tabular}{llll} % Start a table with four

% left aligned columns.

\textbf{Item}& % Four headers, each in bold,

\textbf{Seller}& % with labels for each column.

\textbf{Count}&

\textbf{Average Price}\\\\

'

The string in this code is a header for the LaTeX file. It contains a header with big
text, a vertical space, and then a table with four columns. You can see a brief explanation
of each element in the code comments. (The % symbol is a comment character in LaTeX,
which is why each comment begins with a %.)

Next, you loop through each keyword and seller and print out a single row for each
keyword/seller combination, as follows:

keywords.each do |keyword|

first=true

sellers.each do |seller|

total_items, average_price = *EBaySearch.get_average_price(keyword, seller)

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 129

9330CH06.qxd 12/31/07 3:08 PM Page 129

latex_source << "

\\textbf{#{first ? keyword.latex_escape : ' '}} &

#{seller ? seller.latex_escape : 'First 100 eBay Results'} &

#{total_items} &

\\#{average_price ? ('$%0.2f' % average_price) : ''}

\\\\ "

Note that the character & is the marker for the end of a cell, and

that the sequence \\\\ is two escaped backslashes, which marks

the end of the row.

first=false # This marker controls whether to redisplay the keyword.

For visual formatting reasons, each keyword is

shown only once.

end

end

This code loops through each seller/keyword combination, searches eBay using the
get_average_price class, and prints out a single line of LaTeX for each combination. For
the first line for each keyword, it displays the keyword in bold; otherwise, you would have
a repeated cell value for every seller, which would be visually repetitive.

Note that the cells in your LaTeX row are separated by & characters, and that there’s
a special case to handle sellers with a value of nil. The argument-handling part of the
script adds a nil to the end of the sellers array, so that for every keyword, an average
value of the first 100 eBay results—regardless of who is selling the items—will be dis-
played. The code detects that and prints out “First 100 eBay Results” when seller is nil.

The average price is formatted using the % operator and a format string of '$%0.2f'.
This will cause the value of 5 to be formatted as $5.00, for example.

Finally, you need to add the footer to your LaTeX document, write it, and then run
pdflatex on your LaTeX source file:

latex_source << '

\end{tabular}

\end{document}'

fh = File.open(temporary_latex_file, 'w')

fh.puts latex_source

fh.close

puts "Searched #{keywords.length} keywords and #{sellers.length} sellers for a total

of #{sellers.length*keywords.length} eBay searches."

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY130

9330CH06.qxd 12/31/07 3:08 PM Page 130

puts `"#{path_to_pdflatex}" #{temporary_latex_file} --quiet` # Runs PDFLatex with

the --quiet switch, which eliminates much of the chatter it usually displays.

It will still display errors, however.

puts "Wrote report to average_price_report.pdf"

As you can see, you simply end your tabular and document elements, write the report
to a file, and pass it to pdflatex. pdflatex then creates a .pdf file, and you write the name
to the screen.

■Tip If you don’t want to write to a file with the same name as your input file, you can use the --job-name
switch to specify another file name. For example, adding --job-name my_report to the pdflatex com-
mand would make pdflatex write to my_report.pdf.

Summary
eBay is a vast world marketplace with a rich set of developer APIs. In this chapter, you
used eBay’s REST API. You saw how you can use Ruby and Hpricot to easily perform
searches on eBay’s vast selection of goods and then package the results into a report
generated as a PDF file by LaTeX.

The next chapter’s example shows how you can take data from PayPal and use
MySQL and Markaby to create an HTML report detailing your spending habits.

CHAPTER 6 ■ TRACKING AUCTIONS WITH EBAY 131

9330CH06.qxd 12/31/07 3:08 PM Page 131

9330CH06.qxd 12/31/07 3:08 PM Page 132

Tracking Expenditures with
PayPal

PayPal is an e-commerce service that facilitates the electronic transfer of monies via the
Internet. Often, PayPal is used by merchants as an easy way to accept credit cards with-
out a merchant account. Additionally, PayPal accounts can be linked to special debit
cards, which allows purchases to be made at brick-and-mortar stores using the money
in a PayPal account. You can learn more about PayPal at http://www.paypal.com/.

Individuals who do a great deal of business online frequently use PayPal as a conven-
ient way to spend and receive money. In those cases, reporting on data from PayPal can
provide important information about financial transactions, as demonstrated in the
example in this chapter.

Gathering Data from PayPal
You can take a couple approaches to gathering PayPal data for analysis. One is to use Pay-
Pal’s web API to download transaction information. Unfortunately, results from searches
via the PayPal web API are limited to 100 transactions, which makes it implausible to ana-
lyze any significant amount of data.

■Tip This chapter covers reporting on PayPal transactions. If you would like your application to be able
to accept payments via PayPal, you can do that with the paypal gem, available from http://dist.
leetsoft.com/api/paypal/.

Another approach is to download data in CSV format through PayPal’s web site. If
you have a business PayPal account, you can use the following procedure to download
your own PayPal data for this chapter’s example. If you don’t have a business PayPal
account, or you don’t have any activity to analyze, you can download sample data from
the Source/Downloads area of the Apress web site (http://www.apress.com) or from

133

C H A P T E R 7

9330CH07.qxd 1/7/08 11:44 AM Page 133

http://www.paypal.com
http://dist
http://www.apress.com

http://rubyreporting.com/examples/paypal_example.csv. (The reason you need a business
account is that its data includes a number of additional fields that are not in the personal
account data.)

1. Log in to your PayPal account at http://www.paypal.com/.

2. Click the History tab, as shown in Figure 7-1.

Figure 7-1. PayPal History screen

3. Click Download My History to see a screen similar to Figure 7-2.

■Tip If you have a large volume of data, PayPal will put your report in a queue and e-mail you when it is
ready for download.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL134

9330CH07.qxd 1/7/08 11:44 AM Page 134

http://rubyreporting.com/examples/paypal_example.csv
http://www.paypal.com

Figure 7-2. PayPal Download History screen

4. Select a date range. It doesn’t matter which range you pick for this example, as
long as it reflects some activity on your PayPal account.

5. From the File Types for Download drop-down list, select Comma Delimited - All
Activity.

6. Click Download History.

7. When prompted to save the file, do so. Remember the location, as you’ll use this
file in this chapter’s example.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 135

9330CH07.qxd 1/7/08 11:44 AM Page 135

■Note Why aren’t we automating the download? Unfortunately, it’s because there’s no web service avail-
able to download it programmatically. It’s possible to script the download using, say, the Ruby net/http.rb
download library and an HTML parsing library like Hpricot, but unless you have explicit permission from the
web site in question, that’s typically not a good idea. Potentially, you could be blocked from PayPal or, in an
extreme situation, get sued. However, if you do decide to take that route, you might want to employ a library
that is easier to use than Ruby’s built-in libraries, such as scRUBYt! (http://scrubyt.org/).

Now that you have a CSV file, you can analyze it. It’s possible to analyze the data file
directly in Ruby, but you might not want to write your own statistical code. Instead, you
can load the data into MySQL, and then use MySQL’s built-in aggregation functions to
analyze it in detail.

Many companies use CSV files to transfer financial, inventory, and other data, so this
approach can work with data from organizations other than PayPal.

Reporting PayPal Expenses
Suppose you and a business partner share a PayPal business account, and you have a dis-
agreement about the dispensation of funds. Your partner claims that expenses are too
high, and that you routinely spend money from the business account on the weekends
when you are not working. Conversely, you claim that the expenses occur mostly during
the week, and that they are a necessary part of doing business. To see who is correct, you
want to create a program that analyzes the data from the PayPal account and produces a
report on when expenses occur. Specifically, you’ll create a chart that will graphically dis-
play the amount of weekend expenses compared to weekday expenses.

Note that once the data has been loaded into MySQL, you could easily modify your
script to perform other calculations, such as to determine where you spend the most
money.

For this example, you’ll need FasterCSV, Active Record, and Markaby installed. You
can install the required gems with the following commands:

gem install fastercsv active_record markaby

To read data from the CSV file, you’ll use FasterCSV, which is a fast CSV parsing
library for Ruby. We’ll take a closer look at FasterCSV next, before beginning the example.
Markaby is a markup library for Ruby. It lets you represent HTML using Ruby code. You
can find more information about Markaby at http://markaby.rubyforge.org/.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL136

9330CH07.qxd 1/7/08 11:44 AM Page 136

http://scrubyt.org
http://markaby.rubyforge.org

■Tip If you don’t want to have an additional dependency, you can also parse CSV using Ruby’s built-in CSV
module, although it will be slower. See the Ruby documentation at http://www.ruby-doc.org/stdlib/
libdoc/csv/rdoc/index.html for details.

Also, you need to create a MySQL database to store the data. You can do so by using
the following command:

mysqladmin -u mysql_username -p paypal

Using FasterCSV

To give you an idea of how FasterCSV works, let’s look at the simplest use of FasterCSV:
when you have a string consisting of CSV and you would like to parse it one row at a time.
Here’s an example:

require "fastercsv"

csvdata = "moonrock,10000,safe\n"

csvdata << "collectible spoon,10,cupboard\n"

csvdata << "scratched Billy Joel CD,1,desk\n"

FasterCSV.parse(csvdata) do |row|

item, value, location = *row

puts "I own a #{item}, it's worth $#{value}, and I keep it in my #{location}."

end

The result is as follows:

I own a moonrock, it's worth $10000, and I keep it in my safe.

I own a collectible spoon, it's worth $10, and I keep it in my cupboard.

I own a scratched Billy Joel CD, it's worth $1, and I keep it in my desk.

This example uses the parse method of FasterCSV to loop through each row. It
returns each row as an array, and uses the * operator to split those arrays into three indi-
vidual variables. As you can imagine, you can also use this same technique on data read
from a file, as in the upcoming script in Listing 7-1.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 137

9330CH07.qxd 1/7/08 11:44 AM Page 137

http://www.ruby-doc.org/stdlib

FasterCSV can also create CSV from a Ruby array. Here’s an example of that usage:

require "fastercsv"

secrecy_levels_array = [['SUPERSECRET', 'Supersecret Data', "Tell No One"],

['SEMISECRET', 'Semisecret Data', 'Tell Some People'],

['UNSECRET', 'Unsecret Data', 'Tell Everyone']]

secrecy_levels_array.each do |line|

puts line.to_csv

end

This example has the following output:

SUPERSECRET,Supersecret Data,Tell No One

SEMISECRET,Semisecret Data,Tell Some People

UNSECRET,Unsecret Data,Tell Everyone

This code loops through each element of the array, calls the to_csv method (provided
by FasterCSV) on it, and prints the result. You cannot simply call to_csv on the entire
array because to_csv expects just one row of data at a time. If you tried that, FasterCSV
would treat your entire array as one long row of data.

You can use techniques like those described here to create files people can easily
import into programs like Microsoft Excel, Microsoft Access, OpenOffice.org, and File-
Maker Pro.

Converting PayPal CSV Data

Listing 7-1 shows the script that uses FasterCSV to read data from the CSV file and then
uses Active Record to load it into your MySQL database.

Listing 7-1. Using ActiveRecord to Load PayPal Data from CSV (paypal_load_data.rb)

require 'active_record'

require 'fastercsv'

(puts "usage: #{$0} csv_filename";

exit) unless ARGV.length==1

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL138

9330CH07.qxd 1/7/08 11:44 AM Page 138

paypal_source_file = ARGV.shift

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'insert_your_mysql_hostname_here',

:username => 'insert_your_mysql_username_here',

:password => 'insert_your_mysql_password_here',

:database => 'paypal')

class PaypalTransaction < ActiveRecord::Base

end

class String

def columnize

self.strip.downcase.gsub(/[^a-z0-9_]/, '_')

end

end

max_gross=0

date_fields = ['Date']

float_fields = ['Gross', 'Fee', 'Net']

cols = {}

weeks = []

first = true

FasterCSV.foreach(paypal_source_file) do |line|

if first

first=false

line.each_with_index do |field_name, field_position|

next if field_name.strip ==''

cols[field_name.columnize] = field_position

end

unless PaypalTransaction.table_exists?

ActiveRecord::Schema.define do

create_table PaypalTransaction.table_name do |t|

cols.each do |col, col_index|

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 139

9330CH07.qxd 1/7/08 11:44 AM Page 139

if date_fields.include?(col)

t.column col, :date

elsif float_fields.include?(col)

t.column col, :float

else

t.column col, :string

end

end

end

end

end

else

if PaypalTransaction.count_by_sql("SELECT COUNT(*)

FROM paypal_transactions

WHERE transaction_id

='" <<

line[cols[

'Transaction ID'.columnize

]] <<

"';")==0

PaypalTransaction.new do |transaction|

cols.each do |field_name, field_position|

transaction .send("#{field_name }=", line[field_position])

end

transaction .save

end

end

end

end

Save this script as paypal_load_data.rb.
You can run the script using the following command:

ruby paypal_load_data.rb /path/to/paypal_file.csv

Of course, replace the italicized parts with the appropriate values for your system.
Next, let’s examine the code.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL140

9330CH07.qxd 1/7/08 11:44 AM Page 140

Dissecting the Code

The first few lines of Listing 7-1 pull the arguments from the command line and assign
them to variables:

(puts "usage: #{$0} csv_filename";

exit) unless ARGV.length==1

paypal_source_file = ARGV.first

This code ensures that you have only one value passed to the command line. If you
have more or less than one argument, the program exits with an explanation of how the
program should be called. ($0 is a special variable referring to the name of the current
program.) You then take the single entry in your array of arguments and assign its value
to the paypal_source_file variable. This single variable specifies from which file to load
the data.

Next, you create a connection to your database:

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => 'insert_your_mysql_hostname_here',

:username => 'insert_your_mysql_username_here',

:password => 'insert_your_mysql_password_here',

:database => 'paypal')

This creates a connection for use by Active Record, so all of your later code will use
this connection. If you wanted to connect to a different database, such as PostgreSQL or
SQLite, you could change the adapter parameter to use a different adapter. (Note that these
parameters are similar to those that you’ll find in a Rails application’s database.yml file.)

Next, the following line creates a very simple model, called PayPalTransaction:

class PaypalTransaction < ActiveRecord::Base

end

Because the class inherits from ActiveRecord::Base, it automatically gets a number of
methods based on the characteristics of the paypal_transactions table. See Chapter 1 for
more information about Active Record models.

You also extend the String class:

class String

def columnize

self.strip.downcase.gsub(/[^a-z0-9_]/, '_')

end

end

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 141

9330CH07.qxd 1/7/08 11:44 AM Page 141

This adds a method, columnize, to all strings. The columnize method removes white-
space from the string, lowercases it, and replaces everything that is not a letter, a number,
or an underscore with an underscore. In most languages, this would be implemented as a
method that takes a string as an argument, but in Ruby, it’s customary to simply extend
an existing class. (Of course, in most languages, you cannot extend an existing class by
adding methods to it, so you don’t get a choice.) For example, you could use the columnize
method like this:

puts "A column name".columnize

And get the following result:

a_column_name

In other words, columnize converts strings into names that can easily be used as
MySQL column names.

■Note Active Support, which is part of Rails, also has a method named columnize, which works similarly
to the one discussed here. So, you wouldn’t need to define this method if you were inside a Rails application.
See http://wiki.rubyonrails.org/rails/pages/ActiveSupport for more information. (You could
include Active Support in a script like this, but it’s a large library, so using it here would be overkill.)

After that, the code loops through each line of the CSV file using FasterCSV.
FasterCSV handles the parsing and passes just one array per line to the code, as follows:

first = true

FasterCSV.foreach(paypal_source_file) do |line|

Inside this loop, the code is split into two parts. The first handles the first line of the
CSV file, which contains a list of column labels.

if first

first=false

line.each_with_index do |field_name, field_position|

next if field_name.strip ==''

cols[field_name.columnize] = field_position

end

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL142

9330CH07.qxd 1/7/08 11:44 AM Page 142

http://wiki.rubyonrails.org/rails/pages/ActiveSupport

This loop creates a list of columns, along with their positions in the index.
The second part of the loop uses this list of column names to create a table to store

the data in if it does not already exist.

unless PaypalTransaction.table_exists?

ActiveRecord::Schema.define do

create_table PaypalTransaction.table_name do |t|

cols.each do |col, col_index|

if date_fields.include?(col)

t.column col, :date

elsif float_fields.include?(col)

t.column col, :float

else

t.column col, :string

end

end

end

end

end

This code uses the column definitions from the first line of the CSV file to create the
table column definitions and determine the order of the fields. This way, you won’t need
to rely on fixed CSV file layouts or fixed table definitions.

Specifically, the ActiveRecord::Schema.define method is used to create a schema defi-
nition. The program has a hard-coded list of date, float, and string fields, but they aren’t
exhaustive, since PayPal can change the format at any time. In a production environ-
ment, you would likely use a fixed schema. However, this approach is very flexible and
will work through simple format changes. In fact, the loading portion contains very little
code that is specific to the PayPal format, so you could fairly easily use it on another CSV
file; the code would create a simple schema to represent it.

Next, the remaining lines of the CSV file contain data, so each line following the first
should be entered into the database, assuming it hasn’t already been entered:

else

if PaypalTransaction.count_by_sql("SELECT COUNT(*)

FROM paypal_transactions

WHERE transaction_id

='" <<

line[cols[

'Transaction ID'.columnize

]] <<

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 143

9330CH07.qxd 1/7/08 11:44 AM Page 143

"';")==0

PaypalTransaction.new do |transaction|

cols.each do |field_name, field_position|

transaction.send("#{field_name }=", line[field_position])

end

transaction.save

end

end

end

end

The call to count_by_sql checks if a given transaction_id has already been entered; if
it has, then the transaction won’t be reentered. (Of course, in theory, the same file won’t
be entered twice, but if the user does enter the same file twice, you won’t get any dupli-
cate results.)

The PaypalTransaction.new method creates a new transaction, and then the code
loops through each column, and uses the send method to set each column to its appro-
priate value. send is a Ruby method that allows you to dynamically call methods on a
given object. It takes a string with the method name and some arguments, and calls
that method with the specified arguments. In other words, the following two lines are
identical:

some_object.some_method(some_value)

some.object.send('some_method', some_value)

By using the send method, you can loop through the array and set the appropriate
value for each field; otherwise, you would need to hard-code which methods to use,
which would be much longer and also defeat the purpose of dynamically generating a
schema.

Finally, the save method of the new PaypalTransaction object is called. It saves your
object into the database.

Analyzing the Data

Once the data has been entered into the database, you need a way to analyze it. In this
case, you are going to use an HTML graph of the various weeks, which will show the
weekend vs. weekday spending. The weekend spending will be colored red, and the
weekday spending will be shown in green. The code in Listing 7-2 does just that, using
Markaby.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL144

9330CH07.qxd 1/7/08 11:44 AM Page 144

Listing 7-2. Using Markaby to Create an Expense Report (paypal_expense_report.rb)

require 'active_record'

require 'fastercsv'

require 'yaml'

require 'markaby'

(puts "usage: #{$0} mysql_hostname mysql_username " <<

"mysql_password database_name"; exit) unless ARGV.length==4

mysql_hostname,

mysql_username,

mysql_password,

mysql_database= *ARGV

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => mysql_hostname,

:username => mysql_username,

:password => mysql_password,

:database => mysql_database) # Establish a connection to the database.

class PaypalTransaction < ActiveRecord::Base

end

first = true

c = {}

sql = "

SELECT WEEK(p1.date) + 1 as week_number,

YEAR(p1.date) as year,

COALESCE((SELECT SUM(ABS(p2.gross))

FROM paypal_transactions as p2

WHERE (WEEK(p2.date) = WEEK(p1.date)

AND YEAR(p2.date) = YEAR(p1.date)

AND WEEKDAY(p2.date) IN (5,6)

AND p2.gross<0

AND p2.status='Completed')

),0) as weekend_amount,

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 145

9330CH07.qxd 1/7/08 11:44 AM Page 145

COALESCE((SELECT SUM(abs(p3.gross))

FROM paypal_transactions as p3

WHERE (WEEK(p3.date) = WEEK(p1.date)

AND YEAR(p3.date) = YEAR(p1.date)

AND WEEKDAY(p3.date) NOT IN (5,6)

AND p3.gross<0

AND p3.status='Completed')

),0) as weekday_amount

FROM paypal_transactions as p1

GROUP BY YEAR(date) ASC, WEEK(date) ASC;

"

weeks = []

max_gross=0.0

PaypalTransaction.find_by_sql(sql).each do |week|

First, if the weekday is the highest total spending we've seen so far,

we'll keep that value to calibrate the size of the graph . . .

max_gross = week.weekday_amount.to_f if week.weekday_amount.to_f > max_gross

. . . and if the weekend spending is the highest, we'll use that:

max_gross = week.weekend_amount.to_f if week.weekend_amount.to_f > max_gross

We'll add a hash with the week number, the year,

the weekday spending, and the weekend spending to the weeks array:

weeks << { :week_number=>week.week_number.to_i,

:year=>week.year.to_i,

:weekday_amount=>week.weekday_amount.to_f,

:weekend_amount=>week.weekend_amount.to_f

}

end

mab = Markaby::Builder.new() do

html do

head do

title 'PayPal Spending Report'

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL146

9330CH07.qxd 1/7/08 11:44 AM Page 146

style :type => "text/css" do %[

.weekday_bar { display:block; background-color: blue; }

.weekend_bar { display:block; background-color: red; }

%]

end

end

body do

h1 ''

table do

weeks.each do |week|

tr do

th :style=>"vertical-align:top;" do

p "Week \##{week[:week_number]}, #{week[:year]}"

end

td do

div :class=>:weekday_bar,

:style=>"width:" << ((week[:weekday_amount] /

max_gross * 199) + 1).to_s do

" "

end

span "Week - $#{'%0.2f' % week[:weekday_amount]}"

end

end

tr do

td ""

td do

div :class=>:weekend_bar,

:style=>"width: " << ((week[:weekend_amount] /

max_gross * 199) + 1).to_s do

' '

end

span "Weekend - $#{'%0.2f' % week[:weekend_amount]}"

end

end

end

end

end

end

end

puts mab

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 147

9330CH07.qxd 1/7/08 11:44 AM Page 147

Save the code as paypal_expense_report.rb. You can run the code as follows:

ruby paypal_paypal_expense_report.rb mysql_hostname mysql_username mysql_password

paypal > report.html

As before, replace the italicized arguments with the appropriate values for your
system.

At this point, report.html should contain a neatly formatted report, showing a graph
of weekend vs. weekday spending for each day in the report. If you open it in a web
browser, you should see a result similar to Figure 7-3.

Figure 7-3. PayPal expense report output

Now, let’s examine the code in more detail.

Dissecting the Code

The first part of the code in Listing 7-2 connects to the database and creates a model for
your transaction table. Most of the code in this book uses hard-coded values, but that’s

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL148

9330CH07.qxd 1/7/08 11:44 AM Page 148

not necessary. This particular listing lets you specify your connection details on the com-
mand line:

(puts "usage: #{$0} mysql_hostname mysql_username " <<

"mysql_password database_name"; exit) unless ARGV.length==4

mysql_hostname,

mysql_username,

mysql_password,

mysql_database= *ARGV

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => mysql_hostname,

:username => mysql_username,

:password => mysql_password,

:database => mysql_database) # Establish a connection to the database.

First, the line checks if the proper number of arguments have been passed. If not, it
tells the user what the program expects and exits. It uses the construct *ARGV to take the
four arguments and put them in four separate variables. Then you create the connection
to the database.

Next is the SQL query that pulls the report from the database:

SELECT WEEK(p1.date) as week_number,

YEAR(p1.date) as year,

COALESCE((SELECT SUM(ABS(p2.gross))

FROM paypal_transactions as p2

WHERE (WEEK(p2.date) = WEEK(p1.date)

AND YEAR(p2.date) = YEAR(p1.date)

AND WEEKDAY(p2.date) IN (5,6)

AND p2.gross<0

AND p2.status='Completed')

),0) as weekend_amount,

COALESCE((SELECT SUM(abs(p3.gross))

FROM paypal_transactions as p3

WHERE (WEEK(p3.date) = WEEK(p1.date)

AND YEAR(p3.date) = YEAR(p1.date)

AND WEEKDAY(p3.date) NOT IN (5,6)

AND p3.gross<0

AND p3.status='Completed')

),0) as weekday_amount

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 149

9330CH07.qxd 1/7/08 11:44 AM Page 149

FROM paypal_transactions as p1

GROUP BY YEAR(date) ASC, WEEK(date) ASC;

This query groups the transactions by year and by date. This means that you’ll get
one row for every week/year combination. From there, the query uses two correlated
subqueries to locate the total amount of money that was spent during the week and dur-
ing the weekend.

Subqueries are queries inside a larger query. Their results are evaluated first, and then
used as either single values or, if they return a number of values, as a set. (Since tables are
sets, and since subqueries return sets, you can use subqueries anyhwere you could use a
table.) The two examples here both return a single value. There are two principal types of
subqueries:

Simple subquery: This type of subquery is not dependent on the outer query. Simple
subqueries are faster. Since their value does not change for each row of the outer
query, they are evaluated only once.

Correlated subquery: The subqueries in the example are the more complicated vari-
eties, called correlated subqueries. The subqueries are called for each row of the
outer query because their value depends on the outer query. As a result, they are cal-
culated again for each row of the outer query.

Both subqueries search for rows that occur in the same week and year as the outer
query, whose gross is negative (in other words, which are purchases and not income),
and that are completed transactions (as opposed to expired transactions or temporary
authorizations). The code then sums all of those transactions and returns the value to the
outer query.

The WEEKDAY function is used to determine whether a given transaction occurs on a
weekend or a weekday. If the WEEKDAY function returns a 6 or a 7—that is, Saturday or
Sunday—it’s a weekend transaction.

The COALESCE function returns its first non-null argument. It is used to ensure you
return a zero rather than a null if there was no spending.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL150

9330CH07.qxd 1/7/08 11:44 AM Page 150

DETERMINING A WEEKEND DATE IN RUBY

If you need to determine whether a given date is a weekend in Ruby, you can use the following code to
do just that:

class Date

def is_weekend?

self.cwday == 6 or self.cwday == 7 # If it's a Saturday or a Sunday,

it's a weekend.

end

end

This code extends the Date class to have an additional method, is_weekend?, which returns
true if the given date is on a weekend and false otherwise.

Next, you loop through your results and convert them into an array of data suitable
for graphing:

weeks = []

max_gross=0.0

PaypalTransaction.find_by_sql(sql).each do |week|

max_gross = week.weekday_amount.to_f if week.weekday_amount.to_f > max_gross

max_gross = week.weekend_amount.to_f if week.weekend_amount.to_f > max_gross

weeks << { :week_number=>week.week_number.to_i,

:year=>week.year.to_i,

:weekday_amount=>week.weekday_amount.to_f,

:weekend_amount=>week.weekend_amount.to_f

}

end

This loop handles two issues: first, you can track the highest value, which will be
used to scale your graph. Next, an element is appended to the weeks array, which contains
your data cast to an appropriate type: integer or float. (Without this cast, the variables
would be returned as strings.) This array will be used next to produce an HTML page with
a list of weeks and a graph.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 151

9330CH07.qxd 1/7/08 11:44 AM Page 151

The HTML page is produced using Markaby. The first part of the code that uses
Markaby is as follows:

mab = Markaby::Builder.new() do

html do

head do

title 'PayPal Spending Report'

style :type => "text/css" do %[

.weekday_bar { display:block; background-color: blue; }

.weekend_bar { display:block; background-color: red; }

%]

end

end

Essentially, the code creates a Markaby::Builder object. You pass it a block. Inside that
block, you can use methods named after HTML tags—html, head, tr, td, p, and so on—and
these methods will produce corresponding HTML code.

The first part of the code here sets up your document, adding a head and a title. It
also adds a style element, which sets up your two CSS classes: weekday_bar and
weekend_bar, used for the weekday and weekend bar portions of the graph, respectively.

Next, let’s take a look at the heart of the Markaby code:

body do

table do

weeks.each do |week|

tr do

th :style=>"vertical-align:top;" do

p "Week \##{week[:week_number]}, #{week[:year]}"

end

td do

div :class=>:weekday_bar,

:style=>"width:" <<

((week[:weekday_amount] /

max_gross * 199) + 1).to_s do

" "

end

span "Week - $#{'%0.2f' % week[:weekday_amount]}"

end

end

tr do

td ""

td do

div :class=>:weekend_bar,

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL152

9330CH07.qxd 1/7/08 11:44 AM Page 152

:style=>"width: " <<

((week[:weekend_amount] /

max_gross * 199) + 1).to_s do

' '

end

span "Weekend - $#{'%0.2f' % week[:weekend_amount]}"

end

end

. . ..

end

puts mab

This code loops through all of the weeks. For each week, you create a label, showing
the week number and year. You also create a row for the weekend spending and a row for
the weekday spending, each with a label and a colored bar. Each bar is sized proportion-
ally to the others, so that the biggest spending weekend or weekday gets a bar that is
200 pixels wide. The other bars are a percentage of that size, such as 50% (the minimum
size is 1%).

After you have finished building the HTML page, the code will be stored in the
Markaby::Builder object, and then you print it using the puts method.

Summary
PayPal lets you easily download financial information in CSV format, and you can quickly
and efficiently use FasterCSV and Markaby to process that information. In this chapter’s
example, you used both of these tools to dynamically create a database structure, load
data into it, use Active Record and MySQL to pull data from it, and then quickly create a
custom, attractive CSS graph. You can use similar techniques anywhere you need to load
CSV data into MySQL or when you need to create lightweight CSS graphs from CSV data.

The next chapter covers how to do reporting using SugarCRM, a popular customer
relationship management (CRM) system.

CHAPTER 7 ■ TRACKING EXPENDITURES WITH PAYPAL 153

9330CH07.qxd 1/7/08 11:44 AM Page 153

9330CH07.qxd 1/7/08 11:44 AM Page 154

Creating Sales Performance
Reports with SugarCRM

According to Peter Drucker, the famous management consultant, “the purpose of busi-
ness is to create a customer.” The way to create customers is with sales, and when you
have a large and active sales force, your salespeople will generate a huge, and often
intimidating, amount of customer data. Systems that manage customer data are called
customer relationship management (CRM) systems. An excellent choice is an open
source product called SugarCRM (http://www.sugarcrm.com/), which is freely available
for download and use but also offers paid technical support services.

The example in this chapter demonstrates how to produce a sales performance
report with SugarCRM, as well as how to use two open source utilities—html2ps and
Ghostscript—to create PDFs from HTML documents.

Installing SugarCRM
To run the examples in this chapter, you’ll need to install SugarCRM. You can download
SugarCRM from the following site:

http://www.sugarcrm.com/crm/download/sugar-suite.html

At the download site, you’ll find two types of installers: the first includes just the
SugarCRM source code, which is ideal if you’ve already installed the Apache/MySQL/PHP
stack. If not, installers that combine all of the required components (along with SugarCRM,
of course) are available for Linux, Mac OS X, and Windows. Choose the appropriate
installer for your system.

After you’ve downloaded the SugarCRM installer, follow the installation instructions
to install SugarCRM. You can download the instructions from this site:

http://www.sugarcrm.com/crm/index.php?option=com_docs&edition=OS&Itemid=375

155

C H A P T E R 8

9330CH08.qxd 1/7/08 12:14 PM Page 155

http://www.sugarcrm.com
http://www.sugarcrm.com/crm/download/sugar-suite.html
http://www.sugarcrm.com/crm/index.php?option=com_docs&edition=OS&Itemid=375

The installer also adds sample data, which you’ll use in this chapter’s example. Of
course, if you already have a SugarCRM database, you can use that data instead.

Sales Force Reporting
Let’s suppose your boss has experienced productivity problems with the sales force. In an
effort to boost output, he wants to reward productive employees with a gift based on
their number of meetings with clients and potential clients. The more meetings a sales-
person has, the better the gift.

He would like to keep tabs on this effort, and wants you to produce a report that lists
each salesperson and the gift that person has earned. Your boss wants the report to be
made available in a format that is easy to print and e-mail. Therefore, you’ve decided to
create the report as a PDF file.

Fortunately, it should be fairly easy to create a Ruby report that pulls this data from
the SugarCRM database. First, though, you’ll need to modify the database to include the
extra gift information.

Updating the Database

You can use the SQL in Listing 8-1 to add some sample data to your database.

Listing 8-1. Sample Data for the Sales Force Reporting Application (rewards_data.sql)

CREATE TABLE rewards (

reward_id INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,

meeting_count INT(11) NOT NULL,

description VARCHAR(255));

INSERT into rewards (meeting_count, description)

VALUES (50, "'You Are Number One!' Pen");

INSERT into rewards (meeting_count, description)

VALUES (100, "'Super Salesman' Coffee Mug");

INSERT into rewards (meeting_count, description)

VALUES (150, "'You Make Our Company Great' Sweatshirt");

INSERT into rewards (meeting_count, description)

VALUES (200, "Granite 'Rock Hard Sales' Paperweight");

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM156

9330CH08.qxd 1/7/08 12:14 PM Page 156

Save the SQL as rewards_data.sql. You can create the table and insert the data as
follows:

mysql -u your_mysql_username sugarcrm < rewards_data.sql

The rewards table has just four rows and three fields: an artificial primary key, a num-
ber of meetings that must be exceeded before the salesperson gets the reward, and a
description of the reward itself.

Now that you have a table populated with various rewards, let’s take a look at how to
create a PDF report for it. For simplicity’s sake, you’ll use the data in Listing 8-1 coupled
with the sample data added during SugarCRM installation.

■Tip The rewards data is stored in the database and not hard-coded into your script so that it’s easy to
change. In fact, if your boss decides to change the rewards, you can just change the data and use the
code as is. You could even create a Rails application using a scaffolding framework like ActiveScaffold
(http://activescaffold.com/) to let him change the data himself, and you would need to write only a
few lines of code. (ActiveScaffold is designed to make administrative tasks like this—simple create/read/
update/delete (CRUD) activities—easy and require almost no code.) Incidentally, if you’re worried about
modifying another application’s database, don’t be. Most applications are well behaved enough not to touch
tables they don’t recognize. (You could store the table in a different database or in an external file, but that,
in my opinion, is additional work for little or no gain.)

Creating PDFs from HTML Documents

For this example, you will use the open source utilities html2ps and Ghostscript to create
PDFs from HTML documents. This approach has the advantage of being very easy to learn.
However, html2ps is slower than using LaTeX, which was demonstrated in Chapter 6. LaTeX
also has more powerful control over the output, since html2ps is limited to a subset of
HTML’s formatting capabilities. However, when you don’t need LaTeX’s additional power,
you can quickly create PDF reports using the html2ps/Ghostscript combination.

html2ps generates only PostScript files, so you’ll need another tool, ps2pdf, to con-
vert those PostScript files into PDF files. ps2pdf is included with Ghostscript, which is
available for most popular operating systems, including Windows, Linux, and Mac OS X.
Note that html2ps is a Perl script, so you’ll need Perl installed to run it. (Linux and OS X
typically include Perl by default, but you can get a free Perl distribution at http://
activeperl.com.)

You can download html2ps from here:

http://user.it.uu.se/~jan/html2ps.html

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM 157

9330CH08.qxd 1/7/08 12:14 PM Page 157

http://activescaffold.com
http://activeperl.com
http://activeperl.com
http://user.it.uu.se/~jan/html2ps.html

You can get Ghostscript from the following site:

http://pages.cs.wisc.edu/~ghost/

Finally, since html2ps needs HTML to work with, you’ll use Erubis to create your
HTML document using Rails-like RHTML templates. You can install Erubis using the fol-
lowing command:

gem install erubis

■Tip Erubis is an eRuby implementation. eRuby is a generic term for Ruby embedded in HTML, just as you
would use in a Rails application. However, Erubis is faster than the ERB library used by Rails and has more
features. You can learn more about Erubis in my Apress book, Practical Ruby Gems, as well as from the
Erubis web site (http://www.kuwata-lab.com/erubis/).

The script to create the PDF report is shown in Listing 8-2.

Listing 8-2. Salesperson Reward Report (calculate_rewards.rb)

require 'active_record'

require 'erubis'

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'your_mysql_user_name',

:password => 'your_mysql_password',

:database => 'sugarcrm')

path_to_ps2pdf = '/some/path/to/ps2pdf' # Insert your path to ps2pdf here.

Note that ps2pdf should be included

with your Ghostscript distribution.

path_to_html2ps = '/some/path/to/html2ps' # Insert your path to html2ps here.

Windows can't run Perl scripts directly,

so Windows users should preface their html2ps

path with their Perl path, so that it looks

something like this:

path_to_html2ps = 'C:\perl\bin\perl.exe" "c:\path\to\html2ps'

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM158

9330CH08.qxd 1/7/08 12:14 PM Page 158

http://pages.cs.wisc.edu/~ghost
http://www.kuwata-lab.com/erubis

#

Note the double quotes after perl.exe and before the script file name.

This ensures that the string is interpolated like this:

"c:\perl\bin\perl.exe" "c:\path\to\html2ps"

#

Without the extra double quotes, Windows will look for a program

named "C:\perl\bin\perl c:\path\to\html2ps", and since that

does not exist, it will cause problems.

class User < ActiveRecord::Base

has_many :meetings, :foreign_key=>:assigned_user_id

def reward

Reward.find(:first,

:conditions=>['meeting_count < ? ',

self.meetings.count],

:order=>'meeting_count DESC',

:limit=>1)

end

end

class Meeting < ActiveRecord::Base

belongs_to :users, :foreign_key=>:assigned_user_id

end

class Reward < ActiveRecord::Base

end

html = '<html>

<body>

<h1>Salesperson Reward Report</h1>

<table>

<tr>

<th>Name</th>

<th>Meetings</th>

<th>Reward</th>

</tr>

'

users = User.find(:all,

:conditions=>['not is_admin'],

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM 159

9330CH08.qxd 1/7/08 12:14 PM Page 159

:order=>'last_name ASC, first_name ASC'

)

html = Erubis::Eruby.new(File.read('rewards_report_template.rhtml')

).evaluate({ :users=>users })

open('|"'+path_to_html2ps+'"', 'wb+') do |process_handle|

process_handle.puts html

process_handle.close_write

ps_source = process_handle.read

end

pdf_source = ''

open('|"' + path_to_ps2pdf +'" - -', 'wb+') do |process_handle|

process_handle.puts ps_source

process_handle.close_write

pdf_source = process_handle.read

end

File.open('report.pdf','wb+') do |pdf_file_handle|

pdf_file_handle.puts pdf_source

end

Save this file as calculate_rewards.rb. Next, create the HTML template, as shown in
Listing 8-3.

Listing 8-3. HTML Template for the Salesperson Reward Report (rewards_report_
template.rhtml)

<html>

<body>

<h1>Salesperson Reward Report</h1>

<table>

<tr>

<th>Name</th>

<th>Meetings</th>

<th>Reward</th>

</tr>

<%@users.each do |user|%>

<% meeting_count = user.meetings.count

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM160

9330CH08.qxd 1/7/08 12:14 PM Page 160

next if meeting_count==0 or !user.reward%>

<tr><td><%=user.last_name%>, <%=user.first_name%></td>

<td><%=meeting_count%></td>

<td><%=user.reward.description%></td></tr>

<%end%>

</table>

</body>

</html>

Save this file as rewards_report_template.rhtml.
You can run this script using the following command:

ruby calculate_rewards.rb

Now open the file report.pdf (you’ll need a PDF viewer, such as Adobe Acrobat or
GSview). You should see a screen similar to Figure 8-1. (Since you’re using the sample
data, which is randomly generated by SugarCRM when you install it, your exact results
will vary.)

Figure 8-1. PDF salesperson rewards report

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM 161

9330CH08.qxd 1/7/08 12:14 PM Page 161

Now, let’s take a look at this example line by line.

Dissecting the Code

For the report (Listing 8-2), first you create a connection to the database, as follows:

ActiveRecord::Base.establish_connection(

:adapter => 'mysql',

:host => 'localhost',

:username => 'someuser',

:password => 'password',

:database => 'sugarcrm')

This sets a base connection used by Active Record for all models by default, as dis-
cussed in Chapter 1 and used in previous examples. Of course, you’ll need to replace the
italicized values with appropriate values for your system. That’s also true of the code’s
next section, which specifies the path to your helper utilities:

path_to_ps2pdf = '/some/path/to/ps2pdf' #Insert your path to ps2pdf here.

#Note that ps2pdf should be included

#with your Ghostscript distribution.

path_to_html2ps = '/some/path/to/html2ps' #Insert your path to html2ps here.

The paths for ps2pdf and html2ps vary depending on your operating system.
Next, you create the Active Record models that represent the tables you’re using:

class User < ActiveRecord::Base

has_many :meetings, :foreign_key=>:assigned_user_id

def reward

Reward.find(:first,

:conditions=>['meeting_count < ? ',

self.meetings.count],

:order=>'meeting_count DESC',

:limit=>1)

end

end

class Meeting < ActiveRecord::Base

belongs_to :users, :foreign_key=>:assigned_user_id

end

class Reward < ActiveRecord::Base

end

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM162

9330CH08.qxd 1/7/08 12:14 PM Page 162

You create the models by deriving from ActiveRecord::Base (as discussed in Chapter 1).
The User model also has a custom method, reward, which returns a reward object—one
whose meeting count is lower than the number of meetings a salesperson has. Note,
though, that the possible rewards are sorted by a descending meeting_count; in other
words, the first reward listed, and thus the reward returned, will be the reward with the
highest meeting_count field. Therefore, salespeople will receive the highest reward for
which they are eligible.

The last model, Reward, refers to the table that you created earlier in this chapter. The
first two models refer to two tables defined by SugarCRM: users and meetings. The users
table looks like this:

CREATE TABLE `users` (

`id` char(36) NOT NULL,

`user_name` varchar(60) default NULL,

`user_hash` varchar(32) default NULL,

`authenticate_id` varchar(100) default NULL,

`sugar_login` tinyint(1) default '1',

`first_name` varchar(30) default NULL,

`last_name` varchar(30) default NULL,

. . .

KEY `user_name_idx` (`user_name`)

) ENGINE= MyISAM DEFAULT CHARSET=utf8;

The meetings table looks like this:

CREATE TABLE `meetings` (

`id` char(36) NOT NULL,

`date_entered` datetime NOT NULL,

`date_modified` datetime NOT NULL,

`assigned_user_id` char(36) default NULL,

. . .

PRIMARY KEY (`id`),

KEY `idx_mtg_name` (`name`),

KEY `idx_meet_par_del` (`parent_id`,`parent_type`,`deleted`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

As you can see, the two tables are related by a foreign key named assigned_user_id in
the meetings table. Since the default name for a foreign key in the meetings table refering
to the user table would be user_id, you manually specify it in your has_many relationship.

Next, you use these models to create an HTML report, which you can use later to
turn your report into a PDF:

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM 163

9330CH08.qxd 1/7/08 12:14 PM Page 163

users = User.find(:all,

:conditions=>['not is_admin'],

:order=>'last_name ASC, first_name ASC'

)

html = Erubis::Eruby.new(File.read('rewards_report_template.rhtml')

).evaluate({ :users=>users })

You use an Erubis template to create your report HTML gradually. You create a new
Erubis::Eruby object using the Erubis source from the file rewards_report_template.rhtml,
and then call the evaluate method on it. The evaluate method takes a single argument,
which is a list of variables that are accessible to the Eruby template.

■Note You can use other options to create your HTML. For example, you can use Markaby to create the
output. Markaby uses Ruby methods to represent HTML elements. Chapter 7 includes an example of using
Markaby. Of course, you may find that entering HTML directly in your code is easier to understand.

The single variable you pass to your view is an array of users. You pass it to your
eruby_object variable, and it becomes a class variable @users for your view, in the same
way that Rails views work.

The users variable is created by using the User.find method to loop through all of
your users. You add a not is_admin condition, which means that only non-admin users
will be included in your report. (This is assuming that admin users are used to adminis-
trate the system and not to do sales work; if that’s not true, you can easily remove this
condition.) The order is set through the option :order=>'last_name ASC, first_name ASC',
which means that you sort first by the last name, and second by the first name, both in
alphabetic, A–Z order. The second sort order kicks in only if two people have the same
last name. If you replaced ASC with DESC, it would sort in Z–A order.

Let’s take a look at the actual view (Listing 8-3):

<html>

<body>

<h1>Salesperson Reward Report</h1>

<table>

<tr>

<th>Name</th>

<th>Meetings</th>

<th>Reward</th>

</tr>

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM164

9330CH08.qxd 1/7/08 12:14 PM Page 164

<%@users.each do |user|%>

<% meeting_count = user.meetings.count

next if meeting_count==0 or !user.reward %>

<tr><td><%=user.last_name%>, <%=user.first_name%></td>

<td><%=meeting_count%></td>

<td><%=user.reward.description%></td></tr>

<%end%>

</table>

</body>

</html>

For each user, you add a row to the table that contains the name of the user, the total
amount of meetings that salesperson had, and the name of the reward, if any. The loop
calls meetings.count for each row and skips the users without any meetings. You might
want to include users without any meetings; in which case, you can easily delete the next
if meeting_count==0 line.

INCREASING DATABASE QUERY PERFORMANCE

For this chapter’s example, you’ll probably find that the database queries do not take nearly as long to
run as the html2ps and ps2pdf calls, so further optimization is probably unnecessary. However, this
won’t always be the case. If either the meetings or the users table were much larger, or if you had a
more complicated query with more relationships, you might need to make the queries go faster. You
can speed up the queries in a few ways.

For example, the call to user.meetings.count means that you have one extra SQL query per
user. This could be a problem when you need to count a large number of records. Fortunately, Rails can
automatically cache the count of relationships for you. In the example, this approach won’t work. That’s
because SugarCRM won’t update the cache for you, and since it will be updating the table, that would
leave you with an invalid cache. However, in situations where only your Rails application accesses the
database, adding a counter cache could speed up your report’s performance significantly.

Counter caching has a few caveats. One is that the counter may be invalid if your database is
accessed outside your Rails applications. Also, it won’t work if you manually set association IDs instead
of using association proxies. You can find out more about using counter caches at http://wiki.
rubyonrails.org/rails/pages/MagicFieldNames.

You can create a counter cache by adding a column called meetings_count, with a default value
of 0, to the users table. You also need to add a :counter_cache=>true option to the relationship in
the Meetings model. The Meetings model would then look like this:

belongs_to :users, :foreign_key=>:assigned_user_id, :counter_cache=>true

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM 165

9330CH08.qxd 1/7/08 12:14 PM Page 165

http://wiki

Some databases, like PostgreSQL and MySQL 5, support triggers. In that case, you may also be
able to use triggers to automatically update your counter cache whenever the associated table is
changed, even if it’s changed by SugarCRM or another non-Rails application. For details, consult your
database documentation. You can also see a simple example of using MySQL triggers at http://www.
phpied.com/mysql-triggers/.

Also notice that this example does not have one large, custom SQL query, which is unlike many
of the other examples in this book. Calculating using custom SQL queries, rather than by using Active
Record methods, has two advantages: you can use the database to extract complicated information,
which would be harder to code in Ruby, and you can often make custom SQL queries that are faster
than the autogenerated queries that Active Record creates behind the scenes. Sometimes, you can
squeeze multiple calls by Active Record into just one SQL query. It’s possible to turn this example into
a custom SQL query. You can do that in a few ways, but they all require either subqueries or temporary
tables. Here’s a replacement query loop that uses custom SQL:

users = User.find_by_sql("

SELECT users_meetings.*,

COALESCE(rewards_1.description, '') as reward_description

FROM

(SELECT users.*,

COUNT(meetings.id) as meeting_count

FROM (users

RIGHT OUTER JOIN

meetings

ON meetings.assigned_user_id=

users.id)

GROUP BY

meetings.assigned_user_id

) as users_meetings

INNER JOIN

rewards as rewards_1

ON rewards_1.meeting_count <

users_meetings.meeting_count

AND NOT EXISTS (

SELECT *

FROM rewards as rewards_2

WHERE (rewards_2.meeting_count <

users_meetings.meeting_count)

AND

(rewards_2.meeting_count >

rewards_1.meeting_count))

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM166

9330CH08.qxd 1/7/08 12:14 PM Page 166

http://www

ORDER BY last_name ASC, first_name ASC

;

")

end

It’s definitely more complicated, but it works. Notice that, unlike the previous approach, this query
excludes users who are not eligible for a reward. The reason this query is so complicated is because
the relationship between the rewards table and the users table has a grouping function in it, which
cannot appear in a join condition. If you could use counter caching, you could do a simpler version of
this query. The counter-caching version would look something like this:

users = User.find_by_sql("

SELECT users.*

COALESCE(rewards_1.description, '') as reward_description

FROM users

INNER JOIN

rewards as rewards_1

ON rewards_1.meeting_count <

users.meeting_count

AND NOT EXISTS (

SELECT *

FROM rewards as rewards_2

WHERE (rewards_2.meeting_count <

users.meeting_count)

AND

(rewards_2.meeting_count >

rewards_1.meeting_count))

ORDER BY last_name ASC, first_name ASC

;")

After you have finished creating your HTML, you need to run it through two succes-
sive programs. First, you put it through html2ps, as follows:

ps_source = ''

open('|"'+path_to_html2ps+'"', 'wb+') do |process_handle|

process_handle.puts html

process_handle.close_write

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM 167

9330CH08.qxd 1/7/08 12:14 PM Page 167

ps_source = process_handle.read

end

pdf_source = ''

open('|"' + path_to_ps2pdf +'" - -', 'wb+') do |process_handle|

process_handle.puts ps_source

process_handle.close_write

pdf_source = process_handle.read

end

This code does not use temporary files, which are the most obvious way to commu-
nicate with an outside process; instead, the block of code uses pipes. Specifically, the open
call lets you open an arbitrary file, a URI, or a pipe to a process, and the pipe at the begin-
ning of the argument to open lets Ruby know that you intend to open a process. You can
then use the pipe to that process to read and write to it as if it were a file, but instead of
writing to a file, you send input to the program as if it were typed into the program by the
user. Conversely, when you read, the output from the program is read into your program
instead of being displayed on the screen. This process lets you eliminate the temporary
files, and read and write directly from the program.

Note that your temporary variables are created outside the open block. This is so that
they are scoped appropriately, as opposed to being local variables of the block, and can
be accessed outside the block.

Additionally, you might notice that the call to ps2pdf is preceded by two dashes. The
first dash tells the program that instead of reading from a file, it should read its input
from STDIN, which is normally the keyboard but, in this case, is your program.

Finally, note that the calls have the flags wb+. In fact, so do your previous two open
calls, which open the pipes to the html2ps and ps2pdf utilities. This is a three-part flag:

• The w means write, so it can be written to.

• The + means that you can read from it as well.

• The b affects only calls on Windows, and means it’s binary mode. This affects the
way \n characters are handled. Without the b flag, \n is transparently converted
into \r\n, and since binary files often contain \n elements, they can be corrupted
easily. Note that, strictly speaking, the first call to html2ps might be okay without
the b flag, but there is no point in taking chances.

You can find out more about open at http://www.ruby-doc.org/core/classes/Kernel.
html# M005969.

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM168

9330CH08.qxd 1/7/08 12:14 PM Page 168

http://www.ruby-doc.org/core/classes/Kernel

After this, the variable pdf_source contains your PDF file. All that’s left to do is print it:

File.open('report.pdf','wb+') do |pdf_file_handle|

pdf_file_handle.puts pdf_source

end

Of course, you can change the report.pdf string literal to some other file name if you
want to use a different file name for your report.

Summary
SugarCRM is a powerful open source alternative to expensive CRM software, and its
architecture lets you quickly and easily create reports using Ruby and Active Record. In
this chapter, you used html2ps and Ghostscript to extend SugarCRM with reporting for
sales goals, and that combination let you create PDFs without using a special-purpose
language. Plus, you used Erubis to keep the HTML clean and separate from your source
code, even though the script isn’t a Rails application.

In the next chapter, you’ll see how to create reports from Apache logs, so you can
generate reports that pull data from the traffic logs of any web site that runs Apache.

CHAPTER 8 ■ CREATING SALES PERFORMANCE REPORTS WITH SUGARCRM 169

9330CH08.qxd 1/7/08 12:14 PM Page 169

9330CH08.qxd 1/7/08 12:14 PM Page 170

Investment Tracking
with Fidelity

It’s easier to invest money than ever before. You can invest in companies around the
globe with just a phone call or a few clicks of your mouse. You can put your money in a
seemingly infinite number of vehicles for those same companies, such as mutual funds
(which contain a selection of companies in the same stock) or index funds (which mirror
the movement of entire industries’ worth of stock). You can even invest in extremely
complicated derivatives, which are related to the underlying stock (or, for that matter,
other security) and minimize risk for one party while increasing the potential reward for
the other.

Along with the increased number of investment options, the pace of the economy
continues to get faster. So, it becomes harder and harder to keep up with the status of all
of your current and future investments. Yet, you need to be able to take rapid action to
respond to changing marketplace conditions, which means you want to be able to follow
those changing conditions quickly and easily.

Of course, you can keep track of the marketplace using traditional tools—like the
newspaper and television reports—as well as through investment sites like Yahoo!
Finance or various online stock brokerage sites. However, if you want to accomplish a
specific, custom reporting goal, you need to write some custom code. This chapter’s
example demonstrates how to create such a report, tracking investments with Fidelity
Investments (http://www.fidelity.com).

Writing a Small Server to Get Report Data
For this chapter’s example, you will create a small web server to feed data to your report-
ing system. This approach can be useful in several situations.

For example, if you have mixed Linux and Windows servers, often you’ll find that
some tasks, such as controlling Component Object Model (COM) objects or communi-
cating with a Microsoft SQL Server, are better performed directly on the Windows system.

171

C H A P T E R 9

9330CH09.qxd 1/7/08 11:48 AM Page 171

http://www.fidelity.com

(COM is a way for Windows applications to access the software components of other
Windows applications.)

To handle these tasks, you can often write a tiny server that uses proprietary exten-
sions directly on the Windows server and then serve it up in an open, easy-to-use format,
such as XML. This lets the work of accessing proprietary Windows libraries stay on the
Windows machine, so you don’t need to use potentially buggy open source drivers
designed to access proprietary code. (Of course, some open source drivers designed to
access proprietary code are very good, and in those cases, you might not need an inter-
mediary.)

■Tip At times, the opposite approach works well. For example, you could write an XML feed on your Linux
server that is read by a client-side Windows application, which then uses COM to automatically open
Microsoft Word or Microsoft Access to insert the data. This way, you don’t need to generate Word or Access
documents by hand, which is problematic when it’s even possible at all. You get the entire benefit of
Microsoft Office without writing any custom Word or Access output code, and your clients get data in a
familiar format that they can manipulate.

Mongrel is a popular web server that works with Ruby. Mongrel is typically used to
serve Rails applications, but it can also be used to host small web servers directly. You
can find more information about Mongrel at http://mongrel.rubyforge.org/rdoc/files/
README.html. You’ll use Mongrel as a simple XML server in this chapter’s example.

Of course, you could write a Rails application to serve XML data. But for a simple
server, such as one that has only a single URL, that might be overkill. Consider that an
empty Rails application on my FreeBSD machine uses 3MB of memory, and, in my expe-
rience, Rails applications of any complexity rarely use less than 10MB of memory per
process (and often more).

For example, if you need a chat server with one connection per user, and you’re using
a Rails application consuming 10MB or more of memory per user, that memory con-
sumption can add up very quickly. If you have hundreds of users, that becomes a very
serious problem. Alternatively, you can often handle your chat connection with a simple
server. Using a server like Mongrel will be much faster than using a full-featured Rails
server, and you’ll be able to serve more clients in the given amount of memory.

Of course, Rails takes up memory for a reason: it does numerous great things for you
automatically. So if you need features such as sessions or complex templating, you’re
probably better off creating a Rails application.

Nonetheless, for conceptually simple and lightweight purposes, writing a small Mon-
grel web server is a great way to make your application have less code, take less memory,
and run faster.

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY172

9330CH09.qxd 1/7/08 11:48 AM Page 172

http://mongrel.rubyforge.org/rdoc/files

Tracking a Stock Portfolio
Suppose you are a technology executive who has a large portfolio of personal invest-
ments, which you actively manage and trade. You want a tool that lets you easily track
your investments on your desktop, and you aren’t happy with the existing utilities. You do
a little digging, and discover that your online stock broker, Fidelity Investments, allows
you to download your stock portfolio in CSV format. So you decide to write a tool to
extract the data and display it in a ticker format on your desktop.

You routinely download your portfolio into a CSV file on your computer at home,
which allows you to import the data into various tools, such as your financial planning
application. However, you would also like to track your stock’s progress at work, and you
don’t want your IT staff to know the details of your portfolio. Since the IT staff routinely
monitors traffic, you don’t want to log in directly to your Fidelity account or, for that
matter, any of the other financial trackers you might use. You don’t mind that the stock
symbols themselves are available, since they say nothing about the total size of your
investment.

To meet your needs, you’ll create a simple XML server to get the data and a graphical
stock ticker to display updates.

For this example, you’ll need a Fidelity CSV file. If you have a Fidelity account, you
can get a Fidelity CSV file by logging in, clicking an appropriate account, and clicking
Download. If you don’t have a Fidelity account or would prefer to use other data, you
can download a sample file from the Source/Downloads area of the Apress web site
(http://www.apress.com) or http://rubyreporting.com/examples/example_fidelity.csv.

Creating an XML Server with Mongrel

To create the server, you need three gems installed: mongrel, fastercsv, and remarkably.
FasterCSV, introduced in Chapter 7, is a fast CSV-parsing library for Ruby. Remarkably is
a library designed to help you output XML using Ruby code. It’s loosely based on the
Markaby library, which was also introduced in Chapter 7. You can install the gems as
follows:

gem install -y mongrel fastercsv remarkably

Then create the XML server script shown in Listing 9-1.

Listing 9-1. Fidelity Investments XML Loader and Server (xml_server.rb)

require 'mongrel'

require 'fastercsv'

require 'remarkably/engines/xml'

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY 173

9330CH09.qxd 1/7/08 11:48 AM Page 173

http://www.apress.com
http://rubyreporting.com/examples/example_fidelity.csv

(puts "usage: #{$0} csv_file_1 csv_file_2..."; exit) unless ARGV.length >=1

class StocksList

def initialize

@symbols = [] # Holds our list of symbols

end

def load_csv(files)

valid_symbol_labels = ['Symbol']

files.each do |file|

rows = FasterCSV.parse(open(file))

first_row= rows.shift

symbol_index = nil

first_row.each_with_index do |label, index|

if(valid_symbol_labels.include?(label))

symbol_index = index

break

end

end

if symbol_index.nil?

puts "Can't find symbol index on first row in file #{file}."

else

@symbols = @symbols + rows.map { |r| r[symbol_index]

}.delete_if { |s| s.nil? or s =='' }

end

end

end

include Remarkably::Common

def to_xml # Output our stocks list as XML

xml do

symbols do

@symbols.each do |s|

symbol s

end

end

end.to_s

end

end

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY174

9330CH09.qxd 1/7/08 11:48 AM Page 174

mailto:@symbols.each

class StocksListHandler < Mongrel::HttpHandler

def initialize(stocks_list)

@stocks_list = stocks_list

super()

end

def process(request, response)

response.start(200) do |headers, output_stream|

headers["Content-Type"] = "text/xml"

output_stream.write(@stocks_list.to_xml)

end

end

end

stocks_list = StocksList.new

stocks_list.load_csv(ARGV)

interface = '127.0.0.1'

port = '3000'

mongrel_server = Mongrel::HttpServer.new(interface, port)

mongrel_server.register("/", StocksListHandler.new(stocks_list))

puts "** Fidelity XML server started on #{interface}:#{port}!"

mongrel_server.run.join

Save this file as xml_server.rb.
You can run the example as follows:

ruby xml_server.rb example_fidelity.csv

Note that if you have multiple accounts with Fidelity, you can run this script with
multiple files, as follows:

ruby xml_server.rb first_csv_file.csv second_csv_file.csv ...

This script is meant to be used in conjunction with the graphical ticker (shown later
in Listing 9-2), but for now, you can see the output in a web browser by visiting the fol-
lowing URL:

http://127.0.0.1:3000/

You should see output similar to that shown in Figure 9-1.

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY 175

9330CH09.qxd 1/7/08 11:48 AM Page 175

mailto:write(@stocks_list.to_xml
http://127.0.0.1:3000

Figure 9-1. XML stock symbol server in action

Let’s take a look at a few lines from this example.

Dissecting the Code

The code in Listing 9-1 has two classes:

• StocksList: This class maintains the list of stock symbols that you will serve as
XML. It handles the loading of the symbols and then the list of symbols.

• StocksListHandler: This class is a Mongrel handler. It processes requests from the
ticker, and then serves them as XML. The ticker then uses those symbols.

The code for the StocksList class has three methods. The first method, initialize,
sets up the array holding the list of symbols:

def initialize

@symbols = [] # Holds our list of symbols

end

initialize is the constructor—a special method called by Ruby when a class is
instantiated into an object. The constructor has just a single line of code, which initializes
your @symbols array.

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY176

9330CH09.qxd 1/7/08 11:48 AM Page 176

The next StocksList method is load_csv, which is used to load the CSV data into the
object:

def load_csv(files)

@symbols = []

valid_symbol_labels = ['Symbol']

files.each do |file|

rows = FasterCSV.parse(open(file))

first_row= rows.shift

symbol_index = nil

first_row.each_with_index do |label, index|

if(valid_symbol_labels.include?(label))

symbol_index = index

break

end

end

if symbol_index.nil?

puts "Can't find symbol index on first row in file #{file}."

else

@symbols = @symbols + rows.map { |r| r[symbol_index]

}.delete_if { |s| s.nil? or s =='' }

end

end

end

This method loops through each of the CSV files and loads them. It does this by
assuming that the first row of each file is a header, and it loops through it looking for a
column named Symbol. This has the advantage of working with any CSV file whose first
line is a header row and that has a Symbol column. If your CSV files have symbol columns
labeled something else, you can add support for them by adding to the valid_symbol_
labels array.

The end result of this is a @symbols array full of symbols, which you use next. You
expose a single method, to_xml, which converts it into XML:

include Remarkably::Common

def to_xml

xml do

symbols do

@symbols.each do |s|

symbol s

end

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY 177

9330CH09.qxd 1/7/08 11:48 AM Page 177

mailto:@symbols.each

end

end.to_s

end

The to_xml method uses Remarkably’s xml method to create a simple XML document.
(You can use the xml method because you mixed in the Remarkably::Common framework
using include.) You create a symbols node, and then a symbol node for each of your symbols.
When you call a method that’s not defined inside a call to the xml function, Remarkably
uses it as a node name, so you can use the symbols and symbol methods to create nodes
named symbols and symbol, respectively. (This approach is very similar to Markaby, and
while it appears strange at first, it rapidly becomes more familiar.) Undefined methods
are caught using Ruby’s method_missing technique, and they are converted into XML tags.

■Tip You could replace the to_xml method with a to_json or a to_s method if your application needed
the output as JSON or as a string, respectively.

The StocksListHandler class is the Mongrel handler that responds to the request for
the XML list of stocks:

class StocksListHandler < Mongrel::HttpHandler

def initialize(stocks_list)

@stocks_list = stocks_list

super()

end

def process(request, response)

response.start(200) do |headers, output_stream|

headers["Content-Type"] = "text/plain"

output_stream.write(@stocks_list.to_xml)

end

end

end

The StocksListHandler class inherits from Mongrel::HttpHandler, so you need to
define only two methods. The rest of the functionality relating to the web server is han-
dled by Mongrel. The first, initialize, is a constructor used to set your @stocks_list
instance variable. Note the call to super, which calls the Mongrel::HttpHandler’s initialize
method so that it can do any Mongrel-specific initialization. The call to super has empty
parentheses after it. In this case, because no arguments are specified, super calls the
overridden constructor with the original arguments. Because Mongrel::HttpHandler’s

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY178

9330CH09.qxd 1/7/08 11:48 AM Page 178

mailto:write(@stocks_list.to_xml

constructor takes no arguments, it will raise an error if you do not explicitly indicate to
super that you do not wish to pass your arguments to Mongrel::HttpHandler’s constructor.

The second method defined in StocksListHandler is process, which handles a request
from a web browser or other HTTP client, such as the stock ticker you will create next
(Listing 9-2). You use Mongrel’s response method to respond with a 200 status code, which
means success. You could return other error codes if necessary, of course, such as 404 if a
file isn’t found or 501 if an internal server error occurs. Next, you set the Content-Type
header, which specifies the type of content you’re sending, to text/xml. If your page is
viewed with a web browser, this will affect how the page is displayed. Finally, it calls the
to_xml method of your StocksList instance to render your list of stocks as XML, and then
writes that to the output stream, which, in turn, sends it to the client requesting the
information.

■Tip A Mongrel handler like the one in Listing 9-1 can be used as a very simple, operating system-
independent way to perform interprocess communication. For example, you could have a graphical interface
that processed large audio files. You could use a shell script to actually process the files, and then use wget
or curl (both of which download files or web pages from web servers) to trigger a refresh of the graphical
display. This allows you to easily have many background processes running asynchronously without having
threads piling up in the host program, which can affect performance. If you need more complex communica-
tion than a simple triggering of some action, then using a more sophisticated communications method, such
as is provided by your operating system or programming language, is a good idea. (Conceivably, you could
embed an entire RESTful web application inside your desktop application, but that may be overkill.)

After you define the two classes that make up the bulk of your functionality, you start
the server running:

stocks_list = StocksList.new

stocks_list.load_csv(ARGV)

interface = '127.0.0.1'

port = '3000'

mongrel_server = Mongrel::HttpServer.new(interface, port)

mongrel_server.register("/", StocksListHandler.new(stocks_list))

puts "** Fidelity XML server started on #{interface}:#{port}!"

mongrel_server.run.join

The first line grabs a list of files from the command line and creates a new StocksList
object. Then you call the load_csv method, which causes the list of symbols to be loaded
from the CSV files.

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY 179

9330CH09.qxd 1/7/08 11:48 AM Page 179

Next, you create a new Mongrel::HttpServer instance on a hard-coded interface and
port number. Note that, by default, it serves files on only your loopback interface, so once
you’re finished testing it and you’re happy that it won’t leak any details of your portfolio,
you need to change the interface variable to 0.0.0.0.

After that, you register your handler class. Note the string, which indicates the path
for which each handler will receive requests. The handlers receive everything starting
with the indicated path, unless there’s a more specific handler; in other words, the follow-
ing URLs will all be handled by StocksHandler:

http://127.0.0.1/

http://127.0.0.1/random_path

http://127.0.0.1/test

These handlers ignore path information, so if they receive a request, they treat it
in the same way, no matter what the exact path is. If you want to ignore nonstandard
requests, you can parse the URLs and throw errors in your Mongrel handler.

■Note If you’re communicating complex information in your URLs, you may be better off using a more
powerful framework—such as Merb, Sinatra, or Ruby on Rails—rather than parsing the URLs yourself.

Creating the Graphical XML Ticker

The ticker you’ll create will scroll across the screen, displaying constantly updated data
on all of the stocks in your portfolio.

To run this example, you’ll need a few gems installed: yahoofinance, fxruby, and
xml-simple gems. The YahooFinance module provides the quotes (you can refer to
http://transparentech.com/projects/yahoofinance and my Apress book, Practical Ruby
Gems, for more information about YahooFinance). FXRuby, introduced in Chapter 4, is an
interface to the cross-platform FOX GUI library. XmlSimple reads XML documents into
hashes. It’s based on the Perl module of a similar name, XML::Simple. It is, as the name
implies, simpler than other methods of reading XML documents, so it’s well suited for
reading the relatively simple array of symbols from the server.

■Note XmlSimple is a fantastic choice for simple documents, since it is easy to understand and use. For
more complex requirements, you can choose from a number of more sophisticated parsers, such as REXML,
which is included with Ruby, and Hpricot, which is demonstrated in Chapters 6 and 13.

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY180

9330CH09.qxd 1/7/08 11:48 AM Page 180

http://127.0.0.1
http://127.0.0.1/random_path
http://127.0.0.1/test
http://transparentech.com/projects/yahoofinance

You can install the necessary gems as follows:

gem install -y yahoofinance fxruby xml-simple

Listing 9-2 shows the code for the graphical XML ticker.

Listing 9-2. Scrolling Chart Prices with FXRuby (xml_ticker.rb)

require 'net/http'

require 'yahoofinance'

require 'fox16'

require 'xmlsimple'

(puts 'Usage: ruby xml_ticker.rb HOSTNAME PORT_NUMBER'; exit) unless ARGV.length==2

class FXTickerApp

include Fox

def initialize(hostname, port_number,

font_size = 100, quote_frequency=1)

Quote_frequency is in minutes

@hostname = hostname

@port_number = port_number

@quote_frequency = quote_frequency

load_symbols_from_server

@fox_application=FXApp.new

@main_window=FXMainWindow.new(@fox_application, "Stock Ticker ",

nil, nil, DECOR_ALL | LAYOUT_EXPLICIT)

@tickerlabel = FXLabel.new(@main_window, get_label_text,

nil, 0, LAYOUT_EXPLICIT)

@tickerlabel.font.setFont "helvetica [bitstream],#{font_size}"

def scroll_timer(sender, sel, ptr)

self.scroll_label

@fox_application.addTimeout(50, method(:scroll_timer))

end

@fox_application.addTimeout(50, method(:scroll_timer))

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY 181

9330CH09.qxd 1/7/08 11:48 AM Page 181

mailto:@fox_application=FXApp.new
mailto:@main_window=FXMainWindow.new(@fox_application
mailto:@tickerlabel.font.setFont
mailto:@fox_application.addTimeout
mailto:@fox_application.addTimeout

def update_label_timer(sender, sel, ptr)

@tickerlabel.text = self.get_label_text

@fox_application.addTimeout(1000*60*@quote_frequency,

method(:update_label_timer))

end

@fox_application.addTimeout(1000*60*@quote_frequency,

method(:update_label_timer))

@fox_application.create

end

def load_symbols_from_server

xml_body = Net::HTTP.new(@hostname, @port_number).get('/').body

xml = XmlSimple.xml_in(xml_body)

@symbols = xml['symbols'][0]['symbol']

end

def scroll_label

if(@tickerlabel.x < -@tickerlabel.width)

@tickerlabel.move(@main_window.width , @tickerlabel.y)

else

@tickerlabel.move(@tickerlabel.x - 3, @tickerlabel.y)

end

end

def get_label_text

label_text = ''

YahooFinance::get_standard_quotes(@symbols).each do |symbol, quote|

label_text << "#{symbol}: #{quote.lastTrade} ... "

end

label_text

end

def go

@main_window.show(PLACEMENT_SCREEN)

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY182

9330CH09.qxd 1/7/08 11:48 AM Page 182

mailto:@tickerlabel.text
mailto:@fox_application.addTimeout
mailto:@fox_application.addTimeout
mailto:@fox_application.create
mailto:@port_number).get('/').body
mailto:if(@tickerlabel.x
mailto:-@tickerlabel.width
mailto:@tickerlabel.move(@main_window.width
mailto:@tickerlabel.y
mailto:@tickerlabel.move(@tickerlabel.x
mailto:@tickerlabel.y
mailto:@main_window.show

@fox_application.run

end

end

hostname = ARGV.shift

port_number = ARGV.shift

my_app = FXTickerApp.new(hostname, port_number, 240)

my_app.go

Save this script as xml_ticker.rb.
You can run the script using a command like the following:

ruby xml_ticker.rb localhost 3000

Note that under Mac OS X and Linux, you’ll need to launch the X11 server in order to
see anything. X11 is available from the Mac OS X installation media. X11 comes standard
with most Linux distributions. To launch X11 under Linux, use the startx command. On
an OS X system, click the X11 icon.

You should see a screen similar to Figure 9-2.

Figure 9-2. XML stock ticker

Let’s examine the code line by line.

Dissecting the Code

The code in Listing 9-2 has a single class, FXTickerApp, which has a number of methods.
The first is the initialize method, which creates the user interface elements you need.
However, before you start creating user interface elements, you need to initialize the set-
tings and load the stock symbols from the server:

class FXTickerApp

include Fox

def initialize(hostname, port_number,

font_size = 100, quote_frequency=1,

reload_csv_frequency=60)

Quote_frequency and reload_csv_frequency are in minutes

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY 183

9330CH09.qxd 1/7/08 11:48 AM Page 183

mailto:@fox_application.run

@hostname = hostname

@port_number = port_number

@quote_frequency = quote_frequency

@reload_csv_frequency = reload_csv_frequency

load_symbols_from_server

The first few lines set appropriate instance variables. Then you call load_symbols_
from_server, which loads the symbols from the indicated XML server. Next, the code
begins to create user interface objects:

@fox_application=FXApp.new

@main_window=FXMainWindow.new(@fox_application, "Stock Ticker ",

nil, nil, DECOR_ALL | LAYOUT_EXPLICIT)

@tickerlabel = FXLabel.new(@main_window, get_label_text,

nil, 0, LAYOUT_EXPLICIT)

@tickerlabel.font.setFont "helvetica [bitstream],#{font_size}"

The first line creates an FXApp object, which is a FOX object that represents the entire
application and handles application-wide tasks, such as setting timers. The second line
creates a window object, which represents your only window. After that, the code creates
the single control in your window, which is a label that occupies the entire window. The
call to get_label_text returns a label with all of the stock names and prices.

Next, you create a timer that automatically scrolls the ticker every 50 milliseconds:

def scroll_timer(sender, sel, ptr)

self.scroll_label

@fox_application.addTimeout(50, method(:scroll_timer))

end

@fox_application.addTimeout(50, method(:scroll_timer))

The addTimeout method will call the scroll_timer method after 50 milliseconds. Note
that this doesn’t recur, so you need to add a new timeout after each execution of the
method. You call the method function to get a Method object to use with the scroll_timer
method. The method function takes a symbol and returns a Method object representing the
method with that symbol name.

The actual scrolling of the label from right to left is done by the scroll_label class
method defined later in the class. This is in order to separate the code that manages the
timer from the code that scrolls the label.

Next, you set up one more timer, which will update the text of the label once a
minute:

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY184

9330CH09.qxd 1/7/08 11:48 AM Page 184

mailto:@fox_application=FXApp.new
mailto:@main_window=FXMainWindow.new(@fox_application
mailto:@tickerlabel.font.setFont
mailto:@fox_application.addTimeout
mailto:@fox_application.addTimeout

def update_label_timer(sender, sel, ptr)

@tickerlabel.text = self.get_label_text

@fox_application.addTimeout(1000*60*@quote_frequency,

method(:update_label_timer))

end

@fox_application.addTimeout(1000*60*@quote_frequency,

method(:update_label_timer))

@fox_application.create

end

By default, the stock prices are loaded from Yahoo! Finance once a minute. The timer
calls class functions that implement the actual functionality. The first one loads the stock
symbols:

def load_symbols_from_server

xml_body = Net::HTTP.new(@hostname, @port_number).get('/').body

xml = XmlSimple.xml_in(xml_body)

@symbols = xml['symbols'][0]['symbol']

end

First, you request the XML using the Ruby built-in library Net::HTTP, and then you
parse it using XmlSimple. The XML document you are trying to parse looks like this:

<xml>

<symbols>

<symbol>GOOG</symbol>

<symbol>JAVA</symbol>

<symbol>RHT</symbol>

</symbols>

</xml>

The call xml['symbols'][0]['symbol'] returns an array of symbol nodes inside the first
symbols node. There is only one symbols node, but XmlSimple returns all elements of a
given name as arrays, even if there’s just one. Because the symbol objects are nodes with
a text element (in other words, elements with text inside them) and no attributes or
child nodes, they are returned as strings in an array. You retrieve them using the final
['symbol'] reference.

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY 185

9330CH09.qxd 1/7/08 11:48 AM Page 185

mailto:@tickerlabel.text
mailto:@fox_application.addTimeout
mailto:@fox_application.addTimeout
mailto:@fox_application.create
mailto:@port_number).get('/').body

Next, the scroll_label method scrolls the ticker label containing the stock symbols
and prices across the screen:

def scroll_label

if(@tickerlabel.x < -@tickerlabel.width)

@tickerlabel.move(@main_window.width , @tickerlabel.y)

else

@tickerlabel.move(@tickerlabel.x - 3, @tickerlabel.y)

end

end

This function scrolls the label from right to left. Once the ticker has completely
scrolled off the left edge, the function resets it back to the right side of the screen. The
3-pixel-per-call move is arbitrary, so feel free to change that amount if you would like a
faster or slower ticker. You can also change the frequency of the timer call in the
initialize function, which would result in the scroll_label function being called less
often. However, if the function is called too infrequently, the scrolling motion will be
jerky.

The ticker will scroll completely off the screen before being reset to the right side of
the screen. This means that there will be a short period when only a relatively small per-
centage of the label is visible. If you would like, you can modify the ticker to constantly fill
the screen by using two labels (for the sake of this example, that’s more complexity for
relatively little gain). And if you would prefer a right-to-left scrolling ticker, the following
replacement method does just that:

def scroll_label

if(@tickerlabel.x > @main_window.width)

@tickerlabel.move(-@tickerlabel.width , @tickerlabel.y)

else

@tickerlabel.move(@tickerlabel.x + 3, @tickerlabel.y)

end

end

Next, the get_label_text function takes the list of stock symbols and gets a price for
each of them:

def get_label_text

label_text = ''

YahooFinance::get_standard_quotes(@symbols).each do |symbol, quote|

label_text << "#{symbol}: #{quote.lastTrade} ... "

end

label_text

end

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY186

9330CH09.qxd 1/7/08 11:48 AM Page 186

mailto:if(@tickerlabel.x
mailto:-@tickerlabel.width
mailto:@tickerlabel.move(@main_window.width
mailto:@tickerlabel.y
mailto:@tickerlabel.move(@tickerlabel.x
mailto:@tickerlabel.y
mailto:if(@tickerlabel.x
mailto:@main_window.width
mailto:@tickerlabel.move(-@tickerlabel.width
mailto:@tickerlabel.y
mailto:@tickerlabel.move(@tickerlabel.x
mailto:@tickerlabel.y

This function calls the YahooFinance::get_standard_quotes function, which takes an
array of stock symbols, downloads the current prices from the web site, and returns a
hash where the keys are the stock symbols and the values are the quotes.

The last method in the class actually starts the application running:

def go

@main_window.show(PLACEMENT_SCREEN)

@fox_application.run

end

end

The go method simply shows the main screen and starts the application. The con-
stant PLACEMENT_SCREEN indicates that your main window should be shown centered in
the screen. There are a few other options, which you can see in the documentation at
http://www.fxruby.org/doc/api/classes/Fox/FXTopWindow.html.

Finally, let’s take a look at the initialization code:

hostname = ARGV.shift

port_number = ARGV.shift

my_app = FXTickerApp.new(hostname, port_number, 240)

my_app.go

This code simply takes the server hostname and port number from the command
line and passes them to the FXTickerApp class. The call to new also includes an optional
parameter specifying the font size. This parameter is in tenths of a point, so the value
240 produces a 24-point font.

Summary
Financial applications can be complicated and involve transferring rapidly changing data
across multiple machines. In some cases, you can make this easier and faster by writing
custom servers with Mongrel, as in this chapter’s example. Additionally, you can easily
create graphical interfaces for financial applications by using FXRuby to create a portable
and easy-to-use interface, and Remarkably and XmlSimple can make the graphical inter-
face and the server communicate easily.

In the next chapter, you’ll see how you can analyze large amounts of data from an
Apache web server to get valuable cost/sale information about advertising campaigns.

CHAPTER 9 ■ INVESTMENT TRACKING WITH F IDELITY 187

9330CH09.qxd 1/7/08 11:48 AM Page 187

mailto:@main_window.show
mailto:@fox_application.run
http://www.fxruby.org/doc/api/classes/Fox/FXTopWindow.html

9330CH09.qxd 1/7/08 11:48 AM Page 188

Calculating Costs by Analyzing
Apache Web Logs

At the time of this writing, the Web is less than 20 years old. While that may seem like a
lifetime in software terms, in business terms, the Web is still an infant, with countless
new ventures being built around it.

Because the Web is such a new business concept, we’re still developing benchmarks
for measuring the success of new approaches. Therefore, it can be difficult to determine
exactly how well a fledgling startup is doing, particularly if it’s in a prerevenue phase. Of
course, one way to measure success is through advertising revenues gained by traffic.
However, many startups have not defined a plan to monetize their traffic. Rather, they
hope to create a massive source of traffic and sell out to a large company, which will then
devise a plan for deriving revenue from the traffic. As a result, the essential value of those
startups is their web traffic, and analyzing that traffic—not to mention finding ways to
increase it—is vitally important.

Logically, traffic plays a significant role beyond advertising results. For businesses
selling a product or service, traffic is extremely important, because web-based sales are
a function of traffic. Accordingly, it makes sense for these businesses to analyze traffic
much in the same way brick-and-mortar stores analyze customer visitation and purchase
patterns. While some of these questions can be answered by prepackaged tools like
AWStats (http://awstats.sourceforge.net/), analyzing complex questions sometimes
calls for custom reporting software.

In this chapter, you’ll see how to create a custom report to analyze web site traffic
and sales, based on a high volume of data in Apache logs. For this example, you will use
Gruff, which was introduced in Chapter 3, plus two new tools: ActiveRecord::Extensions
and PDF::Writer. Let’s begin by looking at what these two tools can do for you.

189

C H A P T E R 1 0

9330CH10.qxd 1/7/08 11:58 AM Page 189

http://awstats.sourceforge.net

Speeding Up Insertions with
ActiveRecord::Extensions
ActiveRecord::Extensions is, as the name implies, a collection of extensions for Active
Record. These are generally performance extensions. The extension you’ll use in this
chapter’s example allows you to insert multiple rows of data at a time into a single table.
This will speed up performance significantly and can reduce memory use, since you
won’t need to create large numbers of objects. Since the example calls for inserting large
numbers of records into a database from the Apache log, this performance boost will be
significant.

ActiveRecord::Extensions is very easy to use. Let’s take a look at a brief example to see
how it works. Suppose you want to insert some data into a table named webhosts, which
has two columns: domain and description. You could use the following Active Record
code:

Webhost.new(:domain=>'www.somecompany.example',

:description=>'Some Company Site').save

Webhost.new(:domain=>'www.teststore.example',

:description=>'A Test Store').save

Webhost.new(:domain=>'www.smallblog.example',

:description=>'A Small Blog').save

You could also use the following ActiveRecord::Extensions code:

Webhost.import([:domain, :description],

[['www.somecompany.example, 'Some Company Site'],

['www.teststore.example', 'A Test Store'],

['www.smallblog.example', 'A Small Blog']]

This method saves the time required to create the Active Record object, which can be
very significant. It also runs just one query rather than three. In other words, the first
Active Record example produces queries like this:

INSERT INTO webhosts (domain, description) ('www.somecompany.example',

'Some Company Site');

INSERT INTO webhosts (domain, description) ('www.teststore.example',

'A Test Store');

INSERT INTO webhosts (domain, description) ('www.smallblog.example',

'A Small Blog');

On the other hand, the ActiveRecord::Extensions code produces a query like this:

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS190

9330CH10.qxd 1/7/08 11:58 AM Page 190

http://www.somecompany.example
http://www.teststore.example
http://www.smallblog.example
http://www.somecompany.example
http://www.teststore.example
http://www.smallblog.example
http://www.somecompany.example
http://www.teststore.example
http://www.smallblog.example

INSERT INTO webhosts (domain, description) ('www.somecompany.example',

'Some Company Site'),

('www.teststore.example',

'A Test Store'),

('www.smallblog.example',

'A Small Blog');

As you can see, the same data is inserted in three queries in the first example but in
just one query in the second example. It won’t take very long to insert three records no
matter what you do. However, in cases where you need to scale, and even more so when
you need to insert large amounts of data at once, the time savings can be quite valuable.

You might initially think that a database like MySQL or PostgreSQL would take the
same amount of time to insert a given number of rows, without regard to how many
queries are used, but that’s not true. Significant overhead is associated with each addi-
tional query. In fact, as you’ll see when we examine the completed solution later in this
chapter, the code that inserts Apache log data using this extension will perform at triple
the speed of Active Record alone. If you have a more complex situation—with a number
of keys or with a large amount of data being read at a time, for example—it will speed up
processing even more.

For more details on ActiveRecord::Extensions, see http://www.continuousthinking.
com/are/activerecord-extensions-0-0-5.

■Tip Actually, the fastest way to do MySQL inserts is by using the LOAD DATA INFILE statement. This
requires your data to be on disk in CSV format, however. In some cases, you can convert data from another
format, write it as CSV, and then load it with LOAD DATA INFILE. This will still be faster than using separate
INSERT statements, but the additional complexity may not be worth it, particularly if you’re dealing with
dynamic data from, say, a user filling out a form on a web site. Also, LOAD DATA INFILE has the disadvan-
tage of being MySQL-specific, and you need to place the CSV file on the server or else deal with some
security issues. You can find more information about LOAD DATA INFILE, as well as on speeding up
INSERT statements (including the relatively obscure INSERT DELAYED statement) at http://dev.mysql.
com/doc/refman/5.0/en/insert-speed.html.

Creating PDFs with PDF::Writer
PDF::Writer is a pure Ruby PDF-creation library. This has the advantage of not requiring
any outside libraries installed on the host operating system, which is unlike the LaTeX
solution discussed in Chapter 6 or the html2ps solution discussed in Chapter 8.
PDF::Writer is less flexible and slower than LaTeX, but it’s also easier to learn and more
Ruby-like. The html2ps solution is easy to learn, but slow, since it runs through multiple

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 191

9330CH10.qxd 1/7/08 11:58 AM Page 191

http://www.somecompany.example
http://www.teststore.example
http://www.smallblog.example
http://www.continuousthinking
http://dev.mysql

passes, and it’s inflexible. HTML alone does not support all of the formatting features
PDF does, so the conversion is imprecise, and html2ps does not support all possible
types of HTML formatting.

For example, the following code creates a PDF containing only the text Hello world!:

require 'pdf/writer'

pdf_document = PDF::Writer.new

pdf_document.select_font "Times-Roman"

pdf_document.text "Hello world!"

pdf_document.save_as "out.pdf"

The Rails PDF plug-in (rpdf), works with PDF::Writer to make writing PDF views in
Rails easy. It allows you to access a new type of Rails view: an .rpdf view. For example, if
you needed to write the preceding example as a Rails view, you could do it like this:

pdf.select_font "Times-Roman"

pdf.text "Hello world!"

As you can see, you get an implicit PDF::Writer object, pdf, and the results of your
PDF view are automatically sent to the user’s browser.

You can get the full details on PDF::Writer at its home page: http://ruby-pdf.
rubyforge.org/pdf-writer/.

Now that you have an idea of what ActiveRecord::Extensions and PDF::Writer can do,
let’s take a look at how to use them.

Cost-Per-Sale Reporting
Suppose you operate an online store that sells digital books in PDF format. The books are
marketed through a variety of online advertising sources. Each source referral comes at a
certain cost per click, and each source provides a different amount of traffic each month.
Additionally, each source provides a different response rate, since visitors from sites
whose topic is closely linked to the e-books being sold are more likely to buy an e-book,
as are visitors from sites whose median income is higher. As a result, it’s difficult to ana-
lyze the sales from the different sources.

You would like to use Ruby to analyze your web logs and determine exactly how
many sales are being derived from each source, as well as exactly how much each sale
costs. If the average sale cost from an advertiser is more than the value of each sale, then
the advertiser should be dropped. On the other hand, spending should be increased on
an advertiser whose cost per sale is particularly low. You want to create a report that has
nice, attractive graphs with this data, and you want to be able to easily update the reports

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS192

9330CH10.qxd 1/7/08 11:58 AM Page 192

http://ruby-pdf

with a web interface. Additionally, these reports should be easy to redistribute, so that
you can send them to your less technically savvy business partners.

However, there’s a catch: the site has an extremely large amount of traffic, so what-
ever method is used to analyze the data will need to be extremely fast; otherwise, it might
take hours or days to import all of the data. You would like to use a small set of test data
to compare different approaches to see which is fastest.

Let’s cover exactly how you can accomplish these goals with Rails. To begin, you’ll
need to install the ar-extensions, gruff, and pdf-writer gems, as follows:

gem install -y ar-extensions gruff pdf-writer

Next, create a new project with the following command:

rails apache_sales_tracker

Then enter the apache_sales_tracker directory and install the rpdf plug-in, as follows:

ruby script/plugin install svn://rubyforge.org//var/svn/railspdfplugin/railspdf/

Now, let’s start creating the files that make up the application.

Creating the Controllers

First, create the controller for the main page, as shown in Listing 10-1.

Listing 10-1. Home Page Controller (app/controllers/home_controller.rb)

class HomeController < ApplicationController

end

Save this as app/controllers/home_controller.rb.
Next, create a controller for uploading Apache log files, as shown in Listing 10-2.

Listing 10-2. Log Controller (app/controllers/logs_controller.rb)

require 'benchmark'

require 'tempfile'

require 'ar-extensions'

Note that some developers would prefer to put the above

require statements in the config/environment.rb file.

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 193

9330CH10.qxd 1/7/08 11:58 AM Page 193

svn://rubyforge.org//var/svn/railspdfplugin/railspdf

class LogsController < ApplicationController

def upload

flash[:notice] = "Uploaded new file... \n"

count=0

if params[:upload_with_active_record_extensions]

If the user chose the Active Record extensions

button, we'll use that and measure the time

it took.

real_time_elapsed = Benchmark.realtime do

columns = [:user_agent, :path_info, :remote_addr,

:http_referrer, :status, :visited_at]

values = []

LogParser.new.parse_io_stream(params[:log][:file]) do |l|

values <<

[l['HTTP_USER_AGENT'],

l['PATH_INFO'],

l['REMOTE_ADDR'],

l['HTTP_REFERER'],

l['STATUS'],

Date.parse(l['DATETIME'])]

count = count + 1

end

Hit.import columns, values, :validate=>false if values.length>0

end

else

If the user chose the "Upload with Active Record" button,

then use regular Active Record to upload the records and

measure the time it takes.

real_time_elapsed = Benchmark.realtime do

LogParser.new.parse_io_stream(params[:log][:file]) do |l|

Hit.create(

:user_agent => l['HTTP_USER_AGENT'],

:path_info => l['PATH_INFO'],

:remote_addr => l['REMOTE_ADDR'],

:http_referrer => l['HTTP_REFERER'],

:status => l['STATUS'],

:visited_at => l['DATETIME'])

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS194

9330CH10.qxd 1/7/08 11:58 AM Page 194

count = count + 1

end

end

end

flash[:notice] << " #{count} uploaded, #{Hit.count} total\n"

flash[:notice] << " #{'%0.2f' % real_time_elapsed} elapsed, " <<

"#{'%0.2f' % (count.to_f /

real_time_elapsed)*60

} records per minute ."

redirect_to :controller=>:home, :action=>:index

end

def clear_all

Hit.delete_all

flash[:notice] = 'Logs cleared!'

redirect_to :controller=>:home, :action=>:index

end

end

Save this as app/controllers/logs_controller.rb.
Now, define a controller that creates your reports, as shown in Listing 10-3.

Listing 10-3. Report Controller (app/controllers/report_controller.rb)

require 'tempfile'

require 'gruff'

class ReportController < ApplicationController

def combined

@rails_pdf_inline = true

@graph_files = {

'Graph of per-sale costs'=>

get_sale_graph_tempfile,

'Graph of total visitors from each advertiser'=>

get_visitor_graph_tempfile

}

Note that the key is the label and the value is the

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 195

9330CH10.qxd 1/7/08 11:58 AM Page 195

graph filename. Note you could easily add more graphs in

here if you'd like.

render:layout=>nil

At this point, the images have already been embedded in the PDF,

so we can safely delete them.

@graph_files.each do |label, filename|

File.unlink filename

end

end

protected # Protected functions are for internal use only and

don't correspond to a URL.

This function is used by the two graph functions to create a

temporary filename.

def get_tempfile_name(prefix)

File.join(RAILS_ROOT, "tmp/#{prefix}_#{request.env['REMOTE_ADDR']

}_#{Time.now.to_f

}_#{rand(10000)}.jpg")

end

def get_visitor_graph_tempfile # Graph of visitor and purchasing visitors

graph_tempfile_name = get_tempfile_name('visitor_graph')

advertisers = Advertiser.find(:all)

g = Gruff::Bar.new(1000)

g.title = "Advertising Traffic Report"

g.legend_font_size = 16

advertisers.each do |a|

visitor_addresses = Hit.find(:all,

:group=>'remote_addr',

:conditions=>['http_referrer= ? ',

a.referrer_url]

).map { |h| h.remote_addr }

sale_count = Hit.count('remote_addr',

:conditions=>['remote_addr IN (?)

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS196

9330CH10.qxd 1/7/08 11:58 AM Page 196

mailto:@graph_files.each

AND

path_info LIKE "/cart/checkout%"',

visitor_addresses])

g.data(a.company_name, [visitor_addresses.length, sale_count])

end

g.labels = {0 => 'Visitors', 1 => 'Visitors With One or More Purchases' }

g.write(graph_tempfile_name)

graph_tempfile_name

end

def get_sale_graph_tempfile # Graph of per-click and per-sale costs

graph_tempfile_name = get_tempfile_name('sale_graph_tempfile')

advertisers = Advertiser.find(:all)

g = Gruff::Bar.new(1000)

g.title = "Cost Per Sale Report"

g.legend_font_size = 16

g.y_axis_label = 'Cost (USD)'

advertisers.each do |a|

visitor_addresses = Hit.find(:all,

:group=>'remote_addr',

:conditions=>['http_referrer= ? ',

a.referrer_url]

).map { |h| h.remote_addr }

sale_count = Hit.count('remote_addr',

:conditions=>['remote_addr IN (?)

AND

path_info LIKE "/cart/checkout%"',

visitor_addresses])

total_cost = visitor_addresses.length*a.cost_per_click

cost_per_sale = total_cost / sale_count

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 197

9330CH10.qxd 1/7/08 11:58 AM Page 197

g.data(a.company_name, [a.cost_per_click, cost_per_sale])

end

g.labels = {0 => 'Cost Per Click', 1 => 'Cost Per Sale' }

g.minimum_value = 0

g.write(graph_tempfile_name)

graph_tempfile_name

end

These two methods will display errors as HTML, as per

the rpdf documentation at http://railspdfplugin.rubyforge.org/wiki/wiki.pl

def rescue_action_in_public(exception)

headers.delete("Content-Disposition")

super

end

def rescue_action_locally(exception)

headers.delete("Content-Disposition")

super

end

end

Save this as app/controllers/report_controller.rb.

Creating the Layout and Views

Next up is the layout for the report, as shown in Listing 10-4.

Listing 10-4. Report HTML Layout (app/views/layouts/application.html.erb)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/ DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title><%= @page_title || 'Apache Log Tracker'%></title>

<%= stylesheet_link_tag 'apachetracker' %>

<%= javascript_include_tag 'prototype', 'scriptacolous', 'effects'%>

</head>

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS198

9330CH10.qxd 1/7/08 11:58 AM Page 198

http://railspdfplugin.rubyforge.org/wiki/wiki.pl
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

<body>

<%flash.each do |key, text|%>

<div id="flash_<%=key%>">

<%=text.gsub("\n", "\n
")%>

</div>

<script>new Effect.Highlight('flash_<%=key%>'); </script>

<%end%>

<%= @content_for_layout %>

</body>

</html>

Save this as app/views/layouts/application.html.erb.
Of course, you need a CSS style sheet for the home page, as shown in Listing 10-5.

Listing 10-5. Home Page CSS Style Sheet (public/stylesheets/apachetracker.css)

body { font-family: franklin gothic book,

helvetica,

verdana,

sans-serif;

padding-left:1em;

}

h1, h2 { font-family: franklin gothic heavy,

arial black, sans-serif;

font-weight: normal; }

h3 { font-family: franklin gothic medium;

font-weight: normal; }

a:visited { color:black }

a:hover { text-decoration: none; }

a { }

h3 { padding-left:2em;}

form {

padding-left: 4em;

}

#flash_notice, #flash_error {

padding:1em; margin:1em;

border: 3px dashed #cecece;

}

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 199

9330CH10.qxd 1/7/08 11:58 AM Page 199

Save this as public/stylesheets/apachetracker.css.
Next, let’s take a look at the views. The first is the main home page view from which

the various actions can be accessed, shown in Listing 10-6.

Listing 10-6. Home Page RHTML View (app/views/home/index.html.erb)

<h1>Apache Log Analyzer</h1>

<h2>Would you like to...</h2>

<h3>... upload a New Apache Log? </h2>

<% form_tag({ :controller => :logs,

:action => :upload } , {:multipart => true})do %>

<%=file_field 'log', 'file' %>

<%=submit_tag 'Upload with Active Record',

:name=>:upload_with_active_record%>

<%=submit_tag 'Upload with Active Record Extensions',

:name=>:upload_with_active_record_extensions%>

<%end%>

<h3>... <%=link_to 'clear your old logs?',

:controller=>:logs, :action=>:clear_all%></h3>

<h3>... <%=link_to 'view the cost per sale report?',

:controller=>:report, :action=>:combined, :format=>'pdf'%></h3>

Save this as app/views/home/index.html.erb.
Next, Listing 10-7 shows the .rpdf view that will create the report.

Listing 10-7. Report .rpdf View (app/views/report/combined.pdf.rpdf)

pdf.select_font "Times-Roman"

figure_number = 1

@graph_files.each do |title, graph|

pdf.image graph

pdf.text "<i>Figure #{figure_number

} of #{@graph_files.length

}- #{title}</i>", :left=>6, :font_size=>12

figure_number = figure_number + 1

end

Save this as app/views/report/combined.pdf.rpdf.

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS200

9330CH10.qxd 1/7/08 11:58 AM Page 200

mailto:@graph_files.each

Downloading a Parser Library

The log_parser.rb library is part of the Mint plug-in for Rails. Mint (http://haveamint.com)
is commercial software used to analyze web sites, and the Mint plug-in helps you to con-
nect your Rails application to Mint. However, you can use the log_parser.rb library from
the Mint plug-in for other purposes, as you will here. You can find out more about the
Mint plug-in at http://nubyonrails.com/articles/2006/02/16/activerecord-model-for-mint,

For this example, you’ll use the log_parser.rb library to provide an easy means to
parse the Apache logs in a variety of common formats. Also, the logs controller will use it
to load the data into the database.

Download the log_parser.rb library from the following URL:

http://topfunky.net/svn/plugins/mint/lib/log_parser.rb

Save it as lib/log_parser.rb.

Creating the Routing File

Next, you’ll need a config/routes.rb file. Add a line that lets you set the default home
page for the user, as shown in Listing 10-8.

Listing 10-8. Routes File (config/routes.rb)

ActionController::Routing::Routes.draw do |map|

map.root :controller=>'home'

map.connect ':controller/:action/:id.:format' # These two routes are

map.connect ':controller/:action/:id' # created by Rails.

end

This code connects /— the root of the server—to the home controller. Since you didn’t
specify an action, it uses the index action. Note that the public/index.html file overrides
this route, though, so delete the public/index.html file now.

Setting Up the Database and Schema

Next, let’s create a database for this application:

mysqladmin –u root -p create apache_sales_tracker

At this point, you need to modify config/database.yml to reflect your database con-
nection parameters. Edit it and replace the default values with the correct values for your
machine.

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 201

9330CH10.qxd 1/7/08 11:58 AM Page 201

http://haveamint.com
http://nubyonrails.com/articles/2006/02/16/activerecord-model-for-mint
http://topfunky.net/svn/plugins/mint/lib/log_parser.rb

The next step is to build a schema for the application, as shown in Listing 10-9.

Listing 10-9. Database Initial Schema Migration (db/migrate/001_initial_schema.rb)

class InitialSchema < ActiveRecord::Migration

def self.up

create_table :hits do |t|

t.column :user_agent, :string

t.column :path_info,:string

t.column :remote_addr, :string

t.column :http_referrer, :string

t.column :status, :string

t.column :visited_at, :datetime

end

create_table :advertisers do |t|

t.column :company_name, :string

t.column :referrer_url, :string

t.column :cost_per_click, :decimal,

:precision => 9, :scale => 2

end

end

def self.down

drop_table :hits

drop_table :advertisers

end

end

Save this as db/migrate/001_initial_schema.rb. You can run the migration as follows:

rake db:migrate

== 1 InitialSchema: migrating ===

-- create_table(:hits)

-> 0.1570s

-- create_table(:advertisers)

-> 0.1250s

== 1 InitialSchema: migrated (0.2820s) ==

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS202

9330CH10.qxd 1/7/08 11:58 AM Page 202

Defining the Models

This example uses two models: Advertiser and Hit, as shown in Listings 10-10 and 10-11.

Listing 10-10. Advertiser Model (app/models/advertiser.rb)

class Advertiser < ActiveRecord::Base

end

Listing 10-11. Hit Model (app/models/hit.rb)

class Hit < ActiveRecord::Base

end

Save these as app/models/advertiser.rb and app/models/hit.rb, respectively.

Examining the Log Analyzer and Cost-Per-Sale Report

To see the solution in action, you’ll need some data. Download the sample advertiser list
from the Source/Downloads area of the Apress web site (http://www.apress.com) or from
http://rubyreporting.com/examples/apachetracker_sample_advertisers.sql.

You can import the data as follows:

mysql -u your_mysql_username_here -p apache_sales_tracker <

apachetracker_sample_advertisers.sql

You can run the server with the following command from the root of your Rails appli-
cation:

ruby script/server

Open a web browser and surf to http://localhost:3000. You should see a page similar
to Figure 10-1. To upload an Apache log, click Browse, and then click the Upload with
Active Record button. You can grab a sample Apache log from either the Apress web site
or http://rubyreporting.com/examples/test_output.rb.apache.log.small. You should see a
message indicating how long the upload took.

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 203

9330CH10.qxd 1/7/08 11:58 AM Page 203

http://www.apress.com
http://rubyreporting.com/examples/apachetracker_sample_advertisers.sql
http://localhost:3000
http://rubyreporting.com/examples/test_output.rb.apache.log.small

Figure 10-1. Apache Analyzer Main Screen

Now clear the database by choosing the link to clear your old logs, and then upload a
new log, but this time, click the Upload with Active Record Extensions button.

In my tests, it took roughly 30 seconds to upload with Active Record, and roughly
10 seconds with ActiveRecord::Extensions. (My technical reviewer reported times of
15 seconds and 4 seconds, respectively.)

It becomes even more important to use ActiveRecord::Extensions if you have a
number of indexes. For example, try adding the following indexes using the MySQL
command-line client:

create index hits_path_info on hits(path_info);

create index hits_referrer on hits(http_referrer);

If you rerun the tests, you should find that the time to use Active Record should
nearly double, but the time to use ActiveRecord::Extensions should barely increase at all.
In my test, I got 50 seconds for Active Record and 13 seconds for ActiveRecord::Exten-
sions, so Active Record took almost four times as long. With more indexes, it would take
even longer. This is because after each query, all of the indexes are recalculated. It also
takes longer and longer as the table gets larger.

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS204

9330CH10.qxd 1/7/08 11:58 AM Page 204

After you’ve uploaded the log, click the link to view the report. This will display a PDF
file in your browser (assuming you have a PDF viewer plug-in for your browser), as
shown in Figure 10-2.

Figure 10-2. A cost-per-sale report

The chart graphically illustrates how each advertiser costs a different amount per
sale. Of course, the more a sale costs, the less profit is made on each sale, so this is very
valuable information. You can use this information to plan future spending, for example,
since advertising dollars can be more fruitfully spent on advertisers who have a low cost
per sale.

Now let’s take a look at the important parts of the code.

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 205

9330CH10.qxd 1/7/08 11:58 AM Page 205

Dissecting the Code

Users can take three actions in this application:

• Upload a log, which adds the data from that log to the application.

• Clear all of the data from the system, which can be useful if incorrect data was
entered.

• View a report.

Let’s examine the log uploader code (Listing 10-2), which is in app/controllers/
logs_controller.rb. The first thing that the script does is require a few libraries:

require 'benchmark'

require 'tempfile'

require 'ar-extensions'

Some developers would prefer to put these require statements in their config/
environment.rb file instead of at the top of the controller; I prefer this method, but it’s not
an extremely important distinction.

Next, this controller has just a single method, which controls the uploading. It has
two different methods of uploading, and they are triggered by two different buttons. The
first uploads with Active Record alone, which looks like this:

If the user chose the "Upload with Active Record" button,

then use regular Active Record to upload the records and

measure the time it takes.

real_time_elapsed = Benchmark.realtime do

LogParser.new.parse_io_stream(params[:log][:file]) do |l|

Hit.new do |h|

h.user_agent = l['HTTP_USER_AGENT']

h.path_info = l['PATH_INFO']

h.remote_addr = l['REMOTE_ADDR']

h.http_referrer = l['HTTP_REFERER']

h.status = l['STATUS']

h.visited_at = l['DATETIME']

h.save

end

count = count + 1

end

end

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS206

9330CH10.qxd 1/7/08 11:58 AM Page 206

The Benchmark.realtime call measures how long it takes to load the information, and
the LogParser class parses the log for you. Specifically, the parse_io_stream method takes
the uploaded file, parses it, and calls your block once for each record. The block is passed
a hash, which looks like this:

HTTP_USER_AGENT: Mozilla/4.0 (compatible; a browser user agent here)

PATH_INFO: /some_url

HTTP_HOST: localhost

REMOTE_ADDR: 101.184.128.38

HTTP_REFERER: http://small-site.com.example/

STATUS: "200"

DATETIME: 1/Oct/2007:04:49:03 -0500

■Note HTTP_REFERER is intentionally spelled this way in the code, because that’s the way it’s spelled in
the official HTTP standard. However, I’ve spelled referrer correctly in the schema, since the field in the hits
table does not necessarily refer to the header but to the concept of the referrer in general. The LogParser
class, on the other hand, uses the incorrect spelling so that it adheres to the standard.

The routine creates a new Hit object, sets the fields to the various values from the
hash, and saves it. Then you add one to the count variable.

The ActiveRecord::Extensions code looks like this:

real_time_elapsed = Benchmark.realtime do

columns = [:user_agent, :path_info, :remote_addr,

:http_referrer, :status, :visited_at]

values = []

LogParser.new.parse_io_stream(params[:log][:file]) do |l|

values <<

[l['HTTP_USER_AGENT'],

l['PATH_INFO'],

l['REMOTE_ADDR'],

l['HTTP_REFERER'],

l['STATUS'],

Date.parse(l['DATETIME'])]

count = count + 1

end

Hit.import columns, values, :validate=>false if values.length>0

end

end

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 207

9330CH10.qxd 1/7/08 11:58 AM Page 207

http://small-site.com.example

This code parses the log using LogParser, just as the plain Active Record code does,
but it automatically uses the import method that ActiveRecord::Extensions adds to the Hit
model. This import method imports all of the records in a single query.

■Tip The :validates=>false option turns off validation. In this case, it doesn’t make a difference,
since the model doesn’t include any validation. But, in general, if you’re dealing with data that’s guaranteed
to be in a certain format, and you have expensive validations in your models, you can speed up
ActiveRecord::Extensions inserts by including this optional parameter.

Finally, you create a flash notice with the number of uploaded records, the total
number of records, the total time elapsed, and the rate of records being processed per
minute.

flash[:notice] << " #{count} uploaded, #{Hit.count} total\n"

flash[:notice] << " #{'%0.2f' % real_time_elapsed} elapsed, " <<

"#{'%0.2f' % (count.to_f /

real_time_elapsed)*60

} records per minute ."

redirect_to :controller=>:home, :action=>:index

end

After creating the flash message, you redirect to the main page again. Note that you
could have created a separate view that displayed the message and then offered a link
back to the main page.

Next, let’s take a look at the code that generates the reports. First, the report con-
troller in app/controllers/report_controller.rb (Listing 10-3) uses rpdf to generate the
PDF view.

class ReportController < ApplicationController

def combined

@rails_pdf_inline = true

@graph_files = {

'Graph of per-sale costs'=>

get_sale_graph_tempfile,

'Graph of total visitors from each advertiser'=>

get_visitor_graph_tempfile

}

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS208

9330CH10.qxd 1/7/08 11:58 AM Page 208

Note that the key is the label and the value is the

graph filename. Note you could easily add more graphs in

here if you'd like.

render :layout=>nil

At this point, the images have already been embedded in the PDF,

so we can safely delete them.

@graph_files.each do |label, filename|

File.unlink filename

end

end

This code creates a hash with labels and graph file names. It uses the two graph-
creation functions—get_sale_graph_tempfile and get_visitor_graph_tempfile—and
passes them to the .rpdf view combined. rpdf uses the @rpf_pdf_inline variable to specify
that the PDF should be displayed in the browser and not downloaded. If you set this vari-
able to false, or don’t set it at all, the PDF will be downloaded instead.

After that, the code loops through the graph temporary files and deletes them. (You
cannot use Ruby’s built-in Tempfile class here because you cannot specify a file exten-
sion, and both Gruff and rpdf use the file extension to determine the file format.)

The .rpdf view (Listing 10-7) is in app/views/report/combined.pdf.rpdf. As you can
see, the code is reasonably straightforward:

pdf.select_font "Times-Roman"

figure_number = 1

@graph_files.each do |title, graph|

pdf.image graph

pdf.text "<i>Figure #{figure_number

} of #{@graph_files.length

}- #{title}</i>", :left=>6, :font_size=>12

figure_number = figure_number + 1

end

This code loops through the graphs passed by the controller and uses the image
method from the PDF::Writer library to insert the image. Next, it labels each one with a
figure number and a title.

Next, let’s examine the three protected functions in the report controller, app/
controllers/report_controller.rb (Listing 10-3). These functions are not publicly avail-
able as URLs. The first function creates temporary file names to save your Gruff graphs:

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 209

9330CH10.qxd 1/7/08 11:58 AM Page 209

mailto:@graph_files.each
mailto:@graph_files.each

protected # Protected functions are for internal use only and

don't correspond to a URL.

This function is used by the two graph functions to create a

temporary filename.

def get_tempfile_name(prefix)

File.join(RAILS_ROOT, "tmp/#{prefix}_#{request.env['REMOTE_ADDR']

}_#{Time.now.to_f

}_#{rand(10000)}.jpg")

end

Note that this solution does not absolutely guarantee unique file names, but it
should work fine under most conditions. Time.now.to_f returns the unique timestamp
in fractional seconds. It also appends a random number between one and 10,000. This
should be more than sufficient to remove the possibility of collisions for your average
intranet application. You would need to have the same IP accessing the same graph in
the same millisecond or so to have a problem.

■Note You could check if the file name has been used before using it, but this has race conditions. In situ-
ations where collisions are likely, you can look at a solution like the ruby-stemp library, which you can get
from http://ruby-stemp.rubyforge.org/.

Next, let’s take a look at the function in the report controller that shows the graph of
visitors from each advertiser:

def get_visitor_graph_tempfile # Graph of visitor and purchasing visitors

graph_tempfile_name = get_tempfile_name('visitor_graph')

advertisers = Advertiser.find(:all)

g = Gruff::Bar.new(1000)

g.title = "Advertising Traffic Report"

g.legend_font_size = 16

advertisers.each do |a|

visitor_addresses = Hit.find(:all,

:group=>'remote_addr',

:conditions=>['http_referrer= ? ',

a.referrer_url]

).map { |h| h.remote_addr }

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS210

9330CH10.qxd 1/7/08 11:58 AM Page 210

http://ruby-stemp.rubyforge.org

sale_count = Hit.count('remote_addr',

:conditions=>['remote_addr IN (?)

AND

path_info LIKE "/cart/checkout%"',

visitor_addresses])

g.data(a.company_name, [visitor_addresses.length, sale_count])

end

g.labels = {0 => 'Visitors', 1 => 'Visitors With One or More Purchases' }

g.write(graph_tempfile_name)

graph_tempfile_name

end

This function uses Gruff (introduced in Chapter 3) to generate the graph. The func-
tion sets various parameters relating to the graph, and then loops through all of the
advertisers. For each advertiser, it finds all of the visitors, as defined by visitors who arrive
at the site by clicking a link on the referrer URL. It then finds all of the sale URLs for those
visitors, which are defined as URLs that start with /cart/checkout. Note that if visitors
check out multiple times, they will be counted as multiple sales, and if they click the
referrer link more than once, that will be counted as multiple visits.

Then the company name of each advertiser, along with the total number of visitors
and the number of visitors who have purchased something, is graphed, and the graph is
written to the temporary file name created by the get_tempfile_name function. The tem-
porary file name is returned, so that the calling function can use the graph.

Next, let’s take a look at the get_sale_graph_tempfile function in the report controller:

def get_sale_graph_tempfile # Graph of per-click and per-sale costs

graph_tempfile_name = get_tempfile_name('sale_graph_tempfile')

advertisers = Advertiser.find(:all)

g = Gruff::Bar.new(1000)

g.title = "Cost Per Sale Report"

g.legend_font_size = 16

g.y_axis_label = 'Cost (USD)'

advertisers.each do |a|

visitor_addresses = Hit.find(:all,

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 211

9330CH10.qxd 1/7/08 11:58 AM Page 211

:group=>'remote_addr',

:conditions=>['http_referrer= ? ',

a.referrer_url]

).map { |h| h.remote_addr }

sale_count = Hit.count('remote_addr',

:conditions=>['remote_addr IN (?)

AND

path_info LIKE "/cart/checkout%"',

visitor_addresses])

total_cost = visitor_addresses.length*a.cost_per_click

cost_per_sale = total_cost / sale_count

g.data(a.company_name, [a.cost_per_click, cost_per_sale])

end

g.labels = {0 => 'Cost Per Click', 1 => 'Cost Per Sale' }

g.minimum_value = 0

g.write(graph_tempfile_name)

graph_tempfile_name

end

The graph options are slightly different from the get_visitor_graph_tempfile
function, but otherwise get_sale_graph_tempfile is similar to that function. The big differ-
ence is that instead of simply displaying the total number of visitors, it displays the cost
per click and cost per sale. It retrieves the cost per click from the advertiser, and it calcu-
lates the cost per sale by calculating the total cost of all of the clicks, then dividing it by
the total number of sales.

Summary
This chapter covered a great way to import data from Apache logs and then analyze that
data using Active Record. You can use analyses like these to intelligently choose how to
spend advertising dollars. By spending more money on advertisers with a low cost per
sale, you can be more efficient and increase your total sales.

Additionally, you saw how you can easily create PDF reports using just Ruby code,
and how you can speed up data import significantly using ActiveRecord::Extensions.
Both techniques are valuable. PDF reporting is a powerful and easy way to increase the

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS212

9330CH10.qxd 1/7/08 11:58 AM Page 212

utility of your reports, and loading large amounts of data quickly is important to making
your reports useful.

In the next chapter, you’ll see how you can monitor public news about your com-
pany—or, for that matter, any RSS feed—using FeedTools, and then graph the data using
CSS and HTML.

CHAPTER 10 ■ CALCULATING COSTS BY ANALYZING APACHE WEB LOGS 213

9330CH10.qxd 1/7/08 11:58 AM Page 213

9330CH10.qxd 1/7/08 11:58 AM Page 214

Tracking the News with
Google News

Due to the Internet, we live in a world with easy access to all types of information. Even
local newspapers that were formerly inaccessible outside their locality are publishing
stories online. As a result, you can catch up on localized news from all over the world.
This is a significant step forward, of course, since it means you can get news about, say,
Brazil, straight from the source, instead of from an Associated Press reporter who may
have been in the country for only a few days. The downside is that there’s an explosion of
news sites—some good, some bad, and some mediocre. They are in such quantity that
they can be hard to sift through, so it’s difficult to extract the particular information you
want from the mass of information you can access.

Fortunately, tools are available to help with the task of news organization. For exam-
ple, just as Google web search makes searching for web sites easier, Google News makes
searching news easier. Google News aggregates news from all over the world and lets you
filter by useful constraints, such as keywords and dates. In fact, Google News can even
eliminate duplicate stories (a result of news syndication companies such as the Associ-
ated Press and United Press International selling stories to dozens or hundreds of
newspapers).

You can use Google News to track news topics easily and quickly. One way is to find
news manually via the web interface at http://news.google.com/. Another approach is to
use the Google News Really Simple Syndication (RSS) interface. Used in conjunction with
a programming language such as Ruby, this interface allows you to manage news aggre-
gation in ways limited only by the boundaries of your imagination.

In this chapter, you’ll create a graphical report from Google News RSS data. To parse
the data for this example, you’ll use a handy utility called FeedTools, which we’ll look at
first. To create the graphs, you’ll use a plug-in called CSS Graphs Helper. This is an easy-
to-use tool for creating simple HTML charts, as you’ll see when you create the Rails
application later in the chapter.

215

C H A P T E R 1 1

9330CH11.qxd 1/7/08 12:11 PM Page 215

http://news.google.com

Using FeedTools to Parse RSS
Google News provides its data in RSS form, which is an XML format, so you could parse
it using a Ruby library like the standard REXML or the XmlSimple or Remarkably gems
(both introduced in Chapter 9). However, FeedTools gives you the advantage of a power-
ful interface specific to news feeds, which makes your life much easier.

For example, here’s how easy it is to print out the titles from the RubyForge news
feed, which lists all the new software released on RubyForge:

require 'feed_tools'

newsfeed=FeedTools::Feed.open('http://rubyforge.org/export/rss_sfnews.php')

newsfeed.items.each do |item|

puts item.title

end

This code results in the following output:

Net::NNTP Client Library:SCM is now Subversion

rb-appscript 0.5.0 released

Open Ruby on Rails Book:openrorbook Download Issues

Duration 0.1.0 released

votigoto 0.2.1 Released

Sequel 0.4.4.2 Released

The second line creates a new FeedTools:Feed object using the open method. The URL
specified is http://rubyforge.org/export/rss_sfnews.php, which is the RSS feed for Ruby-
Forge. The next line uses the items method of the feed and calls its each method to iterate
through each feed item, and then the title method of each item is used to print the item
titles. You can access other attributes of each item, such as the URL of the full view of the
item, the date it was updated, and so forth. If it’s included in the RSS feed, the full text of
an item is available through the description method.

FeedTools can also parse Atom and Channel Definition Format (CDF) feeds, as well
as generate news feeds in RSS, Atom, or CDF form. You can find out more about Feed-
Tools at its home page: http://sporkmonger.com/projects/feedtools/.

■Note CDF is an obscure Microsoft format similar to RSS or Atom. You can find out more about CDF at
http://en.wikipedia.org/wiki/Channel_Definition_Format.

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS216

9330CH11.qxd 1/7/08 12:11 PM Page 216

http://rubyforge.org/export/rss_sfnews.php
http://rubyforge.org/export/rss_sfnews.php
http://sporkmonger.com/projects/feedtools
http://en.wikipedia.org/wiki/Channel_Definition_Format

Company News Coverage Reporting
Suppose your company is investing heavily in public relations in the hope that the media
coverage will lead to sales. However, because so much money is being spent on a public
relations firm, your managers don’t want to spend additional money on a “press clipping”
service. A press clipping service would monitor how well the public relations firm is
doing by searching newspapers for stories, typically called clippings, about your firm.

Your boss hopes you can do something similar and create a report that details how
many times in a day your company is mentioned in the press. Fortunately, it’s easy to do
this with Google News. You’ve decided to implement two programs to produce this
report: a Ruby script that loads the Google News news reports into a database and a Rails
application that performs the actual reporting.

Loading the Data

As noted, you’ll use FeedTools to help load the data into a database. Install FeedTools
using the following command:

gem install -y feedtools

Need to update xx gems from http://gems.rubyforge.org

....................

complete

Successfully installed feedtools-x.y.zz

Installing ri documentation for feedtools-x.y.zz...

Installing RDoc documentation for feedtools-x.y.zz...

You also need to create a database named company_pr and edit the establish_
connection line at the top of the following loader script. (However, note that this code
will automatically load a config/database.yml file if it exists, so if you run this application
from the Rails application directory you’ll create later, you don’t need to edit the
establish_connection line.)

Now create the loader script, as shown in Listing 11-1.

Listing 11-1. RSS Loader (rss_loader.rb)

require 'feed_tools'

require 'active_record'

require 'uri'

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS 217

9330CH11.qxd 1/7/08 12:11 PM Page 217

http://gems.rubyforge.org

(puts "usage: #{$0} query"; exit) unless ARGV.length==1

If there's a config/database.yml file - like you'd find in a Rails app,

read from that . . .

if File.exists?('./config/database.yml')

require 'yaml'

ActiveRecord::Base.establish_connection(

YAML.load(File.read('config/database.yml'))['development'])

else

. . . otherwise, connect to the default settings.

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => "your_mysql_hostname_here",

:username => "your_mysql_username_here",

:password => "your_mysql_password_here",

:database => "company_pr")

end

class Stories < ActiveRecord::Base

end

unless Stories.table_exists? # If this is the first time running this app,

create the tables we need.

ActiveRecord::Schema.define do

create_table :stories do |t|

t.column :guid, :string

t.column :title, :string

t.column :source, :string

t.column :url, :string

t.column :published_at, :datetime

t.column :created_at, :datetime

end

create_table :cached_feeds do |t|

t.column :url , :string

t.column :title, :string

t.column :href, :string

t.column :link, :string

t.column :feed_data, :text

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS218

9330CH11.qxd 1/7/08 12:11 PM Page 218

t.column :feed_data_type, :string, :length=>25

t.column :http_headers, :text

t.column :last_retrieved, :datetime

end

Without the following line,

you can't retrieve large results -

like those we use in this script.

execute "ALTER TABLE cached_feeds

CHANGE COLUMN feed_data feed_data MEDIUMTEXT;"

end

end

output_format = 'rss'

per_page = 100

query = ARGV[0]

query_encoded = URI.encode(query) # URI.encode will escape values like "&"

that would mess up our URL.

feed_url = "http://news.google.com/news" <<

"?hl=en&ned=us&ie=UTF-8" <<

"&num=" << per_page <<

"&output=" << output_format <<

"&q=" << query_encoded

Set up our cache:

FeedTools.configurations[:feed_cache] = "FeedTools::DatabaseFeedCache"

Create our feed object:

feed=FeedTools::Feed.open(feed_url)

if !feed.live?

puts "feed is cached..."

puts "last retrieved: #{ feed.last_retrieved }"

puts "expires: #{ feed.last_retrieved + feed.time_to_live }"

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS 219

9330CH11.qxd 1/7/08 12:11 PM Page 219

http://news.google.com/news

else

feed.items.each do |feed_story|

if not (Stories.find_by_title(feed_story.title) or

Stories.find_by_url(feed_story.link) or

Stories.find_by_guid(feed_story.guid))

puts "processing story '#{feed_story.title}' - new"

Stories.new do |new_story|

new_story.title=feed_story.title.gsub(/<[^>]*>/, '') # strip HTML

new_story.guid=feed_story.guid

new_story.sourcename=feed_story.publisher.name if feed_story.publisher.name

new_story.url=feed_story.link

new_story.published_at = feed_story.published

new_story.save

end

else

do nothing

end

end

end

Save this script as rss_loader.rb.
You can run this script as follows:

ruby rss_loader.rb Microsoft

processing story 'Microsoft Exchange Troubleshooting Assistant v1.1 (MSI)

- ZDNet' - new

processing story 'Being MVP and posting Microsoft copyrighted material without

.. - ZDNet UK' - new

. . .

■Note You may get errors about require_gem being obsolete, but the script should still run fine.

Now, if you run the script again, it will detect that the feed was recently loaded and is
in the cache, so it will exit:

ruby rss_loader.rb Microsoft

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS220

9330CH11.qxd 1/7/08 12:11 PM Page 220

feed is cached...

last retrieved: Sun Sep 02 18:55:12 UTC 2007

expires: Sun Sep 02 19:55:12 UTC 2007

Not all reporting requires a script. SQL itself can be used for reporting from the
MySQL client. This approach is very useful if you want to find a few pieces of information
(or just one). Let’s use a SQL query to verify that the data has been inserted into the
MySQL database, as shown in Listing 11-2.

Listing 11-2. SQL to Verify Data Loading

mysql company_pr -u your_mysql_username -p

Password: your_password_here

mysql> SELECT id,

CONCAT(LEFT(title,40),

CASE WHEN(LENGTH(title)>40)

THEN '...'

ELSE '' END) AS story_title

FROM stories;

Running the query in Listing 11-2 produces results similar to the following:

+-----+---+

| id | story_title |

+-----+---+

| 1 | Judge approves final settlement in Iowa ... |

| 2 | Microsoft Webcast: Security Series (Part... |

| 3 | Security Showdown - Redmond Channel Part... |

| 4 | Linux: Hasta la Vista, Microsoft! - LXer... |

| 5 | Microsoft Vista desktops don't play... |

| 6 | Major Computer Viruses Over 25 Years - F... |

| 7 | Ford Syncs Up with Microsoft to Smooth t... |

| 8 | Sony connects with Microsoft's DRM ... |

| 9 | HP's MediaSmart Server Launch Delaye... |

| 10 | Customize Microsoft Management Console (... |

| 11 | Microsoft keeps businesses connected - B... |

| 12 | Yahoo! ups the ante in e-mail - Times On... |

| 13 | Microsoft Antitrust Settlement Is a Succ... |

| 14 | Microsoft settles eight year patent case... |

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS 221

9330CH11.qxd 1/7/08 12:11 PM Page 221

| 15 | Microsoft Delays Windows Server 2008 - C... |

. . .

| 124 | Microsoft Exchange Troubleshooting Assis... |

| 125 | Being MVP and posting Microsoft copyrigh... |

+-----+---+

95 rows in set (0.00 sec)

Of course, you’ll get different results depending on the stories that are current when
you run the script. Note that apostrophes are represented as ', which is an HTML
entity equivalent to the ASCII character '. This means that the HTML entities will be cor-
rectly displayed on a web browser, although you’ll need to decode them if you intend
to display them in, say, a PDF or text file. (You might get more entities; they all begin
with &#.)

Additionally, note the call to CONCAT, which has three parts. The first part is the call to
CONCAT itself, which adds two strings together. The next two parts are the strings to add.
The first string it concatenates is LEFT(title,40), which pulls out the leftmost 40 charac-
ters of the title of the story. The second string is CASE WHEN length(title)>40 THEN '...'
ELSE '' END, which adds three periods after the title if the title is longer than 40 charac-
ters. In other words, if the title is longer than 40 characters, display the first 40
characters of the title followed by three periods.

■Note Strictly speaking, the notation after the 40-character maximum in this example should be an ellip-
sis, not three periods. An ellipsis is closer together, so the three periods are the width of a single character.
However, text-only applications, like the MySQL console, don’t have ellipses.

Now let’s take a look at the code in the loading script.

Dissecting the Code

First, the script in Listing 11-1 needs to create a connection to the database:

If there's a config/database.yml file,

read from that . . .

if File.exists?('./config/database.yml')

require 'yaml'

ActiveRecord::Base.establish_connection(

YAML.load(File.read('config/database.yml'))['development']

)

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS222

9330CH11.qxd 1/7/08 12:11 PM Page 222

else

. . . otherwise, connect to the default settings.

Note that if don't you have the default MySQL settings below,

you should change them.

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => "your_mysql_hostname_here",

:username => "your_mysql_username_here",

:password => "your_mysql_password_here",

:database => "company_pr")

end

If you run the script from the root of a Rails application, the information from the
config/database.yml file and the parameters for the development environment are loaded.
If not, it manually creates the connection with the default parameters. Note that you can
change ['development'] to ['production'] on the first establish_connection line if you
would prefer to use the connection parameters from the production environment.

Next, let’s examine the code that contains the single model and the schema:

class Stories < ActiveRecord::Base

end

unless Stories.table_exists?

ActiveRecord::Schema.define do

create_table :stories do |t|

t.column :guid, :string

t.column :title, :string

t.column :source, :string

t.column :url, :string

t.column :published_at, :datetime

t.column :created_at, :datetime

end

create_table :cached_feeds do |t|

t.column :url , :string

t.column :title, :string

t.column :href, :string

t.column :link, :string

t.column :feed_data, :text

t.column :feed_data_type, :string, :length=>25

t.column :http_headers, :text

t.column :last_retrieved, :datetime

end

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS 223

9330CH11.qxd 1/7/08 12:11 PM Page 223

Without the following line,

you can't retrieve large results -

like those we use in this script.

execute "ALTER TABLE cached_feeds

CHANGE COLUMN feed_data feed_data MEDIUMTEXT;"

end

end

This code creates a single model, Stories, and then creates a table for it. It also cre-
ates a second table named cached_feeds, which is used by FeedTools to store cached
feeds. Note that the original schema was given in SQL on the FeedTools site, and it is a
similar schema translated into a Rails migration. However, because the feed_data column
contains too much data to be stored in a regular TEXT column, you use an ALTER TABLE ...

CHANGE COLUMN statement to change the feed_data column to a MEDIUMTEXT type. (If Rails
supported MEDIUMTEXT columns out of the box, you could have initially created it as a
MEDIUMTEXT column.)

■Tip You could create this database using Rails migrations as well, but in this case I’ve included it in this
script. This is a simple way to create a database using Active Record, and it’s independent of any Rails appli-
cation, which means that you could use this loader and then make reports on the data from any reporting
application. For example, if you did not have a Rails application and the developers in different departments
of your company wrote the code to display the data as a Perl script, a Python program, an ASP.NET web
application, a Crystal Reports report, or even a Microsoft Excel macro, they could still use this loader script.

Now that you have a database connection, a structure, and a model, you need to con-
struct a Google News URL and download the data:

output_format = 'rss'

per_page = 100

query = ARGV[0]

query_encoded = URI.encode(query)

feed_url = "http://news.google.com/news" <<

"?hl=en&ned=us&ie=UTF-8" <<

"&num=" << per_page <<

"&output=" << output_format <<

"&q=" << query_encoded

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS224

9330CH11.qxd 1/7/08 12:11 PM Page 224

http://news.google.com/news

FeedTools.configurations[:feed_cache] = "FeedTools::DatabaseFeedCache"

feed=FeedTools::Feed.open(feed_url)

The URL was initially constructed by making a sample search on Google News, not-
ing the RSS URL it generated, and creating code that generates the URL. You can follow a
similar technique to create URL-generation code for other services, such as Google Blog
Search, for example.

Two static variables, output_format and per_page, are used to create the URL. You can
vary these as desired. Of course, you could have hard-coded them into the URL, but sep-
arating them makes them a bit easier to change. And note that you can simply change the
output_format variable to atom to cause the output to be in Atom instead of RSS form.
Since FeedTools can parse Atom instead of RSS seamlessly, the code will work with Atom
without any other changes.

The third variable, query_encoded, is set by the application to be a URL-encoded ver-
sion of the search string passed on the command line. The URI.encode function, provided
by Ruby’s built-in URI library, translates characters that have special meaning in URLs,
such as the & character, into their encoded form.

■Note The difference between a Uniform Resource Identifier (URI) and a Uniform Resource Locator (URL)
is generally unimportant. Strictly speaking, a URI can also be a Uniform Resource Name (URN), which can
specify the identity of a thing, such as a book identified by its ISBN, without actually specifiying how to get it.

Next, you set the FeedTools.configurations[:feed_cache] variable to be equal to
"FeedTools::DatabaseFeedCache", which causes FeedTools to use its built-in
DatabaseFeedCache class. If you’re inclined to write a custom FeedTools cache class—
one that stores information in, say, a memcached server—you can pass in a different
class name. Note that it’s passed in as a string, not as a class constant or a symbol.

Then you open the feed using the FeedTools::Feed.open method. This method is for-
mat-agnostic; it can be RSS, Atom, or CDF. Also, you don’t need to use a separate method
to download the URL and then pass it to FeedTools, because FeedTools downloads the
feed and parses it in one step.

Finally, you add the stories to your MySQL database:

if !feed.live?

puts "feed is cached..."

puts "last retrieved: #{ feed.last_retrieved }"

puts "expires: #{ feed.last_retrieved + feed.time_to_live }"

else

feed.items.each do |feed_story|

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS 225

9330CH11.qxd 1/7/08 12:11 PM Page 225

if not (Stories.find_by_title(feed_story.title) or

Stories.find_by_url(feed_story.link) or

Stories.find_by_guid(feed_story.guid))

puts "processing story '#{feed_story.title}' - new"

Stories.new do |new_story|

new_story.title=feed_story.title.gsub(/<[^>]*>/, '') # strip HTML

new_story.guid=feed_story.guid

new_story.sourcename=feed_story.publisher.name if feed_story.publisher.name

new_story.url=feed_story.link

new_story.published_at = feed_story.published

new_story.save

end

else

do nothing

end

end

end

If the feed isn’t live—in other words, if it’s cached—you print a brief message stating
that, and then print the date of when it was last cached and when the cache will expire.
(You could go through the data-insertion loop either way, but cached feed items are
guaranteed to be in the database already, so that would just be a waste of time.) Note that
some programmers believe that unless feed.live? is better written as if not feed.live?.

If the feed is live, you iterate through all of the items in the feed by using the items
method. You check if any stories exist with the same title, url, or guid; if none exist, you
add the story to the database. Otherwise, the story is a duplicate and you don’t add the
item. In most cases, it’s sufficient to check by guid alone. However, for news items, check-
ing by all three is a good idea, since you may eventually want to have more aggregators,
which may assign the guid or url for items differently.

Creating the News Tracker Report Application

Next, let’s take a look at creating a Rails application that shows the report. As noted at the
beginning of the chapter, you’ll use the CSS Graphs Helper plug-in to create the graphs.
This provides a simple way to graph data, by creating HTML graphs using CSS. In Chap-
ter 7, you generated custom HTML and CSS graphs using Markaby, which is the most
flexible approach, but CSS Graphs Helper does this automatically.

In this example, you’ll use the CSS Graphs Helper’s complex_bar_graph method to
create a thermometer-like chart. Also available are a bar_graph method, which creates
vertical charts, and a horizontal_bar_chart method, which creates horizontal bar charts.
You can get more information about CSS Graphs Helper and its various charts at
http://nubyonrails.com/pages/css_graphs.

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS226

9330CH11.qxd 1/7/08 12:11 PM Page 226

http://nubyonrails.com/pages/css_graphs

■Note Unfortunately, CSS Graphs Helper currently supports only one chart per page. And, while it’s
extremely easy to use, it has a limited range of chart types. If you’re looking for more complicated charts or
for many charts per page, consider using the Gruff graphing library (which was created by the same person
who created CSS Graphs Helper). You can find examples of Gruff in Chapters 3, 4, and 10, and at the Gruff
home page: http://nubyonrails.com/pages/gruff.

Before we start, if you haven’t already installed the Rails gem, do so now:

gem install rails

Now create the framework of your Rails application as follows:

rails newstracker

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

create components

create db

. . .

create log/server.log

create log/production.log

create log/development.log

create log/test.log

Next, create a report controller, as follows:

cd newstracker

ruby script/generate controller Reporter

exists app/controllers/

exists app/helpers/

create app/views/reporter

exists test/functional/

create app/controllers/reporter_controller.rb

create test/functional/reporter_controller_test.rb

create app/helpers/reporter_helper.rb

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS 227

9330CH11.qxd 1/7/08 12:11 PM Page 227

http://nubyonrails.com/pages/gruff

This controller covers a single action, which renders the report.
Your next step is to create the single model, which represents your stories table, as

follows:

ruby script/generate model Story

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/story.rb

create test/unit/story_test.rb

create test/fixtures/stories.yml

create db/migrate

create db/migrate/001_create_stories.rb

Next, install CSS Graphs Helper by using the following command:

script/plugin install http://topfunky.net/svn/plugins/css_graphs

+ ./css_graphs/History.txt

+ ./css_graphs/MIT-LICENSE

+ ./css_graphs/Manifest.txt

+ ./css_graphs/README.txt

+ ./css_graphs/Rakefile

+ ./css_graphs/about.yml

+ ./css_graphs/generators/css_graphs/css_graphs_generator.rb

+ ./css_graphs/generators/css_graphs/templates/colorbar.jpg

+ ./css_graphs/generators/css_graphs/templates/g_colorbar.jpg

+ ./css_graphs/generators/css_graphs/templates/g_colorbar2.jpg

+ ./css_graphs/generators/css_graphs/templates/g_marker.gif

+ ./css_graphs/images/colorbar.jpg

+ ./css_graphs/init.rb

+ ./css_graphs/lib/css_graphs.rb

+ ./css_graphs/test/test_css_graphs.rb

After you install CSS Graphs Helper, you need to copy the files it uses into your
public/images directory:

ruby ./script/generate css_graphs

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS228

9330CH11.qxd 1/7/08 12:11 PM Page 228

http://topfunky.net/svn/plugins/css_graphs

create public/images/css_graphs

create public/images/css_graphs/colorbar.jpg

create public/images/css_graphs/g_colorbar.jpg

create public/images/css_graphs/g_colorbar2.jpg

create public/images/css_graphs/g_marker.gif

Now, let’s start filling in the code for the application. Add the code in Listing 11-3 to
the Reporter controller.

Listing 11-3. Reporter Controller (app/controller/reporter_controller.rb)

class ReporterController < ApplicationController

def index

custom_sql = "SELECT published_at_formatted,

count(*) as count

FROM (SELECT DATE_FORMAT(published_at,

'%m-%d-%y')

AS published_at_formatted

FROM stories) AS grouped_table

GROUP

BY published_at_formatted

;"

@stories = Story.find_by_sql(custom_sql)

end

end

Save this file as app/controller/reporter_controller.rb.
Next, create the single view, as shown in Listing 11-4.

Listing 11-4. Reporter View (app/views/reporter/index.rhtml)

<h1>Our Company In The Media</h1>

<p>

<%

story_count_max = @stories.max { |a,b| a.count.to_i <=> b.count.to_i }.count.to_f

story_data = @stories.map{|x| ["#{x.published_at_formatted} (#{x.count})",

(x.count.to_f / story_count_max)*100]}

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS 229

9330CH11.qxd 1/7/08 12:11 PM Page 229

mailto:@stories=Story.find_by_sql
mailto:@stories.max

%>

<%= complex_bar_graph story_data %>

</p>

Save this view as app/views/reporter/index.rhtml.
You don’t need to add any code into your model file. The defaults are fine, since the

model doesn’t need any relationships or other customizations. So, your application is
all set.

At this point, you’ll need to edit the config/database.yml file with your database con-
nection parameters.

You can run this script using the following command:

ruby script/server

Now open a web browser and browse to http://localhost:3000/reporter/. You should
see a screen similar to Figure 11-1.

Figure 11-1. News tracker report

Next, let’s take a look at this example line by line.

Dissecting the Code

First, let’s take a look at the single method in the controller (Listing 11-3):

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS230

9330CH11.qxd 1/7/08 12:11 PM Page 230

http://localhost:3000/reporter

def index

custom_sql = "SELECT published_at_formatted,

count(*) as count

FROM (SELECT DATE_FORMAT(published_at,

'%m-%d-%y')

AS published_at_formatted

FROM stories) AS grouped_table

GROUP

BY published_at_formatted

;"

@stories = Story.find_by_sql(custom_sql)

end

The SQL statement here pulls out each date on which a story was published and how
many stories where published that day. You use a nested query to group by a function
call. You could group by published_at directly, but then you would get each distinct time.
Since you cannot group by the result of a function call directly, you use a subquery to
return a set of rows with the date properly formatted, and then group by the new calcu-
lated field.

The list of stories is plugged into the @stories variable, which is used by the view
(Listing 11-4), as follows:

<h1>Our Company In The Media</h1>

<p>

<%

story_count_max = @stories.max { |a,b| a.count.to_i <=> b.count.to_i }.count.to_f

story_data = @stories.map{|x| ["#{x.published_at_formatted} (#{x.count})",

(x.count.to_f / story_count_max)*100]}

%>

<%= complex_bar_graph story_data %>

</p>

The first two lines of code in the view prepare the data for the third line of code. The
complex_bar_graph method expects an array whose elements are each two-element arrays.
These two-element arrays consist of a label element followed by a value element. The
value element is expected to be in the range of 0 to 100, so you first calculate the maxi-
mum count value. Then you use Ruby’s built-in map method to transform the array of

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS 231

9330CH11.qxd 1/7/08 12:11 PM Page 231

mailto:@stories=Story.find_by_sql
mailto:@stories.max

Story objects into an array of two-element arrays—what complex_bar_graph wants as an
argument.

■Note Why isn’t the data in Listing 11-4 in the controller instead of the view? The reason is that it’s view-
specific. If you were using, say, the Open Flash Chart component (introduced in Chapter 5), you would need
the data in a different format. By separating the data from the presentation, as you’ve done here, you can
change the way the data is graphed without changing the controller.

In this example, you use Ruby’s built-in max method, which is part of Enumerable, to
find the maximum count. You can use this method on hashes, arrays, or any other
vaguely list-like structure. It might be faster to make an additional query in the database,
but since you likely have only a few records, you use the Ruby built-in method instead.
Generally, you should have database calls only in the controller, but you need to find the
maximum input value because of a quirk in the complex_bar_graph method, which is a
concern of the view only.

The call to max compares each of the element’s count fields, but you convert them to
an integer before comparing them. This is because Active Record doesn’t automatically
detect that the field is a string, so it compares them as strings unless you explicitly con-
vert them.

Summary
Google News is a great news aggregator, which can be used to tap into a worldwide array
of news sources. Fortunately, as you’ve seen in this chapter, FeedTools makes accessing it
easy, and CSS Graphs Helper is a great way to present that and other data quickly and
easily.

The next chapter shows how you can take data from a web application and make it
easily accessible on a desktop machine with Windows and Microsoft Office. This way,
Windows users can access data using familiar tools.

CHAPTER 11 ■ TRACKING THE NEWS WITH GOOGLE NEWS232

9330CH11.qxd 1/7/08 12:11 PM Page 232

Creating Reports with Ruby
and Microsoft Office

For many businesspeople, knowing how to use a computer means knowing how to use
Microsoft Office running under Microsoft Windows on a PC. While adoption of open
source office software like OpenOffice.org and open source operating systems like Linux
is on the rise—and many developers, including myself, strongly prefer them—Microsoft
software in ubiquitous in corporate America. Of course, this is less of an issue for web-
based applications, since HTML is well standardized, and with a relatively small amount
of effort, you can produce applications that work across platforms. However, occasion-
ally, you’ll still need to interact directly with applications running on Microsoft Windows
systems, which can be difficult, since Microsoft Office programs have proprietary, rela-
tively closed formats.

In this chapter, we’ll look at some ways to create reports with Ruby and Microsoft
Office programs, and then work through an example of producing a web-based system
that sends its data to an Access database.

Interacting with Microsoft Office
Microsoft Excel, Word, and Access are familiar to many users. Managers and other busi-
nesspeople are trained to manipulate data in Excel, and letting them use Excel as an
input format gives them a great deal more power. In fact, you may not even get a choice
whether to use Excel, since it may be already deeply ingrained in the business model or
directly supplied to you by vendors. Microsoft Word is typically the word processor of
choice for organizations of all types. Microsoft Access is also a convenient platform. End
users can use data from Access to import data into Word and Excel; mail merges, for
example, are often done using data from Access.

Let’s look at some ways that you can create reports that interact with these familiar
Microsoft Office programs.

233

C H A P T E R 1 2

9330CH12.qxd 1/8/08 4:21 PM Page 233

Working with Microsoft Excel

Suppose you need to read data supplied in a Microsoft Excel file. Since this is a propri-
etary, closed format, there’s no easy way to parse it. Fortunately, others in the open
source community have already done the work in the form of the parseexcel gem.
(Unfortunately, the parse-excel gem did not work with the Excel files I generated while
writing this chapter, so I cannot recommend this technique at this time; however, by the
time you read this, the situation may have changed.)

If you simply want to display an Excel spreadsheet in the browser, you can consider
using unexcel, which is an open source Perl script that takes Excel files and converts them
to HTML. You can find this tool at http://sourceforge.net/projects/unexcel.

When you need to directly export data to Excel, you can use the spreadsheet-excel
gem, as discussed in detail in Chapter 4. Additionally, the example in Chapter 13 demon-
strates how to use a trick to easily export an HTML file containing tabular data to Excel
(and OpenOffice.org as well).

Working with Microsoft Word

You can convert Word documents into PDF or HTML with the Antiword or wvWare utili-
ties, but support for formatting is spotty. I’ve deployed solutions based on both, and in
my experience, clients become extremely displeased with tools that work great for some
files but break down with other files.

In theory, at least, you could run an open source word processor like AbiWord or
OpenOffice.org from the command line and generate Microsoft Word documents that
way. Both are fairly large software packages, however, and you would likely encounter
long startup times and need a lot of software you would otherwise not require on your
deployment server. Also, both OpenOffice.org and AbiWord have imperfect Word filters,
although support is improving. So, this is a conceivable solution, if that’s the route you
want to take.

When you want to write to Microsoft Word files, you’ll typically need a small piece of
software running on your clients’ desktop machines under Windows. This software can
use the Component Object Model (COM) to speak directly to your clients’ Microsoft
Office installation, and thus create the files using Word (or Access) itself. That’s the
approach we will take in this chapter’s example.

■Note COM is a platform used for, among other things, interprocess communication. It lets applications
control other applications using an object-oriented interface. You can find out more about COM at http://
en.wikipedia.org/wiki/Component_object_model.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE234

9330CH12.qxd 1/8/08 4:21 PM Page 234

http://sourceforge.net/projects/unexcel
http://en.wikipedia.org/wiki/Component_object_model
http://en.wikipedia.org/wiki/Component_object_model

To directly import data into Word, you can use the Win32OLE library. In fact, it can
help you access any Windows COM library. Listing 12-1 shows a simple example of using
Win32OLE to create a Word document (you’ll need Microsoft Word installed to run this
example).

Listing 12-1. Creating a Word Document with Win32OLE (create_word_document.rb)

require 'win32ole'

word_app = WIN32OLE.new('Word.Application')

word_app.visible = true

word_document = word_app.Documents.add

current_selection = word_app.selection

current_selection.TypeText "Dear Mr Executive, \n"

current_selection.TypeText "I hereby resign my post as chief programmer. "

current_selection.TypeText "\n\n"

current_selection.TypeText "Sincerely,\n"

current_selection.TypeText "Mr. T. Tom\n"

word_document.SaveAs 'resignation_letter.doc'

If you run the code in Listing 12-1, you will see a screen similar to Figure 12-1.
The TypeText method in Listing 12-1 adds text to the resignation letter. You can

find out more about this method at http://msdn2.microsoft.com/en-us/library/
6b9478cs(VS.80).aspx.

A huge amount of other options are available through Win32OLE. For example, if you
add the line word_app.PrintOut to the end of Listing 12-1, it will print the document before
quitting. You can find out how to do virtually any kind of Object Linking and Embedding
(OLE) Microsoft Office automation through the Microsoft Developer Network (MSDN)
documentation.

You don’t always need to use Win32OLE directly to control Microsoft Office pro-
grams. A number of other possibilities for working with Word are available. For example,
you can use Word to do a mail merge from, say, a dynamically generated Excel document,
as in the example in Chapter 4. Or, you can create a template .doc file, open it, and
replace keywords with dynamically generated data. For details on the various ways you
can use Microsoft Word, see the MSDN documentation at http://msdn2.microsoft.com/
en-us/library/kw65a0we(VS.80).aspx. You’ll need to translate the code from the languages
these techniques provide into Ruby, but as demonstrated in Listing 12-1, that’s reason-
ably straightforward.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 235

9330CH12.qxd 1/8/08 4:21 PM Page 235

http://msdn2.microsoft.com/en-us/library
http://msdn2.microsoft.com

Figure 12-1. Importing data into Word with Win32OLE

Working with Microsoft Access

To export Microsoft Access files, you can use MDB Tools (http://mdbtools.sourceforge.
net/), an open source project. You can use MDB to convert Access databases (which have
the extension .mdb, hence the name MDB Tools) to a more open database architecture,
such as PostgreSQL or MySQL. For that matter, you can also convert to proprietary data-
bases that support standard SQL, such as Sybase and Oracle.

If you would like to manipulate an Access database without completely converting it,
you can use DBI, which is a simple database library for Ruby. If you’ve used Perl’s DBI, the
version for Ruby is similar. It has support for a Perl DBI-style interface as well as a more
familar Ruby interface. You’ll take this approach in this chapter’s example, in the “Import-
ing the XML Data into Microsoft Access” section.

Importing Web-Form Data into an Access
Database
Suppose that you work for a training company that has a large number of students from
industry. Students are sent from client companies in the hope of getting them industrial
certifications, and each student must pass two classes in order to be certified.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE236

9330CH12.qxd 1/8/08 4:21 PM Page 236

http://mdbtools.sourceforge.net
http://mdbtools.sourceforge.net

Currently, each trainer submits Excel spreadsheets with the grades of each student,
and the training program administrator merges all of the spreadsheets into one master
Access database. From that Access database, the administrator creates a report of all the
students who have achieved a passing grade in both classes. Merging the data is time
consuming, and often the Excel spreadsheets are created with different headings and
notes in individual fields, which makes the import process harder.

The administrator would like you to create a reporting system to make the process
smoother. She wants to replace Excel spreadsheets with a web form, but she is not willing
to give up her Access database. Therefore, she wants you to create a web-based entry sys-
tem with some way to automatically import the data into Access.

Fortunately, you can do this fairly easily with Ruby, Rails, and a few gems. The appli-
cation will be split up into two parts: a web interface to enter data and then serve the
data as XML, and a small, Windows-only, application that will go on the administrator’s
desktop. When the administrator wants to update her database, she simply drags her
database onto the Update Program icon.

First, let’s start creating the Rails application.

Creating the Web Interface

Begin the Rails application by creating the framework:

rails training_app

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

create components

create db

create doc

create lib

. . .

create log/production.log

create log/development.log

create log/test.log

Next, create the first controller for this application, which will contain the main page
of the application:

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 237

9330CH12.qxd 1/8/08 4:21 PM Page 237

cd training_app

ruby script/generate controller homepage

exists app/controllers/

exists app/helpers/

create app/views/homepage

exists test/functional/

create app/controllers/homepage_controller.rb

create test/functional/homepage_controller_test.rb

create app/helpers/homepage_helper.rb

Now add the code for the home page controller, shown in Listing 12-2.

Listing 12-2. Homepage Controller (app/controllers/homepage_controller.rb)

class HomepageController < ApplicationController

def index

end

end

Save this file as app/controllers/homepage_controller.rb. This controller has just a
single view, shown in Listing 12-3.

Listing 12-3. Homepage Index View (app/views/homepage/index.html.erb)

<h1>Training Log Application</h1>

<p>Actions:</p>

<%=link_to 'Upload Log', :action=>:upload, :controller=>:log %>

<%=link_to 'Download XML', :action=>:index, :controller=>:log %>

Save this code as app/views/homepage/index.html.erb.
Next, create the log controller, which will keep a log of all of the students’ grades:

ruby script/generate controller log

exists app/controllers/

exists app/helpers/

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE238

9330CH12.qxd 1/8/08 4:21 PM Page 238

create app/views/uploader

exists test/functional/

create app/controllers/log_controller.rb

create test/functional/log_controller_test.rb

create app/helpers/log_helper.rb

This controller will have an upload action to add new data and a view action to view
the old data. Listing 12-4 shows the code.

Listing 12-4. Log Controller (app/controllers/log_controller.rb)

class LogController < ApplicationController

def upload

if request.post?

count = 0

training_class = TrainingClass.find_by_id(params[:training_class_id])

training_class_date = Date.parse(params[:training_class_date])

params[:trainee].each do |index, t|

next if t[:name]==''

student = Student.find_or_create_by_name_and_employer(t[:name],

t[:employer])

student.grades.create(:percentage_grade => t[:grade],

:training_class=>training_class,

:took_class_at=>training_class_date)

count = count +1

end

flash[:notice]="#{count} Entries Uploaded!"

end

end

def index

@grades = Grade.find(:all)

render(:layout=>false)

end

end

Save this file as app/controllers/log_controller.rb.
Now create the views for the log controller’s actions. The first view lets the students

enter data, as shown in Listing 12-5.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 239

9330CH12.qxd 1/8/08 4:21 PM Page 239

Listing 12-5. Log Uploader View (app/views/log/upload.html.erb)

<%@title='Upload Training Log'

number_of_elements_displayed = 10

%>

<% form_tag do %>

<p>Class: <%=select ('training_class_id', nil,

TrainingClass.find(:all).map { |c|

[c.name, c.id] })%>

Date: <%= calendar_date_select_tag "training_class_date",

Date.today.strftime('%B %d, %Y') %></p>

<table>

<tr><th>Trainee Name</th> <th>Trainee Employer</th> <th>Grade</th></tr>

<%1.upto(number_of_elements_displayed) do |i|%>

<tr>

<td><%=text_field "trainee", 'name',:index=>i %></td>

<td><%=text_field "trainee", 'employer', :index=>i %></td>

<td><%=text_field "trainee", 'grade', :index=>i, :size=>3, :value=>'0'%>%</td>

</tr>

<%end%>

<tr><td><%=submit_tag 'Upload', :class=>'submit_button'%>

</table>

<%end%>

Save this as app/views/log/upload.html.erb.
The other view lets you download the data as XML, as shown in Listing 12-6.

Listing 12-6. XML Download View (app/views/log/index.xml.builder)

xml.instruct! :xml, :version=>"1.0"

xml.instruct! 'xml-stylesheet', :href=>'/stylesheets/log.css'

xml.grades do

xml.css :href=>'/stylesheets/log.css'

@grades.each do |grade|

xml.grade do

xml.id grade.id

xml.student grade.student.name

xml.employer grade.student.employer

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE240

9330CH12.qxd 1/8/08 4:21 PM Page 240

mailto:@grades.each

xml.class grade.training_class.name

xml.grade grade.percentage_grade

xml.took_class_at grade.took_class_at

end

end

end

Save this as app/views/log/index.xml.builder.
You’ll notice a reference to a stylesheet for your XML. Let’s create that now, as shown

in Listing 12-7.

Listing 12-7. XML Download Stylesheet (public/stylesheets/log.css)

* {

display:block;

font-family: helvetica, verdana, sans-serif;

}

grades {

padding:1em;

}

grade {

margin-top:1em;

}

student {

font-weight: bold;

}

Note that this stylesheet affects only your XML, not your HTML views.
You now have two views, but no layout. Let’s create a layout for them, as shown in

Listing 12-8.

Listing 12-8. Application-Wide Layout (app/views/layout/application.html.erb)

<html>

<head>

<title>Training Uploader Application <%=@title || ''%></title>

<%= stylesheet_link_tag 'training.css'%>

<%= javascript_include_tag :defaults %>

<%= calendar_date_select_includes "silver"%>

</head>

<body>

<h1><%=@title%></h1>

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 241

9330CH12.qxd 1/8/08 4:21 PM Page 241

<%flash.each do |type,msg|%>

<div class="flash_<%=type%>">

<%=msg%>

</div>

<%end%>

<%=yield%>

</body>

</html>

Save this as app/views/layout/application.html.erb.
Note that the layout includes a link to training.css, so you’ll need to create that next,

as shown in Listing 12-9.

Listing 12-9. Application Stylesheet (public/stylesheet/training.css)

* { font-family: helvetica, verdana, sans-serif; }

div.flash_notice { padding:1em; border: 2px dashed #cecece; margin: 1em 0;}

input.submit_button { width:120px; height:30px; }

Save this file as public/stylesheet/training.css.
Now generate a model, which represents students taking the course:

ruby script/generate model student

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/student.rb

create test/unit/student_test.rb

create test/fixtures/students.yml

create db/migrate

create db/migrate/001_create_students.rb

You’ll notice it creates a migration for you automatically. Fill that in as shown in
Listing 12-10.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE242

9330CH12.qxd 1/8/08 4:21 PM Page 242

Listing 12-10. Create Students Table Migration (db/migrate/001_create_students.rb)

class CreateStudents < ActiveRecord::Migration

def self.up

create_table :students do |t|

t.string :name, :limit=>45

t.string :employer, :limit=>45

t.timestamps

end

end

def self.down

drop_table :students

end

end

Note that the limit clause sets a maximum amount of characters in each column.
Listing 12-11 shows the code for your student model.

Listing 12-11. Student Model (app/models/student.rb)

class Student < ActiveRecord::Base

has_many :grades

end

Save this as app/models/student.rb.
You also need to generate a grade model, which represents the grade each student

received for each class:

ruby script/generate model grade

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/grade.rb

create test/unit/grade_test.rb

create test/fixtures/grades.yml

exists db/migrate

create db/migrate/002_create_grades.rb

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 243

9330CH12.qxd 1/8/08 4:21 PM Page 243

Next, add the code shown in Listing 12-12 to your second migration.

Listing 12-12. Create Grades Table Migration (db/migrate/002_create_grades.rb)

class CreateGrades < ActiveRecord::Migration

def self.up

create_table :grades do |t|

t.integer :student_id

t.integer :training_class_id

t.integer :percentage_grade

t.datetime :took_class_at

t.timestamps

end

end

def self.down

drop_table :grades

end

end

Listing 12-13 shows the code for the grade model.

Listing 12-13. Grade Model (app/models/grade.rb)

class Grade < ActiveRecord::Base

belongs_to :student

belongs_to :training_class

end

Save this as app/models/grade.rb.
Finally, create the last model, training_class:

ruby script/generate model training_class

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/training_class.rb

create test/unit/training_class_test.rb

create test/fixtures/training_class.yml

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE244

9330CH12.qxd 1/8/08 4:21 PM Page 244

exists db/migrate

create db/migrate/003_create_training_class.rb

The code for the third and last migration is shown in Listing 12-14.

Listing 12-14. Create Training Classes Table Migration
(db/migrate/003_create_training_class.rb)

class CreateTrainingClasses < ActiveRecord::Migration

def self.up

create_table :training_classes do |t|

t.string :name, :limit=>45

end

end

def self.down

drop_table :training_classes

end

end

Listing 12-15 shows the code for the training_class model.

Listing 12-15. Training Class Model (app/models/training_class.rb)

class TrainingClass < ActiveRecord::Base

has_many :grades

end

Save this as app/models/training_class.rb.
Now you need to create a database named training_development, and then edit your

config/database.yml file with the MySQL connection settings for your machine.
Then you can run the three migrations:

rake db:migrate

(in /path/to/your/project)

== CreateStudents: migrating ==

-- create_table(:students)

-> 0.0310s

== CreateStudents: migrated (0.0310s) ===

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 245

9330CH12.qxd 1/8/08 4:21 PM Page 245

== CreateGrades: migrating ==

-- create_table(:grades)

-> 0.0000s

== CreateGrades: migrated (0.0000s) ===

== CreateTrainingClasses: migrating ===

-- create_table(:training_classes)

-> 0.0150s

== CreateTrainingClasses: migrated (0.0150s) ==================================

Next, add some data to your training_classes table, as shown in Listing 12-16.

Listing 12-16. Training Class Table Data (db/data/training_class_data.sql)

INSERT INTO training_classes (name)

VALUES ('Practical Exopaleontology'),

('Pro Quantum Biology');

Make a directory called data under the db directory, and save this as db/data/
training_class_data.sql. Import it with the following command:

mysql training_development < db/data/training_class_data.sql

Next, set up your routes, as shown in Listing 12-17.

Listing 12-17. Routes File (config/routes.rb)

ActionController::Routing::Routes.draw do |map|

map.root :controller => "homepage"

map.connect '/log', :controller => 'log',

:action => 'index', :format => 'xml'

map.connect ':controller/:action/:id.:format'

map.connect ':controller/:action/:id'

end

Note that to make the index action of your homepage controller the page for /, you also
need to delete the file public/index.html.erb, so do that now.

To improve the interface, you’ll use the Calendar Date Select plug-in, which gives you
a nice calendar from which to pick dates. Users often prefer selecting dates from calen-
dars, since they can verify the entry visually. Install the plug-in with this command:

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE246

9330CH12.qxd 1/8/08 4:21 PM Page 246

ruby script/plugin install ➥

://calendardateselect.googlecode.com/svn/tags/calendar_date_select

Finally, run the script using the following command:

ruby script/server

You can see the application by pointing a web browser to http://localhost:3000/.
Click Upload Log. You should see a screen similar to Figure 12-2. Enter a few ficti-

tious names, employers, and grades. A passing grade is 70, and the report groups by
passing grades, so enter at least one grade of at least 70.

Figure 12-2. Training Log Uploader

Let’s look at the important parts of the code.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 247

9330CH12.qxd 1/8/08 4:21 PM Page 247

http://localhost:3000

Dissecting the Code

The log controller has two methods. The first controls uploading new logs. Let’s examine
its associated view (Listing 12-5):

<%@title='Upload Training Log'

number_of_elements_displayed = 10

%>

<% form_tag do %>

<p>Class: <%=select ('training_class_id', nil,

TrainingClass.find(:all).map { |c|

[c.name, c.id] }) %>

Date: <%= calendar_date_select_tag "training_class_date",

Date.today.strftime('%B %d, %Y') %></p>

These two input controls are used to set the TrainingClass (that is, either Practical
Exopaleontology or Pro Quantum Ethnology) and the date for the rest of the form. The
date control uses the calendar_date_select helper, which creates a regular text box with
a button to select the date using a drop-down calendar.

The rest of the view is concerned with creating the individual rows to enter trainee
grades:

<table>

<tr><th>Trainee Name</th> <th>Trainee Employer</th> <th>Grade</th></tr>

<%1.upto(number_of_elements_displayed) do |i|%>

<tr>

<td><%=text_field "trainee", 'name',:index=>i %> </td>

<td><%=text_field "trainee", 'employer', :index=>i %></td>

<td><%=text_field "trainee", 'grade', :index=>i, :size=>3, :value=>'0'%>%</td>

</tr>

<%end%>

<tr><td><%=submit_tag 'Upload', :class=>'submit_button'%></td></tr>

</table>

<%end%>

Note the :index option passed to each text_field element. This lets you submit mul-
tiple objects with the same name, and Rails turns them into an array before passing them
to your controller.

Let’s examine the controller part of this action next (in Listing 12-4):

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE248

9330CH12.qxd 1/8/08 4:21 PM Page 248

def upload

if request.post?

count = 0

training_class = TrainingClass.find_by_id(params[:training_class_id])

training_class_date = Date.parse(params[:training_class_date])

First, this code checks if the form has been submitted yet by checking the
request.post? flag. If the request.post? flag is set, then the request is an HTTP POST
request, which means that the user has submitted the form. After that, it sets a few
variables. It finds the appropriate TrainingClass, which the user has selected using a
drop-down list, and then parses the user-entered date. These variables will be used to
assign a date and a TrainingClass to each grade entered on the form.

Next, you loop through the params[:trainee] array, which has one entry for each row
of your form, and add a grade object for each of them:

params[:trainee].each do |index, t|

next if t[:name]==''

student = Student.find_or_create_by_name_and_employer(t[:name],

t[:employer])

student.grades.create(:percentage_grade => t[:grade],

:training_class=>training_class,

:took_class_at=>training_class_date)

count = count +1

end

flash[:notice]="#{count} Entries Uploaded!"

end

end

Note the use of find_or_create_by_name_and_employer. This dynamically generated
finder returns an existing Student object with that name and employer if it already exists;
if not, it creates a new one.

■Note Using the dynamically generated finder means that a typo in the name or employer field will create
a new Student record, which may be a problem. If so, you might prefer to require that users maintain sepa-
rate lists of trainees and employers and select them from a drop-down list. Although that would be more
awkward, it would reduce the chances of incorrect data input.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 249

9330CH12.qxd 1/8/08 4:21 PM Page 249

In the log controller, the following code displays your data as XML:

def all

@grades = Grade.find(:all)

render :layout=>false # Only renders as XML...

end

This controller action is pretty simple. It finds all of the grades and renders all the
action without a layout, since it’s XML and the layout is a builder template. Here’s the
view itself (Listing 12-6):

xml.instruct! :xml, :version=>"1.0"

xml.instruct! 'xml-stylesheet', :href=>'/stylesheets/log.css'

xml.grades do

@grades.each do |grade|

xml.grade do

xml.student grade.student.name

xml.id grade.id

xml.employer grade.student.employer

xml.class grade.training_class.name

xml.grade grade.percentage_grade

xml.took_class_at grade.took_class_at

end

end

end

This code is an XML builder template, which is the most common way to create XML
output in Rails. The template gives you a builder object, and the builder object assumes
undefined methods represent tag names, so the xml.grades call creates a <grades> ele-
ment. The code then loops through all of the grades and creates a <grade> element for
each grade with the various properties set: student, id, and so forth. The initial calls to
xml.instruct! give various metadata about the document, including the XML version and
the location of the stylesheet.

■Note XML stylesheets affect the way the data looks when viewed in a browser. This approach is not as
flexible as using XSLT, but it’s much more straightforward.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE250

9330CH12.qxd 1/8/08 4:21 PM Page 250

mailto:@grades.each

Importing the XML Data into Microsoft Access

Now that you have a web application that serves up XML, you need a program to import
the data into Access. For this example, you’ll use the DBI database library for Ruby, men-
tioned earlier in the chapter. DBI comes with the Ruby one-click installer, but in order to
get DBI to work with ActiveX Data Objects (ADO), you’ll need to install the ADO driver.
(ADO is one of many Microsoft technologies for accessing databases.)

Create a directory called C:\ruby\lib\ruby\site_ruby\X.Y\DBD\ADO. Replace X.Y with
the appropriate Ruby version, and if your Ruby isn’t installed in C:\ruby, modify the path
appropriately). Grab the latest Ruby-DBI package from http://rubyforge.org/projects/
ruby-dbi (you’ll need at least version 0.1.1), and unzip the file src/lib/dbd_ado/ADO.rb into
that directory. You’ll need an appropriate decompression utility to unzip the tar.gz file,
such as 7-Zip (http://www.7-zip.org/).

Of course, the ability to insert data into the database isn’t enough, You also need to
be able to retrieve the XML from the server and parse it. Let’s use XmlSimple. As you saw
in Chapter 9, XmlSimple is a very simple XML parser designed to turn complex XML data
into a collection of hashes and arrays. (It’s based on the Perl XML::Simple library, so if
you’ve used that, it will be familiar.) You’ll also need to install the rubyscript2exe gem.
Install both gems as follows:

gem install -y xml-simple rubyscript2exe

Begin by creating the data loader, as shown in Listing 12-18.

Listing 12-18. Access Data Loader (training_loader.rb)

require 'dbi'

require 'xmlsimple'

require 'yaml'

require 'open-uri'

require 'swin'

database_path = ARGV[0]

unless database_path # If no path was specified on the command line,

then ask for one.

You can find out more about Windows common dialogs here:

http://msdn2.microsoft.com/en-us/library/ms646949.aspx

You can find the header file with the full list of constants

here:

http://doc.ddart.net/msdn/header/include/commdlg.h.html

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 251

9330CH12.qxd 1/8/08 4:21 PM Page 251

http://rubyforge.org/projects
http://www.7-zip.org
http://msdn2.microsoft.com/en-us/library/ms646949.aspx
http://doc.ddart.net/msdn/header/include/commdlg.h.html

OFN_HIDEREADONLY = 0x0004

OFN_PATHMUSTEXIST = 0x0800

OFN_FILEMUSTEXIST = 0x1000

filetype_filter =[['Access Database (*.mdb)','*.mdb'],

['All files (*.*)', '*.*']]

database_path = SWin::CommonDialog::openFilename(

nil,

filetype_filter,

OFN_HIDEREADONLY |

OFN_PATHMUSTEXIST |

OFN_FILEMUSTEXIST,

'Choose a database')

exit if database_path.nil?

end

begin

domain = '127.0.0.1'

port = '3000'

xml = open("http://#{domain}:#{port}/log/all").read

grades = XmlSimple.xml_in(xml)['grade']

puts YAML.dump(grades)

imported_count = 0

DBI.connect("DBI:ADO:" <<

"Provider=Microsoft.Jet.OLEDB.4.0;" <<

"Data Source=#{database_path}") do |dbh|

grades.each do |grade_raw|

g ={}

grade_raw.each do |key,value|

if value.length == 1

g[key] = value.first

else

g[key] = value

end

end

#g.map! { g.length==1 ? g.first : g}

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE252

9330CH12.qxd 1/8/08 4:21 PM Page 252

sql = "SELECT COUNT(*)

FROM grades

WHERE id=?;"

dbh.select_all(sql, g['id'].to_i) do |row|

count = *row

if count == 0

sql = 'INSERT INTO grades

(id, student,

employer, grade,

class_date, class_name)

VALUES (?,?,?,?,?, ?);'

dbh.do(sql, g['id'], g['student'],

g['employer'], g['grade'],

Date.parse(g['took_class_at']),

g['class']

);

dbh.commit

imported_count = imported_count + 1

end

end

end

end

SWin::Application.messageBox "Done! #{imported_count} records imported.",

"All done!"

rescue

SWin::Application.messageBox $!, "Error while importing"

end

Save this as training_loader.rb.
Before you run the example, make sure that the Rails application you created in the

previous section is running. You can start it using the command ruby script/server.
Then download the sample training.mdb file from the Source/Downloads area of the
Apress web site (http://www.apress.com) or from http://rubyreporting.com/examples/
training.mdb.

Run this loader as follows:

ruby training_loader.rb

It should present you with a file open dialog box similar to Figure 12-3. Select the
training.mdb database, and you’ll get a message box notifiying you how many records
were imported.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 253

9330CH12.qxd 1/8/08 4:21 PM Page 253

http://www.apress.com
http://rubyreporting.com/examples

■Tip You can also pass this script an argument on the command line. Users may like dialog boxes, but
there is no reason not to make your scripts accessible via a more familar Unix-style command-line interface.
For example, you could use the Windows scheduler to run this command once an hour, which means that
the user would not need to update the database manually.

Figure 12-3. Choosing a database

Next, open the training.mdb database in Access, click the Reports tab, and then dou-
ble-click the Passing Trainees report. You will see a report similar to Figure 12-4.

As you can see, your script successfully imported the data into Access. If you added
more data to your application and reran the loader script, it would load only the new
data, so it is safe to use repeatedly.

However, the solution is still not well suited for the administrator, since running the
script requires a Ruby interpreter. It would be easier to install if it were just a single exe-
cutable. Let’s use rubyscript2exe to reduce this to an EXE file so that the end user can run
it directly on her desktop.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE254

9330CH12.qxd 1/8/08 4:21 PM Page 254

Figure 12-4. Access passing trainees report

First, install rubyscript2exe:

gem install rubyscript2exe

Next, compile it as follows:

rubyscript2exe training_loader.rb C:\full\path\to\training.mdb

Tracing training_loader...

Gathering files...

Copying files...

Creating training_loader.exe ...

This will create a training_loader.exe file, which can perform all of the functions that
your original script performed. In fact, it will work even if you install it on a machine
without Ruby installed, although you would need to change the hard-coded server
address in the script, since it always looks for a Rails application running on localhost.
You could store the information in a text file or in the Windows registry if you wanted.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 255

9330CH12.qxd 1/8/08 4:21 PM Page 255

■Note The reason the call includes the reference to the database is that when you use rubyscript2exe,
it runs the program once to determine the required libraries. However, the database driver won’t be loaded
until the connection to the database is made, and if you don’t run the script until that point, the driver won’t
be included.

Let’s examine the code line by line.

Dissecting the Code

First, the loader script (Listing 12-18) checks to see whether a database was passed on the
command line:

database_path = ARGV[0]

unless database_path # If no path was specified on the command line,

then ask for one.

You can find out more about Windows common dialogs here:

http://msdn2.microsoft.com/en-us/library/ms646949.aspx

You can find the header file with the full list of constants

here:

http://doc.ddart.net/msdn/header/include/commdlg.h.html

OFN_HIDEREADONLY = 0x0004

OFN_PATHMUSTEXIST = 0x0800

OFN_FILEMUSTEXIST = 0x1000

filetype_filter =[['Access Database (*.mdb)','*.mdb'],

['All files (*.*)', '*.*']]

database_path = SWin::CommonDialog::openFilename(

nil,

filetype_filter,

OFN_HIDEREADONLY |

OFN_PATHMUSTEXIST |

OFN_FILEMUSTEXIST,

'Choose a database')

exit if database_path.nil?

end

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE256

9330CH12.qxd 1/8/08 4:21 PM Page 256

http://msdn2.microsoft.com/en-us/library/ms646949.aspx
http://doc.ddart.net/msdn/header/include/commdlg.h.html

If no database was passed, a Windows common dialog box is displayed, asking the
user to choose a database file. This is achieved using the SWin::CommonDialog::
openFilename method, which has the following parameters:

Parent window: Since you don’t have any windows in this example, the parent win-
dow parameter is nil. In this case, having no owner window won’t change anything.
If you’re interested in the cases where it does, you can read the gory details at
http://msdn2.microsoft.com/en-us/library/ms646839.aspx.

Filter: The filter parameter is an array of two-element arrays. The first member of
each two-element array is a string with a description, and the second is a string with
a wildcard. This lets the user select the type of files displayed. The program has two
filters: an Access database filter showing only files with an .mdb extension, and an “all
files” filter showing all files. Although virtually all Access databases have an .mdb
extension, it’s convention to give the user the option of viewing all files. Note that this
file-type filtration mechanism is intended for convenience and not for security. If the
user types a new filter into the file name box and presses Enter, that filter will over-
ride the programmer-supplied filters.

Flags: This parameter is a bit field. You set individual options by bitwise ORing
them together. (It would be more Ruby-like to instead use an options hash, but the
designer of this interface has chosen to stick more closely to the Win32 API.) You set
three options. The first is OFN_HIDEREADONLY, which hides the “read-only” check box.
This check box exists by default and allows the users to indicate that they wish to
open the file for reading only, but since this application has no function except to
write to databases, there’s no point in displaying that option. The other two options,
OFN_PATHMUSTEXIST and OFN_FILEMUSTEXIST, guarantee that the user must select an
existing path and file; otherwise, they could type in the name of a nonexistent file.

Once you have a database file to import into, you can start downloading the data:

begin

domain = 'localhost'

port = '3000'

xml = open("http://#{domain}:#{port}/log/all").read

grades = XmlSimple.xml_in(xml)['grade']

This code opens the address, reads the data, and then parses the XML using
XmlSimple.xml_in. The reason you can use open to download a web page is that you
require’d the open-uri at the top of the script. This allows the call to open to download
data from remote URIs, which it normally cannot do.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 257

9330CH12.qxd 1/8/08 4:21 PM Page 257

http://msdn2.microsoft.com/en-us/library/ms646839.aspx

■Note As noted in Chapter 11, a URL and a URI are the same in almost all situations you are likely to
encounter. All URLs are URIs, and while some URIs are not URLs, most are, and the difference is rarely
important even in academic contexts. You can find out more about URIs at http://en.wikipedia.org/
wiki/Uniform_Resource_Identifier.

At this point, the grades variable looks something like this:

[{"grade"=>["88"],

"student"=>["Bob Smithye"],

"class"=>["Practical Exopaleontology"],

"employer"=>["Transmegtech"],

"id"=>["25"],

"took_class_at"=>["Wed Nov 07 00:00:00 -0500 2011"]},

{"grade"=>["83"],

"student"=>["John Tumblewood"],

"class"=>["Practical Exopaleontology"],

"employer"=>["Elexagijitech"],

"id"=>["26"],

"took_class_at"=>["Wed Nov 07 00:00:00 -0500 2011"]},

. . .

The grades variable is an array of hashes. Each value of the resultant hash is an array,
even though they are all single values. This is because although each row will have only
one id, one grade, and so forth, that isn’t evident from the XML. The structure of the XML
is such that you could have more than one student or class for each row, so it puts them
all in single-element arrays. It’s easy to work around, though, since you can simply take
the first element of each array to access its single value.

Next, the code connects to the database and loops through each grade from the XML:

imported_count = 0

DBI.connect("DBI:ADO:" <<

"Provider=Microsoft.Jet.OLEDB.4.0;" <<

"Data Source=#{database_path}") do |dbh|

grades.each do |grade_raw|

g ={}

grade_raw.each do |key,value|

if value.length == 1

g[key] = value.first

else

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE258

9330CH12.qxd 1/8/08 4:21 PM Page 258

http://en.wikipedia.org

g[key] = value

end

end

The loop goes through each grade and pulls out the single value from each member,
which makes it a bit easier to access.

Then you need to check if this particular grade has already been processed:

sql = "SELECT COUNT(*)

FROM grades

WHERE id=?;"

dbh.select_all(sql, g['id'].to_i) do |row|

count = *row

if count == 0

The select_all method calls your block once for each row of the result. The query
returns only one result, so your block is executed only once. The row is an array, so you
use the * operator to pull that single value into the count variable, and check if the result
is zero. If the result is zero, this data is missing from your local database, and you can
insert it as follows:

sql = ' INSERT INTO grades

(id, student,

employer, grade,

class_date, class_name)

VALUES (?,?,?,?,?,?);'

dbh.do(sql, g['id'], g['student'],

g['employer'], g['grade'],

Date.parse(g['took_class_at']),

g['class']

);

dbh.commit

imported_count = imported_count + 1

■Note Adding missing records isn’t the only way to synchronize databases. You could also delete all of the
records every time you import the data from the XML, and simply insert all of the records again. However,
this will cause problems if the end user wants to add new fields to the table. With the current technique,
adding fields isn’t a problem—the importer will leave them alone.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE 259

9330CH12.qxd 1/8/08 4:21 PM Page 259

If the import was successful, you pop up a message box telling the user you’re fin-
ished and how many records were imported. If the import failed, you need to display an
error message.

SWin::Application.messageBox "Done! #{imported_count} records imported.",

"All done!"

rescue

SWin::Application.messageBox $!, "Error while importing"

end

The SWin::Application.messageBox displays a pop-up dialog box with a simple mes-
sage. You pass it two parameters: the first is the message itself, and the second is the title.
Note that the second call to messageBox uses the $! special variable, which contains a
description of the error. You might prefer to output a generic message and log the error to
a file, which you can do using the following code:

rescue

SWin::Application.messageBox "There was an error during the import process.",

"Error while importing"

File.open("training_loader.log", "a").puts $!

end

At this point, you have a web application for entering data, which gives you flexibility
and easy deployment, and it exports XML. You also have a desktop application, which
imports this XML into your Access database. This lets the administrator easily create cus-
tomized reports and present other information in a familiar, easy-to-use environment.
Even better, the importer is very easy to use and familiar. It is activated with a double-
click and communicates information with simple dialog boxes that most Windows users
will find comfortable to use.

Summary
Microsoft Office is used every day by businesspeople everywhere, and those business-
people often have extensive experience using Microsoft Office programs to analyze data.
You can often enhance the utility of your software by using Microsoft Office output for-
mats. Access or Excel can be a “catchall” analysis tool for a host of miscellaneous
questions not directly answered by your reporting, and therefore you can empower your
users, which is what reporting—and, for that matter, open source software—is all about.

The next chapter covers how you can plan Google AdWords advertising campaigns
using Hpricot, Active Record, and HTML reports.

CHAPTER 12 ■ CREATING REPORTS WITH RUBY AND MICROSOFT OFFICE260

9330CH12.qxd 1/8/08 4:21 PM Page 260

Tracking Your Ads with
Google AdWords

According to a 2005 report by PricewaterhouseCoopers, $385 billion dollars are spent
on advertising annually. This report estimated that by 2010, worldwide advertising
spending will exceed $500 billion. As you can imagine, such a gigantic flow of money
requires a similarly gigantic infrastructure. Of course, the most common advertising for-
mats—print, radio, and television—have a relatively long history, with a very entrenched
methodology for analyzing how money is spent. On the other hand, web advertising is a
relatively new phenomenon, and many organizations do not have a coherent system for
tracking Internet advertising.

Perhaps the most popular online advertising system is Google AdWords, which
allows people to buy text advertising space in small blocks to the right of Google’s main
search results. Additionally, Google allows Google AdWords ads to be placed on other
web sites using the Google AdSense program, which further increases the potential mar-
ket of Google AdWords advertisers.

Ads in Google AdWords are priced on a per-click basis, so the more your ad is clicked,
the more you pay, and you pay only when people click your ad. Each advertisement has a
list of keywords for which it will appear, and a maximum per-click bid on each keyword.
(You can find out more about AdWords at http://adwords.google.com.)

Because Google AdWords is a type of Vickrey auction, you pay only what the second-
highest bidder paid, so you can bid your maximum without fear of overpaying. However,
a number of ads can appear on a single page, with progressively lower bidders receiving
progressively lower locations. Some Google AdWords advertisers attempt to bid as low as
possible while still having their ad appear on the search results page.

Additionally, advertisers often attempt to purchase obscure keywords or misspelled
keywords. In reality, such attempts are often stymied by the fact that keywords without
competition usually do not receive many search results, so the total amount of clicks
available for purchase is likely low. As a result, advertisers attempt to construct the most
attractive ad possible, so they can get more clicks for obscure, and therefore cheaper,
keywords.

261

C H A P T E R 1 3

9330CH13.qxd 1/7/08 12:14 PM Page 261

http://adwords.google.com

Obviously, conducting an effective Google AdWords campaign requires some strat-
egy. This chapter’s example is a reporting system that will help you optimize a selection
of ads, so that each click is as cheap as possible.

Obtaining Google AdWords Reports
For the example in this chapter, you need to start with a report on the past performance
of your ads. Fortunately, you can do this fairly easily. Google AdWords offers a number of
different report types, each of which can be viewed in several ways, ranging from HTML
to XML or CSV format.

If you don’t have access to a Google AdWords account, you can feel free to download
a sample XML file in the Source/Downloads area of the Apress web site (http://www.
apress.com) or from http://rubyreporting.com/examples/google_adwords_sample.xml.

However, if you already have a Google AdWords account with some data in it, you
can retrieve your own report as follows:

1. From the Google AdWords site, click the Report tab.

2. Click Create a New Report. You should see a screen similar to Figure 13-1.

3. Select Ad Performance.

4. At this point, you can filter the data using the available options. For example, you
can limit the data to just a few days. For this example, just click Create Report to
generate the report.

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS262

9330CH13.qxd 1/7/08 12:14 PM Page 262

http://www.apress.com
http://www.apress.com
http://rubyreporting.com/examples/google_adwords_sample.xml

Figure 13-1. Google report creation page

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 263

9330CH13.qxd 1/7/08 12:14 PM Page 263

5. You should see some notification that your report is being prepared. This screen
will automatically refresh, and when your report is ready, you should see a screen
similar to Figure 13-2. Under the Export Results label, click the XML download
link.

Figure 13-2. Google reporting page

6. Save this file and use it for this chapter’s example.

The XML source in the sample file you can download looks like Listing 13-1.

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS264

9330CH13.qxd 1/7/08 12:14 PM Page 264

Listing 13-1. Google AdWords Sample XML (google_adwords_sample.xml)

<?xml version="1.0" standalone="yes"?>

<report>

<table>

<columns>

<column name="month"/>

<column name="campaign"/>

<column name="adgroup"/>

<column name="preview"/>

<column name="headline"/>

<column name="desc1"/>

<column name="desc2"/>

<column name="creativeVisUrl"/>

<column name="creativeid"/>

<column name="creativeType"/>

<column name="creativeStatus"/>

<column name="agStatus"/>

<column name="creativeDestUrl"/>

<column name="campStatus"/>

<column name="imps"/>

<column name="clicks"/>

<column name="ctr"/>

<column name="cpc"/>

<column name="cost"/>

. . .(may vary depending on fields selected). . .

</columns>

<rows>

<row month="December 2009" campaign="Campaign #1"

adgroup="Python" preview="Not available"

headline="We Write Apps in Python"

desc1="We're not a sweatshop,"

desc2="so we only need to write it once."

creativeVisUrl="berubeconsulting.com"

creativeid="554433221"

creativeType="text"

creativeStatus="Disabled"

agStatus="Enabled"

creativeDestUrl="http://berubeconsulting.com"

campStatus="Paused" imps="6230"

clicks="41" ctr="0.00658105939004815"

cpc="160000" cost="6560000" />

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 265

9330CH13.qxd 1/7/08 12:14 PM Page 265

http://berubeconsulting.com

<row month="December 2009" campaign="Campaign #1"

adgroup="Ruby" preview="Not available"

headline="We Write Apps in Ruby"

desc1="We're not a sweatshop,"

desc2="so we only need to write it once."

creativeVisUrl="berubeconsulting.com"

creativeid="112233445"

creativeType="text"

creativeStatus="Disabled"

agStatus="Enabled"

creativeDestUrl="http://berubeconsulting.com"

campStatus="Paused" imps="4099"

clicks="48" ctr="0.0117101732129788"

cpc="130000" cost="6240000" />

. . .

<row month="March 2010" campaign="Campaign #1"

adgroup="Haskell" preview="Not available"

headline="We Write Apps in Haskell"

desc1="We're not a sweatshop,"

desc2="so we only need to write it once."

creativeVisUrl="berubeconsulting.com"

creativeid="000112233"

creativeType="text"

creativeStatus="Disabled"

agStatus="Enabled"

creativeDestUrl="http://berubeconsulting.com"

campStatus="Paused" imps="1614"

clicks="55" ctr="0.0340768277571252"

cpc="140000" cost="7700000" />

</rows>

</table>

<totals>

<subtotal imps="43999"

clicks="321" ctr="0.00729562035500807"

cpc="159158" cost="51090000" name="January 2010" />

<grandtotal imps="136770"

clicks="1133" ctr="0.00828398040505959"

cpc="163459" cost="185200000" />

<subtotal imps="30753"

clicks="235" ctr="0.00764153090755374"

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS266

9330CH13.qxd 1/7/08 12:14 PM Page 266

http://berubeconsulting.com
http://berubeconsulting.com

cpc="110553" cost="25980000" name="December 2009" />

<subtotal imps="28779"

clicks="212" ctr="0.00736648250460405"

cpc="195377" cost="41420000" name="March 2010" />

<subtotal imps="33239"

clicks="365" ctr="0.0109810764463432"

cpc="182767" cost="66710000" name="February 2010" />

</totals>

</report>

Note that XML is whitespace-agnostic, and the original format that the XML comes
in has much less whitespace, so files downloaded from PayPal will be less readable than
the file shown here. (Functionally, though, there isn’t any difference; the XML structure
is the same.)

Planning an AdWords Campaign
Suppose you work for a technology company that specializes in developing software for
a variety of open source languages. Since the company is small and does not have a full-
time sales staff, it uses Google AdWords to get leads on new clients.

The problem is that the company’s developers prefer different languages, and the
company wants to determine which language should receive the most ad revenue. In
order to answer this question, your company is temporarily spending an equal amount of
money for one ad for each of the languages. The plan is to use the data gathered to decide
how to spend a smaller budget efficiently. The company wants you to create a Rails appli-
cation that lets the user specify a target number of clicks for the ad campaign, regardless
of the language advertised, and returns a list of the cheapest ads to achieve that many
clicks.

You’ve retrieved the Google report on the past performance of the ads (Listing 13-1).
The catch with the reports generated by Google is that results greater than 100MB can be
retrieved only in XML format. A sizable campaign could conceivably exceed that limit. To
be prepared, you’ll parse the XML version, so you won’t need to change input formats if
the size of your results changes. After you’ve retrieved that result, you can analyze it and
then determine the cheapest ad mixture to meet your target number of clicks.

Loading the XML into a Database

Listing 13-2 shows the script that loads the report XML into a MySQL database. You’ll
need Active Record and Hpricot (introduced in Chapter 6) installed to use this script.
You can install Hpricot with the following command:

gem install hpricot

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 267

9330CH13.qxd 1/7/08 12:14 PM Page 267

You’ll also need MySQL installed and a blank database named text_ad_report set up.
You can create this database with the following command:

mysqladmin create text_ad_data

Listing 13-2. Google AdWords Database Loader (google_adwords_loader.rb)

require 'hpricot'

require 'active_record'

class AdResult < ActiveRecord::Base

end

ActiveRecord::Base.establish_connection(

:adapter=>'mysql',

:database=>'text_ad_performance',

:host=>'your_mysql_host_here',

:username=>'your_mysql_username_here',

:password=>'your_mysql_password_here')

unless AdResult.table_exists?

first_row = rows.first # We'll use this row as a model

to create the database schema

field_override_types = {

'imps'=>:integer,

'clicks'=>:integer,

'ctr'=>:float,

'cpc'=>:integer,

'cost'=>:integer

}

ActiveRecord::Schema.define do

create_table :ad_results do |t|

first_row.attributes.each do |attribute_name, value|

if field_override_types.include?(attribute_name)

t.column attribute_name, field_override_types[attribute_name]

else

t.column attribute_name, :text, :length=>25

end

end

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS268

9330CH13.qxd 1/7/08 12:14 PM Page 268

end

end

end

hpricot_doc = Hpricot.XML(ARGF)

rows = (hpricot_doc/"rows/row")

rows.each do |row|

AdResult.new do |n|

row.attributes.each do |attribute_name, attribute_value|

n.send("#{attribute_name}=", attribute_value)

end

n.save

end

end

Save this script as google_adwords_loader.rb.
You can run the script as follows:

ruby google_adwords_loader.rb google_sample_report.xml

Of course, if you’ve downloaded the file to a different name than google_sample_
report.xml, you should change the file name in this command.

Now, let’s take a look at this example line by line.

Dissecting the Code

First, the code in Listing 13-2 connects to a MySQL database and defines a single model,
similar to examples in preceding chapters. Next, you create a table for your single model,
AdResult, if it doesn’t already exist:

unless AdResult.table_exists?

first_row = rows.first # We'll use this row as a model

to create the database schema

field_override_types = {

'imps'=>:integer,

'clicks'=>:integer,

'ctr'=>:float,

'cpc'=>:integer,

'cost'=>:integer

}

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 269

9330CH13.qxd 1/7/08 12:14 PM Page 269

ActiveRecord::Schema.define do

create_table AdResults.table_name do |t|

first_row.attributes.each do |attribute_name, value|

if field_override_types.include?(attribute_name)

t.column attribute_name, field_override_types[attribute_name]

else

t.column attribute_name, :text, :length=>25

end

end

end

end

end

This code pulls out the first extracted row of your data and uses it as a template to
create a schema for your table. For each attribute of the row, you add a column to your
table with that attribute’s name. The default type for each column is a text field with a
length of 25, but you also have a field_override_types hash. If an attribute name is pres-
ent in that hash, the new type is used instead. As a result, if Google AdWords adds a new
column to the XML schema, this script will adjust.

In fact, the only parts of the entire script that are specific to this schema are the name
of the model, AdResult, the field_override_types hash, and the "table/rows/rows" selector.
If you change those elements, you can load many different types of XML using a script
like this. (You would need to modify the code slightly if the fields are stored as children
instead of attributes, and Chapter 6 has an example of doing just that.)

Note that the schema has a columns element, which has one child column element for
every field in each row. You could have parsed that columns element instead and ended up
with the same information, but the approach used here is more flexible, since many XML
files do not contain headers describing their children’s attributes.

■Note This automatic creation of the schema is very convenient, since it avoids hard-coding values, and it
guarantees you’ll get all of the data from the XML input for future processing. However, in many cases, you
may want to create your schema by hand. For example, you may wish to load only a few fields, or you may
wish to have a more controlled table schema, such as one with carefully selected text field lengths. Addition-
ally, you may need to normalize one row in an XML schema into multiple tables. In any case, the techniques
are similar to what you’ve done here. This approach can also be used for quick scripts outside Rails applica-
tions. Of course, there’s nothing preventing you from using standard Rails migrations.

Next, the code parses your input XML:

hpricot_doc = Hpricot.XML(ARGF)

rows=(hpricot_doc/"table/rows/row")

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS270

9330CH13.qxd 1/7/08 12:14 PM Page 270

The first line creates an HTML document from the special ARGF variable. This variable
acts like a File object, but automatically refers to either one or more files passed on the
command line or to standard input if a file is not specified. In other words, the following
commands are equivalent:

ruby google_adwords_loader.rb google_sample_report.xml

ruby google_adwords_loader.rb < google_sample_report.xml

cat google_sample_report.xml | ruby google_adwords_loader.rb

If you aren’t familar with shell redirection, you can treat ARGF as if it simply lets you
read from the file or files specified on the command line.

The second line divides the hpricot_doc object by "table/rows/rows". This looks for
any table elements containing rows elements and returns any row element that they
contain. As you can see from the XML in Listing 13-1, you have just one table and rows
element, so it will return every row element in the XML document.

Finally, now that you are guaranteed to have a connection, a model, and a correctly
structured database, you can begin inserting data into the database, as follows:

rows.each do |row|

AdResult.new do |n|

row.attributes.each do |attribute_name, attribute_value|

n.send("#{attribute_name}=", attribute_value)

end

n.save

end

end

This code loops through all of the rows, creating a new AdResult object for each. You
then loop through all the various attributes of each row, and use the send method to call
the setter method for that attribute. The send method takes a string naming the method
to call as well as a list of parameters. In other words, the following two lines are identical:

some_object.send('some_method', an_argument)

some_object.some_method(an_argument)

The advantage of using the send method is that you can call it with a method name
that you build dynamically, as you do here.

Now that your data is stored in the database, let’s create a simple Rails reporting
application that helps your boss spend his advertising revenue.

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 271

9330CH13.qxd 1/7/08 12:14 PM Page 271

Creating the AdWords Campaign Reporter Application

The Rails reporting application will let you specify a number of clicks, and using past
data, create an ad campaign that gives you that many clicks for the least money.

First, create the framework for the application:

rails adwords_reporter

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

create components

create db

create doc

create lib

. . .

create log/production.log

create log/development.log

create log/test.log

Next, create your single controller for this application:

cd adwords_reporter

ruby script/generate controller budget_optimizer

exists app/controllers/

exists app/helpers/

create app/views/budget_optimizer

exists test/functional/

create app/controllers/budget_optimizer_controller.rb

create test/functional/budget_optimizer_controller_test.rb

create app/helpers/budget_optimizer_helper.rb

Finally, create the single model:

ruby script/generate model ad_results

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS272

9330CH13.qxd 1/7/08 12:14 PM Page 272

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/ad_results.rb

create test/unit/ad_results_test.rb

create test/fixtures/ad_results.yml

create db/migrate

create db/migrate/001_create_ad_results.rb

Note that at this point, you’ll need to edit your config/database.yml file to reflect your
database connection parameters.

Put the code in Listing 13-3 in your single controller.

Listing 13-3. Budget Optimizer Controller (app/controllers/budget_optimizer_controller.rb)

class BudgetOptimizerController < ApplicationController

def index

end

def report

@excel_view = params[:view_as_excel]

@target_clicks=params[:target_clicks].to_f

results_raw=AdResult.find(:all,

:select=>'headline,

AVG(cost) as cost,

AVG(clicks) as clicks',

:group=>'headline')

results_raw.sort! { |x,y| (x.cost/x.clicks <=> y.cost/y.clicks) }

@results = []

click_sum = 0.0

results_raw.each do |r|

@results << r

click_sum += r.clicks

break if click_sum > @target_clicks

end

@estimated_clicks = click_sum

@avg_cost_per_click = (

@results.inject(0.0) { |sum,r| sum+=r.cost }) / (

@results.inject(0.0) { |sum,r| sum+= r.clicks })

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 273

9330CH13.qxd 1/7/08 12:14 PM Page 273

mailto:@target_clicks=params[:target_clicks].to_f
mailto:@results.inject
mailto:@results.inject

if @excel_view

headers['Content-Type'] = "application/vnd.ms-excel"

headers['Content-Disposition'] = 'attachment; filename="adwords_report.xls"'

end

end

end

Save this file as app/controllers/budget_optimizer_controller.rb.
Next, create a single helper file, as shown in Listing 13-4.

Listing 13-4. Budget Optimizer Helper (app/helpers/budget_optimizer_helper.rb)

module BudgetOptimizerHelper

def format_google_currency(currency_value)

"#{'%0.2f' % (currency_value/10000.0) } cents"

end

end

Save this file as app/helpers/budget_optimizer_helper.rb.
Listing 13-5 shows the file for a layout, which will wrap around your views.

Listing 13-5. Budget Optimizer Application-Wide Layout (app/views/layouts/
application.rhtml)

<head>

<html>

<style type="text/css">

body {

font-family: sans-serif;

}

#create_report {

padding: 0.3em;

}

table tr th {

text-align:left;

}

td, th {

padding:0.3em;

border: 2px solid #cecece;

margin:0;

}

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS274

9330CH13.qxd 1/7/08 12:14 PM Page 274

th {

background-color: #f0f0f0;

}

table {

padding:0;

border-spacing:0;

border-collapse:collapse;

}

</style>

</head>

<body>

<%=@content_for_layout%>

</body>

</html>

Save this as app/views/layouts/application.rhtml.
The application will have two views. Listing 13-5 shows the first view, which repre-

sents your report creation form.

Listing 13-5. Report Creation Form (app/views/budget_optimizer/index.rhtml)

<h1>Create AdWords Report</h1>

<div>

<% form_tag(:action => 'report') do %>

Target number of clicks: <%=text_field_tag 'target_clicks', '10',

:size=>4%>

<%=submit_tag 'Create Report', :id=>'create_report'%>

<% end %>

</div>

Save this view as app/views/budget_optimizer/index.rhtml.
Listing 13-6 shows the second view, which contains the actual report.

Listing 13-6. Report Display Page (app/views/budget_optimizer/report.rhtml)

<h1>Google AdWords Campaign Plan </h1>

<%unless @excel_view %>

<p><%=link_to '[download as excel]',

:params=>{

'view_as_excel'=>true,

'target_clicks'=>@target_clicks

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 275

9330CH13.qxd 1/7/08 12:14 PM Page 275

}

%></p>

<%end%>

<table>

<tr>

<th>Ad Headline</th>

<th>Avg Clicks</th>

<th>Cost Per Click</th>

</tr>

<%@results.each do |r| %>

<tr>

<td><%=r.headline%> </td>

<td><%=r.clicks%> clicks </td>

<td><%=format_google_currency(r.cost/r.clicks) %></td>

</tr>

<%end%>

</table>

<h2>Summary</h2>

<table>

<tr>

<th>Goal Clicks</th>

<td><%=@target_clicks%></td>

</tr>

<tr>

<th>Estimated Available Clicks</th>

<td><%=@estimated_clicks%></td>

</tr>

<tr>

<th>Estimated Cost Per Click (CPC)</th>

<td><%=format_google_currency(@avg_cost_per_click)%></td>

</tr>

</table>

Save this view as app/views/budget_optimizer/report.rhtml.
You can run this example by using the following command:

ruby script/server

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

=> Rails application starting on http://0.0.0.0:3000

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS276

9330CH13.qxd 1/7/08 12:14 PM Page 276

http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

** Starting Mongrel listening at 0.0.0.0:3000

** Starting Rails with development environment . . .

** Rails loaded.

** Loading any Rails specific GemPlugins

** Signals ready. INT => stop (no restart).

** Mongrel available at 0.0.0.0:3000

** Use CTRL-C to stop.

Open your web browser and enter the address http://127.0.0.1:3000/budget_
optimizer. You should see a screen similar to Figure 13-3. Type 100 into the text box and
click Create Report. Then you should see a screen similar to Figure 13-4.

Figure 13-3. AdWords reporter application form for creating a report

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 277

9330CH13.qxd 1/7/08 12:14 PM Page 277

http://127.0.0.1:3000/budget_

Figure 13-4. AdWords reporter application report

Let’s look at a few lines from the application.

Dissecting the Code

First, let’s take a look at the controller, apps/controllers/budget_optimizer_controller.rb
(Listing 13-3):

class BudgetOptimizerController < ApplicationController

def index

end

def report

@excel_view = params[:view_as_excel]

@target_clicks=params[:report][:target_clicks].to_f

results_raw=AdResult.find(:all,

:select=>'headline,

AVG(cost) as cost,

AVG(clicks) as clicks',

:group=>'headline')

results_raw.sort! { |x,y| ((x.cost/x.clicks) <=> (y.cost/y.clicks)) }

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS278

9330CH13.qxd 1/7/08 12:14 PM Page 278

mailto:@target_clicks=params[:report][:target_clicks].to_f

The first method, index, just displays a form allowing the user to select a goal with a
number of clicks. The second method, report, actually creates the report. You first grab
the parameters passed to the action, and then grab the average cost and number of clicks
for each distinct headline. This means that for each time period in the report, the cost
and number of clicks will be averaged and returned for that headline.

■Note This code analyzes ads by headline, so multiple ads with the same headline and different body copy
will be grouped together. In most cases, an ad with an identical headline and different body copy is simply
going to be a variation on a theme, such as an attempt to see which ad has a higher click-through rate, not
an ad with a completely different subject matter. However, if you wish to look at each headline as a different
group, you could easily group by creativeid, which is guaranteed to be distinct for each ad, and then dis-
play the creativeid instead of the headline. In that case, it would be difficult to tell ads with the same
headline apart, so you would need to devise a way to distinguish them, such as by including the body copy
on each line of the report.

The code then sorts the results_raw array by the ratio of cost per click of each item.
This will be used by the next chunk of code to determine which ads should be used first.
The source XML has a cpc field, which is, in theory, equal to the cost divided by the clicks;
however, this field is heavily rounded, despite being in units of one-millionth of a cent.
Instead of using this field, the code calculates the cost per click by dividing the cost by the
number of clicks, which is more accurate. In fact, in this example, replacing instances of
calculating the cost per click on the fly with the precalculated cpc field leads to several
rounding errors, including one that is 50 cents or so. Such errors would only get worse as
the scale of the calculation increased.

Next, you iterate through the results, adding each one to an array until the required
number of clicks is reached:

@results = []

click_sum = 0

results_raw.each do |r|

@results << r

click_sum += r.clicks

break if click_sum > @target_clicks

end

@estimated_clicks = click_sum

@avg_cost_per_click = (

@results.inject(0.0) { |sum,r| sum+=r.cost }) / (

@results.inject(0.0) { |sum,r| sum+= r.clicks })

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 279

9330CH13.qxd 1/7/08 12:14 PM Page 279

mailto:@results.inject
mailto:@results.inject

As you can see, the loop through results_raw is used to fill the @results array. It loops
through all of the results and adds them into the array. It also adds to the click_sum
counter, and when that’s equal to the number of clicks you are looking for, you stop
adding values to the array. Since you sorted by the cost per click, you end up with an
array of the ads with the lowest cost per click that totals the amount of clicks you are
seeking.

The two @results.inject structures look complicated, but they simply sum the cost
and the clicks fields, respectively. The division of the sum of the cost values and the
clicks value is the average. (Technically, what most people call the average is actually the
mean, and strictly speaking, this calculates the mean value.) The @avg_cost_per_click is
used to show the average cost per click of the entire campaign.

Finally, you get ready to display your report:

if @excel_view

headers['Content-Type'] = "application/vnd.ms-excel"

headers['Content-Disposition'] = 'attachment; filename="adwords_report.xls"'

end

end

end

The if statement checks if you are trying to generate the report in Excel format; if so,
it sends the appropriate headers that mark the file as being an Excel document. But
notice that no special action is taken to generate the report as an Excel document.

Chapter 4 showed how you can use the spreadsheet-excel gem to generate Excel
spreadsheets, and you could have used that technique here. However, this application
uses a very odd trick: you mark the application as having an Excel content-type header
(specifically, application/vnd.ms-excel). Since it’s an HTML file containing tabular data,
both Excel and OpenOffice.org will import the document seamlessly. You can see the
results of opening the Excel document in Microsoft Excel in Figure 13-5 and in
OpenOffice.org in Figure 13-6. But note that although this application’s tables are
imported neatly in both applications, there’s no guarantee that more complex HTML
layouts will work well. (Of course, if you have HTML that’s not in tabular form, you
probably shouldn’t be trying to import it into a spreadsheet.)

If you’re thinking that this trick is counterintuitive and does not sound like it would
work, you’re correct: it is counterintuitive and does not sound like it would work. But it
does work, apparently because while your web browser uses the MIME type (represented
by the content-type header) to determine the format of the page, the spreadsheet appli-
cations examine the data to determine the format. Because both programs can open
HTML pages as spreadsheets, the trick works.

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS280

9330CH13.qxd 1/7/08 12:14 PM Page 280

mailto:@results.inject

Figure 13-5. AdWords reporter Excel report in Microsoft Excel

Figure 13-6. AdWords reporter Excel report in OpenOffice.org

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 281

9330CH13.qxd 1/7/08 12:14 PM Page 281

This trick is perhaps the easiest way to add Excel views to your application. However,
note that you cannot use spreadsheet-specific features like formulas with this technique.
Another odd consequence is that if the user modifies the spreadsheet and then saves it,
the spreadsheet will still be saved in HTML format, even though it has an Excel extension.
This could conceivably be a problem if the user wants to import the file into an applica-
tion and expects a genuine Excel-format file. (If you are writing the application into
which they will import such a file, you could simply write the importer to expect HTML
as input.)

The application has two views: index.rhtml, which simply displays a form and is self-
explanatory, and report.rhtml (Listing 13-6), which begins like this:

<h1>Google AdWords Campaign Plan </h1>

<%unless @excel_view %>

<p><%=link_to '[download as excel]',

:params=>{

'view_as_excel'=>true,

'report[target_clicks]'=>@target_clicks

}

%></p>

<%end%>

The link to download the page as an Excel file is visible unless the current page is
already in Excel format. (You could, if you so desired, include a link to the regular HTML
version of the page on the Excel version, since Excel spreadsheets can contain HTML
links.)

Next, let’s take a look at the actual display of the ads:

<table>

<tr>

<th>Ad Headline</th>

<th>Avg Clicks</th>

<th>Cost Per Click</th>

</tr>

<%@results.each do |r| %>

<tr>

<td><%=r.headline%> </td>

<td><%=r.clicks%> clicks </td>

<td><%=format_google_currency(r.cost/r.clicks) %></td>

</tr>

<%end%>

</table>

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS282

9330CH13.qxd 1/7/08 12:14 PM Page 282

This code loops through each of the ads from your report, displaying the headline,
the number of estimated clicks, and the cost per click formatted as a number of cents.
The formatting is controlled by the format_google_currency helper, which is defined in
app/helpers/budget_optimizer_helper.rb. The clicks are only estimated, of course,
because there’s no guarantee that next month will have an identical number of clicks (or
cost) for a given keyword. However, it’s likely that things will remain similar, even if they
aren’t completely identical. If this were not true—if the market were completely ran-
dom—we couldn’t make any intelligent reporting in any event.

Note that the helper methods are automatically available to your controller and to
your view, so they can automatically be used in your view. The format_currency_helper
(Listing 13-4) looks like this:

def format_google_currency(currency_value)

"#{'%0.2f' % (currency_value/10000.0) } cents"

end

As you can see, the helper divides by 10,000 and then formats the value with two
decimal points, followed by the word “cents.” If you wanted to display a dollar format
instead, you could use a helper like this:

def format_google_currency(currency_value)

"#{'$%0.2f' % (currency_value/1000000.0) } "

end

This alternate helper displays values like $0.23 instead of 23 cents. It divides by
1,000,000 instead of 10,000, since the units of currency in the XML files are millionths
of a dollar, which is equivalent to ten thousandths of a cent.

The remainder of the code in report.rhtml (Listing 13-6) just prints out a few vari-
ables from your controller that relate to the entire campaign:

<h2>Summary</h2>

<table>

<tr>

<th>Goal Clicks</th>

<td><%=@target_clicks%></td>

</tr>

<tr>

<th>Estimated Available Clicks</th>

<td><%=@estimated_clicks%></td>

</tr>

<tr>

<th>Estimated Cost Per Click (CPC)</th>

<td><%=format_google_currency(@avg_cost_per_click)%></td>

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS 283

9330CH13.qxd 1/7/08 12:14 PM Page 283

</tr>

</table>

Note that if you so desired, you could use just one table by replacing this following
chunk:

</table>

<h2>Summary</h2>

<table>

with this:

<tr><td colspan=2><h2>Summary</h2></td></tr>

Using a single table would affect the appearance of your report.

Summary
Google AdWords is a powerful platform for delivering your ad content. It has a variety of
powerful reporting tools available online, but, like virtually any reporting tools, they have
their limits. Here, you saw how to use the Google AdWords XML export and Hpricot to
create a more complicated report. In fact, in just a few lines of code, you created a tool
that will read in Google AdWords data and generate an estimated campaign plan that
optimizes spending to get the most clicks in the least amount of money—potentially
saving a huge amount of advertising money.

This completes the examples of specific Ruby reports. Over the course of the book,
you’ve seen a lot of different techniques for using Ruby and related tools to find answers
to reporting questions. You’ve also seen a number of different ways to present those
answers in convenient forms. I’ve shown you how you can use Ruby, SQL, and a few gems
to quickly create flexible reports that perform well and can be used in almost any con-
text—from the Web, to a command-line batch process, to a desktop application, to a cell
phone. Many other techniques are available—ranging from using commercial charting
products such as amCharts to libraries that aim to replace SQL with pure Ruby, like
Ambition or Ruport—and you’ll find that you now have a firm foundation for exploring
other solutions.

If you would like to comment on anything in this book, or if you would like to share
with me how you’ve been able to use Ruby and related tools to do reporting, please visit
the book’s web site at http://rubyreporting.com/—I’d love to hear from you.

CHAPTER 13 ■ TRACKING YOUR ADS WITH GOOGLE ADWORDS284

9330CH13.qxd 1/7/08 12:14 PM Page 284

http://rubyreporting.com/%E2%80%94I%E2%80%99d

Special Characters
$! variable, 260
& character, 124, 129, 130

A
AbiWord, 234
Access

creating reports, 236
importing web-form data into database,

236–260
creating web interface, 237–250
importing XML data into, 251–260
overview, 236–237

Accident model, 21
accident_count column, 21
Active Record database access library, 5–17,

19–32
calculating player salaries, 6–11
calculating player wins, 11–17
grouping and aggregation

analyzing data with, 22–31
overview, 19–22

overview, 5–6, 19
ActiveRecord::Base class, 9, 141, 163
ActiveRecord::Base.establish_connection

method, 9
ActiveRecord::Extensions, 190–191
ActiveRecord::Migration relationship, 79
ActiveRecord::Schema.define method, 143
ActiveX Data Objects (ADO), 251
actor model, 84
actor object, 90
actor_schedule application, 76
adapter parameter, 9, 141
add command, 37
addTimeout method, 184
ADO (ActiveX Data Objects), 251
AdResult model, 269
ads, Google AdWords, 261–284

obtaining reports, 262–267
overview, 261–262
planning campaigns, 267–284

Advertiser model, 203

Adwords campaign reporter application,
272–284

aggregation, 19
analyzing data with, 22–31

calculating drink/win distribution, 26–31
calculating salary distribution, 25–26
overview, 22–24

overview, 19–22
Ajax.Updater function, 102
all_players.rb script, 47
ALTER TABLE . . . CHANGE COLUMN

statement, 224
analyzing data, with grouping and aggregation,

22–31
calculating drink/win distribution, 26–31
calculating salary distribution, 25–26
overview, 22–24

Apache Web logs, 189–213
ActiveRecord::Extensions, 190–191
cost-per-sale reporting, 192–212

controllers, 193–198
database, 201–202
layout, 198–200
log analyzer, 203–212
models, 203
parser libraries, 201
routing files, 201
schema, 201–202
views, 198–200

overview, 189
PDF::Writer, 191–192

apache_sales_tracker directory, 193
APIs, eBay, 111–113
app/controller/reporter_controller.rb file, 229
app/controllers/budget_optimizer_controller.rb

file, 274
app/controllers/home_controller.rb file, 85, 94
app/controllers/homepage_controller.rb file,

238
app/controllers/log_controller.rb file, 239
app/controllers/logs_controller.rb file, 206
app/controllers/report_controller.rb file,

208–209
appendItem method, 71

Index

285

9330Index.qxd 1/9/08 2:37 PM Page 285

appendItem parameter, 71
app/helpers/budget_optimizer_helper.rb file,

274, 283
AppleScript library, 52
app/models directory, 84
app/models/actor.rb file, 84
app/models/grade.rb file, 244
app/models/student.rb file, 243
app/models/training_class.rb file, 245
apps/controllers/budget_optimizer_controller.

rb controller, 278
app/view/layout/application.html.erb file, 242
app/views/budget_optimizer/index.rhtml file,

275
app/views/budget_optimizer/report.rhtml file,

276
app/views/home/index.html.erb file, 96
app/views/home/index.rhtml file, 86
app/views/homepage/index.html.erb file, 238
app/views/layouts/application.html.erb file, 98
app/views/layouts/application.rhtml file, 87,

275
app/views/layouts/show.text.erb file, 97
app/views/log/index.xml.builder file, 241
app/views/log/upload.html.erb file, 240
app/views/performance/show.html.erb file, 97
app/views/performance/show.text.erb view,

106
app/views/reporter/index.rhtml file, 230
ar-extensions gem, 193
ARGF variable, 271
*ARGV construct, 149
assigned_user_id foreign key, 163
average_price_report.rb file, 121
average_time element, 106
average_time value, 104
AVG function, 20

B
bar charts, 37–45
Benchmark.realtime call, 207
booking model, 84

C
cached_feeds table, 224
calculate function, 20–26
calculate_rewards.rb file, 160
calculating

drink/win distribution, 26–31
player salaries, 6–11
player wins, 11–17
salary distribution, 25–26

calendar_date_select helper, 248
CallName parameter, 124
Cascading Style Sheets (CSS), 33
CDF (Channel Definition Format), 216
Channel Definition Format (CDF), 216
clicks field, 280
clippings, 217
COALESCE function, 150
columnize method, 142
columns element, 270
COM (Component Object Model), 171, 234
COMBOBOX_STATIC | FRAME_SUNKEN

parameter, 71
COMBOBOX_STATIC constant, 71
comma-separated values (CSV) data,

converting, 138–144
company news coverage reporting, 217–232

loading data, 217–226
news tracker report application, 226–232

company_pr database, 217
complex_bar_graph method, 226, 231–232
Component Object Model (COM), 171, 234
CONCAT command, 222
:conditions parameter, 11
config/database.yml file, 78, 93, 201, 217, 223,

230, 245, 273
config/environment.rb file, 206
config/routes.rb file, 100, 201
connect method, 71
Content-Type header, 179
content-type header, 280
controllers, cost-per-sale reporting, 192–198
correlated subquery, 150
cost field, 280
cost-per-sale reporting

controllers, 193–198
database, 201–202
layout, 198–200
log analyzer, 203–212
models, 203
parser libraries, 201
routing files, 201
schema, 201–202
views, 198–200

count aggregate function, 44
count fields, 232
COUNT function, 20, 25
count method, 60
count variable, 207, 259
count_by_sql method, 144
:counter_cache=>true option, 165
cpc field, 279

■INDEX286

9330Index.qxd 1/9/08 2:37 PM Page 286

create method, 63
create_table statement, 90
CRM systems, SugarCRM. See customer

relationship management systems,
SugarCRM

CSS (Cascading Style Sheets), 33
CSV (comma-separated values) data,

converting, 138–144
current_row method, 58
<CurrentPrice> elements, 125, 126
Customer model, 11
customer relationship management (CRM)

systems, SugarCRM
installing, 155–156
overview, 155
sales force reporting with, 156–169

D
data

analyzing, PayPal accounts, 144–153
analyzing, with grouping and aggregation,

22–31
calculating drink/win distribution, 26–31
calculating salary distribution, 25–26
overview, 22–24

exporting to spreadsheets, 52–60
creating spreadsheet report, 53–60
generating Excel spreadsheet, 52–53

gathering from PayPal, 133–136
report, writing small servers to get, 171–172
XML, importing into Microsoft Access,

251–260
data center (DC) component, 37
data directory, 246
data method, 37, 45
data_format format, 57
DatabaseFeedCache class, 225
databases, 3–17

Active Record, 5–17
calculating player salaries, 6–11
calculating player wins, 11–17
overview, 5–6

choosing, 3–4
cost-per-sale reporting, 201–202
overview, 3

Date class, 151
DATE_ADD function, 82
db directory, 246
db/data/training_class_data.sql file, 246
DC (data center) component, 37
DELETE FROM statement, 82
description column, 190

description method, 216
desktop, creating reports on, 51–73

choosing format, 51–52
creating GUIs with Ruby, 60–73
exporting data to spreadsheets, 52–60
overview, 51

desktop_team_performance_graph.rb
script, 67

development environment, 78, 93, 223
div tag, 101
.doc file, 235
document element, 131
domain column, 190
down method, 79, 90
drink field, 30
drink_win_distribution.rb script, 29

E
each method, 216
eBay, 111–131

overview, 111
using APIs, 111–113
web services, 113–131

coding report, 115–131
Hpricot, 114–115
LaTeX, 114–115

eBaySearch class, 116
EMBED tags, 106
Erubis::Eruby object, 164
eruby_object variable, 164
escape_latex method, 128
establish_connection class, 9
establish_connection line, 217
evalScripts parameter, 102
evaluate method, 164
event element, 106
Event.observe function, 102
events table, 39
<events> element, 105
Excel

creating reports, 234
spreadsheets, 52–53

:except parameter, 105
expenses, reporting, 136–153

analyzing data, 144–153
converting CSV data, 138–144
overview, 136–137
using FasterCSV, 137–138

exporting data to spreadsheets, 52–60
creating spreadsheet report, 53–60
generating Excel spreadsheet, 52–53

■INDEX 287

9330Index.qxd 1/9/08 2:37 PM Page 287

F
FasterCSV, 136, 137–138
fastercsv gem, 173
feed_data column, 224
FeedTools, 216
FeedTools.configurations[:feed_cache]

variable, 225
"FeedTools::DatabaseFeedCache" variable, 225
FeedTools:Feed object, 216
FeedTools::Feed.open method, 225
Fidelity CSV file, 173
Fidelity investments, 171–187

overview, 171
tracking stock portfolio, 173–187

creating graphical XML ticker, 180–187
creating XML server with Mongrel,

173–180
overview, 173

writing small server to get report data,
171–172

field_override_types hash, 270
File object, 271
find method, 11
find_by_sql column, 21, 26
find_or_create_by_name_and_employer class,

249
format_column method, 57
format_currency_helper, 283
format_google_currency helper, 283
format_row method, 58
FOX GUI library, 180
FRAME_SUNKEN constant, 71
FXApp object, 62, 70, 184
FXApp.instance() method, 72
FXButton control, 63
FXCheckButton control, 63
FXComboBox object, 70–71
FXImageView object, 72
FXLabel object, 70
FXMainWindow class, 70
FXMainWindow object, 62
FXMatrix object, 70
FXRadioButton object, 63
FXRuby, 52, 60, 61–63
fxruby gem, 180
FXRuby object, 63
FXTextField object, 63
FXTickerApp class, 183–187

G
Game class, 15, 16
game method, 15
games table, 39
gem install rmagick command, 33
gem install -y gruff command, 33
generate model command, 84
GET request, 112
get_average_price class, 130
get_label_text function, 186
get_sale_graph_tempfile function, 209, 211–212
get_tempfile_name function, 211
get_visitor_graph_tempfile function, 209, 212
getItemData method, 69
GetSearchResults parameter, 124
Ghostscript source utility, 157
go method, 187
Google AdWords, 261–284

obtaining reports, 262–267
overview, 261–262
planning campaigns, 267–284

creating Adwords campaign reporter
application, 272–284

loading XML into database, 267–271
overview, 267

Google News, 215–232
company news coverage reporting, 217–232

loading data, 217–226
news tracker report application, 226–232

overview, 215
using FeedTools to parse RSS, 216

google_adwords_loader.rb script, 269
grade model, 243
grade object, 249
grades variable, 258
<grades> element, 250
graphical reporting, 91–107

creating controller for, 92–95
creating models for, 95
creating view for, 96–98
examining application, 99–107

graphical user interfaces (GUIs), creating,
60–73

graphing team performance on desktop,
63–73

using FXRuby, 61–63
graphical XML ticker, 180–187
graphs, 33–49

bar charts, 37–45
choosing graphing utilities, 33–37
choosing utilities for creating, 33–37

■INDEX288

9330Index.qxd 1/9/08 2:37 PM Page 288

line charts, 45–49
overview, 33
team performance, 63–73

group parameter, 21
grouping, 19

analyzing data with, 22–31
calculating drink/win distribution, 26–31
calculating salary distribution, 25–26
overview, 22–24

overview, 19–22
gruff gem, 193
Gruff::Bar class, 43, 48
Gruff::Line class, 48
gsub method, 128
guid method, 226
GUIs, creating. See graphical user interfaces,

creating

H
has_many :bookings relationship, 84
has_many relationship, 11, 84, 163
has_one relationship, 11
Hello world! text, 192
Hit model, 203
Hit object, 207
home controller, 85, 92, 201
homepage controller, 246
horizontal_bar_chart method, 226
Hpricot, 113, 114–115, 125, 267
hpricot_doc object, 271
hpricot_doc/:SearchResultItem expression, 126
HTML (Hypertext Markup Language), 33,

157–169
html2ps source utility, 157
HTTP_REFERER statement, 207
Hypertext Markup Language (HTML), 33,

157–169

I
id property, 250
;id=>false option, 90
if statement, 127, 280
image method, 209
import method, 208
importing XML data into Microsoft Access,

251–260
:include parameter, 105
IncludeSellers parameter, 124
index action, 201, 246
index method, 279
:index option, 248
index.rhtml view, 282

initialize method, 68, 176, 178, 183, 186
inner_html method, 115
innerHTML method, 126
INSERT DELAYED statement, 191
INSERT statement, 191
is_weekend? method, 151
Item model, 5
itemData array, 71
ItemData method, 69
items method, 216, 226
ItemTypeFilter parameter, 127

J
JRuby, 60

K
kernel::spintf function, 11
Korundum, 60

L
labels attribute, 34
LaTeX, 114–115
layout, cost-per-sale reporting, 198–200
LAYOUT_FILL_X flag, 72
LAYOUT_FILL_Y flag, 72
legend_font_size attribute, 43
LIMIT clause, 11, 243
:limit parameter, 11
line charts, 45–49
Linux, 114
live intranet reporting, 76–91

creating controller for, 85
creating models for, 82–84
creating view for, 85–87
examining application, 87–91
setting up database, 78–82

LOAD DATA INFILE statement, 191
load_csv method, 177, 179
log analyzers, cost-per-sale reporting, 203–212
log_parser.rb library, 201
LogParser class, 207
logs controller, 201

M
Mac OS X, 114
map method, 101, 231
Markaby, 136
Markaby::Builder object, 152–153
MATRIX_BY_COLUMNS flag, 70
MATRIX_BY_ROWS flag, 70
max function, 20
max method, 232

■INDEX 289

9330Index.qxd 1/9/08 2:37 PM Page 289

maximum_value attribute, 44
.mdb extension, 257
.mdb file, 236
MEDIUMTEXT type, 224
Meetings model, 165
meetings table, 163
meetings_count column, 165
memcached server, 225
messageBox method, 260
method function, 184
Method object, 184
method parameter, 102
method_missing technique, 178
Microsoft Access. See Access
Microsoft Developer Network (MSDN), 235
Microsoft Excel. See Excel
Microsoft Office. See Office, Microsoft
Microsoft Word, 234–235
migrations, 78
MIN function, 20
minimum_value attribute, 44
Model-View-Controller (MVC) framework, 75
Mongrel, 172, 173–180
mongrel gem, 173
Mongrel::HttpHandler instance, 178
Mongrel::HttpServer instance, 180
MSDN (Microsoft Developer Network), 235
MVC (Model-View-Controller) framework, 75
MySQL, 3, 268
mysql -u my_mysql_user -p < player_4.sql

command, 64

N
n flags, 168
name method, 10
Net::HTTP library, 185
Net::HTTP.get method, 125
net/http.rb download library, 136
new method, 10
new parameter, 48
news tracker report application, 226–232
not is_admin condition, 164
numVisible attribute, 71

O
Object Linking and Embedding (OLE), 235
object-relational mapping (ORM) library, 5
Office, Microsoft, 233–236

Microsoft Access, 236
Microsoft Excel, 234
Microsoft Word, 234–235
overview, 233

OFN_FILEMUSTEXIST command, 257
OFN_HIDEREADONLY command, 257
OLE (Object Linking and Embedding), 235
onComplete callback, 103
open method, 216
open-flash-chart.swf file, 92
OpenOffice.org, 234
Order model, 11
ORM (object-relational mapping) library, 5
output_format static variable, 225

P
p tags, 115
padding property, 62
page_header_format format, 58
params hash, 124, 127
params[:trainee] array, 249
parse method, 137
parse_io_stream method, 207
parseexcel gem, 234
parse-excel gem, 234
parser libraries, 201
PayPal, 133–153

gathering data from, 133–136
overview, 133
reporting expenses, 136–153

analyzing data, 144–153
converting CSV data, 138–144
overview, 136–137
using FasterCSV, 137–138

paypal gem, 133
paypal_expense_report.rb code, 148
paypal_load_data.rb script, 140
paypal_source_file variable, 141
paypal_transactions table, 141
PayPalTransaction model, 141
PaypalTransaction object, 144
PaypalTransaction.new method, 144
PDF creation, 128–131
pdf object, 192
pdf_source variable, 169
PDFs, creating from HTML documents,

157–169
PDF::Writer, 191–192
pdf-writer gem, 193
per_page static variable, 225
Performance controller, 102–103
performance/game_id/player_id form, 100
performance/game_id/player_id.html type,

100
performance/game_id/player_id.xml type, 100
Perl DBI-style interface, 236

■INDEX290

9330Index.qxd 1/9/08 2:37 PM Page 290

Person model, 20
PLACEMENT_SCREEN constant, 63, 187
PLACEMENT_SCREEN flag, 72
Player class, 9–15
player method, 15
Player model, 15
Player object, 10
player_bar_charts.rb script, 42
player_graph_pics directory, 42
player_name_format method, 58
player_salary_ratio.rb script, 8
player_schema_2.sql file, 13
player_schema.sql file, 7
player_wins.rb script, 14
Player.find class method, 11
plays table, 39
POST request, 112, 249
PostgreSQL, 4
process method, 179
production environment, 78, 223
ps2pdf tool, 157
public/images directory, 228
public/index.html file, 94, 201
public/index.html.erb file, 246
public/stylesheet/training.css file, 242
published_at method, 230
puts method, 153

Q
QtRuby, 60
quantity attribute, 15
Query parameter, 124
query_encoded variable, 225

R
Rails

graphical reporting with, 91–107
creating controller for, 92–95
creating models for, 95
creating view for, 96–98
examining application, 99–107

live intranet reporting with, 76–91
creating controller for, 85
creating models for, 82–84
creating view for, 85–87
examining application, 87–91
setting up database, 78–82

Rails PDF plug-in (rpdf), 192
rake command, 81
Really Simple Syndication (RSS), 215, 216
remarkably gem, 173
render method, 90

report data, writing small servers to get,
171–172

report method, 279
Reporter controller, 229
report.html script, 148
report.pdf file, 161
report.rhtml view, 282
reports, 233–260

creating on desktop, 51–73
choosing format, 51–52
creating GUIs with Ruby, 60–73
exporting data to spreadsheets, 52–60
overview, 51

creating with Microsoft Office, 233–236
Access, 236
Excel, 234
overview, 233
Word, 234–235

importing web-form data into Access
database, 236–260

creating web interface, 237–250
importing XML data into, 251–260
overview, 236–237

overview, 233
request.post? flag, 249
require statements, 206
respond_to block, 104
response method, 179
results_raw array, 279
reward method, 163
rewards table, 157, 167
rewards_data.sql file, 157
rewards_report_template.rhtml file, 164
r\n flags, 168
routing files, cost-per-sale reporting, 201
row element, 271
rpdf (Rails PDF plug-in), 192
.rpdf view, 42, 192, 200, 209
RSS (Really Simple Syndication), 215, 216
rss_loader.rb script, 220
Ruby

creating GUIs with, 60–73
graphing team performance, 63–73
using FXRuby, 61–63

graphing data with, 33–49
bar charts, 37–45
choosing graphing utilities, 33–37
line charts, 45–49
overview, 33

ruby script/server command, 253
RubyCocoa, 60
Ruby-DBI package, 251

■INDEX 291

9330Index.qxd 1/9/08 2:37 PM Page 291

Ruby-GNOME, 60
RubyOSA, 52
rubyscript2exe command, 254
RubyScript2Exe gem, 72, 251
ruby-stemp library, 210

S
salary field, 26
salary method, 10
salary_distribution.rb script, 26
sales force reporting, with SugarCRM, 156–169

creating PDFs from HTML documents,
157–169

updating database, 156–157
save method, 144
schema, cost-per-sale reporting, 201–202
scroll_label class, 184
scroll_label function, 186
scroll_label method, 186
scroll_timer method, 184
SearchResultItem elements, 125
<SearchResultItem> elements, 126
SEL_COMMAND constant, 71
select tag, 101
select_all method, 259
sellers array, 130
send method, 144, 271
show method, 63
show_report function, 102
simple subquery, 150
:skip_types=>true parameter, 105
small servers, writing to get report data,

171–172
spreadsheet_report.xls file, 55
spreadsheet_team_performance.rb code, 55
spreadsheet-excel gem, 52, 234, 280
spreadsheet/excel library, 56
spreadsheets, exporting data to, 52–60

creating spreadsheet report, 53–60
generating Excel spreadsheet, 52–53

src/lib/dbd_ado/ADO.rb file, 251
startx command, 61, 183
stftime function, 91
stock portfolios, tracking, 173–187

creating graphical XML ticker, 180–187
creating XML server with Mongrel, 173–180
overview, 173

StocksList class, 176, 179
StocksListHandler class, 176, 178
Stories model, 224
stories table, 228
Story objects, 231

String class, 128, 141
student model, 243
Student object, 249
student property, 250
style element, 152
subqueries, 150
SugarCRM

installing, 155–156
overview, 155
sales force reporting with, 156–169

creating PDFs from HTML documents,
157–169

updating database, 156–157
SUM function, 20
super method, 178
SWin::Application.messageBox method, 260
SWin::CommonDialog::openFilename method,

257
Symbol column, 177
symbol nodes, 185
symbols node, 178

T
table element, 271
tabular element, 131
tar.gz file, 251
team performance, graphing, 63–73
Tempfile class, 209
Tempfile object, 69
testing environment, 78
text property, 63
text_ad_report database, 268
text_field element, 248
Time.now.to_f variable, 210
title method, 216, 226
to_csv method, 138
to_xml method, 105, 177
total_wins method, 16–17
tracking news coverage, 215–232

company news coverage reporting, 217–232
loading data, 217–226
news tracker report application, 226–232

overview, 215
using FeedTools to parse RSS, 216

tracking stock portfolio, 173–187
creating graphical XML ticker, 180–187
creating XML server with Mongrel, 173–180
overview, 173

training_class model, 244
training_classes table, 246
training_development model, 245
training_loader.exe file, 255

■INDEX292

9330Index.qxd 1/9/08 2:37 PM Page 292

training_loader.rb file, 253
TrainingClass class, 246–249
training.css file, 242
training.mdb file, 253
transaction_id method, 143
Transmegtech Studios, 6
TransmegtechGraphWindow class, 68
TypeText method, 235

U
Uniform Resource Identifier (URI), 225
Uniform Resource Locator (URL), 225
Uniform Resource Name (URN), 225
up method, 79, 90
update_display method, 68–71
upload action, 239
URI (Uniform Resource Identifier), 225
URI.encode function, 225
URL (Uniform Resource Locator), 225
url method, 226
URN (Uniform Resource Name), 225
User model, 163
users table, 167
users variable, 164

V
valid_symbol_labels array, 177
vehicle_model column, 21
VERSION=x option, 80
views, 76, 198–200
vSpacing property, 62

W
wb+ flags, 168
Web reporting, 75–108

overview, 75
Rails

graphical reporting with, 91–107
live intranet reporting with, 76–91

selecting web frameworks, 75–76
web services, eBay, 113–131

coding report, 115–131
Hpricot, 114–115
LaTeX, 114–115

webhosts table, 190
WEEKDAY function, 150
weekday_bar class, 152
weekend_bar class, 152
weeks array, 151
WHERE clause, 11
widget_chart_scruffy.rb file, 36
widgets_and_sprockets.png file, 36

Win model, 15
Win32OLE directly, 235
Windows, 114
Windows COM library, 235
wins property, 16
Word, Microsoft, creating reports, 234–235
word_app.PrintOut, 235
worksheet object, 58
worksheet.write method, 58
write method, 58

X
x axis line, 107
x_axis_colour control, 107
XHR (XmlHttpRequest) request, 104
XML

importing into Access, 251–260
loading into database, 267–271

xml method, 178
XML servers, creating with Mongrel, 173–180
xml_server.rb file, 175
xml_ticker.rb script, 183
xml.grades call tag, 250
XmlHttpRequest (XHR) request, 104
xml-simple gem, 180
XML::Simple library, 251
XML::Simple module, 180

Y
y_ticks parameter, 107
yahoofinance gem, 180
YahooFinance module, 180
YahooFinance::get_standard_quotes function,

187

■INDEX 293

9330Index.qxd 1/9/08 2:37 PM Page 293

	Practical Reporting with Ruby and Rails
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Data Access Fundamentals
	Choosing a Database
	Using Active Record As a Database Access Library
	Calculating Player Salaries
	Dissecting the Code

	Calculating Player Wins
	Dissecting the Code

	Summary

	Calculating Statistics with Active Record
	Grouping and Aggregation
	Analyzing Data with Grouping and Aggregates
	Calculating Salary Distribution
	Dissecting the Code

	Calculating Drink/Win Distribution
	Dissecting the Code

	Summary

	Creating Graphs with Ruby
	Choosing a Graphing Utility
	Graphing Data
	Creating a Line Chart
	Dissecting the Code

	Creating a Line Chart
	Dissecting the Code

	Summary

	Creating Reports on the Desktop
	Choosing a Desktop Format
	Exporting Data to Spreadsheets
	Generating an Excel Spreadsheet
	Creating a Spreadsheet Report
	Dissecting the Code

	Creating GUIs with Ruby
	Using FXRuby
	Dissecting the Code

	Graphing Team Performance on the Desktop
	Dissecting the Code

	Summary

	Connecting Your Reports to the World
	Choosing a Web Framework
	Live Intranet Web Reporting with Rails
	Setting Up the Database
	Creating a Migration
	Adding the Data

	Creating the Models for the Web Report
	Creating the Controller for the Web Report
	Creating the View for the Web Report
	Examining the Web Report Application
	Dissecting the Code

	Graphical Reporting with Rails
	Creating the Controller for the Graphical Report
	Creating the Models for the Graphical Report
	Creating the View for the Graphical Report
	Examining the Graphical Reporting Application
	Dissecting the Code

	Summary

	Tracking Auctions with eBay
	Using eBay APIs
	Obtaining Competitive Intelligence via eBay Web Services
	Installing Hpricot and LaTeX
	Coding the eBay Report
	Dissecting the eBay Web Services Code
	Dissecting the PDF Creation

	Summary

	Tracking Expenditures with PayPal
	Gathering Data from PayPal
	Reporting PayPal Expenses
	Using FasterCSV
	Converting PayPal CSV Data
	Dissecting the Code

	Analyzing the Data
	Dissecting the Code

	Summary

	Creating Sales Performance Reports with SugarCRM
	Installing SugarCRM
	Sales Force Reporting
	Updating the Database
	Creating PDFs from HTML Documents
	Dissecting the Code

	Summary

	Investment Tracking with Fidelity
	Writing a Small Server to Get Report Data
	Tracking a Stock Portfolio
	Creating an XML Server with Mongrel
	Dissecting the Code

	Creating the Graphical XML Ticker
	Dissecting the Code

	Summary

	Calculating Costs by Analyzing Apache Web Logs
	Speeding Up Insertions with ActiveRecord::Extensions
	Creating PDFs with PDF::Writer
	Cost-Per-Sale Reporting
	Creating the Controllers
	Creating the Layout and Views
	Downloading a Parser Library
	Creating the Routing File
	Setting Up the Database and Schema
	Defining the Models
	Examining the Log Analyzer and Cost-Per-Sale Report
	Dissecting the Code

	Summary

	Tracking the News with Google News
	Using FeedTools to Parse RSS
	Company News Coverage Reporting
	Loading the Data
	Dissecting the Code

	Creating the News Tracker Report Application
	Dissecting the Code

	Summary

	Creating Reports with Ruby and Microsoft Office
	Interacting with Microsoft Office
	Working with Microsoft Excel
	Working with Microsoft Word
	Working with Microsoft Access

	Importing Web-Form Data into an Access Database
	Creating the Web Interface
	Dissecting the Code

	Importing the XML Data into Microsoft Access
	Dissecting the Code

	Summary

	Tracking Your Ads with Google AdWords
	Obtaining Google AdWords Reports
	Planning an AdWords Campaign
	Loading the XML into a Database
	Dissecting the Code

	Creating the AdWords Campaign Reporter Application
	Dissecting the Code

	Summary

	Index

